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PREFACE

Most of the problems posed by Physics to Mathematical Analysis
are boundary value problems for partial differential equations
and systems.

Among them, the problems concerning linear evolution equations
have an outstanding position in the study of the physical world,
namely in fluid dynamics, elastodynamics, electromagnetism,
plasma physics and so on.

This Institute was devoted to these problems. It developed
essentially the new methods inspired by Functional Analysis and
specially by the theories of Hilbert spaces, distributions and
ultradistributions. The lectures brought a detailed exposition
of the novelties in this field by world known specialists.

We held the Institute at the Sart Tilman Campus of the University
of Liége from September 6 to 17, 1976. It was attended by 99
participants, 79 from NATO Countries [Belgium (30), Canada (2),
Denmark (1), France (15), West Germany (9), Italy (5), Turkey
(3), USA (14)] and 20 from non NATO Countries [Algeria (2),
Australia (3), Austria (1), Finland (1), Iran (3), Ireland (1),
Japan (6), Poland (1), Sweden (1), Zair (1)]. There were 5 courses
of 6_hours. 1. of_ &4 hours., 1. nf. L hovxse,, 7. nf. 7_hovas, 22d, 1, Af.

1 hour. Moreover, 30 advanced half an hour seminars were
organized by the participants to discuss the last contributions
to the field.

I wish to express my warmest thanks to the NATO Organization
which was the main sponsor of this meeting and to the University
of Lidge and the "Fonds National de la Recherche Scientifique"
of Belgium who also contributed financially to its achievement.

My special gratitude is due to Professor F. Cerulus, Representa-
tive of Belgium to the NATO Science Committee and to Dr. T. Kester,
NATO Scientific Officer in charge with the ASI programme.



VIII PREFACE

I have been helped by a Scientific and Organizing Committee
constituted by my Liége Colleagues Prof. J. Etienne, J. Gobert,
P. Léonard and J. Schmets. The members of our staffs also

contributed to the success of the Institute. I am very grateful
to all of them.

H.G. GARNIR
Director of the Institute.
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LAPLACE TRANSFORM METHODS FOR EVOLUTION EQUATIONS

Richard Beals

University of Chicago

The evolution equations considered here are of the form

(1) u'(t) = Alt)u(t) + £(t) , t>0 3 u(0)= g .
The given function f and the unknown function u take values in a
complex Banach space X, and the initial condition u, is in X,

The A(t) are closed linear operators with domains dense in X.

The time-independent case is the case A(t) = A, As we shall

see, taking Laplace transforms (formally) leads very naturally
to considering the resolvent operators R)\ = (NI - A)—i, and what
we describe here could as well be titled "resolvent methods for
evolution equations.”" We shall survey some conditions on the
R)\ or R)\(t) which (a) bear on the existence, uniqueness, or
qualitative behavior of solutions and (b) are verifiable for
interesting classes of PDEs. We outline how the conditions are

derived for PDEs and how they are used to construct solutions

of (1), and indicate some further lines of research.

Garnir (ed.), Boundary Value Problems for Linear Evolution Partial Equations. 1-26.
All Rights Reserved. Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland.



2 RICHARD BEALS

i. Abstract time-independent problems

If u is a piecewise continuous X-valued function on [0, co)
[0,0) such that |u(t)] < Mexp(-ut), then its Laplace transform
u is the holomorphic X-valued function defined on the half-plane

Re A > w by

a\) = / exp(-\t)u(t)dt,
0

There is a symbolic "inversion formula®

1 At
(2) uft) = =— e a(\)an ,
2mi
r
a
where I"a is the oriented vertical line from a-ioco to a+ioo,
and a > max {0, w}.
Consider the time-independent case of (1), by a purely
formal argument. A formal Laplace transformation of (1) and

integration by parts gives

*® At
AT(N) +100) =/ ult)e” "t = -u + aa(\),
0

so

alh) = R,u, + R)\f()\) .

We apply (2) and interchange the order of integration:

At © At-s)
2miu(t) =f e R)\uod)\ +f [ e R)\f(s)ds dn
r rvYo

80 ¢

(3) ult) = U(t)u0+f0 Uft-s)f{s)ds

where

(4) Ult) = ﬁ eMR)\d)\ , t>0.
r

Here I' is some suitable oriented contour homotopic to I‘a and

having the singularities of R)\ — the spectrum of A — to its left.
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All this, we emphasize, is purely formal. We do not need to
make this derivation itself rigorous; we only need to show that in
certain cases solutions are unique and are expressible by (3)

and (4).

Let us begin with the question of uniqueness. Let DA be

the domain of A, It is a Banach space with the graph norm

lu]A = |Au| + |u. Let us suppose R = (7\I-A)-1 exists for

\
real \ > )\0 and satisfies
(5) lim e's)‘"R = o, all €>0.
N -+ A
0

Theorem (Lyubich). The problem (1) has at most one

solution u continuous to X, such that u(t) ¢ D, and the strong

A

derivative u'(t) exists for each t > 0.

We sketch the proof. Let u be a solution with data zero,
and let ui(t) = Rpu(t) for some p >\, . Then u, is continuous
to DA’ continuously differentiable, and satisfies (1) with data

zero. Given T >0, let

T
(6) w(\) = / eMT-t)ui(t)dt .
0

Then integration by parts shows

(7 Aw(\) = ui(T) +Aaw(\) ,
(8) wlh) = -Ra(T), 1>\ .

Because of (6), w is entire of exponential type and bounded for
Re A < 0. Because of (8) and (5), e 8)\W()\) - 0 as \ = +o0.
A Phragmen-Lindelof argument shows that w is bounded, hence
constant. By (7), the constant must be zero, so

u(T) = ()\I—A)ui(T) =0.



4 RICHARD BEALS
The condition (5) will be satisfied in the cases we con-
gider, so we turn tothe question of existence and construction of
solutions, based onthe heuristic formulas (3), {4).
We say that the evolution equation associated to A is

strictly parabolic if there are positive M, \_, § such that

0

(9) R)\ exists and satisfies || R)\ | <M - whenever

1
])\I _>_)\0 and ]arg )\I < -er+ 5.
In this case we let T" be the boundary of the region described
in (9). Thenthe integral (4) certainly converges and defines a
bounded, infinitely differentiable operator from X to DA'
Moreover,

(10) 2miu'(t) =f e)\t)\R dn = e)\t(I+AR JISHN
T N T N

0 + 27 AU(t).

Note that ” U(t) “ remains bounded as t = 0, To see this,
integrate by parts in (3) to change the integrand to t_iexp(kt)R)\,
move the contour of integration to the vertical line Re A= t'i,
and estimate using (9). It is easy to check that U(t)u0 - u, as
t = 0 whenever u_ ¢ DA’ and the boundedness result just

0
mentioned then yields this convergence for each u, € X. We
have essentially proved the theorem of Hille, that such an
operator A generates a holomorphic semigroup. The following

is an easy consequence.

Theorem. If A is strictly parabolic, then for any

u, € X and any Holder-continuous f, the time-independent

problem (1) has a unique solution u, continuous on [0,c) and

cl on (0,00), given by (3), (4).
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To see that (4) gives a solution, it is helpful to write
t

t
11) U(t-s)f(s)ds = U(t-s)[f(s) - £(t)]ds + V(t)i(t),
w J
where

V(t) '-:f U(s)ds = —-——f (e - N R)\d)\.

Now V(t):X = D, for t> 0. Itis easy to see that U(t) has

norm O(tni) as a map of X to D_, so (11) shows that u(t) eD

A A
for t > 0. The desired differentiability may also be established
by using (11) and our other information about U(t).

We say that the evolution equation associated to A is

weakly hyperbolic if there are positive M,N, and }\O, and a

such that 0 <a <1, such that

(12) R)\ exists and satisfies || R)\“ _<_M|)\IN when |\| _>_)\0

and Re \ _>_c0|Im )\]a
(Note that according to our definitions, strictly parabolic im-
plies weakly hyperbolic!) In this case, let I' be the contour

bounding the region (12), and let
B0 = exp(-€ (- N7 €>0,

where a <b <1 and we take the principal branch of zb on the
plane slit along the negative real axis. As \ = oo on or to the
left of T,

Ihe()\)] < exp(—6]k[b) , some § >0,

It follows that the integral

Ut) = — | Mn he (MR,
2mi r

exists for £€>0, t> 0; moreover UE" () = AU(—: (t), t>0. Thus

if uje X, then uf(t) = Ug (t)uo is a solution of u'!' = Au such that



6 RICHARD BEALS

u(0) = Ue (O)u0 = It can be shown [ 7 ] that Jo is

Je Uy -
injective and has dense range YE. . Let us equip YE with the

norm which makes J'e an isometry from X to Yi . I ug € YE
and if f is continuous to Y , it follows easily that the (unique)
solution of (1) is given by

1 t 1
ult) = U, ()3 u + [ U (t-s)I. £(s)ds.
0 = 0 0% "0 | ")

The requirement of lying in YE may be considered as a smooth-
ness condition, in fact a Gevrey condition, in terms of A [7]. If
ve Y, then v is inthe domain of A" for each n and there is

£
a o >0 such that

(13) sup }Anulo-nI“(ﬁn«O"l)_1 <w, B=1h.
n

Conversely, if (13) is true for large enough o, then v e Ye .

We have seen that in the strictly parabolic case the homo-
geneous (f = 0) problem has a unique, and well-behaved solution
for each u, € X; in the weakly hyperbolic case there is a solution
for each sufficiently "smooth" uye The "natural" initial condition
for the homogeneous problem would seem to be u, e Dy. Bya
result of Phillips [27], there is a unique solution u, clon [0, ),
for each u, ¢ DA if and only if A generates a Co semigroup.
The well-known condition for this [17] is that there be constants

M and )\O such that

(14) R, exists and satisfies |R " < M(Re X - %) for each
N\ such that Re \ > KO .

Because the constant M is to be independent of n, these
inequalities are difficult to verify directly except in the contrac-

tive case, and resolvent methods seem of limited value here.
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Many other results relating properties of the resolvent
operators to properties of solutions of the time-independent
problem are known; see in particular the book of S, G. Krein
[19], the survey article of Lyubich [24], the extensive paper of
Agmon-Nirenberg [2], and also [6],[11],[13],[26],[34]. The
"distribution semigroup" approach of Lions [23] also leads to
resolvent estimates; see [5],[20] for example. The estimates
(12) appear also in the context of distribution semigroups: see

Chazarain [10].

2. Abstract time-dependent problems.

One would like to construct a solution of the problem

u'(t) = At)u(t) + £(t), t>s; u(s)=u

0
by a variation-of-constants formula
s
(15) u(t) = U(t, s)u0 +/ U(t, r)f(r)dr.
0
The "evolution operator" U should satisfy
(16) 52— Ult,s) = A{E)U(t,s), t>s;: Uls,s)=1.

In (16), s is merely a parameter. In particular, if U(t) = U(t,0)
then ‘

(17) Ut) = A{t)U(t), t>0; U(0)=1.

Formally, we may attempt to solve (17) by writing it as an inte-

gral equation and solving by the Picard iterative method:

t
ut) = I+/ A(s)U(s)ds ,
(18) °
t

ult) = ZZO V), Vo=1,V () =f A(s)V,_(s)ds.
0

There is a case discovered by Ovcyannikov and Treves, among

others, in which (18) makes sense even for unbounded A(t).
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Suppose (X(r) is a family of Banach spaces, 0 £ 0 < 1. Suppose

X CX if 1<o, and |u|_ < |u|_. Suppose A(t) is bounded
o T T o 1

?

from X to X if v <o, with norm [A(t)]| < C(7-o)
o T T,

and suppose t+r A(t) is continuous to ,f(Xo_,XT). Then it is

not difficult to show by induction that the operators V_ in (18)

satisfy A m

“ren(r-o) P

IVl < (i)
Therefore the series (18) converges in I(XO_,XT) if
[t] < (T-O’)(Ce)_i, and solutions exist for small time. The
classical Cauchy-Kowalewski theorem can be proved in this way:
suppose A(t) is a first order system of PDEs in x= (xi,..,,xn)
with coefficients which are continuous in (t,x) and analytic in x

for xnear 0, Let X consist of those functions of x analytic
o

near 0, such that

lu] = sgp(a!)-1lu(a)(0)|0'la‘ < o,

o

See [33] for details. For a recent version in which the A(t) are
analytic pseudodifferential operators, see Baouendi-Goulaouic
[4].

We consider now a time-dependent strictly parabolic

case. Suppose that the A{t) have a common domain D, with
fixed norm | ID’ and that t> A(t) is Lipschitz-continuous to

£ (D,X). We assume a uniform version of (9):

- -1
(19) R (t) = (\- A(t) 1 exists and satisfies ”Rx(t)”S_M])\]
when [)\]3)\0 and ]argk]ﬁ%*rr+6.

Finally, we assume that for some fixed p, tr Ru(t) is con-

tinuous to X (X, D).
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Theorem (Tanabe [32] - Sobolevskii [29]). There are

operators U(t,s), t > s, such that (t,s)#+ U(t,s) is continuous

in the strong operator topology for t > s, continuous in norm

for t>s, and such that (16) holds.

Start with an approximate solution UO(t, s):

1 At-s)
(20) U (t,s) = =— R_(s)dn.
0 2mi '/l:‘ © A
Then
(21) %Uo(t,s) = AU, 5) - @, (t3)
where

2,(t,5) = [Aft) - A(s)IU, (¢, 5).

From (21) and (15) we get (formally)
t

Uo(t, s) = Ut,s) -f Ult, r)@i(r, s)dr .
One may hope, therefore, t: find U in terms of U0 by an
integral equation of the form
t
(22)  U(t,s) = Uo(t,s) +] Uo(t, r)®(r, s)ds .
s
If (16) and (22) were true, we should expect
t
0 = 38{ - A(t))U(t,s) = -Qi(t,s)-l-Q(t,s) -f Qi(t,r)Q(r,s)dr.
Thus we obtain an integral equation for & and soslve by iteration:
t
(23) ®(t,s) = Q'l(t’ s) +f @1(t, r)®(r, s)dr ,

s t

(24) ©= z:oqsn I s)=fs 2 ,(t,1)®_(r, s)ax

Now it follows from (20) that Uo(t, s) has norm < C(t-s)-1 as

operator from X to D, so the ®, are uniformly bounded as

1
operators in X (locally), and the series in (24) converges to a

solution of (23). With enough more work, it can be shown that
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U given by (22) has the stated properties. (The estimates (19)
are stronger than necessary; see [30], for example.)

Next we consider an abstract time-dependent weakly

hyperbolic case. We assume a uniform version of (12),

together with some strengthening of it:

(25) R)\('c) exists and satisfies || R)\(t) | < M| 1 ghen

AN >N and Re\>c Im)\a, where 0 <a,n <1;
0 0
(26) when \ is real and >Ny I R)\(t)“ﬁ_MlX]-'1 .

Choose P such that 1 <B < a—i, As noted in section 1, the
operator defined formally by (20) makes sense on the Gevrey

space X C X, where
T, t

lul,, = sup |A@®Tu|™C(pm+1) ™

Our aim here is to combine the Ovcyannikov-Treves and
Tanabe-Sobolevskii methods. A careful analysis of UO(t, s)
shows that in a fixed interval 7,0 ¢ [-ro,o-o] < (o, ), Uo(t, s)

maps X to X with norm
0,8 T,8

I Uo(t, s) MT’ o1 < Clo-7)"°P

provided ¢ > T and ‘t—s|_<_T = T(TO). Here 0 <p <1, Reason-
able {i.e. verifiable) assumptions onthe A(t) imply
lal, (s luel i [t-s] <clo-7),
[(a() - ADu]_ < Cle=s||=o| P it [t-s] <ole-m).
Let Q'l be as before. Combing the last three inequalities,
(27) IQi(t,s)uIT’tS Clt-s||r-o| 'p'ﬁlu]T’s if [t-s] <C,(o-7).

-1
Let 6 = 2-B4p. If p<m , then § >0 and by induction we get
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6-2.n

.

Thus ® may be defined by (24), and U by (22); see [9].

(28) ‘Qn(t,s)u]_r’t < I‘(nﬁ)'i[cl“(f))]t—s | (o-)

The (explicit or implicit) assumption above that the A(t)

have the same domain is essential, since otherwise ®, may not

1
be defined. This assumption is natural for the Cauchy problem,
but not for general mixed problems (where the boundary con-
ditions are incorporated int he domain of A), Kato and Tanabe

[18] removed the assumption by taking

U (t,s) = E—-:—i—-/l._,e)\(t-S)RX(t)dt

and looking again for a solution of the form (22). The formal
solution is again given by (24), with

0 9
Qi(t,s) = -(g + g)Uo(t,S) .

(For another approach, see Da Prato [12]).
It is possible to consider abstract mixed problems more
directly. We begin with the time-independent case. Suppose W

is a Banach space dense in X and

B: W =Y ,JQ:W -+ X, Dbounded.
Suppose B is onto, and let A be the restriction of .ﬂ. to
ker(B). Let qu= M- A and

s, = A, emw - xeY.

Then S)\ has inverse Tx if and only if NI~ A has inverse R)\.

A formal Laplace transform shows that the mixed problem

(29) uw = Au+f, Bu=g, u(O):uo

would have a solution of the form

t
(30) u(t) = U(t)JXuO + ‘[0 U(te s)h(s)ds .
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Here J'X is the injection X = X @ Y, h(s) = [£(s), g(s)], and
Ut): Xe®eY - X,

1 At
= — d
(31) u(t) > i,/ e T)\ N

It is too much to expect that ” T)\ ” < M‘)\I -1 in the region des-

cribed by (19), say, but one may have

I d <ML el < M
If so, the integral {31) exists and it can be shown that for
Lipschitz functions f and g, (30) is a solution of (29).

In the time-dependent version, the boundary operators
B(t) and the operators dq(t) vary, while W is fixed; of
course the domain of A(t) = ker B(t) may vary within W. We

look for solutions of the time-dependent problem (29) in the form

t
u{t) = U{t,0)T_u, + U(t, s)h(s)ds ,
where *0 fo
%g—(t, s) = A(t)U(t,s), BU(t,s) =0, t>s, U(s, s)JX = I.

A formal argument suggests that U can be constructed by (22),

(24), where s
Uo(t,s)= —Z—'l-r;;/l;e)\(t )T)\(s)ds,

2,(ts) = (A() - Al)Uy(t,s) ® (B(s) - BE)U, (¢, s).

This approach does not seem to have been carried through, even

for the strictly parabolic case.

3. The Cauchy problem for PDEs.

We begin with a system of first order in t, having con-
stant coefficients., Let x = (xi,...,xn), Dj = -iaj,

t
u=(u1,.,.,um) = u(x,t), and
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@
Afu) = a(D)u = 3 a D%,

where the aa are m X m matrices., Let

x= (5" = ole...0L°,

and let the domain DA consist of those u e X such that
a(E)a(E) e (Lz)m, where 4 is the Fourier transform and

a(f)= > g“’aa . (For a more general treatment of constant
coefficient problems, see the book of Gelfand-Shilov [15].)

A Fourier transform- 0DE argument shows uniqueness of solu-
tions of the Cauchy problem for Bt- A (with X as space of initial
conditions!) with no further assumptions, but let us consider the
criterion of Lyubich anyway. It is easy to see that AI-A is
invertible if and only if the matrix Al -a(f) is invertible for

every £ e Rn, and also

jor-a)7) = o IO-aE) ) <o .

Suppose R, = (?\I-A)-1 exists for large real \. The

SeidenbergTTarski Theorem [28] implies that r(\) = || R)\ | is
an algebraic function of N for large real \, so the Lyubich
growth condition (5) is automatically satisfied when the resolvent
exists for large real X\.

If -A is strongly elliptic, i.e., 8t - A is parabolic in the
classical sense, it is readily seen that (9) is satisfied and the
equation is strictly parabolic in the sense above. Ellipticity is

not necessary: consider

0 I
A =
A A

This operator is not elliptic, but satisfies (9). The operator
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at- A is not parabolic in the classical sense, though it is in our
sense (or that of Gelfand-Shilov [15]).
It should also be noted that the choice of space X is im-

portant. The evolution equation for

obtained by reducing (at - A)‘2 to first order in t, is not strictly
parabolic in X, but it is in HZGB LZ . (As usual, H® denotes
the Sobolev space consisting of u ¢ A' such that
(1+]£))°8(E) e L2.)

Consider now the "weakly hyperbolic case." Again there
is some conflict of terminology — we have already noted that
"strictly parabolic" implies "weakly parabolic.") Consider the

operators A AZ’A3 given respectively by

1!

(32) p. b,/ ,\D> ia+D,/,\-a o
2 1

Then at- A-'1 has characteristic polynomial p(rv,£) =
det(ivI - a{€)) = -(r —E,i)z, so is {weakly) hyperbolic in the
classical sense, but the spectrum of A1 is all of © . While
6t- AZ is not hyperbolic in the classical sense, it is weakly
hyperbolic in our sense. Finally, at—A3, which is obtained by
reducing the wave equation to first order in- t, is weakly hyper-
bolic in Hiﬂa Lz but not in L2 @ L2 in the stronger sense of (25),
since ”R)\“ =1 as A=>+o00.

To exhibit a general class of weakly hyperbolic equations,

we suppose that AO = aO(A) is homogeneous of order 1, and that
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the roots T of det(ivI- ao(g )) are real and # 0 for £ eRn\(O);
thus AO itself is elliptic. An easy argument based in part on

homogeneity shows [8]:

(33)  In-agE) < ClRe | SN + (e

when Re \ # 0, where k is the maximum multiplicity of the
roots . If A= A0+ B, where B is a constant matrix, then
R, = ()\I-A)_1 exists whenever (AI -Ao)-1 exists and

[ B(\ —AO)-1“ < 1/2; moreover in such a case

—kl k-1

(BN _<_2]|(x1-A0)'1|] < 2c(Re N)  [A]

This is true when

]Re)\l > colxla , a=1-k s

so 8t- A is weakly hyperbolic. The condition here that AO be
elliptic is unfortunate — it rules out Maxwell's equations —

though A, above shows what may otherwise occur. When there

1
is an associated "divergence", a homogeneous system B = b(D)
such that ao(ﬁ) is invertible on kerb(£) for § e Rn\(O), then
we may restrict A to the closure of ker(B) in (LZ)rn and obtain
a weakly hyperbolic problem.

In discussing operators with variable coefficients, we
shall consider single equations of parabolic and weakly hyper-

bolic type, starting with a time-independent parabolic equation.

Suppose

2 ‘ N
P =p(x,8,D) = Py, (%) 8, D
gk + oM <%

where the coefficient of 8tm (m = M/q) is 1; and all coefficients
are smooth with bounded derivatives of all orders. Consider the

associated homogeneous operators
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gk o
Q =4q(x,D,D)= Py, (¥ (D) "D .
ak +|e|=M

We suppose that the QZ are uniformly elliptic, uniformly for =z
1
such that |z| =1 and qjarg z|< 5 T+ 5. Reduce to a system
j-1
of first order in Bt by the standard method: vj = 83 u,

1<j<m, and

' . R o
(Av)j = vj+1 , j< m, (Av)m = - kZ</n’lpk0[(x)D Vipq ®

Let X = HM—qGB HM-ZqQ oo @ HO. Considering A in X is
# = SAS--1 and

2
equivalent to considering A# in (L )m, where A
S = s(D) is the matrix of pseudodifferential operators with

symbols

(34)  s(t) = diag(<£ >

UegsM29 1, <g>® =14 gh

Then A# is a matrix of Ydo's of order 1. Our assumptions

imply that PZ = quO - A# is elliptic for z in the above set.
Choose ¢ # 0 in 9 (R). Given ue D(Rn)m, let

aybigr ) = plxg) explin-Edulx) 4 =2

The standard elliptic estimate for PZ :
(55) Ivl, < cUvl + lvl)
shows (taking z = p|u| -1 and letting v = ux) that
#
Il + fafl, £ € UN-2)a])

1
when |arg \| < 3T + 8 and |\| is large. Thus at- At is
strictly parabolic in X. (The trick of deriving estimates with
a parameter directly from known elliptic estimates seems to be

due to Agmon.) The passage to the time-dependent case via the



LAPLACE TRANSFORM METHODS FOR EVOLUTION EQUATIONS 17

Tanabe-Sobolevskii method is clear: assume the coefficients are
Lipschitz in t,

We turn to weakly hyperbolic problems. Suppose

. N K@
P=p(x,8t,D) = E, pkaatD ,
k+ ]ozIS_ m
and me =1, Suppose the coefficients are smoocth with

bounded derivatives and suppose the roots 7 of

po(x, it,£) = Ta“:m pka(iT)kga

T

are real and #0 when £ ¢ R (0). Reduce to a first order
system 6t - A as above, and take X = Hm—1 @ Hm-ze. ..® HO°
Assume for the moment that the coefficients of P are constant
and that P is homogeneous. Let A# = SAS-l, where S has
symbol (34) with M=m, g=1. Then af (£) satisfies an

estimate (33), and it follows that
GO T Dl S el
-k k
< SRe NI NS )l

where vy = (\I -A#)u‘, Now estimates like (36) with "frozen"
coefficients can be patched together by a partition of unity (as in
the old elliptic theory), or a pseudodifferential parametrix can
be constructed, to carry (35) over to the variable coefficient
case. In that case (35) holds with 2k in place of k and \
large, |Re \| > coj)\]a ; see [8].

To pass to the time-dependent weakly hyperbolic case by
the methods of the preceding section, we need the strong esti-

mates relating the abstract Gevrey spaces associated with the

operators A(t). It is enough to assume that the coefficients are
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Lipschitz in t and lie in a sufficiently small classical Gevrey
class in x (uniformly in t). Results for such problems were
first obtained by Ohya [25] and Leray-Ohya [22], using methods

very different from those here; see also Steinberg [31].

4, Mixed problems for PDEs,

Consideration of mixed problems leads rapidly to ODEs,
so we begin with a quick discussion of constant coefficient

ODEs. Let d= d/dy and consider the problem

(37)  Puly) = £(y), y20 ; Bu(0) = g , 1<k<r,
where m.
P =p(d) = Zmpd‘j B =b(d)=z Jb &
o i Tk 'k 0 Kj

We assume that P = 1. If the Bk are of different orders
and r < m, then (37) will have an (m-r)-dimensional affine
space of solutions. Suppose that f has compact support, and
we look for a bounded (as y = o) solution. If p(z) has no
pure imaginary roots z, then any solution of the homogeneous
(f = 0) problem grows or decays exponentially, There is a base

of decaying solutions

1 Z j-1 -1 .
(38) oy = 5oy f e™ 2 plz) "z, 1<j<m
r

where m_ is the number of roots of p with negative real part,
and I' is a curve in Re z < 0 enclosing those roots. The
problem (37) with f= 0 will have a unique bounded solution for
each g= (gi, cees gr) ¢ € if and only if the matrix Q with

entries
1 -1, -1
69y mam [ b e e
r

is non-singular,
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Now let 1"+ be a curve in Rez > 0 enclosing the remaining
roots of p, and let

1 zy -1
40 . dz , +y>o0,
(20) Gly) = £5~ r© p(z) “dz y>0
+
G(0) = 0. Then PG =0 for y# 0, G has continuous derivatives

of orders up to m-2, and
G(m'i)(o +) - a5y =,

It follows that if f has compact support, then u= G*f is a
bounded solution of Pu=f, The Lz-norm of u is bounded by
the Lz-norm of f multiplied by the L1 -norm of G, and similarly
for derivatives of u in terms of derivatives of G.

Under the above assumptions, the unique bounded solution

of (37)is u=u_+ u,, where

0
-1
(41) ui-G*f, ag = Zngaj, c=Q [g-Bui].

The condition that Q be non-singular is equivalent to the alge-
braic condition that no non-trivial linear combination of the
bk(z) be a multiple of p (z) = 1T (= - Zj)’ the zj's being the
roots of p with negative real part.

Consider now a constant coefficient problem in the
quarter space R+ X R" X R+ = {(t,x,y)}, of the parabolic kind

considered in the previous section:

(42) Pu=¢f, Bku(t,x,O) =0, k<r, Bt‘]u(O,x, y) = vj(x, y), j<m,
where . . .
_ oy SO
P =p(d,D_, 8Y) = Z . Piaj 2t Px Oy °
gt|e|ti=M
= b_( = ije g
By = By, 8 ) E 8,00

gi+ || +j=MJ,
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-1
and Mj <M, P =1 (m=Mgq ). Letus examine the
m

corresponding family of ODEs with

(43) p)\’g (d) = p()\,lg',d) ’ bk’)\’g(d) = bk()\:g:d):

E e Rn, Iarg )\I < —;—-w + 8. Under the ellipticity assumption
of the preceding section, p)\, ¢ (z) will have no imaginary roots.
We assume that each matrix Q(\,£) for (43) is non-singular.
Let p = p(\, &) = Mi/qﬂ‘ €
show that

(a4) | Qin, & )j':l < cp M

.  Homogeneity considerations

and that the roots z of Py, t are of size O{p) and at distance

O(p) from the imaginary axis. It follows that

(45) laYkG(x, tiy)] <ot ™ exp(-8p]v]) .

k

j=-M+k
(46) o, o.MEsY) < o exp(-8p|y]) ,

J

Now reduce (42) to a system of first order in t, with the
boundary conditions Bu = 0 incorporated in the domain of the
corresponding A. To solve (AI-A)v =h, we take the Fourier
transform in the x-variables, and get a problem equivalent to
the boundary value problem for (43). The representation (41)
for the solution, and the estimates (44)-(46) lead to the estimates
(35) of the last section., The passage to coefficients variable in
x (and to operators with lower-order terms) is now made in the
way which is standard for elliptic boundary conditions, and one
may use the Kato-Tanabe methods to allow variation in t,

The results we have outlined for strictly parabolic
problems are due to Agranovich-Vishik [3]. The authors obtain
LZ-results by the Laplace transform approach, but do not reduce

to a system of first order in t and so do not use the Kato-
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Tanabe method for the time-dependent case. The latter approach
was suggested by Browder and carried out by Lau [21] to get
Lp-results.

Finally, we consider weakly hyperbolic problems.
Consider (41), where P and B, are of the above form with q=1,
so m = M and the operators are homogeneous. We suppose
that the roots T of p(r,£,in) are real and # 0 for non-zero
(E,m) ¢ Rn+1. Then p(\,£,z) has no imaginary roots z when
£ ¢ R" and Re \ # 0. We assume that the matrices Q(\, %)
associated with (43) are non-singular for each such \,§.
Homogeneity considerations and the Seidenberg-Tarski theorem

show that in place of (44)-(46) we get estimates

M-M, -j
-1 N K
IQ()"’E)JkI S. Co P !
Kk N 1-M+tk N
lay G\, E3y)] < Co o p exp(-60" p|y|),
k N j-M+k N
|8Y ¢j(>\.€;y)l < Co p exp(-60 p|y|),

where p = [N + |E]| and o = l)\-iRe X|. These estimates
give estimates of the form (36) for the system of first order in
time. Thus the problem is weakly hyperbolic. The passage to
coefficients varying with x and problems on a cylindrical

domain is carried out once more by a patching argument;

see [8].

5. Further remarks.

We have emphasized the "strictly parabolic" and
"weakly hyperbolic® problems in this summary because for
such problems the qualitative features one expects can be

derived, ultimately, from resolvent estimates; moreover the
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resolvent estimates obtained are sufficiently stable to carry over
to operators with variable coefficients. For strictly hyperbolic
equations, for example, semigroup or constructive (Fourier
integral operator) methods seem to be necessary for optimal
results,

Boundary conditions for mixed problems have as ances-
tors the Lopatinskii-Shapiro conditions of elliptic theory. Con-
ditions for constant coefficient strictly hyperbolic equations
were given by Agmon [1] and for general constant-coefficient
Petrowskii-correct problems by Hersh [16], both in a quarter
space,

The Agranovich-Vishik-Lau treatment of parabolic prob-
lems described here obviously relies heavily on the (mixed)
homogeneity of the principal terms of the operators, and it is
the corresponding (weighted) ellipticity which makes the passage
from constant to variable coefficients relatively straightforward,
There are problems which are "strictly parabolic" in the
present sense which are not in the Agranovich-Vishik class, for
example

-Aat-A)u=f , t>0, xn>0,

x =0 t=0 0’ atu t=0 e
This example is due to Donaldson, who has made an extensive
study of the type of non-homogeneous problems for which the
corresponding estimates are stable enough to pass to variable
coefficients [14].
The study of weakly hyperbolic problems in [8], outlined

here, also relies heavily on homogeneity considerations. Again

there are problems weakly hyperbolic in the abstract sense but not
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of this type, but there seems to be no general study of such
problems. |

The work of Leray-Ohya for the Cauchy problem shows
that the "ellipticity" assumption (non-vanishing of the
characteristic roots) in our discussion should not be necessary;
it would be interesting to remove it from the present approach.

Results for the time-dependent weakly hyperbolic
Cauchy problem can be obtained by the methods outlined here,
but the time-dependent mixed problem remains to be done.
Some refinement of the Kato-Tanabe method might suffice; an
alternative (and possibly more promising) approach is to refine
the method outlined at the end of section 2 along the lines of the
refinement of the Tanabe-Sobolevskii method as given in

section 2.
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PREFACE. These notes on Hyperbolic Differential Equations and
Waves are centred about the existence and properties of wave
solutions for the full space problem and for the half space or
mixed problem. Thus the emphasis is on elementary solutions,
the geometry of wave surfaces, singularities and lacunas in

the case of propagation in RO . The mixed initial boundary
problem is studied from several points of view in the constant
coefficient case followed in Chapter 6 by a description of the
extensive recent work on the variable coefficient problem. The
exposition is intended to be self-contained as far as possible,
but in a topic that has attracted so much interest in recent
years some references to the current literature have been
necessary for reasons of space. By its nature the topic of
hyperbolic equations spans the range between theoretical analysis
and applied techniques so an attempt has been made to show the
interest of both as well as their mutual interaction.

My thanks are due to Professor Garnir and the sponsors of
the NATO Advanced Study Conference on hyperbolic differential
equations and wave propagation for the invitation to give these
lectures and for their cooperation in preparing these notes for
publication.

G.F.D. Duff

CHAPTER 1. HYPERBOLIC EQUATIONS AND CAUCHY'S PROBLEM
1.1 Historical introduction

The classification of linear partial differential equations into
the three well known types, elliptic, parabolic and hyperbolic,
corresponds to basic properties and problems which are widely
different for the equations of the various types. In these
notes the solutions of hyperbolic equations, often known as
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waves, will be studied in the context of the initial value prob-
lem, or Cauchy problem, while recent developments in the theory
and application of the mixed initial and boundary value problems
will be described. The study of mixed problems has received
much attention during the past fifteen years and the initiation
of this emphasis was perhaps stimulated by the remarks of
L. Grding in his review of linear partial differential equations
at the Edinburgh International Mathematical Congress in 1958.

We begin with the Cauchy problem in the case of constant co-
efficients. Historically, the d'Alembert solution of the initial
value problem for the one space dimensional wave equation,

3 u 2 32u
2
ot ox

with u(x ,0) = ¢(x)
formula'; it is

>

ou

R SE(X ,0) = Y(x) , was the first "wave

1 x+ct
ulx ,t) = %{¢(x +ct) +o(x —ct)} + ——-J v(x)ds .

2e x-ct

Already the properties of continuous dependence on data, propa-
gation of singularities along characteristics, and finite domain
of dependence are visible in this d'Alembert formula.

Wave propagation in higher dimensions was studied in detail
by Hadamard with his method of the 'finite part' of a divergent
integral, and using also the method of descent which is related
to the "clean cut' wave propagation property for an odd number
of space dimensions, which we study below under 'lacunas'.
Formulas for the 'elementary solution' were given by Hadamard
and Herglotz, but with the advent of distributions according to
L. Schwartz, a more convenient and comprehensive notation be-
came available, and we make use of it as follows. Let the
Laplacian A be defined in RD as

2 2 2
A=A =-—a——+i—+ see + 3
n sz 8x2 3X2 ’
1 2 n
where {x1 2XD 5 es ,xn} are Cartesian coordinates. Let &(t)

denote the symbolic Dirac delta distribution, defined by
J f(t)s(t)at = £(0) ,

and Gn(x) the corresponding n dimensional Dirac distribution.
Then the wave equation in RT :
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- Au = c‘Sn(x)c‘S(t)
has the elementary solution

5(n=3)/2042 _ 204y |

where H(t) =0(x<0) and 1(x=20) is the Heaviside function.
Also the fractional order of differentiation is defined using
the Riemann -Liouville fractional integral of order o ¢ €

X
1% (x) = r—(le (x-£)%"Lr(t)at .
a

Indeed an integration theory for the wave equation depending on a
generalization of this fractional integral has been put forward
by M. Riesz, but we shall use only the more adaptable method of
distributions and Fourier transforms as described in Shilov (1),
or Gelfand and Shilov (1, vols. 1 and 3).

In the general theory of linear partial differential
operators, as described by HOrmander and others, hyperbolic poly-
nomials play a special r8le as the operators which permit a well
posed Cauchy problem. A condition of real and distinet roots for
homogeneous hyperbolic polynomials generalizes the algebraic
character of the wave operator 2 -02., We study here the
elementary solutions and their singularities which lie on well
defined wave fronts, separating regions of analytically distinct
character that are related to lacunas.

Symmetric hyperbolic systems of first order equations are
related by elimination processes to hyperbolic higher order
equations and we shall examine the Riemann matrix for such a
system with constant coefficients. The Riemann matrix or
elementary solution also shares the wave front geometry and the
analytic character of the elementary solution of the higher
order equation. We also study in this chapter hyperbolic systems
of second order equations and anisotropic waves of which aniso-
tropic elastic waves are a prominent example. Then we take up
the properties of certain 'regular' equations and systems which
are not hyperbolic and may therefore exhibit such 'parabolic'
characteristics as wave propagation with infinite speed. We
postpone to the next chapter consideration of mixed initial
boundary value problems in which the spatial domain is bounded
by a hyperplane boundary, so that boundary conditions and
reflection phenomena arise.
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1.2 Elementary properties and solutions

For equations with constant coefficients, we make repeated
use of the Fourier transform in R% :
Ff(g) = £(g) = L J elx'E f(x)dx
n

(2n)§ R

and its inverse

le(x) = £(x) = —2 f e £(¢)az,
n

a
2 R

(2m)

where x = (X4 ,... ,%) € %, €= (E1 5 eve 5Ep) € R™ .

Fourier transforms of distributions may be defined by considering
the space S: of all ¢ e C”(RR) such that sup |xPD%¢(x)| <= ,
where o = (a1 ,... 50, , B = (Bg ,... ,8p) are multi indices
(Hormander, Gelfand and Shilov , vol. 1). The set S' of
temperate distributions may be defined as the dual of S , 1i.e.
the set of continuous linear forms on S . Then the Fourier
transform for ueS' is defined as 4(¢) = u($) for all ¢ eS.
The Fourier transform maps S onto S and S' onto S' , iso-

morphically, and is continuous in the weak topology on S . By
Parseval's theorem, if u e L2(RP) , then u e L“(R®) and
lull, = f1al, -

Note also that if u € E' then its Fourier transform is the
function u(g) = ux(e_lx'g) , which defines an entire analytic
function of & called the Fourier -Laplace transform. By the
Paley -Wiener theorem (H8rmander 1, p. 21) it follows that an
entire analytic function wu(g) is the Fourier Laplace transform
of a distribution with support in the sphere Ix} <A if and
only if there are constants C ,N such that |u(z)]
< ¢(1 +]£|)NeA Im %] | We shall employ this theorem to estimate
the domain of dependence, or the support, of the distributions
representing waves propagated with finite velocity.

As the Fourier transform of the Dirac distribution is a
constant, the Fourier transform of -i gy is €u(£) , and the
gou;ier transform of a convolution uq *up, is the product
uq Uy, 1t follows that the smoothness of a function u is re-
flected in the polynomial smallness of u at infinity, and vice
versa. We shall frequently use Fourier transforms of polynomials
which thus represent distributions of finite order.

Example 1. The elementary solution of the wave equation
u . = Au + én(x)d(t) . Here

G, (E,1) = g%+ 8(t) .

Assuming u = 0 for t < 0, we find after one integration over
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t that
u(¢ ,0) =0 , ut(a ,04) = 1.

Hence we require for +t > 0 +this solution of the ordinary
differential equation wugy + Ezu = 0 , namely

ite v - stplle

Consequently,
alx 1) = —L j Jix€ sinlElt o
’ (2m)® / n &
R
ixe i t ~1
- 1 J elXESlnf; Igln dIEIdQ ,
(om)™ ' n 2 n
R
where ag = sinn—QSdeQ
n n-1
n-3
2 2
= _(l -H ) dudQn—l 3

where 0 <6 <7 and hence -1 <y =cos 6 <1 . Here as,

is the solid angle element in n space dimensions, d@, 7 in
n-1 dimensions while w wn_1 denote the total solid angles.
Thus we find, formally,

n >

ulx ) = u [ uClxlleDstatlelo) g™ 2 alel
where ° n-3
(A —_=
M(s) = -+ J e (1 —u2) 2 du .
(em)® 21

As the factor léln_g in the expression above may lead to
divergence of the integral, in the classical though not in the
distribution sense, we consider the following device which
applies for n odd. We write

n-1

—_— n-2 o)
u(x ,t) = wn_l(_l) 2 Eﬁﬂ JO M(|x||g|)eos(|E]t)ale]

and observe that the inner integral can be written in the form of
a Fourier integral

L] ulxllenet e ale] = gk [ ue)et®®/ I g

00
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From Sh? 7n1t10n of M(s) it is clear that (2ﬂ)n/2 M(s) and
n-

(1 -p%) H(1- u?) are a pair of Fourier transforms, so
that the above Fourler integral equals
n-3
2
1 1 t2 t2
o 1 - 5 l——z.
(2m)” 2|x| | x| r

Thus the elementary solution u now takes the form

“n_1 ngl 5152 1 42 ? 12
u(x ,t) = —=(-1) P—J 1- Hi1 - .
(Zﬂ)n Bt 21x |X12 |x|2

Since the polynomial in t ©being differentiated has degree
n-3 , the coefficient or term that accompanies H in the
Leibnitz expansion will be zero. Since H' =6, the support of
this distribution lies on the light cone t = Ix[ .

Thus if we consider the initial value problem with data
u(x ,0) =0, ut(x 0) = ¢(x) , the solution can be shown to be
(Courant 1, vol. II, p. 686), (Shilov 1, pp. 154, 288)

u(x ,t) =

n-2 (t 2
1 El 2 2
(n-2)1 _ n-2 J -r7) ra(x,r)dr,

where the mean value

Q(x ,r) = w—l—J $(x +or)ae la| =
n ‘Q

It can be shown that the same formula gives the solution for n
even either by direct calculation or by the method of descent
from n dimensions to n-1 dimensions.

For comparison we include here the elementary solution of
the heat flow equation in n dimensions, and that of the Stokes
equation describing viscous flow.

Example 2. Let u{x,t) =0 for t <0, and

ou

= - A u= 8(x)8(t) .

Then

(g ,t) satisfies the ordinary differential equation
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%‘5+ 1612u= G(tzl , alg,t) =0, t<oO.
(2r)?
Thus
) -le|%
u(g ,t) = o
(2n)?
so that
. 2
u(X ,t) = 1 J e—lX’E—iEl t dE
(2m)® / n
R
2
_ 1 -|x| 7 /bt
= . e H(t) .

Example 3. The Stokes equation, which we shall consider for
one space dimension only, combines the properties of wave propa-
gation and diffusion and it occurs in many branches of fluid
mechanies and vibration theory (Lagerstrom et al 1), (Ewing et al
1, p. 272). The eguation is

U S U tu ot §(x)s(t) .

It is more convenient to find this elementary solution by using
the Laplace transform

Al Ly) = f Tyt L x)dx .

Thus we obtain for u(t ,y) the ordinary differential equation
~ D~ 2~
= + +
U, =Syutyu §(t)

which has solution
ALt ALt
u(t ,y) = Ae 1 orpe ? .

Here A1A2 are the roots of the characteristic equation

2 2
AT -y A - y2 =0,

Ly - "+

1 2

Ly + 4%+ 4]

2 2

43

[e)

>
[}

>
i}
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The initial conditions wu(0 ,y) = O and u (0,y) =1
suffice to determine A and B so that

ALt >\2t

1
~ e e
u(t ,y) = —S——5—
>\1 X?

2 ( %y/yg +Ut -éyVyQ +ht)

A

t
e -e

2
y¢y2 +4

= e

The inversion integral is

1 ctio
u(t ,x) = Py J u(t ,y)e™ dy
c-im®

and we note that the expression for u(t ,y) is unchanged by a
permutation of the square root Vy2+L so that this contour of
integration can be deformed past the branch points at +2i with-
out a contribution arising there. However a two sheeted Riemann
surface for the square root function is necessary to evaluate the
integral asymptotically. We shall use the method of steepest
descents (Erdelyi,) for which we must examine each of the two
exponential terms separately.

We set a = -.}é- and observe that the first exponent is then

g (Mt = oy +1,(y)t) .

The zerog of gq(y) are found from the cubic equation

y3 + 0y + by + 2(a-3) = 0 and thus a real root exists. For

t positive, the second exponential term does not contribute to

the leading asymptotic order of magnitude, and so is omitted. A

detailed calculation may be found in (Duff and Ross, 1) and we

quote here only some results for o = %S ~0, o~ and o ~1.
For o ~ 0 we find

~ =2 Y2
u(t ,x) ¥ —1L exp(-t +3.27 %t ¥x ")
2v31t
For o ~ o« ,
X2
u(t ,x) = exp[t - -—-)
2v3mt bt

and for a ~1 , that is x ~t , we find
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1
21t

u(t ,x) = exp -0.579t(;c’5-1)2 .

We may observe that along the line x=t%t , or a=1,
the decrease of this elementary solution is algebraic only, not
exponential, just like the behaviour of the heat flow solution
for x =0 . The lines x = *t are called subcharacteristics
for the Stokes equation; they are determined by the linear terms
in the expansions of Al(y) and A,(y) for y small. Along
each subcharacteristic x = *t travels a slowly diffusing wave
so Stokes equation displays the properties of both hyperbolic and
parabolic types.

1.3 Finite propagation speed

Because the property of wave propagation with finite speed
is fundamental for hyperbolic equations, we include here the
uniqueness proof of this property. Let

and let S ¢(x,t) = 0O denote an initial surface which is
spacelike:

n
og - (V) =of - ] (o

Suppose that u and u, vanish on 8 (zero Cauchy data)
and let P be a point such that the retrograde
characteristic cone with vertex P meets the interior of S
and is cut off by 8 from the "past". Then we assert that
u(P) = 0 . (Figure 1).

For the proof we require the identity

( 3 (w,u, ) ) (w, Y + (u)
ou,L{u) = -2 u,u + u + |u
t 521 t Xj < 5=1 Xj t ty

which we integrate over region R Dbounded by the retrograde
cone and S . Since the expression on the right is a divergence,
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P(x,t)

Fig. 1. Domain of dependence of P(x,t).

At

Fig. 2, Intersection of a sharp or diffuse wave front
with a world line.
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we can apply Gauss' Theorem, and obtain

n n
= 2 2 -
0 J [uttn + .Z ux.tn 2 .2 utux.xjn}ds
cone J=1 J J=1 J
2
= L § u t - ux ds
t .k X, n t7in ?
cone n J=1 J

where (Xjn ,tn) denotes the unit normal to the cone, with

n
ti = Z x?n which expresses the characteristic or null property
J=1

of the cone. Note also that the vanishing of Cauchy data re-
moves the integral over S from the equation. From the positive
definiteness of the last expression above we conclude that

ux.tn - utxjn =0, J=1l...n. As each of these expressions

is a derivative tangential to the n -dimensional cone, it
follows that all tangential derivatives vanish so that u is
constant on the cone. Finally, therefore, being zero on S, u
must also be zero at P .

The foregoing proof of uniqueness can easily be extended to
second order equations with variable coefficients which can be
interpreted as defining an indefinite Riemannian metric. Again,
the null cone or characteristic cone is defined by the geodesic
lines of this metric which are null (of zero length) in the
metric, and which pass through the given point P (Courant, 1,
p. 56k4).

The domain of dependence of wu on the Cauchy data is now
clearly defined by the retrograde cone with vertex P . Any
change of data on S , which does not affect values within or
on the cone, does not change wu(P), so we note that the domain
of dependence of P is defined by the surface and interior of
the cone. For odd space dimensions, the actual domain of
dependence is the surface of the cone only, while for even space
dimensions the interior of the cone, and not the surface, is the
actual domain.

Another description of this difference in behaviour of the
wave equation in even and odd dimension is as follows. In the
odd dimensional case, a short signal emitted is received as an
equally short signal. Thus we speak of sharp wave propagation,
and sharp wave fronts which change instantaneously at a given
point of space signalling the arrival of an abrupt signal. The
elementary solution in these cases contains Dirac distributions
or their derivatives. We say that in odd space dimensions the
wave equation satisfies Huyghens' Principle (Courant, 1, p. 208)
of sharp wave propagation. (Figure 2 ). We also speak of the
interior of the wave cone as a lacuna, or gap, in this case. In
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contrast, the wave equation in even space dimensions has an
elementary solution with support the interior of the wave cone.
Thus the arrival or onset of a signal is sharp, but its ending
trails on forever at a given point of space, even if the emitted
signal terminates. We say that this wave propagation is diffuse.

For the initial value problem there is an extended form of
Huyghens' Principle, due to Lax (Courant, 1, p. T35) which
describes the singularities of the solution. Since the
elementary solution is singular only on the wave cone, it follows
that singularities (lack of smoothness) of the data are
propagated only along wave cones.

1.&» Mixed initial and boundary value problems

The existence proof for solutions of Cauchy's problem for a
second order hyperbolic differential equation in n variables
was given by Sobelev and by Kryzanski and Schauder in 1936. The
latter authors also were able to prove existence for the mixed
problem in which one boundary condition is specified as well as
two initial conditions. We shall discuss their method and
particularly the L? estimates used.

We begin with the problem in a cylinder, D =R x [0,T] ,
where R < R®. Let S be the boundary surface S = 3R , and
let £ =8x [0,T], while Ry and Ry denote initial and
final positions of the space region R .  (Figure 3 ). Consider
the hyperbolic equation

L(u) = u,, - Au + b*Vu + cu

it f in D=R x [0,T] (1.k4.1)

We impose Cauchy data

ul(x) . x € R (1.k.2)

and a boundary condition of the Dirichlet type

u(x ,t) = uo(x) , ut(x ,t)

u(x ,t) = glx ,t) , (x,t)esx[0,T] (1.4.3)

or of the Neumann type or more general Robin type

%1-1-+hu= glx ,t) , (1.4.4)
n

where g ,h are given functions on S x[0 ,T] . We assume for
the moment sufficient smoothness of R, f , g , h. By sub-

tracting if necessary a suitable function from w , we can
assume that the boundary conditions are homogeneous — that is
that g(x ,t) =0 on 8x[0,T]. (This may involve some minor
adjustment of smoothness conditions at a later stage).

Multiply (1.4.1) by wu; and integrate over the domain
D=Rx[0,T]. We find
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Fig. 3. Mixed problem on a space~-time cylinder.

o}

Fig. 4. Mixed problem in a half-space x>o.

D=Rx [0,T]

S

G.F.D. DUFF
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”D ut{utt - Au + beVu + cu - f}axdt

Il

(u% + (Vu)z) + beVou, + cuu - fut}dxdt

&l

Ju
- ” u, o= dsdt (1.4.5)
sx[0,T]
= % E(T) - % E(0) + UD(b.vu + cu - f)ut dxdt
ou
- JJ ut'sg dsdt ,
sx[0,T]

E(t) = f {ui + (vw)?} ax ,
R
t

and Vu denotes the n -dimensional gradient vector with
components Uy .
i

From the homogeneous boundary conditions we see that for the
Dirichlet condition ug vanishes since u = 0 for all t, on
S . For the Neumann condition we require a further transforma-
tion of the dependent variable. Let n denote a space co-
ordinate normal to S, and let h be defined in a neighbour-

hood of S as a function of xe¢ S and n. Then set
gv='uexp(— fhdn) and observe that v satisfies the condition
3= 0 on 8. ©Since the above transformation leads to a

different equation for v of the same type, we can assume this
done beforehand. Then reverting to u as variable, we have

%%.= 0 on Sx[0,T]. In both of these cases, the surface
integral will vanish.

We now estimate E(t) for 0 <t < T in terms of the data
and the integral

H(t) = J u? ax. (1.4.6)
Ry

We note that for t=0 we have H(0) = J u§ dx which is given,
while

aH(t)
at

n

2 [R uut dx
t

2 H(t)l/zE(t)l/z .

A

Thus
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1

4 e ks
3 H(t)? < E(t)

whence on integration with respect to t

1
b5 e

H(t)? < H(0)

b
1

+ J E(t)? at .
Applying Schwarz inequality to the integral term we easily find

H(t) < 2H(0) + 2t E(t). (1.4.7)

All terms in the integral over D on the right of the main
estimate can now be majorized by integrals of E(t) or H(t) ,
with coefficients depending on the data. Thus

T
JJ beVueu, dxdt < max b J at { u, *Vu dx
D t R

0 t
T 1

< max b f 3 E(t)dt
0

while

T,
JJ cuu, dxdt < max c J H(t)E2(t)dt
D t 0

< max c J: H(t)dt]l/z UOT E(t)dt]l/z

max c f:(zH(o) + TE(t))dt]l/2 UOT E(t)dt}

’

IA

)
Max c¢!{2T H(O) + (2T +1) J
0

T

A

E(t)dt]

and

A

ESAL
E(t)?|£].. at
0 D

UT E(t)dt]l/z UTH fH; at }1/2 .
where ° °

I2)2 = j 2 ax.
D D

JJ u, f dxdt
D t

IA

Supposing then that b , ¢ are bounded, we obtain an esti-
mate for E(t) of the form
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E(T) < E(0) + clﬂ(o) +C, J E(t)dt
. 0 (1.1.8)
=C, *C, f E(t)at .
0

This inequality of Gronwall type is easily "integrated" to yield
C,T
B(T) <cle” .
T
[Set Y(T) = J E(t)dt , and employ a comparison theorem for the
0
first order differential inequality satisfied by Y .)

Thus E(T) is bounded by a number depending only on T ,
the data and coefficients of the equation.

To complete the uniqueness theorem is now very easy, for this
estimate applied to the difference of two solutions gives
E(T) = 0, whence u =0 .

To complete the existence theorem several methods are avail-
able but we shall describe the original method using analytic
approximation (Kryzanski -Schauder, 1, Courant, 1, vol. IT,

p. 670). Given data, coefficients and domain of k degrees of
differentiability, we first construct a sequence of analytic
problems that approximate the given one uniformly for 0 <t < T,
in the sense of the uniform norm for all derivatives up to and
including k . Analytic solutions exist (except that a "corner
condition" must hold, see below) and these are defined in a uni-
form t -interval. The foregoing estimates are now applied to
the solution and its derivatives up to and including order k ,
and they show uniform convergence in the H norm and E norm
to a 1limit; that is, convergence in the space W% . By the
Sobolev lemma, all derivatives of order less than k - %- will
converge uniformly, and it will follow that a solution with
derivatives of orders less than k - %- exists in a certain time
interval O <t < T; . Repeating the entire procedure, we can
extend the time interval for which the solution is defined as
long as the smoothness hypotheses continue valid. The solution
remains in the Hilbert space W%(D) .  These results can also be
established for equations with variable coefficients aik(x ,t)
of Bzu/axiax

Consider now more general linear boundary conditions. For
simplicity we now work locally, with initial hyperplane +t = O
and boundary hyperplane x = 0 . (Figure 4). Let y; denote
coordinates of a space variable in the boundary, i=1,... ,n-1,
and set y; =y . Then the most general linear boundary condition
of first order is

2

= + + + =
Bu pU, quX ruy wu=g.
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By solving Bu = g as a first order partial differential equa-
tion we can arrange that g = 0 , and by solving

= + + =
Bv DV, Qv + rvy wv 0,

we can formally reduce the boundary condition by setting u=vz .
Then =z satisfies pzy + qzy + rz, =0 , so we shall assume
that the coefficient w = 0 henceforth.
Let the hyperbolic equation considered be the wave equation
n-1
Ilu=uy, ~-u_-u_ - u =f,
tt XX vy j=2 yjyj

and let us choose a first order multiplier
Mu = aut + Bux + Yuy )

noting that o =1, B8 =y =0 in the previous result. After
calculation we obtain an integral identity

ar 2 2 2 2
= —_ + + + )2 v + +
JJ Mu Ludvdt L?[g(ut u uy ; 1y.] Buxut Yuyut}dv
T J d
T n-1
Br 2 2 2 2
+JI[——(u +u-u-2u]-omu
slo 2Vt X v j=1 yj x t
- yu u ]det
Xy
+ see

2

where the terms omitted are a quadratic form over the spacetime
domain in derivatives of u . We see that the new energy
integral E(t) contains the quadratic form

o 2 2 2 Aot

2
E{ + + u + u.y + 122 u i) + Buxut + Yu.yut

and this form is positive definite only if a? > BZ + Y2 s the
condition for the vector (o ,B,Y) defining the multiplier Mu
to be timelike. Thils we now assume.

We observe that the integrated surface terms contain the
quadratic form

Q(0) = -

N foo

2_B 2
t -2 ' ) Xt ¥

n-1
+ g-uz + g' 2 u2 -ouu - Yuxu .
y i=o Y3
As the surface integral terms are evaluated at the lower limit
x = 0, this form must be negative definite (or at least,

bounded above, if an estimate including E(t) is to be found.
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Algebraically, the problem becomes: for what values of p,q.,r
can a spacelike multiplier (a ,B8,Yy) be found, so that Q(0)
is bounded above independently of uw, , u , u. , uy ?

t X i

Clearly this form of the problem does not in general have
solutions — that is, nonempty sets of boundary coefficients
leading to quadratic estimates.

Consider the boundary condition Bu = pup + quy + ru¥ =0
where p # 0 , and without loss of generality p > 0 . n the
quadratic estimates choose

a=p , B8=0 , y=r,

which is compatible with a? > 82 + Y2 provided |r| < p. Then

-Q(0) = 20u_u, + QYUXUy
= EuX(pu,t + ruy)
= -2u_(qu )
= —2qui 20
provided gq < 0 . We conclude that the estimates and existence

theorem will hold if p>0, 9 <0, |r| <p .

However the limitations of this method are evident, and the
mixed problem has therefore had to be approached by other and
more penetrating means. First among these has been consideration
of mixed problems with constant coefficients, wherein the
stability or well posedness can be studied using exponential
solutions.

1.5 Elementary solution in a fixed region

Let R be a fixed region of space, with boundary surface
S , and consider the solution of the wave equation

- a2
u =c Au + F(P ,t)

in Rx [0,T] =D with given initial conditions

u(P ,0) = £(P)

u,(P,0) = g(P)

and a boundary condition on S x [0 ,T] of one of the three
classical forms:
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a) Dirichlet: u(P,t) h(P ,t) , Pes

b) Neumann: un(P ,t) = n(P,t) , Pes

e¢) Robin: w o+ 2(P)u=n(P,t), Pes,
where &(P) > 0 .

These problems can be treated by analogy with the theory of
domain functionals for elliptic or parabolic equations, with the
one difference that the Green's functions now obtained are dis-
tributions and the convergence of their eigenfunction expansions
is in the distribution sense.

For simplicity consider the Dirichlet boundary condition and
let all data but uy (P ,0) = g(P) be zero. Then we make use of
the eigenfunctions wu,(P) and eigenvalues X, = k, ~of the
domain R :

Aw +kw =03 u(P)=0 on S.
n nn n
) Here we assume the existence of a complete orthonormal set
of eigenfunctions and we expand the solution wu(P) in a Fourier
series:

£
=
0

) cn(t)un(P) .

[e]
I
E I
£,
e
=

=S
e
g
fol}
=

B

Now

- _czki [Ru(P)un(P)va

= ~c%?c (%) .
nn

Here we have noted wu, =u=0 on S, the eigenvalue equation
for u,. and the definition of cn(t) . Also initial conditions

n
for ¢, (t) follow if we note that c¢.(0) = 0 and

o ol
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cr'l(o) JRut(P ,0)u (P)av,

ngmun(P)avP

=g, »

where the Fourier coefficient g, is thus defined.
Since

" 2.2 B
cn(t) +c kncn(t) =0

we now have

sin(k ct)

e (t) = g ———
n n k ¢
n

The solution function is
u(P ,t) = nzl cn(t)uh(P)
o sin(knct)
- 1| stan @argne) —2—

- J k(P ,q , £)e(Q)av, ,
R

where
o sin knct
K(P,a,t) = ] w(Plu(Q) ——
. n=1 n

is the Green's function or elementary solution of the wave
equation for this region and boundary condition.

A study of its derivation shows that the series for K con-
verges in the distribution sense. Because of conceptual diffi-
culties with this type of convergence, Green's function treat-
ments of the wave equation were seldom used for general domains.
However there is no lack of clarity or rigor in their use
provided that the limitations of the distribution convergence are
observed. 1In practice it is sufficient to assume that the data
functions are test functions with a finite degree of differen-
tiability.

If the series can be summed then the Green's function be-
comes known, and this has been done for RP when the elementary
solution is found. Outside the wave cone, the Green's function
vanishes, but the multiple reflections within a region must be
taken into account to find the singular set or wave front set.
For a half space this leads to reflection problems to be
considered in Chapters 3 and L below.
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Setting Lu = ;% u - M1, we find that K has the

c? tt
following properties:
LK(P ,Q,t) = 8(t)s(P,Q) ,

where the Dirac distribution is given by the dyadic expansion

8(P,Q) = Z u (P)u (Q) .
n=1

Also
lim K(P ,Q ,t) = 0
>0+
lim Kt(P ,Q,t) = 8(P,Q)
>0+
while

K(P,Q,t) =0 for PeS.

A general representation formula for the solution of the
nonhomogeneous problem can be found by applying Green's formula
to the product region D =R x [0 ,T] , and letting the
functions within be w(Q ,T) and X(P,Q ,T+e-1). To prove
such a result strictly it is necessary to remove the singularities
of K , say by convolving K with a smooth test function having
support in a neighbourhood, which is then made to approximate to
the Dirac distribution. Details are left to the reader. We have,
with € > O

” (@ , T)LK(P LG, T4 —1) - Tn(@ , T)K(P ,Q , T +< -1) Javan
D

il

—1—f (e, K (P ,Q ,¢) - u(a,T)K(P ,q,e)lav
2 R t t

f w(@ 0K, (P, ,T+e) - u (@, 0)K(P,Q , T +elay

L

2

c

J J{  K(P ,Q ,T+e -1)
Q,1)

3nQ
- M%—rf—T—)K(P ,Q ,T+e—T)}dS .

Let €+ 0 and also replace u(Q,0) , u(Q ,0) by Cauchy data,
similarly for other data. In the integral over D the first
term vanishes as T+e-1>0. 1In the first integral on the
right we use K - § as € > 0 while the second term vanishes
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in the 1imit. In the surface integral the first term brings in
Dirichlet data while the second vanishes as K satisfies the
homogeneous Dirichlet condition.

The result can be written

u(P ,t) = -c2 f K(P,Q,t-1)F(Q,t)av, dr
D Q

Q

+LMPA,HQMW -Lg@,Qﬁﬁmm%

t 5K
+c2fdrf 53— (P,a,t-1)n(Q,1)ds, .
o Jg Mg Q

Similar representation formulas can be derived for the solutions
of the Neumann or Robin boundary conditions, using the eigen-
functions and eigenvalues for the corresponding Sturm -Lionville
problem to define the appropriate wave kernel K . However this
method will clearly not work for boundary conditions involving
time derivatives and these must be discussed as mixed initial
boundary value problems.

CHAPTER 2. HYPERBOLIC EQUATIONS OF HIGHER ORDER AND SYSTEMS

2.1 Hyperbolic equations of higher order. The slowness and wave
surfaces

Just as the wave equation has a real characteristic cone
12 = g2 with two real roots t = |£| , T = -]g| for all real
£ , so a hyperbolic equation of higher order is defined by this
same property. Let P(&) be a homogeneous polynomial of degree
moin &= (& ,.ev 5E&  5En4) = T) , let Dy = 'i3/3xk’ and let

o = (o) ,..0 ,0547) Dbe a multi-index with [a| = ap+ece +a ;.
Then P 1is called hyperbolic with respect to T = €ney IT

P(g + TN) = O N=(0,0,...,0,1)
has only real roots T for real £ . Thus the normal cone of P,

with equation P(£) = 0, has m real sheets. (Figure 5).
(There is a definition of hyperbolicity for a nonhomogeneous poly-
nomial (H&rmander, 1, p. 130), but we shall confine attention to
the homogeneous case.

The characteristic surfaces of P are those surfaces across
which a solution can have a singularity, in particular a jump of
a derivative. If a plane wave

u = f({:;lxl Foeer HE X +t1)



50 G.F.D. DUFF

has a singularity (or is a solution in an open set) then, since
uXk =g f' , u, = 1f' , and so on, we have P(E] 5eve 5Ey 57) =0
assuming only that f(m) # 0 . When f has a singularity, it
will lie on a characteristic plane &;x; +++° +gx + t1
= const. In the x; ¢**x, space R , this singularity appears
as a progressing plane wave front, and we may set 1T = 1 without
loss of generality. Thus x*£ = -t + const. and the velocity of
propagation in R® is IE]“I , Wwhile the direction of the
normal to the plane wave front i1s the direction of
€= (El LR 9€n) .

Thus the set of possible normals is given by
P(Ey 5.es &y ,1) = P(E,1) =0, while the velocity of propa-

gation is inversely proportional to Ig[ . The surface

S : P(g,1) = 0 is called the normal surface, or sometimes the
slowness surface, of P . (Courant, 1, vol. 2, Ch. 6). The
normal surface S is the point set of plane wave slowness
vectors in the dual space of & . For the wave equation S is

the sphere Ig[z =1,

Polynomial P 1is called striectly hyperbolic if all roots 1
of P(f,T) = 0 are real and distinct. Thus P; = (12 -£%2-£2)
(12 -ME% -hE%) is strictly hyperbolic with normal surface two
concentric circles, but P, = (12 -h&% —E%)(Tz —E% -hg%) is not
strictly hyperbolic because it has double roots at the inter-
sections of the ellipses. The normal surface of P, consists of
two ellipses with orthogonal major axes and four points of inter-
section giving rise to double rocts of Py(g ,T) = 0 .

A characteristic surface ¢(x ,t) = const. of P(& , 1)
satisfies the first order partial differential equation
P(V$ ,¢,) = 0 . As is known from the theory of first order
equations, the most general characteristic surface is an envelope
of plane characteristics. The envelope of all characteristics
through the origin is the characteristic cone C =
[(x,t)|x€+t =0, P(¢ ,1) = 0} . To every sheet of S corres-
ponds a sheet of C which thus also contains m real sheets.

To each point of S corresponds a tangent to C .

Again, it is convenient to take 1t = const. and define the
wave surface W(t) as the intersection of C with the plane
t = const. Thus W(t) is the t -fold magnified image of
W= w(1) ; if a point source disturbance occurs at the origin at
the instant t =0 , such as Sn(x)é(t) , then W(t) is the
wave front locus of the propagating disturbance.

To each point of S corresponds a tangent hyperplane of
W , which is the polar of the given point as pole, the reference
conic of the polarity being the unit sphere. It follows that W
is obtained geometrically from C by duality and is the polar
reciprocal of C with respect to the unit sphere. This
relationship is involutory and C 1is obtained from W by polar
inversion as well.

The degree of the algebraic surface W 1is however
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Fig. 5. Normal cone

Strictly hyperbolic,

& &

Non-strictly hyperbolic.

Fig. 6. Normal and Wave Surfaces of Fourth Order.

51
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considerably higher in general than the degree of S ; it is
rather the class number of S , the greatest number of tangent
planes to S passing through a given n-l-plane. The degree of
W is at most m(m-1)2"1 , and will be less if S has certain
point singularities that may appear in the non-strictly hyper-
bolic case.

If P is strictly hyperbolic, S consists of m con-
centrically enclosed sheets, of which the outermost will extend
to infinity for m odd. The wave surface W reverses the order
of containment and is bounded for hyperbolic P . As the degree
of P is m , any straight line can meet the innermost sheet of
S at most twice, the next at most four times, and so on. Thus
the innermost sheet of S 1is convex while dually the outermost
or leading sheet of W must also be convex having at most two
parallel tangent hyperplanes. The next sheet of W can have at
most four hyperplane tangents parallel, which allows simple cusp
singularities, and the successive interior sheets of W can have
more complicated point singularities. Thus the wave surface of
Py in the above example consists of two concentric circles. But
the intersecting ellipses of the normal surface Po give rise to
a wave surface of two intersecting dual ellipses together with
ruled surface components forming the convex hull of the set of
ellipses. Figure 6. A suitable perturbation such as FE(E,T) +

P
e~J%(E,T) can separate the double points leaving a convex inner

sheet and class 4 outer sheet for the perturbed normal surface.
The perturbed wave surface then has a simple convex outer sheet
and an inner sheet with four large cusp formations each con-
taining two cusp points.

To summarize, the relationship between S and W can be
stated in several different ways. ZEach is the polar reciprocal
with respect to the unit circle, of the other. The point
equation of S is the tangential equation of W , and vice versa.
Given S , we can construct W as follows: let T be a tangent
plane to S at P , and @ the foot of the normal from the
origin to 7m . Then let R be the point inverse to Q with
respect to the unit sphere; R lies on W . Reciprocally, the
same construction yields P on S5 given R on W . We see
also that the position vector on S 1is a normal at the cor-
responding point of W , and vice versa. To a point of inflection
on S corresponds a cusp on W , to a double point on S a
double ruled surface or planar sheet on W .

Further discussion of the algebraic geometry of reciprocal
surfaces may be found in Courant (1), Duff (3), and in Musgrave
(1-3).
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2.2 Elementary solutions and estimates.

Consider now the construction of an elementary solution of
the equation

P(D_,D, )u = § (x)8(¢) ,

that is, a solution with u = 0 for t < 0 . Expressions in-
volving the n+l dimensional Fourier transform have been studied
by Atiyah, Bott and Garding (1,2), and HOrmander (1, p.137), but
we shall follow the n-dimensional Fourier transform method of
Petrowsky ( 1) and Gelfand-Shilov, (vol. 1). Setting

a(g,t) = I eixogu(x,t) ax ,

(o]

we find
P(g,D ) u(g,t)=8(t) , G =0,t<0

and this ordinary differential equation has the Green's function
Duff-Ross ( 1)

. elxk(g)t
im+l z _—

oP
ko1 3y (-2 (8))

1

G(g,t)

1 § e Man
- 2
oni™ ] P(E51)

where the contour indicated encircles all roots A of P(&,A)=0 .
Then the elementary solution is

irt
. _ 1 ix e g e__dr
K(x,t) = G(g,t) = z;;;;:f:; f e ag § P(g,1) °
1R

It will be noted that a sum of terms each referring to one root
Ak(g) are implied on the right side here. Thus it is possible
to transform this expression into an integral over the normal
surface S and thus to obtain the following formulae of
Herglotz ( 1) and Petrowsky ( 1). As we shall give the cor-
responding formulae for first order systems in detail, we omit
the calculation here and quote the results, (see for example
Gelfand-Shilov, vol. 1, p.139). For odd n , we have

(—l )1{2(11—1)

2(2m)* L (m-n-1)1

as
| vP|sgn(g-VP)

K(x,t) = [ (e 246 )70 gon (e £41)

Q
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where VP denotes the gradient with respect to £ of P(&,t)
at a point of S . For even n , we have

1
2(-1)™

(2m)* (m-n-1)1

K(X,'t) = f(x. E+t )m—n—lln Xe E'Ftl ds

x-t | |vP|segn(z-vP)
s

The existence theorems for Cauchy's problem for h%gher order
hyperbolic equations have been proved by Leray (1 ), Garding (3 ),
Hormander (1 ) and others using estimates which generalize the
second order case. The essence of these estimates is an algebraic
proof of positive definiteness of the energy integral that
generalizes E(t) in the second order case. We shall give here
a sketch of this proof, due to Leray (1 ).

A suitable multiplier of order m~1 1is needed for quad-
ratic integral estimates, and Leray observed that the necessary
algebraic property of the multiplier Q is that it should be
strictly hyperbolic and that the sheets of its normal cone should
separate those of P , the strictly hyperbolic operator under
study. Let

m
p(g,0) = § (x-2(8)
k=1
where the Ak(g) are real and distinct for & real. Then let
m-1
alg,n) = § (- (),
k=1

where M < uy < Ay < My <...< w5 < Ay holds for £ ¢ R .
Such operators exist since the polynomial £~ has this property
by Rolle's Theorem, and any hyperbolic polynomial sufficiently
close to it does also. Let

P(Es0) = T (h-2,(8)) k=1,...,m
J#k

and observe that Pp has degree m-1 in A so that the m
independent polynomials Py form a basis for polynomials of
degree m-1 in X . Hence

m

Q(g,A) = (g) P, _(g,12) ,
kzlyk k

where the coefficients Yy are easily evaluated by setting
A= AQ ; as Pk(a’AQ) =0, 2 #%k . Thus
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i

. Q(E,Az) _£¢k(>‘2-uk) .
g P, (E,N) T
L ﬁxk()\l-xk)

by the separation property.
The energy integral will be defined as

T 2
E(t) =f ) ykIPk(DX,Dt)ul ax
k=1

and it will be noted that E(t) contains pseudodifferential

operators specified by the Pk . However, by Parseval's Theorem

m
~r 2
E(t) = I Y v, (8)|P, (g,D,)ulat
k k t
n k=1
R
and we shall work with Fourier transforms u(£,t) in & to
estimate derivatives later.

Since D = -i°%/4¢ , we have

3 o a2
= ) vy (&)|p (g, ) u]
% Lk k'\77t

il

T = = - ~ -
kzl v, (8) i[D,P, (D)4 - P (B)u - P, (D,) &D,P, (B,) 4l

T = ~
kzl v (&) 1[(D-A )P (D)% - P (D) n

"

- Pk(Dt)ﬁ(ﬁ -A )P

t 'k k(ﬁt)a]

m

=1} {P(Dt)fr Ty P (D) 0 = v, B (D) G4 P(D,) ﬁ}
k=1

= i[p(p,) 4 a(B,) & - (p,) @ »(B,) 4]

In these expressions the conjugate operator 5t = ia/at operates

only on i . Integrating over & , we obtain
3 A ~
ot E(t) = -2J1m[P(Dt)u Q(Dt) u] dg
= -2 f Im[P(DX,Dt) u- Q(DX,Dt) uldx
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again using Parseval's theorem. To obtain estimates, we set
P(Dx,Dy)u=f and observe that the right side now contains
derivatives of u up to order m-1 only. Thus, integrating over
t , we have

t
E(t) = E(0) - 2f Im(f Q(D)ul}axdt®
0
t
< 5(0) + 2[ ] 10"l g
0
t
< E(0) + cfllf”2 E(t")at' .

This inequality of Gronwall type can be integrated to yield a
bound for E(t) that depends only on t , the region and
egquation, and the data. We shall not pursue this aspect here,
referring the reader for example to Hormander, Chapter 9.2. For
variable coefficients, further terms will appear on the right
side of these estimates.

However we now wish to show that all derivatives of order up
to m-1 can be estimated in the L2 norm in terms of E(t) . In
view of Parseval's relation, we have

[} 2 22A2
f!DiDtul ax=fja°°x Z1al” a

where [a[ + £ £m-1 . We now consider Eukz as a polynomial
in X and write
- m-1
EA = ) Dik(E)Pk(E,U .
k=1

Here the coefficients Dk(E) can be evaluated by setting
A = (&) , with the result that
o L
g lk(i)

p (E) = FETE:;;TETT .

Since all X (&) are homogeneous of degree 1, pk(i) is homo-
geneous of degree zero in & , and can be estimated by considering
values of & with |£| =1 . Because all Ak(g) are distinet,
it now follows readily that py(&) is bounded. Hence
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A

o 8 12 ~ N
JIDthul ax 2fpk(a)oﬂ(s)Pk(s,Dt)uPQ(a,Dt)uda

k,1

IA

A

2
c J}ZJPK(DX,Dt) ul| dax

KE(t) .

This completes the demonstration of these estimates for higher
order homogeneous hyperbolic differential equations.

A treatment of the existence theorem using a reduction to
a hyperbolic system of first order equations is given by
Mizohata (2 , Chapter 6). We shall next turn to the study of
estimates for first order systems.

Consider next a first order symmetric hyperbolic system of
the form
ou
v s

n

—_— - —= %

3t E Arsax Brsus i
v=1 T

with initial conditions wu,(x,0) = f.(x) in a domain R , and
boundary conditions to be specified below. Here r,s =1,...,m
and x = 1,...,n while AV=(A¥S and B = (Bpg) are mxm
matrices with components suitably smooth functions of x and t,
where x = (xl,...,xn) . The coefficient matrices of the first
derivative terms are assumed symmetric: Apg = A¥, and unless
otherwise specified all coefficients and functions will be
assumed real. (In the complex case, the AY are Hermitean).
Symmetric hyperbolic systems were introduced by Friedrichs (1).

In the above normal form the hyperbolic character of the
system is expressed by the symmetry of the AY and 12 estimates
for the n, can be derived as follows. Let

E(t) = f ururdV
R

where summation over r is understood. Then
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Ju
ae(t) _
at 2{“1«3*0 av
R
n v Ju
=2J'u YA —S 4+ B_u lav
T rsS X rs s
. r=1
R
3 N A
=2 o u_u + |B - z rs av
X rs r s rs 0x
r T T
R
dA
_fA uundS+[B -] == lav .
rs r r rs 3
S R

Here the symmetry property has been utilized to express the
quadratic form as a perfect differential. Also n, denotes the
outward normal to S the bounding surface of R .

Boundary conditions will be specified, to control the surface
integral term. Consider the signature of the matrix

Aen = Z A'n
. v

at a typical point of &S . By symmetry the eigenvalues are real
and we suppose k are positive and m-k negative. Performing
if necessary a rotation in the u, vector space, we may write

I II
A-n uu = A +
( )rs r's rs r st g Uy g
where AT = diag(%l,...,Kk) is positive (or non-negative) and

ALl = diag(Ak+l,...,Am) is negative. The quadratic form as a
whole is therefore bounded above if the boundary conditions are
taken as

u, = g, i = Lyee.sk
3 gJ J s s
with datum functions g. . More generally, however, we may take
linear boundary conditidns
m
u, = S.. u, + g,
J 2=1z<+1 A

provided that substitution in the quadratic form again yields an
expression bounded above. The condition for this is seen to be
that the matrix
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k
= + =
czp [jgl }\jsz,Sjp }\Q,élp 2 ,p=k+1, , I

is negative, say Cyp, << ~ 8I77 , where 6 > 0.
Under these congitions the surface integral is bounded above
by a quantity G(t) dependent on the data, and
aE(t) J 2
aR

as < G(t) + KE(t) ,

dt 6 IT

\Y
where K is an upper bound for the matrix B - z %ﬁ—- over the

region and valid for the time period considered. Supposing also
that G(t) < G, we easily find for E(t) a bound of the form

Gy Kt
oe

E(t) + 6 qu asat < (F(0) +
o TI

This bound, and similar estimates for the derivatives of wu,
with respect to x, and t up to any desired order, can be used
as in §1.L4 to establish an existence theorem for the symmetric
hyperbolic system. Uniqueness of the solution is evident as
E(0) and G can be taken as zero in the event that all data are
zero. A slight modification covers the presence of a non-
homogeneous term on the right side of the differential equation.
We return in §6.3 to consideration of the types of boundary
conditions that lead to well posed initial and boundary value
problems.

2.3 The Riemann matrix of a hyperbolic system

Consider the first order system

du_ o 3
u _ u _
e z v 3% V=1,2,.00 40, (2.2.1)
v=1 v
>
where u = (u; ,... ,uy) is an m component vector, and

A, = (arsv) are m X m constant matrices. We assume that
(2.2.1) is hyperbolic, that is, the characteristic roots of the

n

matrix A(n) = z Avnv are all real. For a hyperbolic system,
v=1

the initial value problem of Cauchy is correctly set (well-posed),

the initial condition being U(x ,0) = g(x) . The solution U

can be expressed as a convolution

Tx ,t) = j R(x-z ,)8(2)dz ,

Rl’l
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where R(x ,t) denotes the Riemann matrix or elementary solu~
tion: thus
n
3R _ SR
2= L A, o for t > 0
v=1 v

and initially,
R(x ,0) = §(x)E ,

where E denotes the m xm unit matrix. A solution

of the nonhomogeneous system

su _ o U, 2

_ _ou

3t Z vax | £lx,t)
v=1 v

can easily be expressed in the convolution form

u(x ,t)

t
Bx ,t) = J J R(-5 ,t-0)2(5 , 1)dTar .
0 n
R
To calculate the Fourier transform of R , we note that
f(g ,4) = —= - J R(x ,t)e* Cax
=Jn
(Qn)2 R
and
OR(Z ,t) . .
98\ ,T) _
= i zArng(g ,t)
with R(E ,0) = (211)—n/2 E. The matrix solution of this matrix

ordinary differential equation is

n n
R(E ,t) ) Avsv}

1 exp[-i
2 v=1

(2m)®

= exp(-ia(g)) .

Mo

(2m)

Hence the inverse Fourier transform leads to the formula

R{x ,t) =

_ f exp(-ilx-€E + A(£)t])ac .
(27) i~

We now study this matrix in its dependence on x and t

support, singularities, and asymptotic behaviour. Duff

its

().
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Let NJ(E) , k=1,...,m be the characteristic roots of
A(g) = 1 Aviv , that is, roots of
v

det(A(g) - AE)) =|A(g) - AE| =

The M(E) are assumed real, and they are of first degree in &,
so that Ap(sg) = sA,(€) . There exists a nonsingular matrix
= tlk(§§ which reduces A(g) +to its Jordan canonical form:
= pg7-1 3 J=T1AT . When A has distinct roots,or is
symmetrlc, then J = diag(kj(i)) . By permanence of matrix
functional relations,

exp(-1A(E)t) = Texp(-ig(g))T™! ,

and supposing J diagonal we see that

1 z
R(x ,t) = o) J|n| ;Edlag fo exp (-i(xn +txk(n))!£|)

|n—l dlE‘T—l d-Qn R

where § = lgln » |nl =1 . Setting s = x°n + ti(n) we con-
sider the inner integral

f exp(-is|e])]e|™ alg]
0

lg

= (-1)™(s -10) " (n-1)!

This is the Fourier transform of a distribution as set forth in
Gelfand-Shilov (1, vol. 1, p. 172). Thus

R(x ,t) =L:—i-f-l-§£r’%—)—!— J T(n)diag(x+n +t2 (n) ~i0)7"r"! ao_
(2'"') ‘T}‘=l
= (n-1)1 j (x-nE +tA(n) —:'LO)_n aq
(2mi)?

[nf=1

Note that for t =0 this form reduces to the distributional
plane wave representation of the & function (Gelfand-Shilov, 1,
vol. 1, p. 77), namely

(n-1)!

§ (x)E =
n (2ni)®

J (xen - iO)—ndQn- E.
In|=1

The formula shows incidentally that R(x ,t) is homogeneous of
degree -n in X and t together. The distributional character
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of R 1is now explicit as the singularities have been gathered
into the integrand. We shall study below the extent to which the
n-1 remaining integrations smooth out this singularity gf order
n.
Example 1. If n =1, then R(x,t) = §(xE + tA) .
Example 2. Let m =1 so the system becomes the scalar
equation

au E a au
Vv 9x
Y

Then R(x ,t) = 8(x, + ta,,) a scalar n -dimensional delta
function. The domain of dependence of the solution is in this
case a single point, x, = -ta, , v=1,...,n.

Example 3. The 1 dimensional wave equation,

u, = v v, = u A= 0 1
t x? 't x ’ 1 0)°

‘Then

_ t] _ 1[8(x+t) +8(x-t) , S(x+t) —6
R(x,t) = 6{: x] = 2[6(x+t) _8(x-t) . 8(x+t)

\____/

Returning to the general system in n space dimensions, we
see that a plane wave

a(x ,t) = Zf(x-g + t71)
will satisfy the system if and only if

Z(qu(g) B TquJaq =0

That is, T must be a characteristic root X (&)
det{a(g) - 1E) = 0 ,

and 5 must be an associated eigenvector. The normal cone is
the above determinant locus, while again the normal surface S

is defined as the intersection of the normal cone with the hyper-
plane T = -1 . The jth sheet of the wave cone is found from the
envelope relations

3 oA, J=1,... ,m
TR TR, O
r r r=1,...,n.

Setting t =1 we see that W is found by eliminating
&l senre »&n from the n relations with J fixed.

We now show that the domain of dependence is contained in
the convex closure of the wave surface W(t) . The energy
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integral is

E(t) = jR(t)upup av,

where R(t) is a suitable time varying space domain. Let o
denote the inward velocity of the boundary of R normal to it-
self. Then

du

hea e
_— =2 u av - uu ods
at R(t) p dt 9R

ou

QJ u_ )A vg}—{ﬂdv-J uu_ods
R(t) Py PV X R

J 5—}%—-( vuu)dv-j uu ods
R(t) v rav p q VBR PP

J (z A n - aé )u u ds.
SR vy PQV VPO PQ

n

i}

Here we have uéed the symmetry property pqv = A to form the
qbv

derivative of the quadratic expression in Up , Ug - To make

this last expression non-positive we must choose o at least as

large as the largest eigenvalue of A(n) =) Avnv . But this
4 \

condition is exactly fulfilled if we choose R(t) to be the con-
vex closure of the wave surface W(t1 -t) , wheVe t. is a
given positive number. (Figure 7 ). If now u.(x 03 =0 in
W(tl) then E(t) =0 for 0 <t t, and it ollows that

(0, t -0) is zero. If wu.(x,t) is continuous at (0 ,t)
tgen up(O ,tl) will also be zero, and this completes the
proof.

Conversely, we see that the support of the Riemann matrix

R(x ,t) is the convex closure of W(t) .

2.4 The order of the singularities

Returning to the representation formula for R(x ,t) , we
note that the integrand is singular when one of the phases
ss = x°m + tAj(n) vanishes. Since the wave surface W(t) is
the envelope of these loci, the principle of stationary phase
suggests that any singularities of R(x ,t) will lie on W(t)
The singular parts of these integrals can be regarded as the sum
of all singular contributions from the characteristic planes
through the point. The density of these, weighted by solid angle
in the n space, is itself singular precisely on the envelope
W(t) , and the order of singularity of this density determines
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the order of the singularity of R(x ,%t) on W(t) .
Denote the Riemann ~Liouville fractional integral of order
o by

1 [* -1 1 [® a1
Iz f(x) = RO L(x—t)a £(t)dt = (o) Jo W f(x-u) du .

where the upper limit b on the right may be replaced by x-a

if necessary. Denote the Weyl fractional integral of order o

by
a

1 ' o-1
J (t=x)""" £(t) at m—)J '™ £(xu) du
X 0

These fractional integrals satisfy

d o+l _ -a
-&Ii f(x) = I, £(x)

and the composition law

o+R
8 1

1 1fr(x) = 1 x)

holds. We note also that

. s
IE £(x) = & J Ce(x ¥ Kub}du .
+ a

T&ﬂ 0

where K > 0 .
We require the following stationary phase lemma proofs of
which can be found in Duff (L) or Ludwig (2).

