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Preface

This book is an introduction to intuitionistic logic that stresses the subject’s
connections with computer science. To make the material more accessible, basic
techniques are presented first for propositional logic; Part II contains extensions
to predicate logic. This material provides a safe background for reading research
literature in logic and computer science as well as such advanced monographs
as [26, 27], [25],[13],[24]. Readers are assumed to be familiar with basic notions
of first order logic presented for example in introductory chapters of such books
as [12], [28], [5]. Subsections on algebraic and topological semantics require
some initial information in algebra and topology. One device for making this
book short was inventing new (or at least modified) proofs of several well-known
theorems.

For historic perspective and credits readers may consult Notes at the end of
chapters in [26, 27] or sections in [25]. Suggestions for further reading are found
in our Introduction.

This text developed from material for several courses taught at Stanford
University in 1992–99. Special thanks are due to N. Bjørner, who took some of
these courses, asked profound questions, and typed course notes in and
to A. Everett, who carefully checked a preliminary version in English.

Stanford, December 1999 Grigori Mints
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Introduction

Intuitionistic logic is studied here as part of familiar classical logic which allows
an effective interpretation and mechanical extraction of programs from proofs.
The possibility of retaining classical patterns of reasoning is emphasized, while
warning signs of differences (beginning with the invalidity of the excluded middle

) are presented only when strictly necessary.
Traditional, or classical logic, is traceable to Aristotle. It took its present

form at the end of nineteenth and beginning of twentieth centuries. Intuitionistic
logic, the subject of this book has its source in the work of L. E. J. Brouwer.

The aspect that turned out to be the most important was his requirement
of effective existence: To claim

we should specify an object t, and justify

Similarly to claim a disjunction:

we should indicate which of the disjuncts is true; that is, pick an and
justify

Brouwer stressed that classical logic in general does not satisfy these conditions.
He drew attention to the law of the excluded middle or excluded third :

It is not clear how to discover in general which of the disjuncts is true. Brouwer
gave very serious arguments for the falsity of this law under his effective inter-
pretation. He and his followers suggested restricting methods of reasoning to
those that are safe in this respect.

Our approach to this controversy is pragmatic: It turned out that the logical
means recognized as correct by Brouwer’s school allow construction of correct
programs and correctness proofs for these.

Brouwer’s philosophic justification of his foundational conception referred to
mathematical intuition. He called his philosophical system intuitionism; formal

1



2          INTRODUCTION

systems using means correct from the intuitionistic point of view are also called
intuitionistic formal systems.

The systems of first-order intuitionistic logic and arithmetic have a very
simple characterization: these are obtained from suitable traditional or classical
systems by removing the law of the excluded middle or equivalent principles,
such as the rule of double negation.

Our book is organized as follows:
The first three Chapters of Part I explain notation for natural deduction to

be used in the book, introduce the reader acquainted with other kinds of formal
systems to this apparatus, and present some basic information to be used later.
Intuitionistic propositional system NJp is introduced here.

Chapter 3 describes a translation of classical into intuitionistic logic, which is
an identity from the classical point of view. This translation allows us to consider
classical logic as a subset (consisting of negative formulas) of intuitionistic logic.

Chapter 5 introduces a programming interpretation of intuitionistic propo-
sitional logic, which is a significant part of its interest and a source of many
applications and extensions in various directions. This construction demon-
strates that programs (simply typed terms) are actually the same as natural
deductions, which justifies such expressions and slogans as the Curry–Howard
isomorphism and:

A simple normalization proof (going back to Turing (see [7]) is presented and
such standard consequences as disjunction property, Harrop’s theorem for dis-
junction, underivability of the excluded middle are drawn in Section 5.4.. More
sophisticated consequences that distinguish a class of formulas important in
applications to category theory and having unique derivations are drawn in
Chapter 6.

Chapter 7 introduces propositional Kripke models and their most important
special cases. Chapter 8 presents a construction of the canonical model and
a completeness proof (see [6]) establishing cut elimination and a finite model
property for a multiple-succedent L-style formalization LJpm of intuitionistic
propositional logic. This proof reintroduces the theme of proof-search by satu-
rating a given goal with respect to all available rules that appeared in Section
2.6..

Chapter 9 contains a completeness proof for topological models on the seg-
ment [0,1] of reals accessible to readers with a very restricted background in
general topology.

Chapter 10 uses an example of intuitionistic propositional logic to present
basic ideas of proof-search methods that proceed from a goal to simpler subgoals.
Such methods are employed in many working systems for proof checking and
automated deduction, and these methods form starting points of more sophis-
ticated algorithms. The resulting completeness proof exemplifies yet another
proof of the normal form theorem (completeness of cut-free formulation) dating
from Gödel’s proof of his completeness theorem and stresses the close connection
between proof-search strategies and Kripke semantics.
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Chapter 11 introduces a new technique, permutation of inferences in a
cut-free derivations, which is used to restrict derivations further and leads to
one-succedent version LJp of intuitionistic propositional logic, introduced by
Gentzen [8]. The LJp is applied to give an easy construction that proves the
Craig interpolation theorem and Beth definability theorem.

The second part of the book presents primarily extensions of these methods
and results to predicate logic and spells out necessary changes in formulations
and proofs. One of the most prominent differences is the definition of the proof-
search procedure. It follows Kripke [14] in adding a new rule of transfer. In fact
it is possible to avoid this rule in the same way as in the propositional case, but
this creates unnecessary redundancy and complicates proof-search strategy too
much.

Topics for Further Reading
Permutative conversions that remove remote cuts when introduction and elim-
ination inferences are separated by a segment consisting of inferences are not
included in Chapter 5. As a result some normal derivations do not have the sub-
formula property. However a sufficient number of the basic applications of full
normalization is still available, and including permutative conversion would di-
rect a beginner’s attention in the wrong direction. A full normalization proof is
presented in many places, for example [19], [25]. Subformula property becomes
available later for L-style systems (with rules for an introduction to antecedent
and succedent).

Another extension omitted here is a coherence theorem for Cartesian closed
categories. An easy proof for the fragment in Chapter 8 provides enough
information and intuition to go if necessary through technical details of the
proof for language in [16] (reproduced in [25]).

One of the basic results of proof theory is a syntactic normalization (cut
elimination) theorem for an L-style system LJ: Every derivation in LJ+(cut rule)
can be reduced to a cut-free derivation by a finite number of local reductions
similar to normalization steps for NJ. This result is not included here, since
it duplicates many features of the normalization proof for NJ (Chapter 5) and
there are many good presentations of cut elimination, such as [8],[13],[24],[25].
Moreover a normal form result claiming that derivability in LJm+cut implies
derivability in LJm (without connection between derivations with and without
cut) is proved in Chapters 11 and 15.

Another important result in the same direction is strong normalization for
NJ-deductions (or deductive terms): Every sequence of reductions beginning
with given deduction terminates in a normal form, and the normal form is
unique (Church-Rosser property). Readers are referred to [25] and [26, 27] for
proofs. Both theory and practice of automated deduction for classical predicate
logic depend on Skolemization and Herbrand theorem. These results extend to
intuitionistic logic in only a restricted (but still useful) ways; see [15] and [21].

The next step in automated deduction after bottom-up (goal-to-subgoal)
proof-search is resolution; see [4] for classical logic and [17] and [25] for intu-
itionistic logic. Recursive undecidability of intuitionistic predicate logic follows
from the negative interpretation of classical logic (Theorem 16, Section 13.2.).
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A decision procedure for intuitionistic propositional logic is described in Section
10.3.; in fact this logic is PSPACE-complete [22].

Algebraic and topological completeness results for propositional logic (Sec-
tion 8.4., Chapter 9) extend to predicate logic [20].

Forty to fifty years ago quite a different presentation of a logical system
(than natural deduction) was standard: A series of axioms and one inference
rule, modus ponens (and perhaps one or two rules for quantifiers). Such Hilbert-
type axiomatizations are given in [9], [8], [25] as well as many other places.

Underivability results for intuitionistic logic are mentioned mainly to warn
readers at the very beginning and to illustrate the use of model-theoretic meth-
ods later. More detailed information are found in [13], [19], [25].

Most automated deduction programs for intuitionistic logic provide deriva-
tions in such systems as LJm or even LJm*.   To extract programs from such
derivations, it is possible to use term assignments more ot less mimicking Kripke
translation in Chapter 16. Optimization of arising redundancies along the
lines of Section 11.3. is discussed in [3], [23]. These techniques have their origin
in the translation of cut-free L-style derivations into normal natural deductions
described in [19].
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Intuitionistic Propositional
Logic



Chapter 1

Preliminaries

We use such standard abbreviations as iff for “if and only if”, IH for Induction
Hypothesis (in proofs by mathematical induction), and so on; the symbol
stands for syntactic identity of expressions, and denotes equality by defini-
tion. The symbol indicates the end a proof. We assume some basic knowledge
of the properties of free and bound variables in formulas of predicate logic; in
the treatment of substitution, we follow standard conventions (see for example
[25]). Expressions that differ only in the name of bound variables are regarded
as identical. In the definition of substituting the expression for the variable x
in expression e, either one requires no variable free in to become bound by an
operator like in e (that is, is free for x in e, or there are no clashes
of variables), or the substitution operation is taken to involve a systematic re-
naming operation for bound variables, thereby avoiding clashes. Having stated
that we are interested only in expressions modulo renaming bound variables, we
can without loss of generality assume that substitution is always possible. The
abbreviation FV is used for the set of free variables of an expression.

It is often convenient to work with finite multisets, that is, finite sequences
modulo the ordering: Permutation is identified with but
the number of occurrences of each is important. Multisets of formulas are
denoted by The notation is used for the result of adding
(one more occurrence of) to the multiset The notation means the
multiset union of and Occurrences of the same formula are not contracted,
for example, is

The represents the multiset union of and a possible identification
of some formulas in with identical formulas in For example:

can be any of:

but not

7



Chapter 2

Natural Deduction for
Propositional Logic

Formalization of intuitionistic logic was obtained by dropping some axioms of
classical prepositional logic or classical propositional calculus abbreviated CPC .
Readers are assumed to know basic properties of this latter system. In the
following we recall some facts about CPC and fix notation.

2.1. Syntax
Formulas of propositional logic are constructed in the standard way from propo-
sitional variables or propositional letters and a constant by means of logical
connectives V, &, Symbols p, q, r, s, and so on, represent proposi-
tional variables. Symbols represent formulas.

Other connectives and the constant are treated as abbreviations:

EXAMPLE 2.1. p, q, (p&q), are formulas.

We often drop outermost parentheses as well as parentheses dividing terms
in a conjunction or a disjunction.

Let us describe our basic system NJp of intuitionistic propositional logic.
The additional rule of double negation leads to a system NKp that is com-
plete for deriving propositional tautologies, that is, classically valid formulas. It
is convenient to work with sequents:

read “Assumptions imply or The formula
is called the succedent of the sequent. The part to the left of is
called the antecedent, and it is treated as a multiset (see Section 1).

9



10 NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC

2.2. Intuitionistic Propositional System NJp

Axioms:

Inference rules (I, E stand for introduction, elimination):

The superscript 0 in the rules means that the corresponding assump-
tions may be absent. The formula in the rule is atomic (but this restriction
is removed in Section 2.5.).

Two further rules are derivable in NJp:

2.3. Classical Propositional System NKp

Classical Propositional Calculus is obtained by adding the classical negation rule
for proofs ad asurdum to the system NJp:

A natural deduction or a proof in the system NJp or NKp is defined in a standard
way: It is a tree beginning with axioms and proceeding by the inference rules
of the system. A sequents is deducible or provable if it is a last sequent of a
deduction. A formula is deducible or provable if the sequent is provable.

Notation d : indicates that d is a natural deduction of and
means that the sequent is derivable in NJp.

Axiom introduces assumption We sometimes treat weakening
of axioms, that is sequents as axioms. Applications of inference
rules (or inferences) transform goal formulas written to the right of and
leave assumptions intact except for and VE-inferences, which discharge
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the assumption discharges also assumption Every connective has
two rules: An introduction rule for proving a formula beginning with the
connective and an elimination rule for deriving consequences from proved
formula beginning with this connective.

Unless stated otherwise, we are interested in derivability in the system NJp.
The most important exception is Section 2.9., and after that most of our deduc-
tions do not use the rule

EXAMPLE 2.2. The formula  is derived in NJp by two
inferences from the axiom

EXAMPLE 2.3. The formula is derived
as follows: Assume premises of the implication and use

to infer successively and r. Then use three times to recover
the whole formula:

We do not attach rule annotations like in the deductions that
follow.

2.4. Abbreviated Notation for Natural Deduc-
tions

For a natural deduction d, let be the result of deleting all the assumptions
and ( as well as repetitions of the sequents) from d. For example the previous
deduction d becomes

The derivation d can be recovered from (and some information on assump-
tions that can be disregarded at this stage).
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EXAMPLE 2.4. To derive assume the premise and apply &E
followed by

EXAMPLE 2.5. To derive assume both premises and apply
&I:

EXAMPLE       For use

EXAMPLE 2.7. For assume all
premises and use combined with deductions of r from premises. We show
a nonabbreviated deduction here to demonstrate handling assumptions in
inference:

The next two Examples illustrate treating negation as an abbreviation
for the implication

EXAMPLE 2.8. For apply (and recall that is an
abbreviation for
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EXAMPLE 2.9. For apply

EXAMPLE 2.10. Here is a derivation of

2.5. Derivable Rules

It is often convenient to treat a series of inference rules as one rule.

DEFINITION 2.1. A deduction of a sequent S from sequents is a
tree beginning with axioms or sequents and proceeding by inference
rules.

A rule

is derivable if there is a deduction of S from

EXAMPLE 2.11. The cut rule:

is derived as follows:

Weakening and contraction are derivable as follows:
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LEMMA  2.1. The rule with arbitrary

is derivable.

Proof.We use induction on Induction base ( is atomic) is the rule of NJp.
Induction step (composite for uses the introduction
rule for for example:

LEMMA 2.2. The rule

is derivable iff the sequent is
derivable.

Proof.(R) is obtained from by a series of Vice versa,
is obtained from by (R) and a series
of

EXAMPLE 2.12. An instance of the rule in the previous Lemma:

EXAMPLE 2.13. Relaxed versions of two-premise rules. For every derivable
rule:

the rule

is derivable too, since the sequent
is derivable. Hence it is possible to assume the assumptions are the same in
all premises of the rule.
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2.6. Direct Chaining and Analysis into Subgoals

The problem of deriving given sequent (goal) S can often be reduced to deriving
simpler sequents (subgoals), say, if the rule

is derivable. Let us list some of these rules.

Rules for analysis into subgoals

LEMMA 2.3. The following rules are derivable in

Proof. expand abbreviation into and use

use with the first premise

Rules for direct chaining

Sometimes applying elimination (and very similar) rules to assumptions quickly
produces the succedent of the sequent. Some of these rules follow.

LEMMA 2.4. The following rules are derivable in
(see Lemma 2.6.), Trans (Example 2.5.),

Proof. expand and use &E.

