

LOGIC SYNTHESIS
AND

VERIFICATION ALGORITHMS

LOGIC SYNTHESIS
AND

VERIFICATION ALGORITHMS

by

Gary D. Hachtel
University of Colorado

Fabio Somenzi
University of Colorado

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-47592-8
Print ISBN: 0-7923-9746-0

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©1996 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dordrecht

To:

Linda, Jordan, and Kira,

and

Chiara and Laura.

Contents

I Introduction

1 Introduction
1.1 VLSI: Opportunity and Challenge

1.1.1
1.1.2

1.1.3

Manufacturing Technology
Design technology

Why VLSI
1.2
1.3

VLSI Processes
Design Styles

1.3.1
1.3.2

Design Decomposition

1

5
5
5
6
7
7
8
8

Logic (Circuit) Design Styles 10
14
15

16
18
19
21
24
24
24
26
27
29
32
33
34
36
36
37
39
39
39

1.4 Overview of Optimal Logic Synthesis
1.4.1
1.4.2

1.4.3
1.4.4
1.4.5
1.4.6

Area-Time Tradeoff Curves
The Technology Independent View — A Bit-Serial Full Adder
Circuit
The Technology Dependent View — Technology Mapping
Testing — Is What I Fabricated What I Wanted?
Graph Models and Finite State Machines
Successors and Predecessors

1.5 Graph Algorithms and Complexity

1.5.1
1.5.2
1.5.3
1.5.4
1.5.5

Complexity
Computing the Product of Sets of Sets
Longest Paths
Backtracing
Complexity of Computing the Longest Path

1.6 Asymptotic Complexity (or just complexity)

1.6.1
1.6.2
1.6.3

Worst Case Asymptotic Upper Bound Complexity
Complexity of Algorithms
Practical Complexities

1.7
1.8
1.9
1.10

Brief Summary of MOS Device Behavior
Notes
Summary
Problems

viii CONTENTS

2 A Quick Tour of Logic Synthesis with the Help of a Simple Example
2.1
2.2
2.3

A Simple Case Conversion Circuit
First Refinement
The Transform Block
2.3.1
2.3.2

The CC Block
An Optimized Transform Block

2.4 The Command Interpreter
2.4.1
2.4.2

Checking for Equality
Optimizing the Command Interpreter

2.5
2.6

Technology Mapping
Problems

II Two Level Logic Synthesis

3 Boolean Algebras
3.1 Sets, Relations, and Functions

3.1.1
3.1.2
3.1.3
3.1.4

Sets
Relations
Reflexive Binary Relations
Functions

3.2 Partial Orders
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

Partially Ordered Sets
Hasse Diagrams
The Meet and Join Operations
Totally Ordered Sets, Well-Ordered Sets, and Induction
Lattices
Definition of Boolean Algebras
Examples and Properties of Boolean Algebras

3.3 Boolean Functions
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

Boolean Formulae
Boolean Functions
Boole’s Expansion Theorem
The Minterm Canonical Form
Pseudo-Boolean Functions 101

101
101
1
104
03

105
106
106
106
107
108
108
108

The Boolean Algebra of Boolean Functions
Atoms of a Boolean Algebra

3.4 Don’t Care Conditions as Boolean Function Algebra Intervals
3.4.1
3.4.2
3.4.3

Satisfiability Don’t Care Conditions
Observability Don’t Care Conditions
Deriving Don’t Cares From and Interval Specification

3.5 Incomplete Specification of Boolean Functions
3.5.1
3.5.2

Incompletely Specified Switching Functions
Incompletely Specified Boolean Functions

3.6
3.7
3.8

Notes
Summary
Problems

47
47
49
50
52
53
54
54
54
57
58

73

77
77
77
79
80
84
85
86
87
87
89
90
92
92
95
96
97
98
99

CONTENTS ix

4 Synthesis of Two-Level Circuits
4.1
4.2

Design Optimality
Two-Level Logic
4.2.1
4.2.2

Cost Functions for Two-Level Implementations
Minimality and Testability

4.3
4.4

Sums of Products and Products of Sums
Implicants and Prime Implicants
4.4.1 Quine’s Prime Implicant Theorem

4.5 Iterated Consensus
4.5.1
4.5.2
4.5.3

Consensus and Implications: A Digression
The Tabular Method of Computing the Prime Implicants
Iterated Consensus in General

4.6
4.7
4.8

Recursive Computation of Prime Implicants
Selecting a Subset of Primes
The Unate Covering Problem
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6

Reduction Techniques
Essential Columns or Variables
Row or Constraint Dominance
Column or Variable Dominance
Systematically Exploring the Search Space
Computation of the Lower Bound

4.9 The Branch-and-Bound Algorithm
4.9.1
4.9.2
4.9.3

Choice of the Splitting Variable
Examples of Splitting and Lower Bounding
The Unate Covering Problem as an Integer Linear Program

4.10 Multiple Output Functions
4.10.1
4.10.2
4.10.3

Multiple-Output Primes
Formulating the Covering Problem
Incompletely Specified Multiple-Output Functions

4.11
4.12
4.13

Notes
Summary
Problems

5 Heuristic Minimization of Two-Level Circuits
5.1 Local Search

5.1.1
5.1.2

Local Search Applied to Logic Minimization
A Simple Local Search Algorithm for Logic Minimization

5.2 Checking for Equivalence and Tautology
5.2.1
5.2.2
5.2.3

Unate Functions
Additional Speed-Up Techniques for Tautology Checking
Examples of Tautology Checks

5.3 Choosing the Right Direction
5.3.1
5.3.2

Recursive Complementation
Using the OFF-set in the Expansion

5.4
5.5

Identifying Essential Primes
Multiple-Valued Logics

127
127
129
130
131
132
134
134
134
135
135
137
138
141
143
146
146
146
147
148
149
152
154
155
160
160
161
163
163
164
165
165

185
185
187
190
191
194
197
199
200
201
203
203
204

x CONTENTS

5.6
5.7
5.8

Notes
Summary
Problems

6 Binary Decision Diagrams (BDDs)
6.1 Representing Logic Functions with BDDs

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

Binary Decision Diagrams by Way of Examples
Formal Definition of BDDs
How to Build the BDD for
Reduced BDDs
Why Ordering is Important

6.2
6.3

Design Considerations for a BDD Package
Algorithms
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

The ITE Algorithm
Complement Edges
The Computed Table
Conditioning of the ITE Calls
The ITE_CONSTANT Algorithm

6.4
6.5
6.6

Notes
Summary
Problems

III Models of Sequential Systems

7 Models of Sequential Systems
7.1
7.2
7.3

Introduction to Finite State Machines
Synthesis of Finite State Machines
FSMs: Definitions, Notation, and Examples
7.3.1
7.3.2

Examples
Incomplete Specification

7.4 FSM Minimization for Completely Specified Machines
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6

Identifying the Equivalent States of an FSM
State Equivalence Checking: the Partition/Refinement Approach
Finding the Reduced Machine
Moore Machines and DFAs
The Iterative Collapsing Approach
Summary of State Equivalence Checking Methods

7.5 Graph Algorithms for FSM Traversal
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5

Graphs, Subgraphs, and Components
Graph Traversal — Breadth First Search
Traversal — Depth First Search
Finding the SCCs of a Directed Graph
Shortest Paths

7.6
7.7

Models of Sequential Systems
FSTs: Strings, Runs, Reachability and Products
7.7.1 Finite State Transition Structures

205
206
206

219
220
220
222
225
226
230
231
233
234
237
238
238
240
243
244
244

251

255
255
257
261
261
263
265
265
269
272
272
273
275
275
276
278
280
282
286
289
292
292

CONTENTS xi

7.7.2
7.7.3
7.7.4

7.7.5

NFAs and
FSTs as Labeled Digraphs
Strings, Tapes and Runs of FSTs
Product of FSTs

7.8 FSM Equivalence Checking

7.8.1
7.8.2
7.8.3

Strings which Distinguish Two Machines
Building the Product Machine
Equivalence Identification by Isomorphism

7.9 Reachability Analysis
7.9.1 FSM Traversal Using Binary Decision Diagrams

7.10 Symbolic FSM State Traversal

7.10.1 Transition Relations and Symbolic Image Computation
7.11 Notes
7.12 Summary
7.13 Problems

8 Synthesis and Verification of Finite State Machines
8.1 Minimization of Incompletely Specified Machines

8.1.1
8.1.2
8.1.3
8.1.4

8.1.5

Finding the Compatible Pairs
Finding the Maximal Compatibles
Finding the Prime Compatibles
Setting up the Covering Problem
Forming the Reduced Table

8.2 The Binate Covering Problem
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7

Formulation of BCP
Reduction Techniques
Choice of the Splitting Variable and Bounding
Maximal independent set.
Choice of the branching column
Infeasible problems.
An Example of Reductions

8.3 State Encoding
8.3.1 Practical Encoding Algorithms

8.4 Decomposition and Encoding
8.4.1
8.4.2
8.4.3
8.4.4

Partitions
Partitions with Substitution Property
Computation of the S.P. Partitions
General Decomposition and State Encoding

8.5
8.6
8.7
8.8

Notes
Notes
Summary
Problems

295
295
297
298
300
300
301
305
305
305
308
308
312
313
313

325
325
328
329
329
332
334
335
337
337
340
340
341
341
342
343
343
347

348
350
352
354

356
357
357
357

xii CONTENTS

9 Finite Automata
9.1 Finite Automata and Regular Languages

9.1.1
9.1.2
9.1.3
9.1.4

String Acceptance
Languages of Finite Automata
Complements of Languages
Examples

9.2 DFA Synthesis
9.2.1
9.2.2
9.2.3

Determinization of FSTs and FAs
The Subset Construction
The Deterministic Image

9.3
9.4

Automata
Formal Verification with L-Automata
9.4.1 Languages

9.5 Language Containment
9.5.1
9.5.2
9.5.3
9.5.4
9.5.5

Lifting Acceptance Conditions to a Product L-Automaton
Example of Product L-Automaton
BDD Representation of Cycle Sets and Recur Edges
The Language Containment Algorithm
Example of Containment Check

9.6
9.7
9.8

Notes
Summary
Problems

IV Multilevel Logic Synthesis

10 Multi-Level Logic Synthesis
10.1 Introduction

10.1.1 Networks and Algebraic Operations
10.2 Representation Issues and Choices

10.2.1 Alternate Node Representations
10.3 Representing Switching Functions in Factored Form

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6

Factored Forms
Algebraic and Boolean Expressions
Algebraic and Boolean Factored Forms
Value of a Factorization
Equivalent, Maximal, and Optimum Factorizations
Size, Unateness, and Cofactors of a Factored Form

10.4
10.5

Division
Kernels and Co-Kernels
10.5.1 Computation of Co-Kernels and Kernels

10.6 Heuristic Factoring Algorithms
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5

Generic Factoring Algorithm
Quick Factor
Good Factor
Boolean Factor
Summary of Factoring Algorithms

369
370
372
373
376
377
378
383
383
385
387
390
390
392
393
393
394
395
396
397
397
398

405

409
409
410
412
413
417
417
418
419
420
420
422
422
425
427
428
429
433
434
434
435

CONTENTS xiii

10.6.6 Rectangle Covering

10.7 Decomposition and Restructuring
10.7.1
10.7.2
10.7.3

Algebraic Resubstitution
Selective Node Elimination
Extraction

10.8
10.9

Notes
Summary

10.10Problems

11 Multi-Level Minimization
11.1 Introduction
11.2 Boolean Networks

11.2.1 Network Cost

11.3 Don’t Cares in Multi-Level Networks
11.3.1
11.3.2
11.3.3
11.3.4

11.3.5
11.3.6

Satisfiability Don’t Cares
Observability Don’t Cares
Use of Don’t Cares in Minimization
Internal and External Don’t Cares
External Satisfiability Don’t Care Conditions
External Observability Don’t Care Conditions

11.4
11.5

Internal Satisfiability Don’t Cares
Observability Don’t Cares

11.5.1 Computing ODCs with the Boolean Difference

11.6
11.7
11.8
11.9

Prime and Irredundant Networks
Two-Level Minimization with Multi-Level Don’t Cares
Notes
Summary

11.10 Problems

12 Automatic Test Generation for Combinational Circuits
12.1
12.2

12.3

Introduction
Faults and Fault Models
Automatic Test Generation
12.3.1
12.3.2

12.3.3
12.3.4
12.3.5

Excitation and Sensitization
A Simple Test Generation Algorithm
Implications and Backtracking
Choice of the Decision Variables
Putting the Pieces Together

12.4
12.5
12.6
12.7

Redundancy Removal
Notes
Summary
Problems

436
436
436
437
439
440
441
441

455
455
456
459
461
461
462
462
463
463
463
464
465
468
468
469
470
470
471

475
475
476

478
478
481
483
486
488
488
492
492
492

xiv CONTENTS

13 Technology Mapping
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

Graph Covering and Technology Mapping
Choice of Base Functions
Creating the Subject Graph
The DAG-Covering Problem
Tree Covering by Dynamic Programming
Decomposition
Delay Optimization and Graph Covering
Notes
Summary

13.10 Problems

A ASCII Codes

B Supplementary Problems

Bibliography

Index

505
506
507
508
509
509
512
513
514
514
515

523

525

537

555

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

MOS gates. 8
A six-transistor gate array cell.
A three-input NAND gate obtained from the cell of Figure 1.2
Organization of a channeled gate array
Two-input look-up table for FPGAs (Field Programmable Gate Arrays).
Area-Delay tradeoff curves.
Bit-serial adder circuit
Bit-serial adder circuit after technology mapping.
Bit-serial adder circuit with fault asserted.

1.10
1.11
1.12

1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22

Finite State Machine for Majority Circuit.
A simple directed graph
Logic Graph of 1-bit full adder. The gate outputs are the vertices of
the graph and the nets connecting gate outputs to gate inputs are the
edges of the graph.
Procedure for Intersecting 2 sets of sets.

A weighted directed acyclic graph.

A function in the set and also in the set
The FSM corresponding to the driver circuit of Figure 1.1 (middle)
Complex CMOS gate for Problem 1.
Solution of Problem 1.
Circuit for Problem 4.
Procedure LEVELIZE1.

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Interface of the example circuit.
Block diagram for LUNC.
Block diagram for the transform block.
Procedure CHANGECASE

Block diagram for the CC block.
Circuit schematic for the optimized transform block.
Block diagram for the command interpreter.
Procedure SWITCH

Circuit schematic for an equality checker.
2.10
2.11

Circuit schematic for the optimized command interpreter
Circuit schematic for the technology-mapped decoder of the command
interpreter.

12
12
12
13
15
17
19
19
22
23

25
26
28
29
31
35
38
40
40
41
43

48
49
51
52
52
53
54
55
56
56

58

xvi LIST OF FIGURES

2.12
2.13

Iterative scheme for the 8-bit comparator of Problem 3.
Circuit for Problem 4.

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9

Venn Diagrams for illustrating set inclusion.
Matrix and graph representations of a binary relation.
Illustration of image and preimage.
Examples of posets.
Examples of lattices.
The Boolean algebra defined over the power sets of and

60
62

79
80
86
87
90
93

The Boolean algebra of the Boolean functions of two variables over
B = {0,1}.
The interval (represented by solid lines)
A simple example relating intervals in a Boolean function algebra to
satisfiability and observability don’t care conditions.

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Hasse Diagram for Problem 14.
Hasse Diagram for Problem 18.
Lattice for Problem 18.
Partially ordered set (poset) for Problem 26
Partially ordered set (poset) for Problem 27.
Hasse Diagrams for Problem 31.
Hasse Diagram for Problem 32.
Lattice for Problem 33.
Lattice of the Boolean functions of one variable over the Boolean al-
gebra (Problem 58.)

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Tradeoff of area for speed for optimal designs.
NMOS NAND-NAND PLA.
Tabular Method Applied to
Tabular Method Applied to an Incompletely Specified Function.
Example of Recursion Tree for the Computation of Prime Implicants.
A Function with a Cyclic Core.
Algorithm for computing an MIS.
Recursion Tree for a Covering Problem.
Example of Search Tree.

4.10
4.11
4.12

4.13
4.14
4.15
4.16

Branch-and-Bound Algorithm for the Unate Covering Problem.
A search tree produced by Procedure BCP

A Two-Output Function that Illustrates the Importance of Sharing
Common Terms.
Two Implementations for the Multiple-Output Function of Figure 4.12.
Tabular Method Applied to the Multiple-Output Function of Figure 4.12.
Recursion Tree for Problem 14.
Recursion Tree for Problem 20.

5.1
5.2
5.3

A Pictorial Representation of Local Search.
A Convex Optimization Problem.
A Non-Convex Optimization Problem.

102
103

104
112
113
113
115
115
117
117
118

125

128
130
136
137
140
142
151
152
153
154
156

161
161
163
172
175

186
186
187

LIST OF FIGURES xvii

5.4

5.5
5.6
5.7
5.8
5.9

A Function with an Initial Cover (a) and after the Expansion of an
Implicant (b).
A Function and an Initial Cover Illustrating Output Expansion.
The Cover of Figure 5.5 after the Expansion of an Output Part.
A Function and an Initial Cover Illustrating Input Reduction.
Simple Minimization Loop.
A Circuit that is Simplified by MAKE_SPARSE.

5.10

5.11

Example where the Directions in which Cubes are Expanded Matters.
(a): Initial Cover. (b): After Reduction. (c): After Expansion in the
Right Direction.
The Interconnection of Sub-Circuits Gives Rise to Encoding Problems.

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

A MUX circuit and the corresponding BDD.
A binary decision diagram.
Another BDD.
An optimal BDD
BDDs for typical functions.
Partial BDD after expansion with respect to
Partial BDD after expansion with respect to and
Final BDD.
Non-reduced BDD.

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30

Two isomorphic subgraphs.
Merging two isomorphic subgraphs.
Elimination of a redundant node.
BDD illustrating the advantages of a good ordering.
BDD illustrating the drawbacks of a bad ordering.
Shared BDD.
Two-argument operators expressed in terms of ITE.
Pseudo-code of the ITE algorithm
Example of application of ITE

Equivalent pairs of functions.
Pseudo-code of the ITE_CONSTANT algorithm.
An example of computation by ITE_CONSTANT.

BDDs and ITE

BDD for Problem 1.
Solution for Problem 1.
BDD for Problem 2.
Solution for Problem 3.
Solution for Problem 4.
Pseudo-code of the APPLY algorithm.
Pseudo-code of the OR operation.
Solution for Problem 6.

7.1
7.2
7.3
7.4

Simple Sequential Circuit.
State Transition Graph for the Circuit of Figure 7.1.
Simplified FSM Design Flow.
An FSM with Redundant States.

187
188
188
189
190
191

200
205

221
221
222
223
224
225
226
227
227
228
228
229
230
231
232
234
236
236
237
240
241
242
245
245
246
247
248
249
249
249

256
257
257
258

xviii LIST OF FIGURES

7.5
7.6
7.7
7.8
7.9

A Finite State Machine.
Example of State Transition Graph
Tabular Representations of FSMs
STG of the symbolic LUNC FSM
Example of Incompletely Specified FSM.

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22

7.23
7.24
7.25

7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48

Machine Equivalent to the One of Figure 7.9.
The STG of a simple FSM.
The STG of an FSM equivalent to the one of Figure 7.11.
Procedure for Finding Equivalent States of an FSM.
The STG of an FSM in which all state pairs are equivalent.
Flow Table for a Completely Specified Mealy Machine.
Flow Table for a Completely Specified Moore Machine.
Result of Reducing the FSM of Figure 7.16.
First Collapsed Flow Table.
Second Collapsed Flow Table.
A simple undirected graph.
A digraph and its strong components
A directed graph representing the connectivity of the circuit of Fig-
ure 1.12.
Procedure for basic Breadth First Search.
A directed acyclic graph.
Algorithm for Depth First Search Traversal of graph G = (V, E) from
start vertex (first call)
DAG with nodes labeled by
Recursive procedure for depth first search, modified to identify SCCs.
Algorithm for popping the SCC stack in DFS_SCC
DAG with labeled edges.
Procedure for finding shortest paths in a weighted graph.
A weighted directed acyclic graph.
Models of finite-state transition systems.
A Finite State Transition Structure.
The STGs of Tables 7.2 and 7.3.
NFA example with
The FST of the Mead-Conway Traffic Controller.
Product of FSTs.
Product of Nondeterministic FSTs.
Product Machine for Equivalence Checking.
Encoded Product Machine for Equivalence Checking.
Product of two equivalent FSMs.
Procedure for equivalence checking a product machine.
Procedure for finding a shortest error trace.
A simple BDD representing the characteristic function of the set S.
Two non-equivalent FSMs
Product of the Two FSMs of Figure 7.45.
The STGs of two equivalent FSMs.
The STG of a modulo 3 counter.

261
262
262
263
264
264
265
266
268
270
271
273
274
274
275
276
277

277
279
279

281
281
283
284
284
287
288
289
293
294
295
296
299
299
301
302
302
303
304
307
310
310
314
315

LIST OF FIGURES xix

7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59

The STG of an FSM to be minimized. 315
316
317
319
319
321
321
321
322
322
323

326
326
327
327
328
330
330
332
333
335

335
336
344
344

346
346
347
350
351
351
352
352
352
353
353
353
354
355
356
357
358
359

Procedure for finding 1-equivalent states of an FSM.
Procedure for finding equivalent states of an FSM.
A Completely Specified Flow Table.
STG for the Flow Table of Figure 7.52.
A Completely Specified Flow Table.
Minimized Flow Table for Figure 7.54.
Flow Table for Problem 14.
A simple directed graph.
Another simple undirected graph.
Partial labeling of directed acyclic graph 7.59.

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

An incompletely specified Moore machine.
Another incompletely specified Moore machine.
Reduced machine obtained from the one of Figure 8.2.
Machine obtained from the one of Figure 8.2 by state splitting.
A flow table and its compatibility table.
A flow table to illustrate the computation of prime classes.
Compatibility table for the flow table of Figure 8.6.
Prime compatibles for the flow table of Figure 8.6.
Algorithm for computing prime compatibles.
Reduced flow table obtained from the one of Figure 8.6.8.10

8.11

8.12
8.13
8.14
8.15

8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32

Reduced flow table obtained from the one of Figure 8.10 by heuristic
choices of the next state entries.
Branch and bound algorithm for binate covering.
Example FSM for the discussion of state encoding.
Attraction graph for the FSM of Figure 8.13.
Attraction graph produced by the fanout-oriented algorithm of MUS-

TANG.
An assignment derived by the fanout-oriented algorithm.
An assignment derived by the fanin-oriented algorithm.
Example of FSM with parallel decomposition.
Components of the FSM of Figure 8.18.
Structure of the parallel decomposition.
Structure of the serial decomposition.
Example of FSM with serial decomposition.
Independent component for the FSM of Figure 8.22.
First step in the construction of the dependent component.
Second step in the construction of the dependent component.
Example FSM for the computation of the S.P. partitions.
S.P. partition lattice for the example of Figure 8.26.
Example FSM for encoding based on partition pairs.
Schematic for the encoding of the machine of Figure 8.28.
An incompletely specified flow table.
Compatibility table for the flow table of Figure 8.30.
Search tree for Problem 3.

xx LIST OF FIGURES

8.33

8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45

Result of minimizing the flow table of Figure 8.30 using maximal com-
patibles only. 359

361
362
364
364
365
365
366
366
367
367
367
368

370
370
371
373

Flow table for Problem 7.
Compatibility table for the flow table of Figure 8.34.
Covering table for Problem 7.
Search tree for the covering problem of Figure 8.36.
Result of minimizing the flow table of Figure 8.34.
Flow table for Problem 9.
Matrices S and Z for Problem 9.
Attraction graph for the fanout-oriented algorithm.
Encoding for the fanout-oriented algorithm.
Matrices and X for Problem 9.
Attraction graph for the fanin-oriented algorithm.
Encoding for the fanin-oriented algorithm.

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Physical implementation of a Finite Automaton.
A DFA accepting all strings ending in 111.
An NFA (Nondeterministic Finite Automaton).
Procedure for deciding string acceptance.
An NFA (top) and DFA (bottom) accepting the language of Example 9.1.1.375
A DFA abstracted from the modulo 3 counter of Problem 5 of Page 314.376
The complement of the DFA of Figure 9.6. 376

377
379

379

380

381

382
382
384
386
387
387

389

390
391
392
394
396
396

A simple DFA.
Binary Parse Tree for

9.10

9.11

9.12

9.13

9.14
9.15
9.16
9.17
9.18
9.19

9.20

9.21
9.22
9.23
9.24
9.25

Rule for constructing an NFA which accepts the product of two regular
languages.
Incorrect rule for constructing an NFA which accepts the product of
two regular languages.
Rule for constructing an NFA which accepts the union of two regular
languages.
Rule for constructing an NFA which accepts the closure of two regular
languages.
NFA whose language is
DFA whose language is
Algorithm SUBSET_CONSTRUCTION for determinizing a given NFA.
An FST and its deterministic image.
An L-automaton for expressing a safety property in formal verification.
An L-automaton recognizing a class of tapes (infinite strings with at
most two inputs after an unless there is an intervening).
An L-automaton recognizing a tapes containing an infinite number of

substrings.
Illustration of and
Automata Accepting and
An example of a product automaton.
ProcedureLANGUAGE_CONTAINMENT.

Illustration of non-containment in cycle set.

LIST OF FIGURES xxi

9.26
9.27
9.28
9.29
9.30
9.31

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Language containment test on the product automaton of Figure 9.23. 397
399
400
401
402
403

410
410
411
411
415
415
416
420
425
432

Flow table equivalent Moore machine for Problem 1.
A DFA for recognizing a certain string.
The DFA for Problem 5.
An L-automaton expressing a liveness property in formal verification.
A simple L-automaton.

Example of Local Optimization.
Another Example of Local Optimization.
Example of Circuit Restructuring.
Example of Boolean Network.
A CMOS Complex Gate Implementing
A Simple Gate Implementation of
NAND and NOR Decompositions.
Factoring Tree for
Weak Division Algorithm.

10.10Procedure GEN_FACTOR.

10.11Procedures QUICK_FACTOR, QUICK_DIVISOR, and ONE_LEVEL-0_KERNEL.433
10.12Procedure for good factorization 434

435
439
443
443
449
449
451

10.13Procedure BOOL_FACTOR.
10.14Procedure QUICK-EXTRACTION.

10.15Factoring Tree for Problem 5.
10.16Factoring Tree for Problem 8.
10.17Boolean Network for Problem 24.
10.18Boolean Network for Problem 24 after Resubstitution.
10.19Boolean Network for Problem 26 after Extraction.

11.1

11.2
11.3
11.4
11.5
11.6
11.7
11.8

Example for Boolean Network. (Input and Output Elements are Buf-
fers and are Considered Part of the Network.) 459
An Example Network for the Computation of Observability Don’t Cares.467
Network for Problem 3. 472

473
473
473
474
474

476
476
477
478
479
479
480
481
482
483

Boolean Network for Problem 4.
Simplified Boolean Network for Problem 4.
Boolean Network for Problem 6.
Simplified Boolean Network for Problem 6.
Circuit for Problem 7.

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

A short-circuit in a CMOS inverter.
Stuck-at faults.
Equivalent faults.
A simple combinational circuit.
Another simple combinational circuit.
A redundant combinational circuit.
A combinational circuit.
Use of compound values.
Frontier element (G4) and unjustified element (G1).

12.10Decision tree for the example of Figure 12.7.

xxii LIST OF FIGURES

12.11Example of implications. 483
484
484
485
486
487
489
489

490

490
490
490
491
493
494
495
495
495
496
496
497

497
497
498

499
500

500

510
511
512
513
515
516
517
517
517
518
518
519
519

12.12Another example of implications.
12.13Schneider’s example.
12.14ATPG example.
12.15Decision tree for the example of Figure 12.14.
12.16Example of backtrace.
12.17A redundant circuit.
12.18Irredundant circuit derived from the one of Figure 12.17.
12.19Circuit with multiple redundancies that cannot be simultaneously re-

moved.
12.20Circuit where the removal of one redundancy exposes another redund-

ancy.
12.21Circuit of Figure 12.20 after the removal of the only redundancy.
12.22Circuit of Figure 12.21 after the removal of the remaining redundancy.
12.23A 2-bit carry-skip adder.
12.24Combinational circuit for Problems 1–4.
12.25A decision tree for Problem 2.
12.26Combinational circuit for Problems 5–9.
12.27A decision tree for Problem 5.
12.28Circuit for Problem 6.
12.29Circuit for Problem 8.
12.30Decision tree for Problem 8.
12.31Circuit of Figure 12.26 after removal of one redundancy.
12.32Circuit of Figure 12.31 after removal of one redundancy (top) and after

further removal of the inverter pair (bottom).
12.33Circuit for Problem 10.
12.34Circuit for Problem 11.
12.35Circuit of Figure 12.34 after removal of “input of Gate 2 connected to

stuck-at-1.”
12.36Circuit of Figure 12.34 after removal of “ stuck-at-1.”
12.37Circuit of Figure 12.36 after removal of “input of Gate 5 connected to

stuck-at-0.”

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

Splitting a DAG into a Forest of Trees.
A Subject Tree and its Matches.
The Two Possible Patterns for a Four-Input NAND Gate.
Two Possible Decompositions of the Same Circuit.
Library Patterns for Four-Input NOR and Three-Input OR.
Library of Pattern Trees.
Best Solution Trace.
Final Cover.
Modified Library of Pattern Trees.

13.10Best Modified Solution Trace.
13.11Modified Final Cover.
13.12Boolean Network for Problem 3.
13.13Boolean Network for Problems 4 and 5.

LIST OF FIGURES xxiii

A.1

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

Table of ASCII Codes. 523

527
528
528
529
529
530
530
531
532

Boolean Network for Problem 13.
Boolean Network for Problem 14.
Boolean Network for Problem 15.
Boolean Network for Problem 16.
Circuit for Problem 17.
Circuit for Problem 18.
Circuit for Problem 19.
Circuit for Problem 20.
Circuit for Problem 21.

List of Tables

1.1
1.2

1.3

1.4

3.1
3.2

7.1

7.2
7.3
7.4

10.1
10.2

Data trace for Procedure LONGEST_PATH 30

37

37
45

85

96

288
294
294
324

427
428

Comparative growth of log, polynomial, polylog, and exponential func-
tions
Computing times on a 10MIP’s computer, assuming unit coefficients
for each complexity function
Data trace for Procedure LONGEST_PATH, applied to Figure 1.7.

Mapping of a simple function
Mapping of a two Boolean formulae representing the same Boolean
function

Partial data trace for Procedure SHORTEST_PATH, applied to the graph
of Figure 7.31
The mapping for a deterministic FST with initial state A
The mapping for a nondeterministic FST with initial state A
Data trace for procedure shortest_path

Cube Intersection Table.
Extended Cube Intersection Table.

Preface

xxviii

Genesis of the Book

This book grew from courses taught at the University of Colorado (Boulder) and
at the Universidad Politecnica de Madrid, Spain. As the title suggests, we were
motivated by two disparate objectives. First, the VLSI CAD group at Boulder was
given the responsibility for teaching a course which satisfied the ABET requirement
for an upper division algorithms and discrete mathematics course in a EE or ECE
curriculum. Hence we started looking for an appropriate book, and taught trial
courses from various books including [241], [162], and [190]. While each of these
books had their individual strengths, there were always significant areas that were
neglected.

Second, logic synthesis has matured as a field to the point of almost universal de-
signer acceptance and is used in every major IC design/production house worldwide.
Further, the younger field of formal verification, perhaps spurred on by the infamous
Pentium bug, appears to be following a trajectory very much like that taken by logic
synthesis over the last decade.

Consequently, we wanted an orderly integration of modern developments in logic
synthesis and formal verification, into the traditional subject matter of Switching and
Finite Automata Theory. This clearly eliminated texts like [241], [190], and [146].
The book that came closest to our requirements was Kohavi’s book [162]. Although
this text was excellent and long lived, it is now outdated, since it does not deal many
modern developments in discrete mathematics that were significant to bringing VLSI
CAD to its current advanced state.

Thus we decided to occupy the niche previously filled by the Kohavi book [162]
and supplement the coverage with recent theoretical developments most significant to
the emergence of automatic synthesis and verification tools during the nineties.

As an example of the aforementioned integration, consider the problem of form-
ally verifying that two distinct FSMs are or are not equivalent. The solution of this
problem for problems of practical size was due to the efforts of Coudert, Madre, and
McMillan [70, 194]. The solution rested on ingenious interweaving of BDDs (Binary
Decision Diagrams) and the state equivalence theory covered in [162]. Boolean func-
tion manipulation using BDDs evolved from the work of Bryant in 1986 [47], and is
not covered in previous comparable textbooks.

Other examples of recent theoretical advances which had profound effects on the
development of automatic synthesis tools are :

1.

2.

3.

4.

Complexity theory and the development of “optimal complexity” algorithms
like Tarjan’s strong components algorithm;

The unate recursive paradigm, and its various applications in the industry stand-
ard ESPRESSO program for logic minimization [37, 39, 250];

Branch and bound algorithms with lower bound pruning that has proved to be
exceptionally powerful for such disparate logic synthesis applications as two-
level logic minimization and state minimization of Finite State Machines [228];

The Kerneling theory of Brayton and McMullen, [38], which led to efficient and
widely adopted algebraic methods for restructuring a circuit so minimization
techniques could be more powerfully applied;

Preface xxix

5.

6.

7.

The PODEM algorithm for automatic test pattern generation, [116], and the
learning/implication heuristic used to make it widely applicable, [122];

The development and deployment of the theory of don’t care conditions, [15],
[204];

The deployment of BDD-based symbolic processing as discussed above along
with modified ATPG techniques which made sequential synthesis and ATPG
practical for large circuits, [63];

It was very difficult for a VLSI CAD group to teach switching theory without covering
these subjects. Consequently, we wanted a book which met ABET requirements and
had the above developments woven into the fabric of the theory.

Equally important was the emergence over the last decade of widely applicable
public domain logic synthesis and verification tools, such as ESPRESSO, MIS, SIS, VIS,

SMV, BOLD, as well as commercial tools such as SYNOPSIS’ design compiler, The
CADENCE, VIEWLOGIC, IBM (BOOLEDOZER) and MENTOR synthesis tool
suites, and Lucent (FormalCheck) and IBM (RULEBASED) verification packages.
Many of the solved and unsolved (an answer book is available) problems are based
on using easily available tools. All tools used in the book can be obtained from
anonymous FTP from the following web sites:

IC.berkeley.edu,
vlsi.colorado.edu.

Also available from the latter site is a link to the NABLE (Network-enabled Action
Based Learning Environment) suite of Java applets, which implements and animates
many of algorithms discussed in this book. Among those treated are, minimization
of boolean functions with K-maps, the binate covering problem, FSM equivalence
checking, and Algebraic Factorization. More algorithms will be added on a yearly
basis.

Thus we wanted the book to reflect the concurrent evolution of switching and
automata theory, and of VLSI Logic Synthesis and Verification, over the last dec-
ade, while also providing the necessary background in Boolean algebras and discrete
mathematics.

Our objective from the onset was a senior course, with enough depth to be of
interest to first year graduate students as well. It is quite likely that any student who
takes a job in the still burgeoning (at publication time INTEL was still planning two
$1B fabrication sites) semiconductor industry will use one or more of these tools.

Some students may eventually be involved in the design of the tools themselves.
A persistent focus of the book is “hands-on” relation of actual design tools to the
theoretical material. Whenever possible, the algorithms covered in the text are the
subject of one or more problems based on the use of available synthesis programs.
An appendix describes the details of the installation and use of the software at our
institution.

Problems. The book contains a large collection of solved problems. This is because
we generate new homework problems every semester, as part of the development of

xxx Preface

the course. We also have another equally large collection of solved problems which
will go into the Instructor’s Manual. We plan to maintain this manual in the Colorado
web site quoted above. Thus it should continue to grow over the years as a resource
for all users of the book.

Many solved problems require the use of software tools. Much of the assigned
work involves the use of Berkeley’s sequential/combinational synthesis program SIS-

1.2 [250] and Berkeley-CU-UT formal verification program VIS Whenever possible,
the algorithms covered in the text are the subject of one or more problems based on
the use of synthesis or verification programs.

Itineraries
It would be difficult for undergraduates at most institutions to cover the entire book
in one semester. We describe here some sample itineraries for efficaciously traversing
the book. The “Logic Design Option” skips Chapters 6-9, and possibly 3 (our ex-
perience is that students find this chapter appealing). The “Algorithms and Discrete
Mathematics Option skips Chapter 2, 5, 8, 12, and 13. Finally, the graduate “In-
troduction to Synthesis and Verification Option” takes well prepared and motivated
graduate students through the whole text.

Convention When theorems have obvious proofs, or are well known theorems from
the literature whose proofs are outside the scope of the present text, we omit the proof.
In the latter case we give a citation in which the proof may be found.

Notation

Preface xxxi

Pseudo-Code Conventions

We shall adopt the following further notation for pseudo-code description of al-
gorithms and formal procedures. The beginning and end of the statement blocks
of procedures, or if or else blocks, or of for, foreach, while, or other loop or
branching structures are denoted by matching braces, as in the C/C++ program-
ming languages. Comments are either denoted by /* … */ as in C, or are set to the
far right of pseudo-code statements without such delimiters when the context is clear.
Semicolons will be used as statement separators only — generally they are omitted
at the end of a line of pseudo-code.

xxxii Preface

Acknowledgments

We acknowledge the impact of a career’s worth of association with Bob Brayton.
We acknowledge the impact of a previous book-experience with Bob Brayton,

Alberto Sangiovanni-Vincentelli, and Curt McMullen, and of an aborted (so far)
book attempt with Bob, Alberto, and Rick Rudell (Rick McGeer may yet save that
book). In both of these former endeavors, Carl Harris is to be recognized for his
gentle, enlightened, and persistent persuasion. The help of John Hayes was valuable
in giving us early feedback on book direction.

We acknowledge the many contributions of University of Colorado students and
associates, whose work is featured in this book — to name just a few: Karen Bartlett,
Chris Morrison, Reily Jacoby, Hyunwoo Cho, Sehwoong Jeong, June Rho. In-Ho
Moon helped by proofing several chapters of the last draft.

We are also indebted in this regard to many other colleagues and friends — among
others, Richard Newton, Srinivas Devadas, Kurt Keutzer, Aart DeGeus, Randy Bry-
ant, Louise Trevillyan, and Giovanni DeMicheli were particularly impactful.

We acknowledge the impact of numerous “summer seminars”, first at IBM York-
town, and then rotating between Boulder, Berkeley, and Stanford.

The indefatigable help of our administrative assistants Helen Frey, Karen Schneider,
and Ruth Major must also be acknowledged.

Penultimately, we acknowledge the support (over the last decade) of the National
Science Foundation, in particular that of our friend and mentor, Bob Grafton, who
helped us see the dawning of a new era in the advent of Computer Aided Verification.

Finally, we acknowledge the patience and appetite for learning shown by our
undergraduate students in enduring some “very rough” drafts.

Chapter 1

Introduction

This book is about the theoretical underpinnings of VLSI (Very Large Scale Integrated
circuit) CAD tools for logic synthesis and verification. Historically, the field of VLSI
CAD has been driven by the inexorable push of microchip technology, as more or
less accurately described by Moore’s law: “microchips will gain a factor of two in
speed every 1.5 years”. This speed improvement is basically due to shrinking of
feature sizes (improvement due to architectural innovation is added on top of this).
Of course, decreased size means more transistors per chip. Consequently, the size of
the chip component designed by one individual or team grows correspondingly. VLSI
CAD tools must therefore cope with “Large Scale”.

We begin this first chapter with two sections which briefly characterize this tech-
nology, and the opportunities and challenges it presents. We then discuss the design
styles engendered by the push of technology. We conclude with some sections which
give an overview of the specific sub-area of VLSI CAD known as “Logic Synthesis
and Verification”, including some basic concepts which will be useful throughout the
sequel.

1.1 VLSI: Opportunity and Challenge

This text is concerned with the design of complex digital systems. Digital circuits are
used in computers, communication equipment, compact disc players, and so on. It
is possible today to put several million transistors on a single integrated circuit (IC)
or chip (for example the high-end INTEL Pentium chips). This Very Large Scale
Integration (VLSI) is made possible by two technologies: Manufacturing technology
and Design technology.

1.1.1 Manufacturing Technology

The most common indicator of the degree of sophistication of a manufacturing process
is the so-called minimum feature size. It indicates the minimum achievable length of a
MOS transistor channel. A typical value of the minimum feature size for an advanced
IC manufacturing process in 1996 is

Another important indicator is the number of interconnection layers available on
the chip. An advanced IC process may have three metal layers, that is, interconnec-

5

6 Chapter 1. Introduction

tions and power and ground lines can use three layers that communicate through vias.
A metal line on a chip is somewhat larger than the minimum transistor and in case
of multiple metal layers, it increases with the distance from the substrate. Neverthe-
less, vast resources, both in terms of active devices (transistors) and interconnects
are made available to the chip designer by today’s manufacturing technology. High
speed is also possible, thanks to the reduced capacitances associated with these small
devices. Clock frequencies in excess of 200 MHz have been achieved for large ICs.

A complex system is typically composed of several integrated circuits. In recent
years there has been a rapid evolution in the fields of packaging and printed wir-
ing boards. These advances have made it possible to design, for instance, today’s
notebook computers.

1.1.2 Design technology

The design of a system with several million parts is an arduous task. It is even
more challenging because of the increasing concern with time-to-market and quality
considerations. The revenue life of a product is the time during which a product
generates most of its revenues. The electronic industry is characterized by extremely
short and steadily shrinking revenue lives. Whereas ten years ago a revenue life of
3–5 years was normal, today many products enjoy less than one year of revenue life.

It is clear that in such a scenario, delaying the launch of a new product may have
a serious impact on its profitability. Several studies have shown that a large overrun
in product cost has a much smaller impact on profitability than a relatively modest
delay in development.

It is therefore necessary to automate as much as possible design, in order to
increase designer productivity, eliminate trivial mistakes, help eliminate more subtle
mistakes that may cause a design not to work right the first time.

Over the last three decades, Computer Aided Design (CAD) tools have gradu-
ally been adopted for various tasks of the design process. Initially, computers have
been used to perform mundane chores. In time, however, more creative design activ-
ities have been delegated to CAD programs. Today, activities that are routinely
performed by CAD programs include many forms of verification (geometrical and
electrical design rule checking, several types of simulation, etc.) as well as various
aspects of design synthesis (generation of masks from layout, generation of layouts
for modules like custom RAMs or ALUs, automatic placement and routing, logic syn-
thesis and optimization). Computers are also used for design entry, data and design
management.

The adoption of tools has influenced the way circuits are designed in various
ways. In some cases some restrictions on what was an acceptable design had to be
imposed, so that some tools may be used. In other cases new tools have opened
up new possibilities, like the one of exploring several design alternatives, that were
precluded as long as the design was done manually. The advent of design data bases
and design management tools has contributed to the development of design disciplines
that help cope with the complexity of large circuits. Finally, in some cases, entirely
new design styles have emerged, that are largely defined by the tools that are used.

The body of knowledge that is at the foundation of the CAD tools constitutes the
design technology. As the previous examples suggest, it may be divided according to

1.2. VLSI Processes 7

domains like process design, physical design, electrical design, logic design, high-level
design, design management, and so on. We shall focus primarily on logic design and
we shall examine the techniques and tools that go under the name of logic synthesis.

Logic synthesis has a relatively long history as a scientific discipline, being born
approximately at the same time as logic design. However, the systematic use of
computer programs to do logic design is more recent. About fifteen years ago, IBM
pioneered extensive use of logic design tools when PLA-based design became popular.
In the early eighties, proprietary tools began to be used also for other styles of designs.
Finally, in the late eighties, CAD companies began selling logic synthesis tools and
logic synthesis became mainstream.

1.1.3 Why VLSI

The investments associated with the manufacturing of VLSI circuits are very high.
A production line today may easily cost in excess of $500M. Even higher costs are
predicted for the future. Design costs are also high. Commercial software for a VLSI
design workstation is typically worth much more than the workstation itself. Some
tools cost hundreds of thousands of dollars per copy. However, the design of a complex
microprocessor may require hundreds of man-years of labor, so that in spite of the
high cost of tools, labor is still the predominant cost of development.

It is then reasonable to ask why VLSI is successful or even viable. There are
several reasons. First of all, VLSI has created new markets. As already mentioned,
notebook computers simply could not exist without VLSI. The same is true of digital
audio and personal communications equipment.

In spite of the high investments, there is also an economic advantage in VLSI,
since it exploits in the best possible way the benefits of mass production. Once the
masks are made, VLSI circuits are obtained by a process of replication that takes
time largely independent of the number of transistors on the chip and the number of
chips on the wafer. By contrast, assembly costs are closely related to the number
of parts. Reducing the number of parts is therefore beneficial and VLSI technology
plays a major role in it.

Speed is another important factor in promoting the use of VLSI components and
in pushing the advancement of the technology. Smaller components imply smaller
capacitances and therefore faster circuits. Intra-chip communications are also faster
than inter-chip communications, so that reducing the number of parts also helps in
that respect. This consideration has been important to the success of RISC (reduced
instruction set computer) architectures. Reducing the number of parts has also a
beneficial effect on the reliability of a system.

Finally, the use of VLSI technology helps protect investments in design, since it
is more difficult to copy an integrated circuit than, say, a board.

1.2 VLSI Processes

We briefly review the most common processes used to fabricate integrated circuits.
Our purpose is just to provide some context for our work. Hence we shall only
emphasize those aspects that are relevant to synthesis.

8 Chapter 1. Introduction

A first distinction is based on the substrate material. By far the most common
material is silicon. Gallium Arsenide is used for very high speed applications, but it
is much more expensive and has more mechanical problems.

Another distinction is between bipolar processes and Metal-Oxide-Semiconductor
(MOS) processes. The distinction obviously refers to the types of transistors fab-
ricated on the chips. Bipolar technologies like Emitter Coupled Logic (ECL) tend
to be faster than MOS technologies, but they also tend to consume more power and
to be less dense. There are also mixed bipolar-MOS processes, notably BICMOS
processes, that allow the fabrication of both BJTs and MOSFETs on the same chip.

Among the MOS processes, today Complementary MOS (CMOS) is the only one
we consider. Initially considered too slow and not too dense, it has gradually become
the dominating technology for VLSI circuits. The main reason is the very low static
power consumption. Some CMOS logic gates are shown in Figure 1.1. On the left
a simple inverter is shown. In the center an inverting tri-state driver (the second
input switches the mode of operation from inverting or high-impedance), and on the
right an open-drain NAND gate (used in pre-charged design styles — the line at the
top represents a net connecting a number of these open drain NANDs to a common
pullup resistor (not shown)).

Every large manufacturer has typically a certain number of CMOS processes,
adapted to different uses. Some CMOS processes differ in their architecture (e.g.,
p-well vs. n-well); others have additional steps required for special applications (like
fabrication of EEPROMs or of mixed analog-digital circuits). Finally, several gen-
erations of processes typically coexist, with the more recent and advanced processes
being used for the newest and more aggressive designs. However, in what follows all
these differences will seldom be important and we shall customarily refer to CMOS,
without any further qualification.

1.3 Design Styles

1.3.1 Design Decomposition

A fairly typical approach to the design of large digital systems is a design decom-
position which separates the control functions of the design from the data processing
functions. It is not uncommon that different design methods are then applied to the

1.3. Design Styles 9

separate parts. For instance, in a microprocessor, the design of the data path (ALUs
and register files) is approached differently from the design of the instruction decoder
or the cache controllers. The data path may be pipelined, for example, and resource
allocation decisions must be made on the basis of space-time tradeoffs. Typically such
design steps are made at a high level of abstraction in which data path components
are regarded simply as functional blocks, with space dimensions and pin delays as
attributes.

The controller, on the other hand, may first be designed at a high level of abstrac-
tion as an FSM, an acronym for Finite State Machine. FSMs are introduced in
Chapter 7, and are often represented by a directed (cyclic graph). Synthesis method-
ology for FSMs is treated in Chapter 8. After such steps as state encoding and state
minimization, the controller design may be synthesized as combinational logic with
latch-controlled feedback cycles.

In addition, the design of a complex circuit is typically carried out by a team.
This results in further design decomposition of both the data path and the controller
into sub-designs. A block diagram of the overall system is then developed which
defines the interfaces between the blocks designed by different people/teams. Often
this block diagram is expressed in an HDL (Hardware Description Language), such
as VHDL [109, 54, 135] or Verilog[10].

Defining the top-level block diagram of a circuit goes under the name of high-
level or architectural design. In the sequel, we shall assume that this phase of the
design has been carried out already—either manually or automatically—and we shall
concentrate on the succeeding phases. It should be clear, however, that architectural
design has a large impact on the outcome of the entire design process.

VHDLs are examples of textual descriptions of digital systems. We can also em-
ploy graphical means of representing the design decomposition. We shall see examples
of both in the sequel. It is typical of a real-life design system to support both ways
of representation, for each has its own advantages.

A legion of VLSI CAD tools have been developed to aid in executing the syn-
thesis methodology described above. These tools may be classified according to their
associated levels of abstraction, as follows.

The Path to Silicon

1. Behavioral Synthesis

Resource Allocation [191],

Pipelining [210, 209],

Control Flow Parallelization [264, 265],

Communicating Sequential Processes

Partitioning [17]

2. Sequential Synthesis

Register Movement and Retiming [174, 173, 182]

State Minimization [117]

State Assignment (Encoding) [93, 87, 84, 198],

10 Chapter 1. Introduction

Synthesis for Testable FSM’s [86];

State Machine Verification [71, 72, 262, 60]

3. Logic Synthesis

Extraction of combinational logic from hardware description languages
[240, 68];

Two-level (PLA) minimization [37],

Algebraic Decomposition [38, 36, 236, 268],

Multilevel Logic Minimization [15, 39, 123],

Synthesis for Multifault Testability [128],

Test Generation via Minimization [15, 151];

Technology Mapping [158, 85],

Timing Optimization [82, 120, 39].

4. Technology Mapping

Mapping to Library of Logic Gates[158, 85],

Timing Optimization [82, 120, 39].

5. Physical Design Synthesis

Cell Placement

Routing

Fabrication

Engineering Changes

Logic Synthesis tools provide the VLSI chip design team with two otherwise non-
existent capabilities: (a) automatic translation of high-level language descriptions
into logic designs, and (b) automatic optimization of chip area, speed, and testability.
Thus, designers can take advantage of logic synthesis tools as key parts of a top
down synthesis methodology, or for optimization assistance with manually created
logic. The advantages of such an automatic synthesis methodology in VLSI design
are clear. They include reduced design time, reduced probability of design error,
and higher-quality designs because more effort is focused at a higher-level. However,
the use of computer-aided synthesis tools provide an increase in designer productivity
only if designs of acceptable quality are produced. In the sequel we will show how and
why these tools were developed, and why we expect that synthesis tools can improve
on design quality available from manual design.

1.3.2 Logic (Circuit) Design Styles

VLSI circuits are used for various applications. It is customary to divide them into
standard parts and Application Specific ICs (ASICs) depending on whether they are
used in many applications or are designed to perform a specific function in one system.

1.3. Design Styles 11

Standard parts tend to be produced in higher volumes (many millions) and to have
a longer revenue life. Typical examples of standard VLSI parts are microprocessors,
computer peripherals like disk controllers, memory chips, programmable digital signal
processors, and field programmable gate arrays (FPGAs).

ASICs are sometimes built in just a few units (that could be the case of a space-
borne circuit) and sometimes in hundreds of thousands of units. Some ASICs are
designed to the specifications of a single user, for the needs of a particular system;
others are designed in such a way that many systems can be built around them. An
example of the latter could be a chip-set used by many PC manufacturers. A common
feature of ASICs is that development costs and times tend to be predominant.

Because of the differences in the economic factors, standard parts and ASICs
tend to be designed differently. When designing a microprocessor, it makes sense to
spend more time to reduce the area and increase performance than when designing
the typical ASIC.

We shall distinguish three major styles of design:

Full Custom Design: Every circuit part is especially optimized for the pur-
pose it must serve in the design.

Semi-Custom Design: The circuit is designed by assembling pre-designed
and pre-characterized sub-circuits. Manufacturing may use a pre-diffused sub-
strate.

Programmed Design: The design is obtained by programming a standard
part. Some circuits may be programmed only once (by blowing fuses or anti-
fuses) , while others may be programmed an unlimited number of times.

There are no clear boundaries between these design styles. For instance, many circuits
are designed with a mixture of full custom and semi-custom styles. The full custom
approach is used for the critical parts. Another way of combining these approaches is
to create a library of sub-circuits specifically tuned for a project. Typically, dynamic
or pre-charged design styles are reserved to full custom chips.

Within the semi-custom approach, one may distinguish several sub-styles. There
are circuits that are called gate arrays that are made of pre-diffused cells. Each cell
can be customized to a specific function (e.g., 2-input NAND gate) by metalization.
Interconnections are also obtained by laying out metal wires on two or more layers.
Since the cells are known in advance, they can be accurately characterized. The
designer does not need to know all the details of the cells to successfully work with
them. The fact that the circuit is pre-diffused means that the fabrication turn-around
time is shorter and the cost of the masks is lower.

Figure 1.2 presents a typical six-transistor cell. The black dots indicate possible
contact points. How to obtain a three-input NAND gate from the cell is shown in
Figure 1.3. The dotted lines indicate metal connections. More complex circuits like
a flip-flop may be obtained by customizing more than one cell. It is also possible to
have different topologies for the basic cell, with more or less transistors and connected
differently.

There are two major variants of gate arrays: Channeled and channel-less. In the
former, the programmable cells are grouped in rows that are divided by routing chan-
nels. Figure 1.4 presents the conceptual view of a channeled gate array. The shaded

12 Chapter 1. Introduction

squares are the input/output pads, while the shaded horizontal strips represent the
rows of basic cells. The space between two rows is called routing channel and is
reserved for the interconnections. In the channel-less gate arrays, also called sea-of-
gate arrays, cells are available on the entire surface of the chip. Interconnects use the
space left by unused cells, as well as on top of the cells (thanks to the multiple routing
layers). Channel-less architectures provide a better utilization of the chip area and
are used for most recent families of large gate arrays.

Non pre-diffused semi-custom designs are often called standard cell circuits. This
comes from the use of a pre-designed library of cells. Though fabrication turn-around
time is larger than for gate arrays, standard cell designs are still considerably faster to
design than full custom circuits. In the simplest cases, the organization of a standard

1.3. Design Styles 13

cell chip resembles that of a channeled gate array, with the exception that the height
of the routing channels is not fixed. In more complex schemes, a chip may contain
several rows of standard cells and some large blocks, like memories and data paths,
implemented in different styles.

Typically, semi-custom designs are automatically placed and routed. This means
that once the circuit is detailed to the level of a netlist of gates, the rest of the process is
automatic. This allows IC design to be performed by people that are knowledgeable
about electronic design, but not about IC design specifically. This separation of
competence is one of the reasons of success of the semi-custom design style.

There are several types of field programmable devices. The simplest, from a
functional standpoint, are the non-volatile memories (PROMs, EPROMs,…). Pro-
grammable logic devices (PLDs) is a name commonly given to circuits based on
programmable function, but rather fixed interconnections. They typically implement
two-level functions. Finally, in field programmable gate arrays (FPGAs), both the
cells and the interconnections are programmable. We concentrate in our discussion
on FPGAs.

Field programmable gate arrays belong to two categories depending on whether
they can be reprogrammed or not. To the first category belong devices that store
their configurations in static RAM (SRAM). The program is downloaded to the device
every time the power is turned on. Those devices that can be programmed only once
are typically based on antifuses, i.e., open circuits that can be closed by applying
a sufficiently high voltage. Although less flexible, antifuse-based devices are denser
and faster than SRAM-based counterparts.

We discuss here one possible cell architecture for SRAM-based FPGAs, called
look-up table (LUT). In Figure 1.5, the principle of the look-up table is illustrated.
We take as example a LUT that can implement all two-input combinational functions.
The boxes on the left are SRAM cells. Each stores one value of the function. The
inputs to the cell control the switches that route one of the values to the output.
A typical LUT-based cell may contain more than one LUT, each with three to five
inputs, one or two latches, and miscellaneous logic.

Semi-custom designs are those that have been most amenable to logic synthesis,
together with field programmable devices. This is because the design is mostly carried

14 Chapter 1. Introduction

out at the logic level and good characterization data is available. Therefore in the
sequel we shall mostly deal with them.

1.4 Overview of Optimal Logic Synthesis

The benefits of automating the logic design process are lost if the result does not
meet its area, speed, or power constraints, while optimizing the design tradeoffs
as well as an expert designer could. Therefore, a critical aspect of automatic logic
synthesis is the optimization problem of deriving a high-quality design from the initial
specification. The accepted optimization criteria for multi-level logic are to Minimize
some convex function of:

1.

2.

3.

4.

Area occupied by the logic gates and interconnect;

the Critical Path Delay of the longest path through the logic;

the Degree of Testability of the circuit, measured in terms of the percentage
of faults covered by a specified set of test vectors, for an appropriate fault model
(Eg., single stuck faults, multiple stuck faults, etc.);

Power consumed by the logic gates.

This minimization is to be performed while simultaneously satisfying upper or lower
bound constraints placed on these physical quantities. While humans are superbly
equipped to solve such problems once they are clearly formulated, the sheer mass of
detail in VLSI designs makes the use of synthesis tools imperative.

Delay constrained area minimization has an immediate effect on practical mi-
crochip design — the design has to physically fit on the chip, which typically is on
the order of 1cm square. We note also that area minimization has an economically
important impact on yield, because net yield is known to decrease exponentially with
the size of the chip. Alternatively, algorithms for area-constrained delay minimization
are often used to maximize performance1.

Another criterion which is increasingly important, especially for mobile technolo-
gies such as laptop and palmtop computers, and cellular phones, is to minimize the
power of the final circuit. The area, delay, and power of a design before layout are
estimated using models which predict the effects of physical design based on the cells
and nets in the final design. Often power is minimized by just making the design
slower, but transformations exist which reduce power while not increasing delay.

Another important part of integrated circuit design is the manufacturing test
which determines if a fabricated chip works as expected. A connection (wire) is
untestable (or redundant) if replacing the connection with a constant value does not
affect the functionality of the circuit. The most typical fault model is the so-called
stuck-at fault model. In this model, a connection in the circuit is testable if there
exists a set of inputs for which at least one circuit output changes value when the
connection is forced to logical 1 or 0.

If a connection is not testable, it is called redundant. Aside from the observation
that a smaller circuit usually results from removing a redundant connection, there is

1 In the sequel, we will use this term to mean the inverse of critical path delay

1.4. Overview of Optimal Logic Synthesis 15

the further problem that redundancies interfere with the production-line testing of the
integrated circuit. Therefore, another goal for logic synthesis is to produce designs
with no redundancies.

Synthesis tools are also in an ideal position to tackle the testing problem. These
tools create and alter designs, so that they can easily modify them for testability. It
makes sense for synthesis tools to insert the special structures needed for test, if any,
and then optimize the whole design, including the test structures, for minimum speed
and area penalty. Similarly, it is logical for synthesis tools to produce vectors that
are inherently integrated with a design’s test structures, and to minimize the vector
set required to test the design. Thus the marriage of synthesis and test can achieve
a fully automated test solution, and serves to move test forward in the design cycle.
The testing/testability issues are explored in Chapter 11.

The design of the optimal circuit which meets all of these constraints is a difficult
problem due to the tremendous number of potential solutions for even a small set of
logic equations. The size of VLSI circuits makes logic synthesis for VLSI a difficult
optimization problem, which usually requires automated tools for practical designs.
As we shall see, graph algorithms and models, Boolean algebras and switching the-
ory, optimization theory, and the theory of finite state machines and finite automata,
provide the mathematical tools needed to design and efficiently utilize computer aided
design tools for automatic logic synthesis, testing, and verification.

1.4.1 Area-Time Tradeoff Curves

Synthesis tools give the designer a means of exploring the optimal tradeoff curve
relating the multiple objectives of chip area and performance. Typically the optimal
tradeoff curve is a convex function of Area A and Delay such as a hyperbola, as
shown in Figure 1.6. Usually there are delay constraints usually determined
by marketing forecasts, and area constraints due to the size of the chip
and the Area budget of the circuit being designed. Thus designs in the shaded area
of Figure 1.6 are feasible (that is, acceptable), and designs lying on the tradeoff curve
are optimal. By definition, it is impossible to realize designs lying below or to the
left of the optimal tradeoff curve. Optimal tradeoffs are discussed briefly here, and
given a more detailed treatment in Figure 4.1.

16 Chapter 1. Introduction

Given a delay specification, synthesis for optimal Area would produce a design
lying on the intersection of the delay constraint line and the optimal tradeoff
curve. Designs with Area smaller than this one would have Delay which exceeds the
specification. Similarly, given an area specification, synthesis for optimal Delay would
produce a design lying on the intersection of the Area constraint line and the
optimal tradeoff curve. Designs with Delays smaller than this one would have Area
which exceeds the specification.

In the figure, feasible, but suboptimal designs are represented by a small square,
whereas optimal designs are represented by a small circle. Thus Design 1 is feasible,
but suboptimal, while Designs 2 and 3 are both feasible and optimal. We stress that
there usually are many optimal designs, and it is up to the designer to specify his
priority of tradeoff. A design move from Design 1 to Design 2 is a tradeoff-free
move, which decreases area without sacrificing delay. In contrast, the design move
from Design 2 to Design 3 is an optimal tradeoff move, which gives up some delay
for a small decrease in area.

The ability to make such design transformations automatically was a key factor
in enabling synthesis tools to pervade the microchip design process. Although per-
formance is usually the top design priority, sometimes this type of move is necessary
so that the entire design fits on a single chip. If the delay specification is not violated,
such a move is desirable and acceptable.

1.4.2 The Technology Independent View — A Bit-Serial Full Adder
Circuit

A crucial aspect of any optimization problem is the accuracy of the cost function used.
In logic synthesis, there is no guarantee that truly minimizing some cost function
based on area estimation would result in a truly minimum size for the fabricated chip.
Logic synthesis tools have typically identified two types of cost models, each with their
own assortment of synthesis tools. The first is called a technology independent
cost model, in which the area cost estimate is taken as the number of logic symbols,
called literals in a given set of logic formulas. The literal count is defined as the
number of literals on the right hand side of the formulas in the given set. A simple
example is for which the literal count 2 + 4 = 6.

The technology independent view has proven useful for improving the structure,
or overall architecture of the final circuit, and can thus be regarded as a more global
type off optimization. In contrast, the technology independent view has proven its
worth in tuning the design by well motivated local optimizations.

Typically, the delay estimator in the technology independent cost model is the
length of the longest dependency chain in the given set of formulas. In this view, the
dependency chain is thought of as the “critical path” of the formulas, and its length
as the “critical path delay”. In the above example depends on and while
depends on and so the length is 2. Note and are inputs in the sense they do
not appear on the left hand side of any formula.

We demonstrate the basic ideas of technology independent logic synthesis with
discussion of the bit-serial adder circuit of Figure 1.7. In this synchronous sequential
circuit, there is combinational logic comprised of a 1-bit full adder, with a latch
storing the value of the adder’s carry output. By definition, a full adder adds two logic

1.4. Overview of Optimal Logic Synthesis 17

variables and and a carry input according to the following logic equations:

any of the three critical paths or
Observe that each logic signal is associated with exactly one logic gate — for

example, signal is associated with the AND2 gate of the XOR3 subcircuit. Thus it
is customary to refer to that gate as “gate ”.

2Note that we use and interchangeably to denote complement.

where Here the subscripts represent
ticks on an implicit clock. In the figure, the XOR3 and MAJORITY subcircuits are
enclosed in dashed boxes. This representation is typical of a specification, which
might have been originally expressed in an HDL.

Often such a compact representation is inefficient in area or delay or both when
mapped into Silicon, so a logic synthesis tool might further decompose the XOR3 and
MAJORITY subcircuits into 2-input logic gates, as shown in the figure, and in the
following set of Boolean equations.

Here we count 18 literals on the right hand sides, and a longest dependency chain of
3, so in this example, the “critical path delay” is 3, corresponding to the length of

18 Chapter 1. Introduction

Note that this simple design is not optimal from a chip area viewpoint. For

critical path length is 6 corresponding to the length of the critical path
Note that the critical path length is measured through the combinational

logic, regarding the latches as an open circuit.
Note that technology dependent delay estimate is 6, which is twice the estimate

obtained in the technology independent view. Typically, the technology dependent
3Typically, technology mapping tools estimate critical path delay by more sophisticated measures,

including fanout load effects and/or specific pin-to-pin delays in terms of gate size parameters.

example, gate (formula) may be deleted from the MAJORITY subcircuit if signal of
the formula is replaced by signal so that Note his optimization
move would save 2 literals, but does not affect the critical path delay. Thus, from the
technology independent view, the above formulas are not optimal, since area can be
decreased without increasing delay.

1.4.3 The Technology Dependent View — Technology Mapping

In the technology dependent view, each formula is mapped into one or more logic gates
in a pre-designed set of gates called a technology library. Gates in the library have
a highly optimized, pre-defined path to Silicon, so that the area and delay parameters
are known much more accurately. Algorithms for technology mapping are discussed
in Chapter 13.

A typical result of technology mapping is shown by the following set of equations.

signal formula gate transistors

Note that all the formula are negative in the sense of having an outer complementation.
Thus the corresponding library gates have a transistor count of 2 for each literal in the
formula (see Section 1.7 for a discussion of the XOR count). Note that 36 transistors
are required, and if we divide this by 2, we get a count of 18 equivalent literals. This
happens to be identical to the original literal count of 18. Note that although we did
some optimizations, we also added 4 inverters.

These formulas correspond to the mapped circuit of Figure 1.8. The logic sharing
between the XOR3 subcircuit and the MAJORITY subcircuit is one of the primary
objectives of logic synthesis.

In the mapped circuit, the critical path delay3 of the circuit can still be estimated
by the greatest number of logic levels on any path between any input and any output
(not counting the pentagonal input and output buffers). In the mapped circuit, this

1.4. Overview of Optimal Logic Synthesis 19

delay estimate is more accurate, which indicates a relative strength of the technology
dependent view.

1.4.4 Testing — Is What I Fabricated What I Wanted?

The simple example discussed above may also be use to illustrate some basic concepts
of testing. The most common fault model in VLSI test is the so-called stuck-at fault.
In this model, two versions of the circuit under test are simultaneously considered:
the specified circuit, as shown in Figure 1.7, and a faulted circuit, for example that
of Figure 1.9. In the faulted circuit, one specified logic signal, in this case of the

20 Chapter 1. Introduction

XOR3 subcircuit, is connected to logical 1, as shown in the figure. This simulates the
possibility that on the manufactured chip, the metal wire implementing this logical
connection has, through some manufacturing fault, come in contact with the wire
supplying the high voltage power supply. The fault thus simulated is referred to as

be written as follows. We first note that is the only circuit output affected by the
asserted fault, and that the input vector is a test for if and only if logic
expression where

We then note since there is no logic path from the fault to we have
so that

This result reflects the fact that an XOR gate is “always sensitized”. In this case, this
means that the existence of a test for the fault does not depend on the value of
the carry in input

To get to the second line of the equation, we used the fact that
and to get the last identity, we used (The basis

for all such identities is given in Chapter 3, which deals with Boolean Algebras.)
Each specific stuck fault creates a new logic function but the good

machine is invariant, so for any asserted fault we always have A
test vector for a given fault F is a triple of inputs such
that For any such input, we know that the good machine and
fault machine will have at least 1 differing output value. We say that the test vector

covers the fault F.
Typically a single test vector will cover many stuck faults. In the example of

Figure 1.9, it can be verified that each of the vectors (0, 1, 0) and (1, 0, 0) cover both
the faults and The key point in efficient testing is to find a small set of
test vectors which cover every possible stuck fault in a given circuit.

Of course there are many other fault models which can occur during chip design
and fabrication. For example, multiple stuck faults could conceivably occur, as could
stuck open faults, bridging faults (shorts), etc. However, it has been observed empir-
ically that if a test set that covers all single stuck faults is applied to a given circuit, it

a mnemonic for “ stuck-at 1”.

an “ stuck-at 0” fault, denoted
We shall use G and F superscripts to distinguish between the “Good Machine”

(that is, the specified circuit) and the “Fault Machine” (the same circuit, but with
the fault asserted, as in Figure 1.9). Thus the set of tests for an asserted fault can

Similarly, if were inadvertently connected to logical 0, we would be modeling

1.4. Overview of Optimal Logic Synthesis 21

is highly likely that they will cover not only the single stuck faults, but a wide variety
of other faults as well. Such topics are discussed in detail in Chapter 12.

Now let us consider how to test for the single stuck fault In the Good
Machine, we have and in the Fault Machine we have

(Note a 1 value on the NOR gate input is controlling in the sense that it
causes the output to be 0, independent of the value of Hence the set of tests
for is just the set of pairs {(0,1), (1,0)} that satisfy

Note that for either of these inputs, we have which is a necessary condition
for testability of this fault, since

It may similarly be verified that for the fault we have
Again so that the set of tests for is just the

singleton set of pairs {(1, 1)} that satisfy

Again, note that the necessary condition is satisfied by this test.
Finally, note that the test vectors derived for the two stuck faults are valid inde-

pendent of the logic value of the carry in signal The symbol (0) in the latch
of Figures 1.7, 1.8, and 1.9 is meant to indicate that the initial value on the latch is
logical 0. Since each of the three test vectors identified above are independent of
they are guaranteed to work for

Although this circuit is a sequential circuit, the specific faults discussed above
propagate immediately to the output, where they are observable. In many more
realistic cases, the fault may take two or more input vectors on successive clock
cycles to reach the output. For example, suppose that a fault, say occured
in the MAJORITY subcircuit, and that the carryout was not an output (that is, was
not observable). In this case, a second and third input pair would be necessary to
propagate the fault to the output which we demonstrate as follows.

Initially, Thus on the first clock cycle, since
the initial latch value is controlling for the output OR gate of the majority
subcircuit. Thus all that can be done on the first cycle is to generate a carry-out,

On the second cycle, we want and with and which
implies This will be true if and only if
Thus, the second input pair must be 00, which implies that

On the third cycle, we have a carry in of in the good machine, but
(in the fault machine). In this case, That
is, is the tautology, or true for all assignments of its inputs. It thus follows that
any input pair will suffice as the 3rd pair in a 3-pair sequence. Thus the tests for

are {(11,00,00), (11,00,01), (11,00,10), (11,00,11)}.

1.4.5 Graph Models and Finite State Machines

We can regard this circuit as a so-called FSM (Finite State Machine — see Chapter 7).
Since the circuit has only 1 latch, the machine has states, depending on whether

which requires so the first input pair must be 11.

22 Chapter 1. Introduction

a 1 or a 0 is stored in the latch as the value of The associated FSM is shown in
Figure 1.10

By convention the latch initially provides a carry-in of 0, so the initial state of the
machine (designated by the thick arrow) is the left state. From this state, if and only
if both of the two inputs and are 1 does the machine make thus causing
a transition to the right state. This provides a carry-in of on the next clock
cycle. Similarly, if the machine is in the state, it returns to the initial state if

and only if both of the two inputs and are 0 (else we would again have).
Tools for optimizing FSMs, and for testing whether two FSMs are equivalent, are

discussed in Chapter 7. Also discussed there are related topics such as the theory
and design of Finite Automata.

We have just seen how an FSM can be specified as labeled directed graph.
Throughout the sequel we shall have extensive recourse to the theory of such graphs.
In the interest of self-containment, we briefly review some of this theory here. Graph
theory and models are among the most fundamental tools of discrete mathematics,
and are featured in texts introductory to that subject [190, 241]. Consequently, most
significant CAD algorithms are based on graph models. Graph models are key in the
definitions of Finite State Machines (often abbreviated FSM) and Finite Automata
(Deterministic Finite Automata are often abbreviated DFA). State Machines and Fi-
nite Automata are, in turn the most fundamental models in the specification, design,
synthesis, and verification of sequential digital systems. Indeed, any sequential circuit
can be modeled as a single FSM, consisting of combinational logic and latches (also
called registers, or flip flops).

We develop in this section enough background in graphs to enable a reasonably
self-contained treatment of Finite Automata and State Machines. We shall see that
graph models play a predominant role in the discourse.

We refer the reader to [99, 241, 69], for a more comprehensive treatment of rel-
evant aspects of Graph Theory. Graphs provide a visual and intuitive framework for
formulating design problems. Further, it is relatively easy to prove theorems in this
framework, and there is a vast literature available on graph theory. Here we limit our
treatment to a discussion of (1) the decomposition of a graph into components based
on connectivity, and (2) algorithms for graph traversal based on depth first search
and breadth first search, which is fundamental to the synthesis and verification of
logic circuits.

Depth first search is used in many recursive situations, for example, in the “col-
lapsing” phase of multilevel logic synthesis (to be discussed below). Breadth first
search is key to many shortest and longest path algorithms and is used in many

1.4. Overview of Optimal Logic Synthesis 23

aspects of FSM synthesis and verification, as well as in timing optimization of com-
binational circuits. These search algorithms will be discussed in the context of FSMs
in Chapter 7. In this chapter, we shall limit our attention to a single application:
finding the longest path in a graph. This problem corresponds directly to that of
computing the delay of a logic circuit.

A graph is defined as a pair where is a set of vertices and
is a set of edges, sometimes called arcs. An edge is a member of the edge
set of graph G, so of course Note that an edge denoted
is an ordered set if the edges have directivity, and an unordered set if they do
not. Vertices and are called the tail vertex and head vertex (respectively) of
the edge from to A graph with undirected edges is called an undirected
graph, or just a graph. If all its edges are directed, a graph is called a digraph,
and if it has both directed and undirected edges it is called a mixed graph.

An example of a directed graph is given in Figure 1.11. Here

In this graph, the broad arrow is not an edge, but an indicator of where to start a
graph search.

A path is a sequence of connected edges, and a simple path is one in which no
vertex appears either twice as a head vertex or twice a tail vertex of the edges of
the path (that is, a simple path doesn’t cross itself). A cycle is a closed path. A
simple cycle is a cycle in which every vertex appears exactly once as both a head
vertex and tail vertex. In Figure 1.11, ((A, D), (D, F)) is a simple length-2 path
from A to F, and ((A,D), (D,B), (B,F)) is a length-3 path from A to F. Simil-
arly, ((B, F), (F, C), (C, B)) is a length-3 cycle from B to F and back to B. When
the context is clear, we will denote the path ((A, D), (D, B), (B, F)) by the simpler
(A, D, B, F). The path (A, D, B, D, F) is an example of a non-simple path from A
to F.

If a digraph (directed graph) G = (V, E) has no cycles it is called a DAG
(Directed Acyclic Graph).

24 Chapter 1. Introduction

1.4.6 Successors and Predecessors

It is often useful to denote the existence of an edge in a digraph G = (V, E)

indicate a transitive, rather than direct, relation between and We shall use the
notation to denote the set of pairs of vertices such that the graph
contains a path from to

In the statement of algorithms and procedures it is useful to have convenient
notation for certain vertex subsets

Definition 1.4.1 In a directed graph G = (V, E), we define

as the set of successor vertices of Symmetrically, we define

as the set of predecessor vertices of

Similarly, if in a directed graph G = (V, E), then G contains a path from
node to node Thus we say that that is, is a transitive
successor of and that is, is a transitive predecessor of For
example, for the graph of Figure 1.11, and
and The extended edge relation thus derived
from a given edge relation is called the transitive closure of E.

discussed above, we denote an edge from to by and if is labeled with
a symbol we denote it by and say that is an of As we
shall see in Section 7.6, edge labeled graphs are essential to the discussion of finite
state machines and automata. A graph may also have a label associated with each
vertex, in which case it is denoted G = (V, W, E). Vertex-labeled graphs are essential
to the discussion of Moore machines.

In the context of graphs (V, E) associated with logic circuits, if a vertex
represents a logic gate, then its successors are often called the fanouts of and its
predecessors are often called the fanins of In the circuit of Figure 1.12, the fanins
of gate 9 are gates 6 and 8, and the fanouts of buffer gate 2 are gates 4, 5, and 6.

vertex. A vertex for which is called a sink vertex.

1.5 Graph Algorithms and Complexity

1.5.1 Complexity

In most cases CAD tools are developed by modeling a physical problem by some
graph analysis or optimization problems. There shall be numerous examples of such

4 Often is called the transitive closure of the edge relation

by and the existence of a path from to in G by Here the is used to

As in Figure 1.10, a graph may have a label associated with each edge, In
this case the graph is called an edge labeled graph, and is denoted G = (V, E, X),
where the label set is in one to one correspondence with the edge relation E. As

A vertex for which (that is, has no predecessors) is called a source

1.5. Graph Algorithms and Complexity 25

a modeling process throughout the sequel. If one has to design robust and efficient
CAD tools, it is useful to learn how to compute, or at least estimate, the way the
running time of specified graph algorithms depends on the size of the data input.
VLSI CAD tools focus on problems of very large size. Let us denote problem size
by and running time by a function Then we can say that programs for

(log-linear functions) are tractable. Running times which have
a quadratic or stronger dependence on are usually considered intractable.

Unfortunately it is prohibitively difficult to compute exactly for most al-
gorithms of interest. Thus we are forced to develop a notion of asymptotic com-
plexity of algorithms, which applies when the exact form of is not known. The
idea is to show that there exist known functions for which either
or holds for all sufficiently large

Although both upper and lower bounds for best, average, and worst case estimates

which good estimates of the function can be computed in closed form. Then we
formalize the notion of asymptotic complexity, and develop some notation that can be
used throughout the book to characterize the complexity of the numerous presented
algorithms.

which (linear functions) or depends linearly on or at worst

of are all of interest, we shall focus in general on “tight” asymptotic upper bounds
of worst case behavior. This has the advantage of giving a guarantee that there is no
input data that will cause the algorithm run longer than the estimate. This relieves
the user of the algorithm from the responsibility of making educated guesses about
running time. If the bounds are tight enough, the upper bound will provide a good
estimate of actual running time as well. As we shall see, this is possible for many,
but not all, algorithms of interest.

Further, for some algorithms, the worst case corresponds to fairly typical behavior.
For example, once we define Boolean functions in the Chapter on Boolean Algebras,
we shall see that for some data representations, the problem of checking to see if the
function is the constant 0 function takes time exponential in the number of inputs.
We shall see that this question needs to be asked quite frequently in logic synthesis
and verification.

We organize this section as follows. First we treat some simple examples for

26 Chapter 1. Introduction

1.5.2 Computing the Product of Sets of Sets

We begin by studying the complexity of Procedure SET_CARTESIAN_PRODUCT of
Figure 1.13, which takes as inputs the sets G and H, and computes the product
P = G x H of sets G and H. The elements of G and H are sets of cardinality

where By definition each element in the product
P is formed from the set intersection where and Thus

Since it is possible that (meaning and have no elements in
common) and P, we know that has at most elements, each of which

We can compute for this algorithm for the best and worst cases of input
data. A way to organize this computation is illustrated in the ”step table” given at

is, each member of G or H is a set of cardinality The procedure simply looks at
each element of the Cartesian product of G and H, intersects and
and adds the resulting element to the product set P.

It is instructive to consider how the entries of the “step table” are obtained. First,
consider Line 2 of SET_CARTESIAN_PRODUCT. This statement initializes a set P of
no elements. The exact number of machine instructions required for this depends on
implementation details, but is clearly independent of or Further, it is clear
that this statement is executed exactly once per call to SET_CARTESIAN_PRODUCT.

Thus, referring to the table entries, we see that the ”frequency” of executing this
statement is 1, and the operations count per execution is some constant Looking
at the for loop structure of Figure 1.13, we see that the Line 3 is executed exactly
times per call, and the operations count per execution is some constant Line 4 is

is a set of or fewer elements.

the right of the algorithm. Here the inputs, G and H, are sets of sets. That

1.5. Graph Algorithms and Complexity 27

similar.
Line 5 shows a distinction between best and worst case behavior. In the best case,

every element in the sets G and H is a set with just one element, whereas in the
worst case, every has elements. Since Line 5 is executed times per call, Line
5 contributes operations in the best case and operations in the worst
case. With this approach, we can estimate the running time in the best case by

and in the worst case

1.5.3 Longest Paths

We now treat a practical algorithm that is often used to compute the critical path
delay of a VLSI circuit. We shall first discuss the qualitative behavior of the algorithm,
and then study its running time.

Procedure LONGEST_PATH of Figure 1.14 is applicable only to directed acyclic
graphs. The operations counts on the right of the figure will be discussed later. The
algorithm is based on traversing the graph from nodes in I, meanwhile iteratively
increasing a lower bound on the length of a longest path from any node to
each node At the end of the traversal, the lower bound has become exact for
all nodes reachable by paths from I.

An auxiliary array array is defined at all times to be the number incoming
edges to node which have not yet been traversed. Once becomes 0, it can
be shown that we have, implicitly, traversed all directed paths to and at this point
the lower bound has become exact. The notation stands for the set of nodes in
the fanin (that is, its predecessors — see Section 1.4.6 for the formal definition of
fanin and fanout) of and is used to initialize

LONGEST_PATH accepts as input an directed acyclic graph G = (V, E) with edge
lengths L, as well as a set of “initial” nodes (often these nodes have no incoming
edges). When this algorithm is used to monitor project completion, the argument,
spec, denotes a specified limit on how long the longest path should be. Returned is a
longest path and an array of longest path lengths The
path satisfies and

Once all incoming edges are traversed by LONGEST_PATH, the lower bound be-
comes exact, and has converged to the longest path length. Each time this occurs
(Line 9), the relevant node is appended to Q by the function QUEUE. On each pass
through the while loop of Line 4, the node at the head of the queue is taken off and
assigned as the currently active node (Line 5). Updates to and are made in
the foreach loop of Line 6.

In Line 11, the length of the longest path to any node is computed, and used

a path of maximum length, based on the fact that the array of maximum path
lengths from any source node to all is now known. The argument, with
value denotes the amount by which the path is “too long”.

in Line 12 to select one node for which The selected node is then passed
in Line 13 as an argument to Subprocedure BACK_TRACE, which actually traces out

28 Chapter 1. Introduction

291.5. Graph Algorithms and Complexity

Subprocedure BACK_TRACE (discussed below) accepts as inputs the graph data

processes the fanout of the active node in ascending lexicographical order.
Thus, for example, the final values of and are 23 and 24.

In this example, 11 passes through the while loop are required. At the foreach
loop (Line 6), the quantities and the fanout list are given in the table.
At the end of the each pass (Line 10), the values of are given for each node

On subsequent passes only the quantities which actually change are given. Thus
the sparsity of the table is representative of the efficiency of the algorithm.

1.5.4 Backtracing

Especially when applied to logic graphs, the complete picture of delay evaluation
often involves two separate arrays of timing data, with one entry in both arrays for
each node in the graph. The first array is sometimes called ArrivalTime. Assuming
that the arrival times of the input nodes I are 0, this array corresponds directly

V, E, L, as well as and the array The output of BACK_TRACE is called a critical
path, that is, a longest directed path. Implementations of BACK_TRACE vary, but in
our version, discussed below, only one path is traced.

The actions of LONGEST_PATH are illustrated in the data trace given in Table 1.1
for the example of Figure 1.15. We assume here that the foreach loop of Line 6

to the “longest path length” array computed by LONGEST_PATH. The second
array is often called called RequiredTime. This is an external specification given for
designated nodes of the graph, as in logic circuits or PERT charts5.

These concepts will be elaborated in the Chapter on technology mapping, since
sophisticated delay analysis is usually done only in that setting.

5PERT is a project management technique, and stands for Performance Evaluation and Review
Technique

30 Chapter 1. Introduction

In Procedure LONGEST_PATH, only one RequiredTime value is specified, namely,
the upper limit spec on the length of the longest path. Thus

and, implicitly,

we compute the “slack” at each node denoted Roughly speaking, the

Here is the length of the longest path to , and is the length of the
longest path to that passes through the edge . The slack of a node is defined
as the minimum of its fanout edge slacks, so

called by LONGEST_PATH. The slack values of all nodes other than are initialized
to and then selectively updated by the formula

We can use this simpler formula when, as in Procedure BACK_TRACE, we trace only
a single critical path.

Procedure BACK_TRACE is quite similar in operation to Procedure LONGEST_PATH.
Again a FIFO priority QUEUE is employed. The main difference is that for each
active node as soon as a new 0-slack node is encountered in the backward tra-

In Procedure BACK_TRACE, instead of computing for all nodes,

In Procedure BACK-TRACE, is initialized to the value when

versal of the graph, is put on the end of and the foreach loop is exited by the
break statement.

slack at a node is the difference between and the
Negative or zero slacks indicate criticality. Formally, we give the following definition.

Definition 1.5.1 The slack of an edge is the slack of plus the difference
between the length of the longest path to and the longest path to through .
In formula

1.5. Graph Algorithms and Complexity 31

32 Chapter 1. Introduction

Note that the computed critical path always propagates to the first encountered
critical node in the fanin. Consequently, if the input parameter slack* comes with
value 0, then will always have value 0 in the above equation. Note further that
Procedureback_trace has a break statement at Line 6. This means that a soon as a
new critical node is encountered, we break out of the enclosing foreach loop (Line
2), and then start a new pass through the while loop of Line 1.

Note nodes which do not lie on a critical path may not be updated by this formula,
and will still have their initialized slack values (of) after completion of Procedure-
back_trace. Also note that the final values of will depend on the order in which
the nodes in the fanin are processed in Line 2.

An edge is critical if it connects two nodes and with slack value 0.
Consider the example of Figure 1.15, for which we had and Assuming

order, the final values of produced by Procedureback_trace are:

Note that the fanin nodes 4, 7, 10 of node 9 are processed first, so the first time
Line 3 is executed, and at that point its so Line
4 is not executed on this path. However, on the second pass through Line 3, we get

Thus node 7 is identified as critical and put on both
the path and the queue . The ensuing break statement breaks the foreach loop,
so node 10 is not processed, and retains its initial slack setting of

On the next iteration, 7 is active, and is further reduced to 0 + (20 – 4 – 9) =
7, and then node 6 is identified as critical, and so on. At completion, the nodes on
the critical path are

and are precisely those for which Only non-critical nodes 1, 2, 3, 10 have
had their slack adjusted downward from their initial values of 24.

1.5.5 Complexity of Computing the Longest Path

We now discuss the complexity of Procedure LONGEST_PATH. The key point in the
design of this algorithm is that every edge is traversed exactly once. That is, assuming
that there is actually a path from a node in I to every node it must happen that
every node is put onto the queue exactly once, and taken off exactly once. Further,
every fanout edge of every is thus processed in Lines 7, 8, and 9 exactly once.

It is somewhat tricky to analyze the number of operations expended in Line 6.
This statement is executed times, and each time it executes, it performs
operations. Summing over this is operations for
each of the passes through Line 6, or operations total. Note this result obtains
no matter what topology the specified graph has. Thus, excluding internal operations
in the call to Subprocedure BACK_TRACE, the running time for this algorithm can be
written

that the foreach loop of Line 2 processes the fanin of (that is, its predecessors — see
Section 1.4.6 for the formal definition of fanin and fanout) in ascending lexicographical

1.6. Asymptotic Complexity (or just complexity) 33

The best case running time for this algorithm depends on what happens at Line
6. Assuming that the graph is connected, the best case occurs when each gate has
only one fanout6. Thus so Line 6 is executed times exactly. Lines
7-9 are similar. Thus we have in the best case hence and we
have the following expression for

To establish this lower bound linear function of we simply dropped the constant
terms as well as the term proportional to

Further, since for all directed graphs, we have and since we also know

To get to the first inequality we just use For the second, we use
For the third we note that for all

Thus this algorithm has optimal complexity, in the sense that it must at least read
its input, which will take on the order of operations, and completes its entire task
in the same order of operations.

In the next section, we formalize the notion “on the order of”, and show that the
above inequalities may be expressed in more compact notation as

respectively.

1.6 Asymptotic Complexity (or just complexity)

By definition, problems solved with VLSI CAD algorithms have “Very Large Scale.”
This requires both the developers and users of VLSI software tools to pay close
attention to how the computational resource requirements (e.g. cpu time, cpu storage,
operations counts, etc.) depend on problem size. Computer users are often surprised
to find that program A, which was significantly faster than program B for ”small

6 In this case the graph is a tree, for which

that we also have

34 Chapter 1. Introduction

instances” of problem T, becomes orders of magnitude slower than B for ”very large”
instances of T. The purpose of this section is to establish a meaningful definition for
the size of a problem instance, and meaningful ways to talk about how cpu resource
requirements of VLSI Algorithms depend on this size.

The ”size” of a problem instance is a parameter (or set of parameters) of the
problem input which determines things like the size of arrays in the corresponding
application programs, and/or the frequency of execution of for loops, while loops,
etc. For example, procedure LONGEST_PATH of Section 1.5.3 has as input a graph
G = (V, E) for which the number of nodes is It would be useful to know the

we computed for LONGEST_PATH. Unfortunately, the task of finding such a
function for most VLSI CAD algorithms of practical interest is usually prohibitively
difficult. Further, the exact count itself is not so much of interest as its qualitative
dependence on problem size Thus algorithm designers, [161], have developed the
concept of the asymptotic complexity of a program.

1.6.1 Worst Case Asymptotic Upper Bound Complexity

Given that an algorithm has to be applied to VLSI (Very Large Scale Integration)
CAD applications, it must be efficient and robust for the case of large problem in-
stances. For instance, the control logic on the INTEL P6 chip probably has on the
order of logic gates. The design of CAD tools for such large applications requires
the development of algorithms that are robust and efficient for large scale applica-
tions. This has in turn necessitated the development of some notion of the behavior
of an algorithm for asymptotically large problem instances. Roughly speaking, what
is needed is some way to say “for large the algorithm will perform at most on the
order of operations”. The notation adopted in the literature for this statement
is “the algorithm is [161, 69].

Speaking more formally, we define to be a set, or “class” of functions

needn’t be completely specified in order to prove that it is in the set All
that is required is to prove that is asymptotically bounded from above by a
known function according to the following definition.

Definition 1.6.1 (Asymptotic Complexity) A function is in the set
if and only if there exist positive constants and such that

In words, this means that is asymptotically bounded from above by a linear
function of

Similarly, a function is in the set if and only if there exist positive
constants and such that

In words, this means that is asymptotically bounded from below by a linear
function of

function which gives the exact operations count of algorithms of interest, just as

(where is some parameter of the ”size” of a problem instance). A function

1.6. Asymptotic Complexity (or just complexity) 35

This definition is illustrated, for the case in Figure 1.17. Note that
after some initial oscillations, settles down and grows slowly as a function of
Further, for all such that (here Thus

is in the set The equivalent notations and
is carry the same meaning. Similarly, since for all

(here
Finally, note that implies that and

Similarly, implies that and
Thus the “big-O” [161] notation gives a way to express the fact that is

an asymptotic upper bound to to within a constant factor, and similarly for
the notation. O(1) can be regarded as a conceptual set of asymptotically
constant functions, whose value is not specified. Consequently, if all
we know is that their exist constants and such that the function F is bounded
from above by the constant (is independent of) for all

Some small examples will help clarify the definition:
Example:

Note that it is unnecessary to find the smallest constants and
that satisfy the definition. Any convenient values which establish the
inequalities of Equations 1.4 and 1.5 suffice.

Note also that the the values of the constant coefficients in the equation

36 Chapter 1. Introduction

for are similarly inconsequential:

1.6.2 Complexity of Algorithms

Now suppose that represents the actual operations count for some algorithm
applied to some class of problems of size We say that the algorithm, applied to
input data of size has worst case asymptotic upper bound complexity if its
operations count, satisfies the above definition. Thus, for all sets of inputs of
size the overall operations count is bounded (to within a constant) from
above by some function for all greater than the constant Note that this
does not imply that the algorithm will actually take as much as operations for
any given All we know is that it won’t take more operations.

However, if, as in Figure 1.17, we can also find constants and such that
for all greater than the constant then we can say that is

as well. In this case, is (asymptotically) bounded above and below by
functions proportional to As a result the function is characteristic of the
complexity of the algorithm.

For example, it can shown that when procedure LONGEST_PATH is applied to
graphs G = (V, E), its operations count is both and where

With this type of characterization, we can easily determine the complexity
of many simple algorithms. However, we emphasize that for some algorithms, this
can be prohibitively difficult to do. For example, there are some algorithms, such as
those for the so-called bipartite matching problem (See [69], Section 27.3) , for which
the upper bounds have been repeatedly improved over the years, but no matching
lower bounds have yet been proven.

It can similarly be shown that the the time complexity of BACK_TRACE is
as well as

1.6.3 Practical Complexities

In VLSI applications, it is generally thought (because of the intrinsically large prob-
lem instances) that is the maximum tolerable algorithm complexity. In
Table 1.2, we tabulate the growth of some comparable low complexity functions. We
see that for graphs of size on the order of which is modest by VLSI standards,
is definitely prohibitively large, whereas is barely tractable. Similarly, for graphs
of size on the order of which occurs in practice for some VLSI problems, is def-
initely prohibitively large, whereas is barely tractable even for the most powerful
vintage 1995 supercomputers.

Table 1.3 shows how problems of such large scale would take on the typical (for
1995) 10MIPs INTEL486 PC performing 10 million steps per second. Assuming unit
coefficients and an instance of size an algorithm would take 100 seconds,
while an algorithm would take years. So, we may conclude that

1.7. Brief Summary of MOS Device Behavior 37

the utility of algorithms with exponential complexity is limited to small (typically
Similarly, we can conceive of executing instances of size for algorithms

with quadratic complexity, but instances of size would be prohibitively large for
algorithms with cubic complexity.

1.7 Brief Summary of MOS Device Behavior

We include here a few observations about MOS devices. First, we note that MOS
transistors are bi-directional. That is, an device is ON (or shorted) if the net
voltage difference between the gate and either of the two channel nodes is logical 1
(that is, almost). This is because the positive gate to channel voltage attracts
(negatively charged) electrons to the surface of the channel. Similarly, a device
is ON (or shorted) if the net voltage difference between the gate and either of the two
channel nodes is negative logical 1 (that is, almost). This is because the
negative gate to channel voltage attracts (positively charged) holes to the surface of
the channel.

Conversely, an device is OFF (or open) if the net voltage difference between
the gate and either of the two channel nodes is logical (that is, almost). This
is because the negative gate to channel voltage repels (negatively charged) electrons
away from the surface of the channel. Similarly, a device is OFF (or open)
if the net voltage difference between the gate and either of the two channel nodes is
positive logical 1 (that is, almost). This is because the positive gate to channel
voltage repels (positively charged) holes away from the surface of the channel.

From a DC viewpoint, the gate to drain or gate to source is always an open circuit,
although there is a small amount of capacitive coupling.

Second, we note that an MOS circuit can be regarded as a sequential circuit even
in the absence of latches. For example, consider the driver circuit of Figure 1.1,

38 Chapter 1. Introduction

which has no explicit memory storage elements in the indicated transistor model.
The circuit has one output, and two inputs, and The upper input is a control
input and the lower input is a data input voltage If the control voltage is

the two outer MOS transistors have their channels shorted, so that the circuit
functions as an inverter, with However, if the control voltage is 0 the two outer
MOS transistors have their channels shut off, so the output node is isolated from both
ground and leaving the output voltage in this case apparently ambiguous.

A real physical implementation of this circuit has capacitance from any circuit
node to ground. The output node in particular can have a very substantial load capa-
citance when the driver circuit drives many other MOS transistors. This capacitance
stores the voltage on the capacitor from one clock cycle to the next7. Thus, we can
write the following equation for the output voltage:

That is, if else The FSM (Finite State Machine)
corresponding to this behavior is shown in Figure 1.18. Here the edge label 11/0 from

the state to the state means “ if in state if and go to
state and output a 0”. Note when the control input is 0, the FSM outputs the
value of which corresponds to the current state.

Third, CMOS circuits are negative logic. That is, a logic formula which is com-
plemented, such as a NAND gate, for which is implemented nat-
urally, whereas one which is not complemented, such as an AND gate, requires an
inverter. For example, an exclusive-or function would be im-
plemented as the complement of an exclusive-nor gate, Then, the
natural complementation of negative logic gates would provide the implicit inverter,
so Since each negative gate requires 2 CMOS transistors per
input connection, would require 8 transistors, assuming that the signals and
are available. If they are not, two extra inverters will be needed which will cost 2
transistors each, so the maximum cost would be 12 transistors.

Finally, note that when forming CMOS gates (without pass transistors), the
sub-network is just the graphical dual of the sub-network. That

is, every series connection in the sub-network is mapped into a parallel
connection in the sub-network, and conversely.

7Actually, even when all the MOS channels attached to this node are turned off, there is some
leakage current. However, this current is usually so low that it would take seconds or even minutes
for a high voltage to become low, whereas the clock cycle time is usually in the range of microseconds
to nanoseconds.

1.8. Notes 39

1.8 Notes

At the time of writing, 1995, the IC industry was approaching feature sizes and
transistors on a chip. Moore’s law, which predicts that processor speed would

double every 18 months, was continuing to hold firm. The major VLSI CAD compan-
ies (Synopsis, Cadence, Viewlogic, Mentor Graphics, etc) continued were continuing
to grow vigorously. INTEL, which has in the past been behind other large semicon-
ductor manufacturing firms in using VLSI CAD technology, survived the infamous
Pentium bug, and is now building up a world class verification group. Throughout
the industry, synthesis tools were solidifying their position as a mainstream factor in
the design process, and verification tools were showing signs of following the same
path that synthesis tools took toward widespread adoption and designer acceptance.

1.9 Summary

In this chapter we have briefly surveyed the panoply of design methodologies which
the semiconductor industry has employed in producing the powerful chips that are
becoming commonplace today. We have characterized the IC design process as one
of optimal tradeoff of competing design goals:

1.

2.

3.

4.

The area on the chip required by the circuit being designed;

The critical path delay of the circuit;

The testability of the circuit, measured in stuck-at fault coverage;

The power dissipated by the circuit.

Along the way we have developed basic notions of critical path delay analysis, test
generation, graph models, CMOS implementation of logic functions, and complexity
of algorithms. All of these notions will be recurring themes in the sequel, as we develop
theoretical and intuitional background for effective use of the dominant extant VLSI
CAD tools for synthesis and verification.

For those inclined to take the next step and be a VLSI CAD tool developer, this
book offers many sections on advanced topics, and extensive pointers into the relev-
ant literature. The serious student will find that mastery of the techniques covered
in the “Problem” section of each chapter will put him/her into the position of be-
ing immediately, effectively, and competitively productive in a VLSI CAD or design
group.

1.10 Problems

1. Consider the six-transistor cell of Figure 1.2 and the following function:

(Here means ‘and,’ ‘+’ means ‘or,’ and means ‘not.’)

40 Chapter 1. Introduction

2.

3.

Customize the six-transistor cell, so that it implements the given function. That
is, you have to find the correct interconnections among the black dots in Fig-
ure 1.2.

[Hint: The transistor-level schematic and the gate-level symbol of the circuit
implementing are shown in Figure 1.19.]
Solution. The “customization” of the cell is shown in Figure 1.20.

How many transistors would be required to implement the function
with NAND, NOR, and INVERTER gates? How many 6-transistor cells?