Lemma. Let

I

f f(s)g(n)an; ++-an . ,

where f 1is a distribution singular at the origin and

S =35+ tP(n) =s + th(ﬂ) + oo

is a power series in UPERAR I | with nonsingular quadratic
leading term having n, positive and n_ negative coefficients in
principal axis form. Then I has an asymptotic expansion in s
with leading term
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n-1
. 2 -(n-1)/2 n/2 n/2

(o)I I f(s)
R P ) B °

+

which proceeds in steps of a half order integration in successive
terms.

We now calculate the singularity of R(x ,t) at a point of
the sheet of the wave surface dual to a given root, say Ar(n) .

Choose a fixed time t , and a point x close to W, . Let x
be the foot of the perpendicular from x to Wy , and n, the
corresponding value of n . Then the tangent plane to Wy at
X has the equation xXen, + tkk(n ) = 0. Since also N, is
normal to Wy at Xq » We have s = (x -xo)'no where s 1is
the distance |x-—x0| of x from Wy .

Now write

S, = xon + th(n)

k

s + x(n-ng) + xg*°ng + tkk(n)

s + x*(n-ng) + t(kk(n) - Xk(no))-

Let n, = (0,0,0,... ,0,1) and expand Ag(n) in powers of
Ny seee 5Np] - We find

3 LK
k t k
S, =s+) [x. +t ]n +2 ) —=—n.n, .
k s on. . 2 % 9n_.on . A
;U oy 4 3k M3y J
A
Using the envelope relations XOj +'tan =0, and
0j
xJ = XOj + snoj , we find
n-1 32
t k
S, =s+sn(n=-n))+% ) =———n.n
k 0 0 2. an .o L
3a=1 "My Non d
n-1 32x
= cos 6 -[s + L 2 5 ak n.n, + ool
3,2=1 “Mo3°"og J

where the terms omitted are of third or higher order in
and where cos 6 = n-n, .

We shall apply the lemma for stationary phase to the
diagonalized form of the Riemann matrix, and therefore it is con-
venient to express the components of the diagonalizing matrix T
in a particular algebraic form. The columns of T are eigen-
vectors %k that satisfy

nj b
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> >

A(n)t = At
for A = Ay . Thus the components ti(A ,N) can be computed as
polynomial functions of A and n . We shall also normalige

the t3(A ,n) to unit length which involves a division by a
square root of a polynomial. Then the normalized ti(A ,N)
i=1l,...,n are homogeneous functions of A and n of degree
zero.

The transforming matrix T = ( Ak . ) is orthogonal {or
unitary) so that T-! = T' (or T' f. For any matrix function
f(A) , we have an expression for the (i ,k) component as
follows:

£(a)s = (7£(3)T7H) .

(Tg(3)T")

ik
(T diagf(xj)T')ik

]
1
Lot
.
>/

-
=
=z
Hy
—
>
—
cti
'~
>
-
=
=

Therefore the components of the Riemann matrix are

Rik(x ,t) =

(n-1)! o ti()‘j ’n)%k()\j »n)
(2 .)n Zl ( en +tA ( ) 0)1’1 dQn :
mL lﬂ|=l J=1 (x*n 1 n) -1

Taking the term singular on the jth sheet W , Wwe have to

consider
A, ,m)t
(1)1 £, 00 >0 )
——— dQn ’
(2ri)? In|=1 (Sj -10)"
where
t
= = 4+ oo
Sj cos e(s TS Cp NNy ]

Noting that cos 6 = nen is equal to unity when n =n

0 2
we find the leading singular term to be

(5-1)1 £, (0, 5t O ) In+/2 In_/2 (o i0)7T .
3n-1 n+l  n-1 P - -
5 2 2 nt o k4

Here the det(ckl) can be shown to be the Gaussian curvature of



HYPERBOLIC DIFFERENTIAL EQUATIONS AND WAVES 67

S at the value of n involved. If the surface S 1is strictly
convex then either n, or n_ equals zero and in certain cases
where the delta function portion of (s -i0)~® appears,the
support of the singular term will be a point, or will lie entirely
on one side of the wave sheet W .

In certain directions n tﬂe Gaussian curvature of S may
vanish; such an inflection on S corresponds to a cusp on W
and a generalized form of the stationary phase lemma is needed.
Duff (4):

If

o
S=s+tlen ,
o

where the leading terms in the series are of degree ns; in ns ,
. . : J J
then the integral I has the asymptotic expansion

—n+dl+d2 a, d

cot I_I1,%(s -i0)™®

2

where

-7 1 =V L
4 = L n. L= ) n, >
+ 73 - J

the sums denoting terms with positive or negative values in the
series expansion. The expansion proceeds in steps of l/nj
integrations in each wvariable.

In certain cases the numbers ns; must be defined with
reference to a Newton diagram for the power series. Also note
that an odd order term such as n° gives rise to both positive
and negative values and hence a term in I,® and another in I%.
An integral of a distribution (x-i0)™ is to be understood
as being regularized in the sense of Gelfand -Shilov (1, vol. 1,
p. 2L), which means that certain terms are introduced to avoid
divergence of the integrals over test functions giving the values
of the integrated distribution.

Example

A

© 30 1 1
J £(s + tnd)an = 3—5-1_3 £(s) + 173

N f(s) | .

-00

The vanishing of one principal curvature on S, increasing
the first term from order 2 to order 3, increases the order of
the spatial cusp singularity by g - Also the power of decay
with time t 1is reduced by = so that at large distances the
wave front remains more concentrated along the corresponding
rays.

Consider two sheets of S that approach each other by a de-
formation leading to a double point. While still separate, there
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will be on one sheet an inflection locus giving rise to a cusp
locus as above. Within the inflection locus a large curvature on
S develops leading to a widely extended near flat wave front
bounded by the cusp locus and having correspondingly weak ampli-
tude. In the limit a double point of S forms, and the plane or
ruled surface wave front drops to a weaker singularity. Ludwig
and Granoff (1) have derived a system of propagation equations
for this wave front, and estimate its singularity as % unit
smoother for each dimension of planarity.

We conclude this section by giving a further formula for
‘R(x ,t) expressed as an integral over the normal surface S .
The equation of the kth sheet of S can be written as
M (€) = [g]A(n) = 1. We note that the surface element on S
is given by

nezas = |g|*ta

2

where r 1is the unit normal to S so that n<z = cos 6 , the
angle 6 1is that between the radius vector and the normal on S
or on W. Also we observe that

(x+nE + tA(n) - i0)™" ae,

le]™ (x-¢ + ta(g) - i0)™" an

(x+8 + ta(g) - i0) ™™ genas .

Therefore, since A =1 on S, and t;(A ,n) are homogeneous
of degree zero,

£-n ds

C(ne1)r [ B0 ,8), (1 ,¢8)
le(x ,t) = & L; =

(2mi)® (x-£ +t -i0)"
This formula is the closest analogue of the Herglotz -Petrowsky
formula for higher order hyperbolic equations.

The singular locus of this integrand is the section of 8
by the hyperplane x*& + t = 0, so the singularities of the
solution arise from points on this locus or in its neighbourhood.
As % 1increases, the hyperplane moves away from the origin, and
an instant t' at which it is tangent to a sheet S; of 8 is
the moment the corresponding wave sheet W; of W(t)® reaches
x. As t > t: the intersection of the variable hyperplane with
S: , which is a "vanishing cycle" in the sense of Petrowski
(1, p. 327), shrinks to a point and disappears. Thus the
singularity of the solution involves the eigenvectors attached to
that point.

To summarize: the leading 31ngular term in Ry, 1is a dis-
tribution multiple of the eigenvector (l £) , with leading
term polarized parallel to it:
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=

Fig. 7. Region of exclusive influence.

S A — —  ——— a———

Fig. 8. Singularity at an ordinary point.

AU K

Fig. 9. Singularity at cusp locus of W corresponding to an
inflection point of S

Fig. 10. Singularity on a ruled surface of W corresponding to
a double point of S
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- . y—T2
Rip(x »t) ~ et (1,8)% (1,8t I (xey + t - 10)7 .
Further studies of the precise forms of this singularity in the
highly singular cases are still desirable. However, the leading
cases may be indicated as follows (Duff 4, Ludwig 1, L)}.

1. An ordinary point of S (det @ = K the Caussian curvature
of §#0). Then all ng =2 , the order of the singularity is
n - %(n-l) = 3(n+l) and the corresponding point of W is an
ordinary point. (Figure 8).

2. An Inflection point or locus on S (det @ = 0 ) and corres-
ponding on W a cusp locus. Then one or more ng =2 3, giving
a singularity 4 or more higher on W , with attenuation in
time reduced by the same power of t . (Figure 9).

3. A double point or locus of S , and a ruled surface portion
on W. Then to a point of the ruled surface corresponds a dual
line x*& + t = 0 through the double point but not tangent to

S . Hence the ng is reduced to 1 , and the singularity is %
degree lower for each such dimension or index ng , while
attenuation in t is as much higher. This case is related to 2.
above when 2 sheets of S meet in a limiting case. (Figure 10).

CHAPTER 3. PROPERTIES OF ELEMENTARY SOLUTIONS
3.1 Lacunas

The name 'lacuna' {(or gap) was first used by Petrowski whose
famous paper (1) can be regarded as the foundation of the modern
theory. However the basic idea of lacunas, namely the vanishing
of a wave solution in certain space regions determined by wave
fronts, goes much further back in the case of the wave equation
for which the bounded domain of dependence was known by the early
19th century. Also the name of "Huyghens Principle" was given
to the sharp or clean cut wave propagation in 1 or 3 (or odd)
space dimensions, and this can be subsumed under the theory of
lacunas merely by noting that the interior of the wave surface is
a lacuna for n odd. For n even diffusion of waves occurs and
the interior of W is not a lacuna.

We shall give here a brief description of the results of
Petrowsky and of some results of Atiyah, Gﬁrding, and Bott (1, 2)
who have recently extended and consolidated Petrowsky's work.
These studies involve extensive work in the algebraic topology of
the surfaces S and W , which we shall not attempt to describe
in detail, referring the reader to the original papers instead.

Petrowsky considers a hyperbolic polynomial P(D) ,
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homogeneous of degree m , and the elementary solution K(t ,x)
such that

P(D)K(t ,x) = én(x)a(t) ,

while K(t ,x) = for t < 0. The formulas given in a previous
section for K(t , are then expressed by means of the function
¢(x,s) = J Zx € +s °

where s 1is complex and the integration is carried out over the
normal surface S . Then, for n odd,

-2i

K(t ,x) =
(2mi) ™ (m=-n-1)1

t 1
J (t"s)m_n— V(S, X)dX,

and for n even

t
K(t ,x) = 2 J (£-5)"21 4(s, x)ax,

(2ni)n(m-n—l)! 0
where ¢(s +0 ,x) = u(s ,x) + iv(s ,x)

Thus K(t ,x) is expressed by means of a distribution very
similar to the power (x-1i0)"" wused for the Riemann matrix.
However a lacuna in the sense of Petrowsky will occur for those
regions determined by W(x ,t) where ¢(x ,s) = 0. Petrowsky
expresses ¢ as an integral over certain topological cycles in
the n-2 dimensional algebraic surface P(£ ,1) = 0 and
x*g+t =0. This surface has complex dimension n-2 .
Petrowsky defines p-2 dimensional cycles Creg) and Cipgg
for the cases n odd or even, respectively, as follows. In the
hyperplane x *& +t = 0 choose a coordinate ¢&, so that
x * & = xn&, and the hyperplane becomes xp&, +t = 0. Then let
€n~] be any other £ coordinate (in this particular system).
Project parallel to &, ; in the hyperplane x,&, +t =0, that
is draw the straight lines parallel to £, 7 in it. TFor Ci,ggy
and n odd, take the real intersection points of these lines
with the normal surface S . For C4ypss 2and n even, take the
complex intersection points, of these lines with S, +together
with the real points that are limits of the complex points. Both
cycles formed in this way have dimension p-2 , and lie in the
algebraic surface S n {x g+t = O} of complex dimension p-2.
Then Petrowsky shows that a lacuna occurs if these cycles
are homologous to zero on the complex surface. More precisely,
in the case m < n, there is a lacuna if and only if the cycle
Creg1 (n o0dd) or Cimag (n even) corresponding to an inner
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point (—xk) of the region is homologous to zero in the above
complex algebraic surface. In the case m > n , a further con-
struction is given for a cycle I formed by drawing certain
"films" on Cpggy Or Cipa, - The above necessary and sufficient
condition then applies to £ in this case m > n .

These Petrowsky lacunas are stable, that is, they do not
disappear under sufficiently small variations of the coefficients,
if P is regularly hyperbolic so that S has no double points.

In the case n = 2, Petrowsky shows by calculating a sum
of residues that if all points of intersection of S with
x*E+t =0 are real, then there is a lacuna. Dually, this
means that if m real tangents to W(t) pass through (x),
then x lies in a lacuna. Examples of this occur in two
dimensional magnetohydrodynamic wave propagation, Weitzner (1),
Bazerand Yen (1). Petrowsky also shows in general that if a
system of hyperbolic equations with constant coefficients gives
rise to a single higher order equation satisfied by each compon-
ent of the system, then a lacuna of the higher order equation is
necessarily a lacuna for the system. However the converse
proposition is not in general true, as the system may have other
lacunas as well. o

Atiyah, Bott and Garding have extended and refined
Petrowski's results. They define a polynomial P +to be hyper-
bolic if and only if its principal part a satisfies a(8) z 0O
for a given 6 ¢ R®, 6 # 0, and also P(£+t6) = 0 for all
real £ when |Im t| is large enough. Then P(D) is said to
be hyperbolic with respect to G(P e hyp(e) , a ¢ Hyp(e)] . Thus
when P = a e Hyp(8) +the condition implies that a(& +t6) =0
has m real roots for every £ e R} . Also a{f) is real,
apart from a possible constant complex factor which can be dis-
carded. If the roots of a(f +t8) = 0 are all distinct,

a e Hyp%(8) and is called strongly hyperbolic. Indeed every P
with principal part a 1is hyperbolic only if a is strongly
hyperbolic; these P are denoted as the class hypo(e) . For
simplicity we shall assume that P and a are complete poly-
nomials in RX , that is, that they are not polynomials on any
proper linear subspace of BRI .

Supposing that a(f) is a homogeneous polynomial, let
A = {a(g) = 0} be the associated hypersurface, the complex
normal cone. Then its real part Re A meets every real straight
line parallel to 6 in m points. If A is strongly hyper-
boliec and the line does not meet the origin, these m points are
distinct. The component T(A ,8) of Re Z - Re A , where
Z=(%X ,... ,%,) S €%, that contains & is an open convex
cone. Now P e hyp(8) will imply P e hyp(n) for every
ne T(A,8)=T1(P,8).

The fundamental solution E(P ,x) = E(P,6 ,x) of P with
support in x +6. 2> 0 1is just the Fourier Laplace inverse
transform of P~ , that is
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E(P.,X) = (21’[)—n f P(g _in)—leiX(g—in) e

B®

where n ¢ T, such that P(£-in) # 0. The expression is
independent of n and by the Paley —Wiener -Schwartz theoren,
E(P,x) =0 unless x°+*n =0 for all xe I'. This condition
can be taken to define the dual wave-cone K = K(P ,0) = K(A ,90)
of P . This cone of wave propagation is closed and convex, and

meets every half space x *n = const. where ne ', in a
compact set. K 1is also the closed convex hull of the support of
E. Also if P = a+b where b has lower degree then it can be
shown that ba‘l(E -is8) +tends to zero uniformly in £ when

s » » , Consequently the relation

EP,0,x) = | (-1)Fu(dEE("™ 6 ,x%)
k=0

is valid and this reduces the problem to the case of homogeneous
a .

When a is strongly hyperbolic it can be shown by choice of
a suitable path of integration that E 1is holomorphic in x
outside the wave cone. If double points or other singularities
occur, the wave cone must be interpreted as the convex hull as in
earlier sections, and the same holomorphic behaviour of E can
then be established.

Supposing a 1s homogeneous, one can pgrform a radial inte-
gration in the integral. Atiyah, Bott and Garding give the
following result: For x 4 W(A ,6) the wave cone, then

DE(a ,x) = i(en) P f Olix - £)eva(e) u(e)
o¥ q

when g =m-~n —|v| 20, and

DE(a ,x) = (em) ™" xO(ix - £)eva(e) Fu(E) ,
t da¥
X

when ¢q < 0 . Here
tr/r! for r >0
0 -
x2(t) =
r (-1)" (cr-1)1 tr  for r<o0,

and the Leray cycle

o* = (A,x,0)% € Hy_1(Z¥ A% ,¥X*)_ is the homology class
of the images of a certain B(x)* in Z* under the maps

E> & ~-1iv(g) £ e R uz0.



74 G.F.D. DUFF

Also w(g) = Zp&eti(E) , where 7, (E) is the right cofactor of
dgy in t(g) = dg; A'--Adin.

The tube operation t, : Hp_o(X* -X* na¥*) > Hy (2% -a% ux¥)
is generated by the boundary of a small 2 -disc in the normal
bundle of X¥ when its centre moves on X¥ . Because of the
orientation x* &w(x <&) > 0, +the homology class o* depends
strongly on the parity of n and is the counterpart of Petrowsky
cycles Cipggy and Cima for the cases n odd or even.
Petrowsky's formulas can be obtained for q 2 0 by taking one
residue onto A¥ , and for q < 0 by taking two successive
residues onto A¥ n X

The definition of lacuna is also extended; thus a component
L of the complement of the singular support of E 1is called a
lacuna if E has a C° extension from L to L. Then a
lacuna still has the property that it is bounded by sharp wave
fronts — fronts that arrive "without advance warning". When E
vanishes in L , L is said to be a strong lacuna. If n > L,
there are homogeneous hyperbolic a such that W 1is not all of
SSE(a) (51ngular support of FE(a) )' however if k is large
enough, W = SSE(a ) . A lacunary component L of the comple-
ment of W such that E(P) has a C* extension from L to L
is called regular. In a regular lacuna, E(a) is a polynomial
of degree m-n in (x ,t) , 'so that for m < n the lacuna is
strong as E(a) must vanish. If L is a regular lacuna for all
powers a®* , k=1,2,..., and P ¢ hyp(6) has principal part
a , then E(P,8) w1ll be an entire function in L and hence
L is a lacuna in the extended sense. This will occur if
d0%(A ,x ,6) = 0 in H,_o(X¥ - X*¥ n A¥) which is essentially
Petrowsky's condition. There are examples for every m ,n of
such stable Petrowsky lacunas.

The main result of Atiyah, Bott and Gardlng is stated as k
follows: For k sufficiently large, all regular lacunas for a
are Petrowsky lacunas, with the support of E(ak) being the
propagation cone K(A ,0) and singular support the wave front
surface W(A ,6) . Also, for %k large enough,the trivial
(exterior) lacuna is the only strong lacuna for a~ . Their two
papers contain a variety of other results based on a detailed
study of the cohomology of algebraic varieties.

3.2 Second order systems

A hyperbolic system represents wave propagation without
frictional dissipation and it is therefore natural to consider
systems of the type

u 32y

r o_ 2 ¢ S
rs 9x_ox
362 p,g,s O P q
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where p,g=1,... ,n and r,s=1,... ,m, the order ot
the system being therefore 2m . For this system we derive an
expression for the Green's matrix, the elementary solution in RP
with a point source at x=0 , t=0.
An exponential solution

i(At +& x )
u_ = a. e PP

r r

will satisfy the system provided

(A28 - 1

£ &g Ja =0.
S
P.q

C
pars p'q s

Thus A2 must be a characteristic root of the matrix C(&)
= (chqrsgpg ) , which we shall assume is positive definite so
that A remains real. We shall also assume without loss of
generality that Cpars = Cqprs and we assume further that
Cc(g) is symmetric: Coqrs - Spgsr It then follows that
AN(E) , N=1,... ,m, 1is real and of degree one in
£ : ag(re) = |t]ag(e) .

As ©(g) 1is symmetric, it may be diagonalized by an ortho-
gonal unitary matrix T :

c(g) = maTt

where J = diag(lﬁ(g)) . The columns of T are the normalized
eigenvectors of C(£) , constructible as homogeneous functions of
degree zero in A ,& from the linear equations for ag as above.
Set

a =t (h,8),
then
Trs = ts()\r(g) ’gl
is homogeneous of degree zero in & . The orthogonal or unitary

relations TT = E and TT = E become

A A =6
z t (g > 0B (A ,8) = 8
and
DOy 80t (0 ,8) = 8 .

r

We seek a solution of the homogeneous equations with initial
conditions
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up(x,0)=0 , =2 (x,0) =g (x),

where gp(x) will later be taken as a delta function. An appro-
priate form of solution is given by the Fourier transform

~ _ N .
up(«i ,t) = % c (a)tp(me ,a)sm(AN(a)t) .

At t = 0 we have

g (£) =7 ()t (€) ,
p N

whereas on multiplication by EP[A (&) ,E) and summation over p

we find M

Me) = =T e () (2 (¢) ,€)
AM(S) o M
so that

w(est) = )t Oy ,et Oy, e (8)

N.,q N
If now we specialize g.(x) to be a delta function we have

gq(i) = dqq , say, and it is evident that the Green's matrix has
the form

) m sin(AN(E)t)
G t) = t (A ,E)t (»

b8t = Lot et Oy ue) (D)
Taking the inverse Fourier transform we find

sin(Ay(£)4)
Ay (E)

= 1 -ixeg -
G_(x,t) fne ) tp“N ,a)tq(AN »E) de.

ra (2m)™ /o N
Setting ¢ = |g|n, dg = \ain'ldlgldgzn , we have

G x,t) =
pq( »t)

J ZtP(AN ,N)EQ(AN ,n) a9
Q )

Tl
N (27) AN(n

. Jm e-ix-n{éi sin(AN(n)IEIt)lE‘n-2d|5|-
0

The radial integral may be expressed as a difference of two
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integrals each of the form

[ el e Pl - pie1?
0

n-1
in"l(-l)n'l(n-z)![a"n+l - (T-i-_)e_)'” inc‘i(a')-

n-l n-1 n+l
( (

-1) n-2)!(a +10)

Thus we have

_ _(n-2)1 B(Ay 2 )E Oy o)
vl A R W )
rq 2(2mi)
. Ay -ntl
« [(xen +tAN(n) +10)
- (x*n -t (n) +10) n+l]d§2
N
Again, using the relation &-zdS = {E]n dQn, we can transform

this expression to an integral over the m -sheeted normal
surface S . On the Nth sheet AN(E) =1, so

o (n2)r . . ) ~B+L
qu(x > t) o(2r1)? J tp(l ,g)tq(l » &) [(xon +t +10)
- (xen -t +10) ™ ]gezas .

Here again ¢ is the unit normal to 8 .

An interesting example of a second order system is the set
of equations of motion for elastic waves in a 3 ~dimensional
anisotropic medium (Duff, 3). Here m=n=3 and a detailed
analysis of the normal and wave surfaces has been made by
Musgrave (1, 2, 3, 4). Section diagrams for zinc (hexagonal
symmetry) and nickel (cubic symmetry) are shown in Figures 11,12,13.
A detailed analysis of the solution formulas shows for this type
of system that: there is a sharp wave (of degree equal to that
of the data) on each sheet of the wave surface, (so that for
certain directions in the examples shown five sharp waves cross
each point). There is also a continuous wave, or volume wave
again with the smoothness of the initial data, in the regions
between the outer and innermost wave sheets. But the innermost
region is a lacuna so there 1is no diffusion of waves just as in
the case of the wave equation in three space dimensions

The elastic equations for an isotropic medium form a
particularly simple case which was actually solved by Stokes (1)
in 18L49. The number of elastic constants is reduced to two and
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0@

Fig. 11. Inverse surface , and wave surface W , for elastic
waves in zinc. Rotatlonal symmetry about Z axis
(after Musgrave)

of

Fig. 12. Inverse and wave surfaces (cross section in (1,0,0)
plane) of nickel, (cubic symmetry).

Fig. 13. Inverse and wave surfaces (cross section in (1,1,0)
plane) of nickel, (cubic symmetry).
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the equations take the form

32y 36
p —E = (aty) = +uv2u_,
31’,2 hid P

with

Taking density p =1 for simplicity, we may note that the normal
surface consists of two spheres. The inner sheet is single, and
the outer sheet has multiplicity twc. Thus the outer wave sheet
corresponds to P -waves of pressure, or compression, with one
eigenvector oriented radially. The double inner spherical wave
sheet represents two tangential modes of oscillation, called S
waves or shear waves. The two eigenvectors are tangential and
the S wave velocity is Yu , Whereas the P wave velocity is

VYA +2u .

The solution formula for the initial value problem is

t
X ,t) = A +2u tg +x)dQ
w (e, t) = 7 fg ( r8, (TFE £ rx)an,

4
t
+HL (6. -z z)eg (Vutg +x)d9[:

Pa PQQ
g
t alz
+ -8 +x)dQ .
LT J‘ (3Cqu pq)gq(z x) z Z
At<|z|</h +2ut
Here 1z = lz|§ » |t] =1 . The central lacuna is evident.

Stokes solution underlies much applied work in seismology which
in turn contributes to the understanding of the structure of the
Earth, and, recently of the Moon. Boundary waves for this system
in the half space problem are called Rayleigh waves, and will be
studied later. Detailed study of both direct and reflected

waves may be found in Cagniard (1) and Ewing, Jardetsky and Press

(1).

Another famous example which shows interesting wave propa-
gation properties is the set of equations of crystal optics
(Courant, 1, p. 602). These have the form

d
o —E = -5 0 p=1,2,3,
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Here (u U ,1 ) are components of the electric vector E ,
and 0, 50, 50 are numbers related to the three principal di-
electric constants of the crystalline optic medium.

The normal surface is the two sheeted Fresnel surface

2
3 g
F(g) = 2 ———2-P——=1
=1 -0
p=1 |£]" -0y
which has four double "conical" points in the coordinate plane of

the largest and smallest Op - The wave surface turns out to be
a Fresnel surface also:

2

3 x2
= _P -
F(x) = ] T =1.
1Y
The numbers G_l are the reciprocals of the dielectric constants.
The wave surface also includes four plane "lids" dual to the
conical points.

p=1 |x|2 -0

3.3 Localization

The more complicated singularities of elementary solutions
are related to higher order zeros of the hyperbolic polynomial,
that is, to multiplicities of the normal surface. Atiyah, Bott
and Gérding (1) nave developed a general approach to the study of
singularities based on a process of localization of P , and
adapting to hyperbolic polynomials a method of HSrmander (1).
Given a hyperbolic polynomial P of degree m and a point
£ = (El see- 5En »T) in the vicinity of which P 1is to be
studied, consider the expansion of tmp(t-1f +z) in ascending
powers of t . Let Pg(C) be the first nonzero term, of degree
say p in t :

p(t ™ +2) = t7P, () +0(tP)

Call p = mE(P) the multiplicity of P at £ , ordinarily
equal to the number of sheets of the normal cone passing through
£ . The polynomial Pg{Zz) is called the localization of P at
£ . If a(g) is the principal part of P, and a(g) =0,
then PE(C) = a(g) = const. If alf) 20 but grad a(g) 0,
then p=1 and PE(C) = grad a(g) * ¢ + const. has degree 1.
If P is not strongly hyperbolic, higher orders may occur at
multiple points of P(§) =0 . If P =a is homogeneous, then

P2(+7 e +) = alg +tg) = tPa (o) + o(+?*y .

It can be shown that mE(P) = mg(a) , that ag is the
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principal part of Pg and is hyperbolic, and that the local cone
I(ag ,6) contains the normal cone I'(a ,0) . The wave cone, or
propagation cone K(P ,8) is the geometric dual of TI(P,0) :

K(P,6) = K(a,0) ={x|xeRT ,xI(a,0) > 0} .

Generally, the convex boundary of K(P ,0) is the outermost wave
surface. However the singular support of E(P ,0 ,x) consists
of other, interior, sheets as well. These can be described using
the local propagation cones K (a ,8) = K(ag ,0) . When

a(g) 2 0, £ e ROl | then g(z) = a(g) = const. and

r, =RV | k. = {0} . If a(f) =0 but grad a(g) # 0, then
ag(g) = chaa/ggk so that T¢ is the half space

ag(e)‘la (z) > 0 and Ky 4is the half ray spanned by

ag(e)‘lgrad a(g) . If is not strongly hyperbolic, Ty may
be smaller than a half space and Ki larger than a half ray —
they may both be dual proper cones. We can now define the wave
front surface W(a ,6) as the union of all the K¢ :

W=wr,o0)=wa,s)=U KE(P,S) , & =0.
£

The fundamental solution is

ix .
E(P ,x) = (gﬂ)'n j e (e+in) ac ,
n+l

P(g +1in)

where ne - s6 - T'(P,0) with s large enough, has as its
support K(P ,6) . For the principal part a , the formula can
be written as a distribution integral,

E(a ,x) = —= " f a_(i)'leixi dg
(2m) n+l
R
where
-1 . . -1
a_(g) = 1lim a(g +itn) , mne-T(a,0).

t+0+

For a nonhomogeneous hyperbolic polynomial P , we may write
P =a+b, and

P (g +in) = 1 (-1Fb(g+in)alg +in) ™
k=0

Then it follows that

B(P,6,x) = ) (-LFp(0FE("" ,0,%) ,

=0
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where the series converges in the distribution sense. For proofs
we refer to Atiyah, Bott and Garding (1, p. 143).

The localized elementary solution Eg(P ,6 ,x) = E(PE , 0 ,x)
has its support in the local cone: S(E ) < KE = K(Pg ,0)
c X(P,6) . HSrmander (2) has shown that in a certain sense E
is just a localization of E , as in the following localization
theorem of Atiyah, Bott and Garding.

Let p be the multiplicity of P at £ . Then

tm—pe_ltxgE(x) > Eg(x) as t > o

where the limit is taken in the distribution sense. Further,
S(Eg) < Ss(E)

for § ¢ 0 , where 5SS denotes singular support.
We “shall give the extremely direct and instructive proof by
Atiyah, Bott and Gardlng Let
Et(x) = oIt E(x) = (em)™" f P(tg +Z +1in
Rn+l

)—lelX(C +1n)d€ '

Then

(+"PE, () ,8(-x)) = (2m) ™ j tPp(tg + ¢ +in)Tg(¢ +in)az.
n+l
R

With n = s6 for sufficiently large s , the right hand side
approaches (for t +w )

(2m)™" J E(C +1n)7t glz+in)ac = (£.(x) ,a(-x)) .
n+l

This shows that tm-pe_ltxgE(x)—+ Ez(x) . Now let g e Co(V)
where V is the complement of SSE. With & # 0, then by the
Riemann - Lebesgue lemma,

J tm_pe_itxgE(P ,x)el(x)dx

Will tend to zero as t tends to infinity. Thus Eg(x) ,g(x)\V
= 0 and so S(Eg) lies in the complement of V which is ‘
ss( ).

This result yields the generalized envelope relation SS(E)
> U ¢OS(E£) . Whether equality holds in this inclusion is not
known The theorem also extends to derivatives of E(P ,x) :
if F=Q(D)E, then F Q D)E(P;) for £ real and the
multiplicity factor m is that of 5/? Then

me(0)-n(f) _;ire ) e
t e F(x) » F.(x) as t - o , in the distribution
sense, while S(Fg) c ss(%) , for & =0,
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Analytic continuation with respect to a complex power para-
meter s 1is also defined, thus let

£ (a,x) = (em)™" f a(g +in) %X (EF I 0 (a0 .

Then Eg is of degree ms-n in x and a(D)Es = E5_ » while
Eq(x) = 6(x) . This construction generalizes the work of M. Riesz,
(1) and is related to results of Gelfand -Shilov (1).

In their second paper (2), Atiyah, Bott and Gdrding study
behaviour of E(a ,x) close to the wave front surface W(P ,9)
which is a cone in R™7L = {x , ... ,x, ,x,4 = t} if
6={0,0,... 0,1} . Let ﬁ be a component of the complement
of W(a ,0) and y a point of 3L . Then E is said to be C%
(or holemorphically) sharp if y has a neighbourhood N such
that E has a C° (or holomorphic) extension from L to
T nN . There is a "local Petrowski condition" for holomorphic
sharpness from L at y , namely B8(a ,x,0)% eHn_Q(Y* -Y¥* na*)
when x € L is close enough to y . (Compare with the global
Petrowsky condition B8(a ,x,0)* = 0 in Hy_o(X* -x* n %),
which implies x ©belongs to a lacuna for all powers of a.) It
is shown that the local Petrowsky condition is necessary for
sharpness at any point of W with non-degenerate curvature. For
such ordinary or non-degenerate points, the Petrowsky condition
is therefore both necessary and sufficient for sharpness.

The remaining singular points of E are those arising from
multiple points of a(g) = 0 , and forming ruled surface or
"plane" components of the wave fronts. A hyperplane wave front
of W(a ,0) corresponds to a conical point of Re A = {a(&) = 0}
the normal cone, and the main result is given for this case. At
a conical point the localized polynomial a.(z) has lineality
with minimal dimension for a cone, this impiies L{a,) = Cg .
(The lineality L(Q) is the largest linear space suéh that Q
is a polynomial on RP™1/L) . The plane portion of W(a ,6) is
then just the local propagation cone K(ag ,0) ¢ Ratl  yhich
spans the hyperplane x+f =0 . If, closé to y , W(a,®)
coincides with K(ar ,6) , then we say that 7y ¢ K(ag ,0) is a
simple point of W(a ,6) .

We also need the concept of a reduced wave surface W for
the localized polynomial. The reduced wave front W(a ,6) is
the union of the local propagation cones K(ag ,0) when £ is
real and does not lie in L(A) . We note that for a complete
polynomial the reduced wave cone coincides with the ordinary wave
cone. Thus the reduced wave cone W(a_ ,0) is distinct in this
situation because a, has nonzero lineality. After these pre-
liminaries we can state the result for plane wave fronts. It is
that if y e K(ag ,8) - W(ag ,0) is a simple point of W(a ,8) ,
then for all k > 0 , E(ak ,84) is holomorphically sharp at ¥y
from both sides of K(ag ,6) . We omit the proof, which depends
on showing that the local Petrowsky condition holds, and instead
refer the reader to the papers cited by Atiyah, Bott and Garding.
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When a function or distribution has different asymptotic
expansions on the two sides of a hyperplane x, = 0 , then it is
said to be weakly sharp there. The asymptotic expansion of its
jump can then be defined, and takes the form

J(f) - § ej<x1)fj(x') X' = (%, 5.0 %)

where fj(x') e C(M X =0) . Here also

_ (k)
o (1) = LBE g () = sy
are integrals and derivatives of the Heaviside function 6(%)
=H(t) =1 for t>0, and O for t <0 . J(f) is
essentially defined by f = f + J(f) , where fl e C° .

Ir £¢=(1,0,0,0, ...) is a conical point of a(g) =0
with multiplicity p , then a(z) = ET‘Pag(Z') modc?—P-l .
where ¢' = (g, ,... ,C ) and ag(z') is a completé polynomial
of degree p . The dual cone K(ag , 0) is then contained in
the hyperplane x, = 0 . Then E(a ,0 ,x) is weakly sharp
across X, = 0 , and the asymptotic expansion of its jump is

I e (x,)E (x')

j5o mp-l+g 17pHl-gn

where the indices specify homogeneity. Here also

2+l
H . (x") = ) q,,(D)E(a x')
L ol I P ] 3 L

prl-i-n o<tzy I* "
with 6.9 polynomials delined as follows by the formal expansion
of alz )‘l : in terms of rational functions with denominators
powers of Cl and ag :

-1 —m-j -4-1
a(0)™ = T e (2T e, (e
0<2<j J

This expansion relates the singularities of E(a ,8 ,x)
across the plane face to the behaviour of the elementary solutions
of the localized powers. If the elementary solutions
E(ak ,6 ,x) are themselves holomorphically sharp for large k
and some y # 0 with y, = 0 , then the above series converges
for small x-y to the jump function of E(a ,0 ,x) , which is
s locally bounded function as p <m , and is continuous if
p <m-1. Indeed, the homogeneity of the terms in the series
expansion show that the jump then has a form that can be given
for any power af as

JEE" .6 ,x))

(ex)H (x) ,

= @k(m-p)—l kp+l-n
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where the indices again indicate homogeneity, and where H 1is
holomorphic.

Also it can be shown that if the Petrowsky condition for a
holds at y , that is, B(ag,y,0)% =0 in Hy 3(Y* -¥* n AF),
with ar being considered as a polynomial in R% mod C, , then
Hkp+l—n%X) is a polynomial. In particular, if kp <n-1 , it
must be zero, so that E(ak , 6 ,x) is holomorphic across
W(a ,06) at y. Thus if y is in a lacuna for all powers of
ag (considered as a polynomial on Rn/Cg) then H(x) must be
a polynomial and so must itself or in its derivatives vanish for
kp < n-1. Then, as stated above, E(aK ,6 ,x) is holomorphic
across W(a ,0) at y so that no singularity is carried on this
sheet of the wave surface.

As an application of this powerful result, it is easily seen
that for n=3 , the wave front of a first order symmetric
hyperbolic system carries no singularity on the relatively open
plane parts associated with multiple points of its normal surface.
For n > 3 , the same will be true for hyperplane wave front
parts 1f the appropriate Petrowsky condition holds.

Thus the singular support of E(a ,6 ,x) does not contain
lacunas of the localization provided that certain homogeneity
conditions hold. The local Petrowsky condition is thereby re-
lated to the global Petrowsky condition in the next lower
dimension.

Employing the localization method, Tsuji (5) has recently
studied the case where P(g) = P(t ,£) 1is a product of strictly
hyperbolic polynomials. Here 1 1s dual to Dy = id/d3t, t a
fixed time coordinate, and £&; 1s dual to Dy = iB/Bxk
k=1,...,n . THus k

K ai
P(T,g) = I Pi('f 9&) s
i=1

where P; has order my; and Lajm; = m . Then for localization
about (o9 ,&%) consider

s Ouns 0
o is(toV+xg )E(t %)

St -500) +ix(g -s£0)
P(t,&)

(2ﬂ)_n—l J dodg
Rn+l

ST HxE) g o

‘aatl Ps(o? ,20) + (7 ,8))

S—m(zﬂ)-m—l J dodg
A+l P((00 L £9) +57H (1, )

(zﬂ)—n—l

ei(tr-+x£)
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Expanding in powers of s—l , We have
N
1 - k -k
—~ =Sp z P( )(00,50,1',5)5
P((c%0 +s7 (7 ,¢)) =0
-N-1

MGTSRE R1\1+1(OO » Eh%s LT, ey,

where p 1is the local multiplicity of P at (0% ,&0) , and

k .(OOEO s T ’E)
P(k)(coio ST ,E) = ) QkJ ey
J=1 P(OOF,O)(T s E)J

and ij is a polynomial of degree <mj .

Define

E (t,x) = (2m)2t f P(k)(oogo , T ,i)ei(tﬁxg) dodE
n+l

amd set ey = -m-k+p . Then the elementary solution has an
asymptotic expansion:

s Ogx g0 j
e lS(to’ +xg )E(t ,X) ~ z E (00 ,go s T 1E)SeJ

for which each remainder term

e

N-1 .
E(t ,x) - J E, (0,89 ,7,¢)s 9
j=o0 J

—eN( —is(to0+x£0)
s te

+
tends to Ey in D'(RN l) as s + ® , Also the singular
support contains the union of all localized supports:

o

SSE > Lj \J supp Ej(o0 ,E0 LT ,E) .
(00,£0)es™ j=0

Denoting this union set on the right by WF(E) , the wave
front set, Tsujl shows that it is closed, and gives a special
uniformity argument which shows that equality holds above, i.e.
that WF(E) = SSE .

The order of singularity of E on WF(E) is then studied
using a Hilbert space definition of the order which gives
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results % step different from our earlier definition based on
homogeneity. It is shown by estimating orders of the Ep that

1) For strictly hyperbolic P , the order agrees with our
earlier value of -m+ %n + ¥2 (homogeneous definition).

2) If the multiplicity is constant and k -ple , the
singularity becomes k -1 steps sharper than in 1), and

3) If the multiplicity is not constant (multiple points),
the singularity at a point of the ruled surface is %(k-1) steps
sharper than in 1).

CHAPTER 4. THE HALF~SPACE PROBLEM, WITH CONSTANT COEFFICIENTS
4.1 Boundary conditions for the wave equation

We study here our first "mixed" problem in which boundary
conditions as well as initial conditions are given. For the
wave equation

c2at2

it is appropriate to give Cauchy initial conditions wu(x ,0)
= f(x) , uy(x,0) =g(x) , for x>0, and a single boundary
condition

B(Dt »D ,Dy)u = h(t,y) ,

for x=0, t >0 and arbitrary y, ,... ,¥, . Thus
u = g(t 2K 3 Yy 5 ens »¥p) 1is sought In the quarter space t > 0 ,
x > .

Since waves propagate with the maximum velocity c , it
follows that any point more distant than ¢t from the boundary
is not affected by the presence of the boundary condition, and
we shall therefore not need to treat this region further. On its
boundary x = ct ~there arise possible discontinuities or
singularities due to the onset of a wave emitted from the
boundary at time t = 0 . Certain compatibility conditions
connecting the initial and boundary data will determine the
presence and magnitude of this wave. We shall chiefly treat the
region ct > x in which the boundary conditions take effect.

Consider the problem of the reflection of waves from the
boundary; given that Lu = 6(x-—x0)6n_l(y)6(t) with zero
Cauchy data and Bu = 0 . Waves spread with velocity c¢ from
the source and first encounter the boundary when t = xo/c .
Their reflection or absorption is determined by B(t ,% ,n) .

Example 1.

Bu=u=0 for x=20.
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The solution can be found by placing an opposite "image" at the
image point (-x, ,0) and the reflected wave has just the

opposite. sign. e entire incident and reflected waves remain
within the portion of the sphere r < ct , where
r? = (x -xo)2 + 5y2, where x > 0. These results also hold if
B contains only even powers of d/dx .
Example 2.
Bu = Su 0 for x=0.
oxX

This Neumann condition can be satisfied by a positive image at
(—xo ,0) and the waves are reflected with no change of sign —
they are even functions of x . Velocity of propagation at most
¢ 1s again observed. The same is seen to hold if B contains
only odd pcwers of 3/3x .

If however Bu = 0 gives rise to wave propagation in the
boundary, then we can only assert that the disturbance cannot
reach any point with r > et and x > ct - x, . We now examine
the region r > ¢t and x < ct - x, which may be reached by a
wave travelling on the boundary for a part of its path, and note
that this will occur only if B contains both even and odd
powers of d/dx . This problem was first studied by Bondi (1).

Let

v = Bu ;
since we assume B has constant coefficients also, we have
Lv = IBu = Blu = 0 ,

in the region r > 0 . Since v =0 on B, reflection with
change of sign only holds for v and hence v 1s propagated
with velocity at most ¢ . Thus v =0 for r > ct . That is,
for x 20 and r > ct we have

Bu=v =0

Since u vanishes for r > ct , x > ct - x, , it follows that
there is a characteristic surface of the operator B separating
the support of u from this outer region. Since u satisfies
both Lu=0 and Bu=0 in r >ct , x < ct - X, » the
boundary of its support there must be a characteristic of L and

of B . Thus we conclude that u vanishes in this region unless
L. and B have a common characteristic in r > ct > h ,
0 <x <ct-h. This gives a second condition necessary for

"faster than sound" boundary wave propagation.

Bondi has shown that such "ultrasonic" propagation does
occur for capillary surface waves. The basic equation is the
wave equation, Lu = ugy - du = 0 in three space dimensions.
Tet the surface be 2z = const. then the boundary condition is
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2 2
Bu = Au + (—g—+i—]%lzi= .
axZ  9y?
As Au=nu we may write

tt

2 2
Bu = U + [—9-—- - --a-—]uz
at2  9z?

and now L and B have common characteristics namely =z * %

= const. Hence "infinitely fast" boundary propagation may occur.
To construct a solution, we place the origin at the image

point 0 of S as shown in Figure 1h.

Let r? = x2 + y2 + 22,
ry x2 + y2 4+ (z +2n)2
and p2 = x2 + y2 . I
We set
1y
h
u=u0+u1+u2, z=h
h
where
H(t -7 ) 0
u:
e)
0 ro P
is the emitted wave, and Fg. 14. Field point P source O,
H(t -r) and image I in plane.
1 r

is the first approximation by even reflection to the reflected
wave. Then the remaining "diffracted" wave wu, satisfies

2
2 2 2 2 _
Bu, = [_a_+_9_(_a_.__a_]}u =_@_Eﬁ?ﬁ
362 3z'‘at?2  3z2 3t2
=251 (t-1).
r
Also 0 and u 0 whenever z+h>t.

As %he equation %or u contains no derivatives with res-
pect to x or y , a solu%lon of the form

w £
o(t ,z ,p) = f ac f dtH(t , 5 ,p)F(t-1 ,2-C)
- 0

may be tried, where H(t ,z ,p) = —2r—16‘(t -r) . This will
satisfy all conditions provided the kernel F satisfies
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" N2 2 2
BF = {_3_4. [_3__3_}_3_]F=O
at2 32 972/ 3z
(o ,z) =0

dloF(t ,z)| _
[[l + -EE-]——;B‘E :lt;-oﬁ(z) .

A typical exponential solution for BF =0 is

exp{iuz * iut /1-j?u ]

Combining these to satisfy the other two conditions, we are led
to

iuz . in
o e 51n[ut 7 +iu)
F(t ,z) = 5;-] du .
. in
—00 +
1 +iu u T +iu

In the integrand, the only singularity is the essential singu-
larity at u =1, and we choose the path of integration to

pass above u =1i. Then F(t ,z) will vanish whenever the path
of integration can be closed by the upper infinite semicircle.
Hence it follows that F(t ,z) =0 for z > t.

Thus in the expression for ¢ we need only consider values
of ¢ and 1 satisfying t-122z2-7, or ¢>z+1-t. As
H(t ,z ,p) =0 for ¢>1, we find o(t ,z,p) =0 for z > t.
Thus ¢ satisfies the correct boundary relation and vanishes
for z >t . The consolidated expression for ¢ is now

o(z ,t)

/t2-p2 o iu(z-z) . /
= L J dg f dus n cos [u/ 1u. [t - 1/;2 +p2”
it /;——7; 1+ iu 1 +iu ]
V§© +pc -
V202

for t2p, while ¢ =0 for t < p . In the permitted
interval for ¢ given by

z + Vt2 -p2 > g - ci{t-/g2+p2}2z—‘/62—p2 ,

we see that the path of integration can again be closed if

z > /2 -p2 . That is, r>t ,2z>0 imply & = 0 as well.
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Hence ¢ 1is confined to regions that can be reached with the
velocity of sound. But & cannot coincide with u, , for
¢ »o as p=+>0. Also & turns out not to satisfy the wave
equation at p =0 .

A new complementary integral Y is thus required, satisfying
the wave equation and boundary condition, and cancelling the
above singularity. Bondi shows that it is

2 * eiuZ iu pu
¥(t,z,0) =-?f dul+iu cos{ut /lTTu]KO[/m] ,

-0

where the path of integration also passes above 2z =1 , and
Re u//1+iu > 0 along the path. By closing the path of integra-
tion one finds that ¢ =0 for =z >t . A detailed calculation
is necessary to show that the singularities for o = 0 cancel.
Then we can take u, = o + VY , and Bondi shows that this solu-
tion is unique.

By the steepest descent method it can be shown that for
p > 5,

2

bt [ ( o ] 02:|
VY ~ —expl-|=| 2 - 7| »
o2 2t Lt

so there is a very small signal at large distances close to the
boundary. For 1.05 £p/t < 4,98 the values of V¥ oscillate
and decrease exponeptially, while for p/t < 1.05 they oscillate
with damping as p~2 only.

This capillary wave problem is the first known example of a
well posed and physically meaningful ultrasonic boundary wave
propagation.

4.2 The Oblique derivative problem

As a further example of a boundary condition for the wave
equation, let us take the oblique derivative boundary condition

where the boundary is =z=0 and the domain the half space
z > 0 1in three dimensions.
For the source solution take

ux,y,z,t) = §(c?t2 -r2) ,

where 12 = x2-+y2-+(z-2)2 , the source being thus located at
(0,0,2%). The first reflected wave front may be represented by
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uz(x,y,z,t) = 6(021‘,2—1'%) .
where r, is the distance from the image point:

ry = x2 ¥ y2 + (z+2)° . We choose to represent the full solution
u as follows:

u=u -u,+u,,

so that uy satisfies the wave equation

- c2py =0
u,, - chu

and the boundary condition
Bu, = B(u2 -ul)
2 3 0
[ _BBX](uz_ul)-aBz(uz_u) *

ot 1

As the first terms cancel by symmetry, and the second terms in
3/9z are equal and opposite on z=0, we find

ou
2
Bu3 = —2(.‘1.—5; s

Thus

Bu3 = ha(z+2)6'(c2t2-r§) .

We treat this condition as an inhomogeneous first order partial

differential equation for us , of the form

u, - ou - BuX=g(x,z,t) .

The characteristic equations are

with first integrals =z + ot = Z, 5 X + Bt = x Setting also

-
t=t1, we have

X=x =-pt, , z=2z, -0at, , t =1t

and

2u ¢

o, X,7,1t) =u -ou - Bux=g(x -Btl,zl—cxtl,t).

1

The solution of the first order equation is therefore
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tl
u3(x ,Z ,t) = [ g(x1 -BT ,2; -0t , T)dr
0
tl ,
= hq f (z —at +2)8'(c272 —rl)dT R
0
where
2
r, = (x1 —61)2 +y2 + (z+2 -at)?
= At2 + Bt +C ,
where
A = a? + g2
B = -2(gx +a(z +2))
C = x? +y2 + (z1 +2)2

In the integral for u; we see that the contribution will
be zero unless ctT =r, within the interval of integration.
That is, the linear characteristic must encounter a point of the
reflected wave front. Hence we see that the contribution is con-
fined to those points which lie in the "shadow" of the reflected
wave front as defined by the linear characteristic rays.
(Figure 15).

Noting that

d 2
a;{CZTQ —rl) = 2(c2 -A)T - B,

we find
4
- +2
Lo J —EZOT TR 5'(e2¢2 —ri)d(csz ~r2)

ux,z,t)

3 o 2(c?-n)t-B !

a [ z, —at +2 )
= ho H(ct1 —rl) 5

d(c?72 —rl)[2(c2 -A)t, -B

H(ct1 —rl)(aB -2(c2 —A)(z1 +£))
= lg " 3 .
(2(c? )7, -B)
Here T denotes the root of c212 —r2 = 0 , and we see that

the denominator of the expression for u; vanishes only when the
reflected wave front is tangent to the characteristic line
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through the field point. That is, the singularity of the wave
lies on the characteristic surface formed by the shadow lines
tangent to the reflected wave surface. (Figure 15) . Thus an
ultrasonic wave appears, if and when the direction (-8B ,0,-0 ,1)
becomes tangent to the reflected wave cone at a point of the
physical half space z > 0. This is possible only if

02 + B2 » ¢2,

4.3 The line source earthquake

The propagation of elastic "earth quake" waves in a half
space, a fundamental problem in seismology, has been studied by
many authors including Rayleigh (1), Lamb (1), Lapwood (1),
Nakano (1, 2), and Sobolev (2, 3). Here we shall describe only
the simplest case of a surface line source parallel to the ¥y
axis, referring the reader to Ewing, Jardetsky, and Press (1,

Ch. 2) for more complete details.

For the displacement vector u in the elastic wave equations

take scalar and vector potentials ¢ , ¥y so that

4 =grad ¢ + curl ¥ .

It then follows easily that ¢ and ¢ satisfy wave equations
with the pressure and shear wave velocities

= o®8¢ = g2ay ,

¢tt lPtt

where paz = A+ 2u, psz = p with p density, A and u the
isotropic elastic constants.

For the two dimensional problem with =z representing depth
below the surface, x horizontal distance from a source point,
the potentials satisfy

N A A T

The surface or boundary conditions of vanishing stress are

D

x u(wX +uZ) u(2¢xz+¢ -y ) =0

XX Z2Z

z=0

+
P AD 2uwZ

77

ALY + 2u(¢zz +wZX) =0.

z=0
The plane wave expressions
—vz-ikx+iwt —v'z-ikx+int

¢ = Ae , ¥ = Be

satisfy the wave equations provided
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Fig. 15. Oblique ultrasonic wave front.

Fig. 16. Contours of integration.
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2 - w2 _ =8 12 = 1.2 _ .2 =
v k kK, ka s >V k kB , kB 8
and we choose the coefficients A , B to satisfy boundary con-
ditions representing a force applied vertically to the surface:
~ikx+iwt
p =0 , p = 7¢ i

Xz zz
z=0 z=0

Inserting the plane wave expressions in these conditions, we find
the linear system

oAivk - (2k2 - ké)B =0
(262 - k2)A + 2ikvre= 20D
B u
leading to the expressions
2
oK kg a(k) A 2ikv Z(k) B,
2Ry W T 0 PR TR T )

where the determinant

F(k) = (2k° —ké) - Lk2vv!
is known as Rayleigh's function. Apart from its branch points,
F(k) has a zero K at a point greater than k, . Numerical

calculation shows that the corresponding (reciprocal) wave
veloeity is 92% - 95% of the shear wave velocity (u/p)2 , de-
pending on the ratio of X to u . Choosing values for the
roots v , v' with Re v 20, Re v' 20, we see that the
free waves arising from this zero, diminish exponentially as
depth =z 1increases. They are known as surface waves, or Rayleigh
waves.

To represent a line source of strength Q at x =0, we
set Zk) = -Qdk/2r and integrate over k , and then over w .
Thus

® oo ~VZ 3

¢ 1 Ae e—l(kx—wt)

= - ——— dkdw .
- 1
i on Be v'z F(k)

-0 00

Considering first the inner integral over k , we select branch
cuts in the k plane so that Re v 2 0, Re v' 20 .

For complex w=s-ic , t=k +i1 we have k, =(s -io0)/a and
v2 = k2 - ké = (k+i1)2 -~ (5 -10)2/02 = (2 +i1)2- (3 -i0)2/a? so
that Re v = 0 requires that

>

k2 - 12 + 2ikt - (82 -02 =2is0)/a?
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be real and negative. Then
kT = -s0/a? , k2 =12 <(s2 -02) /02,

Thus the branch cut will lie on a hyperbola defined by the first
of these conditions, and on the part of it described by the
second. For s > 0 +the branch cuts and pole are situated as in
Figure 16, and the integral along the real axis can be expressed
as a sum of two branch cut integrals, a residue at « , and an
evanescent large semicircle term.
The residue at «k = KW yields the Rayleigh wave terms
o ~iw(k.x -1t)
¢, Ai(Kl)e -vz | 1 dw ,
F'(Kl) w

1]
e

P Bl(Kl)e -v'z

1

—0

where the homogeneity of A , B and F in k has been used to
factor out all terms in w. Writing v=v.w , Vv'=v.w,

- [ E -2 1 .
where Vv, = k] - 0O s V =K, - B , we see that the contri-
butions to the displacements from the poles are, in vector matrix

form,

he! - ¢lx _wlz
Y1 %12 Tk
-V Wz .
00 1 - -
ik, ! Al(Kl)e 1w(le t)

1

. ' e
=i ) —\)lu)Z ——?,—,—(K—l—)— dw .

v, o, =ik Bl(Kl)e

But

o~y wz-iw(k. x-t)
J 1 1
e dw

-—00

©  —(v, z+i(k x-t) o (v z-i(k x -t))
[ . m( zHile x )dm . I . ( 1 1 o

0 0

1 1

y + -
v,z +1(le -t) vlz—l(le.-t)
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Hence the Rayleigh waves are smooth, within the wave fronts, and

are an approximation to the delta function for small =z . Indeed,
KX -ty 2
A(K')/% Z |1 + |————
. ' JAS | 1 VIZ
u, - s -ik, v, 1
= =7 -
v, v, —1K1 , KX =ty 2 F (Kl)
BﬁKl)/glz 1 +[ - ]
V. gz

The wave maxima follow the boundary with velocity «. which is
slightly less than the compressional wave velocity. "Note that

the amplitude of this wave does not diminish with time or dis-

tance.

Returning to the expressions for the potentials ¢ and V¢,
we note that F(k) contains only the product vv' and is there-
fore single valued if a cut is made along the geal axis from Kk
to kg . It is possible to express 22 and t in terms of
integrals having this same single-—valued property except on this
cut.

Thus

w oo (k2 -k2)
99 _ -1 BT —vz+i(kx—wt)dkd
9z 2m Flk) © W

-0 00

Set k = kw , so that dkdw = wdxdw , and use the homogeneity

of kg ,v and F(k) . We find, with v = v 4 ,
B 1

8¢ _ -1 g2 S e—w(vlz+1(Kz-t))de
3z 21 F(x 1 .
mK2+i2
-1 B dk

ﬁ_m F(x) .Ml+ E\)X__%]z]’

1

where the inner integral is evaluated as above. The new integral
in k has integrand single valued except on the cut. Deform the
contour using a large lower half plane semicircle, which gives
zero contribution as the integrand is 0(x™2) for large K .

The contour now becomes a loop about the positive real axis. As
the integrand is single valued for 0 <k <k, = o™l and for

Kk > B7~ , these parts of the contour cancel, except for the
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Rayleigh pole earlier evaluated. We are left with a loop contour
C about the cut a-l <« < g-l ,» and therefore

|
|

where ¢ ¢, + ¢2 the first term being the Rayleigh wave. An
integration “over” z from « to 2z then yields ¢, which can
be taken to vanish for 2z large.

Similarly,

~v'z-1(kx-wt)

F(k)

-w(viz+i(Kx—t)]

-1 o 21Kv1e ea
= 26 kdw

o0
°op _ =1 [ J 2ikvwe dkdo

ot 27

1

Jw 2ikv, dk

b

1
8

F(K)v;[l +(Ef?i§92]

where k = «xw and w is again integrated out. Since v; has
branch point « = o=l and v! has branch point «k = B‘l , it
follows that the quotient vl}v; is single valued except on the
cut. Thus 9y/3t can also be éxpressed as a sum of a Rayleigh
pole contribution and a loop contour C integral. The latter is

awz _ =1 2ikv | dk
3t 2mz Flx)v 2y °
c [+ 2=y]
1
V., Z

1

and wz can be determined by integration over time from O to
t . We shall omit further details.

Observe that the loop integrals represent a bundle or
packet of waves that propagate with velocities from o to B8 .
There are two sharp wave fronts represented by the leading and
trailing edges of this packet. By the Paley Wiener theorem it
can be shown that ¢ and ¢ vanish outside the leading wave
front, and this is an instance of a general result for hyper-
bolic boundary conditons discussed in Chapter 4. The Rayleigh
wave trails the inner wave front, and at large distances becomes
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the largest term.

4.4 The General Mixed Boundary and Initial Value Problem

Consider a hyperbolic operator P(D) of higher order m ,
an initial manifold t = x,47 = 0 , and a boundary hyperplane
X, =x= 0 . We now study the construction of a formal solution
for appropriate mixed boundary conditions. In the following
section we take up the deeper existential problems for what
boundary conditions is such a problem well posed. Here we con-
sider a source point at (£ ,0,0,0,... 0) and construct a
reflected wave solution for the waves generated by this point
source. Thus Pu = 8(x -2)8,_1(x)8(t) , and u=0 for t <O0.

Let Ak(g ,€3) , k=1,...,m be the roots of P(&)
= P(E1 ,gj JA) = 8 where £&p44 = A . A plane wave solution is
i(xg+x, & +tA )
e ( J7J3 Tk

and on the boundary x = 0 it induces a disturbance with tangen-
tial wave numbers (Ej , A (& ,Ej) . Reflection in the form of
waves travelling towards positive values of x can take the form

ei(xiuk2+xj£j+tkk(i,£j)}

2

where Plupg »&1 ,A) =0 with &5 , A given. We select those
kL 255 5 Ak J .

roots Mg with Re(ugcg)Ax < O which represent wave propagation
in the reversed direction of increasing x . Thus we have
£=1,... ,k; , where k; 1is the number of characteristic sur-
faces issuing from x = 0 into the domain x > 0 , and is equal
to the number of boundary conditions.

Let the boundary conditions be

Bh(DX sD_, ,Dt)u =0 h=1,...,k

for x =0 . The distinct polynomials 3, shall be linearly
independent and may involve high orders of differentiation. Thus
a plane wave with phase

= 0= (x-2)8 + x, &, + tA ( .

k= (xD)E + xgEy B (8, E))

gives rise to a trial solution

i((x-2)e+x, £ +tA ) Ky i(xu  +x &, +tX )
373, <233k

+ 7 e (8,8, )e
k=1 h J k

u=e

Applying the boundary conditions, we find that the coefficients
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¢, are to be determined by the relations

i(x.8.+t2 )
k -1
O=Bhu=e Jd l: gBh(g E )
kzl
+ c_ B (1—1 ’E’,A )]'
gel Bom k8?77 Tk
Now let
A(Ej,lk) =det[Bh(uM,£j,>\k)] ho2=1,...,k
We also write
BolE 58y 5h) = det[B (uy, &5 5201,
1
where uk% = ukl for & #h , ukh = ¢ . Then
(£,8, 51 )

c(gag‘,)\)____elfli_ﬂ______k_.
L J k A(Ej ’Ak)

With X = (2, £ ) , this reflection coefficient pre-
scribes the amplitude and phase of a reflected wave of the %th
mode produced by an incident kth mode. The above quantities are
all algebraic functions of (& ,Ej) and A is a symmetric
function of the wg , £=1,...,k; . The "boundary discrimin-
ant" A can be regarded as a pseudo-differential operator
governing the propagation of waves on the boundary. We can con-
struct a normal surface Sp and wave surface Wp for A ; it
is convenient to regard Sp as a cylinder in RE with
generators parallel to the &, axis. A zero of A(gj » Ag)
gives a set of wave numbers for which the boundary conditions are
not independent with respect to P . These characteristic or
resonance frequencies of the By, will give rise to surface waves.
Real zeros of A , that is, zeros for which g g is real, will
give rise to new wave fronts that may be of the ultrasonic or
supersonic type. Zeros corresponding to complex values of the
Ve g give rise to exponentially attenuated waves within the space
region, which are called Rayleigh waves in seismology. Branch
points are possible in the ukl(gg Ak) and these also give rise
to "branch waves" or "head waves' with ruled surface wave fronts
having geometry related to the intersection of reflected wave
fronts with the boundary. To calculate these waves we must form
the full expression for the reflected elementary solution (Duff,
5, p. 204).

We take the incident elementary solution in the form
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) | (g +x 85 +t1, (6))
n ) 3P g
(2r)® | x= (ﬁ]
R A=Ak(g)

-

K(t ,x) =

and the reflected term then becomes

.m-1 m 1 A (E :‘E- 3>‘
- 1 2 k
esx,x) =" 1L pmony
(em)™ | _ k=1 221 i
R

.
l(XU]Q/-zQ/E 1X.€. u}\
) dag .

Upon carrying out the usual radial integration over {£| R
we find the following distributional expression for K2

k
1
B n Ag(nsmys hy)
Kplxnxyst) = n T
(2m) a k=1 %=1 gk
n
ae
. n
. ynemt+l ?
Px(n ,nj ,Ak)(: +1i0)
where
E=38_,=xu(n, 2 (n))+ x.n, +1tx(n,n) - 2nin,) .

"k [ I A Jd k J J

For this last step, we must assume that P 1is homogeneous so that
all Ag(& ,Ej) . uk(gj » Ax) are homogeneous of degree ome. In
the contrary case, a series expansion in the style of Atiyah,

Bott and Garding (1), can be employed with first term still homo-
geneous as assumed here.

Each term above gives rise to a reflected wave front which
is the envelope of Eyy with respect to the dual variables njy .
The singularity and asymptotic expansion for each of these main
reflected wave fronts can be found using the method of stationary
phase as in Chapter 2 above. The order of the singularity is the
same as for the incident wave, and the amplitude involves the
reflection coefficient as well as other integrand factors con-
taining the 1uyy , Ax and normal surface curvature terms. For
details we refer to Duff (5, pp. 205 -207).

The geometry of these reflected wave surfaces brings in the
head waves that arise from the branch points of the ukz(gj . Ak).
Consider the case of two wave fronts, fast and slow, respectively.
Reflection of the fast front creates fast and slow reflected
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fronts with the slow front inclined more nearly parallel to the
boundary and hence able to "keep up" with the oblique motion of
the intersection of the incident fast front with the boundary.
The slow incident front likewise gives rise to fast and slow re-
flected fronts, but after some time the fast reflected front must
break away -ahead of the boundary intersection of the slow front.
The trace of this reflected fast front on the boundary leaves a
reflected slow wake called a head wave. In such a case there is
a branch point of the “kl(g' ,Ak) which gives rise to this term.
J
(Figures 17,18).

By asymptotics it is found that the sharpness of a head
wave front is one degree less, and the time attenuation one degree
more, than the other fronts involved. (Duff, 1, p. 213).

Complex branch points can also give rise to waves that are smooth
except at the attachment point of a slow reflected front to the
boundary, see Brekhovskikh (1, p. 290), and Deakin (2, p. 236).

Consider now the supersonic or ultrasomic or "lateral"
waves that will arise from a common real zero of A( A)
and P(£ ,&: ,A) . Let A = 2AP(g,) be a real root o% M5 5 1)
= 0 ; the corresponding sheet of Sy 1is a cylinder with
generators parallel to the ¢ axis and it corresponds to a wave
surface on the boundary itself. We suppose that Sy has a real
intersection w1th S, corresponding to the existence of real
roots g(&j AP) satlsfylng P(UQ(EJ , AP) s €3 AP) =0 . This
n-2 dlmen51onal locus (ug ,€j) on S generates a corres-
ponding ruled wave surface that joins sheets of Wy to the
boundary as a supersonic wave front. (Figure 19).

In the integral for the reflected wave we choose a contour
integral form for the A wvariable, obtaining

A, (E L E, 5 A)
_ 1 R B
K, (x 2 Xy ) = (o) P13l % A(Ej s A)
B c(e,)
iz
e Mana
P(g s s A)

Note that the contour C(gj) can now be chosen independently of
¢ which does not appear in A(Ej ,A) whose zeros are the object
of study. Thus the integration over & can be done first, with
the understanding that powers of & in Ap(g &5 s A) can be
replaced by 10/3% operating on =g = -2f + X565 + xug (A ,Ej)

1=
+ tA and on e L . The integral over & then takes the form

00 e-iﬁg
J P(E,E, . 1) de

-C0
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Fig. 17. Normal surface components for reflection of a slow
incident front.

(a)

Fig. 18. Reflection of a slow incident wave front (a) early
stage (b) late stage.
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and may be evaluated by residues in the lower half & -plane.
However residues exactly on the real contour will appear with
~factor *% as we interpret all these integrals as distributions,
in this case with principal values. So we find
_1Q/Vm(£j 3)‘) -lQVm(gj 9>\)
. e . e
mi 2 ETT;_——E—_—X7—+ 2ri E P
Ee'm?>75° Imvm<0 £

-]
vnlreal ’gj > A)

\YJ
m

where vy denotes a root of P(vj €5 » A) =0 .
If v, is a "reflected" roo% ug then the determinant

Ag(vpy > €3 ,A) will be zero if m # ¢ and equal to A(ij s A)
if m= 2.
Let us now reconstitute the integral for K2 :
Kz(x 2 X4 ,t)
ig
m
1 v A v - Y e
= —— ag. dx *
+ ' A P )
(2ﬂ)nim 1 n—lJ e,m (g,J 3)\) g(\)m ,gJ s )
R C(zj)

where

Egm(x) = xjgj + qu(A ,gj) + tA -va(gj S A) .

Here the prime on the summation sign denotes omission of the
"reflected" values of m for which Ag/A 1is zero or unity and
no poles arise. With this in hand we carry out the residue
evaluation of the integral over X , obtaining
b
ig (A7)
b im
1 . Al(vm ,Ej sA) e dﬁj

)

n-l.m
i

B
Rn—l )

(2'") lam A(}\)(g‘] ’>\ P (Vm ,gJ 3>‘

g

After the radial integration which is possible as Pg »Ag and A
are homogeneous functions, we obtain

b
in(_l)mﬂ. ' A!L(vm 3nj 9)‘ )
(2n)n-l 2,m A(A)(n' ,Xb)

Q Jd
n-1 an
n

by (- by . . n-mtl °
Pev, 50y 520) (., (A7) +10;]
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We omit details of the stationary phase evaluation of this
singularity, but observe that there is one less n ~integration
sO the order at a point of nonzero curvature is % greater than
that of the main sheets of W . The order is s-(#m-m+2) ang
also the leading term is homogeneous of degree —{(%n -1)
in x,t , and % Jointly. For details we again refer to
Duff (5, p. 217).

The geometry of the wave front WEm is deducible by duality
from the geometry of Sy and S . As WEm corresponds to
Sg nS =1Ly, we see that WEm is tangent to Wy the ordinary
reflected sheet, and to Wg the "boundary wave surface". Each
generator of W?m is a ray, or half-line, as each root u is
necessarily a reflected root only. The supersonic wave front
makes its appearance at the boundary when the reflected sheet
Wyp first becomes tangent to it, or dually, when the expanding
cone of normals of the reflected sheet first reaches I .
(Figure 20.

The famous example of Rayleigh waves in seismology shows
that there may be zeros Ab(n-) of the boundary discriminant
A(Ej A) such that u; or vy in the expressions above are
complex valued, not real. The wave contributions then arising
are generally smooth, with certain exceptions when source and
observation point lie on the boundary. There are several
qualitatively different cases depending on the geometry of Sp
in relation to the incident normal sheet S, and the reflected
normal sheet Sy . For example, if Sp lies outside both Sg
and S, so that ug and vy are complex valued, then there
will be a smoothly varying contribution for & > 0, or x > O .
It will appear inside the reflected wave sheets and will have
the form of the distribution (E+ie)~2 , g = 4%n +2-m , where
e 1is related to values of x and 2 . This contribution can
be large near the boundary if %n +2 >m as in the elastic wave
case where m=2 , n=3 for this purpose.

4.5 Singularities and localization

The singularities of the reflected wave have recently been
studied by Tsuji (5) and Wakabayashi (1) by the method of
localization used by Atiyah, Bott and G&rding. Their methods may
be somewhat more elaborate in a general case than those described
above, but are also capable of great precision when carried out
in full detail. The order of a singularity is defined by Tsuji
using a Hilbert space which leads to numbers one half step higher
than those used above which were based on orders of homogeneity.
Tsuji and Shirota (1) give an example of fourth order

2 2 2 2.2 2 2

P(D) = (DJC -D —Dy)(a Dy =D -Dy)

where a > 1 , where a head wave appears with the boundary

s
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Fig. 19. DNormal surface and boundary normal cylinder sheets.

02 01

(a)

03

/
02
01
(p)

Fig. 20. Formation after reflection of supersonic boundary

wave sheets.

(a) early stage

(b) late stage.
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conditions B1 =1, B2 = D, . However when the boundary condi-
tions are =1, B, = Di the branch point disappears and

there is no head wave. This could also be seen from the symmetry
with respect to x as discussed for one boundary condition.

A brief account of the recent work of Wakabayashi (1) will
now be given and it is noted that Tsuji (5) has also given very
similar results for homogeneous operators P for the full space
Rl a5 well as the mixed problem in R® x Ry . The notations
used are those of Atiyah, Girding and Bott (1) unless otherwise
stated. For the mixed problem

P(D)ulx) = f(x) , X € Ri » X, 70,
D?u(o ,x") =0 » Os<k<ml, x >0,
Bj(D)u(x)X=O=O » l<i<e , x>0,

n

the number & of boundary conditions equals the number of roots
Y of Pre' -iy¢' ,\) = 0 with positive imaginary parts for
Y > Yo * Let

1

l
P(e",0) =1y (-al(en)
(e ,0) e

where E£&' ¢ En_l - iy0¢' - iFO , and T {F' e 51 (¢
g0 ,P(g) # 0} which

with T = T(P,¢) that component of {f
contains ¢ the given timelike direction.
The Lopatinsky determinant is

B (g, )52

omi P (g7 ,2)

R(£') = det|=— ar|

Jj,k=1 Y

and it is assumed the problem is € well posed, that is,

R(E' +s¢') # 0 for €' e %71 and Ims < -y and Ry(¢') # O
where Ro(g ) is the principal part of R(&') . The reflected
wave is

F(x ,y)
1 L
) zzﬁaiiiz'[ n+l .~ ] E:l exp(ilx ) e “Ynta +xn€n+l]
J-1 .=
4§Jk(£ )Bk(a)g 4 98
R()P,(E' ,E_ JP(E)
wvhere nevy ,0+T , n' ey 0"+ Ty s Npgr = 0, and
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Rjk(g') is the k-j Lopatinsky cofactor.

The method of localization is explgited to study the singu-
larities of this reflected wave. Let I = {g' esn=l (g',g,) eT
for some ¢, € z} . Then it is shown that R(Z') is holomorphic

Q

in BB - iy;¢' - iT . The terms homogeneous of each degree in
R(£') are studied by expanding
by 1 o=
R(tg') = ¢ "[R (8') + 7R (&') + t R (£") + ---

h, being an integer. Then & c %1 i defined as the component
of {e' ¢ B, R, (-ig') = 0} that contains ¢' ; > is an open
convex cone, R?g‘) 20 for &' e =n-l_|y|¢' - i ¥ , and
is star shaped with respect to ¢' .
The localization of R 1is defined by a series
h N .
v lR(v-lrEO'+n') = Qj(rn')v%@J + 0(r
J=0

hg \)N+1/L ),

o

where v 1s small and h1 rational. Then I 0 is defined as
z01

o '3
the component of {n' e Fgo' 5 Qg(—in') # 0} that contains ¢',
where Qg(n') is the principal part of Q.(n') ; this set is an

. 0
open convex cone. Also defined are sets

r
0

¥ =N {ge™ (e,

r or ,0
(77,8 ;) k=1

) € F(P+ 0},

n+l

where certain simple reflected roots only are represented in P, .
Then let

"o (m:go 8) x 8) n B(g0,e0 ) n (B x52).

The reflected wave has a localization expansion (we assume
y—l:...:yn_l-_-o)

Po
_s v 201 0 0 {
t 00exp[ it(x' g yngn + Xngn+l)F(X > ¥, sxn)
- -3 /1
~ Z F (X' aXnayn)t J/ s
=0 £,]

where py 1is rational and L an integer. Also it is shown that

(L k) < L0 L-g L) 0]

U j=q SUPPY. n+l

0
& 5J
c WF(F(x' 2 Y, ,xn)) , for £ =20
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and that the closed convex hull of the supports,

ch ﬁj?_ supp F (x' ,y_ ,x )] <K
=0 20 .
! £, o £

where the support cone K is defined as

= 1 Yot _ saY - . 7
Kg {X >y ,xn) € X, x"*n Y nn+xnnn+l—0VneI‘go} .

Recall that the wave front set WF(u) of a distribution u
is a subset of the tangent bundle T*(Rn+1)\0 , defined as the
intersection of the characteristic sets vY(A) of pseudo-
differential operators of class L0 » Where Au e C* :

Wr(u) = (] vy(4)

AueC®
v(A) = {(x,&) e T*(RO*1)/0 , 1im a(x ,tE) = 0}
too0
. o . n+l .
Since A may be taken as a C function on R s it follows

that the spatial projection wWF(n) = {x |(x ,&) ¢ WF(u)} is a
subset of SSu , and in fact 7WF(x) = SSu , see Hdrmender (k4,
p. 120).

The analytic wave front set WF is defined indirectly
as the complement of that set (x, 5% € T*(Rn+l \ 0 of the
points ((x ,yn ,xn) , & ) such that for some sequence by
described below, there is a conic neighbourhood A of
E0 in =0+l \Q with

N

Bx' Ly x ) (6 () 1(E) < elem) (1 + [EDTY for e s,

Here {¢N} € C (Rn+l) satisfies ¢y =1 on a fixed neighbour-

hood of (x'0 ,yg ,xg) in RP*l independent of N , and
|5%y| < c(em el gor la] < W .
Wakabayashi defines two more sets:

- = a0 _
1"90 = (F(P 0 9¢) XZ) n T n (2 0 * :2)
g Ol O g
3 (¢ )
and n—l
;0 = ' LI + >
Kgo {(X ,.Yn 9Xn) e X, x n yn nn an‘n"‘l > 0
for all ﬁ € F?O}.
- +
Here EO e = 1

~0
\O end K  =¢ for ' =90,
£
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Then he shows that

~0 1
WE(F) < WF,(F) < Ugeanﬂ\oKé SR AR S-S ]

This theorem gives an outer estimate of the singular supports of
the reflected wave functions, and some information of the wave
fronts as well. An example is given in which the Lopatinski con-
dition is not satisfied, and a particular reflected wave front
does not appear in consequence. As the complete details are
intricate, we refer to the forthcoming papers of Wakabayashi (1)
and Tsuji (5) for proofs and explanations.
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CHAPTER 5

Well posed mixed problems for hyperbolic systems with constant
coefficients.

1. Stable boundary conditions. For the initial value problem
for a hyperbolic system, existence theorems have been established
under very general conditions for constant coefficients and
variable coefficients, Hormander (1,Ch.9), Garding (2). For the
mixed initial and boundary value problem, general existence proofs
and the enumeration of correctly posed boundary conditions are
still quite recent even for constant coefficients. Here we shall
describe work of Hersh (1,2) who analysed the algebra of boundary
conditions and showed that a certain stability condition is neces-
sary and sufficient for the mixed problem to be correctly set.

We follow the treatment in Hersh (2) which applies to general
hyperbolic systems with constant coefficients, and will describe
the case of a single hyperbolic system of higher order. Consider

P(D,,D,D, ) U=0, 1<J<m

b
t°7x yj
where P is an nXn matrix of polynomials and U an n-vector.
et P be correct in the sense of Petrowsky, that is, all roots
T of the characteristic equation det P(1,if,in) = 0 satisfy
Re 1 < Mg for some constant Mgy independent of & and
n= (nl,...,nm) . Equations correct in the Petrowsky sense in-
clude hyperbolic equations for which in the case where P is
homogeneous all roots T satisfy Re 1 = 0 (corresponding to
ImA = 0 if A = -it). Parabolic equations such as the heat flow
equation, ut = Au , or Schrddinger's equation wuy = iAu or the
vibrating elastic plate equation uty + A%u = 0 can also be
seen to satisfy the Petrowsky condition. Indeed this is the
natural condition for correctness of the initial problem, because
it has been shown (Shilov, 1, p.262) that the initial or Cauchy
problem has a square integrable solution for all square integrable
initial data if and only if the Petrowsky condition holds.

Now let Fful] =0 for x>0, t >0 and y € Rt . Assume
given Cauchy data which are of integrable square for t = 0 .
Actually by subtraction of a solution of the Cauchy problem we
reduce our mixed problem to the case where the Cauchy data are
zero., Then there are given k Dboundary conditions for x =0 ,
t >0 and y ¢ R® , where k will be determined below by the
character of the roots of detP = 0 . The boundary matrix B
is Rxn and

BI(D,,D,,D )U]__, = F(t,y)

vy Tx=0 =
vhere F is a k vector on the boundary.
Hersh now goes about the determination of all B such that
this problem is correctly posed in 12 , and the specification of
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k is an important partial step. The boundary data F are taken
as a delta function set Fgy = 6(t)6(yq) ... 6(yy) Ix where Iy
is the kxk identity matrix. Then in Fg = BU we take U as
an n*xk matrix with entries consisting of k n-vectors, and we
think of this U as a Green's matrix. Then a solution V for
arbitrary data F(y) can be written as a convolution over the
boundary.

Let the boundary space N Dbe the set of all n vectors U
such that PU=0 for x>0 and t >0, and BU = 0 holds
for x =0, t >0 . Consider now exponential solutions

Tty ) K E5% c
r

r,s

where the sum is taken over roots &g of det P(Tlg, in) =0.
Here Cy g 1is a constant n vector, and for a root &g of multi-
plicity mg , then r = 0,1,...,mg-1 . The finite dimensional
linear space E(t,in) of these exponentials divides into sub-
spaces E (Reg < 0) and E;(ReE > 0) respectively of dimensions

d_ and d4+ . Since there are no roots & for Ret > My as
P(t,£,in) 2 0 then we have in this case E=E @& E* . DNotice
also that when Ret > Mgy we also have d- = const., because the

number d.. of roots with negative real part could change only if
there appeared a root with zero real part. But this has Just been
seen to be impossible.

The boundary conditions B and boundary space N will be
called unstable if N contains exponential solutions U in
E_(r, in) forreal mn and T with real part positive and
arbitrarily large. Such a boundary problem cannot be well posed,
as a sequence of solutions bounded initially but increasing with-
out limit at any later time t can be selected.

If N is stable, (not unstable) but the N obtained by
dropping any boundary condition is unstable, then N 1is called
maximally stable. If N is stable, then N n E (t,i n) = 0 for
Ret > M; , N real. Let W be an nxd. matrix whose columns
form a basis for E (t1,in) . Applying the kxn boundary
operator B , we obtain a k X d. matrix BW . Setting x =0
in BW we obtain a matrix written as ett +iny B , where
B = g(r,gs,in). The columns of B span a certain vector space
of functions of T,&,n . If one of the columns of W 1lies in
N , then as B(N)|y=g = O the corresponding column of B would
be zero, and the linear space generated by the columns of B
would have dimension less than d. . Likewise, if any vector of
the column space of W lies in N , the coclumn rank of B is
reduced.

Hersh uses "permitted values" of T, n to denote real values
of n , and values of 1T with real part greater than M and
M} . Then N is stable if B has rank 4. for all permitted
values of 1 and n . Since B must have at least d_. rows,
therefore k 2d4_. . If B is stable, and k = d_ , then B
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must be maximally stable. Thus B 1is square and stability, or
maximal rank, implies that B-1 exists. Then there exists
exactly one U such that PU =0 and e MU is a tempered
distribution in the guarter space x>0 , t > 0 . Also BU =
6T on x=0, 1t >0, and U has zero Cauchy data. This U
is given by

| [uHe e N
Ulx,t) = -i(en)™ f ar f WB™T dn
(o4}

1 .dnm

M-
where W is a column basis for E (r,in) and M > max(My,M;) .
This formula is established by taking a Laplace transform

in t , and Fourier transform in y1,...,¥y . There results a
system of ordinary differential equations in x :

An

PU =0 > x>0

P(T,Dx,in)U
with
B(T,Dx,in)U

ﬁﬁ =1 x =0

as boundary conditions. We look for solutions growing at most
like xT , and these form a space E  of dimension_d ,  If
is a column basis for E , then U = WB™1 since PU = PWE-1
and ﬁﬁl}FO = ﬁﬁlx=0 B-1 = ,]\3‘]:3“'1 =1

Hersh then shows that U 1is independent of the choice of

basis for E and hence unique. Indeed if Wy = WK where
K = K(t,n) is nonsingular, then

n =

S R -1 _ ferad -1
LT VB S W B [ b = WKABWK] o)
= WK{}§WIX=OK}_1 =ikk Tt =08t = v

The integral formula for U,  is just the inverse Laplace and
Fourier transformation of U , which can be shown to represent a
distribution of finite order. That is, U is holomorphic and of
polynomial growth in (1,n) which can be verified using the de-
creasing character of the exponentials in efXx , and the stability
of N .

Kasahara (1) has pointed out that a difficulty arises in the
calculations of Hersh when multiple eigenvalues are present, since
the smoothness of generalized eigenvectors w; as functions of
T,n cannot be assumed. This difficulty is circumvented by means
of a Cauchy integral in the complex plane. Kasahara also gives a
Justification for the polynomial growth in t,n of the elementary
solution in the case of multiple roots, by means of the Seidenberg-
Tarski elimination theorem.

We also mention here that a similar treatment of the mixed
problem (at least for Dirichlet boundary conditions) has been
given by Shilov (1, p.318) who makes use of a distributional
formulation of the boundary conditions for well posedness in the
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form of analytic continuability of certain expressions in a half
plane.

The Hersh criterion of stability can be applied to the equa-
tions of mathematical physics. For the wave equation Utt"chu =0
say in 3 space dimensions, there is one boundary condition, and
W = e8% where

2= 22 s n? 42 .

With B = bg + lex + bpDy + b3Dy + byDy where b; € R we set
T=w+ v, §=p+ 1qg and take real and imaginary parts of

+ + = el
by + pb, + wb) =0 (5.1.1)
b, + nb, + Eby + oby = 0 . (5.1.2)
Then from the relation of the wave equation we find
2 2
2 2 - 2 2
2o =X 1;‘ Y~ (5.1.3)
c
Pq = E%‘ . (5.1.4)
c

Then B 1is unstable if and only if these four relations have real
solutions with p < 0 and w - +».

From (5.1.1) by and b), must have the same sign, and if
by = by =0 then by =0 . Now solve (5.1.4) for gq , insert
iru (8,002, , radurrexrranse , "B sdning

2 2

[‘—é’y_pz] (5‘2’37+1] +n2+¢2=0. (5.1.5)

This implies lpi > El But, by (5.1.1),
(-b), - ) by 1 by 1

p=——p—— =so that B-2 = , while if T =7 then
b, 1 1 ¢ 1
E—-Z 0 . That is, the four relations can not be solved as des-

1

cribed, and hence B 1is stable, unless one of the following is
true:

(A) bo =3 = by =0

or (B) 0 < Eﬁ-< c
bg

or (C) by = cb)y , and Ez—z 0.

However, if any of these three conditions hold, an explicit
solution of (5.1.1) to (5.1.4) is easily given, and then B is
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unstable. For the one space dimensional wave equation, n , §

are not present and so -cp = w whence by = 0 and by = cby .
Thus all first order B are correct for the one dimensional wave
equation except Dy + cDy

For the heat equation and Schrtdinger's equation a similar
analysis shows B 1is stable unless either bg = by = by = 0 or
biby > O .

Because of the great interest of these results, the case of
the vibrating plate equation wug¢ + A%u = 0 will be mentioned.
Again using Laplace transforms in (t,&) and Fourier transforms
in n,we find 12+ (£2-n2)2 =0 so £ = (n2+i1)? . TFor
each choice of * sign there is a root & with negative real
part, so d- =k =2, Let B = (By,Bp) so detB = B1(&1)Bs(&p)
- By(£2)Bp(gy) where &7 and &, are the two permitted values
of & , with &, # § since ReT < My < 0 .