DEFINITION 2.2. A deduction using only rules mentioned in Lemma 2.6., cut
and structural rules is called direct chaining.

Note. A good heuristic for deducing by direct chaining is to take
as the initial set of data and saturate it by adding conclusions of all the

rules except mentioned in Lemma 2.6. plus cut (Example 2.5.), restricting
applications of to subformulas of producing say Stop if is
obtained, otherwise apply bottom-up for each formula that is,
form and Now add all formulas to
forming Iterate the process till it stops.

EXAMPLE 2.14. is obtained by
inferences.

EXERCISE 2.1. Derive
by direct chaining.
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ADC method of establishing deducibility

The approach opposite to direct chaining is often useful for reducing the goal
formula. In Examples 2.3. and 2.3., when the goal was an implication

it was reduced to a sequent
that is, this sequent was derived, then was deduced from it by
inferences. In other words, the goal was successively reduced to subgoals

A natural
deduction of was constructed from the bottom up:

One of the most straightforward methods of establishing deducibility of a
sequent consists in its analysis into subgoals using
Lemma 2.6., and establishing each subgoal by direct chaining. We say that a
sequent is established when one of is established.
The combination of Analysis and Direct Chaining described above will be called
ADC-method or simply ADC. It is not complete: some valid formulas are not
deducible by ADC.

PROBLEM 2.1. Estimate the complexity of ADC and find a suitable subclass
for which it is complete.

2.7. Heuristics for Natural Deduction

Recall that means that the sequent is derivable in NJp.

LEMMA 2.5. Every sequent derivable in NKp (and hence in NJp) is a tautology
according to classical truth tables (see Chapter 2.9. ).

Proof.For  a given truth value assignment v define

Check that every rule preserves truth (that is, value 1) under every assignment
For example, for the rule assume that and

We must prove If we are done.
Otherwise and hence See the truth table for

The converse of the previous Lemma is Theorem 2.9.2below. As stated in the
Introduction, and proved in Section 5.4., some tautologies including
are not derivable in NJp.

LEMMA 2.6. iff
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One direction is the other direction is

EXAMPLE 2.15. Deduce where By
Lemma 2.7. it is sufficient to deduce which is reduced
to then to then to which is a
(weakening of an) axiom.

Let us write the deduction in an abbreviated form:

Heuristics for Disjunction

LEMMA 2.7. iff and

Proof. implies by On the other hand,
and imply by

Heuristics for Negation

Recall that We list some provable properties of negation to be
used later.

LEMMA 2.8. (a) iff

(b) double negation introduction and elimination:

(b1)

(b2)

(b3)

(c) de Morgan’s laws valid intuitionistically:

(d) iff for some
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Proof.(a) Expand into and use Lemma 2.7..
(bl) Use ADC. (b2) Use ADC and (bl). (b3) Detach

derivable
(c) Use ADC and the introduction rule for the negated connective. For

example, is reduced by analysis to and
it remains to apply

(d) Use

LEMMA 2.9.

Proof.First prove in NJp that:

by direct chaining via Now use (2.3) as a premise of the
rule in NJp to obtain (2.2), and as a premise of the -rule in NKp to

derive (2.1).
Note. This is the first time we used rule.
In Chapter 3 we prove that in NJp iff is a tautology (Glivenko’s

theorem).

2.8. Replacement of Equivalents

LEMMA 2.10. (a) for every connective

(b) In general for every formula and every propositional variable p:

where is the result of substituting α for all occurrences of p in

Proof. Part (a) is proved by ADC (Section 2.6.). Consider for example
Analysis reduces the goal to two subgoals:

and

Direct chaining for the first subgoal is applied to and it yields
as required. The second subgoal is obtained from

the first one by interchanging and
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Consider Analysis yiels
(and the result of interchanging and and then:

and

The second subgoal is immediate by and the first subgoal is obtained by
direct chaining:

(b) Use induction on with in the induction base and Part (a) in the
induction step.

2.9. Classical Propositional Logic

2.9.1. Semantics: Truth Tables

We recall here some standard elementary definitions. Admissible values for
propositional variables in the standard semantics for CPC are true and false,
often denoted by 1,0.

Truth values of compound formulas are computed from truth values of vari-
ables by the standard rules summarized by the following truth tables. The
symbol always takes the value 1, and always takes the value 0.

Every given assignment of truth values to variables occurring in a given
formula (truth value assignment) determines the truth value of this formula.

EXAMPLE 2.16. Let Then for every truth value assignment
we have Consider cases So is true, that is it
takes value true under every truth value assignment. This means by definition
that is a tautology or a valid formula of CPC.

EXAMPLE 2.17. Let Consider the assignment and
Then:

Since is false under a given assignment, it is not a tautology. The assignment
is said to be a falsifying assignment for Assignment

gives so it is a verifying (or satisfying) assignment.

Since operators and so on, defined in this way act on truth values
of their arguments, they are called truth functional operators or truth functional
connectives.
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An operator with one argument (such as ) is called monadic; an operator
with two arguments (such as ) is binary.

We can also state truth table definitions in abbreviated linear form. By
checking against truth tables, it is easy to verify that:

EXERCISE 2.2. Prove that is a tautology, but
is not.

Such tautologies as:

justify the treatment of as defined connectives.

2.9.2. Logical Computations

Let us list some derivable formulas encoding truth tables. For a truth value
define

LEMMA 2.11. (a)
(b) for

Proof.(a) Since we must prove that:

and

The second sequent is an axiom, and the first is obtained by ADC.
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(b) Let us list (slightly strengthened) goals in more detail:

Now use ADC.

THEOREM 2.1. Assume that all prepositional variables of a formula are
among and let be a truth value assignment to Then:

Proof . We use induction on If then (2.4) is an axiom. If
then by IH:

By Lemma 2.9.2 which proves the
induction step.

THEOREM 2.2. (a) Every tautology is derivable in NKp;

(b) in NJp for every tautology

Proof. Consider Part (b) first. Let be a tautology, that is, is true
under any truth value assignment Then (2.4) takes the form

which with [Lemma 2.7.(bl)] implies that:

Let us prove in NJ that for any

by induction on Then yields Induction base that
is, is (2.5). The induction step, that is, the passage from (2.6) to:

is proved as follows. Take any (assumed to be defined only at
and consider By IH:

and

which implies

by (2.2) and hence (2.7) by Lemma 2.7.(b2), as required.
To get (a) from (b), note that is derivable in NKp by the rule.



Chapter 3

Negative Translation:
Glivenko’s Theorem

THEOREM 3.1. (Glivenko’s theorem)  iff &  is a tautology.
In particular a formula beginning with a negation is derivable in NJp iff it is a
tautology.

Proof.By Lemma 2.7., every derivable sequent is a tautology. In the opposite
direction, if a formula & is a tautology, then by Theorem 2.9.2(b),

Now use the implication:

which is obtained from an instance of (2.4):
The remaining part of this Chapter shows that it is possible to embed clas-

sical logic NKp into intuitionistic system NJp by inserting double negation to
turn off constructive content of disjunctions and atomic formulas (which stand
for arbitrary sentences and may potentially have constructive content).

DEFINITION 3.1. Define inductively operation neg transforming formulas  into
formulas:

In connection with the last clause, note that de Morgan’s law [Lemma 2.7.(c)]
implies that:

Note also that:

since
The next Lemma is used to justify the negative translation.

23
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DEFINITION 3.2. A propositional formula is negative if it does not contain
and all atomic subformula are negated.

LEMMA 3.1.

(a)

(b) for every negative formula

Proof.Part (a): Use ADC and Glivenko’s theorem.
Part (b): We use induction on Lemma 2.7.(bl),(b2), and (a). For the

induction base, we begin with negations of atomic formulas:
Induction step. For one has

This concludes the proof since does not occur in

LEMMA 3.2. Every rule

of NKp is stable under Gödel’s negative translation. That is, the rule:

is derivable and similarly for one-premise and three-premise rules.

Proof. Translations of the rules &I , &E, are instances of the
same rules. Translation of

is handled by Lemma 3(b). For the rules for it is enough to establish the
following:

Relation (3.1) is obtained by ADC. To obtain (3.2), prefix the last by
(Lemma 3) and reduce this goal to a subgoal:

which is proved by ADC.

THEOREM 3.2. A sequent is derivable in NKp iff is
derivable in NJp.

Proof .Easy direction: If is derivable in NJp, it is derivable in
NKp. Removing all double negations, we obtain in NKp.

For the opposite direction, use Lemma 3.



Chapter 4

Program Interpretation of
Intuitionistic Logic

4.1. BHK-Interpretation

Let us recall Brouwer’s requirement of effective existence: To claim we
must point out an object t and justify To claim a disjunction
we must point out which of the disjuncts is true, that is, select an and
justify

We describe now a ”programming language” and a method of mechanically
extracting programs in this language from intuitionistic proofs. This language
is a version of simply typed lambda calculus [2]. It is based on a semantics
of intuitionistic logic in terms of constructions, presupposing that any formula
A encodes a problem, and corresponding construction c solves this problem or
realizes A. We give an informal explanation of semantics of logical connectives
that evolved from the work of Brouwer, Heyting, and Kolmogorov. It is called
BHK-interpretation. We write for “c realizes  ” or ”c is a construction for

The last clause is equivalent to:
for every d.

We see that our language for such constructions should include pairing, pro-
jections (components of pairs), injection into a direct sum, forming functions,
and applying functions to arguments.

EXAMPLE 4.1. Realization t of is a program that for
every pair such that a realizes produces a pair such
that b realizes

25
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EXERCISE 4.1. What are realizations of formulas of the following form:

4.2. Assignment of Deductive Terms
This Section presents a language for writing realizations of formulas derivable
in NJp. Basic constructs of this language are pairing p with projections
satisfying:

and lambda abstraction providing explicit definitions:

where stands for the result of substituting a term u for all free occurrences
of a variable x (of the same type) in t. In other words, if t is an expression
containing a variable x, it is possible to define a function (denoted by ) that
outputs the value when the value of x is set to u. Sometimes we omit a
dot and write

Application of a function t to an argument u is denoted by t(u). Two more
constructions are connected with disjunction and case distinction.

To indicate that an object t is to be treated as a realization of in
we write and similarly for

Three-place operation D expresses case distinction for disjunction: If
is a realization of a disjunction and are realizations

for some formula depending on realizations of respectively, then
is a realization of formalizing the instruction: If t in

realizes (that is, ), then the result is otherwise This can
be expressed by an equality:

(4.3)

Operation provides a trivial realization of a formula under the assumption
that a contradiction was obtained.

To formalize the assumption that realizations of some of the formulas are
given, we assume for every formula of the language under consideration a
countably infinite supply of variables of type For distinct formulas the
corresponding sets of variables are disjoint, and the set of typed variables is
disjoint from the set of individual variables. We use for arbitrary
variables of type we omit the type superscript when clear from the context.

Now we assign a term to every natural deduction d deriving a sequent:

A term u assigned to a derivable sequent (4.4) is supposed to realize a formula
according to the BHK-interpretation under assumptions We sometimes
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write to stress this. To reflect dependence of assumptions, every assignment
depends on a context that is itself an assignment:

of distinct typed variables to formulas in written sometimes as
These typed variables stand for hypothetical realizations of the assumptions
When a term u is assigned to the sequent (4.4) is transformed into a

statement:

or

Contexts are treated as sets, not multisets. In particular stands for
the union of sets, and

Deductive terms and the assignment of a term to a deduction is defined
inductively. Assignments for axioms are given explicitly, and for every logical
inference rule, there is an operation that transforms assignments for the premises
into an assignment for the conclusion of the rule.

4.2.1. Assignment Rules

Axioms:

Inference rules:

Term assignment to a natural deduction d is defined in a standard way by
application of the term assignment rules. Notation or
means that for some natural deduction

The symbol binds variable x, and binds variables x and y. Free
variables of a term are defined in a familiar way:
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The term assignment can be extended to structural rules so that weaken-
ing does not change term assignment, and contraction identifies variables for
contracted assumptions:

One simple and sufficiently general way of finding a realization of a formula
is to derive it in NJp and compute the assigned term.

EXAMPLE 4.2. Find a term t realizing
Consider the following natural deduction d:

Assign terms:

Hence

Several more examples are

Hence:
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EXERCISE 4.2. Confirm the preceding realizations and find realizations for
the following formulas using deductions in NJp:

4.3. Properties of Term Assignment

The is defined up to renaming of free variables assigned to axioms. If
that is, d is a deduction of then

In fact the operation is an isomorphism: It has an inverse operation
(denoted by below) preserving both syntactic identity and more important
relation of equality (see Chapter 5 below).

DEFINITION 4.1. (operation  ). For every deductive term with
we define a deduction:

If   then (Axiom)

If   then   is obtained from by

If    with then:

where occurrences of identical assumptions in and are identified in
exactly when these occurrences are assigned the same variable in the contexts

and

If   then is obtained from  with the same
identification of assumptions as in the previous case.

If    then:

where assumption is present in the premise

If   then:



If   then:

with the same identifications of formulas in as before. Assumption
is present in the second premise iff is free in and assumption is present
in the third premise iff is free in

LEMMA 4.1. Up to renaming of  free and bound variables,

(a) for every deduction d

(b) for every deductive term t

Proof. We establish Parts (a),(b) by a simultaneous induction on d, t. The
induction base (axiom d or variable ) is obvious. The induction step is
proved by cases corresponding to each of the inference rules. Consider one of
them:

(a) is obtained from by & E. Then
by the definition of and:

by the definition of But the latter figure coincides with d, since
by IH.

(b) Then is obtained from by &E and
as required.

Other cases are similar.
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Chapter 5

Computations with
Deductions

Let us recall that the conclusion of the rule is assumed to be atomic.

5.1. Conversions and Reductions of Deductive
Terms

Relations (4.1–4.3) are naturally treated as computation rules that simplify the
left-hand side into the right-hand side. In other words, an operational semantics
for the language of terms is given by the following term conversion (rewriting)
rules:

These relations are called conversions. [Originally the term referred only to
(5.1)].

One-step reduction is a conversion of a subterm:

if then

Here u is a redex and is a reductum.
The relation red is a transitive reflexive closure of t red if there is a

reduction sequence:

such that for every
A term t is in normal form or t is normal if it does not contain a redex; t

has a normal form if there is a normal s such that t red s. Reduction sequence
is an analog of a computation, and a normal form is an analog of a value.

31
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5.2. Conversions and Reductions of Natural De-
ductions

Let us describe transformations of natural deductions corresponding to a re-
duction of terms. Each of these transformations converts an occurrence of an
introduction rule immediately followed by an elimination of the introduced con-
nective. Such a pair of inferences is called a cut in this Section. We do not
elaborate here on a connection with the cut rule of Example 2.5..