Is it possible to build a single CMOS gate like the one in Figure 1.19 that
performs the function (without complement)? Explain.
Solution. It is not possible. To see why, first consider that a gate like the
one in Figure 1.19 (called a fully complementary gate) is composed of two
subnetworks: A pull-up subnetwork composed of p-channel transistors and a

1.10. Problems 41

pull-down subnetwork composed of n-channel transistors. The output node
is the node connecting the two subnetworks. It is necessary to have the p-
channel transistors between the power supply and the output and the n-channel
transistors between the output and ground, lest the transistors do not work
as ideal switches controlled by the gate terminal. Indeed, MOS transistors
are controlled by the gate-source voltage, For a p-channel transistor to

from zero to one. In the target function, a transition of an input
may cause no output transition or a output transition. However, in a
network of n-channel transistors, a transition of an input increases the
number of transistors that are on, and therefore may create a conducting path
from the output to ground. As a consequence, if an output transition occurs, it
is a transition. This shows that a simple CMOS gate cannot implement

At least two gates are needed. (For instance, the gate of Figure 1.19
followed by an inverter.)

4. Analyze the transistor-level schematic of Figure 1.21 and determine what logic
function it implements.

Solution. The function of the circuit is the exclusive OR. This can be verified
by applying all four combinations of zeroes and ones to the inputs. Indeed, we
have:

conduct, must be negative. If one of the two endpoints of the channel is tied
to ground, the transistor stops conducting as soon as the other endpoint (that
acts as source) the negative of the (negative) threshold voltage of
the transistor. Therefore, the output node cannot be fully discharged through a
p-channel transistor. Similarly, the output node cannot be fully charged through
an n-channel transistor. To make a long story short, the p-channel transistors
go on top and the n-channel transistors go at the bottom.

Having established this fact, let us now consider the effect of switching inputs

reaches

42 Chapter 1. Introduction

In deciding whether a transistor is ON or OFF, we have used in this case
the “correct” criterion that must exceed the threshold voltage in absolute
value, and be of the same sign. (See the solution of Problem 3.) So, for instance,
Transistor P2 is OFF for AB = 00 because all its terminals are at the same
(low) voltage.

Looking at Figure 1.21, it is easy to see that N1 and P1 form an inverter with
output It is less obvious to realize that N3 and P3 form another inverter,
which is only enabled when A is 1, and which outputs the complement of B.
Finally, N2 and P2 form a transfer gate, that is a switch that connects B to
Z when A = 0. The output Z can be driven by both the inverter composed
of N3 and P3, and the transfer gate. However, the conditions under which the
two drivers are enabled are mutually exclusive, so that no conflicts ever occur.

5. Give the CMOS circuit for computing the function whose complement is
given by

Your answer should be a single complex gate. Recall that the pull-up (P) sub-
gate is just the dual of the pull-down (N) subgate.

6. Review the method given in Section 1.4.4 for deriving the set of tests for a given
stuck-at fault. Apply this method to determine the corresponding set of tests
for the stuck-at-faults and in the circuit of Figure 1.7.
Solution. Recall that for the XOR3 subcircuit, we have For
the fault we have so Thus either 01 or
10 will test for Similarly, noting that for the fault we have

so

Thus only 00 will test for

7. Consider Procedure LEVELIZE1 of Figure 1.22 for computing the number of
levels of logic of a circuit (this number is a crude estimate of the critical path

1.10. Problems 43

44 Chapter 1. Introduction

delay). This procedure is inefficient, at least when applied to the worst case
circuit graph. This is possible because for some circuit graph, some gate
might appear in the list G on the order of |V | times.

(a) Apply Procedure LEVELIZE1 to the MAJORITY subcircuit of the bit serial
adder circuit of Figure 1.7. Identify all critical paths, and show the slack value
for every node. (See Section 1.5.4.)
(b) Consider the following 5-gate circuit (described by its blif file). Apply Pro-
cedure LEVELIZE1 to identify all critical paths, and show the slack value for
every node.

.model bsaddr

.inputs a b

.outputs g

.names a b c
10 1
01 1
.names c b d
10 1
01 1
.names d b e
10 1
01 1
.names e b f
10 1
01 1
.names f b g
10 1
01 1
.end

(c) Apply Procedure LEVELIZE1 to the generalization (to gates) of the above
5-gate circuit. Derive best case and worst case formulas for the running time
of Procedure LEVELIZE1, given the data in the step table at the right of the
algorithm, and show that the algorithm is and
(d) Present an analysis which justifies the step table entries on Lines 7-11.
Then state why the bounds given in Part (c) above are tight. Use the following
identity:

The solution was given as part of the solution of Part (c).
(e) Would the worst case complexity be improved if only gates in the fanout
of gates which have already had there level assigned were put in the set G for
each pass through the while loop? How about if only gates in the fanout of
gates at the current level, and with all fanin from gates at the current level or
previous levels, were put in G?

1.10. Problems 45

8. Apply Procedure LONGEST_PATH (Figure 1.14) to the 1-stage bit-serial adder
circuit of Figure 1.7. Give a data table like Table 1.1, and then give the slack
at each node. Your graph should have 11 nodes: 8 for the 8 gates (disregarding
the latch), and 3 for the 3 inputs.

To disambiguate the search order, assume that the foreach loop of Line 6 se-
lects the nodes in the set in increasing lexicographical order.

Solution. We obtained the solution of Table 1.4 from a PERL script imple-
menting LONGEST_PATH. Consequently the symbol names are modified to fit
the ASCII output. Note the program chose and the resulting critical
path was (x,a,e,z).

Chapter 2

A Quick Tour of Logic Synthesis
with the Help of a Simple
Example

Our purpose in this chapter is to give a quick overview of logic synthesis from the
point of view of the user. We shall see what problems are faced (and solved) by a
synthesis program and what general strategy may be applied to their solution. We
shall use a very simple circuit as an example. No special effort has been made to
make the example realistic. The sole purpose was to come up with something simple
enough to be analyzed in detail with limited effort, and yet demonstrating a sufficient
number of interesting problems.

In the rest of this chapter, we shall not concern ourselves with the solution of
the problems, but rather with their statement. Thus we shall identify some of the
particular degrees of freedom that present themselves to a designer in a practical
problem. We shall then show how the designer’s ingenuity exploits these degrees of
freedom to create an efficient design. The sequel of this book is then devoted to
showing how, and to what extent, equivalent ingenuity can be embodied in CAD
tools that solve the same design problems automatically.

2.1 A Simple Case Conversion Circuit

We consider a simple circuit that will serve us as an example to illustrate the major
steps of the synthesis process. The interface of the circuit is described in Figure 2.1.

A stream of alphabetic ASCII characters (a–z, A–Z) is fed to the circuit, one
character for each clock cycle. The circuit performs case conversion on the incoming
characters and outputs the corresponding sequence. One character is output for each
clock cycle. No specification is given for the latency of the circuit. This means we
can choose how many clock cycles will be required to process one character, as long
as the throughput is one character per clock cycle.

The type of case conversion to be applied is specified by escape sequences1, which

1An escape sequence is a sequence of two or more characters, the first of which is the escape
character. Escape sequences are used to augment a character set and are typically used to carry

47

48 Chapter 2. A Quick Tour of Logic Synthesis

are interspersed with the text characters. Our circuit recognizes four escape sequences
is our representation of the escape character):

Lower case;

Upper case;

No conversion;

Change Case.

By joining the four characters we get the name of our circuit: LUNC.
When the circuit is reset, it goes into a state where it passes the input characters

unchanged. It remains in that state until it receives an escape sequence other than

The behavior of the circuit for escape sequences other than the four listed above
and for non-alphabetic characters is don’t care, represented by symbol ? (that is,
the behavior is unspecified). In addition, the output of the circuit when an escape
sequence is input is also ? (that is, left unspecified).

We are allowed to use the freedom resulting from the don’t care specification to
simplify our design as much as we can. In a more realistic situation specifications
may be more complete. However, it is important to make use of such don’t care
information, whenever it is available.

As an example of possible behavior of the circuit, consider the following two
streams of characters. The one on the top is the input stream and the other is the
output stream. In this example we are assuming that the latency of the circuit is two
clock cycles.

a b C d E f U a b C D...
? ? a b C d E f ? ? A B C D...

The question marks indicate don’t care outputs. They occur at the beginning, when
the first character has not been processed yet, and in response to the escape sequence.
After the escape sequence has been processed, the circuit converts all incoming char-
acters to upper case.

commands. Refer to the ASCII table of Figure A.1 in the Appendix for the codes of the characters.

2.2. First Refinement 49

2.2 First Refinement

Our first step in the design of the LUNC circuit is to separate the data processing
from the control. The result of this first step is shown in the block diagram of
Figure 2.2. In this block diagram we can distinguish two main blocks: A command
interpreter block (CMDINT), which parses the escape sequences and decides the state
of the circuit accordingly, and a transformation block (TRANSFORM) , which actually
performs the case conversion. There are also an input and an output register, which
determine the latency of the circuit. (We assume that there is no register inside the
TRANSFORM block.)

The type of decomposition we have applied to our problem is fairly typical in the
design of large digital systems. It is customary to divide the control functions from
the data processing functions. It is not uncommon that different design methods are
then applied to the separate parts. For instance, in a microprocessor, the design of
the data path (ALUs and register files) is approached differently from the design of
the instruction decoder or the cache controllers. In addition, the design of a complex
circuit is carried out by a team. The block diagram is then important in defining the
interfaces between the blocks designed by different people.

Defining the top-level block diagram of a circuit goes under the name of high-
level or architectural design. In this course, we shall assume that this phase of the
design has been carried out already—either manually or automatically—and we shall
concentrate on the succeeding phases. It should be clear, however, that architectural
design has a large impact on the outcome of the entire design process.

Before returning to our example, we make another general remark. In this case
we have used a graphical representation of our block diagram. We could have used
a textual representation as well. We are going to see examples of both in the sequel.
It is typical of a real-life design system to support both ways of representation, for
each has its own advantages.

Consider for instance the two major blocks of Figure 2.2. The command inter-
preter communicates with the transformation block by means of four signals (Lcmd,

50 Chapter 2. A Quick Tour of Logic Synthesis

Ucmd, Ncmd, Ccmd). At any time, only one of these signals is active. The active
signal indicates the transformation to be applied to the character currently in the
input register.

This kind of information is not easily conveyed by a drawing, but can be easily
expressed by text. The previous paragraph is an example of informal textual de-
scription; formal languages can be used instead. These formal languages are similar
to programming languages and are called Hardware Description Languages (HDLs).

Hardware description languages are used to describe both the structure of a cir-
cuit (what parts constitute it and how they are connected) and its behavior (how it
reacts to given inputs). The syntax of HDLs is often similar to that of programming
languages. For instance, VHDL,2 one of the most widely used HDLs, is derived from
Ada. The semantics of the HDLs, however, differ from those of ordinary programming
languages in various respects.

In this book, we shall use a fictitious language, which borrows its syntax from the
‘C’ language. We shall informally define its semantics as we examine the examples
of its use. Our treatment of HDLs in this book is essentially restricted to these
brief introductory notes. It is important to realize, though, their relevance and their
relationship to automatic logic synthesis. We shall try to emphasize that relationship
as we discuss the design of the transform and command interpreter blocks.

2.3 The Transform Block

In the architectural design phase we decided that the TRANSFORM block would be a
combinational circuit that, given an alphabetic character, outputs either the character
itself or the character obtained by changing its case. The choice is determined by the
four control inputs coming from the command interpreter and by the case of the input
character.

We can describe the desired function in the following piece of code, that is largely
self-explanatory.

Procedure TRANSFORM (Rin, Lcmd, Ucmd, Ncmd, Ccmd){
if (Lcmd)

{ mux = TO LOWER(Rin)}
else if (Ucmd)

{mux = TO UPPER(Rin)}
else if (Ncmd)

{mux = Rin }
else if (Ccmd)

{mux = CHANGECASE(Rin) }
return (mux)

}

Rin, Lcmd, Ucmd, Ncmd, and Ccmd are the inputs and mux is the output. All
of these are either 1 or 0 on each clock cycle. In a complete description, we would

2VHDL stands for VHSIC Hardware Description Language; VHSIC stands for Very High Speed
Integrated Circuits and is the name of a research initiative of the US Department of Defense.

2.3. The Transform Block 51

also specify how many bits each terminal has. The horizontal data path is marked as
an 8-bit line, which is natural, since there are ASCII characters. The other
lines are symbolic in principle, although in this case, as discussed below, all represent
just one data bit.

Two remarks are in order here. First, a relatively high-level description like the
one afforded by our simple HDL is easy to read and write. It is easier to interpret
than a gate-level schematic, because it is more concise, it uses evocative names like
TOLOWER, and it describes the behavior rather than the structure. For the same
reasons, such a description is easier to write. In order to write it, we do not have to
make up our mind on how precisely we are going to implement our circuit.

The second consideration should be suggested by the name of the circuit output.
Calling the output MUX suggests that we can translate the if-then-else statement
into a multiplexer. The translation is portrayed in Figure 2.3. In general, a synthesis
program will have a scheme to translate the constructs of its input language into
structure (i.e., into the interconnection of registers, multiplexers, adders, gates, and
similar building blocks).

The translation scheme is not in general very sophisticated. We shall see that
in our simple example, a straightforward translation of the initial description into a
circuit yields an implementation that is far from optimal. We do not worry too much,
though, because we rely on optimization techniques to improve our ‘draft’ circuit.
This approach is followed by commercial and academic synthesis programs alike.
One of its advantages is to make the final result independent—to a large extent, if
not completely—from the initial description. The user of such a system can therefore
save time and concentrate on clarity.

The approach we have just described relies heavily on the effectiveness and ef-
ficiency of the optimization techniques. We shall indeed concentrate on these tech-
niques for most of this course. Returning to our LUNC circuit, we have described the
TRANSFORM block in terms of simpler functions (TOLOWER, TOUPPER, CHANGECASE).
We have to specify them, in order to complete our design. Here we shall only examine

52 Chapter 2. A Quick Tour of Logic Synthesis

the most complex of them (CHANGE CASE); the others are similar.

2.3.1 The CC Block

From Figure A.1 we see that, for each letter, the ASCII code for the lowercase char-
acter can be obtained from that of the uppercase character by adding 32 (base 10).
This suggests the following definition for the CHANGECASE function. In this piece
of code, IS UC is a function that says whether the input character is uppercase or
lowercase. Since the output of the circuit is don’t care when the input character is
non-alphabetic, we can define IS UC by noting that bit 5 (the third most significant
bit) is 0 for all uppercase letters and is 1 for all lowercase letters. Therefore, we can
just define IS UC as If we notice that both addition and subtraction can be
performed by a single adder/subtracter, then we can come up with the block diagram
of Figure 2.5.

The TO LOWER and TO UPPER functions can also be implemented with an adder
and a subtracter, respectively. Even though we have not worked out all the details, we
can now get an idea of the cost—in terms of gates—of our ‘draft’ implementation of
the TRANSFORM block. We have a total of three 8-bit adder/subtracters and an 8-bit,
four-way multiplexer. It is reasonable to assume that about 200 gates are necessary
for this implementation.

3Question: How could we hide the details of the ASCII code still further? (What if we used
EBCDIC instead of ASCII?)

2.3. The Transform Block 53

2.3.2 An Optimized Transform Block

The discussion of the ISUC function may have already suggested to the attentive
reader an alternative implementation of the TRANSFORM block. Let us consider the
codes for ‘a’ and ‘A.’

A = 0x41 = 01000001 = 65
a = 0x61 = 01100001 = 97

It is sufficient to flip bit 5 to go from lowercase to uppercase or vice versa. The same
is true of all letters in ASCII. A minute’s thought will show that the circuit of Fig-
ure 2.6—based on this idea—is indeed a correct implementation of the TRANSFORM
block. The circuit actually produces only bit 5 of the results. All other bits of the
result are identical to the corresponding input bits and therefore are not represen-
ted. Suppose Ccmd = 1. This implies Ncmd = Lcmd = 0. Then, the output is the
complement of bit 5 of the input. Similarly, we can analyze the other three cases.
Notice that Ucmd does not explicitly appear as an input to the circuit of Figure 2.6.
Therefore, when Ucmd = 1, the output is 0.

This new implementation consists of only three gates. This is a lot less than the
two hundred gates we estimated for our first ‘draft.’ If the optimization phase cannot
pick up this slack, then the translation/optimization scheme is in trouble. Fortunately,
in this case and in many others, optimization can easily get rid of the extra gates.

On the other hand, most people will agree that the purpose of the circuit of
Figure 2.6, taken out of context, is not obvious. Our high-level description is more
readable and eventually leads to an equally efficient implementation.

In drawing conclusions from our simple example, it is important to put things in
perspective. There are cases where careful manual design is superior to the results
of the best synthesis programs. The opposite also occurs, though less frequently.
The importance of time-to-market should be always kept in mind when comparing
manual design to automatic synthesis. One should also keep in mind that the problem
of readability of a circuit description increases considerably with its size. If all design
problems where of the complexity of our LUNC circuit, logic synthesis would have
probably never evolved. For circuits with millions of transistors, on the other hand,
the advantage afforded by logic synthesis may be decisive.

54 Chapter 2. A Quick Tour of Logic Synthesis

2.4 The Command Interpreter

Let us consider now the command interpreter. A simple block diagram for it is shown
in Figure 2.7. As in the case of the Transform block we are initially interested in
clarity and simplicity more than in efficiency.

The circuit of Figure 2.7 works by keeping a copy of the previous input character
in a register. If the previous character is ‘escape,’ then the current character is used
to determine the new state. The current input character is always decoded, but
unless the previous character is ‘escape,’ the output of the decoder (block LUNC?) is
ignored.

The function of the decoder is described by the code of Figure 2.8.
This code can be translated, for instance, in a truth table, from which a circuit

can be derived. Notice that the output of the block is don’t care for any unexpected
character. This information is extremely important for the optimization of the circuit.

2.4.1 Checking for Equality

We can translate the test IS ESC into a test for equality.

isESC(Reg) = isSame(Reg, ESC);

Checking two values for equality occurs frequently in digital designs. In Figure 2.9
we show the typical template used in the translation phase. Similar templates are
used for tests like

Notice that this circuit simplifies considerably when one of the two operands is
constant.

2.4.2 Optimizing the Command Interpreter

Also for the command interpreter we now see how things can be optimized manually.
This will give a target for the optimization phase. Let us consider the codes of the
four letters that may appear in an escape sequence.

L = 0x4C = 01001100 = 74
U = 0x55 = 01010101 = 85

2.4. The Command Interpreter 55

56 Chapter 2. A Quick Tour of Logic Synthesis

N = 0x4E = 01001110 = 78

C = 0x43 = 01000011 = 67

Notice that the two least significant bits are sufficient to distinguish them. Further-
more, from the discussion of the TRANSFORM block, we know that we do not need
to produce Ucmd. Therefore, we can implement the command decoder as shown in
Figure 2.10.

Notice also that we can considerably reduce the number of flip-flops by a simple
device. Instead of storing each input to test whether it is an ‘escape’ at the next
clock cycle, we can test each input character as soon as we see it, and then store (in
a single flip-flop) the result of the test. Such a transformation is called a retiming

2.5. Technology Mapping 57

of the circuit. It can be formalized and automated as it is in SIS. For lack of time,
however, we shall not study it in this course and we only mention it here.

We can further reduce the number of flip-flops by noting that our command in-
terpreter has only three possible states. Two flip-flops are sufficient to encode three
states. In general, eliminating one flip-flop this way may make the combinational logic
more complicated. One of the advantages of an automatic synthesis system is to make
it possible for a designer to explore several possible solutions in a short time. In our
case, though, a simple retiming transformation is sufficient to reduce the number of
flip-flops without changing the combinational logic. It is sufficient to latch the inputs
to the circuit of Figure 2.10, instead of the outputs. This transformation will make
the circuit a little slower, but will also reduce power consumption.

2.5 Technology Mapping

Let us assume that our objective is to produce a netlist that may be used to fabricate
a standard-cell chip. Suppose we have chosen a CMOS library. We now have to
address the concerns arising from these choices.

Gates in CMOS (and in other technologies) are negative. This means that the
basic gate is the inverter, rather than the non-inverting buffer. Consequently, NANDs
and NORs are cheaper and faster than ANDs and ORs. Practical gates have limited
driving capability, so that a gate typically drives four other gates or less. We say
that the maximum fanout is four. This number may be further reduced if speed is a
primary concern.

Likewise, a restriction is usually applied to the number of inputs to a gate. Even
though it is possible in theory to build NAND and NOR gates with very large number
of inputs, performance rapidly degrades as the number of inputs increases. Therefore,
cell libraries do not usually provide gates with more than four or five inputs. Not
all functions with those many inputs will be available either. A five-input NAND
gate may be available, but a five-input EXOR may not. One must then make sure
that only gates from the library are used in the circuit. All these concerns must be
addressed by a synthesis program, as they are addressed by a human designer. This
task is called technology mapping.

In the translation/optimization scheme we have examined so far, we have assumed
that the result of the optimization phase is a technology-independent circuit. Our final
scheme is therefore composed of three phases: Translation, optimization and techno-
logy mapping (or techmapping for short). The division is to some extent arbitrary.
By separating optimization from technology mapping we simplify the two tasks and
we can develop very powerful techniques for both. On the other hand, in the op-
timization phase we may have a less than perfect knowledge of the consequences of
a given choice. In general the penalty for ignoring technology-specific information
during optimization is higher when the target of optimization is high performance or
low power. It is lower, but non-null, when area is being optimized.

As a consequence, the boundaries between the technology-independent phase and
the technology-dependent phase tend to be blurred in real systems. The division is,
however, useful from the didactic standpoint and we shall adopt it.

Suppose our cell library consists of inverters, two-input NAND and NOR gates,

58 Chapter 2. A Quick Tour of Logic Synthesis

and D-type flip flops. Then Figure 2.11 describes a possible mapping for the decoder
of the command interpreter.

The choice we made (standard-cell chip in CMOS) is not the only one possible. On
the one hand, we may be interested in full-custom design, and therefore in mapping at
the transistor level, rather than at the gate level. On the other hand, we may want to
implement our circuit as a Field Programmable Gate Array (FPGA). In both cases
the mapping problem is different from that encountered with a fixed cell library.

2.6 Problems

1. Describe an 8-bit adder in BLIF format.

Run SIS on your adder. Read in the circuit (with SIS command read_blif) and
print out the statistics for it (with command print_stats).

Include in your homework the description of the adder and the result of the
print_stats command.

Save your adder, because you will use it in other assignments as a building
block. You may want to spend some time to familiarize with SIS. For instance,
you may want to try the simulate command to verify that your description
works as intended. Take a look at the man page. Obviously, at this stage, not
everything will be clear: Don’t worry. Notice that there is a handy UNIX alias
command that lists all standard abbreviations. You may use alias to create
your own abbreviations.
Solution. Since the description of the standard “ripple-carry” adder is already
in the blif documentation—albeit for four-bit numbers—we describe here an-
other type of adder, which is faster. It is known as a carry-bypass adder. We
shall have occasion to discuss it later in the course. Notice that it is composed
of four blocks, each computing two output bits.

#--------------------------------- cbpadd8.blif ---------------------------------
Adds two 8-bit inputs and a carry-in bit. Index 0 signals the
least significant bit. The result is a 9-bit number. No two´s
complement overflow output is produced.
The adder is composed of 4 modules, each computing the sum of
two bits and based on the carry-bypass scheme.

2.6. Problems 59

.model cbpadd8

.inputs cin a0 a1 a2 a3 a4 a5 a6 a7 \
b0 b1 b2 b3 b4 b5 b6 b7
.outputs s0 s1 s2 s3 s4 s5 s6 s7 s8
.subckt cbp2 c0=cin a0=a0 b0=b0 a1=a1 b1=b1 s0=s0 s1=s1 c2=c2
.subckt cbp2 c0=c2 a0=a2 b0=b2 a1=a3 b1=b3 s0=s2 s1=s3 c2=c4
.subckt cbp2 c0=c4 a0=a4 b0=b4 a1=a5 b1=b5 s0=s4 s1=s5 c2=c6
.subckt cbp2 c0=c6 a0=a6 b0=b6 a1=a7 b1=b7 s0=s6 s1=s7 c2=s8
.end

Two-bit carry bypass adder.

.model cbp2

.inputs c0 a0 b0 a1 b1

.outputs s0 s1 c2

.names a0 b0 g1
10 1
01 1
.names a0 b0 g2
11 1
.names a1 b1 g3
10 1
01 1
.names a1 b1 g4
11 1
.names c0 g1 g5
10 1
01 1
.names c0 g1 g6
11 1
.names g2 g6 g7
1– 1
–1 1
.names g3 g7 g8
10 1
01 1
.names g3 g7 g9
11 1
.names g1 g3 g10
11 1
.names g4 g9 g11
1– 1
–1 1
.names g10 g11 c0 mux
01– 1
1–1 1
.names g5 s0
1 1

.names g8 s1

.names mux c2
1 1

60 Chapter 2. A Quick Tour of Logic Synthesis

2.

3.

1 1
.end

The result of running the PS command (an alias for print_stats –f), is the
following:

cbpadd8 pi=17 po= 9 nodes= 51 latches= 0

lits(sop)= 139 lits(fac)= 139

Repeat Problem 1, this time for an 8-bit equality comparator.

Describe an 8-bit comparator in BLIF that takes two unsigned integers and
as inputs and produces two outputs:

agtb: is 1 if and only if

bgta: is 1 if and only if

Clearly, if both outputs are 0, and it is never the case that the two outputs
are 1 simultaneously.

Use the following “interface” for your comparator.

.model cmp8

.inputs a0 a1 a2 a3 a4 a5 a6 a7 b0 b1 b2 b3 b4 b5 b6 b7

.outputs agtb bgta

Design the circuit by replicating a basic cell according to the scheme of Fig-
ure 2.12. Verify that your circuit works properly by using SIS to simulate the
following pairs of inputs:

(a)

(b)

(a)

(b)

(c)

(d)

(e)

0 0;

2 3;

3 2;

200 100;

5 5.

2.6. Problems 61

Create a script file containing the simulation commands and use the source
command to run them.

Include in your homework your BLIF description, the simulation script, and the
output of the simulation produced by SIS. (Use the set sisout foo command
to redirect your output to file foo.)

This problem counts for 10.
Solution. A BLIF file for the comparator is as follows:

.model cmp8

.inputs a0 a1 a2 a3 a4 a5 a6 a7 b0 b1 b2 b3 b4 b5 b6 b7

.outputs agtb bgta

.names zero

.end

.model comp

.inputs agtb-1 altb-1 a b

.outputs agtb altb

.names agtb-1 altb-1 a b agtb
1---1
0010 1

.names agtb-1 altb-1 a b altb
-1-- 1
0001 1
.end

The script file to simulate the comparator is:

When the script file is ‘sourced,’ the output is:

Network simulation:
Outputs: 0 0

.subckt

.subckt

.subckt

.subckt

.subckt

.subckt

.subckt

.subckt

comp
comp
comp
comp
comp
comp
comp
comp

agtb-1=zero
agtb-1=agtb7
agtb-1=agtb6
agtb-1=agtb5
agtb-1=agtb4
agtb-1=agtb3
agtb-1=agtb2
agtb-1=agtb1

altb-1=zero
altb-1=bgta7
altb-1=bgta6
altb-1=bgta5
altb-1=bgta4
altb-1=bgta3
altb-1=bgta2
altb-1=bgtal

a=a7
a=a6
a=a5
a=a4
a=a3
a=a2
a=al
a=aO

b=b7
b=b6
b=b5
b=b4
b=b3
b=b2
b=b1
b=bO

agtb=agtb7
agtb=agtb6
agtb=agtb5
agtb=agtb4
agtb=agtb3
agtb=agtb2
agtb=agtb1
agtb=agtb

altb=bgta7
altb=bgta6
altb=bgta5
altb=bgta4
altb=bgta3
altb=bgta2
altb=bgta1
altb=bgta

sim
sim
sim
sim
sim

0
0
1
0
1

0
1
1
0
0

0
0
0
0
1

0
0
0
1
0

0
0
0
0
0

0
0
0
0
0

0
0
0
1
0

0
0
0
1
0

0
1
0
0
1

0
1
1
0
0

0
0
0
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
1
0

0
0
0
1
0

0
0
0
0
0

62 Chapter 2. A Quick Tour of Logic Synthesis

Next state:

Network simulation:
Outputs: 0 1
Next state:

Network simulation:
Outputs: 1 0
Next state:

Network simulation:
Outputs: 1 0
Next state:

Network simulation:
Outputs: 0 0
Next state:

4. This problem guides you through a simple example of optimization and tech-
nology mapping with SIS. Describe in BLIF the circuit of Figure 2.13. Use one
.names directive for each gate in the drawing. Do the following.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Read your file into SIS;

read in a library for mapping with the command rlib lib2.genlib;

print the statistics of your circuit with ps;

perform techmapping with the command map; (ignore the warnings;)

print the statistics on your mapped network with pg -s;

print the equations of the network with p.

read in your file again;

simplify the circuit with the command ESPRESSO;

2.6. Problems 63

(i) repeat Steps 4c–4f.

Report in your homework the output of SIS for all steps. Include also your BLIF

file. By how much does the area decrease when the circuit is optimized? (Use
the areas reported by the command pg -s. Note that those areas only account
for the active area; the area taken by the interconnections is not included.)
Solution. This is the blif file:

.model pb3.16

.inputs x y z

.outputs e

.names y z a
01 0
.names x a b
01 1
.names y z c
10 0
.names x c d
11 1
.names b d e
00 0
.end

This is the output of SIS:

pb3.16 pi= 3 po= 1 nodes= 5 latches= 0
lits(sop)= 10 lits(fac)= 10
inv2x : 2 (area=928.00)
nor2 : 1 (area=1392.00)
oai21 : 2 (area=1856.00)
Total: 5 gates, 6960.00 area

pb3.16 pi= 3 po= 1 nodes= 5 latches= 0
lits(sop)= 10 lits(fac)= 10
inv2x : 1 (area=928.00)
nand2 : 1 (area=1392.00)
oai221 : 1 (area=2784.00)
Total: 3 gates, 5104.00 area

The area decreases by 6960 – 5104 = 1856 units (in this case square microns).
The percentage improvement is about 27%. Note that in both cases (with and
without optimization) complex gates from the library are used to map the cir-
cuit.

64 Chapter 2. A Quick Tour of Logic Synthesis

5. In this problem we use SIS to synthesize the TRANSFORM block of the LUNC
circuit. (See Figure 2.3.) The purpose of this problem is twofold. On the
one hand, we get to know SIS better. On the other hand, we see that the
translation/optimization strategy can actually produce the results we got by
manual optimization. Summarizing in a few words, the typical synthesis system
translates a high-level description of the circuit into a structure composed of
adders, multiplexors, comparators, etc.. This structure is then optimized. In
this problem, we describe the initial structure in blif format and then use SIS

to optimize it.

Though the optimized transform block is small, the initial description, with
several adders and multiplexors, is not so small. Therefore, we use a hierarchical
description. How to write hierarchical descriptions in blif is described in the
blif manual.

To get good results from SIS, it is important that we specify whatever don’t
care information we have. How to specify external don’t cares in blif is also
described in the blif manual.

Once we have described the TRANSFORM block, we have to optimize it with SIS.

We shall use a script, i.e., an existing recipe that applies several commands
in sequence. Scripts are run with the source command. Standard scripts are
provided with SIS and can be used directly, without even knowing what they look
like. (Though it is not advisable in general.) As all files in the default library
directory, they can be referenced directly from within SIS by just giving the
last component of their pathnames. One of the script is called script. rugged.
It is a good idea to look at it and then try it out. You should also read
script.rugged.notes. Finally, you may want to compare different scripts.

Once we have optimized the logic, we shall perform technology mapping. We
shall use the lib2.genlib library for that. The commands that we need are
read_library and map.

Finally, we shall run the atpg -r command to generate test vectors for our
optimized circuit. Note we use the -r option.

You may find it useful to check what the alias command does for you. There
are many handy aliases that are defined for frequently used commands in the
standard configuration file.

Now, the details of how you have to report your results.

(a)

(b)

Write separate BLIF files for each block in Figure 2.3. You will also need
separate files for components like adders that you will use in separate
blocks. Finally, write a master file, where you describe how the blocks are
connected. Use the .search directive to put everything together. Remem-
ber the external don’t cares!

Run SIS. Show the statistics before running script.rugged and after-
wards. Show the equations after optimization. Draw a schematic of the
circuit after optimization and compare it to what might have been obtained
manually.

2.6. Problems 65

(c)

(d)

Perform technology mapping. Show the stats, the equations, and the lib-
rary gates used (the last with the print_gate command). Draw a schem-
atic of the mapped circuit.

Run atpg and include the untestable faults and the tests generated in your
report.

Solution. Listed below are the files comprising the description of the transform
block. First we show the top-level description. We use a style that is only
partially hierarchical. Indeed, the multiplexer is not describe as a nested block,
but rather as a set of gates—one for each output. Notice also the description of
the don’t cares. It is a requirement of SIS that all don’t cares be listed in the
top level description—one function for each primary output.

#------------------------ transform.blif ----------------------
.search toLower.blif
.search toUpper.blif
.search changecase.blif

.model transform

.inputs L U N C in0 in1 in2 in3 in4 in5 in6 in7

.outputs o0 o1 o2 o3 o4 o5 06 o7

.subckt toLower \
in0=in0 in1=in1 in2=in2 in3=in3 in4=in4 in5=in5 in6=in6 in7=in7 \
o0=10 o1=l1 o2=12 o3=13 o4=14 o5=15 o6=16 o7=17

.subckt toUpper \
in0=in0 in1=in1 in2=in2 in3=in3 in4=in4 in5=in5 in6=in6 in7=in7 \
o0=u0 o1=u1 o2=u2 o3=u3 o4=u4 o5=u5 o6=u6 o7=u7

.subckt changecase \
in0=in0 in1=in1 in2=in2 in3=in3 in4=in4 in5=in5 in6=in6 in7=in7 \
o0=c0 o1=cl o2=c2 o3=c3 o4=c4 o5=c5 o6=c6 o7=c7

.names L U N C l0 u0 in0 c0 o0
10001--- 1
0100-1-- 1
0010--1- 1
0001--- 1 1
.names L U N C l1 u1 in1 c1 o1
10001--- 1
0100-1-- 1
0010--1- 1

.names L U N C l2 u2 in2 c2 o2
10001--- 1
0100-1-- 1
0010--1- 1
0001--- 1 1
.names L U N C l3 u3 in3 c3 o3
10001--- 1
0100-1- 1
0010--1- 1
0001--- 1 1
.names L U N C l4 u4 in4 c4 o4
10001--- 1

0001--- 1 1

66 Chapter 2. A Quick Tour of Logic Synthesis

0100-1-- 1
0010--1- 1
0001---1 1
.names L U N C l5 u5 in5 c5 o5
10001--- 1
0100-1-- 1
0010--1- 1
0001---1 1
.names L U N C l6 u6 in6 c6 06
10001--- 1
0100-1-- 1
0010--1- 1
0001---1 1
.names L U N C l7 u7 in7 c7 o7
10001--- 1
0100-1-- 1
0010--1- 1
0001---1 1
.exdc
.names L U N C o0
11-- 1
1-1- 1
1--1 1
-11- 1
-1-1 1
--11 1
0000 1
.names L U N C o1
11-- 1
1-1-1
1--1 1
-11-1
-1-11
--11 1
0000 1
.names L U N C o2
11-- 1
1-1- 1
1--1 1
-11-1
-1-11
--11 1
0000 1
.names L U N C o3

1-1-1
1--1 1
-11-1
-1-1 1
--11 1
00001
.names L U N C o4

11-- 1

2.6 .Problems 67

11-- 1
1-1- 1
1--1 1
-11- 1
-1-1 1
--11 1
0000 1
.names L U N C o5
11-- 1
1-1-1
1--1 1
-11-1
-1-11
--11 1
0000 1
.names L U N C 06
11-- 1
1-1-1
1--1 1
-11-1
-1-11
--11 1
0000 1
.names L U N C o7
11-- 1
1-1- 1
1--1 1
-11-1
-1-11
--11 1
0000 1
.end

#--------------------------changecase.blif------------------------
Changes case of an alphabetic ASCII character by adding or
subtracting 32 (decimal). This block does not check for the

character being non-alphabetic.

.search addsub8.blif

.model changecase

.inputs in0 in1 in2 in3 in4 in5 in6 in7

.outputs o0 o1 o2 o3 o4 o5 06 o7

.names zero

.names one
1
.subckt addsub8 addsub=in5 \

a0=in0 a1=in1 a2=in2 a3=in3 a4=in4 a5=in5 a6=in6 a7=in7 \
b0=zero b1=zero b2=zero b3=zero b4=zero b5=one b6=zero b7=zero \
s0=o0 s1=o1 s2=o2 s3=o3 s4=o4 s5=o5 s6=o6 s7=o7 s8=dummy

.end

#-----------------------------toLower.blif------------------------------

68 Chapter 2. A Quick Tour of Logic Synthesis

Changes case of an uppercase alphabetic ASCII character by adding 32
(decimal). Lowercase characters are left unchanged.
This block does not check for the character being non-alphabetic.

.search adder8.blif

.model toLower

.inputs in0 in1 in2 in3 in4 in5 in6 in7

.outputs o0 o1 o2 o3 o4 o5 06 o7

.names zero

.names one
1
.subckt adder8 cin=zero \

a0=in0 a1=in1 a2=in2 a3=in3 a4=in4 a5=in5 a6=in6 a7=in7 \
b0=zero b1=zero b2=zero b3=zero b4=zero b5=one b6=zero b7=zero \
s0=k0 s1=k1 s2=k2 s3=k3 s4=k4 s5=k5 s6=k6 s7=k7 s8=dummy

.names in5 in0 k0 o0
11- 1
0-1 1
.names in5 in1 k1 o1
11- 1
0-1 1
.names in5 in2 k2 o2
11- 1
0-1 1
.names in5 in3 k3 o3
11- 1
0-1 1
.names in5 in4 k4 o4
11- 1
0-1 1
.names in5 in5 k5 o5
11- 1
0-1 1
.names in5 in6 k6 06
11- 1
0-1 1
.names in5 in7 k7 o7
11- 1
0-1 1
.end

#-------------------------toUpper.blif----------------------
Changes case of a lowercase alphabetic ASCII character by
subtracting 32 (decimal). Uppercase characters are left unchanged.
This block does not check for the character being non-alphabetic.

.search addsub8.blif

.model toUpper

2.6 . Problems 69

.inputs in0 in1 in2 in3 in4 in5 in6 in7

.outputs o0 o1 o2 o3 o4 o5 06 o7

..names zero

.names one
1
.subckt addsub8 addsub=one \

a0=in0 a1=in1 a2=in2 a3=in3 a4=in4 a5=in5 a6=in6 a7=in7 \
b0=zero b1=zero b2=zero b3=zero b4=zero b5=one b6=zero b7=zero \
s0=k0 s1=k1 s2=k2 s3=k3 s4=k4 s5=k5 s6=k6 s7=k7 s8=dummy

.names in5 in0 k0 o0
01- 1
1-1 1
.names in5 in1 k1 o1
01- 1
1-1 1
.names in5 in2 k2 o2
01- 1
1-1 1
.names in5 in3 k3 o3
01- 1
1-1 1
.names in5 in4 k4 o4
01- 1
1-1 1
.names in5 in5 k5 05
01- 1
1-1 1
.names in5 in6 k6 06
01- 1
1-1 1
.names in5 in7 k7 o7
01- 1
1-1 1
.end

#-------------------------addsub8.blif------------------------

Adds/subtracts two 8-bit integers. Index 0 signals the least
significant bit. Input addsub causes addition when it is 0 and
subtraction (a-b) when it is 1. The result is a 9-bit number.
No two’s complement overflow output is provided.

.search adder8.blif

.model addsub8

.inputs addsub a0 a1 a2 a3 a4 a5 a6 a7 b0 b1 b2 b3 b4 b5 b6 b7

.outputs s0 s1 s2 s3 s4 s5 s6 s7 s8

.names addsub b0 c0
10 1
01 1
.names addsub b1 c1
10 1
01 1

70 Chapter 2. A Quick Tour of Logic Synthesis

.names addsub b2 c2
10 1
01 1
.names addsub b3 c3
10 1
01 1
.names addsub b4 c4
10 1
01 1
.names addsub b5 c5
10 1
01 1
.names addsub b6 c6
10 1
01 1
.names addsub b7 c7
10 1
01 1
.subckt adder8 \

cin=addsub a0=a0 a1=a1 a2=a2 a3=a3 a4=a4 a5=a5 a6=a6 a7=a7 \
b0=c0 b1=cl b2=c2 b3=c3 b4=c4 b5=c5 b6=c6 b7=c7 \
s0=s0 s1=s1 s2=s2 s3=s3 s4=s4 s5=s5 s6=s6 s7=s7 s8=s8

.end

#--------------------------adder8.blif-----------------------
Adds two 8-bit inputs and a carry-in bit. Index 0 signals the least
significant bit. The result is a 9-bit number. No two's complement
overflow output is produced.
.model adder8
.inputs cin a0 a1 a2 a3 a4 a5 a6 a7 b0 b1 b2 b3 b4 b5 b6 b7
.outputs s0 s1 s2 s3 s4 s5 s6 s7 s8
.subckt full_adder cin=cin a=a0 b=b0 sum=s0 cout=c0
.subckt full_adder cin=c0 a=a1 b=b1 sum=s1 cout=cl
.subckt full_adder cin=cl a=a2 b=b2 sum=s2 cout=c2
.subckt full_adder cin=c2 a=a3 b=b3 sum=s3 cout=c3
.subckt full_adder cin=c3 a=a4 b=b4 sum=s4 cout=c4
.subckt full_adder cin=c4 a=a5 b=b5 sum=s6 cout=c5
.subckt full_adder cin=c5 a=a6 b=b6 sum=s6 cout=c6
.subckt full_adder cin=c6 a=a7 b=b7 sum=s7 cout=s8
.end

.model full_adder

.inputs a b cin

.outputs sum cout

.names cin a b sum
001 1
010 1
100 1
111 1
.names cin a b cout
-11 1
1-1 1

2.6. Problems 71

11- 1
.end

If these files are read into SIS, the following initial statistics are obtained.

transform pi=12 po= 8 nodes= 94 latches= 0
lits(sop)= 700 lits(fac)= 606

After running the script, we get the following stats.

transform pi=12 po= 8 nodes= 9 latches= 0
lits(sop)= 12 lits(fac)= 12

These are the equations. As we can see, we obtain the same solution that was
obtained manually.

{o0} = in0
{o1}=in1
{o2} = in2
{o3} = in3
{o4} = in4

{06} = in6
{o7} = in7
[170] = -0-

These are the equations after mapping.

{o0} =in0
{o1} =in1
{o2} = in2
{o3} = in3
{o4} = in4

{06} = in6
{o7} = in7

The library cells used in the mapped circuit are given by the pg command.

[510] inv2x 928.00
[165] aoi221 2784.00
{o5} inv2x 928.00

Finally, running the atpg -r command, we get the following output.

72 Chapter 2. A Quick Tour of Logic Synthesis

38 total faults
RTG: covered 35 remaining 3
RTG: covered 1 remaining 2
36 faults covered by RTG
S_A_0: NODE: U OUTPUT
Redundant
S_A_1: NODE: U OUTPUT
Redundant
faults: 38 tested: 36 aborted: 0 redundant: 2

Notice that the redundant faults correspond to input U, that is not used in the
circuit (and hence, it is not observable). The following is the list of patterns
that are generated.

atpg test patterns for transform
.inputs L U N C in0 in1 in2 in3 in4 in5 in6 in7
011000000001
111001010110
010001101110
100000011000
010000111011
010110111010
101001111111
000111000101
001001011111
101001001110

Create a blif file and perform the SIS print_stats and sim (for the input character
string of Section 2.1) commands for the overall LUNC circuit.

6.

Chapter 3

Boolean Algebras

Boolean algebra is going to be our major mathematical tool in this book. Hence, we
briefly recall the basics here. For more detail, you may refer to [133, 251, 235, 162,
171, 44]. Short treatments of Boolean algebras can be found in most textbooks on
digital design, e.g., [187, 141]. However, since these books did not treat synthesis and
verification, our treatment of Boolean algebras will be more extensive. For example
we will treat “large” Boolean algebras and subalgebras, and will relate intervals and
subalgebras to don’t cares and sets of permissible functions, which are prominent
features of synthesis algorithms.

3.1 Sets, Relations, and Functions

We summarize here some of the concepts and definitions of sets, relations, and func-
tions, which are key to the understanding of Boolean Algebras. In turn, Boolean
Algebras lie at the heart of the understanding of digital logic and the tools required
for designing it.

3.1.1 Sets

A set is a collection of objects called elements or members. We use curly braces to
indicate sets. For instance:

or
{Bach,Beethoven,Brahms,Berlioz,Boccherini,Buxtehude, Borodin,
Bizet,Bernstein,Busoni,Berg,Bellini,Biber,Berio,Bartok,Britten}

or

Here the vertical bar | can be read “such that”. Also a colon : is often used for the
same purpose.

The cardinality of a set A, written | A |, is the number of elements of the set. We
shall only consider finite sets in the sequel. Of the three preceding examples, only
the first two are finite sets. The empty set (written is the set with no elements.
It is a subset of all sets. If is an element of Set A, we write

77

78 Chapter 3. Boolean Algebras

The elements of the sets are taken from a universe of discourse or universal set.
We can define predicates and operations on sets from the same universe of discourse:

Inclusion Set A is included in set if and only if all elements of
A are also elements of B.

Proper inclusion Set A is properly included in set if and only
if and

Complementation The complement of A in universe U is the set of all
elements of U that are not elements of A.

Intersection The intersection of A and B is the set containing the
elements that are in both A and B.

union The union of A of A and B is the set containing the elements
that are in either A or B.

We can also derive other operations from these, like the set difference:

Given two sets A and B, the Cartesian product A × B is defined by:

In words, the Cartesian product of A and B is the set of all the ordered pairs of
elements such that the first element is from A and the second element is from B. For
instance, if and B = {1,2}, then:

Similarly,

The definition of Cartesian product is easily extended to more than two sets: The
Cartesian product of sets is the set of all ordered taken from the sets.
The Cartesian product A × A is often indicated by Similarly, A × A × A × A is
abbreviated The power set of a set A , written is defined as the set of all
subsets of A:

For instance, if then:

The notation derives from the following equality:

which states that there are subsets of a set with elements. The power set of A
includes the empty set (denoted and a subset of all sets), and, of course, A itself.

3.1. Sets, Relations, and Functions 79

By definition a set is unordered and each of its elements occur exactly once. Thus
In rare cases when one must refer to the same

element more than once, the group of elements is called a multi-set. For multi-sets,
and

An ordered set is denoted with parentheses instead of braces. For ordered sets,

A simple and useful technique to employ when dealing with set operations is the
Venn Diagram. This technique can be used as follows to show that

The Venn Diagram for this identity is given at the left of Figure 3.1, and shows a
universal set S and two subsets A and B. We see that set intersection has partitioned

set A into two subsets: 1 = A–B, the set of elements in A but not in B, and
the set of elements in A and in B. B is similarly partitioned. Thus we have:

The last identity follows from the fact that in taking the sum |A| + |B| we count the
elements in subset 2 twice, since these elements are in both A and B. Thus to get a
correct count we must subtract

Similarly, The Venn Diagram for the set difference which is equivalent
to and to is given at the right of Figure 3.1.

3.1.2 Relations

Given two sets A and B, a binary relation between A and B is a subset of A × B.
This definition easily generalizes to more than two sets: A ternary relation over A, B,
and C is a subset of A × B × C. A binary (respectively ternary) relation is sometimes
called a 2-place (respectively 3-place) relation. Unless otherwise specified, a relation
will be assumed to be binary. We write if and are in relation In formula:

For instance let
A = {Jane,John,Julie,Jeff}

80 Chapter 3. Boolean Algebras

and let B the previous set of composers. Then the relation (likes) may be specified
as:

= {(Jane,Bach), (Jane,Biber), (Jane,Buxtehude),
(John,Berg), (John,Berio), (John,Bartok), (John,Britten), (John,Bach),

(Julie, Beethoven)}.

A binary relation can be visualized as a |J| × |B| sparse matrix (see
below).

The elements of a binary relation are ordered pairs. Hence we speak of a relation
from domain A into range B. A relation is always invertible. We have:

The inverse of written is:

= {(Bach,Jane), (Biber,Jane), (Buxtehude,Jane),

(Berg,John), (Berio,John), (Bartok,John), (Britten,John), (Bach,John),

(Beethoven,Julie)}.

Jane Bach means “Jane likes Bach,” while Bach Jane means “Bach is liked by
Jane.” Hence, and convey the same information—just organized differently.

3.1.3 Reflexive Binary Relations

In this section we consider binary relations for which the domain and
range are the same. In this case a directed graph G = (V, E) is a visually effective
representation of such a relation, since each pair in the relation can be viewed as
an edge of A binary relation can also be represented by a matrix.
In this case, is represented by matrix transpose, and when it is represented by
a graph, its inverse is represented by the graph obtained by reversing the direction
of the edges. For example,the binary relation on the set {1,2,3,4} has the matrix
and graph representations of Figure 3.2.

3.1. Sets. Relations, and Functions 81

Reflexivity. Relation is reflexive if and only if, for every
Note the binary relation of Figure 3.2 is reflexive. In the matrix representation, this
property is indicated by the fact that the relation symbol is present in all diagonal
entries. In the graph representation the property is indicated by the presence of self-
loops on every node of the graph. Another example of a reflexive relation over a given
set of people is the subset of all possible pairs of people who have eyes of the same
color. An example of a relation (over the set of natural numbers) that is not reflexive,
is the subset of numbers which are, pairwise, relatively prime (that is, they have no
common integer divisor other than 1).

Symmetry A relation is symmetric if and only if, for every pair
the pair is also in Having eyes of the same color is a symmetric relation.

We can state this in propositional logic (to be described shortly) as

Logically speaking the symmetry property implies that for every pair there
must be a matching pair Note the symmetry property is disproved if any
pair exists which is not matched in this sense. The binary relation of Figure 3.2 is
not symmetric. This shown in the matrix representation by the fact the matrix is
triangular, and in the graph representation by the fact there exists, for example, a
pair (1,2) in the relation that is not matched by the existence of a pair (2,1).

Antisymmetry A relation is antisymmetric if and only if the presence
of both and in implies that The binary relation of Figure 3.2
is antisymmetric. This shown in the matrix representation by the fact the matrix is
triangular, and in the graph representation by the fact there exists no pair in
the relation that is not matched by the existence of a pair except for the case

Note that a binary relation cannot be both symmetric and antisymmetric unless it
consists only of a set of pairs which would be represented by either a diagonal
matrix or a graph with only self-loops for edges.

Transitivity. A relation is transitive if and only if the presence of
and in implies the presence of Having eyes of the same color and
being less than or equal are transitive relations. We can state this in propositional
logic as

Logically speaking the transitivity property implies that for every “2-path” of pairs
and there must be a “triangulating” pair The binary

relation of Figure 3.2 is transitive. This shown in the matrix representation by the fact
each pair of element pairs and are matched by a “triangulating”
pair In the graph representation, transitivity is demonstrated by the fact for
every 2-path of consecutive edges, there is also a corresponding triangulating edge.

82 Chapter 3. Boolean Algebras

Equivalence Relations A relation that is reflexive, symmetric, and transitive is
an equivalence relation. Having eyes of the same color is an equivalence relation.
If we denote this as a 2-place relation on B × B (B is the aforementioned set of
composers), and we assume that the eye colors were as follows:

Blue: {Bach,Beethoven,Brahms,Berlioz,Boccherini,Buxtehude,Borodin}
Brown: {Bizet,Bernstein,Busoni,Berg,Bellini,Biber,Berio}
Green: {Bartok,Britten}

The relation on B × B is thus

Blue: {(Bach,Bach),(Bach,Beethoven),(Bach,Brahms),…,
(Beethoven,Brahms),(Beethoven,Berlioz),…,
…, (Buxtehude,Borodin),(Borodin,Borodin)}
Brown: {(Bizet,Bizet),(Bizet,Bernstein),…,(Biber,Berio),(Berio,Berio)}
Green: {(Bartok,Bartok),(Bartok,Britten),(Britten,Britten)}

In the matrix representation, an equivalence relation is characterized by a block
diagonal structure. For the above example the matrix would be

Bach
Beethoven
Brahms
Berlioz
Boccherini
Buxtehude
Borodin
Bizet
Bernstein
Busoni
Berg
Bellini
Biber
Berio
Bartok
Britten

bl bl bl bl bl bl bl
bl bl bl bl bl bl bl
bl bl bl bl bl bl bl
bl bl bl bl bl bl bl
bl bl bl bl bl bl bl
bl bl bl bl bl bl bl
bl bl bl bl bl bl bl

br br br br br br br
br br br br br br br
br br br br br br br
br br br br br br br
br br br br br br br
br br br br br br br
br br br br br br br

gr gr
gr gr

The graph representation of this matrix would be a graph with 3 disjoint completely
connected subgraphs.

Note that an equivalence relation characterizes a partition.

Definition 3.1.1 Given any set B a partition of B is a set of subsets with
two properties:

1.

2.

3.1. Sets, Relations, and Functions 83

Here we have introduced for the first time further (equally pervasive) notation:
which is the dual of and is to be read as “for all”. Note that the equivalence relation

given above characterizes, or induces, the partition

= {Bach,Beethoven,Brahms,Berlioz,Boccherini,Buxtehude,Borodin}
= {Bizet,Bernstein,Busoni,Berg,Bellini,Biber,Berio}
= {Bartok,Britten}

Another example of an equivalence relation, this time on the set I = {0,1,2,…
of natural numbers is the parity of the integer. This relation induces the partition

where

(which have even parity),
(which have odd parity).

An important concept in FSM synthesis is the idea of a refinement of a given
partition.

Definition 3.1.2 Given two partitions and of a set S, is a refinement
of if each block of is a subset of some block of

For an equivalence relation over the set A, the equivalence class of
denoted is the set For the equivalence relation

we thus have [3] = {1,2,3} and [4] = {4,5}
As defined above, a partition a set S is a collection of nonempty disjoint subsets

of S whose union equals S. We now show that for an arbitrary equivalence relation
on S, the distinct equivalence classes of members of S form a partition of S.

By definition, each element belongs to one equivalence class, so that the union of
the classes is S. Next suppose two distinct classes have some element in common.
Let be an element in the first (second) equivalence class, but not in the second
(first). Then we have that and By transitivity, but this contradicts the
assumption that and belong to different equivalence classes, since all equivalence
relations are transitive by definition.

Partial Orders Relations that are reflexive, antisymmetric, and transitive are
called partial orders. Such relations are fundamental to switching theory, and will
shortly be considered in detail in Section 3.2.1.

An example of a partial order is the relation defined over the set I of the positive
integers by: if and only if divides For instance, The relation is :

1.

2.

3.

reflexive (divides for all

not symmetric (e.g., 3 divides 9, but 9 does not divide 3);

antisymmetric (divides and divides only if

84 Chapter 3. Boolean Algebras

4.

5.

6.

7.

transitive divides and divides imply that divides indeed,
and imply so divides also);

a partial order (because it is reflexive, antisymmetric, and transitive) ;

not an equivalence relation, since it is not symmetric;

not a function, since 3 divides both 6 and 9, which violates the definition of
Section 3.1.4.

Now consider DAGs (Directed Acyclic Graphs). Since a partial order is a reflexive,
antisymmetric, and transitive binary relation, and a DAG has no cycles, its edge
relation is automatically antisymmetric. Consequently, the transitive closure of the
edge relation E of a DAG, augmented by self-loops on each vertex, is a partial
order on the vertex set V. Examples of DAGs include PERT charts (Performance
Evaluation Review Technique — basically task completion schedules) as well as the
Hasse Diagrams defined below for lattices.

Compatibility Relations A relation which is reflexive and symmetric, but not
transitive, is a compatibility relation. Compatibility relations play a crucial role
in the minimization of incompletely defined finite state machines (Cf., Section 8.1
below). For instance, a compatibility relation on a set is

Note that is reflexive since Recall that the notation stands for
“for all”. Also, is symmetric, since each related pair is matched
with a corresponding opposite pair The relation is not transitive,
however, since pairs and are missing.

3.1.4 Functions

A function from A to B, written is a rule that associates exactly one
element (not two, not zero elements) of B to each element of A. A function is thus a
relation, with the restriction imposed that each element of A appears in exactly one
pair belonging to the relation. In other words, a relation from A to B is a function if
it is right-unique and if every element of A appears in one pair of the relation. A is
called the domain of the function. B is called the co-domain. Often the co-domain
B is called the range of

If we say that is the image of (under Given a domain
subset the set

is called the image of C under the mapping Here we have introduced for the
first time some new notation which is pervasive throughout the literature on graphs:

which is to be read as “there exists, and which is to be read as “such that”,
or “has the property that”. Using this notation, we can compactly write otherwise
lengthy sentences, in this case we interpret the formula

3.2. Partial Orders 85

as “the set of elements also in B for which there exists an element of the set C
such that

Symmetrically, the set

is called the preimage of C under
In the remainder of this chapter, we shall focus only on the image or preimage

of single point, that is, the image of a set of cardinality one. However in Chapter 7,
we shall find extensive use of computing images and preimages of functions which
are the next state functions of finite state machines. In essence, these computations
enable us to test if a given machine reaches a certain state, has a certain temporal
property, or is equivalent to another machine.

If C = A, that is, if the constraint set is the entire domain, then we refer
to as the image of A simple function where D =
{0,1,2,3,4,5,6,7,8,9}, is illustrated in Table 3.1. Here the range R is the same as
the domain D, that is, R = D. For this function, the definition gives

but Note also that the preimage of the whole
range is necessarily the whole domain, that is, However, the im-
age is not the entire range for this simple function.
Sometimes the image of the whole domain is called the “image of the function”.

A function is one-to-one, (or injective), if implies Every
element of the domain of a one-to-one function has a distinct image. The function of
Table 3.1 is not one-to-one, because for

A function is onto (or surjective) if, for every there exists
an element such that The image of the entire domain coincides
with the co-domain for a function that is onto. The function of Table 3.1 is not onto,
because there is no such that

A function that is both one-to-one and onto is called bijective, and is invertible.
This means that its inverse relation is also a function. Clearly, not all functions have
an inverse function. The function of Table 3.1 is not onto, and so is not invertible.

A geometric view of image and pre-image is given in Figure 3.3.

3.2 Partial Orders

In this section we begin by introducing the idea of an algebraic system. Our focus
will be on a specific algebraic system, called a partial order. In the ensuing sections,
we then discuss particular types of partial orders called lattices and Boolean algebra.
Since the behavior of logic circuits is based on the properties of Boolean algebras, the

86 Chapter 3. Boolean Algebras

discussion will show how digital logic circuits fall into the Framework of the algebraic
system known as a partial order.

An operation on a set A is a function An algebraic system
(or just algebra) is composed of a set, called the carrier of the algebra, a set of
operations, and, optionally, a set of relations over

For instance,

([0,1],·)
is an algebraic system where the carrier is the set of real numbers between 0 and 1,
and the only operation defined is the multiplication. No relation is defined1.

Modern algebra (sometimes also called abstract algebra) studies the properties of
certain algebraic systems. In the following we examine three such systems: Partially
ordered sets, lattices, and Boolean algebras. A lattice is a partially ordered set and a
Boolean algebra is a lattice. Therefore, all the properties that we prove for partially
ordered sets are also valid for Boolean algebras, and thus carry over to logic formulas
and digital logic circuits.

3.2.1 Partially Ordered Sets

A relation (we shall refer to such a relation as a binary relation on A in the
sequel) was defined above to be a partial order of A if it has the following properties:

Reflexive

Antisymmetric and imply

Transitive and imply

A set P over which a partial order is defined is called a partially ordered set or
poset. The real numbers form a partially ordered set under the ordinary “less than
or equal” relation. In addition to the obvious example of numerical order, inclusion
between two sets and implication between two logic functions are examples of such a
relation.

1This algebraic system is an example of monoid with 1 as identity [69].

3.2. Partial Orders 87

As another example, consider the points of the Cartesian plane Define an
ordering relation as follows: if and only if and
Then the algebraic system is a partial order. From this example we see clearly
that does not imply

3.2.2 Hasse Diagrams

Figure 3.4 shows the Hasse diagrams of several posets. A Hasse diagram is a
directed graph in which edge direction is indicated by vertical position rather than
by arrowheads. In a Hasse diagram, two vertices and connected by a line are
ordered (that is related: and the higher one is greater than the other. One
can think of the lines of a Hasse diagram as of arrows pointing upward. Initially, it
may be convenient to actually draw arrows instead of lines. In time, however, one
becomes familiar with the diagrams and the arrowheads can be dropped.

Not all lines are shown in the diagrams. For example, edges implied by the
assumed transitivity property of the partial order are omitted to reduce clutter. Thus
if and then The line from to however, is not shown in the
diagram, because it can be inferred from the lines joining to and to

Similarly, the self-loops characteristic of graphs representing reflexive relations are
also omitted. For instance, the fourth diagram from the left in Figure 3.4 corresponds
to the partial order

Note that the majority of the edges in the graph
representation of this poset are not shown in the corresponding Hasse diagram. In
a Hasse diagram, two elements joined by an ascending path (say from to) are
said to be comparable (that is, related: If there is no such path the elements
are not comparable If one thinks of a line in a Hasse diagram as an arrow
pointing upwards, then an ascending path is a directed path, i.e., a path that follows
the direction of the arrows.

3.2.3 The Meet and Join Operations

We finally encounter two operations on posets, called meet and join, which are the
poset analog of the operations AND and OR of digital logic.

88 Chapter 3. Boolean Algebras

Definition 3.2.1 Meet and Lower Bounds An element m of a poset P is a lower
bound of elements a and b of P, if and An element m of a poset P
is the greatest lower bound or meet of elements a and b of P, if m is a lower
bound of a and b and, for any such that

The upper bound and the least upper bound or join are defined similarly,
with replaced by

The meet of a and b is denoted and the join by a + b.

For example, in the fourth poset from the left in Figure 3.4, — that is is
a lower bound of and Further, it is the meet of and since it is the greatest
(and only) such lower bound. If there were a fourth edge to from a new element

in this Hasse Diagram, then would also be a lower bound of and but not
the greatest such bound, since in this case Similarly the join of and is

However, the join of and is not defined, since and do not have an
upper bound in this poset.

The meet and join of two elements, if they exist, are unique. This follows directly
from their definitions. For example, in the rightmost poset in Figure 3.4, and are
both lower bounds of and but neither is least. Thus neither of these satisfy the
maximality condition in the definition of meet, so and have no meet in this poset.

For instance, in the fourth diagram from the left in Figure 3.4, the meet of and
is The join of and on the other hand, does not exist, because and have

no upper bound. The join of and is is an upper bound of and but it is
not the least. The join of two elements may not exist, even though they have upper
bounds. This is the case of and in the sixth diagram from the left in Figure 3.4:
Both and are upper bounds, but neither is least.

An immediate consequence of the dual definition of meet and join are the following
dual properties.

Theorem 3.2.1 In any poset, if x and y have a greatest lower bound,

Dually, if x and y have a least upper bound,

Proof. Since and have a greatest lower bound, we have by the definition of meet
that both and which proves the first assertion. Dually, if
and have a least upper bound, we have both and which
proves the second assertion.

Note the dual form of the two assertions — the second is obtained from the first by
replacing by + and by

With this result in hand we may easily prove a second general property of posets.

Theorem 3.2.2 In any poset,

and

3.2. Partial Orders 89

Proof. Since and have both a lower bound and an upper bound
We show by contradiction that is also the meet of and Suppose not. Then
by the definition of meet, there exists a lower bound different from of and

such that However, since was a lower bound of and we must have
as well. Since a poset is antisymmetric, it must then be true that

This contradicts the assumption that was different from Thus is the meet of
and A similar argument shows that is the join of and

Note in this theorem we use the double implication sign to denote an “if and only if”
condition.

3.2.4 Totally Ordered Sets, Well-Ordered Sets, and Induction

If all pairs of elements of a poset are comparable, then the set is totally ordered. A
total order is thus a special case of partial order. The real numbers give an example
of a totally ordered set.

If every non-empty subset of a totally ordered set has a smallest element, then
the set is well-ordered. The natural numbers are well-ordered, whereas the rational
and the real numbers are not well-ordered. In both cases, the subset of the numbers
strictly greater than 1 has no smallest element.

The notion of well-ordering is the basis for the principle of mathematical in-
duction. Let N be the set of the natural numbers (non-negative integers). Suppose
we are given, for each natural number a proposition For instance,

We are interested in proving whether, for all is true. The principle of induc-
tion gives us a very general tool to solve this type of problems, based on the following
theorem.

Theorem 3.2.3 Given, for all propositions P(n), if:

1. P(0) is true;

2. for all n > 0, if P(n – 1) is true, then P(n) is true,

then, for all P(n) is true.

Proof. Let be the set of natural numbers for which is false. If we can
prove that F is empty, then we show that is true for all To prove that F is
empty, we assume the contrary—that F is non-empty—and we derive a contradiction
from our assumption. Since F is a non-empty subset of a well-ordered set, it must
have a smallest element. Let be such a smallest element. Since P(0) is true, must
be greater than 0; hence, is a natural number and is not in F. Therefore,

is true, and by the second hypothesis, is also true. This, however,
contradicts the choice of as the smallest element of F. Therefore, F must be empty,
and holds for all

90 Chapter 3. Boolean Algebras

In our example, we clearly have Furthermore, for

Therefore, our is true for all

3.2.5 Lattices

A lattice is a poset, in which any two elements have both meet and join.
Consequently, all finite lattices have a greatest element, denoted 1, and a least element
(0), where and

All lattices enjoy the following properties:

(P1)
(P2)
(P3)
(P4)

Idempotent
Commutative
Associative
Absorptive

It is actually possible to show that any non-empty algebraic system that enjoys these
properties is a lattice. The Hasse diagrams of several lattices are shown in Figure 3.5.
One can easily verify that the partial order we have defined on the points of the
Cartesian plane in Section 3.2.1 is also a lattice.

As an exercise, we prove here one of the two forms of P4.

Theorem 3.2.4 In any lattice,

3.2. Partial Orders 91

Proof. By definition, a lattice is a poset, in which all pairs of elements have both
meet and join. Thus, by Theorem 3.2.1, Then, letting we
have and by Theorem 3.2.2,

Another simple result we want to show is the following.

Theorem 3.2.5 In any lattice,

Proof. From the definition of join, our result is established if we can prove that

We now concentrate on the first inequality (the proof for the second is similar). We
apply this time the definition of meet and say that our assertion is valid if

These propositions are true by Theorem 3.2.1, hence our proof is complete.

What we have proven is one of the two distributive inequalities. The other is

and can be proved similarly. However, we can spare some time if we resort to the
principle of duality.

Duality Every lattice identity is transformed into another by interchanging:

1.

2.

3.

+ and

and

0 and 1.

This important principle follows directly from the duality of meet and join. (One
definition is obtained from the other by interchanging and)

Complementation If and then is the complement of
(indicated by or) and vice versa. A lattice is complemented if all elements have
a complement. In Figure 3.5, the lattice on the left is complemented:

The lattice in the middle is not complemented, since there is no
element in this lattice such that and

92 Chapter 3. Boolean Algebras

Distributivity A lattice is distributive if the two distributive properties hold by
equality, i.e.,

In Figure 3.5, the two leftmost lattices are distributive. However, the lattice on the
right is complemented, but not distributive, since

3.2.6 Definition of Boolean Algebras

A complemented, distributive lattice is a Boolean lattice or Boolean algebra. A
Boolean algebra has the following properties:

(P1)
(P2)
(P3)
(P4)
(P5)
(P6)

Idempotent
Commutative
Associative
Absorptive
Distributive
Existence of the complement.

It is also possible to prove that an algebraic system

with those properties is a Boolean algebra. There are also other possibilities. One
may define a Boolean algebra as an algebraic system which satisfies the
following postulates (Huntington):

Commutative
Distributive
Identities
Existence of the complement.

The various definitions are equivalent. One can also define a Boolean ring.2

3.2.7 Examples and Properties of Boolean Algebras

Besides the well-known two-valued Boolean algebra or switching algebra (often
referred to as the Boolean algebra), there are other Boolean algebras, both finite
and infinite. As an example of an unfamiliar Boolean algebra, let us consider the
following. Let be the product of distinct prime numbers, let be the set of all
divisors of and let meet and join stand for greatest common divisor and least
common multiple, respectively. Then

2The operations are in this case the AND and the XOR. This is the original formulation of Boole.

3.2. Partial Orders 93

is a Boolean algebra, where
0 = 1 and

In general, all finite Boolean algebras are isomorphic to the Boolean algebra
defined over the power set of some finite set. The algebra defined over the power
set of is shown in Figure 3.6. Such an algebra is called a class algebra. The
carrier of the algebra is in this case The meet of two ele-
ments is their (set) intersection and their join is their union; complementation in the
Boolean algebra coincides with complementation in the set-theoretical sense, consid-
ering as the universal set in the complementation. Every Boolean algebra
with four(eight) elements is isomorphic to, i.e., has the same Hasse diagram as, the
Boolean algebra on the left (right) of Figure 3.6. This important result is known as
Stone’s Representation Theorem. We shall henceforth assume that all the algebras
we consider are finite so that Stone’s theorem will always apply.

In essence, the only relevant difference among the various Boolean algebras is the
cardinality of the carrier. Furthermore, Stone’s theorem implies that the cardinality
of the carrier of a Boolean algebra must be a power of 2 and that we can use the
concepts of set algebra to understand (and prove) identities in Boolean algebras.

Stone’s representation theorem has the following simple application. Suppose we
want to tell if a given Hasse diagram represents a Boolean algebra. We can count
the number of nodes; if it is not a power of two, then we immediately conclude that
the partial order is not a Boolean algebra.

All Boolean algebras have many properties in common. Here we prove some of
the most fundamental common properties.

Theorem 3.2.6 Complementation in a Boolean algebra is unique.

Proof. Suppose both and are complements of We show that If is a
complement of then and Hence:

Theorem 3.2.7 (Involution) In a Boolean algebra:

94 Chapter 3. Boolean Algebras

Proof. By definition of complement, and By commutativity,
and This means that is the complement of

Theorem 3.2.8 In a Boolean algebra:

Proof. We can write: Alternatively,
we can use distributivity:

Theorem 3.2.9 In a Boolean algebra:

Proof. We only prove The proof of the other result can be
obtained by duality. We have:

The property that is called the isotone property. To prove the
isotone property, we recall that since a Boolean algebra is a poset, by Theorem 3.2.2,

is equivalent to From we get Now, with simple
manipulation, we get whence

Note that by interpreting and as sets, and as the set containment operator, these
inequalities may be verified with a Venn Diagram (See the discussion of Figure 3.1
on Page 79).

Theorem 3.2.10 (DeMorgan’s Laws) In a Boolean algebra:

Proof. We prove by proving and
These in turn can be proved by applying Theorem 3.2.9 and Involution. Indeed,

which are easily seen to be true.

Theorem 3.2.11 (Consensus) In a Boolean algebra:

3.3. Boolean Functions 95

Proof. In this case we may again break down the proof of the equality into the proofs
of two inequalities. Then we use duality to prove one of the two forms of the theorem.
We see that is verified using Theorem 3.2.1, which holds
for any poset. The reverse inequality is verified if (This is actually
an alternative way of formulating the theorem.) We apply again Theorem 3.2.9:

which is seen to be true.

The consensus theorem can be used to simplify expressions. Let us see a few ex-
amples.

1.

2.

3.

4.

5.

cannot be simplified;

In the simplification, we try to map the given expression into the form of The-
orem 3.2.11. In the first two expressions we use this device to directly remove the
redundant consensus terms. In the first, the mapping is and so
the consensus term is In the second, after factoring out the common
literal the mapping is and so the redundant consensus term
is In the third example, we use the same technique, after factoring out be
from the second and third terms, and then applying DeMorgan’s Laws to rewrite
as As discussed in detail in Chapter 4, these manipulations are typical of
the redundancy removal phase of logic minimization algorithms.

In the last example, we use the consensus theorem to add a redundant consensus
term, and then apply the absorption property to the consensus term and one of the
original terms to obtain the simpler expression. This type of two-step simplification
procedure, in which the first step results in a more complicated expression, also plays
a key role in logic minimization (see Chapters 4 and 5).

In fact, instead of trying to map a given expression into the form of the consensus
theorem, one might be tempted to use a so-called “Karnaugh Map” to identify the
possible consensus terms for addition or deletion. This is indeed a valid approach,
and will be introduced shortly, after first defining Boolean Functions.

3.3 Boolean Functions

An important example of a Boolean algebra that is distinct from the familiar switching
algebra is given by the set of Boolean functions. As we shall shortly see,
the Boolean functions of variables form a Boolean algebra isomorphic to the power
set of a set with elements. Before introducing this algebra, we must first
define what we mean by a Boolean formula.

96 Chapter 3. Boolean Algebras

3.3.1 Boolean Formulae

A function, as we have seen, is a mapping from a domain to a co-domain. We often
use formulae to describe functions, but we have to keep in mind that the two things
are distinct. In particular, we shall see that there are infinitely more formulae than
functions (since there exist an infinite number of formulae which represent the same
function).

Given a Boolean algebra B, we define Boolean formulae on the variables
We shall assume that That is, each of the

variables is a Boolean variable which can take as its value any of the |B| elements of
B. Thus the set of Boolean formulae is defined recursively as follows.

Definition 3.3.1

1.

2.

3.

4.

The elements of B are Boolean formulae.

The symbols are Boolean formulae.

If and are Boolean formulae, then so are

(a)

(b)

(c)

A string is a Boolean formula if and only if it can be derived by applying the
previous rules finitely many times.

We normally drop most parentheses, by assuming that takes precedence over “+”.
We also drop when no ambiguity arises. The following are Boolean formulae over

and the variables

The second is obtained from the first by dropping the needless parentheses and the
understood dots. Note that for and the formula F evaluates to

Formulae are to be evaluated by a truth table with entries. For example,
with and and for the two distinct formulae and

we have the evaluations of Table 3.2. Note the two formulae
have the same evaluation at every point in the domain

3.3. Boolean Functions 97

3.3.2 Boolean Functions

Whereas Boolean formulae are strings, Boolean functions are defined by the evalu-
ation of Boolean formulae. Thus the definition of Boolean functions of variables is
also recursive. The functions defined by the following recursion have domain and
range B, that is The Boolean functions
which are defined over the switching algebra B = {0,1} will be called switching
functions.

To distinguish formulae from functions, we shall, with some noted exceptions,
denote functions with lower case symbols and formulae with upper case. When the
context is clear, it shall be understood that a lower case English letter without sub-
script is a vector. That is,

Definition 3.3.2 1. For any element the constant function, defined by

is an Boolean function.

2.

3.

4.

For any in the projection function, defined by

is an Boolean function.

If and are Boolean functions, then the functions and
defined by

for all are also Boolean functions.

Only the functions that can be derived by finitely many applications of the above
rules are Boolean functions.

As noted above in the discussion of Table 3.2, Notice that and
are two distinct Boolean formulae, but they represent the same Boolean function. We
shall show below that while not every function is a Boolean function,
every function derived by evaluation of a Boolean formula is a Boolean function.

One can easily see that there are infinitely many formulae on a given set of
variables which represent the same function. For example, any literal of any term
of any formula can be repeated an arbitrary number of times without changing the
underlying function. However, there are only distinct Boolean functions, as we
shall shortly see.

Notwithstanding this important difference, we shall not distinguish between func-
tions and formulae, unless required by the context.

98 Chapter 3. Boolean Algebras

1.

2.

1.

2.

with respect to using both forms of the expansion theorem, as follows.

3.3.3 Boole’s Expansion Theorem

In this section we discuss a fundamental result which is mostly known as Shannon
Expansion, but it is actually due to Boole [27], as pointed out in [44]. We shall use
the notation

to denote the function restricted to the subdomain in which takes the value
0 = 0 (respectively 1 = 1). The functions and are
called the positive and negative cofactors of with respect to

Theorem 3.3.1 If f: is a Boolean function, then

for all

Proof. The proof of the first identity is by induction. We give only a brief outline
of this inductive proof. The statement is proved directly for constant and projec-
tion functions: That constitutes the base. The inductive step consists of considering
separately, each the three mechanisms of Step 3 in the recursive Definition 3.3.2 to
generate functions from other functions. That is, assuming the result is true for
and we prove it then to be also true for and

The second identity can be derived from the first by duality. Alternatively, it can
be shown equivalent to the first by applying the distributive properties and consensus.

Note we use square brackets instead of parentheses to emphasize that we are using
the dual form of the expansion theorem. As an example, consider the function

Applying the two forms of the expansion theorem, we get:

In these identities we have set
It is now easy to see that

Examples We can expand the functions

and

3.3. Boolean Functions 99

The expansion theorem can often be used to prove or disprove interesting identities.
For example, we can show that for every Boolean function

Proof. We expand the left-hand side with respect to

3.3.4 The Minterm Canonical Form

Each Boolean function can be represented by infinite formulae. The problem of de-
termining whether two formulae represent the same function is central to the minimiz-
ation of Boolean functions.3 We can impose restrictions on the form of the formulae,
so that there is only one formula for each function. Such a form is called canonical.
We shall spend more time on canonical forms in the future. For the time being, we
introduce the minterm canonical form.

If we recursively apply Boole’s expansion to a function, we eventually get

The values

are elements of B called the discriminants of the function the elementary products

are called the minterms.
The maxterm canonical form is defined similarly.

the elementary sums

3We should actually speak of minimization of Boolean formulae.

100 Chapter 3. Boolean Algebras

are called the maxterms. As an example, consider the function over
The minterm and maxterm canonical forms are:

Examples We now find the minterm and maxterm canonical forms for the functions

1.

2.

3.

We assume and drop terms whose disciminant is 0 or 1.

1.

2.

3.

As a consequence of Theorem 3.3.1, each Boolean function has a unique minterm
and maxterm canonical form. Therefore, a Boolean function is entirely characterized
by its discriminants. This statement may seem inconspicuous, when referred to the
Boolean algebra B = {0,1}, which is also called the switching algebra. However, it
is not so obvious for larger Boolean algebras, and this remarkable result is one of the
the cornerstones of the theory of Boolean functions.

For example, as in Table 3.2, a 2-variable function defined over a 4-valued Boolean
algebra has 16 different points in its domain. However, the image of all the 16 points
is fixed once the images of the four points

(0,0), (0,1), (1,0), (1,1)

are given. As a consequence, not all possible functions are Boolean func-
tions. Furthermore, since there are exactly discriminants, each with the possibility
of |B| values, the number of distinct Boolean functions of variables is precisely
The remaining functions are not Boolean (they cannot be represented
by formulae derived according to our definition).

This counting method can be used to determine the number of Boolean functions
of four variables, defined over the class algebra generated by the set The carrier
of this algebra is the power set of The power set of is
Hence, |B| = 4. The number of Boolean functions of four variables is thus:

It should be clear that even though both the carrier and the number of variables
may be relatively small, there are can be a very large number of possible Boolean
functions. As we shall see at the end of this chapter, the task of designing a logic
function can be viewed as the task of picking a “best” function for a given incomplete
specification.

3.3. Boolean Functions 101

3.3.5 Pseudo-Boolean Functions

We give the following example of a 1-variable Boolean function from B to B which
is not Boolean, where

The minterm canonical form for the function is which can be simplified to
For however the minterm canonical form evaluates to Since
the given truth table is not consistent with the minterm canonical form. Hence,

the function is not Boolean.
One may ask what fate is reserved to the many mappings from to B that are

not Boolean functions. Such functions are members of the class of functions known
as Pseudo-Boolean Functions4

.

It turns out that there are multi-valued logics that can deal with all these map-
pings. The algebraic structure of these logics is somewhat weaker than the one
of Boolean algebras, yet sufficient to deal with, say, heuristic minimization. (See
Chapter 5.)

3.3.6 The Boolean Algebra of -variable Boolean Functions

Returning to Boolean functions, we mentioned at the end of Section 3.2.7 that the
Boolean functions over variables form a Boolean algebra. The meet and join are
the union (+) and intersection of functions introduced in the definition of Boolean
functions. The 0 and 1 of the algebra are the constant 0 and 1 functions, respectively.
This is illustrated in Figure 3.7. A function is greater than or equal
to another function if and only if, for every assignment of values to
the variables, In Figure 3.7 we can see
that, as we proceed from the smallest (0) to the largest (1) function, the number
of minterms for which the functions are 1 increases. Since Boolean functions form
Boolean algebras, all the theorems we have proved for Boolean algebras can be used
to manipulate expressions involving Boolean functions.

Further, the theorems and properties that hold for all lattices, or for all posets, are
also applicable to Boolean functions, since a Boolean algebra is also a special form
of lattice and poset. For example, the absorptive property (P4) of Section 3.2.5 on
Page 90 is applicable, as are the identities of Theorem 3.2.2 of Page 88. As we shall
see, logic minimization algorithms are just methods of systematically applying these
results.

3.3.7 Atoms of a Boolean Algebra

A Boolean algebra is characterized by its set of atoms.

4A function is Pseudo-Boolean if and only if B is a Boolean algebra.

102 Chapter 3. Boolean Algebras

Definition 3.3.3 The atoms of a Boolean algebra are its minimal nonzero elements.
They are of special significance, since in a Boolean algebra with carrier B and atoms

Since Stone’s theorem has established that the only significant difference between
Boolean algebras is their cardinality, we can also say that a Boolean algebra is
uniquely characterized by its set of atomic elements A.

Since atoms are minimal, we have the following identities:

Atoms are closely related to minterms. For the Boolean function algebra
of switching functions, the atoms are just the minterms. For a larger base
algebra, say the atoms of are just the meet of the minterms
(atoms) of with the atoms of the base algebra B. For example, consider
this base algebra for the case In this case there are 4 minterms and the 8
atoms of are

Note that the atomic variable of the base algebra B behaves just like a third switch-
ing variable.

Any element of a Boolean algebra B with atoms, is uniquely characterized as
a set of atoms, that is, as a subset of A. Thus one may use the binomial theorem to
categorize the elements of B. If then the Hasse Diagram for the lattice
of B has levels. On the level, there is only the zero element 0. On Level 1,

3.4. Don’t Care Conditions as Boolean Function Algebra Intervals 103

there are elements, each containing 1 element. Similarly, on Level there
are

For this gives 1 element on Level 0, on Level 1, on Level 2,
on Level 3, and 1 element on Level 4, for a total of

elements altogether.

3.4 Don’t Care Conditions as Boolean Function Algebra
Intervals

An interval [L, U] in a Boolean algebra B is the subset of B defined by

When B is the Boolean algebra of switching functions (defined in Sec-
tion 3.3.2), we can thus define an interval in the Boolean algebra of

switching functions. For example, consider This interval is
highlighted in Figure 3.8. An interval of a Boolean algebra is also a Boolean algebra
and can thus be understood in terms of its atoms (minimal non-zero elements, as
discussed in Section 3.3.7.

Intervals in a Boolean function algebra associated with logic circuits are related to
don’t care conditions. These conditions are of two types, called satisfiability don’t
cares and observability don’t cares . These don’t care conditions arise due to the
“filtering” action that is imposed by the environment of a given subcircuit, when it is
embedded in a larger circuit. For example, a 16-bit multiplier circuit may have on the
order of 6000 gates. Inside this large circuit, there are many subcircuits, for example
2-bit full adders, which find themselves embedded in a sea of gates. The portion

104 Chapter 3. Boolean Algebras

of the circuit lying between these subcircuits and the primary inputs constitutes a
“digital filter”, which prevents certain local (to the subcircuit) input combinations
from occurring.

For a given subcircuit we refer to such combinations as the Satisfiability
Don’t Cares of and we denote their union as As repeatedly demonstrated
in the sequel, logic synthesis programs like SIS exploit such Don’t Care conditions to
synthesize efficient representations of Boolean functions.

Similarly, the portion of a circuit lying between a subcircuit and the primary
outputs constitutes a “filter”, which prevents the external environment from distin-
guishing between certain local (to the subcircuit) input combinations. We call such
combinations Observability Don’t Cares, and we denote their union as

3.4.1 Satisfiability Don’t Care Conditions

The origins of Satisfiability don’t care conditions are illustrated in Figure 3.9. In this
figure, the overall circuit is comprised of a single gate subcircuit which is driven
by a subcircuit and which drives a subcircuit Subcircuit is also driven by a
phenomenon known as “reconvergent fanout”. This phenomenon is ubiquitous since
it usually denotes the the “re-use” of logic for area efficiency purposes. It is easily
seen that

Since it is clear that the input pairs in the set {(0,1), (1,1)} will never
occur to subcircuit Hence the local minterms

can be regarded as “satisfiability don’t cares”. That is, we may replace with any
function in the interval

where

3.4. Don’t Care Conditions as Boolean Function Algebra Intervals 105

Here we take advantage of the fact that join in a Boolean function algebra is set union.
We thus see that is just the bold interval in Figure 3.9. Note that minterm is
in the upper bound, but, since this minterm is not in the interval.

3.4.2 Observability Don’t Care Conditions

The Observability don’t care interval may be similarly derived in terms of In
Figure 3.9, we see that Hence variable (and thus gate) is don’t
care for input combinations with Hence

can be regarded as “observability don’t cares”. That is, we may replace with any
function in the interval

Note that if we take we get

which implies the overall don’t care interval has a lower bound and
upper bound

This is corroborated by noting that

While the existence and importance of don’t care conditions is easily demon-
strated, it may nevertheless be surprising that don’t care conditions are not the

106 Chapter 3. Boolean Algebras

exception but the rule. In fact, in many cases the difficulty is not in identifying a
large set of useful don’t care conditions. Instead, the difficulty is that there are so
many distinct don’t care conditions, it is practically impossible to enumerate and
store them all for future use. The art of don’t care exploitation lies in identifying a
subset of all such conditions which is “sufficient” for quasi-optimal design.

3.4.3 Deriving Don’t Cares From and Interval Specification

If the interval of permissible functions[164] is specified priori, the corresponding
don’t care set is easily derived. If the interval of a Boolean function algebra is given
as [L, U], we see that every element (function) of the interval must contain the atoms,
and no element of the interval contains an atom not in U. Thus the “discretionary”
atoms are just D = U – L. If all the discretionary atoms are included, then element
U is obtained, and if none are included on obtains the element U. Any other subset
of D yields some interior element of the interval.

3.5 Incomplete Specification of Boolean Functions

We have seen that it is important to be able to capture degrees of freedom in the
specification of Boolean functions. For a given Boolean algebra B, the set of

incompletely specified Boolean functions is just the set of distinct intervals
in the Boolean function algebra, denoted

An incompletely specified Boolean function can then be defined as an element of
However, before considering this general case, we first describe the simpler and

more familiar case of incompletely specified switching functions where B =
{0,1}). We then generalize our treatment to Boolean function algebras with larger
carriers, as in Figure 3.6.

3.5.1 Incompletely Specified Switching Functions

For the special case of B = {0,1}, the base algebra has only three intervals:

[0,0], [0,1], [1,1].

These intervals are normally indicated by

or

(and – – are called don’t care values). For every particular function within a
given interval in the switching algebra we obtain a (completely specified)
switching function. Alternatively, a given set of permissible switching functions
form an interval in their algebra5.

For example, the incompletely specified switching function
5This approach is taken, for instance, in [204].

3.5. Incomplete Specification of Boolean Functions 107

corresponds to the interval

of Figure 3.8. Besides the tabular representation and the interval notation, it is
possible to specify an incompletely specified switching function as a triple of three
completely specified switching functions [37]

where is 1 for all values for which is 1, is 1 for all values for which is –,
and is 1 for all values for which is 0. These functions are called the ON-set,
don’t-care, and OFF-set, respectively. Clearly the three functions must have null
intersection, and once two of them are specified, the third is implicitly given. Thus

and form a partition of the domain of
If an interval [L, U] is given in the Boolean algebra of switching functions, the

corresponding triple can be obtained as follows. The care ON-set is
and the care OFF-set is Thus don’t care set is

Alternatively, if the triplet is given, then one may compute the interval
as follows.

The specification by means of the triplet and is convenient from the point
of view of the logic minimization algorithms. However, it does not provide much
insight into the interval structure of the solutions to minimization problems, which
can be useful in more advanced applications. We shall also need to generalize these
concepts when we deal with functions from to or multiple-output functions
(See Section 4.10, Page 160).

3.5.2 Incompletely Specified Boolean Functions

For larger algebras, the interval-based approach has one additional advantage: By
specifying the set of possible functions as an interval of a Boolean algebra, we are
guaranteed that all elements will be Boolean functions. This problem does not arise
in the case of switching functions, since all possible mappings are Boolean functions.

Of course, representation as a triplet does not work for incompletely specified
Boolean function algebras built on larger base algebras B. This

is because each discriminant can be any member of the base algebra B, not just
0 and 1. For example, if B is the base (or carrier) algebra 0, one would
need an analogous quintuple: to represent the set of minterms with discriminants
equal to 0, to represent the set of minterms with discriminants equal to to
represent the set of minterms with discriminants equal to to represent the set
of minterms with discriminants equal to 1, and to represent the set of minterms
with discriminants whose value is not specified, and can be chosen to optimize the
representation.

The interval notation, on the other hand, works equally well for arbitrarily large
base algebras.

108 Chapter 3. Boolean Algebras

3.6 Notes

Detailed treatments of Boolean algebras can be found in [133, 251, 134, 235, 171, 44,
163]. In particular, Kurshan’s book [163] is especially relevant to verification, given
his treatment of subalgebras and the “Lifting” lemma6. Brown’s book is especially
relevant to the synthesis context, and makes an excellent reference book. The theory
of Don’t Cares in logic synthesis had it’s beginning in the early publications by
Muroga [164, 148]. Use of this theory became widespread due to the work by Brayton,
Hachtel, and Sangiovanni-Vincentelli and their students, especially Rudell. Key early
publications were the papers by Bartlett, et al [16,15] appeared, followed by Muroga’s
transduction paper [204].

3.7 Summary

If you gave this chapter a careful reading, and went through a selection of the solved
problems of Section 3.8, you should be comfortable with:

1.

2.

3.

4.

Sets and Venn diagrams, binary relations and functions, partitions and equival-
ence classes.

Reflexivity, symmetry, antisymmetry, and transitivity of binary relations.

Three important kinds of reflexive binary relations: equivalence classes, partial
orders, and compatibility relations.

The hierarchical relationship between partial orders, lattices, and Boolean al-
gebras.

Equivalence relations are one of the cornerstones in the theoretical foundation of FSM
synthesis and formal verification. They will be a principal focus of the treatment
of state minimization of completely specified FSMs in Chapter 7.1. Compatibility
relations play a similar role in the discussion of state minimization for incompletely
specified machines, the subject of Section 8.1 of Chapter 8.

Since Boolean algebras are based on lattices and partial orders, the theory of
partial orders permeates the entire book.

We have treated “large” Boolean algebras and subalgebras, and have shown how
logic synthesis “lives” in the world of the “large” Boolean algebra, of

switching functions. We have related intervals and subalgebras of
to don’t cares and sets of permissible functions, which play prominent in logic syn-
thesis algorithms.

3.8 Problems

1. For an arbitrary set S, which of the following statements are true?

6 This topic is treated in the chapter on Finite Automata — see Section 9.5.1.

3.8. Problems 109

Solution. Both statements are true. Indeed, the empty set is a subset of all
sets. Hence it is a subset of and S. The latter implies that

2. Using the fact that for any set T, show that there is only one empty set.
Solution. Suppose there are two distinct empty sets, and Then it must
be and But this is equivalent to contradicting the as-
sumptions that the two sets were distinct.

3. How many relations are there from an set to an set?
Solution. Suppose the two sets are P and Q. Since a relation from P to Q is
a subset of the Cartesian product P × Q, we have to count the number of sub-
sets of P × Q. But P × Q has hence, has elements.

4. Decide, for each of the following sets of ordered pairs, whether the set is a
function.

and are people and is the mother of }

and are people and is the mother of }

and are real numbers and }

Solution. Relation is not a function, because a mother may have more
than one daughter. Relation is a function, because a daughter has exactly
one mother. Relation is not a function: It describes a circle of unit radius.

5. Consider the following binary relation on defined by

Is

(a)

(b)

(c)

(d)

(e)

(f)

(g)

reflexive?

symmetric?

antisymmetric?

transitive?

a partial order?

an equivalence relation?

a function?

Solution. Relation is:

(a) Non reflexive (is missing);

110 Chapter 3. Boolean Algebras

(b)

(c)

(d)

(e)

(f)

(g)

non symmetric (there is but is missing);

non transitive (there are and but is missing);

non antisymmetric (there are both and);

not a partial order;

not an equivalence relation;

not a function (for instance, appears as first element in two pairs).

6. For each case below, give a binary relation on satisfying the
given conditions.

(a)

(b)

(c)

(d)
(e)

is reflexive and symmetric but not transitive;

is reflexive and transitive but not symmetric;

is not reflexive or symmetric but is transitive;

is reflexive but neither symmetric nor transitive;

is neither symmetric nor antisymmetric.

7. Let Show that is a partial order if and only if is
a partial order, by verifying that is reflexive, antisymmetric, and transitive
if and only if is so.
Solution. To prove that has the antisymmetric property if and only if
has it, one proceeds as follows:

is equivalent (by definition) to

which can be rewritten as

The other properties can be proved similarly.

8. Find for:

Is a partial order?
Solution.

is a partial order. (See Problems 6 and 7.)

3.8. Problems 111

9. For the following equivalence relation over

what is the equivalence class of (See Section 3.1.3.)

10.

11.

(a)

(b)

Enumerate the total number of possible partitions of a 3-element set.

Enumerate the total number of possible partitions of a 4-element set.

As defined in Definition 3.1.2, given two partitions and of a set S, is
a refinement of if each block of is a subset of a block of Show that
refinement is an antisymmetric relation on the set of all partitions of S.
Solution. If is a refinement of then for each block of there is
a block of such that If also is a refinement of then

must be contained in a block of However, implies
Since the blocks of a partition are disjoint, this implies Hence

or equivalently Hence each block in one partition has
an identical block in the other partition and

12. Consider the relation defined over the set of the positive integers by: if
and only if For instance, Is

(a)

(b)

(c)

(d)

(e)

(f)

(g)

reflexive?

symmetric?

antisymmetric?

transitive?

a partial order?

an equivalence relation?

a function?

13. An example of equivalence relation on the set of the natural
numbers is equality modulo 3. Give the partition induced by this equivalence
relation.
Solution.

14. Write, in the form of set of pairs, the partial order described by the Hasse
diagram of Figure 3.10.
Solution. The set of pairs is:

112 Chapter 3. Boolean Algebras

15. Consider the relation on the positive integers “ is less than or equal to ”
What is the greatest lower bound of and What is the least upper bound?
Is the relation a lattice? Is it finite? Specifically, what is the greatest lower
bound (or meet) of 64 and 56? Explain.
Solution. The greatest lower bound is the smaller of and The least upper
bound is the larger of the two. If then both and are both greatest
lower bound and least upper bound. The relation is a lattice, because, given
two positive integers, we can always find which one is greater. It is an infinite
lattice, because the positive integers form an infinite set. Finally, the meet of
64 and 56 is 56.

16. Consider the partial order

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Give the Hasse diagram for this partial order.

Is it a lattice?

Is it a Boolean algebra?

Find

Draw the Hasse diagram for

Is a lattice?

Is a Boolean algebra?

Explain.

17. Which of the Hasse diagrams of Figure 3.11 represents a lattice? Explain.
Solution. The diagram on the left does not correspond to a lattice. Indeed,
and have no meet. The diagram on the right, on the other hand, corresponds
to a lattice, because meet and join are defined for all pairs.

18. Consider the lattice of Figure 3.12.

(a)

(b)

Is it complemented?

Is it distributive?

3.8. Problems 113

(c) Is it a Boolean algebra?

Explain.

Prove or disprove the following identities for Boolean algebras, without using
truth tables. For those equalities that are not identities, give a counterexample.
For those that are identities, say what theorems can be applied to prove the
identities.

(a)

(b)

(c)

(d)

(e)

Solution.

(a)

(b)
(c)

(d)

(e)

by applying the
definition of exclusive or, idempotency, absorption, and

Absoprtion, since

Consensus.

Distributivity and idempotency.

Not an identity. The right side contains the term while the left side
does not.

19.

114 Chapter 3. Boolean Algebras

20. Consider the points of the discrete Cartesian plane where I = {0,1,2,3,4}.
Define an ordering relation as follows: if and only if
and Then is a partial order.

(a)

(b)

(c)

Draw the Hasse diagram for this partial order.

Is it a lattice?

Is it a Boolean algebra?

21. Prove, without resorting to duality, the second of the two distributive inequal-
ities for lattices:

22. Draw the Hasse diagram for the following partial order:

23. Show that any subset of a poset is itself a poset, relative to the same inclusion
relation. (Use the definition of poset.)
Solution. Using the same inclusion (or ordering) relation, means that we keep
all the pairs of the original relation such that both elements are from the subset
being considered. We prove that the subset satisfies the transitive property:
The other two properties can be proved similarly.

If does not have the transitive property, then there are two pairs
and in the restriction of the relation to S and there is no This,
however, is impossible since the presence of and in P implies that

is also present, and the construction of the reduced relation would include
since both and belong to S.

24. Let S = {1,2,..., 10}. Let be a binary relation on S defined if
Is a poset? Why or why not? What about where X = {1,2}?

Draw the Hasse diagram for each of these two partially ordered sets.25.

(a)

(b)

S = {1,2,3,5,6,10,15,30}
divides

What do you notice by comparing the structure of these two graphs?
Solution.

3.8. Problems 115

The two graphs are isomorphic, i.e., they have the same structure. This is an
example of application of Stone’s representation theorem.

26.

27.

For the poset of Figure 3.13, write the ordering relation in the form of set of
ordered pairs.

Is the poset of Figure 3.14 a lattice? Is it distributive? Is it complemented? Is
it a Boolean algebra?
Solution. The poset is a lattice, since all pairs of elements have both meet and
join. For instance, the meet of and is 0 and their join is 1. This shows that
is a complement of and vice versa. The lattice is indeed complemented (every
element has at least one complement), but it is not distributive. For instance,

Therefore the lattice is not Boolean. This conclusion is in agreement with
Stone’s representation theorem that says that there are no Boolean algebras
with six elements. Also, the complement of some elements is not unique (

116 Chapter 3. Boolean Algebras

and are all complements of).

28. Consider the lattice of the pairs of real numbers with the ordering relation:

if and only if and

Find:

(a)

(b)

The meet of (4,14) and (3,6);

The join of (4,14) and (3,6).

29.

30.

Has the lattice of Problem 28 a greatest element? Explain.

Is the lattice of Problem 28 distributive? Explain.
Solution. We shall prove that

The validity of the other distributive law will then follow by duality. We have:

We now prove that:

The proof for the is similar. We proceed by a case analysis. To reduce the
number of possible cases we need to consider, we observe that Equation 3.1 is
symmetric in and That is, if we exchange the two variables and make use
of the commutativity of min and max, we obtain Equation 3.1 again. Because of
symmetry, it is sufficient to consider only the case in which Therefore,
there are only three cases that must be examined:

The ‘lhs’ column gives the value to which the left-hand side of Equation 3.1
evaluates; the ‘rhs’ column gives the value to which the right-hand side of
Equation 3.1 evaluates. These two columns are identical; hence our proof is
complete.