Consider the simplest powers of Dy :

= L =p 2 .
By = DXl » Bo = DX2 5
then B 1is stable if and only if
%1 % %1 %

£k, % EpE)
for permitted values of 1, n ; that is

a. =0 o_ =0 o, -0 a_-a
£y = o , or (n?+ 1) z (n?-it)

2

Setting n= 0 , one can get equality if aj - op 1is a multiple
of b, For n # 0 , they can be equal only if |a; - ap] > 4 or
‘al - agl = 3 . Hence B 1is stable if and only if lal - a21
1 or 2 . DNote that for the standard problems the exponents are:
0,1 for boundary clamped, 0,2 for boundary supported, and 2,3 for
a free boundary.

Hersh also considers Maxwell's equations and the isotropic
elastic wave equations. For the latter he gets stability unless

(A) bg =Dy =Dy =0, or

(B) 0 < Dby/by < max[//?g R l%fﬁ_] or

where the linear boundary condition B(ui) = 0 for each
i =1,2,3. More complicated boundary conditions for this elastic
system are also discussed.

Observe that in any of these problems it is the zeros of the
boundary forms B(t,£,in) that destroy stability. Hence powers
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of B , or other functions of B vanishing only if B vanishes,
will lead to the same stability results.

The conditions for stability or well-posedness for these
boundary value problems can be shown to lead to L2 integral
estimates for the solutions, Rauch (2), Sarason (1). For if a
component u is 12 on the boundary surface x1 = 0, then by
Parseval's theorem its Fourier transform u? with respect to the
boundary variables is also L2 . Then the full solution is
expressed as a superposition of terms of the form

iy n + tTk + xue)
u(n)e
it ixu

where e does not increase rapidly with t , and e s does
increase rapidly with x . Indeed, for Imuw > O which is the
usual situation, the x-factor is integrable and square integrable
over (0,®) . It is then easily seen that the solution is L2
integrable over space with bound increasing at most like eAt  4in
t . We return to the L2 estimates in Chapter 6, for variable

coefficient problems.

5.2 Propagation of Surface Waves

Here we describe further work of Hersh (3) on the condition
for finite surface wave speed, uniqueness, and time reversibility
of mixed problems. The notion of stable boundary conditions must
be further refined to that of hyperbolic boundary conditions for
these purposes.

Assume now P is corect in Petrowsky's sense and B stable,
and adopt the notations of (L.1). Let A(n) = Max Ret for which
u(t,n) is singular, so that also

A(n) = inf{Ret|E (1,in) has dimd , E n N = 0} .
ReP

Since B is stable, we know A <M . Now let A(s) = Maxi(z)
where In-] <s ,j=1l,...,m , and let F(nl ) be the line
parallel %o the imaginary axis of T such that Ret = A(s) + ¢ ,
e > 0.

To apply the Paley-Wiener theorem to U , we shall need to
divide U by a polynomial Q(T) that does not vanish for N
Ret =2 0 and which has sufficiently high degree. Thus we let U
be the inverse Laplace transform with respect to Tt of u/q .
Since operation by Q(Dt) on U will cancel off the polynomial
Q(T)~ so the support in {y,t} of the inverse Fourier transform

of U contains the support of U .
It can be shown without difficulty that
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Ttr

~ _ 1 e Udg
uln) = 2ri f QlT) i
r
so that ﬁ(n) is seen to be entire in n . Then we have
~ 1 t(n+e) [ |Ulan
D] < & e f o

r

and in this estimate ‘Ul as shown in the preceding section is a
sum of terms like x¥ eXf multiplied by a ratio of polynomials

R/S in (t1,£,n) . Note that Ref < 0 so the exponentials are
bounded for x = 0 . By a special argument based on the Seidenberg
Tarski elimination lemma, Hersh shows that min[S' is a piecewise
algebraic function of € and so can be estimated from below by

a power of ¢ . Hence this estimate follows for each positive ¢

[T(n)]| < C(s)(l+[n|”)et(A(s)+e)

Comparing with the Paley Wiener theorem (Ch. 1, Section 1)
we see that the inverse Fourier transform U(t,x,y) will have
compact support only if

[A(s)| s c|n] + K, c,K e R .

If this estimate holds then the velocity of propagation of waves
near the boundary is at most ¢ . If this condition holds, the
boundary conditions will be called hyperbolic. Roughly speaking,
B will be hyperbolic if in every element of B(1,£,in) the
degree of 1 or & equals the degree in n , and this excludes
conditions such as B =1 - n? of parabolic character.

A uniqueness theorem can also be deduced from the behaviour
of U(n) , using a method similar to that of Holmgren but adapted
to our special regions. If

P(D) = )

i
; Dxpj(Dt,Dy)

0
then construct the bilinear form
L j-1
K, K\ j-k-1
HU,v) = § ) (-1) (DXV)Di P.(D,,D )U
j=0 K=0 J v

and let (U,V) be "H-orthogonal™ if H(U,V) = 0 . Then also
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AMso let P¥(D) = PT(—D) where T denotes the transpose operation
on a matrix P . Then let

N* = {v|P*v = 0, H(U,V) = OVU e N}

so that N¥ is the H-orthocomplement of N . The substitution
of P¥ for P in the various E spaces, W matrices, and so on,
may be indicated by a % : thus W¥ , A% , A%

' The appropriate Greens formula may be written

”(v «PU - U-P*V)axat = fH(U,V)dt - JH(U,V)dt

Dy D, Dy

o] ]f
yrte
Dy D, Dy

where the last terms contain integrands that do not need to be
specified. Here

=]
1}

{0<x<X , 0<t<T, yj € R}

0
Dl= {x=0, 0<t<T, yj € R}
D2= {x=X , 0<t<T , yj e R}
D, ={0<x ,t=0, y. € R}

3 J
Dh—{0<x,t=T,yj € R}

o
I

= {0<x<X, 0<t<T} .

Proof will be given that U = 0 in the distribution sense
if PU=0 in Dy, Ue N, and U has zero Cauchy data on D3y
Assuming these data, three terms vanish from Green's formula.

Now if P*V = h can be solved for a given arbitrary h in Do
with compact support, if V has zero Cauchy data on D) the
"final" time surface, if V e N* , and if V has compact support
in ¥y , then all other terms vanish and we have

H(U-h) dxdt = 0

Do

so U = 0 as stated.

The required V will exist for all h if and only if N¥
is stable for P* backwards, and if A¥(s) = O(s) . Thus t is
replaced by -t , so we need n* disjoint from Ef‘(—T,—in) for
Ret > Mlnj € R . Hersh then shows E (1,in) is H orthogonal to
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ﬁ*"( T,-in), but only the zero vector in ﬁ*(—T —1n) is H ortho-
gonal to the full space E(t,in) . For if Ue £ (1, in) ,

7 e ¥ “(-1,-in) then H(U,¥) is a well defined function H(x)

of x , and an integration by parts gives

b
f (VP00 - 0-P*v}ax = H(b) - #(a)
a

By differentiation we obtain

=V-P0-0.P* =0

=R

so H 1is constant. However H contains only exponential terms
with negative exponents for x > 0 , so the only possible constant
value is H = 0 . To show that only zero is i orthogonal to

E (t,in) , suppose U e E¥(-1,-in) is not, and consider 2(0,) =0
as a differential equation for 0 with ¥ fixed. If n=1
this equation has order less than d and hence fewer than 4
independent integrals. But E has dimension d so a contra-
diction 1s reached for every H orthogonal vector of E yilelds an
integral. For a system with n > 1 , regard all components of U
but one gs frgg parameters, and the same argument will succeed.
Hence N° n E" (-1,-in) = 0 for Ret >M , n;s ¢ R . In fact, the
result holds even for complex n . It follows that A¥(n) = A(-n)
and so A¥(s) = A(s) , as can be seen since N intersects

E (1,in) if and _only if ¥* intersects E* (-7,-in) . Also the

dimensions of E (T 1n) and E* (-1,-in) are equal.
Since now A (s) 0(s) can be assumed, it follows that V

has compact support in y . This finally shows that for A(n) =
0(n) , the solution U is unique in the space of distributions,
with no limitation of behaviour at infinity.

From the Gelfand Shilov theory of Fourier transforms of entire
functions, it can be shown that if A(n) = 0(|n|P) , p > 1 , then
uniqueness holds among functions of growth not exceeding

exp(|n]? ),p' = 5%5

2

The hyperbolic boundary conditions are actually the only ones
for which such a unigueness property holds, as will now be shown.
Recall that B 1is hyperbolic if the speed of surface wave propa-
gation is finite and A(|n|) < c¢|n| + K . Thus if B 1is stable
but non-hyperbolic it will follow that some root t(n) of

det B(t,&(t,n),n) =0

satisfies

Ret = const, p>1

as |n| = ® . Then the problem
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Pu=0 for x>0 and Bu=0 at x =0

has a non-vanishing solution U € ¢ for all t , end identically
zero for t < 0 .

To establish this theorem recall that a function 1t(n) is a
root of detE when ﬁ(r,g(r,n),n] is singular. That is some
vector W in the column space of E 1is annihilated by applying
B(T(n),Dx,n) and then setting x = O . Hence W satisfies

A

P(1,Dg,n)W = 0 for x>0
A
B(1,Dx,N)W = 0 for x =0

and W = 0(]x|¥) for some r as x + ~ . But then
W= eT*NY y satisfies

P(Dt,DX,Dy)w =0 for x>0

B(Dt,Dy,Dy)W =0 on x =0.
Now we construct U as a superposition of such solutions W
which vanishes for t < 0 . The essential hypothesis

Ret 2 c|n|P , p > 1 shows that for Ret » +» , there exist
values n(t) with

>

_ 1
aetB(r,n(t) = 0, [n(o)] < Lrer|

and therefore with
1
1
()] < <] 7P

c
We therefore define 1N, as that solution of detﬁ[r,n(r)] =0
which for each Ret (and for all Imt values) has the smallest
modulus |nl| . This quantity is piecewise algebraic and hence
algebraic for Ret large enough, and because of its minimal
property 1

/
[my(0)] <2< ®

holds. At this stage we can drop the subscript and let n(t) be
that algebraic function root egual to n(t) for large T . As
it has only a finite number of singularities it will be holomorphic
for Ret > M , and so will be W(t,n(t)) . As W is a sum of
terms

r ESX
x'e ° ¢(t,n) where x > O , Ref < O ,

and C 1is algebraic, we have 1

| = [7e™Y] <k exp(it + y]t| )
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for T =M+ bi and M large enough. Also X = K(t) can be
majorized by a polynomial,
Now construct

M+
J W(t)exp(-19)dr

U=
M-
1
where §-< q < 1 , choosing the branch of Tq that is real and
positive when 1t 1is. On the line of integration Ret = M , we

find

Ret? = Iqucos(qargT) 2 ]T\qcos%g
This immediately shows the integral for U converges uniformly
for M > My , and so by Cauchy's theorem gives values independent
of M, Also differentiation under the integral sign with respect
to t,x or y , gives integrals with the same property. This
shows U e C* .

Furthermore,
lu| < eMt.[|&|exp(yn(T) - 9 ar

where the integral can be estimated independently of M . There-
fore, if t < 0 we let M - o and conclude that U =0 , for
t <0 . Since U 5§ 0 is easily shown, it follows that the de-
sired "nonunique" solution has been constructed.

A detailed discussion of time reversibility for well posed
mixed boundary problems has also been given by Hersh {4). For
two variable problems, it is necessary and sufficient if k = zn
and the given boundary conditions are independent in the two
senses required, For more than two variables (and then with
constant coefficients), the boundary operator B should evidently
be stable both ways, implying detB # 0 for IReTl > Mp not just
for Ret > Mg . This would assume that the column space of E
has dimension k both for Ret > Mg and Rer < -My . However
it can be shown that dimE(-1) = dimF(t) , where F is the
solution space of P(7,Dx,n)U = 0 which grow no faster than a
power of |x! as x » -o , Hence the boundary operator can be
stable both ways only if the degree of Dy in P 1s equal to
2k .

For some "parabolic" boundary conditions such as ut = u
for x = 0 , no reversibility can be expected. However if the
operators P and B are homogeneous in D¢ ,Dx and Dy then
the "mirror" problem for t < 0, x < 0 should be correct if the
given problem is correct. By a detailed argument involving Puiseux
series for 1t(&,n) , Hersh shows that if P is hyperbolic and
B stable and hyperbolic for P in t > 0 , x > 0 , then also
B is stable and hyperbolic for P in x< 0, t <0 .



HYPERBOLIC DIFFERENTIAL EQUATIONS AND WAVES 123

5.3 Singularities of the reflected Riemann matrix

For a hyperbolic system of first order

d 3 BTl
P(Dg,Dx,Dy)ulx,y,t) = |Img- - Ao - jzl Aj_’ay_j u=0

the asymptotic expansions about the wave fronts of the reflected
Riemann matrix have been calculated by Deakin (1). Here the
coefficients A ,A:; are mxm constant matrices such that the
system is hyperbolic, Im is the identity matrix, and u an
m-vector. If f(t) is an m-vector point source, located at
(2,0,0..) then

Pu = 8(x-2) 8(y) £(t) ,
and u 1is expressed as u = u +up where

Puj = 6(x-2) 8(y) f(t) , up =0, t <ty , = <x<w

Pup = 0, Bu2 = -Buj,on x=03; u =0,1t<0.

Then the reflected solution wu, 1is expressed as

u2==—U * [Bu;] 0 where
X:

e
U=—= f drf WEdz,,...,dz
(on) " Hp-io & + -

and W ,B are as defined by Hersh. The boundary conditions are
assumed stable and hyperbolic, giving finite propagation speeds.
If R is the Riemann matrix, then
u=R(x=%,y,t) * £(t) - U % [BR] % £(t)
x=0

Considering now only the reflected terms, it is possible to
carry out certain integrations in the convolution and to obtain
0 €+ioo -
U % [BR] o=y = J dnf arw 571(r,10%,1n)
=0 ol (em)" e e-iw

x B(t,ir%,4n) t exp(-1i22Y)

. .2
where zr o= XQ(T/i,n) is a root of detP(t/i,A",n) , and
ty = tj(x—l,T/i,n,AQ) is a column null vector or generalized
null vector of Pj . This expression can be rewritten as
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1 o gtie ¢ 3

y { dn f ars, . (t,n)exp(i(xA"=22Y) + iyn+ rt)
n . 23

Qj (21)” deeo e~

and its asymptotic expansion has the form

Dol (-1)”1??3) # 8(8) T,

L. 0=0 »J
J
where
o
= t, .(1-i0,p,x) a-n-B,
Ii y = + [ dp 2’% (51 . +1i0) J
’ (em) ™ e A”(1-10,p) 2J

*
and Ig?j is defined similarly but with 10 replaced by -i0 .
The phase is

=, = xp'(1-i0,y) + y+p - 47 (1-10,p) + ¢ ,

L%
and Pyp =0, Imp& 2 0 . If characteristic roots are simple,
Bj =0 , and in general Bj is less than the multiplicity of pd
Also, if B is row homogeneous in its derivatives, then ™ . =0

2.3
for o > B *J

At a point distant s from an ordinary point of a wave sur-
face, the asymptotic expansion of the reflected wave is

Lo

a %0 . a *¥0\ =
=§B (sz + sz)Fu(s)+ 1(sz - le)Fa(s)

where, for example.

n a
2 g 1 1
w éLBJ s 1 T ZPE% s 21 n eve
_ as + m = - as m
Fo(s) = ,Fy(e) = -
n-1)/2
s(n'l)/e( ) I -n'l(—a—J I n odd
m as m

Near a lateral or branch wave surface the asymptotic expansion
contains two groups of terms. The first is as above for the
ordinary points but with s replaced by

1.2

5.7 %N

where wj 1is a lateral coordinate measured from the point of
tangency. The second group, after reduction, becomes

w13/2 y + czg‘) F (s) + i(c?. - c*

(c 23~ o

. F (s)
a=-8,+1 %3 ¢
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where C%- is a matrix with C%- = Czq for the outermost lateral
wave for eéach reflected sheet. These terms are one order less
singular than for an ordinary point. However at the point of
tangency with the main reflected front, Deakin shows that this
second group of terms is only % order less singular.

5.4 Interface problems

Suppose that in a vibrating medium there is a change in the
speed of wave propagation across a certain plane, as when light
passes from air to water. Laws of reflection and refraction, such
as Snell's law, have been established for the behaviour of rays,
or for plane wave solutions. However the general radiation problem
can be formulated first as an interface problem for transmission
from one medium to the other; and then as a mixed problem for a
system in a single "composite" region with plane boundary. Here
we shall describe an interface problem discussed by Hersh (4) and
then show how the reduction to a mixed problem is achieved.

Let two media occupy domains D+ where x > 0 in Dy and
x <0 in D. . Let the wave speeds be c+ , and solutions us+
respectively. Let

>0

+ 9, %
utt-ctAu for x<o,t>0,

with u%(0,x,y) = ut (0,x,y) = 0 and let

{B+Cl]{u+}=61 on x=0 .
3% U

Here & = §(t)8(y) where for simplicity we assume one lateral
variable y only. Also

b1 bpp €11 “12

B = , C =

o1 Pop €21 ‘22
where R = bjpcoy - bpopcyy 2 0 and S = byjeop - bpjeio . Then
Hersh shows by a detailed study of the transform algebra that a
unique solution wu exists, with eMtu g tempered distribution

for some M > 0 , unless detC = 0 and one of the following four
conditions holds:

R S
I. ||B||=€:+—c-:=o
II. S =-R < 0, sgndetB = sgn(cy - c_)

III. sgn(R + 8) = —sgn(ll-+ ji} 20
C4 C..
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w., S+ S . 0, sgn{(R+3) = -sgndet B .
Cy Cc_
In the one dimensional problem u%t = c%uix the conditions simplify
and a solution exists unless detB = detC = Re™ + Set =0 .

For the detailed proof we refer to Hersh (L4); however we
remark that essentially the same result is shown to hold for heat
diffusion with the wave equation replaced by the parabolic heat
flow equation uy = kAu , and the differing wave velocities c«
by differing heat diffusivities k%t , with /¥T  in place of c+
in the algebra. Hersh also copsiders the case of a vibrating
medium (wave equation u{t = cyAuy) coupled to a diffusing
medium (heat equation uy = k_4A u~) , for which existence is shown
unless detC = 0 and either {detB=R=8=0} or {R=-5>0,
det B £ 0} or {R+ 8} < 0 in which cases there is no solution.
He also treats the case of infinite wave speed ¢ - « in which
the problem becomes 'stationary" on one or both sides of the
interface. Thus a complete treatment of all the combinations is
possible.

These classes of problems can all be reduced to one-sided
mixed problems by the artifice of reflecting the far side x < 0
in the interface itself and working with the reflected functions
and equations. Thus a new system, say

p(,,D)u =f , P(D

+ Ty e T T+ J{Dg>-DsDo) = f

y’ -— -_

is obtained, with boundary conditions involving both u, and u_
These form a system of the type discussed in §4.1, and the cor-
rectness and stability conditions also carry over to the new
system. For equation P_u_ =0 in x < 0 there should be one
boundary condition for each root &_ of P_(1,£,in) = 0 with
ReE_ > 0 and Ret > M ; each such root goes over into a root &4
of P_(t,-£,in) = 0 such that Ref, < O for Ret > M . We thus
obtain the appropriate number of roots &+ of detP(t1,£,in) = 0
for the new one-sided problem, and this is sufficient for the
proof described earlier. Existence having been shown for the
mixed problem, a suitable reflection back to the two-sided domain
completes the demonstration.

Problems involving one or more parallel layers are also
physically relevant, and solutions can sometimes be constructed
by multiple reflections. Hersh gives in (5) a necessary algebraic
condition for P in the problem of a layer of finite thickness:
For all M > 0 there exists K(M) such that if detP(t,£,in) = O
and Ret > K then [ReE[ > M . This holds for hyperbolic or
parabolic operators.
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CIIAPTER 6.
Mixed problems for equations and systems with variable coefficients.

6.1. Historical survey. For the Cauchy problem existence
theorems were known in the analytic case through the Cauchy-
Kowalewska theorem, in the nineteenth century. The use of integral
estimates for existence proofs dates from the 1920's and 1930's
when such methods were studied by Courant, Friedrichs and Lewy (1)
and Sobolev (1). These were first applied to mixed initial and
boundary value problems by Schauder and Kryzanski (1) in the 1930's,
using estimates as well as analytic approximation methods in the
second order case and treating the Dirichlet and Neumann boundary
conditions.

Mixed problems of higher order were first treated in the case
of two variables, when the number of boundary conditions is equal
to the number of characteristic lines entering the space-time
domain from the corner. Campbell and Robinson (1) treated the
case of semi-linear systems of first order, and higher order
equations. A Lax (1) showed that in the case of multiple character-
istiecs, differentiability is lost on reflection at the boundary.
Thomée (1) gave integral estimates for the two variable problems.

Attention then returned to the higher dimensional situations.
Duff (1) extended the Kryzanski Schauder results to wider classes
of boundary conditions, and gave some isolated results for specific
symmetric boundary conditions for the higher order equation. Duff
(2) and Eisen (1) also treated the analytic case for general non-
linear systems. Then Agmon (1) established an integral estimate
for higher order equations with constant coefficients in the
leading terms. Interest then swung to the most general boundary
conditions in the constant coefficient problems, which were treated
in detail by Hersh as described in the preceding chapter. This
work brought out the roles of reflection coefficients and the pos-
sibility of ultrasonic boundary waves. With a view to subsequent
generalization, Sarason (1) obtained 12 estimates for the solution
in the constant coefficient case.

The securing of L2 estimates in the most general cases of
first order systems with variable coefficients then became central,
and this was established by Kreiss (1). The analogous problem
for hyperbolic equations of higher order was solved by Sakamoto
(1) at almost the same time, using the algebra of differential
bilinear forms created by Hormander (1). A general existence
proof for the higher order equation was then given by Balaban (1)
who brought together all of the intricate parts of the necessary
proof, including an L2 estimate for the equation and for the dual
problem. In the succeeding five years, numerous extensions and
additional contributions have been made to both second order and
higher order mixed problems by Ikawa (1,2,3,4), Mizohata (1),
Kajitani (1,2,3,4), Kubota (1), Miyatake (1,2), Peyser (1) and
by Agemi (1,2,3,4), Shirota (1,2), Okhube (1), Asano, Tsuji
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(1,2,3,4,5) and Sato (1), as well as by Chazarain (1) and Piriou.
Here we can give only a brief description of some selected
aspects of this extensive volume of results. In the next section
estimates for second order equations are considered and very general
boundary conditions established. Then the algebra of higher order
estimates will be described, and an account of an existence proof
given. As more general results and wider definitions of well
posedness, such as the e-well posed definition used recently by
Tkawa and others, are currently being established, this subject
may yet develop considerably before it reaches a definitive stage.

6.2. Boundary conditions for second order equations.

For constant coefficients the work of Hersh (1,2,3,4,5,6) has
shown that a wide variety of boundary conditions lead to a well
posed initial boundary problem. To extend these results to
problems with variable coefficients calls for the combining of
Fourier transform techniques with the type of global extension
used in the theory of elliptic boundary value problems (Hormander
1, Ch. X). Here we give a treatment of the wave equation with a
variable coefficients boundary condition

Bu=Du+ b (t,y)D> + b_(t,y)D> + c(t,y)u = git,y)

X 0 t 1 y >
which is due to Tsuji (3) and in which the technique of pseudo-
differential operators is employed to solve the boundary condition
in conjunction with the wave equation.

The mixed problem to be studied is then

n-1

. 9o
D%—D}zc— .Z D§u=f(t,x,y) R D= -ig—
i=1
where Yy € Rn_l and the boundary is x = 0 . Taking zero Cauchy

data for simplicity we set u =0 for t <0 with f and g
also vanishing then. This problem is said to be H-well-posed at
t =ty 1if for any integer k > 0 there exists an integer m

and a positive number vy, such that for any square integrable
data which satisfy the corner compatibility conditions of order
m-3, there exists a unique solution ult,x,y) in H$ (t > to »
x>0,y e RP1). The Hilbert space HE is the space of square
integrable k'th derivatives over the given domain, and u € HE

if ue~Yt ¢ HE . Tsuyi shows that this problem is uniformly
H-well-posed, if sup bpl{t,y) < 1-¢ , where e > 0 . This con-
dition may be compared with the condition p > 0, @ < 0, Irl <7p
of Chapter 1, which was recently shown by Miyataki (2) to be the
necessary and sufficient condition for L2 well posedness. Also
for n =2 , Ikava (3) has shown that if by =0, by # 0 , the
problem is e well posed (i.e. is H-well-posed and has a finite
propagation speed).
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For the following sketch of the proof we depend on Tsuji (3)
and refer the reader to a detailed forthcoming account. With
g(t,y) = 0 for t <0 the compatibility conditions of order
m-3 imply g(t,y) € Hm‘é( for y z ¢

If we flrst agsume that the problem is H-well-posed, and take
m  sufficiently large, then there is a solution v(t,x,y) € H H
for y 2z yx . Taking boundary values on x = 0 and using the
trace imbedding theorems, it follows that

v (X,t)

o lim u(t,x,y)

x>0
and

vl(x,t) = lim D_ u(t,x,y)
x>0
k-1 x-%
exist and belong to Hy and HY respectively. Now
- i(tT+ + ~
() = en™ [ T V8 G () aoan
g8

which 1s the expression of the pseudodifferential operator defined
by D - D2 ., The square root chosen has positive imaginary part,
marked by tge + sign, This formula is an easy consequence of the
relation

. + .
ul(t,x,y) = (em) ™" f el(tT+Xu ) uo(r,n) do dn
n

R

+ Y5
where u = 12_n?2 is the characteristic root with positive
imaginary part that yields bounded solutions for x large and
positive. Comparing vy and vy , we see that

v (t,y) = ;D% - D; v

The boundary condition Bu = g can now be written as a
pseudo-differential equation

(7D2-D§ +bo(t,y)D, + D

t

0 -

(t,y)Dyl + C(t,y))vo = g(t,y)

1
Here T = o-iy (y>0) , and (o,n) e R" .

Conversely, and without assuming existence of an overall
solution, let us suppose vqo(t,y) and vy(t,y) satisfy the
pseudodifferential equation of the boundary condition, and the
defining pseudodifferential relation. Then the given mixed
boundary value problem can easily be solved by taking vo(t,y) as
a Dirichlet boundary value. We note also that if vq(t,y) =0
for t < 0 , then also u(t,x,y) satisfying the homogeneous wave
* equation for t < 0 and the boundary condition wu(t.0,y) = v(t,y) ,
will also vanish for t < O .
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To solve the above pseudodifferential equation we set
+ .
r(t,y31,n) = V12n? + b (t,y)T + by (t,3)n +elt,y)

where T =o6-1iy , v > 0, (o,n) ¢ R* and (t,y) ¢ R" .

Let the pseudodifferential operator be denoted by
R(t,y,Dt,Dy) where

- i + A
R(t,y,DtaD Ju = (20)7 f ot T yn)r(t,y;T,n)u(r,n) dtdn .
J n
R

Then the adjoint operator R* is defined by

(Ru,v) = (u,R"v) u,v e C(R")
and it is easily shown that

TttT+
elttT vn)

-n ~
R*(t,y,DtsDy)V = (27[) [ I'*(t,y,T,TI)V(T,n)dT dn

n
where R

r*(t,y,T,n) = V12-n2 + b, (t,7)T + b (t,y)n + clt,y)

+ +
) Dby (t,¥) Dy,bl(t,y)

and T = o+1iy while T2.n2 is the root of 712-n? with
negative imaginary part.

Now assume supbo(t,y) £1~¢ , where € > 0 . Then there
exist positive constants ck,yx ,k = 0, *1, *2,... such that

k
<Ru> > <u> >

1) <Ru K,y ,RD CkY u k,\,RD u € HY s Y Yy
and

2) <R¥v> > c vy <v> v o€ Hk Y 2y, .

ks"'Y,Rn k ka_YaRn ’ —Y’ k

k .
Here the Hilbert space norm of order k for HY is given
by

2 _ -yt i o |2
v> n= 1 fle Yy (D, ,D )" v|?dt dy,
K, Y,R i+[a!=kRn vy

where yl(Dt,Dy)a denotes a homogeneous positive definite poly-
nomial of degree 'al in the derivations DtaDy

The proof of the first inequality will be given for k = 0 ,
the other cases being similar. Let <u,v> = <u,v>q,y RO dencte
the scalar product, and form
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<Ru,u>Y - <u,Ru>Y = ((ﬁf;z—nz - .ykz—nz alt,n) ,ﬁ(T,n))

-2iy <u b0 u>Y + <u DtbO u>

+ <u,D b,u> + <u,(c-c)u>
y Y Y

If the imaginary part of 12.n2 is denoted by f(t,n) , then

£(t,n) = == [{(y2+n2~02)2 + hczYz}l + y24n2- 6277 » Y
/2

as may be verified for all real y,n,o .
Thus we obtain

Im<Ru,u> 2 (e(r,mult,n)) - Y<u,bou>

1 1
+_—_— +——-
57 U Dtb0u>y Y <u,Dyblu>

+ <Imc.u-* u>

> -1 < >
(eY MO) u,u

where the e 1is the positive number in the bound for by , and
Mg 1s a positive constant. Now if Yo is chosen as YO==2MO/5 .
it follows that for any vy 2 Yo »

Im<Ru,u>Y > Eyaus 2,

2
Thus
€ 2
<Ru> <u_> > |Im<Ru,u> > =y <u>
Yoy Yyoo2
whence
<Ru> > —€—y<u> Y 2y
Y 2 y 0

The higher inequalities for R &and R* are established similarly.

These inequalities show that R is an invertible operator
on a dense subset of HX . To show that the range of R is HEK
we need to know (Friedrichs and lax, 1) that the adjoint operator
R is also invertible - but this is precisely the significance
of the inequalities for R¥ on HE . Hence Ru =g ¢ HEK has a
unique solution u ¢ HE | Combining these results we conclude
that the wave equation has a solution with Dirichlet boundary
values vy which then satisfies the given first order boundary
condition Bu =g

We also mention that Ikawa (2,3) has given a similar account
for wave equations with variable coefficients which in the above
case i1s equivalent to bg =0, by =0 .
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For an equation with variable coefficients, constant coef-
ficient approximations in small patches can be used to find ap-
proximations to solutions and to prove existence theorems. This
leads to the concept of "freezing" the coefficients at a point,
that is, taking these constant coefficient values over a neighbour-
hood or region. Agemi (3) has shown that a second order hyperbolic
equation with variable coefficients and a first order boundary con-
dition form a well posed problem in L2 if and only if every constant
coefficient problem obtained by freezing the coefficients at a
boundary 1is L2 well posed.

6.3 Estimates for hyperolic systems and equations of higher order.

Solution of the mixed problem for systems or higher order
equations involves L? estimates of solution functions and their
derivatives, which in turn depend on certain positivity properties
of the boundary conditions. The necessary algebra has been per-
formed by Kreiss (1) for first order systems, and by Sakamoto (1)
and Balaban (1) for higher order equations. Here we shall follow
the work of Kreiss, Ralston (1,2) and Rauch (1,2) which leads to
a general existence theorem for the mixed problem for a first order
hyperbolic system. Related estimates for first order systems were
alsc given by Sarason {(1).

In this section we describe Kreiss estimates for the constant
coefficient problem assuming it is stable hyperbolic in the sense
of Hersh. 1In the following section estimates for the variable co-
efficient problem are described and the existence proof is outlined.

Consider the system

n
1 =2 9%

u = uO for t=0,x>0

BJu = gj s dJ =100k for x=0,t%t >0

where u 1s an m-vector, A,B. are mXm matrices, and f » Up
are m vectors, g; data functions given on the boundary x =0 ,
t > 0. We assume the system is strictly hyperbolic, that is
A(g) = A(gy) + IBjE; has distinct real eigenvalues for all
{€} ¢ R® . Also we assume the boundary x = 0 is non-character-
istic, that is detA # 0 . The boundary conditions are assumed
to be well posed in the sense of Hersh (2) so that the homogeneous
system does not have any exponential eigensolution with unlimited
growth with respect to t

Let N denote the boundary space defined by the given boundary
conditions and let E_(7,Z') be the linear space of boundary values
of growing exponential solutions in t . Then we require N n E_
= 0 , and assume N 1is maximal with this property. Following
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Kreiss, we may write the boundary conditions in the form
I
uI(O,x',t) =S u I(o,x',t) + g(x',t)

where S is a kxk matrix and g a k vector. The estimate to
be derived is

T T
Hu(o,x',t) |2 at + f ulx,t) |2 at
{o lato,0)l1Z, av + [ a2,

T T
< 1 2 2
< KT(L} le(x ,t)||Rn_1_dt + L)llf(x,t)l]REdtJ

where KXy may depend on T but not on f and g .
By a Fourier transform with respect to x' and Laplace trans-
form with respect to t we obtain the system

~

(ig4n)v = sv = AL + 1 B(w) ¥ + ©
dx
1
e g
where u(x,t) = entv(x,t) . Then s is an eigenvalue if there

is a nontrivial solution of these equations when f and g are

zero. The assumption made on the boundary conditions is that there
is no eigenvalue s with Res =2 0 .

Then Kreiss constructs a symbol or multiplier R = R(w,&,n)
which for ng < n < has the following properties:

(1) RA 1is Hermitian

(2) R is uniformly bounded and is a smooth function of
w,ns,& , and of the matrices A,B,S

(3) With ¢ = (if,0) , |2 = [g]2 + |2,
v=-r£T , n'= -TET , the symbol ﬁ is a function of
c 4
z',n' for |¢f >1

(L) y*Ray = Sl(yiz - Clg|? for all vectors y that satisfy
the boundary conditions; here ¢7,C > 0

(5) Re R(sI - iB(w)) > 65nI , where &5 > O .

Assuming for the moment the existence of R , Observe that
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aQ

Re (v,Rf) = Re[-(%,ﬁA—Cﬁv—] + (v,R(sI-iB(w)0)
Xm 0

Re (—G*IﬁAv'w

Xl=0) + (7,R(sI-1B(w))7)

v

81]v(0,0,8) |2 + 8onllv(xy,0,8)]|% - clg]? .

Estimating the left hand side by Schwartz inequality we easily
find the estimate

¥(x1,0,8) (13 + [9(0,0,8)]2 < const. (||£]|2 + |le]|?)

The above estimate in the space variables now follows by means of
Parseval's formula. We next discuss the construction of the
multiplier, leaving to the following section the description of
estimates for the case of variable coefficients.

Consider first the ''resolvent" eguation

d 3
(sI - P(3/3x))v=9f , P = AR IB; ol
and take its Fourier transform with respect to x' . Then
v(xy,E) satisfies
dv

= -1 - - -1z = - + -1%
il (sT-iB(w))v + A™Hf = MV + A™F

where the matrix M = A-l [sI —iB(w)) has for Res 2 0 precisely
2 eigenvalues k with Rex < 0 and m-f eigenvalues k with
Rek > 0 (Hersh (2)]. It is easily shown that for every

fe Lz[O,W) , for Res > 0 , the resolvent equation has a unique
solution analytic in s , and such that

1511 < «(res) L] 2],

Construct a unitary transformation U satisfying

1 M Mo
UMU — =
L0 My
where Mjq is 2x % with eigenvalues k such that Rek <O ,

and Mpp is (m-g) x (m-2) with Rek > O . Then with h = (hl,nlI)
w = (wl,wll) = U~y , the solution can be written

ST _J JMoalxy=t) \TT (v o

i
1 -
I - f Mll %= rI(T,w) at
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where rl = nl + MlgwII . Also, by Fourier transformation it
follows that

. -1 -1y -1
HM-lBI) |S|dA ln .
Now let z=1if +n,n =20, ¢ = (if,w) and M = M(g,n) =

A‘l((i£-+n)l - iB(w)] = M(z,0) + nA=1 . The following lemmas will
be stated, and for the proofs we refer to Kreiss' paper.

1. There exists a transformation Tg such that for ¢g =
(i€g,wp) # 0 , n = 0 , we have

-1 .
ToMTo ~ = diag(My,Mp,...,Mp) ,

where (a) the eigenvalues k of M , have Rex # 0 , (b) the
eigenvalues « of Mj for > 2 have Rek = 0, and

J
K i 0 0 O
Mj(C,O) =10 « 0 0
0

0 K. 1

while the Kj are distinct.
2. For every ¢g = (ifg,wg) , n =0 . there isa T,
T(g,n) = Tp + nTp + nT, + ...

analytic in ¢ and n 1in a neighbourhood of 5 , n =0 , such
that

TMTL = diag(My,Mp,...,M,) ,

which reduces to that above for ¢ = Lo » N = 0. Also Tp is
real, Ty pure imaginary.

3. In a neighbourhood of ¢g , n =0 , there is a Ty , with
T T = diag(Ny,Nge)
Ty1 M3 T37 — = diagiNpjy,N32
where
Nyp + N0y €= 8T, Nyp+ Nip > 61 § >0
11 11 =~ ’ 12 12 = >
4. If M; has order sxs , for j 2z 2 , there is a con-

tinuous trans%ormation Us(z,n) with uniformly bounded inverse
such that Uj(co,O) =71 ,%and
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rKjl le 0 vess. O
-1 0 Kj2 Yio eee-o 0
Uj Mj Uj =
0 0 KJ3 .....
0 0 Kis

while for n > 0 the eigenvalues k with Rek < 0 stand in the
first rows,
By the preceding each block Mj(c,n) can be written as

1
My(z,n) = [z] (M3(g0) + n'Ny(zg) + 0(z 2)
where Nj = (npg) is real. Thus

5. There is a ¢ > 0 such that Insll zZc¢c>0. Then the
eigenvalues «j, of My (J 2 2) and the corresponding eigen-

vectors ¢jv have the form
%
. t
kg = k5 + [ (iS-Ing ")+ L.
1
%
= ky + |C| s=-1 /S(l —lnsln) S 4 O(|C!(S_2)/S
1 I
¢j\) = (1,06,062, vy OLS_l) + O(ﬂ') s, O F i(is_l nsln’) s

Also there are exsctly

%s eigenvalues s = 0 (mod 2)
pj = <%-(s-l) k with s =1 (mod2), ngg >0
%(s+l) Rek < 0 if s 21 (mod2), ngy < 0 .

To derive necessary algebraic conditions, Fourier and Laplace
transform the homogeneous equations obtaining

A dv . A
sv = AEE-+ iB{w)v x; 20
I 2 g1l

Agmon (1) showed that if the problem is well posed, there is no
eigenvalue s with Res > 0 , for the solution e®8ty(axy,ow)

would overpower any estimate as a >« . Let ¢ = Uy s0 that
a VI Myx Myp) Y1
dxy -

YrT 0 Moo It
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and
1-3S

= + = .
Uy =0 or Sy +5 0

b
o o II "II

Now s 1is an eigenvalue if and only if detSyt = 0 and by homo-
geneity, if there is no zero on the unit sphere 1312 + lw]z , we
have detS8; 2 § > 0 there if and only if there is no eigenvalue
s with Res 2 0 . It follows that the set of parameter points
of the boundary condition space for which an 12 estimate holds
is the interior of the set M for which the problem is correctly
set in the sense of Hersh. This is shown by perturbing the
boundary conditions, in the case when an eigenvalue s with zero
real part is present. R

To construct the symmetrizing symbol R we write R = Ra
and note that the earlier conditions for R amount to

~

1) R is Hermitian with properties 2) and 3)

L) y*Ry 2 81]y|? - c1lg]? for all y with yI = syIl + g.

5) Re R A7 (sI-iB(w)) = Re R M(z,n) 2 6,01
Consider first the region |§| < 1 wherein the eigenvalues «
of M divide into those with Rek < -28 and those with Rek > 28
where ¢ > 0 . Choose U as analytic in 7 ,n so that M;p =0 .
It is well known that there exist matrices

b

D, 20,0, =Dy =D,(z,n) e C(lg] s1,ng<n),3=1.2

such that
(-1)3 (D.M.. +M*D.) > 6T .
3337 85

With ¢ > 0 fixed later, set
-cDp 0
R =U* U
0 D2

Then 1) holds. Also if we set Uy = w then

N I# I . II%. TI
-CW Dlw + W D2w

v¥Ry = (uy)

[

(Uy)

0 Dl

I

and since Sywl + Sypywil = g we obtain 4) if ¢ is chosen small

enough. Finally
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2ReRM = RM + M*R = U* me(Pathy + MRPy) °
Re = + =

*
0 D2M22 + M22D2

so that 5) follows at once from the relations satisfied by D,y
and Do . 1
Now consider |C] z 5 Relation 5) above can be written

Re RM(z,n) = |z| ReRM(g",n") ,

and we construct R as a function of ¢ = C/Ig) s n' = n/l;l .
The argument used above works if n =2 ”6 > 0 for any positive
n) » so we need only consider neighbourhoods of g and n' =0 .
By the second and third lemmas there is a transformation U
diag(T11,T)T € C° with UMU-! having block diagonal form
diag(My,...,Mp) with M; = diag(Ny1,...,Njp) while for

it

[\
N
-

Mj(c',n') = Mj(C',O) +n' N (z') + 0(n'2)

Here elements ngjp of Ny (Q,k = l,...,s(jg) are real while
elements of Mj(c’,o) = M:(zH,0) + Mj(c' -7H) are pure imaginary
and Mj(Co,O) has the form given in the first lemma. Let
be the number of eigenvalues «x of M: with Re v« < 0 for

J
' > 0, and write

e [w(j)' W(j)'}

PJ

I *TIT
. t .
where W(J) consists of the first 3 components of W(J) .

Then the boundary conditions become

.

I IT _
SIW + SIIW =g
where
\] 1] 1
W= [wu) W2 }
and
1 1
1 ()" (2) (r)
W = (WII V1T seves Wi

If for each block Mj we can find an ﬁ which is Hermitean,
has the same smoothness as R , satisfies

w(j)*I{jw<j) > 261[-C[W§j)[2 + [W§i)I2J

where ¢ 1is a (small) positive constant, and Re ﬁj Mj(c',n') >

8sn'I . Then R = U'diag(Ry,...,R,)U has the necessary properties.
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For j =1, we can choose R; = diag(-cI,I) by the fourth
lemma. For j 2 2 , a number of further lemmas are needed, which
we again quote without proof.

(6) Let
(0 1 1 0 0 0 0 dy
0
0 1 0 d1g  dog
C: ,D=
0 1 0
o 0 1 0
L 0 dls dES dss
*

Then DC = C'D , that is, D symmetrizes C .

(7T) Let B be sxs symmetric of the form

by bls-—l 0
B bs—ll bs—l s=1 0
‘ 0 0 0

Then BC = C*B implies B =0 .

(8) Consider C + e¢E where E is sxs symmetric. TFor
0 £ e <egp there is a matrix B such that

(D + eB)(C + ¢E) = 8 = s¥

is symmetric. The elements of B are rational functions of €
and of the elements of E ,

(9) For d 2 2 , there exists a real antisymmetric matrix

0 —fl2 0]
F = fle 0 -f23 v -fS—l,S
0 o1 O

such that FC + C*F* > diag(-1, %d,...,%d) . The choice £i,i41 =
ai2 suffices.
Now we can choose Rj in the form
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~

R = (D+¢€B) ~in'F
with djgn1s 2 2 . Since Mj(g',n') has the form
M (c'5n') =k T+ 1(C + €B) + n'N (') + 0(nl?)

where € = |¢’ —gol and the elements of kjI + iC = Mj (' ,0)
ieE = M3(¢' -¢},0) are pure imaginary and the elements (nﬁk)
of Ni(z') are real. By Lemma 5) we know that |njg| 2 ¢ >0 .
By lemmas 6), T) and 8) we see that

~ ~ 1
R.M, + M*R, = DN, + N*D + FC + C*F) + o(|len'|+|n"|2
M, (Ry = ( ; ] ) (] [+] n']2)

But the upper left hand corner element of DN + N¥D is djgnig = 2
so there is a constant K = K(Ile) such that

0 0 0

DN, + N¥D > - X|D]
b 0 0 I

N

o

By lemma 9), we can choose F so that
¥ *
DN, + NND+ FC+ C'F >»2§,I>0
J J 2

and thus the last of the required properties for the block Mj is
satisfied, provided € and n' are small enough. To fulfil the
second last property, we choose the djs as a sufficiently rapidly
increasing sequence, for

1,2,...,8 1if s

[N
I
1
s
—
PO
~—

and ngy > 0,
and

J=2,3,...,8 1if s

1H]

O
—

A]
~

or ngy < 0.

The Hermitean and smoothness properties of R, are obvious. This
concludes the construction of the symmetrizing symbol R , Where

= RA , and thus yields the existence of the L2 estimates, when
there is no eigenvalue s with Res 2 0 . Ralston (2) has shown
that the same estimates hold if the boundary conditions are complex.

For a problem with variable coefficients, we may consider at
each boundary point, the corresponding 'frozen" problem with con-
stant coefficients. The next step of the existence theory aims to
use these estimates to show that suitabl L2 estimates also hold
for the variable coefficients problem, a step first taken by
Gardlng (7) for elliptic estimates.
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6.4. The existence theorem for the mixed problem with variable
coefficients,

We first describe briefly the method originated by Garding
by which estimates, such as those of the preceding section, can
be established for equations with variable coefficients. Sup-
posing the coefficients vary continuously, we select a partition
of unity 1 = Iy, , where the ¢, are C* , Yy, 2 0 , and each
¥, vanishes outside a neighbourhood of radius e . We then form
the constant coefficient estimates for every ypu , using "frozen"
or "local" constant coefficients. Comparing these with the variable
coefficients, the difference can be shown to be small for small ¢
so that by an adjustment of the constant, the estimates still hold
with variable coefficients for Y,pu . Summing over n , we find
terms that add precisely to u and other terms with derivatives
of Yp that contain lower derivatives or values of u which can
be estimated in terms of the L2 norms of the leading (first) order
of derivatives of wu . From this calculation there emerges a simi-
lar estimate for u in the L2 norm in the variable coefficients
case, the constant depending now on the variability of the coef-
ficients. .

However it is necessary to assume that the multipliers R
for the various constant coefficient problems are uniformly bounded
when the constants &7 ,8o and C of the preceding work are fixed.
This amounts to an assumption that the eigenvalue condition of
Kreiss is uniformly satisfied and that therefore Res < -§ < 0
holds for any eigenvalue of the homogeneous frozen problem. In
this case the frozen problem may be called stable hyperbolic
(Rauch (2,3)). Another way to describe this condition is to re-
quire that the angle between the subspaces Fi(t,z) and E_(1,7)
of the frozen problem should be bounded away from zero. That this
angle can approach zero within the set of hyperbolic boundary con-
ditions is due to the non-open character in the parameter space of
the set of well posed hyperbolic problems. In this respect the
hyperbolic mixed problems are deeper than elliptic boundary value
problems.

We now describe briefly work of Rauch (2) who showed that L2
is a continuable initial condition for the variable coefficient
mixed problems for first order hyperbolic systems:

m

L, = d.u - jZlAj(t,x) Bju - B(t,x)u="F

2

in [0,T] x R , with initial conditions u(0,x) = f(x) and boundary
conditions Mu = ul - sull = g . Here all data are assumed to lie
in a suitable Sobolev-Hilbert space Hs,u(v) with norm

2
s,V,a B

vl

y LHD“MIZ e 2% qy at
|v]<s
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and where V is R} or RB-1 = 3RT , or RU-1 the initial mani-
fold.

Rauch first shows there is a strong solution, which is a
function wuel?([0,T] x R®) for which there exist approximations
u, € C([0,T1 x RE) and ug € CZ([0,T] x R™-1) with

Hun - + 0

o,y « R

¥
o

||un - uo”[o’T] x Rm—l

[[Lun

(@]

- Flito,r1 « RO

and
lu (0,x) - £ll gy > O

as n > , as well as Mug ='g .
The chief tool used for this purpose is a form of Kreiss'
estimate which contains a time factor e'2a and is suitable for

deriving similar estimates of derivatives of the solutions, namely,

o J ”u(t)H;m ™20 4y 4 f |[u(t)”2 o2t o
-— 0 +

Rm—l
0 5 _
c{l f lLu(e) || e
o3 o R{‘I_l

v OO

A

20t g4t + j IMa(e)|? o2 gt

This holds for o sufficiently large and c¢ independent of «o

and u as can be shown from Kreiss' estimate by elementary means.
By successive differentiation, and use of the differential equation
and boundary conditions, similar estimates can be established for
derivatives of u , that is, estimates in the higher Sobolev norms.
These can be written

Al et * ol g [7 Il s + HMuIIS,Rm,a}

wvhere RT+1 is {t,xl,...,xm 3%y 2 0} . Then by applying a dif-
ferentiability theorem of Tartakoff (1, Theorem 3), which requires
o large for s large, it can be shown that u has derivatives
of all orders provided the corner or compatibility conditions are
satisfied relative to the "edge" t =0, x; =0 .

To establish the existence of u , however, similar estimates
(with e20t rfactors) are obtained for solutions of the adjoint
problem. A result of Friedrichs and Lax (1) then shows the existence
of a unique strong solution, for suitable square integrable data.

The main estimate used for a solution u of the full non-homogeneous
problem is
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O I -1 T R T R
s,R, 0 s,R, T,0 s,R, x[0,1],0

se (el o +=lel . +lel ,
s,R, 0 a s,R, ~,0 s,R, "% 0,7],a

where c¢g 1s independent of t , F , g , f and o.

In the most general case when the compatibility conditions
are not satisfied, the main existence theorem obtained is the
existence of a strong solution. If the compatibility conditions
hold up to a certain order k of derivatives, then smoothness of
the solution to that order can also be shown.

We omit the extensive calculations and refer instead to the
paper of Rauch (1, 2, 3) who also gives similar estimates for
hyperbolic polynomials of higher order. Similar estimates for
higher order hyperbolic polynomials, and an existence theorem,
have been given by Sakamoto (1).

Recently Majda and Osher (2) have extended the results of
Kreiss, Ralston and Rauch for first order systems to the case
when the boundary is characteristic, that is when one or more
roots of the matrix IAJn., = A are zero. Geometrically, a
zero root corresponds to %angency of a characteristic surface to
the boundary in space-time, and it is assumed that this holds
throughout the space-time region considered. Several physically
important systems including Maxwell's equations and the
linearized shallow water equations have this property.

For the constant coefficient problem, Majda and Osher extend
Kreiss' calculations based on the Laplace -Fourier transform, and
develop a new symmetrizing construction for the matrix M(s ,iw)
in the conical neighbourhood |s| < e|w| to cover the singulari-
ties that can now arise near s = 0. Here s =n+1i& is the
Laplace transform variable with respect to t,and w denotes
the Fourier transform variable with respect to

x'" = (X, %3 5... »X) , With x; the variable normal to the
boundary x; = 0. In the transformed equations
0
(Es—iB(m))u—-[A ]=F,
Auy

the first Lq equations, corresponding to the zero roots of

A contain no term differentiated with respect to x, . These
equations are solved algebraically for the "z " variables that
do not appear differentiated with respect to x, , and are then
used to eliminate these "=z " variables from the remaining
equations. This yields a system of reduced rank and of the same
form
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as that studied by Kreiss, but with possible poles as s +»ikj(w)
for any root A:(w) , j —1 2 5.1+ 5% of the characteristic
part Bj,(w) of B(w) 5 AJw . For the extensive calcula-
tions needed for these cons%ructlons, we refer to the paper of
Majda and Osher.

For the extension to variable coefficients L? estimates of
higher derivatives in suitable Sobolov norms are required, and
here a new phenomenon appears because the usual calculation for
derivatives taken normal to the boundary requires use of the
differential equation and thus fails for the characteristic
variables that do not appear because the boundary is characteris-
tic. It turns out in consequence that higher derivative
estimates for this characteristic problem entail a "loss of
derivatives" so that less complete differentiability results must
be expected. In their main theorem on higher derivative esti-
mates, Majda and Osher give five distinct cases for which
different orders of estimates hold. They show that for the curl
operator and the linearized shallow water equations the well
posed conditions are those which are maximal dissipative
(Phillips, 1), and for these estimates involving no loss of
derivatives are found. For Maxwell's equations the well nosed
boundary conditions include the maximal dissipative con 1t10ns
and are characterized by p{(8) <1 where p = llm“Sn“ is the
spectral radius and S the coefficient matrix in the boundary
condition ul = Sull + g in Kreiss' notation. Only for these
boundary conditions does the usual estimate hold. A special
estimate is given for energy-conserving boundary conditions for
which HS” =1 . In general, it is also shown that non-symmetric
coefficient matrices and boundary conditicns involving the
characteristic 'z ' variables may lead to loss of derivatives.
An example is given in which kth gerivatives of the solution
behave like 2kth derivatives of the initial data. For further
details reference is again made to the paper of Majda and Osher.

To summarize, the chief stages of the existence theory are
as follows.

1. Reduction of the variable coefficient problem to an
assemblage of constant coefficient problems by "freezing".

2. Derivation of an estimate or inequality for the constant
coefficient problem by means of a multiplier.

3. Extension of the estimate to the variable coefficient
problem and to higher derivatives.

L. Construction of adjoint estimates and derivation of
existence theorem in L2 with gppropriate smoothness for the
solution.

A complete existence proof along these lines for the higher
order hyperbolic equation P(t ,x ,Dt ,Dy)u = £ with boundary
conditions Qj(t »X ,Dt ,Dy)u = g » where Qj(t b X 5T ,ij) are
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linearly independent in £, modulo P+(t 53X o T ,Ej) , has been
given by Balaban (1) in a work of 117 pages in which extensive
use is made of pseudo-differential operators. More recently,
Okhubo and Shirota (1) have given a self-contained proof for
first order hyperbolic systems with boundary conditions well posed
in L2 and with a multiplicity condition that roots of the
determinantal characteristic equation are at most double. They
further assume a condition in the complex plane if the Lopatinski
determinant or boundary determinant vanishes at a double
characteristic root. Also Ikawa (4) has treated the higher order
hyperbolic equation with mixed conditions when the problem is
well posed, not in the L2 sense, but in a "sense of F" which
is determined by properties of the highest order or principal
parts of equation and boundary conditions. Here &€ denotes a
Fréchet space with seminorms | sup |DVu(x)| taken over

MBS
compact subsets K of the given domain E . Again extensive use
is made of pseudo-differential operators and L2 estimates of
successive derivatives. The extensive character of each of these
papers is an indication of the technical complexity of the
necessary theory, and simplifications while desirable may not
easily be found.

The essential hypotheses for the existence of a solution to
a general mixed problem seem to include the following:

1. Condition of hyperbolicity of the differential equation
or system, with restriction such as single or double on the
multiplicity of roots.

2. Number of boundary conditions fixed by number of
characteristic roots in, say, the upper half plane for Im 1 > 0,
(or, the number of inward oriented characteristic surfaces).

3. Roots condition of algebraic independence in § of
boundary conditions, or else a condition on the Lopatinsky
determinant in the vicinity of single or double zeros, together
with a reflection coefficient restriction.

4. Any "frozen" constant coefficients problem at a boundary
point is well posed.

5. ©Smoothness of coefficients and satisfaction to given
order of corner compatibility conditions.

While some more general cases of higher multiplicities re-
main to be studied, little improvement in the existing results
can be expected as many nearby counterexamples are known.
Extensions to other types of partial differential equations, and
to pseudodifferential equations, may still offer challenging
future problems.
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ULTRADISTRIBUTIONS AND HYPERBOLICITY

Hikosaburo Komatsu

Department of Mathematics, University of Tokyo,
Hongo, Tokyo, Japan

ABSTRACT. There are infinitely many classes of generalized func-
tions, called ultradistributions, between the distributions of
L. Schwartz [34] and the hyperfunctions of M. Sato [32]. Each
class of ultradistributions have similar properties as the distri-
butions or the hyperfunctions. They form a sheaf on which linear
differential operators act as sheaf homomorphisms. We have, among
others, two structure theorems of ultradistributions, the struc-
ture theorem of ultradistributions with support in submanifold
(which implies a Whitney type extension theorem for ultradifferen-
tiable functions), and the kernel theorem for ultradistributions.

Ultradistributions are not only interesting for their own
sake but also important for their applications to other branches
of analysis and especially to the theory of linear differential
equations. As an example we have formerly discussed the regular-
ity of solutions of linear ordinary differential equations ([12],
[14]).

Here we consider the hyperbolicity of partial differential
equations and show that the Gevrey classes of ultradistributions
come in naturally in the problem.

1. ULTRADISTRIBUTIONS

Let s, p=0,1,2,..., Dbe a sequence of positive numbers.
Usually we assume the following:

M.0) M0 =1;

M.1) m, = Mp/Mp—l is increasing ;

Garnir (ed.), Boundary Value Problems for Linear Evolution Partial Equations. 157-173.
All Rights Reserved. Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland.
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. < AHP mi
(M.2) M, < AH OgcllgquMp_q s

a.3) 5wl s apnl
. m-+ 3 Apm_— ,
opt1 1 P
where A and H are constants independent of p. 1In some cases
we replace the last three conditions by the following:

M.1)°! mp/p is increasing ;
(M.2)" Mpyy S AHpM.p ;

oo
™m.3)' 3 m1;1<bo.

p=1

(M.1)' is stronger than (M.1) and (M.2)' and (M.3)' are
weaker than (M.2) and (M.3) respectively. (M.3)' is the non-
quasi-analyticity condition of Denjoy-Carleman.

An infinitely differentiable function @ on an open set £
in R® is said to be an ultradifferentiable function of class
(Mp) (resp. of class {Mp}) if for each compact set K in J§L and
h2>20 there is a constant C (resp. there are constants h and
C) such that

(1.1 sup 12" 9] € cnl®hy l)=0,1,2,...

%€K re”
where of o o
ol 1 n 1 on
(1.2) 3" =3, "= (3/3x) T---(3/3x)
and

(1.3) lal= g+ te .
If s > 1, the Gevrey sequence
(1.4) M, = (PN or pPS or [(1+ps)

satisfies the conditions (M.0), (M.1)', (M.2) and (M.3). In this
case we write (s) and {s} for (Mp) and {M 1.

In general the asterisk #% stands for either (Mp) or {Mp}
The space &*(SL) (resp. . *(fl)) of all ultradifferentiable
functions of class * on ) (resp. with compact support)

has the following expression:
(Mp) M,
(1.5 & P () = lin lim § »}
e._
« h-0
{Mp} ,n

(1.6) é;{Mp}(.n_) = lim lim £
ke iad "

) M_ %,
(1.7) ,3(MP (L) = lim lim ,s? P
K& H h>0

h
X ,

x) ,

K bl
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M »h

(1.8) ,8{ p}(n) = lim lim J{Mpi

K&Q h»eo

K 2
iMg,h o e .
where & (K) 4is the Banach space of all infinitely differ-
entiable functions 7 in the sense of Whitney on the reiuﬁar com~-
’

. e iy i .
pact set K which satisfies condition (1.1) and ) is
its closed linear subspace composed of all functions ja on RI
with support in K.

We introduce in the spaces & *(1) and QD*( Q) the locally
convex topologies defined by these expressions. The inductive and
the projective limits appearing here are good ones and we can
prove the following. (My)

Theorem 1.1 ([13], [17]). & P (f) 4is an (FG)-space,

é (&) is a (DLFG)-space, .49(Mp)(5)_) is an (LFG)-space and

@{Mp}(ﬂ) is a (DFG)-space.

Here we employed the terminology of [15]. G stands for
Grothendieck (=nuclear), F Fréchet, L strict inductive limit
and D strong dual. Thus a (DLFG)-space is the strong dual of
the strict inductive limit of a sequence of Fréchet-Grothendieck
spaces. In particular, all the above spaces as well as their
strong duals are complete bornologic Grothendieck spaces.

Under the assumption of (M.1l) and (M.3)' Petzsche [29] has
proved that (M.2)' is a necessary and sufficient condition in order
that any one of the above spaces is a Grothendieck space.

We denote by 0 *'(Sl) the strong dual of BA*(fL) and call

. . . . '{Mp}v .

its elements ultradistributions of class *. o9 (fl) 1is the
space of ultradistribution defined by Roumieu [30] and, if Mp
satisfies certain conditions which Gevrey sequences satisfy (see

Petzsche [29]),,8(Mp)'(.9.) is the space of generalized distribu-
tions due to Beurling and Bjorck [1].

We can prove the existence of a partition of unity of class
% subordinate to any open covering. Moreover, the multiplication
by an ultradifferentiable function of class * and the differen-
tiation g% are continuous on the space 8 *(§l). Hence we can
prove that B*'(fL), SN cR!, form a soft sheaf on which the
differential operators

(1.9) P(x,3) = 5 a 3%, a,e £5Q) ,

ldlsm
act as sheaf homomorphisms and that the dual & *'(L) of £ *(&)
is identified with the linear subspace of 8 *1(Q) composed of
all ultradistributions with compact support.

We write MP < Np if for each L>0 there is a constant C
such that

(1.10) M, < CLPNp , p=0,1,2,... .

If M, < Np and Np satisfies conditions (M.0)-(M.3), then
we have the inclusion relations:
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Q) (N,)
(1.11) &) ¢ € e (M c &‘.{Mp}m)c £ P cEu,

where &(fl) 1is the space of all real analytic functions on &
equipped with the locally convex topology as 8{” (&) . Since the
imbedding mappings are continuous and of dense range, the duals
give rise to the inclusion relations:

YR (M) 1
{4} (< & "y car .

(N,)
(1.12) &'(W<C € P (arcg
These imbedding mappings keep the support (Harvey [8], Komatsu {13]
and hence can be extended to the sheaf isomorphisms:

1.13) 3o cgt™ g g,

where @3 is the sheaf of hyperfunctions. The action of differ-
ential operators (1.9) is compatible with these isomorphisms.

Convolutions are discussed in the same way as for distribu-
tions under the condition (M.2) ([13]).

Moreover, a differential operator

ba
(1.14) P(x, ) = 2, a (x)9%
o
l41=0

of infinite order acts locally and continuously on the spaces of
ultradifferentiable functions and ultradistributions of class (M)
(resp. {Mp}) on L if for each compact set K in JL and eac%
h>0 there are constants L and B (resp. there is a constant
h such that for each L>0 there is a constant B) such that
the coefficients satisfy

A 18}ty
(1.15) }8;2112 |2 ad(x)| <€ Bh “'L M|{5|/Mw|

Such an operator will be called an ultradifferential operator of
class (Mp) (resp. {Mp}).
Theorem 1.2 (First structure theorem). An f is an ultra-

Mp) M . .
distribution in o8 P '(f) (resp. 99“ pa'(J)_)) if and only if
on each relatively compact open set G (resp. on JL ) it is repre~
sented as

00
(1.16) £ =732, 3 f,
with measures f, on G (resp. on f1) such that

lec| -
(1.17) "fd"c'((",) $CL /M lxl=0,1,2, ...

jotd °
for some L and C (resp. for every relatively compact open set
G, every L>0 and some C).

We can prove the theorem under the assumptions (M.1l), (M.2)'
and (M.3)' (see [13]). For the class fMp} the theorem is due to
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Roumieu [30], [31]. He claims that it holds under (M.1) and (M.3)'
but there seems to be a flaw in his proof.

Theorem 1.3 (Second structure theorem [13]). Every ultradis-
tribution f € H*'(fl) may be represented on each relatively
compact open set G in JL as_

(1.18) £ =P(9)g

with an ultradifferential operator P(3) with constant coeffi-
cients and a measure g.

To formulate the structure theorem of ultradistributions with
support in a submanifold we introduce some notations. Let F be
a linear submanifold of R®. Under a suitable coordinate system
it is written

(1.19) F = {(x, 0); xei', 0e®Y}.

"
A point in R" is denoted as (x, y) with x € R? and ye RD .
If § 1is an open set in R, we write

(1.200 n'=Fa

and H*(J') stands for the space of functions on JL.' of n'
variables.

™)
Theorem 1.4. Every ultradistribution f(x, y) € & p ")

(resp. .Q{Mp}'(.ﬂ_)) with support in F is uniquely represented as

(1.21) f(x, y) = 2 fﬂ(X) ® BﬁS(y)

with

My)
fa(x)éoa PIreRy  (zesp. ,Q{MP]'(Q_'))
satisfying the following conditions:

For every compact set K' in JfL' there are constants L, h
and C (resp. and for every L>0 and h>»0 there is a constant
C) such that

181
(1.22) N£,) ) gcL /M, .
B §Mp »h 181

Conversely if a family of ultradistributions f,&€ ®*'( L")
satisfies estimates (1.22), then (1.21) converges in & *'(.)

and represents an f €@*'(Q) with support in F. We have more-
over

(1.23) supp £ = U supp f/! .

Theorems 1.3 and 1.4 are proved by Fourier Analysis. We
employ, in particular, the Paley-Wiener theorems for ultradiffer-
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entiable functions and ultradistributions. To formulate them we
need the associated function

(1.24) M(p) = sup log(fp/M.p), 0L p <o

and the support function

(1.25) HK( ;) = SUE Im ¢x, ; >, ; € ct
X€

where K 1is a compact convex set in R". 1If e Cn, we write
M(C) = M(l;l) We note that for the Gevrey sequence p!S M(f)
is equivalent to § /s,

Theorem 1.5 (Paley—W1ener theorem for ultradlfferentlable
functions [13]). An entire function (§) on ¢® is the
Fourier-Laplace transform of an ultradifferentiable function ?(x)
of class (Mp) (resp. {Mp}) with support in a compact convex set
K in RP" if and only if for each h>»0 _there is a constant C
(resp. there are constants h and C) _such that

(1.26)  |§(5)| € C exp {-M(Y/h) + Bg(5)} .

A sequence ?j of ultradifferentiable functions with support

M) M

in K converges in £ P ®RY) (resp. .9{ pll(an)) if and only if
for each h>»0 (for some h>0) one of the following equivalent
conditions holds:

(a) exp{M(E/h) ~Be(E)}E5(%)

converges uniformly on €7;

(®) exp{M(§/m)} §5(8)

converges uniformly on a strip lIm ;l € a <60

(c) exp{M( g/h)} ?j(g) converges uniformly on [RE.

Theorem 1.6 (Paley-Wiener theorem for ultradistributions [17]).
The following conditions are equivalent for an entire function
?(g) on €0,

(i) ?Y ; is the Fourier-Laplace transform of an ultradistri-

bution of clasq MP) (resp. {Mp}) with support in the compact
convex set K R,

(ii) There are constants L and C (resp. for each L>0
there is a constant C) such that

(1.27) 1T(E)1 € ¢ expiu@ )}, T eR",

and for each £ > 0 there is a constant C£ such that

(1.28) 1ECe)1 S cfmg( gy +elgl}, G e an;
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(iii) There are constants L and C (resp. for each L>0
there is a constant C) such that

(1.29)  1E(Y) € C exp MLy +B( O}, g e €.

A sequence f. of ultradistributions with support in K con-

Mp)
verges in & P () (xesp. oS{Mp}'(Rn)) if and only if for
some L (resp. for each L >»0) one of the following equivalent
conditions holds:

(a) exp {-MLY) -H(g)} T5(L)

converges uniformly on (€@,

(b) exp {—M(L§ )}'fv.(g) converges uniformly on a strip
|mg)Sa <eo ’

~ . n
(c) exp {-M(L g ) }fj ( E ) converges uniformly on R .

The equivalence of conditions (i) and (ii) of Theorem 1.6
has been proved by Roumieu [31] and Neymark [27] without condition
(M.3). The implication (ii) = (iii) is a type of the Phragmén-
LindelGf theorem and we need conditions (M.2) and (M.3) to prove
it. To be more precise, we have the following generalization of
the Phragmén-Lindel8f theorem.

Lemma 1.7. Let F(z) be a holomorphic function defined on

the upper half plane Im z » 0. If for each € > 0 there is a
constant C such that

(1.30) 1F(2)) s ce®?! m 2 >0,

then the non-tangential boundary value

(1.31) F(x) = lim F(2)

ZX
exists for almost every x &€ R and

00
(1.32) log|F(xtiy)| % lf y LoglF®ly,  oyg
) =0 (xmt)2hy2

Then if satisfies (M.2) and (M.3), the Poisson integral
of M(Lx) 4is bounded by M(L'z) +C' with constants C' and L'.

We also obtain a Whitney type extension theorem for ultradif-
ferentiable functions as the dual of Theorem 1l.4. We denote by
EFCAT (resp. D (S1)F) the closed linear subspace of &E%(J)
(resp. D *(fl)) of all elements ?(x, y) such that Qg(f(x,O)
=0 for all B . Next we consider the space §%(dl') Tresp.

;{(.D,')) of all ultradifferentiable functions of class #* in the

) M
sense of Whitney. Namely, é(;ip ) &resp. £{a_ p}(.ﬂ.')) is
the space of all arrays (Cfﬂs (x); B € IND') of functions
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Pa S E,( p)(ﬂ. 'y (resp. & MP}(JL 'Y) such that for each compact
set K' in JL' and h>0 there is a constant C (resp. there
are constants h and C) satisfying

(1.33) sup la ('f =] £ Chlouvﬂl .

%€K" ot gl
D*¥(L') is defined similarly. Since £.*(J7.) and .9 nhH
have similar expressions to (1.5)-(1.8), we can 1ntroduce in them
natural locally convex topologles

Let E* (.ﬂ_) —> £*(fl) be the canonical injection and
lEt { 8 (.D.) “* EX(Q') be the mapping defined by
s ¥)) = Cp(x 0)). Then we have
Theorem 1. 8 (¥l7])

(1.38) 0— £*)F S grw) D 5 gxcan —o

and

(1.35) 0—> 2*() > B%(Q) ~E>.ej;1m') —0

are topologically exact sequences of locally convex spaces.
In case F = 40}, the theorem says that if a sequence Cys
o € N, of complex numbers satisfies

< Jet}
(1.36) fcyl £ Ch M'“'
for each h>0 and some C (resp. some h and C), then there
is an ultradifferentiable function (f(x) of class (Mp) (resp.
{Mp}) such that

1.37) 3% ¢(0) = c,

When n = 1, this has been proved by L. Carleson [3].

We say that a subset K of R® has the cone property if for
each x € K there are a neighborhood U n K of x, a unit vector
e in R® and a positive number €0 such that (UnK)+ £e is
in the interior of K for any 0 < £ < §p. , "

We assume that JL' and S." are open sets in IR® and R™
respectively and that K' and K" are compact sets with the cone
property in RR' and IRA" respectively.

Theorem 1.9. The bilinear mapping which assigns to each pair
of functions ¢(x) _and *%y) the product q(x)\f(y) induces
the following isomorphisms of locally convex spaces:

(1.38)  E£X(AN® &*(AM ¥ &*(L' x ™M
(1.39) J*K.éeﬂ* T B

KH - K'xKll ;

(1.40) o@énp?’(.n.') @ ,94Mp](.9.") ?E(MP}(!L' xA".
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Hence we obtain the kernel theorem similar to the case of
distributions [35].

Theorem 1.10. We have the canonical isomorphisms of locally
convex spaces:

(1.41) B,sus*(m) B*(AN) =LpD*(A"), 8% (™)
ﬂ(.b cam, .9*‘(.!1’))—.8*‘(9.')@09*'(.0.") S x .

Here BS(X, Y) and Lﬁ(X, Y) denote the space of all
separately continuous bilinear functionals equipped with the bi-
bounded convergence topology and that of all continuous linear
mappings equipped with the bounded convergence topology.

Theorems 1.9 and 1.10 have been proved by Komatsu [17] and
Petzsche [29] independently by different methods. Petzsche proves
(1.39) for compact sets K' and K" regular in the sense of
Whitney.

Combining Theorems 1.4 and 1.10, we can characterize continu-
ous linear mappings T: £*(Q) —BH *' () which is local in the
sense that supp Tf € supp f as in Schwartz [35].

Since the ultradistributions are imbedded in the hyperfunc-
tions, every ultradistribution may be represented as a sum of
boundary values of holomorphic functions. We define

P
(1.42) M*(P) = gup log £ p! .
. P Mp
If ME pls, M*( p) is equlvalent to p 1/(s-1)
et V be an open set in €" which contains the open set fL
in BR" as a relatively closed set and let [' be a proper convex
open cone in R®., We denote by Vp the wedge domain VA @®™+il").
Theorem 1.11. We assume (M.1l)'. Then the following condi-
tions are equivalent for a holomorphic function F(x+iy) on Vp:
(a) For each compact set K in JfL and closed subcone [’
of [ there are constants L and C (resp. for each L>0
there is a constant C) such that

(1.43) sup \F(x+1y)' C exp{M*(L/[yD} for ye '

(a)' (1.43) holds for a ray ['* in [ ;
(b) F(xt+iy) tends to an ultradistribution F(x+i[0) as ¥y
tends to 0 in a subcone ['' of [ in the topology of

8™ () (resp. F hiay;
(b)' F(xtiy) tends to F(x+il0) as y tends to 0O in a
ray [ in I in the topology of o8 *'(fL);
(c) The boundary value F(x+1r"0) in the sense of hyper-

function is in gB(Mp () (resp. 0 M-p}'(.ﬂ..)).

Then the topological boundary value in (b) and the cohomolo~
gical boundgry value in (c) _coincide.

The implications (a) & (a)' = (b) =>(c) are proved in [13].




166 HIKOSABURO KOMATSU

The other are also proved in [13] in the one~dimensional case.
When the dimension is greater than one, they are derived from the
edge of the wedge theorem and Kataoka's theorem [11] saying that
the singularity spectrum in the sense of Sato-Kawai-Kashiwara [33]
coincides with the analytic wave front set in the sense of HOrman-
der for distributions and hence for ultradistributions.

Suppose that ri, e Fm are convex open cones in R™ such
that the dual cones

(1.44) F?:{EERH;<Y,E)ZO, ve My}

cover the dual space of RM. An example is the 2% connected
components of (R\ §0})™.

Theorem 1.12 ([13]). Let f & £*'(J), let G be a rela-
tively compact open set in ) and let V be a complex open neigh-
borhood of G. Then there are holomorphic functions F
satisfying the estimate (1.43) such that

s on V.

(1.45) f£(x)

Fp(x+if[0) + - -+ +F (x+i]70).

When ). = RD, KO8rner [19] and Petzsche [29] prove more
strongly that (1.45) holds on R™®. Korner proves it without
condition (M.3).

2. HYPERBOLICITY

Let

2.1) Px,9) = 3, a 03"

21 £m
be a linear partial differential operator with real analytic coef-
ficients a“(x) defined on an open set . in R, We assume
that the principal part

— o
(2.2) p(x,9) = >, a,(x)d
lt|gm
is non-degenerate or that p(x, d) # 0 for any fixed x € f).
The operator P(x,d) is said to be hyperbolic with respect
to the hypersurface § = {xl = 0¢{ in the function spaces G of
n variables and g of n-1 wvariables if the Cauchy problem

P(x, d)u(x) = 0
ak—l

2 u(0,x") _ ' -
) wk(x ), k=1,...,m
Dxl
has a unique solution u & F for any data (w) € m,
We restrict ourselves to the local solvability problem in the
case where J and éﬁ are the same Gevrey class of ultradiffer-

(2.3)
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entiable functions or ultradistributions and give an almost neces-
sary and sufficient condition for hyperbolicity.

As usual the condition consists of three parts.

Condition A. The initial surface is non-characteristic;

Condition B. The characteristic roots are real, i.e. the
roots ;1 of the algebraic equation

(2.4) p(x; §1, §") =0

are real for any x € §§ and t'e jR-1,

To formulate the third condition concerning the lower order
terms, we define the notion of irregularity of characteristic
elements.

We assume that the coefficients a,(x) are continued analy-
tically to the complex open neighborhood V of L. If an
element (%0, gOoo) € P*V = (T*v\V)/cX (;000 stands for the
class of gO € T; V) 1is on the non-singular part of the charac-
teristic variety

(2.5) N(p) = {(x, §) € P*V, p(x,%) =0},

it is called a non-singular characteristic element of P(x,2).
Let d be the multiplicity. Then we can find an irreducible
homogeneous polynomial K(x, %) in ’;' with coefficients in the
ring of germs of holomorphic functions at x0 and a homogeneous
polynomial Q(x,’g) with Q(x9, go) # 0 such that

d
(2.6) p(x,%) = Q(x, 5)K(x, §) " .
We can further find homogeneous polynomials Qi(x, g ) which is
either identically zero or not identically zero on a neighborhood
of (x0, go) in the characteristic variety so that

d dp-1
(2.7) P(x,3) = Q(x, 3)K(x, )" +Q_7(x, )K(x, 3) teee

do
+ QO(X’S )K(X, 3) >

d: .
and Qi(x, 9)K(x,3) 1 jis of order i (see [16]). Then we define

d-d,
. § = = (= ceeym-
(2.8) max{l,m_i (1=0,1,...,m-1}
to be the irregularity of the characteristic element (xo, EOM).

We note that 1 £ 6 <£d. When ¢ =1, P(x,9) is said to
satisfy Levi's condition at (%0, £§0e0).

Now our third condition is the following.

Condition C. In case F =04 = £(8) or .9 (s)r (resp. E,‘{S;
or .QIS}'), the irregularity g & s/(s-1) (resp. 6 < s/(s-1))
at every non-singular characteristic element.

We note that when Conditions A and B are satisfied and every
characteristic element is non-singular, Levi's condition ¢ =1
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is known to be necessary (Mizohata-Ohya [26], Flaska-Strang [5])
and sufficient (Mizohata-Ohya [25], Chazarain [4]) in order that
P(x, @) is hyperbolic in & or 9°'.

Our proof of both necessity and sufficiency depends on the
convergence of formal solutions associated with the irreducible
factor K(x, g) of p(x, g). A holomorphic function (f(x) on
a complex neighborhood of ~x0 is said to be a characteristic
function of P(x, @) if it satisfies

(2.9) p(x, grad (r(x)) = 0.

We assume that grad (f(XO) 0 = §Ooo . Then (f(x) is actually
a solution of

(2.10) K(x, grad ?(x)) = 0.

Let Ij(t), j € 2, be a sequence of functions of one
variable t “satisfying .

(2.11) %fj(t) = Ej_l(t), jez.

Then we can construct a unique formal solution
>0
(2.12) u(x) = 2, u (=) Z ()
j=_°° J J
of

(2.13) P(x,9)u(x) =0

under the initial conditions
k-1
Y
Bxlfl
where fy(x') are arbitrary holomorphic functions defined on a
neighborhood of xU'., wu;(x) do not depend on the sequence §j(t).
Employing Hamada's metho& in [6], we can prove that wu:(x) are
holomorphic on a fixed complex neighborhood Vi of x0” and that
there is a constant C depending only on fp(x') such that

= ' = i
(2.14) 0= & 0h&) k=1l...4, jez,

X1=Xl

(2.15) Juy) ¢ 3y, 5205

C—:H'l(IXl Xl'_J,S;—_I e >1, j<0
(2.16) ‘uj(x)l < { (-3 ’ >

0 , @ =1, j<0

(see [16]). This is the best estimates of this form in general.
Namely if 6 >1 and Qi(xo, grad ?(XO)) # 0 for some i< m
with d-d; = 6§ (m-1), then for a suitable choice of initial
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values fy(x') we have
(2.17)  Juy)| 2 3=y - 2§ |73/ (-5 n/ D

on a neighborhood of x0 with a constant ¢ > 0 for infinitely
many j<O.

The necessity of Condition A is proved by constructing null-
solutions. (Cf. Mizohata [23] and Persson [28].)

Theorem 2.1 ([16]). Let S : $(x) = 0 be a real analytic
hypersurface such that (x, grad \’n(x)oo) is a non-singular
characteristic element for every x € S. If ¢ is the irregu-
larity, then for each 1< s = ¢ /(¢ -1) and x0e S there are
null-solutions exactly in gt’S} and exactly in ,3 8)' on a
neighborhood of %0,

Since the local existence implies a semi-global existence
(cf. Lax [20]), the following is enough to prove the necessity of
Condition B. (See Kataoka [11l] for a more direct proof.)

Theorem 2.2, Suppose that P(x, @) has a non-singular
characteristic element (0, (&3, §')e) such that Im £1>0
and 'e fRn"l\O. Then for any sufficiently small neighborhood

0 of 0 and any € > 0 there is a real analytic solution
u(x) of (2.13) defined on fx €fg; x> —&} which cannot
be extended to any hyperfunction solution across the hyperplane
x] = -2¢ .

The necessity of Condition B in £ and ' have been
proved by Lax [20] and Mizohata [22]. Bony-Schapira [2] show that
Conditions A and B are sufficient for hyperbolicity in 43

Theorem 2.3. Suppose that Conditions A and B are satisfied
and that P(x, 3) has a non-singular characteristic element
(0, goo) of irregularity 6  >1.

Then for each s > 6 /(6 -1) there are Cauchy data W (x")
e&(s)(.ﬂ_') on_a neighborhood JSL' of 0' in RD” -1 such that
the solution u(x) of (2.3) does not belong to .8(5) (o) on
any neighborhood .ﬂ-o of 0 in W™

On the other hand, for each neighborhood L of 0 in {RD
there are Cauchy data wp(x') & 8{5)'( '), where s = a/(c-1)
and A'D> N A RTT such that the solution wu(x) of (2.3) does
not belong to S} (5L

Theorems 2. l 2.2 and 2.3 are proved by constructing a solu-
tion wu(x) of (2.13) as the series (2.12) for a suitable choice
of § (t). If we take the characteristic function (x) as a
local coordlnate function x,, then (2.12) is written

Xn _0-0 (xn—t)j_l
u(x) = J {j):luj(X) W}%(t)dt

(2.12)'

+ ).4 v () — 1 o0&y
k=0 dxn
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It follows from estimates (2.15) that the integral operator
of the first term behaves well. On the other hand, estimates
(2.16) show that the ultradifferential operator of the second
term is continuous on g(S) and ,9(5)' (resp. E‘fs and
,g'fsj') as far as s £ 6&/(0-1) (resp. s< &6/(,-1)). Hence
the solution u(x) has the desired regularity for the proof of
Theorem 2.1 if B (x,) has.

Theorem 2.2 is then proved by employing Sato's fundamental
theorem of regularity ([33], p.356).

If Theorem 2.3 were not true, the ultgadifferential operator
would map every element _§0(xn) in &(s (R) to an element in
,Q(S)'(‘ﬂ. o)+ By the closed graph theorem the mapping is continu-
ous. Hence it follows from the kernel theorem that it is repre-
sented as

2 ak
(2.18) 5w, B(x) = j R(x, £) (£)de

with a kernel K(x, t) € .e(s)'(.ﬂ.o X R). Since the left hand
side is a local operator in x,, we have supp KC {xn = t}.
Hence we have by the structure theorem of ultradistributions with
support in a submanifold

& (x
(2.19) KGx, ©) = 2 v § -0
k=0
with vp(x) € ag(s)'(ﬂ_o) such that
(2.20) v (x) < cLk/k1ys .
Vi "(aa{s},hK),

From the uniqueness of decomposition (2.19) we have vy (x) = u_g(x).
Then (2.20) contradicts (2.17).
The proof is similar for the case §s} (cf. Ivrii [91, [10].)
Conversely we have
Theorem 2.4. Suppose that Conditions A, B and C are satis-
fied and that every characteristic element is non-singular. Then
for each sufficiently small open_neighborhood ' of 0 _in_
R there is an open neighborhood "Q-O of 0 inp RT such that
the Cauchy problem has a unique solution u(x) ez—*(ﬂ. o) (resp.
B*'(Ng)) for any data (w(x')) e £7(ANM (resp. H*'(QND.
A little weaker results have been obtained by Leray-Ohya [21]
and Hamada-Leray-Wagschal [7]. We can prove the theorem by their
methods. Another proof is obtained by constructing a fundamental
solution Ep(x, y') of the Cauchy problem as the integral

(2.21) E (x, y") = J'

Sn—2

E (X v, D wCEY

of the solution u(x) = Eyx(x, y', ') of

C(P(x, Dulx) = 0
(2.22){
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1 311, (n-2) 1 1
axfl

x,=0 B omn™t (xtoyr, §')+i0)n'1

or

§ (Dt Qoatey ' B e ey LD (e y Ty, § )
k,l(_zni)n—l ((x'—y' ,E')"’ﬂ(‘ x'—y']2—<x'-y' ,§|>2;)+i0)n—1

with Reo > 0. According to Hamada [6] the solution u(x) is
obtained as series (2.12) for a suitable choice of Qj(t). Then
it is easy to locate the singularity spectrum of the fundamental
solution. Thus we obtain a result on the propagation of singular-
ity of solution similar to Mizohata [24] and Chazarain [4].
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SOME ASPECTS OF THE THEORY OF LINEAR EVOLUTION EQUATIONS

J.L. Lions

Colldge de France and Laboria

INTRODUCTION

The goal of these lectures is to give (Chapter 1) a short survey
of some of the methods available for proving existence and uni-
queness in linear evolution equations, and in the following
chapters, to indicate some trends and problems in this theory.

Chapter 2 gives an introduction to the theory of homogenization
of evolution operators with highly oscillating coefficients ;
this chapter can be used as an Introduction to the forthcoming

book by Bensoussan-Papanicolaou and the A. on these topics.

Chapter 3 shows how some questions of optimal control lead to
the necessary introduction of "generalized" solutions, and we
shortly present the transposition method, for which we refer to
the book of Magenes and the A. on non homogeneous boundary value
problems. We also briefly give an extension of the Hadamard's
formula (which expresses the lst variation of the Green's kernel
with respect to variations of the domain) to problems of evolu-
tion.

In Chapter 4 we recall a result of Baouendi and Grisvard relative
to an equation of mixed type and we show how this equation can be
"transformed" into an apparently new singular evolution equation
(whose direct study is open).

Each Chapter ends with a short Bibliography.

Garnir (ed.), Boundary Value Problems for Linear Evolution Partial Equations. 175-238.
All Rights Reserved. Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland.
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The detailed plan is as follows

Chapter 1. Methods for proving existence and uniqueness

1.1. Notations
1.2. Functional spaces.
1.3. Abstract problem of "parabolic'" type.

2., Examples
3. Proof of uniqueness in Theorem 1.1.
4., A review of existence proofs in Theorem 1.1.

. Projection theorem.

. Other methods.
5. Mixed formulation.

1. Orientation

2. Setting of the problem
.3. Laplace transform method.
4. Example.

J. L. LIONS

4.1

4.2. Approximation method (I). Semi discretization in space.
4.3, Approximation method (II). Semi discretization in time.
4.4, Approximation method (III). Elliptic regularization.
4.5

Chapter 2. Asymptotic problems. An introduction to homogenization

1. Setting of the problems.

1.1. Notatioms.
1.2. Problems.
1.3. Orientation.
1.4. Remarks.

2. Multi-scale methods.

2.1. Notations. Principle of the method.
2.2. Problem 1.1.

2.3. Problem 1.2 (1)

2.4, Problem 1.2 (2)

2.5. Problem 1.2 (3).

3. Justification by energy methods of the asymptotic calculations

3.1. Problem 1.1.
3.2. Problem 1.2 (1)
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3.3. Problem 1.2 (2)
3.4. Problem 1.2 (3).