The &-conversion corresponding to the pairing conversion (5.2):

Note that conversion can change the set of assumptions.
A description of remaining conversions uses a substitution operation for nat-

ural deductions. Let us recall that in every inference (application of an inference
rule), each occurrence of an undischarged assumption formula in a premise is
represented by an occurrence of the same formula in the conclusion, which is
called its immediate descendant in the conclusion. For any natural deduction,
starting with an assumption formula in the antecedent of one of the sequents,
we are led successively to unique descendants of this occurrence in the sequents
below it. The chain of such descendants stops at discharged assumptions. An-
cestors of a given formula (occurrence) are occurrences that have it as a descen-
dant. We say that a given antecedent formula (occurrence) is traceable to any of
its ancestors (including itself). Each occurrence has at most one descendant in
a given sequent. It is important to note that all ancestors of a given (occurrence
of) assumption are assigned one and the same variable in the assignment of
deductive terms to deductions.

EXAMPLE 5.1. Consider the following deduction of  a  sequent
where

Underlined occurrences of the assumption are ancestors of the lowermost
occurrence of this formula.

For given deductions d and of sequents and the result
of substituting for into d is obtained by replacing all ancestors of  in
d by and writing over former axioms Taking deductive terms
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into consideration and writing the result of substitution at the right, yield the
following:

The arrows show possible branching of the deduction at the binary and
ternary rules

LEMMA 5.1.
(a) All inference rules are preserved by substitution.

(b) Operations commute with substitution under suitable proviso to avoid
collision of bound variables.

If a deduction e is the result of substituting a deduction for
the assumption (occurrence) into a deduction then:

The deduction is the result of substituting a deduction
for the assumption (occurrence) into a deduction

Proof.Check  the statement for each rule of NJp and apply induction on the
length of deduction.

The conversion is now defined as follows:

The result of conversion is obtained from the derivation of the premise of
in the original derivation by substitution. If there is no dependence on the
assumption  in the introduction, then the result of conversion is just the
given derivation of

The conversion:
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The result of conversion is obtained from the derivation of the second premise
of the in the original derivation by substituting for the derivation of
the premise of If there is no dependence on the assumption in the
second premise of then the result of conversion is the given derivation of
that premise The conversion is defined similarly when the premise of

introduction is
Terminology related to reduction and normalization is transferred to natural

deduction. In particular a deduction is normal if it does not contain cuts. There
is a perfect match between natural deduction and deductive terms.

THEOREM 5.1.  (Curry–Howard isomorphism between terms and natural  de-
ductions).

(a) Every natural deduction d in NJp uniquely defines and vice versa:
Every term t uniquely defines a natural deduction

(b) Cuts in d uniquely correspond to redexes in and vice versa.

(c) Every conversion in d uniquely corresponds to a conversion in and
reduction sequences for d uniquely correspond to reduction sequences for
and vice versa.

(d) The derivation d is normal iff the term is normal.

Proof .Contained in preceding figures.

EXAMPLE 5.2. Consider the following deduction d of a sequent
using abbreviations:

and

for every formula
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where:

Let us compute the term assigned to this deduction d and terms as-
signed to its subdeductions, using variables

The last and the immediately preceding form a cut. Reduction of
this cut leads to the following deduction

Since deduction ends in an introduction rule, both occurrences of
derived by give rise to cuts. Reducing the upper cut results in the following
deduction of

The introduction with the premise Ax p deriving in is immediately
followed by Reducing this cut results in:
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Thus the original derivation d is reduced to:

Reduce the only cut in (at the end):

Reduce the only cut in introducing followed by

This normal deduction is the same as in Example 2.7..
To get a better feeling of the Curry–Howard isomorphism, let us normalize

the term
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5.3. Normalization

Let us measure complexity of a formula by its length, that is, the number of
occurrences of logical connectives:

The complexity or cutrank of a cut in a deduction is the length of its cut formula.
In the language of deductive terms:

Let maxrank(t) be the maximal complexity of redeces in a term t (and 0 if t is
normal).

LEMMA 5.2. (a) If t, s are deductive terms,  and  is a redex, then
either t is a redex or one of the following
conditions is satisfied:

or or

and

(b) If conv and  for every proper subterm s of t,
then

Proof. Part (a) says that really new redeces in a term can arise after a
substitution only where an elimination rule was applied to a variable substituted
by an introduction term. Indeed it is easy to see by inspection that every other
non redex goes into a non redex. A complete proof is done by induction on the
construction of t.

To prove (b), note that:

for every proper subterm s by the assumption, and consider possible cases.
If conv then by (5.7). If

then by Part (a) every redex in either has
the same cutrank as some redex in [which is less than cutrank(t) by the
assumption] or has

If the argument is similar.

THEOREM 5.2. (normalization theorem). (a) Every deductive term t can be
normalized.

(b) Every natural deduction d can be normalized.
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Proof. Part (b) follows from Part (a) by the Curry-Howard isomorphism.
For Part (a) we use a main induction on with a subinduction
on m, the number of redeces of cutrank n.

The induction base is obvious for both inductions. For the induction step
on m, choose in t the rightmost redex of the cutrank n and convert it into
its reductum Since is the rightmost, it does not have proper subterms
of cutrank n. By Lemma 5.3.(b) Write

to indicate the unique occurrence of in t: The variable y has
exactly one occurrence in term has exactly redeces of cutrank n, and

Applying Lemma 5.3.(a) to new redeces have cutranks equal to
and old redeces preserve their cutranks. Since the redex

of cutrank n disappeared, the m decreased by one, and the induction step is
proved.

5.4. Consequences of Normalization

The principal formula of an elimination rule is the succedent formula explicitly
shown in the rule and containing eliminated connective: in and so on.
The principal premise contains the principal formula.

A main branch of a deduction is a branch ending in the final sequent and
containing principal premises of elimination rules with conclusions in the main
branch. Hence the main branch of a deduction ending in an introduction rule
contains only the final sequent. In any case the main branch is the leftmost
branch up to the lowermost introduction rule or axiom.

THEOREM 5.3. (properties of normal deductions). Let    be a normal
deduction in NJp.

(a) If d ends in an elimination rule, then the main branch contains only elimina-
tion rules, begins with an axiom, and every sequent in it is of the form
where and is some formula.

(a1) In particular the axiom at the top of the main branch is of the form
where

(b) If then d ends in an introduction rule

Proof .Part (a): If d ends in an elimination rule, then the main branch does
not contain an introduction rule: Conclusion of such a rule would be a cut. Now
Part (a) is proved by induction on the number of rules in the main branch using
an observation: An antecedent of the principal premise of an elimination rule
is contained in the antecedent of the conclusion. Part (al) immediately follows
from (a).

Part (b): Otherwise the main branch of d cannot begin with an axiom by
(a).
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THEOREM 5.4. (disjunction property, Harrop’s theorem).

(a) If then for some

(b) If then for some

Proof .Part (a) follows from Theorems 5.3. and 5.4.(b). For Part (b) consider
the last (lowermost) rule of a given normal deduction of the sequent in question.
If it is an introduction, we are done, as in Part (a). If it is an elimination,
consider the axiom and the very first (uppermost) rule in the main branch. The
axiom is by Theorem 5.4.(a). Hence the first rule is elimination
(recall that ):

Conclusion of this rule implies for any

COROLLARY 5.1. The law of the excluded middle and the law of double negation
are not derivable in NJp:

Proof .By disjunction property  implies that one of           is  derivable,
but none of these is even a tautology. If  then substituting
and using (Example 2.4.), we obtain



Chapter 6

Coherence Theorem

6.1. Structure of Normal Deduction

An occurrence of a subformula is positive in a formula if it is in the premise
of an even number (maybe 0) of occurrences of implication. An occurrence is
strictly positive if it is not in the premise of any implication. An occurrence is
negative if it is not positive, that is, it is inside an odd number of premises of
implication. The sign of an occurrence in a sequent is the same as in the
formula &

THEOREM 6.1. (subformula property). Let    be a normal
deduction.

(a) If d ends in an elimination rule, then the main branch begins with an axiom
for and all succedents in the main branch are strictly positive

subformulas of (and hence of  ).

(b) All formulas in d are subformulas of the last sequent.

Proof. Part (a) is proved by an easy induction on the length of d. The
induction base and the case when d ends in an introduction rule are trivial.
If d ends in an elimination rule L, the major premise of L takes the form

with and strictly positive in by IH. Since the succedent
in the conclusion of &E , is strictly positive in the major formula this
succedent is strictly positive in as required.

Part(b): Induction on the deduction d. The induction base (axiom) is trivial.
In the induction step, consider cases depending of the last rule L:

Case 1. The L is an introduction rule. Then all formulas in premises are
subformulas of the conclusion, and the subformula property follows from IH.

Case 2. The L is an elimination rule, say:

41
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By part (a) is a subformula of the last sequent. By IH all subformulas in
subdeductions are subformulas of  and hence of the last sequent.

6.2. reduction

For applications to category theory, we require a stronger reduction relation than
reduction. The conversion for deductive terms corresponding to deductions

in the language is defined as follows:

Corresponding conversions for deductions are as follows:

Hence the Curry–Howard isomorphism (Theorem 5.2.) is preserved.
The conversion is a combination of these conversions and (5.1),(5.2). The

reduction, reduction, and corresponding normal forms  are defined
as for conversion. These normal forms are unique, but we shall not prove it
here.

LEMMA 6.1. (a) Every   reduction sequence terminates.

(b) Every deductive term and every deduction has a normal form.

Proof.Part (a): Every conversion reduces the size of the term.
Part (b): A normal form exists by Theorem 13.3., and its normal

form [see Part (a)] is normal, since conversions preserve normal form.

6.3. Coherence Theorem

In this section we consider -deductions of implicative formulas and cor-
responding deductive terms modulo conversion: The stands for

and similarly for
A sequent is balanced if every prepositional variable occurs there at most

twice and at most once with a given sign (positively or negatively; see Section
6.1.).
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Example.  and are
balanced, but is not.

We prove that a balanced sequent has unique deduction up to equality.
For non-balanced sequents that is false: The sequent has infinitely
many different normal proofs:

The can be described as a “component” of the unique proof of the bal-
anced sequent obtained by identifying all
variables with

Note. Formulas of as objects and the normal N Jp-deductions as
morphisms form a part of a Cartesian closed category. Theorem 6.3. below
shows that a morphism with a balanced is unique. In
fact Theorem 6.3. extends to the language Abbreviation:

The next Lemma shows that some of the redundant assumptions are pruned
by normalization. Recall that notation means that may be present
or absent.

LEMMA 6.2. (pruning lemma). (a) Assume that   are implicative formulas,
prepositional variable q does not occur positively in and a deduction

is normal; then

(b) If then one of contains q positively.

Proof. For Part (a) use induction on d. Induction base and the case when
d ends in an introduction rule are obvious. Let d end in an Consider
the main branch of d, which by Theorem 6.1. begins with an axiom for

since is strictly positive in

Superscripts attached to the assumption indicate that it may be
absent from some of the sequents. Since q is not positive in the formula
in the axiom of the main branch is distinct from Since occurs in
the antecedent of the last sequent, q is not negative in and hence it is not
positive in since is strictly positive in All other formulas
in the minor premises have the same sign in the last sequent.
Hence IH is applicable to all minor premises, and is not present in the
antecedent.

Part (b): Assign for all and compute by truth tables.
If all are of the form and hence true, then is false
under our assignment. Thus it is not even a tautology. Alternatively, apply (a).
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THEOREM 6.2. (coherence theorem). (a) Let    for a balanced
implicative formula then

(b)Let be  balanced, then

Proof.Part (a) follows from Part (b), which claims that and are pruned
during normalization into one and the same set of formulas. Since is
balanced, each of is balanced. To prove Part (b), we apply induction on
the length of Assume and recall that

iff
Case 1. The then is

balanced, and IH is applicable to sequents obtained by applying rule with
the minor premise This corresponds to applying a new variable

to deductive terms We have hence
and

Case 2. The is a prepositional variable; then each of the normal forms
is an axiom or ends in

Case 2.1. The is an axiom then no member of different
from contains positively, and by the Lemma 6.3. (a), we have
that is,

Case 2.2. Both and end in Consider the main branch of each
of these deductions. Since α is strictly positive in the axiom formula of the
main branch (Theorem 6.1.), and is balanced, this axiom formula

is one and the same in and and the number of
inferences in the main branch is the same:

The only positive occurrence of the prepositional variable in a balanced se-
quent:

is the succedent, and the same is true for In particu-
lar is not negative in and in hence is not posi-
tive in By the Lemma 6.3. (a) the formula is not a member of

hence each of is balanced. Indeed compare
the following:

and
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Every occurrence in is uniquely matched with an occurrence of the same
sign in:

Every occurrence in is uniquely matched with an occurrence of the same sign
generated by an occurrence of in Applying
IH to deductions of and yields hence as
required.



Chapter 7

Kripke Models

Recall that a model for the classical propositional calculus is simply an assign-
ment of the truth values true (1) and false (0) to the propositional variables.
This reflects the state of the world: Some atomic statements are true, and some
are false.

The semantics for intuitionistic logic described in the following reflects a
more dynamic approach: Our current knowledge about the truth of statements
can improve. Some statements whose truth status was previously indeterminate
can be established as true. The value true corresponds to firmly established
truth that is preserved with the advancement of knowledge, and the value false
corresponds to “not yet true”. To refute a formula φ ,  that is, to establish
at a stage it is necessary that = false for all future stages

We show that semantical validity is equivalent to derivability in intuitionistic
propositional logic.

The various stages of knowledge, or worlds as these are called, are simply
truth value assignments for propositional variables. An important feature of
this approach is an accessibility relation R between worlds: is read as

is accessible from and it is interpreted as is more advanced than
or Such interpretation requires R to be reflexive and transitive:

and for all

This motivates the following Definition.

DEFINITION 7.1. (propositional intuitionistic model). A propositional intu-
itionistic model is an ordered triple where W is a non-empty set, R
is a binary reflexive and transitive relation on W, and V is a function assigning
a truth value 0,1 to each propositional variable p in each

V is assumed to be monotone with respect to R:

47
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Elements of the set W are called worlds, R is an accessibility relation, and V
is a valuation function. A pair is called a (intuitionistic Kripke) frame.

The following definition was introduced by Kripke for intuitionistic logic; it
is connected to his previous treatment of modal logic. (It is easy to recognize
its common features with the notion of forcing introduced by Cohen.)

DEFINITION 7.2. A truth value for arbitrary propositional
formula and a world in a model is defined by recursion on

for a propositional variable p already defined.

implies for all
such that

As a consequence, we have the following:
iff =0 for all such that

In other words, conjunction and disjunction behave classically (in a boolean
way) in each world. The is true at world  iff will always be false. The

is true in iff the truth of implies the truth of in every accessible
world. In terms of stages of knowledge says that no possible advancement
of knowledge will justify The says that whenever is justified, will
also be justified.

Instead of we sometimes write
Note that means
The formula is true at the world iff and is valid in a

model iff it is true at every world The latter relations are
denoted by and Finally is valid (written iff it is valid
in all (propositional intuitionistic) models.