31. Which of the Hasse diagrams in Figure 3.15 represents a lattice? Explain.

3.8. Problems 117

32. Is the lattice of Figure 3.16 complemented? Distributive? A Boolean algebra?
Explain.
Solution. From Stone’s representation theorem, we immediately conclude that
the lattice is not a Boolean algebra, because it has five elements. It is also easy to
see that and have no complements; hence the lattice is not complemented.
The distributive property requires more work. As usual we choose one of the
two forms and rely on duality for the other. Specifically, we consider

First of all, we note that for or the property is verified,
no matter what and are. This is true in all finite lattices, as one can easily
verify by substitution in Equation 3.2. Similarly, distributivity holds whenever

or or or The cases that remain to be examined are
therefore those in which and are all different from 0 and 1. Furthermore,
we can reduce the amount of work needed by noting the symmetry of and in
Equation 3.2 and of and in our lattice. Distributivity also holds in all lattices
when two variables have the same value; for instance, by
absorption and idempotency. All things considered, the cases we must examine
are the following:

Therefore, the lattice is distributive.

118 Chapter 3. Boolean Algebras

33.

34.

Is the lattice of Figure 3.17 a Boolean algebra? Explain.

With the help of the following lattice, prove that:

is not an identity in all complemented lattices (i.e., find a counterexample).

35. Prove (or disprove) the following identities for Boolean algebras, without using
truth tables. For those equalities that are not identities, give a counterexample.
For those that are identities, say what theorems can be applied to prove the
identities.

Examples:
(a) Not an identity: Take and

(b) Identity: Apply DeMorgan’s.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

3.8. Problems 119

36. Is the statement

if and only if or

valid in all Boolean algebras? Comment.
Solution. The statement holds for the switching algebra, but not for larger
Boolean algebras. Consider We have and yet

This illustrates the case that there are propositions that are only valid in switch-
ing algebra, but not in all Boolean algebras. Remember, however, that all iden-
tities that are valid in the switching algebra are valid in all Boolean algebras.

37. Is the following expression an identity in a Boolean algebra?

Solution. We shall present two different ways to solve the problem. First we
apply the theorem

The second approach is based on applying the consensus theorem to the right-
hand side of the inequality:

We can now observe that all terms on the left are contained in one term of the
right. In both cases we conclude that the expression is an identity.

38. Simplify, when possible, the following formulae by applying the consensus the-
orem.

(a)

(b)

(c)

(d)

Solution.

(a)

(b) cannot be simplified by application of the consensus
theorem;

120 Chapter 3. Boolean Algebras

(c)

(d)

39. Let stand for (The symbol means “implies.”) Is implication
associative in a Boolean algebra? (In other words, is

Explain.
Solution. Implication is not associative. Indeed,

40.

41.

42.

43.

44.

45.

Let stand for (This is the exclusive or.) Is associative?
Does distribute over (I.e., Explain.

Prove that 0 is the identity for (i.e.,).

Let be an additive inverse of if and only if Prove or disprove
that in a Boolean algebra the only additive inverse of is itself.

[Hint: The proof that is an additive inverse is immediate. To prove that is
the unique additive inverse, let be an additive inverse and, by applying the
definition of additive inverse and the properties of Boolean algebras, show that
it must be]

Let be a multiplicative inverse of if and only if (Note that 1 is the
multiplicative identity, i.e.,) Does every element of a Boolean algebra
have a multiplicative inverse? Explain.

One can easily see that

and similarly that

In the first case, makes even though In the second
case, a counterexample is obtained with

Prove, without using truth tables, that

that is, if both (3.3) and (3.4) hold, then

[Hint:]

Simplify, when possible, the following formulae by applying the consensus the-
orem (and possibly absorption).

3.8. Problems 121

(a)

(b)

(c)

(d)

46. Enumerate the functions in the interval [0, in Figure 3.8.
Solution. There are eight functions in the interval:

47. Given the function interval in the switching algebra B = {0, 1},
find the three completely specified functions and that describe I.
Solution.

48.

49.

Given and find such that and describe an
incompletely specified function; and compute the interval corresponding
to that function.

Consider the Boolean algebra of Boolean functions of 2 variables and
over the Boolean algebra and consider the Boolean function

defined by the minterm canonical form

(a) Give the complete truth table (Hint: there are 16 pairs in the Cartesian
product B × B).

(b) How many functions are there in the interval of this
Boolean function algebra?
Solution. For part (a) we give the truth table:

The truth table is obtained efficiently by noting that

122 Chapter 3. Boolean Algebras

For part (b) we wish to count the functions such that
Since any function can be written in the minterm canonical form

and we must have that This leaves just
|B| = 4 ways to choose each of and Thus there are
functions less than the upper bound of the specified interval.

Similarly, every function in the interval must contain so the functions 0
and are excluded. Looking again at the minterm canonical form, this
leaves just 2 ways to select |B| = 4 ways to select and and 1
way to select so there are altogether 2 × 4 × 4 × 1 = 32 functions in the
interval.

Another way to solve the problem is to count levels in the lattice. There are
element functions in the Boolean function algebra, so

the lattice has 9 levels altogether. The upper bound is on level 7, since it
has 6 atoms: Similarly
0 is the unique element on level 1, and the atom (minimal non-zero element)

must be on level 2. Since every interval of a Boolean algebra is also a
Boolean algebra, this leaves functions in the interval.

50. (a)

(b)

How many functions from to B are there, if

What fraction of them are Boolean?
Solution. There are functions or from to B. Of them, or

are Boolean. Therefore the fraction of functions that are Boolean is

51. Expand the following functions with respect to

(a)

(b)

(c)

Solution.

(a)

(b)

(c)

3.8. Problems 123

52. Using the expansion theorem, prove that for a 1-variable Boolean function

Solution. By expanding the left-hand side around we get:

It is also possible to expand with respect to and

This second approach illustrates the following general fact:

53.

54.

55.

Let and be single-variable Boolean functions. For each of the following
cases, express and as simplified formulae involving
and

(a)

(b)

Using the expansion theorem, prove or disprove that for a Boolean function

Using the expansion theorem, prove that:

Solution.

124 Chapter 3. Boolean Algebras

56. Consider the Boolean algebra whose carrier is with Write
the minterm and maxterm canonical forms for the following function of two
variables:

Solution. The minterm canonical form is:

while the maxterm canonical form is:

after performing trivial simplifications.

57.

58.

59.

Find the minterm and maxterm canonical forms for the following functions by
repeated application of the expansion theorem. (Assume)

(a)

(b)

(c)

Draw the lattice of the Boolean functions of one variable over the Boolean
algebra

[Hint: Count the number of functions in the lattice and use Stone’s represent-
ation theorem to see that your solution should be isomorphic to the lattice of
Figure 3.7.]
Solution. The lattice has points. Hence it is isomorphic to the the
lattice of Figure 3.7. It is given in Figure 3.18.

Let Is the following mapping from B to B a Boolean function?
Explain.

Solution. If the mapping corresponds to a Boolean function, then it must agree
with the minterm canonical form: However, for the
minterm canonical form gives a value of instead of 0. Therefore, the mapping
is not Boolean.

3.8. Problems 125

60. Which of the following functions from B to B, () are Boolean?

61. Is a non-empty interval?

Solution. No, because

62. Let . How many Boolean functions are there that
satisfy the condition

for all Do not determine the functions explicitly.

63. For B = {0, 1}, list all the functions of and contained in the interval

Solution. There are four functions: 0,

64. For the incompletely specified switching function represented by the following
truth table.

126 Chapter 3. Boolean Algebras

(a)

(b)

find the corresponding interval of switching functions;

find the corresponding triplet and

65. For the incompletely specified switching function represented by the following
triplet

(a)

(b)

find the corresponding interval of switching functions;

find the corresponding truth table.

Solution. The lower bound is and the upper bound is (or). Hence
the interval is:

The truth table is:

66. For the incompletely specified switching function represented by the following
interval

(a)

(b)

find the corresponding truth table;

find the corresponding triplet and

67.

68.

Given the function interval on the switching algebra B = {0, 1},
find the three completely specified functions and that describe I.

Given and find such that and describe an incom-
pletely specified function; and compute the interval corresponding to that
function.

Chapter 4

Synthesis of Two-Level Circuits

As we saw in Chapter 2, there are several points to be considered in formulating a
synthesis problem:

Specifications. Formal specifications are required as the starting point for
synthesis. Behavior as well as constraints should be expressed. In the behavior
specification, we should try to capture all possible degrees of freedom, to provide
the algorithms with the largest search space that is possible.

Constraints. Constraints may concern speed, testability, types of available
packages, power dissipation, reliability, etc. Whenever possible, we try to in-
corporate the constraints in the algorithmic formulation of the problem.

Cost Function. Should take into account as many factors as possible: cost of
fabricating the chip, cost of testing it, cost of the package, etc. Each component
of the cost depends on many factors, that are often difficult to estimate from the
specifications. We shall see that we often resort to fairly crude approximations
of these factors.

4.1 Design Optimality

As in the design of most complex systems, circuit designers usually have to tradeoff
one design objective for another. Synthesis tools and designers try to make this
tradeoff optimally, as discussed briefly in Section 1.4.1. We treat this subject at
greater length here.

For example, often a designer tries to find the fastest possible circuit equivalent to
a given previously designed circuit. It is often the case that overall power dissipation
is strongly correlated to delay, so in seeking a faster circuit he is willing to incur a
power dissipation penalty. Low power may itself be a paramount design consideration,
as it is in portable computers and telecommunication devices.

However, to meet this objective, he may or may not have settle for a larger circuit.
This is a typical design tradeoff, but how does he know he cannot improve both area
and speed? The answer to this question depends on the optimality of the existing
design. A typical design process is illustrated in Figure 4.1. In the figure, the original
infeasible design (Design 0)is marked by an ellipse, the feasible design (Design 1) is

127

128 Chapter 4. Synthesis of Two-Level Circuits

represented by an small open square, and the optimal designs (Designs 2 and 3) are
marked by circles. Typically the design starts out as a sub-optimal “first cut” design,
which is furthest from the optimal tradeoff curve (solid line) shown in the figure. If
the initial design is sub-optimal, it will be possible to redesign the circuit so as to
decrease both delay and area, as in the design move from Design 0 to Design 1. As
the design is improved, successive redesign iterations leave the design closer to the
tradeoff curve, until a design is reached for which any attempt to increase speed (that
is, decrease delay) will result in increased area. The locus of such points is called the
Pareto Critical Set [208], and is represented by the solid curve.

At this point, the designer must establish his or her own priority, or design policy.
If as is often the case, speed is the paramount consideration, the designer will continu-
ally iterate the design until a satisfactory speed objective is reached. In this process,
the design moves along the critical set to the right.

Often however, the circuit eventually meets an area upper bound constraint
For example, if the design becomes to large, it won’t fit on a single chip. In this case,
the design finalizes on the design point at the lower right. Sometimes, the designer
finds that subsequent decreases in delay are not worth the area penalty they incur,
so an intermediate point like the design point on the central “knee” of the curve is
chosen.

It is sometimes the case that low area is the paramount design objective, so the
uppermost (optimal) design point is to be chosen. Also it may be the case that delay
and power are not really well correlated, so the optimal tradeoff curve becomes a
3-dimensional surface.

In any event, the purpose of logic synthesis tools is to aid the designer in reaching
the optimal tradeoff curve. It is to be emphasized, however, that only the designer
can set the priority for trading off area for delay and/or power dissipation.

Another complication is the issue of testability. The process of determining the
testability of a design and finding all the appropriate tests (Cf., Chapter 12) for an
adequate level of product assurance may be so expensive, so that design with 100%
testability is sought. The family of such designs has its own tradeoff curve, generally
higher that the optimal tradeoff curve, as illustrated by the dashed line in Figure 4.1.

Designs on this curve are likely to be redundant. For example, a carry-look-ahead

4.2. Two-Level Logic 129

adder has extra circuitry to get a fast output carry even though the carry propaga-
tion circuitry of a simpler ripple-carry-adder is still necessary for logic functionality.
“Synthesis for Testability” tools exist whose main objective is to get onto (and stay
on) this second tradeoff curve — for example, such tools might stop Design 1, the
interior feasible point of the design curve, often generating all the required tests as a
byproduct of this optimization.

Synthesis algorithms deal with a model of the problem, rather than the problem
itself. If we want to use synthesis, we have to perform a modeling step, that converts
the most important features of the design problem into features of the (mathematical)
model.

We begin by looking at a restricted style of design for combinational circuits—two-
level implementations—and its associated model. In spite of the restriction of two-
level logic, we shall be able to derive techniques that are of very general applicability
in synthesis.

4.2 Two-Level Logic

Two levels of logic are the minimum required to implement an arbitrary Boolean
function. Here we assume that the primitives are AND and OR gates. AND gates
are used at the first level and OR gates are used in the second level. Inverters may
be present at some inputs of the gates of the first level, but we shall not count them
as an additional level. Other choices are possible. In particular we could reverse the
role of AND and OR gates, we could use all NAND gates or all NOR gates, or we
could employ XOR gates at the second level. Other choices are possible as well.

There are two main reasons why we may want to implement a circuit in two levels,
rather than multiple levels:

Speed;

Simplicity.

The delay of a network depends on several factors. The numbers of logic stages a
signal must go through is among the important ones. So, two-level implementations
tend to be fast. Notice, however, that reducing the number of levels may increase the
fanin and fanout counts of gates. This may adversely impact speed.

Simplicity comes in two flavors with two-level networks. Two-level networks are
easier to design and analyze, because the solution space is greatly restricted, and are
easier to implement, because there are simple implementations schemes.

Historically, two-level circuits have been popular in the fifties, because they were
the only circuits for which effective systematic design procedures were known. The
algorithms for the optimum implementation of two-level functions were developed in
the early fifties [221, 222, 188].

About twenty years later, the interest in the field was re-kindled by the advent
of programmable logic: PLAs and PALs [101]. PLAs and PALs offered flexibility
as well as the ability to automate a large part of the design, or even to customize
the function on the field (especially PALs). Figure 4.2 shows the organization of an
NMOS NAND-NAND PLA, that was popular in the seventies and early eighties.

130 Chapter 4. Synthesis of Two-Level Circuits

This particular architecture was fast and compact, though limited in the maximum
number of inputs.

4.2.1 Cost Functions for Two-Level Implementations

Back in the fifties and sixties, it was customary to evaluate an implementation accord-
ing to the number of diodes required to fabricate it. Later, people began using the
number of gates and the number of gate inputs as criteria. This was a good reflection
of the cost of the circuit in technologies like TTL.

In PLAs the area is primarily related to the number of product terms, which
is in one-to-one correspondence with the number of rows of the array. So, in the
seventies, the number of product term became a popular way to measure the cost
of an implementation. Notice, however, that speed, testability, and folding (a layout
optimization technique sometimes used with PLAs), all benefit from a sparser array.
Hence, it is advantageous to use the number of gate inputs as a secondary criterion.

The advent of CMOS1 and semi-custom design methodologies has marked a de-
cline in the popularity of PLAs and PALs. (The former replaced by standard cells,
the latter by more sophisticated forms of programmable logic like FPGAs.) When
implementing a circuit with standard cells, it is customary to use multi-level imple-
mentations. The cost of a multi-level implementation is not directly related to the
cost of an equivalent two-level circuit, but the role of the two-level techniques is still
important, as we shall see. The most widely used model for the optimization of multi-
level logic is actually a network whose nodes represent functions. These functions
are often represented as two-level circuits. More on this in Chapter 10.

When minimizing a piece of logic for a subsequent multi-level implementation,
the cost function tries to guide the optimization process towards a function that can

1CMOS PLAs must be dynamic in order not to draw static current; however, semi-custom design
styles favor static circuitry.

4.2. Two-Level Logic 131

be easily factored. It turns out that minimizing for number of gates and gate inputs
normally provides a good starting point, especially for the testability properties of
the resulting circuit.

4.2.2 Minimality and Testability

The previous overview shows that, with the partial exception of the diode count, the
number of gates and the number of gate inputs has enjoyed a fairly constant success
as a measure of the cost of a two-level implementation. One additional reason that
we should mention is related to the concepts of testability and irredundancy.

Since a proof of correctness cannot be obtained from a black-box experiment,
the testing of digital circuits is normally accomplished by checking each part for a
predefined list of possible defects. Test generation is the process of finding the input
sequences that cause the defect to manifest itself at the output of the circuit, in the
form of errors.

As with synthesis, a good deal of modeling is required, so that the process may be
carried out successfully for non-trivial devices. In particular, one idealizes to some
extent the defects that may actually occur in a circuit. The most popular fault model
is the so-called stuck-at (stuck-at-0, stuck-at-1) fault model. A stuck-at fault occurs
when a connection (either a gate output or a gate input) is permanently stuck at
one of the two logic levels. A multiple stuck-at fault is the simultaneous presence of
several single stuck-at faults. From this point on we shall consider single faults unless
otherwise specified. The tasks of identifying and generating tests for stuck-at faults
will be discussed in detail in Chapter 12 — here we limit our discussion to a brief
treatment of the connection between logic optimization and testability.

Notice that a stuck-at fault may be seen as transforming a circuit into another
circuit of lower cost, according to our cost function. If there is no test for a given
fault, then the fault is untestable. The connection affected by the fault is redundant,
since the circuit can be simplified by removing the the connection itself. This link
between redundant connections and untestable faults is the reason why we sometimes
refer to redundant (or irredundant) faults.2

It is desirable to have 100% testable circuits (albeit for a restricted fault model):
Hence it is good for the cost function to reflect the testability of the circuit. Specific-
ally, if a circuit has untestable faults, then there is a cheaper (according to the cost
function) implementation, which is more testable. Hence, a minimizer that can find
at least a local minimum, will produce a 100% testable circuit.

For example, suppose we are given a 3-Level circuit consisting of gates
and where gate is characterized be the equation
Suppose the primary outputs of the circuit are and and the circuit connectivity
is implied by the specification

Here and are the primary inputs, and means the complement of the first
2 We just note in passing that things are more complex in sequential circuits.

132 Chapter 4. Synthesis of Two-Level Circuits

primary input. To test for the fault “input of gate stuck-at 1”, we would (in
principle — in practice there are much more clever techniques) simply compare this
circuit to a faulty circuit. This faulty circuit is identical to the original except that the
connection from gate to gate is replaced by a connection to 1 (as if this particular
wire had been shorted to the power supply voltage). In the comparison we try
to find a particular primary input combination, called a test or test pattern for
which the two circuits have at least one output with different logic values.

Now consider the environment of gate in the example circuit. In the input
space of variables and one can see that since is an exclusive OR gate,
can’t be positive while and are both positive or both negative. Consequently,
the input minterms and are in the satisfiability don’t care set

for gate — that is, these input combinations never occur. This
has been discussed in Section 3.4. Thus it is easily seen that this fault is untestable,
and therefore the literal in the logic function of gate is redundant.

The point here is that the process of identifying a redundant literal for optimization
purposes is formally identical to that of testing for an input stuck-at fault. In fact we
are assured that under certain assumptions about circuit cost (as discussed above), if
we synthesize an area-optimal circuit, we shall be guaranteed that it is 100% testable
for stuck-at faults.

In the above example it follows that and therefore the following specific-
ation, with only two gates and 5 literals, is equivalent to the original, which had 3
gates and 12 literals.

4.3 Sums of Products and Products of Sums

We now begin examining the minimization of two-level Boolean formulae. This is
what normally people call “minimizing Boolean functions” and we shall also occa-
sionally say so, since no ambiguity will arise. At this point it should be clear that our
objective is to find the simplest two-level formula that represents a given function.
The formula is related to a circuit that implements the given function. Simplicity is
measured, as we discussed in Section 4.2.1, with respect to the number of gates and
gate inputs of the circuit.

Our first step is to define formally what we mean by two-level formulae. Formulae
consist of constants, variables, parentheses, and operators, combined according to the
recursive definition we have seen. A letter is a constant or a variable. A literal is a
letter or its complement. For instance, for B = {0,1} and variables 0,1,
are letters and 0,1, are literals. For simplicity, we give the following
definitions for the switching algebra only; this is the case we are most interested in.

A product term (or product, or simply term) is a formula of one of the following
forms:

1;

a non-constant literal;

a conjunction of non-constant literals where no letter appears more than once.

4.3. Sums of Products and Products of Sums 133

A sum term (or sum, or alterm, or clause) is a formula of one of the following forms:

0;

a non-constant literal;

a disjunction of non-constant literals where no letter appears more than once.

For example, is a product term, is a sum term and is both. On
the other hand, and are neither product terms nor sum terms. A sum of
products formula is one of the following:

0;

a product term;

a disjunction of product terms.

Likewise, a product of sums formula is one of the following:

1;

a sum term;

a conjunction of sum terms.

For instance,

is a sum of product formula for The product of sums dual to (4.1) is
Sum of products is abbreviated SOP or and is also called

disjunctive normal form (DNF). Product of sums is abbreviated POS or and
is also called conjunctive normal form (CNF).

The cost of a SOP formula is determined by the number of product terms and
the number of literals. The cost of a POS formula is determined by the number of
sum terms and the number of literals. If two SOP formulae have the same number of
terms, then the one with fewer literals is cheaper. Likewise for POS formulae. It is
also meaningful to compare the cost of a POS formula to the cost of a SOP formula.
Indeed, every time we use a technology where the cost of a POS implementation is
comparable to the cost of a SOP implementation of the same (abstract) cost, we should
derive the best possible POS and the best possible SOP for the function and compare
them. The cost of the SOP formula (4.1) is 3 terms and 6 literals. One can verify
that the same function can be represented by the POS formula
whose cost is 2 terms and 4 literals.

A two-level formula is either a SOP or a POS. The two forms are one the dual of
the other. This is very important, since it allows us to describe all our theorems and
algorithms for SOP formulae, without loss of generality. A computer program does
not need to know whether a formula is a SOP or a POS in order to find the cheapest
equivalent formula of the same kind.

134 Chapter 4. Synthesis of Two-Level Circuits

4.4 Implicants and Prime Implicants

An implicant of a function is a product term that is included in the function
For instance, both and are implicants of

A prime implicant of is an implicant of that is not included in any other
implicant of One can easily see that if is not prime, then it is possible to obtain
another implicant of by removing one of the literals from With reference to the
previous example, is prime, whereas is not. Indeed, it is possible to remove

from the latter to get which is a (prime) implicant of the given function. It is
also possible to remove to get

If a prime implicant is an implicant which includes a minterm that is not included
in any other prime implicant, then that prime implicant is essential. In the previous
example, both and are essential primes, whereas is not.

4.4.1 Quine’s Prime Implicant Theorem

The key result for the minimization of two-level formulae is due to Quine [221].

Theorem 4.4.1 A minimal SOP must always consist of a sum of prime implicants
if any definition of cost is used in which the addition of a single literal to any formula
increases the cost of the formula.

The proof of this theorem is fairly simple. One assumes that a minimum-cost formula
exists, that contains a non-prime implicant. One then shows that another formula can
be obtained by replacing the non-prime implicant by a prime implicant that contains
it. The cost does not increase and the formula is equivalent to the original one.

As an example, consider We know that is a prime implicant of
and it includes We can then rewrite as thereby saving one literal.

The consequence of the Prime Implicant Theorem is that we can focus on only
those formulae that are composed of prime implicants. If we want to guarantee the
optimality of the solution, we need to choose from all primes. Therefore, as the next
step we analyze how to derive all the prime implicants of a given function. Later, we
shall see how to select a subset of minimum cost from all the prime implicants.

Efficiency in deriving all primes is important, if we want to handle functions with
more than a few inputs. The number of the prime implicants is indeed smaller in gen-
eral than the number of implicants for a given function, but still grows exponentially
with the number of inputs in the worst case.

4.5 Iterated Consensus

Two common methods to generate prime implicants are based on applying the con-
sensus theorem. Brown [44] notes that Blake [25] called the consensus of two terms
their syllogistic result. To understand why, we take a short digression that will be
useful in the future.

4.5. Iterated Consensus 135

4.5.1 Consensus and Implications: A Digression

In logic, (read implies) is a proposition that is true if is true whenever
is true. If is false, then the proposition is true, regardless of the value of

Therefore

as one may find out by examining all possible cases or just from the previous discus-
sion.

Let us consider the famous syllogism “Socrates is a man; all men are mortal;
hence Socrates is mortal.” Skipping a few formal steps, we can write it as

where is the truth value of the proposition “to be Socrates;” similarly for and
If we now rewrite it using (4.2), we get

But now we see that the implied term—the conclusion of our syllogism—is actually
the consensus term of the two premises.

The important thing to keep in mind from this example is Equation (4.2) that we
shall use liberally in the mathematical formulation of problems.

4.5.2 The Tabular Method of Computing the Prime Implicants

We are given an initial SOP formula and we want to find another SOP formula that
is the sum of all prime implicants of the function represented by the initial formula.

One way to achieve our goal is to first express the function in minterm ca-
nonical form. We then consider all pairs of adjacent terms, i.e., the pairs of terms
to which consensus can be applied. The consensus terms are clearly implicants of
though not necessarily prime. All terms that were used to form these new terms are
included in the new terms, and hence they are not prime. We mark them as such.

We now take the new terms and repeat the process. We only consider pairs of
terms that differ in exactly one letter, which must appear complemented in one term
and uncomplemented in the other.

The process is repeated until no more consensus terms can be found. All terms
that are absorbed (or contained) by the new terms are marked. Finally, the terms
that are not marked constitute all the prime implicants of

Calculations by hand are better carried out with the help of a table like the one
in Figure 4.3. To compute the complete sum for we
initially compute its minterm canonical form:

The minterms appearing in the canonical form are entered in the leftmost column.
Notice the grouping of the terms that minimizes the number of comparisons. Each
group of minterms separated by a horizontal line is composed of minterms with the
same number of uncomplemented literals. Hence, the first group consists of the only
minterm with no uncomplemented literals. In general, some groups may be empty.

136 Chapter 4. Synthesis of Two-Level Circuits

The separation into groups allows one to compare a minterm of a group only to
minterms of the immediately successive group. Indeed, these are the only minterms
that may be adjacent to it. (We do not need to consider the minterms in the immedi-
ately preceding group, because this would only cause us to repeat each comparison.)
In our example, for instance, we compare from the fourth group, only to

Their consensus term is Both and are marked: They are
not prime, because there exists another implicant that contains them.

The results of merging pairs of adjacent minterms are implicants of with one
fewer literal than the minterms; they are entered in the second column. These terms
are also divided according to the number of uncomplemented literals and compared
to the terms of the next group. The process is then repeated, until no new terms are
formed. In our example, there are six terms that are not marked at the end of the
process. (They were not used to form any new term.) They are the prime implicants
of

Starting from the third column, it is possible to form an implicant in more than one
way. For instance, can be obtained by merging and or by merging

and
If the function is incompletely specified, then we shall mark appropriately the

terms that are don’t care, and drop those terms that are generated only with don’t
care minterms. Specifically, a product term is a prime implicant of an incompletely
specified function and is not contained in
any other implicant of In words, a prime implicant of an incompletely specified
function is a prime of that covers at least one element of

All prime computation procedures can be extended to handle incompletely spe-
cified functions. We examine in detail the extension of Quine’s tabular method.
Consider the following example:

4.5. Iterated Consensus 137

In applying Quine’s method, we have to keep track of what implicants have been
formed by merging don’t care terms only.

Initially, we mark with a ‘d’ all the minterms of When we merge two implicants,
we mark the result with a ‘d’ only if both the terms that are merged are marked with
a ‘d.’ The result of the procedure is shown in Figure 4.4.

In this example we see that there are three prime implicants. The term is
entirely contained in hence, it is not a prime implicant.

The tabular method for the generation of prime implicants is due to Quine. Good
accounts can be found in [186, 187].

4.5.3 Iterated Consensus in General

The tabular method is based on the application of the theorem

This theorem, called distance-1 merging, can be seen as a specialized form of con-
sensus, since X is the consensus term of and and contains both. Because
it only uses (4.3), the tabular method is simple and can avoid many comparisons.
However, it requires the minterm canonical form to start with. We want to avoid
expanding the function into minterms for efficiency. Therefore we look for a different
approach, based on the general form of the consensus theorem. We define a com-
plete sum as a SOP formula composed of all the prime implicants of the function
it represents. We can restate the problem of finding all the prime implicants for as
the problem of finding a complete sum for Fortunately, the following result can be
proven.

Theorem 4.5.1 A SOP formula is a complete sum if and only if:

1.

2.

No term includes any other term.

The consensus of any two terms of the formula either does not exist or is
contained in some term of the formula.

138 Chapter 4. Synthesis of Two-Level Circuits

We shall not prove this result (see [186, p. 168] or [44, Appendix A] for that), but
rather suggest why the theorem works.

Suppose a SOP F representing is given that is not a complete sum, because
there is a prime implicant of that does not appear in F. This implicant must be
covered by two or more of the implicants in F. Suppose for simplicity they are two,

and If we add the consensus term of these two implicants, we add one term that
spans the border of and and therefore may cover the missing prime implicant.
(It will actually cover it, if and are prime.)

The theorem and the discussion following it suggest a simple procedure to gen-
erate all the primes of a function, called iterated consensus. One starts from an
arbitrary SOP formula and adds the consensus terms of all pairs of terms that are
not contained in some other term. The new terms are compared to the existing terms
and among themselves to see if new consensus terms can be generated. All terms
that are contained in some other term are removed. When no further changes are
possible, a complete sum is generated.

As in the tabular method, a clever organization of comparisons can substantially
reduce the amount of work. In particular it is convenient to compare every term only
to the terms that precede it in the formula. This prevents duplicate operations and
also takes care naturally of the addition of new terms.

As an example, consider the computation of the complete sum starting from the
following SOP formula:

We begin by comparing the second term to the first. We append the consensus term
to the formula, obtaining:

We then compare the third term to the first and second terms. The latter
gives a consensus term that we append to the formula:

Nothing happens when we compare the fourth term to those that precede it.
Finally, when we compare the last term to we remove the latter, because it
is included in the former. This terminates our computation. The resulting complete
sum is:

4.6 Recursive Computation of Prime Implicants

Another property of complete sums is given by the following theorem.

Theorem 4.6.1 The SOP obtained from two complete sums and by the fol-
lowing procedure is a complete sum for

1. Multiply out and using the idempotent and distributive properties and

4.6. Recursive Computation of Prime Implicants 139

2. Eliminate all terms that are contained in some other term.

For the proof we refer to [44, Appendix A]. The result generalizes to the product of
complete sums. Since a sum term is a simple case of complete sum, if we start from
a POS formula and apply the procedure of Theorem 4.6.1, we get a complete sum.

As an example, let us consider the following POS formula:

After multiplying out the first two sum terms, we get:

No term of the first sum is contained in any other term, so we continue:

There are now some cases of containment. Once all the contained terms are eliminated
we get the complete sum:

If we are not given a POS formula, we can use the second form of Boole’s expan-
sion theorem to write as the product of two other functions:

This leads naturally to a recursive method where we apply the same procedure to
each of and until they simplify to the point that we
can derive all the prime implicants by inspection.

The simplification is guaranteed to take place, since at every step of the recursion
the number of variables decreases. In the end, we shall find formulae of only one
term, for which it is trivial to compute the complete sum (it is the term itself). When
we return from the recursion, we combine the results of the two sub-problems using
Theorem 4.6.1. We can indicate the complete sum of by and write:

where returns the formula obtained by removing absorbed terms from
For instance,

We shall see many recursive algorithms like this in the sequel. This one in partic-
ular is the algorithm used in ESPRESSO [37] to compute all the primes of a function,
when the exact minimum-cost solution is requested. It is a good thing to spend some
time to familiarize with the operation of this algorithm, especially by visualizing the
recursion tree.

As an example, we now compute the complete sum for

140 Chapter 4. Synthesis of Two-Level Circuits

The recursion tree is given in Figure 4.5. The line numbers in the example correspond
to the node numbers in the tree. When we apply Boole’s expansion, it is important
to choose a good splitting variable. The objective is to minimize the amount of
computation, for instance, by minimizing the number of nodes in the tree. One
way to heuristically achieve that is to minimize the number of terms that appear in
both and This suggests the choice of the variable
that appears in the largest number of terms. Indeed those terms where the selected
variable does not appear, will become part of both sub-problems. By minimizing the
size of the sub-problems, we increase the chance of early termination of the recursion.

4.7. Selecting a Subset of Primes 141

Returning to our example, we chose as initial splitting variable, because it was one
of the best (the other being) according to that criterion. We shall return to this
subject in more depth when we deal with heuristic minimization in Chapter 5.

For an incompletely specified function, we need to expand the procedure we have
seen by actually computing the prime implicants of By so doing, we may
erroneously include in the list of prime implicants some terms that only cover don’t
care minterms. However, all the true prime implicants will be included. We shall
see in Problem 13 that possibly including some terms that do not cover any ‘care’
minterm is not a mistake. In other words, it does not affect the correctness of the
procedure.

4.7 Selecting a Subset of Primes

Recall that Quine proved that a minimum cost SOP formula can be obtained by
considering prime implicants only. Since we know how to generate all the primes
of a function, we now turn our attention to the selection of a subset of implicants
of minimum cost. The approach to minimizing a SOP or POS formula based on
computing all primes and then selecting some of them to form a cover goes under the
name of the Quine-McCluskey procedure. As an example we consider the following
formula:

The complete sum for is

The condition that any subset of primes must satisfy to represent a valid formula of
the function is that each minterm for which the function is 1 (each minterm of the
function for short) be included in at least one implicant of the subset.

A subset of implicants that satisfies this requirement is called a SOP cover of the
function, or simply a cover, when the context prevents ambiguity. We can build a
constraint matrix that describes the conditions or constraints that a cover must
satisfy. Each column of the constraint matrix corresponds to a prime implicant and
each row corresponds to a minterm. Let A be the constraint matrix and let be
the element in row and column Then, if the prime covers the
minterm. Otherwise, In our example, let stand for stand for

for and for A is given by:

Given the constraint matrix, our problem is to find a subset of columns of min-
imum cost that covers all the rows. In other words, for every row there must be at
least one selected column with a 1 in that row.

142 Chapter 4. Synthesis of Two-Level Circuits

Before we proceed with the formal statement of our problem, we note that in our
example, columns and must be part of every solution, because the last two
rows are singletons. If a row is a singleton, there is only one column that may cover
it and that column must be selected.3 When we select some columns, we simplify
the constraint matrix accordingly, by eliminating the selected columns and the rows
covered by them:

Once this is done, we can easily see that a complete solution may be obtained by
adding either or to and In the first case we obtain in the
second, we obtain These are two sums of products of minimum cost
for

Unfortunately, we cannot always find the solution directly, as in the example of
Figure 4.6, whose constraint matrix is:

This function is said to have a cyclic core (which in this case is the function itself).
We shall return to the definition of cyclic core later; for the time being, it is sufficient
to say that a function has a cyclic core if we cannot identify columns that must be
part of the solution or that can be eliminated.

In our example, each row is covered by exactly two columns and each column
covers exactly two rows. There is no apparent reason to prefer one column over
another. For this matrix we must proceed by choosing one column arbitrarily and

3Columns and correspond—as we have seen—to essential primes, that is, primes that cover
a minterm not covered by any other prime.

4.8. The Unate Covering Problem 143

finding the best solution subject to the assumption that the column is selected. We
must then assume that the column is not in the solution and find another solution.
We then compare the two solutions obtained and keep the best. For instance, we may
select and find a solution including it. Then we may find a solution not including

Finally, we choose the better of the two solutions.
We have seen, in the two previous examples, two important mechanisms in action:

Reduction of the constraint matrix and branching in the case of cyclic cores. We shall
develop these mechanisms in detail in the sequel. Before that, however, we want to
mention another possible formulation of the problem that is important to us.

One may readily see that the first row of the constraint matrix in our first example
can be written as the switching function

This function evaluates to one if either or or both. If we interpret
as “column is selected,” we see that the switching function is 1 when the

first row of the matrix is covered and vice versa. We can proceed similarly for the
other rows. The expressions thus obtained are switching functions that must all be
1 for a solution to be valid. Hence, their product must be 1. We can therefore write
the following equation as an equivalent to the constraint matrix:

This equation is called the constraint equation of the covering problem. The covering
problem can be formulated in this setting as the problem of finding an assignment of
zeroes and ones to the variables that is a solution to the constraint equation and that
is of minimum cost.

The equation can be simplified, for instance, to

using the absorption property. This simplification has a similar effect to detecting the
essential columns and illustrates the general fact that we shall find a Boolean operation
on the constraint equation corresponding to each operation on the constraint matrix.

We conclude this introduction by noting that all variables in the constraint equa-
tion appear uncomplemented. This is not a coincidence, but rather a direct con-
sequence of the way the equation is built. A formula where no letter appears with
both phases is said unate. A non-unate formula is called binate. Because of the
form of the constraint equation that we get, the covering problem we are dealing with
is called sometimes unate covering. The problem that is obtained by relaxing the
assumption that the constraint equation is unate is called binate covering covering.

We shall return to unate functions and formulae and to binate covering in the
future. Now, however, we concentrate on the efficient solution of the unate covering
problem.

4.8 The Unate Covering Problem

Here we define UCP, the Unate Covering Problem, giving both a constraint matrix
and a constraint equation form of the problem. Our statement of the problem will

144 Chapter 4. Synthesis of Two-Level Circuits

be general, in the sense that the problem will not require the context of minterms
covered by prime implicants, as in the previous section.

We then describe some fundamental methods that can be used to organize and
greatly simplify the solution of UCP. We first detail the reduction techniques that
can be applied to simplify the constraint matrix and/or the constraint equation. We
then describe how the solution of UCP can be viewed as the process of enumerating
all the solutions to the constraint equation and picking out one of the solutions of
minimum cost. We conclude this section with a method for determining an a priori
lower bound on the cost of the solution. In the succeeding section, we will organize
all of these ideas into an efficient algorithm for solving UCP in the general case.

Definition 4.8.1 (UCP, constraint equation form) Let J = {1 , . . . , n}, and let
be a vector of n Boolean variables. Let

where is a set of simple sums of single, positive literals of the variables
Then UCP is the problem of finding a minimum cardinality subset setting

guarantees that

That is, for any other subset having the above properties, we have Note
each of the sums is a Boolean function.

In the constraint equation of Equation 4.5 we have
and For this problem, we showed above that

Definition 4.8.2 (UCP, constraint matrix form) Let M be a matrix of rows

a minimum cardinality column subset S, such that for all such that

That is, the columns in the set S “cover” M in the sense, that every row of M
contains a 1-entry in at least one of the columns of S, and there is no smaller set
which also covers M.

For the constraint matrix of Equation 4.4 we have two possible solutions to the
matrix form of and

The two forms of stating UCP are totally equivalent, and applicable in a context
which is much broader than the minimization of logic functions. We demonstrate this
with the following example. After the example, we shall take a closer look at how the
efficiency of the solution is affected by the key mechanisms of reduction, enumeration,
and lower bounding.

Example: Recent studies have indicated that a good diet should contain
adequate amounts of proteins (P), vitamins (V), fats (F), and cookies (C).
An astronaut has to choose from a menu of five different preparations with
the following nutritional information labels.

and columns, for which is either 0 or 1. Then UCP is the problem of finding

4.8. The Unate Covering Problem 145

Preparation 1 contains: V and P;

Preparation 2 contains: V and F;

Preparation 3 contains: P and F;

Preparation 4 contains: V;

Preparation 5 contains: C.

(Preparation 5 is actually a ration of peanut butter cookies; the rest is
yucky stuff.) Can the astronaut have a balanced diet with only two pre-
parations?

In the constraint equation form of this instance of UCP, and the 5
preparations are represented by the variables Similarly,
there are 4 constraint sums corresponding to the requirement that
each nutrient P, V, F, and C be included in the astronauts’ diet. Thus,

represents the protein requirement,
represents the vitamin requirement, represents the fats
requirement, and represents the cookie requirement. Thus the
constraint equation is

Thus we see that there are exactly 4 solutions of size 3, but none of size 2.
Further, every solution to the constraint equation requires the assignment

We thus say that is “essential” in the sense that it is the
only preparation providing the essential nutrient cookies (we define this
formally below).

The corresponding covering matrix is

row, meaning that only one column, can cover the cookie row C. Con-
sequently, all minimum covers contain column 5 Also, Preparation
4 is dominated by preparation 2. The remaining matrix is cyclic (see Fig-
ure 4.6), and, as we shall prove in Theorem 4.8.1 on Page 150, will there-
fore require at least two columns. Thus there are 3 solutions, which are

). Note that the solution is missing (because
column 4 was eliminated by dominance). However, we are guaranteed to
retain an optimum solution (of size 3). Hence, it is impossible to have a
balanced diet with only two preparations.

In this representation, the essential nature of is manifested as a singleton

146 Chapter 4. Synthesis of Two-Level Circuits

4.8.1 Reduction Techniques

We consider three reduction techniques (to be defined below):

1.

2.

3.

elimination of rows covered by “essential columns”;

elimination of rows through “row dominance”;

elimination of columns through “column dominance”.

For each of them, we present two forms: One applicable to a constraint matrix and one
applicable to a constraint equation. We also show that the two forms are equivalent.

In general, we want to iterate the three forms of reduction in a fixed order, re-
iterating as long as the matrix keeps simplifying. One common order is the one that
we follow in our presentation: first, check for essential columns; second, check for row
dominance; third, check for column dominance. One type of reduction often leads to
another, but eventually the matrix reduces to a case in which no further reduction is
possible. The iteration stops when such a case is reached.

4.8.2 Essential Columns or Variables

If a row of the constraint matrix is a singleton, the corresponding column must be
part of the solution. The essential columns and all rows covered by them are removed
from the constraint matrix. We saw an example of this process in Section 4.7.

The analogous process for a constraint equation consists of identifying the terms
of the POS formula that consist of one literal only. The corresponding variables
must be set to 1 and the equation simplified accordingly. For the following constraint
equation,

we have to set The resulting simplified equation is:

In the following two sections, we show how the subproblems based on the positive
and negative cofactors of the constraint POS may have essential variables, even in
cases for which the original POS for F had none.

4.8.3 Row or Constraint Dominance

If a row of the constraint matrix has all the ones of another row then is covered

constraint it represents is superfluous. We say that dominates All dominating
rows can be eliminated from the constraint matrix. For the following matrix:

whenever is covered. Therefore, we do not need in our matrix, because the

4.8. The Unate Covering Problem 147

the first, fourth, and sixth rows dominate the second, third, and fifth rows, respectively
and can be eliminated. The reduced matrix is:

The corresponding reduction for the constraint equation is based on the application of
the absorption property, i.e., Let us consider the equation corresponding
to the previous example:

By absorption, we can replace, for instance, The
reduced equation is:

We see that this equation corresponds to the reduced matrix of the previous example.

4.8.4 Column or Variable Dominance

Before we discuss this technique, we must briefly digress to consider the cost of a
column or a variable. In general, each prime corresponds to one AND gate in a SOP
circuit. If the number of gates is the only concern, it is correct to assign the same
cost to all columns or variables. However, if the number of literals is more important,
then a prime with, say, five literals, should be considered more expensive than a
prime with three literals. This can be accommodated by assigning different costs to
the columns or variables. The total cost of a solution is then the sum of the costs of
the selected columns or, in other words, the cost of the variables set to 1.

Suppose now that a column has all the ones of another column Suppose
further that the cost of is not greater than the cost of Then, we can say that

is not inferior to in that it covers all the rows that covers, at a cost that is
not larger. This means that we can discard from the matrix, without giving up
the possibility of finding an optimum solution.

As an example, let us consider the matrix obtained in the previous example by
row dominance. Suppose all columns have the same cost. We see that the second
column dominates the first and the third. According to our definition, the fourth
column dominates the fifth and vice versa. In this case we can choose arbitrarily
which column to retain. Say we choose the fourth. The result of the reduction is the
following matrix:

Here we see how row and column dominance reductions can engender new essential
columns/variables. Note when we employ column dominance, we choose to ignore
some valid solutions to the constraint equation, some of which may be optimum.

148 Chapter 4. Synthesis of Two-Level Circuits

However, we may do this with the assurance that we always retain at least one
optimum solution.

If we are given the constraint equation, variable dominance can be checked as
follows. We say that dominates if the cost of does not exceed the cost of
and appears in every term where appears. This criterion is a simple translation
of the one employed for the constraint matrix. A more general formulation is possible,
but we shall not pursue it for the time being. Returning to our example, consider the
constraint equation

We see that appears in all terms where appears. Hence, dominates
Similarly, is dominated by and and dominate each other. (We choose
arbitrarily.) The reduction consists of taking the negative cofactor of the left-hand
side of the equation with respect to all dominated variables (the order is unimportant).
The reduced equation is thus:

which becomes by idempotency.

4.8.5 Systematically Exploring the Search Space

When the constraint matrix cannot be further reduced, we have two cases: If the
matrix has no rows left, then we say that we have reached a terminal case and we
have solved the problem; otherwise the problem is cyclic. If we are working with the
constraint equation, the terminal case occurs when the constraint equation simplifies
to 1 = 1.

If the reduced constraint equation, written F = 1, has no essential variables, then,
since each is a binary variable, we can seek the minimum cover by a divide and
conquer strategy: first, consider all solutions for which and then consider all
solutions for which The constraint equation which corresponds to the former
case is obtained by setting and is written

Similarly, in the latter case we set and obtain The two formulae
and are the positive and negative cofactors of F with respect to Cofactors
were defined in Section 3.3.3 (Page 98).

It needs to be emphasized that a zero in the constraint matrix does not correspond
to a negated literal in the constraint equation. This is because we are restricting
attention in this chapter to UCP, the Unate Covering Problem, in which every variable
appears in just one phase. Consequently, when we take a negative cofactor of the
constraint equation with respect to the corresponding action on the constraint
matrix is to simply delete the column. The rows of the constraint matrix which have
0s in column are not deleted, because the 0s mean that variable did not appear
in the corresponding sum of the POS form of the constraint equation.

If we want to solve large enumeration problems, we have to avoid enumerating all
solutions explicitly, since their number is exponential in the variables of the problem.
What we want is an implicit enumeration of the solutions, where many (as many

4.8. The Unate Covering Problem 149

as possible) solutions are not explicitly considered. The reduction techniques of the
previous section are an important part of the implicit enumeration scheme for the
covering problem; they allow us to determine that some variables (prime implicants
in the logic minimization context) are either essential or can be left out of the solution
without impairing our ability to find an optimum solution.

We have seen in Section 4.7 that when the problem is cyclic we need to select
a column (or a variable) and solve two reduced subproblems: One subproblem is
obtained by accepting the selecting column; the other subproblem is obtained by
rejecting it. The reduced subproblems may in turn be cyclic and therefore require the
selection of new splitting variables. This gives rise to a recursive process of selecting
variables and tentatively solving subproblems in order to find which one yields the
best solution. This process can be seen as the exploration of the search space of the
problem. In a cyclic covering problem, we must, in principle, enumerate all possible
solutions, in order to find one of minimum cost. Therefore we say that the covering
problem is an enumeration problem.

In the nutrient problem discussed above on Page 144 we enumerated all the solu-
tions to the constraint equation by transforming from POS form to SOP form. This
can be called “explicit enumeration” since all solutions were examined. All possible
solutions can also be obtained by recursively cofactoring. However when we use the
reduction techniques of the previous section, we eliminate some solutions, includ-
ing optimum solutions, from consideration. This is called “implicit enumeration”,
because we are enumerating some, but not all, of the possible solutions.

We now consider how to systematically explore the search space in the case of
cyclic problems, so as to minimize the number of solutions that we explicitly enumer-
ate. The implicit enumeration scheme we adopt is called Branch and Bound, and
is a general scheme for solving enumeration problems. Branch and Bound applies to
search problems where we are interested in finding the minimum or maximum cost
of a feasible solution. There are many problems for which clever specialized search
strategies can be applied. For instance, we do not need to enumerate all possible
paths between two cities to find the shortest one. Hence we do not apply a branch-
and-bound technique to solving the shortest path problem. However, no such clever
search strategy is known for the covering problem (and it is unlikely to exist). Hence,
we have to enumerate and we are interested in minimizing the work. In this context,
Branch and Bound can be (extremely) useful.

4.8.6 Computation of the Lower Bound

We now address the problem of computing a lower bound approximation to the cost
of covering a constraint matrix. The method easily translates into corresponding
problem of approximating the cost of satisfying a constraint equation.

In a given covering matrix M, suppose that two rows and have nonzero

and have no nonzero columns in common, we say these two rows are independent
(that is, column-disjoint). It is apparent that we need two different columns to cover
these two rows. Generalizing this argument, if a matrix has rows that are similarly
disjoint (pairwise), we need at least columns to cover the whole matrix. In this
case, the rows are said to form an independent set of rows. For each row of the

entries in sets that is, ifand If

150 Chapter 4. Synthesis of Two-Level Circuits

independent set, the cost of covering it is at least the cost of the cheapest column
that covers the row. Hence, by summing the costs of the cheapest columns covering
each of the rows in the independent set, we get a lower bound to the cost of covering
the entire matrix.

As an example, let us consider the following matrix:

The first, third, and fifth rows are independent. Hence, we need at least three columns
to cover the matrix. There is another independent set of three rows, namely the
second, fourth, and sixth rows. Notice that in this case the lower bound is exact: we
can cover the matrix with exactly three columns. In general, however, there will be
independent sets of different sizes and the lower bound will not necessarily be exact.
It is also easy to see that there is always at least an independent set of size 1. Further,
for cyclic (irreducible) matrices with unit cost columns, we always get a lower bound
of size 2 or more, as shown in the following theorem.

Theorem 4.8.1 In the unate covering problem with unit costs for the columns, the
lower bound for a cyclic matrix is at least 2 (even if there are no two independent
rows).

Proof. Suppose a constraint matrix of a unate covering problem contains a full
column of ones. In this case, the matrix cannot be cyclic because the column with all
ones dominates all the others. The matrix can therefore be reduced to one column,
which is obviously essential. Thus such a matrix is not cyclic. It then follows that if
the matrix is cyclic, there can be no column that covers all the rows. Hence, at least
two columns are required to cover all the rows.

An independent set of rows is called maximal if it intersects (that is, has a
column in common with) every other row of the covering matrix. We shall use the
abbreviation MIS for a Maximal Independent Set. This means that unless some of the
decisions already made in building the set are reversed, the set cannot grow larger
while retaining its independence (pairwise disjointness).

A simple algorithm for quickly finding an MIS is Procedure MIS_QUICK of Fig-
ure 4.7. Here denotes the number of rows left in M after deleting the rows
intersecting the chosen row.

The key feature of this algorithm isSubprocedure CHOOSE_SHORTEST_ROW. In
its simplest form it just chooses the “shortest” row, that is, the row with the fewest
nonzero columns, and breaking ties in ascending lexicographical order. Better heur-
istic performance is usually obtained by a more sophisticated heuristic, in which the
weight of row is defined in terms of the column counts of its columns. That is, let

4.8. The Unate Covering Problem 151

be the set of nonzero row in column Then the weight of row
is and CHOOSE_SHORTEST_ROW chooses the row of minimum weight,

breaking ties by choosing shortest rows in ascending lexicographical order.
We first apply CHOOSE_SHORTEST_ROW to the covering matrix of Equation 4.7.

Here all rows have equal weight by either heuristic, and the MIS chosen would be
{1, 3, 5}, which is optimum, since |MIS| = 3 is the cost of the optimum solution of
the covering problem. In this case the bound is sharp.

However, now let us apply this algorithm to the following example, which dis-
criminates between the two heuristics.

The superscripts 1 and 2 indicates row weights computed according to the first and
second heuristics. Thus for the first heuristic, MIS_QUICK would obtain MIS = {1}
on the first pass, and MIS = {1, 3} on the second (and last) pass.

However, for the second heuristic, MIS_QUICK would obtain MIS = {1} on the
first pass, after which the reduced matrix is

The second heuristic would give MIS = {1, 5} on the second pass, and MIS =
{1, 5, 6} on the third (and last) pass. The improved heuristic was able to identify a

152 Chapter 4. Synthesis of Two-Level Circuits

larger MIS by paying attention to how many rows are eliminated by each choice of a
row to be added to the the current MIS.

Returning to our example, we found that it was a cyclic problem. If we select
Column 1 for splitting, we get the solution {1, 3, 5}. Since the cost of this solution
(3) equals the lower bound, we know it is optimal and we do not need to find the
best solution without Column 1. This process is illustrated in Figure 4.8, where the
recursion tree is shown.

4.9 The Branch-and-Bound Algorithm

In this section we formulate an efficient procedure to solve the unate covering prob-
lem that we have informally introduced in the previous section. The procedure is
essentially the one presented in [239], which in turn is based on the earlier procedure
due to McCluskey [188]. We then consider cyclic problems and we present a branch-
and-bound algorithm for them. Finally, we mention the connection between unate
covering and integer linear programming.

The idea behind Branch and Bound is that we are only interested in finding one
optimum solution (there may be many). Therefore, if we can determine that a given
part of the search space does not contain any solution better than the best we have
found so far, then we can avoid exploring that part of the search space altogether.

How do we come to the conclusion that there are no ‘interesting’ solutions in a
part of the search space? In Branch and Bound, we resort to two basic ideas. The
first is that the search space is organized in the form of a search tree(sometimes
called a recursion tree). To fix ideas, we consider the case of a binary search tree,
which is what we are going to use. Each node of the tree corresponds to a variable
of the problem and the two branches out of the node correspond to the acceptance
or rejection of the variable. The ‘Branch’ in Branch and Bound refers to the process
of exploring the branches of the search tree. An example is shown in Figure 4.9.
Let us examine the leftmost path in the tree. We assume that at the top node
(the root) we have selected as the splitting variable. We also suppose that in
the simplified subproblem we can identify that must be 1 (e.g., it is an essential
variable for the subproblem) and can be set to 0 (e.g., it is a dominated variable).
The resulting hypothetical simplified subproblem is still cyclic. Hence, we now select
another splitting variable, whose choice allows us to set also (e.g., another

4.9. The Branch-and-Bound Algorithm 153

case of variable dominance). After choosing another splitting variable, we suppose to
reach a terminal case. The cost of the solution—assuming unit cost for all variables,
is given by the number of variables set to one along the path, namely 4.

At any given node of the search tree, we have selected and rejected some variables.
These variables are identified by the path from the root of the tree to that node.
Hence, at that node we have a partial solution. Also, we maintain an upper bound
on the cost of the optimum solution. Initially, the upper bound is set to a suitably
large number. When we find a new best solution, we set the upper bound to its cost.
From that point on, we shall not be interested in solutions that are not cheaper than
the new best solution.

If the cost of a partial solution exceeds or equals the value of the upper bound at
a node, clearly we can abandon that node and back up. Branch and Bound goes one
step further and tries to establish whether a new best solution can still be found by
proceeding from the current node. This assessment is based on computing a lower
bound on the cost of completing the current partial solution. If the cost of the current
partial solution plus the lower bound on the cost of completing it exceeds the current
upper bound, then the current node is abandoned. The ‘Bound’ in Branch and Bound
takes its name from this strategy.

The way of computing the lower bound depends on the particular problem. We
shall examine a lower bound that applies to the covering problem. It is obvious that a
careful choice of the lower bound criterion is important. Ideally, the criterion should
provide an accurate estimate of the real minimum cost incurred in completing the
current solution. At the same time, the computation of the bound should be fast.
Before we turn our attention to the computation of the lower bound for the unate
covering problem, we now take a look at the pseudo-code for the branch-and-bound
algorithm that we have delineated so far that is given in Figure 4.10.

The pseudo code assumes that we work with the constraint equation. The program
is initially called with an empty current solution (currentSol), the initial left-hand

154 Chapter 4. Synthesis of Two-Level Circuits

side of the constraint equation (F) and the upper bound (U) set to the total cost of
all variables plus one. This initial value of the upper bound exceeds the cost of any
possible solution and hence guarantees that the first solution found will be accepted.

The procedure REDUCE (Line 1) iteratively finds essential variables and applies
row and column dominance. It also updates the current solution accordingly. If the
problem is now reduced to a terminal case, the procedure checks whether the solution
thus found is better than the current best. The current solution is returned only if it
is the new best (Line 2).

If the problem is cyclic, the lower bound is computed by the call to LOWER_BOUND
(Line 4). In this subprocedure, we find an MIS by an internal call to MIS_QUICK and
add the size of the current solution to the size of the MIS to get a lower bound. If
there is still a chance of getting an optimum solution, a splitting variable is chosen
(Line 5), and the first of the two subproblems are solved recursively. If the cost of
this subproblem is equal to the lower bound, we immediately return (Line 7). Else,
the second subproblem is solved recursively, and the best solution is returned (Line
8).

4.9.1 Choice of the Splitting Variable

The choice of the splitting variable has no effect on the correctness of the procedure,
but it is important for its efficiency. A column that covers many rows is typically a
better candidate than a column that covers few rows. The former is more likely to be
part of an optimum solution. It is convenient to find a good solution soon, so that
the upper bound is close to the optimum value, and more pruning of the search tree
due to bounding is possible.

4.9. The Branch-and-Bound Algorithm 155

A possible refinement of the above strategy consists of favoring columns that
cover many short rows. (A short row is one with few ones.) This criterion is based
on the assumption that shorter rows have a lower chance of being covered. It can
be implemented by assigning a weight to each row inversely proportional to the row
length and by summing the weights of all rows covered by a column in order to
determine the value of that column. The column with the highest value is chosen.
This idea is explored further in Solved Problem 18.

4.9.2 Examples of Splitting and Lower Bounding

Let us consider some examples of the application of the BCP algorithm. We begin
with a simple example that illustrates the flow of execution.

The given matrix has 4 rows and 6 columns and is cyclic, so BCP sets U = 7 and skips
to Line 4 and calls LOWER_BOUND. We cannot find any set of two independent rows.
Therefore, we set the initial lower bound to 2 (using Theorem 4.8.1). If we split on
Column 1, we get the solution {1, 2} in the positive half of the search space. This
cost equals the lower bound. Hence, we don’t need to explore the half of the search
space where Column 1 is rejected. We thus return the solution {1, 2} at Line 7.

We next consider the example of Equation 4.7. This matrix has 6 rows and 6
columns and is also cyclic, so BCP again sets U = 7 and skips to Line 4. There it
calls LOWER_BOUND which this time returns a lower bound of 3. BCP again chooses
Column 1 as the splitting variable, and for the positive cofactor the matrix
reduces to

in which columns and are dominated. Then columns 3 and 5 become essential,
leading to a terminal case with solution Thus U is lowered to 3, and
this solution is returned back up to the original recursive call. Then BCP compares
the cost of this solution to L, is returned as the final solution. Again, we don’t
need to explore the half of the search space where Column 1 is rejected.

In both of these examples, lower bounding techniques have limited the implicit
enumeration to the first half-space of the recursion. We now explore the application
of BCP to a covering matrix with 13 rows and 11 columns, denoted by variables

In this richer example, all of the features of BCP are explicitly

156 Chapter 4. Synthesis of Two-Level Circuits

active.

We shall assume that the search tree (or recursion tree) of Figure 4.11 results
from the application of algorithm BCP, given appropriate heuristic choices in the
lower bound computation and in the choice of the splitting variable.

BCP begins by setting U = 12. Because of the block structure, it is not hard
to see this matrix is cyclic (no reduction), so no implied variable assignments exist.
Applying MIS_QUICK and using the simpler heuristic, BCP gets MIS={1,3,5,7}, and
an initial lower bound L = 4.

Keeping in mind the block structure, we can ignore column counts, and split on

4.9. The Branch-and-Bound Algorithm 157

the first variable. With rows 1, 4, 12 are covered, and we see that columns 2
and 4 are dominated, so we get a secondary essential column 3. The call to REDUCE

leads to the following cyclic matrix.

We may then split on a longest column For the positive cofactor the partial
solution is and the reduced matrix is

Here we have observed that after deleting rows covered by columns 9, 10, and 11
are dominated.

This submatrix is cyclic, so we split on The assignment leads to
a terminal case with solution and Cost U = 5. The assignment

gives the solution with the same cost.
Since in this case U > L, we fall through at Line 7. We then obtain the solution
obtained for the negative cofactor with respect to For the partial solution

the covering matrix is, after removing dominating row 8, as follows.

Here we note that rows 5,10, and 11 are independent, so with MIS={5,10,11}, we get
a lower bound of L = 2 + |MIS| = 2 + 3 = 5. Thus we know there is no better solution
in this subspace, and immediately return. This is indicated by the legend “Bounded
U = L = 5”. At this point BCP is through with positive cofactor with respect to
and next considers the negative cofactor.

158 Chapter 4. Synthesis of Two-Level Circuits

However, it is interesting to see what is saved by this lower bound operation in
this case. Without the lower bounding, since there is no reduction, we would split on

Thus for we have the following.

This matrix is again cyclic, so we split on For columns are
all dominated by column and we get the solution of cost 5.
Similarly, for column becomes essential, and after reduction does also,
so we get the solution of cost 5.

Similarly for the partial solution and we get the
following covering matrix.

Here columns and are essential, and, after deleting the rows they cover, and
eliminating dominated columns, becomes (secondary) essential. Again, as expected
cost = 5 for the solution

We see that a substantial amount of work is avoided by the lower bound compar-
ison.

Now we return to the top of the recursion tree, and consider the result of excluding

4.9. The Branch-and-Bound Algorithm 159

column

Here we see that columns have become essential, and after the rows they
cover are eliminated, column is dominated by Also row 13 is now dominated
by row 5. Thus is equivalent to the following reduced (cyclic) matrix.

Here we see that for the partial solution the reduced matrix has
MIS= {5, 7}, so the lower bound is 3 + |MIS| = 3 + 2 = 5, so again it is known that
this whole half of the solution space contains no solution of cost less than 5.

However, we can again check to see what we saved by the bounding operation. If
we split on we see that for becomes essential, so we get a cost of 5,
with a solution

Similarly, for we see that and then, after row deletion and column domin-

160 Chapter 4. Synthesis of Two-Level Circuits

ance, both become essential, leading to the solution

4.9.3 The Unate Covering Problem as an Integer Linear Program

Formally, we can say that the covering problem consists of finding

subject to the constraint

where

and the coefficients of the matrix and the variables can only assume the values 0 and
1. The coefficients in the summation are the weights, or costs, of the columns.
The product is the standard product of real (or integer) matrices. In our first
example, for instance, we can verify that the solution
satisfies the constraint

This formulation of the problem exposes the fact that the covering problem is a
special form of Integer Linear Program (ILP). We just mention here this important
connection and the fact that both ILP and its special case Unate Covering are difficult
to solve. The best known algorithms take time exponential in the number of the
variables in the worst case.

4.10 Multiple Output Functions

It is often the case that we deal with a set of related functions over the same variables.
These functions must be implemented as a multiple-output circuit; hence we refer
to such sets of functions as multiple-output functions. In this section, we are
concerned with the optimum two-level functions which implement multiple-output
specifications.

4.10. Multiple Output Functions 161

One obvious way to implement such functions is to find an optimum two-level
formula—either SOP or POS—for each individual output. The limitation of this
approach is that it does not take into account possible terms common to two or
more outputs. Consider the functions of Figure 4.12. The result of implementing the
optimum cover for each output separately is represented in Part (a) of Figure 4.13,
while a cheaper implementation is depicted in Part (b) of the same figure. We see
that we can save one gate and one gate input (alternatively, one product term and one
literal) by using However, this term is not a prime of either function. Hence, we
need to revise our definition of prime implicant, if we want that an optimum solution
may be built out of prime implicants only.

4.10.1 Multiple-Output Primes

The revision of the definition of prime implicant for the multiple-output case is for-
tunately easy: Besides the prime implicants of the individual functions, we need to
include also the primes of the products of the individual functions. For example, if a
multiple-output function is composed of single-output functions and then
we need to consider the primes of:

The primes of for instance, are the maximal terms that may be shared by
and This may appear a very bad result, since it says that for an function
we need to consider functions. Fortunately, we do not need to build the product
functions explicitly. Before we see how to do that in detail, we introduce a way to
represent multiple-output functions that we shall use in the sequel. It is sometimes
called cubical representation (or cubical complex [233]) and is best introduced with
the help of an example. A cubical representation of the multiple-output function of
Figure 4.12 is:

Cubical representations are like formulae, in that there are many cubical represent-
ations for the same function. More specifically, they correspond to two-level covers.
The SOP formulae are, in the case of our example,

One advantage of the cubical representation is that it emphasizes the presence of terms
common to two or more outputs. Another cubical representation for the function of
Figure 4.12 is:

This second representation, illustrates one important feature. It is possible for two or
more cubes (i.e., lines of the matrix) to have overlapping input parts (in our example
–11 and 01– both contain 011). In such a case, the value of the multiple-output
function for the minterms in the intersection is obtained by taking the sum of all the
output parts (in our example the output for 011 is 10 + 01 = 11).

A cube is a multiple-output implicant, i.e., its input part is an implicant of all
the outputs for which its output part has a 1. In other words, the output part of
the cube can be regarded as a tag that indicates the outputs for which the input
part is an implicant. We are now ready to see how to extend the tabular method
for the determination of all prime implicants to the multiple-output case. The results
of applying the extended method to the function of Figure 4.12 are illustrated in
Figure 4.14.

When two adjacent implicants are merged, their output parts are intersected to
form the output part of the resulting implicant. If the intersection is null, no new
entry is made in the table. The other important thing to consider is the rule for
marking the implicants. If an implicant is used in forming a new implicant, it is
marked only if the output part of the new implicant is the same as its output part.
All the other details are unchanged. A good, complete account of the method can be

162 Chapter 4. Synthesis of Two-Level Circuits

4.10. Multiple Output Functions 163

found in [186, 187], that also cover the extension of the iterated consensus method.
The extension of the recursive multiplication method is also possible and is left as an
exercise.

4.10.2 Formulating the Covering Problem

For multiple-output functions the problem of guaranteeing the minimum number of
gate inputs for the minimum number of gates is more involved than in the single-
output case. A good reference for that case is again [186]. We shall limit our treatment
to the simpler problem of minimizing the number of gates only, for which the solution
is quite similar to the single-output case. The only thing to be noted is that minterm
011 appears twice in the covering matrix, once for each output. In our example,
letting

we obtain the following covering matrix:

One easily sees that in this case and form the unique optimum solution.

4.10.3 Incompletely Specified Multiple-Output Functions

We can extend the use of don’t cares to multiple-output functions by letting the
entries in the output parts of the cubes also take on the value ‘–.’ If we do so, then a

164 Chapter 4. Synthesis of Two-Level Circuits

cube 001|01– means that for input 001, the first output must be 0 (unless otherwise
specified by another cube in the same cover), the second output must be 1, and the
third output may be either 0 or 1.

Prime generation and covering problem formulation extend naturally to deal with
don’t cares in multiple-output functions. Notice, however, that the mechanism is
not general, in that it does not cover all possible situations. Consider a two-output
function and try to express the requirement that, for input 000, the output should
be one of 01, 10. A quick examination will show that it is not possible to express
this with don’t cares, at least in the unsophisticated way we have seen so far. We
shall not return to the development of a more general mechanism for incompletely
specified multiple-output functions until we deal with the optimization of multi-level
networks in Chapter 11. In the next chapter we turn our attention to the heuristic
minimization problem.

4.11 Notes

The recursive algorithm for generation of the prime implicants of a logic function
derives from those found in [37] and Rudell’s 1989 dissertation [236].

Many problems in the field of electronic design automation involve the selection
of an optimum subset of a given set. The selection aims at minimizing a given cost
function and is subject to constraints. One familiar form is the covering problem
solved as part of the Quine-McCluskey procedure for Boolean function minimization
[188]. Given the set of prime implicants, a subset of minimum cost is sought, such
that all the vertices of the function are covered.

The problem can also be interpreted as the one of finding the minimum cost as-
signment that satisfies a Boolean formula in conjunctive form. In this form it is
known as Petrick’s method [212]. It is important to note that the Boolean formula
derived from the matrix of a covering problem is (positive) unate, i.e., all variables
appear in their uncomplemented forms only. For this reason we refer to this covering
problem as the unate covering problem (UCP). In the present chapter we have intro-
duced an algorithm, called BCP, which solves UCP, and, with minor modifications,
BCP as well. The BCP form will play a key role in future chapters: for state reduc-
tion/minimization of incompletely specified FSMs (in Chapter 8) and for technology
mapping (in Chapter 13).

Rudell [236] was first to introduce the name BCP, but, as he reports, BCP has
been around for a while with a different name. The first problem to be cast into a
binate covering problem was the state reduction of incompletely specified state ma-
chines [118]. The authors called their problem Covering with Closure and made the
restrictive assumption that one literal at most appeared complemented in a clause of
the function. This restriction was later removed, when the same authors addressed
the more general problem of combined row and column reduction of flow tables [119].
Applications of binate covering include optimal design of 3-level networks, technology
mapping, and, more recent, minimization of Boolean relations [35, 41]. Other prob-
lems, like the phase assignment described in [270] and optimal encoding via symbolic
minimization [88], can be formulated as BCP. An iterative approach to solving BCP
was given in [213], and a more recent, and surprisingly effective, contribution to the

4.12. Summary 165

solution of BCP was given by Coudert and Madre in [78].
The reduction techniques we consider here are not the only ones that are possible.

For more sophisticated techniques, like Gimpel’s, we refer the interested reader to the
literature [112, 229].

Significant advances in efficient techniques for solving this problem are still ap-
pearing: for example, see [78]. Also, a growth spurt in this presumably rather mature
research field was stimulated by the advent of BDD-based symbolic processing.
Symbolic processing allowed efficient representation of the huge sets of prime implic-
ants that limited the applicability of ESPRESSO_EXACT [238]. Significant publications

The symbolic processing is based on the BDD methods described in Chapter 6, and
have much in common with the symbolic traversal methods of Section 7.10.

4.12 Summary

We have discussed design optimality and design tradeoffs, and have defined two level
logic and appropriate cost functions in this context. We discussed SOP (Sums of
Products) and POS (Products of Sums) as the primary two level representations. We
then defined implicants and prime implicants and their role in logic minimization.
Various flavors of iterated consensus were discussed, as the means of computing the
complete sum (the set of all prime implicants) of a logic function.

Quine’s theorem, and the Quine-McCluskey algorithm for the problem of two level
logic minimization were discussed. This problem was shown to be a special case of
the more general Unate Covering Problem (UCP). A branch and bound algorithm,
BCP, was presented for the solution of of UCP. The key features of BCP were:

1.

2.

3.

Reduction (essential columns, row dominance, column dominance);

Lower bounding (based on maximal independent row sets);

Recursive Boole expansion (for exploring the search space).

The surprising efficiency of BCP is due to its ability to exploit the above mechanisms to
find an optimal solution while actually examining only a tiny fraction of the overall
search space. It was shown how UCP could also be solved by an Integer Linear
Program.

We concluded by showing how the this material, presented in the context of single
output functions, could be straightforwardly extended to the multiple output case.

4.13 Problems

1. Represent the switching function

on the following three-dimensional cube, by darkening the vertices of the ON
set. (The ON-set is the set of minterms for which the switching function is 1.
Similarly, the OFF-set is the set of minterms for which the switching function

include [75, 175, 77, 80, 76, 81], [257], and several articles in the book by Sasao [245].

166 Chapter 4. Synthesis of Two-Level Circuits

is 0. Finally, the don’t care set is the set of minterms for which the switching
function is don’t care.)
Solution.

2. This problem is on converting formulae from SOP to POS and vice versa.
One well-known method consists of ‘covering the zeroes’ on a Karnaugh map.
Unfortunately, that method does not work well for formulae with many variables.
In this problem you are to apply a method that can be the basis for an efficient
program.

The method uses the expansion theorem and the distributive property. It is
illustrated in the following example. Suppose we want to convert

to POS form. If we apply the second form of the expansion theorem with respect
to we get:

We can simply put the first term in POS form by applying the distributive
property:

For the second term, we now expand with respect to

Finally, by the distributive property:

Notice that it is possible to convert from SOP to POS using only the distributive
property or only the expansion theorem; however, by combining the two, the
amount of work is greatly reduced.

Apply the method illustrated in the previous example to convert from SOP to
POS the following formula:

and from POS to SOP the following formula:

4.13. Problems 167

Solution.

For the conversion from POS to SOP, we apply the first form of the expansion
theorem with respect to

3.

4.

Convert to SOP form the following POS formula:

Find a SOP expression for the following function:

by recursively applying the expansion theorem. Expand with respect to the
most frequent variable.
Solution. We expand with respect to that appears in all sum terms.

5. For the formula

do the following:

(i)

(ii)
(iii)

(iv)

(v)
(vi)

Write an equivalent POS formula;

Write a SOP formula for the complement of the function;

Compute a complete sum using the tabular method;

Compute a complete sum using iterated consensus;

Compute a complete sum using the POS that you found;

Compute a complete sum using the recursive multiplication procedure.

(Make sure the complete sums obtained with the four different methods are
consistent.)
Solution.

168 Chapter 4. Synthesis of Two-Level Circuits

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Write an equivalent POS formula;

This can be simplified to

by consensus. Since we are going to use the POS formula later, it is
convenient to spend a little extra time to simplify it.

Write a SOP formula for the complement of the function;

by applying De Morgan to the POS form.

Compute a complete sum using the tabular method;

The complete sum is therefore

Compute a complete sum using iterated consensus;

The terms in parentheses are absorbed.

Compute a complete sum using the POS that you found;

Compute a complete sum using the recursive multiplication procedure.

Both these formulae are complete sums; hence:

Notice that the computations are almost identical to those of the previous
case.

4.13. Problems 169

6. For the formula

do the following:

(i)

(ii)
(iii)

(iv)

(v)

Write an equivalent POS formula;

Write a SOP formula for the complement of the function;

Compute a complete sum using the tabular method;

Compute a complete sum using the POS that you found;

Compute a complete sum using the recursive multiplication procedure.

7. Find the complete sum for the following function:

by applying the recursive method based on the equation:

Solution.

8. Find the prime implicants for the following incompletely specified function:

Solution.

170 Chapter 4. Synthesis of Two-Level Circuits

The prime implicants are therefore and

9.

10.

Find the prime implicants for the following incompletely specified function:

For the following incompletely specified function:

Compute all prime implicants using the recursive procedure based on the ex-
pansion theorem.
Solution.

Noting that the first factor on the right-hand side equals 1

In this case, all prime implicants cover at least one minterm of

11.

12.

Repeat Problem 9 using the recursive procedure based on the expansion the-
orem.

In this problem, you have to find a smallest subset of (a set of
primes) that covers (a set of minterms). To do so:

(a)

(b)

Let and
Give the corresponding constraint matrix.

Solve the covering problem using BCP.

Solution.

This is the constraint matrix:

The matrix is cyclic (non reducible). The lower bound for the cost of a solution
is 1. We choose arbitrarily. The residual matrix can be trivially covered by
choosing either or We choose the former and set the upper bound to 2.
Since the solution that we have found does not meet the lower bound, we have

4.13. Problems 171

to examine also the solution obtained by rejecting When this is done, both
and become essential and we have the solution The two solutions

found have the same cost. We keep the first

Note that this problem is the continuation of the previous one and that there is
no cyclic constraint matrix for unate covering smaller than this one.

13.

14.

Repeat Problem 12 with the following set of primes:

and the following set of minterms:

[Hint: A column of the constraint matrix with no ones can be dropped.]

Solve the following covering problem:

by applying the branch-and-bound method. All columns have unit costs. When
splitting, choose the longest column and, in case of tie, choose the column of
lowest index. Also, when two columns dominate each other, retain the one with
the lower index.

Draw the search tree, and indicate for each node the lower bound.
Solution. We set the initial upper bound to 5 + 1 = 6. We then try to reduce
the problem. Column 1 is dominated by Column 2 and Column 3 is dominated
by Column 4. After the ensuing simplification, we see that Row 2 is identical
to Row 4: Row 4 is dropped. The resulting matrix is:

This matrix is cyclic. We then compute the lower bound, which is 1 in this
case. Since 1 < 6 we must continue. We choose to split on Column 2. We
select Column 2, and then eliminate Column 5 by dominance. We then have a
solution of cost 2 composed of Columns 2 and 4. We update the upper bound
to 2 and then return to the original problem. (The top node in the search tree.)
Now we compare the new upper bound to the lower bound. Since 1 < 2, we
need to consider also the second subproblem. Therefore, we reject Column 2.

172 Chapter 4. Synthesis of Two-Level Circuits

This causes both Column 4 and Column 5 to become essential. Therefore d in
the recursion tree of Figure 4.15.

15.

16.

Solve the following covering problem:

by applying the branch-and-bound method. All columns have unit costs. When
splitting, choose the longest column and, in case of tie, choose the column of
lowest index. Also, when two columns dominate each other, retain the one with
the lower index.

Draw the search tree, and indicate for each node the lower bound, computed
with the maximal independent set method.

With reference to Problem 13, suppose is the ON-set of an
incompletely specified function (i.e.,) and that is the
complete sum of Find

[Hint: No prime implicant can include any point of]
Solution. We observe that, since and are disjoint, it is:

To formally verify this, notice that implies and hence
You can also use a Venn diagram to verify this simple fact. Let us rewrite as

4.13. Problems 173

(The two minterms are adjacent.) Then,

Notice that these and are those of the previous problem.

17.

18.

For the following constraint matrix, say whether the cyclic core is non-empty.

Solution. All rows have two or more ones. There is neither row nor column
dominance. Hence the cyclic core is not empty: It is the matrix itself.

In Section 4.9 we have discussed a simple way of choosing the splitting variable.
This problem explores a more sophisticated variant of that criterion. The idea
is still to favor columns that cover many rows, but also to take into account the
length of the rows that a column covers. Indeed, one may argue that a longer
row (one with more ones) has a higher chance of being covered than a shorter
row. Hence a column that covers shorter rows should be favored over a column
that covers longer rows.

The above remark translates into the following procedure: For every row of
the matrix, compute:

where is the number of ones in row For every column, compute the
weight as the sum of all the corresponding to rows where the column has a
one. Choose a column of maximum weight.

For the matrix of Problem 17.

(a)

(b)

Compute the column weights according to the criterion just presented.

What columns could be selected as splitting columns?

Solution.

174 Chapter 4. Synthesis of Two-Level Circuits

(a)

(b)

The weights are computed as follows:

The columns that could be selected are 1,2,3,5, all having weight

19.

20.

Consider the following covering matrix.

(a)

(b)

Find a minimum cost covering set. [Hint: The solution has 3 columns.]

Are there any other solutions of size 3? [Hint: Have you applied column
dominance?]

Solve the following covering problem by the branch-and-bound algorithm. Draw
the recursion tree.

Solution. The initial upper bound is 6. Column 2 is dominated by Column
4 and is therefore eliminated. Rows 3 and 6 are then eliminated because they
dominate Row 1. The resulting matrix is:

4.13. Problems 175

This matrix is cyclic. Therefore we compute the lower bound. There are no
two independent rows, but using the result of Theorem 4.8.1 of Page 150, we
can set the lower bound to 2.

We now choose Column 4 as splitting variable, because it covers the most rows.
The only row that remains to be covered is Row 2. Selecting Column 1 com-
pletes the cover. Since the cost equals the lower bound there is no need of
exploring the part of the search tree for which Column 4 is rejected. In conclu-
sion, {1,4} is an optimum solution. The recursion tree is shown in Figure 4.16.

21. A circuit may malfunction due to one of eight possible faults:

A designer has come up with six tests which, when applied, detect some of the
faults. In particular:

will detect the presence of faults and

will detect the presence of faults and

will detect the presence of faults and

will detect the presence of faults and

will detect the presence of faults < < and

will detect the presence of faults and

Find a minimum subset of tests that will detect any of the eight possible faults,
if present. (Suppose that only one fault may occur in the circuit and that all
tests have the same cost.)

[Hint: Formulate the problem as a unate covering problem.]

Solution. The tests correspond to the columns of the constraint matrix (what
we have to choose), while the faults correspond to the rows (what we have to

176 Chapter 4. Synthesis of Two-Level Circuits

cover). The matrix is as follows.

The matrix can be entirely covered without need to branch. An optimum solu-
tion is {1,3,5}.

22. Find the cheapest SOP cover for the incompletely specified function described
by the following interval.

Solution. We shall solve this problem (and the following) ignoring initially
the fact that a prime may only cover don’t care minterms. As discussed in
Problems 10 and 13, in the constraint matrix the columns corresponding to
such primes will be empty and the primes will not enter the solution.

Given this premise, we see that we can derive all primes by applying any of the
three methods to the upper bound (U) of the interval, while the minterms to be
covered will be provided by the lower bound (L). We decide to use in this case
iterated consensus on U.

The term in parentheses is absorbed by its consensus term with the first im-
plicant and we are left with three prime implicants:

The constraint matrix is then

and the solution is easily seen to be (Two essential columns.)

4.13. Problems 177

23.

24.

Find a minimum cost SOP cover for the following incompletely specified func-
tion:

Use the recursive method to compute the prime implicants. Draw the constraint
matrix of the covering problem. Solve the covering problem by the branch-and-
bound algorithm.

Find the cheapest POS cover for the incompletely specified function of Prob-
lem 22.
Solution. We indicate three ways to solve the problem (and actually solve it
in the second way). The first method is to find the maxterm canonical form,
use the tabular method to find the prime implicates, and then set up and
solve the covering problem. The second method, that we shall pursue in detail,
avoids the maxterm canonical form in generating the primes (but still uses it
to generate the constraint matrix). This method follows closely the one we just
used for Problem 22. The third method consists of solving the dual problem.
This method entails essentially the same computation as the second method.
We discuss it briefly at the end.

Remember that a POS formula ‘covers the zeroes’ of the map. This translates
in the fact that the primes will be obtained from the lower bound, while the
maxterms will be obtained from the upper bound. Indicating the complete
product by CP (the product of all prime implicates), we can apply the dual of
Theorem 4.6.1 and get:

We expand initially with respect to because L is of the form and this
makes it particularly convenient to split on We then apply the distributive
property to the terms of the sum in parentheses to get the result. We let:

To form the constraint matrix, we need now to find the maxterms of the upper
bound. Putting the upper bound in POS form we obtain:

We then derive the maxterm canonical form from this formula and eventually

178 Chapter 4. Synthesis of Two-Level Circuits

we get the following constraint matrix:

from which the minimum cover is easily obtained. There is
another minimum cover, namely

If you still feel confused about deriving the implicates from the lower bound
of the interval, consider the following. Let be the dual of We know
that is equivalent to To find the minimum POS cover for
the incompletely specified function [L, U], we can find the minimum SOP cover
of and then take the dual of this solution. You can verify that this
procedure gives exactly the dual computation with respect to our approach and,
of course, the same result. For instance, the prime implicants of are the
duals of the prime implicates of L and the minterms of are the duals of the
maxterms of U.

This method can be summarized as follows: Solve the dual problem and take
the dual of the solution. Though we remarked that this approach is as efficient
as the one we have followed in terms of computation, it is probably more ap-
pealing, because it allows us to work with the familiar SOP form. For once,
however, spending some time on the other side of the looking glass—in the dual
world—may be fun and instructive.

25.

26.

Find a minimum cost POS cover for the incompletely specified function of
Problem 23. Use the recursive method to compute the prime implicates . Draw
the constraint matrix of the covering problem. Solve the covering problem by
the branch-and-bound algorithm.

For the following constraint matrix, run the program mincov to find an op-
timum solution.

Use the options –i –v 5. A line like:

4.13. Problems 179

ABSMIN[0] 5x 6 sel= 0 bnd= 7 lb= 2 0.00 sec pick=l

in the output means that at depth 0 (the root of the search tree), the matrix,
after reduction, has 5 rows and 6 columns. No column has been selected so far,
the upper bound is 7, the lower bound is 2, 0.00 seconds have been spent so far,
and the variable chosen for splitting is 1. Include a printout of your input and
result files.

Explain why the lower bound is 2 at the top level and why there is only one
node visited at depth 1.
Solution. This is the input file:

and this is the corresponding output file:

mincov -i -v5 pb1.t
Mincov Version #1.0, Release date 10/01/92

123456

Options: Independent Set Beta Dominance
ABSMIN[0] 5x 6 sel= 0 bnd= 7 lb= 2 0.00 sec pick=1
ABSMIN[1] 0x 0 sel= 2 bnd= 7 lb= 2 0.00 sec BEST
new 'best' solution 2 at level 1 (time is 0.00 sec)
matrix = 5 by 6 with 16 elements (53.333\%)
cover size = 2 elements
cover cost = 2

180 Chapter 4. Synthesis of Two-Level Circuits

27.

28.

time = 0.01 sec
components = 0
gimpel = 0
nodes = 2
max_depth = 1
**** 0 rows deleted -- 0 were not covered
Solution is 1 2

The lower bound at the top level (the initial node of the recursion) is 2 because
there is an independent set of two rows (1 and 3 or 3 and 5). Since the cost
of the solution found by selecting variable 1 equals the lower bound, we know
that we cannot improve on it by rejecting variable 1. Hence, we terminate the
program without creating a second node at depth 1.

Use the program MINCOV to solve the covering problem of Problem 14. Use the
options –i –v 5.

Find the cheapest SOP cover for the incompletely specified function described
by the following interval by running the program ESPRESSO with the option
–Dexact.

Include a printout of your input and result files.
Solution. ESPRESSO accepts as a default a description of the ON-set and DC-
set of the function to be minimized. Since we are given the function in the form
of an interval, we first need to extract the don’t cares. We know that the lower
bound of the interval is and the upper bound is Hence:

We can now write the input file to ESPRESSO:

.i4

.o 1

.ilb w x y z

.ob f
0-11 1
01-1 1
1011 1
1111-
0110 -
.e

When we feed this file to ESPRESSO, we get the following result:

.i4

.o1

4.13. Problems 181

.ilb w x y z

.ob f

.p 2
––11 1
010–1 1
.e

Which is the desired solution, corresponding to

29.

30.

Use ESPRESSO to find a minimum cost SOP cover for the incompletely specified
function of Problem 23.

Find the cheapest POS cover for the incompletely specified function of Prob-
lem 28 using the program ESPRESSO with the option –Dexact and any other
option that may help. Include a printout of your input and result files in your
homework.

[Hint: check what the –epos option does and take into account that the com-
plement of a function can be derived from the dual of by complementing
all literals (and vice versa).]
Solution. In this case we exploit the fact that the option –epos minimizes the
complement of the function. If we apply De Morgan’s Theorem to the minimum
sum of product for the complement, we get a minimum product of sum for the
original function.

The input file is in this case the same as in the previous problem. When we
run:

espresso –Dexact –epos pb8.pla

we get:

.i4

.o 1

.ilb w x y z

.ob f
#.phase 0
.p 3

–––0 1

–00– 1

1–0– 1
.e

The comment line #. phase 0 reminds us that this is a cover of the complement.
By applying De Morgan’s Theorem, we get

182 Chapter 4. Synthesis of Two-Level Circuits

31.

32.

Use ESPRESSO to find a minimum cost POS cover for the incompletely specified
function of Problem 23.

Find a minimum cost (minimum number of cubes) cover for the following func-
tion:

Compute the prime implicants using the tabular method; then set up and solve
the covering problem.
Solution. The computation of the prime implicants with the tabular method
produces the following table:

Hence, the primes are the three terms of the second column:

The minterms are just those listed in the first column of the table, except that
the minterms with more than a 1 in the output part must be split into as many
parts as there are ones in the output part (in this case, two parts).

All three primes are essential in this case. Hence, the solution is:

33. Find a minimum cost SOP cover for the following multiple-output function.

4.13. Problems 183

Chapter 5

Heuristic Minimization of
Two-Level Circuits

The main problem in exact minimization is the potentially very large number of prime
implicants. For most functions with more than, say, 16 inputs, there are simply too
many primes and, quite often, too many minterms. Most heuristic methods (and in
particular the ones we will be concerned with) avoid computing all the primes and all
the minterms in an attempt to avoid the computational cost. The usual approach is
to successively modify a given initial cover of the function, until a suitable stopping
criterion is met.

The price to pay is the inability to guarantee the cheapest solution, though a
careful choice of the algorithms may actually provide solutions very close to the
optimum (when the optimum is known) in a very reasonable time. We shall examine a
highly simplified version of ESPRESSO [37, 239], arguably the most successful program
for minimization of switching (and multi-valued) functions ever written. First, we
shall examine a simple algorithm based on tautology checks; then we shall see how
a more global view to the optimization problem can be taken by using a cover of the
complement of the function being minimized. The two techniques are combined in
ESPRESSO.

5.1 Local Search

The algorithms that start from an initial solution and try to find a better one by
applying successive modifications are called local search algorithms. Local search
algorithms are very common in optimization in general and not restricted to logic
minimization. The general local search algorithm deals with a search space or solution
space (the two expressions are synonyms), that is the set of all possible values that
the variables of the problem may take.

For instance, in the covering problem, if we have columns then the search space
consists of points. Some of these points are real solutions and some others are not
(in the covering problem, some selections of columns cover all rows and some others
do not). The set of all points of the search space that are valid solutions form the
so-called feasible region. The complement is the infeasible region. We also say a
point is feasible if it corresponds to a valid solution.

185

186 Chapter 5. Heuristic Minimization of Two-Level Circuits

Local search relies on the definition of a distance between two points in the search
space. For two sets of columns in a covering problem, the distance would be the
number of columns that appear in the first set, but not in the second or vice versa
(i.e., the cardinality of the symmetric difference of the two sets). Different problems
have generally different definitions of distance, and it is also possible to define different
distances for the same problem.

Once a definition of distance is given, we can define the neighborhood of a
point of radius in the search space as the set of points of the search space whose
distance from is less than

A given local search algorithm is based on a definition of distance and a radius
Starting from the initial solution, the algorithm examines its neighborhood for a

feasible point whose cost is lower than the current cost. If one is found, it is assumed
as the new starting point and the process is repeated until a stopping criterion is met.
See Figure 5.1 for a pictorial representation. There are clearly infinite possibility for
variants of this scheme, depending on how a new feasible point is chosen when there
are many in the current neighborhood, etc..

Depending on the problem and the definition of neighborhood, various degrees
of optimality of the solution can be guaranteed. Suppose we are interested in the
minimum of a convex function of a real variable as the one shown in Figure 5.2. Local
search in this case consists of moving downward along the curve and is guaranteed
to find the true minimum. However, if the function is not convex, as in Figure 5.3,
then local search may get stuck in a local minimum. In the first case, we say that the
solution is minimum, whereas in the second case we say that the solution is minimal.

In general, one interesting property of the solution of a local search algorithm is
local optimality. A solution is locally optimal if its neighborhood does not contain
any solution of lower cost. In order to guarantee local optimality, it is sufficient to
use the following stopping criterion: Stop when there is no cheaper solution in the
neighborhood of the current solution.

5.1. Local Search 187

5.1.1 Local Search Applied to Logic Minimization

We have now introduced enough of the general theory of local search to start con-
sidering its application to logic minimization. Our starting point is a cover for a
multiple-output function (single-output being a special case) and the cost will be the
number of cubes (or number of multiple-output product-terms) with the number of
literals as a tie-breaker.

The neighborhood we shall initially consider is defined as the set of covers that
are obtained from the original cover by adding (or removing) exactly one literal to
(or from) one of the cubes. A new cover thus obtained is a feasible point in the search
space if it is equivalent to the original one, i.e., if it represents the same function.

When a cube has all zeroes in its output part, it can be dropped. Hence, our
definition of neighborhood allows us to obtain solutions with fewer cubes than the
initial cover. On the other hand, the solutions with more cubes that the initial cover
are not part of our search space.

Before we outline the algorithm, we need to consider the effects of our moves in
the search space. Consider the function of Part (a) of Figure 5.4, where the dotted
lines identify the initial cover.

We see that changing 000|1 into 0–0|1 (i.e., removing an input literal) changes the
cover to the one in Part (b) of Figure 5.4. From Part (b) we see that now we can

188 Chapter 5. Heuristic Minimization of Two-Level Circuits

remove the output literal of 01–|1, thus effectively removing the cube from the cover.
In this case this yields the optimum solution.

What we have done amounts to expanding the input part of a cube and reducing the
output part of another. These transformations clearly decrease the cost of a cover.
We need to consider next the effects of reducing an input part and expanding an
output part.

Consider the two-output function of Figure 5.5 and the initial cover indicated by
the dotted lines. The cubical representation is:

It is readily seen that there is no way to improve the cover by expanding the input
parts of the cubes or reducing their output parts. However, if we expand the output
part of the first cube, we obtain the following cover, represented also in Figure 5.6.

5.1. Local Search 189

From Figure 5.6 we see that 00–|01 is now redundant and can be eliminated, yielding:

which has one fewer cube than the initial cover. This demonstrates that sometimes we
have to perform moves that do not decrease the cost (they may actually increase it)
in order to escape local minima and find a better solution. The next example shows
how the reduction of an input part may achieve a similar result.

Consider the two-output function of Figure 5.7 and the initial cover indicated by
the dotted lines. The initial cover can be written as:

Neither input expansions nor output reductions are possible. However, if we reduce
the input part of the second cube to 0–1|10, we can then expand its output part and
then remove the third cube.1 The result is the following cover:

where we have again reduced the cost by 1 product term.
1Equivalency, we can expand the output part of the third cube and remove the second.

190 Chapter 5. Heuristic Minimization of Two-Level Circuits

5.1.2 A Simple Local Search Algorithm for Logic Minimization

The last two examples of the previous section suggest that a procedure based only
on the simple moves that immediately decrease the cost may not be very effective.
We need to consider a wider variety of moves, and combine them into sequences of
moves that eventually lead to the desired reductions in cost. In other words, we
need to expand the neighborhood that we are searching. We now present a simple
strategy that can be found, in more elaborate forms, in many heuristic minimizers
[144, 43, 37].

The idea is to iterate three phases: Initially, we expand all the input and output
parts. This has the effect of increasing the overlap of the cubes. If we are lucky, one
or more cubes will thus be covered completely by the union of other cubes. These
redundant cubes are removed in the second phase, at the end of which we are at a
local minimum (or very close to it). The third phase tries to exit this local minimum
by reducing the cubes. The three phases are iterated until no further improvement
is possible. The pseudo-code for this procedure is given in Figure 5.8. The inputs
to the procedure are two covers for the ON-set and the DC-set of the function (F
and D, respectively). The cost is measured after the cover is made irredundant by
Subprocedure IRREDUNDANT. This is why the first two phases are duplicated. The
loop consists of successive calls to REDUCE, EXPAND, and IRREDUNDANT. REDUCE

heuristically reduces each cube of the cover. Then EXPAND heuristically expands each
cube of the cover, and then IRREDUNDANT finds a minimal irredundant cover.

The loop is exited when the cost reaches a local minimum. However, at that
point the output parts of the cube are still expanded. Since that may correspond to
redundant connections, we perform one last pass with MAKE_SPARSE to reduce the
output parts (and possibly expand some input parts that become expandable in the
process). Consider, for instance, the following cover.

5.2. Checking for Equivalence and Tautology 191

All cubes are maximally expanded in their input and output parts. The corresponding
two-level circuit is shown in Figure 5.9. The dotted connection is redundant, because

is the consensus term of and MAKE_SPARSE eliminates it.

5.2 Checking for Equivalence and Tautology

So far, we have assumed we could tell valid expansions and reductions from invalid
ones. Though this may be relatively straightforward for the simple examples we have
seen so far, it actually represents a non-trivial problem for larger functions. We
shall devote most of the time spent on heuristic minimization to the discussion of two
problems: One is the choice of the best move when many are possible. The other,
that we consider now, is checking a move for validity, i.e., checking that the cover
obtained by expanding and reducing some cubes is equivalent to the original one.

When a cube is expanded new minterms are added to it. We want to check
that none of these minterms belong to the OFF-set of the function. If this condition
is satisfied, then we are either increasing the overlap of existing terms, or covering
some previously unused minterm of the DC-set. Similarly, when a cube is reduced
minterms are removed from it. We should make sure that these minterms are either
covered by some other cubes or belong to the DC-set.

In both cases, our equivalence check involves checking the newly added or removed
minterms for containment in some other covers. Let be the current cover
for the ON-set and D be the cover for the DC-set.2 Let be the cube of F that is
being expanded or reduced and let be the cube that contains the newly added or
removed minterms. Then the expansion or reduction is valid if and only if:

In this formula is the cover obtained by removing from F. After that,

2We omit the adjective current in this case, because this cover normally does not change during
the computation.

192 Chapter 5. Heuristic Minimization of Two-Level Circuits

and D are regarded as sets of minterms. Interestingly enough, we can
use a single algorithm to check both expansions and reductions for validity.3

Consider the following cover.

Suppose we want to check the validity of the expansion of the first cube from 000|1
to 0–0|1. So, in this case is 000|1 and is 010|1, because the sum of 000|1 and
010|1 gives 0–0|1. We must check the containment of 010|1 in

The last term is the don’t care cube, which contributes to containment as any other
cube.

We know that a term may be contained in a set of terms, even though it is
not contained in any single term of the set. For instance, Hence the
containment test is not trivial. We cannot just scan the list of cubes in
and look for one that contains A possible simplistic approach is to examine all
the minterms of for containment in This is a simple process, but
there could be too many minterms to examine.

A possible improvement on the previous strategy could be as follows: We initially
check for single-cube containment of If that fails, we break into halves and
check the two halves separately. If both are contained we are done. If only one is
contained, the other is split again, and so on. If eventually we find no minterms that
are not contained, the containment test has succeeded.

Though this method is better than the previous one, we can do considerably better.
However, we need some definitions and results that we now introduce.

Definition 5.2.1 The cofactor (or restriction) of a function with
respect to literal written is The cofactor (or restriction) of
a function with respect to literal written is

We should be able to recognize in the cofactors as defined here the familiar expressions
appearing in Boole’s Expansion Theorem. Indeed we can rewrite the theorem as:

It is important to note that cofactoring is commutative, i.e.,

This allows us to state unambiguously the following definition.
3We shall see, however, that we may elect not to do so.
4We could actually do it if F and D were complete sums, but that would defeat the purpose of

heuristic minimization.

5.2. Checking for Equivalence and Tautology 193

Definition 5.2.2 The cofactor (or restriction) of a function with
respect to cube c is the successive cofactoring of f with respect to all the literals in c.

Finally , it is convenient to introduce the following definition.

Definition 5.2.3 A functions that is identically 1 is called a tautology.

We are now ready for the punch line.

Theorem 5.2.1 For a function f and a cube c,

Intuitively, one may think of as of a constraint applied to If there is a minterm
for which evaluates to 1, but evaluates to 0, then must be 0 somewhere. A real
proof proceeds as follows: We observe that, for arbitrary We
then take and we get:

Let us return to the example we saw earlier: Let and We have
verifying that In view of Theorem 5.2.1, our task is

to compute

and check whether this function is the tautology.
The advantages of this formulation are:

cofactoring may greatly simplify the function by reducing the number of vari-
ables and cubes;

we deal with a more uniform problem—tautology.

We have stated the definition of cofactors for single-output functions. We now
examine the extension to the case of multiple outputs with the help of the following
example. Let us consider the cover of Figure 5.7 and suppose we want to check
the validity of reducing the second cube of the cover from —1|10 to 0–1|10, using
Theorem 5.2.1. We have:

and

The cofactor is taken by selecting the rows such that:

The first and the third input columns are not 0;

the first output column is a 1.

The general rule is:

194 Chapter 5. Heuristic Minimization of Two-Level Circuits

Eliminate the rows that disagree with the input part of A disagreement
means that the row has a 1 in an input column where has a 0 or vice versa.

Eliminate the rows that do not have at least a 1 in an output column where
has a one.

After the elimination of the rows, the columns where is not ‘–’ in the input part
and is 0 in the output part are removed. This leaves us with:

which is clearly a tautology. In the case when no input columns are left, the result
is a tautology if there is at least one cube left. In general, however, the result of the
cofactor is not so easily understood to be (or not to be) tautologous. So we need an
algorithm for tautology checking.

The basis for such an algorithm is, once again, the expansion theorem. In partic-
ular one can easily see that

In words, a function is tautologous if and only if both cofactors with respect to any
variable are tautologous. It is therefore possible to recursively split the cover until a
trivial case as the one in the previous example is found. The tautology check fails if
any of the leaves of the recursion tree is not a tautology. Once more, however, we
want to do better than that, and this requires a few more definitions and theorems
that we cover next.