Chapter 3. Optimal control and generalized solutions

1. Boundary control.
1.1, Orientation
1.2. An example of boundary control.
1.3. Transposition method.

2. Geometrical control. Hadamard's tyne formulaes.

The domain as "Control wvariable".

2.1.
2.2. Formal computation of y.

Chapter 4. Singular problems of evolution

I. An equation of mixed type.

1.1. Orientation.
1.2. Mixed problem.

2. A singular equation of evolution.

Invariant imbedding

2.1,
2.2. An identification procedure.
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CHAPTER I

METHODS FOR PROVING EXISTENCE AND UNIQUENESS

1. PARABOLIC EVOLUTION EQUATIONS. ABSTRACT SETTING.
1.1 Notations.
Let V and H be two Hilbert spaces ; we shall assume these spaces

to be real Hilbert spaces, changes for the complex case being
straightforward. We shall assume

VcH , V dense in H, V > H continuous ; (1.1)

the norm in V (resp. H) is denoted by || ||(resp.| |), the scalar
product in H is denoted by ( , ). We identify H to its dual, and
if we identify the dual of V in a compatible way, we have

VcHeV' ,
. (1.2)
( , ) denotes the scalar product in H or the scalar
product between V and V' (or V' and V).
Let t be the time variable. We shall assume
tel[0,T], O0<T<o, (1.3)
We consider a family of continuous bilinear forms on VXV :
{a(t;u,v)l < M Hu!l”v” Yt ¢ (0,T)
(1.4)

t - a(tju,v) is measurable in (0,T) Vu,veV,
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and we assume that (ellipticity hypothesis)

I)\ such that
2 2
a(t;v,v) + Alv|® 2 allv] YveVv, a>0, \ (1.5)
a.e. in te (0,T).
We define A(t) by

(A(t)u,v) = a(t;u,v) ,
(1.6)

A(t) € L(V;V').

We want to consider the following problem (in a loose form first)
find u = u(t) such that

%% + A(t)u = £ in (0,T), (1.7)

f given with values in V', u being subject to

u(o) = u o, oug given. (1.8)
One has now to make the above problem precise, by defining the
class of functions where we look for u.
1.2. Functional spaces.

In order to avoid once for all any difficulty related to measur-
ability in t, we assume that

V is separable. (1.9)
We define
2 v .2 '
W(,T) = {v|] vel“(0,T;V), x¢ €L7(0,T5V) ) . (1.10)

Here LZ(O,T;V) denotes the classical space of (classes of) func-
tions v which are measurable with values in V and are such that

E llviey||? at < .

In (1.10) 5%—is taken in the weak sense of distributions with

values in V, i.e.

v

bYs @) = - Jg v(t) é%%EL dt W smooth with real values and

compact support in ]0,TL.
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We provide (1.10) with the norm given by
2 dv(t)
v = v(e) || + | I ]dt (1.11)
1129y =] E[IIve 17 +1 *
where
I, = sup. L1 5 ey,

M

Equipped with this norm, W(0,T) is a Hilbert space.mw

One can prove (cf. Lions-Magenes [1], referred to as L.M. [1]
in what follows)

every function v € W(0,T) is a.e. equal to a conti- g )
nuous function from [0,T] = H.

We have the integration by parts formula : if u,v € W(0,T), then

[T (Z—‘E » v)dt = (u(T),v(T)) = (u(o),v(o)) -

° (1.13)
—JT (U., aV )dt
o)
We also remark that :
if vel?(0,T;V) then A(t)v eL2(0,T;V") (1.14)

and the mapping v * A(t)v is continuous from LZ(O,T;V)

> 1.200,T;v").

1.3. Abstract problem of "parabolic" type.

With the notations of sections 1.1 and 1.2, we now consider the
following problem :

we look for u ELZ(O,T;V) such that

%%—+ A(t)u = £, f given in LZ(O,T;V'), (1.15)
u(o) = u o, u given in H. (1.16)

Remark 1.1. : By virtue of (1.14), if u belongs to LZ(O,T;V)
and satisfies (1.15) then



SOME ASPECTS OF THE, THEORY OF LINEAR EVOLUTION EQUATICNS 181

B e - amuet’0,13v")

i.e. ueW(0,T) so that (1.16) makes sense.

Remark 1.2. : All the remarks which follow readily extend
to the equation

E du(t)

T + A(t)u =

I
Hh

(1.17)

where Ee &£(H;H), E* = E , E invertible positive definite, and
also to cases when E(t) depends smoothly on t with similar hypo-
theses. The situation changes radically when E is not invertible.
For an example of such a "singular" situation, let us give

2
x 228 - ¢ in OxJo,TL, Q = 1-1,1[ , (1.18)

3t 2

9x
u(l,t)=0 , (1.19)

and where the "initial condition" (1.16) has to be replaced by
a "partly initial, partly final" condition, namely

u(x,0) given for x>0,
(1.20)
u(x,T) given for x<0.

For the solution, cf. Baouendi-Grisvard [1].m

Remark 1.3 : We do not restrict the generality by assuming
that

a(tsv,v) = allv]|? . (1.21)

Proof : change u into ektu and choose k2A , A being the constant
which appears in (1.5).m

We shall give in what follows a number of methods for proving the
Theorem 1.1 - We assume that (1.4)(1.5) (or(1.21)) hold true.

Then problem (1.15)(1.16) admits a unique solution in W(0,T) (or
in LZ(O,T;V), it amounts to the same thing). The mapping

f,u »u
o

is continuous from LZ(O,T;V')><H - LZ(O,T;V) (or W(0,T)).
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2. EXAMPLES.

The rather abstract presentation of Section 1 is justified by
the very large number of examples which all fit in the preceding
framework.

We confine ourselves here to a few typical examples. For other
examples we refer to L.M. [1], Lions (1] (L. [1]) and to the
bibliography therein.

Example 2.1.

Let Q be a bounded open set ofiRn, and let us define the usual
Sobolev space of order |

3‘{ c L2} 2.1)

1
H @) = {V! v, a?l-

equipped with its standard Hilbertian norm.
We define next

HL(Q) = closure of D) in Hl(Q) (where D(R) denotes (2.2)

[oe]
the space of C scalar functions, with compact support
in Q).

If T = 3Q is smooth enough (cf. L.M. [1]) then

H @ = {v] ver'@ , v=0on I} . (2.3)
We take
v=8@ ,Hu-=129Q, (2.4)
_ L du 9v
a(u,v) = JQ 1 —ax—l "a"x— dx. (2.5)

We have : V' = H-I(Q), and (1.15)(1.16) is equivalent to the
classical problem for the heat equation given by

du _ _ . r
s Au = £ in Qx]O,TL,

u =20 on I'x]JO,TL = I,

u(x,0) = uo(x) in Q.
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Example 2.2.
Let us take now
1 2
V=H () , H=L1L7(Q) . 2.7)
and a(u,v) still given by (2.5)
Since V' cannot be identified with a space of distribution over

Q, it is better to formulate (1.15) in the (equivalent) "varia-
tional form'".

(%%—,v) + a(tju,v) = (f,v) VYveV, (2.8)

We define

fo(x,t)v(x)dx +J' g(x,t)v(x)dl (2.9)

(£,v) =J
T

Q
where

foeLz(QX(O,T)), g e 12(0,7;12(M) = 1.2(D). (2.10)

It is easy to check that, assuming (2.10), (2.9) defines an
element f of LZ(O,T;V').

Remark 2.1 : If we use (L.M. [1]) the trace theorem in
H (), we see that we can take

1/

geLZ(O,T,H_ 2(r)). m (2.11)

The problem (1.15)(1.16) is equivalent to the following :

du .

T Au = f0 in Ox7J0,TC, (2.12)

g_\‘j:gonz , (2.13)
where ii—= normal derivative to I' directed toward the exterior

of Q, and with the initial condition (1.16). =

Example 2.3.

Let us consider in Q =0x10,T[ functions aij(x,t)e ﬁ”(Q) such
that
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n n
2 .
i};:] aij(x,t)gigj >0 if‘:lgi ,0>0, a.e. in Q. (2.14)

We take, for instance

1
vV = HO(Q) , (2.15)

and we define

du
a(t,u,v) = 2 J {060 -3——3 dx . (2.16)
i-’j Q i
We can apply Theorem 1.1, We have therefore existence and unique-
ness of the solution of
du A(t)u = in € x10,TL
at b s
u=0 on I, (2.17)
u(x,0) = uo(x) on §
where
= 3 Ju
Altu = = 35 = (a;, (x,8) 5. (2.18)
1,3=1 71 J

One has to be careful in the interpretation of (2.18) when - as
it can be the case ! - coefficients a,. are discontinuous.

Let us suppose (as it is sketchy indicated on Fig. 1! for u = 1)
that

qQ = Qou S UQl (2.19)
o .
a.,. 1n Q
a,, = }J ° ., (2.20)
] a.. in @
1] 1

1 . . . . .= .
agi , aij being continuous functions in Qo and in Ql but which

take different values on S. If we denote by

uk = restriction of u to Qk , k=0,1
' Bu
k _ 3 k
At) Y T 23 Bxi lJ BXJ ) in Qk ?

then the lst equation in (2.17) is equivalent to
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t

T
Q

Q . 1

0 -« p > X
Fig. 1

Buo o
W"’A(t) uo=f1n QO
aul 1 (2.21)
*5t—+A(t) ul=f1nQ1,

with the transmission conditions

u =u, on S,
o 1
o 3uo Z 1 8111 (2.22)
bt 2.,., — V. = a,. = V., on §
1,] ij 9x. i ed, ij 9x. i
] 1,] J

where {Vi} = normal to S. The interpretation of (2.21) is formal,
the correct meaning being through the variational formulation. ®

Example 2.4.
v=r© ,8=1@, (2.23)
a(u,v) = (Au,Av). (2.24)

Then problem (1.15)(1.16) is equivalent to
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ou 2 _ .
3T + Au=f in Q,

= ,aH:
u=0, 5 Oon >, (2.25)

u(x,0) = uo(x) in 2.9

Example 2.5. (Changing of "Pivot space"),

In all of the examples taken so far, we have H = LZ(Q). But it
can be useful to make significantly different other choices. We
take (cf. L.M. [1], Chapter 3, N° 4.7.5.)

H=H®, (2.26)
Ve iv] ven E o if@) (2.27)
i
a(u,v) = zJ du My 4 (2.28)
9X. 0OX.
Y] i i

We can apply Theorem 1.1.
The interpretation of the problem is as follows : u satisfies

( %% Wy + au(t),v) = E@),v), Hel (2.29)

where ( , ), denotes the scalar product between V' and V compati-
ble with the scalar product in H. If we assume that

fer’0, 138 (@) (2.30)
then (2.29) can be written

Ju
(3%

where ( , ) denotes the scalar product between HI(Q) and H—](Q).
If we set = Av = ¢, then (2.31) is equivalent to

y = Av) + a(u(t),v) = (£(t), - Av) (2.31)

Ju 3 3¢ B -1
(3¢ »9) + ZJ@;: (-bu) “a;zdx— (£,9) VoeH () (2.32)

hence it follows that

%%—+ Azu =f in Q (2.33)
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subject to Boundary conditions

_ dAu _
u=20, v 0Oon I (2.34)

and of course subject to the usual initial condition

u(x,0) = uo(x) , where now uof:Hé(Q). L (2.35)

Remark 2.2. : We refer to L. [1], L.M. [1] for examples for
systems. ®

3. PROOF OF UNIQUENESS IN THEOREM 1.1.

Assume that u satisfies (1.15)(1.16) with £ = 0, u = 0.
Taking the scalar product of (1.15) with u gives

( %% , u) + a(t;u,u) =0 (3.1)
hence it follows, by using (1.13), that

1 2 t

5 [u(t)| +‘[o a(sju(s),u(s))ds = 0. (3.2)

Since a(sju(s),u(s)) = (xHu(s)lIz, it follows that u = O.
Remark 3.1. : If we have not made the transformation as in
Remark 1.3, we obtain from (3.2) that

%—lu(t)‘z <A J g]u(s)lz ds

which is enough to conclude that u=0 by virtue of Gronwall's
inequality. ®

4, A REVIEW OF EXISTENCE PROOFS IN THEOREM 1.1.

4.1. Projection theorem.

Let us recall (cf. L. [1], Chapter 3) the following ''projection

theorem" : let F be a real Hilbert space (and 1et|||lF be its
norm) and let ® be a pre-hilbertian subspace of F :

$cF, (4.1)
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ll$]]l = norm of ¢e® in ¢ (and ¢ is not necessarily complete
for this (pre-hilbertian) norm);
we assume that

loll, = cllioll - 4.2)
Let E(u,$) be a bilinear form on F x¢ which satisfies :

Yoed , u > E(u,d) is continuous on F ; (4.3)

2

E,0) = aflofl” , a>o0. (4.4)
Let ¢ > L(¢) be a continuous linear form on &.
Then there exists ue F such that

E(u,9) = L(p) Voed . ® (4.5)

Application : we take

F = LZ(O,T;V) s (4.6)

% = {q)l(b € F’ %% € LZ(O’T;V') s q)(T) = O} s

(4.7)
2 2 2 ..
o]l =lhbHF + |¢(0)|° (so that ® is indeed not
complete !)
E(u,9) =JT - (u,?-qi)+ a(t;u,$) ] de (4.8)
o at
L($) = H (£,)dt + (u,6(0)). (4.9)

We leave as an Exercise to the reader to check that this proves

Theorem 1.1.8

4.2. Approximation method (I). Semi-discretization in space.

We introduce a family of subspaces V, €<V where h is, say, a scalar
parameter € ]0,1] , and we assume that

vh, V.

is finite dimensional, (4.10)

1 " . . .Y
Vh converges' to V is the following sense : VveV } (4.11)

there exists v, € V. such that‘]v~vh|l+ 0 as h ~ 0.

We say that V

h

h 'h

is an internal approximation of V. We easily check
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that

there exists a family V
(4,10) and (4,11)

h

of subspaces of V satisfying}(4 12)

Remark 4.1. : We can take an increasing family of spaces
Vh, i.e. such that

v if h>h'

hVhr oo
This 1s the case in the Galerkin's method but it is not the case

if we take for vy "finite element subspaces'. cf. CIARLET [1]. =

We consider now the following problem :

uh(t) € Vh’
(—B—Z?;C—uh(t),v) +altu,v) = (£,v) YveV,, (4.13)
u (o) =uy s
where
uohe:Vh , uoh - uo in H as h > 0. (4.14)

(A sequence of u satisfying (4.14) exists).

h
We remark that (4.13) is a set of differential equatiomns (in
number equal to the dimension of Vh)’ which admits a unique solu=-
tion.

One easily checks (by taking v = uy in (4.13)) that
<
One can extract a subsequence, still denoted by U such that
u, > u in L2(O,T;V) weakly, (4.16)

h

and one verifies that u satisfies E(u,)) = L(¢p) Ve @
(in the notations of 4.1) hence the result follows.
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4.3. Approximation method (II). Semidiscretization in time.

. . . 9
We introduce a "small" increment At and we replace 5% by
ESEiéE%E:;BLE). We define (we simplify somewhat the exposition
by assuming here that u € V)
uZt =u_ eV 3 (4.17)

. -1 . n .
assuming uztl €V to be computed, we define Upne €V as the solution
of

n _ n-l At
YAt T Yac 1 n n
_— v ] + it a(s;uAt,v)ds =
At (n-1)At
(4.18)
I nAt
-_-(EJ f(s)ds,v) YveV
(n-1)At
and we define the step function
_on .
Uy, = U, in [nAt, (n+1)AL[ . (4.19)
One easily checks that
.20
HuAtHLz(O,T;V) < C (4.20)

and one can then extract a subsequence, still denoted by Upt s
such that up, > u in 1L2(0,T;V) weakly as At -+ 0, and one verifies
that u is again a solution of our problem.

Remark 4.2, : In numerical analysis one uses simultaneously
the methods of Section 4.2. and of Section 4.3. (the method being
then an implicit method). We refer to books in numerical analysis
for explicit methods. ®

4.4, Approximation method (III). Elliptic regularization.

We remark first that we do not restrict the generality by assuming
that u = 0. Indeed, given u , one can find w in V(0,T), which
depends linearly and continuously on Uy, and which is such that
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w(o) = u (4.

Then one replaces u by u-w. ®

We then consider, VY € >0, the problem :

191

21)

9 u Bu8
—E—5 +— +A(Du =f, 0<t<T, (4.22)
3t dt €
3u8
ug(o) =0 N —a'E-‘ (T) = 0. (4.23)
This problem is equivalent to the following. We introduce
~ 2 ov 2
W(,T) = {v| vel“(0,T;V), s£€L7(0,T3H) ,v(0)=0},  (4.24)
provided with its natural Hilbertian structure.
For ue,VEw(O,T), we define
ou du
T € ov T "¢
NE(UE’V)— EJO ( 3t EE')dt +_[o(iﬁi sv)de +
(4.25)
T
+.[oa(t;u€,v)dt.
Problem (4.22)(4.23) is equivalent to
T ~
ﬂe(ue,v) =‘(0(f,v)dt Vv eW(0,T) (4.26)
and by virtue of Lax-Milgram's lemma, (4.26) admits a unique
solution. One verifies that
<
and one checks that, as € > 0,
ug -+ u in L2(O,T;V) weakly (4,28)

where u is the solution of our problem.
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4.5. Other methods.

(i) - When A(t) = A one can use the semi-group approach.

Cf. Hille-Phillips [13, Yosida [1], and also for the application
of this method to the case when A(t) depends on t, cf. Yosida [1]
and the references to Kato, Tanabe therein.

(ii) - Spectral calculus. A systematic use of Spectral calculus
(Dunford's integrals) is made in Grisvard [1], together with
application of interpolation theory, for the solution of general
equations

Au + Bu = £
where A and B are unbounded operators.

Other results along these lines have been given by Dubinski [1],
Da Prato-Grisvard [11 [2],

(iii) -~ Laplace transform. This method is useful when A(t) = A
does not depend on t and allows more general hypothesis than in
the semi group approach. It leads to the theory of distributions
semi groups (cf. Lions [2] [3], L.M. [1], Chazarainl1]).

(iv) - We present now, in Section 5 below, the mixed formulation.

5. MIXED FORMULATION.
5.1. Orientation.,

We give now an adaptation to the evolution case of an approach
(Brezzi [1]) used in hybrid methods for finite elements in sta-
tionary problems.

5.2. Setting of the problem.

Let &, and &6 be two Hilbert spaces on T, whose scalar product
(resp. norm)“is denoted by ( , ); (resp. H Hi), i=1,2. We
denote by @{ the dual of ¢;, and we denote by <, > the duality
between &! and ®;. We are given

a continuous bilinear form on @ X®] ,

(5.1)
b= 2 %0

We define A,B,B" by
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a(p0) = <AbLu> A eZ(050])
b(d)50,) = <B,,0,> = <¢1,B*¢2> , (5.2)
B e £(2,30,) , B' e £(0,30])

and we denote by A the canonical isomorphism from ¢, into &

defined by 2 2

Noysy> = (0y50,),- ® (5.3)
We are looking for a function ¢ with values in

2= 0 x0, , ¢(t) = {6,(D,0,(D} , (5.4)
such that

¢ € 17(0,T;0) (5.5)

el

th c 170,130, (5.6)

8¢2

( TR w2)2 + m(d,P) = <f,w2> Yyed (5.7)
where

T, V) = ald, ) + B0, - bo, ) (5.8)
and with

¢2(0) = ¢02 € ®2' = (5-9)

5.3 Laplace transform method.

If we denote by ¢(p) the Laplace transform of ¢, we have to solve
P&, (0),0,), + T, = <gb,> (5.10)

where

<@y = <EM) 0>+ (9,00, -
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By standard techniques (cf, L [2]) it suffices to comnsider the
case when g does not depend on t.

We make the hypothesis made in Brezzi [1] for the stationary
case :

a(h,,0) 20 Vo €0,

9 (5.11)
a(d)l,(bl) > OLHd)lH] , >0 , Vd)] € Ker B,
[6(4,50,) |

sup. ————— 2 C|ly,l[, , c>o. (5.12)

Equation (5.10) is equivalent to
-~ *~

A¢1 + B ¢2 =0 (5.13)

- B@} + PA&z =g (5.14)
We obtain from (5.14)

pb, = A'g + A_IB$I (5.15)
hence (5.13) gives

pAq?1 + 13*A"113&31 = - B*[\_lge@]' ,

. (5.16)

o, e

1 1’

But under hypothesis (5.11)(5.12), (5.16) is an "elliptic" equa-
tion.

Indeed, by virtue of (5.12)

B is an isomorphism from ¢]/Ker B onto @é. (5.17)
If we introduce

c(p30,,9,) = p ald,¥) + (Bb ,BY)), (5.18)
we see that (5.16) is equivalent to

c(p3d,0) = <8N Tgu > Yy eo (5.19)
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and by virtue of (5.11) (5.17) we have

2
Re c(p;ty,0) 2 a ll¢)[l]  ¢,¢0 ,a >0,

(5.20)
if Re p 2 Eo > 0.

Hence it follows that ¢ (p),$ (p) exists, it is unique and we
can compute ¢l’ ¢2 by inverse Laplace transform.

5.4. Example.
We give here a very simple example. But what we say here readily
extends to all examples considered in Brezzi [1], P.A. Raviart

[1], M. Bercovier [1]. We take

oy = (0,1 ¢ e P@, divo, cl’@) , 0, = 12@) ,

a(¢1’¢|)' =L2¢1'1P] dx , b(¢1,¢2) = (div (bl’ U)Z) 5

} . 51 =
we identify °, @2.

We have hypothesis (5.11)(5.12). Indeed Ker B = {¢ |div ¢, = 0}
and one has (5.11). Let us verify (5.12) ; let wz %e given in
L2(Q) ; we define we HA(Q) as the solution of

"Aw=¢’2,

and we define ¢‘ = grad w. Then

b, 0| 1o viax
- B2 ey ll, = ey,

2
o, 1l o, 11, L(Q)
The solution ¢ of (5.7) satisfies
@59 + {@iv h,8,) =0, (5.21)

8¢2
(e s ) = @iv o0 = (£,0,) . (5.22)
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But (5.21) is equivalent to

¢] - grad ¢2 =0 and ¢2 =0 on I = 99,

and (5.22) is equivalent to
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CHAPTER 1II

ASYMPTOTIC PROBLEMS — AN INTRODUCTION TO HOMOGENIZATION

1. SETTING C THE PROBLEMS.

1.1. Notations.

We shall consider in what follows parabolic operators of the type

3 3 X, 0

3 T A4 ) o (b
1 J

3 ) pis t 3

RS LR T (-2
1 € ]

where —-once for all in this Chapter - we adopt the summation con-
vention with respect to indices which appear twice, and where the
aij's are periodic functions.

More precisely, let us introduce :

Y

parallelepiped in R" , Y=1 ]0,y§[ s (1.3)
b

n+1

Y YxJo,T [, <R . (1.4)

We will consider functions aij(y) or aij(y,T)'which satisfy :

© . n . .. .
aij€ L®RY) , aij is Y-periodic, i.e. (1.5)

. . o . .
aij admits period vy in the variable yk,k—l,...,n
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or

© _n+l . . .
.. .. . 1.
a1J eL (R ), a1J is Y periodic (1.6)

We assume that
> .E. > . .e. 1
35 & Ej ag.E. , >0, Vi, a.e. iny (1.7
or a.e. in y and T.

With these hypothesis, all the operators (1.1) or (1.2) where
€>0 and k=1,2,..., are "uniformly parabolic" in €. ®

Remark 1.1 : Operators of this type appear in the study of
composite materials in mechanics, at least for (1.1). Operators
of type (1.2) are studied here for mathematical reasons (we will
see that they lead to interesting mathematical questions).®

1.2. Problems.

Problem 1.1 - Let u, = ue(x,t) be the solution of
3u€ 5 . Bue
3t - g—x— (alJ (E) Sn. = f in Ox]0,TL , (1.8)
1 ]
u, = OonZ=7TxJo,TL , T = 90 , (1.9)
2
ug(x,o) = uo(x) » u € L7(Q). (1.10)

By virtue of (1.7) this problem admits a unique solution

2 1
u € L (O,T;HO(Q)) s (1.11)

when f is given in LZ(O,T;H_I(Q)).

The problem we want to study (Problem 1.1) is the behaviour of
u€§§€+0.

We shall introduce also
Problem 1.2 - Let ug be the solution nf
3u€ BuE

X t _ .
- W(aij <, .?) E) = f in QxJo,T[ , (1.12)
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£ given in L2(0,T;H ' (R), ug being subject to (1.9)(1.10). By
virtue of (1.7) this problem admits a unique solution which satis-
fies (1.11).

Problem 1.2. (k).consists in the study of u, as € > 0.
We shall see that there are three cases :

k=1 , k=2, k integer 2 3. (1.13)

1.3. Orientation.

We study the above problems firstly by a (formal) asymptotic
expansion : multiple scale expansion (cf. Section 2) and we
give next a justification of this method by energy estimates
(Section 3).

1.4, Remarks.

Very many extensions of what follows are possible. The following
Chapter can be thought of as a mere introduction to the Book
Bensoussan-Lions~Papanicolaou (B.L.P. [11]).

We confine ourselves here to a few remarks about some of the
extensions.

The type of result we shall obtain is as follows : there exists
an operator Jt (which is a second order elliptic operator with
constant coefficients), which will be different in Problems 1.1
and 1.2 (k), k=1,2, and k = 3, such that, if u denotes the solu-
tion of the "homogenized problem”.

Ju

3t +#Au = £ in OxJoO,TL, (1.14)
u=0on1l, (1.15)
u(x,0) = uo(x) in €, (1.16)

then, as €0,

u > u in LZ(O,T;H(IJ(Q)) weakly. (1.17)

Remark 1.2 : We have similar results for other Boundary con-
ditions.
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Remark 1.3 : All the results extend to all parabolic opera-
tors of any order or to systems of such operators.

Remark 1.4 : For Problem 1.1 (this is not the case for pro-
blem 1.2 (k)) the results extend to hyperbolic operators.

Remark 1.5 : For non linear problems we refer to B.L.P. [I11].

2. MULTI-SCALE METHODS.

2.1. Notations. Principle of the method.
We introduce
k
y=x/e, T=t/e. (2.1)
Applied to a function ®(x,y,t) or & (x,y,t,T) the operator 5%—
becomes 2 + LA nd the erator jl remains 2 the fqr t
X, € 9Jy. a op ot ot " 1rs

3 1 3 .
case and becomes 3 + ;E 57 in the second case.

We shall set :

€_93 _ 0 Xy 9
P m o, (4@ ) (2.2)
1 ]
&k _23 3 Xty 3
P e s T LG ) w0 (2.3)
i £ j

Applied to a function ¥(x,y,t), p¢ becomes :

1

p¢ = e_zPl + e_le + e°P3 , (2.4)
P, = - 53;—(aij(y) 5%; ),
P, - - 3—3-1- (ag; % ) - % (a7 53—3-) , (2.5)
Py = a—at - 5‘?7 (a;; 5‘3:

Applied to a function o(x,y,t,T) , PE’k becomes :

g,1 -2 -1 o
P =€ Ql +€ Qz + € Q39 (2.6)
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] a
= - — (a,.(y,D)5—)
Q, 3Yi (aIJ(Y )ayj )
=9 .3 By _ 9 d
Q=37 " 0 5 ) T
i j i
-9 -9 I
Q3 T 9t Ox, (aij(y’T) 0%, )3
1 ]
€,2 _ -2 -1
P =€ Rl + € R2 + € R3,
=9 -9 3
R1 T 9t 9y, (aij(y’T) 9y . )
1 J
9 9 9 39
R, = - 5— (a..(y,T) =) - =— (a..(y,T) =)
2 Byi ij ij Bxi ij Byj
-9 _ 9 3 .
Ry =3¢ " 3=, @13 000 57 ) 3
1 J
e,k -k -2 -1 o
P =€ Sl+€ SZ+€ S3+€SA’(k23)
_ 9
S1 79T
3 3
S =——(a (y,T) ) ’
2 Byi ij Byj
9 9 3 3
S, =~ a— (a,.(y,7) 5— ) - 35— (a,;.(y,T) 5~ )
3 Byi ij ij Qxi ij Byj
_ 9 _ 9 9
Sy =9t ok, T g )

1 J

The principle of the method is now, for Problem 1.1,
in the form

2
u, = wo(x,y,t) + ;wl(x,y,t) + € wz(x,y,t) + ...

where

wj(x,y,t) is Y-periodic in y

(and where of course, we replace y by x/e in (2.12)) ;

for Problem 1.2 (k), we expand ue in the form

201

(aij(y,T) By, ), (2.7)

J

(2.8)

) (2.9)

(2.10)

(2.11)

to expand u.

(2.12)

(2.13)
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u_ = wo(x,y,t,T) + €w1(x,y,t,T) + ezwz(x,y,t,T)+... (2.14)

where
wj(x,y,t,T) is §—periodic in y,T. (2.15)
We make, in each case, an identification in (1.8) or in (1.12)

and, as we are going to show, the compatibility of the computation
will lead to the homogenized equation.

2.2. Problem 1.1.

We use (2.4) and (2.12). We obtain

leo =0, (2.16)
le] + P2wo =0, (2.17)
lez + P2w1 + P3wO = f, (2.18)

In (2.16) we look for a periodic solution wo(x,y,t), where x and
t are parameters. But, the only Y-periodic solution of

P1¢ =0in Y ; (2.19)
is

¢ = constant (2.20)
and therefore

wo(x,y,t) = u(x,t). (2.21)
Using (2.21), (2.17) reduces to

da.

Pow, - ( 5y

171

] du _
- () T 0. (2.22)
i ]

We then introduce XJ = XJ(y) by

Pl(yj)
. (2.23)
XJ being Y-periodic,
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which defines XJ up to an additive constant. Then (2.22) gives
v - ) 2 (x,8) * u,(x,t) (2.24)
1 axj ’ l H . .

It remains to solve (2.18). We remark that the equation

P;¢ = £ in Y, ¢ Y-periodic (2.25)
admits a solution iff

J v f(y)dy = 0. (2.26)
(Notice that this condition is satisfied in (2.23)).
Then (2.18) admits a solution v, which is Y-periodic iff

J ¢ (Bow, * Pgw )dy = J ¢fdy = Y| £x) (2.27)
where |Y| = measure of Y.

Using (2.5), (2.24), we have :

d 9wy

|
QL
»
=]
—~
'—ﬂ
,.a
o
~
~
N’
QL
><
Q-
Q)
><

and

du ]
J 3wody—|YI¥-5;(fY (y)dy 5—)
1 J
Therefore (2.27) becomes :

—+:‘tu"f

BN o 4,7 2
#u B, [JY a;;(ndy - JYaik(y) 3y, dy]-ax—j,

(2.28)

where xJ is defined by (2.23) (and where the formula does not
depend on the choice of the additive constant in (2.23)). We will



204 J.L. LIONS

see in Section 3 below that one has (!1.14)...(1.17) for this cons-
truction of .

2.3. Problem 1.2 (1).

We use now (2.6) and (2.14). We obtain :

Qlwo = 0, (2.29)
Qlwl + Q2wo =0, (2.30)
Q]w2 + sz] + Q3Wo = f. (2.31)

In (2.9) x,t and T play the role of parameters, so that

wo(x,y,t,T) wo(x,t,T). (2.32)

But (2.30) admits a solution w

J Y szody =0

I which is Y-periodic iff

o
Y] 5 =0
and therefore
ﬁo = u(x,t). (2.33)
Then (2.30) reduces to
aaij(y,T) 3u

Qu, - —H - 2 (2.34)

oy. j
YJ J

We proceed as for (2.22)., We introduce OJ = OJ(y,T) as the solu~-
tion (defined up to an additive constant) of

i
Q]0 QI(YJ) s
o’ being Y-periodic (and also automatically Ty (2.35)

periodic in T).
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Then

v = -0 0 2 F ). (2.36)
We can find v, Y-periodic solution of (2.31) iff

J Y(QZWI + Q3wo)dy = IY‘f. (2.37)

But

ow ]
B} L 2o

(2.38)
3 39! du
t e JY a, (v, 8 (y,)dy 5~
1 J
and the computation of %1 is possible iff
To
Jo JY(QZWI + Quu )dy dt = | Y| T f. (2.39)

But

T .
o o
3 3 du
JO dt IY Q,w,dy = g{ JO I LT a (y,T)dy dt q

so that (2.39) gives :

5?:- +#u = £,
(2.40)
T
Au=--L 2 J ° J (a . - ag, g"’] (y,7))dydt 2
Y|t © o Jy H 5
This computation will be justified in Section 3 below.
2.4. Problem 1.2(2).
We use now (2.8) and (2.14). We obtain :
leo = o, (2.41)
Rw, + Ryw =0, (2.42)
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R]w2 + sz] + R3W0 = f, (2.43)

But let us remark that the only periodic solution in y and in T
of (2.41) is

W, = u(x,t). (2.44)

Then (2.42) reduces to
2a. .
u

S du
Rwy = 5T (0,1) Tl O (2.45)

l -~

We then introduce ¢J = ¢J(y,T) as the solution (defined up to an
additive constant) of

i
R]¢—RIY"

) ] (2.46)
¢J is Y and T, periodic in y and in T;
then
= - ¢ (Y,T) (x,t) + u, (x,t). (2.47)
J
The equation
Rl¢ =£f, ¢ Y—TO periodic (2.48)
admits a solution iff
To
I J f(y,t)dy dt = 0,
o Y
Therefore we can obtain v, from (2.43) iff
To
JO JY (Ryw, + Ryw )dy dt = Y] T f. (2.49)

But

T 3 (Yo ¢' du
J J sz]dy dt = = J J lk(y,T) (y,1)dy dt %o
o ‘Y 1 ‘0 Yk j

so that we finally obtain
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—3?"'.7{11 = f,

T i (2.50)
13 (% 39 Bu
MAu = e axi [Jo IY(aij a;, ayk )dy dT] ol

o

2.5. Problem 1.2.(3).

We restrict ourselves to the case k=3. We leave it to the reader
to verify that one obtains the same result for k arbitrary >3.

Using (2.8) and (2.10) we obtain

Slwo = 0, (2.51)
Slwl + Szw0 = 0, (2.52)
S]w2 + SZWI + SSWo = 0, (2.53)
Slw3 + SZWZ + S3w1 + S4wO = f,. (2.54)

But (2.51) is equivalent to
WO(X,Y:tsT) = ‘A/,Vo(x’}ﬂt) (2.55)

and (2.52) reduces to
ow

1 ~
-5?- + SZWO = 0. (2-56)

A periodic solution in T exists iff

To
J SZWo dt = 0
o

9 To sa70
T Sy, fo aij(y,T)df §§T'> =0 ;

1 J (2.57)

ﬁb Y-periodic.
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But (2.57) implies

W (x,y,t) = u(x,t) (2.58)
3w]
and (2.56) reduces to Tl 01i.e.
W, =, (x,y,t). (2.59)

We can obtain W, from (2.53) iff

T
o =
Jo (Szw1 + S3wo)dT 0. (2.60)
If we introduce
- —B—B-UT" 2, (7,041 5 > (2.61)
yi o J Yj

then (2.60) reduces to

— (% %3y du
AW] - J W (y,T)dT _BT = 0. (2.62)
o i ]
We then introduce wJ by
Tl =71 i_ ] i A
Ay =Avy. , v =y (y) Y-periodic (2.63)

]

which defines wJ up to an additive constant. Then (2.62) gives
3 Ju
Wi = S 5 () o (x,t). (2.64)

Then (2.54) admits a solution vy iff

T
e
JO (52w2 + S3w] + Sawo)dT = Tof. (2.65)

This equation admits a solution w, Y-periodic iff

2

T
o -
JO JY (84w, + 8,w )dy dT = TOIY]f. (2.66)
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But
T T j
o 3 ( o oY~ du
S.w, dy d1 = =— J (y,T) (y)dy dt =—
IY Io 3% ax; Jyl, %k By ij

and we finally obtain

(2.67)

T .
°© du
fu = — ) Q%UY Jo |:a1_‘| (y,T)a (y)]dy S e
lylr, “i j

3.JUSTIFICATION BY ENERGY METHODS OF THE ASYMPTOTIC CALCULATIONS.

3.1. Problem 1.1.

We denote by ug the solution of (1.8)(1.9)(1.10).
We set

A = - Bxi (a.j(fg FE ) (3.1)

and we denote by a® the bilinear form associated to A” on Hé(Q)

€ _ v
a (u,v) = JQ (EJ BX S;; dx. (3.2)
We have
Bu, € 1
( Tt v) + a (ue,v) = (£,v) Vve‘Ho(Q). (3.3)

By virtue of (1.7) we have

ae(v,v) 2 0 HVHZ > >0, VveHcl)(Q)

(3.4)
o, independent of €.
Therefore
1
ol 2o yyy <€ ¥ = H® (3.5)

where here and in what follows, the C's denote various constants
which do not depend on €.




210 J.L. LIONS

ou

. €
Since £ - f - Au , one has
at €

du

==l < C. (3.6)
9t T1200,15V)

Remark 3.1 : We shall obtain the same estimates for ug solu—
tion of Problem 1.2.(k). ®

Remark 3.2 : One obtains the analogous estimates for all
variational boundary conditions.®

Notations :

€

aij = aij(x/e),
du
€= € €
&i aij 5}; . (3.7)

——g§=f in 0 70,T[. (3.8)

By virtue of (3.5)(3.6), one can extract a sub-sequence, still
denoted by ug s such that

u. > u in LZ(O,T;V) weakly, (3.9)
du
€ du . 2
_§E"+ g in L7(0,T;V') weakly, (3.10)
and since ”£§|I 9 £ C, one can also assume that
€ . 2
€i > Ei in L7(Q) weakly. (3.11)

It follows from (3.8) that
u 9k .

1

3% S = f. (3.12)

0% .
1
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Moreover, it follows from (3.9)(3.10) and from standard compact-
ness arguments that

ue -+ u in LZ(Q) strongly. (3.13)

Remark 3.3 : If Q is unbounded, it follows from (3.9)(3.10)
that

u€ -+ u in LZGDx]O,T[) strongly
where O is any bounded open set c , and this suffices for the
proof which follows. ®

Remark 3,4 : If we change aij = ai.(x/E) into

€
a,. = a.,.(
1] 1]

(U

t
’ k) bl (3-]4)
€

all what has been said till now immediately extends to Problem
1,2.(k) and it will not be repeated. ®

All the problem is now reduced to computing gi.

We introduce :

- 9
Ay = ayi (a (Y) 3 ) =P (cf(2.5)),
(3.15)
* 3 *
Ay‘—W'(a (Y) J),aij_ajl
and we introduce
P(y) = homogeneous polynomial in y of degree 1. (3.16)

We now define w = w(y) as the solution (defined up to an additive
constant) of

*
Aw=0inY ,

4 (3.17)
w-P is Y-periodic.

Therefore if

w=P = - ¥ (3.18)
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we have :

A;x = A;P » X 1s Y-periodic (3.19)

(which admits a solution defined up to an additive constant).

We introduce next

we(x,t) = we(x) = ew(x/e) = P(x) - ex(x/e). (3.20)
We have
(Ae)*ws = 0. (3.21)

We consider ¢ € D(Q) and we multiply (1.8) by dw. and (3.21) by
¢u€. After substraction and simplification, we obtain :

Ju ow_ 3¢
€ e 93¢ _ € € _
Cop o0 + Eps 5 ) faij 5%, 3%, Ve 4X T
i f i 7]

(3.22)
= (f,¢W€).
We integrate (3.22) in te (0,T) ; we obtain :
- J uo W %%-dx dt + J E? égL we dx dt -
Q Q 1 (3.23)
- | (a.. () 2 (5)) 20 dxdt=T(f¢w)dt
Q %i;YY Byi Y yex/e ij £ o A

But byvirtue of (3.13) and of the fact that we > P in LZ(Q)
strongly the first two terms in (3.23) converge respectively
towards

- f uP 3 dx dt and f E. J%E-P dx dt.
ot i ox.
Q Q 1

We observe that

a,, W
ij ayi x/e

( T(a, . Qv ) in LZ(Q) weakly

ij Byi

(3.24)
1

if () = YT [ ¢ (y)dy
Y

so that (3.23) gives at the limit
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¢ 39

—Iu dedt+J£ Pa dx dt -
Q Q i
(3.25)
-Ma. . aa—“’) f g}u dx dt = f £¢P dx dt.
B T Q
It follows from (3.12) that
ag,
3 1
f¢P dx dt = - UPB_t dx dt - -g-x——(deth
Q Q Qi
and using this formula in (3.25) gives
- 99 - 9P
M(a i By [Q ij u dx dt = Lfiq) Bxi dx dt
Vo e D), i.e.
9P ow du
gi 0x%. M(alj dy. ) ox. (3.26)
i i 3
We now choose
P(y) =y, (3.27)
and we observe that the corresponding value of w equals
1%
- -y
. . i
if we define X~ by
A;(Xl* - yi) =0, Xl* Y-periodic. (3.28)
Therefore
~ du
g 45 Ix (3.29)
where
Y. =M(a -y, 3.30
ai; = My aykw X)) (3.30)

Replacing &; by its value (3.29) in (3.12) gives the homogenized
equation satisfied by u. m
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Remark 3.5 : The idea of this proof is due to L. Tartar [1].®

It remains to verify that we obtain the same result than in (2.28).
We have to show that

OX .
i
.. - . dy = .. (ydy -
IYalj(y)dy JYalk(y) ayk y IY alJ(y) y

g
- a, . (y) S dy.
JY KT 0

If we set

- 20 3

it amounts to showing that
k| _ ¥ 1%
PLT,y) = B (X Ly (3.31)

But (3.28) gives PT(yi,XJ) = Pl(xj,yi) = PT(XL*,XJ) = PI(XJ,Xl*) =

- P](yj,xl*) (by using (2.23)) = P’{(xl*,yj).-

3.2 Problem 1.2.(1).

We now justify (2.40).

We use a method similar to the method of Section 3.1.

We use now Q, and Q¥ (cf£.(2.7)) and we define w = w(y,T)
( T = parameter) such that

Qqw=0,
(3.32)
w ~ P(y) is Y-periodic

where P is as in (3.16). We remark that w is automatically perio-
dic in T (period T,), provided we choose the "additive constant"
conveniently (for instance we uniquely define w by wa(y,T)dy=0).

We introduce next

we=ew(-’€3,§) (3.33)

and we observe that

5™ w, = 0. (3.34)



SOME ASPECTS OF THE THEORY OF LINEAR EVOLUTION EQUATIONS 215

We obtain again (3.22). After integration by parts, it follows
that :

I ¢ { ow
- u w_wr-dxdt - [ u ¢ - dx dt +
q € € 3t Q € Brlx/e’t/e
€ 9¢
+ f El. %, WE dx dt - f (a, (y,T) 3 (y’T)lx/S,t/E (3.35)
Q 1 Q
)
3—}j>:-u€ dx dt = J fd:w€ dx dt.
Q
But let us denote by WTy T the mean value in y in T :
mo (9 = — H 6(y,T)dy dt .
s Y|t Yx(0,T )
) o
We have
ow ow ‘ . 2
— > M (5= ) =0 in L7(Q) weakly (3.36)
9T | /e tle y,T  9oT
so that (3.35) gives
—f %dxdt+[£i§%1’dxdt-
Q Q i
ow 3¢
-M (a.. =) J ——-—udxdt=Jf¢dedt
. ox.
y,T 1j Byl Q xJ Q
and we obtain, as in (3.26)
P n ow du
£, =— = (a,. =— ) — (3.37)
i Bxi y,T 1] Byi ij
We introduce o™ as the solution (such as for instance
1%
YO‘ dy = 0) of
Q’l‘(@”-yi) = 0. (3.38)

Then

- 9 (y.-0i%)ydu
£, = ?ﬂy’T<akj(y,r> o (y,-C* ))axj (3.39)
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and one verifies, as in the end of Section 3.1, that the formula
so obtained is in fact identical to (2.40).

3.3, Problem 1.2.(2).

We now use R; and RT (ef. (2.9)). We still consider P = P(y) as
in (3.16) and we define w = w(y,T) as the solution (defined up to
an additive comstant) of

RT w =0,
(3.40)
w - P(y) is Y-TO periodic
i.e., if
w-P=-yx, (3.41)
then
9% 0 * X 9 * oP
T aN. T R (a-'(y:T) _—) = = s (a--(Y9T) —))
T Syi ij Byj Byi ij Byj
X is Y-periodic, (3.42)
X|T=0 = XIT=T
We introduce next
- X t
wg(x,t) = gw ( = 5 ) (3.43)
€
so that
3W€ -
- —§E-+ \D) W = 0. (3.44)

We take ¢ ¢ D(Q) and we multiply (1.8) by ¢w and (3.44) by + ¢u_ ;
after substracting, we obtain €

JQ¢a—at-(u€w€)dt+f£€ a¢w dx dt -

J (a (y,T) 3 (yv,1)) x/e.t/e a%‘b-u dx dt = (3.45)
Q

= J f ¢ w_ dx dt.
Q €
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90

The 1st integral in (3.45) equals - fQ uE wE 5E~dx dt so that
(3.45) gives in the limit

- J u P %%-dx dt + j Ei g%%—P dx dt -
Q Q 1

-7, e, gﬁi J é%— u dx dt = J £ ¢ P dx dt
y,Tij By; © Jq 9%, Q

and we obtain, as in (3.37)

9P m ow
Ei e (a..

Ju
= ) — . (3.46)
i Y,T 1] Byi 3xj

. ix . . -
We introduce ¢ as the solution (defined up to an additive cons-—
tant) of

RT(¢1*—yi) =0, ¢ Y-1_ periodic (3.47)
and we obtain
- 3 (y.—piryy Su
g, = my,r(akj(y’T) 3y, (v;=6")) ij . (3.48)

One verifies, as in the end of Section 3.1, the identity of this
formula with (2.50).

3.4. Problem 1.2.(3).
We are now going to justify (2.67). This justification seems to

be much more delicate than the previous ones. Actually, we shall
need (!) an additional assumption :

aijec"(?) = °(Tx [o,t,1) Yi,j. (3.49)

We first verify :

Lemma 3.1. - If we assume that (1.7) and (3.49) hold true, one
does not restrict the generality in proving (1.14)...(1.17) and
(2.67), by assuming that

o o Qg
aijeC (YXEo,‘ro]) , a..

i Y—To periodic (in Cm sense) (3.50)

(and the aij's satisfy (1.7)).

(') At least in the proof. This assumption is probably not necessary-
Cf. remark at the end of the Chapter,
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Proof : Let us consider a sequence of functions ;f” which
satisfy (3.50)(1.7) (may be with a slightly smaller ellipticity

constant) and which are such that

188 ~a .l . 0 asg> =. (3.51)
e
We denote by ués) the solution of Problem 1.2(3) corresponding
to a®.
We denote by A ep the operator corresponding to a(?) ’y J%) and
by aEB the corresponding bilinear form. We have
du
(5=, v) +a"(u_,v) = (£,v) VYveV
at b 8’ ’ s
(B)
Jdu
(a—f , V) + aee(UéB), v) = (f,v) VveV,
If we set
WB
€ € |33
we have
om du
€ eB _ € __EBy _E dv
(Fe M ra @, = Jg(aij 34 3%, ax, O
j i
hence it follows that
t
1 2 2
Elme(t)| + oy J HmE(S)H ds =
o
t
(8
s o=, o [l limllas
i C(Y) ‘o
RO) ¢ 2. 1/2
s 0 sup llag+® - ([ lim (0117 a0
i,] i (Y) o
(since we have (3.5)), so that
(RSN < suplla,-a\ P - - (3.52)
L°(0,T;V) Py 4
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If we now introduce K(B) by (compare to (2.61))
—(8) 9 I 0, (8) d
A == ( (y,0)dT 57— )
Byi o Byj
and if we define wj(B) as in (2.63) (with A replaced by A(B)),

we 1ntroduce;&( ) as in (2.67) ; if we denote by q (resp q(B))
the coefficients of A (in (2.67)) and of fée) respectlvely, we
have

®)
ijl 0. (3.53)

lqij—q
(B)

If we denote by u the solution of

1 (®

+

®  ®
5T A u

= f

(8)

subject to u = 0 on L and u(B)(x,o) = uo(x), we have as in
(3.52)

”u(B)—uII (B)I

< C sup. Iq (3.54)

L2(O,T;V)
By virtue of (3.52)(3.54), it suffices to show that, when € =+ 0,

uéB) > u® in 12(0,1;v) weaxty,

B fixed,

and the lemma is proved. ®

We assume from now on in this Section that the ai.'s satisfy
(1.7) and (3.50). J

The general idea is the same that in the preceding sections, but
the construction of functions analogous to functions w. as before
is now more complicated. We are going to construct, for every
i=1,...,n, functions M s ge , such that
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i . ) 3 3 3
M= e’ (y) + € B (y, 1) + € v (y,1),

i i i 2 1

gF: = h"(y,1) + ek’ (y,1) + € & (y,1), (3.55)

,Bl,.._ %' functions which are C_ in veY and
ig y,T eY><[o T 1 and which are periodic (in the
C sense on the Torus),
) ok, 1 i,
- —— M- . = X M .
( o (A7) )(M€ eyl) eg_ in Qx70,TL ; (3.56)

in a second step, we w111 use the function Ml to derive the neces-
sary formula for E

With notations (2.10)(2.11), we have

) E\ky _ €, % =3k, =2 % =l _x
(- 5p+ (A7) = (B777) = € 7S +e "S,+e 554§,

(3.57)
and we identify the different powers of € in (3.56).

.. . -2
We obtain in this manner for the € term

*, 1 .
S](a —yi) =0 i.e.

o' does not depend on T, an hypothesis already made in
(3.55). Next terms in the identification give

576" + 57’y = 0, (3.58)
stel + sigt sha'-y,) = 0, (3.59)
SO sigl + SZ((xi-—yi) =nl, (3.60)
s’;yi + SZBi _— (3.61)
syt = o (3.62)

The computation of Bl from (3.58) is possible iff

T % i
fos]B dt = 0.
0

But using notation (2.61),
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T
J° s; at = &° (3.63)
[s]

so that we obtain

e . . .

A (al-yi) = 0, a' Y-periodic, a'= o*(y), (3.64)
which defines o' up to an additive constant chosen independent
of x and t. We have

i o= i e e o

0 €C (Y), o periodic in the C sense. (3.65)

We obtain then from (3.58) that

] T . s
B (x,y,t,7) = f 5,(0)do (o' -y )+E (x,y,6). (3.66)
o
. . (Yo x i .
The compatibility condition in (3.59) is S1 Y dt = 0 ; it
. . * 1 0
gives, since S3(u —yi) =0 :

T

—k ~i To * * i
A B+ [ SZ(T)dT [ 82(0)d0 (o —yi) =0 (3.67)

o (¢]

which defines Bl = él(y) up to an additive constant (we choose
all these additive constants independent of x and t).

Therefore
BY = B (y,1) € C (Y x f0,t 1) , ¥-t_ periodic, (3.68)
and
S e - -
a” = §,(0) B (y,0)do + ¥ (x,y,t). (3.69)
[o]

We choose ¥' = 0 so that

. - T .
Y= vy, = [ s’;(c) sl(y,o)doec”(Yx[o,TO]),

J
° (3.70)

Y—TO periodic.

We have then (3.60)(3.61)(3.62) as definitions for ho,k',2% and
by virtue of (3.65)(3.68)(3.70) we obtain (3.55)(3.56).w
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Let us set for a moment

w_=M -cy.. (3.71)
€ € 1

We take ¢ € D(Q), we multiply (1.8) by ¢w€ and we multiply (3.56)
by ¢u ; after substraction we obtain
¢——-(u W )dx de + J (2 20 ax de -
Q 1 axi €

- | a5, E—Q—u dx dt = f ¢ w_dx dt.
q 1j Bx Bx Q £

(3.72)

In order to avoid confusion of indices, we set for a moment

P(y) =y, , P = P(x), at(y) = aly), B ()

B(y) ,
(3.73)

Y ) =y,

We observe that

ow
e (w8, 20 (x &
Bx ( y ani+€ ayi)(€’3)
so that

ow

I agi:.&?—aa%ue dx dt -~
Q M
(3.74)

(OL—P))J 29 u dx dt

)
a.. ™

,T 1] 9y. he
y 1] Yl Q i

and (3.72) gives (since w_+ -P in L2(Q)

+f uP%dxdt—I&i%‘-dedt—
Q Q 1

-a—(a—P))[ a—ag—udxdt=—{ f¢P dx dt
X.
Q 7] Q

hence it follows that



SOME ASPECTS OF THE THEORY OF LINEAR EVOLUTION EQUATIONS 223

Using now (3.73) we obtain :

1

_ Sai
£, -[zr..yﬂ(aij)-?ny’T(akj(y,r) -a—y;m)] " (3.75)

It only remains to see the identity of this formula with (2.67).
But this amounts to showing that

Faly) = Tl (3.76)

where K(¢,w) = bilinear form on HI(Y) associated to A. The
equality (3.76) is verified as for (3.31).8

Remark 3.6 : Correctors in the asymptotic expansions and
non linear problems for evolution operators with highly oscillating
coefficients are studied in Bensoussan-Lions-Papanicolaou [1]. ®

Remark 3.7 : The situation of Problem 1.2.(3) is a variant
of Colombini-Spagnolo [1], Th. 5.13., where the methods are enti-
rely different. (Regularity hypothesis are stronger in Colombini-
-Spagnolo). ®

Remark 3.8 : One can study the '"general case of coefficients

X t t t

X
T sy 'f\], ’ 2"-'9—M_)-
€ € € € € €

a..(

X
ij 2

Cf. B.L.P, [1], where one will also find the case of systems of

operators or of operators of any order.

We also refer to this book for the study of related problems for
hyperbolic systems.®

BIBLIOGRAPHY OF CHAPTER 2.

[1] A. Bensoussan, J.L. Lions and G. Papanicolaou - Book, to
appear (North Holland).

[2] Notes CRAS, Cf. CRAS, 282 (1976), p. 143-147 and the biblio-
graphy therein.

[1] F. Colombini and S. Spagnolo — Sur la convergence de solutions
d'équations paraboliques. To appear.

[1] L. Tartar - To appear.
Additional remark.

Using an idea of Magenes (personal communication) and estimates
of Meyers and Pulvirenti one can show the result of Section 3.4
under the only hypothesis that a,, € U”(yx(O;TO)) (by an
improvement of Lemma 3.1). This é}oof will be given in the
book of Bensoussan, Lions and Papanicolaou.
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CHAPTER III

OPTIMAL CONTROL AND GENERALIZED SOLUTIONS

1. BOUNDARY CONTROL.
1.1. Orientation.

In this Chapter we briefly indicate how optimal control of dis-
tributed parameter systems leads to the necessary introduction
of "generalized solutions" (or solutions with "unbounded energy")
of evolution equations.

We confine ourselves in this Chapter to three families of examples ;
for technical details and many other examples we refer to Lions-
-Magenes [ 1], Lions [1]7.

1.2. An example of boundary control.

We consider the state equation of the system to be given by the
heat equation

—g—Z—Ay=finQ=QX]O,T[, (1.1)
y=von X =Tx]0,T[, (1.2)
y(x,0) =y _(x) on Q. (1.3)

In (1.2) v is the control function.
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In general in the applications v is submitted to constraints of
the type

0<v<M a.e. on Z, (1.4)

which do not assume any regularity on v.

Let us assume only that
2.5
v el (b) (1.5)
and let us denote, in a formal manner for the time being, by

y(v) = y(x,t;v) = solution of (1.1)(1.2)(1.3) when (1.6)
v satisfies (1.5).

Let the cost function be given by (}!)

Jw) = J ly(v) - zdl2 dx dt + NJ vas (1.7)

Q L

. . . 2 . .
where z; is given in L (Q) and where N is given >0.

The problem of optimal control is to find

inf. J(v) , vécu)ad,

QI%d = closed convex subset of LZ(Z) (for instance } (1.8)
thd can be given by (1.4)).

In order to make this problem precise, one has to prove the fol~
lowing properties :

(i) to define y(v) as the solution of (1.1)(1.2)(1.3) when v
satisfies (1.5) and to prove that y(v) € LZ(Q) 3
(i1) that v = y(v) is continuous from L2(Z) - LZ(Q). .

Once (ii) is proved, it is clear that problem (1.8) admits a uni-
que solution, since v > J(v) 1is then a strictly convex, continuous
function on qlbd and since J(v) - +® as HVW‘L2(2)+ ©

In order to define y(v) we use the transposition method that we
now briefly recall (cf. L.M. [1] and the exposition of Magenes
[1] in these proceedings, for transposition in Gevrey classes).

(}) This is still formal, for the time being.
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1.3. Transposition method.

Let us consider the adjoint ecuation

-2 - 86 -gin g

¢ =0 on I, } (1.9)
o(x,T) = 0 on Q.

If gELz(Q) then (1.9) admits a unique solution which satisfies :

b e’ mE’ @ nul @) , e 1@,
(1.10)

$(x,T) = 0 .

The proof of (1.10) is quite simple ; one uses results of Chapter
1 and another "energy estimate" obtained by multiplying (1.9) by

%%— ; then~%§€ LZ(Q) and ¢ ELZ(O,T;HZ(Q)) follows from classical

estimates for elliptic equations,

We denote by X the space of functions ¢ satisfying (1.10) ; it is
a Hilbert space for the norm

([F ooy, o w2, Jae) 2 clol

H(Q) L™()

=]

We have then :

b > - 99—— A$ is an isomorphism from

ot

(1.11)
2
X > L7(Q
and by transposition we obtain :
given Le X' = dual space of X, there exists a unique
function y = y(L) ¢ L“(Q) such that (1.12)

(v » =32 - 80) = L(®) VheX

where ( , ) denotes the scalar product in LZ(Q)), and

L > y(L) is a continuous mapping from X' - LZ(Q).l (1.13)
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Application : We now choose L in the following form :

L(¢) = J £ ¢dx dt —j v g—ﬁ ds +j ¥, ()6 (x,0)dx (1.14)
Q L Q
where
£er?(0,T38 (), (1.15)
vell® , (1.16)
yOeH_](Q). (1.17)

Since ¢ > %% is a continuous mapping from X - LZ(Z) (one has
even a better result, cf. Remark 1.1 below), it follows that L
given by (1.14) is 1ndeed in X' and therefore there is a unique
function y = y(f, v,Y, ) e 12 (Q) which satisfies (1.12) (1.14) and
the mapping

£,v,y, > y(f,v,yo)

is continuous from LZ(O,T;H—I(Q)) X L2(2)><H—1(Q) -> LZ(Q).
I1 we fix f and Yo We write

y(£,v,y)) = y(v) (1.18)
and v > y(v) is (affine) continuous from LZ(Z) - L2(Q).

It remains to show that y(v) satisfies — in some sense ~ (l.1)
(1.2) (1.3). =

If in (1.12) we take ¢ ¢ D(Q), we obtain (1.1). Therefore ye¢ LZ(Q)
and %%—— Ay € LZ(O,T;H_](Q)). One can show that, under these hypo-
thesis, (cf. L.M. [1]), one can define the traces yiz and ylt 0

and that one can apply Green's formula. A formal application of
Green's formula gives :

M. = @0 - Loar | y2ar »
X z

AR RN R

and since ¢(T) = O, ¢IZ =0

(v,- 3¢ -Ad) = (£,0)+(y(0),9(0)) -J y—g% dz (1.19)
%
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and by comparison with (1.14) we obtain (formally, but this can
be justified, cf. L.M. [11) (1.2) (1.3). m

Remark 1.1 : When ¢ spans ¥, %9 spans a space which is strict-—
ly smaller than L2 (X) so that the information obtained

"y(v) € L2 "

is not the best possible. In order to obtain the best possible
results, one has to use interpolation theory as in L.M. [1]. =

2. GEOMETRICAL CONTROL. HADAMARD'S TYPE FORMULAES.
2.1. The domain as "control variable".
In many applications (Optimum design theory) the "control varia-

ble" is the domain itself and this leads to many open problems
and to the need of working with generalized solutions.

Let us consider QO =0 c Rp, with smooth boundary T ; let us
denote by V(x) = unitary normal to xeT directed towards the
exterior of € ; for A 2 O small enough we define

', = variety described by x+ia(x)v(x) when x
spans [, (2.1)
where 0. is a given smooth function on T,

and we define
QX = open set "interior" to FX' (2.2)
Given A > 0, we denote by ¥y the solution of

ot A

where f is given in Lz((}X lo,T0), Qk c® for A 2 0 (and, say,
A<1), Yy being subject to

- by, = £ in &, x 10,TL, (2.3)

Yy = 0 on ZA = PX><]O,TL, (2.4)

YA(X,O) = YO(X) on Q}\, (2.5)
Y, given in Lzﬁﬁ) ;

yx = V) (x,t) is the state of the system and problems of
optimum design lead to the need of computing -~ if it exists —
the derivative
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d .
an YAI =y (2.6)

X=o0
This is a classical problem, going back to Hadamard [1], for
elliptic problems.

2.2. Formal computation of §.

A formal computation of y is easy. If we write (2.4) in the expli-
cit form

yx(x+}\o¢(x)\)(x)) =0, xel,
we have — assuming Yy smooth enough -

Sy)\

yA(X)+Aa(x) 5o (x) + ... =0

and since y(x) = 0 if xeT (we set Vyeo = y)

-1 BY)\
A [yA(X) - yx)1 + alx) 5o (x) + ... =0
and therefore, letting A -+ O,
§ + o %%-= 0 on Z.
Consequently :
Y et o .
T Ay = 0 in Q = 2x ]0,T[, (2.7)
L] _ ay
y =-os5 on Z, (2.8)
V| ey = 0- (2.9)

In general one has, for solving (2.7) (2.8) (2.9), to use solutions
with unbounded energy.

Remark 2.1. : The preceding calculation can indeed be justi-
fied.

Remark 2.2. : One has similar formulaes for other parabolic
equations and also for hyperbolic equations. If
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2

2 y)\
-—8-—2- - Ay)\ = f in Q)\XJO,T[, (2-
t
vy, = O on kL, (2.
) .
¥, (x,0) = yo(X) s —gg-(x,O) = y,(X) in & (2.

then, with notation (2.6) :

2.
iézl - Ay =0 in 270,70, 2
at
§ = - q g%-on z, (2.
sl =0,  -oing @
t=0 > ot't=o ’

10)

11)

12)

.13)

14)

.15)

Remark 2.3 : We refer to Pironneau [1] and to the bibliogra-

phy therein for problems of optimum design.
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CHAPTER IV

SINGULAR PROBLEMS OF EVOLUTION

1. AN EQUATION OF MIXED TYPE .
1.1. Orientation.

We recall, in Section 1.2 below, a result due to Baouendi-Grisvard
[1] which is relative to an equation of mixed type. We show, in
Section 2, how this equation - which is not of the evolution type -
can be transformed in an evolution equation of singular type.

1.2. Mixed problem.

We shall use the following notations :

Q=17-1,10 , telOo,T[ ;
Q = @x10,TL ;
we consider the equation
du _ 32 2
x2=-S5=finQ, f£cL°(Q , (1.1)
t 3x2

subject to the boundary conditions of Dirichlet type

u(xl,t) = 0 ; (1.2)

the "initial" conditions are of different type in the region x>0
(where the operator is "parabolic upward in time") and in the
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region x< 0 (where the operator is "parabolic backward in time')
u(x,0) = 0 for x>0 , u(x,T) = 0 for x<0. (1.3)

It is proven in Baouendi—Grisvard [1] that the problem (1.1)(1.2)
(1.3) admits a unique solution which is such that

ueLz(O,T;HCI)(Q)) , (1.4)
x g—‘tl € LZ(O,T;H_](Q)). (1.5)

We show in Section 2 below how this problem can be transformed
into an evolution equation of singular type.

Remark 1.1 : The preceding result readily extends to the
equation

du m Bzmu
X—8—E+(_l) 2m=f s (1.6)
9x
2 m
uel”(0,T;H (),
© (1.7)
x %‘% e 120, T8 ™@),

and u satisfying (1.3).

The results of Section 2 also extend to this situation.

2. A SINGULAR EQUATION OF EVOLUTION.
2.1. Invariant imbedding.

We are going to use an idea derived from the invariant imbedding,
technique due to Ambarzumian, Chandrasekhar, Bellman (cf. Bellman
~Kalaba-Wing [1]), and somewhat similar to the technique used in
Lions [1] for obtaining the integro-differential equation of

Riccati's type arising in optimal control of distributed systems.

We shall denote by u_ (resp. u_) the restriction of u to x>0
(resp. to x<0).

. . 2 2 . .
Let h be given in L+ = L"(0,1) ; we consider the equation
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2
x?—a—¢=f,xe9,te]s,'f[ (2.1)
t 2
ox
¢(x,s) = h(x) if x>0,
(2.2)
6(x,T) =0 if x<0,
¢o(x1,t) =0 (2.3)

This equation admits a unique solution, and therefore ¢(x,s),

x <0, is uniquely defined ; we denote by ¢, (resp. ¢_) the res-
triction of ¢ to x>0 (resp. to x<0), and by ¢+(s) (6_(s)) the
function x > ¢+(x,s) (x > ¢_(x,s)). Then

h > ¢_(s)
2

is an affine continuous mapping from Lf_ > L = LZ(-] ,0), 1.e.

¢_(s) = P(s)¢,(s) + r(s),
2 2 2 (2.4)

P(s) ¢ .-'Z(L+;L_), rel”.

If we take now

h(x) = u+(x,s)

then the solution ¢ of (2.1)(2.2)(2.3) is the restriction of u
to 9% 1s,T[ and therefore (2.4) can be written

u_(s) = P(s)u (s)+r(s)
and since s is arbitrary, we have in fact the identity

u_(t) = P(t)u+(t)+r(t), for a.e. te JO,T[

(2.5)
p(t) e 22510
and if we define
F, = {v]ver'(o,1), v(1) = 0} ,
i (2.6)
F_= {V|VEH (-1,0),v(-1) = 0},
then
P(t) e #(F ;F)) (2.7)

re1?(0,T;F ). (2.8)
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If x is arbitrarily fixed in 1-1,0[,
v > P(t)v(x)
is a continuous linear form on F+, so that
1
P(t)v(x) = J( P(x,E,t)v(E)dE , (2.9)

)
£ >~ P(x,E,t) being an element of F;.

OQur goal is now to obtain an equation satisfied by P(x,&,t).

2.2. An identification procedure.

82

We write ¢' instead of %%—, AP = - —% ; we have
9%

NS

xu' + Au_ = f_. (2.10)

Assumming that the computation is valid (verifications are quite
long) we obtain from (2.10), using (2.5)

x(P'u + Pu' 4+ 1r') + APu_ + Ar = f . (2.11)
+ + +
But

xu' + Au = £
+ + +

so that (2.11) becomes
! 1
€ £
But for fixed t=s, this is valid with u+(s) = h arbitrary so that
(2.12) is equivalent to

1
1
xr' + Ar + xP( % £) =f_ . (2.14)

XP’u+ + xP(- Au+ + f+) + xr' + APu+ + Ar = £ _. (2.12)

xP' + xP (- = A) + AP = 0, (2.13)

If we introduce M(x,E,t) defined by
P(x,E,t) = EM(x,&,t) (2.15)

then (2.13) is equivalent to

2 2
3 3 3
xE —3}3+x——b;-5—}21=0 (2.16)

13 ox
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and to boundary conditions on which we shall return.

In (2.16) M is defined for x<0, §>0. If we change x in -x :

N(x,E,t) = M(-x,&,t), (2.17)

then
2 2
- x£ N _ (x AN + £ N )y =0,
ot 352 axz
(2.18)

x,& € 10,102, t e 10,7[. =
Let us now prove that the kernel N is symmetric :

N(x,E,t) = N(E,x,t). (2.19)

Indeed, let us consider the analogous of (2.1)(2.2)(2.3) with
f =0, i.e.

¢, (s) = h, ¢_(T) =0, (2.20)

d(x1,t) = 0 ;

let us denote by $ the solution of the anologous equation corres-
ponding to h instead of h. Then

¢_(s) = P(s)h , $_(s) = P(s)h. (2.21)
We have
x¢! + Ap_ = 0 (2.22)

and we multiply (2.22) by $+(—x,t) (defined therefore for x<0).
We obtain :

0 = (x6_(T),6,(-x,T) 2 ~(x0_(s),0, (-x,8)) 2 -
T 3 _ . T 39,
- [ 5= (0,08, (0,t)dt - JS ¢_(03t) = (0,t)dt +
T 9 = )2 -
[ f 6_,=x 5 ,(-x,8) = == §_(-x,6))dt
S

ox
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hence it follows that

. Tr3¢_ - 3,
(x¢_(s),9,(-x,8);2 =-{ [75;-(o,t)¢+(o,t)+¢_(o,t)7;;-(o,t)]dt
- S

(xP(s)h , ﬁ(—x))Lz is symmetric in h,ﬁ (2.23)

o 1 .
J J P(x,E,s)h(E) xh(-x)dx d& =
-1

fo) 1 N ~
J [ P(x,&,s)h(E)xh(-x)dx df Vh,h
-1

XP(—XQE,S) = EP(_g’X’ S)

i.e. (2.19)."

Boundary conditions. We should have P(t)v(-1) = 0 Ve F+ i.e.

P('—I’g’t) =0

N(1,E,t) = 0 (2.24)
and therefore, by virtue of (2.19) :
N(x,1,t) = O. (2.25)
On the other hand,

P(£)9,(0) = ¢_(0) = ¢,(0)

1
J P(Osgyt)(b_‘_(g)dg = ¢+(O)
(o]



SOME ASPECTS OF THE THEORY OF LINEAR EVOLUTION EQUATIONS 237
EN(o0,&,t) = 65(0) (Dirac measure at the origin) (2.26)
and, by virtue of (2.19)

xN(x,0,t) = Gx(o). (2.27)

Final condition

N(x,&,T) = 0. (2.28)

CONCLUSION.

The kernel P(x,§,t) is given by (2.15)(2.17), where N(x,£,t) is
the solution of the 51ngular backward parabolic equation (2.18)
subject to conditions (2.24)...(2.28).

Remark 2.1 : The function r is given (once M is known) by

1
b4 %% +Ar = f_ —x JOM(X,E,t)f+(€,t)dE s (2.29)
r(o,t) = r(~-1,t) =0, (2.30)
r(x,T) = 0 for x<0. (2.31)

Remark 2.2 : A direct study of (2.18) subject to (2.24)...
(2.28) seems to be an open problem.

Remark 2.3 : One could also consider, by the same kind of
technique, the singular evolution equation associated with the
equation

lep sign x %%—— E—%-= f,p>-1 (2.32)

(we have of course the case already studied if p=1), studied in
Talenti [1]. Cf. other examples in Beals [1], Cooper [1]1.

Remark 2.4 : For operators of evolution with coefficients
which are singular for t=0 we refer to Baiocchi-Baouendi [1],
Bernardi [1].
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TOPICS IN PARABOLIC EQUATIONS: SOME TYPICAL FREE
BOUNDARY PROBLEMS

E. Magenes

Universitd di Pavia and Laboratorio di
Analisi Numerica del C.N.R.

INTRODUCTION. It is well-known that in the applications
one is frequently faced with free boundary problems for
linear partial differential equations (in particular for
parabolic type equations). A classical example is that
of the "Stefan problem" for the heat equation arising

in the ice melting phenomenon. The interest on this sort
of problems has recently increased (particularly, after
the discovery that they are closely related to the theo
ry of variational inequalities).

The aim of these lectures is to study the relation
existing between free boundary value problems and varia-
tional inequalities. We do this by means of simple but
rather significant models such as free boundary problems
for the heat equation in one dimensional space arising
from the oxygen diffusion in time, from ice melting and
from fluid filtration in porous media respectively.

In section 1 we introduce formally the mathematical
models of the three above mentioned physical phenomena.
In sections 2, 3 and 4 we specify the mathematical for-
mulations of the problem and reduce them to parabolic
variational inequalities. We also show what type of re-
sults can be obtained in this way. In sections 5, 6 and
7 we develop the proofs for the third problem that seems
to be the most interesting and difficult. In section 8
we deal with the question about the regularity of the
free boundary. We close with some remarks and some refe
rences to the literature on the subject.

For Table of Contents see page 312.
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1. MATHEMATICAL MODELS OF SOME PHYSICAL PROBLEMS

a) First of all let us consider the oxygen diffu-
sion in an absorbing tissue; u(x,t) represents the oxy-
gen concentration (suitably normalized) in the tissue
at the time t and at the point x of the tissue (usual-
ly the problem is set in one space dimension); we
suppose that the oxygen is absorbed at unit rate where-
ver it 1s present and there is no diffusion at x=0; the
initial concentration g(x) is the steady-state concen-
tration, i1.e. the concentration when at the surface x=o
of the tissue the concentration 1s maintained constant;
then g(x), suitable scaled, is given by gl{x)=2(Db-x)?
where b is the furthest depth of oxygen penetration in
the above steady condition; we can generalize g, by as-
suming as "compatibility conditions" the following hy-
pothesis:

(1.1) g(x)>0 0O<x<b, g(b)

=0

g'(x)g0, Ogx<b, g'(b)=0, g"(x)<l, O<x<b

If s(t) denotes the location of the "interface" between
the region where u is posgsitive and the region where u

is zero,at this "interrfrace" also the oxygen flux must
be zero. Then we can state the mathematical model of the
problem "formally" as follows:

PROBLEM 1: Given b>0 and g(x) satisfying (1.1), find
{r,s(t), u(x,t)} such that

(1.2) s(t)>0 0<t<T ;3 s(0)=b, s(T)=0

(1.3) uxx—ut=l » O<x<s(t) , 0<t<T

(1.4) u(s(t),t)=0 O<tgT
(1.5) u (s(t),t)=0 , O<t<T
(1.6) uX(O,t)=O » 0<t<T
(1.7) u(x,0)=g(x) , O<xsb.

b) Let us consider now a particular case of the so
called Stefan problem: a physical system composed of a
"segment" of water, denoted in the mathematical model
by an interval [O,a], of the real axisﬁl, and of a thin
block of ice, occupying in the mathematical model the
interval ]a +w[. The system is described by the distri-
bution of the water temperature u(x,t) in the space-ti-
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me; let g(x), O<x<a, be the initial distribution of the
temperature with the "compatibility condition"

(1.8) g(x)>0 , g(a)=0 ; g'(x)<0;

and let us suppose the thermal flux to vanishat the
point x=0 of our system for every t. Then the ice will
begin to melt and for every time t>0 the water will oc-
cupy an unknown interval O<x<s(t). The water temperatu-
re u(x,t) must satisfy the heat equation in the domain
0<t<T, O<x<s(t), and the obvious condition u(s(t),t)=0
on the "free boundary" x=s(t); moreover on the same free
boundary an additional condition 1s given namely the law
of conservation of energy . With a suitable normalization
of certain physical constants, the mathematical model

of the problem is "formally" the following:

PROBLEM II: Given T>0,a>0 and g(x) satisfying (1.8) find
{s(t),u(x,t)} such that

(1.9) s(t)>0 , O0<t<T , s(0)=a,
(1.10) wu__-u,=0 , O<x<s(t), O0<t<T,
(1.11) wu(s(t),t)=0 , O<tgT,

(1.12) uX(s(t),t)= -s'(t) , O<tgT,
(1.13) w (0,t)=0 , O<tsT,

(1.14%) u(x,0)=g(x), O<x<a.

REMARK 1.1 Condition (1.12) frequently is formulated
in the equivalent form

ut(s(t),t)=ui(s(t),t) , 0<t<T.

c) Let us consider finally a compressible fluid mo
ving in an underground vertical pipe, the interior of
the pipe consisting of a homogeneous porous medium. The
variable x represents the height and x=0 and x=a,a>0
are respectively the bottom and the top of the pipe; the
variable t represents always the time,O<st<T. The function
u(x,t) is the piezometric head and -u_(x,t) is the velo
city of the fluid (using Darcy's law)% the level of the
fluid in the pipe is denoted by s(t) and is the "free
boundary". We suppose that the fluid is moving through
the bottom of the pipe upward(if 2(t)20), or downward
(if 2(t)<0) at the rate [2(t)|, where 2(t), Ost<T is a
given function. The potential or piezometric head u(x,t)
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is supposed known at the time t=0: u(x,0)=g(x), Ogxga.
Since u(x,t) is the sum p(x,t)+x where p is the inner

pressure and x comes from the gravity, we should have

u(x,t)>x if Og¢x<s(t); we have then the physical condi-
tion on g:

(1.15) g(x)>x , Osx<a , gla)=a.

Physical reasons, depending on the porosity of the me-
dium,suggest to assume also that

(1.16) 2(t)>-1 , OstgT.

Then the mathematical model of the phenomenon can be
"formally" stated as follows.

PROBLEM III: Given T>0, a>0, g(x) and 2(t) satisfying
respectively (1.15) and (1.16),find {s(t),u(x,t)}such
that

(1.17) s(t)>0 , O0gtgT , s(0)=a,
(1.18) wu__-u,=0 , O<x<s{t), O<t<T,
(1.19) wu(s(t),t)=s(t) , O<tgT,
(1.20) ux(s(t),t)=—s'(t) , 0O<tgT,

(1.21) u_(0,t)=-2(t) , O<tgT,

!

(1.22) u(x,0)=g(x) , Ogxga.

REMARK 1.2 Condition (1.20) frequently is formula-
ted in the equivalent form:

ut(s(t),t)=u§(s(t),t)—ux(s(t),t).
d) Problems I,II,III seem similar; but we shall see
that, even if it is possible to solve them by the same
methods, they present different difficulties in increa-
sing order from the first to the last. Before giving
a precise mathematical formulation of the problems and
their reduction to variational inequalities, let s in-
troduce some notations. If A is an open set in or
in R* ,k apositive integer and l¢psw, we denote by W_(A)
the usual Sobolev space of the real functions v such
that v and their derivatives (in the sense of distribu-
tions on A) until the order k are in LP(A). Denoting by
A the c%ogure of A, we shall use also the usual Banach
space C (A), k=0,1,... of the real functions v which gre
continuous in & with their derivatives until the order k;
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¢®(E) shall be the space of infinitely derivable fun-
ctions in A. In the case of we shall use also the spa
ces Wk>Nh(Q), where Q is a rectangle,k,h are positive inte
gers, l<p<», of the functiomv(x,t) (x,t denoting the
coordinates in R? ) velonging to LP(Q) together with
the derivatives(always in the sense of distributions in

aJV . 31V : k
Q) — , J=l,...,k and ~, i=1,...,h. The space W (A),
g, 3% ¢ on bt ?
C(A), W.°>"(A) are Banach spaces with respect to their

natural Pnorms. In the case of an interval I of WR* we

shall also use the Sobolev spaces WE(I) with k real and
positive;if O<k<l it is the space of the functions v(x)
which are in LP(I) and such that

J J fv(x)—v(x)lpdxdy cte
IX_y|1+kp
I I

In the case of k>1 it 1s the space of the functions v
which are in W[k](I),
P([k])(

and such that v

[k]=maximum integer less then k

x)ewk—[k](l). Let us remember that

h .
frequently WE(A), wg’ (Q) are designed by Hk(A), Hk’h(Q).

D(A) and D'(A) denote respectively the usual space of
infinitely differentiable functions with compact support
in A and its dual, the space of distributions in A. Mo-
reover, if B is a Banach space we shall denote by

LP(e,T;B), ©<T, l¢psw,(resp. by C°([6,T]3B)) the Banach
space of the functions t-v(t) defined in [0,T] with va-
lues in B, strongly measurables and such that [|v(t)|\B

is a real function in LP(]@,T[), (resp. in Co([Q,T]))
with the natural norm. Let us remember that Wi’h(Q) if
Q=]O,b[x]@,Tg may be identified with the space of fun=-

ctions t-»v(t) such that
k djv .
veLP(0,T;w (]o,0[), ~—3eLP(e,T;LP(]o,b[)),J=1,...,h.
dt

the derivatives being taken in the sense of distribu-
tions in ]0,T[ with values in LP(]0,b[). Finally we shall
denote frequently by va, Dxxv, Dtv,... or by Voo v

2
%%, i_%’ %%, «++35 and we denote

by E(v) the "heat operator"%x E(v)=vxx-vt.

In all previous Problems I,II,III, we shall denote by @

xx?

Viseoo the derivatives

(1.23) Q={(x,t); O<x<s(t), 0<t<T}
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2. THE OXYGEN DIFFUSION IN AN ABSORBING TISSUE

a) Let us define "classical solutions" of Pr. 1:
DEFINITION 2.1: Under the assumption that
(2.0) ge c?([0,b]) and verifies (1.1)

{T,s(t),u{x,t)} is a classical solution of Pr. I if:

T>0, s ¢ C°([O,T]) and verifies (1.2), s'(t) is conti-
nuous for 0<t<T, u C°(8)NH'(Q), where © is given by
(l.23),ux,ut,uXt are is continucus for Osxss(t)P<t<T,and(1.3)

(1.4%),(1.5),(1.6),(1.7) are verified((1.3) in the sense
of D'(Q)) and ux0 in Q.

Definition 2.1 seems to be the "good" definition
for the problem of the oxygen diffusion, in the case
that the datum g(x) does not permit more regularity for
the function u; in fact if for instance we look for u
belonging also to C!(f) then we have to add a "compati-
bility condition" on g, since by (1.6) and 1.7) we must
have:

(2.1) g'(0) =0

This condition is verified in certain diffusion problems.
But in the case of the oxygen diffusion we have g(x) =
=31(b-x)?%, then (2.1) is not verified. Neverthelezs we
will suppose in this section a), in order to explain
better the relations between Pr. I and variational ine-

qualities, the validity of (2.1) and of
(2.2) wue cH(®)

Then if {T,s(t), u(x,t)} is a classical solution of Pr.
1, setting v=u, it is easy to prove

(2.3) E(v)=0 in @

(2.4) v(s(t),t)=0 , 0<t<T
(2.5) vx(s(t),t)=—s'(t) . 0<t<T
(2.6) VX(O,t)=O R 0<t<T
(2.7) v(x,0)=g"(x)-1 , O<x<a

In fact we can derive with respect to t the equations
(1.3), (1.4%) and (1.5) and, using also (1.6) and (1.7),
we obtailn
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E(ut)=0 in Q

ux(s(t),t)s’(t)+ut(s(t),t)=ut(s(t),t)=0, 0<t<T

uxx(S(t),t)=l+ut(S(t),t)=l 0<t<T
u, (s(t),t)s'(t)+u_, (s(t),t)=s'(t)+u_, (s(t),t)=0,
XX xt ? xt 0%t <T
uxt(O,t)=O 0<t<T
ut(x,0)=uxx(x,0)—1=g"(x)—l D<x<a
REMARK 2.1: Problem (2.3).....(2.7) is of the same kind

as the Stefan problem considered in n. I, b)3; we shall
come back to this remark later.

We can then prove the following
PROPOSITION 2.1 If {T,s(t),u(x,t)} is a classical so-

lution satisfying (2.2) (in the hypothesis (2.1))of
Pr. I, then

(2.8) ut(x,t)so, ux(x,t)sO in @
(2.9) u(x,t)>0 in @
(2.10) s is strictly decreasing in [O,T]
(2.11) T<g(0)

PROOF: We have already noted that v=u_ is a solution

of the Problems (2.3)..... (2.7); moredver ve C°(Q), then
we can apply the classical "maximum principle" ( see

[30] ): v must take its maximum on the "parabolic bounda
ry" of 9, i.e.98 - {(x,t); t=T}. But this maximum can't
be positive: in fact v(x,0)=g"(x)-1<0, O<x<a, v(s(t),t)=
=0, 0<t<T so if it would be positive it ought be such

on the segment{(x,t), x=0, 0<t<T}; bu%.by a strong form
of maximum principle (cf.[30]) in the maximum point

(0, t) one should have v_(0,t)<0, contrary to (2.6).
Then v(x,t)=u, (x,t)<0 in® © and more precisely, noting
that v cannot be identically zero, we conclude that
v(x,t)<0 in Q, again by the maximum principle. Let us
consider now v=u_; we have similarly E(v)=0 in Q ,
v(0,t)=0, v(s(t)¥t)=0, O<t<T, v(x,0)=g"(x)<0, Osx<a;
then from the maximum principle we deduce that v(x,t)=
=u_(x,t)<0 in @ and (2.8) are proved. Now from the
De?ﬁnltion 2.1 we have u(x,t)>0 in @ ; more precise
ly nothing that E(u)=1 in Q again from the maximum prin
ciple we have (2.9). In order to prove (2.10) let us £i
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rst note that, settlng u,=v, we have (2.5); but v_(s(t),
£)20, since v(s(t),t)=0 8<t<T (ef. (2.4)) and we Enow
that v(x,t)<0 in Q (ef. (2.8))j;then s'(t)<0, 0<t<T,
and s(t) is decreasing in [0,T|. Let us prove now that
s is strictly decreasing; indeed, in the contrary case
there exist two points t', t" (t'<t") such that s{(t')=
=s(t), t'stst". We can now apply the strong form of the
maximum principle on the segment x=s(t), t'stgt" and,
recalling that v(x,t)<0 in Q2 we obtain jés(t),t)>0,
i.e. s'(t)<0, in contradiction with the ‘assumption that
s{(t')=s(t)=s(t"),t'st<¢t". Finally, in order to prove
(2.11) it is enough to remark that (1 6) and (2.8)imply

that uXX(O,t)sO, 0<t<T; then ug (0 Fu (o t)~-1<-1,
0<t<T, S0 that u(0,T)-u(0, o)-—g f (0,t)dt <T, that
is, (2.11).

REMARK 2.2 Let us note that the estimate found for the
unknown T (cf. (2.11)) depends only on g(0).