EXAMPLE 7.1. . Let  and let the relation R be given by
Finally let V be given by and V be false for

any other propositional letter. Graphically we describe this by:

The is over w0 and connected to since Let us compute the
value
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since and

So:

That is, the law of the excluded middle is refuted in our model. Verify that the
same model refutes the law of double negation:

With Theorem 7.1. below this example again shows that and
are not derivable in NJp.

EXAMPLE 7.2. The model

that is, and refutes the
principle of the weak excluded middle Indeed since
is the only such that  since and

given that and therefore:

Let us prove that truth is monotonic with respect to R.

LEMMA 7.1. (monotonicity lemma). Let   be a model; then for any
and formula

Proof. Induction on (the construction of) We restate (7.1) as:

Basis: is a propositional variable; then (7.1) is included in the definition of a
model.

Induction step: We assume and consider cases depending on the main
connective of

Then
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By the IH:

Therefore:

Assume

To prove assume and Since R is
transitive (and we assume we have Then by (7.2) we have

as required.
The other cases are similar.

7.1. Soundness of the System NJp

The value of a sequent in a model is defined exactly as for the corre-
sponding formula

iff  for any such that
implies

THEOREM 7.1. All the rules of NJp are sound: If all the premises are true
in a world of a Kripke model, then the conclusion is also true in

Proof.By inspection of the rules; consider only two of these.
1. &I.

Assume that:

as well as By monotonicity,
Now (7.3) implies

hence as required.
I

Assume and To prove
we assume We must establish

= 1. By transitivity of the relation R, we have and by mono-
tonicity, and Since R is reflexive, we
have by the truth condition for the sequent, we have as
required.
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7.2. Pointed Frames, Partial Orders

In a subclass of frames and models, an ”actual world” is distinguished.

DEFINITION 7.3. A pointed frame is a triple            where
is a frame, and for all A pointed model is a tuple

where is a pointed frame and V is a valuation
on Truth in M is truth in the world G:

The next Lemma shows that the truth in a world   depends only on truth
values in worlds accessible from

LEMMA 7.2. A formula is valid iff it is true in all pointed models.

Proof. The implication in one direction is obvious. For other direction, as-
sume that is not valid, that is, for some M. Then

for some Consider the pointed restriction
of M to worlds accessible from G:

By induction on we easily prove that its value in M and is always the
same:

The transitivity of R ensures that all necessary worlds from W are present in
when is an implication or negation. From (7.4) it follows that

as required.

DEFINITION 7.4. A binary relation R on a set W is a partial order iff R is
reflexive, transitive, and antisymmetric:

THEOREM 7.2.  A formula is valid iff it is true in all pointed models
partially ordered by R.

Proof. Set iff and The reflexive transitive relation R
may fail to be a partial order due only to failure of antisymmetry: for
some However such worlds are indistinguishable by the values of V,
since monotonicity implies that:

for every formula
For the non-trivial part of Theorem, in a pointed model in

which all worlds are accessible from G, identify indistinguishable worlds. More
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precisely, let be the set of equivalence classes and let  be the corresponding
accessibility relation:

Then is a partial order, and the following valuation:

is well-defined and monotonic. It is easy to prove by induction on  that (7.5)
extends to all formulas:

7.3. Frame Conditions

Let us illustrate the use of frame properties for characterizing superintuitionistic
logics, that is, extensions of intuitionistic logic.

LEMMA 7.3. Let  be a pointed frame and let every      be
accessible from G. Then the law of the excluded middle  is valid in F iff
R is total: for all If R is a partial order, then  is valid
iff W is a singleton

Proof.Let us first assume R is total and establish
we are done. Otherwise for some Since R is total, we have
and by monotonicity, as required.

Now assume that R is not total, that is, for some Define
a truth value assignment V as follows:

V is monotone and V(p, G) = 0 by definition of V. On the other hand,
since and

EXERCISE 7.1. Find frame conditions for

EXERCISE 7.2.

Prove that a formula is valid in a frame iff R is symmetric:
implies for all



Chapter 8

Gentzen-type Propositional
System LJpm

We prove natural deduction system NJp sound and complete for Kripke models.
However it is convenient first to introduce another propositional system LJpm
that is equivalent to NJp and more suitable for proof-search. Here we work with
multiple-succedent sequents, that is, expressions of the form:

where are formulas.
The translation of sequents into formulas is given by:

The formula corresponding to a sequent is written as
In particular the sequent corresponds to the formula and the sequent

is translated as it is read are contradicto-
ry”. The left-hand side is the antecedent of the sequent (8.1), and
the right-hand side is its succedent. The formulas are
antecedent members of the sequent (8.1) and the formulas are its
succedent members. Antecedent and succedent are considered as multisets, that
is, the order of formulas is disregarded. If and are multisets of formulas,
then is the result of concatenation, and means as before. We
always treat as an abbreviation:

Propositional system LJpm
Axioms:

53
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Inference rules:

The calculus has eight logical rules, namely, two rules for each connective c: One
rule introduces it to the succedent, and it is called or c-succedent; the
second rule introduces c in the antecedent, and it is called  or c-antecedent.
Contraction contr and weakening weak are structural rules.

All rules except have the same parametric formulas in conclusion
and all premises.

If negation is taken as a separate connective, corresponding rules become

An additional rule that is not officially part of LJpm but is proved to be admis-
sible later is needed to establish connections with other formalizations. This is
a cut rule:

Sequents written over the line in a rule are called premises; the sequent under
the line is the conclusion of the rule. A formula explicitly shown in the conclusion
of the rule and containing the connective introduced by the rule is called the
principal formula. Thus is the principal formula for &-rules, for

rules, and so on. The subformulas of the main formula explicitly shown
in the premises are side formulas. Formulas in the lists are parametric
formulas; the formula in the cut rule is the cut formula.

Contraction allows us to treat multisets in the antecedent and succedent as
sets, that is, to disregard not only order of formulas, but also the number of
occurrences. Weakening allows us to add arbitrary formulas to antecedent and
succedent, in particular to treat and as axioms and derive
pruned forms of one-premise rules:

Using contraction, we can preserve main formulas in the premises of rules or
omit these formulas. For example, such inferences as:
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are derivable:

System LJpm differs from sequent formalizations of the traditional (classical)
logic LK mainly in the formulation of the succedent rules for and where
succedent parametric formulas do not occur in the premise (although they occur
in conclusion). Note that the classical forms of these rules:

allow us to derive so these are not admissible intuitionistically.
A derivation or proof in LJpm is defined in a standard way as a tree pro-

ceeding from the axioms by application of inference rules.
Example (derivations in LJpm).

LEMMA 8.1. Every rule of LJpm has a subformula property: Each formula in
a premise is a subformula of some formula in the conclusion. Every derivation
consists of subformulas of its last sequent.

Proof.Check all rules.
Note that the cut rule does not have the subformula property. The systems

NJp and LJpm are equivalent; moreover their rules are in exact correspondence.

LEMMA 8.2. Let  be translated as Then a sequent is derivable
in LJpm plus cut if and only if its translation is derivable in NJp. In particular

in LJpm plus cut iff in NJp. More precisely,

(a) every introduction rule is the succedent logical rule of LJpm for the same
connective;

(b) every elimination rule can be translated by the antecedent rule for the same
connective plus cut;

(c) translation of every rule of LJpm is derivable in NJp.

Proof.Consider only several subcases. Part (b) :
&E:



56             GENTZEN-TYPE PROPOSITIONAL SYSTEM LJPM

Part (c): Consider translations of the rules of LJpm. Note that every succe-
dent logical rule of LJpm is translated using the introduction rule for the same
connective, and every antecedent logical rule of LJpm is translated using the
elimination rule for the same connective combined with cut. We write transla-
tions of

EXERCISE 8.1. Derive following sequents in LJpm:

1.

2.

3.

4.

5.

6.

EXERCISE 8.2. Construct Kripke countermodels for the following sequents:

1.

2.

3.

4.
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8.1. Soundness of the System LJpm

The value of a sequent in a model is defined exactly as for the corresponding
formula:

iff for any such that
implies for some

THEOREM 8.1. Cut and all the rules of LJpm are sound: If all premises are
true in a world w of a Kripke model, then the conclusion is also true in w.

Proof.Use Theorem 7.1. and Lemma 8(c).
Note. All LJpm rules except the succedent rules for and are invertible:

Derivability of the conclusion implies derivability of the premises. This can be
verified directly or inferred from the following observation: The premises are
derivable from the conclusion using cut. This also shows that the truth of the
conclusion implies the truth of premises.

EXERCISE 8.3. Verify that all rules except    and  are invertible.
Prove that and are not invertible.

8.2. Completeness and Admissibility of Cut
DEFINITION 8.1. A sequent    is falsified in a world  of a Kripke model
(W, R, V ) if  This implies

In this Chapter means that is derivable in LJpm.
We now prove that any sequent underivable in LJpm is falsified in some world

(of some model). Moreover we prove (following [6]) that there is a universal
(canonical) model suitable for the falsification of all underivable sequents (each
in its own world). It is essential that this model proves completeness of a cut-free
formulation.

This proof is a natural extension of a completeness proof for classical predi-
cate logic.

DEFINITION   8.2.  stands for the set of all subformulas of         A sequent
is complete if  it is underivable and for any formula either

or

that is, both sequents and are derivable.

Note. The condition (8.3) is used in the proof of the Corollary 8.2., but
that Corollary shows that (8.3) never holds if is underivable.

The following definitions are motivated in part by the proof-search process,
which proceeds by bottom-up application of the inference rules.

DEFINITION 8.3. A sequent     is saturated for invertible rules if it is
underivable and the following conditions are satisfied for any
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implies

implies

implies

implies or

implies

The following Lemma says that all invertible rules were applied from the
bottom up in every complete sequent.

LEMMA 8.3. (saturation) If   is complete, then it is saturated for
invertible rules.

Proof.We leave all but three cases to the reader. We say that clashes  with
if (8.3) holds; that is, both and are derivable.

Let We analyze all cases for three possible positions of
either in in or in clash with Note that if

then is derivable by which contradicts completeness of
Hence one of (say ) is not in [otherwise the sequents (8.4) are axioms],

and one of does not clash with If then  clashes with
by the completeness of Hence the sequent  is derivable and
does not clash with Also since otherwise sequents in (8.4) are
derivable; hence as required.

Let Then since otherwise is derivable by
If clashes with , then is derivable from by

weakening, and contraction. For this leaves only the possibility that
For analogous reasons,

Let As before one of the following sequents is under-
ivable:

since is derivable from (8.5) by Hence one of  does not clash
with and or

Assume that If then clashes with by completeness,
and does not clash with Hence as required.

In the remaining case and if then clashes with
so does not clash with Hence as required.

EXERCISE 8.4. Verify all remaining cases.

LEMMA 8.4. (completion). Any underivable sequent   can be extended
to a complete sequent consisting of subformulas of
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Proof. Consider an enumeration of all (prepositional) formulas
in Define the sequences ... of finite
sets of formulas such that is underivable and complete for all formulas

Either or both and are
derivable.

Let if is underivable; otherwise let
Then let if is underivable; otherwise let

Let and The completeness of easily
follows from the completeness of for

DEFINITION 8.4. Consider the following Kripke model:

• W is the set of all complete sequents.

iff

iff

K is clearly a Kripke model: is reflexive and transitive, since is reflexive
and transitive; is monotonic, since is monotonic with respect to

We prove below that K falsifies every invalid formula.
Let us state the properties of  K, which we will need later.

DEFINITION 8.5. A set M of sequents is saturated for non-invertible rules if
the following condition is satisfied for every in M:

if then there is a sequent in M such that
and

A set M of sequents is saturated if every sequent in M is saturated for invertible
rules and M is saturated for non-invertible rules.

Comment. In a saturated set of sequents, both invertible and non-invertible
rules are eventually applied from the bottom up.

LEMMA 8.5. The set W of all complete sequents is saturated

Proof. Only condition needs to be checked. If is in
W, then the sequent is underivable. By the Completion Lemma 8.2.,
we can be extend this sequent to a complete sequent hence

and as required.

DEFINITION 8.6. A model defined by a saturated set M is
where as defined above.

THEOREM 8.2. Let M be a saturated set. Then for

•
•
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Proof. Relation (8.8) is an immediate consequence of (8.6,8.7), which are
proved by simultaneous induction on the formula

(induction base):
In this case (8.6) follows from the definition of If then

otherwise is an axiom of LJpm. Hence
The induction step ( is a composite formula) is proved by cases.

&: If then by the saturation for invertible
rules; therefore by the induction hypothesis. Hence

by the truth condition for &.
If then one of say, is in by the saturation condition. Hence

by the induction hypothesis; therefore
If then for every such that

(that is, we have By the saturation condition, this implies
or By the induction hypothesis, or This
implies

If then by the saturation condition we have
in M, such that By the induction hypothesis,

and This implies as required.
The remaining cases are simpler.

EXERCISE 8.5. Verify the remaining cases.

COROLLARY 8.1. (completeness) (a) Each sequent underivable in LJpm is
falsified in the canonical model K. Hence every valid sequent is derivable in
LJpm.

(b) Moreover every underivable sequent is falsified in a finite model
KM , where is the set of all complete sequents consisting of sub-
formulas of The number of elements  is bounded by 4s, where

Proof.Part (a): By the Completion Lemma 8.2., any underivable sequent
can be extended to a complete sequent by the Theorem

8.2., Hence by monotonicity.
Part (b): All arguments in the proof of Part (a) remain valid for KM  instead

of K. Let us estimate For every we have
s, hence the number of possibilities for and for II is bounded by 2*,
so

THEOREM 8.3. (soundness and completeness).

(a) A formula is derivable in LJpm iff it is valid.

(b) A formula is derivable in LJpm if and only if it is valid in all finite pointed
models where accessibility relation is a partial order.

Proof.Part (a): Apply Theorem 8.1. and Corollary 8.2.(a).
Part (b): Apply Corollary 8.2.(b) and note that the construction in the proof

of Lemma 8.2. preserves finiteness.
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COROLLARY 8.2. (a) Cut rule is admissible in LJpm: If   and
are derivable, then is derivable.

(b) LJpm is equivalent to NJp with respect to derivability of sequents

Proof.Part (a): By the soundness of LJpm plus cut, it follows that
is valid. By the completeness of LJpm (without cut) it is derivable.

Part (b): Use Lemma 8
Comment. What cut elimination method is suggested by this Corollary?

Given (cutfree) derivations of the premises, ignore them to search for a cutfree
proof of You will eventually find it; as noted in the introduction, there
are more sophisticated methods.

8.3. Translation into the Predicate Logic
The completeness theorem 8.2. for LJpm allows us to write a predicate formula
that expresses the validity of a given propositional formula To every proposi-
tional variable p, we assign a monadic predicate variable P. We also fix a binary
predicate symbol R.

DEFINITION 8.7. For any propositional formula    and individual variable
we define a predicate formula by induction on

where is a new variable.

DEFINITION 8.8.

where:

where are distinct new individual variables and pi are all predicate
variables occurring in

THEOREM 8.4. A prepositional formula   is derivale in LJpm iff is
derivable in the classical predicate calculus.

