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Preface

In the few years since their appearance in the mid-sixties, variational
inequalities have developed to such an extent and so thoroughly that they
may now be considered an "institutional" development of the theory of
differential equations (with appreciable feedback as will be shown). This
book was written in the light of these considerations both in regard to the
choice of topics and to their treatment. In short, roughly speaking my
intention was to write a book on second-order elliptic operators, with the
first half of the book, as might be expected, dedicated to function spaces
and to linear theory whereas the second, nonlinear half would deal with
variational inequalities and nonvariational obstacle problems, rather than,
for example, with quasilinear or fully nonlinear equations (with a few
exceptions to which I shall return later). This approach has led me to omit
any mention of "physical" motivations in the wide sense of the term, in
spite of their historical and continuing importance in the development of
variational inequalities. I here addressed myself to a potential reader more
or less aware of the significant role of variational inequalities in numerous
fields of applied mathematics who could use an analytic presentation of
the fundamental theory, which would be as general and self-contained as
possible.

Having said all of this, I cannot fail to point out the extent to which
my treatment of the subject does not succeed in being general or self-
contained. On the first point I hasten to indicate that, in order to avoid
an overly technical presentation, I have chosen to make C' regularity
assumptions on (portions of) boundaries even where CO-' would have been
sufficient. But above all, I have bypassed "truly" mixed problems. In effect
I do systematically consider Dirichlet conditions on one portion of the
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boundary, and Neumann (or, more generally, regular oblique derivative)
conditions on the remaining part. However, the basic reason for this was
to avoid introducing separate statements and demonstrations for each type
of boundary value problem; therefore, I adopt the hypothesis that both
boundary portions are closed whenever the absence of such a hypothesis
might introduce excessively delicate problems of regularity.

Coming to the second point, background results in functional analysis
and in the theory of Lebesgue spaces have been listed without proofs;
I have furthermore assumed that the reader has a graduate level knowledge
of the real variable, and omitted the technically more complex part of the
John-Nirenberg lemma. Detailed demonstrations are provided for all other
results in the book.

What do I consider the relevant features of my book? First of all, I
must mention Chapter 3 in which I develop what are generally called the
Schauder and L' theories (here referred to globally as Hk.P and theory).
Usually the essential a priori estimates are obtained, for the former by
means of the Schauder-Caccioppoli techniques in Holder function spaces,
for the latter by using singular integrals in the light of the Calderdn-Zyg-
mund theory, and in particular by applying the Agmon-Douglis-Nirenberg
method for boundary estimates. But here I have chosen Campanato's ap-
proach, which is more unified and, to my mind, simpler: Schauder's
Holderian estimates are absorbed by others, of a basically variational type,
in the spaces of Morrey, John-Nirenberg, and Campanato, whereas LP
estimates are obtained from the previous ones by interpolation without
resorting to singular integrals. My presentation, designed to be as complete
as is reasonably possible, covers both the variational and the nonvariational
case, as well as Dirichlet, Neumann, and regular oblique derivative bound-
ary conditions. (The reader familiar with Campanato's method may notice
some minor improvements introduced in Chapter 3. For instance, in the
problems at the end of the chapter the LP theory is extended to the range
1 <p < 2.) But the use of Campanato's techniques is not limited to Chap-
ter 3. They are also used in Chapter 1, reformulating those of Morrey, to
show part of Sobolev inequalities. Campanato's method is further used in
Chapter 2 to extend the De Giorgi-Nash theorem to nonhomogeneous
equations with lower order coefficients, and in Chapter 4 to show C°'^
and C',' regularity results for solutions of variational inequalities of
obstacle type.

These remarks should in no way give the impression that any one
method has been given systematic preference. Quite the contrary. For
example, still on the subject of variational inequalities, the reader will find



Preface tx

the "natural" utilization of Lewy-Stampacchia inequalities for reg-
ularity (p finite), of difference quotients for H2 regularity in a more general
case, and of the penalty method for Hl-- and regularity.

As has already been said, one of my aims throughout the book has
been to go beyond the Dirichlet type of boundary conditions, and conse-
quently I have had to tackle the problem of trace spaces in detail. This
has been done in Chapter 1, where I have defined Sobolev spaces for orders
between 0 and 1 by using the rapid and to my mind handy method of
quotient spaces. This does not mean that I have systematically avoided
any intrinsic definition of function spaces on manifolds. In point of fact
I have presented full details, however tedious they may be, in the Lebesgue
case since it furnishes the concrete basis for later abstract constructions.
Before moving on from the material dealt with in Chapter 1, I would like
to add that it includes a detailed study of lattice properties, and that the
study of Sobolev spaces is probably more extensive here than is usually
the case in texts about partial differential equations.

Passing to Chapter 2 1 want to mention, in addition to the standard
topics (Lax-Milgram and De Giorgi-Nash theorems, method of difference
quotients), U regularity results for solutions of linear equations, and a
study of interior regularity for solutions of a class of quasilinear equations,
up to the point where the De Giorgi-Nash theorem comes into play and
makes possible the automatic application of the linear theory.

Abstract existence results for nonlinear equations are discussed in
Chapter 4 as byproducts of the study of variational inequalities. The
reason for this is that Brezis' very general existence theorem for pseudo-
monotone operators (and its consequent application to differential opera-
tors of the Leray-Lions type) fits naturally into this wider setting. One last
observation on my treatment of variational inequalities: I have included
new existence and uniqueness results for variational obstacle problems
involving a class of noncoercive bilinear forms, as well as existence theorems
concerning quasilinear operators under natural growth conditions. In the
latter context I used Lewy-Stampacchia inequalities to bring the study of
equations in the presence of lower and upper solutions quite naturally
back to bilateral variational problems.

There is a correspondence between the last point above and the non-
variational case dealt with in Chapter 5, where, among other things, I
redemonstrate (and extend) results of Amann-Crandall and Kazdan-
Kramer for semilinear equations. Here again lower and upper solutions
are treated as obstacles in a constrained problem. (The study of the
nonlinear case utilizes prerequisites for linear operators which are demon-
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strated at the beginning of the chapter.) Chapter 5 also takes up the
problem of providing a sufficiently weak notion of solutions to unilateral
problems for some nonlinear operators when we cannot (at least a priori)
be certain of the existence of an H2" solution (nor even perhaps of an
H1 solution in the case of divergence form operators). I also show that
the characteristics of these weak solutions make it possible, in certain
circumstances, to work back to an optimal threshold of regularity: The
case considered is that of implicit unilateral problems (nonvariational
counterparts of quasi-variational inequalities), in particular that of sto-
chastic impulse control.

The ground covered in this book should be more than sufficient as
the basis of a two-semester graduate course on second-order elliptic oper-
ators. With this end in mind I have provided problems at the end of each
chapter and hints to their solution in informal style similar to that of
suggestions which might be given orally in a seminar. The problems should
present no difficulties to anyone who has a sound grasp of the preceding
theoretical matter.

This book would probably never have been written had I not had the
privilege of studying with teachers such as P. D. Lax, L. Nirenberg, and
G. Stampacchia, nor had the good fortune to work in daily contact with
colleagues and friends in the Mathematics Department of the University
of Rome, of whom I should single out M. G. Garroni, U. Mosco, and
F. Scarpini. The constructive telephone conversations I occasionally had
over the years with C. Baiocchi should also be mentioned here. However,
for what regards specifically this endeavor, the help and encouragement
given to me by J. J. Kohn have been of special importance. I am glad to
be able here to acknowledge my indebtedness to all these persons and
to express my gratitude.
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Glossary of Basic Notations

N is the set of natural numbers, R the real line. For Ne N the typical
point of the Euclidean N-space R' is denoted by x = (x ..., x,,) and
also by (x', x,,) with x' _ (xr , ... , xr _i) if N > 2; for x, y e By,
X. y = EN, x,ys and I X I = (x x)112. For derivatives of a function u(x)
we shall often adopt the multi-index notation: D'u = &'Mu/ax,' ... axy'N,
where each ai is in N u {0}, a = (a°, .. , ay), I a I = ar + + ay .
We shall, however, usually write u., for au/axi and u,.,, for a2u/axi axi
if N> 2, u' for du/dx and u" for d2u/dx2 if N = I.

If D is a subset of t?y, its boundary is denoted by OD and its closure
D v aD by D.

S2 is an open subset of R"; from Chapter 2 on we shall constantly
assume that S2 is connected as well as bounded. (Openness and connected-
ness make S2 a domain.) The notation o cc .f2 means that w is an open
subset of shy with wo c D.

P is a relatively open portion of 012; the unit outward normal at a
point x e P, if existing, is denoted by v : x (0(x), ... , vy(x)).

For x° ERyand0<r<oo,

B,(x°){xER5I Ix-x°I<r},
B,'(X°) = {(x', xv) a B,(x°) I xN > XN°} ,

S,(x°) = aBr(X),

Sr+(X°) {(X', XN) C S,(x°) I Xn. > XN°},

Sr°(x°) {(x', xx) E . I I X - x°' I < r, XN = XN };

'V
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in these notations we shall usually depress the dependence on x° if x° = 0,
on r if r = 1. The set d2 n B,(x°) is denoted by _2[x°, r].

We shall follow the practice of using the same symbol C for different
constants depending on prescribed sets of arguments.
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Function Spaces

In the modern approach to partial differential equations a pivotal role is
played by various function spaces which are defined in terms of the ex-
istence of derivatives (either in the classical or in a generalized, weaker
sense). In this chapter we develop the study of such spaces to the extent
required for the investigation of second-order elliptic problems.

We begin by listing, without proofs, some fundamental background
results of functional analysis (Section 1.1). We then pass to spaces of smooth
functions, with a special emphasis on extensions and traces as well as on
local representations of boundary portions (Section 1.2). In Section 1.3 we
dwell on Lebesgue spaces. After recalling (without proofs) some basic
properties, we illustrate the technique of approximation by convolution
and introduce LP spaces which are defined through surface integrals.
Section 1.4 is devoted to L2" spaces, which for certain values of p are
identifiable with Holder spaces. We call the reader's attention especially
to Lemma 1.18, which will be utilized on several occasions.

The rest of the chapter is centered on the theory of Sobolev spaces,
which will play a fundamental role throughout. Sections 1.5 and 1.6 deal
with such topics as density results, extensions, continuous or compact
imbeddings into Lebesgue or Holder spaces. In Section 1.7 traces of func-
tions from Sobolev spaces are defined through a density argument. Finally,
in Section 1.8 various notions of inequalities, which will be essential to
the study of equations and especially of obstacle problems, are introduced
and mutually compared.

I



2 Chapter 1

1.1. Preliminaries from Functional Analysis

1.1.1. Banach and Hilbert Spaces

All linear spaces considered in this book are assumed to be defined
over R. If V, W are two such spaces and F is an operator V, W, the
notation F(v) for the value of F at v e V is replaced by Fv when F is linear
and by <F, v> when in addition W = P, that is, when F is a linear func-
tional.

A seminorm on a linear space V is a mapping v H [v]v from V into
[0, r"[ such that

[Av]V = I A I [V]V for ). E R, v c V,

[v + w1 v G [v] v + [w]V for v, w E V.

The following analytic formulation of the Hahn-Banach theorem guar-
antees the possibility of extending linear functionals dominated by semi-
norms.

THEOREM 1.A. Let W be a proper subspace of a linear space V. Sup-
pose that F is a linear functional on W and C. ]v a seminorm on V such that

I<F,v>I<[v]v for vE W.

Then there exists a linear functional P on V such that

<F`, v> = <F, v> for v E W,

I<F,v>I<[v]v forvEV.

A norm v I v Iv on a linear space V is a seminorm that vanishes
only for v = 0. Two norms I I v and I I V' on V are said to be equivalent if

C'IvIVSIvIV'<CIvIv forve V,

C being some positive constant; we then write
I I V '" I I v' When V is

endowed with a norm we call it a normed space. Any (linear) subspace W
of V is then a normed space with Since the mapping

u,VH1u-VIV

is a metric on V, we can freely utilize metric notions such as: convergence,
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also called strong convergence (of a sequence to v in V, denoted by
the symbol

continuity (of a mapping from a subset of V into another normed space),
density, compactness or relative compactness (of a subset of V), complete-
ness or separability (of V). The (topological) dual space of V is the linear
space V' of continuous, or bounded, linear functionals F on V, endowed
with the norm

IFIvt= sup I(F,v)I;
I Ivsi

in this context is the duality pairing between V and V'. By weak
convergence of a sequence to v in V, denoted by the symbol

we mean convergence of <F, to <F, v) in R whatever F e V'. Strong
convergence implies weak convergence, and viceversa if V is finite dimen-
sional. Weakly convergent sequences are bounded, and <F,,, v,> -. <F, v)
if F - F in V', v - v in V.

The Hahn-Banach theorem can be given a geometric formulation that
assures an adequate supply of continuous linear functionals, as is stated
in the following theorem.

THEOREM I.B. Let W be a subspace of a normed space V. If W is not
dense in V there exists a nonzero element F of V' such that

<F, v) = 0 for v e W.

Two normed spaces V and W are (topologically) isomorphic if there
exists an injective and surjective linear operator T : W -, V such that
both T and T ' : V W are continuous, i.e., satisfy

ITwIV <CIwIII, forweW
and

IT-'vIwCC1VIV for veV

with some positive constant C. We then write V- W. V and W are iso-
metrically isomorphic in the particular case when

ITwIV =IwIII, for we W.
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If the linear operator T is only required to be injective and continuous
(which can happen to be the case with T = identity when W is a subspace
of V as well as a normed space on its own), we say that W is continuously
imbedded, or injected, in V and write

WcV;

the particular choice of T is algebraically and topologically irrelevant
because Wand its image T(W) are isometrically isomorphic when the latter
is normed by

z H I w (w for z- Tw, w e W.

If T(W) is dense in V (so that

V' C. W')

we write
WcV.

ds

When a normed space is complete we call it a Banach space. Simple
considerations show that V' is always a Banach space whether the normed
space V is complete or not (see Problem 1.3). Any closed subspace of a
Banach space is a Banach space in its turn.

Let V be a Banach space.

LEMMA I.C. Let K c V be closed in (the metric of) V. If K is convex
and c K converges weakly to v in V, then v c K.

The linear mapping I defined by

<Iv, F> _ <F, v> for F E V'

is a continuous injection of V in the dual space V" of V', and even more,
namely, an isometric isomorphism between V and the image space I(V),
by the Hahn-Banach theorem (see Problem 1.1). If I is surjective, that is,
I(V) = V", we call V reflexive.

THEOREM I.D. A Banach space is reflexive if and only if its dual space
is such. Any closed subspace of a reflexive Banach space is reflexive as well.

An important property of reflexive Banach spaces is given by the

following theorem.
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THEOREM I.E. Every bounded sequence in a reflexive Banach space con-
tains a weakly convergent subsequence.

A special class of normed spaces is that of pre-Hilbert spaces. They
are linear spaces V such that there exists a mapping

u,V-*(u,v)v

from the Cartesian product V x V into R, called a scalar product on V,
which is linear in each variable and satisfies

(u, v)v = (v, u)v for u, v e V

as well as

(u,u)v>0 for ue V, u/`0.

On pre-Hilbert spaces the Cauchy-Schwarz inequality holds:

THEOREM I.F. Let be a scalar product on V. Then,

I (u, v)v I S (u, u)vr/2(v v)vrts for u, v e V.

A norm on V is given by the mapping

uti(u,u)v"s=1uIv.

When we say that a normed space is a pre-Hilbert one, we mean that
v is associated with a scalar product on V as above.

Two scalar products on V are said to be equivalent if the corresponding
norms are such.

When a pre-Hilbert space is complete (and is therefore a Banach
space) we call it a Hilbert space.

THEOREM I.G. Hilbert spaces are reflexive.

A Hilbert space is isometrically isomorphic to its image in the dual
space V' under the mapping

u i-* (u, .)v.

As a matter of fact, the Riesz representation theorem (see the corollary of
Theorem 2.1 below) asserts that the above mapping is surjective; its inverse,
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that is, the isometric isomorphism .7 : V' V defined by

(.fF,v)v(F,v> for ve V,

Chapter I

Fe V', is called the Riesz isomorphism.
We conclude this subsection with a few considerations about product

and quotient spaces.
If Vi, ... , Vk are normed spaces, so is their Cartesian product

V-V,X...XVk,
with

or

IVIV= max IviIV,
=t,...,I

[v - (v ... , with vie Vj, all these norms being equivalent; V is
separable, or complete, or reflexive, if each Vi is such.

Somewhat more delicate is the question of quotient spaces. For the
sequel all we need is the following theorem.

THEOREM I.H. Let W be a closed subspace of a normed space V, and
let V/W denote the linear space of equivalence classes

[v]-(v+wIwe W),

v e V. Then the mapping

[v]Finfly+wlv
w;V

defines a norm on V/ W. If V is a Banach (Hilbert) space, so is V1 W.

1.1.2. Fixed Points and Compact Operators

It is well known that in a complete metric space (in particular, in a
Banach space) a contraction has a unique fixed point. More sophisticated
existence (not uniqueness) results for fixed points will now be listed.

For finite-dimensional Banach spaces we have at our disposal Brouwer's
fixed point theorem:

1iD

IvIV =(Y_ Ivi1'v,) for some pe [1,oo[
1-1
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THEOREM 1.1. Let V be a finite-dimensional Banach space, let K be a
closed convex subset of V, and let T be a continuous mapping of K into itself
such that the image T(K) is bounded. Then T has a fixed point

ue K, a=Tu.

Brouwer's theorem utilizes the fact that in Euclidean spaces bounded
sets are relatively compact. Its direct extension to infinite-dimensional
spaces is Schauder's theorem:

THEOREM 1.J. Theorem 1.1 remains valid in any Banach space provided
the image T(K) is required to be relatively compact.

For the next result, known as the Leray-Schauder theorem, we need
the following important notion. A mapping T between two normed spaces
is said to be compact if it is continuous and maps bounded sets into rel-
atively compact sets; when T is linear the requirement of continuity, which
then amounts to boundedness, is clearly redundant.

THEOREM I.K. Let V be a Banach space. Suppose W is a compact
mapping of V x [0, 1] into V with the following properties:

(i) 6-(u, 0) = 0 whenever u e V;
(ii) there exists a constant C such that

I u 1 r< C whenever u c V with u= F(u, s) for some s e [0, 1].

Then the mapping T = 1) : V -* V has a fixed point.

A linear mapping T of a normed space into itself admits always 0
as a fixed point. If T is in addition supposed compact the question of the
existence of fixed points different from 0 must be formulated in terms of
the Fredholm alternative as follows.

THEOREM I.L. Let- V be a nonmed space and suppose T : V, V is
linear and compact. Then, either the homogeneous equation

ueV, u-Tu=0
has a solution u :f- 0, or the inhomogeneous equation

u C V, u - Tu=v
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is uniquely solvable for any choice of v e V, in which case the inverse of the
operator u -. u - Tu is also bounded.

REMARK. If V in Theorem 1.L is assumed to be a Hilbert space, the
content of the Fredholm alternative can be considerably enriched. To wit,
the equation

uEV, lu - Tu=v

can be shown to be uniquely solvable for any choice of v in V if 0:,6: 1. E
R\E, f being a certain countable set of real numbers with no limit points
except possibly 1. = 0, whereas the range of the mapping u H 1.u - To
when A c E can be characterized in terms of the null space of the mapping
u -* Au - T*u, with T* : V -. V' defined by

(T*u, v)y _ (u, Tv) y for u, v E V.

The proofs of the results stated in this section can be found in mono-
graphs on functional analysis such as those by H. Brtzis [19] and A. E.
Taylor and D. C. Lay [144]; for what concerns in particular fixed point
theorems, we refer to D. Gilbarg and N. S. Trudinger [67].

1.2. Various Spaces of Smooth Functions

1.2.1. Ck and Ct-d Spaces

For D S Rx, C°(D) is the linear space of continuous real functions
on D. When u = u(x), x e D is uniformly continuous on D, any non-
negative and nondecreasing function r on ]0, 00[ such that r(r) , 0 as
r 0* and

I u(x) - u(y) I < r(I x - y I) for x, y e D

is called a modulus of uniform continuity for u.
Let D be compact. It is known from calculus that functions from

C°(D) are uniformly continuous on D. Moreover, C°(D) becomes a Banach
space with the choice of the norm

Iulc-im_maxIu1;
D

convergence in C°(D) is called uniform convergence. A necessary and suf-
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ficient condition for a subset of C°(D) to be relatively compact is given
by the celebrated Ascoli-Arzeld theorem, which states the following.

THEOREM I. M. A subset of the Banach space C°(D) is relatively com-
pact if and only if its elements are uniformly bounded in the norm of C°(D)
and admit a common modulus of uniform continuity.

For the proof see, for instance, A. Kufner, 0. John, and S. Fui ik [92].
Ck(Q), with k e N, is the linear space of functions on Q having all

derivatives of order < k in CO(Q), and C0(Q) = lkE,. Ck'(Q).
Given a continuous function u = u(x), x e 12, let supp u denote its

support, that is, the closure of the set {x e Q I u(x) 0) : C/(Q), with
k a nonnegative integer or k = oo, is the linear subspace of Ck(Q) con-
sisting of functions u such that supp u is a compact subset of Q. In
particular, an important subset of C,°°(RR) is introduced as follows:
Let o e t > 0, 0 # supp u S B [an admissible choice being
e(x) = evn=P-v if I x I < 1, e(x) - 0 otherwise]. Set p,(x) - n°P(nx)f
fRN P(y) dy for x e RN, so that P° > 0, supp P° c and SRN dx
= I (n a N). Each function of the sequence is called a moll!er.

For k e N, Ck(d2) is the linear space of functions in CI(Q) which
can be continuously extended to . together with all their derivatives of
order < k. It is clear that, if Q is bounded, C"(.{') becomes a Banach
space with the choice of the norm

Y_ I D'u IC°cm
lai-i

where we have used the multi-index notation. C-(S) is the linear space
nIE,v C,()).

C,k(Q U I'), with k a nonnegative integer or k = oo, is the linear
subspace of Ck(_-7) consisting of functions u such that supp u is a compact
subset of -? U I. For k finite a norm on C,k(Q U I') can be defined in
the obvious way also when Q is not bounded; however, C'k'(Q U I') is
not complete unless Q is bounded and P = 8Q, in which case C,'*(Q U I')
= Ct(Q).

ForO<6<1let

[u]n:1) = sup
a(x) - u(Y) I

=.vED I x - y °
.sv

whenever it is a function defined on a closed subset D of R^'. If [U]6;D < ce
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{so that u is uniformly continuous on D with a modulus of continuity
given by ¢(r) - [u],;Dr°}, we write u e C°.6(D) and say that u is Holder
continuous or Holderian in D (with exponent 6) when 0 < 6 < 1, Lipschitz
continuous or Lipschitzian in D when 6 = 1. If D is compact, a norm in
the linear space is defined by

I U IC'-d(n) = I It I0'(D) + [u]e;D

If u = u(x), x e S2, is such that its restriction u ID belongs to
whenever D is a closed subset of S2, we write u e and say that u
is Holder continuous or HOlderian in Q (with exponent 6) when 0 < 6 < 1,
Lipschitz continuous or Lipschitzian in S2 when 6 = 1. (Note that these
notations and terminology are consistent with the above ones for 92 both
open and closed, i.e., S2 = F-v.) For k e N, CL-"(.l) is Athe linear
space of functions u E Ck(.) [u e Ck(Q)] such that D'u e C0.6(!)) [D'u E
C°''(d2)] whenever I a I = k. When _2 is bounded, a norm on Ck,6(0) is
defined by

I u Ick,du) - I u Ick(m + F, [D'u]d;a.
Ial=k

LEMMA 1.1. For k = 0, 1, ... and 0 < 6 < 1, with D bounded,
is a Banach space. For k = 0 the result remains valid if n is replaced by
any compact subset of R=`'.

PROOF. Let be a Cauchy sequence in Since is also
a Cauchy sequence in the Banach space Ck(.Q), it converges in the latter
space toward a function u. Let e > 0 be arbitrarily fixed, and let n, be so
large that

[D'un+P - D'an]6:b < E

whenever n > n p C N, I a I = k. As p , oo we obtain the inequality

[Diu - D'un]6;4 < e,

which proves that u e and that u - u in Ck.6(0)
The last statement of the lemma is at this point obvious. 0

REMARK. When 9 is bounded, by the Weierstrass theorem (see M. A.
Naimark [124]) the set of all polynomials in x1, ... , xN with rational
coefficients is dense in C°(.S). This shows that C°(.a) is separable. So also
is Ck(.) for k E N, since it can be identified with a subspace of a suitable
Cartesian power of C°(.D).
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For 0 < 6 < 1, instead, is not separable. It is canvecient to
stipulate the notational convention Ck.0 = Ck. For k = 0, 1, . . . and
0 < 6 < 1, CL."(.l) is not reflexive. See A. Kufner, 0. John, and S. Fut`ik
[92] and the references therein.

When D is bounded the following facts can be readily ascertained.
For 0 < 6 < 1 the product uv belongs to whenever u, v do, and

Iavh."(hl<IUIc4.5(a)IuIC0."tn)

For k = 0, 1, ... and 0 < y < 6 < 1, C' %O c (As a matter
of fact, this injection is compact: see Problem 1.4.) More delicate is the
question whether for k e N

Ck()) c C8-1'"() (1.1)

if b > 0. When 92 is convex, (1.1) is an immediate consequence of the mean
value theorem whatever 6 < 1; in particular, if A belongs to [Ck,"O]N
and S2' = A(S2) is open, each function u = u' o A, u' c C1,6(Q'), belongs
to C""(.D) with norm estimate

I U Ick."cnc «I u' Ick.e0'i.

Note that the convexity of S2 can be dispensed with when 6 = 0. However,
(1.1) is not true in general.

EXAMPLE. Let N = 2, S2 = {(X1 , xy) a Ft2 I -1 < x1 < 1, -1 < x, <
I x1 I112}. The function

(sign x1)x3', 1 < a < 2, if xr > 0,
u(x1, x2) = 10 otherwise

belongs to C'(.)), but does not belong to if a/2 < 6 < 1.

When N> 2 all the above definitions and properties can be automat-
ically transferred from Ax to RN-1, or even to .4N-1 X {0}, provided the
latter is endowed with its relative topology.

1.2.2. Extensions

When dealing with a function u = u(x), x e D c .R'v, it may be de-
sirable to know whether u can be extended as a function of x e D', D c
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D' c Rx, which keeps throughout D' certain properties u has in D. To
clarify this requirement we consider the case when D is not closed, and
suppose that 0 e I3\D. Let {x"} c D be such that I x" I tends to 0 in R
with I x" I > I x"+' 1. If g e C°(]0, oo[) is such that g(I x" I) = I /(nn),
g > 0 in ]0, oo[, the continuous function u = u(x) = sin [g(l x I)-'], x e D,
admits no continuous extension to A

As the preceding example shows, in order that every u e C°(D) admit
a continuous extension to RN it is necessary that D be closed. Remarkably
enough, this condition is also sufficient. Indeed, call u = a(x), x e RN, a
controlled CO extension of u e C°(D) to RN whenever u e CO(RN), i;jv = u
and 5UPRN I a I - SUPD I u 1; then we have the following theorem.

THEOREM I.N. If D is a closed subset of RN every function is e C°(D)
admits a controlled CO extension to RN.

This is a formulation of the Tietze extension theorem, a result in
general tolology whose proof can for instance be found in K. Kuratow-
ski [93].

Let us progressively increase the amount of regularity to be kept
under the extension procedure.

Call u= 0(x), x e RN, a controlled CO-' extension of u e CO-6(D),
0 < 6 < 1, to RN if a is a controlled CO extension of u such that [ie]s;RN
(u]a;n

THEOREM 1.2. If D is a closed subset of Rx every function u e CO. 6(D),
0 < 6 < 1, admits a controlled extension to R`'.

PROOF. For x C Rx set

v(x) = sup {u(f) - [u]e;n I x 1°).
¢eD

Then supRN v < supn u and v(x) > u(x) for x e D. If v(x) were > u(x)
for some x e D there would exist E e D such that u(g) > u(x) + [u]a;, x

x - $ 1a, which is impossible. Thus, v = u on D.
The function

a(x) - max {v(x), - sup I u x e RN,
D

satisfies a = u on D and supnN I u I = supn 1 u 1. Let x, y e Rx be such
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that u(x) > u(y). Then u(x) = v(x) and

0 < 11(x) - G(Y) <- v(x) - v(Y) = sup {u(E) - [ul°:n I X E I°}
EeD

- sup {u(n) - [u]°:n I Y -'7 I °}
,eD

<[u]°;nSUP(IY-EI°- Ix - fI°)en
<[u]6:n1x-YI°.

(For the last inequality see Problem 1.6). The proof is complete. 0
To proceed further into extension techniques we specialize with D = S2

and introduce a useful terminology for the description of open portions I'
of 812, as follows.

When Q' and S2" are bounded open subsets of R^' we say that a map
A :.S' - 0" is a Ck,B d ffeomorphism, with k e N v {0} and 0 < 6 < 1,
if it is one-to-one and onto with

A(Q') =.Q", A C [Ck'6(0')]N, A-' c [Ck'°(D" )]'v.

We say that I' is straightened by a Ck,d diffeomorphism A : U-. B
if U is a bounded domain of Rv, U n 812 = I', A(U n 0) = B' and
A(P) = S°. More generally, we call 1' of class if it is the union of
a family (which we can always assume discrete, and even finite if I' is
compact) of open sets P, straightened by C",' diffeomorphisms A, : U;
-. B; we call the family {(P,, A,)) a Cl-' atlas on I'. If k e N the Jacobian
matrices of A, and AJ 1 are, for each j, (defined and) nonsingular, respec-
tively, throughout U, and B. This means that, whenever x° a I', there
exist a positive real number r and a permutation E, = x;1... , s.Y = xiN
of coordinate axes such that I' n Q,, with Q, -_ ] E,° - r, E,° + r [
X . . X ]l=Y° - r, ;;N° + r[, is the graph of a function i;x- = Z( '),
and 12 n Q, - {(g', EY) C Q, I EY > d(E')}. Moreover, the unit outward
normal v is defined throughout T.

We can now return to the problem of extending a function u(x),
x e D. If supp u c 12 the trivial extension of u to R'v, defined as 0 in
R'v\S2, obviously shares the same properties of regularity as u indepen-
dently of the regularity of 812. In more general situations, however, the
latter plays a crucial role, as is illustrated by

THEOREM 1.3. Let 12 be bounded with 812 of class C'"-"for some k e N,
6 e [0, 1]. Whenever 12' is a bounded open subset of R'v such that 0 c e 12',
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every function u E admits an extension u to S2' with u C- Ck e(i)')
suppucQ'and

15 Ick.ecn9i < C I u Ick.acn),

C being independent of u.

PxooF. We begin with suitable changes of variables near boundary
points. Precisely, we fix x° a 8Q and denote by U a bounded domain of
RN such that x° e U, U n 892 being straightened by a diffeomorphism

A : U -+,R. The function u'(x) - (u o A-')(x), x e B+, belongs to
We extend u' across S° by setting

k+1

u'(x', x-v) _ > Chu'(x', -xv/h)
n=1

for (x', -xN) a B+, where the vector (C1, ... , Ck+,) is determined as the
unique solution to .

k+1 i-1Y(-hlCh =1 forj=1,...,k+1.
A-I

{The coefficient matrix ..-.k+1 of the above system is non-
singular, since it coincides with the Vandermonde matrix of the numbers
-1, -1/2, ... , -1/(k + 1).) Thus, WC_ with

k+1 1 aN

D'u'(x', xv) _ (- ) -xv/h)
h-I

for (x', -xx) a B+ whatever the multi-index a = (a .. , ay), I a I < k,
hence

I u' Ick.e(9) < C I u' Ick.e(n+) < C I u ok,ein)

We now go back to the original variables. Let r be so small that
B,(x°) c U n SY. The function w(x) _ (u' o A)(x), x e B,(x°), belongs to
Ck.6(B,(x°)) with

I w ICk.elD,lz6) < C I a Ck.8w)

[see the observation following (1.1)]; notice that w = u on B,(x°) n ..
By compactness 8.f2 = Um, l' for some m e N, where each Ti is the

intersection of 8S2 with some open sphere B' constructed through the same
procedure as the one above for B,(x°).
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At this point we need the following result, which is said to provide
a partition of unity.

LEMMA 1.4. Let w be an open subset of R' and for j = 0, 1 ... let
wj ac w be such that w = U;_° wj, any compact subset of w intersecting
only a finite number of the wj's. Then there exists a sequence {gj} c C°°(R `')
with supp gj c wj, 0 <gj < 1, >j_° gj = I throughout w.

For the proof see Problem 1.9. An open covering {wj} of the re-
quired type can, for instance, be obtained by setting w° - w,' and wj
wj+i\wi-r for j> 1 whenever wj' cc wj, to =UJ-° wj'.

As a matter of fact, here we need the following straightforward con-
sequence of Lemma 1.4, corresponding to the case w = RA" for a suitable
choice of "'m+p cc Rx\D, p e N:

COROLLARY. Let D be a compact subset of R'v such that D e Uj ° wj,
each wj being a bounded open subset of Rv. Then there exist g°, ... , g,,,
e C00(Rx) with supp gj c wj, 0 < gj < 1, Y_'° gj = 1 throughout D.

We take D=S22,w;=B'for i=1,...,m,S2nn w° S1\U=i B',
and set

u(x) = (ng°)(x) + (wigJ(x), x E
i=t

where each w' is the function from Cl'.d(Bi) constructed through the pro-
cedure previously illustrated for w [with the understanding that products
(fgj)(x) are defined to be 0 for x e R'^ \supp gj]. The function u is the
sought-for extension of u. 0

REMARK. Since S2' can be chosen convex, an immediate consequence
of Theorem 1.3 is that (1.1) holds for k e IN and 0 < 4 < 1 if 812 is of
class C'.

1.2.3. Traces

Let 0 < 4 < 1 and assume 0 bounded, T not only open but also
closed.

Every function u e admits a trace uic on T, ul, belonging to
with

I uI r IC.( r) < I u Ico.e,13,.

In fact C0.6(T) is exactly the space of traces of functions from C°°(O)
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since any function n e admits an extension is e (n = ulr)
with

I u IC',e&i) = I n Icb.°(ri

(see Theorems 1.N and 1.2).
Now let k e N and assume Jr of class We define a linear space

Ck,6(P) as follows. If {(I's, n e N, is a atlas on I', a
function at = n(x), x e 1', belongs to Ck,"(P) if, for each j, n o (A;-')I.,o
belongs to (S° being endowed with its relative topology); note
that the unit outward normal v belongs to

It is clear that the traces on F of functions from belong to
Vice versa, we have the following lemma.

LEMMA 1.5. If n e there exists u e Ck.6(.f2) such that ul,. = n,
is = 0 near 8d2\P if the latter is not empty.

PROOF. Let x° e I' for some j. The function

v3(x , xx) = (n ° Ai ')(X , 0), (x', xx) e B

belongs to Ck,"(B).
Let B,(x°) cc Ui, B,(x°) n (8Q\l) _ 0. The function wi(x)

(vj o Ai)(x), x e B,(x°), belongs to Ck,"(B,(x°)), and wilB,(z)nr =
As in the proof of Lemma 1.4 we can reach the sought-for conclusion
by appropriately choosing an open covering of l and the corresponding
partition of unity. 0

By Lemma 1.5 the definition of does not depend on the par-
ticular choice of the atlas on F. Indeed, could equivalently
be defined as the linear space of functions n = uI r with is c u = 0
on 8S2\P. Moreover, a norm on Ck."(P) is provided by

I n ICk,"(r) = inf{I U Ick."(n) I ulr = n, ulaa.r = 0).

Since I'Icr,"(1.) is a norm on a Banach space quotient, is a
Banach space (see Theorem l.H). We leave the details to the reader.

1.3. Lebesgue Spaces

We assume that the reader is familiar with the basic theory of Lebesgue
measure and integral, such as can be found, for instance in W. Rudin
[133]. We write a.a. and a.e., respectively, for "almost any" and "almost
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everywhere" with respect to Lebesgue measure measx on RN. (We shall
often write I E I for meas,\- E.) Let a be a measurable real function on Q.
We identify u with the equivalence class of all functions on Q which equal
u a.e.; we attribute a pointwise property in 92 or .t' to u if that property
holds for a representative of the equivalence class of u. We shall mostly
write f a u dx instead of f a u(x) dx.

For u measurable in Q denote by {w,},,_{ the indexed family of all
open sets w, c Q such that u = 0 a.e. in w,. The open set w = U,EA w,
is the union of a countable family of compact sets, and each one of these
can be covered by a finite number of the w; s: hence, w = w,p for
a suitable sequence {a,} c A, and u = 0 a.e. in to. We call .S)\w the
support of u and denote it by supp u. For u c C°(Q) the present defini-
tion of supp u is rapidly seen to coincide with that of Section 1.2.1.

1.3.1. La Spaces over Q

For 1 < p < oo we denote by LD(Q) the linear space of measurable

functions a on Q such that I u I° is integrable over Q, and set

lip
laln:a=lJ N' I'dx) .

Let

ess sup u= inf {C e R I u< C a.e. in Q},
a

ess inf u ess sup (-u).
a n

We denote by L°°(Q) the linear space of measurable functions a on Q

such that ess supn I u I < oo, and set

I u Im;n ° ess sup I u I.
a

Note that I u w.n = I u IcbO if Q is bounded and u e C°(.)). For I <
p < oo we attribute the same meaning as above to the symbol I u In;o

also when u is an Rv-valued function from [LD(Q)]v. Moreover, for x°
e R^ and 0 < r < cc we write I u ID;e., instead of I U Iy;e,(,-), I a Ip;x.r.+
instead of I u and (usually) depress the dependence on x° if
x°= 0, onrifr=l.

Whatever p e [1, co], u H 1 u Ip;n defines a norm on L9(Q), whereas
u, v --> f a uv dx defines a scalar product in L'(Q).
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If 12 is bounded and u e L°°(Q) we have

1 f '/p

(IDI Jolulpdx) <1uJ.;o

as well as

r f
(J

I u Ip dx)
1/p

? (I - E)I u 1w;a[measx (x e 12 I I u(x) I ? (1 - e)1 u Ioo:o}1"p
a

for e > 0. Therefore,
\1/a

Iu (IoluIpdx) . (1.2)

With every p we associate the conjugate exponent p' defined by

P' = P/(p - 1) if I < p < oo,
poo ifp=1,
p1 ifp=co.

The next result is Holder's inequality; it contains the Cauchy-Schwarz
inequality when p = 2.

THEOREM 1.0. For I <p < co let u e LP(Q) and v e Lp'(Q). Then uv
belongs to L'(Q), and

Iuv11;o<_Iulp;QI Ip';o.

More generally: let u; a LJ'(D), 1 < pi < oo, for i = 1, ... , n, with p -I
_A-I+ ... + pn ' < I (pi -I -0 if pi = oo). Then u - u1 ... un be-

longs to Lp(Q), and

I U Ip;o C I u1 Ip1:n ... I un Ip.;o

For what concerns structure properties of Lp(12) we have the following
theorem.

THEOREM I .P. For 1 < p < oo, L7(Q) is a Banach space with respect
to the norm u I u Ip;n; L2(Q) is a Hilbert space with respect to the scalar
product u, v H f a uv dx. L'(Q) is separable for 1 < p < oo, whereas
L-(Q) is not. L'(12) is reflexive for 1 < p < oo, whereas L'(Q) and L°'(Q)
are not.

Note that Lp(Q) c Le(12) for 1 < q < p < co if 12 is bounded.
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The next result relates convergence in LP(S2) to convergence a.e. in Q.

THEOREM I.Q. Let 1 < p < eo and suppose that {u"}" converges toward
u in LP(Q). Then there exists a subsequence {u"k}k which converges to u a.e.
in S2; moreover, there exists u* a LP(Q) such that I u"k(x) I < u*(x) for
a.a. x e'9, any k e N.

Passing to dual spaces we have the following theorem.