Now let us define Q as follows:
(2.13) Q={(x,t); 0<x<b, O0<t<T' = g(0)}

and again in the assumptions of Prop. 2.I let us define
(2.14) 3(x,t) = ulx,t) in €, u(x,t)=0 in Q-0

We have
(2.15) wec!(q), u_ eL”(aq)

We can compute E(a) in the sense of D'(Q) and we have
¥$eD(Q): using (1.5) anda (1.3)

<E(u),¢>=—quux¢xdxdt—jJQut¢dxdt=—JJqu¢xdxdt ~

T s(t) T
_Jfgut¢dxdt= Jo Jo uxx¢dxdt-[oux(s(t),t)¢(s(t),t)dt

—I[ ut¢dxdt=JJ (uxx—ut)¢dxdt=JJ¢x(Q)dxdt
then 0 & Q

(2.16) E (u)= x(@) in Q

Finally we have that u satisfies the following system
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ﬁ(x,t)zo in @, u(x,t)>0 in 2, u(x,t)=0 in Q-0
E(u)e L7(Q) , E(d)sl in Q
{E(u)-1}u=0 in Q
(2.17) 4.
u_(0,t)=0 , 0<t<T'
X
u(b,t)=0 , 0<t<T"
@(x,0)=g(x), 0<x<b

The system (2.17) is a so called "parabolic variational
inequality". Before studying it, let us remark that the
system (2.17) can be considered "formally" equivalent

to Pr.I, in the sense that_if we can solve it and pro-

ve that the set @={(x,t); u(x,t)>0} is of the form _
(1.23) with s verifying (1.2), then setting u(x,t)=ul(x,t)
in 9, we obtain a solution of Pr.I.

b) Now let us introduce a precise formulation of
our variational inequality, in a "semistrong" form. De
note by V the Hilbert space

(2.18) v={viveHn!(]Jo,v[), v(p)=0}

and set
(2.19) (u,v)=f§u(x)v(x)dx Yu,ve 12(]J0,b[),
(2.20) a(u,v) =[g u (x)v, (x)ax Yu,ve V.
(2.21) J(v)=fzv+<x)ax Fvev

+ -
where, as usual, v =sup(v,0), v =sup(-v,0). Let us con-
sider again the function u and prove that it verifies
the inequality for almost every t in ]O,T'[
(u,,v-u)+a(u,v-u)+I(v)-3(u)20, ¥vev
In fact from (2.16) we have a.e. in |0,T'[ and ¥veV
(B(R),v-u)==-(u_, (v=0) )+[3 . (v=0)]1 ¥ - (4, ,v-u)=
=(x(),v-u)

Then using (2.17) we have
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(u,>v-u)+a(a,v-a)+(x(8),v)-(x(2),12)=0

But (x(8),1)=J(%) and (x(2),v)=(x(Q),v -v )=

JS(t) + s(t)

v (x)dx—[ v (x)dx<J(v); so we have pro-
0 0

ved the inequality before. We have thus in a position
to formulate

PROBLEM I': Given g with

(2.22) geV, g(x)>0, 0<x<b
find w such that
(2.23) weH!(Q), w(b,t)=0 in [0,T7.
for almost every t in ] O,T'[
(2.2L4)
(wt,v—w)+a(w,v—w)+J(v)—J(w)>O YveV
(2.25) w(x,0)=g(x) on [O,b]
REMARK 2.3: The conditions w(x,0)=g(x) and w(b,t)=0 are
meaningful in consequence of the trace theorem of
the space H!(Q).
We shall give in a moment an existence and uniqueness
theorem for Pr.I'; now let us first study the relation

between Pr. I' and the system (2.17); we have

PROPOSITION 2.2: If w is a solution of Pr.I', then

(2.26) w20 in Q
(2.27) E(w)e L (q), E(w)sl in Q
(2.28) {E(w)-1}w=0 in Q

(2.29) weH2:1(Q)

(2.30) WX(O,t)=O . 0<t<T
(2.31) w(b,t)=0 . 0<t<T
(2.32) w(x,0)=g(x), 0<xghb,

where (2.26),(2.31),(2.32) are in the sense of C°(Q),
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(2.27) (2.28) almost everywhere in Q, (2.30) in the sen
se of H2,1(q).

PROOF: Let us take v=w ' in (2.24), as it is possible,
and remember that w=w'-w~; and we have

Os(wt,w—)+a(w+—w_,w—)+J(w+)—J(w)=
= () ) =) L))

Then in particular

b
g%f |w (x,t)]2ax<0 a.e. in JO,T'[

o]
from which, since w (x,0)=g (x)=0, we have (2.26). Let
us take now v=w+¢ in (2.24), where ¢e.D(]O,b[) and
$20; we have, since (by (2.26)) wt=w and (w+¢)¥=w+¢ ,

(wt,¢)+a(w,¢)+(l,¢)=(wt,¢)—<wxx,¢>+(l,¢) =

= <1-E(w),$>20, where <,> is the pairing between
p'(]o,b[) and D(]O,b[); from which we have 1-E(w)>0 in
the sense of D'(]O,b[) for a.e. t in ]O,T'[; and conse
quentely E(w)<1 in the sense of D'(Q), since we H!(Q).
Taking now v=w-¢ with ¢ eD(]O,b[) and ¢20, we have si-
milarly:

—(Wt,¢)+<wxx,¢>>J(W)—J(w-¢)20

and then E(w)20; thus (2.27) is proved , and from it
we can also deduce (2.29), using E(w)=w__-w, and (2.23).
Now we C°(Q) and (2.26), (2.31),(2.32)Xxhave meaning
in classical sense and (2.30) has meaning in the sense
o;4the trace theorem for the functions belonging to

H3* (Q)(cf. e.g. [48]): w_(0,t) en!/* (Jo,7'[). Finally
let us introduce the set™

(2.33) o={(x,t)eq, w(x,t)>0},
wich is a non vold open set since we C°(Q) and by virtue
of (2.32) and (2.22). Let us take now ye D(Q) with sup
port contained in £3; then there exists A,>0 such that
for each real A with lklsk one has W+A$ZO in Q, hence
(w+Aw)+=w+Xw; moreover for é&fach t e]O,T'[ wi(.,t) +
+AP(.,t) e V, then we can take v=w(.,t)+Ap(.,t) in (2.2L4)
and we obtain

A(f w,_¢dxdt+A J w_ P dxdt+f[ (W+Aw)dxdt—J[ wdxdt>0
t XX

Q Q Q Q

i.e.
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x” (E(w)-1)pdxdt<0
Q

from which, as the sign of A 1is arbitrary,

H (E(w)-1)¢dxdat=0 i.e.
Q
(2.34) E(w)=1 in @
and we can deduce (2.28) almost everywhere in Q.

REMARK 2.4: If we denote by H(A) the Heavesige function
{as a monotone grapf: H(A)=0, A<0, H(O)=[O,1], H(A)=1
A>0) (2.26), (2.27), (2.28) can be condensed into the
single relation

(2.35) E(w) e H(w)
Now we can state the following

THEOREM 2.1: There exists one and only one solution w
of Pr.1'; moreover

(2.36) we H221(Q)
(2.37) wec°(Q)
(2.38) w, e 1°(0,7'312(J0,p[)N12(0,T5v); ¥ ©r0,0¢T
if g satisfies moreover
geH2(Jo,p[); g'(x)<0, Osx<b; g'(b)=0;
(2.39)
g"(x)sl. a.e. in [0,b].
then we have
(2.40) wewg’l(Q), 1¢p< 3
(2.41) stO, wtso a.e. in Q;
finally if g satisfies moreover (2.1) we have
wveW2>1(q) ¥p 1spgb
(2.h42) P _
(and consequentely v_E€ ce(q))
¢) Now we come back to Pr. I using the solution w

of Pr.I', given by Theor. 2.1. Using (2.4%1) it can be
proved that § defined by (2.33) is actually given by
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(2.43) @={(x,t); O<x<s(t), O0<t<T}

where
(2.44) T<T'=g(0) , and
se c°([o0,T]),s(t)>0, 0<t<T, =s(0)=b,s(T)=0,
(2.45)
s is strictly decreasing in [0,T].

Moreover setting
(2.46) u(x,t)=w(x,t) in @

the triplet {T,s(t), u(x,t)} can be considered as a
"weak solution" of Pr.I in the following sense:

DEFINITION 2.2: Under the assumptions(2.22) and (2.39)
for g {T,s(t),u(x,t)} is a "weak solution" of Pr. I if
T is >0, s verifies (2.45), ue C°(Q), where @ is defi-
ned by (2. h3) and u verifies (1.4), (1.7) and (1.3)
(this _one in the sense of D' (Q))and moreover the fun—
ction u defined by w(x,t)=u(x,t) in @, u(x t)=0 1n Q-
where @={(x,t); O<x<b, O<t< T 1}, belongs to H2-1(Q)
and u_ {0,t)=0 for a.e. t e[O T ] ; moreover uz0 in Q.

REMARK 2.5: The boundary conditions (1.5) and ( L.6) are
contained in Definition 2.2 in the fact that LeHZ1(Q)
and u (0,t)=0. Let us remark also that we do not use
condi%ion (2.1 in Def. 2.1; so we can apply this defi-
nition and the following Theorem 2.2 also to the oxygen
diffusion. It is interesting to note that althought the
problem of oxygen diffusion (i.e. when g'(0)#0) seems
to be not reducible to a problem of Stefan type (remem-
ber 1ndeed that if g'(0)#0 we don't have for instance
ue Cl(Q)and the proofs of the Proposition 2.1 are not
valid), nevertheless it can be studied by the same va-
riational inequality as for the case g'(0)=0.

Then we can state the following

THEOREM 2.2: There exists one and only one weak solu-
tion of Pr. I.

PROOF: The existence follows by Theor. 2.1, as we have
just seen. For the uniqueness let us note, that if
{T,s(t),u(x;t)} is a weak solution, then it is easy to
prove that, if we take a rectangle'Qo=]0,bo[x]O,To[

such that 2¢Q and if we extend u in Qo setting U=u in
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4=0 in Q -Q, then # is the solution of the variational
inequalify (2.23),(2.24),(2.25), written with Q, instead

of @ and gZ(x) instead of g(x), where E(x)=g(x) in [O,b],
g(x)=0 in [b,bo . Then u satisfies also the analogous

of Theor. 2.1 and we have in particular GXsO in QO, i.e.

u_<0 in 2. Then it is possible to repeate the proof gi-
vén in the Prop.2.1, in order to obtain that T<g(0). Now
we can take Q0=Q and it is immediate to see that U sol-

ves Pr.I'., Then the uniqueness follows from the unique-
ness of the solution of Pr.I'.

REMARK 2.6: By a similar type of proof we can also obtair
the uniqueness of the classical solution of Pr.I.
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3. A STEFAN PROBLEM

a) First of all let us define "classical solutions"
of Pr. II:

DEFINITION 3.1: Under tha assumptions
(3.0) ge cl([0,a]) and verifies (1.8)

the pair {s(t),u(x,t)f is a "classical solution" of

Pr. II if: seC°([O,T]) and verifies (1.9), s'(t) is con-
tinuous for 0<t<T, ue C°(R), where 9 1is given by (1.23),
uxe_Lz(Q),uX,ut are continuous for Osxgs(t), O<t<T , and

u verifies (1.I0), (1.11), (1.12), (1.13), (1.1k4) (the
equation (1.10) in the sense of D'(Q), then also in clas
sical sense). We have

PROPOSITION 3.1: If {s(t),u(x,tﬁ is a classical solu-
tion of Pr. II, then

(3.1) u(x,t)>0 in @,

(3.2) s is strictly increasing in [O,TJ.

PROOF: The proof is the same used in the Proposition 2.1
for the function there denoted by u,(let us remember the
Remark 2.1); the only difference is that now u(x,0)=g(x)>0
and then u(x,t)>0 in 0 and ux(s(t),t)<0, O<t<T.

PROPOSITION 3.2: If {s(t),u(x,t)} is a classical solu-
tion of Pr. II, then

s(t) a
(3.3) S(t)+J u(x,t)dx=a+[ g(x)dx O0<tsT.
Yo o

PROOF: First let us remark that U Uy is also continu-
ous for Osxgs(t), O<tgT.

Then for every t in |0,T[ we have, using (1.13), (1.10),
(1.11),

s(t)
O=s'(t)+ux(s(t),t)=s'(t)+-(o uxx(x,t)dx~ux(0,t)=
(3.4)

s(t) a s(t)
s‘(t)+fo ut(x,t)dx=s'(t)+E€Jo u(x,t)dx—

- s'(t)uls(t),t)
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a s(t)
=——~s(t)+J u(x,t)dx]
dt
)
Then the function
s(t)
s(t)+J u(x,t)dt
o
is constant in the interval [0,T] and finally

by (1.9) and (1.14) we have (3.3).

COROLLARY 3.1: There exists b>0 such that

{(3.5) s(t)<b , O<t<T

In fact from (3.3) and (3.1) we have for instance

a
s(t)g =a+J g(x)dx; we can then take for instance b=a+
I

a
+I g(x)dx+1l.
o

Let us try to put Problem II in the form of a variatio-
nal inequality, like in sectilion 23 setting

(3.6) Q={(x,t); O<x<b, O<t<T}

with b given by the Corollary 3.1, we are suggested by
(1.11) and the physical situation, to set

{(3.7) u(x,t)=u(x,t) in Q; U(x,t)=0 in Q-9

But now u is not "sufficiently smooth"(we have ueCO(gq)
and 1 _eL2(Q)) for being a solution of a variational ine
quali¥y of the kind of (2.24); in fact, if this were pos
sible, we could deduce from (1.12) s'(t)=0, 0<t<T, which
is in contradiction with (3.2). On the other hand let us
try to compiute E(%) in the sense of D'(Q); first we
shall prove the following

PROPOSITION 3.3: If {s(t),u(x,t)} is a classical solu-~
tion of Pr.II, then we have

(3.8) jj(ux¢x—u¢t)dxdt=JJ¢tdxdt #¢ec:(é)

Q Q
where

c®(Q)={¢eC”(Q); ¢=0 in a neighbourough of the
(3.9) *
set 8Q-{(x,t); x=0, 0<t<T}
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PROOF:Left us recall that u xx is continuous for Ogxgs(t),
0<% <T and let us note that every ¢éC*(Q) has its support
in [O, b[x[& T- E] for some £&30; the following computa-
tions are valid

J{ux¢xdxdt {J dxdt=—JJu ¢dxdt+T[ux¢]§(t)dt+
Q

Q

=2

Q

=_JT %EJS(zZX,t)dx)dt+[ JS(t dxdt= JJ¢tdxdt
(o] @] o’ 0

Q

+JJut¢dth=_JJ(u T ) edxdt- TS "(t)e(s(t),t)dt
(@]
)

Then we deduce

PROPOSITION 3.4: If {s(t),ul(x,t)} is a classical solu-
tion and we define u by means of (3.7), we have

(3.10) E(ﬁ)=Dtx(Q) in the sense of D'(Q)

PROOF: For each ¢e D(Q) we have, using (3.8) and remarking
that the "free boundary" 3QNQ is of zero measure in
and that uXELz(Q)
<Eﬁ,¢>=-<ﬁX,¢x>+<ﬁ,¢t>=-JJux¢xdxdt+JJu¢tdxdt=
Q Q

—Jj¢thdt=_Jjx(ﬂ)¢thdt=<DtX(Q),¢>
Y] Q

where <,> denotes the pairing between D'(Q) and D(Q).

By looking at the equation (3.10) it is natural to intro
duce a new unknown function

t —
(3.11) w(x,t)=j u(x,t)dt in Q
o

This will be actually the "good" unknown for the pro-
blem, because w satisfies a good variational inequality
and, if we know w, we can come back to the solution of
Pr.II; in fact we have

PROPOSITION 3.5: If {s(t),u(x,t)} is a classical solu-
tion and w and U are defined by (3.11) and (3.7), then
we have

(3.12) w(x,t)30 in Q
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(3.13) w(ix,t)>0 in @ , w(x,t)=0 in Q-Q

(3.14)  EB(w)eL™(Q) , E(w)sl-f in Q

where f is defined by

(3.15) f(x,t)=1+g(x),0<x<a,0<t<T; f(x,t)=0,a<x<b,0<t<T;
(3.16) (E(w)-1+f)w=0 in Q@

(3.17)  w(b,t)=0 , 0<t<T

(3.18) wX(O,t)=O, 0<t<T

(3.19) w(x,0)=0 , Osx<b

where (3.14),(3.16) have a meaning §lmost everywhere in Q
and all the other relations in the classical sense.

PROOF: The conditions (3.12),(3.13),(3.17),(3.18),(3.19),
together with the properties w,w,e CQ), w_,w tELZ(Q)

are an easy consequence of the definition of w and of

the properties of U. Now let us consider in Q the di-
stribution E(w)-y(Q); we have from (3.11) and (3.10),

in the sense of D'(Q)

D (E(w)=x(2))=E(D,w)-D, x(2)=E(¥)-D, y(2)=0

Then E(w)-x(Q) is constant with respect to t i.e. is
of the form

E(w)-x(a)=x(x)

but we know that w=0 in Q-Q, so we obtain that
AMx)=E(w)-x(Q)=0 for a<x<b , 0<t<T

Secondly, in the rectangle Qg ={(x,t); O<x<a,0<t<T}, we

have x(Q)=1, and wt=ﬁ is continuous in Q, and so also

for t=0, and by (1.14) we have w, (x,0)=tu(x)=u(x)=g(x)
for Og<xga. Moreover WXX=A(X)+l+wt, then Vox is conti-

nuous with respect to t in Qa and we have from (3.11)
w_ (x,0)=0; then E(w)-x(Q) can evaluated for t=0, O<x<a,
obtaining as value -g(x)-1. Then .

E(w)-x(Q)=-1-g(x) in Q,

Finally we have
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(3.20) E(w)=1-f in Q
and (3.14),(3.16) are proved.

Suppose now "formally" that we can solve the system of
the inequalities (3.12),(3.14),(3.16),(3.17),(3.18),
(3.19) with w "sufficiently smooth" and such that the

set ={(x,t)eQ; w(x,t)>0} be of the form (1.21) with

s verifying (1.9); then setting u(x,t)=w,(x,t) in Q, we
obtain a solution of Pr.II. The system (§.12),(3.1h),.
«v+5(3.19)is similar to the variational inequalities (2.26),
«ve5(2.32) of n.2; then, in the same way as in n.2,b),

we shall now intrcduce a precise formulation for the
system (3.12),(3.14),...,(3.19).

b) With the same definitions (2.18),(2.19),(2.20),
(2.21) for Vv, (u,v), a(u,v), J(v), let us consider the
following

PROBLEM II': Given g with
(3.21) g(a)=0,g(x)>0, Osx<a, geH!(]O,a[)
find w such that

(3.22) weH' (Q), w(b,t)=0 on [0,T]

and

for almost every t in [O,T],

(wi ,w=w)+alw,v-w)+J(v)-J(w)>(f,v-w)
(3.23) IveV

where f is defined by (3.15)
(3.24) w(x,0)=0 on [0,b].

With the same proofs used for Prop.2.3 and using also
the fact that £, defined by (3.15) is »0 in Q, we can
now prove the following

PROPOSITION 3.6: If w is a solution of Pr.II', then w

satisfies (3.12),(3.14),(3.16),(3.17),(3.18),(3.19), to
gether with

(3.25) wen?°1(q) ;
in particular
(3.26) E(w)=1-f in Q

where
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(3.27) e={(x,t)eQq; w(x,t)>01}.

REMARK 3.1: (3.12),(3.14),(3.16) can be condensed into
the relation

(3.28) E(w)+feH(w)
Finally we have the

THEOREM 3.1: There exists one and only one solution w
of Pr.II': moreover

(3.29) wee (P, M 12(Jo,p[) N L2(0,T5V)
(3.30) wew2*'(Q) ¥p>1

(3.31) w,w eCo(Q)

(3.32) v sw eL7(Q)

(3.33) w,20  a.e. in Q;

if moreover g verifies
(3.34) g'(x)<0 a.e. 1n [O,a]
then we have
(3.35) wxso in Q
c) We can back to Pr.II, using the solution w of
Pr.II' given by Theor.3.1l; using in particular (3.33)
and (3.35) it is possible to prove that the set Q defi-
ned by (3.27) is actually given by
(3.36) Q={(x,t); O<x<s(t), O<t<T}
where
(3.37) {ieCO(EO,T]), s(t)>0, s{(0)=a, s is strictly
increasing in [0,T].
Setting
(3.38) u(x,t)=w

t(x,t) in @,

the pair {s(t),u(x,t)} can be considered a "weak solu-
tion" of Pr. 1in the following sense:

DEFINITION 3.2: Under the assumptions (3.21) and (3.3k4)
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for g, {s(t),u(x,t)} is a "weak solution" of Pr.II if:

s verifies (3.37), uel™(q), u_eL2(q), where @ is defi-
ned by (3.36), u30 a.e. in Q,Xu verifies (3.8) and the
function U defined by u(x,t)=u(x,t) in @ , U(x,t)=0 in
Q-Q, belongs to Hl’o(Q)ﬂCO([O,ﬂ ; Lz(jo,b ) and verifies
U(x,0)=g(x) in the sense of CO([O,T]; deo,bp), where
g(x)=g(x), Ogxga, E8(x)=0, asgxghb.

REMARK 3.2: Definition 3.2 is really a "weak formulation"
of Pr.II: in fact the boundary condition (1.11) is con-
tained (in the sense of H!»°(Q), then e.g. also for a.e.
t in %O,T[) in the condition GeH1»°(Q) the initial condi
tion (1.14) is contained in the condition u(x,0)=8(x);
the equation (1.10) follows in the sense of D'(q) from
(3.8) (where we take ¢ with support in Q); and the boun
dary conditions (1.12),(1.13) are contained in a "weak
sense" in the relation (3.8); moreover condition u0
a.e. in @, together with E(u)=0 in Q, assures us, using
the maximum principle in the interior of @ , that
u(x,t)>0 in Q.

REMARK 3.3:Another "weaker'" definition of "weak solution" of Pr.

II has been introduced by Kamenonostkaja | 40| and studied also

by Olenik [52] , Friedman [29 ] ; it is not difficult

to see that a "weak solution" in the sense of Def.3.2 is
also a "weak solution" in the other sense.

Using Theor.3.1 and Def.3.2, it is possible to prove the
following

THEOREM 3.2: There exists one and only one weak solution
of Pr.IT.

REMARK 3.4: We shall come back in section 8 to the regu
larity of the weak solution of Pr.II and to the existen
ce of a classical solution; in any case since "classi-
cal solution are also weak solutions(ef. in particular
Prop.3.1, and 3.3) (or since, as we have seen, if
{s(t),u(x,t)} is a classical solution +then U defined
by (2.1L4) is a solution of Pr.I'), we obtain from Theor.
3.2 the uniqueness of classical solution.
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L. A PROBLEM OF FLUID FLOWS THROUGH A POROUS MEDIUM.

a) Let us consider first "classical solutions" of
Pr. III:

DEFINITION L.I: Under the assumptions
ge Cl([O,a]) and verifies (I.I5),

(L.0)
2ecl([0,T]) and verifies (I.I6)

the pair {s{t),u(x,t)} is a "classical solution" of
Pr. III if:se C°([0,T]) and verifies (I.IT), s'(t) is
continuous for O<t<T ue C°(Q), where Q is given by
(1.23), u e L2%( are continuous for Osgxgs(t),
0<t<T, and u Verlfles EI 18), (I.I9), (I.20), (I.21),
(I.22) (the equation (I.I8) in the sense of D'(Q)).
We have

PROPOSITION L4.I: If {s(t),u(x,t)} is a classical solu-
tion of Pr. III, then

(h.I) u(x,t)>x in @
s'(t)2-I, 0<t<T and the "free boundary"

(L.2) £ 32N Q does not contain segments parallel to the
line x+t=0

PROOF: The same proof of Proposition 2.I, applied to
the function v(x,t)=u(x,t)-x.

PROPOSITION 4.2: If {s(t),u(x,t)} is a classical solu-
tion of Pr. III, then, denoting by L{(t) the function

t a
(4.3) L(t)=J 2(T)dT+[ (I+g{x)-x)dx
6] 0
we have
s(t)
(kL) s(t)+f {u(x,t)-xtdx=L(t) 0<tgT
0

PROOF: The same proof of Proposition 3.2.
Now by (L.4) we have s(t)<L(t), O<t<T and consequentely:

(h.5) 0<Ar = inf L(t)
° 0gtgT
(4.6) s(t)<i;= sup L(t)
OgtgT
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Denote by b a fixed number greater than Al, for instan
ce

(L.7) ©® =x +I
and Q
(4.8) Q@={(x,t): O0<x<b, 0<t<T}

We are suggested by (I.I9) to define also

. u(x,t) if (x,t)€ @
(k.9) u(x,t)= L
X if (x,t)eq-0

and, remarking that by virtue of (I.20) we are in a si-
tuation similar to the Stefan problem one, we try to
introduce a new unknown function by a transformation
similar to (3.7). Let us follow, first of all, Friedman
and Jensen [ 34 |and define

b
(L.10) W (x,t) =f {u(g,t)-glag

X

We shall now see "formally" that w verifies the follo-
wing system of inequalities:

(L.II) w20 in Q
(L.12) w>0 in € , w=0 in Q-Q
(L.13) E(w)eL7(Q), E(w)gI+s'(t) 1in Q
(L.Th) {E(w)-(TI+s'(t))}w=0 in Q
(b.15) w(p,t)=0 , 0<t<T
(4.16) w(O,t)=h(0)+fgk(t)dt—s(t)+a , O<ter
(bL.17) w(x,0)=h(x) 0<x<b
where

a
(L.18) h(x)={ (g(g)-g)dg, Osxga; h(x)=0, asgxg<b
In fact we evafuate
wX(x,t)=x—u(x,t) in Q3 wx(x,t)=0 in Q-9

wxx(x,t)=I—uX(x,t) in Q3 wxx(x,t)=0 in Q-Q
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W (x,t)=J2 ﬁt(g,t)dg in @ (x,t)=0 in Q-Q

t Vi

since u(x,t)-x=0 if x=s(t). Consequently we have in @

b
E(w)=I-uX(x,t)—JXux(g,t)dg=1—ux(x,t)—

s(t)
(h19) =[ g (6, 0)agm T, (08D (s (6), )0 (x,)=

=I—uX(s(t),t)=I+s'(t).
and in Q-2, by (k.2)
(L.20) E(w)=0gI+s'(t)

Furthermore (L.II),(4.12), (4.I5), (L.I7) are immedia-
te. In order to prove (4.I6), let us take x=0 in (L4.I9)
and let us remember that w__{0,t)=I-u (0,t)=I+2(t); we
obtain w, (0,t)=2(t)-s'(t), ¥hen integPating and using
(L.I7), we have (4.I6). Suppose now "formally" that we
can solve the system (4.II)....(4.I7) in the unknown

s and w; then taking u(x,t)=x-w_(x,t) in @, with @ gi-
ven by (I.23), we obtain a soluftion of Pr. III. The
system (L.II)..... (k.I7) (I.23) in the unknown w and s
is a so called"quasi-variational inequality" If s(t) is
& known function then (L4.II) (L.I3)..... (4L.I7) form a
variational inequality of the same kind as the variatio
nal %n?quality of Sections 2 a?d 3, and if we denote

by w'S/ its solution then,if w S)sO,the curve x=o0(t) gi
ven by %

o(t)=sup{x; w(s)(x,t)>0}

is the corresponding "free boundary". If o(t) coincides
with s(t), then the pair {s,w'!S’} is a solution of the
system (4.II)(Lk.12)....(4.I7)(I.23). We can then think
that a method for solving guasi-variational inequali-
ties of type (L4.II)....(L4.I7)(I.23) may be obtained by
combining fixed point theorems with existence theorems
of the variational inequalities. And actually this idea
is used to solve general quasi-variational inequalities.
But quasi-variational inegualities being a more sophisti-
cated tool than variational inequalities we shall adopt
here a different approach to Pr. IITI, following an idea
of Torelli, who by & change of unknown, different form
(L.I0), was able to reduce Pr. III to a variational ine-
qualities of the same kind as those of Pr. I' and II"

(see [62]).
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b) First let us remgrk some other properties of
classical solution. If C*(Q) is still defined by (3.9),
we have

PROPOSITION 4.3: If {s(t), u(x,t)} is a classical solu
tion of Pr. III, then

(h.21) fj{(ux—I)¢X—(u—x)¢t}dxdt= ff(¢t—¢x)dxdt+

0

PROOF: It is the same as for the Prop. 3.3; wWe have
to use the condition ux(O,t)=—2(t) instead of the condi
tion ux(O,t)=O.

Q. Q.
+If 2(t)6(0,t)dt V¢ec:(Q)

Moreover as in the Proof. 3.4 we deduce immediately from
(L.2I) that

(4.22) E(ﬁ)=(Dt~DX)x(Q) in the sense of D'(Q)

wvhere U is the function defined by (L4.9). Let us compa
re (4.22) with (3.I0) (and with (2.II)!): Torelli's
idea is to integrate with respect to the oblique dire-
ction y making with the x-asis an angle of measure

m. Then let us introduce the set

(b.23) Q= {(x,t);0<x<b+T-t, O<t<T}

and let us define by continuation u in Q-Q, i.e. setting

(h.2h) u(x,t)=x in Q-9

Let us note also the following properties of the set Q
defined by (I.23) if {s(t),u(x,t)} is a classical solu
tion : the first is a part of (4.2), which we rewrite
here

(4.25) [the"free boundary " 3QNQ does'nt contain
segments parallel to the line x+t=0;
the second is: .
(4. 26) if (x,t) e Q-2, then the segment {(&,7);& =x+6t,
. 2

t=t-6t, 0<6<I} belongs to Q-Q

and follows immediately from (L4L.2). Now we are in a po
sition to define the function

(h.27) w(x,t)= Jg a(t+x-2,0)-(t+x-2)}dz (x,t) ¢ Q



264 E. MAGENES

for which we have the

PROPOSITION 4.kh: The function w, given by (k.27),(k.2L),
(L.9), satisfies, in the sense of D'(Q):

(L,28) w,~W_ =

t X x

u-
-~ -t ~
(h.29) wx(x,t)=Jo{ux(t+x—C,C)—I}dC

(x,t) =ft {ﬁx(t+x—c,c)-I}d;+ﬁ(x,t)—x

(4.30) Ve o

(4.31) E(w)=x(2-2)-x(Z){g(x+t)-(x+t)}
Were

(h.32) 7 = {(x,t)eQ; x+t<a}

PROOF: Let us first note that by (Lk.2)
(4.33) 7 Q

Secondly, recalling that u eC°(Q) and ﬁxe=L2(Q), we can
obtain directly (L4.29) (4.30) and consequently (L.28);
from (4.28),(L4.29), (4.30) we deduce that

(4.34) w,w —wxe,c°(é); %t,ﬁxe L2(q)

t
Then from (4.28) and (L4.22) we have

(L.35) (Dt-DX)(E(w)—x(Q))=O in the sense of D'(Q)
The distributions E(w)-x(®) is then constant on the pa
rallels to the line x+t=0, i.e. 1t 1is of the form

(1.36) E(w)-x(2) = A(x+t)

Now using (4.25) and (4.26) we can deduce that w(x,t)=0
in Q-2 ; then remarking that s(0)=a and s(t)<b for
0<t<T, we have

(4.37) E(w)-x(Q)=0 in Q-%

I and w,-w_=u-x 1s a continuous

In ZIWQ we have x(Q)=
(4.36) we have

function; then by

-y = +t )+ T+w, —W
VoV Ax+t)+I WLV

and then %xx_% is continuous in ZNQ on the parallels
to the line x+%=0; then w2 can evaluate
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A x+t)=E(w)-x(a) (=(ﬁxx—%x)—(%t—%x)—1 in ZNQ)
for t=0 , O<xga and we obtain from (L.2T)
M(x)= (7, ) (x,0) (i, =, ) (%,0) ~T=0-5(x) +x-T =
= -g(x)+x~1I
Then we have
(4.38) E(w)-yx(Q)=-g(x+t)+(x+t)-1I in Z nQ
Finally (L4.36),(4.38) can be written in the form (L.3I)

Now we make another changement of unknown; let us con-
sider' the function z(x,t) defined by

z(x,t)=0 in Q-2 , z(x,t)=

a x+t-§&
(4.42) =[ (T+g) (£)-E) (I-e JaE in z
x+t
We have
0 in Q-Z
(L.43) =z _(x,t)=7 (x,t)= -
X t i"[i‘_}_t(l"'g(g)_g)e x+t gdg in 7

0 in Q-2
(L.hh) =z (x,%)=
XX

x+t-§

_[i+t (I+g(g)-E)e QE+T+g(x+t)-(x+t) in Z

and consequently

(L.hs) zxx(x,t)—zt(x,t)=x(Z)(I+g(x+t)—(x+t) in Q@ and
(h.h6) z,zx,zt,zxxe_c°(§).

We introduce now the new unknown w(x,t), defined by
(B.47) wix,t)=w(x,t)+z(x,t) in Q

and we prove the

PROPOSITION L4.5: The function w defined by (L.47)(k.Lk2)
verifies

(L.48) w(x,t)30 in Q
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(b.%9) w(x,t)>0 in @ , w(x,t)=0 in Q-0

(L.50) E(w)e L (Q), E(w)<I in Q

(b.51) {E(w)-I}w=0 in Q

(4L.52) w (0,t)-w(0,t)=-L(t), 0<t<T

x(
(4.53) w(b,t)=0 . O<t<T

(b.54) w(x,0)=G(x), 0<x<b
where L(t) is given by (4.3) and G(x) by

(k.55) G(X)=[i(l+g(£)-E)(I-ex_g)d& O<x<a; G(x)=0,a<x<h

) have meaning almost everywhere

and where (L.50),(L.51
> (b.ho),(h.52),(4.53),(4.54) in classi-

in Q and (4.L48)

cal sense.

PROOF : First we note that from (L.46) and (Lk.3k) we
have

(b.56) w,w -w_ec°(Q); w,,v e L2(Q)

Secondly using the properties of w and z it is easy to
prove (L.L48),(L.k49),(L.50),(L.51),(L4.53),(Lh.54). We
have thus to verify only {(4.52). Now from (4.28)and
(4.43) we have

(L.57) W W Su-x in Q

1
Deriving,in the sense of D (Q), we obtain, using al-
so E(w)=x(Q){(which is contained in (4.48) and (L4.51))

th—wxx=wtx—<wt+x(g))=(wx—w)t_X(Q)=ux_I

Writing the last equation for x=0, 0<t<T (which is pos-
sible because U_=u_ in 9 and u is continuous for x=0
0<t<T), we have

(WX(O,t)-W(O,t))t=—l(t)
from which, by (4.5k4)

t t
WX(O,t)—w(O,t)=—f Z(T)dT+G'(O)-G(O)=—f {t)a -
0

a
—j (T+g(g)-t)ae= -L(t)
0
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The system (L.L49)....(4.54) is of the same kind as the
other systems(2.I2)...(2.I7) and (3.I3)....(3.I8).And
similarly as in $. 2 and 3 if we suppose "formally"to
have solved it with w "sufficiently smooth" and suchthat
the set Q={(x,t)eQ; w(x,t)>0} is of the form (I.2I),
then setting u(x t)=w, (x, t) - (x,t)+x in @ , we obtain
a solution of Pr. III.

¢) Then let V, (u,v), J(v) be defined as in §. 2
and 3 by (2.18),(2.19),(2.2I) and set now

(4.58) a(u,v)=fbux(x)vx(x)dx+u(0)v(0) Yu,vev.
Let us consider She following

PROBLEM III': Given g and & such that

(4.59) genl(]o,al); gl(x)>x, Osx<a, g(a)=0

(4.60) 2 ec°([0,7]); 2(t)>-T, O<t<T 3 léH%(]O,TE)

and with G and L defined by (4.55) and (4.53), find w
such that

(4.61) we H!(Q); w(b,t)=0 on [0,T];

for almost every t in [0,T]

(h.62) (w ,v-w)+a(w,v-w)+J(v)=J(w)2L(t) (v(0)-w(0,t))¥veV
(4.63) w(x,0)=G(x) on [0,b].

REMARK L.I: As we have seen in n. 2 b) it is easy to
prove that if {s(t),u(s,t)} is a classical solution

and we define w by (4.47), then w is a solution of
Pr. III'.

By means of the same proof used for Prop. 2.3, using
in addition the positivity of L(t) (ecf. (L4.5)), we can
prove the

PROPOSITION L.6: If w is a solution of Pr. III then w
satisfies (L4.48),(L.50)..... (4.54) together with

(L.6L)  weH221(Q);
in particular

(4.65) E(w)=1I in @
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where

(4.66) o={(x,t)€ q; w(x,t)>0}

REMARK L4.2: (4.48),(4.50),(4.5I) can be condensed into
(h.67) E(w)e H(w)

Finally we have the

THEOREM L4.I: There exists one and only one solution
of Pr. III'; moreover

(4.68) w e c°(0,T;L2]0,b[)NL2(0,T;5V)
(4.69) W‘ewé’l(Q) i peT; LA co(q)
4.70) LA (Q)

(L.71) wt—wxzo . wst a.e. 1in §

d) Using the solution w given by Theor. 4.I we
can now come back to Pr. III. We shall prove using in
particular (4.7I) that the set Q defined by (4.66) is
actually of the form

(h.72) @={(x,t); O<x<s(t), 0<t<T},
where
(4.73) sec°([o,T]) , s(t)>0, 0<t<T, s(0)=a,
and § satisfies the condition
YPe @, then A (P) c @
(L.7L4) { . B
VPe.Q-Q, then A (P)ecqQ-Q,
vhere if P =(x,t)

*( : - -

AT(P)={(x,t)e Q; tsgt, x+tzx+t} -{P}

(L.75) _ _ o
A (P)={{x,t)eQ; tzt, x+tgx+t} —-{P}

Setting

(4.76) u(x,t)=wt(x,t)—wx(x,t)+x in Q

the pair {s{t),u(x,t)} can be considered a "weak solu-
tion" of Pr. III in the following sense:
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DEFINITION 4.2: Under the hypothesis for g and £(4.59)
and (4.60), {s(t),u(x,t)} is a "weak solution" of Pr.
III if: s verirfies (L.73),Q, defined by (L4.72), veri-
fies (b.74),(L.75), uel (Q), u € L2(Q), u(x,t)»x in @,
u verifies (h 2I) _and, settlngux(x t)=ul(x,t) 1nQ ,
ulx,t)= =x in Q-Q, ue gl 0(g)n [O T] Lz(]O b and ve-
rifies u(x,0)= g(x) in the sense of C° ([O ﬂ L O,b))

REMARK L4.3: Def. L.2 is really a "weak formulation" of

Pr. III; in fact the boundary condition (I.I9) is conta

ined in the condition ue H!»%(Q) (hence e.g. for a.e.

t in [0,T]); (I.22) is contained in the condition
u(x,0)= g(x), the equation (I.I8)follows in the sense

of D'(Q) from (4.2I); and (4.2T) contains in a "weak

sense" also the conditions (I.20),(I.2I); moreover the

condition u(x,t)2x in @, gives us, together with the

equation (I.I8), the property u(x,t)>0 in Q.

REMARK L.L4.: Condition (4.7h) (4.75) gives us that
3N Q is a graph which is lipschitzian with respect to
the new axis (x',t) defined by x'=at+Bx, t'=Bft+ax where

a=cos I , g=sen I . In particular we have also that

7 ¢Q, where Z u defined by (L4.32).
Finally we have

THEOREM L4.2: There exists one and only one weak solu-
tion of Pr. III.

REMARK L.5: We shall come back in S. 8 to the regulari-
ty of the weak solution and to the existence of a classi
cal solution; in any case remark that classical solutions
are also weak solutions and that , as a consequence

of that or of the Prop. 3.5 and the uniqueness of solu
tion of Pr. III', we have the uniqueness of the classi-
cal solution.
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5. PROOF OF THEOREMS OF S.4: APPROXIMATION
We shall prove now Theor.hk.l.

a) Unigueness: Let w, and w, be two solutions of
Pr.III'., Setting w=w;-w, and taking in (4.62) written
for wi(resp. wy) v=w, (resp. v=w;) and adding the two
inequalities we have

w(x,0)=0 Ogxga and

-(w'(t),w(t))-a(w(t),w(t))s0 a.e. in [O,T]

b b
% i—t,{olm,t) lzdx*‘Lle(x,w |Zax+ | w(0,8)] %<0

a.e. in [O,T]

from which we obtain w=0.

b) We shall give the existence proof by regulari-
zation. Let us recall that Pr.III' is "equivalent" to
find weH251(Q) such that

(5.1) E(w)eH(w)

(5.2) v(b,t)=0 , 0<t<T

(5.3) v (0,t)-w(0,t)=-L(t), O<t<T
(5.4) w(x,0)=6(x) Osx<Db

We choose now an adequate approximation of H, L and G.

¢) For n=1,2,..., let Hn(x) be a function sati-
sfaying the following properties:

(5.5)  H_(Mec®®) , H_(Mec™([o,+=])

0 if -~w<)gO

= 35" 1
(5.6) Hn(A) SnA OsAs 5=
1 " Lonc+w
n
(5.7) B! ()20, H'(X)<O , O<hs+e

(5.8) H, UJsH(A)\.“.sH(A)s.“.\HH)
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If u(x,t) is a function defined in Q let us consider
Hn(u); we have

(5.9)  H_(weL™(q) (resp.c®(Q)) if ueL™(Q)(resp.Cc®(q))

Stronger smoothness properties of u are not always trans
ferred to H (u), since H is only a lipschitzian funec-
tion in Il but we have a better situation 1f u30 in Q
because H eC ([O +w[) In particular we have:

(5.10) 1If ueWp’ 1(q) and u30, then Hn(u)ewg’l(Q), %sp<+w
and moreover
(5.11) +the usual derivation rules are valid

In fact let ¢i, i=1,2,..., be functions such that

© , = . 2 1
¢iEC (Q) and ¢i converges to u in WP’ (Q); let us remem-—

ber that then ueC®(§), and ¢. converges to u in C°(Q)
and u €L, (Q) for p>3, and D_¢. converges to u in

(Q), as a consequence of Sobolev's imbedding theo-
reﬁs in the space Wg »1(Q) (ef.e. g.[hB] ). Let K, (A) be

a function such that X (X)ec “(IR) and X (A) H (X) for
OgA<+w. Then K _(¢,)eC “Q) and we have
D K (¢;)=K/(¢;)D 9,5 DK (¢;)=K!(¢,)D 0.5,
(5.12) X' n 1 t71
D K (¢;)=K(6,)(D_0.) +K'(¢ )D, 0
We can pass to the limit, for is+e, in (5.12) and find
that Kn(u)eW§’1(Q) and

D_K (u)=K'(u)D LU DLK (u)=K'(u)Dtu
(5.13) n

DXXKn(u) K"(u)(D u) +K'( )D XXu

But now u30 in §, then K (u)=Hn(u) and we have (5.10)
and (5.11). n

d) Let us set now
(5.14) Z(x)=g(x), Os<x<a; g(x)=x agxgb
(5.15) pn(x)=Hn(a+%—x) Osx<b

so that by (5.5),(5.6),(5.7) we have



272 E. MAGENES

1 Ogsxxga
- B (aek 1 1
(5.16) On(X)— 2n(x (a+n)) atg<xgats
1
0 at—sxgh

b
(5-17) ¢ (x)=] (o (£)+2(2)-0) (1" "), oexen
X

t b
(5.18) Ln<t>=Jozn<T)aT+JO<on<s>+é<g)—g>da, Oster

where {Qn} is a sequence of functions such that

2 ec”([o,T]), ()28, ()30 e (£)5. . 20(t)
(5.19) o 1
and lim & =& in C [0,7] nu¥ (Jo,T[)
n-rw

Let us remark that we have
(5.20) 1 ec”([o,r])
(5.21)  Geu’(Jo,b[)

with

b
a'<x>=—j (o (€)+E(£)-£)e ¥ Eac
(5.22) . x )
b —
eg<x>=—jx(pn<g>+g<a>75>ex “Yageo_(x)4E(x) -

We have_also if yx([0,a]) is the caracteristic function
of [O,a].

(5.23) o (x)30 (x)3...30_(x)...5x([0,2]),

1 2
(5.24) Gl(x)sz(x)z...;Gn(x)...;G(X)
(5.25) Ll(t)sz(t)z--.an(t)a---aL(t)-

Let us define also

A
(5.26)  §,00=] m(e)r e R

b
(.21 3, (=] 5 (e e

o
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and that

(5.28) (M) < (A)s...sjn(x)...

2

PROPOSITION 5.1: If n=2,3,..., then

(5.29) Hn(Gn(X))Spn(X), 0sxgb

PROOF: Firstly (5.29) is valid if Ogxga, because pn(x)=l
and Hn(Gn(x))SI; (5.29)is also valid if a+-gxgb, since
pn(x)=0 and Hn(Gn(x))=O (because Gn(x)=0). It remains

to prove (5.29) if asxsa+%; we have for any such x

a+% x—-£ a+%
(5.30) G (x)= o (£)(1-e" ")deg o (g)(g-x)ag
n % n x n
It asxsa+%;, we have
a,+’:'|-3';l- a+5-
(5.31) G (x)g p_(g)(&-x)ae+ o (g)(g-x)desg
n n 1 n
X a+§1—
1
at+s— at+=
o] Pemaee] B (Fale-(and)) (en)ace
X a+§z

at+=
S0 B Plenx] [e-(ard) face

1,1 nl, 1 % 1 3n,1,%71 .
$3030) +5 larix) sygmeti(T) s3p» if m»2
If a+l—SXSa+—, we have
3n

n a*tn 1 3 1
(5.32) Gn(x)sa-JX [E—x]lg-(a+z)[dggﬂzzs55, if np2
In any case we have G (x)sl— if asxsa+i; then by defini
. n 2n n -
tion of Hn(k), we have:

a+=
1,6, (x)) =300, (x)=3n| % (£)(1-¢"F)ace

(5.33) *
at+=
AR RGIILE

X
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Let us again distinguish two cases

i) if asxsa+£— we have
2n
a+% a+%— a+%
f on(g)(a—x)d£=j non(a)(z—x)ds+f ; eplE)(g-x)dEs
X X a+§;1‘
**on 1 a+%
co(x) | Phlemdatee (adn) [T (gm)aze
X a+
2n
2 1,2 1 1
spn(X)%(%E) +Dn(X)%(E) Spn(X)—2<%+§)$p (x)%; if n3?2
ii) if atios<xsat- ve have

a+— a+—
IX npn(i)(E-X)dison(x)Jx n(E-x)dison(x)%(%z)gcn(X)gg

From (5.33) and 1) and ii) we deduce again

H Gn(x))spn(X)

n(
e) Let us consider now the following

PROBLEM 5.1: For any fixed n=1,2,...., find W(n) such
that

(5.30)  m(v()y=m (w(7)) in g

W(n)

(5.35) (b,t)=0 0O<t<T

(5.36)  wi™ (0,6)-w () (0,8)=-1_(¢), octen
(5.37) W(n)(x,0)=Gn(X) , Osxgb

Pr.5.1 is a"good" non linear problem for a parabolic equa
tion , due to the definition of Hn; and it can be stu-
died by different points of view: in the classical spa-
ces of H8lder continuous functions (cf.e.g. [30], [43])
or in the spaces H2,1(Q) or wW2,1(Q) (cf.e.g. [hs], [25],
[hB] ). It can be formulated ‘also in an "equivalent"
form as a variational inequality; more precisely in the
following
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(n)

PROBLEM 5.2: For n=1,2,... find w such that

(5.38) rw(ne LZ(O,T;V),wénLILZ(O,T;V) (i.e.w(n)eHl(Q),
with W;E)eLz(Q)) ;wénL;Lm(O,T; LZ(]O,b[))

and for almost every t in [0,T]:

(5.39) (th(n),v-w(n))+a(w(n),v—w(n))+Jn(v)-Jn(w(n))>

sL_(£) (v(0)-w(®)(0,8)) ¥vev
(5.%0) w(n)(x,O)=Gn(x) 0<x<h.

Following Duvaut-Lions[25]ch.I §5.6.we can solve Pr.5.2 using
the Faedo-Galerkin method; we refer to that book for the
proof. For every n we have one and only one solution

w(n) of Probl.5.2, which satisfies in addition the fol-

lowing uniform extimates

|Iw(n)lle(o,T;v)+|IW*(cn)HL(O’T;V)+

(5.541)
(n)
+]|wtn llﬁ?o,T;Lz(]O,b[)gc’ Vn

with C indipendent of n. Moreover w‘n) solves also Pro-
blem 5.1 (this can be easily obtained by the same proof
of Propositions 2.3, 3.6, 4.6). We can now apply the re
gularity theorems in the L? sovolev spaces for the 1li-
near heat equation; we know (cf.[38] theor. 9.13) that
the problen

rEw=w
(5.%2) | w(b,t)=0 ’ 0<t<T
WX(O,t)-W(O,t)=w1(t) , 0<t<T

LW(X’O)=¢O(X) , 0<x<b

has one and only one solution in W2s51(Q) depending by
continuity from the data if p

1 1
P 2732 2-2
(5.43)  vel®(Q), ¥yew * (JO,T[), vy, w % (Jo,p[) p32
and the following "compatibility" conditions at the corners
(0,0) and (b,0) of Q are satisfied

¥, (p)=0, 1if p<3
(5.4L)
wo(b)=o and wé(o)-¢0(0)=¢1(o) if p>3
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In our case the "compatibility" conditions on the cor-

ners are satisfied because G _{b)=0 and G;(O)—Gn(0)=—Ln(O);

from (5.20) and (5.21) and nOting that
(5.45)  ®(Jo,p[)ew ) F(Jo,b[) ¥p>l

(by virtue of imbedding theorems in "fractionary" Sobo-
lev Spaces; see e.g. [51] ); we have

25 (Jo,r[) ¥l
(Jo,o[) sl

(5.48)  E(w{™)er®(Q)erP(q) ¥osl
(n)

(5.46) LEewW

(5.47) Gnewp

We conclude that our solution w
2 1
(5.49) w(n)ewp’ (Q) Y 32

and the norm of w(n) in W; »1(Q) is uniformly bounded
1“L
(n )]<l in Q ¥n and L +L in W 2p ]O T[)
_ 2
and G »G in W p(]O b[ then we have
(5.50) ||« >|| <c_; Yps2, Vm
wz,l(Q) P

where C_ depends only on p. From Sob?l?v s 1Tbedd1ng
theorem“we deduce from (5.50) that w x

of Pr.5.2 verifies

because |E(w

and

(5.51) |]w! )llc Q)+||W )Ilc°(é)<c

with C independent of n.
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6. FURTHER PROPERTIES OF THE APPROXIMATIONS

a) Let us first prove that actually w(n) satisfies
further smoothness properties. We shall use sometimes
for the sake of simplicity the following notations:

Po={(x,t); 0<x<b, t=0}
(6.1)
BO={(x,t); x=0,0<tgT}, Bb={(x,t); x=b, 0<tgT}

PROPOSITION 6.1: There exists Co’ O<Co<a, such that

(6.2)  osh_(x)ew ™ (x,8) in @ ¥ o
where
(CO—X)2
(6.3) AO(X)= — 5 for 0<x<C_, Ao(x)=0 for C_<x<b

PROOF: First let us remark that
(6.4) Jn(vl)—J(vz)aJn(sup(vl,vz))+J(1nf(v1,v2))VveV

Where J and J are defined respectively by (5. 27) and
(2.21), (6.4) follows easily from the definitions of
J and J, recalling in particular (5.8). Moreover we

cgn choose 08 such that
2

(6.5)  C.* zo<A, (1, given by (4.5))

(6.6) Ao(x)sG(x)an(x) O0gxgb
since A_ is positive and G(x) is a continuous function
with ¢(8)>0. Now using the notations (2.19) and (L.58)
it is easy to see that )

C
(6.7) &l _,v=h_)+I(v)=3(4_)2(52+C ) (v(0)-1_(0)) ¥veV
Let us now prove that Ao(x)sw( )(x,t); indeed let us set

(6.8) v=sup(w(n),Ao)=w(n)+(Ao—w(n))+ in the inequality
(5.39)

(6.9) V=inf(w(n),Ao)=AO—(AO-W(n))+ in the inequality (6.7)

(6.10)  ° 2 (n)’(AO_W(n))+)+
+3_(sup(v{ ™ 0 -7 B ysn (61 (00w (0,0)),
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—a(h, (b= 2N e (ine (v (00 ) -a(a ) s
CZ

-(52+c ) (1 (0)-w(®) (0, 1))

L3

from which, adding the two inequalities and recalling

(6.4),(6.6) and (L.5), we obtain

-a(A —w(n),(A —¢MT)+(D

o o t o

or )
ca((h —wF, (4 —w(Bhh L Lo () gy )t 50
attis 2 axll o) (10.5[)

from which

a (n) + 2
(6.11) E;ll@w +A,) || <03
then,using also (5.37) and (6.6), we have Gw(n)+Ao)+=O

i.e. w(n);A
o

bg We come back now to the smoothness properties

of win From (6.2) and (5.10) we deduce that in parti-
cular
(6.12) Hn(w(n))eHz’l(Q)

Now using (5.20),(5.21) we can apply the regularity theo
rems for heat equation in L? spaces (see again[}&] but
also [hﬂ chap.IV); the problem (5.42) has now one and
only oné solution in H*>2(Q), if peH251(Q), v eH*(]0,T[),
v eH3(]0,b[) if the following compatibility conditions
are satisfied

there exists z(x,t)eH%>2(Q) such that:

(6.13) - z(x,0)=wo(x),0sxsb; z(b,t)=0,zX(O,t)~z(O,t)=

=w1(t),0<t<T; ZXX(X,O)-zt(x,O)=w(x,O).

Taking ¢=H (W(n)), wl=—L ,wo=Gn th fixed it is not 4if-

ficult, using the trace EneSrefis in the space H%¥52(Q)

(cf.Lions-Magenes [48] chap.IV), to prove that the compa-

tibility condition isverified by {H_(w(®)),-L ,¢ }. Then
) n n’ ' n

we obtain that

(6.14)  wPlm.2(q) ¥a

(but let us remark that the norms of W(n) in H%¥52(Q) are
net uniformly ©bounded with respect to n). From (6.1Lk)
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and the Sobolev imbedding theorem for the space H%>2(Q)
(ef.e.g. [h3]) we obtain

(6.15) w‘nEcWé),w(néCWQ), *n

XX

Finally let us note some other local regularity of the

(n)

functions w for every point (xo,to) such that

(6.16)  (x_,t_)eq

1 -
(6.17) or (xo,to)eB or a+i<x _<b, t =0

b,

we have
there exists a neighbourhood I (xo,to;n) of
(6.18) (xo,to) (depending on (xo,to) and on n) such

n)
that w ew;’Z(I(xo,to;n) p>2
We can apply indeed the local regularity results in the
L? spaces (see again [38]) since from (5.49) and (5.10)
we have

(6.19)  E_(w™ewz,1(q) ¥p>3 ¥n
n P 2 )

and the boundary data are c® in a neighbourhood of these
points: recall (5.36) and (5.20), (5.?7) and (5.17) from
the last of which we have Gn(x)=0, a+5<xsb.(0n the con-

trary we have not the global regularity of w(n) in

W;az(Q) since Gn belongs only to H3(]O,b[)). From (6.17)

(6.18) and from the imbedding theorems in the space W%,2
(see [h3]) for p>3 we obtain: p

W(n) and w(n)
(6.20) xt XXX

(xo,to) satisfying (6.16) or (6.17)

are continuous in every point

Finally from (6.2) we have that for n sufficiently lar-

ge H (w(n))=l in a neighbourhood of B_3; then recalling
(5.38) and (5.20), from the local regularity results on
the boundary for heat equation we have

n)

(6.21) {W is infinitely differentiable in a

neighbourhood of every point of Bo

In conclusion we can summarize the results obtained un-
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til now on W(n) by the
THEOREM 6.1: For every n there exists one and only one
solution w(B)of Pr.5.1 (and Pr.5.2), satisfying:

i) the uniform (with respect to n) global regularity
conditions: (5.38)-(5.41) and (5.49)-(5.50)

ii) the global regularity conditions (6.1L4),(6.15)

iii) the local regularity conditiocns (6.16),(6.17),(6.18),

(6.20) and (6.21).

¢) PROPOSITION 6.2: For every n sufficiently large,
we have

(6.22) win)-win)zo in Q

(6.23) in>_win><x<n)(x,t) i g

where

(6.24) A(n)(xnt)=uz+ugn)b—u§n)(x,t) with

u§n>=sup (2, (£)+1), w,=sup (g(x)-x+1)
OgtgT Ogxga

PROOF: Firstly, let us remark that, by (5.19) and (L4.60),
(n)

Hy >0, and, by {(4.59) u,21. For any fixed n, setting

z(x,t)=wén)(x,t)-win)(x,t)

we have, by (6.2) and (5.35):
(6.25) (n) ~(n)_ (n)

Z2=W —wx =-v 20 on Bb

Moreover, by (5.3L),(5.37), we have

z(x,0)=win)(x,0)-w;n)(x,O)=é§hX,O)—Hn(w(n)(X,O))—

(2) (x,0)=0" (x)-H_(6_(x))-C] (x)=p_(x)+E(x)-x-

-w
x
-Hn(Gn(X));
then by (5.29) and (L.59):
(6.26) z=pn+§—x—Hn(Gn)>o on T
Moreover by (5 3h) (5.36)

z (O t)= Wxt xi) iﬁ) (n)—Hn(W(n))=
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=—ln(t)—Hn(w(n)(0,t))= (by (6.2) and the definition
of Hn(l), if n is sufficiently large)=-2n(t)—l
and by (5.19) and (L.60) we obtain

(6.27) zX=—zn—1<o on BO

We also have by (5.34)
(6.28) E(2)=(Dt—DX)Hn(w(n))=H£(w(n))z in Q

Let us apply now the maximum principle to the operator

E(z)+cz, with C—--Hn(w(n))<0 (by (5. 51) and (5.7)). Sup-
pose that z has a negative minimum in Q, then it must
be on B UTUB because of (6.28) and the maximum princi-
ple; bu if can t be on T UB, since (6.25) and (6.26);
then it must be on B _, buf on B py(6.27), z_<0 and this
is impossible in a pdint of B_ Of negativ Hinimum. In
order to obtain (6.23) let us®consider the function

(n) (n)__(n) (n)

zZ-\ » where z=w = -w_ and A is defined by(6.24)

From (6.28),(6.22),(6.2),(5.7) we have
(6.29) E(Z-A(n))=H;(w(n))z+u§n)>o

Then from the maximum principle the max(z—x(n)) in Q
must be on B UT oUBy- But we have, using (6.24),(5.35)

(D +D_)(z~ A(n)) (n) (2)—(Dt+DXA(n)=—Wi2)=

(6.30)

=—w(n)-Hn(w( ))=0 on B

t b

Moreover, by (6.27)

(6.31) Dx(z-x(n))=—£n(t)—l+u§n)30 on B

and, by (6.26)

(n)—o (X)+g(X) ~x-H (G (x))- -u, 1(b—x)<
(6.32)

spn(X)+g(X)-x—Hn(Gn(x)—uzsl+g(X)-x—ust on T

Then if the maximum would be positive it ought be on
B UB 3 but this is in contradiction with the strong ma-
x1mum principle and (6.30),(6.31) D,+D, and -D_ are non

tangential inward derivative. Then the maximum of
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z—A(n) is €0 and we have (6.23)

PROPOSITION 6.3: For n sufficiently large we have
(6.33) —Al sw.'<0 in Q

where

(6.34)  A(Blagup 1 (4)+d
0<tgT n

PROOF: The proof is similar to the proof of Prop.6.2;
let us set now

z=win) in Q3

we have

(6.35) E(z)=H£(wn)z in Q

(6.36) = =W(n)=w(n)+Hn(w(n))=O on B

X XX t b

thanks to (5.34) and (5.35);

(6.37) z=-Ln+w(n)>-L >=) on B

thanks to (5.36) and (6.2);

(6.38) z=G!  on T,

But using (6.34) and (5.18)

A(n)—x>L (O)+£-x= b( (g)+g(e)-£)d +l—x=
>L (0)+% o (E)+E(E)-g)de+s

1
o

X o b 5 1 1
=jo(pn(£)+g(5)—5)d£+JX(pn(a)+g(£)—£)d£+;—x>x—; *

b b _
| o048 -)asdons [ (o, ()48 (0) 60 ¥ demm0 ()
and finally
(6.39) z=G£>—A§n) on T_.

Then we can conclude that the minimum of z must be on
POUBO; so we have the condition

W(n)z_x(n)

% 1 in Q
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For the second condition of (6.33) we have to evaluate
the derivative z,-z_ on B_3; but this is exactly done by
the formula (6.2?),thich may be written now with the
present notation in the following form, for n sufficien
tly large

(6.40) z, -z ‘W<n)*w(n)=~gn~l<0 on B

t “x "xt XX o

Thus the maximum of z, which must bBe taken on FOUBOUBb

by (6.35) and the maximum principle for the operator
E(v)+ev with C=—H£(W n)), cannot be positive, because
of (6.37),(6.40) and (6.39).
PROPOSITION 6.L4: For n sufficiently large we have
(n) .=
(6.41) W (x,t)sLn(t) in Q
PROOF: Immediately by the Proposition (6.3) and by (5.36).

Finally we have

PROPOSITION 6.5: There exists a constant K>0, independent
of n, such that for n sufficiently large, we have

(n) (n) (n). (n)
[t kK, [ <K, vy UK, v <K
PROOF: It is enough to remark that for ns+w,g 0 and L
converge unformly in [O,T] to ¢ and L respectively;

then lim uin)=ul=sup (2(t)+1); 1imx§n)=A

n->e O<tgT n-+w !

and Prop. 6.5 follows from Propositions 6.1, 6.2, 6.3,
6.4 and from (5.34).
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7. CONVERGENCE OF THE APPROXIMATION AND CONCLUSIONS

a) We have all the tools for passing to the limit
from n-* on the w(n); the extimate (5.41) is sufficient
to pass to the 1limit in (5.39),(5.40) and to obtain
that a subsequence of {w n)}, which we shall denote
again by {w'®/}converges to a function w solution of
Pr. III'; we refer for the proof to the book of Duvaut-
~Lions [25] pag. 56-57. The same proof gives us also
that

(7T.0) w.¢ 1 (0,73 2(]o,v[))nL2(0,T;V)

Moreover from (5.50) and from the Propositions(6.1),
(6.2), (6.3), (6.4) and Sobolev's imbedding theorems
we obtain that w verifies also (L.69),(4.70),(L4.71);
moreover we can prove by the same proof of Prop. 6.1,
applied to the fonction w and A, that
OSAO(X)SW(X,t)SAI(X) in Q , where
(r;-x)? _

Al(x)= ——2——,05){5)\1, Al(x)=0, ) §x<b, X =defined by (4.6)
Then Theorem 4.1 is proved except for the property
w, e co([o,T]; L2(]o,b[)) about which we will come back
later.

b) We have

PROPOSITION 7.1: Let (x_,t e Q; then

(7.1)

o]
(7.2){1f w(xo,to)=0 then w(x,to)=0 for x sx<b
if w(ix ,t )>0 then w{x,t )>0 for 0g<x<x
o] (o] (o] o]
(7 3)§1f w(x ,to)=O then w(x,t)=0 for x=xo+to:t,(rt$to
if w(xo,to)>0 then w(x,t)>0 for (x,t)¢ Q and

Xx=x +t -t t gtgT.
o] [e} 4 [o)

PROOF: It follows immediately from (L.T71)
PROPOSITION 7.2: If 9 is defined by (L4.66) then

(7.4) 230nQ does not contain segments parallel to the
line x+t=0

(7.5) 230nQ does not contain segments parallel to the
axis t=0

(71.6) 3an{(x,t): t=0}={(x,t): O<x<a, t=0}
(7.7) {(x,t); 0<x<Cy, 0<t<T}c 0
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PROOF' i) Suppose first that 902 N Q contains a segment
parallel to the line x+t=0, with P ,=(x,,t;) and

P —%x »t,) x  tt,=K, x +t =K, t,;<t,; then using (7.2)

and (ﬁ 69), we obtain?thit w is s6lution of the follo-

wing Cauchy problem

E(w)=I in M
(7.8)

W=WX=O on Ple

where M is defined by
(7.9) M = {(x,t): O<x<K-t, t <t<t))

From the uniqueness of this Cauchy problem we obtain
that

x+t-K

(7.10) w(x,t)=K-x-t+e -I in M,
so that
wX(O,t)—W(O,t)=t—K tlststz;

then by Proposition 4.6 and (4.52) we have
-L(t)=t-K; hence -4(t)=1I t,<tst,

which is contrary to our assumption (4.6). Thus (T7.L4)
is proved.

ii) Suppose now that 30/ Q contains an horizontal seg-
ment P;P,= {(x,t): X <x<x,, t=t; , 0<t<T}. First let

us remark that by (7.3) Q contains"upper neighbourhood"
of P P , that is for every P e ?T? there exists a disk
B(POS with center P_ such thag QN B(P ) is composed by
points (x,t) with t>t,; then we have that w is a solu-
tion of the Cauchy problem

E(w)=1 in B(P_)NQ
(7.11) ©

w=0 on B(Po)ﬂ P P,

Then w must be regular in particular we C1(QNB(P)) and
we must have w _=-I on B(P )N P ,P,and consequentely w
nust be negatlv in a neig borhood of the point P » which
is impossible by (7.I). Thus (7.5) is proved

1iii) In order to prove (7.6) let us remark that the
segment {(x,t); O<x<a, t=0} must belong to 3Q because
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w(x,0)=G(x)>0, O<x<a. Suppose that a point P =(x ,0)
with X >a belongs to 9% 3 then by (7.2) we ob%aln that
the whole segment I={(x,t); asx<xX t=0}c 30 and then
we have a contradiction, because In a neighbourhood

of I w satisfies the Cauchy problem E(w)=I, w(x,0)=0
and, as before for problem (7.II), we have w,(x,0)=-T,
and then w must be negative for some t>0 near +t=03; and
this is in contradiction with (7.I).

iii) Finally (7.7)is an immediate consequence of (7.I).
PROPOSITION 7.3: The set & verifies (L.Th).
PROOF: It follows immediately from Prop. 7.I and T7.2.
Now let us define for every t CJO,T[ the set

2, = {xe]0,b[: (x,t)eq}

Since we have (7.7)
we c¢an define

& is non empty for te ]|0,T[ and

(71.12) s{t)= sup 9 s,  0<t<T
xe]O b[ t

Thanks to the Prop. 7.3 (see also the Remark 4.4) s(t)

is "lipschitzian graph" with respect to the axis (x',t")
with x'=at+B8x t'=-Bt+ax where a=cos %, B=sen %. Then
we can define

(7.13) s{0) lim s(t) , s(T)= 1im s(t)
£>0+ t>T-
By (7.6) we have s(0)=a, by (7.7) we have s(t)>0,

0gt<T. Then we can conclude with the following

PROPOSITION T.k4: The set Q and the function s defined
by (7.12),(7.I3) satisfy (L.73)(k.T7L).

Now we can conclude the proof of Theor. 4.1 and give
further regularity properties for w. In fact now we
know that w solves the boundary value problemn.
E(w)=x(0) in qQ, w=G(x) on fo’ w=0 on B
(7.14)

w -w=-L on B
b'd o)

where x(Q) is the caracteristic function of a "good
set",since 9 and s verify (L4.73) (L.7L). We can use,
as in Section 6 b) the regularity results for the heat
equation and we obtain in particular
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[ ] — -—
(w is C in Q-3QNQ, w=0 in Q-9,

WGHH’Z(

I(xo,to)) where I(xo,to) is a neighbour-
(7.15) Jhood of (xo,to), depending on (xo,to), for all

(xo,to)eﬁou (x,t); Osx<a, t=0}; then in parti-

1 S —
(cular weC (I(xo,to))
From (7.I5) we have that w, is continuous in Q-3QNQ, i.
e. everywhere in Q except In the "free boundary"; moreo
ver by (L.70) wt is bounded in Q3 so we can deduce that

the funct%on t>w(t,x) is continuous on [O,T], with va-
lues in L°(]0,b[) and the proof of Theor. L.I is comple
te.

¢) Now let us define

(7.16) u(x,t)=w

t(x,t)—wx(x,t)+x in @

(7.17) ulu,t)=u(x,t) in Q
We have the following

THEOREM 7.I: The pair {s(t),u(x,t)} defined by (7.I2),
(7.13),(7.1I7) is a"weak solution" of Pr.III in the sen-
se of the Def.L.2.

PROOF: By 7.3 and T.4 s verifies (L4.72),(k.73),(k.7L),
(4.75). Moreover by (L4L.69),(L4.70) we have uelL (Q), and
by (4.68),(4.69), ueLl’(a) ena Ter'*%(a)nc®([0,1];

L?(]0,b[); moreover by Prop.4.6 G(x,t)=x in 4-2 and
ul(x,t)»x in €. Next we have also in the sense of Co([O,T];
L(Jo,bl) u(x,0)=wt(x,0)—wx(x,0)+x=wxx(x,0)—x([O,a[)—

-G'(x)+x=g(x). Then we have only to prove that u veri-
fies (L4.2I). Let us consider for every n the function

(7.18) Z=Wt(n)-win) in @

which we have already considered in the proof of Prop.
6.2; we remember (see (6.27),(6.28) that we have

(7.19) ZX(O,t)=—2n(t)—I O<t<T
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(7.20) E(z)=(Dt—DX)Hn(wn) in q

Let us multiply (7.20) by ¢e c:(é) (see (3.9)) and in-
tegrate over Q: the first member gives us

=b
(7.21) JJQ(ZXX )paxdt= f [z ¢] dt—JszX¢xdxdt -

=0
b - T
—Io[zdﬂz;g dx ’HQZ ¢tdxdt=f (1+2 (%))¢(0,t)at -

0
—f[ zZ ¢ dxdt+(( z¢ dxdt
Q X'x Q t

The second member gives us similarly

f[ (Dt—DX)Hn(wn)¢dxdt:{J Hn(wn)¢tdxdt +

(7.22) % 9

+f H (w(n)(o,t))¢(0,t)dt+ff B (w™M) e axdt
o Q x

Finally, if we f ?ark also that for n sufficiently lar-
ge we have H (0,t))=1 we obtain

T
f (1+zn(t))¢(o,t)dt~Jf zx¢xdxdt+fj Z¢tdxdt=
(1.23) © ] Q

T
—JJQHn(wn)¢tdxdt—fo¢(o,t)dt+foHn(wn)¢dedt

Let us remember now that from the a priori estimates

(n)

on the w , we have in particular (see again[2ﬂ) for
{w(n)}(or for a subsequence still denoted by {w n)})
lim w(n)—w(n)=w -w_=Uu-x in L2(Q) weakly
t X t 'x
n->«
lim (W(n)—W(n)) =0_+1 " " "
t X X X
n->w
lim H (W(n))=x(ﬂ) in 17(Q) weak star

then we obtain for n>+e from (7.23) and (7.18)

(7.24) [IQ(ux—l)¢dedt—ffg(u—x)¢tdxdt=
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T

=f[ X(Q)(¢t‘¢x)dxdt+f 2(t)$(0,t)at
Q 0

But ﬁx—l=ux—l in @, u-x=0 in Q-9; then (7.24) becames

exactly (L.21).

Theorem 7.1 proofs the existence part of Theorem L.1;
for the uniqueness we have to prove that if{s(t),ul(x,t)}
is a weak solution in the sense of Def.L4.2, and we con-
struct the function w by the formulas (L4.47),(L.L2),
(4.27), then w is a solution of Pr.III'. We do not gi-
ve here the details of the proof (see |62]| ); but we ha-
ve already given this proof by the Prop.4.4 and 4.5 when
we proved the same property for the function w construc-
ted starting by a "classical solution {s(t),u(x,t)} of
Pr.IIT.
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8. FURTHER RESULTS OF REGULARITY

a) We will consider in this Section the regularity
of the weak solution of Pr.III and the existence of a
classical solution.
First let us define the function £ (x), for every fixed
n, by o £ -t

gn(x)=%sh(VE(b—x)), b-x sx<b (sht=57FE—)
(8.1)
2
gn(x)=%xi-V§xn+%+( %—xn)(b—x)+%(b—x) » Osxsx
where
(8.2) XH=V%T arcsh 1 (i.e. sh(JHxn)=l)

We can suppose that b is so large that
(8.3) arcsh 1<b
and, for n sufficiently large,
1
(8.4) a+n<b X s sup Ln(t)sb 1

ogtxkT
It is easy verify, by the definition, that

(8.5) & _ec ([0,0])
and
(8.6) E;(x)=1, Osx<b—xn; g;(x)=ngn(x), b-x <x<b

Let us define
0 s <20
~ 1
(8.7) Hn(x)= nx o, OsAsT

s =L A<+
n

From (8.7),(5.5),(5.6),(5.7) we have
~
(8.8) H (A)sH () r e R
Now we can write for gn(x) the equation
(8.9) & (x)=E_(g_(x)), O0<x<b
and the boundary conditions

(8:10) g, (0)=0, gi(w)=L £ 0(0)==Zex 0
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Since x SUE s Wwe have

n{n
(8.11) E;(O)<—b
and we verify also by the definition (8.1) that

1 t

(8.12) En(x)<—b+x, Osxsb-x 3 gn(x)<0, b-x_sxgb.
Then by the first of (8.10) we have
(8.13) £,(x)>0 , osxsp
Moreover we can prove that
(8.14) Gn(x)jgn(x) , 0gxgb

Indeed, since G _(b)=g (b)=0, it is sufficient to prove
that n n

(8.15) E;(X)SGL(X) » Ogxgb,

Inequality (8.15) is obvious for a+%§x5b; in order to

prove it for 05x5a+% let us remark that from (5.22) we
have 1
a+E ~ -t a+; ~
“a1 05| Plo, ()48 =00  Faes | P(o (6)+8(2)-)ace

X X

a+; a+H ~ a+z X
¢ meatoraee] @ -naes] T (o1as-[ o (eracs

X X [¢] o]
a+; X

o] EE) - aee (0)-[ o (D)aze (0)41oxs vy (8.1),
[¢] [¢]

for n sufficiently large)sb—xs(by(8.12))5—5;(x)
Now let us define

. A ,
(8.16) jn(x)=I Hn(g)de ¥aelR,

~ b/\/ ’
(8.17) Jn(v)=Jojn(v)dx A v oev

We can verify easily, using (8.8), that j () and jn(k),
defined by (5.26), satisfy n

(8.18) 3 (sup(h,u))*3_(inf(,u))i ()45 (), A,ueR
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Now we can prove the

PROPOSITION 8.1: For n sufficiently large we have
(8.19) W(n)(x,t)sgn(x) in Q

where En(x) is defined by (8.1).

PROOF: Using (8.9),(8.10) it easy to verify the inequa-
lity

(8.20) a(gn,v—gn)+5;(v)-§n(£ )»(g -p e ) (v-g_ /VV‘G‘

where a(u,v) is defined by (4.58) and 3; by (8.17). Then
(n))=§m_( %Lgnfin the ineguality

)=€n+(w(n)—£n)+ in the inequali-

let us take v=inf(gn,w

(5-39) and V=SUP(€n,w(n)

ty (8.20); we obtain
—a(w(n) (w(n)-i )+)-(w(n)

o (v Pn () (0P (0,8)-¢ (o)),

n
] w(n)_€n>+)+5£(Sup(gn,w(n)))-Eg(ﬁn)>

»(8_(0)-D g _(0))(w!®)(0,8)-¢_(0))*

n

from which

(8.17),(8
—al (v

, adding the two inequalities and recalling
.18),(5.27), we obtain
)

et el - e g e 0

n

n

VvV

\Vv

(g (0)-p £ (0)-1_(t)(w ™) (0,)-¢_(0))*

n X'n n

then, using (8.13),(8.11),(8.1k4), we have

b
%;Jol <w(n)(x,t>—an(x)}+]2dxso

and finally, by (8.1L4), we obtain (w(n)(

i.e. (8.19).
From (8.19),(6.2),(5.35),(8.10) we have the

x,t)—gn(x)+=0

COROLLARY 8.1: For n sufficiently large we have
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(8.21) - &= (n)(b,t)50 , Ost<T.

ﬁl— SWX

Now let us introduce a new assumption on the function £:
(8.22)  gex'(]o,T[)
Then we can suppose that Rn verify (5.39) and also
(8.22') 1lim ¢ =¢ in gi(Jo,T[).

n->w

PROPOSITION 8.2: Under the assumption (8.22) there exists
a positive number C, such that, for n sufficiently large
and for O<ogtsT:

b T¢b
(8.23) Jolwin)(x’t)lde+J { ]wig)(x,t)lzdxdtsg

PROOF: With the following notation
Dyv=vy=Dtv~va,
let us derive with respect to y the equation (5.34); we
obtain
(8.24) w(n)—w(n)=H'(W(n))w(n)
XXy ty n y
(n

Setting, for fixed n, z=w ), from Proposition 6.2 and
6.5 we have ¥

(8.25) 0<2<2K in Q, for n sufficiently larsge
Multiplying (8.24) by z, We have

(8.26) Zxxzyfztzy=H£(W(n))zzy

Let us integrate (8.26) over [O,b] for fixed t, O<t<T;
the first term of (8.26) gives

b b b
(8.?7) jozxxzde—JOztzydx=—Jozxzyx+zX(b,t)zy(b,t)_

b 1 (P )
—zX(O,t)zy(O,t)—Joztzydx=—§[ODyzde+zX(b,t)zy@nt)—

b
_ZX(O,ﬂzy(O,t)—Ioztzydx
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From (6.27) zX(O,t)=—l—2n(t), and from (5.36),(6.27)

in)—w(n)+w(n)—ﬂén))t(O,t)+l+

zy(O,t)=zt(0,t)+l+zn(t)=(w
L (6)=wi (0,0)-w (™ (0,6)+2_(£)+142_(1).

Then we have
2, (0,802, (0,8)==(1+2_(£)) (w ) (0,0)-wi™ (0,8))-

—(1+2n(t))(l+2£n(t))

Similarly, using (5.35),(5.34),(5.6) we have

W(n)(

{200, 0)=w!® (0, 0)-8_(v (%) (6,1))=0;

then we obtain

(8.29) ZX(b’t)Zy(b’t)=(win)_w n))X[(W(n)_W(n)) -

(

X t X X
el e T 0=l Dl 1)y 00y,
sawi el el ) (o ey = (B (0,002

The second term of (8.26) integrated over [O,b], gives
(8.30) jiHé(w(n))zzydx=%Jsz[H‘(w(n))zzjdx—%[ZH;(w(nbz3dx
where we have, from (8.25),(6.22),(5.7)
(8.31) (w230
Now from (8.26)...(8.31) we obtain

| b

b 2 (n), 2
(8.32) J D {z"+H'(w )z }dx+2J z,z ax+2(w
o ¥y X 'n o ty

(n)(

2
tx )

b,t)) ¢

N

s () ({0, 0)-w ™) (0,0 ) (1020 _(£)) (142 ()

On the other hand
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) ) b
(8.33) IoDy{...}dx=J Dt{...}dx—JoDx{...}dx=

(o}

b m
Ith{-..de—zi(b,t)-( WEAb,t) w2 (0, 8)+

+ar (v (0,£))2°(0,¢)

(n

Then from (8. 32) (8.33), recalling that H'(w ))>O and

that =z (b t)= W (b ,t), we have

b 2 (n) 2 b
D, {z +H'(W )z }ax+2 7.2 dxg
o t °x “n ° ty

(8.30)  <(1+e_(6))(1+2e_(£))+(1+a_(£)) (w2 (0,6)-w{?)(0,£))+
() (,6))2% (0,8

Integrating (8.3L4) over [T t] O<t<t and recalling (5.19),
(5.6), (8.22") and the Prop.6.5, we obtain

b b
(8.35) f z;(x,t)dx+[ (Hﬁ(w(n))zz)(x,t)dx—J 22 (x,v)ax-

[0} (o] o

b t¢b
‘J (Hé(w(n))zz)(x,T)dx+2J f z zydxdt'g
o /o

t t
sC'+J (1+8_ (t))w(n) (0,t')at'+ % (byt')dt'<

T T

2 1

<(since z (b t)=(w (n)(b t)) <= by virtue of (8.21))

(n)(

’<c'+(1+z (t))w 0,t)-(1-2 (T))w( )( O,1)-

t
—J lé(t')win)(o,t')dt'+ %(t—r)$0"
T _

where C' and C" are positive numbers indipendent of nj;

(n)

t and v. Recalling again that H;(w )30, we obtain

(8.36) J z (x,t)dx+2f J z, 2 dxdt'sC"+J z  (x,7)dx+
o X N ty o X
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b
+J (Hé(w(n))zz)(x,r)dx
o

Now let us integrate (8.36) with respect to T over the
interval ]O,c[, O0<o<ty we have

b, et D
(8.37) GJ zx(x,t)dx+2j I I 2,2 dxdt'drgoC"+
0 o’t’o ¥

g¢b o¢b
+J [ zi(x,T)dxdT+j J (Hg(w(n))zz)(x,T)dxde
oo olo

b

o
<(from (5.&1),(5.50))50m+f J zD_H (w(n))dxdrs
olo TR

s(because D Hn(w(n))=zH£(w(n));O and we have

grb
(8.25))SCm+2KJo[oDyHn(Wn)dxdrsCm+
b (n) P (n)
+2K{J Hn(w (x,c)dx—[ Hn(w (x,0))dx-
o] o]

° (n) ° (n)
—J B (w n (b,t))dt+J B (w " (0,t))atrec”

e} (o]

where C",c",cV are positive number indipendent of n, ,t.
Now putting in (8.37) the definition of z, we have

b
(8.38) OJ Iwéi)(x,t)—w(n)(x,t)lzdx+
o]

ort(b
+2J J I (Wii)'wéi))(Wiﬁ)—2wi2)+wi§))dxdt'd15c
0" T 0

from which, recalling (5.%41),(5.50), the Prop.6.5, we de-
duce by a standard elementary estimate that there exists
C indipendent of n,o0,t such that

b ortb
(8-39) O'J lWéi)(X,t)lde‘l'J j J Iwirtl)lzdxdtld.rsc
o 0’170
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for every n sufficiently large, which contains in parti-
cular (8.23).

From Prop.8.2 we deduce obviously, passing to the 1limit
as n-»o, the following

PROPOSITION 8.3: Under the assumption (8.22), the solu-
tion w of Pr.III' satisfies

b 2 Teb 2 c
(8.40) J lwtx(x,t)| dx+J J lwtt(x,t)l dxdtg o
o] g’ o

for every 0<ostsT, where C is indipendent of ¢ and t

b) Inequality (8.40) is very important, in order
to obtain the regularity properties of w and s. First
we can deduce the following

PROPOSITION 8.L4: Under the assumption (8.22), the function

L is continuous at every point (s(t),t) for O<t<T,

PROOF: Let ©be fixed, 0<g<Tj; using (8.40) we obtain

{8.k41) |wt(x1,t)—wt(x2,t)lsc']xz—xll !

where C' not depends on t in [a,T]; then w, is conti-
.nuous in X on [O,b], uniformely with respéct to t in
the interval [G,T], We have also that

(8.k42) wt(s(t),t)=0 O<tgT

Moreover for any continuous function y(x), O<xgb, and
0<0gt'<t"<T, we have from (8.40)

) . ' t" b
(8.43) [Jo(wt(x,t )—wt(x,t ))w(x)dxlsjjt'Jowtt(x,t)
32_ t" b 9 C 1
.w(x)dxdtscwlt"—t'l (Jt'Iolwttl dxdtscw5|t"—t']2

where C, depends only on ¥. Let us suppose that wt is not
continubus with respect to (x,t) in a point P=(s8(%),%)
0<t<T. Then, in view of (8.41) there exists a sequence

{ti} such that

(8.L4L) %im §.=E, %im Wt(s(%)’ti)=7=o
1>+ 1>+
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Suppose vy>0 (similarly if y<0). From (8.41) we get, for
some 6>0,

(8.45) wt(xiti)—w (x,t)>y/2 if |x-s(t)]<s

t
Taking now in (8.L43), t"=ti, tt=t, p(x)3qif (x-s(t))<s/2,
v(x)=0 if Ix—s(%)l;d, p(x)>0 elsewhere, we then get a

contradiction, because from (8.44),(8.43) we have

b
1lim j (wt(x,ti)—wt(x,t))w(x)dx=0
q > (o]

and that is impossible since we have (8.L45). _
Now we want to prove that the restriction of Vot at Q
is continuous for Osgxgs(t), O<t<T. In order to do that

we can follow two methods: the first is suggested by the
proof given by Kinderlehrer and Niremberg (sece [hl][hZ])

of the analogous assertion in the case of the Stefan pro
blem. By applying a method of Bernstern to a suitable ap-
proximation of v, it is possible to obtain some estima-

tes from which the continuity of w follows directly.

xt
The second methods, which we follows here, is suggested
by the proof of the analoguous assertion in a free boun
dary problem studied by Friedman [32], Theor.4.6 (see
also Friedman-Jensen [3&] lemma 9.2). First of all let
us prove the following

PROPOSITION 8.5: Under the assumption (8.22), for any
0> the function s(t) is HSlder continuous with exponent
3/4 in [o,T].

PRROF: Let us take t',t" with O<ogt'st"<T, and let us
ncte that from Prop.7.3 we obtain. that if t"-t' is suf
ficiently small then the closed segment p'p" with p"=
=(s{t")+t'-t",t") and p'=(s(t')+t'-t",t") belongs to Q.
Since w_ {(s{t),t)=0, we have O=wx(s(t"),t")—wx(s(t'),t“)=
=v (s(t"),t")-w (s(t' )+t =t ", t")+w_(s(t' )+t -t",t")~
-wx(s(t')+t'—t",t')+wx(s(t')+t'—t",t')-wx(8(t'),t‘)

So we have

) ( B (s(t")
(8.46) J W x,t")dx+J s{(t')+t'-t",t)dt-
S(t')+t'—t" XX t'WXt
(v (x,87)
- x,t')dx=0
Js(t’)+t'-t"wxx
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From (8.42) and from the equation E(w)=x(Q) we can defi
ne by continuity from the left Vex OB the free boundary

(s(t),t) and we obtain wxx(s(t),t)=l, O<t<T. Hence

v (xst")ax={(s(t")=s(t")+t"~t "}

Js(t")

s(t')+t'-t'

(8.47) { 1140 (6"~ 1)}

s(t")
J w_ (x,t)ax=(t"-t'){1+0(t"-t")}

s(t")+tr-tnm XX

where O0()A) denotes a function of A which tends to zero
if A>0. We have also

v (s(e )+t =t",t)=v_ (s(t')+t'-t"-n,t)+

xt( t

W (x,t)dx=w

xtx (s(t")+t'-t"-n,t)+

s(t')+t'-t"
+J xt

s(t')+t'-t"-n
s(t')+t'-t"
g

w,, (x,t)dx
s(t1)+tt-t"-n T
Then
t" t"
J Wxt(s(t')+t'—t",t)dt=J Wxt(s(t')+t'—t"—n,t)dt+
t' t'
(8.48)
t"s(tr )+t -t"
+J f wtt(x,t)dxdt
tl

s(t')+t'-t"-n

From (8.46),(8.47),(8.48) after integrating with respect
to n, O<n<no, we get

t"n
noIS(tn)_S(t')lSJ J °© th(S(t')+t'—t"_n’t)ldndt+
t'/0
t" s(t')"‘t'-t"
+noJ J lwtt(x’t)dt+noo(t'—t")
£

1) L R | B
s(t')+t'-t n,

So using (8.L0) we obtain
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n Js(t™)-s(t')|<C{n

1 11
2 "_ "_ 2 _2 " _
o O]t t'1+ﬂolt [ Fnl4n 1E"-t ]}

Ol

where C depends on ¢ ohly. Taking no=}t"—t‘l we have
~ 3
[s(t")-s(tr) |sC{]t"=t" |+ {t"=t* [*+]t"=t" |}

and Prop. 8.5 follows.
Now let us recal a lemma of Cannon, Henry, Kotlov [20]
(see also [21]) useful in this type of situation

LEMMA 8.1: Let z be a solution of E(z)=0 for O<x<s(t),
g<t<T, where s(t) is Hdlder continuous in [¢,T] with

exponent q>§ and let z continuous up to the boundary

x=s{t), with z(s(t),1)=0, o<t<T. Then Z. is continuous

up to the boundary x=s(t), og¢t<T. From this Lemma and

Prop.8.4 and 8.5 we obtain that Vg is continuous for

O<xgs(t), o<t¢T, for every o¢>0. Then from (8.46),(8.4T)
we have

wy . "
(8.49) S(ttl_ift . t"ft, vy (s(67),8)dat+0(t" -t ")
t'

and the second term of (8.49) converges to —th(s(t'),t')

when t"»>t'; and the analogous assertion is wvalid if t'-t"
Moreover under the assumption (8.22) using the regula-
rity results near the boundary for heat equation (see.
e.g. [h8] chap.IV) and Sobolev imbedding theorem, we ha
ve that w__,dcontinuous also on Bo. Then we proved the
following

PROPOSITION 8.6: Under the assumption (8.22) the function
W is continuous for Ogxgs(t), O<t<T and the function
s{%) is continuous differentiable for O<t«T and we have

(8.50) s'(t)=~th(s(t),t), O<t<T.