Proof.A first-order model:
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with the universe W and an interpretation for the predicates and the constant
in satisfying the premise of (that is, reflexivity and transitivity of R)
generates a Kripke model:

where iff for
In the other direction, any Kripke model with a distinguished world
generates a first-order model M by means of (8.9); that is, iff

Moreover by induction on it is easy to prove that:

We see that is valid (in the first-order logic) iff is valid intuitionistically.

This may initially suggest an alternative proof-search procedure. To test
write and apply some (resolution) theorem prover for the classical logic.

However the result will be devastating. The search space is very quickly filled
by useless resolvents. Much more sophisticated approach along these lines is
proposed in [18].

8.4. Algebraic Models

Algebraic models represent another kind of model for non-classical logics. Such
a model usually consists of a universe U with a distinguished element (truth)
and operations on U corresponding to logical operations. Conditions for op-
erations on U are set so that the validity of derivable formulas can be proved
rather easily. We show here that intuitionistic prepositional logic is sound and
complete for algebraic models.

DEFINITION 8.9. A pseudo-Boolean algebra (PBA) or Heyting algebra is a
pair where B is a non-empty set and is a partial ordering relation on
B, which defines a lattice with the least element and psudo-complements.

This means that for arbitrary a and b:
(i) the least upper bound
(ii) the greatest lower bound and
(iii) the pseudo-complement always exist.

Lattice conditions imply in addition to (i), (ii) commutativity and associativity
of and distributivity.

To make this definition easier to remember, associate with the truth
of with & and with Then the conditions for pseudo-complements
say that for arbitrary a, b, and c:
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The first equation corresponds to modus ponens, establishing that
that is, it enforces suitable constraints on The second equation

establishes that if then that is, the maximality of
Truth is defined as negation as
A valuation from the set of propositional variables to a PBA is a

function The valuation h is extended to all formulas as a homomor-
phism:

Formula is true in a and a valuation h iff Then we say
that h satisfies Formula is valid in a PBA if it is true in any valuation to
this PBA. The is valid if it is valid in any PBA. The sequent is valid
iff the formula is valid, that is, or for short

LEMMA 8.6. LJpm is sound: every derivable sequent is valid in any PBA.

Proof.Let us verify that axioms are valid and inference rules preserve truth
in every PBA and every evaluation h.

Axioms:

Inference rules reflect corresponding properties of
for example,
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To prove completeness of the algebraic semantics, we translate Kripke models
into algebraic models.

DEFINITION 8.10. Let     be Kripke frame, thai is, a non-empty set
W plus a reflexive, transitive relation R. A set is R-closed iff and

imply

We define to be the collection of R-closed subsets of W with the inclu-
sion relation as the ordering

NOTE. The .R-closed sets are possible values of prepositional variables in K
for elements of Union and intersection of R-closed sets are R-closed. The set
of all worlds, is R-closed as well as
The main step in proving that is a PBA is to define pseudo-complements.
We define to be the largest .R-closed subset of

LEMMA 8.7. (Properties of operations).

(a) are lattice join and meet (lattice union and intersection);

(b) is the relative pseudo-complement with respect to

(c) is the least element.

Proof.Parts (a) and (c) are easy; let us prove (b).

1. The first half of the pseudo-complement condition is
obtained as follows:

2. Let us prove that is the greatest element X of satisfying
Indeed

if

Since X is R-closed, hence by the definition of we have
that is,

LEMMA 8.8. (correspondence between a Kripke model K and     ).

Let and be a Kripke model. Then the following valuation of
the prepositional variables in the pseudo-Boolean algebra
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extends to all formulas

In particular is true in h iff it is true in V in all worlds:

iff

COROLLARY 8.3. A formula is derivable iff it is valid in all PBA iff it is valid
in all finite PBA.

Proof.We establish Lemma 8.4. by induction on the formula The induc-
tion base is (8.11). The induction steps for &, are obvious. The induction
step for proceeds as follows: is the largest R-closed subset of

that is, of the set:

Part (a): implies Let
Since is R-closed, Then

implies By the induction hypothesis, this means implies

Part (b): implies The set
is R-closed by the monotonicity Lemma 7, and it is the largest R-

closed subset of By the induction
hypothesis, this is the same as the largest .R-closed subset of
equaling as required.

NOTE. In fact there is an “inverse” operation constructing Kripke models
from finite pseudo-Boolean algebras. For an algebra let W be the set of
proper prime filters in and let R be the inclusion relation. (A filter F satisfies
the conditions for all a prime filter
satisfies

The valuation V in corresponding to a valuation h in is defined by:

The proof that is a Kripke model and (8.12) extends to all formulas is
given in [6].

8.5. Filtration, Finite Matrices

Let us sketch another proof of Theorem 8.2.(b).

8.5.1. Filtration

For any Kripke model and a formula define the filtra-
tion of M through as follows. Let be the set of all
subformulas of For set
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Set

Note that is finite, is reflexive and transitive, is monotonic, and

THEOREM 8.5. For all

Proof.We use induction on Induction base and &, cases are easy.
Let Using IH and (8.13) we have:

iff

implies iff

Using IH and the definition of we have:

imply

Therefore, implies

EXERCISE 8.6. Infer Theorem 8.2.(b) from the Theorem 8.5.l and complete-
ness.

8.5.2. Lindenbaum Algebra

Let us outline another way of proving completeness of pseudo-Boolean algebras.
This was in fact the first completeness proof [10]. Under this approach the
elements of the pseudo-Boolean algebras are equivalence classes of formulas.

Define
is derivable }

the set of all

EXERCISE  8.7. Verify  that    are  and that is a
pseudo-complement. Infer the completeness theorem. The PBA  is called the
Lindenbaum algebra of intuitionistic logic.



GENTZEN-TYPE PROPOSITIONAL SYSTEM LJPM 67

8.5.3. Finite Truth Tables

Let us now restate the definition of Kripke models in terms of finite truth tables.
For a finite pointed Kripke frame:

with

let every binary number encode by its binary digits a truth value
assignment to a prepositional variable in W. For example,

encodes an assignment of 1 (true) to our variable in all worlds, while
encodes an assignment of 1 (true) in the world n and 0 (false)

in all other worlds.
Say that a number is monotonic if for the ith bit of k:

Now take the monotonic numbers among to be the truth
values. Take &, to be bit operations &, (that is, min, max) so that for

The ith bit of is defined as follows to satisfy Kripke implication semantics:

iff

The set of monotonic numbers among with operations &,
just defined and the distinguished value is an example of a finite matrix
for intuitionistic logic: A finite set of truth values with propositional operations
on them given by truth tables (matrices) such that all derivable formulas are
valid; that is, these formulas take the distinguished value under every assignment
of the truth values to variables.

EXAMPLE 8.1. The Kripke model with W = {0,1}, R00, R11, R01 generates
a finite matrix with the truth values {0,2,3}: the number 1 is not monotonic.
We obtain the following tables for the connectives:

When the variable p is assigned value corresponding to truth in the
second world and the falsity in the first world, we have:

This means is not valid.
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EXERCISE 8.8. Construct a finite truth table verifying all derivable formulas
but falsifying

THEOREM 8.6. A formula is derivable in NJp iff it is valid in all finite
matrices for intuitionistic logic.

Proof. If  then take a finite pointed Kripke model falsifying  and turn it
into a finite matrix.



Chapter 9

Topological Completeness

Let us describe topological semantics for NJp and prove a topological complete-
ness theorem,

DEFINITION 9.1. An interpretation in a topological space X, is an assignment
of an open subset to every propositional variable   p.  This assignment
is extended to composite formulas as follows:

Hence is open for every formula As a consequence:

A formula is true in the interpretation V iff A formula is valid in
a space X if it is true in any interpretation in X.

THEOREM 9.1.

A formula is derivable in NJp iff it is valid in every topological space X.

Proof.It  is easy to verify that all axioms of NJp are valid and the inference
rules preserve validity. Hence every derivable formula is valid.

To prove the converse implication, assume that a formula is not derivable
in NJp and take a finite pointed Kripke model satisfying:

[see Corollary 8.2.(b)]. Introduce a topology on the set K by taking the family
of all cones:

69
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for all as a basis of open sets. In other words, the interior operation
satisfies the following:

Set

The V (p) is open by the monotonicity condition for and it is easy to verify
by induction on the formula that:

Consider the most important case, and let range over K.
Then:

Hence (9.3) shows that that is, is not valid.
The construction used in the preceding proof yields a teratological space:

For example, the closure of a singleton set is the set of all points accessible
from hence is not separable from these points by a neighborhood.

Let us give a completeness proof for the unit interval of the real
line. Recall that open sets in [0, 1] are finite or a countable unions of open
intervals.

THEOREM 9.2. A formula is derivable in NJp iff it is valid in [0, 1].

Proof.Derivable formulas are valid by the previous Theorem. The proof of
the opposite implication takes the rest of the present subsection. Fix a formula

 and a finite pointed Kripke model [Theorem 8.2.(b)] such that:

and R is a partial ordering on K.
If let

then

This relation extends to all formulas: By induction on we prove:

since computations follow classical truth tables:
In particular, that is,    is refuted in [0, 1]. This concludes

the case
From now on, assume that
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Consider the set of all infinite sequences of worlds (non-strictly)  monotonic
with respect to R:

In fact, this set already provides a model in a compact space similar to Cantor
set if we use the standard metric:

where

We shall not use this fact to imbed into [0,1].
Note. Every sequence stabilizes (after at most jumps).
Let n(s) be the stabilization moment for s, that is the least natural number

satisfying the condition:

and let

be the stable value.
Define and note that:

Define for all

From now on we assume In other word, the worlds are
enumerated from the root by “horisontal slices”. In this Chapter s, t, u stand
for elements of and x, y, z stand for real numbers in [0, 1].

LEMMA 9.1. For all

(a)

(b)
with the first replaced by

(c) if then

with replaced by

(d) then
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Proof.Part (a):

Part (b): All terms in the series for are non-negative. If then
for since and R is a partial ordering. Hence similarly

to Part (a):

Part (c): implies and by Part (b),
Hence Here we have the following situation:

Part (d): It is enough to prove (d) for the minimal number k satisfying
since decreases with k. In other words, we assume and

(choosing one of two possibilities) Then and
by Part (b):

Together with this implies

LEMMA 9.2. (a) If   then

In particular,

(b) If

Proof.Part (a):
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Part (b): We have and

LEMMA 9.3. If  and  then

Proof .If    then:
[monotonicity of [since

If then [since
[monotonicity]

For define

if for every
closest to x such that otherwise

The latter condition means for all

LEMMA 9.4. s[x] is defined.

Proof.Assume that s, t both satisfy the last clause in the definition of s[x],
that is,

and Then [otherwise one of is closer to x than the
other]. We have since otherwise

and This implies
Together with this

implies w(s) Since we have

Together with (9.4) this implies and a contradiction.

Let

Since for we have We also write

LEMMA 9.5. If  then

Proof. From       we have        Then
implying that is,

For every propositional variable p define a set V(p) by

where stands for truth in the model (0, K, R).
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LEMMA 9.6. The set V(p) is open

Proof.Assume  If  then   and    Assume
now (which implies that s[x] is computed by the second clause of the
definition) and let be the distance from x to the closest end of the interval

Then Take an with To prove note that
This implies and

Hence and

THEOREM 9.3. For arbitrary formula 

(9.6)

Proof.We use induction on The induction base is the relation (9.5).
Induction step for where

as required for (9.6).
Let Recall that:

Interior

Assume first Take an satisfying (9.7) and an arbitrary with
Take a natural number such that

Define a sequence t by:

then else

Since we have and as well as
and

Hence so and by IH. This implies

Now assume that but . Take a sequence
If then for all m. Otherwise,

and for sufficiently big m , hence
By IH, and by Again by

IH, a contradiction.
To finish the proof of the topological completeness for [0,1], recall that

Then for the constant 0-sequence 0, we have hence as
required.



Chapter 10

Proof-Search

10.1. Tableaux: System LJpm*

For each sequent S, we describe a tree obtained from S by a bottom-up
application of the inference rules of the system LJpm. If the goal sequent S is,
say, of the form:

then it can be derived from a simpler sequent:

by the rule Therefore the first step of the construction of can be

In this way is extended upward with the ultimate goal of obtaining a deriva-
tion of S. Bottom-up applications of two-premise rules lead to a branching of
TrS. If, say, then (10.1) can be extended as follows:

This kind of branching is called conjunctive or and-branching: To prove a
final goal sequent, it is necessary to prove both subgoals. In this way we can
treat all invertible rules of the system LJpm: If a potential principal formula of
such a rule is present, it is eventually analyzed. Non-invertible rules present a
problem and will cause an extension of the language. Consider a sequent:

The only invertible rule applicable here (bottom-up) is but it is re-
dundant, since is already present in the succedent. Hence we must try
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non-invertible rules. To make the search exhaustive, all of these rules are to be
tried in parallel. The proof-search is successful iff at least one of these parallel
processes terminates. This situation is called disjunctive or or-branching.

To describe disjunctive branching, we introduce more complicated objects:
Finite ordered sequences or lists of sequents, written as follows:

These are called tableaux. The order of components is in fact irrele-
vant, but we keep it fixed to facilitate notation. Tableaux are derivable objects
of our new system LJpm*. Its rules are the rules of LJpm applied to one of the
components Note that the rule adds a new component (when viewed
bottom-up) and hence turns a sequent into a tableau.

System LJpm*.
Axioms:

Inference rules:

All the rules of LJpm* are in fact invertible, but we call quasi-invertible
to stress its connection with the non-nvertible rule of LJpm.

Let us prove first that the new system is equivalent to the old one. We could
just interpret * as a disjunction, but this would introduce cuts.

LEMMA 10.1. Any derivation of a tableau    in LJpm* can
be pruned into a derivation of one in LJpm by deleting some components of
tableaux.

Proof.Use induction on the height of the derivation. The axioms of LJpm*
are pruned into the corresponding axioms of LJpm, and all remaining compo-
nents (that is, ) are deleted.

If some non-active component (occurring in ) is retained in at least one
of the premises of a rule, it is also retained in the conclusion. For example, the
rule:
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is transformed into the repetition:

if S were retained in one of the premisses. Otherwise only the active sequents
are retained, for example:

is transformed into:

if the leftmost sequents were retained in both premises.

THEOREM 10.1. System LJpm*  is  equivalent to  LJpm: A sequent is derivable
in LJpm* iff  it is derivable in LJpm.

Proof.One direction is the previous Lemma. To prove the other direction we
add redundant sequents to transform LJpm-derivations into a LJpm* derivation.
More precisely, we proceed by induction on LJpm-derivations. The basis case is
obvious. The induction step is proved by cases depending on the last rule L in
the derivation. When L is invertible, the induction hypothesis is used. Consider
a non-invertible rule

By the induction hypothesis, we have a derivation d of in LJpm*.
Prefixing to all tableaux in d, we obtain a derivation of

in LJpm* and complete the derivation by applying
the rule of LJpm*.

