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Result

This book computes the Hopf algebra of secondary cohomology operations which
is the secondary analogue of the Steenrod algebra.

Preface

Primary cohomology operations, for example the squaring operations Sqi and the
pth-power operations P i of N.E. Steenrod, supplement and enrich the algebraic
structure of the cohomology ring H∗(X) of a space. The Steenrod algebra consist-
ing of all (stable) primary cohomology operations was computed by J.P. Serre and
J. Adem in terms of the generators Sqi, P i, i ≥ 1. Using H. Cartan’s formula J.
Milnor showed that the Steenrod algebra A is a Hopf algebra with the diagonal:

δ : A −→ A⊗A,

δ(Sqn) =
n∑

i=0

Sqi ⊗ Sqn−i .

The computation of the Hopf algebra A led to progress, both in homotopy
theory and in specific geometric applications. In fact, in the decades after Steen-
rod’s discovery the Steenrod algebra A became one of the most powerful tools of
algebraic topology. We refer the reader to the survey of R.M.W. Wood [W] con-
cerning applications in topology and the rich algebraic properties of the algebra A.

It is, however, an intrinsic feature of homotopy theory (in contrast to algebra)
that primary operations always give rise to secondary and more general higher-
order operations. The understanding of higher operations leads to knowledge of
homotopy groups of spheres via the Adams spectral sequence. J.F. Adams in
solving the Hopf invariant problem and H. Toda in computing low-dimensional
homotopy groups of spheres exploited secondary operations in the solution of
fundamental problems in topology. This demonstrates that enriching cohomology
with both primary and secondary operations, yields a powerful algebraic model of
a space.

Though there is a large amount of detailed information on secondary coho-
mology operations in the literature, the algebraic nature of the secondary theory
remained a mystery. We clarify the algebraic structure by showing that secondary
cohomology operations yield an algebra B with an associative bilinear multiplica-
tion in the category of pair modules. This crucial fact is missing in the extensive
studies of L. Kristensen and his students A. Kock, I. Madsen, and E.K. Pedersen
on secondary operations.

The algebra B and its multiplication are defined in this book topologically
in terms of continuous maps between Eilenberg-MacLane spaces. Topologically we
also introduce a diagonal

∆ : B −→ B⊗̂B
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which induces Milnor’s diagonal δ on the Steenrod algebra A. Moreover we show
that B with the diagonal ∆ is a (secondary) Hopf algebra and we compute algebraic
invariants L and S of B. We prove that up to isomorphism there is a unique
secondary Hopf algebra B with invariants L and S. For p odd the invariants are
trivial, L = S = 0, and for p = 2 we give explicit formulæ for L and S. This
uniqueness theorem yields the algebraic determination of B as a Hopf algebra
leading to an algorithm for the computation of B in Chapter 16. The author is
very grateful to M. Jibladze for implementing the algorithm as a Maple package.

As an application one obtains the computation of triple Massey products in
the Steenrod algebra A. In fact, we show that the Milnor generator

Sq(0,2) = Sq6 + Sq5 Sq1 + Sq4 Sq2 ∈ A

yields a non-trivial triple Massey product

(∗) 〈Sq(0,2), Sq(0,2), Sq(0,2)〉 �= 0

containing Sq(0,1,2). This is the first non-trivial triple Massey product in the litera-
ture of the form 〈α, β, γ〉 with α, β, γ ∈ A. We show that in degree |α|+ |β|+ |γ| ≤
17 all triple Massey products 〈α, β, γ〉 vanish. Our algorithm computes also all
matrix triple Massey products in the Steenrod algebra A.

A fundamental tool for the computation of the homotopy groups of spheres
is the Adams spectral sequence (E2, E3, . . . ). Adams computed the E2-term and
showed that

E2 = ExtA(F, F)

is algebraically determined by Ext-groups associated to the Steenrod algebra A. It
is proved in [BJ5], [BJ6] that the E3-term is, in fact, similarly given by secondary
Ext-groups

E3 = ExtB(GΣ, GΣ)

which are algebraically determined by the secondary Hopf algebra B computed in
this book. The computation of E3 yields a new algebraic upper bound of homotopy
groups of spheres improving the Adams bound given by E2. Computations of the
new bound are described in [BJ6]. The author is convinced that the methods of
this book also yield a new impact on the computation of En for n ≥ 3 and finally
this might lead to the algebraic determination of homotopy groups of spheres in
terms of the Steenrod algebra and its higher invariants like L and S above.

The topological construction of both the multiplication and diagonal in B
and the proof of the uniqueness theorem constitute a substantial amount of work.
Essentially all the material in this book is required in the proof of the main result.
In order to provide the reader with a quick introduction to the new algebraic
concepts in secondary cohomology, we state the definitions and more important
results in the introduction. Further algebraic properties of the Hopf algebra B are
discussed in [BJ7] where in particular the dual of B is described extending the
Milnor dual of the Steenrod algebra A.

Bonn, October 2003 H.-J. B.



Introduction

The introduction consists of several parts. Part A gives a topological description of
the algebra B of secondary cohomology operations and compares B with the Steen-
rod algebra A of primary cohomology operations. Part B introduces the algebraic
notion of a secondary Hopf algebra. We show that a secondary Hopf algebra struc-
ture of B exists which induces the Hopf algebra structure of A. The uniqueness
theorem for secondary Hopf algebras yields an algebraic characterization of B.
Part C discusses the concept of secondary cohomology of a space X and describes
its structure as a secondary algebra over the secondary Hopf algebra B. This result
on secondary cohomology can be viewed as an enrichment of the cochain functor
C∗( , F) adding fundamental algebraic insight to the recent concept of C∗(X, F)
as an algebra over an E∞-operad, see part D.

Part A. Primary and secondary cohomology operations

Let p be a prime and let F = Z/pZ be the field with p elements. Then H∗(X, F)
and H̃∗(X, F) denote the cohomology and reduced cohomology.

A primary (stable) cohomology operation of degree k ∈ Z is a linear map

(A1) α : H̃n(X, F) −→ H̃n+k(X, F),

defined for all spaces X and all n ∈ Z, which commutes with suspension and with
homomorphisms induced by continuous maps between spaces. The graded vector
space of all such cohomology operations is the Steenrod algebra A. Multiplication
in A is defined by composition of operations.

It is also possible to define the Steenrod algebra A by stable classes of maps
between Eilenberg-MacLane spaces Zn = K(F, n). A stable class ᾱ of degree k ≥ 0
is a homotopy class

ᾱ : Zn −→ Zn+k,

defined for each n ≥ 1, such that the following diagram commutes in the homotopy
category.

(A2) Zn

�
��

ᾱ �� Zn+k

�
��

ΩZn+1 Ωᾱ �� ΩZn+k+1
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Here Ω is the loop space functor and the vertical arrows are the canonical homotopy
equivalences. Since the set [X, Zn] of homotopy classes X → Zn satisfies

(A3) H̃n(X, F) = [X, Zn]

we see that a stable class induces a primary cohomology operation and vice versa.
Therefore the graded vector space of all stable classes coincides with A. Multipli-
cation in A is given by the composition of stable classes.

Steenrod constructed the set of generators of the algebra A given by

(A4) EA =

⎧⎨⎩{Sq1, Sq2, . . . } for p = 2,

{P 1, P 2, . . . } ∪ {β, P 1
β , P 2

β , . . . } for p odd.

Here Sqi is the squaring operation, P i is the pth-power operation, and β is the
Bockstein operation. Moreover P i

β denotes the composite P i
β = βP i. We have to

introduce the additional generator P i
β in order to deal with secondary instability

conditions. Adem obtained a complete set of relations for these generators so that
A is algebraically determined as an algebra.

Milnor observed that the algebra A of primary cohomology operations is
actually a Hopf algebra with the diagonal

(A5) δ : A −→ A⊗A

given by the Cartan formula. The multiplication µ : H ⊗ H −→ H of the coho-
mology algebra H = H∗(X, F) is compatible with the Hopf algebra structure δ of
A, see (C2) below.

In this book, we offer similar results on secondary cohomology operations .
Classically a secondary operation

ϕ : Sϕ −→ Qϕ

is defined on a subset Sϕ of all cohomology classes and has values in a quotient
set Qϕ of all cohomology classes. This concept, however, is not suitable in order
to study the global algebraic structure of all secondary operations. For this reason
we introduce below the new object

B = (B1
∂ �� B0)

termed the algebra of secondary cohomology operations. Secondary operations can
be derived from B in a similar way as Massey products are derived from the
structure of a differential algebra. The algebra B is the secondary analogue of the
Steenrod algebra A. For the definition of B we need the ring

G = Z/p2Z
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and the ring homomorphism G → F which shows that an F-vector space is a
G-module. Let

(A6) B0 = TG(EA)

be the G-tensor algebra generated by EA in (A4) and let

q : B0 −→ A

be the surjective algebra map which is the identity on generators in EA. The
definition of B1 and ∂ : B1 → B0 is more complicated and relies on the notion of
track.

Given pointed maps f, g : X → Y a track H : f ⇒ g is an equivalence class
of homotopies f � g. Here homotopies H0, H1, : f � g are equivalent if there is a
homotopy Ht from H0 to H1 where Ht : f � g for all t ∈ [0, 1]. Hence a track is
the same as an arrow in the fundamental groupoid of the function space of pointed
maps X → Y .

A stable map α of degree k is a representative of a stable class ᾱ in (A2),
that is, α is a diagram

(A7) Zn α ��

r

��

⇑Hα

Zn+k

�r

��
ΩZn+1

Ωα
�� ΩZn+k+1

defined for each n ≥ 1, where α is a pointed map and Hα : rα ⇒ (Ωα)r is a track.
Given a stable map α = (α, Hα) a stable track a : α ⇒ 0 of degree k is a diagram

(A8)

⇑a

Zn α ��

0

��
Zn+k

defined for each n ≥ 1, such that the pasting of tracks in the following diagram
yields the trivial track.
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⇑a

Zn ��

0

��

��

⇑Hα

Zn+k

��
ΩZn+1 ��

⇓Ωa

0

��ΩZn+k+1

We can choose the Eilenberg-MacLane space Zn = K(F, n) to be a topological
F-vector space and the homotopy equivalence Zn −→ ΩZn+1 to be F-linear. This
implies that stable maps form a graded F-vector space [[A]]0 and stable tracks form
a graded F-vector space [[A]]01. There is the linear boundary map

(A9) ∂ : [[A]]01 −→ [[A]]0

which carries a : α ⇒ 0 to α. One now gets the following pullback diagram with
exact rows which defines B1 and ∂ on B1.

(A10) 0 �� ΣA �� [[A]]01
∂ ��

pull

[[A]]0 �� A �� 0

0 �� ΣA i �� B1
∂ ��

s̄

��

B0
q ��

s

��

A �� 0

Here Σ denotes the suspension of graded modules. We define the function s in the
diagram by choosing for α ∈ EA an element sα ∈ [[A]]0 representing α. Since [[A]]0
is a monoid this induces the monoid homomorphism

s : Mon(EA) −→ [[A]]0

where Mon(EA) is the free monoid generated by EA. Since [[A]]0 is an F-vector
space one gets the G-linear map

(A11) s : B0 −→ [[A]]0

using the fact that the tensor algebra B0 is the free G-module generated by
Mon(EA).
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It is also possible to define the graded G-module B1 by the near-algebra of
cochain operations introduced by Kristensen [Kr1]. Let

C∗(X, F)

be the singular cochain complex of a space X . A cochain operation Θ of degree k
is a function between the underlying sets

Θ : Cn(X, F) −→ Cn+k(X, F)

defined for all n ∈ Z and all spaces X , such that Θ commutes with homomorphisms
induced by maps between spaces. Let O be the graded vector space of all cochain
operations with addition defined by adding values in Cn+k(X, F). Composition
of cochain operations yields a multiplication Θ · Θ′ for Θ, Θ′ ∈ O which is left
distributive but not right distributive so that O is a near-algebra. There is a
linear map

(A12) ∂ : O −→ O

of degree +1 defined by the formula ∂Θ = dΘ+(−1)|Θ|Θd where d is the differential
of C∗(X, F). One readily checks that ∂∂ = 0.

Kristensen shows that the homology of (O, ∂),

A = kernel(∂)/ image(∂),

coincides with the Steenrod algebra. For this reason we get the following pull back
diagram with exact rows which also defines B1.

(A13) 0 �� ΣA �� Σ cokernel(∂) ∂ ��

pull

kernel(∂) �� A �� 0

0 �� ΣA i �� B1
∂ ��

��

B0
q ��

s

��

A �� 0

Here s is defined by multiplication and addition in O similarly as s in (A12). This
construction of B1 in terms of cochain operations yields the connection of the
theory in this book with Kristensen’s theory of secondary cohomology operations
in the literature, see [Kr1] [Kr2].

We point out that for α, β ∈ B0 the element s(α · β) does not coincide
with (sα) · (sβ). But we show that there is a well-defined element Γ̄(α, β) ∈ [[A]]01
satisfying

(A14) ∂Γ̄(α, β) = s(α) · s(β) − s(α · β), see (A12).

Here it is of crucial importance that we define the tensor algebra B0 over the ring
G and not over F since only for elements α, β, defined over G, the term Γ̄(α, β) is
well defined.
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According to the pull back in (A11) an element x ∈ B1 is a pair x = (ξ, u)
with ξ ∈ B0 and u : sξ ⇒ 0 a stable track. We define stable tracks α•u : s(αξ) ⇒ 0
and u •β : s(ξβ) ⇒ 0 by pasting tracks in the following diagrams where Γ(α, β) =
Γ̄(α, β) + s(αβ) is given by the operator Γ̄.

· ·sα��

⇓Γ(α,ξ)

·sξ��

0

⇑u

��

s(αξ)

		

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= α • u

·

0

⇑u

·sξ��

⇓Γ(ξ,β)

·sβ��

s(ξβ)

		

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= u • β

A15 Theorem. Defining the left and right action of α, β ∈ B0 on x = (ξ, u) ∈ B1

by

α · x = (αξ, α • u),
x · β = (ξβ, u • β),

one obtains a well-defined structure of B1 as a B0-bimodule. Moreover ∂ : B1 −→
B0 satisfies the equations (x, y ∈ B1),

∂(α · x · β) = α · ∂(x) · β,

∂(x) · y = x · ∂(y).

The theorem shows that B = (∂ : B1 → B0) is a pair algebra, see Section (B2)
below.

We now indicate how elements x ∈ B1 are related to secondary operations ϕx.
Given α, β ∈ A with α · β = 0 in A we can choose ᾱ, β̄ ∈ B0 with qᾱ = α, qβ̄ = β
so that q(ᾱβ̄) = 0. By exactness there is x ∈ B1 with ∂x = ᾱ · β̄. Then x induces
the associated secondary operations

(A16) ϕx : {g ∈ H, βg = 0} =⇒ H/αH

of degree |α| + |β| − 1 with H = H∗(X, F). If g is represented by γ : X −→ Zn

then ϕx(g) is represented by the map ϕ : X −→ ΩZn+|α|+|β| obtained by pasting
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tracks in the following diagram.

⇑u

X
γ ��

0



Zn
sβ ��

0

��

⇓t

Zn+|α| sα �� Zn+|α|+|β|

The track t exists since βg = 0 and u = s̄x is given by x. If X = Zm is an
Eilenberg-MacLane space (with m large) then ϕ yields an element in A and the
collection of all such elements is the Massey product

(A17) 〈α, β, γ〉 ⊂ A.

defined for all α, β, γ ∈ A with βγ = 0 and αβ = 0. The Massey product 〈α, β, γ〉
can be computed in terms of B as follows. Let ᾱ, β̄, γ̄ ∈ B0 be elements representing
α, β and γ respectively. Then there exists u, v ∈ B1 with

∂u = β̄ · γ̄, ∂v = ᾱ · β̄,

since βγ = 0 and αβ = 0. Hence we get the element

(A18) x = ᾱu − vγ̄ ∈ B1

by the B0-bimodule structure of B1. Since ∂x = ᾱ(∂u) − (∂v)γ̄ = 0 we see that
x ∈ ΣA. The element x represents the Massey product < α, β, γ >. This shows that
the algebraic determination of B in this book solves an old problem of Kristensen
and Madsen [Kr4], [KrM2].

We derive from the pair algebra B a derivation of degree −1,

(A19) Γ[p] : A −→ A

as follows. Let [p] ∈ B1 be the unique element of degree 0 with ∂[p] = p·1 where 1 is
the unit of the algebra B0. For α ∈ B0 the difference α · [p]− [p] ·α = x is defined by
the bimodule structure of B1 with ∂x = α · p− p ·α = 0 so that x ∈ ΣA. Moreover
x depends only on the image α̃ of α in A so that Γ[p](α̃) = x is well defined.

A20 Theorem. The derivation Γ[p] coincides with the derivation κ : A −→ A
defined on generators as follows.

κ(Sqn) = Sqn−1 for n ≥ 1, p even. Moreover
κ(Pn) = 0 for n ≥ 1, and

κ(β) = 1 for p odd.

Here Sq0 = 1 is the unit of A.
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Part B. Secondary Hopf algebras

The concept of algebra and Hopf algebra is based on the monoidal category of
modules with the tensor product as monoidal structure. Primary operations in
homotopy theory lead to such algebras in contrast to secondary operations which
lead to pair algebras defined in the monoidal category of pair modules like the
pair algebra B of secondary cohomology operations in (A16). Moreover, B has the
structure of a secondary Hopf algebra inducing the Hopf algebra structure of the
Steenrod algebra A.

(B1) Modules and pair modules

Let R be a commutative ring with unit and let Mod(R) be the category of R-
modules and R-linear maps. This is a symmetric monoidal category via the tensor
product A ⊗ B over R. A pair of modules is a morphism

X = (∂ : X1 −→ X0)

in Mod(R) and a map f : X −→ Y between pairs is the following commutative
diagram.

X1
f1 ��

∂

��

Y1

∂

��
X0

f0

�� Y0

A pair in Mod(R) coincides with a chain complex concentrated in degree 0
and 1. Let X and Y be two pairs of modules. Then the tensor product X ⊗ Y of
the underlying chain complexes is given by

X1 ⊗ Y1
d2 �� X1 ⊗ Y0 ⊕ X0 ⊗ Y1

d1 �� X0 ⊗ Y0

with d1 = (∂ ⊗ 1, 1⊗ ∂) and d2 = (−1⊗ ∂, ∂ ⊗ 1). We truncate X ⊗ Y and we get
the pair ⎧⎨⎩X⊗̄Y = (cokernel(d2)

∂−→ X0 ⊗ Y0), with

∂ : (X⊗̄Y )1 = cokernel(d2) −→ X0 ⊗ Y0 = (X⊗̄Y )0

induced by d1. One readily checks that the category of pairs in Mod(R) together
with the tensor product X⊗̄Y is a symmetric monoidal category. The unit object
is R = (0 → R).

A graded module is a sequence An, n ∈ Z, of R-modules with An = 0 for
n < 0. We define the tensor product A ⊗ B of two graded modules as usual by

(A ⊗ B)n = ⊕
i+j=n

Ai ⊗ Bj .
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We define the interchange isomorphism

T : A ⊗ B ∼= B ⊗ A

depending on a prime p by the formula

T (a ⊗ b) = (−1)p|a||b|b ⊗ a.

Here |a| is the degree of a ∈ A with |a| = n if a ∈ An. Hence the interchange of
the graded elements a, b always involves the interchange sign (−1)p|a||b| depending
on the prime p. Let ΣA be the suspension of A defined by (ΣA)n = An−1 and let
Σ : A → ΣA be the map of degree +1 given by the identity. One has the canonical
isomorphisms

(ΣA) ⊗ B = Σ(A ⊗ B)
τ∼= A ⊗ (ΣB)

where τ(a ⊗ Σb) = (−1)p|a|Σ(a ⊗ b). We call τ the interchange of Σ.
A graded pair module X is a sequence of pairs Xn = (∂ : Xn

1 → Xn
0 ) in

Mod(R) with Xn = 0 for n < 0. We identify a graded pair module X with the
underlying map ∂ of degree 0 between graded modules

X = ∂ : X1 −→ X0.

The tensor product X⊗̄Y of graded pair modules X, Y is defined by

(X⊗̄Y )n = ⊕
i+j=n

X i⊗̄Y i

and the interchange isomorphism

T : X⊗̄Y ∼= Y ⊗̄X

is induced by the interchange isomorphism for graded R-modules depending on
the prime p above. Given two maps f, g : X → Y between graded pair modules a
homotopy H : f ⇒ g is a morphism H : X0 → Y1 of degree 0 as in the diagram

X1
f1,g1 ��

∂

��

Y1

∂

��
X0

f0,g0

��

H

������������������
Y0

satisfying H∂ = f1 − g1 and ∂H = f0 − g0.
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(B2) Algebras and pair algebras

An algebra A with multiplication

µ : A ⊗ A −→ A

is the same as a monoid in the monoidal category of graded R-modules. Moreover
an A-module is a graded module M together with a left action

µ : A ⊗ M −→ M

of the monoid A on M . Similarly one defines a right A-module by a right action
and an A-bimodule by an action

µ : A ⊗ M ⊗ A −→ M

from the left and the right. For example the suspension ΣA of an algebra A is an
A-bimodule by using the interchange of Σ.

A pair algebra B is a monoid in the monoidal category of graded pair modules
with multiplication

µ : B⊗̄B −→ B.

A left B-module M is a graded pair module M together with a left action

µ : B⊗̄M −→ M

of the monoid B on M . One readily checks:

Lemma. A pair algebra B = (∂ : B1 −→ B0) consists of an algebra B0 and a
B0-bimodule map ∂ satisfying ∂(x) · y = x · ∂(y) for x, y ∈ B1.

This shows that B in (A16) is, in fact, a pair algebra.

(B3) Hopf algebras

For graded algebras A and A′ the tensor product A⊗A′ is again an algebra with
the multiplication

(A ⊗ A′) ⊗ (A ⊗ A′) 1⊗T⊗1−→ A ⊗ A ⊗ A′ ⊗ A′ µ⊗µ−→ A ⊗ A′.

In the same way the tensor product B⊗̄B′ of two graded pair algebras is again a
pair algebra with the multiplication

(B⊗̄B′) ⊗ (B⊗̄B′) 1⊗T⊗1−→ B⊗̄B⊗̄B′⊗̄B′ µ⊗µ−→ B⊗̄B′.

Here T is the interchange isomorphism above depending on the prime p. Hence
the category of algebras, resp. pair algebras, is a symmetric monoidal category.

A Hopf algebra A is a comonoid in the monoidal category of graded algebras,
that is, A is a graded algebra together with augmentation ε : A −→ R and diagonal
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∆ : A −→ A ⊗ A such that the following diagrams are commutative; here ε and
∆ are algebra maps.

A ⊗ A

ε⊗1

��

A
∆�� ∆ ��

1

��

A ⊗ A

1⊗ε

��
R ⊗ A A A ⊗ R

A
∆ ��

∆

��

A ⊗ A

∆⊗1

��
A ⊗ A

1⊗∆
�� A ⊗ A ⊗ A

The Hopf algebra is co-commutative if in addition the following diagram
commutes.

A

∆

����
��
��
��
��
��
��
��
�

∆

�
��

��
��

��
��

��
��

��

A ⊗ A
T

�� A ⊗ A

In a similar way it is possible to define a “Hopf pair algebra” as a comonoid in the
monoidal category of pair algebras. Secondary cohomology operations, however,
lead to a more sophisticated notion of secondary Hopf algebra, defined below in
terms of the folding product ⊗̂ which is a quotient of the tensor product ⊗̄ of pair
modules.

(B4) Examples of Hopf algebras

The tensor algebra B0 = TG(EA) is a Hopf algebra with the diagonal

∆0 : B0 −→ B0 ⊗ B0

which is the algebra map defined on generators by (i ≥ 1)

∆0(Sqi) =
∑

k+l=i

Sqk ⊗ Sql for p = 2,
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and
∆0(β) = β ⊗ 1 + 1 ⊗ β,

∆0(P i) =
∑

k+l=i

P k ⊗ P l,

∆0(P i
β) =

∑
k+l=i

(P k
β ⊗ P l + P k ⊗ P l

β)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
for p odd.

One readily checks that (B0, ∆0) is a well-defined Hopf algebra which is co-com-
mutative for p odd and for p even, since the interchange isomorphism T depends
on the prime p. Moreover the tensor algebra (TF(EA), ∆) and the Steenrod algebra
(A, δ) are Hopf algebras with the diagonal ∆, resp. δ, defined by the same formula
as above so that the canonical surjective algebra maps

B0 = TG(EA) −→ TF(EA) −→ A

are maps between Hopf algebras. Here TF(EA) and A are also co-commutative
Hopf algebras.

(B5) The folding product of [p]-algebras

Let A⊗n = A ⊗ · · · ⊗ A be the n-fold tensor product of the Steenrod algebra
A with A⊗n = F for n = 0. Hence A⊗n is an algebra over F and ΣA⊗n is an
A⊗n-bimodule. A [p]-algebra of type n, n ≥ 0, is given by an exact sequence of
non-negatively graded G-modules

0 �� ΣA⊗n i �� D1
∂ �� D0

q �� A⊗n �� 0

where D0 is a free G-module and an algebra over G and q : D0 −→ A⊗n is an
algebra map. Moreover D1 is a right D0-module. Using the algebra map q also
ΣA⊗n is a right D0-module and all maps in the sequence are D0-linear. Since
(ΣA⊗n)0 = 0 we have the unique element [p] ∈ D1 of degree 0 with ∂[p] = p · 1
where 1 is the unit in the algebra D0. As part of the definition of a [p]-algebra we
assume that the quotient

D̃1 = D1/[p]D0

of G-modules is actually an F-module. For this reason we get for a [p]-algebra D
a commutative diagram

D1
��

∂

��

D1/[p]D0 = D̃1

∂

��
D0

�� D0/pD0 = D̃0
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which is a push out and a pull back of right D0-modules. We call ∂ : D̃1 −→ D̃0

the pair module over F associated to D. Now let D and E be [p]-algebras of type
n and m respectively. Then a morphism f : D −→ E is a commutative diagram

0 �� ΣA⊗n ��

Σf̄0

��

D1
��

f1

��

D0
��

f0

��

A⊗n ��

f̄0

��

0

0 �� ΣA⊗m �� E1
�� E0

�� A⊗m �� 0

where f0 is an algebra map and f1 is an f0-equivariant map between right modules.
We point out that f1 has the restriction Σf̄0 where f̄0 is induced by f0. Let

Alg[p]

be the category of [p]-algebras of type n ≥ 0 and such maps.
The initial object GΣ in Alg[p] is the [p]-algebra of type 0 given by the exact

sequence

0 �� ΣF �� GΣ
1

∂ �� GΣ
0

�� F �� 0

F ⊕ ΣF G

with ∂|F : F ⊂ G and ∂ΣF = 0. For each [p]-algebra D there is a unique morphism
GΣ −→ D carrying 1 to 1 and [p] to [p]. We call a morphism

ε : D −→ GΣ in Algp

a secondary augmentation of D.
For n, m ≥ 0 we obtain the folding map ϕ by the commutative diagram

An,m

ϕ

��

(ΣA) ⊗A⊗m ⊕A⊗n ⊗ (ΣA⊗m)

(1,τ)

��
ΣA⊗(n+m) ΣA⊗n ⊗A⊗m

where we use the interchange of Σ . Let D and E be [p]-algebras of type n and m
respectively and let D̃, Ẽ be the associated pair modules. Then the folding product
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D⊗̂E is defined by the following diagram in which the top row is exact.

0 �� An,m ��

ϕ

��

push

(D̃⊗̄Ẽ)1 ��

��

D̃0 ⊗ Ẽ0
�� A⊗(n+m) �� 0

ΣA⊗(n+m) �� (D⊗̂E)∼1 ��

pull

D̃0 ⊗ Ẽ0

(D⊗̂E)1

��

∂ �� D0 ⊗ E0

��

The bottom row defines the pair module D⊗̂E. The algebra D0 ⊗ E0 acts
from the right on (D⊗̂E)1 since D0 acts on D̃1 and E0 acts on Ẽ1 and ϕ is
equivariant. This shows that D⊗̂E is a well-defined [p]-algebra of type n + m.

Lemma. The category Alg[p] of [p]-algebras with the folding product ⊗̂ is a sym-
metric monoidal category. The unit object of ⊗̂ is GΣ.

The pair of maps{
(D⊗̄E)1 −→ (D̃⊗̄Ẽ)1 −→ (D⊗̂E)∼1
(D⊗̄E)1 −→ D0 ⊗ E0

induces by the pull back property of (D⊗̂E)1 the map

q : (D⊗̄E)1 −→ (D⊗̂E)1

which is a quotient map of right D0 ⊗ E0-modules.
The interchange map T for D⊗̄E depending on the prime p induces via q

the corresponding interchange map

T : D⊗̂E −→ E⊗̂D

in the category Alg[p] of [p]-algebras. We are now ready to define secondary Hopf
algebras associated to the Steenrod algebra A.

(B6) Secondary Hopf algebras

As in (B4) we have the map

q : B0 = TG(EA) −→ A
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between Hopf algebras. We consider a pair algebra B = (∂ : B1 −→ B0) together
with an exact sequence of B0-bimodules

0 �� ΣA �� B1
∂ �� B0

�� A �� 0

such that B1/[p] ·B0 is an F-vector space. Then B is also a [p]-algebra of type n = 1
as defined in (B5) and the folding product B⊗̂B together with the quotient map

q : (B⊗̄B)1 �� B⊗̂B

is defined. Moreover we assume that B induces the derivation Γ[p] = κ as in (A19).
For example the pair algebra B of secondary cohomology operations in part A has
these properties.

Since B is a pair algebra also B⊗̄B is a pair algebra so that (B⊗̄B)1 is a
B0 ⊗ B0-bimodule which via the algebra map ∆0 : B0 −→ B0 ⊗ B0 in (B4) is
also a B0-bimodule. One can show that there is a unique B0-bimodule structure of
(B⊗̂B)1 for which the quotient map q is a morphism between B0-bimodules. Here
one needs for the existence of the left action of B0 on (B⊗̂B)1 the assumption that
Γ[p] = κ satisfies δκ = (κ ⊗ 1)δ.

We say that the pair algebra B is a secondary Hopf algebra (associated to A)
if an augmentation

ε : B −→ GΣ in Alg[p]

and a diagonal
∆ : B −→ B⊗̂B in Alg[p]

are given such that the following diagrams commute.

0 �� ΣA ��

Σδ

��

B1
��

∆1

��

B0
��

∆0

��

A ��

δ

��

0

0 �� ΣA⊗A �� (B⊗̂B)1
∂ �� B0 ⊗ B0

�� A⊗A �� 0

Here ∆1 is a map of right B0-bimodules.

B⊗̂B

ε⊗1

��

B∆��

1

��

∆ �� B⊗̂B

1⊗ε

��
GΣ⊗̂B B B⊗̂GΣ
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B ∆ ��

∆

��

B⊗̂B

∆⊗1

��
B⊗̂B

1⊗∆
�� B⊗̂B⊗̂B

These diagrams show that B is a comonoid in Alg[p].

Existence theorem. The pair algebra B of secondary cohomology operations has
topologically defined augmentation ε : B −→ GΣ and diagonal ∆ : B −→ B⊗̂B
such that B is a secondary Hopf algebra.

Given a secondary Hopf algebra B let

RB = kernel(q : B0 −→ A)
= image(∂ : B1 −→ B0)

be the ideal of relations in B0 with p ∈ RB in degree 0. We associate with B a
symmetry operator

S : RB −→ Ã ⊗ Ã
defined by the formula in (B⊗̂B)1,

T∆1(x) = ∆1(x) + ΣS(ξ)

for x ∈ B1 with ∂x = ξ ∈ RB. Moreover we define a left action operator

L : A⊗ RB −→ Ã ⊗ Ã

by the formula in (B⊗̂B)1,

∆1(α · x) = α · ∆1(x) + ΣL(α ⊗ ξ)

with α ∈ B0, x ∈ B1 and ∂x = ξ. Here Ã = kernel(ε : A → F) is the augmentation
ideal of A. In case B is the algebra of secondary cohomology operations we compute
S and L explicitly, see Chapter 14. If p is odd we have S = 0 and L = 0. But if
p = 2 we get non-trivial S and L.

An isomorphism between secondary Hopf algebras B, B′ is an isomorphism
B1

∼= B′
1 which is compatible with all the structure described above.

Uniqueness theorem. Up to isomorphism there is a unique secondary Hopf algebra
B associated to A, the derivation Γ[p] = κ, the symmetry operator S, and the left
action operator L.

The existence theorem and the uniqueness theorem are the main results of this
book. Based on the uniqueness theorem we describe an algorithm for the compu-
tation of B. In low degrees B is completely determined by the tables at the end
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of this book. The author is very grateful to Mamuka Jibladze for implementing
the algorithm on a computer. His computer calculations are a wonderful manifes-
tation of the correctness of the new elaborate theory in this book. Also the result
of Adams [A] in degree 16 is an example of such calculations. Moreover a table of
triple Massey products in the Steenrod algebra is obtained this way.

Part C. Secondary cohomology

Cohomology of a space X can be derived from the singular cochain algebra
C∗(X, F) or from Eilenberg-MacLane spaces Zn = K(F, n) by

H̃n(X, F) = H̃nC∗(X, F) = [X, Zn].

In a similar way we derive in this book “secondary cohomology” H∗[X ] either
from C∗(X, F) or from Zn. The secondary cohomology H∗[X ] has a rich additional
algebraic structure. In particular, H∗[X ] is a secondary permutation algebra over
the secondary Hopf algebra B, generalizing the well known fact that H∗(X, F) is
an algebra over the Hopf algebra A, see (A3).

(C1) Secondary cohomology as a B-module

We first introduce the concept of secondary cohomology of a chain complex. Let
C be an augmented cochain complex with the differential

d : C −→ C of degree + 1

and augmentation ε : C −→ F. Let

C̃ = kernel(ε).

The cohomology of C is the graded module

H∗(C) = kernel(d)/ image(d).

The secondary cohomology of C is the graded pair module H∗(C) defined by

Σ(C̃/ image d)
∂ �� kernel(d)

H∗(C)1 H∗(C)0

Here ∂ is induced by d. Hence we obtain the exact sequence of graded modules:

0 �� ΣH̃∗(C) �� H∗(C)1
∂ �� H∗(C)0 �� H∗(C) �� 0

Lemma. If (C, d) is an augmented differential algebra, then H∗(C) is a pair algebra
and all maps in the exact sequence are H∗(C)0-bimodule maps. Here H∗(C)0 is
the algebra of cocycles in C.
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The lemma shows that pair algebras are just the secondary truncations of
differential algebras. Now let X be a pointed path connected space. A topological
cocycle of degree n in X is a pointed map

ξ : X −→ Zn, n ≥ 1.

Let H∗(X)0 be the graded module which is F in degree 0 and which consists
of topological cocycles in degree n ≥ 1. Here addition of cocycles is induced by
the topological vector space structure of Zn. Moreover let H∗(X)1 be the graded
module consisting of pairs (a, ξ) where a : ξ ⇒ 0 is a track and ξ is a topological
cocycle and let

∂ : H∗(X)1 −→ H∗(X)0

be the boundary map which carries (a, ξ) to ∂(a) = ξ. Then H∗(X) is a pair
module termed the secondary cohomology of X. One has the exact sequence:

0 �� ΣH̃∗(X) �� H∗(X)1 �� H∗(X)0 �� H∗(X) �� 0

Here H̃∗(X) is reduced cohomology since tracks are defined by pointed homotopies.
The pair algebra structure of H∗(X) is induced by the multiplication maps

µ : Zn × Zm −→ Zn+m

which are associative. One can check that there is a weak equivalence of pair
algebras

H∗(X) ∼ H∗(C)

where C = C∗(X, F) is the augmented differential algebra of cochains in the
pointed space X .

A stable map α : Zn −→ Zn+k, as defined in part (A), acts on H∗(X) by
composition of maps. But this action of [[A]]0 on H∗(X) is not bilinear. For this
reason we have to introduce the strictified secondary cohomology H∗[X ] which is
a pair module obtained by the following pull back diagram with exact rows.

0 �� ΣH̃∗(X) �� H∗(X)1 ��

pull

H∗(X)0 �� H∗(X) �� 0

0 �� ΣH̃∗(X) �� H[X ]1 ��

��

H∗[X ]0 ����

s

��

H∗(X) �� 0

Here H∗[X ]0 is a suitable free algebraic object generated by H∗(X)0 which, in
particular, is a B0-module. The function s is similarly defined as the function s
in the pull back diagram (A11) defining B. Generalizing the well-known fact that
the cohomology H∗(X) is an A-module we show

Theorem. The strict secondary cohomology H∗[X ] is a B-module inducing the A-
module structure of H∗(X).
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Compare the definition of B-modules in (B2). The action of B is defined similarly
as in (A16).

(C2) Algebras over Hopf algebras

The algebra structure of cohomology H∗(X) and the A-module structure of H∗(X)
are connected by the Cartan formula showing that H∗(X) is an algebra over the
Hopf algebra A. More explicitly let µ2 be defined by the following commutative
diagram with H = H∗(X).

(A ⊗A) ⊗ (H ⊗ H)

µ2

��

A⊗A⊗ H ⊗ H

1⊗T⊗1

��
A⊗ H ⊗A⊗ H

µ1⊗µ1

��
H H ⊗ Hµ

��

Here µ1 is the action of A on H and µ is the multiplication in the algebra H .
Then the following diagram commutes where δ is the diagonal of A. This diagram
is termed the Cartan diagram.

A⊗ H ⊗ H

1⊗µ

��

δ⊗1 �� (A⊗A) ⊗ (H ⊗ H)

µ2

��
A⊗ H µ1

�� H

An algebra H , which is also an A-module, is termed an algebra over the Hopf
algebra A if the Cartan diagram commutes.

In the next section we describe the corresponding property of the strictified
secondary cohomology H∗[X ].

(C3) Pair algebras over secondary Hopf algebras

We have seen that the secondary cohomology H∗[X ] is a pair algebra and a B-
module, see (C1). Moreover B is a secondary Hopf algebra. Now the pair algebra
structure of H = H∗[X ] and the secondary diagonal of B are connected by gener-
alizing the Cartan diagram (C2). There is a unique map µ2 between pair modules
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for which the following diagram commutes

(B⊗̂B)⊗̄(H⊗̄H)

µ2

��

B⊗̄B⊗̄H⊗̄H

1⊗T⊗1

��

q⊗1��

B⊗̄H ⊗ B⊗̄H

µ1⊗µ1

��
H H⊗̄Hµ

��

Here µ1 is the action of B on H and µ is the multiplication of the pair algebra H
and q is the quotient map in (B5). Generalizing the Cartan diagram (C2) we get
the following result.

Theorem. The strictified secondary cohomology H = H∗[X ] is endowed with a
Cartan homotopy C as in the following diagram.

B⊗̄H⊗̄H

1⊗µ

��

∆⊗1 ��

C
=⇒

(B⊗̂B)⊗̄(H⊗̄H)

µ2

��
B⊗̄H µ1

�� H

Here C is a G-linear map natural in X,

C : B0 ⊗ H0 ⊗ H0 −→ H1,

satisfying the following properties. First C : µ1(1⊗µ) ⇒ µ2(∆⊗ 1) is a homotopy
between pair maps, see (B1). Let α, β ∈ B0 and x, y, z ∈ H0. Then the associativity
formula

C(α ⊗ (x · y, z)) + (C ⊗ 1)(∆(α) ⊗ (x, y, z))
= C(α ⊗ (x, y · z)) + (1 ⊗ C)(∆(α) ⊗ (x, y, z))

is satisfied where x · y, y · z are given by the multiplication in H. The maps

C ⊗ 1, 1 ⊗ C : B0 ⊗ B0 ⊗ H0 ⊗ H0 ⊗ H0 −→ H1

are defined by

(C ⊗ 1)(α ⊗ β ⊗ (x, y, z)) = (−1)p|β|(|x|+|y|)C(α ⊗ (x, y)) · (β · z),

(1 ⊗ C)(α ⊗ β ⊗ (x, y, z)) = (−1)p|β||x|(α · x) · C(β ⊗ (y, z))

with (x, y) = x ⊗ y and (x, y, z) = x ⊗ y ⊗ z. On the right-hand side we use the
action of B0 on H0 and the action of H0 on H1.

Moreover the Cartan homotopy C satisfies further equations with respect to
the symmetry operator S and the left action operator L, see Chapter 14.
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A pair algebra H which is a B-module together with a Cartan homotopy C
satisfying these properties is termed a pair algebra over the secondary Hopf algebra
B. This is the secondary analogue of an algebra over the Steenrod algebra in (C2).

We know that the cohomology algebra H∗(X) is a commutative graded
algebra. The corresponding result for secondary cohomology H∗[X ] shows that
H∗[X ] is a secondary permutation algebra, see Section (6.3) and Section (14.2).
Only by use of this additional structure are we able to compute the operators
S and L above.

(C4) Instability

The cohomology H∗(X) is an unstable algebra over the Steenrod algebra A in the
following sense:

If the prime p is even and x ∈ H∗(X) then for i ≥ 1,

(∗)
Sqix = 0 for i > |x|, and

Sqix = x2 for i = |x|.

If the prime p is odd then for i ≥ 1,

(∗∗)
P ix = 0 for 2i > |x|, and

P i
βx = 0 for 2i + 1 > |x|, and

P ix = xp for 2i = |x|.

An algebra H over the Hopf algebra A is called unstable if these conditions are
satisfied and if H is a commutative algebra.

Let M = Mon(EA) be the free monoid generated by EA. We define the
excess function

e : M �� Z.

For a monomial a = e1 . . . er ∈ M with e1, . . . , er ∈ EA put, for p = 2,

e(a) = Maxj(|ej | − |ej+1 . . . er|).

Moreover put for p odd

e(a) = Maxj

⎧⎪⎨⎪⎩
2|ej| − |ej+1 . . . er| for ej ∈ {P 1, P 2, . . . },
2|ej| + 1 − |ej+1 . . . er| for ej ∈ {P 1

β , P 2
β , . . . },

1 for ej = β.

One readily checks for x ∈ H∗(X) the equation:

αx = 0 for e(α) > |x|.

We now consider the secondary instability condition of the secondary coho-
mology H∗[X ] corresponding to the primary instability above. For this let

E(X) ⊂ M×H∗[X ]0
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be the excess subset given by all pairs (α, x) with e(α) < |x|, α ∈ M, x ∈ H∗[X ]0.
Then there are unstable structure maps

v : E(X) �� H∗[X ]1,

u : H∗[X ]0 �� H∗[X ]1 for p = 2,

u : H∗[X ]even0
�� H∗[X ]1 for p odd,

which are natural in X with |v(α, x)| = |α| + |x| and |ux| = p|x| and

∂v(α, x) = α · x,

∂u(x) = αp · x − xp

with αp = Sq|x| for p = 2 and αp = P |x|/2 for p odd. Moreover the properties in
(13.3.3) and (13.3.4) in the book are satisfied. The existence of v and u corresponds
to the instability equations (∗) and (∗∗) above.

Part D. Algebraic models of spaces

Sullivan showed that the cochain algebra C∗(X, Q) of a simply connected space
X determines the rational homotopy type of X , [S]. In rational homotopy the-
ory, as developed in Félix-Halperin-Thomas [HFT], one has good knowledge of
how topological constructions are transformed to algebraic constructions by the
cochain functor. Such constructions can be transported to the secondary coho-
mology functor H∗ as well. We consider the functor H∗ (which carries X to a
secondary permutation algebra over B) as an intermediate step between the fol-
lowing models:

• the cohomology H∗(X, F) as an algebra over A,
• the cochain algebra C∗(X, F̄) as an algebra over an E∞-operad as studied by

Mandell [Ma].
Here C∗(X, F̄) determines the p-adic homotopy type of X yielding the p-adic ana-
logue of Sullivan’s result. The great advantage of secondary cohomology H∗[X ]
is the fact, that the B-module structure of H∗[X ] has a direct connection to the
A-module structure of the cohomology H∗(X, F). Representing the action of the
Steenrod algebra in an algebra over the E∞-operad is a lot more involved, [May].
It would be interesting to see, how the action of B on H∗[X ] can be deduced from
the structure of C∗(X, F̄) as an algebra over the E∞-operad. This, in fact, requires
the secondary enrichment of May’s “General algebraic approach to Steenrod op-
erations”, [May].

Concerning the theory of secondary cohomology operations in the literature
we refer the reader to the recent book of John Harper [Ha]. Our approach is new
and mainly concerned with the algebraic nature of the theory. All the results in
the literature on secondary cohomology operations can be considered as properties
of the structure of H∗[X ] as an algebra over B.



Part I

Secondary Cohomology
and Track Calculus



In the first part of this book we study classical primary and secondary co-
homology operations and we show that a “global theory of secondary operations”
is obtained by the track theory of Eilenberg-MacLane spaces. As pointed out by
Karoubi [Ka2] Steenrod operations can be defined by “power maps”

γ : Z1 × Zq −→ Zpq

for q ≥ 1 and Zn = K(F, n). Karoubi uses only the homotopy class of γ.
Since we are interested in the secondary structure we study the properties of

the map γ and not of the homotopy class γ. We observe that power maps γ are
well defined up to a canonical track. The power maps are part of the homotopy
commutative diagrams related to

• the linearity of the Steenrod operations,
• the Cartan formula, and
• the Adem relation respectively.

We show that such diagrams not only admit a homotopy but, in fact, are homo-
topy commutative by a well-defined track which we call the linearity track , the
Cartan track and the Adem track respectively. These tracks can be considered
as generators of the secondary Steenrod algebra in the same way as power maps
generate the classical Steenrod algebra.

We shall work in the category Top of compactly generated Hausdorff spaces
and continuous maps, compare the book of Gray [G]. Let Top∗ be the correspond-
ing category of pointed spaces and pointed maps.



Chapter 1

Primary Cohomology
Operations

In this chapter we show that for the prime 2 the category K0 of connected algebras
over the Steenrod algebra A is isomorphic to the category UEPow of unitary
extended power algebras. A similar result holds for odd primes. Power algebras
are algebras together with power operations γx. The cohomology algebra H∗(X) of
a space is naturally a power algebra with power operations induced by the power
maps γ in Chapter 7. Our approach of studying secondary cohomology operations
in Part II is based on properties of these power maps.

1.1 Unstable algebras over the Steenrod algebra

We recall from the book of Steenrod-Epstein [SE] or Schwartz [Sch] the following
facts and notations on the Steenrod algebra.

Let p be a prime number and let F = Z/p be the field of p elements. The
mod p Steenrod algebra A = Ap is the quotient of the “free” associative unital
graded R-algebra generated by the elements

Sqi of degree i, i > 0, if p = 2,
β of degree 1 subject to β2 = 0 and
P i of degree 2i(p − 1), i > 0, if p > 2;

by the ideal generated by the elements known as Adem relations

SqiSqj −
[i/2]∑
k=0

(
j − k − 1

i − 2k

)
Sqi+j−kSqk
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for all i, j > 0 such that i < 2j if p = 2;

P iP j −
[i/p]∑
t=0

(−1)i+t

(
(p − 1)(j − t) − 1

i − pt

)
P i+j−tP t

for all i, j > 0 such that i < pj and

P iβP j −
[i/p]∑
t=0

(−1)i+t

(
(p − 1)(j − t)

i − pt

)
βP i+j−tP t

−
[(i−1)/p]∑

t=0

(−1)i+t−1

(
(p − 1)(j − t) − 1

i − pt − 1

)
P i+j−tβP t

for all i, j > 0 such that i ≤ pj if p > 2.
In these formulas Sq0 (resp. P 0) for p = 2 (resp. p > 2) is understood to be

the unit.
The mod p cohomology H∗(X ; Z/p) of a space X will be denoted by H∗X

and the reduced mod p cohomology will be denoted by H̃∗X .

1.1.1 Theorem (Steenrod, Adem). For any space X, H∗X is in a natural way a
graded A-module.

Classically, β (Sq1 if p = 2) acts as the Bockstein homomorphism associated
to the sequence 0 → Z/p → Z/p2 → Z/p → 0. N.E. Steenrod constructed the
operations Sqi and the operation P i, and J. Adem showed that the Adem relations
above act trivially on the mod p cohomology of any space. We shall prove these
facts by use of power algebras in the next section.

The next theorem is a consequence of the computation by H. Cartan and
J.-P. Serre (see [C][S1]) of the cohomology of the Eilenberg-MacLane spaces.

1.1.2 Theorem. The Steenrod algebra is the algebra of all natural stable transfor-
mations of mod p cohomology.

Here “stable” means “commuting with suspension”.

1.1.3 Proposition. The operations Sq2h

, h ≥ 0, for p = 2 constitute a system of
multiplicative generators for A; so do the operations β and P ph

for p > 2.

In fact, this system of generators is a minimal one.
We now describe an additive basis for the Steenrod algebra.

1.1.4 Definition. Let p be 2. For a sequence of integers I = (i1, . . . , in), let SqI

denote Sqi1 . . . Sqin . The sequence I is said to be admissible if ih ≥ 2ih+1 for all
h ≥ 1, (in+1 = 0).

Let p > 2. For a sequence of integers I = (ε0, i1, ε1, . . . , in, εn), where the εk

are 0 or 1, let P I denote βε0P i1βε1 . . . βεn . The sequence I is said to be admissible
if ih ≥ pih+1 + εh for all h ≥ 1, (in+1 = 0).

The operations SqI (resp. P I) with I admissible are called admissible mono-
mials.
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1.1.5 Proposition. The admissible monomials SqI (resp. P I) form a vector space
basis for A.

Proof. It is a consequence of the Adem relations that the operations SqI (resp.
the operations P I), I admissible, span the graded vector space A. In fact, let
I = (i1, . . . , in) (resp. I = (ε0, i1, ε1, . . . , in, εn)) be an admissible sequence. Its
moment is defined to be i1 + 2i2 + · · · + nin (resp. i1 + ε1 + 2(i2 + ε2) + · · · ). If
I is not admissible there exists h, 1 ≤ h ≤ n − 1 such that ih < 2ih+1. Using the
Adem relations one gets:

SqI =
[ih/2]∑

0

εtSqI′
Sqih+ih+1−tSqtSqI′′

,

where εt ∈ F2, 0 ≤ t ≤ [ih/2], I ′ = (i1, . . . , ih−1) and I ′′ = (ih+2, . . . , in). The
moment of any sequence occurring on the right (i.e. I ′, ih + ih+1 − t, y, I ′′), 0 ≤
t ≤ [ih/2]) is strictly lower than the moment of I. By induction on the moment
we see that admissible monomials generate A as a graded vector space. The case
of an odd prime is proved in the same way.

The admissible monomials are linearly independent. To see this one looks at
their action on H∗(B(Z/p)⊕k) ∼= (H∗BZ/p)⊗k. Here BV is the classifying space
of the abelian group V . �

The mod p cohomology of a space X has, as A-module, a certain property
called instability:

• if x ∈ H∗X and i >| x |, then Sqix = 0 for p = 2;

• if x ∈ H∗X and e + 2i >| x |, e = 0, 1, then βeP ix = 0, for p > 2.

Here | x | denotes the degree of x.

1.1.6 Definition. An A-module M is unstable if it satisfies the preceding property.
In particular, this implies that an unstable A-module M is trivial in negative de-
grees (recall that one identifies Sq0, resp. P 0, with the identity operator). Let U be
the category of unstable A-modules. This is an abelian category with enough pro-
jective objects. We obtain free objects in U as follows. The excess of an admissible
sequence I is defined to be

(1)

{
(i1 − 2i2) + (i2 − 2i3) + · · · + (in−1 − 2in) + in if p = 2,

2(i1 − pi2) + 2(i2 − pi3) + · · · + 2in + ε0 − ε1 − · · · − εn if p > 2,

and it is denoted by e(I). Note that, if p > 2, an admissible sequence I such that
e(I) ≤ n contains at most n entries εi = 1 because e(I) = ε0 + · · · + εn + 2(i1 −
pi2 − ε1) + · · · + 2(in − εn).
Let

(2) B(n) ⊂ A
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be the vector subspace generated by admissible monomials of excess > n. An A-
module X satisfies B(n) · Xn = 0 for all n if and only if X is unstable. We have
the suspension functor

(3) Σ : U −→ U

defined by setting (ΣM)n = Mn−1. Let Σ : Mn−1 → (ΣM)n be the map of
degree 1 given by the identity of Mn−1. Then the A-action on ΣM is defined by
θ(Σm) = (−1)|θ|Σ(θm) for m ∈ M , θ ∈ A. We obtain the A-module

(4) F (n) = Σn(A/B(n))

which is the free unstable module on one generator [n] in degree n. Here [n] =
Σn{1} ∈ F (n) is defined by the unit 1 ∈ A. A basis of A/B(n) is given by
admissible monomials of excess ≤ n. Free objects in U are direct sums of modules
F (n), n ≥ 0.

The mod p cohomology of a space X is also, in a natural way, a graded
commutative, unital F-algebra which is augmented by H∗(X) → F if X is a pointed
space ∗ ∈ X . Let H̃∗(X) be the kernel of the augmentation H∗(X) → F. The
algebra structure is related to the A-module structure by the Cartan formula

(K1)

⎧⎪⎪⎨⎪⎪⎩
Sqi(xy) =

∑
k+l=i SqkxSqly,

P i(xy) =
∑

k+l=i P kxP ly,

β(xy) = (βx)y + (−1)|x|xβy,

where x, y ∈ H∗(X) and by the following formulas:

(K2)

{
Sq|x|x = x2 for any x in H∗X if p = 2,

P |x|/2x = xp for any x of even degree in H∗X if p > 2.

This leads to

1.1.7 Definition. An unstable algebra K over the Steenrod algebra A or an unstable
A-algebra K is an unstable A-module provided with maps µ : K ⊗ K → K and
η : F → K which determine a commutative, unital, F-algebra structure on K
and such that properties (K1) and (K2) hold. We shall denote by K = Kp the
category of unstable augmented A-algebras, morphisms being A-linear algebra
maps of degree zero compatible with the augmentation.

Hence the cohomology H∗ is a contravariant functor

H∗ : Top∗/ �−→ K

from the homotopy category of pointed topological spaces to the category K of
augmented unstable algebras over A. For pointed spaces X, Y let [X, Y ] be the
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set of homotopy classes of pointed maps X → Y . This is the set of morphisms
X → Y in the homotopy category Top∗/�.

The axiom (K1) can be reformulated as follows. There is an algebra map δ
(diagonal) from A to A⊗A such that

δ(Sqi) =
∑

k+l=i Sqk ⊗ Sql if p = 2,{
δ(β) = β ⊗ 1 + 1 ⊗ β,

δ(P i) =
∑

k+l=i P k ⊗ P l if p > 2.

This map determines a co-commutative Hopf algebra structure on A, and it can
be used to provide the tensor product M ⊗ N of two A-modules M and N with
an A⊗A-module structure, this structure being determined by the formula

(θ ⊗ θ′)(m ⊗ n) = (−1)|θ
′||m|θm ⊗ θ′n

for all θ, θ′ ∈ A, m ∈ M and n ∈ N . Then M ⊗ N is an A-module by restriction
via δ. Axiom (K1) is equivalent to the A-linearity of the map µ : K ⊗ K → K
in (1.1.7). The structure of the dual of A, as a commutative Hopf algebra, was
determined by Milnor [Mn].

As an example of an unstable algebra, recall the structure of the mod p
cohomology of the classifying space B(Z/p).

For p = 2 the mod 2 cohomology H∗B(Z/2) is the polynomial algebra F[x] on
one generator x of degree 1. The action of A is completely determined by axioms
(K1) and (K2) and one finds that

(1.1.8) Sqixn =
(

n

i

)
xn+i.

If p > 2, H∗B(Z/p) is the tensor product Λ(x) ⊗ F[βx] of an exterior algebra
on one generator x of degree 1 and a polynomial algebra on one generator βx of
degree 2. The action of A is determined by axioms (K1) and (K2) and the fact
that β is the Bockstein homomorphism. We obtain

(1.1.9) β(x) = βx , P i(βx)n =
(

n

i

)
(βx)n+i(p−1).

1.1.10 Definition. For an unstable A-module X let U(X) be the free unstable
A-algebra in K constructed as follows. Let

(1) T (X) =
⊕
i≥0

X⊗i

be the tensor algebra generated by X . Then T (X) is an A-module since the i-fold
tensor product X⊗i = X ⊗ · · · ⊗X is an A-module by the Hopf-algebra structure
of A. Let

(2) D(X) ⊂ T (X)
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be the two-sided ideal generated by the elements

(3)

⎧⎪⎪⎨⎪⎪⎩
x ⊗ y − (−1)|x||y|y ⊗ x,

Sq|x|x − x⊗2 for p = 2,

P |x|x − x⊗p for p odd and | x | even

with x, y ∈ X . Then the quotient algebra

(4) U(X) = T (X)/D(X)

is the free unstable A-algebra in K generated by X . We call U(X) completely free
if X is a free object in U . In particular let

(5) H(n) = U(F (n)) = U(Σn(A/B(n))

be the completely free object in K generated by one element [n] in degree n.

Due to a result of Serre [S1] and Cartan [C], see Steenrod-Epstein II.§5[SE],
we know:

1.1.11 Theorem. For an Eilenberg-MacLane space Zn = K(Z/p, n), n ≥ 1, one
gets an isomorphism in K,

H∗(Zn) = H(n).

For n = 1 we have Z1 = B(Z/p) so that in this case H∗B(Z/p) = H(1) can
be described by (1.1.8) and (1.1.9).

1.1.12 Definition. An augmented graded algebra A is connected if the augmenta-
tion is an isomorphism in degree 0, that is A0 = F. Let

K0 ⊂ K

be the full subcategory of connected unstable A-algebras.

There is an obvious forgetful functor

K −→ K0

which carries A to A≥1 ⊕ F. Here A≥1 ⊂ A is the (non-unital) subalgebra of
elements of degree ≥ 1. Of course A≥1, in addition, is an A0-module and Sqj, P j , β
restricted to A≥1 are A0-linear. Moreover the multiplication in A≥1 is A0-bilinear.
This leads to the following characterization of objects in K.

1.1.13 Proposition. Let A0 be an augmented commutative algebra concentrated in
degree 0 satisfying a = ap where ap is the p-fold product in the algebra A. Moreover
let A≥1 ⊕ F be an object in K0. Then A≥1 ⊕ A0 is an object in K if and only if
A≥1 is an A0-module and Sqj, P j , β on A≥1 are A0-linear and the multiplication
in A≥1 is A0-bilinear.
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Proof. Given an object A in K we see that x ∈ A0 satisfies Sqjx = 0, P jx = 0,
βx = 0 for j > 0 since A is an unstable A-module. Moreover (K1) implies that Sqj,
P j , β for j > 0 are A0-linear. Finally (K2) implies for | x |= 0 that x = xp. �

The proposition shows that the category K can be easily described by A0-
objects in the category K0 where A0 is an algebra as in (1.1.13). In the next section
we use power algebras to describe a category isomorphic to K0. Using (1.1.13) we
thus also get accordingly a category isomorphic to K.

1.2 Power algebras

We here introduce the algebraic notion of a power algebra. Using power maps γ
in Chapter 3 we show that the cohomology ring H∗(X) of a path connected space
X has the natural structure of a power algebra. Power algebras can be used to
define the action of the Steenrod algebra on H∗(X). In this section we describe
precisely the algebraic connection between power algebras and unstable algebras
over the Steenrod algebra. This clarifies the role of the power maps γ.

Again let F = Z/p be the field of p elements where p ≥ 2 is a prime. If V is
a F-vector space with basis x1, . . . , xn we write

(1.2.1) V = Fx1 ⊕ · · · ⊕ Fxn

Let Vec be the category of F-vector spaces and F-linear maps. The zero-vector
space is denoted by V = 0. Let

S(V ) = F[x1, . . . , xn]

be the polynomial algebra generated by (1.2.1) and let

Λ(V ) = Λ(x1, . . . , xn)

be the exterior algebra generated by (1.2.1).
A (unital) graded algebra A = {An} is a graded F-vector space concentrated

in degree ≥ 0 with an associative multiplication

(1.2.2) µ : An ⊗ Am −→ An+m

denoted by µ(x, y) = x · y and a unit 1 ∈ A0 with 1 · x = x · 1 = x. The algebra
A is connected if A0 = F and A is augmented if an algebra map A → F is given.
In particular each connected algebra is augmented. Of course A0 is a subalgebra
of A and all An, n ≥ 1, are A0-bimodules. Moreover A is commutative if x · y =
(−1)|x||y|y·x. Here |x| is the degree of x ∈ A with |x| = q iff x ∈ Aq. A map between
graded algebras is an F-linear map f : A → B of degree 0 with f(x·y) = (fx)·(fy),
f(1) = 1. Let Alg0 be the category of connected commutative graded algebras and
such maps. The category Alg0 has coproducts given by the tensor product A⊗B of
algebras. Multiplication in A⊗B is defined by (a⊗b)·(a′⊗b′) = (−1)|b||a

′|a·a′⊗b·b′.
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1.2.3 Definition. A β-algebra A = (A, βA) is an object A in Alg0 together with
an F-linear map βA : A1 → A2. A β-map f : (A, βA) → (B, βB) is a map in Alg0

compatible with β; that is βBf1 = f2βA. Let β-Alg0 be the category of β-algebras
and β-maps. If F = Z/2 then we always insist that βA : A1 → A2 is given by

(1) βA(x) = x · x for x ∈ A1.

Hence for p = 2 the category β-Alg0 coincides with Alg0.
The tensor product of algebras yields a coproduct in the category of β-

algebras by defining

βA⊗B : (A ⊗ B)1 = A1 ⊕ B1 −→ A2 ⊕ B2 ⊂ (A ⊗ B)2

via βA + βB.
The forgetful functor φ : β-Alg0 → Vec which carries (A, βA) to A1 has a left

adjoint

(2) Eβ : Vec −→ β-Alg0

which carries V to the free β-algebra Eβ(V ) generated by V concentrated in degree
1. Let βV be given by V concentrated in degree 2 and let β : V → βV be defined
by the identity of V . Then the free β-algebra Eβ(V ) is given by

(3) Eβ(V ) =

{
S(V ) if p = 2,

Λ(V ) ⊗ S(βV ) if p > 2.

For a β-algebra (A, β) and x ∈ A1 we define the element ωi(x) ∈ Ai, i ≥ 0 by

(4) ωi(x) =

{
(−βx)j if i = 2j,

x · (−βx)j if i = 2j + 1.

Hence we have ω0(x) = 1 and ω1(x) = x and βω1(x) = −ω2(x). Here we follow
the convention of Steenrod-Epstein in V.5.2 [SE]. Moreover we set ωi(x) = 0 for
i < 0. If p = 2 we see by (1) that ωi(x) = xi for i ≥ 0.

It is easy to see that the elements ωi(x), i ≥ 1, yield a vector space basis of
the free β-algebra Eβ(Rx). Therefore each element y ∈ Eβ(Rx) ⊗ A with q = |y|
can be written uniquely in the form

(5) y =
∑
i≥0

ωi(x) ⊗ yi

with yi ∈ Aq−i termed the coordinate of y in degree q − i where |y| = q.

The cohomology H∗X with coefficients in F is a commutative graded algebra
which is augmented if X is pointed and connected if X is path connected. Let
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Top∗
0 ⊂ Top∗ be the full subcategory of path connected pointed spaces. Then

cohomology determines a contravariant functor

(1.2.4) H∗ : Top∗
0/ �−→ β-Alg0.

Here H∗(X) is a β-algebra by use of the Bockstein homomorphisms β : H1(X) →
H2(X) associated to the exact sequence 0 → Z/p → Z/p2 → Z/p → 0.

A finitely generated F-vector space V yields the Eilenberg-MacLane space
K(V, 1) of the underlying abelian group of V . This is also the classifying space
B(V ) of V . Let V # = HomR(V, F) be the dual vector space. Then it is well known
that one has a natural isomorphism of β-algebras

(1.2.5) H∗(K(V #, 1)) = Eβ(V ).

The isomorphism (1.2.5) holds for all primes p ≥ 2 since we use the convention
(1.2.3)(1) for p = 2. We show in Chapter 3 below that the cohomology algebra
H∗(X) of a path connected space has naturally the following structure of a “power
algebra”.

1.2.6 Definition. A power algebra (H, γ) over F = Z/p is a β-algebra H (i.e. an
algebra in β-Alg0) together with F-linear maps

γx : Hq → Hpq for x ∈ H1 and q ≥ 1.

The following properties (i), (ii) and (iii) hold:

(i) γ0(y) = yp.

Here 0 ∈ H1 is the zero element and yp is the pth power of y ∈ Hq in the algebra
H . Let p̄ = p(p − 1)/2 be given by the prime p. Then

(ii) γx(y) · γx(z) = (−1)|y||z|p̄γx(y · z)

for x ∈ H1, y, z ∈ H with |y| ≥ 1 and |z| ≥ 1 and

(iii) γx(γy(z)) = (−1)|z|p̄γy(γx(z))

for x, y ∈ H1 and z ∈ H with |z| ≥ 1.
A map f : (A, γA) → (B, γB) between power algebras is a map f : A → B

in β-Alg0 for which the following diagram commutes,

Aq
f ��

γA
x

��

Bq

γB
fx

��
Apq

f �� Bpq

with x ∈ A1 and fx ∈ B1. Let Pow be the category of power algebras and such
maps.
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This book is mainly concerned with the following example.

1.2.7 Example. Let X be a path connected space. Then the cohomology
H∗(X,Z/p) is a power algebra with power maps γx, x ∈ H1X , defined as fol-
lows. In Chapter 3 we obtain for Eilenberg-MacLane spaces Zn = K(Z/p, n) the
power map

γ : Z1 × Zq −→ Zpq

which induces via H̃n(X) = [X, Zn] the map

γx : Hq −→ Hpq

by setting γx(y) = γ(x, y) : X → Z1 × Zq → Zpq. We show in section (3.2) that
(H∗(X), γ) is a well-defined power algebra with properties as in (1.2.6). This yields
a contravariant functor

H∗ : Top∗
0/ �−→ Pow

enriching the structure of the functor (1.2.4). In particular we get by use of the
isomorphism (1.2.5) the next result.

1.2.8 Proposition. For a finitely generated F-vector space V the power algebra

H∗B(V #) = (Eβ(V ), γ)

is the unique power algebra satisfying (i) and (ii) respectively:

(i) Let p = 2. Then x, y ∈ V ⊂ Eβ(V ) satisfy

γx(y) = y2 + x · y.

(ii) Let p be odd and m = (p − 1)/2. Then x ∈ V ⊂ Eβ(V ) satisfies

γx(y) = m!(βx)m−1((βx) · y − x · (βy)) for y ∈ V,

γx(y) = yp − (βx)p−1 · y for y ∈ βV.

We prove this result in (1.2) below.

The power algebra (Eβ(V ), γ) is natural in V , that is, an F-linear map
ϕ : V → V ′ between finitely generated F-vector spaces induces a map ϕ :
(Eβ(V ), γ) → (Eβ(V ′), γ) between power algebras. This type of naturality is used
in the following notion of an “extended power algebra”.

1.2.9 Definition. For p ≥ 2 an extended power algebra H is defined by a power
algebra (Eβ(V )⊗H, γ) for each F-vector space V of dimension ≤ 2. The following
properties hold:

(i) The inclusion Eβ(V ) → Eβ(V )⊗H which carries y to y⊗1 is a map between
power algebras (Eβ(V ), γ) → (Eβ(V ) ⊗ H, γ) where (Eβ(V ), γ) is defined in
(1.2.8).
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(ii) The power algebra (Eβ(V ) ⊗ H, γ) is natural under H , that is, for F-vector
spaces V, V ′ of dimension ≤ 2 any map ψ : Eβ(V ) ⊗ H → Eβ(V ′) ⊗ H
under H in β-Alg0 is also a map ψ : (Eβ(V ) ⊗ H, γ) → (Eβ(V ′) ⊗ H, γ)
between power algebras. Here ψ is determined by the R-linear map ψ : V →
(Eβ(V ′) ⊗ H)1 = H1 ⊕ (V ′ ⊗ H0).

For the trivial vector space V = 0F we have Eβ(0F) = F so that by (1.2.9) the
algebra Eβ(0F) ⊗ H = H is a power algebra. Proposition (1.2.8) shows that the
trivial algebra F = H is an extended power algebra. A map f : A → H between
extended power algebras is a map in β-Alg0 such that for all vector spaces V, V ′

of dimension ≤ 2 the map

1 ⊗ f : (Eβ(V ) ⊗ A, γ) −→ (Eβ(V ′) ⊗ H, γ)

is a map between power algebras. Let EPow be the category of extended power
algebras and such maps. The cohomology functor (1.2.4), (1.2.7) yields a con-
travariant functor

(1.2.10) Top∗
0/ �−→ EPow

which carries X to the extended power algebra H∗X given by the power algebras

(Eβ(V ) ⊗ H∗X, γ) = (H∗(B(V #) × X), γ)

where we use the product space B(V #)×X and (1.2.7) and the Künneth formula
H∗(Y × X) = H∗(Y ) ⊗ H∗(X).

1.2.11 Definition. Given an extended power algebra H we obtain for the F-vector
space V = Fx the diagram

(1) (Eβ(Fx) ⊗ H)pq pri �� Hpq−i

(Eβ(Fx) ⊗ H)q

γx

��

Hq

Di

��

j��

where pri carries an element to the coordinate of degree pq − i as defined in
(1.2.3)(5) and where j is the inclusion with j(y) = 1 ⊗ y. The operator Di is the
composite Di = pri ◦ γx ◦ j, or equivalently we have for x = x ⊗ 1 ∈ Eβ(Fx) ⊗ H
the equation:

(2) γx(1 ⊗ y) =
∑

i

ωi(x) ⊗ Di(y).
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We set Di = 0 for i > pq and for i < 0. Moreover we say that the extended power
algebra H is unitary if (3) and (5) hold.

(3)
{

Di(y) = 0 for i > (p − 1)q and
D(p−1)q(y) = ϑq · y

for y ∈ Hq. Here ϑq ∈ Z/p = F is given by the formula

(4)
{

ϑq = 1 if p = 2,

ϑq = (−1)mq(q+1)/2 · (m!)q if p odd

with m = (p−1)/2. We point out that (m!)2 ≡ (−1)m+1 mod(p), see 6.3 page 112
[SE]. If p is odd then

(5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dj(y) = 0 if |y| is even and

j �∈ {2m(p− 1), 2m(p − 1) − 1; m ≥ 0},

Dj(y) = 0 if |y| is odd and
j �∈ {(2m + 1)(p − 1), (2m + 1)(p − 1) − 1; m ≥ 0}.

Let
UEPow ⊂ EPow

be the full subcategory of unitary extended power algebras.

Recall that for p = 2 the Steenrod algebra A2 is generated by elements Sqi,
i ≥ 1, and that H∗X is an unstable algebra over A2 as described in Chapter 1. Let
K2 be the category of augmented unstable algebras over A2, see (1.1.7). The next
result shows a new fundamental relation between power algebras and the Steenrod
algebra.

1.2.12 Theorem. For p = 2 the category UEPow of unitary extended power algebras
is isomorphic to the category K0

2 of connected unstable algebras over the Steenrod
algebra A2.

Proof. If H is a unitary extended power algebra we define the action of A2 on
y ∈ Hq

(1) Sqj(y) = Dq−j(y) ∈ Hq+j .

Now one can check that H is a well-defined object in K0
2. Conversely if H is an

object in K0
2 we see that H is also an object in UEPow as follows. The tensor

product of algebras is also a coproduct in K2 and Eβ(V ) = H∗B(V #) is an object
in K2. Hence also A = Eβ(V ) ⊗ H is an object in K2. We now define for x ∈ A1

the power operation γx : Aq → A2q by the formula

(2) γx(y) =
∑
j≥0

ωq−j(x) · Sqj(y).
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Here we have ωi(x) = xi. Now one can check that Eβ(V ) ⊗ H is a power algebra
natural for algebra maps under H in β-Alg0 so that H is a well-defined unitary
extended power algebra. Further details for the proof are given in Section (1.3),
(1.4) below. �

A similar result is true for odd primes p if we use the following Bockstein
operators. Let H be an object in β-Alg0. Then a Bockstein operator β on H is
given by R-linear maps

(1.2.13) β : Hq −→ Hq+1 with q ≥ 1

satisfying ββ = 0 and β(x · y) = β(x) · y + (−1)|x|x · β(y) for x, y ∈ H . Moreover
for q = 1 the map β coincides with the β-algebra structure of H . For example
there is a unique Bockstein operator β on Eβ(V ) which extends β : V → βV .
The cohomology H∗(X) has a Bockstein operator induced by the extension 0 →
Z/p → Z/p2 → Z/p → 0. If β is defined for H and A in Alg0 then β is also defined
for H ⊗ A.

1.2.14 Definition. For p odd a Bockstein power algebra (H, γ, β) is a power algebra
(H, γ) together with a Bockstein operator β satisfying βγx = 0 for all x ∈ H1.
Let BPow be the category of Bockstein power algebras. Morphisms are maps in
Pow which are compatible with β. In particular (Eβ(V ), γ, β) is an object in BPow
defined by (1.2.8) and (1.2.13); this object is natural in V . An extended Bockstein
power algebra H is defined by Bockstein power algebras (Eβ(V )⊗H, γ, β) for each
F-vector space V of dimension ≤ 2. The following properties hold:

(i) The inclusion Eβ(V ) → Eβ(V ) ⊗ H which carries y to y ⊗ 1 is a map
(Eβ(V ), γ, β) → (Eβ(V )⊗H, γ, β) in BPow where (Eβ(V ), γ, β) is defined in
(1.2.8).

(ii) The object (Eβ(V )⊗H, γ, β) is natural under H , that is, for F-vector spaces
V, V ′ of dimension ≤ 2 each map ψ : Eβ(V ) ⊗ H → Eβ(V ′) ⊗ H under H
in β- Alg0 is also a map in BPow. Here ψ is completely determined by the
R-linear map ψ : V → H1 ⊕ (V ′ ⊗ H0).

We define maps between extended Bockstein power algebras in the same way as
in (1.2.9).

Let EBPow be the category of extended Bockstein power algebras and let
UEBPow be the full subcategory consisting of unitary objects; see (1.2.11).

Recall that for odd primes p the Steenrod algebra Ap is generated by elements
β and P i, i ≥ 1, and that H∗X is an unstable algebra over Ap. Let K0

p be the
category of connected unstable algebras over Ap, see (1.1.7). The next result is
the analogue of Theorem (1.2.12) for odd primes.

1.2.15 Theorem. For odd primes p the category UEBPow of unitary extended Bock-
stein power algebras is isomorphic to the category K0

p of connected unstable algebras
over the Steenrod algebra Ap.
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Proof. If H is a unitary extended Bockstein power algebra we define the action of
β, P j ∈ Ap on y ∈ Hq by

(1)
β · y = β(y),
(−1)jϑqP

j(y) = D(q−2j)(p−1)(y),

where ϑq is defined as in (1.2.11)(4). Now one can check that H is a well-defined
object in Kp. Conversely if H is an object in K0

p we see that H is also an object
in UEBPow as follows. The tensor product of algebras is also the coproduct in Kp

and Eβ(V ) = H∗B(V #) is an object in Kp see (1.1.9). Hence also A = Eβ(V )⊗H
is an object in Kp. We now define for x ∈ A1 the power operation γx : Aq → Apq

by the formula

(2)
γx(y) = ϑq

∑
j

(−1)jω(q−2j)(p−1)(x) · P j(y)

+ ϑq

∑
j

(−1)jω(q−2j)(p−1)−1(x) · βP j(y).

Here ωi(x) is defined by β : A1 → A2 as in (1.2.3)(4). Now one can check that
A = Eβ(V )⊗H is a well-defined Bockstein power algebra natural for maps under
H in β-Alg0 so that H is a well-defined unitary extended Bockstein power algebra.
Further details of the proof are given in Section (1.3), (1.4) below. �
Proof of (1.2.8). Let p = 2. Then we have for A = Eβ(V ) = H∗(BV #) and
x, y ∈ A1 = V the formula (see(1.2.11))

γx(y) =
∑

j

x1−j · Sqj(y)

= Sq1(y) + x · Sq0(y)
= y2 + x · y.

Now let p be odd and m = (p − 1)/2. Then we get for A = Eβ(V ) = H∗(BV #)
and x, y ∈ A1 = V the formula (see (1.2.15))

γx(y) = ϑ1

∑
j

(−1)jω(1−2j)(p−1)(x) · P j(y)

+ ϑ1

∑
j

(−1)jω(1−2j)(p−1)−1(x) · βP j(y)

= (−1)mm!(ωp−1(x) · P 0(y) + ωp−2(x) · βP 0(y))
= (−1)mm!((−βx)m · y + x · (−βx)m−1 · (βy))
= m!(βx)m−1((βx) · y − x · (βy)).

Moreover for x ∈ A1 = V and y ∈ βV ⊂ A2 we get by the formula in (1.2.15):

γx(y) = ϑ2

∑
j

(−1)jω(2−2j)(p−1)(x) · P j(y)

+ ϑ2

∑
j

(−1)jω(2−2j)(p−1)−1(x) · βP j(y).
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Here (1.2.11)(4) shows

ϑ2 = (−1)m · (m!)2 ≡ (−1)m · (−1)m+1 = −1 mod p.

Hence one gets for y ∈ βV ,

γx(y) = (−1) · (ω2(p−1)(x) · P 0(y) − ω0(x) · P 1(y))

+ (−1) · (ω2(p−1)−1(x) · βP 0(y))

= −(βx)p−1 · y + yp.

Here we use (1.1.9) and the fact that ββ = 0 implies βy = 0 for y ∈ βV . �

1.3 Cartan formula

Let p ≥ 2 and let H be an extended power algebra so that for y ∈ H ,

(1.3.1) γx(1 ⊗ y) =
∑

i

ωi(x) ⊗ Di(y) ∈ Eβ(Fx) ⊗ H

as in (1.2.11). We set Di(y) = 0 for i < 0.

1.3.2 Lemma.
D0(y) = yp

Proof. We can choose the algebra map under H ,

f : Eβ(Fx) ⊗ H −→ H

which carries x to the zero element in H1. Then compatibility of γ with this map
shows

D0(y) = f∗γx(1 ⊗ y) = γfx(f(1 ⊗ y)) = γ0(y) = yp

by (1.2.6)(i). �
We define Sqj(y) and P j(y) in an extended power algebra by

(1.3.3)

{
Sqj(y) = D|y|−j(y) if p = 2,

(−1)jϑ|y|P j(y) = D(|y|−2j)(p−1)(y) if p odd.

1.3.4 Lemma. For p = 2 the power operation γ in a unitary extended power algebra
H satisfies for x ∈ H1, y ∈ Hq,

(∗) γx(y) =
∑

j

xq−j · Sqj(y).

For p odd the power operation γ in a unitary extended Bockstein power algebra H
satisfies, for x ∈ H1, y ∈ Hq,

(∗∗)

⎧⎪⎪⎨⎪⎪⎩
γx(y) = Ax(y) + Bx(y), with

Ax(y) = ϑq

∑
j(−1)jω(q−2j)(p−1)(x) · P j(y),

Bx(y) = ϑq

∑
j(−1)jω(q−2j)(p−1)−1(x) · βP j(y).
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Proof. For p = 2 the equation for γx(y) holds in (Eβ(Fx) ⊗ H, γ) by definition
(1.3.3), (1.3.1). Now the element x defines a unique algebra map Eβ(Fx) → H
carrying the generator x to x ∈ H1. This algebra map yields a map under H in
β-Alg0,

(1) Eβ(Fx) ⊗ H −→ H

which by assumption on extended power algebras is compatible with γ. This im-
plies that (∗) holds in H . For p odd we have to prove (∗∗) only in Eβ(Fx) ⊗ H .
Then the map (1) shows that (∗∗) also holds in H . We know by the assumption on
Bockstein power algebras that βγx(y) = 0. Hence we have for (1.3.1) the formula
in Eβ(Fx) ⊗ H ,

(2)
0 = βγx(1 ⊗ y) = β(

∑
i ωi(x) ⊗ Di(y))

=
∑

i(βωi(x) ⊗ Di(y) + (−1)iωi(x) ⊗ βDi(y)).

By (1.2.3)(4) we know (since ββ = 0)

βωi(x) =
{

0 if i is even,
−ωi+1(x) if i is odd, i ≥ 1.

Hence (2) implies

(3)
0 =

∑
i even≥2((−1)iωi(x) ⊗ βDi(y) − ωi(x) ⊗ Di−1(y))

+ (
∑

i odd(−1)iωi(x) ⊗ βDi(y)) + 1 ⊗ βD0(y).

Here we have βD0(y) = βyp = 0. Now (3) implies

(4)

{
βDi(y) = 0 if i is odd,

βDi(y) = (−1)iDi−1(y) if i is even ≥ 2.

Hence the definition of P i in (1.3.3) and the assumption that H is unitary imply
that (∗∗) holds in Eβ(Fx) ⊗ H and hence in H . �

We now show that the “global Cartan formula” for γx(y ·z) in a power algebra
H is essentially equivalent to the classical Cartan formula (K1) in (1.1.7). For this
we need the following formula in Eβ(Fx):

(1.3.5) ωi(x) · ωt(x) =

{
0 if i · t · p is odd,

ωi+t(x) otherwise.

Compare (1.2.3)(4). Here we use the fact that x · x = 0 if p is odd and | x | odd.

1.3.6 Lemma. Let H be a connected unstable algebra over the Steenrod algebra
A = Ap, p ≥ 2. Then γx defined by (1.3.4)(∗), (∗∗) satisfies the global Cartan
formula (1.2.6)(ii),

γx(y · z) = (−1)|y||z|p̄γx(y) · γx(z).
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Proof. For p = 2 we have (q =| y | + | z |),

γx(y · z) =
∑

j

xq−jSqj(y · z)

=
∑

j

xq−j
∑

k+t=j

Sqk(y) · Sqt(z)

=
∑

j

∑
k+t=j

x|y|−kSqk(y) · x|z|−tSqt(z)

= γx(y) · γx(z).

For p odd a similar argument holds. In fact, (K1) implies

Ax(y · z) = (−1)|y||z|p̄Ax(y) · Ax(z).

Moreover since β is a derivation (K1) also implies

Bx(y · z) = (−1)|y||z|p̄(Ax(y) · Bx(z) + Bx(y) · Ax(z)).

Finally we observe that
Bx(y) · Bx(z) = 0

since x · x = 0 in H , x ∈ H1, p odd. �

1.3.7 Lemma. For p = 2 let H be an extended unitary power algebra and for p odd
let H be an extended unitary Bockstein power algebra. Then Sqj and P j defined
as in (1.3.3) satisfy the Cartan formula (K1).

Proof. We use the same equation as in the proof of (1.3.6) in the algebra Eβ(Fx)⊗
H . Then comparing coordinates yields (K1). For example, for p = 2 we have∑

j

xq−j ⊗ Sqj(y · z) = γx(1 ⊗ y · z)

= γx(1 ⊗ y) · γx(1 ⊗ z)

=
∑

j

xq−j ⊗ (
∑

k+t=j

Sqk(y) · Sqt(z)).

Similar arguments hold for p odd. In fact, in this case we get for the first summand
Ax(y) in (1.3.4)(∗∗) the formula in Eβ(Fx) ⊗ H ,

Ax(y · z) = (−1)|y||z|p̄Ax(y) · Ax(z)

and this implies (K1) by comparing coordinates. �
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1.4 Adem relation

We show that the formula

(1.4.1) γxγy(z) = (−1)|z|p̄γyγx(z)

in a power algebra corresponds to the classical Adem relation. We use the following
convention on binomial coefficients.

(1.4.2)
(

r

j

)
= 0 if r < 0 or j < 0,

(
r

0

)
= 1 if r ≥ 0.

Moreover Sqj and P j are zero for j < 0. All summations run from −∞ to +∞.
We have in Eβ(Fx) the formulas (i, j ∈ Z)

Sqjωr(x) =
(

r

j

)
ωr+j(x),(1)

P jω2r(x) =
(

r

j

)
ω2r+2j(p−1)(x),

(2)
βP jω2r(x) = 0,

P jω2r−1(x) =
(

r − 1
j

)
ω2r+2j(p−1)−1(x),

(3)

βP jω2r−1(x) = −
(

r − 1
j

)
ω2r+2j(p−1)(x).

For this compare (1.1.9), (1.1.8), (1.2.3).

1.4.3 Lemma. Let H be a connected unstable algebra over the Steenrod algebra
A = Ap, p ≥ 2. Then γx defined by (1.3.4)(∗), (∗∗) satisfies the global Adem
formula (1.4.1) above.

Proof. Let p = 2. Then we get for q =| z |,

(1)

γxγy(z) = γx(
∑

i ωq−i(y)Sqi(z))

=
∑

i γx(ωq−i(y) · Sqi(z))

=
∑

k,i ω2q−k(x) · Sqk(ωq−i(y) · Sqi(z))

=
∑

i,k,j

(
q−i

j

)
ω2q−k(x) · ωq−i+j(y) · Sqk−jSqi(z).

Here we write q − i + j = 2q − l, so that

γxγy(z) =
∑
k,l

ω2q−k(x) · ω2q−l(y) · D2q−k,2q−l(z),(2)

D2q−k,2q−l(z) =
∑

i

(
q − i

q − l + i

)
Sqk+l−i−qSqi(z).(3)
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Hence (1.4.1) is a consequence of the following equation in Hk+l for all k, l ∈ Z,
q ≥ 1, z ∈ Hq.

(4) D2q−k,2q−l(z) = D2q−l,2q−k(z).

In fact, this equation holds in each unstable algebra over the Steenrod algebra A2.
A direct proof of (4), however, is highly sophisticated based on Adem relations in
A2 and the unstable structure of H . We therefore give in (1.5) below a proof of
(1.4.3) relying on a result of Serre [S1].

For p odd one uses similar arguments as above though formulas are more
involved. We have

(5) γxγy(z) = AxAy(z) + BxBy(z) + AxBy(z) + BxAy(z).

Hence (1.4.1) is a consequence of

(6) AxAy(z) = (−1)|z|p̄AyAx(z)

and

(7)
BxBy(z) + AxBy(z) + BxAy(z)

= (−1)|z|p̄(ByBx(z) + AyBx(z) + ByAx(z)).

Using the Cartan formula (K1) and the equations in (1.4.2)(1), (2), (3) we see that
(6) and (7) correspond to equations in H (similarly as (4) above). These equations
are consequences of the Adem relations and the unstable structure of H . This can
be proved directly requiring highly tedious computations. We therefore give in
(1.5) below a proof of (1.4.3) as in the case of p = 2. �
1.4.4 Lemma. For p = 2 let H be an extended unitary power algebra and for p odd
let H be an extended unitary Bockstein power algebra. Then Sqj and P j defined
as in (1.3.3) satisfy the Adem relations.

Proof. We use the same equations as in the proof of (1.4.3) in the algebra Eβ(Fx⊕
Fy) ⊗ H . Then comparing coordinates yields for p = 2 the equation

D2q−k,2q−l(z) = D2q−l,2q−k(z).

This shows that for p = 2 the Adem relation is satisfied, see page 119 [SE]. Here
we use the fact that the maps under H in β-Alg0,

Eβ(Fz) ⊗ H −→ Eβ(Fx ⊕ Fy) ⊗ H

which carry z to x and y respectively both are maps of power algebras by the
condition (ii) in (1.2.8). This implies that the squaring operations Sqj , P j on H
defined by γx and γy respectively coincide. For p odd we use (1.4.3)(6), (7) in
Eβ(Fx⊕ Fy)⊗ H and we compare coordinates. This yields the Adem relations in
the same way as in VIII.1.8, 1.9 [SE]. �
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1.5 The theory of Eilenberg-MacLane spaces

A theory T is a small category with products A × B for objects A, B in T. Let
Set be the category of sets. A model M of the theory T is a functor M : T → Set
which carries products in T to the products of sets,

M(A × B) = M(A) × M(B).

Let model(T) be the category of such models; morphisms are natural transforma-
tions. Since the work of Lawvere [L] it is well known that many algebraic categories
(like the categories of groups, algebras, Lie algebras, etc.) are such categories of
models of a theory T. See also Borceux’s book [Bo].

1.5.1 Definition. Let p be a prime ≥ 2 and let Kp be the following theory. The
category

Kp ⊂ Top∗/�

is the full subcategory of the homotopy category of pointed spaces consisting of
finite products

A = Zn1 × · · · × Znr

with n1, . . . , nr ≥ 1 and r ≥ 0 where Zn is the Eilenberg-MacLane space

Zn = K(Z/p, n).

Products are defined in Kp so that Kp is a theory, termed the theory of Eilenberg-
MacLane spaces.

1.5.2 Theorem. There is an isomorphism of categories

model(Kp) = K0
p

where K0
p is the category of connected unstable algebras over the Steenrod alge-

bra Ap.

This result relies on the computation of Serre [S1] and Cartan [C] of the
cohomology of Eilenberg-MacLane spaces.

Proof of (1.5.2). We have the forgetful functor

φ : K0
p −→ Vec≥1

where Vec≥1 is the category of graded R-vector spaces concentrated in degree ≥ 1.
The functor φ carries A to the underlying vector space of Ã. Let H be the left
adjoint of φ which carries V in Vec≥1 to the free unstable algebra H(V ) generated
by V . Let xi be an element of degree ni. Then it follows from (1.1.11) that

H∗(Zn1 × · · · × Znr) = H(Fx1 ⊕ · · · ⊕ Fxr)
= H(n1) ⊗ · · · ⊗ H(nr).
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Let
Hp ⊂ K0

p

be the full subcategory generated by objects H(Fx1⊕· · ·⊕Fxr) with n1, . . . , nr ≥ 1
and r ≥ 0. Then the cohomology functor yields an isomorphism of categories where
Hop

p is the opposite category of Hp,

H∗ : Kp = Hop
p .

Since model(Hop
p ) = K0

p we see that (1.5.2) holds. Compare also [BJ4]. �

We have the following commutative diagram of functors corresponding to the
well-known equation

H̃n(X) = [X, K(n)]

for n ≥ 0.

(1.5.3) model(Kp)

Top∗
0/�

[X,−]
������������

H∗
����

���
���

���

K0
p

Here [X,−] is the model which carries an object A in Kp to the set [X, A]. This
model obviously satisfies

[X, A × B] = [X, A] × [X, B]

so that the functor [X,−] in (1.5.3) is well defined. On the other hand H∗ is the
classical cohomology functor, see (1.1.7). The isomorphism of categories in (1.5.3)
is given by (1.5.2).

We are now ready to prove (1.2.12) and (1.2.15) by the following result.

1.5.4 Theorem. For p = 2 there is a commutative diagram of functors.

UEPow
Φ �� K0

2

UEPow model(K2)
Ψ��
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For p odd there is a commutative diagram of functors.

UEBPow
Φ �� K0

p

UEBPow model(Kp)
Ψ��

Proof. The functor Φ carries (H, γ) to (H, Sqi) for p = 2 and to (H, P i) for p odd.
By (1.3.2), (1.3.7) and (1.4.4) we see that Φ is a well-defined functor. We shall
construct in Section (8.5) the inverse functor Ψ of Φ. �



Chapter 2

Track Theories and Secondary
Cohomology Operations

In Chapter 1 the theory Kp of Eilenberg-MacLane spaces was defined by homo-
topy classes of maps between products of Eilenberg-MacLane spaces. We now
consider all maps in Top∗ between such products and homotopy classes of ho-
motopies between such maps termed tracks. For this reason we choose in section
(2.1) Eilenberg-MacLane spaces Zn with “good” properties. For example they are
F-vector space objects in Top∗. Many results in this book will rely on these prop-
erties. In Part I we use the additive structure of Zn as an F-vector space object. In
Part II we need the multiplicative structure and the action of permutation groups
on the spaces Zn.

2.1 The Eilenberg-MacLane spaces Zn

Let R be a commutative ring with 1 ∈ R; for example for a prime p let R = F = Z/p
be the field of p elements. In (2.1.4) below we introduce an Eilenberg-MacLane
space (n ≥ 1)

Zn = Zn
R = K(R, n)

for the underlying abelian group R. The space Zn is defined in the proof of (2.1.4)
by the free simplicial R-module generated by the non-basepoint singular simplices
in the n-sphere Sn = S1 ∧ · · · ∧ S1. The symmetric group σn acts on Sn by
permuting the S1-factors of Sn and hence σn acts on K(R, n). We point out that
Zn is an Eilenberg-MacLane space as above only for n ≥ 1, see also (1.5.1).

The space Zn is a topological R-module (with R having the discrete topology)
and Zn is a σn-space with the symmetric group σn acting via R-linear automor-
phisms of Zn. Moreover the following additional structure is given.
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The cup-product in cohomology is induced by R-bilinear multiplication maps

(2.1.1) µ = µm,n : Zm × Zn → Zm+n

which are associative in the obvious sense and which are equivariant via the inclu-
sion σm ×σn ⊂ σm+n. Let τ = τn,m ∈ σn+m be the permutation of {1, . . . , n+m}
exchanging the block {1, . . . , n} and the block {n+1, . . . , m+n}. Then the diagram

(2.1.2) Zm × Zn T ��

µm,n

��

Zn × Zm

µn,m

��
Zm+n τ �� Zm+n

commutes where T is the interchange map and τ(v) = τ · v is given by the action
of τ ∈ σm+n.

Let sign : σn → {+1,−1} be the homomorphism which carries a permutation
to the sign of the permutation. For example we have sign(τn,m) = (−1)nm. The
kernel of sign is the alternating group. For the σn-space Zn and for σ ∈ σn we
have the map σ : Zn → Zn which carries x to σ ·x. This map induces a homology
HnZn = R the sign of σ, that is

(2.1.3) σ∗ = sign(σ) : Hn(Zn) → Hn(Zn).

These properties of Zn are crucial for the definition of the power maps in Part II.

2.1.4 Proposition. Eilenberg-MacLane spaces Zn with properties described in
(2.1.1), (2.1.2) and (2.1.3) exist.

Proof. We shall need the following categories and functors; compare the Appendix
of this section and Goerss-Jardine [GJ]. Let Set and Mod be the category of
sets and R-modules respectively and let ∆Set and ∆Mod be the corresponding
categories of simplicial objects in Set and Mod respectively. We have functors

(1) Top∗ Sing−→ (∆Set)∗
| |−→ Top∗

given by the singular set functor Sing and the realization functor | |. Moreover we
have

(2) ∆Set
R−→ ∆ Mod

Φ−→ (∆Set)∗

where R carries the simplicial set X to the free R-module generated by X and
where Φ is the forgetful functor which carries the simplicial module A to the
underlying simplicial set. Moreover we need the Dold-Kan functors

(3) Ch+
Γ−→ ∆ Mod

N−→ Ch+
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where Ch+ is the category of chain complexes in Mod concentrated in degree
≥ 0. Here N is the normalization functor which by the Dold-Kan theorem is an
equivalence of categories with inverse Γ. For a pointed space V the chain complex
C∗(V ) = NR Sing(V ) is the normalized chain complex of singular chains in V .
We now define

(4) K(V ) = |ΦS(V )| with S(V ) =
R Sing(V )
R Sing(∗) .

Hence K : Top∗ → Top∗ carries a pointed space to a topological R-module. We
define the binatural map

(5) ⊗̄ : K(V ) × K(W ) → K(V ∧ W )

as follows. We have

Sing(V × W ) = Sing(V ) × Sing(W )

and this bijection induces a commutative diagram in ∆ Mod.

R Sing(V ) ⊗ R Sing(W )

��

R Sing(V × W )

��
S(V ) ⊗ S(W ) Λ �� S(V ∧ W )

The vertical arrows are induced by quotient maps. For R-modules A, B let ⊗ :
A × B → A ⊗R B be the map in Set which carries (a, b) to the tensor product
a ⊗ b. Of course this map ⊗ is bilinear. Moreover for A, B in ∆Mod the map ⊗
induces the map ⊗ : Φ(A × B) → Φ(A ⊗ B) in Set and the realization functor
yields

| ⊗ | : |ΦA| × |ΦB| = |Φ(A × B)| → |Φ(A ⊗ B)|.
Hence for A = S(V ) and B = S(W ) we get the composite

|ΦS(V )| × |ΦS(W )| |⊗|−−−−→ |Φ(S(V ) ⊗ S(W ))| |ΦΛ|−−−−→ |ΦS(V ∧ W )|
and this is the map ⊗̄ above. One readily checks that ⊗̄ is bilinear with respect to
the topological R-module structure of K(V ), K(W ) and K(V ∧ W ) respectively.
Moreover the following diagram commutes.

(6) K(V ) × K(W )
⊗̄ �� K(V ∧ W )

| Sing V | × |Sing W |

h×h

��

| Sing(V × W )| �� | Sing(V ∧ W )|

h

��
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Here the Hurewicz map h is the realization of the map in ∆Set,

Sing(V ) → ΦR Sing(V ) → ΦS(V )

which carries an element x in Sing(V ) to the corresponding generator in
R Sing(V ).

Let Sn = S1 ∧ · · · ∧ S1 be the n-fold smash product of the 1-sphere S1.
Then the symmetric group σn acts on Sn by permuting the factors S1. It is well
known that this action of σn on Sn induces the sign-action of σn on the homology
Hn(Sn) = R. We define the Eilenberg-MacLane space Zn by

(7) Zn = K(Sn) =
∣∣∣∣ΦR Sing(Sn)

R Sing(∗)

∣∣∣∣ .
Since K is a functor we see that σn also acts on K(Sn) via R-linear automorphisms.
We define the multiplication map µm,n by

µ : Zm × Zn = K(Sm) × K(Sn) ⊗̄−−−−→ K(Sm ∧ Sn) = Zm+n

where Sm∧Sn = Sm+n and where we use (5). Diagram (6) implies that µ induces
the cup product in cohomology. �

Let V ∧W = V ×W/V × ∗ ∪ ∗×W be the smash product of pointed spaces
V and W . Since the multiplication µm,n is bilinear we obtain the induced map

(2.1.5) µ : Zm ∧ Zn → Zm+n

which is σm × σn ⊂ σm+n equivariant. We define the product x · y by

µ(x, y) = x · y ∈ Zm+n for x ∈ Zm and y ∈ Zn.

Moreover for maps f : X → Zm and g : Y → Zn let

f � g : X × Y → Zm+n

be the map which carries (x, y) to f(x) · g(y). If X = Y and ∆ is the diagonal
X → X × X then

f · g : X → Zm+n

is the map (f � g)∆ which carries x to f(x) · g(x).
For pointed spaces X, Y let [X, Y ] be the set of homotopy classes of pointed

maps X → Y . It is well known that for n ≥ 1 the set

(2.1.6) [X, Zn] = Hn(X, R)

is the nth cohomology of X with coefficients in R. A pointed map f : X →
Zn is therefore considered as a “cocycle” representing a cohomology class {f} ∈
Hn(X, R). Clearly the cohomology class

{f · g} = {f} ∪ {g}
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is given by the cup product in cohomology. The associativity and graded commu-
tativity of the cup product can be derived from the properties of the multiplication
maps µ in (2.1.1).

Let ΩX be the loop space of the pointed CW-space X . The map µ in (2.1.5)
with m = 1 induces a homotopy equivalence

(2.1.7) rn : Zn ∼−→ ΩZn+1

with the following properties. We choose a map iR : S1 → Z1 which in homology
induces the homomorphism of rings Z → R. Then iR yields the composite µ(1∧iR):

Zn ∧ S1 −→ Zn ∧ Z1 −→ Zn+1

and the adjoint of this map is rn. Since Zn+1 is a topological R-module also
the loop space ΩZn+1 has the structure of a topological R-module. Moreover the
bilinearity of µ implies that rn is an R-linear map between topological R-modules.
This fact is of main importance in Part I of this book. In addition rn is equivariant
with respect to the action of σn ⊂ σn+1.

Remark. Using composites of maps Zn ∧ S1 → Zn+1 we get a map Zm ∧ Sn →
Zm+n which is σn × σm ⊂ σm+n equivariant where σm acts on Sm as above. This
shows that Zn is a symmetric spectrum as used by Hovey-Shipley-Smith [HS] 1.2.5.

We need the homotopy equivalence rn : Zn → ΩZn+1 above for the definition
of stable maps in the secondary Steenrod algebra, see Section (2.5). The use of rn

for stable maps turns out to be appropriate in Section (10.8); see also (2.1.9)(7)
below.

On the other hand we obtain the homotopy equivalence

(2.1.8) sn : Zn −→ ΩZn+1

which is the adjoint of µ(iR ∧ 1):

S1 ∧ Zn −→ Z1 ∧ Zn −→ Zn+1.

Then sn and rn are related by the formula

τ1,nsn = rn with sign(τ1,n) = (−1)n

where τ1,n is the interchange permutation, see (2.1.2). We use sn (and not rn) for
the following definition of the Bockstein map β. As we shall see in Section (8.6)
the use of sn implies that the Bockstein map is a derivation.

We define the Bockstein map

(2.1.9) β : Zn
F −→ Zn+1

F

as follows. For F = Z/p and G = Z/p2 we have the short exact sequence

(1) 0 −→ F
i−→ G

π−→ F −→ 0
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which induces a fiber sequence

(2) Fn ∂−→ Zn+1
F

i−→ Zn+1
G

π−→ Zn+1
F

.

The space Fn is the fiber of the inclusion i, namely

(3) Fn = {(x, σ) ∈ Zn+1
F

× (Zn+1
G

, 0)(I,0); ix = σ(1)}.

Here we use the path space and we set ∂(x, σ) = x. Now we have homotopy
equivalences

(4) Zn
F

sn

∼ �� ΩZn+1
F Fnπ

∼��

with π(x, σ) = πσ. Let π̄ be a homotopy inverse of π. Then β is the composite

(5) β : Zn
F

sn−→ ΩZn+1
F

π̄−→ Fn ∂−→ Zn+1
F

.

The Bockstein map is compatible with rn in (2.1.7) since there is the commutative
diagram (Zn = Zn

F
, Ω1 = Ω2 = Ω).

(6) Zn
sn ��

rn

��

Ω1Z
n+1

r′

��

Fn

r′′

��

∂ ��π�� Zn+1

rn+1

��
Ω2Z

n+1
Ωsn+1

�� Ω2Ω1Z
n+2 Ω2F

n+1
Ω∂

��
Ωπ
�� Ω2Z

n+2

Here r′ carries (σ : S1 → Zn+1) ∈ ΩZn+1 to r′(σ) : S1 ∧ S1 → Zn+2 with
r′(σ)(t2 ∧ t1) = σ(t1) · t̂2 where t̂ = iF(t) is given by iF : S1 → Z1. Similarly
r′′ carries (x, σ) ∈ Fn to (r′′(x, σ) : S1 → Fn+1) ∈ Ω2F

n+1 with r′′(x, σ)(t2) =
(x · t̂2, σ · t̂2). One readily checks that diagram (6) is well defined and commutative.
Diagram (6) shows that the following diagram homotopy commutes.

(7) Zn
β ��

rn

��

Hβ,n
=⇒

Zn+1

rn+1

��
ΩZn+1

Ωβ
�� ΩZn+2

We now use notation explained later in this book. For pointed spaces X, Y
we have the groupoid

[[X, Y ]].
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The objects in this groupoid are the pointed maps f, g : X → Y and the morphisms
termed tracks are the homotopy classes of homotopies f � g.

The map sn in (2.1.7) depends on the choice of iR : S1 → Z1. The full
subgroupoid sn,

(2.1.10) sn ⊂ [[Zn, ΩZn+1]]

consisting of maps sn as in (2.1.8) is a contractible groupoid by (3.2.5) below.
Moreover there is a well-defined contractible subgroupoid

(2.1.11) β ⊂ [[Zn
F , Zn+1

F
]]

consisting of all maps β as defined in (2.1.9). In fact, let

Gπ ⊂ [[ΩZn+1
F

, F ]]

be the full supgroupoid given by all homotopy inverses π̄ of π. Then Gπ is a
contractible groupoid by (3.2.5) below. Therefore the image of the functor

sn × Gπ −→ [[Zn
F , Zn+1

F
]]

carrying (sn, π̄) to ∂π̄sn is a contractible groupoid and this image is the sub-
groupoid β above. The subgroupoid β does not depend on choices.

This shows that two different Bockstein maps β, β′ as defined in (2.1.9) are
connected by a unique track β ⇒ β′ in β. We also say that the Bockstein map β in
Top∗ is well defined up to canonical track . Moreover there is, in fact, a canonical
track Hβ,n in (2.1.9)(7) which can be derived from the commutative diagram
(2.1.9)(6). This shows that β is a stable map in the secondary Steenrod algebra,
see Section (2.5). In general the Steenrod operations α = Sqi, P i considered as
maps

(2.1.12) Zq
F
−→ Z

q+|α|
F

are not well defined up to a canonical track. In Part 2 we deduce the Steenrod
operations from a power map

γ : Z1
F × Zq

F
−→ Zpq

F
.

It is a crucial observation in this book that also the power map γ is well defined
up to a canonical track.

Appendix to Section 2.1: Small models of Eilenberg-MacLane spaces

The Eilenberg-MacLane spaces Zn defined in (2.1.4) are very large spaces since
they are defined by singular sets of spheres. They have the advantage of good
symmetry properties like the commutative diagram (2.1.2).
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In this appendix we discuss small models of Eilenberg-MacLane spaces which
are frequently used in the literature, see Eilenberg-MacLane [EML] and Kristensen
[Kr1]. The small models are directly related to chain complexes of simplicial sets.

We first recall the following notation.
Let R be a commutative ring and let Mod be the category of R-modules. Let

grMod be the category of graded R-modules. For A and B in grMod a morphism
f : A → B of degree k is given by morphisms fi : Ai → Bi+k. We write

(1) Ai = A−i.

For x ∈ An we say that | x |= n is the lower degree of x and for x ∈ Am we say
that | x |= m is the upper degree of x. A chain complex is a map d : A → A of
lower degree −1 with dd = 0 and a cochain complex is a map d : A → A with
upper degree +1 and dd = 0. Using the rule (1) a chain complex is a cochain
complex and vice versa. The tensor product of chain complexes is defined by

(2) (A ⊗ B)n =
⊕

i+j=n

Ai ⊗ Bj

where i, j ∈ Z and Ai ⊗ Bj is the tensor product over R in Mod and d(a ⊗ b) =
(da) ⊗ b + (−1)|a|a ⊗ (db).

Let ∆ be the simplicial category. Objects in ∆ are the sets n = {0, . . . , n} and
morphisms are monotone functions n → m. A simplicial object in a category C is
a functor X : ∆op → C where ∆op is the opposite category. We set Xn = X(n),
n ≥ 0. Let ∆C be the category of such simplicial objects in C. Morphisms in
∆C are natural transformations. We have the well-known Dold-Kan equivalence
of categories

(3) Chain+

Γ �� ∆Mod.
N

��

Here Chain+ is the full subcategory in Chain consisting of chain complexes A with
Ai = 0 for i < 0. Compare Goerss-Jardine [GJ]. The functor N is the normalization
and Γ carries A to a simplicial object in Mod with

Γ(A)n =
⊕
n�k

Ak

where n � k denotes surjections in ∆.
Let Set be the category of sets. Then the forgetful functor φ : Mod → Set

induces

(4) φ : ∆Mod −→ ∆Set.

Moreover we have the realization functor

(5) | − |: ∆Set −→ Top
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where Top is the category of topological spaces. We also use the free module functor

(6) R : ∆Set −→ ∆Mod

which carries X to RX where (RX)n is the free R-module generated by Xn. We
have the natural map [−] : X → φRX which carries x ∈ X to the corresponding
generator [x] ∈ RX . Moreover for A ∈ ∆Mod and f : X → φA in ∆Set we have
the unique map f̄ : RX → A in ∆Mod for which the composite (φf̄)[−] coincides
with f .

For a module M in Mod let

(7) M [n] ∈ Chain

be the chain complex given by M concentrated in degree n; i.e., M [n]i = 0 for
i �= n and M [n]n = M . Given a chain complex (C, d) in Chain we define the
cochain complex C∗(M) = Hom(C, M) with

(8) Cn(M) = HomMod(Cn, M)

and differential ∂ = Hom(d, 1M ). Let

(9) Zn(M) = kernel{∂ : Cn(M) → Cn+1(M)}

be the module of cocycles in degree n. One has the canonical binatural isomorphism

(10) Zn(M) = HomChain(C, M [n])

which we use as an identification.
For M in Mod we define the Eilenberg-MacLane object in ∆Set, resp. Top∗,

by

(11) K(M, n) = φΓ(M [n]) ∈ ∆Set∗,

(12) | K(M, n) |=| φΓ(M [n]) |∈ Top∗.

This is the small model of an Eilenberg-MacLane space. The construction shows
that (11) and (12) are R-module objects in the category ∆Set∗ and Top∗ respec-
tively. Sine ΓM [n] is a simplicial group we know that K(M, n) is a Kan complex
in ∆Set. Moreover K(M, n) is pointed by

∗ = K({0}, n) −→ K(M, n).

Here {0} is the trivial module in Mod and ∗ is the point object in ∆Set. Of course
the realization | ∗ |= ∗ is the point object in Top.

(13) Definition. Let X be a simplicial set. Then

C∗(X) = NRX
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is the (normalized) chain complex of X and

C∗(X, M) = Hom(C∗X, M) = (NRX)∗(M)

is the cochain complex of X with coefficients in M ∈ Mod. Let c be a cocycle of
degree n in C∗(X, M) so that c : C∗X → M [n] is a chain map which induces the
composite

c# : X
[−]−→ φRX ∼= φΓNRX

φΓ(c)−→ φΓM [n] = K(M, n)

in ∆Set. If X is pointed by ∗ → X then c# preserves the base point for n ≥ 1.
Moreover for a map f : X → Y in ∆Set we have

c# ◦ f = (f∗c)#.

(14) Lemma. For K = K(M, n) there is a fundamental cocycle iMn ∈ Cn(K, M)
for which (iMn )# : K → K(M, n) is the identity.

Proof. We have the equation (ΓM [n])n = M so that CnK = RM and iMn : C∗K →
M [n] is defined in degree n by the homomorphism RM → M in Mod which carries
[m]to m. �

Let Z̃n(X, M) be the module of cocycles in degree n of

C̃∗(X, M) = C∗(X, M)/C∗(∗, M).

Then (14) implies that one has a canonical bijection

(15) ∆Set∗(X, K(M, n)) = Z̃n(X, M)

which carries f : X → K(M, n) to f∗iMn . The inverse carries c to c#; see (13).
Moreover the bijection is natural in X and M . By (15) we see that the definition
of K(M, n) above coincides with the definition of Eilenberg-MacLane [EML].

For a simplicial set X and M, N ∈ Mod we have the Alexander-Whitney cup
product of cochains

(16)
⋃

: C∗(X, M) ⊗ C∗(X, N) −→ C∗(X, M ⊗ N)

which is natural in X, M and N and which is associative. Now let X = K(M, m)×
K(N, n) and let p1 : X → K(M, n), p2 : X → K(N, n) be the projections. Then
the fundamental cocycles iMm ∈ C(K(M, m), M) and iNn ∈ Cn(K(N, n), N) yield
the cocycle

p∗1i
M
m ∪ p∗2i

N
n ∈ C∗(X, M ⊗ N)

which by (15) gives us the map

(17) µm,n : K(M, m) × K(N, n) −→ K(M ⊗ N, m + n),



2.2. Groupoids of maps 35

µm,n = (p∗1iMm ∪ p∗2iNn )# in ∆Set. The map µm,n is again natural in M and N
respectively and µm,n is associative in the obvious way. Naturality implies that
µm,n carries ∗×K(N, n) and also K(M, m)×∗ to the base point of K(M ⊗N, m+
n). Hence µm,n defines an induced map

µm,n : K(M, m) ∧ K(N, n) → K(M ⊗ N, m + n).

Here X ∧Y = X ×Y/X×{∗}∪{∗}×Y is the smash product of pointed simplicial
sets. The maps µm,n, however, do not allow a commutative diagram as in (2.1.2)
since the permutation group σn acts only by sign on K(M, n).

We finally compare for R = F = Z/p the small model K(F, n) and the big
model Zn in (2.1.4). For this we choose a homomorphism

(18) ϕ : ∆n/∂∆n ≈ Sn

which defines a generator ϕ and a cycle in the chain complex NS(Sn) with S(V ) =
R Sing(V )/R Sing(∗) as in (2.1.4)(4). We thus obtain chain maps

(19) F[n] i−→ NS(Sn) r−→ F[n].

Here i is the inclusion with i[n] = ϕ and i is a cofibration and a homotopy
equivalence in the category of chain complexes. Hence we can choose a retraction
r of i with ri = 1. By applying the functor | φΓ | we get the F-linear maps i, r
between F-vector space objects in Top∗ with ri = 1.

(20) | φΓF[n] | �� | φΓNS(Sn) | �� | φΓF[n] |

| φS(Sn) |

K(F, n) i �� Zn r �� K(F, n)

Moreover i is a homotopy equivalence in Top∗. Using i, r we see that each map
α : K(F, n) → K(F, m) yields the map ᾱ = iαr : Zn → Zm with the property
β̄α = β̄ᾱ and 1̄ = ir. Using (15) we get for a simplicial set X with Y =| X | the
map (n ≥ 1)

(21) Z̃n(X, F) → Top∗(Y, Zn) = [[Y, Zn]]0

which carries the cocycle c to the map i | c# |. This shows the connection between
the algebraic cocycles Zn(X, F) and the topological cocycles Top∗(Y, Zn).

2.2 Groupoids of maps

We here recall some basic notation and facts on groupoids. A groupoid G is a
category in which all morphisms are invertible. The morphisms of G are termed
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tracks . The set of objects of G will be denoted by G0, and the set of morphisms
of G will be denoted by G1. We have the canonical source and target maps

(2.2.1) G1
���� G0.

Let Grd be the category of groupoids. Morphisms are functors between groupoids.
Tracks in a groupoid G are denoted by H : f → g or H : f � g or H : f ⇒ g.

Let G(f, g) be the set of tracks H : f ⇒ g in G. Composition of tracks H : f ⇒ g
and G : g ⇒ h is denoted by

G�H : f ⇒ h.

The identity track or trivial track of f is 0� : f ⇒ f . The inverse of a track
H : f ⇒ g is Hop : g ⇒ f so that H�(Hop) = (Hop)�H = 0�.

The set of connected components of G is

(2.2.2) π0(G) = G0/ ∼ .

Here f, g ∈ G0 satisfy f ∼ g if there is a track f ⇒ g in G. Let

(2.2.3) π1(G, f) = Aut(f)

be the group of automorphisms of the object f in G with 0� the neutral element
in Aut(f).

The groupoid G is connected if π0(G) is a point ∗. Moreover G is contractible
if π0(G) = ∗ and π1(G, f) = 0 is the trivial group for f ∈ G0. For two objects
f, g in a contractible groupoid G there is a unique morphism f ⇒ g in G. If all
automorphism groups in G are trivial then all connected components in G are
contractible.

The groupoid G is discrete if all tracks in G are trivial tracks. In this case
π0(G) = G.

A groupoid G is abelian if all automorphism groups π1(G, f) with f ∈ G0

are abelian groups.

2.2.4 Example. Given a topological space X one obtains the fundamental groupoid
Π(X). Its objects are the points of X and morphisms x0 → x1 with x0, x1 ∈ X
are homotopy classes rel. ∂I of paths ω : I → X with ω(0) = x0 and ω(1) = x1.
Here I = [0, 1] is the unit interval with boundary ∂I = {0, 1}. Composition in
Π(X) is given by addition of paths. It is well known that Π(X) is an abelian
groupoid if X is a topological group or more generally if each path component
of X has the homotopy type of an H-space. Moreover Π(X) is connected if X is
path connected and Π(X) is contractible if X is 1-connected. Now let (X, ∗)(A,∗)

be the mapping space (with the compactly generated compact open topology, see
[G]) of all pointed maps A → X . Then the fundamental groupoid of this space is
denoted by

(1) Π((X, ∗)(A,∗)) = [[A, X ]].
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Objects in [[A, X ]]0 are the pointed maps f, g : A → X and tracks H : f ⇒ g in
the groupoid [[A, X ]] are homotopy classes of homotopies f � g. We call [[A, X ]]
the mapping groupoid . The trivial map in [[A, X ]]0 is 0 : A → ∗ → X . Let [A, X ]
be the set of homotopy classes of pointed maps A → X . This is the set

(2) [A, X ] = π0[[A, X ]]

of connected components in the mapping groupoid. Now let ΩX = (X.∗)(S1,∗)

be the loop space of X with S1 = [0, 1]/{0, 1}. Then one readily checks that a
track 0 ⇒ 0 in [[A, X ]] can be identified with the homotopy class of a pointed map
A → ΩX in [A, ΩX ]. Hence we have the equation of sets

(3) [[A, X ]](0, 0) = [A, ΩX ].

2.2.5 Definition. Let C be a category with products A×B. An abelian group object
A in C is given by maps +A : A×A → A, −1A : A → A, 0A : ∗ → A satisfying the
usual identities. Here ∗ is the final object in C which is considered to be the empty
product. A map f : A → B between abelian group objects is linear, if f0A = 0B,
f(−1A) = (−1B)f and f+A = +B(f × f).

An abelian group object A is an F-vector space object in C with F = Z/p if
the composite

A
∆−→ A×p +−→ A

is the trivial map A → ∗ → A. Here A×p = A × · · · × A is the p-fold product and
∆ is the diagonal map and + is defined by +A.

The category of pairs in C denoted by pair(C) is defined as follows. Objects
are morphisms f : A → B in C and morphisms (α, β) : f → g in pair(C) are
commutative diagrams in C.

A
α ��

f

��

A′

g

��
B

β �� B′

Let Ab be the category of abelian groups and let VecF be the category of F-vector
spaces.

2.2.6 Proposition. The category of abelian group objects in Grd and linear maps
is equivalent to the category pair(Ab). The category of F-vector space objects in
Grd and linear maps is equivalent to the category pair(VecF).

Proof. Given an abelian group object G in Grd we obtain the object

∂ : G0
1 −→ G0
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in pair(Ab) as follows. Here G0 is the set of objects of G which is an abelian group
since G is an abelian group object in Grd. Let 0 ∈ G0 be the neutral object in the
abelian group G0. Then G0

1 is the set of all morphisms H : a ⇒ 0 in G with a ∈ G0

and we define ∂ by ∂H = a. The abelian group structure of G0
1 is defined by

(H : a ⇒ 0) + (G : b ⇒ 0) = (H + G, a + b → 0 + 0 = 0)

where the right-hand side is defined since G is an abelian group object in Grd.
Conversely given an object ∂ : A1 → A0 in pair(Ab) we define the abelian group
object G(∂) in Grd as follows. The set of objects of G(∂) is

G(∂)0 = A0.

The set of morphisms of G(∂) is the product set

G(∂)1 = A1 × A0

where (H, x) ∈ A1 × A0 is a morphism

(1) (H, x) = H + x : ∂(H) + x ⇒ x.

The identity of x is 0�
x = (0, x) = 0 + x = x = ∂(0) + x ⇒ x. Composition of

(2) x
H+x⇐= ∂(H) + x

G+∂(H)+x⇐= ∂(G) + ∂(H) + x

is defined by

(3) (H + x)�(G + ∂(H) + x) = (H + G) + x

for H, G ∈ A1 and x ∈ A0. Now it is readily seen that this way one gets an
isomorphism of categories. The inverse (H + x)op of the morphism H + x is given
by

(4) (H + x)op = (−H) + (∂(H) + x) = −H + ∂(H) + x.

By (3) one readily checks that (H + x)op�(H + x) = 0�.

(H + x)op�(H + x) = (−H + ∂(H) + x)�(H + x)
= (−H + H) + ∂(H) + x

= 0 + ∂(H) + x

= 0�
∂(H)+x. �

We point out that an abelian group object in Grd is an abelian groupoid but
not vice versa; that is, an abelian groupoid need not be an abelian group object
in Grd.

For a product of pointed spaces we get the equation of mapping groupoids

(2.2.7) [[X, A × B]] = [[X, A]] × [[X, B]].
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This implies the following lemma.

2.2.8 Lemma. If Z is an abelian group object in the category Top∗ then [[X, Z]] is
an abelian group object in the category of groupoids.

Hence you can, for the abelian group object Z in Top∗, apply Proposition
(2.2.6) so that [[X, Z]] is determined by the homomorphism of abelian groups

∂ : [[X, Z]]01 −→ [[X, Z]]0.

Here [[X, Z]]0 is the abelian group of all pointed maps X → Z in Top∗ and [[X, Z]]01
is the abelian group of all (f, H) where H : f ⇒ 0 is a track in [[X, Z]] from f to
the trivial map X → ∗ → Z. Moreover we obtain the exact sequence of abelian
groups

(2.2.9) 0 −→ [X, ΩZ] −→ [[X, Z]]01 −→ [[X, Z]]0 −→ [X, Z] → 0.

Since the Eilenberg-MacLane space Zn in (2.1) is an F-vector space object in
Top∗ we see accordingly by (2.1.6) that we get an exact sequence of F-vector
spaces (n ≥ 1)

(2.2.10) 0 −→ H̃n−1(X) −→ [[X, Zn]]01
∂−→ [[X, Zn]]0 → H̃n(X) → 0.

Here H̃∗(X) is the kernel of H∗(X) → H∗(∗) induced by the inclusion ∗ → X . In
fact, ∂ determines the groupoid [[X, Zn]] by (2.2.6).

2.2.11 Remark. Using (21) in the appendix of (2.1) one obtains for a pointed
simplicial set X the commutative diagram with exact rows and Y =| X |.

H̃n−1(X) �� C̃n−1(X, F)/B̃n−1(X, F)

j

��

d �� Z̃n(X, F)

i

��

�� H̃n(X)

H̃n−1(Y ) �� [[Y, Zn]]01
∂ �� [[Y, Zn]]0 �� H̃n(Y ) �� 0

where B̃n−1(X, F) = image d : C̃n−2(X, F) → C̃n−1(X, F). Hence ∂ in (2.2.10)
describes part of the boundary d in the cochain complex C̃∗(X, F). In fact i and
j are injective.

2.3 Track categories and track theories

A category enriched in groupoids T , also termed track category for short, is the
same as a 2-category all of whose 2-cells are invertible. It is thus a class of objects
ob(T ), a collection of groupoids T (A, B) for A, B ∈ ObT called hom-groupoids
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of T , identities 1A ∈ T (A, A)0 and composition functors T (B, C) × T (A, B) →
T (A, C) satisfying the usual equations of associativity and identity morphisms.
For generalities on enriched categories the reader may consult Kelly [Ke]. Objects
of the hom-groupoids f ∈ T (A, B)0, called maps in T , constitute morphisms of
an ordinary category T0 having the same objects as T .

For f, g ∈ T (A, B) we shall write f � g (and say f is homotopic to g) if there
exists a morphism H : f → g in T (A, B). Occasionally this will be also denoted
as H : f � g or H : f ⇒ g, H sometimes called a homotopy or a track from f to
g. Homotopy is a natural equivalence relation on morphisms of T0 and determines
the homotopy category T� = T0/ �. Objects of T� are once again objects in ob(T ),
while morphisms of T� are homotopy classes of morphisms in T0. Let q : T0 → T�
be the quotient functor. Moreover let T1 be the disjoint union of all tracks in T .
One has the source and target functions between sets

(2.3.1) T1

s ��
t

�� Mor(T0)

with qs = qt. Here Mor(T0) denotes the set of morphisms in the category T0. We
borrow from topology the following notation in a track category T . Let

[A, B] = T0(A, B)/ �

be the set of homotopy classes of maps A → B and let

[[A, B]] = T (A, B)

be the hom-groupoid of T so that [A, B] is the set of connected components of the
groupoid [[A, B]].

For tracks H : f ⇒ g in [[A, B]] and H ′ : f ⇒ g in [[B, C]] we get the composed
track H ′ ∗ H : f ′f ⇒ g′g for the diagram

C ⇓H′ B

f ′

��

g′

�� ⇓H A

f

��

g

��

satisfying the formula

H ′ ∗ H = (g′H ′)�(H ′f) = (H ′g)�(f ′H).

We call H ′ ∗ H the “pasting of tracks” or the “horizontal composition” of tracks.
A map f : A → B is a homotopy equivalence if there exists a map g : B → A

and tracks fg � 1 and gf � 1. This is the case if and only if the homotopy class of
f is an equivalence in the homotopy category T�. In this case A and B are called
homotopy equivalent objects.
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The morphisms in T0 are also termed 1-cells and the tracks in T1 are 2-
cells. In particular, the category Gpd of groupoids is a track category. Objects are
groupoids, morphisms are functors and tracks are natural transformations (since
they are natural isomorphisms). Moreover any category C can be considered to be
a track category with only identity tracks.

The leading example is the track category [[Top∗]] of compactly generated
Hausdorff spaces with basepoint ∗, given as follows. For pointed spaces A, B let
[[A, B]] be the mapping groupoid. See (2.2.4). Hence maps are pointed maps f, g :
A → B between pointed spaces and tracks H : f ⇒ g are homotopy classes relative
to A × ∂I of homotopies H : A × I/ ∗ ×I → B with H : f � g. In this case

(2.3.2) [[Top∗]]� = Top∗/ �

is the usual homotopy category of pointed spaces. Let C ⊂ Top∗/ � be a full
subcategory. Then [[C]] is the track category consisting of all spaces A with A ∈
Ob(C), that is [[C]] ⊂ [[Top∗]] is a full subcategory of the track category [[Top∗]]. In
particular we get the following case.

2.3.3 Definition. For a prime p the theory Kp of Eilenberg-MacLane spaces in
(1.5.1) yields the track category

[[Kp]] ⊂ [[Top∗]].

Here [[Kp]] consists of products A = Zn1 × · · · ×Znr of Eilenberg-MacLane spaces
Zn = K(Z/p, n) with n1, . . . , nr ≥ 1 and r ≥ 0. Morphisms are pointed maps
between such products and tracks are homotopy classes of homotopies between
such maps. We call [[Kp]] the track theory of Eilenberg-MacLane spaces.

Here we use the following notion of track theory.

2.3.4 Definition. A strong product in a track category T is an object A × B
equipped with maps pA = p1 : A × B → A, pB = p2 : A × B → B in T0

such that the induced functor

(∗) [[X, A × B]] −→ [[X, A]] × [[X, B]]

given by f �→ (pAf, pBf), (H : f ⇒ g) �→ (pAH : pAf ⇒ pSg, pBH : pBf ⇒ pBg)
is an isomorphism of groupoids for all X in T . We call (A × B, pA, pB) a weak
product if (∗) is an equivalence of categories. Similarly a final object ∗ in T is strong
if [[X, ∗]] is a groupoid with a unique morphism. Whereas a weak final object is an
object ∗ for which [[X, ∗]] is equivalent to such a groupoid. A track theory is a track
category T with a strong final object and with finite strong products. This is the
analogue of a theory T in (1.5).

For example a product of spaces (A × B, p1, p2) in Top∗ is also a strong
product in the track category [[Top∗]] by equation (2.2.7). Moreover ∗ is a strong
final object in [[Top∗]].
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Hence we see

2.3.5 Lemma. The track category [[Kp]] of Eilenberg-MacLane spaces is a track
theory. Products in Kp are also strong products in [[Kp]].

A track functor , or else 2-functor, between track categories is a groupoid
enriched functor. For example, any object A of a track category T gives rise to
the representable track functor

(2.3.6) [[A,−]] : T −→ Gpd

sending an object X to the groupoid [[A, X ]]. This 2-functor assigns to a map
f : X → Y the functor [[A, f ]] : [[A, X ]] → [[A, Y ]] sending g : A → X to fg and
γ : g → g′ to γf . And this 2-functor assigns to a track ϕ : f ⇒ f ′ the natural
transformation [[A, ϕ]] : [[A, f ]] → [[A, f ′]] with components ϕg : fg → fg′.

2.3.7 Definition. A track model M of a track theory T is a functor M : T → Grd
which carries strong products in T to products of groupoids.

As a special case of such a track model we obtain for each path-connected
pointed space X in [[Top∗]] the representable track functor

(2.3.8) [[X,−]] : [[Kp]] −→ Gpd

which we call the secondary cohomology of X . This generalizes the cohomology of
the space X since we have seen that

(2.3.9) H̃∗(X) = [X,−] : Kp −→ Set

is a representable functor in Top∗/ �. Here [X,−] is a model of Kp which carries
products in Kp to products of sets, see (1.5.3). Similarly the secondary cohomology
[[X,−]] is a track model of the track theory [[Kp]] which carries strong products in
[[Kp]] to products in Gpd.

We have seen in (1.5.2) that models of the theory Kp can be identified with
connected unstable algebras over the Steenrod algebra A. We are interested in
understanding a corresponding result for track models of the track theory [[Kp]]. For
this reason we introduce in Section (2.5) below the secondary Steenrod algebra [[A]].

The particular choice of Eilenberg-MacLane spaces Zn in (2.1) yields many
further properties of the track theory [[Kp]]. For example, for objects A, B in Kp the
morphism groupoid [[A, B]] is an F-vector space object in the category of groupoids
since B is an F-vector space object in Top∗, see (2.2.7).

The track theory [[Kp]] is very large since all maps between products of
Eilenberg-MacLane spaces in Top∗ are morphisms in [[Kp]]0. For this reason mainly
the weak equivalence type of [[Kp]] is of interest. Here weak equivalences are defined
as follows.

2.3.10 Definition. A track functor F : T → T ′ is called a weak equivalence be-
tween track categories if the functors [[A, B]] → [[F (A), F (B)]] are equivalences of
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groupoids for all objects A, B of T and each object A′ of T ′ is homotopy equiva-
lent to some object of the form F (A). Such a weak equivalence induces a functor
F : T� → T ′� between homotopy categories which is an equivalence of categories.

Below we study weak equivalences between linear track extensions which are
special weak equivalences as above.

2.4 Secondary cohomology operations

Let ΩY be the loop space of the pointed space Y . An element ΩY is a pointed map
from the 1-sphere S1 to Y . The basepoint of ΩY is the trivial map S1 → ∗ ∈ Y .
Let

(2.4.1) Ω0Y ⊂ ΩY

be the path-connected component of the basepoint in ΩY . The following lemma
describes a well-known property of the track category [[Top∗]].

2.4.2 Lemma. Let X, Y be the path-connected pointed spaces and let 0 : X → ∗ →
Y be the trivial map. Then a track A : 0 ⇒ 0 in [[Top∗]] can be identified with an
element A ∈ [X, Ω0Y ].

Recall that Zn = K(Z/p, n) is an Eilenberg-MacLane space for n ≥ 1. Now
we define

Zn = ∗ for n ≤ 1.