THEOREM I.R. Let Fe [LP(S2)]', I <p <oo. Then there exists fe
LP'(S2), with I f Ip':o = I F I(e°cmr', such that

<F, v> = fn fv dx for v e LP(S2). (1.3)
1

For 1 <p <co we identify [LP())]' with LP'(S2) by reformulating
(1.3) as F = f Note that L'(S2) c [L°°(S2)]', but there exist bounded linear
functionals F on L°°(S2) such that for no choice off in L'(P) (1.3) holds
with p = oo: take for instance

<F, v> = v(x") for v e C,`°(12),

x° e 92, and utilize the Hahn-Banach theorem to extend F as an element
of [L-(D))' (see Problem 1.10).

Finally we have the following theorem.

THEOREM I.S. C°(S2) is dense in L9(Q) for 1 <p <co.

For the proofs of Theorems 1.O-I.S we refer to H. BrBzis [19].
We denote by L .(S2) the linear space of measurable functions u on

S2 such that uI, a LP(w) whenever w cc Q.

1.3.2. Approximation by Convolution in CO, CO ,6, LP

If u e Lla(S2) and p e CW(R'v) with supp p c B, for some r we de-
note by p * u the convolution of p and u, that is, the function

(p * u)(x) = f p(x - y)u(y) dy
Brizl

u(x - y)e(y) dy for x e 92, dist(x, 8S2) > r;
B,
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the definition of p * u is trivially extended to the whole of S5 if dist(supp u,
OQ) > 2r. [For S, S' c Rev the symbol dist(S, S') denotes inf{I x - y

LEMMA 1.6. Let u E Lja(Q), p e C`°(R") with supp o S B,. Then
(e * u)lz a C°°(ru) whenever w cc Q with dist(w, dQ) > r, and

D'(e * u)(x) _ [(D'e) u](x) for x e cu

whatever the multi-index a. Moreover, e * u e C°°°(S2) when dist(supp u, OS2)
> 2r.

PRooF. It clearly suffices to prove that, for x c to, (e * u)(x) is dif-
ferentiable and verifies

a
(e * u)(x) _ axi a)(x),

Oxj

i = 1, ... , N. We arbitrarily fix h e R^' with I h I sufficiently small and
apply the mean value theorem:

Ie(x + h - y) - e(x - y) - h Ve(x - y)I

<_ I It l eQ h 1), e(r) -. 0 as r -. V.

Thus,

I (e * u)(x + h) - (e * u)(x) - [(h - 17e) * u](x) I

<Ihle(IhI)J Iu(y)Idy
D Iz)VB,(Z+A)

and the conclusion is patent. Q

We now specialize with convolutions p * u, called regularizations of
u, where is a sequence of mollifiers (see Section 1.2.1.).

LEMMA 1.7. Let u e C°(S2) and w cc 0. Then for n large enough all
functions (p * u)I,a have the same modulus of uniform continuity as ulae and
satisfy

if w cc cc S2; moreover,

(e * u)l, ul0 in C°(w) as n - cc.
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PROOF. The statement about the modulus of uniform continuity and
the norm estimate are obvious.

Let e > 0 be arbitrarily fixed and choose 6 > 0 in such a way that

Bd(x) c a' and

Iu(x-y)-u(x)I<e

for x E Co, y E Ba. Since

(en u)(x) - u(x) = J [u(x - y) - u(x)]en(y) dy
Bvn

and the right-hand side is majorized in absolute value by e fB, en(y) dy
E for 1/n < 6, the conclusion follows. 0

A simple consequence of the above is that C°°°(Q) is dense in C,j(Q)
for k = 0, I, ... , hence also in LP(Q) for 1 <p < oo by Theorem I.S.

If u is Holderian or Lipschitzian in S2 we can improve Lemma 1.7
as follows.

LEMMA 1.8. Let u E C°'6(S2), 0 < 6 < 1, and w ce D. Then, whenever
lL CC (v' cc S2,

[en * u]d;d [u]a;;;;

for n large enough, and

(en 0 ,-u 1 &
in as n -. oo for 0 < y < 6.

PROOF. The estimate is obvious. The last statement follows from the
compactness of the imbedding c C°,r(Co) (see Problem 1.4). 0

REMARK. In the setting of Lemma 1.8 we can estimate the rate of
convergence of (en * u)I,r to ul in C°(63). Namely, for n large enough

Iu(x-y)-u(x)Ien(y)dy
Bun

C dy = n[u]6,;,
Bvn

for x e Co. We can also majorize the rate of divergence, for 6 < 1, of
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I on * u indeed (assuming fRm 2 dy = 1),

(Q. * u)x((x) I = nn' I J e.,[n(x - Y)]u(Y) dy
B,ln(xI

nn°IJ u(x - Y)P,((ny) dyI
Bun

nnNIJ [u(X - Y) - u(x)]ex,(nY)dYI
Bun

<n [u1e;;T;n °IP1((nY)In"dyJ

for x e w, i = 1, , N, hence

I en * u Icl(m) < Cn'-^ I u

Passing to Lebesgue spaces we have the following lemma.

LEMMA 1.9. Let u e Lf0(92), 1 <p < oo, and w cc Q. Then, when-
ever w cc to' cc £2,

for n large enough, and

(P,. * u)In, -. uId in LP(w) as n -. oo.

PROOF. When x c- w and 1/n < dist(w, 8w') Holder's inequality yields,
for p > 1,

IrI(
D

I (en u) x) ID < t
J

ah1/D(x - y)pn"D'(x - y) I u(y) I dyj
l B1,n(xl

'

J
en(x - Y) I u(Y) IV dy [f e.(x - Y) dy I

pfp

nun(s)

= J y)Iu(Y)IV dy,

so that

JW 10. * u)(x) IV dX < L. I u(y) IV dy JW en(x - Y) dx < J I u(Y) IV dy

whatever p e [1, oo[.
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Fix e > 0 and let ul e C°(w') be such that I u - ui I,,, < e (see
Theorem I.S). Then

I u + I u. - I u. 111P-
< 2e + max e° u. u, I I supp(e * u1) U supp u.1'tA

by the preceding norm estimate, and

11s

by Lemma 1.7 with u replaced by u1. 0

REMARK. When 0 is bounded and u e 0 < 6 < 1, the norm
estimates and the convergence results of Lemmas 1.7 and 1.8 remain valid
with w and w' replaced by P provided p° u is replaced by Q. * u, A being
any controlled CO-4 extension of u to Rs' (see Theorems 1.N and 1.2). An
analogous consideration can be made for Lemma 1.10 if u e LF(Q), also
if P is not bounded, provided e.. u is replaced for I R,\12 I > 0 by
p * a, where u is the trivial extension of u to Rv.

Lemma 1.9 enables us to give an LP counterpart, known as the FrIchet-
Kolmogorov theorem, to the Ascoli-Arzeli sufficient condition for relative
compactness in C°(.).

THEOREM 1.10. Let .¢T e Li 0(Q), I < p < cc, be such that

sup I u v, . < co whenever a cc Q.
.e.?

Fix co cc 12 and denote by ?'1 the family of restrictions to Co of functions
from ?I. is relatively compact in La(w) if for every s > 0 there exists
6 > 0, 6 < dist(w, 812), such that

(.Iu(x-h)-u(x)Iadx<en for ue heRn with Ih1<6.

PROOF. For each n large enough the family g e". - {(p * u)15, I u e
satisfies the assumptions of the Ascoli-Arzela theorem, since

sup 1 2° * u Ic°(m : sup I u Ii; ,' I Pc Ic.(w-
ue.? ue?
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sup I (e, * u)(x) - (P,. = u)(y) I I x - y I max I PP" I sup I u I ,,w-
uEl B,," uc.7

for x, y e ru, with m' = U.,, This means that &F" is relatively
compact in C°(u,), hence in 11(w). Let e > 0 be fixed, and let {u1""), ,

u;;;)} c LP(w), m a N, be such that, whenever u e I P * u - ui '1 Jp:c
< e for some i. Let u e If x e w and n > 6-', 6 = d(e), we have (by
using Holder's inequality as in the proof of Lemma 1.9)

I (P,. * u)(x) - u(x) IP = [u(x - y) - u(x)]P"(y) dy

< f
, " l u(x -

y) - u(x) PP"(y) dy,
B,

hence

p

Iell u-ulv:w< J P"(y)dy f. I u(x - y) - u(x) IP dx < eP.

Thus, whenever u e gT there exists some u;'"' such that I u - u;'"h I, <
2e. This proves that r lw is relatively compact. 0

1.3.3. LP Spaces over l

Up until now we have considered L9 spaces only over open subsets
of R^'. When N > 2 we can turn to measurable functions defined on open
subsets of RN-1, or even of R v-1 x {O} if the latter is endowed with its
relative topology as well as with the (N - 1)-dimensional Lebesgue mea-
sure measv_,: we write a.e. [N - 1] for "almost everywhere with respect
to measv_,." We can define the Banach space LP(S°), I <p <oo, of
all measurable functions n on S° such that 177 VP is integrable over S°,
and set

up
Inlp:s^= (f

SO
InvPdx') .

We can also define the Banach space L`°(SO) of all measurable functions

n on S° such that I n I < Ca.e. [N - 1) in S° for some C e [0, c[, and set

I n lms" = inf{C e [0, oo[ 11271 < C a.e. [N - 1] in S°).

The matter becomes considerably more delicate when S° is replaced
by a "curved surface" of Rx. This is the situation we are now going to
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deal with. More precisely, we are going to consider the case of a C' (open
and) compact portion r of 852: we mention at the outset that, here and
throughout most of the sequel, the class C' could be safely replaced by
the class as in J. Nedas [127], at the price of a few additional tech-
nical difficulties.

Let {(Pj, Aj)}j_,,,, be a C' atlas on P.
Suppose that r' c: P is such that meas,_,[Aj(P' n Pj)] (exists and)

vanishes for every j. P' is then said to be a zero subset of P; a property
that holds at all points of P°\P', T. being a subset of T, is said to hold
a.e. [N- I] in P°.

For I < p < oo we write 27 a LP(T) if q is a function on P (to be
identified with any other such function that equals it a.e. [N - 1] in P)
with 27 o (A, ')I30 e LP(SO) for every j. For 27 a Lo°(P) we set

I r7 Imo; r - inf{C e [0, oo[ 11771 <.C a.e. [N - 1 ] in P}.

We now define an integral over r through the following procedure.
We first consider all (N - 1) x (N - 1) submatrices of the Jacobian ma-
trix of A '(x', 0), 1 x' I < 1. The sum of the squares of their determinants
is a strictly positive continuous function of x', whose square root we
denote by Hj(x'). Next, we introduce a partition of unity {gj} relative to
the open covering (Uj) of P, Uj = A, '(B), and set

J
r7da- '

J
(gjr7)o(Ai')I5Hjdx' (1.4)

r jal S

for n c- L'(f.
Let 1 <p < oo. For 77 a LD(P) we set

/ rr I/p
I'7ID do)1J

LEMMA 1.11. There exist two positive constants C C, such that

m D

_ ZC1 In ID : r G it ° (A% ') S° < C4 In p
D:s°

whenever 77 a LD(P), 1 <p < co.

PROOF. Since the nonnegative function (gt 1 n ID) o (Aj-')Iso vanishes
outside Aj(T; n Pj), the change of variables formula for (N - 1)-fold
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JO (gilnl')°(A ')Isodx'= f dx'
s' n,iF nrp

<C( (giInI')°(A ')IAilFinry)dx'
J

Thus,

<Cf(gilnI')°(A ')Iniil;nrpHidx'niirinrll

<C f
SO

(giIn l')°(A:')IVHidx'.

f In I' ° (A ')Iso dx' < C (gi I n I') o (A 1)IsoHi dx'
so -1 ab

=Cfr InI'da,

and the right-hand side inequality follows from summation over j. The
left-hand side inequality is straightforward. 0

It is clear that
I

In;r is a norm when p = co; as for 1 < p < oo,
it suffices to write I n n e LD(1), as a sum Ei 1 I nr' I';s° with n,',
.... nm a LD(S°). The same argument also shows that, by the (N - 1)-
dimensional version of Theorem 1.0, Holder's inequality is still valid with
S2 replaced by 1.

We can now collect all the results about the structure of LD(1) that
will be needed in the sequel.

THEOREM 1.12. For l < p < oo LD(P) is a Banach space with respect
to the norm n'-' I n lD;r; L2(1) is a Hilbert space with respect to the scalar
product oj, 0 H fr nB do. Convergence of a sequence in LP(1) implies con-
vergence of a subsequence a.e. IN - I] in T. Finally,

L"'(I') c [L'(fl]'
for 1 < p < oo.

PROOF. To prove completeness at the same time as convergence a.e.
IN - I] on 1 of suitable subsequences, consider a Cauchy sequence

{n o (d 1)Iso} , j = 1, ... , m, is then a Cauchy
sequence in LP(SO) by Lemma 1.11 and converges in LP(SO) toward a
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function 'j' by the (N - 1)-dimensional version of Theorem I.P. As a
matter of fact, the (N - 1)-dimensional version of Theorem I.Q shows
that we can find a subsequence of indices such that {r1°k o (Aj 9Iso}k con-
verges to 71i' a.e. [N - 1 ] in S° for j = 1, ... , m. Let rj' be the subset
of points x e rj such that does not tend toward (71i o Aj)(x): it is
clear that measN_, A,(rj') = 0, hence also that measN_, A,(rj n r;) = 0
for every i since A;(rj' n r;) = A; o A; ' o Aj(rj' n r;). This shows that
71nklr, tends toward 7Ji o (Aj)I,,, a.e. [N - 1] in I'j. But then%klr,nr, tends
toward both functions rl; o (Aj)Ir n, and 7)j'- (Aj)Ir,nr, at [N - 1] in
r, n Pj. This means that a function '] e LP(r) is defined a.e. [N - 1] in
r by setting 71 _ ?lj o (Aj)I r, on rj. Again by Lemma 1.11, 71° 71 in
LP(1'); moreover, -.71 at. [N - 1] in r.

The statement concerning p = 2 is obvious.
The last statement of the theorem is proved as follows. The linear

mapping

o i--r r 710 da for 0 e LP(r)
r

defines an element of [LD(P)]', whatever the choice of 71 a LD'(r), by
Holder's inequality. If 71 c LP'(r) is such that

f 710da=0 for0eLP(r),
r

then in particular

f I71IPda-0
r

with the choice of 0 - I21 IP-'-q where'] does not vanish, 0 _ 0 elsewhere,
so that 71 = 0. These considerations prove that LP'(r) e [LP(r)]'. 0

It is obvious that C°(r) c LP(I') c LQ(r) if I < q < p < oo.
Let 71 a LD(r), 1 <p < co, and take e > 0. For every j = 1, ... , m

let Cj e C'(S°) be such that

I1 a (Aj ')Is- - Cj ID;s° < E.

We extend trivially each function Cj on Cj o (Aj)I, to the whole of F.
Then gjI r Cj belongs to C'(P), and

1 9j('1 - SJ)ID;r < C 119A17 - C5)] a (Aj ')ISv 1 ;so < CEP
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(see the proof of Lemma 1.11). This shows that

I'7 - 5 )-I g1(17 P;11:5; Ce,
p;r 1

and we have the following lemma.

Chapter 1

LEMMA 1.13. For I <p < oo, L'(P) is the completion of C'(P) with
respect to Hp:r.

REMARK. Lemma 1.13 can be utilized to prove that the definition of
f r8 da, hence also the definition of L'(P), does not depend on the par-
ticular choice of the atlas {(P d,)}-nor, a fortiori, on the partition of
unity {gg}.

Indeed, let ti = uI r for u e C,'(D V P): clearly, supp is lies in 12'
u (812' n P) for some bounded open set 0' S 12 with 812' of class C'.
Then the divergence theorem of advanced calculus yields

Jr
77" do =

J n
u, dx.

This demonstrates the required property of independence for f r tpv' da
when 7 e C'(F), hence also when tl e C°(P) by density. Replace 21 by 710,
which belongs to C°(P) if t] does: then

f tl da = f ti(v1)2 do,r r
and the required property holds for frtl do when 7 e C°(P) and finally

when 7 e L'(F).
The same observation applies to the notion of a zero subset r' of P:

indeed, measv_,[AJ(P' n Pj)] = 0 for every j if and only if the charac-
teristic function Xr, of P' belongs to L'(P) with fr Xr' do = 0.

1.4. Money, John-Nirenberg, and Campanato Spaces

Throughout this section we assume 12 bounded.

1.4.1. Definition and Basic Properties

Let is be a function 12 -+R(12 -. RN). If is e L°(12) (u e [L2(Q)]N) and
w:-` 0 is an open subset of 12, the scalar (the vector) I w 1-1 f. u dx is
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denoted by (u).. A straightforward computation shows that the function
J I u - A I' dx of A E= R (A a B') attains its minimum at A = (u)w. There-
fore f I u - (u)w I' dx increases with w. We write (u),o,0 instead of
depressing the dependence on x° if x° = 0. For 0 < K < N + 2 we set

`1/2

Iu]2, : = ( sup P-e J I u - (u)e,,, I' A
.-c5 orX0.21

°<e<-

Note that, whenever 0 < r < p < co,

e-p I u- (u)x°.4 I' dx < r-1`
J

I u 12 dx
Die"] rn[x°,°]

<rFJ Iu12dx,
n

hence

Iu]e,o;n < r ° U l2;n

+ sup 0-9 J I u - (u)e., 1' dx.
z°en n[z°,e]
o<ecr

This circumstance will often be tacitly utilized. For instance, if u : Q - R,
supp u c S2 and S2' D 92, then the trivial extension u of u to S2' satisfies

C(I u 12: + [u]P,4:0)1/2

with C dependent on u only through dist(supp u, 80).
If [u]Y a: is finite we set

I U x,v:n - (I U I2; + Iu]P,N;n)1/a

We now specialize with scalar functions and denote by L2.p( D) the linear
space of function u e L2(Q) such that [u]2,,,n < oo.

LEMMA 1.14. For 0 < Ea < N + 2, L2.e(S2) is a Banach space with
respect to the norm u I u IE,M;

PROOF. We need only prove completeness. Let be a Cauchy se-
quence in L'-e(92). Since is a Cauchy sequence in L2(..Q) as well, it
converges in the latter space toward a function u. Let e > 0 be arbitrarily
fixed and choose nr e N in such a way that

Iun+D - un]2, M; < e



30 Chapter I

for n > n. and p e N. Whenever x° E .0 and 0 < e < no we have

e"J Iu-un-(u-un):°,e12dx
afz°,e7

< 2e-µ J I u - un+p - (u - un+p)z°,e 12 dx
0[x0,0]

+ 2P" J I un - un+p - (un - un+y)e,e I' dx
a[z°,e]

<2p-µ fa
Iu-un+D12dx+2e2,

hence also

P" J 1u-un-(u-un)z°,e12dx<2e2
nI2°,p7

after letting p -. 00. By a passage to the supremum over x° and a we
obtain

[u - un]2,Y:n < _ e>

so that u E and un -. u in as n -- no. 0

For what concerns the behavior of functions in L2" spaces under
suitable changes of variables and under extensions we have the following
lemmas.

LEMMA 1.15. Let 92 be convex and let A :.0 -. ,.0' be a C' diffeomor-
phism. Then each function u = u' o A, u' E belongs to L2' (Q).
Moreover,

IU12.,4:n<CIu 12,µ,n'

with C independent of u'.

PROOF. Since 92 is convex there exists a constant K such that

IA(x)-A(x°)I<KIx-x°I for x,x°ED.

Therefore,

A(52[x°, P]) s Q'[y°, Ke]

for x° E .0, y° = A(x°), 0 < e < co. Let u' E L2'0(52'). Then u E L2(52),
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and

I u(x) - (u),.. 12 dx <
1

I u(x) - ( )P°.Xp 12 dx
O[z°, P] O[a°,p]

I u'(y) - (u '),.,K, 12J(y) dy
Al O[z°,P]]

<
I (y) - (u )P°.KP 12J(y) dy

'tW. Be]

< (max J)KAe[u ]z.v:o'

where J denotes the absolute value of the Jacobian determinant of A-'
and (u')w.gQ = (u )o,[v°.K,]. 0

LEMMA 1.16. Let Q = BD+, 0 < R < oo. If u c- its extension
u to BR defined by

u(x', xy) - u(x', -xy) for (x', -xN) (= BR+

belongs to with

IuI2.a:BR <5 11/y

PROOF. It suffices to utilize the inequalities

J
I d - (u)B8[z°.P7 12 dx < f l u - (u)_,,P I2 dx

< 2 1 u - (u)yo
P

12 dx

for x° e BR+, 0 < e < oo. {Note that, when (x', xN) a BR[x°, e]\BR4,
then (x', -xN) E BR+[x°, e] since

I-xN-xy°I<IxN-xN°1
ifxN°>0,xx<0.} 0

The above function ie is called the extension by reflection of u.

1.4.2. Equivalent Norms and Multipliers

It is obvious that ul,,, E L2'N(w) if u E w being an open subset
of S2, and that L2,'(Q) c L2-N(Q) if 0 < µ < A < N + 2. Moreover,
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L2.O(Q) is isomorphic to L2(Q), and LT(Q) c L2.v(S2) for p > 2, µ =
N(p - 2)/p by Holder's inequality. To obtain deeper properties of func-
tions from L2-N(Q) we introduce the following definitions. We say that
S2 has the property (A) if there exists a positive constant, which we denote
by A, such that I Q[x°, el I > AeN whenever x° a .0 and 0 < p < diam S2
or, equivalently, 0 < e < r for some r < diam D. (For S c RN the
symbol diam S denotes sup{I x - y I I x, y e S}.) When N> 2 we say
that S2 has the cone property if there exists a bounded open cone .2f such
that each x° a 8S2 is the vertex of a cone . (x°) c 0 congruent to X
The cone property clearly implies property (A). On the other hand, S2 has
the cone property if 812 is of class C'.

To see this we fix x° a 812 and operate a permutation E1 = xi., ... ,
E,v = xi,, of coordinate axes in such a way that, for some positive constant
r which can be assumed independent of x°, the set 812 n Q,, with

Q, = ]E1° - r, Ei + r[X ... x ]F:v° - r, EN° + r[ (Ek - xit)

is the graph of a C' function EN = 2(E') and S2 n Qr = {(E', EN) a Q, I
Then for some constant C > 1 independent of x° the cone

I IE'-E°'I <rC-1, CIE'-E°'I <E,v-EN°<r}

lies in 92.
Note that a hemisphere has the cone property.

THEOREM 1.17. Let 12 have the property (A).

(i) if 0 < FO < N the mapping

f \1i2
uHl sup u2dx) (1.5)

defines a norm on L2,"(S2) which is equivalent to I's.r;a-

(ii) If N < p, < N + 2, L2""(92) is isomorphic to C0.6(0) for 6 =
(l2 - N)/2.

The proof of Theorem 1.17(i) relies on the following results, which
will again be useful on several future occasions.

LEMMA 1.18. Let wand O be nonnegative functions, the first one defined
on some interval ]0, R], the second one on the half-line ]1, oo[. Let fi, y, K
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be real numbers satisfying fl, y > 0, K> 1. Suppose that there exists a
positive function H(s), s > 1, such that H(s) < R and

ry(o) < K '*(r) + Pvds(s) (1.6)
rfi

whenever

0 < e < r < H(s), r/e < s.

Then, given any e e ]0, 9 - y[, the inequality

iP-YUe
4 (P) K rr$_, T(r) + evO(K't`) K(e-r)te - K

is satisfied for 0 < P < r < H(K11e) without any further restriction on r/e.

PROOF. Fix e e ]0, /1 - y[ , r e ]0, H(K11e)], e e ]0, r[. Setting s =
K'te > 1 we denote by k the first nonnegative integer such that sk+' > r/e

and put

Pt=Ps

k-i
(e) < (Ks I')kp(e) + ev E (Ksv-1)`0(s)

-o

We write (1.6) with a replaced by pi, r by e;+ and obtain

49(ei) < Ks P(p(P;+L) + ej O(s),

hence also

by iteration. To estimate q(eL.) we apply (1.6) with o replaced by ek and
obtain

T(ek) < Ks" w(r) + svkeYO(s).

Summing up,

(Ksv 9)' (S)'V(e) < KL+1 ra 4'(r) + ev Yk

1b
Since

and

for i=O, 1, ...,k.

Kk = sek < rlee

k

E (Ksv-a)i < (I - Ksv-P)-'
;b

the conclusion is patent. 0
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PROOF OF THEOREM 1.17. Step 1: Proof of (i). Let x° a .&, 0 < e < r
< diam Q. Whenever u e L',µ(Q) the inequalities

f u' dx < 2 1 d2[x°, ell I (u).°,, I' + 2 f I u - (u)e,, l' dx
O[x°.p] n[s°.r]

< 2 I S2[x°, el I I S2[x°, r] I-s f u' dx + r-2[u]e.p:o

show that the function q'(e) = u2 dx satisfies (1.6) with 0(s) =
fi = N, y = µ and K > 2 I B 11A [where property (A) has been

utilized together with the inequality I f2[x°, e] I < I Bp(x°) I = I B I e'1
If we simply divide by e" at this point we do not arrive at the required
bound on e-p(@) as a varies near 0, because of the restriction r/e < s.
But Lemma 1.18 applies: by choosing e = N - µ and r = diam f) we
obtain

e "w(e) <- C(I u lain + [uls.N:o),

hence

sup e-N f u2 dx<CIu12
Z°E1 (lI2° ]

On the other hand,

hence

2 .r. o C C sup e-N u' dx.I u 12
xE6 f 0(x0,0]

°<p<m

Note that the proof of the last inequality did not utilize property (A).

Step 2: Proof of (ii). Let it e Whenever x° E D and 0 < e
< oo, the integral mean value theorem yields

I u(x) - (u)50.p I <_ [u]e:L2ses

for x e d2[x°, e]. Thus,

f u-(u)soI'dx<f u'dx,
O[x°,p] O[x°,p]

I u - (u)5°.p I' dx < [ul'e,n2'se2d I D[x°, 011,

and CO-I(D) c here property (A) has played no role.
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Vice versa, let u e L2, (0). Whenever x° a .i and 0 < r, < r,
diam .4 we have

I (u)xo.,, - (u)s^.r, I2 < 2(1 11(x) - (u)so.,, 12 + 111(x) - We", I2).

hence

I (u)o.,, - (u)2^.,, I2

< 2 r,-,v i u - (u)e,,,11 dx + I u - (u)30 71 11 dx)
(face.,,] Die."]

< CrIN(r1M + rt)[u]e,M:o (1.7)

after integration over Q[x°, r11.
Now let p c- ]0, 2 diam 92] be arbitrarily fixed. From (1.7) with r, _

e2-(4+1) and r, = p2-4, i e N, we obtain

I (11)x^.12-0+1) - (u)a^.Q2_, 1 < C2t(N-M)/2p(M-N)/2[u]2.M{o

and therefore

k-h-1
I (u)e,12- - (u)y0.Q2-e1 C C2k(N-M)/2

f-,
2i(N-M)/2e(M-N)/2[u]e.A;o

1-0

< C2h(N-M)/2p(M-N)/2[1112,M.
-O.

for h < k. This shows that {(u),.,p2_,}i c R is a Cauchy sequence, hence
a convergent one: its limit u(x°) is clearly independent from the choice
of p, since (1.7) can be applied with r, = 2-i and r, = 2-i whenever
0 < 6 < p. Thus,

u(x°) = lim (u)3.,,
r-

with

I (u),., -11(x°)1 < Cr(M-N)n[u],.r:o (1.8)

for 0 < r < diam Q.
By the above procedure we have defined a function u on D. From

(1.8) we first of all deduce that

111(x)1 <- C[u]2,1;0 + I (u):.dlun I ,

hence that u is bounded in S2 with

SUP lul<-CIuI2.M;0
(1.9)

0
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Next, let us prove that a is Holderian. Let x, y e ..0 with R = I x - y
< (diam 92)/2. Then (1.8) yields

10(x) - a(Y) 15 I (u)z.2, - 0(x) I+ I (u)z,2R - (4;2R1 + I(u)Y,2R - 0(Y) I

< C[u]2.,.;oR1v-.v )i2 + I (u).,:2R - (u).;2R I

On the other hand, the inequality

I (u)z,2R - (u)y,2R I <- I (u)z;21Z - u(e) I + I u(E) - (u)1,2R I

yields

I (u)r,21? - (u)1.21? 12 < I E I-' (2R)_R J I u - (u):.2R 12 d
LL n[z,2R]

+ (2R)- r I u - (u)Y,2R I2 d$I
J R[y.2R1 1

after integration over the set E = Q[x, 2R] n S2[y, 2R] which contains
Q[x, R] and therefore satisfies I E I > ARR. Thus,

I (u)x,aR - (u)y.2R 15 C[u12,v;nR[v-N112,

and finally

I u(x) - u(Y) I <- C[u]2,;o I x- Y I.

For I x - y I > (diam 92)/2 we obtain instead

IOW -a(Y)I <CIu 2, n<C( diamQ
2

by (1.9).
We have thus proved that a e C'.'(.2) with I a IC0,e(n) < C I U I.,R;n

To complete the present proof we need only take into account the Lebesgue
theorem, which ensures the convergence a.e. in 12 of the function x H (u),,
as r -.0+, toward (a representative of) u: thus, a is nothing but (a repre-
sentative of) u. 0

REMARK. By Theorem 1.17, if µ < N Lemma 1.16 remains valid for
the extension G(x', xN) _ -u(x', -xN) for (x', -xN) a BR+.

Theorem 1.17 indicates that the role of varies according to
whether 0<,u <N, N < µ < N + 2 or µ = N.
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For 0 < p < N, L''"(.f2) is called a Morrey space. The norm (1.5)
[or, equivalently, any other norm obtained from (1.5) by replacing the
range 0 < e < cc with a range 0 < e < r, where 0 < r < cc] is clearly
more convenient to deal with than 1.1z,r;o.

For N < p < N + 2, is called a Campanato space.
L2.21(d2) is called a John-Nirenberg space; its elements are also said

to have the bounded mean oscillation property. From the inequalities

I lu-(u)eie1'dx< f u'dx

< I Q[x0, L91 I ess sup u2
a

it follows that L°°(Q) c L'-N(d2). On the other hand, L"(D) is a proper
subset of in the case N = 1, S2 = ]0, 11, for instance, the latter
space contains the unbounded function u(x) = log x.

Let P have property (A). If we agree to qualify as a space of multipliers
for a Banach space X of functions v defined on S2 such that

it e L2-µ(.Q) implies uv a

with

IUV I2.N;o:CIulz,r.;oIvlx,

it is not difficult to ascertain that L°'(Q) is one such space when 0 <p
< N, C°.°(.(3) when p = N + 26 with 0 < 6 < I (see Lemma 1.18).
When p = N we proceed as follows: We fix any 6 in ]0, 1] and multiply
u e by v e C°.d(fl). Then we fix x° e £, e c- ]0, 1], and obtain

Ia[zo,°]
I uv - (UV)z°.. 12 dx

I [u - (u)z..a]v + (u)z°,ev - (uv)z°.2 I' dx

< C(1 V I1°[n] I I U - (u)z°,e I2 dx + eM[v1,',;n I u2 dyJ
a[z°,s] a[x°,c]

where the estimate

t I u(Y)[v(x) - v(Y)] dYl

<
I DIx

t

°, el I
(2e)z°[v]6';6 u2 dy,

o[x°,e]
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x e Q[x°, p], has been utilized. Since Lz-"(Q) e if N> 26,
we also have

u° dy C Cel'-!°' I is IR.X:a

by Theorem 1.17(i), hence

sup e N
J

I uv - (UV),.., 12 dx
x°ea a[z°.el
o<esi

< C(I v Ic°[ii1[alz.n .a + [v]26;i, I U Iz. v;a).

Summing up, we have proved the following

LEMMA 1.19. Let 9 have property (A). If 0 < µ < N, L'(D) is a space
of multipliers for If N < Is < N + 2, is a space of mul-
tipliers for L'. (Q) provided 6 = (p - N)/2. Finally, is a space of
multipliers for whenever 0 < 6 < 1.

REMARK. The results of the present section can be extended to the
class of spaces Lve(.Q), with I < p < c and 0 < f< < N + p, constructed
via the obvious definitions of [ and I - Iv,N;a. See S. Campanato [32].

1.5. Sobolev Spaces

Suppose l of class C' and compact. Whenever w e C°'(Q u I'),

J
w.,dx= f wlrv`do fori=l,...,N

11

by the divergence theorem. This is the motivation for the generalized notion
of derivative which will be provided below, and even, indeed, the starting
point of the whole variational theory of elliptic equations. Note that,
regardless of P,

jo
uvzldx fori=l,...,N (1.10)

o u

whenever u e C'(Q), v e CI (D).
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1.5.1. Distributional Derivatives

A sequence c C, -(.Q) is said to converge in (the sense of) -'?(Q)
toward 0 if supp v S E, E being some compact subset of S2 independent
of n, and D°v - 0 uniformly on E for every multi-index a. If T : v i
<T, v> is a linear functional on C°°°(Q) which satisfies <T, v") -. 0 when-
ever v 0 in (A2), we call it a distribution (on S2), and write T e 9'(S2).
If T is a distribution, so is the linear functional v - -<T, vii) on C,-(d2):
we denote it by OT/ax; or Tom, and call it the derivative in the sense of 9'(S2),
or distributional derivative, of T with respect to x;. More generally, if a
is any multi-index the ath distributional derivative of T is the distribution

D'T : v (-1)I°I(T, D°v) for v e C°°°(S2)

Note that T-,,, = Txix1.
The single most important example of a distribution may be considered

to be the Dirac measure d.° concentrated at any given point x° a S2, which
is defined by

<dz°, v> = v(x°) for v e C°°°(D)

A whole class of distributions is introduced instead by setting

<T", v) =
J

uv dx for v e Q- (D)
O

whenever u e L,a(D); note that the identity u, = u, holds in Lia(Q) if
and only if T"' = T"" (see Problem 1.11). Let 1 < p < cc, and let T C
9'(Q) with

I <T, v> I <CIvla,a for ve C°°°(0):

since T can be extended as an element of [Lv(Q)]', there exists a function
u e LT'(1) c L}.(d2) such that T = T". On the other hand, no function
u e LL,(Q) can be found with the property T" = d,° (Problem 1.10).

As a distribution, T" admits derivatives of all orders, regardless of
the (lack of) regularity of the function u. Even if u admits a classical
derivative au(x)/ax; at a.a. x c S2, with au/ax; e the identity
Ta"ta:, = a(T")lax; need not hold: in the one-dimensional case S2 = .R,
for instance, the classical derivative of the so-called Heaviside function

H(x)
= 1

j 1 for x > 0,
0 forx<0
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exists and equals 0 throughout R\{0}, whereas d(TR)/dx = 80. However,
things change if we require that the distributional derivative a(T')/axi
equal Twi for some wi e L 0(Q).

To illustrate this case we need some additional terminology. If P
denotes a straight line of RN intersecting S2 on a nonvoid set, a function
on S2 that is absolutely continuous on every compact interval c P n 0
is said to be absolutely continuous on P. When N> 2, a property which
holds on all parallel straight lines from a given family, except those of a
subfamily intersecting an orthogonal hyperplane on a set S with meanN_, S
= 0, is said to hold on almost all straight lines of the family. When N = 1
the same espression means that the property in question holds on R.

THEOREM 1.20. Let u e Ljm(Q), i = 1, ... , N. In order that a(T°)/axi
= Twi for some wi e Lio0(S2) it is necessary and sufficient that u admits a
representative u* = u*(x), x e S2, which is absolutely continuous on almost
all straight lines that are parallel to the ith coordinate axis and intersect S2
on a nonvoid set, and has the classical derivative au*/axi in Ll(Q); if this
is the case, a(T°)/axi =

PROOF. We shall repeatedly utilize Fubini's theorem, both in N and
in N + I dimensions. For the sake of notational simplicity we shall consider
only the index i = N.

Step 1: Necessity. If RN\S2 0 we shall consider u and w = w,v as
measurable functions on RN, u = w = 0 in RN\S2.

Let S2 = lj;_0 wj with wj cc Sl, each compact subset of S2 inter-
secting only a finite number of the wj s. Let {gj} be the partition of unity
relative to this open covering (see Lemma 1.4). We fix j and set g = gj,
z = gu. It is evident that z e L1(RN) and

- J
RN

zv_N A = J
RN

(g,,Nu -{- gw)v dx for v e C, (RN). (I.1 1)

Let zi v) be any representative of gsNu + gw. The function z* defined as

zn.
Z*(x) -

-m
zCNi(x', t) dt, XN a R,

if

{(

IIX' e s'=
ly ERy-1I Jm

I zlv)(y', t) I dt Goolo J
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z'(x) = 0 otherwise, is (a representative of) an element of L]o,(k`), and

JRN Z*v dx = JRN {j.N v(x', t) dt]Z) N)(.) dx

= f' fw v(x', t) dt]g(x)z(N)(x) dx
nN L J :N

zv dx for v e C, -(RN)
RN

by (1.11) with v(x) replaced by [f,-, v(x', t)dt]g(x), provided g E C,-(R-v)
with g" = I on supp g. This shows that z* is a representative of z.

Since measx_I(RTN-'\S') = 0, z* is absolutely continuous on almost
all straight lines parallel to the Nth coordinate axis; a.e. in R.v its classical
derivative zT exists and equals z)N): hence,

-JRN ZVV,,, dx = JRN Zi.,V dx for v E CA(IRN).

The necessity of the condition has thus been proven with u replaced
by gju. At this point we need only utilize the identity u = Yj_o gtu and
the fact that (supp gt) n E _ 0 for all but a finite number of the gj's
if E is a compact subset of Q.

Step 2: Sufficiency. If RN\d2 0 we shall consider u* and u;A, as
measurable functions on RN, u* = ui,) = 0 in ,RN\S2.

Let v e C,°°(RN) with supp v c 0. Then,

g(T-)
v) = - J dx

8xv n-
Ti" v

=
J

dx'
J

u*(x', xv)v2N(x', xv) dxv
RN i

=J dx'J-R(x',xv)v(x',xx)dxv
RN-

u_*NV dx

since u* and v are absolutely continuous on almost all straight lines parallel
to the Nth coordinate axis, and (u*v)(x', xx), x' e kN-1, vanishes identically
for I xN I large enough. 0
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REMARK. Inspection of Step I above shows that the classical derivative
u,, of a function u e C°(d2) exists and is continuous at all points of Q,
with Tawa:i = a(T")lax;, if a(T°)/ax; = T'°' with w; e C°(d2). In particular,
a function u e C°(S2) belongs to C'(Q) if and only if a(T°)lax; = T'°' with
w; e C°(D) for i = 1, ... , N [see (1.10)].

We identify the distribution T° associated to u E L1(Q) with the
function u itself. This creates no ambiguity for what concerns the present
meaning of the symbol <u, v>, which is perfectly consistent with that of
the pairing between u c L"'(.Q) and v e L9(92) for 1 5 p G oo. For what
concerns the notation du/ax; or u., for derivatives, no ambiguity arises
(at least, up to the equivalence relation for measurable functions) when-
ever distributional derivatives are (distributions associated with) functions
from LL(Q). Note that, in such a case, a(uIj)/ax; = (au/ax;)l whenever
w is an open subset of Q, and supp us, S supp u.

1.5.2. Difference Quotients

Let e' denote the ith unit coordinate vector. For x e d2 and h e R
with x + he' a 0 we set, whenever u is defined on S2,

rh'u(x) = u(x + he),

bh`u = (rA'u - u)/h if h # 0;

6h' is the classical difference quotient. If dist(supp u, a92) > I h 1, the def-
initions of rh'u, BAiu can be trivially extended to the whole of D. We shall
often depress the dependence on i. For co cc 92 and I h I sufficiently
small it is evident that

8h(uv) = (rhu)dhv + (8hU)v in w,

and that

f. (bhu)v dx = - f
D

dx
n

if u, v e Lja(Q), supp v c w.
It can also be readily ascertained that the membership in Lf (Q) of

u together with a distributional derivative u., implies

(9

[ahuIJ] = bhuX)L E LD(w)ax.
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THEOREM 1.21. Let I < p < oo, i = 1, ... , N. In order that the dis-
tributional derivative uxi of u e LP(Q) belong to L7(D) it is necessary and
sufficient that

I bh'u IP.. < C (1.12)

for all bounded open sets w c £2 and real numbers h such that x E w implies
x + h'e' E 0 for 0 < I h' I < I h I. If this is the case, (1.12) holds with
C = I u2, Ip;a.