10.2. Proof-Search Procedure

Let us describe a proof-search procedure for the system LJpm* that constructs
a proof-search tree for each tableau It works in a bottom-up way: For
a goal tableau it either declares that cannot be analyzed further, or it
analyzes to determine a new goal or two new goals and such that

is obtained from these by some rule L. We say that the proof-search tree is
extended by using L bottom-up:

or

At each stage except possibly the final one, the proof-search tree has
a finite list of goals (leaf nodes of the tree). The tree extension step consists in
picking one of the goals (for example, the leftmost one) to analyze. Then



78 PROOF-SEARCH

is replaced in the list of goals by or by and If is  an axiom, it is not
analyzed but simply deleted from the list of goals and declared a closed leaf of
the tree. Then the extension step is repeated. If is not an axiom and cannot
be analyzed further, then it is declared a terminal node, the proof-search  process
stops, and the initial tableau is declared underivable. If the list of goals is
empty, that is, all leaf nodes of the tree are closed, then the tree is closed, and
the initial tableau is derivable. (Indeed in this case the tree proceeds from
axioms by the rules of LJpm*.)

At the initial step, the whole tree consists of exactly one node, namely, the
tableau we are testing for derivability.

Before presenting a proof of the termination and completeness of this proof-
search procedure, consider two examples. We preserve principal formulas in all
rules (see the beginning of Section 10.3. below).

EXAMPLE 10.1. Consider a sequent

We omit the right premise (axiom) in the rule and some occur-
rences of in the succedent, since these do not contribute to proof-search:

Our sequent is derivable.

EXAMPLE 10.2. Consider a proof-search  tree  for a sequent

Let:

Continue the search up the left branch:
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where:

and

The tableau is terminal (no rule can be meaningfully applied bottom-up to
it). It produces the following refuting Kripke model for the original sequent

where 0,1,2 correspond to components of

Indeed the antecedent is true in the world because p&q is
refuted in all three worlds: In 0 and 1, since q is false there and in since is
false there. On the other hand are both false in the world
since and since Hence
as required.

10.3. Complete Proof-Search Strategy

Let us impose some restrictions on tree extension steps.  Structural rules are
used only as parts in a step by a logical rule, and are not mentioned separately.
Suitable sequents of maximal complexity are analyzed first. To avoid repeated
analyzis of the same formula, all principal formulas of invertible rules are pre-
served; that is, every invertible step is always preceded by a contraction of the
principal formula. For example, and  take the following form:

Consider the following proof strategy avoiding redundancy.

DEFINITION 10.1. A sequent    subsumes a sequent (and
is subsumed by and as sets of formulas.

(Note that in this case).
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An extension step applied to a tableau is admissible if none of the new com-
ponents (there is just one for one-premise rule) subsumes any component
of any tableau from down the root (original sequent) of the proof-search tree.

LEMMA 10.2. If  principal formulas of invertible rules are preserved and
only admissible tree extension steps are applied, then the proof-search in LJpm
terminates.

Proof.Every  sequent in the proof-search tree for a sequent S consists of sub-
formulas of S; hence there is only a finite number N of different sequents (when
antecedents and succedents are treated as sets of formulas). Every admissible
extension step adds a new sequent to a given branch of the proof-search tree,
so the length of the branch is bounded by N. Since the tree is binary (it has at
most two branches at each node), it is finite.

LEMMA 10.3. If principal formulas of invertible rules are preserved, only
admissible tree extension steps are applied, and is a terminal node of a proof-
starch tree (no extension step is admissible), then can be pruned (by deleting
components properly subsumed by others) into a saturated set of sequents.

Proof.Observe that if a tableau is situated over some tableau in some
branch of the proof-search tree (that is, is obtained from by a series of
extension steps), then every component of subsumes some component of
Indeed if a component of the conclusion of a rule is changed in the passage to
the premise, then this rule is invertible, and the component is just extended.

Let be a terminal node. Delete all components of that properly subsume
other components and prove that the resulting set of sequents is saturated.
Let Then S is saturated for invertible rules: For any potential bottom-
up application of an invertible rule to a formula in S, one of the newly generated
components coincides with S. Otherwise this component properly contains
S. Since is a terminal node, subsumes one of the components, say
in the branch from down to the root. As previously observed, subsumes
some component in and hence S properly subsumes some component of
that is,

To prove that is saturated for non-invertible rules (of LJpm) to formulas
in a given component consider the new component to be  generated
by such an application. As in the case of an invertible rule, a terminal tableau

contains a component subsumed by that is, it is saturated.
It remains to describe the construction of a refuting model for the original

tableau from the (non-closed) terminal tableau in the proof-search tree
By the previous Lemma 10.3., a subset of is saturated. By Theorem

8.2., it produces a Kripke model falsifying all sequents in
by (8.8). Since every sequent in subsumes some sequent in it is also
falsified in the same world of W.

LEMMA 10.4. Let   be a terminal tableau (leaf node) in a proof-search tree
for a tableau:
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and let be a Kripke model such that falsifies the ith
component  of Then  falsifies  for every

Proof.Easy induction on height of  Induction base: Apply
the assumption.

Induction step. The is derived by a rule L applied bottom-up to its
component Let be the premise of L in the branch of
leading to node

If L is invertible, that is, then is obtained from       by replacing
by By IH, falsifies for and falsifies Since L is invertible,

implies hence falsifies
If then and IH is applicable.

THEOREM 10.2. (a) The proof-search procedure is sound and complete.

(b) Intuitionistic propositional logic is decidable

Proof.If the proof-search does not terminate in a derivation, take a terminal
tableau and apply Lemma 10.3. to construct a refuting model.
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System LJp

One-succedent version LJp of LJpm is obtained by restricting the succedent to
one formula in LJpm. In other words, sequents are of the form and the
rules are as follows:

System LJp  Axioms:

Inference rules:

The following rules are derivable:

11. 1. Translating LJpm into LJp

11. 2. A Disjunctive translation

For
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LEMMA 11. 1. (a)   is derivable in LJpm iff   is  derivable  in
LJp + cut.

(b) In particular LJpm is equivalent to LJp + cut for sequents

Proof.Part (a): The translation of every rule of LJpm is derivable in LJp +
cut. For example:

is translated as:

where (disregarding some weak, contr):

In the opposite direction, a derivation in LJp is already a derivation in LJpm
(up to structural rules), and the passage from to is done by
cut with

11.3. Pruning, Permutability of Rules

The translation of LJpm into LJp given in the previous Section 11.2. distorts
the structure of derivations and introduces cuts. This may be inconvenient if
the goal is for example to extract a program.

In the present Section we describe a translation that preservs the structure of
a derivation better and prunes multiple-succedent sequents into 1-sequents, that
is, sequents of the form The translation uses permutation of inferences
along the lines of [11].

Let us first describe pruning transformations that delete redundant parts of
a deduction.

DEFINITION 11.1. A derivation in LJpm is pruned if weakenings occur only
as follows (with only other weakenings intervening):

(a) immediately preceding the endsequent;

(b) to introduce the side formula of the other one not being introduced by
a weakening;

(c) to introduce one of the parametric formulas into one premise of a two-
premise inference, this formula not being introduced into the other premise by a
weakening.
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LEMMA 11.2. Every derivation    in LJpm can be transformed into
a pruned derivation by moving weakenings downward and deleting
occurrences of formulas and whole branches.

Proof.We use induction on d. The induction base is obvious; for the induc-
tion step, consider the last rule L in d.

Case 1. The L is a two-premise rule. If at least one of the side formulas of
L is introduced by weakening, then L is deleted together with the whole branch
ending in the other premise; for example:

is pruned into:

where
If none of the side formulas of L is introduced by weakening, we apply IH.

For example:

is pruned into:

Here
Case 2. L is a one-premise rule. If all side formulas of L are introduced by

weakening, then L is deleted. Otherwise weakenings of parametric formulas are
moved down; for example:

is pruned into:

In addition to derivations in LJpm, we consider below deductions in LJpm,
that is, trees constructed according to the rules of LJpm, with leaves containing
arbitrary sequents (not necessarily axioms or
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LEMMA 11.3.   If             is a pruned deduction in LJpm  from arbitrary
1-sequents containing no -inferences, then  is an 1-sequent up to
weakenings, that is, d ends in:

Proof.In a pruned deduction, all rules except  preserve the property of
being a 1-sequent; for example:

is in fact

Indeed both and are in fact present, since otherwise the whole rule is pruned.
Hence is a single formula, and is empty.

DEFINITION 11.2. Let    is a derivation in LJpm and let L be
an antecedent rule in d, with a principal formula and conclusion
Then L is movable if and in the case of the succedent
parameter formulas are pruned from the left premise:

LEMMA 11.4. Let    be a pruned deduction in LJpm from 1-sequents
containing an rule but no non-invertible rules. Then d contains a movable
rule.

Proof. Consider the lowermost non-structural rule L in d. If L is an an-
tecedent rule other than then it is movable. If L is a succedent rule, use
IH. Otherwise d ends in:

If e does not contain then by Lemma 11.3. the succedent contains
(up to weakenings) just one formula. Since d is pruned, it should be  hence L
is movable.

If e contains use IH.
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THEOREM 11.1. Every derivation of a 1-sequent     in LJpm can be
transformed by permutation of movable rules and pruning into a derivation in
LJp.

Proof. We use induction on the number of logical inferences in the given
derivation. If all premises of the last rule are 1-sequents (up to weakenings),
then apply IH. Otherwise delete from the given derivation all sequents above
the lowermost 1-sequent (up to pruning) in every branch. We are left with a de-
duction d from 1-sequents by invertible rules, since conclusions of non-invertible
rules are 1-sequents. If this deduction does not contain inferences, use
Lemma 11.3.; otherwise there is a movable rule. Moving it down and applying
IH to its premises concludes the proof. Let us consider possible cases in detail.

Case 1. There is a movable & inference. Then d takes the form shown on
the left below. Permute it down as shown on the right, to appy IH to

where the contraction rule and are present only if the lowermost
has other predecessors than the principal formula of L.

Case 2. There is a movable inference (this case is similar to the previous
case):

Case 3. There is a movable inference L:

Move it down:

This concludes the proof.
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Interpolation Theorem

Now we can prove a proposition having many applications. If E is a formula
or sequent, then stands for the list of propositional variables occurring in E
plus

A Craig interpolant for an implication is a formula such that:

and

A Craig interpolant for a partition of a sequent is a formula
such that:

and

THEOREM 12.1. (interpolation theorem) (a) If     is derivable, then
there is a Craig interpolant for

(b) If is derivable, then there is a Craig interpolant for

Proof.Part (b) follows immediately from Part (a). Let us prove Part (a) by
induction on a given derivation in LJp.

Case 0. The d is an axiom or The interpolant depends on
a given partition of the antecedent. If  is empty, define and we
have and as well as If  is non-empty, that is, the
whole of the antecedent, define (that is, or  and we have

and
Case 1. The d ends in an one-premise succedent rule L (that is,

or By IH, there is an interpolant for the premise, and it is just
preserved for the conclusion. If for example then we have:

Case 2. The d ends in a two-premise succedent rule L (that is,
Take conjunction of interpolants for the premises:
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Case 3. The d ends in an antecedent rule L, and L has one premise or
the principal formula of L is in The construction of is the same as in
Cases 1 and 2: is transferred from the premise if L has one premise, and the
conjunction of interpolants is taken if L has two premises; for example:

by IH,
Case 4. The d ends in a two-premise antecedent rule L, and the principal

formula of L is in Then the interpolant has the same principal connective as
L. If the argument proceeds as before:

If with the conclusion partitioned as  apply IH to
partitions:

and

This concludes the proof.

12.1. Beth Definability Theorem

One of the applications of the Interpolation Theorem is a criterion of definability
of a proposition p satisfying given property If there is an explicit definition

where is a formula that does not contain p, then p is obviously unique:
implies Theorem 12.1. below shows that uniqueness implies

explicit definability.

DEFINITION 12.1. A  formula    implicitly defines a propositional variable p iff
the formula:

is derivable for a new propositional variable q.

Formula (12.1) says that at most one proposition p (up to equivalence) satisfies

THEOREM 12.2. (Beth definability Theorem). If a formula     implicitly   defines
p, then explicitly defines p: there exists a formula that does not contain p
such that:

is derivable.
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Proof.Derivability of (12.1) implies derivability of the sequent

Take to be an interpolant for the partition

This implies (after substituting q by p in the second sequent):

as required.
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Chapter 13

Natural Deduction System
NJ

Predicate logic terms are constructed from individuum variables denoted by
x, y, z, and so on, by means of  function symbols denoted by f, g, h,

and so on. Variables and 0-place function symbols (constants) are
terms, and if are terms, then is a term for a
p-place functional symbol f. Atomic formulas are constructed from terms and
predicate symbols (which are denoted by P, Q, … ) . Propositional letters
are atomic formulas (and 0-place predicate symbols); is an atomic formula,
and if are terms, then is an atomic formula for a
p-place predicate symbol P. Formulas are constructed from atomic formulas by
propositional connectives  &,V, and quantifiers. Atomic formulas are formu-
las, and if are formulas, then are formulas.

A main complexity measure of a formula is its length, that is, the number of
occurrences of logic connectives; lth for atomic

Quantifiers bind occurrences of individuum variables; remaining occurrences are
free. Let us define the list of free variables of the formula

If is atomic, then is the list of all variables occurring in
for

Recall that the expression stands for the result of substituting a term
t for all free occurrences of a variable x in a formula For other syntac-
tic expressions substitution is defined componentwise. For example,

Predicate systems NJ and NK

Add the quantifier rules presented below to propositional versions of these
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systems and allow

The rules have a proviso for eigenvariable y: Variable y is not free in
the conclusion of the rule and in

EXAMPLE 13.1. Standard axioms for quantifiers are obtained by

13.1. Derivable Rules
All rules mentioned in Section 2.5. are derivable in NJ. The justification of
with arbitrary (Lemma 7.1) is extended by quantifier introduction rules, for
example:

with a new variable y.
To the rules for analysis into subgoals (Section 2.6.) we add and

with a new variable y.
To the rules for direct chaining (Section 2.6.) one adds and After

this the ADC method for establishing deducibility (Section 2.6.) is described
in a natural way. First the goal sequent is analyzed into subgoals, and then
direct chaining is applied to each subgoal. The rules are restricted to
parameters present in (sub)goals.

All results on heuristics in Section 2.7. extend to predicate logic. In partic-
ular NJ is obviously contained in NK.

LEMMA 13.1. Every sequent derivable in NJ is derivable in NK, and hence it
is classically valid.
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We add and its inverse to heuristics for  as well as a similar relation
for

with a new variable y.
To heuristics for negation we add:

Formula (13.1) is proved by ADC, and formula (13.2) immediately follows from
it.

The replacement of equivalents (Section 2.8.) has to be modified in a familiar
way if it is done in the scope of quantifiers: the formula

is not even classically valid. Lemma 2.8. is extended as follows.