Then we obtain for all n ∈ Z the homotopy equivalence

(2.4.3) Ω0Z
n � Zn−1

which is well defined up to homotopy. The functor Ω0 is compatible with products
of pointed spaces; that is; Ω0(X ×Y ) = Ω0(X)×Ω0(Y ). Hence we can use (2.4.3)
to define the following loop functor

(2.4.4) L : Kp −→ Kp

for the theory Kp of Eilenberg-MacLane spaces. The functor L carries A = Zn1 ×
· · · × Znr ∈ Kp to the object

L(A) = Zn1−1 × · · ·Znr−1 ∈ Kp.

Moreover L carries f ∈ [A, B] with A, B ∈ Kp to the composite

L(f) : L(A) � Ω0(A)
Ω0(f)−→ Ω0(B) � L(B).

Here the homotopy equivalence is given by (2.4.3).
We are now ready to describe classical secondary cohomology operations in

the sense of Adams [A] or Kristensen [Kr1].
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2.4.5 Definition. Let A, B, C be objects in Kp. Then a relation (α, β) is a commu-
tative diagram in Kp,

(1) A

0

��
α

�� B
β

�� C

where 0 is the trivial map, i.e., βα = 0. A secondary cohomology operation (a, b, H)
associated to the relation βα = 0 in Kp is a diagram in [[Kp]],

(2) A a
��

0

��
� �� ��� H

B
b

�� C

where a (resp. b) represents α (resp. β). Here the track H exists since βα = 0
in Kp. The secondary cohomology operation (a, b, H) associated to the relation
(α, β) defines a function θ(a,b,H) as follows. We consider a path-connected pointed
space X and the following diagram in [[Top∗]].

(3) X
x ��

0

���� ��
�� G

A a
��

0

��
� �� ��� H

B
b

��C

Here x represents ξ ∈ [X, A] with αξ = 0. Hence tracks G exist and we get the
composed track 0 ⇒ 0 of the form

(4) (Hx)�(bG)op ∈ [X, Ω0C] = [X, L(C)].

Here we use (2.4.2) and the loop functor L on Kp in (2.4.4). Now let θ(a,b,H) be
the function which carries ξ ∈ [X, A] with αξ = 0 to the subset

(5) θ(a,b,H)(ξ) ⊂ [X, L(C)]

consisting of all elements (Hx)�(bG)op with G : ax ⇒ 0 in [[Top∗]] and x rep-
resenting ξ. Of course [X, A] and [X, L(C)] are determined by the representable
model [X,−] of Kp which in turn can be identified with the cohomology H∗(X)
by (1.5.3). Therefore θ(a,b,H) is a secondary cohomology operation in the classi-
cal sense. We shall see in Chapter 3 that θ(a,b,H)(ξ) is a coset of the subgroup
image((Lβ)∗ : [X, L(B)] → [X, L(C)]). Hence θ(a,b,H) is a well-defined function.

(6) kernel(α∗ : [X, A] → [X, B])

θ(a,b,H)

��
cokernel((Lβ)∗ : [X, L(B)] → [X, L(C)])
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This is the typical form of a secondary cohomology operation in the literature.
Two secondary cohomology operations (a, b, H) and (a′, b′, H ′) associated to the
relation (α, β) are equivalent if there exist tracks A, B in [[Kp]] such that the pasting
of tracks in the following diagram yields the trivial track 0 ⇒ 0.

(7)

A a
��

⇓A

0

��
� �� ��� H

B

⇓B

b
�� C

A
a′

��

0

���� ��
�� H′

B
b′ �� C

Of course the operation (6) depends only on the equivalence class (a, b, H) which
in turn is well defined by the weak equivalence class of [[Kp]]. Here we use weak
equivalences of linear track extensions as in Chapter 3 below which are special
weak equivalences in the sense of (2.2.11).

In Section (2.6) we consider the stable version of secondary cohomology op-
erations.

We describe two examples of secondary cohomology operations due to Adams
[A] which are actually stable operations.

2.4.6 Example. For p = 2 consider the relation (α, β) in K2 given by (n ≥ 1)

Zn α−→ Zn+1 × Zn+3 × Zn+4 β−→ Zn+5

with α = (Sq1, Sq3, Sq4) and β = (Sq4, Sq2, Sq1). Then there is a unique (stable)
secondary operation (a, b, H) associated to (α, β) such that for n = 2 and u ∈
H2(CP∞) = [CP∞, Z2] we have

θ(a,b,H)(u) = u3 ∈ H6(CP∞) = [CP∞, LZ7].

Here CP∞ is the complex projective space and u ∈ H2(CP∞) = Z/2 is the gener-
ator. Compare the Addendum of Adams [A].

The main result of Adams [A] which implies the solution of the Hopf invariant
problem is the following example. Compare also the explicit calculation in (16.6.5)
below.

2.4.7 Example. Let p = 2. Then there are stable relations (d(j), zi,j), 0 ≤ i ≤ j,
j �= i + 1, in K2 of the form (n ≥ 1)

Zm d(j)−→ ×j
t=0Z

m+2t zi,j−→ Zm+2i+2j
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with d(j) = (Sq1, Sq2, . . . , Sq2j

) and zi,j chosen as in [A] page 88. Moreover let
θi,j be the (stable) secondary operation associated to (d(j), zi,j) with

θi,j : kernel(d(j)∗) ��
��

��

cokernel(L(Zi,j)∗)

Hm(X) Hm+2i+2j−1(X)

����

Take k ≥ 3. Then u ∈ kernel(d(k)∗) ⊂ Hm(X) satisfies

Sq2k+1
(u) ∈

∑
0≤i≤j≤k,j =i+1

ai,j,kθi.j(u) ⊂ Hm+2k+1
(X)

with appropriate ai,j,k ∈ A2. See Theorem 4.6.1 [A]. We have seen in (1.1.3)
that the Steenrod operations Sq2i

, i ≥ 0, are indecomposable generators of the
Steenrod Algebra A2. The formula of Adams, however, shows that Sq2k+1

for k ≥ 3
is decomposable with respect to secondary cohomology operations. This describes
a deep and fundamental relation in the track theory [[K2]] of Eilenberg-MacLane
spaces.

We point out that secondary cohomology operations (a, b, H) are special
diagrams in the track theory [[Kp]] of Eilenberg-MacLane spaces. Moreover the
associated operations θ(a,b,H) can be deduced from the track model [[X,−]] of [[Kp]]
in (2.2.10). In fact, any algebraic track model M of [[Kp]] allows the definition of
θ(a,b,H) accordingly.

2.5 The secondary Steenrod algebra

All objects Zn1 × · · · × Znr in the theory Kp are by the construction in Section
(2.1) F-vector space objects in the category Top∗. A morphism ϕ ∈ [A, B] in Kp

is linear in the homotopy category Top∗/ � if the diagram

(2.5.1) A × A
f×f ��

+

��

B × B

+

��
A

f �� B

homotopy commutes in Top∗. Here f represents the homotopy class ϕ. If ϕ is
linear in Top∗/ � then in general there exists no representing map f ∈ ϕ for
which diagram (2.5.1) commutes, so that f ∈ ϕ in general cannot be chosen to be
linear in Top∗.
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We use the loop functor L : Kp → Kp in (2.4.4) in the following definition of
stable operation.

2.5.2 Definition. A stable operation in Kp of degree k ∈ Z is a sequence of maps

α = (αn : Zn → Zn+k)n∈Z

in Kp with L(αn+1) = αn for n ∈ Z. Hence all αn are linear and therefore the
set Ak of all stable operations in Kp of degree k is an abelian group, in fact
an F-vector space. Moreover the composition β ◦ α of stable operations given by
(β ◦ α)n = βn+k ◦ αn, n ∈ Z, is bilinear so that composition yields the associative
multiplication

Ar ⊗Ak −→ Ak+r

carrying β ⊗ α to β ◦ α. Hence A = {Ak, k ∈ Z} is a graded algebra with A0 = F

and Ak = 0 for k < 0.

The next result is a well-known consequence of (1.1.2).

2.5.3 Theorem. The algebra A of stable operations in Kp coincides with the Steen-
rod algebra.

Using power maps γ we shall define stable operations in Kp (n ∈ Z),

Sqk : Zn −→ Zn+k, for p = 2,

β : Zn −→ Zn+1, for p odd

P k : Zn −→ Zn+2k(p−1), for p odd

which as well yield the isomorphism in (2.5.3), see Part II of this book.
We use the track theory [[Kp]] to define the following secondary analogue of

the Steenrod algebra in (2.5.3).

2.5.4 Definition. We fix for n ∈ Z maps in Top∗

rn : Zn −→ Ω0Z
n+1

which are homotopy equivalences defined in (2.1.7). Then let [[Ak]] be the following
groupoid, k ≥ 1. Objects (α, Hα) in [[Ak]] are sequences of maps in Top∗

α = (αn : Zn → Zn+k)n∈Z

together with sequences of tracks Hα = (Hα,n)n∈Z for the diagram

Zn
αn ��

rn

��

=⇒

Zn+k

rn+k

��
Ω0Z

n+1
Ω0αn+1 �� Ω0Z

n+k+1
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that is Hα,n : (Ω0αn+1)rn ⇒ rn+kαn. This implies that the homotopy class of αn

yields a stable operation in (2.4.2).
For k = 0 let [[A0]] = F be the discrete groupoid given by A0 = F. The

elements α ∈ F yield maps αn = α : Zn → Zn given by the F-vector space
structure of Zn. Hence αn satisfies rnαn = Ω0(αn+1)rn so that Hα,n in this case
is the trivial track.

For k < 0 let [[Ak]] = 0 be the trivial groupoid.
For k > 0 we define morphisms H : (α, Hα) ⇒ (β, Hβ) in the groupoid [[Ak]]

by sequences of tracks
H = (Hn : αn ⇒ βn)n∈Z

in [[Kp]] for which the pasting of tracks in the following diagram coincides with
Hβ,n.

Zn
βn ��

⇑Hn

Zn+k

Zn
αn ��

rn

��

Hα,n
=⇒

Zn+k

rn+k

��
Ω0Z

n+1
Ω0αn+1 ��

⇓Ω0Hn+1

Ω0Z
n+k+1

Ω0Z
n+1

Ω0βn+1

�� Ω0Z
n+k+1

That is, the following equation holds in [[Top∗]],

Hβ,n = (Ω0Hn+1)rn�Hα,n�rn+kHop
n .

Composition in [[Ak]] is defined by (H�G)n = Hn�Gn. One readily checks that
[[Ak]] is a well-defined groupoid with homotopy category [[Ak]]� = Ak. Moreover
one has a composition functor between groupoids

[[Ar]] × [[Ak]] ◦−→ [[Ak+r ]]

which is defined on objects by

(α′, Hα′) ◦ (α, Hα) = (α′
n+k ◦ αn, Hα′,n+k ∗ Hα,n)n∈Z
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where ∗ is the pasting operation. Moreover on morphisms H : (α, Hα) ⇒ (β, Hβ)
and H ′ : (α′, Hα′) ⇒ (β′, Hβ′) the composition functor is defined by

H ◦ H ′ = (H ′
n ∗ Hn : α′

n ◦ αn ⇒ β′
n ◦ βn)n∈Z.

This shows that
[[A]] = ([[Ak]], ◦)k∈Z

is a monoid in the category of graded groupoids. We call [[A]] the secondary Steenrod
algebra. In fact, we shall prove that the homotopy category [[A]]� = A is the
Steenrod algebra.

2.5.5 Lemma. Each groupoid [[Ak]]is an F-vector space object in the category of
groupoids. The composition in [[A]], however, is not bilinear since maps in [[Ak]]0
in general are not linear in Top∗, see (2.5.1).

Proof. We see that [[Ak]] is an F-vector space object since rn in (2.1.7) is a linear
map between F-vector space objects in Top∗. �

2.6 The stable track theory of
Eilenberg-MacLane spaces

Again we use the loop functor L : Kp → Kp in (2.4.4) in the following definition
of stable maps.

2.6.1 Definition. The stable theory Kstable
p of Eilenberg-MacLane spaces is defined

as follows. Objects are the same as in Kp, i.e., products

A = Zn1 × · · · × Znr

with n1, . . . , nr ≥ 1, r ≥ 0. The object A yields the sequence of spaces

L−N(A) = ZN+n1 × · · · × ZN+nr

with N ≥ 0. Morphisms α : A → B with B = Zm1 × · · · × Zmk are sequences of
morphisms in Kp

αN : L−N(A) = ZN+n1 × · · · × ZN+nr −→ ZN+m1 × · · · × ZN+mk

with LαN = αN−1, N ≥ 1. We call α = (αN )N≥0 : A → B a stable map (up to
homotopy) between products of Eilenberg-MacLane spaces. There is an obvious
composition of such stable maps so that the category Kstable

p is well defined.

The stable theory Kstable
p can also be described in terms of the Steenrod

algebra A. Let mod0(A) be the category of finitely generated free left A-modules
generated in degree ≥ 1. Hence an object in mod0(A) is of the form

M = Ax1 ⊕ · · · ⊕ Axr

where x1, . . . , xr are generators of degree | xi |= ni ≥ 1 for i = 1, . . . , r with r ≥ 0.
Recall that Cop denotes the opposite category of C. The next result is well known.
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2.6.2 Theorem. There is an isomorphism of categories

Kstable
p = mod0(A)op.

This is a consequence of the isomorphism

H∗ : Kp = Hop
p

in the proof of (1.5.2). For this we need the algebraic properties of the loop functor
L : Kp → Kp in Section (3.3) below.

We now obtain a track theory associated to Kstable
p essentially in the same

way as we obtained the secondary Steenrod algebra [[A]] in (2.5.4).

2.6.3 Definition. The track theory [[Kstable
p ]] is defined as follows. Objects are the

same as in Kp. Morphisms (α, Hα) : A → B are sequences of maps (N ≥ 0)

α = (αN : L−NA → L−NB)

in Top∗, see (2.6.1), together with tracks as in the following diagram.

L−NA
αN ��

rA

��

Hα=⇒

L−NB

rB

��
Ω0(L−N−1A)

Ω0αN+1

�� Ω0(L−N−1B)

Here rA is a product of maps rn defined in (2.1.7). We call (α, Hα) : A → B a stable
map. We say that α = (α, Hα) is strict if the diagram commutes in Top∗, that is
rBαN = (Ω0αN+1)rA, and Hα is the trivial track. For example for a product A×B
in Kp the projections pA, pB are such strict maps as follows from the definition of
L and rA above. Moreover the addition map A × A

+−→ A is strict.

We define stable tracks H : (α, Hα) → (β, Hβ) between stable maps in the
track category [[Kstable

p ]] by sequences of tracks

H = (HN : αN ⇒ βN )N≥0

in [[Kp]] for which the pasting of tracks in [[Top∗]] in the following diagram coincides
with Hβ .
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L−NA
βN ��

⇑HN

L−NB

L−NA
αN ��

rA

��

Hα=⇒

L−NB

rB

��
Ω0(L−N−1A)

Ω0αN+1 ��

⇓Ω0HN+1

Ω0(L−N−1B)

Ω0(L−N−1A)
Ω0βN+1

�� Ω0(L−N−1B)

There is an obvious composition of morphisms and tracks respectively so that
[[Kstable

p ]] is a well-defined track theory with strong products (A × B, pA, pB). All
objects are F-vector space objects as in Kp since rA above is linear.

For objects A, B in Kp let [[A, B]]stable be the groupoid of stable maps A → B

in the track theory [[Kstable
p ]]. Then it is easy to see that for n ≥ 1, k ≥ 1 the

forgetful functor

(2.6.4) [[Zn, Zn+k]]stable ∼←− [[Ak]].

is a weak equivalence of groupoids. We study further properties of the track theory
[[Kstable

p ]] in Section (3.5) and Chapter 4 below.
We have the forgetful functor

(2.6.5) φ : [[Kstable
p ]] −→ [[Kp]]

which is the identity on objects and carries H : α ⇒ β to H0 : α0 ⇒ β0. Accord-
ingly a track model of [[Kp]] is also a track model of [[Kstable

p ]]. In particular, the
secondary cohomology of a pointed space [[X,−]] yields the track model

(2.6.6) [[Kstable
p ]]

φ−→ [[Kp]] −→ Grd

of [[Kstable
p ]].



52 Chapter 2. Track Theories and Secondary Cohomology Operations

2.7 Stable secondary cohomology operations

We are now ready to introduce stable secondary cohomology operations.

2.7.1 Definition. Let A, B, C be objects in Kp. Then a stable relation (α, β) is a
commutative diagram

(1) A

0

��
α

�� B
β

�� C

in Kstable
p , i.e., βα = 0. A stable secondary cohomology operation (a, b, H) associ-

ated to the relation βα = 0 is a diagram in [[Kstable
p ]]

(2) A a
��

0

��
� �� ��� H

B
b

�� C

where a (resp. b) represents α (resp. β). Equivalence of stable secondary cohomol-
ogy operations (a, b, H) and (a′, b′, H ′) associated to (α, β) is defined by a diagram
in [[Kstable

p ]] as in (2.4.5)(7).

The example of Adams in (2.4.6) and (2.4.7) corresponds to such stable
secondary cohomology operations.

One can check that stable operations in (2.6.4) correspond to “stable sec-
ondary operations” as defined by Adams 3.6 [A] in terms of the cohomology func-
tor.

Next we describe secondary cohomology operations studied by Kristensen
[Kr1].

Let p = 2 and let F be the free associative algebra with unit generated by
symbols sqi of degree i (i = 1, 2, . . .), that is,

F = TF(sq1, sq2, . . .)

is the F-tensor algebra generated by sq1, sq2, . . .. Let R denote the kernel of the
algebra map F → A which carries sqi to Sqi. A relation is an element

(2.7.2) r = b +
k∑

µ=1

αµaµ ∈ R

with αµ, aµ, b ∈ F . We choose for the stable operation Sqi in A an element (sqi, H)
in [[A]]0 so that sqi

n : Zn → Zn+i is defined for all n. Hence any monomial α in F k

yields the corresponding composite α : Zn → Zn+k. Moreover an element β ∈ F k

is a sum of such monomials and therefore yields a sum β : Zn → Zn+k of the
corresponding maps. Here we use the fact that Zn is an F-vector space object.
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Hence the relation (2.7.2) yields a diagram in [[K2]] with A = Zn+|a1| × · · · ×
Zn+|ak| and N =| r |,

(2.7.3) Zn a ��

b

���� ��
�� H

A
α �� Zn+N

where the track H exists since r ∈ R. The diagram (2.7.3) is a secondary coho-
mology operation associated to r in the sense of Kristensen [Kr1]. In fact consider
the diagram in [[Top∗]]

(2.7.4)

X
x ��

0

��
� �� ��� G

Zn a ��

b

���� ��
�� H

0

��

�� ��
�� Hb

A
α �� Zn+N

where a canonical track Hb is given. (We shall see in (5.5.1) below that such a
canonical track Hb is defined if excess (b) > n. In fact, in this case b : Zn → ∗ →
Zn+N can be chosen to be the trivial map and then Hb is even the identity track.)
Then pasting of tracks in (2.7.4) yields as in (2.4.5) the operation θ(a,α,H′) with
H ′ = Hb�H of the form

kernel([X, Zn] a∗−→ [X, A]) ⊂ Hn(X)

θ(a,α,H′)

��
cokernel([X, A] α∗−→ [X, Zn+N ]) = Hn+N (X)/im(α∗)

This operation coincides with the operation Qur of Kristensen [Kr1] page 74 for
appropriate θ with ∆θ = r and vice versa. Many results of Kristensen on the
operations Qur can be derived from the track calculus in the next chapter, see also
Chapter 5 where we describe a new approach concerning the Kristensen operations.



Chapter 3

Calculus of Tracks

In this chapter we describe certain basic facts concerning the calculus of tracks in
topology. In particular we introduce linear track extensions and we show that the
track theories [[A]], [[Kstable

p ]], [[Kp]] of Chapter 2 are such linear track extensions.
They represent a characteristic cohomology class kA, kst

p and kp respectively which
determines the track theory up to weak track equivalence.

3.1 Maps and tracks under and over a space

Recall that we work in the category Top of compactly generated Hausdorff spaces.
In particular the product X × Y in Top is compactly generated so that X × Y is
a CW-complex if X and Y are CW-complexes; see Gray [G]. As usual let IX =
[0, 1]× X be the cylinder object in Top. We have the canonical maps

X
it−→ IX

q−→ X

for t ∈ [0, 1] with it(x) = (t, x) and q(t, x) = x. A map H : IX → Y is a homotopy
H : f � g with f = Hi0 and g = Hi1. We also denote a homotopy by Ht : f � g
where Ht = Hit. Here Ht : X → Y is a map in Top for t ∈ [0, 1] with H0 = f and
H1 = g.

We shall use the following category TopA
B of spaces under A and over B.

Objects are diagrams A → X → B and morphisms are commutative diagrams

(3.1.1) A

����
��
��
�

���
��

��
��

X
f ��

���
��

��
��

� Y

����
��
��
�

B
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in Top. We define a cylinder object A → IAX → B of A → X → B by a push out
diagram.

IA ��

q

��

IX
q ��

��

X

��

push

A �� IAX �� B

Let ∂IAX = i0X ∪ i1X ⊂ IAX be the boundary of IAX . Using this cylinder in
TopA

B we obtain the notion of homotopy under A and over B and of homotopy
equivalence under A and over B .

We also use for maps f, g : X → Y under A and over B the tracks f � g
under A and over B which are equivalence classes of maps H ′, H : IAX → Y
under A and over B with H ′i0 = Hi0 = f and H ′i1 = Hi1 = g and H ′ ∼ H are
equivalent if and only if there is a homotopy H ′ � H under the boundary ∂IAX
and over B. Tracks are also denoted by H : f ⇒ g.

As a special case we may choose A = ∅ (empty set) so that we get the
category Top∅

B = TopB of spaces over B. Or we can choose B = ∗ (point) so that
TopA

∗ = TopA is the category of spaces under A.
The maps f under A and over B in (3.1.1) are the objects in the groupoid

(3.1.2) [[X, Y ]]AB.

The morphisms in this groupoid denoted by H : f ⇒ g are the tracks under A
and over B. The set of components

(1) [X, Y ]AB = π0[[X, Y ]]AB

is the set of homotopy classes of maps under A and over B. If A = B = ∗ is a
point, then we write

(2) [[X, Y ]] = [[X, Y ]]∗∗ and [X, Y ] = [X, Y ]∗∗

for the groupoid of pointed maps f : X → Y .
If H : f ⇒ g and G : g ⇒ h are tracks in [[X, Y ]]AB, then addition of homo-

topies yields the composed track

(3) G�H : f ⇒ h.

This is the composition in the category [[X, Y ]]AB. The identity track of f is denoted
by 0� : f ⇒ f so that 0� ∈ Aut(f) is the neutral element. The inverse of a track
H : f ⇒ g is Hop : g ⇒ f so that H�(Hop) = (Hop)�H = 0�.
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The groupoids [[X, Y ]]AB are the morphism groupoids in the track category
[[TopA

B]] and the sets [X, Y ]AB are the morphism sets in the homotopy category
TopA

B/ � so that

(4) [[TopA
B]]� = TopA

B/ � .

An operation for maps (like the product f×g : X×V → Y ×W of maps f : X → Y
and g : V → W in Top∗) induces the corresponding operation for tracks. For
example if H : f ⇒ f ′ and G : g ⇒ g′ are tracks, then H × G : f × g ⇒ f ′ × g′ is
the track defined by the homotopy Ht × Gt, t ∈ I.

We have the tracks f × G : f × g ⇒ f × g′ and H × g : f × g ⇒ f ′ × g and
using these tracks we obviously get the commutative diagram of tracks

(3.1.3) f × g
f×G ��

H×g

��

H×G

���
��

��
��

��
��

��
��

��
� f × g′

H×g′

��
f ′ × g

f ′×G �� f ′ × g′

satisfying
H × G = (f ′ × G)�(H × g) = (H × g′)�(f × G).

A further operation for maps f : X → Y in Top∗ is given by the loop space functor
Ω : Top∗ → Top∗. For a track H : f ⇒ g in [[X, Y ]] we thus obtain the track

(3.1.4) ΩH : Ωf =⇒ Ωg in [[ΩX, ΩY ]]

where ΩH is defined by the homotopy ΩHt, t ∈ I. In fact

Ω : [[X, Y ]] −→ [[ΩX, ΩY ]]

is a functor between groupoids.
The following lemma is well known.

3.1.5 Lemma. Let E → B and E′ → B be fibrations in Top and let f : E → E′ be
a map over B which is a homotopy equivalence in Top. Then f is also a homotopy
equivalence in TopB, i.e., there exists a map g : E′ → E over B and homotopies
fg � 1 and gf � 1 over B.

Proof. The category Top is a fibration category in the sense of [BAH] and hence
the result follows from the dual of II.2.12 [BAH]. �

The category TopB has products defined by the pull back E ×B E′. Using
such products we define a group object (E → B, µ, ν, e) in TopB by structure maps
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over B

(3.1.6)

µ : E ×B E → E (multiplication)

ν : E → E (inverse)

o = oE : B → E (neutral)

satisfying the usual identities. If B = ∗ is a point, such a group object is the same
as a topological group. A group object E in TopB is via the section oE also an
object under B. Homomorphisms between group objects in TopB are maps over
B compatible with the structure maps. In particular such a homomorphism f is
also a map under and over B, since fo = o.

3.1.7 Lemma. Let E → B and E′ → B be group objects in TopB and fibrations
in Top. Let f : E → E′ be a homomorphism between group objects in TopB which
is a homotopy equivalence in Top. Then f is a homotopy equivalence under and
over B.

Proof. By Lemma (3.1.5) we know that f is a homotopy equivalence over B. Hence
we have a map g : E′ → E and homotopies Ht : E → E, Gt : E′ → E′ over B
with t ∈ [0, 1] and Ht : gf � 1E , Gt : fg � 1E′ . We define the map

g : E′ −→ E

by ḡ(µ(ν(gop), g) = −gop + g. Here we use additive notation for the group struc-
ture. Then ḡ is again a map over B and we get

ḡo = −gopo + go = −go + go − o

so that ḡ is a map under B. Next we define accordingly H̄t = −Htop + Ht and
Ḡt = −Gtop + Gt which are also maps under and over B. We have for t = 0 the
equations

H̄0 = −gfop + gf = −gop + gf

= −gopf + gf = (−gop + g)f = ḡf,

Ḡ0 = fgop + fg = f(−gop + g) = f ḡ,

and for t = 1 we get H̄1 = −op + 1E = 1E and Ḡ1 = −op + 1E′ = 1E′ . This
completes the proof of the lemma. �

3.2 The partial loop operation

Let S1 = I/∂I be the 1-sphere with basepoint ∗ ∈ S1 given by ∂I. We consider the
free loop space Ω∗X = XS1

with basepoint S1 → ∗ → X . We have the following
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maps.

(3.2.1) ΩX
π �� Ω∗X

p �� X

X

j

��

Here π is the inclusion of the loop space ΩX = p−1(∗) which is the fiber of the
fibration p given by p(σ) = σ(∗) for σ ∈ Ω∗X . The section j of p carries x ∈ X to
the free loop j(x) : S1 → {x} ⊂ X .

We say that a map g : X × Y → B in Top∗ is trivial on Y if the composite

g(0, 1) : Y −→ X × Y −→ B

is homotopic to the zero map 0. Let

[X × Y, B]2 ⊂ [X × Y, B]

be the subset of all homotopy classes trivial on Y .
An H-group is a group object in the homotopy category Top∗/ �. A map

f between H-groups is H-linear if f is a homomorphism of group objects. For
example the loop space is an H-group and a map Ωg is H-linear.

Now let B be an H-group. Then the partial loop operation L is the function

(3.2.2) L : [X × Y, B]2 −→ [(ΩX) × Y, ΩB]2

defined as follows. For η : X × Y → B (trivial on Y ) the map L(η) is up to
homotopy the unique map (trivial on Y ) for which the following diagram homotopy
commutes in Top∗.

Ω∗(X × Y )
Ω∗(η) �� Ω∗(B)

Ω∗(X) × Ω∗(Y )

Ω(X) × Y

π×j

��

L(η) �� Ω(B)

π

��

Here we use the free loop space in (3.2.1) above. Compare the discussion of the
partial loop operation in [BAH], [BOT], [BJ3]. If Y = ∗ is a point then the partial
loop operation satisfies L(η) = Ω(η) so that L generalizes the loop functor Ω. The
partial loop operation is dual to the partial suspension described in [BAH].
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The partial loop operation satisfies the following rules.

1. The projection p1 satisfies L(p1 : X × Y → X) = (p1 : (ΩX) × Y → ΩX).

2. The map L(η) is linear in ΩX , that is for α, β ∈ [Z, ΩX ] and f ∈ [Z, Y ] we
have

L(η)(α + β, f) = L(η)(α, f) + L(η)(β, f).

3. The composite

A × Z
(ξ,fp2)−→ X × Y

η−→ B

with ξ ∈ [A × Z, X ]2 satisfies

L(η(ξ, fp2)) = L(η)(L(ξ), fp2).

It is well known that the loop space ΩY of an H-group Y is actually an abelian
H-group so that [X, ΩY ] is an abelian group for all pointed spaces X .

3.2.3 Proposition. Let Y be an H-group and f : X → Y be a pointed map in Top∗.
Then one has an isomorphism of groups

σf : [X, ΩY ] = Aut(f)

where Aut(f) is the automorphism group in the groupoid [[X, Y ]]. Hence Aut(f) is
an abelian group. Moreover the loop space functor Ω : [[X, Y ]] → [[ΩX, ΩY ]] yields
the following commutative diagram.

[X, ΩY ]
σf ��

(−1)·Ω

��

Aut(f)

Ω

��
[ΩX, Ω2Y ]

σΩf �� Aut(Ωf)

Proof. We observe that we have the canonical bijection

Aut(f) = [X, Ω∗Y ]Y

where X is a space over Y by f : X → Y and where we use the free loop space in
(3.2.1). Let p2, p1 be the projections Y × Y → Y . We can form the composite

σ : Ω(Y ) × Y
π×j−→ Ω∗Y × Ω∗Y = Ω∗(Y × Y )

Ω∗(µ̄)−→ Ω∗(Y )

where µ̄ = p2+p1 = µT is the composite of the interchange map T : Y ×Y → Y ×Y
and the H-group structure map µ : Y × Y → Y with µ = p1 + p2. The map σ is
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homotopic to a map σ′ over Y and σ′ is a homotopy equivalence over Y by (3.1.5).
Hence σ′ induces

Aut(f) = [X, Ω∗Y ]Y
σ′
∗−→ [X, Ω(Y ) × Y ]Y = [X, ΩY ]

and this yields the isomorphism of groups in (3.2.3). Compare [BAH], [BJ2].
The loop space functor Ω with ΩX = (X, ∗)(S1,∗) satisfies

ΩΩ∗(X) = (XS1
, 0)(S

1,∗) = (X, ∗)(S1×S1/S1×∗,∗),

Ω∗Ω(X) = ((X, ∗)(S1,∗))S1
= (X, ∗)(S1×S1/∗×S1,∗),

so that the interchange map T : S1 × S1 → S1 × S1 induces a homomorphism
ΩΩ∗X = Ω∗ΩX . The map T : S1 ∧ S1 → S1 ∧ S1 is a map of degree −1. This
yields the equation σΩf (−1)Ω = Ωσf . �
3.2.4 Proposition. Let Y be an H-group and H : f ⇒ g be a track in [[X, Y ]]. Then
for α ∈ [X, ΩY ] the following equation holds,

σg(α)�H = H�σf (α).

We denote this track by H ⊕α : f ⇒ g. Here ⊕ is a transitive and effective action
of the abelian group [X, ΩY ] on the set T (f, g) of all tracks f ⇒ g in [[X, Y ]]. The
loop space functor Ω : [[X, Y ]] → [[ΩX, ΩY ]] satisfies Ω(H ⊕ α) = (ΩH) ⊕ (−Ωα).

The proposition generalizes the representability of tracks 0 ⇒ 0 in (2.3.2). If
X is (n − 1)-connected, then [X, ΩZn] = H̃n−1(X) is trivial and hence we get by
(3.2.4):

3.2.5 Corollary. Let X be an (n− 1)-connected space. Then the connected compo-
nents of the groupoids [[X, Zn]] are contractible.

Let y : Y → Y ′ be a map between H-groups. Then we obtain the difference
element

(3.2.6) ∇y ∈ [Y × Y, Y ′]2

as follows. Let ∇y = −yp2 + y(p2 + p1). We have

(∇y)(0, 1) = −yp2(0, 1) + y(p2 + p1)(0, 1)
= −yp2 + yp2

= 0

so that ∇y is trivial on (0, 1)Y ⊂ Y × Y . The difference element satisfies for a
composite gf : X → Y → Z of maps between H-groups the formula

(1) ∇(gf) = (∇g)(∇f, fp2) : X × X −→ Y × Y −→ Z.



62 Chapter 3. Calculus of Tracks

If g is H-linear then ∇g = gp1 so that in this case ∇(gf) = g∇f . The partial loop
operation

(2) L(∇y) ∈ [(ΩY ) × Y, ΩY ′]2

is defined by (3.2.2).

3.2.7 Proposition. Let H : f ⇒ g be a track in [[X, Y ]] where Y is an H-group. Let
x : X ′ → X and y : Y → Y ′ be maps in Top∗ where Y ′ is also an H-group. Then
the following formulas hold for α ∈ [X, ΩY ],

(H ⊕ α)x = (Hx) ⊕ (αx),
y(H ⊕ α) = (yH) ⊕ L(∇y)(α, f).

These are formulas in [[X ′, Y ]] and [[X, Y ′]] respectively. If y is linear we get ∇y =
yp1 so that in this case y(H ⊕ α) = (yH) ⊕ (Ωy)α holds.

One finds proofs of (3.2.4) and (3.2.7) in [BAH] and [BUT] where we describe
further properties of the partial loop operation, see also [BJ3].

For example we have for the multiplication map (2.2.1) the element µn,m ∈
[Zn × Zm, Zn+m]. If we apply the loop functor Ω we get the trivial element

(3.2.8) Ωµn,m = 0 ∈ [ΩZn × ΩZm, ΩZn+m].

The partial loop operation L, however, yields the map Lµn,m which via the ho-
motopy equivalences (2.1.7) can be identified with µn−1,m, that is, the diagram

(3.2.9) (ΩZn) × Zm
Lµn,m �� ΩZn+m

Zn−1 × Zm

∼

��

µn−1,m �� Zn+m−1

∼

��

homotopy commutes. Compare for example [BOT] 6.1.12 p. 328.

3.2.10 Lemma. For the map µ = µn,m : Zn × Zm → Zn+m we get the element

L∇µ ∈ [Ω(Zn × Zm) × Zn × Zm, Ω(Zn+m)]2

which via the homotopy equivalence (2.1.7) is represented by the map

µ̄ : Zn−1 × Zm−1 × Zn × Zm −→ Zn+m−1

which carries (x, y, x2, y2) to x ·y2 +(−1)nmy ·x2. Here we use the product defined
by µ in (2.1.1).
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Proof. For a ∈ Zn, b ∈ Zm we have µ(a, b) = a · b. Hence ∇µ is defined by

(∇µ)(x1, y1, x2, y2) = −x2 · y2 + (x1 + x2) · (y1 + y2)
= x1 · y1 + x1 · y2 + x2 · y1

= x1 · y1 + x1 · y2 + τ(y1 · x2)

with sign(τ) = (−1)nm. If we apply the partial loop operation L we get by (3.2.8)
and (3.2.9) the equation (L∇µ) = µ̄ where we use (2.1.7) as an identification. �

3.3 The partial loop functor for
Eilenberg-MacLane spaces

In (2.3.4) we consider the loop functor

(3.3.1) L : Kp −→ Kp

on the theory of Eilenberg-MacLane spaces. This loop functor is a special case of
the partial loop functor

(3.3.2) LX : Kp(X) −→ Kp(X)

where X is an object in Kp. Here Kp(X) is the following category with the same
objects A, B as in Kp. Morphisms a : A → B in Kp(X) are commutative diagrams
in Kp.

X
(0,1)

��			
		
		
		 (0,1)

��
















A × X
a ��

p2
��
















B × X

p2
��		
		
		
		
	

X

The map a is given by coordinates (α, p2) with α ∈ [A × X, B]2. We define LX

on objects in the same way as L; that is, for A = Zn1 × · · · × Znr we have
LXA = LA = Zn1−1×· · ·×Znr−1 as in (2.3.4). On morphisms a = (α, p2) : A → B
in Kp(X) we define LX(a) = (Lα, p2) where Lα is given by the composite

L : [A × X, B]2
L0−→ [Ω0(A) × X, Ω0B]2 = [L(A) × X, LB]2.

Here L0 is defined by the partial loop operation and we use the homotopy equiv-
alence Ω0(A) � L(A) in (2.3.3). If X = ∗ is a point then LX coincides with L in
(3.3.1).

3.3.3 Lemma. The category Kp(X) is a theory with products as in Kp and LX is
a functor which preserves finite products. Moreover each object in Kp(X) is an
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abelian group object and LX carries maps to linear maps. The functors LX are
natural in X in the sense that for all f : X → Y in Kp the following diagram of
functors commutes.

Kp(X)
LX ��

f∗

��

Kp(X)

f∗

��
Kp(Y )

LY �� Kp(Y )

Here f∗ is the identity on objects and f∗ carries the morphism a = (α, p2) to
f∗(a) = (α(1 × f), p2).

Compare [BJ4]. We now want to compute the loop functor and the partial
loop functor explicitly in terms of cohomology groups. Special cases are already
considered in the examples (3.2.7). . . (3.2.9) above.

3.3.4 Definition. For an unstable A-module X let unstable A-modules X/ ∼ and
X/ ≈ be given by (see (1.1.12))

X/ ∼ = image(X → Ũ(X)),
X/ ≈ = image(X → Ũ(X) → Ũ(X)/Ũ(X) · Ũ(X))

= Ũ(X)/Ũ(X) · Ũ(X).

Then the free unstable A-modules F (n) = Σn(A/B(n)) admit a unique A-linear
map of degree (−1),

˜̃Ω : F (n)/ ≈−→ F (n − 1)/ ∼
which carries the generator [n] to the generator [n− 1]. This yields the composite
map of degree (−1),

Ω̃ : H̃(n)
q−→ F (n)/ ≈

˜̃Ω−→ F (n − 1)/ ∼ i−→ H̃(n − 1)

where q is the quotient map and i is the inclusion. Compare (1.1.12)(5).

3.3.5 Lemma. The following diagram commutes.

[Zn, Zk] L �� [Zn−1, Zk−1]

H̃(n)k Ω̃ �� H̃(n − 1)k−1

Here L is given by the loop functor and Ω̃ is defined in (3.3.4).

This lemma is a consequence of (1.1.13) and (3.2.8) and (2.4.3).
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If A and B are connected algebras, then also A ⊗ B is a connected algebra
and we have

(A ⊗ B)∼ = Ã ⊕ B̃ ⊕ (Ã ⊗ B̃).

Hence we have inclusion and projection

Ã ⊕ B̃
i−→ (A ⊗ B)∼

q−→ Ã ⊕ B̃.

We define the composite Ω by the following diagram.

(H(n1) ⊗ · · · ⊗ H(nr))∼
Ω ��

q

��

(H(n1 − 1) ⊗ · · · ⊗ H(nr − 1))∼

H̃(n1) ⊕ · · · ⊕ H̃(nr)
Ω̃⊕···⊕Ω̃ �� H̃(n1 − 1) ⊕ · · · ⊕ H̃(nr − 1)

i

��

3.3.6 Lemma. For the object X = Zn1 ×· · ·×Znr in Kp we have the commutative
diagram.

[X, Zk] L �� [LX, Zk−1]

(H̃(n1) ⊗ · · · ⊗ H̃(nr))k Ω �� (H̃(n1 − 1) ⊗ · · · ⊗ H̃(nr − 1))k−1

Here L is given by the loop functor and Ω is defined above.

The map (0, 1) : Y → X × Y in Kp induces the map (0, 1)∗ : H∗(X × Y ) →
H∗(Y ). Let

H∗(X × Y )2 = kernel(0, 1)∗.

Then the Künneth formula shows

H∗(X × Y )2 = H̃∗(X) ⊗ H∗(Y ).

For Y = Zn1 × · · · × Znr as in (2.3.5) we now get:

3.3.7 Lemma. The partial loop operation L in Kp is determined by the commutative
diagram (X, Y objects in Kp)

[X × Y, Zk]2
L �� [(LX) × Y, Zk−1]2

((H̃∗X) ⊗ H∗(Y ))k
Ω⊗1 �� ((H̃∗(LX)) ⊗ H∗(Y ))k−1

where Ω is defined in (3.3.6) above.

This is essentially a consequence of (3.2.9).
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Next we consider a commutative graded algebra H and a graded module M .
Then M ⊗H is a right H-module by (m⊗x) · y = m⊗ (x · y) and a left H-module
by y · (m ⊗ x) = (−1)|y||m|(m ⊗ (y · x). A (linear) derivation

(3.3.8) D : H −→ M ⊗ H

is a map of degree (−1) satisfying

D(x · y) = (Dx) · y + (−1)|x|x · (Dy).

Given an object Y in Kp we obtain the unique derivation of degree (−1),

∇̃ : H∗(Y ) −→ H̃∗L(Y ) ⊗ H∗(Y )

for which the following diagram commutes where Y = Zn1 × · · · × Znr .

H∗(Y ) ∇̃ �� H̃∗L(Y ) ⊗ H∗(Y )

H(n1) ⊗ · · · ⊗ H(nr) (H(n1 − 1) ⊗ · · · ⊗ H(nr − 1))∼

j

��

F (n1) ⊕ · · · ⊕ F (nr)

i

��

˜̃Ω⊕···⊕ ˜̃Ω �� F (n1 − 1)/ ∼ ⊕ · · · ⊕ F (nr − 1)/ ∼

i

��

Here ˜̃Ω and the morphisms i are defined in (3.3.4) and j carries x to x ⊗ 1.
Recall that L∇(y) is needed in (3.2.7). We now obtain the following result

on L∇.

3.3.9 Lemma. For the difference element ∇ in (3.2.6) the following diagram com-
mutes where Y is an object in Kp.

[Y, Zk] L∇ �� [L(Y ) × Y, Zk−1]

H∗(Y )k ∇̃ �� (H̃∗(LY ) ⊗ H∗(Y ))k−1

Here ∇̃ is the derivation above and L∇ carries f : Y → Zk to the partial loop
operation applied to the difference element ∇f .
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Proof. For a linear map f : Y → Zk we have ∇f = fp1 and L∇f = (Ωf)p1.
This shows that (L∇)i is defined on F (n1) ⊕ · · · ⊕ F (nr) by ˜̃Ω ⊕ · · · ⊕ ˜̃Ω in the
same way as ∇̃ above. Hence it remains to show that L∇ is a derivation. This is a
consequence of (3.2.10). In fact, we have for a : Y → Zn, b : Y → Zm the formula
a · b = µ(a, b) with µ = µn,m. Hence we get

(L∇)(a · b) = L∇(µ(a, b))

= L((∇µ)(∇(a, b), (a, b)p2), (3.2.6)(1)

= (L∇µ)(L∇µ(a, b), (a, b)p2), (3.2.2)(3)

= µ̄((L∇a, L∇b), (ap, bp2)), (3.2.10)

= (L∇a) · b + (−1)nm(L∇b) · a, (3.2.10)

= (L∇a) · b + (−1)nm · (−1)n(m−1)a · (L∇b)

= (L∇a) · b + (−1)na · L(∇b). �

3.4 Natural systems

We introduce the notion of natural systems on a category C and we describe a
particular natural system on the theory Kp of Eilenberg-MacLane spaces.

3.4.1 Definition. Let C be a category. Then the category FC of factorizations in
C is defined as follows. Objects of FC are morphisms f : B → A and morphisms
(α, β) : f → g in FC are commutative diagrams

A
α �� A′

B

f

��

B′

g

��

β
��

in the category C. A natural system (of abelian groups) on C is a functor D : FC →
Ab. Here Ab denotes the category of abelian groups. We write D(f) = Df ∈ Ab

and D(α, β) = α∗β∗. In the situation
f←− g←− h←− the induced homomorphisms f∗

and h∗ will be denoted by

f∗ : Dg → Dfg, ξ �→ fξ = f∗(ξ),

h∗ : Dg → Dgh, ξ �→ ξh = h∗(ξ).

We have the forgetful functor

(3.4.2) φ : FC −→ C × Cop
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which carries f : B → A to (A, B) and carries (α, β) to (α, β). Hence any functor
M : C × Cop → Ab, termed a C-bimodule, yields the natural system Mφ also
denoted by M .

For example let C be an additive category and let Li : C → C, i = 1, 2, be
additive functors. Then we obtain the C-bimodule

(3.4.3) Hom(L1, L2) : C × Cop −→ Ab

which carries (A, B) to the abelian group Hom(L1B, L2A) of morphisms L1B →
L2A in C. If L2 is the identity functor we write Hom(L1,−).

3.4.4 Definition. A natural system D on a category C is said to be compatible with
products if for any product diagram pk : X1 × · · · × Xn → Xk, k = 1, . . . , n, and
any morphisms f : Y → X1 × · · · × Xn the homomorphism

Df −→ Dp1f × · · · × Dpnf

defined by ξ �→ (p1ξ, . . . , pnξ) is an isomorphism. In a dual way we define compat-
ibility with sums (sum=coproduct).

For example Hom(L1, L2) above is compatible with products in the additive
category C and also compatible with sums.

Recall that the category of stable operations Kstable
p in (2.5) is an additive

category with
λ : Kstable

p = mod0(A)op.

We obtain a bimodule on Kstable
p by the shift functor L−1 : Kstable

p → Kstable
p which

carries A = Zn1 × · · · × Znr to L−1A = Zn1+1 × · · · × Znr+1. Hence

(3.4.5) Hom(L−1,−) : Kstable
p × (Kstable

p )op −→ Ab

is well defined. This bimodule carries (A, B) to [L−1B, A]stable or, using the equiv-
alence λ, we have

Hom(L−1B, A) = [L−1B, A]stable

= HomA(λ(A), λL−1B)
= HomA(λA, ΣλB).

Here Σ is the shift functor on mod0(A) which carries Ax1⊕· · ·⊕Axr with | xi |= ni

to A(Σx1) ⊕ · · · ⊕ A(Σxr) with | Σxi |= ni + 1. We have Σ(λB) = λ(L−1B).
Next let A be a graded algebra over the field F, for example the Steenrod

algebra, and let M be a graded A-bimodule. Then we can consider A as a (graded)
monoid which is a category with one object. Moreover M yields canonically a
natural system on A by setting

(3.4.6) Ma = M |a| for a ∈ A

and b∗ : Ma → Mb·a carries x to b · x and c∗ : Ma → Ma·c carries x to x · c.
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For the algebra A we obtain the A-bimodule ΣA defined by (ΣA)n = An−1

and α · (Σx) = (−1)|α|Σ(α · x) and (Σx) · β = Σ(x · β) for α, β ∈ A and x ∈ A. By
(3.4.6) we consider ΣA as a natural system on the monoid A.

Let mod0(A)op be the category of finitely generated free right A-modules
with generators in degree ≥ 1. This is the opposite of the category mod0(A) of
finitely generated free left A-modules in (2.5.2). Morphisms are A-linear maps of
degree 0. Let Hom(V, W ) be the F-vector space of such morphisms V → W in
mod0(A)op. Then Hom(V, W ) is an A-bimodule with the action defined by

(a · α · b)(x) = α(x · a)b

for x ∈ V , α ∈ Hom(V, W ), a, b ∈ A. Given an A-bimodule M as above we define
the natural system M̄ on mod0(A)op by

(3.4.7) M̄α = Hom(V, W ) ⊗A−A M

for α : V → W . Here ⊗A−A is the bimodule tensor product, see MacLane [MLH].
For example let A = A be the Steenrod algebra and let M = ΣA be the

A-bimodule above. Then the natural system ΣA is defined on mod0(A)op by

(1) (ΣA)α = Hom(V, W ) ⊗A−A ΣA
for α : V → W in mod0(A)op. We have the isomorphism of categories

(2) mod0(A)op = Kstable
p

and using this isomorphism as an identification we get the isomorphism of natural
systems

(3) ΣA = Hom(L−1,−)

where the right-hand side is defined by (3.4.5).
Finally we need the following natural system L on Kp. For f : B → A in Kp

let

(3.4.8) Lf = [B, LA]

where LA is given by the loop functor L on Kp. The natural system L, however,

does not coincide with the bimodule [−, L] since induced maps f∗, h∗ for A
f←−

B
g←− C

h←− D in Kp satisfy

(1)
h∗ : Lg = [C, LB] → Lgh = [D, LB],

h∗(ξ) = ξh,

(2)
f∗ : Lg = [C, LB] → Lfg = [C, LA],

f∗(ξ) = (L∇)(f)(ξ, g).

Only in case f is linear do we get the formula f∗(ξ) = (Lf)ξ which holds in general
for the bimodule [−, L]. We have seen in (3.3.8) that L∇ can be described by the
derivation ∇̃. The definition of f∗(ξ) in (2) corresponds to the formula in (3.2.7).
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3.5 Track extensions

For a track theory T and for a map f : A → B in T the automorphism group of f
in the groupoid [[A, B]] = T (A, B) is denoted by Aut(f) = Hom(f, f). Any track
η : f ⇒ g induces a group homomorphism

(−)η : Aut(g) −→ Aut(f)

which carries α ∈ Aut(g) to αη = −η + α + η. On the other hand composition in

T yields for
f←− g←− h←− in T0 the homomorphisms

h∗ : Aut(g) −→ Aut(gh), ξ �→ ξh,

f∗ : Aut(g) −→ Aut(fg), ξ �→ fξ.

3.5.1 Definition. A linear track extension of a category C by a natural system D
denoted by

D
σ �� T1

���� T0
q �� C

is a track category T equipped with a functor q : T0 → C and a collection of
isomorphisms of groups

σf : Dq(f) −→ Aut(f)

where f : A → B is a map in T0. Moreover the following properties are satisfied.

(1) The functor q is full and is the identity on objects, i.e., Ob(T ) = Ob(C). In
addition for f, g : A → B in T0 we have q(f) = q(g) if and only if f � g.
In other words the functor q identifies C with T�. We also write q(f) = [f ].
Hence for any ϕ : f ⇒ g we have [f ] = [g].

(2) For ϕ : f ⇒ g and ξ ∈ D|f | = D|g| we have

σf (ξ) = σg(ξ)ϕ.

Equivalently we have
ϕ�σf (ξ) = σg(ξ)�ϕ

and this element is denoted by ϕ ⊕ ξ.

(3) For any three maps
f←− g←− h←− in T0 and any ξ ∈ D|g| one has

fσg(ξ) = σfg([f ]ξ),
σg(ξ)h = σgh(ξ[h]).

We say that a track category is linear if it occurs as a linear track extension
– of its own homotopy category, necessarily – by some natural system D. Clearly
a linear track category has abelian hom-groupoids by the definition above. The
result in [BJ1] shows that also the converse is true; that is:
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If T is a track category in which all hom-groupoids are abelian groupoids,
then T is a linear track category.

This already shows by (3.2.3) that the track categories

[[A]], [[Kstable
p ]], [[Kp]]

described in Chapter 2 are linear track categories. We shall describe details as
follows.

3.5.2 Theorem. The secondary Steenrod algebra is a linear track extension

ΣA �� [[A]]1 ���� [[A]]0 �� A .

Here ΣA is the natural system on the graded monoid A given by (3.4.6).

Proof. If (α, Hα), (β, Hβ) in [[A]]k0 both represent the same stable operation in
Kp that is an element in Ak, see (2.4.3), then for sufficiently large n we have a
track Hn : αn ⇒ βn in [[Zn, Zn+k]], for example n > k. Moreover for n > k + 1
the function Ω is a bijection on [Zn, Zn+k] so that Hn determines a unique track
H : (α, Hα) ⇒ (β, Hβ). Hence we get [[A]]� = A. Moreover we define

σ(α,Hα) : (ΣA)k = Ak−1 ∼= Aut(α, Hα)

as follows. For the stable operation ξ ∈ Ak−1 with ξ = (ξn)n∈Z and

ξn ∈ [Zn, Zn+k−1] = [Zn, Ω0Z
n+k]

let σ(α,Hα)(ξ) = ((−1)nσαn(ξn))n∈Z. Here

σαn : [Zn, Ω0Z
n+k] ∼= Aut(αn)

is defined in (3.2.3). �
3.5.3 Theorem. The track category of stable secondary operations is a linear track
extension

Hom(L−1,−) �� [[Kstable
p ]]1

���� [[Kstable
p ]]0 �� Kstable

p .

Here Hom(L−1,−) is the natural system in (3.4.5).

The proof of this result is similar to the proof of (3.5.2).

3.5.4 Theorem. The track category of Eilenberg-MacLane spaces is a linear track
extension

L �� [[Kp]]1 ���� [[Kp]]0 �� Kp .

Here L is the natural system in (3.4.7).

This is a direct consequence of the track calculus results in Section (3.2).
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3.6 Cohomology of categories

We recall from [BW], [BAH] the following definition of cohomology of a category.

3.6.1 Definition. Let C be a small category and let D be a natural system on C.
Let Nn(C) be the set of sequences (λ1, . . . , λn) of n composable morphisms in C
(which are the n-simplices of the nerve of C). For n = 0 let N0(C) = Ob(C) be the
set of objects in C. The nth cochain group Fn = Fn(C, D) is the abelian group
of all functions

(1) c : Nn(C) −→
⋃

g∈Mor(C)

Dg = D·

with c(λ1, . . . , λn) ∈ Dλ1◦...◦λn . Addition in Fn is given by adding pointwise in
the abelian group Dg. The coboundary δ : Fn−1 → Fn is defined by the formula

(2)
(δc)(λ1, . . . , λn) = (λ1)∗c(λ2, . . . , λn)

+
∑n−1

i=1 (−1)ic(λ1, . . . , λiλi+1, . . . , λn)
+(−1)nλ∗

nc(λ1, . . . , λn−1).

For n = 1 we have (δc)(λ) = λ∗c(A) − λ∗c(B) for λ : A → B ∈ N1(C). One can
check that δc ∈ Fn for c ∈ Fn−1 and that δδ = 0. Whence the cohomology groups

(3) Hn(C, D) = Hn(F ∗(C, D), δ)

are defined, n ≥ 0. These groups are discussed in [BW], [BAH], [JP].

A functor φ : C′ → C induces the homomorphism

(3.6.2) φ∗ : Hn(C, D) −→ Hn(C′, φ∗D)

where φ∗D is the natural system given by (φ∗D)f = Dφ(f). On cochains the map
φ∗ is given by the formula

(φ∗f)(λ′
1, . . . , λ

′
n) = f(φλ′

1, . . . , φλ′
n)

where (λ′
1, . . . , λ

′
n) ∈ Nn(C′). In IV.5.8 of [BAH] we show

3.6.3 Proposition. Let φ : C → C′ be an equivalence of categories. Then φ∗ is an
isomorphism of groups.

A natural transformation τ : D → D′ between natural systems induces a
homomorphism

(3.6.4) τ∗ : Hn(C, D) −→ Hn(C′, D)

by (τ∗f)(λ1, . . . , λn) = τλf(λ1, . . . , λn) where τλ : Dλ → D′
λ with λ = λ1 ◦ · · · ◦λn

is given by the transformation τ . Now let

D′′ �� ι �� D
τ �� �� D′
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be a short exact sequence of natural systems on C. Then we obtain as usual the
natural long exact sequence

−→ Hn(C, D′) ι∗−→ Hn(C, D) τ∗−→ Hn(C, D′′)
β−→ Hn+1(C, D′) −→

where β is the Bockstein homomorphism. For a cocycle c′′ representing a class
{c′′} in Hn(C, D′′) we obtain β{c′′} by choosing a cochain c as in (3.6.1)(1) with
τc = c′′. This is possible since τ is surjective. Then τ−1δc is a cocycle which
represents β{c′′}.

3.6.5 Remark. The cohomology (3.6.1) generalizes the cohomology of a group. In
fact, let G be a group and let G be the corresponding category with a single
object and with morphisms given by the elements in G. A right G-module D
yields a natural system D̄ : FG → Ab by D̄g = D for g ∈ G. The induced maps
are given by f∗(x) = xf and h∗(y) = y, f, h ∈ G. Then the classical definition of
the cohomology Hn(G, D) coincides with the definition of

Hn(G, D̄) = Hn(G, D)

given by (3.6.1).

3.6.6 Definition. Let C be a ringoid , i.e., a small category in which all morphism
sets C(A, B) are abelian groups and composition is bilinear. (A ringoid is also
called a pre-additive category or a category enriched in the category Ab of abelian
groups.) Let D : C×Cop → Ab be a C-bimodule, that is, D is additive as a functor
in C and Cop. Then we call a cochain

(1) c ∈ Fn(C, D)

multilinear if for all i = 1, . . . , n and λi, λ
′
i ∈ C(Ai, Ai−1) we have

c(λ1, . . . , λi + λ′
i, . . . , λn) = c(λ1, . . . , λi, . . . , λn) + c(λ1, . . . , λ

′
i, . . . , λn)

in D(An, A0). For n ≥ 1 let

(2) LFn(C, D) ⊂ Fn(C, D)

be the subgroup of multilinear cochains. The coboundary δ in (3.6.1) restricts to
LFn(C, D) → LFn+1(C, D) for n ≥ 0 where we set LF 0(C, D) = F 0(C, D). Hence
the cohomology

(3) HHn(C, D) = HnLF ∗(C, D)

is defined which we call the Hochschild cohomology of C with coefficients in D.
Moreover (2) induces the natural homomorphism

(4) HHn(C, D) −→ Hn(C, D).
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If C = A is a (graded) algebra and M an A-bimodule, then M is a natural
system on the monoid A and by (3) the cohomology HHn(A, M) is defined. This
is the classical Hochschild cohomology of the algebra A with coefficients in the
bimodule M .

Now let mod0(A)op be the category of finitely generated free right A-modules
with generators of degree ≥ 1.

Then M defines the natural system M̄ on mod0(A)op as in (3.4.7). In this
case

(5) HHn(A, M) = HHn(mod0(A)op, M̄).

This leads to the following definition of MacLane cohomology:

(6) HMLn(A, M) = Hn(mod0(A)op, M̄)

This is a special case of the cohomology defined in (3.6.1). MacLane cohomol-
ogy is also called topological Hochschild cohomology. Compare Pirashvili [P] and
Pirashvili-Waldhausen [PW]. By (4), (5) we have the natural transformation

(7) HHn(A, M) −→ HMLn(A, M)

which can be studied by a spectral sequence, Pirashvili [P]. We also have the
forgetful map

(8) φ : HMLn(A, M) −→ Hn(A, M)

where M is considered as a natural system on the graded monoid A, see (3.4.6),
and where Hn(A, M) is defined by (3.6.1). We point out that (8) in general is not
an isomorphism.

For each linear track extension T ,

D �� T1
���� T0

�� C

a characteristic cohomology class in H3(C, D) is defined, compare [BD] where
this class is termed the ‘universal Toda bracket’ of T . We recall the definition as
follows.

3.6.7 Definition. The element

〈c〉 = 〈T 〉 ∈ H3(C, D)

represented by the following cocycle: Choose for each morphism f in T� = C a
representative 1-arrow of T denoted s(f) ∈ f . Furthermore choose a track µ(f, g) :
s(f)s(g) ⇒ s(fg). Then for each composable triple f, g, h the composite track in
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the diagram

• •
s(f)

�� •s(g)��

s(fg)

��
� �� ���−µ(f,g)

•s(H)��

s(gh)

��
�� ��
�� µ(g,h)

s(fgh)

��

�� ��
�� −µ(fg,h)

s(fgh)

		

�� ��
��µ(f,gh)

determines an element in Aut(s(fgh)) and hence, going back via σ, an element
c(f, g, h) ∈ Dfgh. It can be checked that this determines a 3-cocycle of T� with
coefficients in D, and that both choosing a different section s or different tracks
µ(f, g) leads to a cohomologous cocycle. One can thus obtain a uniquely deter-
mined cohomology class 〈T 〉 represented by the cocycle c termed the characteristic
class of T .

3.6.8 Definition. Let D be a natural system on the small category C. Then we
define the category Track(C, D) as follows. Objects are linear track extensions

D �� T1
���� T0

�� C

and morphisms are track functors T → T ′ for which the diagram

D �� T1

F1

��

���� T0

F0

��

p �� C

D �� T ′
1

���� T ′
0

p′
�� C

commutes, that is F1(ϕ⊕ ξ) = F1(ϕ)⊕ ξ and p′F0 = p. Let π0Track(C, D) be the
set of connected components of the category Track(C, D).

In [BD] we show the following result.

3.6.9 Theorem. The function

π0Track(C, D) −→ H3(C, D)

which carries the component of T to the characteristic class 〈T 〉 is well defined.
Moreover this function is a binatural bijection.
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We call a morphism in Track(C, D) a weak track equivalence (under D and
over C). Hence the theorem shows that a cohomology class ξ ∈ H3(C, D) deter-
mines a linear track extension Tξ up to such weak track equivalences.

Using the characteristic class in (3.6.7) one has the following well-defined
cohomology classes

(3.6.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
kA = 〈[[A]]〉 ∈ H3(A, ΣA),

kstable
p = 〈[[Kstable

p ]]〉 ∈ H3(Kstable
p , Hom(L−1,−))

= HML3(A, ΣA),

kp = 〈[[Kp]]〉 ∈ H3(Kp,L).

For this we use the linear track extensions in (3.5.2), (3.5.3) and (3.5.4). Here the
natural map

HML3(A, ΣA) −→ H3(A, ΣA)

carries kstable
p to kA, see (3.6.6)(8). The element of interest is kstable

p and not
kA = φkstable

p with φ as in (3.6.6)(8).

3.7 Secondary cohomology and the obstruction
of Blanc

The cohomology H∗(X) of a path connected pointed space X is a connected
unstable A-algebra which by (1.5.3) equivalently can be described by the model
[X,−] of the theory Kp. This model corresponds to the subcategory [X, Kp] with

(3.7.1) Kp ⊂ [X, Kp] ⊂ Top∗/ �

defined as follows. Objects of [X, Kp] are X and the objects A, B in Kp. Morphisms
are the identity of X , all maps X → A in Top∗/ � with A ∈ Kp and all maps
A → B in Kp. The category [X, Kp] is completely determined by the model [X,−]
or by the unstable A-algebra H∗(X).

We define a natural system LH∗(X) on the category [X, Kp] as an extension
of the natural system L on Kp as follows. For the identity 1X of X let LH∗(X)

1X
= 0

be the trivial group and for f : X → A with A ∈ Kp let

(3.7.2) LH∗(X)
f = [X, LA]

and for g : A → B with A, B ∈ Kp let LH∗(X)
g = Lg = [A, LB] be defined as in

(3.4.7). Induced maps for LH∗(X) are defined in the same way as in (3.4.7)(1),(2).
Finally let [[X, Kp]] be the track category corresponding to [X, Kp] above with

(3.7.3) [[Kp]] ⊂ [[X, Kp]] ⊂ [[Top∗]].

Hence [[X, Kp]] is completely determined by the track model [[X,−]] = H̃∗(X) of
[[Kp]] which is the secondary cohomology of X ; see (2.2.10).
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3.7.4 Theorem. The secondary cohomology yields a linear track extension

LH∗(X) �� [[X, Kp]]1 ���� [[X, Kp]]0 �� [X, Kp]

which by (3.6.9) is determined up to weak track equivalence by the cohomology
class

kX = 〈[[X, Kp]]〉 ∈ H3([X, Kp],LH∗(X)).

We point out that the cohomology H3([X, Kp],LH∗(X)) is algebraically de-
termined by the connected unstable A-algebra H∗X .

The element kX describes the secondary cohomology of X up to weak equiv-
alence. Moreover kX is an invariant of the homotopy type of X . In fact, for a map
f : X → Y between path connected spaces in Top∗/ � we get the induced functor
α and the induced natural transformation β,

α = f∗ : [Y, Kp] −→ [X, Kp],

β = f∗ : f∗LH∗(X) −→ LH∗(Y ).

The maps α, β induce the homomorphisms

H3([X, Kp],LH∗(X)) α∗
−→ H3([Y, Kp], f∗LH∗(X))

β∗←− H3([Y, Kp],LH∗(Y )).

Now the following equation holds,

(3.7.5) α∗kX = β∗kY .

This is the naturality of the invariant kX .
The inclusion of categories Kp ⊂ [X, Kp] induces the homomorphism i∗ in

the exact sequence of a pair of categories:
(3.7.6)

H3([X, Kp],LH∗(X)) i∗−→ H3(Kp,L) δ−→ H4([X, Kp], Kp;LH∗(X)).
kX �→ kp

Here i∗ carries kX to the element kp = 〈[[Kp]]〉. Hence exactness implies δ(kp) = 0.
This leads to a first obstruction for the following realization problem.

Let H be a connected unstable A-algebra. We say H is realizable if there
exists a path connected space X with H ∼= H∗(X) in K0

p. In general H need not
be realizable.

Recall that V # = Hom(V, F) is the dual vector space of V with (V #)# = V
if V is finite dimensional. Assume for a moment that H is of finite dimension and
let H# be the dual of H . Then H# is a connected unstable A-coalgebra.

Blanc [Bl] discovered a sequence of obstructions (n ≥ 1)

χn ∈ QHn+2(H#, ΣnH#)

where QH∗ denotes the Quillen cohomology. Here χn is defined for n > 1 if
χ1 = · · · = χn−1 = 0.
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3.7.7 Theorem ([Bl]). The finite-dimensional connected unstable A-algebra H is
realizable if and only if χn = 0 for all n ≥ 1.

We now define a first obstruction which plays the role of Blanc’s obstruction
χ1. Let H be a connected unstable A-algebra and let MH be the model of Kp

corresponding to H ; see (1.5.2). Then we define the category [MH , Kp] together
with the inclusion

(3.7.8) Kp ⊂ [MH , Kp]

such that for MH = [X,−] and H = H∗(X) this category coincides with [X, Kp]
above. Objects in [MH , Kp] are an object ∗H , and the objects A in Kp. Morphisms
are the identity of ∗H , and the elements of MH(A) which are morphisms ∗H → A
and the morphisms A → B in Kp. The composite

∗H
α−→ A

f−→ B

with α ∈ MH(A) is defined by f∗(α) ∈ MH(B). Here f∗ is defined by the functor
MH : Kp → Set. We point out that the category [MH , Kp] is completely deter-
mined by Kp and the connected unstable A-algebra H .

We define a natural system LH on the category [MH , Kp] as an extension of
the natural system L on Kp as follows; compare (3.7.2). For the identity 1∗ of ∗H

let LH
1∗ = 0 and for α : ∗H → A, α ∈ MH(A), let

(3.7.9) LH
α = MH(LA).

We define induced maps for LH as in (3.4.7)(1),(2). In particular f : A → B
induces LH

α → LH
fα with f∗(ξ) = (L∇f)∗(ξ, α) where

(ξ, α) ∈ MH(LA) × MH(A) = MA(L(A) × A)

and L∇f : L(A) × A → LB as in (3.3.8). Hence the natural system LH also uses
the derivation ∇̃ in (3.3.9). Of course LH is completely defined by the unstable
A-algebra H . If H = H∗(X) then LH coincides with the natural system LH∗(X)

in (3.7.2).
We now consider an exact sequence as in (3.7.6).

(3.7.10) H3([MH , Kp],LH) i∗−→ H3(Kp,L) δ−→ H4([MH , Kp], Kp;LH).
kp �→ δ(kp)

Here kp is the class of the secondary Steenrod algebra. The sequence coincides
with (3.7.2) if H is realizable by the space X and in this case we know δ(kp) = 0.
Hence we get:

3.7.11 Theorem. The connected unstable A-algebra H determines the group
H4([MH , Kp], Kp;LH) and the element δ(kp) is a first obstruction for the real-
izability of H. In particular δ(kp) �= 0 implies that H is not realizable.

We claim that there is a connection between Blanc’s obstruction χ1 in (3.7.7)
and the element δ(kp) but we do not work out details since this is not needed in
this book.
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3.8 Secondary cohomology as a stable model

We have the forgetful functor

Kstable
p

φ−→ Kp

which is the identity on objects and carries the stable map α to α0. This functor
preserves products. Hence a model of Kp is also a model of Kstable

p . Using (2.5.2)
we see that

3.8.1 Proposition. There is an isomorphism of categories

model(Kstable
p ) = Mod0(A).

Here Mod0(A) is the category of graded A-modules M with Mi = 0 for i ≤ 0.
Of course the isomorphism is compatible with the isomorphism in (1.5.2) in the
sense that the following diagram commutes.

(3.8.2) model(Kstable
p ) Mod0(A)

model(Kp)

φ∗

��

K0
p

φ

��

Here φ on the right-hand side is the obvious forgetful functor. A pointed path
connected space X yields the model [X,−] of Kp and hence the model [X,−]φ of
Kstable

p . The model [X,−]φ can be identified by (3.8.1) with the A-module H̃∗(X).

We now describe the stable analogue of the constructions in (3.7) above. The
space X yields the category

(3.8.3) Kstable
p ⊂ [X, Kstable

p ]

defined as follows. Objects are X and the objects A, B of Kstable
p . Morphisms

are the identity of X , all maps X → A in Top∗/ � and all maps A → B in
Kstable

p . Composition is defined by the functor φ above. The category [X, Kstable
p ]

is completely determined by the model [X,−]φ or by the A-module H∗(X). Let
H be any A-module in Mod0(A) corresponding to the model MH of Kstable

p by
(3.8.1). Then we obtain more generally the category

(3.8.4) Kstable
p ⊂ [MH , Kstable

p ]

which is defined similarly as in (3.7.8). If MH = [X,−]φ then this category coin-
cides with [X, Kstable

p ] above.
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We define a natural system RH on the category [MH , Kstable
p ] as an extension

of Hom(L−1,−) on Kstable
p . Let RH

1X
= 0 and for f : A → B, A ∈ Kstable

p , let

(3.8.5) RH
f = [X, LA].

The induced map α∗ : RH
f → RH

αf for α : A → B in Kstable
p is defined by

α∗(x) = L(α0)(x) for x ∈ [X, LA]. Finally let [[X, Kstable
p ]] be the track category

corresponding to [X, Kstable
p ] above with

(3.8.6) [[Kstable
p ]] ⊂ [[X, Kstable

p ]].

Here [[X, Kstable
p ]] is completely determined by the track model [[X,−]]φ where we

use the forgetful track functor

φ : [[Kstable
p ]] −→ [[Kp]]

see (2.6.5). Now we get the following stable analogue of (3.7.4).

3.8.7 Theorem. The secondary cohomology H∗(X)φ yields a linear track extension

RH∗(X) �� [[X, Kstable
p ]]1

���� [[X, Kstable
p ]]0 �� [X, Kstable

p ]

which by (3.6.9) is determined up to weak equivalence by the cohomology class

kstable
X =< [[X, Kstable

p ]] >∈ H3([X, Kstable
p ], RH∗(X)).

Here the cohomology H3 is completely determined by the A-module H∗(X).

We now can define an obstruction for the realizability of an A-module H in
a similar way as in Section (3.7). For this we leave it to the reader to formulate
the stable analogue of (3.7.11) above.
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Stable Linearity Tracks

Maps in Kstable
p are F-linear. The stable maps in [[Kstable

p ]]0, however, need not be
linear. Therefore there arises a linearity track describing the deviation from lin-
earity. It turns out that linearity tracks can be chosen canonically. The properties
of linearity tracks serve as axioms for a Γ-track algebra. the secondary Steenrod
algebra [[A]] is a Γ-track algebra which determines the linear extension [[Kstable

p ]] up
to weak equivalence. Moreover secondary cohomology [[X,A]] is a Γ-track module.

4.1 Weak additive track extensions

Let F be a field, for example F = Z/p. An F-ringoid is a category enriched in the
category of F-vector spaces, that is, morphism sets are vector spaces and compo-
sition is F-bilinear. An F-additive category K is an F-ringoid in which products
exist. Such products are also coproducts and are called “biproducts” or “direct
sums”; see MacLane [MLC]. For example, the category K = Kstable

p is an F-additive
category isomorphic to mod0(A)op; see (2.5.2).

Let D be an F-biadditive K-bimodule, that is, D is a functor

(4.1.1) D : K × Kop −→ VecF,

where VecF is the category of F-vector spaces, and D(A, B) with A, B ∈ K is
additive in A and B.

By (3.6.6)(5) we know that the homomorphism

(4.1.2) HH3(K, D) −→ H3(K, D)

is defined.

4.1.3 Definition. Let K be F-additive and let D be an F-biadditive K-bimodule as
above. Then a linear track extension

D �� T1
���� T0

�� K
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is a weak F-additive track extension if the following properties hold. The track
category T has a strong zero object ∗ with [[∗, X ]] and [[X, ∗]] consisting only of
exactly one morphism for all objects X in T . Moreover finite strong products
A×B exist in T , see (2.3.4), and each object A is an F-vector space object in T0.

For example for K = Kstable
p we have the F-biadditive K-bimodule D =

Hom(L−1,−) and we have seen in (2.6) and (3.5.3) that the stable track theory
T = [[Kstable

p ]] of Eilenberg-MacLane spaces is a weak F-additive track extension
with properties as in (4.1.3).

Weak coproducts in a track category are the categorical dual of weak products
as defined in (2.3.4), that is:

4.1.4 Definition. A weak coproduct or a weak sum A ∨ B in a track category T is
an object A∨B equipped with maps iA = i1 : A → A∨B and iB = i2 : B → A∨B
such that the induced functor (i∗1, i

∗
2):

(∗) [[A ∨ B, X ]] −→ [[A, X ]] × [[B, X ]]

is an equivalence of groupoids for all objects X in T . The coproduct is strong if
(∗) is an isomorphism of groupoids.

4.1.5 Proposition. Let T be a weak F-additive track extension as in (4.1.3). Then
strong products A × B in T are also weak coproducts by the inclusions

i1 = 1 × 0 : A = A × ∗ −→ A × B,

i2 = 0 × 1 : B = ∗ × B −→ A × B.

4.1.6 Corollary. Strong products A × B in [[Kstable
p ]] are weak coproducts.

Proof of (4.1.5). We have to show that A×B is a weak coproduct. Hence we have
to show that (∗) in (4.1.4) is an equivalence of categories; that is, a full and faithful
functor which is also representative. Using the linear extension (4.2.3) we easily
see that (∗), in fact, is full and faithful since D is a K-bimodule which is additive
in each variable. It remains to check that (∗) is representative, that is, for each
α : A → X and β : B → X there exist⎧⎨⎩

ξ : A × B −→ X,
H : ξi1 ⇒ α,
G : ξi2 ⇒ β.

This is clear since the homotopy category T� = K is an F-additive category in
which products are also coproducts. �
4.1.7 Definition. A weak F-additive track extension is strong F-additive if all strong
products A × B are also strong coproducts.

4.1.8 Proposition. The characteristic class 〈T 〉 of a strong F-additive track exten-
sion T is in the image of Hochschild cohomology in (4.1.2).

We shall see that 〈[[Kstable
p ]]〉 is not in the image of (4.1.2) so that [[Kstable

p ]] is
not weakly equivalent to a strong F-additive track extension.
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4.2 Linearity tracks

Let T be a weak F-additive track extension as in (4.1.3), for example T = [[Kstable
p ]].

Then we have for each object A in T the addition map +A : A × A → A of the
F-vector space object A. Moreover for each morphism a : A → B in T0 there is a
diagram in T0

(4.2.1) A × A
a×a ��

+A

��

Γa=⇒

B × B

+B

��
A a

�� B

where Γa : a(+A) ⇒ (+B)(a × a). Since

(i∗1, i
∗
2) : [[A × A, B]] −→ [[A, B]] × [[A, B]]

is an equivalence of groupoids (see (4.1.5)) there is a unique track Γa with

i∗1Γa = 0�
a = i∗2Γa

where 0�
a : a ⇒ a is the trivial track. We call Γa the linearity track for a. We

obtain for x, y : X → A the map x + y = (+A)(x, y) : X → A and hence we get
the linearity track

(4.2.2) Γx,y
a = Γa(x, y) : a(x + y) ⇒ ax + ay

in T1. We also use the following diagram where A×n = A × · · · × A is the n-fold
product.

A×n a×n
��

+n
A

��

Γn
a=⇒

B×n

+n
B

��
A a

�� B

Here a unique track Γn
a is given with Γn

a ir = 0�
a for r = 1, . . . , n. For n = 2 this

coincides with (4.2.1). We write for (x1, . . . , xn) : X → A×n,

(4.2.3) Γx1,...,xn
a = Γn

a(x1, . . . , xn) : a(x1 + · · · + xn) ⇒ ax1 + · · · + axn

generalizing (4.2.2). One can check the following equation (n ≥ 3)

Γx1,...,xn
a = (Γx1,...,xn−1

a + axn)�Γx1,...,xn−2,xn−1+xn
a
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so that inductively Γx1,...,xn
a can be expressed only in terms of Γx,y

a above. For
maps x, y : X → A we obtain x + y by the composite

x + y = (+A)(x, y) : X → A × A → A.

Similarly we get for tracks H : x ⇒ x′, G : y ⇒ y′ the composite

(4.2.4) H + G = (+A)(H, G) : x + y ⇒ x′ + y′

where (H, G) : (x, y) ⇒ (x′, y′) is a track in T since A × A is a strong product in
T . If G = 0�

y : y ⇒ y is the identity track we write, compare (2.2.6),

H + y = H + 0�
y : x + y ⇒ x′ + y

and accordingly if H = 0�
x : x ⇒ x is the identity track we get

x + G = 0�
x + G : x + y ⇒ x + y′.

We use this notation in the following theorem.

4.2.5 Theorem. Let T be a weak F-additive track extension. Then linearity tracks
in T satisfy the following equations (1), . . . , (7).

(1) Γxd,yd
a = Γx,y

a d.

(2) Γx,y
ba = Γax,ay

b �bΓx,y
a .

(3) Γx,y
a = Γy,x

a .

(4) Γx,y
a+a′ = Γx,y

a + Γx,y
a′ .

(5) Γw,x,y
a = (Γw,x

a + ay)�Γw+x,y
a = (aw + Γx,y

a )�Γw,x+y
a .

Equivalently the following diagram commutes.

a(w + x + y)
Γw+x,y

a ��

Γw,x+y
a

��

Γw,x,y
a

����
���

���
���

���
���

���
��

a(w + x) + ay

Γw,x
a +ay

��
aw + a(x + y)

aw+Γx,y
a

�� aw + ax + ay

This implies Γ0,y
a = 0� if we set w = x = 0 since Γ0,0

a = Γ0,0
a 0 = 0 by (1).
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(6) For H : x ⇒ x′ and G : y ⇒ y′ the following diagram of tracks commutes.

a(x + y)
Γx,y

a ��

a(H+G)

��

ax + ay

aH+aG

��
a(x′ + y′)

Γx′,y′
a

�� ax′ + ay′

(7) For A : a ⇒ a′ the following diagram of tracks commutes.

a(x + y)
Γx,y

a ��

A(x+y)

��

ax + ay

Ax+Ay

��
a′(x + y)

Γx,y

a′
�� a′x + a′y

Proof of (4.2.5). Equation (1) is clear. Moreover (2) follows from

A × A
a×a ��

��

Γa=⇒

B × B
b×b ��

��

Γb=⇒

C × C

��
A a

�� B
b

�� C

with Γb ∗ Γa = Γba by uniqueness. Let T = (p2, p1) : A × A → A × A be the
interchange map. Then ΓaT = Γa since (ΓaT )i1 = Γai2 = 0� = Γai1 = (ΓaT )i2.
Hence we get (3). Again we see

Γa+a′ = Γa + Γa′

since (Γa +Γa′)ik = 0� +0� = 0� for k = 1, 2. This implies (4). Again one readily
checks that Γ3

a in (4.2.1) can be expressed by the composite C of tracks in the
diagram
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A×3 a×3
��

(+A)×A

��

Γa×a
=⇒

B×3

��
A×2

a×a ��

��

Γa=⇒

B×2

��
A �� B

since Cik = 0� for k = 1, 2, 3. This implies (5). Finally we get (6) by the definition
Γx,y

a = Γa(x, y) so that pasting yields

Γa ∗ (H, G) = Γx′,y′
a �a(H + G)

= (aH + aG)�Γx,y
a .

Next we get (7) by considering the composite C of tracks in the following diagram.

A × A
a′×a′

��

⇑A×A

B × B

A × A
a×a ��

��

⇑Γa

B × B

��
A

a ��

⇑Aop

B

A
a′

�� B

Now Cik = 0� for k = 1, 2 implies C = Γa′ . �
For n ∈ N = {1, 2, . . .} and an object A in T we obtain the map

(4.2.6) n · 1A : A −→ A
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by the F-vector space structure of [[A, A]]0. This map depends only on the element
n̄ = n · 1 ∈ F given by n. Moreover using (4.2.3) we have the track

(4.2.7) Γ(n)a = Γx1,...,xn
a : a(n · 1A) ⇒ (n · 1B)a = n · a

where x1 = · · · = xn = 1A. This track actually depends on n ∈ N and is not well
defined by n̄ = n · 1 ∈ F = Z/p. (For example for n = 2 and a : Zm → Zm+k

representing Sqk we know by (4.5.8) that Γ(n)a : 0 ⇒ 0 represents Sqk−1.)

4.2.8 Lemma. For n, n′ ∈ N we have

Γ(n′ · n)a = ((n′ · 1B)Γ(n)a)�(Γ(n′)a(n · 1A)).

If p | n′ and p | n, then the lemma shows that Γ(n′n)a = 0� : 0 ⇒ 0 is the
identity track of the zero map 0 : A → ∗ → A.

Proof. The lemma is a consequence of the diagram

A×(n′·n) ��

��

(Γn′
a )×n

B×(n′·n)

��
A×n ��

��

Γn
a

B×n

��
A a

�� B

where Γn
a is defined in (4.2.3). Pasting of tracks in the diagram yields Γn′·n

a . This
is seen by the uniqueness property of Γn′·n

a . �
4.2.9 Lemma. For n, n′ ∈ N the track Γ(n + n′)a is the composite

Γ(n + n′)a : a(n · 1A + n′ · 1A) ⇒ a(n1A) + a(n′1A) ⇒ na + n′a,

Γ(n + n′)a = (Γ(n)a + Γ(n′)a)�Γn1A,n′1A
a .

This shows by (4.2.8) that

4.2.10 Proposition. Γ(n)a = Γ(n′)a if n ≡ n′ mod Z/p2. For n ≤ 0 we choose k
such that n + kp2 > 0 and we define Γ(n)a = Γ(n + kp2).

Proof. Let n′ = n + p2 · m. Then we have

Γ(n′)a = (Γ(n)a + 0�)�Γn1A,0
a = Γ(n)a.

Compare (4.2.5)(5). �
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Since the ring Z/p2 in proposition (4.2.10) plays a major role we introduce
the following notation:

4.2.11 Notation. Let p be a prime number. Then F is the field F = Z/p and G is
the ring G = Z/p2. Clearly F is a G-module by the surjection G � F. We consider
standard free G-modules

V = Gn = G ⊕ · · · ⊕ G

with n = dim(V ) ≥ 0. Hence V = Gn has the standard inclusions ij and projec-
tions pj,

G
ij−→ V

pj−→ G

for j = 1, . . . , n. Let

∇V =
n∑

j=1

pj : V −→ G

be the folding map and let
+V : V ⊕ V −→ V

be the addition map with +V (x ⊕ y) = x + y for x, y ∈ V . Of course ∇G2 = +G.
Each G-linear map ϕ : V = Gn → W = Gm is given by a matrix (ϕi

j) with ϕi
j ∈ G

defined by
ϕi

j = pjϕii : G −→ G

for i = 1, . . . ,dim(V ) and j = 1, . . . ,dim(W ). We say that ϕ : V → V is a permu-
tation (of coordinates) if ϕ(x1, . . . , xn) = (xσ1, . . . , xσn) where σ is a permutation,
xi ∈ G.

Now let A be an object in T and let ϕ : V = Gn → W = Gm be a G-linear
map. Then we define

(4.2.12) A ⊗ ϕ : A×n −→ A×m

by (A⊗ϕ)(x1, . . . , xn) = (
∑

i ϕi
1xi, . . . ,

∑
i ϕi

mxi). More precisely, the map A⊗ϕ
is defined by the projections pi, pj of the products via the formula:

pj(A ⊗ ϕ) =
n∑

i=1

ϕi
jpi : A×n −→ A, j = 1, . . . , m.

One readily checks that A⊗ϕ is functorial, that is A⊗1 = 1 and (A⊗ϕ)(A⊗
ψ) = A⊗ (ϕψ). Moreover since pi ∈ [[A×n, A]]0 is an element in an F-vector space
we see that the map A⊗ϕ depends only on ϕ⊗ F. We point out that A⊗ϕ is an
F-linear map between F-vector space objects in T0.
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Now let a : A → B be a map in T0 which need not be F-linear. Then we
obtain the diagram in T .

A×n a×n
��

A⊗ϕ

��

Γ(ϕ)a
=⇒

B×n

B⊗ϕ

��
A×m a×m

�� B×m

Here a track Γ(ϕ)a exists since a is F-linear in the homotopy category T�. The
object A×n is a weak coproduct with inclusions iAi : A → A×n for i = 1, . . . , n and
the object B×m is a strong product with projections pB

j : B×m → B. Therefore
there is a unique track Γ(ϕ)a satisfying the equation

(4.2.13) pB
j Γ(ϕ)aiAi = Γ(ϕi

j)a : a(ϕi
j1A) ⇒ (ϕi

j1B)a

where ϕi
j is the matrix of ϕ. Here we use the track Γ(λ)a for λ ∈ G defined

by (4.2.10). We call Γ(ϕ)a the linearity track for ϕ and a. We define for x =
(x1, . . . , xn) : X → A×n the track

Γ(ϕ)x
a = Γ(ϕ)(x1, . . . , xn) : a×m(A ⊗ ϕ)x ⇒ (B ⊗ ϕ)a×nx.

For example if ϕ = ∇V : V → G is the folding map then one readily checks that

Γ(∇V )x
a = Γx1,...,xn

a

coincides with the linearity track defined in (4.2.3). Therefore Γ(ϕ)x
a is a general-

ization of the linearity tracks considered in theorem (4.2.5).

4.2.14 Lemma. Let ϕ : V = Gn → V = Gn be a permutation or let a : A → B be
an F-linear map in T0. Then Γ(ϕ)a = 0� is the trivial track.

Proof. If a is linear and λ ∈ Z, then a(λ · 1A) = (λ · 1B)a and Γ(λ)a is the trivial
track since Γn

a in (4.2.3) is the trivial track. This implies that Γ(ϕ)a is the trivial
track. If ϕ is a permutation we use an argument as in (4.2.5)(3). �

4.2.15 Theorem. Let T be a weak F-additive track extension, for example T =
[[Kstable

p ]]. Then the linearity tracks Γ(ϕ)x
a in T above satisfy:

(1) Γ(ϕ)xd
a = Γ(ϕ)x

ad.

(2) Γ(ϕ)x
ba = (Γ(ϕ)a×nx

b )�(b×mΓ(ϕ)x
a).

(3) Γ(ψϕ)x
a = ((B ⊗ ψ)Γ(ϕ)x

a)�(Γ(ψ)(A⊗ϕ)x
a ).
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(4) For H : a ⇒ a′, G : x ⇒ x′, with G = (G1 : x1 ⇒ x′
1, . . . , Gn : xn ⇒ x′

n) the
following diagram of tracks commutes.

a×m · ((1 ⊗ ϕ)x)
Γ(ϕ)x

a ��

H×m·((1⊗ϕ)G)

��

(1 ⊗ ϕ)(a×n · x)

(1⊗ϕ)(H×n·G)

��
(a′)×m · ((1 ⊗ ϕ)x′)

Γ(ϕ)x′
a′ �� (1 ⊗ ϕ)((a′)×n · x′)

Proof. Equation (1) is obvious. Moreover (2) follows from pasting of tracks in the
following diagram.

A×n a×n
��

��

Γ(ϕ)a
=⇒

B×n ��

��

Γ(ϕ)b=⇒

C×n

��
A×m �� B×m

b×m

�� C×m

The uniqueness property for Γ(ϕ)a shows that pasting yields Γ(ϕ)ba. Here we use
(4.2.5)(2) applied to Γ(λ)ba in (4.2.7).

Next we obtain (3) by pasting in the following diagram.

A×n ��

A⊗ϕ

��

Γ(ϕ)a
=⇒

B×n

��
A×m ��

��

Γ(ψ)a
=⇒

B×m

B⊗ψ

��
A×k �� B×k

Again the uniqueness property of Γ(ψϕ)a shows that the pasting of tracks in this
diagram yields Γ(ψϕ))a. More precisely, we have for the track

G = (B ⊗ ψ)Γ(ϕ)a�Γ(ψ)a(A ⊗ ϕ)
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the equation (o ≤ t ≤ k)

ptGii = pt(B ⊗ ψ)Γ(ϕ)aii�ptΓ(ψ)a(A ⊗ ϕ)ii

= (
∑

j

ψj
t pj)Γ(ϕ)aii�ptΓ(ψ)a(ϕi

11A, . . . , ϕi
m1A)

= (
∑

j

ψj
t Γ(ϕi

j)a)�(ptΓ(ψ)a(ϕi
11A × · · · × ϕi

m1A)∆m
A )

with ∆m
A = (1A, . . . , 1A) : A → A×m the m-fold diagonal. Here we have for the

projection pB
j : B×m → B,∑

j

ψj
t Γ(ϕi

j)a = (
∑

j

pB
j )(×jψ

j
t Γ(ϕi

j)a)∆m
A .

Hence we obtain G′ in [[A×m, A]], with

ptGii = G′∆m
A ,

defined by

G′ = (
∑

j

pj)(×jψ
j
t Γ(ϕi

j)a)�(ptΓ(ψ)a(ϕi
11A × · · · × ϕi

m1A)).

Here G′ is the unique homotopy satisfying

G′ij = ψj
t Γ(ϕi

j)a�ptΓ(ψ)aij(ϕi
j · 1A),

= ψj
t Γ(ϕi

j)a�Γ(ψj
t )a(ϕi

j · 1A),

= Γ(ψj
t · ϕi

j)a, see (4.2.8).

On the other hand we have for λj = ψj
t ψ

i
j ,

ptΓ(ψϕ)aii = Γ(
∑

ψj
t ϕ

i
j)a

= (
∑

j

Γ(ψj
t · ϕi

j)a)�Γλ11A,...,λm1A
a

= (
∑

j

Γ(ψj
t · ϕi

j)a)�(Γm
a ((λ1 · 1A) × · · · × (λm · 1A))∆m

A )

= G′′∆m
A

with
G′′ = ((

∑
j

pj)(×jΓ(ψj
t · ϕi

j)a))�Γm
a (λ1 · 1A × · · · × λm1A).

Here G′′ is the unique track with

G′′ij = Γ(ψj
t · ϕi

j)a�Γm
a (0 × · · · × λj1A × · · · × 0)

= Γ(ψj
t · ϕi

j)a, see (4.2.5)(5).
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Hence we see that G′ = G′′. This proves ptGii = ptΓ(ψ · ϕ)aii and hence G =
Γ(ψ · ϕ)a. Hence the proof of (3) is complete.

Finally we obtain (4) similarly as in the proof of (4.2.5)(6),(7). �
Recall that +V : V ⊕ V → V is the addition map, see (4.2.11).

4.2.16 Theorem. Let T be a weak F-additive track extension like T = [[Kstable
p ]].

Then the linearity tracks Γ(ϕ)x
a in T satisfy the following equations, ϕ : V → W ,

a : A → B.

(1) Γ(ϕ)x
a+a′ = Γ(ϕ)x

a + Γ(ϕ)x
a′ .

(2) Γ(ϕ + ϕ′)x
a = (Γ(ϕ)x

a + Γ(ϕ′)x
a)�Γ(+W )((A⊗ϕ)x,(A⊗ϕ′)x)

a .

(2)′ Γ(ϕ ⊕ ψ)(x,x′)
a = (Γ(ϕ)x

a , Γ(ψ)x′
a ).

(3) Γ(ϕ)x+x′
a = ((B⊗ϕ)Γ(+V )(x,x′)

a )op�(Γ(ϕ)x
a+Γ(ϕ)x′

a )�Γ(+W )((A⊗ϕ)x,(A⊗ϕ)x′)
a .

We point out that Γ(+V )(x,x′)
a can be expressed by

(4.2.17)
Γ(+V )(x,x′)

a = Γx,x′

a×n , see (4.2.2)

= (Γp1x,p1x′
a , . . . ,Γpnx,pnx′

a ).

Here pj is the jth projection of A×m and Γa = Γ(+G)a is defined as in (4.2.1).

Proof. We have a + a′ = +B(a, a′) : A → B×2 → B. Hence we get by (4.2.15)(2),

(4) Γ(ϕ)x
+B(a,a′) = Γ(ϕ)(a,a′)×nx

+B
�(+B)×mΓ(ϕ)x

(a,a′).

Here +B is F-linear and we can apply (4.2.14). Hence we get the proof of (1) by

(5)

Γ(ϕ)x
a+a′ = (+B)×mΓ(ϕ)x

(a,a′)

= (+B×m)(Γ(ϕ)x
a , Γ(ϕ)x

a′ )

= Γ(ϕ)x
a + Γ(ϕ)x

a′ .

Next we consider the composite

ϕ + ϕ′ = ψ(ϕ, ϕ′) : V → W ⊕ W → W

where ψ = +W . Hence we get by (4.2.15)(3) the equation

(6) Γ(ϕ + ϕ′)x
a = (B ⊗ ψ)Γ(ϕ, ϕ′)x

a�Γ(ψ)(A⊗(ϕ,ϕ′))x
a .

Here we have

(B ⊗ ψ)Γ(ϕ, ϕ′)x
a = (+B×m)(Γ(ϕ)x

a , Γ(ϕ′)x
a)

= Γ(ϕ)x
a + Γ(ϕ′)x

a.
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Finally we consider the composite

(7) x + x′ = (A ⊗ η)(x, x′) : X → A×n × A×n → A×n

where A ⊗ η = +A×n is given by η = +V . Hence we get by (4.2.15)(3),

(8)
Γ(ϕ)x+x′

a = Γ(ϕ)(A⊗η)(x,x′)
a

= ((B ⊗ ϕ)Γ(η)(x,x′)
a )op�Γ(ϕη)x,x′

a ,

Moreover ϕη = (ϕ, ϕ) = ψ(ϕ ⊕ ϕ) with ψ = +W so that by (4.2.15)

(9)
Γ(ϕη)(x,x′)

a = Γ(ψ(ϕ ⊕ ϕ))(x,x′)
a

= ((B ⊗ ψ)Γ(ϕ ⊕ ϕ)(x,x′)
a )�Γ(ψ)(A⊗(ϕ⊕ϕ))(x,x′)

a .

Here we have

(10)
(B ⊗ ψ)Γ(ϕ × ϕ)x,x′

a = (+B×m)(Γ(ϕ)x
a , Γ(ϕ)x′

a )

= Γ(ϕ)x
a + Γ(ϕ)x′

a .

This proves (3). �

4.3 The Γ-structure of the secondary Steenrod algebra

The linearity tracks Γ(ϕ)x
a in [[Kstable

p ]] yield a Γ-structure of the secondary Steen-
rod-algebra [[A]]. The Γ-structure is part of the following notion of a Γ-track alge-
bra. Let p be a prime and F = Z/p and G = Z/p2.

4.3.1 Definition. A Γ-track algebra ([[A]], Γ) is a monoid [[A]] in the category of
graded groupoids such that the groupoid [[Ak]] in degree k ∈ Z is a G-module
object in the category of groupoids. Moreover [[Ak]] = 0 is trivial for k < 0 and
[[A0]] is a discrete groupoid with 1 ∈ [[A0]] such that G � [[A0]], x �→ x · 1, is
surjective. The monoid structure yields multiplication functors

(1) [[Ak]] × [[Ar]] −→ [[Ak+r ]]

carrying (H : f ⇒ g, G : x ⇒ y) to H · G : f · x ⇒ g · y. The element 1 ∈ [[A0]] is
the unit of the associative multiplication (1), that is H · 1 = 1 · H = H .

Moreover the G-module object [[Ar ]] yields the addition functor

(2) [[Ar]] × [[Ar]] +−→ [[Ar]]

carrying (G : x ⇒ y, G′ : x′ ⇒ y′) to G + G′ : x + x′ ⇒ y + y′. Hence [[Ar]]1 and
[[Ar]]0 are G-modules, see also (2.2.6).
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Multiplication preserves zero-elements and is left linear , that is

(3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f · 0 = 0 · x = 0,

H · 0 = 0 · G = 0 = 0� : 0 ⇒ 0,

(f + f ′) · x = f · x + f ′ · x,

(H + H ′) · G = H · G + H ′ · G.

The multiplication, however, need not be right linear. But there are given linearity
tracks in [[Ak+r ]],

(4) Γx,y
f : f(x + y) =⇒ fx + fy,

for which the following diagram of tracks commutes.

(5) f(x + x′)
Γx,x′

f ��

H·(G+G′)

��

fx + fx′

H·G+H·G′

��
g(y + y′)

Γy,y′
g �� gy + gy′

The linearity tracks are part of the following Γ-structure of [[A]]. For a ∈ [[A]]0 and
a G-linear map ϕ : V = Gn → W = Gm the Γ-structure is a function (non-linear)
between graded G-modules

(6) Γ(ϕ)a : [[A]]0 ⊗ V −→ [[A]]1 ⊗ W

carrying x ∈ [[A]]0 ⊗ V to Γ(ϕ)x
a ∈ [[A]]1 ⊗ W .

Here V is concentrated in degree 0 so that x = (x1, . . . , xn) with xi ∈ [[Ak]]0
and k =| x |. For d ∈ [[A]]0 let x ·d = (x1 ·d, . . . , xn ·d) and d ·x = (d ·x1, . . . , d ·xn)
and we use similar notation for H = (H1, . . . , Hm) ∈ [[A]]1 ⊗ W . Moreover for
composable H, G ∈ [[A]]1 ⊗ W let H�G = (H1�G1, . . . , Hm�Gm).

Using this notation Γ(ϕ)x
a is a track

(7) Γ(ϕ)x
a : a · ((1 ⊗ ϕ)x) =⇒ (1 ⊗ ϕ)(a · x).

In particular we have the linearity track

(8) Γx1, . . . , xn
a = Γ(∇V )x

a

which yields the track (4) as a special case n = 2.
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The following equations hold:

(9) Γ(ϕ)x
a = 0� if ϕ is a permutation of coordinates,

(10) Γ(ϕ)xd
a = Γ(ϕ)x

a · d, d ∈ [[A]]0.

(11) Γ(ϕ)x
ba = Γ(ϕ)ax

b �b · Γ(ϕ)x
a.

(12) Γ(ψϕ)x
a = ((1 ⊗ ψ)Γ(ϕ)x

a)�Γ(ψ)(1⊗ϕ)x
a .

(13) Γ(ϕ)x
a+a′ = Γ(ϕ)x

a + Γ(ϕ)x
a′ .

(14) Γ(ϕ + ϕ′)x
a = (Γ(ϕ)x

a + Γ(ϕ′)x
a)�Γ(+W )((1⊗ϕ)x,(1⊗ϕ′)x)

a .

(15) Γ(ϕ ⊕ ψ)(x,x′)
a = (Γ(ϕ)x

a , Γ(ψ)x′
a ).

(16) Γ(ϕ)x+x′
a = ((1⊗ϕ)Γ(+V )(x,x′)

a )op�(Γ(ϕ)x
a +Γ(ϕ)x′

a )�Γ(+W )((1⊗ϕ)x,(1⊗ϕ′)x)
a .

Moreover, for H : a ⇒ a′ and G : x ⇒ x′ with G = (G1 : x1 ⇒ x′
1, . . . , Gn : xn ⇒

x′
n) the following diagram of tracks commutes.

(17) a · ((1 ⊗ ϕ)x)
Γ(ϕ)x

a ��

H·((1⊗ϕ)G)

��

(1 ⊗ ϕ)(a · x)

(1⊗ϕ)(H·G)

��
a′ · ((1 ⊗ ϕ)x′)

Γ(ϕ)x′
a′ �� (1 ⊗ ϕ)(a′ · x′)

That is, more generally than in (5), we have

(18) ((1 ⊗ ϕ)(H · G))�Γ(ϕ)x
a = Γ(ϕ)x′

a′�(H · ((1 ⊗ ϕ)G)).

This completes the definition of the Γ-track algebra ([[A]], Γ).

4.3.2 Definition. An element a ∈ [[A]]0 in a Γ-track algebra [[A]] is called linear if
for all x and ϕ we have Γ(ϕ)x

a = 0�. Moreover [[A]] is a strict Γ-track algebra if
all a ∈ [[A]]0 are linear. We shall see that a strict Γ-track algebra is a track algebra
over G or a pair algebra over G, see (5.1.5) below. We shall prove in the next
chapter that each Γ-track algebra over G can be “strictified”.

4.3.3 Remark. It is not clear how to define a Γ-track algebra by a minimal list of
properties, so that the long list of properties described in (4.3.1) can be deduced
from the minimal list. Certainly the equations in Theorem (4.2.5) should be part
of such a minimal list since one readily checks:

4.3.4 Lemma. All equations in (4.2.5) hold in a Γ-track algebra.
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Proof. (4.2.5)(5) for example is a consequence of ∇V = (+G ⊕ G)(+G) = (G ⊕
+G)(+G) for V = G3. �
4.3.5 Proposition. Let ([[A]], Γ) be a Γ-track algebra. Then A = [[A]]� is a graded
algebra over G and there is an A-bimodule D such that

D �� [[A]]1 ���� [[A]]0 �� A

is a (graded) linear track extension.

Proof. The linearity tracks show that multiplication in the homotopy category
A = [[A]]� = [[A]]/ � is bilinear. Hence A is an algebra over G with 1 ∈ A0. The
A-bimodule D with Dn = 0 for n ≤ 0 is defined by

D = kernel([[A]]01
∂−→ [[A]]0).

Here the A-bimodule structure of D is given by α ·H ·β = a ·H · b with a, b ∈ [[A]]0
representing α, β ∈ A, H ∈ D. We have for H, G ∈ [[A]]01 the equation H · G =
((∂H) · G)�(H · 0) = (H · (∂G))�(0 · G); this shows (∂H) · G = H · (∂G). Hence
we get a ·H = 0 and H · b = 0 if a, b ∈ image(∂). Therefore D is a left A-module.
In fact, D is also a right A-module since for H ∈ D we get by (4.3.1)(5)

H · (b + ∂G) = (Γb,∂G
0 )op(H · b + H · ∂G)Γb,∂G

0

= H · b.

Therefore α · H · β above is well defined. Moreover

H · (b + b′) = (Γb,b′
0 )op(H · b + H · b′)Γb,b′

0

= H · b + H · b′

so that D is a right A-module. Now we define the natural system D in (3.4.6) and
one can check the properties in (3.5.1) with a ∈ α ∈ A,

σa : Dα = D|α| ∼= Aut(a)

carrying H ∈ D|α| to H + a. �
4.3.6 Theorem. The secondary Steenrod algebra [[A]] is a Γ-track algebra. Here
[[A]]1 and [[A]]0 are graded F-vector spaces and [[A0]] = F.

Proof. According to (2.4.4) we see that [[A]] has all the structure in (4.3.1) except
linearity tracks. We choose n ≥ 1 so that for k ≥ 1.

(1) [[Ak]] = [[Zn, Zn+k]]stable,

(2) F = [[A0]] ⊂ [[Zn, Zn]]stable,

by (2.5.4). Now the linearity tracks defined for [[Kstable
p ]] in (4.2.2) yield accordingly

linearity tracks Γ for [[A]]. Uniqueness of linearity tracks shows that Γ(ϕ)x
a in [[A]]

is independent of the choice of n. �
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In addition to (4.3.2) we know that [[A]] is a linear extension, see (3.5.2),

ΣA �� [[A]]1
���� [[A]]0 �� A

which coincides with the extension of the Γ-track algebra [[A]] in (4.3.5). The
secondary cohomology [[X,−]] of a path connected pointed space X is a model
of the track theory [[Kstable

p ]], see (2.3.8). This leads to the following notion of a
Γ-track module.

4.3.7 Definition. A Γ-track module ([[M ]], Γ) over a Γ-track algebra ([[A]], Γ) is
defined as follows. The module [[M ]] is a graded object ([[Mk]], k ∈ Z) in the
category of groupoids. Moreover [[Mk]] for k ∈ Z is a G-module object in Gpd and
[[Mk]] = 0 is trivial for k ≤ 0. The monoid [[A]] acts on [[M ]] from the left; that is,
functors

(1) [[Ak]] × [[M r]] −→ [[Mk+r ]]

are given carrying (H : f ⇒ g, G : x ⇒ y) to H · G : f · x ⇒ g · y in [[M ]]. The
element 1 ∈ [[A0]] is a unit of the action with 1·G = G and (H ·H ′)·G = H ·(H ′ ·G).
The G-module object [[M r]] yields the addition functor

(2) [[M r]] × [[M r]] −→ [[M r]]

carrying (G : x ⇒ y, G′ : x′ ⇒ y′) to G + G′ : x + x′ ⇒ y + y′. Hence [[M ]]1 and
[[M ]]0 are graded G-modules, see (2.2.6).

The action preserves zero-elements and is left linear, that is, (x ∈ [[M ]]0,
G ∈ [[M ]]1, f, f ′ ∈ [[A]]0, H, H ′ ∈ [[A]]1),

(3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f · 0 = 0 · x = 0,

H · 0 = 0 · G = 0 = 0� : 0 ⇒ 0,

(f + f ′) · x = f · x + f ′ · x,

(H + H ′) · G = H · G + H ′ · G.

The action, however, need not be right linear. But there are given linearity tracks
in [[Mk+r]],

(4) Γx,y
f : f(x + y) ⇒ fx + fy.

They are part of the Γ-structure of [[M ]]. For a ∈ [[A]]0, and a G-linear map
ϕ : V = Gn → W = Gm, the Γ-structure is a function (non-linear) between
G-modules

(5) Γ(ϕ)a : [[M ]]0 ⊗ V −→ [[M ]]1 ⊗ W

carrying x ∈ [[M ]]0 ⊗ V to Γ(ϕ)x
a ∈ [[M ]]1 ⊗ W with

(6) Γ(ϕ)x
a : a · ((1 ⊗ ϕ)x) =⇒ (1 ⊗ ϕ)(a · x).



98 Chapter 4. Stable Linearity Tracks

In particular we have the linearity tracks

(7) Γx1,...,xn
a = Γ(∇V )x

a

which yield (4) for n = 2. All equations as in (4.3.1)(5),(8). . . (18) hold accordingly
in [[M ]] where we use also the Γ-structure of [[A]].

4.3.8 Definition. An element a ∈ [[A]]0 is called [[M ]]-linear if a is linear in [[A]] as in
(4.3.2) and if for all x ∈ [[M ]]0⊗V , ϕ : V → W , the track Γ(ϕ)x

a = 0� is the trivial
track. We call [[M ]] a strict Γ-track module if all a ∈ [[A]]0 are [[M ]]-linear. We shall
see that a strict Γ-track module is the same as a module over a pair algebra, see
(5.1.6) below. Moreover we show in the next chapter that each Γ-track module
can be “strictified”.

4.3.9 Theorem. Let X be a path connected pointed space. Then the secondary coho-
mology [[M ]] with [[Mk]] = [[X, Zk]], k ≥ 1 is a Γ-track module over the secondary
Steenrod algebra ([[A]], Γ) in (4.3.6). Here [[M ]]1 and [[M ]]0 are graded F-vector
spaces and [[Mk]] = 0 for k ≤ 0.

Proof. We define for x = (x1, . . . , xr) ∈ [[M ]]0 ⊗ V the linearity track Γ(ϕ)x
a =

Γ(ϕ)a(x1, . . . , xr) where we use Γ(ϕ)a in (4.2.13). �
We use Theorem (4.3.9) for a discussion of a formula of Kristensen, see 3.5

[Kr1]. Kristensen introduces the cochain operation d(α; x, y) which restricted to
cocycles corresponds to the following definition:

4.3.10 Definition. Let x, y : X → Zn be pointed maps and let α ∈ [[Ak]]0. Then
we define

d(α; x, y) ∈ [[X, Zn+k]]01
by the formula

d(α; x, y) + αx + αy = Γx,y
α = Γα(x, y),

see (4.2.2). Hence
d(α; x, y) : α(x + y) − αx − αy =⇒ 0

is a cross effect track which plays a similar role as Γx,y
α : α(x + y) ⇒ αx + αy.

In Theorem (4.2.5) we describe basic properties of Γx,y
α which can be trans-

lated to achieve the corresponding properties of d(α; x, y). The formulas, however,
are more complicated. For example the derivation formula (4.2.5)(2) corresponds
to the following result:

4.3.11 Lemma. d(βα; x, y) = d(β; αx, αy) + βd(α; x, y) + d(β, α(x + y) − αx −
αy, αx + αy).

Proof. We have:

d(βα; x, y) + βαx + βαy = Γx,y
βα

= Γαx,αy
β �βΓx,y

α

= {d(β; αx, αy) + βαx + βαy}
�β{d(α; x, y) + αx + αy}
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= {d(β; αx, αy) + βαx + βαy}
�{β · d(α; x, y) + β(αx + αy)}

�Γα(x+y)−αx−αy,αx+αy
β , see (4.2.5)(5),

= {d(β; αx, αy) + βαx + βαy}
�{β · d(α; x, y) + β(αx + αy)}
�{d(β, α(x + y) − αx − αy, αx + αy)
+ β(α(x + y) − αx − αy) + β(αx + αy)}.

Now the rules in (2.2.6) yield the result. �

Formula (4.3.11) was not obtained by Kristensen, but he has in 3.5 [Kr1] the
following formula for p = 2 and cocycles x, y,

(4.3.12)
d(βα; x, y) + d(β; αx, αy) + d(β; α(x + y), αx + αy) + βd(α; x, y)

= κ(β)(αx) + κ(β)(αy)
= κ(β)(αx + αy)

where κ is the Kristensen derivation. In order to prove (4.3.12) we have to show

d(β; α(x + y) − αx − αy, αx + αy)
= d(β; α(x + y), αx, αy) + κ(β)(αx + αy).

This follows from

d(β, ξ + u + v, u + v) = d(β; ξ, u + v) + κ(β)(u + v)

which in turn is a consequence of (see (4.2.5)(5))

(Γξ,u+v
β + β(u + v))�Γξ+u+v,u+v

β = (βξ + Γu+v,u+v
β )�Γξ,0

β .

Here we have Γu+v,u+v
β = κ(β)(u + v) by (4.5.8) below.

4.4 The cocycle of [[Kstable
p ]]

We first introduce the extended cocycle of a Γ-track algebra ([[A]], Γ). For this we
assume that [[A]]1, [[A]]0 are graded F-vector spaces and [[A0]]0 = F as in (4.3.6).

Let D be the A-bimodule given by ([[A]], Γ) as in the linear track extension
(4.3.5). Let mod0(A)op be the category of finitely generated free right A-modules
with generators in degree ≥ 1. Then we have as in (3.4.7) the natural system D̄
on mod0(A)op given by

(4.4.1) D̄α = Hom(V, W ) ⊗A−A D
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for α : V → W in mod0(A)op. More explicitly let x1, . . . , xn(V ) be a basis in V
and let y1, . . . , yn(W ) be a basis in W . Then α is given by a matrix (αi

j) in A with
α(xi) =

∑
j yj · αj

i and one gets

D̄α =
⊕
i,j

D(αi
j).

This equation is needed in the next definition:

4.4.2 Definition. We choose an F-linear section s0 of the projection π,

(1) A
s0−→ [[A]]0

π−→ A

with πs0 = 1. Moreover we choose for (β, α) ∈ Ak × Ar the track

(2) µ0(β, α) : s0(β)s0(α) ⇒ s0(βα)

in [[Ak+r ]] and we define for

Y
γ←− X

β←− W
α←− V

in mod0(A) the cocycle c(γ, β, α) depending on s0, µ0 as follows. Let αi
j , βj

k, γk
l

be the coordinates of γ, β, α respectively. Then

(3) c(γ, β, α) ∈ D̄γβα =
⊕
i,l

D(γβα)i
l

is the following element where ξj = s0(β
j
k) · s0(αi

j) for j = 1, . . . , n(W ).

c(γ, β, α)i
l =

∑
k

µ0(γk
l , (βα)i

k)

�
∑

k

s0(γk
l )
∑

j

µo(β
j
k, αi

j)

�{
∑

k

Γξ1,...,ξn(W )

s0(γk
l )

}op

�{
∑

j

(
∑

k

µo(γk
l , βj

k)s0(αi
j))}op

�{
∑

j

µo((γβ)j
l , α

i
j)}op.

In this formula we only use s0 and µ0 above and the Γ-structure of the Γ-track
algebra [[A]]. We call c(γ, β, α) the extended cocycle of [[A]]. One can check that c
represents a well-defined class 〈c〉 ∈ H3(mod0(A), D̄).
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We have seen in (2.5.2) that the Steenrod algebra A determines the category
Kstable

p of stable homotopy classes of maps between products of Eilenberg-MacLane
spaces, in fact,

Kstable
p = mod0(A)op

We now describe the secondary analogue of this classical result:

4.4.3 Theorem. The secondary Steenrod algebra [[A]] together with its Γ-structure
determines the linear track extension [[Kstable

p ]] up to weak equivalence. More pre-
cisely the extended cocycle c of ([[A]], Γ) defined above represents the characteristic
cohomology class kstable

p = 〈[[Kstable
p ]]〉 in

H3(Kstable
p , Hom(L−1,−)) = H3(mod0(A)op, ΣA).

kstable
p �→ 〈c〉

Here the A-bimodule D = ΣA yields the natural system D̄ = ΣA as in (4.4.1).

The following result corresponds to (4.4.3). Recall that we have the linear
track extension

RH∗(X) �� [[X, Kstable
p ]]1

���� [[X, Kstable
p ]]0 �� [X, Kstable

p ]

in (3.8.7).

4.4.4 Theorem. The secondary cohomology ([[X,−]], Γ) as a Γ-track module over
([[A]], Γ), determines the linear extension [[X, Kstable

p ]] up to weak equivalence over
[X, Kstable

p ] and under RH∗(X).

The proof uses a similar computation as in the proof of (4.4.3); here we also
use (2.2.10). This yields an extended cocycle for [[X,A]].

4.4.5 Corollary. Stable secondary cohomology operations on H∗(X) are completely
determined by the secondary cohomology ([[X,−]], Γ) considered as a Γ-track mod-
ule over the secondary Steenrod algebra ([[A]], Γ).

In particular, examples of Adams in (2.3.7) yield θi,j determined by the track
module ([[X,−]], Γ) over ([[A]], Γ).

Proof of (4.4.3). We show that a cocycle (as in (3.6.7)) for the linear extension

(1) Hom(L−1,−) �� [[Kstable
p ]]1

���� [[Kstable
p ]]0 �� Kstable

p

can be expressed completely in terms of [[A]].
We first choose an F-homomorphism s0

(2) Ak s0−→ [[Ak]]0
π−→ Ak
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which splits the projection π carrying a to the homotopy class α of a. Moreover
we choose for (β, α) ∈ Ak ×Ar a track

(3) µ0(β, α) : s0(β)s0(α) ⇒ s0(βα) in [[Ak+r ]].

Now we consider a morphism

α : A = Za1 × · · · × Zan(A) −→ Zb1 × · · · × Zbn(B) = B

in the F-additive category Kstable
p . Then α is given by a matrix

(4) α = (αi
j ∈ Abj−ai)

with i = 1, . . . , n(A) and j = 1, . . . , n(B).
Here we use the equation [Zn, Zn+k]stable = Ak for k ∈ Z. We now define the

section
s : [A, B]stable −→ [[A, B]]stable

0

by setting

(5) pB
j s(α) =

n(A)∑
i=1

s0(αi
j)p

A
i .

Here we use the projections pB
j , pA

i of the strong products A and B above. For
objects D, C, B, A we have the indices l, k, j, resp. i with

1 ≤ l ≤ n(D) ,

1 ≤ k ≤ n(C) ,

1 ≤ j ≤ n(B) ,

1 ≤ i ≤ n(C) .

Now consider a composite

(6) C
β←− B

α←− A

in Kstable
p with α given by (αi

j) and β given by (βj
k) accordingly so that sα and sβ

are defined with

(7) (βα)i
k =

n(B)∑
j=1

βj
kαi

j .

Here βj
kαi

j is the product in A. We now define a track

(8) µ(α, β) : (sβ)(sα) ⇒ s(βα)
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in [[Kstable
p ]] in terms of µ0 in (3) and the linearity structure Γ on [[Kstable

p ]] in
(4.2.5). For each index k we have the projection pC

k of the product C. Since C is
a strong product it suffices to define pC

k µ(β, α) so that we have

(9) pC
k µ(β, α) : pC

k (sβ)(sα) ⇒ pC
k s(βα)

with

(10)

pC
k (sβ)(sα) = (

∑
j s0(β

j
k)pB

j )sα

=
∑

j(s0(β
j
k)pB

j (sα))

=
∑

j s0(β
j
k)(
∑

i s0(αi
j)p

A
i )

= R1,

(11)

pC
k s(βα) =

∑
i s0((βα)i

k)pA
i

=
∑

i s0(
∑

j βj
kαi

j)p
A
i

=
∑

i(
∑

j s0(β
j
kαi

j))p
A
i

µk
0(β,α)⇐=

∑
i(
∑

j s0(β
j
k)s0(αi

j))p
A
i

= R2.

Here the track µk
0(β, α) is defined by µ0 in (3), that is

(12) µk
0(β, α) =

∑
i

(
∑

j

µ0(β
j
k, αi

j))p
A
i .

Since pA
i is a linear map between F-vector space objects in [[Kstable

p ]]0 we see that

(13)
R2 =

∑
i

∑
j(s0(β

j
k)s0(αi

j)p
A
i )

=
∑

j

∑
i(s0(β

j
k)s0(αi

j)p
A
i ).

Here we have the linearity track in [[Kstable
p ]],

(14) Γj
k(β, α) = Γ

s0(α
1
j )pA

1 ,...,s0(α
n(A)
j )pA

n(A)

s0(β
j
k
)

with
Γj

k(β, α) : s0(β
j
k)(
∑

i

s0(αi
j)p

A
i ) ⇒

∑
i

s0(β
j
k)s0(αi

j)p
A
i .

Hence we get

(15) ΓA
k (β, α) =

∑
j

Γj
k(β, α) : R1 =⇒ R2
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and

(16) pC
k µ(β, α) = µk

0(β, α)�ΓA
k (β, α)

defines µ(β, α) in (9). Next we consider the composite

(17) D
γ←− C

β←− B
α←− A.

Using µ(β, α) above the cocycle c(γ, β, α) is defined as in (3.6.7). In order to
compute this cocycle we use the projection pD

l : D → Zdl and the inclusion
iAi : Zai → A which are linear in Top∗. We have to compute the composite

(18) ci
l = pD

l c(γ, β, α)iAi ∈ Adl−1−ai .

We obtain ci
l by the following composite of tracks.

(19) pD
l s(γβα)iAi

pD
l µ(γβ,α)opiA

i

��
(20) pD

l s(γβ)s(α)iAi

pD
l µ(γ,β)ops(α)iA

i

��
(21) pD

l s(γ)s(β)s(α)iAi

pD
l s(γ)µ(β,α)iA

i

��
(22) pD

l s(γ)s(βα)iAi

pD
l µ(γ,βα)iA

i

��
pD

l s(γβα)iAi

Here each track µ is given by a composite of tracks as in (15). We describe the
tracks in (19),. . . ,(21) more explicitly as follows. First we get (19) = ((23)�(24))op

as follows where (24) = 0� so that (19) = (23)op.

(23) µl
0(γβ, α)iAi =

∑
j

µ0((γβ)j
l , α

i
j),



4.4. The cocycle of [[Kstable
p ]] 105

(24)

ΓA
l (γβ, α)iAi =

∑
j Γj

l (γβ, α)iAi [2mm]

=
∑

j Γ
0,...,s0(α

i
j),...,0

s0(γβ)j
l

= 0�.

Here we use pA
i1

iAi = 1 if i1 = i and = 0 if i1 �= 0. Next we see that (20) =
((25)�(26))op with

(25)

µl
0(γ, β)s(α)iAi = (

∑
j(
∑

k µ0(γk
l , βj

k))pB
j )s(α)iAi

= (
∑

j(
∑

k µ0(γk
l , βj

k))pB
j s(α)iAi )

= (
∑

j(
∑

k µ0(γk
l , βj

k)s0(αi
j)),

(26)
ΓB

l (γ, β)s(α)iAi =
∑

k Γk
l (γ, β)s(α)iAi

=
∑

k Γ
s0(β1

k)s0(α
i
1),...,s0(β

n(B)
k )s0(αi

n(B))

s0(γk
l )

.

Next we obtain (21) = (27)�(28) as follows. Here we have (28) = 0� so that
(21) = (27),

(27)

pD
l s(γ)(µk

0(β, α)iAi )k=1,...,n(C)

= (
∑n(C)

k s0(γk
l )pC

k )(
∑

j µ0(β
j
k, αi

j))k=1,...,n(C)

=
∑n(C)

k s0(γk
l )
∑

j µo(β
j
k, αi

j),

(28)

pD
l s(γ)(ΓA

k (β, α)iAi )k=1,...,n(C)

= (
∑n(C)

k=1 s0(γk
l )pC

k )(
∑

j Γj
k(β, α)iAi )k=1,...,n(C)

=
∑n(C)

k=1 s0(γk
l )(
∑

j Γj
k(β, α)iAi )

=
∑n(C)

k=1 s0(γk
l )(
∑

j Γ
0,...,s0(αi

j),...,0

s0(βj
k)

)

= 0�.

Finally we get (22) = (29)�(30) as follows. Here we have (30) = 0� so that
(22) = (29),

(29) µ0(γ, βα)iAi =
∑

k

µ0(γk
l , (βα)i

k),

(30)

ΓA
l (γ, βα)iAi =

∑
k Γk

l (γ, βα)iAi

=
∑

k Γ0,...,s0(βα)i
k,...,0

s0(γk
l )

= 0�.
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Hence we see that ci
l in (18) is given by

(22)�(21)�(20)�(19) = (29)�(27)�(26)op�(25)op�(23)op

where the right-hand side is well defined only by µ0 above and the linearity tracks
Γ in [[A]]. This completes the proof of (4.4.3). �

4.5 The Kristensen derivation

Let A be a (connected) graded algebra over F = Z/p and let D be an A-bimodule.
A linear derivation κ of degree r from A to D is an F-linear map

(4.5.1) κ : An −→ Dn+r, n ∈ Z,

with κ(α · β) = (κα)β + (−1)rα(κβ).
Now let ([[A]], Γ) be a Γ-track algebra for which [[A]]1 and [[A]]0 are graded

F-vector spaces as in the case of the secondary Steenrod algebra [[A]]. We have the
linear track extension

(4.5.2) D �� [[A]]1 ���� [[A]]0 �� A

as in (4.3.5). In particular the secondary Steenrod algebra is such an extension
with D = ΣA. The linearity tracks Γx,y

a in [[A]] define as in (4.2.3) the track

Γx1,...,xn
a : a(x1 + · · · + xn) =⇒ ax1 + · · · + axn

If x1 = · · · = xn = 1 ∈ F = [[A]]0 we thus get as in (4.2.7),

(4.5.3) Γ(n)a = Γ1,...,1
a : a(n · 1) =⇒ n · a.

Hence if p divides n we have n ·1 = 0 and n ·a = 0 so that Γ(n)a : 0 ⇒ 0 represents
an element in D by the linear extension (4.5.2). Here we use the assumption that
[[A]]0 is a graded F-vector space.

4.5.4 Definition. Let ([[A]], Γ) be a Γ-track algebra as above. Then for p\n a linear
derivation of degree 0,

Γ[n] : A −→ D,

is defined as follows. We choose for α ∈ Ar, r ≥ 1 an element a ∈ [[Ar]]0 represent-
ing α and we define

Γ[n]α = Γ(n)a

by the linearity track (4.5.3).

4.5.5 Lemma. The derivation Γ[n] is well defined for p\n.
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Proof. If H : a ⇒ a′ is a track, then by (4.2.5)(6) we see that

a(n · 1)
Γ(n)a ��

H(n·1)

��

n · a

n·H

��
a′(n · 1)

Γ(n)a′ �� n · a′

commutes. Here for p\n we have H(n · 1) = 0� : 0 ⇒ 0 and n · H = 0� : 0 ⇒ 0.
Hence we get Γ(n)a = Γ(n)a′ . Moreover (4.2.5)(4) shows that Γ[n] is F-linear and
(4.2.5)(2) yields the derivation property above. �

The following proposition shows that only Γ[n] for n = p is of interest.

4.5.6 Proposition. Γ[k · p] = k · Γ[p].

Compare (4.2.8).
As a crucial example we get the following result.

4.5.7 Proposition. The secondary Steenrod algebra ([[A]], Γ) is a Γ-track algebra
which yields the derivation of the Steenrod algebra

Γ[p] : A −→ ΣA

of degree 0. This is the same as a derivation Γ[p] : A → A of degree −1.

For p = 2 one has the Kristensen derivation [Kr1] of degree −1,

κ : A −→ A

which carries Sqn to Sqn−1, n ≥ 1, and Sq0 to 0. Using a result of [Kr1] we show:

4.5.8 Theorem. For p = 2 the derivation Γ[p] : A → A in (4.5.7) coincides with
the Kristensen derivation κ.

Proof. Here we use the connection between algebraic cocycles (used by Kristensen)
and topological cocycles (used in this book) discussed in the Appendix of 2.1. We
leave the straightforward details to the reader. Recall definition (4.3.10). Kris-
tensen [Kr1] proves

d(α, x, x) = κ(α)(x).

Now it is clear that for p = 2 we have

Γ[p](α) = d(α, x, x). �
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Next we obtain the computation of Γ[p] for p odd as follows.

4.5.9 Theorem. For p odd the derivation Γ[p] : A → A in (4.5.7) is the unique
derivation which satisfies Γ[p]β = 1 for the Bockstein operation β ∈ A and
Γ[p]P i = 0 for the reduced powers P i, i ≥ 0.

We prove this result in the Appendix of this section.

We generalize the definition of the derivation (4.5.4) as follows.

4.5.10 Definition. Let T be a weak F-additive track extension as in (4.1.3), for
example T = [[Kstable

p ]]. Hence for α : A → B in T0 the track Γ(p)α : 0 ⇒ 0 is
defined as in (4.2.7). We define the homomorphism

Γ[p] : [A, B] −→ D(A, B)

as follows. Let α ∈ [A, B] and let a : A → B be a map in T0 which represents the
homotopy class α. Then we set

Γ[p]α = σ−1(Γ(p)a : 0 ⇒ 0)

where σ : D(A, B) ∼= Aut(0 : A → B) is given by the linear extension T , see
(3.5.1).

4.5.11 Proposition. Γ[p] in (4.5.10) is a well-defined F-linear map satisfying

Γ[p]βα = α∗(Γ[p]β) + β∗(Γ[p]α).

This is the derivation property of Γ[p].

This is a consequence of (4.2.15).

The track theory [[Kstable
p ]] is a weak F-additive track extension which by

(4.5.10) yields the F-linear map

(4.5.12) Γ[p] : [A, B]stable −→ [L−1A, B]stable

for products of Eilenberg-MacLane spaces A and B. In fact Γ[p] is totally deter-
mined by Γ[p] in (4.5.7) as follows. Let

A = Za1 × · · · × Zan(A) , B = Zb1 × · · · × Zbn(B)

and let ni,j = bj − ai. Then we get the commutative diagram

(4.5.13) [A, B]stable
Γ[p] �� [L−1A, B]stable

⊕
i,j Ani,j

⊕
i,j Γ[p]

��
⊕

i,j Ani,j−1

which follows easily from the additivity rule (4.2.5)(4). Hence (4.5.8) shows that for
p = 2 the derivation Γ[p] in (4.5.12) is determined by the Kristensen derivation κ.



4.5. The Kristensen derivation 109

Appendix to Section 4.5: Computation of Γ[p] for p odd

We first show

4.5.14 Proposition. Γ[p]U = 0 for U : Zq → Zpq in Top∗.

Proof. In this proof we use notation as in section (8.2) and (9.3) below. We consider
the track Γ̃ in the diagram (r = q − k, Zr = Zr

F
)

(1) Zr ∆ �� (Zr)p Up
��

+

��

Γ̃
=⇒

(Zpr)p

+

��
Zr U �� Zpr

where Γ̃ is a track under Zr ∨ · · · ∨ Zr ⊂ (Zr)p. The track Γ̃ satisfies

(2) Γ[p]Pi = ∆∗Γ̃ : 0 =⇒ 0

where ∆ is the p-fold diagonal. According to the formula

(3) U(x + y) = NŪ(x, y) + U(x) + U(y)

in Section (8.2) below we get

(4) U(x1 + · · · + xp) = N(
p−1∑
i=1

Ū(x1 + · · · + xi, xi+1)) + U(x1) + · · · + U(xp).

Hence the track Γ : N ⇒ 0 in Section (8.2) below yields the track Γ̃ in (7), that is

(5) Γ̃(x1, . . . , xp) = Γ(
p−1∑
i=1

Ū(x1 + · · · + xi, xi+1)) + U(x1) + · · · + U(xp).

Hence we get

(6) (∆∗Γ̃)(x) = Γ̃(x, . . . , x) = Γ(
p−1∑
i=1

Ū(ix, x)) + pUx

where pUx = 0. Here we have Ū(ix, x) = ᾱ(i, 1)Ū(x, x) with ᾱ in Section (9.3)
below. Moreover Γ(a + b) = Γa + Γb so that

(7)
(∆∗Γ̃)(x) = (

∑p−1
i=1 ᾱ(i, 1))ΓŪ(x, x)

= −ΓŪ(x, x).
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According to the definition of Ū we have

(8) Ū(x, x) =
∑
b∈B

b(x, x) =
∑
b∈B

xp =
∑
b∈B

U(x).

Hence the proposition Γ[p]Pi = 0� follows from

(9) ΓU(x) = 0�.