PROOF. We shall only consider i = N, 6h - bhv

Step 1: Necessity. By Theorem 1.20 there exists S' c RN-i such that
measv_1(Rv-'\S') = 0 and

I

bi,u(x) = f u2T,(x', t) dt
xy

at all points x = (x', xy) E co with x' e S'. We introduce the trivial ex-
tensions z and (u A) to .K" of (bhu)(x), x c- w, and uZR(x), x e .2, respectively.
Let 1 < p < co. For x' c- S' we have

E I z(x', xv) Ip dxv I I h (2N+e (u H)(x', t) dt I p dxv
J J 2 y

1= f h Jh

(uxA)(x', xv + t) dt dxx
J o

I
r

(rh

C J 1J
( r)(x',xN+t)Ipdt)dxxhl o

by Holder's inequality, hence

f r fv
I

1

hl 10 \JI I (u R)(x', xx) Ip dxh,.

Therefore,

r f r
f IbhuV dx = J dx'J' Iz(x',xv)V dxv

RR-,

5 dx' [ I (uxy)(x , xR) Ip dx_V

= f I uxh, Ip dx.

For i = N this amounts to (1.12) with C = 1 uxh, Ip,Q if 1 <p < cc.
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If p = eo it suffices to consider the case when Q is bounded and

let q oo in the inequality

\J w I bku I°

dx)vr <
1J o I u IQ dX)"'

[see (1.2) in Section 1.3.1].

Step 2: Sufficiency. Take v in C°°°(D) and let w cc D be such that
supp v c to. Then,

f u8-ht, d x I

J W
(3hu)v dxl

< C IV I,,;.,
hence

IJauv,vdx <CIvlp.;a (1.13)

after a passage to the limit ash -a 0. By (1.13) the distribution us,,: v
- Ja U14 nix on C°W(Q) is an element of LP(Q). 0

REMARK. For what concerns the necessary part of Theorem 1.21 see
also Problem 1.14.

1.5.3. Spaces: Definitions and First Properties

Let 1 <p < oo. We define HI-P(D) as the linear space of functions
u E LP(D) whose distributional derivatives u,,, ... , u., belong to LP(Q),
and, by recurrence, as the linear space of functions u E
with u.,, ... , ur, e (k e N, k > 2). For k E N, is

called a Sobolev space. Local Sobolev spaces are introduced by writing
u E Hjk;c (D) if ul,° E whenever w cc D. For the sake of notational
uniformity we set LP(Q), HIo°(D) - In the symbol

we depress the dependence on p if p = 2.

THEOREM 1.22. For k e N and 1 < p < co, H'.P(Q) is a Banach space
with respect to the norm

1/p

I u IH-.PCm - (E IDzulp;a) +fp <
I=ISk

I U IHm.-gym = max I D=u Iw;o.
1 1Sk
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Hk(S2) is a Hilbert space with respect to the scalar product

(u, v)akim = E Dav)r;()
Ialsk

HL.P(D) is separable for 1 < p < oo, reflexive for 1 < p < oo.

PROOF. It is clear that Hk.P(Q) is a normed space, Hk(Q) a pre-Hilbert
one.

Let
X(P) = II Xa'p',

1a15k

(where X,1D' = L3(Q) whatever the multi-index a with I a I < k. For u =
{ua}IaISk e X") set

Iulxni > lualp:o
aI ck

and define 1: HI, P(12) -. XW by

Iu - {Dau}lalsk for u C

is a closed subspace of X(P by definition of distributional
derivatives. At this point completeness, separability for 1 < p < cc, and
reflexivity for I <p < oc are easily transferred from LP(D) to (X(P) and
from X"p) to) the latter space being isomorphic to its image
under /. 0

REMARK. Hk.°°(Q) is not separable; neither nor is
reflexive (see A. Kufner, 0. John, and S. FuLik [92]).

If D is bounded the following inclusions are obvious:

Hk.p(Q) c Hk.v(Q) if I < q < p < co,

Ck(.Q) c

From Theorem 1.21 it follows also that

Ck-'''(D) c Hk'a'(Q);

the example of Section 1.2.1 shows that the inclusion

Hk..(Q) c Ck-1.1(D)

is not true in general.
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Membership in Hl'-P(Q) of a function from LP(Q) is a local property,
in the sense clarified by the next result.

LEMMA 1.23. Let k c- N, 1 < p < oo. If 92 = U,- .Qj, each .Qj being
an open subset of R`, and u E LP(Q) with ulo E for j = 0, 1, ... ,
m, then u c- Hk,P(.Q).

PROOF. Let a be any multi-index with I a I < k, uj' = Since
u;' = uJ in Sdi tl Dj, the function u° = uj° on 2j, j = 0, 1, , m, is a
well-defined element of LP(D). Let v E C°°°(f2) and denote by {gj} a par-
tition of unity relative to the open covering {Slj} of supp v (see the corollary
of Lemma 1.4). Then,

f u°v dx f u-giv dx

o
Ja uj'giv dx = (-1)1a1 C J uD gjv) dx

iro j
_ (-1)IxI f uD-v dx,

n

hence ua = Du. 0
For what concerns dual spaces the following considerations will suffice

to our purposes. Let 1 <p c oo. Since Hk-P(D) is densely injected in LP(92),
LP'(Q) is continuously injected in [Hk'D(L2)]'.

We can therefore safely utilize the same symbol <F, v) for the pairing
between F E and v e as for the one between F E [LP(Q)]'
and v E LP(Q), after identifying FE with it c LP'(D) when

F: u H
J

uv dx for u c- Hkte(S2).
0

Note that, when it and v belong to Hk(d2), <u, v) equals their scalar product
in P(D), not in Hk(92). An element F of is defined by

<F, v> = <ua, &v> for v c- H'-v(Q)
Ial Sk

if u, E LP'(D) for any multi-index a satisfying I a I < k. Vice versa, it
can be proven that every element of admits the above repre-
sentation: see It Adams [1].
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1.5.4. Density Results

When D = Rv we have at our disposal the following lemma.

LEMMA 1.24. C (RN) is dense in whatever k e N, 1 < p < oo.

PRooF. We operate a preliminary reduction by the so-called cutoff
method. For 1 < r < oo let g,(x) = g(x/r), where g e Ca-(RN), g = 1 on
B. If u belongs to HWD(Q), so does g,u with

I Da(g,u) I< C E I Deu I in RN for 0< I a I< k.
IBI slat

[Compare with (1.11).] Straightforward arguments prove that

I U - g,U I Hk.n(RN) - O as r-> oo,

so that we can restrict our considerations to functions u with compact
supports. Let be a sequence of mollifiers and denote by e

e(x - y). Since a C,-(RN) we have

[Da(en * u)](x) _ [(Daea) * ul(x)

_ (-1)IaI<Dae.2, u> = <e:, Dau>

_ (e fu)(x) for x e V.

We can therefore apply Lemma 1.9 with co D supp u: we obtain

Da(oa u)I,, -. Daula in 11(w) for I a I < k,

hence

e * it -. U in Hk.v(RN).

Note that for n large enough ea a it e Cp (RN) because supp u is compact. 0
Approximation in becomes considerably more delicate if

RN\Q # 0 since we cannot take much advantage of the cutoff method
(see the beginning of the proof of Theorem 1.27 below). The same argu-
ment as in the preceding proof does however show that Da(e * u)I _
(en * Dau)Ia, for n large enough, I a I < k, if it e Hk.P(Q) [or even it e
Hj' (Q) only] and w cc Q. Thus, Lemma 1.9 yields

(ea * u)I0 -. ula, in Hk,n(ru).



48 Chapter 1

If supp u is a compact subset of S2 we are of course in the same situa-
tion as in the proof of Lemma 1:24, so that

per s u u in Hk,p(Q),

p * u being an element of Cp(Q) for n large enough.
Note that (p * u)z,(x) vanishes identically for x c- co cc S2 if u,, = 0

a.e. in Q. Thus, if ui, = . . = u.,,, = 0 a.e. in 92 and w is connected,
each smooth function (p * u)I0 is a constant, and finally ul, is a constant
by Theorem I.Q.

Summing up, we have the following lemma and corollary.

LEMMA 1.25. Let D be any open subset of RN. If u E with
k e N and I <p < oo, the function ul1,, is the limit of {(p * u)Iw} in Hk'p(w)
for any w cc 9, and even for w = 92 if supp u is a compact subset of 0
[in which case {n * u},12110 c C,°°(Q) if no is large enough].

COROLLARY. Let S2 be connected. If u c- u., _ =
u is a constant.

From Lemma 1.25 it is easy to deduce that uv a HI-P(Q), with (uv)k,
= uy v + uv2, if u e C°-'(t2) n L°°(Q) and v e See also Problem
1.21.

Lemma 1.25 has a local character. The most general global result in
approximation is the Meyers-Serrin theorem:

THEOREM 1.26. C°°(Q) n is dense in whatever k c- N,
1 <p < oo.

PROOF. Let Q U;-0wi with wi cc Q, win E = 0 for all but a
finite number of indices j whenever E is a compact subset of Q. Denote
by {g1} a partition of unity relative to the above open covering of Q. If
u e H",D(Q) we can find, for any e > 0 and j = 0, 1, ... , a natural number
ni such that (giu)] c wi and

I gin - en, * (giu) Ink P(o) < E/2?+1 (1.14)

(see Lemma 1.25). The function w = Y_j (giu) belongs to C°°(Q);
(1.14) implies that w c- with

I u - w IHk.e(a) < E. O
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The approximating functions provided by the Meyers-Serrin theorem
need not be smooth up to 8D. As a matter of fact, there exist bounded
domains 52 for which C'(.) is not dense in

EXAMPLE. Let N = 2 and take

D = (]0, 2[ x ]-1, 1 [)\(]0, I [ x {0}),

S2, = ]0, 2[ X ]-1, 1 [. Since 1 = .01 and fo = f al, the limit of any se-
quence c C1(.0) that converges in must be an element of

But the two spaces do not coincide: for instance, the function

(e'l"U='-" for 0 < x1 < 1/2,
u(x)

to otherwise
0<x1<1,

belongs to whereas its derivative u,1 in the sense of 9'(521) is
not a measurable function on 521.

We now introduce a class of open sets 52 c RN for which Theorem
1.26 can be improved by replacing functions from C°'(D) n with
functions that are smooth up to 8D. D is said to have the segment property
if, given any x° E 8D, there exist an open neighborhood U of x° and a
nonzero vector E RN such that x + t,; a S2 whenever x e . n U and
0 < t < 1. For N> 2 this property is certainly satisfied if every point
x° a 852 has an open neighborhood 0 such that 0 n 52 lies on one side
of 0 n 8D, the latter being the graph of a continuous function of N - 1
among the coordinates x1. ... . xN.

THEOREM 1.27. If 52 c RN has the segment property, the set of restric-
tion to D of functions from C, (RN) is dense in Hk.P(D) whatever k e N,
1 <p < oo.

PROOF. If S2 is unbounded we can apply the cutoff method of the
proof of Lemma 1.23 and show that for our present purposes it suffices
to approximate functions from whose supports are compact sub-
sets of S) (not of S2, though). Let u be one such function. We can find
finitely many open neighborhoods U1, ... , U. of the type required by
the segment property, and open sets w1, ... , wm with ro; a U;, supp u
n 8D c U.1 wi. (Compare with Problem 1.9.) Let w° be such that
supp u\U 1 wi c wo cc S2 and denote by {g a partition of
unity relative to the open covering of supp it (see the corollary
of Lemma 1.4). We shall prove the theorem by showing that each function
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gju is approximated in by restrictions to S2 of functions from

The above is true for j = 0 by Lemma 1.25, since supp(gpu) is a com-
pact subset of P. For j = 1, ... , m set uj = trivial extension of g,u to
RN: we have ujja e H'.P(Q), 1j a Hk'p(W°'\supp uj), and Lemma
1.23 implies a where K, = ruj n 852. Let Kj;, de-
note the set of points y = x - tl:, x e Kj, where e is the vector associated
with Uj by the segment property. If

0 < t < min{l, $ I-ldist(ty), RN\Uj)}

we have both Kj;, c U, and K,;, n . = 0. Then uj;t H uj(x + 1E) is

an element of with (D'uj,,)(x) _ (Dauj)(x + t;;) by defi-
nition of distributional derivatives, and supp uj;, c Uj. Thus, uj;,IQ ---.
uj1o in Hk,D(Q) as t -> 0k (see Problem 1.8). Let 12j' = 52 n U. Since
S2jl cc Rx"\Kj;, we have (pn' ui;t)1a,' ' uj;tIQ, in by Lemma
1.25 with S2 replaced by Rv\Kj;t, and this concludes the proof because
e a uj;, a CC°°(RN) and Q. * uj;, = 0 in S2\Dj' for n large enough.

(The above procedure can be greatly illuminated by sketching the
graphs of functions such as uj and uj;t in the one-dimensional case.) 0

1.5.5. Changes of Variables and Extensions

LEMMA 1.28. Let 52 be bounded and let A: .D -..Q' be a Ck diffeo-
morphism for some k e N. Then for 1 < p < oo the mapping u H u'
u o A-' defines an isomorphism of H1 (12) onto Hktn(Q'), all distributional
derivatives D'u' with I a I < k obeying the classical chain rule almost every-
where. When k > 2 the same conclusion remains valid if A is a dij-

jeomorphism.

PROOF. Let u E Hk.p(Q), 1 < p < ca, w' a c S2', w = A-1(w'). We
apply the chain rule for derivatives to each function u = u o (A-1)1,
where u _ (e * u)I,: for I a I < k we obtain

Y Pve(y)(DOu.)Ix(y)1 (1.15)
101 sisi

for y e w, x(y) = A-'(y), where P,O is a suitable polynomial in derivatives,
of order < I a I, of the components of A-'. Since u ul, in
by Lemma 1.25, we have

(DOue) o (A-')I., (DAu) o (!1-')Imp in L'(w') for I P I < k,
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so that {D`u,,'} is a Cauchy sequence in L'(w') by (1.15). Let u'° be the
limit of in L1(w'): a passage to the limit in (1.15) for a suitable
subsequence of indices yields

U "(Y) = E Pvp(y)(DIu)[x(y)] (1.16)
101 s1+1

for a.a. Y E co'. Since

(-1)1x1 Jw d y = lim (- I )' '

J m dy

lina
J a'

dy

= J u'°u' dy for v' e C, (w'),

(1.16) is valid with u'2(y) = D°u'(y) for a.a. Y E w', hence for a.a. y E J2'
by the arbitrariness of w'. We have thus proved that all distributional
derivatives, of order < k, of u' belong to Lp(Q') and are obtained from
those of u by the classical chain rule, which yields

I U I Hk,p((1') < C S I (D°u) c A-' I p:n'
1.1 sk

<CIUIHk.pun,

since each function Pp is at least continuous on the compact set .7'.
When k > 2 and A is a diffeomorphism, (1.16) remains valid

for a.a. y E dY, with u' = D'u', if l a l < k- 1 . Let l a l = k- 1, 1 # 1

< 1 a 1: then each function y H (DAu)[x(y)] belongs to H',p(.l'), and all its
first derivatives can be computed through the chain rule, by the first part
of the proof with k replaced by 1; moreover, each polynomial P,8 belongs
at least to C0.1(.D'). Hence each function y'--. P,y(y)(Dau)[x(y)] belongs
to and all first derivatives of the function y 1-> D'u'(y) can be
obtained through the chain rule.

When p = co we replace p by any q < co and arrive again at the
expression (1.16) for u" = D°u'.

The roles of u and u', .Q and SQ', A and A-' can obviously be simul-
taneously interchanged. 0

REMARK. If A is a C°;' diffeomorphism Lemma 1.28 is valid for k = 1:
see C. B. Morrey, Jr. [118] or J. Ne6as [127].
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LEMMA 1.29. Let u e for some k e N, p c- [1, oo], and denote
by u its extension to B defined by

k

u'(x', xx) _
=1

Chu(x', -xx/h) for (x', -xx) a B+, (1.17)

where the vector (C1, ..., Ck) is the unique solution to the linear system

k 1 i-1`(-
h) Ck=1 forj=l,.

Then a C- with

I D'uID,i<CIDauIp;+ for IaI<k, (1.18)

C being independent of u.

PROOF. Let us first assume u e Then u e Ck-'.'(fl) with

k 1

D'u(x', xx) _ (-
h)aNCk(D'u)()r',

-xx/h)

for (x', -xx) e B+ whenever I a k - 1. (Compare with the proof of
Theorem 1.3.)

Let I a I = k - 1, so that all first distributional derivatives of D'u
belong to L°°(B) by Theorem 1.21 and

( a a [(D

D=u)
I = az

[(D=u)Irr.,a+]

We utilize Lemma 1.28 to compute (a/ax;)[(D'u)(x', -xxlh)] whenever
(x', -x5) a B+, h = 1, ... , k. Thus,

(
a

k

Dzil z', x cu( h
)aNCkD'u: (x , -xx/h)

ax, )( x) = ky

(D'ua,)(x', x5) for a.a. (x', xv) a B+,

for a.a. (x', xx) a B\B+ with c;k = 1
if i=1,...,N-1,cxe=-1/h.
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In the general case u e H".P(h) we avail ourselves of Theorem 1.27
and approximate Du for I a 1 < k with {D'un}, un a C`°(B+), in LP(B+)
if p < oo, in LQ(B+) for any q < oo if p = oo, thus obtaining

J
gD'v dx = lim

1
u,D'v dx

a n. B
= lim (-1)I=I

LJ
(D'un)v dx

n«o LJ n+

k 1 l'.v
+ J ' (- -1 Ch(D'un)(x', -xr /h)v(x', xy) dx

h,

]
a a+_, ` h

_ (-1)I.l f fB+ (D'u)v dx

+ J

f`Jr
l

e"a+n ( h) Cn(D'u)(x', -xv/h)v(x', xx) dx]

for v e Q- (B).

This shows that u e with the norm estimate (1.18). 0

If k = 1, (1.17) is the extension by reflection of u.
If 0 is bounded we say that it has the extension property (k, p) if,

whenever D' is another open subset of Rv with Q cc S2', every u e
admits an extension u' a with supp u c S2' and

I u IBk.P(a') C C I U IBk'P(R),

C being independent of u. Note that, by Lemma 1.25, S2 cannot have the
extension property (k, p) if Ca(&)) is not dense in Thanks to
Lemmas 1.28 and 1.29, a procedure analogous to that for Theorem 1.3
demonstrates the following.

THEOREM 1.30. When 0 is bounded, it has the extension property (k, p),
1 < p < oo, if 3D is of class C' for k = 1, of class fork > 2.

REMARK 1. For k = I Theorem 1.30 admits a generalization which
requires only that S2 has a strengthened cone property: see R.A. Adams
[1]. However, the extension property need not be valid if S2 is only assumed
to have the segment property: see the example following Theorem 1.33
below.
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REMARK 2. Theorem 1.30 can easily be generalized as follows: Let
u c- with compact support c Q u r, I' being of class C' for
k = 1, of class for k > 2. If U is an open subset of RN such that
U n 811 c I' and U n D supp u, then u admits an extension u c
Hk'n(D U U), supp a being a compact subset of U. However, the constant
of the norm estimate depends on dist(supp u, 8.4\I') unless I' is closed.

REMARK 3. Lemma 1.29 and Theorem 1.30 imply the validity of any
extension property (1, p) if 11 is a hemisphere.

REMARK 4. By Theorem 1.21, c for k e N if 11
has the extension property (1, oo). See also Theorem 1.41 below.

1.6. Continuous and Compact Imbeddings of Sobolev Spaces

1.6.1. Sobolev Inequalities I

LEMMA 1.31. Let N (>' 2, f,, ... , f,N e LN-'(RN-1). The function

f (x) - f,(i1) ... fN(.fN),

where 9i = (x1, .. , x;_,, xi+1, .. , xN) for i = 1, .. , N, belongs to
L'(RN) and satisfies

7N7
1 1 IA IN-1:RN-il I1;RN <
{ 1

PRoop. The result is obviously true when N = 2. We assume its
validity for some value of N and proceed to prove it for N + 1: Let k;

(x1, . , xi_1, x;+1, , xN, xN+1) for i = 1, .. , N + 1. For a.a.
xN+1 a R,

N

f[ Ifi(ki) IN' dx1... AN
(1I'RN+-

J 1

N N'IN
t7i-f If,( I,)

IN" dx1 ... dxi_, dxi+1 ... dxv

by the inductive assumption applied to the functions

(x1, ... , xi-1, x 1 , . . . , XN) F-+ Ifi(.;) I NI,
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N' = N/(N - 1), which belong to L"-'(RN-1); thus, Holder's inequality
yields

J.N+1

Tj Ifi(2;) I dx1 ... dxN
RN -1

/ 7V'7 \ 1/N'
C IfN+1 IN;RN 11 Ifi(Ii) I- dx1 dxN(J

)RN ;-1
N 1/N

< If:N+1 IN;RN Ij (fRN IIi(Xi) I N dx1... dx,_1 dx;+1... dxN)
-1 i

Again by Holder's inequality, the membership of all functions

1/N
xN+1 H (j If;(X;) IN dx1... dx;_1 dxi+1... dxN) ,

RN-1 /

(1.19)

i = 1, ... , N, in LN(R) implies the membership of their product in L'(R)
with

r
NJ n

(J(

RN
If;(X;)INdx1... dx;-1dx;+1 ... dxN

1/N

) dxN+1

< i-1 [J: (1R I fi(2;) I N dX1 ... dxf-1 dx;+1 ... dxN)
dxN+l]l/N

N-1

V

If.IN;RN.

The desided result for N + 1 then follows from (1.19) after integration in
dxN+l 0

Lemma 1.31 will be utilized in the proof of the next result.

THEOREM 1.32. Let u e with 1 < p < N. Then u E L"'(v")
where p` = Np/(N - p); moreover,

I U iv-;RN G C I VU Ip;RN (1.20)

with C independent of u.

PROOF. Without loss of generality we assume u e C,-(RN) (see Lemma
1.24).

Step 1: The case p = 1. Let x c RN. Since

Xf

l u(x) I = u:,(x1, , xi-1, t, xi+1, .. , xN) dt

< nz,(xl, . , xt-1, t, xi+1, , xN) I dt -- Ui(f,)]N-'
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fori=1,...,N,we have
N

I
u(x)1N!(N-v <

hence

N

LN

1 u(x) I v'(N-t) dx <
IfIN-1:R'

1

(f
RN I

u.,(x) I dX )
L(.Y-v <

( RN 1

Vu I dX
)N/(N-1)

by Lemma 1.31.

Step 2: The case p> 1. For t>0 set v=0) = IuI1+1. Then ve
CC'(RN) with I Vv I = (1 + t) 1 u le I Vu I. Step 1 with u replaced by v yields

URN
lulu+nN/(N-1) dx)

N-U!N
<(I+1) f IuI'IPuIdx

1J RN RN

< (1 + 1)(fRN
I

Vu ID dx)VL(fRN
I u I' P'

Let I - N(p - 1)/(N - p): then,

(NtIN =tP =
Np

P
P

and (1.20) holds with C = p(N - 1)/(N - p). 0

Passing to bounded open sets we have the following theorem.

THEOREM 1.33. Let k e N, p e [1, oo[ with kp < N. If 92 is bounded
and has the extension property (1, r) for p < r < Np/[N - (k - 1)pl, then

H1-,P(Q) G LNv1(N-xP)(.Q) (1.21)

ifkp<N,
Ht-p(S2) c LQ(d2) for any q < oo (1.22)

if kp = N, and even, if 0 has the extension property (N, 1),

H-',1(Q) c CO(D).

PROOF. Take u e Hl,n(12), p < N, and let u e H1'(M) be an exten-
sion of u,

I a IIP.PIRN) C C 1 u IHL.n(a)
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with C independent of u. By Theorem 1.32 u belongs to L"'(RN), so that
u e 17(12) and

I U Ir;D 5 I U Ir;RN < C I V17 Ip;RN < C I U IRI.PID)

This proves the theorem if k = 1, p < N. As a consequence, a function
u e L'(Q) with u71, ... , u.,e a LQ(Q), 1 < q < cc, must belong to

If k > 1, kp < N, we apply the above result to all derivatives of order
k - 1, then to all those of order k - 2, and so on. Thus,

Hk,P(Q) q Hk-'.r(.f2) c Hk-Z.r"(D),

and so on for k steps. Note that

h times

ps... Np/(N - hp).

If kp = N, (1.22) follows from (1.21) with p replaced by p - e for
any e e ]0, p[.

Now take u e H-"'(12) and let u e be an extension of u,
I d IHN.=(RN) < C I U IRNAID). Assume 17 a C,-(RN) [hence also u e C°°(D)];
then,

11(X) = f2... FN

lN) dl, dtN,

hence

Iu1.;D<IuIc;RN<CIuIRN.w).

If u f C,-(RN) it suffices to proceed by density. 0
We know that 812 must have some regularity for 12 to have the exten-

sion property (1, p). The next example shows that (1.21) need not hold if
no regularity restriction is imposed on O.Q.

EXAMPLE. Let N = 2,

12= {xeRI10<x1<L Ix3I <e 11zu'}.

The function u(x) - x13 exp(l/x,2) belongs to the Sobolev space H','(12)
but to no Lebesgue space LQ(12) if q > 1. This is also an indirect way of
showing that the segment property (which holds for 1? chosen as above)
is not sufficient for extension property (1,1) even though it guarantees the
density of C°°(1?) in

If kp = N with p > I a function u e need not be bounded.
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EXAMPLE. Let N 7 2,

\u(x)-(lnIl
J

forxed2=B112, x/0,
x

Chapter 1

with 0 < d < 1 - 1/N. Theorem 1.20 shows that the unbounded function
u belongs to

1.6.2. Rellich's Theorem with Some Applications

The next result is Rellich's theorem.

THEOREM 1.34. Let 1 < p < o. Whenever S2 is bounded and has the
extension property (1, p), the space is compactly injected into any
LQ(S2) with I < q < p* = Np/(N - p) (1 p < N, I < q < co otherwise.
In particular, is always compactly injected into LD(S2).

PROOF. Let I < p < N, 1 < q < p*, and choose 2 e ]0, 1 ] so that

2q -F
lp*2q=1.

Let to c c 92 be arbitrarily fixed and set

Thu(x) = u(x + h) for x e w,

with h e RN, 1 h I < dist((o, 8S2). If r is a bounded subset of H'"9(12),
Theorem 1.21 yields

I rhu - u I,,. <C I h 1 for ue.Q';

thanks to Theorem 1.33,

I Thu - u le:w I Thu - u Ii;w I Thu - u

SCIh'(21u
<CIh11 for ue.17

by Holder's inequality for the product of I Thu - u N'Q and 1 Thu - u 111-aio

in to. From Theorem 1.10 it follows that 1;"w is relatively compact in Lo(co)
whatever to cc D.
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Let e > 0 be arbitrarily fixed. By Holder's inequality,

I u Iq;a..a < I U Ir.;a"a I Q\o I.t9-i/A

hence

Iu1,;,<e for ue.?'

59

if w cc .Q is suitably chosen. By the relative compactness of.1VI. there
exist u ... , u E Lq(w) such that, whenever u c

I u - u; I,;. < e for some i;

but then
I u - pi Iq;a < 2e for some i,

where u; denotes the trivial extension of u; to Q. This shows that 7 is
relatively compact in Lq(Q).

If p = N = 1 the same procedure as above can be repeated with p*
replaced by co, and 1/p* by 0 (see Theorem 1.33).

If p is >N> 1 or >N= 1 it suffices to replace it by any r < N
for N > 1, by 1 for N = 1. 0

In the sequel we shall often make a crucial use of Rellich's theorem.
In Chapter 2, for instance, we shall exploit it in the study of linear partial
differential operators defined on bounded open sets.

For the time being we shall need Theorem 1.34 for the next three
results.

LEMMA 1.35. Let 1 < p < oo. Suppose that Q is a bounded domain
that has the extension property (1, p). Then there exists a constant C(.Q)
such that

I u - (u)0 Ip;o < C(Q) I Vu I,;o (1.23)

whenever u e H"(Q). The same inequality holds with C(.Q) = Cr, C inde-
pendent of x° E R v as well as of r E ]0, oo[, if .Q = B,(x°) or 9 = B,+(x°).

PROOF. Without loss of generality we consider only the case (u)a = 0.
If the theorem were false there would exist a sequence c
with (u,)a = 0, I us Ip;a = 1, I Vu, I,;a < 1/n. But then, for a suitable
subsequence of indices,

uRt -'. u in V(D) as k -s' 00
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by Rellich's theorem and (u)o = 0, 1 u 1,,a = 1; besides,

as n-.oo

Chapter I

so that u e H'-P(d2) with Vu = 0 a.e. in D. By the connectedness of S2,
u would be a constant (see the corollary of Lemma 1.25), thus contradicting
either (u)a = 0 or I u 1P;a = 1.

Now let 9 = B,(x°); it is not restrictive to take x° = 0. Writing
C(r) for C(B,) we obtain the inequality

JD
Iw -(u')BIPdx<C(l)JB 1 Vu'jDdx

for the function u' G H'"P(B) defined as u'(x) = u(rx) for x e B. The con-
clusion in the case at hand follows from the identities

(u )B = (u)B,, Vu'(x) = r(Vu)(rx) for x e B.

Finally let P = B,+(x°), or, more specifically, P = B,+. Let u e
with (u)B,+ = 0 and denote by u the extension by reflection of

it to B, (see Lemma 1.29): then, (u)B, = 0 and

JIaIPdx<CrP fB,B, J D,

The conclusion follows from the identities

J
I4IPdx=2J I°Iadx'

B, B +

J
IVuIPdx=2 J IVu1Pdx.

B, p +
0

Inequality (1.23) is called PoincarePs inequality.
A proof very close to the above yields another inequality of the

Poincar6 type:

LEMMA 1.36. Let p and 92 be as in Lemma 1.35 and take 6 e ]0, 1[.
Then there exists a constant C(Q, 6) such that

Iuly;a<C(Q,6)IVu l';a

whenever the function u e H'-P(Q) vanishes a.e. in a subset of 0 whose
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measure is > d I S2 I. The same inequality holds with C(S), S) = C(b)r, C(b)
being independent of x° e RAY as well as of r e 10, co[, if S2 = B,(x°) or
S2 = B,+(x°).

REMARK. The connectedness of 0 is necessary for the validity of the
above lemma. To see this, take S2 as /thle union of two disjoint open sets
Q. and 521, u = 0 on S2°, u = I on QL1.

LEMMA 1.37. Let p and S2 be as in Lemma 1.35 and take E > 0, h, k
e N with h < k. Then there exists a constant C such that

IDauI,o<e > ILOUIp;a+CIulp:n
lal-h IRI-k

whenever u C

PROOF. Suppose that there exist r; > 0 and u a n e N, with
I Un Iak.n(m = 1 and

L Dan Ip:a > E I DU. Ip:a + n I an Ip;n.
I+I-h 101-k

(1.24)

By Rellich's theorem we may assume that {Dvun} converges in LP(0)
whatever the multi-index y, I y I < k - 1, hence that un -. u in Hk-1 p(Q).
Since all norms I Daun Ip;a are uniformly bounded it follows from (1.24)
that u -* 0 in V(S)), hence that u = 0. But then I Dau,, 0 for I a I
= h, and (1.24) can again be applied to yield

Y_ I DIU. p;a 0,
I01-k

hence

I U. Ink-V(D) 0,

a contradiction. 0
The above lemma is said to provide an interpolation inequality for

intermediate derivatives. More results of this sort will be given in Section
5.2.1.

1.63. Sobolev Inequalities II

For p > N - 2 the next three results are, respectively, interior,
boundary, and global formulations of Morrey's theorem.
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THEOREM 1.38. Let 9 be bounded and assume u E H'(Sl) with ux,, ... ,
u., a for some p e [0, N[. Then, whenever w cc 92, ui,, belongs to
L2;a+2(w) [so that u e with E _ (p + 2 - N)/2 if p > N - 21;
moreover,

[u]2,µ+2;a C C I Vu I2.N;a,

C being independent of u.

PROOF. Let 0 < e < dist(ol, as?). Whenever x° E Ca Poincarb's in-
equality in H'(Be(x°)) yields

J W I u - I2 dx < f I u - (u)xo.e I2 dx
[z°,e] B2[x°I

<Ce2 ( IVuI2dx
.1

Ce~+2 I Vu z2.e;n U

THEOREM 1.39. Let Sl = B+ and assume u E H'(B+) with u11, ... , uxB
E for some p E [0, N[. Then, whenever 0 < r < I, UIB,+ belongs to
L2,w+2(B,+), therefore to with 6 = (p + 2 - N)/2 if p > N - 2;
moreover,

[u]2,µ+2;D + < C I Vu I2.p;B+,

C being independent of u.

PROOF. Set ra = (1 - r)2-11, h r N. If x e B,+ with xN > r, then

B.*[x, a] = B.+ n B°(x)

S B°(x) c of = {y E B*,+,, I YN > r2}

for 0 < a < r2. Since w cc B* Theorem 1.38 applies: hence,

a-[µ+41 I u- (u)B,1[z,°] I2;B,+[x,a1 C a-(0+2) I u - (u)z,° 12;z,o

['t]2,µ+2;o, S C I Vu 12,1;R1-

This means that there remains to bound a -1M+2) I u - (u)n +[x,°] I2;B,+[x,°] ,

0 < a < r2, only when x e B,* with xN < rl. But then,

B,+[x, a] a Be+(x°) a B+,
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where x° is the projection of x on S,° and e = 3c. In such a case Poincar6's
inequality yields

O [p+sl u - (u)9,+[1 I2:B,+[s.n] < 3p+%e-Ip+sl I u - (u)a^.1 ls:z'.e.+

< Cep I Vu l22:2".°.+ < C I Vu ls.N:B+. U

THEOREM 1.40. Let 92 be bounded with dig of class C'. Assume u e
H'(Q) with u., , ... , u,v a (D) for some µ e [0, N[. Then u belongs to
La,p+'(Q) or equivalently to C°,6(.)) with 6 = (u. + 2 - N)/2 ifp > N - 2;
moreover,

I U Is.p+x;13 < Q u 12:13 + I Vu IE.M:o)

with C independent of u.

PROOF. Fix x° a dil and denote by U a bounded domain of RN, U 9 x°,
such that dig n U is straightened by a C' diffeomorphism A: U- A
Moreover, let R > 0 be so small that BB(x°) c A-'(B,) for some r e
]0, 1[. By Lemma 1.15, Theorem 1.39 applies to the function u' = u o
(A-')IB+. We extend u'IB,+ to B, by reflection (see Lemma 1.16): again
by Lemma 1.15, u' o AIB.,e) belongs to hence uIunBRW[ _

u' o AIanBR[n[ to L2.p+P(Q n BR(x°)), with norm estimate.
At this point we cover .1) with a finite number of open sets wj, j =

0, 1 , ... , in, where w° cc i d and w1, ... , w,,, are spheres constructed
through the same procedure illustrated above for BB(x°). Letting {gj}
denote the partition of unity relative to (u)j} we obtain the desired con-
clusion by writing u as bgju and applying Theorem 1.38 to g°u. 0

We now fill up the gap in the range of k, p left over by Theorem 1.33.

THEOREM 1.41. Let k e N, p > 1 with kp > N. If 1 is bounded and
has the extension property (1, r) for every finite r, then

C: C[k-N1p3.k-N1p-[k-1J1D1 (. )

(where [a] = integer part of a c- R) if N/p $ N, and

c for any 6 e ]0, 1[

if N/p C- N. In particular, the set-theoretical inclusion

n Hk.P(.Q) C CO())

holds for any p > 1.
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PROOF. Let k = 1. If N <p it cannot be N/p e N. We fix a bounded
open subset Q' of Rv, Q cc S2' and extend every u e to R e
H1,P(Q') with

I u IIP.PIQ') < C I u

If N = 1, a has the absolute continuity property provided by Theorem 1.20,
and the membership of u in follows from the fundamental
theorem of calculus together with Holder's inequality. Let N> 2. Since
LD(D') c Lr'N(D') for µ = N(p - 2)/p Theorem 1.38 applies with S2
replaced by S2'. Hence, c C0.4(&)) with 6 = (p + 2 - N)/2 =
1 - N/p.

Let k > 1, N/p 0 N, and set h = [k - N/p]. Each derivative D'u,
a = h + I, belongs to and therefore to D(D) with

Np _ N
q

N-(k-h-1)p h+l-(k-N/p) >N

by Theorem 1.33. The above considerations about the case k = 1 yield

DAu E for I I I= h

with norm estimate, and I - N/q = k - N/p - h.
If N/p E N replace p by p - e, where a is any positive number such

that k(p - e) > N. 0

The norm estimates corresponding to the continuous injections in
Theorems 1.33 and 1.41 are called Sobolev inequalities.

REMARK 1. Theorem 1.41 can also be given a proof which does not
necessitate Theorem 1.38 (see H. BrEzis [19]); in the sequel, however, we
shall repeatedly need the latter result anyway.

REMARK 2. Theorems 1.33, 1.34, and 1.41 are valid for S2 = B,+(xo):
see Remark 3 after Theorem 1.30.

1.7. H Spaces and Trace Spaces

1.7.1. H .1,P(92) Spaces

For k e N and I <p < oo we denote by H k.a(S2) the closure of
C,-(D) in HL,a(Q), depressing the dependence on p when p = 2.

From Lemma 1.24 we know that H k.P(BN) = When S2 is
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a proper subset of R v, certainly contains all functions u e Hk-P(Q)
such that supp u is a compact subset of d2 (see Lemma 1.25), but whether
the identity H is valid or not depends on S2 as well as
on the values of k and p.

EXAMPLE. Let 2 = R'\{0}.
From Theorem 1.41 it is easy to deduce that, when kp > N, every

function from H has a representative in C°(RN) which vanishes at 0.
This shows that H k-P(.f2) does not contain, for instance, any function from

which takes on a nonzero constant value in B,\{0} for some
r>0.

Now take k = 1, 1 < p < N. Note that H'-P(S2) = H',P(RN) by
Theorem 1.20. Let g e CW(R) satisfy g(r) = 0 for I t I < 1/2, g(t) = 1 for
111 > 1, and set g (t) - g(nt) for n e N, so that g,,(t) = 0 for I I I < 1/2n,
g,(1) = 1 for I I I > 1/n, and supra I gn I < n supR I g' I (where the prime
denotes d/dx). If u e H'-P(S2) with supp u c BR for some R > 0, each
function x y u (x) - g°(I x I)u(x) belongs to We claim that

u u in H'-P(Q).

To verify this claim we majorize f I V(u - u) IP dx with a quantity

C f I1 -gn(IxDIPIVu(x)IPdx+C JnIg,J(IxDIPIu(x)IPdx.

Since

f g (IxDIPIu(x)IPdx<nPIg'h;RJ IulPdx
Bue

dx)< CnP I1I//

\J I uPP' dxI IB11,111-PIP*
Bun /

P/Y< CnPn-v(1-P/P.)

JBvI u
l" dx)

with 1 /p - 1/p - 1/N, where Theorem 1.32 has been taken into account,
we have

J IV(u,,-u)I'dx-.0
n

as n -.oo,

hence the claimed property. At this point we need only apply the cutoff
method to approximate every element in H'-P(Q) with functions having
compact supports, thus obtaining H01-P(S2) = HI-P(Q).



66 Chapter I

An exhaustive treatment of the above matter would require the theory
of "polar sets," as in It. Adams (I]. We can, however, rather easily prove
that does not equal HI-P(D) if I RN\Q I > 0. This we shall do
in a minute. First we prove the following lemma.