LEMMA 13.2. (a)

(b)

where include all  free variables of

Proof.Part (a) is proved by ADC.
Part (b) is proved by induction on Let Atomic

case is proved using Propositional case  is proved
using and Lemma 2.8.(a). The remaining case with is
proved using Part (a):

13.2. Gödel’s Negative Translation
Gödel’s negative translation still works for predicate logic, but Glivenko’s theo-
rem (Theorem 3) does not extend literally: Formula (and
intuitionistically equivalent  are derivable in NK, but not
in NJ (see Example 14 below). Definition 3 is extended to quantifiers in a
natural way: is preserved, is prefixed by
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DEFINITION 13.1.

In connection with the last clause, note that by (13.2 )

To justify the negative translation, we use the analog of Lemma 3(a):

which is proved using ADC.

DEFINITION 13.2. A formula is negative if it does not contain and all
atomic subformulas are negated.

Note that is not necessarily negative in this sense.

LEMMA 13.3. In for every negative  formula

Proof.Extend the proof of Lemma 3(b) using (13.3).

LEMMA 13.4. Every rule of NK is stable under Gödel’s negative translation.

Proof.Extend the proof of Lemma 3 using relations:

(13.4) is obtained by ADC. To obtain (13.5), prefix the last by (Lemma
13.2.) and reduce this goal to a subgoal:

This is proved by ADC.

THEOREM 13.1. A sequent is derivable in NK  iff is
derivable in NJ.

Proof.Exactly as Theorem 3.
The next Theorem illustrates Glivenko-style results that can be obtained by

Gödel’s negative translation.
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THEOREM 13.2. (a) A negative formula is derivable (in NJ) iff it is derivable
in NK

(b) If a formula α does not contain universal quantifiers, then iff is
derivable in NK.

Proof. To reduce Part (b) to Part (a), prove by induction on that
is equivalent to a negative formula if does not contain universal quantifiers.
Then note that Gödel’s negative translation does not change negative formulas

and use Theorem 13.2..

13.3. Program Interpretation of NJ

Add the following clauses to Section 4.1.:
iff d is an individuum and
iff c is a function and for every individuum

Examples.
Realization t of is a function (program) that for every x produces

value and a realization of the remaining part of the formula

Realization t of is a program that for every x satisfying
and every realization z of produces a value t(p(x, z)) that is a pair con-
sisting of a value satisfying and a realization of

EXERCISE 13.1. What are realizations of the following formulas:

For the language of deductive terms (see Section 4.2.), we distinguish indi-
viduum variables x, y,… of predicate logic from typed variables of the
language of deductive terms. We add a new construction to account
for Assume that  realizes and is a realization
of a formula depending on parameters for possible values of x and
possible realizations of Then by BHK-interpretation, is a
realization of This is expressed by the equation:

that is added to equations (4.1–4.3) together with the version of equation (4.2)
corresponding to
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where x is an individuum variable and t is a term of predicate logic.
Assignment rules for predicate logic:

with a suitable proviso in This extends the assignment of deductive
terms (Section 4.2.) to derivations in predicate logic.

EXAMPLE 13.2. Using variables we have:

where and the right uppermost sequent is derived as follows:

The Curry–Howard isomorphism (Section 4.3.) between deductive terms and
natural deductions can be extended to NJ. Operation (Definition 4.3.) is
extended in a natural way to new deductive terms t.

If then:

If then:

If then:
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If then:

Conversions for deductive terms are relations (4.1–4.3), a conversion for
similar to (4.2):

and the following conversion for

Corresponding conversions for natural deduction follow.

Free occurrences of y in the deduction e are replaced by t´.

Free occurrences of y are replaced by and the assumption is re-
placed by The definitions in Section 5.1. (ancestral relations in a natural
deduction, substitution of a deduction for an assumption, reductions for deduc-
tive terms and deductions, and so on) are extended in a natural way. After this
Lemma 5.2. and Theorem 5.2. extend to NJ together with their proofs. The
notions connected with conversions, reductions, and normal form are defined
exactly as in Section 5.1..

THEOREM 13.3. (Curry–Howard isomorphism between terms and natural
deductions in predicate logic)

(a) Every natural deduction d in NJ uniquely defines and vice versa: Every
deductive term t uniquely defines a natural deduction

(b) Cuts in d uniquely correspond to redexes in and vice versa.



102 NATURAL DEDUCTION SYSTEM NJ

(c) Every conversion in d uniquely corresponds to a conversion in  and
reduction sequences for d uniquely correspond to reduction sequences for
and vice versa.

(d) A deduction d is normal iff is normal and vice versa.

EXAMPLE 13.3.   Consider the following deduction of a sequent where:

Where are as follows:

Deduction d ends in a cut, and it is converted into the following deduction
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Converting two &-cuts in this deduction, we obtain

Convert at the end of this deduction :

Conversion of results in the following normalform:

Let us repeat this for deductive terms. Using variables
we obtain

Then:
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To extend the Normalization theorem (Theorem 5.3.) to NJ, let us preserve
the definition of cutrank of a redex as the length of its cut formula:

Lemma 5.3. and Theorem 5.3. carry over to NJ together with proofs. We must
add one more kind of a “new” redex to Lemma 5.3.(a):

and

THEOREM 13.4. (normalization theorem). (a) Every deductive term t can be
normalized.

(b) Every natural deduction d in NJ can be normalized.

Basic properties of normal deductions (Theorem 5.4.) are preserved, too,
and hence and Harrop’s theorem are extended to NJ together with
their proofs. In addition we have the

THEOREM 13.5. (Properties of normal deductions). Let d :      be a normal
deduction in NJ.

(a) If d ends in an elimination rule, then the main branch contains only elim-
ination rules, it begins with an axiom, and every sequent in it is of the form

where and is some formula.

(a1) In particular the axiom at the top of the main branch is of the form
where

(b) If then d ends in an introduction rule.

THEOREM 13.6. (disjunction property, Harrop’s theorem). (a) If
then for some

(b) If then for some

(c) If then for some t.

(d) If then for some t.



Chapter 14

Kripke Models for
Predicate Logic

Definitions and results of Chapter 7 are extended here to predicate logic.

DEFINITION 14.1. A Kripke frame for intuitionistic predicate logic is a triple:

where is a propositional intuitionistic Kripke frame (Definition 7)
and D is a domain function assigning to every a non-empty set D(w)
expanding with respect to R:

Rww´ implies

To every world w of a Kripke frame corresponds an exten-
sion of the language of predicate logic obtained by adding constants for all
elements of  the domain D(w). We identify such a constant with the correspond-
ing element of D(w). Hence sentences of are formulas containing no free
occurrences of variables but possibly containing objects of D(w).

DEFINITION 14.2. A Kripke model  for intuitionistic predicate logic is a 4-tuple
where is a Kripke frame and V assigns a function

V(f) to every function symbol f and a predicate V(P) to every predicate symbol
P, so that the following conditions are satisfied.

For all (and n-ary f, P):

and

105
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In other words:

is an n-ary function on D(w) and:

is an n-ary predicate on D(w). Moreover are monotone in w: The value
true for P and all values of f are preserved in the move to an accessible world.
The values of variable-free terms and sentences in a Kripke model are defined
by the following recursion.

DEFINITION 14.3. (a) The value of a constant term

Constants: if
Composite terms:

(b) The value for a sentence First atomic formulas:

the same clauses as in the Definition 7.

iff   for some

iff  for all w´ with Rww´ we have for all

A formula is valid if  for every Kripke model every world
and every substitution of objects in for free

variables of we have A sequent is
valid iff a formula is valid.

EXAMPLE 14.1. Let us refute the formula

Consider the following Kripke model with a constant individuum
domain

the set of positive natural numbers, and:

Then for every i, since Hence
1. Moreover for all d, i, since for Hence

and:

Monotonicity (14.1, 14.2), extends to all terms and formulas.

LEMMA 14.1. Assume Rww´. Then:

and implies
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Proof.To extend the inductive proof of Lemma 7, assume Rww´.
If then the witness satisfying at w is good

for w´, since
If take arbitrary with and Then

(transitivity), (monotonicity of D), and
by definition of Hence as required.

LEMMA 14.2. System NJ is sound: All rules preserve validity; hence every
derivable sequent is valid.

Proof .In view of Theorem 7.1., it is enough to check quantifier rules. Con-
sider arbitrary Kripke model take arbitrary and arbi-
trary substitution of objects in D(w) for free variables
of the conclusion of the rule considered.

Case 1.

Extend given substitution to by arbitrary substitution of an element of
D(w) for all variables that are not free in the conclusion
We have hence
and is a witness for in

Case 2.

To prove assume that Rww´ (for ) and (for
and take arbitrary Take

Then by IH; hence so
as required.

Cases of are treated similarly.

14.1. Pointed Models, Frame Conditions

Material in Section 7.2. applies to predicate logic without essential changes. In
particular, pointed frames and pointed models are defined exactly as before.

DEFINITION 14.4. A pointed frame is an ordered 4-tuple
where is a frame, and RGw for all A pointed
model is a tuple where is a pointed
frame and V is a valuation on Truth in M is truth in the world
G:

LEMMA 14.3. A formula is valid iff it is true in all pointed models, iff it is
true in all pointed models where accessibility relation is a partial order.
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Proof.The implication in one direction is obvious. For the other direction,
combine proofs of Lemma 7.2. and Theorem 7.2.

Let us illustrate the use of frame conditions.

DEFINITION 14.5. A Kripke frame has constant domains if

LEMMA 14.4. A pointed frame has constant domains iff every formula of the
form

with is valid on this frame.

Proof.Assume first that an arbitrary Kripke frame has con-
stant domains, and take arbitrary valuation V for this frame and As-
sume that (14.4) is a sentence to simplify notation. To prove
take w´ with Rww´ and assume If we
are done. Otherwise assume (for ) that and Take arbi-
trary By (14.3), hence With

this implies and holds by
monotonicity, so (14.4) is valid.

Second consider a pointed frame  a world and an
object For every take

and prove that (14.4) is refuted for First for all w, if
then and If then for
all and again Hence

On the other hand, since and
since Hence

In fact is sound and complete for Kripke frames with constant
domains , but we shall not prove this here.



Chapter 15

Systems LJm, LJ

The LJm is the predicate version of LJpm. It has the same formulas as NJ, but
sequents may have multiple succedents.

The axioms and prepositional rules are the same as in LJp.
Four quantifier rules are added:

where t is a term and b is an eigenvariable, which should not occur in the
conclusion. This restriction on b is called a proviso for variables. Note the form
of similar to and All the rules except for are
called invertible. Weakening and contraction (but not cut) are rules of LJm.

15.0.1. Canonical Model, Admissibility of Cut

This section extends Section 8.2. to predicate logic. We consider possibly infinite
sequents where are finite or countable multisets of formulas,
The is the antecedent, is the succedent. Such a sequent is derivable if
is derivable for some finite sets

A sequent S is pure, if no variable occurs in S both free and bound, and an
infinite number of variables are absent from S (that is, these variables do not
occur in S at all).

NOTE. If an infinite number of variables, say, are absent from
a sequent S, then S can be made pure by renaming bound occurrences of vari-
ables. Indeed rename bound variables into Since we disregard
renaming of bound variables, it is assumed that S was pure from the beginning.

109
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DEFINITION 15.1. If T is a set of terms, then the set    (of subformulas
of with quantifiers instantiated by T) is defined in a natural way:

For a set of formulas, let

DEFINITION 15.2. A sequent   is falsified in a world w of a Kripke model
(W, R, D, V) if This implies

In this section means that is derivable in LJm.
The schema of the completeness proof is the same as for LJp (Section 8.2.).

The new non-trivial step is to define an individual domain; it consists of terms.
We prove that any sequent underivable in LJm is falsified in some world of a

canonical model; that is, this model is suitable for falsification of all underivable
sequents.

DEFINITION 15.3. A sequent     is complete with respect to a set
of terms if it is underivable and for any formula either

or:
and

A sequent S is complete if it is complete with respect to the set P(S) of all
terms constructed from all free variables of S (and one more if S has no free
variables) by all function symbols.

Let

DEFINITION 15.4. A sequent     is saturated for invertible rules iff
the following conditions are satisfied:

all propositional conditions from Definition 8.2.;

LEMMA 15.1. (saturation) If   is complete with respect to D(S)
and the condition is satisfied, then S is saturated for invertible rules.

Proof.Propositional cases are treated in Lemma 8.2., and       is assumed.
Consider remaining cases.

Let If for some we have or
then hence
Let If for some we have or

then hence
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DEFINITION 15.5. A set T of terms is closed if T is non-empty and closed
under every function symbol f : if then

Note that D(S) is closed for every sequent S.

LEMMA 15.2. (completion) Let T  be a set  of terms and let S be an underivable
sequent such that there is an infinite number of variables not occurring in
D(S). Then S can be extended to a complete pure sequent complete with respect
to closed under invertible rules and consisting of subformulas of S.

Proof. To simplify notation assume that all predicate (function) symbols
(including constants) are listed in a sequence (in a sequence )
and all variables are listed in a sequence Assume also that
all free (bound) variables of are among (among

). Let the index of an expression (term, formula) be the maximum of
its length and maximum subscript (of function or predicate symbol or variable)
in this expression. The number of expressions with index  i  is finite.

We define inductively the sequences such that
is complete and satisfies condition up to index i.

If are already defined, let be the set of all terms of index
constructed from free variables of and let be the
set of all formulas of index in Examine in turn all
formulas

Let If is derivable, let
If is not derivable and does not

begin with let If then let
where is the first variable of this form not free in

After this let if
is underivable, and otherwise.

Now let
We easily prove the following claim by induction on i (with a subsidiary

induction on ):
Claim, (a) The sequent is not derivable.
(b) For every the sequent is complete for that is, either

or and
(c) If then for some t.
Let and Now is underivable by Claim

(a). To prove that S is complete for take that
is, for some k. If then
and by Claim (b), S is complete for If in addition then by Claim
(c)

DEFINITION 15.6.

iff and
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DEFINITION 15.7. A set M of infinite sequents is saturated for the domain
function D if each is saturated for invertible rules and M is saturated
for non-invertible rules. The latter means the same conditions as in the propo-
sitional case and the following:

and then there is a in M with
and for some term t.

As in the prepositional case define a Kripke model where
and

iff for atomic

DEFINITION 15.8. Consider  the  canonical Kripke  model:   where W
is the set of all complete sequents.

We now prove that K falsifies every invalid formula.

LEMMA 15.3. The set W of all complete sequents is saturated

Proof. Only  condition is to be checked. Assume that
is in W. Then the sequent for a new variable y is underivable.
By the completion Lemma 15.0.1,. it can be extended to a complete sequent

satisfying as required.

THEOREM 15.1. Let M be a saturated set. Then for

that is, is falsified in the world of

Proof. Relation (15.4) is an immediate consequence of (15.2, 15.3), which
are proved by simultaneous induction on the formula by the same argument
as in the propositional case (Theorem 8.2.).