Since ΓU(x) =
∑

α∈π ΓαU(x) by definition of Γ we study the function

(10) χ : Z/p = π −→ Aut(U(y)) = [X, Zpq−1]

which carries α to ΓαU(y). We get

(11)
ΓαβU(y) = ΓβU(y)�Γα(βUy)

= ΓβUy�Γα(Uy)

since βUy = Uy for β ∈ π. Hence χ is a homomorphism. This shows that

(12)

ΓU(x) =
∑

α∈π ΓαU(y)

=
∑

α∈π χ(α)

=
∑p−1

r=1 r = χ(1)

= p(p−1)
2 χ(1)

= 0

since p is odd and pχ(1) = 0. �
4.5.15 Proposition. Γ[p]P i = 0 for i ≥ 1.

Proof. In Section (10.8) we show that there is a stable map sP i in [[Zq, Zpq]]stable

such that U : Zq → Zpq in Top∗ coincides with (sP i)0, q even. Therefore the
forgetful map

φ : [Zq, Zpq−1]stable −→ [Zq, Zpq−1]

carries Γ[p]P i to Γ[p]U . By the result in (1.1.13) we see that φ is injective. Therefore
the result follows from (4.5.14). �
4.5.16 Proposition. Γ[p]β = 1.

Proof. The inclusion F = Z/p → G = Z/p2 induces the map

(1) i : Zn
F −→ Zn

G

between Eilenberg-MacLane spaces defined for R = F and R = G respectively, see
Section (2.1). Moreover the addition maps +F : Fp → F and +G : Gp → G yield
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the following commutative diagram where Xp = X×· · ·×X is the p-fold product.

(2) (Zn
F
)p ip

��

+

��

(Zn
G
)p

+

��
Zn

F

i �� Zn
G

Now we apply the natural fiber sequence to the map ip and to i and we get the
following commutative diagram.

(3) (F )p βp

��

+

��

(Zn
F
)p

+

��
F

β �� Zn
F

Here F � ΩZn
F
� Zn−1

F
is given by the fiber sequence

(4) F −→ Zn
F −→ Zn

G −→ Zn
F .

It is well known that the boundary map Zn−1
F

� F
β−→ Zn

F
represents the Bock-

stein map, see (2.1.9). In order to compute Γ[p]β we have to be careful with respect
to the homotopy equivalence

(5) Zn−1
F

∼
rn−1

�� ΩZn
F

∼
π̄

�� F

defined in (2.1.9). Here rn−1 is F-linear but π̄ is not F-linear. Therefore Γ[p]β is
represented by the following diagram, Zn = Zn

F
.

(6) Zn−1
rn−1 �� ΩZn ∆ ��

0   ��
���

���
��

0

!!

(ΩZn)p

+

��

π̄p
��

H
=⇒

F p

+

��
ΩZn

π̄
�� F

∂ �� Zn

Here the track H is unique by (3.2.5). The composite +(π̄p)∆ satisfies

(+(π̄p)∆)(x) = p · x
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so that ∂(p · x) = 0 since Zn is a F-vector space. The space F , however, is a
G-module so that p ·x ∈ F need not be trivial. We now observe that π : F → ΩZn

yields the track

(7) πH : 0� : 0 =⇒ 0

which is the identity track of 0. In fact by (3.2.5) the track (7) is unique. Moreover
by (3.2.5) there is a unique track U in the following diagram.

(8) F
π ��

1

��ΩZn π̄ �� F
U
��

Now pasting of H and U yields

(9) U ∗ H = UH1�U0H = U1H�UH0

with U1H = π̄πH = π̄0� = 0� and U0H = H . Hence we get H = (UH1)op�UH0

with H0∆ = 0. Therefore we get

(10)

Γ[p]β = ∂H∆rn−1

= ∂UopH1∆rn−1

= ∂Uop(·p)π̄rn−1.

Here the map ·p : F → F (carrying y to y · p ∈ F ) admits a factorization

(11) F
·p ��

π ∼
��

F

ΩZn
Ω(i)

�� ΩZn
G

j

��

where j is the inclusion. In fact, by (2.1.3)(3) we have for (x, σ) ∈ F the equation
p(x, σ) = (px, pσ) = (0, pσ) = (0, iπσ) so that pσ is a loop. The inclusion j
satisfies ∂j = 0 and πj = Ω(π : Zn

G
→ Zn) so that πj(Ωi) = 0. Therefore we get a

well-defined track

(12) V = ∂UopjΩ(i) : 0 =⇒ 0

representing an element in [ΩZn, ΩZn] such that

(13) Γ[p]β = V ππ̄rn−1 = V rn−1.

The following lemma shows that V is the identity of ΩZn in [ΩZn, ΩZn] so that
Γ[p]β = rn−1 represents 1. For n ≥ 1 we see that Γ[p]β defined by the stable map
β in [[A]] coincides with Γ[p]β above. �
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Let π : E → B be a fibration in Top∗ with fiber A. Consider the fiber
sequence

(4.5.17) ΩA
Ωπ �� ΩE

j ��

Ωπ ��





 F
∂ ��

π∼
��

A
i �� E

π �� B

ΩB

with F = {(x, σ) ∈ A × (E, ∗)(I,0), ix = σ(1)} and π(x, σ) = πσ ∈ Ω(B). Since π
is a homotopy equivalence we can choose a track Ū as in the diagram

ΩA
Ωi �� ΩE

j �� F
π ��

1

��ΩB
π̄ �� F

Ū

��
∂ �� A

where π̄ is a homotopy inverse of π. Since ∂j = 0 and πjΩ(i) = Ω(π)Ω(i) =
Ω(πi) = 0 this diagram represents a track 0 ⇒ 0 in [[ΩA, A]] and hence an element
in [ΩA, ΩA].

4.5.18 Lemma. There exists a track Ū such that the track ∂ŪjΩ(π) in the diagram
above represents the identity element in [ΩA, ΩA].

Proof. The proof of the lemma is not so obvious though the lemma holds in any
fibration category with zero object ∗, see [BAH]. Therefore it suffices to prove the
dual lemma in a cofibration category with zero object ∗. We may assume that
all objects are fibrant and cofibrant. We consider for a cofibration π the following
diagram.

(1) ΣA ΣE�� F�� A
∂�� E

i�� B
π��

F̄ CE ∪B CB ∼ �� (CE)/B E/B

ΣB

∼π

��

E ∪B CB
∂̄

��

∼
��

We replace the cofiber A = E/B by E∪BCB. The map ∂̄ is given by the composite

∂̄ : E ∪B CB
q−→ CB/B = ΣB

−1−→ ΣB

where q is the quotient map. We replace F by F̄ in the diagram. We have to show
that there exists a homotopy

(2)

H : I(F̄ ) −→ (CE)/B,

H0 : F̄ = CE ∪B CB
q−→ (CE)/B,

H1 : F̄ = CE ∪B CB
q−→ ΣB

−1−→ ΣB,
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where q denotes the quotient maps. The cylinder of F̄ satisfies

(3) I(F̄ ) = I(CB) ∪IB I(CE)

and we define H ′
0 = H0 | I(CE) by the composite

(4) H ′
0 : ICE

q �� CCE
ϕ ��

∪

CE �� (CE)/B

CE ∪E CE

(1,1)

""����������

where the extension ϕ of (1, 1) exists since CE is contractible. The restriction
H ′

0 | IB admits a factorization

IB −→ ΣB
π−→ (CE)/B.

We now define H ′′
0 = H0 | ICB by an extension in the following diagram.

(5) ICB
H′′

0 �� (CE)/B

i0CB ∪ IB ∪ i1CB

��

(0,q,q)
�� ΣB ∨ ΣB

(π,−π)

��

The extension H ′′
0 exists since the obstruction π + (−π) = 0 vanishes. Now one

can check that H = H ′′
0 ∪ H ′

0 is a well-defined homotopy as above. Moreover the
following diagram commutes where q are quotient maps and r is the inclusion.

(6) I(CB ∪B E)
q ��

r

��

Σ(E/B)

Σ(E)

Σ(i)
�����������

I(CB ∪B CE)
H

�� (CE)/B

q

�����������

This proves (4.5.18). �

4.6 Obstruction to linearity of cocycles

In this section we show that the Kristensen derivation is actually an obstruction to
the F-linearity of cocycles representing the characteristic class of [[Kstable

p ]]. For this
we introduce the following natural map between cohomology groups of categories.
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4.6.1 Definition. Let F = Z/p. Let A be an F-additive category and let D be an
F-additive A-bimodule. Then we define the linear map

Γp : H3(A, D) −→ H1(A, D)

as follows. Let 〈c〉 ∈ H3(A, D) be represented by the cocycle c. We may assume
that the cocycle c is normalized with respect to 0-maps, sums and products. For
this compare the Appendix of Baues-Tonks [BT]. Then Γp(〈c〉) is represented by
the 1-cocycle

dc : A −→ D

which carries α : A → B to dc(α) ∈ D(A, B) given by the following formula. Let

Ap : A −→ A×p = A × · · · × A

be the p-fold diagonal in A and let

Ap : A×p −→ A

be the p-fold codiagonal in A. We have ApA
p = 0 since multiplication by p is

trivial. We now set

dc(α) = c(α, Ap, A
p) − c(Bp, α

×p, Ap) + c(Bp, B
p, α).

4.6.2 Proposition. The linear map Γp in (4.6.1) is well defined.

Proof. We first check that dc is a cocycle, that is, δdc = 0, or

0 = (δdc)(β, α) = βdc
p(α) − dc

p(βα) + dc
p(β)α

for E
β←− B

α←− A in A. We know that δc = 0 since c is a cocycle. Hence we have
the following formulas:

0 = (δc)(β, α, Ap, Ap)
= βc(α, Ap, Ap) − c(βα, Ap, Ap) + c(β, αAp, Ap)

−c(β, α, 0) + c(β, α, Ap)Ap.

0 = (δc)(β, Bp, α×p, Ap)
= βc(Bp, α

×p, Ap) − c(βBp, α
×p, Ap) + c(β, Bpα

×p, Ap)
−c(β, Bp, α

×pAp) + c(β, Bp, α
×p)Ap.

0 = (δc)(β, Bp, Bp, α)
= βc(Bp, B

p, α) − c(βBp, B
p, α) + c(β, 0, α)

−c(β, Bp, B
pα) + c(β, Bp, B

p)α.

0 = (δc)(Ep, β×p, Bp, α)
= Epc(β×p, Bp, α) − c(Epβ

×p, Bp, α) + c(Ep, β
×pBp, α)

−c(Ep, β
×p, Bpα) + c(Ep, β

×p, Bp)α.
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Since c is normalized with respect to zero maps, sums and products the under-
lined terms vanish. We write dc(α) = ξ(α) + η(α) where ξ(α) = c(α, Ap, A

p) −
c(Bp, α

×p, Ap) and η(α) = c(Bp, B
p, α). By definition of ξ we have

(δξ)(β, α) = −c(βα, Ap, A
p) + c(Ep, (βα)×p, Ap)

+βc(α, Ap, A
p) + c(β, Bp, A

p)α

−βc(Bp, α
×p, Ap) − c(Ep, β

×p, Bp)α.

Hence the equations above show that (δξ)(β, α) is the sum

− c(βα, Ap, A
p) + c(Ep, (βα)×p, Ap) + c(βα, Ap, A

p)
− c(β, αAp, A

p) − βc(Bp, B
p, α) + c(βBp, B

p, α)
+ c(β, Bp, B

pα) − c(βBp, α
×p, Ap) + c(β, Bpα

×p, Ap)
− c(β, Bp, α

×pAp) − c(Epβ
×p, Bp, α) + c(Ep, β

×pBp, α)
− c(Ep, β

×p, Bpα).

Here we have α×pAp = Bpα, β×pBp = Epβ, αAp = Bpα
×p and βBp = Epβ

×p so
that δ(ξ)(β, α) is the sum

δ(ξ)(β, α) = c(Ep, (βα)×p, Ap) − c(βBp, α
×p, Ap) − c(Ep, β

×p, Bpα)
−βc(Bp, B

p, α) + c(Ep, E
pβ, α).

On the other hand we have

0 = (δc)(Ep, Ep, β, α)
= Epc(Ep, β, α) − c(0, β, α) + c(Ep, E

pβ, α)

−c(Ep, E
p, βα) + c(Ep, E

p, β)α

0 = (δc)(Ep, β×p, α×p, Ap)
= Epc(β×p, α×p, Ap) − c(Epβ

×p, α×p, Ap) + c(Ep, (βα)×p, Ap)

−c(Ep, β
×p, α×pAp) + c(Ep, β

×p, α×p)Ap.

Therefore we get

(δξ)(β, α) = −βc(Bp, B
p, α) + c(Ep, E

pβ, α)
= −βc(Bp, B

p, α) + c(Ep, E
p, β, α) − c(Ep, E

p, β)α
= −(δη)(β, α)

where η is defined above. Hence we see δ(dc) = δξ + δη = 0. This completes the
proof that dc is a cocycle.

Next let c = δf be a coboundary where f is a normalized cochain. Then we
have

c(α, β, γ) = (δf)(α, β, γ) = αf(β, γ) − f(αβ, γ) + f(α, βγ) − f(α, β)γ.
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Hence the definition of dc yields

dc(α) = αf(Ap, A
p) − Bpf(α×p, Ap) + Bpf(Bp, α)

−(f(αAp, A
p) − f(Bpα

×p, Ap) + f(0, α))

+(f(α, 0) − f(Bp, α
×pAp) + f(Bp, B

pα))

−(f(α, Ap)Ap − f(Bp, α
×p)Ap + f(Bp, B

p)α).

This shows that
dc(α) = αf(Ap, A

p) − f(Bp, B
p)α

and hence dc is a coboundary. This completes the proof that Γp is well defined. �
4.6.3 Proposition. The composition

HH3(A, D) −→ H3(A, D)
Γp−→ H1(A, D)

is trivial. Here we use the natural map (3.6.6)(4).

Proof. Assume that c is normalized and multilinear. We have inclusions iAr : A →
A×p and projections pA

r : A×p → A for 1 ≤ r ≤ p and the equations

Ap =
∑

r

pA
r , Ap =

∑
r

iAr ,

α×p =
∑

r

iBr αpA
r

hold. Hence multilinearity of c shows

dc(α) =
∑
t,s

c(α, pA
t , iAs ) +

∑
r,t

c(pB
r , iBt , α)

−
∑
r,s,t

c(pB
r , iBt αpA

t , iAs ).

Since c is normalized we see that

c(α, pA
t , iAs ) =

{
0 for t �= s
c(α, 1A, 1A) for t = s,

c(pB
r , iBt , α) =

{
0 for t �= r
c(1B, 1B, α) for t = r,

c(pB
r , iBt , αpA

t , iAs ) =
{

c(1A, α, 1A) for r = t = s
0 otherwise.

Since multiplication by p is trivial we hence get dc(α) = 0. �
Proposition (4.6.3) shows that Γp is an obstruction to the linearity of cocycles,

that is: Let x ∈ H3(A, D) and let Γp(x) �= 0. Then x is not in the image of
HH3(A, D) and hence x cannot be represented by a trilinear cocycle. We apply
this in Theorem (4.6.5) below.
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4.6.4 Proposition. Let T be a weak F-additive track extension as in (4.1.3), for
example T = [[Kstable

p ]]. Then the characteristic class 〈T 〉 yields the element

Γp(〈T 〉) ∈ H1(K, D)

which is represented by the derivation Γ[p] in (4.5.10), that is Γ[p] ∈ Γp(〈T 〉).
Proof. We have to compare the definitions of Γp and Γ[p] and we have to use
the definition of the characteristic class 〈T 〉. In fact, the comparison gave us the
intuition to define the operator Γp by the somewhat obscure formula for dc(α) in
(4.6.1). We choose first a cocycle c representing 〈T 〉 as follows, see (3.6.7). Let
s : K(A, B) → T0(A, B) be compatible with products and with the F-vector space
structures of A, B in K and T0 respectively. This implies that c(Bp, B

p, α) repre-
sented by the track diagram (3.6.7) is trivial, since all tracks in this track diagram
are trivial tracks. Moreover we see that the sum c(α, Ap, A

p) − c(Bp, α
×p, Ap) is

represented by the tracks in the following diagram.

A

�
��

��
��

�

##

0

��

0

��

0

$$

A×p α×p
��

�� �
��

��
��

��
��

��
��

��

���������

���������

��
��

��
��

��
��

��
��

B×p

��

��������

��������

"
��������

��������

A α
��

"
��������

��������

��
��
��
��
�

��
��
��
��
� B

Here = denotes trivial tracks. This proves Γ[p] ∈ Γp(〈T 〉). �

4.6.5 Theorem. For the characteristic class kstable
p of [[Kstable

p ]] the element

Γp(kstable
p ) ∈ H1(Kstable

p , Hom(L−1,−))

is represented by the Kristensen derivation Γ[p] and hence Γp(kstable
p ) �= 0, see

(4.5.13). This shows that kstable
p cannot be represented by a linear cocycle, p = 2.

This is a consequence of (4.6.4) and (4.6.3).



Chapter 5

The Algebra of Secondary
Cohomology Operations

In this chapter we show that the secondary Steenrod algebra which is a Γ-track
algebra ([[A]], Γ) can be canonically “strictified”. This yields a new secondary alge-
bra B in which multiplication is bilinear. The secondary algebra B is well defined
up to isomorphism; so that B is the true algebra of (stable) secondary cohomology
operations generalizing the Steenrod algebra A.

5.1 Track algebras, pair algebras and crossed algebras

Let R be a ring and let Mod(R) be the category of (left) R-modules and R-linear
maps.

An R-module object in the category of groupoids Grd is an abelian group
object in Grd together with a left action of R. Let pair(Mod(R)) be the category
of pairs in Mod(R), then we obtain as in (2.2.6):

5.1.1 Proposition. The category of R-module objects in Grd and R-linear maps is
isomorphic to the category pair(Mod(R)).

Let M be an R-module object in Grd with ∂0, ∂1 : M1 → M0 given by source
and target. Then we define the pair

(1) ∂0
0 : M0

1 → M0 in pair(Mod(R))

where M0
1 = {H : a ⇒ 0 ∈ M1} = kernel(∂1) and ∂0

0(H : a ⇒ 0) = a. That is ∂0
0

is the restriction of ∂0. Conversely let

(2) ∂ : M0
1 −→ M0

be an object in pair(Mod(R)). Then we define M1 = M0
1 ⊕ M0 and for H ∈ M0

1 ,
x ∈ M0 we write H + x = (H, x) ∈ M1. Then ∂0(H + x) = ∂(H) + x and
∂1(H + x) = x so that H + x : ∂(H) + x ⇒ x.
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Composition of tracks is defined by

(3) (H + x)�(G + ∂(H) + x) = H + G + x.

This yields the R-module object M in Grd associated to ∂, see (2.2.6).
We consider a pair ∂ : M0

1 → M0 in pair(Mod(R)) as a chain complex
concentrated in degree 0 and 1. Now let R be a commutative ring. Then we get for
pairs X = (∂X : X1 → X0), Y = (∂Y : Y1 → Y0) in Mod(R) the tensor product of
chain complexes X ⊗ Y (with ⊗ = ⊗R) defined by

X1 ⊗ Y1
d2−→ X1 ⊗ Y0 ⊕ X0 ⊗ Y1

d1−→ X0 ⊗ Y0,

d2(a ⊗ b) = (∂a) ⊗ b − a ⊗ (∂b),
d1(a ⊗ y) = (∂a) ⊗ y,

d1(x ⊗ b) = x ⊗ (∂b),

with x ∈ X0, y ∈ Y0, a ∈ X1, b ∈ Y1. Hence d1 induces the boundary map

∂⊗ : (X1 ⊗ Y0 ⊕ X0 ⊗ Y1)/im(d2) −→ X0 ⊗ Y0

which again is a pair in Mod(R). This shows that (pair(Mod(R)), ⊗̄) is a monoidal
category with the product

(5.1.2) X⊗̄Y = ∂⊗

defined above.
A (non-negatively) graded pair X in Mod(R) is a sequence of pairs Xi, i ∈ Z,

in Mod(R) (with Xi = 0 for i < 0). Then X is the same as an R-linear map of
degree 0,

X = (∂ : X1 −→ X0)

where X1, X0 are (non-negatively) graded objects in Mod(R). For such graded
pairs X, Y we get the X⊗̄Y satisfying

(5.1.3) (X⊗̄Y )k =
⊕

n+m=k

Xn⊗̄Y m.

This is a monoidal structure of the category of graded pairs in Mod(R). Morphisms
are R-linear maps of degree 0. We now describe the concept of algebra in the
category of graded groupoids. Such algebras can be introduced in three different
ways, as ‘track algebras’, ‘pair algebras’ or ‘crossed algebras’.

5.1.4 Definition. A (graded) track algebra over R is a monoid A in the category of
graded groupoids such that Ak, k ∈ Z, is an R-module object in Grd with Ak = 0
for k < 0. Moreover the monoid multiplication is a functor

An × Am −→ An+m

which is R-bilinear (n, m ∈ Z).
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5.1.5 Definition. A (graded) pair algebra over R is a monoid A in the monoidal
category of graded pairs in Mod(R) with multiplication (see (5.1.3))

µ : A⊗̄A −→ A.

Moreover Ai = 0 for i < 0.

5.1.6 Definition. A (graded) crossed algebra A over R is a graded pair

(1) ∂ : A1 −→ A0

in Mod(R) with An
1 = An

0 = 0 for n < 0 such that A0 is a graded algebra in
Mod(R) and A1 is an A0-bimodule and ∂ is an A0-bimodule map. Moreover for
a, b ∈ A1 the formula

(2) ∂(a) · b = a · ∂(b)

holds in A1. We write

π0(A) = cokernel(∂),(3)
π1(A) = kernel(∂).(4)

Then it is easily seen that π0(A) is an algebra over R and that π1(A) is a π0(A)-
bimodule. Hence we have the exact sequence of A0-bimodules

0 −→ π1(A) −→ A1
∂−→ A0 −→ π0(A) −→ 0.

Remark. A crossed algebra is the same as a “crossed module” considered in Baues-
Minian [BM]. Such crossed modules correspond to classical crossed modules for
groups considered by J.H.C. Whitehead. We here prefer the notion “crossed alge-
bra” since we will also consider “modules over a crossed algebra”.

5.1.7 Proposition. The categories of track algebras, pair algebras, and crossed al-
gebras respectively are equivalent to each other.

In fact, using (5.1.1) we see that a track algebra yields a pair algebra and
vice versa. Moreover the definition of ⊗̄ in (5.1.2) shows that a pair algebra yields
a crossed algebra and vice versa. Given a track algebra A we obtain the associated
crossed algebra by

∂ : A0
1 −→ A0

as in (5.1.1)(1). The A0-bimodule structure of A0
1 is defined by

(1) f · H · g = 0�
f · H · 0�

g

for f, g ∈ A0, H ∈ A0. Here o�
f : f ⇒ f is the trivial track. Moreover for H : f ⇒ g,

G : x ⇒ y in A1 we have the formula

(2)
H · G = (g · G)�(H · x)

= (H · y)�(f · G)
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which for g = 0 and y = 0 = implies

(3) H · G = H · x = f · G
and this corresponds to the formula H · (∂G) = (∂H) · G in a crossed algebra.

According to the equivalent concepts

(5.1.8) track algebra = pair algebra = crossed algebra

we can define a module over a track algebra also in three different but equivalent
ways. We do this first for the case of track algebras.

5.1.9 Definition. A (left) module M over a track algebra A is a graded object M
in the category of groupoids Grd such that Mk, k ∈ Z, is an R-module object in
Grd. Moreover the monoid A acts from the left on M and the action is a functor

An × Mk −→ Mn+k

which is R-linear (n, k ∈ Z). Compare (5.1.4).

Next we consider modules over a pair algebra.

5.1.10 Definition. A (left) module M over a pair algebra A is a graded pair M in
Mod(R) together with an R-linear map of degree 0,

µ : A⊗̄M −→ M

which is an action of the monoid A on M .

5.1.11 Definition. A (left) module M over a crossed algebra A is a graded pair
M = (∂ : M1 → M0) in Mod(R) such that M1 and M0 are left A0-modules and ∂
is A0-linear. Moreover a commutative diagram of A0-linear maps

A1 ⊗A0 M1
1⊗∂ ��

µ

��

A1 ⊗A0 M0

µ

��

µ̄

%%���
��

���
��

���
���

��
���

M1
∂

�� M0

is given where µ(a ⊗ x) = (∂a) · x for a ∈ A1 and x ∈ M1 or x ∈ M0.

According to the equivalent concepts in (5.1.8) we also see that the concepts

(5.1.12)
module over a track algebra = module over a pair algebra

= module over a crossed algebra

are equivalent. In fact, in addition to (5.1.7) we get:

5.1.13 Proposition. Let A be a track algebra corresponding to the pair algebra A′

and to the crossed algebra A′′. Then the categories of (left) modules over A, or A′,
or A′′ are equivalent to each other.

The proof uses similar arguments as in (5.1.7).



5.2. The Γ-pseudo functor 123

5.2 The Γ-pseudo functor

Let ([[A]], Γ) be a Γ-track algebra and let iE : E ⊂ A be a graded set of generators
of the graded algebra A = [[A]]�. We can choose a lift s′′ of the inclusion iE as in
the following commutative diagram.

(5.2.1) E
s′′

��

iE

&&�
��

��
��

��
��

��
[[A]]0

π

''��
��
��
��
��
��
�

A

Let Mon(E) be the free monoid generated by E and TG(E) = G Mon(E) be the
free G-module generated by Mon(E). Then

(1) TG(E) =
⊕
n≥0

(GE)⊗n

is the G-tensor algebra generated by GE where GE is the free G-module generated
by E. The function s′′ above yields a commutative diagram.

(2) TG(E) = G Mon(E) s �� [[A]]0

Mon(E)

��

s′
�� [[A]]0

E

��

s′′
�� [[A]]0

Here the vertical arrows are the inclusions. Since [[A]]0 is a graded monoid we
obtain the unique monoid homomorphism s′ of degree 0 on Mon(E) extending s′′.
Since [[A]]0 is a graded G-module we obtain the unique G-linear map s extending
s′. The map s, however, is not multiplicative for the multiplication in the tensor
algebra TG(E), that is, for a, b ∈ T

G
(E) the element s(a · b) does not coincide with

the element s(a) · s(b). If a, b ∈ Mon(E) we have s(a · b) = s′(a · b) = (s′a) · (s′b) =
(sa) · (sb). Moreover we get

(3) s(a) · s(b) = s(a · b)

for a ∈ TG(E) and b ∈ Mon(E) since multiplication in [[A]]0 is left linear.
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5.2.2 Definition. We write a =
∑n(a)

i=1 ni
aai with ni

a ∈ G, ni
a �= 0, and ai ∈ Mon(E)

pairwise distinct for i = 1, . . . , n(a). Let

(1)

{
ϕa : Va = Gn(a) −→ G,

ϕa =
∑n(a)

i=1 ni
api

be given by a and let â = (a1, . . . , an(a)) be the tuple associated to a. Then we
have sâ = (sa1, . . . , san(a)) ∈ [[A]]0 ⊗ Va and the equation

(2) s(a) =
n(a)∑
i=1

ni
as(ai) = (1 ⊗ ϕa)(sâ)

holds. Hence we get for x ∈ TG(E) the track

(3) Γ(x, a) = Γ(ϕa)sâ
sx : (sx) · (sa) ⇒ s(x · a)

since (sx) · (sa) = (sx) · (1 ⊗ ϕa)(sâ) and s(x · a) = (1 ⊗ ϕa)(sx) · (sâ). Here we
use (5.2.1)(3). Now (3) is the trivial track

(4) Γ(x, a) = 0�
s(x·a) if a ∈ Mon(E).

5.2.3 Theorem. For a, b, c ∈ TG(E) we have the formula

Γ(ab, c)�Γ(a, b)(sc) = Γ(a, bc)�(sa)Γ(b, c).

Both sides are tracks (sa)(sb)(sc) ⇒ s(abc).

The formula in Theorem (5.2.3) shows that pasting of Γ-tracks in the fol-
lowing diagram yields the identity track. This exactly is the property of a pseudo
functor (s, Γ) : TG(E) → [[A]], compare for example Fantham-Moore [FM].

• •
s(a)

�� •s(b)��

s(ab)

��
� �� ���

•s(c)��

s(bc)

��
� �� ���

s(abc)

��

� �� ���

s(abc)

((

� �� ���
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Proof. Let

(1) Γ(a, b, c) = Γ(ab, c)�Γ(a, b)(sc)

and let

(2) Γ′(a, b, c) = Γ(a, bc)�(sa)Γ(b, c).

We have to show (1) = (2) for a, b, c ∈ TG(E).
We now consider the case that a, c ∈ TG(E) and b ∈ Mon(E). Then we get

Γ(a, b) = 0� so that

Γ(a, b, c) = Γ(ϕc)sĉ
s(ab)

= Γ(ϕc)sĉ
s(a)(sb), since b ∈ Mon(E)(3)

= Γ(ϕc)(sb)(sĉ)
sa �(sa)Γ(ϕc)sĉ

sb, see (4.3.1)(11),

Γ′(a, b, c) = Γ(ϕbc)s(bc)̂
sa �(sa)Γ(ϕc)sĉ

sb.(4)

Here we have ϕbc = ϕc and s(bc)̂ = (sb)(sĉ) since b ∈ Mon(E). This shows that
(1) = (2) if a, c ∈ TG(E) and b ∈ Mon(E).

Now we consider for fixed a, c ∈ TG(E) the functions d and d′ with

(5)
d(x) = Γ(a, x, c),
d′(x) = Γ′(a, x, c).

We know d(x) = d′(x) for x ∈ Mon(E). Assume now that for x ∈ TG(E) we have
d(x) = d′(x), then we show for y ∈ Mon(E) that

d(x + y) = d′(x + y).

This proves that d = d′. In fact, we only need to consider the following two cases
with n(x) ≥ 1, see (5.2.2).

(I) y �= xi for all i = 1, . . . , n(x).

(II) y = x1 and nx
1 �= −1.

In case (I) we have

(6) ϕx+y = (ϕx, 1) : Vx+y = Vx ⊕ G −→ G,

and in case (II) we have

(7) ϕx+y = ϕx + px
1 : Vx+y = Vx −→ G.
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By definition of d we get

d(x + y) = Γ(ϕc)sĉ
s(ax+ay)(8)

�(ϕx+y)s(x+y)̂
sa (sc),(9)

d(x) = Γ(ϕc)sĉ
s(ax)�Γ(ϕx)sx̂

sa(sc),(10)

(8) = Γ(ϕc)sĉ
s(ax) + Γ(ϕc)sĉ

s(ay), (4.3.1)(13).(11)

Now we compute (9). We get in case (I) and also in case (II) the formula

(9) = Γ(ϕx)sx̂
sa(sc) + (sa)(sy)(sc)(12)

�Γsx,sy
sa (sc).(13)

We prove (9) = (12)�(13) first in case (I). Then we get:

(9) = Γ(+G(ϕx ⊕ 1))sx̂,sy
sa (sc) case (I),(14)

(9) = (1 ⊗ +G)Γ(ϕx ⊕ 1)sx̂,sy
sa (sc), (4.3.1)(12),(15)

�Γ(1⊗(ϕx⊕1))(sx̂,sy)
sa (sc),(16)

(15) = (Γ(ϕx)sx̂
sa + Γ(1)sy

sa)(sc), (4.3.1)(13).(17)

Here (15) = (12) by (4.3.1)(3) and (16) = (13) by (4.3.1)(10). This completes
the proof of (9) = (12)�(13) in case (I). Now we prove this in case (II). Then we
have

(9) = Γ(ϕx + px
1)sx̂

sa(sc),(a)

= (Γ(ϕx)sx̂
sa + Γ(px

1)sx̂
sa)(sc)(b)

�Γ(+G)(1⊗ϕx)sx̂,(1⊗px
1 )sx̂

sa (sc).(c)

Here Γ(px
1) is the trivial track of (sa)(sy) since x1 = y. This shows (b) = (12).

Moreover we have (c) = (13). This completes the formula (9) = (12)�(13) in
case (II).

Since (9) = (12)�(13) in case (I) and case (II) we get

d(x + y) = (8)�(9) = (11)�(12)�(13).

Here we have by (10)

(12) = {Γ(ϕc)sĉ
s(ax)}op + s(ay)(sc)(18)

�{d(x) + s(ay)(sc)},(19)

so that d(x + y) = (11)�(18)�(19)�(13), that is:

d(x + y) = {Γ(ϕc)sĉ
s(ax) + Γ(ϕc)sĉ

s(ay)}(20)

�{Γ(ϕc)sĉ
s(ax)}op + s(ay)sc(21)

�d(x) + s(ay)(sc)(22)
�Γsx,sy

sa (sc).(23)
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Here we get

(20)�(21) = s(axc) + Γ(ϕc)sĉ
s(ay),(24)

(20)�(21) = s(axc) + {Γ(ϕc)(sy)(sĉ)
sa }(25)

�{s(axc) + (sa)Γ(ϕc)sĉ
sy}, (4.3.1)(11).(26)

Now we use the assumption

(27) d(x) = d′(x) = Γ(ϕxc)s(xc)̂
sa �(sa)Γ(ϕc)sĉ

sx.

Hence we get

d(x + y) = s(axc) + Γ(ϕyc)s(yc)̂
sa , since ϕyc = ϕc,(28)

�s(axc) + (sa)Γ(ϕc)sĉ
sy(29)

�Γ(ϕxc)s(xc)̂
sa + s(ay)(sc)(30)

�(sa)Γ(ϕc)sĉ
sx + s(ay)(sc)(31)

�Γ(sx)(sc),(sy)(sc)
sa .(32)

Equivalently we get

d(x + y) = {Γ(ϕxc)s(xc)̂
sa + Γ(ϕyc)s(yc)̂

sa }(33)

�{(sa)Γ(ϕc)sĉ
sx + (sa)Γ(ϕc)sĉ

sy}(34)

�Γ(sx)(sc),(sy)(sc)
sa .(35)

On the other hand we get by (2)

d′(x + y) = Γ(ϕxc+yc)s(xc+yc)̂
sa(36)

�(sa)Γ(ϕc)sĉ
s(x+y),(37)

(37) = (sa)(Γ(ϕc)sĉ
sx + Γ(ϕc)sĉ

sy), (4.3.1)(13),(38)

(37) = {Γs(xc),s(yc)
sa }op, (4.3.1)(5),(39)

�{(sa)Γ(ϕc)sĉ
sx + (sa)Γ(ϕc)sĉ

sy}(40)

�Γ(sx)(sc),(sy)(sc)
sa .(41)

Here (40) = (34) and (41) = (35). Hence d(x + y) = d′(x + y) follows from
the equation (33) = (36)�(39) or equivalently (36) = (33)�(39)op, that is

(42) Γ(ϕxc+yc)s(xc+yc)̂
sx = {Γ(ϕxc)s(xc)̂

sa + Γ(ϕyc)s(yc)̂
sa }�Γs(xc),s(yc)

sa .

This formula is a consequence of the following lemma which we also need in the
next section. Hence the proof of (5.2.3) is complete. �
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5.2.4 Lemma. For a, x, y ∈ TG(E) we have

Γ(ϕx+y)s(x+y)̂
sa = (Γ(ϕx)sx̂

sa + Γ(ϕy)sŷ
sa)�Γsx,sy

sa .

Proof. We first prove the formula for y ∈ Mon(E). Then we have case (I) and case
(II) as in the proof of (5.2.3).

In case (I) we know that y �= xi for all i. This shows ϕx+y = +G(ϕx⊕ϕy) and
also s(x + y)̂ = (sx̂, sŷ). Therefore (5.2.4) is a consequence of (4.3.1)(12), that is:

Γ(ϕx+y)s(x+y)̂
sa = Γ(+G(ϕx ⊕ ϕy))sx̂,sŷ

sa(1)

= (1 ⊗ +G)(Γ(ϕx)sx̂
sa , Γ(ϕy)sŷ

sa)(2)

�Γ(1⊗(ϕx⊕ϕy))(sx̂,sŷ)
sa .(3)

This yields the proof of the lemma for y ∈ Mon(E) and case (I).

In case (II) we have x1 = y and n = nx
1 �= −1. Let z = x − nx1. Then we

have x = z + ny and x + y = z + my where m = n + 1 �= 0. Moreover ẑ does not
contain y so that

ϕx = +G(ϕz ⊕ ϕny),(4)
ϕx+y = +G(ϕz ⊕ ϕmy).(5)

Here we have ϕny = nϕy, ϕmy = mϕy . Moreover we get

(6) s(x̂) = (s(ẑ), s(ŷ)) = s(x + y)̂.

Using (4.3.1)(12) we get:

Γ(ϕx)s(x)̂
sa = Γ(+G(ϕz ⊕ ϕny))s(z)̂,s(y)̂

sa(7)

= {Γ(ϕzc)s(z)̂
sa + Γ(nϕy)s(y)̂

sa }(8)

�Γs(z),ns(y)
sa ,(9)

Γ(ϕx+y)s(x+y)̂
sa = Γ(+G(ϕz ⊕ ϕmy))s(z)̂,s(y)̂

sa(10)

= {Γ(ϕz)s(z)̂
sa + Γ(mϕyc)s(y)̂

sa }(11)

�Γs(z),ms(y)
sa .(12)

Here we have m = 1 + n so that by (4.3.1)(14)

Γ(mϕy)s(y)̂
sa = {Γ(ϕy)s(y)̂

sa + Γ(nϕy)s(y)̂
sa }(13)

�Γs(y),ns(y)
sa .(14)

Hence we get

(10) = {Γ(ϕz)s(z)̂
sa + Γ(nϕy)s(y)̂

sa + Γ(ϕy)s(y)̂
sa }(15)

�{s(a)s(z) + Γs(y),ns(y)
sa }(16)

�Γs(z),(n+1)s(y)
sa .(17)
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By (4.2.5)(5) we see

(17) = {s(a)s(z) + Γns(y),s(y)
sa }op(18)

�{Γs(z),ns(y)
sa + s(a)s(y)}(19)

�Γs(z)+ns(y),s(y)
sa .(20)

Here (20) is part of (5.2.4). Moreover (18)op = (16) by (4.2.5)(3). This shows
(10) = (15)�(19)�(20), that is:

(10) = {Γ(ϕz)s(z)̂
sa + Γ(nϕy)s(y)̂

sa + Γ(ϕy)s(y)̂
sa }(21)

�{Γs(z),ns(y)
sa + (sa)s(y)}(22)

�Γs(x),s(y)
sa .(23)

Now (7) = (8)�(9) and (8) is part of (21) and (9) is part of (22). This shows

(10) = {(7) + Γ(ϕy)s(y)̂
sa }�(23)

and this proves the lemma in case (II), y ∈ Mon(E). Now the proof of the lemma
is complete for y ∈ Mon(E).

Now assume the formula in (5.2.4) holds for (x, y) with x, y ∈ TG(E) and let
v ∈ Mon(E). Then we show that the formula holds for (x, y + v).

In fact, since v ∈ Mon(E) we have shown that for w = x + y the formula
holds for (w, v) so that

(10) Γ(ϕw+v)s(w+v)̂
sa = {Γ(ϕw)sŵ

sa + Γ(ϕv)sv̂
sa}�Γs(w),sv

sa .

Here the assumption on (x, y) yields a formula for Γ(ϕw)sŵ
sa so that we get

(11) Γ(ϕw+v)s(w+v)̂
sa = {Γ(ϕx)sx̂

sa +

A︷ ︸︸ ︷
Γ(ϕy)sŷ

sa + Γ(ϕv)sv̂
sa}

(12) �{Γsx,sy
sa + (sa)(sv)}

(13) �Γs(x+y),v
sa .

Here (12)�(13) coincide by (4.2.5)(5) with (14)�(15),

(14) {(sa)(sx) + Γsy,sv
sa }

(15) �Γsy,sy+sv
sa .

Since Lemma (5.2.4) holds for (y, v) we get A�(14) = Γ(ϕy+v)s(y+v)̂
sa and this

yields the formula:

Γ(ϕw+v)s(w+v)̂
sa = Γ(ϕx)sx̂

sa + Γ(ϕy+v)s(y+v)̂
sa

�Γsy,s(y+v)
sa .

Hence the lemma also holds for (x, y + v) and the proof of the lemma is complete.
�
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5.3 The strictification of a Γ-track algebra

Let p be a prime and F = Z/p and G = Z/p2. We show that each Γ-track algebra
[[A]] over F as considered in (4.3.1) is weakly equivalent to a track algebra [[A, E, s]]
over G termed the strictification of [[A]]. Here it is crucial that we alter the ground
ring from F to G. In fact, we have seen in (4.6) that in general there is no track
algebra over F which is weakly equivalent to [[A]].

Let ([[A]], Γ) be a Γ-track algebra as in (4.3.1). We choose a graded set E of
generators of the graded algebra A. Since A0 = F we choose only generators in
degree ≥ 1. We choose a lift s′′ as in the diagram

[[A]]0

π

����
E

s′′

������������������
�� A

so that s′′(e) represents the homotopy class e ∈ E ⊂ A. Then the G-linear map

(5.3.1) s : TG(E) −→ [[A]]0

is defined as in (5.2.1) and we have the Γ-tracks Γ(a, b) : s(a) · s(b) ⇒ s(a · b) in
(5.2.2) so that

(s, Γ) : TG(E) −→ [[A]]

is a pseudo functor as proved in (5.2.3).

5.3.2 Definition. Using Γ-tracks we define the Γ-product H •G of tracks as follows.
Let f, g, x, y ∈ TG(E) and let

H : sf =⇒ sg,

G : sx =⇒ sy

be tracks in [[A]]. Then the Γ-product is the track

H • G : s(f · x) =⇒ s(g · y),

H • G = Γ(g, y)�(H · G)�Γ(f, x)op

where H ·G is defined by multiplication in [[A]], see (4.3.1)(1). Hence the Γ-product
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corresponds to pasting in the diagram.

•
⇑H

•s(g)��

⇑G

•s(y)��

s(g·y)

))

�� ��
��Γ(f,x)

• •
s(f)

�� •
s(x)

��

s(f ·x)

**

� �� ��� Γ(g,y)

The pseudo functor property of (s, Γ) shows immediately:

5.3.3 Proposition. The Γ-product is associative, that is

(H • G) • F = H • (G • F ),

and the unit 1 ∈ TG(E) is a unit for the Γ-product, that is 1 • H = H • 1 = H.

Here we use the notation

f • G = 0�
sf • G,

H • x = H • 0�
sx

where 0�
sf : sf ⇒ sf and 0�

sx : sx ⇒ sx are the identity tracks. One readily checks
the formula

(5.3.4)
H • G = (g • G)�(H • x),

= (H • y)�(f • G).

5.3.5 Theorem. The Γ-product is bilinear.

Proof. We have for H ′ : s(f ′) ⇒ s(g′) the equations

(1) (H + H ′) • G = Γ(g + g′, y)�((H + H ′) · G)�Γ(f + f ′, x)op.

Here we have by (4.3.1)(13) the equation Γ(g + g′, y) = Γ(g, y) + Γ(g′, y) so that
by (4.3.1)(3) we get

(2)
(H + H ′) • G = {Γ(g, y) + Γ(g′, y)},

�{H · G + H ′ · G},
�{Γ(f, x) + Γ(f ′, x)}op.

This shows (H + H ′) • G = (H • G) + (H ′ • G).
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Next we consider G′ : s(x′) ⇒ s(y′) and

(3) H • (G + G′) = Γ(g, y + y′)�(H · (G + G′))�Γ(f, x + x′)op.

Here we can apply (4.3.1)(5) so that

(4) H · (G + G′) = (Γsy+sy′
sy )op�(H · G + H · G′)�Γsx,sx′

sf .

On the other hand

(5) H • G = Γ(g, y)�(H · G)�Γ(f, x)op,

(6) H • G′ = Γ(g, y′)�(H · G′)�Γ(f, x′)op.

Hence we have

(7)
H • G + H • G′ = {Γ(g, y) + Γ(g, y′)},

�(H · G + H · G′),
�{Γ(f, x) + Γ(f, x′)}op.

Therefore H • (G + G′) = H • G + H • G′ is a consequence of

Γ(g, y + y′)�{Γsy,sy′
sg }op = Γ(g, y) + Γ(g, y′),(8)

Γ(ϕy+y′)s(y+y′ )̂
sg = (Γ(ϕy)s(y)̂

sg + Γ(ϕy′)s(y′ )̂
sg )�Γsy,sy′

sg .(9)

But this formula is proved in (5.2.4). �
5.3.6 Definition. Let ([[A]], Γ) be a Γ-track algebra and let E be a set of generators
of the algebra A and let s : TG(E) → [[A]]0 be defined as in (5.2.1), (5.3.1). Then
we obtain the track algebra [[A, E, s]] over A as follows, see (5.1.4). Let

(1) [[A, E, s]]0 = TG(E).

For x, y ∈ TG(E) a track G : x ⇒ y in [[A, E, s]] is a triple

(2) G = (y, Ĝ, x) : x =⇒ y

where Ĝ : sx ⇒ sy is a track in [[A]]. Composition of such tracks is defined by
composition in [[A]]

(3) (y, Ĝ, x)�(x, Ĥ, z) = (y, Ĝ�Ĥ, z)

and (y, 0�
sy, y) is the trivial track of y. The product of tracks in [[A, E, s]] is defined

by the Γ-product in [[A]], that is

(4) (y, Ĝ, x) · (f, Ĥ, g) = (y · f, Ĝ • Ĥ, x · g).
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By (5.3.2) this product is associative with unit (1, 0�
s1, 1) = 1. The set [[A, E, s]]1

of tracks is also given by the following pull back diagram.

(5) [[A, E, s]]1
s̄ ��

(∂1,∂2)

��

[[A]]1

(∂1,∂0)

��
TG(E) ⊕ TG(E)

s⊕s �� [[A]]0 ⊕ [[A]]0

Since s, ∂0, ∂1 are G-linear we see that [[A, E, s]]1 is a graded G-module. By (5.3.5)
the product (4) is bilinear. This shows that [[A, E, s]] is a well-defined track algebra
over G termed the strictification of the Γ-track algebra ([[A]], Γ).

We have seen in (5.1.5) that the track algebra [[A, E, s]] can be equivalently
described as a pair algebra or as a crossed algebra over G. According to (4.3.5) we
have the (graded) linear track extension

(5.3.7) D �� [[A]]1
���� [[A]]0 �� A

of a Γ-track algebra ([[A]], Γ). According to the definition of D and A we see that

A = π0([[A, E, s]]),
D = π1([[A, E, s]])

where we use the crossed algebra associated to [[A, E, s]], see (5.1.6).

5.3.8 Theorem. The graded linear track extension

D �� [[A, E, s]]1
���� [[A, E, s]]0 �� A

is weakly equivalent to (5.1.6).

Proof. A cocycle for [[A, E, s]] is easily seen to coincide with the corresponding
cocycle for [[A]], see (5.3.7). Hence the result follows from (3.6.9). �

The strictification [[A, E, s]] depends on the choice of generators E and the
choice of s′′ in (5.2.1). Let s′′0 be a further lift as in (5.2.1) with πs′′0 = iE . Then
there exists a track

S′′ : s′′ =⇒ s′′0 ,

that is for e ∈ E we have S′′
e : s′′(e) ⇒ s′′0(e) in [[A]].

5.3.9 Theorem. The track S′′ : s′′ ⇒ s′′0 induces an isomorphism of track algebras

S̄ : [[A, E, s]] ∼= [[A, E, s0]]

for which S̄0 is the identity of TG(E).
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Proof. Let s0 be defined by s′′0 in the same way as in (5.2.1)(2). Then we obtain
by S′′ in the same way the track S : s ⇒ s0 in [[A]]. We define the isomorphism S̄1

on (y, Ĝ, x) ∈ [[A, E, s]]1 by

S̄(y, Ĝ, x) = (y, Sy�Ĝ�Sop
x , x).

One readily checks that S̄ is a well-defined isomorphism of track algebras. Here
we need (4.3.1)(16). �

5.4 The strictification of a Γ-track module

In a similar way as in (5.3) we can strictify a module over a Γ-track algebra [[A]].
Let E and s be given as in (5.2.1).

Let [[M ]] be a module over the Γ-track algebra ([[A]], Γ), see (4.3.7). Then
M = [[M ]]� is a left A-module and we can choose a set EM of generators of degree
≥ 1 of the A-module M . Moreover we choose a lift s′′M ,

(5.4.1) [[M ]]0

π

��
EM

s′′
M

����������
�� M

of the inclusion EM ⊂ M so that s′′M (e) represents the homotopy class e ∈ EM ⊂
M . Let GEM be the free G-module generated by EM . Then

(1) TG(E) ⊗ GEM = G(Mon(E) × EM )

is the free TG(E)-module generated by EM , see (5.2.1)(1). Similarly as in (5.2.1)(2)
we get the following commutative diagram.

(2) G(Mon(E) × EM )

∪

sM �� [[M ]]0

Mon(E) × EM

∪

s′
M �� [[M ]]0

EM

s′′
M �� [[M ]]0

Here s′M is the s′-equivariant map extending s′′M and sM is the G-linear map
extending s′M . Hence we get the G-linear map

(3) sM : TG(E) ⊗ GEM −→ [[M ]]0.

We can define for b ∈ TG(E) and y ∈ TG(E) ⊗ GEM the Γ-track

(5.4.2) ΓM (b, y) : s(b) · sM (y) =⇒ sM (b · y)
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in the same way as in (5.2.2). Moreover (5.2.3) holds accordingly so that the
Γ-action H • G for H : sf ⇒ sg in [[A]] and G : sM (x) ⇒ sM (y) is defined by

(5.4.3) H • G = ΓM (g · y)�(H · G)�Γ(f, x)op

as in (5.3.2). This action satisfies (5.3.3) accordingly and also satisfies G-bilinearity
as in (5.3.5). The corresponding proofs are easily generalized to the case of actions.
Hence we obtain the following definition corresponding to (5.3.6).

5.4.4 Definition. Let ([[A]], Γ) be a Γ-track algebra with strictification [[A, E, s]].
Let M be a module over ([[A]], Γ) as in (4.3.1) and let (EM , sM ) be chosen as in
(5.4.1). Then we obtain the [[A, E, s]]-module [[M, EM , sM ]] as follows. Here we use
the notation in (5.1.6). Let

(1) [[M, EM , sM ]]0 = TG(E) ⊗ GEM

be the free [[A, E, s]]0 = TG(E)-module generated by EM . For x, y ∈ [[M, EM , sM ]]0
a track G : x ⇒ y in [[M, EM , sM ]] is a triple

(2) G = (y, Ĝ, x) : x =⇒ y

where Ĝ : sMx ⇒ sMy is a track in [[M ]]. We define composition and action in
the same way as in (5.3.6)(3),(4) and we obtain the G-module structure as in
(5.3.6)(5). Then it is easily seen that [[M, EM , sM ]] is a well-defined left [[A, E, s]]-
module which is termed the strictification of [[M ]].

The strictification [[M, EM , sM ]] satisfies a result similar to (5.3.8). Moreover
the strictification is well defined up to isomorphism by EM since a result similar
as in (5.3.9) holds.

5.5 The strictification of the secondary
Steenrod algebra

For a prime p we have the Steenrod algebra A over F = Z/p together with the
canonical set of algebra generators

(5.5.1) EA =

{
{Sqi | i ≥ 1} for p = 2,

{β} ∪ {P i and P i
β | i ≥ 1} for p odd.

Here the generator P i
β ∈ EA is mapped by the inclusion EA → A to the composite

element βP i. We need these extra generators P i
β for the “instability condition”

defined below. Let ([[A]], Γ) be the secondary Steenrod algebra which is a Γ-track
algebra. Hence we can apply the strictification in (5.3). For this we choose a lift s
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as in the diagram

(1) [[A]]0

π

��
EA

s
����������

iE

�� A

where iE is the inclusion and πs = iE. Hence the lift s chooses for each element
e ∈ EA a stable map s(e) in [[A]]0 representing the homotopy class e. The stable
map s(e) is given by a sequence of maps s(e)n and a sequence of tracks as in the
following diagram, n ∈ Z, k =| e |.

(2) Zn
s(e)n ��

��
He,n
=⇒

Zn+k

��
ΩZn+1

Ω(s(e)n+1)
�� Ω(Zn+1+k)

Compare (2.4.4). In Section (10.8) below we choose the stable map s(e) for e ∈ EA
such that the following instability condition (2a), (2b), (2c) is satisfied. For e = Sqk

(p = 2) we choose s(e) in such a way that

(2a) s(Sqk)n = 0 : Zn −→ ∗ −→ Zn+k

is the trivial map for k > n and also He,n = 0� is the trivial track for k > n + 1,
see (1.1.6). Similarly for e = P k (p odd) we choose

(2b) s(P k)n = 0 : Zn −→ ∗ −→ Zn+2k(p−1)

for 2k > n and also He,n = 0� for 2k > n + 1. Compare (1.1.6). Moreover for
e = P k

β (p odd) we choose

(2c) s(P k
β )n = 0 : Zn −→ ∗ −→ Zn+2k(p−1)+1

for 2k + 1 > n and also He,n = 0� for 2k + 1 > n + 1. Compare (1.1.6). For e = β
there is no condition of instability since we assume Z0 = ∗ is a point.

We have for a = s(Sqk) and x, y : X −→ Zn the linearity track Γx,y
a :

a(x, y) =⇒ ax + ay in (4.2.2). By the instability condition (2a) the track Γx,y
a :

0 =⇒ 0 represents an element in Hn+k−1(X) for k > n. In fact, we shall show in
(10.8) the delicate linearity track formula

(2d) Γx,y
s(Sqk)

=

{
x · y for k = n + 1,

0 for k > n + 1.

For x = y we know that Γx,x
s(Sqk)

: 0 =⇒ 0 is the element κ(Sqk)(x) =
Sqk−1(x) in Hn+k−1(x), see (4.5.8). Here κ is the Kristensen derivation. The
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delicate formula above is compatible with this result since Γx,x
s(Sqk)

= Sqk−1(x) =
x · x for |x |= k − 1. If the prime p is odd a delicate formula such as (2d) does not
arise since we get

Γx,y
s(P k)

= 0 for 2k > n, and(2e)

Γx,y

s(P k
β )

= 0 for 2k + 1 > n.

The lift s in (1) defines as in (5.2.1) the G-linear map

(3) s : TG(EA) −→ TF(EA) −→ [[A]]0

which together with the Γ-tracks Γ(a, b) : s(a)s(b) ⇒ s(a · b) in [[A]]1 is a pseudo
functor, see (5.2.3).

We now can define the excess e(α) of an element α ∈ TF(EA) in such a way
that the map

(4) s(α)n : Zn −→ ∗ −→ Zn+|α|

is the trivial map for e(α) > n and Hα,n = 0� is the trivial track for e(α) > n+1.
If a1, . . . , ak ∈ Mon(EA) are pairwise distinct and α = n1a1 + · · · + nkak

with ni ∈ F − {0}, then e(α) = Min(e(a1), . . . , e(ak)). Moreover for a monomial
a = e1 · · · · · er ∈ Mon(EA) with e1, . . . , er ∈ EA put for p = 2,

(5) e(a) = Maxj(| ej | − | ej+1 · · · · · er |).

Moreover for p odd put

(6) e(a) = Maxj

⎧⎪⎪⎨⎪⎪⎩
2 | ej | − | ej+1 · · · · · er | for ej ∈ {P 1, P 2, . . .},
2 | ej | +1− | ej+1 · · · · · er | for ej ∈ {P 1

β , P 2
β , . . .},

1 for ej = β.

Now one readily checks that (4) holds by use of (2a), (2b), (2c).

5.5.2 Definition. The strictification of the secondary Steenrod algebra is the track
algebra [[A, EA, s]] defined by s in (5.5.1), see (5.3.6). This track algebra can be
equivalently described as a pair algebra or a crossed algebra as in (5.1). The crossed
algebra B = B(s) corresponding to [[A, EA, s]] is given by

(1) ∂ : B1 −→ B0

where B0 = TG(EA) is the G-tensor algebra generated by EA. Moreover B1 is the
G-module consisting of pairs (H, x) where x ∈ B0 and H : sx ⇒ 0 is a track
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in [[A]]. In degree 0 the crossed algebra B coincides with the following diagram.

B0
1

∂ �� B0
0

F[p] �� G

Here F[p] is the F-vector space generated by the element [p] = (0�, p·1) ∈ B1 where
p ·1 ∈ TG(EA) and 0� is the trivial track of the 0-element in the discrete groupoid
[[A0]] = F, see (2.4.4). The boundary map ∂ in (1) is defined by ∂(H, x) = x. The
B0-bimodule structure of B1 is defined by

(2)
(H, x) · y = (H • y, x · y),

y · (H, x) = (y • H, y · x).

Here H•y : s(x·y) ⇒ 0 is the track H•y = (H ·sy)�Γ(x, y)op and y•H : s(y·x) ⇒ 0
is the track y • H = (sy · H)�Γ(y, x)op where we use the Γ-tracks of the pseudo
functor (s, Γ), see (5.5.1)(3) and (5.2.3). In Section (5.3) we have shown that B is
a well-defined crossed algebra, see (5.1.6), with

(3)
πoB = cokernel(∂) = A,

π1B = kernel(∂) = ΣA.

Moreover two lifts s, s0 as in (5.5.1) together with a track S : s ⇒ s0 in [[A]] yield
the isomorphism

(4) S̄ : B(s) ∼= B(s0)

which is the identity on TG(EA) and on π1(B(s)) = ΣA = π1B(s0), see (5.3.9).
Therefore B is well defined up to such isomorphisms of a crossed algebra. We call
B the crossed algebra of secondary cohomology operations.

As the main goal of the book we will discuss properties of the crossed algebra
B which hopefully will lead to a computation of B. In Chapter 11 we shall see that
B has the additional structure of a secondary Hopf algebra.

In order to compute the crossed algebra B we choose the following set of
generators E1

A of the ideal IG(A) = kernel(TG(A) → A). Let

(5.5.3) E1
A ⊂ IG(EA) ⊂ TG(EA)

be the subset consisting of p = p ·1, where 1 is the unit of the algebra TG(EA), and
of the Adem relations (1.1) considered as elements of TG(EA). Moreover β2 ∈ E1

A
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and Pn
β − βPn ∈ E1

A (n ≥ 1) if p is odd. Then it is clear that E1
A generates the

ideal IG(EA). We now choose a lift t as in the following diagram where jE is the
inclusion.

(1) B1

∂
����

E1
A

t

++									

jE

�� IG(EA)

That is, t carries a relation r ∈ E1
A to a pair t(r) = (H(r), r) ∈ B1 where H(r) :

s(r) ⇒ 0 is a track in [[A]]. For r = p ∈ E1
A we have s(r) = 0 and H(r) = 0� is the

trivial track of 0. The map t in (1) induces the following commutative diagram of
crossed algebras with exact rows.

(2) 0 �� ΣA i �� B1
∂ �� B0

π �� A �� 0

0 �� KA
j ��

Γt
B

��

[E1
A] d ��

t

��

B0
�� A �� 0

Here d is the free crossed algebra generated by elements [r] with r ∈ E1
A and

d[r] = r, that is,
[E1

A] = (B0 ⊗ (GE1
A) ⊗ B0)/U

where GE1
A is the free G-module generated by E1

A and U is the B0-submodule of
V = B0 ⊗ (GE1

A)⊗B0 generated by the elements d̄(a) · b− a(d̄b) for a, b ∈ V . Here
d̄ : V → B0 is the unique B0-bimodule map with d̄[r] = r for r ∈ E1

A. Since d̄U = 0
we get the induced map d in the diagram. Moreover the map t in the diagram is
the algebra map between crossed algebras which is the identity on B0 and satisfies
t[r] = t(r) with t as in (5.5.3)(1). Then

(3) KA = kernel(d : [E1
A] −→ B0)

is a well-defined A-bimodule termed the bimodule of relations among relations
and the induced map

(4) Γt
B : KA −→ ΣA

is a map between A-bimodules depending on the choice of t in (5.5.3)(1). Kris-
tensen [Kr4] studies a “Massey product operator M” which corresponds to Γt

B and
claims that a formula for M can be found. The computation of Γt

B is equivalent
to the computation of the crossed algebra B since

(5) ΣA �� B1

KA ��

Γt
B

��

[E1
A]

t

��
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is a push out diagram in the category of B0-bimodules. Here the A-bimodule KA is
completely determined by generators EA and relations E1

A in the Steenrod algebra.
The A-bimodule map Γt

B, however, depends on the crossed algebra B and can be
considered as an additional structure of the Steenrod algebra A. Kristensen [Kr4]
and Kristensen-Madsen [KrM1] compute certain elements [a, b, c] in KA and [Kr4]
indicates a method how to determine the map Γt

B though there is not a definition
of the bimodule KA of relations among relations in [Kr4].

Now assume that t0 : E1
A → B1 is a further lift as in (1). Then there exists a

map ∆ : E1
A → ΣA with

t0(e) = t(e) + i∆(e)

for e ∈ E1
A. The map ∆ induces a B0-bimodule map ∆ : [E1

A] → ΣA such that

(6) Γt0
B = Γt

B + ∆j.

Hence the class

(7) ΓB = {Γt
B} ∈ HomA−A(KA, ΣA)/j∗HomB0−B0([E

1
A], ΣA)

is independent of the choice of t and of the choice of s defining B = B(s). Each
element in the class ΓB can serve as a map Γt

B in (5) which defines B1 as a push
out. Hence the computation of the class ΓB is equivalent to the computation of
the isomorphism type of B. In Baues-Pirashvili [BP] we show that there is an
isomorphism

(8) HML3(A, ΣA) ∼= HomA−A(KA, ΣA)/j∗ HomB0−B0([E1
A], ΣA)

carrying the class kstable
p to ΓB.

Recall that we obtained in (4.5.7) the degree 0 derivation Γ[p] : A → ΣA
which for p = 2 coincides with the Kristensen derivation χ in (4.5.8). The map Γt

B
extends Γ[p] since we prove:

5.5.4 Theorem. For x ∈ B0 with π(x) = ξ ∈ A we get the element

[p] · x − x · [p] ∈ KA

and the map Γt
B satisfies the formula

Γt
B([p] · x − x · [p]) = Γ[p](ξ).

Proof. We have d([p] · x) = p · x = d(x · [p]) so that [p] · x− x · [p] ∈ KA. Moreover
we get by definition of t([p]) = (0, p) the formula

t([p] · x − x · [p]) = (0, p) · x − x · (0, p)
= (0 • x, p · x) − (x • 0, x · p)
= ((0 · x)�Γ(0, x)op, p · x) − ((x · 0)�Γ(x, 0)op, p · x).
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Here 0 · x = 0� and x · 0 = 0� are the identity tracks of 0. Moreover for x ∈
Mon(EA) the track Γ(0, x) = 0� is the identity track of 0. Therefore we get

t([p] · x − x · [p]) = (Γ(x, 0)op, 0)

for x ∈ Mon(EA). Here

Γ(x, 0) : sx · sp =⇒ s(x · p) = p · s(x)

is the opposite of the track

Γ(p)sx : (sx)(p · 1) =⇒ p · sx

which represents Γ[p](ξ). Hence

Γt
B([p] · x − x · [p]) = Γ[p](ξ)

for x ∈ Mon(E). Since Γt
B and Γ[p] are F-linear the result (5.5.4) follows. �

Let x be an element of degree | x |≥ 1. Then we obtain for the crossed algebra
B the free right B-module x · B generated by x, see (5.1.7). Let mod0(B)op be the
track category of finitely generated free right B-modules

(5.5.5) x1 · B ⊕ · · · ⊕ xr · B

with generators of degree | xi |≥ 1 for i = 1, . . . , r. Morphisms (0-cells) are B-
linear maps and tracks (1-cells) are natural transformations between such maps
(considered as functors between graded groupoids). Then one gets the linear track
extension

ΣA �� mod0(B)op1
���� mod0(B)op0 �� mod0(A)op

where mod0(A)op is defined as in (2.5.2) and ΣA is the natural system given by
the A-bimodule ΣA, see (4.4.1). We have seen in (2.5.2) that

Kstable
p = mod0(A)op.

This result has the following secondary analogue

5.5.6 Theorem. The linear track extension given by mod0(B)op is weakly equivalent
to the linear track extension given by [[Kstable

p ]] in (2.5.3)

Proof. The extended cocycle 〈c〉 in (4.4.3) is exactly a cocycle for the linear track
extension mod0(B)op. Hence the result follows from (3.6.9). �

Kristensen introduced Massey products for the Steenrod algebra A. They
can be easily derived from the crossed algebra B as follows.
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5.5.7 Definition. Let A = (aj), B = (bi
j) and C = (ci) be matrices with i = 1, . . . , s

and j = 1, . . . , t and entries

(1) aj , bi
j, ci ∈ B0 = TG(EA).

Moreover assume that products AB and BC have entries in IG(EA). Then we can
choose matrices X, Y with entries in B1 such that

X = (xi) satisfies ∂X = AB,(2)
Y = (yj) satisfies ∂Y = BC.(3)

Then one readily checks that

∂(X · C − A · Y ) = ∂(X) · C − A · ∂(Y )
= ABC − ABC

= 0

so that XC − AY represents an element in ΣA. The Massey product

(4) 〈A, B, C〉 ⊂ ΣA

is the set of all elements X · C − A · Y with X and Y satisfying (2) and (3). This
set is a coset of the subgroup

t∑
i=1

(ΣA) · π(ci) +
s∑

j=1

π(aj)(ΣA) ⊂ ΣA

where π(ci), π(aj) ∈ A are given by the quotient map π : TG(EA) → A.

We point out that the crossed algebra structure of B yields obvious properties
of the triple Massey product 〈A, B, C〉 which also can be understood as a Massey
product in the linear track extension mod0(B)op in (5.5.6).

Kristensen-Pedersen [KrP] and Kristensen [Kr4] define the Massey product
in terms of the secondary Steenrod algebra [[A]] and therefore Γ-tracks are involved
in their definition. Since we know that ([[A]], Γ) has the strictification B, the defi-
nition in (5.5.7) corresponds directly to the classical definition of a matrix Massey
product , see Massey-Petersen [MaP].
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5.6 The strictification of secondary cohomology
and Kristensen operations

Let X be a path-connected pointed space and let EX ⊂ H̃∗(X) be a set of gener-
ators of the A-module H̃∗(X). We choose a lift s as in the diagram

(5.6.1) [[X, Z∗]]0

π

��
EX

sX

++���������

iX

�� H̃∗(X)

where iX is the inclusion with πsX = iX . Hence the lift sX chooses for each
element e ∈ EX a continuous map sX(e) : X → Z |e| representing the homotopy
class e ∈ [X, Z |e|] = H |e|(X). For example we can choose EX = [[X, Z∗]]0 and sX

the identity. This is the natural choice of EX which is very large but functorial in
X. As in (5.4.1) the lift sX and s in (5.5.1)(3) determine the G-linear map

(1) sX : TG(EA) ⊗ GEX −→ [[X, Z∗]]0.

Moreover for b ∈ TG(EA) and y ∈ TG(EA) ⊗ GEX we have the Γ-track

(2) ΓX(b, y) : s(b) · sX(y) =⇒ sX(b · y)

in [[X, Z∗]]1. Recall that B is the crossed algebra in (5.5.2) which is the strictifica-
tion of the secondary Steenrod algebra.

5.6.2 Definition. The strictified secondary cohomology H∗(X, EX , sX) is the B-
module, see (5.1.7), defined as follows: Let

(1) H∗(X, EX , sX)0 = TG(EA) ⊗ GEX

and let H∗(X, EX , sX)1 be given by the following pull back diagram.

(2) H∗(X, EX , sX)1 ��

∂

��
pull

[[X, Z∗]]01

∂

��
H∗(X, EX , sX)0 sX

�� [[X, Z∗]]0

Hence an element in H∗(X, EX , sX)1 is a pair (H, y) with y ∈ TG(EA) ⊗ GEX

and H : sX(y) ⇒ 0 in [[X, Z∗]]01. Moreover ∂(H, y) = 0. Now ∂ is a well-defined
B-module by setting

(3)
a · (H, y) = (a • H, a · y) for a ∈ B0 = TG(EA),
(G, a) · z = (G • z, a · z)
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for a ∈ B0 = TG(EA), (G, a) ∈ B1, and z ∈ H∗(X, EX , sX)0. The Γ-products a•H
and G • z are defined by Γ-tracks, that is

(4)
a • H = ((sa)H)�Γ(a, y)op,

G • z = (G(sXz))�Γ(a, z)op.

According to (2.2.10) we get

(5)
π0H∗(X, EX , sX) = cokernel(∂) = H̃∗(X),

π1H∗(X, EX , sX) = kernel(∂) ∼= ΣH̃∗(X).

Moreover two lifts sX , s0
X as in (5.6.1) together with a track S : sX ⇒ s0

X in
[[X, Z∗]]1 yield the isomorphism of B-modules

(6) S̄ : H∗(X, EX , sX) ∼= H∗(X, EX , s0
X)

which is the identity on TG(EA) ⊗ GEX and on π1H∗(X, EX , sX) = ΣH̃∗(X) =
π1H∗(X, EX , s0

X). Therefore the strictified cohomology is well defined up to such
isomorphism.

We now can introduce secondary cohomology operations as follows.

5.6.3 Definition. Recall that

(1) IG(EA) = kernel(π : TG(EA) −→ A)

and let

(2) IG(EX) = kernel(π : TG(EA) ⊗ GEX −→ H̃∗(X)).

A relation is an element

(3) r = b +
k∑

ν=1

ανaν ∈ IG(EA)

with αν , bν , b ∈ TG(EA). A secondary cohomology operation associated to r is an
element

(4) H ∈ B1 with ∂H = r.

If the element b has excess e(b) > n, then the stable map s(b)n = 0 : Zm →
∗ → Zm+|b| for m ≤ n, compare (5.5.1). If e(b) > n, then each element x ∈
TG(EA) ⊗ GEX with | x |≤ n yields the Γ-track

Γ(b, x)op : s(b · x) =⇒ s(b) · s(x) = 0

so that

(5) Γ̄(b, x) = (Γ(b, x)op, b · x) ∈ H∗(X, EX , sX)1
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satisfies ∂Γ̄(b, x) = b · x. Now we assume that

(6) aν · x ∈ IG(EA) for ν = 1 . . . , k

so that there are elements

(7) Hx
ν ∈ H∗(X, EX , sX)1 with ∂Hx

ν = aν · x.

Then an easy computation shows that

∂(H · x − Γ̄(b, x) −
k∑

ν=1

αν · Hx
ν )

= (b +
∑

ν

αν · rν) · x − b · x −
∑

ν

αν · aν · x = 0.

Hence we get the coset of elements

(8)
θH(x) = {H · x − Γ̄(b, x) −

∑k
ν=1 αν · Hx

ν | ∂Hx
ν = αν · x}

∈ (ΣH̃∗(X))/(
∑k

ν=1 π(αν) · ΣH̃∗(X)).

This is the element defined by the Kristensen operation in (2.7.4). Now it is easy
to develop the properties of the operation θH by use of the B-module structure of
H∗(X, EX , sX).

In particular we get the following results where equality holds modulo the
total indeterminancy.

5.6.4 Theorem. Assume θH(x) and θH(y) are defined. Then

θH(x + y) = θH(x) + θH(y) if | x |=| y |< e(b) − 1,

θH(x + y) = θH(x) + θH(y) − d(sb; sx, sy) if | x |=| y |= e(b) − 1.

Compare Theorem 4.3 [Kr1] and see (4.3.10) above.

Proof. By (5.6.3)(8) we see that

θH(x + y) = θH(x) + θH(y) + ∆(b; x, y)

where ∆(b; x, y) ∈ ΣH̃∗(X) is given by Γ̄(b; x, y) − Γ̄(b, x) − Γ̄(b, y). According to
(4.3.10) we get

Γ(b, x + y) − Γ(b, x) − Γ(b, y) = Γsx,sy
sb − sb · sx − sb · sy

= d(sb; sx, sy).

Compare (4.3.10). Now one can check that (Γsx,sy
sb )n is the trivial track for n <

e(b) − 1. See (5.5.1)(2a)(2b). �
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5.6.5 Theorem. For c ∈ TG(EA) we have

θH·c(x) = θH(c · x) and θc·H(x) = cθX(x).

Compare Theorems 5.2 and 5.3 in [Kr1]. Also the following result corresponds
to 5.3 [Kr1].

5.6.6 Theorem. Assume θH(x) and θG(x) are defined. Then

θH+G(x) = θH(x) + θG(x).

Proof. Here we use the fact that

Γ̄(bH + bG, x) = Γ̄(bH , x) + Γ̄(bG, x)

as follows from (4.3.1)(13). Here bH = b is given by the relation r = ∂H and
similarly bG is given by the relations ∂G. �

5.7 Two-stage operation algebras

An Ω-spectrum X is a sequence of pointed CW-spaces Xn, n ≥ 1, together with
homotopy equivalences

Xn
�−→ ΩXn+1.

Given Ω-spectra X, Y let

(5.7.1) [X, Y ]stable
k , k ≥ 0,

be the set of all sequences α = (αn, n ≥ 1) with αn ∈ [Xn, Yn+k] such that

Xn
αn ��

�

��

Yn+k

�

��
ΩXn+1

Ωαn+1

�� ΩYn+k+1

commutes in Top∗/ �. It is easy to see that [X, Y ]stable∗ is a non-negatively graded
abelian group. Moreover for Ω-spectra X, Y, Z we have the bilinear composition
law

(5.7.2) [Y, Z]stable
∗ ⊗ [X, Y ]stable

∗ −→ [X, Z]stable
∗ .

In particular [X, X ]stable
∗ is a graded algebra termed the operation algebra of X .



5.7. Two-stage operation algebras 147

For example we have the Eilenberg-MacLane spectrum K = {K(F, n), n ≥ 1}
and the operation algebra

A = [K, K]stable
∗

is the Steenrod algebra, see (2.5.2).
We now associate with an element k ∈ A a 2-stage Ω-spectrum P (k) =

{Pn(k), n ≥ 1} where Pn(k) is the homotopy fiber of

K(F, n) k−→ K(F, n+ | k |).

Then we get the 2-stage operation algebra

(5.7.3) A(k) = [P (k), P (k)]stable
∗

which is considered in Kristensen-Madsen [KrM2]. We now describe A(k) in terms
of the crossed algebra B = (∂ : B1 → B0).

5.7.4 Definition. Let k̂1, k̂2 be elements in B0 = TG(EA). Then we define the
graded G-module

B(k̂1, k̂2) = {(α, β, G) ∈ B0 × B0 × B1; α · k̂1 − k̂2 · β = ∂G}/ ∼

with | (α, β, G) |=| α |. The relation ∼ is defined as follows. Let (α, β, G) ∼
(α′, β′, G′) if and only if there exist A, B ∈ B1 with⎧⎪⎨⎪⎩

∂A = α − α′,
∂B = β − β′,

G = G′ + A · k̂1 − k̂2 · B.

We define for k̂1, k̂2, k̂3 ∈ B0 the composition law

B(k̂2, k̂3) ⊗ B(k̂1, k̂2)
◦−→ B(k̂1, k̂3)

by
(α′, β′, G) ◦ (α, β, G) = (α′α, β′β, G′ · β + α′ · G).

One can check that ◦ is compatible with the relation ∼ above.

5.7.5 Theorem. Let k1, k2 ∈ A and let k̂1, k̂2 ∈ B0 be elements which represent k1

and k2 respectively. Then there is a canonical map of graded abelian groups

B(k̂1, k̂2) → [P (k1), P (k2)]stable
∗

which is compatible with the composition law. In particular if k̂ ∈ B0 represents
k ∈ A then

B(k̂, k̂) → A(k)

is a map between algebras which is a surjection in degree ≤ |k|−2 and an isomor-
phism in degree < |k| − 2.
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Proof. The definition of B(k̂1, k̂2) corresponds to the category of homotopy pairs
in [BUT]. �
5.7.6 Remark. For k = Sq(0.1) = Sq3 + Sq2Sq1 Kristensen-Madsen [KrM2] com-
pute the operation algebra A(k) by the formula

A(k) = Λ(T )� X(k)

where Λ(T ) is the exterior algebra over F generated by an element T of degree 5
and X(k) is the F-algebra defined in [KrM2]. Moreover � denotes the semi-tensor
product of Massey-Peterson.



Part II

Products and Power Maps
in Secondary Cohomology



The Eilenberg-MacLane spaces Zn have an “additive structure” since they are
F-vector space objects. They also have a “multiplicative structure” by the mul-
tiplication maps µ : Zn × Zn → Zn+m. The theory in Part I is based on the
additive structure of Zn which is also defined in the category of stable maps be-
tween products of Eilenberg-MacLane spaces. In the following Part II we consider
the multiplicative structure of the spaces Zn and we study unstable maps between
products of Eilenberg-MacLane spaces. In particular we construct power maps and
power tracks which correspond to the power algebra structure of the cohomology
H∗(X) in Chapter 1.



Chapter 6

The Algebra Structure of
Secondary Cohomology

It is a fundamental result of algebraic topology that the cohomology H∗(X) of
a space X is a (commutative graded) algebra. In this chapter we consider the
secondary analogue of this result. The multiplicative structure of the Eilenberg-
MacLane spaces Zn constructed in Section (2.1) and the action of the permutation
group σn on Zn lead canonically to the algebraic concept of “secondary permu-
tation algebra”. We show that the secondary cohomology of a pointed space is
naturally a secondary permutation algebra.

6.1 Permutation algebras

Let k be a commutative ring and let R be a (non-graded) k-algebra with unit i
and augmentation ε,

(6.1.1) k
i−→ R

ε−→ k.

Here i and ε are algebra maps with εi = 1. We assume that R is free as a module
over k. For example, let k be a field and G be a group together with a homomor-
phism ε : G → k∗ where k∗ is the group of units in the field k. Then ε induces an
augmentation

(1) ε : k[G] → k

where k[G] is the group algebra of G. Here k[G] is the free k-module with basis
G and ε carries the basis element g ∈ G to ε(g). In particular we have for the
permutation group σn (which is the group of bijections of the set {1, . . . , n}) the
sign-homomorphism

(2) sign : σn → {1,−1} → k∗
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which induces the sign-augmentation

(3) ε = εsign : k[σn] → k,

or we can use the trivial augmentation

ε = εtrivial : k[σn] −→ k

with ε(α) = 1 for α ∈ σn. Later we shall consider the ring k = G = Z/p2Z where
p is a prime. In this case (G[σn], ε) is given by the sign-augmentation if p is odd
and the trivial augmentation if p is even, that is ε(α) = sign(α)p for α ∈ σn. For
k-modules A, B we use the tensor product

(4) A ⊗ B = A ⊗k B.

A homomorphism f : A → B is termed a k-linear map. If A and B are R-modules,
then the map f is R-linear if in addition f(r · x) = r · f(x) for r ∈ R, x ∈ A. If R
and K are k-algebras, then also R ⊗ K is a k-algebra with augmentation

(5) ε : R ⊗ K
ε⊗ε−−−−→ k ⊗ k = k.

The multiplication in R⊗K is defined as usual by (α⊗β)·(α′⊗β′) = (αα′)⊗(ββ′).
Moreover, if X is an R-module and Y is a K-module, then X ⊗ Y is an R ⊗ K-
module by (α ⊗ β) · (x ⊗ y) = (αx) ⊗ (βy).

We now consider the sequence R∗ = {Rn, n ≥ 0} of augmented k-algebras

(6.1.2) Rn = k[σn]

where σn is the permutation group. We have the algebra maps

(1) in,m = � : Rn ⊗ Rm −→ Rn+m

induced by the inclusion σn × σm ⊂ σn+m. The algebra map in,m carries α⊗ β to
α � β. For γ ∈ Rk we get

(2) (α � β) � γ = α � (β � γ)

in Rn+m+k. Since � is an algebra map we have

(3) (α · α′) � (β · β′) = (α � β) · (α′ � β′)

where α · α′ denotes the product in Rn. Let 1n ∈ Rn be the unit element of
Rn with 1n � 1m = 1n+m. For n = 0 we have R0 = k and 10 ∈ R0 satisfies
10 � α = α � 10 = α. As in (2.1.1) let

(4) τn,m ∈ σn+m ⊂ Rn+m
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be the permutation exchanging the block {1, . . . , n} and the block {m+1, . . . , m+
n} for n, m ≥ 1 with τn,m(1) = m + 1. Then the following properties hold.

(5)

τm,nτn,m = 1n+m,

τm,0 = τ0,m = 1m,

τn,m(α � β) = (β � α)τn,m for α ∈ Rn, β ∈ Rm.

τm+n,k = (τm,k � 1n)(1m � τn,k).

We call R∗ with this structure a coefficient algebra.

6.1.3 Definition. A permutation algebra V is a sequence of Rn-modules V n, n ∈ Z,
with V 0 = k and V i = 0 for i < 0 together with k-linear maps

(1) V n ⊗ V m −→ V n+m

carrying x ⊗ y to x · y. For z ∈ V k we have in V n+m+k

(2) (x · y) · z = x · (y · z),

and for α ∈ Rn, β ∈ Rm we have

(3) (αx) · (βy) = (α � β)(x · y).

Moreover, 1 ∈ k = V 0 is a unit of the multiplication (1) with 1 · x = x · 1 = x. In
addition, the multiplication (1) satisfies in V n+m the equation

(4) τx,y(x · y) = y · x.

Here τx,y = τn,m ∈ σn+m is the interchange element for x ∈ V n and y ∈ V m.
A map f : V → W between permutation algebras is given by Rn-linear maps

f : V n → Wn with f(1) = 1 and f(x · y) = f(x) · f(y). This defines the category
Perm(k) of permutation algebras over k.

6.1.3 (a) Example. The coefficient algebra R∗ is a permutation algebra. In fact

V n = Rn = k[σn] for n ≥ 0

is an Rn-module by the left action

Rn ⊗ V n −→ V n

which carries α ⊗ x to α • x = α · x · ᾱ. Here the involution α �→ ᾱ of Rn is given
by the inverse ᾱ = α−1 for α ∈ σn so that for α, x ∈ σn we have α • x = αxα−1.
Moreover, we have the multiplication

V n ⊗ V m −→ V n+m
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which carries x ⊗ y to x � y. Now associativity of the multiplication holds by
(6.1.2)(2). Moreover, we have

(α • x) � (β • y) = (αxᾱ) � (βyβ̄)
= (α � β)(x � y)(ᾱ � β̄)
= (α � β) • (x � y)

so that (6.1.2)(3) holds. Finally (6.1.3)(4) is satisfied since

τx,y • (x � y) = τx,y(x � y)τ̄x,y

= (y � x)τx,y τ̄x,y

= y � x.

Here we use (6.1.2)(5).

6.1.3 (b) Example. Let V = k̂ be defined by V n = k for n ≥ 0. Then V is
a permutation algebra. Here V n is the Rn-module with the action α • x given
by α • x = x for α ∈ σn. Moreover, the multiplication V n ⊗ V m → V n+m is
multiplication in k which is commutative. Using the augmentation ε : Rn → k for
n ≥ 0 in (6.1.1)(3) we get the map

ε : R∗ −→ k̂

between permutation algebras in Perm(k).

Permutation algebras were also considered in Stover [St]. As in [St] we obtain
the category of R∗-modules as follows.

Let R∗ be a coefficient algebra with interchange elements τm,n ∈ Rm+n as
in (6.2). An R∗-module V is a sequence of (left) Rn-modules V n, n ≥ 0. A map
or an R∗-linear map f : V → W between R∗-modules is given by a sequence of
Rn-linear maps fn : V n → Wn for n ≥ 0. The commutative ring k (concentrated
in degree 0) is an R∗-module. Moreover, using the augmentation ε of Rn, n ≥ 0, we
see that each graded k-module M with Mn = 0 for n < 0 is an R∗-module which
we call an ε-module. For x ∈ Mm we write |x| = m where |x| is the degree of x.

Given R∗-modules V1, . . . , Vk we define the R∗-tensor product V1⊗̄···⊗̄Vk by

(6.1.4) (V1⊗̄ · · · ⊗̄Vk)n =
⊕

n1+···+nk=n

Rn ⊗Rn1⊗···⊗Rnk
V n1

1 ⊗ · · · ⊗ V nk

k

where we use the algebra map � : Rn1 ⊗ . . . ⊗ Rnk
→ Rn given by the structure

of the coefficient algebra R∗ in (6.1.2). One readily checks associativity

(V1,1⊗̄ · · · ⊗̄V1,k1)⊗̄ · · · ⊗̄(Vs,1⊗̄ · · · ⊗̄Vs,ks)
= V1,1⊗̄ · · · ⊗̄V1,k1⊗̄ · · · ⊗̄Vs,1⊗̄ · · · ⊗̄Vs,ks .
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Compare Stover [St] 2.9. Moreover, the interchange element τ in R∗ yields the
isomorphism

T : V ⊗̄W ∼= W ⊗̄V

which carries v ⊗w to τw,vw⊗ v where τw,v = τm,n ∈ Rm+n for w ∈ Wm, v ∈ V n.
Of course we have k⊗̄V = V = V ⊗̄k.

6.1.5 Definition. An algebra A over R∗ is given by a R∗-module A with A0 = k
and Ai = 0 for i < 0 and a R∗-linear map µ : A⊗̄A → A, µ(a⊗ b) = a · b, which is
associative in the sense that the diagram

A⊗̄A⊗̄A
1⊗̄µ ��

µ⊗̄1

��

A⊗̄A

µ

��
A⊗̄A

µ �� A

commutes and has a unit 1 ∈ k = A0. Moreover, A is τ -commutative if

A⊗̄A
µ ��

T

��

A

A⊗̄A
µ �� A

commutes. Then one readily checks that a permutation algebra in (6.1.3) is the
same as a τ -commutative algebra A over R∗, see [BSC].

6.1.6 Definition. Given an algebra A over R∗ we say that an R∗-module V is an
A-module if a map m : A⊗̄V → V is given such that

A⊗̄A⊗̄V

µ⊗̄1

��

1⊗̄µ �� A⊗̄V

µ

��
A⊗̄V

µ �� V

commutes. Hence for a · x = µ(a ⊗ x) with a ∈ A, x ∈ V we have (αa) · (βx) =
(α� β)(a · x) and (a · b) · x = a · (b · x). Moreover, 1 · x = x is satisfied for the unit
1 ∈ k = A0.
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For an R∗-module V let V(k) be the underlying graded k-module. If A is a
k-algebra over R∗, then A(k) is a graded k-algebra in the usual sense with A0

(k) = k.

6.1.7 Lemma. Let A be a permutation algebra and let V be an A-module. Then
V(k) is an A(k)-bimodule by defining

a · x · b = a · τb,x(b · x)

for a, b ∈ A, x ∈ V .

Proof. We write 1x = 1n ∈ Rn for x ∈ V n. Now we have for a, b ∈ A,

(a · x) · b = τb,a·xb · (a · x) = τb,a·x(b · a) · x
= τb,a·x(τa,ba · b) · x
= τb,a·x(τa,b � 1x)(a · b · x),

a · (x · b) = a · τb,x(b · x) = (1a � τb,x)(a · b · x).

Here we have τb,a·x(τa,b �1x) = 1a � τb,x by one of the equations in (6.1.2)(5). �
Recall that each non-negatively graded k-module M is an R∗-module by

use of ε : R∗ → k. Such an R∗-module is termed an ε-module, see (6.1.4). A
permutation algebra A for which A is an ε-module is the same as a commutative
graded algebra over k with A0 = k since we have, by (6.1.3)(4),

(6.1.8)
y · x = ε(τn,m)(x · y)

= (−1)|x||y|x · y.

Moreover, we obtain as a special case of (6.1.7) the well-known lemma:

6.1.9 Lemma. Let H be a commutative graded k-algebra and let M be an H-module.
Then M is an H-bimodule by defining

a · x · b = a · (−1)|b||x|b · x

for a, b ∈ H and x ∈ M .

6.1.10 Definition. Let V be a graded k-module concentrated in degree ≥ 1. Then
the free R∗-module R∗ � V generated by V is given by

(R∗ � V )n = Rn ⊗ V n.

For an R∗-module W we obtain the tensor algebra over R∗ by

T (W ) =
⊕
n≥0

W ⊗̄n

where W ⊗̄0 = k and W ⊗̄n is the n-fold ⊗̄-product W ⊗̄ · · · ⊗̄W defined in (6.1.4).
For the usual tensor algebra T (V ) over k we get

T (R∗ � V ) = R∗ � T (V )
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so that R∗ � T (V ) is the free k-algebra over R∗ generated by V with the multi-
plication

(α ⊗ x) · (β ⊗ y) = α � β ⊗ x · y
for α, β ∈ R∗ and x, y ∈ T (V ). Let

Kτ ⊂ R∗ � T (V ) = A

be the R∗-submodule generated by elements 1⊗ y ·x− τx,y ⊗ x · y for x, y ∈ T (V ).
Then Kτ generates the ideal A · Kτ · A and the R∗-quotient module

Perm(V ) = A/A · Kτ · A

is the free permutation algebra generated by the graded k-module V . That is Perm
is a functor

(6.1.11) Perm : Mod(k)≥1 −→ Perm(k)

where Mod(k)≥1 is the category of graded k-modules concentrated in degree ≥ 1
and Perm(k) is the category of permutation algebras in (6.1.3). Moreover, the
functor Perm is left adjoint to the forgetful functor which carries a permutation
algebra A to Ã = A/A0.

Let W be a k-module (non-graded). Then the permutation group σn acts on
the n-fold tensor product W⊗n by permuting the factors. This action is used in
the following result. Moreover, we have for n, m ≥ 1 the inclusion

σn ⊂ σn·m

which carries a permutation in σn to the corresponding permutation of the blocks
{1, . . . , m}, {m + 1, . . . , 2m}, . . ., {(n − 1)m + 1, . . . , n · m} in σn·m. Hence for
n1 · m1 + · · · + nk · mk = r we get the inclusion

σn1 × · · · × σnk
⊂ σn1·m1 × · · · × σnk·mk

⊂ σr

which yields the ring homomorphism

Rn1 ⊗ · · · ⊗ Rnk
−→ Rr

needed in the following formula.

6.1.12 Proposition. Let V = (V m, m ∈ Z) be a graded k-module concentrated in
degree ≥ 1. Then we have for r ≥ 0,

Perm(V )r =
⊕

Rr ⊗Rn1⊗···⊗Rnk
(V m1)⊗n1 ⊗ · · · ⊗ (V mk)⊗nk .

Here the direct sum is taken over the index set:

n1 · m1 + · · · + nk · mk = r,

1 ≤ m1 < m2 < · · · < mk,

n1, . . . , nk ≥ 0,

k ≥ 0.
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For example, if V is concentrated in degree 1, then

(6.1.13) Perm(V ) = T (V ) =
⊕
n≥0

V ⊗n

is the tensor algebra with the action of σn on V ⊗n by permutation of factors. We
have the natural transformation

(6.1.14) ε : Perm(V ) −→ Λ(V )

where Λ(V ) is the free commutative graded k-algebra generated by V . The trans-
formation is induced by ε. We have

(6.1.15) Λ(V ) = E(V odd) ⊗ S(V even)

where V odd (V even) is the part of V concentrated in odd (even) degrees. Moreover,
E(V odd) denotes the exterior algebra and S(V even) is the symmetric algebra or
polynomial algebra.

Now let A and B be permutation algebras. Then the R∗-tensor product A⊗̄B
is also a permutation algebra with the multiplication

(6.1.16) (a ⊗ b) · (x ⊗ y) = (1 � τx,b � 1)(a · x) ⊗ (b · y).

We have inclusions

i1 : A = A⊗̄k −→ A⊗̄B,

i2 : B = k⊗̄B −→ A⊗̄B.

and one can check:

6.1.17 Lemma. (A⊗̄B, i1, i2) is a coproduct in the category Perm(k) of permutation
algebras.

6.2 Secondary permutation algebras

In (5.1.6) we introduced the notion of a crossed algebra which is the notion “crossed
module” in the context of algebras. We now modify this concept for permutation
algebras as follows. Let k be a commutative ring.

6.2.1 Definition. A crossed permutation algebra (A, ∂) over k is a permutation
algebra A0 as in (6.1.3) together with an A0-module A1 as in (6.1.6) and an
A0-linear map (of degree 0)

∂ : A1 −→ A0

satisfying for x, y ∈ A1 the equation

(∂x) · y = τ∂y,x(∂y) · x.

Here we use the notation in (6.1.4) so that τ∂y,x = τn,m with | y |=| ∂y |= n and
| x |=| ∂x |= m.
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6.2.2 Lemma. A crossed permutation algebra (A, ∂) yields for the underlying k-
modules a crossed algebra

∂ : (A1)(k) −→ (A0)(k)

in the sense of (5.1.6).

Proof. In fact (A0)(k) is a graded algebra over k and (A1)(k) is an (A0)(k)-bimodule
by using the definition in (6.1.7). Hence the equation in (6.2.1) is equivalent to
(∂x) · y = x · (∂y) in a crossed algebra. �
6.2.3 Example. Let f : A0 → B be a map between permutation algebras in
Perm(k) and let A1 = kernel(f). Then the inclusion

∂ : A1 −→ A0

is a crossed permutation algebra. Here A1 is an A0-module by multiplication in
A0. Moreover, we have for x, y ∈ A1

(∂x) · y = τ∂y,x(∂y) · x

since this equation holds in A0, see (6.1.3)(4).

For an R∗-module V let I(R∗)�R∗ V be the R∗-module defined in degree n by

(6.2.4) (I(R∗) �R∗ V )n = I(Rn) ⊗Rn V n

Here we use the Rn-bimodule I(Rn) = kernel(ε : Rn → k). We have the R∗-linear
map

µ : I(R∗) �R∗ V −→ V

which carries a ⊗ x to a · x for a ∈ I(Rn) ⊂ Rn and x ∈ V n.
In addition to the notion of a crossed permutation algebra in (6.2.1) we

need the following concept which is motivated by the properties of secondary
cohomology in Section (6.3).

6.2.5 Definition. A secondary permutation algebra is defined by a commutative
diagram of R∗-linear maps

I(R∗) �R∗ A1
1�∂ ��

µ

��

I(R∗) �R∗ A0

µ

��

µ̄

,,���
���

���
���

���
���

���
��

A1
∂

�� A0

where ∂ is a crossed permutation algebra as in (6.2.1) and for a, b ∈ A0, β ∈ I(R∗)
the equation

a · µ̄(β ⊗ b) = µ̄((1 � β) ⊗ (a · b))
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holds. A map between such secondary permutation algebras is a map as in (6.2.1)
which is compatible with µ̄. Let secalg(k) be the category of secondary permutation
algebras over k.

6.2.6 Remark. Recall the concept of a module over a crossed algebra in (5.1.11)
which has similarities but does not agree with the concept of a secondary permu-
tation algebra above. However, in each degree n a secondary permutation algebra
is a module over the crossed algebra I(Rn) → Rn (concentrated in degree 0).
This generalizes the fact that a permutation algebra in degree n is a module over
Rn (where Rn is also concentrated in degree 0). Compare also the discussion of
secondary modules in [BSC].

Given a permutation algebra A0 we define the A0-bimodule structure of
I(R∗) �R∗ A0 by

(6.2.7)
{

a · (β ⊗ b) = (1 � β) ⊗ (a · b),
(α ⊗ a) · b = (α � 1) ⊗ (a · b).

We have seen in (6.1.7) that an A0-module A1 is also an A0-bimodule.

6.2.8 Lemma. The equation in (6.2.6) is equivalent to the condition that

µ̄ : I(R∗) �R∗ A0 −→ A1

is a map of A0-bimodules.

Proof. The equation in (6.2.6) shows that µ̄ is an A0-linear map of left A0-modules.
Moreover, we get for x = µ̄(α ⊗ a) with | x |=| a | and hence τb,x = τb,a the
equations

µ̄(α ⊗ a) · b = τb,xb · µ̄(α ⊗ a)
= τb,xµ̄((1 � α) ⊗ (b · a))
= µ̄(τb,a(1 � α) ⊗ b · a)
= µ̄((α � 1)τb,a ⊗ b · a)
= µ̄((α � 1) ⊗ τb,ab · a)
= µ̄((α � 1 ⊗ a · b)
= µ̄((α ⊗ a) · b). �

Similarly as in (6.2.2) we now get

6.2.9 Lemma. A secondary permutation algebra A yields for the underlying k-
modules a crossed algebra A(k),

∂(k) : (A1)(k) −→ (A0)(k)

in the sense of (5.1.6), such that

H = π0A(k) = cokernel(∂(k))
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is a commutative graded k-algebra and

D = π1A(k) = kernel(∂(k))

is an H-bimodule with the H-bimodule structure in (6.1.8).

Hence secondary permutation algebras are “appropriate resolutions” of com-
mutative graded algebras like the cohomology of a space, while crossed algebras
as in (5.1.6) are “resolutions” for graded algebras in general.

6.2.10 Definition. Let A be a permutation algebra and let V be a k-module con-
centrated in degree ≥ 1 and let

d : V −→ A

be a k-linear map of degree 0. Then the free secondary permutation algebra A(d)
generated by d is defined by the following universal property. We have A(d)0 = A

and V
i−→ A(d)1 with ∂i = d and for each commutative diagram of k-linear maps

V
ᾱ1 ��

d

��

B1

∂

��
A

α0 �� B0

where B = (∂ : B1 → B0) ∈ secalg and α0 ∈ Perm, there is a unique map
α = (α0, α1) : A(d) → B in secalg for which α1 extends ᾱ1, that is, the following
diagram commutes.

V

i

�
��

��
��

��
��

��
��

��
ᾱ1

��

d

--

A(d)1
α1 ��

∂

��

B1

∂

��
A(d)0

α0 �� B0

6.2.11 Proposition. The free secondary permutation algebra A(d) exists.
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Proof. We construct A(d)1 and ∂ as follows. Recall the definition of R∗ � V in
(6.1.10). Then we first obtain the following push out diagram in the category of
R∗-modules.

I(R∗) � V
1�d ��

i�1 push

��

I(R∗) �R∗ A

i′

�� µ

!!

R∗ � V ��

d′′

..

Y

d′

��




































A

Here d′′ is defined by d′′(α ⊗ x) = α · d(x). The pair (µ, d′′) induces the R∗-linear
map d′ which thus determines the map of A-modules ∂′ and ∂ in the following
commutative diagram.

I(R∗) �R∗ A

µ̄

$$��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

i′

��

µ �� A

Y

i′′

��

d′
�� A

A⊗Y

��

∂′
�� A

A(d)1 A⊗Y/U
∂ �� A

Here i′′ is defined by i′′(y) = 1 ⊗ y and ∂′ is defined by ∂′(a ⊗ y) = a · d′(y). Let
U be the A-submodule of A⊗Y generated by the elements

(∂′x) · y − τ∂′y,x(∂′y) · x,

a · j(β ⊗ b) − j(1 � β ⊗ a · b), with j = i′′i
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with x, y ∈ A⊗Y and a, b ∈ A, β ∈ I(R∗). One readily checks that U is in the kernel
of ∂′ so that ∂′ induces the A-module map ∂ on the quotient A(d)1 = A⊗Y/U .

Now one can check that (A(d), ∂, µ̄) is a well-defined secondary permutation
algebra with the universal property in (6.2.10). �

6.3 Secondary cohomology as a secondary
permutation algebra

Let k be a commutative ring and let Top∗
0 be the category of path-connected

pointed spaces and pointed maps. We define the secondary cohomology functor

(6.3.1) H∗ : (Top∗
0)

op −→ secalg(k).

Here the right-hand side is the category of secondary permutation algebras over k
in (6.2.5). For the ring k we have Eilenberg-MacLane spaces

Zn = K(k, n)

defined in Section (2.1). Then a space X in Top∗
0 yields Hn(X) = Hn(X, k) as in

(2.2.10) by

(1) Hn(X)1 = [[X, Zn]]01
∂−→ [[X, Zn]]0 = Hn(X)0

with n ≥ 1. Moreover, let Hi(X)1 = 0 for i ≤ 0 and H0(X)0 = k and H1(X)0 = 0
for i < 0. By construction of Zn in (2.1.4) the permutation group σn acts via
k-linear maps on Zn. Therefore Hn(X)1 and Hn(X)0 are Rn-modules and ∂ is
Rn-linear for n ≥ 0. Here Rn = k[σn] is the group algebra. The multiplication
map

µ = µm,n : Zm × Zn −→ Zm+n

in (2.1.1) is k-bilinear and (σm × σn ⊂ σm+n)-equivariant and satisfies µn,mT =
τµm,n by (2.1.2). Therefore H∗(X) is a crossed permutation algebra as in (6.2.1)
with multiplication induced by µn,m. That is, for x ∈ Hm(X)0, y ∈ Hn(X)0 we
define

(2) x · y = µm,n(x, y) : X −→ Zm × Zn −→ Zm+n.

Moreover, for a ∈ Hm(X)1, b ∈ Hn(X)1 we define similarly a · y = µm,n(a, y) and
x · b = µm,n(x, b). One readily checks that (H∗(X), ∂) is a well-defined crossed
permutation algebra. Moreover, H∗(X) is a secondary permutation algebra, as in
(6.2.8), by the map

(3) µ̄ : I(Rn) �R Hn(X)0 −→ Hn(X)1

defined as follows. We know that the mapping groupoid [[Zn, Zn]] has contractible
connected components, see (3.2.5). Moreover, the action of σn on Zn yields the
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k-linear map Rn → [[Zn, Zn]]0 which carries σ ∈ σn to σ · 1Zn . Here the homotopy
class of σ is given by ε(σ) = sign(σ) ∈ {1,−1}, see (2.1.3). Therefore there is a
unique track

(4) Γσ : σ · 1Zn =⇒ ε(σ) · 1Zn

where 1Zn is the identity on Zn. We call Γσ the permutation track of σ ∈ Rn. The
k-module structure of Zn yields

(5) Γσ−εσ = Γσ − ε(σ) · 1Zn : (σ − εσ) · 1Zn =⇒ 0

and we define µ̄ in (3) by composition of x and Γσ−εσ, that is

(6) µ̄((σ − εσ) ⊗ x) = Γσ−εσ ◦ x

for (x : X → Zn) ∈ Hn(X)0. For elements x, y as in (2) we obtain the interchange
track by use of (4), that is,

(7)
T (x, y) : x · y =⇒ (−1)|x||y|y · x,

T (x, y) = Γτ(y,x) ◦ (y · x) ∈ [[X, Z |x|+|y|]].

Here τ(y, x) is the interchange permutation with τ(y, x) · y · x = x · y.

6.3.2 Lemma. (H∗(X), ∂, µ̄) is a well-defined secondary permutation algebra.

This shows that we have a well-defined functor H∗ as in (6.3.1).

Proof. The diagram in (6.2.8) commutes since

(1) ∂µ̄((σ − εσ) ⊗ x) = (∂Γσ−εσ) ◦ x = (σ − εσ) · x

and since for a ∈ H∗(X)1 we have:

(2)

µ̄(1 � ∂)((σ − εσ) ⊗ a) = Γσ−εσ ◦ ∂a

= (∂Γσ−εσ) ◦ a, see (5.1.5)(3),

= (σ − εσ) · a.

Moreover, the equation in (6.2.8) holds since

a · µ̄((σ − εσ) ⊗ b) = a · (Γσ−εσ ◦ b),(3)
µ̄((1 � (σ − εσ)) ⊗ (a · b)) = Γ1�(σ−εσ) ◦ (a · b).(4)

Here ◦ is composition and · is multiplication defined in (6.3.1)(2). Now (3) coincides
with (4) since for µ : Zm ∧ Zn → Zm+n in (2.1.5) we have:

(5) µ ◦ (1Zm ∧ Γσ−εσ) = Γ1�(σ−εσ) ◦ µ.

In fact, both sides are tracks

(1 � (σ − εσ))µ =⇒ 0

in [[Zm ∧ Zn, Zm+n]] and this track is unique by (3.2.5). �
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6.4 Induced homotopies

Let f, g : X → Y be maps in Top∗
0 and let H : f ⇒ g be a track. Then we obtain

the diagram

H∗(Y )1
f∗
1 ,g∗

1 ��

∂

��

H∗(X)1

∂

��
H∗(Y )0

f∗
0 ,g∗

0 �� H∗(X)0

where f∗ = (f∗
0 , f∗

1 ) and g∗ = (g∗0 , g∗1) are maps H∗(Y ) → H∗(X) in the category
secalg(k).

Now the track H : f ⇒ g defines the induced R∗-linear map

(6.4.1)
H∗ : H∗(Y )0 −→ H∗(X)1,
H∗(x) = x ◦ H − x ◦ g.

We have the following formulas:

(1)

∂H∗(x) = ∂(x ◦ H − x ◦ g)
= x ◦ f − x ◦ g

= f∗
0 (x) − g∗0(x)

= (f∗
0 − g∗0)(x).

Using (2.3.1) we get for a ∈ H∗(X)1,

(2)
a ∗ H = (0H)�(af)

= af

= (ag)�(∂a)H.

Therefore H∗ in (6.4.1) satisfies

H∗(∂a) = (∂a)H − (∂a)g
= ((ag)op�af) − (∂a)g
= ((ag)op − (∂a)g)�(af − (∂a)g)
= (−ag)�(af − (∂a)g) (2.2.6)
= −ag + af (2.2.6)
= f∗

1 (a) − g∗1(a).
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Next we consider for the diagonal map ∆ the commutative diagram

Y
f ��

∆

��

X

∆

��
Y × Y

f×f �� X × X

and the track H × H : f × f ⇒ g × g with ∆H = (H × H)∆. Here we have

H × H = (g × H)�(H × f)
= (H × g)�(f × H).

For x, y ∈ H∗(Y )0 w get the product x · y = µ(x × y)∆. Hence we have

H∗(x · y) = (x · y)H − (x · y)g
= µ(x × y)∆H − (x · y)g
= µ(x × y)((H × g)�(f × H))∆ − (xg) · (yg)
= (µ(x × y)(H × g)∆)�(µ(x × y)(f × H)∆) − (xg) · (yg)
= (xH · yg)�(xf · yH) − xg · yg

= ((H∗x + xg) · yg)�(xf · (H∗(y) + yg)) − xg · yg

= H∗x · yg + xg · yg)︸ ︷︷ ︸
A

� (xf · H∗(y) + xf · yg)︸ ︷︷ ︸
B

−xg · yg.

Thus we get

(3)
H∗(x · y) = (A − xg · yg)�(B − xg · yg)

= (H∗x · yg)�(xf · H∗y + xf · yg − xg · yg)
= (H∗x · yg) + (xf · H∗y), see (2.2.6)(3).

Finally, we consider the connection of H∗ and µ̄ in (6.3.1)(3). For the tracks

X
xf−xg ��

0

��Z
n

σ−εσ ��

0

��Z
n

H∗x
��

Γσ−εσ

��

we get the formula

(4)
(σ − εσ)H∗x = (Γσ−εσ)(xf − xg)

= µ̄((σ − εσ) ⊗ (xf − xg)).
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Hence the following diagram commutes.

I(R∗) �R∗ H∗(Y )0
1�H∗

��

1�(f∗
0 −g∗

0 )

��

I(R∗) �R∗ H∗(X)1

µ

��
I(R∗) �R∗ H∗(X)0

µ̄ �� H∗(X)1

The properties of H∗ above lead to the following definition:

6.4.2 Definition. Let f = (f0, f1) and g = (g0, g1) be maps (A, ∂) → (B, ∂) be-
tween secondary permutation algebras in the category secalg(k) in (6.2.8). A ho-
motopy or track H : f ⇒ g is an R∗-linear map

H : A0 −→ B1

with the following properties (x, y ∈ A0):

(1) ∂H = f0 − g0,

(2) H∂ = f1 − g1,

(3) H(x · y) = (Hx) · (g0y) + (f0x) · (Hy),

(4) and the following diagram commutes.

I(R∗) �R∗ A0
1�H ��

1�(f0−g0)

��

I(R∗) �R∗ B1

µ

��
I(R∗) �R∗ B0

µ̄ �� B1

Here property (4) is redundant so that a homotopy is an R∗-linear map
satisfying (1), (2) and (3). In fact, since B is a secondary permutation algebra we
have by (6.2.5) the equation (ξ ε I(Rq), x εA0, |x |= q),

ξ · H(x) = µ̄(ξ � ∂H(x)) = µ̄(ξ � (f0 − g0)(x))

and hence diagram (4) commutes.
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6.4.3 Proposition. The category secalg(k) with tracks as in (6.4.2) is a track cat-
egory [[secalg(k)]] as in (2.3.1).

Proof. The composition of tracks H : f ⇒ g and G : g ⇒ h is given by the sum

G�H = G + H

and the trivial track 0� of f is the trivial map 0 : A0 → B1. Composition is
defined by

H ◦ a = H ◦ a0,

b ◦ H = b1 ◦ H.

Now one readily checks the properties in (2.3.1). �
6.4.4 Theorem. Secondary cohomology H∗ is a track functor (2.3.6) from the track
category [[Top∗

0]]
op to the track category [[secalg(k)]] above. This functor carries a

track H : f ⇒ g in Top∗ to the track H∗ : f∗ ⇒ g∗ in (6.4.1).

Hence we have the induced functor between homotopy categories

(6.4.5) H∗ : (Top∗
0/ �)op −→ secalg(k)/ � .

Therefore the homotopy type of H∗(X) = H∗(X, k) is an invariant of the homotopy
type of X . This invariant also carries some information on Steenrod squares for
k = F = Z/2 as we see in the next section.

6.5 Squaring maps

Let A = (∂ : A1 → A0) be a secondary permutation algebra over the commutative
ring k as in (6.2.5) with

µ̄ : I(R∗) �R∗ A0 −→ A1.

Then we have the exact sequence

0 −→ π1(A) −→ A1
∂−→ A0 −→ π0(A) −→ 0.

Here π1(A) = kernel(∂) and π0(A) = cokernel(∂) are graded k-modules. The
following result defines the squaring map Sq for A. Let τn,n ∈ σ2n be defined as
in (6.1.2)(4) with sign(τn,n) ∈ k.

6.5.1 Proposition. Let n ≥ 1 with sign(τn,n) = 1. Then there is a well-defined
k-linear map

Sq : π0(A)n −→ π1(A)2n

which carries the element {x} ∈ π0A represented by x ∈ An
0 to

µ̄((τn,n − 1) ⊗ (x · x)) ∈ π1A.

Moreover, we get 2Sq = 0.
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For example if n is even we have for τ = τn,n the equation ε(τ) = sign(τ) =
(−1)n·n = 1.

Proof. We have τ − 1 ∈ I(R∗) and we have

(1)

∂µ̄((τ − 1) ⊗ (x · x)) = (τ − 1)(x · x)
= τ(x · x) − x · x
= x · x − x · x
= 0.

since τ(x · x) = x · x by (6.1.3)(4). Therefore Sq(x) = µ̄((τ − 1)⊗ (x · x)) ∈ π1(A).
Now let y = x+∂a for a ∈ A1. We have to show Sq(x) = Sq(y). This is equivalent
to ∆ = 0 where

(2) ∆ = µ̄((τ − 1) ⊗ (x · b + b · x + b · b))

with b = ∂a. We have ττ = 1 so that

0 = ττ − 1 = (τ − 1)τ + (τ − 1).

Hence we get

(3)

0 = µ̄(((τ − 1)τ + (τ − 1)) ⊗ (b · x))
= µ̄(τ − 1) ⊗ τ(b · x)) + µ̄((τ − 1) ⊗ b · x)
= µ̄(τ − 1) ⊗ x · b) + µ̄((τ − 1) ⊗ b · x)
= µ̄((τ − 1) ⊗ (x · b + b · x)).

Moreover, we get for b = ∂a the formula

∂(b · a) = b · (∂a) = b · b

so that

(4)

µ̄((τ − 1) ⊗ (b · b)) = µ̄((τ − 1) ⊗ ∂(b · a))
= (τ − 1)(b · a)
= τ(∂a) · a − (∂a) · a
= 0, see (6.2.1).

By (3) and (4) we see that ∆ in (2) is trivial so that Sq in (6.5.1) is a well-defined
function.

For r ∈ k we get

(5)
Sq(r · x) = µ((1 − τ) ⊗ (rx · rx))

= r2µ((1 − τ) ⊗ (x · x))
= r2Sq(x).
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Moreover, for x, y ∈ An
0 we get

(6)
Sq(x + y) = µ((1 − τ) ⊗ (x + y) · (x + y))

= Sq(x) + Sq(y) + µ((1 − τ) ⊗ (x · y + y · x))
= Sq(x) + Sq(y).

Here we use the argument in (3) where we replace b by y. Now we have Sq(0) = 0
and 0 = Sq(a−a) = Sq(a)+Sq(−a) where Sq(−a) = (−1)2Sq(a) = Sq(a) by (5).
Therefore 2Sq = 0. �

For A = H∗(X) in (6.3.1) we have

π0H∗(X) = H∗(X),
π1H∗(X) = ΣH̃∗(X),

where H∗(X) is the cohomology ring of X . In this case we get:

6.5.2 Theorem. For F = Z/2 the ε-crossed permutation algebra H∗(X) yields by
(6.5.1) the squaring map

Sq : Hn(X) −→ (ΣH̃∗X)2n = H2n−1(X)

which coincides with the Steenrod square Sqn−1 for n ≥ 1.

Proof. This is a consequence of (4.5.8). In fact the map

α : Zn ∆−→ Zn × Zn µn,n−→ Z2n

which carries z ∈ Zn to z ·z represents the Steenrod square Sqn by (K2) in (1.1.7).
For the stable map α we have the track Γα in (4.2.1) as in the diagram

Zn × Zn α×α ��

+

��

Γα=⇒

Z2n × Z2n

+

��
Zn

α
�� Z2n

which for x : X → Zn yields Γx,x
α = Γα(x, x) : α(2x) = 0 ⇒ 2α(x) = 0 and we

know by (4.5.8) that Γx,x
α = Γ[2](x) is given by Sqn−1(x). On the other hand we

get for y, z ∈ Zn the formulas

(α+)(y, z) = α(y + z)
= (y + z) · (y + z)
= y2 + z2 + yz + zy,

+(α × α)(y, z) = αy + αz

= y2 + z2.
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Here we have zy = τn,nyz so that for τ = τn,n the track Γτ : τ ⇒ ε(τ) = 1 in
(6.3.1)(4) yields the track

Γτyz : zy = τyz =⇒ yz

and hence the track

yz + Γτyz : yz + zy =⇒ yz + yz = 0.

Therefore the track Γα above coincides with the track Γ̄α where

Γ̄α(y, z) = y2 + z2 + yz + Γτyz : (α+)(y, z) =⇒ +(α × α)(y, z)

since i∗1Γ̄α = 0�
α and i∗2Γ̄α = 0�

α . Here we use the uniqueness in (4.2.1) and
[Zn ∧ Zn, ΩZ2n] = 0. On the other hand we have

Γ̄α(x, x) = x2 + x2 + x2 + Γτx2

= −x2 + Γτx2

= (Γτ − 1) ◦ x2

= (Γτ−1) ◦ x2, since Γτ − 1 = Γτ−1,

= µ̄((τ − 1) ⊗ x2)
= Sq(x).

This proves the result. �

6.6 Secondary cohomology of a product space

We have seen in (6.1.17) that A0⊗̄B0 is the coproduct in the category Perm(k). If
U is an A0-module and W is a B0-module as in (6.1.6), then U⊗̄W is an A0⊗̄B0-
module by

(6.6.1) (a ⊗ b) · (u ⊗ w) = (1 � τu,b � 1)(a · u ⊗ b · w).

Now let A and B be crossed permutation algebras as in (6.2.1). Then X0 = A0⊗̄B0

is a permutation algebra and by (6.6.1) A1⊗̄B1, A0⊗̄B1 and B0⊗̄A1 are X0-
modules. We obtain the chain complex of X0-modules and X0-linear maps:

(6.6.2) A1⊗̄B1
d2−→ A0⊗̄B1 ⊕ B0⊗̄A1

d1−→ A0⊗̄B0,

d2(a ⊗ b) = (∂a) ⊗ b − τb,a(∂b) ⊗ a,

d1(x ⊗ b) = x ⊗ (∂b),
d1(y ⊗ a) = τa,y((∂a)⊗̄y),
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for a ∈ A1, x ∈ A0 and b ∈ B1, y ∈ B0. We have d1d2 = 0 since

d1d2(a ⊗ b) = d1((∂a) ⊗ b − τb,a(∂b) ⊗ a)
= (∂a) ⊗ (∂b) − τb,aτ∂a,∂b(∂a) ⊗ (∂b)
= 0.

Here we see τ∂a,∂b = τa,b and τb,aτa,b = 1. The chain complex above yields the
X0-module

(1) X1 = (A⊗̄B)1 = cokernel(d2)

and d1 induces the X0-linear map

(2) A⊗̄B = (∂ : (A⊗̄B)1 −→ (A⊗̄B)0 = A0⊗̄B0).

6.6.3 Proposition. A⊗̄B is a well-defined crossed permutation algebra which is the
coproduct of A and B in the category of crossed permutation algebras.

Proof. We have to check that ∂ : X1 → X0 satisfies the formula in (6.2.1), that is,
for u, v ∈ X1 we have

(1) (∂u) · v = τv,u(∂v) · u.

In fact for u = x ⊗ b, v = x′ ⊗ b′ we prove (1) as follows.

(2)

(∂u) · v = (x ⊗ ∂b) · (x′ ⊗ b′)
= (1 � τx′,b � 1)(x · x′ ⊗ (∂b) · b′)
= (1 � τx′,b � 1)(τx′,x � τb′,b)(x′ · x ⊗ (∂b′) · b)
= (1 � τx′,b � 1)(τx′,x � τb′,b)(1 � τ∂b′,x � 1)(x′ ⊗ ∂b′)(x ⊗ b)
= τv,u(∂v) · u.

In a similar way we prove (1) for u = y⊗a and v = y′⊗a′. Moreover for u = x⊗ b
and v = y ⊗ a we get

(3)

(∂u) · v = (x ⊗ ∂b) · (y ⊗ a)
= (1 � τy,b � 1)(x · y ⊗ (∂b) · a)
= (1 � τy,b � 1)(τy,x � τa,b)(y · x ⊗ (∂a) · b)
= (1 � τy,b � 1)(τy,x � τa,b)(1 � τa,x � 1)(y ⊗ ∂a) · (x ⊗ b)
= τv,u(∂v) · u.

This completes the proof of (1) and hence A⊗̄B is a well-defined crossed permu-
tation algebra. The inclusions

i1 : A = A⊗̄k −→ A⊗̄B,

i2 : B = k⊗̄B −→ A⊗̄B
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are defined by k ⊂ A and k ⊂ B respectively. Moreover maps f : A → D and
g : B → D between crossed permutation algebras yield a unique map

(4) (f, g) : A⊗̄B −→ D

with (f, g)i1 = f and (f, g)i2 = g. We obtain

(5) (f, g)0 = (f0, g0) : A0⊗̄B0 −→ D0

by (6.1.17). Moreover we define (f, g)1 : (A⊗̄B)1 → D1 by

(6) (f, g)1(x ⊗ b) = (f0x) · (g1b),
(f, g)1(y ⊗ a) = (g0y) · (f1a).

One can check that (f, g) is (f, g)0-equivariant and that ∂(f, g)1 = (f, g)0∂ so that
the map (f, g) is well defined. �

Now let A and B be secondary permutation algebras with

µ̄A : I(R∗) �R∗ A0 −→ A1,

µ̄B : I(R∗) �R∗ B0 −→ B1

as in (6.2.5). Then we obtain the following diagram where A⊗̄B is the coproduct
of the underlying crossed permutation algebras, see (6.6.3).
(6.6.4)

A0⊗̄(I(R∗) �R∗ B0) ⊕ B0⊗̄(I(R∗) �R∗ A0)
µ̃ ��

q̃

��

push

(A⊗̄B)1

q

��
I(R∗) �R∗ (A0⊗̄B0)

µ̄ �� (A ¯̄⊗ B)1

This is a push out diagram of (A0⊗̄B0)-modules and A0⊗̄B0-linear maps. The
map µ̃ is defined by A0⊗̄µB ⊕ B0⊗̄µA, see (6.6.2), and q̃ is defined by

(1)
q̃(a ⊗ (λ ⊗ b)) = (1 � λ) ⊗ (a ⊗ b),
q̃(b′ ⊗ (λ′ ⊗ a′)) = (λ′ � 1) ⊗ (a′ ⊗ b′),

with a ∈ A0, λ⊗ b ∈ I(R∗)�R∗ B0 and b′ ∈ B0, λ′⊗a′ ∈ I(R∗)⊗R∗ A0. The maps

(2)

{
∂ : (A⊗̄B)1 −→ (A⊗̄B)0 = A0⊗̄B0,

µ : I(R∗) ⊗R∗ (A0⊗̄B0) −→ A0⊗̄B0,

satisfy ∂µ̃ = µq̃ so that one obtains by (∂, µ) the induced map

∂ : (A⊗̄B)1 −→ (A ¯̄⊗ B)0 = A0⊗̄B0.
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6.6.5 Proposition. (A ¯̄⊗ B, ∂, µ̄) is a well-defined secondary permutation algebra
which is the coproduct of A and B in the category secalg(k). Moreover we have
the natural isomorphism of commutative graded algebras

π0(A ¯̄⊗ B) = π0A ⊗ π0B

and there is a natural map of π0A ⊗ π0B-modules

i1 : πoA ⊗ π1B ⊕ π1A ⊗ π0B −→ π1(A ¯̄⊗ B).

Let X and Y be path-connected pointed spaces and let X×Y be the product
space. The projections p1 : X × Y → X and p2 : X × Y → Y induce maps

p∗1 : H∗(X) −→ H∗(X × Y ),
p∗2 : H∗(Y ) −→ H∗(X × Y ),

which in turn yield the binatural map in secalg(k)

(6.6.6) j = (p∗1, p
∗
2) : H∗(X) ¯̄⊗H∗(Y ) −→ H∗(X × Y )

where the left-hand side is the coproduct in (6.6.5). The Künneth theorem shows
for a field k that the map j induces an isomorphism j0 = π0(j).

(1) π0(H∗(X) ¯̄⊗H∗(Y ))
j0 �� π0H∗(X × Y )

(π0H∗(X)) ⊗ (π0H∗(Y ))

H∗(X) ⊗ H∗(Y ) H∗(X × Y )

Moreover the map j induces the map j1 = π1(j) for which the following diagram
commutes,
(2)

π1(H∗(X) ¯̄⊗H∗(Y ))
j1 �� π1H∗(X × Y )

ΣH̃∗(X × Y )

(ΣH̃∗(X)) ⊗ H∗(Y ) ⊕ H∗(X) ⊗ (ΣH̃∗(Y ))

i1

��

j̃1

�� Σ(H∗(X) ⊗ H∗(Y ))̃

Here j̃1 is defined by j̃1(Σx⊗ y) = Σ(x⊗ y) and j̃1(x⊗Σy) = (−1)|x|Σ(x⊗ y) and
i1 is the map in (6.6.5). For the algebra H = H∗X ⊗ H∗Y the map j1 = π1(j) in
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(2) is an H-linear map between H-modules which is natural in X and Y . Diagram
(2) shows that j1 = π1(j) is surjective.

Using the push forward induced by j1 = π1(j) we obtain the map in secalg(k)

(3) (j1)∗(H∗(X) ¯̄⊗H∗(Y )) ∼−→ H∗(X × Y )

which for a field k is a weak equivalence (i.e., induces isomorphisms in π0 and π1).
Therefore up to weak equivalence the secondary permutation algebra H∗(X × Y )
is determined by H∗(X), H∗(Y ) and the map j1 in (2). This is a kind of secondary
Künneth theorem. The computation of j1 remains unclear.



Chapter 7

The Borel Construction
and Comparison Maps

We first describe properties of the Borel construction on the classifying space of a
group G. Then we introduce comparison maps between Borel constructions with
fiber an Eilenberg-MacLane space. In the next chapter we deduce from comparison
maps the power maps between Eilenberg-MacLane spaces.

7.1 The Borel construction

For a discrete group G the universal covering

p : EG −→ BG

for the classifying space BG can be chosen to be a functor in G, that is, a homo-
morphism a : G → π between groups induces a commutative diagram in Top∗.

(7.1.1) EG
Ea ��

��

Eπ

��
BG

Ba �� Bπ

Moreover EG → BG is compatible with products of groups G = G1 × G2, BG =
BG1×BG2, EG = EG1×EG2. For a G-space X we obtain the Borel construction

(7.1.2) p : E = EG ×G X → BG

which is a fibration in Top with fibre X = p−1(∗). We obtain E by the quotient
space

(1) EG ×G X = EG × X/ ∼
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with (x̃, αw) ∼ (x̃α, w) for α ∈ G, w ∈ X and x̃ ∈ EG. Given x ∈ BG let x̃ ∈ EG
be a point with p(x̃) = x. If the G-space X has a fixpoint ∗ we obtain a section

(2) o : BG → EG ×G X

with o(x) = (x̃, ∗). We say that EG ×G X is good if the inclusion

(3) i : X ∨ BG → EG ×G X

is a closed cofibration in Top. Here X ∨BG is the one-point union and i|X is the
inclusion of the fiber and i|BG = o. For example, EG ×G X is good if X is a
CW-complex with a cellular action of G and zero cell ∗. In fact, then EG×G X is
a CW-complex and i in (3) is the inclusion of a subcomplex.

The Borel construction is functorial in the following sense. Let a : G → π be
a homomorphism between groups and let X be a G-space and let Y be a π-space
and let f : X → Y be an a-equivariant map, that is, f(α · w) = a(α) · f(w)
for α ∈ G, w ∈ X . Then we obtain the induced map f# for which the following
diagram commutes.

(7.1.3) EG ×G X
f# ��

��

Eπ ×π Y

��
BG

Ba �� Bπ

Here f# carries (x̃, w) to ((Ea)x̃, fw). If f carries a fixpoint ∗ ∈ X to a fixpoint
∗ ∈ Y , then f#o = o(Ba) for the section o above.

The Borel construction is compatible with products in the following sense.
Let X, Y be G-spaces so that the product X × Y is a G-space with the diagonal
action α(w, v) = (αw, αv) for α ∈ G, w ∈ X , v ∈ Y . Then the Borel constructions
EX

G = EG×G X , EY
G = EG×G Y and EX×Y

G = EG ×G (X × Y ) are defined and
we get

(7.1.4) EX×Y
G = EX

G ×BG EY
G

so that EX×Y
G is a product in TopBG. If X and Y have G-fix points ∗, then X ∨Y

is a G-subspace of X × Y and the smash product X ∧ Y is a G-space. Moreover
the Borel construction EX∧Y

G = EG ×G (X ∧ Y ) is a smash product in TopBG
BG,

that is

(7.1.5) EX∧Y
G = EX

G ∧BG EY
G .

Here the right-hand side is defined by the push out in Top

EX
G ∪BG EY

G
��

��
push

EX
G ×BG EY

G

��
BG �� EX

G ∧BG EY
G

with EX
G ∪BG EY

G being the push out of EX
G

o← BG
o→ EY

G .
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Using the compatibility of the Borel construction with products in (7.1.4)
we get

7.1.6 Lemma. If X is a topological group and G acts via automorphisms of the
topological group X then EG×G X → BG is a group object in TopBG, see (3.1.6).

The multiplication µ : X ×X → X induces the multiplication µ# : EX
G ×BG

EX
G = EX×X

G → EX
G .

7.1.7 Proposition. Let X and Y be topological groups and assume the discrete group
G acts on X (resp. Y ) via automorphisms of the topological group. Let f : X → Y
be a G-equivariant map and a homomorphism of topological groups. If X and Y
are CW-spaces and f is a weak homotopy equivalence, then

f� = EG ×G f : EG ×G X → EG ×G Y

is a homotopy equivalence under and over BG.

Proof. Also EG ×G X and EG ×G Y are CW-spaces and f� is a weak homotopy
equivalence which thus is a homotopy equivalence. Hence we can apply Lemma
(3.1.7) since f� is also a homomorphism of group objects in TopBG. �

We recall from 5.2.4 Baues [BOT] the following result on cohomology groups
with local coefficients. Let A be an abelian group. Then a pointed CW-space X is
an Eilenberg-MacLane space of type K(A, n) or a K(A, n)-space if πnX = A and
πjX = 0 for j �= n. We also write in this case X = K(A, n).

Assume now that K(A, n) is a G-space with fixpoint ∗. Then A is a G-module
denoted by Ã and we have the Borel construction L(Ã, n) = EG ×G K(A, n)
yielding the fibration

(7.1.8) K(A, n) −→ L(Ã, n)
p−→ BG

as in Baues [BOT] p. 300. We consider a closed cofibration V ⊂ W between pointed
connected CW-spaces and a commutative diagram.

V
o(ϕ|V ) ��

��

L(Ã, n)

��
W

ϕ �� BG

Recall that [W, L(Ã, n)]VBG is the set of homotopy classes of maps W →
L(Ã, n) under V and over BG. According to 5.2.4 Baues [BOT] we have the
isomorphism

(7.1.9) [W, L(Ã, n)]VBG
∼= Hn(W, V ; ϕ∗Ã).

Here ϕ∗Ã is the π1(W )-module induced by π1(ϕ) : π1W → π1BG = G and the
right-hand side is the cohomology with local coefficients in ϕ∗Ã.
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The pair (W, V ) is n-connected if πj(W, V ) = 0 for j ≤ n. This is the case
if and only if there is a homotopy equivalence of pairs (W, V ) � (W, V ) where W
is a CW-complex with subcomplex V such that V contains the n-skeleton W

n
so

that the complement W − V has only cells in dimension > n.
Let π be a group and let Y be a π-space with fixpoint ∗. We consider for

i = 0, 1 a commutative diagram of the form

Y
f̃i ��

��

K(A, n)

��
Bπ

o �� Eπ ×π Y

��

fi �� L(Ã, n)

��

BG
o��

Bπ
d �� BG

with fio = do so that fi is a map under Bπ and over BG. The next result
generalizes Corollary (3.2.5); many constructions of tracks in this book rely on
this result.

7.1.10 Proposition. Let Eπ ×π Y be good as in (7.1.2)(3) and let Y be an (n− 1)-
connected CW-space, n ≥ 1. If there is a homotopy in Top∗

H̃ : f̃0 � f̃1, H̃ : IY → K(A, n),

then there exists a homotopy H : f0 � f1 under Bπ and over BG and the track
f0 � f1 under Bπ and over BG is unique. Moreover H can be chosen to be an
extension of H̃. If f̃0 = f̃1 there is a unique track f0 � f1 under Bπ ∨ Y and over
BG. This shows that the groupoid

[[Eπ ×π Y, L(Ã, n)]]Bπ∨Y
BG

is contractible.