LEMMA 1.42. Let u E H°'-P(Q) for some p c [1, co[. If £' is another
open subset of Rv, .fY o 0, the trivial extension ie of u to .f2' belongs to

with aa/axi = (au/ax;) - trivial extension of au/ax; to .fY (i =

PROOF. Let u be the limit in H'-P(Q) of {u.) c C°°°(S2): the trivial
extension u of each function u to S2' belongs to C°°°(S2'), {u°} is a Cauchy
sequence in HI-P(Q), u -. u in LP(Q'), and u a H°'.P(Q') with au/ax; = 0
in

r au 11 au

l ax; I n ax; (it la) = ax . 0

THEOREM 1.43. Let I RN\S2 I > 0. Then H01-P(Q) is a proper subspace
of moreover, if x° C R^ and R > 0 are such that BR(x°) n .f2
# 0 and I BR(x°)\92 I > 0, there exists a constant C(6), where 6
I BR(x°)\S2 I/RN, such that the inequality

I U Ip:onBR(z°) < C(S)R I Vu Ip,anBR(x°)

holds for every function it E H',P(Q).

(1.25)

PROOF. Let u be arbitrarily fixed in H°'-P(Q) and denote by 17 the
trivial extension of u to RN: is a function from H' P(BR(x°)) which
vanishes on BR(x°)\.{E. Since

V(NIBR(z°)) = (V )IBR(x°) = (Vu)IBR(z°)

Lemma 1.36 yields

I U Ip;nnBR(z°) = I u

C(b)R I Vu Ip;..°.R = C(6)R I Vu Ip;afBR(x°)

Now let u e H'-P(Q) equal a constant 0 in S2 n BR(x°). Then each
first derivative of ulanBR vanishes identically, and (1.25) cannot hold.
Thus, u f a

With no difficulty we arrive at the following corollary.
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COROLLARY. Let Q be bounded. Then there exists a constant C(S2),
which equals Cr with C independent both of x° e Rv and of r e ]0, oo[ if
Q = B,(x°) or S2 = B,'(x°), such that Poincarg's inequality

I u I';Q < C(S2) I Vu 1a:a (1.26)

holds for u e A norm on equivalent to u --> u

is defined by uH I Vu Ip;a.
[Take R = 2r if S2=B,(x°), R=rift=Br+(x°)]

is denoted by H-',D'(S2), p' = p/(p - 1) if p > I and
1' = oo, the dependence on p' being depressed if p' = p = 2. If f e La'(S2)
the distribution ff, is (identifiable with) an element of H-1,>''(S2).

1.7.2. H01'(.Q u I') Spaces

We now assume I' of class C' and denote by u I') the
closure of C,°°(S2 u 1') in H'-n(S2), 1 <p < oo; we write H 1(Q u I')
instead of u I'). If the support of u e is a compact
subset of S2 u I', Remark 2 after Theorem 1.30 and Lemma 1.25
easily show that u e H u 1) could
equivalently be defined as the closure of C,'(Q u P) in conse-
quently, the mapping u u' = u o A-' defines an isomorphism between

u I') and u P) if S2 is bounded and A: D -..0' is a
C' diffeomorphism, F'= A(I'). As for the problem whether H°ILT(S2 u I')
equals or not when 8S2\P 0, consider S2 = B(x°) with x°
= (0, ... , 0, 1) and F = S(x°)\{0} in the light of the example at the
beginning of this section: U P) = if p < N, whereas
nonzero constants do not belong to u r) if p > N.

Lemma 1.42 admits the following straightforward generalization.

LEMMA 1.44. Let P be of class C' and suppose there exists an open
subset U of Rv such that U n S2:0, U n P= 0. Let u e H U P)
for some p e [1, oo[. The trivial extension A of u to S2' = S2 U U belongs

to H°''p(Q' u 1) with Sri/8xi = (du/dxi) for i = 1, ... , N.

In the same vein of Theorem 1.43 we therefore arrive at the following
theorem.

THEOREM 1.45. Let r be of class C' and suppose there exists a bounded
domain U of Rv such that U n S2 #O, U n P = O and I U\Q >0.
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Moreover, suppose that U has the extension property (1, p). Then there exists
a constant C(Q, U), which has the form C(6)R if U is a sphere BR(x°) or
a hemisphere BR+(x°) and 6 - I U\S2 I/RN, such that the inequality

I U Ip:onu < C(Q, U) I Vu ITJafU (1.27)

holds for u c- H°'-p(S2 u 1D. Consequently, U 1') } 0.

If S2 is a hemisphere B,+(x°) we can take U = Bs (x°) if P = S°(x°),
U = B,(x°) if r = S,+(x°), and arrive at the following corollary of
Theorem 1.45.

COROLLARY. There exists a constant C independent of x° e RN and
of r c ]0, oo[ such that Poincard's inequality

I U Ipso , + < Cr I Vu

holds for u e H°''a(B,+(x°) U S,°(x°)) or u e +(x°) U S,+(x°)).

REMARK. The formulation of Poincar6's inequality in the above co-
rollary can also be directly proven as well as sharpened. To wit, consider
(x', xN) e B,+. (We take x° = 0 for the sake of notational simplicity).
Then, both quantities

( F2 "I P

t) dt = I u(x) Ip
ZN

[when u e C°'(B,+ u S,°)] and

J
°N uZN(x', t) dt = I u(x) Ip

p

[when u e C0'(B,+ u S,+)] are bounded by

rp-' J I u:N(x', t) Iv dt,
0

so that the double integration

r(v -I s'I'IV'

r dx'
J

[ ] AN
J Is'I S, °
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and a density argument yield the inequality

IuI';,,+<rnIu.,I;;..+

69

both for u e H°1(B+ U S,°) and for u e H°t(B,+ U S,+).

In general, if Sl is a bounded domain and Sl U U has the same
regularity as U in Theorem 1.45, we can obtain (1.27) with U replaced
by S2 U U, hence with S2 n U replaced by D. (The connectedness of 52
cannot be dispensed with: see the example in the remark after Lemma 1.36,
with I= 8D, of class C' so that D, n D, = 0.) This amounts to (1.26).
For the validity of the latter the setting of Theorem 1.45, although very
simple, is, however, too restricted. The same technique as for Lemma
1.36 does indeed yield the following lemma.

LEMMA 1.46. Let S2 be a bounded domain. Suppose r is of class C' and
such that U P), where 1 <p <oo, does not contain any nonzero
constant. Then (1.26) holds whenever u e H°'-y(D U P), and a norm on
H°'-p(52 U P) equivalent to u y I U IH,,v() is defined by u H I Vu J,;a.

We shall return to the (rather indirect) requirement that nonzero
constants do not belong to U P) in lemma 1.58.

REMARK. Let 52 be bounded with P of class C' and closed (possibly
empty). Let 52' be a bounded open set with 8Q' of class C', 52' n 812 =
812\P, 12' 12, and consider trivial extensions to 12' of functions from

U P)(1 <p < co). From Theorems 1.33, 1.34, and 1.41 it follows
that, for p < N, U P) is continuously injected into 17(Q) and
compactly injected into 15(12) for q < p', whereas it is continuously in-
jected into for p > N.

The above statements do not remain valid if P is not closed. Consider
for instance the example of Section 1.2.1, with the right angles of 12 con-
veniently smoothed in order that P- 812\{0} be of class Cl: u belongs
to U P) because it is the limit in C'(.a) of the sequence c
C,'(12 U P) defined by u (x,, x,) = u(x,, x, - 1 /n), and this proves that,
whatever p, H°'-n(12 U P) is not injected into C°,°(12) if 6 > a/2.

1.7.3. Boundary Values and H'"y'"1') Spaces

Assume Q bounded, r of class C' and closed, and fix p in [1, oo[.
For functions from we want to define the space of traces on

r, as we did in Section 1.2.3 for functions from C1^(.D).
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In the present situation, however, the preliminary necessity of giving
sense to ulr when u e is already a relevant problem, in that u is
only defined up to equivalence in L'(Q), and I I' I = 0. When p > N this
difficulty can be overcome by defining ulr as the trace on I' of the contin-
uous representative of u (see the final remark of Section 1.7.2). In the
general case we need instead more elaborate considerations.

We now proceed to illustrate them for N> 2: the corresponding study
for N = 1 is left to the reader as an easy exercise.

We begin with two lemmas concerning regular functions in the space
HOI,V(S2U F).

LEMMA 1.47. Let u e C,'(Q U Il. Its trace ul. on I' vanishes identically
if and only if u e Hq',v(d2)

PRooF. If it vanishes on r each function u = (1/n)G(nu) with G e

C'(R), G(t) = 0 for I t 1 < 1, G(t) = I for I t 1 > 2 belongs to C,'(Q).
By the dominated convergence theorem u it in H'.v(Q), so that u E

Vice versa, suppose that u e By Lemma 1.42 the trivial
extensionrru of it to RN belongs to with

rr

Jauzvdx=

r

JRN
uvdx=-JRNilv,'dx=-Jauvz, dx

hence

f (uv)lr vi do = 0
r

by the divergence theorem, for v e C,°'(RN), i = 1, ... , N. Since E.r (v')°
= 1 the above implies ul r = 0. 0

LEMMA 1.48. Let q = (Np - p)/(N - p) if 1 < p < N, q e [1, oo[ ar-
bitrary if p > N. There exists a constant C such that

I uI r Iqur < C I u IR'.v(Q)

whenever u e C,'(Q U I').

PaooF. Through a partition of unity and a change of coordinates we
see that the only thing to prove is the existence of a constant C such that

I also Igso < C I U IR'.v(B+) (1.28)
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whenever u E C01(B+ U S°). We write

ru-i,,i,)v1
u(x', 0)

J
u,.v(x', t) dt for I x' j < 1.

°

If p = 1, then q = 1 and (1.28) follows from the inequality

J I u(x', 0) I dx' <_ J I u,N I dx.

Let 1 < p < N. The function w = I U (NP-p)/(N-P) belongs to CC1(B+ U S°),
and

2 112

w(x', 0) _ - f
o

t) dt
°

f 1/z

< Np - p ((i
I u(x', t) N(P-1)/(N-P) I u,N(x', t) I dt.N-p Js

By Holder's inequality,

a: J I u(x', 0) I(NPw(.v-P) dx' = J w(x', 0) dtI uIs°I° s^ = z-is-i<1
1-1/PB+

I u=NIP
dx 111P. (1.29)

C
Np

p
(JB+ I u NPn.vp) dx )J

Since

H',P(B+) G LNP/(N-P)(B+)

by Theorem 1.33 (see Remark 3 after Theorem 1.30),

JB+
u NP/(N-P) dx < C I U I NP/(N-p)B'.P(B+) ,

and (1.28) follows from (1.29) for the present choice of p.
Finally, if p > N (1.28) is valid with q = (Nr - r)/(N - r) whenever

1 < r < N, hence with any q e 0
To u e U I') we now associate the equivalence class [u] of

all functions z E H°1'P(Q U I) satisfying z - u e H 1'P(Q). This means
that [u] is an element of the Banach (Hilbert, if p = 2) quotient space

U I')/H°1. (Q), normed by

I [u] Ku1.PmVr)/A 1.P(nI = inf{I z IB'.P(Q) I z e H 1.P(S2 U I'), z - u c- H 1.P(Q))
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(see Theorem I.H). Note that the linear space of equivalence classes [u]
with u e C,'(Q u r) is dense in u P)/H0''P(D). If u e C,'(D u I')
verifies [u] = 0, then u e H0'.P(Q), and ulr = 0 by Lemma 1.47. This
means that the mapping

ul r'-- I [u] u e Ce'(D V P), (1.30)

defines a norm on C1(I) (see Lemma 1.5): we denote the completion of
C'(I) with respect to (1.30) by by H112(j) if p = 2. Obviously,
the following holds.

LEMMA 1.49. HIW.P(P) is a Banach space (a Hilbert space, if p = 2)
isometrically isomorphic to U

It is clear that H't'''(P) c H"P' P(P) for 1 < p < r < ca.
We define a continuous linear mapping T from U I) onto

by density after setting

Tu=uIr for ueCC'(.fQuP);

of course Tu = 0 o u e Hq',P(S2).

THEOREM 1.50. Let q = (Np - p)/(N - p) if 1 < p < N, q < oo ar-
bitrary if p > N. For u e H0''P(D V I), Tu is a function from Le(I) with

Tulq:r<CITuIHUP'.v(n, (1.31)

C independent of u, and Tu = 0 a.e. [N - 1] on P if and only if u E Hq' (d2);
equivalently,

Hva'.n(P) c D(I).

Moreover, Tu = uI r if u c- V P) n Ce(Q V 17.

PROOF. By Lemma 1.48 a bound

ITulgor<CIU+vlaI.vcm

is valid whenever u e C,'(Q v r) if v e CC'(D), hence also if v c He'(S2).
This shows that (1.31) holds for u e C'(Q U P), and therefore

I2)IE:r5CITulrt=P',Pri

for U E H0',P(Q u I), el denoting the limit in Le(P) of if c
CC'(Q U I), u u in H'-P(Q). We will be allowed to identify rf with Tu
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after proving that Tu is the zero element of H'P'-v(P) if q = 0 a.e. [N - I]
on P. If this is the case, then,

ijru"Ir.vlrv'da-,0

for v E C0-(R5). This shows that the trivial extension u of it to RB satisfies

JBN av.,dx=- JDUZ,vdx for vE (P2v)

and consequently belongs to We claim that the above guarantees
the membership of it in so that Tu = 0. Indeed, through a partition
of unity and a change of coordinates the problem at hand is reduced to the
case

92 n B= B+, 892 n B= r n B= S°, supp u c B+ V S°. (1.32)

Then each function

lu(x', xN - 1 /n) if (x', xB - I/n) E supp u = supp a,
u"(x',

to otherwise

satisfies u E as well as supp u" c 0 and therefore E H°'.D(92)
for n large enough, so that u = lim" in HI-P(D) belongs to H°'-P(Q).

Rather simple considerations show that also the last statement of the
theorem need only be proven in the particular case (1.32). This time we
denote by u the extension by reflection of ul, to B: thus,

u E n C°(B) with supp u c B.

The sequence {p, * u} of regularizations of u verifies

(P" * ii)IB -, u in C°(B)

by Lemma 1.7, hence also

(P" (j)17. -, uleo in C°(S°);

on the other hand,

(P" * u)IB ti 31

by Lemma 1.25, hence also

(P" (')IB+ - uls+

in

in H'.n(B+)
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and finally,

(en * 4s - (Tu)Is° in D(SO).

This shows that the continuous function u1,W. is a representative of the func-
tion (Tu)is e LQ(s°). o

Theorem 1.50 allows us to introduce the notations ult.= Tu for u
E U I'), uI r = (gu)Ir for u E H"n(S2) if P# 851, where g is any
function from C,-(Q u I') with g = I near r [a definition that is clearly
independent of the particular choice of g), (uv)[r = ulv4r (an element of
Lr(P), not necessarily of H'"''-'(P)] for u e H'-'(Q) and v e CO(D).

By construction, H'1''. (P) is exactly the space of traces ui1. on r (in
the sense of the above definition) of functions u e On the other
hand, an "intrinsic definition" of H'"''.'(P), which underlies our choice
of the symbol (of a "Sobolev space of fractionary order l/p"'), can also
be given: see J. Neas [1271.

Note that c since CO-I(D) c (see Theo-
rem 1.21).

1.7.4. Supplementary Results

The next two results are not necessary for the sequel but cast more
light on the structure of when p > 1.

LEMMA 1.51. For p > 1 the injection of H't'','(P) into L'(P), with
1 < s < (Np - p)/(N - p) if p < N and s < co arbitrary if p > N, is
compact.

PROOF. We may safely restrict ourselves to the range 1 < p < N. Let
be a bounded sequence in H'1''"'(P), hence rln = u,, r with {un} c

U P) bounded. Without loss of generality we assume (1.32) with
u replaced by un for every n. Let r E [1, p[ be such that s = (Nr - r)l
(N - r). By density we may apply (1.29) with u replaced by un - um, p
by r, q by s, and obtain

Inn - 77.11;r (un - um)Ir I,;3°

<C \I JB+ I Un- nm INr/)N-r)
dx11_'tVB+I(Un-U"N I'dX)11'

I -1/r
< C ( I U. - U. INrl(N-r) dX) I U. - U.

Since we have Nr/(N - r) < p* = Np/(N - p), U P) is compact-
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ly injected into L1"1"-'1(S2) (see the final remark of Section 1.7.1). Thus,
a subsequence of converges in Lx"'t '°(S2), and so does the cor-
responding subsequence of {71°} in L'(P) by the above estimate. [1

LEMMA 1.52. For p > I the continuous injection e L'(P) of
Theorem 1.50 is not onto.

PROOF. If were continuously injected onto Lt(P), L'(P)
would be continuously injected onto by the open mapping
theorem (see H. Brdzis [19]), and 15(1') would be compactly injected in
L'(P) by the previous result. But we can easily construct (on the basis of
the sequence {sin nx}, 0 < x < 'r) a bounded sequence {r)P} c LQ(1') with
n° l,;r = I which converges weakly to 0 in L'(1'), so that no subsequence

{71°k}e can converge strongly (to 0) in L'(P). 0
By density, the divergence theorem can be extended as follows.

THEOREM 1.53. If u e H°'.P(S2 u r) and v e the identity

f
u,,vdx=-J uv,,dx+J ulrvlrv'da

n r
holds f o r i = 1, ... , N. In particular, let 1' = 0: if u e

Jn u,, dx = 0

for i=1

REMARK. The regularity of v required in the above statement can be

weakened in the light of the final remark of Section 1.7.2.

A few extensions of the above notions of boundary values will now
be given.

If 80 is of class C', 8S2\P# 0, V P) is the space of func-
tions u e H''P(Q) such that ulan,r is the zero element of H"P'-P(8S2\P).
This circumstance leads us to the following definition for the case when
no regularity is assumed about 8Q\P. We say that u e equals 0
on 8Q\P in the sense of if u e V P).

Boundary values ulr can be given an unambiguous meaning also when
r is no longer assumed closed. Take for instance S2 = B+, r = S°. If u
is a measurable function on B+ such that UIBA+ a whenever
0 < R < 1, we define its trace uls< a.e. [N - 1] by setting my-_,,.
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for n = 2, 3, ...,where g,,e C°°(RN'), g = Ion with
supp g c B.

We finally observe that, since has been identified with a
dense subspace of LQ(l) (see Lemma 1.13), LQ'(P) is automatically iden-
tified to a subspace of with unambiguous meaning of the
symbol <0, rl) when 0 e Le'(I'), r) E HI/P'-P(P); note that each mapping
vH (0, vIr) with 0 given in is a bounded linear functional
on H01.P(.f2 u I'), hence an element of V l]'.

1.8. Inequalities and Lattice Properties

1.8.1. Some Notions from the Abstract Theory of Ordered Linear Spaces

Let a linear space V be endowed with an order structure defined by
a reflexive, transitive and antisymmetric binary relation <: V is called an
ordered linear space with respect to < if u < v implies u + w S v + w
and An < ).v for u, v, w e V and 0 < I < cc. If E is a subset of V and there
exists z e V satisfying z > u(z < u) whenever u e IS, E is said to be order
bounded from above (from below), or majorized (minorized), and z is called
an upper (a lower) bound, or a majorant (a minorant) of E. If, moreover,
E has an upper (a lower) bound zo satisfying zo < z(zo > z) whenever z
is an upper (a lower) bound of E, then zo is unique and is called the least
upper bound (greatest lower bound), or supremum (infimum) of E. We de-
note the supremum (infimum) of E by sup E (inf E), or by Vjr u;(1\;EI u,)
if E _ {u; e V I i e 1) for some index family I; u V 0 [-(u A 0)] is also
denoted by u+ (u-), u' + u by I u 1. If V is an ordered linear space such
that u V v and u A v exist whenever u, v e V, we say that V is a linear
lattice. If F is a linear functional on an ordered linear space V, we say
that F is nonnegative (nonpositive), in symbol F> 0 (F < 0), if

(F, v) > 0 ((F, v) < 0) for v e V, v > 0.

A Banach space V which is an ordered linear space (a linear lattice)
is called an ordered Banach space (a Banach lattice if in addition 1 v IV

I VI for ye V).
Many properties of ordered Banach spaces and Banach lattices can

be proven exactly as in the case V = R. If V is an ordered Banach space,
so is correspondingly V'; sometimes we will find it useful to refer to
inequalities between elements of V' as inequalities in the sense of V'.
V' need not be a Banach lattice, even if V is; however, V' has a property
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that V need not have if the index family / in the following lemma is not
finite.

LEMMA 1.54. Let V be a Banach lattice. If c V' is order bounded
from above, then V;,1 F; exists.

PROOF. We begin with the particular case /= {I, 2}, F, = 0, and
write F for F2. Let G E V' satisfy G > 0, G > F. Whenever v e V, v > 0,
we have

H(v) = sup <F, w> < <G, v>,
WV

Ocwsu

so that 0 < H(v) < oo. It is clear that H(Av) = AH(v) for A > 0. For
k= 1,2 let VkE V, vk>0: if wke V, O<w,t<Vk, then 0<wi+wz
< vl + vs and therefore

H(v,) + H(v2) < H(vr + v2).

On the other hand, let w e V with 0 < w < yr + v2: then,

w=wAv1+(w-vi)+
and

hence

and finally

0<w,= wAv,<vi,
0 < w2 (w-V1)+ <vp,

<F, w> < H(vr) + H(vs)

H(vi + v2) < H(v1) + H(vs).

This shows that a nonnegative linear functional H on V is defined by

<H, v) = H(v+) - H(v) for v e V.

(For linearity: if v = vi + v2 write v1± + v2+ as v+ + w, vi + vs as
v- + w, w > 0.)

At this point we deduce that H is continuous on V, hence He V',

from the following theorem that we shall prove shortly.

THEOREM 1.55. Let H be a nonnegative linear functional on a Banach
lattice V. Then H belongs to V'.
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Since
<F,v><<H,v)<(G,v>
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for any v e V, v > 0, G being an arbitrary upper bound of F and 0, we
have H = 0 V F.

If neither F1 nor F, vanishes, both F1 - F, and 0 are order bounded
from above by G - F. if G e V' is such that G > F1 and G > Fs , so that
there exists F1 V FE = 0 V (F1 - Fs) + F, by the above.

Passing to a general index family I we remark that V;E1 F; exists if
and only if V;,jEj (F; V Fj) does, in which case the two coincide. Without
loss of generality we therefore assume that the family {F;}j1 contains the
supremum between any two of its elements. For v e V, u > 0 we set

H(v) = sup <F;, v>.
:.r

It is obvious that H(Av) = AH(v) for d > 0. Let v1, v, e V with v1 > 0,
v, > 0. Clearly,

H(v1 + v2) < H(v1) + H(v,).

On the other hand, if e > 0 is arbitrarily fixed and i, j e I are such that

<F;, v1> > H(v1) - E, <Fj, v,) > H(v,) - E,

then

<F: V Fj, v1 + v2> > H(v1) + H(v,) - 2E.

This shows that H(v1 + v,) = H(v,) + H(v,). At this point we can proceed
as in the first part of the proof and conclude that the linear functional

<H, v> = H(v+) - H(v-), v e V,

belongs to V' and equals Vi., F. 0

PROOF OF THEOREM 1.55. Since V is a Banach lattice we need only prove
that

sup (H, v) < oo.
-V, vau, l of y 51

If the above were not true, for every n e N there would exist u E V with
u > 0, 1 1/n such that <H, u,> > 1. But then c V defined
by

v ° u,,.
w-1
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would be a Cauchy sequence with vm < v,,,+, , hence v,° -. v in V with

<H, v> > <H, v.> > m for every m,

which is absurd.

1.8.2. Inequalities and Lattice Properties in Function Spaces over 0

79

0

All function spaces over s2 of interest to us are linear subspaces of
Ljo(Q) The latter is an ordered linear space and even a linear lattice with
respect to the relation < defined by

u < 0 if u(x) < 0 for a.a. x e Q.

All spaces Hk-n(D) are then automatically endowed with the structure of
ordered linear spaces, and so are all spaces after the obvious
passage to continuous representatives so that

u(x) < 0 for x e dl if u e C°(S1), u< 0.

Note that a function u of Lj JQ) is < 0 if and only if

f uvdx<0 for veC, (d2), v>0.
n

The passage to lattice properties is more delicate. All spaces Lf.(Q)
[LD(Q)] and C°.e(ii) [Co,6(L) with d1 bounded] are linear (Banach) lat-
tices. CI(Q) is not a linear lattice. For what concerns Sobolev spaces we
make use of Stampacchia's theorem:

THEOREM 1.56. For 1 <p < co, and U I) with I'
of class C' are Banach lattices, and

Vu+ = Xu>o1u, Vu- = Xu<°Pu

where Xu>o (X.<o) denotes the characteristic function of the subset of s2 where
(an arbitrarily fixed representative of) u is > 0 (< 0); hence, Vu = 0 a.e.
in the subset of 0 where u = 0. Moreover, the mappings u,-> u+ and u H u
are continuous in

For the proof of this theorem we need the following lemma.
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LEMMA 1.57. Let G e C'(R) with G' C L°°(R) and in addition G(O) = 0
if Q is not bounded. Whenever u e I < p < oo, G o u belongs
to with V(G o u) = G'(u)Vu. if r is of class C', G(O) = 0 and
it E U F), then G o u belongs to u r). Finally, the above
remains valid without the requirement G' a L°°(R) if in addition u e L°°(92).

PROOF. If u e the functions G o it, (G' o u)u21 belong to LP(Q).
(Note I G(u(x)) 1 < I G(0) I + I G' I.;R I u(x) 1.) Take to cc Q.

If c C'(ra) is such that u -. ulw and uj2c -. u4, in LP(w) as
well as a.e. in w (see Lemma 1.25), we have V(G o G'(u )Vun and
G'(u.) , G'(u) a.e. in w. Thus, from the inequalities

f. 1 I';RJlur,-uIPdx,
w

J G'(un)Vu, - G'(u)Vu IP dx < C 1 G' lo',;R Jw I Vu - Vu IP dx

+ C Jm I G'(uj - G'(u) IP I Vu IP dx

and with the help of the dominated convergence theorem for the last

integral, we deduce that

Go un- (Go u)lw,

(G o un)21 -. [(G' o u)u21]Iw for i = 1..... N

in LP(w). This shows that (G o u)I a H'-P(w) with V(G o u)I, = (G' o u)Iw
x Vul,,. The first conclusion of the lemma is valid by definition of distribu-
tional derivatives. The statement concerning functions it c- Ho1'P(S2 U I')
is obviously valid under the stronger assumption u E C 1(S2 u r) and ob-
tains in general through inequalities in LP(Q) analogous to those above in
LP(w). Finally, G o u equals G o it, G being a suitable function from C°1(R),
if u e L°°(S2). o

PROOF OF THEOREM 1.56. Step I: Proof of the lattice property. For
e>0set

(0 + e')1/8 - e
G,(t) = 110 for t < 0.

for t > 0,

We are in a position to apply Lemma 1.57, which yields G, o u c- HI-P(D)
for it e H',P(Q) and G, o it e u I') for u c- u F) if F is
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of class C', as well as

fn
(G, o u)v., dx = - Jn (us + e2)h/2 v dx for v E C, (S2)

+

with S2+ _ {x a Sl I u(x) > 0} (for an arbitrarily fixed representative of u).
By letting e -. 0 we obtain

r

f o
u+vz dx = - Jn u, ,v dx for v e (dl),

hence u+ a if it e u+ a H0'.'(S2 U I') if u e Hi,v(S2 u I'),
with

(u')u = u;Xt>o

This proves the required property of u+. As for u-, it suffices to utilize
the identity u- = (-u)+. Finally, a.e. in the subset of £2 where u = 0
both functions X.>o and Xsco vanish, so that

Vu = Vu+ - Vu- = 0.

Step 2: Continuity of u ul:. Let {u.} converge to u in H'-'(Q) and
set X+ = Xu>o, X.+ = X,..>o after fixing representatives. We have u -. u
and therefore I u. I I u 1, u.t -. ut in LP(D) as well as (after passing
to a subsequence still denoted by the same symbol as the whole sequence)
a.e. in Q. Let S2+ be defined as in Step 1,

0 {x a D I u(x) < 0}, D. = .Q\(Q+ U Q-):

we have

u+ = uX+ = lim u,+ = lim

hence X,.+ -.I a.e. in 5+ because u = u+ > 0 and X+ = I there, whereas

X,.+ - 0 a.e. in 2_ and Vu = r0 a.e. in S2o. But,

J I V(un+-u4)I'dx
J

= I X.+Vu.-X+VuI'dx
n n

<C(J
O
x.+IV(u.-u)Indx+ J

n
IVuI"IX.+-X+Idx)

< (C\J IV(u.-u)I'dx+J IVuI'IX.+-X+Idx
o n+

+ J IVuI'X.+dx+ J IVuI'dx).
o_ o,
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By the dominated convergence theorem, the integrals over 0, and Q_ tend
to 0, and so does the integral over 0 because u -, a in H'-P(D), whereas
the integral over S2. vanishes. This shows that u F -> u' in HI-P(92) for a
subsequence of indices, hence also for the whole sequence by uniqueness
of the limit. The statement about the continuity of it u+, therefore also
of u,u, has thus been proven. 0

From Theorem 1.56 we deduce the following.

LEMMA 1.58. Let I' be of class C', 1 < p < oo. If u e HI-P(Q) and
there exists v e V I') with 0 < u < v, then it e H01.P(Q V T). In
particular, if 92 is bounded a nonzero constant cannot belong to U T)
if the latter is a proper subspace of

PROOF. Let {v,} c CC'(0 V T) converge to v in Then u is
the limit in of {v A u}, and each function v A u belongs to
H01,P(S2 U T) because its support lies in S2 U T. This proves the mem-
bership of u in HP'.P(S2 U I').

Now let S2 be bounded and assume it e U I'), say
u+ it HoI,P(Sl V T). If nonzero constants belonged to U F) each
function u+ A n, n e N, would belong to U T) by the previous
conclusion, and so would u+ since u' A n -, u+ in H'-P(Q). 0

1.8.3. Boundary Inequalities

Passing to boundary inequalities we assume 0 bounded, T of class
C', and say that it e H'.P(Q), I <p < co, satisfies u < 0 (u > 0) on
BS2\T in the sense of H'-P(Q) if u+ e U T) [u e U T)];
it e V T), I < p < cc, satisfies u < 0 (u > 0) on r in the sense
of H'.P(S2) if u+ E [u a Ho'-P(Q)].

Note that u satisfies both u < 0 and u > 0 on OD\T in the sense
of H'-P(D) if and only if it e U T), that is, u = 0 on 8S2\T in
the sense of

LEMMA 1.59. Let S2 have the segment property and r be of class C'.
Then u e H'-P(Q), I < p < cc, satisfies u < 0 on 8Q\T in the sense of

if and only if it is the limit in HI-P(D) of a sequence c C°°()
with u Iaa, < 0.

PROOF. Step 1 : The "if " part. For n e N the support of the Lipschitzian
function (u - 1 /n)+ lies in S2 V T, hence (uq - 1 /n)+ a V F).
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Since u+ is the limit in HI-P(Q) of (u - 1 /n)+ by Theorem 1.55, u+ belongs
to H°'.P(Q V I').

Step 2: The "only if" part. Let c CC-(D V r) converge to
u+ in H'-P(Q). We approximate a in H',P(Q) with a sequence c
c"(D) constructed, as in Theorem 1.27, through a partition of unity,
translations and convolutions with nonnegative mollifiers; hence,

u is the limit in of {u°'+' - u°'-'}, and a C0(.i))
with (u°'+' - u°'-')Iao, < 0. 0

We now add the assumption that r is compact. V(r) is an ordered
linear space with respect to the relation < defined by

77 <0 if n<0 a.e. (N - I] on F.

All linear subspaces of L'(r) are ordered linear spaces with respect to <
in L'(r), with the obvious pointwise meaning in the continuous case.

LEMMA 1.60. Let q e D(r). In order that rl < 0 it is necessary and
sufficient that

f r l e do < 0 f o r B e C'(r), 0 > 0.
r

PROOF. Necessity is obvious. Passing to sufficiency, we consider a
covering r = U"-, r;, each ri being straightened by a C' diffeomorphism
A;: U; B, and suppose there exists E c S°, with measv_, E > 0, such
that rl o A; ' > 0 on E for some i. We can always assume that E lies in-
side S,° for some r E ]0, 1[, and find a partition of unity {g;} relative to
the above covering of r with the property that g; = 1 on A; '(SR) for
some R e ]r, I [, hence gj = 0 on [Aj '(Sn )] n [A; '(SR )] for j :A i. With
the symbols of Section 1.33 we have

f (gi'i) o (Ar ')IsHi dx' > 0:
a

by approximating a.e. [N - 1] in S° the characteristic function of E with
a sequence c C'(S°) such that 0 < 1, supp 0,, c SR , we find
an index n° such that Bo = 0 satisfies

L. (gc'7)o(A,-')IsBof;dx'>0,



tb

hence

f -f0oda>0r

with 00 = O. 'o A; on A;-'(SR°), % = 0 elsewhere.
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0

THEOREM 1.61. Let r be of class C' and compact, 1 < p < oo. H"n'-y(P)
is a Banach lattice with respect to the order relation in L'(I'), and rlf -
utlr if +! = ult. with u c- u I').

PROOF. We know that rl = uI r = u+[, - u-fir. We need to show
that utjr> 0, u+lru jf. = 0 a.c. [N - 1]. But this is true with a±Ir
replaced by u,, I,. if {u°} c C°°°(Q u r), u -. u in H',n(Q), and we only
need pass to the limit a.e. [N- I] on r (see Theorem 1.12). For what
concerns the norm estimate it suffices to note that

I n± I H'/a'.vl r) < 1 u3 hv"'(D) 5 1 U IH'.Pw)

whenever ri = uIr. 0

In the setting of the above theorem the following mutual implications

u+E JII'y(D)°u+Ir=0a(ulr)+=0puIr= -(ulr)

lead to the following corollary.

COROLLARY. Let r be of class C' and compact, I < p < oo. Then
u E V I') is < 0 on r in the sense of if and only if
u1r<0.

The notion of inequalities in the sense of I < p < oo, can
be enlarged as follows. Let S? have the segment property and let E c .0,
ep E C°(E). We say that it e H'-D(.Q) satisfies u < fp on E in the sense of

if u is the limit in of a sequence c C'(.D) with u
< N on E. If E = 9Q\P with F of class C' and +p = 0, Lemma 1.59
leads us back to the previous definition; as for the case E = dl, ' = 0,
we can adapt an argument utilized in Step 2 of the proof of Lemma 1.59
and verify that u < 0 on dl in the sense of H',D(D) if and only if u(x) < 0
for a.a. x c D. Finally, if P c S? v r the above definition can be given
without any hypothesis of regularity about aQ\P for functions u E
H°',D(Q u P), the sequence {u,) being taken in CC°°(Q u I').
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For brevity's sake, problems will often be phrased in the form of assertions
that must be proven, possibly following a basic outline.

1.1. Let V be a normed space and let v, E V be arbitrarily fixed. Apply the
Hahn-Banach theorem to the linear functional v .. t I vn I v for v = tvo,
t E R, and prove that there exists F e V' with I F Iv, <- 1, (F, v,) _
IV.IV

1.2. Prove that
I v IV <_lim inf I v. IV

if v - v in a normed space V.

1.3. Let V be a normed space. Any Cauchy sequence in V' is weakly convergent
and even strongly convergent.

1.4. Let 0 be bounded and fix d in ]0, 1], y in [0, d[. To prove that the injec-
tion c is compact for any k = 0, 1, ... , utilize the in-
equality

Iu(x)-v(x)-[u(Y)-v(y)]I/Ix-YIV<21u-VIcbdv/e"
for x,y E0, Ix-y1 e>0.

1.5. If 0 is connected and u is a function on U with [u]e;o < c for some d > 1,
then u is a constant.

1.6. Let 0 < 6 < 1. Utilize the inequality

(1+Y)°<_1+y° fort'>0
to show that the function u(x) = I x 16, x E R", verifies (u]csx = 1.

1.7. Find a function u E CO(B) with [u]e;a = w for any 6 > 0.

I.S. Denote by u the trivial extension to R" of a function u e La(f?), I < p < oo,
and set i (x + h) for x E 0, h E R". Utilize Theorem 1.S to prove
that us u in LP(Q) as I h I -. 0.

1.9. Lemma 1.4 is proven as follows. For a suitable t > 0 the set wo = {x E wo
dist(x, awa) > t} is such that w = wo u (Ul_, w,). An open covering
(w)') of w, with wt' c c wt, is constructed by recurrence. For each j there
exists gj' E C°°(Rv) with gt' = 1 on wt , supp gj c wt. The required par-
tition of unity is obtained by setting

91 a g'
k e

1.10. Let x" E R. There exists no function u E L1.(Q) with the property

f uv dr = v(x°) for v E
O
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1.11. Let u E Lj°°(D) verify

fa
dx = 0 for v e C, (A).

a

By considering the functions to cc D, with n sufficiently large,
show that u = 0 a.e.. in D.

1.12. Let D be bounded and take p e ]l, oo[. If is a bounded sequence
from LP(D), u, a a.e. in 17, the sets E. g {x e D [ I u(x) I

whatever n >- m} satisfy I E. I - 10 I as m -. The family 0 of func-
tions u E LA(D) such that supp v S E. for some m is dense in LP'(Q), and

.11 J

(u,-u)vdx-0
0

whatever u E 0. Hence, u, - u in LP(D). See J. L. Lions (103].

1.13. Let D = {x e RN I I .x' I < 1, 0 < xN < 1}. Utilize Theorem 1.20 to prove
the following: if u belongs to Lm(.0) and its distributional derivative u, ,
to V(D), then the mapping xN - f I,,, <1 u'(x', xN) dx' is continuous on
]0, 1 [. Next, utilize Problem 1.12 to prove that the mapping XN xN)
is continuous from ]0, 1[ into L'(S°).

1.14. For to c c 17 and I h I < dist(w, 8D) prove the necessary part of Theorem
1.21 with the help of Lemma 1.25 and Holder's inequality [which yields

IP :
f,

I Pu(x T the') Iv dt for X E tU

whenever u E C'(w'), m' = (x + the' I x e a,, 0 < t < 1)]. Proceed analo-
gously for D=B',w cB'uS°,

1.15. Given a E R and P E [1, oo], find the largest value of k e N for which the
function I x Ic belongs to Hk P(B).

1.16. Let 817 be of class C'. Find the smallest value of the natural number k
(depending on N) such that uv belongs to Hk(L) whenever both u and v do.

1.17. Formula (1.17) can be given with B replaced by a Cartesian product
]-a a,[x ... x]-aN_l, ay-,[x]0, aN[, a, > 0. Utilize this observation a
convenient number of times (for instance, 4 times when N = 2) to prove
that every Cartesian product ]b c,[ x x ]bv, cv[, b, < c,, has the ex-
tension property (k, p) fork e N and 1 < p < oo,

1.18. Lemma 1.37 can be given a different proof which yields the sharper estimate

I
IP,n < 6 S 1 Du IPIo +

C6kllk-kl I

U IPpa
161-k Irk-k

with C independent of 6 > 0, provided the latter is sufficiently small. For
h = 1 and k = 2 such a proof is particularly simple if 0 is a cube, the
constant C being then independent of the size of D. Indeed, begin with
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the case N = I and divide the interval S2 into subintervals Q, of length
between i," /2 and 60"p, with 0 < 6° < 112 V. Assume u E C'(32). For
S2i = ]a, b[ apply the mean value theorem to u between two points $ E
]a, a + a[ and 7 e ]a + 3a, b[ with a = (b - a)/4, and obtain

lUM I+Iu(7)l
I u'(x) l

2a
+ f° I u "(r) I dr

for x e ]a, b[. After integrating in j over ]a, a + a[, inn over ]a + 3a, b[,
take the pth power, apply Holder's inequality, and integrate in x over the
interval ]a, b[: the result is

f I u, Ip dx < C. I a I u IT dx + C°av s I a IP d
Jo f

< 2'p d00 f I u 1P dx + C"' f
a I

ds n dx.

For 0 < 6 < 2-'pC0 I S2 Ip the result in the case at hand follows easily.
The passage to the case N > 1 is an immediate consequence of the above
for u E C'(.i). (See A. Friedman [54].)