5.2.1 Unate Functions

Definition 5.2.4 A function is monotonically increasing in
variable if and only if

It is monotonically decreasing in if and only if

If neither of the above is true, f is non monotonic in

For instance, is monotonic increasing in monotonic decreasing in
and non monotonic in Indeed, Similarly we can verify
that while and are not comparable.

Definition 5.2.5 A function is unate in variable if and only if
it is either monotonic increasing or monotonic decreasing in It is unate (without
further specifications) if it is unate in all of its variables.

5.2. Checking for Equivalence and Tautology 195

Our interest in unate functions is motivated by the following observation.5 Consider
a function that is monotonic increasing in all its variables. Then is a tautology if
and only if Clearly, if is not tautologous. On the
other hand, if then, by definition, for every value
of If a function is monotonic decreasing in all its variables, we need
to check its value for (1, . . . , 1); the general case is a combination of these two.6 In
summary, checking a unate function for tautology is simple.

Deciding whether a function is unate is in general not trivial, if we want to rule
out the examination of the value of the function for all possible inputs. Fortunately,
there is an important special case where unateness can be determined by inspection.

Definition 5.2.6 A cover F is monotonic increasing in variable if and only
if never appears complemented in the terms of F. It is monotonic decreasing
in variable if and only if never appears uncomplemented in the terms of F. If
neither of the above is true, F is non monotonic in

Returning to the previous example, the cover is monotonic increasing in
monotonic decreasing in and non monotonic in This matches what we said

concerning the function represented by However, if we consider
we find that the function is monotonic increasing in both and while the cover
is only monotonic increasing in Notice that is an alternative cover for the
same function, and that is monotonic increasing in both and This example
illustrates a general point stated by the following theorem.

Theorem 5.2.2 If function is unate in variable then there ex-
ists a cover of f unate in If a cover F is unate in then the function F
represents is also unate in

The second part of the theorem can be proved by observing that the product and
the sum of monotonic increasing functions are monotonic increasing.7 It follows that
a monotonic increasing cover, that is the sum of products of monotonic increasing
functions (the) represents a monotonic increasing function. The extension to the
general unate case is straightforward.

As a consequence Theorem 5.2.2, all results that we prove for unate functions
can be applied to unate covers. Also, we can look for unate covers, that are easy to
identify, and be sure that the corresponding functions are unate. We can then apply
to them all the results we are going to derive for unate functions. By doing so we
shall not identify some unate functions as such, and therefore miss some optimization
opportunities. This is however a reasonable price to pay, to keep the identification of
unate functions inexpensive.

The most interesting result on unate covers for us has to do with tautology check-
ing.

5The properties of unate functions had been known long before their application to the tautology
problem [223, 111]. Part of the original interest in these functions was in connection to their relation
to threshold functions that could be realized by magnetic core devices [195].

6We can always prove results on unate functions by restricting our attention to monotonic increas-
ing functions, since we can always transform a generic unate function into a monotonic increasing
function by substituting each variable in which the unate function is decreasing with a new variable

7Just apply the definition of monotonic increasing.

196 Chapter 5. Heuristic Minimization of Two-Level Circuits

Theorem 5.2.3 A unate cover F is a tautology if and only if it contains the constant
term 1.

What we mean here is that the term appears explicitly among the terms that constitute
F. For instance, is not tautologous, whereas is. In terms of the cubical
representation, a tautologous cover must contain a cube whose input part is all ‘–’.
The proof of this result is a direct application of the fact that a monotonic increasing
function can be checked for tautology by evaluating it in (0,…,0). Indeed, no cube
containing uncomplemented literals contains the vertex (0,…, 0).

Theorem 5.2.3 says that tautology checking for unate covers is trivial. The idea is
therefore to adopt the usual recursive paradigm based on Boole’s Expansion Theorem.
At every node of the recursion tree, we test the function for unateness. This can be
easily done while we look for the variable to split upon, by separately counting the
number of complemented and uncomplemented occurrences of each variable. As a
simple example, let us consider the following non-unate cover.

After splitting on we get two unate cofactors.

It is sufficient to examine one of them to see that the function is not a tautology. (In
practice, we would not compute the second cofactor.)

If a cover is unate only in some of the variables, it is not possible to answer
the tautology question immediately. However, it is possible to simplify considerably
the computation, thanks to the following observation. A cover F for a function

that is monotonic increasing in can be written as

where A and B are SOP formulae, by regrouping terms and factoring out It is
then clear that

It follows that

in agreement with Definition 5.2.4, or, equivalently,

5.2. Checking for Equivalence and Tautology 197

or, in summary,

Therefore, it is sufficient to test the negative cofactor for tautology to get the answer
for the complete function. Similarly, if a function is negative unate in a variable, it
is sufficient to test the positive cofactor for tautology. Thus, for every unate variable
that we detect, we roughly cut in half the work to be done, because we only need
to consider one of the two branches of the recursion. As an example, consider the
following function.

All minterms with and cause to be 0. After simplification, no row is
left; we conclude that the function is not tautologous.

5.2.2 Additional Speed-Up Techniques for Tautology Checking

The worst-case running time of the tautology algorithm we have outlined so far is
exponential. Though the question of whether this worst-case behavior is optimal is
still unanswered, it is extremely unlikely that a polynomial algorithm for tautology
will ever be found.8 The worst-case behavior is exponential because of the exponential
number of nodes in the recursion tree. In practice, however, the behavior is not so bad,
because we can heavily prune the recursion tree. Unate functions are one mechanism
we use to reduce the number of nodes we need to explore. In the following we consider
two additional techniques: Detection of special cases and partitioning.

The detection of special cases is a very general name for a collection of ad hoc
techniques. Whenever we have a condition which is sufficient to answer the ques-
tion and that can be tested quickly, it may be worthwhile trying it. In the case of
ESPRESSO’S tautology checking algorithm, the special cases that are tested include:

A row of all ‘–’ in the input part. If such a row is found, the function is
tautologous in all the outputs that have a 1 in that row. Note that this condition
is always sufficient, and is also necessary for unate functions.

An input column of all 1s or all 0s. If such a column is found, the function is
not a tautology (B = 0 in Equation 5.1).

If the number of inputs is less than eight, the truth table is generated and the
tautology question is answered by inspection. The rationale is that if the number
of inputs is small enough, generating the truth table is faster than recurring.

If the vertexPCcount count of the cover is insufficient, the function is not a
tautology. The vertex count of the cover is computed as the sum of the vertex
counts of the cubes. The vertex count of a cube is where is the number of

8In terms of complexity theory, the tautology problem is the complement of an NP-complete
problem (CNF satisfiability).

198 Chapter 5. Heuristic Minimization of Two-Level Circuits

dashes in the cube. The vertex count of the cover is actually an upper bound
on the number of vertices in the cover. It equals the upper bound if all cubes
are disjoint, otherwise, some vertices will be counted two or more times. If the
vertex count of an cover is less than then there is at least one
minterm not included in the cover, and the function is not tautologous. For
instance, the vertex count of the following cover is 8, which is less than
hence the function is not a tautology.

Notice the the ON-set of the function actually covers 7 vertices. (1110 is covered
twice.)

Determining whether testing for a special case is worthwhile is to a large extent a
matter of experimentation. The final technique we examine is partitioning. If a cover
F can be written as

where G and H have disjoint support (i.e., no variables in common), then F is
tautologous if and only if either G or H are tautologous. Let be the
variables on which G depends and be the variables on which H depends.
If and then
Partitioning a search problem is normally very advantageous. The number of nodes
to be visited in the worst case goes, for a uniform bipartition,9 from (for

even).10

Finding a bipartition is relatively easy. The set of columns of the first block,
is initialized to empty. One then picks a cube of the cover (any cube will do). All the
columns where the cube is 0 or 1 are added to Then all the cubes that intersect
any of the columns in are selected (they must belong to the same block as the
initial cube) and their columns added to The process is repeated until no addition
to is possible. There are two possible outcomes: includes all the columns of
the cover, or at least one column is left over. In the former case there is no bipartition
(the second block is empty). In the latter, the leftover columns and rows identify the
second block of the partition. It is possible to iterate the procedure on the second
block to come up with a multi-way partition (the first block, by construction, cannot
be further decomposed).

As an example of partitioning, consider the following matrix.

9A uniform bipartition results in two blocks of the same size.
10Partitioning can also be applied to the covering problem.

5.2. Checking for Equivalence and Tautology 199

Initially Row 1 is selected and Scanning the columns in we find Rows
3 and 4. This in turn brings Column 4 into No further additions are possible.
Hence there is a bipartition identified by and The two
resulting subproblems are:

In this case one sees immediately that neither subproblem is tautologous.

5.2.3 Examples of Tautology Checks

We conclude our examination of the tautology problem with a couple of examples.
Our first example is for a single output cover.

In this case we could proceed by producing a truth table, since the number of inputs
is small. However, for humans, brute-force enumeration is seldom convenient. In this
case, for instance, we are better off by noting that the cover is unate in and We
cofactor with respect to and and we obtain:

which is clearly not a tautology. Hence, the original cover is not a tautology. As
second example, we consider a multiple-output function. A multiple-output cover is
tautologous if all the outputs are tautologous. Consider the following example [37, p.
71].

Also in this case, the cover is unate in and Cofactoring, we obtain:

200 Chapter 5. Heuristic Minimization of Two-Level Circuits

We can now drop because the cover no longer depends on it. We now split on
the only variable left.11 Suppose we first analyze the positive cofactor. The only

cube left is 5, with no input variables. Since both outputs have a 1 for this cube,
we conclude that this half-space is tautologous. However, for we are left with
cube 4 only, for which is 0. Hence, is not a tautology and the whole cover is
not a tautology. In general, multiple-output tautology requires minor extensions to
single-output tautology, that are left as an exercise to the reader (or can be looked
up in [37]).

5.3 Choosing the Right Direction

When we expand a cube by replacing a zero or a one with a dash in the position
corresponding to variable we say that we are expanding the cube in the direction.
Similarly for reduction. It is often the case that a cube can be expanded in more than
one direction, but not in all directions simultaneously. The choice of one direction
over another may influence the quality of the solution, and therefore it is important
to be able to tell what directions are likely to give the best results. We consider the
example of Figure 5.10. We assume that the initial cover is the one of Part (a) and
that the reduction step results in the cover of Part (b).12 There are two candidates
for expansion and both can be expanded in two directions. For symmetry reasons, it
is sufficient to consider only one of them: We choose

It is clear that we would like to expand in the direction, since we would then
cover and get the optimum solution. However, if we proceed randomly, we may
as well re-expand in the direction. There is a possibility that we return to the initial
cover. The algorithm would then stop because no improvement occurred during a
complete iteration.

One important distinction among various heuristic minimizers is the way they
try to guide the expansion process. ESPRESSO has the most sophisticated strategy
of all. It is so sophisticated, that we do not have time to examine it in detail. We
rather state ESPRESSO’S objectives and give a few hints on how those objectives can
be pursued. Since the cost is primarily related to the number of cubes, it is reasonable

11In practice we would solve this problem by checking for the special cases, but here we want to
illustrate the other techniques as well.

12Note that no expansion is possible for the initial cover and that no cubes are redundant.

5.3. Choosing the Right Direction 201

to assume as an objective of the expansion process the coverage of other cubes by the
expanded cube. If we know how to do that, then we can effectively solve the problem of
Figure 5.10. As a secondary goal, we may want to get the largest expanded cube, thus
minimizing the number of literals. In both cases, having an explicit representation of
the OFF-set of the function helps. So we shall consider briefly the problem of efficient
complementation of a cover. We shall then outline how we can use the complement
to get the largest expanded cube, referring the interested reader to [37, 239] for the
description of the complete expansion process.13

5.3.1 Recursive Complementation

It should come as no surprise that an efficient complementation algorithm can be
based on the expansion theorem. Indeed, we have the following result.

Theorem 5.3.1 For a Boolean function f,

Proof. Let We prove that is the complement of It is sufficient
to prove that and This in turn is easily established by expanding

with respect to and substituting into and

We can therefore select a variable according to the usual criterion, compute recursively
the complement of the two cofactors, and combine the results. When the subproblems
reduce to a single cube, we can simply apply De Morgan’s Laws to get the complement.

Since we want to keep the size of the cover for the complement small, we normally
check for cubes that appear in both cofactors and merge them into one
As an example, consider the following cover.

We first consider the positive cofactor with respect to

We then split with respect to to get and These cofactors are simple
enough that we may find their complements by inspection.

Notice that We can now form

13There are differences between ESPRESSO, described in [37], and ESPRESSO-MV, described in
[239]. However, the basic ideas are the the same.

We now compute and its complement.

Finally, we combine the two partial results into the complement of

As in the tautology check, we can exploit the properties of unate functions. Spe-
cifically, we can prove that for monotonic increasing in

and for monotonic decreasing in

Additional details on how to speed-up the complementation of unate functions can be
found in [37], from which we take the following example.

Since the function is unate, we adopt a special variable selection strategy. We notice
that if we select a row of all dashes will appear in Since the complement of
the tautology is trivial to compute, selecting is a good thing. Since we know that

we only need to compute By cofactoring we get

We notice that this cover can be written as with G given by:

202 Chapter 5. Heuristic Minimization of Two-Level Circuits

5.4. Identifying Essential Primes 203

Applying De Morgan, or

which gives the following final result:

When we need to complement a multiple-output function, we can complement one
output at the time.

5.3.2 Using the OFF-set in the Expansion

The complementation techniques we just saw can be used to compute a SOP cover
of the OFF-set, given the SOP covers for ON-set and DC-set. We now see how the
cover for the OFF-set can be used to find the maximal expansion of a cube. We know
that a cube can be expanded as long as it does not intersect any cube of the OFF-set.
For this to hold, the cube being expanded should conflict in at least one position with
each cube in the OFF-set. We can build a matrix, called the blocking matrix, that
has a row for each cube of the OFF-set and a column for each variable. Each row has
ones in the positions where the cube to be expanded conflicts14 with the cube of the
OFF-set. A row of the blocking matrix tells us that it is O.K. to expand the cube, as
long as at least one of the directions corresponding to one of its ones is not expanded.
It is not difficult to see that finding a maximum expansion corresponds to finding a
minimum subset of the columns of the blocking matrix that covers all the rows.

It should be noted that the covering problem we need to solve in this case has
much fewer variables than the covering problem we face in the exact minimization
method. It is also easy to see that a covering problem of manageable size can be used
in performing the IRREDUNDANT step. One finds a minimum subset of the cubes in
the current cover that covers all minterms in the ON-set.

5.4 Identifying Essential Primes

It is advantageous to identify the essential primes, because we know that they will
be part of every optimal solution. Interestingly enough, after the initial expansion
all cubes in the cover are primes and therefore all the essentials are present in the
cover. If we can identify them, then we can put them aside and avoid silly things like
reducing them in an attempt to expand them in a different direction.

If we had all primes of the function, we could easily tell whether a prime is
essential, by checking whether it was covered by the union of all other primes. When
we are not given all the primes, the identification of the essential primes is based on
the following theorem [244].

14 A conflict here means 0 for the cube being expanded and 1 for the cube of the OFF-set or vice
versa.

204 Chapter 5. Heuristic Minimization of Two-Level Circuits

Theorem 5.4.1 Let F be a cover composed of prime implicants. Let e be one of the
primes in F and let G be the cover composed of the remaining primes. Then, e is an
essential prime if and only if it is not covered by the union of:

1.

2.

The consensus terms of e and each term of G;

The intersections of e and each term of G.

As an example, let us consider

and test This prime intersects (the intersection is). It also has a
consensus term with To see whether is essential, we check

Since we only need to check whether The answer
is clearly no; hence is essential. If we now consider we find that we need to
check whether is covered by The answer is in this case positive and

is not essential.
The usefulness of this approach to the identification of essential implicants appears

more clearly in our next example.

The cover in this case is not a complete sum. It is not therefore immediate to see
whether a given prime is essential. Suppose we want to test Its intersection with

is while its consensus term with is Hence, we test whether:

Cofactoring the right hand side of the inequality, we get which is clearly a
tautology. Hence, is not essential.

5.5 Multiple-Valued Logics

When we design by successive refinements (or top-down), we normally find benefi-
cial to postpone decisions on details until the context is detailed enough to provide
guidance for the choices to be made. A typical example could be the assignment of
operation codes to machine instructions (or micro-instructions) or the assignments of
codes to the states of a finite state machine (FSM). In such situations, we want to
use symbolic names when we design, and possibly leave the choice of the encoding to
an optimization program.

It is easy to see that the general situation is when we have two sub-circuits that
communicate via wires that are not primary outputs of the circuit, as depicted in
Figure 5.11. The special case of a finite state machine is obtained when the two
blocks coincide. If we use symbolic names, we can write expressions involving them,
like:

If the op-code is move and the addressing mode is indirect go to state
bigmess.

5.6. Notes 205

We are interested in a formal way to deal with expressions of this kind. Large
Boolean algebras are not general enough, because we know that the number of values
in the carrier must be a power of two and furthermore only a small fraction of the
possible mappings are Boolean functions. We need to relax these assumptions and
this corresponds to dealing with multiple-valued logics. We shortly discuss the basic
ideas of multiple-valued logics, following [244, 239]. Suppose we have a function of

multiple-valued variables that returns a binary value (i.e., 0 or 1). Suppose that
for is the number of values the variable can assume. Define

the set as the set of values the variable can assume. A
multiple-valued input, binary-valued output function f is a mapping

where B = {0,1}, as usual. Let be a variable taking a value from the set and
let be a subset of Then, represent the mapping from to B defined by

is called a literal of variable We build sum of products formulae out of
multiple-valued literals much in the same way as we do in ordinary Boolean algebras.
We can also define implicants, prime implicants, and essential prime implicants. Many
of the laws of Boolean algebras are still valid in this new setting, though not all of
them. In particular, it is possible to extend the expansion theorem:

This forms the basis for the extension of most of the techniques we have seen so far to
multiple-valued logics. It is therefore possible to write a minimizer for multiple-valued
functions and ESPRESSO-MV [239] is one example.

5.6 Notes

In some sense the modern era of logic minimization began with MINI [144], a logic
minimizer based on multiple-valued logics. MINI was very general and fast on some
problems, but not so robust on larger or more difficult problems. MINI was followed by
ESPRESSO from IBM. Rudell, who had worked on ESPRESSO, then wrote the variant
ESPRESSO-MV, which allowed multivalued logics, and was much more efficient in

206 Chapter 5. Heuristic Minimization of Two-Level Circuits

dealing with the complement. ESPRESSO-MV has stood, since 1987, as the minimizer
of choice at most industrial and university laboratories worldwide.

Although heuristic methods are still widely used today, advances in exact minim-
ization techniques (See Section 4.11 on Page 164) have made significant inroads into
application areas traditionally dominated by heuristic methods such as ESPRESSO-MV.

5.7 Summary

We began in this chapter by identifying some common characteristics of local Search
algorithms (algorithms that start from an initial solution and try to find a better
one by applying successive modifications). Then we studied the set of methods that
combine to make the local search algorithm known as the ESPRESSO algorithm for
logic minimization.

Two methods were discussed for quickly checking whether a given implicant is
prime: one based on tautology/equivalence checking, and one based on intersection
with the OFF-set of the function to be minimized. Fast methods for tautology check-
ing were discussed, based on unateness or partial unateness of the cover being checked.
And similarly fast methods for computing the OFF-set were discussed.

We then gave a method for computing the essential primes, and closed by showing
how the whole paradigm of heuristic minimization could be extended to multiple-
valued logics.

5.8 Problems

1. Find a sequence of moves that transforms:

All moves must consist of expansion or reduction of a cube in one position. For
instance,

is a valid reduction move, though not a useful one (you can verify that it does
not preserve the equivalence of the covers). As you can see the second cubical
complex (or simply cover) has a lower cost. Sometimes, as in this example,
decreasing the amount of sharing may lead to a better solution.

Solution. We can verify that no cube of the original description can be expan-
ded in the input part or reduced in the output part. Hence, we are in a local
minimum. We start with a reduction:

5.8. Problems 207

2.

3.

4.

We can now re-expand this cube in a different direction:

This in turn enables the output reduction of the only shared cube:

Finally, we obtain the desired result by expanding this cube in the direction:

Find a sequence of moves that transforms:

All moves must consist of expansion or reduction of a cube in one position.
Cubes with all-zero output part can be discarded.

Find a sequence of moves that transforms:

All attempted moves must consist of expansion or reduction of a cube in one
position. For instance,

is a valid expansion move, though not a useful one (you can verify that it does
not preserve the equivalence of the covers and hence it may be attempted, but
it must be rejected).

Find the cofactor of:

208 Chapter 5. Heuristic Minimization of Two-Level Circuits

5.

6.

7.

8.

with respect to the cube –1–|01.
Solution.

We can observe that this cofactor is a tautology.

Find the cofactor of:

with respect to the cube —110|110.

In what variables is the following cover unate?

Solution. The only variable in which the cover is unate is All other columns
contain both zeroes and ones.

In what variables is the following cover unate?

In what variables is the function of Problem 6 unate? Note that this problem
refers to the unateness of the function as opposed to the unateness of the cover.

[Hint: Is any cube of the cover redundant?]
Solution. The fourth cube is contained in the first and is therefore redundant.
When we eliminate it, we see that the column corresponding to has no zeroes

5.8. Problems 209

9.

10.

11.

left. Hence, the function is positive unate (monotonic increasing) in even
though the original cover is not. One can verify that the function is not unate
in the other two variables (and), by computing the cofactors and checking
that one is not less than or equal to the other.

In what variables is the function of Problem 7 unate? Note that this problem
refers to the unateness of the function as opposed to the unateness of the cover.

Check whether the following function is the tautology.

Use the properties of unate functions whenever possible.
Solution. We split initially on because the function is not unate in any
variable. For the positive cofactor, we have:

This function is unate positive in and unate negative in If we take the
cofactor with respect to we get the 0 function. Hence is not tautologous.

Prove or disprove that the following function is the tautology.

Show your argument.

210 Chapter 5. Heuristic Minimization of Two-Level Circuits

12.

13.

14.

Check whether the following function is a tautology:

Check whether the following function is the tautology.

Use the properties of unate functions.
Solution. We note that the function is unate positive in and unate negative
in It is then sufficient to check for tautology:

This function is clearly not a tautology. Hence, the original function is not a
tautology.

Check that for the following cover:

the expansion:

is valid. Do so by computing

(note that D is empty in this example) and checking if this function is the
tautology.
Solution. In this case, The cofactor of is clearly tauto-
logous, since F contains 110|11 that covers Hence, the expansion is valid.

5.8. Problems 211

15.

16.

Check whether for the following cover:

the expansion:

is valid. Do so by computing

(note that D is empty in this example) and checking if this function is the
tautology. Use the properties of unate functions to simplify the computation.

This problem is on the recursive algorithm for complementation. Consider the
following function:

We apply the algorithm by selecting a splitting variable, say , and computing
and as follows:

and

Notice that it is easy to compute the complement by simple enumeration on the
cofactors and Hence, we only split once. On large examples, we may
need to split several times. We finally compute

212 Chapter 5. Heuristic Minimization of Two-Level Circuits

17.

Apply this procedure to compute the complement of the following function:

Choose as initial splitting variable.
Solution. If we split on we are going to compute We have:

The second cube is redundant and we can just complement by applying De
Morgan’s Laws:

Similarly:

This time, the third cube is redundant. We get:

Putting things together, we finally obtain:

which is the desired solution.

Compute the complement of

by applying the recursive algorithm.

5.8. Problems 213

18. The Boolean difference (or Boolean derivative) of with respect to
is defined as:

Prove that if is monotonic increasing in

Solution. We have:

However, since is monotonic increasing, we have:

which is equivalent to:

Therefore, we can drop the first term of the sum and get the desired result.

19. Use ESPRESSO to solve Problem 17. Include your input and output files and
the command line you used.
Solution. This is the input file:

.i4

.o 1

.ilb w x y z

.obf
101- 1
011-1
--10 1
110- 1
1-00 1
.e

Giving the command espresso -epos -Dexact infile, we get:

.i 4

.o 1

.ilb w x y z

.ob f
#.phase 0

•P 4

214 Chapter 5. Heuristic Minimization of Two-Level Circuits

0-0- 1
00-1 1
-0011
1111 1
.e

which agrees with our manual solution.

20. Is an essential implicant of

Solution. For each implicant other than we check whether it has an inter-
section or a consensus term with Notice that if there is intersection, then
there cannot be consensus and vice versa.

(a)

(b)

(c)

(d)

Intersection with

intersection with

intersection with

consensus with

The problem is therefore to check whether:

We cofactor the right-hand side of the inequality with respect to the cube
(set) and get:

which is clearly a tautology. Hence, is not essential.

21. Find all maximal expansions of in

by doing the following.

(a)

(b)

(c)

Compute the complement of by the recursive algorithm. (Split on)

Build the blocking matrix.

Enumerate all minimum cost solutions of the covering problem.

Which of the maximal expansions is more advantageous? Explain.
Solution.

5.8. Problems 215

(a) Compute the complement of

(b) Build the blocking matrix.

(c) Enumerate all minimum cost solutions. Clearly is essential and must
be chosen. We can then cover the first row with either or Therefore
we have two minimum cost solutions:

We can see that is advantageous, because it will cover

22. This problem is based on the LUNC circuit that we considered in Chapter 2.1.
We saw that a typical synthesis system proceeds through two phases. Initially,
a description of the behavior of the circuit is translated into a structure, using
adders, comparators, and multiplexors to represent the various language con-
structs. The initial structure is normally far from optimal. Hence the second
phase deals with its minimization. In our review of the LUNC example, we
saw how the initial structure could be optimized by hand. In particular, we
considered the command interpreter block that decodes four possible escape
sequences. In this problem, we shall see how we can use ESPRESSO to optimize
the combinational logic of the decoder: Specifically, the logic that decodes the
character following the escape character. We shall see the important role that
don’t cares play in this process.

The following input to ESPRESSO describes the decoder:

.i 8

.o 3

.ilb x7 x6 x5 x4 x3 x2 x1 x0

.ob L N C
01001100 100
01001110 010
01000011 001
.e

216 Chapter 5. Heuristic Minimization of Two-Level Circuits

The input part of each cube corresponds to the ASCII code of one of the three
characters L, N, and C. (Remember that we do not need to generate a signal
for U.) If we minimize this function, we get:

.i 8

.o 3

.ilb x7 x6 x5 x4 x3 x2 x1 x0

.ob L N C

.p 3
01000011 001
01001100 100
01001110 010
.e

which is exactly the same function. (Only the order of the terms has been
changed.) This result is actually expected. When we simplified the decoder
manually, we actually used the assumption that only L, U, N, and C could
follow an escape character. In other words, all other codes are don’t cares for
the decoder. Our current specification, on the other hand, actually says that
the output for all other codes should be 000.

In this problem, you are requested to:

(a)

(b)

(c)

Augment the specification of the decoder given above by adding the de-
scription of the DC-set. This can be done in (at least) two ways. (You
should refer to the man page for ESPRESSO in Section 5 for the details.)

i.

ii.

The first way consists of using the default type and of specifying
a cover for the DC-set.
The second way is probably less intuitive, but much more efficient
in this case. It consists of using the type where you specify the
ON-set and the OFF-set. Everything else is considered don’t care.

Run your augmented specification with and without the -Dexact option.
You should get two different results. (Both correct, of course.)

Discuss why the two results obtained are different. Keep in mind that the
exact minimization in ESPRESSO uses only the number of cubes as cost
criterion.

Include your input and output files from running ESPRESSO.

Solution. We need to specify that all codes different from L, U, N, and C are
don’t care. The straightforward, yet laborious way to do that is as follows:

.i 8

.o 3

.ilb x7 x6 x5 x4 x3 x2 x1 x0

.ob L N C
01001100 100
01001110 010

5.8. Problems 217

On the other hand, we can notice that the only thing that is missing to com-
pletely specify both ON-set and OFF-set is the indication that all three outputs
should be zero when the input is U. This approach is more convenient in this
case because there are only four input values for which the outputs are not all
don’t care. Therefore we can write:

.i 8

.o 3

.ilb x7 x6 x5 x4 x3 x2 x1 x0

.ob L N C

.type fr
01001100 100
01010101 000
01001110 010
01000011 001
.e

This specification is equivalent to the previous one. ESPRESSO is given and
either or but it internally generates the other one. When we run espresso
on one of the two input files with the -Dexact option, we get:

218 Chapter 5. Heuristic Minimization of Two-Level Circuits

If we do not request exact minimization, we get:

which has the same number of product terms, but one fewer literal. This can be
explained by noting that the cost considered by espresso in exact minimization
is just the number of terms or cubes. Therefore, espresso returns the first
solution with three cubes that it finds.

On the other hand, when espresso is run in heuristic mode, it tries to maximally
expand every cube. When 01000011|001 is maximally expanded,
is found to be a better solution than because it has one fewer
literal.

Note that the solution found by the heuristic minimizer is better in terms of
literals. However, the minimized function depends on three variables,
and instead of two. This may be sub-optimal, if long connections have to
be drawn from where the inputs are available to where the function is placed in
the layout of the circuit. Though in our simple circuit this is not likely to be the
case, this problem gives an example of how abstracting the cost into a simple
formulation—the number of cubes and the number of literals—may sometimes
hide important details. It should be mentioned that it is possible to use as cost
criterion the number of variables a function depends on. In that case we say
that we minimize the support of the function.

Chapter 6

Binary Decision Diagrams
(BDDs)

In this chapter we develop theory, algorithms, and data structures for the treatment
of BDDs (Binary Decision Diagrams) and their applications. Along the way we
discuss the relative advantages of Canonical and Non-Canonical Representations,
and introduce the reader to BDDs by way of examples.

Many synthesis, verification, and testing algorithms manipulate large switching
formulae. It is therefore important to have efficient ways of representing and ma-
nipulating such formulae. In recent times Binary Decision Diagrams (BDDs) have
emerged as the representation of choice for many applications. Though BDDs are re-
latively old [169, 5], it was only with the work of Bryant [47], which brought out their
advantages as canonical representations, that they began attracting the attention of
many researchers.

The impact of BDDs has been enormous. Since 1986, when BDDs were unknown
in synthesis circles, BDDs have penetrated virtually every subfield in the areas of
synthesis and verification. As we shall see, BDDs have two remarkable properties.
First, they are canonical, so if you correctly build the BDDs for two circuits, the
two circuits are equivalent if and only if the BDDs are identical. This has led to
significant breakthroughs in circuit optimization, testing, and equivalence checking.
Second BDDs are amazingly effective at representing combinatorially large sets. This
has led to stunning breakthroughs in FSM equivalence checking (and many other
forms of formal verification [71]) and in two level logic minimization [78, 77, 80, 76].
This recent research is summarized below in Section 6.4.

Clearly a whole book can and should be written about DDs1. However, in this
book we limit ourselves to a brief, introductory treatment in support of our discussion
on “Symbolic” FSM equivalence checking. In our description, we shall follow [47] and
[29], though with slightly different notation.

1 Public domain BDD packages are freely available, for example our own CUDD package — see
Section 6.4.

219

220 Chapter 6. Binary Decision Diagrams (BDDs)

6.1 Representing Logic Functions with BDDs

We have already discussed several ways of representing a Boolean function, for ex-
ample by Boolean formulae, or by the minterm or maxterm canonical form. The latter
two forms are canonical. A form is canonical if the representation of a function in
that form is unique.2

A canonical form is desirable because it makes equivalence tests easy. From the
definition, it follows that and have the same representation in a canonical form
if and only if The minterm and maxterm canonical forms, however, have a
serious drawback: The representations tend to be quite large (they are exponential
in the number of variables). So they are not used except for the simplest cases.

Among the non-canonical forms, the formula type known as the sum of products
(SOP) and the product of sums (POS) have been widely used. These two-level rep-
resentations are discussed in detail in Section 4.3. They are two-level representations,
and quite useful in synthesis and verification. However, there are also some funda-
mental difficulties with these forms.

The two-level representations of some functions are too large to be practical
(e.g., EXCLUSIVE-OR);

Passing from SOP to POS and vice versa is difficult. As a consequence:

Taking the complement is difficult;

Taking the AND of two sums of products (or the OR of two products of
sums) is difficult.

Since SOP and POS are not canonical forms, answering the equivalence question
for two functions is difficult.

Furthermore, deciding whether a product of sums is satisfiable (a sum of product
is a tautology) is NP-complete (coNP-complete) .3

In the next sections we discuss, and the define formally, a canonical form—the BDD—
that has the advantage of being compact for many functions and definitely superior
to the other known canonical forms in that respect.

6.1.1 Binary Decision Diagrams by Way of Examples

We first introduce BDDs with the help of two examples and then give a formal
definition. First, a BDD is a DAG (Directed Acyclic Graph — see Section 7.9.1,
Page 305), such as the DAG shown at the right in Figure 6.1. Note the BDD nodes
are in one to one correspondence with the gates of the MUX circuit at the left of the
figure. This shows how BDDs can be viewed as a shorthand representation for MUX

circuits, just as an SOP form can be viewed as a shorthand representation for an OR
of ANDS.

2 We normally disregard reordering of terms.
The best known algorithms for these problems have exponential worst-case run times.

3

6.1. Representing Logic Functions with BDDs 221

Second, let us consider the following function, given in SOP form:

particular assignment to the variables and we just follow the corresponding
path from the square box labeled (this node is the root of the BDD4). Suppose we
want to know

The first variable encountered from the root is whose value is 1. We then follow
the edge labeled T (which stands for then). We then come across a node labeled

4 In the following we will sometimes omit the root from the figures, when that does not generate
confusion.

A BDD for this function is given in Figure 6.2. If we want to know the value of for a

222 Chapter 6. Binary Decision Diagrams (BDDs)

Since the value of is 0, we follow the edge labeled E (else). The next node is labeled
which implies that for and the value of does not depend on

Following the E edge we finally reach the leaf labeled 0. This tells us the value of the
function is 0, as can be easily verified from the SOP formula.

The BDD of Figure 6.2 is an ordered binary decision diagram, because the vari-
ables appear in the same order along all paths from the root to the leaves. The
ordering in this case is

The appearance and the size of the BDD depend on the variable ordering. This
is illustrated in Figure 6.3, where a different BDD for is given according to the
following variable ordering:

Finally, for the ordering

we obtain the BDD of Figure 6.4. This is an optimal ordering, since there is exactly
one node for each variable. Whenever not otherwise specified, we shall assume that
our BDDs are ordered. Figure 6.5 gives the BDDs for some elementary functions.
Notice the similarity of the BDDs for and One is obtained from the
other by swapping the two terminal nodes.

6.1.2 Formal Definition of BDDs

We now give a formal definition of a binary decision diagram. We shall then outline
the algorithms for BDD manipulation and finally, based on the requirements of those
algorithms, we shall devise the data structures and the details of the algorithms.

6.1. Representing Logic Functions with BDDs 223

Definition 6.1.1 A BDD is a directed acyclic graph representing
a multiple-output switching function F. The nodes are partitioned into three subsets.

a label Here denotes the support of F, i.e., the set
of variables on which F actually depends. Thus, is one of the variables variable

1 is the terminal node: Its outdegree is 0. is the set of the function nodes:
The outdegree of is 1 and its indegree is 0. The function nodes are in one-to-
one correspondence with the components of F. The outgoing edges of function nodes
may have the complement attribute. The two outgoing edges for a node are
labeled T and E, respectively. The E edge may have the complement attribute. We
use to indicate an internal node and its two outgoing edges. The variables

The function of a node is given by where is
the function of the T (E) edge.

The function of is the function of its outgoing edge.

An edge with (without) the attribute is called a complement (regular) edge.
BDDs are canonical (the representation of F is unique for a given variable order-

ing) if:

V is the set of the internal nodes. The outdegree of is 2. Every node has

in are ordered and if is a descendant of then The
function F represented by a BDD is defined as follows:

1.

2.

3.

4.

The function of the terminal node is the constant function 1.

The function of an edge is the function of the head node, unless the edge has the
complement attribute, in which case the function of the edge is the complement
of the function of the node.

224 Chapter 6. Binary Decision Diagrams (BDDs)

6.1. Representing Logic Functions with BDDs 225

1.

2.

3.

All internal nodes are descendants of some node in

There are no isomorphic subgraphs.

For every node,

In the following, we only consider BDDs that conform to these requirements. Note
that the restriction that the T edge may not be complemented is imposed to guarantee
canonicity.

The distinction between the function of a node and the function of an edge allows
us to deal with attributed edges in a natural way.

6.1.3 How to Build the BDD for

BDDS can be built from recursive use of Boole’s expansion theorem (See Section 3.3.3).
We shall see that the expansion theorem plays a central role in the definition and ma-
nipulation of BDDs.

As an example, consider how the BDD is built for

under the variable ordering:

We start by computing the cofactors of with respect to the first variable in the
ordering. We get:

and

We can summarize this initial result by a partial diagram as the one of Figure 6.6.
It is true in general that the two children of a node represent the two cofactors of the
function represented by the node with respect to the variable labeling the node. We
then compute the cofactors of and with respect to This yields:

We observe that three of these four cofactors are identical. Hence we create a single
node for them in the new partial BDD, shown in Figure 6.7. Recognizing that some

226 Chapter 6. Binary Decision Diagrams (BDDs)

cofactors are identical guarantees that the BDD will be reduced (intuitively, it does
not contain duplicated and superfluous nodes). This is an important property, as we
shall see.

Finally, noting that

and

we get the BDD of Figure 6.8. Notice the similarity to the BDD of Figure 6.4. This
example illustrates that the optimal variable order is not unique in general.

6.1.4 Reduced BDDs

Notice that if we had not identified the identical cofactors, we would have obtained
the tree of Figure 6.9. This BDD, unlike the previous ones, is not reduced. There are
isomorphic subgraphs. A non-reduced BDD can be systematically transformed into a
reduced one. Consider the two subgraphs highlighted in Figure 6.10. They represent
the same function and therefore they can be merged, as shown in Figure 6.11. We
now notice that the node pointed by the arrow is redundant (it corresponds to no
decision), hence it can be removed. This is shown in Figure 6.12. By iteratively
applying:

Identification of isomorphic subgraphs;

Removal of redundant nodes;

we obtain the initial reduced graph.
Given an ordering, the reduced graph for a function is unique. Hence, the Reduced

Ordered BDD (ROBDD) is a canonical form. This is the first important property of
binary decision diagrams, that is extremely useful for verification. Two functions are
equivalent if and only if they have the same BDD.

Other interesting properties of BDDs are:

6.1. Representing Logic Functions with BDDs 227

228 Chapter 6. Binary Decision Diagrams (BDDs)

6.1. Representing Logic Functions with BDDs 229

The size of the BDD (the number of nodes) is exponential in the number of
variables in the worst case (e.g., multipliers); however, BDDs are well-behaved
for many functions that are not amenable to two-level representations (e.g.,
EXCLUSIVE-OR).

The logical AND and OR of BDDs have the same complexity (polynomial in
the size of the operands). Complementation is inexpensive.

Both satisfiability and tautology can be solved in constant time. Indeed, is a
tautology if and only if its BDD consists of the terminal node 1.

Covering problems can be solved in time linear in the size of the BDD repres-
enting the constraints.

On the other side:

BDD sizes depend on the ordering. Finding a good ordering is not always
simple.

There are functions for which the SOP or POS representations are more compact
than the BDDs. Unfortunately, many constraint functions of covering problems
fall into this category.

In some cases SOP/POS forms are closer to the final implementation of a circuit.
For instance, if we want to implement a PLA, we need to generate at some point
a SOP or POS form.

230 Chapter 6. Binary Decision Diagrams (BDDs)

6.1.5 Why Ordering is Important

Before looking in more detail at the manipulation of BDDs, let us try to better
understand why ordering is important. We consider

with ordering

The BDD is shown in Figure 6.13. Let us now considering the ordering

The resulting BDD, shown in Figure 6.14, is considerably more complex. (In that
BDD, the E edges go to the left.) The reason for the big difference is the following.
In the decision making process that eventually gives us the value of the function for
a given assignment, we follow two opposite strategies depending on the ordering.

With the first ordering we consider one product term at the time. After the first
two variables have been examined, we know whether the first product term is 0
or 1. If it is 1, we are done. If it is not, we just have to remember that it evaluated
to 0. We don’t need to know which variable or caused it to be 0. After the
first four variables have been considered, we just need to remember whether either
product term evaluated to 1, or whether both were 0. The specifics are not important
to determine the value of the function. Since we have very little to remember, we get
by with very few nodes.

With the second ordering, we process all product terms “in parallel.” If the first
three variables are all 1’s, we cannot tell the value of any product term. In addition,
the value of along any given path must be remembered until is met—three levels
below. Similarly for and This fact prevents the recombination of different paths.

We can imagine a bit-serial processor that examines the values of the variables
one at the time. The size of the BDD is related to the amount of information that

6.2. Design Considerations for a BDD Package 231

must be stored to compute the result. We shall return to these considerations when
we consider algorithms for finding optimal—or simply good—orderings.

6.2 Design Considerations for a BDD Package

We have seen how switching functions can be represented as ordered reduced BDDs.
We now consider the efficient implementation of BDDs, in terms of both memory and
CPU. Before we proceed in detailing data structures and algorithms, and before we
give a formal definition, we need to add a few design considerations. We shall closely
follow [29].

Shared BDDs. We have seen that each node of a BDD has a function associated
with it. If we have several functions, chances are that they will have subexpressions
in common. For instance, if we have and we would like to
represent them like in Figure 6.15. As a special case, two equivalent functions could
be represented by the same BDD (not just two identical BDDs). This amounts to
dealing with a single multi-rooted directed acyclic graph (DAG) with a root for each
function we are explicitly interested in. All functions share the same DAG.

Unique Table. We are ultimately interested in reduced BDDs. Rather than gener-
ating non-reduced BDDs and than reducing them, we are interested in guaranteeing
that at any time there are no isomorphic subgraphs and no redundant nodes in the
multi-rooted DAG. This can be achieved by checking for the existence of a node
representing the function we want to add, prior to the creation of a new node. A
straightforward approach would consist of searching the whole DAG every time we
want to insert a new node. However, that would be far too inefficient. Instead, we

232 Chapter 6. Binary Decision Diagrams (BDDs)

shall keep a dictionary of the functions represented in the DAG. This dictionary is
called unique table and is best implemented as a hash table.

Strong Canonicity. Because of the unique table, two equivalent functions end
up sharing exactly the same subgraph. Hence checking for equivalence just requires
checking that the pointers in the DAG associated with the two functions are identical.
This property is called strong canonicity and makes constant-time equivalence check
possible—a very desirable consequence.

Attributed Edges. We have seen that the BDDs for and are very similar. The
only difference being the values of the leaves that are interchanged. This suggests the
possibility of actually using the same subgraph to represent both and Suppose
the BDD actually represents If we are interested in it is then sufficient to
remember that the function we have in the multi-rooted graph is the complement of

This can be accomplished by attaching an attribute to the edge pointing to the
top node of An edge with the complement attribute is called a complement edge.
The edges without the attributes are called regular edges. The use of complement
edges slightly complicates the manipulation of the BDDs, but has two advantages.
Obviously, it decreases the memory requirements.5 However, the most important
consequence of using complement edges is the fact that complementation can be
done in constant time—the BDD is already in place—and checking two functions
for one being the complement of the other also takes constant time. Note that with
complement edges we need only one constant function (we choose 1) and hence only
one leaf in the multi-rooted DAG. The attribute mechanism is quite general: Other
attributes have been used for other purposes [201, 152].

5 We are assuming that the overhead for storing the attributes is negligible. This will be justified
in the sequel.

6.3. Algorithms 233

Computed Table. As a speed improvement device, we shall keep a table of recently
computed functions. The purpose of this table is different from that of the unique
table. With the unique table we answer questions like: “Does there exist a node
labeled with children and On the other hand, the computed table answers
questions like: “Did we recently compute the AND of and We can ask this
question before we actually know that the AND of and is a function whose top
node is labeled and whose children are and Hence we can avoid recomputing
the result.

Memory Management and Dynamic Re-Ordering. In a typical application
we build and then dispose of many BDDs. An efficient memory management is
important. We shall adopt a strategy based on garbage collection, i.e., we shall
not immediately free nodes that are no longer used. Instead, from time to time we
shall visit our data structure to recover all the unused memory.

Also, an a priori ordering of the shared BDDs may continue to grow as the BDDs
are manipulated in a particular application. If this growth is allowed to go unchecked,
it may (and often does, for large problems) occur that we run out of memory. In many
cases this can be alleviated by dynamically re-ordering the BDD variables. This
can be quite dramatic for some circuits.

Both of these mechanisms are essential to the operation of a robust BDD package.

6.3 Algorithms

We now outline the algorithms for BDD manipulation. Then, based on the require-
ments of those algorithms, we shall devise appropriate data structures and give the
details of the algorithms.

The usual way of generating new BDDs is to combine existing BDDs with con-
nectives like AND, OR, EX-OR. As a starting point one generates the simple BDDs
for the functions for all the variables in the functions of interest6. We are
therefore interested in an algorithm that, given BDDs for and will build the BDD
for where is a binary connective (a switching function of two arguments).
The basic idea comes—not surprisingly—from the expansion theorem, since:

So, if is the top variable of and we can first cofactor the two functions with
respect to and solve two simpler problems recursively, and then create a node
labeled that points to the results of the two subproblems (if such a node does not
exist yet; otherwise we just return the existing node).

Finding the cofactors of and with respect to is easy: If does not depend
on that is, the cofactors are the function itself. If, on the other hand,

is the top variable of the two cofactors are the two children of the top node of
Similarly for

6The function is called a projection function, and was defined in Section 3.3.2.

234 Chapter 6. Binary Decision Diagrams (BDDs)

The approach based on the expansion theorem7 can be further improved by con-
sidering the if-then-else operator ITE, which is a ternary operator defined as follows:

where F, G, H are three arbitrary switching functions. One interesting property of
the ITE operator is that all two-argument operators can be expressed in terms of it,
as shown in Figure 6.16. Therefore, most of the standard manipulation of BDDs can
be done with ITE.

6.3.1 The ITE Algorithm

The algorithm for ITE is clearly a recursive one. It is based on the following for-
mulation. Let be the top variable of F, G, H (the variable with the lowest index).
Then,

The terminal cases of the recursion are:

7The algorithm that takes , and as arguments and returns is called APPLY in the
literature.

6.3. Algorithms 235

Whenever we encounter one of these cases, we just return the pointer to F. Otherwise
we find the top variable of the three functions and we apply the recursive formula.
This is the basic idea of the algorithm. However, before we examine the pseudo-code,
we need to consider some of the design issues of Section 6.2. In particular, we need
to consider the unique table and the computed table.

As we said, we use a hash table for the unique table, i.e., a data structure that
stores an item in a location of a table identified by its key. The key in our case is
the triple (G, H) that identifies a node in the DAG. In the key, is an integer—the
index of the variable—while G and H are pointers. The hashing function maps
the key into the location in the table. The mapping is not one-to-one, so that several
keys may correspond to the same location in the table, thereby producing collisions.
All colliding entries are kept in a linked list called the collision chain. A typical
hashing function may shift G, and H by different numbers of bits, add the results,
and finally compute the remainder of the sum on division by the size of the table.8

If we want to see if a given key is present in the hash table, we compute the
hashing function with the key as argument. This identifies one entry in the table, i.e.,
a collision chain. We then examine all the elements in the collision chain until we find
one that matches our entry or until all elements have been examined.9 The advantage
of a hash table is that the collision chains are short if the table is large enough and
if the hashing function is good; therefore search is performed in expected constant
time.

In the unique table, the pointer to the node with label and children F and
G is found in the collision list corresponding to the key (G, H). In the recursive
algorithm, we first find G and H recursively, and then ask whether we should introduce
a new node labeled and pointing to G and H. The unique table tells us if such a
node already exists. If not, a new entry is created in the table.

For the computed table we initially make the assumption that we also use a hash
table. This corresponds to assuming infinite memory, which is a convenient assump-
tion for our purpose of analyzing the qualitative operation and complexity of the
algorithm10. The key for the computed table is the triple (F,G,H) . At every level
of the recursion, we check the computed table for the result. If it is already there,
we just return. If not we recur and, before returning, we insert the newly computed
result in the table.

We are now ready to look at the pseudo-code of the ITE algorithm, reported in
Figure 6.17. For the time being, we ignore the complement edges.

Notice how the algorithm maintains the BDD reduced by checking if T equals E
and by consulting the unique table. An example of application of the algorithm is in
Figure 6.18. The result consists of two newly created nodes and two already existing
nodes. (Those labeled C and D.) This is a fairly typical situation.

In terms of complexity, let us first examine what would happen without the com-
puted table. Assuming the accesses to the unique table take constant time, then all
operations performed by the algorithm require constant time, except for the recursive

8The size of the table should be a prime number for best results. Another approach uses to
select a sub-table and then G and H to select a position in the sub-table.

9This particular scheme is called open hashing. Hash tables are treated in [3, 69].
10This is not realistic in practice. However, management of the computed table is intricate, and

beyond the scope of this text.

236 Chapter 6. Binary Decision Diagrams (BDDs)

6.3. Algorithms 237

calls. However, every call to the procedure generates two other calls unless we are in
a terminal case, so that the total number of calls—and hence the execution time—is
exponential in the number of variables. However, if we consider the computed table,
things change dramatically. Let be the number of nodes in the BDD for F. The
effect of the computed table is to cause ITE to be called at most once for each distinct
combination of nodes in F, G, and H. Hence, ITE can be called times
at most and the complexity of the procedure is Note that when
using ITE to compute the AND of two functions, one of the arguments to ITE is 0;
in such a case the complexity is quadratic in the size of the operands. In practice
performance is normally better than quadratic and typically closer to the size of the
resulting BDD. In the worst case, is comparable to However, in
many cases, In these cases the time taken by ITE is typically
proportional to

If we remove the infinite memory assumption, as we do in practice, the worst-
case complexity returns to be exponential. However, the typical performance is not
affected significantly by the loss of infinite memory, if the computed table is imple-
mented carefully.

6.3.2 Complement Edges

We mentioned that edges may carry attributes that specify how to derive the function
of the edge from the function of the node it points to. The most common attribute
is the complement. It allows the BDDs for and to be shared, thus saving space
and making complementation a constant-time operation. We use a dot to indicate a
complement edge.

To maintain canonicity, we must constrain where complement edges can be used.
The four pairs of functions of Figure 6.19 are equivalent. Each pair consists of two
functions that can be obtained from each other by application of the identity

whence

Also, the functions represented in Figure 6.19 represent all the eight possible ways of
placing dots on the incoming and outgoing edges of a node. To guarantee canonicity,
we impose that the then edge of every node be regular. Notice that this is true of
exactly one function for each of the four pairs of Figure 6.19. It will be the task of the
algorithms, ITE in particular, to insure that every non-canonical case be transformed
into the corresponding canonical case. The overhead is indeed minimal. Since the

238 Chapter 6. Binary Decision Diagrams (BDDs)

dots may only appear on else edges, in the sequel we shall adopt the convention of
marking an else edge with an empty circle if it is regular and with a dot if it is
complemented. The then edges will be unmarked. The outgoing edges of function
nodes may have the complement attribute: In that case they will have a dot. We
shall also convene that dangling edges point to the constant node, unless otherwise
stated.

The use of complement edges makes testing for another special case of ITE pos-
sible. Indeed,

Though this is true in general, without complement edges we could not terminate
the recursion because the BDD for would not necessarily exist and could not be
easily found if it existed. Another advantage of complement edges, to be discussed
in Section 6.3.3, is the ability to use a single entry of the computed table for both F
and

We end this section with one observation that is useful when drawing BDDs by
hand. Since the then edges are never complemented, the value of a function for
1,1,... ,1 will be 0 if and only if the outgoing edge of the function node is complemen-
ted. Computing the value of the function for which a BDD must be drawn when all
variables equal 1 allows one to determine how to start (with a regular or complement
edge) and normally prevents one from pushing too many complement dots around.

6.3.3 The Computed Table

The computed table stores results of recent computations. Under the assumption of
infinite memory—all previously computed results are stored—we have seen that the
computed table makes the complexity of ITE polynomial in the size of the operand
BDDs. In general memory is at a premium; it is important to implement the computed
table efficiently. However, discussion of this crucial issue is beyond the scope of this
text.

6.3.4 Conditioning of the ITE Calls

For every triple (F, G, H) there are other triples such that ITE(F, G, H) =
ITE though at least one of the three arguments is different. For instance,
if

and

then

If we could identify all triples that give the same result, we could map all of them
into the same entry of the computed table. In general, finding all such triples is too
expensive, but there are special cases that can be identified with very little effort. For
instance,

6.3. Algorithms 239

For these special cases, we want to transform the triple into a standard form before
looking up the computed table. In this way, all the triples that map into the same
standard form share the same entry. This saves both memory and time.

A mapping of a triple into another can be based on the identification of the
following occurrences:

Two arguments are the same function (e.g., ITE (F,F, G));

Two arguments are one the complement of the other (e.g., ITE (F, G,));

One or more arguments are constants (e.g., ITE (F, G, 0)).

Note that these checks can be performed in constant time. A first set of transforma-
tions replaces as many arguments as possible with constants:

A second set of transformations permutes the arguments based on the following equal-
ities.

If one of these cases occurs, we choose the triple with the first argument having the
smallest index for its top variable. For instance, if the top variable of F is and
the top variable of G is we prefer (F, G, 1) to (1). In case of a tie, we
compare the addresses of the top nodes of the first arguments—they are guaranteed
to be different—and choose the triple with the lower address.

A third and final set of transformations is based the following equalities.

As in the other cases, we want to choose only one of the equivalent forms and map
the others onto it. We notice that there is only one form such that the first two
arguments should be pointed via regular edges. For instance, if F is regular and G is
complement, ITE will replace (F, G, H) by (F,) and take the complement of the
result before returning. If, on the other hand, F is complement and H is regular, ITE

will replace (F, G, H) by (H, G), and will not take the complement of the result
before returning.

Among the effects of these transformations is the ability to detect that
i.e., the ability to apply De Morgan’s laws. This demonstrates the power

and flexibility of the approach based on the ITE operator.

240 Chapter 6. Binary Decision Diagrams (BDDs)

6.3.5 The ITE_CONSTANT Algorithm

It is often the case that one wants to check whether, for two functions F and G,
or equivalently holds. This amounts to checking if is

identically one. We could use ITE to compute and then test the result for
being the tautology. However, there is a more efficient way of proceeding, which
avoids building the intermediate result; it is based on a specialized version of ITE
called ITE_CONSTANT, and is outlined in Figure 6.20. The check for implication

can then be performed by computing ITE_CONSTANT(F, G, 1). The procedure
returns one of three values: 1, 0, and non_constant. It is based on the observation
that for the resulting function to be constant, the two cofactors must be identical
and constant. As soon as a violation of this condition is detected, ITE_CONSTANT

returns non_constant. This early termination in unsuccessful cases, combined with
not building intermediate results, makes this procedure much faster than the general
approach. Notice that the speed-up occurs only for cases where Hence, the
speed-up observed in practice depends on the problem at hand. A typical value could
be 20.

As an example of ITE_CONSTANT, consider the following functions.

We are interested in checking whether This translates into checking whether
ITE_CONSTANT The BDD for these functions and the computation are
given in Figure 6.21. Note that unlike in ITE, the fact that the two cofactors of the

6.3. Algorithms 241

242 Chapter 6. Binary Decision Diagrams (BDDs)

result are computed serially does matter.11 This is taken into account in Figure 6.21

The computation of ITE_CONSTANT(0,1) itself is a special case, since is not
constant and therefore is not constant either.

The correctness of the result can be verified by observing that for
and The procedure, however, does not even need to find such an example.

We conclude with a more meaningful example, which shows how to deal with
complement edges in ITE and ITE_CONSTANT. Consider the functions

with the variable ordering

Now suppose that we are given the shared BDD (with complement edges) for

11 Specifically, it matters for the number of recursive calls. It does not affect the final result.

by not expanding ITE_CONSTANT(0,1) until the result of the other branch is known.

and need to compute the BDD for ITE The results, shown in Figure 6.22,
are obtained as follows.

6.4. Notes 243

Next, if we wanted to compute ITE_CONSTANT we would proceed as follows.

and then all pending calls return non_constant.

6.4 Notes

There has been a surprisingly steady influx of “new” types of DDs (Decision Dia-
grams). The work of Bryant in [47] focused on Boolean functions and decision
diagrams that were based on the Boole-Shannon expansion of Section 3.3.3 and spe-
cific types of reduction to canonical form. However, some new forms of DDs fo-
cus on Pseudo-Boolean Functions have been introduced: [67] (called MTBDDs),
[11, 12, 131, 132] (called ADDs), [165] (called EVBDDs), [46] (called BMDs).

These works have successfully extended the applicability of DDs into the realm of
functions with Boolean domains but integer or real valued ranges. This has opened up
new vistas for research on Markov Analysis and Probabilistic Verification, Shortest
Path Analysis on graphs of vast size, “Exact” (that is free of false paths) timing
analysis of combinational circuits, low power synthesis, technology mapping, etc.

Other work on extending the applicability of DDs has focused on the reduction
to canonicity. Different reduction or ordering rules have been studied: [200] (Zero-
Suppressed BDDs), [23] (Free BDDs), [91] (Functional DDs), [218] (Extended De-
cision Diagrams). Some or all of these variants can be mixed into a single “Hybrid
Decision Diagram”. Zhao and Clarke of CMU have developed this DD in a package
for word level verification of sequential arithmetic circuits which has won internal
awards at INTEL.

A serious issue with DDs is ordering. In every type of DD, the variables in
the support of the function being represented must be ordered to obtain canonicity.
Unfortunately, in many cases, the size of the BDD depends critically on the the specific
ordering chosen. This dependence is so drastic that in many cases it is impractical to
build the BDD at all. For example it is known that BDD size grows exponentially with
variable count, independent of the order. This limits the use of BDDs for multipliers
to 16 bits or less.

An exact algorithm for BDD variable ordering is the improved version by Ishiura
et al. [150] of Friedman and Supowit’s [104]. Various iterative techniques are dis-
cussed in [106, 150, 237, 207, 206]. Heuristic techniques to find a good order for a
circuit are discussed in [105, 183, 201, 262]. A comparison of the performance of
various methods can be found in [154]. Partial BDDs have been studied in [230, 53].
Other references on variable ordering are: [269, 102, 48, 26, 90].

At the time of writing, several BDD packages of high quality were in use. Rudell’s
package was proprietary to Synopsys. David Long’s package, developed at CMU,
is employed in SMV (CMU verification package), VIS (UC Berkeley Verification
Package) and SIS (UC Berkeley Synthesis Package) as well as AT&T and other
industrial sites. A more recent entry into the BDD package field is the CUDD package
from the University of Colorado at Boulder. This package is used in VIS and in

244 Chapter 6. Binary Decision Diagrams (BDDs)

Motorola’s VERDICT verification package as well as at several university sites. Of
all of these, the CUDD package has the most efficient dynamic reordering package,
and goes the farthest in supporting diverse BDD types (it currently supports BDDs,
ADDs/MTBDDs, and ZDDs (zero-suppressed BDDs)).

The CUDD package is available on the web via anonymous FTP at

vlsi.colorado.edu

(login as anonymous, give your email address as password, and then type “cd pub”).

6.5 Summary

In this chapter, we have introduced BDDs and summarized briefly the enormous
impact they have had on the merging fields of synthesis and verification. We have
shown how to build and manipulate them (see the solved problems for applying the
usual Boolean operators to two functions represented by BDDs). We have shown how
an ordered BDD is made canonical by imposing certain reduction rules.

We have studied the qualitative operation of the ITE and ITE_CONSTANT al-
gorithms, and show how many of the BDD manipulations that might be needed in
practice can be done efficiently, given efficient implementation of these algorithms.

We have avoided the intricacies of memory management, but they are all-important
to the robustness of a BDD package12.

We have given enough background so that the discussion of FSM traversal using
binary decision diagrams of Section 7.9.1 can be appreciated. This subject is of
pervasive importance in synthesis, testing, and verification [61, 63].

We have demonstrated by example why (and how) variable ordering is important.
In Section 6.4 we discussed the state of the art in variable ordering techniques. We
also discussed design considerations for BDD packages, and how to obtain efficient
and recently developed BDD packages.

6.6 Problems

1. Find the reduced BDD without complement edges for the BDD of Figure 6.23.
Repeat the problem, drawing this time a reduced BDD with complement edges.
Finally, write a sum-of-product expression for
Solution. The two BDDs are in Figure 6.24. A sum-of-product expression for

can be derived from the BDDs:

2. Write a sum-of-product expression for the function represented by the BDD
with complement edges of Figure 6.25.

12Detailed notes on this subject are available from the authors.

6.6. Problems 245

246 Chapter 6. Binary Decision Diagrams (BDDs)

Solution. One sum-of-product expression for is:

3. Find a good variable ordering for

Discuss what was your reasoning. Draw the BDD for your ordering using
complement edges.
Solution. Since is the product of two functions with disjoint support, we keep
the variables in the two supports separate in the order. We then notice that
and on the one hand, and and on the other hand, are symmetric. Hence,
their relative order is immaterial. Finally, we can apply the same argument we
applied to to so that and are not interleaved. These considerations
leave several orders possible. One is simply obtained by listing the variables in
the order in which they appear in the given expression for

The resulting BDD is shown in Figure 6.26. The BDD is clearly optimal be-
cause each variable labels exactly one node.

4. For the following functions:

6.6. Problems 247

(a)

(b)

(c)

(d)

Draw BDDs F, G, and H with complement edges using the variable or-
dering

Compute ITE(F,G, H);

Draw the corresponding BDD with complement edges;

Compute ITE_CONSTANT (F, G, H).

Note that you have to figure out the details of how to deal with complement
edges in the ITE algorithm.
Solution. The BDD for the operands and the result is shown in Figure 6.27.
The computation of ITE(F, G, H) proceeds as follows.

The computation of ITE_CONSTANT(F, G, H) proceeds as follows.

This happens because the result from the positive branch is known to be G,
and G is known not to be constant.

248 Chapter 6. Binary Decision Diagrams (BDDs)

5. Write pseudo code for the APPLY operation, defined here as a procedure that will
take two BDDs and a Boolean connective operator as arguments. Assume the
operation is specified by passing the name of a function that actually computes
the desired operation. Write the function needed to compute the OR of two
BDDs.
Solution. The pseudo code for APPLY is shown in Figure 6.28. The pseudo
code for the OR of two BDDs is shown in Figure 6.29. Notice that we could
return 1 if However, this test would not be possible in constant time.

6. For the following functions:

(a)

(b)

(c)

Draw BDDs F, G, and H with complement edges using the variable or-
dering

Compute ITE(F, G, H) by putting the triple in standard form first;

Draw the resulting BDD with complement edges.

Solution. The BDD for the operands and the result is shown in Figure 6.30.
The computation of ITE(F, G, H) proceeds as follows.

6.6. Problems 249

250 Chapter 6. Binary Decision Diagrams (BDDs)

Note that in this case the sharing between the operands and the result is detec-
ted by looking at the unique table.

Chapter 7

Models of Sequential Systems

7.1 Introduction to Finite State Machines

In the just concluded study of two level logic minimization we have used switching
algebra as our principal formalism. In the study of sequential circuits our main
formalism will be the theory of finite state machines. We shall now show how a
specification of a synchronous sequential system can be converted into an optimized
logic circuit consisting of logic gates and flip-flops.1 We shall initially formulate our
specification as a finite state machine. We shall then see how to minimize the number
of states and assign binary codes to them. The resulting logic can then be optimized
by using the subtools of SIS or other CAD tools or techniques.

Our treatment of FSMs (Finite State Machines) will be rather elementary. In
particular, we shall restrict our treatment to single machines, rather than treating
networks of machines. An exception to this rule is our treatment of product machines
in Section 7.7.5. To some extent, this restriction is analogous to considering only two-
level logic in the study of combinational circuits. There are many circuits of practical
interest that cannot be conveniently modeled as a single finite state machine, because
they would result in machines with too many states. For those systems, more powerful
modeling techniques are needed. However, as for multi-level logic with respect to two-
level logic, there are more powerful formalisms that relate to finite state machines as
Boolean networks do to sums of products. Furthermore, large, complex systems
can be normally decomposed into controllers and data paths. For the purposes of
synthesis, one can consider each part separately (at the possible expense of losing
some optimality). It is not uncommon that controllers can be modeled as single
finite state machines and indeed finite state machines are used in practice to design
controllers and simple sequential circuits, as in the following example.

A Simple Example of FSM Design, Using an Informal Approach Suppose
that we want to design a circuit according to the following specifications. The circuit
receives a stream of bits, one per clock cycle, on input and at every clock cycle it
indicates, on the three outputs the difference between the number of ones
and the number of zeroes in the last three bits received. The difference is positive

1We shall restrict our attention to D-type flip-flops.

255

256 Chapter 7. Models of Sequential Systems

if the number of ones exceeded the number of zeroes and it is negative otherwise.
The difference is represented as a two’s complement number, with the sign bit
and the least significant bit. At reset, the circuit is assumed to have received an
arbitrarily long string of zeroes, so that the output is -3.

Proceeding informally, we may decide to build our circuit around a 3-bit shift
register. The shift register holds the last three bits received, so that a simple com-
binational circuit can determine the difference in the numbers of ones and zeroes and
produce the correct output. Letting and be the three bits stored in the shift
register, the truth table for the combinational circuit is:

and one possible resulting circuit, after optimization of the combinational logic, is
shown in Figure 7.12.

Though in this case the informal procedure is immediate and results in a good
circuit, in general it does not allow us to answer questions like: “Is it possible to
design the circuit using one fewer flip-flop? Can we simplify the output logic, by
making the next state logic slightly more expensive?” These two questions are related
to the general issue of the exploration of the design space. We would like a systematic
approach to considering different implementations. The informal approach may be
effective, but it is not systematic.

Furthermore, some design problems, unlike our example, may not be amenable
to the informal approach. In particular, if the initial description of the problem is

2Recall that when a number is represented by the two’s complement encoding we
have

7.2. Synthesis of Finite State Machines 257

in a high-level format such as an HDL description, we need an approach to design
that may be easily automated. Finally, if we are interested in verifying that the
implementation is correct, we need a description of the intended behavior that is not
ambiguous and that can be used for both synthesis and verification.

One such description of our example problem is the state transition graph of
Figure 7.2, that we shall introduce formally in the next section. In the figure, the
label identifies the state the machine will be in if the last three bits were 100
(with the last bit on the left). Though this name suggests a possible encoding of the
state, we are not committed to that particular one. The state transition graph is the
same as the graph of a shift register. However, there is no implicit stipulation that a
shift register will be used.

7.2 Synthesis of Finite State Machines

A simplified view of the design flow for an FSM is given in Figure 7.3. As an intro-
ductory example, consider the FSM represented by the STG on the left of Figure 7.4.
We can observe that there is no way to distinguish state from state (This will
be explained in detail in Section 7.4.1.) These two states are equivalent. Hence we

258 Chapter 7. Models of Sequential Systems

can reduce the machine accordingly, obtaining the minimized machine on the right
of Figure 7.4. It is often true that a reduction in the number of states is accompan-
ied by a simplification in the final implementation, though there are exceptions [93].
This illustrates one common theme that we already encountered in the synthesis of
combinational circuits. We have a complex optimization problem, namely translat-
ing an STG into an optimal circuit. We break down the problem into sub-problems
that are more manageable. In doing so, we need to formulate cost criteria for the
sub-problems. This may be an arduous task. In the case of state minimization, we
normally assume that we want to minimize the number of states, but what we are
really interested in is the quality of the final implementation.

If the FSM is to be implemented as a PLA, then the cost is usually given by a
simple function of the number of product terms and the number of bits used to encode
the states.

If the encoded FSM is passed to a multilevel optimization program, then it is
customary to consider the number of literals in the optimized circuit as the figure of
merit. This is an approximation, since the cost of interconnections is not modeled,
but it is usually a good one.

Once the number of states has been minimized, we need to assign binary codes
to the states. This process is usually referred to as state assignment or state
encoding. In general, we may also have to encode the inputs and/or the outputs.
Such encoding problems were studied in [176, 92], and will be treated in Chapter 8
below.

The high number of possible assignments make explicit enumeration of all possible
solutions impossible for all but the simplest cases. In addition, it is not possible to
determine a priori which number of encoding bits results in the optimum solution.
Hence, practical algorithms for state assignment are heuristic. Most fall in one of
these categories:

algorithms that try to minimize the number of product terms in the two-level
representation of the encoded machine;

algorithms that try to minimize the dependence among state variables;

algorithms that try to estimate the impact of encoding choices on the cost of a
multi-level representation.

7.2. Synthesis of Finite State Machines 259

We shall review the last two categories briefly, by comparing two choices for encoding
the minimized FSM on the right of Figure 7.4. First, suppose that the following
assignments were made:

(The two state variables are and in this order.) Then the equations for the
next-state function and the output are:

Note that these SOP expressions require 11 literals, and may be derived from the
minterm expansion of these three functions as follows.

By collecting the terms of the truth table where functions evaluate to 1, we get
SOP (Sum Of Products) expressions for and These may be
optimized to produce the three functions given above. However, these representations
do not account for the don’t care conditions which correspond to the unused code
11. If we assume that this code never appears as the present state, we may form the
don’t care function and further minimize the above representation to the
following.

which require only 9 literals.
Second, suppose that the following assignments were made:

Note that there are more 1s in this encoding. Then the equations for the next-state
function and the output are:

260 Chapter 7. Models of Sequential Systems

Note that these SOP expressions require 11 literals, and may be derived from the
minterm expansion of these three functions as follows.

By again collecting the terms of the truth table where functions evaluate to 1, we
get SOP (Sum Of Products) expressions for and for the
new encoding. These may be optimized to produce the three functions given above.
However, in this optimization we did account for the don’t care conditions which
correspond to the unused code 00.

We see that the first encoding produces a result requiring 2 fewer literals than the
result obtained with the second encoding. In this case there is very little room left for
optimization. In general, one would then submit the resulting equations to, say, SIS,
and optimize them using the SIS tool suite. Note SIS would likely catch the fact that

thus producing a final result requiring only 8 literals. It frequently occurs
in such circuits that the logic cones of the state transition function and the output
function have considerable overlap and should be optimized jointly in the synthesis
process.

After technology mapping, one would add the two flip-flops for and and
finally submit the resulting netlist to a placement and routing tool. As illustrated in
Figure 7.3, it is important to verify at each step that no errors are introduced by the
synthesis procedure, as described in Section 7.8 on FSM equivalence checking. It is
equally important to generate test patterns for the circuit, so that the correctness of
the devices that are fabricated can be established, as described in Chapter 12.

A pictorial representation of an encoded FSM is given in Figure 7.5. As in the
above discussion, each letter of the input alphabet set is given a unique
encoding The states are similarly encoded. In the figure,
the inputs are provided by the external environment, and the machine changes state
to a next state FSMs have output functions

which on each clock cycle map an input and present state into a
next state Note that such a physical implementation cannot directly represent
nondeterminism. However, the encoding method of Section 9.2.3 can be used to
represent the nondeterminism implicitly [66]. This technique is used extensively in
Berkeley’s verification tool VIS [225].

7.3. FSMs: Definitions, Notation, and Examples 261

7.3 FSMs: Definitions, Notation, and Examples

In mathematical terms, a (completely specified, deterministic) Finite State Machine
(FSM) of Mealy type is a 6-tuple

where:

I is the input alphabet, i.e., a finite, non-empty set of input values;

S is the (finite, non-empty) set of states;

is the next-state function;

is the the set of initial (reset) states.

O is the output alphabet;

is the output function;

For a Moore type machine, i.e., the outputs do not depend on the present
inputs.3 In some contexts, like state minimization, we shall disregard the initial
states. We shall mostly deal with Mealy machines, because they are more general. In
practice, Moore machines are encountered when the outputs need to be latched: The
algorithms we shall examine will work equally well for both types of machines.

7.3.1 Examples

An example of Mealy-type FSM is as follows:

I = {0,1};

O = {0,1};

3The two types of machine take their names from two pioneers of the field [197, 202].

262 Chapter 7. Models of Sequential Systems

This way of specifying an FSM is cumbersome and difficult to read, so that we
usually resort to more expedient ways. Various representations of FSMs are in use.
Figure 7.6 shows the State Transition Graph (STG)4 for our example FSM. Every
node in the graph corresponds to a state; every arc corresponds to a transition.
The label on the arc indicates the input that enables the transition and the output
produced when the transition takes place. In Moore-type FSMs, the output values
are normally associated with the states. An example was given in Figure 7.2. Other
representations include the flow table and the cube table described in Figure 7.7. The
cube table representation is very close to the input format of the CAD programs we
shall use to manipulate FSMs.

The alphabets I and O and the set of states S are just sets of symbols. In
particular, the symbols can be strings of zeroes and ones, in which case we have
a straightforward way to implement the finite state machine as a circuit. Initially,

4Such graphs should not be confused with the signal transition graphs used in the synthesis
of asynchronous circuits, which are also referred to as STGs.

7.3. FSMs: Definitions, Notation, and Examples 263

though, the symbols may just be mnemonics, in which case the synthesis process will
involve the assignment of binary codes to them.

Another example of an FSM is

which is a higher level representation of the LUNC example of Section 2.1.
is illustrated in Figure 7.8. In this FSM, X is the set of the 256 ASCII codes (plus
the reset signal), S is the set {holdL,holdU,holdN,holdC}, and is
as specified by the given STG. The output function is not specified explicitly, but
is defined to be or or unspecified (don’t care), depending on
the input.

Programs exist, some as part of the SIS package (STAMINA[228],MUSE[92], and
JEDI [92, 176, 179]) which can synthesize high quality logic directly from such a
symbolic (non-Boolean) specification. Of course, a low-level description, as provided
for the LUNC circuit in Chapter 2, can usually lead a creative designer to a better
solution (if the problem is not too large and she/he is given enough time).

7.3.2 Incomplete Specification

An FSM is incompletely specified if the next-state function and/or the output
functions are specified only for some combinations of inputs and present states. Ex-
amples of incompletely specified machines are given in Figure 7.9. Notice that the
cube table representation is in this case slightly more powerful than the STG, since
it can express the fact that the output for state and input 1 is specified, whereas
the next state is not.

This is not a major drawback for the STG, since one can always find an equivalent
FSM where only the output function is incompletely specified, by adding a dummy
state, often called a trap state, and denoted by The use of a trap state is
illustrated in Figure 7.10. Unless otherwise specified, we shall assume throughout
the sequel that is deterministic and complete. If a partial specification of is

264 Chapter 7. Models of Sequential Systems

given, in which transitions are not specified for some then we will augment
S with a trap (or “dummy”) state, state which becomes the next state for every
unspecified argument of Further we specify Often it
is unnecessary to explicitly show the trap state, so unless otherwise specified, it will
be omitted in the sequel.

Finite state machines are devices that receive inputs and produce outputs. They
perform an input/output transformation. There are devices, very similar to finite
state machines, whose task is only to declare inputs accepted or rejected. They are
called finite automata. Though we are primarily interested in finite state machines,
we also define finite automata here for completeness. Our treatment here is brief and
informal — the subject will be treated formally and in detail in Chapter 9.

A deterministic finite automaton is a 5-tuple where
and are as before. F is a set of final or accepting states.

We distinguish deterministic automata, where the next-state function maps an
input and a present state into a next state, from nondeterministic automata, where
the next-state function maps an input and a present state into a set of next states,
i.e.,

The set of next states can be interpreted as uncertainty as to what state the non-
deterministic automaton will actually enter: hence the nondeterministic attribute.

It is also possible to define nondeterministic finite state machines, and we shall

7.4. FSM Minimization for Completely Specified Machines 265

do so in Section 7.7.1. We shall see that incomplete specification can be interpreted
as a restricted form of nondeterminism. At first, one may think that nondeterminism
is interesting mainly from a theoretical standpoint. However, it is actually import-
ant in many practical applications of finite state machines and automata, because it
provides for compact representations and may be used to express abstraction5. We
mention here only a few of those applications: the design of efficient pattern match-
ing algorithms, like those used in text editors; the design of compiler compilers, the
verification of communicating processes.

We shall return to the subject of incomplete specification in Section 8.1, which
treats the state minimization of incompletely specified machines.

7.4 FSM Minimization for Completely Specified Machines

State minimization plays a crucial role in logic synthesis. Especially in the con-
text of a top-down design style starting from a high-level HDL specification, such as
VERILOG, VHDL, or even a lower level specification such as the SIS blif-MV lan-
guage. In this section we shall demonstrate why the 6-state machine of Figure 7.11
is equivalent to the 4-state machine of Figure 7.12.

Further we shall give an automatic procedure for synthesizing the smallest, in
terms of the number of states, machine which is equivalent to a given machine. Often
the circuit implementation of the reduced machine is much smaller and faster, and
consumes less power, than the original. To our knowledge, Pixley [214] was the first to
present a truly symbolic state minimization procedure, capable of handling machines
with more than states.

7.4.1 Identifying the Equivalent States of an FSM

We shall begin by defining the concept of equivalence between two states of a given
FSM, and then show how this can be generalized into a procedure for state minimiz-
ation. In the example of Figure 7.11 we will show that states A and C are equivalent,

5By abstraction we mean a process of reducing a given sequential system to a simpler system
which retains essential properties of the original.

266 Chapter 7. Models of Sequential Systems

and that states B and D are equivalent.

Definition 7.4.1 Consider two states and of a given FSM, and a k-string (se-
quence of input symbols) Suppose the string x produces one
run with when starting from and another run

with when starting from . Further, let
and be the corresponding output strings .

The string x is said to be a length-k distinguishing sequence for states s and t if
and only if

Definition 7.4.2 Two states and are k-equivalent, written if and only
if there does not exist a distinguishing sequence of length or less for these states.
Two states and are equivalent if and only if they are n-equivalent, where

Given this simple definition of equivalence and distinguishability, we give the following
theorem as the basis of state minimization.

Theorem 7.4.1 if and only if and where
and are the of and

Proof. (If):
Suppose Then by Definition 7.4.2. Further consider an arbitrary

the catenation of an arbitrary followed by an arbitrary
Since we also have so the prefix does not

distinguish and Further, since it must be true that the suffix
does not distinguish the and of and This proves

thus completing proof of the If part of the theorem.
(Only If):

Assume and Since we also have Thus no 1-string
distinguishes between and Further, since and no
distinguishes between the and of and However an arbitrary

is composed as the catenation of a 1-string and a and we have

7.4. FSM Minimization for Completely Specified Machines 267

just shown that no such string distinguishes and Hence completing the
proof of the Only If part and of the theorem.

Definition 7.4.3 We define the binary relation as

We also denote the equivalence classes of the relation by

is an equivalence relation since it is reflexive (a state is to itself),
symmetric and transitive As
discussed in Section 3.1.3, Page 80, an equivalence relation on a set S partitions S
into the disjoint equivalence classes We shall denote the set of equivalence classes
as the partition

In the example of Figure 7.11 we see from the above definition that states in the
set are 1-equivalent, and states in the set are also
1-equivalent. However, since states A and B are in different 1-equivalence classes,
they are 1-distinguishable — in fact, an input of 1 produces different outputs.

Similarly, we see that states are also 2-equivalent, since they are
1-equivalent, and for all their successors (respectively) E, E, C (under input
0) are 1-equivalent, and D, B, F (under input 1) are also 1-equivalent. This means
that no input sequence of length 2 can distinguish between these states. Further, the
same reasoning shows that states B and D are 2-equivalent.

However, state F in is not 2-equivalent to state B, since F goes to C
under input 1, whereas B goes to D under input 1 and C and D are not 1-equivalent.
Thus we conclude that the 2-equivalence classes are
and This shows that F is not 2-equivalent to any other state.

Similarly, we can show that states are also 3-equivalent, and that
states are also 3-equivalent, but that there are no other 3-equivalent pairs
(thus and Since the same two pairs are also the only 4-
equivalent pairs, the following proposition and theorem show that {A, C} are equi-
valent, and {B, D} are equivalent.

proposition 7.4.1

The following theorem is due to Kohavi [162, Chapter 10].

Theorem 7.4.2 Two states of a given FSM with n states are equivalent if and only
if they are (n – 1)-equivalent.

Proof. Kohavi’s proof is based on the preceding proposition.

268 Chapter 7. Models of Sequential Systems

7.4. FSM Minimization for Completely Specified Machines 269

7.4.2 State Equivalence Checking: the Partition/Refinement Ap-
proach

Using these results we can formulate a simple partition-refinement procedure,
which determines the set of all equivalent state pairs of a given FSM.
Procedure STATE_EQUIVALENCE is given in Figure 7.13. The procedure employs a
state partition to represent the equivalence relation of state pairs.
It consists of two phases. The first determines the 1-equivalence classes by examin-
ing the outputs of the state transitions. The second phase iteratively determines the

classes by examining the partition block indices of the head state of
each transition. We shall describe the two phases separately, illustrating each phase
on the same example.

The first phase begins by initializing and as partitions with one block,
which contains all the states in S. It then proceeds to execute two nested for-loops
(Lines 1,2). it gathers a vector of the of the states in
Then Subprocedure PARTITION uses to partition the vector into blocks with like
output values, returning this partition as

At Line 4, the current approximation of the partition is then refined, that is,
intersected, with We interpret this operation according to the following definition.

Definition 7.4.4 If and then called the meet, or
intersection, of partitions and is given by

Note that according to Definition 3.1.2 of Page 83, the meet of two partitions
and is a refinement of both and

For example, consider the application of Procedure STATE_EQUIVALENCE to the ex-
ample of Figure 7.11. The initial partition is where

On the pass through the first for loop, we get output
vector formed from the relevant vector
Since there is only 1 unique value in Subprocedure PARTITION returns
Thus at Line 4 REFINE intersects {S} with itself, so at this point still is equal to
{S}.

However, for the pass, we get from the state vector

Then at Line 4 REFINE intersects {S} with which gives so at the
end of loop, we have

If Procedure STATE_EQUIVALENCE returns at the end of the first phase, it
indicates that all the states of the specified machine are pairwise equivalent 6. If this
is the case, the FSM does not exhibit any sequential behavior and is in fact equivalent
to a combinational circuit. An example of such an FSM is given in Figure 7.14.

We now discuss the second phase of Procedure STATE_EQUIVALENCE comprised of
a set of four nested for-loops (Lines 5,6,7,8). This time, the FSM next state function

6This must be checked for and is a practical possibility. In fact, a 27 state machine, called
DONFILE, was once distributed as part of a benchmark set and later proven to be equivalent to a
combinational circuit.

This time, PARTITION returns where and

270 Chapter 7. Models of Sequential Systems

is used to update the approximation to the partition of pairs.
On each pass through the loop over we initialize to the empty partition. Then
we loop through the blocks of and compute as a partition of This
works as follows.

Inside the loop, Procedure STATE _EQUIVALENCE gathers a vector of the
of the states in Then Subprocedure BLOCK _INDEX is called to compute

the corresponding vector of partition block indices (in partition Then
PARTITION is called to partition into blocks with like block indices, calling
the result REFINE then intersects this with the current according to the
above definition.

The application of the second phase of Procedure PARTITION_REFINEMENT to the
example of Figure 7.11 proceeds as follows. When Line 6 is first entered,

and is the empty partition. Before entering the
loop, we initialize to Then we upgrade to a partition of through
refinement as follows.

On the first pass through the loop of Line 7, and we get next state vector
for the partition block Since the block indices of

are PARTITION returns the trivial partition
However, for and block {B, D, F} we get and
This time, PARTITION returns Then REFINE intersects
and thus refining the partition of the first block of partition into two
blocks. After the set union of Line 12,

Similar processing of block of yields no refinement, which
shows that these three states are 2-equivalent. The set union of Line 12 then correctly
gives

For the first two blocks of yield no refinement. When the third
block of is processed BLOCK_INDEX first returns
and which is uneventful. But for and

which causes PARTITION to return This leads to

Note that E, but Thus, there is a length-3 distinguishing sequence,
111, but no length-2 or length-1 distinguishing sequence. For 111, the run from A is
A, D, F, C, with corresponding output sequence 1, 0, 0. However, the run from E is
E, F, C, B, with corresponding output sequence 1, 0, 1.

7.4. FSM Minimization for Completely Specified Machines 271

As per Theorem 7.4.2, Procedure STATE_EQUIVALENCE terminates (Line 13) when
it is observed that (or, equivalently,), which is bound to occur
for some In our example, for no further refinement occurs,
and STATE_EQUIVALENCE finally returns Note that an input sequence of length
at least 2 is required to distinguish between the non-equivalent states B and F,
whereas an input sequence of length at least 3 is required to distinguish between the
non-equivalent states A and E.

Another example which shows more directly the partition and refinement op-
erations is given in the flow table of Figure 7.15. While applying the first phase
of STATE_EQUIVALENCE to this Mealy machine, we get and

which PARTITION turns into
and Then REFINE takes the intersection of these
partitions, yielding

In the second phase of STATE_EQUIVALENCE for this machine, we consider the
of the two non-trivial blocks of in turn. For {A, D, F, G} we get

and for input and
and for input Thus and

and the second REFINE step gives The
second and third blocks are not refined, so the 2-equivalent state partition is

For we find that both non-trivial blocks are split apart. For and
we get and Similarly, we get

so

which is the finest partition possible. This proves that every pair of states has a
distinguishing input sequence of length 3 or less. If we performed another iteration,
we of course would find that no refinement occurs and therefore we can stop.

272 Chapter 7. Models of Sequential Systems

The partition-refinement procedure we have presented can be implemented so
that it takes time proportional to |I||S| log|S| [145]. A naive implementation based
directly on our pseudo-code runs in time quadratic in the number of states.

7.4.3 Finding the Reduced Machine

The solution of the state minimization problem for completely specified machines is
completed by producing an equivalent machine with a minimum number of states.

Procedure STATE_EQUIVALENCE returns the partition induced by the equivalence
relation. It also returns an upper bound on the length of distinguishing sequences
required to distinguish any pair of states in the given FSM. As discussed above, each
equivalence class can be combined into a composite state, called the representative
of the class. In the above example this leads to 4 composite states and 4 represent-
atives. The symbol associated with these 4 states is immaterial. One may select one
distinct representative from each class, in which case the new set of state symbols
will be a subset of the original. Alternatively, one may use the set of states in each
class as the symbol of the class.

This latter choice is the one made in Figure 7.12, All the transitions in the original
machine from one class to another class are represented by a single edge in the reduced
machine. For example, state AC goes to E under input 0 and into BD under input
1, the first edge represents two edges in the original machine: (A, E) and (C, E). As
a result of the minimization procedure, it is guaranteed that both of these edges in
the original STG produced the same outputs. Similarly, the (AC, BD) edge in the
reduced machine represents 4 output-consistent edges in the original machine.

7.4.4 Moore Machines and DFAs

This method can also be employed to minimize Moore machines or DFAs. For Moore
machines, since the output depends only on the state (and not on the input) all edges
emanating from a given state can be thought to have the same input label (in practice
the label would be on the state node rather than on the edge).

For DFAs, we can minimize the corresponding FSM as constructed by the fol-
lowing definition, which describes the construction of Mealy and Moore Machines
equivalent to a given FA.

Definition 7.4.5 A DFA is defined as where A is a set of
accepting states (see Chapter 9 for a formal treatment). Since an FA has no output
alphabet, we begin by defining the output alphabet of the corresponding FSM to be
{0,1}. We can then define a Mealy Machine by defining the output function of the
FSM so that all edges leading from an accepting state produce a 1 output (independent
of the input), whereas all other edges produce a 0 output. Alternatively, we can even
more directly define a Moore Machine by defining the output function to be a 1 for
all accepting states and 0 otherwise.

The determination of for is thus similar for Mealy machines,
Moore Machines, and DFAs.

For example, consider the Moore machine of the tabular specification of Fig-
ure 7.16. To apply the first phase of STATE_EQUIVALENCE to a Moore machine, we

7.4. FSM Minimization for Completely Specified Machines 273

imagine that the outputs given are the same for all In this example, we just
assume the outputs are the same for and and as a result, PARTITION

returns
In the second phase of STATE_EQUIVALENCE for Moore machines or DFAs, Pro-

cessing is identical to what it would be in a Mealy machine. Let us consider the
of {3, 4, 5, 6}. For input all states are mapped into state 1 or

2. These two states belong to the same block of and hence no refinement occurs
here. A similar result obtains for input

We then consider the of {1, 2, 7, 8}. Nothing new happens for in-
put However, the 1-successors are which leads to

Consequently, Subprocedure PARTITION breaks {1, 2, 7,8} into {1, 2}
and {7, 8}. Thus, at the end of the iteration, we have the partition

thus identifying the states that are 2-equivalent. If we
perform another iteration, we find that no refinement occurs and therefore we stop.
The partition we have found identifies all the equivalent states.

Finding the reduced machine, given the equivalent states, is easy. We assign one
state of the new machine to each equivalence class of the original machine. In our
example, let us make the following assignments:

In order to find the next states of we look at the next states of any state in {1, 2}.
Say we choose 1. The next state of 1 for input 0 is 3. Hence, the next state of for
input 0 is Similarly, since the next state of 1 for input 1 is 7, the next state of
for the same input is One can easily verify that the result would be identical, had
we chosen State 2 as representative of its equivalence class.

Continuing in this procedure, we eventually obtain the table of Figure 7.17.

7.4.5 The Iterative Collapsing Approach

Another way to look at state equivalence checking is presented in [190]. This method
combines and interleaves the techniques of Section 7.4.2 and Section 7.4.3. We shall
state this method informally — the reader is referred to [190] for details.

274 Chapter 7. Models of Sequential Systems

In this approach, one begins by performing phase 1 of STATE_EQUIVALENCE.

Then, a representative (say the lexicographically smallest) of each class (block) of
the partition is chosen. Then, a “collapsed” flow table is constructed, in which
each occurrence of any member of a given class as a next state is replaced by its
representative. Then, one checks to see if the partition is “consistent” with this
modified table. This means that all members of each equivalence class must have
identical entries in the new flow table. If so, we are finished. Else, we refine the
partition into classes which do have identical entries, and again check for consistency.

Let’s try this procedure out on the example of Figure 7.15. From our previous
discussion, we know that We then select rep-
resentatives A, B, E from these 3 classes, and construct the collapsed flow table of
Figure 7.18. This is not consistent, since rows A, D, F, G are not identical, although
rows D and G are and B and C are. The partition is thus refined into

as before. The next step is to collapse the original flow table by only replacing G
by block 3 representative D, and C by block 2 representative B. This leads to the
collapsed flow table of Figure 7.19. This flow table is still not consistent, since rows
D, G are not identical, neither are B, C. At this point the partition is refined to the
minimum partition, which of course is consistent, so we correctly get

An advantage of this approach is that the reduced machine is always apparent at each
stage of refinement, so there is no reduction step at the end.

7.5. Graph Algorithms for FSM Traversal 275

7.4.6 Summary of State Equivalence Checking Methods

We emphasize that these procedures are applicable only to completely specified ma-
chines, and we shall shortly turn our attention to the more interesting case of incom-
pletely specified machines. For this case we develop a more general procedure, which
is capable of exploiting all the myriad don’t care conditions which arise in practical
cases like the LUNC FSM of Chapter 2.

We note in passing that with some effort and modification STATE_EQUlVALENCE

can be mapped into a symbolic procedure [214] (Procedure EQUIV_N of Solved Prob-
lem 7 can be more straightforwardly mapped into such a procedure). Then, if BDDs
were employed for efficient representation (Cf., Section 6.1) of the various charac-
teristic functions, the modified procedure would be applicable to the large practical
FSMs arising in VLSI CAD. Unfortunately, the analogous procedure for incompletely
specified machines is not easily rendered into a similarly efficient symbolic procedure.

7.5 Graph Algorithms for FSM Traversal

Having established the basic concepts of state minimization and equivalence, our
next goal is to describe the procedures for determining whether two given FSMs are
equivalent. We shall consider only the case in which the two machines submitted for
equivalence checking have specified initial states. Although the case in which initial
states or state sets are not specified is of significant practical importance, the detailed
algorithms for this case are much more involved, and beyond the scope of this book.
Therefore we omit treatment of this case, and refer the reader to the excellent recent
literature on this case: [252, 217], as well as the references cited in these papers.

There are two key steps in FSM equivalence checking: first,finding the FSM
which is the product of the two comparison machines, and second, traversing (that is
searching) the STG of the derived product FSM. Before doing this, we establish some
background in graph search, and discuss the three main graph search procedures that
have been extensively used as subprocedures in FSM synthesis algorithms.

276 Chapter 7. Models of Sequential Systems

7.5.1 Graphs, Subgraphs, and Components

A subgraph of a given graph G = (V, E) is another graph where
V, Given a graph G = (V, E), we say that the subgraph
that is “induced” by a given vertex subset S is the subgraph with = S, and
equal to the edge subset of E whose edges have both vertices in S. When the context
is clear, we shall simply use subgraphs to stand for induced subgraphs , and refer to
them by their specified vertex set.

A subgraph is sometimes called a component. A connected subgraph of G is
one in which for every there is a path from to or from to

In the context of logic circuits represented by a graph G = (V, E), if v is a vertex
representing an output signal of the circuit, then the subgraph defined by
vertices such that is often called the fan-in cone (or logic cone) of

In the circuit of Figure 1.12, the fan-in cone of gate 10 are gates in the set
{7, 4, 3, 2, 1} and the fanout cone of buffer gate 2 are the gates in the set {4, 5, 6, 7, 8, 9, 10, 11

If G = (V, E) is undirected, a maximal completely connected subgraph
will be called a CCC. A CCC of G is subgraph in which

CCCs are sometimes called cliques or maximal cliques.
Note that CCCs are maximal in the sense of the following definition.

Definition 7.5.1 A subgraph (or subset) is maximal with respect to a given property
if it is not a proper subgraph (or subset) of another subgraph (or subset) which also
has the property. Minimal subgraphs (or subsets) are similarly defined.

Illustrated in Figure 7.20 is a simple undirected graph, whose CCC’s have vertex sets
{1, 2, 4}, {2, 5}, {4, 7}, and {5, 7, 8, 9}. Note that the subgraph {5, 7, 8} is completely
connected, but it is not a CCC, since it is properly contained in the CCC {5, 7, 8, 9}.

If G is directed, a strongly connected subgraph is a maximal subgraph for
which every pair of included vertices lies on a cycle. That is, for a strongly connected
subgraph *of G = (V, E), for every there is a path from

to and from to that is It is also customary, although somewhat
contradictory, to identify nodes not lying on any cycle as single node SCCs, as if each
node had an implicit self-edge.

A simple digraph with 4 strong components (circled by dotted lines) is illustrated
in Figure 7.21. Note that nodes 1 and 10 do not belong to any cycle and yet are
identified as single node SCCs. Note at the bottom of Figure 7.21, that a DAG is
formed by collapsing the SCCs of a digraph into a single node.

7.5. Graph Algorithms for FSM Traversal 277

Tarjan has given an algorithm DFS_SCC (discussed in Section 7.5.3) for finding
the strong components of a digraph G(V, E) whose complexity is linear in |E | . That
is, the total number of operations performed by the algorithm is proportional to |E|.
[258] (See Section 1.6.1 on Page 34). Tarjan’s algorithm traverses the the digraph
with depth first search, starting from the source node(s). In depth first search, the
search must be completed for all the descendants of a node before it can be completed
for the node itself. The superscript on the SCCs indicates the order in which Tarjan’s
DFS_SCC algorithm (starting at node 1) discovers the SCCs.

The strongly connected components of circuit graphs are of special interest. For
example, if we modified the circuit of Figure 1.12 with a wire connecting output
buffer 10 with input buffer 1, and replaced each gate with a circled node, we obtain
the directed graph of Figure 7.22. The strong components of this digraph can be
recognized visually in this simple case, in which the vertex set {1, 10, 7} is identified

278 Chapter 7. Models of Sequential Systems

as a 3-SCC, and all other vertices are identified as 1-SCCs. We shall discuss the node
labels (enclosed in square brackets in the figure) in Section 7.5.3 below.

An (S, T) cutset C of a directed graph G = (V, E) is a set of nodes (edges) of
G such that any path from to passes through one of the nodes (edges) in
C. If the graph is a DAG, it is often understood that S and T are the sets of source
nodes and sink nodes, respectively.

7.5.2 Graph Traversal — Breadth First Search

A traversal of a graph G = (V, E) is defined as any search from a given node
which systematically visits every reachable from Node is reachable from

if and only if that is, if there exists a path in G from to There are
many orders in which a graph may be traversed [190]. In the so-called preorder
traversal, each node is visited before any of its (transitive) successors. In so-called
postorder traversal, each node is visited after all of its (transitive) successors. These
two traversal methods will be discussed in Section 7.5.3.

Another traversal method, called BFS Breadth first search, effectively levelizes
the graph with respect to a specified start set and then visits all the nodes at
level before visiting any nodes at level The success of BDDs in representing
characteristic functions has made BFS the method of choice in exploring and analyz-
ing the large directed graphs used to model the behavior of sequential circuits and
software (that is, computer programs).

Breadth first search was first used in VLSI CAD to find minimum length inter-
connect routing algorithms of first generation VLSI chips. As we shall see, BFS has
the property of finding a minimum length path to all vertices in a graph which are
reachable from a given vertex. Thus BFS can always find a shortest route from one
pin to another in the layout connection graph if one such route existed. It is still
extensively used in all phases of VLSI physical design as well as in Logic Synthesis
and Formal Verification.

Breadth first search relies on the computation of the “image” of a vertex subset.
Images and pre-images, of a graph are defined (as follows) are defined like they were
for functions: defined as follows.

Here the notation means that “the set of vertices such that there
exists a vertex such that and ”. BFS can be viewed as the process
of iteratively computing the image, of a set from which the search
is started. After adding I to the set R of vertices reached from the initial C, C is
replaced by I, and the image computed again. This is repeated until on some iteration
R is the same on two consecutive iterations.

In the graph context BFS is an efficient way of finding all vertices reachable by
shortest paths from a given start vertex (or set of start vertices). Starting at vertex

7.5. Graph Algorithms for FSM Traversal 279

of a graph G = (V, E), BFS proceeds as follows. First, all the vertices in
a given set are marked as “reached” (in the BFS algorithm, this property will be
denoted by membership in a set Reached). Next, the set of all unreached successor
vertices a of any is determined. If no such vertex exists, the search terminates.
Procedure BREADTH_FIRST_SEARCH of Figure 7.23 is a formal specification of BFS.

Procedure BFS can be applied to the graph of Figure 7.24 as follows. Suppose
Thus From = when the loop body is entered (Line 1). The set

of vertices reachable by paths of length 1 is computed as the image
of the constraint set From, according to the above definition of IMG. Since none of

these vertices were previously reached, we then set = To – Reached = {2,3,4}
(Line 2). Since (Line 3), the loop body is executed again, this time yielding

= To – Reached = {5,6,7}. Since the loop body is executed again,
this time yielding = To — Reached = {8,9}. However, in the next loop, we get

at Line 3, so the algorithm returns the sequential depth of the

280 Chapter 7. Models of Sequential Systems

graph, relative to the initial vertex set Note that the length of the shortest
paths from to vertices in is

Note by sequential depth of the graph (with respect to) we mean the length
of the longest of these shortest paths. The sequential depth corresponding to the
particular subset (note that there are of these) leading to the largest sequential
depth is called the diameter of the graph.