7.1.11 Addendum. Assume only f0 and a homotopy H̃ : f̃0 � f̃1 in Top∗ with
H̃t : Y → K(A, n) are given as above. Then there exists f1 with f̃1 = f1|Y and an
extension H : f0 � f1 of H̃ where Ht is a map under Bπ and over BG.

Proof of (7.1.10). Let E = Eπ×π Y and L = L(Ã, n). Then we have the following
commutative diagram.

E0 = I(Y ∨ Bπ) ∪ E ∪ E
k ��

j

��

L

p

��
IE

dpq �� BG
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Here j is the inclusion j = (I(i), i0, i1) (see (1.2.4)) and k is the map given by
(f0, f1) on E∪E and odq : IBπ → L and by the homotopy H̃ : IY → K(A, n) ⊂ L.

The map p is a fibration and the map j is a cofibration. Hence we can apply
obstruction theory as in Theorem 5.4.3 in Baues [BOT].

The pair (IE, E0) is readily seen to be (n+1)-connected and the obstructions
are in Hm+1(IE, E0, π̃mK(A, n)) which is the zero group for all m. This shows
that there is a map H : IE → L with pH = dpq and Hj = k as required in the
lemma. In a similar way one checks uniqueness of H . For this we consider two such
homotopies H, H ′ : f0 � f1 under Bπ and over BG which yield the commutative
diagram

I(IBπ ∪ E ∪ E) ∪ IE ∪ IE
k′

��

j′

��

L

p

��
IIE

dpqq �� BG

with j′ = (Ij′′, i0, i1) and j′′ = (Io, i0, i1) and k′ = (k′′, H, H ′) and k′′ =
(odq, f0, f1)q. Here j′ is again (n + 1)-connected and obstruction theory yields
a map F : IIE → L with pF = dpqq and Fj′ = k′. This implies the uniqueness of
H up to homotopy.

Finally we prove the addendum by the commutative diagram

I(Y ∨ Bπ) ∪ E
k′′

��

j′′

��

L

p

��
IE

dpq �� Bπ

with j′′ = (I(i), i0) and k′′ being restrictions of j and k respectively. Since j′′ is a
homotopy equivalence we again obtain by obstruction theory a map H : IE → L
with Hj′′ = k′′ and pH = dpq. �

7.2 Comparison maps

We have seen in Section (2.1) that the Eilenberg-MacLane space Zn is a topologi-
cal R-module and that the symmetric group σn acts on Zn via R-linear automor-
phisms. Given a homomorphism i : G → σn the space Zn is thus a G-space. On
the other hand we have the composite homomorphism

(7.2.1) G
i−→ σn

sign−→ {−1, 1}.

Here {−1, 1} acts on Zn by the automorphism −1 : Zn → Zn which carries
w ∈ Zn to −w with −w defined by the R-module structure of Zn. Hence G acts
via (sign)i on Zn and this action is termed the sign-action Zn± of G on Zn. In this
section we compare the G-space Zn and the G-space Zn

±.
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We observe that for σ ∈ G the maps{
σ : Zn → Zn with σ(w) = σ · w,

sign(σ) : Zn → Zn with sign(σ)(w) = sign(iσ) · w

are homotopic. Moreover (6.3.1)(4) shows that there is a unique track

(7.2.2) Γσ : σ ⇒ sign(σ).

This is a first way of connecting the G-space Zn with the G-space Zn
± studied in

Chapter 6.
Using the Borel construction we have a further more subtle comparison be-

tween the G-spaces Zn and Zn
± as follows.

7.2.3 Definition. For the G-spaces Zn and Zn
± the Borel constructions EG×G Zn

and EG×GZn
± are defined. A comparison map λG is a map for which the following

diagram commutes in Top.

BG ∨ Zn

j

��

BG ∨ Zn
±

j

��
EG ×G Zn λG ��

p

��

EG ×G Zn±

��
BG BG

Here j is given by the section o of p and by the inclusion of the fiber. Hence λG is
a map under and over BG which is the identity on fibers.

7.2.4 Theorem. Comparison maps λG in (7.2.3) exist and for two such comparison
maps λG, λ′

G there exists a unique track o : λG ⇒ λ′
G under BG ∨ Zn and over

BG.

The theorem states that the groupoid

(7.2.5) [[EG ×G Zn, EG ×G Zn
±]]BG∨Zn

BG

is contractible. The tracks in this groupoid are termed canonical tracks. Theorem
(7.2.4) is the crucial connection between the G-spaces Zn and Zn

± used in this
paper. The uniqueness of tracks in (7.2.4) is a consequence of (7.1.10). For the
construction of comparison maps we need the following lemma.

7.2.6 Lemma. There exist topological R-modules with an action of σn via linear
automorphisms together with σn-equivariant R-linear maps

Zn f1−→ Y ′ g1←− Y ′′ f2−→ Kn
±

which are homotopy equivalences in Top∗. Here Kn
± has the sign-action of σn.
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Proof. For S(Sn) in ∆Mod we obtain the chain complex C = NS(Sn) in Ch+

with H∗C = HnSn = R concentrated in degree n. Hence we obtain the following
diagram of chain complexes in Ch+.

C

��

(· · · Cn−1
�� Cn

dn�� Cn+1
dn+1��

��

Cn+2
��

��

· · · )��

C′ (· · · Cn−1
�� Cn

�� Im dn+1
�� 0�� · · · )��

C′′

��

��

(· · · 0��

��

ker dn
��

��

��

Im dn+1
��

��

0

��

��

��

· · · )��

[R]n (· · · 0�� R�� 0�� 0�� · · · )��

Here [R]n is the chain complex which is R concentrated in degree n. All chain
maps induce isomorphisms in homology and are equivariant with respect to the
action of σn. Hence we get

S(Sn) ∼= ΓNS(Sn) = ΓC → ΓC′ ← ΓC′′ → Γ[R]n

and therefore we get the following diagram.

|ΦS(Sn)| �� |ΦΓC′| |ΦΓC′′|�� �� |ΦΓ[R]n|

Zn Y ′ Y ′′ Kn±

Here Kn± is the small model of the Eilenberg-MacLane space K(R, n) for example
used by Kristensen [Kr1]. �
7.2.7 (Construction of the comparison map). Let Y ′

±, Y ′′
± and Zn

± be the topological
R-modules in (7.2.6) with the sign-action. Then we get σn-equivariant R-linear
maps

(1) Zn f1−→ Y ′ g1←− Y ′′ f2−→ Kn
±

g2←− Y ′′
±

f3−→ Y ′
±

g3←− Zn
±

which are homotopy equivalences in Top∗. Here g2 = f2 and f3 = g1 and g3 = f1

are equations of R-linear maps. Of course the induced map

(2) (g3)−1
∗ (f3)∗(g2)−1

∗ (f2)∗(g1)−1
∗ (f1)∗ = id

is the identity on πn(Zn). Let Yi be the ith space in the sequence (1). Since all Yi

are realizations of simplicial groups, the Borel constructions EG ×G Yi are good
for all subgroups G of σn; see (7.1.2).
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For a subgroup G ⊂ σn the maps gi in (1) induce maps

(3) (gi)� : EG ×G Y2i+1 → EG ×G Y2i

which by (7.1.7) are homotopy equivalences under and over BG. We choose a
homotopy inverse ḡi under and over BG of (gi)�. We now get a comparison map
λG under BG ∨ Zn and over BG

(4) λG : EG ×G Zn → EG ×G Zn
±

by the composite λ′
G = ḡ3(f3)�ḡ2(f2)�ḡ1(f1)� of maps (fi)� and ḡi as follows. Using

(2) we see that λ′
G induces on fibers a map λ′ : Zn → Zn

± which is homotopic in
Top∗ to the identity of the space Zn. Moreover λ′

G is a map under and over BG.
Now we can use the addendum (7.1.11) which shows that the homotopy λ′ � 1 has
an extension H : λ′

G � λG under and over BG which defines the map λG in (4).

7.2.8 Remark. Karoubi in 2.5[Ka1] indicates the construction of Zn in (2.1.4)
though he does not give details. Our proof of (7.2.6) is more direct than an argu-
ment used by Karoubi in 2.12[Ka1].

7.3 Comparison tracks

The comparison maps are endowed with additional structure given by comparison
tracks. We here describe three types of comparison tracks termed linear tracks,
smash tracks and diagonal tracks respectively.

Since Zn is a σn-space, also the r-fold product

(7.3.1) (Zn)×r = Zn × · · · × Zn

is a σn-space with the diagonal action. Moreover this product is a topological
R-module since Zn is one. Let homomorphisms

(1) G −−−−→
a

π −−−−→
i

σn

between groups be given and let

(2) f : (Zn)×r −→ (Zn)×k

with r, k ≥ 1 be an R-linear continuous map which is a-equivariant. Here (Zn)×r

is a G-space by ia : G → σn and (Zn)×k is a G-space by i : π → σn. Hence we
obtain the following diagram of Borel constructions.

(7.3.2) EG ×G (Zn)×r
λr

G ��

f#

��
⇒

EG ×G (Zn±)×r

f±
#

��
Eπ ×π (Zn)×k

λk
G �� Eπ ×π (Zn±)×k

Here λr
G (and λk

π) are r-fold (resp. k-fold) products of comparison maps using
(7.1.4) and f# is defined as in (7.1.3).
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7.3.3 Proposition. There is a unique track

La,f : λk
πf# ⇒ f±

#λr
G

under BG∨(Zn)×r and over Bπ. This track is termed the linear track for diagram
(7.3.2). If π = G and a = 1 is the identity of G, we write Lf = L1,f .

If r = k = 1 and π = G, then λπ and λG are two different comparison maps
for G = π. In this case the linear track L1 of the identity 1 of Zn is the same as a
canonical track in (7.2.4).

The proposition is an easy consequence of (7.1.10). Uniqueness of the linear
comparison tracks implies the following formula: Let b : H → G be a homomor-
phism between groups and let g : (Zn)×t → (Zn)×r be a b-equivariant R-linear
map so that Lb,g is defined as in (7.3.3). Then the following composition formula
for linear tracks holds where � is the composition of tracks as in (2.2.1).

(7.3.4) Lab,fg = f±
#Lb,g�La,fg#.

This formula also shows that linear tracks are compatible with canonical tracks in
(7.2.4) in the following way. Let L1

G : λ′
G ⇒ λG and L1

π : λπ ⇒ λ′
π be canonical

tracks, then the track addition

f±
#(L1

G)r�La,f�(L1
π)kf#

is the linear track (λ′
π)kf# ⇒ f±

# (λ′
G)r.

For a tuple of numbers n = (n1, . . . , nr) with ni ≥ 1 for i = 1, . . . , r let

(7.3.5) σ(n) = σn1 × · · · × σnr

be the product of permutation groups. Let |n| = n1 + · · ·+ nr so that σ(n) ⊂ σ|n|.
The group σ(n) acts on the product

(1) Z×(n) = Zn1 × · · · × Znr

of topological R-modules. Let

(2) f : Z×(n) −→ Z |n|

be a multilinear map (linear in each variable xi ∈ Zni) and let f be G-equivariant
where G acts by a given homomorphism G → σ(n) → σ|n|. Then we obtain the
following diagram of Borel constructions.

(7.3.6) EG ×G Z×(n)
λr

G ��

f#

��
⇒

EG ×G Z
×(n)
±

f#

��

EG ×G Z |n| λG �� EG ×G Z
|n|
±
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Here λr
G is again an r-fold product of comparison maps using (7.1.4) and f# is

defined as in (7.1.3). We have the smash product map

p̂ : Z×(n) = Zn1 × · · · × Znr −→ Z∧(n) = Zn1 ∧ · · · ∧ Znr

where the right-hand side is the r-fold smash product. Since f is multilinear there
is a unique factorization

f : Z×(n) p̂−→ Z∧(n) f̂−→ Z |n|

of f in (7.3.5). Here f̂ is again G-equivariant and by (7.1.5) we obtain the diagram

(7.3.7) EG ×G Z∧(n)
λ∧r

G ��

f̂#

��
⇒

EG ×G Z
∧(n)
±

f̂#

��

EG ×G Z |n| λG �� EG ×G Z
|n|
±

where λ∧r
G is the r-fold smash product of comparison maps over BG. We have

p̂#λr
G = λ∧r

G p̂#.

Now we obtain for the diagrams (7.3.6) and (7.3.7) the following tracks.

7.3.8 Proposition. There is a unique track

S f̂ : λGf̂# ⇒ f̂#λ∧r
G

under BG ∨ Z∧(n) and over BG for (7.3.7) which defines the track

Sf = S f̂ (p̂)# : λGf# ⇒ f#λr
G.

The track Sf is termed the smash track for (7.3.6).

The proposition again is a consequence of (7.1.10). Uniqueness of S f̂ im-
plies the following compatibility with composition of multilinear maps. Let ni =
(ni

1, . . . , n
i
ri

) be a tuple of numbers ≥ 1 for i = 1, . . . , r such that |ni| = ni. More-
over let n∗ = (n1, . . . , nr) be the composed tuple so that σ(n∗) ⊂ σ(n) ⊂ σ|n|. Let
G → σ(n∗) be a given homomorphism and let f i : Z×(ni) → Zni be a G-equivariant
multilinear map. Then the composition

f(f1 × · · · × f r) : Z×(n∗) −→ Z |n|

is again multilinear and G-equivariant so that Sf(f1×···×fr) is defined. Now we
have the composition formula for smash tracks

(7.3.9) Sf(f1×···×fr) = f#(Sf1 × · · · × Sfr

)�Sf (f1 × · · · × f r)#.
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Here Sf1 × · · · × Sfr

is the product of smash tracks defined by use of (7.1.4).
This formula again shows the compatibility of smash tracks and canonical tracks
similarly as in (7.3.4).

Finally we consider comparison tracks which are deduced from a diagonal
map ∆. For this let n = (n1, . . . , nr) and ρ → σ(n) ⊂ σ|n| be given such that the
composite

ρ −→ σ(n) ⊂ σ|n|
sign−→ {−1, 1}

is trivial; that is, the sign-action of ρ on Z
|n|
± is trivial. Moreover let

(7.3.10) g : Z×(n) −→ Z |n|

be a ρ-equivariant multilinear map. Then we get the composite map

(1) C(g) : Eρ ×ρ Z×(n) g#−→ Eρ ×ρ Z |n| λρ−→ Bρ × Z |n| p2−→ Z |n|

where p2 is the projection and λρ is a comparison map.
Let k ≥ 1 and let π → σk be a homomorphism between groups for which

again the composite
π −→ σk

sign−→ {−1, 1}
is trivial. Then the composite

π × ρ −→ σk × σ|n| ⊂ σk

∫
σ|n| ⊂ σk|n|

sign−→ {1,−1}

is also trivial, so that the sign-action of π × ρ on Z
k|n|
± is trivial. Let

(2) f : (Z |n|)×k −→ Zk|n|

be a π × ρ-equivariant multilinear map. Here ρ acts diagonally on (Z |n|)×k via
ρ → σ(n) ⊂ σ|n| and π acts via π → σk by permuting the factors of the k-fold
product (Z |n|)×k. Then we consider the composite

(3) (Z×(n))×k g×k

−→ (Z |n|)×k f−→ Zk|n|

which is again a π × ρ-equivariant multilinear map. Here π acts on the k-fold
product on the left-hand side by permuting the factors of the product. The group
π acts also on the k-fold product (EG×GZ×(n))×k by permuting factors and there
is a canonical diagonal map with X = Z×k,

(4) D : E(π × ρ) ×π×ρ X×k −→ Eπ ×π (Eρ ×ρ X)×k.

Here E(π × ρ) = E(π) × E(ρ) and D carries (x̃, ỹ, x1, . . . , xk) with x̃ ∈ E(π),
ỹ ∈ E(ρ) and x1, . . . , xk ∈ X to the element (x̃, (ỹ, x1), . . . , (ỹ, xk)). One readily
checks by the definition of the Borel construction in (7.1.2) that D is a well-defined
map.
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The diagonal map leads to the following diagram.

E(π × ρ) ×π×ρ (Z×(n))×k

D

��

(f(g×k))#//

00������
�������

�������
�������

�������
��

E(π × ρ) ×π×ρ Z |n|k λπ×ρ �� B(π × ρ) × Z |n|k

p2

��
Eπ ×π (Eρ ×ρ Z×(n))×k

(C(g)×k)#

��

Z |n|k

Eπ ×π (Z |n|)×k
f# ��

11���������������������������������������
Eπ ×π Z |n|k λπ �� Bπ × Z |n|k

p2

��

(7.3.11)

Here λπ and λπ×ρ are comparison maps. The map C(g)×k is π-equivariant since π
acts by permuting factors. According to the notation in (7.3.10)(1) the top triangle
of the diagram yields

C(f(g×k)) = p2λπ×ρ(fg×k)#
and the bottom triangle of the diagram yields

C(f) = p2λπf#.

The left-hand column in diagram (7.3.11) induces the following commutative dia-
gram.

E(π × ρ) ×π×ρ (Z×(n))×k
p̂ ��

D

��

E(π × ρ) ×π×ρ (Z∧(n))∧k

D(g)

��

Eπ ×π (Eρ ×ρ Z×(n))×k

(C(g)×k)#

��
Eπ ×π (Z |n|)×k

p̂ �� Eπ ×π (Z |n|)∧k

Here p̂ are the quotient maps. The induced map D(g) is well defined since C(g)
in (7.3.10) carries section points o(x) = (x̃, ∗) ∈ Eρ ×ρ Z×(n) to the basepoint
∗ = 0 ∈ Z |n|. Multilinearity of f and f(g×k) yield the following diagram.

(7.3.12)

E(π × ρ) ×π×ρ (Z∧(n))∧k

D(g)

��

(f(g×k))∧#//
E(π × ρ) ×π×ρ Z |n|k λπ×ρ �� B(π × ρ) × Z |n|k

p2

��
Z |n|k

Eπ ×π (Z |n|)∧k
f̂# �� Eπ ×π Z |n|k λπ �� Bπ × Z |n|k

p2

��
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Now we obtain for the diagram (7.3.11) and (7.3.12) the following tracks.

7.3.13 Proposition. There is a unique track

Df̂ ,ĝ : p2λπ f̂#D(g) ⇒ p2λπ×ρ(f(g×k))∧#

under B(π × ρ) ∨ (Z∧(n))∧k and over Bπ for (7.3.12) which defines the track

Df,g = Df̂ ,ĝ(p̂)# : C(f)(C(g)×k)#D ⇒ C(f(g×k))

for diagram (7.3.11). The track Df,g is termed the diagonal track for (7.3.11).

The proposition is a consequence of (7.1.10). If we alter the comparison maps
λρ, λπ and λπ×ρ by canonical tracks (7.2.4), then the diagonal track Df,g is com-
patible with this alteration analogously as in (7.3.4).

Diagonal tracks are compatible with composition as follows. For this let t ≥ 1
and let τ → σt be a homomorphism between groups such that the composite

τ −→ σt
sign−→ {−1, 1}

is trivial. Then τ acts on a t-fold product Y ×t by permutation of factors. According
to the definition of diagonal maps D in (7.3.10)(4) we obtain the following diagram.
(7.3.14)

E(τ × π × ρ) ×τ×π×ρ (X×k)×t D ��

D

��

E(τ × π) ×τ×π ((Eρ ×ρ X)×k)×t

D

��
Eτ ×τ (E(π × ρ) ×π×ρ (X×k))×t

(D×t)# �� Eτ ×τ (Eπ ×π (Eρ ×ρ X)×k)×t

Here D×t is τ -equivariant since τ acts by permuting the factors of the t-fold
product. Using the definition of D one readily checks:

7.3.15 Lemma. Diagram (7.3.14) commutes.

Now we consider the composition of maps:

(7.3.16) (Z×(n))×kt g×kt

−→ (Z |n|)×kt f×t

−→ (Zk|n|)×t h−→ Zkt|n|.

Here h is multilinear and h is τ × ρ × π-equivariant. Since the corresponding
sign-actions are trivial we can define

C(g), C(f) and C(h), C(f(g×k)), C(h(f×t)), C(h(f×t)(g×kt))

as in (7.3.10)(1). Moreover the diagonal tracks

Df,g, Dh,f , Dh,f(g×k) and Dh(f×t),g

are defined as in (7.3.15).
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Now we get the following diagram of tracks.

(7.3.17) C(h)(C(f)C(g)×k
# D)×t

# D

C(h)(Df,g)×t
# D

��

C(h)C(f)×t
# C(g)×tk

# DD

C(h)C(fg×k)×t
# D

Dh,fg×k

��
C(h(f(g×k))×t)

C(hf×t)C(g)×(tk)
# D

Dhf×t,g

��

C(h)C(f)×t
# DC(g)×(tk)

# D

Dk,tC(g)
×(tk)
# D

��

C(h)C(f)×t
# C(g)×(tk)

# DD

In the top row we use (7.3.15) and in the bottom row we use the naturality of D.

7.3.18 Proposition. The diagram of tracks (7.3.17) commutes.

This follows from the uniqueness of tracks in (7.3.13) if we consider diagram
(7.3.17) on the level of smash products similarly as in (7.3.12).



Chapter 8

Power Maps and
Power Tracks

The power maps introduced in this chapter yield the crucial ingredient for the
definition of Steenrod operations in the next chapter. In the literature the power
map was only considered as a homotopy class of maps. We here observe that the
power map as a map in Top∗ is well defined up to a canonical track. Moreover we
describe certain homotopy commutative diagrams associated with power maps.
These diagrams are used to prove

• the linearity of Steenrod operations,

• the Cartan formula, and

• the Adem relation respectively.

We show that there are in fact well-defined tracks for these diagrams which we call
the linearity track, the Cartan track and the Adem track. These power-tracks are
defined by the comparison tracks in Section (7.3). The power tracks correspond
exactly to the relations in a power algebra; see (1.2.6) and (8.5.4).

8.1 Power maps

We define the power map

(8.1.1) U : Zq ∆−→ (Zq)×p µ−→ Zqp

which carries x ∈ Zq to the p-fold product U(x) = xp = x · · · · ·x. This map has the
factorization U = µ∆ where ∆ is the diagonal and µ is given by the multiplication
map µ in (2.1.1) with µ(x1, . . . , xp) = x1 · · · · · xp. Moreover U is a pointed map,
that is U(0) = 0.
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The symmetric group σp acts on (Zq)∧p by permuting the factors Zq and
acts on Zq trivially. Moreover σp ⊂ σpq carries a permutation α ∈ σp to the corre-
sponding permutation of q-blocks in σpq. Then it is clear that U is σp-equivariant
and hence U induces for each subgroup G ⊂ σp the following map.

(1) BG × Zq
U	 �� EG ×G Zpq

EG ×G Zq
∆	 �� EG ×G (Zq)∧p

µ	

��

Hence via the comparison map λG we get the composite

(2) BG × Zq U	−→ EG ×G Zpq λG−→ EG ×G Zpq
± .

If q is even or if −1 = 1 in R or if q is odd and G is contained in the alternating
group, then the sign-action of G of Zpq

± is trivial so that in this case we get

(3) EG ×G Zpq
± = BG × Zpq.

Moreover the following diagram commutes.

(4) BG ∨ Zq 1∨U ��

��

BG ∨ Zpq

��
BG × Zq

λGU	 ��

��

EG ×G Zpq
±

��
BG

1 �� BG

This is readily seen since λG is a map under BG ∨ Zpq and over BG.
Let p be a prime and let R = Z/pZ be the field of p elements and let π = Z/pZ

be the cyclic group of order p. Then Bπ is a K(R, 1)-space and we fix a homotopy
equivalence in Top∗

(8.1.2) hπ : Z1 �−→ Bπ

where Z1 is defined as in (2.1.4). Here hπ induces the identity in homology (hπ)∗ =
1 : R = H1Z

1 → H1Bπ = π. By (3.2.5) the component

[[Z1, Bπ]]1 ⊂ [[Z1, Bπ]]

of such maps in the groupoid [[Z1, Bπ]] is contractible.
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8.1.3 Definition. The group π = Z/p is a subgroup of σp by using cyclic permuta-
tions. For this subgroup the condition used in (8.1.1)(3) holds. In fact the subgroup
π = Z/p ⊂ σp is generated by the permutation Tπ which sends i to (i + 1) mod p.
The sign of this permutation is

sign(Tπ) = (−1)p−1.

Since (−1)p−1 = 1(mod p) the sign action of π on Zpq is trivial. Hence we get the
composite

γ : Z1 × Zq hπ×1−→ Bπ × Zq λπU#−→ Bπ × Zpq p2−→ Zpq

where hπ is defined as in (8.1.2) and λπU# is the map in (8.1.1)(2) and p2 is the
projection. We call such a composite also a power map. Formally such a power
map γ is a triple (γ, hπ, λπ) so that hπ and λπ are part of the definition of a power
map.

Using (8.1.1)(4) we see that the following diagram commutes for each power
map γ.

(8.1.4) Z1 ∨ Zq
(0,U) ��

��

Zpq

Z1 × Zq
γ �� Zpq

Power maps depend on the choice of λπ and hπ but we have the following crucial
observation.

8.1.5 Proposition. There is a well-defined contractible subgroupoid γ with

γ ⊂ [[Z1 × Zq, Zpq]]Z
1∨Zq

.

The objects of γ are the power maps.

Proof. The subgroupoid γ is the image of the functor

[[Z1, Bπ]]1 × [[Eπ ×π Zpq, Eπ ×π Zpq
± ]]Bπ∨Zpq

Bπ

��
[[Z1 × Zq, Zpq]]Z

1∨Zq

which carries H : hπ ⇒ h′
π and G : λπ ⇒ λ′

π to the composite

Z1 × Zq −−−−→
H×1

Bπ × Zq −−−−→
GU#

Bπ × Zpq −−−−→
p2

Zpq

where we use the composition in a 2-category. Since a product of contractible
groupoids is contractible, we see that the image of the functor is a contractible
groupoid. Hence the track (γ, hpi, λπ) ⇒ (γ′, h′

pi, λ
′
π) in γ is the composite

p2(GU#) ∗ (H × 1) where G and H are the unique tracks above. �
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We call the tracks in the contractible subgroupoid γ the canonical tracks for
power maps. We also say that a power map is well defined up to a canonical track.
Indeed the subgroupoid γ is well defined since it only depends on the structure of
the Eilenberg-MacLane spaces Zn in (2.1).

Remark. The homotopy class of the power map γ was considered by Karoubi
[Ka2] in order to define Steenrod operations. Also Milgram used the homotopy
class of the power map; compare 27.11 and 27.13 in Gray [G]. We are interested
in the secondary structure of cohomology operations. Therefore we think of γ as
a map in Top∗ and not as a homotopy class of maps in Top∗/ �. For this it is
a crucial observation that power maps form a contractible groupoid as defined in
(8.1.5).

8.1.6 Definition. For maps v : X → Z1 and x : X → Zq let γv(x) be the composite

γv(x) : X
(v,x)−→ Z1 × Zq γ−→ Zpq

where γ is a power map in γ. We consider γv also as a functor

γv : [[X, Zq]] −→ [[X, Zpq]].

We prove below that this functor induces on π0 the following commutative dia-
gram.

π0[[X, Zq]]
π0γv �� π0[[X, Zpq]]

HqX γv̄

�� HpqX

Here v̄ ∈ H1X = π0[[X, Z1]] is represented by v and γv̄ is the function in (1.2.7)
defining the power algebra structure of H∗X .

8.2 Linearity tracks for power maps

We now consider linearity properties of the power map γ. Using the R-module
structure of Zn we define the cross effect map

(8.2.1)

U cr : Zq × Zq → Zpq

U cr(x, y) = U(x + y) − U(x) − U(y)
= (x + y)p − xp − yp,

and the cross effect map

(8.2.2)
γcr : Z1 × Zq × Zq → Zpq

γcr(α, x, y) = γ(α, x + y) − γ(α, x) − γ(α, y).
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Here U cr carries Zq ∨ Zq to 0 and γcr carries Z1 × (Zq ∨ Zq) to 0. Then (8.1.4)
shows that the diagram

Z1 × (Zq ∨ Zq) ∪ {0} × Zq × Zq o∪Ucr
��

��

Zpq

Z1 × Zq × Zq
γcr

�� Zpq

commutes. Moreover we consider the following diagram in which p23 is the follow-
ing projection.

Z1 × Zq × Zq
γcr

��

p23

��

Zpq

ΛL .2

Zq × Zq Ucr
�� Zpq

8.2.3 Theorem. Linear comparison tracks in (7.3.3) induce the track

ΛL : U crp23 ⇒ γcr

under Z1 × (Zq ∨ Zq) ∪ {0} × Zq × Zq which we call the linearity track for γ.
Moreover ΛL is compatible with canonical tracks in γ.

Here “compatibility” means that a canonical track H : γ ⇒ γ′ in γ yields
the track Hcr : γcr ⇒ (γ′)cr in the obvious way and the linearity track Λ′

L for γ′

satisfies Hcr�ΛL = Λ′
L.

Proof. Let N : Zpq → Zpq be the π-norm map defined by

(1) N(x) =
∑
α∈π

α · x

where we use the action of π on Zpq given by π ⊂ σp ⊂ σpq . Then N is a π-
equivariant linear map where π acts trivially on the source space Zpq and via
π → σpq on the target space Zpq. There is a map

(2) Ū : Zq × Zq −→ Zpq

with
NŪ = U cr

and Ū(x, 0) = Ū(0, x) = 0 for x ∈ Zq. In fact U cr(x, y) = (x + y)p − xp − yp is
the sum of all monomials that contain k factors x and (p − k) factors y, where
1 ≤ k ≤ p − 1. The cyclic group π = Z/p permutes such factors freely. We choose
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a basis B consisting of monomials b(x, y) whose permutations under π give each
monomial exactly once. Then

Ū(x, y) =
∑
b∈B

b(x, y)

is defined by this basis B. The map Ū yields the commutative diagram

(3) Bπ × Zq × Zq 1×U ��

1

��

Bπ × Zpq

N	

��
Bπ × Zq × Zq

Ucr
	 �� Eπ ×π Zpq

where U cr is π-equivariant in the same way as the map U in (8.1.1).
Using (7.3.4) we obtain the linear track LN : λπN# ⇒ 1×N for the following

diagram.

(4) Bπ × Zpq 1×1 ��

N	

��

Bπ × Zpq

1×N

��
Eπ ×π Zpq λπ �� Bπ × Zpq

Next let ν : Zpq × Zpq × Zpq → Zpq be the π-equivariant linear map defined by
ν(x, y, z) = x − y − z. Then (7.3.4) yields the linear track Lν : λπν# ⇒ ν#λ3

π for
the following diagram.

(5) Eπ ×π (Zpq × Zpq × Zpq)
λ3

π ��

ν	

��

Bπ × (Zpq × Zpq × Zpq)

1×ν

��
Eπ ×π Zpq λπ �� Bπ × Zpq

Now we have for α ∈ Z1 and β = hπα ∈ Bπ the equations:

γcr(α, x, y) = γ(α, x + y) − γ(α, x) − γ(α, y)
= p2λπU�(β, x + y) − p2λπU�(β, x) − p2λπU�(β, y)

= p2(1 × ν)λ3
πU+

� (β, x, y)

where U+ : Zq ×Zq → Zpq ×Zpq ×Zpq carries (x, y) to (U(x+y), Ux, Uy). Hence
we have

γcr = p2(1 × ν)λ3
πU+

� (hπ × 1) � p2λπν�U
+
� (hπ × 1)

= p2λπU cr
� (hπ × 1) = p2λπN�(hπ × U) � p2(1 × N)(hπ × U)

= p2(hπ × NU) = (NU)p23 = U crp23.
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This defines the track

ΛL = (p2L
νU+

#(hπ × 1))�(p2L
N(hπ × Ū))op

ΛL : U crp23 ⇒ γcr.

Hence the proof of (8.2.3) is complete. �
For maps v : X → Z1, x : X → Zq, y : X → Zq in Top∗ the linearity track

ΛL yields the track

(8.2.4)
Lx,y

v : U cr(x, y) =⇒ γcr
v (x, y),

Lx,y
v = ΛL(v, x, y) ∈ [[X, Zpq]]

with U cr(x, y) = U(x+y)−Ux−Uy and γcr
v (x, y) = γv(x+y)−γv(x)−γv(y); see

(8.1.6). According to the construction of ΛL in the proof of (8.2.3) we can describe
the track Lx,y

v by the following diagram which is based on the equations

(1) νU+ = U cr = NŪ.

We indicate in the diagram only the arrows; the objects • are appropriate Borel
constructions. Subdiagrams with a number 1 or 2 are homotopy commutative with
a fixed track; all other subdiagrams are commutative. Let w = hπv : X → Bπ.

(2) •

Bπ×ν

��

1

•
λ3

π��

ν#

��
Zpq •

p2
��

2

•λπ�� •
Ucr

#��

U+
#

23����������������

Bπ×Ū

34��
��
��
��
��
��
��
��

X
(w,x,y)��

γcr
v (x,y)

��

Ucr(x,y)

45

•

Bπ×N

��

•
Bπ×1

��

N#

��

Here the subdiagram 1 is given by (8.2.3)(5) and subdiagram 2 is given by
(8.2.3)(4). The map λ3

π = λπ×̄λπ×̄λπ is a product over Bπ according to (7.1.4)
while Bπ × X denotes the product in Top. The π-norm map N : Zpq → Zpq in
(8.2.3)(1) admits by (7.2.2) the well-defined track

(8.2.5) Γ =
∑
α∈π

Γα : N =⇒ N± = 0
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where
N±(x) =

∑
α∈π

sign(α) · x = p · x = 0 ∈ Zpq.

Here we use the fact that for α ∈ π ⊂ σpq we have sign(α) = 1. According to the
definition of Ū in (8.2.3)(2) we have

U(x + y) − Ux − Uy = U cr(x, y) = NŪ(x, y)

so that ΓŪ(x, y) : U cr(x, y) ⇒ 0. Therefore the track

(8.2.6)
Γx,y

0 : U(x + y) =⇒ Ux + Uy

Γx,y
0 = ΓŪ(x, y) + Ux + Uy

is defined. This yields by Lx,y
v in (8.2.4) the track

(8.2.7)
Γx,y

v : γv(x, y) =⇒ γv(x) + γv(y)
Γx,y

v = (ΓŪ(x, y)�(Lx,y
v )op) + γv(x) + γv(y).

For v = 0 the track Lx,y
v is the identity track so that Γx,y

v for v = 0 coincides with
(8.2.6).

Moreover we define for r ∈ F the linearity track

(8.2.8) L(r)x
v : γv(rx) =⇒ r · γv(x)

as follows. We have U(rx) = rpU(x) = rU(x) since rp = r in F = Z/p. Therefore
we get the following diagram where r : Zpq → Zpq carries x to r · x.

Zpq

r

��

Bπ × Zpq
±

r#

��

p2��

Lr⇐

Eπ ×π Zpqλπ��

r#

��

Zq

r

��

U#�� X
x��

Zpq Bπ × Zpq
±

p2�� Eπ ×π Zpq

λπ

�� Zq
U#��

Hence we can define
L(r)x

v = p2L
rU#x.

Here Lr is the linear track in (7.3.4). We point out that, for example, Γx,x
v defined

in (8.2.7) is a track Γx,x
v : γv(2x) ⇒ 2γv(x) which, however, in general does not

coincide with L(r)x
v : γv(2x) ⇒ 2γv(x).

In a similar way we get for a permutation σ ∈ σq inducing σ : Zq → Zq the
permutation track

(8.2.9) P (σ)v = P (σ)x
v : γv(σx) =⇒ σp · γv(x)
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as follows. We have U(σx) = σpU(x) where σp ∈ σpq is the permutation for which
(σx)p = σpxp where xp = x · · · · ·x is the p-fold product. Hence we get the diagram

Zpq

σp

��

Bπ × Zpq
±

σp
#

��

p2��

Lσp

⇐

Eπ ×π Zpqλπ��

(σp)#

��

Zq

σ

��

U#�� X
x��

Zpq Bπ × Zpq
±

p2�� Eπ ×π Zpq

λπ

�� Zq
U#��

which yields the definition

P (σ)x
v = p2L

σp

U#x.

Here Lσp

is the linear track in (7.3.4).
We point out that the linearity track Γx,y

v is also defined if we replace x, y by
tracks x̄ : x ⇒ x′ and ȳ : y ⇒ y′ in [[X, Zq]]. In fact, such tracks are represented
by homotopies

¯̄x, ¯̄y : IX −→ Zq with IX = [0, 1]× X/[0, 1]× ∗

so that Γ¯̄x, ¯̄y
v is defined in [[IX, Zq]]. Using the diagonal of Γ¯̄x, ¯̄y

v we get the track

(8.2.10) Γx̄,ȳ
v : γv(x + y) ⇒ γv(x′) + γv(y′)

and the following diagram of tracks in [[X, Zq]] commutes.

γv(x + y)
Γx,y

v ��

γv(x̄+ȳ)

��

Γx̄,ȳ
v

56��
���

���
���

�
γv(x) + γv(y)

γv(x̄)+γv(ȳ)

��
γv(x′ + y′)

Γx′,y′
v

�� γv(x′) + γv(y′)

8.3 Cartan tracks for power maps

Next we consider the following diagram with ∆13(α, x, y) = (α, x, α, y).

Z1 × Zq × Zq′ 1×µ ��

∆13

��

Z1 × Zq+q′

γ

��
Z1 × Zq × Z1 × Zq′

γ×γ

��

ΛC67 Zp(q+q′)

σ

��
Zpq × Zpq′ µ �� Zpq+pq′
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Here σ ∈ σpq+pq′ is the permutation for which

(8.3.1) σ(x · y)p = xp · yp

with x ∈ Zq and y ∈ Zq′
. One has sign(σ) = (−1)

qq′p(p−1)
2 . We observe that the

diagram restricted to Z1 ∨ Zq × Zq′
commutes.

8.3.2 Theorem. Linear comparison tracks (7.3.3) and smash tracks (7.3.8) induce
the track

ΛC : σγ(1 × µ) ⇒ µ(γ × γ)∆13

under Z1∨Zq×Zq which we call the Cartan track for γ. Moreover ΛC is compatible
with canonical tracks in γ.

Proof. Let n = pq + pq′ = p(q + q′). We have the following commutative diagram.

(1) Zq × Zq′ µ ��

U×U

��

Zq+q′

U

��
Zn

σ

��
Zpq × Zpq′ µ �� Zn

The group π acts trivially on Zq × Zq′
and acts via cyclic permutation of the

(q + q′)-blocks on Zn. This shows that all maps in the diagram are actually π-
equivariant. Hence we get for induced maps on Borel constructions:

(2) σ�U�(1 × µ) = µ�(U × U)�.

Moreover using (7.3.3) we see that the diagram

(3) Eπ ×π Zn λπ ��

σ	

��

Bπ × Zn

1×σ

��
Eπ ×π Zn λπ �� Bπ × Zn

homotopy commutes under Bπ ∨ Zn and over Bπ and the corresponding linear
track Lσ : λπσ# ⇒ (1 × σ)λπ is well defined.
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Moreover we obtain for the π-equivariant bilinear map µ : Zpq × Zpq′ → Zn

defined by the multiplication (2.1.1) the smash track

(4) Sµ : λπµ# ⇒ (1 × µ)λ2
π

for the following diagram.

(5) Eπ ×π (Zpq × Zpq′
)

λ2
π ��

µ#

��

Bπ × Zpq × Zpq′

1×µ

��
Eπ × Zn λπ �� Bπ × Zn

This is a track over and under Bπ ∨ Zpq × Zpq′
. Hence we get the track

ΛC = (p2S
µ(U × U)#(hπ × 1))�(p2L

σU#(hπ × µ))op

given by the composite

σγ(1 × µ) = p2(1 × σ)λπU�(hπ × µ)
� p2λπσ�U�(hπ × µ)
= p2λπµ�(U × U)�(hπ × 1)

� p2(1 × µ)λ2
π(U × U)�(hπ × 1)

= µ(γ × γ)∆13.

This is the Cartan track. �

For maps v : X → Z1, x : X → Zq, y : X → Zq′
in Top∗ the Cartan track

ΛC induces the track

(8.3.3)
Cx,y

v : σ(x, y)γv(x · y) =⇒ γv(x) · γv(y)

Cx,y
v = ΛC(v, x, y) ∈ [[X, Zp(q+q′)]].

Here the permutation σ(x, y) = σ ∈ σpq+pq′ is defined as in (8.3.1) for q =| x | and
q′ =| y |. Moreover the product · is defined by multiplication maps µ in (2.1.2).
According to the definition of ΛC in the proof of (8.3.1) we can describe Cx,y

v by
the following diagram which is based on the equation

(1) σUµ = µ(U × U)

corresponding to σU(x · y) = (Ux) · (Uy).
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We use the same convention as in (8.2.4).

(2) •

Bπ×σ

��

1

•

σ#

��

λπ�� •
U#��

Zp(q+q′) •
p2

��

2

•λπ��

•

Bπ×µ

��

•
λ2

π

��

µ#

��

•

Bπ×µ

��

(U×U)#

�� X
(w,x,y)��

σγv(x·y)

))

γv(x)·γv(y)

78

Subdiagram 1 is given by (8.3.2)(3) and subdiagram 2 is given by (8.3.2)(5). All
other subdiagrams are commutative. The map λ2

π = λπ×̄λπ is a product over Bπ
according to (7.1.4) and Bπ × X is the product in Top.

8.4 Adem tracks for power maps

Now let π = ρ = Z/p. Then the product group π × ρ is contained in σp2 and we
have the following commutative diagram of groups.

π × ρ

T

��

⊂ σp × σp ⊂ σp

∫
σp ⊂ σp2 ⊂ σp2q

( )τ

��
ρ × π ⊂ σp × σp ⊂ σp

∫
σp ⊂ σp2 ⊂ σp2q

The rows are the canonical inclusions as in McClure [MC], p. 254. The map T
is the interchange map with T (α, β) = (β, α) and ( )τ carries ξ to τξτ−1. If we
consider σp2 as the permutation group of the product set π × ρ, then T is such a
permutation which yields τ ∈ σp2 ⊂ σp2q. Hence for (α, β) ∈ π × ρ we have the
equation in σp2q,

(8.4.1) τ(α, β) = (β, α)τ.
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Therefore the map

(1) τ# : E(π × ρ) ×π×ρ Zp2q → E(ρ × π) ×ρ×π Zp2q

which carries ((ṽ, w̃), x) to (w̃, ṽ, x) is well defined with ṽ ∈ Eπ, w̃ ∈ Eρ and
x ∈ Zp2q. In fact (8.4.1) shows that τ : Zp2q → Zp2q is a T -equivariant linear map
since for τ(x) = τ · x we have τ((α, β) · x) = T (α, β) · τ(x). Hence τ induces the
map τ# as in (7.3.2). We point out that the sign of τ ∈ σp2q is

(2) sign(τ) = (−1)
q(p−1)p

2 .

Next we consider the following diagram obtained by the interchange map T and
by the power map γ in (8.1.3).

Z1 × Z1 × Zq
1×γ ��

T×1

��

Z1 × Zpq
γ �� Zp2q

τ

��

ΛA .2

Z1 × Z1 × Zq
1×γ �� Z1 × Zpq

γ �� Zp2q

We observe that γ(1 × γ)(T × 1) and τγ(1 × γ) both restricted to Z1 × Z1 ∨ Zq

coincide with (o, U2) where U2 : Zq → Zp2q carries x to U2(x) = UU(x) = xp2
.

In addition we show:

8.4.2 Theorem. Linear comparison tracks (7.3.8) and diagonal tracks (7.3.13) in-
duce the track

ΛA : γ(1 × γ)(T × 1) ⇒ τγ(1 × γ)

under Z1×Z1∨Zq which we call the Adem track for γ. Moreover ΛA is compatible
with canonical tracks in γ.

Proof. We have the multilinear maps

f = µ :(Zpq)×p −→ Zp2q,

g = µ :(Zq)×p −→ Zpq,

which yield the composite

(1) f(g×p) : ((Zq)×p)×p −→ Zp2q.

Here g is ρ = Z/p-equivariant and f is π × ρ = Z/p × Z/p-equivariant. Moreover
the sign-actions are trivial so that we can apply (7.3.13). Hence we obtain the
diagonal track

(2) Df,g : C(f)(C(g)×p)#D ⇒ C(f(g×p))

for diagram (7.3.11) with f and g above.
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Next one readily checks that the following diagram commutes.

(3) B(π × ρ) × Zq
U2

	 �� E(π × ρ) ×π×ρ Zp2q

B(ρ × π) × Zq

T×1

��

U2
	 �� E(ρ × π) ×ρ×π Zp2q

τ#

��

Here U2 = U ◦ U carries x to xp·p, see (8.1.1)(1). Moreover τ# is induced by the
T -equivariant linear map τ in (8.4.1)(1). For this map we have by (7.3.3) the linear
comparison track

(4) LT,τ : λπ×ρτ# ⇒ (T × τ)λρ×π

for the following diagram.

(5) E(π × ρ) ×π×ρ Zp2q
λπ×ρ �� B(π × ρ) × Zp2q

.2

E(ρ × π) ×ρ×π Zp2q
λρ×π ��

τ#

��

B(ρ × π) × Zp2q

T×τ

��

Next we have the equations:

(6)

γ(1 × γ) = (p2λπU#(hπ × 1))(Z1 × (p2λρU#(hρ × 1)))
= (p2λπU#)(Bπ × p2λρU#)(hπ × hρ × 1)

= C(f)∆(p)
# (Bπ × C(g)∆(p)

# )(hπ × hρ × 1).

Here the diagonal maps ∆ = ∆(n) : X → X×n are defined in (8.1.1). Moreover
the following diagram commutes.

(7) Bπ × Bρ × (Zq)×p
∆

(p)
#��

Bπ×C(g)

��

E(π × ρ) ×π×ρ ((Zq)×p)×p

C(g)×p
# D

��
Bπ × Zpq

∆
(p)
# �� Eπ ×π (Zpq)×p

Here the right-hand side is defined as in diagram (7.3.11). Commutativity is easily
seen by the definition of the diagonal maps. Now (6) and (7) yield the first equation
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of the following composition of tracks.

(8)

γ(1 × γ) = C(f)(C(g)×p
# D)∆(p)

# (Bπ × ∆(p)
# )(hπ × hρ × 1)

= C(f)(C(g)×p
# D)∆(p2)

# (hπ × hρ × 1)

� C(f(g×p))∆(p2)
# (hπ × hρ × 1) see (2),

= p2λπ×ρ(f(g×p))#∆(p2)
# (hπ × hρ × 1)

= p2λπ×ρU
2
#(hπ × hρ × 1)

= p2λρ×πU2
#(hρ × hπ × 1).

Here the last equation holds since ρ = π = Z/p. Now we can apply (8) and (5) in
order to get

(8.4.3)

γ(1 × γ)(T × 1) � p2λπ×ρU
2
#(hπ × hρ × 1)(T × 1), see (8),

= p2λπ×ρU
2
#(T × 1)(hρ × hπ × 1)

= p2λπ×ρτ#U2
#(hρ × hπ × 1), see (3),

� p2(T × τ)λρ×πU2
#(hρ × hπ × 1), see (5),

= τp2λρ×πU2
#(hρ × hπ × 1)

� τγ(1 × γ), see (8).

This is the Adem track which uses the linear comparison track (5) and uses twice
the diagonal track in (8). �

Remark. The proof of the Adem track above is actually less complicated than
the proof 2.7 of Karoubi [Ka2] who follows the line of proof in Steenrod-Epstein
[SE] p. 117. In fact, our argument does not need the cohomology of the symmetric
group σp2 (with local coefficients if q is odd).

Let v, w : X → Z1 and x : X → Zq be maps in Top∗. Then the Cartan track
ΛA induces the track

(8.4.4)
Ax

v,w : γvγw(x) =⇒ τx · γwγv(x)

Ax
v,w = ΛA(w, v, x) ∈ [[X, Zp2q]].

Here τx = τ ∈ σp2 ⊂ σp2q is defined as in (8.4.1) for q =| x |.

8.5 Cohomology as a power algebra

For a prime p and F = Z/p the Eilenberg-MacLane space Zn = K(F, n) yields the
cohomology groups of a pointed space X by the well-known equation

(8.5.1) H̃n(X) = H̃n(X, Z/p) = [X, Zn].
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Hence the power map γ : Z1 × Zn → Zpn induces the operation (n ≥ 1)

(8.5.2) γx : Hn(X) −→ Hpn(X)

which for x ∈ H1 carries y ∈ Hn(X) to the composite

γx(y) : X
(x,y)−→ Z1 × Zn γ−→ Zpn.

We have seen in Section (1.5) that the cohomology H∗(X) corresponds to a model
of the theory Kp of Eilenberg-MacLane spaces. We now define for each such model

M ∈ model(Kp),

the algebra M∗ with Mn = M(Zn), n ≥ 1, and multiplication

Mn × Mm = M(Zn × Zm)
µ∗−→ M(Zn+m) = Mn+m

induced by µ in (2.1.1). Moreover we define (M∗, γ) by

(8.5.3) γx : Mn −→ Mpn

for x ∈ M1, n ≥ 1. Here γx carries y ∈ Mn, n ≥ 1, to γ∗(x, y) where γ∗ is the
composite

M1 × Mn = M(Z1 × Zn)
γ∗−→ M(Zpn) = Mpn

induced by the power map γ.

8.5.4 Theorem. For a path-connected space X the cohomology (H∗(X), γ) defined
by (8.5.2) is a power algebra. More generally for each model M of Kp the algebra
(M∗, γ) defined by (8.5.3) is a power algebra.

Proof. If x = 0 is represented by x : X → ∗ ∈ Z1 we see that γ(x, y) is represented
by the composite X

y→ Zn ⊂ Z1 × Zn γ→ Zpn and we can use (8.1.4). Hence
γ0(y) = yp. Next we see by (8.2.4) that γx is a homomorphism of R-vector spaces.
Moreover (8.3.3) shows

γx(y · z) = sign(σ)γx(y) · γx(z).

This is equation (1.2.6)(ii). Finally (8.4.4) shows

γxγy(z) = sign(τ)γyγx(z).

This is equation (1.2.6)(iii). The Bockstein map β : Z1 → Z2 defined as in (8.5.13)
below shows that H∗(X) and M∗ are also β-algebras in β-Alg0. �

Using (8.5.1) the power map γ defines an element

γ ∈ Hpq(Z1 × Zq) = (H∗(Z1) ⊗ H∗(Zq))
pq

=
pq⊕

i=0

Hi(Z1) ⊗ Hpq−i(Zq)

=
pq⊕

i=0

wi ⊗ Hpq−i(Zq).



8.5. Cohomology as a power algebra 207

Here wi = ωi(x) where x = w1 ∈ H1(Z1) = Z/p is a generator, see (1.2.3)(4).
Hence one obtains well-defined elements Di ∈ Hpq−i(Zq) with

(8.5.5) γ =
pq∑

i=0

wi ⊗ Di.

This is an equation for the homotopy class of γ. The elements Di essentially coin-
cide with those in Steenrod-Epstein [SE] and are used for the following definition
of Steenrod operations :

8.5.6 Definition. For p = 2 let

Sqj ∈ Hq+j(Zq) =
[
Zq, Zq+j

]
be defined by Sqj = Dq−j and for p odd let

P j ∈ Hq+2j(p−1)(Zq) =
[
Zq, Zq+2j(p−1)

]
be defined by (−1)jϑqP

j = D(q−2j)(p−1). Here ϑq = (−1)
m(q2+q)

2 · (m!)q where
m = p−1

2 is an element in the field R = Z/p.

8.5.7 Remark. We point out that the sign for P j above coincides with the sign of
Steenrod-Epstein [SE] p. 112 and not with the sign of Karoubi [Ka2] p. 705. In
fact, Karoubi takes the sign from formula (vi) of McClure [MC] p. 259; though
formula (4) p. 260 is the appropriate formula. Then the sign of McClure and
Steenrod-Epstein coincide provided we identify w1 with the generator b used by
McClure. Karoubi also uses a choice of generators xi in H∗(BZ/p) which do not
coincide with the generators wi used by Steenrod-Epstein, see (1.2.3)(4).

The elements Sqj and P j in (8.5.6) are directly deduced from the power
map γ via formula (8.5.5). Moreover the power map γ was obtained easily by the
power function U and the comparison map λπ. Therefore Definition (8.5.6) is a
best possible direct way to introduce the elements Sqj and P j . These elements
coincide with the classical elements since we have the following result.

8.5.8 Theorem. The elements Sqj and P j defined in (8.5.6) by use of the power
map γ coincide with the corresponding Steenrod operations.

Proof. Karoubi [Ka2] shows that Sq0 and P 0 are represented by the identity of
Zq. Therefore the linearity track and the Cartan track imply that Sqj , P j satisfy
the axioms for Steenrod operations in Steenrod-Epstein [SE]. The uniqueness the-
orem chapter VIII [SE] thus implies that the elements (8.5.6) coincide with the
corresponding classical elements. �

It is possible to describe all elements Di in (8.5.5) in terms of Steenrod
operations. If p = 2 we have for the homotopy class of γ the equation

(8.5.9) γ =
∑

j

wq−j ⊗ Sqj .
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If p is odd we have accordingly

(8.5.10) γ = ϑq

∑
j

(−1)jw(q−2j)(p−1) ⊗ P j + ϑq

∑
j

(−1)jw(q−2j)(p−1)−1 ⊗ βP j

where β is the Bockstein operator. The sum is taken over j ∈ Z with wn = 0 for
n < 0 and P j = 0 and Sqj = 0 for j < 0. Comparing (8.5.10) with (8.5.5) we
see that for p odd many Di are actually trivial. Formula (8.5.10) corresponds to
McClure [MC] (4) p. 260 or to Steenrod-Epstein [SE] p. 119. See also 1.10 [Ka2].

8.5.11 Corollary. Let V be a finitely generated Z/p-vector space and V # =
Hom(V, Z/p). Then we have the isomorphism of power algebras natural in V ,

(H∗(B(V #), γ) = (Eβ(V ), γ).

Here the right-hand side is defined by (1.2.8).

Proof. We use (1.1.8), (1.1.9) and (1.2) and (8.5.8). �
The Bockstein homomorphism (q ≥ 1)

(8.5.12) β : Hq(X) −→ Hq+1(X)

associated with the short exact sequence 0 → Z/p → Z/p2 → Z/p → 0 is induced
by a map

β : Zq −→ Zq+1

which is well defined up to a canonical track. That is by (8.5.1) the Bockstein
homomorphism is the composite

Hq(X) = [X, Zq]
β∗−→ [X, Zq+1] = Hq+1(X).

In the next section (8.6) we show:

8.5.13 Theorem. For p odd the composite of the Bockstein map β and the power
map γ,

Z1 × Zq γ−→ Zpq β−→ Zpq+1,

is null homotopic.

As an application of (8.5.13) and (8.5.4) we get

8.5.14 Theorem. Let p be odd and let X be a path connected space and M be a
model of Kp. Then (H∗(X), γ) and (M∗, γ) in (8.5.4) are Bockstein power algebras.

Proof. We define β on H∗(X) by (8.5.12). Moreover we define β on M∗ by the
induced map

M q = M(Zq)
β∗−→ M(Zq+1) = M q+1

induced by the Bockstein map β : Zq → Zq+1. �
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8.5.15 Theorem. Let X be a path connected space and let M be a model of the
theory Kp of Eilenberg-MacLane spaces. Then the power algebras (H∗(X), γ) and
(M∗, γ) in (8.5.4) are unitary extended power algebras for p = 2 and are unitary
extended Bockstein power algebras for p odd.

Proof. We define the extended structure of (H∗(X), γ) by

Eβ(V ) ⊗ H∗(X) = H∗(B(V #) × X)

where we use the Künneth formula and the power algebra structure of the right-
hand side given by (8.5.4). We use for the model M of the theory Kp the isomor-
phism of categories

K0
p

a �� model(Kp)
b

��

in (1.5.2). Then bM in K and H∗B(V #) in K have a tensor product H∗B(V #)⊗bM
in K and we define the power algebra

Eβ(V ) ⊗ M∗ = (a(H∗B(V #) ⊗ bM), γ)

where γ is defined by (8.5.4). This is the extended structure of (M∗, γ). These al-
gebras are unitary by (8.5.8) and (8.5.10). Moreover for p odd these power algebras
are Bockstein algebras by (8.5.14). �

8.5.16 Corollary. The functor Ψ in (1.5.4) is well defined for p = 2 and p odd.

8.6 Bockstein tracks for power maps

Let Zn = Zn
F

with F = Z/p. We have seen in (2.1.11) that there is a well-defined
contractible subgroupoid

β ⊂ λZn, Zn+1]].

The objects of β are the Bockstein maps β. Moreover we have the well-defined
contractible subgroupoid

γ ⊂ [[Z1 × Zq, Zpq]].

The objects of γ are the power maps γ. The morphisms in β and γ are termed
canonical tracks. We now show:

8.6.1 Theorem. Let p be odd. Then there is a well-defined track

ΛB : βγ =⇒ 0 in [[Z1 × Zq, Zpq+1]]

under Z1 × ∗ which we call the Bockstein track for γ. Moreover ΛB is compatible
with canonical tracks in γ and β.
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The following facts are needed in the proof of (8.6.1). Recall that for G =
Z/p2, the short exact sequence

0 −→ F
i−→ G

π−→ F −→ 0

induces the fibration
Zn i−→ Zn

G

π−→ Zn.

Since the diagram

G ⊗ G
µ �� G

F

i

��

F ⊗ G

i⊗1

��

1⊗π
�� F ⊗ F

µ

��

commutes, the following diagram is also commutative (i + j = n).

(8.6.2) Zi
G
× Zj

G

µ �� Zn
G

Zn

i

��

Zi × Zj
G

i×1

��

1×π
�� Zi × Zj

µ

��

Here µ is the multiplication map.
Moreover we need the following notation on cubes. Let Ik = I × · · · × I be

the k-dimensional cube with I = [0, 1] the unit interval and S1 = I/{0, 1}. We
have the quotient map

p0 : (Ik, ∂Ik) −→ (S1 ∧ · · · ∧ S1, ∗) = (Sk, ∗).

Here the boundary ∂Ik of Ik is given by the union of faces

iεj : Ik−1 −→ ∂Ik

with ε =∈ {0, 1} and j = 1, . . . , k and

iεj(t1, . . . , tk−1) = (t1, . . . , tj−1, ε, tj+1, . . . , tk−1).

We need the map

(8.6.3) ρ : ∂Ik −→
k∨

j=1

Sk−1
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defined by

(1)

{
ρ(i0j) = ∗,
ρ(i1j) = ijp0.

Here ij : Sk−1 ⊂
∨k

j=1 Sk−1 is the inclusion of index j. Hence the map ρ carries
faces of level 0 to the basepoint and carries faces of level 1 of the form Ik−1 =
i1jI

k−1 via the quotient map p0 to the sphere Sk−1 = ijS
k−1.

We now choose a homeomorphism of pairs (χ, χ0),

(2) (Ik, ∂Ik)

p0

��

(Sk−1 ∧ (I, 0), Sk−1)
(χ,χ0)��

Sk−1∧p0

��
(Sk, ∗) (Sk−1 ∧ S1, ∗)

χ̄��

such that the map χ̄ : Sk → Sk induced by χ is homotopic to the identity of Sk.
Then the well-known homotopy addition lemma implies that the composite ∂χ0

admits a homotopy

(3) ρχ0 �
k∑

j=1

(−1)j−1ij .

We introduce the mapping space

(4) Ω(k−1)Zn+k = (Zn+k, 0)(∂Ik,∗)

with ∗ = (0, . . . , 0) ∈ Ik. Then ρ induces the map

(5) ρ∗ : ×k
j=1Ω

k−1Zn+k −→ Ω(k−1)Zn+k.

Moreover we introduce the following pull back of spaces.

(6) Fn
(k)

��

∂k

��

(Zn+k
G

, 0)(I
k,∗)

∂0

��
Ω(k−1)Zn+k

i
�� Ω(k−1)Zn+k

G

Here i is induced by the inclusion Zn+k → Zn+k
G

and ∂0 is induced by the inclusion
∂Ik ⊂ Ik. We get the map

(7) πk : Fn
(k) −→ ΩkZn+k
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which carries (a, b) ∈ Fn
(k) to the unique map πk(a, b) : Sk → Zn+k for which the

following diagram commutes.

Ik
b ��

p0

��

Zn+k
G

π

��
Sk

πk(a,b)

�� Zn+k

Recall that the Bockstein map β is defined by (see (2.1.9)

(8.6.4) Zn ∼
sn

�� ΩZn+1 Fn∼
π

��
∂

�� Zn+1

where Fn is the fiber of Zn+1 → Zn+1
G

, that is

(1) Fn = {(x, σ) ∈ Zn+1 × (Zn+1
G

, 0)(I,0), σ(1) = x}.

In fact Fn can be identified with Fn
(1) in (8.6.3)(6). Using πk and ∂k in (8.6.3) we

get the following commutative diagram in which the horizontal homeomorphisms
are induced by χ in (8.6.3)(2).

(2) ΩkZn+k
χ̄∗

≈
��

a

Ωk−1ΩZn+k

Fn
(k)

b

πk

��

χ∗

≈
��

∂k

��

Ωk−1Fn+k−1

Ωk−1∂

��

Ωk−1π

��

Ω(k−1)Zn+k ≈
χ∗

0 �� Ωk−1Zn+k

Here the right-hand side is defined by π and ∂ in (8.6.4). For k ≥ 1 we need the
maps, see (2.1.7),

(8.6.5) rk
n, sk

n : Zn −→ ΩkZn+k.

Using the inclusion iF : S1 → Z1 in (2.1.7) we write t̂ = iF(t). Then

rk
n(x)(t1 ∧ · · · ∧ tk) = x · t̂1 · · · · · t̂k, and(1)

sk
n(x)(t1 ∧ · · · ∧ tk) = t̂1 · · · · · t̂k · x.(2)
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Hence we have

(3) τk,n · sk
n(x) = rk

n(x)

with

sign(τk,n) = (−1)k·n,

where τk,n is the interchange permutation.
One readily checks that

(4)
rk
n = (Ωk−1rn+k−1)rk−1

n ,

sk
n = (Ωk−1sn+k−1)sk−1

n .

Let n = i1 + · · · + ik with i1, . . . , ik ≥ 1, k ≥ 1. Then we have the following
commutative diagram where µ is the multiplication map.

(8.6.6) Zi1 × · · · × Zik
µ ��

1si1×···×sik

��

Zn

sk
n

��
ΩZi1+1 × · · · × ΩZik+1

τkµ̄
�� ΩkZn+k

For t1, . . . , tk ∈ S1 and for y1 ∈ Zi1 , . . . , yk ∈ Zik let τ(k) = τy1,...,yk

k be the
interchange permutation for which

(1) τ(k)(t̂1 · y1 · t̂2 · y2 · · · · · t̂k · yk) = t̂1 · · · · · t̂k · y1 · · · · · yk

with sign(τ(k)) = (−1)i1+(i1+i2)+···+(i1+i2+···+ik−1). The map µ̄ in (8.6.4) is the
multiplication of loops, that is

(2) µ̄(σ1, . . . , σk) = σ1 � · · · � σk

where the exterior product (see (2.1.5)) on the right-hand side is considered as a
map S1 ∧ · · · ∧ S1 −→ Zn+k carrying t1 ∧ · · · ∧ tk to σ1(t1) · · · · · σk(tk). Diagram
(8.6.4) commutes since

sk
nµ(y1, . . . , yk)(t1 ∧ · · · ∧ tk) = t̂1 · · · · · t̂k · y1 · · · · · yk

= τ(k)(t̂1 · y1 · t̂2 · y2 · · · · · t̂k · yk)

= τ(k)(µ̄(si1y1, . . . , sik
yk))(t1 ∧ · · · ∧ tk).
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Next we embed diagram (8.6.6) into the following commutative diagram.

(8.6.7) Zi1 × · · · × Zik
µ ��

1si1×···×sik ∼

��

Zn

sk
n

∼

��
ΩZi1+1 × · · · × ΩZik+1

τ(k)µ̄
��

2

ΩkZn+k

F i1 × · · · × F ik

π×···×π ∼

��

τ(k) ¯̄µ
��

∂̄

��

3

Fn
(k)

∂k

��

πk∼

��

×k
j=1Ω

k−1Zn+k

τ(k)ρ
∗

�� Ω(k−1)Zn+k

Subdiagram 1 is given by (8.6.4) and subdiagram 2 is given by (8.6.3)(7) with

(1) ¯̄µ((x1, σ1), . . . , (xk, σk)) = σ1 � · · · � σk.

Here the exterior product on the right-hand side is considered as a map

(2) σ1 � · · · � σk : Ik −→ Zn+k
G

for σ1 : I −→ Zi1+1
G

, . . . , σk : I −→ Zik+1
G

. Now we use (8.6.2) to see that σ1 �
· · · � σk |∂Ik maps to Zn+k ⊂ Zn+k

G
. Therefore ¯̄µ is well defined.

In fact, we have by (8.6.2) the formula

(3)
(σ1 � · · · � σj−1) · i(xj) · (σj+1 � · · · � σk)

= i[(πσ1) � · · · � (πσj−1) · xj · (πσj+1 � · · · � (πσk)].

Hence we define ∂̄ = (∂̄1, . . . , ∂̄k) by

(4)
∂̄j((x1, σ1), . . . , (xk, σk))

= (πσ1) � · · · � (πσj−1) · xj · (πσj+1 � · · · � (πσk).

Here the right-hand side is a map Ik−1 → Sk−1 → Zn+k which defines an ele-
ment in Ωk−1Zn+k. Now (3) shows that subdiagram 3 commutes. Let τ

(j)
k be the

permutation of Zn+k which satisfies

(5)
τ

(j)
k (t̂1 · y1 · · · · · t̂j−1 · yj−1 · xj · t̂j+1 · yj+1 · · · · · t̂k · yk)

= y1 · · · · · yj · xj · yj+1 · · · · · yk · t̂1 · · · · · t̂j−1 · t̂j+1 · · · · · t̂k.
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Here we have | yj |= ij and | xj |= ij +1. Now ∂̄j yields the following commutative
diagram with j = 1, . . . , k.

(6) Bj Aj

Zi1 ×···×Zij+1×···×Zi−k
¯̄sj ��

µj

��

ΩZi1+1×···×Zij+1×···×ΩZik+1

¯̄µj

89

F i1 ×···×F ik

π×···×∂×···×π=¯̄∂j

��

∂̄j

��
Zn+1

τ
(j)
k τk−1

n+1

�� Ωk−1Zn+k

Here µj is the multiplication map and ¯̄sj = si1 × · · · × 1× · · · × sik
and ¯̄µj carries

(σ1, . . . , xj , . . . , σk) to (σ1 � · · ·� σj−1) · xj · (σj+1 � · · ·� σk). Equations (4) and
(5) show that diagram (6) commutes.

The right-hand side of (8.6.7) is “equivalent” to the Bockstein map β(−1)n(k−1).
For this we use the following in which the indicated tracks are unique.

(7) Zn
sk−1

n ��

sk
n

��

⇑

(−1)n(k−1)

⇑
89

•

Ωk−1sn+k−1

��

Zn
rk−1

n��

sn

��

β

��

4

ΩkZn+k ��

a

•

5

ΩZn+1��

π̄

9:�
��

��
��

��
��

��
��

Fn
(k)

��

πk

��

b∂k

��

•

Ωk−1∂

��

��

6

Fn

π =⇒

��

1
��

∂

��

�� Fn

��  
  
  
  
  
  
  
 

Ω(k−1)Zn+k �� • Zn+1

rk−1
n

��
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Here 4, 5 and 6 are defined as in (2.1.9)(6). Subdiagrams without tracks are com-
mutative. Using (6) and (7) above we see that (8.6.7) implies the derivation prop-
erty of the Bockstein map β, see (K1) in (1.1.7).

We are now ready to introduce the following diagram for the power map
U : Zq → Zpq with U(x) = xp. Recall that the group G = Z/p ⊂ σpq acts
on Zpq by cyclic permutation of q-blocks and G acts trivially on Zq and U is a
G-equivariant map.

8.6.8 Lemma. For all primes p there is a commutative diagram of G-equivariant
maps as follows.

Zq U ��

1∼sq

��

Zpq

∼ sp
pq

��
ΩZq+1 U ′

��

2

ΩpZp+pq

F q U ′′
��

∼π

��

∆p
1

��

3

F pq
(p)

πp∼

��

∂p

��
Zq+1 ∧ (ΩZq+1)∧(p−1) U ′′′

�� Ω(p−1)Zp+pq

The maps sq and π are defined as in (8.6.4) and the maps sp
pq, πp, ∂p are

defined in (8.6.7). Moreover we put

(1) U ′(a) = τ(p)µ̄(a, . . . , a) for a ∈ ΩZq+1, and

(2) U ′′(b) = τ(p) ¯̄µ(b, . . . , b) for b ∈ F q.

Here τ(k)µ̄ and τ(k) ¯̄µ for k = p and i1 = · · · = ip = q are defined in (8.6.7). Next
let ∆p

1 be given by

(3) ∆p
1(b) = (∂b) ∧ (πa) ∧ · · · ∧ (πa).

Moreover we define for x ∈ Zq+1, a1, . . . , ap−1 ∈ ΩZq+1,

(4) U ′′′(x ∧ a1 ∧ · · · ∧ ap−1) = ρ∗(A)



8.6. Bockstein tracks for power maps 217

where A is the p-tuple

(5) A = (τpa1 � · · · � aj−1 · x · aj � · · · � ap−1 | j = 1, . . . , p).

Now (8.6.7) shows that the diagram is commutative. The crucial observation is
that all maps in the diagram are G-equivariant. The group G acts trivially on all
spaces at the left-hand side of the diagram. Moreover α ∈ G yields the element
εα = α ∈ G ⊂ σp and the element α ∈ G ⊂ σpq so that εα � α ∈ σp+pq is defined.
We define the action of α ∈ G on (y : Sp → Zp+pq) ∈ ΩpZp+pq by

(6) α · y = (εα � α)y(ε−1
α ).

Here ε−1
α acts on Sp = S1 ∧ · · · ∧ S1 by permuting the S1-coordinates. The map

sp
pq in the diagram is G-equivariant since

sp
pq(αx)(t) = i(t) · αx for t ∈ Sp, x ∈ Zpq

= (1 � α)i(t) · x
= (εα � α)(ε−1

α � 1)i(t) · x
= (εα � α)(i(ε−1

α t) · x)
= (αsp

pq(x))(t).

Similarly as in (6) we define the action of α on (a, b) ∈ F pq
(p) and a ∈ Ω(p−1)Zp+pq by

(7)

⎧⎪⎨⎪⎩
α(a, b) = (αa, αb),
αa = (εα � α)a(ε−1

α ),
αb = (εα � α)b(ε−1

α ).

Here ε−1
α acts on the cube (Ip, ∂Ip) by permuting coordinates. This shows that πp

and ∂p are G-equivariant. Moreover U ′ and U ′′ are G-equivariant. In fact for U ′

we have

(8)

αU ′(a) = ατ(p)µ̄(a, . . . , a)
= (εα � α)τ(p)(a � · · · � a)ε−1

α

= τ(p)(a � · · · � a)
= U ′(a).

Compare the definition of the permutation τ(p) in (8.6.6)(1). Similar equations
show that U ′′ is G-equivariant.

We now show the fact that also U ′′′ in (4) is G-equivariant, that is

(9) αU ′′′ = U ′′′ for α ∈ G.

Proof of (9). We have

(αU ′′′)(x ∧ a1 ∧ · · · ∧ ap−1) = αρ∗(A)
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where A is the p-tuple in (5). According to the definition of ρ we obtain for
β = (εα)−1 the commutative diagram

(10) Ip−1
i1j ��

β

��

∂Ip
ρ ��

β

��

∨p
i=1 Sp−1

β

��

Sp−1

βj

��

ij��

Ip−1

i1βj

�� ∂Ip
ρ �� ∨p

i=1 Sp−1
Sp−1

iβj

��

with βj ∈ σp−1 given by

βj : {1, . . . , p − 1} = {1, . . . , p} − {j} β−→ {1, . . . , p} − {βj} = {1, . . . , p − 1}.

Here the equations are the monotone bijections. Hence we get for A = (A1, . . . , Ap)

αρ′′(x ∧ a1 ∧ · · · ∧ ap−1) = αρ∗(A)
= (εα � α)(βρ)∗(A) with β = ε−1

α

= ρ∗(εα � α)(A)β
= ρ∗(B1, . . . , Bp).

Let j̄ = βj and let ât = at−1 for t ∈ Z/p.

(11)

Bj = (εα � α)τp(a1 � · · · � aj̄−1 · x · âj̄+1 � · · · � âp)βj

= (εα � α)τp(aβ1 � · · · � aβ(j−1) · x · âβ(j+1) � · · · � âβp)
= τp(a1 � · · · � aj−1 · x · aj � · · · � ap−1)
= Aj .

Compare the definition of τk in (8.6.6)(1) for p = k. By (11) the proof of (9) is
complete. This also completes the proof of (8.6.8) �
8.6.9 Lemma. Let p be odd. The composite U ′′′∆p

1 in (8.6.8) is null homotopic and
there is a well-defined track U ′′′∆p

1 ⇒ 0.

Proof. If q is odd then the diagonal

∆ : Zq −→ Zq ∧ Zq

is null homotopic with a well-defined track ∆ ⇒ 0, since τq,q∆ = ∆ with
sign(τq,q) = (−1)q = −1. This shows that ∆p

1 ⇒ 0 if q is odd. If q is even we
see that U ′′′ ⇒ 0 as follows. Here the track U ′′′ ⇒ 0 is unique by (3.2.5). Accord-
ing to (8.6.3)(3) the map U ′′′ has the degree

d =
p∑

j=1

εj · (−1)j−1
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where εj is the sign of the interchange of x and Aj in x·Aj with Aj = a1�· · ·�aj−1.
Hence

εj = (−1)((j−1)(q+1))·(q+1) = (−1)j−1

since q is even. Therefore we get d = p = 0. �
8.6.10 Definition. Let ∂ : F → X and ∂′ : F ′ → X ′ be G-equivariant maps
between G-spaces in Top∗. We say that ∂ and ∂′ are weakly G-equivalent if there
exists a commutative diagram of G-spaces in Top∗ and G-equivariant maps

F

∂

��

F1
��

��

�� F2

��

. . .�� �� Fn

��

F ′��

∂′

��
X X1

�� �� X2 . . .�� �� Xn X ′��

in which all horizontal arrows are homotopy equivalences in Top∗. The homotopy
inverses need not be G-equivariant.

8.6.11 Lemma. The G-equivariant map ∂p : F pq
(p) → Ω(p−1)Zp+pq with the G-action

in (8.6.8)(7) is weakly G-equivalent to the same map ∂p with trivial G-action.

Proof. Recall that F pq
(p) is the space of pair maps

(1) (Ip, ∂Ip) −→ (Zp+pq
G

, Zp+pq
F

)

with G-action on F pq
(p) given by a G-action on Zp+pq

G
and on Ip. There is a G-

equivariant homeomorphism

(2) (C∂Ip, ∂Ip) ≈ (Ip, ∂Ip)

where C is the reduced cone of a G-space in Top∗. We now use first the method
in (7.2.6) to show that the pair of G-spaces (Zp+pq

G
, Zp+pq

F
) is weakly G-equivalent

to the same pair with trivial G-action. This shows that ∂p in (8.6.11) is weakly
G-equivalent to the same map ∂p with the G-action given only by the G-action on
∂Ip via (2). Now we use the space of maps (1) considered as a space of maps in the
category of simplicial groups where the simplicial groups Zp+pq

G
, Zp+pq

F
are abelian.

Hence this is the space of maps in the category of abelian simplicial groups and
since by the Dold-Kan equivalence abelian simplicial groups are equivalent to chain
complexes we can apply the method in (7.2.6) to the singular chain complex given
by ∂Ip with the induced G-action. This shows by (2) the result in (8.6.11). �
8.6.12 Corollary. The weak G-equivalence (8.6.11) yields comparison maps λG to-
gether with an induced track in the following diagram.

EG ×G F pq
(p)

λ′
G

∼ ��

∂p
#

��
HG=⇒

BG × F pq
(p)

1×∂p

��
EG ×G Ω(p−1)Zp+pq ∼

λ′′
G

�� BG × Ω(p−1)Zp+pq
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Here λ′
G, λ′′

G are homotopy equivalences under and over BG which are the identity
on fibers, see (7.2.3). Moreover HG is a track under and over BG.

The track in (8.6.12) induces the track in (8.6.1).

Proof of (8.6.1). We obtain the following diagram of Borel constructions with
G = Z/p.

BG × Zq
U# ��

∼BG×sq

��
1

EG ×G Zpq λG ��

(sp
pq)#

��
A

=⇒

BG × Zpq
pr ��

��

Zpq

sp
pq

��
• ��

2

•
λ′′′

G ��

B
=⇒

• pr �� •

•

∼BG×π

��

��

BG×∆p
1

  

3

•

πp
#

��

��

λ′
G ��

HG=⇒

•

��

pr ��

��

•
πp

��

∂p

��
•

λ′′
G ��

C
=⇒

• pr �� Ω(p−1)Zp+pq

BG × X

U ′′′
#

��

1
�� BG × X

BG×U ′′′

��

Here we set X = Zq+1 ∧ (ΩZq+1)∧(p−1) and the map λG is the comparison map
(7.2.3) and the track HG is defined in (8.6.12). We define λ′′′

G by the composite

λ′′′
G = (BG × πp)λ′

Gh

where h is a homotopy inverse of πp
# under and over BG. Now the tracks A, B

and C in the diagram are the unique tracks under and over BG given by (7.1.10).
The commutative subdiagrams 1, 2 and 3 are obtained by applying the Borel
construction to the corresponding diagrams in (8.6.8). The top row of the diagram
corresponds to the power map γ. Therefore the diagram together with (8.6.9) and
(8.6.7)(7) yields the track γβ ⇒ 0. �



Chapter 9

Secondary Relations
for Power Maps

In Chapter 8 we have defined the

linearity tracks Γx,y
v , L(r)x

v , P (σ)x
v ,

Cartan tracks Cx,y
v ,

Adem tracks Ax,y
v .

Moreover we have by (6.3.1) the permutation tracks Γσ(x). All these tracks are
well defined and natural in X . In this chapter we describe relations for these tracks.
We do not yet consider relations for the Bockstein track in (8.6).

9.1 A list of secondary relations

Consider a diagram of tracks in [[X, Zn]].

(9.1.1) a
A ��

G

��

b

B

��
f

H
�� g

We choose the orientation of this diagram compatible with the arrow A. According
to the orientation we obtain the automorphisms d1, . . . , d4 as follows:

d1 = GopHopBA ∈ Aut(a) σa= [X, Zn−1],

d2 = AGopHopB ∈ Aut(b) σb= [X, Zn−1],

d3 = BAGopHop ∈ Aut(g)
σg= [X, Zn−1],

d4 = HopBAGop ∈ Aut(f)
σf= [X, Zn−1].



222 Chapter 9. Secondary Relations for Power Maps

Here the isomorphisms σa, σb, σg, σf are defined in (3.2.3). By (3.2.4) we know
that the equation

(1) d = σad1 = σbd2 = σgd3 = σfd4 ∈ [X, Zn−1]

holds. We call this element the primary element represented by the oriented dia-
gram (9.1.1). By (3.2.4) we also have the equation

(2) (H�G) ⊕ d = B�A.

This primary element is trivial if and only if the diagram commutes. If we change
the orientation of (9.1.1) then we alter the primary element by the sign −1.

In Chapter 8 we have seen that there are the following well-defined tracks in
[[X, Z∗]] which are natural in X .

(9.1.2)

L(r)X
v : γv(rx) =⇒ rγv(x) for r ∈ F, see (8.2.8)

P (σ)x
v : γv(σx) =⇒ σpγv(x) for σ ∈ σ|x|, see (8.2.9)

Γx,y
v : γv(x + y) =⇒ γv(x) + γv(y), see (8.2.7)

Cx,y
v : σ(x, y)γv(x · y) =⇒ γv(x) · γv(y), see (8.3.3)

Ax
v,w : γvγw(x) =⇒ τxγwγv(x). see (8.4.4)

Moreover we have for σ ∈ σn the permutation track (6.3.1)(4)

Γσ : σ =⇒ sign(σ) : Zn −→ Zn.

Now we describe relations between tracks which are diagrams as in (9.1.1) defining
primary elements. These primary elements are also natural in X and hence can
be expressed in terms of primary cohomology operations.

First the equation x + y = y + x yields the following relation.

(9.1.3) γv(x + y)
Γx,y

v �� γv(x) + γv(y)

γv(y + x)
Γy,x

v �� γv(y) + γv(x)

We prove in Section (9.2) that this diagram commutes.
Next the associativity (x + y) + z = x + (y + z) yields the following relation.

(9.1.4) γv(x + y + z)
Γx+y,z

v ��

Γx,y+z
v

��

γv(x + y) + γv(z)

Γx,y
v +γv(z)

��
γv(x) + γv(y + z)

γv(x)+Γy,z
v�� γv(x) + γv(y) + γv(z)

We prove in Section (9.2) that this diagram commutes.
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Moreover x + 0 = x yields the following relation.

(9.1.5) γv(x + 0)
Γx,0

v �� γv(x) + γv(0)

γv(x)
0�

�� γv(x)

Also this diagram commutes, see Section (9.2).
We now define inductively

(9.1.6)
Γx1,...,xr

v = (Γx1,...,xr−1
v + γv(xr))�Γx1+···+xr−1,xr

v ,

Γx1,...,xr
v : γv(x1 + · · · + xr) =⇒ γv(x1) + · · · + γv(xr),

and for x1 = · · · = xr we set

(9.1.7)
Γ(r)x

v = Γx,...,x
v ,

Γ(r)x
v : γv(rx) =⇒ rγv(x).

Hence we get for r ∈ N the following relation.

(9.1.8) γv(rx)
Γ(r)x

v �� rγv(x)

γv(rx)
L(r)x

v �� rγv(x)

Here we use N → F mapping r to r · 1 = r ∈ F. Relation (9.1.8) describes
L(r)x

v in terms of linearity tracks Γx,x′
v and vice versa. The primary element of

(9.1.8) in general is non-trivial and is computed in section (9.3.6). For r = p2 − 1
and p odd, diagram (9.1.8) commutes so that

(1) L(−1)x
v = L(p2 − 1)x

v = Γ(p2 − 1)x
v .

This sign track is needed in the next relation.
Using permutation tracks Γσ and P (σ)x

v we get the following relation which
can be used to replace P (σ)x

v .

(9.1.9) γv(σx)
P (σ)x

v ��

γv(Γσ)

��

σpγv(x)

Γσp

��
γv(sign(σ) · x)

L(sign(σ))x
v �� sign(σ) · γv(x)

We show in Section (9.4) that this diagram commutes.
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The equation τ(x, y) · x · y = y · x yields the following relation with P =
P (τ(x, y))x·y

v .

(9.1.10) σ(y, x)γv(τ(x, y) · x · y)
σ(y,x)·P�� σ(y, x)τ(x, y)pγv(x · y)

σ(y, x)γv(y · x)

Cy,x
v

��

τ(xp, yp)σ(x, y)γv(x · y)

τ(xp,yp)Cx,y
v

��
γv(y) · γv(x) τ(xp, yp)γv(x) · γv(y)

In Section (9.5) we prove that this diagram commutes.
Next the associativity x · (y · z) = (x · y) · z) yields the following relation.

(9.1.11) σ(x, y, z)γv(x · y · x)
(σ(x,y)×1)Cxy,z

v ��

(1×σ(y,z))Cx,yz
v

��

(σ(x, y) · γv(x · y)) · γv(z)

Cx,y
v ·γv(z)

��
γv(x) · (σ(y, z)γv(y · z))

γv(x)Cy,z
v �� γv(x) · γv(y) · γv(z)

Also this diagram commutes, see section (9.5). Here we have σ(x, y, z) = (σ(x, y)×
1)σ(x · y, z) = (1 × σ(y, z))σ(x, y · z).

The distributivity (x + x′) · y = x · y + x′ · y yields the following relation.
(9.1.12)

σ(x, y)γv((x + x′) · y)
Cx+x′,y

v ��

σ(x,y)·Γxy,x′y
v

��

γv(x + x′) · γv(y)

Γx,x′
v γv(y)

��
σ(x, y)γv(x · y) + σ(x, y)γv(x′ · y)

Cx,y
v +Cx′,y

v �� γv(x) · γv(y) + γv(x′) · γv(y)

We compute this relation in Section (9.6). If p is odd this diagram commutes.
Next we consider relations for the Adem track Ax

v,w. For the sum x + x′ we
obtain the following relation.

(9.1.13) γvγw(x + x′)
Ax+x′

v,w ��

γvΓx,x′
w

��

τxγwγv(x + x′)

τxγwΓx,x′
v

��
γv(γwx + γwx′)

Γγwx,γwx′
v

��

τxγw(γvx + γvx′)

τxΓγvx,γvx′
w

��
γvγw(x) + γvγw(x′)

Ax
v,w+Ax′

v,w

�� τx(γwγv(x) + γwγv(x′))
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For the product x · y we obtain the following relation with τ̃ = τx � τy.
(9.1.14)

σ(xp, yp)σ(x, y)pγvγw(x · y)
σ(xp,yp)σ(x,y)pAx·y

v,w�� σ(xp, yp)σ(x, y)pτx·yγwγv(x · y)

σ(xp, yp)γv(σ(x, y)γw(x · y))

σ(xp,yp)P (σ(x,y))v

��

σ(xp,yp)γv(Cx,y
w )

��

τ̃σ(xp, yp)γw(σ(x, y)γv(x · y))

τ̃σ(xp,yp)P (σ(x,y))w

��

τ̃σ(xp,yp)γw(Cx,y
v )

��
σ(xp, yp)γv(γw(x) · γw(y))

Cγw(x),γw(y)
v

��

τ̃σ(xp, yp)γw(γv(x) · γv(y))

τ̃Cγv(x),γv (y)
w

��
γvγw(x) · γvγw(y)

Ax
v,w ·Ay

v,w

�� (τx � τy)(γwγv(x) · γwγv(y))

Here we use

σ(xp, yp)σ(x, y)pτxy = (τx � τy)σ(xp, yp)σ(x, y)p.

We now define inductively:

(9.1.15) Cx1,...,xr
v : σ(x1, . . . , xr)γv(x1 · · · · · xr) =⇒ γv(x1) · · · · γv(xr).

For r = 2 this track is given by (8.3.3). For r = 3 this is the composite in (9.1.11).
Moreover for r ≥ 3 we set

Cx1,...,xr
v = (Cx1,...,xr−1

v · γv(xr))�(σ(x1, . . . , xr−1) × 1)Cx1·····xr−1,xr
v

and
σ(x1, . . . , xr) = (σ(x1, . . . , xr−1) × 1)σ(x1 · · · · · xr−1, xr).

For x1 = · · · = xr we get as a special case

C(r)x
v : σ(r, x)γv(xr) =⇒ γv(x)r where

C(r)x
v = Cx,...,x

v and σ(r, x) = σ(x, . . . , x) with r-times x.

In particular since U(x) = xp we have

C(p)x
v : σ(p, x)γvU(x) =⇒ U(γv(x)).
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This track is used in the next relation. Since for v = 0 we have γv(x) = U(x) we
get the following relation.

(9.1.16) σ(p, x)γvU(x)
σ(p,x)Ax

v,o �� σ(p, x)τxUγv(x)

Γσ(p,x)τx

��
σ(p, x)γvU(x)

C(p)x
v

�� Uγv(x)

Here we assume that p = 2 or | x | even so that

sign(σ(p, x)τx) = (−1)p|x|p̄ = 1

with p̄ = p(p − 1)/2. If p is odd and | x | odd, then there is a canonical track
Uγvx ⇒ 0.

Interchanging v and w yields the following relation.

(9.1.17) γvγw(x)
Ax

v,w �� τxγwγv(x)

τxτxγvγw(x) τxγwγv(x)
τxAx

w,v

��

Here we use the fact that τxτx = 1.
Next we get the following hexagon relation for u, v, w : X → Z1.

(9.1.18)
γuγvγw(x)

P (τx)uγuAx
v,w

:;!!!!
!!!!

!!!!
!!! Aγw(x)

u,v

;<"""
""""

""""
""""

τp
xγuγwγv(x)

τp
xAγv(x)

u,w

��

τxpγvγuγw(x)

τxp P (τx)uγvAx
u,w

��
τp
xτxpγwγuγv(x)

τp
xτxpP (τx)wγwAx

u,v <="""
""""

""""
""""

τxp(τx)pγvγwγu(x)

τxp(τx)pAγu(x)
v,w=>!!!!

!!!!
!!!!

!!!

τxp(τx)pτxpγwγvγu(x)

Here we use the fact that

(τx)pτxp(τx)p = τxp(τx)pτxp .
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9.2 Secondary linearity relations

In this section we compute the relations (9.1.3), (9.1.4), (9.1.5) concerning the
linearity track

Γx,y
v : γv(x + y) =⇒ γv(x) + γv(y)

defined in (8.2.7). For v = 0 this is the track

Γx,y
0 : U(x + y) =⇒ U(x) + U(y)

defined in (8.2.6) where U is the power map with U(x) = xp. Let X be a pointed
space and let x, y, z : X → Zq be pointed maps. Then U(x), U(x+y), U(x+y+z)
are objects in the groupoid [[X, Zpq]].

9.2.1 Proposition. The track

Γx,y
0 : U(x + y) ⇒ Ux + Uy

in [[X, Zpq]] is natural in X with the following properties:

(i) Γx,y
0 = Γy,x

0 ,

(ii) (Ux + Γy,z
0 )�Γx,y+z

0 = (Γx,y
0 + Uz)�Γx+y,z

0 ,

(iii) Γ0,0
0 is the identity track of 0.

By (i) and (ii) the following diagrams in the groupoid [[X, Zpq]] commute.

U(x + y)
Γx,y

0 �� Ux + Uy

U(y + x)
Γy,x

0 �� Uy + Ux

U(x + y + z)
Γx+y,z

0 ��

Γx,y+z
0

��

U(x + y) + U(z)

Γx,y
0 +U(z)

��
U(x) + U(y + z)

U(x)+Γy,z
0�� U(x) + U(y) + U(z)

Proof of (9.2.1). The π-norm map N : Zpq → Zpq with N(x) =
∑

α∈π α · x for
π = Z/p admits by (7.2.2) a track

Γ =
∑
α∈π

Γα : N ⇒ N± = 0

with N±(x) =
∑

α∈π sign(α) · x = p · x = 0 ∈ Zpq. Compare (8.2.5). Here we use
the fact that the composite

π ⊂ σpq
sign−→ {1,−1}
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is the trivial homomorphism and that Zpq is a Z/p-vector space object. We know
that Γ : N ⇒ 0 is unique. This shows that for α0 ∈ π we have

(2) Γα0 = Γ

with α0 : Zpq → Zpq carrying x to α0 · x. In fact (2) is true since Nα0 = N and
0α0 = 0. Moreover uniqueness shows that Γ is additive, that is Γ(a+ b) = Γa+Γb
for maps a, b : Y → Zpq. According to the proof of (8.2.3) we have

(3) U(x + y) − Ux − Uy = NŪ(x, y)

so that

(4) Γx,y
0 = ΓŪ(x, y) + Ux + Uy : U(x + y) ⇒ Ux + Uy

is well defined. We have by use of the basis B in the proof of (8.1.4) the formula

Ū(x, y) =
∑
b∈B

b(x, y).

In fact Γx,y
0 does not depend on the choice of the basis B defining Ū = ŪB. A

different basis B0 yields elements βb ∈ π with βb · b(x, y) ∈ B0, b ∈ B, so that by
(2) we have

ΓŪB0 = Γ
∑
b∈B

βb · b(x, y)

=
∑
b∈B

Γβb · b(x, y) =
∑
b∈B

Γb(x, y)

= Γ
∑
b∈B

b(x, y) = ΓŪB.

If p = 2 then B contains exactly one element b, for example b(x, y) = x · y. If
p ≥ 3 then let B′ ⊂ B be the subset of monomials b(x, y) for which the number
of factors x in b(x, y) is even. Then we get for b ∈ B′ an element αb ∈ π with
αb · b(x, y) ∈ B so that for p ≥ 3,

(5) Ū(x, y) =
∑
b∈B′

(b(x, y) + αb · b(y, x)).

Hence by (2) we get for p ≥ 3,

ΓŪ(x, y) = Γ(
∑
b∈B′

(b(x, y) + αb · b(y, x))

=
∑
b∈B′

Γb(x, y) + Γαbb(y, x)

=
∑
b∈B′

Γb(x, y) + Γb(y, x),
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so that ΓŪ(x, y) = ΓŪ(y, x). This proves (i) for p ≥ 3. In fact, since (4) does not
depend on B we may assume αb = 1 for b ∈ B′. For p = 2 we have ΓŪ(x, y) =
Γ(x · y) = Γα(y · x) = Γ(y · x) = ΓŪ(y, x) where α is the generator of π = Z/2.
Hence (i) also holds for p = 2.

Next we consider (ii). According to (4) we have to show

(6)
(Ux + ΓŪ(y, z) + Uy + Uz)�(ΓŪ(x, y + z) + Ux + U(y + z))

= (ΓŪ(x, y) + Ux + Uy + Uz)�(ΓŪ(x + y, z) + U(x + y) + Uz).

Using (3) this is equivalent to

(7)
ΓŪ(y, z)�(ΓŪ(x, y + z) + NŪ(y, z)) = ΓŪ(y, z) + ΓŪ(x, y + z)

= ΓŪ(x, y)�(ΓŪ(x + y, z) + NŪ(x, y)) = ΓŪ(x, y) + ΓŪ(x + y, z).

These are tracks from U(x + y + z) − Ux − Uy − Uz to 0 in [[X, Zpq]]. Hence it
remains to show

(8) Γ(Ū(y, z) + Ū(x, y + z)) = Γ(Ū(x, y) + Ū(x + y, z)).

This is obviously true for p = 2. For p ≥ 3 we consider

(9) U(x + y + z)−Ux−Uy −Uz = N(Ū(x, y) + Ū(x, z) + Ū(y, z) + ¯̄U(x, y, z)).

Here ¯̄U is a sum of monomials of length p containing x, y and z at least as one
factor. The group π = Z/p acts on such monomials freely. We choose a basis B′′

consisting of such monomials b(x, y, z) whose permutations under π give each such
monomial exactly once so that ¯̄U(x, y, z) =

∑
b∈B′′ b(x, y, z). Now we get

Ū(x, y + z) = Ū(x, y) + Ū(x, z) + ¯̄UR(x, y, z),(10)

Ū(x + y, z) = Ū(x, z) + Ū(y, z) + ¯̄UL(x, y, z).(11)

Here R and L are a basis of monomials bR(x, y, z) and bL(x, y, z) respectively with

(12)

{
bR(x, y, z) = αbb(x, y, z), b ∈ B′′,
bL(x, y, z) = βbb(x, y, z), b ∈ B′′,

where αb, βb ∈ π. Hence we get by (2)

Γ ¯̄UR(x, y, z) = Γ ¯̄U(x, y, z) = Γ ¯̄UL(x, y, z)

and this implies (8) and equivalently (ii). �

Next we consider for v : X → Z1, x : X → Zq the composite of maps

γv(x) = γ(v, x) : X −→ Z1 × Zq γ−→ Zpq
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where γ ∈ γ is a power map. Compare (8.1.6). We have by (8.1.1)(4) and (8.1.3)
the equations

(9.2.2)

{
γ0(x) = U(x) = xp for v = 0,

γv(0) = 0 for x = 0.

Here γ0(x) = U(x) satisfies the relations in (9.2.1). More generally such relations
hold for γv(x) as follows.

9.2.3 Theorem. The linearity track

Γx,y
v : γv(x + y) ⇒ γv(x) + γv(y)

in [[X, Zpq]] is natural in X with the following properties

(i) Γx,y
v = Γy,x

v ,

(ii) (γv(x) + Γy,z
v )�Γx,y+z

v = (Γx,y
v + γv(z))�Γx+y,z

v ,

(iii) Γx,0
v is the identity track of γv(x).

These are the secondary linearity relations for the power map γ ∈ γ. Compare
(9.1.3), (9.1.4) and (9.1.5).

Naturality means that a map f : Y → X induces a functor

f∗ : [[X, Zpq]] −→ [[Y, Zpq]]

between groupoids which satisfies

(9.2.4) f∗Γx,y
v = Γxf,yf

vf .

For v = 0 Theorem (9.2.3) corresponds to (9.2.1). By (i) and (ii) in (9.2.3)
the following diagrams commute in the groupoid [[X, Zpq]].

(i) γv(x + y)
Γx,y

v �� γv(x) + γv(y)

γv(y + x)
Γy,x

v �� γv(y) + γv(x)

Here we use the commutativity of the vector space addition +.

(ii) γv(x + y + z)
Γx+y,z

v ��

Γx,y+z
v

��

γv(x + y) + γv(z)

Γx,y
v +γv(z)

��
γv(x) + γv(y + z)

γv(x)+Γy,z
v�� γv(x) + γv(y) + γv(z)
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Poof of (9.2.3). By (8.2.3) we have the track

Lx,y
v = ΛL(v, x, y) : U(x + y) − Ux − Uy −→ γv(x + y) − γv(x) − γv(y)

and by (8.2.6) we have the track

Γx,y
0 − Ux − Uy : U(x + y) − Ux − Uy −→ 0.

Recall that Hop denotes the inverse of the track H . Then we define

(1) Γx,y
v = ((Γx,y

0 − Ux − Uy)�(Lx,y
v )op) + γv(x) + γv(y).

Using (9.2.1) we see that equation (i) in (9.2.3) is equivalent to

(2) Λop
L (v, x, y) = Λop

L (v, y, x).

According to the proof of (8.2.3) we have for w = hπv,

(3) Λop
L (v, x, y) = (p2L

N(w, Ū (x, y))�(p2L
νU+

#(w, x, y))op.

Here LN and Lν are the linearity tracks in the proof of (8.2.3).
If p ≥ 3 we can assume that Ū(x, y) = Ū(y, x).
For p = 2 we have Ū(x, y) = x·y. In this case we get LN(w, x·y) = LN(w, y·x)

since for the generator α ∈ π = Z/2 we have Nα = N so that

(4) LN = LNα = (N±)#Lα�LNα# = LNα#, by (7.3.4).

Here we use the fact that Lα = Bπ × α = 0� is the trivial track.
Hence we have for p ≥ 2,

LN(w, Ū (x, y)) = LN (w, Ū (y, x)).

For the proof of (2) we still have to check that

LνU+
#(w, x, y) = LνU+

#(w, y, x)

holds. This follows from the fact that ν in the proof of (8.2.3) satisfies ν(1×T ) = ν
where T : Zpq × Zpq → Zpq × Zpq is the interchange map. In fact, we have by
(7.3.4)

Lν = Lν(1×T ) = (ν±)#L1×T �Lν(1 × T )# = Lν(1 × T )#,

since L1×T by definition of λ3
π in the proof of (8.2.3) is the trivial track 0�. This

completes the proof of (2) and hence (9.2.3)(i) is true.
For the proof of (9.2.3)(ii) we use the notation

(5)

{
Hx,y

v = Γx,y
v − γvx − γvy : γcr

v (x, y) → 0,

γcr
v (x, y) = γv(x + y) − γv(x) − γv(y).
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Then (9.2.3)(ii) is equivalent to the following diagram.

(6) Hy,z
v �(Hx,y+z

v + γcr
v (y, z)) Hx,y

v �(Hx+y,z
v + γcr

v (x, y))

Hy,z
v + Hx,y+z

v Hx,y
v + Hx+y,z

v

Here we have by (1) above the equation

(7) Hx,y
v = Hx,y

0 �ΛL(v, x, y)op,

hence (6) is equivalent to

(8)
(Hy,z

0 �ΛL(v, y, z)op) + (Hx,y+z
0 �ΛL(v, x, y + z)op)

= (Hx,y
0 �ΛL(v, x, y)op) + (Hx+y,z

0 �ΛL(v, x + y, z)op).

Since (6) holds for v = 0 by (9.2.1) we see that (8) is equivalent to

(9) ΛL(v, y, z)op + ΛL(v, x, y + z)op = ΛL(v, x, y)op + ΛL(v, x + y, z)op.

According to (3) the tracks in (9) are given by the tracks

T1 = p2L
N (w, Ū(y, z)) and T2 = p2L

νU+
#(w, y, z)op,

R1 = p2L
N (w, Ū(x, y + z)) and R2 = p2L

νU+
#(w, x, y + z)op,

T ′
1 = p2L

N (w, Ū(x, y)) and T ′
2 = p2L

νU+
#(w, x, y)op,

R′
1 = p2L

N (w, Ū(x + y, z)) and R′
2 = p2L

νU+
#(w, x + y, z)op.

In fact (9) is equivalent to the equation

(10) T1�T2 + R1�R2 = T ′
1�T ′

2 + R′
1�R′

2.

This again is equivalent to

(11) (T1 + R1)�(T2 + R2) = (T ′
1 + R′

1)�(T ′
2 + R′

2).

Let a = γw(x+ y + z)−γwx−γwy−γwz and let b = U(x+ y + z)−Ux−Uy−Uz
and let

(12)

{
c = p2λπν#U+

#(w, y, z) + p2λπν#U+
#(w, x, y + z),

d = p2λπν#U+
#(w, x, y) + p2λπν#U+

#(w, x + y, z).

Then (11) yields the composite of tracks

(13)

⎧⎨⎩ a
T2+R2−→ c

T1+R1−→ b,

a
T ′
2+R′

2−→ c
T ′
1+R′

1−→ b.
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For the proof of (11) we consider the following commutative diagram with Z = Zpq

and A : Z ×Z → Z, A(x, y) = x+ y and ν : Z ×Z ×Z → Z, ν(x, y, z) = x− y− z.

(14) Z × Z
A �� Z Z × Z

A��

Z×3 × Z×3

ν×ν

��

Z×6ν′
�� ν′′

�� Z×3 × Z×3

ν×ν

��

Here we set for x = (x1, . . . , x6) ∈ Z×6

ν′(x) = (x5, x2, x3, x6, x1, x5),
ν′′(x) = (x4, x1, x2, x6, x4, x3),

so that A(ν × ν)ν′(x) = x5 − x2 − x3 + x6 − x1 − x5 = x6 − x1 − x2 − x3 =
x4 − x1 − x2 + x6 − x4 − x3 = A(ν × ν)ν′′(x). For the element

(15) U++(x, y, z) = (U(x), U(y), U(z), U(x + y), U(y + z), U(x + y + z))

we thus get

(16)

{
ν′U++(x, y, z) = (U+(y, z), U+(x, y + z)),
ν′′U++(x, y, z) = (U+(x, y), U+(x + y, z)),

where U+(x, y) = U(x + y) − Ux − Uy as in the proof of (8.2.3). According to
(7.3.4) we get

(17)
LA(ν×ν)ν′

= (A(ν × ν))#Lν′�LA(ν×ν)(ν′)#
= LA(ν×ν)(ν′)#

since Lν′
is the trivial track by definition of λ6

#. Here we use the fact that ν′ is
given by permutation and diagonal. Similarly we get

(18) LA(ν×ν)ν′′
= LA(ν×ν)(ν′′)#

so that by (14)

(19) LA(ν×ν)(ν′)# = LA(ν×ν)(ν′′)#.

Moreover by (7.3.4) we have

(20) LA(ν×ν) = (A#Lν×ν)�(LA(ν × ν)#)

with Lν×ν = Lν ×Bπ Lν . One can check that

p2A#(Lν ×Bπ Lν)ν′
#U++

# (w, x, y, z) = (T2 + R2)op,(21)

p2A#(Lν ×Bπ Lν)ν′′
#U++

# (w, x, y, z) = (T ′
2 + R′

2)
op,(22)
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so that by (20) we get for V = U++
# (w, x, y, z),

p2(LA(ν×ν)�LA(ν × ν)op# )ν′
#V = (T2 + R2)op,

p2(LA(ν×ν)�LA(ν × ν)op# )ν′′
#V = (T ′

2 + R′
2)

op.

This implies by (19) the following equation with{
K ′ = p2L

A(ν × ν)#ν′
#V,

K ′′ = p2L
A(ν × ν)#ν′′

#V,

(23) (K ′)op�(T2 + R2) = (K ′′)op�(T ′
2 + R′

2).

On the other hand one can check that for the norm map N : Zpq → Zpq we have

T1 + R1 = p2A#LN×N(w, Ū (y, z), Ū(x, y + z)),(24)

T ′
1 + R′

1 = p2A#LN×N(w, Ū (x, y), Ū(x + y, z)).(25)

Here we use LN×N = LN ×Bπ LN . We have for the addition map A : Zpq ×Zpq →
Zpq the equation A(N × N) = NA so that by (7.3.4)

(26)
LNA# = N#LA�LNA# = LNA = LA(N×N)

= (A#LN×N )�(LA(N × N)#).

Here N#LA is the trivial track since LA is defined on the trivial fibration with
λπ = 1 the identity. Hence we get

A#LN×N = (LNA#)�(LA(N × N)#)op.

This implies by (24) and (25) that

T1 + R1 = (p2L
NA#)(w, Ū (y, z), Ū(x, y + z))�(K ′)op(27)

with

K ′ = p2L
A(N × N)#(w, Ū(y, z), Ū(x, y + z))

= p2L
A(ν × ν)#ν′

#V(28)

as in (23). Similarly we get

T ′
1 + R′

1 = (p2L
NA#)(w, Ū (x, y), Ū (x + y, z))�(K ′′)op(29)

with

K ′′ = p2(LA)op(N × N)#(w, Ū (x, y), Ū(x + y, z))

= p2(LA)op(ν × ν)#ν′′
#V

as in (23).
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We now show

(30) (T1 + R1)�(K ′)op = (T ′
1 + R′

1)�(K ′′)op.

Then (30) and (23) imply (11) and hence the proof of (9.2.3) is complete. By (27),
(29) equation (30) is equivalent to

(31) p2L
NA#(w, Ū (y, z), Ū(x, y + z)) = p2L

NA#(w, Ū(x, y), Ū(x + y, z))

In fact by (9.2.1)(10), (11) equation (31) is equivalent to

(32) p2L
N(w, U0 + ¯̄UR(x, y, z)) = p2L

N (w, U0 + ¯̄UL(x, y, z))

with U0 = Ū(x, y)+ Ū(x, z)+ Ū(y, z). Using (26) we see that (32) is equivalent to

(33) p2L
N(w, ¯̄UR(x, y, z)) = p2L

N(w, ¯̄UL(x, y, z)).

This formula can be proved inductively by (9.2.1)(12) and (26) since

p2L
N(w, α · x) = p2L

N(w, x) by (4) for α ∈ π.

Now the proof of (9.2.3)(ii) is complete.

Finally we consider the proof of (9.2.3)(iii). For this we first observe that Γ0,0
v

is the identity track of 0 = γv(0). This can be derived directly from definition (1)
above. Next we set x = y = 0 in formula (9.2.3)(ii) and we get

(γv(0) + Γ0,z
v )�Γ0,z

v = (Γ0,0
v + γv(z))Γ0,z

v .

This implies
Γ0,z

v = Γ0,0
v + γv(z)

where the right-hand side is the identity track of γv(z). This proves (9.2.3)(iii) by
(i) so that the proof of (9.2.3) is complete. �

9.3 Relations for iterated linearity tracks

Given maps xi : X → Zq with i = 1, 2, . . . we define inductively as in (9.1.7) for
r ≥ 2,

(9.3.1) Γx1,...,xr
v : γv(

r∑
i=1

xi) ⇒
r∑

i=1

γv(xi).

For r = 2 this is the linearity track in (8.2.7) and for r > 2 we set

(1) Γx1,...,xr
v = (Γx1,...,xr−1

v + γv(xr))�Γx1+···+xr−1,xr
v .
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This definition corresponds to the bracket of length r of the form (. . . ((1, 2), 3)
. . . , r). But by (9.2.3)(ii) any other bracket of length r can be used to define
Γx1,...,xr

v so that the iterated linearity track (9.3.1) is independent of this bracket.
Moreover (9.2.3)(i) shows that for any permutation σ of (1, . . . , r) we have

(2) Γx1,...,xr
v = Γxσ1,...,xσr

v .

Also the iterated linearity track is natural in X by (9.2.4); that is, for a map
f : Y → X we have

(3) f∗Γx1,...,xr
v = Γx1f,...,xrf

vf .

The track Γx,y,z
v coincides with the composition of tracks in (9.2.3)(ii).

If x1 = · · · = xr = x we get as in (9.1.7) the track (r ≥ 1)

(9.3.2) Γ(r)x
v = Γx,...,x

v : γv(r · x) ⇒ rγv(x).

This is the identity track for r = 1. For r = p we have p · x = 0 and p · γv(x) = 0
so that

Γ(p)x
v : 0 =⇒ 0

represents an element in [X, Zpq−1].

9.3.3 Definition. There is a well-defined element

γ̄ ∈ [Z1 × Zq, Zpq−1] with Γ(p)x
v = γ̄(v, x).

This follows from naturality. In fact, for X = Z1 × Zq we have the projections
p1 = v : X → Z1 and p2 = x : X → Zq so that in this case γ̄ = Γ(p)p2

p1
. The

element γ̄ is computed in the next result.

Recall that we defined in (4.5.7) the linear derivation

Γ[p] : A −→ ΣA

on the Steenrod algebra A. For p = 2 this is the Kristensen derivation and for p
odd recall Theorem (4.5.9). Moreover we have the formulas (8.5.10) and (8.5.11)
expressing γ ∈ [Z1 × Zq, Zpq] in terms of elements in A. If we apply Γ[p] to these
elements we get the element γ̄ ∈ [Z1 × Zq, Zpq−1], that is:

9.3.4 Theorem. For p = 2 we have

γ̄(v, x) =
∑

j

vq−j · Sqj−1(x).

Moreover if p is odd we have

γ̄(v, x) = ϑq

∑
j

(−1)jw(q−2j)(p−1)−1(v) · P j(x).
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9.3.5 Definition. Let p be a prime and r ∈ N = {1, 2, . . .}. It is well known that
rp − r is divisible by p so that the function, termed a Fermat quotient

(1)
α0 : N −→ N,

a0(r) = (rp − r)/p,

is well defined. For F = Z/p and G = Z/p2 the function α0 induces

(2) α : G → F

with α(r · 1) = α0(r) · 1. Here 1 denotes the unit in F and G. Let ᾱ0(x, y) be the
universal polynomial over Z satisfying

(3) pᾱ0(x, y) = (x + y)p − xp − yp.

For example ᾱ0(x, y) = x · y for p = 2 and ᾱ0(x, y) = x2y + xy2 for p = 3. Then
ᾱ0 induces a function

(4) ᾱ : F × F −→ F

with ᾱ(r · 1, t · 1) = ᾱ0(r, t) · 1. Now α in (2) satisfies

(5) α(r) =
r−1∑
j=1

ᾱ(j, 1).

Moreover the function Ū in (8.2.3)(2) with NŪ = U cr satisfies

(6) Ū(rx, tx) = ᾱ(r, t)U(x).

One readily checks that α(i) = 0, α(p) = −1 and if p is odd α(p2 − 1) = 0.
Moreover one proves (5) by the equation

pα0(r) =
r−1∑
j=1

pᾱo(j, 1)

=
r−1∑
j=1

((j + 1)p − jp − 1), see (3)

= rp − 1 − (r − 1) = rp − r.

Using the track Γ(r)x
v in (9.3.2) and the track L(r)x

v in (8.2.8) we obtain the
following result which computes the relation (9.1.7).

9.3.6 Theorem. The tracks (r ∈ N)

Γ(r)x
v , L(r)x

v : γv(rx) =⇒ rγv(x)

satisfy the equation (see (3.2.4))

Γ(r)x
v = L(r)x

v ⊕ (
r − rp

p
γ̄(v, x))
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with γ̄(v, x) ∈ [X, Zpq−1], q =| x |, given by (9.3.4). In particular we get for p odd

Γ(p2 − 1)x
v = L(p2 − 1)x

v = L(−1)x
v .

We prove the theorem in (9.3) below.

We point out that for r = p we have rx = 0 and rγv(x) = 0 and L(p)x
v : 0 ⇒ 0

is the identity track. Hence for r = p the theorem shows that Γ(p)x
v : 0 ⇒ 0

represents γ̄(v, x). This, in fact, holds by definition in (9.3.3). Moreover, for r = 1
the tracks Γ(1)x

v and L(1)x
v are both identity tracks.

9.3.7 Proposition. The track Γ(r)x
v satisfies for r, t ∈ N the equations

Γ(r + t)x
v = (Γ(r)x

v + Γ(t)x
v)�Γrx,tx

v ,

Γ(r · t)x
v = (r · Γ(t)x

v )�Γ(r)tx
v

= (t · Γ(r)x
v )�Γ(t)rx

v .

Moreover, if r ≡ t modulo p2, then Γ(r)x
v = Γ(t)x

v .

Compare (4.2.8), (4.2.9) and (4.2.10).

Proof. For r, t > 0 the equations hold since they correspond to certain brackets
of length r + t or r · t, and Γ(r)x

v is independent of the choice of bracket, see
(9.3.1)(1). �
9.3.8 Corollary. For r = p2 the track

Γ(p2)x
v = 0� : γv(p2x) = 0 =⇒ p2γv(x)

is the identity track of the trivial map. For r = p2 − 1 the track

Γ(p2 − 1)x
v : γv(−x) =⇒ −γv(x)

satisfies the equation

Γ(p2 − 1)x
v = (Γ−x,x

v )op − γv(x).

Proof. We have for r = p2 − 1 and r′ = 1 the following equation by (9.3.7),

Γ(p2)x
v = (Γ(p2 − 1)x

v + Γ(1)x
v)�Γ(p2−1)x,x

v

= (Γ(p2 − 1)x
v + γv(x))�Γ−x,x

v

and Γ(p2)x
v = 0� is the trivial track by the second equation in (9.3.7). �

We now consider for r, t ∈ N the following diagram of tracks in [[X, Zpq]].

(9.3.9) γv(rx + tx)
Γrx,tx

v ��

L(r+t)x
v

��

γv(rx) + γv(tx)

L(r)x
v+L(t)x

v

��
(r + t)γv(x) rγv(x) + tγv(x)
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9.3.10 Proposition. There is a natural element γ̄x
v ∈ [X, Zpq−1] so that the primary

element of (9.3.9) is given by ᾱ(r, t)γ̄x
v with ᾱ defined in (9.3.5).

Proof. We subtract on both sides of (9.3.4) the track L(r)x
v +L(t)v

r so that we get
the following equivalent relation.

(1) γcr
v (rx, tx)

L0

��

Γ0

  �
���

��
���

�
U cr(rx, tx) = 0

Lrx,tx
v��

ΓŪ(rx,tx)
,,###

###
###

##

0 0

Here we set

L0 = L(r + t)x
v − L(v)x

v − L(t)x
v ,

Γ0 = Γrx,tx
v − γv(rx) − γv(tx)

= ΓŪ(rx, tx)�(Lrx,tx
v )op, see (8.2.7).

We have the equation

U cr(rx, tx) = U(rx + tx) − U(rx) − U(tx)
= (r + t)pUx − rpUx − tpUx

= 0

since (r + t)p = rp + tp in F = Z/p. According to (8.2.4) the composite track
L0�Lrx,tx

v : 0 ⇒ 0 is represented by the following diagram with f = (r +
t)#×̄r#×̄t# is a product over Bπ and w = hπv.

(2) •
4

��

•λπ��

∆#

��
•

3

��

•
f

��

λπ�� (U#,U#,U#)��

U#
:;

•

1

��

•
λ3

π��

ν#

��

•
U+

#��

Ucr
#��

Bπ×Ū

>?

X
(w,rx,tx)��

(w,x)

((��������

Zpq •
p2

��
LN⇐

2

•λπ��

•

��

•
Bπ×1
��

N#

��

Here 3 is given by Lr+t×̄Lr×̄Lt and 4 is the commutative diagram defined by the
diagonal map ∆. Since νf∆ = 0 we see that pasting of 1,3,4 yields the identity
track, see (7.3.9). This shows

(3) L0�Lrx,tx
v = p2(LN )op(Bπ × Ū)(w, rx, tx).
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We now use the equation

Ū(rx, tx) = ᾱ(r, t)U(x),

see (9.3.5). Hence we get for a = ᾱ(r, t) ∈ F the following diagram representing 3.

(4) Zpq •
2

p2
�� •λπ�� •

Ucr
#��

Bπ×Ū34$$
$$
$$
$$

X
(w,rx,tx)��

(w,x)

$$%%
%%
%%
%%
%%
%%
%%

•
5

��

•��

N#

��

•

��

•
Bπ×1
��

Bπ×a

��

•
Bπ×U
��

Here 5 is a commutative diagram. Since N is linear we have Na = aN so that the
pasting of 2 and 5 is given by the pasting of 6 and 2 in the following diagram, see
(7.3.9).

(5) Zpq •
6

p2�� •�� •
Ucr

#�� X
(w,rx,tx)��

(w,x)����
��
��
�

•

a

��

•

��

p2��

2

•λπ��

a#

��

•
0#��

U#>?•

��

•
Bπ×1
��

N#

��

Since 6 is composed with 0# with NU = 0 we see that 3 coincides with

(6) L0�Lrx,tx
v = a · p2(LN )opU#(w, x).

On the other hand we have for Γ : N ⇒ 0,

(7) ΓŪ(rx, tx) = ΓaUx
= aΓUx.

Uniqueness shows that Γa = aΓ. This proves that the primary element of (9.3.9)
is given by

(8) (6)op�(7) = a · γ̄x
v with

(9) γ̄x
v = p2(LN )U#(w, x)�ΓUx.

This completes the proof of (9.3.10). �
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9.3.11 Corollary. Let ∆r be the primary element of (9.3.6), that is

Γ(r)x
v ⊕ ∆r = L(r)x

v .

Then ∆r satisfies the formula ∆1 = 0 and

∆r+t = ∆r + ∆t − ᾱ(r, t)γ̄x
v .

Proof. According to (9.3.10) we have for a = ᾱ(r, t) and Lr = L(r)x
v the formula

Lr+t ⊕ (aγ̄x
v ) = (Lr + Lt)�Γrx,tx

v

so that for Γr = Γ(r)x
v ,

Γr+t ⊕ (∆r+t + aγ̄x
v ) = ((Γr ⊕ ∆r) + (Γt ⊕ ∆t))�Γrx,tx

v .

Here we have by (9.3.7)
Γr+t = (Γr + Γt)Γrx,tx

v .

Therefore we get the formula in (9.3.11). �
Proof of (9.3.6). We have by (9.3.11) the formula

∆1 = 0,

∆r+1 = ∆r − ᾱ(r, 1)γ̄x
v .

This shows inductively by (9.3.5)(5) that

∆r = −α(r)γ̄x
v .

We know that −∆p = γ̄(v, x), see the remark following (9.3.6). Since α(p) = −1
we get

γ̄x
v = −γ̄(v, x).

Therefore we get
∆r = α(r) · γ̄(v, x)

and the proof of (9.3.6) is complete. �

9.4 Permutation relations

According to (7.2.2) we have for σ ∈ σq the track in [[Zq, Zq]],

Γσ : σ ⇒ sign(σ) : Zq → Zq.

Here we have sign(σ) = sign(σ)p since Zq is an F-vector space with F = Z/pZ.
For a pointed map x : X → Zq we obtain therefore the track in [[X, Zq]],

(9.4.1) Γσ = Γσ(x) : σx ⇒ sign(σ)px



242 Chapter 9. Secondary Relations for Power Maps

which we call the permutation track . One readily checks the relations

Γστ (x) = (sign(σ)Γτ (x))�Γσ(τx) for σ, τ ∈ σq,(1)
Γσ(x + y) = Γσ(x) + Γσ(y) for x, y : X → Zq.(2)

Moreover for the product x · y : X → Zq+q′
of x : X → Zq, y : X → Zq′

and
σ1 ∈ σq, σ2 ∈ σq′ we get

(3) Γσ1×σ2(x · y) = Γσ1(x) · Γσ2(y).

This readily follows from (6.3.2)(5).
Now let v : X → Z1 be a pointed map and let

γv(x) : X
(v,x)−→ Z1 × Zq γ−→ Zpq

as in (8.1.6). Moreover let σp ∈ σpq be the permutation for which (σx)p = σpxp

where xp = x · · · · · x is the p-fold product. We define the permutation track

(9.4.2) P (σ)x
v : γv(σx) ⇒ σpγv(x)

as in (8.2.9), namely we have for w = hπv the equation

γv(σx) = p2λπU#(w, σx)
= p2λπU#σ#(w, x)
= p2λπ(σp)#U#(w, x)
⇒ p2(σp)#λπU#(w, x)
= σpp2λπU#(w, x)
= σpγv(x),

so that P (σ)x
v = p2(Lσp

)U#(w, x).

9.4.3 Theorem. The permutation track P (σ)x
v can be described in terms of the

permutation tracks Γσ in (9.2.1), since the following diagram commutes.

γv(σx)
P (σ)x

v ��

γv(Γσ)

��

σpγv(x)

Γσp

��
γv(sign(σ)p · x)

L(sign(σ)p)x
v �� sign(σ)p · γv(x)

We shall need this result in the proof of (9.3.3)(i).

Proof. We recall that for r ∈ Z the track L(r)x
v : γv(r · x) ⇒ r · γv(x) defined in

(8.2.8) is given by

(1) L(r)x
v : p2(Lr·)U#(w, x) : γv(r · x) =⇒ r · γv(x)
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with w = hπv. Here r· : Zq → Zq is multiplication by r, r ≥ 1. This is a linear map
so that the linear track Lr· is defined. We have to compare (1) for r = sign(σ)p

with

(2) P (σ)x
v = p2(Lσp

)U#(w, x) : γv(σx) =⇒ σpγv(x).

For this we consider the cylinder IZq = Zq × [0, 1]/ ∗ ×[0, 1]. We choose maps

(3)
Γσ : IZq −→ Zq

Γσp : IZpq −→ Zpq

representing the permutation tracks Γσ and Γσp . We consider IZq as a triple

IZq = (Zq, IZq, Zq)

with inclusions i0 and i1 respectively of the boundary. We also have the triple

(IZq)∧p = ((Zq)∧p, (IZq)∧p, (Zq)∧p)

with inclusions i∧p
0 and i∧p

1 . Moreover, we have the π-invariant inclusion

j : I(Zq)∧p −→ (IZq)∧p

which carries (t, x1, . . . , xp) to ((t, x1), . . . , (t, xp)). The group π = Z/p acts by
permuting coordinates in X∧p. The map j is a homotopy equivalence in Top and
a map between triples which is the identity on the boundary. Therefore

(4) j# : Bπ ×π I(Zq)∧p −→ Bπ ×π (IZq)∧p

has a homotopy inverse j̄ over Bπ which is also a map of triples and is the identity
on the boundary.

Now consider the following diagram corresponding to (1) and (2) respectively
with i = 0, 1.

Bπ ×π (Zq)∧p

µ#

89��
���

���
���

�

X
(w,x) �� Bπ × Zq

∆#

?@&&&&&&&&&&&&

U#

��

(g)#

��

Bπ ×π Zpq
λ# ��

(fi)#

��

Li=⇒

Bπ × Zpq
±

(fi)#

��
Bπ × Zq

U#

�� Bπ ×π Zpq

λ#

�� Bπ × Zpq
±

p2

��
Zpq
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Here we set g1 = r and f1 = rp = r and g0 = σ and f0 = σp and L1 = Lr·

and L0 = Lσp

are linear tracks defining (1) and (2) respectively. We consider the
following diagram of maps between triples.

IX
I(w,x) �� Bπ × IZq

∆#

��

(I∆)#

<=''
'''

'''
'''

''

Bπ ×π (Zq)∧p

µ#

��

Bπ ×π (IZq)∧p j̄ ��(Γ∧p
σ )#�� Bπ ×π I(Zq)∧p

(Iµ)#

��
Bπ ×π Zpq

λπ

��

Bπ ×π IZpq

Iλπ

��
Bπ × Zpq

±

p2

��

Bπ × IZpq
±

(Γσp )#��

Zpq

Let H = λ#µ#(Γ∧p
σ )# and G = (Γσp)#(Iλπ)(Iµ)# j̄. Then we obtain homotopies

H ′ = p2H∆#I(w, x) and G′ = p2G∆#I(w, x) such that the corresponding tracks
satisfy

γv(Γσ) = H ′ : γv(σx) =⇒ γv(rx),(5)
Γσp = G′ : σpγv(x) =⇒ rγv(x).(6)

Here we have (6) since there is a homotopy over Bπ and under the boundary

(7) j̄∆# � (I∆)#.

This is a consequence of the following commutative diagram.

IZq

∆

  �
��

��
��

��
I∆

��(((
((

((
((

I(Zq)∧p

j
�� (IZq)∧p

Given a triple X = (A ⊂ X ⊃ B) the boundary ∂IX of the cylinder IX is
defined by

(8)
i : ∂IX ⊂ IX,

∂IX = IA ∪ IB ∪ i0X ∪ i1X.
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Hence we get the following diagram.

(9) Bπ ×π ∂(I(IZq)∧p)
i# ��

F

��

Bπ ×π I(IZq)∧p

F̄:;) ) ) ) ) ) )

Bπ × Zpq
±

Here the map F is given by

(10) F = L0µ# ∪ L1µ# ∪ H ∪ G.

Now obstruction theory as in (7.1.10) shows that there is a map F̄ over Bπ ex-
tending F . The existence of F̄ shows by (1) and (2) and (4) and (5) that the
diagram in (9.4.3) commutes. �

9.5 Secondary Cartan relations

We consider pointed maps

x : X → Zq, y : X → Zq′
, z : X → Zq′′

so that products x · y, x · y · z are defined as in (2.1.5). We have τ(x, y) ∈ σq+q′

with

(9.5.1) τ(x, y)x · y = y · x.

Moreover let σ(x, y) ∈ σpq+pq′ be the permutation with

(9.5.2) σ(x, y)(x · y)p = xp · yp.

Hence σ(x, y) coincides with σ in (8.2.3). We have the following rules:

σ(y, x)τ(x, y)p = τ(xp, yp)σ(x, y),(1)

σ(x, y, z) = (σ(x, y) × 1)σ(x · y, z)
= (1 × σ(y, z))σ(x, y · z).(2)

Here σ(x, y, z) is the permutation with σ(x, y, z)(xyz)p = xpypzp. Moreover let

γv(x) : X
(v,x)−→ Z1 × Zq γ−→ Zpq

be defined as in (8.1.6).

9.5.3 Theorem. The Cartan track ΛC in (8.2.3) induces the track

C = Cx,y
v : σ(x, y)γv(x · y) ⇒ γv(x) · γv(y)

in [[X, Zp(q+q′)]] which is natural in X and for which the following diagrams (i),
(ii) commute. These diagrams are the secondary Cartan relations.
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(i) σ(y, x)γv(τ(x, y) · x · y)
σ(y,x)·P�� σ(y, x)τ(x, y)pγv(x · y)

σ(y, x)γv(y · x)

Cy,x
v

��

τ(xp, yp)σ(x, y)γv(x · y)

τ(xp,yp)Cx,y
v

��
γv(y) · γv(x) τ(xp, yp)γv(x) · γv(y)

Here P is the track in (9.4.3), P = P (τ(x, y))x·y
v .

(ii) σ(x, y, z)γv(x · y · x)
(σ(x,y)×1)Cxy,z

v ��

(1×σ(y,z))Cx,yz
v

��

(σ(x, y) · γv(x · y)) · γv(z)

Cx,y
v ·γv(z)

��
γv(x) · (σ(y, z)γv(y · z))

γv(x)Cy,z
v �� γv(x) · γv(y) · γv(z)

Proof of (9.5.3). We define for w = hπv and σ = σ(x, y),

(1)
C = Cx,y

v = ΛC(v, x, y)
= (p2S

µ(U × U)#(w, x, y))�(p2L
σU#(w, x · y))op.

Compare the proof of (8.3.2). Now (i) is equivalent to the following equation (see
(9.4.3)).

(2) Cy,x
v = (τ̄ · Cx,y

v )�p2σ̄#(Lτp

)U#(w, x, y),{
τ = τ(x, y) , σ = σ(x, y),
τ̄ = τ(xp, yp) , σ̄ = σ(y, x).

By (9.5.2)(1) we have the equation σ̄τp = τ̄σ. Hence by (7.3.4) we get

(3) σ̄#Lτp�Lσ̄(τp)# = τ̄Lσ�Lτ̄σ#.

Hence we get

(4) (τ̄#Lσ)op�(σ̄#Lτp

) = Lτ̄σ#�(Lσ̄τp
#)op.

Therefore (2) is equivalent to

(5) Cy,x
v = τ̄ p2S

µ(U × U)#(w, x, y)�(Lτ̄σ#�(Lσ̄τp
#)op)U#(w, xy).

Since τpU = Uτ we see that (2) is equivalent to

(6) p2S
µ̄(U × U)#(w, y, x) = p2τ̄#Sµ(U × U)#(w, x, y)�Lτ̄σ#U#(w, xy).
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We have the equation τ̄µ = µ̄T . Hence we know by (7.3.9) that

(7) Sµ̄T = µ̄#ST �SµT# = SµT# = S τ̄µ = τ̄#Sµ�S τ̄µ#

where S τ̄ = Lτ̄ since τ̄ is linear and where ST = LT = 0� is the trivial track.
Moreover σU(x · y) = σ(x · y)p = xp · yp = µ(U ×U)(x, y). This shows by (7) that
(6) holds. Hence the proof of (i) is complete.

For the proof of (ii) we have to consider:

C1 = Cx,y
v = (p2S

µ1(U × U)#(w, x, y))�(p2L
σ1U#(w, xy))op

with µ1(x, y) = x · y, σ1 = σ(x, y),

C2 = Cy,z
v = (p2S

µ2(U × U)#(w, y, z))�(p2L
σ2U#(w, yz))op

with µ2(y, z) = y · z, σ2 = σ(y, z),

C3 = Cxy,z
v = (p2S

µ3(U × U)#(w, xy, z))�(p2L
σ3U#(w, xyz))op

with µ3(x · y, z) = x · y · z, σ3 = σ(x · y, z),

C4 = Cx,yz
v = (p2S

µ4(U × U)#(w, x, yz))�(p2L
σ4U#(w, xyz))op

with µ4(x, y · z) = x · y · z, σ4 = σ(x, y · z). We have to show

(8) (C1 · γv(z))�(σL · C3) = (γv(x) · C2)�(σR · C4)

with σR = 1 × σ(y, z) and σL = σ(x, y) × 1. We have by (9.5.2) the equation

(9) σLσ3 = σ(x, y, z) = σRσ4

so that
(σL)#Lσ3�LσL(σ3)# = Lσ(x,y,z) = (σR)#Lσ4�LσR(σ4)#.