1.19. Let 1 < p < -. If T E H-'(Q) with j < T < g, where both j and g belong
to Lp(D), then T is an element of L'(Q).

1.20. If S2 is bounded and N E C°(d5), v'lan = 0, W > 0 in S2, then for every
k e N and P E (1, ool there exists v e H *'p(f2) n C°(Q) such that 0< v<
V in D. To see this, utilize Lemma 1.4 and define v e Ej--° a galI g1 IHt.p'n,
with ej > 0 suitably chosen.

1.21. Utilize Lemma 1.25 to prove that uv e H'-P(D) n L°°(S2) (1 <p < oo)
with (uv), = u,iv + uv,, for i = 1, ... , N if u, v E H'-p(S2) n L°°(S2).
Proceed analogously for u r), with r of class C' and 1 < p < oo,
instead of H'.p(S2).

1.22. Let 0 be bounded (no regularity being assumed on at?). Take P E [1, cot,
u e HI-P(D) n Co(D) with ulao = 0, and prove that u e by con-
sidering (u - l/n)', (u - 1/n)-. See also the proof of Lemma 1.47.

1.23. Let {u°} converge toward u in H'(S2). Then up* - at in H'(S2); moreover,
I u,, H4m - I U* IH',n,. Hence, ut in H'(Q). Compare with Step
2 of the proof of Theorem 1.56.

1.24. Let a E (1 <p < no). Then I Vu I E H''p(Q) with (8I8xt) I Vu I =
u:'u:':tl I Vu I.

1.25. Let S2 be bounded, r of class C and closed. For 1 < p < no utilize the
reflexivity of H0'"p(S2 u r) to prove that, if 7 E there exists
u E u n with ulr = 7 and

I U I Hl.pim = 17 IH"p".p,r,.
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1.26. Let v e u S') (1 < p < oo) and set ii(s) = v(x', 0), I x' I < 1.
Prove that for i = 1, . , . , N - I the derivative +i, in the sense of distri-
butions over S' (the latter being endowed with the relative topology) equals
v,,Iso. Utilize this fact to prove that, if 1'= dQ is of class C' and u e
H,1-v(Q) n then Vu = u.v'v.

1.27. If r is compact and of class C', u u in H'(Q) implies u, I r - a IF in
H'^(1).



2

The Variational Theory
of Elliptic Boundary Value Problems

Consider the following "model problem":

-du+u=f in Q,

u = 0 on aQ\r, (Vu) v = 0 on r,
(2.1)

where A denotes, as is usual in the literature, the Laplacian zL,a'/ax,2,
and f is an arbitrarily fixed function from L2(42). (As stipulated in the
Glossary of Basic Notations, Q is from now on supposed to be a bounded
domain.) Let aQ be of class CI and let its open portion r be closed as
well. With the help of Section 1.7.3 for what concerns boundary values,
we see that (2.1) certainly makes sense in the function space H'(Q) and
implies

u E HOI(Q v r),

a(u, v) =
J

(uv., + uv) dx =
J

fv dx for v E H.I(Q U r)
n n

by the divergence theorem: see Theorem 1.53. (From now on we adopt
the summation convention: repeated dummy indices indicate summation
from I to N.)

Vice versa, any function is c- HP(Q) satisfying (2.2) is rapidly seen to
satisfy (2.1) as well (see Theorem 2.6 below). The second formulation of
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the model problem does, however, have a great advantage over the first
one. Indeed, from the Riesz representation theorem it immediately follows
that (2.2) admits a unique solution, since u, v - a(u, v) is the scalar prod-
uct in the Hilbert space H°'(S2 v P) and v -> fo fv dx is an element of
[H°'(51 u f)]'.

It is worth mentioning that a function u minimizing the functional

,7(v) = 1
J

(I Vv I2+v')dx-J fvdr
2 a o

over H°'(Q u P) must satisfy the condition (d/dl)77(u + 1v)I,,_o = 0 for
v E H0'(D U P), which, by the fact that a(u, v) = a(v, u), clearly amounts
to (2.2): the latter is called the Euler-Lagrange equation of the minimum
problem. Note that the converse of the above is also true, since 7(u)
< (u + ).v) whenever u solves (2.2), . E R, v e H°1(51 V P). In the
present chapter we shall not amplify this point; we shall instead return
to it in Chapter 4.

The solution of (2.2) is of course not a priori required to be an ele-
ment of H=(Q). Thus, in order to go back to the initial setting of problem
(2.1), one has to tackle the nontrivial task of proving that (2.2), at least
under convenient regularity assumptions about the data 851, 1, and f,
ensures the additional regularity u e H2(Q).

These considerations are behind the approach of the present chapter

to differential problems such as (2.1).
We first generalize the Riesz representation theorem, passing from

scalar products to wider classes of functionals u, v i a(u, v), not neces-
sarily satisfying a(u, v) = a(v, u), on Hilbert spaces (Section 2.1). We then
specialize with the space Ho'(S2 v P) and study the applicability of previous
abstract results to a class of problems that includes (2.2) (Section 2.2).
Next we investigate various types of conditions on the data which guarantee
greater regularity of solutions than mere membership in H°1(51 U l).
More specifically we set conditions in order that u belong to some space
L'(51) (Section 2.3), that u e C°,6(Q) or u e CO-6(P) for some 6 e ]0, 1 [
(Section 2.4), that u e Ht(Q) or u e Hk(Q), k > 2 (Section 2.5). Section
2.4 can be read independently of Section 2.3; Section 2.5, independently
of Sections 2.3 and 2.4, except for Theorem 2.24, whose proof is omitted
because it is similar to that for Theorem 2.19.

In Section 2.6 we take up nonlinear equations, proving some interior
regularity results for their solutions.
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2.1. Abstract Existence and Uniqueness Results

Let V be a Hilbert space. A bilinear form on V is a functional u, v
a(u, v) on V X V which is linear in each variable; we call it

bounded if

I a(u, v) I < M I u I V I v IV for u, v e V (M > 0), (2.3)

coercive if

a(u,u)>aoI uIv' for ue V (a.>0), (2.4)

nonnegative if

a(u, u) > 0 for u e V,

symmetric if

a(u, v) = a(v, u) for u, v e V.

If a bilinear form a(u, v) is bounded, all linear functionals

u i a(u, v) with v fixed in V
and

v '-. a(u, v) with u fixed in V

are elements of W. Moreover, it is obvious that

a(u, v) = lim a(u,,,
n 00

whenever u -. u and v. -. v in V. The same conclusion remains valid if
either u u and v - v in V, or u -x u and v -. v in V, since weakly
convergent sequences are bounded and

la(u.,v.)-a(u,v)I <MIu, - uIV I v. 1v + I a(u, v. - v) I,

la(u.,v.)-a(u,v)I<-Ia(u.-u,v)I+MIu, IvIv. - vIV.

If a(u, v) is also supposed nonnegative, the inequalities

for nEN
clearly imply

a(u, u) < lim inf a(u,,,
.N[n

whenever is in V.
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Under assumption (2.3) a linear operator A: V V' with I Au Iv.

< M u 1v is defined by

<Au, v) = a(u, v) for v c V

as u varies in V. Notice that converges weakly in V' toward Au
if converges weakly in V toward it

Whenever FE V' the equation

ueV, Au=F (2.5)

can also be written as

u E V, a(u, v) = (F, v) for v E V; (2.6)

in the sequel we shall refer indifferently to either formulation (2.5) or
(2.6), whichever is notationally more convenient.

The fundamental tool for the investigation of (2.6) is the Lax-Milgram
theorem:

THEOREM 2.1. Let a(u, v) be a bounded and coercive bilinear form on
V and let F c- V'. Then there exists a unique solution u of (2.6); moreover,
u depends linearly on F and verifies

IuIV <ao'IFIV, (2.7)

with ao from (2.4).

PRooF. We obtain (2.7) by choosing v = u in (2.6) and taking (2.4)
into account.

Uniqueness is a straightforward consequence of (2.7), since the dif-
ference of two solutions of (2.5) is a solution of the same equation with
F replaced by 0.

Another consequence of (2.7), rewritten as

IuIV <ao'IAu IV,,

is that a sequence c V satisfies the Cauchy condition if is a
Cauchy sequence in V'. Suppose that Auq Fin V' and set u = limp,,o
Then Au = F by the continuity of A. Thus, the image A(V) of V under
the linear map A is a closed subspace of V'. The proof will be complete
if we show that A(V) is dense in V' (the linearity of the map Fti u being
obvious). To this end we fix any vector z in the dual space of V', which
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equals V by the reflexivity of Hilbert spaces. If (F, z) = 0 whenever F E
A(V), then in particular ao I z I yr < (Az, z> = 0, that is, z = 0, and the
Hahn-Banach theorem (see Theorem 1.B) yields the desired conclusion. 0

From Theorem 2.1 with the particular choice of a(u, v) = (u, v)v
[which implies (2.3) and (2.4) with M = ao = I] we obtain the Riesz re-
presentation theorem as a corollary.

COROLLARY. For any choice of F E V' there exists a unique vector u e V
satisfying

(u, v)v = (F, v> for v e V;

moreover, the isomorphism .7 from V' onto V defined by .'9F= u verifies

I7FIv=IFIv'.

We now suppose that V is continuously and densely injected into
another Hilbert space H, so that H' is continuously and densely injected
into V'. Upon identification of H' with H via the corresponding Riesz
isomorphism, we obtain the scheme

VcH=H' c V',
de de

which is referred to by saying that (V, H, V') is a Hilbert triplet. Notice
that (u, v)H = (u, v> for u, v e If, in particular for u, v e V, whereas
(u, v)v = (.9-'u, v> for u, v E V. Notice also that, if the original injection
of V into H is compact, so is the injection (2.8) of V into V'.

Returning to bilinear forms on V, we weaken the notion of coercive-
ness as follows: we say that a(u, v) is coercive relative to H if there exists
some A > 0 such that at(u, v) = a(u, v) + ,1(u, v> is coercive, i.e.,

a(u,u)+2luIas>aoluly' for uEV (ao>0). (2.9)

Let A,: u -. Au + Au, u e V. If (2.9) holds, A,, has a bounded inverse
AA': V' V by Theorem 2.1, and (2.5) can be rewritten as

ucV, u - ZAz'u=z (2.10)

with z = Ax 'F. Let the injection V c H be compact, so that A,-' is
compact when considered as an operator V V. By the Fredholm alter-
native (see Theorem I.L) (2.10) is uniquely solvable for any choice of
z E V if and only if u = 0 is the unique vector of V satisfying u - AAA-'u
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= 0; when this is the case, the linear operator z'--. u defined- by (2.10) is
bounded from V into V. Summing up, we have the following theorem.

THEOREM 2.2. Let (V, H, V') be a Hilbert triplet with V compactly
injected into H, and let a(u, v) be a bounded bilinear form on V, coercive
relative to H. Then (2.6) admits a unique solution u for any choice of F C- V'
if and only if it admits the unique solution it = 0 for F = 0, in which case
the solution of (2.6) satisfies

IulvSCIF IV,

with C dependent only on A.

In its full strength the Fredholm alternative (see the remark following
Theorem 1.L) can be utilized to describe the so-called "spectral behavior"
of A, especially for necessary and sufficient conditions on F in order that
(2.6) be solvable when uniqueness is lacking. Instead of dwelling on this
pointwe refer to D. Gilbarg and N. S. Trudinger [67].

2.2. Variational Formulation of Boundary Value Problems

2.2.1. Bilinear Forms

We introduce a bounded bilinear form a(u, v) on H'(9), hence also
a bounded linear operator A: H'(Q) -. [H'(D)]', by setting

<Au, v) = a(u, v)

J
[(a'1u., + diu)v., + (b'us, + cu)v) dx (2.11)

a

for u, v c- H'(D), where the coefficients a'i, di, b', c are supposed to be
bounded measurable functions on D. More generally, the integral in (2.11)
makes sense for u c- H'-P(Q), v c- and is bounded in absolute
value by C I U Iai.P(a) I U In n em, if 1 <p < oo.

A bounded linear operator L: H1(f) -. H-1(dl) is defined, as a varies
in H'(.Q), by the identities

<Lu, v) - a(u, v) for v e H'(Sl),
i.e.,

L: u (atiu: + diu)si + b'uzj + cu; (2.12)
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more generally, (2.12) defines a bounded linear operator
H 1 < p < co. The single distributional derivatives (aifuu + diu),,,

1, ... , N (no summation) need not of course be functions defined
a.e. in S2, even if Lu is. L is called a second-order differential operator and
the a'i's are called the leading, or second-order coefficients of L [or a(u, v)],
the di's, the b"s, and c the lower-order ones. Throughout this chapter we
shall assume the condition

a"b,ej >- a I E IE a.e. in 0 for e e RN (a > 0),

which is referred to by saying that L is uniformly elliptic in S2.
A property of a(u, v) that will frequently be utilized in the sequel is

that a(u, v) = a(u+, v), a(v, u) = a(v, u+) whenever u, v e H'(S2) with u-v
= 0 in S2, in particular when v = u+. This is a consequence of Theorem
1.56, since v = vXuxa, v., = vs,Xozo with Xaxo - characteristic function of
the subset of Q where u > 0.

We now choose as V any closed linear subspace of H'(Q), V 2 Ho'(D).
Then a(u, v) is also a bounded bilinear form on V [which might be coercive
on V without being coercive on H'(Q)], A a bounded linear operator
V V'; it will be convenient to view A as a bounded linear operator
W(Q) , V' even if V is a proper subspace of H'(Q).

With the present choice of V and a(u, v) the unique solvability of
(2.6) follows from the Lax-Milgram theorem, provided the bilinear form
(2.11) is coercive. In order that the latter requirement be met, it suffices
to impose suitable restrictions on the coefficients of a(u, v), as the next
example illustrates.

EXAMPLE. Let the d3's and the M's vanish identically in 92; then,

a(u,u)>aJ I Vu 12dx+essinfcJ u°dx.
a a a

The form a(u, v) is therefore coercive whatever the choice of V if ess info c
> 0. This condition can be weakened by requiring ess info c > 0, or even
ess info c > -e with e > 0 conveniently small, whenever V is such that
the Poincard inequality (1.26) holds in it (see Lemma 1.46).

The bilinear form (2.11) can be shown to be coercive under less re-
strictive assumptions than in the above example, but always by requiring
that the lower-order coefficients be conveniently small, in some sense to
be specified, with respect to various parameters such as I S2 I and the
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constant a of uniform ellipticity (see for instance G. Stampacchia [141]).'
Rather than enlarging on this approach, we proceed to investigate (2.6)
in the light of Theorem 2.2 instead of Theorem 2.1. Note that the inequal-
ities

r x

J
diuu., dx < 4 I Vu 1:0 + a-' I di 12;0 I u Is;o

o r-1

and
N

I.

rb'u,udx
--I Vu 122;, + a-'

a f-1

yield (2.9) with

NA=a'E (Ia

d'IL;o+Ib'IL;o)+IcI.;o+ 2, a0=
2

,-1

Thus, whatever the choice of V as above, the bilinear form (2.11) is coer-
cive on V relative to L'(Q).

(V, LI(D), V) is a Hilbert triplet. If the injection V c L'(.Q) is com-
pact (see Theorem 1.34 and the remark following Lemma 1.46), the unique
solvability of (2.6) for any choice of F c V' is an immediate consequence
of Theorem 2.2 whenever it can be shown that (2.6) with F = 0 implies
u = 0. In Section 2.2.2 we shall provide sufficient conditions for this.

2.2.2. The Weak Maximum Principle

Throughout the rest of this chapter we shall take as V the space
Ho'(S2 u r) with r at least of class C', neither case r = 0 nor r = OD
being excluded.

We say that the weak maximum principle holds for A: H'(Q) V'
if any function u c- H'(Q) satisfying

u < 0 on aD\r in the sense of H'(Q),
Au < 0 [i.e., a(u, v) < 0 for v E V, v > 01

(2.13)

is_0.
The validity of the weak maximum principle implies naturally that

in the present situation (2.6) has only the trivial solution when F = 0.
The notion we have just introduced is, however, of extreme importance
also when the unique solvability of (2.6) can be directly deduced from the
Lax-Milgram theorem. We therefore explicitly state the following result,
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concerning the coercive case, which immediately follows from (2.13) with
the choice v = u+.

THEOREM 2.3. If the bilinear form (2.11) on V = HQ'(Q V I') is coer-
cive, the weak maximum principle holds for A: HI (Q) -. W.

Things become more difficult when the coerciveness assumption is
dropped. The result we have is the following theorem.

THEOREM 2.4. Let S? be such that Ho1(S? u I) c L'(S?) with q > 2.
Let the operator A: H1(Q) -. V' from (2.11) satisfy Al > 0, and in addi-
tion Al :/= 0 if V = Ho'(S2 V I) equals H'(D). Then the weak maximum
principle holds for A.

PROOF. Let u c- HI(Q) satisfy (2.13), and suppose that K _ ess sups u
>0.

If u is the positive constant K, it coincides with u+ a H0'(.Q u Il. But
then all constants belong to the space HI'(S2 U I'), which must coincide
with H'(S?) by Lemma 1.58. Our assumptions imply the existence of some
function v E V, v > 0, such that

K<A 1, v> = a(u, v) > 0,

and this contradicts (2.13).
Since the possibility that u equals K throughout S? has been ruled out,

there exists Ko a )0, K[ such thatthe measure of the set D' _ {x c S? I u(x)
< Ko) is positive (and of course independent of the choice of the repre-
sentative of u).

Take any number k in the interval [K0, K[, so that u > k on a set
of positive measure. Since the nonnegative function vt - (u - k)+ < u+
belongs to V, v = vk is admissible in (2.13), and the assumption Al > 0
yields

0 > a(u, vt) = a(u - k, vk) + k<AI, vk> > a(u - k, vk)

= a(vk, vt).
Hence

fn aiivkZvkZ, dx < - f
D

[dJvevk., + (b'v1, + cvt)vk1 dx

< Z IVveIedx+C(a) vk'dx,
n
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and finally
I Vvk 12;a < C I vk Iz;D (2.14)

by uniform ellipticity. Thanks to Holder's inequality (2.14) yields

I Vk lq;D < Cl Vk I111w) < Cl Vk 12;D < C I snpp Vk I1/Z-lIq
I Vk lq;D,

hence

IsuppvkI?C>0

with C independent of k, since I vk Ia;a # 0. Letting k K we deduce
that the measure of the subset of d2 where u < K is < I 0 I: therefore,
K is finite, and u = K on a subset of Q having positive measure.

Now denote by vo the bounded function VKo, and set v)") - vo/(K -
KO + e - vo) for e > 0. If G is any function from C01(R) such that G(t)
= tl(K - Ko + e - t) for 0 < t < K - Ko, Lemma 1.57 applies and
yields vl°) a V. Since vl.) vanishes wherever (u - Ko)+ does, the same pro-
cedure followed for vk yields the inequality

a(va, vl°)) < 0,

which can be rewritten as

J
[al'vo=ly=i - (d' - b')vo:lvl.)] dx < - j

o

+ Nov(.)) dx
a

= - <A 1, vovle)) < 0

since the nonnegative function belongs to V by the boundedness of
vo and vle) (see Problem 1.21). Computation shows that

vs11 = (K - Ko + e)vo.,/(K - Ko + e - va)2,

hence that

(K-K0+e)JD (K-Ko+e

vo)'

I Vvo I

K - Ko+e-vo
dx,f

and finally that

a
J

1 I- A < f
a

wi',) dx
n n

rI 112<CI I IVwldI'dx) (2.15)
D
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with

WW =ln K -Ko+e
K- Ke+e - vo'

99

Again by Lemma 1.57, w''' belongs to V, and w''' = 0 on .Q because
vo vanishes there. By (2.15)

I Vw" [g;a<C for e>0,

so that Lemma 1.36 yields a uniform bound on I w''' Iz.o, e > 0. But then
the monotone convergence theorem shows that

K - Ko
In K-K0+vo

the limit as a 0+ of {w'''}, is integrable over Q. This implies that u
cannot equal K on a set of positive measure, thus contradicting our previous
conclusion based on the assumption K > 0. Hence, K < 0. 0

COROLLARY. In addition to the assumptions of Theorem 2.4 suppose
that Ho1(.Q V I') injects compactly into L'(Q). Then (2.6) admits a unique
solution for any choice of FE [Hol(.Q u r)]'.

The scope of the considerations developed up until now can be ap-

preciated more fully with the help of the following example.

EXAMPLE. Let N = 1, d2 = ]0, R[ with 0 < R < oo, r = o. On
H0'(.Q) consider the bilinear form

R
a(u, v) = f

o
+ Auv) dx.

0

If A> 0, a(u, v) is coercive. But if d takes on a value -n2n'/R', n E N,
the function u(x) = sin(nnx/R) is an element of H0'(.Q) satisfying Au = 0,
so that the weak maximum principle does not hold.

2.23. Interpretation of Solutions

By choosing the space V = Ho'(S2 u P) and the bilinear form (2.11),
the following properties of a solution u (if it exists) to (2.6) are immediately
ascertained.
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First of all, u is an element of H'(Q) satisfying

a(u, v) = <F, v> = <f, v> for v e Ho'(S2),

where f c H-'(0) is the restriction of F E V' to H0'(Q) (f = F if r = 0).
This is expressed by saying that u is a (variational) solution of the ordinary
(for N = 1) or partial (for N > 1) differential equation

Lu=f in Q

with free term f
Secondly, the membership of u in V contains, if dQ\I' -x= 0, the con-

dition

u = 0 on 8S7\r in the sense of H'(Q),

which amounts to

ul aarr = 0

if 8Q is of class C' and r is closed. We express the above by saying that
u satisfies a (homogeneous) Dirichlet condition on 89\r.

In order to investigate the behavior of u on r, supposed :7L 0, it is
convenient to deal with the following assumptions: r is closed and, for
some p E 11, oo[, u is a function of which verifies Lu E LP(Q).
The linear functional v a(u, v) - f a (Lu)v dx is then bounded on

u r) and vanishes identically on H0'-P'(Q). A bounded linear
functional Bu on H"P-P'(I') is therefore defined by the expression

<Bu, vlr> = a(u, v) - f (Lu)v dx for v E V r) (2.16)
a

which we refer to as Green's formula; Bu is said to be the conormal deriv-
ative of u on r, relative to a(u, v). It is important to remark that, under
suitable hypotheses, Bu can be given a more explicit expression than its
mere definition (2.16). For, suppose that aii, di e C°,'(.D) and u E
then, a'iu,, + diu belongs to H'-P(Q) for j = 1, ... , N, and the divergence
theorem (see Theorem 1.53) yields

a(u, v) -
J

(Lu)v dx = j
o

+ diu)vh, dx
o n

= r (ai3uy -4- diu)I r vl r si do
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for v e Ho'-v'(S2 V I'), hence

Bu = (a'iui, + d'u)I rv'. (2.17)

[It would in fact be appropriate to say that (2.17) is Green's formula, Bu
being defined by (2.16).]

Summing up, we have the following lemma.

LEMMA 2.5. Let I' be nonempty and closed. Let 1 < p < co. Then any
u e H''y(S2) with Lu e Ly(S2) admits a conormal derivative Bu a [H1/DLD'(I7]'
defined by (2.16). If, moreover, u e H2.9(Q) and a'i, di a then Bu
satisfies (2.17).

At this point we can return to the interpretation of solutions u to
(2.6). If F has the expression

<F, v) =
J

fv dx + <C, vI r) for v e V,
a

with f e L°(S2) and C E

(2.18)

then u verifies Lu a L2(S2), and its conormal derivative satisfies the so-
called Neumann condition

Bu = C on l'

as an identity in [H1"2(I')]' {or even a.e. [N - 11, if for instance C E L2(I)).
Since this procedure can be inverted with no difficulty, we have proved

LEMMA 2.6. Let I' be closed and assume (2.18). Then a function u
e H'(d2) satisfies (2.6) with V = Ho'(S2 u I') and a(u, v) given by (2.11)
if and only if it satisfies

Lu =f in S2,

u = 0 on 8Q\I' in the sense of H'(S2), (2.19)

Bu = C on P.

We call (2.19) a (variational) boundary value problem (henceforth
b.v.p.); we say that it is of the mixed type, if neither I' nor 8S2\T is empty,
of the Dirichlet type if I' = 0, of the Neumann type if OQ\l = 0.
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REMARK. Assume a.4\r 0 and let g E H'(Q). If the hypotheses
of Theorem 2.6 are satisfied and the function z solves

Z E V,

a(z, v) _ (F - Ag. v> for v c V,

the function u = z + g solves the b.v.p.

Lu = f in D,

u = g on asz\r in the sense of H'(Q),

Bu = { on r,

the condition on ail\r being a nonhomogeneous Dirichlet condition.

2.3. L' Regularity of Solutions

Throughout the rest of this chapter and the first five sections of
the next we shall investigate the regularity of solutions to problems such
as (2.6) with V = HO'(Q u r) and a(u, v) given by (2.11). For the purposes
of clarification we begin with a few simple observations.

The form (2.11) may or may not be coercive; in any case, however,
there exists x > 0 such that u, v a(u, v) + x(u, v> is coercive (see Sec-
tion 2.2.1). We rewrite (2.6) as

u C- V, a(u, v) + 2(u, v> = <F + Xu, v> for v c- V, (2.20)

and deduce from (2.7) the norm estimate

IuIavm<ao-'(CFIv, +AIuI::D)

with ao from (2.9).

When N = 1, H'(D) is continuously injected into so that

I u Ica., tsi < C(I F IV, + I u IeoD).

When N> 2 we can give sufficient conditions on r in order that V c
L'(Q), hence

IuJ.:D<C( FIv, +IuIi:o), (2.21)
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with r arbitrarily fixed in ]2, co[ if N = 2, r = 2* = 2N/(N - 2) otherwise
(see Theorem 1.33 and the remark at the end of Section 1.7.2). For what
concerns I F I v, we note that, whenever q-1 = p-1 + N-' with p > 2 if
N = 2 and p > 2 if N> 3, Lq(Q) is continuously injected into V'; we
define a bounded linear functional F on V by setting

<F, v) -
J

(f°v + f'v.1) dx for v e V
D

with f° e LQ(S2), f' E L'(D) for i = 1, .

and (2.21) becomes
n

IUIr;a5C(If°Iq;a+ If'Ip;Q+IuI2;o)
-1

(2.22)

Up to now the fact that u solves (2.6) has played a role only in the norm
estimate, whereas the regularity of u has been deduced from general prop-
erties of V. In the rest of this section we shall give sufficient conditions
in order that the validity of (2.6) imply u e L'(Q), with norm estimate,
for some s > r.

First we have the following theorem.

THEOREM 2.7. Let N > 2, and suppose r is such that H°1(D U T) c
L'(Q) for r = 2* if N > 2, r e ]2, eo[ arbitrary if N = 2. Let the bounded
linear functional F on V = H 1(d2 U P) be defined by (2.22) with p > N,
q = pN/(N + p) if N > 2, q > p2/(2 + p) if N = 2, and let a(u, v) be
given by (2.11). Then any solution u of (2.6) belongs to L°°(d2); moreover,
there exists a constant C (independent of u, F) such that

N

I U I_;n 5 C(If° Iq;n + E If' Ip;a
-1

+ I u IP;a)

We shall obtain Theorem 2.7 as a straightforward consequence of the
following lemma.

LEMMA 2.8. Under the same assumptions of Theorem 2.7, any function
u e H1(Q) such that

u < 0 on dQ\I' in the sense of H'(Q),
(2.23)

a(u,v)5<F,v> forveV, v>0
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satisfies
Y.

ess sup u < C(IIf, I'm + E If i Ipco +I U12;0
a \ t-1

C being independent of u, F.

PROOF. Since (2.23) remains valid with u and F replaced respectively
by u/I u Is;o and F/I a 1s;o if I u I.;o f 0, we need consider only the case
I U I2;o = 1.

For 0 < k Coo we set vk-(u-k)*, notice
that

IQkI<_IuI1;a/k<_IQ11/9/k

by Holder's inequality. We restrict ourselves to the values of k for which
ItkI<1.

Since vk e V and vk > 0, (2.23) yields

a(vk, uk) = a(u - k, vk) < <F -Ak, vk>.

Set 0 = I Vvk By uniform ellipticity,

a02 < - [d'ukuk., + (b'uk,, + cvk)vk] dx
ni

+ J [(f° - kc)vk + U' - kd')uk:,] dx,

so that Holder's inequality yields

01 < C[ I Vk 12;0(6 + I Vk IY;a + 192k II/f-1/9 I f IQ;o + k I'Qk I1/2)
LLL

N

+ 01 I Qk II/9-11D E1

/
J.I f' I p;a + k I .Qk Iui)1

\ ,-
(2.24)

We now utilize the continuous imbedding of V into L'(Q), with r
so large that 1/r< 112+ llp - 11q and (1/2 - llp)r > 1 if N=2 (the
same inequalities being obviously satisfied by r = 2' if N > 3), to obtain

I Vk ';o < C(I Vk 1,;o + 0)

< C(I .Qk IIn-1h I Vk I';a + 0),
hence also

I vk 1,;a < Co for k > ko (2.25)
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if ko > 0 is large enough. Since 1 /2 - I /p < 1 - 1 /r - 1 /g and I S?k I < I
we deduce from (2.24) that

02 < CI I Qk I1n-1/.1
ak Ir;o(e + I Qk I1n-1/. I vk 1,;a + I Qk 1vl-vl 1 fo

Iroa
LLL

n N `11

+ k I .Qk I1/2) + 0 1 Qk I1/2-1/v E I fi Iv;a + k I Qk 11/9/
i-1

< C[02 I Qk 11/7-1h + 0(114 11/2-'/Pr + k 112k I1/2)]

where
N

If°I,;o+X If'1,;o.

if k1 > ka is large enough, we have

0 < C I Qk 12/l-1/a(r + k) for k > k,. (2.26)

At this point we utilize (2.25), (2.26), and the inequalities

I ak 1";D = Jak (u - k)' dx > rak (u - k)' dx > I Qk I (h - k)r.

valid for k < h < oo, to arrive at

IQ4I(h-k)'<CI1kIu/l-va,r(r+k)'

which we rewrite as

IQAISK(h - k)-rInkla

with K = O(r + h,)' and ft _ (1 /2 - I /p)r > 1, for k1 < k < h < h1,
h1 < oo.

Let us assume the validity of the following lemma.

LEMMA 2.9. Let rp be a nonnegative, nonincreasing function of k E
]k1, h1[, where k, < h1 < oo. Suppose that there exist positive constants K,
r, fi, with ft > 1, such that

w(h) < K(h - k)-q,(k)#

for k1 < k < h < h1. if the number

k = K'/'2p1«7lq,(kj0-a/r

is such that k1 + k < h1, then '(k, + k) = 0.
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We can apply Lemma 2.9 to w(k) _ I S2k 1, provided we find k, and
h, with the required properties.

We let k, be so large that not only (2.26) holds but also

I f2k I(D-vn < LhirzDnP-v I(B-viarkln-DVr G 1/2.&/12D/(P-u

We then choose ht = 2k, + r and obtain

k1 + k = k1 + O"20i(0-1) I S2k I (D t('.(t + h1) < k1 + 4(r + ht) = h1

We can conclude that I S2k1+k I = 0, that is, u G k, + k in S2. This is
nothing but the required bound on ess sups u for I u 1t;n = 1. 0

REMARK. In the above proof we did not utilize (2.23) in its full strength.
Indeed, we exploited only the fact that

a(u, (u - k)+) < <F, (u - k)+>

for all k sufficiently large.

Note that the constant of the estimate does not depend on the coef-
ficient c if the latter is > 0.

At this point we need only proceed to the proof of Lemma 2.9.

PROOF OF LEMMA 2.9. For n E N let

k = k1 + k(1 - 2-(n-1'),

so that w(k, + k) < (p(k.). We shall prove Lemma 2.9 by showing that
0 as n -. oo. More precisely, we shall show by induction that

99(k.) C W(k1)/2N(w-v (2.27)

where µ is the positive number r/(f - 1).
For n = 1, (2.27) is obviously satisfied. If (2.27) holds for some value

of n, the assumption of the lemma yields

'P(k.+1) < K2hk-rw(kno

< K2-k-rq,(kt)P2-DN(a-1(

But since

kr = K2rB/(B-1(99(kt)0-1,
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we can conclude that

9,(k.+1) < 2m-Be "-1 2- (k1) _ (k1)/2e".

We now prove the following theorem.

0

THEOREM 2.10. Same assumptions as in Theorem 2.7, except that here
we take N > p > 2. Then any solution of (2.6) belongs to Lr'(Q), I /p*

I/p - I/N, with norm estimate

N

IU1,.,a<c(If°I4:a+ E If`Ip:a+11,12:0

the constant C being independent of u, F.

(2.28)

PROOF. We proceed in two steps. Note that for p = 2 the theorem
is an immediate consequence of the assumption H°1(Q U F) c Lr(Q).

Step 1: A preliminary reduction. Let us momentarily assume the valid-
ity of a norm estimate

N

I u C(If° I4:a + f Ifi 11:o
(2.29)

i-1

for all functions u E L°°(12) that satisfy

u e V, a(u, v) + A(u, v) = (F, v) for v E V (2.30)

with A sufficiently large; we can suppose that the bilinear form u, v H
a(u, v) + 2(u, v) is coercive. We claim that, as a consequence, (2.28) holds
for solutions of (2.6). To substantiate our claim, we first prove that (2.29)
remains valid even if the solution of (2.30) does not belong to L°°(Q).
We approximate f° in LQ(Q), f1, ... , fN in LP(Q) with sequences {f"°},
{f"1}, ..., {f"N) of bounded functions and denote by u" the solution of
(2.30) with F replaced by F": v H f o U"°v + f"ws,) dx. Each u" belongs
to L°°(Q) by Theorem 2.7, so that (2.29) yields

N

Ia"1":a<_c(If"°I4:a+X1 Ifn ID:a) for n c- N. (2.31)

By the uniform boundedness of Iu"Iv [see (2.7)], a subsequence of {u"}
converges weakly in V toward a function u: it is clear that a solves (2.30),
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hence u = u by uniqueness. We deduce that u is the weak limit in LD'(92)
of (un), with

N

11
u I un C(if° Ie:n + ; If l ID;

n- -1

by (2.31) (see Problem 1.2).
Let us turn to solutions of (2.6), and consequently of (2.20), instead

of (2.30). The function f O = f° + Au belongs to L91(0) with

I f° 1,,;n < C(If° Ie:n + I u leun),

where q, = q A 2. Let p, be defined by p,-' = qi 1 - N-': from our pre-
vious considerations about solutions of (2.30) it follows that u e LR(Q)
with norm estimate. If p, = p we have obtained (2.28); if not, we repeat
the above procedure, with 2 replaced by p,', and so on through a finite
number of stages, until we reach the sought-for conclusion. (This procedure,
called a bootstrap argument, will be met with again.) The claim is thus
substantiated.

Step 2: Proof of (2.29) for solutions u e L°'(S2) of (2.30). If u belongs
to V n L-(S2), so does I u I°u, with

(Iu16u)D,=(6+1)IuI°us,

whenever 6 > 0. [For 6 > 0 apply Lemma 1.57, with C e C,'(R), G(t) _
I I 1°t if I t I < u I,,.n.] We fix 6 through the requirement 2'(6 + 2)/
2 = p and estimate

a(b+l) f
D

< J 1) I u l 'u., dx

a(u, I u I"u) - J [d'u(b + 1) I u I°u,, + (b'u., + cu) I u I°u] dx

<a(u,Iul°u)+c J IuI'IVuisdx+C(e) J u uIddx.

Since (612 + 1)2 1 U 1°I Vu Ir = I V(I U I"1eu) Ir, we can choose a > 0 and
A = d(s) in such a way that

I I U I61ru la4ni < C[a(u, I U Isu) + x(u, I U I"u>].
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If u solves (2.30) we repeatedly make use of Holder's inequality and ob-
tain, for c > 0,

I
I U

e12ul2,(0)<C j
o

<C J (If°I Iul°+1+ If'I 1uI'll I (I aI°/'u)=, I)dx
a

< C[IJ° Ie:o l u Ir Q

N (( (n+(J E If'1°IuI°dx)
1/P

(1I_1

since

and therefore

<C(If°I9:oIuwo

+ e E if, Into I U Ip°*:n + z I U Ie/YU 1 Hym).2

N(P-2)
N-p

I b+1
9 = P'

At this point we set a suitable value of a and majorize the quantity

6+9)/p
u1PI.Q J lulp dx)

n

8/L._ I I u 1[Ie+2)/212 dX 1 = I I u I°'2u I2 ;n
/1

with C I I u I°nu thus obtaining

I

u I f Ip:a

I u Iy.;n # 0 we arrive at

Iulp.:n<C(Z IuIP.:a+ 2e If IO;n+ If'IP:n) for c > 0,

hence (2.29) after another suitable choice of e. 0
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2.4. The De Giorgi-Nash Theorem

Throughout this section we shall take N> 3. This restriction will be
briefly commented upon in the remark following the proof of Lemma 2.15.

2.4.1. Pointwise Bounds on Subsolutions

A function We HI(Q) is a (variational) subsolution of the equation
- (a"wzi)z, = 0 in S2, where the a43's are the leading coefficients of the
bilinear form (2.11), if the distribution - (a't W,,),, is a nonpositive clement
of H-'(Q), that is

f a'iW,,v, dx < 0 for v e H.'(0), v> 0.
a

An important property of subsolutions, whose proof we postpone until
later (see Lemma 4.28 below), is that the supremum of two of them is
still a subsolution.

LEMMA 2.11. Let W be a nonnegative subsolution and assume x° C S2,
B2,(x°) c S2 (r > 0). Then a bound

W(x) < Ce R12 I W 1rz<.'+' for a.a. x e B,(x°),

0 < e < r, is valid; the constant C (independent of W, x°, and r) depends
on the a's's only through a and the bound imposed on I a'3 J.,,

In the proof of Lemma 2.11 we shall utilize the following result.

LEMMA 2.12. Let W be a nonnegative subsolution and set Wk = W A k
for 0 < k < co. Assume x° a S2, B2,(x°) c S2 (r > 0). Then a bound

W2 Wkyz+2(k-v dx1
VA < CO + P) ( W2Wk' dx', (2.32)

UR'CZ°) ) - (R - e) Jen(z°)

where A = N/(N - 2), holds whenever 0 < p < oo and 0 < e < R < 2r;
the constant C is independent of W, x°, r, and k.

PRooF. Without loss of generality we assume x° = 0. Let g e C'(.)
with supp g c BR, 0 < g:5 1, g = 1 on B. I Vg 1 < 2(R - e)-1. Since
Wk belongs to H'(.Q) n L'(.Q) with Wkyj = Wow<k, Xw<k being the
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characteristic function of the subset of Sd where W < k (see Theorem
1.56), the nonnegative function v = g'Wk"W belongs to Hol(Q) with

vzr = g2Wk'(PWWz, + Wsr) + 2ggg Wk' W.

[Write Wk=(W-k)AO+k,W=(W-k)V0+(W-k)A0+k.]
Thus,

fn
acJW.,g2W?(PWk:r + Wa) dx < -2 f

a
a'2 W.,gg:r Wk'W dx,

and

a f eWk11(PIVWk12+IVWI2)dx

<Cf gIVWIWk'WIVgldx
n

<ef 9'1VW12WkDdx+C(e)f Wkp IPg12dx,
n n

e > 0. Take e = a/2: then the gradient of the function W = WkD12W
satisfies

f g2IVWI'dx<zf g'Wkp(4 IVWkI'+IVW12)dx
u n

5(Z +2) f g'Wk'(PIVWk12+IVWI')dx

<C(1+P) f J421Vg12dx,
a

so that

f IV(gW)12dx<C(1+P) LA W2IVg12dx. (2.33)
BB BB

Since

IgWI2A;R<-CI V(gW) I2;R

by Theorem 1.33 and the corollary of Theorem 1.43, (2.33) yields

U
l2rx CO + P)

f 9- dx.(R -P)' BRBA



112 Chapter 2

The conclusion now follows from the inequality Wk !5 W, which implies
W' Wkl1-1) < W'x and therefore

W'WkPA+2(A-1) < WkPAW'A = WV.