Now we can conclude that the "weak solution" of Pr.III
{s(t),u(x,t)} defined by (7.12),(7.13),(7.17), satisfies
all the conditions of the Definition L.l of "classical
solution", except for the continuity of u at the point

(a,O). Indeed we have u=wt—wx+x in Q and we proved by

Theor.4.1 that wxeco(é) and by (7.15) and Prop.8.4 that

w, is continuous in Q-{(a,0)}. Actually we can prove a
a’little more. We have indeed, using (8.L42),(8.40), for
t>0
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=

|Wt(x,t)|=|Wt(x,t)~wt(s(t),t)Islx—s(t)l

(8.51)
s(t) 11 1 1

-(IX [vo (E,t)]ag) %< ]x-s(t)|%C ¢ 2
Then

Wt(X,t)+O if (x,t)»(a,0) with the constraint
(8.52)

t_llx—s(t)|=0(t)
In any case the continuity of u (and consequently of wt)

at the point (a,0) also holds, as a conseguence of the
results obtained by Friedman and Jensen [3&] in their
approach of Pr.III. In order to obtain this continuity
by the method which we developed here, it is sufficient,
for instance, to improve the estimate (8.40). Namely

b
(8.53) J wat(x,t)lzdx+JIQ|wtt(x,t)lzdxdtsc, for Ost<T,
o

with C indipendent of t. Then the same proof of Prop.8.L
gives the continuity of W also for t=0. But in order

to prove (8.53) we have to modify the approximations gi
ven in Section 5 by Hn,pn,Gn,Ln so that we can integrate

(8.34) over [O,t]and we can estimate the term

b 5 b ( )
J zx(x,O)dx+J Hé(w n (X,O))zz(x,o)dx.
o o

I believe that this 1s possible but J shall not attempt
do it here. In any case we can refer to the paper of
Friedman and Jensen [3&] for the complete proof of the
following

THEOREM 8.1: Under the assumption (8.22) there exists
one and only one classical solution of Pr.III.

¢) Now we can look for the infinite differentiabi-
lity of the free boundary. One can prove that the fun-
ction s(t) is infinite differentiable for O<t<T and mo-
reover that the function u is infinite differentiable
for O<x<s(t), 0<t<T. In order to do that, we can follow,
for instance, two methods. We sketch here only the ideas
of the methods.
The first method is due to Schaeffer [55], who developed
it for the Stefan problem. We use the transformation



302 E. MAGENES

(8.54) n=x-s(t) , z(n,t)=u(x,t)-s(t)

in a neighborood of the free boundary. The heat equa-
tion for u is transformed in the following equation
for z:

(8.55) —znn+zt—zns'(t)=—s'(t) for -s(t)<n<0, O<t<T.
Using step by step the standard estimates in the spa-
ces of HOlder continuous functions for parabolic equa-
tions, one can prove that s(t) and u(x,t) have conti-
nuous derivatives of any order for O<t<T, O<x<s(t). This
method is followed by Friedman and Jensen [3h], to whom
we refer for the details of the proof.

The second method is due to Kinderlehrer([h1],[k2]),
who developed it for the Stefan problem in the case of
several space dimension and is based on the Legendre
transform. For every fixed point Po(s(to),to) of the

free boundary, with t >0 we apply the transformation
of ﬁnB (where B is a neighborood of PO contained in Q)
defined by

(8.56) £=—wx(x,t) ,T=t , (x,t)eqQnB

This mapping is cl by Prop.8.4 (note that in @ we have

WXX=Wt+l) and Prop.8.6, with Jacobian=1 at the point Po'

Then the mapping 1is non singualr and maps a neighborood
of PO, say QnB, onto a region W (g,t); £>0}.8ince

wx(s(t),t)=0, the set BndQ 1s mapped onto a subset 2 of

{(g,7)3£=0}. Then the Legendre transform of w is defi-
ned by

(8.57) z(&,1)=xE+w(x,t)
and verifies the equation

(8.58) —— +z =-1 in "

Zeg T
with the boundary condition z=0 on & . This equation is
a non linear parabolic equation to whiech it is possible
to apply known results of regularity at the boundary
and to obtain that z is infinite differentiable in ", uZ
Thus

(8.59) X=Z£(O,t) t varying in a neighborood of to

is a C parametrization of @ nB. Then s(t) is infinite
differentiable in a neighborood of to.
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We wish to remark that in order to obtain this result
we do not need the continuity of w, (or equivalently
of u) ‘also at the point (a,0). We can therefore state
the following

THEOREM 8.2: Under the assumption (8.22) the weak solu
tion {s(t),u(x,t)} of Pr.III, defined by (7.12),(7.13),
(7T.17), satisfies the conditions

s(t) is infinite differentiable for 0O<t<T
u(x,t) is infinite differentiable for O<x<s(t), O<t<T

Finally, we remark that the problem of the analyticity
of the free boundary, under the assumption that ¢(t) is
analytic in rO,T], was solved recently by Friedman ( 68]
Theor.4.3), who proved by very sharp and quite techni-
cal estimates that s(t) is analytic for O<tgT. With

the limited terme at our disposal we cannot developed
here its proof.

d)Further interesting properties of the classical
solution of Pr.III has been proved by Friedman and Jensen
in [3h]n.10,ll. In particular they proved that

(8.60) if g'(x)»0 and 2(t)<0, then s(t) is decreasing,
(8.61) if g'(x)<0 and 2(t)»0, then s(t) is increasing

(8.62) if 2(t)=z0 and g'(x) changes sign a finite num-
ber m of times, then s{t) is piecewise monotone
and the direction of monotocity changes at most
in times

The proofs of these assertions is based on the use of
the maximum principle for the funetion w,, where w 1is
defined, starting from a classical solution, by (4.9),
(L.27),(4.L2),(Lk.47), For instance if g'(x)>0 and 2(t)<0
we get wtsO in Q, then s(t) is decreasing. It would be

interesting to prove these properties also for our "weak
solution", using the approximations w(n) (as for the
Propositions 6.2 and 6.3). But here we find the same
type of difficulties as for the continuity of w, at the
point (a,0), where w is now the solution of Pr. III!

(see the discussion at the end of this Section, part.b)).
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COMMENTS AND REFERENCES

a) The theory and the proofs, given in Sections 5,
6,7,8 for Problems III and III' can be developed also for
Problems II and II', in order to prove Theor. 3.1 and
3.2 and the properties given in Section 8. In this case
we have to take H_ defined by (5.5)....(5.8) and Gn(x)=0,
L,(t)=0 and to deTine a decreasing sequence {fy,} of suf
ficient regular functions f,, for instance belonging to
Cw([O,b]), uniformly bounded and converging, as n -+ +w,
to the function f, defined by (3.15), in LP(]O,b[) for
every p>l. The proofs are simpler than in the case of
Pr. III', in particular for Prop. 8.2. We find also the
same difficulty in order to obtain the continuity of wy
at the point (a,0) as for the case of Pr.IIT. Tn any ca
se the existence and the unigueness of the classical so
lution of Pr.II are well known and they where proved by
classical direct methods (see e.g. the books [30], [5&}
and the report [531 and the references therein; see also
the following n.d )). For the approach with variational
inequalities see Duvaut [23], [24] and in particular
Friedman-Kinderlehrer [36], in which Theor. 3.1 and the
analogous of Prop. 8.2 and 8.3 are proved essentially
by the same method which we followed here.

For Pr.I the method works if g'(0)=0, more precise-
ly under the assumptions (2.23), (2.39) and (2.1), de-
fining Hy by (5.5)...(5.8), G(x)=g(x), L,(t)=0. There
is only a difficulty in order to prove the inequality
w,€0 in Q of the type already found and discussed in Sec
tion 8 b) and d4) (i.e. how to get the inequality w n)(x\,O)=
G"(x)—Hn(Gn(X))SO). However, in the general case and
iR particular in the case of oxygen diffusion (where
g'(0)#0) our approach does not work. In order to prove
the existence and the uniqueness of the solution of Pr.I'
and the validity of (2.36), (2.37), (2.38) we can use
(instead of Théor. 5.1 and 5.2, Chap. I of Duvaut-Lions
[25]) the existence and uniqueness theorem of weak solu
tions of parabolic variational inequality of Brezis [1k
(see Théor.II 9, Rémarque II.15 and Paragraphe II.2.L;
see also Brezis-Friedman [16]). But for the complete
proof of Théor. 2.1 we have to refer to the paper of
Baiocchi and Pozzi [6] where also the validity of (2.L1)
and the proof of Theor.2.2 are proved, using a different
approach of the variational inequality (2.24), which is
based on "semidiscretization" by finite differences with
respect to time variable (let us ncte only that (2.40)
and (2.42) are not explicity written in [6] ; but their
proof 1s an easy consequence of the regularity results
of linear boundary value problems for heat equation in
the space W;’I(Q), already used and quoted in Section 5
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(see [38]).

By the way I wish to emphazise that for every pro-
blem a suitable approximation is needed. In order to pro
ve existence and unigueness of the solution of problems
of the type as Pr.I',II',III', it is possible to apply
the general results for abstract parabolic variational
inequality in a weak or strong form (see [lh],[ES],[hS],
[h9]). In particular for Problem as Pr. II', III', 1t
is useful to use Théor. 5.1 and 5.2, chap.I, of [25],
which give sufficient conditions on the data and the ap
proximations of the data in order to obtain existence
and uniqueness of the solution satisfying the following
properties

we L7(0,m3V), w_e L°(0,T57)nL®(0,75L°(]0,b[))

t
On the other hand, if one need further regularity pro-
perties for the solution, one has to choose more conve-
nient approximations. This is, e.g., the case of our
approximations Hy,ppn»Gp,Llp, which we introduced here fol
lowing Torelli [62], but with a modification in the defi
nition of Hy(A), suggested by the approximations used

by Friedman-Kinderlehrer [36] for the Stefan problem.
This modification allowed us to obtain Prop. 8.2. I also
whish to emphasize the importance of estimates for w\l
as in Prop. 8.1 (which is due to Torelli), not only

from the theoretical point of view, but also for the nu
merical point of view.

b) The relations existing between variational ine-
quality (briefly v.i.) and free boundary value problems
(briefly f.b. v.p.), of elliptic and of evolution type,
have been particularly studied in these recent years,
starting from the work of Lewy-Stampacchia [hh} who ha
ve shown that the solution of a v.i. with "obstacle" sol
ves also a f.b.v.p. On the other hand we have seen (PnII
and Pr.ITI) that there are f.b.v.p. which are not "di-
rectly" reducible to a v.i. The idea of introduce a chan
gement of the unknown function as e.g. (3.11), (L4.10),
(4.27) ("regularizing" in a certain sense the original
unknown) in order to obtain a "good"™ v.i. is due to Ba-
iocchi, who introduced it in a steady-state f.b.v.p. for
fluid flows through porous media [1]. This idea has been
taken over by several authours for many other problems
(see [2],[15],[11],§23],[2h],t36],[58]... 62] , the refe
rences given in [2]). Recently Baiocchi ([3] hJ) was able
to characterize all the f.b.v.p. for second order linear
operators, that can be reduced to a v.i. (Pr.IT and Pr.
III,as we have seen, are of this type). On the other hand
there exist also f.b.v.p. which can be solved using qua
si~variational inequalities. This type of new inequali-
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ties was introduced by Bensoussan and Lions [9],[10],

[ll] in order to study problem of optimal stopping times
or of impulsive controls and it turned out to be useful
also in f.b.v.p. of fluid flows ([2}) or of the type of Pr.I
ﬂ?? 33]). For the relations between f.b.v.p., v.i.

and control theory we refer also to the lectures of Lions
[h6] [MT] Finally let us remark that there also f.b.v.p.
which have not yet been reduced to v.i. or gquasi-varia-
tional inequalities [69]

¢) J would like also remark that v.i. are particu-
larly useful in f.b.v.p. in the case of several space di
mension, which can not be treated by classical methods
used for the case of one space dimension (see later d)).
Thys for example in a Stefan problem which generalize
our Pr.II, the reduction to a v.1i. was gquite useful in
order to obtain very deep results on this problem. We
refer to the papers of Duvaut [23] [2&] (in which the
reduction and the existence theorem for the solution of
the v.i. are given), to the paper of Friedman and Kinder
lehrer [36](where stronger properties of this solution
are proved, of the same type of Theor. 3.1 and where al
so many interesting properties of the free boundary sur
face are obtained) and to the recent papers of Caffarel
1i [18][19], Kinderlehrer and Nirenberg [41][L2] (who
obtained the infinite differentiability of the free boun
dary surface in a favorable case).

Also Pr.III and an analogous problems for an incom
pressible fluid, were studied in two space dimension in
a sequence of papers of Torelli ( 58],[59],[60],[61],
[63] and of Friedman-Torelli (see also Friedman-
Jensen [35]). Is is exactly in these papers that Torel-
1i introduced the transformation of the type (L.L4T)
(4L.27) ahd a definition of weak solution that suggested
our Def. 3.2 and k.2.

From the numerical point of view the use of v.i. or
quasi variational inequalities in f.b.v.p. seems to give
very good results. I refer to the papers concerned with
flows trough porous media, in particular with Pr.III
obtained at the Laboratorio di Analisi Numerica in Pavia
(see 5] and the references therein ), and to the papers
1391 (701, [12] . [33] . [22] [ 71

Finally, we have to remark that in the one space
d1mens1onal case the use of v.i. for f.b.v. p. seems to
be not so important as it is in the several space dimen
sional case. Indeed, it 1s well known that the Stefan
problem and its generalizations to two phase and to some
non linear boundary value conditions has been considered
in many papers, using different methods (as heat poten-
tial theory and non linear integral equations). J refer
to the books of Friedman [30] and Rubinstein [54] and to
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the report of Primicerio [33], which contains g very com
prehensive literature on the subject until 1973. For mo
re recent papers J wish to refer in particular to [20}
[e1],[26].[27],[55] . [65],[66] .

Similarly, it is possible to apply these methods al
so to Pr.III, as Friedman-Jensen suggested in a final
remark of their paper [34]. Problem I, in the case g'(0)=0,
can be reduce, by derivation (see Section 2 a)) to a
Stefan problem and from this point of view it has been
studied using the alove methods (see [56]). However, in
the case g'(0)#0 (oxygen diffusion) J believe that the
first correct proof of an existence and uniqueness theo-
rem was obtained by Baiocchi and Pozzi [6], by means of
the v.i. (2.24).

Concluding, I hope that these lectures (even though
they were referred to the one space dimensional case)
will be sufficient in order to get a picture of the im
portance of v.i. in the treatment of f.b.v.p. of para-
bolic type and the increasing interest of f.b.v.p.

I also wish to thank my collegues C. Baiocchi, G.A.
Pozzi and A. Torelli for the advices in preparing this
paper.
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CRITERIA OF FYPERPOLICITY FOR CONSTANT COEFFICIENT POLYNOMIALS

M, Minster

Université de Lidge

1., INTRODUCTION

Let P, (k=0,...,m) be a polynomial in n+l variables, homogeneous
of degree k and with constant coefficients,

We say that the polynomial
k=0 -k
is (e-)hyperbolic if P (0,1) # 0 and if

-3
"
[ =1

} ol ]ﬁz! 2 c

n
*x R, z€C

It is well known that the principal part of a hyperbolic
polynomial is O-hyperbolic,

Necessary and (or) sufficient conditions for a polynomial with
hyperbolic principal part to be hyperbolic may be found in [2],
[3] and [5]. We give here a new necessary and sufficient
condition, which includes these results, Our proof is quite
elementary : it does not rely on PUISFU¥'s series nor
SEIDENBERG-TARSKI's lemma.

We give here all the detalls only for polynomials of degree
2 and 3, The general case can be treated in the same way
(see [u4], where other usefull criteria may be found),

Garnir (ed. j, Boundary Value Problems for Linear Evolution Partial Equations. 313-318.
All Rights Reserved. Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland.
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2. CRITERION OF HYPERBOLICITY

The polynomial P is hyperbolic if and only if Pm is hyperbolic
and there exists a constant XK such that

R —_ . e
(1) !P l < K max {Inlp lj le'J P [j 13 in rR"xcC,
m-k! — . ! m m —
N<i<k
kej't<m

Here and in the sequel, D denotes differentiation with respect
to the last variable,

PROOF
a) Sufficiency.

It is easily seen that if Pm is O-hyperbolic, there exists a
constant K' such that '

(2) !DJP I <« —T in Rnx{TGC, & T#0},

T —.[ﬂT!J
So, if condition (1) is satisfied, |P_ .| is dominated by |P |
for IRT! large enough (uniformly in x"€ R1) and this impliesmthe
hyperbolicity of P (see [5]).

b) Necessity, for m = 2,

For any t > 0, a > 0, x € R", 1 € C, we have

p°p
2_,tx  z+trt, _ .2 2 2
o P(E~, ~ ) =t Pz(x,r) + tDPQ(x,T)z t——z
+ a[tPl(x,r) + DPlz]
+ a2P =0 = £(2+t1)| < e
0 = <

= |Rz] < catt|Rr].
We shall first prove that it is impossible to find sequences
t>0,0>0, x €R"and 1 € C(®) such that cott|Rt| > 0,
|atP. (x,7)] = 1 and all the other coefficients tend to 0O,
except<2§22 (which is a constant # 0), i.e.

a» 0, tlge] » 0, fatPl(x,T)l =1,
(3) { ’

tsz(x,T) -0, t DPQ(X,T) - 0,

(#) For short, we omit the indices for sequences,
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Indeed, if it were possible, choosing a subsequence such that

o t Pl(x,r) > (!r! = 1),
we should obtain, passing to the limit,
D?P
2 2 _ _
> zZ +r=0= z=0,
or
g > 0,
DP

But if we keep the same sequences t and o and change (x,7) in
(-x,-t), we should also obtain

;r > 0

DP,
2
vwhich implies r = 0, a contradiction.

Now, (3) is equivalent to

2

d =

1 v o) 12 !
(H) Pl(X,T)#n’ mﬂo and t max(]?’?(;,,r)! ,iDPQ(X,T)i)'m,

because
Ktip |
P2 2, n
ine | < S in R ox{74C : R1#EN}
' 217 ae
(see (2)) implies
ol VRl s}
t gl < —= ol I in RxC
= ot l A
)

and therefora,

.

]
TP (v, 1) >0 > tlre! 0
. , n .
Since (4) cannot hold for any sequencest > 0, z € R and 1 £ C,
it iz also impossible to find sequences x € RD and 1 € C
such that

j1a

2

Pl(x,r) £ 0 :né-ﬂ;~éh.ﬁrrmax(!Pn(x,T)f‘, P _(x,7) ) »n, (%)
I;lX,T)‘ z ’ a

(%) Here, we use the following simple property : given two

sequences a >0, b >0 such that a_ b =0, there exists a sequence

t >0 such that t a -0 and bm/tm+0. Take, for instance, tm=¢bn/am
———— e —— 1 i I

m

iF b o . = 3£ =0 . - 1€ ( o= a

i bm#O, dm#O, tm mbm if a =0, bm#O, tm l/mam if am#O, Lm 0 and
t =1 if a = b =0,

m m m

H 3
3
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In other words, there exists a constant g > & such that
) 1
l 2 bl 3 11 ~
Pl¢0=;>mmav('P9] . !D:‘Q!)> € 1nRx\,,
Y EN
r, with K = ?,
1
Ip. | ¢ max(]p l? [pp_|) in
2 ¥max({P |7, 2,10 in =,

q.e.d.

c) Necessity, for m = 3,

For any t > 0, a > 0, » & Rn, T € 2, wve have

2 3
t N B P ) np 3
(5)a P('X Z+TT) =°p ( T)+t?DP3(x,T)z+T ___;ﬂf&T z?+—€~3 z

~

2 n°p n
+alt P?(x,r)+t DPQ(X,T)Z+;F—2 %]
2
+a TtPl(x,r)+DPlz]

3 .
ta Py = 0 > l#z] < Catt'sr!.

It can be proved as in k) that it is Impossible to fingd sequences

t >0, a>0, x €RV, ¢ €C such that catt]it] » 0, la®tP_(x,7)] = 1
and all the other coefficients, except D3P3, tend to zero.

From case b), applied to the hyperbolic polynomial DP,

we have 1

P?! <K max{[DPsl2,

H

<.

Therefore,

t2 DPS(X,T) + 0

) } = t DP9<X,T) + 0
tD Pa(x,T) + 0 - => qt DPQ(X,T) »+ 0
a -+ 0

and we obtain, as in b), the inequality

1 1 1
3 2 4.2 2, .
(6) ]Pl[ < K max{!PS! , !DP3I [p°P ]P2] } in RxC,
In the same way, but taking now lthP (x,7)] = 1, we fingd
2 L s 1 s
3 2 4 2 2 2
() 17l maxtl2, 17, v |, 107,17, 1o Ple ' or, Tl 2, 0%, 7] 1)

in R"xC.
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Replacing now, in (6),|”q] bv the right member of (7)) we obtalin,
with another ceonstant K,~ 1 1

l 2
(8) b, | < maxtlp, |”, fop_|

) !nFPq’} in anC,

the desired inequality for P .
From (8), we see that -

3
t P (x, ) >0

2
t DP (2, 1) »0 =+ P](x,r) >0
- o]
t P (z, 0 } = a’t ?J(x,TH n.
a >0 ‘
}
So, we can elimirate the terms including ‘“ l in (7)),
with another ¥, "
—; > T

(9) Ip < xmaxde]”, Top ], In7p I 50 2",

s N &

To get a better inequality for 'p !, rote that it ig Iimpossible
to find sequences t>0, a>0, x€R1, "1€C such that
2 [a)
cott|Pr| » 0, lot P?(x,r)] = ]tD'Pg(x,T)I 0,
2
and all the other coefficients in (5) Aivided bw tDLFa(x,T) tond
to 0,

This leads to the existence of a constant ¥ such that, in ?nxC,

R
J either !“ r, | <X way{!P [9, |pp |7}
(10) NP
‘k 'P { <K may{{PP?,, IP?! In7p [“}
Combining (9) and (10), we finé, with another constant V¥,
2 1 1
3 EIIR
lp | < Kmaw{[P Ir‘r’ [, !Dal [n 171,

the desired inequality for ]P?l.

The same proof could be used to prove the general case hw
induction on the degree of P (see [4]).

3. CORQOLLARIES
Corollary 1. (A. LAX [3]).

If P is hyperbollc, then, any root of P with multinlicitwy
sl (a>0) is a root of P -k with multlp&1c1tv > atl-k,

for any k<Q.
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It is a root of Pm—k for any k<a, hecause
Ip (. =0 ¥ 3 =0 i<k = -
D]Pm(xo,ro)—0,¥g:g = D Pm(xo,10)~0,¥ﬁ§y = Pm_k(xo,To)—O,

by condition (1). To obtain the good multiplicity, it remains
to apply condition (1) to each t-derivative of P.

Corollary 2. (L. HORMAMDER [2] p. 1386).

If P is hyperbolic and has only t-roots of multiplicity < k
For gnyrx#O then P + © P is hyperbolic for any P
Mmoo g mek m-k
o
homogenenous of degree m-k,
Indeed, for k>k o® the two members of (1) are homegeneous of the
same degree m-k°and the right member vanishes only at (9,0);

so, there exists a constant ¥ for which (1) is satisfied,
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'STABILITY OF MOTION FOR SEMILINEAR EQUATIONS

Jeffrey Rauch*

University of Michigan, Ann Arbor, Michigan USA

§1. INTRODUCTION

The purpose of this paper is to discuss the asymptotic beha-
vior as t = +° of solutions to semilinear equations of the form

¢t = Ad + J(¢) (1.1)

where ¢(t) takes values in a Banach space B , and A generates
a Co semigroup on B . Of particular interest is the stability of
equilibrium or periodic solutions of (1.1).

In section 2 we describe an abstract framework, similar to
that in [12], where existence and uniqueness theorems for (1.1) can
be obtainedin essentially thesame completeness (and with the same
proofs) as for the ordinary differential equation ¢ £ = J($) . The

main goal is to prove differentiable dependence on the initial
values ¢(0) and to show that the differential satisfies the
linearized equations

vt = AV + dJ<¢(t)>v . (1.2)

With these facts one can attack the stability problem by Poincare's
method of the first return map. If the differential of the nth
return map is a contraction then one obtains asymptotic stability

* This research partially supported by the National Science
Foundations under grant NSF GP 34260

Garnir (ed.), Boundary Value Problems for Linear Evolution Partial Equations. 319-349.
All Rights Reserved. Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland.
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of the associated periodicorbit. Similar results are cbtained for equil-
ibria . Therelationship with Floguet multipliers (spectrum of the
differential of the first return map) is also discussed.

The main application of this technique is to the study of
the asumptotic behavior of solutions to semilinear partial differ-
ential equations. As with ordinary differential equations, linear-
ization yields limited information and when other methods work
they are usually preferable. We present two applications to partial
differential equations where either no other technique is avail-
able or linearization complements the information provided by
other methods.

3
In §4 we discuss the scalar parabolic equation on § CR™ ,
ut - Au + g(u) = f on [0,0) x § (1.3)
du =0 on [0,®) x 30 . (1.4)
av

By linearization one shows that if u, is an equilibrium solution
of (1.3),(1.4) with the property that the operator -A + g'(ue)
with domain {y € HZ(Q)I%%'= 0 on 3Q} is astrictly positive
selfadjoint operator on L2(Q) then u, is asymptotically stable.

If one assumes the stronger condition that g isstrictly increas-
ing then under approriate conditions on f and g one can show
that there is exactly one equilibrium, and using energy inequali-
ties and some ideas from dynamical systems we show that every
solution converges to ug as t > +» ., Here is a case where
three different techniques combine to give a fairly complete
picture.

In 55 we discuss equilibrium solutions of the nonlinear
wave equation on £ ¢ w3 R

u - Aa + g(u) + a(x)ut =f on [0, xQ (1.5)

u =0 on [0,®) X 30 (1.6)

If u, 1is an equilibrium solution of (1.5) - (1.6) the linear-
ized equations at wue are

Veg T Av + g'(ug)v + a(x)vg = 0 on [0,») X Q (1.7)

v =0 on [0,o) x 3Q (1.8)

In contrast to the results in §4 the analysis of this linearized
problem presents a challenge. If a > 0 and -A + g'(ue) with
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o
domain H2(Q)IW Hy(Q) 1is strictly positive then precise decay
estimates for (1.7) - (1.8) have been obtained [9] and in
particular one can conclude that u, is asymptotically stable.
We prove a less sharp but sufficient decay theorem by using a
trick from classical mechanics to construct a Lyapunov function.
Particularly striking is the fact that if g is strongly nonlin-
ear then existence of global (in time) smooth solutions of
(1.5) - (1.6) is an open problem. However, the asymptotic stability
conclusion is that if (u(O),ut(O)) is sufficiently close to

(ug,0) then there is a global smooth solution with these initial
data and (u(t),ut(t)) » (ue,0) is t-+o+ . This is reminiscent
of the low energy scattering theory of Strauss [14] which provides
global solutions with special asymptotics for data in a restricted
class even when global soluability is not known for arbitrary
data. As an example if g(u) = yu + ululr'l with y > 0 and

r > 2 then if (u(0),ur(0)) is sufficiently small in B =

Hy () N ﬁl(ﬂ) then there is a global solution, (u,u ) 1is con-
tinuous with values in B and converges to zero in B at an
exponential rate as t > + .

These results for the nonlinear wave equation generalize
results of Sattinger [3] who assumes that g 1is real analytic and
that a 1is not too large. His proof employs a perturbation
series. Sattinger gives a beautiful interpretation of the posi-
tivity of -A + g'(ug) as a continuum mechanics analogue of the
classical results of Dirichlet and Lyapunov on stability of mech-
anical systems at a minimum of potential energy. This idea is
also described in §5. A similar analogy between the parabolic
equation (1.3) and gradient dynamical systems is mentioned in §4.

A third application of linearization, to the threshold prob-
lem for equations modelling the conduction of nerve impulses is
described in [11, §4.1]. It was in that work that the author
first realized the utility of these ideas.

In section six we describe some difficulties which arise
when the techniques are applied to problems in high dimensions
and/or with general boundary conditions. The solutions to some
of these are sketched and some open problems remain. Specifically,
we extend the results of §4 to all dimensions and those of §5
to dimensions less than eight.

I would like to thank Professor C.Dafermos , J. Smoller,
W. Strauss, and M.Taylor for their advice and encouragement on
this project. Without them the work could not have been done.
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§2. Abstract Linearization Theorems.

We consider the initial wvalue problem

¢, = A + J(9) (2.1)

¢(to) = ¢O (2.2)
where t ¥ ¢(t) is a continuous function taking values in a Ban-
ach space B . The following assumptions are in force

J: B > B is locally Lipshitzian, that is, there (2.3)

is a continuous function ¢ :I{FX lﬂ_+ R , mono-

tonically increasing in each variable and such that
for all ¢,y B,

Har - s |l <cddloll, Hwlhlle - vl

A is the infinitesimal generator of a C,. semi- (2.4)

tA
group, e ron B.

J is reasonable smooth. Precisely we suppose that (2.5)
J is Fréchet differentiable, the map ¢ - Ay, is
continuous from B to Hom B , and, for any bounded

set B C B there is a constant ¢ such that

Vo v e

2
3w =g ~a3, -nl] <cllo -]l

Definitionl. A function ¢ &€ C([to, tl] : B) is a solution

of (2.1) if for every t Ei[to, tl]
(t-t )A t

s(E) = e o ¢(to)+ J e(t—s)A

J(¢(s))ds (2.6)
t

o

Notice that the integrand in (2.6) is a continuous function of s
with values in B so the integral is a Riemann integral. Second
notice that a solution need not be strongly differentiable with
respect to t and ¢(t) need not be in D(a) . The differential
equation (2.1) is satisfied in a weak sense. With a few natural
assumptions strongly differentiable solutions can be created, see
[12]. The first order of business is to prove the existence and
uniqueness of solutions. Since the methods are standard some of
the arguments will only be outlined.

THEOREM 1. (Uniqueness of solutions) If ¢ and ¢ in
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C([to, t1]1 B) are solutions of (2.1), (2.2) then ¢ =y .

Proof. Choose ME& R so that

™[] + e([loo ||, |lv D <u . £
0

Since ¢ and Y are solutions we have

t
$(t) - Y(t) =J SR (s4is)) - T(w(s)) ds .

t
o

t
Therefore ||¢(t) - ¢ (t) II <M J H¢(s) - Y (s) | Ids and Gron-

t
o

wall's inequality implies ¢(t) - ¢ (t)

(1]

0 .

THEOREM 2 (Local existence). For any ¢O € B and tO > 0 there
is a ¢ depending only on H¢>0H so that (2.1), (2.2) has a
solution ¢ & C([to, to + 6] : B) .

Proof (Picard iteration). For any tl > tO define

K : C([to, tl] : B)@2 by

Ko (t)

t
= (8 [ (E9)R 5 4(s)) as .

o ¢ +
© t

o

We must find a fixed point of K . For 1 > 6 > 0 define

_ . . _ (t-t A
9= {¢ec(it_, t + 61 :B) : [lo(t) - e o d)ollil

for t e [to,tl]}

A
M =1+ sup HeTQ) !
1 0<t<1 ol

M = sup HJ(z)_!l + M

+ c(M,, M)
1 1 1
lell ¢ m

1
Then for ¢ €Q , t €& [to, to + &1

(t-t )A
[l ey —e ¢ Il < (e -t)m
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[1xo(t) - xy(e)[] < (¢ - € )

Choose § € (0, 1] so that 6M <1 then K is a contraction of
Q into itself so Banach's theorem implies that there is a fixed
point in @ .

THEOREM 3 (Patching together local solutions). If wl is a sol-

ution of (2.1) for to <t<t and w2 is a solution of (2.1)

1

for tl <t §_t2 with wz(tl) = wl(tl) then if
&
wl(t) for t [to, tl]
d(t) =
wz(t) for t éi[tl, t2]

then ¢ 1is a solution of (2.1) for to <t j_tz

Proof. We must show that (2.6) holds for t,t<t, . For
tO <t i_tl this is true since wl is a solution. For

t. <t < t_, one adds the following identities

1 2
(t—tl)A t (t—tl)A
w2<t> = e wl(tl) + J e J(wz(s)) ds
t
1
(t-t.)Aa (t~-t_)A [ t. A
1 _ 1 1
e v (E) = e e wl(tl) +
1 (£, -t _)A
f e I (s)) dél
& 1
o}

to complete the proof.

This patching result allows one to piece together a maximal solu-
tion.

THEOREM 4 (Maximal Orbits). For any ¢C)E.B there is a
Tc ELR+L){w} and a ¢ € C([o, Tc) : B) which is a solution in

every interval [0, T] C [0, TC) and such that either Tc = o
or [[e®)]| »=» as t-rT_ .
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The standard proof is omitted. Next we show that if one has a
solution ¢(t) for O < t < T then for initial data close to
$(0) solutions exist at least up to time T .

THEOREM 5 (Semiglobal existence). If ¢ € C([0, T] : B) is a

solution of (2.1) there is a neighborhood 0 of ¢(0) such that
for any y € 0 there is a solution ¢ € C([0, T] : B) with
P (0) = wo . In addition there is a constant c¢ such that

o) - o) ]| < cllvo - ¢(0)]] (2.7)

for all y,e 0, 0 <t <T.
Proof. We derive an & priori estimate for solutions

Y, € C([0, 7] : B) with T < T . Subtracting the following iden-
tities

t

v = ey + f F3R 5 4(s)) as
0
t

b(t) = e™ $(0) + f {ESIB S 4(s)) ds
0

and letting d&(t) = ¥(t) - ¢(t) we find

Y (e-s)a
e

§(t) = ™ §(0) + J @W(s)) - J(4(s))) ds  (2.8)

0
Choose M E R such that

M > sup (lletAll + [loee) |y -
0<t<T

Then for § we find the inequality

ey || <mls ][] +m ft eIy ||, m|fsts) ][] as
0

Claim: If |[|8(0)||Mexp Mc (M + 1, M)T) <1 then

IG(t)|| <1 for O0O<t<rT.

Proof of Claim. If not there is a T, ST with IIS(T1)|[ =1

and llﬁ(s)ll <1 for 0<s T . Then for s & [0, Tl] '
||¢(s)l| <M+ 1 so for t € [0, Tl]
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t
[lsey ]| <m]|s¢o)|| +M c(M+ 1, M f [Is(s)]] as . (2.9)
0

Gronwall's inequality implies that for t & [0, Tl]

sy || < |60 || Mexp M ¢ M+ 1, Mt) . (2.10)
In particular 1]6(T1)|| <1 contradicting the choice of T.-
We have now shown that if |lw(0) - ¢(O)|l satisfies the

inequality of the claim then ||¢(t) - ¢(t)|‘ <1 for 0 <t <T.
In particular ||w(t)|l <M+ 1. This & priori estimate allows
us to extend Y to a solution for 0 < t < T and to conclude
that ‘Iw(t)l{ <M+ 1 for 0 <t <T. Then inequalities (2.9)
and (2.10) hold for t € [0, T] which proves (2.8) with

c=Mexp Mc M+ 1, MT) .

Let ¢ , p and O be as in the above theorem. Define the
nonlinear solution operator by

S(t) :0 > B 0<t<rT (2.11)
S(8) (¥(0)) = v(t) . (2.12)

Our next goal is to show that, for each t, S(t) is Fréchet dif-

erentiable and that the derivative vy(t) = ds<w(0))Yo solves
the linearized equations
= Ay + 4J 2.13
Y(O) =¥ . (2.14)

o
Notice that the continuity of ¢ and (2.5) imply that the map
t > dle(t)7 is continuous with values in Hom(B) . This is

sufficient to insure that the linearized equations are solvable.

THEOREM 6 (Existence for linear equations). If D &€ C([o, T]
Hom(B)) and Yo € B then there is a unique solution

Y € C¢([0, T] : B) of Yt=Ay+D(t)Y with v (0) =7, in the
sense that

(t-s)A
[=]

y(t) = e Yot J D(s) y{(s) ds 0 < t < T . (2.15)
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Proof. Local existence and uniqueness are entirely analogous to
theorems one and two. In fact we could have let J depend on t
in these results. To prove that solutions exist for 0 < t < T
we need an & priori estimate. If T < T and Yy satisfies (2.15)
for 0 < t <1 we show that |ly(t)]| j_cilyo|! with c¢ inde-

pendent of t, T, Yo . Choose M R with

tA
Mo >sup (|le || + |[D(t) ] )
0<t<T Hom (B)

Then

v ] < ullygl] o [ Jivior ] as

and Gronwall's inequality completes the proof.

Given ¢ a solution of (2.1) for 0 < t < T with ¢(0)& (0 the
linearized solution operator SL(t) is defined for t & [0, T]

by

SL(t) : B>B (2.16)
SL(t)Yo = y(t) (2.17)

where vY(t) is the solution of (2.13) with vy(0) = Yo . The main

result is the following.

THEOREM 7 (Differentiable dependence on initial data). Suppose

$ , 0, S are as above then for t € [0, T] , S(t) is a Fréchet
differentiable map from ( to B and for any wo(g 0 .,

ds(t =5 _(t) .
TR

Proof. We must show that ||S(t) (b, + h) - SRy - SL(t)hH =

o(l|n||) as h~>o in B . Let y(t) = S (Bh , Y(t) = s(B)y_ ,

V(L) = S(t)Uﬂ3+ h) , 6(t) = P(t) - Y(t) . Then as in the deriva-
tion of (2.8)

S(t) = e™ h + J (TR 5 (l(s)) - T(W(s))] ds
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By the smoothness (2.5) of J we have

tA

t
S(t) = e h + J e(t_s)A

[(aT

sy 6(s) + p(s)] ds (2.18)

0

2 R s
where ||p(t)| 5_cl|6(t)|l » 0 <t <T and ¢ is uniform over
all h with h <1 . Use the estimate (2.7) to conclude that
for t € [0, T] there is a new constant ¢ with

1] o oot < el = ol Il

Thus if v(t) = §(t) - y(t) we have

t
- (t-s)A 2
v(t) = JO e a7, gy V(S ds + o(||n] |5
A, by now familiar, Gronwall estimate yields ||v(t)!| j_c|]h|]2 =

0(l1h||) . This is precisely the desired estimate.

THEOREM 8. The map S(t) is continuously Fréchet differentiable

on 0.

Proof. We must show that if wl(O) and ¢2(0) are nearby points

2

1 . . . .
of (0 and SL ’ SL the associated linearized solution operators

2
then SL(t)h - Si(t)h is small uniformly for ||h|| <1l . Let

_ &l - _ _
Yl(t) = SL(t)h ’ Y2(t) = SL(t)h , 6 = YT Yy Then
t (t-s)Aa
§(t) = fo e (dg¢1(S)7Y1(S) - d{<w2(5)>Y2(s))ds . (2.19)

For wl the lipshitz dependence (2.7) and smoothness of J allows
us to choose n > 0 so that if ||¢i(0) - wz(O)ll < n , then
lP2(0) € 0 and

||dJ<w1<s); - dez(s)yH < cllv (0 - v (0]

for 0 < s < T . In particular we have a uniform estimate

< ¢' . The difference of derivatives in the integral
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2.19 is equal to

§ + (a7

v, ()7 7 T Ty )M

so estimating crudely we have
t
s || iconstf |15 ]]as + const ||, (@) - v, (O]

0

where the constants can be chosen uniformly for
||¢l(0) - ¢2(0)|| < n and llh|| <1 . Gronwall's inequality

yields
[18(t) || < comst ||w1(0) - wz(O)!l for 0 <t<T.

This estimate implies the continuous differentiability of S .
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§3. INFINITESIMAL STABILITY AND STABILITY

In this section we show how Poincaré's method of the first
return map and the theory of Floquet multiplers extends to
the abstract setting.

Definition 2. Suppose ¢ € C ([0,»):B) 1is a solution of (2.1)
periodic with period p > 0 . Let Sp(t) Dbe the solution
operator of (2.13), the linearized equations at ¢ . We say
that ¢ is infinitesmally exponentially stable if there is a

to > 0 and a constant o > 0 so that ||sn(t)|| < e Ot for

t >+tg .

There is a parallel definition for equilibria.

Definition 3. Suppose ¢, € B is an equilibrium solution
(independent of t) of (2.1). We say that ¢, 1is infinitesmally
exponentially stable if there are positive numbers to,d with
[sp(t)[l < e @t for t > tg , where Sy is the linearized
solution operator at ¢. .

Each of these definitions has a variety of equivalent formulations.
We summarize some of them below.

THEOREM 9. With ¢,S;, and p as in definition 2 the following
are equivalent.
l $ is infinitesimally exponentially stable
|| spte)f| 0 as t+w

3. There is an integer n > 0 such that IISL(npﬂI < 1
4. There is an integer n > 0 such that the spectrum of
Sp,(np) is contained in {z]|z| < 1} .

5. The spectrum of Sy,(p) ¢ {z||z] < 1} .

THEOREM 10. With ¢ and S; as in Definition 3, the following
are equivalent.
is infinitesimally asymptotically stable.
Z.HSL(t)H+O as t >
3. There is a t > 0 such that the spectrum of S;(t) 1is
contained in {z]]|z| < 1} .

Proof of Theorem 9. 1 => 2 => 3 => 4 are automatic. The
periodicity of ¢ and the patching together principle (theorem 3)
imply that St,(np) = S;(p)" so spectrum S (np) = {znlz e
spectrum Sr(p)} . Thus (4) and (5) are equivalent..

To see that 5 => 1 use the spectral radius formula.

1 > spectral radius Sp(p) = %%§!|SL(np)||l/p .
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choose p €R
1 > p > spectral radius Sy (p) .

Then H SL(np)ll < pb for n large. Then since
Sp(t) = sy (t - [t/plp)Sy [t/plp) where [ 1 is the greatest
integer symbol we have

[lsLo || _<_O§ggp| Ispe)]]| + olt/Pl

which implies infinitesimal exponential stability. The proof of
theorem 10 is analogous. In practice there is rarely a shortcut
and criteria number 1 of these theorems must be proved
directly. An exception is for equilibria of parabolic systems
where Sr,(t) defines a C, semigroup on B which is compact
for t>0.

THEOREM 11. Suppose that ¢e and $S;, are as in Theorem 10.
If Sp(t) is compact for t large then the conditions of
theorem 10 are equivalent to

4. There is a o < 0 such that the spectrum of

A+ dJ<¢ , 1is contained in the halfspace {z|Rez < a}
e

Proof. Under the hypothesis that the semigroup Sp,(t) =
exp t(A + c1J<<l> >)is eventually compact we have the spectral
e

mapping theorem (see [5])

spectrum S, (t) = {e%2|z € spectrum a + 43 1.
L <¢,>

Thus (4) is equivalent to condition (3) of theorem 10.

The main results of this section assert that infinitesimal
stability implies stability.

Definition 4. A periodic solution ¢(t) of (2.1) is exponenti-
ally stable if there is a neighborhood (0 of ¢(0) and positive
numbers c¢,0 such that if ¢ is a solution of (2.1) with

Y(©) €0 then ¥ exists in 0 <t <® and ||v(r) - ¢()]]| <

ce~®t||y(0) - ¢(0)|| for t > o0 .

Definition 5. An equilibrium solution be of (2.1) is
exponentially stable if there is a neighborhood (0 of ¢. and
positive numbers c¢,a such thatif Yis a solution of (2.1) with
y(0) € 0 then ¢ exists for 0 < t < » and

[fwe) - ¢eH < ce”Ot||y(0) - ¢e|T for t >0

THEOREM 11. (1) If ¢ is an infinitesimally exponentially stable
periodic solution of (2.1) then ¢ is exponentially stable.
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(2) If ¢ is an infinitesmally exponentially stable equi-
librium solution of (2. l) then ¢ 1is exponentially stable.

In both cases if ||sp(t)|]| < et for t large then
for any 0 < &' < a we have P(e) - o) || < ce™® [ |u(0) - o0 ]|

for all t >0 and l]w(O) (0 || sufficiently small.
Proof. We prove part (l). The second assertion is treated
similarly. Choose an integer n > 0 so that H SL(np)l‘ <
e=o(np) , If 0 < o' <a we may choose an open ball

={ypeB|||v-v@]| <r} such that if Y(t) is a
solution of (2.1) with ¥(0) € ¢ then

Y € c([0,npl:B) (theorem 5), and (3.1)
|Isg,(np) || < e=®'np (theorem 8) . (3.2)
where Sr(np) is the Frechet derivative of S(np) at ¥ (0) . It

follows from the mean value theorem ([4, 8.5]) that
|[s(np)¥ - Snp)¥]| < e=@'PR||y - Y|| for v, ¥ €0 . (3.3)
In addition, S(np)¢(0) = ¢(0) so S(np) maps O onto itself.

The patching theorem then shows that for { € 0 , s(t)y exists
for all t > 0 . 1In addition, for any integer k > O

||s(knp)y - S(knp)dO)] |
||s(np)ky - s(np)ke0)| | (3.4)
e KY R 1y - 4(0) ||

from the contraction inequality (3.3). For any t > 0 let

k = [t/np] and t5 =t -knp so O <ty <np . Since ¢(t) =
S(t)$(0) = S(to)Sknpld(0) = S(to) ¢(0) we may apply the estimate
(2.7) to obtain

||sknp) v - ¢(0)]]

| A

l|stt)w - o) || = ||s(to)Siknp)y - s(to) o]

(3.5)

{n

const||s (xnp)y - ¢0]|

where the constant is independentof ¢ € 0 and t € R+ .
Inequalities(3.4) and (3.5) prove the exponential stability of ¢.
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§4., A PARABOLIC EQUATION WITH KERNEL.

In this section we study the local and global stability
of equilibrium solutions of the boundary value problem

u, - Au + g(u) = £ in [0,») x Q (4.1)
) .
—59\)- =0 in [0,2) x 3Q (4.2)

where § is aboundedopen set in r" lying on one side of its
smooth boundary and 9 is differentiation is the direction

oV

normal to 9Q . This problem is interesting because the asso-
ciated linear problem (g = 0) may have no equilibria and when
there is one there are many and none is asymptotically stable.
This results from the fact that if u is a solution of (4.1),
(4.2) then so is u+ constant. Any uniqueness and stability
results must rely in an essential way on the function g . We
first put this problem in the framework of §2.

Define a nonpositive self adjoint operator A on L5(Q) by

Pa) = pen@|¥=0 on 30}

2 3V

Ap = Ay for ¢ € D(n) .
The space B is defined by

B = D(A) (4.3)

2 2 2
= + .
”")H B IleLZ(Q) llAw)HLz(Q) for ¥y €B

Since A < 0 it follows that exp tA is a Co contraction semi-
group on B . We make the following assumptions.

feB (4.4)
@ crR” with n<3 . Then B C Hy(®) c c(® . (4.5)
Generalizations to arbitrary n are discussed in §6.

g € CZGR) . Then J:y > f - g(¥) 1is a C2 map of (4.6)
H,(R) to itself and dJ<w>(h) = -g'(Y)h .

In addition J maps B into itself for if ¢ € B then, on 3Q ,

oy _ 3f _

3 .
(W) - £) = g’ (N5 - 5

Thus hypotheses (2.3) and (2.5) on J are satisfied, and (4.1)
and (4.2) is equivalent to the abstract equation for ¢ with
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values in B ,

¢t = Ap + J(¢) . (4.7)

Suppose ug € B is an equilibrium solution of (4.1),(4.2)
(equivalently 4.7) . The linearized equations at u, are

Vt = -Av + g'(ug)lv on [0,») x Q

oV

— =0 on [0,») x 3Q

v

THEOREM 13. Suppose £,£,9,B are as in (4.3) - (4.6) and that
u. € B is a solution of the equilibrium equations -Aug + g(ug)
= £ . If the self adjoint operator =-A + g'(ug) on L2(Q)

with domain equal to B is strictly positive, say -A + g'(ue)>
al > 0 then there is a ¢ € R and a neighborhood 0 C B of

ue such that for any b € 0 there is a unique solution

uecC ([0,°):B) of (4.1),(4.2) with u{(0) = b and

[u(t) - uellB i_ce‘at|lu(0) - ue!|B for all t > 0

Remark 1 Under these hypotheses global solutions may fail
to exist for some b € B .

Remark 2 There is a geometric interpretation of the positivity
of -A + g'(ug) . If V:B *R is defined by

V) = J Pw|? + c(¥) - £V dx
Q

S
Where G(s) = L g(o) do , then the fact that wu, is an

equilibrium is equivalent to the statement that V has a

critical point at ug , that is 6V = 0 . The condition
-A + g'(ua) strict positive is equivalent to strict positivity
of the second variation &2V . Thus -A + g'(ue) positive

forces V to have a strict minimum at Ue - Now the differen-
tial equation (4.1) is equivalent (see 85 for similar computa-
tions) to.the gradient system ug = —6U<u> and the conclusion
of the theorem asserts that orbits starting near the strict
minimum u, converge to that minimum. After the proof of
theorem 13 we will put further restrictions on g which imply
V(ug) = inflV(¥) and that every orbit approaches this absolute
yEB
minimum as t > 4 .

Proof. We need only verify that ||sp(t)]] const e"a't

<
Hom(B) ~
for some a' >a and «ll t >0 . Now
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Sp(t) = exp t(-A + g'(ug)) .

Let a' = sup{A|r & o(a - g'(u,))} then a' > a by hypothesis
and
= ema't |

s yomn, )

In addition the commutator [Sg,-A + g'(ue)] = 0 so for any
besB

s+ g mensmll = [lsy-6 + g7 @vll

[A

-a't - [
et (-0 + g (ue))bllL2

Thus IlSL(t)IIHom(B) f_e'a't and the proof is complete.

A simple sufficient condition for the positivity of
-A + g'(ug) is that g'(ug) >0 and g'(ug) is not identically
zero. Then ’

) . 2 -
((-A + g (ue)w,w)LZ(m = L |7¢12 +g'(u v ax

Let w be an open set such that g'(ug) >c >0 on w then

- [ 2 2
(-0 + 5" e b)) 3_[9 ]2 ax + o Lw ax

2

z_const||w||Hl(Q)

Specializing still further if g 1is strictly monotone in the
sense that

g(s) > g(t) for any s > t (4.8)
then any nonconstant equilibrium is exponentially stable.

In addition assuming (4.8) there is at most one equili-
brium. for, if ue and de are equilibria the equation
“A(ue-tGg) + g(ue) - g(li,) in 9 implies

2
L IV(ue - ﬁe)[ + (ug - 8g) (gluy) - g(ﬁe)) dx = 0

and it follows that u, = Ge .
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The existence of equilibria when g is monotone has
recently been settled by Brezis (see [2],[8]1). A necessary and
sufficient condition for the existence of an equilibrium is
that

g(-=) < |g|™t f £ < glao) . (4.9)
Q

Assuming (4.8) and (4.9) there is exactly one equilibrium, u
and it is stable. We next ask the more delicate question:
Is it true that all solutions of (4.1),(4.2) converge to ue
as t > » ?

e ’

The first thing that we want to show is that for any
b € B the solution of (4.1),(4.2) with u{(0) = b exists for
all t > 0 . To do this we must derive an & priori
estimate for solutions. We sketch two proofs. First consider-
ing the second remark following Theorem 13 one sees that for
t >0, V(u(t)) is a decreasing function of t . Thus V(u(t))<
V(u(0)) for all t > 0 . However, the basic estimate of
McKenna and Rauch [8] asserts that if (4.9) holds then there are
positive constants ¢3 and c¢g such taht

V) > ey vl Iﬁl -c, VYV eH (D . (4.10)

Thus {u(t)}t > 0 is bounded in Hj(Q) . Some additional
arguments are needed to show that {u(t)}t > 0 is bounded
in H2(2) . One such is presented below. Notice that when g
is monotone G and therefore V are convex. .

A second approach relies more heavily on monotonicity but
does not use the inequality (4.10). The basic fact is that ,
for .t > 0,8(t) is a contraction on Ly(Q) . Precisely if
u and v in C([O,T]IB) are solutions of (4.1) then for
0<tgT

Ilu(t) - V(t)IILZ(Q)< Il u(0) - V(O)‘]Lz(ﬂ)
Equivalently,
lsttyuo - swv ]l < o -vor|] . (4.11)
2 2

For the proof let w = u - v , then

w, = Aw + g(u) - g(v)

Multiply by w and integrate over [0,t] X © to obtain
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4
Q

= —” lpw|2 + (u-v) (g(u)-g(v)) dx dt < 0
[0,t] xQ

which is the desired inequality.

Next we estimate ||24 when u € c([0,T]1|B) satis-
el L2(Q)

fies (4.1). To do this we formally differentiate the equation
with respect to t . If 2z = 3u/d9t one finds that

z, = Az - g'(u)z on [0,®) x Q (4.12)
oz
Fvi 0 on [0,®) X 3Q .

Multiply (4.12) by 2z and integrate over [0,tlXx Q to obtain
t
lJ 2
< z< dx
2 o 0

Formally this proves that

” 320

for all t > 0 . To make this rigorous one uses the trick of
smoothing first in t , making the above argument, then removing
the smoothing. The conclusion is that u € Cl([O,T):Lz(Q))

and (4.13) holds. Details of an entirely analogous proof can be
found in [10].

= —JJ in!z + g'(u)z2 dx dt < 0 .
[0,t] x@

<3| (4.19

L, () Ly ()

Next we estimate ||u(t)]|y Q) - Let h(t) =ue(t) - £ .
The above estimate shows that fh(t)[ Lp(Q) 1s bounded

independent of t > O . The differential equation for u is
Au-g(u) = h(t)

Multiply this identity by Au and integrate over £ to obtain
I lAul2 + g'(u)l?u‘z dx §_C(J |Au|2 dx)l/2
Q Q

Since g'(u) > 0 this implies that |lAu|(L is bounded

independent of t > 0 . We then use the coerciveness estimate

[|u||H2 _<_’const(HAuHL2 + IIUI‘ Il ||H3/2(BQQ )

Now 3 OC 0 on 42 and the other two terms are bounded
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independent of t for 0 <t < T so we obtain

I{u(t)lle(t) < const . (4.14)

for 0 <t < T where the constant does not depend on T . This
4 priori estimate implies global existence with estimates

(4.11) and(4.14) holding for all t > 0 . We are halfway through
the proof of

THEOREM 14. Suppose f£,Q,g9,a and B are as in theorem 13 and

in addition (4.8) and (4.9) are satisfied. Then there is exact-
ly one equilibrium solution ug € B and for any b € B there

is a unique u € C([0,»):B) , with u(0) = b , satisfying (4.1).
In addition

-at

l!u(t) -u O(e ™)

e|!H2(Q) B

as t > 4>

Proof. We first use the smoothing property of the heat equation
to show that {u(t)}t > 1 lies in a precompact subset of Ho (Q).
Let w=u- u . Then,

&kf
w, - Aw = g(u) - g(ue) = x(t) on [0,»®) x Q
9
3‘”\;= 0 on [0,%) x 3§

Observe that x € C([0,»)! B) and that !lx(t)ltB is

bounded independent of t > 0 . As before, let A be the
nonpositive selfadjoint operator on Lp(R) given by the Lapla-
cian with Neumann boundary condition, then for t > 1

(t-s)A
e

t
wit) = ePw(t-1) +f x’s) ds (4.15)

-1
To estimate l!WIIH3(Q) we use the fact that
D(a3/2) CH3(@ and | |]]g, < const(]|a¥ ||y, + el

for all ¢ € D(a%/2) . since a < 0 it follows that &P
maps L2(Q) into D(a3/2) and we can estimate

||A3/2eAw(t—l)|[L
2

[ A

cOnstHw(t—l)HL
2

I A

constant independent of t > 1 .

The second term on the right of (4.15) is also in D(a3/2)
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To see this let

Y o=

t
e J e(t_S)Ax(s) dx

t-1+¢€

Then,for ¢ > 0, Y. € (A3/2) and we must show that g € D(n3/2) .,
As € >0 Ye > Yo in Ly(R), and for e > 0

t
A3/2w€ =J Al/2e(t—s)AAX(S) ax

t-1+e

For A <0 and T >0 /X e“_iconst‘r"l/2 so by the spectral
theorem ‘IAl/ze(t‘g)AllHom(Lz) < const(t - s)~1/2 . since

IIAx(s)IILz is bounded independent of s we may apply Lebes-
que's theorem to conclude that as € -+ 0

t
% ', +J al/2 (t=5)A

Ax(s) ds (4.16)

-1

in L,(R) . Since a3/2 has closed graph it follows that

Yo © %(A3/2) and A3/2wo is given by the integral in (4.16).

Then

3/2 t -1/2
NSENIN 5[ const (£-5) "2 sup| |ax(s) || ds

2 -1

s>0

I A

constant independet of t > 1 .

Thus, {w(t)}i>1 is a bounded subset of H3(Q) and therefore

precompact in Hy . Since u(t) = w(t) + ue, {u(t)}t>l is
precompact in H(Q) . —~

We next investigate the ® 1limit set of u . Let

K= {k e LQ(Q)E{tl <t, < ...>+o such that
lim u(ty) =k} .
n->co

By the above remarks K 1is a nonempty subset of B CH,(Q)
It follows immediately from the definition that K is invariant
under S ,-that is

For any k € K and t >0 , S(t)k € K . (4.18)

In addition since S(t) 1is a contraction on Lo(R) for any
t > 0 it follows that (seel[3,theorem 1]) S is an isometry in
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K , that is

For any kj and k5 in K and t >0 l[S(t)kl - S(t)kz‘le
= |]x; - k2HL2 . (4.19)

However, the inequality in (4.11) is strict so 4.19 can only

hold if K consists of exactly one point, K = {k} . The
invariance of X under S implies that k must be an equili-
brium. Thus K = {ug} . Since {u(t)}t>p is precompact in

Hy(2) it follows that llu(t) - uelle 0 as t o,

In particular for t large u(t) € 0 | the neighborhood in theorem
13. Once in 0 the convergence to ug at an exponential rate
follows from theorem 13 and the proof is complete,
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§5. EQUILIBRIA OF NONLINEAR WAVE EQUATIONS

We next turn our attention to equilibrium solutions of the
nonlinear wave equation

u, , - Au + a(x)ut + g(u) f(x) on [0,») x Q (5.1)

tt

u =0 on [0,x) x 3Q (5.2)

The Dirichlet condition (5.2) could be replaced by a Neumann
condition however we choose to complement the ideas of §4 as
much as possible.

The wave equation (5.1) is a continuum mechanics analogue
of the ordinary differential equation for y = (y....,y,) .

¥ =-grad V(y) - ay . (5.3)

The analogy comes about as follows. Let

2
Vig) = Ilﬂ%}_ + G(¢) - £¢ dx
Q

s
where G(s) = ( g(o) do . Then the first variation of U is
0

given by

8V 45 (V) = sz¢ S TY+ gy - £p dx

so that if we admit only variations vanishing at 23Q the
equations (5.1) is equivalent to

U = Gyu7 - a(x)ut .

In particular, a state u_, is an equilibrium if and only if it
is a critical point of V (see remark 2 of §4 for an analogue
of u, = -gradv(y)) .

As a guide for our intuition we consider the equations,
(5.3), from classical mechanics. For these we have the energy
identity

2ilyl?2 + vip1 = -al3l? < 0.
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The energy E 1is the sum of the kinetic energy l §|2/2 and the
potential energy VI(y) . A state yp is an equilibrium if and
only if gradv(yg) = 0 . It is a classical observation of
Dirichlet that if a > 0 and yg 1is a strict local minimum of
V then the equilibrium solution Yo is stable in the sense that
if y(0) - yg and y(0) are small then y(t) - yo and y(t)
remain small for all t > 0 . This is proved by observing first
that

E(t) - |y(e)]?/2

L2
E(0) = V(y(0)) + _l_y_(g_)J_ (5.4)

vy (t))

Y

since yg 1is a strict local minimum of V this forces
y(t) - yg to be small provided y(0) and y(0) - yp are small.
Then

[7¢0) [2/2 = BE(8) - V(y(t)
< E(0) - V(y(t))
= |30 [2/2 + V(y(0)) - V(y(t)) (5.5)
which remains small as t - « . This argument can be refined to

show that if a > 0 the as t + = (y(t),y(t)) > (yy,0) .
A natural way to insure that V has a minimum at xg is to
suppose that the Hessian [Vyiyj] is a positive definite matrix.

In this case the stability of yg can be proved by considering
the linearized equations at yp .

Z=-[v lz - az
YiYy
whose solutions decay exponentially be virtue of the positivity
Vy.v. and a .
Yl.. J

We next investigate to what extent these ideas are useful
in analysing the the nonlinear wave equation. For solutions
of (5.1),(5.2) we have the energy identity

u
4 f L ax + V)] = -| a@u’ ax .
dt o 2 o t

Thus if a > 0 the energy is a sum of kinetic and potential
energies and is a decreasing function of time. We have the
estimate analogous to (5.4),

Viu(t)) < V(u(0)) + l{ u2(0,x) dx . (5.6)
- 2, Tt
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Thus if ug is an equilibrium which furnishes a strict local
minimum for V this indicates that if u(0) - ug and ug(0)

are small then u(t) - u(0) remains small for t > 0 . The
difficulty here is that the best one could hope for is that
(5.6) implies that ||u(t) -u ||H (9) and perhaps a functional
of the form f $(u-ue) dx remain small If the number of

space dimension is 2 or 3 this is not strong enough to estimate
Ilu(t) - uelle . If the nonlinearity g 1is rapidly growing

at infinity this failure prevents one from showing that

u(t)-ug is small in any stronger topolugies.h particular even if

' has a strict absolute minimum at ue _and if (u(0),uc(0)) €
CO(Q)2 is close to (u,,0) in the c®(Q) topology it is not
known whether the solution of (5.1) with data (u(0), u¢(0))

can be continued for all t > 0 as an element of C([O, °°)le(Q)).
As a result we abandon the approach of Dirichlet.

Again relying on our experience with the ordinary differen-
tial equatlon (5.3) we are lead to guess that if the second

variation ¢ V<u N is positive definite then not only must V

have a strict local minimum but the stability may be proved by
linearization. Now,

W = J lo]? + o' (w)p? ax
Q e

<u>

which leads to the following guess: If -A + g'(ug) with
Dirichlet boundary conditions is a positive definite operator
on Lp(R) and if a >0 in Q@ then u, is exponentially stable.

We begin the demonstration by putting the problem into the
framewogk of sections two and three. Let H be the Hilbert
space Hj(2) ® L,o(?) and let A be the operator on H defined
by

D(A) = H, (@) n H (2) @ Hl(m (5.7)
Ald,0) = (U,Ad - ap) for (é,9) € D(A) . (5.8)

Then provided that  is reasonable A generates a Co
contraction semigroup on H (see [61,[9]) . Let

. 2 2 2
= D(A) with norm ]lb[[B =l lp]|° + ||Av]] (5.9)

for b e D(B)

Define an operatcr A on B by
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D(a) = {b e B:Ab € B} , ab = Ab (5.10)
for b € D{a)

Then A generates a Co contraction semigroup on B. Concerning
g and we suppose that

gec?® , £eH (2 and f|yq= g(0) . Then (5.11)
J:(¢,¥) » (0,g(¢) - £) maps B into
itself, satisfies (2.3) and (2.5), and
dJ B = (0,g9'
<¢'¢>(X n) (0,9' () x)

[
With these conventions if u € C([O,w)|H2(Q) N H1(Q)) satisfies
(5.1) then U = (u,ug) € C([O,m)lB) and satisfies

Ut = AU + J(U) . (5.12)

Conversely if U = (ul(t),u2(t)) satisfies (5.12) then

1
uZ(t) = aalt and ul € Cc([09 |H2(R) N H1()) satisfies (5.1) .
Now suppose Ug = (ug,0) € B is an equilibrium solution of (5.12).
Then 2Z = (v,w) satisfies the linearized equations.
Z, = AZ + dJ<U Sz (5.13)
e

if and only if w = v and v satisfies the linearization
ot
of (5.1), namely,

0 on [0,®) x Q (5.14)

- Av + + g
Ve v a(x)vt g (ue)V

v 0 on [0,») x 3Q (5.15)

We now state the main result.

THEOREM 15. Suppose 2 C R’ with n < 3 1is open and lies on
one side of its smooth compact boundary, 38 , and that

f,g, and B, are as_described in (5. 7)-(5.11). 1In addition,
suppose that a € CZ(Q) and min a > 0 . If ug € Hz(QV\ﬁl(Q)
is a solution of the equilibrium equation =-dug + glug) =0

and if the self adjoint differential operator -4 + g'(ug) with
domain HZ(Q)nHl(Q) is strictly positive then there is an

open set 0 € B with (ue,0) € 0 such that for anv b € 0 there
is a unique u € C([o,®): HQ(Q)GHl @Mcl(ro,»): Hl(Q)) which
satisfies the differential equation (5.1} and the initial
condition (u(0),ut(0)) = b . 1In addition there are positive
constants cj,c3 independent of b such that

[aee) +u 0]

- u IIH ()
°2t<l!u<0) - |

Hl(Q)
+ ]Iut(OH]

°1 Hy (@) Hy©)?
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Proof. It suffices to prove that solutions of the linearized
equations (5.13) decay exponentially in B . That is, we
must find positive constants dj and d, such that for t > 0

~dst
[lexp t(a + dJ<Ue>H < dae 2 (5.16)
where || || is the norm in Hom(B) . As in the proof of
Theorem 13 in section 4 it suffices to prove estimate (5.16)
where || || is the norm in Hom(H) . The brief details of this

reduction are omitted. Since =A + g'(ueg) is strictly positive,
a > 0, and the linearized equations are equivalent to (5.14),
(5.15) this decay result can be proved by the methods of [9].

For completeness we give a more elementary proof which yields

a less sharp estimate on the rate of decay. The idea is to
construct a Lyapunov function analogous to those used in the
study of the ordinary differential equation (5.3). I would

like to thank Professor Dafermos for teaching me this method.

Let ®:H >R be defined by

o (v,w) = [ w? + |Vv|2 + g'(ue)v2 + avw + B(x)v2 dx
Q

where o is a positive constant and B € C(Q) a positive
function to be chosen below. The first restriction on ¢ is
that 9172 should be equivalent to the norm in H . The
positivity of -A + g'(ug) implies that there is a constant c¢
such that

£2 |7v|2 + g'(ue)vzdx z_clllvllel(Q) ¥v € Hl(ﬂ) .

Thus to show that
2
o (v,w) 3_c2||v,w|| (5.17)
H
it suffices to choose o and B so that
2 —
0”7 < 4R(x) WYX € Q . (5.18)
Next we would like @(Z) to decrease exponentially if 2Z is

a solution of the linearized equations (5.13). If 2Z(t) =
(v(t),w(t)) then a tedious computation shows that

é%@(v(t),w(t)) = —ZOLL2 lpv|2 + g'(ue)v2 dx

+ j (a - 2a)w2 + (28 - ao)vw dx
Q
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1 .
We choose B(x) = Ea(x)a so that the last term vanishes and

o is chosen so that
a < Z2a ¥x € Q . (5.19)

With this choice (5.18) holds automatically and there is a
positive constant C3 independent of Z so that

a
F2(2(t)) < -C.0(z(t))  so
2(z(t)) < e “3%(z2(0)) for t >0 . (5.20)

Since ®1/2 is equivalent to the norm in H this proves (5.16)
and therefore completes the proof of the theorem.

Example. Let a(x) = e >0 and gfu) = yu + u)ufr'l where
Yy >0,r>2 and f = 0 and Q =R~ . The resulting equation
is the nonlinear Klein Gordon equation with friction

3

r-1
u = bu+ yu + ulu = -eu. on [0,) xR (5.21)

The equilibrium is ue = 0 . Then g'(uy) = vy so o

-A + g'(ue) = -A + v which is strictly positive on Hy(2)N\H(Q)
We conclude that 1if (u(0),u(0)) is sufficiently close to

zero in B then there is a unique u continuous on
[0,2) with values in Hy and cl with values in Hj which
satisfy (5.21) and I!u(t)||H2 + ||ut(t)HH1 dea ys exponentially

as t > +» ., Note that it is not known whether there is global
existence of such smooth solutions to (5.21) when the data is an
arbitrary member of B
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§6. DIFFICULTIES WITH HIGH DIMENSIONS AND GENERAL BOUNDARY
CONDITIONS

In the previous two sections we studied one problem with
Neumann boundary conditions and one with Dirichlet conditions.
These two boundary conditions have the desirable property that
if w satisfies the boundary condition then so does g(w)
(provided g(0) = 0 in the Dirichlet case). This property is
not shared by more general boundary problems. For example, if
one wanted to study the parabolic problem

u, = Au - g(u) on [0,®) x Q (6.1)
ou
Fyviie a(x)u on [0,®) x 3Q (6.2)

it would be natural to take

Y

B ={lb € Hz(Q) :'3—\)

= a(x)y on dQ} .

However, if J(¢¥) = -g(¢¥) it is not true that J maps B to
itself. Thus the theorems of sections two and three do not apply.
on a formal level one can still linearize at a solution u to
get the linearized equations

v, = Av - g'(u)v on [0,®) X Q
v _ v n [0,®) X 3Q
av @ © ’

and it is more than likely that decay for the linearization at an
equilibrium implies stability. It seems to me that the appropri-
ate point of view might be consider the differential equation as
defining a flow, on a larger space, in which B 1is invariant.
For nonlinear boundary conditions the larger space may even be a
nonlinear submanifold of a Banach space. These problems are wide

open.

If one tries to extend the results of sections four and five
to higher dimensions gimilar difficulties arise. One wants to work
in a Banach space B with the property that nonlinear maps are
well-behaved on B . 1In §4 and §5 this was achieved by choosing
B to be the dgmain of an appropriate elliptic operator with
B ¢ Hy(R) < C(f2) . A natural generalization is to take B to be
the domain of a power of such an operator. This idea does not
work as well as one might hope. For example, consider the
problem of §4. Let

2

B2=D(A)={w€H4(Q)z—-———-——=O on 30} .
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If J is defined by J(¥) = g(¢¥) we ask whether J maps B2
into itself. If 39Q is not a hyperplane it does not. As an
example suppose Q is the disc, that is, @ = {x €2R2,lx|2 <1}.
Using polar coordinates one finds that ¢ € Hy is in By if and
only if

¢r = wrrr - 2¢gc + wrr =0 when r =1.

For such {¢ we find that for r =1

) " 2
=(Ag(¥)) = -29" (V) ¥
which need not vanish.

For parabolic problems there is another way out. One may
use Sobolev spaces based on Ip - If

- 230 _
B={ye Hz'p(Q)-av =0 on 30} .

Then if p >n/2, B < C(Eﬁ and J maps B to itself nicely.

In this way the results of section 4 may be extended to arbitrary
dimensions. To carry this out one must prove decay of the linearized
equations in Hp,p . This is done as follows. Choose N > 0

so that D(aN) € Hy,p(2) where A is defined as in §4. Then

A+ d4dJ
<Ug>
e ®H, -~ DY
2,p
continucusly by virtue of the smoothing properties of the heat
operator. Then for t > 1 one finds decay in the norm of D(a")

which proves decay in H

2,p °
We next consider the wave equation of §5. With A as in
that section we might try

B =D@%) = {(6,0):6 € Hy (@) N & (@),
veH, (D N ﬁl(m , and, Ao € B (D] .

Here J(¢,Y) = (0,g(¢)-f) 1is a well behaved map of B into it-
self provided g and f satisfy (5.11) and n £ 7 . (One needs
Hy () C c{®)) . 1In this way the results of §5 may be extended to
dimensions n < 7 . Unfortunately it is not true that J maps
D(A3) to itself so one reaches an impasse at n = 8 . For the
wave equation, one cannot use Sobolev spaces based on L, for

p > 2 since according to a theorem of Littman [7], A does not
generate a semigroup on these spaces. Formally, linearization
works in all dimension and I fell that there must be a way to
make it rigorous. This remains an open problem.
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ABSTRACT

In this talk an approximation theory for semi-groups of
linear operators and its application to the numerical analysis
of semi-linear heat equation of blow-up type will be discussed.

In 81, the Trotter-Kato's Theorem will be reformulated,
and the variable time step approximation will be discussed. 1In
§2, our approximate scheme will be described, and the
convergence of approximate solutions to the true solution will
be established. 1In 83 a numerical algorithm for the blow-up
problem will be proposed with a justification.

Main part of this talk is a product of the collaboration
with Dr. Nakagawa in Tokyo. Details of proofs will be reported
in our works [8] and [9].

1. A VARTANT OF TROTTER-KATO'S THEOREM

Let X be a Banach space. The totality of bounded linear
operators is denoted by L(X). In this article a Co-semi—group
T(t) e L(X) (t > 0) is simply called a continuous Semi-group.
An L(X)-valued step function T(t) (t>0) is called a discrete
semi-group with time unit t (t > 0) if there exists an operator

T(t) e L(X) satisfying

P(t) = o()l /] for t > 0

where [ ] denotes the Gaussian bracket. The generator of a

Garnir (ed.), Boundary Value Problems for Linear Evolution Partial Equations. 351-362.
All Rights Reserved. Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland.
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discrete semi-group T(t) is defined by

A=tYr) - 1),

A sequence of Banach spaces {Xp : h > 0} is said to
K-converge (or converge in the sense of Kato) to a Banach space

X (Xp ———’X), in short if there exist approximating operators
Ph e L(X,Xp) satisfying the following conditions (K.1) and (K.2):

(K.1)  sup P x|] < » and 1lir HPbe = %] for any % ¢ %,
h>0 h h+0 ' (n)

(K.2) For any x, € X, can be expressed as x, = Phx
with some x(h> e X satisfying H x(h)lléz NH Xh“ s

where N is independent of h.

Now we fix a sequence of Banach spaces {X, } which
K-converges to a Banach space X. _A sequence {XpyeXp} is said to
K-converge to a point x ¢ X (xp = x, in short) if

. _p _ .
iig { Xy hx“ 0, and sequences {Xk,h E Xh}AsA are said to

K-converge to points x, €X uniformly in A ¢ A if iig” Xk,h-Phxﬂ

= 0 hold wniformly in A € A. A sequence {Ah ¢ L(Xn)} is said to
K-converge to an operator A e L(X) (An —— A, in short) if

ApPpx —— Ax for any x € X, and sequences {A) h € L(Xn)3ach are
said to K-converge to operators A, € L(X) uniformiy Ir" A € 21,

if A),hPhx-ﬁ. AXX uniformly in X € % for any x € ¥.

Let us fix a continuous semi-group T(t) € L(X). And let A
be its generator. Suppose that there is eilther a sequence of
continuous semi-groups T, (t) e L(X_ ) or a sequence of discrete
semi-groups T, (t) € L(Xh) with tim€ unit tn. Let be the
generator of Semi-group T (t). When the discrete semi-groups
are considered, it is always assumed that %;% 8 = 0.

Consider the following three conditions:

(a) (Consistency). _For some complex number A, the{e
exist (A - A )71 e L(X,) (8 >0) and (A - A)7"e L(X)
satisfying

1K

(- ) 0o

(B) (Boundedness) For some T < =,
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sup ||Th(t)H < o
h, 0<t<T
(c) (Convergence). For any T < o

Th(t)—5+ T(t) uniformly in t ¢ [0,T].

Then we have the following result.
Theorem 1.1. (A-B-C Theorem). The conditions (A) and (B)
hold if and only if the condition (C) holds.

In case X, = X and P = I, Theorem 1.1 is a corollary of
Trotter-Kato's theory of approximation of semi-groups (Cf.
Trotter [10], Chapter IX of Kato[7]). The notion of
K-convergence is suggested in [7T]. One can easily obtain the
proof of Theorem 1 if he modifies Kato's treatment in [7]
appropriately. See also the author's work [13].

For the convenience of our purpose, we discuss here a
variable step approximation of semi-groups in a restricted
situation. Let the operator A generate a continuous semi-group
et™ in the space X. Assume that there is a sequence of
bounded operators A e L(Xh) satisfying the following conditions:

(1.1) For any T < =

A
othy K

uniformiy in t e [0,T].
(1.2) TFor any h there is a positive number T, such that
|1+ TAh||;=1 for any T < Ty.

This condition implies
(1.3) I etAh||§=l for any h and t.
An infinite sequence € of positive numbers:
L= (TO’ Tl, T2:"' )

is said to be a time mesh vector. Fix T > 0. For any h > 0

choose a time mesh vector th satisfying that
Gyl e s

and that

(1.5) ol = By > T
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Let us define a family of evolution operators {U (t,s):
0 <s <t <T} as follows

tig = =, tg = 0, ty41 =, + T, (j > 0)
n J J

i > >s>
kJ+l(l+TA ) if toan b2t tj+l=s tj,

1 if e, >tz2s >t

Uh(t,s)=

Let Ap = {(t,s): 0 £ s <t <T}.
Theorem 1.2. Under the above assumptions,
Upn(t,s) K-converges to e(t-s)A yniformly in (t,s) by if
|| €8 || o — 0 as h — 0.
Remark 1.1. Let {oy: h > 0} be a sequence of positive

numbers such that 1lim o = 0, and that o, < 7.. Consider a
h h=""h
h~»0
family p = {th: h > 0} of time mesh vectors T, satisfying (1.5)
and
@ e N,

We regard this family u as an index, and denote by M the
totality of these indices. Then for each v € M, Theorem 1.2
holds. It is, however, to be noted that the convergence is
uniform with respect to the index p € M.

2. THE LUMPED MASS APPROXIMATION OF THE SEMI-LINEAR
HEAT EQUATION

We consider the following problem.

%%-— M+ flu), x e, t >0,
(E) { u(t,x) =0, xel,t >0,
w(0,x) = alx), x e Q,

where the set Q is a bounded open set in R with the smooth
boundary T'. The function f(u) is assumed to be Lipshitz
continuous in the variable u, and a(x) to be continuous on 9
vanishing at T.

First we impose the following assumptions on the problem
(E).

Assumption 1. For some fixed T < «, there exists one and
only one solution u(t,x) of (E) such that

(1) ult,x) e c([o,T] x @),
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(2)  ul(t,x) is continuously differentiable in t and twice
continuously differentiable in x for

(t,x) € (0,T) x Q.

Assumption 2. There is a sequence, {®, : h > 0}, of
polyhedral domains contained in  such that

i <
(9.1) thD Qh2 if hl =h2,

(9.2) max dist(x,T) = 0 as h » 0 where Fh is the
X € Fh
boundary of Qh.

We consider the lumped mass approximation of (E) in the
following manner.

A family'@%_of finite numbers of closed nondegenerate
n-simplices is said to be a triangulfﬁion of the bounded
polyhedral domain @} if the closure {4, is expressed as

(r.1) @ = \J T
T €
such that the interior of any simplex of(ﬂn is disjoint with that
of another simplex ofCDq, and such that any one of faces of a
simplex is either a face of another simplex dféﬁh, or else is a
portion of the boundary of Qh.

Now let us define the notion of the lumped mass region
B = Bp corresponding to the nodal point b with respect to the
triangulation@ﬂp Here we say that a point which is a vertex for
some T EQEh is a nodal point. Let bg = b, bl,--:-- , bn be the
vertices of some n-simplex T of (Dy. Let A{ be the barycentric
coordinate corresponding to the vertex bi (0 < i <n). Then
the barycentric subdivision Byp of the simplex T corresponding
to the point b is defined as follows:

Ag(x)
BbT = {x: 1 izxargj—:—XETET >1/2

for any i = 1, 2,°****, n}.

The lumped mass region Bp is the union of the subdivisions Bpg
of simplices T having the point b as its vertex:

Bb = LJ% is a vertex of T BbT'

The linear shape function corresponding to the nodal point b is
denoted by wp(x), which coincides with Ag(x) if x is a point of a
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simplex T having the vertex b as by, and equals zero otherwise.
The characteristic function of the region By is denoted by wph(x).
Let us count the interior, and boundary, nodal points of {h as
b1, bo,**+, by, and bN+1, bN+2, -*°, by+M, respectively. And we
write

. T Wp. and ; =;T-b.-

J J J J
Following to Ciarlet-Raviart [1], the triangulation @21 is said
to be nonnegative if and only if it holds

(T.2) (Vﬁi, Vﬁj) 20 for i%¥j, 1 £1 <N, 1 £ j < N+M.

fia
[

For any simplex T, its diameter and the maximum of the
diameters of the inscribed spheres of T, are denoted by h(T"
and p{T) respectively.

Assumption 3. For any h > O, there is a nonnegative
triangulation.EE of {§, such that

(T.3) max h(T) <h,
T <@n
and that

pET) =y > 0.

{(T.%)  inf min

h Te @%

Now we introduce the space Gh and V£ as an approximation of
the space V = H%(Q). Namely we have
N _ N
= {4 Z o w 1, v = {1 a,w, }
Yo T j Yo T J_1 %"
where the scalers aJ(¥ < i £ N) take arbitrary values. An

element of the space Vh or Vp is considered to be defined on
the whole © taking zero in the complement of its support.
Linear mappings Jp from Vy onto Vp and Ky from Vn onto Vh are
defined as follows,

N N
JG =J (% o@w.)= ¥ aow, =1u,
A b e
_ N N
u =K(Z aw,)= % o@.=14.
% = % P B R b B

Hereafter correspondence 44— up will be frequently used. The
orthogonal projections from Lo(f) to Vp, and to ¥y, are denoted
by Ph= and Ph, respectively. Let X be the space of resal valued
continuous functions on @ vanishing at T:

X =0ColQ) = {uec(@: ulx) =0 for x ¢ T}.
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/\, ~
The interpolation operator Py from X onto Vi is defined as

N
(%hu)(x) = I u(b,)ﬁj(x) for u ¢ X,
Jj=1
and Jhﬁh is denoted by Py.

The function f naturally mapps the space Vh into itself.
N

Namely we have for up = I o W,
3=1 JdJd

€ Vh'

=

f(a,)= ¢ fla,)w, €V_.
Yn 5=1 J h
Now we introduce the negative definite self-adjoint operator Ay
in Vy defined by the formula
(Ah¢h, Wh) = _(v¢h, V¢h)

12(9y,) L2(

Qh)

for any ¢h, wh € Vh'
Let
- 2
] l[ Wi” Lz(ﬂ)
T, = min T .
h 1;;§N|lvwll 12(2)
Now we fix an index set M mentioned in Remark 1.1. TFor any

index u = {&y: h > 0}, we have the following explicit
approximation of (E).

Find the Vp-valued function up(t) such that

up(t) = up(te), tk <t < tgel = by + Tk,

(E{ ) uh(tk+l)r_ uh(tk) - Ahuh(tk) + f(uh(tk))a
h k

uh(O) =a = Pha.

Theorem 2.1. Let uh(t,x) be the solution of (Emh). Then

lim max | uh(t,x) - u(t,x)| = o.
h+0 0ztsT,x € Qy

This convergence is uniform with respect to u £ M.

Remark 2.1. Consider the set Cp(Q), and ¥y, as a Banach
space X, and Xp, respectively, with the maximum norm. Then
the sequence of spaces {Xh: h > 0} K-converges to the space X
with the approximating operators Pn. Let {Tt: t > 0} be the
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continuous semi-group in X = CO(Q) corresponding to the heat
equation with the Dirichlet boundary condition. The generator
A has the bounded inverse A 1 e L(X). With the aid_of the
result of Ciarlet-Raviart [1], we have Ay~ £ a7l on the
other hand Fujii [2] established that if T < 1 then

+ < 1. tAh <1l. B
|| (1 TAh)” (%) < 1. This implies || e IIL(Xh) < v

A

Theorem 1.1, we have cthn K, b uniformly in t ¢ [0,T].
Hence the conditions (1.1) and (1.2) hold.

3. A NUMERICAL ALGORITHM FOR THE BLOW-UP PROBLEM

In the problem (E), we further assume that f is a positive
convex function satisfying that for some positive y and C

y
(3.1) f(u) z_Cul+ as u > .

The initial data a(x) is continuous on @ vanishing at T, the
totality of such functions is denoted by Co(Q). By Keplan's
classical argument [6], the solution u{t,x) tends to infinity

at a finite time T for some a(x). This fact is called the
blowing-up of solution, and the time T is called the blowing-up
time or the finite escape time. Fujita studied extensively this
problem in [3], [L] and so forth. There are also some works
based on different criteria by other authors, for example,
Tsutsumi [11], [12], Ito [5], among others.

Now we provide a numerical method of (E) by making use of
the finite element approximation of lumped mass type, based on
Kaplan'Fujita's criterion.

3.1 Kaplan-Fujita's criterion
Let A denote the smallest eigenvalue of -A with the

Dirichlet boundary condition, and let ¢(x) denote the eigen-
function associated with A, ¢{(x) being normalized as

{ ¢(x) >0, x e Q,
fQ¢(x)dx = 1.
Denote by J(t) the inner product of u(t,x) and ¢(x), i.e.,

J(t) = (ult,x),¢(x)) = f (t,x)o(x)dx
L2(0)

Definition 3.1. The classical solution u(t,x) of (E)
J-blows up at t = T if and only if
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(Q)) satisfies (E),

{ u(t,x) € C([O,T),CO

lim J(t) = o,
AT

Let J:L be the largest positive root of the equation of
-\ + £(J) = o.

If the equation has no positive roots, then let Jl = o.
Proposition 3.1. The solution u(t,x) J-blows up at a
finite time T if and only if there exists a ty 2 0 such that

1

u(t,x) € C([O,to], Co(ﬁd) satisfies (E),
{J(to) > J7.

Corollary 3.2. The blowing-up time T is bounded from
above as

© aJ
ret w8
= “AJ+f(J
0 J(to) (7)

3.2 An algorithm for controlling time steps

Proposition 3.3. If (V&i,V4;) <0 fori #j,
L2(9y)
1 <ig<N,1<J <N+tM, then it holds that the smallest
eigenvalue Xh of -Ap 1s simple, and that there is the associated
eigenfunction ¢p(x) normalized as ¢p(x) > 0(x € Qy)and
¢h(x)dx = 1.
iy

Define Jy(t), the discrete analogue to J(t), by

J (t) = (u (t,x), ¢ (x)) .