Hence (8) is equivalent to

(10)
(C1γv(z))�σLp2S

µ3(U × U)#(w, xy, z)�p2L
σL(σ3)#U#(w, xyz)

= (γv(x)C2)�σRp2S
µ4(U × U)#(w, x, yz)�p2L

σR(σ4)#U#(w, xyz).

Here we have

(µ3)#(U × U)#(w, xy, z) = (σ3)#U#(w, xyz),
(µ4)#(U × U)#(w, x, yz) = (σ4)#U#(w, xyz),

since σ3(xyz)p = (xy)pzp and σ4(xyz)p = xp(yz)p. Hence (10) is equivalent to

(11)
(C1γv(z))�p2 [(σL)#Sµ3�LσL(µ3)#] (U × U)#(w, xy, z)

= (γv(x)C2)�p2 [(σR)#Sµ4�LσR(µ4)#] (U × U)#(w, x, yz).
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Using (7.3.9) we see that (11) is equivalent to:

(12)
(C1γv(z))�

A︷ ︸︸ ︷
p2S

σLµ3(U × U)#(w, xy, z)
= (γv(x)C2)� p2S

σRµ4(U × U)#(w, x, yz)︸ ︷︷ ︸
B

.

We have the equation µ3(µ1 × 1) = µ4(1 × µ2) so that by (7.3.9)

(13)
(µ3)#(Sµ1 × λ#)�Sµ3(µ1 × 1)#

= (µ4)#(λπ × Sµ2)�Sµ4(1 × µ2)#.

Moreover γv(z) = p2λπU#(w, z) so that

A = (p2S
µ1(U × U)#(w, x, y))γv(z)

= p2(µ3)#(Sµ1 × λπ)(U × U × U)#(w, x, y, z),

B = γv(x) · (p2S
µ2(U × U)#(w, y, z))

= p2(µ4)#(λπ × Sµ2)(U × U × U)#(w, x, y, z).

Using the definition of C1 and C2 we see that (12) is equivalent to

(14)
A�

A′′︷ ︸︸ ︷
((p2L

σ1U#(w, xy)opγv(z))�A′

= B� (γv(x)(p2L
σ2U#(w, yz))op)︸ ︷︷ ︸

B′′

�B′.

Hence (13) implies that (14) is equivalent to

(15)
p2(Sµ3)op(µ1 × 1)#(U × U × U)#(w, x, y, z)�A′′�A′

= p2(Sµ4)op(1 × µ2)#(U × U × U)#(w, x, y, z)�B′′�B′.

Since U(x)U(y) = σ(x, y)U(xy) and U(y)U(z) = σ(y, z)U(yz) we see that

(9.5.4)
(µ1 × 1)#(U × U × U)#(w, x, y, z) = (σL)#(U × U)#(w, xy, z),
(1 × µ2)#(U × U × U)#(w, x, y, z) = (σR)#(U × U)#(w, x, yz).

On the other hand we get for A′′, B′′ in (14)

A′′ = p2(µ3)#(Lσ1 × λπ)op(U × U)#(w, xy, z),
B′′ = p2(µ4)#(λπ × Lσ2)op(U × U)#(w, x, yz).

This implies that (15) is equivalent to

(16)
p2((Sµ3)op(σL)#�(µ3)#(Lσ1 × λπ)op)(U × U)#(w, xy, z)�A′

= p2((Sµ4)op(σR)#�(µ4)#(λπ × Lσ2)op)(U × U)#(w, x, yz)�A′′.
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Now we have by definition of σL = σ1 × 1 and σR = 1 × σ2 the equation µ3σL =
σ3(σ1 × 1) and µ4σR = µ4(1 × σ2). This shows that the left-hand side of (16) is
equal to

(17) p2(Sµ3σL)op(U × U)#(w, xy, z)�A′ = 0�

and the right-hand side of (16) is equal to

(18) p2(Sµ4σR)op(U × U)#(w, x, yz)�B′ = 0�.

Since both tracks (17) and (18) are the trivial track we see that (16) holds. This
completes the proof of (ii). �

9.6 Cartan linearity relation

We consider pointed maps v : X → Z1 and

x, x′ : X −→ Zq, y : X −→ Zq′

so that x + x′ and x · y, x′ · y are defined. We have the linearity track

Γx,x′
v : γv(x + x′) =⇒ γv(x) + γv(x′)

in (9.1.4) and the Cartan track

Cx,y
v : σ(x, y)γv(x · y) =⇒ γv(x) · γv(y)

in (9.3.3). These tracks yield following the diagram.
(9.6.1)

σ(x, y)γv((x + x′) · y)
Cx+x′,y

v ��

σ(x,y)Γxy,x′y
v

��

γv(x + x′) · γv(y)

Γx,x′
v γv(y)

��
σ(x, y)γv(x · y) + σ(x, y)γv(x′ · y)

Cx,y
v +Cx′,y

v �� γv(x) · γv(y) + γv(x′) · γv(y)

For v = 0 we have γ0x = Ux = xp and Cx,y
0 is the identity track. Therefore we

obtain the following as a special case v = 0 of diagram (9.6.1).

(9.6.2) σ(x, y)U((x + x′) · y)

σ(x,y)Γxy,x′y
0

��

U(x + x′) · U(y)

Γx,x′
0 U(y)

��
σ(x, y)(U(x · y) + U(x′ · y)) (U(x) + U(x′)) · U(y)
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9.6.3 Theorem. For the tracks in (9.6.2) we have

σ(x, y)Γxy,x′y
0 ⊕ ∆(x, x′, y) = Γx,x′

0 U(y)

where ∆(x, x′, y) ∈ [X, Zpq−1] is given by the formula

∆(x, x′, y) =

{
x · x′ · Sq|y|−1(y) for p = 2,

0 for p odd.

9.6.4 Theorem. The primary element of (9.6.1) does not depend on v and hence
is given by ∆(x, x′, y) in (9.6.3).

Proof of (9.6.4). For the inverse σ−1 of σ = σ(x, y) we obtain the track

C1 = σ−1Cx,y
v : γv(x · y) =⇒ σ−1γv(x) · γv(y).

According to the diagram in (8.2.4) we obtain C1 by diagram 2 below where
w = hπv and

µ̄ = σ−1µpq,pq′ : Zpq × Zpq′ −→ Zp(q+q′).

We point out that µ̄ is π-equivariant since for α ∈ π,

µ̄(αx, αy) = σ−1(αx · αy) = σ−1(α � α)(x · y)

= ασ−1(x · y) = αµ̄(x, y).

Hence the map µ̄# between Borel constructions in the following diagram is defined.

(2) Zp(q+q′) •p2��

Sµ̄
⇐=

•
λpi�� •

U#��

•

Bπ×µ̄

��

•
λ2

π

��

µ̄#

��

•
(U×U)#

��

Bπ×µ

��

X
(w,x,y)

��

γv(x·y)

��

σ−1γv(x)·γv(y)

78

Similar diagrams are obtained for the tracks

C2 = σ−1Cx′,y
v : γv(x′ · y) =⇒ σ−1γv(x) · γv(y),(3)

C3 = σ−1Cx+x′,y
v : γv((x + x′) · y) =⇒ σ−1γv(x + x′) · γv(y).(4)

Using the definition of Γx,y
v in (9.1.4)(1) we see that commutativity of the dia-

gram in (9.4.1) is equivalent to the commutativity of the following diagram where



9.6. Cartan linearity relation 251

we use Lx,y
v in (8.2.4).

(5) γcr
v (xy, x′y)

C3−C1−C2 �� σ−1(γcr
v (x, x′) · γv(y))

U cr(xy, x′y)

Lxy,x′y
v

��

ΓŪ(xy,x′y)

��*
**

**
**

**
**

**
**

σ−1U cr(x, x′) · γv(y)

σ−1Lx,x′
v ·γv(y)

��

σ−1(ΓŪ(x,x′))·γv(y)

����
��

��
��

��
��

��
��

�

0

Here Γ : N ⇒ 0 is the track for the norm map N : Zpq → Zpq in the proof of
(9.1.1). As in (8.2.3) let ν : Zpq × Zpq × Zpq → Zpq be defined by ν(x, y, z) =
x−y−z. Then diagram (2) shows that the track C3−C1−C2 is given by diagram
(7) below with

(6)
w1 = (w, xy, x′y) : X −→ Z1 × Zpq × Zpq′

,

w2 = (w, (x + x′, y), (x, y), (x′, y)) : X −→ Z1 × (Zq × Zq′
)3.

Moreover let U+ be defined as in the proof of (8.2.3) and recall that products like
λ3

π = λπ×̄λπ×̄λπ are products over Bπ, where we use the symbol ×̄ to denote the
product over Bπ.

(7) • •p2��

•
Bπ×ν

��

(Sµ̄)3⇐=

•
λ3

π�� •
U+

#��

•
Bπ×µ̄3

��

•
(λ2

π)3
��

µ̄3
#

��

•
(U×U)3#

�� Xw2
��

w1

((�������

Now diagram (7) is embedded into the large diagram (11) below which represents
the composite of tracks

(8) (σ−1Lx,x′
v · γv(y))op�(C3 − C1 − C2)�Lxy,x′y

v

in diagram (5). Let

(9) w3 = (w, (x, x′), y) : X −→ Z1 × Zq × Zq × Zq′

be similarly defined as w1 and w2 in (6) and let ∆# be given by the diagonal map
with

(10)

{
∆ : (Zpq)4 −→ (Zpq)6,
∆(x, y, z, u) = ((x, u), (y, u), (z, u)).
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(11) •

Bπ×N

��

1

•

N#

��

Bπ×1��

• •

2

p2�� •λπ��

•

3

��

•
λ3

π��

ν#

��

•��

Bπ×Ū

@A

•

4

��

•
(λ2

π)3��

µ̄3
#

��

•�� Xw2
��

w1

@A















w3

��		
		

		
		

		
		

		

•

5

Bπ×∆

��

��

•
λ3

π×̄λπ

��

∆#

��

ν#×̄1

��

•
U+

#×̄U#

��

(Ū×U)#

��

•

6

��

•
λ2

π

��

µ̄#

��
•

7

p2

AB

•
λπ

��

8

��

•

µ̄#

��

λ2
π

��

•

��

•
1×̄λπ

��

N#×̄1

��

All subdiagrams numbered 1, . . . , 8 in diagram (11) are diagrams together with
linear tracks or smash tracks. The other subdiagrams of (11) commute. Since ∆
is a diagonal map also subdiagram 4 commutes.

Subdiagrams 1, 2 correspond to the defining diagram in (8.2.4) of Lxy,x′y
v .

Subdiagram 3 is given by diagram (7) and yields the track C3 − C1 − C2.
Subdiagrams 6 and 7 are opposite to each other and therefore cancel as a

composite of tracks. This shows that subdiagrams 5, 6, 7, 8 yield by (8.2.4) the
track σ−1Lx,x′

v · γv(y). Here 8 is the track LN×̄λπ and 5 is the track Lν×̄λπ.
Hence we proved that diagram (11) represents the track (8).
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We now observe that

(12) νµ̄3∆ = µ̄(ν × 1)

since we have

νµ̄3∆(x, y, z, u) = νµ̄3((x, u), (y, u), (z, u))
= σ−1x · u − σ−1y · u − σ−1z · u
= σ−1(x − y − z) · u
= µ̄(ν × 1)(x, y, z, u).

Equation (12) shows by (7.3.9) that the tracks 2, 3, 4, 5, 6 cancel each other.
Therefore the composite track (8) represented by diagram (11) is also represented
by the following diagram.
(13)

•

1Bπ×N

��

•Bπ×1��

N#

��
• •p2��

7

•λπ�� X

(Bπ×Ū)w1++++++++++++

BC++++++++++++

(Ū×U)#w3
$$
$$
$$
$$
$$
$$
$$
$$

34$$
$$
$$
$$
$$
$$
$$
$$

Ucr(xy,x′y)

CD

σ−1Ucr(x,x′)·γv(y)

DE

•

8

Bπ×µ̄

��

•
λ2

π

��

µ̄#

��

•

Bπ×N×1

��

•
1×̄λπ

��

N#×̄1

��

We describe further details of diagram (13) as follows.
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Let BZpq = Bπ × Zpq be the trivial fibration and let EZpq = Eπ ×π Zpq

be the Borel construction for the π-space Zpq. Then subdiagram 8 together with
objects is explicitly given by the following.

(14) Bπ × Zpq × Zpq′

8

E(Zpq × Zpq′
)

λ2
π��

Bπ × Zpq × Zpq′

Bπ×N×1

��

EZpq×̄EZpq′
1×̄λπ

��

N#×̄1

��

Here we use the notation ×̄ for the product over Bπ, see (7.1.4). Using the defini-
tion of Ū in (8.2.3)(2) we see that

(15) Ū(x · y, x′ · y) = σ−1Ū(x, x′) · Uy
= µ̄(Ū × U)(x, x′, y).

Hence we can replace (Bπ × Ū)w1 in (13) by

(16) (Bπ × Ū)w1 = (Bπ × µ̄(Ū × U))w3.

The triangle in (13) commutes since

(17) Nµ̄(Ū × U) = µ̄(N × 1)(Ū × U).

In fact (17) holds by the following computation.

Nµ̄(Ū × U)(x, x′, y) = Nσ−1Ū(x, x′) · Uy

= NŪ(x · y, x′ · y)
= U cr(x · y, x′ · y)
= σ−1U cr(x, x′) · U(y)
= µ̄(N × 1)(Ū × U)(x, x′, y).

We observe that (17) admits a refinement since

(18) Nµ̄(1 × U) = µ̄(N × U).

In fact, we prove (18) by the equations

Nµ̄(1 × U)(z, y) = Nµ̄(z, Uy) =
∑
α∈π

αµ̄(z, Uy) =
∑
α∈π

µ̄(αz, αUy)

=
∑
α∈π

µ̄(αz, Uy) since αUy = Uy

= µ̄(
∑
α∈π

αz, Uy) = µ̄(Nz, Uy) = µ̄(N × U)(z, y).

We now embed diagram (13) into the following slightly larger diagram obtained
from (13) by adding subdiagrams 9, 10. We also use (18) and

w4 = (Bπ × Ū × 1)w3 = (w, Ū (x, x′), y).
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(19) •
10Bπ×0

��

•

��
1

•Bπ×1��

N#

��

•Bπ×µ̄��

• •
p2

�� •
7

•�� •

Bπ×1×U

23,,,,,,,,

(1×U)#
EF

Xw4
��

•
9

•

Bπ×µ̄

��

8

•

µ̄#

��

��

•
Bπ×0×1

��

•

��

•
1×̄λπ

��

N#×̄1

��

Moreover the subdiagrams (10) and (9) are tracks given by Γ : N ⇒ 0 in (5),
namely 10 = Bπ × Γ and 9 = Bπ × Γ × Zpq′

. We used Γ to define tracks in (5)
namely we have

(20)
ΓŪ(xy, x′y) = p210(Bπ × µ̄)(Bπ × Ū × U)w3,

σ−1(ΓŪ(x, x′)) · γv(y) = p2(Bπ × µ̄)9(1×̄λπ)(Ū × U)#w3.

This shows that diagram (19) describes the composite of tracks 0 ⇒ 0 in diagram
(5). Therefore diagram (5) commutes provided we can show that diagram (19)
describes the identity track 0 ⇒ 0. For this we embed (19) into the following
diagram.

(21) •
13

��

•
Bπ×1×U

��

Bπ×1��

•
12

��

•Bπ×1��

Bπ×µ̄

��
•

10

��

•
1

��

•Bπ×1��

N#

��
• •

p2
�� •

7

•�� X

w4

FG

w4

GH

•
9

•

��

8

•��

µ̄#

��

•

��

•
11

��

•
1×̄λπ

��

N#×̄1

��

•
Bπ×1×U

��

•
Bπ×1
��

(1×U)#

��

Diagram 11 is again a linear track which we are allowed to add to diagram (19)
since 11 is composed with the zero map of 9. Moreover 12 and 13 are commutative
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diagrams. By equation (18) and by use of (7.3.9) we see that the pasting P =
11 ∗ 8 ∗ 7 coincides with the pasting P = 1 ∗ 12 ∗ 13. Let

(22)
Q = p210(Bπ × µ̄)(Bπ × 1 × U)w4,

R = p2(Bπ × µ̄)9(Bπ × 1 × U)w4.

Then (21) describes the following composite of track 0 ⇒ 0,

(21) = R�(p2Pw4)�(p2Pw4)op�Qop = R�Qop.

This shows that (21) does not depend on v or w = hπv since

R�Qop = (Γµ̄(1 × U)op�µ̄(Γ × Zpq′
)(1 × U))(Ū(x, x′), y).

This completes the proof of (9.6.4). �
Proof of (9.6.3). According to the definition in (8.2.6) we have Γ : N ⇒ 0 and

(1) Γx,y
0 = ΓŪ(x, y) + U(x) + U(y).

Hence for ∆ = ∆(x, x′, y) and σ = σ(x, y) we get

σ(ΓŪ(xy, x′y) + U(xy) + U(x′y)) ⊕ ∆
= (σΓŪ(xy, x′y) ⊕ ∆) + σ(U(xy) + U(x′y))
= (ΓŪ(x, x′)) · U(y) + U(x)U(y) + U(x′)U(y).

Therefore ∆ can be computed by

(2) (σΓŪ (xy, x′y)) ⊕ ∆ = (ΓŪ(x, x′)) · U(y)

or equivalently by

(3)

∆ = σΓopŪ(xy, x′y)�(ΓŪ(x, x′)) · U(y)

= σΓopσ−1σŪ(xy, x′y)�(ΓŪ(x, x′)) · U(y)

= σΓopσ−1(Ū(x, x′) · U(y))�(ΓŪ(x, x′)) · U(y).

Here we have

(4) σΓopσ−1 = σ(
∑
α∈π

Γα)σ−1 =
∑
a∈π

Γα�α

since σασ−1 = α � α. Moreover we have

(5)
(ΓŪ(x, x′)) · U(y) = ((

∑
α∈π Γα)Ū(x, x′) · U(y)

=
∑

α∈π(ΓαŪ(x, x′)) · U(y)
=

∑
α∈π Γα�1(Ū(x, x′) · U(y)), see (9.4.1).
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Therefore (3) shows for z = Ū(x, x′),

(6) ∆ =
∑
α∈π

(Γop
α�α(z · U(y))�Γα�1(z · U(y)).

Here the right-hand side is well defined since for α ∈ π we have αU(y) = U(y)
and

(α � α)(z · U(y)) = αz · αU(y)
= αz · U(y)
= (α � 1)(z · U(y)).

Since α � α = (1 � α)(α � 1) and sign(α) = 1 we get by (9.4.1)(1),

Γα�α = Γα�1�Γ1�α.

Therefore we have

Γop
α�α(z · U(y))�Γα�1(z · U(y))

= Γop
1�α(z · U(y))�Γop

α�1(z · U(y))�Γα�1(z · U(y)),
= Γop

1�α(z · U(y)),
= z · (Γop

α U(y)), see (9.4.1).

This shows that ∆ in (6) is given by

(7) −∆ = z ·
∑
α∈π

ΓαU(y).

For p = 2 we have z = Ū(x, x′) = x · x′ and π = Z/2 = {1, τ} so that

(8)

∑
α∈π ΓαU(y) = (Γ1 + Γτ )y2

= y2 + Γτy2

= Sq|y|−1(y)

by (6.5.1). This proves that for p = 2 we have ∆(x, x′, y) = x · x′ · Sq|y|−1y. Now
we use an argument as in the proof of (4.5.9) above. For α, β ∈ π we have

(9)
ΓαβU(y) = ΓβU(y)�Γα(βU(y)), see (9.4.1)(1)

= ΓβU(y)�ΓαU(y).

Thus the function

χ : Z/p = π −→ Aut(U(y)) ∼= [X, Zp|y|−1]
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which carries α to ΓαU(y) is a homomorphism. This shows that

(10)

∑
α∈π

ΓαU(y) =
∑
α∈π

χ(α)

=
p−1∑
r=1

r · χ(1)

= p(p − 1)/2χ(1).

Since pχ(1) = 0 we see that the element (10) is trivial if p is odd. This shows by
(7) that ∆(x, x′, y) = 0 if p is odd. �



Chapter 10

Künneth Tracks and
Künneth-Steenrod Operations

10.1 Künneth tracks

For cohomology with coefficients in the field k we have the Künneth formula

(10.1.1) H∗(Z × Y ) = H∗(Z) ⊗ H∗(Y ).

Here Z and Y are finite type path-connected pointed spaces and Z × Y is the
product space. We now describe properties of the Künneth formula on the level of
tracks.

Recall that we defined the Eilenberg-MacLane spaces Zn = K(k, n) for n ≥ 1
as in (2.1.4). We have for n, m ≥ 1 the multiplication map

(1) µm,n : Zm × Zn −→ Zm+n

in (2.1.1). For maps f : Z → Zm and g : Y → Zn we get the composite map

(2) f � g = µm,n(f × g) : Z × Y −→ Zm+n.

Moreover if m = 0 and λ ∈ k we set λ � g = λ · g and if n = 0 and λ ∈ k we set
f � λ = λ · f .

We consider a map (n ≥ 1)

(10.1.2) f : Z × Y −→ Zn in Top∗

which represents an element ϕ ∈ Hn(Z × Y ). Let B be a basis of H∗(Z). Since Z
is path connected and pointed we have H0Z = k and 1 ∈ k = H0Z is assumed to
be the basis element 1 ∈ B. By (10.1.1) we get

(1) H∗(Z × Y ) =
⊕
b∈B

b ⊗ H∗(Y ).
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This shows that there are unique elements ϕb ∈ Hn−|b|(Y ) for b ∈ B (with ϕb = 0
for n− | b |< 0) such that

(2) ϕ =
∑

b∈Bn

b ⊗ ϕb =
∑
b∈B

b ⊗ ϕb.

Here Bn = {b ∈ B || b |≤ n} is a finite set.
Now we fix maps s(b) : Z → Z |b| in Top∗ representing b ∈ B with | b |≥ 1.

For | b |= 0 let s(b) = 1 ∈ k. For n− | b |≥ 1 we choose a map

(3) s(ϕb) : Y −→ Zn−|b|

in Top∗ representing ϕb. Here we set s(ϕb) = f |(∗×Y ) if | b |= 0. Moreover for
n− | b |= 0 we set s(ϕb) = ϕb ∈ k = H0(Y ) and for n− | b |< 0 we set s(ϕb) = 0.
Then (10.1.1)(2) yields the map

(4)
∑
b∈B

s(b) � s(ϕb) : Z × Y −→ Zn

representing the sum in (2). Therefore there exists a track

(5) K :
∑
b∈B

s(b) � s(ϕb) =⇒ f

termed a Künneth track for f . This track can be chosen to be a track under ∗×Y
if ∗ → Z is a cofibration.

10.1.3 Proposition. Let s′(ϕb) be a further representation of ϕb for b ∈ B as above
and let

T :
∑
b∈B

s(b) � s(ϕb) ⇒
∑
b∈B

s(b) � s′(ϕb)

be a track. Then there exists for b ∈ B with n− | b |≥ 1 a unique track

Tb : s(ϕb) =⇒ s′(ϕb) in [[Y, Zn−|b|]]

such that T =
∑

b∈B s(b) � Tb. Here s(b) � Tb is the trivial track for n− | b |< 0.

We call Tb the coordinate of the track T associated to the element b ∈ B. We
can alter the track T in (10.1.3) by an element{

α ∈ [Z × Y, ΩZn] = Hn−1(Z × Y ),

α =
∑

b∈B b ⊗ αb with αb ∈ Hn−1−|b|(Y ).

Then T ⊕ α is again a track as in (10.1.3), compare (3.2.4).

10.1.4 Proposition. The coordinate of T ⊕ α satisfies the formula

(T ⊕ α)b = Tb ⊕ ((−1)|b|αb).
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Proof of (10.1.3) and (10.1.4). Since fb = s(ϕb) and f ′
b = s′(ϕb) represent ϕb, we

can choose a track

(1) Hb : fb =⇒ f ′
b.

Then using (3.2.4) the track T and the track

(2) H =
∑

b∈Bn

s(b) � Hb

yield an element α with H⊕α = T . We claim that there is εb ∈ {−1, 1} for b ∈ Bn

such that

(3)
∑
b∈Bn

b � (Hb ⊕ εbαb) = (
∑
b∈Bn

b � Hb) ⊕ α.

Hence Tb = Hb ⊕ εbαb satisfies the formula in (10.1.3). For the proof of (3) we
need (3.2.7) and (3.2.10). In fact for elements βb we get∑

b∈Bn

b � (Hb ⊕ βb) = (A+µ̃)∗((b × Hb) ⊕ (0 × βb))(4)

= (A+µ̃)∗(b × Hb)B ⊕ L∇(A+µ̃)((0 × βb); (b × fb)).(5)

Here we have L∇(A+µ̃) = (ΩA+)L∇µ̃ since A+ is linear. Moreover by (3.2.7) we
get

(6) L∇(A+µ̃)((0 × βb); (b × fb)) =
∑
b∈Bn

δbβb · b

with δb = (−1)|b|(n−|b|) and βb · b = (−1)(n−|b|−1)·|b|b ⊗ βb. Hence εb = (−1)|b|

satisfies (3).
A similar computation yields a proof of the formula in (10.1.4). �

10.1.5 Corollary. Let s′(ϕb) be a further representative of ϕb for b ∈ B and let

K ′ :
∑
b∈B

s(b) � s′(ϕb) =⇒ f

be a further Künneth track for f as in (10.1.2). Then there exists a unique track

Tb : s(ϕb) =⇒ s′(ϕb) for b ∈ Bn

such that ∑
b∈B

s(b) � Tb = (K ′)op�K.

Of course the track Tb depends on the choice of the Künneth tracks K and
K ′ for f , the track Tb is the coordinate of (K ′)op�K.
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10.2 Künneth-Steenrod operations

Let k = F = Z/p where p is a prime. We apply the Künneth tracks in Section
(10.1) to the power maps

γ : Z1 × Zq −→ Zpq, q ≥ 1.

In fact we have a basis

(10.2.1) B = {w0, w1, w2, . . .} ⊂ H∗(Z1) = Eβ(Fx)

where w0 = 1 and w1 = x ∈ H1(Z1) = [Z1, Z1] is represented by the identity of
Z1. According to (1.2.3)(4) and (8.5.5) we have

(1) wi = xi for p = 2, and

(2) wi =

{
(−βx)j for i = 2j, p odd,

x · (−βx)j for i = 2j + 1, p odd.

Here β : H1(Z1) → H2(Z1) is the Bockstein homomorphism. We choose a map in
Top∗

(3) wi : Z1 −→ Zi

representing (1) and (2) as follows. For p = 2 the map wi is the power map which
carries x ∈ Z1 to the i-fold product xi = x · · · · · x ∈ Zi with the product defined
by (2.1.2). For p odd we choose a map

(4) β : Z1 → Z2

representing the Bockstein operator (see (2.1.11)) and we define the map wi in
(3) by use of β. That is, wi carries x ∈ Z1 to the j-fold product (−βx)j ∈ Zi for
i = 2j and to the product x · (−βx)j ∈ Zi for i = 2j + 1.

Now the basis (10.2.1) yields as in Section (10.1) a Künneth track for γ

(10.2.2) Kq :
pq∑

i=0

wi � s(Di) =⇒ γ.

Here s(Di) : Zq → Zpq−i is a map in Top∗ representing the class Di ∈ Hpq−i(Zq)
in (8.5.5). Moreover s(Di) satisfies further conditions described in (10.2.4), (10.2.5)
and (10.2.6) below. Now let

(1) (v, x) : X −→ Z1 × Zq

be a map in Top∗ with γv(x) = γ ◦ (v, x). We use the composites

wi(v) = wi ◦ v : X −→ Z1 −→ Zi,(2)

Di(x) = (sDi) ◦ x : X −→ Zq −→ Zpq−i.(3)
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Here the notation Di(x) should not be confusing. In fact, if ξ is a cohomology
class then Di(ξ) is the composite of ξ and the homotopy class Di ∈ [Zq, Zpq−1].
But in (3) the element x : X → Zq is a map in Top∗ and hence Di(x) is given by
the composite s(Di) ◦ x with s(Di) chosen in (10.2.2).

With this notation Kq above induces the Künneth track

(10.2.3) Kv(x) = Kq(v, x) :
∑
i≥0

wi(v) · Di(x) =⇒ γv(x).

This track is natural in X . That is, for a map f : Y → X we get

f∗Kv(x) = Kvf (xf).

In computations below we shall use such natural tracks. We obtain similar results
as in (10.1.3), (10.1.4), (10.1.5) for such natural tracks. Recall that we have the
set of generators (see (5.5.1))

EA ⊂ A

in the Steenrod algebra A with

EA = {Sq1, Sq2, . . .} for p = 2,

EA = {β, P 1, P 2, . . . , P 1
β , P 2

β , . . .} for p odd.

For α ∈ EA we obtain representing maps s(α)q : Zq → Zq+|α| as follows.
According to (8.5.10) with p = 2 the map

(10.2.4) s(Dq−i) = s(Sqi)q : Zq −→ Zq+i in Top∗

represents the Steenrod operation Sqi for i ≥ 0. We may assume that s(Sq0)q = id
is the identity of Zq and s(Sqq)q = U is the power map U : Zq → Z2q with
U(x) = x·x. In this case Kq is a track under Z1∨Zq. Moreover we set s(Sqi)q = 0,
the trivial map for i > q, see (5.5.1).

We call this sequence of maps s(Sqi)q with i ∈ Z the Künneth-Steenrod
operations (associated to Kq). Moreover we write for a map x : X → Zq in Top∗

with | x |= q,
Sqi(x) = s(Sqi)q ◦ x : X −→ Zq −→ Zq+i.

This composite denotes a map in Top∗. When we write Sqj(x) it is understood
that the map Sqj(x) is given by a Künneth-Steenrod operation.

In case p is odd various elements Di are trivial and we choose s(Di) = 0 to
be the trivial map if Di = 0. According to (8.5.6) the map

(10.2.5) (−1)j(ϑq)−1s(D(q−2j)(p−1)) = (sP j)q : Zq −→ Zq+2j(p−1)

represents the Steenrod operation P j for j ≥ 0.
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Here we may assume that (sP 0)q = id, the identity of Zq if j = 0 and if
q is even, and if j = q/2 then (sP j)q = U : Zq → Zpq is the power map with
U(x) = xp for x ∈ Zq. In this case Kq is a track under Z1 ∨Zq. Again we set, see
(5.5.1) and (1.1.6),

(1) (sP j)q = 0 for 2j > q.

We call the sequence of maps (sP j)q with j ∈ Z the Künneth-Steenrod operations
(associated to Kq). We write for a map x : X → Zq in Top∗ with | x |= q,

(2) P j(x) = s(P j)q ◦ x : X −→ Zq −→ Zq+2j(p−1).

This composite denotes a map in Top∗. Also for p odd the map

(10.2.6) (−1)j(ϑq)−1s(D(q−2j)(p−1)−1) = s(P j
β)q : Zq −→ Zq+2j(p−1)+1

is part of the Künneth track. For j = 0 we may assume that this map represents
the Bockstein operation map β, that is

(1) (ϑq)−1s(Dq(p−1)−1) = (sβ)q : Zq −→ Zq+1

is an element in the contractible groupoid β in (2.1.11). There is a Bockstein track

(2) s(P j
β)q =⇒ (sβ)q+2j(p−1)(sP j)q

where the right-hand side is given by (10.2.5). According to (10.2.6) we set

(3) s(P j
β)q = 0 for 1 + 2j > q.

Compare the condition of instability in (1.1.6). We call the maps s(P j
β) also a

Künneth-Steenrod operation (associated to Kq). Again we write for a map x :
X → Zq in Top∗ with | x |= q,

β(x) = (sβ)q ◦ x : X −→ Zq −→ Zq+1,(4)

P j
β(x) = s(P j

β) ◦ x : X −→ Zq −→ Zq+2j(p−1)+1, j > 0.(5)

Here β(x) and P j
β(x) are again maps in Top∗. By (10.2.6) we see that P j

β(x) plays
a similar role as P j(x). The Bockstein track (2) induces the track

(6) P j
β(x) =⇒ βP j(x).

At this point we do not understand the basic properties of the Bockstein track.
The Künneth tracks Kq are kind of “strings” connecting power maps and

maps representing Steenrod operations. We shall use these strings to transform
the secondary relations for power maps in Chapter 9. For α ∈ EA and q ≥ 1
we have chosen above maps s(α)q associated to a Künneth track Kq. In fact, we
denote the pair (s(α)q , Kq) by s(α)q so that Kq is part of the definition of s(α)q.
Therefore we call s(α)q a Künneth-Steenrod operation.
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10.2.7 Proposition. For α ∈ EA let (s(α)q, Kq) and (s′(α)q , K
′
q) be two different

Künneth-Steenrod operations. Then one has a well-defined track

Γα : s(α)q =⇒ s′(α)q.

Proof. We have the Künneth tracks

Kq :
∑

i≥0 wi � s(Di) =⇒ γ,

K ′
q :

∑
i≥0 wi � s′(Di) =⇒ γ.

Hence by (10.1.5) there is a unique track

Ti : s(Di) =⇒ s′(Di)

such that
(
∑

i

wi � Ti) = (K ′
q)

op�Kq.

Now Ti yields the tracks Tα according to (10.2.4) and (10.2.5). �

10.3 Linearity tracks for Künneth-Steenrod operations

For a map x : X → Zq we have defined in (10.2.4), (10.2.5), (10.2.6) the Künneth-
Steenrod operations{

Sqi(x) for p = 2,

P i(x) and β(x) and P i
β(x) for p odd.

These are again maps in Top∗ which are natural in X . Let x, y : X → Zq be maps
in Top∗.

10.3.1 Theorem. Künneth tracks induce well-defined tracks

Γx,y : Sqi(x + y) =⇒ Sqi(x) + Sqi(y) for i ≤ |x |,
Γx,y : P i(x + y) =⇒ P i(x) + P i(y) for 2i ≤ |x |,
Γx,y : β(x + y) =⇒ β(x) + β(y),
Γx,y : P i

β(x + y) =⇒ P i
β(x) + P i

β(y) for 2i + 1 ≤ |x | .

These tracks in [[X, Z∗]] are natural in X. If Sqi(x) = U(x) or P i(x) = U(x) is
the power map, then Γx,y coincides with Γx,y

0 in (8.2.6).

Proof. For maps v : X → Z1 and x, y : X → Zq in Top∗ we have the following
composite of tracks which are natural in X , see (8.2.7) and (10.2.3).

(1) γv(x + y)
Γx,y

v �� γv(x) + γv(y)

∑
i wi(v) · Di(x + y)

Kv(x+y)

��

∑
i wi(v) · (Di(x) + Di(y))

Kv(x)+Kv(y)

��
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According to (10.1.3) there is a unique natural track

(2) Γx,y : Di(x + y) =⇒ Di(x) + Di(y)

which is the coordinate of the composite (1). Using (10.2.4), (10.2.5), (10.2.6) we
get the result. �

10.3.2 Definition. The Künneth linearity track.

Γx,y = Γx,y
i : Sqi(x + y) =⇒ Sqi(x) + Sqi(y)

is defined for all i ≥ 0 by (10.3.1) for i ≤| x | and by the delicate linearity track
formula

Γx,y
i =

{
x · y for i =|x | +1,

0 for i >|x | +1.

Here x · y is a cup product in H∗(X) representing a track 0 =⇒ 0, see (10.2.4).
Moreover we define the Künneth linearity tracks

Γx,y = Γx,y
i : P i(x + y) =⇒ P i(x) + P i(y),

Γx,y = Γx,y
(i) : P i

β(x + y) =⇒ P i
β(x) + P i

β(y),

for all i ≥ 0 by (10.3.1) and by Γx,y
i = 0 for 2i >|x | and Γx,y

(i) = 0 for 2i + 1 >|x |.

We now can transform the relations (9.1.3), (9.1.4) and (9.1.5) and we get:

10.3.3 Theorem. For α ∈ EA the track

Γx,y : α(x + y) =⇒ α(x) + α(y)

in (10.3.1) satisfies

(i) Γx,y = Γy,x,

(ii) (α(x) + Γy,z)�Γx,y+z = (Γx,y + α(z))�Γx+y,z,

(iii) Γx,0 = identity track of α(x).

This result is similar to properties of linearity tracks Γx,y
α in the secondary

Steenrod algebra, see (4.2.5). The proof of (10.3.3), however, relies on (9.2) and
the definition (10.3.1). Below we shall compare Künneth linearity tracks Γx,y and
stable linearity tracks Γx,y

α in the secondary Steenrod algebra, see section (10.8).

Proof of (10.3.3). Proposition (i) is clear since Γx,y
v = Γy,x

v in (9.1.3). Also (iii) is
obvious. Moreover we get (ii) as follows. Consider the commutative diagram where
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K denotes appropriate Künneth tracks.

γv(x + y + z)
Γx,y+z

v

..----
----

γv(x) + γv(y + z)
γv(x)+Γx+y

v

00������
����

γv(x) + γv(y) + γv(z)∑
i wi(v) · Di(x + y + z)

T
..-----

---

K

��

∑
i wi(v) · (Di(x) + Di(y + z))

T ′
00������

���

K+K

��

∑
i wi(v) · (Di(x) + Di(y) + Di(z))

K+K+K

��

Here T has coordinates Γx,y+z and T ′ has coordinates Di(x) + Γy,z. The diagram
corresponds to the left-hand side of (ii). The right-hand side of (ii) yields a similar
diagram and we can apply (9.1.4). This yields (ii) by comparing coordinates of
tracks using (10.1.3). �

As in the theorem let α = Sqi, P i, β, P i
β be a Künneth-Steenrod operation.

Given maps xi : X → Zq for i = 1, 2, . . . , r we define inductively for r ≥ 2 the
natural track

(10.3.4)
Γx1,...,xr : α(

∑r
j=1 xj) =⇒

∑r
j=1 α(xj),

Γx1,...,xr = (Γx1,...,xr−1 + α(xr))�Γx1+···+xr−1,xr .

For r = 2 this track coincides with the track in (10.3.1). If x1 = · · · = xr = x we
get

(1) Γ(r)x = Γx ...,x : α(rx) =⇒ rα(x).

Here Γ(r)x is the identity track and we define

(2) Γ(−1)x = Γ(p2 − 1)x : α(−x) =⇒ −α(x).

10.3.5 Lemma. Γx1,...,xr is the Künneth coordinate of Γx1,...,xr
v in (9.1.6). Also

Γ(r)x is the Künneth coordinate of Γ(r)x
v in (9.1.7). Moreover Γ(−1)x is the

Künneth coordinate of L(−1)x
v in (9.1.8).

Proof. We only consider Γ(r)x. For r ∈ Z/p2 the track

Γ(r) : Di(r · x) =⇒ r · Di(x)

is the coordinate of the composite in the following diagram.

γv(rx)
Γ(r)x

v �� rγv(x)

∑
i wi(v) · Di(rx)

Kv(rx)

��

∑
i wi(v) · (rDi(x))

rKv(x)

��
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Here we use (10.2.4), (10.2.5), (10.2.6) to define Γ(r)x for α. By (10.3.3) we see
that the coordinate Γ(r)x coincides with (10.3.4)(1). Moreover by (9.1.8) we have
Γ(p2−1)x

v = L(−1)x
v so that (10.3.4)(2) is the Künneth coordinate of L(−1)x

v . �

10.3.6 Definition. Let x : X → Zq in Top∗ and a permutation σ ∈ σq be given.
For a Künneth-Steenrod operation α = Sqi, P i, β, P i

β we define

P (σ)x : α(σx) =⇒ sign(σ)α(x)

by the composite (ε = sign(σ))

α(σx)
α(Γσ)−→ α(εx)

Γ(ε)x

−→ εα(x).

Here Γσ : σ ⇒ sign(σ) is the track in (7.2.2) and Γ(ε)x is defined in (10.3.4)(2).
We call P (σ)x the Künneth permutation track .

10.3.7 Lemma. P (σ)x is the Künneth coordinate of Γσp�P (σ)x
v in (9.1.9).

Proof. By (9.1.9) we know

Γσp�P (σ)x
v = L(ε)x

v�γv(Γσ)

where L = L(ε)x
v . The Künneth coordinate of this track is the coordinate of the

following composite.

γv(σx)
L�γv(Γσ) �� εγv(x)

∑
i wi(v) · Di(σx)

Kv(σx)

��

∑
i wi(v) · (εDi(x))

εKv(x)

��

Now one readily checks that the coordinate of this composite is P (σ)x defined in
(10.3.6). For this we use the diagonal of Kv(Γσ). �

10.4 Cartan tracks for Künneth-Steenrod operations

For a map x : X → Zq in Top∗ we have defined in (10.2.4), (10.2.5), (10.2.6) the
Künneth-Steenrod operations α(x) for α ∈ EA, that is,{

Sqi(x) for p = 2,

P i(x), β(x) and P i
β(x) for p odd.

These again are maps in Top∗ which are natural in X . Let x : X → Zq and
y : X → Zq be maps in Top∗.
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10.4.1 Theorem. Künneth tracks induce well-defined tracks (n ≥ 1)

Cx,y : Sqn(x · y) =⇒
∑

i+j=n

Sqi(x) · Sqj(y),

Cx,y : Pn(x · y) =⇒
∑

i+j=n

P i(x) · P j(y),

Cx,y : β(x · y) =⇒ β(x) · y + (−1)|x|x · β(y),

Cx,y : Pn
β (x · y) =⇒

∑
i+j=n,i,j≥0

(P i
β(x) · P j(y) + P i(x) · P j

β(y)).

Here we have P 0(x) = x and P 0
β (x) = β(x). These tracks in [[X, Z∗]] are natural

in X.

We call Cx,y the Künneth-Cartan track . For the maps wi : Z1 → Zi in
(10.2.1) we need the following result. Let

εi,j =

{
0 if p, i, j are odd,

1 otherwise.

10.4.2 Proposition. There is a well-defined track (i, j ≥ 0)

Wi,j : εi,jwi+j =⇒ wi · wj

for which the following diagrams (i), (ii) commute.

(i) εi,jwi+j
Wi,j �� wiwj

T (wi,wj)

��
(−1)ijεj,iwi+j

(−1)ijWj,i

�� (−1)ijwjwi

(ii) εj,kwiwj+k

wiWj,k

HI...
...

...
..

wiwjwk εi,j,kwi+j+k

εi,jWi+j,kHI///
///

///
///

εj,kWj,j+k

BC������������

εi,jwi+jwk

Wi,jwk

BC+++++++++++

Here we use the equation

(iii) εi,j,k = εi+j,k · εi,j = εi,j+k · εj,k.
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Proof. By definition in (10.2.1)(3) we have

(1) wi · wj = wi+j

if p = 2 or if p odd and j even or i = 0 or j = 0. In this case Wi,j is the identity
track. If p is odd, i even, j odd we get

(2)
wi · wj = (−βx)i/2 · x · (−βx)(j−1)/2,

wi+j = x · (−βx)(i+j−1)/2,

with | (−βx)i/2 |= i even. Hence in this case the interchange track (6.3.1)(7) yields

(3) Wi,j = T (wi, wj)op.

Finally if p, i, j are odd we get the track

(4) Wi,j : 0 =⇒ wi · wj

as follows. For x in (10.2.1)(3) we have | x |= 1. Hence we get the interchange
track

T (x, x) : x · x =⇒ −x · x
which yields the track

T = (T (x, x) + x · x)op : 0 =⇒ 2x · x.

This yields for p odd the track

T ′ =
p + 1

2
T : 0 =⇒ (p + 1)(x · x) = x · x

since p(x · x) = 0. Moreover we have the following diagram.

wi · wj = x · (−βx)(i−1)/2 · x · (−βx)(j−1)/2

x · x · (−βx)(i−1)/2 · (−βx)(j−1)/2

x·T (x,−(βx)(i−1)/2)·(−βx)(j−1)/2

��

0

T ′·(−βx)(i+j−2)/2

��

The composite of these tracks is Wi,j in (4). Now one can check that the diagrams
commute. �
10.4.3 Proof of (10.4.1). Let v : X → Z1, x : X → Zq and y : X → Zq′

be maps
in Top∗ with | x |= q and | y |= q′. The permutation σ(x, y) = σ is defined as in
(8.3.1) with

(1) ε(x, y) = sign σ(x, y) = (−1)|x|·|y|(p−1)p/2.
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With the notation in (10.4.1) let

(2) ε̄i,j = (−1)j(p|x|−i)εi,j.

Then the Künneth-Cartan track

(3) Cx,y
(n) : ε(x, y)Dn(x · y) =⇒

∑
i+j=n,i,j≥0

ε̄i,jDi(x) · Dj(y)

is defined as the coordinate of the composite tracks Rx,y in the following diagram.
Here Cx,y

v is the Cartan track (8.3.3) and Kv(x · y), Kv(x), Kv(y) are Künneth
tracks.

ε(x, y) · γv(x · y)
Cx,y

v �Γop
σ(x,y) �� γv(x) · γv(y)

∑
n wn(v) · (ε(x, y)Dn(x · y))

ε(x,y)Kv(x·y)

��

Rx,y

;<

∑
i,j≥0 wi(v) · Di(x) · wj(v) · Dj(y)

Kv(x)·Kv(y)

��

T∗
��∑

i,j≥0(−1)j(p|x|−i)wi(v) · wj(v) · Di(x) · Dj(y)

∑
i,j≥0 ε̄i,j · wi+j(v) · Di(x) · Dj(y)

W∗

��

∑
n wn(v) ·

∑
i+j=n,i,j≥0 ε̄i,j · Di(x) · Dj(y)

Here Γσ(x,y) is given by (7.2.2) and we define T∗ by use of the interchange tracks
(6.3.1)(7), that is

(4) T∗ =
∑
i,j≥0

wi(v) · T (Di(x), wj(v)) · Dj(y).

Moreover we define W∗ by the tracks in (10.4.2)

(5) W∗ =
∑

(−1)j(p|x|−i)Wi,j · Di(x) · Dj(y).

This completes the definition of the diagram.
Recall that by (10.2.4) we have for p = 2 the Künneth-Steenrod operation

s(D2q−i) = s(Sqi)q : Zq −→ Zq+i in Top∗

and for x : X → Zq with | x |= q we write

Sqix = (sSqi)q ◦ x : X −→ Zq+i in Top∗.
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We now obtain the Künneth-Cartan track

(10.4.4) Cx,y : Sqn(x · y) =⇒
∑

i+j=n

(Sqix) · (Sqjy)

by the composite in the following diagram where m = 2 | x | +2 | y | −n,
r = 2 | x | −i and s = 2 | y | −j.

Sqn(x · y)
∑

i+j=n(Sqix) · (Sqjy)

D2|x·y|−n(x · y)
∑

i+j=n(D2|x|−ix) · (D2|y|−jy)

Dm(x · y)
Cx,y

(m) ��
∑

r+s=m(Drx) · (Dsy)

Here Cx,y
(m) is defined by (10.4)(3) above and we use the convention that Sqix = 0

for i > 2 | x |.
Now let p be odd. Then we have by (10.2.5) the Künneth-Steenrod operation

(−1)j(ϑq)−1s(D(q−2j)(p−1)) = (sP j)q : Zq −→ Zq+2j(p−1).

For x : X → Zq with | x |= q we write

ϑj
x = (−1)j(ϑq)−1 and ϑx

j = (ϑj
x)−1.

Recall that we write

P jx = (sP j)q ◦ x : X −→ Zq+2j(p−1) in Top∗.

Then we define the Künneth-Cartan track

(10.4.5) Cx,y : Pn(x · y) =⇒
∑

i+j=n

(P ix) · P jy)

as follows. For m = (|x ·y|−2n)(p−1), r = (| x | −2i)(p−1), s = (| y | −2j)(p−1)
we get Cx,y by the following composite.

Pn(x · y) = ϑn
xyDm(x · y)

ε(x,y)·ϑn
xy·Cx,y

(m)

��
ε(x, y)ϑn

xy

∑
r+s=m,r,s even(−1)s(p|x|−r)Dr(x) · Ds(y)

∑
i+j=n ε(x, y)ϑn

xyϑx
i (P ix) · ϑy

j (P jy)

∑
i+j=n(P ix) · (P jy)
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Here we use the fact that
ε(x, y)ϑn

xyϑx
i · ϑy

j = 1

for n = i + j, compare (1.2.11)(4). We use the convention that sDi = 0 if Di = 0.
For this reason many summands Dr(x) · Ds(y) are trivial.

Moreover for p odd we have by (10.2.6) the Künneth-Bockstein operation

(ϑq)−1s(Dq·(p−1)−1) = (sβ)q : Zq −→ Zq+1.

For x : X → Zq with | x |= q we set

βx = (sβ)q ◦ x : X −→ Zq −→ Zq+1 in Top∗.

Then we define the Künneth-Cartan track

(10.4.6) Cx,y : β(xy) =⇒ (βx) · y + (−1)|x|x · (βy)

as follows. Let m =| xy | (p − 1) − 1 and ϑx = ϑq for | x |= q. Moreover let

r1 =| x | (p − 1) − 1 , s1 =| y | (p − 1),
r2 =| x | (p − 1) , s2 =| y | (p − 1) − 1.

Then we get Cx,y by the following composite.

β(xy) = ϑ−1
xy Dm(xy)

ε(x,y)·ϑ−1
xy ·Cx,y

(m)

��
ε(x, y)ϑ−1

xy

∑
r+s=m,r or s even(−1)s(p|x|−r)Dr(x) · Ds(y)

ε(x,y)ϑ−1
xy (−1)s1(p|x|−r1)Dr1 (x)·Ds1(y)

+ε(x,y)ϑ−1
xy (−1)s2(p|x|−r2)Dr2(x)·Ds2(y)

ε(x,y)ϑ−1
xy ϑx·β(x)·ϑy·y

+ε(x,y)ϑ−1
xy (−1)s2(p|x|−r2)ϑx·x·ϑy·β(y)

β(x) · y + (−1)|x|x · β(y)

By (10.4.4), (10.4.5) and (10.4.6) the Cartan tracks Cx,y in (10.4.1) are well de-
fined. �
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10.5 The interchange relation for Cartan tracks

For the product of maps x : X → Zq, y : X → Zq′
in Top∗ we have the interchange

track

(10.5.1)
T (x, y) : x · y −→ (−1)|x||y|y · x = (−1)p|x||y|y · x,

T (x, y) = Γτ(y,x)(y · x) ∈ [[X, Zq+q′
]].

Here τ(y, x) is the permutation with τ(y, x)y·x = x·y. Compare (6.3.1)(7). We now
describe the connection between Künneth-Cartan tracks Cx,y and Cy,x in (10.4.1).
For this we consider the following diagrams for p = 2 and p odd respectively.

(10.5.2) Sqn(x · y) Cx,y
��

SqnT (x,y)

��

∑
i+j=n Sqi(x) · Sqj(y)

∑
i+j=n T (Sqi(x),Sqj(y))

��
Sqn(y · x) Cy,x

��
∑

i+j=n Sqj(y) · Sqi(x)

(10.5.3) Pn(x · y) Cx,y
��

P nT (x,y)

��

∑
i+j=n P i(x) · P j(y)

∑
i+j=n T (P ix,P jy)

��

Pn(εy · x)

Γ(ε)y·x

��
εPn(y · x)

εCy,x
��
∑

j+i=n εP j(y) · P i(x)

Here we set ε = (−1)|x||y| = (−1)|P
ix||P jy| since p is odd.

(10.5.4) β(x · y) Cx,y
��

βT (x,y)

��

(βx) · y + (−1)qx · (βy)

T (βx,y)+(−1)qT (x,βy)

��
β(εy · x)

Γ(ε)y·x

��

(−1)(q+1)q′
y · (βx) + (−1)q+q(q′+1)(βy) · x

εβ(y · x)
εCy,x

�� ε(βy) · x + ε(−1)q′
y · (βx)

There is a similar diagram for Pn
β (x · y).

10.5.5 Theorem. The interchange relations (10.5.2), (10.5.3) and (10.5.4) above
are commutative diagrams of tracks in [[X, Z∗]].
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By definition in (10.4) the Künneth-Cartan track Cx,y is a Künneth coordi-
nate of the composite

(10.5.6) C̄x,y
v : ε(x, y)γv(xy)

Γop
σ(x,y)−→ σ(x, y)γv(xy)

Cx,y
v−→ γv(x) · γv(y).

We now use the relation (9.5.3)(i) for studying the following diagram where
ε(x, y) = ε(y, x) and ε = (−1)p|x|·|y| = (−1)|x

p|·|yp|.

ε(x, y)γv(xy)
C̄x,y

v ��

ε(x,y)γv(T (x,y))

��

γv(x) · γv(y)

T (γvx,γvy)

��

ε(x, y)γv(εyx)

ε(x,y)Γ(ε)yx
v

��
ε(x, y)εγv(yx)

εC̄y,x
v

�� εγv(y)γv(x)

10.5.7 Lemma. This diagram is commutative.

Proof. The commutative diagram (9.5.3)(i) is given as follows.

• σ(y,x)P ��

Cy,x
v

��

1

•

• •
τ(xp,yp)Cx,y

v

��

This diagram is embedded into the following commutative diagram with τ ′ =
τ(xp, yp), τ ′′ = τ(x, y)p and ε̄ = ε(x, y) = ε(y, x) and σ̄ = σ(y, x) and σ = σ(x, y).

• ε̄γv(T (y,x)) ��

2

C̄y,x
v

��

•
ε̄Γ(ε)xy

v �� •

1

��

• σ̄P ��

Cy,x
v

��

Γσ̄

��

1

•

1

��

σ̄Γτ′′ �� •

εΓσ

��

3

•

Γτ′

��
4

•
τ ′Cx,y

v�� τ ′Γσ �� •

ε̄Γτ′

��
• •

εC̄x,y
v

��

Here 2 commutes by (9.4.3) and 3 commutes by (9.4.1)(1) and 4 commutes since
4 corresponds to the pasting Γτ ′ ∗ C̄x,y

v . �
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Proof of (10.5.5). We show that the following diagram commutes, compare
(10.4)(3).

(1) ε(x, y)Dn(xy)
Cx,y

(n) ��

ε(x,y)Dn(T (x,y))
��

∑
i,j ε̄i,jDi(x) · Dj(y)

∑
i,j ε̄i,jT (Dix,Djy)

��

ε(x, y)Dn(εyx)
ε(x,y)Γ(ε)yx

��
ε(x, y)εDn(yx)

εCy,x
(n)

��
∑

i,j ε̄j,iεDj(y) · Di(x)

In fact, the left-hand side of this diagram is the Künneth coordinate of the left-
hand side of diagram (10.5.7). Therefore it remains to check that the right-hand
side of the diagram above is the Künneth coordinate of T (γvx, γvy) in (10.5.7).
But this is a consequence of the following commutative diagram with a = wi(v),
b = Di(x), c = wj(v), d = Dj(y) and ± = (−1)|ab|·|cd|.

(2) abcd
T (ab,cd) ��

aT (b,c)d��

±cdab

±cT (d,a)b
��

(−1)|b|·|c|acbd
T (a,c)T (b,d)

�� ±cadb

For T (a, c) we need the commutative diagram in (10.4.2)(i). This completes the
proof that (1) is commutative. From (1) we deduce the result in (10.5.5) by defi-
nition of Cx,y. �

10.6 The associativity relation for Cartan tracks

For the Künneth-Cartan tracks Cx,y we obtain the following diagrams. Let x :
X → Zq, y : X → Zq′

, z : X → Zq′′
be maps in Top∗.

(10.6.1) Sqm(xyz)
Cxy,z

m ��

Cx,yz
m

��

∑
n+k=m Sqn(xy)Sqk(z)

∑
n,k Cx,y

n ·Sqk(z)

��∑
i+r=m Sqi(x)Sqr(yz)∑

i,r Sqi(x)·Cy,z
r

��
∑

i+j+k=m Sqi(x)Sqj(y)Sqk(z)

(10.6.2) Pm(xyz)
Cxy,z

m ��

Cx,yz
m

��

∑
n+k=m Pn(xy)P k(z)

∑
n,k Cx,y

n ·P k(z)

��∑
i+r=m P i(x)P r(yz)∑

i,r P i(x)·Cy,z
r

��
∑

i+j+k=m P i(x)P j(y)P k(z)
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(10.6.3) βm(xyz) Cxy,z
��

Cx,yz

��

β(xy) · z + (−1)|xy|xy · β(z)

Cx,y·z+(−1)|xy|xyβ(z)
��

β(x) · yz(−1)|x|xβ(yz)
β(x)·yz+(−1)|x|x·Cy,z

�� β(x)·yz+(−1)|x|x·β(y)z
+(−1)|xy|xy·β(z)

There is a similar diagram for Pm
β (xyz).

10.6.4 Theorem. The associativity relations (10.6.1), (10.6.2) and (10.6.3) are
commutative diagrams of tracks in [[X, Z∗]].

We use the notation C̄x,y
v in (10.5.6) so that we derive from (9.5.3)(ii) the

following diagram with ε(x, y, z) = signσ(x, y, z) and ε(x, y) = signσ(x, y);
see (9.5.2).

ε(x, y, z) · γv(xyz)
ε(x,y)C̄xy,z

v ��

ε(y,z)C̄x,yz
v

��

ε(x, y) · γv(xy) · γv(z)

C̄x,y
v ·γv(z)

��
ε(y, z) · γv(x) · γv(yz)

γv(x)·C̄y,z
v

�� γv(x) · γv(y) · γv(z)

10.6.5 Lemma. This diagram is commutative.

Proof. We use (9.5.3)(ii) and (10.5.6) and (9.4.1)(1). �
Proof of (10.6.4). Recall the definition of Cx,y

(n) in (10.4)(3). We show that the
following diagram commutes.
(1)

ε(x, y, z)Dm(xyz)
ε(x,y)Cxy,z

(m) ��

ε(y,z)Cx,yz
(m)

��

ε(x, y)
∑

n+k=m ε̄n,kDn(xy)Dk(z)

∑
n,k ε̄n,kCx,y

(n)Dk(z)

��
ε(y, z)

∑
i+r=m

ε̄i,rDi(x)Dr(yz)

∑
i,r ε̄i,rDi(x)Cy,z

(r)

IJ

∑
i+j+k=m

ε̄i,j,kDi(x)Dj(y)Dk(z)

Here we set

(2) ε̄i,j,k = ε̄i+j,k · ε̄i,j = ε̄i,j+k · ε̄j,k.

This equation readily can be checked by (10.4)(2) and the definition of εi,j. Ac-
cording to the definition of Cx,y we see that commutativity of diagram (1) above
implies the proposition in (10.6.4).
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We obtain diagram (1) as the Künneth coordinate of the tracks in diagram
(10.6.5), compare the definition of Cx,y

(n) in (10.4). For this we multiply Kv(x) with
the diagram in (10.4) defining Ry,z.

This yields the following commutative diagram.

(3) •
γv(x)·C̄y,z

v ��

1

•

•

Kv(x)·ε(z,y)·Kv(yz)

��

∂x
v ·Ry,z

�� •

Kv(x)·Sy,z

��

Here ∂x
v is the source of Kv(x) and Sy,z is the composite

(4) Sy,z = (Kv(y) · Kv(z))�(T y,z
∗ )op�W y,z

∗

given by the right-hand side of the diagram in (10.4) where we replace (x, y)
by (y, z). We embed diagram 1 into the following commutative diagram of tracks.

(5) •

ε(y,z)C̄x,yz
v

��

2

•ε(x,y,z)Kv(xyz)��

ε(y,z)Rx,yz

��
•

1γv(x)·C̄y,z
v

��

•
ε(y,z)T x,yz

∗ ��

∂x
v ·Ry,z

��

3

•

��

4

•
ε(y,z)W x,yz

∗��

R′

��
• •

Kv(x)·Sy,z
��

T ′
�� • a

W ′
��

Diagram 2 is given by the diagram in (10.4), where we replace (x, y) by (x, yz),
multiplied by ε(y, z). The object a in diagram (5) is

(6) a =
∑
m

wm(v) ·

⎛⎝ ∑
i+j+k=m

ε̄i,j,kDi(x) · Dj(y) · Dk(z)

⎞⎠
and the track R′ has coordinates given by the bottom arrow in (1).
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Hence the diagram (1) is commutative if and only if the following diagram
is commutative.

(7) •

6

•Kv(x)·Sy,z

��

��
5

•T ′
��

•

7

•Kv(x)·Kv(y)·Kv(z)�� a

W ′

��

W ′′

��
• •

Sx,y·Kv(z)
��

��

•
T ′′

��

Here we define W ′′, T ′′ by the diagram similar to (5) which corresponds to the top
arrow and the right-hand side of (10.6.5). Subdiagrams 6 and 7 are the obvious
commutative diagrams. Moreover 5 commutes if and only if for

a = Dix, b = Diy, c = Dkz

the following diagram (8) commutes. We set wi = wi(v) and we use the interchange
tracks and the tracks Wi,j in (10.4.2). Moreover we indicate signs of the coefficients
ε̄i,j by ±.

(8) ±wiawj+kbc

wiaWj,kbc

HI///
///

///
///

±wiawjwkbc ±wiwj+kabc

±wiT (wj+k,a)bc=T ′JK0000000000000

wiawjbwkc

wiawjT (b,wk)c

��

wiT (a,wj)bwkc

��

ε̄i,j,kwi+j+k · abc

±Wi,j+kabc=W ′
��

±Wi+j,kabc=W ′′

��
±wiwjabwkc ±wi+j · wkabc

±wi+jT (wk,ab)c=T ′′
KL111

111
111

111
1

±wi+jabwkc

±wi,jabwkc

JK������������

If p = 2 then Wi,j is the identity track and in this case it is easy to see that (8)
commutes. If p is odd one can check the commutativity of (3) by the definition of
Wi,j in (10.4.2) and by diagram (10.4.2)(ii). �
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10.7 The linearity relation for Cartan tracks

For the Künneth-Cartan tracks Cx,y in (10.4) and for the Künneth linearity tracks
Γx,y in (10.3) we obtain the following diagrams. Let x, x′ : X → Zq and y : X →
Zq′

be maps in Top∗.

(10.7.1) Sqn((x + x′)y) Cx+x′,y
��

Γxy,x′y
n

��

∑
i+j=n Sqi(x + x′) · Sqj(y)

∑
i,j Γx,x′

i ·Sqj(y)

��
Sqn(xy) + Sqn(x′y)

Cx,y+Cx′,y
��
∑

i=j=n(Sqi(x) + Sqi(x′)) · Sqj(y)

(10.7.2) Pn((x + x′)y) Cx+x′,y
��

Γxy,x′y
n

��

∑
i+j=n P i(x + x′) · P j(y)

∑
i,j Γx,x′

i ·P j(y)

��
Pn(xy) + Pn(x′y)

Cx,y+Cx′,y
��
∑

i+j=n(P i(x) + P i(x′)) · P j(y)

(10.7.3)

β((x + x′)y) Cx+x′,y
��

Γxy,x′y

��

β(x + x′) · y + (−1)|x|(x + x′)β(y)

Γx,x′ ·y+(−1)|x|(x+x′)β(y)

��
β(xy) + β(x′y)

Cx,y+Cx′,y
�� (β(x) + β(x′)) · y + (−1)|x|(x + x′)β(y)

There is a similar diagram for Pn
β ((x + x′)y).

10.7.4 Theorem. The relation (10.7.1) is a commutative diagram of tracks. The
relations (10.7.2) and (10.7.3) are commutative diagrams of tracks in [[X, Z∗]].

We again use the notation C̄x,y
v in (10.5.6) so that we derive from (9.6.3) the

following diagram.

ε(x, y)γv((x + x′)y)
C̄x,y

v ��

ε(x,y)Γxy,x′y
v

��

γv(x + x′)γv(y)

Γx,x′
v ·γv(y)

��
ε(x, y)(γv(xy) + γv(x′y))

C̄x,y
v +C̄x′,y

v �� (γv(x) + γv(x′))γv(y)

10.7.5 Lemma. This diagram commutes for p odd and for p = 2 the primary
element of the diagram is x · x′ · Sq|y|−1(y).

Proof. We use (9.6.3) and the track Γσ(x,y) and (9.4.1)(2). �
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Proof of (10.7.4). It suffices to consider the following diagram, see (10.4).

(1)
ε(x, y)Dn((x + x′)y)

Cx+x′,y
(n) ��

ε(x,y)Γxy,x′y
(n)

��

∑
i+j=n ε̄i,jDi(x + x′) · Dj(y)

∑
i,j ε̄i,jΓ

x,x′
(i) ·Dj(y)

��
ε(x, y)(Dn(xy) + Dn(x′y))

Cx,y
(n)+Cx′,y

(n)��
∑

i+j=n ε̄i,j(Di(x) + Di(x′)) · Dj(y)

The tracks in this diagram are the Künneth coordinates of the corresponding tracks
in diagram ( 10.7.5). This is seen by (10.4) and by the following commutative
diagram.

(a + a′)c

T (a+a′,c)
��

ac + a′c

T (a,c)+T (a′,c)
��

±c(a + a′) ±ca + ±ca′

For this we use (9.4.1)(2). The primary element of diagram (1) is trivial if p is odd
or if p = 2 and n �=|xy | and hence we get the result in these cases. For p = 2 and
n =|xy |, however, diagram (1) yields the following diagram with |x |= q, |y |= q′,
α = Sqn, β = Sqq.

(2) Sqn((x + x′) · y) Cx+x′,y
��

Γxy,x′y
sα

��

Sqq(x + x′) · Sqq′
(y)

Γx,x′
sβ ·Sqq′ (y)

��
Sqn(xy) + Sqn(x′y)

Cx,y+Cx′,y
�� (Sqq(x) + Sqq(x′)) · Sqq′

(y)

This diagram has primary element x · x′ · Sqq′−1(y). The morphism on the
right-hand side of (10.7.1) does not coincide with the right-hand side of diagram
(2) but is

Γx,x′
q · Sqq′

(y) + Γx,x′
q+1 · Sqq′−1(y).

By the delicate linearity track formula (10.3.2) we have Γx,x′
q+1 = x · x′. This

shows that diagram (2) yields the commutativity of diagram (10.3.2) in case
n =|xy | �

10.8 Stable Künneth-Steenrod operations

Recall that the secondary Steenrod algebra [[A]] in (2.5.4) is defined by groupoids
[[Ak]]. Objects in [[Ak]]0 are stable maps (α, Hα) given by a sequence of maps

(10.8.1) α = (αq : Zq −→ Zq+k)q∈Z
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in Top∗ together with a sequence of tracks Hα = (Hα,q)q∈Z for the following
diagram.

(1) Zq
αq ��

rq

��
Hα,q
=⇒

Zq+k

rq+k

��
Ω0Z

q+1
Ωoαq+1

�� Ω0Z
q+k+1

Here rq is the homotopy equivalence in (2.1.7). Moreover a stable track

(2) H : (α, Hα) =⇒ (β, Hβ)

in [[Ak]]1 is a sequence of tracks

H = (Hq : αq =⇒ βq)q∈Z

in Top∗ such that

(3) Hβ,q = (rq+kHq)�Hα,q�((Ω0Hq+1)oprq).

Compare the diagram in (2.5.4). Each stable map α represents an element {α} ∈
Ak in the Steenrod algebra A.

10.8.2 Theorem. A sequence (Kq, q ≥ 1) of Künneth tracks as in (10.2.2) induces
for a Steenrod operation

α ∈ EA = {Sq1, Sq2, . . .} for p = 2 and
α ∈ EA = {β, P 1, P 2, . . . , P 1

β , P 2
β , . . .} for p odd

a well-defined stable map
sα ∈ [[A|α|]]0.

We call sα the stable Künneth-Steenrod operation (associated to α ∈ EA via
Künneth tracks).

Proof of (10.8.2). As in (2.1.7) we choose a map

iF : S1 −→ Z1

which in homology induces the ring homomorphism Z → F = Z/p. Moreover we
choose a track B0 in the following diagram.

(10.8.3) S1
iF

��

0

��
� �� ��� B0

Z1
sβ

�� Z2
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Here β is the Bockstein operator and sβ is the corresponding Künneth-Steenrod
operation. For p = 2 we have β = Sq1. We now define the following diagram with
α ∈ EA and | α |= k.

(10.8.4) Zq × S1
(sα)q×1��

tq

��
Gα,q
=⇒

Zq+k × S1

tq+k

��
Zq+1

(sα)q+1 �� Zq+1+k

Here (sα)q is the Künneth-Steenrod operation associated to the Künneth track
Kq. Moreover we set

(1) tq = µq,1(1 × iF) : Zq × S1 −→ Zq × Z1 −→ Zq+1.

Hence tq induces the map

(2) t̂q : Zq ∧ Z1 −→ Zq+1

with t̂q = µ(1 ∧ iF) and the adjoint of t̂q is the homotopy equivalence

(3) rq : Zq −→ Ω0Z
q+1, q ≥ 1.

Compare the definition of rq in (2.1.7). Let X = Zq ×S1 and let x = p1 : X → Zq

and y = iFp2 : X → S1 → Z1 be given by the projections p1 and p2. Then we
have

(4) tq = x · y : X −→ Zq+1.

If we apply (sα)q+1 to x · y we obtain the following Cartan tracks:
For α = Sqn ∈ EA we get the composite of tracks

(5) (sSqn)q+1tq

Gα,q

��

Sqn(x · y)

Cx,y

��
(Sqnx) · y + (Sqn−1x) · (Sq1y)

(Sqnx)·y+(Sqn−1x)·B0

��
tq+k((sSqn)q × 1) (Sqnx) · y

which defines the track Gα,q in (10.8.4). Here Cx,y is the Künneth-Cartan track
in (10.4) and B0 is given by the track in (10.8.3).
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For α = Pn ∈ EA we get the following track.

(6) (sPn)q+1tq

Gα,q

��

Pn(x · y)

Cx,y

��
tq+k((sPn)q × 1) (Pnx) · y

For α = β = Bockstein ∈ EA we get the composite of following tracks.

(7) (sβ)q+1tq

Gα,q

��

β(x · y)

Cx,y

��
(βx) · y + (−1)qx · (βy)

(βx)·y+(−1)qx·B0

��
tq+1((sβ)q × 1) (βx) · y

Here B0 is given by (10.8.3).Finally for α = Pn
β ∈ EA we get the following track.

(sPn
β )q+1tq

Gα,q

��

Pn
β (x · y)

Cx,y

��
Pn

β (x) · y + Pn(x) · β(y)

P n
β (x)·y+P n(x)·B0

��
tq+k((sPn

β )q × 1) (Pn
β x) · y

Now we consider the cofiber sequence

Zq ∨ S1 j−→ Zq × S1 π−→ Zq ∧ S1

where j is the inclusion and π is the quotient map. One readily checks that

Gα,qj : 0 =⇒ 0

is the identity track of the trivial map. This implies that in the diagram

(10.8.5) Zq ∧ S1
(sα)q∧1 ��

t̂q

��

Ĝα,q
=⇒

Zq+k ∧ S1

t̂q+k

��
Zq+1

(sα)q+1

�� Zq+1+k
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there is a unique track Ĝα,q with

Gα,q = Ĝα,qπ.

Now let Hα,q in the following diagram be the adjoint of Ĝα,q.

(10.8.6) Zq
(sα)q ��

rq

��

Hα,q
=⇒

Zq+k

rq+k

��
Ω0Z

q+1
Ω0(sα)q+1

�� Ω0Z
q+1+k

Then the stable map sα for α ∈ EA in Theorem (10.8.2) is defined by

(10.8.7) sα = ((sα)q , Hα,q)

with (sα)q the Künneth-Steenrod operation associated to Kq and Hα,q in (10.8.6).
This completes the proof of (10.8.2). �

Let X be a space and let x, x′ : X → Z |x| be maps in Top∗. In (4.2.2) we
define for the stable map sα with α ∈ EA the stable linearity track

Γx,x′
sα : α(x + x′) =⇒ α(x) + α(x′).

Moreover in (10.3.2) we define the Künneth linearity track

Γx,x′
: α(x + x′) =⇒ α(x) + α(x′),

which for p = 2 satisfies the delicate linearity track formula in (10.3.2). We now
show that these linearity tracks coincide.

10.8.8 Theorem. For the stable Künneth-Steenrod operation sα, α ∈ EA, in
(10.8.7) the linearity tracks satisfy

Γx,x′
sα = Γx,x′

: α(x + x′) =⇒ α(x) + α(x′).

The theorem shows that all results on stable linearity tracks in Chapter 2
also hold for Künneth linearity tracks. Compare (10.3.2).

Proof. Recall from (2.6.4) that for q0 =| x | and k =| α | we have

(1) sα ∈ [[Ak]]0
∼−→ [[Zq0 , Zq0+k]]stable

0 .
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The linearity track Γx,x′
sα is defined by Γsα in the following diagram in [[Kstable

p ]]
where A is the addition map.

(2) Zq0 × Zq0
sα×sα��

A=Aq0

��
Γsα=⇒

Zq0+k × Zq0+k

A

��
Zq0

sα
�� Zq0+k

See (2.6.3) and (4.2.1). We claim that for sα with α ∈ EA as defined in (10.8.7)
the component of Γsα in degree q ≥ q0 coincides with the Künneth linearity track
Γq defined as follows. Let X = Zq × Zq and let a = p1, b = p2 be the projections
X → Zq. Then Γq = Γa,b is a track for the following diagram in Top∗.

(3) Zq × Zq
(sα)q×(sα)q ��

Aq=A

��

Γq
=⇒

Zq+k × Zq+k

A=Aq+k

��
Zq

(sα)q

�� Zq+k

We claim that

(4) (Γsα)q = Γq for q ≥ q0.

This is clear if q is sufficiently large since both tracks in (4) coincide on Zq ∨ Zq.
Hence (4) is true if Γ = (Γq, q ≥ q0) is a well-defined stable track as Γsα in (2).
For this we consider the following diagram where we use the linearity of rq so that
the track Hα,qAq is well defined. We write aq = (sα)q .

(5)

Zq × Zq
aqAq ��

rq×rq

��

Hα,qAq
=⇒

Aq+k(aq×aq)

��
� �� ��� Γq

Zq+k

rq+k

��
ΩZq+1 × ΩZq+1

Ω(aq+1Aq+1)
��

Ω(Aq+k+1(aq+1×aq+1))

++
�� ��
�� ΩΓq+1

ΩZq+k+1



10.8. Stable Künneth-Steenrod operations 287

Now (4) holds if and only if pasting of tracks in (5) yields the track

(6) (ΩAq+k+1)(Hα,q × Hα,q) = (5).

We prove (6) by considering the following adjoint diagram of (5) where

∆24(a, b, c) = (a, c, b, c).

(7)

Zq × Zq × S1
Aq×1 ��

∆24

��

  
� �� ��� Γq×S1

Zq × S1

��

��

Gα,q
=⇒

Zq+k × S1

��

Zq × S1 × Zq × S1

tq×tq

��
Zq+1 × Zq+1

Aq+1 ��
��

�� ��
�� Γq+1

Zq+1 �� Zq+k+1

Now (6) holds if and only if pasting of tracks in (2) yields

(8) Aq+k+1(Gα,q × Gα,q)∆24 = (7).

We prove (8) by use of (10.7.4). Let X = Zq × Zq × S1 and let a = p1, a
′ = p2

and let b = iFp3 be given by the projections of X .
We now consider the case p = 2 and α = Sqk. Then (10.7.4) shows that the

following diagram of tracks commutes.

(9) Sqk((a + a′)b)
Γab,a′b

k ��

Ca+a′,b

��

1

Sqk(ab) + Sqk(a′b)

Ca,b+Ca′,b

��
Sqk(a+a′)b

+Sqk−1(a+a′)·Sq1b

Γa ��

0�+Sqk−1(a+a′)B0

��

2

Sqk(a)b+Sqk(a′)b
+Sqk−1(a)Sq1b+Sqk−1(a′)Sq1b

0�+Sqk−1(a)B0
+Sqk−1(a′)B0

��
Sqk(a + a′) · b

Γa,a′
k ·b

�� Sqk(a)b + Sqk(a′)b
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Here subdiagram 1 with

Γa = Γa,a′
k · b + Γa,a′

k−1 · Sq1(b)

commutes by (10.7.4). Moreover subdiagram 2 commutes by use of the product of
tracks Γa,a′

k−1 · B0.
The column on the left-hand side of (9) is Gα,q(Aq × 1), the column on the

right-hand side of (9) is Aq+k+1(Gα,q × Gα,q)∆24. Moreover

(10)
Γab,a′b

k = Γq+1(tq × tq)∆24,

Γa,a′
k · b = tq+k(Γq × S1).

This shows that (8) is equivalent to the commutativity of diagram (9). In a similar
way we prove (8) for α ∈ EA and for p odd. �



Chapter 11

The Algebra of ∆-tracks

In this chapter we introduce generalized Cartan tracks Cα defined for each α in the
algebra TG(EA). We show that relations of the Cartan tracks in Chapter 10 yield
corresponding relations of generalized Cartan tracks. The notion of “secondary
Hopf algebra” in the next chapter relies only on the relations for generalized Cartan
tracks. The diagonal of the secondary Hopf algebra is deduced from the relation
diagonal in this chapter.

11.1 The Hopf-algebra TG(EA)

Let R be a commutative ring with unit and let M, N be non-negatively graded
R-modules. For a prime p the tensor product M ⊗ N is “p-symmetric” by the
interchange isomorphism

(11.1.1)
T : M ⊗ N ∼= N ⊗ M,

T (x ⊗ y) = (−1)p|x||y|y ⊗ x.

We shall use this sign convention for T in the presence of a prime p. We call
(11.1.1) the even sign convention since for p = 2 we have T (x ⊗ y) = y ⊗ x. For
odd primes p we get the usual sign rule T (x ⊗ y) = (−1)|x||y| which we call the
odd sign convention.

Given a graded R-algebra (A, µA) the tensor product A⊗ A is an R-algebra
via the multiplication

µA⊗A = (µA ⊗ µA)(A ⊗ T ⊗ A).

Here T is the interchange with the even sign convention (11.1.1). That is, for x⊗y,
x′ ⊗ y′ ∈ A ⊗ A the multiplication in A ⊗ A is defined by

(x ⊗ y) · (x′ ⊗ y′) = (−1)p|y||x′|(x · x′) ⊗ (y · y′).

Of course for R = Z/2 the even and the odd sign convention coincide.
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11.1.2 Definition. Let A be a non-negatively graded R-algebra with unit. Then A
is a Hopf algebra if A is augmented by

ε : A −→ R

and if an algebra map
∆ : A −→ A ⊗ A

is given so that the following diagrams commute.

A ⊗ A

ε⊗1

��

A
∆��

1

��

∆ �� A ⊗ A

1⊗ε

��
R ⊗ A A A ⊗ R

A
∆ ��

∆

��

A ⊗ A

∆⊗1

��
A ⊗ A

1⊗∆ �� A ⊗ A ⊗ A

The Hopf algebra is co-commutative if in addition the following diagram
commutes.

A ⊗ A

T

��

A

∆

�����������

∆ ���
��

��
��

��

A ⊗ A

Here the algebra structure of A⊗A and the interchange T are defined by the even
sign convention as in (11.1.1) above. Diagrams as in (11.1.2) are used to define a
coalgebra in any monoidal category. Hence a Hopf algebra as above is the same as
a coalgebra in the monoidal category of (non-negatively graded) algebras over R.

The Steenrod algebra A is a co-commutative Hopf algebra over F = Z/p with
the diagonal

(11.1.3) δ : A −→ A⊗A
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defined by

δ(Sqi) =
∑

k+l=i Sqk ⊗ Sql for p = 2

δ(β) = β ⊗ 1 + 1 ⊗ β,{
δ(P i) =

∑
k+l=i

P k ⊗ P l for p odd.

Compare (1.2.7). For P i
β = βP i we have the formula

δP i
β = δ(β) · δ(P i)

=
∑

k+l=i

(P k
β ⊗ P l + P k ⊗ P l

β).

Recall that EA ⊂ A is the set of algebra generators with

EA =

{
{Sq1, Sq2, . . .} for p = 2,

{β, P 1, P 1
β , P 2, P 2

β , . . .} for p odd.

For G = Z/p2 let TG(EA) be the G-tensor algebra generated by EA. We have the
following canonical commutative diagram.

(11.1.4) A δ �� A⊗A

TG(EA)

p

��

∆ �� TG(EA) ⊗ TG(EA)

p⊗p

��

Here p is the surjective algebra map which is the identity on generators in EA.
Moreover TG(EA) ⊗ TG(EA) is an algebra with the even sign convention as in
(11.1.1). The diagonal ∆ is the unique algebra map defined on generators in EA
by the formulas

∆(Sqi) =
∑

k+l=i

Sqk ⊗ Sql for p = 2, and

∆(β) = β ⊗ 1 + 1 ⊗ β,

∆(P i) =
∑

k+l=i

P k ⊗ P l,

∆(P i
β) =

∑
k+l=i

(P k
β ⊗ P l + P k ⊗ P l

β) for p odd.

Here we have k, l ≥ 0 and Sq0 = 1, P 0 = 1 and P 0
β = β. It is clear that diagram

(11.1.4) commutes and that p ⊗ p is an algebra map.
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11.1.5 Lemma. (TG(EA), ∆) is a Hopf algebra which is co-commutative for all
primes p since we use the even sign convention.

Moreover, the tensor algebra

TF(EA) = TG(EA) ⊗ F

is a co-commutative Hopf algebra (TF(EA), ∆) with ∆ defined by the same formula
as above. We write

B0 = TG(EA),
F0 = TF(EA) = B0/pB0,

so that we have canonical algebra maps

(11.1.6) q : B0 −→ F0 −→ A

which are the identity on generators. These quotient maps are also Hopf algebra
maps. If x is an element in a G-module M, then its image in M ⊗ F is denoted
by xF or also by x. Moreover for x ∈ B0 the image in F0, or in A, is also denoted
by x.

Remark. For p = 2 the Hopf algebra (TG(EA), ∆) is not co-commutative if we use
the odd sign convention, since then we have

T∆(Sqi) =
∑

k+l=i

(−1)klSql ⊗ Sqk.

Here the sign is non-trivial for kl odd since we work over G = Z/4.

11.2 ∆-tracks

In (10.8.2) we have seen that stable Künneth-Steenrod operations sα associated
to α ∈ EA yield a function s as in the following commutative diagram.

[[A]]0

π

��
EA

s

LM22222222222222222
�� A

Moreover s induces as in (5.2.1) the function

(11.2.1) s : TG(EA) −→ [[A]]0
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which is a pseudo functor by (5.2.3). For α ∈ TG(EA) we call sα also a (generalized)
Künneth-Steenrod operation. If |α |= r and x : X → Zq is a map in Top∗, then we
obtain the composite

α(x) = (sα)q ◦ x : X −→ Zq −→ Zq+r.

Here α(x) is an element in the F-vector space [[X, Zq+r]]0. Since α(x) is linear in
α we see that α(x) depends only on α ⊗ 1 in TF(EA) = TG(EA) ⊗ F. Hence for
p = 2 we have ((−1) · α)(x) = α(x) though (−1) · α �= α in TG(EA).Now consider
the diagonal ∆ for TG(EA) in (11.1.4). For each α ∈ TG(EA) we can find a family

(11.2.2) ᾱ = {(α′
i, α

′′
i ); i ∈ Iα}

with α′
i, α′′

i ∈ TG(EA) such that

∆α =
∑
i∈Iα

α′
i ⊗ α′′

i ∈ TG(EA).

We say that ᾱ is a ∆-family associated to α. Since (11.1.4) commutes there exists
a track

(11.2.3) H : α(x · y) =⇒
∑

i

(−1)|x||α
′′
i |α′

i(x) · α′′
i (y)

where x : X → Zq, y : X → Zq′
and x · y : X → Zq+q′

. For p = 2 the signs on the
right-hand side may be omitted. The track H = Hx,y

α can be chosen for all spaces
X and all elements x, y of degree | x |= q ≥ 1, | y |= q′ ≥ 1 such that Hx,y

α is
natural in X. Here naturality means that a pointed map f : Y −→ X induces the
equation

Hx,y
α f = Hxf,yf

α .

We call a natural family Hα = (α, Hx,y
α ) a ∆-track associated to α. We point out

that α(x, y) and α′
i(x), α′′

i (y) in (11.2.3) depend only on α, α′
i, α

′′
i ∈ TF(EA). A

track H = Hα as in (11.2.3), however, will be constructed below in such a way
that Hα depends actually on α ∈ TG(EA). Therefore we insist that a ∆-track H
is associated to an element α ∈ TG(EA) defined over G and not over F.

11.2.4 Definition. Let ξ ∈ TG(EA) ⊗ TG(EA) and let x : X → Zq, y : X → Zq′
be

maps in Top∗. Then we define

ξ(x, y) : X
(x,y)−→ Zq × Zq′

−→ Zq+q′+|ξ|

as follows. We can write ξ =
∑
i

ξ′i ⊗ ξ′′i and we set

ξ(x, y) =
∑

i

(−1)|x|·|ξ
′′
i |ξ′i(x) · ξ′′i (y).
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Since α(x) · β(y) is linear in α, resp. β, we see that ξ(x, y) is well defined. In a
similar way we define for x, y, z : X → Zq′′

and ξ ∈ TG(EA) ⊗ TG(EA) ⊗ TG(EA)
the map

ξ(x, y, z) : X −→ Zq+q′+q′′+|ξ|.

We point out that ξ(x, y) or ξ(x, y, z) depend only on ξF, see (11.1.6). Using
this notation a ∆-track is a family of tracks

(11.2.5) Hx,y
α = α(x, y) ⇒ (∆α)(x, y)

which is natural in x, y. The universal example H x̄,ȳ
α = Hq,q′

α is given by the
projections x̄ : Zq × Zq′ −→ Zq and ȳ : Zq × Zq′ −→ Zq with q, q′ ≥ 1. Hence we
have by naturality Hx,y

α = Hq,q′
α (x, y) for all x, y with | x |= q, | y |= q′. A ∆-track

is thus determined by the family (α, Hq,q′
α , q, q′ ≥ 1) where Hq,q′

α is a track as in
the following diagram.

(11.2.6) Zq × Zq′
−
α ��

µ

��

=⇒

∏
i

Zq+|α′
i| × Zq+|α′′

i |

µ0

��
Zq+q′

sα
�� Zq+q′+|α|

Here µ is the multiplication map and ᾱ is defined by the coordinates
((−1)|x||α

′′
i |sα

′
i) × sα

′′
i and µ0 carries the tuple (xi, yi) to the sum

∑
i

xi · yi.

11.3 Linearity tracks Γα and Γα,β

In this section we fix some notation on linearity tracks. For α ∈ TG(EA) we have
the map α(x) as in (11.2.1). Here α(x) is linear in α, that is

(α + β)(x) = α(x) + β(x),

but not linear in x. There are well-defined linearity tracks (4.2.2)

Γα = Γx,y
α : α(x + y) ⇒ α(x) + α(y),(11.3.1)

Γα : α(
k∑

i=1

nixi) ⇒
k∑

i=1

niα(xi),

for ni ∈ G, xi : X −→ Zq, i = 1, . . . , k. While source and target of Γα depend
only on (ni)F, the track Γα depends on (ni)G. In fact, let

ϕ : Gk −→ G
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be defined by the matrix ϕ = (n1, . . . , nk), then Γα = Γ(ϕ)x1,...,xk
α is defined in

(4.2.13). The track Γα is linear in α so that Γα depends only on αF and ϕ.
Let λ : I −→ J be a function between finite index sets. Then the following

diagram commutes

(11.3.2) α(
∑
i∈I

nixλi) Γα ��
∑
i∈I

niα(xλi)

α(
∑
j∈J

mjxj) Γα ��
∑
j∈J

mjα(xj)

where mj =
∑

i∈λ−1(j)

ni for j ∈ J . We derive the result from (4.2.15)(3).

Moreover recall that (s, Γ) in (11.2.1) is a pseudo functor so that Γ induces
the following track (q =| x |).

(11.3.3) Γα,β = Γ(α, β)x : (αβ)(x) .2 α(β(x))

s(αβ)qx (sα)q+|β|(sβ)qx

Here Γ(α, β) is defined in (5.2.2). We point out that Γα,β is the identity track if
β is a monomial of generators in EA, moreover Γα,β is linear in α. Therefore Γα,β

depends on αF and βG.

11.4 Sum and product of ∆-tracks

Given ∆-tracks
Hα : α(x · y) =⇒ (∆α)(x, y),
Hβ : β(x · y) =⇒ (∆β)(x, y),

with α, β ∈ TG(EA) and | α |=| β | we obtain the sum of ∆-tracks

(11.4.1) Hα + Hβ : (α + β)(x · y) =⇒ ∆(α + β)(x, y)

which is a ∆-track associated to α + β. If Hα and Hβ are linear, then Hα + Hβ is
also linear. We therefore define the following graded G-modules.
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11.4.2 Definition. Let T∆ be the graded G-module consisting of all pairs (α, Hα)
with α ∈ TG(EA) and Hα a ∆-track associated to α. The degree of (α, Hα) is the
degree |α | of α and the sum in T∆ is given by the sum of ∆-tracks above, that is
(α, Hα) + (β, Hβ) = (α + β, Hα + Hβ). We call T∆ the module of ∆-tracks .

11.4.3 Definition. We introduce for ∆-tracks (α, Hα), (β, Hβ) ∈ T∆ the product of
∆-tracks (αβ, Hα � Hβ). Here

(1) Hα � Hβ : (αβ)(x · y) =⇒ ∆(αβ)(x, y)

is a ∆-track associated to αβ where αβ is the product of α and β in the algebra
TG(EA). For the definition of Hα�Hβ below it is crucial that α and β are defined
over G.

Let M = Mon(EA) be the free graded monoid generated by EA so that
TG(EA) is the free G-module generated by M and the tensor product TG(EA) ⊗
TG(EA) is the free G-module generated by the product M × M . Here a pair
ξ = (ξ′, ξ′′) ∈ M × M corresponds to the basis element ξ′ ⊗ ξ′′. Each element
a ∈ TG(EA) ⊗ TG(EA) can be written uniquely as a sum

(2) a =
∑

ξ∈M×M

ϕa(ξ)ξ′ ⊗ ξ′′

with ϕa(ξ) ∈ G and |a |=|ξ |. With the notation in (11.2.4) we have

(3) a(x, y) =
∑

ξ

(−1)|x||ξ
′′|ϕa(ξ) ξ′(x) · ξ′′(y).

Now the ∆-track Hα induces the track

(4) Hα,a : α(a(x, y)) =⇒ ((∆α) · a)(x, y)

as follows. Let Hα,a be the composite of tracks as in the following commutative
diagram.

(5) α(a(x, y))

Hα,a

��

α(
∑
ξ

εx
ξϕa(ξ)ξ′(x) · ξ′′(y))

Γα=Γa
α

��∑
ξ

εx
ξ ϕa(ξ)α(ξ′(x) · ξ′′(y))

∑
ξ εx

ξ ϕa(ξ)Hξ′(x),ξ′′(y)
α

��

((∆α) · a)(x, y)
∑
ξ

εx
ξ ϕa(ξ)∆(α)(ξ′(x) · ξ′′(y))
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Here Γα is defined by the elements εx
ξ ϕa(ξ) ∈ G for ξ ∈ M as in (11.3.1) with εx

ξ

given by the even sign convention: εx
ξ = (−1)p|x||ξ′′|.

Remark. One can also use in the definition of Γα the odd sign convention:
εx

ξ = (−1)|x||ξ
′′| for all primes p ≥ 2.

In this case we obtain (Γα)odd with Γα = (Γα)odd if p is odd and Γα �= (Γα)odd

if p is even. In fact one can check for p = 2 the formula

(5a) (Γα)odd = Γα + ΣL,

L = |x| · κ(α) ·
∑

ξ=(ξ′,ξ′′)
|ξ′′| odd

ϕ∆β(ξ)(ξ′x) · (ξ′′y)

where L ∈ H̃∗(X). Here we use the following argument for the sign (−1)|x||ξ
′′| =

−1 in case |x| and |ξ′′| are odd.

(5b)

Γ(−1)α = Γ(3)α = Γ(2 + 1)α

= (Γ(2)α + Γ(1)α)Γ(+G)α, see (4.2.16)(2)

= (O� ⊕ κ(α))Γ(+G)α, see (4.5.8)

= O� ⊕ κ(α).

The equation in the bottom row of (5) is checked below. We are now ready
to define the product Hα�Hβ of ∆-tracks by the following commutative diagram,
see (11.3.3).

(6) (αβ)(x · y)
Γα,β ��

Hα�Hβ

��

α(β(x · y))

αHβ

��
∆(αβ)(x, y) α(∆(β)(x, y))

Hα,∆β

��

Remark. If we use the odd convention for Γα we get the product (Hα � Hβ)odd

with (Hα � Hβ)odd = Hα � Hβ if p is odd and if p is even:

(Hα � Hβ)odd = (Hα � Hβ) + ΣL

with L defined as in (5a) above.

We check the equation in the bottom row of (5) as follows. Let

∆(α) =
∑

i

α′
i ⊗ α′′

i .
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Then we get
(∆α) · a = (

∑
i

α′
i ⊗ α′′

i ) · (
∑

ξ

ϕa(ξ)ξ′ ⊗ ξ′′)

=
∑
i,ξ

(−1)|ξ
′||α′′

i |ϕa(ξ)α′
iξ

′ ⊗ α′′
i ξ′′.

Since ξ′ , ξ′′ are monomials we have (α′
iξ

′)(x) = α′
i(ξ

′(x)) and (α′′
i ξ′′)(y) =

α′′
i (ξ′′(y)). Hence we get by (11.2.4)

((∆α) · a)(x, y) =
∑
i,ξ

±ϕa(ξ)α′
i(ξ

′x) · α′′
i (ξ′′y)

=
∑

ξ

εξϕa(ξ)∆(α)(ξ′(x), ξ′′(y)).

The signs ± are achieved by the sign rules according to (11.1.1) and (11.2.4), that
is, the sign ± in the first row is (−1)|ξ

′||α′′
i | · (−1)|x|·|α

′′
i ξ′′| and in the second row

is (−1)|x||ξ
′′|. If p is even, then we are in an F-vector space so that in this case the

signs can be omitted.

Remark. We have seen in section (10.5) that the interchange relation for Cartan
tracks is of different form for p even and p odd respectively. This, in fact, forces
us to use the even sign convention for the definition of Hα � Hβ .

11.5 The algebra T∆ of ∆-tracks

We show that the module of ∆-tracks (11.4.2) with the product (11.4.3) is an
associative algebra over G. For this we prove the following results.

11.5.1 Theorem. The product � on T∆ is bilinear, so that � induces a well-defined
multiplication map

� : T∆ ⊗ T∆ → T∆.

The unit of the algebra (T∆,�) is the ∆-track (1, 0�) where 1 is the unit of
the tensor algebra TG(EA) with ∆(1) = 1 ⊗ 1 and

0� : 1(x · y) = x · y ⇒ (1 ⊗ 1)(x · y) = x · y

is the identity track which is a special ∆-track. We do not claim that the multi-
plication � of τ∆ is associative. Therefore (τ∆,�) is only a “magma algebra”.

Proof of (11.5.1). It suffices to consider the odd sign convention for the definition
of Hα � Hβ since L in (11.4.3)(5a) is linear in α and in β. We show that

(Hα + Hα′) � Hβ = Hα � Hβ + Hα′ � Hβ .

This in fact is clear since Γα,β in (11.4.3)(6) is linear in α and Γα in (11.4.3)(5) is
linear in α.
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Next we show that

Hα � (Hβ + Hβ′) = Hα � Hβ + Hα � Hβ′ .

Both sides are tracks as in the following diagram.

(α(β + β′))(x · y) �� ∆(α(β + β′))(x, y)

(αβ + αβ′)(x · y)

(αβ)(x · y) + (αβ′)(x · y) �� ∆(αβ)(x, y) + ∆(αβ′)(x, y)

Now we observe that the following diagram commutes.

(α(β + β′))(x · y)
Γα,β+β′

�� α((β + β′)(x · y))

(αβ)(x · y) + (αβ′)(x · y)

Γα,β+Γα,β′

��33
333

333
333

333
333

333
3

α(β(x · y) + β′(x · y))

Γα

�����
��

��
��

��
��

��
��

��
�

α(β(x · y)) + α(β′(x · y))

Moreover the next diagram commutes

α(β(x · y) + β′(x · y))

α(Hβ+Hβ′)

��

Γα �� α(β(x · y)) + α(β′(x · y))

αHβ+αHβ′

��
α(∆β(x, y) + ∆β′(x, y))

Γα �� α(∆β(x, y)) + α(∆β′(x, y))

as follows from (4.2.5)(6). Hence it remains to check that the following diagram
commutes.

α(∆β(x, y) + ∆β′(x, y))
Γα �� α(∆β(x, y) + α(∆β′(x, y))

Γα,∆β+Γα,∆β′

��
α(∆(β + β′)(x, y))

Γα,∆(β+β′)
�� ∆(αβ)(x, y) + ∆(αβ′)(x, y)
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For this we observe that by definition of the coordinate function ϕ in (11.4.3)(3)
we have in G the equation

ϕ∆(β+β′)(ξ) = ϕ∆(β)(ξ) + ϕ∆(β′)(ξ)

for all ξ ∈ M × M with | ξ |=| β | so that the following diagram commutes with
w = ξ′(x) · ξ′′(y), see (11.3.1)(2).

α(
∑
ξ

± ϕ∆β+∆β′(ξ)w)

Γα

��

Γα

;<444
4444

4444
4444

44

α(
∑
ξ

± ϕ∆β(ξ)w) + α(
∑
ξ

± ϕ∆β′(ξ)w)

Γα+Γα=>5555
5555

5555
5555

5

∑
ξ

± ϕ∆β+∆β′(ξ)α(w)

This completes the proof of the theorem. �

11.6 The algebra of linear ∆-tracks

We first introduce the following linearity tracks Γ⊗1 and 1⊗Γ. Let ξ ∈ TG(EA)⊗
TG(EA). Then we obtain linearity tracks.

(11.6.1)
Γ ⊗ 1 : ξ(x + x′, y) =⇒ ξ(x, y) + ξ(x′, y),
1 ⊗ Γ : ξ(x, y + y′) =⇒ ξ(x, y) + ξ(x, y′)

as follows. Let ξ =
∑

i ξ′i ⊗ ξ′′i and let

Γξ′
i
: ξ′i(x + x′) =⇒ ξ′i(x) + ξ′i(y)

be the linearity track. Then

Γ ⊗ 1 =
∑

i

(−1)|x||ξ
′′
i |Γξ′

i
· ξ′′i (y),

Γ ⊗ 1 :
∑
i

(−1)|x||ξ
′′
i |ξ′i(x + x′) · ξ′′i (y) =⇒

∑
i

(−1)|x||ξ
′′
i |(ξ′i(x) + ξ′i(x

′)) · ξ′′i (y)

ξ(x + x′, y) ξ(x, y) + ξ(x′, y)

Since Γξ′
i

is linear in ξ′i and since multiplication is bilinear, we see that Γ ⊗ 1 is
well defined by ξF and does not depend on the choice of ξ′i, ξ

′′
i . In a similar way

we obtain 1 ⊗ Γ.
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11.6.2 Definition. We say that a ∆-track Hα is a linear ∆-track (or satisfies the
linearity relation) if for all x, x′, y, y′ the following diagrams of tracks commute.

α((x + x′)y)

Γ

��

Hα �� ∆(α)(x + x′, y)

Γ⊗1

��
α(xy) + α(x′y)

Hα+Hα �� ∆(α)(x, y) + ∆(α)(x′, y)

α(x(y + y′))

Γ

��

Hα �� ∆(α)(x, y + y′)

1⊗Γ

��
α(xy) + α(xy′)

Hα+Hα �� ∆(α)(x, y) + ∆(α)(x, y′)

Here Γ ⊗ 1 and 1 ⊗ Γ are defined in (11.6.1) above. By the linearity relations for
Cartan tracks in section (10.7) we know that Cartan tracks Cα for α ∈ EA are
linear ∆-tracks. Since Γα is linear in α we see that the sum Hα + Hβ of linear
tracks is again a linear ∆-track. Hence linear ∆-tracks yield a submodule

T∆(lin) ⊂ T∆.

We now show that this submodule is actually a subalgebra. For this we prove:

11.6.3 Theorem. If Hα and Hβ are linear ∆-tracks, then Hα � Hβ is a linear
∆-track.

Proof of (11.6.3). It suffices to consider the odd sign convention for the definition
of Hα � Hβ since L in (11.4.3)(5a) is linear in x and in y. We show that all
subdiagrams in the following diagram (∗) commute.

(αβ)((x + x′)y)

Γα,β

��

Γαβ �� (αβ)(xy) + (αβ)(x′y)

Γα,β+Γα,β

��
α(β((x + x′)y))

αHβ

��

αΓβ �� •

α(Hβ+Hβ)

��

Γα �� α(β(xy)) + α(β(x′y))

αHβ+αHβ

��
α(∆β(x + x′, y))

Hα,∆β

��

α(Γ⊗1)�� • Γα �� α(∆β(x, y)) + α(∆β(x′, y))

Hα,∆β+Hα,∆β

��
∆(αβ)(x + x′, y)

Γ⊗1
�� ∆(αβ)(x, y) + ∆(αβ)(x′, y)
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The top square commutes by properties of the pseudo functor (s, Γ). The square
in the middle to the left commutes since we assume that Hβ is a linear ∆-track;
moreover the one to the right commutes by (3.1.3). Hence it remains to check that
the bottom square commutes. For this let ∆α =

∑
i α′

i⊗α′′
i as in (11.4.3)(7). Now

Γ ⊗ 1 in the bottom row is defined by

Γx,x′

α′
iξ

′ : α′
iξ

′(x + x′) =⇒ α′
iξ

′(x) + α′
iξ

′(x′).

Here we can use (4.2.5)(2) so that

Γx,x′

α′
iξ

′ = Γξ′x,ξ′x′

α′
i

�α′
iΓ

x,x′
ξ′ .

Now the following diagram commutes with z = ξ′′(y).

α(ξ′(x + x′) · z)

Hξ′(x+x′),z
α

��

α(Γξ′ ·z)
�� α((ξ′x + ξ′x′) · z)

Γα �� α(ξ′x · z) + α(ξ′x′ · z)

Hξ′x,z
α +Hξ′x′,z

α

��
∆(α)(ξ′(x + x′), z)

Γ⊗1
�� ∆(α)(ξ′x, z) + ∆(α)(ξ′x′, z)

This follows from (3.1.3) and the assumption that Hα is linear. Again using (3.1.3)
for Γα in (11.4.3)(5) and for α(Γξ′ · z) we see that the bottom square of diagram
(∗) commutes. �

11.7 Generalized Cartan tracks and

the associativity relation

The Cartan tracks Cα for α ∈ EA are linear ∆-tracks

(11.7.1) Cα : α(x · y) =⇒ (∆α)(x, y).

We now define such tracks Cα for all α ∈ TG(EA). For this we use the fact that
the G-module T∆(lin) of linear ∆-tracks is an algebra and that TG(EA) is the free
G-algebra generated by EA. Hence there is a unique linear map

(11.7.2) C : TG(EA) −→ T∆(lin)

which on generators α ∈ EA is defined by C(α) = (α, Cα) where Cα is the Cartan
track in (10.4.1) and which for monomials α ∈ Mon(EA) and β ∈ EA satisfies

C(αβ) = (αβ, Cα � Cβ).
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We point out that here Cα � Cβ is defined by the even sign convention in
(11.4.3). We get for α = α1 · · ·αr ∈ Mon(EA) with α1 · · ·αr ∈ EA the ∆-track

C(α) = (α, Cα)

with
Cα = (· · · (Cα1 � Cα2) � · · · � Cαr−1) � Cαr .

We call Cα the generalized Cartan track . We summarize the following properties
of generalized Cartan tracks for α, β ∈ TG(EA).

Cα+β = Cα + Cβ ,(1)
Cαβ = Cα � Cβ , for β ∈ EA,(2)
Cα is a linear ∆−track,(3)
Cα is the Cartan track (10.4.1) if α ∈ EA.(4)

Given ξ ∈ TG(EA) ⊗ TG(EA) we define ξ(x, y) as in (11.2.4). Now the generalized
Cartan tracks induce tracks

(11.7.3)
C ⊗ 1 : ξ(x · y, z) =⇒ ((∆ ⊗ 1)(ξ))(x, y, z),
1 ⊗ C : ξ(x, y · z) =⇒ ((1 ⊗ ∆)(ξ))(x, y, z)

which are linear in ξ. Here the right-hand side is defined also in (11.2.4). We get
for ξ =

∑
i ξ′i ⊗ ξ′′i the track C ⊗ 1 by the generalized Cartan tracks

Ci : ξ′i(x · y) =⇒ (∆ξ′i)(x, y).

Namely we set
C ⊗ 1 =

∑
i

(−1)|xy|·|ξ′′
i |Ci · ξ′′i (z)

so that ∑
i

(−1)|xy||ξ′′
i |ξ′i(xy) · ξ′′i (z)

C⊗1

��

ξ(xy, z)

∑
i

(−1)|xy||ξ′′
i |(∆(ξ′i)(x, y)) · ξ′′i (z) ((∆ ⊗ 1)(ξ))(x, y, z).

Since Ci is linear in ξ′i and since multiplication is bilinear we see that C ⊗1 is well
defined. In a similar way we get C ⊗ 1.

We prove that the associativity relation for Cartan tracks in (10.6) yields a
corresponding relation for generalized Cartan tracks.
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11.7.4 Theorem. Let α ∈ TG(EA) and let x, y, z be elements in [[X, Z∗]]0. Then the
following diagram is commutative.

α((xy)z) C �� ∆(α)(xy, z)

C⊗1

��
α(x(yz))

C

��

((∆ ⊗ 1)(∆α))(x, y, z)

(∆α)(x, yz)
1⊗C

�� ((1 ⊗ ∆)(∆α))(x, y, z)

Proof. All morphisms and tracks are linear in α. Therefore we need to prove the
result only for α ∈ Mon(EA). For α ∈ EA we know already that the diagram is
commutative since it is equivalent to the commutative diagram in (10.6.4). We
now use an induction argument.

Assume the proposition holds for all monomials α = α1 . . . αr ∈ Mon(EA) of
length ≤ r and let β ∈ EA. Then we get for C = Cαβ = Cα � Cβ the following
diagram with ∆̄ = (∆ ⊗ 1)∆ = (1 ⊗ ∆)∆.

(1) (αβ)(xyz)

Γα,β

��
α(β(xyz))

αCβ

��

αCβ �� α(∆β(xy, z))

α(C⊗1)

��

Cα,∆β �� ∆(αβ)(xy, z))

C⊗1

��

α(∆β(x, yz))

Cα,∆β

��

α(1⊗C)�� α(∆̄β(x, y, z))

u

56

v

MN
∆(αβ)(x, yz)

1⊗C
�� ∆̄(αβ)(x, y, z)
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The square containing αCβ commutes by (10.6) since β ∈ EA. Hence it remains to
check that the subdiagrams containing u, v are commutative. For this we consider
the next diagram with

a = ∆β =
∑

ξ∈M×M

ϕa(ξ)ξ′ ⊗ ξ′′.

Here we have ξ′, ξ′′ ∈ EA since β ∈ EA, compare the definition of ∆. Moreover let

∆α =
∑

i

α′
i ⊗ α′′

i .

We consider the following diagram.

(2)

α(
∑
ξ

± ϕa(ξ)ξ′(x) · ξ′′(yz))

Γα

��

α(1⊗C) �� α(
∑
ξ

± ϕa(ξ)ξ′(x) · (∆ξ′′)(y, z))

Γα

��∑
ξ

± ϕa(ξ)α(ξ′(x) · ξ′′(yz))

Cξ′x,ξ′′(yz)
α

��

α(1·C) ��
∑
ξ

± ϕa(ξ)α(ξ′(x) · (∆ξ′′)(y, z))

Cξ′x,∆ξ′′(y,z)
α

��∑
ξ

± ϕa(ξ)∆α(ξ′(x), ξ′′(yz)) ∆α(1,Cξ′′) ��
∑
ξ

± ϕa(ξ)(∆α)(ξ′(x), ∆ξ′′(y, z))

1·Hα′′
i

,∆ξ′′

��∑
i,ξ

± ϕa(ξ)(α′
iξ

′)x · (α′′
i ξ′′)(yz) 1·Cα′′

i
ξ′′

��
∑
i,ξ

± ϕa(ξ)(α′
iξ

′)x · ∆(α′′
i ξ′′)(y, z)

∆(αβ)(x, yz)
1⊗C �� ∆̄(αβ)(x, y, z)

The squares containing α(1 · C) commute by (3.1.3) and the square containing
1 ·Hα′′

i ,∆ξ′′ commutes since Cα′′
i ξ′′ = Cα′′

i
�Cξ′′ . The bottom square commutes by
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definition of 1⊗C. The column to the left-hand side yields Cα,∆β and the column
to the right-hand side defines the track u. In the same way we get the track v in
diagram (1). Hence it remains to check that the following diagram commutes.

(3)

α(
∑
ξ

± ϕa(ξ)ξ′(x) · (∆ξ′′)(y, z))

Γα

��

α(
∑
ξ

± ϕa(ξ)∆(ξ′)(x, y) · ξ′′(z))

Γα

��∑
ξ

± ϕa(ξ)α(ξ′(x) · (∆ξ′′)(y, z))

Cξ′x,∆ξ′′(y,z)
α

��

Γα �� A

��

∑
ξ

± ϕa(ξ)α(∆(ξ′)(x, y) · ξ′′(z))

C∆(ξ′)(x,y),ξ′′z
α

��

Γα��

∑
ξ

± ϕa(ξ)∆α(ξ′x, ∆ξ′′(y, z))

α′
iξ

′x·Cα′′
i

,∆ξ′′

��

∑
ξ

± ϕa(ξ)∆α(∆ξ′(x, y), ξ′′z)

Cα′
i
,∆ξ′ ·α′′

i ξ′′z

��
∆̄(αβ)(x, y, z) B ∆̄(αβ)(x, y, z)

Here the left-hand column is u and the right-hand column is v. We have for
∆̄ = (1 ⊗ ∆)∆ = (∆ ⊗ 1)∆ the equation

∆̄(β) =
∑

η∈M×M×M

ψ(η) · η′ ⊗ η′′ ⊗ η′′′

=
∑

ξ

ϕ∆βξ′ ⊗ (
∑

ρ

ϕ∆ξ′′(ρ)ρ′ ⊗ ρ′′)

=
∑

ξ

ϕ∆β(
∑

ρ

ϕ∆ξ′(ρ)ρ′ ⊗ ρ′′) ⊗ ξ′′.

Moreover let
∆̄(α) =

∑
j

α′
j ⊗ α′′

j ⊗ α′′′
j .

Now we define the track A → B in (3) by the following diagram.

(4) A =
∑

η ±ψ(η)α(η′x · η′′y · η′′′z)

∑
η ±ψ(η)C̄α

��
B =

∑
η,j ±ψ(η)(α′

jη
′)x · (α′′

j η′′)y · (α′′′
j · η′′′)z
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Here we set

(5) C̄α = (C ⊗ 1)�Cα = (1 ⊗ C)�Cα

since the proposition holds for α. Now the top square in (3) commutes by (11.3.2).
Moreover the bottom squares of (3) commute by the linearity of Cα and by (5).
For this recall that Cα,∆β is the composite of Γα and tracks defined by C. This
completes the proof of the theorem. �

Remark. In the proof of (11.7.4) above we use the even convention for the definition
of Cα � Cβ so that one has to be aware that for p odd and p even different sign
rules are used, see (11.4.3). It is also possible to go through all arguments of the
proof of (11.7.4) using the odd convention for the definition of Cα � Cβ . Then
alteration is necessary according to the correction term L in (11.4.3)(5a). One can
show that all correction terms arising cancel. In fact, if we replace α in (11.7.4)
by αβ with β = Sqn we get the following four corrections with i + j + k = n:

L1 = κ(α)|x|
∑

j+k odd

Sqix · Sqjy · Sqkz, for x · (yz),

L2 = κ(α)|xy|
∑

k odd

Sqix · Sqjy · Sqkz, for (xy) · z,

L3 = κ(α)|x|
∑

j odd

Sqix · Sqjy · Sqkz,

L4 = κ(α)|y|
∑

k odd

Sqix · Sqjy · Sqkz.

Here L3 and L4 arise for C ⊗ 1 and 1 ⊗ C respectively. Now it is easy to see that
L1 + L2 + L3 + L4 = 0.

11.8 Stability of Cartan tracks

The universal Cartan track Cα is stable with respect to partial loop operations.
This property of Cartan tracks is the crucial argument in the construction of the
relation diagonal in the next section.

Let α ∈ B0 and let ᾱ = {(α′
i, α

′′
i ), i ∈ I} be a ∆-family associated to α. Then

the universal Cartan track Cα = Cq,q′
α is given by

(11.8.1) Zq × Zq′

Cα=⇒µ

��

sᾱ ��
∏
i∈I

Zni × Zn′
i

µ0

��
Zn

sα
�� Zn+m
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with ni = q+ | α′
i | , n′

i = q′+ | α′′
i | and sᾱ defined with signs as in (11.2.6). Here

Cα can be chosen to be a track under

Zq ∨ Zq′
⊂ Zq × Zq′

since Cα|Zq ∨ Zq′
= 0 is the identity track of the trivial map 0. We therefore can

apply the following partial loop operation to Cα.

11.8.2 Definition. Let A, B and U be pointed spaces and let

f : A × B −→ U

be a pointed map with f |A ∨ B = 0 : A ∨ B → ∗ → U . Then the left partial loop,
resp. the right partial loop, are maps

Lf : (ΩA) × B −→ ΩU,

L′f : A × (ΩB) −→ ΩU,

defined as follows. Let t ∈ S1 and σ ∈ ΩA, σ′ ∈ ΩB. Then we set (Lf)(σ, b)(t) =
f(σ(t), b) for b ∈ B, resp. we set (Lf ′)(a, σ′)(t) = f(a, σ′(t)) for a ∈ A.

We apply the partial loop operation L to Cα in (11.8.1) and we get the
following diagram.

(11.8.3) (Ω(Zq) × Zq′

LCα=⇒Lµ0

��

Ω̃(ᾱ) ��
∏
i∈I

(ΩZni) × Zn′
i

LI µ̄0

��
ΩZn

Ω(sα)
�� ΩZn+m

Here we define the arrow Ω̃(ᾱ) by the coordinates Ω(sα′
i)×sα′′

i for i ∈ I. Moreover
we have for the maps (sα)µ0 and µ0sᾱ in (11.8.1) the equations

(1)
L((sα)µ0) = (Ωsα) ◦ (Lµ0),

L(µ̄0(sᾱ)) = (LI µ̄0) ◦ (Ω̃ᾱ),

so that diagram (11.8.3) is well defined. Here LI µ̄0 carries a tuple z = ((σi, bi), i ∈
I) to the sum in ΩZn+m,

(2) (LI µ̄0)(z) =
∑
i∈I

(Lµ0)(σi, bi)

where we use addition of loops induced by the vector space structure of Zn+m.
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Recall that sα is a stable map defined in (10.8.7) so that we have the diagram

(3) Zn−1

H
=⇒r

��

sα �� Zn+m−1

r

��
ΩZn

Ω(sα)
�� ΩZn+m

where we omit indices, see (10.8.6). A similar diagram is available for the stable
map sα′

i for each i ∈ I. This shows that we have the following diagram.

(4) Zq−1 × Zq′

H̄
=⇒(−1)q′ r×1

��

sᾱ ��
∏
i∈I

Zni−1 × Zn′
i

∏
i∈I

(−1)n′
ir×1

��

(ΩZq) × Zq′ Ω̃ᾱ ��
∏
i∈I

(ΩZni) × Zn′
i

Here H̄ has coordinates Hi × 1 where Hi is the track defined by the stable map
sα′

i as in (3) above. We point out that the definition of sᾱ in (11.2.6) involves
signs which cancel with the signs (−1)q′ · (−1)n′

i = (−1)|α
′′
i |.

Moreover we have a canonical permutation track for the following diagram.

(5) Zq−1 × Zq′

=⇒µ0

��

(−1)q′r×1 �� (ΩZq) × Zq′

Lµ0

��
Zn−1

r
�� ΩZn

This is easily seen by taking the adjoint t of r as in (10.8.4)(1),(3).
Similarly we get as in (5) the following track.

(6)
∏
i∈I

Zni−1 × Zn′
i

=⇒µ̄0

��

∏
(−1)n′

ir×1 ��
∏
i∈I

(ΩZni) × Zn′
i

LI µ̄0

��
Zn+m−1

r
�� ΩZn+m
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Now pasting tracks LCα and (3), (4), (5) and (6) yields a track LCα as in the
following diagram.

Zq−1 × Zq′

LCα=⇒µ0

��

sᾱ ��
∏
i∈I

Zni−1 × Zn′
i

µ̄0

��
Zn−1 �� Zn+m−1

The left stability of the Cartan track is expressed in the following theorem.

11.8.4 Theorem. Pasting the tracks LCq,q′
α and the tracks (3), (4), (5) and (6)

above yields a track LCα which coincides with Cq−1,q′
α .

Proof. We point out that H and H̄ are defined by Cartan tracks as in (10.8.6).
Therefore the theorem is a consequence of the associativity relation for Cartan
tracks in section (11.7). �

A similar result as above yields the right stability of the Cartan track showing
that the right partial loop L′Cq,q′

α yields a track L′Cα which coincides with Cq,q′−1
α′ .

The proof of this case is somewhat simpler since signs such as in (11.8.3)(4) do
not arise.

11.9 The relation diagonal

According to the definition of the pair algebra B we have the pull back diagram

B1

∂

��

�� �� F1

∂

��

s �� [[A]]01

��
B0

�� �� F0
s �� [[A]]0

where F0 = B0/pB0 and F1 = B1/[p]B0 and � is the quotient map. Here F0 and
F1 are F-vector spaces, see also (11.1.6).

11.9.1 Lemma. The diagram above is well defined and both squares are pull back
diagrams
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Proof. The pair algebra B is derived from the secondary Steenrod algebra [[A]] by
the pull back diagram

(1) B1

��

s̄ �� [[A]]01

��
B0 s

�� [[A]]]0

where the G-linear map s is defined by Künneth-Steenrod operations. Here [[A]]01
and [[A]]0 are graded F-vector spaces. Hence s carries pB0 to zero and, in fact, s̄
carries [p]B0 to zero since s̄([p]α) with α ∈ B0 is defined by the track

(2)
•

0

‖

•sp��

⇑Γ

•sα��

s(pα)=0

��

where Γ = Γ(p, α). Here Γ(x, α) is linear in x so that Γ = 0 and hence s̄([p]α) = 0.
Now we get the induced diagram (11.9.1). The square at the left-hand side is a
pull back since ∂ : [p] · B0 → pB0 is an isomorphism. Moreover the pair (s, s̄) is a
pull back (1) by definition of B1. This shows that also the square at the right-hand
side is a pull back and therefore B1/[p]B0 = F1 is an F-vector space. �

We say that α ∈ B0, resp. α ∈ F0 , is a relation if α is in the image of ∂ or
equivalently α is in the kernel of q : B0 → A, resp. q : F0 → A. Let

(11.9.2)
{

RB = im(∂) = ker(q) ⊂ B0,
RF = im(∂) = ker(q) ⊂ F0

be the submodules of relations. We can choose an F-linear map ρ for which the
following diagram commutes, we call ρ a splitting of ∂F .

(1) F1

∂=∂F

��
RF

ρ

NO�������������
⊂ F0

In this section we associate to ρ a well-defined G-linear map of degree −1, termed
the relation diagonal ,

(2) Θρ : RB −→ A⊗A.
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Since the kernel of ∂F is ΣA, each F-linear map t : RF → A of degree −1 yields
the splitting ρ + t : RF → F1 of ∂. We shall prove the formula

(3) Θρ+t(α) = Θρ(α) + t̄(∆α) − δt(α).

Here δ : A → A⊗A is the diagonal of the Steenrod algebra A and t̄(∆α) is defined
as follows. Since α ∈ RB is a relation we can write

(4) ∆α =
∑
i∈I0

α′
i ⊗ α′′

i +
∑
i∈I1

α′
i ⊗ α′′

i

with α′
i ∈ RB for i ∈ I0 and α′′

i ∈ RB for i ∈ I1. Now we set

(5) t̄(∆α) =
∑
i∈I0

(tα′
i) ⊗ qα′′

i +
∑
i∈I1

(−1)|α
′
i|(qα′

i) ⊗ tα′′
i .

Hence formula (3) shows that the coset of Θρ,

{Θρ} ∈ Hom−1(RB,A⊗A)/{t̄∆ − δt, t ∈ Hom−1(RF ,A)},

does not depend on the choice of ρ. Hence this coset is an additional structure
of the pair algebra B. We point out that RB ⊗ F does not coincide with RF , for
example in degree 0 the module (RF)0 is trivial but (RB ⊗ F)0 is not trivial.

11.9.3 Definition. Using the map s in (11.2.1) we define for x : X → Zq and
u ∈ F1 with ∂u = α ∈ F0 the track

u(x) : α(x) ⇒ 0

with α(x) = (sα)q ◦ x as in (11.2.1) and u(x) = (su)q ◦ x accordingly.

For α ∈ RB we have the generalized Cartan track Cα as in the following
commutative diagram of tracks.

(11.9.4) α(x · y)

(ρα)(x·y)

��

Cα �� ∆(α)(x, y)

(ρ̄∆α)(x,y)

��
0

Θx,y

�� 0

Here (ρα)(x·y) is defined by the notation (11.9.3) and we get by use of (11.9.1)(4),

(ρ̄∆α)(x, y) =
∑
i∈I0

(−1)|x||α
′′
i |(ρα′

i)(x) · α′′
i (y)

+
∑
i∈I1

(−1)|x||α
′′
i |α′

i(x) · (ρα′′
i )(y).

Again we use the notation in (11.9.3).
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11.9.5 Lemma. The element (ρ̄∆α)(x, y) only depends on ρ, α, x, y and does not
depend on the choice of the decomposition (11.9.1)(4) of ∆α.

Proof. We claim that each element u ∈ (F⊗̄F)1 with ∂u = ξ ∈ F0 ⊗ F0 yields a
well-defined track

u(x, y) : ξ(x, y) =⇒ 0.

Here ξ(x, y) is defined as in (11.2.4). Here u(x, y) is linear in u so that we can
define u(x, y) by the special cases

(a ⊗ β)(x, y) = (−1)|x||β|a(x) · β(y),

(α ⊗ b)(x, y) = (−1)|x||b|α(x) · b(y),

for α, β ∈ F0 , a, b ∈ F1. By (3.1.3) we see that the definition of u(x, y) is com-
patible with the ⊗̄ relation in (5.1.2). Let R = (RF ⊂ F0) be the pair given by
RF so that ρ : R −→ F is a pair map over the identity of F0. Then we see that
the following diagram commutes.

(R⊗̄R)1
ρ⊗̄ρ ��

∂R

--,
,,

,,
,,

,,
,,

,,
,,

,
(F⊗̄F)1

∂

��$$
$$
$$
$$
$$
$$
$$
$$

F0 ⊗F0

Here ∂R is injective inducing an identification

(R⊗̄R)1 ∼= im(∂)

so that ρ̄ : im(∂) −→ (F⊗̄F)1 is defined by ρ⊗̄ρ. For α ∈ RB we can consider
∆α as an element in im(∂) so that ρ̄(∆α) ∈ (F⊗̄F)1 is well defined. Now one
can check that for u = ρ̄(∆α) the track u(x, y) above coincides with (ρ̄∆α)(x, y)
defined in (11.9.4). �
11.9.6 Theorem. The composite of tracks θx,y in (11.9.4) is a track 0 =⇒ 0 which
represents an element

Θx,y ∈ H |x|+|y|+|α|−1(X)

depending only on α and ρ and x and y by (11.9.5). There exists a unique element

Θρ(α) ∈ (A⊗A)|α|−1

such that for all X, x, y the multiplication map µ : H∗(X) ⊗ H∗(X) −→ H∗(X)
satisfies

µ(Θρ(α) · (x ⊗ y)) = Θx,y.

Moreover θρ satisfies formula (11.9.2)(3).
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This theorem defines the relation diagonal θρ in (11.9.2(2)). Since diagram (11.9.4)
is linear in α we see that θρ is G-linear.

Proof of (11.9.6). The theorem is a direct consequence of the left and right sta-
bility of Cartan tracks in (11.9). Formula (11.9.2)(3) is easily checked by use of
diagram (11.9.4). �
Remark. The main result of Kristensen in [Kr2] can be interpreted as a corollary
of Theorem (11.9.6). We also point out that the definition of Θx,y in (11.9.4) can
be compared with the definition of the secondary products of Kock-Kristensen
[KKr].

11.10 The right action on the relation diagonal

The module of relations RB ⊂ B0 is an ideal so that for α ∈ RB and β ∈ B0 also
βα, αβ ∈ RB. In this section we describe the relation diagonal element Θρ(αβ) in
terms of Θρ(α). Let ρB be the splitting of ∂B as in the diagram

(11.10.1) B1

∂=∂B

��
RB

ρB

NO�������������
⊂ B0

where ρB is induced by ρ via the pull back diagram (11.9.1). The splitting ρB is
G-linear but not a morphism of B0-bimodules. Since the kernel of ∂B is ΣA we get
elements ∇ρ(β, α), ∇′

ρ(α, β) ∈ A of degree | α | + | β | −1 defined by the following
equation in B1,

(11.10.2)
ρB(βα) = β · ρB(α) + ∇ρ(β, α),
ρB(αβ) = ρB(α) · β + ∇′

ρ(α, β).

Here ∇ρ and ∇′
ρ are bilinear functions.

The elements u = β · ρB(α) or v = ρB(α) · β considered as elements in F1 by
B1 → F1 yield, as in (11.9.3), tracks

(11.10.3)
(β · ρB(α))(x) : (βα)(x) −→ 0,

(ρB(α) · β)(x) : (αβ)(x) −→ 0.

According to the definition of the B0-bimodule structure of B1 these tracks are
obtained by the Γ-product • in (5.3.2) so that we get the composites

(β · ρB(α))(x) : (βα)(x)
Γβ,α �� β(α(x))

β(ρ(α)(x)) �� 0

(ρB(α) · β)(x) : (αβ)(x)
Γα,β �� α(β(x))

ρ(α)(β(x)) �� 0
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Here Γβ,α , Γα,β are given by the pseudo functor (s, Γ) as in (11.3.3). The bilinear
map ∇′

ρ in (11.10.2) induces the following operators where T is the interchange
map (11.1.1) and µ is the multiplication map of the algebra B0.

RB ⊗ B0 ⊗ B0 ⊗ B0

1⊗T⊗1

��

∇′
ρ,µ �� Σ(A⊗A)

RB ⊗ B0 ⊗ B0 ⊗ B0

∇′
ρ⊗µ

�� (ΣA) ⊗A

B0 ⊗RB ⊗ B0 ⊗ B0

1⊗T⊗1

��

∇′
µ,ρ �� Σ(A⊗A)

B0 ⊗ B0 ⊗RB ⊗ B0

µ⊗∇′
ρ �� A⊗ (ΣA)

τ

��

Here τ is the interchange of Σ, that is

τ(a ⊗ Σb) = (−1)|a|Σa ⊗ b.

11.10.4 Theorem. Let α ∈ RB and let ∆α = α0 + α1 with α0 ∈ RB ⊗ B0 and
α1 ∈ B0 ⊗RB as in (11.9.2)(4). Then we have for β ∈ B0 the formula in A⊗A,

Θρ(αβ) = Θρ(α) · (δβ) − δ∇′
ρ(α, β) + ∇′

ρ,µ(α0 ⊗ ∆β) + ∇′
µ,ρ(α1 ⊗ ∆β).

Here an element β in B0 represents also an element in A and δ : A → A ⊗ A is
the diagonal.

Proof of (11.10.4). Since Cαβ = Cα � Cβ the element Θρ(αβ) is determined by
the composite of the following tracks.

(1) (αβ)(x · y)

ρ(αβ)(x·y)

��

Cα�Cβ �� ∆(αβ)(x, y)

(ρ̄∆(αβ))(x,y)

��
0 0
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Here ρ(αβ)(x · y) can be replaced by (11.10.2) and (11.10.3). Moreover we have
for the decomposition of ∆α in (11.9.2)(4) and for ∆β =

∑
ξ ϕ∆β(ξ)ξ′ ⊗ ξ′′

the decomposition

(2) ∆(αβ) =
∑
i,ξ

(±ϕ∆β(ξ)α′
iξ

′) ⊗ α′′
i ξ′′.

Now we can replace

ρ(α′
iξ

′)(x) for i ∈ I0

and

ρ(α′′
i ξ′′)(y) for i ∈ I1

in (ρ̄∆(αβ))(x, y), see (11.9.4). Hence we compare Θρ(αβ) defined by the compos-
ite in (1) with the element Θρ(α, β) defined by the composite

(3) (αβ)(x · y)

(ρB(α)·β)(x·y)

��

Cα�Cβ �� ∆(αβ)(x, y)

u

��
0 0

with

(4)

u =
∑

i∈I0,ξ

±ϕ∆β(ξ)(ρB(α′
i) · ξ′)(x) · α′′

i (ξ′′y)

+
∑

i∈I1,ξ

±ϕ∆β(ξ)α′
i(ξ

′x) · (ρB(α′′
i ) · ξ′′)(y).

Here we use the fact that ξ′, ξ′′ are monomials. Hence by (11.10.2) we get the
equation in A⊗A,

Θρ(αβ) = Θρ(α, β) − δ∇′
ρ(α, β) + v,(5)

v =
∑

i∈I0,ξ

±ϕ∆β(ξ)∇′
ρ(α′

i, ξ
′) ⊗ (α′′

i ξ′′)

+
∑

i∈I1,ξ

±ϕ∆β(ξ)(α′
iξ

′) ⊗∇′
ρ(α

′′
i , ξ′′).

For the computation of Θρ(α, β) we use the composites in (11.10.3) and (11.4.3)(6).
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Hence Θρ(α, β) is given by the following composite since Γα,β is cancelled.