PROOF OF LEMMA 2.11. Take x° = 0. For m = 0, 1, 2, . , . we set

r
W' We-

dx)\11A'A -(J.
By choosing R = r,A, p = and p = P. in (2.32) we obtain

0

A. QUO - 1)1/2 21'°r
A,.+1 r2-n-1

hence
21` I.,

A,.+1 A° (r2
C-'-1)

Let A. > 0. For m large enough the logarithm of the right-hand side of

the above inequality is bounded by

In A. + 2 E i + 1 In [(C21')1""i}112] - 21n r I1i 'ro i

=InA°+C-NInr
since

and therefore

N-2 ` Nsb( N)=z
A1ii}1 <

Cr_N

J

W1 dx. (2.34)
By

Because of the inequality

< Am+1

(2.34) yields

ess sup Wk' < Cr-N W' dx (2.35)
B, JB.,
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after a passage to the limit as m -. oo. For p = r the sought-for conclusion
follows from (2.35), whose right-hand side is independent of k. For 0 <
p < r we cover B, by a finite number of spheres Be,y(y'), y' a B,. Then
B.(yq a B,+e, and from the preceding conclusion we deduce

W(x) < Cp Nro I W I=t°.v' < Cp-.vie I W Ir,+e

for a.a. x E Bk,a(y'), hence the desired inequality a.e. in B,. 0

2.4.2. Holder Continuity of Solutions

We now turn from subsolutions to solutions of the equation - (a`Jw,,),,
= 0 in Q, that is,

ra
w e H'(.4),

f a
dx = 0 for v e H°'(S1),

(2.36)

and prove a Harnack type inequality (see J. Moser [123] for a sharper

result).

LEMMA 2.13. Let w satisfy (2.36) and assume that w > 0 on BR(x°)
c S2, the set E _ {x a BR(x°) I w(x) > 1) having measure > K I BR(x°) I

for some K e ]0, 1[. Then, w(x) > c(K) for a.a. x e BR,a(x°), where c(K)
E ]0, 1[ is independent of x° and R, but depends on w through K, on the
ail's through a and the bound imposed on I ail Io;a.

PRooF. Take x° = 0, and let k e ]1/2, 1[ (independent of R) satisfy
I BR\BkR I = K I BR 1/2. Then,

KIBRI <_ 1 E I = IEn (BR\BkR)I

+IEnBkRI<_z IBRI+IEnBkRI'

and therefore 1 E r) BkR I ? K I BR 1/2.
The idea of the proof is to provide a bound independent of e > 0

on [- ln(w + c)]+ or, equivalently, on - ln[(w + e) A 1] throughout
BR,,. For 0 < e < 1 and t > 0 we set H,(t) _ (t + e) A 1 but, instead of
dealing immediately with - In H,(w), we first approximate H. uniformly
from below with a monotone sequence of positive concave functions
H,,,, E C'([0, oo[), with H,.,,(t) = H,(t) except in a small neighborhood of
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t = 1 - e. Let G,,,(t) _ -ln[H,A(t)], so that G;.A = G
- [H."

+

11"A - A ? (G:., )2. If g e Cl)(S3 with supp g Brs

0 <g < 1, g = 1 on Bka and I Vg I G 2(R - kR)-', the function v =
g2G,,(w) is admissible in (2.36) by an easy adaptation of Lemma 1.57.
Thus,

0 = f a`Jw:,[G:..(w)2gg2, + g2G:.A(w)w,,] dx

> f {a'J[G,.A(w)]:2gg., + ag2G'A(w) 1 Vw I'} dx

fa g'IVG,(w)I'dx-C fa VgI'dx
A A

by standard arguments: note that the inequality G' > (G' 'A)2 has played
a fundamental role here. Summing up,

I VG,.,,(w) 12 dx < CRS-2 (2.37)
BkA

whenever 0 < e < 1, n e N. As n -. oo, G,,,(w) -. W,+ a.e. in BR, with
W, - -ln(w + e), and hence also, by monotonicity, in L2(Ba), whereas
from (2.37) we deduce that

a
G, (w) a W +

ax; ax;

in L2(Bka) and

5
1 VW+I'dx<CRN-2 (2.38)

akR

(see Problem 1.2).
Since (again by an adaptation of Lemma 1.57)

VI a'JW,,,v. dx = - a'Jwu
w

+ E dx
n aR

V ll

f
(w

+e)2 dx<0
,y

whenever v c C0'(Ba), v > 0, W, is a subsolution of the equation -(a'Jw )s f
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- 0 in BR, and so too is W,+, being the supremum of two subsolutions.
Lemma 2.11 therefore yields

ess sup W,+ < C(kR - R/2)-N(x I W: I1;LR (2.39)
BRn

On the other hand, all functions W+, e > 0, vanish on the set E n Bk.R,
whose measure is > K I BR I/2 by our initial considerations. From Lemma
1.36 and (2.38) we deduce that

I W+ I e;kR < C(K)kR I PW+ 12;kR c C(K)Rsn

so that (2.39) yields a uniform bound on W; (x), 0 < e < I, for a.a.
x e BR12. The conclusion follows after letting a -. 0, since

- In w(x) < C(K)

at a.a. point x E BR,2 where w(x) < 1. 0
At this point we are in a position to prove the celebrated De Giorgi-

Nash theorem.

THEOREM 2.14. If w satisfies (2.36), then it belongs to C°"°(S2) for
some 6° E ]0, I [; more precisely,

max w - min w < CR-N12(p/R)"° I W IE;ER,x" (2.40)
Beix°,

whenever 0 < e < R, B2R(x°) S Q, where C and 6° (both independent of w)
depend on the a's's only through a and the bound imposed on I a" Im;a.

PROOF. Since both w and -w are subsolutions, Lemma 2.11 yields

ess sup I w I< CR-N121
W I2;2R.x°

BR(x°)

We set

m° - ess inf w, M° - ess sup w,
BR(x°) BR(x°)

so that M. - m° < KR-R'2 I W IasR,x° for some K > 0.
Next we fix the unique number rh such that I Ef I < I BR(x°) I/2, E+

(E-) being the subset of BR(x°) where w > th (w < th); precisely, rh is the
supremum of all values m > m° such that measN{x E BR(x°) I w(x) < m}
S 1 BR(x°) I/2.
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Suppose m° < rh < M°. Both nonnegative functions [M° - w(x)]/
(Mo - rh) and [w(x) - m°]/(rh - mo) satisfy (2.36) with d2 replaced by
B&°), and are > I on subsets of BR(x°) having measure > I BB(x°) 1/2.
We can therefore apply Lemma 2.13 and obtain

M° - w(x) > w(x) - m° >(1/2) c(1/2)
M° - rh

that is,

with

,c rh - m°

m, < w(x) < M,

m,='h-h(rh-m°), M,=rh+h(Mo-rh), h = I - c(1/2),

for a.a. x e BRra(x°). The same result holds if th = m° or rh = M°. Thus,
M, - m, < h(M° - m°), and by iteration

osc w< h"KR-R12 1 W 1,;,R,s° = h"K'
a R

where
osc w = ess sup w - ess inf w.
e Be(x°) B,(--)

For 2-)4+')R < p < 2-"R we have

In(oscw) <InK' - Inh+ (n + 1)Inh
2

< ln(K'/h) + [(In h)/In 2] ln(R/P),

hence

osc w < h-'K'(B/R)°^ with 8° _ -(In h)/In 2, (2.41)
P

since the positive number h is < 1.
From (2.41) we immediately arrive at (2.40) provided we show that

w has a pointwise representative from C°(d2). To do this we arbitrarily
fix ru cc S2 and denote by {y'} an everywhere dense sequence of points
of ar. If R > 0 is < } dist(w, 8S1) and n E N is > 1/R, there exists S. c S2,
with I S. I = 0, such that (a representative of) w satisfies

I w(x) - w(y) 1 < h-'KR-Ra(1/nR)°^ I w IZ;Q

whenever x, y e B,1,(y+)\S" for some i e N [see (2.41)], hence also when-
ever x, y c- ru\S" with I x - y 1 < 1 In. Set S = U" S^. The function w
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is uniformly continuous when restricted to the dense subset w\S of CO,

and therefore has an extension to w that belongs to C°(ra). The con-
clusion is patent. 0

2.4.3. L',e Regularity of First Derivatives

Assume the validity of the next result, whose proof follows later.

LEMMA 2.15. Let D = B, for some r > 0. There exists a constant C
such that for any e e 10, r]

IVu
IE.°<C(t"`°

0

N
IVuIe;,+r'If I.;,+z If'12;rI,a.

(2.42)

with M. = N - 2 + 280, 6o being the Holder exponent of Theorem 2.14,
whenever u satisfies

it e H'(B,),

JD,
a'fustv.1 dx = <F, v> - f

BF

+ f'v.O dx for v e Ho'(B,)
Dr

with f°, ... , fN E L'(B,). C is independent of r; it depends on the a'1's only
through the bound imposed on their L-(B,) norms as well as through a.

We can then pass from (2.36) to a complete equation such as

L

u e H'(Q),

a(u, v) _ <F; v> =
J

(f°v +f'v.() dx for v e H01(Q)
a

(2.43)

with a(u, v) given by (2.11) and f° e L',(e-2"(S2), f', ... , fN e L'-P(Q),
0 < u < It., and investigate interior regularity of solutions as below.

Set

N
px (F; u) = I f ° I4, (µ-2)+;a + E, I P I's,a + I u I )I' 07

,-1

and suppose p is such that, whenever co, cc S2, uI,1 belongs to L°-1'(w1)
with I u IL,,,o < u); note that HI(w1) c V,'(w1) if Owl is of class
C1 (see Theorem 1.40).
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Let w cc w1, x° a ru, 0 < r < d = [dist(w, awr)] A 1. The function
u satisfies

J
a"u,v2 dx =

J
(f°v + f'v2j) dx

[(f° - ill., - cu)v + (f' - diu)v,] dx

for v C H°'(B,(x°)).

Therefore, after an inessential translation of the origin, (2.42) with f' re-
placed by f j for j = 0, ... , N yields

I Vu 12;2°.e < C[ 1° + rY l I Vu I4,2°.r + r"x"(F; u)] (2.44)rft

for 0 < e < r, since

r2 f
O ° IY:2°.T C(ra 1I° 12 .µ:y+ r,+Y I U 18 + r2 I Vu

N
E 11` I22;2°,r < C If ' IE,",w, + I u
i-1

For I < s < co let H(s) = S-00 A d. By (2.44) the function T(p)
I Vu IQ;e,, satisfies

q(e) < 6[2 1`-° q'(r) + rx"(F; u)s"]

whenever 0 < r < H(s) and 1 < r/e < s. As in the proof of Theorem
1.17, we do not divide by e" at this point, because a is still restricted to
vary away from 0. Instead, we apply Lemma 1.18 with K = 2C, 0(s) _
Cx"(F; u)s" and e = µ° - µ, so that

I Vu Ie:z°re < C[

w

I Vu I2:z°,, + e"x,,(F; u)]

whenever 0 < e < r < H(K"°), and finally

Q- I Vu IY;wr2°.e7 :5 C([H(K11')1-" I Vu IY;a + x"(F; u)).

We have proven that whenever w cc S2, all first derivatives of uIw
belong to LY,"(w) with I Vu IQ,",,, < Cx"(F; u). Thus, if w1 cc S2 with awl
of class C', Theorem 1.40 yields ul,, e L1 u S Cx"(F; u).
This shows that all the above considerations can be repeated with µ
replaced by any u' < K + 2, µ' < µ°, and so on with a bootstrap argument.
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Moreover, U E C°'(e-H+!)IZ(D) if µ > N - 2.
Summing up, Lemma 2.15 leads to the following theorem.

THEOREM 2.16. Let u solve (2.43) with f° E L2.(1-2)+(d1) and fr ,

fN E L'-P(-Q). 0 <p < u,, µ° being defined as in Lemma 2.15. Whenever
w cc Q, all first derivatives of ul. belong to L2 ,(O)) with norm estimate

I Vu I2 y;m < Ct IJ ° I+ Z I f' I2.a;O + I U IHn(a)).
,-1

the constant C (independent of u, F) depending on the coefficients of a(u, v)
only through the bound imposed on their L°°(.4) norms, as well as through a.
In particular, if p > N - 2 then u e C°'d(Q) with 6 = (u - N + 2)/2.

In its turn the proof of Lemma 2.15 will rely on the decomposition
of u into a sum w + z, where w satisfies the homogeneous equation. We
have the following lemma.

LEMMA 2.17. There exists a constant C such that for any p e ]0, r]

whenever w satisfies (2.36) with S2 = B,, g° being defined as in Lemma 2.15.
C is independent of r; it depends on the a't's only through the bound imposed
on their L' (B,) norms as well as through a.

PROOF. Since w - fB w dx solves the same equation as w, we may
suppose f B w dx = 0. Then Lemma 1.35 yields

IwIc;,SCr'IVwI;,,
hence

I w(x) - w(0) I2 < Cr'-'-'- I x I"° I Vw IP.,

for x c B,,,, by Theorem 2.14. Let 0 < p:5 r14 and set v = g'[w - w(0)]
with g e C'(B,), supp g c B4, 0 < g < 1, g = 1 on .°, I Vg(x) I < 2e-1.
Then the equation yields

0 = f a'1 wu{g$w: + 2gg:1[w - w(0)]} dx > ° f g' I Vw I' dx
JB, 2 JB,°

- C max I w - w(0) I' 1 Vg I' dx
6,e fBee
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by standard arguments. Therefore,

I Vw 1' dx < CpN-' max 1 w - w(0)1°.
B, av

The conclusion follows easily: notice that whenever r/4 < p < r,

N-f+2d9

I

E N-2+Zdo pVW Iy., < 4- rN-a+%eu I Vw e:r

At this point we can proceed to the proof of Lemma 2.15.

PROOF OF LEMMA 2.15. Solve

z e H0'(B,),

f
atjz2 5 dx = f

B,
+ dx for v e H°'(B,)

B, B,

with the help of Theorem 2.1 and of the corollary of Theorem 1.43. Then

I Vz lea < a-2 IF %-'(B,)
N

<C(r2lf°Ie;,+E If, 1.2;,),
-1

since Poincar6's inequality in H°'(B,) yields

<CIf°19;lrIVvlf;,

when v e H0'(B,). The function w = u - z satisfies (2.36) with S2 = B, so
that

I Vu le;, < 2(1 Vw le:e + I Vz Iz;e)

<C I Vwle:, + 21 Vz 12rao

+ (1 + r.) I Vz 12< c
o

I Vu I2

N

I Vu le;, + r' I f° le;, + E I f' I.

for 0 < p < r by Lemma 2.17. a
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REMARK. Theorem 2.16 can be compared with the following impor-
tant theorem by N. G. Meyers [109]:

There exists p > 2 such that, if u satisfies (2.42) with fQ c LQ(Q), q
= pNI (N + p) and f', ... , f" E L"(Q), then u,. I...... uzNIC E L°(w).
with the corresponding norm estimate, whenever w cc Q.

Notice that, when N = 2, Meyers' theorem implies the Holder con-
tinuity of u in Q thanks to Sobolev's inequalities (Theorem 1.41). In the
bidimensional case Holder continuity can, however, also be proven by
techniques analogous to those of the present section: see J. Kadlec and
J. Nedas [84]. (The one-dimensional case is obvious: see the preliminary
considerations of Section 2.3).

Until now the results of this section have concerned only interior
regularity of solutions (and of their derivatives). Holder continuity up to
80 of solutions of (2.6) for V = HQ'(.Q u I') can be proven under rather
mild regularity assumptions about 8.Q\I' and I' (as well as F): see G.
Stampacchia [143]. We prefer instead to show that, if the assumptions
about 8d?\I' and I' are strong enough, global regularity can easily be
deduced from previous interior results through an extension technique.

Beginning with the case 1? = B+, we investigate solutions of either
equation

u e HQ'(B+ U S+),
(2.45)

a(u, v) = <F, v> - J (f°v +f'v ) dx
B+

for v E HQ'(B+)

or

u c- H'(B+),
(2.46)

a(u, v) = (F, v> __ J (f°v + f'v ) dx for v E HQ'(B+ U SO).,,
B+

LEMMA 2.18. Let u solve either (2.45) or (2.46) with fo c- V. )-')+(B+)
and f', ... , fN E L2,0(B+), where u is defined as in Theorem 2.16. When-
ever 0 < R < 1, all first derivatives of uIBB+ belong to with norm
estimate

/ q
N

1Vu a.v:BR+G CIiJ It,(,-t);B++ I fi I2js;B+ + I U IHI(B+)1

where C has the same dependence on the coefficients as in Theorem 2.16.
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PR.ooF. For functions w = w(x), x E B, we define

w(x', XN) = w(x', -xs),

and denote by D;w the derivative w2; notice that

D;w = D;w for i = 1, ... , N - 1, DNw = -DNw.

We can suppose that the coefficients of a(u, v) are bounded functions
defined throughout B according to the rules

a'"=-a and a":=-a`'1 fori=l,.. ,N-1,
d" = -d", b" = -bN,

a'J = a'J, dJ = d', b' = b' for all remaining values of i, j,

c=c.

Notice that for any E E RN,

a'JE;EJ = a'irligi ? a I E 1°

a.e. in B+, with??;=-E; fori=i....,N-1 and rly=EN.
Passing to the free term F, we consider fa, fl, ... , jN as functions of

the corresponding Morrey spaces over B, defined by the rules

fJ= -f' forj=O,1,..., N-1, fN=fN

in the case (2.45), and

fJ=fJ forj=0,1,...,N-1, fN=-jN

in the case (2.46) (see Lemma 1.16 and the remark after Theorem 1.17).
Finally, we consider u as a function of HI(B) defined by the rule

u= -u

in the case (2.45) (see Lemma 1.44), and

u=u

in the case (2.46) (see Lemma 1.29).
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Now let v e CC'(B). We have

r [(aiJD;u + ddu)D v + (b'Diu + cu)v] dx
n+ r rx-1 __ -

J (
a'ND;U + Tva)DNV dx

n+ `;-1
r N-1 _

- J avjDvuDjv +
b_vDNUV)

dx
a+ -1

123

f r N-1 - \ /N-1
+ I I (Y-' a')D;U + JUID;V + ( b'D;U + cUX dx,

where E' denotes summation over all remaining indices i, j. But then the
quantity

1[(a'jD;u + dju)Djv + (b'D;u + cu)v] dx
n

[(ai1D;u + dju)Djv + (b'D;u + cu)v] dx
n+

equals

+ fB+ + dju)Djv + (b'D;u + cu)v] dx
n+

[(a'jD;u + dju)Dj(v - V) + (b'D;u + cu)(v - V)] dx
n+

= Jn+ [f°(v - V) + f'Di(v - V)] dx

in the case (2.45) [notice that (v - V)1n+E H°1(B+)] and

J[(a41D;u + d'u)Dj(v + V) + (b'Diu + cu)(v + V)] dx
n+

= J 9+
U°(v + V) + f'D;(v + 0)] dx

in the case (2.46) [notice that (v + v)I2+ a Ho1(B+ u S°)].
At this point we need only utilize the identities

f [f°(v -V) + f'D;(v - is)] dx = f
B

+ f'D;v) dx
n+ n

[in the case (2.45)] and

1
U°(v + v) +f'D1(v + V)] dx =1 (f°v + f1D;v) dx

B+ e
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[in the case (2.46)] to verify that u satisfies (2.42) with 12 replaced by B.
The conclusion is now an immediate consequence of Theorem 2.16. 0

At this point the following global regularity result can be proven.

THEOREM 2.19. Let 8(2 be of class C1, the open portion r c 812 being
also closed. Let u solve (2.6) with V = H,'(Q U F) and <F, v> = fa (f°v
+ Pv,,) d x f o r v e V, where f°, fl, ... , f" satisfy the same assumptions as
in Theorem 2.16. Then all first derivatives of u belong to L2.e(12) with the
corresponding norm estimate; in particular, u e with 6 = (p - N
+2)/2ifp>N-2.

PROOF. Let x° a 812 and let U be a bounded domain of Re', U a x°,
such that U n 812 is a portion of either 812\r or r which is straightened
by a C' diffeomorphism A: C -. 6, A(x°) = 0. Then u' _ (u ° A-')IB+
belongs to H1(B+), with I U' IH'(B+ 5 C I U IH' Uno) (see Lemma 1.28).
As a matter of fact, u' a H°t(B+ u S+) if U n 812 c 812\r, since u' is
the limit in H'(B+) of a sequence c C,'(B+ u S+), u _ (u, o A-')IF,
with {u,} c Q(12 U r), u, -. u in Hl (12). Moreover, the function v'
(v ° A-')IF+ belongs to C,'(B+ U S°) if v e C'(.D) with supp v c U n .),
and even to C1'(B+) if supp v c U n Q. Vice versa, any function v' e
CC'(B+ u S°), or even v' a C°'(B+), can be obtained by inverting the above
procedure. Thus a density argument and a change of variables in the
equation yield

a(u,v)= fB, +d"v)vie+ (b'"uti"+c'u)v]dy
B+

<F', v'> =
J

(l'0v' +f'"vr") dy (2.47)
B+

for v' e H°'(B+) (if U n 812 c 812\r) or v' e H°t(B+ u S°) (if U n 812
c r). In (2.47),

a U(y) = a4j[x(y)]yu,[x(y)]yk:1[x(y)]J(y),

d'k(y) = d'[x(y)]yjjx(y)]J(y),
b'"(y) = b'[x(y)]y"r,[x(y)]J(y),

(Y) = c[x(y)]J(y),
f'°(Y) = f [x(y)]J(Y),

f'"(Y) = >"[x(y)]Yh,[x(y)]J(y),

where y = y(x) = A(x), x = x(y) = A-'(y), and J(y) denotes the absolute
value of the Jacobian determinant of A-' at Y.
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The coefficients of a'(u', v') belong to L°°(B+) with norms bounded
by some constant times the sum of the L -(D) norms of the coefficients of
a(u, v). Moreover,

dkkEAEk = Ja''Ykz,Ykz,EAEk ? (min J)a E \S. Y.'EA)r > a' I E I',gr .-1 i

a' > 0. As for f'0 f" f1 we can bound their respective Morrey
norms with some constant times the sum of the norms of f°, fl, fN
(see Lemma 1.15).

To (2.47) we apply Lemma 2.18. We thus arrive at the membership
of u.,IBR+, , u4NIB"+ in 0 < R < 1, with norm estimate. For
s= 1, ...,Nwe set

Juy.(Y , Yv) if
(Y YN)

l
u' (/y,'ay,V , -YN) if (y', -YN) a BR+

Each function z,' is in L'.a(BR) (see Lemma 1.16). Therefore, each
function z,(x) _ (z, 'o A)(x), x e B,(x°) c A-'(BR), belongs to
by Lemma 1.15, and the restrictions to d2 n B,(x°) of uu., ... , use, belong
to L'-M(t2 n B,(x°)) by the chain rule.

We now cover 80 with open spheres B', ... , B"' such as B,(x°) in
the preceding. Let be a partition of unity relative to the open
covering {w5} -0, ,.. m of .12, where to, = B' for i = 1, ... , in, fd D

S2\U" 1 B' (see the corollary of Lemma 1.4). Thus,

u = E giu,

and all first derivatives of g;u belong to by the above considerations
forj=1,..., in, by Theorem 2.16forj=0. 0

2.5. Hk Regularity by the Method of Difference Quotients

2.5.1. Regularity in the Interior

The following lemma throws light on the results of the present section.

LEMMA 2.20. Assume a'f E CO-'(D) and let u satisfy

u e H'(SQ), supp u c Q,
(2.48)

Ja a'jujv., dx = <F, v) -- Ja (f°v + f'v.,) dx for v e H°'(D)
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with f° E La(12), f1, ... , fN E HI(D). Then u belongs to H2(.Q) with norm
estimate

N

Iulrnim <C(IJ°I2;a+: IJ'In-IQ) +1U1H,m),
i-1

where the constant C (independent of u, F) depends on the a'i's through the
bound imposed on their norms, as well as through a.

PROOF. As in Section 1.5.2 we utilize the notations

rnw(x) - rA w(x) - w(x + he'), 6AW - 6h'w - (rhw - w)/h

for h e .R\{O}, e' being the sth unit coordinate vector for an arbitrarily
fixed value of s.

Let supp u c w cc Q and set

d - dist(w, 812), w^ - {x e 12 I dist(x, w) < I h I},

w' - wets. For 0 < I h I < d/4 we insert the admissible function v =
-6_h6hu in (2.48) and obtain

f.A
6h(aiiu,)6AU.t dx = - Ju.A [J°6_A6hu - (6AJ')SAu.1] dx.

From the bounds

16_A6An 1,;wM < I V6Au I2;w'.

16hf' I,;w. <- I Vf1 I2;w'

(see Lemma 1.21) and from the identity

g4(aiiux) = (rha")6hu., + (6Aa'i)u.,

we deduce

a f,' VdAU 12 dx < Jwh (rha'l)(6AUy )6huZ, dx

- JwA {f°6_h6hu + ((6Aa")u1, - 6hJ']6hu21} dx

< C(IJ° lava + I aii Ic4.1ini I Vu Ia;a
+.1-1

N

+ J' Iniiai) I Vbhu I2;,,'
_1
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since

LIV6ku11dx=J IVbkuladx,

we have bounded I Vbku lr,w' uniformly with respect to h for 0 < I h I <
d/4. By Lemma 1.21 us, belongs to H'(w') with norm estimate, so that the
conclusion follows immediately. 0

Lemma 2.20 is utilized to prove the following more general result.

LEMMA 2.21. Let k be a nonnegative integer. Suppose that the coef-

ficients of the bilinear form (2.11) satisfy

a", d' E (.(5), b', c E Hk-°°(Q),

and let u solve (2.43) with f° E Hk(Q), fl, ... , fN E Hk+'(S1). Whenever
w cc S2, uIw belongs to H"+2(w) with norm estimate

N

I U Irrk+k(w( 5 C( If* I Hk(a) + I f' lfk+4a( + I u IHv(a()

The constant C (independent of u, F) depends on the coefficients of the bi-
linear form only through the bound imposed on their respective norms, as
well as through a.

PROOF. For h = 0, 1, ... we set dk = dist(w, 8f)/2h, wk - {x e RN l
dist(x, w) < dk}. We also set

N
2 '(a)kk(F; u) = I f° 1121k(a) + E I fi I3rk+'(a) + I U 1H

i=1

and proceed by induction.

Step 1: The case k = 0. To begin with, we get rid of lower order
coefficients by writing (2.43) as

f o
aiiur(v, dx =

J a
(f °v + fiver() dx

1 v° - b'us( - cu)v + (f - diu)vs4] dx; (2.49)

notice that
N

If°Is;a+ E it I3r'(a( <Cx°(F; u).
inr



128 Chapter 2

Next, we apply the cut-off technique. Let g c C,°°(D), g = I on Co. When-
ever V E H°'(S2), the function gu satisfies

Ja a'f(gu).,vs, dx = J [aiIu.,(gv)., - a'1u,,g.,v + a'1ugs,vs,] dx

= J U Ogv +f'(gv)s, -a

= J ](f°g - a:iu.,g., +f'gz,)v + (fig + at'ugs)vr,] dx.

Since supp(gu) c .f2 and
rN

I f°g - a'tu.,g,.+f'gu IY:a + Y
1 fig + af;ug., Ilt'cm < Cx°(F; u),

the conclusion for k = 0 follows from the previous lemma with u replaced
by gu.

Step 2: The case k E N. Suppose that the sought-for result holds with
k replaced by k - 1, k being some natural number. Then u c- Hk+'(w,)
and, when restricted to w,, the functions f°, f' . , fN from (2.49) satisfy

N

f° 13rkc, O + E I f' 13..,c.) <- Cxk(F; u).

Now let v E C,-(w,). From (2.49), written with v replaced by vim,, we
deduce

JW,
:t vr, dx = - J (a'1 uz,v , + a'u.,vs) dx

a,

_ - J (f °v:. + f'v. , + a' 'u.,v.,) dx

= J Lev + (f' -

for s = 1, ... , N. By density, the first and the last term above are equal
for any v c- H°'(a,,). The conclusion follows from the inductive assumption
concerning the value k - 1, with d2 replaced by v), and u by us;; notice
that

N

I Jr. il' awp + Ifs, l elkcm,, < Cxk(F; u). 0

Thanks to Theorem 1.41, Lemma 2.21 is immediately seen to admit
the following corollary.
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COROLLARY. Suppose that all coefficients of the bilinear form (2.11) be-
long to Cm(.)), and let u satisfy (2.43) with f°, f', ... , fN E C°°(.{2). Then
u E C°°(Q).

REMARK. Whatever the nonnegative integer k in the assumptions of
Lemma 2.21, any solution of (2.43) verifies the equation

Lu=f°-ft; in S2

almost everywhere.

2.5.2. Boundary and Global Regularity

We now want to extend the results of Section 2.5.1 up to the boundary
of D. We begin with the case Q = B+.

LEMMA 2.22. Assume a'5 E and let u satisfy either

u E H°'(B+), supp u c B+ U S°,
(2.50)

JB+
a"u.,vi, dx = <F, v> _

J B+
(f °v + f'vu) dx for v E Ho'(B+),

or

u E H'(B+), supp u c B+ U S°,
(2.51)

atiu.,v, dx = <F, v> = f (f°v +f'v.) dx for v e H°'(B+ U S°)
B+ ' D+

with f° E L°(B+), f', ... , fv E H'(B+). Then u E H°(B+) with norm estimate

N

I U 1111(B+1 5 C(If ° I2;+ + E If %H'(B+ +I u 111(8+)
t-1

the constant C (independent of u, F) depends on the a't's through the bound

imposed on their norms, as well as through a.

PROOF. Let h c- R\(O) with I h I < dist(supp u, Si). For s = 1, ... ,
N - 1, bs = 6h', the functions dh,u and 8_hOhu belong to H°'(B+) in the
case (2.49), to H'(B+ u S°) in the case (2.51). We can therefore proceed
as in the proof of Lemma 2.20 and demonstrate that u.,, ... , uu5_1 E
H'(B+) with norm estimates.
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We now write the distributional identity

- (a 1u:,)11= f° -Imo; in B+

as

(aNYUZN)zy = - E'(ai)uz)z1 - J + f.1, in B+,

where E' denotes summation from I to N over all pairs of indices (i, j)
: (N, N). By the preceding considerations,

(aNNuXN)ZN E L=(B+).

Since the Lipschitzian function aNN is > a > 0 on B+, we have

J
r

B+
uzNWZN dX = JB+ u2N1 a NY w

aNN zdx
\\ N

/- fN+ ;v NN + uZN,aNNI aNY )XNIa

('

dx

1 uzNazy (aNh )-1 - (aNNUZ`N)r,(aNh)_1)w dx
E+

for w C C0'(B+),

hence a=N=N a L2(B+) (with norm estimate). 0

REMARK 1. Inspection shows that the conclusion of the above lemma
remains valid if (2.51) is weakened into the requirement that

u C- H'(B+), supp u c B+ V S°,

a'1u:,(6_h6hu)r, dx > <F, 6-h6hu)
a+

for h e R\{0} with I h < dist(supp u, S+), 6N = 6A^ for s = 1, ... , N - 1,
and

J
dx = <F, v> for v e H°'(B+)

e+

This fact will be utilized later on (proof of Theorem 4.39).

REMARK 2. In the case (2.51) of Lemma 2.22 we can construct a
domain co e B+ in such a way that supp u n B+ c w, Co c B+ U S°, and
8a) is of class C1. By the divergence theorem (see Theorem 1.53) the func-
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tion uj
e

H'(w) satisfies

r r

f.
ai3uz,v,t dx =

JJJI .
fv dx +

J
Cvl r da for v E Hl(rll),

where f = U° -f=;)Iw e L2(w) and C =f'lawp' a H112(e3w), (p', ... , µ^')
denoting the outward unit normal to 8w. From Lemmas 2.5 and 2.6 we
can therefore deduce that

a'ju,,Ikt = f'u' on 8w,

hence that

a'NU.,=f° a.e. [N- 1] on S.

As a counterpart to Lemma 2.21 we have the following lemma.

LEMMA 2.23. Let k be a nonnegative integer. Suppose that the coef-
ficients of the bilinear form (2.11) (for .4 = B+) satisfy

a'f, df E bi, c c-

and let u satisfy either (2.45) or (2.46) with f° a Hk(B+) and f', ... , f` e
Hk+'(B+). Whenever 0 < R < 1, uI BB+ belongs to Hk+z(BH+) with norm
estimate

I

r i N
1U IHk+s(BB+) G C1 IJ IHk(B+) + Y- ifs iHk+I(B+) + I U

the constant C (independent of u, F) depends on the coefficients of a(u, v)
through the bound imposed on their respective norms, as well as through a.

PaooF. We proceed by induction on k.

Step 1: The case k = 0. The function u satisfies

f B+ a"us,vy dx = fB+ (f + l 'vi() dx

for v e H'(B+) in the case (2.45), for v e H°1(B+ v S°) in the case (2.46),
with

^

./ ° = f° - b'us, - cue LE(B+) and f' - f' - d'u e H'(B+) for i =
1, ... , N. Let g e C, (B), g = 1 on BB: Lemma 2.22 can be applied to
the function gu, with f° replaced by Jog - a'Ju.,g,t + fig.,, f by fig +
a3'ug2, for i = 1, ... , N (see Step 1 of the proof of Lemma 2.21). The
conclusion follows in the case at hand.
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Step 2: The case k c- N. Suppose that the lemma is valid with k re-
placed by k - 1. The functions '41IB....... u:NIB + then belong to Hk(B,+),
r = (R + 1)/2.

Let s = 1, ... , N - 1: then we also have U1 IB + E H°1(B,+ u S,+) if
u c- H°1(B+ u S+) [since (bA'U)IB,+E H°'(B,+ U S,+) for 0< I h I< (1 -
R)/2]. As in Step 2 of the proof of Lemma 2.21 it is clear that satisfies

r
J B,+

a'1 u,,`vz' dx
=

f,
e +

[f..v + (,L - a.'u ,)vim(] dx

for v c- H°1(B,+) in the case (2.45), for v E H°'(B,+ u S,°) in the case (2.46).
[Notice that JB,+ ws, dx = 0 if w e H'(B,+) with supp w c B,+ U S,°.] The
inductive assumption concerning the value k - 1, with B+ replaced by B,+
and u by u1,, yields E Hk}1(BR+) (with norm estimate). At this point
we need only utilize the distributional identity

(aNNU."), = - E'(a'iu:()2, - fl + 1:; in BR+

to arrive at UZNZNI BR+ E Hk(BR+) (with norm estimate). 0

COROLLARY. Take the coefficients of a(u, v) in C°°(B+) and let u sat-

isfy either (2.45) or (2.46) with f °, f', ... , fN E C°°(B+). Then u E C°°(BR+)
for any R E 10, 1[.

REMARK. In the case (2.46) of Lemma 2.23 it is easy to verify that
a'Nu11 + d'u a.e. [N - 1 ] on S° by using Remark 2 after Lem-
ma 2.22.

For what concerns global regularity we have the following theorem.

THEOREM 2.24. Let k be a nonnegative integer. Suppose that 8.2 is of
class Ck+1,1, that its open portion I' is also closed, and that the coefficients
of the bilinear form (2.11) satisfy

a'5, di e Ck.'(D), b', c E Hk.m(u2).

Then any solution u of (2.6) with V = H°'(S2 u I') and <F, v> = Ja (f°v
+f 'vu) dx for v c- V, where f ° E Hk(Q) and f 1, ... , fY E Hk}1(Q), belongs
to Hk+2(ul) with norm estimate

q N
1

I u IHk+'(o) : C( IJ IHk(a) +X.1 If'IHk+,(a) +I U IN1(0)1.
((
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The constant C is independent of u, F; it depends on the coefficients of a(u, v)
only through the bound imposed on their respective norms and through a.

This theorem can be proven by the same technique adopted in the
proof of Theorem 2.19, with some simplifications. Note that, if A: U - A
is a Ck+'.' diffeomorphism that straightens a portion U rl dQ of 011, the
data in equation (2.47) satisfy

Q kk, d'k e C E Hk.-(B+),

f'0 E Hk(B+), f 1, ... , f'N E Hk+'(B+),

and the membership in Hk+'(BB+) of ui,1Ba+, ... , uY,NIB,+ implies mem-
bership in Hk+'((v) of u.j,,, ... , u.,I. [with w = A-'(BR+), and u'
(u ° A-')IB+], by Lemma 1.28.

COROLLARY. Let the assumptions of Theorem 2.24 be satisfied for all
values of k. Then it e C0(a).

REMARK. By Lemmas 2.5 and 2.6, the function u from Theorem 2.24
satisfies

(a'Ju., + dJu)vJ = ftvt a.e. [N - 1] on F.

2.6. Interior Regularity for Nonlinear Equations

In the sequel we shall make use of the following terminology: g(x, C)
is a Carathiodory function of x e Q and C e RM (M being a natural num-
ber) if

g(., C): S2 R is measurable for any C E RM,
g(x, ): Am -. R is continuous for a.a. x e Q.

We now take f°, f' fN in L-(Q) and rewrite (2.43) as

u E H'(D), -
ax A'(u, Vu) + A°(u, Vu) = 0 in 0. (2.52)

Here, for j = 0, 1, ... , N, AJ(rl, l;) is the function x.-. a'(x,' (x), f(x))
if r, ... EN denote measurable functions on d2,
with

a'(x, 7, 5) = a1 (x)51 + d'(x)r] - fl(x) for i N,

a°(x, 7, 6) = b'(x)fi + c(x)p -f°(x). (2.53)
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The a''s are Carath6odory functions of x e d2 and (77, e) a Rl+", moreover,
there exist two constants C Ca such that

Ja'(x,7,C)15C,(Ir71+ICI +1), j=0,1,...,N, (2.54)

and

a'(x, t, S)Si (a/2) 1 S I' - C2(172 + 1)

for a.a. x e £ and any (7, C) e R'+N.
(2.55)

If the requirement that the a''s be defined by (2.53) is dropped, (2.52)
becomes a nonlinear equation; it still makes sense in H-'(d2) if the a''s
are Carath6odory functions of x e Q and (27, 6) a R1+N satisfying (2.54).
We shall investigate the solvability of (b.v.p.'s associated with) nonlinear
equations such as (2.52) in Sections 4.3 and 4.9. In the present section we
instead provide some interior regularity results for solutions u, assuming
their existence.

We take N> 3.

2.6.1. Local Boundedness

The next result can be viewed as a nonlinear counterpart to Lemma
2.12.

LEMMA 2.25. For j = 0, 1, ... , N let a'(x, 77, C) be a Carathiodory
function of x E dl and (7, C) a R'+" satisfying (2.54), (2.55). Let u satisfy
(2.52) and set

U(k) -(-k) V u A k for 0< k< oo.

Assume x° a S2, B2,(x°) c 12 (0 < r < 1). Then a bound

]vx
(1 + ua U(k) vx+au-n)

(I + ua I u(k) I') dx, (2.56)< C (1 +
P) J Bcam)(R a

n

where A = N/(N - 2), holds whenever 0 < p < co and 0 < p < R < 2r,
the constant C being independent of u, x°, r, and k.

PROOF. We take x° = 0 and fix g e C'(D) with supp g c BB, 0 < g
< 1, g = I on B°, 17g 1 < 2(R - p)-'. Then v - ga 1 u)k) Inu belongs to
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jjl(Q) with

v11 = ge I u(k) I P(Pui,' + u1) + 2gg1) I u(k) Vu,

and (2.52) yields

fig' I uck) u.) dx
n

=-2J A'gg1(Iu'k'IPudx+J Aog'Iu(k)IPudx,
o O

where we have written AJ for AJ(u, Vu), j = 0, 1, ... , N. Since A'(u, Vu)us,)
A'(u, VU'k')uzk) by Theorem 1.56, (2.54) and (2.55) yield

C' r gsIUM IP(pIVum,I2+IVu 12)dx
T n

<C'(I+P) J g'Iuck)IP(u'+1)dx
n

+2NC1 J (lul+IVul+l)glu(k)IPIuIIVgldx
n

+C1 J (IuI+IVuI+I)g'IuWIVIUIdx.
D

We majorize the quantities

2NC1 J IVulglu'k)IPIulIVgIdx
o

and

C1 J IVuIg'Iu(k)IPluIdx
n

with

IU(k)IPu'IVg11dx
YC'

JO g21Uk)IV IVu I'dx+CJ
D

and

g'Iu(k)IPu'dxf g2IUM VIVU 12dx+C
n fa

respectively. Set u = I u(k) IP12 I U I, so that

u(kl IV < I U (k) IP+' + I < u' + I

and

Iuck)I'lul <Iu'k)V(u°+ 1) <2u'+1:
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since

Cr(1 + P) f g2 I uM s(uz + 1) dx
n

+2NC1 f
D n

+Cl f (IuI+I)grluWkWIaluldx
a

C20 + P) f 92(20 + 1) A

g'(362 +1)dx,+NC,fn (g2 +IVgI2)(301 +1)dx+C1f
n

we arrive at the inequality

2 f g
b I ulkl '(P I Vu IS + ,z- I Vu I') dx

<C(1+P) f (g'+IVgI')(d'+1)dx.