7.5.3 Traversal — Depth First Search

In this section we explore DFS Depth first search as a means of performing either
preorder or postorder traversal DFS was originally developed by the French math-
ematician Hadamard as a formal way of traversing the elegant garden mazes of the
courts of Louis XV France. Like BFS, its first use in VLSI CAD came in intercon-
nect routing (or, especially, re-routing of hard-to complete nets) algorithms of first
generation VLSI chips. Since depth first search has the property of finding a path to
all vertices in a graph which are reachable from a given vertex, it could always find
a route from one pin to another in the layout connection graph if one existed. DFS
performs especially well in traversing the maze like configuration of interconnect lay-
ers and insulating obstacles that characterize a modern IC chip. It is still extensively
used in all phases of VLSI physical design as well as in Logic Synthesis and Formal
Verification.

In the graph context it is an efficient way of finding all vertices reachable by
paths from a given (single) start vertex. The algorithm emphasizes locality and is
typically implemented recursively. These two characteristics make it less natural to
be implemented in terms of characteristic functions and BDDs. Hence it is less useful
in modern synthesis and verification than BFS.

One version of DFS is given as Procedure DFS of Figure 7.25 below, which com-
putes the preorder and postorder search indices of a given graph G = (V, E).
Note in the comments header that the search counters kpre and kpost, and the search

index arrays preorder and postorder are global variables of the recursive algorithm,
initalized to all 0s.

Recursive algorithms like this one are typically implemented with a (usually hid-
den, as in the present case) systems stack, which can be viewed as a LIFO (Last
In First Out) queue. When Line 3 is reached, contains, in the order that DFS was
started, all nodes whose DFS has started but not ended. When DFS is completed for
a given node, that node is popped off the stack. Thus at Line 3,
where is the node of the originating DFS, and It should be clear that

that is, there must exist a path in G from to Note that if it is also true
that then and must lie on a cycle of G.

When loop conditions are empty, the loop is to be skipped. Thus in the foreach
loop in Procedure DFS, if node has no (direct) successors, we will have
and execution control will pass directly to Line 3.

Note that Procedure DFS does not specify what order the successors of the active
node are to be searched. Thus we shall disambiguate in the sequel by assuming
that the successor lists are to be searched in descending lexicographical order.

When Procedure DFS is thus applied to the graph of Figure 7.26, the following

7.5. Graph Algorithms for FSM Traversal 281

values appear in arrays preorder and postorder:

The preorder and postorder indices appear as the first and second integers of the
triple of node labels in Figure7.26. The third member of the triple will be discussed
below in context of finding the SCCs of the given graph.

When searching vertex 2, we disambiguated by recursively searching successor
vertex 6 before successor vertex 3. Thus the search of node 7 was started 4th (at this
point the stack held but was the first to finish. After the return
from the recursive call for node 7, the stack held

282 Chapter 7. Models of Sequential Systems

7.5.4 Finding the SCCs of a Directed Graph

In such small examples, the SCCs can easily be identified by inspection — in this
case, they are {1, 2, 6}, {7}, {3, 4, 5}. However, a variant of DFS, called DFS_SCC in
Figure 7.277, efficiently identifies the SCCs of any given graph.

As discussed in its header comments, Procedure DFS_SCC uses preorder and post-
order index counters kpre, initialized to 0, the corresponding array preorder, ini-
tialized to all 0s, and an array lowlink, initialized to all |V|s. Procedure DFS_SCC

further utilizes a global stack SCC, onto which each node name is pushed when (in
postorder) the recursive call for node is completed.

When a graph G = (V, E) is traversed by DFS from start node DFS_SCC

of Figure 7.27 is called recursively for every node

In what follows we shall assume for simplicity that V = Reached, which means that
all nodes are reachable from the start node

DFS thus creates a “spanning tree”, T, in the sense that it partitions E into four
disjoint subsets as follows:

Here the notation means there is a path in the tree from to The edges in the
set are called tree edges, denoted and represent node pairs which occurred
consecutively on the system stack The subgraph induced by the
nodes of is a (spanning) tree with root Since this tree is a DAG, the edges of

are insufficient to form any cycles. The up-links are of no interest, because for
any cycle containing such an edge, there is another cycle with the up link replaced
by a path in the tree. Thus will not be considered further.

The frond edges are of special interest, because they run from ancest-

ors to descendants in the tree, and thus always complete cycles
The cross-links run from one subtree to another and also may contribute significant
cycles.

The cycles created through fronds and cross-links determine the SCCs of G by
assigning node label lowlink[v] to each node Tarjan ([258]) defines lowlink[v]
as preorder[u], where node is “the node of lowest preorder index which is in the
same SCC as and which is reachable from by traversing zero or more tree edges
followed by at most one frond or cross-link”,

7Cormen, et al discuss an interesting alternative to Tarjan’s algorithm, based on the spanning
trees produced by two separate depth first searches: one on the original graph, and one on the graph
obtained by reversing the direction of all edges. This technique has the same complexity and does
not use lowlink.

8 As described in [258], if some nodes are unreachable from the complete graph can still be
traversed by starting other DFSs from nodes in the parts of the graph unreachable from the start
node

7.5. Graph Algorithms for FSM Traversal 283

284 Chapter 7. Models of Sequential Systems

Algorithm DFS_SCC proceeds by traversing G by recursive DFS, and keeping track
of the global arrays preorder[v] and lowlink[v]. The active node of each recursive
call is pushed onto a global stack SCC, and when the cycle containment condition
preorder[u] = lowlink[u] is satisfied, SCC_POP of Figure 7.28 is called to pop all
the nodes satisfying lowlink[v] lowlink[u] off the stack. The proof that
this correctly identifies an SCC is found in [258].

Example:

We apply algorithm DFS_SCC to the graph of Figure 7.29, starting
at vertex A, and always searching first the fanout vertex of maximal
(lexicographical) index. As we traverse the graph, the edges are labeled
with T, F, X, or U to identify their place in the aforementioned edge
partition. The strong components, in order of detection, are (E, D), with

7.5. Graph Algorithms for FSM Traversal 285

root labeled [2, 2, 2], (B, C), with root labeled [4, 4, 4], and (A), with root
labeled [1, 5, 1].

In this example, the triples [preorder[v], preorder[v], lowlink[v]] given
for each lead to a graph partition with 4 tree edges, 3
fronds, 1 up-link and 1 cross-link In this
case, the cross link is sterile in the sense that node E has already been
popped out of the stack SCC when this cross-link is examined during
DFS_SCC(C). Thus in the foreach loop, Line 3 will not be reached for

The cycles created through fronds and cross links determine the SCCs of G by
assigning node label lowlink[v] to each node Tarjan ([258]) defines lowlink[v]
as preorder[u], where node is “the node of lowest preorder index which is in the
same SCC as and which is reachable from by traversing zero or more tree edges
followed by at most one frond or cross-link”.

AlgorithmDFS_SCC proceeds by traversing G by recursive DFS, and keeping track
of the global arrays preorder[v] and lowlink[v]. The active node of each recursive
call is pushed onto a global stack SCC, and when the cycle containment condition
preorder[u] = lowlink[u] is satisfied, SCC_POP of Figure 7.28 is called to pop all
the nodes satisfying lowlink[v] lowlink[u] off the stack.

Now suppose that the DFS traversal which started at node has arrived at Line
4, and that the condition preorder[u] = lowlink[u] is satisfied for the first time —
that is, no strong components have yet been identified. Given the active node we
denote the nodes of the subtree of T rooted at the active node by the ordered
set

These nodes have the following properties:

Note we count DFS_SCC as completed, even though it has yet to finish the execution
of Line 4. These nodes are of special interest and and we shall sort them in ascending
order of completion — thus is the node that completes first, and is the node
whose DFS_SCC finishes last of all the nodes in

It can be seen that if the set were re-ordered in ascending order of their preorder
index, the re-ordered set would be either identical to, or an initial prefix of, SCC.

We shall repeatedly refer to in the proof of the following lemma, which is
central to the proof that Algorithm DFS_SCC correctly finds the SCCs of the graph G.

Lemma 7.5.1 For every in the set produced by DFS_SCC, there exists a cor-
responding such that:

286 Chapter 7. Models of Sequential Systems

7.5.5 Shortest Paths

We have seen that Procedure BFS
9 implicitly identifies topologically shortest paths

from a specified source vertex to all other vertices in a graph. When edges are labeled
with edge lengths, the shortest path problem becomes more complicated. Shortest
and longest path algorithms like Procedure SHORTEST_PATH of Figure 7.30 are often
based on breadth first traversal of undirected and directed graphs. Such algorithms
typically use some variant of BFS, and use a priority queue with keys determined by
shortest distance from the initial vertex set.

The shortest path problem is typically defined on a weighted graph G = (V, E, L),
where is the specified length of edge The problem is to find the
shortest path to all vertices from a specified vertex Here the length of a

path is If is a shortest path from to then

Thus SHORTEST_PATH of Figure 7.30 accepts an edge length vector L (in one-to-
one correspondence with E) and computes a vector (in one-to-one correspondence
with V] defined by The vector is initialized to in line 1.
SHORTEST_PATH, and also employs two data objects, S and Reached. S is a set of
vertices for which at least one path from the start vertex, has been traversed in
the breadth first search. Since a path from to has been traversed, an upper
bound, stored in the current value of is known on the quantity Each
time a ”new” path to from has been traversed, the new upper bound is compared
to the old one, and if lower, is stored in

is initialized to and is augmented by when it can be identified that
has converged to by Lines 5 and 6. This is based on the identification,

in Line 5, of vertex as one of the currently unreached vertices which have the smallest
current upper bound. Here

That is, V* is set of minimizers of
Example:

SELECT 1 makes an arbitrary selection of one member of V* Thus if
S = (2, 3, 4, 6), and and in line 4, we have
V* = {2, 6}, the set of vertices whichhave as the length of
the shortest path from to in the graph of Figure 7.31. In this case
SELECT1arbitrarily selects vertex as the next active vertex.

9 Implementations of BFS often use a FIFO (FirstInFirstOut) queue. A queue is just an indexed
list with two defined operations: QUEUE and DEQUEUE. The QUEUE operation adds an element at
the end of the list, and the DEQUEUE operation takes the top element of the list. The queue is used
to keep track of nearest neighbors of the already reached vertices. A variant of BFS uses a so-called
priority queue. A priority queue is also an indexed list with two defined operations: QUEUE and
. However, in a priority queue, each list element is associated with a key, and DEQUEUE takes the
element with the smallest key out of the list.

7.5. Graph Algorithms for FSM Traversal 287

The proof that the set V* contains all vertices whose shortest path distance,
is already known, rests on a principle called dynamic programming, and

can be shown by mathematical induction.
The implementation of SHORTEST_PATH is straightforward, with the only subtlety

being that of finding a suitable member of V* (this requires O(log| S|) operations since
there is an implied sort)10.

A partial data trace of the application of SHORTEST_PATH to the graph of Fig-
ure 7.31 is shown in Table 7.1.

The first header row of the table identifies the type of data in each column and the
line number of the procedure at which the data has been computed. The second header
row identifies which of the 11 vertices the data applies to. There is one additional
row for each pass through the while loop of Line 3. Note there must be fewer than
|V|, such passes for any graph G = (V, E). The first data column represents two
quantities, the currently active vertex, and the minimum, of the upper bounds
of path lengths from to (separated by a slash). The second column represents

10The notation O(log(|S|)) means that there exists constants and such that Count(| S |),
the operations count of SHORTEST_PATH, expressed as a function of |S|, satisfies the inequality

That is, for large enough |S|, the cpu time complexity of
SHORTEST_PATH is essentially linear in log(|S|). See Section 1.6.1 on Page 34.

288 Chapter 7. Models of Sequential Systems

7.6. Models of Sequential Systems 289

ADJ which here denotes the successor set of the active vertex The next set of
columns also give two data items separated by slashes. The first is the second
being 1 if else 0. The initial values of these quantities are shown in the
first data row. Updates are entered in subsequent rows only if a change has occured,
else (for emphasis), the data fields are left blank.

The potential efficiency of the algorithm is evidenced by the sparsity of these
updates. In fact the whole algorithm has an operations count that is (O(|E|) in all)
(Cf., Section 1.6.1). The last set of columns gives the set S, sorted in ascending order
with respect to the current estimate of shortest path lengths. Example 7.5.5 of V*
and came from row 2 of the table.

7.6 Models of Sequential Systems

In this section we shall briefly review some of the currently important models and
algorithms that have been used in VLSI CAD tools to characterize, analyze, and syn-
thesize sequential digital systems. Some of these models are illustrated in Figure 7.32,
and are itemized as follows. The main point of this section is to show how FSMs and
finite automata are built on top of an underlying structure we call an FST Finite
State Transition Structures

FSTs — In a given state, FSTs receive an input symbol, and make a transition
to a new state;

FAs (Finite Automata) are FSTs which also take notice when a favorable
state (called accepting) is entered;

FSMs (Finite State Machines) are FSTs which emit a specified output sym-
bol when they make a transition from one state to another;

Regular Languages — Languages are just sets of sequences of input or output
symbols (called strings). Regular languages are just the kind of sets of strings
that can be accepted by FAs or generated by FSMs — their regular structure
is determined by the paths and cycles in the STGs of their underlying FSTs.
This will be discussed in detail below.

An FST (Finite State Transition structure) (represented by the graph of Fig-
ure 7.32a) models how the underlying physical system changes its state in response to

290 Chapter 7. Models of Sequential Systems

external stimulus (input symbol). An initial state (marked by the block arrow) is part
of the FST specification. FSTs are closely related to Markov Chains [255, 121, 231].
FSTs may be represented either by flow tables, as in Section 7.3 or by the kind of
labeled directed graph which we refer to as an STG (State Transition Graph), as in
Figure 7.32.

In the STG representation, the edges of the graph are labeled with the set of input
symbols that cause the indicated state transition. In Figure 7.32, an input of 1 takes
the FST from state 0 to state 1, whereas an input of 0 takes it from state 0 back
to state 0. When modeling an implementable physical system the edge labels can be
thought of as sets of symbols, where the sets labeling two edges emanating from the
same state are disjoint sets. In the deterministic cases of Figure 7.32a-c, these sets
are disjoint.

A Finite Automaton (Figure 7.32b) is, in turn, built on top of an FST by adding
an acceptance condition — accepting states are marked with a double circle. We shall
see that the language of a given FA is the set of sequences of input symbols, called
strings, which are accepted in the sense that they take the FA from its initial state,
0, to some accepting state, 2 in this case. In the figure, an input sequence of (0, 1, 1)
takes the FST from state 0 back to itself, through state 1, and on to accepting state
2. Similarly, an input sequence of (0, 1, 0) takes the FA through state 0 to state 1 and
then back to state 0. Since the string (0, 1, 1) brings the FA to an accepting state, it
is therefore part of the language accepted by the FA. In contrast, the string (0, 1, 0)
does not leave the automaton in an accepting state, and is therefore not accepted.
Thus this string is not part of the language accepted by the FA.

An FSM is similarly built on top of an FST. A Finite State Machine (Figure 7.32c)
is formed by labeling each edge of the FST’s STG with an additional output symbol.
Note that output symbols are those to the right of the slash which separates the
two fields of the edge labels. In the figure, when an input of 1 takes the FSM from
state 0 to state 1, an output of 0 is generated for this transition. The set of output
strings generated by the FSM, over all possible input strings, is called the language
generated by the FSM.

It should be kept in mind that for each given FA, an FSM can be constructed that
has the same behavior11. FSMs and FAs are commonly used to model synchronous
and asynchronous sequential circuits, communication protocols, parsers and lexical
analyzers, table-lookup-based discrete event simulators12. Similarly, software, for
example any terminating C-program, can be modeled as an FSM in many practical
cases, although such models can be enormously complex.

Such a program is an example of an abstract FSM — one whose state, input, and
output alphabets are sets of abstract symbols. In Section 8.3 we discuss algorithms
for the binary encoding of such input, output, and state symbols. Encoding is the
mechanism by which any abstract FST, FSM, or FA can be modeled by a physical
synchronous sequential circuit. Thus all the applications mentioned in the previous
paragraph can be built in hardware.

11Definition 7.4.5 of Page 272 describes the construction of Mealy and Moore Machines equivalent
to the given FA.

12This type of simulation is employed in the most ultra-efficient commercial logic simulators and
test generators.

7.6. Models of Sequential Systems 291

FSMs and FAs are among the most important and fundamental mathematical
models used in computer and software engineering, as well as in computer science.
They are to the design of digital systems what the customary lumped resistor-
capacitor-transistor circuit model is to the design of electrical circuits. Given a little
background in logic circuits and graphs, they are easily understood, and powerful for
modeling digital systems.

The term FSM is common in the literature, but often the more specific terms DFA
Deterministic Finite Automata and NFA Nondeterministic Finite Automata
are used instead of FA. Nondeterminism is one of the key concepts developed in
Chapter 9. An NFA can be viewed simply as an FA with only partially specified
behavior. An NFA is thus an abstract, non-physical representation. Partial specifica-
tion is important because often the partial specification has a more tractable (smaller
or more compact representation) and/or is significantly easier to formulate, or simply
reflects current ignorance of the more complete specification.

The NFA of Figure 7.32d is derived from the DFA of Figure 7.32b by adding extra
input labels to edges issuing from states 0 and 2. Thus the edge input label sets may
no longer be disjoint from one another. This specification is non-physical because
when in the initial state, 0, an input of 1 tells the system to transition to either state
0, state 1, or to both. In effect, we are specifying that we don’t care what the system
does with a 0 input. It can be shown that in this case, the added edge labels have
no effect on the language accepted by the FA. That is, the FAs of Figure 7.32b and
Figure 7.32d accept the same set of strings.

We shall show in Chapter 9 why the languages of the DFA of Figure 7.32b and
the NFA of Figure 7.32d are identical. In each case, only strings of the form … 11
(that is, strings ending in 11) are accepted13. The language of both the DFA and
the NFA can be expressed as

Note that we don’t succeed here in exhaustively enumerating this language, because
it is an infinite set. Nevertheless every string in is finite and ends in the string
suffix 11.

There is a well known equivalence between DFAs, NFAs, and regular languages
[66, 190, 163], which we shall discuss in detail in Chapter 9. Because of this corres-
pondence, a system is often designed first as a simpler, but non-physical NFA, and
then automatically converted to a physical, but possibly more complicated, DFA. This
involves two steps. The first step is first, determinization (that is converting an
NFA to an equivalent DFA, as discussed this in detail in Section 9.2.2). The second
step is state minimization, discussed in detail in Section 7.4. Since minimization leads
to a canonical representation (modulo isomorphism) the DFA corresponding to the
given NFA is unique.

13This may seem paradoxical at first, since the string 011 also can take NFA of Figure 7.32d back
to the initial state.

292 Chapter 7. Models of Sequential Systems

7.7 FSTs: Strings, Runs, Reachability and Products

Before we directly discuss the problem of equivalence checking of pairs of FSMs, it is
helpful to establish context by looking more closely at the the behavior of an FSM.
We begin by introducing the notion of an FST. An FST (Finite State Transition
structure) (represented by the graph of Figure 7.32a) models how the underlying
physical system changes its state in response to external stimulus (input symbol).
An initial state (marked by the block arrow) is part of the FST specification. FSTs
are closely related to Markov Chains [255, 121, 231]. It is the directed graph of the
FST that is referred to as an STG (State Transition Graph). The edges of the STG
are labeled with the set of input symbols that cause the indicated state transition. In
Figure 7.32, an input of 1 takes the FST from state 0 to state 1, whereas an input
of 0 takes it from state 0 back to state 0. When modeling an implementable physical
system the edge labels can be thought of as sets of symbols, where the sets labeling
two edges emanating from the same state are disjoint sets. In the simple cases of
Figure 7.32a-c, these sets are disjoint.

7.7.1 Finite State Transition Structures

An FST (Finite State Transition Structure) is defined as a 4-tuple

where

X is the input alphabet (that is, the (finite) set of possible input symbols);

S is the state set or state alphabet (that is, the (finite) set of possible state sym-
bols) ;

is the next state transition function14;

is a set of initial states.

If we compare this to to the definition of FSMs in Section 7.3, we can easily see that
every FSM is built on embedded FST.

We shall refer to as an “FST on X”. The fact that X and S are finite, has
profound ramifications. For example, it guarantees that the FST can be implemented
as a physical sequential circuit. It is further guaranteed that two different FSTs,
FSMs, or FAs can be proved equivalent or non-equivalent in time bounded from
above by a function which is polynomial in the number of states and input symbols.
If these were infinite sets, this important problem would be undecidable, and the FST
would not be physically implementable.

We distinguish two types of FSTs: Deterministic FSTs and Nondetermin-
istic FSTs. First consider the deterministic case. Given an input and a

14 As discussed in Section 3.1.1, each element of the set is one of the subsets of the finite
set S.

7.7. FSTs: Strings, Runs, Reachability and Products 293

present state the next state transition function maps into a unique
next state of the FST so that in this case

However, in the general case,

Definition 7.7.1 FST is deterministic if the image of all pairs
(x, s) is a singleton next state. In this case, the specified does not map any given
state into a set of two or more states. If in addition the initial state set of is a
singleton set, is said to be strongly deterministic. If the mapping is specified
for all pairs of states and input symbols, is said to be complete.

By this definition, we see that the FST of Figure 7.32a is strongly deterministic
and complete. The FST of the NFA of Figure 7.32d is nondeterministic and com-
plete. Observe that although we sometimes refer to incompleteness as a form of
nondeterminism, by this definition a deterministic machine may yet be incomplete.

We see that the next state function maps a state-input pair into a
subset of S. We say that is the image of the pair (See Page 84).
is thus deterministic if and only if every pair in the Cartesian product S × X has
a singleton image set, which would properly be written but usually we
shorten this to just

Note that we have referred to nondeterminism as corresponding to non-physical
behavior. Nevertheless, as discussed below, physical circuits can, through a process
of encoding, represent both deterministic and nondeterministic FSTs 15. After this
special encoding process, the non-physical nature of the nondeterministic FST is
manifested in a physical circuit with extra unspecified inputs. Thus, an FST is
an abstraction of a physical system comprised of a passive16 sequential circuit with
memory. The memory is modeled by the latch register shown in Figure 7.33.

Thus stays in one of its initial states until it receives an input letter (or
symbol) from the external environment. The next state of the FSM is jointly

15This was done in the development of the VIS verification tool suite [225]
16The circuit is passive in the sense that it has no outputs — hence it receives, but does not send,

information to the external world.

294 Chapter 7. Models of Sequential Systems

determined by and present state On each cycle of the implicit clock, the
next states are stored in memory, which in a physical system is implemented by
latches, which we shall also refer to as flip-flops or registers. A register is just a
set of latches.

It is seen that once the input alphabet X and and state set S have been specified,
the functionality of the FST is determined by the transition function As
discussed in Section 7.3 such a function can be variously specified. One method is to
give a table specifying the set for each pair A deterministic and complete
FST, with X = {0,1}, 5 = {A, B, C, D, E, F}, and is given in Table 7.2.
Note that each present state and input combination is mapped into a unique
next state Note also the specification is complete in the sense that all 12 of the
elements in the Cartesian product S × X appear in the domain specification of

A nondeterministic FST, defined on the same X, S, and is given in Table 7.3.
Note that there are two present state and input combinations namely (A, 0)
and (D, 1), which are mapped into non-singleton sets of next states

The STGs of the two tables just given are shown in Figure 7.34. Note the second
differs by the deletion of the (D, 0) edge, and by the addition of extra edges on A
and D.

The FST of Table 7.2 is deterministic and complete and the FST of Table 7.3 is

nondeterministic and incomplete (Recall that such
an incomplete STG can be converted into an equivalent complete STG by sending
unspecified transitions to a trap states (Cf., Section 7.3, Page 261)).

7.7. FSTs: Strings, Runs, Reachability and Products 295

7.7.2 NFAs and

Here we introduce the notion of which represent the further conceptual
ability of an NFA to be in more than one state at a time. The concept of is
important in the procedure for deciding whether a specified string is accepted by a
given FA (Section 9.1.1), and for constructing a DFA which accepts the same language
as a given NFA (Section 9.2.2). An FST with is illustrated in Figure 7.35,
In this NFA, and all
the undefined transitions go to the unaccepting trap state (not shown). We interpret
the as follows. The initial state 0 can reach States 1 and 2 without any input,
or, equivalently, with the input of the empty string Thus if the NFA is in State 0,
it can be regarded as effectively in States 1 and 2 as well. Similarly, if the NFA is in
State 1, it can be regarded as effectively in State 2 as well. There are no
from State 2.

7.7.3 FSTs as Labeled Digraphs

Sometimes an FST is specified by giving its STG: G = (S, E, L).
Here

The vertices correspond to the states of

The edges are directed from to and signify a possible state
transition:

For each edge of G,

A well known example of an FST, which represents the Mead-Conway traffic
controller [196], is given in Figure 7.36. This FST controls access to a busy highway
from an infrequently used farm road. The capital letters refer to the busy highway
and the lower case letters to the farm road. The input alphabet is an example of
a compound alphabet17, that is, the Cartesian product of two sub-alphabets

17Actually this input alphabet can be expressed as a product of Boolean algebras, as discussed
in Chapter 3.

296 Chapter 7. Models of Sequential Systems

where the symbol denotes a sensor output indicating the presence of cars on
the farm road, and denotes the time-outs for the green and
yellow lights. Thus there are a total of 8 possible input symbols in the alphabet X.

Thus the figure represents an FST where
and is as indicated by the STG of the figure.

States (vertices) are labeled with a 2-letter code indicating the color of the traffic
lights controlling the two roads. Long and short timers (not shown) control the waiting
times (self-loops) in each state. While the short (long) timer is counting, input

is received, otherwise input is received.
These timers (not shown, so this is an example of abstraction at work) start

counting when a car appears on the farm road. The input conjunction indicates
that there is a car that has been waiting on the farm road for the specific length of
time associated with the long counter, and the controller transitions then to the
state (highway Yellow, farm road red). This transition causes the short timer to start
counting. While it is counting input is received, and when it reaches the specified
time, input is received, and the controller transitions to the state (highway
Red, farm road green).

Other transitions are similar to those just described. In normal operation, the FST
cycles counter-clockwise around the simple cycle connecting the four states. While
there are no cars (state) or while the timers are counting (all four states), the FST
continually transitions back to its current state.

7.7. FSTs: Strings, Runs, Reachability and Products 297

The input notation is a shorthand for the following set of input symbols

which can be seen as the union of the set of all inputs with sub-symbol (meaning
that no cars are present), and the set of all inputs with sub-symbol (meaning that
the long timer has reached its full count). Note the symbols occur in
both sets in the above union, so there are exactly six symbols represented by

Note that this FST is safe in the sense that the each of the four states have the
letter R or the letter as part of their label, signifying, traffic is always stopped in
one of the two directions. Further, notice that if the timer intervals controlling the

inputs are finite, any (non-simple) path of infinite length in the STG will have
an infinite number of states with a G as part of their label, as well as an infinite
number of states with a as part of their label. That is, traffic in both directions will

conditions. Alternatively, such properties are sometimes verified with temporal logic,
for which the truth of a formula is decided by techniques similar to the reachability
analysis of Section 7.9.

7.7.4 Strings, Tapes and Runs of FSTs

A run of an FST is a sequence of states which starts in an initial state
occurs in response to some possible input sequence. A sequence of inputs is called
a string if it is finite and a tape if it is infinite. The combination of a string/tape
and a run is sometimes called a chain. In the example of Figure 7.35, aabbbcccc is a
possible input string and 00111222 is the corresponding run. Similarly, aabbbcc • • • is
a possible tape and 0011122 • • • is the corresponding run. Note that a tape is not a
string, since strings are defined to be finite. Sequences, however, can be either finite
or infinite.

Let X be the alphabet of the FST. A string x of finite length on X is a
sequence of length on X. A string of length is called the
empty string, and is denoted We shall see in the discussion of NFAs that the
response of an FST to an empty string should be considered carefully.

We shall initially focus on finite length sequences, that is, strings. Sequences of
infinite length are discussed in detail in Section 9.4.1.

Let be an Given a string or tape a
corresponding run is defined to be a sequence s on S. Thus s is an ordered set

where and Note that if the input
sequence is a string of length the corresponding run is of length

A string (or a tape) represents a sequence of inputs to an FST. Each member
of the sequence causes a transition from the current state to a next state
(or in the deterministic case) determined by the transition function

eventually be allowed to cross. In this sense, the FST is said to be fair.
We shall note in our discussion of Finite Automata (Chapter 9) that in practical

formal verification packages like SMV [194] and HSIS/VIS [10], such temporal proper-
ties are often expressed in terms of Finite Automation with design specific acceptance

298 Chapter 7. Models of Sequential Systems

In the nondeterministic case there is a set R of runs, defined by

Note that if the FST is strongly deterministic, that is, there will be
exactly one run for each input string or tape.

For example, in the deterministic FST of Table 7.2, the string x = 1101 produces
the run ADBFC, whereas in the nondeterministic FST of Table 7.3, the same string
produces the run set

Similarly, in the deterministic traffic controller example of Figure 7.36, the string
produces the run set

7.7.5 Product of FSTs

In the sequel, it will be convenient and sometimes necessary to speak of the product
of FSTs. This is necessitated by the fact that the FSTs that arise in practical, in-
dustrial strength applications simply have too many states to be conceived, designed,
or specified as a single machine. One approach, sometimes referred to as distributed
control, is a design style in which the component FSTs have manageable size, on the
order of, say, just 10 states. However, if there are a hundred sub-FSTs, the overall
FST will have on the order of states! Further, even if one is dealing with a very
large ab initio specification, the first step in verification, synthesis, or test might be
to try to decompose the FST into the product of component FSTs, again with the
purpose of reducing the complexity of representation for synthesis or verification.

For simplicity, we use transition functions in our definition of product. Extension
to the other representations (transition relations, STGs) is straightforward.

Definition 7.7.2 Assume that the transitions in any sub-FST depend on a global
input alphabet X, but depend only on the local state set Then we may define the
product of FSTs as follows.

Given n [deterministic] on X, we define
their product as the [deterministic] FST

A sub-FST is deterministic if its transition function is. If each sub-FST
is deterministic, then the product is too.

7.7. FSTs: Strings, Runs, Reachability and Products 299

Note that the global state (state of the product) is a member where
Thus a single present state is represented as

a catenation (ordered set) of sub-states. Similarly the of is determined
by catenating the of each sub-FST.

The product of FSTs is illustrated for the deterministic case in Figure 7.37.
Informally speaking, when we form the product of a given set of FSTs, we are in
fact connecting them in parallel, letting the external input enter them simultan-
eously, and allowing each FST to act on this input, independently of the others.

The product of nondeterministic STGs is illustrated in Figure 7.38. The upper
left FST has nondeterministic transitions from state 1 with input 0, and the upper
right FST has nondeterministic transitions from state 4, with input 1. The product

300 Chapter 7. Models of Sequential Systems

of the two machines is shown at the bottom. Note

7.8 FSM Equivalence Checking

Here we address the question of how to determine if two FSMs,

are equivalent. Note that for the equivalence question to make sense, the FSMs must
share the same input and output alphabet. In practice, the two given machines
and are typically comprised of one derived from a high level HDL specification
and one derived from a lower level circuit implementation obtained by manual design
or synthesis.

We shall consider only the special case in which both FSMs are strongly determin-
istic, meaning that each state transitions to a unique next state and there is a unique
initial state. Note that an FSM is (strongly) deterministic if and only if its underlying
FST is (Cf., the definition of Page 293). The more general case of multiple initial
states can be similarly handled18. In this case, the equivalence problem is: “Find
a string x which distinguishes the initial states of and of Methods
for solving this problem are part of the foundation of the field of formal verification.
Since the FSMs have finite state, it suffices to traverse the STG of their product,
and show that no product state is reached which gives different outputs for the two
submachines. This can be done in time polynomial in the size of the STG.

Note that whereas in Section 7.4.1 we considered distinguishing input sequences
for pairs of states in the same machine, we are interested here in testing for the exist-
ence of a sequence which distinguishes between initial states of two different machines.
We begin our discussion by elaborating on the idea of distinguishing sequences, and
then treat the construction and traversal of the product machine.

7.8.1 Strings which Distinguish Two Machines

For the purposes of synthesis and verification, for example, for the FSM equivalence
problem discussed below, it will be necessary to consider (implicitly, for the sake
of efficiency) all possible input strings and their corresponding runs. Recall that
strings and runs were defined in Definition 7.4.1 on Page 266. Given a starting
state the produces a run where

and an output string where
We show below that two FSMs and are proved equivalent by showing that
no (common) input string x produces different output strings in the two machines.
A key concept in equivalence testing is reachability, defined as follows.

Definition 7.8.1 A state t is reachable from state s if there exists a string x
which produces a run s, ending in state t. A state t is simply reachable if it is
reachable from any state in

18Pixley has shown ([215], et. seq.) how to define and test for equivalence of two machines that
do not have initial state specifications.

7.8. FSM Equivalence Checking 301

The problem of traversing a product FSM (or an FA, as discussed below) is to
enumerate all reachable states in the underlying product FST. Note that in reachability
analysis we are only concerned with the next-state function Hence, when
discussing reachability, we focus on the FST, thus ignoring the output function
Once the reachable product states are enumerated, we then check whether the outputs
of the submachines are equal in each such state.

7.8.2 Building the Product Machine

Typically one solves the equivalence problem by building a product machine
as illustrated in Figure 7.39. The two components and of the

product machine share the same primary input vector and have their cor-
responding outputs fed through a comparator, so that has a single output The
product machine is defined as follows.

where

In words, this means that states of the product are formed by simple concatenation
of the states, as discussed above for the product of FSTs. That is, the next states of
the two component machines are computed independently, and the results catenated
to form the next state of the product. The outputs specified for these two transition
are then compared, and if they are equal, the product machine outputs a 1, else, it
outputs a 0.

302 Chapter 7. Models of Sequential Systems

If the two FSMs are already encoded, and the output alphabet is given an
code, or are sequential circuits with latches, the comparator operation is the AND of
XNOR gates, one for each output code bit Figure 7.40.

To solve the equivalence problem, one traverses the STG of starting from the
initial state and checks for the output being identically 1 in all states
that can be reached.

Example:

An example of equivalence checking based on the product operation
is given in Figure 7.41. Here

and In this example,
the product machine has states. However, only 3 of these
states, and are reachable from the initial state. For
brevity, only two (and) of the six unreachable states of the
product are shown. By comparing the two sub-outputs on all the reachable
transitions, we see that they are always equal, so the product machine
always outputs a 1. However, it is interesting to observe that transitions
from the unreachable states of the product machine may produce error
outputs For example, the transition to in
response to input produces an error output.

7.8. FSM Equivalence Checking 303

In this simple example, the reachable states are visually identifiable, However, in
practice this is not usually the case, and automatic procedures must be used, based
on the graph traversal procedures BFS (Section 7.5.2) and DFS (Section 7.5.3). Such a
modification is presented here as Procedure BFS_FSM of Figure 7.42, which traverses
the STG of a given FSM, and on finding an error state, performs a backtrace operation
showing how the error state may be reached from the initial state. The backtrace
operation is performed by Procedure ERROR_TRACE, given in Figure 7.43. Procedure
ERROR_TRACE uses the supplied sets to produce a string x and corresponding
run s which takes the initial state to the error transition.

Example:

Another example of equivalence checking based on the product op-
eration uses a slight alteration of Figure 7.41. The alteration consists
changing the output label of the transition from to (under input 0)
from 0 to 1. This insures that the two machines are no longer equivalent,
but retains the same set of reachable states in the product machine. The
alteration also changes the output label of the product machine transition
from to (under input 0) from 1 to 0. The following is a

304 Chapter 7. Models of Sequential Systems

data trace of Procedure BFS_FSM applied to this altered product machine.

On the pass through do-while loop, we look at all transitions out of
states in the set This is done by the if body of Line 3. On the
third pass through the do-while loop, we encounter the case
signifying that an error state has been reached, from which
there is a transition for input with product machine output label 0.

Then SubprocedureERROR_TRACE is called, which works backward
through the provided sets to find string x, which is a distinguishing
sequence for the initial pair of states of machine and of machine

This is done by the nested for loops of Lines 1, 2, and 3. Note in
Line 4 how the new state and input are pushed onto the front of
the accumulated run s and string x, which are thus handled like stacks.

The corresponding data trace of Subprocedure ERROR_TRACE, for
is

7.9. Reachability Analysis 305

7.8.3 Equivalence Identification by Isomorphism

In the simple case of the unmodified Figurefi:fsmmin3, the STGs of the two machines
are identical except for labeling, that is, the two STGs are isomorphic19, defined as
follows. In such a case the reachable states part of the STG of the product machine
will also be isomorphic.

Definition 7.8.2 Two graphs and are said to be
isomorphic if if the nodes of can be relabeled so that the two graphs
are identical. A “relabeling function” is a function such that for each
node there is exactly one node such that (Such a function
is said to be “1 to 1 and onto” and is called an “isomorphism”).

The relabeling function for the FSMs and of Figure 7.41
is given by

Note that the STGs of two FSMs do not have to be isomorphic for the two to
be equivalent. For example, consider the the FSMs of Figure 7.11 and Figure 7.12,
which are equivalent, even though their FSMs are not isomorphic.

7.9 Reachability Analysis

The essence of the above method for equivalence checking is to reduce the verification
of a global property of one or more machines (in our example, equivalence) to the
verification of a local property (identical outputs) that must hold for all transitions
from states which are reachable from the initial states. Therefore, reachability
analysis plays a central role in the verification of finite-state systems and we focus
now on this problem. In particular, we shall concentrate on finite state machines, for
which the reachability analysis is often called FSM traversal.

We set the stage for the discussion of reachability analysis for large state machines
by first presenting the notion of using BDDs to represent encoded transition functions,
transition relations and the characteristic functions of state sets (BDDs were discussed
in Chapter 6).

7.9.1 FSM Traversal Using Binary Decision Diagrams

It is clear from examination of Procedure BFS_FSM that the tractability of FSM tra-
versal rests on two requirements: first, the image of each From set must be computable
(Line 1) in affordable time; second, the sets From, To, and Reached must be
storable in reasonable disk space. These time and space requirements may be severe
— often BFS_FSM must deal with sets with more (or even vastly more) than the sets of

to states that might conceivably be storable on today’s largest computers (in
19 If two FSMs have isomorphic STGs, they are guaranteed to be equivalent [162, Chapter 10]

306 Chapter 7. Models of Sequential Systems

which 1-2GB of RAM is sometimes available). In many cases, FSM traversal tech-
niques [193, 71, 24] have been able to go far beyond these limitations of explicit set
representation, compactly representing sets of vast proportion using BDDs [60, 262].

Once we have formed the product FSM, we know its transition function
and the corresponding transition relation

For efficient traversal of the large product machines which arise in practice,
it is necessary to encode the states and inputs of the FSM, as well as the transition
function itself. Examples of such encodings were given in Section 7.2. We shall
treat methods for effectively encoding the inputs and states later, in Section 8.3. For
now we focus attention on efficient traversal of encoded FSMs obtained by encoding
the states with an code and the inputs with a code

Suppose the product machine had states. S may be given an binary
encoding where 20. The characteristic function of any
such encoded set S, is denoted is a Boolean function (Cf.,
Section 3.3, Page 95).

Now suppose the states of a set S were given binary integer labels. That is,
the first element may be given the code 00 • • • 0, the second 00 • • • 1, and so on. For
example, let

where the closed interval notation [0, 3] stands for the set of integers between 0 and
3, inclusive. Thus |S| = 20, and The natural encoding of this set
would assign the code 00000 to element 0, the code 00001 to 1 and the code 10111 to

The cited literature typically employs functional notation such as for an
edge relation E encoded with binary variable vectors and or for a sim-
ilarly encoded the characteristic functions of a state set S. This emphasizes the
dramatic algorithmic efficiencies that are often available when a combinatorially large
set S, is represented by BDDs [47].

A BDD is a DAG (Directed Acyclic Graph) in which every vertex has exactly
two successors, and there is exactly one source vertex and exactly two sink vertices,
labeled 0 and 1. As we shall see in Section 7.9 ahead, BDDs are of great importance
in the verification and synthesis of sequential circuits. Their utility derives from two
sources: (i) their remarkable power in compactly representing very large sets, and
(ii) under certain conditions, BDDs are a canonical representation of logic functions
(Cf., Section 6.1 on Page 220).

When the members of a set S are given binary encodings, an encoding of length
only log |S| suffices. We shall see in Section 3.3 below, how a BDD is a canonical
directed graph representation of the characteristic function of S and in many cases
has only on the order of log |S| vertices. Examples of BDDs are given in Section 6.1
ahead.

We can easily find a BDD which represents the characteristic function of
the 20 state S specified above. Such a BDD is shown in Figure 7.44. It is of interest

20The notation means “the smallest integer greater than the real number

7.9. Reachability Analysis 307

to observe that a characteristic function of a 20-element set can be represented by a
BDD with just 3 nodes. This is not an isolated case but is in fact a powerful general
rule — sets of huge cardinality can often be represented by BDDs which are quite
small — frequently the node count is on the order of log(|S|).

Now let us explore in some detail just how the BDD of Figure 7.44 represents the
characteristic function of S. With there are unique codes. Note
that the BDD does not depend on variables or The truth table of will
have 12 of the 32 possible minterms evaluating to 0. We can enumerate the minterms
evaluating to 1 as follows.

Thus there are 4 + 8 + 8 = 20 elements total, each recognized by a path (for the
indicated input value assignments) in the BDD to from the root to the 1-node.

If we increase to 6 but keep, essentially, the same BDD (unchanged except for
the inclusion of one additional (unreferenced) input), the same BDD now represents
the characteristic function of a larger set

Although the BDD representing the characteristic function stays the same, the set
elements represented become

Thus there are 8 + 16 + 16 = 40 elements total, each recognized by a path (for the
indicated input value assignments) in the BDD from the root to the 1-node. Since
there are more (unreferenced) variables, there are more paths to the 1-node.

308 Chapter 7. Models of Sequential Systems

In fact, depending on the context, the same BDD can represent sets with
elements. For example, with the same 3-node BDD also represents the
characteristic function of a corresponding set of about 2.5 billion elements.

It is now becoming common and important practice in the field CAD software
development to represent such characteristic functions with the so-called Binary
Decision Diagrams or just BDDs.

7.10 Symbolic FSM State Traversal

Many problems in the formal verification of hardware are based on such reachable
states computations for FSMs (Finite State Machines). A reachable state is just one
that is reachable for some tape (input sequence) from a given set of initial states.
This type of computation uses a “symbolic” breadth first search approach to reach
all reachable states by shortest paths.

In the context of FSMs, reachable states computations are based on implicit tra-
versal of the STG (State Transition Graph) of the underlying FST. The key step in
reachable states computations (and a host of other related computations of formal
verification) is the computation of the image, of a given set of
points C in the domain of a specified transition function Image computation
plays a key role in formal verification, especially in FSM verification based on sym-
bolic traversal of the STG. Preimage computation plays a similar, perhaps even more
important role.

In symbolic traversal one computes sets of states, which are reachable in one
FSM transition from a specified set of states [71, 73, 60, 262, 74, 79]. The breadth
first search method of Procedure BFS_FSM allows one to deal naturally with multiple
states simultaneously and has thus become the method of choice for the traversal of
large machines21. The full power of this approach is realized when BDDs are used
to represent the characteristic functions of these sets (See Section 6.1). This process
is sometimes called symbolic simulation of

7.10.1 Transition Relations and Symbolic Image Computation

Let be the encoded next state transition function of a
given encoded FSM, and let and the coding vectors for states and inputs. A
given symbolic state set (characteristic function) is mapped by into a
state set in the range, (or co-domain) of the functional vector The
set of such co-domain points is called the image of under C (Cf., the definitions
following Page 84). In the symbolic approach, the image is typically computed using
transition relations.

21It is also possible to extend the depth-first method to deal with groups of states simultaneously
[7], yet in a less general and satisfactory way.

7.10. Symbolic FSM State Traversal 309

Definition 7.10.1 Given a deterministic transition function (s,x), the correspond-
ing transition relation T(s, x, t) is defined22 by:

The equation denotes a set of encoded triples of state input
and x-successor of each representing a transition in the FST of the given FSM.

Given the transition relation it is straightforward to compute the image by Boolean
manipulations, but for this we need to define a new Boolean operation called exist-
ential abstraction.

Definition 7.10.2 Given an m-variable Boolean function the exist-
ential abstraction23 of with respect to is:

Here stands for the positive cofactor of f with
respect to and stands for the corresponding
negative cofactor.

The name derives from the following property, which can be easily verified.

It can be shown that is the smallest (fewest minterms) function that contains all
minterms of and is independent of

We illustrate this definition by computing for the following function.

The two cofactors are:

Hence,
Given the existential and universal abstrac-

tions with respect to a set of variables are easily defined.

That is, we first abstract from the original function Then we abstract
from the result of this abstraction. From this second result we abstract and
so on. The order in which we do these abstractions is immaterial. The final result

is the smallest (fewest minterms) function that contains all minterms
of and is independent of

22Recall that
23There is a corresponding dual operation, called universal abstraction which takes the con-

junction rather than the disjunction of the cofactors.

310 Chapter 7. Models of Sequential Systems

Given the above definition we can easily compute the image of the set C as

In words, the image computation proceeds as follows. First compute the transition
relation and then compute the conjunction of this function and the function

and call the result Then existentially abstract all the
and all the to obtain the result The result is the smallest function
independent of and which contains all the triples in

Like this method of image computation, all the other steps of Procedure BFS_FSM

can be converted into symbolic, BDD-based procedures.
We conclude our treatment of the symbolic approach with a simple example.

Consider the two FSMs of Figure 7.45.
Example:

These two machines are not equivalent. Their product is illustrated in
Figure 7.46. Note in Figure 7.46 and other computer generated graphics,

in the sequel, the octagonal state indicates the initial state of the FST.

7.10. Symbolic FSM State Traversal 311

Here the product states are given by the left-machine state (0 or
1) followed by an underscore and the right-machine state (0, 1, or 2).
The error states of the product are {1_0,0_1,1_2}, are distinguished by
box shapes rather than ellipses. Note the strings
and produce the corresponding runs

which have the output strings
Thus these two strings are distinguishing sequences for the pair of initial
states of the two machines. Examination of the product FSM shows that
these are the shortest error traces possible.

We now show how the above error traces can be obtained with sym-
bolic, BDD-based computation. We illustrate only the first image com-
putation in the application of Procedure BFS_FSM of Page 303. We first
treat the 2-state FSM on the left of the figure, using the natural encoding
with code bit to encode the two states, and the natural encoding for the
four input symbols, which leads, as discussed in Section 7.1 of Page 255,
to

We then treat the 3-state FSM on the right. We begin by encoding the
states — we use the natural binary encoding of the digits, so that states
0, 1, 2 of the left FSM are encoded as Since two
code bits are required we must have two latches, that is, one next state
transition function for each code bit. We then construct a truth table (not
shown) to realize the three functions
and

By collecting the terms of the truth table where functions evaluate to
1, we get, after some simplification, the following expressions for

and

We then form the product machine transition relation as the conjunction
of the transition relations for the two submachines, leading to

The first From set is the which is the characteristic func-
tion of the set consisting of only the initial state of the product machine.
We now wish to compute the image of using Equation 7.2. First we
observe that

Since this conjunction evaluates to 1 for just one it
should be clear that

312 Chapter 7. Models of Sequential Systems

If we observe that and
we can easily show that

Observe that this is consistent with the fact that in the STG of Figure 7.45,
the image of the initial state of the product machine is the set
which is encoded as the set with the characteristic function

This example demonstrates how the symbolic method correctly com-
putes the image of the product machine by Boolean function manipulation.

The great practical importance of this symbolic approach derives from the fact
that FSMs of interest may have states (about 34 latches) to states (about
333 latches). or an even greater number of states. This makes it impractical to
represent states as individual entities in a computer program. Instead, the state sets
of algorithm BFS_FSM are represented symbolically as BDDs. Often billions of states
may be stored by a BDD with just thousands of nodes — leading to a cpu storage cost
of less than one megabyte. Coudert and Madre [70] are generally credited with this
extremely important discovery, although McMillan [194] did earlier, but unpublished,
similar work.

Another major advantage of BDDs over other representations of functions such
as logic functions and the characteristic functions of sets is that BDDs are canonical.
That is, given the ordering restriction discussed in Section 6.1, there is just one
unique BDD graph structure for each such function. As a result to FSMs with the
same transition relation BDD are equivalent. This aspect is crucial in many synthesis
and verification applications.

Unfortunately, however, BDDs are not the panacea. Multipliers, for example, have
no efficient BDD representation, and some smallish sequential circuits with less than
100 latches require more than 1 gigabyte of BDD memory to store their reachable
state sets. After a proper introduction of Boolean algebras, we shall present, in
Section 6.1, the details of how BDDs are used in the representation of large sets and
of logic functions.

7.11 Notes

State minimization of completely specified machines such as large sequential circuits
has been studied in [177]. The complexity of state minimization in this context has
been studied in [146].

Coudert et al. [71] have shown that breadth first traversal is more amenable to
symbolic treatment than depth first traversal, and hence can deal with sequential
machines with many more states. Although quite successful, the symbolic methods
developed so far (see, for instance, [50, 60, 153]) cannot complete the reachability
analysis for many large finite state machines, because they require too much memory,
or are computationally intensive. Depth first traversal was combined with BDD-based
symbolic methods in [226].

7.12. Summary 313

7.12 Summary

In this chapter we have briefly reviewed some important models that have been used to
characterize sequential digital systems. These models were illustrated in Figure 7.32:

Finite State Transition Structures, which we have called FSTs — In a
given state, FSTs receive an input symbol, and make a transition to a new
state;

Finite Automata, which we shall call FAs — FAs are FSTs which also take
notice when a favorable state (called accepting) is entered;

Finite State Machines, which we shall call FSMs — FSMs are FSTs which
emit a specified output symbol when they make a transition;

The treatment has emphasized the role of the underlying FSTs upon which automata
and state machines are based.

We have presented in some detail the subject of state equivalence, beginning
by defining the concept of Two states and of an FSM are

if there exists no distinguishing input sequence of length If and
are not they are This means that when the length-

distinguishing sequence is applied, the output obtained when the machine is
started in state is different than it would be if started in state

If there are states in an FSM, two states were shown to be equivalent if and
only if they are equivalent. This has led to the partition/refinement algorithm
for state minimization of an FSM, which first identifies all pairs of equivalent states,
and then collapses sets of pairwise equivalent states into single states which are “rep-
resentatives” of their equivalence classes.

By the definition of product machine, the concept of state equivalence was then
used to define the behavioral equivalence of two FSMs. The bottom line is (roughly
speaking) that two FSMs are equivalent if their initial states are equivalent.

We concluded by describing the revolutionary effect that BDDs have had on the
nascent field of FSM equivalence checking in particular, and on Formal Verification
in general.

7.13 Problems

1. Give the flow table which corresponds to the STG of Figure 7.11.
Solution.

314 Chapter 7. Models of Sequential Systems

2.

3.

(a) Find the STG of the flow table of Figure 7.15.

(b) Give two shortest possible distinguishing sequences for the pairs (A, D) and
(D,G). For each sequence, give the corresponding run and output sequence.

Consider the STGs of two FSTs of Table 7.2 and Table 7.3, given in Figure 7.34
of Page 294. Note the second table differs by the deletion of the (D, 0) edge,
and by the addition of extra edges on A and D .
(a) State why these FSTs are or are not deterministic and complete.
(b) Give the run sets for the FA’s defined on the above two FSTs, for
the string x = (0, 0, 0, 1, 0, 1, 0), and for the initial state A.
Solution. (a) The FST of Table 7.2 is deterministic and complete because
the image of every state-input pair is specified as a singleton set. The FST of
Table 7.3 is nondeterministic and incomplete, because the images of (A, 0) and
(D, 1) are not singleton sets, and the image of (D, 0) is not specified.

(b) For the string x = (0, 0, 0, 1, 0, 1, 0), the run set of The FST of Table 7.2
is {A, E, C, E, F, B, D, F}. For the string x = (0, 0, 0, 1, 0, 1, 0), the run set of
The FST of Table 7.3 is

Note the first run starts out the same as for the first table, but stops at D, since
D has no specified 0-successor. The second run exists because D is an alternate
nondeterministic 0-successor of A. However, the run stops there since D has no
0-successor. Thus the extra 1-successors of D have no effect for this string.

4.

5.

Give the STG of the product machine corresponding to the two FSMs of Fig-
ure 7.47. Show all transitions from all states, including unreachable states.

Show in what sense the STG of Figure 7.48 represents a modulo 3 counter,

7.13. Problems 315

Solution. First, it returns to the initial state after receiving a total of 3 1-inputs
(a counter counts up one for each 1-input). Second, it outputs the residue mod-
ulo 3 of the number of 1’s in the input string.

6. Apply the minimization procedures of Section 7.4 to the FSM of Figure 7.49.

List the set of state pairs, for (to save space,
you may just list the sets of states that are pair-wise). Give the
undirected graph representing the equivalence classes.

7. In this problem we present an alternative algorithm for state equivalence check-
ing, consisting of formulate two procedures, EQUIV_1 and EQUIV_N. Working in
concert, these procedures determine the set of all equivalent state pairs
of a given FSM.

After reading the discussion given below, apply Procedure EQUIV_N to the STG
of Figure 7.11.

316 Chapter 7. Models of Sequential Systems

First, consider Procedure EQUIV_1 of Figure 7.50, which determines
the set of all 1-equivalent state pairs. The procedure begins
by computing as the set of all pairs and the set as the set of
identity pairs (by the above definition, every pair is 1-equivalent
(and equivalent) to itself). The desired set is initialized to
Then, for each pair we test all inputs to see
if the outputs on the corresponding transition are always identical. If
so, then the pair (and as well, since the equivalence relation
is symmetric) is added to
If Procedure EQUIV_1 returns (1,) the first return argument indic-
ates normal termination. If Procedure EQUIV_1 returns (0,) the
first return argument indicates that no state is 1-equivalent to any
state besides itself. If Procedure EQUIV_1 returns (0,) the first re-
turn argument indicates that all the states of the specified machine
are pairwise equivalent
Once we know the set of 1-equivalent state pairs, we can find the equi-
valent pairs without further reference to the output function
by calling Procedure EQUIV_N of Figure 7.51. The arguments of
EQUIV_N include as computed by EQUIV_1. The procedure con-
sists of for-loop for from 2 through In each loop the set of

pairs is computed according to Definition 7.4.2 above.
Loop processing begins by initializing to since we know that
every state is to itself.

Then, each state pair is tested to see if, for all
the where and

7.13. Problems 317

318 Chapter 7. Models of Sequential Systems

are both members of the previously computed If so, both
and can be added to as shown by Theorem 7.4.1.
As per Theorem 7.4.2, and its preceding proposition, the procedure
terminates when it is observed that which is bound to
occur for some

Solution. In the example of Figure 7.11 we summarize the action of EQUIV_1

and EQUIV_N as follows. For EQUIV_1 we have

Thus the 1-equivalence classes are Similarly,
for For EQUIV_N

Note the 0-successors of A , C, and E are all 1-equivalent, and similarly for the
1-successors. However, The 1-successor of F is F, so Thus
the 2-equivalence classes are and
Continuing, we have

This time, the 0-successors of A, C, and E are all 2-equivalent, but the 1-
successors are not. The 1-successor of E is D, so A. Thus
the 3-equivalence classes are and

Continuing, we have so by the above theorem, these are
also the classes of the given FSM.

8.

9.

10.

Analyze the upper bound asymptotic complexity of Phase 1 (Lines 1-4) of
STATE_EQUIVALENCE, according to the definitions given in Section 1.6.1 of
Page 34. Then compare this to the complexity of Procedure EQUIV_l of Prob-
lem 7

For the flow table of Figure 7.52, draw the state transition graph.
Solution. The STG is given in Figure 7.53.

This problem and the following one explore the limits of finite state machines.
Consider a completely specified, Moore-type FSM and
suppose I = {0}, O = {0,1}, for finite, but otherwise
arbitrary. No assumptions are made for and

7.13. Problems 319

320 Chapter 7. Models of Sequential Systems

The only possible input sequence is the one composed of all zeroes. Suppose
this sequence is applied to Show that the resulting output sequence is
eventually periodic and that the period is at most

11. Based on the result of the previous problem, say whether it is possible to design
a finite state machine that, upon receipt of a string of all zeroes, produces an
output strings of zeroes and ones, such that the element of the string is 1
if and only if is a prime number.
Solution. In view of the result of Problem 26, it is sufficient to show that the
prime numbers do not eventually form a periodic sequence. Suppose they did.
Then it would be possible to write periodic numbers as:

for (We make this assumption, because we can accept a finite prefix
of the sequence of primes that is not periodic.) However, if we now take such
that we have:

Hence, is not a prime, if If then:

Take such that Then,

Hence, is not prime. This concludes our proof.

12.

13.

For the flow table of Figure 7.52, find the minimal equivalent flow table, by
applying the partition refinement algorithm.

For the flow table of Figure 7.54, find the minimal equivalent flow table, by
applying the partition refinement algorithm, Procedure STATE_EQUIVALENCE,

to identify the equivalent states.
Solution. The initial partition, based on the output values, is:

{{1, 2, 4, 6}, {3, 5, 7, 8}}.

Refining the first block, we get:

{{1, 2}, {4, 6}, {3, 5, 7, 8}}.

Finally, refining the last block, we get:

{{1, 2}, {4, 6}, {3, 7}, {5, 8}}.

The reduced flow table is shown in Figure 7.55.

7.13. Problems 321

322 Chapter 7. Models of Sequential Systems

14.

15.

Find the state-minimal FSM equivalent to the one of Figure 7.56, using Pro-
cedure STATE_EQUIVALENCE to identify the equivalent states.

Enumerate the simple cycles in the graph of Figure 1.11 on Page 23.
Solution.

Simple cycles are,

((D, B) (B, D)), ((B, F) (F, B)), ((C, E) (E, C)), ((B, F) (F, C) (C, B)),

((D, F) (F, B) (B, D)), ((C, E) (E, F) (F, C)), ((C, B) (B, D) (D, F) (F, C))

16. Find the CCCs of the graph of Figure 7.58.

17.

18.

Find the SCCs of the graph if Figure 1.11.
Solution. The SCCs of the graph of Figure 1.11 are, {A}, {B, C, D, E, F}

Apply algorithm DFS to the graph of Figure 7.31, starting at vertex 0. Give the
preorder and postorder search tags as in Figure 7.24.

7.13. Problems 323

19. Apply algorithm BFS to the graph of Figure 7.31, with starting vertex set

Solution.

(a)

(b)

(c)

(d)

Reached = {1,6,7,8,9,10}

20. Apply algorithm DFS to the graph of Figure 7.59, starting at vertex 0, and
always searching first the fanout vertex of maximal index. For example, when

searching vertex 2, recursively search fanout vertex 9 before vertex 3. Label
each vertex with 3 integers: first, the preorder and postorder search tags as in
Figure 7.24, and third, the lowlink, defined as follows. When a search of vertex

completes, the lowlink value of the node is the minimum of the lowlink values
of its fanout edges. Edge lowlink values are defined only for two cases.

First, when traversing any edge from the active vertex to any previously
visited vertex whose DFS is currently incomplete, the edge lowlink value is
defined as the preorder search index of

Second, when a search of vertex is completed, the lowlink value of the edge
traversed to initiate that search is defined as the lowlink value of

As you traverse the graph of Figure 7.59, complete the triple vertex label with
the lowlink value of the vertex.

Note that the SCCs of the DAG are identified by the condition preorder

324 Chapter 7. Models of Sequential Systems

21. Complete the data table of Table 7.1. That is, continue adding lines to the table
(above the “final” row), until all reachable vertices have become active.
Solution.

22. (A) Consider the logic graph of Figure 1.12 to be a graph G = (V, E), where the
11 vertices in the set V are in 1-1 correspondence with the logic gates number
1 to 11 (including the input and output buffers). Vertex pair if and
only if the output of gate is an input of gate

(a)

(b)

Is the edge relation E an equivalence relation?

Is it a partial order?

Explain.

(B) Now modify the circuit with a wire connecting output buffer 10 with input
buffer 1, so that a new edge (10,1) is added to the edge relation of part (a).

(a)

(b)

Is the modified edge relation an equivalence relation?

Is it a partial order?

(C)
Identify the strongly connected components of the graph of part (B). Assume
that any graph with just 1 vertex and no edges (or one self-loop edge) is strongly
connected.

Chapter 8

Synthesis and Verification of
Finite State Machines

In Chapter 7 we established a foundation for understanding the operation of FSTs,
FAs, and FSMs as abstract transition systems, and also treated the graph mod-
els which are used in their characterization. In Section 7.2 we outlined FSM state
minimization and equivalence checking. These are two of the most crucial steps in
automated logic design, since they establish the basis for equivalence preserving op-
timization steps. However, the treatment was limited to completely specified FSTs,
FAs, FSMs.

In the present chapter, we extend the treatment of state minimization to the much
more complicated case of incompletely specified machines. Then, in Section 7.4 we
discuss the details of state minimization of FSMs. We also include a discussion of
the practical algorithms for state encoding, which is required to synthesize a physical
sequential circuit from an abstract FSM. We conclude with a brief treatment of the
“partition with substitution property” theory of Hartmanis and Stearns [138].

Although the entire treatment is in terms of FSMs, we emphasize that all the
presented techniques are equally applicable to DFAs and NFAs (recall that in Defin-
ition 7.4.5 of Page 272, we described how an equivalent FSM can be derived for any
given FA). This broad applicability is due to the fact that FSMs and FAs are both
built on top of FSTs.

8.1 Minimization of Incompletely Specified Machines

The state minimization problem becomes more difficult when we move from com-
pletely specified to incompletely specified machines. For starters, the simplistic ap-
proach of trying all possible assignments of states and output values to the don’t
cares and choosing the best result does not guarantee the minimum cost solution.
(We shall see a counterexample.) This situation should be contrasted with the one
encountered in the minimization of incompletely specified switching functions. In the
case of a switching function with don’t cares, it is possible—though inefficient—to
obtain the minimum cost solution by trying all possible assignments of zeroes and
ones to the don’t cares. As a result, the modification to the minimization algorithm
to accommodate don’t cares is relatively minor. This is not the case for FSMs, where

325

326 Chapter 8. Synthesis and Verification of Finite State Machines

the minimization algorithm for incompletely specified machines is quite different from
and noticeably more complex than the partition refinement method that we have ex-
amined in the previous section.

We still want to base state minimization on the notion of indistinguishability, but
we need to define it carefully, in the presence of don’t cares. Consider the flow table
of Figure 8.1. Obviously, States 1 and 3 are distinguishable because they produce
different outputs. However, State 2 could be made indistinguishable from, say, 1, by
judiciously filling the don’t care entries. This possibility leads us to declare States
1 and 2 compatible. Two states are compatible, in general, if they have the same
output values, wherever they are both specified, and their pairs of successors are also
compatible, when they are both specified.

From Figure 8.1 we see that 2 and 3 are also compatible. This illustrates the fun-
damental difference with respect to the case of completely specified machines: Com-
patibility is not transitive. Two equivalent states can be merged into one. Similarly,
two compatible states can be merged into one. However, in the case of equivalent
states, each state belongs to exactly one class and no decisions are required as to
what states should be merged. In the presence of don’t care entries, one has to make
choices. In our simple example, one could merge 2 with 1, with 3, or with both. In
all cases a two-state solution would be obtained, but in general the choices will affect
the number of states and will not be independent. Furthermore, the simple partition
refinement algorithm cannot be used to derive the sets of compatible states, since
they do not form a partition.

Let us consider now the example of Figure 8.2. There are three don’t care entries
in the flow table: Two next state don’t cares and one output don’t care. Let us
examine what happens when the output don’t care is replaced by a 0. We see that
1 and 3 are not compatible and so are 2 and 3, because of the different outputs they
produce. Compatibility between 1 and 2 would require that between 1 and 3, and

8.1. Minimization of Incompletely Specified Machines 327

therefore no pair of compatible states exists. We can repeat the experiment, this time
substituting a 1 for the output don’t care: We come again to the conclusion that there
are no pairs of compatible states.

We may be tempted to conclude that the machine of Figure 8.2 is already minimal,
but that would be wrong. According to our definition of compatibility, 1 and 2 are
compatible if 1 and 3 are compatible and vice versa. We can then merge 1 with both
2 and 3, to obtain the two-state machine of Figure 8.3.

One may argue that in merging 1 with 2 we have assumed that the output for 1
was 0, and in merging 1 and 3, we have made the opposite assumption. Therefore, we
appear to have violated the law of excluded middle. The violation is, however, only
apparent. We can convince ourselves of the correctness of our procedure in at least
two ways.

On the one hand, we can try to find a sequence of inputs that will not cause the
original machine to go through an incompletely specified next state entry, while at
the same time causing a mismatch on the outputs of the two machines. Our attempts
will fail, suggesting that the two machines are actually compatible. This procedure,
however, only offers circumstantial evidence.

The other way of proving that what we are doing is correct is to realize that we
can split State 1 in two identical states, say and We can then change the next
state entries referring to 1 so as to refer to either or The result of this is shown
in Figure 8.4. A moment’s thought shows that the new machine expresses the same
behavior as the original one1. It is also clear that now we can assign 0 to the output
of and 1 to the output of and obtain the solution of Figure 8.3. In summary,
when we merge a state with two other states having conflicting requirements, we can
always think of splitting this state first, then merging the newly generated states.

Having seen how the new problem differs from the previous one, we now concen-

1 These considerations can be made more precise.

328 Chapter 8. Synthesis and Verification of Finite State Machines

trate on solving it. The outline of the algorithm is as follows. We first find the pairs
of compatible states. We then find the maximal compatibles, i.e., sets of compat-
ible states that are not strictly contained in any set of compatible states. It would
be nice if we could restrict our attention to maximal compatibles, but unfortunately
that would preclude sometimes the achievement of the minimum number of states.
Therefore we need to find a larger set of compatibles that we shall call prime compat-
ibles, since they play a role similar to that of prime implicants in the minimization
of two-level circuits. Finally, we shall select a subset of the prime compatibles that
covers all the states of the original machine. In doing so, we shall obey constraints
that guarantee the consistency of the choices made. Hence, we shall solve a more
complex covering problem than in the minimization of two-level circuits, namely, a
binate covering problem. We now describe each phase of the algorithm in detail.

8.1.1 Finding the Compatible Pairs.

Compatible pairs can be found with the help of a compatibility table or compatibility
graph. (They represent the same information in slightly different ways.) A simple
flow table and the corresponding compatibility table are shown in Figure 8.5. In the
compatibility table, the ~ symbol in the (1, 2) entry specifies that states 1 and 2 are
unconditionally compatible. The (3, 4) entry, on the other hand, says that states 3
and 4 are compatible only if states 1 and 2 are merged. Finally, the crosses indicate
incompatibility. For the (1, 3) and (1, 4) entries the incompatibility is due to the
different output values. For the (2, 4) entry, the outputs are compatible, but states 1
and 3 should be compatible, which is not the case.

In general, we start by examining the compatibility of the first state with all the
remaining states; then we compare the second state to all the states but the first, and
so on. For each pair of states, the following cases may occur.

1.

2.

3.

There are conflicts in the outputs: The two states are incompatible.

Some next states for the same input are known to be incompatible: The two
states are incompatible.

Some next states for the same input are different, but are not known to be
incompatible: The compatibility of the two states is conditional on the compat-
ibility of their next states; the pair of next states is entered in the compatibility
table.

8.1. Minimization of Incompletely Specified Machines 329

4. No conflicts occur and no different states occur. The two states are uncondi-
tionally compatible.

Every time a pair of states is found to be incompatible, we check the table entries
containing this pair. The corresponding pairs of states are declared incompatible.
Each such pair is checked in turn.

8.1.2 Finding the Maximal Compatibles

Among all the methods for the generation of the maximal compatibles, we shall present
the one due to Marcus [184]. This method works with the incompatible pairs, that
are easily found from the compatibility table. If we know that and are two
incompatible states, then we know that no (maximal) compatible will contain both

and More precisely, every set of states that does not contain any incompatible
pair is a compatible set. We can thus write a Boolean formula that expresses the
conditions for a set of states to be compatible. We associate a variable to state
and stipulate that means that is an element of the set. We can then write
a conjunction of two-literal clauses. Each clause corresponds to an incompatible pair
and expresses the condition that the two states cannot both be present. For the
example of Figure 8.5, we have:

Note that Thus each clause in the product of
sums expresses the exclusivity of incompatible states and

We can convert the above expression into sum-of-product form by multiplying it
out and eliminating the absorbed terms. From what we know of prime generation
(see Section 4.6 of Page 138), this procedure produces a complete sum:

Every term of this sum of products identifies a maximal compatible set. For instance,
identifies the maximal compatible In general, one takes the states

corresponding to the variables that do not appear in the prime implicant. Since the
complete sum is the set of all prime implicants, we know that there is no smaller
product expressing the exclusivity of the incompatible pairs. Hence the compatibles
formed with this procedure are maximal compatibles.

This example may be generalized as follows. First, form the product of sums as
above, with one sum for each incompatible pair
denoted by a cross in the compatibility table (for example that of Figure 8.5) derived
as in Section 8.1.1.

8.1.3 Finding the Prime Compatibles.

Suppose a set of compatibles is given and we start selecting some of these compatibles
to cover all the states. We have seen that some pairs are compatible only if other
pairs are merged into a single state. This means that the selection of one compatible
may imply the selection of other compatibles. The set of compatibles implied by

330 Chapter 8. Synthesis and Verification of Finite State Machines

one compatible is easily found from the flow table and is called the class set of the
compatible. The selection of the implied compatibles guarantees the closure of the
solution. Observing Figure 8.5, we see that 3 and 4 are compatible only if 1 and 2 are
compatible. This means that we can only use the compatible {3,4} in the solution, if
we also include {1,2}. The class set of {3,4} is therefore {{1,2}}.

Let and be two compatibles and let and be their respective class sets.
Suppose We may be tempted to choose over since it covers more
states. However, it may be that In other words, may imply the choice
of some extra compatibles that would not be required, were selected instead. For
this reason, we cannot restrict ourselves to maximal compatibles.2 Instead, we define

to be prime if and only if there does not exist such that
It was shown in [118] that an optimum solution can always be obtained from such
prime compatibles. Thus if but then is inferior and should be
discarded, since we are guaranteed the existence of an optimum sopution without

Consider the flow table of Figure 8.6, taken from [118]. From its compatibility
table, given in Figure 8.7, we can derive the set of maximal compatibles as described
above in Section 8.1.2. Thus, we complement the pairs to form the following dualized

2 There are, however, classes of machines for which that is possible [95].

8.1. Minimization of Incompletely Specified Machines 331

product of sums expression:

Here we formed a product of sums, with one sum
for each incompatible pair denoted by a X in the compatibility table of Figure 8.7. The
prime implicants of this negative unate function are the smallest products satisfying
the incompatibility function.

This can be translated into a sum of products efficiently by applying the dis-
tributivity property to all the terms containing then all the terms containing
and so on—at every step choosing one of variables appearing in the largest number
of terms. We get:

Now, multiplying out and eliminating absorbed terms, we get:

and finally:

From this complete sum, we extract the following maximal compatibles:

(For instance, and are exactly the variables not appearing in) The
maximal compatibles and the remaining prime compatibles are shown in Figure 8.8.
The maximal compatibles MAXCOMPS are prime by definition. The algorithm
for computing the entire set of prime compatibles is given as Procedure 8.9. The
inputs are MAXCOMPS, the set of maximal compatibles, and CM, the compatibility
matrix (see Section 8.1.3). Initially, the largest maximal compatible, of size is
identified. Then, on each pass through the outer for loop (Line 1) prime compatibles
of size are identified and added to the list of primes, which are stored in a queue
denoted by P (A maximal compatible is prime by definition). This ordering by size
is meant to minimize unnecessary computation. One can verify that in this way no
compatible added to the list has to be removed later.

Then in the for loop of Line 2, all prime compatibles of size are treated by
generating and processing all sub-compatibles (subsets of size). However, if a
compatible has an empty class set, its subsets are not generated, because they are
known not to be prime. In this case the foreach loop continues at Line 3 by skipping
to the next of size

Otherwise, all subsets each of size are subjected to to a primality
test. In case a previously treated subset is encountered, the foreach loop continues
at Line 4.

The primality test is executed in the foreach loop of Line 5. It consists of looking
at all larger primes on the list P. If the class set of is tested to see if it

332 Chapter 8. Synthesis and Verification of Finite State Machines

contains the class set of If this test passes (Line 6), the inner for loop is exited
at Line 6, after setting prime to 0. If no such prime is found in the inner for loop,

is added to the list of primes at Line 7.
With reference to Figure 8.8, the numbers on the left give the order in which

primes are entered in the list. The first element of the list is the only
maximal compatible of size 4. Since its class set is empty, no subsets are generated
and is decreased from 4 to 3. All maximal compatibles of size 3 are then appended
to the list. The subsets of of size 2 are then considered. There are three such
subsets. Only two are prime, since and is already on
the list with an empty class set. The process continues, until the last prime, is
added to the list.

8.1.4 Setting up the Covering Problem.

Once the prime compatibles and their class sets are available, we can formulate the
conditions under which a collection of primes forms a valid solution. Such a collection
must be a closed cover, i.e., all states must be contained in some compatibles (cover-
ing) and all compatibles implied by any compatible of the solution must be contained
in some other compatible of the solution (closure).

We associate a variable to the prime compatible and stipulate that
implies that the compatible is part of the solution. We then write a Boolean for-
mula that expresses the conditions for a set of compatibles to represent a closed cover.
This formula is in conjunctive form (product of sums). The terms will be divided in
two groups, depending on whether they express covering or closure constraints.

Let us consider the covering constraints first. We need one clause for each state,

8.1. Minimization of Incompletely Specified Machines 333

334 Chapter 8. Synthesis and Verification of Finite State Machines

expressing the condition that the state is part of the solution. This condition is
satisfied if at least one compatible including the state is selected. For state of
Figure 8.6, for instance, the only two compatibles that cover it are 1 and 11; hence:

will be one term of the formula. The terms for the other states are similar.
We now discuss the closure constraints with the help of an example. Consider

Figures 8.6 and 8.8 again. Prime 2 ({b,c,d}) requires {(a,b),(a,g),(d,e)}. If we set
then we need also to select compatibles that contain these implied compatibles.

By inspection of Figure 8.8, we see that

Hence, we have:

that can be written as

Similar expressions can be written for all the prime classes.
The conjunction of all the constraints forms an expression that must be satisfied

for the selection to be valid. We are interested in a selection of minimum cost, that
can be found by solving a binate covering problem. In our case we need to find a
solution to:

One can verify that and all other variables equal to 0 is a
solution. It is actually a minimum cost solution as we shall see shortly.

8.1.5 Forming the Reduced Table

Given a solution, we can build the minimized cover for the FSM as follows. For each
compatible in the solution there will be a state in the reduced machine. The next
state entry for given present state of the reduced machine and input is determined by
finding a compatible in the solution that contains all the states that are next states
for the given present state compatible and input.

In our example, for instance, let us consider the next state of Compatible 1 under
input Since Compatible 1 is we consider the entries in Column of

8.2. The Binate Covering Problem 335

the table of Figure 8.6 corresponding to states and We find that and are
the only states appearing in those entries. Hence we look for a compatible containing

The only such compatible is Compatible 1 and therefore we choose 1 as the
next state of 1 for input The output in this case must be 0, because that is the
value for the entries where it is not unspecified.

We consider next the entry for present state 1 and input We find that states
and appear in the appropriate entries in Figure 8.6. These two states are contained
in two of the compatibles forming the solution, namely 1 and 4. Hence we have a
choice and we enter {1,4} in the reduced table to indicate that. The complete reduced
table is given in Figure 8.10.

The choices for the next state entries are arbitrary as far as the number of states
are concerned. However, they may impact the number of literals after state encoding
and logic optimization. Finding the exact solution to this problem is beyond our
present scope and is computationally very expensive [178]; we just mention that one
can make heuristically good choices by creating uniformity, rather than disuniformity.
For instance, in our problem, a good heuristic solution would consist of selecting 1
wherever there is a choice. The result is shown in Figure 8.11.

8.2 The Binate Covering Problem

We recall that the Binate Covering Problem (BCP) is the problem of finding the
minimum cost assignment that satisfies a Boolean formula in conjunctive form. The
difference with respect to ordinary (unate) covering is that the formula is not supposed
to be unate. As a consequence, some simplifying assumptions that we implicitly made
when dealing with unate covering are not valid in the more general case. However,
we shall see that the similarities between the two problems are much stronger than

336 Chapter 8. Synthesis and Verification of Finite State Machines

the differences, so that it will be possible to adapt the branch-and-bound algorithm
for unate covering to BCP without drastic changes.

In particular, our general scheme will be the same. We shall put the formula in
matrix form and try to identify singleton rows. We shall then try to apply row and
column dominance to simplify the problem. As in the unate case, we shall sometimes
find the solution by exclusive application of these reduction techniques. In the general
case, though, we shall select a branching variable and decompose the problem into
two sub-problems. As in the unate case, we shall keep an upper and a lower bound
on the cost of the solutions, so as to prune as much of the search tree as possible.
(See Figure 8.12.)

Unlike the unate case, BCP may not have a solution. This occurs when the given
formula represents the function that is identically 0. One such formula is:

Likewise, some of the subproblems generated by branching may not have a solution.
In the case of FSM minimization, the initial problem is guaranteed to have a solution,
but some of the subproblems may not have one. Note that the algorithm of Figure 8.12
tests for unsatisfiable subproblems when a terminal case is reached. We are now ready
to present the problem more formally.

8.2. The Binate Covering Problem 337

8.2.1 Formulation of BCP

We are given a Boolean formula F in conjunctive form and an objective function:

It is convenient to represent F in matrix form, by associating a column to every
variable and a row to every clause. The generic element is – if variable does
not appear in clause is 0 if variable appears complemented in clause and is 1
otherwise. We denote the row of the matrix F by and the column by

Example 8.2.1 For this formula

we have in matrix form

With F in matrix form, the binate covering problem can be formulated as follows:

Find a subset S of columns of minimum cost according to (8.1), such that
for every row either

1.

2.

By contrast, in UCP there are no 0s, so only condition 1 may hold.

Example 8.2.2 In Example 8.2.1, if the cost of all columns is the same, a solution
is given by Columns 1 and 2 or, in other words, by setting and

This solution is not unique: Columns 3 and 4 form another
solution.

8.2.2 Reduction Techniques

As mentioned in the introductory remarks, the outline of the branch-and-bound al-
gorithm is the same as in the ordinary unate covering problem. (See Figure 8.12.) In
the following, we extend the reduction techniques from the unate to the binate case,
starting from the detection of essential variables.

338 Chapter 8. Synthesis and Verification of Finite State Machines

Essential and Unacceptable Variables

Definition 8.2.1 An essential row of F is a row where only one coefficient is
different from –. Alternatively, it is a clause of F consisting of a single literal.

Essential rows correspond to clauses of the form or They cause the value of
to be 1 or 0, respectively, in any assignment satisfying F. Therefore, in the solution

of an instance of BCP, we proceed to the identification of the literals corresponding to
the essential rows. These are called essential literals. The variables corresponding to
the positive essential literals are essential variables. The variables corresponding to
negative essential literals are unacceptable variables. When an essential row is found,
F is cofactored with respect to the essential literal.

Example 8.2.3 In Example 8.2.1, is essential is unacceptable). The cofactored
formula is:

Note that, if is essential, then and, if is unacceptable, These
two inequalities actually give the most general definition of essentiality.

Row Dominance

Definition 8.2.2 A row dominates another row if is satisfied whenever is
satisfied, i.e., if

Dominating rows can be eliminated without affecting the set of solutions, because
In practice, the dominating row has all the ones and zeroes of the dominated

rows, plus possibly some.

Example 8.2.4 Consider the following matrix:

The first row, dominates The ensuing simplification yields:

This simplification is based on the identity

8.2. The Binate Covering Problem 339

Column (Variable) Dominance

Definition 8.2.3 Let be two columns of the matrix F. dominates
if, for each clause of F, one of the following occurs:

Theorem 8.2.1 Let F be satisfiable. If and then there is at least
one minimum solution with

Proof. Note that every clause in F that is set to 1 by is also set to 1 by
and every clause set to 0 by is also set to 0 by Suppose there

is a solution with The assignment to the obtained from that solution by
setting and is still a solution, not higher in cost than the original one.

Example:

Continuing Example 8.2.2, let us assume that all variables have unit
costs. We see that after simplification by row dominance, is dominated
by Hence, we set and we get the following matrix:

Variable has now become essential. Setting we get:

We have another case of column dominance. Specifically, dominates
Setting covers the only remaining row and hence solves the

problem. All unassigned variables (in this case, only) are set to 0. The
final solution is Notice that there is another
solution of the same cost, namely, This
solution cannot be found if column dominance is applied. As in the unate
case, column dominance only guarantees that at least one minimum cost
solution will be found.

As a special case of column dominance, we may consider those columns that
do not contain any ones (i.e., they only contain zeroes and dashes). The variables
corresponding to these columns can be set to 0 safely.

The definition of column dominance that we have given is tailored to our formu-
lation of the problem, where F is given in POS form. A more general definition can
be found in [155].

340 Chapter 8. Synthesis and Verification of Finite State Machines

Row dominance has to do with the identification of a subset of clauses of F that is
sufficient to express all constraints. Column dominance, on the other hand, is used to
extract a subset of the variables that contains a minimum cost solution, if one exists.

It should be noted that the set of reduction rules presented here is not exhaustive
and the reduced form of a given problem may or may not be cyclic depending on
the set of reduction rules and their order of application. Some additional reduction
techniques are extensions of techniques available for unate covering [253]. Others are
more specific to BCP [119, 147]. Their usefulness varies depending on the type of
problems that need to be solved. Finally, we notice that a binate covering problem
can be partitioned—exactly as a unate covering problem—whenever the matrix has
a block-diagonal structure.

8.2.3 Choice of the Splitting Variable and Bounding

The application of the reduction techniques sometimes reduces the problem to a trivial
one. In general, however, the reduced problem is cyclic and it is necessary to “branch”
by temporarily assigning a chosen variable to 0 (or 1) and finding the minimum
solution, and then repeating this when the variable is assigned to 1 (or 0). The choice
of the branching variable is usually a heuristic, but a very important one.

Also, we keep a lower and an upper bound. Whenever the lower bound exceeds the
upper bound, the current node is pruned, since there is provably no optimal solution
to be found by expanding this node. We now discuss these two important aspects
of the algorithm, by discussing the few changes required to adapt the algorithm for
unate covering to the binate case. We also discuss how infeasible (or unsatisfiable)
subproblems are identified. The strategy we follow is the one of [41].

8.2.4 Maximal independent set.

A maximal independent set of clauses provides a lower bound to the cost of the solu-
tion and also helps in selecting the branching variable. Two clauses are independent
if it is not possible to satisfy both by setting at most one of the variables to 1. For the
binate case, we note that a clause including a complemented variable is dependent on
any other clause, according to this definition. Indeed, it can be satisfied by setting to
0 one of the complemented variables. Therefore, in the binate case we only consider
the clauses that do not contain any complemented literal and find an independent set
for those. Consider, as an example, the following constraint matrix:

The two rows have no columns in common. However, can be satisfied by
Hence, the size of the independent set is 1, and the lower bound is the minimum of
the costs of and One can easily verify that in this case this lower bound is
exact, i.e., the lower bound is precisely the cost of the cheapest solution.

Clearly the lower bound we get by ignoring the clauses with complemented literals

8.2. The Binate Covering Problem 341

is less tight than in the unate case. Consider the following matrix as an example:

The size of the independent set is one, but a minimum cost solution requires at least
two variables set to 1. On the other hand, for the unate covering problem obtained
by considering only and the bound is exact.

Unlike the unate case, it is possible for the largest independent set to be empty.
This occurs when all clauses contain at least one complemented literal. In such a
case, the problem admits the solution where all variables are set to zero, as in the
following example:

Notice that this example is cyclic. Hence it also shows that in binate covering a cyclic
constraint matrix may be covered by fewer than two columns. As we saw, that is not
the case for unate covering.

8.2.5 Choice of the branching column.

As in the case of unate covering, columns that intersect many short rows are favored.
However, a given row, is covered by a selected column, only if
Therefore, treating all intersected rows the same is not necessarily accurate. One looks
for a good trade-off between the complexity and the quality of the choice criterion.
Ignoring the rows such that while computing the relative merit of leads
to a simple, yet effective selection method.

8.2.6 Infeasible problems.

Whenever we find two essentials and we have an infeasible problem and we
prune the current branch of the search tree. Consider the following cyclic matrix:

If we split on we obtain for both subproblems that is both essential and
unacceptable. Hence F is not satisfiable.

Example 8.2.6 In Example 8.2.3, we were left with a cyclic problem and we need
to split. We started with an original upper bound of 7. After the deletion of the

342 Chapter 8. Synthesis and Verification of Finite State Machines

unacceptable variable column, we get an MIS comprised of the first two rows, and
thus a lower bound of 2. We choose and we obtain

From which we easily see that the optimal solution is obtained by selecting Since
the cost is 2, i.e., it equals the lower bound at the root of the tree, this solution is
globally optimal and we don’t need to consider the branch corresponding to

8.2.7 An Example of Reductions

We conclude with an example of application of reduction techniques. Let us consider
the following problem (we assume unit costs).

We find Cofactoring, we get:

From which, by column dominance, Hence,

This gives (Again, by column dominance.) Finally,

that yields The complete solution is therefore and

8.3. State Encoding 343

8.3 State Encoding

We shall focus on the problem of state assignment for synchronous machines, where
the primary objective is the reduction of the cost of the implementation. Other ob-
jectives may be speed and testability.3

In this section we consider the number of literals as the cost figure. As pointed
out earlier, this is an approximation, since the effects of technology mapping and
the cost of interconnections are not modeled, but it is usually a good one. We also
mentioned that the number of possible assignments is very high. If one uses bits
to encode states, there are possible assignments. If one considers
two assignments obtained by permutation or complementation of some of the bits as
essentially the same assignment, then there are

distinct assignments [189]. Therefore, practical encoding methods are heuristic. We
shall present one such algorithm, called MUSTANG [87], WHOSE PURPOSE IS TO

ANTICIPATE THE EFFECTS OF LOGIC OPTIMIZATION, AS PERFORMED BY SIS. Other
more sophisticated evolutions of the ideas of MUSTANG have been incorporated in
later programs [176, 92, 94], and there is a rich earlier literature on the subject (see,
for instance [6, 89, 84]), but for our illustrative purposes MUSTANG will suffice. In the
next classes we shall consider another approach to state assignment, that originates
from the work in [137].

8.3.1 Practical Encoding Algorithms

As many other approaches to state encoding, the one of MUSTANG tries to identify
pairs of states that should receive adjacent codes. Two codes are adjacent if they only
differ in one bit, like 001 and 101. Throughout our discussion of MUSTANG, we shall
refer to the example of Figure 8.13. Our first objective is to build a graph representing
the attraction between each pair of states. Such a graph is presented in Figure 8.14.
There is a node in the graph for each state of the FSM. There is an edge in the graph
for each pair of nodes, labeled with the attraction between the corresponding states.
Two states that have a strong attraction should be given adjacent codes. Notice that
it will not always be possible to take into account all the suggestions that come from
the attraction graph, so that we shall have to heuristically select what adjacencies to
actually implement.

In MUSTANG, the attractive force between two states is related to the ability of
extracting common cubes from the next state and output functions, if the two states
are given adjacent codes. Consider the following fragment of an encoded cube table.

3The task of assigning binary codes to states has different objectives for synchronous and asyn-
chronous circuits. For the latter, the main goal is to achieve correct behavior by avoiding or con-
trolling the effects of races.

344 Chapter 8. Synthesis and Verification of Finite State Machines

We have two states (01 and 00) that are mapped into the same state (11) when the
input is 01. These two states are said to have a common fanout state. In the equations
for the next state variables and the output, before minimization, we shall find terms
corresponding to these lines of the cube tables:

but, since 01 and 00 are adjacent, we can simplify those expressions as follows:

and therefore the common cube can be extracted from the three equations. In
a similar way we can analyze the following fragment of cube table. Here we see that
states 10 and 11 have one fanin state in common.

We focus in this case on the equation for that will contain, before minimization,
terms corresponding to both lines of the fragment. (The equations for and will

8.3. State Encoding 345

contain only a term corresponding to one of these lines.)

In this case we can also simplify the expression for to:

No common cube can be extracted in this particular example, but in general it may
be possible.

Each of these two examples illustrates one of the two ways in which MUSTANG
builds the attraction graph. In the fanout-oriented algorithm, whenever two states,
and have a common fanout state, the weight of the edge of the attraction
graph is increased. Similarly, for the fanin-oriented algorithm, if and have a
common fanin state, the weight of the edge of the attraction graph is increased.
Once the graph of the attractions is found, we try to assign adjacent codes to pairs
of states that have strong attractions.

Fanout-Oriented Algorithm

In the fanout-oriented method, we build two matrices: The first with one row for each
present state and one column for each next state and the second with one row for
each present state and one column for each output. For the example of Figure 8.13,
we obtain the following matrices, where the superscripts and stand for present
state and next state.

A 1 in row and column indicates that there is one arc of the state transition
graph going from to A 1 in row and column indicates that there is an arc
going out of that asserts that output should be 1. In general, the entries of the
matrix are non-negative integers that give the number of arcs connecting two states
or the number of arcs going out of a state and asserting a given output.

Let be the row of S and the row of Z. Let also be number of
encoding bits. Then the attraction between states and is given by:

where the operations are on integers and T means transpose. In our example, assum-
ing the attraction of states 2 and 3 is computed as:

Proceeding similarly for the other pairs of states, we get the attraction graph of
Figure 8.15. The reason for the factor is simple: We want to take into account
that the cube that will be generated will be shared by multiple next state equations,
possibly all of them. A more conservative estimate would use

346 Chapter 8. Synthesis and Verification of Finite State Machines

The Embedding Algorithm

We are now ready to assign codes to states. We select first the node for which the
sum of the weights of the heaviest incident edges is maximum. (In our case
with a sum of 7.) We only consider the heaviest edges, because there are only

adjacent codes to any given code of bits. We arbitrarily assign a code to it
and adjacent codes to the adjacent states connected by the heaviest edges. In our
example this completes the process. The result is shown in Figure 8.16. In general,
the states that have been assigned codes are removed and the procedure is repeated.
For the assignment of Figure 8.16, the resulting logic is:

In the arbitrary choice of the initial code, it is not uncommon to choose the all-zero
code. This has the effect of heuristically minimizing the number of ones in the output
parts of the cubes, which normally leads to simplification of the equations.

Fanin-Oriented Algorithm

In the fanin-oriented method, we again build two matrices: The first with one row for
each next state and one column for each present state and the second with one row
for each next state and two columns for each input; one column is for the true input
and the other is for the complement. For our example, we get the following matrices.

8.4. Decomposition and Encoding 347

A 1 in row and column of indicates that there is one arc of the state transition
graph going from to A 2 in row and column of X indicates that there are
two arcs entering that are labeled Notice that The attraction between
states and is now given by:

The resulting graph and a possible encoding are shown in Figure 8.17. The embedding
procedure is the same as before. For our example, the resulting logic is:

8.4 Decomposition and Encoding

In Section 7.1 we mentioned that one of the approaches to state encoding aimed at
reducing the mutual dependence of the state variables. If we have state variables,
the next-state functions take the form

where is the input variable. Rather than aiming directly at minimizing the
number of literals in the next-state functions, one may actually try to minimize the
support of the functions. In so doing, he or she could achieve two objectives: Reduc-
tion of the number of literals and simplification of the interconnections.4

4 The testability of the circuit may also be improved.

348 Chapter 8. Synthesis and Verification of Finite State Machines

Consider the case of a machine with four state variables and suppose that, thanks
to a careful encoding, we have:

We see that, for instance, does not depend on and If we ignore the output
function for the moment, we have two circuits that share only the primary inputs
and thus actually work in parallel. In general, the reduction of the dependences
among the state variables may lead to the decomposition of the FSM into two or
more components.

We shall start our investigation of reduced dependence from the study of the de-
composition of a FSM and we shall then see the reduction of the dependence as a
generalization of decomposition. We shall come to the conclusion that decomposition
and state encoding are essentially the same problem, though from a practical stand-
point it may be convenient to separate them. Our treatment of the subject will be
largely based on [138] and will be restricted to completely specified machines.

8.4.1 Partitions

A partition on a set S is a collection of disjoint subsets of S whose set union is
S, i.e.,

such that

and

Each subset is called a block of the partition. We use a bar over the elements of a
block in our notation, as shown in the following example.

We write to indicate that and are in the same block of
Partitions play a central role in the decomposition theory: Hence we introduce

some definitions. We indicate with 0 and 1 the trivial partitions. For instance, if

then

For and on S, we say that is greater than or equal to and write

8.4. Decomposition and Encoding 349

if and only if every block of is contained in a block of We immediately recognize
that is a partial order. As an example, we have:

If and are partitions on S, then

is the partition on S such that

whereas,

is the partition on 5 such that

if and only if there exists a sequence in 5

for which either

For instance, if

then

and

It can be seen that these two operations are meet and join for partitions and that the
partitions on a set form a lattice.

The importance of partitions is best understood by reminding that an equivalence
relation induces a partition on a set and, vice versa, a partition on a set identifies an
equivalence relation. We have used one equivalence relation, namely indistinguishab-
ility, in minimizing the number of states of a completely specified machine. It is clear
that indistinguishability is an equivalence relation, but in general it is sufficient to
have a relation that is reflexive, symmetric, and transitive.

Two elements in the same block have some property in common, such that for
some purpose, we may not need to distinguish them. Partitions may then be seen as
a mechanism for summarizing information or abstracting detail. How exactly we do
that is the subject of the next section.

350 Chapter 8. Synthesis and Verification of Finite State Machines

8.4.2 Partitions with Substitution Property

So far, we have considered partitions on generic sets. We now focus on partitions
of the set of states of a machine. Let us consider a machine M, composed by the
interconnection of two components, and A state of M is given by a pair
of states, one from and the other from If we consider all the states of M
with the same first component as equivalent, we have a partition. So, we see that a
decomposition identifies a partition. Suppose we are given a machine and we are asked
to decompose it: We are then interested in seeing what partitions correspond to nice
decompositions. To this end we introduce the notion of partition with substitution
property. A partition on the set of states of the machine

is said to have the substitution property if an only if

implies that

Intuitively, a partition with substitution property (an S.P. partition) rep-
resents an amount of uncertainty on the current state of a machine that ‘does not
spread.’ If has S.P. and we know the block in which to which the current state
of the machine belongs, then we can compute what block the next state will be in,
without knowing exactly the state. Thus, an S.P. partition represents a useful way
of summarizing the behavior of the machine. As a first example of the importance of
S.P. partitions we offer the following result.

Theorem 8.4.1 A sequential machine M has a non-trivial parallel decomposition of
its state behavior if and only if there exist two nontrivial S.P, partitions and
on M such that

A similar theorem can be stated for serial decomposition: If a machine has one
nontrivial S.P. partition, then it has a nontrivial serial decomposition.

Let us see how to perform the decomposition on the FSM of Figure 8.18. One

8.4. Decomposition and Encoding 351

can easily verify that

are 2 S.P. partitions and that The basic idea is that each of the two parallel
components corresponds to one of the two S.P. partitions. The states correspond to
the blocks of the partitions. Each component machine has approximate information
on the state of the overall machine; however, its state can be reconstructed because the
product of the two partitions is 0. The result of the decomposition for our example
is illustrated in Figure 8.19. Notice that in this case we can assign the outputs of the
two components so as to have

and hence the overall structure of the result is the one depicted in Figure 8.20. In
general, the outputs of the parallel composition will be a function of the states of the
two machines and of the primary inputs.

We now consider the serial decomposition of a machine. If we only have one
S.P. partition, we can find only one component that can independently compute what
block the next state of the machine will be in. We call this sub-machine the inde-
pendent component. It is possible to build a second component that computes the
missing information, based on the state of the independent component. This second
machine is called the dependent component. The dependent component corresponds

352 Chapter 8. Synthesis and Verification of Finite State Machines

to a partition of the states such that its product with the S.P. partition is 0. This
guarantees that the state of the original machine is computed exactly. The general
structure of the serially decomposed machine is illustrated in Figure 8.21. We exam-
ine the details of the decomposition for the FSM of Figure 8.22. It can be verified that

is the only S.P. partition. We choose as partition
for the dependent component. Clearly,

The flow table of the independent component is computed as in the case of parallel
decomposition. The result is shown in Figure 8.23, where state A corresponds to
states 1,2, and 3 of the original machine, and state B corresponds to states 4 and 5.
Notice that there are no outputs indicated, since the outputs are the state variables.
For the dependent component, we first rewrite the flow table of the original machine,
substituting the partition block names for the original states, as shown in Figure 8.24.
We then rearrange the table so as to show the inputs to the dependent component
across the top of the table, as usual. This is illustrated in Figure 8.25.

8.4.3 Computation of the S.P. Partitions

The computation of the S.P. partitions is based on the partition algebra that we
have introduced. The S.P. partitions form a sub-lattice of the lattice of all partitions.
This suggests the following generation strategy. We first generate the minimal S.P.
partitions and then we sum them until we have considered all possible sums.

8.4. Decomposition and Encoding 353

The minimal partitions are those obtained by requiring that two states only are
included in a block. Consider the machine of Figure 8.26. (The outputs are not
shown, because the computation of the S.P. partitions does not depend on them.) In
order to compute the minimum partition such that states 1 and 2 belong to the same
block, we consider the successors of 1 and 2. They are states 1 and 4 under input 0
and states 2 and 3 under input 1. Hence, if 1 and 2 are to be in the same block, so
must be states 1 and 4 and states 2 and 3. However, this implies, due to transitivity,
that states 1, 2, 3, and 4 must all belong to the same block if states 1 and 2 are to
belong to the same block. Considering the successors of these four states, we rapidly
come to the conclusion that there is no S.P. partition other than the trivial partition
1 that contains 1 and 2 in the same block.

As a second example, we consider states 1 and 4. These two states have the same
successors for both input values. Hence there are no applications of transitivity and

is the minimal S.P. partition such that states 1 and 4 belong to the same
block.

Finally, we consider states 4 and 5. Looking at their successors, we see that states

354 Chapter 8. Synthesis and Verification of Finite State Machines

2 and 3 must be in the same block. No further implications occur and we get the S.P.
partition

If we carry out the computation for all pairs of states, we end up with the following
list of S.P. partitions.

One can easily verify that no new S.P. partition can be generated by summing the
partitions of this list. The resulting lattice is shown in Figure 8.27.

8.4.4 General Decomposition and State Encoding

S.P. partitions allow one to find serial/parallel decompositions. If we can repeatedly
apply serial and parallel decompositions until each component machine has two states,
then we have reduced the encoding problem to the one of selecting which state of each
sub-machine will get the code 0. If we assume that the cost of the final implementation
will not depend much on this choice, we then conclude that we have practically solved
the state assignment problem.

However, relatively few circuits can be decomposed that way. We need to resort
to something more general than S.P. partitions, namely, partition pairs. We shall only
define partition pairs and see an application to state encoding. The reader interested
in more detail should refer to [138].

A partition pair on the machine

is an ordered pair of partitions on S such that

8.4. Decomposition and Encoding 355

According to this definition, the knowledge of the block of containing the present
state and of the current input allows one to compute the block of that will contain
the next state. It is evident that if is a partition pair, then has substitution
property. Hence, partition pairs generalize S.P. partitions.