1
Let Jh denote the largest positive root of the equation of
-2 J + £(J) = 0.

h

If the equation has no positive roots, then let Jhl = 0.

Define Th by the formula
_ . - 2 ~
T, = min Il wi” /1l Vwi

2
. 1.
1 i

A
A
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Choose a fixed value of t which is not greater than 1. Then
our algorithm for controlling the time step Tp is given by

TO =T, and
T if Jh(t l) < J_l,
(3.2) . ne 1
Tn - Jh(tn>"Jh(tn—l)
min {1, } otherwise
-2 J (t )+f(J *
EACREIENCI)
fornmn=1, 2, 3,*"".
Definition 3.2. The solution up(t,x) of (E) where T is

the time mesh vector obtained by the algorithm described
above, Jp-blows up at t = Tp if and only if

Th= of’fn< © ,
n=o

Corollary 3.4. If the solution uh(t,x) J, -blovs up at
finite t = Ty, then

lim Jh(t) = w,
Ty

Proposition 3.5. The solution uh(t,x) Jp-blows up at a
finite time Tp if and only if there is a tp 2 0 such that

1
n

Jh(tn) > J

Corollary 3.6. The blowing-up time Ty is bounded from
above as

© aJ .

+ ———e

tr Tty * apd + £(J)
J (v )
h' n

Th <

3.3 Convergence of the blowing up time
Theorem 3.1. Assume the following two conditions:

(i) Ay ™A and by > ¢ in LQ(Q) as h » O.
(ii) Let the solution u of (E) J-blow up at a finite time
T. For any T' < T and for any sufficiently small h,
there is a solution up(t) of (Ehth) for 0 <t £ T
satisfying max | uh(t) - ul(t)]] -~ 0 as h > 0.
0b<T! 12()
Here T) is the time mesh vector obtained by (3.2).
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Then it holds that
Th -+ T as h + 0

provided that IlTh” w >0 as h > 0.

Remark 3.1. Because of Theorem 1.1 and Corollary 3.k,
the condition (ii) of Theorem 3.1 follows from the fact that
for any fixed T' < T one can choose hg in such a way that up(t)
never blows-up within the interval [0,T'] if h X hp. This fact
is also implied by Theorem 1.1. In fact, let hp be such that

max  max Iuﬁ‘(t,x) -ult,x)] <1
0<t<T' xeQ

for any ueM and h < hg in the situation of Theorem 1.1. This
implies that there is a finite number N satisfying

(3.3) sup | u* )] =N < o,
0<t<T', weM,h<hg 12(%)

Assume that there is a solution up(t) Jy~blowing up at
t = Th < T'., Then there is a mesh point tn such that
Il up(tn) |l > W since || ¢hllilu¥(t)|| 2> Ju(t) + ». This
contradlcts the condition (3.3), since there is a yu containing
the time mesh vector in the form

Ty = (Tgs 17t T T
where T3 0 £ j £ n-1, are the mesh lengths determined by our
algorithm.

It is seemingly well known that the condition (i) of
Theorem 3.1 holds under the Assumptions 2 and 3 in §2.
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PROPAGATION OF SINGULARITIES FOR HYPERBOLIC MIXED PROBLEMS

S. Wakabayashi

Depertment of Mathematics, University of Tsukuba,
Ibaraki, Japan

1. INTRODUCTION

Duff [4] studied the location and structures of singularities of
fundamental solutions for hyperbolic mixed problems with constant
coefficients in a quarter-space making use of the method of sta-
tionary phase. Deakin [3] treated first order hyperbolic systems
by the same method. However, it seems that it is difficult to apply
the method to the study of fundamental solutions for more general
hyperbolic mixed problems. Matsumura [7] gave an inner estimate of
the location of singularities of fundamental solutions which cor-
respond to main reflected waves, making use of the localization
method developed by Atiyah, Bott and Garding [1] and Hormander [5].
A localization theorem describing the location of singularities of
fundamental solutions which correspond to lateral waves was ob-
tained by the author [13] under some restrictive assumptions. In
[14] the author proved a localization theorem describing the loca-
tion of singularities of fundamental solutions which correspond to
main reflected waves, lateral waves and boundary waves. Tsuji [12]
also studied the same problem in the cases where operators are ho-
mogeneous and obtained similar results. On the other hand outer
estimates of the location of singularities of fundamental solutions

were given in [15] by the same method as in [1] which treated the
Cauchy problems.

Microlocal parametrices for hyperbolic mixed problems with
variable coefficients were constructed in some cases by using the
theory of Fourier integral operators (see [2], [9], [11]). Micro-
local parametrices for the Dirichlet problem for second order op-
erators were constructed at diffractive points by Melrose [9] and
Taylor [11]. But it seems that it is very difficult to construct

Garnir (ed.), Boundary Value Problems for Linear Evolution Partial Equations. 363-384.
All Rights Reserved. Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland.
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microlocal parametrices at glancing points which are not diffrac-
tive. On the other hand there is a question of constructing micro-
local parametrices when Lopatinski’s determinant has real zeros.
Although there are no difficulties in so doing, we can investigate
reflection of singularities corresponding to boundary waves by the
construction of microlocal parametrices (see [16]).

We summarize now the contents of this note. In §2 we shall
give inner and outer estimates of wave front sets of fundamental
gsolutions for hyperbolic mixed problems with constant coefficients
in a quarter-space (see [1L], [15]). Lateral waves arise from the
presence of branch points in reflection coefficients and boundary
waves are caused by real gzeros of Lopatinski’s determinant. The
results obtained in 82 will show that the above characterizations
of lateral waves and boundary waves are valid. In §3 we shall in-
troduce the results for hyperbolic mixed problems in plane-strat-
ified media which were obtained by Matsumura [8]. In 54 we shall
construct microlocal parametrices for hyperbolic mixed problems
at non-glancing points in the case where Lopatinski’s determinants
have real zeros.

2. WAVE FRONT SETS OF FUNDAMENTAL SOLUTIONS

Let R" denote the n-dimensional euclidean space and write X'=(Xl,

ceex ), x"=(x2,-",xn) for the coordinate x=(xl,---,xn) in B"

and g?=%zl,--s,gn_ ) E'=(Ey,0000E ), E=(&, £,41) for the dual coor-
dinate g=(gl,---,g ). We shall also denote by R the half-space
ix=(x',xn)eRn; xn>0} and use the symbol D=1 (a/ax ,B/BXn).

Let P=P(£) be a hyperbolic polynomial of order m of n variables £
with respect to 6=(1,0,+++,0) in R in the sense of G&rding, i.e.,
P (6)#0 and P(&+s6)#0 when £ is real and Im s<-yo, where PO denotes

the principal part of P. Moreover we assume that P (O see.0,1)#0.
In this section we consider the mixed initial-boundary value prob-
lem for the hyperbolic operator P(D) in a quarter-space

P(D)ulx) = f(x), xeRf, x>0,
(Dgu)(o,x") =0, xn>0, O<ksm~1,
Bj(D)u(x)[xn=o =0, x>0, 1sjst.

Here the Bj(D) are partial differential operators with constant

coefficients and the number 2 of boundary conditions is equal to
that of the roots with positive imaginary part of the equation
P(g'-iy6',1)=0 with respect to A, where Y>Yq-
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Let us denote by I=T'(P,8) ©R™) the component of the set {Ee
&, p°(£)#0} which contains 6 and put r0={g'sRn'l; (£',0)el'}. When
E'eRn_l-iyoe'—iFO, we can denote the roots of P(£',A)=0 with re-
spect to A by xz(g'),---,x;(g'),x’(g'),---,x;_z(a'), which are

enumerated so that
Tm x;(g') >0, 1<k<f,
Im Ai(s') < 0, 1lsks<m-2.
Put

L + n-1
1 = - ' (] -1 L]
P(g',2) = I, O-as(g")), E'eR -y 0'-il,.

We now define Lopatinski’s determinant for the system {P,Bj} by

L -1 -1 k-1
R(z') = det ((2mi) § P+(C) Bj(C)Cn dcn)j,k=l,"',2’

1 n'l_- 1_s
z'eR 1Y06 1PO.

We assume throughout this section that

\’1 \)q
(a.1) P(¢) = p,(€) "'pq(E) ,
where the pj(g) are distinet strictly hyperbolic polynomials with

respect to 6,
(A.2) the system.{P,Bj} is &-well posed, i.e.,

RO(-16') # 0,

R(£'+s6') # 0 for £'¢R° " and Inm 5<=1, 5
where RO(E') denotes the principal part of R(E'), i.e.,

R(tg') = thORO(E') + 0(t™0) a5 tom (2.1)
(see Sakamoto [10]).

Now we can construct the fundamental solution G(x,y) for {P,
Bj} which describes the propagation of waves produced by unit im-

pulse given at position y=(0,y") in RE (see [10], [12]). Write

G(Xay) = E(X'y) - F(X,y)a XERI_:_a x., >0, y=(0ay")€Ril_s

1

where E(x) is the fundamental solution for the Cauchy problem rep-
resented by

B(x) = (2m) " fn_; explix-clP(z) g, neyooT.
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Then the reflected Riemann function P(x,y) is written in the form

= -n-1 ~1.2 : [ I S
F(x,y) = (2m) fRn+1_iﬁ - expli{(x'-y") t'-y T

g VIR(EDR, (2e 0 )P(0) TR, (2B, (D8] 1aE,

ney16+r, n'eYle'+FO, n 0,

n+l=

where

Rjk(;') = (k,j)-cofactor of ((Qﬂi)_1§ P+(§)_1Bj(c)ci_ldcn).

F(x,y) has to be interpreted in the sense of distribution with re-
spect to (x,y) in RiXRi. We put
F(x',y .x ) = P(x,0,5.)

and regard ﬁ(x',yn,xn) as a distribution on X=Rn-1xR1xRi,

2.1 Localization theorem
Put
T = {E'eRn_l; (E',En)eF for some EneRl}.

Then R(E') is holomorphic in Rn_l—iyoe'-if. Let us denote by I=

T(R,8") G:Rn_%) the component of the set {£'el; RO(-iE')#O} which
containg 6'., I is an open convex cone and we have

1

R(£') # 0 for E'eR —iyle'—ii.

0, . . . . n-1 .
Let £7' be arbitrarily fixed in R \{0} and let {Jk}lﬁksrl be the
gset of suffixes so that pgk(io',u)=0 has a real multiple root u, .
We define fgol by

. 1 I'l ¥
T XR™ = T'(p. 8).
g0 r\k=l (ka(go',uk)’ )
Here p g is the localization of p at EO defined by
-1.0 h h
p(v E4m) = v Pgo(”) +o(v") as vO.

Let p(£) be a strictly hyperbolic polynomial with respect to
0 and assume that p°(0,1)#0, p(£)#0 for EeRn-iYOG-iF. Put

t If r =0, then we put r 0 =Rn-l.
1 g t
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[
p(g'S)‘;\)) = po(g',}\)+\)pl(g',}\)+--.+\,m pm
m' -1 -1
(= v p(\) gr,v A)),

where deg p=m'. We can assume without loss of generality that A=0
is an 2'-ple root of po(go',u)=0. Let A(£';v) be a root of p(&',A;
v) such that A(EO',O)=0. Then we have the following

Lemma 2.1. (Lemma 2.5 in [14]) For any compact set K in gL

-iyoe'—iF and any positive integer N there exists €>0 such that
s/ '

cj(n')\)J/Q' + O(_\)(N"‘l)/l )

0
AME T+un' V) = Zj=l

if n'eK and ]vl<e. If 2'=1, the cj(n') are polynomials of n', and

if 2'>1, the cj(n') are equal to I (polynomials of n')x

finite sum
-n,
cl(n') Jk, where the n are integers. In particular,

)1/2'

Jk
cl(n|) = const. p(go,,o)(ny
Lerma 2.2, (Lemma 2.6 in [1L]) For any compact set K in gt
-iyoﬁ'—if and any non-negative integer N there exists £>0 such that
if n'eK and O<v<e,

-1,0 /L . O(\)(I\T+l-)/L),

lR(v g 14n') = Q.(n" v (2.2)

JOJ
where Q (n')#0, L is a positive integer and hl is a rational num-
ber. Mbreover the Q (n') are holomorphic in Rn-l—lyoe'-ngo, and

Qo(n } is equal to the localization REO'(n ) of R(E') at &0,

Let Qo(n ) be the principal part of Q (n' ) We denote by I g,
=P(Q ,0') the component of the set {n' eTgol, Q (-1n )#0} which

contalns o'.

Lemma 2.3. (Lemma 2.5 in [15]) igol is an open convex cone

and
' vepit=l_s 1_s3
Qo(n ) # 0 for n'eR -1y, 0 lZEQ"
Qg(n') #0 for n'eR*I_if 0. -
E 1
0 1
Let £n+ be arbitrarily fixed in R~ and let {s }lsks rg be the
0 0
. ' = 1 .
set of suffixes so that psk(i ’En+1) 0 and apsk/agl(g ’€n+1)

Bpgk/au(io',u)|u=gg+l>0. This implies that £g+1 is a real simple
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root of pgk(E 'ou)=0 Whlch corresponds to a root with positive
imaginary part of P(s) (E '=iv0',u)=0, y>0. Define

n+1

= nkgl {Eer 5 (27, €41 €T (Pg k(g0 ,60,, ),9)}

F
(£9,e041)
Let £ be arbitrarily fixed in R° *1\{0} ana put

= (n(p o 0»R )T

(] 2
(X _o,*xR7).

g EO"EICI)'F]_)n EOv
Here we put, if E '=0,

I o, =T,

+
& B o +17£
n+l.

(SO',En+1) {EeR™ 3 (E',€n+l)eF(P,9)} otherwise.

Theorem 2.4. (Theorem 1.1 in [14]) Assume that the conditions

(A.1) ana (A 2) are satisfied and that EO n+1. Then we have
N/L
t / {t exp[ 1t(x"£ ey En N n+1)]F( AT )
- 1§0 £0 5 x 2V 0%, )t J/L}——>O as tro, in ' (X), N=0,1,---.

Moreover we have

o 0
U =g SUPP FE .( x',y, % XU - n,En+1)}
. o)
- WF(F(X',yn,xn)) for &£ #0,
and
chlV,_, supp Féo,j(x',yn,xn)] < KEO, (2.3)
where

KEO = {(x LY %, JeX; x'en' -y N 20 for all nsféo}

n n n+l
and the closure in (2.3) is taken in X.
Proof. From Lemmas 2.1-2.3 and Seidenberg’s lemma it follows

that for any non-negative integer N there exist positive constant
a and ¢ such that

N/L,, Poot , , 0 -1
AL (R(tE ' )P (6240?20 g1 e JE(EE 1))
4 j‘l N = ‘j/L
xR, (680 )B (68%n) (622, +n_, 1970 - o) 520 Fgo 5 ()77
n+1l

tIf rg=0, then T(€O|’£g+1)=R



PROPAGATION OF SINGULARITIES FOR HYPERBOLIC MIXED PROBLEMS 369
-1/L ~14C
< at / (1+]n])

~ -+ -~ ~ +
when ReR- 1 i and t21, where s is large enough and 8=(06,0)eR" l

Here Féo (n) are equal to I (polynomlal of n)XQ (n' )

(n)nh/lk

0 flnlte sum
-n -n
Put

k 1 Px(e0r,uy

5 , - -n-1 =1 CE et
F O,j(x ,Yn,Xn) (2m) fRn+l—iSé i Texpli{x'-z Intn

+chn+l}]Féo,j(C)d§'
“Then we have for ¢€C§(X)

<exp[—it{x'-£o'-y £O+x EO }]ﬁ(x',y X ), o(x',y ,xn):>

=1 pO{Z <FEO J(x AP ). (x! SV 0%, ))t -3/u

+ O(t—(N+l)/L)}

Q.E.D.

2.2 Analytic wave front sets

Lemma 2.5. (Lemma 3.2 in [15]) Let EO' n—l\{O} and let M be

a compact set in F 0,+ Then there exist a conic neighborhood A

1
(CRn—l) of EO' and positive numbers C, to such that P+(c',k) is
holomorphic in (c',k)eAXCl, where
A= {g'=g'-it|E" [n'-1y 0" eR 4R £ren,,

|£1|2C, n'eM and 0<t<t ).

Therefore R(z') and Rjk(c’) are also holomorphic in A.

Lemma 2.6, (Lemma 3.4 in [15]) Let K be a compact set in gt
-ifgo'. For any non-negative integer N there exist positive numbers
vo and ro such that

s h
1R(v rE 4rn') = ¢ 12 Q (rn') (vr~ )J/L + 0(r Ov(N+l)/L)
if rOn'eRn_l-iyOG'—ifEO', an'eX for some aeC (Ial:l), 0<vSvo and
ra2r,, where h, and h, were defined by (2.1) and (2.2), respectively,

and L is a positive integer.

Define the principal parts Q? of Qj and rational numbers qj
by
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Qj(rn') = rqj{Qg(n') + r-lQﬁ(n') +eee}, Q?(n') z 0.

Moreover it is easy to see that ijh1

pysho. Put

+qj—j/L is an integer and that

D = max P, o= m1nP=pj j. (2.4)

Lemma 2.7. {Lemma 3.6 in [15]) There exists the localization

Rgo'(n') of RO(£') at °' and
» o ] = O \]
REO'<n ) = Qa(n ).

Moreover RO

gO
Let ZEO (= F(R 04> ,0')) be the component of the set {n'efgo';

(n') is holomorphic in Rn_l—ifao'.

RZO'(—IU }#0} which contains 0'. Here we define izo'=i if EO'=0.

We can also prove that ZOO' is an open convex cone and that ROO'(
n')#£0 for n'eR l-lig 0,-

Lemms 2.8. (Lemma 3.7 in [15]) For any compact set M in ioo'
there exist a conic neighborhood Al «ZRn_l) of EO' and positive

numbers C, to such that

R(g'-itlg']n'-iyle') #0 if n'eM, £'ed , |£'|=C ana 0<tst .

From the above lemmas we have the following

Theorem 2.9. (Theorem 4.2 in [15]) Under the conditions (A.1)
and (A.2) we have

(wr(F) C) W, (FCx' 5y, %)) C Ve pnal 03 K~><{(£ =€ 58 ) )

where
0 1 ~ +0 2
2o = (T(P,q,8)xR") AT 520,%R7),
£0 (r( £0 )XR7) A (£9,£9, ){\( £01 )
~0 ', ~ _0
Kgo = {(x SV, 0%, JeX; x'on'-y nn x N ,,20 for all nergo}.

0.0 .0, ~0
Proof. Let us assume that (x PR APE S SR ’£n+1)éKEO' Then

from Lemmas 2.5 and 2.8 there exist an open conic neighborhood Al
n+1 0 0.0 ~ 0 . 0
(€cR "\{0}) of (& "—gn’gn+l)’ neréo, a neighborhood U of (x ',yg,

xg), positive numbers §, C, to and a rational number a such that

x''n' —yn_ +xn < 0 when (x',yn,xn)gU, (2.5)

nn n n+l
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|R(€'-i(t!§]n'+y29'))P+(€'—i(t|§|n'+y26'),Sn+1—it|§|nn+l)
xP(e'-i(tIEIn'+v26'),-£ -itléln )| = 8]E|2 (2.6)

when EeAl, |E]=c, Oststo, where y,=y,+1. Let A (CCA ) be conic

neighborhood of (E ,—£ ’En+l) Let {¢ (x' oV, 0%, )} be a bounded
sequence in C (U) such that ¢N‘l on a fixed neighborhood of (xo',
0 O
) and
In>*n

IDa¢N! < C(CN)lal for |o|<N,
~ ._]_
where D=i (a/axl, ,a/axn_l,a/ayn,s/axn). Let V., 0stst,, be the

chain z=(£'-1(ty(E) [E[n'+v,0") 6 +itw(E) [E|n £ -1t0(E) [E]n )

|Z|2c, where w(&)eC (Rn+l\{0}) is positively homogeneous of degree
zero and P(&)=1 on A, supp heh, , 0sy(Z)<1. From (2.5),(2.6) and

Stokes’ formula we have

FlaF1(E) = fRn+1 i g (EETES L (RGP (e )7
xP(z',-z )" R (2B (2 -t ) Tat = I R T
where vy is a compact chain. It is obvious that
[Ill < C(CN)N(1+|§[)‘N when EeA.
Since |z-E|28(|Z|+|E]) for Eea ana EthO, we have
|121 < C(CN)N(1+|2|)'1\I+b for Eeh,

where b is a constant >n+l and N>b. Q.E.D.

2.3 Some remarks

£
Lemma 2.10. (Lemma 3.8 in [15]) igo'c:i o, and, therefore,
-0 _ = g
KigDK-q-
§02%;0 |
Lemma 2.11. (Theorem L.1 in [1Lk]) Assume that each pO(EO',u)

Let us consider K“O and Kgo.

=0 has no real multiple roots. Then the locallzatlon Q (n') of R(
£') at S ''is a hyperbollc polynomlal Moreover Qg (n ) is equal to

the localization of R (S ) at E ', i.e. a defined by (2.4) is equal
to zero, if at least one of the following conditions is satisfied:
(i) The system {P(—D),Bj(—D)} satisfies the Lopatinski condition.
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(11) £21e08,
Lemma 2.12. Let K be a compact set in Rn-l—ifgo‘. Then there

exists a positive number vK such that for 0<vSuK and n'eK
-h +h,-a/L 20

1T R0(0raunt) = Q) + o(vH /P,

From Lemms 2.12 we have the following

Lemma 2.13. Let M be a compact set in izo'. Then there exist

a neighborhood U of EO' and positive number t, such that RO(E') is
holomorphic in U-iD and Ro(g')¢0 for £'elU-iD, where D={tn'; n'eﬁ,
o<t$t0}.

Using Lemmas 2.12 and 2.13 we can prove the inner semi-conti-
g, and, therefore, Tg.

Theorem 2.1L. Let M be a compact set in igo'.
ists a neighborhood U of EO' such that

nuity of z

Then there ex-

MC ZE' for £'el.
Theorem 2.15. Uz

X{(E R E ,E )} is closed in
T*X\0, n+l

EeRn+1\{O}

In the following example Z,., does not have the property of

E'

- .

zﬁg:gdseml continuity and UE r+1\(0} K x{(g", En’£n+l)} is not
Example 2.16. Put n=l and

P(E) = (Eo-E5-t5-Ei+al, ) (E5-20), a0,

B (E) = 1, By(E) = (-£,-1£)E) - i.

Then we have R(E')=ig ++V52 52 €2+aE It is obv1ous that {P, B
B, } satisfies the condltlons (A 1) and (A.2). Put & —(o 0,-1,0, o)
and SJ—(l/J,l/J,-l 1/3,1/3), j=1,2,**+. Then it is easily seen that

_ L
P(Pgo,e) = {neR’; n;-n,>0 and n_+n)>0},

~ _ > 5-
T(gor,g9) = tneR7s nying>03,

3
ZEO' =R N

(P, s,8) = {neRh; ”1'“h>0}’

gJ?
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- _ 5.
r(gj',‘i%) = {neR%; ny4ng>00,

. _ 3.
Zgj' = {neRr”; - n2>0}

Thus (3,-1,0,1 1)¢K~0 and (3,—1,0,1,1)ef{§j. This implies that
\jgeRS\{O} Rex{(g" —Eh,is)} is not closed. Using the following lem-

mas and Lemma 8.3 in [1] after some calculations we can show that

" © ~

Kg =\Jj=0 supp FE j(x',yh,xh).

Lemma 2.17. Let f (35=1,2) be non-negative measures and assume
that supp f =C . where CJ is a closed cone included by the set {x
eRn, x°6>O}U{0} Then f_ %f, is well-defined and a non-negative

172
measure. Moreover supp (f 2) C,+C,

Lemma 2.18. et fl be non-negative measure and assume that
af2 is non-negative measure when aecg(Rn) and a(0)=0 and that supp
f,=C,, j=1 2, are closed cones included by the set {xeRn; x+0>0}

V{0}. If x éC and x eC +C, then xossupp (fl*f2).

e
As for Example 2.16 we can show that
&JEsRS\{O}\J'= supp Fé,jx{(g"_gh’EE)}

UEER5\{O}
CUEeR5\{O} (g 'Eu’g )}

Kax{ (' 2=8),»85)} & WF(F) C W, (F)

and that
ch[WF(F)IEO] = ch[wF (F)lgo] = KEO for £740.

Moreover Lemma 2.11 implies that {P(—D),Bl(—D),BZ(—D)} does not

satisfy the Lopatinski condition, which is easily verified. So this
example shows that the £-well posedness of {P(D), B (D)} does not
always imply that of {P(-D) BJ(-D)}

3. HYPERBOLIC MIXED PROBLEMS IN PLANE-STRATIFIED MEDIA

In this section we shall introduce the results obtained by
Matsumura [8]. Let Pj(S) be hyperbolic polynomial of order mj with

g(o,--~,0,1)#0. Now we con-
sider the hyperbolic mixed problem in plane-stratified media

respect to 6, j=1,2. We assume that P



374 S. WAKABAYASHI

Pl(D)u(x) = £(x), x,>0, 0<x <h, (3.1)
P, (Dyulx) = £(x), x>0, x >h, (3.2)
Di Yu(0,x") = glj(x"), O<x_<h, 1sjsm, (3.3)
Di_lu(o,x") = ggj(x"), x >h, lsjsm,,

D)u(x)lXn=0 = koj(x'), x>0, 1<Jsty, (3.4)
Bj(D)u(X)|Xn=h-O = Cj<D)u<x)|Xn=h+o +k.(x'), (2.5)

x,>0, lSJSm-zl+22

Here Qj(D), Bj(D) and Cj(D) are partial differential operators with
constant coefficients and lj is equal to the number of the roots
with positive imaginary part of the Pj(a'-iye',x)=0 with respect

to A, where Y>YO and YO is sufficiently large.

Put T =F(P ,8) and r ={5' Rn'l- (g o)erJ} When g'sRn'l-

1Y09'-1F 0 we can denote the roots of P (£',1)=0 with respect to

A by A (E Y, A (E ), A_ ("), o0, (') in the same way
J1 Jmy=ty

as in §2 Put

L, (z) = ((2n3)7$ B, (£)” Q () taz )

n' k=1, 00,0

[

(e = ((en))™$ P, _(£)” Bj(c)dcn,
(oni) N Pl_(;)'lBj(c)zg'zl'ldcn,
(en1) 7§ P2+(c)'10.(c)d?; :

-1 Lo0-1
J(2ri)™$ p, (2)7 c ()0 = 78 ) sun e megg by

RO(C') = det Ll(c')-det LQ(; ).

We note that det Ll(E') is Lopatinski’s determinant for the system
{Pl,Qj}’and that det L (g') is Lopatinski’s determinant for trans—
mission problem.{Pl PE’BJ ,C. 1.

Theorem 3.1. In order that the problem (3.1)-{3.5) is &E-well
posed, it 1s necessary and sufficient that

O 1]
Ro(e ) # 0, (3.6)

RO(E'—ise') # 0 for any E'eRn—l, s>y - (3.7)
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Here Rg(E') is the principal part of RO(E').

The necessity of Theorem 3.1 can be proved by the same argu-
ment as in [10]. The sufficiency of the theorem will follow from
the explicit expressions of the fundamental solution and the
Poisson kernels. In this note we shall construct and study only
the fundamental solution which describes the propagation of waves
produced by unit impulse given at position y=(0,y"), O<yn<h. For

we can construct and study in a similar way the Poisson kernels
and the fundamental solution which describes the propagation of
waves produced by unit impulse given at position y=(0.y"), h<y .

The fundamental solution for the mixed problem (3.1)-(3.5) is de-
fined as the unique distribution solution G(x,y), whose support is
included by {xlzo}, of the mixed problem (3.1)-(3.5) with =0, g 3

=3 "_ =
mljé(x '), 854705 koj
where 0<yn<h and assume that (3.6) and (3.7) hold. Write

=0 and k.=0. Let us consider the case

( ) El(x—y) - Fl(x,y), 0<x,<h,
G(x =
2 Fz(x,y), xn>h,

where

_ -n - 1.
El(x) = (2r) [Rn—in explix C]Pl(z) azg, nEY06+Fl.

Then Fl(x,y) and F2(x,y) satisfy the equations

Pl(DX)Fl(x,y) = 0, 0<x <h,

PQ(DX)Fg(x,y) 0, Xn>h,

Qj(DX)Fl(x,y)lxn=o = Qj(DX)El(x—y)lxn=O, x>0, 1£j<8,
Bj(DX)Fl(x,y)|Xn=h + Cj(Dx)FQ(X’y)IXn=h

> jsm—-2_+%,..
= X 0, 1<jsm 21 22
Taking formally partial Fourier-Laplace transforms with respect to
x' in these equations, we obtain a system of ordinary differential
equations in X with coefficients depending on the parameter z'.
Put

= B,(D, )E, (x-y) |xn

J-1
n

A 2 + -1 -1
- l . .
Fo(etx y) = 2L ozt y)x(2ni) ¢ explix g 1P, (£)77C

m-2 - -1 . -1 _j5-1
1 ' -
5=1 aj(c ,y)x(211) "¢ exp[l(xn h);n]Pl_(c) SO

dcn
+ I

. L
' - 2 '
F(g',x ,y) L2 Bj(c )
-1 _j-1

X(21ri)_135 exp[i(xn—h)cn]P2+(C) zdg
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+
and consider the linear equations for ug and Bj

tr,t cee o T e ess
L(C') (dfl(C')a 9‘12’190‘ s ,Bls ] )

OL_
> m- 21 22

= (em)™([7 expl-iy+cl? ()70, (Daz ,
"',ffwexp[-iy'c]Pl(c)'lel(c)dcn,

. . -1
ffmexp[—ly C+1hCn]Pl(C) Bl(C)an,

---,ffmexp[—iy'c+ihcn]Pl(c)'le_21+12(c)dcn),
where
L (zg') L. (z') 0
vy =1 1 3
pler) = ‘Lh(C') L2<;->)’

L (z') = ((2m1)7'$ eXP[—ihcn]Pl_(c)"le(c)ci’ldc )s

3 n
JH¥L,e0e 005 Kol o0 e meg

1} 1
I (z') = ((2n) 7§ expling Tp, ()78, (c)g ez, ),

n
j+l,~--,m—21+22; k>l 000,98

1
It easily follows that

det T(c') = R(z'") = Ro(c')-det(I—Ro(c')_ltcof Ly,

xteof Ll-(L3,O)). (3.9)

The hyperbolicity of Pl(g) implies that there exists a positive
number € such that
+
| Tm Aij(a'-iye')l > ey for y>2y,.
In fact, we have
P (E-in) # 0 if ney 04T, and EeR',

and there exists a positive number e such that y8+nel, if ln[sZeY

1
and nsRn. Thus we have

P (E-ilyyty)o-in) # 0 if [n[<2ey,
that is,
Pl(g-iye-in) # 0 if |n|sey and v>2y,.

From (3.7) and Seidenberg’s lemma it follows that there exist pos-



PROPAGATION OF SINGULARITIES FOR HYPERBOLIC MIXED PROBLEMS 377
itive constants § and M such that

. -1 V.
HRO(E'-lye') teor LE(E —1y6')°Lhtcof Ll-(LS,O) I
<8 <1

(3.10)

when E'eRn_l and y=M-log(2+|&']).
In fact, there exist positive numbers C

such that

0° C1 and rational numbers

Gy O
]RO(E'-iye')] > co(1+|g'l+|y!)“0, £rer?L, 2y, +1,
|each entry of L3(g'—iy6') and LM(E'-iye')[
<C exp[—ehy](l+|£'l+]Y|)al, E'ERn-l, Y>2v4¢
By (3.9) and (3.10) we can solve the equations (3.8) when c'=£'—n
iye' and y=M-log(2+|g'|). Let 8, be the chain {c=(g1-iy,s"); ZeR-,
y=M-log(2+|E ])}. Then Fl(X,y) and Fg(x,Y) can be obtained by ap-

plying the inverse Fourier-Laplace transformation along S_ to ﬁl(

M
t',xn,y) and ﬁe(c',xn,y).

The wave front sets of Fl(X,y) and Fz(x,y) can be estimated

by the same argument as in §2 if Pj(g) satisfy the condition (A.1).
Lemma 3.2. Let K be an 2x% matrix. Then
=1 o J 2
det(I-XK =17, AT L OF,, . K, coeK,
( ) =0 (1l,kl),---,(1j,kj) i1k isk;

when |A|||K]||<1, where F2 is independent of K.
(i

i1,k1) 000, (15,k5)
This lemma gives the developments of Fl(x,y) and F2(x,y).

Moreover we can apply the argument in §2 to each term of the de-
velopments. We can also see that the supports of each terms of the
developments are locally finite. Roughly speaking, we have in the
development of F (x,y), for example,

[ explil(x'-y")-z'-1y nin X Cpay (N Fe et n e e een )}
)

-h
(L, g ony5m "t on gy R (2 T (B ()P (20, )P (2",n

cee t see
)eeoPy (2o, )7 dcdnl n_,..

1

co e t 1
P letn )P (2'on

The explicit developments of Fl(X,y) and FQ(X,Y) were given in [8]

as concerns wave equations.
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4. MICROLOCAL PARAMETRICES IN THE CASE WHERE BOUNDARY WAVES APPEAR

Let P(x,E) be a polynomial of order m of £ variables with ¢~ coef-
ficients and p(x,£) its principal part. We assume that p(x,&) is

a strictly hyperbolic polynomial with respect to 6 and p(x,0,1)=1.
Thus we can write

p(x,8) = My (g =y(x,6)) M) (g3 (x,6),

+
where the uT(x,g') are continuous in (x,£') and
Tn *(x,£') 2 0 when Im £,<0, £"eRE 2,

We consider the mixed initial-boundary value problem for hyperbolic
operator P(x,D) in a quarter-space

P(x,D)ulx) = 0, xeRi, x, >0, (L.1)
k-1 _
Dy u( )!x1=0 =0, x>0, lsksnm, (4.2)
1 = ' s
Bj(x ,D)u(X)IXn=O Gljgj(x ), xl>0, 1<jsh. (h.3)
Here the Bj(x',D) are boundary operators with o coefficients.

Now let (x°',201) be a fixea point in K0 and put x'=

(xo' 0). We may assume that the u (x,g ) are enumerated in the

following way:
+

Im uj(x ,50') = 0 for 1<js<u,

Tm u;(xo,io') > 0 for u+lgjss.
Then we put

Tlwt 21 = N ' ' v L

Lix",8") = (by(x',u5(x",0,8"),¢ Voeeesby(xtou L2,

. =1
(emi) fcg p(x' 0,8)" lb(x ,g)dg

- u-l

at )

Ly=1
,(27\'1) fcg'p(x',O,E) b (X 5£)E n j\bl’..-,g,a

where b (x',£) is the principal part of BJ( ',£) and C_, is a sim-
+

ple closed curve enclosing only roots M ( ,O,E'),---,uQ(x',O,g')

of p(x',0,£',1)=0, and we define

R(x',£') = det L(x',e').

Remark. It is easy to see that
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5 [ [ - U(Q/'U) + 1 1 +
R(x',g') = (-1) Ty ggeney (Hy(x'50,8")-1)

+ =1 [
Mricien, Tekemeg g7 BOKTSEN)

where R(x',£') is Lopatinski’s determinant for the system {p,bj}.

We state the assumptions that we impose on {p,b,}:
. 0 .0
(A.3) (XO,EO') is not a glancing point for p, i.e., ug(x LE'N),
1<j<u, are simple real roots of p(xo,go',k)=0.

(a.5) R(x',E") = (£-8 (x',2") e (x' 2",

where £ (x',8") and r(x ,E') are C* functions defined in a conic

nelghborhood of (x 'E ') in T¥R™T l\0 £ (x',&") is real-valued

0 0 0 0
and homogeneous of degree 1 in E”, gl(xo',g ”@:gl, r(x ',2 ")#0,
”=(E2,"',En_l) and 6 is a positive integer.
(A.5) There exist x% matrix-valued C functions U(x',£') and V(

0 0,\. -1
x',E') defined in a conic neighborhood of (x ',£ ')in T*R" "\O such
that

0

] [(El—el(x',s'”))l. 0 )
U(x',£")L(x',£")V(x',E") = 0 ﬁe(xl,al)

det U(xo',go')#O, det ie(xo',go')¢0, the (i,J)-entry of U is
homogeneous of degree l-pi—mj and the (i,j)-entry of V is homo-
geneous of degree pj for 1l<i<y and of degree pj+m+u—i for u+l<i<i,
vhere 8' is a positive integer, IG' is the identity matrix of order
8', ﬁe is an (g—e')x(z-e') matrix and deg szmj'

Remark. (i) If the condition (A.L) with 6=1 is satisfied then
the condition (A.5) also holds. In fact, taking U(x',£')=I and
V(x',E" )=r(x',E" )'ltcof i( ",E'), we have ULV=(g,-£, (x',£"))1.

(ii) Suppose that u (x € ') 1sgsu , are simple roots of p(x ,go'
A)=0. If rank (Bj(xo,go',u+( 9y, \=u'-0 the

IVl ee Rkl o0 ,u
condition (A.5) follows from (A.L) (see [6]).

Let T be a conic neighborhood of (xo',go') in TR%N0 and U

a neighborhood of x0 in BT,

Definition 4.1. A right microlocal parametrix (Poisson oper-

ator) for the problem (L4.1)-(k.3) at (XO,EO') is a triple {El,F,
[0,e)xU} satisfying the conditions
(1) E, is a continuous linear map: b (v)—c” (fo ,e)sH (U

b
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(ii) PEl(g)eCw([O,s)XU)T

(iii) BjEl(g)IXn=O -8, ;8<C"(U), 1sj<t, if WF(g)eT,

(iv) El(g)]xl<c is smooth if WF(g)Clezc}.

v 5 of (x01,£9) in T*RA R0
and %(x',g')ec”(ro) such that J(x',£') satisfies the equations

There exist a conic neighborhood T

/(]
),

Tt 21t ' Dt 2z = 0,
B u(x',8") ~ & (x",V wb(x',E")) = & - g (x5

~0 0w
w(xl,x",E") - Xm.gnc

2 n-1
homogeneous of degree 1 in £'. Let x(x',y',£') be a ¢” function in

R3n'-3 such that x=1 in T rﬁlg [>1} and supb xCT » where T QZ:FO)

where 3j=8x.=3/8xj and mef=(8 f,eee,d _T). Moreover §(x',£') is
J

and T2 are conic neighborhoods of (x 'E ') T N and
P= {(x',y",8");5 (x',8")el and (y',£')ell.
Since (ag/axjagki(xo',go'))=1, it follows that the operator A:

D (R g(x') —(ag) (x")=[expli(§(x',£")-P(y" ,s; ))]
XX(X',y',a')g(y‘)dy'GE e (B0

is a properly supported pseudo-differential operator, if necessary,

+
shrinking Pl, where aE'=(27) - 1d£'. A is elliptic in a conic neigh-

borhocd of (xo’ E '). Thus there is a microlocal parametrix (pseu-
do~differential operator) B of A at (xo',go'), i.e., there exists

a conic neighborhood T of (xo',go') such that ABg—geCm(Rn_l) if

WF(g)cT.

Let us formally construct a microlocal parametrix for the
problem (4.1)-(4.3) at (xo',go') in the form
E, (g) = 2} j=1 / explig (x,y',8" ) ]a, G,y 6" ) (Be) (v Day e
+f eXp[i(w(X',E')-ﬁ(y',a‘))]a(x,y',E')(Bg)(y')dy'ﬁz',
alx,y',g") = z§ Y (2ni) 7Y Cer exp[ixngn]cj(x,y',a)ai"lda

Then we have

t xne[O,e), x'eU.
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PE (8) = E f eXP[1¢ (x,y',8") Hp(x,v 5 )
( ) , .
+Z|a|=1 D (X,Vx¢j)D +S(¢j,X)+q(¢j,X,D)}
%a, (x,y",€")(Bg) (" )dy at" (h.1)
+ [ expl1 (D' ,81)-0y" )T (2n)™
(a) o .
xfcg'{p(x,vxw0)+2|al=l P (x,7 9)D 48 (0 5%)
+Q(¢0;X,D)}CJ(JSY',5)Eg_lexp[iann]dEn]dy'di',

(a) _n0 —l~t Z0
where p (X,C)—QCP(X,C) and ¢O(X,E)—¢(X & )+Xn5n- Thus ¢j(XsY',

£'), 1<jsu, are determined by the eiconal equations
Dby (x,E) = A (x, 7, W) ¥y(x',0,80) = Bl E),  (L.5)
where ¢, (x,y',8")=v.(x,8')- w (y',0,8'). We easily see that ¢ (x,

y',E" e (lo, e )xT ) for some €>O, if necessary, shrinking Fo Ir

aj(x,y ,E! ), lSJSU, can be written as asymptotic sums
© v
o, (x,y,E) v I a,(x,y',8")
in a certain sense, we obtain the transport equations
(o) o . v -
{Z|0l,|=]_ P (Xavxd)j)D +S(¢j sx)}aj(xay & )
v-1
+ q(¢j;x,D)aj (x,y',8") =
-1 [} 1)y = s -
aj(Ly,E)::m 1<jsn, v=0,1,2,"-.

v
(4.6) is an ordinary differential equation for a

J

responding to (L4.5). Thus we can solve the transport equations

along rays cor-

(4.6) when the boundary values of ag are given. Put
8 V(x', 0,y',8') = a V(x',y',E') eC (r ), 1<3isu, v=0,1,+°-.
We represent cj(x,y ,E) as asymptotic sums

1 vt |
es(xy'E) v I, g ey (637 ,E).

From (4.4) we put

CYO(x,y',E) = EY(X',y',E')p(xo)p(x,vxwo)_l,

vT+1(x,y £) = -z 412 p(a)(x,vwa)Du+S(wo;X)}
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VT v=1T -1
xcj (x,y',8) + q(¢O;X,D)cj (X’y'ag)]P(X:VX¢O) ,
cElT z 0, 1gjst-u, v,1=0,1,2,°°°,

O)=1 in a neighborhood of XO=0. From

the boundary conditions (4.3) we have

where p(xo)eC?O)([O,s)), o(x

T (<t Slet IMYEV( gt ot Fd n-1 ,=x 2Vt gt g
Lx', v, b(x",E"))a"(x",y',8") + Iy BL/achja (x',y',E")
+ S(x',E')gv(X',y',E‘) = %V(Xv,yl’gi), V=O,l,2,"',

here 3L/5z .=51/%c.(x',z" ~,
whne / EJ / CJ(X E )IC'=VX|¢'

>y ~v VRN ~V
a (X"y',g') = t(al(X',y"E'),..-,au,cl(x',yl’gl),...,cl_u)’

and ¥’ is an f-vector depending only on aY_l and cg-lT (see [16]).
Finally we obtain J

E (g) = Zg=l[f exp[i¢j(x,y',€')]aoj(x,y',a')(Bg)(y')dy'ﬁﬁ'
+ [ ay'ae [0 as exp[i{gg}sy',z')+(zl-sl(xo',a"5)s}]
xa) (x5 ,8",8) (Be) (y')] + [ expli(dlx',z") )
-b(y',8" ) e (x,y",8" ) (Be) (y' ay'ae!
+ [ ay'ee [ as exolili(x',£")-3(y",E")
#(51-8, (=01 ,6"))s) ey (k3" £ ,8) (B) (), gefy (U).

Definition 4.2. Let x'=x'(t;y',n') and z'=z'(t;y',n') be the
solutions of a system of the equations

ax'/dt

(1,7 0 (22",

dz'/at

v ot
v (x"E ",
x'=y', ¢£'=n' and ﬂl—El(y',nm)=O when t=0.
Then the curves {(X'(t;Y',ﬂ'),C'(t;y',n'))eFO; teR} are said to

be boundary null-bicharacteristic strips. Let x=xj(t;y',n') and

§=cj(t;y',n'), 1<jsu, be the solutions of a system of the equations

dx/dt = (-vC,ug(x,c'),l),

+ 1]
az/at vﬁjkg )s

+
%, =0, x'=y', g'=n' and gy=u (y",0n") when £=0.
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Then the curves {(xj(t;y',n'),cj(t;y',n')); 20}, 1<j<p, are said

to be outgoing null-bicharacteristic strips. Further we define

= LIS B Ry | . 1 ot = (! !
CO(FO) {(x',z',¥',n )eFOXFO, (x',z')=(y",n') or x>y

and there exists a boundary null-bicharacteristic strip
which contains both (x',z') and (y',n")},

Cj(PO) = {(x,;,y';{)E(T*«O,e)xU)\O)XFO; there exists a
outgoing null-bicharacteristic strip which contains

+
both (x,z) and (y',O,n',uj(y',O,n'))}, 1<j<u.

(ee]

Let us define wave front sets for ueC ([0,e);$ (U)). Since we
can regard ueCm([O,e);IT(U)) as an element of §'((0,e)xU) we can
define WF(u) for ueCw([O,e);ff(U)) by regarding u as an element of
$' ((0,e)xU).

Definition 4,3. For ust([O,s);b'(U)) we say that a point
(xl',gl') in T*U\O is not in the set WFo(u) if there exist ¢€C2(U),
a conic neighborhood Yy of gl' and a positive constant e, such that

1 1
$(x7")#0 and

s Lo D300 1) 0y (1]er 7
when E'eyl, Xoe[O,El) and j,k=0,1,2,-.

Theorem 4.4, Assume that the conditions (A.3)-(A.5) are sat-
isfied. Then {El,F,[O,e)XU} is a right microlocal parametrix for
the problem (L4.1)-(L.3) at (xo,go'), where the operator E, is de-

fined by (L.7) and ¢ (>0) and U are suitably chosen. Moreover we
have

0
WFO(E1<g))(:C0(FO)aWF(g) for gef) (U).

WR(E) () C Uy 4 (To)ecy(r)eim(a),

Remark. CO(PO) is related to a boundary wave.

We note that we can construct a microlocal parametrix as the
composition of a microlocal parametrix for the Dirichlet problem
and a microlocal parametrix for the Cauchy problem for a system of
pseudo-differential operators on the boundary (see [16]).
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SPECTRAL AND ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVE PROPAGATION

Calvin H. Wilcox

Department of Mathematics, University of Utah,
Salt Lake City, Utah, USA

1. INTRODUCTION

Classical theories of acoustic wave propagation provide a
wealth of examples of boundary value problems for evolution partial
differential equations. These problems may be described categori-
cally as initial-boundary value problems for certain systems of
linear hyperbolic partial differential equations with variable
coefficients. However, the known existence, uniqueness and regu-
larity theorems for these problems are only a first step toward
understanding the structure of the solutions. To obtain a deeper
insight it is essential to discover how the nature of the solutions
changes with the geometry of the boundary and with the coefficients.
An examination of recent scientific literature on acoustics reveals
a great variety of physically distinct phenomena. Examples include
phenomena associated with acoustic wave propagation in stratified
fluids, anisotropic solids such as crystals and man-made composites,
open and closed waveguides, periodic media and many others. A
theory which treats all of these phenomena on the same footing can
provide only the most superficial information about the structure
of acoustic waves.,

The purpose of these lectures is to present a method for
determining the structure of acoustic waves in unbounded media.
The method will be explained in the context of four specific classes
of propagation problems. No attempt will be made to formulate the
most general problem that can be analyzed by the method. Indeed,
such a formulation would necessarily be too abstract to be useful.
However, it will be clear from the examples that the method is
applicable to many other wave propagation problems, both in acous-—
tics and in other areas of physics.

Garnir (ed.), Boundary Value Problems for Linear Evolution Partial Equations. 385-473.
All Rights Reserved. Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland.



386 CALVIN H. WILCOX

It will be helpful to outline the main steps of the method
here before passing to a detailed discussion of specific cases.
The method is based on the fact that the states of an acoustic
medium which occupies a spatial domain 2 C R® can be described by
the elements of a Hilbert space # of functions on . The evolution
of an acoustic wave in the medium is then described by a curve
t » u(t,*) € . Moreover, there is a selfadjoint real positive
operator A on H, determined by the geometry of { and the physical
properties of the medium, such that the evolution of acoustic waves
in the medium is governed by the equation

d%u

gz tAu=0 (1.1)

It follows that the evolution is given by
u(t,*) = Re {exp (-itaY?)n} (1.2)
where h € H characterizes the initial state of the wave.

The spectral theorem may be used to construct the solution
operator exp (—itA}/z). However, the very generality of this
theorem implies that it can give little specific information about
the structure of the wave functions u(t,x). Accordingly, the next
step in the method is to construct an eigenfunction expansion for
A. 1In each of the cases discussed below A has a purely continuous
spectrum and the eigenfunctions are therefore generalized eigen-
functions. They define a complete set of steady-state modes of
propagation of the medium and the most general time-dependent
acoustic wave in ¥ can be constructed as a spectral integral over
these modes.

The final step in the method is an asymptotic analysis for
t > © of the spectral integral representing u(t,x). The result is
an asymptotic wave function u™(t,x) which approximates u(t,x) in
# when t - «; that is,

Lim lu(t, ) - u™(e,*)ly =0 (1.3)
t->00
Stronger forms of convergence can also be proved under appropriate
supplementary hypotheses about the medium and its initial state.

The result (1.3) offers a fundamental insight into the nature
of transient acoustic waves in unbounded media. For it is found in
each case that the form of the asymptotic wave function u (t,x) is
determined entirely by the geometry of the domain { and the physical
characteristics of the medium that fills it. Only the fine struc-
ture of u™(t,x) depends on the initial state of the wave. Thus in
the simple case of a homogeneous fluid filling R®, u®(t,x) is a
spherical wave:

3¢



SPECTRAL AND ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVE PROPAGATION 387
oo
u (t,x) = F(r - t,0)/r, x = 6, |B] =1 (1.4)

The initial state affects only the shape of the profile F(T1,0). 1In
other cases the form of u”(t,x) is entirely different, but in each
case the form of u (t,x) is determined solely by the geometry and
physical characteristics of the medium. In each case u™(t,x) gives
the final form of any transient wave in the medium. The details of
how the wave is excited have only a secondary effect on the ultimate
waveform.

The remainder of these lectures is organized as follows. The
fundamental boundary value problems of acoustics are formulated in
section 2. The spectral and asymptotic analysis of the four classes
of propagation problems is presented in sections 3 through 8. The
four classes, which are physically quite different, were chosen to
illustrate the flexibility and scope of the method. In each of the
four classes there is a special case for which, because of addi-
tional symmetry, the eigenfunctions can be constructed explicitly.
The remaining cases of the class are then treated as perturbations
of the special case. When used in this context, perturbation theory
is usually called the steady-state, or time-dependent, theory of
scattering. The first class of problems treated below corresponds
physically to the scattering of acoustic waves by bounded obstacles
immersed in a homogeneous fluid. Mathematically, it is an initial-
boundary problem for the d'Alembert equation in an exterior domain
2 c R® (R®*-Q compact). The simple special case where 2 = R} is
treated in section 3 and the general case in section 4. The second
class of problems deals with tubular waveguides., Thus  is the
union of a bounded domain and a finite number of semi-infinite cyl-
inders. The special case of a single cylinder is treated in section
5 and the general case in section 6. The third class of problems,
treated in section 7, deals with acoustic wave propagation in plane
stratified fluids filling a half-space. Here the novel feature is
the possibility of the trapping of waves by total internal reflec-
tion. The fourth and final class of problems, dealing with acoustic
waves in crystalline solids, is discussed in section 8. The new
feature in this case is the anisotropy which has a profound effect
on the form of the asymptotic wave functions.

The results presented below are based primarily on the author's
research. Sections 3 and 4 are based on the author's monograph on
"Scattering Theory for the d'Alembert Equation in Exterior Domains"
[42]. The spectral theory of acoustic wave propagation and scatter-
ing in tubular waveguides was developed by C. Goldstein [9-12] and
by W. C. Lyford [21,22]. More recently, J. C. Guillot and the
author [13] have developed the theory for domains Q which are the
union of a bounded domain and a finite number of cylinders and
cones. Sections 5 and 6 present spectral and scattering theory for
tubular waveguides following the plan of [13]. Sections 7 and 8 are
based on the author's publications [39,40,43,44].
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The goal of these lectures is to provide an introduction to
the method of spectral and asymptotic analysis of wave propagation.
Therefore, the lectures emphasize concepts and results, rather than
techniques of proof. Proofs of the results given here may be found
in the references listed at the end of the lectures.

2. BOUNDARY VALUE PROBLEMS OF ACOUSTICS

Acoustic waves are the mechanical vibrations of small amplitude
that are observed in all forms of matter. The classical equations
of acoustics are the linear partial differential equations which
govern small perturbations of the equilibrium states of matter.
Derivations of these equations from the laws of mechanics, together
with a discussion of their range of validity, may be found in
[3,4,8,20,31]. 1In this section the equations and their physical
interpretation are reviewed briefly and the principal boundary
value problems for them are formulated and discussed. Applications
of the equations to particular classes of acoustic wave propagation
problems are developed in sections 3 through 8.

The following notation is used throughout the remainder of the
lectures. t € R denotes a time coordinate. x = (X;,x,,X;) € R®
denote Cartesian coordinates of a point in Euclidean space. £ C R?
denotes a domain in R® and 82 denotes the boundary of .

Vv = (V,,V,,V,) = V(x) denotes the unit exterior normal vector to 3
at points x € o where it exists. The equations of acoustics are
written below in the notation of Cartesian tensor analysis. In
particular, the summation convention is used. Acoustic waves in
fluids (gases and liquids) and solids are discussed separately.

The simpler case of fluids is treated first.

2.1 Acoustic waves in fluids
The case of an inhomogeneous fluid occupying a domain 2 C R?

is considered. The propagation of acoustic waves in such a fluid
is governed by two functions of x € Q:

p = p(x), the equilibrium density of the fluid (2.1)

and

i}

¢ = c¢(x), the local speed of sound in the fluid (2.2)
The state of the acoustic field in the fluid is determined by

v, = v,(t,x), the velocity field of the fluid at (2.3
J J time t and position x
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and

p = p(t,x), the pressure field of the fluid at (2.4)
time t and position x

Moreover, it is assumed that
p(t,x) = po(x) + u(t,x) (2.5)
where po(X) is the equilibrium pressure of the fluid and u(t,x)

remains small. With this notation the equations satisfied by the
acoustic field in the fluid are

BVJ 1 du

B o6 Bx 0, j =1,2,3 (2.6)
3u , v,

5E-+ c‘(x) p(x) 5;% =0 2.7)

Elimination of the velocity field gives the single equation

324 s (1 au) L
‘a—t'z— - c2(x) p(x) "a;J— [p(x) 5}2) =0 (2.8)

for the pressure increment u = p - p,. Moreover, if u is known
then the velocity field vj can be calculated from (2.6).

The wave equation (2.8) must be supplemented by a boundary
condition at the fluid boundary 92. Two physically distinct cases
are considered here. The first case is that of a free boundary
02, Here the pressure at the boundary is unperturbed; that is,

Ulgo = 0 if 90 is a free boundary (2.9)

This condition is often used to represent an air-water interface

in the theory of underwater sound. The second case is that of a
rigid boundary 9Q2. Here the normal component of the fluid velocity
must vanish: vjvj = 0 on 92, It follows from (2.6) that

= du = 0 if 30 is a rigid boundary (2.10)

du
o V., 5;—
ORI P

oV

The solvability of the boundary value problems (2.8), (2.9) and
(2.8), (2.10) is discussed below, after the discussion of acoustic
waves in solids.
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2.2 Acoustic waves in solids

The case of an inhomogeneous elastic solid occupying a domain
Q ¢ R® is considered. The propagation of acoustic waves in such a
solid is governed by the following functions of x € Q:

= p(x), the equilibrium density of the solid (2.11)
and

?Q; = ?L;(x), the stress-strain tensor for the solid (2.12)

The stress-strain tensor must have the symmetry properties [4].

5,‘;; 1;31 cﬁ = cﬁ for all j,k,%,m = 1,2,3 (2.13)

It follows that the 81 components ci;(x) are determined by 21
functions. The state of the acoustic field in the solid is
determined by

u, = u (t,x), the displacement field of the solid (2.14)
J at time t and position x
and
Ojk Jk(t ,X), the stress tensor field of the (2.15)

solid at time t and position x
Moreover, the stress tensor field is symmetric:
Ojk = ij for all j,k = 1,2,3 (2.16)

With this notation the equations satisfied by the acoustic field
in the solid are

om Buz
Ojk = Cjk(x) _3_}2; s J.k =1,2,3 (2.17)
3%u 90
i__1 ik .
) ) 3Xk s 1,2,3 (2.18)

Elimination of the stress tensor gives the equations

d%u du
U1y o MM
T o6 o |G x| T 0 3 =523 (2.19)
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for the displacement field u;. Moreover, if u:; is known then
the stress tensor field ij can be calculated from (2.17).

The wave equation (2.19) must be supplemented by boundary
conditions at the boundary o2 of the solid. Only the cases of
free and rigid boundaries will be considered here. 1In the first
case the normal component of the stress must vanish at the
boundary. Hence

gm0,
¥ = Cjk 5;;'Vk =0 if 90 is a free (2.20)

o boundary

%5k"k

In the second case the displacement must vanish at the boundary;
that is,

u

jloq = 0 if o is a rigid boundary (2.21)

2.3 Energy integrals
One of the most important formal properties of the equations
of acoustics is the existence of quadratic energy integrals. The

first order system (2.6), (2.7) for acoustic waves in fluids has
the quadratic energy density

n(t,x) = S<p(x)v v, +‘23?E%B?§7 u (2.22)

and corresponding energy integral
E(Vl 3V2:v3su9K)t) = J n(t,X)dX (2.23)
K
where dx = dx,;dx,dx; denotes Lebesgue measure in R®. The energy

density for the derived field v! = dv./dt, u' = du/dt, which also
satisfies the field equations (5.6), 2.7), can be written

2
' -1 J 1 du du L du
n'(€x =3 95w o, 3%, T PG [8t] (2.24)
by (2.6). The integral
E(u,K,t) = j n'(t,x)dx (2.25)
K

is an energy integral for solutions of the scalar wave equation
(2.8). The importance of these integrals in the theory of acoustic
waves derives from the conservation laws for them. 1In differential
form they state that
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on(t,x) _ _ 3
oy = axj (uvj) (2.26)

and

on'(t,x) _ _3 . [ 1 _du 3‘1] (2.27)

ot - ij p(x) EE-SEE'

These equations follow immediately from (2.6), (2.7) and the
definitions. The integral forms of the conservation laws follow
from (2.26), (2.27) and the divergence theorem. They may be
written

dE(vl,vz,vs,u,K,t)/dt = - .kK u(vjvj)dS (2.28)
and
_ 1 du Bu
dE(u,K,t)/dt = .LK 0(x) 9t av ds (2.29)

where K € R® is any domain for which the divergence theorem is
valid and dS is the element of area on JdK. In particular, if
u(t,x) is a solution of (2.8) which satisfies (2.9) or (2.10) then
(2.29) implies that dE(u,f,t)/dt =0

The equations for acoustic waves in solids have an analogous
quadratic energy integral

E(ul,uz,ua,K,t) = I{ n(t,x)dx (2.30)
with density
L o 3 2%, my 2 %
n(t,x) = §'<p(x) se 5t c ( ) = axk 3x (2.31)

The corresponding conservation law, which follows from (2.19), is

du
on(t,x) _ 9 m SL_i
T e N (2.32)
in differential form and
dE(ul,uz,us,K,t)/dt = ng (Ojkvk) Ye ds (2.33)

in integral form. In particular, solutions of (2.19) which satisfy
(2.20) or (2.21) also satisfy dE(u,,u,,u,,R,t)/dt =0
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The preceding remarks emphasize the mathematical relationship
of the quadratic energy integrals to the field equations of acous-
tics. The term "energy' has been used because in certain cases
the integrals can be interpreted as the portion of the energy of
the acoustic field that is in the set K at time t. This interpre-
tation is not always correct because the linear equations of
acoustics are only a first-order approximation to more complicated
nonlinear equations and the energy densities defined above are
second-order quantities. Hence, it is possible that other second~
order terms which were dropped in the linearization should be
included in the energy densities. A correct calculation of the
.energy must begin with the original nonlinear problem. A discussion
of these problems may be found in [8,31] for the case of fluids and
in [4] for the case of solids.

It is important to realize that the energy integrals defined
above play an essential role in the theory of acoustic fields,
whether or not they represent the actual physical energy of the
fields. 1Indeed, it was shown in [33] and [34] that the existence
of these integrals implies the existence and uniqueness of solu-
tions to the basic initial-boundary value problems for acoustic
fields. Moreover, recent work on eigenfunction expansions and
scattering theory makes use of Hilbert spaces based on energy
integrals. The one indispensible hypothesis that must be made is
that the quadratic forms (2.22) or (2.24) and (2.31) be positive
definite. TFor (2.22) and (2.24) this means that »

p(x) > 0 and c?(x) > 0 for all x € 0 (2.34)

In any case, these hypotheses are essential because of the physical
interpretation of p(x) and c(x). The form (2.31) is positive
definite if p(x) > 0 and

2m
cjk(x) glm gjk > 0 for all x € Q and Egm = ng 20 (2.35)

The last condition can also be expressed by means of the well-known
determinantal criteria for a quadratic form to be positive definite.
It is assumed throughout these lectures that (2.34) and (2.35) are
satisfied.

It has been shown that the acoustic fields in both fluids and
solids satisfy partial differential equations of the form

= +Au =0 (2.36)

where A is a second order partial differential operator in the
space variables. In the case of fluids u(t,x) € R, Au(t,x) € R
and ’
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- 9 |1 _2u
Au = —cz(x) p(x) axj [p(x) axj] (2.37)

while in the case of solids u(t,x) = (ul(t,x),uz(t,x),ua(t,x)) € RS,
Au(t,x) € R? and

du
1 ] m 2 .
(AU)J = - 5 —a¥k— Cjk(x) ﬁ s J =1,2,3 (2.38)

Thus in both cases the evolution of acoustic waves in a medium
which fills a domain £ C R® is described by the solution of an
initial-boundary value problem of the form

2

—g—t§+Au=0fort>o,er (2.39)
Bu =0 for t > 0, x € 3Q (2.40)
u(0,x) = f(x) and 3u(0,x)/3t = g(x) for x € Q (2.41)

Here (2.40) represents one of the boundary conditions (2.9),
(2.10) in the case of a fluid and (2.20), (2.21) in the case of a
solid.

It is interesting to note that the positive definiteness of
the energy densities, hypothesized above on physical grounds, im~
plies the hyporbolicity of the equation (2.36). It follows that
the initial-boundary value problem (2.39) -~ (2.41) has compact
domains of dependence and influence [6,33]. 1In physical terms
this means that acoustic waves propagate into undisturbed portions
of a medium with finite speed.

A simple and rigorous solution theory for the initial-boundary
value problem (2.39) - (2.41) can be based on the theory of self-
adjoint operators in Hilbert space. This possibility follows from
the divergence theorem which implies the formal selfadjointness of
the operators A relative to suitable inner products. Indeed, for
the operator (2.37) the divergence theorem implies

J Au v c"2(x) p~l(x)dx
Q (2.42)

du Ju
= = v p  (x)dx - J — v p~'(x)ds
JQ ij 3xj 30 Y]

and hence (2.43)

J {Au v - u Avlc~2(x) p~l(x)dx = f {E’EX - g% v} p~l(x)ds
Q N
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Thus if an inner product is defined by

(u,v) = J u(x) v(x) ¢ 2(x) p~!(x)dx (2.44)
then ;

(Au,v) = (u,Av) (2.45)

for all u and v in the domain of A which satisfy the boundary
condition (2.9) or (2.10). Moreover, (2.44) defines the inner
product in the Hilbert space H = L,(Q,c™2(x)p~1(x)dx) of functions
on  which are square-integrable with respect to the measure
c2(x)p~(x)dx. Hence (2.45) implies that A, acting in the clas-
sical sense on functions which satisfy (2.9) or (2.10), is a
symmetric operator in H. Moreover, (2.42) implies that

(Au,v) = J 2 iax > 0 (2.46)
X, OX, -

773 777
for all u in the domain of A. Hence A is positive. It was shown
in [42] and [43] how the domain of A could be enlarged to obtain
an extension A of A which is selfadjoint and positive in #. The
boundary condition (2.9) or (2.10) is incorporated into the defi-
nition of the domain of A. Moreover, the construction provides a
meaningful generalization of the boundary conditions for arbitrary
domains 2 C R®. The precise definitions and results are reviewed
in sections 3-7 below.

The operator (2.38) for acoustic waves in solids can be
treated similarly. The divergence theorem implies

JQ (Ra) ; vy p(x)dx (2.47)

Ju
= j C%E(X) ——Xi—~l-dx - J [C%E(X) - v } v.ds
g 3 m ag U3 oxy k)3

It follows that if an inner product is defined by
(u,v) = J u, (x) v.(x) p(x)dx (2.48)
q 3 j

then (2.45) holds for all u and v in the domain of A which satisfy
the boundary condition (2.20) or (2.21). Moreover, (2.48) defines
the inner product in the Hilbert space ¥ = LZ(Q,Cs,p(x)dx) of
functions from Q to C® which are square integrable with respect to
the measure p(x)dx. Hence A, acting in the classical sense on
functions which satisfy (2.20) or (2.21), is a symmetric operator
in . Moreover, (2.47) implies that
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Bul du,
(Au,u) = L2 Jk(x) e Sgi-dx >0 (2.49)

for all u in the domain of A by the assumed positivity of the
energy density, (2.35). It will be shown in section 8 below how
the domain of A can be enlarged to obtain a selfadjoint positive
extension A of A.

A Hilbert space } and selfadjoint positive operator A on K
can be associated with each acoustic wave propagation problem by
the method indicated above. A theory of solutions of the initial-
boundary value problem (2.39) - (2.41) may then be based on A in
the following way. First of all, the problem can be formulated as
an initial value problem in . A function u: R - ¥ is sought
such that

2
%;-{ +Au=0 for all t € R (2.50)
u(0) = £ and % =g in X (2.51)

The spectral theorem for A:

A= f A dlI(V) (2.52)
0

and the associated operator calculus make it possible to comstruct
the generalized solution

u(t) = (cos t AY2)f + (A"Y2 gin £ AV2)g (2.53)

The coefficient operators in (2.53) are bounded and hence u(t) is
defined for all f and g in X and defines a curve in C(R,¥), the
class of continuous J—valued functions on R. The differentiability
properties of u(t) depend on those of f and g. Two cases will be
mentioned.

2.4 Solutions in X

If f € { and g € ¥ then u(t) is continuous in K and u(0) =
However, u(t) will not in general be differentiable, and hence
(2.50) and the second initial condition need not hold. 1In this
case u(t) coincides with the "generalized solution in X" which was
defined and studied by M. Vishik and 0. A. Ladyzhenskaya [32].
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2.5 Solutions with finite energy
If f € D(AJ/Z) and g € ¥ then u is in the class
¢! (R,3) N C(R,D(AY?)) (2.54)

This follows easily from (2.53) and the spectral theorem. Hence,
u satisfies (2.51) but (2.50) need not hold. In this case u(t)
coincides with the "solution with finite energy" which, for arbi-
trary domains 2, was defined and studied by the author in [33,34,
42]. The existence and uniqueness of solutions with finite energy
was proved in [33,34].

3. PROPAGATION IN HOMOGENEOUS FLUIDS

Propagation in an unlimited homogeneous fluid is analyzed in
this section. In the notation of section 2 this is the special
case where © = R?® and p(x) = p and c(x) = ¢ are constant for all
x € R®. It will be enough to treat the case ¢ = 1 since the gen-
eral case can be reduced to this one by the change of variable
ct »> t. With these simplifications the wave equation (2.8) reduces
to the d'Alembert equation

2 2 2 2
2 3

and the propagation problem is simply the Cauchy problem for (3.1).

The spectral and asymptotic analysis of solutions in L2(R3) of

(3.1) was developed in detail in [42]. Only the principal concepts

and results are reviewed here.

The operator in L, (R®) defined by Au = -(3%u/9x} 4—32u/8x +
Bzu/ax ) acting in the domain D(A) = D(R®), the L. Schwartz space
of testlng functions, is known to be essentially selfadjoint [18].
Thus A has a unique selfadjoint extension in LZ(RS) which will be
denoted here by A;. This operator may be defined by

82 32 32

= 3 . .
D(A)) =L, (R%) N qu: _'ZB + 32 + 3%2 eL,RY)P (3.2)
and
A = __Bzu 2%y + —-2-8 f 11 D(A) (3.3)
o4 =- Bxf + 8 3% or a u € 0 .

where the derivatives are interpreted in the sense of Schwartz's
theory of distributions. A, is known to be non-negative and it
is obviously real; that is
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Aju = Aju for all u € D(4,) (3.4)
where the bar denotes the complex conjugate.

The d'Alembert equation (3.1) will be interpreted as the
equation

S tAu=0 (3.5)

for an Lz(Ra)—valued function. Hence the solution in L2(R3) of
the Cauchy problem can be written

u(t) = (cos t A}/z)f + (A7 Y2g4in ¢t AY®)g (3.6)

where u(0) = f and du(0)/dt = g are in L2(R3). If it is assumed
that f(x) and g(x) are real-valued and

fel,®%, gen@r?) (3.7)

then it follows from (3.4) that

u(t,x) = Re {v(t,x)} (3.8)
where
v(t,*) = exp (-ita}l/®)n (3.9)
and
=f+1iA;72 geL,(RY) (3.10)

In what follows attention is restricted to this case.

An eigenfunction expansion for A, may be based on the
Plancherel theory of the Fourier transform in L, ®R%®. 1f

3
w,(x,p) = (21].)3/2 exp (i x*p), PER (3.11)
where x* p = x;p; + x p2 + x,p, then the main results of the theory
state that for all f € (R ) the following limits exist
Ep) = (2,0 (p) = L,(R®)~1im J W, (5,p) £()dx
Mo | x| <M > (3.12)
£(x) = (D) (x) = L,(R%)-lin w, (x,p) %(p)dpJ
Moo

Ipl<M
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and 9,: L2(R3) - Lz(Ra) is unitary. These relations will often
be written in the symbolic form

f(p) = J wo(x,p) £(x)dx, £(x) = J w,(x,p) £(p)dp (3.13)
R? R?

but must be interpreted in the sense (3.12). The utility of the
Fourier transform is due to the fact that if f and 9f/3x, are in
L, (R%) then

[QO 9X.

}(p) = 1p f(p), j=1,2,3 (3.14)
k|

In particular, it follows that
D(Ay) =L, (R®) n {u: [p|*0(p) € L,(R})} (3.15)

A, has the spectral representation

00

A, = Jo X dIL, (A) (3.16)

with spectral family {I[;(A\)} defined by

T,(VE(x) = W, (x,p) £(p)dp, A 2 0 (3.17)

lelf/x

It follows that A, is an absolutely continuous operator [18,42]
whose spectrum is the interval [0,%).

The above results imply that ¢, defines a spectral represen-
tation for A, and functions of Ao' In particular, if Y(A\) is any
bounded Lebesgue-measurable function of A > O then

2, ¥ (A E(MP) = ¥(|p| DT (3.18)

These results imply that the wave function v(t,x) defined by
(3.9) has the representation

v(t,x) = [ , o (xp) exp (-it[p[) h(p)dp (3.19)
R
The function w,(x,p) is a generalized eigenfunction for A,. This
means that W0(~,p) is locally in D(A ); i.e., dw,(*,p) € D(A ) for
every ¢ € D(R?) and
Agwy (+5p) = A w, (+,p), A = |p|? (3.20)

The functions
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w, (x,p) exp (-it|p]) = ?Eﬁ%sffexP {itx+p - tlpP} (3.21)

are solutions of the d'Alembert equation which represent plane
waves propagating in the direction of the vector p € R®. Hence,
(3.19) is a representation of a localized acoustic wave as a
superposition of the elementary waves (3.21).

The spectral integral (3.19) is the starting point for the
asymptotic analysis of the behavior for t * ® of solutions in
L2(R3) of the d'Alembert equation. It is convenient to begin the
analysis with the special case where h is in the class

D,(R%) = DR®) n {h: h(p)=0 for |p|<a, a=a(h)>0} (3.22)

The analysis will then be extended to the general case by using
the easily verified fact that DO(Ra) is dense in L2(R3).

If h e UO(R3) and the support of h satisfies
supp h C {p: 0 < a < |p| < b} (3.23)

then the spectral integral (3.19) converges both in LZ(R3) and
pointwise to v(t,x) and

1

v(t,x) = WOEQ exp {i(x*p - t[pl)}ﬁ(p)dp (3.24)

[aflplib

To find the behavior of v(t,*) € LZ(RS) for t + « introduce
spherical coordinates for p:

p=opw p>0,we€S? dp = p’dodw (3.25)

where S2 represents the unit sphere in R® with center at the origin
and dw is the element of area on S?. This gives the representation

b
vt = G | P Ux,e) p2de (3.26)
a
where
V(x,p) = J e1PE 0 1wy dw (3.27)
SZ

The asymptotic behavior of V(x,p) for [x| -+ ® will be calculated and
used to find the behavior of v(t,x) for t » «, Application of the
method of stationary phase [2,23] to (3.27) with x =10, ¥ > 0,

6 € s? implies that if
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V(x,p) = [é&ﬁ} 1T ﬁ(pe) + {:%ﬂ;} o~ 1iPT h(=p8)

ipr ipr
(3.28)

+ q,(x,p)
then there exists a constant M, = Mo(ﬁ) such that
lq, (x,0) | < MO/rz for all r > 0, a<p<b and 6 € S* (3.29)
Substituting (3.28) into (3.26) gives
v(t,x) = G(r-t,0)/r + G'(r+t,0)/r + ql(t,x) (3.30)

where G(1,6) and G'(7,0) are the functions of T € R and 6 € §?
defined by

b
6(1,0) = ?Eﬁ%iff 2™ £(08) (~ip) dp (3.31)
a
and
-a
6'(1,0) = Gy yE TP 1(08) (-1p)dp (3.32)
-b

Moreover, the estimate (3.29) implies that q,(t,x) satisfies

lq,(t,%)| < M, /r* for all r > 0, t € R and 6 € S? (3.33)
where M; = Ml(ﬁ) = (2m)"¥2 (b3 - a%) Mo(ﬁ)/B.

The principal result of this section states that

v (t,x) = G(r-t,0)/r, x = 6 (3.34)
is an asymptotic wave function for v(t,x) in LZ(RS); that is,

1im [v(t,*) - v (t,*)l
>0

LZ(R3) =0 (3.35)

Before indicating a proof it is necessary to complete the statement
of the theorem by defining the profile G for arbitrary h € L (R ).
when h € D (R%®), G is defined by (3.31) and a simple calculatlon
gives
el ks h(p)|2dp = Ihl2

L (Rsz) B Ja<lp <b

L (R )
(3.36)

= ﬂhHL (R?)
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Hence the correspondence

h+G=06h€L,(R x S? (3.37)
can be extended to all h € L,(R®) by completion. Another method,
based on the Plancherel theory in LZ(R,LZ(SZ)) is given in [42].
It is not difficult to verify by constructing 07! that

O: LZ(R3) - Lz(R x §2) is unitary (3.38)
A similar extension of the definition (3.32) of G' may be made.

A proof of (3.35) will now be outlined. Note first that the

function G'(r+t,0)/r tends to zero in L,(R®) when t » w. This
follows from the simple calculation

J 6t Gt e,0) /|20 J J 16" (r+ £,0) | 2aedr
R 0 S

(3.39)

It

Jn Jsz |G'(r,0) |2d0dr
t

and the fact that G' € L,(R x S?). The proof that, in (3.30),
ql(t,°) -~ 0 in LZ(RS) when t + « is based on the following lemma.
3.1 Convergence lemma

Let € C R?® be an unbounded domain and let u(t,x) have the
properties

u(t,*) € L,(R) for every t > t, (3.40)
i . = 3

lim fu(t, )"LZ(KﬁQ) 0 for every compact K C R (3.41)

t—>o0

lu(t,x)| < M/|x|? for every |x| > T, (3.42)

where t,, r, and M are constants. Then

lim "u(t,')"Lz(Q) =0 (3.43)

t>oo

Only the case Q = R® of the lemma is needed here. The more
general case is used in section 4. A simple proof of the lemma
is given in [42].

The proof of (3.35) for the case ﬁ € DO(RS) may be completed
by applying the lemma to u(t,x) = q,(t,x). (3.33) states that q,
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satisfies (3.42) while (3.40) and (3.41) follow from (3.30). To
verify (3.41) note that G'(r+t,0)/r satisfies it by (3.39).
Moreover, if K C {x: |x| < R} then by direct calculation

IA

J |G(r - t,8)/r|%dx J lG(r-t,0)/r|%dx
K |x|<R

(3.44)
R-t

R
= J j |G(r-t,6)|%d0dr = J J |c(x,6)|%d6dr
o Jg? -t Js?

The last integral tends to zero when t - because G e L2(R x §2).
Finally, v(t,x) satisfies (3.41). When he Do (R®) this can be
verified directly from (3.24) by an 1ntegrat10n by parts.

The proof of (3.35) indicated above is valid when h € D (RY).
To prove (3.35) for general h € L, (R ) note that

v(t,*) = Uy (t)h where U (t) = exp (-itA}/?) (3.45)
is unitary. In particular,

HUo(t)H =1 for all t € R (3.46)
Similarly, if U,(t): L,(R’) +L,(R?) is defined by

(e [ee]

v(t,+) = U0(O)h (3.47)
then it follows from (3.44) and (3.36) that U?(t) is contractive:

IU;(e)l <1 for all t € R (3.48)
The general case of (3.35) now follows from the special case
he D (R®), the density of D (R®) in L (R ) and the estimates
(3. 46) and (3.48). The detalls are glven in [42].

The real part of the asymptotic wave function (3.34) is another
function of the same form. Hence, (3.8) and (3.35) imply a similar
result for the solution in L2(R3) of the Cauchy problem. The result
may be formulated as follows.

3.2 Theorem

Let f and g be real-valued functions such that f € L, (R®%) and

g € D(A‘l/z) Let u(t,x) be the corresponding solution in L (R )

of the d'Alembert equation given by (3.6). Define the asymptotlc
wave function
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e = HEZBD o g (3.49)
where

F(1,0) = Re {G(1,0)} (3.50)
and

G = Bh = O(f + 1A7'?g) (3.51)
Then

1im lu(t,*) - u (t, )l
>0

LZ(RS) =0 (3.52)

Stronger forms of convergence than (3.52) can also be proved
under suitable hypotheses on the initial state. In particular,
convergence in energy holds if the initial state has finite energy.
A result of this type is formulated at the end of section 4 for
the more general case of an initial-boundary value problem for the
d'Alembert equation in an exterior domain.

4. SCATTERING BY OBSTACLES IN HOMOGENEOUS FLUIDS

The scattering of localized acoustic waves by bounded rigid
obstacles immersed in an unlimited homogeneous fluid is analyzed
in this section. The corresponding boundary value problem is

32y 3%2u . 3%u . 3%u _
»5?—-5-- 3X% @-’-B—X? =(C fort >0, x€Q (4.1)
%%-= 0 for t >0, x € o0 (4.2)
u(0,x) = f(x) and du(0,x)/0t = g(x) for x € © (4.3)

where 2 C R® is an exterior domain (i.e., I' = R® - Q is compact).
This problem will be treated as a perturbation of the Cauchy prob-
lem of section 3.

A formulation of the initial-boundary value problem (4.1) -
(4.3) which is applicable to arbitrary domains 2 C R® was given by
the author in [33,42]. That work provides the starting point for
the analysis of this section and sections 5 and 6. The principal
definitions and results are summarized here briefly.

The formulation makes use of the Hilbert space L,(R) and the
following subsets of L,(Q).
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LI =L,(@) n {u: Bu/bx; € L,(R) for j = 1,2,3} (4.4)
Ly(A,92) =L, n{u: AueLl,@} (4.5)
L3 (4,2) = LI(Q) N L,(A,0) (4.6)

where Au = Bzu/Sxf + 32u/8x§ + 82u/8x§ denotes the Laplacian of u.
The derivatives in these definitions are to be interpreted in the
sense of the theory of distributions. The sets (4.4), (4.5) and
(4.6) are linear subsets of L,(f2). Moreover, they are Hilbert
spaces with inner products meaningful for arbitrary domains Q.

Moreover, it reduces to (4.2)

3
(u,v)1 = (u,v) + Z (Bu/axj,av/'c)xj) 4.7
j=1
(V) 4 = (u,v) + (bu,4v) ' (4.8)
(u,v)1 A= (u,v); + (Au,Av) (4.9)

respectively, where (u,v) is the inner product in L,(Q).

4.1 Definition

A function u € Lé(A,Q) is said to satisfy the generalized
Neumann condition for § if and only if

3
(Au,v) + 2 (8u/8xj,8v/8xj) = 0 for all v € L;(Q) (4.10)
j=1

Note that (4.10) defines a closed subspace

LN(8,2) = 11(A,9) 0 {u: u satisfies (4.10)} (4.11)
in the Hilbert space L;(A,Q). The condition "u € LE(A,Q)" is a
generalization of the Neumann boundary conditiom (4.2). It is
meaningful for arbirary domains . Moreover, it reduces to (4.2)
whenever 9f! is sufficiently smooth (see [42,p.41l] for a discussion).

The construction of solutions of the initial-boundary value
problem (4.1) - (4.3) given below is based on the linear operator
A= A(Q) in L,(R) defined by

p@a) = LY (4,0 (4.12)

Au = -Au for all u € D(A) (4.13)

The utility of this operator is based on the following theorem
which is proved in [42].
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4.2 Theorem
A is a selfadjoint real positive operator in L,({}). Moreover,
D(AY?) = L1(2) and
3
1AY?2u12 = § au/axju2 for all u e D(AY?) (4.14)
j=1

The operator A may be used to construct "solutions in L, (f)"
and "solutions with finite energy" of (4.1) - (4.3), as described
in section 2. The solution in LZ(Q) will be considered here. As
in section 3, if f € L,(}) and g € D(A™Y?) then

]

u(t,x) = Re {v(t,x)} (4.15)
where

exp (~itAY?Yh, h = £ + iA"Y2g (4.16)

]

v(t,*)

The properties of the operator A stated in the theorem above
are valid for arbitrary domains Q C R}, It was shown in [42] that
if  is an exterior domain then A has a continuous spectrum.
Moreover, if Q has the local compactness property (defined below)
then there exist eigenfunction expansions for A in terms of gener-
alized ejigenfunctions which are perturbations of the plane wave
eigenfunctions of section 3. In the remainder of this section the
eigenfunction expansions are described and used to analyze the
structure of solutions of the scattering problem (4.1) - (4.3).
The principal result of the analysis states that the behavior of
the acoustic field for large times is described by an asymptotic
wave function of exactly the same form (3.49) as when there is no
obstacle. The only effect of an obstacle is to modify the wave
profile F(tr,6). Moreover, a procedure is given for calculating
the modified profile when the obstacle and the initial state are
known.

4.3 Distorted plane wave eigenfunctions

Two families of generalized eigenfunctions of A, denoted by
wy(x,p) and w_(x,p) respectively, were defined in [42]. They are
perturbations of the plane wave eigenfunctions w,(x,p) and have
the form

w, (x,p) = w,(x,p) + wi(x,p), p € R® (4.17)

where wi(x,p) and w!(x,p) may be interpreted as secondary fields
which are produced when the obstacle I' = R® - Q is irradiated by
the plane wave w (x,p). Mathematically, wy(x,p) and w_(x,p) must
satisfy
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(0 + |p|?*) w (x,p) = 0 for x € Q (4.18)

ow, (x,p)

——— =0 for x € 30 (4.19)
v

However, they are not completely determined by these conditiomns.
Instead, w,(x,p) is determined by (4.18), (4.19) and the condition
that wi(x,p) should describe an outgoing secondary wave. This is
implied by the Sommerfeld condition for outgoing waves:

ow! (x,p)
—— - ilp| wix,p) = o([x|™H), [x] » =

2l > (4.20)
wy(x,p) = 0(|x|™h), |x] + J

Similarly, w_(x,p) is determined by (4.18), (4.19) and the condi-
tion that w'(x,p) should describe an incoming secondary wave,
which is implied by the Sommerfeld condition for incoming waves:

ow' (x,p) _
———— + i|p| w'(x,p) = o(|x|™H), |x| >

8|x| > (4.21)
W Gep) = 0Clx[™D), [x] - @ |

Of course, if 9% is not smooth then the boundary condition
(4.19) must be understood in the generalized sense of (4.10). A
technical d1ff1culty is caused by the fact that w.(*,p) cannot be
in D(A) = Ly (A 2) because the spectrum of A is continuous. This
is overcome by requiring that

dw, (+,p) € L5 (4, C 4.22)

for all ¢ € D(R®) such that ¢(x) = 1 in a neighborhood of 39.
Generalized eigenfunctions with these properties will be called
"distorted plane waves," following T. Ikebe [16].

The uniqueness of distorted plane waves satisfying (4.18),
(4.20) or (4.21) and (4.22) was proved in [42] for arbitrary ex-
terior domains. However, to prove their existence it was necessary
to impose a condition on 9. To define it let

QR =0 N {x: le < R} (4.23)

L@ = {u: ue€L,@) for every R > 0} (4.24)
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L;,QOC(Q)

L@ n {u: 3u/dx, € Lroc @) (4.25)

for j = 1,2,3}

and define the

4.4 Local compactness property

A domain 2 ¢ R® is said to havi the local compactness property
if and only if for each set $ C L™ »"°%(Q) and each R > 0 the
condition

ful < C(R) for all u€ 8 (4.26)

L} (Q ) -

implies that S is precompact in L,(flg); i.e., every sequence {u }
in S which satisfies (4.26) has a subsequence which converges 1n

L,(Qg). The class of domains with the local compactness property
will be denoted by LC.

The local compactness property is known to hold for large
classes of domains. S. Agmon has proved it for domains with the
"'segment property" [1]. A generalization of the segment property,
called the "finite tiling property' was given by the author in
[42]. As an application of this condition it can be shown that
the local compactness property holds for the many simple, but non-
smooth, boundaries that arise in applications, such as polyhedra,
finite sections of cylinders, cones, spheres, disks, etc. The
following existence theorem was proved in [42].

4.5 Theorem

Let  C R® be an exterior domain such that @ € LC. Then for
each p € R® there exists a unique outgoing distorted plane wave
wy.(x,p) and a unique incoming distorted plane wave w_(x,p).

The outgoing (resp. incoming) property of w!(x,p) (resp.
w'(x,p)) is made explicit by the following corollary.

4.6 Corollary

Under the same hypotheses there exist functions
T, (8,p) € C (S2 x {R® - 0}) such that

ii|plr

wl(x,p) = S———T,(8,p) + v} (x,p), x =716 (4.27)
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where
wy (x,p) = 0(r'?), r>= (4.28)
uniformly for 6 = x/r € 52 and p in any compact subset of R®- {0}.
In acoustics the functions T,(6,p) and T_(8,p) are called the
far-field amplitudes of the distorted plane waves.
4.7 The eigenfunction expansion theorem
Each of the families {w,(+,p): p€ R%} and {w_(+,p): pe€ R’}

defines a complete set of generalized eigenfunctions of A in the
sense described by the following theorems.