But

so that

I Vu 12 <
\ 2 + 4) I uW I' (P I VuWkW IS + 2

I Vu I')

f IV(gd)I'dx<- C(1+P)'f (g2 +IVgI2)(ue+1)dx. (2.57)

From (2.57) we deduce that

I gu IPA;R 5 CO + P)' f (g' + I Vg 1')(u' + 1) dx
NR

(see Theorem 1.33 and the corollary of Theorem 1.43). But then

1f
02A

dx)vx C C (1 + P)' f (41 + 1) dx,
ne J (R --e) LA

and (2.56) (with x° = 0) follows from the inequality

u' I u(k) 1DA+2(1-1) < u2A

since pN < [RN/(R - 0)')A. 0
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We now insert R = r - r(1 + 1 /2"), P = r,.+r and
2(2'" - 1) in (2.56), thus obtaining

:5 A. C 2;L- -I

hence

where

P=PM=

T.T 2d - 1 vas
A,.+s `= AO (C r2 ' ' ) (2.58)

lJ
(l+uIIucUIa.)dxj

B,.IZ% 1

(m = 0, 1, 2, ... ). The logarithm of the right-hand side of (2.58) is
bounded by

In Ao + 2 A' I In [(C22 )'"''+')2) - 2 In r Is
2

=lnAv+C-Nlnr.

We thus arrive at

(J
I u(:)

lsam+, dx) < Am,

< cr N
J

(1 + ue) dx,
Be(a)

and finally at

esssupue<Cr N I (1+u')dx

after letting m -. c , k oo. (Compare with the proof of Lemma 2.11.)
By a straightforward compactness argument we can therefore conclude
with the following theorem.

THEOREM 2.26. Same assumptions about the functions at(x, rf, e;) as in
Lemma 2.25. Whenever w cc S2, the restriction to w of any function u
satisfying (2.52) belongs to L°°(w) with

ra in
u Iw:, < Cf

J
(1 + u=) dxj

Lt
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2.6.2. H2 Regularity

For what concerns interior differentiability of solutions to (2.52) we
have the following theorem.

THEOREM 2.27. For i = 1, ... , N let the functions a'(x, n, f) belong to
C'(D x R x RN) and satisfy

Ia'(x,n,F)1 <- C(In1+161+1),

I a:,(x, n, f)1, ... , l aN(X, n, f)1 < C1(I n 1)(I f I + 1), (2.59)

1)

for (x, n, f) E.DxRxRN
as well as

att(x, n, WJj > a I 12

for (x,n,f)E..QXRxRN, BERN (a>0),
(2.60)

and let a°(x, n, f) be a Caratheodory function of x e dl and (n, f) E R'+v
satisfying

Ia°(x,n,5)1 <C(Inl+151+1)
for a.a. X E .Q and any (n, f) E R'+N;

(2.61)

in (2.59) C1(s) is an increasing function of s E [0, oo[. Whenever /u cc 2,
the restriction to co of any solution u to (2.52) belongs to 9E(w) with

ra 1/2

C
J

(1 + I Vul8)dx1 (2.62)
11

PROOF. It is easy to see [by writing a'(x, n, f) as fo aj/(x, n, t5)fj dt
+ a'(x, n, 0)] that (2.60) implies (2.55). By Theorem 2.26, ula, belongs
to L-(Q') whenever S2' cc d2, so that we can without loss of generality
prove the present theorem under the additional assumption u E L°'(Q).

Nonlinearity forces us to introduce difference quotients at the same
time as multiplication by a cutoff function. (Compare with Lemmas 2.20
and 2.21.) We utilize the notations

rnw(x) - th w(x) = w(x + he), 6nw = 6e'w = (rhw - w)/h

for h e R\{0}, e denoting the sth coordinate vector (s = 1, ... , N). Let
gEC°(_A), suppgcS2'ccA 0<g<1,g=l onu,cIl'andtake v=
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-6_h(8'6hu) with 0 < I h I < } dist(Q', OD). We have

fQ

Vu)v,, dx = J 6hA'(u, Vu)(gidhu., + 2ggz,6hu) dx
n

and

6hA'(u, Vu)(x)

- J1
° da'(x }the, u(x) + th 6hv(x), Vu(x) th Vbhu(x)) dt

h

= J1 [a,', + a' 6hu(x)
+

a4'6hus'(x)] dt,
0

the argument of all partial derivatives of a' in the last integral being

(x + the, u(x) + th 6hu(x), Vu(x) + th V6hu(x)).

Therefore, by utilizing (2.59) [with C1(I 711) replaced by C1(I u I.;o)]
together with (2.60) and (2.61), we obtain

J A'(u, Vu)vs, dx > fDI
+ 16hu I + I Vu In

+IhIIV6hu1)IV6huI+ajV6huI']
-C(1+I6huI+IVu I+h11V6huI
+ I V6hu 1)2g I Vg 116hu 1} dx.

For I h I small enough the right-hand side of the above inequality is mi-
norized by a quantity

Z J 8'IV6huI2dx-CJ (1+IVu12)dx
n o

(see Theorem 1.21). On the other hand,

Jn A°(u, Vu)v dx I

< C J (I Vu I + 1)(I r-hg 116-h(gdhu) I + 16-h8 I I86hu I) dx

8
Ja,IV(g6hu)I'dx+C Jn (I VuI+1)2dx.
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From (2.52) we therefore deduce the estimate

4 V6AU13 dx<CJ (1+IVuI')dx,
O' a

which implies u1 E H'(w) together with (2.62).

2.6.3. and C" Regularity

0

LEMMA 2.28. Same assumptions as in Theorem 2.27. Whenever ro cc 0,
the restrictions to w of all first derivatives of any function u satisfying (2.52)
belong to L°°(w), with

Vu 1, S C1Jn(1 + I Vu1_)dxj

PROOF. Thanks to Theorems 2.26 and 2.27 we can, without loss of
generality, restrict ourselves to solutions of (2.52) which belong to Le(ft)
as well as to H'(Q).

For i, j = 1, ..., N we set

A't(x) - 6,(x, u(x), Vu(x)).

Next wefix s = 1, ... , N and put

Bf,A) - -ai,(x, u(x), Vu(x))
-a°'(x, u(x), Vu(x))u,,(x) + a°(x, u(x), Vu(x))b''

with 8" = 0 for i s, = 1 for i = s; note that I 1 < C(1 + I Vu 1).
If v e C,°°(.4), (2.52) yields

0 = f [A'(u, Vu)v,,,, + A°(u, Vu)v,,] dx

= J (-A"a,,,,v,, + B(,)v,,) ds.
0

so that w = u,, satisfies the equation

w e H'(,4), B(.),, in 11 (2.63)

as an identity in H-'(S1).
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The function I Vu I' belongs to by Theorem 1.56, the same
is true of zk,=e V I Vu12Ak, 0<e<k<oo, with

f0 for IVuI2<s or IVuI'>k, (2.64)zk
l 2u= u1 , for e< I Vu I' < k,

so that zk, e H'(D) n Lm(d2). Take e > 0 and let p > 0. Assuming, with-
out loss of generality, that d2 2 B. for some r e ]O, 1], we denote by g
the same cutoff function as in the proof of Lemma 2.25, and set

V = v, = g'zfw.

Thus, v e Ha.'(Q) with

vr, = g°(4.ws, + Pzk.'zk.:,w) + 2gg:.w,

and finally v e Ho'(0) because of (2.64).
Because of assumptions (2.59)-(2.61), the equation yields

fo
g=(azk. I Vw I' + Pzk°'A`Jw.1wzk,.,) dx - C f

o
g I Vg I z% I W I I Vw I dr

< f A"w1,v1dx= f B(')v,,dx
O O

<Cf (I VuI+1)[ga(zk.IVwI+Pzr'IVZk.11wI)
O

+2gIVg Izk.Iw11dx

by the previous definitions of A`' and
We now write u., instead of w and sum over s from I to N. Since

ur 4zk.r zk.., [see (2.64)] and I Vzk, I I Vu I = I Vzk. I zk", we obtain

a f ng'(zk.
Lx

I Vu:, I' + Z zk.' I Vzk. I') dx

N

< 4 f g°zkk. E I VU" P dx + C f
a

Vg I'zk. I Vu I' dx
D ,-i n

N

+ a f g'Zks I Vu:, I' dx + C f (I VuI + I)'g'zk, dx

+ T P f g'zk.' I Vzk. I' dx + Cp f (I VuI + l)8fzA dx
0 0

+ C f (g2 + I Vg 12)Z4.(I Vu I + 1)2 dx,
0
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hence

n
J 8'(zte Vu:, I' + 2 4`1 Pzt., r) dx

Q .-a

< CO + P) J (g' + I Vg 11)(I + I Vu I2)zk, dx. (2.65)
Q

The function P, - zk,' I Vu I satisfies

fez, = 2 Zka -'Zkez, I vu I + Zte2az uz)z,/l Vu I

(see Problem 1.24), hence

1171, 12 < 2( 4 Zke' I vzke Is + Czt I Vuz I')
a

C (p + C ) Z h ' 1 Vzke 12 + Zke L I vuz,I'(Z) .
a-i

From (2.65) we therefore deduce the inequality

J I V(gfe) 1' dx < C(I + p)' f
o

+ I Vg I')(Zt, + f,') dx.
Q Q

Passing to a suitable subsequence of indices e we utilize a weak convergence
argument and ascertain that the above remains valid with e = 0, fo being
of course zg' I Vu 1. But since

zko < zX' + 1 < ia' + 1,

we have obtained (2.57) with a replaced by 4. The conclusion of the

lemma can now be reached by proceeding as in Section 2.6.1. 0

At this point we can easily show how the Holder continuity results
for linear equations play a pivotal role in the nonlinear theory. Indeed,
consider a solution u E H'(0) rl H',`°(Q) of (2.52). The functions A'' and

appearing in (2.63) are in L°°(D), and the restrictions to any w cc S2
of the function w - u.s belongs to Co.o(co), for some 6 E ]0, 1[, by Theorem
2.16. In the general case u e H'(d2) we need only apply Theorems 2.26
and 2.27 as well as Lemma 2.28, then replace S2 by any 0' with w cc
S2' cc D. This demonstrates the following theorem.

THEOREM 2.29. Under the same assumptions as in Theorem 2.27, every
solution of (2.52) belongs to C'-'(.Q) for some 6 E 10, 1[.
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Thanks to the above result, regularity of derivatives of order > 1
can be deduced from the linear theory of the next chapter: if, for instance,
the functions aJ(x, Y), 0) are in CI Y(S X R x RN) for j = 1, ... , N and in
L'U,Y(SC X R X Rx) for j = 0, y being any given number in 10, 1 [, then any
solution of (2.52) belongs to [See Theorem 3.4(iii).]

Problems

2.1. The Lax-Milgram theorem can be generalized as follows. Let U, V be
Hilbert spaces and let u, v a(u, v) be a functional on Ux V, linear in
each variable, with I a(u, v) I M I u I u I v I v for U E U, V E V (M > 0),
sup,Ev,ivivc, I a(u, v) I > a, I u I v for u E U (a, >0), sup,EU a(u, v) > 0 for
v e V, v # 0. Then for any choice of F E V' there exists a unique solution
of a E U, a(u, v) _ <F, v> for v E V, and I u I u g a,-' I F In,. See L Ba-
bu3ka [7].

2.2. Let N = I, Q = ]0, 1 [. Functions U E H'(Q) satisfying u'(0) = 0, u(1) = 0,
-u" = f' with fE H'(Q), If In;a < 1 for a given p (finite) do not admit
a common bound I u I°,;o <_ C. [Note that, for any choice of k E R and
e > 0, we can find f with f(0) = k and I f In;a < r.] Compare with Theo-
rem 2.7.

2.3. A bounded bilinear form a(u, v) on H,'(Q) is defined by (2.11) under the
following assumptions:

the dl's and the b"s belong to LN(.Q) if N> 2, to L'i'(Q) for
some e > 0 if N = 2, to L'(Q) if N = 1;
c belongs to LY°(Q) if N > 2, to L"'(Q) for some r > 0 if N = 2,
to L'(Q) if N = 1,

in addition to all a L°°(12). If, moreover, the uniform ellipticity condition
is supposed to hold, then a(u, v) as above is coercive on H0'(.Q) relative
to L'(Q). [Note that given r > 0, any function h e Ln(Q), I < p < co. in
particular any lower-order coefficient of a(u, v), can be written as h, + h,
with I h, I,;o < e and I h, IW;a 5 k provided the positive real number k
= k(r) is large enough.]

2.4. Throughout this and the next five problems a(u, v) denotes the bilinear form
(2.11) with coefficients in L°°(Q).
The requirement that Q be connected plays no role in the proof of The-
orem 2.4 if T = 0. Why?

23. If the injection V c L'(Q) is compact and the weak maximum principle
holds for A, Theorem 2.10 remains valid for nonnegative functions satisfying
(2.23) instead of (2.6).
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2.6. Let u e H'(O) satisfy a(u, v) _ (F, v> for v e H°'(O), with F e H-'(O).
Whenever w cc O, there exists a constant C independent of u and F such
that

I u IN11W1 5 C(I FIN-',r + I u n)

The same estimate, except for I u lw;o instead of I u I,;o on the right-hand
side, remains valid if u e H'(.0) n L°°(O) satisfies a(u, v) <_ <F, v> for v e

v > 0. (Utilize the inequality u + I u I,,;o > 0.)

2.7. Let 8O be of class C', and let the assumptions of Theorem 2.16, It > N - 2,
be satisfied together with Ll > 0, ulau =') c C°"'(8O). Then u e C°-a(?))
with

N
I M c°-awl s C If' + I P It.;;D + I' IC°.11d01

C being independent of u, f°, f', ... , fN; moreover,

IUIo;QSlolm;an

if in addition f° = f' _ . . . = fN = 0.
2.8. Let 80 be of class C' and Ll > 0. Whenever q e C°(8O) there exists u

e H,',(0) n C°(O) satisfying Lu = 0 in O, ulao = 7; such a function u is
unique, since, whenever c > 0, any element of C°(D) vanishing on 80 is
< e on 8w, w cc O, provided dist(w, 8O) is small enough.

2.9. The solution of the b.v.p. considered in the preceding problem belongs
to for some y c ]0, 1[ provided '! E C°w,(8O) for some y, a ]0, 1[.
To see this, consider a controlled C°,y' extension w of n to RN and intro-
duce regularizations w, p.. w. Letting U. a H'(1) denote the solution
of the b.v.p.

Lu, = 0 in O, M. Ian =n.=w.Ian

utilize the bound I u, I I

I
I

I w. - w Im,n to
arrive at I u, - a I,,;a <Cn-y' xI'1 I(see Problem 2.7). The con-
clusion follows from the inequality

I u(x) - u(y) 15 C I n lc..vuaa,(R Yl + n'-y, I x - Y la)

for x, y e 7), 0 < I x - y 15 1, after choosing n between Ix - y I-a and
I x-YI-a+1.



3

H-',° and C`,' Theory

The contents of the present chapter can be tersely illustrated by considering
the mixed elliptic b.v.p.

-(a1iu., + dJu)z, + b;us, + cu = f in J2,

u = 0 on LQ\P, (a'"u., + d'u)If.vj = 0 on r.

By Theorem 2.24 the membership off in Lt(Q) guarantees that a
variational solution u to such a problem belongs to Hz(d2) provided 8J2\P,
r and the coefficients of the operator satisfy some suitable regularity as-
sumptions. In this chapter we extend this result in the following directions:
if fc Ln(S2) with 2 <p < oo then u belongs to if je CO.e(D)
with 0 < 6 < I then it belongs to In the same vein as in Section
2.4.3 we follow the approach of S. Campanato. Here the three main stages
of this approach are as follows:

Estimates on spheres (Section 3.1) and on hemispheres (Section
3.4); the latter estimates are considerably more difficult than the
former ones.
Application of Lemma 1.18 to the preceding estimates. This leads
to regularity of derivatives in the interior (Section 3.2) and by
using essentially the same technique, near the boundary (Section 3.5).
Utilization of an interpolation theorem by J. Marcinkicwicz (proven
in the appendix to this chapter, Section 3.8) which leads to LP
regularity in the interior (Section 3.3) as well as, by the same method,
near the boundary (Section 3.5).

Global regularity is at this point easily obtained (Section 3.5).
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When the previous b.v.p. is replaced by

-a'jur'st + a'u., + au = f in S2,

u = 0 on an-\r, f'ul r + dull = 0 on r,

where the aij's are less than Lipschitzian, although at least continuous on
., and the vector field ( 8 ' ,..., #^-') is never tangent to r, the variational
results developed until now cannot be directly applied. If, however, the
a'i's are "frozen" at a point x° a D, the new problem can be transformed
into a variational one near x°. The estimates of the preceding sections
provide local bounds on existing solutions u, from which global bounds
can be deduced (Section 3.6). Then uniqueness can be derived from maxi-
mum principles, and existence in H'"D(Q) or obtained by an ap-
proximation procedure (Section 3.7).

3.1. Estimates on Spheres

Throughout this chapter we shall assume the N' functions aij at least
continuous on the closure .t} of the bounded domain Sl c R°', with

ai'EcEj I 2 on .) for e e R- (a > 0).

By the Tietze extension theorem we can view the aii's as the restrictions
to .d of functions d`i a C°(.o'), where S2' » 9 is another bounded do-
main: we denote by r a common modulus of uniform continuity of the
a'j's on .0', hence of the a's's on d3. Note that r is also a modulus of uni-
form continuity for restrictions to .0 of regularizations e° * a'i.

As in Chapter 1, we shall denote by (h)w the average (I /I w 1) f,, h(x) dx
over a nonvoid bounded domain w c RN of a function h e LD(ra) (or
h e [L'(w)]`'), so that (h)d minimizes the real function f a 1 h(x) - A 12 dx
of d e R (or A e R -v), and set (h).o,e -_ (h)atr.,oj, (h)e = (h)o.e.

The estimates of the present section concern the case when S2 = B,.

3.1.1. Homogeneous Equations with Constant Coefficients

Beginning with homogeneous equations with constant coefficients

a'1(x) - aoi1, we have the following lemma.

LEMMA 3.1. There exists a constant C, depending on the aoi3's through
the bound imposed on their absolute values as well as through a, such that
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for any r and any e e ]O, r]

IVW12;QC I17w1:. (3.1)

and
+Y

VW - (VW)Q IQ:Q < C
eN+Y I VW - (Vw), ;r (3.2)

whenever w satisfies

w e H' (B,), 3

ao'hvrw., dx = 0 for v e HQI(B,).
R,

(Compare with Lemma 2.17.)

PROOF. We proceed in three steps.

Step 1: Preliminary reductions. It suffices to prove (3.1) and (3.2) for
functions w satisfying

w e CCO(Br),

aQ'jw,,.,(x) = 0 for x e B,.
(3.4)

Indeed, by the corollary of Lemma 2.21 any solution of (3.3) satisfies
also (3.4) provided r is replaced by er, 0 < e < 1. On the other hand,
once the inequalities

and

I Vw I2:.Q < C (Er)N I Vw Iex,

1 VW - (Pw).e I2;.Q C
(Ee)N+a

I VW - (Vw).r IQ:.r

have been ascertained, (3.1) and (3.2) follow from a passage to the limit
as a 1-.

Next, let r/2 < e < r: then,
V

I Vw II;Q < 21 eN I Vw 122;,

and
+Y

I Vw - (17w)Q 12';, < 2.v+a
eN+N

z I VW - (VW), 12;.,

so that we can restrict our considerations to the range 0 < e < r/2.
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Step 2: Proof of (3.1). For k = 2, 3, ... Lemma 2.21 provides Hk
bounds on solutions to (3.3) [in particular on solutions to (3.4)], which
for our present purposes it is convenient to write as follows:

I W IHR(B,,,) <C(k, r) I W IBt(B.,,.). (3.5)

If we fix a value of k sufficiently large with respect to N, Hh(B,/3) is con-
tinuously imbedded into C°(B,/a) (Theorem 1.41) and therefore

I W I-;,,, <C(r) I W Irn a.,,3i.

The right-hand side of the latter inequality can in turn be bounded by a
quantity C(r) I w I3;,. We can rapidly see this as follows: Fix a cutoff
function g e C$'(B,) with 0 < g < 1 in B g = 1 on then

0 = J dx = f g'aa`5w,,w., dx + 2
J

r
a.iiw,,wg& dx

B, J B, B,

>a JB g3IVwIadx-C(r) J g1VwIIwIdx
, B,

2 J eIVWPdX -C(r)Iwl:,

by standard arguments, hence the claimed bound. (See also Lemma 2.11.)
Summing up, w satisfies

IwlwrnCC(r)Iw

But then w satisfies also

2
;e < Ce" I W 11 ;e < C(r)eN I w lsI W lz

whenever 0 < p < r/2. In order to evaluate the dependence on r of the
last constant above, we pass to new variables y = x/r and define w'(),)
= w(ry) for y e B. Thus (3.4) is equivalent to

W, C- C-0),

aa'jw,y/(y) = 0 for y e B.

From the previous considerations it follows that, whenever 0 < e/r < 1/2,

N

I w' 122;'/' < C(l) eN I w' 1'2;11
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and also
v

IwI¢:e - C(l) rN Iwlz:,

after the inverse change of variables y r-, x - ry.
If w satisfies (3.4), so does any of its derivatives. In particular, the

estimate just obtained becomes

n
I W., IQ;e < CO) e.v I w=, IQ:r for i=l,...,N

(0 < Q < r/2), so that (3.1) holds.

Step 3: Proof of (3.2). This time we utilize (3.5) to obtain a bound

I Vw Im:rle f-- C(r) I w IHNDW.)

via the continuous imbedding Hk(B,,,) c C'(B,,2) for a sufficiently large
fixed value of k. Thus we also have

I Vw I-,,,2 < C(r) I w IE;,

Let 0 < e < r/2: from the Lipschitz inequality

I w(x) - w(0) IE < CQ2 I Vw 12 ;rIE,

valid for x E B , we deduce

I w - (w), 1e;o < 1 w - w(0) Is:u S CeN+Y I Vw Im;r/Y C(r)Q"+E I w Is;r

A passage to new variables y = x/r shows C(r) = C(l)/r5+2, so that

v+E

Iw-(w)k1E:Y<C(l) 1w1E:r

Any function wz, - (wzt),, i = 1, ... , N, satisfies (3.4) whenever w does,
and therefore

1 wz, 13{Y = 1 w:, - (wz,)r - (Wrt - 12 2;0

Cl)) rN+e 1 wz, - (wz,)r 1Y;r fori=1,...,N

(0 < e < r/2), so that (3.2) holds. 0
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3.1.2. Nonhomogeneous Equations with Variable Coefficients

LEMMA 3.2. There exists a constant C independent of r, which depends
on the aii's through the bound imposed on Iaii(0)1 as well as through a,

such that for any p e ]0, r]

and

1 Vu 12;0 < Ci f eB + T2(r)] I VU 12;1 + r' If' 12;1 + Y_ If ' 12r} (3.6)
LL ;v

V+2

I Vu - (Vu)e 1'2;e < C[ er++2 I Vu - (Vu), I2;, + z2(r) I Vu I2;,
N

+ r2 If° I2;, + If' - (fi), I2;,] (3.7)

whenever u satisfies

f

uE H'(B,),

L l
aiiu vim, dx = <F, v> = JB, (f°v +fivs) dx for v E H°'(B7)

with f°, ... , fN E L2(B,).

PROOF. As in the proof of Lemma 2.15 we shall decompose u into a
sum w + z, where w satisfies a homogeneous equation. In order to apply
Theorem 3.1 to w, however, we need a preliminary passage from variable
coefficients to constant ones.

We shall proceed in three steps.

Step 1: A preliminary reduction. We shall prove (3.6) and (3.7) in the
special case when the au's are constant on B,: ati(x) = a00. In the general
case of variable coefficients we need only take into account that u can be
viewed as a solution to the variational equation

L,
i ,vz, dx =

J
(f°v + f'vu) dx

e,

JB (f°v + (f' + (a0ii - ati)u.t]v.,) dx

for v E H°'(B,),
a°'1 = aii(0), and that

p II

! t 1 2 ; , < I f i I2:, + Cr(r) I Vu 12;, ,

If i-('),12;,<_Ifi-U'),12;,+Cr(r)I VuI2;,.
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Step 2: Proof of (3.6). By Theorem 2.1 and the corollary of Theorem
1.43 the Dirichiet problem

TB,

z E Ho'(B,),

,V., dx = f (°v + f'vl,) dx for v c- H0'(B7)
a,

is uniquely solvable, and the solution z satisfies

N

I < C r° I f° la;, + : I f' If;,)

the above bound follows from the Poincard inequality in Ho'(B,), which
yields

If°v1,;,<If°I.;,IvI:;,<_CIf I:;,rI Iv1 .,

when v e H°'(B,), so that
N

I P Ih-,(B,, <_ C(r2 1 f ° IQ;, + I f' 1E;r) .,-,

The function w = u - z satisfies (3.3), so that (3.1) leads to

v
I Vu li;e < 2(1 Pw I',;, + I Vz 13;e) <- C

eA
I Pw II ;, + 21 Vz 1.2;,

<C[eN I VuIE;,+(1 + N) I Vzle;,J

C(eN I Vu 1z;,+r'If°Ia;,+ If'12
-,

for 0 < p < r, which amounts to (3.6) when a(r) = 0.

Step 3: Proof of (3.7). The unique solution to the variational Dirichiet
problem

Ja,

z e H'(B,),

o,, dx =
J

{f°v + [f' - (f'),lvv,) dx for v e Ho'(B,)
Br

satisfies
N

I VZ le;, <- C(r' I f° 14;, + E I f' - U'), IE;,).
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Since fB vx, dx = 0 (i = 1, ... , N) whenever v E H0'(B,), u satisfies

eu2,vst dx = far { f°v + U' - (f ),]v,,) dx for v E Ho'(B.),

and therefore w = u - z solves (3.3). From (3.2) it follows that

I Vu - (Vu)e Ie:e - I Vu - (Vw)e 12;e < 2(1 Vw - (VW)e IE;e + I Vz IL;e)
N+f

< C eN+Y I Vw - (VW)7IE;, + 2 I Vz 1.2;,

v+a

<C eN+e IVw-(Vu),Izy+2IVziP:,

< CI eN+a I Vu - (Vu), IL, + (I + eN+2) I Vz lad

<CI eN+2 IVu-(Vu),I:;,+r'If°Is.,+I!i -(f'),I2:,).

This proves (3.7) in the constant coefficient case.

3.2. Interior Regularity of Derivatives

0

In this section we set out sufficient conditions in order that the first
and possibly the second derivatives of variational solutions in a bounded
domain 12 belong to when restricted to w cc Q. The importance
of L2 regularity when N < p < N + 2 is self-evident, thanks to the iso-
morphism L',N(ru) , CO,(#-N)/e((U) for w of class (A) (Theorem 1.17). The

regularity will play a fundamental role in the proofs of the La reg-
ularity results of Section 3.3. As for regularity when 0 <,U < N,
we utilize it as a tool to arrive at the range [N, N + 2[ by a sort of boot-
strap argument.

3.2.1. Regularity of First Derivatives

We want to prove a result analogous to Theorem 2.16. Since the proof
is rather lengthy, we begin with the equation

u e H'(Q),
(3.8)

J
aiiu,v7, dx = <F, v> =

J
(J°v + f'VR) dx for v E H°'(S2),

o n

involving no lower-order coefficients.
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LEMMA 3.3. Let u solve (3.8) with
Ll.a(D) for some p E ]0, N + 2[.

f°E and f', ... ,fN e

(i) Let p < N. Whenever w cc id, all first derivatives of uI, belong
to with norm estimate

rp
N

I Vu II.N:w < C ( I fo + E I f' ll.p:a + I Vu 12;0/
-1

The constant C (independent of u, f°, ... , fN) depends on the airs through
the bound imposed on their Lc(Q) norms, as well as through a and r.

(ii) Let p = N. If ail e for some 5 e JO, 1 [, the same conclusion
as in (i) applies, except that now C depends on the aii's through the bound
imposed on their norms, as well as through a.

(iii) Let is > N. If ail e CO-6(D) with 6 = (p - N)/2, the same con-
clusion applies as in (ii).

PROOF. Letting 0 < d < dist(w, 8D), d < 1, we set dh - d/2h and
denote by wh the dh-neighborhood of w, that is, cob = {x E RN I dist(x, (o)
< dh}. We also set

N

xµ(F) - I P I f' r xµ(F, u) - xM(F) + I Vu 1l;a,
-1

notice that whenever x° a ro and 0 < r < d1 i

N
x,(F) > r-e(rl I f° r-If i Is:r.r) if 0 < p < N,

1

N
x,(F) > r- (rl I f° 12 2;.." + E I P

,-1

(see Theorem 1.17).

ifN<p<N+2

Step 1: Proof of (i). After an inessential translation of the origin,
Lemma 3.2 can be applied to any sphere B,(x°) with x° e CD, 0 < r < d1.
If 0 < p < N, (3.6) yields

N 7

I Vu I4{[ eN + T2(r) I Vu I2 :i°.. + r"xr(F)}.

0 < p < r. To any s c ]1, oo[ we can associate a positive number H(s)
< d1 by the criterion 0 < r < H(s) > rl (r) < s-N. The function #(e) _
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I Vu 12;10,. therefore satisfies

#(e) <_ C[2 eN ¢(r) +

Chapter 3

whenever 0 < r < H(s) and 1 < r/p s. We can apply Lemma 1.18 with
K = 2C, O(s) _ Cx°,(F)se: taking e = N - µ we obtain for x° Era and
0 < r < H(K'Ie),

I
I Vu CI-, I Vu 12;10.. + e"x (F)I

and also

@-0 1 Vu 1Q;w[1°.e1 < I Vu Iz;a + xe(F)}.

We have thus obtained the desired bound on

sup e -M I Vu Is;ac1°.o7
z°E&,°<esu(sv-)

hence on I Vu IL2.P[w)

Step 2: An intermediate inequality for la > N. If y > N we can utilize
Step I with w replaced by ra, and u replaced by N - rt, where 71 can be
arbitrarily fixed in ]0, N[. Letting the alt's belong to C°-d(.13), set 0 - 6.
Thus all first derivatives of u belong to L2.N-d(w,) with norm estimate.
Let x° E Co, 0 < r < d,. Lemma 3.2 can again be applied to B,(x°); this
time we utilize (3.7) and obtain

Vu - (Vu)10.e 14;10.2

r N+a
< CI eN+a I Vu - (Vu)1°,, + r" I Vu Ig;z°.r + roxµ(F)]

rt
N+a

< CI N+a I Vu - (Vu)1^.r IP;z°.r + rN+dx.Y-d(F; u) + r''xe(F)]

< C f eN+a+a I Vu - (Vu)1°r 11;1°., + u)], (3.9)

0 < p < r, since r < 1 and xy_d(F) <

Step 3: Proof of (ii). Let #(e) Vu - (Vu)1E,e 12;10,.. When p = N
(3.9) yields

v+a
#(e) < e+a+a #(r) + e ,,,(F; u)svl
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provided 0 < p < r < d1 and 1 < r/e < s. We can apply Lemma 1.18,
this time with K = C, 0(s) = CXN(F; u)sN. Choosing any e e ]0, 2[ we
obtain

N+a-.
Vu - (Vu),., I2:r°,e c C[ PN+a-. I Vu - (Vu)..,, I';e, + 0 xN(F; u)]

whenever 0 < p < r < d1, hence

2 N I Vu - (VuL[:^.e1 IE:uj[zO,Q7 < C[di I Vu I2;x.d, + cN(F; u)]

< Cxv(F; u)

whenever 0 < e < d1, and the conclusion follows.

Step 4: Proof of (iii). If x° a w1 and 0 < r < da, (3.9) is still valid,
so that for µ = N + 26 the function #(e) _ I Vu - satisfies

P+S

O(e) < 0[ eN+a #(r) + eN+exM(F; u)se+d]

whenever 0 < p < r and I < r/e < s. We again apply Lemma 1.18, this
time with K = L, 0(s) = Cx, (F; u)sN}e, and obtain for 0 < p < r < da
(after letting c = 2 - 26)

N+ad

Vu - (Vu)=°.c 12;z0,e < C[ N+ad I Vu - (Vu)s.., I2:s".r+ eNidx,.(F; u)].

From this inequality it is now easy to deduce that VuIw1 a "(w1)]N

with norm estimate
Vu Cx1,(F; u).

To reach the sought-for conclusion in its full strength we utilize the iso-
morphism L° N+d(w1) _ [it is not restrictive to assume w, and
therefore also w1, of class (A)...]. The above inequality therefore yields

I Vu 12..:m. < Cx,,(F; u).

Thus,

red Vu 12;0,, < CrN+ae Vu 1m ;m, < u)

whenever x° a Ca and 0 < r < d1. By utilizing (3.7) we can reinforce
(3.9) as

v+a

I Vu - (Vu)O, 12Z,e < C[ ev+a+a I Vu - (VU)e" I roxµ(F; u)]
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for x°, r as above and 0 < p < r. At this point the same procedure leading
to L',N+e(w,) regularity with norm estimate can be repeated to provide
L'-M(w) regularity with norm estimate. 0

We can now move from (3.8) to the complete equation

u c H'(Q),

a(u, v) _ <F, v> =
J

(f°v + f'v.)) dx for v e H°'(S2),
a

where

(3.10)

a(u, v) =
J

[(aitu., + dtu)v., + (b'uzl + cu)v] dx; (3.11)
n

the lower-order coefficients of the bilinear form (3.11) are assumed at
least essentially bounded on D.

THEOREM 3.4. Let u solve (3.10) with f° a L8,(e-2)+(t2) f1 fN

e for some p e 10, N + 2[.

(i) Let y < N. Whenever w cc S2, uIw and all its first derivatives belong
to L''a(w) with norm estimate

N

I U IL.e,w + I Vu IL.v,w < C(I f° I2.(u-2)+:a + E I f' I2.,.:a + I u Ia4m).X

The constant C (independent of u, f° , fN) depends on the coefficients
of a(u, v) through the bound imposed on their L0(Q) norms, as well as through
a and r.

(ii) Let p = N. If a" e C°-"(.t) for some d e ]0, 1[, the same conclusion
as in (i) applies, except that now C depends on the coefficients through the
bound imposed on I ail Ico,e(r,) and I d', b', c Iw,a, as well as through a.

(iii) Let p > N. If a", d' e C°.o(t) with 6 = (p - N)/2, the same con-
clusion as in (i) holds, except that now C depends on the coefficients through
the bound on I a 1, d' Ico,eca, and I b', c I0,n, as well as a.

PROOF. We set

N
x ,(F; u) = If' I2,(a-2)+:a + If1 ILa + I u I1740)

t-1

and write dA = d/24 [0 < d < dist(w, 80)], wA = dA-neighborhood of w;
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we assume 8w smooth. Moreover, we rewrite (3.10) as

J a'"u,1v,, dx =
J

(f °v + f -v.,) dx
O

J [(f° - b'u, - cu)v + (f ' - diu)v2,] dx.
O

This will enable us to utilize a bootstrap argument based on Lemma 3.3.

Step 1: Proof of (i). Let p < N. We know (see Theorem 1.38) that
whenever w e H'(Q) with wit, ... , w7N a L2.1(d2), 0 < A < N, wl,,, be-
longs to with the corresponding norm estimate. Thus,
belongs to and therefore fNlm, to p1- p A 2,
with

N

;_1

Lemma 3.3(i) applies with 92 replaced by w1. If p1 = p we are done; if
p1 < p, we replace w by o), p by p1, and so on for a convenient finite

number of times.

Step 2: Proof of (ii) and (iii). Let N < p < N + 2. We can utilize
(i) with co replaced by co,: for any p' < N, uy11,,,, ... , us.lml E L2.a (w1),
and ul,,, e (d'u)I,,, a L°°(o)a) in the case (ii), (d'u)la, a
in the case (iii), hence f 0j.. E and f'1,,, ... J NJ,NI,,, C L2J1'(wz)

in either case, with
N

I f° 12,(p-2)+;w, + I f' 12,y;^h < u).
,-1

Lemma 3.3(ii), (iii) then applies with S2 replaced by wz. Therefore u1,,,
uzjl,,, ... , u=nld belong to Lz'e(w) with I u I Vu Ii,µ;,, bounded by
Cx, (F; u). 0

3.2.2. Regularity of Second Derivatives

THEOREM 3.5. Let it solve (3.10) with f° E and f', f=, e L2-e(Q)
fori,j=1,...,N, where 0 <#<N+2.

(i) Let p < N. If a'J, di e CO1I (.O), then, whenever w cc S2, all deriv-
atives belong to with norm estimate

I U" 12.p;. < C[ I f° 12,p:D + E (I f' IE,µ;D + I Vf' Iz,,:D) + I U6(0)]1 i-l
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The constant C (independent of u, F) depends on the coefficients through the
bound imposed on I a'i, di I0o,itu and I bt, c Im;o as well as through a.

(ii) Let µ > N. Ifa'i, di E 0,6(D), b', c E CD-6(D) with S = (U - N)/2,
the same conclusion as in (i) is valid, except that now the constant C depends
on the coefficients through the bound imposed on 1 ati, di I ci.o m and I bi, c Ico.o n,
as well as through a.

PROOF. The idea of the proof is to differentiate the equation for u
and obtain the equations for u.,, ... , uzN, as in Step 2 of the proof of
Lemma 2.21. Here are the details: For all values of u, by Theorem 3.4
ul, , u:,la,, u:Nlw, e with norm estimate, whereas by Lemma
2.21 ulw, E H'(w,) with

0
I u I'sv,,,t < C(I l Is:Q + I f la (m + I u C cp (F: u):

here ws is again the dh-neighborhood of w,

N

xe'(F u) f° e,MR + (If' 12.µ;a + I V IY.M;Q) +I u I3nm1
f-1

When v e C,-(w,) we can rewrite the identity

a(u, v:) = <F, v:,)
as

+ diu,,)v,, dx =
J d

(Y f'v=, + f'v.,l I dx
i*,

)V.,f
w, l U' d 'u -

a." u.,

+(f;-d:',u-a us,+b'us,+cu-fo)v:,] dx,

s = 1, ... , N (no summation over s). Both when µ < N and when µ > N
the assumptions about the coefficients of a(u, v) yield ,f'1,,, E with

i=1,...,N.

We can therefore apply Theorem 3.4 again, this time with w, instead of
Q and u=,Im, instead of u. Consequently u:,r,I. E for i = 1, ... , N,
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and

I Vur, 1a.1;w < CxN (F, u).

When µ - N we utilize the previous result with w replaced by w µ
by any t' < N: thus, u.,l., ... , u=vl E L2.n'+a(wa) and (d. u +
aj;u.)1w, E L°°(wa) for i 1, ... , N. The conclusion follows by the same
argument as above. 0

Theorem 3.5(ii) shows that if the coefficients of the bilinear form
(3.11) are regular enough and f °, f;, f,.i e for some d e ]0, 1 [,
then all second derivatives of any solution u to (3.10) belong to C°'d(Q).
It is natural to wonder whether an analogous result holds if CO-6 is replaced
by CO. The following example shows that such is not the case (unless, of
course, N = 1).