(6) α(β(x · y))

αCβ

��

ρ(α)(β(x·y)) �� 0

O�

��
α((∆β)(x, y))

Cα,∆β

��

Γα

��

ρ(α)((∆β)(x,y)) �� 0

O�

&&∑
ξ

± ϕ∆β(ξ)α(ξ′x · ξ′′y)

∑
ξ

±ϕ∆β(ξ)Cξ′x,ξ′′y
α

��

∑
ξ

±ϕ∆β(ξ)ρ(α)(ξ′x·ξ′′y)

�� 0

∆(αβ)(x, y)) u
�� 0

The top square and the square in the middle are commutative by (3.1.3). Since
Γα,ξ is the identity track if ξ is a monomial, we can use (11.10.3) to show that u
in (4) coincides with

(7) u =
∑

ξ

±ϕ∆β(ξ)(ρ̄(∆α))(ξ′x, ξ′′y).

Hence diagram (6) yields the formula

(8) Θρ(α, β) =
∑

ξ

ϕ∆β(ξ)Θρ(α) · (ξ′ ⊗ ξ′′)

= Θρ(α) · (∆β). �
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Secondary Hopf Algebras

We prove the crucial fact that the relation diagonal

Θρ : RB −→ A⊗A

determines the secondary diagonal

∆ : B −→ B⊗̂B

where B⊗̂B is the “folding product” of B. Though Θρ depends on the splitting ρ, it
turns out that the secondary diagonal does not depend on the splitting and hence
is the “invariant form” of the relation diagonal. Then the properties of generalized
Cartan tracks imply that (B, ∆) is a secondary Hopf algebra. This is a main result
in this book, generalizing the fact that the Steenrod algebra A is a Hopf algebra.

12.1 The monoidal category of [p]-algebras

For a prime p we use the field F = Z/p of p elements and the ring G = Z/p2.
An F-vector space is also a G-module via the ring homomorphism G → F. For
a graded module M = {Mn, n ∈ Z} we have the suspension ΣM which is the
graded module given by

(ΣM)n = Mn−1.

Let Σ : M → ΣM be the map of degree +1 given by the identity. In particular
let F be concentrated in degree 0 so that ΣF is concentrated in degree 1. We have
canonical isomorphisms

(12.1.1) M ⊗ (ΣN) τ �� Σ(M ⊗ N) (ΣM) ⊗ N
1��

for graded modules M, N . Here the left-hand side is the interchange of Σ and M
given by τ(m ⊗ Σn) = (−1)mΣ(m ⊗ n). Let

A⊗n = A⊗ · · · ⊗ A
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be the n-fold tensor product of the Steenrod algebra A with A⊗n = F for n = 0.
Here A⊗n is an algebra over F and ΣA⊗n is a left and a right A⊗n module.

12.1.2 Definition. A [p]-algebra D of type n ≥ 0 is given by an exact sequence of
non-negatively graded G-modules

(1) 0 �� ΣA⊗n i �� D1
∂ �� D0

q �� A⊗n �� 0

such that D0 is a free G-module and an algebra over G and q is an algebra map.
Moreover D1 is a right D0-module and ∂ is D0 linear. Using q also ΣA⊗n is a
right D0-module and i is also D0-linear. In degree 0 we have the unique element

(2) [p] ∈ D1 with ∂[p] = p · 1

where 1 is the unit of the algebra D0. Let [p] · D0 be the G-submodule of D1

given by the right action of D0 on the element [p]. As part of the definition of a
[p]-algebra D we assume that the quotient

(3) D1/[p] · D0

is a graded F-vector space so that D1/[p] · D0 is a right module over the algebra
D0/p ·D0 = D0⊗F. Now let D and E be [p]-algebras of type n and m respectively.
Then a morphism f : D → E is a commutative diagram

(4) ΣA⊗n

Σf̄0

��

�� D1

f1

��

�� D0

f0

��

�� A⊗n

f̄0

��
ΣA⊗m �� E1

�� E0
�� A⊗m

where f0 is an algebra map and f1 is an f0-equivariant map of modules. We point
out that f1 induces Σf̄0 where f̄0 is induced by f0. Let Alg[p] be the category of
such [p]-algebras and maps.

12.1.3 Example. The initial object GΣ in Alg[p] is the [p]-algebra of type 0 given
by the exact sequence

0 �� ΣF �� GΣ
1

∂ �� GΣ
0

�� F �� 0

F ⊕ ΣF G

with ∂|F the inclusion and ∂|ΣF = 0. The generator of F ⊂ GΣ
1 is [p]. For each

[p]-algebra D there is a unique morphism

GΣ
�� D



12.1. The monoidal category of [p]-algebras 321

carrying 1 ∈ GΣ
0 to 1 ∈ D0 and [p] ∈ GΣ

1 to [p] ∈ D1. Therefore GΣ is the initial
object of Alg[p]. We call a morphism

ε : D �� GΣ

a secondary augmentation of D.

12.1.4 Proposition. The pair algebra B of secondary cohomology operations is a
[p]-algebra of type 1.

This is a consequence of (11.9.1). We point out that B is also a crossed
algebra, in particular B1 is a B0-bimodule. But only the right B0-module structure
of B1 is used in the definition of a [p]-algebra.

12.1.5 Definition. For the [p]-algebra B of secondary cohomology operations we
have the secondary augmentation of B,

ε : B �� GΣ,

in Alg[p] defined as follows. Here ε is the diagram

(1) B1

∂

��

ε1 �� F ⊕ ΣF

��
B0 ε0

�� G

where ε0 is the augmentation of the tensor algebra B0 = TG(EA). Moreover the
F-coordinate of ε1 is given by the commutative diagram (1) and the ΣF-coordinate
of ε1 is given by the retraction

(2) ε̃ : B1 −→ ΣF

defined in degree 1 as follows. An element x ∈ B1 with |x |= 1 is a pair x = (a, α)
with α ∈ B0, |α |= 1, and a : sα ⇒ 0. Here |α |= 1 implies that α is a multiple
of Sq1 if p = 2 and of the Bockstein β if p is odd. This implies that sα = 0
since sα ⇒ 0 exists. Therefore a : 0 ⇒ 0 represents an element ã in F. We set
ε̃(x) = ã. The map ε̃ is compatible with Σε : ΣA → ΣF. Moreover for the element
[p] = (p · 1, 0) ∈ B1 we have (β ∈ B0)

(3) ε̃([p] · β) = ε̃([p]) · ε(β) = 0.
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For each [p]-algebra D we have an associated commutative diagram.

(12.1.6) 0 �� ΣA⊗n �� D1

��

�� D0

��

�� A⊗n �� 0

0 �� ΣA⊗n �� D1/[p]D0
�� D0/[p]D0

�� A⊗n �� 0

D̃1 D̃0

Here the rows are exact and all maps are morphisms of right D0-modules. The
square in the middle is a push out and a pull back diagram. This square defines
the pair map

(1) D �� D̃ = (∂ : D̃1 −→ D̃0)

where D̃ consists of graded F-vector spaces. Hence there is an F-isomorphism

(2) D̃1
∼= (ΣA⊗n) ⊕ kernel(D̃0 −→ A⊗n).

For n, m ≥ 0 we define the folding map ϕ by the commutative diagram

(12.1.7) An,m

ϕ

��

(ΣA⊗n) ⊗A⊗m ⊕A⊗n ⊗ (ΣA⊗m)

(1,τ)

��
ΣA⊗(n+m) ΣA⊗n ⊗A⊗m

where we use the maps in (12.1.1). Now we are ready to introduce the product of
[p]-algebras.

12.1.8 Definition. Let D and E be [p]-algebras of type n and m respectively. Then
the folding product D⊗̂E is a [p]-algebra of type n + m ≥ 0 defined as follows.
Let D̃ and Ẽ be the associated pairs as in (12.1.6). Since D̃ and Ẽ are defined
over F we get the exact top row in the following diagram where we use the tensor
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product ⊗̄ of pairs in (5.1.2).

0 �� An,m

pushϕ

��

�� (D̃⊗̄Ẽ)1

��

�� D̃0 ⊗ Ẽ0
�� A⊗(n+m) �� 0

Σ(A⊗(n+m)) �� (D⊗̂E)∼1

pull

�� D̃0 ⊗ Ẽ0

(D⊗̂E)1

��

�� D0 ⊗ E0

q⊗q

��

Here ϕ is the folding map in (12.1.7). Moreover the push out and pull back
in the diagram define the bottom row which is the folding product D⊗̂E. The pull
back in the diagram is also a push out. Hence the kernel of D⊗̂E is Σ(A⊗(n+m))
and the cokernel is A⊗(n+m).

One can check that

(D⊗̂E)∼1 = (D⊗̂E)1/[p](D0 ⊗ E0).

This shows that D⊗̂E is a [p]-algebra of type n + m. The algebra D0⊗̂E0

acts on (D⊗̂E)1 since D0 acts on D̃1 and E0 acts on Ẽ1 and ϕ is equivariant. Here
we use the even sign convention depending on the prime p in (11.1.1).

12.1.9 Theorem. The category Alg[p] with the folding product ⊗̂ is a symmetric
monoidal category. The unit object is GΣ.

In particular we have the natural isomorphisms in Alg[p],

GΣ⊗̂D = D = D⊗̂GΣ,

(D⊗̂E)⊗̂F = D⊗̂(E⊗̂F ),

T : D⊗̂E ∼= E⊗̂D.

The interchange map T is induced by T in (11.1.1), see also (12.1.11)(4) below.
There is a natural surjective map

(12.1.10) q : (D⊗̄E)1 � (D⊗̂E)1
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given by the following commutative diagram.

(D̃⊗̄Ẽ)1 �� (D⊗̂E)∼1 ��

pull

D̃0 ⊗ Ẽ0

(D⊗̄E)1

��

q ��666

∂

��(D⊗̂E)1 ��

��

D0 ⊗ D0

��

The arrow at the left-hand side is the ⊗̄-product of D → D̃ and E → Ẽ given by
(12.1.6). The map q is a morphism of right D0 ⊗ E0-modules. Here D0 ⊗ E0 acts
on (D⊗̄E)1 by use of the interchange map T in (11.1.1).

As a special case of the map (12.1.10) we get the surjective map

q : (B⊗̄B)1 −→ (B⊗̂B)1

where (B⊗̄B)1 is a (B0 ⊗B0)-bimodule and q is a map of right (B0 ⊗B0)-modules.

12.1.11 Theorem. Assume that a [p]-algebra B is also a pair algebra and that the
derivation

Γ[p] = κ : A −→ A

defined by κ(α) = [p] · α − α · [p] for α ∈ B0 satisfies

(κ ⊗ 1)δ = δκ : A −→ A⊗A.

Then the folding product (B⊗̂B)1 is a left B0-module in such a way that the map
q satisfies

q(∆(α) · x) = α · q(x)

for α ∈ B0, x ∈ (B⊗̂B)1; that is, q is a map of left B0-modules with the left action
of B0 on (B⊗̄B)1 induced by the diagonal ∆ : B0 −→ B0 ⊗ B0.

We write for x, y ∈ B1 and ξ, η ∈ B0

(1)
x⊗̂η = q(x ⊗ η) ∈ (B⊗̂B)1,

ξ⊗̂y = q(ξ ⊗ y) ∈ (B⊗̂B)1.

Hence for ∆α =
∑

i α′
i ⊗α′′

i ∈ B0⊗̂B0 we get the left action of α on x⊗̂η , ξ⊗̂y by
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the formulas:

(2)

α · (x⊗̂η) = q((∆α) · x ⊗ η)

= q(
∑

i

(−1)|x||α
′′
i |α′

ix ⊗ α′′
i η)

=
∑

i

(−1)|x||α
′′
i |(α′

ix)⊗̂(α′′
i η),

α · (ξ⊗̂y) = q((∆α) · ξ ⊗ y)

= q(
∑

i

(−1)|ξ||α
′′
i |(α′

iξ) ⊗ (α′′
i y))

=
∑

i

(−1)|ξ||α
′′
i |(α′

iξ)⊗̂(α′′
i y).

We point out, however, that (B⊗̂B)1 is not a left B0 ⊗ B0-module so that (α′ ⊗
α′′) ·(x⊗̂η) or (α′⊗α′′) ·(ξ⊗̂y) are not defined for α′, α′′ ∈ B0. But the right action
of α′ ⊗ α′′ is defined satisfying

(3)
(x⊗̂η) · (α′ ⊗ α′′) = (−1)|η||α

′|(x · α′)⊗̂(η · α′′),

(ξ⊗̂y) · (α′ ⊗ α′′) = (−1)|y||α
′|(ξ · α′)⊗̂(y · α′′).

Though (B⊗̄B)1 is also a left B0⊗B0-module, the folding product (B⊗̂B)1 is
not a left B0⊗B0-module, only a left B0-module. In fact, B⊗̄B is a pair algebra since
B is a pair algebra. Hence (B⊗̄B)1 is a B0 ⊗B0-bimodule and for x, y ∈ (B⊗̄B)1
the equation

(∂x) · y = x · (∂y)

holds in (B⊗̄B)1. Such an equation is not available for x, y ∈ (B⊗̂B)1. However,
using the surjective map q : (B⊗̄B)1 → (B⊗̂B)1 and Theorem (12.1.11) we still
get for x, y ∈ (B⊗̂B)1,

(4) α · y = x · (∂y) if ∂x = ∆(α), α ∈ B0.

In fact x = q(x′), y = q(y′) with ∂x = ∂x′ = ∆(α) and ∂y = ∂y′ so that

x · ∂y = q(x′ · ∂y′) = q(∂x′ · y′)
= q(∆(α) · y′) = α · q(y′) = α · y.

The interchange operator

T : (B⊗̂B)1 −→ (B⊗̂B)1

is defined by
T (x⊗̂η) = (−1)|x||η|η⊗̂x,

T (ξ⊗̂y) = (−1)|ξ||y|y⊗̂ξ.
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Now formula (3) shows that T is a T -equivariant map of right (B0⊗̂B0)-modules,
that is, for v ∈ (B⊗̂B)1 and a ∈ B0 ⊗ B0 we get

(5) T (v · a) = T (v) · T (a).

This also follows from the fact that T is a map between [p]-algebras. For a = ∆α
and v · α = v · (∆α) we get

(6) T (α · v) = α · T (v).

In fact, by (2) we get for v = x⊗̂η the formula

T (α · v) = qT ((∆α) · (x ⊗ η))
= q((T∆α) · T (x ⊗ η))
= q(∆α · T (x ⊗ η))
= α · T (v).

A similar computation holds for v = ξ⊗̂y.
For the proof of theorem (12.1.11) we need the next lemma.

12.1.12 Lemma. For the derivation κ = Γ[p] : A −→ A of degree −1 the composite

A δ �� A⊗A κ∗ �� A⊗A

is trivial with κ∗(a ⊗ b) = κ(a) ⊗ b − (−1)|a|a ⊗ κ(b). Here κ∗ is a derivation of
degree −1.

Proof. The lemma is also a consequence of the equation (κ⊗ 1)δ = (1⊗ κ)δ = δκ
in (12.1.11).

�
Proof of (12.1.11). Consider the following diagram.

(1) A⊗4
κ# �� ΣA⊗2

��
B⊗4

0

��

ψ �� (B⊗̄B)1
q �� (B⊗̂B)1

Here the left-hand side is the quotient map and the right-hand side is the inclusion.
Moreover we define ψ by

ψ(α ⊗ β ⊗ α′ ⊗ β′) = (α ⊗ β) · ([p] ⊗ 1 − 1 ⊗ [p]) · (α′ ⊗ β′)
= ((α[p]) ⊗ β − α ⊗ (β[p])) · (α′ ⊗ β′)
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We observe that ∂ψ = 0 so that ∂qψ = 0 and hence there is a well-defined map
κ# for which the diagram commutes. Since κ = Γ[p] we have the equations in B1,

α · [p] − [p] · α = Σκ(α),
β · [p] − [p] · β = Σκ(β).

Therefore we obtain κ# by the formula

κ#(α ⊗ β ⊗ α′ ⊗ β′) = ϕ(A − B) · (α′ ⊗ β′)

where
A = (Σκ(α)) ⊗ β and B = α ⊗ (Σκ(β)).

Hence we get

ϕ(A) = Σ(κ(α) ⊗ β) and ϕ(B) = (−1)|α|Σ(α ⊗ κ(β)).

This shows that

κ#(α ⊗ β ⊗ α′ ⊗ β′) = ΣC with

C = (κ(α) ⊗ β − (−1)|α|α ⊗ κ(β)) · (α′ ⊗ β′)
= κ∗(α ⊗ β) · (α′ ⊗ β′).

Here we use κ∗ in the lemma above. Hence κ# satisfies for ξ ∈ B0 the equations

κ#((ξ · (α ⊗ β)) ⊗ (α′ ⊗ β′)) = Σ(κ∗(ξ · (α ⊗ β)) · (α′ ⊗ β′)).

Now we get

κ∗(ξ · (α ⊗ β)) = κ∗(δ(ξ) · (α ⊗ β))

= κ∗(δ(ξ)) · (α ⊗ β) + (−1)|ξ|δ(ξ) · κ∗(α ⊗ β)

= (−1)|ξ|δ(ξ) · κ∗(α ⊗ β).

since κ∗(δ) = 0 by Lemma (12.1.12). Therefore we get

(2) κ#((ξ · (α ⊗ β) ⊗ (α′ ⊗ β′)) = ξ · κ#(α ⊗ β ⊗ α′ ⊗ β′)

where the action of ξ is induced by the diagonal. Now we claim that the sequence

(3) K
(̄i,ψ) �� (B⊗̄B)1

q �� (B⊗̂B)1 �� 0

is exact where K is the kernel of

A1,1 ⊕ B⊗4
0

(ϕ,κ#) �� ΣA⊗2.
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Here ī : A1,1 −→ (B⊗̄B)1 is induced by ΣA ⊂ B1. One readily checks that
q(̄i, ψ) = 0. Since K is a left B0-module by (2) and (̄i, ψ) is a map of left B0-
modules, also q is a map of left B0-modules. We derive the exactness of (3) from
the exactness of

(4) B⊗4
0

ψ �� (B⊗̄B)1/ image(̄i) �� B0 ⊗ B0.

In fact, since B is a pull back as in (12.1.4)(2) we know that B1 = (ΣA) ⊕ RB
where RB = kernel(B0 → A) with [p] ∈ RB.

Therefore we get

(B⊗̄B)1/ image(̄i) = (R⊗̄R)1

with R = (RB ⊂ B0) the inclusion.
One now can check the exactness of

(5) B⊗4
0

ψ �� (R⊗̄R)1 �� B0 ⊗ B0.

This completes the proof of Theorem (12.1.11). �

12.2 The secondary diagonal

For the pair algebra B of secondary cohomology operations there is a canonical
secondary diagonal ∆ which is a pair map

(12.2.1) ∆ : B −→ B⊗̂B

where B⊗̂B is the folding product. Here ∆ corresponds to the commutative dia-
gram

B1

∂

��

∆1 �� (B⊗̂B)1

∂

��
B0

∆0 �� B0 ⊗ B0

where ∆0 is the Hopf algebra structure of the tensor algebra TG(EA) with the
even sign convention in Section (11.1). We obtain ∆1 using the pull back property
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of (B⊗̂B)1 by the commutative diagram

(12.2.2) A1,1

pushϕ

��

�� (F⊗̄F)1

ϕ̄

��

∂1 �� F0 ⊗F0

ΣA⊗2 �� (B⊗̂B)∼1

pull

∂2 �� F0 ⊗F0

(B⊗̂B)1

��

�� B0 ⊗ B0

q⊗q

��

B1

∆̃

""

∆1

++									

∂
�� B0

∆0

++									

with F = (B1/[p]B0 = F1 → B0/pB0 = F0) = B̃ as in (11.9.1) and (12.1.6). Below
we define a map ∆̃ as in the diagram. The pair of maps (∆̃, ∆0∂) yields ∆1 by
the pull back property. We define ∆̃ by use of the relation diagonal Θρ in Section
(11.10).

We choose a splitting ρ of F as in (11.9.2).

(1) F1

∂

��
RF = im(∂)

ρ



777777777777777
F0⊂

Then ρ induces a splitting ρ̄ = ρ⊗̄ρ of F⊗̄F as in the following commutative
diagram.

(2) (F⊗̄F)1

∂1

��

ϕ̄ �� (B⊗̂B)∼1

∂2

:;
RF⊗̄F = im(∂1)

ρ̄

?@

F0 ⊗F0⊂
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Here we have

(3) RF⊗̄F = RF ⊗F0 + F0 ⊗ RF

and ρ̄ carries x⊗ a and b ⊗ y with x, y ∈ RF and a, b ∈ F0 to (ρx)⊗̄a and b⊗̄(ρy)
respectively. Compare the proof of (11.9.5). Hence ϕ̄ρ̄ is a splitting of ∂2 with ϕ̄
defined by the push out in (12.2.1). We thus obtain the following diagram.

(4)

Θρ

OP
ΣA

i

��

Σδ �� ΣA⊗2

i

��
B1

∆̃ ��666666 (B⊗̂B)∼1

RB

ρB

��

∆ �� RF⊗̄F

ϕ̄ρ̄

��

B0
(q⊗q)∆0

��

∩

F0 ⊗F0

∩

Here the splitting ρB of B is induced by ρ as in (11.10.1) and Θρ is the relation
diagonal in (11.9.6). We are now ready to define ∆̃ by the following formula with
x ∈ B1, ξ = ∂x ∈ RB,

(5) ∆̃(x) = ϕ̄ρ̄(∆ξ) − Θρ(ξ) + δ(x − ρB(ξ)).

Equivalently ∆̃ is the unique G-linear map satisfying ∆̃i = iΣδ and

(6) ∆̃(ρB(ξ)) = ϕ̄ρ̄(∆ξ) − Θρ(ξ)

for ξ ∈ RB.

12.2.3 Lemma. The G-linear map ∆̃ does not depend on the choice of the splitting
ρ. Moreover ∂2∆̃ = (q ⊗ q)∆0∂ holds.
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Proof. Let ∆̃ = ∆̃ρ be defined by the formula above. As in (11.9.2)(3) we can alter
ρ by t : RF −→ A of degree −1. Then we get

∆̃ρ+t(x) = ϕ̄ρ + t(∆ξ) − Θρ+t(ξ) + δ(x − (ρ + t)B(ξ))
= ϕ̄ρ̄(∆ξ) + t̄(∆ξ) − Θρ+t(ξ) + δ(x − ρB(ξ)) − δ(tξ).

Compare t̄(∆ξ) defined in (11.9.2)(5). Now formula (11.9.2)(3) shows ∆̃ρ+t(x) =
∆̃ρ(x). Moreover we get

∂2∆̃(x) = ∂2(ϕ̄ρ̄(∆ξ) − Θρ(ξ) + δ(x − ρB(ξ)))
= ∂2(ϕ̄ρ̄(∆ξ)) = (q ⊗ q)∆0ξ.�

The lemma shows that the map ∆̃ and hence the secondary diagonal in
(12.2.1) is independent of the choice of ρ though ∆̃ is defined in terms of the
splitting ρ. Hence ∆ is canonically defined, that is, ∆ does not depend on choices.
Therefore the secondary diagonal ∆ can be considered as the “invariant form”
of the relation diagonal. In fact, searching such an invariant form of the relation
diagonal forces us to introduce the folding product of [p]-algebras.

12.3 The right action on the secondary diagonal

The pair algebra B of secondary cohomology operations is also a crossed algebra
and therefore B1 is a B0-bimodule. Moreover the folding product (B⊗̂B)1 is a B0

bimodule with the right action of B0 given by ∆0 and the right B0 ⊗ B0-module
structure of (B⊗̂B)1. The left action of B0 on (B⊗̂B)1 is described in (12.1.11).

12.3.1 Theorem. The secondary diagonal

∆1 : B1
�� (B⊗̂B)1

is a morphism of right B0-modules.

We describe in Section (11.10) the right action of B0 on the relation diagonal
Θρ. It turns out that the complicated formula (11.10.4) yields exactly the right
equivariance of the B0 action on ∆1.

Proof of (12.3.1). Let β ∈ EA and x ∈ B1 with ∂x = ξ ∈ RB. In order to prove
∆̃(x · β) = ∆̃(x) · β it suffices to show for ρ = ρB,

(1) ∆̃((ρξ) · β) = (∆̃ρξ) · β.

Here we have by (11.10.2) the equation

(2) (ρξ) · β = ρ(ξ · β) − δ∇′(ξ, β).
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Hence (1) is equivalent to

(3) ∆̃ρ(ξ · β) = (∆̃ρξ) · β + δ∇′(ξ, β).

Here we can use the formula (12.2.2)(6) with ρ̃ = ϕ̄ρ̄, namely

(4) ∆̃ρξ = ρ̃∆ξ − Θρ(ξ).

Hence we get by (11.10.4) the formula

(5)
∆̃ρ(ξ · β) = ρ̃∆(ξ · β) − Θρ(ξ · β)

= ρ̃∆(ξ · β) − Θρ(ξ) · δβ + δ∇′(ξ, β)

(6) −∇′
ρ,µ(ξ0 ⊗ ∆β) −∇′

µ,ρ(ξ1 ⊗ ∆β)

(7) = ρ̃∆(ξ · β) − (ρ̃∆ξ) · β + (6)

(8) +(∆̃ρξ) · β + δ∇′(ξ, β).

Here (8) is the right-hand side of (2) so that (2) is equivalent to (7) = 0. Since
∆ξ = ξ0 + ξ1 this is easily checked by the definition of ρ̃ = ϕ̄ρ̄ and the definition
of ∇′

ρ,µ,∇′
µ,ρ. In fact, we have for η ∈ RB and α, β′, β′′,∈ B0 the equation

(9)

∇′
ρ,µ(η ⊗ α ⊗ β′ ⊗ β′′) = ±∇′

ρ(η, β′) ⊗ α · β′′

= ±(ρ(ηβ′) − ρ(η) · β′) ⊗ α · β′′

= ρ̃((η ⊗ α) · (β′ ⊗ β′′)) − ρ̃(η ⊗ α) · (β′ ⊗ β′′).

A similar formula we get for ∇′
ρ,µ. This completes the proof of (1). �

12.4 The secondary Hopf algebra B
In this section we describe a main result in this book. Almost all the arguments in
this book are part of the proof of this result. We have seen that the pair algebra

(12.4.1) B = (∂ : B1 −→ B0)

of secondary cohomology operations with B0 = TG(EA) admits an augmentation

(1) ε : B −→ GΣ

and a secondary diagonal

(2) ∆ : B −→ B⊗̂B
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where B⊗̂B is the folding product with the even sign convention in (11.1). Here
ε and δ are maps in the category of [p]-algebras Alg[p] which by (GΣ, ⊗̂) is a
monoidal category. More explicitly the augmentation ε and the diagonal ∆ of B
are given by the following commutative diagrams.

(3) 0 �� ΣA

Σε

��

�� B1

ε1

��

�� B0

ε0

��

�� A

ε

��

�� 0

0 �� ΣF �� GΣ
1

�� GΣ
0

�� F �� 0

F ⊕ ΣF G

(4) 0 �� ΣA

Σδ

��

�� B1

∆1

��

�� B0

∆0

��

�� A

δ

��

�� 0

0 �� ΣA⊗A �� (B⊗̂B)1 �� B0 ⊗ B0
�� A⊗A �� 0

Here ε0 is the augmentation of B0 and ∆0 is the diagonal of B0 in Section (11.1).
We know by (12.3.1) that ∆1 is a map between B0-bimodules; that is, the diagram

(5) B0 ⊗ B1 ⊗ B0

µ

��

1⊗∆1⊗∆0 �� B0 ⊗ (B⊗̂B)1 ⊗ B0 ⊗ B0

µ

��
B1

∆1 �� (B⊗̂B)1

commutes where µ denotes the action map with the left action of B0 on (B⊗̂B)1
defined in (12.1.11).

In (11.1.2) we have seen that a Hopf algebra is a coalgebra in the monoidal
category of algebras; in particular, A is such a Hopf algebra. We now obtain the
corresponding result for the pair algebra B.

12.4.2 Theorem. The pair algebra B together with the augmentation ε and the
diagonal ∆ is a coalgebra in the monoidal category of [p]-algebras, that is, the
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following diagrams in Alg[p] are commutative.

(1) B⊗̂B

ε⊗1

��

B

1

��

∆�� ∆ �� B⊗̂B

1⊗ε

��
GΣ⊗̂B B B⊗̂GΣ

(2) B

∆

��

∆ �� B⊗̂B

∆⊗1

��
B⊗̂B

1⊗∆
�� B⊗̂B⊗̂B

The theorem together with the properties in (12.4.1) describes the algebraic
structure of the secondary Hopf algebra B. We shall prove the theorem by using the
action of the secondary Hopf algebra B on the strictified secondary cohomology
in the next chapter. A somewhat more direct proof is also possible by using the
definition of ∆1 and the properties of the generalized Cartan tracks in Chapter
11, in particular (11.7.4).



Chapter 13

The Action of B on
Secondary Cohomology

The pair algebra B of secondary cohomology operations is the strictification of the
secondary Steenrod algebra [[A]]. We have seen that B is a secondary Hopf algebra
generalizing the fact that the Steenrod algebra A is a Hopf algebra. We now con-
sider the action of A on the cohomology H∗(X) of a space and the corresponding
action of B on the secondary cohomology. For this we use the strictification of
secondary cohomology as defined in (5.6.2).

13.1 Pair algebras over the secondary Hopf algebra B
The cohomology H∗(X) of a space is an algebra and a module over the Steenrod
algebra A. Both structures are related by the Cartan formula which corresponds
to the diagonal

δ : A −→ A⊗A
of the Hopf algebra A. The Cartan formula in terms of the diagonal is equivalent
to the following commutative diagram with H = H∗(X).

(13.1.1) A⊗ H ⊗ H
δ⊗1 ��

1⊗µ

��

A⊗A⊗ H ⊗ H

µ2

��
A⊗ H µ1

�� H

Here µ1 is given by the A-module structure of H , that is, µ1 carries α⊗x to α(x).
Moreover 1 ⊗ µ carries α ⊗ x ⊗ y to α ⊗ (x · y) where x · y is the multiplication
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in H and µ2 carries α ⊗ β ⊗ x ⊗ y to (−1)|β||x|(αx) · (βy). One says that H is an
A-algebra or an algebra over the Hopf algebra A if the diagram commutes. This is
equivalent to the condition (K1) in (1.1.7).

In this section we introduce a secondary analogue of an algebra over a Hopf
algebra.

Let R be a commutative ring, for example R = G = Z/p2. A pair X in the
category of R-modules is an R-linear map ∂ : X1 → X0. The category of such
pairs is a monoidal category with the tensor product X⊗̄Y = ∂⊗ in (5.1.2). A
graded pair X is an R-linear map of degree 0,

X = (∂ : X1 −→ X0)

between (non-negatively) graded R-modules. For n ∈ Z we have the pair Xn =
(∂n : Xn

1 → Xn
0 ) in degree n given by X . The tensor product of graded pairs X, Y

is defined by

(13.1.2) (X⊗̄Y )k =
⊕

n+m=k

Xn⊗̄Y m.

Compare (5.1.3). This is a monoidal structure of the category of graded pairs in
Mod(R). A monoid B in this category is the same as a pair algebra, see (5.1.5).
A module X over the pair algebra B is an action of the monoid B on X .

The category of graded pairs in Mod(R) is a track category in which homo-
topies or tracks are defined as follows. Let f, g : X → Y be maps between graded
pairs, so that ∂f1 = f0∂ and ∂g1 = g0∂ as in the following diagram.

(13.1.3) X1
f1,g1 ��

∂

��

Y1

∂

��
X0

f0,g0

��

H

���
�

�
�

�
�

�
�

Y0

A homotopy H : f ⇒ g is an R-linear map H as in the diagram such that{
∂H = f0 − g0,

H∂ = f1 − g1.

Compare (6.4.2). The pasting of homotopies H : f ⇒ g and G : g ⇒ h is defined
by

G�H : f =⇒ h

with G�H = G + H given by addition of maps.
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We are now ready to define “pair algebras over the secondary Hopf algebra
B ” by replacing diagram (13.1.1) by a corresponding homotopy commutative
diagram as follows. Recall that we have the secondary diagonal

∆ : B −→ B⊗̂B

where B⊗̂B is the folding product for which we have the surjective map

q : B⊗̄B � B⊗̂B.

Moreover we point out that we use the even sign convention in (11.1).

13.1.4 Definition. Let H be a pair algebra over G and a B-module. We say that
H is a pair algebra over the secondary Hopf algebra B if the following properties
are satisfied. There is a commutative diagram

(1) (B⊗̂B)⊗̄(H⊗̄H)

µ2

��

B⊗̄B⊗̄H⊗̄H
q⊗1��

1⊗T⊗1

��
B⊗̄H⊗̄B⊗̄H

µ1⊗µ1

��
H H⊗̄Hµ

��

where µ1 is the action of B1 on H and µ is the multiplication of H and T is the
interchange map (11.1.1). Since q is surjective the map µ2 is uniquely determined
by µ and µ1. Moreover there is given a homotopy C as in the diagram

(2) B⊗̄H⊗̄H

1⊗µ

��

∆⊗1 ��

C
=⇒

(B⊗̂B)⊗̄(H⊗̄H)

µ2

��
B⊗̄H µ1

�� H

where C is a G-linear map

C : B0 ⊗ H0 ⊗ H0 −→ H1
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satisfying the equations

(3)
∂C = (µ1(1 ⊗ µ))0 − (µ2(∆⊗̄1))0 and
C∂ = (µ1(1 ⊗ µ))1 − (µ2(∆⊗̄1))1.

Compare (13.1.3). Moreover the homotopy C has the following property (4). Let
α, β ∈ B0 and x, y, z ∈ H0. We write (x, y) = x ⊗ y ∈ H0 ⊗ H0. Then the
associativity formula is satisfied:

(4)
C(α ⊗ (x · y, z)) + (C ⊗ 1)(∆(α) ⊗ (x, y, z))
= C(α ⊗ (x, y · z)) + (1 ⊗ C)(∆(α) ⊗ (x, y, z)).

Here the operators

C ⊗ 1, 1 ⊗ C : B0 ⊗ B0 ⊗ H0 ⊗ H0 ⊗ H0 −→ H1

are defined by

(C ⊗ 1)(α ⊗ β ⊗ (x, y, z)) = (−1)p|β|(|x|+|y|)C(α ⊗ (x, y)) · β(z),

(1 ⊗ C)(α ⊗ β ⊗ (x, y, z)) = (−1)p|β||x|α(x) · C(β ⊗ (y, z))

with (x, y, z) = x ⊗ y ⊗ z.

Equation (4) can be expressed in terms of diagrams as follows. We set

B2 = B⊗̂B, B3 = B⊗̂B⊗̂B,

H2 = H⊗̄H, H3 = H⊗̄H⊗̄H.

Now we consider the following diagrams.

B⊗̄H3

1⊗µ′

��

∆⊗1 �� B2⊗̄H3
∆⊗B⊗1 ��

1⊗µ′

��

C⊗1
=⇒

B3⊗̄H3

µ3

=>

B⊗̄H2

1⊗µ

��

∆⊗1 ��

C
=⇒

B2⊗̄H2

µ2

��
B⊗̄H µ1

�� H
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B⊗̄H3

1⊗µ′′

��

∆⊗1 �� B2⊗̄H3
B⊗∆⊗1 ��

1⊗µ′′

��

1⊗C
=⇒

B3⊗̄H3

µ3

=>

B⊗̄H2

1⊗µ

��

∆⊗1 ��

C
=⇒

B2⊗̄H2

µ2

��
B⊗̄H µ1

�� H

Here µ′ and µ′′ are defined by µ′(x, y, z) = (x · y, z) and µ′′(x, y, z) = (x, y · z) and
µ3 is given by µ3(α⊗ β ⊗ γ⊗ (x, y, z)) = ±α(x) ·β(y) · γ(z) with the obvious sign.
The associativity of µH : H⊗̄H → H and ∆ : B → B⊗̂B implies that

(13.1.5)
(1 ⊗ µ)(1 ⊗ µ′) = (1 ⊗ µ)(1 ⊗ µ′′),

(∆ ⊗ B ⊗ 1)(∆ ⊗ 1) = (B ⊗ ∆ ⊗ 1)(∆ ⊗ 1).

This shows that the boundaries of the two diagrams above coincide. Now equation
(4) in (13.1.4) is equivalent to saying that the pasting of tracks in the two diagrams
yields the same track, that is

(C ⊗ 1)(∆ ⊗ 1)�C(1 ⊗ µ′) = (1 ⊗ C)(∆ ⊗ 1)�C(1 ⊗ µ′′).

One can check that the formulas for C⊗1 and 1⊗C in (13.1.4)(5) yield well-defined
homotopies for the diagrams above.

13.2 Secondary cohomology as a pair algebra over B
Let X be a connected space and let H∗(X) be the secondary cohomology of X .
Then H∗(X) is a pair algebra and its strictification defined in (5.6.2) is a B-module.
We now consider a strictification of H∗(X) which is a B-module and also a pair
algebra.

A graded set is a sequence of sets Si, i ∈ Z, such that Si = ∅ is empty for
i < 0. The product of graded sets S×S′ is the set of pairs (x, y) with x ∈ S, y ∈ S′

and degree | (x, y) |=| x | + | y |. Let Set∗ be the category of graded sets and
maps of degree 0. Then (Set∗,×, ∗) is a monoidal category where the unit ∗ is the
singleton concentrated in degree 0. A graded monoid M is a monoid object in Set∗

given by 1 ∈ M0 and by the associative multiplication

µn,k : Mn × Mk −→ Mn+k

which carries (x, y) to x · y with 1 · x = x = x · 1.
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Let M be a graded monoid. Then M acts on the graded set S if an action
map

Mn × Sk −→ Sn+k

is given which carries (x, u) to x · u such that 1 · u = u and (x · y) · u = x · (y · u).
In this case we will call S an M-set .

13.2.1 Definition. Recall that EA denotes the set of generators of the Steenrod
algebra A. Let M = Mon(EA) be the free graded monoid generated by EA and

sX = MX −→ H∗(X)0 = [[X, Z∗]]0

be a function with the following properties. Here MX is a monoid and sX is a
morphism of monoids with the multiplication in H∗(X)0 induced by Zn × Zm →
Zn+m. Moreover MX is a free M-set and sX is an M-equivariant morphism of
M-sets with the action of α ∈ M on ξ : X → Zq ∈ H∗(X)0 by composition

αξ : X
ξ−→ Zq (sα)q−→ Zq+|α|.

Then we obtain the strictification H∗(X, MX , sX) by the pull back diagram (com-
pare (5.6.2))

H∗(X, MX , sX)1
s ��

∂

��

pull

H∗(X)1

∂

��
H∗(X, MX , sX)0 = G[MX ] sX

�� H∗(X)0

where G[MX ] is the free G-module generated by the set MX . Since MX is a free
M-set we have a set EX ⊂ MX of generators of the free M-set MX such that

G[MX ] = TG(EA) ⊗ GEX .

Moreover sX is the free G-linear extension of sX above. The B-module structure of
H∗(X, MX , sX) is defined as in (5.6.2) by the Γ-product •. Since sX is a morphism
of monoids we see that H∗(X, MX , sX) is a pair algebra so that the strictification
H∗(X, MX , sX) is both, a B-module and a pair algebra.

13.2.2 Example. Let
MX = Mon(M×H∗(X)0)

be the free monoid generated by pairs αξ = (α, ξ) with α ∈ M = Mon(EA) and
ξ ∈ H∗(X)0. Then MX is a monoid and a free M-set and we have the natural
map as in (13.2.1),

sX : MX −→ H∗(X)0

which is the identity on the generating set H∗(X)0 of MX .
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In this case H∗(X,MX , sX) is a functor which carries a path connected
pointed space X to a pair algebra which is also a B-module.

13.2.3 Theorem. The strictification H∗(X, MX , sX) of the secondary cohomol-
ogy is a B-module and a pair algebra in such a way that H∗(X, MX , sX) is a
pair algebra over the secondary Hopf algebra B as defined in (13.1.4). Moreover
H∗(X,MX , sX) yields a functor from spaces to the category of pair algebras over
the secondary Hopf algebra B.

This result is proved by the lemmas below.

We know that H∗(X) is not only a pair algebra but also a secondary permu-
tation algebra. We shall consider this richer structure below.

13.2.4 Lemma. For H = H∗(X, MX , sX) the map µ2 in (13.1.4) is well defined.

Proof. Since q ⊗ 1 is an isomorphism at level 0 we only have to consider level 1.
We have the commutative diagram

B1 ⊗ B0 ⊗ H0 ⊗ H0
m ��

��

H∗(X)1

B̃1 ⊗F0 ⊗ H0 ⊗ H0
m′

�� H∗(X)1

ΣA⊗F0 ⊗ H0 ⊗ H0
m′′

��

��

ΣH̃∗(X)

��

where we use s : H1 −→ H∗(X)1 in (13.2.1) to define m by the formula

(1) m(a ⊗ β ⊗ x ⊗ y) = εs(a · x) · s(β · y) with ε = (−1)|β||x|.

For a = [p] we get m([p]⊗β⊗x⊗ y) = 0 so that m induces the map m′. Moreover
we set

(2) m′′((Σα) ⊗ β ⊗ x ⊗ y) = εΣ((αx) · (βy))

with Σα ∈ ΣA and αx, βy defined by the action of A on H̃∗(X). The product
(αx) · (βy) is given by the multiplication in the algebra H∗(X).
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In a similar way we get the commutative diagram

B0 ⊗ B1 ⊗ H0 ⊗ H0
n ��

��

H∗(X)1

F0 ⊗ B̃1 ⊗ H0 ⊗ H0
n′

�� H∗(X)1

F0 ⊗ (ΣA) ⊗ H0 ⊗ H0
n′′

��

��

ΣH̃∗(X)

��

with

(3) n(α ⊗ b ⊗ x ⊗ y) = εs(αx) · s(b · y) with ε = (−1)|b||x|,

(4) n′′(α ⊗ (Σβ) ⊗ x ⊗ y) = ε · (−1)|α|Σ(αx) · (βy).

Now (2) and (4) show that the map

(5) (B̃⊗̄B̃)1 ⊗ H0 ⊗ H0
�� H∗(X)1

defined by (m′, n′) is compatible with the folding map ϕ. Therefore (5) induces

(6) (B⊗̂B)∼1 ⊗ H0 ⊗ H0
�� H∗(X)1.

Compare (12.2.2). The map

(7) (B⊗̂B)1 ⊗ H0 ⊗ H0
�� H1

is a map between pull backs induced by the following diagram.

(B⊗̂B)∼1 ⊗ H0 ⊗ H0
��

∂

��

H∗(X)1

∂

��
F0 ⊗F0 ⊗ H0 ⊗ H0

�� H∗(X)0

B0 ⊗ B0 ⊗ H0 ⊗ H0
��

��

H0

��
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Moreover µ2 is induced by (7) and

(8) B0 ⊗ B0 ⊗ (H⊗̄H)1 �� H1

where (8) is given by the left action of B0 on H and the multiplication of the pair
algebra H . This completes the proof that µ2 is well defined. �

13.2.5 Definition. For the strictification H = H∗(X, MX , sX) we define the Cartan
homotopy

(1) C : B0 ⊗ H0 ⊗ H0
�� H1

as follows. Let α ∈ B0 and x, y ∈ H0. We have the following pull back diagram.

H1
s ��

∂

��

H∗(X)1

∂

��
H0 MX

s �� H∗(X)0

Hence C(α ⊗ x ⊗ y) is completely determined by (2) and (5). In H0 we set

(2) ∂C(α ⊗ x ⊗ y) = α(x · y) − µ2(∆(α) ⊗ x ⊗ y).

Here x · y is the product in the algebra H0 and α(x · y) is defined by the action of
B0 on H0. Moreover ∆(α) ∈ B0 ⊗ B0 is given by the diagonal ∆ of B0 and µ2 is
defined in (13.1.4)(1).

Moreover using the generalized Cartan track Csx,sy
α we get the commutative

diagram of tracks in [[X, Z∗]].

(3) α(sx · sy)
Csx,sy

α ��

Γ(α,x·y)

��

∆(α)(sx, sy)

Γ∆α

��
s(α(x · y))

C̄x,y
α �� sµ2(∆(α) ⊗ x ⊗ y)

Here Γ(α, x · y) is given as in (5.3.1).



344 Chapter 13. The Action of B on Secondary Cohomology

For
∑
i

α′
i ⊗ α′′

i we get Γ∆α by the following diagram.

(4) ∆(α)(sx, sy)

Γx,y
∆α=Γ∆α

��

∑
i

± α′
i(sx) · α′′

i (sy)

∑
i
±Γ(α′

i,x)·Γ(α′′
i ,y)

��

sµ2(∆(α) ⊗ x ⊗ y)
∑
i

± s(α′
ix) · s(α′′

i y)

Now we set in H∗(X)1,

(5) sC(α ⊗ x ⊗ y) C̄x,y
α − sµ2(∆(α) ⊗ x ⊗ y).

Then we see that C(α⊗x⊗ y) ∈ H1 is well defined by (2) and (5). Since all tracks
in (3) are linear in α we see that C(α⊗ x⊗ y) is linear in α. Moreover since Cα is
a linear ∆-track we see that C(α ⊗ x ⊗ y) is also linear in x and y. Therefore the
G-linear map C in (1) above is well defined.

13.2.6 Lemma. The diagonal ∆1 : B1 −→ (B⊗̂B)1 satisfies the formula (a ∈
B1, x, y ∈ H0)

C(α ⊗ x ⊗ y) = a(x · y) − ∆1(a)(x, y) ∈ H1

with α = ∂a ∈ B0. Here a(x · y) is defined by the left action of B on H and

∆1(a)(x, y) = µ2(∆1(a) ⊗ x ⊗ y)

is defined by µ2 in (13.2.4), (13.1.4)(1).

Hence (13.2.5)(1) and (13.2.6) show that the equations (13.1.4)(3) are satisfied.

Proof. Let ρ be a splitting of B̃ and let a = ρB(α). Then we define ∆1(a) by ∆̃(a)
with ∆̃ in (12.2.2), namely

(1) ∆̃(ρB(α)) = ϕ̄ρ̄(∆0α) − Θρ(α).

Compare formula (12.2.2)(6). According to (11.9.4) the element Θρ(α) is given by
the track Θx,y in the following commutative diagram of tracks.

s(α(x · y))
C̄α ��

Γ(α,x·y)

��
u

��

sµ2(∆(α) ⊗ x ⊗ y)

Γ∆α

��
v

:;

α(sx · sy)
Cα ��

(ρα)(sx·sy)

��

∆(α)(sx, sy)

ρ̄∆(α)(x,y)

��
0

Θx,y

�� 0
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Here the composites u and v satisfy

u = s((ρα) · (x · y)),
v = sµ2(ρ̄∆α ⊗ x ⊗ y).

Moreover by definition of C(α ⊗ x ⊗ y) we have

(2) C̄α = sC(α ⊗ x ⊗ y) + sµ2(∆(α) ⊗ x ⊗ y).

We get by (2.2.6) that

Θx,y�u = Θx,y + u,(3)
v�C̄α = v + (C̄α − sµ2(∆(α) ⊗ x ⊗ y))(4)

= v + sC(α ⊗ x ⊗ y).

Since we have (3)=(4) (see the diagram above) one gets

sC(α ⊗ x ⊗ y) = u + Θx,y − v

= s(ρ(α)(x · y)) + Θx,y − sµ2(ρ̄∆α ⊗ x ⊗ y)
= s(a(x · y)) − s∆1(a)(x, y).

In fact, by (1) we have

s∆1(α)(x, y) = s(ϕ̄ρ̄(∆0α) − Θρ(α))(x, y)
= sµ2(ρ̄∆α ⊗ x ⊗ y) − Θx,y.�

13.2.7 Proposition. The Cartan homotopy C satisfies the associativity formula
(13.1.4)(4).

Proof. We derive from (11.7.4) and the definition of C̄α = C̄x,y
α that the following

diagram commutes.

s(α(xyz)) C̄ ��

C̄

��

sµ2(∆α ⊗ xy ⊗ z)

C̄⊗1

��
sµ2(∆α ⊗ x ⊗ yz)

1⊗C̄

�� sµ3(∆2α ⊗ x ⊗ y ⊗ z)

Here ∆2 = (1⊗∆)∆ = (∆⊗1)∆ and µ3 is similarly defined as µ2. Moreover C̄⊗1
is similarly defined as C ⊗ 1 in (11.7.4). Now (2.2.6) applied to the tracks in the
diagram yields, for ξ = sµ3(∆2α ⊗ x ⊗ y ⊗ z),

(C̄ ⊗ 1 − ξ) + C(α ⊗ xy ⊗ z) = (1 ⊗ C̄ − ξ) + C(α ⊗ x ⊗ yz)

where C̄⊗1−ξ = (C⊗1)(∆α⊗(x, y, z)) and (1⊗ C̄)−ξ = (1⊗C)(∆α⊗(x, y, z)).
�
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13.2.8 Lemma. Let ξ, η ∈ (B⊗̂B)1 and let ∂ξ = ∂η and ξ(x, y) = η(x, y) ∈ H =
H∗[X ] for all spaces X and elements x, y ∈ H. Then ξ = η.

The lemma shows that there is at most one element ∆1(a) satisfying (13.2.6)
for all X and x, y.

Proof of (13.2.8). Exactness shows that there is Σ(u) ∈ Σ(A ⊗ A) with ξ = η +
î(Σ(u)), u ∈ A⊗A. Then

ξ(x, y) = η(x, y) + Σ(u(x, y))

where u(x, y) ∈ π0(H) = H∗(X) and we use (2.2.10). Hence u(x, y) = 0 for all X
and x, y. But this implies u = 0. In fact, let | u |< k and let X = Y × Y where

Y = Z1 × · · · × Z1

is the k-fold product. For p = 2 let u : Z1 → Z1 be the identity and for p odd let
u = u′ · β(u′) : Z1 → Z3 where u′ is the identity. Let

x = y = u � · · · � u

be the k-fold �-product of u, see (2.1.5). Then one can check that

A≤k −→ H∗(Y ),
α �→ α(u)

is injective, see 1.2 [Sch]. Hence the map

A≤k ⊗A≤k −→ H∗(Y ) ⊗ H∗(Y ) = H∗(X)

which carries α ⊗ β to (−1)|β||x|α(x) ⊗ β(y) = (α ⊗ β)((xp1), (yp2)) is injective
where p1, p2 are the projections X → Y . �
13.2.9 Lemma. The diagonal ∆ = (∆1, ∆0) of B is coassociative.

Proof. We show that diagram (12.4.2)(2) commutes. Let a ∈ B1 with ∂a = α so
that ∂(∆1a) = ∆0α. Moreover let x, y, z ∈ H . Then we have the equations

C(α ⊗ (x · y, z)) = a(x · y · z) − ∆1(a)(x · y, z),(1)
(C ⊗ 1)((∆0α) ⊗ (x, y, z)) = (∆1a)(x · y, z) − ((∆ ⊗ 1)1∆1(a))(x, y, z),(2)

C(α ⊗ (x, y · z)) = a(x · y · z) − (∆1a)(x, y · z),(3)
(1 ⊗ C)((∆0α) ⊗ (x, y, z)) = ∆1(a)(x, y · z) − ((1 ⊗ ∆)1∆1(a))(x, y, z).(4)

Here we have (1) + (2) = (3) + (4) by (13.2.7). This implies

((∆ ⊗ 1)1∆1(a))(x, y, z) = ((1 ⊗ ∆)1∆1(a))(x, y, z)

and this shows by uniqueness as in (13.2.8) that

(∆ ⊗ 1)1∆1 = (1 ⊗ ∆)1∆1

and hence ∆ is coassociative. �
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13.3 Secondary Instability

The cohomology H∗(X) of a space is an unstable algebra over the Steenrod algebra
A in the sense that for α ∈ A, x ∈ H∗(X) we have αx = 0 if e(α) > |x| where
e(α) is the excess of α. Moreover

(13.3.1)
S|x|

q x = x2 if p = 2,

P |x|/2x = xp for |x| even and p odd.

In this section similar properties are also described for the strictified secondary
cohomology

H∗[X ] = H∗(X,PX , sX)

defined in (5.6.2).

13.3.2 Definition. Let M = Mon(EA) be the free monoid generated by the set EA
and let

(1) E(X) ⊂ M×H∗[X ]0

be the excess subset given by all pairs (α, x) with e(α) < |x|, α ∈ M and x ∈
H∗[X ]0. Then there is a well-defined unstable structure map

(2) v : E(X) −→ H∗[X ]1

which is natural in X . We define v(α, x) by the pull back

H∗[X ]1
s̄X ��

∂

��

H∗(X)1

∂

��
H∗[X ]0 sX

�� H∗(X)0

namely by ∂v(α, x) = α · x and by the track s̄Xv(α, x) : sX(αx) =⇒ 0 in H∗(X)1
given by

(3) Γ(α, x)op : sX(αx) =⇒ s(α)sX(x) = 0.

See (5.3.2) and (5.4.3). Here the right-hand side is trivial by (5.5.1), (10.2.5) and
(10.2.6) since e(α) < |x|. The existence of v(α, x) with ∂v(α, x) = αx implies that
αx represents the trivial element in cohomology H∗(X) = cokernel(∂).

In addition we get the following unstable structure maps corresponding to
(13.3.1) above. We have

u : H∗[X ]0 −→ H∗[X ]1 for p = 2 and
u : H∗[X ]even0 −→ H∗[X ]1 for p odd
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with |ux| = p|x| and

∂(ux) = Sq|x|(x) − x2 for p = 2,

∂(ux) = P |x|/2(x) − xp for |x| even and p odd.

We define ux using the pull back above by the track s̄X(ux) = Γ(α, x)op − sX(xp)
with α = Sq|x| for p = 2 and α = P |x|/2 for p odd where

Γ(α, x) : sX(αx) =⇒ s(α)sXx = (sXx)p = sX(xp)

is a track in (5.4.3). Here the right-hand side holds by (5.5.1), (10.2.5), (10.2.6).
Again the map u is natural in X and the existence of u implies the equations
(13.3.1) in cohomology.

13.3.3 Theorem. The unstable structure map v of H = H∗[X ] has the following
properties (provided both sides of the equations are defined ),

αv(β, x) = v(αβ, x),
v(βγ, x) = v(β, γx)

for α, β, γ ∈ M, x ∈ H0. Moreover

v(α, ∂x̄) = αx̄ for x̄ ∈ H1,

pv(α, x) = [p] · (αx),
∂v(α, x) = αx.

For p odd the element v(α, x) is linear in x, but for p = 2 the element v(α, x) is
quadratic in x with cross effect

v(α, x + y) − v(α, x) − v(α, y) = v(α, x|y) ∈ ΣH̃∗X

determined by the properties above and the delicate linearity track formula
(5.5.1)(2d),

v(Sqk, x|y) =

{
Σ(x · y) for k = |x| + 1,

0 for k > |x| + 1.

13.3.4 Theorem. The unstable structure map u of H = H∗[x] has the following
properties with α = Sq|x|, x ∈ H0 for p = 2 and α = P |x|/2, x ∈ Heven

0 for p odd:

∂(ux) = αx − xp,

ux = αx̄ − x̄ · xp−1 for x̄ ∈ H1 and ∂x̄ = x,

p(ux) = [p] · (αx − xp).



Chapter 14

Interchange and
the Left Action

In this chapter we compute the symmetry operator S and the left action operator
L associated to the secondary Hopf algebra B of secondary cohomology operations.

14.1 The operators S and L

Let (B, ∆) be a secondary Hopf algebra as in (12.4) and assume that B is a pair
algebra such that Γ[p] = κ satisfies (κ ⊗ 1)δ = κδ. For example the algebra
B of secondary cohomology operations has these properties. Then we define the
symmetry operator

(14.1.1) S : RB −→ Ã ⊗ Ã of degree −1

as follows. Here Ã is the augmentation ideal in the Steenrod algebra A and RB =
kernel(B0 → A) is the ideal of relations in B0. We define for ξ ∈ RB with ξ = ∂x,
x ∈ B1, the element S(ξ) ∈ Ã ⊗ Ã by the formula

T∆1(x) = ∆1(x) + ΣS(ξ).

14.1.2 Lemma. The operator S is a well-defined linear map.

Proof. Since T∆0 = ∆0 by (11.1) we see that there is a unique element S(ξ)
satisfying the equation. Moreover altering x by Σa ∈ ΣA we get ∆1(x + Σa) =
∆1(x) + Σδa and Tδ = δ so that S(ξ) does not depend on the choice of x. Using
the augmentation of B we see that S(ξ) ∈ Ã ⊗ Ã. �

Next we define the left action operator

(14.1.3) L : A⊗ RB −→ Ã⊗ Ã of degree −1
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as follows. By (12.1.11) we know that (B⊗̂B)1 is a left B0-module but the diagonal
∆1 : B1 −→ (B⊗̂B)1 need not be a map of left B0-modules. Therefore we define L
by the formula

∆1(α · x) = α · ∆1(x) + ΣL(α ⊗ ξ)

for α ∈ B0, x ∈ B1 with ∂x = ξ ∈ RB.

14.1.4 Lemma. The operator L is a well-defined linear map satisfying the equations
(α, β ∈ B0, ξ ∈ RB)

L(αβ ⊗ ξ) = L(α ⊗ βξ) + (−1)|α|δ(α) · L(β ⊗ ξ),
L(α ⊗ ξβ) = L(α ⊗ ξ) · δ(β),
L(α ⊗ p) = 0.

The equations show that the operator L is determined by the values L(α⊗ξ) with
α ∈ A and ξ ∈ E1

A where E1
A is a set of generators of the ideal RB, for example,

the set of generators given by Adem relations.

Proof. Since ∆0 is an algebra map we see that there is a unique element L(α⊗ ξ)
satisfying the equation. If α = ∂a, a ∈ B1, then α · x = a · ∂x = a · ξ and since ∆1

is a map of right B0-modules we get

∆1(α · x) = ∆1(a · ξ) = ∆1(a) · ∆0ξ

= α · ∆1x see (12.1.11)(4)

so that L(∂a ⊗ x) = 0. Moreover L(α ⊗ ξ) does not depend on the choice of x
since δ : A → A ⊗A is an algebra map. Finally using the augmentation of B we
see L(α ⊗ ξ) ∈ Ã ⊗ Ã.

Finally we check that L(α⊗ p) = 0 for the prime p considered as an element
in RB. In fact we have for L = ΣL(α ⊗ p),

∆1(α · [p]) = α∆1[p] + L

= q((∆α) · ([p] ⊗ 1)) + L

= q

(∑
i

α′
i[p] ⊗ α′′

i

)
+ L

= q

(∑
i

([p]α′
i + Σκ(α′

i)) ⊗ α′′
i

)
+ L

= ∆1[p] · ∆0(α) + Σ(κ ⊗ 1)δα + L.

On the other hand α · [p] = [p] · α + Σκ(α) so that

∆1(α · [p]) = ∆1([p] · α) + Σδκ(α)
= ∆1([p]) · ∆0(α) + Σδκ(α).

Since (κ ⊗ 1)δ = δκ we see that L = 0. �
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14.1.5 Proposition. For α ∈ B0, ξ ∈ RB the following formulas hold in A⊗A.

L(α ⊗ ξ) + S(α · ξ) = TL(α⊗ ξ) + (−1)|α|δα · S(ξ),
S(ξ · α) = S(ξ) · δα.

Proof. Let ξ = ∂x, x ∈ B1. Then we get:

T∆1(α · x) = ∆1(α · x) + ΣS(α · ξ)
= α · ∆1(x) + Σ(L(α ⊗ ξ) + S(α · ξ)).

On the other hand one has:

T∆1(α · x) = T (α · ∆1(x)) + ΣTL(α ⊗ ξ)
= α · T∆1(x) + ΣTL(α ⊗ ξ)
= α∆1(x) + δα · ΣS(ξ) + ΣTL(α⊗ ξ).

Finally it is readily checked that S(ξ ·α) = S(ξ) · δα since ∆1 is right equivariant.
In fact,

T∆1(x · α) = T (∆1(x) · α)
= (T∆1(x)) · α
= (∆1(x) + ΣS(ξ)) · α. �

14.2 The extended left action operator

We consider a pair algebra H over the secondary Hopf algebra B as defined in
(13.1.4). Then the homotopy

C : B0 ⊗ H0 ⊗ H0 −→ H1

leads to the extended left action operator

(14.2.1) L : B0 ⊗ B0 ⊗ H∗ ⊗ H∗ −→ H̃∗ of degree −1

as follows. Here H∗ = cokernel(∂ : H1 → H0) and ΣH̃∗ = kernel(∂ : H1 → H0).
We define L for α, β ∈ B0 and u ∈ H0 ⊗ H0 by the equation

C(αβ ⊗ u) = αC(β ⊗ u) + C(α ⊗ ∆(β) · u) + ΣL(α ⊗ β ⊗ u).

14.2.2 Lemma. The map L is a well-defined linear map.

Proof. We have

(1) ∂C(αβ ⊗ u) = αβ · µ(u) − µ2(∆(αβ) ⊗ u)
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with µ and µ2 as in (13.1.4)(2). Moreover

∂αC(β ⊗ u) = α · (β · µ(u) − µ2(∆β ⊗ u)),(2)
∂C(α ⊗ ∆β · u) = α · µ(∆β · u) − µ2(∆α ⊗ ∆β · u).(3)

Since µ2(∆β ⊗ u) = µ(∆β · u) we see that (2) + (3) = (1). Therefore the element
L(α⊗ β ⊗ u) is uniquely determined by the equation. It remains to check that for

u ∈ image((H⊗̄H)1
∂−→ H0 ⊗ H0)

we have L(α ⊗ β ⊗ u) = 0. In fact let x ∈ H1, y ∈ H0 and u = ∂x ⊗ y. Then we
get

C(α ⊗ u) = C∂(α ⊗ x ⊗ y)
= α(x · y) − µ2(∆α ⊗ x ⊗ y).

Hence we get:

C(αβ ⊗ u) = αβ(x · y) − µ2(∆(αβ) ⊗ x ⊗ y),
αC(β ⊗ u) = α(β(x · y) − µ2(∆β ⊗ x ⊗ y)),

C(α ⊗ ∆β · u) = α · µ(∆β · (x ⊗ y)) − µ2(∆α ⊗ ∆β · (x ⊗ y)).

Since µ2(∆β ⊗ u) = µ(∆β · u) we see that L(α ⊗ β ⊗ u) = 0 for u = ∂(x⊗ y). �
14.2.3 Proposition. For α ∈ B0, ξ ∈ RB and u ∈ H0 ⊗ H0 we have the equations

L(α ⊗ ξ ⊗ u) = −µ2(L(α ⊗ ξ) ⊗ u),
L(ξ ⊗ α ⊗ u) = 0.

Proof. Let ξ = ∂x, x ∈ B1. Then

C(αξ ⊗ u) = (αx) · µ(u) − µ2(∆1(αx) ⊗ u),
αC(ξ ⊗ u) = α(x · µ(u) − µ2(∆1x ⊗ u)),

C(α ⊗ ∆ξ · u) = C∂(α ⊗ ∆1(x) · u)
= α · µ2(∆1(x) ⊗ u) − µ2(∆α ⊗ ∆1(x) · u).

Now ∆1(αx) = α∆1(x)+ΣL(α⊗x) and (αx) ·µ(u) = α(x ·µ(u)) and µ2(α∆1(x)⊗
u) = µ2(∆α ⊗ ∆1(x) · u) show the first equation. Next consider:

C(ξα ⊗ u) = (x · α) · µ(u) − µ2(∆1(x · α) ⊗ u),

ξC(α ⊗ u) = x · ∂C(α ⊗ u)
= x · (α · µ(u) − µ2(∆(α) ⊗ µ)),

C(ξ ⊗ ∆α · u) = x · µ(∆α · u) − µ2(∆1x ⊗ ∆α · u).

This shows L(ξ ⊗ α ⊗ u) = 0. �
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The extended left action operator L in (14.2.1) satisfies the following (α, β, γ)-
formula.

14.2.4 Proposition. Let α, β, γ ∈ B0 and u ∈ H∗ ⊗ H∗. Then

L(α ⊗ βγ ⊗ u) + (−1)|α|αL(β ⊗ γ ⊗ u) = L(αβ ⊗ γ ⊗ u) + L(α ⊗ β ⊗ ∆(γ) · u).

The formula shows that L is completely determined by the elements
L(α ⊗ β ⊗ u) with β ∈ EA and α ∈ Mon(EA) and u ∈ H∗ ⊗ H∗.

Proof. We consider the defining equations as in (14.2.1):

(1) C(α(βγ) ⊗ u) = αC(βγ ⊗ u)
(2) + C(α ⊗ ∆(βγ) · u) + ΣL(α ⊗ βγ ⊗ u)
(3) = α(βC(γ ⊗ u) + C(β ⊗ ∆(γ) · u) + ΣL(β ⊗ γ ⊗ u)) + (2),

(4) C((αβ)γ ⊗ u) = C(αβ ⊗ ∆(γ) ⊗ u)
(5) + αβC(γ ⊗ u) + ΣL(β ⊗ γ ⊗ u)

= αC(β ⊗ ∆γ · u)
(6)

+ C(α ⊗ ∆β · ∆γ · u) + ΣL(α ⊗ β ⊗ ∆γ · u) + (5). �

14.3 The interchange acting on secondary cohomology

In Section (13.2) we used the fact that secondary cohomology H∗(X) is a pair al-
gebra and we constructed strictifications H∗(X, MX , sX) which are pair algebras
and B-modules. We here consider the additional structure of H∗(X) as a secondary
permutation algebra and we choose MX = PX in such a way that the strictifica-
tion H∗(X, PX , sX) is also a secondary permutation algebra and a B-module. We
show that the interchange operator T in H∗(X, PX , sX) is compatible with the
interchange operator T in B.

We say that a graded monoid P is a permutation monoid if the permutation
group σn acts on Pn for n ≥ 0 and

µn,k : Pn × P k −→ Pn+k

is (σn × σk → σn+k)-equivariant and the equation

τx,y(x · y) = y · x

holds for x, y ∈ P , see (6.1.3)(4). For example H∗(X)0 is a permutation monoid.
Moreover, each permutation algebra is a permutation monoid and for a ring R
the free R-module R[P ] generated by a permutation monoid P is a permutation
algebra.
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14.3.1 Definition. As in (13.2.1) let M = Mon(EA) be the free monoid generated
by EA. Let

sX = PX −→ H∗(X)0 = [[X, Z∗]]0

be a function with the following properties. Here PX is a permutation monoid and
sX is a morphism of permutation monoids. Moreover PX is a free M-set and sX

is an M-equivariant morphism between M-sets with the action of M on H∗(X)0
as in (13.2.1). Then we obtain the strictification H∗(X, PX , sX) as in (13.2.1) by
the following pull back diagram.

H∗(X, PX , sX) s ��

∂

��

pull

H∗(X)1

∂

��
H∗(X, PX , sX)0 = G[PX ] sX=s

�� H∗(X)0

Since PX is a permutation monoid we see that sX induced by sX above is a
morphism between permutation algebras. Moreover, since PX is a free M-set with
generating set EX ⊂ PX we have

G[PX ] = TG(EA) ⊗ GEX .

Hence the B-module structure of H∗(X, PX , sX) is defined as in (5.6.2) by the
Γ-product •.
14.3.2 Lemma. The strictification H∗(X, PX , sX) is a secondary permutation al-
gebra.

Moreover we show by theorem (13.2.3) that H∗(X, PX , sX) is a pair algebra over
the secondary Hopf algebra B.

Proof of (14.3.2). Let H = H∗(X, PX , sX) and let R∗ and I(R∗) be given by
Rn = G[σn] and I(Rn) = kernel(ε) where ε : G[σn] → G is the sign augmentation.
Then we obtain the following commutative diagram.

I(R∗) �R∗ H1
1�∂ ��

µ

��

I(R∗) �R∗ H0

µ

��

µ̄

,,���
���

���
���

���
���

���
��

H1
∂

�� H0

See (6.2.5). Here ∂ is a crossed permutation algebra as in (6.2.1). This structure
is induced via the pull back over s = sX : H0 = G[PX ] → H∗(X)0 by the
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corresponding structure of H∗(X) in (6.3.2). More precisely the pull back H1 is a
left H0-module by setting η ·(ξ, x) = (η ·ξ, s(η) ·x) where η, ξ ∈ H0 and (ξ, x) ∈ H1

with x ∈ H∗(X)1 and sξ = ∂x. Then we get for (ξ, x), (η, y) ∈ H1 the formula

(∂(ξ, x)) · (η, y) = (ξη, s(ξ) · y)
= (ξη, (∂x) · y) = (τ(ηξ), τ(∂y) · x)
= τ(ηξ, s(η) · x) = τ(∂(η, y)) · (ξ, x)

where τ = τ∂y,x. Compare (6.2.1). Moreover we define µ̄ above by

µ̄(σ ⊗ ξ) = (σ · ξ, µ̄(σ̄ ⊗ s(ξ))).

Here σ̄ is the image of σ ∈ I(G[σn]) under the following map.

σ ∈ I(G[σn]) ��

��

I(F[σn]) � σ̄

��
G[σn] ��

ε

��

F[σn]

ε

��
G �� F

Moreover µ̄(σ̄ ⊗ sξ) is given by the secondary permutation algebra H∗(X) as in
(6.3.2). �
14.3.3 Example. For M = Mon(EA) let M-Perm be the following category. Ob-
jects are graded sets S which have two (independent) structures, namely on the
one hand S is a permutation monoid and on the other hand S is an M-set. Mor-
phisms are maps in Set∗ which preserves both structures. We have the forgetful
functor

M-Perm
φ−→ Set∗.

Let FM be the left adjoint of this functor. We call FM(S) the free M-permutation
monoid generated by S .

Now let
PX = FM(H∗(X)0)

be the free permutation monoid generated by the graded set H∗(X)0 and let

sX : PX −→ H∗(X)0

be the morphism in M-Perm extending the identity on H∗(X)0. Then (PX , sX)
is an example of (14.3.1). By naturality of sX we see that H∗(X,PX , sX) yields
a functor from path connected pointed spaces X to the category of secondary
permutation algebras which are pair algebras over the secondary Hopf algebra B.
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14.3.4 Definition. Let H be a secondary permutation algebra as in (14.3.2). Then
we obtain the following interchange homotopy.

H⊗̄H
T ��

µ

PQ8
88

88
88

88
88

88
8

T̂
=⇒

H⊗̄H

µ

CD99
99
99
99
99
99
99

H

Here T is the interchange map induced by T with the even sign convention in
(11.1.1) and µ is the multiplication of the pair algebra H . Moreover the homotopy
T̂ : µ ⇒ µT is the G-linear map

T̂ : H0 ⊗ H0 −→ H1

defined by the formula

T̂ (x ⊗ y) = µ̄((τ(y, x) − ετ(y, x)) ⊗ y · x)

for x, y ∈ H0. Here ε : G[σn] → G with n = |x|+ |y| is the augmentation satisfying

ετ(y, x) = (−1)p|x||y| ∈ G ⊂ G[σn]

and µ̄ is the map in (14.3.2). Moreover the element y · x is given by the multipli-
cation of H0, and τ(y, x) is the interchange permutation with

τ(y, x)(y · x) = x · y

in the permutation algebra H0. We have

∂T̂ (x ⊗ y) = x · y − (−1)p|x||y|y · x

so that ∂T̂ = (µ − µT )0. Compare the even sign convention in (11.1.1). Moreover
for x̄ ∈ H1 with ∂x̄ = x we get x̄ ⊗ y ∈ (H⊗̄H)1 such that

T̂ ∂(x̄ ⊗ y) = µ̄((τ(y, x) − ετ(y, x)) ⊗ ∂(y · x̄))
= τ(y, x)(y · x̄) − ετ(y, x)y · x̄
= x̄ · y − (−1)p|x||y|y · x̄

by the equation µ̄(1 � ∂) = µ; see the diagram in (14.3.2). Hence we also get
T̂ ∂ = (µ − µT )1. Therefore T̂ : µ ⇒ µT is a well-defined homotopy.

Let H = H∗(X, PX , sX) be the strictification of H∗(X) in (14.3.1). Using the
interchange homotopy T̂ we define the extended symmetry operator with H∗ =
H∗(X),

(14.3.5) S : B0 ⊗ H∗ ⊗ H∗ −→ H̃∗ of degree − 1
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as follows. Let α ∈ B0 and u ∈ H0⊗H0. Then S(α⊗u) is given by the interchange
formula in H1:

C(α ⊗ u) + T̂ (∆α · u) = αT̂ (u) + C(α ⊗ Tu) + ΣS(α ⊗ u).

14.3.6 Lemma. The operator S is a well-defined linear map.

Proof. We have the elements:

∂C(α ⊗ u) = α · µ(u) − µ2(∆α ⊗ u),

∂T̂ (∆α · u) = µ2(∆α ⊗ u) − µ2(T∆α ⊗ Tu),

∂αT̂ (u) = α(µ(u) − µ(Tu)),
∂C(α ⊗ Tu) = α · µ(Tu) − µ2(∆α ⊗ Tu).

This shows that the element S(α⊗u) is uniquely determined. It remains to check
that S(α⊗u) = 0 if u is a boundary as in the proof of (14.1.5), that is, u = ∂(x⊗y)
with x ∈ H1 and y ∈ H0. In this case we get as in (14.1.5):

C(α ⊗ u) = α(x · y) − µ2(∆α ⊗ x ⊗ y),
C(α ⊗ Tu) = εα(y · x) − εµ2(∆α ⊗ y ⊗ x)

with ε = (−1)p|x||y|. Moreover

αT̂ (u) = α(x · y − εy · x) by (14.1.4),

T̂ (∆α · u) = T̂

(∑
i

± α′
ix ⊗ α′′

i y

)
=
∑

i

± (α′
ix · α′′

i y −±α′′
i y · α′

ix)

= µ2(∆α ⊗ x ⊗ y) − εµ2(T∆α ⊗ y ⊗ x).

This shows that S(α ⊗ u) = 0 for u = ∂(x ⊗ y). �
The symmetry operator S in (14.1.1) has the following property:

14.3.7 Proposition. For ξ ∈ RB and u ∈ H0 ⊗ H0 we get the formula in H̃∗(X),

S(ξ ⊗ u) = µ2(S(ξ) ⊗ u).

Proof. Let x ∈ B1 with ∂x = ξ. Then we get

C(ξ ⊗ u) = C∂(x ⊗ u) = x · µ(u) − µ2(∆1x ⊗ u),

T̂ (∆ξ · u) = T̂ ∂(∆1x · u) = µ2(∆1x ⊗ u) − µ2(T∆1x ⊗ Tu),

ξ · T̂ (u) = ∂x · T̂ (u) = x · ∂T̂ (u) = x · (µ(u) − µT (u)),
C(ξ ⊗ Tu) = C∂(x ⊗ Tu) = x · µT (u)− µ2(∆1x ⊗ Tu).

This yields the result. �
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14.3.8 Proposition. For α, β ∈ B0 and u ∈ H∗ ⊗ H∗ we have the equation:

S(αβ ⊗ u) = (−1)|α|α · S(β ⊗ u) + S(α ⊗ ∆β · u) + L(α ⊗ β ⊗ (u − Tu)).

This is the extended version of (14.1.5).

Proof. Let v = u − Tu. Then (14.3.5) is equivalent to

(1) C(α ⊗ v) = αT̂ (u) − T̂ (∆α · u) + ΣS(α ⊗ u).

Moreover we have by (14.2.1)

(2) C(αβ ⊗ v) = αC(β ⊗ v) + C(α ⊗ ∆β · v) + ΣL(α ⊗ β ⊗ v).

Here we get by (1) the following equations in H1.

C(αβ ⊗ v) = αβT̂ (u) − T̂ (∆(αβ) · u)(3)
+ ΣS(αβ ⊗ u),(4)

αC(β ⊗ v) = α(βT̂ (u) − T̂ (∆β · u))(5)
+ αΣS(β ⊗ u).(6)

Finally we get

C(α ⊗ ∆β · v) = C(α ⊗ (∆β · u − ∆β · Tu))(7)
= C(α ⊗ (∆β · u − T (∆β · u))).(8)

Moreover we get by (1):

(8) = αT̂ (∆β · u) − T̂ (∆α · ∆β · u)(9)
+ ΣS(α ⊗ ∆β · u).(10)

Now we observe (3) = (5) + (9). Hence the remaining terms yield the equation in
(14.3.8). �

14.4 Computation of the extended left action

We first prove the following result from which we can derive the operator L com-
pletely by (14.2.3).

14.4.1 Theorem. For α ∈ B0 and β ∈ EA and x ⊗ y ∈ H∗ ⊗ H∗ the extended left
action operator L is given as follows. One has

L(α ⊗ β ⊗ x ⊗ y) = 0 if p is odd.

Moreover, if p is even and β = Sqn, one gets

L(α ⊗ Sqn ⊗ x ⊗ y) = |x|
∑

i+j=n, j odd

κ(α)(Sqi(x) · Sqj(y)).
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Proof of 14.4.1. It suffices to consider the odd convention for the definition of
Cα � Cβ . For x, y ∈ H0 and α ∈ B0 and β ∈ EA we get the generalized Cartan
track

Csx,sy
αβ = Cα � Cβ = Cα,∆β�αCβ�Γα,β

by (11.4.3). We therefore consider the following commutative diagram of tracks,
compare (11.4.3)(6) and (13.2.5)(3).

(αβ)(sx · sy)
Γ(αβ,x·y) ��

Γα,β

��

s(αβ(x · y))

C̄x,y
αβ

KL

α(β(sx · sy))
αΓ(β,x·y) ��

αCβ

��

α(s(β(x · y)))

Γ(α,β(x·y))

��

αC̄x,y
β

��
α(∆β(sx, sy))

αΓ∆β ��

Cα,∆β

��

α(sµ2(∆β ⊗ x ⊗ y))

C̄α,∆β

��
∆(αβ)(sx, sy)

Γ∆(αβ)

�� sµ2(∆(αβ) ⊗ x ⊗ y)

Let ξ = µ2(∆(αβ) ⊗ x ⊗ y) and η = µ2(∆(β) ⊗ x ⊗ y). Then we get by (2.2.6)(3)
and (13.2.5)(5):

sC(αβ ⊗ x ⊗ y) + sξ = C̄x,y
αβ = H + G + sξ,(1)

H = C̄α,∆β − sξ,

G = (αC̄x,y
β )�Γ(α, β(x · y))op − αsη.

On the other hand we get by (5.5.2)(2)

(2)
s(αC(β ⊗ x ⊗ y)) = α • C(β ⊗ x ⊗ y)

= (α(C̄x,y
β − sη))�Γ(α, β(x · y) − η)op.

This composite is the left-hand column of the following commutative diagram.

(3) s(α(β(x · y) − η))

��

s(αβ(x · y)) − s(αη)

α(s(β(x · y) − sη)) Γ ��

��

αs(β(x · y)) − αsη

Γ(α,β(x·y))−Γ(α,η)

��

αC̄x,y
β −αsη

��
0 0
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Here the bottom square commutes by (4.2.5)(6). Now (2) and (3) imply

(4)
s(αC(β ⊗ x ⊗ y)) = G�(s(αβ(x · y)) − Γ(α, η)op)

= G − (Γ(α, η)op − αsη).

Therefore we get by (1)

sC(αβ ⊗ x ⊗ y) = H + G = F + s(αC(β ⊗ x ⊗ y)) with(5)
F = (C̄α,∆β − sξ) + (Γ(α, η)op − αsη).(6)

It remains to compare F with sC(α⊗ (∆β) · (x⊗ y)). Using (2.2.6)(3) we have by
(6) the equation

(7) F + sξ = C̄α,∆β�Γ(α, η)op.

We now consider the following commutative diagram in which the left-hand column
is Cα,∆β by (11.4.3)(5) and the sign is ± = (−1)|x||ρ

′′|.

(8) α((∆β)(sx, sy))
αΓ∆β ��

Γ∆β
α

��

αsη

Γ(α,η)

��∑
ρ
± ϕ∆β(ρ)α(ρ′sx · ρ′′sy)

∑
ρ
±ϕ∆β(ρ)Γ(ρ)

��

C̃=
∑
ρ
±ϕ∆β(ρ)Cρ′sx,ρ′′sy

α

��

s(αη)

F+sξ

��
(∆(αβ))(sx, sy)

Γ∆(αβ)

�� sξ

Here we obtain Γ(ρ) by the following commutative diagram.

(9) α(ρ′sx · ρ′′sy) Γ(ρ)
��

α(Γ(ρ′,x)·Γ(ρ′′,y))

��

s(α(ρ′x · ρ′′y))

α(s(ρ′x) · s(ρ′′y)) α(s(ρ′x · ρ′′y))

Γ(α,ρ′x·ρ′′y)

��



14.4. Computation of the extended left action 361

On the other hand we have by (3.1.3) the following commutative diagram for
each ρ.

(10) α(ρ′sx · ρ′′sy)
α(Γ(ρ′,x)·Γ(ρ′′,y))��

Cρ′sx,ρ′′sy
α

��

α(s(ρ′x) · s(ρ′′y))

Cs(ρ′x),s(ρ′′y)
α

��
(∆α)(ρ′sx, ρ′′sy)

Γρ
∆α �� (∆α)(s(ρ′x), s(ρ′′y))

Γρ
∆α =

∑
i

± α′
iΓ(ρ′, x) · α′′

i Γ(ρ′′, y)

Moreover using the definition of Γx,y
∆(αβ) in (13.2.5)(4) we get

(11) Γx,y
∆(αβ) =

∑
i,ρ

± ϕ∆β(ρ)Γ(α′
iρ

′, x) · Γ(α′′
i ρ′′, y)

with the sign

± = (−1)|x|·|α
′′
i ρ′′| · (−1)|α

′′
i ||ρ′| and with Γ(α′

iρ
′, x) = Γ(αi, ρ

′x)�αiΓ(ρ′, x)

since ρ′ is a monomial. This shows that

(12)

Γx,y
∆(αβ) =

(∑
i,ρ

± ϕ∆β(ρ)Γ(α′
i, ρ

′x) · Γ(α′′
i , ρ′′y)

)

�
(∑

i,ρ

± ϕ∆β(ρ)α′
iΓ(ρ′, x) · α′′

i Γ(ρ′′, y)
)

=
(∑

ρ

± ϕ∆β(ρ)Γρ′x,ρ′′y
∆α

)
�
(∑

ρ

± ϕ∆β(ρ)Γρ
∆α

)
.

Here in the first row the sign ± is the same as in (11) and in the second row the
sign is ± = (−1)|x||ρ

′′|. Finally we get by multilinearity and the definition of µ2

the equation:

(13)

sC(α ⊗ (∆β) · (x ⊗ y)) + sξ =
∑

ρ

± ϕ∆β(ρ)sC(α ⊗ ρ′x ⊗ ρ′′y)

+
∑

ρ

± ϕ∆β(ρ)sµ2(∆α ⊗ ρ′x ⊗ ρ′′y)

=
∑

ρ

± ϕ∆β(ρ)C̄ρ′x,ρ′′y
α ,
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with the sign given by ± = (−1)|x||ρ
′′|. Here C̄ρ′x,ρ′′y

α is defined by the following
commutative diagram (see (13.2.5)(4)).

(14) α(s(ρ′x) · s(ρ′′y))
Γ(α,ρ′x·ρ′′y) ��

Cs(ρ′x),s(ρ′′y)
α

��

s(α(ρ′x · ρ′′y))

C̄ρ′x,ρ′′y
α

��
∆α(s(ρ′x), s(ρ′′y))

Γρ′x,ρ′′y
∆α

�� sµ2(∆α ⊗ ρ′x ⊗ ρ′′y)

Using (10) and (14) we see that the bottom square of (8) is subdivided into two
squares corresponding to (10) and (14) respectively. This shows by (13) that F =
sC(α⊗ (∆β) · (x⊗ y)) and the proof of (14.4.1) is complete if p is odd. If p is even
we observe that all arguments above remain true for the odd convention. Hence
for the even convention the result follows by use of formula (11.4.3)(5a). �

We now can compute the left action operator L by use of (14.2.3) since we
know L by the result above. Since L(α ⊗ p) = 0 by (14.1.4) we know that L is
given by the operator

(14.4.2) L : A⊗ RF −→ Ã ⊗ Ã of degree − 1

where RF = kernel(q : F0 = TF(EA) → A).
We have the Adem relation in RF ⊂ F0 given by the formula (0 < a < 2b)

[a, b] = SqaSqb +
[a/2]∑
k=0

(
b − k − 1
a − 2k

)
Sqa+b−kSqk.

Compare (1.1). we now define (n, m ≥ 0)

L(SqnSqm) =
∑

n1+n2=n
m1+m2=m
m1,n2 odd

Sqn1Sqm1 ⊗ Sqn2Sqm2 ,

and we define L[a, b] accordingly by

L[a, b] = L(SqaSqb) +
[a/2]∑
k=0

(
b − k − 1
a − 2k

)
L(Sqa+b−kSqk).

For a + b ≤ 9 we have the following explicit formulas for L[a, b].
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2

L[1, 1] = Sq1 ⊗ Sq1

3

L[1, 2] = 0

4

L[1, 3] = Sq1 ⊗ Sq3 + Sq3 ⊗ Sq1

L[2, 2] = Sq2 Sq1 ⊗Sq1 +Sq1 ⊗Sq3

5

L[1, 4] = 0

L[2, 3] = Sq3 Sq1 ⊗Sq1

L[3, 2] = Sq1 ⊗ Sq3 Sq1

6

L[1, 5] = Sq1 ⊗ Sq5 + Sq3 ⊗ Sq3 + Sq5 ⊗ Sq1

L[2, 4] = Sq4 Sq1 ⊗Sq1 +Sq2 Sq1 ⊗ Sq3 + Sq1 ⊗Sq5

L[3, 3] = Sq1 ⊗ Sq5 + Sq3 ⊗ Sq3 + Sq5 ⊗ Sq1

7

L[1, 6] = 0

L[2, 5] = Sq3 Sq1 ⊗Sq3 +Sq5 Sq1 ⊗ Sq1

L[3, 4] = Sq1 ⊗ Sq5 Sq1 +Sq3 ⊗Sq3 Sq1

L[4, 3] = Sq3 Sq1 ⊗Sq3 +Sq5 Sq1 ⊗ Sq1 + Sq2 Sq1 ⊗ Sq3 Sq1 +Sq1 ⊗ Sq5 Sq1

8

L[1, 7] = Sq1 ⊗ Sq7 + Sq3 ⊗ Sq5 + Sq5 ⊗ Sq3 +Sq7 ⊗Sq1

L[2, 6] = Sq6 Sq1 ⊗Sq1 +Sq4 Sq1 ⊗ Sq3 + Sq2 Sq1 ⊗ Sq5 + Sq1 ⊗ Sq7

L[3, 5] = 0

L[4, 4] = Sq6 Sq1 ⊗Sq1 +Sq4 Sq1 ⊗ Sq3 + Sq2 Sq1 ⊗ Sq5 + Sq1 ⊗ Sq7 +Sq3 Sq1 ⊗ Sq3 Sq1

L[5, 3] = Sq5 ⊗ Sq3 + Sq1 ⊗ Sq5 Sq2 +Sq5 Sq2 ⊗Sq1 +Sq3 ⊗Sq5

9

L[1, 8] = 0

L[2, 7] = Sq3 Sq1 ⊗Sq5 +Sq5 Sq1 ⊗ Sq3 + Sq7 Sq1 ⊗ Sq1

L[3, 6] = Sq1 ⊗ Sq7 Sq1 +Sq3 ⊗Sq5 Sq1 + Sq5 ⊗Sq3 Sq1

L[4, 5] = Sq4 Sq1 ⊗Sq3 Sq1 + Sq2 Sq1 ⊗Sq5 Sq1 +Sq1 ⊗Sq7 Sq1

L[5, 4] = Sq1 ⊗ Sq7 Sq1 +Sq3 ⊗Sq5 Sq1 + Sq5 ⊗Sq3 Sq1
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14.4.3 Theorem. For p odd the left action operator L is trivial. For p even the
operator L is the unique linear map of degree −1 satisfying the equations

L(α ⊗ [a, b]) = (δκ(α)) · L[a, b],
L(α ⊗ βξ) = L(αβ ⊗ ξ) + δ(α) · L(β ⊗ ξ),
L(α ⊗ ξβ) = L(α ⊗ ξ) · δ(β),

with α, β ∈ F0 and ξ ∈ RF .

Proof. If p is odd then L is trivial by (14.4.2) and (14.2.4). Hence L is trivial by
(14.2.3). If p is even we compute L(α ⊗ [a, b] ⊗ x ⊗ y) by considering, u = x ⊗ y,

(1)
L(α ⊗ SqnSqm ⊗ u)
= αL(Sqn ⊗ Sqm ⊗ u) + L(αSqn ⊗ Sqm ⊗ u) + L(α ⊗ Sqn ⊗ ∆(Sqm) · u),

see (14.2.4). Here all terms are computed in (14.4.1). Hence we get (1) = (2) +
(3) + (4).

(2) α|x|
∑

i+j=m
j odd

Sqn−1(Sqix · Sqjy),

(3) |x|
∑

i+j=m
j odd

κ(αSqn)(Sqix · Sqjy)

with κ(αSqn) = κ(α)Sqn + αSqn−1, and

(4)
∑

r+s=m

|Sqrx|
∑

i+j=n
j odd

κ(α)(Sqi(Sqrx) · Sqj(Sqsy)).

Here we have |Sqrx| = r + |x|. We now compute the sum of all summands in
(2)+(3)+(4) containing the factor |x|. First we observe that

(5) (2) + (3) = |x|κ(α)
∑

i+j=n

∑
r+s=m
s odd

SqiSqrx · SqjSqsy.

On the other hand the part of (4) containing the factor |x| is given by

(6) |x|κ(α)
∑

r+s=m

∑
i+j=n
j odd

SqiSqrx · SqjSqsy.

The summands (i, j, r, s) with j odd and s odd appear in (5) and (6) and hence
cancel. Therefore we need only to consider in (5) j even and in (6) s even. Hence
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we get (5) + (6) = |x|κ(α)(7),

(7)

λ(SqnSqm) =
∑

r+s=m
i+j=n

j+s odd

SqiSqrx · SqjSqsy

= µ2((1 ⊗ ϕ)∆(SqnSqm) ⊗ x ⊗ y).

Here ϕ : A −→ A is the function ϕ(x) = x if |x| is odd and ϕ(x) = 0 if |x| is
even. Since [a, b] is trivial in A we see that the sum λ[a, b] defined by λ(SqnSqm)
is trivial. Hence we need only to consider the part of (4) containing the factor r.
This part is given by

(8)

∑
r+s=m
i+j=n
j odd

rκ(α)(SqiSqrx · SqjSqsy),

= µ2(δκ(α) · L(SqnSqm) ⊗ u).

Adding up such summands according to [a, b] we see by (14.2.3) that

L(α ⊗ [a, b]) = δκ(α) · L[a, b].

Now the proof is complete. �

14.5 Computation of the extended symmetry

The extended symmetry operator S is determined by the extended left action
operator L and the elements S(α⊗x⊗y) with α ∈ EA. This follows from (14.3.8).
We now obtain the following result.

14.5.1 Theorem. For α ∈ EA and x ⊗ y ∈ H∗ ⊗ H∗ we have

S(α ⊗ x ⊗ y) = 0 if p is odd.

If p is even we get for α = Sqn the formula

S(Sqn ⊗ x ⊗ y) = |x||y|κ(α)(x · y) + µ2(Sn ⊗ x ⊗ y)

with Sn ∈ Ã ⊗ Ã defined by

Sn =
∑

i+j=n−1
i,j odd

Sqi ⊗ Sqj .

In particular Sn is trivial if n is even.
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Proof of (14.5.1). We first consider the case that p is odd. Let H = H∗(X, PX , sX)
and let x, y ∈ H0 and α ∈ EA. Then we claim that S(α ⊗ x ⊗ y) is the primary
element of the following diagram.

(1) α(sx · sy)
Csx,sy

α ��

T sx,sy
ε

��

∆(α)(sx, sy)

T sx,sy

��
εα(sy · sx)

εCsy,sx
α �� ε∆(α)(sx, sy)

Here s : H1 → H∗(X)1 is defined in the pull back diagram (14.3.1) and Tε and
T are defined as follows. Recall that we have for pointed maps x : X −→ Zq, y :
X −→ Zq′

the interchange tracks (6.3.1)(7){
T (x, y) : x · y −→ (−1)|x||y|y · x,

T (x, y) = Γτ(y,x)(y · x).

We therefore get for α ∈ TG(EA) the interchange track

Tε : α(x · y) �� α(εy · x) �� εα(y · x) for p ≥ 2.

Here ε = (−1)|x||y| ∈ G and Tε is the composite of α(T (x, y)) and Γ(ε)α. Moreover
we get for

ξ =
∑

i

ξ′i ⊗ ξ′′i ∈ TG(EA) ⊗ TG(EA)

the interchange track

T : ξ(x, y) �� (−1)|x||y|(Tξ)(y, x)

where ξ(x, y) is defined in (11.2.4). Here ξ(x, y) and (Tξ)(y, x) depend only on ξF

and T is linear in ξ.
We define T by the sum

T =
∑

i

(−1)|x||ξ
′′
i |T (ξ′i(x), ξ′′i (y)).

We have to consider the interchange formula (14.3.5) under the operator
s : H1 → H∗(X)1. We have (13.2.5)(5)

(2) sC(α ⊗ x ⊗ y) = C̃x,y
α − sµ2(∆α ⊗ x ⊗ y).
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Moreover by (6.3.1)(6) we get

(3)
sT̂ (x ⊗ y) = (Γτ − ε(τ)) ◦ s(y · x)

= Γτs(y) · s(x) − ε(τ)s(y) · s(x)

where τ = τ(y, x) and Γτ : τ ⇒ ε(τ) with ε = ε(τ) = (−1)|x||y|. Here we have for
∆α =

∑
i α′

i ⊗ α′′
i

(4) T sx,sy =
∑

i

±Γτ(α′′
i y,α′

ix)(α′′
i sy) · (α′

isx).

Moreover we have

(5) T sx,sy
ε = Γ(ε)α�α(Γτs(y) · s(x)),

where Γ(ε)α : α(εsy ·sx) ⇒ εα(sy ·sx). Next we observe that the following diagram
commutes:

(6) ∆(α)(sx, sy)

T sx,sy

��

sµ2(∆α ⊗ x ⊗ y)

sT̂ (∆(α)·(x⊗y))+sξ

��

Γy,x
∆α��

ε∆(sy · sx) sµ2(∆α ⊗ y ⊗ x)
Γy,x

∆α��

where ξ = µ2(∆α⊗y⊗x). This follows from (4), the definition of Γy,x
∆α in (13.2.5)(4),

and (2) applied to sT̂ (α′
ix ⊗ α′′

i y), and (3.1.3). Also the following diagram com-
mutes,

(7) s(α(x · y))

s(αT̂ (x⊗y))+sη

��

Γ(α,x·y) �� α(sx · sy)

T sx,sy
ε

��
s(εα(y · x))

εΓ(α,y·x)
�� εα(sy · sx)

with η = εα(y · x). In fact, we have

s(αT̂ (x ⊗ y)) = α • T̂ (x ⊗ y).

Here the right-hand side is the composite in the left column of the following
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commutative diagram.

(8) s(α(x · y − εy · x))

��

sα(x · y) − εsα(y · x)

αs(x · y − εy · x) Γ ��

αsT̂ (x·y)

��

αs(x · y) − εαs(y · x)

Γ(α,x·y)−εΓ(α,y·x)

��

α(T̂ )−εαs(y·x)

��
0 α(εs(y · x)) − εαs(y · x)

Γ(ε)α−εαs(y·x)��

Here we set T̄ = sT̂ (x ⊗ y) + εs(y · x) = Γτs(y) · s(x) by (2). This shows by (5)
that (7) commutes.

The composite of top arrows in (1), (6) and (7) yields by (13.2.5)(4) the
track C̄x,y

α and the composite of the bottom arrows in (1), (6) and (7) yields
accordingly εC̄y,x

α . This shows by (2.2.6)(2) that the primary element of (1) is
indeed S(α ⊗ x ⊗ y). The primary element of (1), however, is trivial for p odd by
the result in Section (10.5).
Now let p = 2. Then the arguments above for p odd also hold if we use the odd sign
convention for p = 2. Now comparing the difference of the odd sign convention
and the even sign convention yields the formula in (14.5.1) for S(α ⊗ x ⊗ y) for
p = 2. �

Using (14.3.8) the extended symmetry operator S is completely determined
by the formula in (14.5.1) above and by the operator L in Section (14.4). Hence
we are able to compute the symmetry operator S by (14.3.7). For this we define
the following elements in Ã ⊗ Ã with n, m ≥ 0.

S(SqnSqm) = (δSqn) · Sm + Sn · (δSqm) +
∑

m1+m2=m
m1,m2 odd

(δSqn−1) · (Sqm1 ⊗ Sqm2)

Here Sn is defined in (14.5.1). Similarly as in (14.4.3) we define for 0 < a < 2b the
element

S[a, b] = S(SqaSqb) +
[a/2]∑
k=0

(
b − k − 1
a − 2k

)
S(Sqa+b−kSqk).

For a + b ≤ 9 one gets the following explicit formulas for S[a, b].
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S[1, 1] = 0

S[1, 2] = 0

S[1, 3] = 0

S[2, 2] = 0

S[1, 4] = 0

S[2, 3] = Sq1 ⊗ Sq2 Sq1 +Sq2 Sq1 ⊗Sq1 +Sq1 ⊗Sq3 + Sq3 ⊗ Sq1

S[3, 2] = Sq1 ⊗ Sq2 Sq1 +Sq2 Sq1 ⊗Sq1 +Sq1 ⊗Sq3 + Sq3 ⊗ Sq1

S[1, 5] = 0

S[2, 4] = Sq1 ⊗ Sq3 Sq1 +Sq3 Sq1 ⊗Sq1

S[3, 3] = 0

S[1, 6] = 0

S[2, 5] = Sq1 ⊗ Sq4 Sq1 +Sq4 Sq1 ⊗Sq1 +Sq2 Sq1 ⊗ Sq3 +Sq3 ⊗Sq2 Sq1

+ Sq1 ⊗Sq5 +Sq5 ⊗Sq1

S[3, 4] = Sq1 ⊗ Sq4 Sq1 +Sq4 Sq1 ⊗Sq1 +Sq2 Sq1 ⊗ Sq3 +Sq3 ⊗Sq2 Sq1

+ Sq1 ⊗Sq5 +Sq5 ⊗Sq1

S[4, 3] = 0

S[1, 7] = 0

S[2, 6] = Sq1 ⊗ Sq5 Sq1 +Sq5 Sq1 ⊗Sq1 +Sq3 ⊗Sq3 Sq1 +Sq3 Sq1 ⊗ Sq3

S[3, 5] = 0

S[4, 4] = Sq1 ⊗ Sq5 Sq1 +Sq5 Sq1 ⊗Sq1 +Sq2 Sq1 ⊗ Sq3 Sq1 + Sq3 Sq1 ⊗Sq2 Sq1

S[5, 3] = Sq2 Sq1 ⊗Sq3 Sq1 +Sq3 Sq1 ⊗ Sq2 Sq1 +Sq3 ⊗ Sq3 Sq1 +Sq3 Sq1 ⊗ Sq3

S[1, 8] = 0

S[2, 7] = Sq1 ⊗ Sq6 Sq1 +Sq6 Sq1 ⊗Sq1 +Sq3 ⊗Sq4 Sq1 +Sq4 Sq1 ⊗ Sq3

+ Sq2 Sq1 ⊗ Sq5 + Sq5 ⊗Sq2 Sq1 + Sq1 ⊗ Sq7 + Sq7 ⊗Sq1

S[3, 6] = Sq1 ⊗ Sq6 Sq1 +Sq6 Sq1 ⊗Sq1 +Sq3 ⊗Sq4 Sq1 +Sq4 Sq1 ⊗ Sq3

+ Sq2 Sq1 ⊗ Sq5 + Sq5 ⊗Sq2 Sq1 + Sq1 ⊗ Sq7 + Sq7 ⊗Sq1

S[4, 5] = Sq1 ⊗ Sq6 Sq1 +Sq6 Sq1 ⊗Sq1 +Sq3 ⊗Sq4 Sq1 +Sq4 Sq1 ⊗ Sq3

+ Sq2 Sq1 ⊗ Sq5 + Sq5 ⊗Sq2 Sq1 + Sq1 ⊗ Sq7 + Sq7 ⊗Sq1

S[5, 4] = Sq1 ⊗ Sq6 Sq1 +Sq6 Sq1 ⊗Sq1 +Sq4 Sq1 ⊗ Sq3 +Sq3 ⊗Sq4 Sq1

+ Sq2 Sq1 ⊗ Sq5 + Sq5 ⊗Sq2 Sq1 + Sq1 ⊗ Sq7 + Sq7 ⊗Sq1
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One can check that S[1, n] = 0 for all n ≥ 1. Here one has [1, n] = Sq1 Sqn if n is
odd and [1, n] = Sq1 Sqn + Sqn+1 if n is even.

14.5.2 Theorem. For p odd the symmetry operator S is trivial. For p even the
operator S is the unique linear map of degree −1

S : RF −→ Ã ⊗ Ã

satisfying the equations (α, β ∈ F0, ξ ∈ RF)

S([a, b]) = S[a, b],
S(α · ξ) = (δα) · S(ξ) + L(α ⊗ ξ) + TL(α ⊗ ξ),
S(ξ · β) = S(ξ) · (δβ).

Proof. If p is odd we know that L = 0 so that by (14.3.8) and (14.5.1) also S = 0.
Hence S = 0 by (14.3.7). Now let p be even. We compute S([a, b]⊗u) with u = x⊗y
by considering (see (14.3.8))

(1)
S(Sqn Sqm ⊗u)
= (δ Sqn) · S(Sqm ⊗u) + S(Sqn ⊗(∆ Sqm) · u) + L(Sqn ⊗ Sqm ⊗(u + Tu)).

Hence by (14.5.1) we get (1) = (2) + (3) + (4):

(2) Sqn(|x||y| Sqm−1(x · y) + µ2(Sm ⊗ u)),

(3)
∑

i+j=m

(| Sqi x|| Sqj y| Sqn−1(Sqi x · Sqj y) + µ2(Sn ⊗ Sqi x ⊗ Sqj y))

(4) |x|
∑

i+j=m
j odd

Sqn−1(Sqi x · Sqj y) + |y|
∑

i+j=m
j odd

Sqn−1(Sqi y · Sqj x)

with Sqi y · Sqj x = Sqj x · Sqi y since H∗ is a commutative algebra. Hence we get
by definition of S(Sqn Sqm),

(2) + (3) + (4) = µ2(S(Sqn Sqm) ⊗ u) + |x||y|κ(Sqn Sqm)(x · y)

with κ(Sqn Sqm) = Sqn−1 Sqm + Sqn Sqm−1. Since κ[a, b] = 0 in A we see by
(14.3.7) that S([a, b]) = S[a, b]. �

In Section (15.2) below we show that there exist elements ξ[a, b] satisfying

(14.5.3) S[a, b] = ξ[a, b] + Tξ[a, b].
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Remark. The existence of elements ξ[a, b] satisfying equation (14.5.3) is obtained
using the definition of S by the following result on relations associated to Adem
relations . For n, m ≥ 0 let

Ŝ(Sqn Sqm) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sqi Sqj if 2i = n − 1, i odd, 2k = m, k even,
Sqi Sqk if 2i = n − 1, i even, 2k = m, k odd,
Sqi Sqk if 2i = n, 2k = m − 1, k odd,
0 otherwise.

Then we define

Ŝ[a, b] = Ŝ(Sqa Sqb) +
[a/2]∑
k=0

(
b − k − 1
a − 2k

)
Ŝ(Sqa+b−k Sqk).

One can check that Ŝ[a, b] is a relation, that is, Ŝ[a, b] considered as an element in
A is trivial. Since Ŝ[a, b] is trivial one gets by definition of S[a, b] elements ξ[a, b]
satisfying (14.5.3).

14.6 The track functor H∗[ ]

In (13.1.4) we define a pair algebra over the secondary Hopf algebra B of secondary
cohomology operations. We now refine this notion as follows.

14.6.1 Definition. A secondary permutation algebra over B is a pair algebra H
over B as in (13.1.4) such that the pair algebra H has also the structure of a
secondary permutation algebra as defined in section (6.2). Moreover the homotopy
C satisfies the formulas (14.2.1) and (14.3.5) where the operators L and S are
uniquely given by the formulas in Sections (14.4) and (14.5). We say that H is an
unstable secondary permutation algebra over B if unstable structure maps with
properties as in Section (13.3) are given:

v : E(H) −→ H1,

u : H0 −→ H1 if p = 2 and
u : Heven

0 −→ H1 if p is odd

Here E ⊂ M×H0 is the excess subset. These maps have properties as in (13.3.3)
and (13.3.4).

Moreover for p = 2 the function u is quadratic with cross effect

u(x + y) − u(x) − u(y) = −T̂ (x ⊗ y) − [p](n − 1)y · x

where n = |x| = |y| and T̂ is the interchange homotopy in (14.2.4). The cross
effect is a consequence of the argument in the proof of (6.5.2).
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We defined homotopies in the category of secondary permutation algebras in
(6.4.2). We now consider such homotopies in the category of secondary permuta-
tion algebras over the secondary Hopf algebra B.

Let A and B be secondary permutation algebras over B as defined in (14.6.1).
Let f = (f0, f1) and g = (g0, g1) be maps

f, g : A −→ B

in the category of secondary permutation algebras over B. Such maps are defined
in the obvious way by compatibility with all structure maps.

14.6.2 Definition. A homotopy or track H : f ⇒ g is a map

H : A0 −→ B1

which is R∗-linear as in (6.4.2) and which also is B0-linear such that the following
properties hold

∂H = f0 − g0,(1)
H∂ = f1 − g1,(2)

H(x · y) = (Hx)(g0y) + (f0x) · (Hy)(3)

for x, y ∈ A0. If A and B are unstable as is (14.6.1) and if f and g are compatible
with the structure map u, v then we also assume

(4) H(α · x) = (f1 − g1)v(α, x)

for α ∈ M, x ∈ A0 and e(α) < |x|. Moreover

(5) H(αx − xp) = (f1 − g1)u(x)

for α = Sq|x|, x ∈ A0 if p = 2 and α = P |x|/2, x ∈ Aeven
0 if p odd.

Let [[K0
p]] be the category of unstable secondary permutation algebras over

the secondary Hopf algebra B, which is a track category given by such maps and
homotopies.

14.6.3 Theorem. There is a track functor

H∗[ ] : [[Top∗0]] −→ [[K0
p]].

Proof. We define H∗[X ] as in (14.2.1) by

H∗[X ] = H∗(X,PX , sX).

Moreover for a map f : X −→ Y in Top∗0 let

f∗ : H∗[Y ] −→ H∗[X ]
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be given by

(f∗)0 = FM(H∗(f)0)∗

in degree 0 and by ((f∗)0,H∗(f)1) in degree 1 where we use the pull back property
of H∗[X ]1. For this we need the functor H∗ of secondary cohomology in (6.3.1).
Moreover for a track H : f ⇒ g in Top∗0 we define the induced track

G = H∗ : f∗ =⇒ g∗

in the category [[K0
p]] by the unique map

G : H∗[Y ]0 = G[FM(H∗(Y )0)] −→ H∗[X ]1

which is a homotopy G : f∗ ⇒ g∗ with the properties (1)–(4) in (14.6.2) and for
which the following diagram commutes.

H∗(Y )0
H∗

��

⋂
H∗(X)1

H∗[Y ]0
G

�� H∗[X ]1

��

Here H is the induced homotopy defined in (6.4.1). One readily checks by the
freeness property of FM(H∗(Y )0) that G is well defined and that G, in particular,
satisfies (14.6.2)(4), (5). �

Recall that K0
p is the category of connected unstable algebras over the Steen-

rod algebra A which by (1.5.2) is isomorphic to the category of models of the
theory Kp ⊂ Top∗/ �. Moreover the diagram

model(Kp)

Top∗
0/ �

[X,−]
QR::::::::::::::

H∗

<=''
'''

'''
'''

'''
''

K0
p

commutes, see (1.5.3). We now describe a similar diagram for the secondary theory.
Let [[K0

p]] be the category of unstable secondary permutation algebras over the
secondary Hopf algebra B. This is a track category with tracks as in (14.6.2).
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One gets the commutative diagram of track categories

(14.6.4) model[[Kp]]

H

��

[[Top∗
0]]

[[X,−]]
RS::::::::::::::

H∗[ ]
56''

'''
'''

'''
'''

'

[[K0
p]]

Here the functor H is similarly defined as the functor H∗[ ] in (14.6.3). The functor
H induces on π0 the isomorphism model(Kp) = K0

p. We conjecture that H is a
weak equivalence of track categories.



Chapter 15

The Uniqueness of the
Secondary Hopf Algebra B

We show that the secondary Hopf algebra B of secondary cohomology operations
is determined up to isomorphisms by the triple (κ, S, L) where κ = Γ[p] is the
derivation associated to B and S is the symmetry operator and L is the left action
operator. We have seen in Chapter 14 that S = 0 and L = 0 for p odd.

15.1 The ∆-class of B
The structure of the secondary Hopf algebra B leads to a ∆-class which can be
expressed directly in terms of the Steenrod algebra A. For this we have to choose
a splitting u of B.

Recall that for the prime p ≥ 2 we have the field F = Z/p and the ring
G = Z/p2. There is a canonical set EA of generators of the Steenrod algebra A
given by

EA = {Sqi; i ≥ 1} for p = 2,

EA = {β, P i, P i
β ; i ≥ 1} for p odd.

Let B0 = TG(EA) and F0 = TF(EA) be the tensor algebras over G, resp. F,
generated by EA. We have the surjective algebra maps

B0 −→ F0 −→ A

which are the identity on EA. Therefore we have the ideals of relations

RB = kernel(B0 −→ A),
RF = kernel(F0 −→ A).
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15.1.1 Definition. A splitting of B is a linear map u with the following properties.
The diagram

p · B0
ū ��

i

��

B1
ε̃ ��

∂

��

ΣF

RB i
��

u

LM�����������������
B0

commutes and ε̃u = 0. Here ε̃ is the augmentation of B, see (12.1.5), and ū carries
pα to [p] · α for α ∈ B0. The maps i in the diagram denote the inclusions.

15.1.2 Proposition. A splitting u of B exists.

Proof. Consider the short exact sequence of F-vector spaces

0 �� RF �� F0
�� A �� �� 0.

We choose a basis NR of RF and we extend NR by a basis NS of a complement
of RF in F0 so that NS maps bijectively to a basis of A and 1 ∈ NS . For example
NS is given by the set of admissible monomials. A lift b as in the commutative
diagram

B0

��
NR ∪ NS

��

b

��;;;;;;;;;;;;;;;;;;
F0

yields a basis b(NR ∪ NS) of the free G-module B0. Hence we get the direct sum
of free G-modules

R ⊕ S = B0

where R is generated by bNR and S is generated by bNS. Now one gets accordingly

R ⊕ pS = RB.

Since R is a free G-module we can choose a lift t as in the commutative diagram

B1

∂

����
R

t

������������������
�� RB R ⊕ pS

u

��������������������
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with ε̃t = 0, see (12.1.5)(2) and (3). We now define the splitting u by u(x) = t(x)
for x ∈ R and u(pα) = [p] · α for α ∈ S. Then for α ∈ R we have

u(pα) = pu(α) = pt(α) = [p] · ∂t(α) = [p] · α.

This shows that u has the properties in (15.1.1). �
Now let

R2
B = kernel(B0 ⊗ B0 −→ A⊗A)

= RB ⊗ B0 + B0 ⊗ RB
and more generally let

Rn
B = kernel(B⊗n

0 −→ A⊗n)

for n ≥ 1 so that R1
B = RB.

15.1.3 Proposition. A splitting u of B induces via the following commutative dia-
gram a splitting u� of B⊗̂B.

(B⊗̂B)1 (B⊗̄B)1
q�� B1 ⊗ B0 ⊕ B0 ⊗ B1

��

R2
B

u	

��

RB ⊗ B0 ⊕ B0 ⊗ RB��

u⊗1+1⊗u

��

More generally one obtains in a similar way a splitting

u� : Rn
B −→ (B⊗̂n)1

of B⊗̂n = B⊗̂ · · · ⊗̂B.

The horizontal arrows in the diagram are the canonical quotient maps.

Proof of (15.1.3). We have

R2
B = R ⊗ R ⊕ R ⊗ S ⊕ S ⊗ R ⊕ p(S ⊗ S)

where we use the direct sum in the proof of (15.1.2). We now define u� for x, y ∈ R
and a, b ∈ S by the equations

u�(x ⊗ y) = (tx)⊗̂y = x⊗̂(ty),

u�(a ⊗ y) = a⊗̂(ty),

u�(x ⊗ b) = (tx)⊗̂b,

u�(p · (a ⊗ b)) = [p] · (a ⊗ b).

Here [p] = q(1 ⊗ [p]) = q([p] ⊗ 1) is defined by the quotient map q. Now one can
check that u� fits into the commutative diagram above. �
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Next let Ã = kernel(ε : A −→ F) be the augmentation ideal in the Steenrod
algebra A. Then one readily checks:

15.1.4 Proposition. Let u, u′ be splittings of B as in (15.1.1); then there is a unique
linear map of degree −1,

α : RF −→ Ã,

such that u′ = u + Σα with Σα being the composite

Σα : RB �� �� RF
α �� Ã

Σ �� ΣA ⊂ B1.

We now obtain for a splitting u of B the following diagram.

B1
∆1 ��

∂

��

(B ⊗ B)1

∂

��
B0⋃

∆0 �� B0 ⊗ B0⋃
RB

∆
��

u

LM

R2
B

u	

ST

15.1.5 Proposition. For each splitting u of B there is a unique linear map of de-
gree −1,

∇u : RF −→ Ã ⊗ Ã,

satisfying
∆1u = u�∆ + Σ∇u.

We call ∇u the ∆-difference element associated to the splitting u of B.
The ∆-class ∇B is the set of all ∆-difference elements so that ∇B is a subset
of Hom−1(RF , Ã ⊗ Ã).

Proof of (15.1.5). We have

∂∆1u = ∆0∂u = ∆ = ∂u�∆

so that ∂(∆1u− u�∆) = 0 and hence F = ∆1u− u�∆ maps to ΣA⊗A. Moreover

F (p · α) = 0 and (ε ⊗ 1)F = (1 ⊗ ε)F = 0.

For this we need the fact that the augmentation ε of B satisfies

(ε ⊗ 1)u� = u(ε ⊗ 1),
(1 ⊗ ε)u� = u(1 ⊗ ε).

Hence F induces a unique map ∇u as in the theorem. �
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The diagonal ∆ of F0 yields the commutative diagram

F0
∆ ��

⋃
F0 ⊗F0⋃

RF

∆̄

����
���

���
���

���
���

���
���

�
�� R2

F = RF ⊗F0 + F0 ⊗ RF

q

��
RF ⊗A⊕A⊗ RF

where q is the quotient map with kernel(q) = RF ⊗RF . We define the differential

d1 : Hom−1(RF , Ã) −→ Hom−1(RF , Ã ⊗ Ã)

by the formula

(15.1.6) d1(α) = δα − (α ⊗ 1, τ(1 ⊗ α))∆̄.

Here τ yields the sign which corresponds to the interchange of Σ in A⊗ ΣA. We
point out that d1(α) maps to Ã ⊗ Ã since

(ε ⊗ 1)d1(α) = (ε ⊗ 1)δα − (ε ⊗ 1)(α ⊗ 1, τ(1 ⊗ α))∆̄
= α − α = 0.

Similarly one gets (ε ⊗ 1)d1(α) = 0.

15.1.7 Proposition. The ∆-difference element ∇u satisfies the formula

∇u+Σα = ∇u + d1(α).

Hence the ∆-class ∇B is a well-defined element in cokernel(d1).

The proposition is readily checked by definition of u� and properties of (B, ∆).
Next we define the differential

d2 : Hom−1(RF , Ã ⊗ Ã) −→ Hom−1(RF , Ã ⊗ Ã ⊗ Ã)

by the formula

(15.1.8) d2(ξ) = (δ ⊗ 1 − 1 ⊗ δ)ξ − (−ξ ⊗ 1, τ(1 ⊗ ξ))∆̄.

Here the right-hand side is given by composites in the following diagram.

RF
∆̄ ��

ξ

��

RF ⊗A⊕A⊗ RF

(−ξ⊗1,τ(1⊗ξ))

��
ΣA⊗A

Σ(δ⊗1−1⊗δ) �� ΣA⊗A⊗A

As in (15.1.6) one can check that d2(ξ) maps to Ã ⊗ Ã ⊗ Ã.
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15.1.9 Proposition. Each element ξ in the ∆-class ∇B satisfies d2(ξ) = 0.

Since d2d1 = 0 the proposition shows that the ∆-class is an element in the
cohomology

(15.1.10) ∇B ∈ kernel(d2)/ image(d1) = HA.

Proof of (15.1.9). We consider the following diagram where ∆′ = ∆ ⊗ 1 − 1 ⊗ ∆
is given by B.

ΣA⊗2 δ′
��

⋂
i

ΣA⊗3

⋂
i

(B⊗̂B)1
∆′

��

∂

��

(B⊗̂B⊗̂B)1

∂

��
B0 ⊗ B0

⋃
∆′

�� B⊗3
0⋃

R2
B

∆′
��

u	

LM

R3
B

u	

ST

The diagram shows that there is a unique linear map of degree −1,

µ : R2
B −→ A⊗3,

satisfying

(1) u�∆′ = ∆′u� + Σµ.

Now we get, for ξ = ∇u ∈ ∇B with δ′ = δ ⊗ 1 − 1 ⊗ δ,

(2)
i((Σδ′)ξ − µ∆) = ∆′iξ − iµ∆

= ∆′(∆u − u�∆) − (−∆′u� + u�∆′)∆
= 0.

Here we use the fact that ∆′∆ = 0, as follows from the associativity of the diagonal
∆ of B. By (2) we see

(3) Σ(δ′ξ) = µ∆.

Now the following diagram commutes.
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This, in fact, proves (15.1.9) since Σd2ξ = Σ(δ′ξ) − µ̄∆̄ and µ̄∆̄ = µ∆.

RB

��

∆ �� R2
B

p

��

µ �� Σ(A⊗3)

RF
∆̄ �� RF ⊗A⊕A⊗ RF

µ̄

��######################

Here we set µ̄ = (−ξ⊗1, τ(1⊗ ξ)) and p is the quotient map given by R2
B −→ R2

F .
We have to check that µ̄p = µ. Let x, y ∈ RB and a, b ∈ B0. Then we get

iµ(p · (a ⊗ b)) = (−∆′u� + u�∆′)(p · (a ⊗ b))

= (−∆ ⊗ 1 + 1 ⊗ ∆)[p] · (a ⊗ b) + u�p(∆a ⊗ b − a ⊗ ∆b)

= [p] · (−∆a · b + a ⊗ ∆b) + [p] · (∆a ⊗ b − a ⊗ ∆b)

= 0,

iµ(x ⊗ y) = (−∆′u� + u�∆′)(x ⊗ y)

= (−∆ ⊗ 1 + 1 ⊗ ∆)u�(x ⊗ y) + u�(∆x ⊗ y − x ⊗ ∆y)

= −∆x⊗̂uy + ux⊗̂∆y + ∆x⊗̂uy − ux⊗̂∆y

= 0,

iµ(x ⊗ b) = (−∆′u� + u�∆′)(x ⊗ b)

= (−∆ ⊗ 1 + 1 ⊗ ∆)(ux ⊗ b) + u�(∆x ⊗ b − x ⊗ ∆b)

= −∆ux⊗̂b + ux⊗̂∆b + (u�∆x)⊗̂b − ux⊗̂∆b

= −∆ux⊗̂b + u�∆x⊗̂b

= −((∆u − u�∆)x)⊗̂b

= −i(ξ ⊗ 1)(x ⊗ b).

This shows µ(x⊗ b) = µ̄p(x⊗ b). Similarly one gets the equation µ(a⊗ y) =
µ̄p(a ⊗ y). This completes the proof of (15.1.9). �

Recall that we have the symmetry operator S which factorizes as a composite

RB �� RF
S �� Ã ⊗ Ã ⊂ A⊗A.

Compare Section (14.1).
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15.1.11 Proposition. Each element ξ in the ∆-class ∇B satisfies the symmetry
formula

Tξ = ξ + S.

In the next section we show that there is exactly one cohomology class in
HA, see (15.1.10), satisfying the symmetry formula. This is the zero class for the
algebra B of secondary cohomology operations and p odd since we have seen that
B has the trivial symmetry operator S = 0 for odd primes.

Proof of (15.1.10). The definition of u� shows that Tu� = u�T where T : R2
B ∼= R2

B
is the restriction of T on B0 ⊗ B0. Let ξ = ∇u, then we get:

i Σ(Tξ) = T iξ = T (∆1u − u�∆0)
= (T∆1)u − u�(T∆0).

Here we have T∆1 = ∆1 + ΣS(∂−) and T∆0 = ∆0. Hence we obtain

iΣ(Tξ) = ∆u − u�∆0 + ΣS = Σ(ξ + S).

This completes the proof of (15.1.10). �

15.2 Computation of the ∆-class

We have seen that a secondary Hopf algebra B yields a ∆-class ∇B which is an
element in the cohomology HA in (15.1.10).

15.2.1 Theorem. There is a unique element ∇ ∈ HA such that all cocycles ξ ∈ ∇
satisfy the symmetry formula

Tξ = ξ + S

where S is the symmetry operator in (14.1).

By (15.1.10) the class ∇ in this theorem coincides with the ∆-class ∇B. For
the proof of the theorem we prove the following result on the cocycles of the
cohomology HA.

15.2.2 Theorem. Let ξ : RF → Ã ⊗ Ã be a cocycle, i.e. d2ξ = 0, and assume
Tξ = ξ holds. Then there is α : RF → Ã with d1α = ξ, that is ξ is a coboundary.

Proof of (15.2.1). Let ∇, ∇′ ∈ HA such that for ξ ∈ ∇, ξ′,∈ ∇′ the symmetry
formulas Tξ = ξ + S and Tξ′ = ξ′ + S hold. Then η = ξ − ξ′ satisfies

Tη = Tξ − Tξ′ = ξ − ξ′ = η

so that η = d1α is a coboundary by (15.2.2). Therefore ∇ = ∇′. �
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Theorem (15.2.2) corresponds to the ‘dual’ of a result of Penkava-Vanhaecke
[PV]2.1. To see this we dualize the exact sequence

0 �� RF �� F0
�� A �� 0

where F0 −→ A is a map between commutative coalgebras. The functor Hom(−, F)
with Hom(V, F) = V ∗ carries the sequence to the exact sequence

0 R∗
F�� F∗

0
�� A∗�� 0.��

Here A∗ −→ F∗
0 is a morphism of commutative graded algebras so that R∗

F =
Hom(RF , F) is an A∗-bimodule. This bimodule structure is also induced by dual-
izing ∆̄ in (15.1.6). For x ∈ R∗

F and m ∈ A∗ we have the equation

x · m = (−1)|x||m|m · x
since the diagonal ∆ of F0 is cocommutative. We now consider the following
normalized chain complex of Hochschild cohomology.

(15.2.3) C1
d1 �� C2

d2 �� C3.

Here Ci is the F-vector space of all linear maps of degree +1,

C : A⊗i −→ M,

where A = A∗, M = R∗
F satisfying the normalization condition c(a1⊗· · ·⊗ai) = 0

if there is j with 0 ≤ j ≤ i and aj = 1. Moreover the Hochschild differential is
defined by

d1(c)(x ⊗ y) = −(−1)|x|x · c(y) + c(xy) − c(x) · y
for c ∈ C1 and

d2(c)(x ⊗ y ⊗ z) = (−1)|x|x · c(y ⊗ z) − c(xy ⊗ z) + c(x ⊗ yz)− c(x ⊗ y)z

for c ∈ C2. We now observe that we have the dualization isomorphism

Ci = Hom−1(RF , Ã⊗i) ∼= Ci

which carries ξ to the dual ξ∗ of the composite RF
ξ−→ Ã⊗i ⊂ A⊗i. Since the

dual of the augmentation ε of A is the inclusion 1 : F → A∗, we see that ξ∗ is
normalized.

15.2.4 Lemma. The differentials d1 d2 above are isomorphic to the differentials
d1, d2 in (15.1.10). that is, the following diagram commutes.

C1
d1 �� C2

d2 �� C3

C1 d1
��

∼=

��

C2 d2
��

∼=

��

C3

∼=

��
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The lemma is readily checked by the definitions of the differential. We now
prove (15.2.2) by the following result, see Penkava-Vanhaecke [PV]2.1.

15.2.5 Theorem. Let D ∈ C2 with d2D = 0 and TD = D; then there exists ϕ ∈ C1

with d1ϕ = D.

Proof. To avoid signs we only consider the case of the even prime. Since D is a
normalized cocycle we can consider the algebra extension with ΣM̄ = M ,

0 �� M̄ �� E �� A �� 0

A ⊕ M̄

with the multiplication

(a, m) · (a′, m′) = (aa′, am′ + ma′ + D(a, a′))

for (a, m), (a′, m′) ∈ E. Since TD = D and since am = ma we see that

(a, m) · (a′, m′) = (a′, m′) · (a, m).

Hence E is a commutative algebra. Now A is a free commutative algebra and there-
fore there exists a section A −→ E. Hence the cohomology class of the extension
(represented by D) is trivial. Compare also section (16.2).

�

15.3 The multiplication class of B
Let ξ : RF −→ Ã ⊗ Ã be a cocycle representing the ∆-class ∇B which is the
element determined in (15.2.1) by the symmetry operator S. Let ξ = 0 be trivial
if S = 0. Since ξ ∈ ∇B there exists a splitting u of B with

∇u = ∆1u − u�∆ = Σξ.

In this case we call u a ξ-splitting of B. If ξ = 0 then we call u a ∆-splitting of
B. Hence u is a ∆-splitting of B if u is a splitting as in (15.1.1) and the following
diagram commutes.

(15.3.1) B1
∆1 �� (B⊗̂B)1

RB ��

u

��

R2
B

u	

��

B0

⋂
∆0

�� B0 ⊗ B0

⋂
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Since the algebra B of secondary cohomology operations has a trivial symmetry
operator S = 0 for odd primes p we see:

15.3.2 Theorem. The algebra B of secondary cohomology operations has a ∆-
splitting over odd primes p.

A ξ-splitting u of B is not uniquely determined by ξ. According to (15.1.7) we get:

15.3.3 Lemma. If u is a ξ-splitting of B, then u + Σϕ is a ξ-splitting if and only
if d1(ϕ) = 0.

Here we have d1(ϕ) = 0 if and only if the dual ϕ∗ of ϕ satisfies d1(ϕ∗) = 0 and
this is the case if and only if ϕ∗ : A∗ −→ R∗

F is a derivation of degree +1, that is

ϕ∗(xy) = ϕ∗(x) · y + (−1)|x|x · ϕ∗(y)

for x, y ∈ A∗. We point out that such a derivation is completely determined by its
values on Milnor generators in the free commutative graded algebra A∗, see [Mn].

We now consider the multiplication of the pair algebra B which is determined
by the B0-bimodule structure of B1. The left and right action of B0 on B1 yield
functions A = Au and B = Bu by the formulas (α, β ∈ B0, x ∈ RB)

(15.3.4)
ΣAu(α ⊗ x) = α · u(x) − u(α · x) ∈ ΣA,

ΣBu(x ⊗ β) = u(x) · β − u(x · β) ∈ ΣA.

Here u is a ξ-splitting of B. We call the pair (Au, Bu) a multiplication structure of
B. Such a multiplication structure has the following properties.

15.3.5 Definition. A B-structure (A, B) is given by a pair of G-linear maps of
degree −1,

A : B0 ⊗ RB −→ Ã,

B : RB ⊗ B0 −→ Ã,

satisfying the following properties with α, α′, β, β′ ∈ B0 and x, y ∈ RB.

A(α, xβ) + (−1)|α|αB(x, β) = B(αx, β) + A(α, x)β,(1)
A(x, y) = B(x, y),(2)

A(αα′, x) = A(α, α′x) + (−1)|α|αA(α′, x),(3)
B(x, ββ′) = B(xβ, β′) + B(x, β)β′,(4)

B(pα, β) = 0.(5)

Let M2 be the set of all B-structures (A, B). Hence M2 is an F-vector space
by addition of maps. Moreover let

M2
κ0

⊂ M2
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be the subset of all B-structures (A, B) satisfying

(6) A(α, pβ) = −κ0(α) · β.

Here κ0 : A −→ A is a derivation of degree −1 of A satisfying (κ0 ⊗ 1)δ = δκ0.
For the trivial derivation κ0 = 0 the subset M2

0 ⊂ M2 is a vector space. In
general M2

κ0
is a coset in the quotient

(7) M2
κ0

∈ M2/M2
0

so that M2
0 acts transitively and effectively on the set M2

κ0
. By (5) and (6) we see

that pairs (A, B) in M2
0 induce maps

(8)
A : F0 ⊗ RF −→ Ã,

B : RF ⊗F0 −→ Ã,

also denoted by A and B, since A(α, pβ) = 0 for κ0 by (6).

15.3.6 Lemma. Let B be the algebra of secondary cohomology operations. Then a
multiplication structure (Au, Bu) of B is an element in M2

κ where κ = Γ[p] is the
derivation with κ(Sqn) = Sqn−1 for p = 2 and κ(β) = 1, κ(Pn) = 0 for p odd.

The lemma is readily checked since Σκ(α) = [p]α − α[p]. We now define the
differential

(15.3.7) M1 ∂1
�� M2

0 .

Here M1 = kernel(d1 : C1 −→ C2) is defined by d1 in (15.1.6). Hence we see as in
(15.3.1) that ϕ ∈ Hom−1(RF , Ã) = C1 is an element in M1 if and only if ϕ∗ is a
derivation. We define ∂1(ϕ) = (Aϕ, Bϕ) by

Aϕ(α, x) = (−1)|α|α · ϕ(x) − ϕ(αx),
Bϕ(x, β) = ϕ(x) · β − ϕ(xβ).

One readily checks by (15.3.2) that

15.3.8 Lemma. (Au+Σϕ, Bu+Σϕ) = (Au, Bu) + ∂1(ϕ).

Next we define the function

(15.3.9) ∂2 : M2
κ0

−→ M3,

M3 = Hom−1(B0 ⊗ RB ⊕ RB ⊗ B0,A⊗A).
For (A, B) ∈ M2

κ0
we consider the following diagrams.