4.8 Theorem

For each f &€ LZ(Q) the following limits exist
£,(p) = L,(R*)-1lin J w, (x,p) f(x)dx
£(P A 0,
> (4.29)
£(x) = L,(@)-lim J w, (x,p) f,(p)dp
Moo lplsm = B

where {oy = @ N {x: |x| < M}. Moreover, the operators
o,: L,() - LZ(RS) defined by

o,f = %i (4.30)

are unitary.

The relations (4.29) will usually be written in the symbolic
form

£.(p) = J w,(x,p) £(x)dx, f(x) = J w,(x,p) %+(p)dp
Q - R® ~ T (4.31)

but must be understood in the sense of (4.29).

4.9 Theorem

If {II(\)} denotes the spectral family of A:

(o]

A= J A dII(A) (4.32)
0
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then II(A) has the eigenfunction expansions

nO) £(x) = w,(x,p) £, (p)dp, A >0 (4.33)

llplf/x

In particular, A is an absolutely continuous operator whose spectrum
is the interval [0,).

The last result implies that ®, and ®_ define spectral repre-
sentations for A in the sense of the following corollary.
4.10 Corollary

If ¥(A) is a bounded Lebesgue-measurable function of A > 0
then for all f € LZ(Q)

2 ¥ME(p) = ¥(|p|®) £, (4.34)
These results provide a complete generalization of the
Plancherel theory to exterior domains 2 € LC.
4.11 The eigenfunction expansions and scattering theory
The results stated above imply that the wave functions
v(t,*) = exp (-1tAY?)h, h € L,(Q) (4.35)
have the spectral integral representations

v(t,x) = J | wy(x,p) exp (-it|p|) b, (p)dp (4.36)
. +

Note that (4.36) defines two representations, corresponding to
wy(x,p) and w_(x,p). They will be called the outgoing and incoming
representations, respectively.

The representations (4.36) and the results of section 3 will
now be used to derive the asymptotic behavior of v(t,x) for t > =,
To begin consider an initial state h € L,(R2) such that

h_ € D, R?) (4.37)
Such states are dense in L,(Q) because D, (R®) is dense in L,(R%)

and o_: Lz(Q) > L2(R3) is unitary. The wave function corresponding
to (4.37) is
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v(t,x) = J . w_(x,p) exp (-itlpl) h_(p)dp (4.38)
R

where the integral converges both pointwise and in L,(Q) to v(t,x).

To discover the behavior of v(t,x) for t =+ © substitute the

decompositions (4.17) and (4.27) for w_(x,p) into (4.38) and write
v(t,x) = v (t,x) + v'(t,x) + v'"(t,x) (4..39)

where

v, (t,x) = J . w,(x,p) exp (—itlp|) ﬁ_(p)dp (4.40)
R

v'(t,x) --% J , oxP {-ilp|(x+t)} T_(8,p) ﬁ_(p)dp (4.41)
R

and

v'"'(t,x)

]

|, wi6ep) exp iclol) b_ap 4.42)
R
Note that v (t,x) is a solution in Lz(ga) of the d'Alembert equa-
tion. Indeed, h_ = ®_.h = @0(®§®_h) = h, where
= a% 3
h, = o¥o_h € L,(R%) (4.43)

and

vy (t,*) JRS wy(*,p) exp (—itlpl) ﬁo(p)dp

(4.44)

exp (-itAY?)h

Thus v, (t,x) represents a wave in an unlimited fluid containing no
obstacles. It will be shown that v(t,x) is asymptotically equal
to this wave when t » «©; i.e.,

lim lv(t,*) - vo(t,')H
>0

L@ - 0 (4.45)

To see this note that, in (4.39), v'(t,x) has the form
v'(t,x) = G'"(r+t,0)/r (4.46)

It was shown in section 3 that such functions tend to zero in
L,(R®) when t >~ » (see (3.39)). It is easy to check that (4.37)
implies that G' € L,(R X $?). Finally, condition (4.28) for
w'(x,p) implies that the term v'"(t,x) in (4.39) satisfies
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|v"(t,x)| < M/|x|2 for all le >0 and t € R 4.47)

with a suitable constant M. Hence, the convergence lemma of
section 3, applied to v"' = v - vy - v' implies (4.45) if v'"(t,x)
satisfies the local decay condition (3.41). For v'(t,x) this
condition follows from (4.46). For v(t,x) and v,(t,x) it follows
from the local compactness property. A prgof may be found in
[42]. Thus (4.45) is established for all h €D, (R®). The main
result of this section is the

4.12 Theorem

For all h € LZ(Q) if v(t,*)

exp (—itAl/z)h and vo(t,*)
= exp (- 1tAJ2) (@ ®_)h then

lim [v(t,*) - vo(t,-)llL « = 0 (4.48)
2

Lo

This result follows 1mmed1ately from the special case (4.37)
proved above, the density of D R%) in L, (R ) and the unitarity
of the operators exp (-itAl 2) exp (- 1tA12), ¢, and O_

4,13 Corollary

If Jo: Ly(R) ~ L, (R®) is deflned by Jqu(x) = u(x) for all
x € Q and J u(x) =0 for all x € R® - Q then the strong limit

W+ = W_!_(Aé/z,Al/z,JQ) =s~1im exp (itAé/z)JQ exp (—itAI/Z) (4.49)

o
exists in L, () and W, L, () ~ L2(R3) is given by
_ &%

W, = 0 (4.50)
In particular, W+ is unitary.

The operator W, is the wave operator for the pair A%/z, AV
in the sense of the time dependent theory of scattering. The
equivalence of (4.48) and (4.50) is proved in [42].

4 .14 Asymptotic wave functions in L,(R)
The wave function in LZ(RS) defined by
vy (t,+) = exp (-itA¥®)hy, h, = &0 h (4.51)

has an asymptotic wave function in LZ(Ra), by the results of
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section 3; i.e.,

Lim v (£, - Ve (gsy O (4.52)
where

v (t,%) = 6(r-t,0)/r, x = 0 (4.53)
and

G = Gh, = 03,0_h (4.54)

Equations (4.48), (4.52) and the triangle inequality imply the

4.15 Theorem

For each h € L,(Q) the wave function vw(t,') defined by
(4.53), (4.54) is an asymptotic wave function in L,(R) for v(t,*)
= exp (—itA}/z)h; that is,

lim Iv(t, <) - v (t,*)l
t->00

L,(2) =0 (4.55)

4 .16 Corollary

The profile of the asymptotic wave function is given by

6(t,0) = ﬁ—lﬁ TP § (06) (-ip)dp (4.56)
0

where the integral converges in L,(R X s2).

This follows immediately from (4.54) and (3.31). Note that
the only difference between the asymptotic wave functions for R®
and those for { is that h = ¢ h is replaced by h_ = ¢_h.

4,17 Asymptotic energy distributions

If the initial state h € L,({2) has derivatives in Lz(ﬁ) then
the corresponding profile G and asymptotic wave function v (t,x)
will have corresponding derivatives. In particular, the following
result was proved in [42].
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4.18 Corollary

If oh(x)/9x; € L,(Q) for j = 1,2,3 then dv(t,x)/0t and
Bv(t,x)/BXj are in L,(R) for all t € R and j = 1,2,3 and

lim §3v(t,*)/3t - vo(t,')HLZ(Q) =0 }
t-o0
> (4.57)
Lim I13v(t,*)/9x. - v.(t,)l =0, j=1,2,3
200 h| | L, (%) J
where
v‘;(c,x) = 6 (r - £,0)/r, k = 0,1,2,3 (4.58)
G, (T,8) = -3G(T,0)/dT (4.59)
G (T,8) = ~Go(T,0)8,, 3 = 1,2,3 (4.60)

and G(t1,6) is given by (4.56).

The energy integral for a homogeneous fluid is given by
2

;3
E(u,K,0) = 5 J < [Mﬁ—’i} £ 3 [@-‘%3‘)—] > dx  (4.61)
K i j

if p =1, ¢ =1, The last corollary implies that if u(t,x)
= Re {v(t,x)} is a solution with finite energy in ! then the
energy in any measurable cone

C={x=18: r>0, 6 €c, CSs? (4.62)
has a limit as t + ® which can be calculated from the initial
state u(0,x) = £(x), 9u(0,x)/0t = g(x). The following result was
proved in [42].
4.19 Theorem

. If f € L;(Q), g € L,(R) and if C is any measurable cone in
R° then

lim E(u,C N Q,t) =-% J |1p|E_(p) + 1&8_(p)|2dp (4.63)
C

£t

5. PROPAGATION IN UNIFORM TUBULAR WAVEGUIDES

The propagation and scattering of localized acoustic waves
is simple and compound tubular waveguides with rigid walls, and



SPECTRAL AND ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVE PROPAGATION 415

filled with a homogeneous fluid, is analyzed in this section and
the next. The simplest case is the uniform semi-infinite cylinder,
closed by a plane wall perpendicular to the axis. Other special

-~
———

Figure 1. Uniform semi-infinite cylindrical waveguide.

cases which are of interest in applied acoustics include the cyl-
indrical waveguide terminated by a resonator, the tubular

o e mmm o o v ] e e

Figure 2. Cylindrical waveguide terminated by a resonator.

waveguide with a bend, or elbow, coupled cylindrical waveguides
with different cross-sections, the T-joint in a waveguide, uniform
waveguides containing an iris, waveguides containing obstacles,

and many others.

The most general compound tubular waveguide considered here
is described by a domain Q2 C R® of the form

=0, U8 US) U-=-erUS (5.1)
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Figure 3. Waveguide with elbow.

Figure 4. Coupled waveguides.

Figure 5. Waveguide with T-joint.
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———
-
~

Figure 6. Waveguide with iris.

where {; is a bounded domain and 51,52s"‘,5m are disjoint uniform
semi-infinite cylinders. If 2 is a waveguide with rigid walls,
filled with a homogeneous fluid, the corresponding boundary value
problem is again problem (4.1) - (4.3), but for a domain with the
structure (5.1). Hence, the Hilbert space formulation of (4.1) -
(4.3) given at the beginning of section 4, which is valid for
arbitrary domains Q C R®, provides a starting point for the anal-
ysis of the waveguide problems. The remainder of this section
presents the spectral and asymptotic analysis of acoustic waves
in a uniform semi~infinite cylindrical waveguide. The general
case (5.1) is analyzed in section 6.

5.1 The uniform semi-infinite cylinder
It will be convenient to use coordinates

(%;,%,,¥) = (x,y) € RS (5.2)

such that the y-axis lies in the waveguide. With this choice the
waveguide may be described by a domain of the form

S=1{(x,y): x€Gandy >0} (5.3)

where G C R? defines the waveguide cross section. It will be
assumed that G is bounded and that S € LC,

The spectral analysis of the operator A = A(S), acting in
L,(S), will be based on the spectral analysis of A(G) acting in
L,(G). It can be shown that the hypothesis S € LC implies that

G € LC as a domain in R%. This property and the boundedness of
*
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G imply that A(G) has a discrete spectrum with eigenvalues

0 =Ag A S Ay g oee (5.4)
such that

lim A, = o (5.5)

joo

Each eigenvalue has finite multiplicity and it is assumed that in
the enumeration (5.4) each eigenvalue is repeated according to its
multiplicity. There exists a corresponding orthonormal set {¢,(x)}
of eigenfunctions which is complete in L,(G). Each ¢; satisfids

¢j € DA(B)) = L§(A,G) and A(G)¢s = Aj¢j' Formally, the ¢j(x) are
solutions of the eigenvalue problem

5?2 32
8—X?+5§%+A¢=Oforxec ]
> (5.6)
99 _
Ty 0 for x € 9G J

0f course, if 9G is not smooth then the boundary condition is the
generalized Neumann condition defined in section 4. It is known
that the first eigenvalue A, = 0 is simple with normalized
eigenfunction

¢0(x) = Ta%:5-= const. (5.7)

where |G| is the Lebesgue measure of G.

5.2 The eigenfunction expansion

The eigenfunctions of A may be constructed by separation of
variables. From a more sophisticated point of view, A is a sum of
tensor products

A=AG) 1 +1¢% A(R+) (5.8)

where Ry = {y: v> 0}. It follows that the eigenfunctions of A
are products of eigenfunctions of A(G) and A(R;). The spectral
analysis of A(R,) is given by the Fourier cosine transform in
LZ(R+):

) /2 M
f(p) = LZ(R+)—lhn kﬂ J cos py f(y)dy (5.9)
Moo 0
1/2 M R
f(y) = L,(Ry)-1im {F] J cos py f(p)dp (5.10)
Moo : 0
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“f"Lz(R+) = "f“LZ(R+) (5.11)

It follows that a complete normalized family of generalized eigen-
functions for A is defined by

2 1/2
Wj(XQY9P) = (”]

™ cos py (bj(x), p E R+’ j = 0’1,2,...

(5.12)

The Plancherel theory for A(G) and A(Ry), quoted above, implies
that

M
CE () = Lp(Ry)-Lim v G,y5p) £(x,y)dxdy (5.13)
Mo o g

exists for all f € L,(S), and the operator ¢.: L,(S) — LZ(R+)
defined by ij = fj has range ®jL2(S) = LZ(Ri). Moreover

2 - o2
HfHLz(S) z “fj"Lz(R+) (5.14)
3=0
and
N M
£(x,7) = L,(5)-lim § v, (x,y,p) £;(p)dp (5.15)
M, N-o 3=0 . J

The relations (5.13) and (5.15) are frequently written in the more
concise symbolic form

%j(p) = f wj(x,y,p) f(x,y)dxdy (5.16)
S
and
f(x,y) = | J Wj(x,y,p) %J.(p)dp (5.17)
R
3=0 +

but must be understood in the sense of (5.13) and (5.15).

Note that, formally, %.(p) is just the L,(S) inner product of
f(x,y) and the eigenfunctioﬂ (5.12) . For a more detailed discussion
of this expansion see [21].

The generalized eigenfunctions (5.12) are locally in D(A) and
satisfy
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AW, (*,*,p) = =bw.(*,*,p) = (p2 + A )w.(*,", 5.18
wy (*505P) wJ( p) = (p 34 p) ( )

This fact and the Plancherel theory imply the following construc-
tion of the spectral family of A.

5.3 Theorem

1f {II(A),A > 0} denotes the spectral family of A = A(S) then
I(A) has the eigenfunction expansion

VA—Aj
M) f(x,y) = | J W (5,5,P) %j<p>dp
0
A<
J—.
(5.19)
/k—kj 112 X
-1 ) cos ey By dp] 0G0

AL<A
3=

for all A > 0. In particular, A is an absolutely continuous oper-
ator whose spectrum is the interval [A,,®) = [0,%).

Note that the sum in (5.19) is actually finite by (5.5).
(5.19) implies that the eigenfunction expansion (5.17) defines a

spectral representation for A in the sense of the following
corollary.

5.4 Corollary

If ¥Y(A) is any bounded Lebesgue-measurable function of A > 0
then for all f € LZ(S)

N M

Y(a) £(x,y) = Ly(S)-lim w, (x,y,p) ¥(p?+A,) £.(p)dp
i O 773
j=0 (5.20)

The eigenfunction expansion (5.17) defines a decomposition of

the Hilbert space L,(S). To describe its properties let f € LZ(S)
and define

Pj f(x,y) = [J 6. (x") f(x',y)dx' | ¢.(x)
c 3 A
(5.21)

fj(y) ¢j(X), jo=0,1,2,0"
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where
f.(y) = J o.(x") £f(x',y)dx"', j = 0,1,2,°°° (5.22)
i c d

The orthonormality of {¢.} in L,(G) implies that {P.: j= 0,1,2,°0}
defines a complete famil} of orthogonal projectionsJin L,(S):

Py = By, PP = 8By for 3ok = 0,1,2,00 (5.23)

) P.=1 (5.24)
i=0

Moreover, a simple calculation gives

¥(A) P,f = P YA)E - jR w YRR A E ()ap (5.25)
+

for j = 0,1,2,*++. 1In particular,

P.f(x,y) = w, (x,y,p) £.(p)dp (5.26)
N R4 N
+
*
An equivalent operator-theoretic representation is Pj = ®j¢j. If

H; = PiL,(8) = {£Ge,y) = £5(06,G): £y € L,(RD} (5.27)

then (5.23) - (5.25) imply the

5.5 Corollary

The direct sum decomposition

0

L,(8) = ) ® i (5.28)
3=0

is a reducing decomposition for A.

Note that each ¥, is isomorphic to LZ(R+) under the mapping
£G,y) » £5() defined by (5.22).
5.6 Solutions in L,(S) of the propagation problem

Only the case where £ € L,(S) and g € D(A"Y?) will be dis-
cussed. As in sections 3 and 4, the solution in L,(S) of the
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propagation problem (4.1) - (4.3) has the form

u(t,x,y) = Re {v(t,x,y)} (5.29)

where

It

v(t,*,*) = exp (-it A¥?)h, h = £+ i Y25e L (S)  (5.30)

The decomposition (5.28) implies that

[e o]
V(taxay) = Z Vj(t,X:Y) in LZ(S) (5.31)
j=0
where
Vj(tsx,Y) = Pjv(t’x’y) = Vj(t’Y)¢j(x) S LZ(S) (5-32)
with
5 1/2 -itw, (p)
v,(t,y) = {—] J cos py e ] h. (p)dp (5.33)
J T R J
+
and
= 2 /2 /2
mj(p) (p° + Aj) > Aj >0 (5.34)

In the theory of waveguides (5.31) is called a modal decomposition
and the partial waves v (t,x,y) are called waveguide modes.
vi(t,x,y) will be said to be in mode j of the waveguide S. 1In
particular, mode O

Vo(tQXQY) = Vo(t,Y)/|G|1/2 (5.35)

will be called the fundamental mode of S. It is not difficult to
show that

uy (t,7) = Re {v,(t,y)}

v+t (5.36)
2, (-0 + £, D)} + 1 g, (v dy’

y-t

where £ (-y) = f,(y) and gy(-y) = g,(y). Note that the modal
waves propagate independently in the sense that different modes
are orthogonal in L,(S) for all t.

The spectral representation (5.31), (5.32), (5.33) will now
be used to study the asymptotic behavior for t - © of solutions
in L,(S). Because of the independence of the modes it will be
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enough to study the individual modal waves (5.33). The substitu-
tion 2 cos py = exp (ipy) + exp (-ipy) gives the decomposition

vy (6,y) = v’;‘?(t,y) + v (e,y) (5.37)
where
+ _ 1 i(YP-twj (P)) ~
vy (t,y) = vy (t,-y) = Tz JR e hj (p)dp
+ (5.38)

and the integral converges in L,(R,) (and in L,(R)) for each
hj € L,(Ry). The special case of the fundamental mode is discussed
first.

5.7 Asymptotic wave functions for the fundamental mode

This case is closely related to that of section 3, since
wy(p) = p for all p € Ry. Thus

1 i(y-t)p ¢
v?(t,y) = n iz J el(y )p hy(p)dp = G, (y-t) (5.39)
R
where
1 i ~
6, () = i J VP h (p)dp € L,(R) (5.40)
Ry

Moreover, it is easy to verify by direct calculation that vg(t,y)
= vj(t,—y) = G,(~y-t) + 0 in LZ(R+) when t » «, Thus

Vo (t,3) = Go(y-t) (5.41)
is an asymptotic wave function for v (t,y) in L,(Ry):

lim lv,(t,*) = v (t,*)l 0 (5.42)

o L, (R+) -
for all ﬁo € LZ(R+).

For the higher order modes j > 1 the functions w, (p)
= (p2+ 21.)Y? with >‘j > 0. For these cases the spectral integrals
(5.38) all have the same form, differing only in the value of A
and the function hj € L,(Ry). The asymptotic behavior of these
integrals may be determined by the method of stationary phase, as
follows.
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5.8 Application of the method of stationary phase

Consider the wave function defined by

v(t,y,\,h) = (2m~Y2 f exp {i(yp- tw(p,A))Ih(p)dp (5.43)
R

where +

wp,A) = (p2+N) Y2 > (V2 > 0 (5.44)
and

helL,(R) (5.45)
The phase function

6(p,A,y,t) = yp - tw(p,)) (5.46)

is stationary with respect to p if and only if

30(p,A,y,t)/3p =y - tdw(p,A)/d3p = 0 (5.47)
or

Yy _ M = =

e e (GO - (5.48)

The function U(p,A) defined by (5.48) is the group velocity [5]
for the wave function (5.43). Note that

aU(p,A) _ 92w (p,A) - A
ap dp? (p2+))3/2

>0 (5.49)

and hence U(p,A) is a monotone increasing function of p. Moreover,
0 <U(p,A) <1 forall p>0and A >0 (5.50)

Hence for t > 0 equation (5.48) has the unique solution

y 2 1/2 2 1/2
e [1—((3/7;1)2 A) - {tzz ;zJ z0 (5.51)
if

0cy/e<l (5.52)

and has no solution for other positive values of t. The principle
of stationary phase asserts that for large values of y2+t2 the
stationary point (5.51) will make a contribution
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© ei(yp—tw(p,k)—ﬁ/4)
v (t,y,A,h) = x [‘E) h(p), (5.53)
(£3U(p, \) /9p) V2

- )
t2 - y2

to the integral (5.43), where Xx(y/t) is the characteristic function
of the set (5.52). More precisely, if h € D(Ry) then the following
error estimate is known [2,23].

5.9 Theorem
Let h € D(R+) and define the remainder q(t,y,A,h) by
v(t,y,A,h) = v (t,7,A,h) + q(t,y,A,h) (5.54)

Then there exists a constant C = C(A,h) such that

|q(t,y,A,h)] < C/(y2+-t2)3ﬂ* for all y€ Rand t > 0 (5.55)
It follows from (5.54) and (5.55), by direct integration, that
for all h € D(R+)

lim Iv(t,*,A,h) =~ v (t,*,A,h)l

=0 (5.56)

The stationary phase method is not applicable to (5.43) when A = 0.
However, the results for this case are described by the same
equations if

vm(t,y,O,h) = (ZTr)_I/2 J exp (iyp) h(p)dp (5.57)
R

+
With this notation, (5.56) with A = 0 is equivalent to (5.42).

The estimate (5.55) implies (5.56) for all h € D(R For

)
more general h € L2(R+) the estimate (5.55) may not holg. Never-
theless, the following results hold.

5.10 Theorem

For all A > 0 and all h € L2(R+)

v (t,*,A\,h) € L,(R,) for all t # 0 (5.58)
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t - vm(t,',k,h) 'S LZ(R+) is continuous for all t # 0 (5.59)

v (e, e 52,01 < [l for all t # 0 (5.60)

L,(R) L,(R})

Moreover, the relation (5.56) holds for all h € LZ(R+).

Properties (5.58) - (5.60) follow from the definitions (5.53),
(5.57) by direct integration. Moreover, the validity of (5.56) for
all h € L,(R,) follows from the special case h € D(R+), the density
of D(Ry) in L,(R;) and the uniform boundedness in t of
ﬂV(t,-,A,h)ﬂLz(R+) and lv (t,°,k,h)ML2(R+). More detailed proofs

may be found in [22,40].

5.11 Asymptotic wave functions for the higher order modes

Define the modal asymptotic wave functions by

V?(t,y) = vm(t,y,Aj,ﬁj), jo=0,1,2,%°° (5.61)
Then (5.38), (5.43) and (5.56) imply

lim nv;(t,-) - V?(t,*)“ 0, § = 0,1,2,°¢* (5.62)

>0 L2(R+) -

Moreover, (5.38) for vg and (5.43) imply

Vj(t,}’) V(t,“}’,)\j,hj)
(5.63)
(2m)~1/2 J exp {-i(yp+ tw(p,A,)} h, (p)dp
R h| h|

+

The stationary phase method, applied to (5.63), implies that

lim v, (t, ) =0 (5.64)
tao  J L,(R)
because the phase yp + tw(p,A.) in (5.63) has no stationary points
when y > 0 and t > 0. Combining (5.37), (5.62) and (5.64) gives
[ee]
1im v, (t,*) - v.{(t,*)l =0 5.65)
Lim by (6 i, @y (
for all h, € L,(R,) and j = 0,1,2,¢++. The results and the
decomposi%ion (5.31), (5.32) imply the
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5.12 Asymptotic convergence theorem

For all h € L,(S) define

[ee]

viexy) = [ viey) 6, (6,y) €8 (5.66)
320
Then
v(t,*,*) € L,(S) for all t #0 (5.67)
t > v(t,*,*) € L,(S) is continuous for all t # 0 (5.68)
v (ty*, I L,(s) < < "h"LZ(S) for all t # 0 (5.69)
and
iiz Iv(ty,e,*) = v (t’.’.)“LZ(S) =0 (5.70)

The proof of this result will be outlined. First, note that
the convergence in L,(S) of the series in (5.66) follows from the
orthogonality of its terms in L,(S), (5.60) which implies

"Vj(t")¢j"L2(S) = ij(t,')HLz(R+) < Ih, "L (R ) (5.71)
for all t # 0 and (see (5.14))
2 oo
It} L(8) = 7 I, ui (R) (5.72)
3=0

Properties (5.68) and (5.69) follow from (5.59) and (5.60), applied
to v (t,y) Finally, to verify (5.70) note that for j = 0,1,2,--"

uvj<t,->—v‘;f’<t,°)||L2(R+) SIvyED Gy * uv‘;."(t,->uL2(R+)
(5.73)
< 2lh, e L®)
for all t # 0. It follows that -
Iv(t,*,*) - v (t, s )IIL (S) Z Hv (t,*) - vy (t, )IIL (R )

§=0
(5.74)
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N o0 (5.74 Cont)
v, (t, ) = v (t, )2 h.y2
< Dlvye) - v, )"L2<R+) +4 ) 1By (x,)

for N = 0,1,2,+++. Fixing N and making t - ® gives, by (5.65)

Tim Iv(t,*,*) - v (t,*,*)I2 < 4 1h.)2 (5.75)
- L S4 1 Il @)
J=N+L

for N = 0,1,2,°+. Thus (5.70) follows from (5.72) and (5.75).

If £ € LI(S) = D(AY?) and g € L,(S) then the same method
can be used to show convergence in energy:

1im ECu - u ,S,t) = 0 (5.76)

>

where um(t,x,y) = Re {vw(t,x,y)} but the details will not be
recorded here.

6. SCATTERING BY OBSTACLES AND JUNCTIONS IN TUBULAR WAVEGUIDES

The analysis of section 5 is extended to compound tubular
waveguides in this section. The mathematical problem is the
initial-boundary value problem (4.1) - (4.3) for an unbounded
domain @ C R® of the form

Q=0Q,U8 Ut Us (6.1)

where {i; is a bounded domain and §;,*++,S are disjoint uniform
semi-infinite cylinders. Examples include waveguides of the types
described at the beginning of section 5 and many others. It will
be assumed that {2 € LC.

6.1 Notation

It will be convenient to think of R® as a 3-dimensional
differentiable manifold. The generic point of R® will be denoted
by q. A special Cartesian coordinate system

S5 vH = &%y e r? (6.2)

may be associated with each semi-infinite cylinder Sa (a=1,**+,m)
in such a way that

s, = laeR: x™(q) € G, and v*(q) > 0} (6.3)
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where G. C R is a bounded domain. The assumption that £ € LC
implies that G, € LC for a = 1,*++*,m and hence that each A(Ga) has
a discrete spectrum with eigenvalues

0= Ayp S hgy Sy S0 (6.4)
such that
tig Aaﬁ = © (6.5)

and corresponding eigenfunctions
Oy 1/2 o Oy aee
by = 1/16 175, 9y )5 9y, (2 (6.6)

which form a complete orthonormal sequence in Lz(Gq)'

6.2 Solutions of Aw = Aw in Sa

Suppose that w is locally in D(A); i.e., ¢w € D(A) for every
¢ € D(R®). Then the completeness of the eigenfunctions (6.6)
implies that .

oo

w(q) = 7 wdx(ya) 0, (xY) for all q € 5 (6.7)
2=0

where x* = xu(q), ya = ya(q). Moreover, if
Aw = Aw in Sa (6.8)
then the coefficients wul(ya) will satisfy
W + A=A ) w (3% =0 for a1l y* > 0 (6.9)
al al’ "ol :
In particular, if it is assumed that
A# Ay @ = Loeeumg L =0,1,2,°° (6.10)

then

ay _ ~+ . a - o o
W (y) = Cyy exp {ivA Agp ¥ I+ Coq SXP {-1/A A ¥ }(6.11)
where, for definiteness, u”z >0 for pu > 0 and
_ 1/2
(A Aug) for A > Xul

A=A = < (6.12)
ol . /2
1(1@2—-A) for A < Aul
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6.3 Eigenfunctions of A and non-propagating modes

It was discovered by F. Rellich [27] that the operators A for
waveguide regions of the form (6.1) may have a point spectrum. A
point A € R is in the point spectrum of A if and only if there is
a non-zero function w € D(A) such that Aw = Aw. In particular,
the requirement that w € L,(Q2) implies that in the expansions
(6.7), (6.11) the coefficients C¥, = C7, = 0 for A > A,y and

z al ol ol
Cyg = 0 for A < Xul' Thus any eigenfunction of A must have the
form

w(q) = Ioochexp (=04 - MYy o N (6.13)
{2:A<Aal}

for all q € S . 1In particular, the eigenfunctions are exponentially
damped in eac% cylinder Sa'

D. S. Jones [17] has shown that the point spectrum of A is a
discrete subset of (0,%); i.e., each eigenvalue has finite multi-
plicity and each finite subinterval of (0,©) contains at most a
finite number of eigenvalues. Thus if the point spectrum of A is
not empty then there exists an M such that 1 < M < © and A n)’

1 £n <M, is an enumeration of the eigenvalues of A, each repeated
according to its multiplicity. It may be assumed that

0 < A(n) < X(n+l) for 1 <n <ntl <M (6.14)

The corresponding eigenfunctions will be denoted by w . The
subspace spanned by {w i 1l $n< M} will be denoteén%y HP(A)
and called the subspace of discontinuity of A [18]. Thus

PQ@) = {w = z Ch Yig® Z |cn|2 < oo} (6.15)
1<n<M 1<n<M

It is known that
L, = ¥#Pa) @ 1) (6.16)

where HC(A), the orthogonal complement of 3P (A) in L,(®), is that
largest subspace of L,(Q) on which the spectral measure of A is
continuous. ¥HC(A) is called the subspace of continuity of A [18].
Moreover, (6.16) is a reducing decomposition for A [18].

If the initial state of an acoustic field in 9 satisfies
u(0,*) = £ € HP(A) and du(0,+)/dt = g € HP(A) then h = f + 1A~2g
€ #P(A) and hence
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exp (-itA?) h(q)

v(t,q)
(6.17)

It

iy 1/2

Z C(n) ©XP (—1tk(g)) w(n)(q)
1<n<M
It follows that the energy of the acoustic field u(t,q) = Re{v(t,q)}
in any bounded portion of §! is an oscillatory function of t. 1In
particular, there is no propagation of energy in the cylinders Su’
For this reason the eigenfunctions Y(n (q) are called non-
propagating modes of the waveguide. By contrast, it is shown
below that for fields with initial state in #®(A) the energy in
every bounded portion of @ tends to zero when t + ® and hence all
the energy propagates outward in the cylinders Sa'

6.4 Generalized eigenfunctions of A

The operator A has two families of generalized eigenfunctions,
analogous to the functions wi(x,p) and w_(x,p) of section 4, each
of which spans the subspace H®(A). The structure and properties
of these functions are described next.

Consider a single term in the expansion (6.7) for the cylinder
S . It has the form (cf. (6.11))

w0 (@) = (cgz exp {1/A- %, v}
(6.18)
+ ¢y exp (=iVA= 0, ¥'D) 9, (P

where q © (xa,yu). Assume that A > xu%’ so that (6.18) represents
a propagating mode in Sa’ and write

p=O0 -2 >0 (6.19)
and

1/2 — - 2 1/ 2 1/2
A = waQ(P) (p~ + Aul) > xaﬁ (6.20)

If one associates a time-dependence exp {-iAl 2} = exp {-iw (p)t}
. . . ol
with (6.18), as in the spectral representation of v(t,*)
= exp (—itA}/z)h, then
w_,(q) exp {-iw_,(p)t} = €, exp {i(py® -0, (») )}, (x™)
ol ol ol ol ol
(6.21)
+ C(-)(-JL exp {—i(pya+ wuz(p) t) }¢0L5Z,(XOL)
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is the sum of an outgoing wave in S,, with coefficient C;l’ and an
incoming wave with coefficient Cjg. For this reason, a solution
of (6.8) of the form

Cry exp (1py™) 0y, M) (6.22)

will be called an '"outgoing' wave in Sa in mode £, while a solution
of the form

Cop exp (-ipy™) ¢, (=) (6.23)

will be called an "incoming" wave in Sy in mode %. Note that this
terminology is based on the convention that the time-dependence is
exp (- iwaz(p)t), as in (6.21). 1If a time-dependence exp (1wu (p)t)
were used it would be necessary to interchange the terms outg01ng
and "incoming.'

In the case of the uniform semi-infinite cylinder of section
5, m is equal to 1 and the generalized eigenfunctions have the form

WQI(X’YQP) = —(‘2'1%)_17'2‘ €Xp (iPY) d)Q(X)
(6.24)

+ -(Z—ﬂl)l—/z exp (-ipy) ¢, (x)

Thus they are the sum of an incoming and an outgoing wave in mode
%, with equal amplitudes and phases. This symmetry is due to the
symmetry of the waveguide. 1In the general case of a compound
waveguide (6.1) it is possible to prescribe the amplitudes and
phases of the incoming (resp., outgoing) waves in each cylinder S
and mode %. The amplitudes and phases of the outgoing (resp.,
incoming) waves in each cylinder Sg and mode m are thereby deter-
mined. The most useful generalized eigenfunctions are those that
have an incoming (resp., outgoing) wave of prescribed amplitude
and phase in a single prescribed cylinder So, and mode . They may
be described as follows.

6.5 Definition

+ The mode (o, %)-outgoing eigenfunction for 2 is the function
wuz(q,p) defined by the properties

w! (+,p) is locally in D(A) (6.25)
(A = wl(p) W;R(q,p) = (0 + wéz(P))W;z(q’P> =0 (6.26)

for all q € @ and
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$
w&(q,p) = T:Z—T?L;‘lﬁeXP (-ipy™ ¢M(xa)
- (6.27)
+ ) ct (p) exp {ivp2+ X _, - A yB}d) (XB)
af, fm ol Rm Bm
m=0

for all q € Sg (B =1,2,*++,m). Similarly, the mode (a,2)-incoming
elgenfunctlon for { is the function w (q,p) defined by the prop-
erties that w Q( ,P) is locally in D(A% (A%—wug(p)) (q p) =0
for all q € Q and, for q € SB (B=1,2,°-"

S
v o(d,p) = (T%ﬁl—p—exp (ipy™) ¢M(xq)
® (6.28)
+ Ty an(®) exp (iVRTEA = A v hog ()
m=0

—i/D? Z 2
where -ivp 4.Aa2 ABm < 0 for ABm > Aal + p“©.

The eigenfunction wgz(q,p) may be interpreted physically as
the steady-state acoustic field in the waveguide  due to a single
incoming wave (6.23) in cylinder S, and mode %, with amplitude and
phase defined by Cal(P) 1/(2W)lé{ and no incoming waves in the
other cylinders or in the other modes of cylinder Sy- The ampli-
tudes and phases of the corresponding outgoing waves are defined by
the coefficients ng Bm(p) which are determined by the incident wave
and the geometry of {i. Note that, in general, an incoming wave in
mode (&,%) will produce outgoing waves in all the cylinders and
modes; i.e., scattering produces coupling among the cylinders and
modes.

The form of the exponential which multiplies ¢ (xB) in (6.27)
is determined by the requirement (6.26). Note that the sum in
(6.27) includes propagating modes w1th Aem < Age t p? and modes
"beyond cutoff" with XBm > Ayg t p? The latter decrease exponen-—
tially when yB > o,

The elgenfunctlons wak(q,p) have an 1nterpretat10n analogous
to that of wug(q p), but with "outgoing" and "incoming" inter-
changed. It is easy to verify from the defining conditions that
the two families satisfy the relation

W0 (ap) = wzg(q,p) (6.29)
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The case of the uniform semi-infinite cylinder is a very spe-
cial case in which m = 1 (so that no index & is needed) and

wi(q,p) = w,(q,p) = w,(x,¥,p), ¢ * (x,¥) (6.30)
2 9 3

(see (6.24)). Moreover, in this case the symmetry implies that
there is no coupling between different modes:

Cz,m(p) = 8y /(21 1/2 (6.31)

Existence and uniqueness theorems for the eigenfunctiomns

wéz(q,p) were proved in [21]. The following notation will be used
to formulate them.

2, () = {p € Ry: p? + Mgy € GP(A)} (6.32)
where OP(A) = {\ = A(n): 1 <n <M} Similarly,
zM(GB) = {peRr: p? + Aoy € G(A(GB))} (6.33)
where O(A(GB)) ={) = Am: 2 =1,2,*++}., Finally
n
Zyg = Zog (W) Y U Zog () (6.34)
B=1

and

m co
zZ = U U Zyy (6.35)

o=l 2=1

Note that the information on the spectra of A(Gu) and A given
above implies that each of these sets is a denumerable subset of
R,. The results of [21] imply the following theorem.

6.6 Theorem

Let {2 € LC be a waveguide domain of the form (6.1). Then for
each pE€ R, - Z, each & = 1,***,m and each £ = 1,2,+** the eigen-
functions w$2<"P) and w&l(',p) exist and are unique.

6.7 The eigenfunction expansion theorem

The families {W&Q(‘,p)t PE R -Z; a=1,°°°,m; 2£=0,1,2,°°*}
and {W&R(',p): pPE R -Z; a=1,**+,m; 2=0,1,2,+++} define two
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complete sets of generalized eigenfunctions for the part of A in
the subspace of continuity JH©(A). The eigenfunction expansions,
which are of the Plancherel type described in the preceding sec-
tions, may be formulated as follows.

6.8 Theorem

Define
s . ={qeRr® x*(q) € ¢ and 0 < y*(q) < M} (6.36)
o,M a
and
= U eeo e
QM 2, SI,M U U Sm,M (6.37)

Then for all f € L,(R) the limits

£,0(P) =L, (Ry)-1im J wzﬁ(q,p) £(q) qu (6.38)
Moo Q
M
exist, where dV_ is the element of Lebesgue measure in R More-
over, the opera%ors ¢§2: L, () +-L2(R+) defined by @izf = 52
have range L,(Ry) and, if PC¢ denotes the orthogonal p%ojection of
L, () onto #°(A) then

m [e o)
1PC£) 2 - 1E )2 6.39
L,(S) I 115, L, (Ry) (6.39)
a=1 2=0
for all £ € L,(R), and
m N M
+ At
P°f(q) =L, @) -lim ) ) J W0 (45P) f&Q(p)dp (6.40)
M, N>
o=1 2=0 0

The relations (6.38) and (6.40) will be written in the
symbolic form

£ = J[ Vg (0,) £(a) 4V, (6.41)
Q
m [
c + ox
PEe) = ] ] { V(2P £, (P)dp (6.42)
o=1 2=0 ‘R

+
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but they must be understood in the sense of (6.38), (6.40). The
following corollaries are almost immediate; see [13,21].

6.9 Corollary

For each f € L,(Q) the limits

* X + ak
£o0@ = L,@-1im | w_,(q,p) E o (p)dp (6.43)
Moo 0
exist and
SR
(fal’me)Lz(Q) = 0 whenever (a,%) # (B,m) (6.44)
Moreover, "
m o0
Ce +
= ] ] £, (6.45)
o=1 =1

6.10 Corollary

Define

= e }
Iy =16, €L,: £€L,@) (6.46)

4
Then each J(y is a closed subspace of H(a), ﬂég and ﬂém are
orthogonal whenever (a,%) # (B,m) and

m © m ©
W=y e, =1 | erx, (6.47)
a=1 =1 o=l 2=1

The eigenfunction expansions (6.40) provide the following
construction of the spectral family of A in #“(A).

6.11 Theorem

1f {II(A\): X > 0} denotes the spectral family of A then

m VA—AGQ
MVP°t(@ = | ] v (4,p) o, (p)dp (6.48)

a=1 Aqgfk 0
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for all A 2 0. 1In particulaf, AP is an absolutely continuous
operator whose spectrum is [0,®).

Note that the sums in (6.48) are actually finite because
g > * when & > «, (6.48) implies that the eigenfunction expan-
sions (6.40) define spectral representations for A in the sense
of the following corollary.

6.12 Corollary

If Y(A) is any bounded Lebesgue-measurable function of A > 0
then for all f € () = PCLZ(Q)

m oo
YW@ = J ] W, (@) ¥(p? + ) ) Es ()dp (6.49)

o=1 %=1 R+

It follows from (6.47) and (6.49) that the eigenfunction ex-
pansions (6.40) define reducing decompositions of H®(A). More
precisely, the following generalization of the results of section
5 is valid [13,21].

6.13 Corollary

+
The operator POLSL deflned by Podlf = f&g is an orthogonal pro-
jections of L,(f2) onto H“l and

m [ee]
c _ +
=] ] Py, (6.50)
o=l 2=1
Moreover,
* *
Puzﬂ(k) = H(A)Pul for all A > 0 (6.51)

and hence (6.47) defines reducing decompositions for APC.

The surjectivity of @ég L,(®) ~ L (R ), the definition of

P&,SL and (6.43) imply that for all o =1, °",m and £ = 1,2,°°¢

pt + + 4
aQ Qaﬁ Qal’ ®u2 Qal (6.52)

In particular the elgenfunctlon mappings ®u2 are partial isometries
[18] with initial sets ﬂLQ and final sets (R ).
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6.14 Solution in “(A) of the propagation problem

Only the case where £ € L,(Q) and g € D(A™Y2) will be dis-
cussed here. For such initial states it follows, just as in
sections 3, 4 and 5, that the solution in L,() of (4.1) - (4.3)
has the form

u(t,q) = Re {v(t,q)} (6.53)

where

v(t,) = exp (-itA(DY%h, h = £ + A Y% e L, (@) (6.54)

Moreover, the case where h € 3P (A) was discussed above. Hence,
only the case where h € #°(A) remains to be analyzed. In this
case v(t,*) € ¥°(A) for all t € R and (6.47) implies that v(t,q)
has the decompositions

m oo
v(t,q) = J } vég(t,q) in #°(a) (6.55)
a=l 4=1

where

V (t q) = exp ( 1’ tA(Q) 1/ )h
O(.Q/ ’ O(.Q

+ . ~E
Wy (0:p) exp (-itw o (p)) h_, (p)dp

Ry

and wyg(p) is given by (6.20). The two decompositions defined by
(6.55), (6.56) will be called modal decompositions, in anglogy
with the simple case of section 5, and the partial wave Vg (E,9)
will be said to be in mode (*,0,%) of the compound waveguide Q.
Note that for the uniform semi-infinite cylinder of section 5 the
(+,2) and (-,%) modes coincide (see (6.30)).

6.15 Transiency of waves in HC(A)

The absolute continuity of the operator A in the subspace
#E(A) implies that all waves in HC(A) are transient in the sense
of the following theorem [38,42].

6.16 Theorem

If 2 € LC is a waveguide domain (6.1) then for every h € ﬂC(A)
and every compact set K C R®



SPECTRAL AND ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVE PROPAGATION 439

lim | exp (-itAY2)ynl

>0

Lz(KﬂQ) =0 (6.57)

Thus the decomposition LZ(Q) = 1) @ J(C(A) splits every
h € L,(Q) into a sum of a non-propagating and a propagating state.
In particular the partial waves

vzk(t,-) = exp (-itAY/?) Pizh € #°(A) (6.58)

and hence (6.57) with K = _Si; implies

lim “V&.IL(t’.)“Lz(QO) =0 (6.59)

tr

for o = 1,2,**+,m and £ = 0,1,2,+++. Thus waves in X°(A) ulti-
mately propagate into the cylinders S,. The eigenfunction expan-
sion for A will now be used to calculate the asymptotic form of
these waves.

6.17 Asymptotic wave functions

Let h € J{C(A) and consider the representation
m ®
v(t,*) = exp (—itAl/z)h = z z V;Q,(t,’) (6.60)
=1 2=0
defined by the incoming eigenfunctions WOL (q,p). Substituting the

development (6.28) for waz(q p) in SB into the integral (6.56) for
uk(t’q) gives the representation

v_,(t,q) =8 v(t,yu A Yo (x) +v', (t,9),
ol aB ol owL al ol (6.61)

€S
1= >

where v(t,y,A,h) is defined by (5.43) and
vie, = § vl o (6,59 ¢, "), qes (6.62)
af™"? af,Bm" Bm ’ B :
m=0

with
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VAB -\
m ok
V&z,sm(t’Y) = exp (-vA Al - p?

x exp (~itw_, (p)) C;R,Bm(p)ﬁ(;z(p)dp
- (6.63)

+ exp {-i(/p2+ kul— )\Bm v+ twul(p))}

VXB -\
m ol

C&l,Bm(p) h&Q(p)dp

This equation defines Vuz Bm for the case where Ag, > Aal In the
case where AB < Ayyg the First integral is absent and the second
has the lower limit zero The method of stationary phase may be
applied to show that v' (t,y) satisfies an estimate of the form
(5.55) fory 20, t 2 8 Bgcause the integrals in (6.63) have no
points of stationary phase in this region. It follows that

lim.Hv&z(t,')l , B=1,2,°°,m (6.64)

Lo

le(SB)

The proof may be based on a convergence lemma like that of section

3. The details will not be given here. See [22] for a more
complete discussion.

In (6.61) the term v(t,y s Aq s hal) has the form (5.43) studied
in section 5. Hence, if v (t,y,% h) is defined as in that section
and

o0 _ [es] o A - 6]
VOL,Q/(t,q) =V (t’y ’Aaﬁ’haﬁ) d)az(x )) q € SOL (6-65)
then (6.64) and the results of section 5 imply

lim v, (t,*) - &
t300 of

v, (t, )l =0,
asVal L,(Sg) (6.66)
B = 1,2,...’m

In particular, v Q(t ) >0 in L (SB) for t > © and all B # a;
i.e., v l(t’ ) is asymptotically concentrated entirely in S .

The asymptotic wave functions for v(t,q) will be defined
by
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m (o]
VD = L L X (@ vo (60, ¢€ 8 (6.67)
o=l £=0

where xa(q) denotes the characteristic function of Sy. Note that
the terms in this sum are orthogonal in L,(Q) by (6.65). The de-
compositions (6.60), (6.67) and the convergence results (6.59)
and (6.66) imply the

6.18 Theorem

If € LC is a waveguide domain (6.1) then for every h € mF(A)
the wave function v(t,+) = exp (-itA'2)h satisfies

lim [v(t, ) - v (t,*)l
>0

L, (@) =0 (6.68)

The proof is essentially the same as for the special case
described in section 5. The convergence in energy, when h has
finite energy, can be proved by the same methods.

7. PROPAGATION IN PLANE STRATIFIED FLUIDS

The propagation of localized acoustic waves in a plane strati-
fied fluid which fills a half-space is analyzed in this section.
The asymptotic wave functions for such media are shown to be the
sum of an asymptotic free (hemispherical) wave and an asymptotic
guided wave which propagates parallel to the boundary. This
structure, which is intermediate between that of a homogeneous
fluid and that of a tubular waveguide, is called an open waveguide
in the physical literature.

7.1 Plane stratified fluids

An inhomogeneous fluid will be said to be plane stratified if
the local sound speed c(x) and density p(x) are functions of a
single Cartesian coordinate. This condition can be written
c(x,,%,,%3) = c(xy) 1
> (7.1)
D(Xl,XZ,XS) = p(x3) J

with a suitable numbering of the coordinates. It will be convenient
to denote x; by a single letter and write
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x = (x,%x,) €R* y =x, €R, (x,y) € R’ (7.2)

This notation is used in the remainder of this section.

7.2 Propagation in a stratified fluid with a free surface

A stratified fluid filling a half-space

Rj_ = {(x,y): x€R?andy >0} (7.3)

is often used as a model in the study of acoustic wave propagation
in oceans and deep lakes. If the surface {(x,0): x & R?} is free
the corresponding initial-boundary value problem is (see section 2)

32u 2 9 1 Bu
35z ~ ¢ WP 5~ (—————} =0 for t > 0,
o %y PO 8% (7.4)
(x,y) € R}
u(t,x,0) = 0 for t >0, x € R? (7.5)
u(ng,Y) = f(X’Y) and au(O,X,Y)/Bt = g(X,y)
(7.6)

for (x,y) € Ri
where in (7.4) j is summed from 1 to 3 and x; = y. c(y) and p(y)
are assumed to be Lebesgue measurable on R, = {y: y >0} and to
satisfy

0<c  <c(y) ey <

IA

> for ally €R 7.7
+
O < pl i p(y) S pz < J

where Cis Cys Py and p, are suitable constants,

7.3 Hilbert space formulation

The operator

Au = ~c2()p(y) 5}3 [5%},7 fT“JJ (7.8)
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was shown in section 2 to be formally selfadjoint with respect to
the inner product

(u,v) = J LY v,y €2 o7 () dxdy (7.9
R
+

where dxdy denotes integration with respect to Lebesgue measure
on Ri. The corresponding Hilbert space is

H = L,(R},c 2(y) o~ (y)dxdy) (7.10)

The solution of the initial-boundary value problem (7.4) - (7.6)
given below is based on a selfadjoint realization of A in 3. To
define it let D(R+) denote the Schwartz space of R+ and D'(Ri)
the dual space of all distributions on R+ The Lebesgue space
LZ(R?) can be regarded as a linear subspace of D' (R+) Note that
L,(R}) and ¥ are equivalent Hilbert spaces by (7.7). Let

LyRD = L,RY 0 lur du/dx, € L,RY, § =1,2,3 (.11

denote the first Sobolev space of Ri. It is a Hilbert space with
inner product

3
(u,v), = (u,v), + ¥ (Bu/ij,Bv/ij)0 (7.12)
j=1
where (u,v), is the inner product in L (R ). D(Ri) defines a
linear subset of L (R ) and hence

L;>°(R}) = closure of D(R}) in L,(R}) (7.13)

is a closed linear subspace of L (Rs) It is known that all the
functions in L;»°(R}) satisfy the Dirichlet boundary condition
(7.5) as elements of L (Rz), see [19] and [43,Cor. 2.7].

A realization of the operator A in ¥ will be defined by

D(A) = L3>°@RY N {u: Au €3 (7.14)
and

= Au for all u € D(A) (7.15)
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To 1nterpret the condition Au € ¥ in (7.14) note that if u € L! (R )
then p~ 1(y)Bu/Sx €L (R+) for 3 = 1,2,3. The second derlvatlve

in (7.8) may therefore be interpreted in the sense of D' (R+) Thus
Au € D'(R ) and the condition Au € ¥ is meaningful.

The selfadjointness of A in X may be proved by the method of

[43,82]. Another proof may be based on the theory of sesquilinear
forms in Hilbert space [18,Ch. 6]. These methods imply the

7.4 Theorem

A is a selfadjoint real positive operator in . Every u € D(A)
satisfies the Dirichlet boundary condltlon (7.5) as an element of

LZ(RZ) Moreover, D(A./Z) (R ) and
3
1AY2y)2 = |ou/ox, | 207! (y) dxdy
1 g 4 (7.16)
J + for all u € D(Al/z)

The operator A may be used to construct "solutions in X' and
"solutions with finite energy' of (7.4) - (7.6), as described in
section 2. The detailed analysis of the structure of these solu-
tions will again depend on the construction of an eigenfunction
exparsion for A. TFor simplicity, the construction will be described
here for a special choice of the functions c(y) and p(y). Never-
theless, the results obtained are typical of a large class of
stratified fluids.

7.5 The Pekeris model
This name will be used for the stratified fluid defined by

[Cla 0<y<h

e(y) = (7.17)
l ¢, ¥y 2h
( p;» 0<y<h

o(y) = (7.18)
[ Pos ¥ 2 h

where ¢;, ¢y, P;5 P, and h are positive constants. This model was
used by C. L. Pekeris [26] in his study of acoustic wave propaga-
tion in shallow water. The model represents a layer of water with
depth h, sound speed c, and density p,; which overlays a bottom,
such as sand or mud, with sound speed c, and density p,.
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Air x = (%,,X,)
! ] |
h Water Sounq Speed c,
) Density 0,
l y

Wet Sand Sound Speed c,
or Density p
Mud 2

Figure 7. The Pekeris Model

The most interesting case occurs when

¢, < ¢, (7.19)

and this condition is assumed to be satisfied in what follows. A
detailed study of the Pekeris operator was given by the author in
[43]. Here the main results of [43] are reviewed and used to
derive the asymptotic wave functions for the Pekeris model.

7.6 Eigenfunctions of A

It was shown in [43] that A has a pure continuous spectrum and
a complete family of generalized eigenfunctions was constructed.
‘These functions w(x,y) are characterized by the following
properties

w is locally in D(A) (7.20)
Aw = Aw for some A >0 (7.21)
w(x,y) is bounded in Ri (7.22)
wix,y) = (2m7! e X y(y), p € R (7.23)

where, in (7.23), w(y) is independent of x. The eigenfunctions are
of two types, called free wave eigenfunctions and guided wave
eigenfunctions. Their definitions and physical interpretations
follow.
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7.7 Free wave eigenfunctions

These functions exist when the eigenvalue A satisfies
x> cilp|® > <Z|p|?, |p|® = p? + p? (7.24)
To define them let

E= (M- |p|HY2 >0, n= /2 - [p|HY2>0  (7.25

and
w, (%,5,p,0) = (2m~1 &1P°¥ W, (y,0,1) (7.26)
where
sin Ny , 0 <y <h
w, (¥,P,A) = a(p,A) < (7.27)
Yo O™y (g Oy
with
Y. (E,N) =% (Sin nh x %i-i-gn— cos nh (7.28)

In (7.27), a(p,)) is a positive normalizing constant. It was
shown in [43] that the eigenfunction expansion takes its simplest
form when

a(p,)) = 0y/2/2(ne) V2 |y, (£,m) | (7.29)

In physical terms, the eigenfunction wo(x,y,F,X) represents
an acoustic field with time dependence exp (-itA?) which is the
sum of two plane waves in each layer. It may be interpreted as a
plane wave which propagates in the region y > h, is refracted at
y = h, reflected at y = 0 and refracted again at y = h; see
Figure 8 where the propagation directions are indicated. It can
be verified that Snell's law of refraction is satisfied at y = h
and the law of reflection is satisfied at y = 0.
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Air

(p,-n) (p,n) Water

Bottom

0.-5) (p,&)

Figure 8. Ray diagram for free wave eigenfunction

7.8 The dispersion relation

For values of A which satisfy
ctlp|? < X < cjlpl? “ (7.30)

the function w,(x,y,p,\) defined by (7.25) - (7.28) still satis-
fies conditions (7.20), (7.21) and (7.23). However, (7.30) im-—
plies that ¢ is pure imaginary, say

£=4g', £ = (|p|2 - McDHV2 >0 (7.31)

while n is still real and positive. It follows that w,(x,y,p,\)
satisfies the boundedness condition (7.22) if and only if

Y_(i&',n) =0 (7.32)

or, by (7.28),

g o= - %zn ctn nh (7.33)
1

For A and Ipl which satisfy (7.30), (7.33) is equivalent to the
sequence of equations
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hn = (k - l)ﬂ + tan~! 18" k =1,2,°0° (7.34)
2 pzn b b b .

where ltan-1 u| < m/2. Each equation (7.34) defines a functional
relation between lp[ and A or, equivalently, between Ipl and

w = A2 (7.35)

The solutions, which will be denoted by

A= eDs o= w (e]) = A (e (7.36)

represent a relation between the wave number |p| of the plane
waves in w,(x,y,p,A) and the corresponding frequencies w. Such
relations are called dispersion relations in the theory of wave
motion. The relations (7.34), (7.36) were analyzed in [43] and
found to have the following properties.

7.9 Properties of wk([pl)

For each k = 1,2,3,+++ define

p, = me,/2h(c2 - ¢3)2, p, = (2k - 1)p, (7.37)
Then

wk(lp‘) is analytic and wi(|p|) > 0 for lp[ > Py (7.38)

ey lpl < (o) < cylpl for [o] 2 b (7.39)

we (P) = c,ps wy(p) = ¢, (7.40)

w ([p])~ ¢, [p| for [p]| + = (7.41)

Moreover, an explicit parametric representation of the dispersion
curves (7.36) was given in [43].

7.10 Guided wave eigenfunctions

The functions wk(x,y,p) = wo(x,y,p,Xk(lp|)) are, by construc-
tion, the solutions of (7.20) ~ (7.23) for eigenvalues which
satisfy (7.30). It was shown in [43] that there are no solutions
of (7.20) - (7.23) when X < c?|p|®. The functions w (x,y,p) have
the form
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v Gy,p) = M7 e w (7,p) (7.42)
where
sin n, ([p])y ,0<y<h
w (y,p) = 3, (p) < (7.43)
‘ « & ([p]) (v-h)
sin nk(|pl)h e , v¥y>h
with
n (e = Oy (pl/e? - [p]52, 1
> (7.44)
£ Iy = (lpl? - A (lpl/ed ¥ J

In (7.43), ak(p) is a positive constant which is determined by
the condition

[ v (7,2) |2 ¢72(y) o7 (y)dy = 1 (7.45)
0

In physical terms, the eigenfunction w, (x,y,p) represents an
acoustic field with time dependence exp (—itwk(lpl)) which corre-
sponds to a plane wave which is trapped in the layer 0 £ y < h by
reflection at vy = 0 and total internal reflection at the interface
y = h. In the layer y > h the field is exponentially damped in
the y-direction and propagates strictly in the horizontal direction
p; see Figure 9 where the propagation directions are indicated.

Air
Water
Bottom - 5
p
Exponential —— —_——
Damping
—> —_—

Figure 9. Ray diagram for guided wave eigenfunctions
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7.11 The eigenfunction expansion

The free wave eigenfunctions w,(x,y,p,A) are parameterized by
the region

Q = {(p,A): p € R® and c¢]|p|? < A} c B? (7.46)

Similarly, the guided wave eigenfunctions wk(x,y,p) are parameter-
ized by the regions

Y = o Ipl > ppks k=1,2,000 (7.47)

The following expansion theorem was proved in [43]. First of all,
for every f € i the limits

£, (py2) =
M (7.48)
L, (2p)-lim wo (%,¥,P,1) £(x,y)e”2(y)p” H(y)dxdy
M x| <
and
fk(P) =

M (7.49)
L, (@) -1im [ [ w (x,y,p) £(x,y)c™(y)p ! (y)dxdy,

M->o0
<
o |X|_M k= 1,2,
exist and satisfy the Parseval relation
*® ~
NELZ = ) g N2 (7.50)
¥ ko0 k Lz(Qk)
Moreover, if
Q? ={(p,A): pe€ R® and cZ|p|? <X <M} 1
> (7.51)
M
Qk = {p: P, < [p| <M}, k =1,2,¢°> J

then the limits



SPECTRAL AND ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVE PROPAGATION 451

£, (x,y) = #-lin J W, (5,7,0,0) £, (p,1)dpdh (7.52)
Moo M .
Q0
and

£, (x,y) = #-Lin J W, (6,y,0) £, (p)dp, k = 1,2,°++  (7.53)

Moo M
e
exists and satisfy
M
fGx,y) =3-lim ) £ (x,y) (7.54)
¥ k=0

The relations (7.48), (7.49), (7.52), (7.53) and (7.54) will also
be written in the following more concise symbolic forms, in analo-
gy with the notation of previous sections.

[NCRNE J v, (x,7,0,0) £(x,y) c”*(y) o™ (y)dxdy (7.55)
R3
+

%k(p) = J w, (x,5,0) £(x,¥) ¢ *(y) o~ (y)dxdy,

3
R+ (7.56)
ko=1,2,00
( A
£,(x,y) = wy (x,¥,p,A) £,(p,A)dpdr (7.57)
’Q,
(
£, (x,y) = v (x,y,p) f(p)dp, k = 1,2,°°* (7.58)
an
£(x,y) = ) £,(x,) (7.59)
k=0
Equations (7.55) - (7.59) are the eigenfunction expansion for

A and show the completeness of the generalized eigenfunctions de-~
fined above. The representation is a spectral representation for
A in the sense that, for every f € D(A),

(AD) [ (p,A) = A T, (p,2) (7.60)
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and
AB () = A (D) (@), k = 1,2, (7.61)

The representation (7.55) - (7.59) defines a modal decomposi~-
tion for the Pekeris model. It was shown in [43] that if

:H:k= {fk: fentci, k =0,1,2,%+ (7.62)

then each ﬂi is a closed subspace, H, and ¥, are orthogonal for
k L
k # 2 and

= )] @& Jck (7.63)
k=0

Moreover, it was shown that (7.60), (7.62) imply that (7.63) re-
duces A. In fact, more was shown in [43]; namely that

@kf =f € Lz(Qk)’ k = 0,1,2,°=° (7.64)
defines an operator

d,

GOH L@, ko= 0,1,2,0 _ (7.65)

e

which is a partial isometry with initial set ﬂk and final set
Lz(Qk); i.e.,

* _ * _ =
@k <I>k = Pk, @k <1>k 1, k =0,1,2, (7.66)

where Pk is the orthogonal projection of ¥ onto ﬂk.

7.12 Solution in ¥ of the propagation problem

Attention will again be restricted to the case where f € K
and g € D(Afllz) so that the solution in J has the form

u(t,x,y) = Re {v(t,x,y)} (7.67)
with

exp (-itA¥Y?)h, h = £ + iA™Y%g ¢ 1 (7.68)

]

v(t,*,*)
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The modal decomposition of v(t,x,y) is

v(t,x,y) = ] v (£,%,9) (7.69)
k=0
where
(
vo(t,x,7) = | w (x,5,p,\) exp (-1tAY?) h (p,\)dpdX  (7.70)
JQO
and
(
v, (£,%,5) = w, (x,5,p) exp (-itw (|p]))h, (P)dp,
_UR (7.71)

k= 1,20

Moreover, the modal waves vk(t X,y) are independent in the sense
that they are orthogonal in ¥ for every t € R because (7.63) is a
reducing decomposition of A. Asymptotic wave functions for each

mode will now be calculated beginning with the guided modes Vi
k > 1.

7.13 Asymptotic wave functions for the guided modes (k > 1)

If the representation (7.42) for the eigenfunctions wk(x,y,p)
is substituted into (7.71) the spectral integrals takes the form

vk(t,x,y) =
(7.72)

—;;'IT— exp {l(X'P—twk(‘Pl))}wk(y,P)ﬁk(P)dP; k = 1’29..'

N

where w (y,p) is defined by (7.43). The behavior for large t of
these 1ntegrals will be calculated by the method of stationary
phase. In the present case the integral is a double integral
(Qk c R?) and the phase function

ek(P,xat) =X°*p - twk(lpl) (7-73)

is stationary with respect to p if and only if
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30, (psx,t) P
_k T - ' = : =
o, = x; ew! (|p]) T;%-— 0, j =1,2 (7.74)

In particular, the number and distribution of the stationary
points is determined by the group speed function for the kth
guided mode:

Uk(lpl) = w]:((lpl)’ lpl > Pk (7.75)

The defining relation (7.34) for wk(|p|) implies the following

7.14 Properties of Uk(!pl)

AFor each k = 1,2,3,+++ there exists a unique pﬁ > Py where
UL(Pk) = 0 and P, > Pg- Moreover,

A _ A
0 < U = Uk(Pk) < Uk(lpl) < c, for all Ip] 2 Py (7.76)
ul(lp]) <0 for p < |p| < by and UL([p]) >0
(7.77)
A
for |p| > py
lim U ([p]) =c,, lim U ([p]) = ¢, (7.78)
Ip|-p, |p|e
These properties are indicated in Figure 10.
h
Ca
¢
" :
i
— = —p|
P Py

Figure 10. The Group Speed Curve q = Uk(lpl)
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The stationary points of 6, (p,x,t) are defined by (7.74).
This may be written in (2-dimensional) vector notation

x/t = U (lp))p/|p] (7.79)

This is equivalent to the conditions

Uk(lpl) = |x|/t (7.80)

and
p is parallel to x and in the same direction (7.81)

since U (|p]) >0 and t is assumed to be positive. Conditions
(7.80) and (7.81) determine |p| and p/|p|, respectively. In
particular, it is clear from Figure 10 that

For |x| > c,t and |x] < Uﬁt there are no points of
stationary phase

For c;t < |x| < c,t and |x| = Uﬁt there is one point >(7.82)

of stationary phase *

For UAt < x| < c,t there are two points of
stationary phase

According to the method of stationary phase each stationary
point where det (azek/apiap.) # 0 (regular stationary point) con-
tributes a term 3

exp (16, (p,x,t) + i % sgn (3%0,/0p;9p,))

w (7,p)h, (p) (7.83)
|det (azek/apiapj) | /2

to the asymptotic expansion of the integral (7.72), where sgn and
det denote the signature and determinant, respectively, of the
Gramian matrix (Bzek/Bp.Bp.). A short calculation shows that the
eigenvalues of the Gramian’for (7.73) are —tUi(lpl) and —tUk(lpl)/|p|
and hence for t > 0

sgn (azek/apiapj) = -1 - sgn Ul'{(lpl) (7.84)

det (3%0,/3p;3p) = t*U (|pDUL([p])/]p] (7.85)
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A
In particular, the stationary points are regular when [p[ # Pk-

Substitution of (7.73), (7.84) and (7.85) into (7.83) gives
the function

Voko(t,xay’P) =
(7.86)

lpll/zexp {i(lxllpl..twk(lpl)-% - % sgnUiﬁlpl))}

e {u (e [ug(leD}?

wk(y,p)?lk(p)

To find the asymptotic wave function for vy (t,x,y) it is necessary
to solve (7.79) for p and substitute in (7.86). The result may be
described by means of the two inverse functions of Uk(lpl) which
may be defined as follows: see Figure 10.

Ip] = 25(@ * U, (lp]) = q and p, < [0] < By

> (7.87)

A
lp| = Pp(®) ¢ U (|p) = q and |p] > Py J

It is clear from_the discussion of Uk(lp|) that pt and Pﬁ are analy-
tic functions, PL maps {q: UP < q < c,} onto {|p]: < Ip| < Ay

, Pp maps {q: U < q < ¢y} onto {{p[: pe < |P| S P
and P§ maps {q: Uy < q < c,} onto {lpT: lp] > pt.

The asymptotic behavior of v (t,x,y) can now be described.
The point of stationary phase |p| = Pﬁ(lxl/t) makes a contribution

v;’f(t,x,y) = Xi(t,x) vE(t,x,y,Pi(lxl/t)x/lxl) (7.88)
where

Xi(t,x) is the characteristic function of
(7.89)
{(t,x): Uﬁ < |x{/t < ¢}

Similarly, the point of stationary phase lpl = P;([xl/t) makes a
contribution

v:’s(t,x,y) = xi(t,x) V:(t,x,y,Pi(lx[/t)x/}xl) (7.90)

where



SPECTRAL AND ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVE PROPAGATION 457

Xi(t,x) is the characteristic function of

((ex): U< x|/t < e} (7.91)
b . k_ - 1

The functions Vk »f are called the "fast waves" because they de-
scribe waves which arrive at points (x,y) at times t = xI/c2
corresponding to the speed c(y) = c, of waves in the "fast" me-
dium filling y > h. Similarly, the functions vk’s are called the
"slow waves" because they describe waves which arrive at (x,y) at
times t = lxl/c1 corresponding to the speed c(y) = c¢; of waves in
the "slow" medium filling 0 < y < h. Finally, the total asymptotic
wave function is the sum

k(t X,y) = v (t x,y) + v (t X,¥) (7.92)

The following convergence theorem was proved in [40] by the method
outlined in section 5.

7.15 Theorem

Let h € . Then for each k > 1, vk(t °,*) € H for all £t > 0
and t > vk(t, ,*) € K is continuous. Moreover, vk(t *,*) is an
asymptotic wave function for the modal wave v (t,*,*)
= exp (- 1tA}/2) Pyh; i.e.,

lim Hvk(t,°,') ~ Vk(t’.’.)"H’= 0 (7.93)

o0

The same methods were used in [40] to prove convergence in
the energy norm when h has finite energy.

Note that VE(t,x,y) represents a guided wave which propagates
radially outward in horizontal planes y = const. and is exponential-
ly damped in the vertical coordinate y. This is evident from the
defining equations (7.86), (7.88), (7.90) and (7.92).

7.16 Asymptotic wave functions for the free mode

It will now be shown that the free mode wave function vo(t,x,y)
is asymptotically equal in ¥ to a free wave propagating with speed
¢, in the half-space y > h. To this end note that

vo(t,x,y) = —2%; exp {i(x*p- tAY2)} w, (y,p,A)hy (p,A)dpd)
a (7.94)
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where ﬁo € L,(R,). The representation (7.27) for wo(y,p,A)
implies that

vy (t,x,y) = vt(t,x,y—h) + v, (t,x,y-h), y > h (7.95)
where
+ _ 1 1(xpyE-tAY/2) A
v (t,x,y) = oo e a(p,2) v, (E,m)h (p,A)dpdr
i (7.96)
and
_ C(emoF_ ) 1/2 N
v (E,5,y) = 5= [ et CTPTYETETD) 2 (0,0 v_ (£, (p, 1) dpdh
Q

0 (7.97)

The change of variables

(P,A) ~ (@), q = &= (A/c2 - [p|)!/? (7.98)

in (7.96) gives

+ 1 i (x*ptyg-tw(p,q))a
vo (6:%:5) = oS { ot PHYaTt . )G, 0 apdq
q20

(7.99)
where

B(p,a) = e20)/2(2la) Y2 (v, (£, /¥, (€, DR, (2, 1) (7.100)
and

A= Mp,q) = w(p,q)? = c2(|p|? + q¥) (7.101)
Similarly, the change of variables

(p,A) * (p,a), q ==& = =(A/c2 - |p|D)V/? (7.102)

in (7.97) gives

v, (t,x,y) = zzﬁigzg { ei(X.P+yq_tw(p’q))ﬁ(p,q)dpdq

q<0 (7.103)
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where h is defined by (7.100). Adding (7.99) and (7.103) and
using (7.95) shows that

ei(x°p+yq-tw(p,q))ﬁ(P’q)dpdq

v, (t,x,y+h) = 15#3375
RS
(7.104)
for all y > 0. Moreover, (7.100) implies that he L,(R%®). Thus
(7.104) and (7.101) imply that in the half-space y > h v,(t,x,y)
coincides with a solution in L,(R?®) of the d'Alembert equation
with propagation speed c,. Now, the results of section 3 imply
that the right-hand side of (7.104) has an asymptotic wave function
in L2(R3); say

wm(t,x,y) = G(r-c,yt,0)/r, r? = ]x|2 + yz, 6 = (x,y)/r

(7.105)
It follows that if
© {woo(taxay—h)’ y z h
Vo(t,x,y) =< (7.106)
0, 0<y<h
then
[oe]
lim Hvo(t,',-) - vo(t,',')uﬂ,= 0 (7.107)

oo
A proof may be found in [40]. This paper also contains a proof of
convergence in the energy norm, when h has finite energy, and

applications of these results to the calculation of asymptotic
energy distributions in stratified fluids.

7.17 Other cases

The case of the symmetric Epstein profile, defined by
c?(y) = c;? sech?®(y/H) + c_*tanh®(y/H) (7.108)

and p(y) = 1 was studied by the author in [41] where eigenfunction
expansions and asymptotic wave functions are derived. Eigenfunc-
tion expansions for the case of the general Epstein profile

c¢=2(y) = K cosh?(y/H) + L tanh (y/H) + M (7.109)
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and p(y) = 1 have been given by J. C. Guillot and the author [14,
15}. Asymptotic wave functions for this case are currently being
studied by Y. Dermenjian, J. C. Guillot and the author. Prelim-
inary studies show that the results given above for the Pekeris
model are valid for a large class of profiles c(y), p(y). The
essential hypotheses, apart from the boundedness (7.7), are that
c(y) should have a global minimum at some finite point and that
c(y) should tend to a limit at infinity sufficiently rapidly. If
c(y) does not have a minimum then there are no guided waves.
However, these results have not yet been proved in this generality.

8. PROPAGATION IN CRYSTALS

Acoustic wave propagation in an unlimited homogeneous crystal
is analyzed in this section. The analysis is similar to that for
homogeneous fluids given in section 3. The principal new feature
is the influence of anisotropy on the structure of the asymptotic
wave functions.

A homogeneous crystal is characterized b{ a constant density

= - . ik o . X
p(x) p and stress-strain tensor c m(x) cdX, It will suffice
to consider the case p = 1. Thus the propagation problem reduces
in this case to the Cauchy problem for the system

3%u, . azug
—d = -0, §=1,2,3 (8.1)
5e2 3% ax ax

xk m

where the constants c%m

ik satisfy (2.13) and (2.35).

8.1 Hilbert space formulation

It was shown in section 2 that the differential operator A
defined by

fm azuﬁ
(Au), = - cp ——, §=1,2,3 (8.2)
J 3 9%, ax
k" m
is formally selfadjoint in the Hilbert space ¥ = Lz(R3,C3) with

inner product

(u,v) = u, (x) v.(x) dx (8.3)
3 J J
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In fact, the operator A in ¥ with domain D(A) = D(R®) is essen-

tially selfadjoint and its unique selfadjoint extension is the
operator A defined by

D(A) = {u: Au € 3} (8.4)
Au = Au for all u € D(A) (8.5)

It is easy to verify, using the Plancherel theory of the Fourier
transform, the following

8.2 Theorem
A is a selfadjoint, real positive operator in I,

It follows, as in preceding sections, that the Cauchy problem
for (8.1) has a solution in ¥ of the form

uj(t,x) = Re {Vj(t,x)} (8.6)

where

v(t,*) = exp (-itAY2)h, h = £ + iaA~Y2ge ¥ (8.7)

]

whenever the Cauchy data u(0,x)

f(x) and 3u(0,x)/dt = g(x) satisfy
fex, ge d@A~Y?2),

8.3 Fourier analysis of A

The Plancherel theory of the Fourier transform @0: Lz(Ra)-sz(Rs)
was defined and used in section 3; see (3.12). It may be extended
immediately to ¥ = L, (R®,C®) by defining

Qou = & (u;,u,,uy) = (¢0u1,®0u2,®0u3) (8.8)

and ¢, is also unitary in #. Property (3.14) implies that the
operator $,A @? corresponds to multiplication by the 3 X 3 matrix
valued function

AG) = (A, () = (chp Bpy)s P € R (8.9)

Thus
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E3
A= ®o A(e) o, (8.10)

Moreover, conditions (2.13) and (2.35) imply that A(p) is a real
Hermitian positive definite matrix for all p € R® - {0}. The
spectral analysis of A will be based on (8.10). The analysis
begins with

8.4 Spectral analysis of A(p)

The eigenvalues of A(p) are the roots uy of the characteristic
polynomial

det (Ul - A(p)) = 0 (8.11)

The Hermitian positive definiteness of A(p) implies that the roots
are real and positive for all p € r® - {o}. They may be uniquely
defined as functions of p by enumerating them according to their
magnitudes:

0 < 1 () < Ha(p) S Hy(p) for all p € R (8.12)

A result of T. Kato [18] implies (see also [37])

uj: R? > R is continuous, ji=1,2,3 (8.13)

Equation (8.11) implies that uj(p) is homogeneous of degree 2
uj(up) = azuj(p) for all ¢ € R and p € R® (8.14)

The functions
A () = /hj(p>, pER, j=1,2,3 (8.15)

are also needed below. A detailed study of these functions has
been made by the author in connection with a formulation of elas-
ticity theory in terms of first order symmetric hyperbolic systems;
see [29,35,37,44]. A number of results from these papers are
quoted and used below.

It was shown in [44] that there exists a homogeneous poly-
nomial O(p) # O such that the points p € R® where two or more
roots uj(p) coincide are contained in the cone
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z={peRrR® O0(p) =0} (8.16)
Thus

0 < ul(p) < uz(p) < u3(p) for all p € R} - 2 (8.17)
It follows that

uj(p) is analytic on R® - 2z, j = 1,2,3 (8.18)

The orthogonal projection of c® onto the eigenspace for u,(p) is
given by [18] -

|

PP ol (a(p) - 2z1)"'dz, j = 1,2,3 (8.19)

Yj(p)
where

]

v () {z: |z - uj(p)l = cj(p)}, i=1,2,3 (8.20)

and the radii c:(p) are chosen so small that the 3 circles Yj(p)
are disjoint. %his is possible for all p € R - 2 by (8.17). The
matrix valued functions P; so defined can be shown to have the
following properties [18,i4]:

ﬁj(p) is analytic on R® - 2, j = 1,2,3 (8.21)
ﬁj(up) = ﬁj(p) for all a # 0 (8.22)
~ *=/\ ~ ~ _ A 3 _
Pj(p) Pj(p), Pj(p) P (p) = 6jkPk(p) for peR¥®-2z  (8.23)
3
z §j(p) =1 forpe R® - 2 (8.24)
i=1

A(p) §j<p) = 1,(p) %j<p> for pe R -z, j = 1,2,3  (8.25)

The last two properties imply that the projections ﬁj(p) de-
fine a spectral representation for A(p); i.e.,
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3
A = ] uy(@) P(p) for pER® -z (8.26)
j=1

8.5 Spectral analysis of A

The representations (8.10) and (8.26) provide a complete
spectral analysis of A. In particular, it follows that A is an
absolutely continuous operator whose spectrum is [0,®) (cf. [36,
441). Moreover, if ¥(u) is any bounded Lebesgue-measurable func-
tion of 4 > 0 then

3
¥A) = 6 ) Y@ () B0 ¢, (8.27)
k=1

8.6 Solution in I of the Cauchy problem

Application of (8.27) to the solution in ¥ (8.7) yields the
representation

3
v(t,x) = z Vk(t,x) (8.28)
k=1
where
. 1ep-th (),
v, (£,%) = anE e P, (p)h(p)dp (8.29)

RS

and Ak(p) = Vuk(p). Of course, the integral in (8.29) converges
in ¥, in the sense of the Plancherel theory, rather than pointwise.
Equations (8.28), (8.29) represent solutions in ¥ of (8.1) as a
superposition of solutions

i(x+p-tA (P)) N
e P, (p)h(p) (8.30)

This may be interpreted as a plane wave which propagates in the
crystal with direction p/|p|, wave number |p| and frequency

w = Ak(p) (8.31)
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The polarization of the wave is determined by P (p). The corres-
ponding generalized eigenfunctions of A are the matrix plane waves

[301]

W (x0) = gywr exp (Lx0p) B (p) (8.32)

8.7 The dispersion relation, phase and group velocities

The dispersion relation between the frequency w and wave vec-
tor p of plane waves in the crystal is (8.31) or, by (8.15) and
(8.11)

det (w21 - A(p)) =0 (8.33)

The phase velocity for (8.1) is

A (@)

Vpn () = T%T f TgT ) Ip|2 P {TgT} T%T (.39

by the homogeneity of Xk(p). The group velocity for (8.1) is

vg(P) = Vo =V A (p) (8.35)

The medium is said to be isotropic if v h(p) and v_(p) have the
same direction for all p € R® - {0}. Otherwise it®is said to be
anisotropic. It is easy to verify that the medium is isotropic
if and only if A (p) is a function of IT‘ alone. 1In this case
AP = ¢ lp| an Von(P) = v (p) = ¢yp/ pl.

The phase and group speeds for (8.1) are the magnitudes of
the corresponding velocities. Thus

con® = v @ | = 2 @/lph )
> (8.36)
cg(P) = lvg(p)l = A () J

Note that both are homogeneous of degree zero in p and hence depend
only on the direction of propagation p/lpl. The anisotropy of the
medium characterized by (8.1) can be visualized by means of
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8.8 The slowness surface S

This is the real algebraic variety defined by
S ={pe R det (1 - A(p)) =0} (8.37)

It is clear from the definition of the Ak(p) that

3
S = L_J Sk (8.38)
=1
where
s, =f{pe R®: A (P) =1} (8.39)

or, by (8.36) and the homogeneity of Ak(p),
Sk ={pe€ R3: ]p[ck(p) =1} (8.40)

Thus p € S if and only if [pl is the reciprocal of a phase speed
for the direction p. Note that the slowness surface of an isotropic
medium is a set of concentric spheres with centers at the origin.

The properties of slowness surfaces were studied in [35] and
[44]. In particular, the following properties were established

Sk is continuous and star-shaped with respect to 0 (8.41)

As an algebraic variety, S will in general have singular points
and these are precisely the set

for some j # k} (8.42)

| - [ .
zg {pes: pe sj n Sy

Hence

S, - Zé, k =1,2,3, are disjoint and analytic (8.43)

8.9 The wave surface W

The variation of the phase speed with direction is represented
by the slowness surface S. Similarly, the variation of the group
speed is represented by the wave surface W. W may be defined as



SPECTRAL AND ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVE PROPAGATION 467

the polar reciprocal of S with respect to the unit sphere. This
means that

W={x€R% x°+p=14is a tangent plane to S} (8.44)

It is known that W is a real algebraic variety whose degree is
the class number of S [7,28]. Moreover, the relation of S and W
is symmetric: S is also the polar reciprocal of W. It is clear
that if

N(p) = the set of all exterior unit normals to S at p (8.45)

then
W={x=(p*N(p) 'N(p): p€ s} (8.46)

Now the group velocity vg(p) = VpA(p) is normal to S at each
pE€ S -2Z4. Moreover, p* Vpkk(pg = A (p) = 1 for such points p
by (8.39) and the homogeneity of Ap(p). Hence

= = N - 1
{x = vg(p) = vpxk(p). pES-2zCW (8.47)
for k = 1,2,3.
8.10 The polar reciprocal map T: S * W
This is the map defined in (8.46); i.e.,
T(p) = (p* N(p)) ! N(p) for all p € §S (8.48)

As indicated above, N(p) is not, in general, single valued. It
follows that T may be neither single-valued nor injective. How-
ever, it was shown in [49] that if

Zé set of singular points of S ]
> (8.49)

set of singular points of W J

=3
"

Zg = T ! Zis Zyg = TZg (8.50)
Zg = 24 U 2, Iy = 20U Iy (8.51)
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then Zg and Z;; are sub-varieties of dimension <1 and

T is bijective and analytic from S ~ Z_, to W - 2 (8.52)

S W

8.11 Examples

The equation (8.37) for the slowness surface of a crystal
contains 21 independent parameters in the most general case (tri-
clinic crystals). Hence a great variety of slowness surfaces are
possible. Crystal symmetries may reduce the number of parameters.
The slowness surfaces of the various symmetry classes have been
studied by many authors. Thorough discussions and examples may
be found in [3] and [24] where specific numerical information on
the stress-strain tensors of real crystals may also be found.
Here two examples will be described briefly to show the kind of
surfaces that may occur.

Cubic crystals. In this case symmetry reduces the number of

independent parameters to 3 and the equation for S can be written
[24]

"3
p2
—l = (8.53)

. a-b Z_cp?

j=1 \Pl PJ
. L m .

Of course, the positive definiteness of C~E imposes certain numer-

ical restrictions on a, b and c. Equation (8.53) represents a

surface of degree 6 which is irreducible except for special param-—

eter values.

Hexagonal crystals. In this case symmetry reduces the number
of independent parameters to 5. Moreover, S is necessarily a sur-
face of revolution and reduces to two components whose equations
can be written [24]

az(pf + pg) +bip2 =1 (8.54)

pi+p} + pj
c?-d? |p|2+e(pi+p3 c2-d?|p|2+£fp3

=1 (8.55)

(where a, b, ¢, d, e and f can be expressed in terms of 5 indepen-
dent parameters). The two equations have degrees 2 and 4, respec-
tively. These surfaces of revolution can be visualized from their
traces on the p,,p;-plane; see [24,p.99] for a graph of such an S
and the corresponding W. It is seen that in the example Zé consists
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of 2 circles and 2 points lying in S while Z‘b consists of 8 circles
and 2 points lying in W.

8.12 Asymptotic wave functions for crystals

It was shown in [44] that the equations (8.1) for acoustic
waves in crystals have asymptotic wave functions of the form

Vv(6)
Vi) = 1 Faes™ () - 1,8 00/ x],
=1 (8.56)
X = lee
where
s @@y es, a=1,2-,90 (8.57)
is the solution set of the equation
N(s) =0 (8.58)
Thus s(a) defines the multivalued inverse of the Gauss map N of S.

The principal properties of v*(t,x) are described by the following
theorem whose proof is contained in [44].

8.13 Theorem

For each h € ¥ there exists a unique F: R x S - C3 such that
v (t,*) € ¥ for all t € R (8.59)
t - vm(t,°) € H is continuous for all t € R (8.60)

va(t,')ﬂﬂ,f Clhll,, where C is independent of h and t (8.61)

Finally, v is an asymptotic wave function for v(t,*)
= f A2y,
= exp (~itA*“)h:

Lim 1v(t,*) = v (t,*)ly = 0 (8.62)
>

Moreover, explicit constructions of s(“)(e) and F(1,s8) are given
in [49]. 1In the present case they take the following form.
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8.14 Construction of s'™ (8)
The construction consists of two steps.

(o) = . eee i i i
% (0, o=1, ,V(8) is the intersection of (8.63)

W~ Zw and the ray from 0 along 6
s gy = 1oy e 5 - Zg (8.64)
Note that this defines s(“)(e) for all 6 outside of the null set

z° = {6: x=|x[6€z}cs®={e: [o] =1} (8.65)

8.15 Construction of F(t,s)

F is calculated from h = v(0,+) € H by the rule

F(t1,s) = (2m) "2 Y(s) J eI f(as)ad) (8.66)
0
where
¥(s) = w(s) |K(s)|7Y% |T(s)|7! P(s) (8.67)
.o, - +
Y(s) = exp {1-Z (p () - p ()} (8.68)
pi(s) = the number of principal curvatures of S (8.69)
at s which are % 0. )
K(s) = Gaussian curvature of S at s (8.70)
ﬁ(s) = orthogonal projection of c® onto the
eigenspace for the eigenvalue U = 1 of A(s) (8.71)

(s €5)

It is shown in [44] that ¥Y(s) is defined for all s € S - Zg. In
particular, the parabolic points of S lie in Zs. The integral for
F need not converge pointwise, but it converges in the Hilbert
space #H(S) with norm defined by
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IFl2

sy © |F(1,8) |2 |K(s)T(s)]| dSdt (8.72)

0 S

Moreover, the operator O: ¥ - J(S) defined by 6h = F is an
isometry.

8.16 Propagation in non-uniform crystals

The method developed in [42] and section 4 can be applied to
local perturbations of uniform crystals. Eigenfunction expansions
for non~uniform crystals, and more general systems, have been
given by G. Nenciu [25].
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