We are now interested in using partition pairs to encode the machine of Fig-
ure 8.28. One can easily verify that

are two partition pairs and that

Suppose we use a minimum-length encoding of two bits, and We encode
according to and according to that is, we use the encoding bits to designate
the blocks of the partitions. One possible way to do that is:

(Notice that each state has a unique code.) The key observation here is that computing
the next value of only requires the knowledge of the current value of and vice
versa. This follows from and being partition pairs. In particular, one
obtains the following equations for the machine:

This example illustrates the general principle that partition pairs can be used to
reduce the dependence among the state variables. It is also possible to reduce the
dependence on the inputs, so that only a subset of the inputs is required to compute
a given next-state function. A look at the block diagram of the encoded machine,

356 Chapter 8. Synthesis and Verification of Finite State Machines

depicted in Figure 8.29, shows how we have decomposed the machine in the process
of encoding it. (We may also say: “How we encoded the machine in the process of
decomposing it.” It is largely a matter of interpretation.)

8.5 Notes

Books that cover finite state machines are [136, 28, 140, 162, 187]. The method
outlined in Section 8.1 is that of Grasselli and Luccio [118]. This method is used in
the program STAMINA [130, 228] that will be used in some of the homework problems.
The first studies on the minimization of incompletely specified machines are due to
Ginsburg [115, 113] and Paull and Unger [211].

State minimization is an important step in the design of FSM-based circuits.
Though the problem has received considerable attention in the past [211, 114, 118,
220, 170, 9, 8] (see [227] for an extensive bibliography), it is the recent development
of sequential synthesis systems that has created the need for efficient algorithms that
can minimize large FSM’s.

The current state of the art in FSM state minimization is that established in
[228]. This paper showed that exact state minimization is feasible for a large class of
practical examples, certainly including most hand-designed FSM’s. However, FSM’s
generated by sequential synthesis systems may have many states and, in particular,
many compatible states. Heuristic techniques are therefore of interest. The ones
we present in this paper have been very successful in reducing time and memory
requirements, without appreciably affecting the optimality of the solution.

Normally a reduction in the number of states is attempted in the hope of reducing
the complexity of the resulting FSM, as measured, for instance, by the gate count of
a multilevel implementation after technology mapping.5 However, solutions with the
same number of states may have different gate counts. Several steps in the algorithms
influence the implementation cost. These are analyzed in detail in [228].

BDD-Based Symbolic Methods are beginning to appear [157]. BDDs are well
suited for representing the characteristic functions of huge sets of prime compatibles
that arise in practical applications. BDDs have also led to some breakthroughs in the
unate and binate covering problems [178].

Significant problems in controlling power dissipation and/or traversal tractability
has caused a recent renaissance of sorts in the field of encoding (or re-encoding)
digital circuits. Early work on encoding for low power [234,19, 124, 20] was limited to

5 Another objective may be increased testability.

8.6. Summary 357

relatively small state machines, where the states may be referred to explicitly. In this
sense, these techniques follow the qualitative paradigm of traditional FSM encoding
paradigm discussed in the present chapter. The algorithms discussed derive from
the treatments in [87, 176, 93]. Other significant publications in this area include
[89, 6, 84].

Recent literature on the encoding problem includes [267, 243, 181, 88, 216, 125,
124]. In principle, as observed by Pixley, any BDD can have its size reduced, even
drastically so, by re-encoding its input space.

8.6 Summary

In this chapter we have discussed in detail the method due to Rho, et al, [228] for
minimizing incompletely specified FSMs. This method is applicable in the most
significant FSM synthesis scenario, in which the FSM is initially designed and simu-
lated in some high level language, and then synthesized down to the RTL (Register
Transfer Level) and logic levels of abstraction, which naturally leads to incomplete
specification.

We further introduced an approach to FSM encoding that is used in the most
widely available CAD tools. The basic notion is that of anticipating, in the encoding
step, the the logic minimization operations that will likely be applied at later steps in
the design cycle.

We concluded with a brief treatment of Hartmanis and Stearns’ elegant work on
encoding via partitions with the substitution property.

8.7 Problems

1. For the flow table of Figure 8.30, draw the compatibility table.

Solution. The compatibility table is shown in Figure 8.31.

2. For the flow table of Figure 8.30, compute the maximal compatibles, using the
compatibility table derived in Problem 1.

358 Chapter 8. Synthesis and Verification of Finite State Machines

3. For the flow table of Figure 8.30, compute a minimal closed cover using maximal
compatibles only. Use the maximal compatibles derived in Problem 2. Set up
and solve the binate covering problem. Draw your search tree. Finally, draw
the reduced flow table. [Hint: In the covering problem, split on the maximal
compatible composed of States 4, 5, and 6.]
Solution. We begin by listing the maximal compatibles with their class sets.

maximal compatibles class set

This list will guide us in writing the constraint matrix.

8.8. Problems 359

The first six rows of the matrix give the covering constraints and the remaining
rows give the closure constraints. One can easily see that Rows 6, 8, and 16
dominate other rows and therefore can be dropped. The resulting matrix is
cyclic and splitting is necessary. First of all, we compute the lower bound,
which is 3. (Rows 1, 3, and 5 are independent.) The upper bound is of course
7. Then, following the hint, we split on Selecting causes to become
essential and the choice of causes to become essential. After all covered
rows are removed, only Row 2 is left. By dominance, Columns 4 and 6 are
eliminated and we obtain the solution of cost 4:

Since this cost is higher than the lower bound, we need to consider also
However, imposing causes and (among others) to become

unacceptable. However, if Row 1 is not covered. Hence, the sub-
problem is infeasible and the final solution is the one of cost 4 that we found.
The search tree is shown in Figure 8.32.

Figure 8.33 gives a minimized FSM for the solution that we have found. In all
cases where multiple choices existed for the next state, State 1 was selected.

360 Chapter 8. Synthesis and Verification of Finite State Machines

4.

5.

For the flow table of Figure 8.30, compute the prime compatibles. Use the
results of Problem 2.

Use MINCOV to solve the covering problem based on the prime compatibles
found in Problem 4. Include the output from the program, showing the echo of
the input matrix.
Solution. Here is the output of MINCOV, including the echo of the input matrix.

mincov -v 10 -i pb7-12.t
Mincov Version #1.0, Release date 10/01/92

00000000011111
12345678901234

Options: Independent Set Beta Dominance
ABSMIN[0] 22x 14 sel= 0 bnd= 15 lb= 3 0.01 sec pick=l
ABSMIN[1] Ox 0 sel= 3 bnd= 15 lb= 3 0.01 sec BEST
new ´best´ solution 3 at level 1 (time is 0.01 sec)
matrix = 22 by 14 with 84 elements (27.273Y\%)
cover size = 3 elements
cover cost = 3
time = 0.00 sec
components = 0
gimpel = 0
nodes = 2
max_depth = 1

8.7. Problems 361

**** 0 rows deleted -- 0 were not covered
Solution is 1 4 11

The cost of the first solution found equals the lower bound this time and there-
fore the branch corresponding to need not be explored. Notice that this
problem has many solutions of cost 3, besides the one found by the program.
For instance, 6, 7, and 8 form a solution as well as 4, 7, and 11.

6.

7.

Use SIS to verify your answers (for Problem 4) are correct. Write a .kiss2 file
describing the flow table of Figure 8.30. Use SIS to invoke STAMINA. (Check
the command state_minimize.)Alternatively, you may use STAMINA directly.
Programs and man pages are in the usual places.

Minimize the incompletely specified FSM of Figure 8.34. Specifically, do the
following:

(a)

(b)

(c)

(d)

(e)

Draw the compatibility table;

compute the maximal compatibles;

compute the prime compatibles;

set up and solve the binate covering problem, showing the search tree; and

form the reduced table.

In addition, also compute the cost of the cheapest solution composed of maximal
compatibles only, by setting up and solving another binate covering problem.

You may want to verify your results running STAMINA on this FSM. As an
example, the description of the flow table of Figure 8.34 in.kiss2 format is as
follows.

.i 2

.o 1

.p 18

.s 6
00 1 2 0
11 1 5 1

362 Chapter 8. Synthesis and Verification of Finite State Machines

00 2 1 0
01 2 3 -
00 3 3 -
01 3 1 1
10 3 4 1
11 3 5 -
01 4 2 -
11 4 1 -
00 5 3 -
01 5 2 1
10 5 6 -
11 5 ANY 0
00 6 6 1
01 6 1 -
10 6 5 -
11 6 2 -
.e

Every line corresponds to a transition and is divided in four fields: primary
input, present state, next state, and primary output. Notice the keyword
ANY that allows you to specify the output, while leaving the next state un-
specified. Also notice that no line corresponds to entries for which both next
state and output are unspecified. The directive . s 6 says that there are six
states. Everything else is as in the input format to ESPRESSO.

Solution. The compatibility table for the flow table of Figure 8.34 is shown in
Figure 8.35. The maximal compatibles can be derived from the compatibility
table as follows:

From which, the following maximal compatibles result:

{4, 5, 6), {3, 5, 6}, {2, 4, 5}, {2, 3, 5}, {1, 2, 3}.

8.8. Problems 363

We can now derive the prime classes and their class sets as follows. We begin
by computing the class sets of the maximal compatibles. Since all maximal
compatibles are of the same size, they are all entered in the prime list.

prime compatibles class set

We now add the primes of size two.

prime compatibles class set

Finally, we add one prime of size one.

prime compatibles class set

There are a total of eleven prime compatibles. We can now proceed to build
the covering table as shown in Figure 8.36. The search tree for this covering
problem is in Figure 8.37. The best solution is given by prime compatibles 5,
6, and 7. Another solution of cost 3 is composed of 3, 5, and 7. The minimized
machine derived from our solution is given in Figure 8.38. We now consider the
restriction of the covering problem to maximal compatibles. This is the matrix:

364 Chapter 8. Synthesis and Verification of Finite State Machines

8.8. Problems 365

We notice that is essential. Once that is taken into account, we obtain a cyclic
reduced matrix. Splitting on we find a solution of cost 4 (1,2,3,5). For

the subproblem is infeasible. Hence, in this case, the solution obtained
by considering the maximal compatibles only is inferior to the one obtained
using all prime compatibles.

8.

9.

Solve the following binate covering problem, assuming unit cost for all variables.
Show the search tree.

Apply the fan-out oriented algorithm and the fan-in oriented algorithm for state
encoding to the FSM of Figure 8.39. Use minimum-length codes. Show the
matrices (S, Z, and X), the attraction graphs, the ranking of the states for
the embedding algorithm, and the codes derived by the embedding algorithm
in both cases.

Solution. We start with the fanout-oriented algorithm. The matrices S and Z
are shown in Figure 8.40.

The corresponding attraction graph is shown in Figure 8.41. States are ranked
as follows:

366 Chapter 8. Synthesis and Verification of Finite State Machines

1: 42
2: 35
3: 24
4: 42
5: 43

Hence, we initially place on the cube State 5. The three strongest attractions
are for States 4, 1, and 2. The strongest attractions of the remaining state (3)
are towards States 2 and 4. This gives the encoding shown in Figure 8.42.

We now turn our attention to the fanin-oriented algorithm. The matrices and
X are shown in Figure 8.43. The attraction graph is in Figure 8.44 and the
encoding is in Figure 8.45. State 1 has the largest weight (48).

10. Use SIS to design and optimize the FSM of Figure 7.2. In particular, describe the
state transition graph in blif format, uisng the .start_kiss and .end_kiss
directives. Use the state_assign command to encode the states; optimize
the combinational logic; and map using libz.genlib and lib2_latch.genlib.
Choose the options and the optimization commands that yield the circuit of
minimum area.

8.8. Problems 367

368 Chapter 8. Synthesis and Verification of Finite State Machines

Report the commands used to obtain your result, including the output of ps,
print_map_stats, pg, and p for your mapped circuit.

[The area of the circuit of Figure 7.1 is 24592.]

Chapter 9

Finite Automata

In this chapter we will review some of the properties of finite automata that are
pertinent to VSLI CAD, and are assumed as basic knowledge on the part of users
of synthesis and verification programs such as VIS [10, 225] and SMV [194]. Our
goal is provide a set of basic notions which will enable readers to effectively employ
the aforementioned CAD programs, and enable him/her to comfortably access the
material in the reference texts cited above. Thus we will describe

Deterministic and nondeterministic finite automata (DFAs and NFAs);

Define regular expressions and languages (sets of finite strings) and their one to
one correspondence to deterministic finite automata and nondeterministic finite
automata (used in parsing, translation, and text search);

Define regular and languages (sets of tapes) and the corresponding
finite automata (used in proving temporal properties of sequential circuits for
all future time);

Define product, union and * operations on sets of strings;

Define the complementation of languages and automata.

Directly build the NFAs corresponding to and

Build equivalent DFAs to these DFAs using the subset construction of
Section 9.2.2 and minimize them as described in Section 7.4;

Check that the resulting minimized STGs, whose form is canonical, are
either equivalent (Cf., Section 7.8) or that they are effectively identical1.

All of these steps can be done efficiently and in time polynomial in the size of
the various STGs.

1Here identical means identical up to a possible isomorphism, defined in Definition 7.8.2, given
on Page 305. This is a polynomial time problem in general, and especially simple when the initial
states of the two STGs are known in advance, which is the case here.

369

Discuss the following method for checking if two regular expressions and
represent the same language:

1.

2.

3.

370 Chapter 9. Finite Automata

9.1 Finite Automata and Regular Languages

Given a finite state transition structure (see Section 7.7.1 on Page 292), we define
a finite automaton as follows.

Definition 9.1.1 A Finite Automaton is an FST with an acceptance set A
appended to the specification:

where the set A defines a set of accepting or final states, determined as follows.
Consider an input string x and corresponding run s, where and

Given a starting state the string x produces a run
where The string x is accepted if and only if

The automaton is deterministic if the transition function of the underlying
FST is, and complete if is.

We shall initially focus on deterministic FAs. A DFA, that is, a Deterministic

case, the output logic cone will simply implement the characteristic function of
the acceptance set A. That is, an implementation would output a 1 whenever the FA
was in an accepting state.

A specific example of a DFA is the so-called 111-
recognizer, of Figure 9.2. We define a x-recognizer to be an automaton which accepts
strings ending in x, and only such strings. Here we have X = {0,1},
and An input string with corresponding run

is accepted if and only if Note that for any x, the DFA stays
in its initial state until the first 1 in x occurs. If the string ends with 3 consecutive

Finite Automaton is just a deterministic FST with a string acceptance set A
appended to the specification.

A physical implementation of a DFA is depicted in Figure 9.1. The combinational
logic cones of their implementations are similar to those of FSMs, except in the FA

9.1. Finite Automata and Regular Languages 371

(l)s, the string is accepted. This is why accepting states are sometimes called final
states. Note that a string can have finitely many sub-strings of 3 or more consecutive
(l)s, but is accepted only if it ends with 3 consecutive (l)s.

If the STG of the the FA of the preceding example also had an edge from
to labeled with the input then the corresponding transition
function would map into the set The resulting FA, illustrated in
Figure 9.3, is nondeterministic. We call such an automaton an NFA. An NFA is just
a nondeterministic FST with a string acceptance set A appended to the specification.

Definition 9.1.2 For an NFA (or DFA) a string x is accepted if and
only if there exists a run whose last state is in A, that is, if

Note that not all runs in the run set have to end in an accepting state. It is
enough that a single run satisfies this requirement. For the example of Figure 9.3, the
string x = (011) has the run set Whereas
the first run ends in an accepting state, the second run does not. Nevertheless, the
string is accepted.

As defined in Section 7.7.4, a string x of length represents a finite sequence
where and a tape represents an infinite

sequence We will write either |x| or as the length of the string. Phys-
ically, the index of the sequence x can be thought of as an integral number of clock
ticks, and thus measures something analogous to time. Symbols w, x, y will be pre-
ferred for denoting strings or tapes, is the unique string of length 0. We shall use
upper case calligraphic symbols to denote languages, that is sets of strings or tapes.
Some examples of languages are:

Note that for compactness, we sometimes drop the comma separators between string
letters.

For ease of reference we also define

That is, is just the set of all strings that can be formed from a given input
alphabet X, and is just the set of all such non-empty strings. For example,
if X = {0,1}, then is just the set all finite strings formed from (0)s and (l)s:

and is just the same set without the empty string

372 Chapter 9. Finite Automata

Note that is just the set of all tapes on X. If X = {0,1}, then is just
the set all infinite sequences formed from (0)s and (l)s:

For we define the product of x and y as the string
obtained by concatenating x and y. That is,

Note such concatenation is defined for two strings, or for a string followed by a tape,
but not for a tape followed by a tape (by definition, the first operand of a product
must be finite).

We also define
For a given x and such that we define to be the

sub-string, or restriction , of the sequence x to the time interval
Note that this interval includes but not Cases of special interest are
x(0, |x| — 1) = x, and for A restriction
for will also be called a section, or prefix, of the sequence x. A prefix must
be finite.

If y is a prefix (section) of x, we say that Thus the relation induces
a partial order on the set X* (partial orders were discussed in detail in Chapter 3).
For example, if and we would have

in this partial order.

9.1.1 String Acceptance

In this section we describe Procedure DECIDE_FA of Figure 9.4, which decides whether
a given string x is accepted by an NFA (or DFA). The procedure takes as its inputs
the next state transition function and the set of initial states It initializes
a working set From to all states reachable by from an initial state. Then, on
each pass through the for loop, it computes as the states which are
of states in From. Each time this is done, Subprocedure EPSILON_UPDATE is called
to update From to the set of states reachable by from We illustrate this
procedure by applying it to the NFA of Figure 7.35 of Page 295 to decide if string
aab is accepted. Recall that in this NFA

and all the undefined transitions go to the unaccepting trap
state (not shown). In the procedure, Line 2 computes From = {0,1,2} since all three
states are from the initial state 0. Then the first input symbol,
brings the NFA to the singleton state set Then (Line 4) From is again
computed to be {0,1,2}. Thus the same sequence of events occur for the second
symbol, However, for we get and From = {1,2}. In this
case From contains the sole accepting state 2, so the procedure returns a 1 at Line 6,
indicating acceptance.

9.1. Finite Automata and Regular Languages 373

For the string aba we can summarize the behavior as follows.

For a given DFA the set of strings accepted by is called
the language of For example, suppose the following possible
input string of 15 input symbols was input to the DFA of Figure 9.2:

This string has the substring which is accepted by and the
section which is not. The sets of strings accepted by
a given FA is called the language. Note that the products (catenation) xy, yx,
and wy are all accepted.

In general, sets of strings are called languages, and will be denoted by calli-
graphic fonts, such as , with appropriate subscripts. is a trivial set of strings if

The product of two sets of strings and will be defined as
the usual Cartesian product:

Since languages are sets, the union of two languages is just the set union of the two
corresponding sets. It is customary to denote the union operation by "+", so

9.1.2 Languages of Finite Automata

Thus the procedure returns 0, indicating that the string aba is not accepted.

374 Chapter 9. Finite Automata

As an example, suppose and Then

The following definition is the key to understanding regular expressions2.

Definition 9.1.3 For the result of the star operation is defind
recursively as follows.

A subtle point here is that although every member in the language is finite (and
therefore a string as opposed to a tape), is an infinite set. If we delete the empty
string, we get

We call the result of the star operation on the set and note that
Sets of sequences built from these constructions are quite significant.

Definition 9.1.4 Regular Sets (or Languages).
A set (or language) is regular, written if it can be obtained
from the empty set and the singleton sets {x} (for every) by a finite number
of union, product, and star operations as defined above.

Thus if X = {0,1}, the following sets of strings can be identified as regular expres-
sions, which we define informally here as a shorthand for regular languages3:

Regular Expression

(00+11)

(0 + 1)*001

Regular Language
{emptystr}

{}

{00, 11}
{000, 011, 0000, 0011, ...}

Description
Set with one element
— the empty string,
The empty language
— the set with no strings,

Set with two elements — 00 and 11,
Infinite set — any
nonzero number of 0s,
followed by 00 or 11,
Set of strings ending in 001.

Here parenthesization is determined by giving product precedence over union. Note
that can be denoted (0*1*)* = (0 + 1)*.

Example 9.1.1 Consider the alphabet {0, a, b}, and the regular expression 0*(a +
b)*. An NFA (top) and a DFA (bottom) accepting this regular language is given in
Figure 9.5. The corresponding regular language is the set of all strings beginning
with zero or more (0)s, followed by any empty or nonempty sequence of (a)s and/or
(b)s. Note that the strings ba, 000, and 00aabbaab are in the language, whereas 0a0,
000aaa000a, and 00aabbaab0b are not, since from any state but the initial state, an

2 Regular expressions arise throughout text editing and programming, for example searching a
text file for an expression with wild-cards, or listing a set of files with wild card specifiers.

3 In [190] a careful distinction is made between regular expressions and regular languages

9.1. Finite Automata and Regular Languages 375

input symbol of 0 takes the DFA to trap state 4. Similarly, an initial symbol other
than 0 takes the automaton to either of the accepting states 2 or 3.

Note in the DFA that the empty string is accepted, since the initial state 0 is
accepting, and that if a 0 is received after the first a or b,, the automaton goes to the
trap state, wherein it remains forever.

We shall treat the synthesis of an NFA from a given regular expression in Section 9.2.
We explain there why the NFA of Figure 9.5 has, seemingly, too many states, and
how its structure directly reflects the structure of the given regular expression.

The minimality of the associated DFA is explored further in Problem 2 of Sec-
tion 9.8.

Note that sets of tapes (infinite sequences) are not regular languages, because
each member of a regular language must be derivable from the alphabet X by a
finite number of product, union, or star operations. Consequently, sets of strings

are sometimes called *-languages, and if also will be
called *-regular [163, 259] or just regular.

We conclude this section with a celebrated result [66] that shows that the set
of regular languages are in one to one correspondence with the set of DFAs (and
similarly for NFAs).

Theorem 9.1.1 For every regular language there is a DFA whose language
is Conversely, the language of every DFA is regular.

A simple algorithm that recursively computes the language of a given DFA and
shows that this language is regular is given in [190, Page 319].

376 Chapter 9. Finite Automata

9.1.3 Complements of Languages

If and are languages (sets of strings), then we define

We include the second identity because set difference is sometimes denoted with a \
[163]. This allows us to define the complement of a language

For example if which is just the set of all strings defined on X = {0, 1}
and beginning with a 1, then which is just the set of all strings defined
on X = {0,1} and beginning with a 0.

This implies a similar definition for the complement of an automaton.

Definition 9.1.6 Let be a DFA, then the comple-
ment, denoted is defined to be

Note that the underlying FST is unchanged by the complementation, and that any
string accepted by will be rejected by and conversely. Further,

For example, note that the complement of the FA of Figure 9.6 is that of Figure 9.7.

Definition 9.1.5 The complement of a given language defined on the alphabet
X is

9.1. Finite Automata and Regular Languages 377

9.1.4 Examples

We first look at the language formed by the DFA specified in Figure 9.8. For this
example, note that the following strings are accepted:

However, the strings

are not accepted. In fact, it takes a sequence of 2 consecutive (l)s to get to the sole
accepting state of this DFA, whose language may be expressed as

To see this, note that no matter which of the three states the system is in, a sequence
of two consecutive (l)s always take it to the accepting state from which it never
exits, since it transitions back to itself for all inputs On the other hand, any
string which does not contain in a 11 sub-string will leave this DFA in the initial state

since both states and state transition back to under a 0 input.
We next look at the language formed by the DFA

specified in Figure 9.6. Here we have X = {0, 1}, and
This DFA is deceptively simple. For this example, note that these

strings are accepted,

which have two, four and 5 (l)s, respectively. However, the strings

which have three, six, and nine (l)s, respectively are not accepted. The key observa-
tion in understanding how this DFA functions is to see that like a modulo 3 counter,
this DFA stays in whatever state it is currently in, until it receives a 1 input. After it
has received three (l)s, or six (l)s, or any number of (l)s which is 0 modulo 3 (that
is, is a multiple of 3)4, the DFA is always in its initial state, which is not accepting.
Thus if a string has 183 = 3*61 (l)s, it is rejected, but if has 184 (l)s, it is accepted.
For any string, the index of state gives the residue modulo 3 of the number of
(l)s in the string that brought the DFA from it initial state to the state

This is an illustration of the complement of a language. If we define
X* | x has a multiple of 3 1s}, then we have

4The residue modulo of an integer is defined as follows. First, let be the largest integer
such that Then the residue modulo of is just For and the
residue modulo of is 2.

378 Chapter 9. Finite Automata

9.2 DFA Synthesis

A regular language, like any language, is a set of strings built from a basic underlying
set symbol X, called the input alphabet. What makes a regular language special is
that it is defined by a regular expression — that is, regular expressions represent
regular languages. We will now show by construction that every regular language is
accepted by some deterministic finite automaton. To prove this important fact, we:

1.

2.

3.

Construct a binary parse tree, for the given regular expression

Construct from an NFA which accepts the language represented
by

Construct from a DFA which accepts this same language.

This construction allows us to answer as follows two questions which are very import-
ant in text-editing, data retrieval, compilers, and symbol manipulation applications.

First, suppose we need to determine if does indeed represent the language of
some given DFA After carrying out the above construction, we can check, using
the methods for testing FSM equivalence given Section 7.8, if If (and
only if) equivalence is verified, we then know that does represent the language
accepted by DFA

Second, suppose we wish to determine if two regular expressions and rep-
resent the same language. Using the above construction, we can conclude positively
that if and only if

Further, this construction also demonstrates that every set of strings accepted by
an NFA can also be accepted by a DFA! In fact, as shown in [66] and in [190], the
regular languages are exactly the same as the languages accepted by DFAs, which is
one of the most important results in language theory.

The first step in our construction is to construct a binary parse tree for the given
regular expression. This may be done by looking at the parsing rules for regular
expressions, which are typically stated as follows.

Stated in words, this means that an expression EXPR is either a TERM or a union of
TERMs. Further a TERM is either a FACTOR or a product of FACTORS, where a FACTOR is
either a SUBEXPR or a closure symbol *. A SUBEXPR is recursively defined as a SYMBOL
or an EXPR (\w+ is a perl string matching any alphanumeric word).

The construction of a binary parse tree is illustrated, for the regular expression
in Figure 9.9. In this expression the parse rules identify two FACTORs: the

SUBEXPR and *, respectively. The top operator in the parse tree is therefore
the closure operator *. Since the operand is a SUBEXPR, we recursively parse it into

9.2. DFA Synthesis 379

the product of FACTORs (left operand) and After recursively parsing the left
operand, we obtain the binary parse tree of Figure 9.9.

The next step is to construct an NFA from the given parse tree. Following con-
ventional practice as described in [190], we choose to avoid cleverness. Instead, we
construct a highly redundant NFA. Although extremely verbose, this NFA has the
virtue that it can be trivially shown to accept the language of the regular expression
embedded in the parse tree.

Since the parse tree has just three operands (product, union, and closure), the NFA
can be constructed according to three mechanical rules, as illustrated in Figure 9.10,
Figure 9.12, and Figure 9.13. The rules are applied by traversing the parse tree by
DFS. As DFS completes for an operand node, the rule corresponding to the node’s
operator “fires”. We illustrate the three rules in turn, and then give an example of
the entire NFA construction for the regular expression

The product rule is shown in Figure 9.10. If both left and right operands of a

product node were leaves of the tree, then we know that the corresponding FACTORs

are atomic regular expressions (identified by the \w+ case). In the figure, NFAs
accepting these two simple languages are shown at the top. In such a case, it is clear
by the definition of product that the NFA shown in the middle accepts the product
language Note here that the accepting state of the left NFA is demoted to

380 Chapter 9. Finite Automata

ordinary internal node status, as is the initial state of the right NFA.
The key point of this construction rule is that the from state to state

is unidirectional — there is no feedback or any other interaction between the two
sub-NFAs. Note that this remains the case if the left and right NFAs were upgraded
to automata representing arbitrarily complex NFAs representing arbitrary regular
expressions and as shown at the bottom of the figure. That is, a string is
accepted by the product NFA if and only if it consists of a prefix accepted by the left
NFA, followed immediately by a suffix accepted by the right NFA.

To motivate the use of the seemingly redundant in this context, we discuss
an alternate rule which works correctly on some regular expressions, but produces
incorrect results on others. To this end, consider the alternate, putatively “correct”
composition rule of Figure 9.11. This candidate rule differs from the previous product

rule by omitting the As seen at the top of the figure, when the subNFAs
accept the languages of atomic regular expressions, the candidate rule introduces no
erroneous behavior. However, the generalization in the middle of the figure requires
the rule to work for all left and rightSUBEXPRs. Suppose, for the sake of contradiction,
that the left and right SUBEXPRs were and respectively, as shown at the bottom
of the figure. In this case the product automaton accepts the string which
produces the run

Although this run ends in the accepting state, the product of is comprised only
of strings of 0 or more contiguous followed by 0 or more contiguous Since

9.2. DFA Synthesis 381

this rule is not valid for all SUBEXPRs, we do not use it in our construction.
Of course, if efficiency became an issue, such rules could be applied conditionally

to limit the size of the NFA.
Next we illustrate the union composition rule, using the example of Figure 9.12.

At the top left of the figure, we again show NFAs for the case where the two operands

of a union operation are atomic subexpressions. At the top right, we show a com-
posed NFA which connects the two subNFAs “in parallel”. Here external initial and
accepting states are added, so that the original initial and accepting states of each
subNFA are demoted.

Note again that due to the unidirectional nature of the there is no in-
teraction between the two subNFAs — a string is accepted by the union NFA if and
only if it is either or Hence the language of the union NFA is just The
situation is analogous if the left and right NFAs were upgraded to automata repres-
enting arbitrarily complex NFAs representing arbitrary regular expressions and

as shown at the bottom of the figure. That is, a string is accepted by the union
NFA if and only if it is a string accepted by the left NFA, or if it is a string accepted
by the right NFA.

The closure rule is illustrated in Figure 9.13. At the top of the figure, we show
the simple case of closure of an atomic subexpression. At the top right we add
four to construct a closure NFA. It is clear that the closure NFA accepts
the language To see this, note that the empty string is accepted, since there
is an from the initial state to the accepting state Further, the input
string is accepted, since it produces, among other runs, the run
Similarly, the input string is accepted, since it produces, among other runs, the
run Note that this run cycles through the edge labeled but
cannot get back to the initial state

382 Chapter 9. Finite Automata

Again, the same behavior results if the atomic subexpression is replaced by an
arbitrary regular expression, as shown at the bottom of the figure. Due to the direc-
tionality of the it is clear that only strings comprised of 0 or more repetitions
of some string in the language are accepted.

Now that the composition rules have been defined and illustrated by simple ex-
amples, we return to the construction of the DFA accepting the language represented
by regular expression The result is illustrated in Figure 9.14. Note on this
an other computer generated graphics, the octagonal state indicates the initial state
of the FST.

If we traverse the tree of Figure 9.9 by DFS, and apply the compositon rules in
postorder, we first apply the closure rule (with as operand), which produces the
subgraph induced by states {0,1,2,3}.

Then the product rule is applied (with as left operand and as right operand),
which produces the subgraph induced by states {0,1,2,3,4,5}.

Finally the closure rule is applied again (for the root node) which extend the
previous subgraph into the entire NFA, with initial state 6 and accepting state 7.

9.2. DFA Synthesis 383

9.2.1 Determinization of FSTs and FAs

It is well known that for every NFA (Nondeterministic Finite Automaton), there exists
a DFA (Deterministic Finite Automaton) which accepts the same language. In this
section we discuss how to find such a DFA. We have discussed above the specification
of FAs in terms of both deterministic and nondeterministic transition functions, for
which the range of is the power set (instead of just S, which is the range of
deterministic transition functions). Since FAs are built from underlying FSTs, the
same applies to FAs. In this section, we show how to map any transition function
with range into a deterministic transition function [224, 66, 163]. The first method
for doing this was given by Rabin and Scott [224] and called subset construction
approach. This method has the disadvantage of potentially requiring states for
the equivalent deterministic FST. However, this rarely occurs in practice.

The second, less frequently cited, method was given in [66] and called determin-
istic image approach. In this approach, the potential for generating a corresponding
deterministic machine with exponentially more states is avoided.

9.2.2 The Subset Construction

The remaining step in our construction is due to Rabin and Scott [224], and is called
the “subset construction”. This simple procedure constructs a DFA that accepts the
same language as a given NFA. The procedure is based on a modification of the
FST simulation procedure DECIDE_FA of Figure 9.4 of Page 373. The modification
is discussed in [190, Page 267]. The idea is that the From set of Line 2 is taken as
the label of the initial state of the constructed DFA. Then for each symbol in the
alphabet X (instead of for each symbol in a given string) an edge is constructed,
with label from the initial state to a new vertex labeled by From of Line 4. A
new vertex is created only if no vertex already exists with this label. If such a vertex
already exists, only a new edge is created.

Given an NFA the subset construction is thus based on
traversing the NFA by DFS from its initial state The key
idea is that in an NFA, if we are in state we can think of ourselves as also
being in any and all of the states in the set which are the of
We initially define one state of the corresponding DFA for each of the subsets
of the NFA state set

This process is repeated in turn for each new vertex thus created. The procedure
terminates because there are only subsets of the original set of states, and the
number of vertices in the created STG is bounded from above by

With this idea, we label the initial state, 0, of the corresponding DFA
with the set of states which are

of the initial state 6 of the NFA. Note that the NFA and DFA have the same input
alphabet, X, which is the set of atoms of the original regular expression. In our
example,

Then we ask what DFA states are “reachable” from state 0, and define this prop-
erty as follows. Let and be the two subsets of NFA states which
label DFA states and If there exists states and such that
is an of for some then we say that is an of in

384 Chapter 9. Finite Automata

the DFA. For example, in the set which labels initial state 0
of the DFA, there is a state 0 with state 1. since we
have state 1 in the DFA as an of state 0.

Similarly, from state we have state 5 as a
Thus we have state with label

Finally we define a DFA state as accepting if and only if its label set contains an
accepting state. Under this definition, both and but

Under the reachability rules just established for the subset construction, DFA
states labeled with any other subsets of are not reachable from the initial state 0,
so these are not shown in the final result of Figure 9.15.

Note that although the subset construction is conceptually simple, it may in the
worst case generate a DFA with states. Since for practical regular expressions
there may be a large number of states in the NFA, the number of DFA states could
in principle become prohibitively large. However, the coalescing of states related by

into a single DFA state strongly controls this potentially explosive effect.
Consequently, the disadvantageous worst case seldom arises in practice however, and
the technique is widely used.

As the DFS completes at each operator node of the binary parse tree, the initial
and accepting states may change identity according to the corresponding composition
rule. For example, when using the product rule, the initial state of the composed
NFA becomes the initial state of the left subNFA, while the accepting state becomes
that of the right subNFA. Similarly, when the union or closure rules are applied, the
initial state of the composed NFA is a new node “to the left of” the initial state of
the left subNFA. It can thus be seen that the constructed NFA must end up with a
single initial state and a single accepting state.

We now give an algorithm for the subset construction which codifies the foregoing
informal discussion. The algorithm, shown in Figure 9.16, is based on traversing
the NFA from its initial state using DFS, and simultaneously co-traversing the DFA
being constructed. When one state of the NFA is visited, we shall considered all
states in the set reachable by from that state to be also visited in
the NFA traversal.

A subprocedure, EPSILON_MOVES is called to create If a state with
this same set has not previously been visited, we simultaneously create a state
in the DFA, mark it as visited, and then recur as in ordinary DFS. In this way we
create only the reachable states of the associated DFA.

Another call to X_EPSILON_MOVES is made to create the set of

9.2. DFA Synthesis 385

states in the NFA reachable by a path whose first edge starts from a state in
and is labeled by an and whose subsequent edges are all labeled by

Notes: We initiate the co-DFS of the NFA and DFA from the single initial state of
the NFA. This means that the argument of the initial recursive call is

At Line 1, we accumulate all the states reachable by from an
of a state in

At Line 2, we mark as visited a DFA state which has already been labeled.

At Line 3, the pair (num_dfa, TT) is added to the binary relation holding the corres-
pondence between DFA state indices and NFA subsets.

At Line 4, we mark as accepting a new DFA state whose label contains the unique
NFA accepting state ,

At Line 5, we recur, passing as argument the label TT of the new DFA state, whose
index is num_dfa

Note that two forms of nondeterminism give the NFA its expressive power. First,
the make it elementary to construct the DFA from the parse tree. Second,
note that it is necessary to give only a partial specification of the NFAs, which are
allowed to be complete. Since unspecified behavior is always regarded as leading
to a non-accepting trap state (not shown in the NFA figure), such behavior cannot
contribute to the language accepted by the NFA. However, note that the constructed
DFA is completely specified as well as deterministic.

This construction was used by Kleene in the 50’s to prove that for every NFA
there is a DFA which accepts the same language.

9.2.3 The Deterministic Image

Definition 9.2.1 deterministic image of an FST:
Let be a nondeterministic FST on X. The deterministic image of

is the deterministic FST defined as follows on a new input
alphabet Here

1.

2.

3.

that is, has the same states as

Thus has domain and range

for all

Note that if is nondeterministic, there exists some pair
with corresponding next states. That is, this pair has an image set

so
The key point of this simple construction is that each triple such that

is mapped into a single pair with a unique image point
Thus is deterministic. Figure 9.17 shows a small FST and

386 Chapter 9. Finite Automata

9.3. Automata 387

its corresponding deterministic image. Here we have X = {0,1} = S, and
Note that input symbol (1,1) does not occur in since

there is no transition to state 1 under input 1 in the original nondeterministic FST

From an encoding viewpoint, one can see that if no state has more that
for any then one could encode all the nondeterminism

with just extra code bits. Then if there were state variables
and primary input variables, and if encoding the nondeterminism into
a deterministic next state function would come at very little additional expense.

The important property of the deterministic image is that for each input string
or tape the corresponding run set is preserved. That is, for each run

there exists some string such that Thus the set
of all possible runs for is the same as the set of all possible runs of

Choueka used this fact to show that for every NFA there is a corresponding DFA
which accepts the same language.

In the example FST of Fig 9.17, note that there are 3 × 3 = 9 length-2 strings of
Each of these produces a single run of which is deterministic. For example,

the string in corresponding to the string x = (0,0) in
produces the run Since we have

as expected.

9.3 Automata

In this and the succeeding section, we offer the reader a taste of automata designed
to accept input sequences of infinite length, called tapes. Our treatment is derived
from the comprehensive work of Choueka[66] and Kurshan[163].

Tapes have corresponding infinite runs, so we shall assume that there STGs have
no sink states. Consequently, though the STG has finite state, these infinite runs re-
peatedly traverse the cycles in the STG, which in this case must be a cyclic digraph.
For example, the DFA of Figure 9.18 is cyclic and has two strongly connected com-
ponents. In such a transition system, the response to a tape (infinite string) is well

388 Chapter 9. Finite Automata

defined. If the DFA receives an arbitrarily large number of consecutive 0s, the execu-
tion path can stay in the first strong component (consisting of just the initial state)
for an arbitrarily large number of cycles (clock ticks). However, once a 1-input is
received, the execution path is bound to stay forever in the second strong component.

Kurshan [163] and others have shown that automata accepting such languages
are extremely useful for the purpose of proving eventuality properties of sequential
systems. Eventuality properties, such as “If I wait at this red light long enough,
I am guaranteed that it will eventually turn green”, are defined over infinite time.
Tapes, languages, and automata are designed to deal with such
properties.

We note here that the term languages gets its name from the fact that
is commonly used to denote the first infinite ordinal. While not strictly speaking

a number, has the property that for all finite
One simple type of Finite Automaton, called an L-automaton, is

defined as follows. Since tapes are infinitely long, they have infinite runs, so one
cannot refer to the final state of a run, as we do with DFAs. Consequently, the
acceptance conditions for L-automata are expressed in terms of recur edges and
cycle sets.

Qualitatively speaking, a tape (infinite sequence) is accepted by an L-automaton
if there is a run of the sequence in the automaton such that:

some recur edge is crossed an infinite number of times, or

the set of states that are reached an infinite number of times are all contained
in one cycle set.

We state this formally as follows.

Definition 9.3.1 An L-automaton is just an FST with an edge acceptance set
and node set appended to the specification:

where

Here is just a simple set of STG edges, which impose edge-based acceptance
conditions. However, is composed of a set of k cycle sets which
define vertex-based acceptance conditions. These sets work as follows. Consider an
input string x and corresponding run Let be the set of states which occur
infinitely often in the run Then the string x is accepted if and only if either,

1.

2.

the run has an infinite number of STG edges or

there exists such that

The L-automaton is deterministic if the transition function of the underlying
FST is, and complete if is.

9.3. Automata 389

An example of an L-Automaton is given in Figure 9.19. This deterministic L-
automaton accepts the language over the alphabet composed of all the
(infinite) sequences such that there are at most two inputs after an unless there
is an intervening Here, as in [163], we regard the input alphabet as the atoms of a
Boolean algebra, so or any input letter other than Similarly 1 means

or any input letter. Note three consecutive inputs between an and a
lead to the trap state 5, whereas the first after an brings the automaton back to
its initial state 1.

In this simple case, the acceptance condition is given by a single cycle set, so
as indicated by the set of states encircled by the dashed line in

Figure 9.19.
Notice that DFA defined on the same FST, and with accepting set A = {1}, would

accept finite strings such that there are at most two inputs after an unless there
is an intervening The language of this DFA would be

An example of an L-automaton with only edge acceptance conditions is the auto-
maton given in Figure 9.18. The black dot on a given edge indicates that x is
accepted if any one of its corresponding runs passes through an infinite number
of times. In this case the complement is easy to express: every tape that has one
or more 1 inputs is rejected by

Such an acceptance condition can be efficiently checked by symbolically processing
the cycles of a given STG. Such an automaton is frequently used in formal verification
for checking safety properties such as the property that cars heading in orthogonal
directions do not, ever, enter an intersection such as that controlled by the FSM of
Figure 7.36 of Page 296.

Another example of an L-Automaton with acceptance defined in terms of recur
edges only, is given in Figure 9.20. This deterministic L-automaton, over the alphabet

accepts the language composed of sequences that contain an infinite number of “Bach”
substrings. We again regard the input alphabet X as the atoms of a Boolean algebra,
so

390 Chapter 9. Finite Automata

In this simple case, the acceptance condition is given by a single recur edge, indicated
by the + sign on the (4,1) edge.

Unlike the previous example, in this case there is no immediate way to turn this
automaton into one over finite strings.

9.4 Formal Verification with L-Automata

The approach to formal verification using this type of automaton typically involves
defining a property automaton, and then forming the product of this automaton
with the FSM being designed. The idea is to then check for the acceptance conditions
on the edges and/or cycle subsets of the product. The details of such verification
[263, 143] are discussed briefly in Section 9.5.3.

It is important to note that the star operation of Definition 9.1.3 of Page 374
applies, strictly speaking, only to finite sequences. Hence we need alternate notation
to deal with sets of tapes like languages. This situation is dealt with in the
literature [66] by introducing two operations on tapes which are analogous to the *
operation on strings. We describe these two operations before turning to practical,
BDD-based, formal verification.

9.4.1 Languages

A principal purpose of this chapter is to characterize automata which accept languages
which are sets of tapes In this section we finally define sets and
present Choueka’s basic lemma [66, Lemma 5.2, p129] [163, Chapter 6] for dealing
with acceptance conditions for such tapes.

Definition 9.4.1 For a given regular language we define:

lim the limit of written lim to be the set of all tapes which have an
infinite number of sections (prefixes) in That is,

9.4. Formal Verification with L-Automata 391

Note that each in the necessary increasing infinite sequence points to the
end of a finite string as shown at the top of Figure 9.21.

the operation on written to be the set of all tapes which are
composed of an infinite catenation of nonempty strings in That is,

Note that consecutive indices and in the increasing infinite sequence
point to the endpoints of finite strings which are catenated to
form a tape in

We illustrate this definition in Figure 9.21 by analyzing tapes in and
Some simple examples serve to illustrate these definitions. is

a set containing a single all-0 tape. Similarly, is a single tape comprised of
repeating (10) strings. Note whereas is well defined, makes no sense if

since the lim operation requires an infinite sequence of prefixes.
However which is a set containing a single tape containing

one 1 followed by an infinite number of (0)s.
At this point a more substantial example is helpful to bring intuition to bear on

these concepts. Suppose Then, noting that is the set of all tapes
on {0,1}, we can immediately characterize as follows.

(One tape with an initial 1).
(Strings with an initial 1).
(Tapes with an initial 1).

Note how the third identity derives from the second by simply replacing the * with
It should now be evident that there is strong similarity between the * operation

392 Chapter 9. Finite Automata

and the lim operation. Also note why the inclusion of the fourth identity is obvious:
is the set of all tapes beginning with a 1, and each member of the set on the

right is such a tape.
The automata associated with some of these languages is illustrated in Figure 9.22

Note how is the language of the NFA on the left, and is the language of the NFA
in the middle. We now show that is the language of the L-automaton
on the right.

We can similarly characterize by defining as the set of
strings on {0,1} with a block of one or more leading (0)s and a terminal 1. Thus

the set of strings formed by catenating substrings from We have the
following further identities.

(Tapes formed by catenating strings from).
(Tapes with leading 1 and infinitely many 10 substrings.).

For any tape in the initial 1 brings the NFA from its initial state to the middle
state. Each subsequent substring consisting of an arbitrary number of (0)s followed
by a single 1 which brings the automaton through the accepting recur edge (marked
with a solid black circle). The recur edge is thus traversed and infinite number of
times for such tapes.

The reader should note how the prefix in the last identity is used to bring
the associated runs to the 2-cycle containing the recur edge. In contrast, the
suffix, with an infinite number of 10 substrings, is used to guide the run around the
2-cycle an infinite number of times.

Even though we picked out of the air here, it can be shown that it is always
possible to relate and by an appropriate choice of

Lemma 9.4.1 For every regular set one can effectively find some corres-
ponding set such that

An efficient constructive method for finding is given in [66].

9.5 Language Containment

automata are typically employed to express desired temporal behavior such
as eventuality or liveness properties. The aforementioned liveness property guarantees

9.5. Language Containment 393

that some states of an FST will eventually be entered. The idea of eventuality is what
gives importance to the notion of infinite sequences. That is, a state is said to be live,
even though it is not entered for an arbitrarily long time, so long as it is eventually
entered.

9.5.1 Lifting Acceptance Conditions to a Product L-Automaton

As stated above, the basic idea of formal verification using automata is to
form the product of the property automaton with the design FSM and to check for
the acceptance conditions on the product.

The first step in checking language containment is to form an automaton
which is defined to be the product of some given FSM (sometimes called a
Process [163]) and a task L-automaton (sometimes called the property auto-
maton) . We assume that has deterministic transitions and is deterministic.

Suppose that is a generic state of and is a generic state
of According to the definition of product of FSTs5, there is an edge from state

to state in if there are edges from to in P and from to
in The predicate on the edge of is the product of the predicates of the two

edges of and If the product is empty, then the edge will never be traversed
and can be dropped.

The initial state of the product automaton is the pair of initial states of
and

The acceptance conditions are determined by the automaton in the following
way. If is a cycle set of then the corresponding cycle set in is given by:

We say that the cycle set is lifted from to Recur edges are similarly lifted
from to An edge from to is a recur edge of if the edge
from to is a recur edge in The resulting product machine is, therefore,
also an L-automaton.

In many practical cases substantial computational savings may derive from spe-
cifying desired temporal properties as an automaton and the lifting them to the
product with a practical FSM, so prospective VLSI CAD tool users/developers should
note well this technique.

9.5.2 Example of Product L-Automaton

An example of a product L-automaton is given in Figure 9.23. The process (top
left) in this case is an FST that generates sequences of and The task
automaton (top right) expresses the requirement that after any occurrence of
there must be an occurrence of Note how the recur edge and cycle set are lifted to
the product automaton (bottom).

Informally, the two conditions say that a sequence either eventually stays in state
indefinitely (occurs a finite number of times only), or it crosses the recur edge

infinitely often (there is no infinite sequence of and without The

5See Definition 7.7.5 of Page 298.

394 Chapter 9. Finite Automata

effect of creating the product automaton (bottom) is to constrain the possible
sequences that receives to those produced by The language containment
test then succeeds if and only if all possible sequences are accepted by

As stated above, the key observation in testing language containment is
that the product automaton has a finite number of states. Therefore, every infinite
input sequence must produce a run that eventually repeatedly traverse cycles in
More specifically, each run must cycle within a single strongly connected component
of

We require that each reachable cycle in satisfies one of the two following
conditions.

The cycle is entirely contained in a cycle set;

The cycle contains a recur edge.

Tapes whose runs satisfy these conditions will be accepted.

9.5.3 BDD Representation of Cycle Sets and Recur Edges

It is customary in language containment checking to use BDD-based symbolic meth-
ods, and to represent the underlying FSTs with transition relations7 rather than
transition functions. Similarly, cycle sets are simply represented by characteristic
functions, which are Boolean functions of binary encoding variables. For instance, if

is encoded as and is encoded as then the characteristic function
of the cycle set is

The representation of recur edges is obtained by augmenting the transition relation
with one new variable so that the transition relation is a function of four sets of
variables:

6See the definition of SCCs in Section 7.5.1.
7See Section 7.9.1 of Page 305 for a discussion of transition relations.

9.5. Language Containment 395

where the and encode the present states and next states, respectively,
encodes the primary input symbols which label the STG edges, and is an extra

code bit to identify recur edges. Thus if and only if there is a
recur edge, labeled by from the state encoded as to the state encoded as
Similarly, means that the edge is not a recur edge. We assume
that the product automaton is represented by the characteristic function of this
augmented transition relation.

The language containment test is made practical by representing all these sets,
and/or characteristic functions, and/or transition relations, by BDDs8.

9.5.4 The Language Containment Algorithm

The following algorithm is adapted from [263]. As a preprocessing step, we transform
the labeled digraph of the FST into an unlabeled digraph by a process known as ex-
istential abstraction of the primary input variables The abstracted9 transition
relation is where

where if and only if there exists some non-recur edge in the
original STG (with any arbitrary input label). Similarly, if and only
if there exists some recur edge in the original STG (with an arbitrary input
label).

The language containment check for L-automata can be reduced to checking that
every reachable cycle in the STG of either contains a recur edge or is entirely
contained in one of the cycle sets. We present here an algorithm that can perform
this check using symbolic operations on characteristic functions as discussed above.
Neither states nor cycles nor recur edges are explicitly enumerated.

The containment check, given as Procedure LANGUAGE_CONTAINMENT in Fig-
ure 9.24, has five basic steps. In Steps 1 and 2, we compute the set of reachable
states and use it to simplify the computation. In Step 2, any cycles that remain
are reachable from the initial state and do not use any recur edge. The language con-
tainment check gives an affirmative answer if and only if these cycles are contained
in the cycle sets.

In Step 4, the expression

for the expression before abstraction gives the pairs of states reachable from
one another (i.e., on a cycle), such that one of the two elements is not in (i.e., the
cycle is not contained in). This is illustrated in Figure 9.25. Here the existential
abstraction (See Section 7.10.1 on Page 308) operator means that for each in
the resulting set “there exists some such that the characteristic function in
parenthesis evaluates to 1”. There is a simple and efficient BDD implementation for
this operation.

8 See Section 6.1 of Page 220.
9 See Definition 7.10.2 of Page 309.

396 Chapter 9. Finite Automata

9.5.5 Example of Containment Check

We now demonstrate the language containment test on our previous example (Fig-
ure 9.23) of a product automaton. The test is illustrated in Figure 9.26. At the
top we reproduce the previous product automaton with the lifted acceptance condi-
tions. Note that there is one recur edge, and one cycle set

To emphasize that Procedure LANGUAGE_CONTAINMENT is de-
signed for use in a BDD-based, symbolic approach, we again encode the states of the
product automaton as follows:

After existentially abstracting the primary input vector we identify the edges of the
resulting STG with a 1 label if the edge is a lifted recur edge, or with a 0 label, other-
wise. After this preprocessing, we call Procedure LANGUAGE_CONTAINMENT
which operates on the STG at the lower left of Figure 9.26.

9.6. Notes 397

The unreachable state encoded by 11 is eliminated from consideration in Steps 1
and 2 of Procedure LANGUAGE_CONTAINMENT. Step 2 also removes the recur edge

encoded as (01, 10), thus leading to the STG at the lower right of the
figure. Step 4 computes since the only cycle left is entirely contained in

Thus

is confirmed. Therefore, the language containment check is successful, since the
language of the design FSM is contained in the language of the task (property)
automaton if and only if the above intersection is empty.

Note that the other valid cycle (00, 01, 10, 00) in the product STG at bottom left
was eliminated from consideration when the recur edges were deleted. Thus we are
assured that any cycles not contained in the intersection of the will be cycles
closed by recur edges.

9.6 Notes

An excellent reference book for this chapter in particular is McEliece, Ash, and Ash
[190]. Also relevant, although somewhat advanced, are Hopcroft’s text [146] and
the brilliant article by Choueka [66]. The best reference of all is the recent book
by Kurshan, [163], which almost completely subsumes our treatment, but is too
advanced for undergraduates, and has much greater scope as well. Along with the
temporal logic CTL [98, 45, 51, 97, 52, 49, 50], Language containment
[263, 59, 143, 142, 256, 10, 225] is one of the dominant vehicle being used for formal
verification of sequential circuits.

9.7 Summary

In this chapter, we have covered three main topics:

398 Chapter 9. Finite Automata

1.

2.

3.

Finite Automata and Regular Languages (Section 9.1);

Synthesis of DFAs from Regular Languages (Section 9.2);

Languages (Section 9.4.1).

In Section 9.1Finite Automata and Languages we covered the basic ideas of string
acceptance by an FA. We showed that both DFAs and and NFAS were in one to one
correspondence with regular languages. We concluded by defining the complements of
a regular languages, which is sometimes easier to characterize. We discussed NFAs,
which can have multiple runs for the same string input, We emphasized that a string
is accepted by an NFA if and only if some run of the NFA for that string ends up in
an accepting state. We noted that that this is true even in the case that another run
of the same string is not accepted.

In Section 9.2 we described a systematic procedure for the synthesis of a DFA
which Accepts a specified regular languages. The procedure was as follows. First,
parse the regular language and build the corresponding NFA using the construction
rules of Figure 9.10, Figure 9.12, and Figure 9.13. Second, use the subset construction
to build a (non-minimal) DFA which accepts the same language, Finally, minimize this
DFA using PARTITION_REFINEMENT of Section 7.4.2 of Page 269. We also described
another method of determinization, called the deterministic image, which allows a
non-deterministic FST to be represented by deterministic one (or, therefore, by a
physical circuit), as in [225].

Finally, in Section 9.4.1, we defined languages, which are to
automata as regular languages are to DFAs or NFAs. The difference is that instead
of accepting states, automata have infinitary acceptance conditions, based
on states or edges that are traversed infinitely often. Then we showed how interest-
ing temporal properties of sequential circuits or communication protocols could be
phrased as an language containment problem. We concluded with some
examples and a BDD-based method for language containment checking.

9.8 Problems

l. Consider the DFA described by the STG

(a) Give the flow table description of a Moore FSM derived from this DFA
according to Definition 7.4.5;

9.8. Problems 399

(b) Minimize the FSM by applying Procedure STATE_EQUIVALENCE of Sec-
tion 7.4.2;

(c) Now convert this minimized version of back into a DFA

(d) Show that is equivalent to the the DFA of Figure 9.28 by showing that
their STGs are isomorphic (identical given an appropriate node relabeling).

Solution. (a) The flow table of this STG is that of Problem 1 Since state 5 is
the only accepting state, the outputs are 0 on all states except state 5 and a 1
is output on state 5.

(b) The 1-equivalence classes are {0, 1, 2, 3, 4}, {5}.
The 2-equivalence classes are {0, 1, 2, 3}, {4}, {5}.
The 3-equivalence classes are {0, 1, 2}, {3}, {4}, {5}.
The 4-equivalence classes are {0, 1}, {2}, {3}, {4}, {5}.
The 5-equivalence classes are the same as the 4-equivalence classes, so we con-
clude that

(c) The STG of the minimized FA is the following

(d) The corresponding vertices in the isomorphic graphs are

400 Chapter 9. Finite Automata

2. Consider the DFA where A = {5},
where is specified in the following tabular form.

(a) Draw the STG of this DFA, and transform the DFA into an equivalent
Mealy machine (according to Definition 7.4.5);

(b) Minimize the FSM by applying Procedure STATE_EQUIVALENCE of Sec-
tion 7.4.2;

(c) Now convert this minimized version of back into a DFA

(d) Show that is equivalent to the the DFA of Figure 9.5 by minimizing the
latter DFA and showing that the two minimized STGs are isomorphic (identical
given an appropriate node relabeling).

3. Give the language accepted by the DFA of Figure 9.28

Solution. The corrected automaton is a 1100-recognizer. That is, a DFA which
accepted only strings ending in 1100.

4. (a) Give the language accepted by the DFA
where and is specified in the following tabular form.

(b)
(c)
(d)

Give X and 5 for
Draw the STG of
Give the SCCs of this STG

9.8. Problems 401

5. (a) Draw the STG of underlying the DFA
where and is specified in the following tabular form.

(b) Show why the language accepted by is identical to that of
Solution. (a) The STG is given in Figure 9.29. (b) Note the two STGs have
the same X and S and are isomorphic (that is, they are identical except for the
node labels). Hence the languages are identical.

6.

7.

Show that the NFA of Figure 9.3 of Page 371 is not a 111 recognizer, that is
accepts strings ending in 111 and only such strings.

The problem of is to show that the language
of some automaton contains the language of another automaton
That is,

Show that the language of the automaton of Figure 9.8 contains the
language of the automaton of Figure 9.2.
Solution. The language of the DFA of Figure 9.8 is just
This regular language is just the set of all strings on the alphabet {0, 1} with
a prefix ending in 11. Figure 9.2 is a 111-recognizer, that is,
Thus

8. (a) Consider the DFA obtained by removing the black dot on the (0, 0) edge of
Figure 9.18 of Page 387. The acceptance set is then just the set {1}. Give the
language of this DFA.

402 Chapter 9. Finite Automata

(b) Now further modify this DFA by adding a 1-input to the (0, 0) edge label.
Note the result is an NFA. Give the language of this NFA.

9. Show that the language of the automaton of Figure 9.8 of Page 377
contains the language of the automaton of Figure 9.3 of Page 371.
Solution. Since the automaton of Figure 9.8 accepts any string with a
prefix ending in 11, its language, is just (0*(100*)*)11(0 + 1)* = (0 +
1)*11(0 + 1)*.

The automaton of Figure 9.3 is nondeterministic, because of the extra 0-
successor of the initial state Note that a string x is accepted by only if
its run r(x) ends in This implies that r must have a prefix,
which in turn implies that x must have either a 011 prefix or a 111 prefix. In
either case, x contains a 11 prefix, and so is accepted by

10.

11.

Suppose that Show that in this case

Consider the automaton given in Figure 9.18. It was stated in Section 9.3
that rejects every tape that has one or more 1.

(a) Give the language of this automaton, expressing your result the oper-
ator.

(b) Express the complement of this language in terms of the lim operator.
Solution. Part (a)
Since rejects every tape that has one or more 1only the single tape set, it
must therefore accept the single tape

Part (b)

12.

13.

Another example of such an finite automaton is given in Figure 9.30.
Note the similarity between this liveness automaton and the property automaton
at the upper right of Figure 9.23. Characterize this language in terms of the
input alphabet X = {0, 1} and the operations of Definition 9.4.1.

Show by counterexample that neither of the following statements are generally
true.

9.8. Problems 403

Hint: consider the case where as in Figure 9.22.
Solution. We have since this tape has an infinite number of
prefixes which are in and, therefore, in However, since the
tape has a single 1, whereas each tape in has an infinite number of (1)s.
This same argument also shows the second equation is not always true as well,
since

14. Consider the automaton of Figure 9.31.

Which of the following languages are contained in the language of the
automaton

Explain.

15. Again consider the automaton of Figure 9.31. Which of the follow-
ing languages are contained in the language of the automaton

Explain.
Solution. (a): The language of (a) is contained in although part of
it is. For example, the language is so contained. However, the
language (b) also contains tapes like which are not accepted because
the associated runs get stuck in the cycle, and never pass through the
recur edge.

(b): The language of (b) is contained in This can be proved by first noting
that the arbitrary prefix (0 + 1)* takes the automaton arbitrarily to either state

or The containment was proved in Part (b) of Problem 14 for the
case explicitly, and, implicitly, for the case as well.

Thus it remains to consider the case. From state it is also true that any
string in the language always brings the automaton to state and
through the recur edge at least once. To see this, consider strings with a single
leading 1. In this case, no matter how many (0)s come next, we are always left
in state and the succeeding three or more (1)s always bring us through the
recur edge.

Chapter 10

Multi-Level Logic Synthesis

10.1 Introduction

In Chapters 4 and 5 we have studied the synthesis of two-level circuits. These circuits
are typically represented by SOP or POS forms. The most common implementation
style for a two-level circuit is a PLA. Because of the simple structure of a two-
level circuit, the optimization problems involved in their design are relatively well-
understood. Indeed, we have seen efficient algorithms for both exact and heuristic
minimization.

In this chapter and in the next two, we turn our attention to the synthesis of multi-
level circuits, that is, circuits in which an arbitrary number of gates may lie on any
path between a primary input and a primary output. Multi-level circuits are of great
practical significance, because they represent the majority of the circuits designed in
practice. This is especially true of circuits that are implemented with standard cells
or gate arrays, either mask-programmable or field-programmable.

Multi-level circuits tend to be smaller and consume less power than their two-level
counterparts. They are also faster in many cases. There exist functions, arithmetic
functions provide several examples, for which two-level representations require expo-
nentially many product terms, but multi-level representations only require linear or
quadratic numbers of gates.

As mentioned in Section 4.2, the importance of two-level techniques is not seri-
ously affected by the greater importance of multi-level implementations: Many ideas
acquired in the study of two-level circuits will prove useful in the new context. One
marked difference, however, is that the greater freedom we enjoy when designing
multi-level circuits makes exact optimization algorithms of little practical use. We
shall therefore concentrate on heuristic algorithms.

The greater freedom we enjoy in designing multi-level circuits manifests itself first
in the many different structures that may be chosen to implement them. For instance,
there are many different ways of designing an adder or a parallel multiplier; in general,
we shall find implementations with different numbers of levels and different choices
of gates. Given a circuit, we may decide to optimize it while retaining its initial
structure, or we may find it advantageous to reduce or increase the number of levels,
thereby restructuring the circuit. In practice, we normally end up combining the two
approaches: We try different structures for the circuit and for each of them perform

409

410 Chapter 10. Multi-Level Logic Synthesis

local optimizations intended to reduce the area, delay, and power consumption, while
leaving the structure of the circuit substantially unchanged.

We shall make the meaning of terms like “local optimization” and “structure”
precise in the course of the next two chapters. For now, a couple of examples may
suffice. A simple case of local optimization is the replacement of a two-input NAND
gate by another two-input NAND gate with larger driving capability (lower output
impedance), or by a pair of NAND gates connected in parallel, in order to make the
circuit faster (and also, typically, larger). This is illustrated in Figure 10.1. Another
local transformation is the removal of a redundant input connection from a gate, as the
one illustrated in Figure 10.2. An instance of restructuring is the transformation of
the circuit on the left in Figure 10.3 into the circuit on the right. These few examples
should give an idea of the range of problems encompassed by multi-level synthesis;
some tasks may be described as technology dependent (choice of a more powerful
gate to increase speed), while other tasks, like the restructuring of Figure 10.3 may
be carried out without specific knowledge of the implementation technology. (See
the discussion in Section 2.5.) In this chapter we shall focus on restructuring, leav-
ing technology-independent optimization to Chapter 11 and technology mapping to
Chapter 13.

10.1.1 Networks and Algebraic Operations

Our formal model for a multi-level circuit is called Boolean network. We shall
give a full definition of it in Chapter 11; an informal description will be adequate for
the purposes of this chapter. A Boolean network is an acyclic graph.1 Each node of
the graph corresponds to a gate and an arc connecting two nodes corresponds to a
connection between two gates. Gates are not restricted to be simple (e.g., NAND,
NOR): In this chapter we shall admit arbitrarily complex functions for each node.

1The Boolean network is the basic data structure of SIS. The BLIF format is a simple format
to describe Boolean networks. Every .names directive identifies a node of the network. All node
terminals with the same name are connected to form a net.

10.1. Introduction 411

An example is shown in Figure 10.4. For each node, a function must be given, for
the description of the network to be complete. For example, we may have:

Because the direction of the connections is generally understood, we shall henceforth
omit the arrowheads. Also, we shall freely use the traditional symbols for gates
instead of circles to indicate a node and its function, when the function is that of a
simple gate.

Let us return to the example of Figure 10.3. The circuit on the left can be seen
to correspond to the formula

while the circuit on the right corresponds to

The latter form can be obtained from the former by factoring out Our treatment of
restructuring will indeed be based on the factorization of switching formulae. There
are other ways of factoring for instance,

Although these factorizations are correct, it is not entirely obvious how to get the
factorization starting from the SOP form. Indeed, there are so many different ways

412 Chapter 10. Multi-Level Logic Synthesis

of factoring an expression, that it is common to apply restrictions on what types of
factorizations are sought.

In particular, we shall mostly concentrate on a way of factoring expressions that
is called—for historical reasons—algebraic. In this chapter, algebraic hints to ele-
mentary algebra—the algebra of expressions involving real numbers. It is used in
contrast to the word “Boolean.” Therefore, when in this chapter we refer to algebraic
manipulation of formulae, we mean that we use those rules that are common to the
algebra of real numbers and to Boolean algebras. When we refer to Boolean manip-
ulation, we mean that we use all laws of Boolean algebras. Specifically, a few rules
of Boolean algebras do not hold in the field of real numbers.

Idempotence: in the real numbers, but in Boolean algebras.

Complementation: There is no direct correspondent in the real field.

Distributivity of ‘+’ over in Boolean algebras, but
not in the real field.

Absorption: holds in Boolean algebras, but not in the real field.

The choice of the word “algebraic” to designate this restricted form of manipula-
tion is a bit confusing, but its usage is so widespread in the literature2, that replacing
algebraic with another term would probably create more confusion that it would
eliminate.

Another change in notational convention with respect to the previous chapters is
important, but less disturbing: In the chapters on multi-level synthesis, we shall often
consider a SOP form as a set of cubes (rather than a sum of cubes), and a cube as a
set of literals (rather than a product of literals). For instance,

is considered a set of three cubes:

with each cube considered a set of two literals:

This is done for notational convenience, and we always assume that the “meaning”
of the SOP form is the join of the cubes, which in turn are the meet of their literals.

10.2 Representation Issues and Choices

As seen in Chapters 4 and 5, two-level minimization is a well developed science,
with a solid body of theory and effective algorithms. In considering how multi-level
logic theory could be similarly developed, it helps to recognize two things that are
obscured when considering two-level implementations, but have been the subject to
much discussion for multi-level logic. These are

2 For instance, SIS has commands for algebraic resubstitution etc..

10.2. Representation Issues and Choices 413

how to represent the function of the network;

how to represent the final implementation.

In two-level theory, these two issues are merged, in that the representation and the
final implementation are the same, namely the SOP form. However, for multi-level
we have a number of choices, and which of these is the best is not obvious:

Merged view. Here, the network is represented so that each node is a valid
“gate” chosen from a library of gates to be used in the final implementation.
Thus representation and implementation are one.

Separated view. In the separated view, two representations are allowed. One
is technology independent, i.e. does not have any connection with the final
building blocks to be used in the implementation. The other is the technology
dependent view which uses only “valid” gates (i.e., found in a cell library or
meeting some criterion). In the separated, technology independent view, there
are also several choices:

General node. This is the same as described for the Boolean network, namely
that each node can be a representation of an arbitrary logic function. The ad-
vantage of this is that a theory can be more easily developed which is not handi-
capped by arbitrary restrictions which may change as the technology changes.

Generic node. Here every node in the network is a generic node, like a 2-
input NAND gate. The advantage is that each node is very simple; there is no
need to store a general logic function at a node, since each node is the same
function, only the inputs are different. Although there can be many more nodes
than required for the general node description, experience indicates that some
manipulations are much faster using this structure. The disadvantage is the
network is finely decomposed in a particular way, and this may obscure some
natural structures in the network.

For most of this sequel, we employ the general node representation since it includes
all others as special cases, and a more complete theory and body of algorithms has
been developed for this point of view. This choice motivates the definition of Boolean
network that we shall encounter in Chapter 11.

10.2.1 Alternate Node Representations

Each node of a multi-level network has associated with it a representation of a switch-
ing function. The question of how this function is represented is important. Although
any valid representation is allowed, some representations are preferred because they
are:

More efficient in memory;

more indicative of the complexity of the final implementation;

more efficient to manipulate.

In this section we survey some of the choices that can be made.

414 Chapter 10. Multi-Level Logic Synthesis

Sum-of-Products

The most obvious representation is the SOP form. This is very popular, possibly
because of the historical influence of two-level, PLA, optimization problems. A sum-
of-products is a set of cubes (product terms), e.g.,

This is a natural choice in several ways. First, there are highly developed techniques
for manipulating logic in this form, e.g., two-level minimizers, factoring, decomposi-
tion, tautology, AND, OR. Thus, even though we may prefer to have logic represented
some other way, in order to manipulate it with present techniques, we may find it
convenient to convert to sum-of-products, manipulate it, and then convert it back.
Thus one can argue that this should be the nominal representation.

Factored Forms

Factored forms are probably a more natural representation for multi-level synthesis.
A factored form is parenthesized expression like

The argument for factored forms is that they are a natural multi-level representation.
A factored form is isomorphic to a tree, where each internal node is an AND or OR
operator, and each leaf is a literal. This provides a simple but efficient multi-level
implementation of the function of the node. A representation which more accurately
measures complexity is important in guiding the synthesis process, since synthesis
can be seen as a sequence of transformations which may or may not be accepted
depending on the quantity of complexity decrease obtained.

The count of the number of literals in a factored form is a good estimate of
the complexity of the function, and can be translated directly into the number of
transistors required for implementation. For instance,

can be implemented as a CMOS complex gate as in Figure 10.5. One can see that the
number of transistors is exactly twice the number of literals. On the other hand, if
is implemented with simple gates only, as in Figure 10.6, the transistor count, though
still related to the number of literals, is not so directly obtained from the factored
form of (The circuit of Figure 10.6 requires 18 transistors, when implemented in
CMOS.)

Of course, transistor count only indirectly measures area since wiring is also an
important contributor to the total area. Thus, it has been suggested that a better area
estimator would be the number of literals in the factored form plus a term proportional
to the number of gates or nodes in the network or the number of terminals in the
network.

Another argument for the factored form over the sum-of-products representation
is that the factored form implicitly represents both the function and its complement.
The complement factored form can be obtained by applying De Morgan’s laws to the

10.2. Representation Issues and Choices 415

factored form. Thus, ANDs are converted to ORs and vice versa, and literals are
negated, producing a factored form for the complement which has the same literal
count. For instance,

This result coincides with the notion that in a multi-level implementation a function
and its complement are equally complex, only separated by an inverter. This is in
contrast with the sum-of-products form where the number of cubes in a function can
be exponentially larger than in its complement.3 In this regard we may think of the
factored form as representing both the function and its complement. Furthermore,
factored forms subsume both SOP forms and POS forms as special cases.

The difficulty with factored forms is that they are more difficult to manipulate
than two-level forms. This has stimulated recent work to extend methods for manip-
ulation of sum-of-products to similar methods for factored forms. Three such results
have appeared recently. The first [31] is motivated by the generic representation
point of view, that, for speed of manipulation, each node in the Boolean network
should be the same logic function, say, a NAND or NOR. The advantage of this is
that the logic function of a node need not be stored, only the set of inputs. This
leads to more efficient storage as well as possibly faster methods for manipulation.
However, this representation, which is basically a form of factored form, suffers from
the lack of developed algorithms. In [31] methods for kerneling and minimization
were proposed. A second development [268] works from the standard factored form

3 Consider, for instance,

416 Chapter 10. Multi-Level Logic Synthesis

representation where a node is either an AND or an OR and most of the Boolean
function manipulation methods are extended. However, one important but missing
method is minimization. A third development [246] starts from a sum-of-products
form and asks for a minimization procedure which has as its goal a minimal factored
form. Here it is recognized that the normal goal of two-level minimizers (such as
ESPRESSO), the minimal number of cubes, is inappropriate. A minimizer based on a
minimal factored form has been developed.

Another lack in this area is some notion of optimality. Is a given factored form
optimum? In the case of sum-of-products there is an effective answer via some form
of Quine-McCluskey exact minimization which is quite efficient. (See Chapter 4.)
However, for factored forms, the only known optimality result is the paper by [168]
which is not practical for functions which depend on more than about 6-8 variables.

NAND or NOR Representations

An arbitrary Boolean function can be straightforwardly decomposed into NAND or
NOR networks, that is, networks for which every node function is a NAND (NOR).
This is illustrated in Figure 10.7, which shows the NAND and NOR decompositions
of a 2-input MUX. Note

There are three major advantages which are obtained when using this “generic.”
The first is fast simulation and simulation-like tasks connected with the internals
of logic synthesis programs, and results from the inherently simpler data structures
which result from this representation. The effect is large—from 1 to 2 orders of
magnitude [68]. Third, rule-based or expert systems for logic optimization are easily
formulated on NAND or NOR gates. These data structures also enable some efficient
optimization strategies known as global flow methods [21].

The second main advantage stems from the fact that the NAND type repres-
entation is always complete with respect to inverter counts, whereas factored form
representations ignore inverters, which must later be added at the technology map-
ping step. This can lead to a large discrepancy between the factored form literal

10.3. Representing Switching Functions in Factored Form 417

counts and the transistor counts in the final implementation. The use of these gen-
eric node types also gives a better timing delay simulation model for use in the logic
minimization package.

10.3 Representing Switching Functions in Factored Form

10.3.1 Factored Forms

An alternative representation (to sum-of-product form) of a logic function which
is closer to the physical implementation of the logic is the factored form. It is the
generalization of sum-of-product form allowing nested parenthesis. For example, each
of the following is a factored form:

where are called literals of the factored form. Factored forms are often
derived from given SOP forms; for example, the expression

can be written in factored form as

In other words, a factored form is a sum of products of sums of products…, of
arbitrary depth.

Factored forms are useful in estimating area and delay in a multi-level logic syn-
thesis and optimization system. Factored forms in general are more compact than
SOP or POS forms. For example, if the following factored form were expressed in
SOP form, it would contain eight product terms for a total of 36 literals. In POS
form would require six terms for a total of 12 literals.

Furthermore, many commonly used logic operations can be easily performed on
factored forms. De Morgan’s laws applied to a factored form for a function yield
a factored form for by contrast, application of De Morgan’s laws to a SOP form
for yields a POS form for and vice versa. These properties make factored forms
useful for the internal representation of logic functions in logic synthesis and optimiz-
ation systems. The relative merits of the factored form representation were discussed
in Section 10.2.1; now we give a formal definition of it.

Definition 10.3.1 A factored form is defined recursively by the following rules:

1. A product is either a single literal or a product of factored forms.

418 Chapter 10. Multi-Level Logic Synthesis

2.

3.

A sum is either a single literal or a sum of factored forms.

A factored form is either a product or a sum.

For example, each of the following is a factored form:

where the first two are literals, the third is a product, the fourth is a sum, and the
last one is a sum of products of sums of According to the definition, the following
is not a factored form:

because it complements internally, which is not allowed by the definition. Like
the two-level forms, factored forms are in general not unique, as illustrated by the
following three equivalent factored forms:

10.3.2 Algebraic and Boolean Expressions

Definition 10.3.2 An algebraic expression is one in which no cube
contains another, that is An expression that is not algebraic is called
Boolean.4

For example, expression is algebraic, and expression is non-algebraic
because (Remember that we consider a cube as a set of literals.) Note
that an algebraic expression is not necessarily prime or irredundant: Some cubes may
not be prime, as in and some cubes may be eliminated without changing the
function, as in

Definition 10.3.3 The support of an expression F is the set of variables, supp(F),
that F explicitly depends on, i.e., supp such that
Two expressions F and G are said to be orthogonal, if they have disjoint
support, i.e., supp supp

For example, supp Expressions and are orthogonal,
whereas and are not.

4 Brown [44] calls such an expression absorptive.

10.3. Representing Switching Functions in Factored Form 419

10.3.3 Algebraic and Boolean Factored Forms

As discussed above, there are many equivalent factored forms of a given function.
The difference in the number of literals of these equivalent factored forms can be
significant. For example, given the algebraic expression

the following are three equivalent factored forms obtained by three different factor-
ization algorithms:

The first two of these equivalent factored forms are algebraic, whereas the third one is
Boolean, as we shall see soon. Note also that there are 12 literals in the first factored
form and only 8 literals in the last one.

The previous example also shows two different kinds of factored forms. Taking
the first factored form and multiplying it out literal by literal to get a sum of cubes
without using the Boolean identities and we can in fact recover the
original sum-of-product form. But if we took the last factored form and multiplied
it out in the same way, we would get a different, non-algebraic, SOP form because
of the cube a fag. This leads to the following definitions of algebraic and Boolean
factored forms.

Definition 10.3.4 A factored form F is said to be algebraic if the SOP expres-
sion obtained by multiplying F out directly (without using and and
single-cube containment) is algebraic (or, equivalently, if all implied products in ex-
panding to SOP form are algebraic–see below). F is a Boolean factored form if it
is not algebraic.

For example, each of the following is an algebraic factored form:

and each of the following is a Boolean factored form:

None of the sum-of-products forms obtained by multiplying the Boolean factored
forms out are algebraic. They either contain terms which are terms
with redundant literals or redundant terms

420 Chapter 10. Multi-Level Logic Synthesis

10.3.4 Value of a Factorization

Definition 10.3.5 The factorization value of an algebraic factorization
R is given by

assuming and R are algebraic expressions.

Here, for any algebraic expression P, LITS(P) = Number of literals in SOP form of
P. Another short example illustrates this definition. The algebraic expression

can be expressed in the factored form

Note that only 7, rather than 24 literals are required.
If and then R = 0, and FACT_VAL

Note the factored form saved 17, rather than 16 literals. The
extra literal saved comes from recursively applying the formula to the factored form
of

10.3.5 Equivalent, Maximal, and Optimum Factorizations

Factored forms can be graphically represented as labeled trees, called factoring trees,
in which each internal node including the root has a label of either “+” or and
each leaf has a label of either a variable or its complement. For example, the factoring
tree of

is shown in Figure 10.8. Note that the product terms of a factoring tree need not be

10.3. Representing Switching Functions in Factored Form 421

algebraic products.
Any sub-tree of a factoring tree is a factor of the factored form represented by

the factoring tree. In other words, a factor of a factored form is any sum term or
product term in the factored form. For example, and are factors of
the factored form

Two factored forms are said to be equivalent if they represent the same logic
function, and syntactically equivalent if their factoring trees, including the leaves,
are isomorphic. For example, and are equivalent, and

and are syntactically equivalent.
Some factored forms can be further factored. For example, can be further

factored to and can be further factored to

Definition 10.3.6 A factored form is maximally factored, if

1.

2.

For every sum of products, there are no two syntactically equivalent factors in
the products.

For every product of sums, there are no two syntactically equivalent factors in
the sums.

For example, the following factored forms are not maximally factored

because they contain trivial syntactically equivalent factors a in their products and
sums, respectively. (Note that the product in the second factored form is not an
algebraic product.) Hence, they can be further factored to

Notice that in a Boolean algebra, “+” distributes over and distributes over
“+”. (See Chapter 3.) The above factorings are obtained by direct application of the
distributive law. The transformation of to may seem more obvious
than that of to because happens to be an algebraic product.
This derives from the fact that we often think of a Boolean expression as a polynomial,
in which multiplication distributes over sum. But, in Boolean algebras, the OR, “+”,
also distributes over the AND, So, the second transformation should be just as
simple. The fact that we are considering non-algebraic products like
emphasizes that the present discussion addresses underlying structure more specific
than just the algebraic structure of expressions.

Given the factoring tree of an expression, the test for maximal factorization pro-
ceeds as follows. We visit the tree nodes in DFS postorder, starting at the root. At
every non-terminal node we apply the definition.

422 Chapter 10. Multi-Level Logic Synthesis

10.3.6 Size, Unateness, and Cofactors of a Factored Form

The size of a factored form F is measured by the number of literals in the factored form
and is denoted by For example, and
A factored form is said to be optimum if no other equivalent factored form has fewer
literals.

A factored form F is positive unate in if literal appears in F and literal
does not appear in F, negative unate in if literal appears in F and literal
does not appear in F. F is unate in if it is either positive unate or negative unate
in F is binate in if it is not unate in For example, is positive
unate in negative unate in and binate in

The cofactor of a factored form F with respect to a literal (i.e., or) is a
factored form, denoted by obtained by replacing all occurrences of with 1 and all
occurrences of with 0, and simplifying the factored form using (only)the following
identities of the Boolean algebra:

Notice that after this simplification (known as constant propagation), part of the
factored form may appear as In this section, we take the viewpoint that
is not a literal, but another factored form. Later we introduce a generic factoring
algorithm, Procedure Factor, in which the two may have different factored forms.
Identifying these equivalent factored forms and obtaining the simplification
is the subject of later sections. Here, we are only interested in obtaining a factored
form which represents the cofactor of a function with respect to a literal.

The cofactor of a factored form F with respect to a cube is a factored form,
denoted by obtained by successively cofactoring F with each literal in For
example, let and Then

10.4 Division

A multiplicative inverse of is a such that Real numbers, with the
exception of 0, have multiplicative inverses. Since a Boolean algebra does not have
a multiplicative inverse, there can be no division operation. However, one can define
operations which, when given functions and find functions and such that

Every such operation is like the division operation and is therefore
called division of by generating quotient and remainder It is clear that
such a division operation is not unique. Even for a given division operation, the
resulting and may be dependent upon the particular representation of and
Consider, for instance, and It is easy to verify that:

10.4. Division 423

Let and be Boolean functions satisfying then can be written as a product,
It is sufficient to choose such that

Similarly, if can be written with In this case, must
be chosen so that

and, for a given must be chosen so that

In the former case (and) we call a Boolean factor of and in the latter
case we call a Boolean divisor of For any logic function there are many more
Boolean divisors and factors than there are algebraic divisors and factor (discussed
below). This poses the problem of a good choice in Boolean decomposition, since
there are so many factors.

So far, we have considered Boolean functions. In practice, however, we have to
deal with the formulae that represent those functions. Therefore, we now introduce
two classes of division operations that work on SOP forms. Division for SOP forms
is based on the concept of product; we now give a definition of product based on
considering a cube as a set of literals and a SOP form as a set of cubes.

Definition 10.4.1 The product of two cubes C and D is a cube defined by

The product of two SOP expressions F and G is a SOP expression defined by

Notice that if and only if contains both a literal and its complement.

Definition 10.4.2 FG is an algebraic product if F and G have disjoint support
otherwise FG is a Boolean product.

For example,

is an algebraic product and both

and

are Boolean products. As suggested by the Cartesian product symbol used in the
definition, FG contains precisely |F| × |G| cubes if FG is an algebraic product.

424 Chapter 10. Multi-Level Logic Synthesis

Definition 10.4.3 An operation OP is called division if, given two SOP expressions
F and P, it generates SOP expressions Q and such that
F = PQ + R.

If PQ is an algebraic product, OP is called an algebraic division; otherwise PQ is
a Boolean product and OP is therefore called a Boolean division. Suppose PQ
is an algebraic product. If then P is an algebraic factor; otherwise, P is an
algebraic divisor.

The algebraic divisors are a subset of the Boolean divisors, so the optimum choice
of algebraic divisor may not be the best choice overall. Thus we are faced first with a
choice of whether to look for Boolean or algebraic divisors, the former choice offering
potentially higher quality at greater expense, and the latter offering low CPU expense
and relative ease of evaluation. In general, we face two tasks in using either notion of
division. First, to find a good candidate divisor, and the second to effect the division,
i.e., to determine, given and the coefficient and remainder so that
We now discuss briefly the concept of weak division, which is a specific example of
algebraic division.

Definition 10.4.4 Given two algebraic expressions F and P, a division is called
weak division if:

it generates Q and R such that PQ is an algebraic product;

R has as few cubes as possible;

PQ + R and F are the same expression (have the same set of cubes).

Given the expressions F and P, it can be shown that Q and R generated by weak
division are unique. Often, F/P is used to denote the quotient of weak-dividing F
by P.

We first examine informally how weak division works, with the help of an example.
Let and For each cube of P, we look for cubes of F,

such that has all the literals of In our case, for we find
and for we find and We
observe that multiplies both and Hence, we can factor it and write:

In general, weak division of Y by P is accomplished by considering each cube of P,
in turn. For each we consider every if contains all the literals of we

form the cube by deleting from all the literals in and we add this cube to the
set The cubes that appear in all the form Q. The order in which the cubes
are considered is immaterial. This is stated in form of pseudo-code in Figure 10.9.

We now use weak division to divide the function by
is the set of elements that are multiplied by in the original

function F and is the set of elements that are multiplied by in the
original function. Hence, and F factors into

As a second example, consider and
We find and Hence, and

10.5. Kernels and Co-Kernels 425

10.5 Kernels and Co-Kernels

Having defined algebraic division, we can now introduce the concept of a kernel of
an algebraic expression. The notion of a kernel was introduced in [38] to provide
means for finding subexpressions common to two or more expressions. All operations
used to find kernels are algebraic (i.e., algebraic product, algebraic division, etc.),
but the word algebraic is omitted for brevity. In particular, algebraic division is done
by WEAK.DIV.

Definition 10.5.1 An expression is cube-free if no cube divides the expression
evenly, that is,

(no remainder), and C is a cube.

For instance, is cube-free; and are not cube-free. A cube-free
expression must have more than one cube.

Definition 10.5.2 The primary divisors of an algebraic expression F are the set
of expressions

The kernels of an expression F are the set of expressions

In other words, the kernels of an expression F are the cube-free primary divisors of
F.

426 Chapter 10. Multi-Level Logic Synthesis

A cube used to obtain the kernel is called a co-kernel of K, and
C(F) is used to denote the set of co-kernels of F. For example, the kernels and their
corresponding co-kernels of the function

are listed below.

is a primary divisor, which is not cube-free.
Notice that a kernel may have more than one co-kernel and a co-kernel can be the

trivial cube 1 if the original expression was cube-free.
For certain operations described in the following sections, it is nearly as effective

and frequently more efficient to compute a certain subset of K(F) rather than the
full set. This leads to the following recursive definition for the level of a kernel.

Definition 10.5.3 A kernel is of level 0 if it has no kernels except itself. A kernel
is of level n if it has at least one kernel of level n – 1, but no kernels (except itself)
of level n or greater.

Since each co-kernel is associated with a unique kernel, the above definition also serves
to define the level of a co-kernel, which is just the level of the corresponding kernel.

The following theorem, [38], demonstrates the importance of kernels in the algeb-
raic decomposition of sets of expressions.

Theorem 10.5.1 (Fundamental Theorem). If two expressions F and G have
the property that and imply that and

have at most one term in common), then F and G have no common nontrivial
algebraic divisors. (A nontrivial divisor has at least two terms.)

This theorem is used to detect if two or more expressions have any common algebraic
divisors other than single cubes. This can be done by computing the set of kernels
for each logic expression, and forming nontrivial (more than one term) intersections
among kernels from different functions. If this intersection set is empty, then we need
only look for divisors consisting of single cubes (which is an easier task). In other
words, we do not need to compute the set of all algebraic divisors for each expression
to determine if there are common nontrivial algebraic divisors. This leads to great
run time efficiency since the set of kernels is much smaller than the set of all algebraic
divisors. Further, in the algorithm for computing kernels, the cube-free property of
kernels leads to a very effective method for pruning the search tree for the kernels.
On the other hand, if we do find a nontrivial intersection, then this is a candidate
algebraic divisor common to two or more functions.

10.5. Kernels and Co-Kernels 427

10.5.1 Computation of Co-Kernels and Kernels

Let C* be the set of cubes whose literals constitute the literal intersections of each
subset of 2 cubes of an algebraic expression F. For each cube define
= WEAK_DIV Then is a co-kernel of F, and is its corresponding kernel.
Because is the literal intersection of cubes of F, no subcube may be factored out of
each of the cubes of It may be shown that the set C*(F) contains all the level-0
co-kernels, and, perhaps, some co-kernels of higher level as well.

For example, let

then

The kernels of F are and with corresponding co-kernels and
respectively.

This illustrates only one class of the co-kernels of F, known as level-0 co-kernels.
Consider The pairwise intersections yield the level-0 co-

kernels and the 3-way intersection yields the level-1 co-kernel
whose kernel has a level-0 subkernel and

To systematically derive C*, we resort to a cube intersection table like the one
for the algebraic expression

shown in Table 10.1. Let be the number of cubes in F. The table for F contains
one column for each of the first cubes and a row for each of the last cubes.
Since the intersection of and is the same as the intersection of and and
since we are not interested in the intersection of and we can restrict ourselves
to the part of the table below the main diagonal. The entry in position is the
intersection of and (The rows are numbered from 2 to) Each non-zero entry
is a co-kernel.

The cube intersection table can be extended to find all co-kernels, regardless of
their level. This is shown in Table 10.2. The table contains four extra rows and
columns corresponding to original pair-wise intersections with more than one literal.

428 Chapter 10. Multi-Level Logic Synthesis

In this case the addition of the new rows and columns leads to the discovery of the
level-1 co-kernel One can easily verify that adding another row and column for

to the table leads to no new co-kernels.
The complexity of this method, when computing level-0 co-kernels is

since all pairs of cubes of F need to be intersected, and then merged into a list of
known co-kernels. This requires a membership test and a subsequent union opera-
tion, which can be done in O(log|F|) by maintaining the list C* in a priority queue
(binary heap) with O(log|F|) insertion cost. Of course, computing all the higher
level co-kernels requires a recursion which examines all 3-way intersections, all 4-way
intersections, and so on. This recursion leads to exponential worst case complexity
because there are, potentially, the intersections of subsets of the cubes of F to
investigate. There are other methods for the computation of kernels, but the one we
have examined here, based on the intersection matrix, is adequate for our purposes.

10.6 Heuristic Factoring Algorithms

Factoring is the process of deriving a factored form of a given logic function represen-
ted in a sum-of-products form. The objective is to minimize the number of literals in
the final factored form. Algorithms have been developed for solving exactly the prob-
lem of determining the optimum factored form [167]. However, in recent experiments
using some modern extensions [271] for logic function manipulation, the complexity
of these exact techniques still appears to be impractical for all but the smallest func-
tions. The goal of this section is to develop fast heuristic factoring algorithms which
rely on kernels [38] and find optimal factored forms.

Some factoring algorithms guarantee the results to be algebraic and others do not.
One way of classifying factoring algorithms is by the following definition:

Definition 10.6.1 A factoring algorithm is said to be algebraic if it is guaranteed
to produce an algebraic factored form starting from an algebraic SOP expression. A
factoring algorithm is Boolean if it is not algebraic.

10.6. Heuristic Factoring Algorithms 429

So far, the examples we have used are completely specified functions. In the
process of multi-level logic optimization, we often encounter incompletely specified
functions. Algorithms for factoring incompletely specified functions usually take very
different approaches than those for factoring completely specified functions. Our
treatment in Sections 10.6.1–10.6.5 is restricted to completely specified functions.

10.6.1 Generic Factoring Algorithm

A typical generic recursive factoring algorithm is given below.

FACTOR(F, DIVISOR, DIVIDE) {
if (F has no factor) return (F)
D = DIVISOR(F)
(Q, R) = DIVIDE(F, D)
return (FACTOR(Q) FACTOR(D) + FACTOR(R))

}
Like Procedure FACTOR, all heuristic factoring algorithms described in this section
use the same top-down paradigm. Note the non-standard programming style, in
which, subroutine names are passed as arguments.

Given an algebraic (or even Boolean) expression F in SOP form, Procedure DI-
VISOR (F) used to find a candidate divisor, D, which, when substituted into F, can
simplify the expression. Then, the quotient Q is found by dividing D into F using
routine DIVIDE(F,D). Now, the function can be represented as a partial factored
form F = QD + R where R is the remainder. The algorithms then proceed to factor
Q, D, and R separately using the same method.

If the expression F is algebraic, a single literal, co-kernel, or kernel of F can be
returned by generic Procedure DIVISOR, and Procedure WEAK_DIV can be used for
Procedure DIVIDE. But FACTOR is generic in the sense that any algebraic or Boolean
procedures producing valid divisors and quotients can be used inside procedures
DIVISOR and DIVIDE, respectively.

Certain refinements of FACTOR are needed to produce good results. We first use
two examples to motivate the ideas behind the refinements. In each example, we
list the original function F, the divisor D, the quotient Q, the initial remainder R,
the partial factored form P, and the final factored form O given by FACTOR. It
is important to point out that in the sequel, discussions are restricted to algebraic
operations only.

Example:

430 Chapter 10. Multi-Level Logic Synthesis

Obviously, O is not optimal, because it is not maximally factored. It can be further
factored to

The problem occurs when the quotient Q is a single cube, and some of the literals
of Q also appear in the remainder R. To solve the problem we first check the quotient
Q. If Q is a single cube, we pick a literal of Q in the cube which occurs in the
greatest number of cubes of F. We then divide F by the chosen literal, to obtain
a new divisor Now, F has a new partial factored form and literal

does not appear in Notice that the new divisor has the original D as a
divisor because is a literal out of Q. When recursively factoring D will be
discovered again.

Lemma 10.6.1 If Q is a single cube, the procedure outlined above guarantees that
the partial factored form is maximally factored.

Proof. Let where is a common cube of (all terms in) and is
cube-free. Now, the partial factored form is

It is easy to see that every literal in (if any) must be in the original cube Q (if
the divisor D was cube-free). Since is the literal of Q occurring in the greatest
number of cubes of the original sum-of-products expression, no literal in can occur
in For otherwise, there would be more terms with that literal than terms with

The terms in come from terms of F that contain both and the literals of
only if there are ties for best literal. In addition, was obtained by dividing

F by literal so does not occur in Suppose is also a factor of Then
the quotient of dividing F by D would have contained more than one cube since
must contain D, which contradicts the fact that Q is a single cube. So, no factors of
the product form can be a divisor of Thus, the two sum terms have no
common factor and the product terms and have no common factor, since

is an algebraic product. F is by definition maximally factored at this level.

Example:

Again, the final factored form O is not maximally factored because is common
to both products and The final factored form
should have been

10.6. Heuristic Factoring Algorithms 431

The problem is that Q has a factor which is also a factor of R. The problem
is solved by first making Q cube-free to get then obtaining a new divisor
by dividing F by If is cube-free, we have obtained a partial factored form

and can recursively factor and If is not cube-
free, let Then, the partial factored form becomes
Let and we have a partial factoring which is the
case illustrated by the previous example and can therefore be factored maximally.
Therefore the solution is, if exists, to take the most recurring literal in and use
that in recursively factoring the quotient and remainder.

Lemma 10.6.2 If Q is not a single cube, the procedure outlined above maximally
factors F at this level.

Proof. Suppose is cube-free; then the partial factored form is
Here, cannot be a factor of because is used to obtain by dividing into

cannot be a factor of because contains a factor D which, when dividing
into F, gives quotient Q. So, the partial factored form is maximal at this level. If

is not cube-free, then we have a partial factored form which is
factored by our previous procedure. The previous lemma guarantees that the partial
factored form obtained is maximal.

Now, FACTOR can be improved by the procedures we have examined. The new
routine is called GEN_FACTOR, which stands for Generic Factoring, and is shown
in Figure 10.10. GEN_FACTOR takes as an input a SOP expression F, and two more
parameters which are function names specifying how to find the initial divisor D and
how to perform the division. As we shall see, by varying these two parameters, a
spectrum of algorithms can be obtained with different run time versus quality trade-
offs.

The function LF(F, C, DIVISOR, DIVIDE) is a variation of the literal factoring
algorithm [32]: BEST_LITERAL selects a literal in C which occurs in the largest number
of cubes of F. Instead of calling recursively LF on factors Q and R, we switch back
to the generic factoring algorithm GEN_FACTOR. Then COMMON_CUBE (D) returns
the largest common cube of D, and MAKE_CUBE_FREE(Q) eliminates the literals that
appear in all the cubes of Q.

The following theorem shows that the results of GEN_FACTOR are always max-
imally factored.

Theorem 10.6.1 If algebraic division is used for the DIVIDE operation,
Algorithm GEN_FACTOR finds a maximally factored form.

Proof. By induction on number of literals in the SOP form of F. If F has only one
literal, it is obviously maximal. Suppose F has literals, each of the factors passed
to the next recursive call of GEN_FACTOR has no more than literals, and, by
the induction hypothesis GEN_FACTOR returns a maximally factored form. By the
two previous lemmas, the factored form derived by GEN_FACTOR at this level is also
maximal. So, the results of GEN_FACTOR are always maximally factored.

Notice that this result uses algebraic division for DIVIDE everywhere. Whether
the result extends to using Boolean division is still an open problem.

432 Chapter 10. Multi-Level Logic Synthesis

10.6. Heuristic Factoring Algorithms 433

Specific factoring algorithms are discussed in the succeeding sections, and are just
instances of GEN_FACTOR with specific choices of DIVISOR and DIVIDE algorithms.
Depending on a particular application of GEN_FACTOR, appropriate DIVISOR and
DIVIDE algorithms are chosen to obtain desired run time versus quality trade-offs.

10.6.2 Quick Factor

The basic operations of GEN_FACTOR are DIVISOR and DIVIDE. In this section we
introduce an algorithm which we call QUICK_FACTOR. QUICK_FACTOR is a version of
GEN_FACTOR in which DIVISOR is replaced by QUICK_DIVISOR, which is a quick way of
finding a useful divisor. Also, DIVIDE is replaced by WEAK_DIV, which is the algebraic
division [38] operation. QUICK_FACTOR is defined in Figure 10.11. Also illustrated
there is QUICK_DIVISOR, which is a simple modification of the algorithm used in
[38] to find the kernels of a given algebraic expression. Also shown is the recursive
subprocedure ONE_LEVEL-0_KERNEL , which quickly identifies just one level-0 kernel
of an input algebraic expression. If F has only one term or is itself a level-0 kernel,
then QUICK_DIVISOR returns 5 Otherwise, there is at least one multiple-cube divisor
which is a level-0 kernel F and is not equal to F. This level-0 kernel is found by
routine ONE_LEVEL-0_KERNEL, which arbitrarily picks a literal which appears more
than once, divides F by the literal, and worksrecursively on the quotient. ONE_LEVEL-

0_KERNEL terminates on the first level-0 kernel encountered, which occurs when every
literal appears only once. This is a property of level-0 kernels, as one may easily verify
from the definition.

5One may verify that it would also be correct to return F.