(1) A δ �� A⊗A

B0 ⊗ RB
1⊗∆ ��

A

��

B0 ⊗ R2
B

A	

��
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(2) A δ �� A⊗A

RB ⊗ B0
∆⊗∆ ��

B

��

R2
B ⊗ B0 ⊗ B0

B	

��

Here the map A� in (1) induced by A is defined by

(3)

A�(α ⊗ x ⊗ β′) =
∑

i

(−1)|α
′′
i |·|x|A(α′

i, x) ⊗ (α′′
i · β′),

A�(α ⊗ β ⊗ y) =
∑

i

(−1)εi(α′
i · β) ⊗ A(α′′

i , y),

with εi = |α′′
i ||β| + |α′

i| + |β| and

∆(α) =
∑

i

α′
i ⊗ α′′

i ∈ B0 ⊗ B0.

One can check that A� is well defined, in particular, if restricted to
p(B0 ⊗ B0) ⊂ R2

B. For this we use the assumption (κ0 ⊗ 1)δ = δκ0 in (15.3.5)(6).
Moreover the map B� in (2) induced by B is defined by

(4)
B�(x ⊗ α′ ⊗ β ⊗ β′) = (−1)|α

′||β|B(x, β) ⊗ (α′ · β′),
B�(α ⊗ y ⊗ β ⊗ β′) = ε(α · β),⊗B(y, β′)

with ε = (−1)|y||β|+|α|+|β|. Using (15.3.3)(5) we see that B� is well defined.
Using (1) and (2) we define the function ∂2 in (15.3.6) by

(5) ∂2(A, B) = (A∂ , B∂) with

A∂ = δA − A�(1 ⊗ ∆),

B∂ = δB − B�(∆ ⊗ ∆).

The cocycle ξ : RF −→ Ã⊗Ã ⊂ A⊗A associated to the symmetry operator
S (with ξ = 0 for S = 0) yields ∇A

ξ , ∇B
ξ by the formulas in Σ(A⊗A),

Σ∇A
ξ (α ⊗ x) = (δα) · (Σξ(x)) − Σξ(α · x),

Σ∇B
ξ (y ⊗ β) = (Σξ(y)) · (δβ) − Σξ(y · β).

15.3.10 Theorem. Let u be a ξ-splitting of B; then the multiplication structure
(Au, Bu) is an element in M2

κ which satisfies

∂2(Au, Bu) = (∇A
ξ + L,∇B

ξ )

where L : B0 ⊗ RB −→ A ⊗ RB −→ A ⊗ A is the left action operator of B in
(14.1.3).
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The theorem implies that the composite

M1 ∂1
�� M2

0
∂2

�� M3

is trivial, i.e., ∂2∂1 = 0. In fact, we have for ϕ ∈ M1,

∂2(Au+Σϕ, Bu+Σϕ) = (∇A
ξ + L,∇B

ξ )

= ∂2((Au, Bu) + ∂1ϕ)

= (∇A
ξ + L,∇B

ξ ) + ∂2∂1ϕ.

Let M2
κ,ξ,L be the subset of M2

κ consisting of all pairs (A, B) ∈ M2
κ with

∂2(A, B) = (∇A
ξ + L,∇B

ξ ). Then ∂1M1 = image(∂1) acts on this set by addition
in M2. Let M2

κ,ξ,L/∂1M1 be the set of orbits of this action. This is a subset of
M2/∂1M1. If u is a ξ-splitting of B, then (15.3.7) shows that (Au, Bu) represents
an element

(15.3.11) 〈A, B〉 ∈ M2
κ,ξ,L/∂1M1

which we call the multiplication class of B associated to the triple (κ, ξ, L). This
class is independent of the choice of the ξ-splitting u. According to its construction
we see:

15.3.12 Theorem. The multiplication class determines the isomorphism type of the
secondary Hopf algebra B.

We are now ready to prove

15.3.13 Theorem. (Uniqueness): For all primes p ≥ 2 there exists up to isomor-
phism only one unique secondary Hopf algebra associated to the Steenrod algebra
A, the derivation κ, the symmetry operator S and the left action operator L (with
L = S = 0 for p odd).

Proof. The group M2
0 acts transitively and effectively on M2

κ , see (15.3.5)(7).
Therefore the group ker(∂2)/∂1M1 ⊂ M2

0 /∂1M1 acts transitively and effectively
on M2

κ,ξ,L. In the next section we show that

ker(∂2)/∂1M1 = 0

consists of a single element. Hence M2
κ,ξ,L/∂1M1 consists of a single element. Thus

the uniqueness theorem follows from (15.3.8). �
We can use (A, B) ∈ M2

κ,ξ,L for the computation of Massey products in the
Steenrod algebra. Let α, β, γ ∈ A with α · β = 0 and β · γ = 0. Then the Massey
product

〈α, β, γ〉 ∈ A|α|+|β|+|γ|−1/U
is a coset of U = αA|β|+|γ|−1 + A|α|+|β|−1γ. An element representing the coset is
obtained as follows:
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15.3.14 Theorem. Let (A, B) ∈ M2
κ,ξ,L and let ᾱ, β̄, γ̄ ∈ B0 be elements represent-

ing α, β, γ ∈ A. Then

A(ᾱ, β̄ · γ̄) − B(ᾱ · β̄, γ̄) ∈ 〈α, β, γ〉.
This result shows that Massey products in A are completely determined by

an element (A, B) ∈ M2
κ,ξ,L which in turn can be obtained by solving equations

in A. Hence we get a computational method to determine 〈α, β, γ〉 solving an old
problem of Kristensen and Madsen [Kr4], [KrM2].

15.4 Proof of the uniqueness theorem

According to (15.3.9) the uniqueness theorem is a consequence of the following
result.

15.4.1 Theorem. The following sequence is exact:

M1 ∂1
�� M2

0
∂2

�� M3.

Here M2
0 is the F-vector space of all pairs (A, B) with

A : F0 ⊗ RF −→ Ã ⊂ A,

B : RF ⊗F0 −→ Ã ⊂ A
satisfying equations (15.3.5)(1). . . (4), see (15.3.5)(8). We have

(15.4.2) ∂2(A, B) = 0

if and only if the dual maps

A∗ : A∗ −→ F∗
0 ⊗ R∗

F ,

B∗ : A∗ −→ R∗
F ⊗F∗

0

are (µ∗ : A∗ −→ A∗ ⊗ A∗)-derivations of degree +1. That is , for a, b ∈ A∗ we
have

A∗(ab) = A∗(a) · µ∗(b) + (−1)|a|µ∗(a) · A∗(b)

and the same formula holds if we replace A by B. Here we use the action of A∗

on F∗
0 and R∗

F defined in the exact sequences following (15.2.2) above.
Next we describe the equations in (15.3.5) in terms of commutative diagrams

which can be easily dualized. Equation (15.4.3)(1) corresponds to the diagram

(15.4.3) (1) A A⊗A
µ��

F0 ⊗ RF ⊗ RF ⊗F0

(A,B)

��

F0 ⊗ RF ⊗F0
(1⊗µ,−µ⊗1)
��

A⊗q−τ(q⊗B)

��
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where τ corresponds to the interchange of Σ and µ is the multiplication map and
q : F → A is the quotient map. Next (15.3.5)(2) corresponds to the diagram.

(2) A

RF ⊗ RF

0

��........................

(i⊗1,−1⊗i)
�� F0 ⊗ RF ⊕ RF ⊗F0

(A,B)

��

where i : RF ⊂ F0 is the inclusion. Moreover (15.3.5)(3), (4) corresponds to the
diagram

(3) A⊗A
µ �� A

F0 ⊗F0 ⊗ RF ⊕ RF ⊗F0 ⊗F0
µ̄ ��

(τ(q⊗A),B⊗q)

��

F0 ⊗ RF ⊕ RF ⊗F0

(A,B)

��

with µ̄ = (µ ⊗ 1 − 1 ⊗ µ) ⊕ (µ ⊗ 1 − 1 ⊗ µ). In the following definition we dualize
the diagrams (1),(2),(3) above.

Let K2 be the set of all (µ∗ : A∗ −→ A∗ ⊗A∗)-derivations

(15.4.4) C = (A∗, B∗) : A∗ −→ F∗
0 ⊗ R∗

F ⊕ R∗
F ⊗F∗

0

satisfying

(1 ⊗ µ∗,−µ∗ ⊗ 1)C = (A∗ ⊗ q∗ − (q∗ ⊗ B∗)τ∗)µ∗,(1)
(i∗ ⊗ 1,−1 ⊗ i∗)C = 0,(2)

µ̄C = ((q∗ ⊗ A∗)τ∗, B∗ ⊗ q∗)µ∗(3)

with µ̄∗ = (µ∗⊗1−1⊗µ∗)⊕ (µ∗ ⊗1−1⊗µ∗). These equations correspond to the
dualization of the diagram (15.4.3)(1), (2), (3). Hence we get the isomorphism

(15.4.5) ker(∂2 : M2
0 → M3) ∼= K2

which carries (A, B) to C = (A∗, B∗), see (15.3.5). Moreover the following diagram
commutes.

(15.4.6) M1 ∂1
��

∼=

��

ker(∂2 : M2
0 → M3)

∼=

��
K1

∂1 �� K2
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Here K1 is the set of all derivations ϕ : A∗ −→ R∗
F of degree +1 and M1 ∼= K1

carries γ to the dual γ∗ and ∂1 is the dual of ∂1 in (15.3.6). That is, ∂1 carries ϕ
to the pair (A∗

ϕ, B∗
ϕ) with

(15.4.7)
A∗

ϕ = (q∗ ⊗ ϕ)τ∗µ∗ − µ∗ϕ,

B∗
ϕ = (ϕ ⊗ q∗)µ∗ − µ∗ϕ.

Here we use the maps in the following diagrams.

A∗ ϕ ��

µ∗

��

R∗
F

µ∗

��

A∗ ϕ ��

µ∗

��

R∗
F

µ∗

��
A∗ ⊗A∗

(q∗⊗ϕ)τ∗
�� F∗

0 ⊗ R∗
F A∗ ⊗A∗

ϕ⊗q∗
�� R∗

F ⊗F∗
0

By a result of Milnor [Mn] the algebra A∗ is a free commutative graded algebra
generated by elements xi, i ≥ 1, of degree

(15.4.8) ni = |xi| =

⎧⎪⎨⎪⎩
2i − 1 for p even,

2pj − 1 for p odd, i = 2j + 1,
2pj − 2 for p odd, i = 2j.

We have n1 = 1 < n2 < n3 < · · · . Using the generators x1, x2, . . . of A∗ we obtain
the derivations ϕ : A∗ −→ R∗

F in K1 as follows.
For each element a ∈ R∗

F with |a| = ni + 1 there is a unique derivation

(15.4.9) ϕ(a) : A∗ −→ R∗
F

of degree +1 satisfying ϕ(a)(xi) = a and ϕ(a)(xj) = 0 for j �= i. Moreover each
derivation ϕ : A∗ −→ R∗

F of degree +1 yields a sequence of elements ai = ϕ(xi)
such that

ϕ =
∞∑

i=1

ϕ(ai).

Here the infinite sum is well defined since ϕ(ai)(b) = 0 for b ∈ A∗ with |b| < ni.
Now Theorem (15.4.1) is a consequence of the following result.

15.4.10 Theorem. ∂1 in (15.4.6) is surjective.

Proof. We proceed inductively as follows. Let C ∈ K2. We construct inductively
elements a1, a2, . . . such that (see (15.4.9))

(1) Ci = C − Cϕi with ϕi = ϕ(a1) + · · · + ϕ(ai)
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satisfies Ci(η) = 0 for η ∈ A∗ with |η| < ni+1. This shows that C = Cϕ so that
∂1(ϕ) = C and hence ∂1 is surjective. We have Ci(η) = 0 for |η| < ni+1 if and
only if (see (15.4.8))

(2) Ci(xj) = 0 for j ≤ i

since Ci is a derivation. For the case i = 1 we observe

(3) C ∈ K1 satisfies C(x1) = 0.

Hence for any a1, for example a1 = 0, we get C1 = C − Cϕ1 with C1(x1) = 0.
Given Cm−1 we obtain am and Cm in (1) by the following lemma. �

15.4.11 Lemma. Suppose C ∈ K1 satisfies C(xi) = 0 for i < m. Then there exists
a = am with |a| = nm + 1 such that C̄ = C − Cϕ(a) satisfies C̄(xi) = 0 for i ≤ m.

Proof of (15.4.11). We consider the element

C(xm) = (x, y) ∈ F∗
0 ⊗ R∗

F ⊕ R∗
F ⊗F∗

0 .

The diagonal µ∗ of A∗ satisfies

(∗) µ∗(xm) = 1 ⊗ xm + xm ⊗ 1 +
∑

t

ξ′t ⊗ ξ′′t

with |ξ′t|, |ξ′′t | < |xm|. Therefore C = (A∗, B∗) satisfies

A∗(ξ′t) = 0 = B∗(ξ′′t ),
A∗(xm) = x, B∗(xm) = y.

Now (15.4.4)(1), (2), (3) yield the following equations.

(1 ⊗ µ∗,−µ∗ ⊗ 1)C(xm) = (1 ⊗ µ∗)x − (µ∗ ⊗ 1)y(1)
= A∗(xm) ⊗ 1 − 1 ⊗ B∗(xm)
= x ⊗ 1 − 1 ⊗ y,

(i∗ ⊗ 1)x − (1 ⊗ i∗)y = 0,(2)
(µ∗ ⊗ 1 − 1 ⊗ µ∗)x = 1 ⊗ A∗(xm) = 1 ⊗ x,(3)
(µ∗ ⊗ 1 − 1 ⊗ µ∗)y = B∗(xm) ⊗ 1 = y ⊗ 1.

We shall show that the equations (1), (2), (3) on the pair (x, y) imply that
there is a = am with (x, y) = Cϕ(a)(xm) so that C̄ = C − Cϕ(a) satisfies the
proposition. We have by (15.4.7)

(4) Cϕ(a)(xm) = (−µ∗(a) + 1 ⊗ a,−µ∗(a) + a ⊗ 1).
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Here again we use (∗) above. We associate to the equations (1). . . (4) the mor-
phisms in the following diagram.

(∗∗) R∗
F

∂′

��
F∗

0 ⊗ R∗
F ⊕ R∗

F ⊗F∗
0

∂′′

��
F∗

0 ⊗ R∗
F ⊗F∗

0 ⊕ R∗
F ⊗ R∗

F ⊕F∗
0 ⊗F∗

0 ⊗ R∗
F ⊕ R∗

F ⊗F∗
0 ⊗F∗

0

Recall that 1 denotes the identity of an object and also the unit 1 = 1̃ of an
algebra. According to (4) we set

(5) ∂′(a) = (−µ∗(a) + 1̃ ⊗ a,−µ∗(a) + a ⊗ 1̃)

and we define the coordinates of ∂′′(x, y) as in (1), (2) and (3) respectively by

∂′′(x, y)1 = (1 ⊗ µ∗)x − x ⊗ 1̃ − (µ∗ ⊗ 1)y + 1̃ ⊗ y,(6)
∂′′(x, y)2 = (i∗ ⊗ 1)x − (1 ⊗ i∗)y,(7)

∂′′(x, y)3 = (µ∗ ⊗ 1)x − (1 ⊗ µ∗)x − 1̃ ⊗ x,(8)

∂′′(x, y)4 = (µ∗ ⊗ 1)y − (1 ⊗ µ∗)y − y ⊗ 1̃.(9)

We have ∂′′(x, y) = 0 if and only if (1), (2), (3) are satisfied. Moreover there
exists a = am with (x, y) = Cϕ(a)(xm) = ∂′(a) if the sequence (∗∗) above is exact,
that is image(∂′) = kernel(∂′′), in degree nm +1. The sequence (∗∗) is exact if and
only if the following dual sequence (∗ ∗ ∗) is exact.

(∗ ∗ ∗) RF

F0 ⊗ RF ⊕ RF ⊗F0

d′=(∂′)∗

��

F0 ⊗ RF ⊗F0 ⊕ RF ⊗ RF ⊕F0 ⊗F0 ⊗ RF ⊕ RF ⊗F0 ⊗F0

d′=(∂′′)∗

��
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Here d′ and d′′ are dual to ∂′ and ∂′′ respectively and hence d′ and d′′ can be
described as follows. We have the augmentation

ε : F0 −→ F

which is dual to the inclusion F ⊂ F∗
0 given by the unit 1̃ ∈ F∗

0 of the algebra F∗
0 .

Therefore 1̃ in (5). . . (7) corresponds by dualization to ε. This yields the following
formulas for d′ and d′′ with α, α′, β, β′ ∈ F0 and x, y ∈ RF .

d′(α ⊗ x + y ⊗ β) = εα ⊗ x − αx + y ⊗ εβ − yβ,(10)
d′′(α ⊗ x ⊗ β) = (α ⊗ xβ − (α ⊗ x) · ε(β),−αx ⊗ β + ε(α) · (x ⊗ β)),(11)
d′′(x ⊗ y) = (ix ⊗ y, x ⊗ iy),(12)
d′′(α ⊗ α′ ⊗ x) = αα′ ⊗ x − α ⊗ α′x − ε(α) · (α′ ⊗ x),(13)
d′′(y ⊗ β ⊗ β′) = yβ ⊗ β′ − y ⊗ ββ′ − (y ⊗ β) · ε(β′).(14)

Now let
F̃0 = kernel(ε : F0 −→ F)

be the augmentation ideal. Then we have F0 = F⊕F̃0 and this shows that (∗∗∗) is
exact in degree nm +1 if and only if the left-hand column in the following diagram
is exact in degree nm + 1.

(∗ ∗ ∗∗) RF �� F̃0

(F̃0 ⊗ RF ⊕ RF ⊗ F̃0)/ ∼ = F̃0 ⊗ RF + RF ⊗ F̃0
��

d2

��

F̃0 ⊗ F̃0

d2

��

F̃0 ⊗ RF ⊗ F̃0 + F̃0 ⊗ F̃0 ⊗ RF + RF ⊗ F̃0 ⊗ F̃0
��

d3

��

F̃0 ⊗ F̃0 ⊗ F̃0

d3

��

Here the horizontal arrows are the inclusions and d2 = µ is the multiplication and
d3 is given by

(15) d3(α ⊗ β ⊗ γ) = αβ ⊗ γ − α ⊗ βγ.

The equivalence relation is defined by (ix) ⊗ y ∼ x ⊗ (iy). Now we observe
that the right-hand column of the diagram is part of the bar construction B̄F0

of the free algebra F0, compare for example page 32[A]. Moreover the projection
q : F0 � A induces the short exact sequence of chain complexes

(16) 0 �� K̄ �� B̄F0

q∗ �� B̄A �� 0

where K is the kernel of q∗. It is easy to see that the left-hand column of (∗ ∗ ∗∗)
is part of the chain complex K̄. The short exact sequence (16) induces the long
exact sequence of homology group

H3B̄F0
�� H3B̄A �� H2K̄ �� H2B̄F0
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where HnB̄F0 = 0 for n ≥ 2 since F0 is a free algebra. Hence we have the
isomorphism

(17) H2K ∼= H3B̄A

so that the left-hand column of (∗ ∗ ∗∗) is exact if and only if (17) is trivial in
degree nm + 1. Now

(H3B̄A)t = TorAs,t(F, F)

is dual to the cohomology

H3(B̄A, F)t = ExtAs,t(F, F)

of the Steenrod algebra A, see page 28 of [A]. Therefore (17) is trivial in degree
nm +1 since we can use the following result. This completes the proof of (15.4.10).

�
15.4.12 Proposition. The cohomology H3(A) of the Steenrod algebra A is trivial
in degree ni + 1 for i ≥ 1 where ni is defined in (15.4.8).

Proof. Compare [A], [Ta], [Li], [ShY], [No]. In fact, Tangora describes in 1.2[Ta]
a complete list of algebra generators which contribute to H3(A). The degree of
these generators implies the proposition. Tangora proves the result for the prime
p = 2. For odd primes p Liulevicius [Li] proves a result describing a similar list of
generators contributing to H3(A). That this is a complete list needs an extension
of Tangora’s argument to the case of odd primes. �

15.5 Right equivariant cocycle of B
A splitting

u : RB −→ B1

of B (as defined in (15.1.1)) is a right equivariant splitting if u(x ·β) = u(x) ·β for
x ∈ RB, β ∈ B0 or equivalently if Bu(x ⊗ β) = 0, see (15.3.2). Moreover a cocycle

ξ : RF −→ Ã⊗ Ã

in the ∆-class is a right equivariant cocycle if ξ(x ·β) = ξ(x) · δ(β) for x ∈ RF , β ∈
F0 or equivalently if ∇B

ξ = 0, see (15.3.10).

15.5.1 Theorem. If the ∆-class in (15.2.1) contains a right equivariant cocycle ξ,
then there exists a right equivariant ξ-splitting of B.

Proof of (15.5.1). We have to show that there exists

(A, B) ∈ M2
κ,ξ,L

with B = 0. We construct (A, B) inductively. Since M2
κ,ξ,L is non-empty there is

an element (A, B) with B(x, β) = 0 for |x ⊗ β| ≤ 2. (Here β ∈ F so that we can
use (15.3.5)(4) for β = β′ = 1.)
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Next we assume inductively that there exists

(A, B) ∈ M2
κ,ξ,L with

(1) B(x, β) = 0 for |x ⊗ β| < N

with N ≥ 4. Then we get for x ⊗ ββ′ ∈ RF ⊗F0 with |x ⊗ ββ′| = N the formula

(2) B(x, ββ′) = B(xβ, β′) for |β′| > 0.

Therefore

(3) B : (RF ⊗F0)N −→ A

is uniquely determined by its restriction

(4) B̄ : (RF ⊗ E)N −→ A

where E ⊂ F0 is the submodule generated by EA. We now observe by the following
commutative diagram that the multiplication map µ with µ(x ⊗ β) = x · β is
injective.

RF ⊗ E

⋂
�� µ �� RF⋂

F0 ⊗ E �� F0

Let K = kernel(δ̃ : A −→ A ⊗ A) be the kernel of the reduced diagonal δ̃.
Then we can choose a map γ as in the following commutative diagram.

(5) (RF ⊗ E)N
B̄ ��

µ

���
��

��
��

��
��

��
��

� K ⊂ A

(RF )N

γ



<<<<<<<<<<<<<<<

This is possible since µ being injective is a direct summand of the vector space.
We define γ(x) = 0 for |x| < N so that

(6) B̄(x, β) = γ(xβ)

for |x ⊗ β| = N , β ∈ E. Here (6) is satisfied by (5). Now (2) and (6) show that

(7) B(x, β) = γ(xβ) − γ(x) · β
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for |x ⊗ β| = N and β ∈ F0. The lemma in (15.5.2) below shows that there is a
map

(8) γ : RF −→ Ã ⊂ A

satisfying γ ∈ M1 such that γ is an extension of γ in (5). Now we define

A′(α, x) = A(α, x) − (γ(αx) − (−1)|α|αγ(x)),
B′(x, β) = B(x, β) − (γ(xβ) − γ(x) · β).

Then (A′, B′) is also in M2
κ,ξ,L and (7) shows that B′(x, β) = 0 for |x⊗β| ≤ N .

Hence we can proceed inductively to obtain an element (A′, B′) ∈ M2
κ,ξ,L with

B′ = 0. �
15.5.2 Lemma. The map γ in (8) exists.

Proof. We first observe that γ satisfies δγx = γ�∆x in degree |x| ≤ N . Hence the
dual of γ yields a map

γ∗
<N : A∗ −→ R∗

F

defined in degree < N such that γ∗
<N is a derivation in degree < N . Now A∗ is

a free commutative graded algebra generated by the set M of Milnor generators.
Hence there is a unique derivation γ∗ defined for ξ ∈ M by

γ∗(ξ) =

{
γ∗

<N (ξ) for |ξ| < N ,
0 for |ξ| ≥ N .

Hence the dual of γ∗ yields the map γ in (8). �



Chapter 16

Computation of the
Secondary Hopf Algebra B

We describe an algorithm which computes the secondary diagonal of B and the
multiplication in the pair algebra B. In the final section we give a multiplication
table in low degrees. This yields a computation of triple Massey products.

16.1 Right equivariant splitting of B
We first observe the following property of the ideal RF ⊂ F0.

16.1.1 Proposition. The ideal RF is a free right F0-module.

Proof. One can find the result in the book of Cohn [Co] section 2.4. But it is also
easy to see that a basis B of RF as a free right F0-module is inductively obtained
as follows. Let B2 be the set which contains the unique element Sq1Sq1 or ββ of
degree 2 and let C2 = φ be the empty set and let D2 = B2 ∪ C2. Assume linearly
independent subsets of elements of degree i,

Bi, Di ⊂ F0 with Bi ⊂ Di

are defined for i ≤ n − 1, n ≥ 3. Then let Cn be the union

Cn =
n−1
∪

i=2
Di · Sqn−i.

One can check that Cn is linearly independent and we can choose a basis Dn of all
elements of degree n in F0, containing Cn. Let Bn = Dn −Cn be the complement.
Then B = B2 ∪ B3 ∪ · · · ∪ Bn · · · is a basis of the free right F0-module RF . We
choose the elements of Bn as follows. Consider the set Gn of all elements α[a, b] of
degree n with α ∈ Mon(EA). We choose lexicographical ordering of this set so that



400 Chapter 16. Computation of the Secondary Hopf Algebra B

by this ordering Gn = {x1, x2, . . . }. Let k ≥ 1. If xk is not a linear combination
of x1, . . . , xk−1 and of elements in Cn then xk is an element in Bn and these are
all elements of Bn. �
We now choose a basis B of the free right F0-module RF and we choose a lift as
in the following diagram.

RB

��
B ��

���
�

�
�

�
�

�
�

RF

Then we get the induced equivariant injections

B ⊗ B0
�� RB,

pB0
�� RB,

with pB0 ∩ B ⊗ B0 = p(B ⊗ B0). Hence we have the push out diagram

p(B ⊗ B0) ��

��

B ⊗ B0

��
pB0

�� RB

which is used for the construction of a splitting in the next result.

16.1.2 Theorem. There is a splitting u of B, see (15.1.1), which is right equivariant
with respect to the action of B0.

Proof. We choose a lift as in the diagram

B1

��
B ��

������������������
RB

which defines the right equivariant map

u1 : B ⊗ B0 −→ B1.
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Moreover we define
u2 : pB0 −→ B1

as in (15.1.1) by u(pα) = [p] · α. Then u1 and u2 coincide on the intersection
p(B ⊗ B0) since for x ∈ B, α ∈ B0,

u1(p(x ⊗ α)) = p(u1(x) · α) = [p] · x · α = u2(p(x · α)).

Therefore the section u = u1 ∪ u2 is well defined and right equivariant. �

We consider the following diagram where u is a splitting of B as in (15.1.1) and
u� is defined as in (15.1.3).

B1
∆1 �� (B⊗̂B)1

RB

u

��

∆
�� R2

B

u	

��

16.1.3 Theorem. If the prime p is odd, there exists a splitting u of B which is right
equivariant with respect to the action of B0 and for which the diagram commutes.

Proof. If p is odd we know that the symmetry operator S = 0 is trivial. Hence the
∆-class of B is trivial by (15.2.1). Hence by definition of the ∆-class we obtain the
result. Here we use (15.5.1). �

We now consider the case that the prime p is even. In this case the symmetry
operator S is non-trivial and computed in (14.5.2). We consider the following
diagram where ξ is a linear map of degree −1.

(16.1.4) RF
∆̄ ��

ξ

��

S

����
��

��
��

��
��

��
��

��
RF ⊗A⊕A⊗ RF

(ξ⊗1,1⊗ξ)

��
A⊗A A⊗A

1+T
�� δ⊗1+1⊗δ �� A⊗A⊗A

Here ∆̄ is induced by ∆ : F0 → F0 ⊗F0.

16.1.5 Theorem. Assume the prime p is even. Then there is a right F0-equivariant
map of degree −1,

ξ : RF −→ Ã⊗ Ã ⊂ A⊗A,
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for which the diagram above commutes. Moreover for each such ξ there exists a
splitting u = uξ associated to ξ such that u is right B0-equivariant and

∆1u = u�∆0 + Σξ

holds where we use RB � RF .

Proof. Using the right equivariant splitting u in (16.1.2) we obtain a right equiv-
ariant ξ by the formula ∆1u = u�∆0 + Σξ. Moreover given ξ we obtain uξ by
(15.5.1). �
The diagonal ∆̄ in (16.1.4) has a left and a right part ∆L and ∆R respectively, so
that

(16.1.6)

∆̄ = (∆R, ∆L) : RF −→ RF ⊗A⊕A⊗ RF

with ∆R : RF −→ RF ⊗A,

∆L : RF −→ A⊗ RF

satisfying T∆L = ∆R. We define{
∆′ : RF −→ RF ⊗ Ã
by ∆R(x) = x ⊗ 1 + ∆′(x)

so that the reduced diagonal ˜̄∆ is given by (∆′, T∆′). A list of values ∆′[a, b] for
the prime 2 is given as follows.

∆′[1, 1] = 0

∆′[1, 2] = [1, 1] ⊗ Sq1

∆′[1, 3] = [1, 1] ⊗ Sq2 +[1, 2] ⊗ Sq1

∆′[2, 2] = [1, 1] ⊗ Sq2 +[1, 2] ⊗ Sq1

∆′[1, 4] = [1, 1] ⊗ Sq3 +[1, 2] ⊗ Sq2 +[1, 3] ⊗ Sq1

∆′[2, 3] = [1, 3] ⊗ Sq1 +[2, 2] ⊗ Sq1

∆′[3, 2] = [1, 1] ⊗ Sq2 Sq1 +[1, 2] ⊗ Sq2 +[2, 2] ⊗ Sq1

∆′[1, 5] = [1, 1] ⊗ Sq4 +[1, 2] ⊗ Sq3 +[1, 3] ⊗ Sq2 +[1, 4] ⊗ Sq1

∆′[2, 4] = [1, 1] ⊗ Sq4 +[1, 2] ⊗ Sq3 +[2, 2] ⊗ Sq2 +[1, 4] ⊗ Sq1 +[2, 3] ⊗ Sq1

∆′[3, 3] = [1, 1] ⊗ Sq4 +[1, 1] ⊗ Sq3 Sq1 +[1, 2] ⊗ Sq2 Sq1 +[1, 3] ⊗ Sq2 +[2, 3] ⊗ Sq1

+ [3, 2] ⊗ Sq1

∆′[1, 6] = [1, 1] ⊗ Sq5 +[1, 2] ⊗ Sq4 +[1, 3] ⊗ Sq3 +[1, 4] ⊗ Sq2 +[1, 5] ⊗ Sq1

∆′[2, 5] = [1, 3] ⊗ Sq3 +[2, 2] ⊗ Sq3 +[2, 3] ⊗ Sq2 +[1, 5] ⊗ Sq1 +[2, 4] ⊗ Sq1
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∆′[3, 4] = [1, 1] ⊗ Sq5 +[1, 1] ⊗ Sq4 Sq1 +[1, 2] ⊗ Sq3 Sq1 +[1, 3] ⊗ Sq2 Sq1 +[1, 4] ⊗ Sq2

+ [2, 2] ⊗ Sq3 +[3, 2] ⊗ Sq2 +[2, 4] ⊗ Sq1 +[3, 3] ⊗ Sq1

∆′[4, 3] = [1, 1] ⊗ Sq4 Sq1 +[1, 2] ⊗ Sq4 +[1, 2] ⊗ Sq3 Sq1 +[1, 3] ⊗ Sq3

+ [2, 2] ⊗ Sq3 +[2, 2] ⊗ Sq2 Sq1 +[2, 3] ⊗ Sq2 +[3, 2] ⊗ Sq2 +[3, 3] ⊗ Sq1

∆′[1, 7] = [1, 1] ⊗ Sq6 +[1, 2] ⊗ Sq5 +[1, 3] ⊗ Sq4 +[1, 4] ⊗ Sq3 +[1, 5] ⊗ Sq2 +[1, 6] ⊗ Sq1

∆′[2, 6] = [1, 1] ⊗ Sq6 +[1, 2] ⊗ Sq5 +[2, 2] ⊗ Sq4 +[1, 4] ⊗ Sq3 +[2, 3] ⊗ Sq3 +[2, 4] ⊗ Sq2

+ [1, 6] ⊗ Sq1 +[2, 5] ⊗ Sq1

∆′[3, 5] = [1, 1] ⊗ Sq5 Sq1 +[1, 2] ⊗ Sq5 +[1, 2] ⊗ Sq4 Sq1 +[1, 3] ⊗ Sq3 Sq1

+ [1, 4] ⊗ Sq2 Sq1 +[2, 3] ⊗ Sq3 +[3, 2] ⊗ Sq3 +[1, 5] ⊗ Sq2 +[3, 3] ⊗ Sq2

+ [2, 5] ⊗ Sq1 +[3, 4] ⊗ Sq1

∆′[4, 4] = [1, 1] ⊗ Sq6 +[1, 2] ⊗ Sq5 +[1, 3] ⊗ Sq3 Sq1 +[2, 2] ⊗ Sq4 +[2, 2] ⊗ Sq3 Sq1

+ [1, 4] ⊗ Sq3 +[2, 3] ⊗ Sq2 Sq1 +[2, 4] ⊗ Sq2 +[3, 4] ⊗ Sq1 +[4, 3] ⊗ Sq1

∆′[5, 3] = [1, 1] ⊗ Sq4 Sq2 +[1, 2] ⊗ Sq4 Sq1 +[1, 3] ⊗ Sq4 +[2, 2] ⊗ Sq3 Sq1 +[2, 3] ⊗ Sq3

+ [3, 2] ⊗ Sq2 Sq1 +[3, 3] ⊗ Sq2 +[4, 3] ⊗ Sq1

∆′[1, 8] = [1, 1] ⊗ Sq7 +[1, 2] ⊗ Sq6 +[1, 3] ⊗ Sq5 +[1, 4] ⊗ Sq4 +[1, 5] ⊗ Sq3 +[1, 6] ⊗ Sq2

+ [1, 7] ⊗ Sq1

∆′[2, 7] = [1, 3] ⊗ Sq5 +[2, 2] ⊗ Sq5 +[2, 3] ⊗ Sq4 +[1, 5] ⊗ Sq3 +[2, 4] ⊗ Sq3

+ [2, 5] ⊗ Sq2 +[1, 7] ⊗ Sq1 +[2, 6] ⊗ Sq1

∆′[3, 6] = [1, 1] ⊗ Sq6 Sq1 +[1, 2] ⊗ Sq6 +[1, 2] ⊗ Sq5 Sq1 +[1, 3] ⊗ Sq5 +[1, 3] ⊗ Sq4 Sq1

+ [2, 2] ⊗ Sq5 +[1, 4] ⊗ Sq3 Sq1 +[3, 2] ⊗ Sq4 +[1, 5] ⊗ Sq2 Sq1 +[2, 4] ⊗ Sq3

+ [3, 3] ⊗ Sq3 +[1, 6] ⊗ Sq2 +[3, 4] ⊗ Sq2 +[2, 6] ⊗ Sq1 +[3, 5] ⊗ Sq1

∆′[4, 5] = [1, 1] ⊗ Sq6 Sq1 +[1, 2] ⊗ Sq6 +[1, 2] ⊗ Sq5 Sq1 +[2, 2] ⊗ Sq4 Sq1

+ [1, 4] ⊗ Sq3 Sq1 +[2, 3] ⊗ Sq3 Sq1 +[3, 2] ⊗ Sq4 +[1, 5] ⊗ Sq3 +[2, 4] ⊗ Sq2 Sq1

+ [3, 3] ⊗ Sq3 +[2, 5] ⊗ Sq2 +[4, 3] ⊗ Sq2 +[3, 5] ⊗ Sq1 +[4, 4] ⊗ Sq1

∆′[5, 4] = [1, 1] ⊗ Sq5 Sq2 +[1, 1] ⊗ Sq6 Sq1 +[1, 2] ⊗ Sq6 +[1, 2] ⊗ Sq4 Sq2

+ [1, 3] ⊗ Sq4 Sq1 +[2, 2] ⊗ Sq5 +[1, 4] ⊗ Sq4 +[2, 3] ⊗ Sq3 Sq1 +[3, 2] ⊗ Sq4

+ [3, 2] ⊗ Sq3 Sq1 +[2, 4] ⊗ Sq3 +[3, 3] ⊗ Sq2 Sq1 +[3, 4] ⊗ Sq2

+ [4, 4] ⊗ Sq1 +[5, 3] ⊗ Sq1
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16.2 Computation of ξ and the diagonal ∆1 of B
We describe a cocycle ξ = ξS in (16.1.5) only in terms of the symmetry operator S.
We shall present an explicit formula for ξS and we show that ξS is right equivariant.
For p odd we have ξ = 0 so that we only need to consider the case p even.

Let A = A∗ be the dual of the Steenrod algebra and let M = R∗
F and

F = F∗
0 . Then A and F are commutative algebras and M is an A-bimodule

satisfying a · m = m · a for a ∈ A, m ∈ M . We have the exact sequence

(16.2.1) 0 −→ A −→ F −→ M −→ 0

as in Section (15.2). Given ξ as in (16.1.5) we obtain the dual map with suspension
ΣM̄ = M ,

(1) ξ∗ = D : A ⊗ A −→ M̄

which is a normalized cocycle (see (15.2.4)) with

(2) D(a ⊗ b) + D(b ⊗ a) = C(a ⊗ b).

Here C is the dual of the symmetry operator

(3) S∗ = C : A ⊗ A −→ M̄.

We associate with D the algebra extension

(4) 0 �� M̄ �� E �� A �� 0

A ⊕ M̄

with the algebra structure in E defined by the formula (a, a′ ∈ A, m, m′ ∈ M̄)

(5) (a, m) · (a′, m′) = (aa′, am′ + ma′ + D(a, a′)).

Here we set a · (Σm̄) = Σ(a · m̄) for m̄ ∈ M . The commutator in the algebra E
satisfies

(6) (a, m) · (a′, m′) − (a′, m′) · (a, m) = (0, C(a, a′))

so that S∗ = C in (3) is the commutator map in E. Since commutators [x, y] =
xy − yx satisfy [xx′, y] = x[x′, y] + [x, y]x′ we see that C is a derivation in each
variable, that is

(7) C(ab, a′) = aC(b, a′) + C(a, a′)b.
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16.2.2 Definition. The algebra A is a polynomial algebra generated by the Milnor
generators ζi, i ≥ 1, of degree |ζi| = 2i − 1. Hence a basis of A is given by the
elements

(1) ζn = ζn1
1 · ζn2

2 · · ·

with n = (n1, n2, . . . ) and ni ≥ 0 and only finitely many ni �= 0. We define a linear
section

(2) s : A −→ E

for the algebra extension (16.2.1)(4) as follows. Let s(ζi) = ei = (ζi, 0) and let

(3) s(ζn) = en1
1 · en2

2 · · · · = en.

Here the right-hand side is given by multiplication in E. The section s, in general,
does not coincide with the inclusion A ⊂ A ⊕ M̄ . In terms of the section s we
obtain a new cocycle

(4) DS : A ⊗ A −→ M̄,

DS(a ⊗ b) = s(ab) − s(a) · s(b).
Now we define ξS to be the dual of DS , namely

(5) ξS = D∗
S : RF −→ A⊗A of degree − 1.

16.2.3 Theorem. The map ξ = ξS defined in (16.2.2) is completely determined by
the symmetry operator S. Moreover diagram (16.1.4) commutes for ξ = ξS and ξS

is right equivariant with respect to the action of F0. Hence by (16.1.5) there is a
right equivariant splitting u = uS of B associated to ξ = ξS.

Remark. Theorem (16.2.3) is compatible with the main result of Kristensen (the-
orem 3.3 in [Kr4]). In fact, Kristensen defines elements in A⊗A of the form

K[a, b] = (Sq1 ⊗(Sq2 Sq1 + Sq3)) · δ(Ya,b)

with Ya,b ∈ A given by the formula

Ya,b =Sqa−3 Sqb−2 + Sqa−2 Sqb−3

+
∑

j

(
b − 1 − j

a − 2j

)
(Sqa+b−j−3 Sqj−2 + Sqa+b−j−2 Sqj−3).

One can check that the Kristensen elements satisfy the formulas

S[a, b] = (1 + T )K[a, b], and
ξS [a, b] = TK[a, b].

Here S is described in (14.5.2) and ξS is the map above in (16.2.2).
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One can compute the diagonal ∆1 of B in terms of the splitting uS , that is

(16.2.4) ∆1uS = (uS)�∆0 + ΣξS .

Compare (16.1.5). In order to compute ξS we first determine DS in (16.2.2) by
the following formula. For n = (n1, n2, . . . ) and m = (m1, m2, . . . ) let n + m =
(n1 + m1, n2 + m2, . . . ). Then we have the product in the commutative algebra A
given by

ζn · ζn = ζn+m

and hence we get

DS(ζn ⊗ ζm) = s(ζn+m) − s(ζn)s(ζm)

= en+m + en · em

= en+m + en1
1 · (en2

2 . . . ) · em1
1 · (em2

2 . . . )

= en+m + en1
1 · em1

1 · (en2
2 . . . ) · (em2

2 . . . ) + en1
1 C(ζn2

2 . . . , ζm1
1 )em2

2 . . . .

Here we use the commutator rule (16.2.1)(6). Hence we get inductively the formula

(16.2.5) DS(ζn ⊗ ζm) =
∑
i≥1

ζn1+m1
1 . . . ζ

ni−1+mi−1
i−1 ζni

i C(ζni+1
i+1 . . . , ζmi

i )ζmi+1
i+1 . . . .

This formula shows that DS is completely determined by C and hence by S.
Therefore also ξS , the dual of DS, is completely determined by S. We obtain a
formula for ξS as follows. Let

Sqn ∈ A
be the Milnor generator dual to ζn ∈ A = A∗. Then the elements Sqn form a basis
of A and for x ∈ A we denote by (x)n ∈ F the coordinate of x at the basis element
Sqn so that

x =
∑

n

(x)n Sqn .

Similarly we denote coordinates of x ∈ A ⊗ A by (x)n,m and coordinates of x ∈
A⊗A⊗A by (x)n,m,k.
Recall that we have the left coaction ∆L in (16.1.6). Then the map

ξS : RF −→ A⊗A

defined in (16.2.2) is given by the coordinates, x ∈ RF ,

(16.2.6) (ξS(x))n,m =
∑
i≥1

((1 ⊗ S)∆L(x))k(i),a(i),b(i),

k(i) = (n1 + m1, . . . , ni−1 + mi−1, ni, mi+1, mi+2, . . . ),
a(i) = (0, . . . , 0︸ ︷︷ ︸

i

, ni+1, ni+2, . . . ),

b(i) = (0, . . . , 0︸ ︷︷ ︸
i−1

, mi, 0, 0 . . . ).
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This formula of ξS is easily checked to be the dual of DS in (16.2.5). Thus ξS is
completely determined by ∆L and the symmetry operator S computed in Section
(14.5).

Proof of (16.2.3). We use (16.2.6) and the fact that DS is a cocycle representing
the extension (16.2.1)(4). This shows that diagram (16.1.4) commutes for ξ = ξS .
Hence it remains to check that ξS is right equivariant. This follows from the next
lemma. �
16.2.7 Lemma. The following diagram commutes.

RF
ξS �� A⊗A

A⊗F0 ⊗A⊗F0

µ⊗µ

��

RF ⊗F0

a

��

ξS⊗∆ �� A⊗A⊗F0 ⊗F0

1⊗T⊗1

��

Here µ is given by the multiplication of A and a is the right action of F0 on RF .

Proof. We check that the following dual diagram commutes with D = DS dual to
ξ = ξS .

(1) M

a∗

��

A ⊗ A
DS��

µ∗⊗µ∗

��
A ⊗ F ⊗ A ⊗ F

1⊗T⊗1

��
M ⊗ F A ⊗ A ⊗ F ⊗ F

DS⊗∆∗
��

Compare the notation in (16.2.1). Using the extension (16.2.1)(4) we get the fol-
lowing diagram.

(2) M̄
a∗

��

��

M̄ ⊗ F

��
E

��

b �� E ⊗ F

��
A

µ∗
��

s

��

A ⊗ F

s⊗1

@A
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Here we have E = A ⊕ M̄ and b = µ∗ ⊕ a∗. The map µ∗ is given by the Milnor
diagonal of A which is the unique algebra map satisfying

(3) µ∗(ζn) =
n∑

i=0

ζ2i

n−i ⊗ ζi.

Here we use the inclusion A ⊂ F which is dual to F0 � A. The multiplication of
E is defined in (16.2.1)(5) in terms of D with D = ξ∗ where ξ is right equivariant
as in (16.1.5). Since ξ is right equivariant we observe that b = µ∗⊕a∗ is an algebra
map. The section s is defined as in (16.2.2). We claim that

(4) bs = (s ⊗ 1)µ∗.

Assuming (4) we see that by definition of DS in (16.2.2)(4) diagram (1) commutes.
Finally we obtain (4) as follows. Since the commutator map C is a derivation we
get

C(α2j ⊗ a) = 2jα2j−1C(α ⊗ a) = 0 for j ≥ 1.

Hence we have in E the equation

e2j · x = x · e2j

for j ≥ 1.

This implies by (3) and the definition of s in (16.2.2) that (4) holds. �

16.3 The multiplication in B
We know that B1 is a B0-bimodule. This bimodule is determined by a multiplica-
tion map A as follows. Let

L : A⊗ RB −→ A⊗A

be given by the left action operator L in (14.4.3) with L = 0 for p odd. Moreover
let

ξ = ξS : RB −→ A⊗A
be defined by ξS in (16.2.2) with ξ = 0 for p odd.

16.3.1 Definition. A multiplication map (associated to L and ξ) is a linear map of
degree −1,

A : A⊗ RB −→ A,

satisfying the following properties with α, α′, β, β′ ∈ B0 and x, y ∈ RB. Recall that
via B0 → A an element α ∈ B0 yields the corresponding element in A also denoted
by α.

A(α, xβ) = A(α, x)β,(1)

A(αα′, x) = A(α, α′x) + (−1)|α|αA(α′, x),(2)
A(α, pβ) = −κ(α) · β.(3)
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Next we consider the diagram

A δ �� A⊗A

A⊗ RB

A

��

1⊗∆
�� A⊗ R2

B

A	

��

where the induced map A� is defined by

A�(α ⊗ x ⊗ β′) =
∑

i

(−1)|α
′′
i ||x|A(α′

i, x) ⊗ (α′′
i β′),

A�(α ⊗ β ⊗ y) =
∑

i

(−1)εi(α′
iβ) ⊗ A(α′′

i , y),

with εi = |α′′
i ||β| + |α′

i| + |β| and

δ(α) =
∑

i

α′
i ⊗ α′′

i ∈ A⊗A.

Then the following property holds:

(4) δA = A�(1 ⊗ ∆) + L + ∇ξ.

Here L is the left action operator and ∇ξ is defined as in (15.3.10) by

∇ξ : B0 ⊗ RB → A⊗A,

∇ξ(α ⊗ x) = (δα) · ξ(x) − ξ(α · x).

We have L = 0 and ∇ξ = 0 if p is odd. Recall that the reduced diagonals

δ̃ : A −→ A⊗A,

∆̃ : B0 −→ B0 ⊗ B0

are defined by
δ̃(α) = δ(α) − (1 ⊗ α + α ⊗ 1),

∆̃(α) = ∆(α) − (1 ⊗ α + α ⊗ 1).

We can rewrite formula (4) by the equivalent equation

(5)
δ̃A(α ⊗ x) = A�(α ⊗ ∆̃x) + L(α ⊗ x) + ∇ξ(α ⊗ x)

+
∑

j

((−1)|α̃j |α̃j ⊗ A(˜̃αj , x) + (−1)| ˜̃αj ||x|A(α̃j , x) ⊗ ˜̃αj))

for ∆̃(α) =
∑

j α̃j ⊗ ˜̃αj with |α̃j |, | ˜̃αj | < |α|.
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We say that two multiplication maps A and A′ as in (16.3.1) are equivalent
if there exists a linear map of degree −1,

(16.3.2) γ : RF −→ A

satisfying the properties

(1) A(α ⊗ x) − A′(α ⊗ x) = γ(αx) − (−1)|α|α · γ(x).

Moreover γ is right equivariant with respect to the action of F0 and the diagram

(2) A δ �� A⊗A

RF
∆

��

γ

��

R2
F

γ	

��

commutes with R2
F = RF ⊗F0 + F0 ⊗ RF ⊂ F0 ⊗F0 and

γ�(x ⊗ β) = γ(x) ⊗ β,

γ�(α ⊗ y) = (−1)|α|α ⊗ γ(y),

for x, y ∈ RF and α, β ∈ F0. Commutativity of the diagram is equivalent to
the condition that the dual map γ∗ : A∗ → R∗

F is a derivation, and also to the
following equation corresponding to (14.6.1)(5):

(3) δ̃γ(x) = γ�∆̃(x).

We now get the result:

16.3.3 Theorem. There exists a multiplication map A and two such multiplication
maps are equivalent.

Proof. Using (15.3.5) we see that a B-structure (A, B) with B = 0 is the same as
a multiplication map. In fact, since B = 0, we see by (15.3.5)(2) that A(x, y) = 0
for x, y ∈ RB. Hence the exactness of the row in the following diagram shows that
A induces a multiplication map also denoted by A.

RB ⊗ RB �� B0 ⊗ RB ��

A

9:=
==

==
==

==
==

==
= A⊗ RB ��

A

��  
  
  
  
  
  
  

0

A
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A B-structure (A, B) with B = 0 exists by setting

α · u(x) − u(α · x) = ΣA(α ⊗ x)

where u = uξ is the right equivariant splitting in (16.1.5). Two such sections yield
equivalent multiplication maps. Now the uniqueness theorem (15.3.13) yields the
result, see also (15.3.10). �
We obtain by (15.3.14) the next result on triple Massey products.

16.3.4 Corollary. Let A be a multiplication map and let 〈α, β, γ〉 be defined for
α, β, γ ∈ A, αβ = 0, βγ = 0. If β̄, γ̄ ∈ B0 are elements representing β, γ, then
β̄ · γ̄ ∈ RB and

A(α, β̄ · γ̄) ∈ 〈α, β, γ〉.
Hence a computation of the multiplication map A yields the computation of all
triple Massey products in the Steenrod algebra.

16.4 Computation of the multiplication map

We only consider the case p = 2 so that F = Z/2Z and G = Z/4Z leaving the case
p= odd to the reader. Let

χ : F −→ G

be the function with χ(0) = 0 and χ(1) = 1. We define for 0 < a < 2b the relation

[a, b] ∈ RB ⊂ TG(EA),

(16.4.1) [a, b] = Sqa Sqb +
[a/2]∑
k=0

χ

(
b − k − 1
a − 2k

)
Sqa+b−k Sqk .

Let E1
A be the subset of RB consisting of the elements p = p · 1 and [a, b] for

0 < a < 2b. Then the function

(16.4.2) B0 ⊗ E1
A ⊗ B0 � RB,

which carries α⊗x⊗β to α ·x ·β, is surjective since RB is the ideal in B0 generated
by E1

A. The reduced diagonal

∆̃ = ∆̃ : B0 −→ B0 ⊗ B0

yields for ∆̃[a, b] the following result. Here we set [a, b] = 0 for a = 0 or a ≥ 2b.

16.4.3 Proposition. The element ∆̃[a, b] ∈ B0 ⊗ B0 is a linear combination

∆̃[a, b] = p · U [a, b] +
∑

t

(χ(nt)[r, s] ⊗ Squ Sqv +χ(mt) Sqr Sqs ⊗[u, v])
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where the p-term U [a, b] is a linear combination

U [a, b] =
∑

t

lt Sqr Sqs ⊗ Squ Sqv .

The sums are taken over all t = (r, s, u, v) with r, s, u, v ≥ 0 and nt, mt, lt ∈ F.

Proof. We consider the following commutative diagram.

(1) B0

��

∆̃G �� B0 ⊗ B0

��
F0

∆̃F �� F0 ⊗F0

It is easy to see that ∆̃F[a, b] is a linear combination

(2) ∆̃F[a, b] =
∑

t

(nt[r, s] ⊗ Squ Sqv +mt Sqr Sqs ⊗[u, v])

with nt, mt ∈ F. Let (∆̃F[a, b])χ be the same sum with nt, mt replaced by χ(nt),
resp. χ(mt). Then there is an element U [a, b] ∈ B0 such that

(3) ∆̃G[a, b] = (∆̃F[a, b])χ + pU [a, b].

This yields the canonical form of the p-term U [a, b] in F0. �
Examples of the terms U [a, b] considered as elements in A ⊗ A are given in the
following table.

U [1, 1] = Sq1 ⊗Sq1

U [1, 2] = Sq1 ⊗Sq2 +Sq2 ⊗ Sq1

U [1, 3] = Sq1 ⊗Sq3 +Sq2 ⊗ Sq2 + Sq3 ⊗ Sq1

U [2, 2] = Sq1 ⊗Sq2 Sq1 + Sq2 ⊗Sq2 +Sq2 Sq1 ⊗ Sq1

U [1, 4] = Sq1 ⊗Sq4 +Sq2 ⊗ Sq3 + Sq3 ⊗ Sq2 + Sq4 ⊗ Sq1

U [2, 3] = Sq2 ⊗Sq3 +Sq2 ⊗ Sq2 Sq1 +Sq3 ⊗Sq2 +Sq2 Sq1 ⊗Sq2

U [3, 2] = 0

U [1, 5] = Sq1 ⊗Sq5 +Sq2 ⊗ Sq4 + Sq3 ⊗ Sq3 + Sq4 ⊗ Sq2 +Sq5 ⊗Sq1

U [2, 4] = Sq3 ⊗Sq2 Sq1 + Sq2 Sq1 ⊗ Sq3

U [3, 3] = Sq2 ⊗Sq4 +Sq2 ⊗ Sq3 Sq1 +Sq3 ⊗Sq3 +Sq4 ⊗ Sq2 + Sq3 Sq1 ⊗Sq2
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U [1, 6] = Sq1 ⊗Sq6 +Sq2 ⊗ Sq5 + Sq3 ⊗ Sq4 + Sq4 ⊗ Sq3 +Sq5 ⊗Sq2 +Sq6 ⊗Sq1

U [2, 5] = Sq2 ⊗Sq5 +Sq4 ⊗ Sq2 Sq1 +Sq5 ⊗Sq2 +Sq2 Sq1 ⊗Sq4

U [3, 4] = Sq2 ⊗Sq5 +Sq2 ⊗ Sq4 Sq1 +Sq3 ⊗Sq4 +Sq4 ⊗ Sq3 + Sq5 ⊗ Sq2 + Sq4 Sq1 ⊗ Sq2

U [4, 3] = Sq1 ⊗Sq4 Sq2 + Sq3 ⊗Sq4 +Sq3 ⊗Sq3 Sq1 +Sq4 ⊗Sq3 +Sq3 Sq1 ⊗ Sq3

+ Sq4 Sq2 ⊗Sq1

U [1, 7] = Sq1 ⊗Sq7 +Sq2 ⊗ Sq6 + Sq3 ⊗ Sq5 + Sq4 ⊗ Sq4 +Sq5 ⊗Sq3 +Sq6 ⊗Sq2

+ Sq7 ⊗ Sq1

U [2, 6] = Sq4 ⊗Sq4 +Sq5 ⊗ Sq2 Sq1 +Sq2 Sq1 ⊗ Sq5

U [3, 5] = Sq2 ⊗Sq5 Sq1 + Sq3 ⊗Sq5 +Sq4 ⊗Sq3 Sq1 +Sq5 ⊗Sq3 +Sq3 Sq1 ⊗ Sq4

+ Sq5 Sq1 ⊗Sq2

U [4, 4] = Sq2 ⊗Sq6 +Sq2 ⊗ Sq4 Sq2 +Sq3 ⊗Sq4 Sq1 +Sq4 ⊗Sq4 +Sq4 ⊗Sq3 Sq1

+ Sq6 ⊗ Sq2 + Sq3 Sq1 ⊗Sq4 +Sq3 Sq1 ⊗Sq3 Sq1 + Sq4 Sq1 ⊗ Sq3

+ Sq4 Sq2 ⊗Sq2

U [5, 3] = Sq3 ⊗Sq4 Sq1 + Sq3 Sq1 ⊗ Sq3 Sq1 +Sq4 Sq1 ⊗Sq3

U [1, 8] = Sq1 ⊗Sq8 +Sq2 ⊗ Sq7 + Sq3 ⊗ Sq6 + Sq4 ⊗ Sq5 +Sq5 ⊗Sq4

+ Sq6 ⊗ Sq3 + Sq7 ⊗ Sq2 + Sq8 ⊗ Sq1

U [2, 7] = Sq2 ⊗Sq7 +Sq6 ⊗ Sq2 Sq1 +Sq7 ⊗Sq2 +Sq2 Sq1 ⊗Sq6

U [3, 6] = Sq2 ⊗Sq6 Sq1 + Sq3 ⊗Sq6 +Sq4 ⊗Sq4 Sq1 +Sq6 ⊗Sq3 +Sq4 Sq1 ⊗ Sq4

+ Sq6 Sq1 ⊗Sq2

U [4, 5] = Sq2 ⊗Sq6 Sq1 + Sq3 ⊗Sq4 Sq2 + Sq4 ⊗ Sq5 +Sq5 ⊗Sq4 +Sq3 Sq1 ⊗ Sq4 Sq1

+ Sq4 Sq1 ⊗Sq3 Sq1 + Sq4 Sq2 ⊗ Sq3 + Sq6 Sq1 ⊗Sq2

U [5, 4] = Sq2 ⊗Sq5 Sq2 + Sq2 ⊗Sq6 Sq1 + Sq4 ⊗ Sq5 +Sq4 ⊗Sq4 Sq1 + Sq5 ⊗ Sq4

+ Sq5 ⊗ Sq3 Sq1 +Sq3 Sq1 ⊗ Sq5 +Sq4 Sq1 ⊗ Sq4 + Sq5 Sq2 ⊗ Sq2

+ Sq6 Sq1 ⊗Sq2

The reduced diagonal ∆̃F of F0 induces the quotient map ˜̄∆ in the diagram

(4) F0
∆̃F �� F0 ⊗F0

RF ��

⋃

˜̄∆
89��

���
���

���
���

���
�� R2

F

⋃

����
RF ⊗A⊕A⊗ RF
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with ˜̄∆[a, b] also given by

(5) ˜̄∆[a, b] =
∑

t

(nt[r, s] ⊗ Squ Sqv +mt Sqr Sqs ⊗[u, v])

with nt and mt as in the proof of (16.3.3). The map ˜̄∆ in (4) has two coordinates

˜̄∆(x) = (∆′(x), T∆′(x)) for x ∈ RF

with ∆′ as in (16.1.6).
Given a multiplication map (see (16.3.1))

A : A⊗ RB −→ A

we obtain for 0 < a < 2b the multiplication function (associated to L and ξ)

(16.4.4) Aa,b : A −→ A.

This is the linear map of degree a + b − 1 defined by

Aa,b(α) = A(α ⊗ [a, b]).

The family of multiplication functions {Aa,b} determines the multiplication map
A uniquely by the following commutative diagram.

(1) kernel(q) ⊂ A⊗ (B0 ⊗ E1
A ⊗ B0)

q �� ��

Ā

  ��
��

��
��

��
��

��
��

��
��

�
A⊗ RB

A

��  
  
  
  
  
  
  

A

Here q is defined by (16.4.2). The map Ā is defined according to (16.3.1)(1)(2) by
the formulas

(2)

{
Ā(α ⊗ α′ ⊗ p ⊗ β) = κ(α) · α′β,

Ā(α ⊗ α′ ⊗ [a, b] ⊗ β) = (Aa,b(αα′) + αAa,b(α′)) · β.

Here we use the algebra map B0 � A and the image of α ∈ B0 in A is also denoted
by α.

We express for α ∈ A the reduced diagonal δ̃ applied to α by the formula

(3) δ̃(α) =
∑

j

α̃j ⊗ ˜̃αj
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with |α̃j |, | ˜̃αj | > 0. On the other hand the diagonal δ is written as

(4) δ(α) = δ̃(α) + 1 ⊗ α + α ⊗ 1 =
∑

i

α′
i ⊗ α′′

i .

Moreover, recall that we have by (16.4.3) the elements

(5) U [a, b] ∈ A⊗A

given by U [a, b] ∈ F0 ⊗F0 via the quotient map F0 → A.
Now we get by (16.3.1)(5) the following ∆-formula for the multiplication

functions Aa,b.

16.4.5 Theorem. The family of multiplication functions Aa,b associated to L and
ξ = ξS satisfies the ∆-formula in Ã ⊗ Ã:

δ̃Aa,b(α) = L(α ⊗ [a, b]) + ξ(α · [a, b]) + α · ξ([a, b])
+ (δκ(α)) · U [a, b] + W (α ⊗ [a, b])

with

W (α ⊗ [a, b]) =
∑

j

α̃j ⊗ Aa,b(˜̃αj) + Aa,b(α̃j) ⊗ ˜̃αj

+
∑
t,i

(ntAr,s(α′
i) ⊗ α′′

i Squ Sqv +mtα
′
i Sqr Sqs ⊗Au,v(α′′

i )).

Here nt, mt are the coefficients in the formula (16.4.3)(5) with t = (r, s, u, v). We
set Aa,b = 0 for a = 0 or a ≥ 2b.

The ∆-formula can be used for the inductive computation of Aa,b(α).

Proof. The formula in the theorem is a reformulation of the formula (16.3.1)(5).
�

16.4.6 Theorem. Consider a family of functions

Aa,b : A −→ A

of degree a + b − 1 with 0 < a < 2b satisfying the ∆-formula (16.4.5) and assume
the map Ā in (16.4.4)(2) defined by the family {Aa,b} satisfies the kernel condition

Ā(z) = 0 for z ∈ kernel(q)

as in (16.4.4)(1). Then Ā induces via (16.4.4)(1) a multiplication map A and vice
versa a multiplication map A yields a family {Aa,b} with these properties.



416 Chapter 16. Computation of the Secondary Hopf Algebra B

The theorem gives an inductive method for the computation of a multiplica-
tion map A. If Aa,b(α) is computed for a+b+|α| < n, then we get for a+b+|α| = n

the ∆-formula δ̃Aa,b(α) = (terms already computed) and we can choose a solution
Aa,b(α) of this formula.

We point out that the kernel of δ̃ : A −→ A⊗A is generated by the elements
Qi of degree 2i − 1, i ≥ 1, which are dual to the Milnor generators of the algebra
A∗. One obtains Qi = Sq(0,...,0,1) inductively by the formula (see [Mn])

(16.4.7)

{
Qi = Sq1,

Qi+1 = Sq2i

· Qi + Qi · Sq2i

, i ≥ 1.

Hence in the induction procedure above the element Aa,b(α) is uniquely deter-
mined for a + b + |α| �= 2i.

16.4.8 Proposition. Let Aa,b(α) be given for a + b + |α| ≤ n = 2i such that the
∆-formula holds and the kernel condition Ā(z) = 0 for z ∈ kernel(q) and |z| ≤ n
is satisfied. Then there exists a multiplication map Ã such that

Ã(α ⊗ [a, b]) = Aa,b(α)

for a + b + |α| ≤ n.

Proof. Assume the result holds for n = 2i. Then the ∆-formula yields for a + b +
|α| < m = 2i+1 unique elements Aa,b(α) and

Ã(α ⊗ [a, b]) = Ãa,b(α) = Aa,b(α)

holds. We now choose for a+b+ |α| = m elements Aa,b(α) such that the ∆-formula
holds and such that the kernel condition

(1) Ā(z) = 0 for |z| = m, z ∈ kernel(q)

holds. Then Ā induces

(2) Am : (A⊗ RB)≤m −→ A

and Am − Ã = ∇ is defined in degree ≤ m with ∇(α, x) = 0 for |α| + |x| < m.
The argument that ∂1 in (15.4.10) is surjective shows that there exists

(3) γ : R≤m
F −→ A with⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ = 0 in degree < m,

δγ = γ�∆ in degree ≤ m,

∇(α, x) = γ(αx) + αγ(x),
γ(xβ) = γ(x) · β

for |α|, |β| ≤ m − |x|.
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The following lemma shows that there is an extension

(4) γ : RF −→ A

of (3) in degree > m such that the extension is an equivalence as in (16.3.2). Hence
we obtain a multiplication map ˜̃A by

(5) ˜̃A(α, x) = Ã(α, x) + γ(αx) + αγ(x)

and we have ˜̃A = Am in degree ≤ m. This completes the proof of (16.4.8). �

16.4.9 Lemma. An equivalence γ extending (3) exists.

Proof. We define the dual of γ,

(7) γ∗ : A∗ −→ R∗
F ,

in degree ≤ m − 1 by the dual of (3). Let ζk be the Milnor generator in A∗ of
degree 2k−1. Then γ∗, being a derivation, is determined by γ∗(ζk) for k ≥ 1.
We set γ∗(ζk) = 0 for 2k > m = 2i+1. Then γ∗ is well defined and γ satisfies
(16.3.2)(1). We have to check that also (16.3.2)(3) holds for γ. This is equivalent
to the commutative diagram

(8) A⊗A
µ �� A

RF ⊗F0

γ⊗q

��

ν �� RF

γ

��

where µ and ν are given by multiplication. The dual of the diagram is as follows.

(9) A∗ ⊗A∗

γ∗⊗q∗

��

A∗
µ∗

��

γ∗

��
R∗

F ⊗F∗
0 R∗

Fν∗
��

According to Milnor the diagonal µ∗ of A∗ satisfies the formula

(10) µ∗(ζk) =
k∑

j=0

ζ2j

k−j ⊗ ζj
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We have to check that diagram (9) commutes on generators ζk. This is clear by
(3) for 2k ≤ m. For 2k > m = 2i+1, that is k > i + 1, we have to check

(11) (γ∗ ⊗ q∗)µ∗(ζk) = 0

since γ∗(ζk) = 0. Since also γ∗(ζk) = 0 for k < i + 1 we get by (10)

(12) (γ∗ ⊗ q∗)µ∗(ζk) = γ∗(ζ2j

k−j) ⊗ q∗ζj

for k − j = i + 1, j > 0. Now γ∗ is derivation where the bimodule structure of R∗
F

is given by the co-commutative diagonal of F0. Therefore we have for ζ = ζk−j

and t = 2j the formula

(13)

γ∗(ζt) =
t−1∑
i=0

ζtγ∗(ζ)ζt−1−i

=
t−1∑
i=0

ζt−1γ∗(ζ) = tζt−1γ∗(ζ) = 0

since t is even. �

16.5 Admissible relations

We consider the case that the prime p is even. Then the admissible monomials

(16.5.1) Sqa1 · · ·Sqak with a1 ≥ 2a2, . . . , ak−1 ≥ 2ak

form a basis of the Steenrod algebra A. The basis yields the F-linear section s of
the algebra map q,

(1) A s �� F0
q �� A, qs = 1

with s(Sqa1 · · · Sqak) = Sqa1 · · ·Sqak for each admissible word Sqa1 · · ·Sqak in A.
In addition let 0 < ak < 2a. Then the admissible relations are the elements

(2) [a1, . . . , ak, a] = Sqa1 · · ·Sqak Sqa +sq(Sqa1 · · · Sqak Sqa) ∈ RF .

For k = 1 this is the Adem relation [a1, a]. Moreover the preadmissible relations
are the elements

(3) Sqa1 · · ·Sqak−1 [ak, a] ∈ RF .
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The next result was pointed out to the author by Mamuka Jibladze, see (16.1.1).

16.5.2 Proposition. The set AR of all admissible relations and the set PAR of all
preadmissible relations both are a basis of the free right F0-module RF . Moreover
we have the formula in RF ,

[a1, . . . , ak, a] = Sqa1 · · ·Sqak−1 [ak, a] +
∑

α

α · βα,

where the sum is taken over all α ∈ AR with α < [a1, . . . , ak, a] and βα ∈ F0.
Here the ordering of AR is the lexicographical ordering from the right.

The formula is easily checked by the definition of the Adem relation. The
basis PAR of RF as a right F0-module yields the section ŝ of the multiplication q,

(16.5.3) RF
ŝ �� F0 ⊗ E1 ⊗F0

q �� RF qŝ = 1.

Here E1 is in the set of Adem relations and q carries α ⊗ [a, b] ⊗ β to α[a, b]α.
Moreover ŝ is the unique map of right F0-modules satisfying

ŝ(Sqa1 · · ·Sqak−1 [ak, a]) = Sqa1 · · ·Sqak−1 ⊗[ak, a] ⊗ 1

for all preadmissible relations in PAR. The elements

x − ŝqx with x = α ⊗ [a, b] ⊗ β

and α , β ∈ Mon(EA) generate the kernel of q.
Since the preadmissible relations form a basis of the free right F0-module

RF , we can write for each monomial β ∈ Mon(EA) in a unique way

(16.5.4) β[a, b] = Σαi[ai, bi]βi in F0

with αi[ai, bi] preadmissible. A list of examples for such equations is given in the
following table.

Sq1[1, 1] = [1, 1] Sq1

Sq1[1, 2] = [1, 1] Sq2 +[1, 3]

Sq1[1, 3] = [1, 1] Sq3

Sq1[2, 2] = [1, 2] Sq2 +[1, 3] Sq1 +[3, 2]

Sq2 Sq1[1, 1] = Sq2[1, 1] Sq1

Sq1[1, 4] = [1, 1] Sq4 +[1, 5]

Sq1[2, 3] = [1, 2] Sq3 +[1, 4] Sq1 +[1, 5] + [3, 3]

Sq1[3, 2] = [1, 3] Sq2
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Sq2[2, 2] = [2, 2] Sq2 +[2, 3] Sq1 +[3, 3] + Sq4[1, 1] + Sq3[1, 2]

Sq2 Sq1[1, 2] = Sq2[1, 1] Sq2 + Sq2[1, 3]

Sq1[1, 5] = [1, 1] Sq5

Sq1[2, 4] = [1, 2] Sq4 +[1, 5] Sq1 +[1, 6] + [3, 4]

Sq1[3, 3] = [1, 3] Sq3 +[1, 5] Sq1

Sq2[2, 3] = [2, 2] Sq3 +[2, 4] Sq1 +[2, 5] + Sq5[1, 1] + Sq3[1, 3]

Sq2[3, 2] = [2, 3] Sq2 +[4, 3] + Sq4[1, 2]

Sq3[2, 2] = [3, 2] Sq2 +[3, 3] Sq1 + Sq5[1, 1]

Sq2 Sq1[1, 3] = Sq2[1, 1] Sq3

Sq2 Sq1[2, 2] = [2, 3] Sq2 + Sq2[1, 2] Sq2 +Sq2[1, 3] Sq1 +[4, 3] + Sq4[1, 2]

Sq1[1, 6] = [1, 1] Sq6 +[1, 7]

Sq1[2, 5] = [1, 2] Sq5 +[1, 6] Sq1 +[3, 5]

Sq1[3, 4] = [1, 3] Sq4 +[1, 7]

Sq1[4, 3] = [1, 4] Sq3 +[1, 5] Sq2 +[5, 3]

Sq2[2, 4] = [2, 2] Sq4 +[2, 5] Sq1 +[2, 6] + [3, 5] + Sq6[1, 1] + Sq3[1, 4]

Sq2[3, 3] = [2, 3] Sq3 +[2, 5] Sq1 +[5, 3] + Sq6[1, 1] + Sq4[1, 3]

Sq3[2, 3] = [3, 2] Sq3 +[3, 4] Sq1 +[3, 5]

Sq3[3, 2] = [3, 3] Sq2 +[5, 3] + Sq5[1, 2]

Sq2 Sq1[1, 4] = Sq2[1, 1] Sq4 + Sq2[1, 5]

Sq2 Sq1[2, 3] = [2, 3] Sq3 + Sq2[1, 2] Sq3 +[2, 5] Sq1 + Sq2[1, 4] Sq1 +[5, 3] + Sq6[1, 1]

+ Sq4[1, 3] + Sq2[1, 5]

Sq2 Sq1[3, 2] = Sq2[1, 3] Sq2

Sq1[1, 7] = [1, 1] Sq7

Sq1[2, 6] = [1, 2] Sq6 +[1, 7] Sq1 +[3, 6]

Sq1[3, 5] = [1, 3] Sq5 +[1, 7] Sq1

Sq1[4, 4] = [1, 4] Sq4 +[1, 6] Sq2 +[1, 7] Sq1 +[5, 4]

Sq1[5, 3] = [1, 5] Sq3

Sq2[2, 5] = [2, 2] Sq5 +[2, 6] Sq1 + Sq7[1, 1] + Sq3[1, 5]

Sq2[3, 4] = [2, 3] Sq4 +[2, 7] + [4, 5] + [5, 4] + Sq4[1, 4]

Sq2[4, 3] = [2, 4] Sq3 +[2, 5] Sq2 + Sq6[1, 2] + Sq5[1, 3]

Sq3[2, 4] = [3, 2] Sq4 +[3, 5] Sq1 +[3, 6] + Sq7[1, 1]

Sq3[3, 3] = [3, 3] Sq3 +[3, 5] Sq1 + Sq7[1, 1] + Sq5[1, 3]

Sq2 Sq1[1, 5] = Sq2[1, 1] Sq5
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Sq2 Sq1[2, 4] = [2, 3] Sq4 + Sq2[1, 2] Sq4 +Sq2[1, 5] Sq1 +[2, 7] + [4, 5]

+ [5, 4] + Sq4[1, 4] + Sq2[1, 6]

Sq2 Sq1[3, 3] = Sq2[1, 3] Sq3 + Sq2[1, 5] Sq1

Sq4[3, 2] = [4, 3] Sq2 +[5, 3] Sq1 + Sq5[2, 2]

By (16.4.1) the equation (16.5.4) yields an element Θ ∈ B0 such that

(16.5.5) β[a, b] = pΘ +
∑

i

αi[ai, bi]βi in B0.

Here Θ modulo F is well defined by β and [a, b] so that Θ determines an element
Θ in A by the algebra map B0 −→ F0 −→ A.

16.5.6 Proposition. Consider a family of functions Aa,b as in (16.4.6). Then the
associated map Ā in (16.4.4)(1) satisfies the kernel condition if and only if for
all admissible monomials α and monomials β ∈ Mon(EA) the following formula
holds.

Aa,b(αβ) + αAa,b(β) = κ(α) · Θ +
∑

i

(Aai,bi(ααi) + αAai,bi(αi))βi.

Proof. We observe that F ⊗ RB has a basis consisting of the elements

(1)

{
pα, α ∈ Mon(EA), and α admissible,
α[a, b]β, α, β ∈ Mon(EA), and α[a, b] preadmissible.

Using this basis we obtain a section s̄ of the multiplication map q̄,

(2) F ⊗ RB
s̄ �� F ⊗ (B0 ⊗ E1

A ⊗ B0)
q̄ �� F ⊗ RB

with s̄pα = p⊗α with p ∈ E1
A and s̄(α[a, b]β) = α⊗ [a, b]⊗β. Therefore the kernel

of q̄ is generated by the elements (β, γ ∈ Mon(EA))

β ⊗ p ⊗ γ − sq̄(β ⊗ p ⊗ γ),(3)
β ⊗ [a, b] ⊗ γ − sq̄(β ⊗ [a, b] ⊗ γ).(4)

Since the kernel of q in (16.4.4)(1) satisfies

(5) kernel(q) = A⊗ kernel(q̄)

we have to check that for α admissible Ā vanishes on elements α⊗ (3) and α⊗ (4).
Now definition of Ā on α ⊗ (3) shows that Ā(α ⊗ (3)) = 0 is always satisfied.
Moreover by (16.4.4) we see that Ā(α ⊗ (4)) = 0 holds if and only if

(Aa,b(αβ) + αAa,b(β))γ = κ(α)Θγ +
∑

i

(Aai,bi(ααi) + αAai,bi(αi))βiγ.

This equation is obtained by multiplying the equation in (16.5.6) by γ. �
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In the next result we use the section s̄ of the reduced diagonal δ̃ : Ã −→ Ã⊗Ã
defined as follows. For x ∈ image(δ̃) there is a unique element s̃(x) ∈ Ã with
δs̃(x) = x such that s̃(x) is a sum of non-primitive Milnor generators. Moreover
we use the basis of preadmissible relations α[a, b] in the free right F0-module RF
in (16.5.1)(3). Let PAR(n) be the set of all preadmissible relations of degree n.

16.5.7 Proposition. Let i ≥ 1. For each function

εi : PAR(2i) −→ F

there is a unique map γ = γ(εi) : RF −→ Ã satisfying the properties in (16.3.2)
and satisfying

γ(x) = 0 for |x| < 2i,

γ(x) = εi(x) · Qi for x ∈ PAR(2i), see (16.4.7),

γ(x) = sum of non − primitive Milnor generators for x ∈ PAR(2i), j > i.

Moreover each γ in (16.3.2) determines well-defined functions εi, i ≥ 1, such that

γ =
∑
i≥1

γ(εi).

Proof. Using (16.3.2)(3) we define γ(x) = γ(εi) in degree > 2i by the formula
γ(x) = s̃γ�∆̃(x), x ∈ PAR. �

16.6 Computation of B
We consider the case of the even prime p. The structure of B is completely deter-
mined by the function ξS and by the multiplication functions Aa,b with 0 < a < 2b.
Since ξS is right equivariant the function ξS is well defined by the elements

ξS(α[a, b]) ∈ Ã ⊗ Ã

where α[a, b] is a preadmissible relation. A list of such elements in low degrees is
given below. In this section we also describe well-defined elements

Aa,b(α) ∈ A

for all admissible α in A. These elements determine Aa,b.

16.6.1 Theorem. There exists a splitting u of B,

u : RB −→ B1

which is right equivariant with respect to the action of B0 and which satisfies

∆1u(x) = u�(∆0x) + ΣξS(x)
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for the diagonal ∆ = (∆1, ∆0) of B. Moreover

α · u([a, b]) = u(α[a, b]) + ΣAa,b(α)

for [a, b] ∈ RB as defined in (16.4.1) and α · u([a, b]) defined by the left action of
α ∈ B0 on B1.

This result shows that B is completely determined by the elements ξ(α[a, b])
and Aa,b(α). Theorem (16.6.1) allows the computation of matrix Massey prod-
ucts 〈X, Y, Z〉 as defined in (5.5.7).

16.6.2 Corollary. Let X = (xj), Y = (yi
j) and Z = (zi) be matrices in A with

XY = 0 and Y Z = 0. Then we choose matrices Ȳ = (ȳi
j) and Z̄ = (z̄i) in B0

which map to Y and Z respectively. Then∑
i

ȳi
j z̄i ∈ RB

and we get

(∗) −
∑

j

A(xj ⊗
∑

i

ȳi
j z̄i) ∈ 〈X, Y, Z〉.

Here the function A : A ⊗ RF −→ A of degree −1 is defined in terms of the
multiplication functions Aa,b : A −→ A as in (16.4.4)(1).

Proof. Let also X̄ = (x̄j) be a matrix mapping to X . Then the splitting u in
(16.6.1) satisfies

(1) u(X̄Ȳ ) · Z̄ − X̄u(Ȳ Z̄) ∈ 〈X, Y, Z〉.

Moreover since u is right equivariant (1) coincides with

(2) u(X̄Ȳ Z̄) − (u(X̄Ȳ Z̄) − Σ(∗)) = Σ(∗)

where (∗) is the term in the corollary.
�

For the inductive determination of the elements Aa,b we need the following
splitting s̃ of the reduced diagonal δ̃,

(16.6.3) image(δ̃)
s̃ �� Ã

δ̃ �� Ã ⊗ Ã

with δ̃s̃(x) = x. The splitting s̃ is determined by the Milnor basis of Ã given by
elements Sqn where n = (n1, n2, . . . ) is a sequence of natural numbers ni ≥ 0 for
i ≥ 1 with ni = 0 for almost all indices i ≥ 1. For n = (n, 0, 0, . . . ) we actually
have Sqn = Sqn. We have the formula

δ̃ Sqn =
∑
i,j �=0

i+j=n

Sqi ⊗ Sqj .
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The kernel of δ̃ is generated by the primitive Milnor generators

Qi = Sq(0,...,0,1,0,... ) .

Therefore for x ∈ image(δ̃) there is a unique element s̃(x) ∈ Ã with δ̃s̃(x) = x such
that s̃(x) is a sum of non-primitive Milnor generators. This defines the splitting s̃.

16.6.4 Definition. We introduce well-defined elements Aa,b(α) inductively as fol-
lows. In degree 3 we set

(1) A1,1(Sq1) = 0.

Assume now Aa,b(α) is defined for degree |α|+ a + b < n, n ≥ 4 and let α[a, b] be
given where α is admissible and |α| + a + b = n. Then the term W (α ⊗ [a, b]) in
(16.4.5) is defined and we get the sum in Ã ⊗ Ã:

(2)
Z = L(α ⊗ [a, b]) + ξS(α[a, b]) + αξS([a, b])

+ (δκ(α))U(a, b) + W (α ⊗ [a, b]).

This element is in the image of δ̃ so that by the section s̃ in (16.6.2) also

(3) s̃(Z) ∈ Ã

is defined.
We now introduce the length function. The function lengtha carries a mono-

mial α to the number ≥ 0 defined as follows. Let α′ be the largest submonomial of
α satisfying α = α′′α′ and α′[a, b] is preadmissible. Then lengtha(α) is the length
of the monomial α′′. We have lengtha(α) = 0 if and only if α[a, b] is preadmissible.

If the degree n of α[a, b] is not a power of 2 we set

(4a) Aa,b(α) = s̃(Z).

Moreover if the degree n of α[a, b] is a power of 2 with n = 2i, then

(4b) Aa,b(α) =

{
s̃(Z) if lengtha(α) = 0,

s̃(Z) + εa,b(α) · Qi if lengtha(α) = 1.

Here εa,b(α) ∈ F is a variable and Qi is defined in (16.4.7).
If the degree n of α[a, b] is a power of 2 and if lengtha(α) ≥ 2, we define

Aa,b(α) inductively as follows. Let Sqm be the first factor of α, that is α = Sqm β,
with lengtha(β) < lengtha(α). Then we get Aa,b(α) by the formula:

(5) Aa,b(α) = Aa,b(Sqm β) = Sqm Aa,b(β) + Sqm−1 Θ + Ψ.

Here Θ, Ψ ∈ A are defined as follows. Since the preadmissible relations form a
basis of the right F0-module RF , we have the formula

β[a, b] =
∑

i

αi[ai, bi]βi in F0
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with αi[ai, bi] preadmissible. As in (16.5.5) this formula yields an element Θ ∈ B0

such that

(6) β[a, b] = pΘ +
∑

i

αi[ai, bi]βi in B0.

This determines the corresponding element Θ in A. Moreover we define Ψ by the
sum

(7) Ψ =
∑

i

(Aai,bi(Sqm αi) + Sqm Aai,bi(αi)) · βi.

Here lengthai
(Sqm αi) ≤ 1 so that Ψ is already defined by (4b).

This shows that all elements Aa,b(α) (where α is a monomial and a+b+|α| =
2i) are defined in terms of the ε-vectors :

(8) εa,b(α) ∈ F with lengtha(α) = 1, a + b + |α| = 2i.

Now Aa,b is a function on A so that for a relation r ∈ RF we have Aa,b(r) = 0.
The relations

β[s, t]γ ∈ RF , β[s, t] preadmissible, γ monomial

with |α|+ s + t + |β| = 2i − a− b generate RF in this degree. Therefore the Adem
relation [s, t] written in the form [s, t] =

∑
j uj with uj a monomial of length 2

yields the equation

(9)
∑

j

Aa,b(βujγ) = 0.

Here Aa,b(βujγ) is defined in terms of (8) so that the equations (9) yield linear
equations for the ε-vectors in (8). Any choice of ε-vector satisfying the equations
defines Aa,b(α) in degree 2i. This way a computer can compute a list of elements
Aa,b(α) in low degrees. The list in the tables below is obtained by the choice of
ε-vectors given as follows:

(10)

ε3,3(Sq2) = 1,

ε3,3(Sq4 Sq6) = 1,

ε3,3(Sq8 Sq12 Sq6) = 1,

and εa,b(α) = 0 otherwise, a + b + |α| ≤ 63.
We point out that the choices of ε satisfy the conditions above so that the

elements Aa,b(α) are uniquely determined for a + b + |α| ≤ 63.
By induction the ε-vectors in degree < 2i are already chosen. Then the ε-

vectors in degree 2i satisfying the equations given by (9) form an affine subspace
V (2i) in the vector space of all ε-vectors in degree 2i. The dimension of this affine
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subspace can be controlled by the equivalences γ in (16.3.2) and (16.5.7). For this
we define a linear map

(11) L : λ-vectors −→ ε-vectors

follows. Here a λ-vector is a tuple

λ = (λ[a, b] ∈ F, 0 < a < 2b)

and L carries λ to the ε-vector defined by

εa,b(α) =
∑

i

λ[ai, bi].

Here the [ai, bi] are all relations which appear in the sum decomposition (16.5.4)
of the element α[a, b] without factors, that is, with αi = 1, βi = 1. Then (16.5.7)
shows that the image of L acts transitively and effectively on the affine space V (2i).
For this we point out that we have the condition (16.6.3)(4b) for lengtha(α) = 0
where α �= 1.

The author is very grateful to Mamuka Jibladze for working out a computer
program implementing the algorithm above for the computation of the multipli-
cation table Aa,b(α). He implemented a Maple package on computations in the
secondary Hopf algebra B which is based on Monk’s package [Mo] on computa-
tions in the Steenrod algebra A.

Using Mamuka’s package one obtains the tables below which in particular
show the multiplication table of the algebra B in degree ≤ 17. In degree 17 one can
compute by (16.6.2) the triple matrix Massey product 〈C, B, A〉 with the matrices
(see Harper [Ha], Section 6.2):

A =

⎛⎜⎜⎝
Sq1

Sq2

Sq4

Sq8

⎞⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sq1 0 0 0
Sq3 Sq2 0 0
Sq4 Sq2 Sq1 Sq1 0
Sq7 Sq6 Sq4 0
Sq8 Sq7 Sq4 Sq1 Sq1

Sq7 Sq2 Sq8 Sq4 Sq2 Sq2

Sq15 Sq14 Sq12 Sq8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

C = ( Sq15 + Sq11 Sq4, Sq11 Sq2, Sq12 + Sq11 Sq1,

Sq8 Sq1 + Sq6 Sq3 + Sq6 Sq2 Sq1,

Sq8 + Sq6 Sq2, Sq7 + Sq4 Sq2 Sq1, Sq1).
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The multiplication table applied to 〈C, B, A〉 in (16.6.2) yields the matrix
triple Massey product

(16.6.5) Sq16 ∈ 〈C, B, A〉 �= 0.

More precisely one gets by (16.6.2) and the tables the element

Sq16 + Sq2,0,2 + Sq6,1,1 + Sq1,0,0,1

= Sq16 + Sq14 Sq2 + Sq13 Sq2 Sq1 + Sq11 Sq5 + Sq11 Sq4 Sq1

+ Sq10 Sq5 Sq1 + Sq10 Sq4 Sq2 + Sq9 Sq4 Sq2 Sq1

which represents 〈C, B, A〉. This implies (16.6.5) by use of the indeterminacy of the
triple Massey product. Using (16.6.5) it is easy to deduce the result of Adams [A]
on secondary cohomology operations, see theorem 6.2.1 in [Ha]. We point out that
the computation of the triple Massey product (16.6.5) is also a (non-immediate)
consequence of the Adams result and of the fact that Sq2n

, n ≥ 0, generate the
Steenrod algebra.

Moreover triple Massey products 〈α, β, γ〉 with α, β, γ ∈ A are computed in
the tables below. It turns out that

(16.6.6) 〈α, β, γ〉 = 0 for |α| + |β| + |γ| ≤ 17

and that for α = Sq0,2 we have, in degree 18,

(16.6.7) Sq0,1,2 ∈ 〈Sq0,2, Sq0,2, Sq0,2〉 �= 0.

Here we use the Milnor generators

Sq0,2 = Sq6 + Sq5 Sq1 + Sq4 Sq2

and

Sq0,1,2 = Sq17 + Sq16 Sq1 + Sq15 Sq2 + Sq14 Sq3 + Sq13 Sq4

+ Sq12 Sq5 + Sq11 Sq5 Sq1 + Sq11 Sq4 Sq2 + Sq10 Sq5 Sq2 .

This is the first example of a non-trivial triple Massey product in A.
The computer calculations show that the inductive system of equations de-

termining Aa,b(α) has indeed solutions. The author was very pleased by the cal-
culations since they are a wonderful manifestation of the correctness of the new
elaborate theory in this book.
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Below are given all those triples 〈α, β, γ〉 of homogeneous elements of degree � 22
in the Steenrod algebra with αβ = βγ = 0, which are indecomposable in the sense
that they cannot be presented in the form 〈α1α2, β, γ〉 with α2β = 0, 〈α, β1β2, γ〉
with αβ1 = β2γ = 0 or 〈α, β, γ1γ2〉 with βγ1 = 0.

All the corresponding triple Massey products contain 0 except for

〈Sq(0, 2), Sq(0, 2), Sq(0, 2)〉

(where Sq(0, 2) = Sq6 + Sq5 Sq1 + Sq4 Sq2 is the Milnor basis element) which con-
tains Sq(0, 1, 2) /∈ Sq(0, 2)A + A Sq(0, 2).

Table 1. Triple Massey products in the mod 2 Steenrod algebra

Degree α β γ

3 1 1 1

4

5

6 1 3 2
2 2.1 1

7

8 3 2 2.1
3 3.1 1
1 3.1 2.1

9 2 5 + 4.1 2
3 + 2.1 3 + 2.1 3 + 2.1

2.1 4.1 1
1 5 3

10 5 3 2
2 5.1 2
1 5.2 2
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2 6.1 1
2 2.1 4.1

11

12 5 5.1 1
1 7 4
1 5.2.1 2.1
3 7.1 1
5 3.1 2.1
3 3.1 4.1

4 + 3.1 4.2.1 1
1 5.1 4.1

13 2.1 8.1 1
2 6.3 2

14 9 + 7.2 3 2
5 3.1 4.1
2 2.1 8.1
2 10.1 1

15 1 5.2 7 + 4.2.1
3 6 4.2
6 4.2 2.1
1 7.1 4.2

7 + 4.2.1 6.1 1
2 9 + 8.1 4

4 + 3.1 9 + 8.1 + 7.2 + 6.2.1 2
3 7.3 2
2 6.3.1 2.1
1 5 9 + 8.1 + 6.2.1
1 9 5
6 5.2.1 1

3 + 2.1 7.2 + 9 + 8.1 + 6.3 3 + 2.1

16 5 7 4
4 9.1 + 7.2.1 2
1 9.2 3.1
5 5.1 4.1

3 + 2.1 7 + 6.1 4.2 + 5.1
6 + 5.1 5.2 + 4.2.1 3 + 2.1

1 5 10 + 8.2 + 6.3.1
9.2 3.1 1

2 9.2 + 8.3 3
3 11.1 1

9 + 7.2 3.1 2.1
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10 + 8.2 + 7.3 4.1 1
4 + 3.1 4.2.1 4.1

3 3.1 8.1
1 9.2.1 2.1

2.1 8.3 2
2 9.1 4
1 5.1 8.1

17 2.1 12.1 1
9 5 3
2 10.3 2
2 9.3.1 2
9 5.1 2
1 9.4 3
2 9.3 3

2.1 4.1 8.1 + 6.2.1

18 9.2 3.1 2.1
6 9.1 + 7.2.1 2
1 11 6

2.1 8.3.1 2.1
2 2.1 12.1
1 9.4.2 2

nonzero 6 + 5.1 + 4.2 6 + 5.1 + 4.2 6 + 5.1 + 4.2

6 + 4.2 7.2 + 9 + 8.1 + 6.3 3 + 2.1
9 5.2 2

9 + 7.2 3.1 4.1
2 6.1 8.1 + 6.2.1
2 14.1 1
5 3.1 8.1
4 10 + 8.2 + 7.3 + 6.3.1 4 + 3.1
2 6.3 7 + 4.2.1

7 + 4.2.1 6.3 2

19 6.2 7.2.1 1
6 5.2.1 4.1
1 9.1 6.2
1 9.3 4.2
2 10.3.1 2.1
1 7.2.1 6.2
1 7.2 7.2
3 11.3 2
5 7.1 4.2

10 + 8.2 + 7.3 5.2 2
7.3 5.2.1 1
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1 5.2 8.2.1
1 11.2 5

6.2.1 6.2.1 1
7.1 6.3.1 1
5.2 8.2.1 1

4 11.2.1 1
1 7.1 6.3.1
2 6.1 10 + 8.2 + 6.3.1

4.1 10.2.1 1
1 7.3 5.2.1

20 3 7.1 8.1 + 6.2.1
4 + 3.1 4.2.1 8.1

2 9 + 8.1 9 + 8.1
9 + 7.2 7 4

9.2 7.1 1
6 9.2.1 + 8.3.1 2
9 5.2.1 2.1

6.2 + 5.2.1 8.2.1 1
3 + 2.1 7.2 + 6.3 6.2 + 7.1 + 5.2.1

7 + 4.2.1 6.3.1 2.1
9.2 3.1 4.1

1 9.4.2.1 2.1

4 10 + 7.3 + 6.3.1
+8.2 + 7.2.1 + 9.1

6 + 5.1 + 4.2

5 5.1 8.1
7.3 + 7.2.1 + 6.3.1 5.2 + 4.2.1 3 + 2.1

2.1 12.3 2
6.2 + 7.1 + 5.2.1 6.3 + 6.2.1 3 + 2.1

4 + 3.1 12.2.1 1
9 5.1 4.1
3 3.1 12.1
1 9.4.1 4.1
3 15.1 1
1 9.1 8.1

8.2.1 + 7.3.1 + 10.1 4.2 2.1
6.1 + 5.2 8.3.1 1

3 6 7.3.1 + 11 + 9.2
+8.2.1 + 10.1

1 5.1 12.1
3 + 2.1 7 + 6.1 7.3 + 7.2.1 + 6.3.1

5 7.2 6 + 4.2
7.3.1 + 11 + 9.2
+8.2.1 + 10.1

4.2 2.1
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5 13.1 1
3 7.3 7 + 4.2.1
2 9.1 6.2
2 9.3 4.2
3 6 11 + 9.2 + 7.3.1

6 + 4.2 6.2.1 4.1
3 + 2.1 7 + 6.1 7.3 + 6.3.1 + 9.1

9 9.1 1
2 10.5 3

21 2 10.5.2 2
10.2 5.2 2

1 9.4 4.2.1
5.2 7 + 4.2.1 6.1

7 + 6.1 + 5.2 + 4.2.1 7 + 6.1 + 5.2 + 4.2.1 7 + 6.1 + 5.2 + 4.2.1
3 6 10.2 + 9.2.1

7.2 7.2 2.1
2.1 16.1 1

2 13 + 12.1 6
2 9.1 8.1

7 + 4.2.1 6.1 4.2.1
7.3 5.2.1 2.1

3 11.3.1 2.1
3 6.2 7.2.1

9.1 6.2 2.1
3 6.2 10 + 8.2 + 7.3
4 8.2.1 + 7.3.1 + 10.1 4.2
1 7.3.1 6.2.1
1 7.3 7.2.1

6 + 4.2 6.2 + 5.2.1 4.2.1
9.2 6.2.1 1

9 7.2 2.1
1 13 7
2 6.1 10.2
5 7.2 4.2.1

9.3 4.2 2.1
3 6 9.2.1 + 8.3.1
7 7.3.1 2.1

11.4 4.1 1
10.2 + 11.1 4.2 2.1

4.2.1 8.4.1 1
2 6.3 8.2
7 4 10 + 8.2 + 7.3 + 6.3.1
3 7.3 5.2.1
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2.1 4.1 10.2.1
1 9.2 6.2.1
9 5 4.2.1
3 6 10.2 + 11.1

10 + 8.2 + 7.3 + 6.3.1 4 + 3.1 4.2.1
2 14.3 2
1 11.4 4.1
7 6.2.1 4.1
3 7.1 6.3.1

7.2 7.3.1 1
7 4 9.1 + 7.2.1
7 9.2 + 8.3 3

7.1 6.3.1 2.1
10.2 + 9.2.1 4.2 2.1

4 + 3.1 11.2 + 10.2.1 4
10 + 8.2 + 6.3.1 6.2 2.1

7 9.3.1 1
7.2.1 6.3.1 1

1 9.3.1 4.2.1
7 5.2 7 + 4.2.1
9 7.3.1 1
3 7.3.1 4.2.1
6 11 + 9.2 + 7.3.1 4 + 3.1
3 6 11.1 + 8.3.1

7 4 10 + 7.3 + 6.3.1
+8.2 + 7.2.1 + 9.1

11.2 5 3
7 6.2 + 7.1 6 + 4.2
7 4.1 8.1 + 6.2.1
3 6.2.1 6.2.1

10 6.3 2
7.2.1 6.2 2.1

4.2 9.4 + 8.4.1 2

22 7.2 + 6.3 7.3 + 7.2.1 3 + 2.1
6.3 8.2 2.1

2 18.1 1
9 + 7.2 3.1 8.1
3 + 2.1 7.2 + 9 + 8.1 + 6.3 10 + 8.2 + 7.2.1
9 + 6.3 7.3 + 7.2.1 3 + 2.1

6 10 + 8.2 4.2
3 10 6.3

9.1 + 6.3.1 6.3 + 6.2.1 3 + 2.1
3 + 2.1 6.3.1 + 7.2.1 6.3 + 6.2.1
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9.3 + 11.1 + 8.3.1 5.2 + 4.2.1 3 + 2.1
10 + 8.2 + 9.1 7.2 + 9 + 8.1 + 6.3 3 + 2.1

4 10.2 + 9.2.1 4.2
3 10.2 5.2

10 + 8.2 + 7.2.1 7.2 + 9 + 8.1 + 6.3 3 + 2.1
6.1 10.2 2.1

6.2 + 7.1 6 + 4.2 6.2 + 5.2.1
1 11.1 6.3
5 11 6

6.3.1 8.2.1 1
3 + 2.1 7 + 6.1 9.3 + 11.1 + 8.3.1

1 13.2 6
6.3 9.2.1 1

3 + 2.1 7.2 + 6.3 10 + 8.2 + 7.2.1
10 + 8.2 + 7.2.1 6.3 + 6.2.1 3 + 2.1

2 13.1 6
6 10.2 + 11.1 4 + 3.1

7 + 5.2 7.1 + 5.2.1 6.1 + 4.2.1
6.1 + 5.2 8.3.1 2.1

9 + 8.1 9 + 8.1 4
4.2 10.4.1 1
4.2 9.4.1 2

13 + 10.3 5.2 2
5 3.1 12.1
4 11.2.1 4

4.1 10.5 + 10.4.1 2
2 2.1 16.1
2 6.1 10.3 + 8.4.1

2.1 12.3.1 2.1
2 13.2 + 12.3 5

6.3.1 + 7.2.1 6.3 + 6.2.1 3 + 2.1
3 + 2.1 7.2 + 6.3 7.3 + 7.2.1

3 11.5 3
10 + 8.2 + 9.1 6.3 + 6.2.1 3 + 2.1

4 11.5 + 11.4.1 2
15.2+17+13.4+11.4.2 3 2
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Table 2. The multiplication function Aa,b on admissible monomials

A1,2k+1(α) = 0 for all k and α.

α A1,2(α) A2,2(α) A1,4(α) A2,3(α) A3,2(α) A2,4(α) A3,3(α)

1 3
4

+ 3.1
5

4.1
+ 5

5 5.1 5.1

2 0 5 0
4.2
+ 6

4.2
+ 6

+ 5.1

5.2
+ 7

4.2.1
+ 7

+ 5.2
+ 6.1

2.1
4.1
+ 5

4.2
+ 5.1

6.1

4.2.1
+ 7

+ 5.2
+ 6.1

6.1
6.2

+ 5.2.1
0

3
4.1
+ 5

4.2
+ 5.1

6.1 0 6.1
6.2

+ 7.1
5.2.1
+ 7.1

3.1 5.1
6.1
+ 7

7.1
5.2.1
+ 7.1

7.1 0 0

4 5.1 5.2 7.1
6.2

+ 7.1
6.2

6.3
+ 8.1

+ 9
+ 7.2

6.2.1
+ 6.3
+ 8.1

+ 9

4.1 5.2
5.2.1
+ 7.1

8.1
+ 9

+ 7.2

6.3
+ 7.2

8.1
+ 9

+ 7.2

9.1
+ 6.3.1
+ 7.2.1

+ 7.3

9.1
+ 7.2.1

5 5.2 5.2.1
8.1
+ 9

+ 7.2

6.2.1
+ 6.3

6.3
9.1

+ 7.2.1
7.3

4.2 0
6.3

+ 7.2
0

8.2
+ 10

8.2
+ 10

+ 6.3.1
+ 7.2.1

9.2
+ 11

+ 7.3.1

7.3.1
+ 8.2.1
+ 10.1

+ 11
+ 8.3

5.1 0
6.3

+ 7.2
9.1

7.2.1
+ 7.3
+ 9.1

9.1
7.3.1
+ 8.3
+ 9.2

0
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α A1,2(α) A2,2(α) A1,4(α) A2,3(α) A3,2(α) A2,4(α) A3,3(α)

6 0 0 9.1

9.1
+ 8.2
+ 10

+ 7.2.1
+ 7.3

9.1
+ 8.2
+ 10
+ 7.3

8.3
+ 11

8.2.1
+ 10.1

+ 11
+ 8.3

4.2.1

8.1
+ 9

+ 7.2
+ 6.2.1

6.3.1
+ 7.2.1

8.2.1
+ 10.1

7.3.1
+ 8.2.1
+ 10.1

+ 11
+ 8.3

8.2.1
+ 10.1

9.2.1
+ 9.3

+ 10.2
0

5.2

8.1
+ 9

+ 7.2
+ 6.2.1

6.3.1
+ 7.2.1

+ 7.3

8.2.1
+ 10.1

7.3.1
+ 8.3
+ 9.2

9.2
+ 8.2.1
+ 10.1
+ 8.3

10.2
+ 11.1
+ 8.3.1
+ 9.2.1

+ 9.3

9.2.1
+ 9.3

+ 11.1

6.1 6.3

9.1
+ 8.2
+ 10

+ 6.3.1

8.3
+ 9.2

7.3.1
+ 9.2

+ 8.2.1
+ 10.1

+ 11

8.3
+ 9.2

9.2.1
+ 10.2

8.3.1
+ 9.2.1

7 6.3

7.3
+ 9.1
+ 8.2
+ 10

+ 6.3.1

8.3
+ 9.2

7.3.1 0

10.2
+ 11.1
+ 8.3.1
+ 9.2.1

9.3
+ 11.1
+ 8.3.1

5.2.1
9.1

+ 7.2.1

8.2.1
+ 10.1

+ 11
+ 8.3

9.2.1
+ 11.1

9.2.1
+ 9.3

+ 11.1

9.2.1
+ 11.1

9.3.1 0

6.2
9.1

+ 7.2.1

9.2
+ 11

+ 7.3.1

9.2.1
+ 11.1

9.3
+ 11.1
+ 8.3.1

9.3
+ 11.1
+ 8.3.1

8.4.1
+ 13

+ 12.1
+ 10.2.1

+ 11.2
+ 9.3.1

+ 9.4

8.4.1
+ 13

+ 12.1
+ 10.2.1

+ 11.2
+ 9.4

7.1 7.3 7.3.1 9.3
11.1

+ 8.3.1
9.3 0 9.3.1
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α A1,2(α) A2,2(α) A1,4(α) A2,3(α) A3,2(α) A2,4(α) A3,3(α)

8 7.3
9.2

+ 11
+ 7.3.1

9.3
10.2

+ 11.1
10.2

+ 11.1

10.3
+ 12.1

+ 13
+ 11.2
+ 9.3.1

10.2.1
+ 10.3
+ 12.1

+ 13
+ 9.3.1

6.2.1
7.3.1
+ 8.3
+ 9.2

10.2
+ 8.3.1

10.2.1
+ 9.3.1

8.4.1
+ 13

+ 12.1
+ 10.2.1

+ 11.2
+ 9.4

10.2.1
+ 9.3.1

0 0

6.3
7.3.1
+ 8.3
+ 9.2

10.2
+ 11.1
+ 8.3.1
+ 9.2.1

+ 9.3

10.2.1
+ 9.3.1

9.3.1
+ 11.2

+ 10.2.1

8.4.1
+ 9.4

+ 10.3

11.3
+ 13.1

+ 10.3.1
+ 11.2.1
+ 9.4.1

11.2.1
+ 11.3
+ 13.1

7.2
7.3.1
+ 8.3
+ 9.2

10.2
+ 11.1
+ 8.3.1
+ 9.2.1

+ 9.3

10.2.1
+ 9.3.1

8.4.1
+ 13

+ 12.1
+ 10.2.1

+ 11.2
+ 9.3.1

+ 9.4

12.1
+ 13

+ 11.2
+ 8.4.1

+ 9.4

0
9.4.1

+ 13.1
+ 11.2.1

8.1 8.3

11.1
+ 8.3.1

+ 8.4
+ 10.2

9.4

10.3
+ 12.1

+ 13
+ 8.4.1

+ 10.2.1
+ 9.3.1

+ 9.4

9.4
10.3.1
+ 11.3
+ 9.4.1

9.4.1

9 8.3

11.1
+ 8.3.1

+ 8.4
+ 10.2

9.4

12.1
+ 13

+ 10.3
+ 8.4.1
+ 11.2
+ 9.4

13
+ 11.2
+ 10.3
+ 12.1
+ 9.4

9.4.1

13.1
+ 11.3
+ 9.4.1

+ 11.2.1

6.3.1
8.3.1

+ 9.2.1

12.1
+ 13

+ 8.4.1
+ 9.4

10.3.1
+ 13.1

11.2.1
+ 11.3
+ 13.1

10.3.1
+ 13.1

10.4.1
+ 10.5

0
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α A1,2(α) A2,2(α) A1,4(α) A2,3(α) A3,2(α) A2,4(α) A3,3(α)

7.2.1 9.3

12.1
+ 13

+ 8.4.1
+ 9.4

11.2.1
9.4.1

+ 13.1
+ 11.2.1

11.2.1

10.4.1
+ 11.3.1

+ 10.5
+ 12.3
+ 13.2

0

7.3
8.3.1

+ 9.2.1
+ 9.3

0
13.1

+ 10.3.1
+ 11.2.1

9.4.1
+ 11.3

13.1
+ 10.3.1
+ 11.2.1

11.3.1
+ 12.3
+ 13.2

0

8.2 9.3

13
+ 11.2
+ 10.3
+ 12.1
+ 9.4

+ 9.3.1

11.2.1

13.1
+ 8.4.2

+ 10.3.1
+ 11.2.1

+ 10.4
+ 9.4.1

8.4.2
+ 10.4

11.3.1
+ 13.2

+ 10.4.1
+ 10.5
+ 12.3
+ 9.4.2
+ 11.4

8.4.2.1
+ 9.4.2
+ 11.4

+ 11.3.1
+ 10.5

9.1 9.3

10.3
+ 12.1

+ 13
+ 11.2
+ 9.3.1

0
11.2.1
+ 11.3
+ 13.1

0
11.3.1
+ 12.3
+ 13.2

0

10 9.3
9.3.1
+ 9.4

+ 11.2
0

12.2
+ 14

+ 9.4.1
+ 11.3

12.2
+ 14

+ 11.3

12.3
+ 15

12.2.1
+ 15

+ 14.1
+ 12.3

7.3.1 9.3.1
10.3.1

+ 11.2.1
+ 11.3

11.3.1 0 11.3.1 0 0

8.2.1
8.4.1
+ 9.4

11.3
+ 8.4.2

10.4.1
+ 11.3.1

8.4.2.1
+ 9.4.2
+ 11.4

+ 11.3.1
+ 10.5

10.4.1
+ 11.3.1

11.4.1
+ 9.4.2.1
+ 10.4.2

+ 11.5

0

8.3
8.4.1

+ 9.3.1
+ 9.4

11.3
+ 13.1
+ 8.4.2
+ 9.4.1

10.4.1
11.3.1
+ 12.3
+ 13.2

11.3.1
+ 10.5

11.4.1
+ 13.3

+ 10.4.2
+ 10.5.1

13.3
+ 9.4.2.1
+ 11.4.1

9.2
8.4.1
+ 9.4

8.4.2
+ 9.4.1

10.4.1
+ 11.3.1

10.4.1
+ 10.5

10.5
10.4.2
+ 11.5

+ 10.5.1

11.5
+ 9.4.2.1
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α A1,2(α) A2,2(α) A1,4(α) A2,3(α) A3,2(α) A2,4(α) A3,3(α)

10.1 10.3

12.2
+ 14

+ 10.3.1
+ 11.3
+ 10.4

10.5

12.3
+ 10.4.1

+ 10.5
+ 12.2.1

+ 15
+ 14.1

10.5
14.2

+ 10.5.1
+ 12.3.1

10.5.1

11 10.3

10.4
+ 14

+ 13.1
+ 12.2

+ 10.3.1

10.5

10.4.1
+ 10.5
+ 12.3
+ 13.2

10.5
+ 12.3
+ 13.2

10.5.1
+ 14.2
+ 15.1

13.3
+ 13.2.1

+ 15.1
+ 10.5.1

8.3.1 9.4.1

10.5
+ 12.3
+ 13.2
+ 11.4

+ 11.3.1

11.4.1
+ 12.3.1
+ 13.2.1

13.3
+ 9.4.2.1
+ 11.4.1

11.4.1
+ 12.3.1
+ 13.2.1

11.5.1 0

9.2.1 9.4.1
10.5

+ 11.4
11.4.1

11.5
+ 9.4.2.1

11.4.1 11.5.1 0

8.4 9.4.1
12.3

+ 13.2
+ 9.4.2

11.4.1
+ 12.3.1
+ 13.2.1

13.3
+ 11.4.1
+ 10.4.2

10.4.2
+ 10.5.1
+ 12.3.1
+ 13.2.1

13.3.1
+ 12.4.1

+ 16.1
+ 17

+ 15.2
+ 14.2.1
+ 10.5.2

+ 13.4
+ 11.4.2

14.2.1
+ 16.1

+ 17
+ 10.4.2.1

+ 10.5.2
+ 13.4

+ 12.4.1
+ 15.2

+ 13.3.1

9.3 0
12.3

+ 13.2
12.3.1

+ 13.2.1

10.5.1
+ 12.3.1
+ 13.2.1

13.3
+ 10.5.1
+ 11.4.1

+ 11.5

11.5.1
+ 13.3.1

0

10.2 9.4.1

15
+ 9.4.2
+ 10.5
+ 12.3

11.4.1

13.3
+ 12.3.1
+ 10.4.2

+ 14.2
+ 11.4.1

13.3
+ 15.1

+ 10.4.2
+ 14.2

+ 10.5.1

12.4.1
+ 14.2.1
+ 13.3.1
+ 10.5.2

+ 13.4
+ 14.3

+ 11.4.2
+ 11.5.1

12.4.1
+ 15.2

+ 10.4.2.1
+ 14.3

+ 11.5.1
+ 10.5.2

+ 13.4



Table 2: The multiplication function Aa,b on admissible monomials 441

α A1,2(α) A2,2(α) A1,4(α) A2,3(α) A3,2(α) A2,4(α) A3,3(α)

11.1 11.3

10.5
+ 12.3
+ 13.2
+ 11.4

+ 11.3.1

11.5

13.2.1
+ 13.3
+ 15.1

+ 10.5.1
+ 11.4.1

+ 11.5

11.5
11.5.1

+ 13.3.1
11.5.1

12 11.3

13.2
+ 15

+ 11.4
+ 11.3.1

11.5

14.2
+ 15.1

+ 11.4.1
+ 11.5
+ 13.3

14.2
+ 15.1
+ 11.5
+ 13.3

14.3
+ 16.1

+ 17
+ 15.2

+ 11.5.1

11.5.1
+ 14.2.1

+ 14.3
+ 16.1

+ 17

8.4.1 9.4.2
11.4.1

+ 9.4.2.1
+ 10.5.1

12.4.1
+ 16.1

+ 17
+ 15.2

+ 14.2.1
+ 13.3.1

+ 13.4
+ 11.4.2

10.5.2
+ 11.4.2

12.4.1
+ 16.1

+ 17
+ 15.2

+ 14.2.1
+ 13.3.1

+ 13.4
+ 11.4.2

13.4.1
+ 17.1

+ 15.2.1
+ 10.5.2.1
+ 11.4.2.1

+ 11.5.2

15.2.1
+ 17.1

+ 13.4.1
+ 11.4.2.1

9.3.1 0
10.5.1

+ 11.4.1
+ 11.5

13.3.1 0 13.3.1
12.5.1

+ 13.4.1
+ 13.5

0

10.2.1
10.4.1
+ 10.5

13.3
+ 10.4.2

+ 15.1
+ 14.2
+ 11.5

+ 10.5.1

11.5.1

12.4.1
+ 15.2

+ 10.4.2.1
+ 14.3

+ 11.5.1
+ 10.5.2

+ 13.4

11.5.1

15.3
+ 11.5.2

+ 10.5.2.1
+ 14.3.1

0

9.4 9.4.2 9.4.2.1

15.2
+ 16.1

+ 17
+ 12.4.1
+ 14.2.1
+ 11.4.2

+ 13.4

10.4.2.1
+ 10.5.2

10.5.2
+ 13.3.1
+ 11.5.1

11.4.2.1
+ 13.5

+ 12.5.1
+ 17.1

+ 15.2.1

11.5.2
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α A1,2(α) A2,2(α) A1,4(α) A2,3(α) A3,2(α) A2,4(α) A3,3(α)

10.3
10.4.1
+ 10.5

15.1
+ 10.4.2

+ 14.2
+ 10.5.1

11.5.1
+ 13.3.1

15.2
+ 11.5.1
+ 14.2.1

14.3
+ 12.4.1
+ 14.2.1
+ 13.3.1

+ 12.5

13.4.1
+ 15.2.1
+ 14.3.1
+ 11.5.2

15.3
+ 15.2.1

+ 10.5.2.1
+ 12.5.1
+ 13.4.1
+ 14.3.1

11.2
10.4.1
+ 10.5

10.4.2
+ 15.1
+ 14.2
+ 11.5

+ 10.5.1

11.5.1

12.4.1
+ 14.2.1
+ 10.5.2

+ 13.4
+ 14.3

+ 11.4.2

10.5.2
+ 13.4
+ 14.3

+ 11.4.2
+ 13.3.1
+ 12.4.1
+ 14.2.1

0

13.4.1
+ 11.4.2.1

+ 15.3
+ 11.5.2

12.1 12.3

12.4
+ 14.2
+ 15.1
+ 13.3

+ 12.3.1
+ 11.5

12.5

14.3
+ 16.1

+ 17
+ 12.4.1
+ 14.2.1

+ 12.5
+ 11.5.1

12.5
14.3.1
+ 15.3

+ 12.5.1
12.5.1

13 12.3

12.4
+ 14.2
+ 15.1

+ 12.3.1

12.5

12.4.1
+ 16.1

+ 17
+ 15.2
+ 12.5
+ 14.3

15.2
+ 14.3
+ 16.1

+ 17
+ 12.5

12.5.1

15.3
+ 17.1

+ 12.5.1
+ 15.2.1

8.4.2 0
10.5.2

+ 11.4.2
0

18
+ 14.4
+ 16.2

+ 14.3.1
+ 12.4.2

11.4.2.1
+ 18

+ 10.5.2.1
+ 14.4
+ 16.2

+ 14.3.1
+ 12.4.2

17.2
+ 19

+ 15.3.1
+ 11.5.2.1

+ 15.4
+ 13.4.2

19
+ 11.5.2.1

+ 16.3
+ 15.4
+ 14.5

+ 16.2.1
+ 12.4.2.1

+ 18.1
+ 13.5.1
+ 12.5.2
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α A1,2(α) A2,2(α) A1,4(α) A2,3(α) A3,2(α) A2,4(α) A3,3(α)

9.4.1 0
10.5.2

+ 11.4.2
+ 11.5.1

13.4.1
+ 17.1

+ 15.2.1

15.2.1
+ 17.1

+ 11.4.2.1
+ 11.5.2
+ 13.4.1

13.4.1
+ 17.1

+ 15.2.1

13.5.1
+ 15.3.1

+ 16.3
+ 17.2

+ 12.5.2
+ 13.4.2
+ 14.4.1

+ 14.5
+ 11.5.2.1

0

10.3.1 10.5.1

14.3
+ 12.4.1
+ 14.2.1
+ 13.3.1

+ 13.4

12.5.1
+ 13.4.1

15.3
+ 15.2.1

+ 10.5.2.1
+ 12.5.1
+ 13.4.1
+ 14.3.1

12.5.1
+ 13.4.1

14.4.1
+ 14.5

0

11.2.1
11.4.1
+ 11.5

10.5.2
+ 13.4
+ 14.3

+ 11.4.2
+ 13.3.1
+ 12.4.1
+ 14.2.1

0

13.4.1
+ 11.4.2.1

+ 15.3
+ 11.5.2

0

13.5.1
+ 14.4.1

+ 14.5
+ 12.5.2
+ 13.4.2

+ 11.5.2.1

0

10.4 10.5.1
15.2

+ 10.5.2

17.1
+ 15.2.1
+ 12.5.1

12.6
+ 13.4.1

+ 11.4.2.1
+ 13.5

+ 12.5.1
+ 14.4

+ 15.2.1
+ 15.3

13.5
+ 15.2.1

+ 12.6
+ 14.4

+ 12.5.1

15.3.1
+ 17.2

+ 12.5.2
+ 16.3

+ 13.4.2
+ 13.5.1

+ 13.6
+ 15.4

13.5.1
+ 16.3

+ 12.6.1
+ 15.4
+ 17.2

+ 14.4.1
+ 13.6

+ 11.5.2.1

11.3
10.5.1

+ 11.4.1
+ 11.5

10.5.2
+ 11.4.2
+ 11.5.1

12.5.1
+ 13.4.1

15.3
+ 12.5.1

13.5
15.3.1

+ 12.5.2
+ 13.4.2

11.5.2.1
+ 15.3.1
+ 13.5.1

12.2
11.4.1
+ 11.5

14.3
+ 16.1

+ 17
+ 15.2
+ 12.5

+ 11.4.2
+ 11.5.1

0

13.4.1
+ 12.4.2

+ 12.6
+ 14.3.1
+ 15.2.1
+ 11.5.2

12.6
+ 13.4.1
+ 11.5.2
+ 12.5.1

+ 17.1
+ 12.4.2
+ 15.2.1

14.4.1
+ 14.5

+ 15.3.1
+ 13.6

+ 12.5.2

14.4.1
+ 14.5
+ 16.3
+ 17.2

+ 12.4.2.1
+ 13.6

+ 12.6.1
+ 12.5.2
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α A1,2(α) A2,2(α) A1,4(α) A2,3(α) A3,2(α) A2,4(α) A3,3(α)

13.1 13.3

14.3
+ 16.1

+ 17
+ 15.2

+ 13.3.1
+ 12.5
+ 13.4

13.5

12.5.1
+ 13.4.1

+ 13.5
+ 15.2.1

+ 15.3
+ 17.1

13.5

13.5.1
+ 16.3
+ 17.2

+ 15.3.1

13.5.1

14 13.3
13.4

+ 15.2
+ 13.3.1

13.5

13.4.1
+ 13.5
+ 15.3
+ 16.2

+ 18

16.2
+ 18

+ 15.3
+ 13.5

19
+ 16.3

+ 13.5.1

16.2.1
+ 18.1

+ 19
+ 16.3

+ 13.5.1

α A1,6(α) A2,5(α) A3,4(α) A4,3(α) A2,6(α) A3,5(α) A4,4(α) A5,3(α)

1 7
6.1
+ 7

0
7

+ 5.2
+ 6.1

7.1 7.1
8

+ 6.2
+ 7.1

7.1

2 0 6.2
6.2

+ 5.2.1
5.2.1 7.2

6.2.1
+ 6.3
+ 8.1

+ 9

6.3
+ 8.1
+ 7.2

6.2.1
+ 7.2

2.1
8.1
+ 9

6.2.1
+ 6.3

0

7.2
+ 6.2.1

+ 6.3
+ 8.1

+ 9

9.1
+ 8.2
+ 10

+ 7.2.1
+ 7.3

9.1
7.3

+ 8.2
+ 6.3.1

9.1

3
8.1
+ 9

8.1
+ 9

0 7.2
8.2

+ 10
7.2.1
+ 7.3

7.3
+ 9.1
+ 8.2

7.2.1
+ 7.3

3.1 9.1
7.2.1
+ 7.3
+ 9.1

0
9.1

+ 7.2.1
0 0

10.1
+ 11
+ 8.3
+ 9.2

+ 7.3.1

0
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α A1,6(α) A2,5(α) A3,4(α) A4,3(α) A2,6(α) A3,5(α) A4,4(α) A5,3(α)

4 9.1 7.3
7.3

+ 6.3.1
6.3.1
+ 9.1

8.3
+ 11

7.3.1 9.2
7.3.1
+ 8.3
+ 9.2

4.1
9.2

+ 11

7.3.1
+ 9.2

+ 8.2.1
+ 10.1

+ 11

0

9.2
+ 8.2.1
+ 10.1

+ 11

10.2
+ 8.3.1

9.2.1
+ 11.1

10.2
+ 12

+ 8.3.1
+ 9.2.1

9.2.1
+ 11.1

5
9.2

+ 11

8.2.1
+ 10.1

+ 11
+ 8.3

7.3.1
+ 8.3
+ 9.2

9.2
+ 8.2.1
+ 10.1

+ 11

9.2.1
+ 10.2

9.2.1
+ 11.1

10.2
+ 11.1

+ 12
+ 8.3.1
+ 9.2.1

9.2.1
+ 11.1

4.2 0
9.2.1

+ 10.2

9.2.1
+ 9.3

+ 10.2
0

10.3
+ 12.1

+ 13
+ 11.2
+ 9.3.1

8.4.1
+ 11.2
+ 9.3.1

+ 9.4
+ 10.3

13
+ 8.4.1

+ 10.2.1
+ 11.2
+ 9.4

10.2.1
+ 11.2

5.1 0 0 0 9.3

10.3
+ 12.1

+ 13
+ 11.2
+ 9.3.1

0
10.3

+ 11.2
0

6 0
9.2.1

+ 10.2
10.2

+ 8.3.1
8.3.1

+ 9.2.1
0

10.3
+ 8.4.1
+ 11.2
+ 9.4

10.3
+ 13

+ 8.4.1
+ 10.2.1

+ 9.4

9.3.1
+ 11.2

+ 10.2.1

4.2.1
10.2.1
+ 11.2

10.3
+ 8.4.1

+ 10.2.1
+ 9.3.1

+ 9.4

0
8.4.1
+ 9.4

+ 10.3

9.4.1
+ 13.1

+ 10.3.1
+ 11.3

11.2.1
12.2

+ 13.1
+ 11.3

11.2.1

5.2
10.2.1
+ 11.2

9.3.1
+ 11.2

+ 10.2.1
9.3.1

11.2
+ 9.3.1

11.3
+ 10.3.1

11.3
+ 9.4.1

+ 11.2.1

12.2
+ 13.1
+ 9.4.1

+ 11.2.1
+ 10.3.1

11.3
+ 9.4.1

+ 11.2.1
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α A1,6(α) A2,5(α) A3,4(α) A4,3(α) A2,6(α) A3,5(α) A4,4(α) A5,3(α)

6.1
10.3

+ 12.1
+ 13

8.4.1
+ 13

+ 12.1
+ 10.2.1

+ 11.2
+ 9.3.1

+ 9.4

0

10.3
+ 12.1

+ 13
+ 11.2
+ 9.3.1

10.3.1
+ 9.4.1

10.3.1
+ 13.1

11.3
+ 10.3.1
+ 11.2.1

+ 14
+ 9.4.1

10.3.1
+ 13.1

7
10.3

+ 12.1
+ 13

10.2.1
+ 10.3
+ 12.1

+ 13
+ 9.3.1

9.3.1

12.1
+ 13

+ 8.4.1
+ 9.4

10.3.1
+ 13.1

9.4.1
+ 13.1

+ 10.3.1
+ 11.3

14

9.4.1
+ 13.1

+ 10.3.1
+ 11.3

5.2.1 11.2.1
9.4.1

+ 11.3
0 0

12.3
+ 13.2

0

12.3
+ 10.4.1

+ 10.5
+ 12.2.1

0

6.2 11.2.1
11.3

+ 10.3.1
0

10.3.1
+ 9.4.1

10.4.1
+ 10.5

10.4.1
+ 11.3.1

+ 10.5
+ 12.3
+ 13.2

13.2
+ 14.1

+ 10.4.1
+ 11.3.1

+ 10.5

10.4.1
+ 11.3.1

+ 10.5
+ 12.3
+ 13.2

7.1
11.3

+ 13.1

10.3.1
+ 11.2.1
+ 9.4.1

0
10.3.1

+ 11.2.1
+ 9.4.1

11.3.1
+ 12.3
+ 13.2

11.3.1

11.3.1
+ 12.3
+ 13.2
+ 14.1

+ 15

11.3.1

8
11.3

+ 13.1
11.2.1

11.3
+ 10.3.1

10.3.1
+ 9.4.1

11.3.1
+ 12.3
+ 13.2

10.4.1
+ 11.3.1

+ 10.5
+ 12.3
+ 13.2

10.4.1
+ 11.3.1

+ 10.5
+ 12.3
+ 13.2

+ 15

12.3
+ 13.2

6.2.1
11.3.1
+ 12.3
+ 13.2

10.4.1
+ 10.5

0 0 13.3
12.3.1

+ 13.2.1
14.2

+ 13.2.1
12.3.1

+ 13.2.1

6.3
11.3.1
+ 12.3
+ 13.2

10.4.1
+ 11.3.1

+ 10.5
+ 12.3
+ 13.2

10.4.1
+ 10.5

10.4.1
+ 11.3.1

+ 10.5
+ 12.3
+ 13.2

13.3
+ 10.5.1
+ 11.4.1

+ 11.5

13.3
+ 11.4.1

+ 11.5
+ 12.3.1
+ 13.2.1

13.3
+ 14.2

+ 10.5.1
+ 12.3.1
+ 13.2.1

13.3
+ 11.4.1

+ 11.5
+ 12.3.1
+ 13.2.1



Table 2: The multiplication function Aa,b on admissible monomials 447

α A1,6(α) A2,5(α) A3,4(α) A4,3(α) A2,6(α) A3,5(α) A4,4(α) A5,3(α)

7.2
11.3.1
+ 12.3
+ 13.2

10.4.1
+ 11.3.1

+ 10.5

10.4.1
+ 11.3.1

+ 10.5
+ 12.3
+ 13.2

10.4.1
+ 10.5
+ 12.3
+ 13.2

13.3

13.3
+ 11.4.1

+ 11.5
+ 12.3.1
+ 13.2.1

11.4.1
+ 11.5
+ 14.2
+ 15.1

10.5.1

8.1
11.4

+ 12.3
+ 13.2

10.5
+ 11.4

0

10.4.1
+ 11.3.1

+ 11.4
+ 9.4.2

13.3
+ 10.5.1
+ 11.4.1
+ 12.3.1
+ 13.2.1

11.4.1
+ 12.3.1
+ 13.2.1

11.4.1
+ 12.4
+ 14.2

+ 10.4.2
+ 10.5.1

11.4.1
+ 12.3.1
+ 13.2.1

9
11.4

+ 12.3
+ 13.2

10.4.1
+ 11.3.1

+ 11.4

11.3.1
+ 12.3
+ 13.2

13.2
+ 11.4
+ 9.4.2

+ 11.3.1
+ 10.5
+ 12.3

11.4.1
+ 12.3.1
+ 13.2.1

13.3
+ 11.5

+ 12.3.1
+ 13.2.1

13.3
+ 14.2
+ 15.1

+ 10.4.2
+ 11.5

+ 10.5.1
+ 12.4

10.5.1
+ 11.4.1

6.3.1
12.3.1

+ 13.2.1

11.4.1
+ 11.5
+ 13.3

0
10.5.1

+ 11.4.1
+ 11.5

13.3.1
+ 12.4.1

+ 16.1
+ 17

+ 15.2
+ 14.2.1

+ 12.5
+ 11.5.1

0

12.4.1
+ 16.1

+ 17
+ 15.2
+ 12.5
+ 14.3

0

7.2.1 13.3

11.4.1
+ 11.5

+ 12.3.1
+ 13.2.1

0

13.3
+ 10.5.1
+ 11.4.1

+ 11.5

12.4.1
+ 16.1

+ 17
+ 15.2

+ 14.2.1
+ 12.5

13.3.1

16.1
+ 17

+ 11.5.1
+ 12.4.1

+ 12.5

13.3.1

7.3
12.3.1

+ 13.2.1
+ 13.3

12.3.1
+ 13.2.1

+ 13.3
0 13.3

11.5.1
+ 13.3.1

13.3.1
14.3

+ 15.2
+ 11.5.1

13.3.1
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α A1,6(α) A2,5(α) A3,4(α) A4,3(α) A2,6(α) A3,5(α) A4,4(α) A5,3(α)

8.2 13.3

11.5
+ 12.3.1
+ 13.2.1
+ 11.4.1
+ 10.4.2

11.5
+ 10.4.2
+ 11.4.1
+ 9.4.2.1

13.3
+ 11.4.1

+ 11.5
+ 10.5.1
+ 9.4.2.1

11.4.2
+ 11.5.1

12.4.1
+ 16.1

+ 17
+ 15.2

+ 14.2.1
+10.4.2.1

+ 11.5.1
+ 10.5.2

+ 13.4

15.2
+ 10.5.2
+ 11.4.2
+ 12.4.1
+ 11.5.1
+ 14.2.1

13.3.1
+ 11.4.2

+10.4.2.1

9.1 13.3

11.4.1
+ 11.5

+ 12.3.1
+ 13.2.1

0
13.3

+ 10.5.1
11.5.1

+ 13.3.1
13.3.1

16.1
+ 17

+ 11.5.1
+ 13.3.1

13.3.1

10 13.3

14.2
+ 15.1

+ 11.4.1
+ 13.3

12.3.1
+ 14.2

15.1
+ 12.3.1

+ 13.3
+ 11.5

15.2
+ 13.3.1

14.3
+ 12.4.1

+ 15.2
+ 13.3.1

+ 12.5

14.3
+ 12.4.1
+ 14.2.1
+ 13.3.1

+ 12.5
+ 13.4

+ 11.4.2
+ 11.5.1

14.2.1
+ 15.2

+ 11.5.1
+ 13.3.1

α A1,8(α) A2,7(α) A3,6(α) A4,5(α) A5,4(α)