Consider only induction step for quantifier rules.
If then for some t by the saturation for invertible

rules, so by the induction hypothesis; hence by
the truth condition for

If then for all by the saturation condition.
Hence by the induction hypothesis, so

If then for every such that (which
implies ), we have By the saturation condition, this implies

for all ). By the induction hypothesis, This
implies

If then by the saturation condition we have in
M such that By the induction hypothesis,
which implies as required.
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COROLLARY 15.1. (completeness) Each sequent underivable in LJm is falsified
in the canonical model K. Hence every valid sequent is derivable in LJm.

Proof. By the completion Lemma 15.0.1,.any underivable sequent
can be extended to a complete sequent by the previous Theorem

Hence by monotonicity.

THEOREM 15.2. (soundness and completeness). A formula is derivable in
LJm iff it is valid, iff it is valid in all pointed models where accessibility relation
is a partial order.

Proof.First apply the previous Lemma and Corollary 15.0.1(a), then apply
Lemma 14.1..

COROLLARY 15.2. Cut rule is admissible in LJm, and LJm is equivalent to
NJ with respect to derivability of sequents

Proof.Exactly as for Theorem 8.2..

15.1. Translation into the Classical Logic

Translation of a formula into a predicate formula expressing the validity of
given in the Section 8.3. is extended to predicate logic in a natural way. To

every n-ary function or predicate symbol J we assign an (n + l)-ary symbol
of the same type. We also choose new binary predicate symbols R, D and a new
unary predicate symbol W.

DEFINITION 15.9. For any term t, any   predicate formula     and  individuum
variable we define a term and a predicate formula by induction
on

where is a new variable.

List all free variables, function symbols, and predicate symbols of the formula
To simplify notation, assume that there are just two free variables two

n-ary predicate symbols and two n-ary predicate symbols Choose
distinct new variables and denote
Define



114 SYSTEMS LJM, LJ

where:

THEOREM 15.3. A formula is derivable in LJm iff is derivable in the
classical predicate calculus with equality.

Proof.Extend the proof of Theorem 8.3.. A first-order model:

with an interpretation for the functions, predicates, and the constant in
satisfying the premise of generates a Kripke model:

where iff for every and
with

In the other direction, any Kripke model with a distinguished world
generates a first-order model M by means of (15.5), that is, iff

and Moreover by induction on with
variables it is easy to prove that:

iff

and

So is valid (in the first-order logic) iff is valid intuitionistically.

15.2. System LJ

A one-succedent version LJ of LJm is obtained by restricting the succedent to
one formula in LJm. In other words, sequents take the form axioms and
propositional rules are the same as in LJp, and quantifier rules are as follows:

Systen LJ: Quantifier rules
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15.2.1. Translating LJpm into LJp

LEMMA 15.4. (soundness) All rules of LJm are derivable in NJ under disjunc-
tive translation of  into Hence LJm is sound: Every derivable
sequent is valid.

Proof. Axioms and prepositionale rules are covered by Lemma 8. Consider
quantifier rules. Succedent rules of LJm go into introduction rules of NJ plus
Antecedent rules follow from NJ-derivability of

A disjunctive translation works as in Section 11.2.

LEMMA 15.5. (a) is derivable in LJm    iff  is derivable in
LJ + cut.

(b) In particular, LJpm is equivalent to LJp + cut for sequents

Pruned derivation in LJm is defined exactly as before (Definition 11.3.), and
the following two Lemmas are established exactly as Lemmas 11.3. and 11.3.

LEMMA 15.6. Every derivation   in LJm can be transformed into
a pruned derivation by moving weakenings downward and deleting
occurrences of  formulas and whole branches.

LEMMA 15.7. If  d :  is a pruned deduction in LJpm from arbitrary
1-sequents containing no inferences, then is a 1-sequent up to
weakenings.

In the definition of a movable rule, a proviso for is added.

DEFINITION 15.10.   Let        be a derivation in LJpm and let L be
an antecedent rule in d with a principal formula and conclusion
Then L is movable if and:

(a) If then is pruned from the left premise;

(b)   if

then no variable occurring in t is an eigenvariable of an -inference below L.

After this the proof of Lemma 11.3. does not change.
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LEMMA 15.8. Let    be a pruned deduction in LJm from 1-sequents
containing an -rule but no non-invertible rules. Then d contains a movable
rule.

The proof of Theorem 11.3. also extends easily. Some eigenvariables should
be renamed to make possible permutation of movable rules.

THEOREM 15.4. Every derivation of 1-sequent   in LJm can be trans-
formed by renaming eigenvariables, permuting movable rules, and pruning into
a derivation in LJ.

Proof. We use induction on the number of logical inferences in the given
derivation. If all premises of the last rule are 1-sequents (up to weakenings),
then apply IH. Otherwise delete from the given derivation all sequents above
the lowermost 1-sequent (up to pruning) in every branch. We are left with a de-
duction d from 1-sequents by invertible rules, since conclusions of non-invertible
rules are 1-sequents. If this deduction does not contain -inferences, use
Lemma 15.2.1. Otherwise there is a movable rule. Moving it down and applying
IH to its premises concludes the proof. Let us consider quantifier case.

Case 1. There is a movable inference. Then d is of the form shown on
the left below. Permute it down as shown on the right, and IH can be applied
to The permutation is made possible by the proviso in Definition 15.2.1(b).

where the contaction rule and are present only if the lowermost has
predecessors other than the principal formula of L.

Case 2. There is a movable inference. This case is similar to the
previous case:

This concludes the proof.

15.3. Interpolation Theorem

In this section assume that the language of predicate logic does not contain
function symbols, so that the terms are just variables.
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If is a formula or sequent, then stands for the list of predicate symbols
occurring in plus

A Craig interpolant i for an implication and for a partition
of a sequent is defined exactly as in the prepositional case (Section
12) by the properties:

and
and

NOTE. By prefixing quantifiers to a Craig interpolant for it is possible
to achieve Indeed if x is free in but not in and
y is free in but not in then

THEOREM 15.5. (interpolation theorem) (a) If   is derivable, then
there is a Craig interpolant for

(b) If is derivable, then there is a Craig interpolant for

Proof. Part (b) immediately follows from Part (a). Proof of Part (a) by
induction on a given derivation in LJ is an extension of the proof
of Theorem 12. Axioms and prepositional rules are treated exactly as in the
prepositional case. Consider quantifier rules of LJ.

Case 1. The d ends in a quantifier rule without eigenvariable (that is,
Then the interpolant for the premise is preserved for

the conclusion. If for example then:

Case 2. The d ends in a quantifier rule L with an eigenvariable y (that is,
). Then an interpolant for the premise is prefixed by a quantifier

if the principal formula of L is in The interpolant is prefixed by if the
principal formula of L is in for example:

Proviso for eigenvariable in the rule introducing into succedent is satisfied,
since

Now the Beth definability Theorem for predicate logic is obtained similarly
to the prepositional case. Let:

DEFINITION 15.11. A formula a implicitly defines an n-ary predicate symbol
P iff the formula:

is derivable for a new n-ary predicate symbol Q and new variables x.
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Formula (15.6) says that at most one predicate P (up to equivalence) satisfies

THEOREM 15.6. (Beth definability theorem). If a formula    implicitly defines
P,then explicitly defines P: There exists a formula with
that does not contain P such that:

Proof.Derivability of (15.6) implies derivability of the sequent:

Take to be an interpolant for the partition with

This implies (after substituting Q by P in the second sequent):

as required.



Chapter 16

Proof-Search in Predicate
Logic

It is possible to extend the treatment of proof-search for LJpm* to the predicate
case without essential change, but certain technical complications arise. We
introduce instead an important technique due to Kripke.

Derivable objects of the system LJm* are tableaux con-
structed from the sequents in the language of predicate logic and enriched by
a binary relation r on the set {1,…, n} called immediate accessibility relation.
The rij always implies R denotes the reflexive transitive closure of r:

Rij iff or there are such that for all

Axioms and propositional inference rules of  the system LJm* are defined exactly
as for the system LJpm* (Section 11.1.). Relation r is the same for premises
and conclusion of every invertible rule: as well as
quantifier rules and a transfer rule that follows. For a quasi-
invertible rule ( below) analyzing a component in the conclusion
and generating a new component in the premise, the relation r for the
premise is obtained by adding to the relation r for the conclusion.
Quantifier rules are defined in a natural way, and there is an additional invertible
transfer rule:

119
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where t is a term, y is an eigenvariable that should not be free in any component
of the conclusion (proviso for variables).

The FV(T) denotes the set of free variables of components of T.
Note that all rules of LJm* (even are invertible. Our terminology

reminds of  non-invertible ancestors of these rules in LJm. With respect to
equivalence of LJm* and LJm, note that neither pruning nor translating

as work for the transfer rule.
For a tableau with a binary relation r, we define, following

S. Kripke, a characteristic formula of the component by
induction on n – i. Let be the list of all free variables of
that are not free in any with Rki, Let  be the list of
all j with rij. Then let

LEMMA 16.1. (a) Every rule of LJm* is derivable under   in LJm
with cut:

(b) Every sequent derivable in LJm* is derivable in

Proof.Part (b) follows from Part (a) since in
To prove Part (a), we establish that:

in LJm for every two-premise rule with the principal component
in the conclusion T and side components in the premises and
similar relations (see below) for one-premise rules. Note that (up to redundant

-quantifiers):

where p has exactly one occurrence in and this occurrence is not in a scope
of any & or in a premise of any For such p and any formulas we easily
prove by induction on

With (16.3) this proves (16.2).
For the one-premise rule with (the leftmost) active component in

the conclusion T, we prove a similar relation:
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and argue as before with a slight change for and transfer. We check only
three rules, leaving the rest to the reader.

with the active component We have:

and (16.3) is obvious.
with the active component adding to the premise a

component We have:

and (16.5) is obvious.
For transfer T´/T with active components in the conclusion and

in the premise, we have (up to associativity and
commutativity of disjunction):

and (16.5) is easy to prove.

THEOREM 16.1. The Mm* is equivalent to LJm

Proof.Exactly as Theorem 10.1.
For every sequent S, let be its antecedent and succedent:

if then

A proof-search procedure for LJm* consists of tree extension steps, as de-
scribed in Section 10.2.: One of the leaf nodes (goals) T of the proof-search tree
is analyzed by a bottom-up application of one of the rules of  LJm* (including
quantifier rules and transfer). A tableau is closed if it is an axiom of LJm*; a
proof-search tree is closed if all goals (leaf nodes) are closed. A closed tree is a
derivation in LJm*. The notion of a terminal node is not as important as in the
propositional case: If the potential supply of terms to be substituted is infinite
and one of the rules  is to be applied, this supply is never exhausted.
On the other hand, restrictions ensuring finiteness of this supply determine an
important decidable subclass.

Let us define a complete proof-search strategy for LJm*. Principal formulas
of all invertible rules are preserved, in particular has the form:
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The tree extension steps are done in groups called stages. A stage analyzes a
goal T into a finite sequence of new goals:

A formula that is an antecedent or succedent term in one of the components
of a tableau T is passive in T with respect to a set M of terms if all propositional
conditions  of Definition 8.2. as well as the condition  of
Definition 15.0.1 for  and condition of Definition 15.0.1 is satisfied
for and all terms and conditions of Definition 15.0.1.
are satisfied for  and some component with rij:

If then for some j satisfying rij.

If then for some j satisfying rij

and some term t.
The active length is defined now with respect to a set of terms M:

is a non-passive formula in w.r.t. M}

Let a tableau with immediate accessibility relation r and
a non-passive formula in a component be fixed. The tree extension step
analyzing with respect to a finite set M of terms is defined as in Section 10.2.
if is not an antecedent nor succedent For a bottom-up
application of rules having eigenvariables we choose a new variable.
Invertible rules do not change the relation r. With a bottom-up application of
a non-invertible rule to a component adding a component
we extend the relation r adding Finally a bottom-up application
of adds in one step all instances in the set M that are not already
present:

A tree extension stage number l for a tableau with an immedi-
ate accessibility relation r applies a tree extension step to every antecedent or
succedent formula that is non-passive in every component with respect to
the set of all terms with an index constructed from:
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These extension steps can be performed in any order, but only formulas already
present and active in T should be analyzed: Formulas added at a given stage
are analyzed at the next stage.

We assume that there is at least one constant; otherwise, we should ensure
that by placing a variable there.

At stage 0 the tree for a sequent consists only of with the
empty (identically false) relation r. At the end of every stage, all possible
non-redundant transfer inferences are applied bottom-up.

DEFINITION 16.1. [terminal leaves] A leaf of the proof-search tree is terminal, if
the tableau T situated at this node generates saturated set of  sequents

Let T be a proof-search tree, and be a branch of the tree, that is, a
sequence:

of tableaux such that is the goal sequent (the root of the tree) and for every
i, the tableau (if it exists) is a premise of a rule with conclusion Say
that is non-closed if it is infinite or its last tableau is saturated as a set of
sequent. In the latter case, we treat the branch as infinite by repeating the last
tableau.

For a branch of a proof-search tree, every k not exceeding the length of
the branch and every i denote by the kth component of the tableau In
the case when is non-closed, define the kth (infinite) sequent of by
accumulating antecedents and succedents of sequents

Define binary relation on natural numbers: iff rkl holds for tableau
for some i. denotes reflexive transitive closure of

Define:

the set of all terms, constructed from

by function symbols.
The next Lemma shows that every meaningful application of any possible

rule is eventually made in every non-closed branch of a proof-search tree.

LEMMA 16.2. Under our strategy, the following fairness conditions are satisfied
for every k, i:

If  then  for some j.

If  then or   for some j.

Similarly.
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If  then:

(a)  for some j and some t

(b) for any l with Rlk and for every term occurring in with
there is a j such that

Similarly.

If then there are j, l with Rkl such that and

If then there is a t such that   for some j.

If then there are j, l with Rkl such that  for
some t.

(Transfer): If   then for every l with there is a j such that

THEOREM 16.2. If     is a non-closed branch of a proof-search tree under
our strategy, then the set of infinite sequents determined by with
the domain function D is saturated.

Proof.Note that:

The first relation follows from Lemma 16 Transfer. The second relation follows
from the transitivity of If then the terms in are constructed
from

Hence implies accessibility between infinite sequents It is
easy to prove closure under the invertible rules for the propositional connectives.

If  for example then for some i. Threfore
for some j, and as required.

Let and Then for all  (since the main
formula is preserved in the rule and or t occurs in for some
l satisfying Rlk.  The latter means that t occurs in   for some j. Taking
the maximum of i, j we have (by fairness for the rule that for
some j´, and hence as required.

The case is treated similarly.
Consider the non-invertible rules. Let Then for

some i, and there are j, l with Rkl and Hence and
was already established.

THEOREM 16.3. A proof-search tree for a sequent is closed iff  is
derivable in LJm*.

Proof.One direction is evident: A closed proof-search tree is a derivation in
LJm*. If is not closed, then it has a non-closed branch. Apply Theorems
16 and 15.0.1.
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