434 Chapter 10. Multi-Level Logic Synthesis

10.6.3 Good Factor

Experiments have shown that QUICK_FACTOR is very fast and in many cases finds
good factored forms. However, because QUICK_DIVISOR works only hard enough to
find an arbitrary level-0 kernel, the results in some cases are not satisfactory. For
example, in factoring the function

QUICK_DIVISOR may have chosen a level-0 kernel which leads to the
following factored form

which has 12 literals. However, if we spent more time to examine all the kernels and
chose as the divisor, we would obtain a better factored form

with 11 literals.
Good factoring (GOOD_FACTOR) tries to obtain a better result by working harder

to find a good divisor to start with. In particular, GOOD_FACTOR (F) looks at all the
kernels and picks one (K) which, when substituted into F, maximally reduces the
total number of SOP literals of F and K. That is, the factorization value FACT_VAL
is maximized (over the set of all kernels of F) by kernel K. This procedure is called
BEST_KERNEL. GOOD_FACTOR is defined in Figure 10.12

10.6.4 Boolean Factor

Procedure GOOD_FACTOR can be further improved by replacing WEAK_DIV with
Boolean division, which is performed in BOOL_DIV [39]. In the above example,
GOOD_FACTOR obtained an 11 literal result. If BOOL_DIV were used to divide the di-
visor into F, the quotient and the remainder would have been
and 0, which would have lead to the following factored form

with only 8 literals. Although we do not show BOOL_DIV here, it is easily veri-
fied that this result is correct. Notice that this is no longer an algebraic factored
form because of the term This version of GEN_FACTOR is called Boolean

10.6. Heuristic Factoring Algorithms 435

factoring, and is given as BOOL_FACTOR in Figure 10.13. Since BOOL_DIV in-
volves a two-level logic minimization step, it is a much more expensive operation
than WEAK-DIV. Consequently, BOOL_FACTOR takes considerably more time than
QUICK_FACTOR and GOOD_FACTOR. But, because it uses Boolean division, it is able
in some cases to find some Boolean factored forms with significantly fewer literals
than the alternative methods. This is shown by the following example, in which results
for QUICK_FACTOR(F), GOOD_FACTOR(F), and BOOL_FACTOR(F) are given.

It should be pointed out that this is a contrived example intended to show the potential
power of Boolean factoring algorithms. In practice, most of the functions found in
real circuits can be factored just as well by algebraic methods as by Boolean methods;
algebraic methods are much faster.

10.6.5 Summary of Factoring Algorithms

To summarize, the factoring algorithms presented in this section are all based on
a recursive paradigm: find first a divisor as the initial seed, and then use multiple
divisions to try to improve the factors before recursively factoring them. All the
algorithms use heuristics, i.e., at each step, the quality of the factoring is estimated
by the literals in the sum-of-products form of each factor. Furthermore, because
the initial divisors generated by DIVISOR are restricted to kernels only, the results
of factoring largely depend on the initial sum-of-products forms. Most of these al-
gorithms are implemented as part of the SIS program [249]. The experiments in
Wang's thesis [268] show that the paradigm itself and the heuristics presented work
well for most of the functions and the results are in general quite good.

This paradigm is evolved further by Wang to encompass “Complement Factor-
ing,” “Dual Factoring,” and the factoring of incompletely specified function repres-
entations.

In multi-level logic optimization, the cost of a Boolean network has to be evaluated
again and again. So, factoring algorithms are used constantly to estimate the number
of literals in the factored forms of functions. In this application environment, the speed
of the factoring algorithm is essential. QUICK-FACTOR seems to be particularly useful
in this environment. In later stages of the optimization, a more accurate measure of
network size and exact implementation of functions are needed. Therefore, more
expensive algorithms such as GOOD_FACTOR or BOOL_FACTOR can be used. In fact,

436 Chapter 10. Multi-Level Logic Synthesis

since all the algorithms presented are heuristic based, there is no theoretical guarantee
that one can always outperform the others. So, when the quality of results is essential,
one should try all the algorithms and keep the best result.

10.6.6 Rectangle Covering

The key problem in the algebraic operations presented above is the identification of
a divisor. We have seen that kernels offer a good set of divisors both for factoring
(or decomposition) and extraction. The problem of finding a kernel, and generally a
common single- and multiple-cube divisor, can be reduced to a fairly general com-
binatorial optimization problem: Rectangle Covering [236, 33]. In addition to being
elegant, this formulation favors the development of fast and effective algorithms, and
is extensively used in the algebraic decomposition algorithms of sIs. Unfortunately,
the rectangular covering problems is beyond the scope of this text. The interested
reader is referred to the references.

10.7 Decomposition and Restructuring

10.7.1 Algebraic Resubstitution

The key operation in the process of algebraic substitution (or resubstitution) is the
division of the cover at node in the network by the cover or by at node
During substitution, if is an algebraic divisor of then is transformed into

Here the remainder R left after the division by is, optionally, further decom-
posed through division by a representation, of the complement of Note that

is different from the complement of the Boolean function which would require
knowledge of the complete don’t care set for node as will be seen in Chapter 11.
This second division produces a quotient and remainder

For example, suppose a Boolean network contained nodes and with covers

Resubstitution of into would first obtain the quotient and remainder
and then and leading to the

reduced expression

Note that this process results in a cover for node with only 9 literals, whereas it
formerly had 17. If the second division were omitted, would have ended up with
14 literals. Note that this operation may increase the delay of the critical path in the
network, so that potential area (literal) savings need to be weighed against possible
performance degradation.

10.7. Decomposition and Restructuring 437

As typically implemented, the resubstitution process attempts this for each pair
in the Boolean network, seemingly implying as many as algebraic

divisions, if there are nodes in the network. However, observe that since the oper-
ation is algebraic, there is no point in attempting to divide by any which is the
cover of a node which is not in the direct fanout of one of the direct fanins of node

Such considerations lead to a set of filters which are inexpensive to apply and yet
are very successful in circumventing most of the useless divisions.

The filters may be summarized as follows. The function is not an algebraic
divisor of if:

1.

2.

3.

4.

5.

is not a fanout of a fanin of

contains a literal not in

has more terms than

for any literal, the number of times it occurs in exceeds that in

is in the transitive fanin of

Notice that Filters 2 and 4 must be applied to as well. If contains but not
and contains will not divide but still may. In some cases, we are not
interested in the result of division if the quotient is only a single cube. This
can be detected by another useful filter: if for any literal, the count for equals the
count for then is at most a single cube. In the above example literals

and occur exactly once in both and so is a single cube.
Resubstitution in sis is performed by the resub command.

10.7.2 Selective Node Elimination

The key operation in the process of node elimination is the replacement of a literal
which appears in a cover by the algebraic SOP expression and similarly

for the literal and the cover complement The elimination process is driven by
a quantity known as the elimination value, of node This is defined as
the increase in the total number of literals in the network if were substituted into
its fanout to replace literal and the ensuing product expanded to SOP form (and
similarly for). An approximation to this, valid when all products are algebraic,
may be given as follows.

We consider a function in the fanout of to be represented by

We are interested in the increase in the literal count when we substitute the SOP
representation of into this representation of If we do this for every node in the
direct fanout of we will have eliminated node from the network. Because a small
savings of literals can come at the cost of increased levels of logic and thus increased
delay, we need to be able to eliminate nodes with small value. Also, because the
process of factoring a two-level network into a multi-level network is heuristic, it is
useful to be able to iterate. In order to iterate we will have to partially collapse the

438 Chapter 10. Multi-Level Logic Synthesis

function in order to try a different factorization/decomposition strategy. This partial
collapsing is done by node elimination.

Thus we now consider a single node in the fanout of node and determine the
increase in the number of literals associated with node elimination. In order to proceed
with this computation we must agree as to the measure or value of a node in a
Boolean network. There are two possible choices. The number of literals in the SOP
representation of the node or the number of literals in the factored form representation
of the node. The factored form literal count is useful for two reasons. First, it more
closely approximates the actual transistor count for the final implementation of the
node. Second, the literal count for the factored form is the same as the literal count for
the complement of the function. Since we use both the function and its complement
in node elimination having both values readily available is useful.

Therefore we first let be the number of times that either or its complement
appears in the factored form representation of Further, we let be the number of
literals in the factored form for Now we see that an approximation to the number
of literals in the factored form of after elimination is where the first
term approximates the increase by substituting in and the second term accounts
for the elimination of and its complement from the expression for Now, to find
the complete e_value (cost) of the elimination for the entire network we need to sum
over the fanout of node and then subtract out the literal count of node which will
be eliminated. This leads to the following expression

In the above resubstitution example, if we consider reversing the process and
eliminating node into node the elimination value of node is computed as follows.

so, if is the only node in the fanout of we have

Note that the first equation accurately portrays the literal savings in the Boolean
network accountable to node only if all the indicated products are algebraic. While
this is indeed the case in the example given, this will not necessarily be the case in the
context of multilevel logic optimization, in which Boolean operations may be freely
intermixed with algebraic ones. In the more general case, it may be regarded as an
approximation to the true elimination value.

As typically implemented, the elimination operation is an iterative process, carried
out with respect to a specified value threshold, Thus the sis command “eliminate

”, applied to a given Boolean network, would consider all nodes in the network in a
certain order. For each node encountered, if would be substituted
into its fanout, and then node eliminated from the network. On each pass through
the network, a flag is initially lowered and then raised if any node is thus eliminated.

10.7. Decomposition and Restructuring 439

If the flag is still lowered at the end of any pass, then we know that no further
elimination is possible, and the whole process terminates.

Iteration is necessary because subsequent node eliminations may affect the e_value
of nodes already processed in the current pass. In the SIS program, the processing
of nodes is done in depth first search (postorder), where the search is initialized at
the primary inputs, and the elimination value of node is attempted only after the
conditional elimination of all nodes in the fanout of has already been completed.

In the above example, node would not be affected if but if the
elimination operation on the Boolean network would put back into its original form
and eliminate node assuming node has no other fanout.

10.7.3 Extraction

Extraction is the operation that identifies common subexpressions and manipulates
the Boolean network accordingly. Algebraic decomposition and algebraic resubsti-
tution and node elimination can be combined to provide an effective extraction al-
gorithm.

In particular, suppose that we define a procedure QUICK_DECOMPOSITION , which
applies QUICK_FACTOR to a given node and then creates a new node in the network
for each new factor of this node. This provides a very fast method for breaking down
a Boolean network. It may be combined with algebraic substitution and elimination
to form a fast QUICK_EXTRACTION procedure as shown in Figure 10.14.

At the end of the QUICK_DECOMPOSITION step, each node of the network cannot
be factored; each literal appears only once. Substitution identifies identical nodes
and one is substituted into the other leaving a node whose logic function is a cube
with a single literal. These are eliminated along with the nodes that have small value,
typically those which do not fanout.

Example:

Consider a Boolean network with 2 nodes whose (algebraic) expres-
sions are:

440 Chapter 10. Multi-Level Logic Synthesis

Assuming that QUICK_DECOMPOSITION obtained the same factorization
that these two expressions had in a previous example (see Section 10.6.1),
the result of QUICK_DECOMPOSITION would be

which would require 18 SOP form literals. Then algebraic resubstitution
would recognize that leading to

which would require 16 SOP form literals. Finally, the elimination opera-
tion might eliminate the node producing resulting in a final SOP form
of

which costs 16 SOP form literals (or 15 factored form literals).

The motivation behind this is that QUICK_FACTOR is very fast but still identifies
good kernels to factor each single function well. The kernels become nodes of the
Boolean network and algebraic substitution operation identifies common ones. Thus
common divisors identified in this way are ones that are also near best for factoring.
Of course, this is not always the best choice, and not all common divisors are found,
but the method is very fast and the results quite good.

10.8 Notess

The paper by Brayton and McMullen [38] formed the basis for this chapter, and is of
historical importance in VLSI CAD. Not only is it one of the most widely cited papers

10.9. Summary 441

in the synthesis literature, but it described algorithms that perhaps implemented
in the greatest number of practical tools, including the currently dominant tools
worldwide: SIS and the SYNOPSYS design compiler.

Algebraic synthesis is surprisingly effective at area minimization for multilevel
circuits (although far from perfect). An added bonus of algebraic minimization tools
is their impact on testability. It was first shown by Morrison and Jacoby (their
work on a 1986 conjecture by Karen Bartlett is reported in [129, 127, 128]) that two-
level logic minimization, followed by algebraic factorization, provides and preserves
an existing complete single stuck-fault test set. That is, the test vectors provided
as by-products of the two-level minimization test for all stuck-faults. Further, these
tests also test all multiple stuck faults. The algebraic factorization algorithms not
only reduce circuit area and provide a good overall “structuring” of a given circuit,
but maintain the applicability of the two-level test set. This led to the surprising
capability of designing compact multilevel circuits that were 100% testable for all
multiple stuck faults by (provided) test vectors.

10.9 Summary

In this chapter we have examined how both algebraic and Boolean factored forms can
be used to compactly represent multilevel logic. The algebraic methods discussed are
anomalous in the sense that they do not obey the laws of Boolean algebra of Chapter 3.
Along the way, we have characterized Syntactically equivalent, maximally factored,
and optimum factored forms.

We have presented the ideas and given illustrative examples for the elegant theory
of kernels and co-kernels of [38], as expressed in Theorem 10.5.1 of Page 426. We
have shown how kernels and co-kernels can be computed and used to root out any
and all common subexpressions in the algebraic subexpressions implicitly present in
two-level or multilevel logic. Methods have been given for computing all or part of
the sets of kernels and co-kernels.

We have presented in detail the “recursive generic factoring” approach, which is
the key idea in the SIS suite of algebraic synthesis tools. We have shown how the idea
of “weak (algebraic) division” plays a key role in this approach, and have given many
examples and problems which demonstrate and motivate these concepts.

10.10 Problems

1. For each of the following expressions, say whether they are algebraic, prime,
irredundant.

(a)

(b)

(c)

Solution.

(a) is algebraic because no term is included in another term.
It is not prime, because and is is an implicant of the function.

442 Chapter 10. Multi-Level Logic Synthesis

It is not irredundant, because bcd can be dropped; it is contained in the
consensus term of and

(b)

(c)

is algebraic. It is prime, because no consensus terms exist
among the product terms (hence, all terms are prime). It is irredundant,
because all primes are essential.

It is not algebraic, because It is neither prime
nor irredundant, because bcd is not prime and can be dropped.

2.

3.

Is the following formula a factored form?

For each of the following factored forms, say whether they are algebraic.

(a)

(b)

(c)

(d)

4. Compute the factorization value for each of the following pairs of SOP and
factored form.

Solution. The factorization value for the first pair is given by:

For the second pair, we have:

5.

6.

Draw the factoring tree for
Solution. The tree is shown in Figure 10.15.

Are the following pairs of factored forms equivalent? Are they syntactically
equivalent?

10.10. Problems 443

7. For the SOP and the divisor

(a)

(b)

compute the factorization value;

show the factoring tree.

8. For the following factored form, draw the factoring tree and say whether the
formula is maximally factored by applying Definition 10.3.6 to the tree.

Solution. The factoring tree is shown in Figure 10.16. The factored form is
maximally factored, because there are syntactically equivalent factors (and
), but they do not appear as factors of two sums belonging to the same product

of sums, or as factors of two products belonging to the same sum of products.

444 Chapter 10. Multi-Level Logic Synthesis

9. Compute the positive and negative cofactors of
with respect to
Solution. The positive cofactor is obtained by setting

The positive cofactor is obtained by setting

10. Are the following two forms syntactically equivalent?

11. Use SIS to obtain a factored form for Use the command
print_factor, abbreviated pf. You may choose either BLIF or EQN as input
format. Include your input file and the output from SIS.
Solution. The input file in EQN format looks like this:

The following is the output of SIS. when given the commands ps, p, and pf.

eqn2 pi= 4 po= 1 nodes= 1 latches= 0
lits(sop)= 8 lits(fac)= 6

{g} = a b ' + a c + a d + c d
{g} = a (d + c + b')+cd

12. In this problem you are to run the multi-level synthesis tool SIS to find a good
factored form. You may input your data in either EQN or BLIP format, but your
output must be BLIF. Try to obtain the 23 literal result

for the function of Problem 15. Give the SIS optimization directives you used,
and the order in which you used them.

13. Divide

by

10.10. Problems 445

Solution.

Cube which is not marked, forms the remainder. We can therefore write

14.

15.

Divide

by

Apply the WEAK_DIV procedure to the algebraic expression F

and the divisor Obtain Q = F/D and R.
Solution.

446 Chapter 10. Multi-Level Logic Synthesis

In the table, the cubes that are not marked are those in the remainder. If we
were to recur on we would eventually reach the following factored form

16. For F = find the primary divisor corresponding to the
cube Is the result a kernel?
Solution. The result of dividing F by is Since this result is
cube-free, it is a kernel. Notice that it is a kernel of level , because each literal
appears exactly once.

17. For the function F =

(a) compute the level-0 kernels;

(b) for each kernel of part (a), express F in form, where is the co-
kernel, is the kernel and is the remainder.

Solution.

(a) In the following table, the null intersections are indicated by empty entries.

After trying each co-kernel, we find that the level-0 kernels are
and

(b)

10.10. Problems 447

18.

19.

Compute all the level-0 co-kernels and kernels of the following function, by
drawing the cube intersection table.

Apply procedure QUICK_FACTOR to the expression

Solution. First, QUICK_FACTOR finds a divisor by calling QUICK _DIVISOR.

QUICK_DIVISOR then calls ONE_LEVEL_0_KERNEL, which selects one literal that
appears more than once in F. Suppose this literal is, in our case, It is then
simple to verify that the chosen divisor is The choice of is the best
that QUICK_DIVISOR may make. Indeed, the following is the complete list of the
kernels and co-kernels of F. (It can be verified by building the cube intersection
table.)

Note that of the above kernels, the latter three are level-0. Of those,
is the one with the most literals and hence the best factorization value.

Let us now summarize the recursive calls made by QUICK_FACTOR on our func-
tion. In the following,

QUICK _FACTOR(F) : D = QUICK_DIVISOR

(Q, R) = WEAK_DIV

Q is a single cube so call literal factor routine
LF(F, Q) : = BEST_LITERAL (F, =

(Q, R) = WEAK_DIV

now recur on Q, returning
QUICK_FACTOR = QUICK_DIVISOR

= WEAK_DIV

is a single cube so call literal factor routine
= BEST_LITERAL

= WEAK_DIV

now recur on and returning
QUICK_FACTOR : = QUICK_DIVISOR so return
QUICK_FACTOR : = QUICK_DIVISOR so return

Returning through the entire recursion stack we get:

448 Chapter 10. Multi-Level Logic Synthesis

20.

21.

22.

23.

24.

Apply Procedure QUICK_FACTOR to the expression

Show the calls made by QUICK_FACTOR. Assume that ONE_LEVEL-0_KERNEL
selects as the chosen literal.

Hint: When ONE_LEVEL-0_KERNEL is called by QUICK_FACTOR, it returns
This is because the division of F by (the chosen literal) yields which
is not cube-free.

Repeat Problem 20, assuming this time that ONE_LEVEL-0_KERNEL returns
as the chosen literal.

For the following expressions, perform algebraic substitution of H into F and
G. Don’t forget to consider the complement of H.

Solution.

Perform resubstitution of

into

For the Boolean network of Figure 10.17, say how many resubstitutions should
be attempted, if the filters of Section 10.7.1 are applied. Perform the possible
resubstitutions and draw the resulting Boolean network.

10.10. Problems 449

Solution. In solving this problem, let us keep in mind that resubstitution works
with the local functions at the nodes—not the global functions. For instance,
the function of is rather than

There is a total of 12 pairs of functions to be considered: Each node with the
other three. The first filter alone, however, eliminates all cases except those
involving and For instance, we cannot resubstitute into because
they have no inputs in common. It is then clear that neither nor divide

because contains which does not appear in Similarly, does not
divide because and do not appear in On the other hand,
passes all the filters. Therefore, we attempt the division of by The result
is:

The resulting Boolean network is shown in Figure 10.18. In summary, one sub-
stitution was possible. Notice that the network of Figure 10.18 can be further
simplified. For instance, applying elimination or minimization would result in a
smaller literal count. Also notice that resubstitution has in this case increased
the number of levels in the network from three to four.

450 Chapter 10. Multi-Level Logic Synthesis

25. Given

find the elimination value of
Solution. We have in this case The elimination value is given by:

This says that eliminating will increase the literal count by 3, if all products
are algebraic. This is easily verified to be the case in this problem.

26. Apply the extraction algorithm to:

Specifically, show the decomposition of and (Assume that ONE_LEVEL-

0_KERNEL selects literals appearing more than once in alphabetic order: For
instance, if both and appear more than once, is chosen.) Indicate what
resubstitution are made. Use 0 as threshold for elimination. Finally show the
resulting Boolean network, indicating for each node its function.

Solution. We begin by factoring The level-0 kernel chosen by QUICK_DIVISOR
is Division yields:

This is maximally factored and is the result returned by QUICK_FACTOR. Pro-
ceeding similarly for we get as divisor and

as maximal factorization.

Decomposition creates one node for each factor of and

10.10. Problems 451

Resubstitution now identifies that Let us assume that is resubsti-
tuted into is then reduced to a single literal function which is eliminated.

Finally, we proceed to elimination. The nodes and have elimination value
–1; therefore, they are eliminated. The resulting equations are:

The Boolean network is shown in Figure 10.19. As a result of extraction, the
number of literals in factored form goes from 22 to 21.

27. In this problem you will use SIS to optimize rd53.pla, a benchmark circuit
which you can find in

. . ./sis/ex/comb/mcnc91/tlex/rd53.pla

Try the scripts that you will find in

. . ./sis/sis_lib

(You do not need to specify the path to use these scripts from SIS, because
they are in the standard library.) Find the script that gives the least number of

452 Chapter 10. Multi-Level Logic Synthesis

literals in factored form. You can try to find a literal count in factored form
smaller than the best literal count given by any standard script. You can do
that by combining scripts and plain SIS commands. Document your work.
Solution. The scripts we need to consider are only those concerned with
technology-independent optimization. If we run them, we get the following
results.

sis> rp rd53.pla
sis> ps
rdSS.pla pi= 5 po= 3 nodes= 3 latches= 0
lits(sop)= 144 lits(fac)= 71
sis> so script.algebraic
sis> ps
rd53.pla pi= 5 po= 3 nodes= 17 latches= 0
lits(sop)= 65 lits(fac)= 65

sis> rp rd53.pla
sis> so script.boolean
sis> ps
rd53.pla pi= 5 po= 3 nodes= 7 latches= 0
lits(sop)= 47 lits(fac)= 37

sis> rp rd53.pla
sis> so script.rugged
sis> ps
rd53.pla pi= 5 po= 3 nodes= 8 latches= 0
lits(sop)= 42 lits(fac)= 37

sis> rp rd53.pla
sis> so script
sis> ps
rd53.pla pi= 5 po= 3 nodes= 7 latches= 0
lits(sop)= 47 lits(fac)= 37

sis> rp rd53.pla
sis> so script.espresso
sis> ps
rd53.pla pi= 5 po= 3 nodes= 36 latches= 0
lits(sop)= 207 lits(fac)= 123

The best result for the scripts is 37 literals in factored form. There are several
ways of improving on that result. One consists of repeatedly applying the same
script:

sis> rp rd53.pla
sis> ps
rd53.pla pi= 5 po= 3 nodes= 3 latches= 0

10.10. Problems 453

lits(sop)= 144 lits(fac)= 71
sis> so script.rugged
sis> ps
rd53.pla pi= 5 po= 3 nodes= 8 latches= 0
lits(sop)= 42 lits(fac)= 37
sis> so script.rugged
sis> ps
rd53.pla pi= 5 po= 3 nodes= 7 latches= 0
lits(sop)= 43 lits(fac)= 36
sis> so script.rugged
sis> ps
rd53.pla pi= 5 po= 3 nodes= 8 latches= 0
lits(sop)= 42 lits(fac)= 36
sis> so script.rugged
sis> ps
rd53.pla pi= 5 po= 3 nodes= 8 latches= 0
lits(sop)= 42 lits(fac)= 36

After the fourth application there is no change in either literals in SOP form or
literals in factored form. Hence, we decide to stop.

Chapter 11

Multi-Level Minimization

11.1 Introduction

In Chapter 10 we have examined the restructuring of a multi-level circuit. Sometimes
restructuring is applied to an initial two-level representation of the circuit to extract
a multi-level network. More often, especially in the case of large circuits, the initial
circuit is also multi-level and is derived by a description in some HDL. (See Sec-
tion 2.2.) In both cases, after restructuring, a designer normally tries to improve the
resulting multi-level circuit by local optimization. It may be the case, for instance,
that the function attached to a given node may be simplified, leading to a smaller and
more testable circuit. The transformation may also reduce the delay of the circuit, by
reducing the capacitive loads (though there are exceptions to this). The changes to
the network caused by local transformations may set the stage for further profitable
restructuring, leading to an iterative process.

Technology-independent local optimization is often referred to as multi-level min-
imization, because of its close relationship with two-level minimization techniques.
We shall see how the notions of primality, irredundancy, and don’t care condi-
tions extend to the multi-level world. Primality and irredundancy will allow us to
define (local) optimality for a multi-level circuit; they also provide the link between
the optimality of a network and its testability.

The study of don’t cares in multi-level networks is central to multi-level minimiz-
ation. Unlike two-level circuits, don’t care conditions are both external (i.e., provided
as part of the problem) and internal (due to the structure of the circuit). We shall
examine the origin, formulation, and computation of these don’t care conditions, thus
filling out the details missing from the brief description of don’t care sets in terms
of intervals in a Boolean Function algebra (Section 3.4). We shall also see the limits
of the idea of don’t care conditions that are exposed when we deal with multi-level
networks.

To deal with local transformations, a view of the circuit structure is needed that
is more refined than that required in the case of algebraic restructuring. This is
because the computation of the internal don’t cares relies on the network structure.
Therefore, we start this chapter with a detailed definition of what has come to be
called the Boolean network.

455

456 Chapter 11. Multi-Level Minimization

11.2 Boolean Networks

In the following definition and in the sequel, we reserve boldface type for vectors of
Boolean functions (lower case) for representations of functions (upper case).

Definition 11.2.1 A Boolean network is an interconnection of n Boolean functions
defined by a five-tuple (f, y, I, O, consisting of

1.

2.

3.

4.

5.

– a vector of completely-specified logic functions (“gates” of
the network).

– a vector of logic variables (signals of the network) that
are in one-to-one correspondence with f. corresponds to

– a vector (ordered set) of y-indices that identify the corres-
ponding p externally controllable signals as primary inputs.

– a vector (ordered set) of y-indices that identify the
corresponding q externally observable signals as primary outputs.

– a vector of completely-specified logic functions that
specify the set of don’t care minterms on the outputs of

In order to avoid subscripted subscripts, it is convenient to also think of the ordered
sets I and O as functions. For example, is the element of the set I,

We shall use the vector x as a synonym for the I-components of
that is, or, more compactly Similarly, we shall
use the vector z as a synonym for the O-components of y, that is,

or, more compactly We shall reserve the symbols for
the lengths of the vector y, x, and z, respectively.

The supports of the functions implicitly define a digraph, or directed graph
for which there is a one-to-one correspondence between the vertices

(nodes) and both the component function of f and the component signal
of y. In the graph, a directed edge (or arc) connects node to node if

where is the set of variables on which depends. Since there
is one node for each function in the network we shall reserve for the
number of edges in the network, that is,

For combinational logic, the digraph is usually a DAG or directed acyclic
graph, but in theory this is not necessarily the case. Our primary interest is in
combinational digital circuits. A digital circuit is combinational if its output response
depends only on the current input pattern, and not on any previous input patterns.
A sufficient condition for a Boolean network to represent a combinational digital
circuit is that the Boolean network graph be acyclic. Note that this condition
is not necessary; there exist combinational circuits that are represented by cyclic
Boolean network graphs; furthermore, there exist Boolean functions for which the
cyclic Boolean network is optimum, with an appropriate definition of optimality [55].
However, because of electrical considerations such as noise-margin, switching time,
and settling time cyclic combinational circuits are only of academic interest for modern

11.2. Boolean Networks 457

technologies (e.g., ECL and CMOS). Therefore, we assume from now on that the
Boolean network graph is an acyclic graph.

Adjacency and path relations are defined in terms of the digraph A node is
a predecessor or input or fanin of a node if The set of all predecessors
of node is denoted by the set accordingly, A node
is a successor or output or fanout of a node if The set of all successors
of node is denoted by If there is a path from node to node in is called
transitive predecessor or transitive fanin of node and the set of all transitive
predecessors of node is denoted by If there is a path from node to node in

is called transitive successor or transitive fanout of node and the set of all
transitive successors of node is denoted by By convention, is not a member
of any of the set or It is convenient to think of and as
functions. For example, is the i-th element of

Note that is not defined because by definition, is an external logic
function which makes externally controllable. Thus is a source node of

that is, a node for which Similarly, the variables in the vector z are
externally observable. By definition, the functions must be literal-
functions i.e., for some Further the variables must
not be used by any other function. That is,
If is by definition a sink node of that is, a node for which

Each signal in a Boolean network represents the voltage on a segment of intercon-
nect in the circuit implementing the Boolean network. This wire segment is called
a net. A net has exactly one logical signal, which corresponds to a specific node
signal in the Boolean network. This signal is called the source terminal, which
determines the logic value on the net. The rest of the net provides interconnect to
the sink terminals, which are the inputs to the nodes in the fanout The set of
all source and sink terminals for all nets is also called the pins of the net. Thus, the
network has one output pin for each node in and one input pin for each edge
of (the pin corresponds to the head of the directed edge).

We shall also refer to each of the edges as a connection, denoted Each
connection has an associated logic variable a single fanout and a single

fanin Clearly and Although in a fault-free
network it is useful in network optimization and testing to
maintain this distinction. Note that strictly speaking, the connections are
sufficient to represent connections to the primary outputs, that is, the buffer functions

are not strictly needed in the definition.
We note that the network functions and connections give rise to a set of don’t

care conditions represented by the implicitly defined vector of don’t care functions
whose components are in one to one correspondence with those

of f. These don’t care sets are an implicit property of the specified Boolean network,
and are characterized below. Together, the specified function vector f and the implicit
don’t care function vector d combine to define a vector f f of incompletely specified
functions

where

458 Chapter 11. Multi-Level Minimization

We shall see that each connection also has its own unique associated don’t
care set giving rise to the incompletely specified connection functions

where

Note that the functions are local functions in that they are the local function
attribute of node given in the specification of We also associate with node a
global function whose support is a subset of the primary inputs of and which
satisfies Here is a composition operator, which satisfies the
recursive definition

When A = I, the result is the global function
Note This reflects the fact that for each possible input vector x,

there is a unique corresponding signal vector y. Note that for is not
part of the specification of the Boolean network but can be derived by flattening (or
composing or eliminating) all function nodes in the transitive fanin

In the sequel we shall use the five-tuple N = (F, y, I, O, to denote a rep-
resentation of a Boolean network, where F and are representations of f and

Figure 11.1 shows a 2-bit full adder circuit. The first input is the carry-in, the
next two are the least significant bits of the input words, and the last two the most
significant bits. The 3 outputs are the least and most significant output bits, and the
carry-out, respectively. This is a so-called iterative network, since the subnetwork
for the second bit addend and carry-out is identical to subnetwork for the first. For
this network, we have I = {1, 2, 3, 4, 5}, O = {18, 19, 20},

and Note that XOR gate 12 produces logical
signal The output of this gate is the source terminal of the corresponding net,
which has a single sink terminal on the input to output buffer 18. Note that the
variables associated with the node indices marked by prime (in the figure only) are
“external” to the Boolean network under consideration, and cannot be referred to,
that is, cannot be in the support of any of the functions Nevertheless, the literal-

functions (the output buffers) are part of the network, and these nodes
are properly in the fanout of the nodes The successor and predecessor sets
include

The global functions include

11.2. Boolean Networks 459

Note that gives the least significant sum bit (3-bit XOR), and gives the
internal carry-bit (majority function). The implicit don’t care sets for the nodes and
connections include

Derivation of these don’t care sets will be given later. However, it is easy to verify
that the indicated minterms are don’t care. Consider, for example, If

so independent of the value of Similarly, if any two of the set

of
Note that in this simple example, the fanins of the primary output buffers have

only a single fanout. Exceptions to this are numerous in practice.

11.2.1 Network Cost

The logic functions in the Boolean network can be represented in many ways. In
the sequel we use both the sum-of-product form and the factored form. The sum
of products is the standard representation for a two-level logic function, typically a
minimal (i.e., prime and irredundant) two-level representation is used. As discussed
in Chapter 10, a factored form is a tree representation of a logic function using the
operators AND (denoted by a dot or by concatenation), OR (denoted by +), and NOT
(denoted by either a prime or an overbar and used only to produce complemented

are 0 the carry input from the first bit will be 0, so independent

460 Chapter 11. Multi-Level Minimization

literals). More precisely, a factored form was defined in Section 10.3.1 as either a
literal, or sum or product of factored forms.

The literals-in-sum-of-products-form cost function for a Boolean network is the
sum over all nodes of the number of literals in the SOP representation for the function
at each node.

The literals-in-factored-form cost function for a network is the number of literals
in an optimal factored form for each expression in the network. The optimization
problem of deriving an optimal factored form for a Boolean function is called factoring
and was discussed in Section 10.6.

An important contrast between two-level and multi-level minimization is that
in two-level minimization, the SOP form was the natural method of representation
because it directly described how the function could be implemented as a PLA. This
is no longer the case for multi-level logic. As an example, consider the cover

This has 12 literals, but it can also be represented as

which has only 5 literals. Multi-level implementation of this in terms of NOR or
NAND gates would be

The NOR representation requires 7 literals, whereas the NAND representation, which
basically reproduces the structure of the original SOP form, requires 12+6=18 lit-
erals. Thus the initial SOP representation for G is not a good indication of the
ultimate complexity of its implementation. This can also be seen by considering the
complement of G in SOP form

and noting that the only difference in implementing G or is the cost of one inverter.
Rudell has shown that for multi-level logic the factored (e.g.,)
form literal count correlates very well with final placed and routed chip area [156].

Because of the specification of external don’t care sets, a Boolean network is
a representation (or an implementation) of a set of incompletely specified Boolean
functions, in the same way that a PLA or SOP form with output don’t cares is. For
multi-level minimization, we have several objectives. One is to minimize area, and a
measure that seems to be well correlated with this is the total number of literals in all
the function representations at the nodes. However, this measure takes no account of
potentially large numbers of inverters which appear in the circuit during techmapping,

11.3. Don’t Cares in Multi-Level Networks 461

so another measure of interest is the number of edges in a NOR decomposition of the
network (or, equivalently, NAND), where the NOR gates have appropriately bounded
fanin and fanout counts. Because this cost measure fully accounts for inverters in the
Boolean network, and the factored form measure ignores inverters, it suffers less of a
discontinuity between the pre- and post-techmapping cost.

Another measure of great interest is the delay through the network. In general,
one is interested in implementing a set of functions that meet certain delay constraints
while minimizing area. Note that the primary objective for two-level minimization,
the number of cubes in the representation, is of interest for multi-level only in so far
as it tracks the total number of literals.

11.3 Don’t Cares in Multi-Level Networks

Don’t cares conditions that arise in the design of digital systems are classified ac-
cording to their origin into two classes.

11.3.1 Satisfiability Don’t Cares

Satisfiability don’t cares occur because there are input combinations to a circuit that
can never occur. These may arise because of the way the digital system is specified,
e.g., in a microprocessor design certain instruction codes may not be used and there-
fore will never occur in a valid input. Another example occurs when one block of
combinational logic is the input to another. The first block may have output bit pat-
terns that will never occur because of the type of logic function being implemented.
Since these outputs are inputs to the next block, then the bit patterns that do not
occur are don’t cares for the second block of logic. In either case, we can interpret
the bit patterns that never occur as Boolean vectors corresponding to “states” of the
network that can never be reached. In the testing literature, these states are referred
to as non-controllable states or as non-justifiable states.

Because of the fundamental connection to the satisfiability question, don’t care
conditions of this type will be referred to generically by labels that include the acronym
“SDC,” for Satisfiability Don’t Care set, and similarly the acronym “ODC” will be
used for Observability Don’t Care set. However, the actual don’t care sets themselves
will be denoted by lower case function names, and respectively. Note that we use
the overbar indicating complementation, because the don’t care conditions correspond
to non-satisfiability or non-observability.

Refining our treatment, we notice that signal vectors exist that do not
satisfy all the Boolean equations In fact, there are possible signal
vectors, but of these only can occur for a specified set of Boolean equations. This
is true because the response of a network to primary input minterm (one in which
every primary input has a specified binary value) is unique. By an input vector we
mean the vector x, with that is, with each component set
to some specific value in B = {0, 1}. Recall that each node of a Boolean network is
associated with two functions—a local function and a global function

We shall refer to the space as the primary input space and
as the extended space Sometimes it is convenient discuss local functions

462 Chapter 11. Multi-Level Minimization

in terms of their local support, and still assume that all Boolean equations in the
network are satisfied. The signal vectors that cannot occur are called satisfiability
don’t care conditions. Since we can think of these also as non-controllable states,
there is a clear connection to the concept of controllability, which plays a key role in
the testing literature.

11.3.2 Observability Don’t Cares

The second class of don’t care conditions arises because of filtering effects that prevent
local changes to the network from being observable at the primary outputs of the
network. These conditions are called observability don’t cares. Again there is a
profound connection to testing, since observability measures play a key role in ATPG
(Automatic Test Pattern Generation) algorithms.

This close interaction between testing and logic synthesis areas will be repeatedly
observed in the sequel. (See Chapter 12.) As we shall see, it is impossible to declare
a network area-optimal without first implicitly deriving tests for all single stuck-at
faults.

Observability don’t cares occur because of the way an output is used. It may
happen that because of the circuitry that fans out from a set of signals, perturbations
in the signal values in this set cannot be observed (that is, they have no effect) on
signals at the pre-specified observation points (true primary outputs). In this case
the conditions under which the signals cannot be observed are don’t cares for the
functions producing the perturbed signals. In the example of one combinational logic
block feeding another, the second block serves as a filter for the first and can cause
non-observability of some of the outputs under certain input conditions. For example,
suppose that we have two blocks of logic, the first computing a data flow function, and
the second implementing an enable signal that controls whether the data flow result is
latched at the outputs. Clearly the output of the data flow function is not observable
under the conditions that disable the latch. Thus these are observability don’t care
conditions for the data flow logic block. In the parlance of the testing literature, one
says that under these conditions, perturbations (for example, due to stuck-at faults)
of the data flow logic are not able to propagate.

We shall show that both primary output and internal nodes of a Boolean network
are, in the most general case, incompletely specified functions, with SDC and ODC
contributions to their don’t care sets.

11.3.3 Use of Don’t Cares in Minimization

When we simplify an intermediate node of a multi-level Boolean network using
a two-level minimizer, we sometimes use only the satisfiability don’t care sets for a
subset of the nodes that can be substituted with “high probability” into the node
being optimized. An optimal two-level minimizer substitutes some set of variables,
corresponding to the nodes of the network, into that results in a minimal literal
count for For example, let

11.3. Don’t Cares in Multi-Level Networks 463

we find The Boolean function at in the Boolean space does not
change, since only the satisfiability don’t cares are used for simplification.

11.3.4 Internal and External Don’t Cares

Don’t cares may be further classified as being either External Don’t Cares, arising
from the external environment in which the network is embedded, or Internal Don’t
Cares, arising from the structure of the network itself. We can view the external don’t
cares as deriving from these same conditions applied to the larger network in which
the Boolean network is hierarchically embedded. This will become clearer after some
detailed discussions.

Although our definition uses functions in defining a Boolean network, synthesis
programs must read data files containing representations of these functions. Thus, in
minimizing multi-level logic represented by a Boolean network, we assume that we
are given an initial representation of each function and also a representation of
each primary outputs don’t care function The don’t care conditions common to
all outputs are the external satisfiability don’t cares, which are the primary input
patterns that will never occur. The external observability don’t cares, are those
that are specific to the separate output functions, usually arising from the way each
output is used.

The completely specified “don’t care” function must come from the spe-
cification of the environment in which the Boolean network lives. We refer to as
the external don’t care set of primary output which arises from the two phenomena
discussed below.

11.3.5 External Satisfiability Don’t Care Conditions

First, for a particular design the designer may decree that a particular primary input
vector will never occur. The vector constitutes a don’t care minterm,
and such minterms are don’t care for all primary outputs. The set of all such minterms
is denoted by

11.3.6 External Observability Don’t Care Conditions

Second, the designer may state that for any primary output the value of will
not be used for a set of primary input vectors (minterms) in the set (Keep in mind
that external don’t care sets and derive from satisfiability and observability
don’t care conditions, respectively, that occur in the larger external network in which
the subject Boolean network is to be embedded.) Thus for each primary output the
total external don’t care set can be written

where are primary inputs. If we simplify using the satisfiability don’t
cares, given, as we shall see, by

464 Chapter 11. Multi-Level Minimization

This equation gives the completely specified functions (don’t care
sets) associated with the primary outputs of a Boolean network. A principal objective
of the sequel is to identify representations of the analogous don’t care sets for each
of the incompletely specified functions associated with the intermediate variables of
a given Boolean network (and their corresponding internal nodes).

For the external don’t care set, often there is no need to distinguish between these
two types of don’t cares, and in these cases we simply refer to rather than to
specific terms of the external don’t cares. However, we note that if is an
arbitrary subset of O, then

which is true because is lumped into each term on the right hand side of the
previous equation.

We will also see that the use of a don’t care set to specify how the output will be
used is, in general, insufficient to capture this information completely. This general-
ization will enable us to handle Boolean networks with nodes having multiple output
Boolean functions, rather than just single output Boolean functions, as well as net-
works that are hierarchically embedded in a larger network. It has been proposed
that the notion of equivalence relations be used for this [40, 35] and that leads to
the concept of Boolean relations. However, we continue here the tradition, coming
from PLA synthesis, of using external don’t cares to capture some of this information.

11.4 Internal Satisfiability Don’t Cares

One of our main objectives is to iteratively perform single-node optimizations on
all nodes of a Boolean network. To identify how this synthesis task may be done
optimally, we now characterize formally the internal (implicit) don’t care conditions
applicable at internal nodes of a Boolean network.

Satisfiability Don’t Cares are extremely important, as they are easy to compute
and approximate, and are the basis of some powerful invariance relations for Boolean
networks. These don’t cares are a result of the existence of the additional intermediate
variables, introduced at the intermediate nodes of a Boolean network. As an
example, consider the network described by the Boolean equations

which implement For any node that uses the intermediate
variables, and we have the option of eliminating and or expanding the
Boolean space to include these variables. If we do the latter, there are combinations of
variables that will never occur. For example, the combination

11.5. Observability Don’t Cares 465

will never occur, and in general, since then will never occur. The don’t
care conditions are thus the min-terms of the function

A general Boolean network introduces many intermediate nodes and variables with
the relations

where is the set of all logic signals in the network. Since we require that the Boolean
network be acyclic, must really depend on only the subset of the variables.
The set of all satisfying truth assignments of the above relation is

In the extended space the satisfiability don’t care set is given by

This is called the overall satisfiability don’t care set, and we again use the superscript
* to denote a transitive property. Sometimes it is appropriate to consider only the
don’t care relations associated with the transitive fanin of node This is denoted as

This don’t care function gives all the input vectors that will never occur, due to the
network structure, and is called the satisfiability don’t care set because each of the
relations

must be satisfied during the correct operation of the network. The part of contrib-
uted by the namely, is called the local satisfiability don’t care
set of node For the above example,

Similarly, an SDC may be defined for the connections of

Primary output nodes which have no fanout specified in (11.10) gives the
entire internal don’t care set.

11.5 Observability Don’t Cares

These don’t care conditions are subtler in origin, and harder to compute and approx-
imate than those of the satisfiability don’t care set. In fact, it can be shown that
the present definitions of Observability Don’t Cares in the literature are insufficient
to completely characterize multiple output circuits. For the multiple output case the
concept of Boolean relations must be used.

466 Chapter 11. Multi-Level Minimization

Because of the complexity of ODCs, both in their computation and in their defini-
tion we will content ourselves with a superficial study. As we stated earlier, the ODCs
arise when a particular input assumes a controlling value on a gate thus rendering
the other inputs don’t care. More specifically, we are concerned with the effect on the
output signal and only indirectly on the effect on intermediate signals.

For example, when the first input to a 2-input OR gate is 1, the output is 1
regardless of the value of the second input. In a dual manner, a 0 input on an AND
gate forces the output to be 0 regardless of other input values. These forcing inputs
are called controlling inputs.

Thus, we can imagine a situation in which a Boolean network has an output node,
which is an OR gate with two intermediate variables and as inputs. If we

output of is a don’t care when When working in the expanded space of
variables these ODCs can add important minimization potential. For example,
consider the following three node Boolean network.

If we attempt to minimize we must calculate ODCs and SDCs. The SDCs for
are given by

Given our previous discussion we can write the ODCs for as

The cover for this overall two-level function is given by

Through proper use of the don’t cares we can minimize this to yield

or, after “sweep”

This minimization requires both the ODCs and the SDCs; either alone is not suffi-
cient. From a circuit point of view there is a redundancy which is removed by the
minimization.

are trying to minimize in addition to the SDCs, we must include the fact that the

11.5. Observability Don’t Cares 467

Let us consider a slightly different example in which the output gate is replaced
by a XOR gate. This yields the following Boolean network.

Examining this network we see that has the same SDCs as in our previous network.
However, if we ask under what conditions on the output is unaffected by the value
of we are led to the conclusion that there are no ODCs for this node. Thus, under
this new set of don’t cares we cannot minimize

Two more examples will increase our understanding of observability don’t cares.
First we shall consider a network with a depth of more than two. Consider the Boolean
network defined by the following equations and shown in Figure 11.2.

We can easily write the satisfiability don’t cares for The observability don’t cares,
however, will involve two terms. It is still true that when the output F is
unaffected by but in addition, when the output is also unaffected by Thus
we see that in constructing the ODCs we must consider all ways in which the value of
the node under consideration will not affect the primary output. From our analysis,

Therefore is redundant, because
Since a Boolean network can have a complex SOP expression at every node, we

can construct a two level Boolean network that will still present us with a challenge
in calculating the ODCs. Consider the following Boolean network.

If we examine this network, we can find that the ODCs for are given by

468 Chapter 11. Multi-Level Minimization

11.5.1 Computing ODCs with the Boolean Difference

We can compute ODCs for individual nodes using the Boolean difference formula.
The Boolean difference of a function with respect to a variable states the conditions
under which the function is sensitive to that variable. That is, when the functions
output will depend on the value of that variable. In formula, it is given by:

If we consider F to be the output of our network, then F is sensitive to exactly when
The complement of the Boolean difference gives the conditions under which

the function is not sensitive, which is precisely the definition of the observability don’t
cares. Thus although there are some subtleties that we shall omit, we can simply write

This can be very complicated to compute for a variable that is deeply nested
in a circuit, requiring a Boolean difference chain rule; it is useful as a conceptual
framework for thinking about ODCs, and it shows how intimately ODCs are related
to testing and automatic test pattern generation.

It should be clear by now that the calculation of the ODCs for a given node in
a Boolean network can be a very complicated task. In the multi-level minimization
program SIS a subset of these don’t cares are chosen. It should also be clear that not
all the SDCs are going to be useful in minimizing a given node; SIS also chooses a
subset of the SDCs to use in the minimization of a node.

11.6 Prime and Irredundant Networks

A key concept in logic optimization is that of Boolean equivalence. In the multilevel
context, we wish to establish when a given Boolean network, can be replaced by
another one, This is true when the two sets of corresponding primary output
global functions are equivalent modulo the external don’t cares; that is, when and

represent the same set of incompletely specified functions

Definition 11.6.1 Boolean networks and

are equivalent modulo the don’t care sets (written if there exists
a permutation Q of {1,2, ..., q} such that for each Primary Output in Õ,

for all

The permutation, Q, in Definition 11.6.1 is needed to identify the proper corres-
pondence between the primary outputs of the two Boolean networks which may be
very different structurally. For simplicity, we assume, without loss of generality, that
Q is the identity permutation.

Actually, this definition is restrictive, and assumes that the only don’t care condi-
tions are those described above, involving single outputs only. However, as discussed
above, there exist in nature don’t care conditions defined over groups of outputs, and

11.7. Two-Level Minimization with Multi-Level Don’t Cares 469

these are not included in the above definitions. A general definition of equivalence
can be stated, but this requires more information about the external environment
than just the external single output don’t care set for

For example, the external environment may have outputs and connected only
to the input pins of an exclusive-or gate, in which case the environment would be
unable to distinguish between outputs and

Note that our definition of equivalence requires only that the primary outputs
of two Boolean networks match for each care input vector. In particular, it is not
necessary to have identity or even correspondence between the intermediate variables
of the two networks. For example, a 4-level network could be equivalent to a 2-level
network. The task of minimizing a representation N of a Boolean network consists
of iteratively transforming N into an equivalent representation Ñ where Ñ is smaller
than N in some sense. Two properties of minimality, similar to those for the classical
2-level case, are especially relevant to the multilevel case (Boolean networks having
these properties are 100% testable for stuck-at faults). These properties are defined
next.

Definition 11.6.2 (Prime and Irredundant Boolean Networks) Given a Boolean
network representation N = (F,y,I,O,), a cube C of the 2-level representa-

let Ñ — y, I,O, be a Boolean network representation for which
and where is C with one of its literals removed.

Then C is prime if Similarly, a cube C of is irredundant if C cannot
be removed from the representation of without causing the resulting network Ñ to

satisfy A Boolean network N = (F,y,I,O,), is said to be prime, if all
the cubes in each of the representations of N are prime, and irredundant if all of
these cubes are irredundant.

Note that these two concepts are associated with local minima of a cost function
which is nondecreasing in the total number of cubes and literals required to repres-
ent the incompletely specified logic functions, realized by the given Boolean network.
These local minima represent networks that are 100% testable for conventional single
stuck-at faults—otherwise redundant logic could be removed to obtain smaller net-
works. Hence to prove even local optimality, all faults must be proved irredundant.
This is almost equivalent to generating tests for all faults. Thus one can see that area
optimization subsumes automatic test pattern generation (ATPG)—a fact that may
cause the distinctions between the testing and synthesis fields to blur increasingly as
time goes on.

11.7 Two-Level Minimization with Multi-Level Don’t Cares

The complete don’t care set for a given node in a Boolean network is given by:

tion of is prime, if no literal of C can be removed without causing the result-
ing network representation Ñ to be not equivalent to N. In more formal terms,

470 Chapter 11. Multi-Level Minimization

The first two terms are the external don’t cares which will be the same for ever
node in the Boolean network. The last two terms are the internal satisfiability and
observability don’t cares.

With these don’t cares we can apply ESPRESSO and find a minimal cover for the
node. Unfortunately, once we change the function of a given node, the don’t cares
for other nodes change. Thus, if we minimize node and then we modify any node

that was important in the calculation of the don’t cares for node we may still be
able to minimize node further because of changes in the don’t care sets.

This poses a difficulty for minimization programs like SIS. SIS proceeds from the
input nodes to the output nodes in breadth-first order and then iterates until no further
improvement is possible. Normal practice is to use a script, which is a sequence
of commands involving factorization, resubstitution, node minimization iterations,
followed by node elimination, further network restructuring and minimization either
a fixed number of times or until no cost improvement is found.

Clearly we have very weak notions of optimality involved in multiple level syn-
thesis. However, if the complete don’t care set is calculated, we can guarantee that
at convergence of any of these sequences of iterations the multi-level network will be
prime and irredundant. If an approximation to the complete don’t care set were used,
we would not be able to make this statement.

11.8 Notes

The various methods for exploiting don’t cares in multilevel logic minimization grew
out of three key approaches. First, the transduction approach was pioneered by
Muroga [204]1. However, his the full generality of his method for quasi-optimally se-
lecting gate representations from the set of “permissible functions2” was not clarified
until the publication of [204].

Second, the “multilevel don’t care approach” was presented in [16, 15]. In this
approach, the essential mechanisms of ESPRESSO were brought to bear on multilevel
networks through the definition and exploitation of satisfiability and observability
don’t cares. The third influential method was the “Global Flow” approach [22, 21, 40].
While this approach could be interpreted in terms of the other two, it showed how
techniques originally directed toward problems in compiler optimization could be
brought to bear on logic minimization.

All of these approaches are directly or indirectly incorporated into state of the
art multilevel logic synthesis programs like SIS or the SYNOPSYS design compiler,
which grew out of the early efforts by DeGeus and co-workers, [16] and by Rudell
[39], whose elegant architecture for the MIS package was profoundly influential.

11.9 Summary

In this chapter, we have presented a more detailed discussion of the internal structure
of a circuit. We have formally defined the Boolean network as the graph model of a

1Muroga’s ideas on multilevel minimization were the first to appear [148].
2The set of permissible functions is directly related to intervals in the Boolean function algebra.

11.10. Problems 471

combinational logic circuit (Section 11.2).
We then used the notion of the Boolean network to formally characterize the don’t

care conditions that arise naturally in multilevel Boolean networks (Section 11.3).
This completes and expands upon the introductory treatment given in Section 3.4 in
terms of intervals in Boolean function algebras.

Then we characterized the “Satisfiability Don’t Cares” that arise naturally in
Boolean networks in terms of “can’t occur” vectors of signal values. Supposing that a
Boolean network has nodes/gates and primary inputs, we have observed that
of the possible possible configurations of the logic signal vector
only of them can actually occur in any given network. The other configurations of
the y-vector can’t occur, and are therefore “don’t care”.

A constructive method was given for computing the satisfiability don’t care set for
any gate in the Boolean network. Fortunately, most practical circuits typically result
in substantial don’t sets for gates involved in reconvergent fanout. This is the rule,
rather than the exception, because reconvergent fanout is the natural concomitant of
the practice of re-using logic to save area whenever possible. Unfortunately, however,
there are usually so many don’t care conditions, that it is impractical to compute
them all for use in multilevel logic minimization.

In Section 11.5, “Observability Don’t Cares” were defined formally in terms of
Boolean differences. We thus showed that whereas the satisfiability don’t cares were
defined by the nature of the gates and how they were connected, the observability
don’t care computation required the presence of primary outputs — if there are no
observable outputs, there can be no observability don’t cares.

Having thus completed the don’t care “picture”, we then showed some simple
techniques for exploiting Don’t Cares in logic minimization. We concluded by showing
how to make a given Boolean network Prime and Irredundant. In this respect, we
demonstrated that these two kinds of don’t care conditions is complete. That is, once
we have used these don’t cares to make the network Prime and Irredundant3, the
resulting optimized network is locally optimal in the sense that no literal or gate can
be removed without changing the behavior of the network

11.10 Problems

1. Prove that
Solution.

Note that this simple lemma can save time when calculating Boolean differ-
ences.

3Note that a prime and irredundant network is 100% testable for stuck faults.

472 Chapter 11. Multi-Level Minimization

2. Compute and for:

Solution.

3. Find the complete satisfiability don’t care set of the network of Figure 11.3 and
write it in tabular form.
Solution.

4. Find the observability don’t care set of in the network of Figure 11.4. Use
the observability don’t care to simplify Draw the resulting network.
Solution. The observability don’t cares for are given by If we simplify

with this don’t care set, we get The resulting network
is shown in Figure 11.5.

11.10. Problems 473

5.

6.

For

compute

Simplify in the network of Figure 11.6. Use both satisfiability and ob-
servability don’t cares. Apply the heuristic minimization method to two-level
minimization. Draw the simplified network.
Solution. The observability don’t care set for is We
see that in order to relate these conditions to the inputs of we need the
satisfiability don’t cares due to These are given by

We now put our on-set and don’t care set in cubical form:

474 Chapter 11. Multi-Level Minimization

We can see that the only cube of the on-set can be expanded in the direction,
yielding The resulting modified network is shown in Figure 11.7. Notice
that we could have immediately recognized that is not useful in the simpli-
fication of and we could have dropped it before attempting simplification.

7. For the circuit shown in Figure 11.8

(a)

(b)

(c)

(d)

compute the entire SDC set and present it in tableau form;

compute and using the method of Boolean differences;

show how and can each be reduced to single literal covers using their
respective observability don’t cares;

give the expressions for in terms of primary inputs before and after the
minimizations you performed in part

Chapter 12

Automatic Test Generation for
Combinational Circuits

12.1 Introduction

The yield of a manufacturing process is the fraction of fault-free products. The yield
of IC fabrication processes varies widely and is sometimes lower than 50%. In similar
cases, less than one in two fabricated circuits is functioning properly. If DL is the
defect level, i.e., the fraction of defective parts after testing, Y is the yield, and T is
the fault coverage of the test (1 for a perfect test and 0 for a totally ineffective test),
then it can be shown that, under some simplifying assumptions,

For a yield of 50% and a coverage of 90%, this formula gives a defect level of 6.7%,
which is much larger than what is normally acceptable (hundreds of parts per million).
Testing is therefore essential to insure the quality of a product and tests must be of
high quality.

There are two fundamental methods of testing a circuit:

Functional testing;

structural testing.

In functional testing, few or no assumptions are made on the failure mechanisms and
the possible faults. Moreover, in pure functional testing, no assumptions are made on
the structure of the circuit under test (CUT). Functional testing, as the name implies,
is concerned with verifying that the CUT performs as expected in most (ideally all)
situations. Structural testing, on the other hand, is based on an assumed fault set.
It consists of verifying whether any of the faults in the set is actually present in the
CUT. The faults that are considered are alterations of the structure of a fault-free
circuit, hence the knowledge of the structure of the CUT is essential in this form of
test.

In the following we concentrate on structural testing of combinational circuits.
We choose structural testing over functional testing, because it is better at generating

475

476 Chapter 12. Automatic Test Generation for Combinational Circuits

high-quality tests. We limit ourselves to combinational circuits to keep our present-
ation simple. However, in so doing we shall be able to examine many important
concepts that apply to sequential testing as well. Finally, we shall consider circuits
composed of simple gates (NAND, NOR, AND, etc.). This assumption is also made
for the sake of simplicity. We shall see how to generate a test for a given fault and
we shall see how test generation relates to logic optimization.

12.2 Faults and Fault Models

Faults in electronic circuits may be due to many different failure mechanisms, e.g.,
shorts, defective soldering, wrong value of the transistor threshold voltage. At the
logic level one tries to give an abstract representation of the effects of a fault on the
behavior of a circuit. In the case represented in Figure 12.1, the short between the
input lead of the inverter and ground causes the input to be stuck at the value 0. The
short-circuit is thus represented at the logic level as a stuck-at-0 fault at the input of
the inverter.

There are many possible fault models, of which the single stuck-at-0/1 fault model
is the most commonly used. Not all faults can be modeled as stuck-at faults. However,
a good test for stuck-at faults usually detects many faults of other types too. When
the single stuck-at fault model is used, the faults are single gate terminals stuck at
either 0 or 1. Notice that more than two faults are defined for a single wire, if the
wire drives multiple gates. This is illustrated in Figure 12.2. The faults on the stem
are distinguished from the faults on the branches of the fan-out tree. Because of this,
the total number of faults is 2N, where N is the number of gate terminals. However,

12.2. Faults and Fault Models 477

the number of faults to be actually considered can be reduced thanks to the following
definition.

Definition 12.2.1 Let and be two faults of a circuit C. Let F be the function
performed by C when no fault is present. Let and be the functions performed
by C in the presence of and respectively. Then faults and are equivalent
if and only if

If faults are equivalent, it is sufficient to generate a test for one of them, in order
to cover all of them. The two typical examples of equivalent faults are given in
Figure 12.3. In the example to the left, we see that all stuck-at-0 faults at the terminals
of an AND gate are equivalent. Suppose that a stuck-at-0 fault is present at one
input of the AND gate and that we cannot observe the faulty input directly (it is not
a primary output). As a result of the fault, the output is forced to 0. Since we do
not observe the faulty input, we cannot tell whether the fault is on the input or the
output of the gate. In the example to the right, we see that, if there is no fanout, the
faults at the output of the NAND gate are equivalent to the faults at the input of the
inverter.

In the case of a two-input OR gate, the three stuck-at-1 faults are equivalent. The
three stuck-at-0 faults, on the other hand, are not equivalent. In general, finding all
pairs of equivalent faults is difficult. However, applying the two criteria illustrated
in the previous examples is straightforward and identifies most equivalent faults. We
call the process of identifying equivalent faults fault collapsing, and we shall assume
in the sequel that fault collapsing is performed prior to test generation.

It is obviously possible to consider multiple stuck-at faults. A multiple stuck-at
fault consists of the simultaneous presence of several single stuck-at faults. The main
problem with multiple faults is their number. Given M possible fault sites, there are

multiple stuck-at faults. In the following we only consider single faults.
We conclude this section with two additional remarks on fault equivalence. First,

the faults on the stem of a fanout tree are not equivalent, in general, to the faults on
the branches. This is why we consider them separately. Second, there is a special
case that deserves consideration. Suppose that fault is such that it does not alter
the behavior of the circuit; that is, Then such a fault is untestable or
undetectable. We sometimes call an untestable stuck-at fault redundant, because it is
always associated with a redundancy (redundant gate or connection) in the circuit1.

1Note that a connection may be redundant with respect to the logical operation of the Boolean
network, and yet be critical to the performance of the gate (see Figure 12.23 on Page 491)

478 Chapter 12. Automatic Test Generation for Combinational Circuits

12.3 Automatic Test Generation

In this section we present a procedure to generate a test for a given stuck-at fault
in a combinational circuit. A test for a stuck-at fault in a combinational circuit is
simply an assignment of zeroes and ones to the primary inputs of the circuit that
causes different outputs in the good and in the faulty circuits. Such an assignment
is called an input vector or vector, for short. There are many methods to generate
tests for combinational circuits. Some of them are called algebraic, because are based
on the algebraic manipulation of the expressions representing the functions of the
circuits. Other methods, including the one that we shall examine, are called topological
because they deal with the gates and their interconnections, i.e., with the topology
of the circuit. Topological methods are based on intuitive concepts and can be very
efficient. All methods are referred to as ATPG methods, where ATPG stands for
Automatic Test Pattern Generation.

12.3.1 Excitation and Sensitization

Consider the simple circuit if Figure 12.4. Suppose we want a test for the stuck-at-1
fault on input It is clear that must be 0 in our test. If not, the output of G1
would not depend on the presence of the fault. The general form of this elementary
observation is the following: A test must excite the fault, that is, must cause the value
complementary to the faulty value to appear at the fault site.

Proceeding in our example, let us consider what would happen if we set to 0:
The output of G1 would be 1 regardless of the other input. Once again, we would not
be able to detect the fault. Hence, must be set to 1. By a similar argument, must
be set to 0. The only test for our fault is thus 101. The assignment sensitized
the output of G1 to the value on Similarly, the assignment sensitizes the
output of G2 to the value on Together, the two assignments create a sensitized
path that connects the fault site to the output of the circuit. A sensitized path is a
sequence of gates such that their outputs are sensitized to the presence of the fault.

In general, a test for a fault must sensitize at least one path from the fault site
to one of the primary outputs of the circuit. We can therefore divide test generation
in two tasks: Excite the fault and propagate it to the outputs by sensitizing one or
more paths.

Consider now the circuit of Figure 12.5 and suppose that we want to generate a
test for the stuck-at-0 fault on This time the excitation condition requires that
be 1 in the fault-free circuit. However, is not a primary input and we must work

12.3. Automatic Test Generation 479

our way backwards. In this simple example, we easily see that our goal of setting
to 1 can be achieved in several ways. We can set either or to 0, or both.

The sensitization of a path to the output requires Also in this case, we
have to proceed backwards until we find primary inputs. We find that is
the only assignment that produces In conclusion, we have found three possible
tests for our fault: 0011, 0111, and 1011.

In general we shall be content of finding one test only, but in this example we
want to emphasize that there may be several tests for one fault. In this case, we found
multiple excitation conditions and a unique sensitization condition. It is possible to
have multiple sensitization conditions as well.

The other important remark on this example is that in general, the excitation and
sensitization conditions give us assignments to internal nodes of the circuits and we
have to derive suitable primary input assignments that will produce those internal
values. This may not be always possible, as illustrated by the next example. Let
us consider the stuck-at-1 fault on the input of G2 driven by in Figure 12.6. The
fault is excited if and only if However, the sensitization of G2 requires
which in turn implies Hence the two requirements are contradicting. We
conclude that there is no test for our fault.

Two important remarks are in order here. First, the circuit of Figure 12.6 is
redundant. One can easily verify that equals 0 identically. It is a general truth that
an untestable stuck-at fault corresponds to a redundancy in the circuit. If a

480 Chapter 12. Automatic Test Generation for Combinational Circuits

fault is untestable at node then replacing by the constant value will not change
the behavior of the circuit. Otherwise there would be a test. The circuit after the
replacement is simpler than the original one. The connection between redundancy and
untestable faults will be discussed in Section 12.4. Notice that the stuck-at-1 fault on
the stem of is also untestable, while the stuck-at-1 on the input of G1 connected to

is testable.

The second remark is that the conflicting requirements on the value of in our
example derived from the fact that we reached through two different paths. It is
true in general that such a condition may occur only in the presence of nodes with
multiple fanout (in this case itself). More specifically, the trouble is caused by paths
that have a common source (e.g.,) and a common sink (in this case gate G2). This
situation is given the name of reconvergent fanout. It is safe to say that reconvergent
fanout is the root of all evil, as far as test generation is concerned.

Not all conflicts indicate that a fault is untestable. We have seen that sometimes
excitation and sensitization conditions may be satisfied in different ways. If at some
point we make an arbitrary decision between two choices and later come to a conflict,
we have to return to the point where we made the choice and try the alternative.
Consider, for instance, the circuit of Figure 12.7. The excitation conditions give

Sensitization requires Looking at G3, we see that there are two
ways of achieving that. Suppose we initially choose to set to 1. In order to get a
1 on we need a 0 on This conflicts with the previous requirement that be 1.
This conflict, however, does not indicate that the fault is untestable. It just says that
we cannot achieve sensitization by setting to 1. We have to reverse our decision
and try We then succeed and 111 is our test. Returning on one’s step and
reversing a previous choice is called backtracking.

Even though in this case it was apparent that was a better choice, on larger
circuits it may be difficult to avoid wrong choices that have to be reversed. Indeed,
the difference between various algorithms for test generation often lies in their abilities
at guessing the right choice and avoiding as much backtracking as possible.

We conclude this section by recalling some useful facts and introducing some
notation. AND, OR, NAND, and NOR gates have a controlling value. The controlling
value is the value that, when present on at least one input, forces the output to a
known value (the controlled value). For instance, the controlling value for AND and

12.3. Automatic Test Generation 481

NAND gates is 0. For OR and NOR gates is 1. For negative gates (NAND and NOR)
the controlled value is the complement of the controlling value. For AND and OR, it
is the same.

The complement of the controlling value of a gate is the non-controlling value.
At this point of our discussion, it should be clear that if we want to sensitize a
path through given inputs of a gate, we must set all the other inputs—called the
side inputs—to non controlling values. For instance, if we want to sensitize a path
through one input of a three-input NAND gate, we must set the remaining two inputs
to one. If we want to sensitize two paths through a three-input NOR gate, we must
set the remaining input to 0.

Notice that XOR and XNOR gates do not have controlling values. Instead, it is
important to realize that we can only have an odd number of inputs sensitized, if we
want the output to be sensitized. This is because the output of a XOR or XNOR will
always change in response to a single change in the inputs. However, two changes
‘cancel out.’ Familiarity with these simple facts will help in the next section.

12.3.2 A Simple Test Generation Algorithm

We have seen that the key idea in generating test is to generate a difference between
the good and the faulty circuit and then propagate it to the primary outputs by
creating one or more sensitized paths. The values of the good circuit and the faulty
circuit at the nodes along a sensitized path are complementary. This will be indicated
by 1/0 or 0/1, where the first value is the one of the fault-free circuit. The use of these
compound values is illustrated in Figure 12.8. The values 0/0 and 1/1 are simply
indicated by 0 and 1, respectively. We can see that the only sensitized path in this
circuit (the same as in Figure 12.7) originates at node and reaches the output
through gate G4. We also see that, when 111 is applied to the inputs, the fault-free
circuit outputs a 1, whereas the faulty circuit produces a 0.

In the literature, the symbols D and are used to indicate 1/0 and 0/1, respect-
ively. Indeed, the first complete algorithm for test generation, the D-algorithm,
owes its name to the use of these symbols. D stands for defect.

We are now ready to delineate a simple algorithm for test generation. The inputs
to the algorithm are a description of the circuit and a single stuck-at fault. The output
is a test if one exists, or the indication that the fault is untestable.

482 Chapter 12. Automatic Test Generation for Combinational Circuits

The algorithm initializes all the lines in the circuit to unassigned and then builds
the test by assigning values to the lines that are required for excitation and sensit-
ization and to the lines that drive them, if they are not primary inputs. We shall
use X to indicate unassigned, and 0, 1, 1/0, and 0/1 for the possible assigned val-
ues. An element whose output is unassigned and such that one of its inputs carries
a compound value 1/0 or 0/1 is said to belong to the frontier. The frontier tells us
how far the symptoms of the fault have been propagated. An element whose output
has been assigned, but whose assigned inputs do not imply the output is said to be
unjustified. Examples of frontier and unjustified elements are given in Figure 12.9,
where a fragment of a circuit is shown. The output of G2 is implied by the 0 on
one of its inputs; however, the output of G1 is not implied by its inputs: Hence, G1
is unjustified. Before we proceed to detail the algorithm, we need to discuss several
preliminaries.

From the examples, we have seen that we may have to choose among several
options and possibly retract from some choices because of conflicts. When dealing
with large circuits we may often make choices that lead to other choices, which in
turn lead to other choices. We need a data structure that will allow us to keep track
of these multiple, cascaded choices and will guide us in an orderly examination of all
options.

Such a data structure is the so-called decision tree, a binary tree, similar to the
search tree of the covering problem. Every node corresponds to a signal for which
a choice is made. Along the arcs, we annotate the signals whose values are implied
by the choices made. As a first example, let us revisit the example of Figure 12.7.
The decision tree has a single non-terminal node and is shown in Figure 12.10. The
values along the arc going into the node are uniquely determined by the excitation
and sensitization conditions. As discussed in the previous section, we are faced with
a choice2 when we try to find an input assignment that will cause to be 0. If we
decide to try first, we create a node labeled and an arc out of it labeled 1.

When we try to propagate backwards the implications of this choice, we imme-
diately find that there is a conflict for We then abandon this path in the decision
tree and backtrack to the last decision node—in our case the only one. This time we
set because we know that there is no test for This assignment forces

2When we discuss implications later on, we shall see that in this example we do not really need
to make choices.

12.3. Automatic Test Generation 483

to 1, because otherwise We realize at this point that we have achieved all our
objectives: The frontier has been propagated to a primary output and no unjustified
lines are left. Hence, we have a test and we terminate.

Notice that in this case we may have claimed termination because we had propag-
ated the fault symptoms to one output and all primary inputs had been assigned
values. However, in general, the requirement that no unjustified lines are left is suf-
ficient. This less stringent requirement will sometimes generate tests where some
primary inputs and possibly some internal lines are left unassigned.

12.3.3 Implications and Backtracking

The parallel between the search tree of the covering problem of Section 4.7 and the
decision tree of the ATPG algorithm is not just superficial. In the covering problem,
it is important that at each node the matrix be maximally simplified by applying
all reduction techniques. When generating a test, it is important to find as many
possible implications of the choices made along the path leading to the current node.
In both cases, the objective is to minimize the number of nodes of the tree that are
actually visited, or, almost equivalently, the number of backtracks. Indeed, in the
ATPG literature, the number of backtracks performed by a given algorithm on a
given example is one of the most important figures of merit.

The importance of carrying out as many implications as possible is illustrated in
Figure 12.11. By just using the implications of the excitation condition (in the
fault-free circuit), we derive a complete test. Indeed, implies and

484 Chapter 12. Automatic Test Generation for Combinational Circuits

implies Finally, and jointly imply
Another interesting example of implications is shown in Figure 12.12. The fault

excitation condition implies This in turn implies As a result, the
frontier is empty—there are no frontier elements—and we conclude that there is no
test for the given fault.

A third, more complex, example of implications is illustrated in Figure 12.13.
There we can see that all possible sensitized paths must go through gate G8. Those
inputs to G8 that are not reachable from the fault site (and) must have non-
controlling values for sensitization to occur. This dictates in this case
Combined with these implications further give and
Finally, and are implied to be 1/0 and is seen to be 0/1. We have found a
test without any backtrack (actually, without even a choice)3. The condition we have
exploited at gate G8 is called unique sensitization.

A further analogy between ATPG and the covering problem is given by the choice
of the splitting variables. In both cases a judicious choice may substantially reduce

3The test 1111 creates two sensitized paths in this case. Since this test is the only one for the fault
(it was obtained without any choice), there is no test with a single sensitized path for this example.
Indeed the circuit of Figure 12.13 was used to show that an algorithm that tries to sensitize only
one path at the time may not work.

12.3. Automatic Test Generation 485

the amount of work. For instance, in the case of the example of Figure 12.7, splitting
on rather than would have saved one backtrack. We shall return to this issue in
more detail, after presenting the outline of our test generation algorithm.

1.

2.

3.

4.

5.

6.

Apply the fault excitation condition.

Perform the implications of the last assignment.

If the fault symptoms have reached at least one primary output, justify the
remaining unjustified lines. If justification fails, backtrack and go to Step 2.
Otherwise, exit: A test has been found.

If the frontier is empty, backtrack and go to Step 2.

If the frontier consists of one gate only, perform the resulting implications (this
is discussed later) and go to Step 2.

Choose one signal that is not reachable from the fault site and assign to it either
1 or 0. Create a corresponding node in the decision tree. Go to Step 2.

In Step 6, the restriction on what signals may be chosen is imposed so that we can
restrict the chosen values to 0 and 1. If the selected line were reachable from the fault
site, it might have a 0/1 or 1/0 value. We want to avoid this possibility, to keep the
algorithm simple.

In Step 5, the case of a frontier composed of a single element is considered. In this
case, all unassigned inputs are set to non-controlling values. Clearly, a controlling
value on one of those inputs would stop the propagation. Furthermore, a compound
value on one of those inputs is not possible, because there the frontier contains only
one gate. Indeed, there should be an input to the only frontier element that is X and
is reachable from the fault site. However, along the path there should be a frontier
element for this to happen.

Let us now see how the algorithm is executed for the circuit of Figure 12.14.
Initially, all lines are set to X.

1.

2.

(Step 1) The excitation condition causes to be 1/0.

(Step 2) Performing the implications of we find

486 Chapter 12. Automatic Test Generation for Combinational Circuits

3.

4.

5.

6.

7.

8.

9.

(Step 6) The frontier consists of two elements: G2 and G3. We choose
and create a node in the decision tree for this choice. Our goal, in selecting

is to move the frontier forward (to G4) by allowing propagation of the
fault symptoms through G2.

(Step 2) The implication of is

(Step 6) The frontier now contains G3 and G4. We choose and create a
node in the decision tree.

(Step 2) The implications of are and

(Step 4) The frontier is now empty. We need to backtrack. This is done by
reversing the last choice, i.e., by returning and to the X value and by setting

(Step 2) The implications of are and

(Step 3) The fault symptoms have reached the output and no unjustified lines
remain. A test has been generated (110) and the algorithm returns.

The decision tree generated for this example is shown in Figure 12.15.

12.3.4 Choice of the Decision Variables

Let us now return to the discussion of the choice of a line at Step 6 of the algorithm.
The way we formulated the algorithm, we need only comply with the restriction that
the line we choose is not reachable from the fault site. This, of course, leaves several
strategies possible. We briefly review some of them. In the problems, we shall rely
on our intuition to select an appropriate line to be assigned.

We first notice that our formulation of the algorithm allows us to select both
internal lines and primary inputs. We can also select both unjustified and unassigned
elements. General strategies can be obtained by restricting our choices according to

12.3. Automatic Test Generation 487

these two dichotomies. For instance, in the original D-algorithm we always select
an unassigned input to a frontier gate, until we reach a primary output, or until the
frontier disappear. Then we always select an unassigned input to an unjustified gate.
This strategy is simple, but sometimes inefficient.

In the PODEM algorithm, we always select a primary input. The process whereby
we identify a suitable primary input (one that is likely to advance our cause), and,
the value to assign to it, is called backtrace4. The backtrace procedure is given an
objective—an internal line and a desired value for it—and it traces a path backwards
in the circuit (whence the name) until an input is found. The initial objective of
backtrace is chosen so as to drive the frontier forward.

Figure 12.16 illustrates an example of backtrace. The initial objective is to set
When the procedure goes through an AND gate having 0 as objective, it selects

one input of the gate and a value of 0 as new objective. Suppose that is chosen. The
new current objective is and the next step is to backtrace through the inverter.
There is no choice involved in this case and the resulting current objective is
When the procedure goes though a NOR gate having 1 as objective, it selects one
input and a value of 0 as new objective. In our case, let us suppose is chosen.
Since is a primary input, the procedure terminates. Notice that does not
suffice to guarantee and that the choices made by the backtrace procedure are
not entered in the decision tree. Backtrace is just a heuristic that identifies a primary
input that may help reaching the objective. At every step of backtrace, the choice of
which input to follow is again heuristic.

In the FAN algorithm, we select either fanout points or head-lines. A head-line is a
line such that all the gates preceding it do not fan out. The selection process is based
on a procedure called multiple backtrace that is an enhancement of the backtrace
procedure used by PODEM. We do not go into the details of how multiple backtrace
works; we just give a rationale for FAN’s approach. We said that reconvergent fan-out
is what makes testing difficult. We choose fan-out points for assignments in the hope
to expose possible conflicting assignments that may occur at those lines early. On
the other hand, we can always justify a head-line to either 0 or 1, because it is the
output of a sub-circuit without fan-out. Hence we want to determine what value the
head-line should have first and postpone the actual justification to when we know we
have a test.

4Not to be confused with backtracking.

488 Chapter 12. Automatic Test Generation for Combinational Circuits

12.3.5 Putting the Pieces Together

Now that we have an algorithm to generate a test for a given fault, we can address
the issue of how this algorithm is used to generate a complete test for a circuit. Given
a circuit, we generate all possible stuck at faults and then identify equivalent faults.
Only one fault, called representative, is chosen from each set of equivalent faults. The
circuit and the list of representative faults are then passed to the ATPG program.
The ATPG program works in conjunction with a fault simulator. A fault simulator
is a program that determines which faults from a given list are detected by a given
set of tests.

The ATPG program picks one fault from the list and tries to generate a test for it.
If no tests exists, the fault is marked untestable and removed from the list. If a test
is found, it is passed to the fault simulator. The point of doing that is that the test
generated for one fault may actually detect many other faults: The fault simulator is
run and all detected faults are removed from the list. Then the ATPG program picks
one of the remaining faults and iterates the process until no faults are found.

There are two advantages in coupling a test generator to a fault simulator. First,
time can be saved, because simulating faults is faster than generating tests. Second,
the number of tests generated is kept small, by not adding tests devised for faults
that are already covered.

In practice, several techniques complement the basic scheme we just outlined.
For instance, it is common practice to apply a set of randomly generated tests to a
circuit. The cost of generating (pseudo) random tests is negligible, and they cover
many faults. It is also common practice to set limits on the number of backtracks
performed for a given fault. Faults that require too many backtracks are aborted.
This is done to prevent a few faults from degrading performance substantially. Finally,
we can mention that the number of tests can be reduced, without affecting the fault
coverage, by applying reverse fault simulation. Once a set of tests has been created,
it is simulated in reverse order of generation. Those tests that provide no additional
coverage are dropped5.

As a final remark to this section, it is important to emphasize that test generation
is computationally expensive. For large circuits, the requirements of test must be
taken into account at the design stage. Various techniques have been developed that
go under the collective name of Design for Testability.

12.4 Redundancy Removal

Our ATPG algorithm can be used to simplify circuits by a method called redundancy
removal. The method is based on the observation we made earlier that an untestable
stuck-at fault signals the redundancy of the circuit. If, for instance, the stuck-at-1
fault at a connection is untestable, it means that that connection can be replaced by
a constant 1, without changing the function performed by the circuit. Redundancy
removal can be applied to the circuit either before or after technology mapping. In the

It is also possible to minimize the number of tests by setting up a covering problem. The
columns correspond to the tests and the rows to the faults.

5

12.4. Redundancy Removal 489

latter case, removing redundancies may produce a circuit that is no longer mapped.
Rework is then required.

Let us consider the circuit of Figure 12.17. If we try to generate a test for
stuck-at-1, we find that are necessary to excite the fault. Also, unique
sensitization dictates One easily sees that and imply
but and imply Hence, the fault is untestable6. Therefore, the
lowest input to G5 is removed (which is equivalent to fixing it to 1) and G4 is removed
from the circuit, because it feeds no gates. The result is illustrated in Figure 12.18.

In general, if an input line of a gate is fixed to a non-controlling value, the input
is removed. If the input line is fixed to a controlling value, the gate is removed and
its output is fixed to the controlled value of the gate. This constant value is then
propagated. Suppose a constant 0 is applied to one input of a two-input NOR gate.
The gate simplifies to an inverter. A similar consideration applies to NAND gates.
If after redundancy removal, the circuit being simplified contains pairs of cascaded
inverters, those pairs can be removed.

The next example illustrates an important point. In general, multiple redund-
ancies cannot be removed simultaneously. One can easily verify that both input
stuck-at-1 faults for the circuit of Figure 12.19 are untestable. It is equally clear that
we cannot replace both inputs by constant values. In general, some redundancies can
be eliminated simultaneously because they do not interfere, but the removal process
remains intrinsically serial. This is illustrated also by the following example. There
is only one untestable fault in the circuit of Figure 12.20, namely the input of G1 con-
nected to stuck-at-0. However, when the corresponding redundancy is removed, the
circuit of Figure 12.21 is obtained, which contains an untestable fault (stuck-at-1).
The result of removing also this redundancy is shown in Figure 12.22.

6 Notice that G4 implements the consensus term of the terms implemented by G2 and G3.

490 Chapter 12. Automatic Test Generation for Combinational Circuits

12.4. Redundancy Removal 491

It should also be noticed that the result of redundancy removal depends in general
on the order in which redundancies are removed. To see why this is true, consider
a two-level circuit implementing the complete sum for a function. Initially, all gates
corresponding to non-essential primes will be (individually) redundant. However, as
soon as some redundancies are removed, other redundancies will disappear, as primes
become relatively essential.

Redundancy removal has the desirable property that it increases the testability of
the circuit, and it reduces the area. In general, it also improves the performance of
the circuit, by reducing the capacitive loads and the number of series transistors in
the gates. There are, however, counterexamples to this behavior, the most famous of
which is the carry-skip (or carry-bypass) adder. A 2-bit carry-skip adder is shown in
Figure 12.23. The stuck-at-0 fault on the control input of the multiplexer is untestable.
However, if the redundancy is removed, the circuit is transformed into a 2-bit ripple-
carry adder—a slower circuit. Specialized techniques exist to address this kind of
problems.

We conclude this section with a short comparison of redundancy removal to an-
other optimization technique for multi-level circuits that we have examined. If we
consider a gate as a node of a Boolean network, we see that eliminating a redundancy
corresponds to expanding a cube of the node cover in the input part or dropping a
cube from the cover. Therefore, there is a strong similarity between what the don’t
care based method does and what redundancy removal does. A moment’s thought
should suffice to see that the implications used in redundancy removal and the sat-
isfiability don’t cares are strictly related. If, for instance, implies in
a circuit, then is a cube of the satisfiability don’t care for that circuit and vice
versa. Redundancy removal actually works with an implicit representation of the
don’t cares.

The other observation that stems from seeing redundancy removal as a series of
expansions and reductions is that it is possible to generalize redundancy removal to
a method that allows moves that temporarily increase the cost of the network. This

492 Chapter 12. Automatic Test Generation for Combinational Circuits

idea is analogous to the one used in heuristic minimization and the algorithm that is
based on it has been aptly called multi-level tautology.

12.5 Notes

General books on the subject of testing digital circuits are [56, 42, 233, 107, 199, 1, 96].
The more recent books also cover design for testability. Seminal papers on testing
combinational circuits are [219, 232, 248, 116, 108, 247]. The test generation proced-
ure that we have presented in Section 12.3 freely combines features of the D-algorithm
[232], PODEM [116], and FAN [108]. For a sophisticated use of implications, the reader
is referred to [247]. An interesting method, proposed in [166]; it is now implemented
in SIS. The connection between redundancy, don’t cares, and implications has been
studied in [30, 15, 34, 127]. Multi-level tautology is discussed in [126]. T he issue of
redundancy versus delay is considered in [160, 192, 242]. The subject of testing two-
level combinational circuits, specifically PLAs, has received considerable attention
circa 1980. A review can be found in [254]. The reader interested in sequential test-
ing and redundancy removal is referred to [139, 185, 58, 110, 205, 61, 62, 57, 65, 64].

12.6 Summary

In this chapter, we have completed the brief, introductory treatment that was given
in Section 1.4.4. Three main topics were covered. First, we gave, in Section 12.2, a
summary of the various faults models in widespread usage at the time of writing.

Second, our main focus was the treatment of automatic test pattern generation,
in Section 12.3. After treating issues of excitation and sensitization (especially the
method of unique sensitization). This led us naturally to the subject of logical im-
plications. (Section 12.3.3).

Third, we discussed at some length how the basic tools of the ATPG trade could
be used to perform redundancy removal (Section 12.4) on a given multilevel logic
circuit. This operation leaves the Boolean network in a locally optimum “prime and
irredundant” state.

12.7 Problems

1. Divide the single stuck-at faults defined for the circuit of Figure 12.24 into sets
of equivalent fault, by applying the two simple criteria described in Section 12.2.

Solution. We have five inputs, six two-input gates and one one-input gate.
This gives us a total of single stuck-at faults. Here is
the list divided in sets of equivalent faults. There are 18 such sets.

1 s_a_0 on gate G7, output
2 s_a_1 on gate G7, output
s_a_0 on gate G7, input k
s_a_0 on gate G6, output

Class
Class s_a_0 on gate G7, input j

s_a_0 on gate G5, output

12.7. Problems 493

Class

Class

Class

Class

Class
Class
Class

Class
Class
Class
Class

Class
Class
Class
Class
Class

3 s_a_1 on gate G7, input j
s_a_0 on gate G5, input f
s_a_0 on gate G1, output

4 s_a_1 on gate G7, input k
s_a_0 on gate G6, input i
s_a_0 on gate G4, output
s_a_0 on input e

5 s_a_1 on gate G5, input f
s_a_0 on gate G1, input a
s_a_0 on input a

6 s_a_1 on gate G5, input h
s_a_0 on gate G3, input g
s_a_0 on gate G2, output

7 s_a_1 on gate G1, input a
8 s_a_1 on gate G1, input b
9 s_a_1 on gate G3, input g
s_a_0 on gate G2, input b
s_a_0 on input c

10 s_a_1 on gate G3, input d
11 s_a_1 on gate G2, input b
12 s_a_1 on gate G2, input c
13 s_a_1 on gate G6, input i

s_a_0 on gate G4, input d
14 s_a_1 on gate G6, input e
15 s_a_0 on input b
16 s_a_1 on input b
17 s_a_0 on input d
18 s_a_1 on input d

s_a_1 on gate G5, output
s_a_0 on gate G5, input h
s_a_0 on gate G3, output
s_a_1 on gate G6, output
s_a_0 on gate G6, input e
s_a_1 on gate G4, input d

s_a_1 on gate G1, output
s_a_0 on gate G1, input b

s_a_1 on gate G3, output
s_a_0 on gate G3, input d

s_a_1 on input a

s_a_1 on gate G2, output
s_a_0 on gate G2, input c

s_a_1 on input c
s_a_1 on gate G4, output

s_a_1 on input e

494 Chapter 12. Automatic Test Generation for Combinational Circuits

2. For the circuit of Figure 12.24, find a test for the fault stuck-at-0. Draw the
decision tree. Use all possible implications at every step.
Solution. A possible decision tree is shown in Figure 12.25. Since is unas-
signed when we find a test, we have actually found two tests: 11110 and 11111.
The entire set of faults is:

This entire set could be obtained by continuing the exploration of the decision
tree after the first successful leaf is reached. This is not done often in practice,
because of the extra cost. Notice the important role of unique sensitization in
this problem.

3.

4.

5.

6.

Repeat the previous problem for the fault stuck-at-0.

Repeat the previous problem for the fault stuck-at-1.

For the circuit of Figure 12.26, find a test for the fault stuck-at-1. Draw the
decision tree. Use all possible implications at every step.
Solution. A possible decision tree is shown in Figure 12.27. In this case the
set of all tests is given by:

For the circuit of Figure 12.28 find a test for the fault stuck-at-0. Draw the
decision tree. Use all possible implications at every step.

12.7. Problems 495

496 Chapter 12. Automatic Test Generation for Combinational Circuits

7.

8.

9.

Repeat Problem 6 for the stuck-at-1 fault on the input of Gate G4 connected
to

For the circuit of Figure 12.29, generate a test for the fault “ stuck-at-0.” Show
the decision tree.
Solution. A decision tree is shown in Figure 12.30. The resulting test is 101.
One can verify that 111 is the only other test for “ stuck-at-0.”

Apply redundancy removal to the simplification of the circuit of Figure 12.26.
Give the faults that you choose as targets and draw the intermediate circuits that
you obtain. For every run of the test generation algorithm, draw the decision
tree. [Hint: the function implemented by the circuit is]
Solution. Since the function does not depend on and as suggested by the
hint, we first direct our attention to faults that explicitly remove that depend-
ency. Since feeds a NAND gate, we choose stuck-at-0, to maximize the
impact. When we try to generate a test for stuck-at-0, we get the following
assignments by excitation and unique sensitization:

However, implies a contradiction. Hence, stuck-at-0 is untestable
as expected. The simplified circuit is shown in Figure 12.31. We now consider

stuck-at-1 in the simplified circuit. Imposing we get

12.7. Problems 497

10.

Hence, the frontier is empty and the fault is untestable.
After removal of the redundancy, the top circuit of Figure 12.32 is obtained.
Finally, when the string of two inverters is removed, the lower circuit in Fig-
ure 12.32 is obtained. As anticipated, it implements

Apply redundancy removal to the simplification of the circuit of Figure 12.33.
Give the faults that you choose as targets and draw the intermediate circuits that
you obtain. For every run of the test generation algorithm, draw the decision
tree.

498 Chapter 12. Automatic Test Generation for Combinational Circuits

11. This problem is on redundancy removal and specifically on the dependence of
the final result on the order in which redundancies are removed. Verify, by
trying to generate tests for them, that, in the circuit of Figure 12.34, the faults:

(a)

(b)

stuck-at-1;

input of Gate 2 connected to stuck-at-1;

are untestable. Prove also that the fault “input of Gate 5 connected to
stuck-at-0” is testable, by generating a test for it. Verify that after removing
the redundancy corresponding to “input of Gate 2 connected to stuck-at-1,”
the fault “input of Gate 5 connected to stuck-at-0” remains testable. Finally,
verify that the removal of the redundancy corresponding to the fault “ stuck-
at-1” makes the fault “input of Gate 5 connected to stuck-at-0” untestable.
Draw the circuit that results from removing that redundancy as well. For all
test generation attempts, show the decision tree.

Solution. We try to generate a test for “ stuck-at-1.” We get by implication:

Hence, the implications cause the frontier to disappear and no test exists. The
decision tree has no decision nodes in this case.

We now try to generate a test for “input of Gate 2 connected to stuck-at-1.”
We get by implication:

Also on this case the frontier disappears. Hence, there is no test and the decision
tree has no decision nodes.

12.7. Problems 499

Let us now consider “input of Gate 5 connected to stuck-at-0.” We get by
implication:

The test 0111 is found and the fault is therefore testable. The circuit obtained
by removing the redundancy associated with “input of Gate 2 connected to

stuck-at-1” is shown in Figure 12.35. We can verify that “input of Gate 5
connected to stuck-at-0” is still testable. Indeed, if we try to generate a test,
we get:

Hence, 0111 is still a test. One can also verify that stuck-at-1” is now
testable. Indeed, by implication we obtain:

Let us now consider the effect of removing stuck-at-1.” The resulting circuit
is shown in Figure 12.36. If we try to generate a test for “input of Gate 5
connected to stuck-at-0,” we now get:

500 Chapter 12. Automatic Test Generation for Combinational Circuits

12.7. Problems 501

12.

Hence the frontier disappears and there is no test. The circuit is redundant and
can be simplified as in Figure 12.37.

Run the atpg command of SIS on the circuit of Figure 12.28. Use the-d option
and write the test patterns to a file. Include your BLIF file, the output of the

command, and the tests generated.
Solution. The BLIF file looks like the following:

.model pb12.4

.inputs a b c d e

.outputs n

.names c d f
11 0
.names a c g
110
.names b f h
11 0
.names e f i
11 0
.names d j
1 0
.names g h k
110
.names i j l
110
.names k m
1 0
.names l m n
110
.end

The session with SIS goes like this:

sis-3>atpg -d pb12.4.pat
18 total faults
RTG: covered 17 remaining 1
17 faults covered by RTG
S_A_1: NODE: i INPUT: f
Redundant
faults: 18 tested: 17 aborted: 0 redundant: 1

Finally, these are the patterns generated by the atpg command.

atpg test patterns for pb12.4
. inputs a b c d e
00100

502 Chapter 12. Automatic Test Generation for Combinational Circuits

11011
01110
00101
10010
10110
01100

What tests are generated depends on the order of the gates in the BLIF file.

13. Run the red_removalcommand of SIS on the circuit of Figure 12.33. Use the -d
option. Include your BLIF file and the output of the red_removal -d command.
Also include the output produced by p and ps before and after redundancy
removal. Compare your result with that obtained in Problem 10.
Solution. This is theBLIF file for the circuit of Figure 12.28.

.model pb12.5

.inputs a b c

.outputs h j

.names b c d
11 0
.names b e
1 0
.names a d f
110
.names a d g
11 0
.names g i
1 0
.names e f h
110
.names f i j
11 0
.end

The session with SIS goes like this:

sis-1>rl pb12.5.blif
sis-2>ps
pb12.5 pi= 3 po= 2 nodes= 7 latches= 0
lits(sop)= 12 lits(fac)= 12
sis-3>p

{h} = e’ + f'
{j}= f’ + i’
d = b’ + c’
e = b’
f = a’ + d’

12.7. Problems 503

g = a’ + d'
i = g'

sis-4>red_removal -d
18 total faults
RTG: covered 13 remaining 5
13 faults covered by RTG
S_A_0: NODE: {j} INPUT: f
Redundant
9 total faults
S_A_0: NODE: d INPUT: b
Redundant
5 total faults
S_A_0: NODE: c OUTPUT
Redundant
S_A_1: NODE: c OUTPUT
Redundant
0 faults remaining after using previous tests
sis-5>ps
pb12.5 pi= 3 po= 2 nodes= 2 latches= 0
lits(sop)= 2 lits(fac)= 2
sis-6>p

{h} = a + b
{j}=-1-

We see that the result is consistent with the one obtained in Problem 10. The
only difference is that SIS has performed a sweep command.

Chapter 13

Technology Mapping

In the most used paradigm for logic synthesis, after a technology independent optim-
ization of a set of logic equations, the result has to be mapped into a feasible circuit
which is optimal with respect to area and satisfies a maximum critical-path delay.
In this paradigm, the role of technology mapping is to finish the synthesis of the cir-
cuit by performing the final gate selection from a particular library. The algorithms
chosen for technology mapping are simplified because they can be constrained by the
structure of the equations produced by the technology-independent optimizations. It
is not the role of technology mapping to change the structure of the circuit radically,
for example, by finding common subexpressions between two or more parts of the
circuit. Likewise, it is not the role of technology mapping to reduce the number of
levels of logic along the critical path. The role of technology mapping is the actual
gate choice to implement the equations—for example, choosing the fastest gates along
the critical path, and using the most area-efficient combination of gates off the critical
path.

There are several characteristics which are desirable for a technology mapping
algorithm. These are:

1.

2.

3.

4.

Adapt easily to different libraries.

Support irregular collections of logic functions.

Handle detailed technology-dependent cost functions.

Efficient execution time.

First, it is desirable that the technology mapping algorithm be able to adapt to a
variety of different libraries with minimal effort. This is difficult because many librar-
ies have an irregular collection of logic functions available as primitives. An algorithm
which depends on characteristics of a particular library (for example, availability of
a complete set of CMOS and-or-invert gates) is of limited use. Also, an algorithm
which is geared to a subset of the gates in a library is limited in its optimization
potential. To achieve the goal of library adaptability, an approach to technology
mapping should be user-programmable. The user should be able to provide new gates
to the technology mapper without understanding its detailed operation, and these
gates should be used effectively.

505

506 Chapter 13. Technology Mapping

During technology mapping, simple cost functions such as transistor count or
levels of logic will not provide high-quality circuits. Instead, it is necessary to consider
more detailed models for the cost of a gate in the actual target technology. This
detailed level of modeling, coupled with gates which have irregular area and delay
cost functions, complicates the technology mapping process.

Therefore, to provide high-quality results for different libraries and circuits, a
technology mapping algorithm must make few assumptions about the relative cost
and performance of the gates in a library, and must be prepared to model accurately
the cost functions which are optimized.

While it is always desirable to have an efficient algorithm, generally the execution
performance of the technology mapping algorithm is less important than the quality
of the final result. This is true for the last optimization of a circuit before fabrication.
However, the steps of technology-independent optimization and technology mapping
are iterated by a logic synthesis system if the performance goals are not initially met.
Technology mapping in this case operates as an accurate predictor for the quality
of a technology-independent representation and these results are fed back to the
technology-independent optimization to improve the final implementation. Therefore,
it is desirable that a technology mapping algorithm support a fast execution mode as
well as a slower mode which provides higher-quality optimization.

The two basic approaches followed for technology mapping are:

1.

2.

rule-based techniques [14, 149, 83];

graph covering techniques [39, 158].

Rule-based techniques have the same structure as rule-based techniques for tech-
nology independent optimization. It is important to mention that a rule-based system
can combine the technology independent and technology mapping stages providing, in
principle, a more global view of logic optimization. However, the nature of rule-based
systems is to perform local optimization, thus yielding an interesting trade-off with
the paradigm that separates the two stages but offers a more global view of each of
the stages.

Even though they suffer from flexibility and problems of large execution time,
local transformation techniques have demonstrated the ability to produce high-quality
results.

In this chapter, we focus on the graph covering based techniques. These tech-
niques match well the requirements listed above.

13.1 Graph Covering and Technology Mapping

The approach of using Directed-Acyclic-Graph (DAG)-covering for technology map-
ping in logic synthesis was first proposed by K. Keutzer in the program DAGON [158].
His thesis was that technology mapping for logic synthesis is closely related to the
problem of code generation for programming language compilers, and hence the ad-
vanced techniques that have been developed for code generation should be applicable
to technology mapping.

13.2. Choice of Base Functions 507

The problem of code generation in a compiler is to map a set of expressions onto a
set of machine instructions for the target machine. Extensive research into compilers
has led to efficient ways of formulating and solving this problem [4]. Each machine
instruction is decomposed into a directed acyclic graph (DAG) of atomic operations,
called a pattern. Each instruction has a cost associated with it which represents the
relative cost, in execution time, of choosing that instruction. The sequence of high-
level expressions is also represented by a DAG of atomic operations. The optimal
code generation problem is equivalent to finding an optimum cost cover of the subject
DAG by the pattern DAGs.

A similar approach is taken for the technology mapping problem. A set of base
functions is chosen such as a two-input NAND-gate and an inverter. The logic equa-
tions are optimized in a technology-independent manner and are then converted into
a graph where each node is restricted to one of the base functions. This graph is
called the subject graph. The logic function for each library gate is also represented
by a graph where each node is restricted to one of the base functions. Each graph
for a library gate is called a pattern graph. For any given logic function there are
many different representations of the function using the base function set. Therefore,
each library gate is represented by many different pattern graphs.

The technology mapping problem is viewed as the optimization problem of find-
ing a minimum cost covering of the subject graph by choosing from the collection of
pattern graphs for all gates in the library. A cover is a collection of pattern graphs
such that every node of the subject graph is contained in one (or more) of the pattern
graphs. The cover is further constrained so that each input required by a pattern
graph is actually an output of some other pattern graph. For area optimization, the
cost of the cover is defined as the sum of the areas of the individual gates. For min-
imum delay optimization, the cost of a cover is defined as the critical path delay of the
resulting circuit using an appropriate delay model. For the more typical optimization
problem of optimizing for minimum area under a given timing constraint, any cover
which results in a circuit with critical path delay greater than that allowed for any
output is considered an illegal cover; thus, the minimum-area legal cover is the op-
timization goal. If there are no legal covers, the cover of minimum delay is considered
the desired solution.