1 9 8.1 0 7.2
7.2
+ 9

2 0
8.2

+ 10

8.2
+ 10

+ 7.2.1
+ 7.3

9.1
+ 7.2.1

+ 8.2
+ 10

8.2
+ 10

+ 6.3.1

2.1 10.1
11

+ 8.2.1
+ 8.3

0 7.3.1
10.1

+ 8.3
+ 9.2

3 10.1 10.1 0 0

10.1
+ 8.3
+ 9.2

+ 7.3.1
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α A1,8(α) A2,7(α) A3,6(α) A4,5(α) A5,4(α)

3.1 11.1
9.2.1
+ 9.3

0 9.3
9.3

+ 11.1

4 11.1
10.2

+ 9.3

10.2
+ 11.1
+ 8.3.1
+ 9.2.1

10.2
+ 11.1
+ 8.3.1
+ 9.2.1

+ 9.3

10.2

4.1
11.2

+ 12.1

10.3
+ 13

+ 9.3.1
0 11.2

12.1
+ 9.3.1

5
11.2

+ 12.1

13
+ 11.2

+ 10.2.1
+ 10.3

10.3
+ 12.1

+ 13
+ 11.2
+ 9.3.1

10.3
+ 12.1

+ 13

10.3
+ 13

+ 11.2
+ 9.3.1

4.2 0 0

11.3
+ 13.1

+ 10.3.1
+ 11.2.1
+ 9.4.1

10.3.1
+ 13.1

13.1
+ 9.4.1

5.1 13.1
11.2.1
+ 11.3

0 0 13.1

6 13.1
11.2.1
+ 11.3

13.1
+ 9.4.1

11.2.1
+ 11.3
+ 13.1

11.3
+ 9.4.1

+ 11.2.1
+ 10.3.1

4.2.1 12.2.1

13.2
+ 12.3

+ 10.4.1
+ 10.5

+ 12.2.1

0 11.3.1

10.4.1
+ 11.3.1

+ 10.5
+ 12.2.1

5.2 12.2.1

11.3.1
+ 13.2

+ 12.2.1
+ 12.3

12.3
+ 13.2

12.3
+ 13.2

13.2
+ 12.3

+ 10.4.1
+ 10.5

+ 12.2.1
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α A1,8(α) A2,7(α) A3,6(α) A4,5(α) A5,4(α)

6.1
14.1

+ 12.3
+ 13.2

10.4.1
+ 10.5
+ 12.3
+ 13.2
+ 14.1

0

10.4.1
+ 10.5
+ 12.3
+ 13.2

14.1

7
14.1

+ 12.3
+ 13.2

11.3.1
+ 14.1
+ 12.3
+ 13.2

12.3
+ 13.2

10.4.1
+ 11.3.1

+ 10.5

11.3.1
+ 14.1
+ 12.3
+ 13.2

5.2.1 13.2.1

13.3
+ 13.2.1
+ 11.4.1

+ 11.5

0
11.4.1
+ 11.5

11.4.1
+ 11.5

+ 13.2.1

6.2 13.2.1 12.3.1
12.3.1

+ 13.2.1
+ 13.3

10.5.1
13.2.1

+ 10.5.1

7.1
13.3

+ 15.1

12.3.1
+ 13.2.1

+ 13.3
+ 15.1

+ 11.4.1
+ 11.5

0 13.3 15.1

8
13.3

+ 15.1
15.1

13.3
+ 10.5.1

13.3
+ 11.4.1

+ 11.5
+ 12.3.1
+ 13.2.1

15.1
+ 10.5.1
+ 12.3.1
+ 13.2.1



Table 2: The multiplication function Aa,b on admissible monomials 451

α A2,8(α) A3,7(α) A4,6(α) A5,5(α) A6,4(α)

1
10

+ 9.1
9.1

8.2
+ 10
+ 9.1

0
7.3

+ 9.1
+ 8.2

2 9.2

8.2.1
+ 10.1

+ 11
+ 8.3

8.3
+ 11

7.3.1
+ 8.3
+ 9.2

8.2.1
+ 10.1
+ 8.3

+ 7.3.1

2.1

9.2.1
+ 9.3

+ 11.1
+ 10.2

0

10.2
+ 11.1
+ 8.3.1
+ 9.2.1

0 8.3.1

3 10.2
9.2.1
+ 9.3

+ 11.1

9.3
+ 10.2
+ 11.1

0
9.2.1
+ 9.3

3.1
12.1
+ 13

0

10.3
+ 12.1

+ 13
+ 11.2
+ 9.3.1

0
10.3

+ 11.2
+ 9.3.1

4

10.3
+ 12.1

+ 13
+ 11.2

10.2.1
+ 10.3
+ 12.1

+ 13
+ 9.3.1

11.2 9.3.1 10.2.1

4.1

12.2
+ 13.1

+ 10.3.1
+ 11.2.1

+ 11.3

11.2.1
13.1

+ 10.3.1
+ 11.2.1

0
9.4.1

+ 11.2.1
+ 12.2

5
12.2

+ 11.2.1
11.3

+ 13.1

10.3.1
+ 11.2.1

+ 11.3
0

13.1
+ 12.2

+ 10.3.1
+ 11.3
+ 9.4.1

4.2
13.2

+ 11.3.1

10.4.1
+ 10.5
+ 12.3
+ 13.2

10.4.1
+ 10.5
+ 12.3
+ 13.2

10.4.1
+ 10.5

13.2
+ 10.4.1
+ 11.3.1

+ 10.5



452 Tables

α A2,8(α) A3,7(α) A4,6(α) A5,5(α) A6,4(α)

5.1
11.3.1
+ 12.3
+ 13.2

0
12.3

+ 13.2
0 11.3.1

6 12.3

10.4.1
+ 11.3.1

+ 10.5
+ 12.3
+ 13.2

10.4.1
+ 10.5

10.4.1
+ 10.5

13.2
+ 10.4.1
+ 11.3.1

+ 10.5

4.2.1

13.3
+ 13.2.1
+ 11.4.1

+ 11.5

0
10.5.1

+ 12.3.1
+ 13.2.1

0
13.3

+ 10.5.1
+ 12.3.1

5.2
12.3.1
+ 13.3

11.4.1
+ 11.5
+ 13.3

13.3
+ 11.4.1

+ 11.5
+ 12.3.1
+ 13.2.1

0

13.3
+ 13.2.1
+ 11.4.1

+ 11.5

6.1

14.2
+ 11.4.1

+ 11.5
+ 13.3

12.3.1
+ 13.2.1

10.5.1
+ 13.3

+ 11.4.1
+ 11.5

+ 12.3.1
+ 13.2.1

0

14.2
+ 10.5.1
+ 11.4.1

+ 11.5
+ 12.3.1
+ 13.2.1

7

14.2
+ 12.3.1
+ 13.2.1

+ 13.3

13.3
+ 11.4.1

+ 11.5
+ 12.3.1
+ 13.2.1

12.3.1
+ 13.2.1

0 14.2



Table 2: The multiplication function Aa,b on admissible monomials 453

α A1,10(α) A2,9(α) A3,8(α) A4,7(α) A5,6(α) A6,5(α) A7,4(α)

1 11 10.1 11
9.2

+ 11
9.2

+ 11

10.1
+ 11
+ 8.3
+ 9.2

9.2

2 0 10.2
9.2.1
+ 9.3

+ 10.2

9.2.1
+ 11.1

8.3.1
+ 9.2.1

+ 9.3

9.2.1
+ 9.3

+ 11.1
+ 10.2

10.2
+ 8.3.1

2.1
12.1
+ 13

10.2.1
+ 10.3
+ 12.1

+ 13

12.1
+ 13

11.2
+ 9.3.1

+ 10.2.1
+ 10.3
+ 12.1

+ 13

10.3
+ 12.1

+ 13

10.3
+ 12.1

+ 13
+ 8.4.1

+ 10.2.1
+ 9.4

10.3

3
12.1
+ 13

0
12.1
+ 13

11.2

10.3
+ 12.1

+ 13
+ 9.3.1

10.3
+ 11.2

9.3.1
+ 10.3

3.1 13.1
11.2.1
+ 11.3

13.1 11.2.1
11.3

+ 13.1

9.4.1
+ 13.1

+ 11.2.1
11.3

4 13.1
11.3

+ 13.1

13.1
+ 11.3

+ 10.3.1

10.3.1
+ 13.1

11.3
+ 13.1

10.3.1 10.3.1

4.1 13.2
11.3.1

+ 12.2.1
13.2 0

11.3.1
+ 12.3
+ 13.2

12.2.1
+ 13.2

11.3.1
+ 12.3

5 13.2
13.2

+ 12.2.1
+ 12.3

11.3.1
+ 12.3

0
11.3.1
+ 12.3
+ 13.2

12.2.1
+ 10.4.1

+ 10.5
+ 13.2

13.2

4.2 0 13.2.1
11.4.1
+ 11.5
+ 13.3

0
10.5.1

+ 11.4.1
+ 11.5

10.5.1
+ 11.4.1

+ 11.5
+ 12.3.1

13.3
+ 10.5.1

5.1 0 0 0 13.3 13.3
11.4.1
+ 11.5
+ 13.3

13.3
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α A1,10(α) A2,9(α) A3,8(α) A4,7(α) A5,6(α) A6,5(α) A7,4(α)

6 0 13.2.1

11.4.1
+ 11.5

+ 12.3.1
+ 13.2.1

12.3.1
+ 13.2.1

13.3
+ 10.5.1
+ 11.4.1

+ 11.5

13.2.1
+ 10.5.1

11.4.1
+ 11.5

α A2,10(α) A3,9(α) A4,8(α) A5,7(α) A6,6(α) A7,5(α)

1
12

+ 11.1
11.1

10.2
+ 12

0
12

+ 9.3
9.3

+ 11.1

2
13

+ 11.2

10.2.1
+ 10.3
+ 12.1

+ 13

10.3
+ 12.1
+ 11.2

9.3.1
+ 11.2

+ 10.2.1

9.3.1
+ 13

+ 10.2.1

10.3
+ 8.4.1

+ 10.2.1
+ 9.4

2.1
11.2.1
+ 11.3
+ 12.2

13.1

11.3
+ 13.1
+ 12.2

+ 10.3.1

0
12.2

+ 11.3
+ 9.4.1

13.1

3
12.2

+ 13.1
11.2.1
+ 11.3

12.2
+ 11.3

11.2.1
+ 11.3
+ 13.1

12.2
+ 13.1

+ 11.2.1
+ 11.3

9.4.1
+ 11.2.1

3.1
14.1
+ 15

0

11.3.1
+ 12.3
+ 13.2
+ 14.1

+ 15

0
14.1
+ 15

0

4 12.3 11.3.1 13.2
11.3.1
+ 12.3
+ 13.2

13.2
+ 11.3.1

10.4.1
+ 11.3.1

+ 10.5

4.1
15.1

+ 12.3.1
13.2.1

15.1
+ 12.3.1

0

15.1
+ 10.5.1
+ 11.4.1

+ 11.5

11.4.1
+ 11.5

+ 13.2.1

5 13.2.1 13.2.1 12.3.1 0
11.4.1
+ 11.5

13.2.1
+ 13.3



Table 2: The multiplication function Aa,b on admissible monomials 455

α A1,12(α) A2,11(α) A3,10(α) A4,9(α) A5,8(α) A6,7(α) A7,6(α) A8,5(α)

1 13
12.1
+ 13

13
11.2

+ 12.1
13

+ 11.2

10.3
+ 12.1

+ 13
+ 11.2

13
10.3

+ 11.2
+ 9.4

2 0
12.2
+ 14

11.2.1
+ 11.3
+ 12.2

+ 14

12.2
+ 14

+ 11.2.1

10.3.1
+ 12.2

+ 14

12.2
+ 14

+ 11.3

9.4.1
+ 13.1
+ 12.2

+ 14
+ 11.3

10.3.1
+ 11.3
+ 9.4.1

2.1 14.1

12.2.1
+ 15

+ 14.1
+ 12.3

14.1
14.1

+ 11.3.1

14.1
+ 12.3
+ 13.2

10.4.1
+ 11.3.1

+ 10.5
+ 12.3

+ 12.2.1
+ 15

+ 14.1

14.1
12.3

+ 13.2
+ 10.4.1

3 14.1 0 14.1 14.1

11.3.1
+ 14.1
+ 12.3
+ 13.2

12.3
+ 13.2

14.1
11.3.1
+ 10.5

3.1 15.1
13.2.1
+ 13.3
+ 15.1

15.1
13.3

+ 15.1
13.3

+ 15.1

11.4.1
+ 11.5

+ 13.2.1
+ 15.1

15.1
13.3

+ 11.4.1

4 15.1
14.2

+ 15.1
+ 13.3

14.2
+ 12.3.1
+ 13.2.1

14.2
+ 12.3.1
+ 13.2.1

+ 13.3

14.2
14.2

+ 15.1
14.2

+ 10.5.1
11.5

+ 10.5.1
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α A2,12(α) A3,11(α) A4,10(α) A5,9(α) A6,8(α) A7,7(α) A8,6(α) A9,5(α)

1 13.1 13.1
12.2
+ 14

13.1
11.3

+ 13.1
11.3

+ 13.1

12.2
+ 13.1
+ 10.4
+ 11.3

11.3

2
13.2
+ 15

12.2.1
+ 15

+ 14.1
+ 12.3

12.3
+ 15

11.3.1
+ 12.3
+ 13.2

12.2.1
+ 15

+ 14.1
+ 12.3

+ 11.3.1

10.4.1
+ 11.3.1

+ 10.5
+ 13.2

+ 12.2.1
+ 15

+ 14.1

12.2.1
+ 14.1

+ 11.3.1
+ 13.2
+ 11.4

10.4.1
+ 10.5

2.1
13.2.1
+ 13.3
+ 14.2

0

14.2
+ 15.1

+ 12.3.1
+ 13.2.1

0

13.3
+ 11.4.1

+ 11.5
+ 12.3.1
+ 13.2.1

13.3

11.5
+ 13.3

+ 10.5.1
+ 12.3.1

13.3

3
14.2

+ 15.1

13.2.1
+ 13.3
+ 15.1

14.2
+ 15.1
+ 13.3

0
13.2.1
+ 15.1

11.4.1
+ 11.5
+ 13.3

+ 13.2.1
+ 15.1

13.3
+ 13.2.1

+ 11.5

11.4.1
+ 11.5

α A1,14(α) A2,13(α) A3,12(α) A4,11(α) A5,10(α) A6,9(α) A7,8(α) A8,7(α) A9,6(α)

1 15
14.1
+ 15

0
13.2

+ 14.1
13.2
+ 15

15
+ 14.1
+ 12.3

0
15

+ 14.1
+ 11.4

13.2
+ 11.4

2 0 14.2
13.2.1
+ 13.3
+ 14.2

13.2.1
12.3.1

+ 13.2.1
+ 13.3

13.2.1
+ 13.3

11.4.1
+ 11.5

+ 12.3.1
+ 13.2.1

13.3
+ 11.4.1

+ 11.5
+ 14.2

+ 12.3.1
+ 13.2.1

13.3
+ 14.2

+ 10.5.1
+ 12.3.1

α A2,14(α) A3,13(α) A4,12(α) A5,11(α) A6,10(α) A7,9(α) A8,8(α) A9,7(α) A10,6(α)

1 15.1 15.1
14.2

+ 15.1
15.1

13.3
+ 14.2

13.3
+ 15.1

12.4
+ 14.2
+ 15.1
+ 13.3

+ 16

15.1
13.3

+ 12.4
+ 11.5
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Table 3. The function ξ = ξS on preadmissible relations

ξ([1, 1]) = 0

ξ([1, 2]) = 0

ξ([1, 3]) = 0

ξ([2, 2]) = 0

ξ(2[1, 1]) = 0

ξ([1, 4]) = 0

ξ([2, 3]) = 2.1 ⊗ 1 + 3 ⊗ 1

ξ([3, 2]) = 2.1 ⊗ 1 + 3 ⊗ 1

ξ(2[1, 2]) = 0

ξ(3[1, 1]) = 0

ξ([1, 5]) = 0

ξ([2, 4]) = 3.1 ⊗ 1

ξ([3, 3]) = 0

ξ(2[1, 3]) = 0

ξ(3[1, 2]) = 0

ξ(4[1, 1]) = 0

ξ([1, 6]) = 0

ξ([2, 5]) = 2.1 ⊗ 3 + 3 ⊗ 3 + 4.1 ⊗ 1 + 5 ⊗ 1

ξ([3, 4]) = 2.1 ⊗ 3 + 3 ⊗ 3 + 4.1 ⊗ 1 + 5 ⊗ 1

ξ([4, 3]) = 0

ξ(2[1, 4]) = 0

ξ(3[1, 3]) = 0

ξ(4[1, 2]) = 0

ξ(5[1, 1]) = 0

ξ([1, 7]) = 0

ξ([2, 6]) = 3.1 ⊗ 3 + 5.1 ⊗ 1

ξ([3, 5]) = 0

ξ([4, 4]) = 2.1 ⊗ 3.1 + 3 ⊗ 3.1 + 3.1 ⊗ 3 + 5.1 ⊗ 1

ξ([5, 3]) = 2.1 ⊗ 3.1 + 3 ⊗ 3.1

ξ(2[1, 5]) = 0
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ξ(3[1, 4]) = 0

ξ(4[1, 3]) = 0

ξ(4[2, 2]) = 3.1 ⊗ 3 + 5.1 ⊗ 1

ξ(5[1, 2]) = 0

ξ(6[1, 1]) = 0

ξ(4.2[1, 1]) = 0

ξ([1, 8]) = 0

ξ([2, 7]) = 2.1 ⊗ 5 + 3 ⊗ 5 + 4.1 ⊗ 3 + 5 ⊗ 3 + 6.1 ⊗ 1 + 7 ⊗ 1

ξ([3, 6]) = 2.1 ⊗ 5 + 3 ⊗ 5 + 4.1 ⊗ 3 + 5 ⊗ 3 + 6.1 ⊗ 1 + 7 ⊗ 1

ξ([4, 5]) = 2.1 ⊗ 5 + 3 ⊗ 5 + 3.1 ⊗ 3.1 + 4.1 ⊗ 3 + 5 ⊗ 3 + 6.1 ⊗ 1 + 7 ⊗ 1

ξ([5, 4]) = 2.1 ⊗ 5 + 3 ⊗ 5 + 4.1 ⊗ 3 + 5 ⊗ 3 + 6.1 ⊗ 1 + 7 ⊗ 1

ξ(2[1, 6]) = 0

ξ(3[1, 5]) = 0

ξ(4[1, 4]) = 0

ξ(4[2, 3]) = 2.1 ⊗ 5 + 3 ⊗ 5 + 3.1 ⊗ 3.1 + 4.1 ⊗ 3 + 5 ⊗ 3 + 4.2.1 ⊗ 1 + 5.2 ⊗ 1

ξ(5[1, 3]) = 0

ξ(5[2, 2]) = 2.1 ⊗ 5 + 3 ⊗ 5 + 4.1 ⊗ 3 + 5 ⊗ 3 + 4.2.1 ⊗ 1 + 5.2 ⊗ 1

ξ(6[1, 2]) = 0

ξ(7[1, 1]) = 0

ξ(4.2[1, 2]) = 0

ξ(5.2[1, 1]) = 0

ξ([1, 9]) = 0

ξ([2, 8]) = 3.1 ⊗ 5 + 5.1 ⊗ 3 + 7.1 ⊗ 1

ξ([3, 7]) = 0

ξ([4, 6]) = 2.1 ⊗ 5.1 + 3 ⊗ 5.1 + 4.1 ⊗ 3.1 + 5 ⊗ 3.1

ξ([5, 5]) = 2.1 ⊗ 5.1 + 3 ⊗ 5.1 + 4.1 ⊗ 3.1 + 5 ⊗ 3.1

ξ([6, 4]) = 3.1 ⊗ 5 + 5.1 ⊗ 3 + 7.1 ⊗ 1

ξ(2[1, 7]) = 0

ξ(3[1, 6]) = 0

ξ(4[1, 5]) = 0

ξ(4[2, 4]) = 2.1 ⊗ 5.1 + 3 ⊗ 5.1 + 3.1 ⊗ 5 + 4.1 ⊗ 3.1 + 5 ⊗ 3.1 + 5.1 ⊗ 3 + 5.2.1 ⊗ 1

ξ(5[1, 4]) = 0
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ξ(5[2, 3]) = 2.1 ⊗ 5.1 + 3 ⊗ 5.1 + 4.1 ⊗ 3.1 + 5 ⊗ 3.1

ξ(6[1, 3]) = 0

ξ(6[2, 2]) = 3.1 ⊗ 5 + 5.1 ⊗ 3 + 5.2.1 ⊗ 1

ξ(7[1, 2]) = 0

ξ(8[1, 1]) = 0

ξ(4.2[1, 3]) = 0

ξ(5.2[1, 2]) = 0

ξ(6.2[1, 1]) = 0

ξ([1, 10]) = 0

ξ([2, 9]) = 2.1 ⊗ 7 + 3 ⊗ 7 + 4.1 ⊗ 5 + 5 ⊗ 5 + 6.1 ⊗ 3 + 7 ⊗ 3 + 8.1 ⊗ 1 + 9 ⊗ 1

ξ([3, 8]) = 2.1 ⊗ 7 + 3 ⊗ 7 + 4.1 ⊗ 5 + 5 ⊗ 5 + 6.1 ⊗ 3 + 7 ⊗ 3 + 8.1 ⊗ 1 + 9 ⊗ 1

ξ([4, 7]) = 5.1 ⊗ 3.1 + 3.1 ⊗ 5.1

ξ([5, 6]) = 0

ξ([6, 5]) = 2.1 ⊗ 5.2 + 3 ⊗ 5.2 + 3.1 ⊗ 5.1 + 4.1 ⊗ 5 + 5 ⊗ 5 + 5.1 ⊗ 3.1 + 6.1 ⊗ 3 + 7 ⊗ 3
+ 6.3 ⊗ 1 + 7.2 ⊗ 1

ξ([7, 4]) = 2.1 ⊗ 5.2 + 3 ⊗ 5.2 + 4.1 ⊗ 5 + 5 ⊗ 5 + 6.1 ⊗ 3 + 7 ⊗ 3 + 6.3 ⊗ 1 + 7.2 ⊗ 1

ξ(2[1, 8]) = 0

ξ(3[1, 7]) = 0

ξ(4[1, 6]) = 0

ξ(4[2, 5]) = 2.1 ⊗ 5.2 +3 ⊗ 5.2 +4.1 ⊗ 5+5 ⊗ 5+4.2.1 ⊗ 3+ 5.2 ⊗ 3+6.2.1 ⊗ 1+8.1 ⊗ 1
+ 9 ⊗ 1 + 7.2 ⊗ 1

ξ(5[1, 5]) = 0

ξ(5[2, 4]) = 2.1 ⊗ 5.2 +3 ⊗ 5.2 +4.1 ⊗ 5+5 ⊗ 5+4.2.1 ⊗ 3+ 5.2 ⊗ 3+6.2.1 ⊗ 1+8.1 ⊗ 1
+ 9 ⊗ 1 + 7.2 ⊗ 1

ξ(6[1, 4]) = 0

ξ(6[2, 3]) = 2.1 ⊗ 7+3 ⊗ 7+ 4.1 ⊗ 5+5 ⊗ 5+5.1 ⊗ 3.1 +6.2.1 ⊗ 1+6.3 ⊗ 1+4.2.1 ⊗ 2.1
+ 7 ⊗ 2.1 + 7 ⊗ 3 + 6.1 ⊗ 2.1 + 5.2 ⊗ 2.1 + 6.1 ⊗ 3 + 3.1 ⊗ 5.1

ξ(6[3, 2]) = 2.1 ⊗ 7+3 ⊗ 7+ 4.1 ⊗ 5+5 ⊗ 5+5.1 ⊗ 3.1 +6.2.1 ⊗ 1+6.3 ⊗ 1+4.2.1 ⊗ 2.1
+ 7 ⊗ 2.1 + 7 ⊗ 3 + 6.1 ⊗ 2.1 + 5.2 ⊗ 2.1 + 6.1 ⊗ 3 + 3.1 ⊗ 5.1

ξ(7[1, 3]) = 0

ξ(7[2, 2]) = 2.1 ⊗ 7 + 3 ⊗ 7 + 4.1 ⊗ 5 + 5 ⊗ 5 + 4.2.1 ⊗ 2.1 + 7 ⊗ 2.1 + 7 ⊗ 3 + 6.1 ⊗ 2.1
+ 6.1 ⊗ 3 + 5.2 ⊗ 2.1 + 6.2.1 ⊗ 1 + 6.3 ⊗ 1

ξ(8[1, 2]) = 0

ξ(9[1, 1]) = 0
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ξ(4.2[1, 4]) = 0

ξ(5.2[1, 3]) = 0

ξ(6.2[1, 2]) = 0

ξ(6.3[1, 1]) = 0

ξ(7.2[1, 1]) = 0

ξ([1, 11]) = 0

ξ([2, 10]) = 9.1 ⊗ 1 + 7.1 ⊗ 3 + 5.1 ⊗ 5 + 3.1 ⊗ 7

ξ([3, 9]) = 0

ξ([4, 8]) = 2.1 ⊗ 7.1+3 ⊗ 7.1+3.1 ⊗ 7+4.1 ⊗ 5.1+5 ⊗ 5.1+5.1 ⊗ 5+6.1 ⊗ 3.1+7 ⊗ 3.1
+ 7.1 ⊗ 3 + 9.1 ⊗ 1

ξ([5, 7]) = 2.1 ⊗ 7.1 + 3 ⊗ 7.1 + 4.1 ⊗ 5.1 + 5 ⊗ 5.1 + 6.1 ⊗ 3.1 + 7 ⊗ 3.1

ξ([6, 6]) = 2.1 ⊗ 7.1+3 ⊗ 7.1+3.1 ⊗ 5.2+4.1 ⊗ 5.1+5 ⊗ 5.1+5.1 ⊗ 5+6.1 ⊗ 3.1+7 ⊗ 3.1
+ 7.1 ⊗ 3 + 7.3 ⊗ 1

ξ([7, 5]) = 2.1 ⊗ 7.1 + 3 ⊗ 7.1 + 4.1 ⊗ 5.1 + 5 ⊗ 5.1 + 6.1 ⊗ 3.1 + 7 ⊗ 3.1

ξ(2[1, 9]) = 0

ξ(3[1, 8]) = 0

ξ(4[1, 7]) = 0

ξ(4[2, 6]) = 3.1 ⊗ 5.2 + 3.1 ⊗ 7 + 5.2.1 ⊗ 3 + 7.1 ⊗ 3 + 7.2.1 ⊗ 1

ξ(5[1, 6]) = 0

ξ(5[2, 5]) = 0

ξ(6[1, 5]) = 0

ξ(6[2, 4]) = 2.1 ⊗ 7.1+3 ⊗ 7.1+3.1 ⊗ 5.2+3.1 ⊗ 7+4.1 ⊗ 5.1+5 ⊗ 5.1+6.1 ⊗ 3.1+7 ⊗ 3.1
+ 5.2.1 ⊗ 2.1 + 5.2.1 ⊗ 3 + 7.1 ⊗ 2.1 + 7.1 ⊗ 3 + 6.3.1 ⊗ 1 + 7.2.1 ⊗ 1 + 9.1 ⊗ 1

ξ(6[3, 3]) = 0

ξ(7[1, 4]) = 0

ξ(7[2, 3]) = 2.1 ⊗ 7.1 + 3 ⊗ 7.1 + 4.1 ⊗ 5.1 + 5 ⊗ 5.1 + 4.2.1 ⊗ 3.1 + 5.2 ⊗ 3.1 + 6.3.1 ⊗ 1
+ 7.2.1 ⊗ 1 + 7.3 ⊗ 1

ξ(7[3, 2]) = 2.1 ⊗ 7.1 + 3 ⊗ 7.1 + 4.1 ⊗ 5.1 + 5 ⊗ 5.1 + 4.2.1 ⊗ 3.1 + 5.2 ⊗ 3.1 + 6.3.1 ⊗ 1
+ 7.2.1 ⊗ 1 + 7.3 ⊗ 1

ξ(8[1, 3]) = 0

ξ(8[2, 2]) = 3.1 ⊗ 7 + 5.1 ⊗ 5 + 4.2.1 ⊗ 3.1 + 7 ⊗ 3.1 + 6.1 ⊗ 3.1 + 5.2 ⊗ 3.1 + 5.2.1 ⊗ 2.1
+ 7.1 ⊗ 2.1 + 7.1 ⊗ 3 + 7.2.1 ⊗ 1 + 7.3 ⊗ 1

ξ(9[1, 2]) = 0

ξ(10[1, 1]) = 0
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ξ(4.2[1, 5]) = 0

ξ(5.2[1, 4]) = 0

ξ(6.2[1, 3]) = 0

ξ(6.3[1, 2]) = 0

ξ(7.2[1, 2]) = 0

ξ(7.3[1, 1]) = 0

ξ(8.2[1, 1]) = 0

ξ([1, 12]) = 0

ξ([2, 11]) = 2.1 ⊗ 9+ 3 ⊗ 9+ 4.1 ⊗ 7+ 5 ⊗ 7+ 6.1 ⊗ 5+ 7 ⊗ 5+ 8.1 ⊗ 3+9 ⊗ 3+10.1 ⊗ 1
+ 11 ⊗ 1

ξ([3, 10]) = 2.1 ⊗ 9+ 3 ⊗ 9+ 4.1 ⊗ 7+ 5 ⊗ 7+ 6.1 ⊗ 5+ 7 ⊗ 5+ 8.1 ⊗ 3+9 ⊗ 3+10.1 ⊗ 1
+ 11 ⊗ 1

ξ([4, 9]) = 2.1 ⊗ 9+3 ⊗ 9+3.1 ⊗ 7.1+4.1 ⊗ 7+5 ⊗ 7+5.1 ⊗ 5.1+6.1 ⊗ 5+7 ⊗ 5+7.1 ⊗ 3.1
+ 8.1 ⊗ 3 + 9 ⊗ 3 + 10.1 ⊗ 1 + 11 ⊗ 1

ξ([5, 8]) = 2.1 ⊗ 9 + 3 ⊗ 9 + 4.1 ⊗ 7 + 5 ⊗ 7 + 6.1 ⊗ 5 + 7 ⊗ 5 + 8.1 ⊗ 3 + 9 ⊗ 3 + 10.1 ⊗ 1
+ 11 ⊗ 1

ξ([6, 7]) = 2.1 ⊗ 7.2 + 3 ⊗ 7.2 + 2.1 ⊗ 9 + 3 ⊗ 9 + 4.1 ⊗ 5.2 + 5 ⊗ 5.2 + 6.1 ⊗ 5 + 7 ⊗ 5
+ 6.3 ⊗ 3 + 7.2 ⊗ 3 + 8.3 ⊗ 1 + 9.2 ⊗ 1 + 10.1 ⊗ 1 + 11 ⊗ 1

ξ([7, 6]) = 2.1 ⊗ 7.2 + 3 ⊗ 7.2 + 2.1 ⊗ 9 + 3 ⊗ 9 + 4.1 ⊗ 5.2 + 5 ⊗ 5.2 + 6.1 ⊗ 5 + 7 ⊗ 5
+ 6.3 ⊗ 3 + 7.2 ⊗ 3 + 8.3 ⊗ 1 + 9.2 ⊗ 1 + 10.1 ⊗ 1 + 11 ⊗ 1

ξ([8, 5]) = 3.1 ⊗ 7.1 + 5.1 ⊗ 5.1 + 7.1 ⊗ 3.1

ξ(2[1, 10]) = 0

ξ(3[1, 9]) = 0

ξ(4[1, 8]) = 0

ξ(4[2, 7]) = 7 ⊗ 5+2.1 ⊗ 7.2+3.1 ⊗ 7.1+5.1 ⊗ 5.1+8.2.1 ⊗ 1+11 ⊗ 1+10.1 ⊗ 1+3 ⊗ 7.2
+4.1 ⊗ 5.2 +5 ⊗ 5.2+ 5 ⊗ 7+6.2.1 ⊗ 3+6.1 ⊗ 5+5.2 ⊗ 5+ 7.2 ⊗ 3+9.2 ⊗ 1
+ 4.1 ⊗ 7 + 7.1 ⊗ 3.1 + 4.2.1 ⊗ 5

ξ(5[1, 7]) = 0

ξ(5[2, 6]) = 2.1 ⊗ 7.2 + 3 ⊗ 7.2 + 4.1 ⊗ 5.2 + 4.1 ⊗ 7 + 5 ⊗ 5.2 + 5 ⊗ 7 + 4.2.1 ⊗ 5 + 7 ⊗ 5
+6.1 ⊗ 5+5.2 ⊗ 5+6.2.1 ⊗ 3+7.2 ⊗ 3+8.2.1 ⊗ 1+11 ⊗ 1+10.1 ⊗ 1+9.2 ⊗ 1

ξ(6[1, 6]) = 0

ξ(6[2, 5]) = 9 ⊗ 2.1 +6.1 ⊗ 5+7.2 ⊗ 3+ 8.3 ⊗ 1+9.2 ⊗ 1+6.2.1 ⊗ 3+4.1 ⊗ 7+5.1 ⊗ 5.1
+4.2.1 ⊗ 5+6.1 ⊗ 4.1+7 ⊗ 5+5 ⊗ 7+6.3 ⊗ 2.1+2.1 ⊗ 7.2+8.1 ⊗ 2.1+3⊗ 7.2
+ 4.2.1 ⊗ 4.1 + 5.2 ⊗ 4.1 + 3.1 ⊗ 7.1 + 7 ⊗ 4.1 + 6.2.1 ⊗ 2.1 + 5 ⊗ 5.2 + 5.2 ⊗ 5
+ 4.1 ⊗ 5.2 + 7.3.1 ⊗ 1 + 7.1 ⊗ 3.1

ξ(6[3, 4]) = 9 ⊗ 2.1 +6.1 ⊗ 5+7.2 ⊗ 3+ 8.3 ⊗ 1+9.2 ⊗ 1+6.2.1 ⊗ 3+4.1 ⊗ 7+5.1 ⊗ 5.1
+4.2.1 ⊗ 5+6.1 ⊗ 4.1+7 ⊗ 5+5 ⊗ 7+6.3 ⊗ 2.1+2.1 ⊗ 7.2+8.1 ⊗ 2.1+3⊗ 7.2
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+ 4.2.1 ⊗ 4.1 + 5.2 ⊗ 4.1 + 3.1 ⊗ 7.1 + 7 ⊗ 4.1 + 6.2.1 ⊗ 2.1 + 5 ⊗ 5.2 + 5.2 ⊗ 5
+ 4.1 ⊗ 5.2 + 7.3.1 ⊗ 1 + 7.1 ⊗ 3.1

ξ(7[1, 5]) = 0

ξ(7[2, 4]) = 3 ⊗ 7.2 + 4.2.1 ⊗ 4.1 + 7 ⊗ 4.1 + 7 ⊗ 5 + 4.2.1 ⊗ 5 + 5 ⊗ 5.2 + 5 ⊗ 7 + 9.2 ⊗ 1
+ 6.1 ⊗ 4.1 + 5.2.1 ⊗ 3.1 + 7.1 ⊗ 3.1 + 4.1 ⊗ 5.2 + 6.1 ⊗ 5 + 9 ⊗ 2.1 + 4.1 ⊗ 7
+6.2.1 ⊗ 3+6.3 ⊗ 2.1+5.2 ⊗ 4.1+8.1 ⊗ 2.1+2.1 ⊗ 7.2+6.2.1 ⊗ 2.1+7.2 ⊗ 3
+ 5.2 ⊗ 5 + 8.3 ⊗ 1

ξ(7[3, 3]) = 0

ξ(8[1, 4]) = 0

ξ(8[2, 3]) = 3 ⊗ 9+4.1 ⊗ 7+ 5 ⊗ 7+5.1 ⊗ 5.1 +7 ⊗ 4.1 +6.1 ⊗ 5+ 6.1 ⊗ 4.1 +4.2.1 ⊗ 4.1
+6.3 ⊗ 2.1+8.2.1 ⊗ 1+9 ⊗ 2.1+7.1 ⊗ 3.1+3.1 ⊗ 7.1+9 ⊗ 3+7 ⊗ 5+8.1 ⊗ 3
+ 8.3 ⊗ 1 + 5.2 ⊗ 4.1 + 6.2.1 ⊗ 2.1 + 8.1 ⊗ 2.1 + 2.1 ⊗ 9 + 7.3.1 ⊗ 1

ξ(8[3, 2]) = 3 ⊗ 9+4.1 ⊗ 7+ 5 ⊗ 7+5.1 ⊗ 5.1 +7 ⊗ 4.1 +6.1 ⊗ 5+ 6.1 ⊗ 4.1 +4.2.1 ⊗ 4.1
+6.3 ⊗ 2.1+8.2.1 ⊗ 1+9 ⊗ 2.1+7.1 ⊗ 3.1+3.1 ⊗ 7.1+9 ⊗ 3+7 ⊗ 5+8.1 ⊗ 3
+ 8.3 ⊗ 1 + 5.2 ⊗ 4.1 + 6.2.1 ⊗ 2.1 + 8.1 ⊗ 2.1 + 2.1 ⊗ 9 + 7.3.1 ⊗ 1

ξ(9[1, 3]) = 0

ξ(9[2, 2]) = 6.2.1 ⊗ 2.1 + 5.2.1 ⊗ 3.1 + 7.1 ⊗ 3.1 + 6.3 ⊗ 2.1 + 8.1 ⊗ 2.1 + 4.1 ⊗ 7 + 5 ⊗ 7
+9 ⊗ 3+ 5.2 ⊗ 4.1+ 8.1 ⊗ 3+8.2.1 ⊗ 1+6.1 ⊗ 4.1 +6.1 ⊗ 5+2.1 ⊗ 9+ 3 ⊗ 9
+ 7 ⊗ 4.1 + 7 ⊗ 5 + 9 ⊗ 2.1 + 4.2.1 ⊗ 4.1 + 8.3 ⊗ 1

ξ(10[1, 2]) = 0

ξ(11[1, 1]) = 0

ξ(4.2[1, 6]) = 0

ξ(5.2[1, 5]) = 0

ξ(6.2[1, 4]) = 0

ξ(6.3[1, 3]) = 0

ξ(7.2[1, 3]) = 0

ξ(7.3[1, 2]) = 0

ξ(8.2[1, 2]) = 0

ξ(8.3[1, 1]) = 0

ξ(9.2[1, 1]) = 0

ξ([1, 13]) = 0

ξ([2, 12]) = 3.1 ⊗ 9 + 5.1 ⊗ 7 + 7.1 ⊗ 5 + 9.1 ⊗ 3 + 11.1 ⊗ 1

ξ([3, 11]) = 0

ξ([4, 10]) = 2.1 ⊗ 9.1+3 ⊗ 9.1+4.1 ⊗ 7.1+5 ⊗ 7.1+6.1 ⊗ 5.1+7 ⊗ 5.1+8.1 ⊗ 3.1+9 ⊗ 3.1

ξ([5, 9]) = 2.1 ⊗ 9.1+3 ⊗ 9.1+4.1 ⊗ 7.1+5 ⊗ 7.1+6.1 ⊗ 5.1+7 ⊗ 5.1+8.1 ⊗ 3.1+9 ⊗ 3.1
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ξ([6, 8]) = 3.1 ⊗ 7.2 + 5.1 ⊗ 5.2 + 5.1 ⊗ 7 + 7.3 ⊗ 3 + 9.1 ⊗ 3 + 9.3 ⊗ 1

ξ([7, 7]) = 0

ξ([8, 6]) = 7 ⊗ 5.1+7.1 ⊗ 5+7.3 ⊗ 3+2.1 ⊗ 7.3+3 ⊗ 7.3+3.1 ⊗ 9+4.1 ⊗ 7.1+5.1 ⊗ 5.2
+ 11.1 ⊗ 1 + 5 ⊗ 7.1 + 9.3 ⊗ 1 + 3.1 ⊗ 7.2 + 6.1 ⊗ 5.1 + 6.3 ⊗ 3.1 + 7.2 ⊗ 3.1

ξ([9, 5]) = 2.1 ⊗ 7.3+3 ⊗ 7.3+4.1 ⊗ 7.1+5 ⊗ 7.1+6.1 ⊗ 5.1+7 ⊗ 5.1+6.3 ⊗ 3.1+7.2 ⊗ 3.1

ξ(2[1, 11]) = 0

ξ(3[1, 10]) = 0

ξ(4[1, 9]) = 0

ξ(4[2, 8]) = 2.1 ⊗ 9.1 + 3 ⊗ 9.1 + 3.1 ⊗ 7.2 + 4.1 ⊗ 7.1 + 5 ⊗ 7.1 + 5.1 ⊗ 5.2 + 5.1 ⊗ 7
+ 6.1 ⊗ 5.1 + 7 ⊗ 5.1 + 5.2.1 ⊗ 5 + 7.1 ⊗ 5 + 8.1 ⊗ 3.1 + 9 ⊗ 3.1 + 7.2.1 ⊗ 3
+ 9.2.1 ⊗ 1 + 11.1 ⊗ 1

ξ(5[1, 8]) = 0

ξ(5[2, 7]) = 2.1 ⊗ 9.1+3 ⊗ 9.1+4.1 ⊗ 7.1+5 ⊗ 7.1+6.1 ⊗ 5.1+7 ⊗ 5.1+8.1 ⊗ 3.1+9 ⊗ 3.1

ξ(6[1, 7]) = 0

ξ(6[2, 6]) = 5.2.1 ⊗ 4.1 + 7 ⊗ 5.1 + 2.1 ⊗ 7.3 + 3 ⊗ 7.3 + 6.3 ⊗ 3.1 + 4.1 ⊗ 7.1 + 5 ⊗ 7.1
+7.2.1 ⊗ 2.1+7.3 ⊗ 2.1+8.3.1 ⊗ 1+7.1 ⊗ 4.1+9.1 ⊗ 2.1+6.3.1 ⊗ 3+7.2.1 ⊗ 3
+ 11.1 ⊗ 1 + 7.2 ⊗ 3.1 + 7.3 ⊗ 3 + 6.1 ⊗ 5.1

ξ(6[3, 5]) = 0

ξ(7[1, 6]) = 0

ξ(7[2, 5]) = 4.1 ⊗ 7.1 + 2.1 ⊗ 7.3 + 5 ⊗ 7.1 + 7.2 ⊗ 3.1 + 7.2.1 ⊗ 3 + 5.2 ⊗ 5.1 + 9 ⊗ 3.1
+ 8.3.1 ⊗ 1 + 9.2.1 ⊗ 1 + 9.3 ⊗ 1 + 7.3 ⊗ 3 + 3 ⊗ 7.3 + 6.2.1 ⊗ 3.1 + 6.3.1 ⊗ 3
+ 4.2.1 ⊗ 5.1 + 8.1 ⊗ 3.1

ξ(7[3, 4]) = 4.1 ⊗ 7.1 + 2.1 ⊗ 7.3 + 5 ⊗ 7.1 + 7.2 ⊗ 3.1 + 7.2.1 ⊗ 3 + 5.2 ⊗ 5.1 + 9 ⊗ 3.1
+ 8.3.1 ⊗ 1 + 9.2.1 ⊗ 1 + 9.3 ⊗ 1 + 7.3 ⊗ 3 + 3 ⊗ 7.3 + 6.2.1 ⊗ 3.1 + 6.3.1 ⊗ 3
+ 4.2.1 ⊗ 5.1 + 8.1 ⊗ 3.1

ξ(8[1, 5]) = 0

ξ(8[2, 4]) = 9.1 ⊗ 3 + 6.2.1 ⊗ 3.1 + 7.2.1 ⊗ 2.1 + 5 ⊗ 7.1 + 2.1 ⊗ 9.1 + 3 ⊗ 9.1 + 3.1 ⊗ 9
+7.3 ⊗ 2.1+7.2.1 ⊗ 3+4.2.1 ⊗ 5.1+6.3.1 ⊗ 2.1+5.1 ⊗ 5.2+3.1 ⊗ 7.2+8.3.1 ⊗ 1
+ 9.3 ⊗ 1 + 6.3 ⊗ 3.1 + 5.2 ⊗ 5.1 + 5.2.1 ⊗ 5 + 4.1 ⊗ 7.1

ξ(8[3, 3]) = 0

ξ(9[1, 4]) = 0

ξ(9[2, 3]) = 4.2.1 ⊗ 5.1 + 5 ⊗ 7.1 + 7.3 ⊗ 2.1 + 4.1 ⊗ 7.1 + 8.3.1 ⊗ 1 + 9.2.1 ⊗ 1 + 9.3 ⊗ 1
+6.2.1 ⊗ 3.1+7.2.1 ⊗ 2.1+6.3.1 ⊗ 2.1+2.1 ⊗ 9.1+3 ⊗ 9.1+6.3 ⊗ 3.1+5.2 ⊗ 5.1

ξ(9[3, 2]) = 4.2.1 ⊗ 5.1 + 5 ⊗ 7.1 + 7.3 ⊗ 2.1 + 4.1 ⊗ 7.1 + 8.3.1 ⊗ 1 + 9.2.1 ⊗ 1 + 9.3 ⊗ 1
+6.2.1 ⊗ 3.1+7.2.1 ⊗ 2.1+6.3.1 ⊗ 2.1+2.1 ⊗ 9.1+3 ⊗ 9.1+6.3 ⊗ 3.1+5.2 ⊗ 5.1

ξ(10[1, 3]) = 0
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ξ(10[2, 2]) = 9.1 ⊗ 3 + 9.2.1 ⊗ 1 + 9.3 ⊗ 1 + 6.3 ⊗ 3.1 + 8.1 ⊗ 3.1 + 9 ⊗ 3.1 + 7.3 ⊗ 2.1
+ 7.1 ⊗ 4.1 + 5.1 ⊗ 7 + 4.2.1 ⊗ 5.1 + 7.1 ⊗ 5 + 7 ⊗ 5.1 + 6.1 ⊗ 5.1 + 5.2 ⊗ 5.1
+ 3.1 ⊗ 9 + 9.1 ⊗ 2.1 + 7.2.1 ⊗ 2.1 + 6.2.1 ⊗ 3.1 + 5.2.1 ⊗ 4.1

ξ(11[1, 2]) = 0

ξ(12[1, 1]) = 0

ξ(4.2[1, 7]) = 0

ξ(5.2[1, 6]) = 0

ξ(6.2[1, 5]) = 0

ξ(6.3[1, 4]) = 0

ξ(7.2[1, 4]) = 0

ξ(7.3[1, 3]) = 0

ξ(8.2[1, 3]) = 0

ξ(8.3[1, 2]) = 0

ξ(8.4[1, 1]) = 0

ξ(9.2[1, 2]) = 0

ξ(9.3[1, 1]) = 0

ξ(10.2[1, 1]) = 0

ξ([1, 14]) = 0

ξ([2, 13]) = 2.1 ⊗ 11+3 ⊗ 11+4.1 ⊗ 9+5 ⊗ 9+6.1 ⊗ 7+7 ⊗ 7+8.1 ⊗ 5+9 ⊗ 5+10.1 ⊗ 3
+ 11 ⊗ 3 + 12.1 ⊗ 1 + 13 ⊗ 1

ξ([3, 12]) = 2.1 ⊗ 11+3 ⊗ 11+4.1 ⊗ 9+5 ⊗ 9+6.1 ⊗ 7+7 ⊗ 7+8.1 ⊗ 5+9 ⊗ 5+10.1 ⊗ 3
+ 11 ⊗ 3 + 12.1 ⊗ 1 + 13 ⊗ 1

ξ([4, 11]) = 3.1 ⊗ 9.1 + 5.1 ⊗ 7.1 + 7.1 ⊗ 5.1 + 9.1 ⊗ 3.1

ξ([5, 10]) = 0

ξ([6, 9]) = 2.1 ⊗ 9.2+2.1 ⊗ 11+3 ⊗ 9.2+3 ⊗ 11+3.1 ⊗ 9.1+4.1 ⊗ 7.2+5⊗ 7.2+5.1 ⊗ 7.1
+ 6.1 ⊗ 5.2 + 6.1 ⊗ 7 + 7 ⊗ 5.2 + 7 ⊗ 7 + 7.1 ⊗ 5.1 + 6.3 ⊗ 5 + 8.1 ⊗ 5 + 9 ⊗ 5
+7.2 ⊗ 5+9.1 ⊗ 3.1+8.3 ⊗ 3+9.2 ⊗ 3+10.3 ⊗ 1+12.1 ⊗ 1+13 ⊗ 1+11.2 ⊗ 1

ξ([7, 8]) = 2.1 ⊗ 9.2+2.1 ⊗ 11+3 ⊗ 9.2+3 ⊗ 11+4.1 ⊗ 7.2+5 ⊗ 7.2+6.1 ⊗ 5.2+6.1 ⊗ 7
+7 ⊗ 5.2+7 ⊗ 7+6.3 ⊗ 5+8.1 ⊗ 5+9 ⊗ 5+7.2 ⊗ 5+8.3 ⊗ 3+9.2 ⊗ 3+10.3 ⊗ 1
+ 12.1 ⊗ 1 + 13 ⊗ 1 + 11.2 ⊗ 1

ξ([8, 7]) = 3.1 ⊗ 7.3+ 7 ⊗ 5.2+ 5.1 ⊗ 7.1+ 11 ⊗ 3+ 8.3 ⊗ 3+ 6.3 ⊗ 5+7.1 ⊗ 5.1 +3 ⊗ 9.2
+4.1 ⊗ 7.2+5 ⊗ 7.2+4.1 ⊗ 9+5 ⊗ 9+9.2 ⊗ 3+2.1 ⊗ 9.2+10.3 ⊗ 1+7.2 ⊗ 5
+ 11.2 ⊗ 1 + 7.3 ⊗ 3.1 + 10.1 ⊗ 3 + 6.1 ⊗ 5.2

ξ([9, 6]) = 4.1 ⊗ 7.2 + 5 ⊗ 7.2 + 11.2 ⊗ 1 + 4.1 ⊗ 9 + 5 ⊗ 9 + 3 ⊗ 9.2 + 8.3 ⊗ 3 + 9.2 ⊗ 3
+6.1 ⊗ 5.2+7 ⊗ 5.2+10.1 ⊗ 3+2.1 ⊗ 9.2+11 ⊗ 3+6.3 ⊗ 5+10.3 ⊗ 1+7.2 ⊗ 5
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ξ(2[1, 12]) = 0

ξ(3[1, 11]) = 0

ξ(4[1, 10]) = 0

ξ(4[2, 9]) = 10.2.1 ⊗ 1 + 3 ⊗ 9.2 + 3 ⊗ 11 + 11.2 ⊗ 1 + 2.1 ⊗ 9.2 + 2.1 ⊗ 11 + 6.1 ⊗ 5.2
+ 6.2.1 ⊗ 5 + 7.2 ⊗ 5 + 4.2.1 ⊗ 7 + 5.2 ⊗ 7 + 10.1 ⊗ 3 + 9.2 ⊗ 3 + 4.1 ⊗ 7.2
+ 5 ⊗ 7.2 + 7 ⊗ 5.2 + 8.2.1 ⊗ 3 + 11 ⊗ 3

ξ(5[1, 9]) = 0

ξ(5[2, 8]) = 10.2.1 ⊗ 1+9.2 ⊗ 3+2.1 ⊗ 11+5 ⊗ 7.2+11.2 ⊗ 1+3 ⊗ 9.2+3 ⊗ 11+5.2 ⊗ 7
+ 4.2.1 ⊗ 7 + 2.1 ⊗ 9.2 + 6.2.1 ⊗ 5 + 7.2 ⊗ 5 + 6.1 ⊗ 5.2 + 4.1 ⊗ 7.2 + 7 ⊗ 5.2
+ 8.2.1 ⊗ 3 + 11 ⊗ 3 + 10.1 ⊗ 3

ξ(6[1, 8]) = 0

ξ(6[2, 7]) = 8.2.1 ⊗ 2.1+10.2.1 ⊗ 1+11 ⊗ 2.1+10.3 ⊗ 1+10.1 ⊗ 2.1+12.1 ⊗ 1+3.1 ⊗ 9.1
+4.2.1 ⊗ 6.1+13 ⊗ 1+6.2.1 ⊗ 4.1+8.3 ⊗ 2.1+6.1 ⊗ 6.1+7.3 ⊗ 3.1+8.1 ⊗ 4.1
+ 9.3.1 ⊗ 1 + 9.1 ⊗ 3.1 + 5.2 ⊗ 6.1 + 7 ⊗ 6.1 + 3.1 ⊗ 7.3 + 6.3 ⊗ 4.1 + 9 ⊗ 4.1
+ 7.3.1 ⊗ 3

ξ(6[3, 6]) = 8.2.1 ⊗ 2.1+10.2.1 ⊗ 1+11 ⊗ 2.1+10.3 ⊗ 1+10.1 ⊗ 2.1+12.1 ⊗ 1+3.1 ⊗ 9.1
+4.2.1 ⊗ 6.1+13 ⊗ 1+6.2.1 ⊗ 4.1+8.3 ⊗ 2.1+6.1 ⊗ 6.1+7.3 ⊗ 3.1+8.1 ⊗ 4.1
+ 9.3.1 ⊗ 1 + 9.1 ⊗ 3.1 + 5.2 ⊗ 6.1 + 7 ⊗ 6.1 + 3.1 ⊗ 7.3 + 6.3 ⊗ 4.1 + 9 ⊗ 4.1
+ 7.3.1 ⊗ 3

ξ(7[1, 7]) = 0

ξ(7[2, 6]) = 10.3 ⊗ 1+10.2.1 ⊗ 1+13 ⊗ 1+12.1 ⊗ 1+4.2.1 ⊗ 6.1+7.1 ⊗ 5.1+6.2.1 ⊗ 4.1
+ 6.1 ⊗ 6.1 + 7 ⊗ 6.1 + 5.2.1 ⊗ 5.1 + 8.3 ⊗ 2.1 + 8.1 ⊗ 4.1 + 7.3 ⊗ 3.1 + 9 ⊗ 4.1
+ 5.2 ⊗ 6.1 + 7.2.1 ⊗ 3.1 + 9.1 ⊗ 3.1 + 8.2.1 ⊗ 2.1 + 10.1 ⊗ 2.1 + 11 ⊗ 2.1 +
6.3 ⊗ 4.1

ξ(7[3, 5]) = 0

ξ(8[1, 6]) = 0

ξ(8[2, 5]) = 9.2 ⊗ 3+8.2.1 ⊗ 3+9.4 ⊗ 1+4.1 ⊗ 7.2+9.1 ⊗ 3.1+5 ⊗ 7.2+8.4.1 ⊗ 1+7.2 ⊗ 5
+ 5.2 ⊗ 5.2 + 3.1 ⊗ 7.3 + 3.1 ⊗ 9.1 + 6.2.1 ⊗ 5 + 7.3.1 ⊗ 2.1 + 8.1 ⊗ 5 + 9 ⊗ 5
+ 7.3 ⊗ 3.1 + 4.2.1 ⊗ 5.2 + 9.3.1 ⊗ 1 + 4.1 ⊗ 9 + 5 ⊗ 9 + 3 ⊗ 9.2 + 2.1 ⊗ 9.2
+ 7.3.1 ⊗ 3

ξ(8[3, 4]) = 9.2 ⊗ 3+8.2.1 ⊗ 3+9.4 ⊗ 1+4.1 ⊗ 7.2+9.1 ⊗ 3.1+5 ⊗ 7.2+8.4.1 ⊗ 1+7.2 ⊗ 5
+ 5.2 ⊗ 5.2 + 3.1 ⊗ 7.3 + 3.1 ⊗ 9.1 + 6.2.1 ⊗ 5 + 7.3.1 ⊗ 2.1 + 8.1 ⊗ 5 + 9 ⊗ 5
+ 7.3 ⊗ 3.1 + 4.2.1 ⊗ 5.2 + 9.3.1 ⊗ 1 + 4.1 ⊗ 9 + 5 ⊗ 9 + 3 ⊗ 9.2 + 2.1 ⊗ 9.2
+ 7.3.1 ⊗ 3

ξ(8[4, 3]) = 3.1 ⊗ 7.2.1 + 3.1 ⊗ 7.3 + 5.1 ⊗ 5.2.1 + 5.2.1 ⊗ 5.1 + 6.3.1 ⊗ 3.1 + 7.3.1 ⊗ 2.1
+ 7.3.1 ⊗ 3

ξ(9[1, 5]) = 0

ξ(9[2, 4]) = 7.3 ⊗ 3.1 +7.2 ⊗ 5+8.2.1 ⊗ 3+8.1 ⊗ 5+9 ⊗ 5+ 4.1 ⊗ 9+3 ⊗ 9.2 +4.1 ⊗ 7.2
+ 4.2.1 ⊗ 5.2 + 9.3.1 ⊗ 1 + 9.2 ⊗ 3 + 5.2 ⊗ 5.2 + 9.4 ⊗ 1 + 8.4.1 ⊗ 1 + 5 ⊗ 9
+ 6.2.1 ⊗ 5 + 5 ⊗ 7.2 + 6.3.1 ⊗ 3.1 + 7.2.1 ⊗ 3.1 + 2.1 ⊗ 9.2
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ξ(9[3, 3]) = 0

ξ(10[1, 4]) = 0

ξ(10[2, 3]) = 5.2 ⊗ 6.1+6.3.1 ⊗ 3.1+9⊗ 4.1+9 ⊗ 5+4.1 ⊗ 9+8.1 ⊗ 4.1+7 ⊗ 7+6.3 ⊗ 4.1
+3 ⊗ 11+10.1 ⊗ 2.1+10.1 ⊗ 3+8.2.1 ⊗ 2.1+10.2.1 ⊗ 1+7.3.1 ⊗ 2.1+6.1 ⊗ 6.1
+ 5 ⊗ 9 + 6.2.1 ⊗ 4.1 + 3.1 ⊗ 9.1 + 11 ⊗ 2.1 + 5.1 ⊗ 7.1 + 11 ⊗ 3 + 2.1 ⊗ 11
+ 7.1 ⊗ 5.1 + 7.2.1 ⊗ 3.1 + 8.1 ⊗ 5 + 8.3 ⊗ 2.1 + 10.3 ⊗ 1 + 7 ⊗ 6.1 + 7.3 ⊗ 3.1
+ 9.1 ⊗ 3.1 + 6.1 ⊗ 7 + 9.3.1 ⊗ 1 + 4.2.1 ⊗ 6.1

ξ(10[3, 2]) = 5.2 ⊗ 6.1+6.3.1 ⊗ 3.1+9⊗ 4.1+9 ⊗ 5+4.1 ⊗ 9+8.1 ⊗ 4.1+7 ⊗ 7+6.3 ⊗ 4.1
+3 ⊗ 11+10.1 ⊗ 2.1+10.1 ⊗ 3+8.2.1 ⊗ 2.1+10.2.1 ⊗ 1+7.3.1 ⊗ 2.1+6.1 ⊗ 6.1
+ 5 ⊗ 9 + 6.2.1 ⊗ 4.1 + 3.1 ⊗ 9.1 + 11 ⊗ 2.1 + 5.1 ⊗ 7.1 + 11 ⊗ 3 + 2.1 ⊗ 11
+ 7.1 ⊗ 5.1 + 7.2.1 ⊗ 3.1 + 8.1 ⊗ 5 + 8.3 ⊗ 2.1 + 10.3 ⊗ 1 + 7 ⊗ 6.1 + 7.3 ⊗ 3.1
+ 9.1 ⊗ 3.1 + 6.1 ⊗ 7 + 9.3.1 ⊗ 1 + 4.2.1 ⊗ 6.1

ξ(11[1, 3]) = 0

ξ(11[2, 2]) = 8.1 ⊗ 5 + 10.1 ⊗ 3 + 7 ⊗ 7 + 6.1 ⊗ 6.1 + 10.2.1 ⊗ 1 + 10.1 ⊗ 2.1 + 5.2.1 ⊗ 5.1
+ 6.1 ⊗ 7 + 5.2 ⊗ 6.1 + 7 ⊗ 6.1 + 11 ⊗ 2.1 + 10.3 ⊗ 1 + 6.3 ⊗ 4.1 + 7.2.1 ⊗ 3.1
+ 8.2.1 ⊗ 2.1 + 7.1 ⊗ 5.1 + 8.3 ⊗ 2.1 + 5 ⊗ 9 + 2.1 ⊗ 11 + 7.3 ⊗ 3.1 + 8.1 ⊗ 4.1
+ 4.1 ⊗ 9 + 9 ⊗ 4.1 + 3 ⊗ 11 + 9.1 ⊗ 3.1 + 6.2.1 ⊗ 4.1 + 4.2.1 ⊗ 6.1 + 11 ⊗ 3
+ 9 ⊗ 5

ξ(12[1, 2]) = 0

ξ(13[1, 1]) = 0

ξ(4.2[1, 8]) = 0

ξ(5.2[1, 7]) = 0

ξ(6.2[1, 6]) = 0

ξ(6.3[1, 5]) = 0

ξ(7.2[1, 5]) = 0

ξ(7.3[1, 4]) = 0

ξ(8.2[1, 4]) = 0

ξ(8.3[1, 3]) = 0

ξ(8.4[1, 2]) = 0

ξ(9.2[1, 3]) = 0

ξ(9.3[1, 2]) = 0

ξ(9.4[1, 1]) = 0

ξ(10.2[1, 2]) = 0

ξ(10.3[1, 1]) = 0

ξ(11.2[1, 1]) = 0

ξ([1, 15]) = 0
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ξ([2, 14]) = 3.1 ⊗ 11 + 5.1 ⊗ 9 + 7.1 ⊗ 7 + 9.1 ⊗ 5 + 11.1 ⊗ 3 + 13.1 ⊗ 1

ξ([3, 13]) = 0

ξ([4, 12]) = 2.1 ⊗ 11.1 + 3 ⊗ 11.1 + 3.1 ⊗ 11 + 4.1 ⊗ 9.1 + 5 ⊗ 9.1 + 5.1 ⊗ 9 + 6.1 ⊗ 7.1
+7 ⊗ 7.1+7.1 ⊗ 7+8.1 ⊗ 5.1+9 ⊗ 5.1+9.1 ⊗ 5+10.1 ⊗ 3.1+11 ⊗ 3.1+11.1 ⊗ 3
+ 13.1 ⊗ 1

ξ([5, 11]) = 2.1 ⊗ 11.1 + 3 ⊗ 11.1 + 4.1 ⊗ 9.1 + 5 ⊗ 9.1 + 6.1 ⊗ 7.1 + 7 ⊗ 7.1 + 8.1 ⊗ 5.1
+ 9 ⊗ 5.1 + 10.1 ⊗ 3.1 + 11 ⊗ 3.1

ξ([6, 10]) = 2.1 ⊗ 11.1 + 3 ⊗ 11.1 + 3.1 ⊗ 9.2 + 3.1 ⊗ 11 + 4.1 ⊗ 9.1 + 5 ⊗ 9.1 + 5.1 ⊗ 7.2
+6.1 ⊗ 7.1+7 ⊗ 7.1+7.1 ⊗ 5.2+7.1 ⊗ 7+8.1 ⊗ 5.1+9 ⊗ 5.1+7.3 ⊗ 5+9.1 ⊗ 5
+ 10.1 ⊗ 3.1 + 11 ⊗ 3.1 + 9.3 ⊗ 3 + 11.3 ⊗ 1 + 13.1 ⊗ 1

ξ([7, 9]) = 2.1 ⊗ 11.1 + 3 ⊗ 11.1 + 4.1 ⊗ 9.1 + 5 ⊗ 9.1 + 6.1 ⊗ 7.1 + 7 ⊗ 7.1 + 8.1 ⊗ 5.1
+ 9 ⊗ 5.1 + 10.1 ⊗ 3.1 + 11 ⊗ 3.1

ξ([8, 8]) = 4.1 ⊗ 7.3 + 10.1 ⊗ 3.1 + 2.1 ⊗ 9.3 + 3 ⊗ 11.1 + 13.1 ⊗ 1 + 7.2 ⊗ 5.1 + 3 ⊗ 9.3
+ 6.3 ⊗ 5.1 + 9.2 ⊗ 3.1 + 11 ⊗ 3.1 + 5 ⊗ 7.3 + 6.1 ⊗ 7.1 + 9.1 ⊗ 5 + 7 ⊗ 7.1
+ 11.1 ⊗ 3 + 7.1 ⊗ 7 + 5.1 ⊗ 9 + 8.3 ⊗ 3.1 + 3.1 ⊗ 11 + 2.1 ⊗ 11.1

ξ([9, 7]) = 2.1 ⊗ 9.3 + 3 ⊗ 9.3 + 2.1 ⊗ 11.1 + 3 ⊗ 11.1 + 4.1 ⊗ 7.3 + 5 ⊗ 7.3 + 6.1 ⊗ 7.1
+7 ⊗ 7.1 +6.3 ⊗ 5.1 +7.2 ⊗ 5.1 +8.3 ⊗ 3.1 +9.2 ⊗ 3.1 +10.1 ⊗ 3.1+11 ⊗ 3.1

ξ([10, 6] = 3.1 ⊗ 9.2+5.1 ⊗ 7.2+5.1 ⊗ 9+7.1 ⊗ 5.2+7.3 ⊗ 5+9.3 ⊗ 3+11.1 ⊗ 3+11.3 ⊗ 1

ξ(2[1, 13]) = 0

ξ(3[1, 12]) = 0

ξ(4[1, 11]) = 0

ξ(4[2, 10]) = 7.2.1 ⊗ 5 + 9.2.1 ⊗ 3 + 5.1 ⊗ 9 + 9.1 ⊗ 5 + 11.2.1 ⊗ 1 + 13.1 ⊗ 1 + 5.1 ⊗ 7.2
+ 3.1 ⊗ 9.2 + 5.2.1 ⊗ 7 + 7.1 ⊗ 7 + 7.1 ⊗ 5.2

ξ(5[1, 10]) = 0

ξ(5[2, 9]) = 0

ξ(6[1, 9]) = 0

ξ(6[2, 8]) = 7.1 ⊗ 5.2 + 9.3 ⊗ 3 + 7.2 ⊗ 5.1 + 6.3.1 ⊗ 5 + 9 ⊗ 5.1 + 5.2.1 ⊗ 7 + 9.1 ⊗ 4.1
+5 ⊗ 9.1+7.3 ⊗ 5+11.1 ⊗ 2.1+7.3 ⊗ 4.1+7.2.1 ⊗ 4.1+5 ⊗ 7.3+9.2.1 ⊗ 2.1
+5.1 ⊗ 7.2+5.2.1 ⊗ 6.1+8.3.1 ⊗ 3+13.1 ⊗ 1+3.1 ⊗ 9.2+3.1 ⊗ 11+2.1 ⊗ 9.3
+4.1 ⊗ 9.1+6.3 ⊗ 5.1+7.1 ⊗ 6.1+10.3.1 ⊗ 1+8.3 ⊗ 3.1+4.1 ⊗ 7.3+9.3 ⊗ 2.1
+ 3 ⊗ 9.3 + 8.1 ⊗ 5.1 + 11.2.1 ⊗ 1 + 11.1 ⊗ 3 + 9.2 ⊗ 3.1

ξ(6[3, 7]) = 0

ξ(7[1, 8]) = 0

ξ(7[2, 7]) = 5 ⊗ 7.3 + 10.1 ⊗ 3.1 + 5 ⊗ 9.1 + 7.2.1 ⊗ 5 + 9.2.1 ⊗ 3 + 8.3.1 ⊗ 3 + 6.1 ⊗ 7.1
+ 9.3 ⊗ 3 + 7 ⊗ 7.1 + 5.2 ⊗ 7.1 + 11.2.1 ⊗ 1 + 7.3 ⊗ 5 + 10.3.1 ⊗ 1 + 2.1 ⊗ 9.3
+7.2 ⊗ 5.1+4.1 ⊗ 7.3+3 ⊗ 9.3+11 ⊗ 3.1+8.2.1 ⊗ 3.1+4.1 ⊗ 9.1+6.3.1 ⊗ 5
+ 4.2.1 ⊗ 7.1 + 6.2.1 ⊗ 5.1 + 9.2 ⊗ 3.1 + 11.3 ⊗ 1



468 Tables

ξ(7[3, 6]) = 5 ⊗ 7.3 + 10.1 ⊗ 3.1 + 5 ⊗ 9.1 + 7.2.1 ⊗ 5 + 9.2.1 ⊗ 3 + 8.3.1 ⊗ 3 + 6.1 ⊗ 7.1
+ 9.3 ⊗ 3 + 7 ⊗ 7.1 + 5.2 ⊗ 7.1 + 11.2.1 ⊗ 1 + 7.3 ⊗ 5 + 10.3.1 ⊗ 1 + 2.1 ⊗ 9.3
+7.2 ⊗ 5.1+4.1 ⊗ 7.3+3 ⊗ 9.3+11 ⊗ 3.1+8.2.1 ⊗ 3.1+4.1 ⊗ 9.1+6.3.1 ⊗ 5
+ 4.2.1 ⊗ 7.1 + 6.2.1 ⊗ 5.1 + 9.2 ⊗ 3.1 + 11.3 ⊗ 1

ξ(8[1, 7]) = 0

ξ(8[2, 6]) = 6.3.1 ⊗ 4.1+5.2.1 ⊗ 6.1+6.3.1 ⊗ 5+7.3 ⊗ 5+13.1 ⊗ 1+6.2.1 ⊗ 5.1+7.1 ⊗ 6.1
+9.3 ⊗ 3+11.2.1 ⊗ 1+ 8.2.1 ⊗ 3.1 +9.1 ⊗ 5+ 3 ⊗ 9.3 +8.3.1 ⊗ 3+ 11.1 ⊗ 2.1
+ 9.2 ⊗ 3.1 + 10.1 ⊗ 3.1 + 2.1 ⊗ 9.3 + 11 ⊗ 3.1 + 9.4.1 ⊗ 1 + 5 ⊗ 7.3 + 5.1 ⊗ 9
+ 11.3 ⊗ 1 + 4.1 ⊗ 9.1 + 4.2.1 ⊗ 7.1 + 5.1 ⊗ 7.2 + 7 ⊗ 7.1 + 3.1 ⊗ 9.2 + 5 ⊗ 9.1
+8.3.1 ⊗ 2.1+5.2 ⊗ 7.1+9.1 ⊗ 4.1+7.2 ⊗ 5.1+4.1 ⊗ 7.3+6.1 ⊗ 7.1+5.2.1 ⊗ 5.2

ξ(8[3, 5]) = 0

ξ(8[4, 4]) = 9.2 ⊗ 3.1+5 ⊗ 7.2.1+4.2.1 ⊗ 5.2.1+9.1 ⊗ 5+11.2.1 ⊗ 1+9.4.1 ⊗ 1+5.2 ⊗ 7.1
+3.1 ⊗ 9.2+8.3 ⊗ 3.1+5.1 ⊗ 7.2+7.2.1 ⊗ 5+5.2.1 ⊗ 5.2+5.2.1 ⊗ 6.1+7 ⊗ 7.1
+13.1 ⊗ 1+4.1 ⊗ 7.2.1+5.1 ⊗ 9+5 ⊗ 9.1+2.1 ⊗ 9.2.1+7.2 ⊗ 5.1+7.3 ⊗ 4.1
+ 4.2.1 ⊗ 7.1 + 7.2.1 ⊗ 4.1 + 10.1 ⊗ 3.1 + 6.3 ⊗ 5.1 + 3.1 ⊗ 7.3.1 + 9.2.1 ⊗ 2.1
+11 ⊗ 3.1+7.1 ⊗ 6.1+9.1 ⊗ 4.1+3 ⊗ 9.2.1+9.2.1 ⊗ 3+11.1 ⊗ 2.1+6.1 ⊗ 7.1
+ 9.3 ⊗ 2.1 + 11.3 ⊗ 1 + 4.1 ⊗ 9.1 + 5.2 ⊗ 5.2.1

ξ(9[1, 6]) = 0

ξ(9[2, 5]) = 4.1 ⊗ 9.1 + 5 ⊗ 9.1 + 9.3 ⊗ 2.1 + 9 ⊗ 5.1 + 8.3 ⊗ 3.1 + 7.3.1 ⊗ 3.1 + 9.2 ⊗ 3.1
+8.1 ⊗ 5.1+2.1 ⊗ 9.3+9.2.1 ⊗ 3+3 ⊗ 9.3+4.1 ⊗ 7.3+9.2.1 ⊗ 2.1+7.2.1 ⊗ 5
+7.3 ⊗ 4.1+7.2.1 ⊗ 4.1+8.3.1 ⊗ 2.1+9.3 ⊗ 3+7.3 ⊗ 5+6.3 ⊗ 5.1+6.3.1 ⊗ 5
+ 5 ⊗ 7.3 + 7.2 ⊗ 5.1 + 8.3.1 ⊗ 3 + 6.3.1 ⊗ 4.1

ξ(9[3, 4]) = 4.1 ⊗ 9.1 + 5 ⊗ 9.1 + 9.3 ⊗ 2.1 + 9 ⊗ 5.1 + 8.3 ⊗ 3.1 + 7.3.1 ⊗ 3.1 + 9.2 ⊗ 3.1
+8.1 ⊗ 5.1+2.1 ⊗ 9.3+9.2.1 ⊗ 3+3 ⊗ 9.3+4.1 ⊗ 7.3+9.2.1 ⊗ 2.1+7.2.1 ⊗ 5
+7.3 ⊗ 4.1+7.2.1 ⊗ 4.1+8.3.1 ⊗ 2.1+9.3 ⊗ 3+7.3 ⊗ 5+6.3 ⊗ 5.1+6.3.1 ⊗ 5
+ 5 ⊗ 7.3 + 7.2 ⊗ 5.1 + 8.3.1 ⊗ 3 + 6.3.1 ⊗ 4.1

ξ(9[4, 3]) = 9.3 ⊗ 2.1 + 8.3 ⊗ 3.1 + 7.3.1 ⊗ 3.1 + 8.2.1 ⊗ 3.1 + 2.1 ⊗ 9.3 + 4.2.1 ⊗ 5.2.1
+9.2.1 ⊗ 3+3 ⊗ 9.3+4.1 ⊗ 7.3+9.2.1 ⊗ 2.1+7.2.1 ⊗ 5+7.3 ⊗ 4.1+4.1 ⊗ 7.2.1
+5 ⊗ 7.2.1+7.2.1 ⊗ 4.1+2.1 ⊗ 9.2.1+8.3.1 ⊗ 2.1+9.3 ⊗ 3+3 ⊗ 9.2.1+7.3 ⊗ 5
+6.3 ⊗ 5.1+6.3.1 ⊗ 5+5 ⊗ 7.3+6.2.1 ⊗ 5.1+8.3.1 ⊗ 3+6.3.1 ⊗ 4.1+5.2 ⊗ 5.2.1

ξ(10[1, 5]) = 0

ξ(10[2, 4]) = 8.1 ⊗ 5.1 + 9.1 ⊗ 4.1 + 3.1 ⊗ 11 + 6.1 ⊗ 7.1 + 10.3.1 ⊗ 1 + 5.1 ⊗ 7.2 + 9 ⊗ 5.1
+7.1 ⊗ 6.1+2.1 ⊗ 11.1+7.2.1 ⊗ 5+5.2.1 ⊗ 5.2+7 ⊗ 7.1+11 ⊗ 3.1+5.2.1 ⊗ 6.1
+4.1 ⊗ 9.1+7.1 ⊗ 7+11.1 ⊗ 2.1+10.1 ⊗ 3.1+9.2.1 ⊗ 3+11.1 ⊗ 3+3.1 ⊗ 9.2
+ 8.3.1 ⊗ 2.1 + 6.3.1 ⊗ 4.1 + 5 ⊗ 9.1 + 9.4.1 ⊗ 1 + 3 ⊗ 11.1

ξ(10[3, 3]) = 0

ξ(11[1, 4]) = 0

ξ(11[2, 3]) = 9.3 ⊗ 2.1 + 8.3.1 ⊗ 2.1 + 4.2.1 ⊗ 7.1 + 6.3 ⊗ 5.1 + 6.2.1 ⊗ 5.1 + 8.2.1 ⊗ 3.1
+ 10.3.1 ⊗ 1 + 7.3.1 ⊗ 3.1 + 2.1 ⊗ 11.1 + 6.3.1 ⊗ 4.1 + 4.1 ⊗ 9.1 + 9.2.1 ⊗ 2.1
+11.2.1 ⊗ 1+7.2.1 ⊗ 4.1+5.2 ⊗ 7.1+8.3 ⊗ 3.1+5 ⊗ 9.1+7.3 ⊗ 4.1+3 ⊗ 11.1
+ 11.3 ⊗ 1
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ξ(11[3, 2]) = 9.3 ⊗ 2.1 + 8.3.1 ⊗ 2.1 + 4.2.1 ⊗ 7.1 + 6.3 ⊗ 5.1 + 6.2.1 ⊗ 5.1 + 8.2.1 ⊗ 3.1
+ 10.3.1 ⊗ 1 + 7.3.1 ⊗ 3.1 + 2.1 ⊗ 11.1 + 6.3.1 ⊗ 4.1 + 4.1 ⊗ 9.1 + 9.2.1 ⊗ 2.1
+11.2.1 ⊗ 1+7.2.1 ⊗ 4.1+5.2 ⊗ 7.1+8.3 ⊗ 3.1+5 ⊗ 9.1+7.3 ⊗ 4.1+3 ⊗ 11.1
+ 11.3 ⊗ 1

ξ(12[1, 3]) = 0

ξ(12[2, 2]) = 11.1 ⊗ 3+8.3 ⊗ 3.1+11.3 ⊗ 1+7 ⊗ 7.1+8.2.1 ⊗ 3.1+11.2.1 ⊗ 1+5.2.1 ⊗ 6.1
+5.2 ⊗ 7.1+10.1 ⊗ 3.1+7.1 ⊗ 6.1+5.1 ⊗ 9+6.3 ⊗ 5.1+3.1 ⊗ 11+9.2.1 ⊗ 2.1
+ 9.1 ⊗ 5 + 7.3 ⊗ 4.1 + 8.1 ⊗ 5.1 + 9.1 ⊗ 4.1 + 7.1 ⊗ 7 + 6.1 ⊗ 7.1 + 7.2.1 ⊗ 4.1
+ 4.2.1 ⊗ 7.1 + 9.3 ⊗ 2.1 + 11 ⊗ 3.1 + 9 ⊗ 5.1 + 11.1 ⊗ 2.1 + 6.2.1 ⊗ 5.1

ξ(13[1, 2]) = 0

ξ(14[1, 1]) = 0

ξ(4.2[1, 9]) = 0

ξ(5.2[1, 8]) = 0

ξ(6.2[1, 7]) = 0

ξ(6.3[1, 6]) = 0

ξ(7.2[1, 6]) = 0

ξ(7.3[1, 5]) = 0

ξ(8.2[1, 5]) = 0

ξ(8.3[1, 4]) = 0

ξ(8.4[1, 3]) = 0

ξ(8.4[2, 2]) = 5 ⊗ 9.1 + 9.2 ⊗ 3.1 + 4.1 ⊗ 9.1 + 4.1 ⊗ 7.3 + 5.1 ⊗ 7.2 + 7.3 ⊗ 5 + 9.3 ⊗ 3
+9.2.1 ⊗ 2.1+8.3.1 ⊗ 2.1+5.1 ⊗ 9+2.1 ⊗ 9.3+7.2.1 ⊗ 4.1+9.1 ⊗ 5+9.4.1 ⊗ 1
+7.3 ⊗ 4.1+8.3.1 ⊗ 3+7.2 ⊗ 5.1+6.3.1 ⊗ 4.1+8.3 ⊗ 3.1+9.3 ⊗ 2.1+3 ⊗ 9.3
+ 6.3.1 ⊗ 5 + 9 ⊗ 5.1 + 6.3 ⊗ 5.1 + 5.2.1 ⊗ 5.2 + 5 ⊗ 7.3 + 3.1 ⊗ 9.2 + 8.1 ⊗ 5.1

ξ(9.2[1, 4]) = 0

ξ(9.3[1, 3]) = 0

ξ(9.4[1, 2]) = 0

ξ(10.2[1, 3]) = 0

ξ(10.3[1, 2]) = 0

ξ(10.4[1, 1]) = 0

ξ(11.2[1, 2]) = 0

ξ(11.3[1, 1]) = 0

ξ(12.2[1, 1]) = 0

ξ(8.4.2[1, 1]) = 0

ξ([1, 16]) = 0
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ξ([2, 15]) = 2.1 ⊗ 13+3 ⊗ 13+4.1 ⊗ 11+5 ⊗ 11+6.1 ⊗ 9+7 ⊗ 9+8.1 ⊗ 7+9 ⊗ 7+10.1 ⊗ 5
+ 11 ⊗ 5 + 12.1 ⊗ 3 + 13 ⊗ 3 + 14.1 ⊗ 1 + 15 ⊗ 1

ξ([3, 14]) = 2.1 ⊗ 13+3 ⊗ 13+4.1 ⊗ 11+5 ⊗ 11+6.1 ⊗ 9+7 ⊗ 9+8.1 ⊗ 7+9 ⊗ 7+10.1 ⊗ 5
+ 11 ⊗ 5 + 12.1 ⊗ 3 + 13 ⊗ 3 + 14.1 ⊗ 1 + 15 ⊗ 1

ξ([4, 13]) = 2.1 ⊗ 13+3 ⊗ 13+3.1 ⊗ 11.1+4.1 ⊗ 11+5 ⊗ 11+5.1 ⊗ 9.1+6.1 ⊗ 9+7 ⊗ 9
+7.1 ⊗ 7.1+8.1 ⊗ 7+9 ⊗ 7+9.1 ⊗ 5.1+10.1 ⊗ 5+11 ⊗ 5+11.1 ⊗ 3.1+12.1 ⊗ 3
+ 13 ⊗ 3 + 14.1 ⊗ 1 + 15 ⊗ 1

ξ([5, 12]) = 2.1 ⊗ 13+3 ⊗ 13+4.1 ⊗ 11+5 ⊗ 11+6.1 ⊗ 9+7 ⊗ 9+8.1 ⊗ 7+9 ⊗ 7+10.1 ⊗ 5
+ 11 ⊗ 5 + 12.1 ⊗ 3 + 13 ⊗ 3 + 14.1 ⊗ 1 + 15 ⊗ 1

ξ([6, 11]) = 2.1 ⊗ 11.2 + 3 ⊗ 11.2 + 4.1 ⊗ 9.2 + 4.1 ⊗ 11 + 5 ⊗ 9.2 + 5 ⊗ 11 + 6.1 ⊗ 7.2
+7 ⊗ 7.2+6.3 ⊗ 7+7.2 ⊗ 7+8.1 ⊗ 5.2+9 ⊗ 5.2+8.3 ⊗ 5+9.2 ⊗ 5+10.3 ⊗ 3
+ 12.1 ⊗ 3 + 13 ⊗ 3 + 11.2 ⊗ 3 + 12.3 ⊗ 1 + 13.2 ⊗ 1

ξ([7, 10]) = 2.1 ⊗ 11.2 + 3 ⊗ 11.2 + 4.1 ⊗ 9.2 + 4.1 ⊗ 11 + 5 ⊗ 9.2 + 5 ⊗ 11 + 6.1 ⊗ 7.2
+7 ⊗ 7.2+6.3 ⊗ 7+7.2 ⊗ 7+8.1 ⊗ 5.2+9 ⊗ 5.2+8.3 ⊗ 5+9.2 ⊗ 5+10.3 ⊗ 3
+ 12.1 ⊗ 3 + 13 ⊗ 3 + 11.2 ⊗ 3 + 12.3 ⊗ 1 + 13.2 ⊗ 1

ξ([8, 9]) = 2.1 ⊗ 13+3 ⊗ 13+3.1 ⊗ 9.3+4.1 ⊗ 11+5⊗ 11+5.1 ⊗ 7.3+5.1 ⊗ 9.1+6.1 ⊗ 9
+7 ⊗ 9+8.1 ⊗ 7+9 ⊗ 7+7.3 ⊗ 5.1+9.1 ⊗ 5.1+10.1 ⊗ 5+11 ⊗ 5+9.3 ⊗ 3.1
+ 12.1 ⊗ 3 + 13 ⊗ 3 + 14.1 ⊗ 1 + 15 ⊗ 1

ξ([9, 8]) = 2.1 ⊗ 13+3 ⊗ 13+4.1 ⊗ 11+5 ⊗ 11+6.1 ⊗ 9+7 ⊗ 9+8.1 ⊗ 7+9 ⊗ 7+10.1 ⊗ 5
+ 11 ⊗ 5 + 12.1 ⊗ 3 + 13 ⊗ 3 + 14.1 ⊗ 1 + 15 ⊗ 1

ξ([10, 7] = 10.1 ⊗ 5 + 11 ⊗ 5 + 6.1 ⊗ 9 + 6.3 ⊗ 5.2 + 7.3 ⊗ 5.1 + 7 ⊗ 9 + 5 ⊗ 9.2 + 11.4 ⊗ 1
+11.1 ⊗ 3.1+7.2 ⊗ 5.2+5.1 ⊗ 7.3+6.1 ⊗ 7.2+10.3 ⊗ 3+3.1 ⊗ 11.1+8.3 ⊗ 5
+ 3.1 ⊗ 9.3 + 7.1 ⊗ 7.1 + 9.2 ⊗ 5 + 7 ⊗ 7.2 + 2.1 ⊗ 9.4 + 11.2 ⊗ 3 + 10.5 ⊗ 1
+ 4.1 ⊗ 9.2 + 9.3 ⊗ 3.1 + 3 ⊗ 9.4

ξ([11, 6] = 5 ⊗ 9.2+11.2 ⊗ 3+7.2 ⊗ 5.2+6.1 ⊗ 7.2+6.3 ⊗ 5.2+10.5 ⊗ 1+8.3 ⊗ 5+9.2 ⊗ 5
+7 ⊗ 7.2+10.3 ⊗ 3+6.1 ⊗ 9+2.1 ⊗ 9.4+11.4 ⊗ 1+10.1 ⊗ 5+7 ⊗ 9+3 ⊗ 9.4
+ 11 ⊗ 5 + 4.1 ⊗ 9.2

ξ(2[1, 14]) = 0

ξ(3[1, 13]) = 0

ξ(4[1, 12]) = 0

ξ(4[2, 11]) = 5.1 ⊗ 9.1 + 9 ⊗ 5.2 + 12.2.1 ⊗ 1 + 4.1 ⊗ 9.2 + 5 ⊗ 9.2 + 11.1 ⊗ 3.1 + 6.1 ⊗ 7.2
+ 8.2.1 ⊗ 5 + 2.1 ⊗ 13 + 3 ⊗ 13 + 8.1 ⊗ 5.2 + 11.2 ⊗ 3 + 7.1 ⊗ 7.1 + 3.1 ⊗ 11.1
+ 10.2.1 ⊗ 3 + 2.1 ⊗ 11.2 + 6.2.1 ⊗ 7 + 9.2 ⊗ 5 + 7 ⊗ 7.2 + 12.1 ⊗ 3 + 13.2 ⊗ 1
+ 7.2 ⊗ 7 + 4.2.1 ⊗ 9 + 13 ⊗ 3 + 3 ⊗ 11.2 + 5.2 ⊗ 9 + 9.1 ⊗ 5.1

ξ(5[1, 11]) = 0

ξ(5[2, 10]) = 4.1 ⊗ 9.2 + 2.1 ⊗ 13 + 3 ⊗ 13 + 3 ⊗ 11.2 + 6.2.1 ⊗ 7 + 6.1 ⊗ 7.2 + 7.2 ⊗ 7
+ 4.2.1 ⊗ 9 + 7 ⊗ 7.2 + 5 ⊗ 9.2 + 8.2.1 ⊗ 5 + 8.1 ⊗ 5.2 + 10.2.1 ⊗ 3 + 9.2 ⊗ 5
+ 2.1 ⊗ 11.2 + 9 ⊗ 5.2 + 5.2 ⊗ 9 + 13 ⊗ 3 + 12.1 ⊗ 3 + 11.2 ⊗ 3 + 13.2 ⊗ 1 +
12.2.1 ⊗ 1

ξ(6[1, 10]) = 0
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ξ(6[2, 9]) = 11 ⊗ 4.1 + 9.2 ⊗ 5 + 11 ⊗ 5 + 10.1 ⊗ 5 + 6.2.1 ⊗ 7 + 11.3.1 ⊗ 1 + 6.1 ⊗ 8.1
+ 3.1 ⊗ 9.3 + 3 ⊗ 11.2 + 10.2.1 ⊗ 3 + 9.3.1 ⊗ 3 + 9 ⊗ 7 + 4.1 ⊗ 9.2 + 4.2.1 ⊗ 9
+ 9 ⊗ 5.2 + 5 ⊗ 11 + 9 ⊗ 6.1 + 5.2 ⊗ 9 + 13.2 ⊗ 1 + 12.1 ⊗ 2.1 + 9.1 ⊗ 5.1 +
7.3 ⊗ 5.1 + 6.3 ⊗ 6.1 + 11.2 ⊗ 3 + 6.1 ⊗ 9 + 8.3 ⊗ 4.1 + 9.3 ⊗ 3.1 + 8.1 ⊗ 5.2
+ 13 ⊗ 2.1 + 8.1 ⊗ 7 + 10.3 ⊗ 2.1 + 7.2 ⊗ 7 + 5 ⊗ 9.2 + 4.2.1 ⊗ 8.1 + 7.3.1 ⊗ 5
+ 6.1 ⊗ 7.2 + 5.1 ⊗ 7.3 + 5.1 ⊗ 9.1 + 7 ⊗ 8.1 + 4.1 ⊗ 11 + 7 ⊗ 9 + 2.1 ⊗ 11.2
+ 6.2.1 ⊗ 6.1 + 5.2 ⊗ 8.1 + 8.1 ⊗ 6.1 + 10.2.1 ⊗ 2.1 + 8.2.1 ⊗ 5 + 10.1 ⊗ 4.1
+ 12.3 ⊗ 1 + 8.2.1 ⊗ 4.1 + 7 ⊗ 7.2

ξ(6[3, 8]) = 11 ⊗ 4.1 + 9.2 ⊗ 5 + 11 ⊗ 5 + 10.1 ⊗ 5 + 6.2.1 ⊗ 7 + 11.3.1 ⊗ 1 + 6.1 ⊗ 8.1
+ 3.1 ⊗ 9.3 + 3 ⊗ 11.2 + 10.2.1 ⊗ 3 + 9.3.1 ⊗ 3 + 9 ⊗ 7 + 4.1 ⊗ 9.2 + 4.2.1 ⊗ 9
+ 9 ⊗ 5.2 + 5 ⊗ 11 + 9 ⊗ 6.1 + 5.2 ⊗ 9 + 13.2 ⊗ 1 + 12.1 ⊗ 2.1 + 9.1 ⊗ 5.1 +
7.3 ⊗ 5.1 + 6.3 ⊗ 6.1 + 11.2 ⊗ 3 + 6.1 ⊗ 9 + 8.3 ⊗ 4.1 + 9.3 ⊗ 3.1 + 8.1 ⊗ 5.2
+ 13 ⊗ 2.1 + 8.1 ⊗ 7 + 10.3 ⊗ 2.1 + 7.2 ⊗ 7 + 5 ⊗ 9.2 + 4.2.1 ⊗ 8.1 + 7.3.1 ⊗ 5
+ 6.1 ⊗ 7.2 + 5.1 ⊗ 7.3 + 5.1 ⊗ 9.1 + 7 ⊗ 8.1 + 4.1 ⊗ 11 + 7 ⊗ 9 + 2.1 ⊗ 11.2
+ 6.2.1 ⊗ 6.1 + 5.2 ⊗ 8.1 + 8.1 ⊗ 6.1 + 10.2.1 ⊗ 2.1 + 8.2.1 ⊗ 5 + 10.1 ⊗ 4.1
+ 12.3 ⊗ 1 + 8.2.1 ⊗ 4.1 + 7 ⊗ 7.2

ξ(7[1, 9]) = 0

ξ(7[2, 8]) = 4.1 ⊗ 11 + 8.1 ⊗ 5.2 + 5.2.1 ⊗ 7.1 + 10.1 ⊗ 4.1 + 8.2.1 ⊗ 5 + 7 ⊗ 9 + 11 ⊗ 4.1
+ 5 ⊗ 11 + 7 ⊗ 7.2 + 9 ⊗ 5.2 + 6.3 ⊗ 6.1 + 12.1 ⊗ 2.1 + 8.2.1 ⊗ 4.1 + 5 ⊗ 9.2
+ 5.2 ⊗ 9+10.3 ⊗ 2.1 +9.2.1 ⊗ 3.1 + 13 ⊗ 2.1 + 10.2.1 ⊗ 3+ 13.2 ⊗ 1 +11 ⊗ 5
+ 5.2 ⊗ 8.1 + 9.3 ⊗ 3.1 + 9.2 ⊗ 5 + 6.2.1 ⊗ 7 + 6.1 ⊗ 7.2 + 4.2.1 ⊗ 8.1 + 8.1 ⊗ 7
+3 ⊗ 11.2+7.2 ⊗ 7+11.2 ⊗ 3+7.1 ⊗ 7.1+8.1 ⊗ 6.1+9 ⊗ 6.1+9 ⊗ 7+2.1 ⊗ 11.2
+ 11.1 ⊗ 3.1 + 6.2.1 ⊗ 6.1 + 6.1 ⊗ 8.1 + 10.2.1 ⊗ 2.1 + 9.1 ⊗ 5.1 + 4.1 ⊗ 9.2
+7.3 ⊗ 5.1 +7 ⊗ 8.1 +8.3 ⊗ 4.1 +10.1 ⊗ 5+12.3 ⊗ 1+ 4.2.1 ⊗ 9+7.2.1 ⊗ 5.1
+ 6.1 ⊗ 9

ξ(7[3, 7]) = 0

ξ(8[1, 8]) = 0

ξ(8[2, 7]) = 5.2 ⊗ 8.1 + 8.3 ⊗ 4.1 + 12.3 ⊗ 1 + 10.1 ⊗ 4.1 + 8.4.1 ⊗ 3 + 9.4 ⊗ 3 + 8.1 ⊗ 6.1
+9 ⊗ 6.1+5.2 ⊗ 7.2+10.2.1 ⊗ 2.1+6.1 ⊗ 8.1+8.2.1 ⊗ 5+12.1 ⊗ 2.1+5.2 ⊗ 9
+4.2.1 ⊗ 9+9.2 ⊗ 5+2.1 ⊗ 9.4+8.2.1 ⊗ 4.1+4.2.1 ⊗ 7.2+7.2 ⊗ 5.2+6.3 ⊗ 6.1
+6.2.1 ⊗ 5.2+13 ⊗ 2.1+9 ⊗ 5.2+9.3.1 ⊗ 3+8.1 ⊗ 5.2+6.2.1 ⊗ 6.1+9.3.1 ⊗ 2.1
+13.2 ⊗ 1+4.1 ⊗ 9.2+10.4.1 ⊗ 1+4.2.1 ⊗ 8.1+7 ⊗ 8.1+11.4 ⊗ 1+11 ⊗ 4.1
+ 5 ⊗ 9.2 + 10.3 ⊗ 2.1 + 3 ⊗ 9.4 + 7.3.1 ⊗ 4.1

ξ(8[3, 6]) = 5.2 ⊗ 8.1 + 8.3 ⊗ 4.1 + 12.3 ⊗ 1 + 10.1 ⊗ 4.1 + 8.4.1 ⊗ 3 + 9.4 ⊗ 3 + 8.1 ⊗ 6.1
+9 ⊗ 6.1+5.2 ⊗ 7.2+10.2.1 ⊗ 2.1+6.1 ⊗ 8.1+8.2.1 ⊗ 5+12.1 ⊗ 2.1+5.2 ⊗ 9
+4.2.1 ⊗ 9+9.2 ⊗ 5+2.1 ⊗ 9.4+8.2.1 ⊗ 4.1+4.2.1 ⊗ 7.2+7.2 ⊗ 5.2+6.3 ⊗ 6.1
+6.2.1 ⊗ 5.2+13 ⊗ 2.1+9 ⊗ 5.2+9.3.1 ⊗ 3+8.1 ⊗ 5.2+6.2.1 ⊗ 6.1+9.3.1 ⊗ 2.1
+13.2 ⊗ 1+4.1 ⊗ 9.2+10.4.1 ⊗ 1+4.2.1 ⊗ 8.1+7 ⊗ 8.1+11.4 ⊗ 1+11 ⊗ 4.1
+ 5 ⊗ 9.2 + 10.3 ⊗ 2.1 + 3 ⊗ 9.4 + 7.3.1 ⊗ 4.1

ξ(8[4, 5]) = 7.3 ⊗ 5.1 + 5.2.1 ⊗ 5.2.1 + 8.3.1 ⊗ 3.1 + 5.1 ⊗ 9.1 + 3.1 ⊗ 9.2.1 + 5.2 ⊗ 8.1
+6.3.1 ⊗ 5.1+8.3 ⊗ 4.1+12.3 ⊗ 1+10.1 ⊗ 4.1+8.4.1 ⊗ 3+4.1 ⊗ 7.3.1+9.4 ⊗ 3
+8.1 ⊗ 6.1+9 ⊗ 6.1+5.2 ⊗ 7.2+2.1 ⊗ 9.3.1+10.2.1 ⊗ 2.1+6.1 ⊗ 8.1+3 ⊗ 9.3.1
+ 8.2.1 ⊗ 5 + 12.1 ⊗ 2.1 + 9.3 ⊗ 3.1 + 5.2 ⊗ 9 + 4.2.1 ⊗ 9 + 9.2 ⊗ 5 + 2.1 ⊗ 9.4
+8.2.1 ⊗ 4.1+4.2.1 ⊗ 7.2+7.2 ⊗ 5.2+6.3 ⊗ 6.1+6.2.1 ⊗ 5.2+13 ⊗ 2.1+9 ⊗ 5.2
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+5 ⊗ 7.3.1+9.3.1 ⊗ 3+8.1 ⊗ 5.2+6.2.1 ⊗ 6.1+9.3.1 ⊗ 2.1+9.1 ⊗ 5.1+13.2 ⊗ 1
+ 4.1 ⊗ 9.2 + 10.4.1 ⊗ 1 + 4.2.1 ⊗ 8.1 + 7 ⊗ 8.1 + 11.4 ⊗ 1 + 11 ⊗ 4.1 + 5 ⊗ 9.2
+ 10.3 ⊗ 2.1 + 3 ⊗ 9.4 + 5.1 ⊗ 7.2.1 + 7.3.1 ⊗ 4.1

ξ(9[1, 7]) = 0

ξ(9[2, 6]) = 10.3 ⊗ 2.1 + 9 ⊗ 5.2 + 4.1 ⊗ 9.2 + 5 ⊗ 9.2 + 9.2 ⊗ 5 + 10.4.1 ⊗ 1 + 9.3.1 ⊗ 3
+4.2.1 ⊗ 8.1+11.3.1 ⊗ 1+13 ⊗ 2.1+9.4 ⊗ 3+7.2 ⊗ 5.2+3 ⊗ 9.4+4.2.1 ⊗ 7.2
+8.1 ⊗ 5.2+11.4 ⊗ 1+12.1 ⊗ 2.1+9.1 ⊗ 5.1+12.3 ⊗ 1+5.2.1 ⊗ 7.1+5.2 ⊗ 9
+8.3 ⊗ 4.1+5.2 ⊗ 7.2+8.2.1 ⊗ 5+11.1 ⊗ 3.1+13.2 ⊗ 1+11 ⊗ 4.1+8.3.1 ⊗ 3.1
+8.1 ⊗ 6.1+6.1 ⊗ 8.1+6.2.1 ⊗ 6.1+7 ⊗ 8.1+6.3.1 ⊗ 5.1+7.1 ⊗ 7.1+8.2.1 ⊗ 4.1
+5.2 ⊗ 8.1+8.4.1 ⊗ 3+10.1 ⊗ 4.1+4.2.1 ⊗ 9+6.2.1 ⊗ 5.2+9 ⊗ 6.1+6.3 ⊗ 6.1
+ 2.1 ⊗ 9.4 + 10.2.1 ⊗ 2.1

ξ(9[3, 5]) = 0

ξ(9[4, 4]) = 5.2 ⊗ 7.2 + 7.2 ⊗ 5.2 + 8.3 ⊗ 4.1 + 9.1 ⊗ 5.1 + 4.2.1 ⊗ 9 + 5.2 ⊗ 9 + 10.1 ⊗ 4.1
+12.3 ⊗ 1+9.4 ⊗ 3+9.3 ⊗ 3.1+8.1 ⊗ 5.2+2.1 ⊗ 9.4+6.3 ⊗ 6.1+9.2.1 ⊗ 3.1+
8.2.1 ⊗ 4.1+9.3.1 ⊗ 3+10.3 ⊗ 2.1+9.2 ⊗ 5+13.2 ⊗ 1+5.2.1 ⊗ 7.1+6.2.1 ⊗ 6.1
+5 ⊗ 9.2+4.1 ⊗ 7.3.1+5.2 ⊗ 8.1+11.4 ⊗ 1+7.1 ⊗ 7.1+8.2.1 ⊗ 5+11.3.1 ⊗ 1
+ 7.2.1 ⊗ 5.1 + 4.2.1 ⊗ 7.2 + 10.2.1 ⊗ 2.1 + 7.3 ⊗ 5.1 + 3 ⊗ 9.3.1 + 8.1 ⊗ 6.1
+9 ⊗ 5.2+11 ⊗ 4.1+8.4.1 ⊗ 3+5 ⊗ 7.3.1+12.1 ⊗ 2.1+6.2.1 ⊗ 5.2+4.2.1 ⊗ 8.1
+ 7 ⊗ 8.1 + 13 ⊗ 2.1 + 6.1 ⊗ 8.1 + 9 ⊗ 6.1 + 10.4.1 ⊗ 1 + 4.1 ⊗ 9.2 + 11.1 ⊗ 3.1
+ 2.1 ⊗ 9.3.1 + 3 ⊗ 9.4

ξ(10[1, 6]) = 0

ξ(10[2, 5]) = 11.2 ⊗ 2.1 + 6.3 ⊗ 7 + 7.1 ⊗ 7.1 + 4.1 ⊗ 9.2 + 7.2 ⊗ 7 + 11 ⊗ 4.1 + 7 ⊗ 6.3
+8.2.1 ⊗ 5+4.2.1 ⊗ 6.3+10.5 ⊗ 1+6.2.1 ⊗ 6.1+5.2 ⊗ 6.3+5 ⊗ 9.2+2.1 ⊗ 11.2
+3.1 ⊗ 9.3 +11 ⊗ 5+9.4 ⊗ 2.1 +9.3.1 ⊗ 2.1+ 10.4.1 ⊗ 1+8.3 ⊗ 4.1 +7 ⊗ 7.2
+ 8.2.1 ⊗ 4.1 + 3.1 ⊗ 11.1 + 9 ⊗ 6.1 + 9.2 ⊗ 5 + 5 ⊗ 11 + 7.3.1 ⊗ 5 + 6.3 ⊗ 5.2
+ 8.4.1 ⊗ 2.1 + 10.3 ⊗ 2.1 + 6.1 ⊗ 6.3 + 10.1 ⊗ 4.1 + 5.1 ⊗ 7.3 + 6.1 ⊗ 7.2 +
7.2.1 ⊗ 5.1+6.2.1 ⊗ 5.2+9.3.1 ⊗ 3+3 ⊗ 11.2+4.1 ⊗ 11+10.2.1 ⊗ 3+9.2.1 ⊗ 3.1
+6.3 ⊗ 6.1+8.3.1 ⊗ 3.1+8.1 ⊗ 6.1+11.2 ⊗ 3+10.1 ⊗ 5+11.1 ⊗ 3.1+6.3.1 ⊗ 5.1

ξ(10[3, 4]) = 11.2 ⊗ 2.1 + 6.3 ⊗ 7 + 7.1 ⊗ 7.1 + 4.1 ⊗ 9.2 + 7.2 ⊗ 7 + 11 ⊗ 4.1 + 7 ⊗ 6.3
+8.2.1 ⊗ 5+4.2.1 ⊗ 6.3+10.5 ⊗ 1+6.2.1 ⊗ 6.1+5.2 ⊗ 6.3+5 ⊗ 9.2+2.1 ⊗ 11.2
+3.1 ⊗ 9.3 +11 ⊗ 5+9.4 ⊗ 2.1 +9.3.1 ⊗ 2.1+ 10.4.1 ⊗ 1+8.3 ⊗ 4.1 +7 ⊗ 7.2
+ 8.2.1 ⊗ 4.1 + 3.1 ⊗ 11.1 + 9 ⊗ 6.1 + 9.2 ⊗ 5 + 5 ⊗ 11 + 7.3.1 ⊗ 5 + 6.3 ⊗ 5.2
+ 8.4.1 ⊗ 2.1 + 10.3 ⊗ 2.1 + 6.1 ⊗ 6.3 + 10.1 ⊗ 4.1 + 5.1 ⊗ 7.3 + 6.1 ⊗ 7.2 +
7.2.1 ⊗ 5.1+6.2.1 ⊗ 5.2+9.3.1 ⊗ 3+3 ⊗ 11.2+4.1 ⊗ 11+10.2.1 ⊗ 3+9.2.1 ⊗ 3.1
+6.3 ⊗ 6.1+8.3.1 ⊗ 3.1+8.1 ⊗ 6.1+11.2 ⊗ 3+10.1 ⊗ 5+11.1 ⊗ 3.1+6.3.1 ⊗ 5.1

ξ(10[4, 3]) = 6.3.1 ⊗ 5.1 + 8.3.1 ⊗ 3.1 + 7.3.1 ⊗ 4.1 + 7.3.1 ⊗ 5 + 9.3.1 ⊗ 2.1 + 3.1 ⊗ 9.3
+ 9.3.1 ⊗ 3 + 5.2.1 ⊗ 5.2.1 + 5.1 ⊗ 7.2.1 + 5.1 ⊗ 7.3 + 3.1 ⊗ 9.2.1

ξ(11[1, 5]) = 0

ξ(11[2, 4]) = 11.1 ⊗ 3.1 + 8.3.1 ⊗ 3.1 + 6.2.1 ⊗ 6.1 + 8.3 ⊗ 4.1 + 8.4.1 ⊗ 2.1 + 6.1 ⊗ 6.3
+ 6.3 ⊗ 5.2 + 6.3 ⊗ 7 + 7.2 ⊗ 7 + 11 ⊗ 4.1 + 9.4 ⊗ 2.1 + 11 ⊗ 5 + 6.2.1 ⊗ 5.2
+ 9 ⊗ 6.1 + 3 ⊗ 11.2 + 5.2 ⊗ 6.3 + 2.1 ⊗ 11.2 + 11.3.1 ⊗ 1 + 5 ⊗ 9.2 + 6.3 ⊗ 6.1
+9.1 ⊗ 5.1+10.4.1 ⊗ 1+10.1 ⊗ 4.1+10.1 ⊗ 5+8.2.1 ⊗ 5+7.1 ⊗ 7.1+7⊗ 6.3
+ 6.3.1 ⊗ 5.1 + 8.2.1 ⊗ 4.1 + 10.2.1 ⊗ 3 + 11.2 ⊗ 2.1 + 4.2.1 ⊗ 6.3 + 6.1 ⊗ 7.2
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+ 11.2 ⊗ 3 + 9.2 ⊗ 5 + 8.1 ⊗ 6.1 + 10.3 ⊗ 2.1 + 4.1 ⊗ 11 + 5 ⊗ 11 + 7 ⊗ 7.2
+ 5.2.1 ⊗ 7.1 + 9.3.1 ⊗ 2.1 + 4.1 ⊗ 9.2 + 10.5 ⊗ 1

ξ(11[3, 3]) = 0

ξ(12[1, 4]) = 0

ξ(12[2, 3]) = 12.1 ⊗ 3 + 7.3 ⊗ 5.1 + 4.1 ⊗ 11 + 8.3.1 ⊗ 3.1 + 3 ⊗ 13 + 5 ⊗ 11 + 8.3 ⊗ 4.1 +
6.1 ⊗ 9+5.1 ⊗ 9.1+9.3.1 ⊗ 2.1+3.1 ⊗ 11.1+7.3.1 ⊗ 4.1+10.3 ⊗ 2.1+11.3.1 ⊗ 1
+ 6.3 ⊗ 6.1 + 8.2.1 ⊗ 4.1 + 11.1 ⊗ 3.1 + 7.1 ⊗ 7.1 + 9.1 ⊗ 5.1 + 6.3.1 ⊗ 5.1 +
12.1 ⊗ 2.1 + 10.1 ⊗ 5 + 12.3 ⊗ 1 + 13 ⊗ 3 + 9.2.1 ⊗ 3.1 + 12.2.1 ⊗ 1 + 7 ⊗ 9
+ 4.2.1 ⊗ 8.1 + 7 ⊗ 8.1 + 11 ⊗ 5 + 8.1 ⊗ 7 + 5.2 ⊗ 8.1 + 6.1 ⊗ 8.1 + 11 ⊗ 4.1
+9 ⊗ 7+9 ⊗ 6.1+2.1 ⊗ 13+7.2.1 ⊗ 5.1+6.2.1 ⊗ 6.1+10.1 ⊗ 4.1+10.2.1 ⊗ 2.1
+ 13 ⊗ 2.1 + 8.1 ⊗ 6.1 + 9.3 ⊗ 3.1

ξ(12[3, 2]) = 12.1 ⊗ 3 + 7.3 ⊗ 5.1 + 4.1 ⊗ 11 + 8.3.1 ⊗ 3.1 + 3 ⊗ 13 + 5 ⊗ 11 + 8.3 ⊗ 4.1 +
6.1 ⊗ 9+5.1 ⊗ 9.1+9.3.1 ⊗ 2.1+3.1 ⊗ 11.1+7.3.1 ⊗ 4.1+10.3 ⊗ 2.1+11.3.1 ⊗ 1
+ 6.3 ⊗ 6.1 + 8.2.1 ⊗ 4.1 + 11.1 ⊗ 3.1 + 7.1 ⊗ 7.1 + 9.1 ⊗ 5.1 + 6.3.1 ⊗ 5.1 +
12.1 ⊗ 2.1 + 10.1 ⊗ 5 + 12.3 ⊗ 1 + 13 ⊗ 3 + 9.2.1 ⊗ 3.1 + 12.2.1 ⊗ 1 + 7 ⊗ 9
+ 4.2.1 ⊗ 8.1 + 7 ⊗ 8.1 + 11 ⊗ 5 + 8.1 ⊗ 7 + 5.2 ⊗ 8.1 + 6.1 ⊗ 8.1 + 11 ⊗ 4.1
+9 ⊗ 7+9 ⊗ 6.1+2.1 ⊗ 13+7.2.1 ⊗ 5.1+6.2.1 ⊗ 6.1+10.1 ⊗ 4.1+10.2.1 ⊗ 2.1
+ 13 ⊗ 2.1 + 8.1 ⊗ 6.1 + 9.3 ⊗ 3.1

ξ(13[1, 3]) = 0

ξ(13[2, 2]) = 10.3 ⊗ 2.1 + 9 ⊗ 6.1 + 12.2.1 ⊗ 1 + 5 ⊗ 11 + 7 ⊗ 9 + 4.2.1 ⊗ 8.1 + 6.1 ⊗ 8.1
+ 10.1 ⊗ 5 + 12.3 ⊗ 1 + 9.2.1 ⊗ 3.1 + 7 ⊗ 8.1 + 9 ⊗ 7 + 12.1 ⊗ 3 + 7.2.1 ⊗ 5.1
+11.1 ⊗ 3.1+6.2.1 ⊗ 6.1+7.3 ⊗ 5.1+6.3 ⊗ 6.1+8.2.1 ⊗ 4.1+3 ⊗ 13+2.1 ⊗ 13
+ 8.1 ⊗ 7 + 8.3 ⊗ 4.1 + 13 ⊗ 2.1 + 9.3 ⊗ 3.1 + 5.2.1 ⊗ 7.1 + 8.1 ⊗ 6.1 + 6.1 ⊗ 9
+ 5.2 ⊗ 8.1 +4.1 ⊗ 11 +12.1 ⊗ 2.1 +11 ⊗ 4.1 + 11 ⊗ 5 +10.1 ⊗ 4.1 +7.1 ⊗ 7.1
+ 10.2.1 ⊗ 2.1 + 13 ⊗ 3 + 9.1 ⊗ 5.1

ξ(14[1, 2]) = 0

ξ(15[1, 1]) = 0

ξ(4.2[1, 10]) = 0

ξ(5.2[1, 9]) = 0

ξ(6.2[1, 8]) = 0

ξ(6.3[1, 7]) = 0

ξ(7.2[1, 7]) = 0

ξ(7.3[1, 6]) = 0

ξ(8.2[1, 6]) = 0

ξ(8.3[1, 5]) = 0

ξ(8.4[1, 4]) = 0

ξ(8.4[2, 3]) = 9.4.2 ⊗ 1+5.1 ⊗ 9.1+5.2 ⊗ 7.2+8.1 ⊗ 5.2+9.2 ⊗ 5+8.4.1 ⊗ 3+4.1 ⊗ 7.3.1
+5 ⊗ 7.3.1+2.1 ⊗ 9.3.1+3 ⊗ 9.3.1+9 ⊗ 5.2+6.2.1 ⊗ 5.2+3.1 ⊗ 9.2.1+9.3.1 ⊗ 3
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+ 5.1 ⊗ 7.2.1 + 8.2.1 ⊗ 5 + 4.2.1 ⊗ 9 + 7.2.1 ⊗ 5.1 + 5.2.1 ⊗ 5.2.1 + 5.2 ⊗ 9 +
2.1 ⊗ 9.4 + 9.4 ⊗ 3 + 4.2.1 ⊗ 7.2 + 4.1 ⊗ 9.2 + 9.1 ⊗ 5.1 + 5 ⊗ 9.2 + 3 ⊗ 9.4
+ 9.2.1 ⊗ 3.1 + 7.2 ⊗ 5.2 + 8.4.2.1 ⊗ 1

ξ(9.2[1, 5]) = 0

ξ(9.3[1, 4]) = 0

ξ(9.4[1, 3]) = 0

ξ(9.4[2, 2]) = 9.4.2 ⊗ 1 + 5.2 ⊗ 7.2 + 9.2 ⊗ 5 + 5 ⊗ 9.2 + 8.2.1 ⊗ 5 + 7.3 ⊗ 5.1 + 5.2 ⊗ 9
+ 3 ⊗ 9.4 + 7.2 ⊗ 5.2 + 8.3.1 ⊗ 3.1 + 4.2.1 ⊗ 7.2 + 6.3.1 ⊗ 5.1 + 8.1 ⊗ 5.2 +
6.2.1 ⊗ 5.2 + 4.1 ⊗ 9.2 + 9 ⊗ 5.2 + 9.3.1 ⊗ 3 + 9.2.1 ⊗ 3.1 + 9.4 ⊗ 3 + 8.4.1 ⊗ 3
+ 8.4.2.1 ⊗ 1 + 4.2.1 ⊗ 9 + 2.1 ⊗ 9.4 + 9.3 ⊗ 3.1 + 7.2.1 ⊗ 5.1

ξ(10.2[1, 4]) = 0

ξ(10.3[1, 3]) = 0

ξ(10.4[1, 2]) = 0

ξ(10.5[1, 1]) = 0

ξ(11.2[1, 3]) = 0

ξ(11.3[1, 2]) = 0

ξ(11.4[1, 1]) = 0

ξ(12.2[1, 2]) = 0

ξ(12.3[1, 1]) = 0

ξ(13.2[1, 1]) = 0

ξ(8.4.2[1, 2]) = 0

ξ(9.4.2[1, 1]) = 0



Bibliography

[A] Adams, J.F.: On the non-existence of elements of Hopf invariant one. Annals of
Math. 72 (1960) 20–104

[BAH] Baues, H.-J.: Algebraic homotopy. Cambridge studies in advanced math. 15,
Cambridge University Press 1989

[BD] Baues, H.-J. and Dreckmann, W.: The cohomology of homotopy categories and
the general linear group. K-theory 3 (1989) 307–338

[BJ1] Baues, H.-J. and Jibladze, M.: Classification of abelian track categories. K-
theory 486 (2002) 1–13.

[BJ2] Baues, H.-J. and Jibladze, M.: Suspension and loop objects and representability
of tracks. Georgian Math. J. 8 (2001) 683–696

[BJ3] Baues, H.-J. and Jibladze, M.: Suspension and loop objects in theories and
cohomology. Georgian Math. J. 8 (2001) 697–712

[BJ4] Baues,H.-J. and Jibladze, M.: The Steenrod algebra and theories associated to
Hopf algebras. Preprint

[BJ5] Baues, H.-J. and Jibladze, M.: Secondary derived functors and the Adams spec-
tral sequence, MPIM preprint 2004-43 (arXiv:math.AT/0407031, to apperar in
Topology).

[BJ6] Baues,H.-J. and Jibladze, M.: Computation of the E3-term of the Adams spec-
tral sequence, MPIM preprint 2004-53 (arXiv:math.AT/0407045).

[BJ7] Baues,H.-J. and Jibladze, M.: The algebra of secondary cohomology operations
and its dual, MPIM preprint 2004-111.

[Bl] Blanc, D.: Realising coalgebras over the Steenrod algebra. Topology 40 (2001)
993–1016.

[BM] Baues, H.-J. and Minian, E.G.: Crossed extensions of Algebras and Hochschild
Cohomology. Preprint

[Bo] Borceux, F.: Handbook of categorical algebra 2. Encyclopedia of Math. and its
Appl. 51 Cambridge University Press 1994

[BOT] Baues, H.-J.: Obstruction theory. Lecture Notes in Math. 628 Springer 1977,
387 pages

[BP] Baues, H.-J. and Pirashvili, T.: On the third MacLane cohomology. Preprint.

[BSC] Baues, H.-J.: Secondary cohomology and the Steenrod square. Preprint MPI für
Mathematik 2000 (122)



476 Bibliography

[BT] Baues, H.-J. and Tonks A.: On sum normalized cohomology of categories,
twisted homotopy pairs and universal Toda brackets. Quart. J. Math. Oxford
(2) 47 (1996) 405–433

[BUT] Baues, H.-J.: On the cohomology of categories, universal Toda brackets and
homotopy pairs. K-theory 11 (1997) 259–285

[BW] Baues, H.-J. and Wirsching, G.: The cohomology of small categories. J. Pure
Appl. Algebra 38 (1985) 187–211

[C] Cartan, H.: Sur les groupes d’Eilenberg-MacLane II. Proc. Nat. Acad. Sci. USA
40 (1954) 704–707

[Co] Cohn, P.M. : Free rings and their relations. London Math. Soc. monographs 19,
Acad. Press London 1985, 588p.

[EML] Eilenberg, S. and MacLane, S.: On the groups H(π,n) I. Ann. of Math. 58
(1953) 55–106

[FM] Fantham, P.H.H. and Moore, E.J.: Groupoid enriched categories and homotopy
theory. Can. J. Math. 35 (1983) 385–416

[G] Gray, B.: Homotopy Theory. Academic Press 1975, 378 pages

[GJ] Goerss, P. and Jardine, J.F.: Simplicial homotopy theory. Birkhäuser Verlag,
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[Ka2] Karoubi, M.: Formes différentielles non commutatives et opération de Steenrod.
Topology 34 (1995) 699–715

[Ke] Kelly, G.M.: Basic concepts of enriched category theory. Volume 64 of London
Math. Soc. Lecture Note Series. Cambridge University Press 1982

[KKr] Kock, A and Kristensen, L.: A secondary product structure in cohomology the-
ory. Math. Scand. 17 (1965) 113–149

[Kr1] Kristensen, L.: On secondary cohomology operations, Math. Scand. 12 (1963)
57–82

[Kr2] Kristensen, L.: On a Cartan formula for secondary cohomology operations.
Math. Scand. 16 (1965) 97–115

[Kr3] Kristensen, L.: On secondary cohomology operations II. Conf. on Algebraic
Topology 1969 (Univ. of Illinois at Chicago Circle, Chicago, Ill. 1968) pp 117–
133

[Kr4] Kristensen, L.: Massey products in Steenrod’s algebra. Proc. Adv. Study Inst.
Aarhus 1970, 240–255

[KrM1] Kristensen, L. and Madsen, Ib: Note on Whitehead products in spheres. Math.
Scand. 21 (1967) 301–314



Bibliography 477

[KrM2] Kristensen, L. and Madsen, Ib: On the structure of the operation algebra for cer-
tain cohomology theories. Conf. Algebraic topology. Univ. of Illinois at Chicago
Circle (1968) 134–160

[KrP] Kristensen, L. and Pedersen, E.K.: The A-module structure for the cohomology
of two stage spaces. Math. Scand. 30 (1972) 95–106

[L] Lawvere, F.W.: Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci.
USA 50 (1963) 869–873

[Li] Liulevicius, A.: The factorization of cyclic reduced powers by secondary coho-
mology operations. Memoirs AMS 42 (1962).

[Ma] Mandell, M.A.:E∞-algebras and p-adic homotopy theory. Topology 40 (2001)
43-94.

[MaP] Massey, W.S. and Petersen, F.P.: Cohomology of certain fibre spaces I. Topology
4 (1965) 47–65

[May] May, J.P.: A general algebraic approach to Steenrod operations. Steenrod al-
gebra and its Applications: A conference to Celebrate N.E. Steenrod’s Sixtieth
Birthday, Springer Lecture Notes 168 (1970) 153–231

[MC] McClure, J.E.: Power operations in H∞ ring theories. Springer Lecture Notes
1176 (1986)

[MLC] MacLane, S.: Categories for the working mathematician. GTM, 5, Springer
(1971)

[MLH] MacLane, S.: Homology. Grundlehren 114, Springer (1967)

[Mn] Milnor, J.: The Steenrod algebra and its dual. Annals of Math.(2) 81 (1965)
211–264

[Mo] Monks, K.G. : STEENROD: a Maple package for computing with the Steenrod
algebra, (1995).

[No] Novikov, S.P.: Cohomology of the Steenrod algebra. Dokl. Akad. Nauk SSSR
128 (1959) 893–895.

[P] Pirashvili, T.: Spectral sequence for MacLane homology. J. Algebra 170 (1994)
422–428

[PV] Penkava, M. and Vanhaecke, P.: Hochschild cohomology of polynomial algebras.
Communications in Contemporary Math. 3 (2001) 393–402

[PW] Pirashvili, T. and Waldhausen, F.: MacLane homology and topological Hoch-
schild homology. J. Pure Appl. Algebra 82 (1992) 81–98

[S] Sullivan, D.: Infinitesimal computation in topology. Publ. Math. IHES 47 (1978)
269–331.

[S1] Serre, J.-P.: Cohomologie modulo 2 des complexes d’Eilenberg-MacLane. Com-
mentari Math. Helv. 27 (1953) 198–232
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associativity formula, xxx, 338
augmentation, 151
augmented, 6, 9

B-module, xx
Bockstein

map, 29
operator, 15
power algebra, 15
track, 209, 264

boundary, 56

canonical tracks, 182, 194, 209
Cartan

diagram, xxix
formula, xxix, 6
homotopy, xxx, 343
track, 2, 200

category
enriched in groupoids, 39
of graded pairs, 120
of pairs, 37

chain complex, 34
characteristic class, 75
co-commutative, xxi, 290
coalgebra, 290
cochain complex, 33, 34
cochain operation, xv
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coefficient algebra, 153
cohomology, xxvii, 10

groups, 72
of a group, 73

commutative, xxxi, 9, 111, 161
commutative graded algebra, 156
commutator map, 404
comparison map, 182, 184
compatible, 185
compatible with products, 68
completely free, 8
composed track, 56
composition, 132

formula for
linear tracks, 185
smash tracks, 186

concentrated, 33
connected, 8, 9, 36
contractible, 36
coordinate, 10, 260
cross effect map, 194
cross effect track, 98
crossed

algebra, 121
of secondary cohomology

operations, 138
permutation algebra, 158, 163

cylinder object, 56

degree, 9, 154
delicate linearity track formula, 136
derivation, xvii, 66, 385
derivation property, 216
diagonal

action, 178
map, 187
track, 189

difference element, 61, 378
differential, 379
discrete, 36
Dold-Kan equivalence, 32

Eilenberg-MacLane object, 33
equivalence, 52
equivalent, 45, 410
even sign convention, 289, 297
excess, 5, 137, 144

function, xxxi

subset, xxxii, 347
extended

Bockstein power algebra, 15
cocycle, 100
left action operator, 351
power algebra, 12
symmetry operator, 356

exterior algebra, 9

faces, 210
Fermat quotient, 237
field, 174
folding

map, xxiii, 88
ϕ, 322

product, xxiii, 322
forgetful, 26, 32
free, 161

crossed algebra, 139
loop space, 58
M-permutation monoid generated

by S, 355
module functor, 33
permutation algebra, 157
R-module, 26
right B-module, 141
unstable, 8
unstable A-algebra in, 7
unstable module on one generator, 6

fundamental groupoid, 36

generalized Cartan track, 289, 303
generators, 2
good, 178
graded

A-bimodule, 68
algebra, 9
⊗̄-product, 120
monoid, 339
pair, 120, 336
pair module, xix
set, 339

group algebra, 151
group object, 57
groupoids, 39

Hochschild cohomology, 73
homotopic, 40
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homotopy, xix, 40, 167, 336, 372
addition lemma, 211
category, 40
equivalence, 40
equivalence under A and over B, 56
equivalent, 40
under A and over B, 56

Hopf algebra, xx, 290
Hurewicz map, 28

ideal of relations, xxvi, 375
identity track, 36
inclusions, 88
initial object, xxiii, 320
instability, 5, 264
instability condition, 136
interchange, xix

formula, 357
homotopy, 356
isomorphism, xix, 289
map, xxiv
operator, 325
track, 164, 274, 366

isomorphism, xxvi

Kristensen derivation, 107
Künneth

formula, 259
linearity track, 285
permutation track, 268
track, 260, 262, 263

Künneth-Cartan track, 269, 271–273
Künneth-Steenrod operation, 263, 264,

293

left
action operator, xxvi, 349
linear, 94
partial loop, 308
stability of the Cartan track, 310

length function, 424
linear, 46, 70, 95, 98, 184

∆-track, 301
derivation, 106

κ of degree, 106
map, 123, 154
track, 185
track extension, 70

linearity track, 2, 83, 89, 94, 97, 195,
198, 294

loop functor, 43, 63
loop space, 29, 37, 43
lower degree, 32

MacLane cohomology, 74
magma algebra, 298
map, 9, 13, 154
mapping groupoid, 37
mapping space, 36
maps, 40
Massey product, xvii, 142
matrix, 88
matrix Massey product, 142
matrix Massey products, 423
module, 98, 122, 134
module of ∆-tracks, 296
module of cocycles, 34
monoid [[A]] acts on, 97
multilinear, 73
multilinear map, 185
multiplication, 163

class, 388
function, 414
functors, 93
map, 408
maps, 26
of loops, 213
structure, 385

natural, 12, 263
natural choice, 143
natural system, 67
naturality, 293
naturality of the invariant, 77
nerve, 72
norm map, 195
normalization, 27
normalized, 27, 115

odd sign convention, 289, 297
operation algebra, 146
opposite category, 49

pair, xviii
algebra, xx, 95, 121
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over the secondary Hopf algebra,
xxxi, 337

module over F associated, xxiii
partial loop functor, 63
partial loop operation, 59
permutation, 88

algebra, 153, 155
group, 151
monoid, 353
track, 164, 242

permuting, 187
polynomial algebra, 9
power algebra, 11
power map, 191, 193
preadmissible relations, 418
preserves zero-elements, 94
primary element, 222
product, 28, 130, 132, 178
product of ∆-tracks , 296
product over, 251
projections, 88
pseudo functor, 124
push out diagram, 140

quotient map, xxiv

realizable, 77
realization, 26, 32
relation, 44, 52, 144, 311
relation diagonal, 311, 314
relations among relations, 139
relations associated to Adem relations,

371
right, 69

equivariant cocycle, 395
equivariant splitting, 395
partial loop, 308
stability of the Cartan track, 310

ring, 88
ringoid, 73

secondary
augmentation, xxiii, 321
augmentation of B, 321
Cartan relations, 245
cohomology, xi, xxvii, xxviii, 42

functor, 163
cohomology operation, xii, 44, 53

associated, 144
diagonal ∆, 328
Hopf algebra, xi, xxv
Hopf algebra B, 334
instability, xxxi
Künneth theorem, 175
linearity relations, 230
operations, xvi
permutation algebra, 159, 163, 371
Steenrod algebra, 49

set of homotopy classes, 37
shift functor, 68
sign track, 223
sign-action, 181
sign-augmentation, 152
simplicial object, 32
singular set, 26
small, 33
smash product, 28, 35, 178
smash track, 186
spaces

over B, 56
under A, 56
under A and over B, 55

splitting, 311, 376, 384
squaring map, 168
stable, 45

class, xi
Künneth-Steenrod operation, 282
linearity track, 285
map, xiii, 49, 50, 281
operation, 47
relation, 52
secondary cohomology operation, 52
theory, 49
track, xiii, 282

Steenrod algebra, xi, 3
Steenrod operations, 207
strict, 50, 95, 98
strictification, 133, 135, 340, 354
strictification of the secondary

Steenrod algebra, 137
strictified secondary cohomology,

xxviii, 143
strong, 41, 82
strong F-additive, 82
strong product, 41
structure, 94, 97, 385
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sum of ∆-tracks, 295
suspension functor, 6
symmetric spectrum, 29
symmetry formula, 382
symmetry operator, xxvi, 349

tensor algebra over R∗, 156
tensor product, 9, 32, 152
topological

cocycle of degree, xxviii
group, 58
Hochschild cohomology, 74

track, xiii, 36, 40, 56, 134, 167, 372
algebra, 93, 95, 120, 132
category, 39
functor, 42
model M of a track theory, 42
module, 97
theory, 41
theory of Eilenberg-MacLane spaces,

41
trivial

augmentation, 152
on Y , 59
track, 36

under A and over B, 56
unique track, 83, 89
Uniqueness, 388
unit, 151
unitary, 14
unstable, 5, 347, 371

algebra, xxxi
algebra K over the Steenrod algebra,

6
A-algebra, 6
structure map, 347
structure maps, xxxii

upper degree, 32

vector space object, 37

weak
coproduct, 82
equivalence, 42
F-additive track extension, 82
final object, 41
product, 41
sum, 82
track equivalence, 76

weakly G-equivalent, 219
well defined up to canonical track, 31
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