The critical parts of the procedure are the selection of the set of base functions
and the optimization technique used to solve the covering problem.

13.2 Choice of Base Functions

The choice of a set of base functions is arbitrary as long as the base function set is
functionally complete.1 However, this decision does influence the number of patterns
needed to represent the gates in a library and the quality of the solution provided by
DAG-covering. The goal is to find the base-function set which provides the highest
level of optimization and produces a small set of patterns. In SIS [249, 236], a base-
function set of a two-input NAND-gate and an inverter is used. This choice is motiv-

1A functionally complete set is a set of functions that can express any other function. For in-
stance, two-input ANDs, ORs, plus inverters allow one to represent any switching function. Another
example is provided by two-input NANDs (or NORs) and inverters.

508 Chapter 13. Technology Mapping

ated by the fact that this set can be proved [236] to be as good in terms of optimization
potential as any other set containing two-input NOR-, AND-, OR-gates, and invert-
ers.

When both a NAND-gate and NOR-gate are used in the base-function set, the
number of patterns to represent some functions increases. For example, using both a
two-input NAND-gate and a two-input NOR-gate, a large number of pattern graphs
are required for all representations of the gate Variations such as
three NAND-gates (with inverters), three NOR-gates (with inverters), and other rep-
resentations using both NAND-gates and NOR-gates are possible patterns for this
gate. Using only the two-input NAND-gate reduces the number of patterns to one.

The covering paradigm implies that each node of the subject graph is covered by
a pattern, but cannot be split and partially covered by two patterns. Therefore, the
granularity of the base function set affects the optimization potential. Thus, a fine
resolution base-function set allows for more covers, and hence better quality solutions.
However, this has a price—more patterns are required to represent the logic function
for some gates. In DAGON, two-input, three-input, and four-input NAND-gates are
used as the base-function set. With this approach, the logic function

requires only one pattern—a tree of five four-input NAND-gates. Representing all
patterns for this same function using two-input NAND-gates and inverters requires
eighteen patterns. However, given the possibility for improved optimization, the finer
resolution base function appears to be the better approach.

13.3 Creating the Subject Graph

A logic network has many representations as graphs of components from the base-
function set and each representation is a potential subject graph for DAG-covering.
Each starting point leads to a graph cover of possibly different cost. Even if the cover-
ing problem is solved exactly, every one of these starting points should be considered
for an optimum solution.

Therefore, heuristics are used to find an optimal form for the subject graph. As
mentioned in the introduction, these optimizations include algebraic decomposition
and Boolean simplification techniques using technology-independent cost functions.
The number of nodes in the subject graph is used as a technology-independent estim-
ate of the area of the circuit. The total number of literals in SOP form is effectively
the same area estimator. The longest path from an input to an output in the subject
graph is used to estimate the delay of the circuit.

The goal of technology-independent optimization should be to find a represent-
ation for the circuit which provides a good starting point for DAG-covering. The
optimized equations are then transformed into two-input NAND-gate and inverter
form in a straightforward manner. The sum of products of each node is translated
into an AND-OR circuit. Each gate is realized as a balanced tree of two-input NAND
gates and inverters. Different decompositions give different results, in general.

13.4. The DAG-Covering Problem 509

13.4 The DAG-Covering Problem

DAG-covering-by-DAGs is NP-hard even with only three pattern graphs (inverter,
two-input NAND, two-input NOR) and if each subject graph node has no more than
two incoming and outgoing edges [159].

An exact covering algorithm has been proposed in [236] based on a branch-and-
bound procedure. However, the complexity of the algorithm is so large that only
trivial problems could be solved. Anyway, it is debatable whether we need to solve
this problem exactly, since the subject graph is already the result of a heuristic
mapping and hence does not reflect the most general optimization problem that needs
to be solved. Hence, a more effective approach would be to develop a heuristic DAG-
covering algorithm. However, this is still an open problem (L. Lavagno at Berkeley
has experimented with a number of heuristic with some degree of success).

An alternative approach to the DAG-covering problem is to simplify it so that the
simplified problem could be solved effectively (for example in linear time). Of course,
the quality of the final solution will depend on the reduction of the search space.

Keutzer in DAGON [158] has proposed reducing the DAG-covering problem to a
set of tree-covering-by-trees problems. His procedure is based on the following steps:

1.

2.

3.

Partition the subject graph into trees;

Cover each tree optimally;

Piece the tree-covers into a cover for the subject graph.

This approach has been proven quite effective. In particular, it can be proven
that, if the cost function is additive such as area, the tree-covering problem can be
solved with a linear complexity algorithm based on dynamic programming. DAGON

is a technology mapping program written by Keutzer on top of the tree manipulation
tool TWIG [260], which was originally developed to provide a flexible framework for
building efficient algorithms for tree matching and for solving the tree-covering prob-
lem. TWIG uses the Aho-Corasick [2] string-matching algorithm for matching and the
Aho-Johnson [4] dynamic programming algorithm for optimal tree covering.

Its weak points are in the loss of global view due to the step of partitioning
into trees. Covers across partition boundaries are not allowed. It is interesting to
see whether different partitioning algorithms can substantially improve the results
obtained with this procedure.

The approach followed in MIS [39, 239] is patterned after DAGON. To improve
the quality of the solution, additional covers are exposed by replacing any straight
interconnection between gates with a pair of inverters. The search space is augmented
substantially at little cost. The recent work of Lehman and Watanabe takes this idea
one (or more) steps further and expands the search space to include logic reachable
by local algebraic resynthesis [172].

13.5 Tree Covering by Dynamic Programming

In this section we address the problem of optimally covering a tree circuit by means
of tree patterns. A tree circuit is a single output circuit in which each gate, except the

510 Chapter 13. Technology Mapping

output, feeds exactly one other gate. We assume that the circuit, called the subject
graph, is made of two-input NAND gates and inverters. The tree patterns are also
small circuits made of two-input NAND gates and inverters; they represent the cells
of the library.

Not all circuits of interest are trees; indeed, most are not. However, we can easily
decompose a DAG into trees, by splitting it at the fanout points. This is illustrated
in Figure 13.1. The circuit on the left is not a tree, because there is one gate that
feeds two other gates. By splitting at the fanout point, we get the three trees on
the right of Figure 13.1. Each tree is mapped individually and the solution for the
original circuit is obtained by connecting the solutions for the three trees. From this
point on, therefore, we concentrate on mapping a tree.

The mapping procedure consists of two phases:

pattern matching; and

tree covering.

In the matching phases we find all possible ways in which a library pattern may cover
some nodes of the subject tree. To fix ideas, let us consider the library of Figure 13.6
and the third tree from Figure 13.1(b). In the library of Figure 13.6, every gate is
represented by a single pattern. (In general this is not true.) Also, for each gate, the
cost is given. For instance, the cost of the three-input NAND gate is 3.

For each node, we see if we can match any of the library patterns. Clearly, all
NAND gates in the subject tree are matched by the pattern for the two-input NAND
gate, and all inverters in the subject tree are matched by the pattern for the inverter.
For the output node, however, there we can also match the three-input NAND gate.

In general, after the matching phase, each node will have a (non-empty) set of
matches. The set is not empty, because the library includes the inverter and the
two-input NAND gate. The second phase—covering—selects one optimum matching
for each node.

13.5. Tree Covering by Dynamic Programming 511

Let us consider our example, which is reproduced, for convenience, in Figure 13.2.
If we select the three-input NAND gate to match the output node, then we cover gates

and besides hence, we do not need matches for and If, on the other hand,
we choose the two-input NAND gate, then we need to select gates to cover and

We see that some nodes that appear in the subject tree may become, in the final
mapped circuit, internal to a gate.

We now present a systematic approach to selecting the matchings that follows
a strategy called dynamic programming2. This approach guarantees a cover of min-
imum cost and is very efficient. Its run time grows linearly with the size of the subject
tree and with the number of library patterns.

We start from the primary inputs and we consider the gates in some topological
order. A topological order is any order in which no gate precedes one of its fanouts.
For instance, and are two topological orders for the example of
Figure 13.2; we shall follow

For each gate, we determine the optimum cover of the subtree rooted at the gate
output. in our example, gates and pose no problem, because they have only
one possible match. The cost of a cover is determined as the cost of the match at
the node, plus the optimum costs of the covers of the nodes that are inputs to the
match. The optimum covers of the primary inputs have cost 0, of course. Applying
this rule, the optimum cost for and is 2. For we have to sum the cost of the
inverter matching to the optimum cost of covering which has been determined
to be 2. Hence, we get the value of 3 shown in Figure 13.2. Notice the importance of
proceeding in topological order: It guarantees that the optimum cost of the inputs is
known when a match is considered.

Let us consider now the choice of the match for the primary output of the circuit.
Since there are two possible matches, we shall compute two solutions and choose the
best. If we choose the two-input NAND to cover then we need to implement covers
for the outputs of and We already know that an optimum cover for has a cost
of 2 and an optimum cover for has a cost of 3. Since the two-input NAND gate has
a cost of 2, we get a minimum cost of 7, if this match is chosen.

If, on the other hand, we select the three-input NAND gate as match, we only

2Dynamic Programming is a strategy for optimization that can be applied to many problems
[18].

512 Chapter 13. Technology Mapping

need to implement a cover for at an optimum cost of 2. Since the three-input gate
costs 3, we get a total cost of 5. This latter solution is obviously better than the
previous one and is therefore chosen as the optimum cover for the primary output.

In summary, for each node we consider all possible matches. A given match
requires some nodes as inputs. Because we proceed in topological order, we know
the optimum cost of covering those nodes; hence we can compute the optimum cost,
under the assumption of choosing the given match. If we do the same for all possible
match of a node, we compute an optimum cover for that node, by simply selecting
one of the matches that give minimum cost. We finally proceed backwards from the
primary output, and collect all the optimum matches for the nodes that need to be
implemented in the optimum cover of the output.

This strategy does not work for DAGs in general, because there may be conflicting
requirements on how to map a node that fans out to several gates.

13.6 Decomposition

In this section we discuss, with the help of examples, issues related to the decompos-
ition of the Boolean network and the library gates into two-input NAND gates and
inverters.

First of all, we notice that the decomposition is not unique. In Figure 13.3, we
show that a four-input NAND gate may be described in two different ways. The
pattern on the left is a balanced tree: The four inputs are equally split between the
two gates at the first level. The pattern on the right, on the other hand, corresponds
to an unbalanced tree: One input comes from the left and three inputs come from
the right. The pattern where one input comes from the right and three inputs come
from the left is isomorphic to this one and is not considered a distinct pattern for
the purpose of matching. It is the matching procedure that takes care of trying all
possible permutations of the inputs.

The non uniqueness of the decomposition forces us to consider all distinct (up to
isomorphism) pattern for the library gates. For the circuit to be mapped, however, we

13.7. Delay Optimization and Graph Covering 513

only consider one decomposition. There are, in general, too many decompositions for
a large circuit to make it possible for one to examine all of them in a reasonable time.
We should be aware, however, that this restriction to one specific decomposition may
lead to suboptimal mappings3.

Consider Figure 13.4. The circuit to be mapped is given in Part (a). A first
decomposition is shown in Part (b). When we apply tree covering with the library
of Figure 13.6, we get back the same circuit of Part (a), which costs 5. If we use the
decomposition of Part (c), however, we get the mapped circuit of Part (d), which has
a cost of 4.

The example of Figure 13.4 also illustrates another aspect of decomposition. If we
allow three-input NAND gates in the subject trees, besides two-input NAND gates
and inverters, then the circuit of Part (a) is already in decomposed form. Therefore,
the cheaper mapping cannot be found.

13.7 Delay Optimization and Graph Covering

Synthesis for performance is increasingly important due to the push towards electronic
systems with more optimal performance. Thus, a solution for technology mapping
must consider timing in a direct way. If the delay were independent of the gate driven
(i.e., a constant load model is used), then a dynamic programming algorithm of linear
complexity could be applied as well. Thus far, even though this model is not accurate
by any means, technology mapping for delay was carried out under this assumption.
The results obtained were reasonable but by no means optimal. In fact, for a general
delay cost function, the optimal cover depends of the forward part of the tree and
hence the dynamic programming algorithm cannot be applied as is.

Rudell [236] has suggested a method to solve the minimum delay optimization
problem for trees and the constrained-by-timing area optimization problem. His idea
is based on a binning technique for the pin-loads as follows.

It is important here to keep in mind that the optimality that we have claimed for the tree
covering procedure applies only with respect to a given decomposition of the subject graph and to
the covering of the trees.

3

514 Chapter 13. Technology Mapping

1.

2.

3.

4.

5.

The unique set of pin-loads is determined and binning functions are constructed;

Obtain an array of solutions at each node of the subject tree, one per bin;

The arrival time for each cover for each load value is computed;

At each input of the cover, the optimal solution for driving the corresponding
pin-load is selected.

The final cover is chosen based on the external load at the root of the tree.

The cover obtained by this technique is a minimum delay cover. Note that this
approach subsumes all technology mapping related problems such as phase assignment
and discrete sizing. It can also be generalized to solve the problem of technology
mapping for optimum area cover with delay-constraints.

The complexity of the algorithm is still linear but it depends on the number of
load-pins and arrival-time bins. For a reasonable library, we can have as many as
100 different pin-loads and 10,000 arrival bins (.01 ns for 100ns) yielding 1,000,000
solutions per node! Hence to make this algorithm practical, Rudell devised an ap-
proximate technique that uses only a fixed number of bins. A clustering algorithm
provides a good value for the bins so that the approximation due to the insufficient
number of bins is minimized. A straight-forward implementation of the algorithm
runs only four times slower than the standard algorithm.

13.8 Notes

The ruled base approach to technology mapping was pioneered by [83]. The tree cov-
ering approach was first proposed in [158]. Rudell [236] formulated technology map-
ping as a binate covering problem. The usual approach to matching disregards don’t
care information. A more accurate approach is provided by Boolean matching [180].
An interesting recent development combines the decomposition and mapping phases
[172]. Technology mapping for performance is addressed in [261]. After technology
mapping, gate resizing may reduce area, delay, and power [100, 13]. Technology
mapping for Field Programmable Gate Arrays (FPGAs) is covered in [203, 103].

13.9 Summary

Technology mapping transforms an abstract representation of a multilevel logic circuit
into an interconnection of gates from a library. We have examined the approach to
technology mapping that uses tree covering. The Boolean network is first decomposed
in simple gates—typically NANDs and inverters: The result is called the subject
graph. Matching then identifies all possible ways in which a gate of the subject graph
can be implemented by a gate in the library. The best combination of matches is then
chosen by a dynamic programming approach. Dynamic programming solves exactly
only the covering part of the problem. Therefore, the results are of good quality, but
no global optimality is guaranteed.

13.10. Problems 515

13.10 Problems

1. Draw the patterns, in terms of two-input NAND gates and inverters, for a
four-input NOR gate and for a three-input OR gate.
Solution. There are two patterns for the four-input NOR gate and one pattern
for the three-input OR gate. They are shown in Figure 13.5.

2. In this problem you will technology map the circuit shown in Figure 13.7, min-
imizing for area. The library to use is

In both parts you should illustrate the way you decomposed the library cells
into pattern trees, show the best cost solution trace through the subject tree
and show your final cover for the circuit.

(a)

(b)

Use the dynamic programming method we used in class with no modific-
ations. Your total cost should be no more than 14.

Modify the basic method we used by inserting a pair of series inverters into
every wire that does not already have an inverter at one end (including the
root and leaves of the subject tree). You will need to modify your library
slightly by

i. adding a dummy FEEDTHRU element, which matches two series in-
verters and has a cost of 0;

516 Chapter 13. Technology Mapping

ii. inserting an inverter pair into each internal wire of your pattern trees
that does not already touch an inverter.

(c)

(d)

Perform dynamic programming with these modifications and you should
obtain a better solution. Since the modified method requires that you
synthesize some nodes (i.e., between inverter pairs) which were not in the
original circuit, it is desirable that you use as few of these as possible. This
can be achieved by choosing the solution which uses the fewest synthesized
nodes when comparing solutions of equal cost.

The depth of a tree mapping is the length of the longest path, measured
in terms of library cells, from a leaf to the root of the subject tree. What
is the depth of each of your solutions in parts (a) and (b)? (Observe that
the FEEDTHRU has a depth of 0, since it is not a physical cell).

In a few sentences, explain how you could modify the costing scheme of
(a) to minimize the depth of the solution.

Solution.

(a)

(b)

(c)

(d)

See Figures 13.6–13.8. In particular, in Figure 13.7, all possible matches
are shown for all gates. For each match, the optimal cost is given. Those
matches that give sub-optimal costs are struck out.

See Figures 13.9–13.11.

We can see by inspection of the final covers that the solutions to parts (a)
and (b) both have depth 4.

To calculate depth instead of area, we look at all the fanin nodes to the
current match and use the longest. To this value we add the depth of the
current match (usually 1, although the FEEDTHRU has depth 0). This

13.10. Problems 517

518 Chapter 13. Technology Mapping

13.10. Problems 519

becomes the cost of the current solution. Of all the possible solutions at
the node under computation, we keep the best one. This guarantees that
every tree has minimum depth.

3.

4.

5.

Apply the dynamic programming algorithm to the network of Figure 13.12. Do
not insert inverter pairs. Use the library of Figure 13.6.

Apply the dynamic programming algorithm to the network of Figure 13.13.
First, solve the problem without inserting inverter pairs and using the library
of Figure 13.6. Then insert inverter pairs and use the library of Figure 13.9.
Draw the two solutions and say which one has lower cost.

This problem is on using SIS for technology mapping. You have to describe
the library of Figure 13.6 in the GENLIB format and then use this library to
map the circuit of Figure 13.13. For documentation on the GENLIB format,
read ~fabio/sis1.1/sis/doc/genlib.doc.There are also several examples
of libraries in the standard SIS library (In a typical installation, the path for
user fabio would be ~fabio/sis1.1/sis/sis_lib).

Use 1 for <input-load> and 999 for <max-load>. Use 1.0 for all block delays
and 0.0 for all fanout delays.

520 Chapter 13. Technology Mapping

Describe the circuit of Figure 13.13 in BLIF format, using one .names directive
for each gate. Check the solution obtained by SIS with the map command against
your solution of Problem 4. Include your library and circuit descriptions, as
well as the output from SIS.
Solution. The library is:

GATE zero 0 0=CONST0;
GATE one 0 0=CONST1;
GATE inv 1 0=!a;
GATE nand2 2 0=!(a*b);
GATE nand3 3 0=!(a*b*c);
GATE nor2 2 0=!(a+b);
GATE oai21 3 0=!((a+b)*c);

PIN * INV 1 999 1.0 0.0 1.0 0.0
PIN * INV 1 999 1.0 0.0 1.0 0.0
PIN * INV 1 999 1.0 0.0 1.0 0.0
PIN * INV 1 999 1.0 0.0 1.0 0.0
PIN * INV 1 999 1.0 0.0 1.0 0.0

The blif description of the circuit is:

.model pb11.4

.inputs a b c d

.outputs f

.names a abar
0 1
.names b bbar
0 1
.names c cbar
0 1
.names d dbar
0 1
.names abar bbar n1
11 0
.names cbar dbar n2
110
.names n1 n2 n3
11 0
.names n3 f
0 1
.end

The output of SIS should look like this:

sis-1>rl; pb11.4.blif
sis-2>rlib pb11-4.genlib
sis-3>map
WARNING: uses as primary input drive the value (0.00,0.00)
WARNING: uses as primary input arrival the value (0.00,0.00)
WARNING: uses as primary input max load limit the value (999.00)
WARNING: uses as primary output required the value (0.00,0.00)
WARNING: uses as primary output load the value 1.00

13.10. Problems 521

sis-4>p
n1 = a' b'
n2 = c' d'
{f} =n1'n2'

sis-5>print_gate
n1 nor2 2.00
n2 nor2 2.00
{f} nor2 2.00

Note that SIS automatically inserts the inverter pairs.

Appendix A

ASCII Codes

Figure A.1 gives the table of the hexadecimal ASCII codes. For example, the code for
the escape character “esc” is 0x1b, whose decimal representation is

and whose binary representation is

523

Appendix B

Supplementary Problems

1. Prove that for a Boolean function

(a)

(b)

(c)

[Hint: Use the first two results to prove the third.]

2.

3.

4.

5.

Find two simplified formulae for the Boolean difference that are
valid when is positive and negative unate in respectively.

Find the complete sum for the following function:

Apply the recursive algorithm based on

For the following completely specified function,

find a SOP with the minimum number of product terms, by applying the re-
cursive algorithm based on

to find the complete sum and then solving the covering problem.

For the following cover, verify the validity of the expansion from to
by setting up and solving a tautology problem.

525

Appendix B. Supplementary Problems526

6.

7.

8.

9.

In solving the tautology problem, apply the properties of unate functions whenever
possible.

Check whether the following function is the tautology.

Use the properties of unate functions whenever possible. When splitting, choose
the variables in alphabetic order, and test the positive cofactor first.

Find all kernels and co-kernels for the following function.

For each kernel, indicate its level.

Apply the QUICK_FACTOR algorithm to:

Assume that ONE_LEVEL-0_KERNEL selects literals appearing more than
once in alphabetic order: For instance, if both and appear more than once,

is chosen. Between and is chosen.

Factor the following function with the QUICK_FACTOR algorithm.

Assume that ONE_LEVEL-0_KERNEL always chooses among the literals ap-
pearing more than one cube the first in alphabetic order.

527

10.

11.

12.

13.

14.

Apply the extraction algorithm to:

Specifically, show the decomposition of and (Assume that ONE_LEVEL-
0_KERNEL selects literals appearing more than once in alphabetic order: For
instance, if both and appear more than once, is chosen. Between and

is chosen.)

Indicate what resubstitution are made. Use 0 as threshold for elimination. Fi-
nally show the resulting Boolean network, indicating for each node its function.

Compute all kernels and co-kernels for the following function,

using the cube intersection matrix. For each pair kernel/co-kernel, write its
level.

Apply the extraction algorithm to:

Specifically, show the decomposition of and (Assume that ONE_LEVEL-
0_KERNEL selects literals appearing more than once in alphabetic order: For
instance, if both and appear more than once, is chosen. Between and

is chosen.)

Indicate what resubstitution are made. Use 0 as threshold for elimination. Fi-
nally show the resulting Boolean network, indicating for each node its function.

Find the ODCs of in the circuit shown in figure B.1. Use the Boolean differ-
ence method. Notice that the standard procedure cannot be applied, because

depends on

Simplify in the network of Figure B.2. Use both satisfiability and observab-
ility don’t cares. Apply the heuristic minimization method to two-level minim-
ization. Draw the simplified network.

528 Appendix B. Supplementary Problems

529

15.

16.

17.

18.

19.

For the Boolean network of Figure B.3, simplify to Use observability
and satisfiability don’t cares. Solve the simplification problem by the heuristic
two-level minimization procedure.

Apply the dynamic programming algorithm to the network of Figure B.4. First,
solve the problem without inserting inverter pairs and using the library of Fig-
ure 13.6. Then insert inverter pairs and use the library of Figure 13.9. Draw
the two solutions and say which one has lower cost.

Apply the dynamic programming algorithm to the network of Figure B.5.

Use the library of Figure 13.6. Do not insert inverter pairs. Show the trace of
the algorithm and draw your final solution.

Apply the dynamic programming algorithm to the technology mapping of the
network of Figure B.6. Use the library of Figure 13.6. Do not insert inverter
pairs. Show the trace of the algorithm and draw your final solution.

For the circuit of Figure B.7,

consider the two faults:

Stuck-at-1 on input of Gate 3;

530 Appendix B. Supplementary Problems

531

Stuck-at-1 on input of Gate 5.

Do the following:

(a)

(b)

(c)

(d)

Prove that exactly one of the two faults is untestable, by trying to generate
tests for both.

Remove the redundancy associated with the redundant fault. Draw the
resulting circuit.

Prove the the fault that was testable has now become untestable.

Draw the final simplified circuit.

In all test generation attempts, detail your work, by giving all the implications
and choices (if any) that you need to reach your result.

For the circuit of Figure B.8. consider the two stuck-at-1 faults:20.

21.

On the input of connected to

on the input of connected to

Which of the two faults is untestable? Explain. After the redundancy associated
to the untestable fault is removed, is it possible to test for the other fault? If
not, simplify the circuit accordingly.

Apply redundancy removal to the circuit of Figure B.9. Target the following
faults:

(a)

(b)

stuck-at-0 on the input to gate connected to

stuck-at-0 on the output of

For each fault show the decision tree. (It may have no nodes.) Draw the
simplified circuit.

532 Appendix B. Supplementary Problems

22.

23.

Solve the following covering problem by the branch-and-bound algorithm. As-
sume unit costs for all the columns.

When splitting, choose the longest column and, in case of tie, choose the column
of lowest index. Also, when two columns dominate each other, retain the one
with the lower index.

Draw the search tree, and indicate for each node the lower bound.

Solve the following binate covering problem. Assume unit costs for all columns.

Say whether the given matrix is cyclic. Split initially on Draw the search
tree and detail your work.

533

24.

25.

26.

Solve the following binate covering problem by the branch-and-bound algorithm.
Assume unit costs for all the columns.

When splitting, choose the longest column and, in case of tie, choose the column
of lowest index. Also, when two columns dominate each other, retain the one
with the lower index.

Draw the search tree, and indicate for each node the lower bound.

Suppose that a binate covering problem P is given, defined by:

with (Each is a sum of literals.)

Consider a relaxed problem defined by:

with In words, is composed of the first clauses of F.
Prove that:

(a)

(b)

The cost of an optimum solution to is a lower bound to the cost of the
optimum solution to P.
If an optimum solution to is also a solution to P, then it is optimum for
P.

[Hint:]

For the following flow table, draw the compatibility table.

534 Appendix B. Supplementary Problems

27.

28.

29.

30.

For the flow table of Problem 26, compute the maximal compatibles. [Hint:
You should find five maximal compatibles.]

For the flow table of Problem 26, compute the prime compatibles and their class
sets. [Hint: You should find thirteen prime compatibles.]

Find a minimum cost solution for the flow table of Problem 26 that is composed
of maximal compatibles only. To do so, set up and solve a binate covering
problem. In this problem, you are not required to build the reduced table.
Give the details of your solution of the binate covering problem. [Hint: The
matrix is 13 × 5.]

For the flow table of Problem 26, here replicated, find the reduced flow table
corresponding to the solution:

31.

32.

33.

For the following flow table, find a cover with the minimum number of states.
Specifically, draw the compatibility table, compute the maximal and the prime
compatibles, set up and solve the binate covering problem, and build the reduced
table.

For the following flow table, find a cover with the minimum number of states.
Specifically, draw the compatibility table, compute the maximal and the prime
compatibles, set up and solve the binate covering problem, and build the reduced
table.

Apply the fan-out oriented algorithm of Mustang to the state encoding of the
FSM described by the following flow table. Use minimum-length codes.

535

Show the matrices S and Z, the attraction graph, the ranking of the states for
the embedding algorithm, and the codes derived by the embedding algorithm.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

ABRAMOVICI, M., BREUER, M. A., AND FRIEDMAN, A. D. Digital Systems Testing
and Testable Design. Computer Science Press, New York, 1990.

AHO, A., AND CORASICK, M. Efficient string matching: an aid to bibliographic
search. Communications of the ACM (June 1975), 333–340.

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. Data Structures and Algorithms.
Addison-Wesley, Reading, MA, 1983.

AHO, A. V., AND JOHNSON, S. C. Optimal code generation for expression trees.
Journal of the Association for Computing Machinery (July 1976), 488–501.

AKERS, S. B. Binary decision diagrams. IEEE Transactions on Computers C-27, 6
(June 1978), 509–516.

ARMSTRONG, D. B. A programmed algorithm for assigning internal codes to se-
quential machines. IEEE Transactions on Electronic Computers EC-11 (Aug. 1962),
466–472.

ASHAR, P., GHOSH, A., DEVADAS, S., AND NEWTON, A. R. Implicit state transition
graphs: Applications to sequential logic synthesis and test. In Proceedings of the IEEE
International Conference on Computer Aided Design (Santa Clara, CA, Nov. 1990),
pp. 84–87.

AVEDILLO, M. J., QUINTANA, J. M., AND HUERTAS, J. L. New approach to the
state reduction in incompletely specified sequential machines. In IEEE International
Symposium on Circuits and Systems (New Orleans, LA, May 1990), pp. 440–443.

AVEDILLO, M. J., QUINTANA, J. M., AND HUERTAS, J. L. A new method for the
state reduction of incompletely specified sequential machines. In Proceedings of the
European Design Automation Conference (Glasgow, UK, Mar. 1990), pp. 552–556.

AZIZ, A., BALARIN, F., BRAYTON, R. K., CHENG, S.-T., HOJATI, R., KRISHNAN,
S. C., RANJAN, R. K., SANGIOVANNI-VINCENTELLI, A., AND SHIPLE, T. HSIS: A
BDD-based environment for formal verification. In Proceedings of the Design Auto-
mation Conference (San Diego, CA, June 1994).

BAHAR, R. I., FROHM, E. A., GAONA, C. M., HACHTEL, G. D., MACII, E.,
PARDO, A., AND SOMENZI, F. Algebraic decision diagrams and their applications. In
Proceedings of the International Conference on Computer-Aided Design (Santa Clara,
CA, Nov. 1993), pp. 188–191.

BAHAR, R. I., FROHM, E. A., GAONA, C. M., HACHTEL, G. D., MACII, E.,
PARDO, A., AND SOMENZI, F. Algebraic decision diagrams and their applications.
Internal report, University of Colorado, Boulder, Apr. 1993.

[10]

[11]

[12]

537

538 BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

BAHAR, R. I., HACHTEL, G. D., MACII, E., AND SOMENZI, F. A symbolic method
to reduce power consumption of circuits containing false paths. In Proceedings of
the International Conference on Computer-Aided Design (San Jose, CA, Nov. 1994),
pp. 368–371.

BARTLETT, K. A weak division approach to multilevel synthesis. Master’s thesis,
University of Colorado, 1986.

BARTLETT, K. A., BRAYTON, R., HACHTEL, G., JACOBY, R., MORRISON, C.,
RUDELL, R., SANGIOVANNI-VINCENTELLI, A., AND WANG, A. Multi-level logic min-
imization using implicit don’t cares. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems CAD-7, 6 (June 1988), 723–740.

BARTLETT, K. A., COHEN, W., DE GEUS, A., AND HACHTEL, G. Synthesis
and optimization of multilevel logic under timing constraints. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems CAD-7, 6 (June 1988),
723–740.

BEARDSLEE, M., KRING, C., MURGAI, R., SAVOJ, H., BRAYTON, R., AND NEW-
TON, A. SLIP: An environment for system level interactive partitioning. In Proceed-
ings of the IEEE International Conference on Computer Aided Design (Nov. 1989),
pp. 280–283.

BELLMAN, R. Dynamic Programming. Princeton University Press, Princeton, NJ,
1957.

BENINI, L., AND DE MICHELI, G. State assignment for low power dissipation. In
Proceedings of the Custom Integrated Circuits Conference (San Diego, CA, May 1994),
pp. 136–140.

BENINI, L., AND DE MICHELI, G. State assignment for low power dissipation. IEEE
Jour. Solid State Circ. (1995). To appear.

BERMAN, C. L., AND TREVILLYAN, L. H. Global flow optimization in automatic
logic design. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 10, 5 (May 1991), 557–564.

BERMAN, L., AND TREVILLYAN, L. A global approach to circuit size reduction. In
Advanced Research in VLSI, 5th MIT Conference (1988), MIT Press, pp. 203–214.

BERN, J., GERGOV, J., MEINEL, C., AND SLOBODOVA, A. Boolean manipulation
with free BDD’s. first experimental results. In Proceedings of the European Conference
on Design Automation (Paris, France, Feb. 1994).

BILLON, J. P., AND MADRE, J. C. Original concepts of PRIAM, an industrial tool
for efficient formal verification of combinational circuits. In The Fusion of Hardware
Design and Verification, G. J. Milne, Ed. Elsevier Science Publishers B.V.(North Hol-
land), 1989, pp. 487–501.

BLAKE, A. Canonical Expressions in Boolean Algebra. PhD thesis, Dept. of Math-
ematics, Univ. of Chicago, 1937.

BOLLIG, B., LÖBBING, M., AND WEGENER, I. Simulated annealing to improve
variable orderings for OBDDs. Presented at the International Workshop on Logic
Synthesis, Granlibakken, CA, May 1995.

BOOLE, G. An Investigation of the Laws of Thought. Walton, London, 1854. (Re-
printed by Dover Books, New York, 1954).

BOOTH, T. L. Sequential Machines and Automata Theory. Wiley, New York, 1967.

BIBLIOGRAPHY 539

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

BRACE, K. S., RUDELL, R. L., AND BRYANT, R. E. Efficient implementation of a
BDD package. In Proceedings of the 27th Design Automation Conference (Orlando,
FL, June 1990), pp. 40–45.

BRAND, D. Redundancy and don’t cares in logic synthesis. IEEE Transactions on
Computers C-32, 10 (Oct. 1983), 947–952.

BRAND, D. Logic synthesis. In NATO ASI on Logic Synthesis and Silicon Compilation
for VLSI, P. Antognetti, G. D. Micheli, and A. Sangiovanni-Vincentelli, Eds. Kluwer,
Dordrecht, The Netherlands, 1987.

BRAYTON, R. Factoring logic functions. IBM Journal of Research and Development
31 (Mar. 1987).

BRAYTON, R., RUDELL, R., SANGIOVANNI-VINCENTELLI, A., AND WANG, A. Multi-
level logic synthesis. Notes for Lectures at Oxford/Berkeley Summer Engineering
Programme, July 1989.

BRAYTON, R., SENTOVICH, E., AND SOMENZI, F. Don’t-cares and global flow ana-
lysis of boolean networks. In Proceedings of the IEEE International Conference on
Computer Aided Design (Santa Clara, CA, Nov. 1988), pp. 98–101.

BRAYTON, R., AND SOMENZI, F. Minimization of boolean relations. In Proc. Int.
Symp. Circ. Syst. (ISCAS-89) (Portland, OR, May 1989), pp. 738–743.

BRAYTON, R. K. Algorithms for multilevel logic synthesis and optimization. In
NATO ASI on Logic Synthesis and Silicon Compilation for VLSI, P. Antognetti, G. D.
Micheli, and A. Sangiovanni-Vincentelli, Eds. Kluwer, Dordrecht, The Netherlands,
1987.

BRAYTON, R. K., HACHTEL, G. D., MCMULLEN, C. T., AND SANGIOVANNI-
VINCENTELLI, A. Logic Minimization Algorithms for VLSI Synthesis. Kluwer Aca-
demic Publishers, Boston, Massachusetts, 1984.

BRAYTON, R. K., AND MCMULLEN, C. The decomposition and factorization of
boolean expressions. In Proceedings of the IEEE International Symposium on Circuits
and Systems (Rome, Italy, May 1982), pp. 49–54.

BRAYTON, R. K., RUDELL, R., SANGIOVANNI-VINCENTELLI, A., AND WANG, A. R.
MIS: A multiple-level interactive logic optimization system. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems CAD-6, 6 (Nov. 1987),
1062–1081.

BRAYTON, R. K., SENTOVICH, E. M., AND SOMENZI, F. Don’t cares and global
flow analysis of boolean circuits. In Proceedings of the IEEE International Conference
on Computer Aided Design (1988), pp. 98–101.

BRAYTON, R. K., AND SOMENZI, F. An exact minimizer for boolean relations. In
Proceedings of the IEEE International Conference on Computer Aided Design (Santa
Clara, CA, Nov. 1989), pp. 316–319.

BREUER, M. A., AND FRIEDMAN, A. D. Diagnosis and Reliable Design of Digital
Systems. Computer Science Press, Woodland Hills, CA, 1976.

BROWN, D. A state-machine synthesizer—SMS. In Proc. 18th Design Automation
Conference (June 1981), pp. 301–304.

BROWN, F. M. Boolean Reasoning: The Logic of Boolean Equations. Kluwer, Boston,
1990.

540 BIBLIOGRAPHY

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

BROWNE, M. C., CLARKE, E. M., DILL, D. L., AND MISHRA, B. Automatic veri-
fication of sequential circuits using temporal logic. IEEE Transactions on Computers
C-35, 12 (Dec. 1986), 1035–1044.

BRYANT, R., AND CHEN, Y.-A. Verification of arithmetic circuits with binary moment
diagrams. In Proceedings of the Design Automation Conference (San Francisco, CA,
June 1995), pp. 535–541.

BRYANT, R. E. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 8 (Aug. 1986), 677–691.

BRYANT, R. E. On the complexity of VLSI implementations and graph representations
of boolean functions with application to integer multiplication. IEEE Transactions on
Computers 40, 2 (Feb. 1991), 205–213.

BURCH, J. R., CLARKE, E. M., LONG, D. E., MCMILLAN, K. L., AND DILL, D. L.
Symbolic model checking for sequential circuit verification. Tech. Rep. CMU-CS-93-
211, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213,
July 1993.

BURCH, J. R., CLARKE, E. M., LONG, D. E., MCMILLAN, K. L., AND DILL,
D. L. Symbolic model checking for sequential circuit verification. IEEE Transactions
on Computer-Aided Design 13, 4 (Apr. 1994), 401–424.

BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L., AND DILL, D. L. Sequen-
tial circuit verification using symbolic model checking. In Proceedings of the Design
Automation Conference (June 1990), pp. 46–51.

BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L., DILL, D. L., AND HWANG,
L. J. Symbolic model checking: states and beyond. In Proceedings of the Fifth
Annual Symposium on Logic in Computer Science (June 1990).

BUTLER, K. M., Ross, D. E., KAPUR, R., AND MERCER, M. R. Heuristics to com-
pute variable orderings for efficient manipulation of ordered binary decision diagrams.
In Proceedings of the Design Automation Conference (San Francisco, CA, June 1991),
pp. 417–420.

CARLSON, S. Introduction to HDL-Based Design Using VHDL. Synopsys Inc., 1991.

CERNY, E., AND MARIN, M. A. An approach to unified methodology of combinational
switching circuits. IEEE Transactions on Computers C-26, 8 (Aug. 1977), 745–756.

CHANG, H. Y., MANNING, E., AND METZE, G. Fault Diagnosis of Digital Systems.
Wiley Interscience, New York, 1970.

CHENG, K.-T. An ATPG-based approach to sequential logic optimization. In Proceed-
ings of the IEEE International Conference on Computer Aided Design (Santa Clara,
CA, Nov. 1991), pp. 372–375.

CHENG, W.-T., AND CHAKRABORTY, T. Gentest—an automatic test-generation
system for sequential circuits. IEEE Computer 22, 4 (Apr. 1989), 43–49.

CHIODO, M., SHIPLE, T. R., SANGIOVANNI-VINCENTELLI, A., AND BRAYTON,
R. K. Automatic reduction in CTL compositional model checking. In Proceedings
of the International Conference on Computer-Aided Design (Santa Clara, CA, Nov.
1992), pp. 172–178.

CHO, H., HACHTEL, G. D., JEONG, S.-W., PLESSIER, B., SCHWARZ, E., AND

SOMENZI, F. ATPG aspects of FSM verification. In Proceedings of the IEEE Inter-
national Conference on Computer Aided Design (Nov. 1990), pp. 134–137.

BIBLIOGRAPHY 541

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

CHO, H., HACHTEL, G. D., AND SOMENZI, F. Fast sequential ATPG based on impli-
cit state enumeration. In Proceedings of the International Test Conference (Nashville,
TN, Oct. 1991), pp. 67–74.

CHO, H., HACHTEL, G. D., AND SOMENZI, F. Redundancy identification and removal
based on implicit state enumeration. In Proceedings of the International Conference
on Computer Design (Cambridge, MA, Oct. 1991), pp. 77–80.

CHO, H., HACHTEL, G. D., AND SOMENZI, F. Redundancy identification/removal
and test generation for sequential circuits using implicit state enumeration. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 12, 7
(July 1993), 935–945.

CHO, H., JEONG, S.-W., SOMENZI, F., AND PIXLEY, C. Multiple observation time
single reference test generation using synchronizing sequences. In Proceedings of the
European Conference on Design Automation (Paris, France, Feb. 1993), pp. 494–498.

CHO, H., AND SOMENZI, F. Sequential logic optimization based on state space decom-
position. In Proceedings of the European Conference on Design Automation (Paris,
France, Feb. 1993), pp. 200–204.

CHOUEKA, Y. Theories of automata on A simplified approach. J. Comput.
Syst. Sci. 8 (1974), 117–141.

CLARKE, E. M., MCMILLAN, K. L., ZHAO, X., FUJITA, M., AND YANG, J. C.-
Y. Spectral transforms for large boolean functions with applications to technology
mapping. In Proceedings of the Design Automation Conference (Dallas, TX, June
1993), pp. 54–60.

COLON-BONET, G., SCHWARZ, E. M., BOSTICK, D. G., HACHTEL, G. D., AND

LIGHTNER, M. R. On optimal extraction of combinational logic and don’t care sets
from hardware description languages. In Proceedings of the IEEE International Con-
ference on Computer Aided Design (Santa Clara, CA, Nov. 1989), pp. 308–311.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. An Introduction to Al-
gorithms. McGraw-Hill, New York, 1990.

COUDERT, O., BERTHET, C., AND MADRE, J. C. Verification of sequential machines
based on symbolic execution. In Automatic Verification Methods for Finite State
Systems, Lecture Notes in Computer Science 407, J. Sifakis, Ed. Springer-Verlag,
1989, pp. 365–373.

COUDERT, O., BERTHET, C., AND MADRE, J. C. Verification of sequential machines
using boolean functional vectors. In Proceedings IFIP International Workshop on
Applied Formal Methods for Correct VLSI Design (Leuven, Belgium, Nov. 1989),
L. Claesen, Ed., pp. 111–128.

COUDERT, O., BERTHET, C., AND MADRE, J. C. Formal boolean manipulations for
the verification of sequential machines. In Proceedings of the European Conference on
Design Automation (Mar. 1990), pp. 57–61.

COUDERT, O., AND MADRE, J. C. A unified framework for the formal verification of
sequential circuits. In Proceedings of the IEEE International Conference on Computer
Aided Design (Nov. 1990), pp. 126–129.

COUDERT, O., AND MADRE, J. C. Symbolic computation of the valid states of a
sequential machine: Algorithms and discussion. In 1991 International Workshop on
Formal Methods in VLSI Design (Miami, FL, Jan. 1991).

542 BIBLIOGRAPHY

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

COUDERT, O., AND MADRE, J. C. Implicit and incremental computation of primes
and essential primes of boolean functions. In Proceedings of the Design Automation
Conference (Anaheim, CA, June 1992), pp. 36–39.

COUDERT, O., AND MADRE, J. C. A new graph based prime computation technique.
In Logic Synthesis and Optimization, T. Sasao, Ed. Kluwer Academic Publishers,
Boston, MA, 1993, ch. 2, pp. 33–57.

COUDERT, O., AND MADRE, J. C. Towards a symbolic logic minimization algorithm.
In Proceedings of the 6th International Conference on VLSI Design (Bombay, India,
Jan. 1993), pp. 329–334.

COUDERT, O., AND MADRE, J. C. New ideas for solving covering problems. In
Proceedings of the Design Automation Conference (San Francisco, CA, June 1995),
pp. 641–646.

COUDERT, O., MADRE, J. C., AND BERTHET, C. Verifying temporal properties
of sequential machines without building their state diagrams. In Computer-Aided
Verification ’90, E. M. Clarke and R. P. Kurshan, Eds. American Mathematical Society
– Association for Computing Machinery, 1991, pp. 75–84.

COUDERT, O., MADRE, J. C., AND FRAISSE, H. A new viewpoint on two-level logic
minimization. In Proceedings of the Design Automation Conference (Dallas, TX, June
1993), pp. 625–630.

COUDERT, O., MADRE, J. C., FRAISSE, H., AND TOUATI, H. Implicit prime cover
computation: An overview. In SASIMI ’93 (Nara, Japan, Oct. 1993), pp. 413–422.

DARRINGER, J., BRAND, D., GERBI, J., JOYNER, JR., W., AND TREVILLYAN,
L. LSS: A system for production logic synthesis. IBM Journal of Research and
Development 28, 5 (Sept. 1984), 537–545.

DARRINGER, J., JOYNER, W., BERMAN, L., AND TREVILLYAN, L. Logic synthesis
through local transformations. IBM Journal of Research and Development 25, 4 (July
1981), 272–280.

DE MICHELI, G., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. Optimal
state assignment of finite state machines. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems CAD-4 (July 1985), 269–285.

DETJENS, E., GANNOT, G., RUDELL, R., SANGIOVANNI-VINCENTELLI, A., AND

WANG, A. Technology mapping in MIS. In Proceedings of the IEEE International
Conference on Computer Aided Design (Nov. 1987), pp. 116–119.

DEVADAS, S., AND KEUTZER, K. A unified approach to the synthesis of fully testable
sequential machines. In Hawaii International Conference on System Science (Jan.
1990). also in IEEE Trans. on CAD, January, 1991.

DEVADAS, S., MA, H.-K. T., NEWTON, A. R., AND SANGIOVANNI-VINCENTELLI,
A. MUSTANG: State assignment of finite state machines for optimal multi-level logic
implementations. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems CAD-7 (Dec. 1988), 1290–1300.

DEVADAS, S., AND NEWTON, A. R. Exact algorithms for output encoding, state
assignment and four-level boolean minimization. In Proceedings of the Hawaii Inter-
national Conference on Systems Science (Jan. 1990), pp. 387–396.

DOLOTTA, T. A., AND McCLUSKEY, E. J. The coding of internal states of sequential
machines. IEEE Transactions on Electronic Computers EC-13 (Oct. 1964), 549–562.

BIBLIOGRAPHY 543

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

DRECHSLER, R., BECKER, B., AND GöCKEL, N. A genetic algorithm for variable
ordering of OBDDs. Presented at the International Workshop on Logic Synthesis,
Granlibakken, CA, May 1995.

DRECHSLER, R., SARABI, A., THEOBALD, M., BECKER, B., AND PERKOWSKI,
M. A. Efficient representation and manipulation of switching functions based on
ordered Kronecker functional decision diagrams. In Proceedings of the Design Auto-
mation Conference (San Diego, CA, June 1994), pp. 415–419.

DU, X., HACHTEL, G. D., LIN, B., AND NEWTON, A. R. MUSE: A Multilevel
Symbolic Encoding algorithm for state assignment. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems CAD-10, 1 (Jan. 1991), 28–38.

DU, X., HACHTEL, G. D., AND MOCEYUNAS, P. H. MUSE: A MUltilevel Symbolic
Encoding algorithm for state assignment. In Proceedings of the Hawaii International
Conference on Systems Science (Jan. 1990), pp. 367–376.

DUFF, C., AND SAUCIER, G. State assignment based on the reduced dependency
theory and recent experimental results. In Proceedings of the International Conference
on Computer-Aided Design (Santa Clara, CA, Nov. 1991), pp. 222–225.

EHRICH, H. D. A note on state minimization of a special class of incomplete sequential
machines. IEEE Transactions on Computers C-21 (May 1972), 500–502.

EICHELBERGER, E. B., LINDBLOOM, E., WAICUKAUSKI, J. A., AND WILLIAMS,
T. W. Structured Logic Testing. Prentice Hall, Englewood Cliffs, 1991.

EMERSON, E. A. Temporal and modal logic. In van Leeuwen [266], ch. 16, pp. 995–
1072.

EMERSON, E. A., AND CLARKE, E. M. Using branching time temporal logic to
synthesize synchronization skeletons. Science of Computer Programming 2 (1982),
241–266.

EVEN, S. Graph Algorithms. Computer Science Press, Rockville, MD, 1979.

FISHBURN, J., AND DUNLOP, A. TILOS: A posynomial programming approach to
transistor sizing. In Proceedings of the International Conference on Computer-Aided
Design (Santa Clara, CA, Nov. 1985), pp. 326–328.

FLEISHER, H., AND MAISSEL, L. An introduction to array logic. IBM Journal of
Research and Development 19 (Mar. 1975), 98–109.

FORTUNE, L., HOPCROFT, J., AND SCHMIDT, E. M. The complexity of equivalence
and containment for free single variable program scheme. In Lecture Notes in Com-
puter Science 62, Goos, Hartmanis, Ausiello, and Bohm, Eds. Springer-Verlag, 1978,
pp. 227–240.

FRANCIS, R. J., ROSE, J., AND VRANESIC, Z. Chortle-erf: Fast technology mapping
for LUT based FPGAs. In Proceedings of the Design Automation Conference (San
Francisco, CA, June 1991), pp. 613–619.

FRIEDMAN, S. J., AND SUPOWIT, K. J. Finding the optimal variable ordering for
binary decision diagrams. IEEE Transactions on Computers 39, 5 (May 1990), 710–
713.

FUJITA, M., FUJISAWA, H., AND KAWATO, N. Evaluation and improvements of
boolean comparison method based on binary decision diagrams. In Proceedings of the
IEEE International Conference on Computer Aided Design (Nov. 1988), pp. 2–5.

[100]

[101]

[102]

[103]

[104]

[105]

544 BIBLIOGRAPHY

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

FUJITA, M., MATSUNAGA, Y., AND KAKUDA, T. On variable ordering of binary
decision diagrams for the application of multi-level logic synthesis. In Proceedings of
the European Conference on Design Automation (Amsterdam, Feb. 1991), pp. 50–54.

FUJIWARA, H. Logic Testing and Design for Testability. MIT Press, Cambridge, MA,
1985.

FUJIWARA, H., AND SHIMONO, T. On the acceleration of test generation algorithms.
IEEE Transactions on Computers C-32, 12 (Dec. 1983), 1137–1144.

GAJSKI, D., DUTT, N., WU, A., AND LIN, S. High-Level Synthesis, Introduction to
Chip and System Design. Kluwer Academic Publishers, 1992.

GHOSH, A., DEVADAS, S., AND NEWTON, A. R. Test generation for highly sequential
circuits. In Proceedings of the IEEE International Conference on Computer Aided
Design (Nov. 1989), pp. 362–365.

GILBERT, E. N. Lattice theoretic properties of frontal switching functions. Journal of
Mathematics and Physics 33, 1 (1954), 57–67.

GIMPEL, J. A reduction technique for prime implicant tables. IEEE Transactions on
Electronic Computers EC-14 (Aug. 1965), 535–541.

GINSBURG, S. On the reduction of superfluous states in a sequential machine. Journal
of the Association for Computing Machinery 6 (Apr. 1959), 252–282.

GINSBURG, S. Synthesis of minimal state machines. IRE Trans. Electronic Computers
EC-8 (Dec. 1959), 441–449.

GINSBURG, S. A synthesis technique for minimal state sequential machines. IRE
Trans. Electronic Computers EC-8 (Mar. 1959), 13–24.

GOEL, P. An implicit enumeration algorithm to generate tests for combinational logic
circuits. IEEE Transactions on Computers C-30, 3 (Mar. 1981), 215–222.

GRASSELLI, A., AND LUCCIO, F. A method for minimizing the number of internal
states in incompletely specified sequential networks. IEEE Transactions on Electronic
Computers EC-14, 3 (June 1965), 350–359.

GRASSELLI, A., AND LUCCIO, F. A method for minimizing the number of internal
states in incompletely specified sequential networks. IEEE Transactions on Electronic
Computers EC-14 (June 1965), 350–359.

GRASSELLI, A., AND LUCCIO, F. Some covering problems in switching theory. In
Networks and Switching Theory, G. Biorci, Ed. Academic Press, New York, 1968.

GREGORY, D., BARTLETT, K., DE GEUS, A., AND HACHTEL, G. SOCRATES: A
system for automatically synthesizing and optimizing combinational logic. In Proceed-
ings of the Design Automation Conference (June 1986), pp. 79–85.

GROSS, D., GU, B., AND SOLAND, R. M. The biconjugate gradient method for ob-
taining the steady-state probability distributions of Markovian multiechelon repairable
item inventory systems. In Stewart [255], pp. 473–489.

HACHTEL, G., JACOBY, R., MOCEYUNAS, P., AND MORRISON, C. Performance
enhancements in BOLD using “implications”. In Proceedings of the IEEE International
Conference on Computer Aided Design (1988).

HACHTEL, G., LIGHTNER, M., JACOBY, R., MORRISON, C., MOCEYUNAS, P.,
AND BOSTICK, D. BOLD: The Boulder Optimal Logic Design system. In Hawaii
International Conference on System Sciences (1989).

BIBLIOGRAPHY 545

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

HACHTEL, G. D., HERMIDA, M., PARDO, A., PONCINO, M., AND SOMENZI, F. Re-
encoding sequential circuits to reduce power dissipation. In Proceedings of the Interna-
tional Conference on Computer-Aided Design (San Jose, CA, Nov. 1994), pp. 70–73.

HACHTEL, G. D., HERMIDA, M., PARDO, A., PONCINO, M., AND SOMENZI, F. Re-
encoding sequential circuits to reduce power dissipation. Presented at the International
Workshop on Low Power Design, Napa, CA, Apr. 1994.

HACHTEL, G. D., AND JACOBY, R. M. Verification algorithms for VLSI synthesis.
In Design Systems for VLSI Circuits. NATO ASI Series, 1986, pp. 264–300.

HACHTEL, G. D., JACOBY, R. M., KEUTZER, K., AND MORRISON, C. R. On the
relationship between area optimization and multifault testabilty of multilevel logic. In
Proceedings of the IEEE International Conference on Computer Aided Design (Nov.
1989), pp. 422–425.

HACHTEL, G. D., JACOBY, R. M., KEUTZER, K., AND MORRISON, C. R. On prop-
erties of algebraic transformations and the synthesis of multifault-irredundant circuits.
IEEE Transactions on Computer-Aided Design 11, 3 (Mar. 1992), 313–321.

HACHTEL, G. D., JACOBY, R. M., AND MORRISON, C. R. TECHMAP: Technology
mapping with area and delay optimization. In Proceedings of the International Work-
shop on Logic and Architecture Synthesis for Silicon Compilers (Grenoble, France,
May 1988).

HACHTEL, G. D., RHO, J.-K., SOMENZI, F., AND JACOBY, R. Exact and heuristic
algorithms for the minimization of incompletely specified state machines. In Proceed-
ings of the European Design Automation Conference (Amsterdam, The Netherlands,
Feb. 1991), pp. 184–191.

HACHTEL, G. D., AND SOMENZI, F. A symbolic algorithm for maximum flow in 0-1
networks. In Proceedings of the International Conference on Computer-Aided Design
(Santa Clara, CA, Nov. 1993), pp. 403–406.

HACHTEL, G. D., AND SOMENZI, F. A symbolic algorithm for maximum flow in 0-1
networks. Presented at IWLS’93, May 1993.

HALMOS, P. R. Lectures on Boolean Algebras. Van Nostrand Reinhold, London, 1963.

HAMMER, P. L., AND RUDEANU, S. Boolean Methods in Operations Research and
Related Areas. Springer-Verlag, Berlin, 1968.

HARR, R. E. Applications of VHDL to Circuit Design. Kluwer Academic Publishers,
1991.

HARRISON, M. A. Introduction to Switching and Automata Theory. McGraw-Hill,
New York, 1965.

HARTMANIS, J. On the state assignment problem for sequential machines, I. IRE
Transactions on Electronic Computers EC-10 (June 1961), 157–165.

HARTMANIS, J., AND STEARNS, R. E. Algebraic Structure Theory of Sequential
Machines. Prentice-Hall, Englewood Cliffs, NJ, 1966.

HENNIE, F. C. Fault detecting experiments for sequential circuits. In Proceedings
of the 5th Annual Symposium on Switching Circuit Theory and Logical Design (Prin-
ceton, NJ, Nov. 1964), pp. 95–110.

HENNIE, F. C. Finite-State Models for Logical Machines. John Wiley, New York,
1968.

546 BIBLIOGRAPHY

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

HILL, F. J., AND PETERSON, G. R. Computer Aided Logical Design, fourth ed. John
Wiley, New York, 1992.

HOJATI, R., SHIPLE, T. R., BRAYTON, R., AND KURSHAN, R. A unified approach
to language containment and fair CTL model checking. In Proceedings of the Design
Automation Conference (June 1993), pp. 475–481.

HOJATI, R., TOUATI, H., KURSHAN, R. P., AND BRAYTON, R. K. Efficient
language containment. In Computer Aided Verification (Montréal, Canada,

June 1992), pp. 371–382.

HONG, S. J., CAIN, R. G., AND OSTAPKO, D. L. MINI: A heuristic approach
for logic minimization. IBM Journal of Research and Development 18 (Sept. 1974),
443–458.

HOPCROFT, J. A n logn algorithm for minimizing states in a finite automaton. In
Theory of Machines and Computation, Z. Kohavi and A. Paz, Eds. Academic Press,
New York, 1971, pp. 189–196.

HOPCROFT, J. E., AND ULLMAN, J. D. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979.

HOUSE, R. W., AND STEVENS, D. W. A new rule for reducing CC tables. IEEE
Transactions on Computers C-19 (Nov. 1970), 1108–1111.

IBARAKI, T., AND MUROGA, S. Synthesis of networks with a minimum number of
negative gates. IEEE Transactions on Computers C-20 (Jan. 1971), 49–58.

ISHIKAWA, J., SATO, H., HIRAMINE, M., ISHIDA, K., OGURI, S., KAZUMA, Y.,
AND MURAI, S. A rule based reorganization system LORES/EX. In Proc. Int. Conf.
Comp. Des. (ICCD-88) (Oct. 1988), pp. 262–266.

ISHIURA, N., SAWADA, H., AND YAJIMA, S. Minimization of binary decision diagrams
based on exchanges of variables. In Proceedings of the International Conference on
Computer-Aided Design (Santa Clara, CA, Nov. 1991), pp. 472–475.

JACOBY, R., MOCEYUNAS, P., CHO, H., AND HACHTEL, G. New ATPG tech-
niques for logic optimization. In Proceedings of the IEEE International Conference on
Computer Aided Design (Nov. 1989), pp. 548–551.

JEONG, S.-W., PLESSIER, B., HACHTEL, G. D., AND SOMENZI, F. Extended BDD’s:
Trading off canonicity for structure in verification algorithms. In Proceedings of the
IEEE International Conference on Computer Aided Design (Santa Clara, CA, Nov.
1991), pp. 464–467.

JEONG, S.-W., PLESSIER, B., HACHTEL, G. D., AND SOMENZI, F. Variable ordering
and selection for FSM traversal. In Proceedings of the IEEE International Conference
on Computer Aided Design (Santa Clara, CA, Nov. 1991), pp. 476–479.

JEONG, S.-W., PLESSIER, B. F., HACHTEL, G. D., AND SOMENZI, F. Variable
ordering for binary decision diagrams. In Proceedings of the European Conference on
Design Automation (Brussels, Mar. 1992), pp. 447–451.

JEONG, S.-W., AND SOMENZI, F. A new algorithm for the binate covering problem
and its application to the minimization of boolean relations. In Proceedings of the
International Conference on Computer-Aided Design (Santa Clara, CA, Nov. 1992),
pp. 417–420.

JI, Q., OH, Y.-S., LIGHTNER, M. R., AND SOMENZI, F. Technology independent
estimation of area and delay in logic synthesis. In SASIMI ’92 (Kyoto, Japan, Apr.
1992), pp. 171–180.

BIBLIOGRAPHY 547

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

KAM, T., VILLA, T., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. A
fully implicit algorithm for exact state minimization. In Proceedings of the Design
Automation Conference (San Diego, CA, June 1994).

KEUTZER, K. DAGON: Technology binding and local optimization by DAG matching.
In Proceedings of the Design Automation Conference (June 1987), pp. 341–347.

KEUTZER, K. Personal communication, Feb. 1989.

KEUTZER, K., MALIK, S., AND SALDANHA, A. Is redundancy necessary to reduce
delay? In Proceedings of the Design Automation Conference (June 1990), pp. 228-234.

KNUTH, D. Big omicron, big omega, and big theta. SIGACT News, ACM (Apr.
1976).

KOHAVI, Z. Switching and Finite Automata Theory, second ed. McGraw-Hill, New
York, 1978.

KURSHAN, R. P. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, NJ, 1994.

LAI, H. C., AND MUROGA, S. Automated logic design of mos networks. Advances in
Information Systems Science 9 (1970), 287–335.

LAI, Y.-T., AND SASTRY, S. Edge-valued binary decision diagrams for multi-level
hierarchical verification. In Proceedings of the Design Automation Conference (Ana-
heim, CA, June 1992), pp. 608–613.

LARRABEE, T. Test pattern generation using boolean satisfiability. IEEE Transactions
on Computer-Aided Design 11, 1 (Jan. 1992), 4–15.

LAWLER, E. Combinatorial Optimization. Holt Rinehart Winston, 1976.

LAWLER, E. L. An approach to multilevel boolean minimization. Journal of the
Association for Computing Machinery 11, 3 (July 1964), 283–295.

LEE, C. Y. Binary decision programs. Bell System Technical Journal 38, 4 (July
1959), 985–999.

LEE, E. B., AND PERKOWSKI, M. Concurrent minimization and state assignment of
finite state machines. In IEEE Conference on Systems, Man and Cybernetics (Halifax,
Canada, Oct. 1984), pp. 248–260.

LEE, S. C. Modern Switching Theory and Digital Design. Prentice-Hall, Englewood
Cliffs, 1978.

LEHMAN, E., WATANABE, Y., GRODSTEIN, J., AND HARKNESS, H. Logic decom-
position during technology mapping. In Proceedings of the International Conference
on Computer-Aided Design (San Jose, CA, Nov. 1995), pp. 264–271.

LEISERSON, C. E., ROSE, F. M., AND SAXE, J. B. Optimizing synchronous circuitry
by retiming. In Proceedings of the Caltech Conference on VLSI (Mar. 1983).

LEISERSON, C. E., AND SAXE, J. B. Optimizing synchronous systems. In Proceedings
of the Symposium on Foundations of Computer Science (Oct. 1981), pp. 23–26.

LIN, B., COUDERT, O., AND MADRE, J. C. Symbolic prime generation for multiple-
valued functions. In Proceedings of the Design Automation Conference (Anaheim, CA,
June 1992), pp. 40–44.

LIN, B., AND NEWTON, A. R. Synthesis of multiple level logic from symbolic high-
level description languages. In Proceedings of the IFIP International Conference on
VLSI (Aug. 1989), pp. 187–196.

548 BIBLIOGRAPHY

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

LIN, B., AND NEWTON, A. R. Implicit manipulation of equivalence classes using
binary decision diagrams. In Proceedings of the International Conference on Computer
Design (Cambridge, MA, Oct. 1991), pp. 81–85.

LIN, B., AND SOMENZI, F. Minimization of symbolic relations. In Proceedings of the
IEEE International Conference on Computer Aided Design (Santa Clara, CA, Nov.
1990), pp. 88–91.

LIN, B., WHITCOMB, G. S., AND NEWTON, A. R. Symbolic don’t cares and equi-
valence in high-level synthesis. In IFIP International Working Conference on Logic
and Architecture Synthesis (May 1990).

MAILHOT, F., AND MICHELI, G. D. Technology mapping using boolean matching. In
Proceedings of the European Conference on Design Automation (Glasgow, UK, Mar.
1990), pp. 180–185.

MALIK, S., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. Encoding sym-
bolic inputs for multi-level logic implementation. In Proceedings of the IFIP Interna-
tional Conference on VLSI (Munich, FRG, Aug. 1989), pp. 221–230.

MALIK, S., SENTOVICH, E. M., AND BRAYTON, R. K. Retiming and resynthesis:
Optimizing sequential networks with combinational techniques. In Proceedings of the
Hawaii International Conference on Systems Science (Jan. 1990), pp. 397–406.

MALIK, S., WANG, A., BRAYTON, R., AND SANGIOVANNI-VINCENTELLI, A. Lo-
gic verification using binary decision diagrams in a logic synthesis environment. In
Proceedings of the IEEE International Conference on Computer Aided Design (Santa
Clara, CA, Nov. 1988), pp. 6–9.

MARCUS, M. P. Derivation of maximal compatibles using boolean algebra. IBM
Journal of Research and Development 8 (Nov. 1964), 537–538.

MARLETT, R. A. EBT: A comprehensive test generation technique for highly se-
quential circuits. In Proceedings of the Design Automation Conference (June 1978),
pp. 335–339.

MCCLUSKEY, E. J. Introduction to the Theory of Switching Circuits. McGraw-Hill,
New York, 1965.

MCCLUSKEY, E. J. Logic Design Principles. Prentice-Hall, Englewood Cliffs, 1986.

MCCLUSKEY, JR., E. J. Minimization of boolean functions. Bell Syst. Technical
Journal 35 (Nov. 1956), 1417–1444.

MCCLUSKEY, JR., E. J., AND UNGER, S. H. A note on the internal variable assign-
ments for sequential switching circuits. IRE Transactions on Electronic Computers
EC-8, 4 (Dec. 1959), 439–440.

MCELIECE, R. J., ASH, R. B., AND ASH, C. Introduction to Discrete Mathematics.
Random House, New York, 1989.

MCFARLAND, M. C. Using bottom-up design techniques in the synthesis of digital
hardware from abstract behavioral descriptions. Proceedings of the 22nd Design Auto-
mation Conference (June 1986), 474–480.

MCGEER, P. C., BRAYTON, R. K., AND SANGIOVANNI VINCENTELLI, A. L. Per-
formance enhancement through the generalized bypass transform. In Proceedings of the
International Conference on Computer-Aided Design (Santa Clara, CA, Nov. 1991),
pp. 184–187.

BIBLIOGRAPHY 549

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

McMILLAN, K. Class project on BDD-based verification. Private Communication,
E. M. Clarke, 1987.

McMILLAN, K. L. Symbolic Model Checking. Kluwer Academic Publishers, Boston,
MA, 1994.

McNAUGHTON,R. Unate truth functions. IRE Transactions on Electronic Computers
EC-10 (Mar. 1961), 1–6.

MEAD, C., AND CONWAY, L. Introduction to VLSI Systems. Addison-Wesley, Read-
ing, MA, 1980.

MEALY, G. H. A method for synthesizing sequential circuits. Bell System Technical
Journal 34 (Sept. 1955), 1045–1079.

MICHELI, G. D. Symbolic design of combinational and sequential logic circuits im-
plemented by two-level macros. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems CAD-5, 9 (Sept. 1986), 597–626.

MICZO, A. Digital Logic Testing and Simulation. John Wiley, New York, 1986.

MINATO, S.-I. Zero-suppressed BDDs for set manipulation in combinatorial problems.
In Proceedings of the Design Automation Conference (Dallas, TX, June 1993), pp. 272–
277.

MINATO, S.-I., ISHIURA, N., AND YAJIMA, S. Shared binary decision diagram with
attributed edges for efficient boolean function manipulation. In Proceedings of the
Design Automation Conference (Orlando, FL, June 1990), pp. 52–57.

MOORE, E. F. Gedanken experiments on sequential machines. In Automata Studies,
C. E. Shannon and J. McCarthy, Eds. Princeton University Press, 1956.

MURGAI, R., NISHIZAKI, Y., SHENOY, N., BRAYTON, R. K., AND SANGIOVANNI-
VINCENTELLI, A. Logic synthesis for programmable gate arrays. In Proceedings of
the Design Automation Conference (Orlando, FL, June 1990), pp. 620–625.

MUROGA, S., KAMBAYASHI, Y., LAI, H. C., AND CULLINEY, J. N. The transduction
method—design of logic networks based on permissible functions. IEEE Transactions
on Computers C-38, 10 (Oct. 1989), 1404–1424.

NIERMANN, T., AND PATEL, J. H. HITEC: A test generation package for sequential
circuits. In Proceedings of the European Conference on Design Automation (Amster-
dam, The Netherlands, Feb. 1991), pp. 214–218.

PANDA, S., AND SOMENZI, F. Who are the variables in your neighborhood. In
Proceedings of the International Conference on Computer-Aided Design (San Jose,
CA, Nov. 1995), pp. 74–77.

PANDA, S., SOMENZI, F., AND PLESSIER, B. F. Symmetry detection and dynamic
variable ordering of decision diagrams. In Proceedings of the International Conference
on Computer-Aided Design (San Jose, CA, Nov. 1994), pp. 628–631.

PARETO, V. Manual of Political Economy. A. M. Kelley, New York, NY, 1971.
English translation of “Manuale di economia politica.” Translated by A. S. Schwier.
Edited by A. S. Schwier and A. N. Page.

PARK, N., AND PARKER, A. C. Sehwa: A program for synthesis of pipelines. Pro-
ceedings of the 23rd Design Automation Conference (1986), 454–460.

PARKER, A. C., PIZARRO, J., AND MLINAR, M. Maha: A program for datapth
synthesis. Proceedings of the 23rd Design Automation Conference (1986), 461–466.

550 BIBLIOGRAPHY

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

PAULL, M. C., AND UNGER, S. H. Minimizing the number of states in incompletely
specified sequential switching functions. IRE Trans. Electronic. Computers EC-8 (Sept.
1959), 356–367.

PETRICK, S. R. A direct determination of the irredundant forms of a boolean function
from the set of prime implicants. Tech. Rep. AFCRC-TR-56-110, Air Force Cambridge
Res. Center, Cambridge, MA, Apr. 1956.

PIPPONZl, M., AND SOMENZI, F. An iterative approach to the binate covering prob-
lem. In Proceedings of the European Conference on Design Automation (Glasgow,
UK, Mar. 1990), pp. 208–211.

PIXLEY, C. A computational theory and implementation of sequential hardware equi-
valence. In Computer-Aided Verification ’90 (1991), E. M. Clarke and R. P. Kur-
shan, Eds., American Mathematical Society – Association for Computing Machinery,
pp. 293–320.

PIXLEY, C. A theory and implementation of sequential hardware equivalence. IEEE
Transactions on Computer-Aided Design 11, 12 (Dec. 1992), 1469–1478.

PIXLEY, C., BEIHL, G., AND PACAS-SKEWES, E. Automatic derivation of FSM spe-
cification to implementation encoding. In Proceedings of the International Conference
on Computer Design (Cambridge, MA, Oct. 1991), pp. 245–249.

PIXLEY, C., SINGHAL, V., AZIZ, A., AND BRAYTON, R. K. Multi-level synthesis for
safe replaceability. In Proceedings of the International Conference on Computer-Aided
Design (San Jose, CA, Nov. 1994), pp. 442–449.

PLESSIER, B., HACHTEL, G., AND SOMENZI, F. Extended BDDs: Trading off ca-
nonicity for structure in verification algorithms. Journal of Formal Methods in System
Design 4, 2 (Feb. 1994), 167–185.

POAGE, J. F. Derivation of optimum tests to detect faults in combinational circuits.
In Proc. Symposium on Mathematical Theory of Automata (Polytechnic Institute of
Brooklyn, 1963), pp. 483–528.

POTTOSIN, Y. V. Experimental evaluation of one method of minimizing the number of
states of discrete automata. In Synthesis of Digital Automata (transl. from Russian),
V. G. Lazarev and A. V. Zakrevskii, Eds. Consultants Bureau, New York, 1969, pp. 92–
98.

QUINE, W. The problem of simplifying truth functions. Amer. Math. Monthly 59
(1952), 521–531.

QUINE, W. A way to simplify truth functions. Amer. Math. Monthly 62 (Nov. 1955),
627–631.

QUINE, W. V. Two theorems about truth functions. Boletin de la Sociedad Matem-
atica Mexicana 10 (1953), 64–70.

RABIN, M., AND SCOTT, D. Finite automata and their decision problems. IBM
Journal of Research and Development 3 (1959), 114–125.

RANJAN, R. K., AZIZ, A., BRAYTON, R. K., PLESSIER, B. F., AND PIXLEY, C.
Efficient BDD algorithms for FSM synthesis and verification. Presented at IWLS95,
Lake Tahoe, CA., May 1995.

RAVI, K., AND SOMENZI, F. High-density reachability analysis. In Proceedings of
the International Conference on Computer-Aided Design (San Jose, CA, Nov. 1995),
pp. 154–158.

BIBLIOGRAPHY 551

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

REUSCH, B., AND MERZENICH, W. Minimal coverings for incompletely specified
sequential machines. Acta Informatica 22 (1986), 663–678.

RHO, J.-K., HACHTEL, G. D., SOMENZI, F., AND JACOBY, R. Exact and heur-
istic algorithms for the minimization of incompletely specified state machines. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 13, 2
(Feb. 1994), 167–177.

ROBINSON III, S., AND HOUSE, R. Gimpel’s reduction technique extended to the
covering problem with costs. IEEE Transactions on Electronic Computers EC-16
(Aug. 1967), 509–514.

ROSS, D. E., BUTLER, K. M., KAPUR, R., AND MERCER, M. R. Fast functional
evaluation of candidate OBDD variable ordering. In Proceedings of the European
Conference on Design Automation (Amsterdam, Feb. 1991), pp. 4–10.

ROSS, S. A First Course in Probability, third ed. Macmillan, New York, 1988.

ROTH, J. P. Diagnosis of automata failures: A calculus and a method. IBM Journal
of Research and Development 10 (July 1966), 278–291.

ROTH, J. P. Computer Hardware Testing and Verification. Computer Science Press,
Potomac, Maryland, 1980.

ROY, K., AND PRASAD, S. SYCLOP: Synthesis of CMOS logic for low power applic-
ations. In Proceedings of the International Conference on Computer Design (Cam-
bridge, MA, Oct. 1992), pp. 464–467.

RUDEANU, S. Boolean Functions and Equations. North-Holland, Amsterdam, 1974.

RUDELL, R. Logic Synthesis for VLSI Design. PhD thesis, University of California,
Berkeley, 1989.

RUDELL, R. Dynamic variable ordering for ordered binary decision diagrams. In
Proceedings of the International Conference on Computer-Aided Design (Santa Clara,
CA, Nov. 1993), pp. 42–47.

RUDELL, R., AND SANGIOVANNI-VINCENTELLI, A. Exact minimization of multiple-
valued functions for PLA optimization. In Proceedings of the IEEE International
Conference on Computer Aided Design (1986), pp. 352–355.

RUDELL, R., AND SANGIOVANNI-VINCENTELLI, A. Multiple-valued minimization
for PLA optimization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems CAD-6, 5 (Sept. 1987), 727–750.

RUDELL, R., AND SEGAL, R. BDSYN Users Manual, Apr. 1986.

SAHNI, S. Concepts in Discrete Mathematics. The Camelot Publishing Comapny,
1981.

SALDANHA, A., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. L. Circuit
structure relations to redundancy and delay: The KMS algorithm revisited. In Proceed-
ings of the Design Automation Conference (Anaheim, CA, June 1992), pp. 245–248.

SALDANHA, A., AND KATZ, R. PLA optimization using output encoding. In Proceed-
ings of the International Conference on Computer-Aided Design (Nov. 1988).

SASAO, T. Input variable assignment and output phase optimization of PLA’s. IEEE
Transactions on Computers C-33 (Oct. 1984), 879–894.

SASAO, T., Ed. Logic Synthesis and Optimization. Kluwer Academic Publishers,
Boston, MA, 1993.

552 BIBLIOGRAPHY

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

[263]

SAVOJ, H., MALIK, A. A., AND BRAYTON, R. K. Fast two-level minimizers for
multilevel logic synthesis. In Proceedings of the IEEE International Conference on
Computer Aided Design (Nov. 1989), pp. 544–547.

SCHULZ, M., TRISCHLER, E., AND SARFERT, T. SOCRATES: A highly efficient
automatic test pattern generation system. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems CAD-7, 1 (Jan. 1988), 126–137.

SELLERS, JR., F. F., HSIAO, M. Y., AND BEARNSON, L. W. Analyzing errors
with the boolean difference, IEEE Transactions on Computers C-17, 7 (July 1968),
676–683.

SENTOVICH, E. M., SINGH, K. J., MOON, C., SAVOJ, H., BRAYTON, R. K., AND
SANGIOVANNI-VINCENTELLI, A. Sequential circuit design using synthesis and optim-
ization. In Proceedings of the International Conference on Computer Design (Cam-
bridge, MA, Oct. 1992), pp. 328–333.

SENTOVITCH, E., MALIK, S., AND BRAYTON, R. Peripheral retiming and resynthesis.
In hicss (Jan. 1990), pp. 397–406.

SIKORSKI, R. Boolean Algebras, second ed. Springer-Verlag, Berlin, 1964.

SINGHAL, V., AND PIXLEY, C. The verification problem for safe replaceability. In
Sixth Conference on Computer Aided Verification (CAV’94), D. L. Dill, Ed. Springer-
Verlag, Berlin, 1994, pp. 311–323. LNCS 818.

SOMENZI, F. Gimpel’s reduction technique extended to the binate covering problem.
Unpublished Manuscript, Sept. 1989.

SOMENZI, F., AND GAI, S. Fault detection in programmable logic arrays. Proceedings
of the IEEE 74 (May 1986), 655–668.

STEWART, W. J., Ed. Numerical Solutions of Markov Chains. Marcel Dekker, New
York, 1991.

SWAMY, G. M., AND BRAYTON, R. K. Incremental formal design verification. In
Proceedings of the International Conference on Computer-Aided Design (San Jose,
CA, Nov. 1994), pp. 458–465.

SWAMY, G. M., BRAYTON, R. K., AND McGEER, P. A fully implicit Quine-
McCluskey procedure using BDD’s. Presented at IWLS’93, May 1993.

TARJAN, R. Depth first search and linear graph algorithms. SIAM Journal of Com-
puting 1 (1972), 146–160.

THISTLE, J. Control of Infinite Behavior of Discrete Event Systems. PhD thesis,
University of Toronto, 1991.

TJIANG, S. Twig reference manual. Tech. rep., AT&T Bell Laboratories, 1985.

TOUATI, H. Performance Oriented Technology Mapping. PhD thesis, University of
California, Berkeley, 1990.

TOUATI, H., SAVOJ, H., LIN, B., BRAYTON, R. K., AND SANGIOVANNI-

VINCENTELLI, A. Implicit enumeration of finite state machines using BDD’s. In
Proceedings of the IEEE International Conference on Computer Aided Design (Nov.
1990), pp. 130–133.

TOUATI, H. J., BRAYTON, R. K., AND KURSHAN, R. P. Testing language con-
tainment for using BDD’s. In 1991 International Workshop on Formal
Methods in VLSI Design (Miami, FL, Jan. 1991).

BIBLIOGRAPHY

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

TRICKEY, H. Compiling Pascal Programs into Silicon. PhD thesis, Stanford Uni-
versity, 1985. Stanford Computer Science Report STAN-CS-85-1059.

TRICKEY, H. Flamel: A high level hardware compiler. IEEE Trans. on CAD CAD-6,
2 (1986), 259–269.

VAN LEEUWEN, J., Ed. Handbook of Theoretical Computer Science. The MIT
Press/Elsevier, Amsterdam, 1990.

VILLA, T. Constrained encoding in hypercubes: Algorithms and applications to logical
synthesis. In UC Berkeley Electronics Research Laboratory (May 1987).

WANG, A. Algorithms for Multi-Level Logic Optimization. PhD thesis, University of
California, Berkeley, 1989.

WEGENER, I. On the complexity of branching programs and decision trees for clique
functions. Journal of the Association for Computing Machinery 35, 2 (Apr. 1988),
461–471.

WEI, Y.-C., AND CHENG, C.-K. Toward efficient hierarchical designs by ratio cut
partitioning. In Proceedings of the IEEE International Conference on Computer Aided
Design (Santa Clara, CA, Nov. 1989), pp. 298–301.

WHITCOMB, G. Exact factoring of incompletely specified functions. EE2901s class
project report, UC Berkeley, May 1988.

553

Index

295
operation on a set of tapes, 391

FA
star operation on sets of strings,

374

absorption, 95, 143, 147, 412
absorptive, 90, 92
abstraction

existential, 309, 309, 395
universal, 309

Ada, 50
Aho, 509
algebra, 86

Boolean, 77, 86, 92, 421
carrier, 86, 93, 205
class, 93
partition, 352
switching, 92, 100, 132

algebraic, 420, 421, 429, 441, 478
expression, 419
product, 419

algebraic expression
kernel, 425

algebraic system, 85, 90, 92
algorithms

BEST_DIVISOR, 434
BEST_KERNEL, 434
BOOL_DIV, 434
BOOL_FACTOR, 435
COMMON_CUBE, 432
DIVIDE, 429, 432
DIVISOR, 429, 432, 435
FACTOR, 429, 431
GEN_FACTOR, 431, 432
GOOD_FACTOR, 434, 435
LF, 432
MAKE_CUBE_FREE, 432, 433

MAKE_SPARSE, 190
ONE_LEVEL-0_KERNEL, 433
PARTITION, 269
QUICK_DECOMPOSITION, 439
QUICK_DIVISOR, 433, 434
QUICK_EXTRACTION, 439
QUICK_FACTOR, 433, 435, 439, 447
quick_factor, 435
STATE_EQUIVALENCE, 269
WEAK_DIV, 425, 429, 433, 434

all-zero, 346
alphabet

input, 261
output, 261

alterm, 133
arrival time, 514
ASCII, 47, 52, 53, 216, 523
ASIC, 10
associative, 90, 92
asymptotic complexity, 25
asynchronous, 343
ATPG, 65, 462, 469, 478, 484, 488
attraction, 343
automaton, 264

accepting, 264
deterministic, 264
final, 264
nondeterministic, 264
property, 393
task, 393

backtrace, 487
multiple, 487

backtracking, 480, 483
BCP, 335–337, 340
BDD

=Binary Decision Diagram, 308
characteristic functions, 306
complement edge, 223

555

556 INDEX

dynamically re-ordering, 233
garbage collection, 233
regular edge, 223
typical sizes, 306

binate, 143, 422
bipartition, 198
Blake, 134
BLIF, 58, 60–64, 444, 501, 502, 520
BLIF, 410
Boole, 92, 98, 139, 140, 192, 196
Boolean, 419, 421, 429
Boolean algebra

atoms, 101, 103
Boolean difference, 213, 468
Boolean functions, 101
Boolean network, 410, 455, 456, 459

cyclic, 456
prime and irredundant, 469

bound, 152
greatest lower, 88
least upper, 88
lower, 88, 149, 153, 336, 340
upper, 88, 153, 340

bounding, 340
branch-and-bound, 149, 152–154, 336,

337, 509
Brown, 134, 418

CAD, 6, 7
canonical form

BDD, 219
maxterm, 99, 177
minterm, 99, 135

canonical forms, 220
cardinality, 186
carry-bypass, 58, 491
carry-skip, 491
Cartesian plane, 87, 90, 114
Cartesian product, 78, 423
circuit

multi-level, 410
two-level, 129, 131, 132

clause, 133, 329, 337
CNF, 133, 197
co-domain, 96
co-kernel, 426–429

level-0, 427

cofactor, 148, 192, 193, 201
cofactors, 98
column

essential, 146
commutative, 90, 92
compatibility, 326
compatible

class set of, 330
maximal, 329
prime, 329

complement, 91, 93
complementation, 91, 93, 201, 203, 343,

412
recursive, 201

complete product, 177
complete sum, 137
completely specified, 261, 348, 429
complexity

linear, 277
consensus, 94, 134, 135, 191, 204, 489

iterated, 134, 137
constant propagation, 422
containment

single-cube, 192
controllability, 462
Corasick, 509
core

cyclic, 142
cover

monotonic, 195
unate, 195

covering
binate, 143, 328, 334–336
DAG, 507–509
graph, 506
rectangle, 436
tree, 509
UCP, 143
unate, 143, 153, 160

cube-free, 425
CUT, 475
cycle sets, 388
cyclic, 148, 152, 340

D-algorithm, 481, 487, 492
DAG, 456, 506, 510
DAGON, 506, 508, 509

INDEX 557

DC-set, 107, 190, 191, 203
DDs

(Decision Diagrams), 243
De Morgan, 201, 203, 414, 417
decision diagrams, 243
delay, 129
DeMorgan, 94
deterministic image of FST’s, 383
DFA

definition, 370
DFS

lowlink, 323
digraph, 456
discriminants, 99
disjunction, 133
distributive, 92, 138, 421

equalities, 92
inequalities, 91

distributivity, 94, 331, 412
division, 422–424, 436

algebraic, 424
Boolean, 424, 434
weak, 424, 425

divisor, 429, 435, 436
algebraic, 424, 426
Boolean, 423
primary, 425, 426

DNF, 133
domain, 84, 96, 107
dominance, 336

column or variable, 147, 339
row or constraint, 146, 338

don’t care, 48, 52, 54, 64, 106, 136,
137, 141, 192, 326, 436, 455,
457, 462, 491

external, 460, 463
implicit, 457, 464
internal

satisfiability, 464
observability, 103, 461, 462, 465
satisfiability, 103, 461, 491

duality, 91, 94, 95
dummy state, 264
dynamic programming, 287, 509, 511

e_value, 437–439
e_value, 438

elimination, 439
embedding algorithm, 346
encoding, 204, 205, 257, 258, 343, 347,

354
binary, 290

enumeration, 149
brute-force, 199
explicit, 258
implicit, 148

EQN, 444
equivalence, 191, 468, 469
equivalence class, 83, 273

representative, 272
ESPRESSO, 75, 139, 416, 470
ESPRESSO_EXACT, 165
essential

literal, 338
row, 338
variable, 337

excitation, 478
expansion, 98, 139, 140, 187, 188, 191,

192, 194, 196, 200, 201, 203
expression

algebraic, 418
Boolean, 418
cube-free, 425
non-algebraic, 418

extraction, 439

FA
accepted strings, 370, 388
complement, 376
complete, 370, 388
concatenating strings, 372
definition, 370
definition of automaton,

388
deterministic, 370, 388
final states, 371
infinite sequences, 387
language of, 373
languages, 371, 373
nondeterministic, 371
property automaton, 390
regular expressions, 374
star operation on sets of strings,

374

558 INDEX

tapes, 387
theory, 22

FACT_VAL, 420, 434
FACTOR, 429
factor

algebraic, 424
Boolean, 423

factored, 414–422
factored form, 419

algebraic, 419
Boolean, 419
cofactor, 422
maximally factored, 421

factored forms
algebraic, 419
Boolean, 419

factoring, 411, 412, 414, 435
algebraic, 428
Boolean, 428, 435
complement, 435
dual, 435
generic, 431
heuristic, 428

factorization, 411, 419, 420
maximal, 421, 430, 431

failure, 475, 476
FAN, 487, 492
fan-in cone, 276
fanin

transitive, 437, 457
fanins, 24
fanout

branch, 476
reconvergent, 480, 487
stem, 476
transitive, 457

fanouts, 24
fault

collapsing, 477
coverage, 20, 475
equivalence, 477
model, 131, 476
set, 475
simulator, 488
site, 477
stuck-at, 131, 462, 476

multiple, 131, 477
symptom, 482
undetectable, 477
untestable, 65, 477

feasible point, 185
field-programmable, 409
finite automaton, 289, 313

deterministic, 291
FA, 22
nondeterministic, 291

finite state machine, 9, 255, 289, 313
FSM, 22

finite state transitionstructure, 292, 313
=FST, 289

flattening, 458
formula

Boolean, 96, 329, 335
product, 132
product of sums, 133
sum of products, 133
two-level, 132

FPGA, 11, 13, 58, 130
frontier, 482
FSM, 204, 261

chain, 297
decomposition, 347

parallel, 350
serial, 351

design flow, 257
Equivalence Checking, 219
error states, 302
flip-flops, 294
image, 308
incompletely specified, 263, 325
input letter, 293
input symbol, 293
isomorphic STGs, 305
latches, 294
logic cones, 260
nondeterministic, 264
outputs, 260
present state, 294
reachability analysis, 305
reduced, 273
registers, 294
state assignment, 258

INDEX 559

state encoding, 258
state minimization, 265
string, 297
strongly deterministic, 300
tape, 297
theory, 22
transition function, 308
transition relation, 306
traversal, 305
verification, 253

FST
complete, 293
deterministic, 292
deterministic image, 385
input alphabet, 297
nondeterministic, 292
nondeterministic transition functions,

383
run, 297
string, 297
strongly deterministic, 293
tape, 297

function, 84
base, 507
Boolean, 95, 97, 101
co-domain, 84
completely specified, 107
image, 84, 293
implicant, 134
inverse, 85
monotonic, 194
multi-valued, 185
multiple-output, 160
next-state, 259, 261, 263, 347
objective, 337
one-to-one, 85
onto, 85
preimage, 85
projection, 97
Pseudo-Boolean, 101
range, 84
right-unique, 84
support, 223
switching, 97
two-level, 160
unate, 194

functions
Pseudo-Boolean, 243

GENLIB, 519
GENLIB, 62, 64
Gimpel, 165
Ginsburg, 356
graph

acyclic, 410
attraction, 343–345
breadth first search, 278
CCCs, 276
cliques, 276
compatibility, 328
completely connected subgraph, 276
connected components, 276
connected subgraph, 276
cutset, 278
cycles, 23
DAG (Directed Acyclic Graph), 23
definition,

bf23
depth first search, 280
diameter, 280
digraph, 23
directed, 456
edges, 23
head vertex, 23
image, 278
maximal subgraph, 276
maximal w.r.t. a property, 276
mixed, 23
models, 22
partial order, 84
path, 23
pattern, 507
pre-image, 278
predecessors, 24
SCC, 276
sequential depth, 280
sink, 24
source, 24
state transition, 257
strongly connected subgraph, 276
subgraph, 276
subject, 507, 508, 510
successors, 24

560 INDEX

tail vertex, 23
theory, 22
transitive predecessor, 24
transitive successor, 24
undirected, 23
vertices, 23
weighted, 286

Grasselli, 356

Hardware Description Language, 9
hashing function, 235

collision chain, 235
key, 235

Hasse diagram, 87, 90, 93
HDL, 50, 51, 455
head-line, 487
heuristic, 258
hierarchical, 64, 65
high-level, 7, 9, 49, 51, 53, 64, 257
Huntington postulates, 92

idempotence, 412
idempotent, 90, 92, 138
ILP, 160
image, 308
implicant, 134

essential, 134
prime, 134

multiple-output case, 161
implicate, 177
implication, 120, 486
incompatibility, 328
incompletely specified function, 136, 435

prime of, 136, 141
increasing infinite sequence, 391
independent set, 149, 150, 341

maximal, 150
MIS, 150, 151

indistinguishability, 349
input alphabet, 292
integer linear programming, 152, 160
interconnect routing

depth first search, 280
interval, 103
inverse

additive, 120
multiplicative, 120, 422

involution, 93, 94
irredundancy, 131, 455
irredundant, 190, 203, 418, 441, 459,

468, 471
isomorphic, 93, 414, 421
isomorphism, 512
isotone, 94

Johnson, 509
join, 88, 90, 92, 93, 101, 349, 412
justification, 485, 487

Karnaugh, 166
kernel, 425, 426, 429, 436

intersection, 426
level, 426
level-0, 433, 434

Keutzer, 506, 509
.kiss2, 361

LA
=L-automaton, 388

LA:recur edges, 388
language, 50, 51, 215, 373

375
388

acceptors, 253, 290
complement, 376
generated, 290
generators, 253
product, 373
regular, 374
regular expressions, 374
star operation on sets of strings,

374
union, 373

lattice, 86, 349
complemented, 91, 92
distributive, 92
of the S.P. partitions, 352

Lavagno, 509
distinguishing sequence, 266

letter, 132, 133
library, 11, 12, 57, 58, 64, 65, 413, 505,

507, 510
lifting

cycle sets, 393

INDEX 561

recur edges, 393
limit of a set of tapes, 390
literal, 132, 422

intersection, 427
literals of a logic formula, 16
liveness and fairness constraints, 297
logic cone, 276
logic minimization

symbolic processing, 165
Luccio, 356
LUNC, 48, 49, 64, 215
LUT, 13

MAKE_SPARSE, 191

mapping, 57, 58, 64, 65, 416
Marcus, 329
matching, 510

pattern, 265
string, 509

mathematical induction, 89, 287
matrix

blocking, 203
constraint, 141, 143, 146, 148, 149
form of BCP, 336
intersection, 428

maximal independent set, 172
maxterm, 100
McCluskey, 141, 152, 416
Mealy, 261
meet, 88, 90, 92, 93, 101, 349, 412
merging

distance-1, 137
Mincov, 178
minimality, 131
minimization, 99

heuristic, 101, 185
multi-level, 455
state, 261

minimizers, 286
minterm, 99, 134, 461

care, 141
MIS, 509
modeling, 129, 131, 255, 506
modulo

notation, 377
residue, 377

monoid, 86

Moore, 261, 262
move, 191
multi-set, 79
multi-valued logics, 101
MUSTANG, 343, 345

fanin-oriented algorithm, 345
fanout-oriented algorithm, 345

MUSTANG, 343

fanin-oriented algorithm, 346
fanout-oriented algorithm, 345

neighborhood, 186
radius of, 186

netlist, 13, 57, 260
network

cost, 459
iterative, 458

NFA, 371
determinization, 291

node, 413, 457
nondeterministic finite automaton

=NFA, 369
normal form

conjunctive, 133
disjunctive, 133

NP-complete, 197
NP-hard, 509

observability Don’t Cares, 104
observability don’t cares

=ODC, 103
observable, 72
ODC, 461, 462
OFF-set, 107, 191, 201, 203
ON-set, 107, 190, 191, 203
operations

algebra, 412
algebraic, 410, 412, 418, 419
Boolean, 412, 418, 419

optimization, 6, 51, 54, 57, 185
convex, 186
local, 410
non-convex, 187
rule-based, 416
technology-dependent, 57, 505
technology-independent, 57, 410, 455,

505

562 INDEX

technology-specific, 57
order

partial, 83, 86
total, 89

orthogonal, 418
output strings, 266, 300

PAL, 129
Pareto Critical Set, 128
partial order, 349
partition, 107, 348, 509

block, 83, 111, 198, 348
pairs, 354
refinement, 83, 269

partition-refinement, 269
partitioning, 197, 198
pattern, 507
Paull, 356
permutation, 343
Pixley, C., 300
PLA, 7, 129, 258, 460, 464
PLD, 13
PODEM, 487, 492
POS, 133, 417
poset, 86, 88, 90
post-order, 421
postorder, 439
power set, 78, 93
primality, 455
prime, 328, 418, 441, 459, 468, 471

essential, 142, 203
Process, 393
product

algebraic, 423, 424
Boolean, 423, 424

product machine, 301
product of FSTs, 298
product term, 130, 133, 258
product terms, 420
Pseudo-Boolean Functions, 101, 243

queue, 286
priority, 286

Quine, 134, 136, 137, 141, 416
quotient, 422, 429, 430

R. Kurshan, 387

races, 343
reachable

from a given state, 300
from any initial state state, 300

recursive prime computation, 139
reduction, 143, 144, 146, 189, 191, 200,

336, 337, 342
REDUCE, 154

redundancy, 466, 477
redundancy removal, 410, 488
redundant, 72, 131, 189, 190, 200
reflexivity, 349
region

feasible, 185
infeasible, 185

regular expressions, 374
regular languages, 289
regular sets, 374
relation, 86

79
antisymmetric, 81, 86
binary, 79
Boolean, 464
compatibility, 84
equivalence, 82, 349, 464
inverse, 80
reflexive, 81, 86
symmetric, 81
ternary, 79
transitive, 81, 86

remainder, 422
restructuring, 409–411
resubstitution, 436–440

algebraic, 412
retiming, 56, 57
ring, 92
Rudell, 460, 513, 514
run, 266, 297

safety constraints, 297
satisfiability, 197, 461
satisfiability don’t care, 104

=SDC, 104
Schneider, 484
SDC, 461, 462, 465
search, 149

local, 185, 186, 190

INDEX 563

space, 127, 148, 149, 152, 186, 509
strategy, 149
tree, 152, 153, 336, 341, 482

binary, 152
semi-custom, 11–13, 130
sensitization, 478, 479
sequence

periodic, 320
states, 297

sequences
prefix, 372
restriction, 372
section, 372
substring, 372

sequential, 131, 492
sequential circuit, 255

passive, 293
set, 77, 86

cardinality, 77, 93
compatible state, 328

maximal, 328
prime, 328

complementation, 78
difference, 78

symmetric, 186
empty, 77
inclusion, 78
independent, 340
intersection, 78, 93, 101
maximal with respect to a prop-

erty, 276
ordered, 79
partition, 82
proper inclusion, 78
union, 78, 93
universal, 78
Venn Diagram, 79
well-ordered, 89

set empty, 109
set union, 101
Shannon, 98
shift register, 257
signal transition graphs, 262
single-cube containment, 419
singleton, 142, 146, 336
SIS, 492, 501, 507, 519

collapse operation, 22
SIS, 343
slack, 30
Socrates, 135
solution

feasible, 149
SOP, 133, 411, 412, 414, 417, 419, 420,

423, 424, 431
algebraic, 428

specification, 47, 127, 255, 458
incomplete, 106, 265

STAMINA, 356
state

assignment, 258, 343
indistinguishability, 326
representative, 273
splitting, 327

state set or state alphabet, 292
state minimization, 265
states

reachable, 308
STG, 262
Stone, 93
string, 266

empty, 297, 371
prefix, 372
recognizers, 370
restriction, 372
section, 372

sub-lattice, 352
sub-machine, 354
sub-string, 372
subkernel, 427
subproblem

infeasible, 340, 341
subset construction, 383
substitution, 439

algebraic, 439
substitution property, 350, 355
sum-of-product, 329, 417, 419
support, 198, 347, 418, 423, 458, 462
switching functions

permissible, 106
syllogism, 135
syllogistic, 134
symbolic simulation, 308

564 INDEX

symmetry, 116, 117, 349
synchronous, 255, 343
synthesis, 6, 7, 13, 47, 50, 51, 53, 57,

64, 127, 409
multi-level, 409, 417

Synthesis Tools
ESPRESSO, 62, 180, 185, 197, 200,

213, 215, 362, 470
ESPRESSO-II, 201
ESPRESSO-MV, 201

JEDI, 254
MINCOV, 180, 254
MINCOV, 360
SIS, 58, 60–62, 65, 104, 254, 260,

361, 435–438, 451, 468, 502
SIS, 410, 412
STAMINA, 254, 361

table
compatibility, 328
cube, 262
cube intersection, 427, 428
flow, 262

reduced, 334
tautology, 185, 191, 193, 199, 414

multi-level, 492
tautology checking, 194
technology

design, 6
manufacturing, 5

technology independent cost model, 16
technology library, 18
technology mapping, 57, 62, 260, 343,

410, 460, 505, 506
rule-based, 506

test, 132
test pattern, 132
test vector, 20
testability, 127, 130, 131, 343, 347, 441,

455
design for, 488, 492

theorem
consensus, 134

tie-breaker, 187
transition relations, 308
transitive closure, 24
transitivity, 87, 326, 349, 353

trap state, 263, 264, 294
tree

balanced, 508, 512
decision, 482
factoring, 414, 420, 421
recursion, 139
search, 426

truth table, 54, 197, 199, 256
TWIG, 509
two-level, 13, 127, 129, 185, 418

UCP, 337
unacceptable

variables, 338
unate, 143, 152, 422

negative, 422
positive, 422

unateness, 195, 422
Unger, 356
untestable, 131

variable, 132
splitting, 140, 149, 152, 336, 340,

484
Venn, 172
verification, 6, 257, 265
VHDL, 50
VHSIC, 50
VLSI, 5, 7, 10

Wang, 435

Y. Choueka, 387