EXAMPLE. Let N = 2, Q = B312, a(u, v) = f B,,, uzvs, A. The function

u(x) = (x1' - xa')(-In I X 1)112 for x c- 81,,,\(0),

u(O) = 0 [notice that u(x,, xa) - -u(xa, x1)] belongs to C'01/2), and
to C1(811,\B,) for any e c- ]0, I/2[. Since

u:,:,(x) = 2(-]n I x 1)ua +
X.i(X1a - X24) _ 2x12

Ixl'(-1nlxDva IXIa(_InIXI)aa

xl' - x22 _ x1'(x1' - x4')
2IXIa(-InIx1)112 41xI'(-In IxD312

and therefore

xa-x2 1 4 1-du(x) = f°(x) =
2

1 x 11 1 (-In I x Dv' + 2(-In I x 1)311

for x e an application of the divergence theorem over B,,a\B,
(0 < e < 1/2) followed by a passage to the limit as e -. 0+ shows that

f u.,v,, dx = J f°u dx for v e H°'(B,12).
J B,n Bin

The function f° (set 0 at the origin) is in C°(B,,a), although f° 0 C°-'(B,1,)
whenever 0 < 5 < 1. Without any need of further direct inspection, the
membership in L' v(B11a) of all second derivatives of u follows from
Theorem 3.5(i). However, us,s, is not even bounded near the origin.
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3.3. Interior if Regularity of Derivatives

We now proceed to exhibit interior LP regularity for first (and second)
derivatives of solutions to (3.10). This we do by a technique of interpola-
tion between L2 and Lz v which requires a bit of the theory of weak
Lebesgue spaces.

A measurable real function h on a bounded domain w c R°` is said
to belong to Lp(w)-weak, 1 <p < oo, if a constant C can be associated
to it in such a way that

mess,,{x e w I I h(x) I > s} < (C/s)p for 0 < s < oo;

the infimum of all such constants C is denoted by ]h[p;,,. A moment's
thought shows that L"(w)-weak is a linear space, and that

LP(w) c Lp(w)-weak with ]h[p;m < 1 h Iv;..

The mapping h -. ]h[p.,, does not, however, define a norm on 4((o)-weak,
since the triangle inequality need not be satisfied: for instance, if N = 1,
w = ]0, 1 [ and p = 1, we have ]h; [,;a = 1/4 both for h,(x) = x and h,(x)

1 - x, whereas ]h, + hz[,;W = 1. Besides, LP(w) is a proper subset of
Lp(w)-weak, as the simple example h(x) = 1/x shows for N, w, and p as
above. On the other hand, it is easy to ascertain that LP+2(w)-weak c LP(w)
whenever e > 0 (see Problem 3.1).

For the sake of notational homogeneity we also write L°°(w)-weak
Lm(w), ] [m;,° = I Im;d

Let to' c R°' be another bounded domain and 9: L'(w) -* Lp(w')-
weak be a subadditive mapping, that is,

] F (f, + fa)[p;d' < ] S'Ui)[p;w + ] Us)[p;

for f f8 e Lp(w). We say that 5' is of the weak type p (from w into w')
when a constant C can be associated to it so that

] Yi(f)[,;., < C I f lp;w for f e Lv(w).

Of course, if in particular $ : Lv(w) -> Lp((o') with I P'(f) C If lp;w
-in which case S- is said to be of the strong type p-, then F is also of
the weak type p.

The proof of the next lemma makes crucial use of the notions just
introduced. It also utilizes two fundamental results-one due to J. Marcin-
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kiewicz, the other to F. John and L. Nirenberg-which are given in the
Appendix to the present chapter.

LEMMA 3.6. Let Q be a bounded open cube of RN. Denote by T: Ls(S2)
Ls(Q) a linear mapping such that T: L"(Q) -t with

I T f k;Q < K2 I f 12;0 for f E

I T f I2,x;Q < K- I f Im:a for f E L°°(Q).

Then for 2 < p < oo T maps La(S2) into Ly(Q), and there exists a constant
C, depending on T only through K, and K., such that

ITfID;Q5CIf1p;a for fcLn(S2).

PxooF. Let us first remark that a constant C exists such that

IQ'I
Q,Ih-(h)Qldx<Clhl2xQ (3.12)

whenever Q' is an open subcube of Q. In fact, Q' c BIP2(x°) if x° is the
center of Q' and 2P the length of its edges. Thus,

IQ'['
Idx)'<

IQ'I fQ
Ih-(h)Q'I'dx

< 2-xP_x f I h - (h)Q(e,VPe) I' dx
Q[e, JPe]

SCIhIN:Q.

Let now d: Q = Uk Qk denote a countable decomposition of Q, the
Qk's being mutually disjoint open cubes with edges parallel to those of Q.
The subadditive mapping id: L2(Q) L2(Q) defined by

C
I I Tf - (Tf)Qk l dxFd(f) XQt

IQkI fQt
with - J 1 on Qk

XQt 0 elsewhere,

is also a mapping from Lm(S2) into L°°(Q), and

I F1(f) I.;Q <_ K , f Is;a

I F(f) Im;Q <_ CKDQ I f I.;a

for f E L2(.Q),

for fE L°°(S2)

whatever the decomposition d [see (3.12)]. Fd is therefore of both strong
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types 2 and oo, so that Theorem 3.30 of the Appendix applies: Fd maps
L'(Q) into L'(D) for any r c- ]2, oo[, with norm estimate

19A f) I r;Q < C(r)Kz /nIQ_ h I f I,;a for f E L(D)

independent of A. Now let

1 h - (h)Qk I[M,(h)]' = sup
E

I Qt 11-' (J
Qs

and fix f e L'(Q). Since

I 6-4(f) G;Q = I Qt I'-'(Jas I Tf - (Tf)Qk I dx)',

we have

M,(Tf) < C(r)K2"'K.1-11 If 1,;Q,

so that Lemma 3.31 of the Appendix applies. Thus the function Tf - (Tf)Q
is in L'(Q)-weak, and

]Tf - (Tf)Q[,;Q < C(r)K281 KK1-S" I f I?;a.

This means that the linear mapping 0: f -.Tf - (Tf)Q, besides being
bounded from L'(Q) into L2(Q), is also of the weak type r. We can again
apply Theorem 3.30 and conclude from the above that for any p c [2,00[
0 is bounded from Lp(Q) into LP(Q) with norm estimate

IOfIP;Q=ITf-(Tf)QIp;Q:! C(p,K2,K )IfIv;Q forfeL (92).

This completes the proof, since

ITfIp;QITf-(Tf)QIp;Q+I(Tf)QIp;Q
ITf-(Tf)QIp;Q+IQ"p-"' IT!I2;Q,

and

ITfI2;QSK2If 12:0<I 2I12-'/p1fIp:u 0

At this point the desired regularity results can be demonstrated.

THEOREM 3.7. Let u solve (3.10) with f°, ... , fx e L'(Q), 2 <p < oo,
and let a41, di e CO,I(. ) for some 6 E ]0, 1[. Whenever Co cc d2, u1, belongs
to H'-P(a)) with norm estimate

/x
I U In,.p(ml CI I P Ipso + I U Iu-(a)).
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C (independent of u and F) depends on the coefficients through
the bound imposed on I a'1, d' lc,e)h) and I b', c Im,a as well as through a.

PRooF. We first assume that the bilinear form (3.11) is coercive on
HI(Q) and solve

z° E Ho(D),

as well as

a(z°, v) = f
a

dx for v e H°'(S2),
v

Zi a Hol(fl),

a(z`, v) = f f'v.) dx for v e H°'(S2)
Q

i = 1, ... , N (no summation over i inside the integral sign). Notice that
by coerciveness,

I Z' IHI)a) < C I P Ie;a for j=O,1,...,N.

If Q cc Sd is a cube, we denote by TA': L2(Q) -. L2(Q) the bounded
linear mapping ffl z%JQ, h = 1, ... , N. By Theorem 3.4(ii) TA, is also
continuous from L°°(S2) c L',N(Q) into L2.N(Q) and finally from LD(92)
into LP(Q) as a consequence of Lemma 3.6. Let z - EN° zf. The function
w = u - z e H'(Q) satisfies a(w, v) = 0 for v e H'(Q), so that Theorem
3.4(iii) yields wlv, w,,,10, ... , w=NIQ E CO-6(Q), hence wlQ a H' D(Q) with
the corresponding norm estimate. This proves the theorem in the coercive
case, since w can be covered by a finite number of cubes such as Q.

In the noncoercive case we rewrite (3.10) as

a(u, v) + A f uv dx = <F + Au, v> for v c H°'(S2)
D

where d is so large that the bilinear form on the left-hand side is coercive
on H°'(Q). With the usual notations dA = d/2h [0 < d < dist(w, 012)]
and WA = dA-neighborhood of w, we proceed by the following bootstrap
argument. (For brevity's sake we take the case N> 3.) Utilizing the
continuous imbedding H°'(S2) c L"(d2) and the result just proven in the
coercive case, this time with w replaced by w, and p by p, = p A we
obtain ul,1 a with norm estimate. If p, = p we are done; if not,
we utilize the same procedure as above and obtain ula, a p2

p Ap,', etc., thus arriving at the conclusion in a finite number of steps. 0
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The requirement that a't, di be Holder continuous on .t}, although
essential in the previous proof, is stronger than necessary for the validity
of the above result (see C. B. Money, Jr. [118]). The next example, how-
ever, shows that discontinuities in the a'i's cannot be allowed if we want
the range of validity to be the entire half-line 2 <p < oo.

EXAMPLE. Let N = 2, S2 = B, and set 1 - (I - 12)x22 I X I-2,
a.2(x) = a2l(x) = (1 - 12)x.x2 I x I-2, as2(x) = 1 - (I -12)x,2 I x I-2 for
x # 0, where 0 < A < I. Thus, the a's's belong to L°°(B) but do not
admit continuous extensions to 9.

Let u(x) = x, I x I1-1, so that u,,(x) = I X IA-1 + (1- I)x,2 I X 2-9
u21(x) = (1 - l)x,x2 I X11-3. Then ulgB belongs to C°°(B\B,) when-
ever 0 < e < I; moreover, u e for p < 2/(1 - 1), but I Vu I
L21'u-u(B). However, since in B\{0} u satisfies

(ai/U.4) = [A I X I2-1 + (Al - 1)x22 I X 11-2h, + [(A - 12)xlx2 I X IA-3k = 0,

an application of the Green formula over B\B1 (0 < e < 1) followed by
a passage to the limit as a -. 0' shows that

Ja
a' . x = 0 for v e H0'(B).

The passage to second derivatives is almost immediate:

THEOREM 3.8. Let u satisfy (3.10) with f° E L'(f2), f', ..., fN e
2 < p < oo, and let a'1, df a CO,'(D). Whenever ur cc .4, ul°, a
with norm estimate

N

I u H9.9(.) 5 C(I f" I';a + If ' I H'.n)a) + I u IH(a)).
,-i

The constant C (independent of u and F) depends on the coefficients through
the bound imposed on I a'1, d' Ic..1)n) and I b', c Im;a as well as through a.

PROOF. The case p = 2 is Lemma 2.21 for k = 0. If p > 2 we need
only repeat the proof of Theorem 3.5(i), replacing (0 < µ < N) with
La and utilizing Theorem 3.7 instead of Theorem 3.4. 0

Notice that the example following Theorem 3.5 can also be utilized
to show that the range of p in the above result cannot be extended to
cover p = oo.
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3.4. Estimates on Hemispheres

Throughout this section and the first two subsections of the next one
we take some hemisphere of RN and investigate the regularity of functions
that satisfy a variational equation in its interior together with a Dirichlet
or a Neumann condition on the flat portion of its boundary. In such a
setting we shall provide the counterparts of the interior regularity results
proven in the previous three sections.

We shall utilize the notations

Ho''+(BQ+) = Ho'(BQ+ U SQ+),

Let Q = B,+.

Ho''o(BQ+) -- Ho'(BQ+ u SQ ).

3.4.1. Homogeneous Equations with Constant Coefficients

Take a`i(x) = aQ`i.

LEMMA 3.9. There exists a constant C, depending on the ao'j's through
the bound imposed on their absolute values as well as through a, such that
for any r and any e c ]O, r],

I VW la:Q.+ S C
eN

I VW (3.13)

and

N+a

I PW - (Pw), I2:,.+ < C x+a I PW - (17w), I2:,.+ (3.14)

whenever w satisfies either

w E Ho''+(B+),

or

ao`iwwj dx = 0 for v E Ho'(B,+)e;

W E H'(B,+),

J ao1Jw,,v,t dx = 0 for v E Ho';o(B,+).
B+

PROOF. As in Step I of the proof of Lemma 3.1 it can be checked
(this time through the corollary of Lemma 2.23) that it suffices to prove
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the lemma in the case of functions w satisfying either

w e C°°(B,+), w = 0 on S,a,

aoiiwx,zj(.x) = 0 for x C B,+

or

we CO°(B,+), ap "wi' = 0 on S ,O,

aoifw-,s,(x) = 0 for x E Br+.

(3.15)

(3.16)

In addition, it suffices to prove (3.13) and (3.14) for 0 < e < r/2.
After these preliminary observations we proceed in four steps.

Step 1: Proof of (3,13) in the case (3.15). We write the HL bounds
provided by Lemma 2.23 as follows:

I W I!k(B-) < C(k, r) I w Ig4By ,. (3.17)

Next we choose k so large that HL(B /,) c C'(B l,) and therefore

I Vw 1-;,12,+ < C(r) I W IH'(BL,.)

With obvious changes (such as integration over B,+ instead of B, ...) we
can proceed as in Step 2 of the proof of Lemma 3.1 to show that the right-
hand side of the above inequality is bounded by C(r) I w Ia;.,+ Thus, if
0 < e < r/2, we have

I Vw Iz;,,+ G Ce" I Vw < C(r)e" I w 122,,,+:

for the sake of future reference (see Step 4 below) we emphasize that the
inequality

Vw I';,,+ < C(r)e" 1 w 12;4.ia+ (3.18)

can be proven analogously. Finally, we estimate I w 12',,,+ by Cr2 I Vw Ie:r,+
(thanks to the corollary of Theorem 1.45) and arrive at

I Vw IY;P.+ < C(r)e" I Vw 1z,4+.

To evaluate the dependence on r of C(r) we pass to new variables y =

x/r and show that C(r) = C(1)/r".

Step 2: Proof of (3:13) in the case (3.16). For s = 1, ... , N - 1 the
derivative w., of a solution to (3.16) is a solution as well, so that (3.17)
becomes

I W.. I w=, IHI(Bt,.).
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For what concerns w-" we first notice that any of its derivatives of order
It, except 8°w,y,/8xxk, is a derivative of the same order of some w,,. Next
we utilize (3.16) to express w=N=N by means of

wzNZN(x) = -( 0NN)-1 Y- aosjwzry,(x),
(1)tCN,NI

x E B l+;

this shows that any pure derivative 8°w,N/8xyA, It = 1, 2, ... , is a linear
combination of derivatives of order It of w.., ... , wZN_,. Summing up,

hence

(=1
H'(Bug),

Pw Io;,/2.+ 5 C(r) I wu 61B
-(

(3.19)

if k is chosen so large that Hk(B,r) c C°(B,z).
In order to find a convenient estimate of E", I wz( Im(BL/,( we take

a cutoff function g e C°°(Br) with 0< g< 1 in B,, supp g c B,,e, g= l
on B3,/. and obtain

o = f aO0W;jg'(w - 7)],/ dx

= fBr+
g2a°ijws w,, dx + 2 fB + ao'f w:,(w - 2)gg, dx

> a fD g2 117W I' dx - C(r) I w - A IY
2 :rr/a.+,

hence

N N

I W., Ixr(a n) 5 C(k, r) E. I

I Vw I2:arA,+ 5 C(r) I w- A I2pr/8,+ 5 C(r) I w- A

N

I W., 12,3r/e,+ 5 C(r) I w - Mr 12;r,+
r-i

Notice that the inequality

[N' wz, 2;rr/B,+ 5 C(r) I w - (w), I f;,,+
i-1

can be proven analogously. By the same token, f o r s = 1, ... , N - I we
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have

I Vwx, I2;3r/9,+ C(r) I wx, - Is 12;7r/g, +

hence
N N

[ I Pwz1 I4:3r/a,i+ G C(r) > I wzl - x( I2;u 0,+
i-1 i-1

(3.20)

for A1, ... , 1;v a R, after expressing wxNxN as a linear combination of first
derivatives of wx1, , WIN_1; in particular,

N N

Vwxl I2;3r/4;+ C(r) :, wxi e;7r/3,+ C(r) I w - (w)f 3;1,+

11-

Summing up,
N

r-1

E I Wx1 I C(r) I w - (W)r I3;r,+. (3.21)
-1

The two inequalities (3.19) and (3.21), combined with the Poincarb
inequality in H'(B,+), yield

I Vw lf:e.+ < CeN I Vw 5 C(r)9N I w - (W)r
G C(r)p" I Vn' Is;f,+

for 0 G e G r/2. The conclusion follows from the change of coordinates
y = x/r, which shows that C(r) = C(1)/r N.

Step 3: Proof of (3.14) in the case (3.15). If w(x) satisfies (3.15) so
does w'(x) = w(x) - liv, x E R. Therefore

N
E I Pw.1 C(r) I W' IHk(Bria) G C(r) W' I H'Ic, , G C(r) I W' 12;1.+
i-1

(see Step I) once k has been fixed so large that H1(B%) C C3(B,+,3). Using
the Lipschitz inequality

I Vw(x) - Vw(0) I3 = Vw'(x) - Vw'(0) I3
N

G Ce2 > I Vwx1 I2
i-1

we obtain

xE B+

2;"+I Vw - (Vw)c IsI Vw - Vw(0) 12

N
< CeY+' I Vwx" 12 ;,/2,+ <- C(r)e'+' I W' 122;,.+

1
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for 0 < p < r/2. Since (see the remark after the corollary of Theorem
1.45) Poincard's inequality in Hp';+(BN+) yields

I W I2';,.+ < r2 I wxN - A 12;,,+,

the conclusion follows by taking A = (wxN), and computing the dependence
on r of the final constant factor of I wxN - (wx,), I2;,;+ through the usual
change of coordinates y = x/r.

Step 4: Proof of (3.14) in the case (3.16). Any derivative wx , s = 1,

N - 1, of a solution to (3.16) is a solution as well. Therefore [see
(3.19), (3.21)]

I Pw:e Im;,/2,+ C(r) I wx, - (wx)r 12;r.+,

and

N-i N-I
I wx. - (wx)p I2;p.+ < E W, - wz,(0) 122;V'+

e-1 l
N-1

CpN+2 Y I Vwxe 12
e-1

N-1
G C(r)pN+z E I

e=1

for 0 < p < r/2. Let iv --
[see (3.18)] we deduce

is

- (wz), I2;,.+ (3.22)

1. Since iiw satisfies (3.15), from Step I

2 ;"+ < Cp2 I V'' 112 ;2'.+ < C(r)el+2I H' 121;3,/,,+

I (W).12

< C(r)e'+2 I Vi'v 12':2,/4,+

where use has also been made of the Poincar6 inequality both in H'(B2+)
and in Ho';+(B2t/4). From identity w - (iv)p = ao N[wxl - (wxl)p] we can
deduce (after dividing by a0NN > 0)

IV-1

I WIN - (w1N)e I2;p.+ < CE I W, - (wxe)212':I'+ + 10 - (01 li;p.+
1

IN-I
1< C(r)pN+2I I wz, - (wx,), 2;r.+ + I Vw I2;3r/4,+)

e-1

Finally, from (3.20) we obtain

N

(3.23)

VW lE;2r/4,+ < C (. I Vwxl I2:3r/4.+ < C(r) I Vw - (Vw)rr/e I2;rr/2,+i-l
< C(r) 1 Vw - (Vw), Iz:r.+,



170 Chapter 3

so that the conclusion follows from (3.22) and (3.23) after the usual evalu-
ation of the constant C(r). 0

3.4.2. Nonhomogeneous Equations with Variable Coefficients

LEMMA 3.10. There exists a constant C independent of r, which depends
on the alt's through the bound imposed on Ia'2(0)I as well as through a,
such that for any e E ]0, r],

v

I VU IE;°.+ C{[ ;.v + zE(r)] Pa E:f,+ + r' I f IE:,,+ + I f' IE:,.

and
(3.24)

V+E

I Pu - (VU), I4:°.+ - C[
ev+E I Vu - (Vu), 1'2;r,+ + r1(r) I Vu I',r.+

N

+ r2 I f° Iz;,.+ + If' - (f1), I2;,.+] (3.25)

whenever u satisfies either

u e H°''+(B7 +).

f r
(3.26)

J
a'iu24v,, dx = <F, v> =

J
(f°v +f'v,) dx for v E H°'(B,+)

e+ B+

or

u e H1(B,+),
(3.27)

JB,+
a'iuv.t dx = <F, v) = fa+ (f°v + f'v.,) dx for v E H';0(B,+)

with f°, f', ... , fN e L=(B +).

PROOF. As in Step l of the proof of Lemma 3.2, it can be easily checked
that it suffices to prove (3.24) and (3.25) under the additional hypothesis
that a'1(x) = a°i1 for x E which we shall assume valid throughout.

Step 1: Proof of (3.24) in both cases (3.26) and (3.27). The Dirichlet
problem

z C H°'(B,+),

J
a°`tz,,vet dx = <F, v> for v e H°1(B,+)

B,+
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is uniquely solvable, and
N

1I f' P:r,+).Pz 2;r,+ < C(r2 l f° 12;,.+ +
,-1
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Here use has been made of the Poincar6 inequality in H°'(B,+), exactly as
in Step 2 of the proof of Lemma 3.2. Analogously, the mixed b.v.p.

r
z E Ho';0(B,+),

J
r a°'jzi,vit dx = <F, v> for v c- H°';o(B,+)

B+

is uniquely solvable, and

N
I Vz C(r2 I f° 1z;r.++ I f' l f:r.+).

,-1

In this case the Poincarb inequality in Ho';°(B,+) has to be utilized both
to ensure the coerciveness of f B,+ ao jzuz, dx on H°l;o(B,+) and to provide
the bound on I FI[No.;.(B+W.

At this point we introduce the function w - u - z, to which Lemma
3.9 applies. Thanks to (3.13), we can arrive at (3.24) by proceeding as in
Step 2 of the proof of Lemma 3.2.

Step 2: Proof of (3.25) in the case (3.26). Since fB,+ vr, dx = 0
1, ... , N) whenever v e H0'(B,+), it verifies

f ao 3uuv,, dx =
J

{f°v + V' - (f`),]v71} dx for v e Hol(B,+).
B,+ B +

Therefore, if z is the unique solution to the Dirichlet problem

r

z e Ho'(B,+),

f ao'tz,,v, dx =
J

{f°v + U' - dx for v e H°'(B,+),
B r+ B,

Lemma 3.9 applies to w = it - z. Hence (3.14) is valid, and the conclusion
follows as in Step 3 of the proof of Lemma 3.2.

Step 3: Proof of (3.25) in the case (3.27). Let u'(x) = u(x) - (fN),X
xN/a NN. Since fB,+ vs. d x = 0 for s - 1, ... , N - 1 whereas f B,+ v;N dx
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-Js, vls, dx' if v e H01 o(B,+), u' satisfies

r r a Ni

J
ao0u;,v., dx = J ao ju,,v,, dx -

f BI
UN),vv, dx

B+ B, B+ a°

= <F, v> + J (_f N),vlsp dx'

= J {J°v + [J' - (J '),]v2,} dx for v e H°';°(B,+).
B+

Moreover, Vu - (Vu), = Vu' - (Vu')r, which shows that for the purpose
of proving (3.25) it is irrelevant to replace u by u' [since r(r) = 0].

Now let z solve

JB+ B*

z E Ho';O(B,+),

o'jzz,uz, dx =
f R,+

+ U` - (J')r]v:,} dx for v c- H°';°(B,+).

Then the inequality
N

I 17z 1.2;,.+ < C(ra I J° 122;,.+ + I J` - CO),

is satisfied, and w = u' - z satisfies (3.14) by Lemma 3.9. The conclusion
follows by standard arguments. 0

3.5. Boundary and Global Regularity of Derivatives

35.1. Regularity near the Boundary

Let 12 = B+. Beginning with the b.v.p.'s

(3.28)

a'iur v<, dx = (F, v> = J U°v + J'v,,) A for v e Ho'(B+)
B+ B+

and

u e H'(B+)
(3.29)

f a'ius,v. dx = <F, v> = J (J°v + dx for v e Ho ;o(B+)
B+ B+

we have the following lemma.
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LEMMA 3.11. Let u solve (3.28) or (3.29) with f° E L'.(p-')+(B+), f1,
fN E L',"(B+) for some p e ]O, N+ 2[.

(i) Let p < N. Whenever 0 < R < 1, all first derivatives of UIBR+ be-
long to L',p(BR+) with norm estimate

B
I Vu IE.p:BR+ C C/I IJp IE.(M-t)+;B+ + I! P IS.M:B++ I VU ly.+

` s-1

The constant C (independent o f u, f°, ... , fN) depends on the aii's through
the bound imposed on their L°°(B+) norms, as well as through a and r.

(ii) Let p = N. If a41 C Co.d(B+) for some d e 10, 1 [, the conclusion of
(i) remains valid, except that now C depends on the a`s's through the bound

imposed on their norms, as well as through a.

(iii) Let p > N. If a" e C°,d(B+) with 8 = (p - N)/2, the conclusion
of (ii) remains valid.

PRooF. We do not need to distinguish between the two cases (3.28)
and (3.29). After setting Rh _ (1 - R)/2h and

N

x,
(yF) - I f° It.(a-2)+;B+ + IP IY.p: B+,

s-1
xp(F; u) = xp(F) + I Vu 12;+,

we shall proceed in three steps.

Step 1: A preliminary reduction for any p. As in the proof of Theorem
1.39 we shall now show that the crucial estimates over intersections BR+
n B;(x) can be reduced to estimates over hemispheres BQ+(x°). If x e BR+
with xN > Rp and if 0 < a < R°, then BR+[x, a] = BR+ n B°(x) S B°(x)
e w = {y c- BR+R,I yN > Rt}. Since of cc B+, Lemma 3.3 applies: for i
- 1, , N uulla E L2.p(w) and

o-' I Vu - (VU)BR+[:,°)
IY:BR+[=.°1 5 a p IVu - (Vu)=,dlfa,°

< I Vu Iz.p:m : xp(F; u).

This means that there remains to bound a-p I Vu - (Vu)BB+[=.,) ILBR+[s,o1

only when x e BR+ with xN < R2, 0 < a < R,. But then, BR+[x, a] c
Be+(x°) c B+, where x° is the projection of x over SRO and p = 4a;
therefore,

ap I Vu - (VU)BB+[Z,.) I2:BR+[s,0 5 4np s I Vu - (VU)P,e
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Summing up, we need to prove that

Vu - (Vu)z".e < Cxµ(F; u) (3.30)

for x°e SR and 0 < e < R,.

Step 2: Proof of (3.30) for z < N. Let 0 < r < R,. Since the trans-
lation of the origin in x° is irrelevant for what concerns the estimate (3.24),
the latter holds for our function u in the sense that

( Al

Vu IL:z°,e.+ < cl1 eN + ='(r)] I Vu Isrz If' 12;z°,r,++ f' 13:r..r,+}

r V

< C{I ev + 7'(r)] I Vu IY:z°.r.+ + r"x,(F)}

for 0 < e < r. We can at this point proceed exactly as in Step I of the
proof of Lemma 3.3, and prove the existence of F e ]0, R,[ such that
e -p I Vu Ih:z°.e.+ < xµ(F; u) whenever x° a SRO and 0 < e < F. This is suf-
ficient for the proof of (3.30) when 0 < µ < N.

Step 3: Proof of (3.30) for P > N. As a consequence of (i) with R
replaced by R + R, , for i = 1, ... , N uTJB+rs+x, e L2.N_8(BR,.R,) with the
corresponding norm estimate. From (3.25) we deduce that

I Vu - (Vu)z^.° li:z°.e.+
N+s

< CI ev+s+s I Vu - (Vu)2 ILO,,.++ rl I Vu r"xN(F)1

eN
< Cl rN+s 1 Vu - (Vu)za,.I?+ rN+exv-°(F; u) +

Cf e.v+e I Vu - (Vu)za,r 18:z°,r,++ rcN+mnNxN(F; u)]

forx° SRO and0<e<r<R,.
If a = N we can proceed as in Step 3 of the proof of Lemma 3.3 to

show (3.30).
If t = N + 26, 6 e ]0, 1[, the regularity uz,IBR+a, a Le,N+e(Bl+n.) is

first ascertained by a procedure analogous to that of the case tu = N.
Then, the isomorphism Lz,N+e(BR+R,) C°'d' (BR+B,) is utilized to obtain

N+2
Vu - (Vu)ze.e 12';e,,,+ < C[ eN+s I Vu - (Vu)zo,r IY:z ++ u)]
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for x° a SR" and 0 < o < r < Rr. From this inequality (3.30) can be
deduced again (see Step 4 of the proof of Lemma 3.3). 0

Lemma 3.11 can be extended to b.v.p.'s involving the complete form
(3.11) (where Q = B+), namely,

u e H°';+(B+)

a(u, v) = <F, v) = f (f°v + f'v.() dx for v e H°'(B+)
R+

and

a(u, v) = <F, v> =
J

(f°v + f'v,O dx for v e H°''o(B+)
o+

(3.31)

u e H'(B+),
(3.32)

THEOREM 3.12. Let u solve either (3.31) or (3.32) with f° e L2 (M-2)+(B+),
fl, ... , fv e L2,p(B+) for some p e ] 0, N + 2[.

(i) Let p < N. Whenever 0 < R < 1, uIBB+ and all its first derivatives
belong to with

I u I2,p;BB++ I VU 12.1:8B-< C1 If° I2,(p_2)+;B+ + If' I2.M:II++ I U 6(II+)i-t

C (independent of u, F) depends on the coefficients of the bilinear form through
the bound imposed on their Lm(B+) norms as well as through a and r.

(ii) Let p = N. If a'1 e C°-'(B+) for some 6 e ]0, 1 [, the same conclusion
as in (i) is valid, except that now C depends on the coefficients through the
bound imposed on I ait I,6(+) and I di, b', c I..+ as well as through a.

(iii) Let M > N. If a't, dt e C°-'(B+) with 6 = (p - N)/2, the conclu-
sion of (i) remains valid with the obvious changes for what concerns C.

(Compare with Lemma 2.18.)

The proof of this theorem is perfectly analogous to that of Theorem
3.4. The only real difference is that now the membership in
of WIBB+ if w e with w,,, ... , WIN a L2,I(BR.), 0 < 1. < N and
R < R' (see Theorem 1.39) must be utilized. We leave the details to the
reader.

Passing to second derivatives we have the following theorem.

THEOREM 3.13. Let u solve either (3.31) or (3.32) with f° a
and f', fi e L2.M(B+) for i, j - 1, ... , N.
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(i) Let 0 < t < N. If ail, di E C°''(B+), then whenever 0 < R < 1,
all derivatives u:,21I BB+ belong to L''4(BR+) with

N

't+,z! I2,4;Bn+
1J-1 N

< c[ I I° 19,4:8+ + 9 (I f' 1:.4:8+ + I VI' Is,4;B+) + I U I B'(B+) ]

The constant C is independent of u and F but depends on the coefficients
through the bound imposed on I aii, di Ic^.1 i, and I b', c I.;, as well as
through a.

(ii) Let µ > N. If a'1, di e C''6(B+) and b', c r C°'d(B+) with 8 =
(ft - N)/2, the same conclusion as in (i) is valid, except that now C de-
pends on the coefficients through the bound imposed on I ail, dl 10.6jT+) and
I b', c Ic°,618+( as well as through a.

PaooF. We proceed simultaneously for all values of µ. Let R6 =
(l - R)/2h. By Lemma 2.23 uIBR+n E H'(BR+R,) with

N

I U IB-(BR+n,) < c(If° I2;++ E II` Ili1(B+) + I U I;r1(B+
ia1

N<C[If' 12,;.;8++ (If' 12,4;8++ I VP I2,4,B+) + I U ;'i1(B+I]
1-t

whereas UIBR+n,, uX1IBn+n, t .. , L''4(BR+B,) by the previous the-
orem. Let s = 1, ... , N - 1: the function u.,IB;+B' belongs to H'(BR+n,),
and even to H°';+(BR+R,) in the case (3.31), and satisfies

J
(a'lur,,, + diuz,)vz, dx =

(Z J'v1 +
faun) dx

BR+n, BR+Ba 't,

(Iz. - d=.u - a=.u= )v=(
Bk+n, [ it'

+U.-d.u-ai'u,,+b'uz,
+ cu -I°)v:,l dx, (3.33)

in the case (3.31) whenever v E C (BR++R,), in the case (3.32) whenever
v E C,°°(BR+R, U SR+R,). Notice that JBR++n, (hv,,),, dx = 0 if h E H'(BR+R,)
and v c- Cr (BR+B, U SR+R,). The conclusion about each derivative us,,,
follows as in the proof of Theorem 3.5. For what concerns the con-
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clusion follows from the equation rewritten as

aPIFSN =
(&NN)-'[- E (a"u:,)st of u:R - (d'u):t + b'a:

+cu in BR+. (3.34)

0

3.5.2. LP Regularity near the Boundary

We conclude the study of the regularity of solutions to either (3.31)
or (3.32) with two theorems which correspond, respectively, to Theorem
3.7 and Theorem 3.8. Again we take 92 = B+.

THEOREM 3.14. Let u solve either (3.31) or (3.32) with f°, ... , fN e
LP(B+), 2 <p < oo, and let ail, die C°'6(B+) for some be ]0, 1[. Whenever
0 < R < I, uIBB+ belongs to with norm estimate

I U 1 .P(Ba+) < C(Y If' Ip:++ I u In1(B+i)

The constant C is independent of u and F but depends on the coefficients of
the bilinear form through the bound imposed on I a'i, di I L^ ,eini and I bi, c I.,+
as well as through a.

PROOF. Let u solve (3.31). We proceed as in the proof of Theorem

3.7. Namely, we first assume the bilinear form coercive on H'(B+) and
solve

Z° E Ho'(B+)

a(z°, v) = fB+ f°v dx for v e H°'(B+),
J

zi E H01(B+),

a(z', v) = f iv., dx for v e H°'(B+),
R+

i = I, ... , N. Let Q be a cube with edges parallel to the coordinate axes,
Q c Ba+N1 [RI = (I - R)/2]. Each mapping Thi: fi z%IQ (j=0, 1, ... ,
N and h = 1, ... , N) goes from L2(B+) into L2(Q) by the very definition
of the zt's, from L`°(B+) c L2-N(B+) into by Theorem 3.12(ii)
(with R replaced by R + RI). Thus Thi: LP(B+) , LP(Q) by Lemma 3.6.
Let z = Eiv° zt: the function w = u - z e 11°1;+(B+) satisfies a(w, v) = 0
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for v e H°'(B+), so that Theorem 3.12(iii) yields w[O c- C1-6(Q) c; HI.P(Q)
with the corresponding norm estimate. In the coercive case the conclusion
follows after covering BR+ by a finite number of cubes Q as above. In the
noncoercive case a bootstrap argument, based on the identity

a(u, v) + A f
B+

dx = <F + Au, v> for v e H°'(B+)
H+

as well as on the result just proven for coercive bilinear forms, leads to the
desired conclusion for u solution of (3.31).

The procedure for u solution of (3.32) is perfectly analogous- B

As an illustration of the sharpness of the above requirement about the
range of p, consider the following example.

EXAMPLE. Let N = 2 and set u(x) = x,(1 - In I x I). Since u., =
-x1x,IxI-'and u2j=I-InIxI-x.'IxI-',uEH°';+(B+), and as a
matter of fact u e H'.P(B+) for any p e ]2, oo[; however, u IBa+ does not
belong to H'-m(BR+). Let v e H°'(B+). Since

fB+
x. IxI-vdx

H+ B+

=JB+(-1+ In IxI)u.,dx,

u satisfies

Is, u.,v
1

dx
=

JB+f'v., dx -- f,+(-2x1x' I x I-'v., - 2x,' I x I-'vr1) dx,

and f1, f' belong to L°°(B+).

THEOREM 3.15. Let u satisfy either (3.31) or (3.32) with f°e LP(B+),

f1, ... , f`v e 2 <p < oo, and let a'U, di a C°'1(B+). Whenever
0 < R < 1, uIBR+ belongs to H2.P(BR+) with

N

I u IH1.P(RR+) G C(I f° IP:+ + X. I P IH' P(B+) + I U IH=(8+)
1

the constant C (independent of u and F) depends on the coefficients through

the bound imposed on I ail, di IC.,,(g:) and I b`, c Im.+ as well as through a.

PROOF. The case p = 2 is Lemma 2.23 for k = 0. If p > 2 we repeat
the proof of Theorem 3.13(i), with (0 < p < N) replaced by LP. 0
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3.5.3. Global Regularity

Setting V = H°'(S2 U P) and assuming r closed, we consider solutions
to the mixed boundary valve problem

u E V,

a(u, v) = <F, v) J (_f + f'v,() dx for v c- V,
(3.35)

with a(u, v) given by (3.11). The following results can be proven by the
same technique utilized in the proof of Theorem 2.19.

THEOREM 3.16. Let u solve (3.35).

(i) Assume 8Q of class C' and f° e L2.(N-2)+(12), f', ... , fN e
with 0 < p < N. Then u and all its first derivatives belong to L!.a(D) with

N
11U I2.p:n + I Vu I2.p;n G C(If° Iz.ip-2i+;n + ZIf' I I HI(D) 1.

,-1

(ii) Assume 812 of class and a'i E for some 6 e ]0, 1[. Let
f° E L2,(N-2)+(,{2), f', ... , fN e Then the conclusion of (i) is valid
for p = N.

(iii) Assume 8D of class C'-d a'i die for some 6 e ]0, 1[,
l E L2.Ip-2)+(12), fl, ... , fN e L2.9(12) for M = N + 26. Then the conclu-
sion of (i) is valid for the present value of p.

(iv) Same assumptions about 852, a'i, di as in (iii). Let f°, ... , fN e
Lp(12) for some p E ]2, oo[. Then u e with

Iulu.n(a)<CIf'Ip;D+IUI

In all estimates above the constants (independent of u, F) depend on the
coefficients of the bilinear form through the bound imposed on their respective
norms, as well as through a; in the estimate of (i) it depends also on r.

THEOREM 3.17. Let u solve (3.35).

(i) Assume 812 of class C''' and a'i, die Let f° c and
f', f 4 E f o r i, j = 1, ... , N with 0 < p < N. Then all second deriv-
atives of u belong to With

N

Z Iux)z)I2,p;D<_ C[I/ I2.p;0+: (Ifs12.p;Q+IV 'I$p;D)+IuIHf(n) ].

1;-i 1
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(ii) Same assumptions about 80 and a`J, dJ as in (i). Let f° E LP(D)
fl, ..., fx e H',P(92) for some p E [2, co[. Then u E with

N

I u G CI 1 1° P:a + E I f' I111.PIQ) + I u Ini(o) 1
Yl

(iii) Assume 8S2 of class and a'), dJ e C1.%? ), b', c e C°-'(.D) for
some 6 E ]0, 1 [. Let f° e L'.A(Q) and f', .14 E for i, j = 1, ... , N,
1' = N + 26. Then the conclusion of (i) is valid for the present value of A.

In all estimates above the constants (independent of u, F) depend on
the coefficients of the bilinear form through the bound imposed on their
respective norms, as well as through a.

Note that the case p = 2 in Theorem 3.17(ii) is Theorem 2.24 for
k = 0.

3.6. A priori Estimates on Solutions to Nonvariational
Boundary Value Problems

Consider the mixed b.v.p.

Lu = -a'Ju,l,, + a'u7, + au = f in .Q,

ularr`r=0, Bu =fl'u7Ilr+Pulr=C on P.
(3.36)

In this section and the next r is closed and 80 is of class for the He.P
theory, of class 0 < 6 < 1. We assume a'J = aJ'
[an unrestrictive hypothesis: both a'J and aJ' can be replaced, if necessary,
by (a'J + a5')/2] and fi'v' > x on 1, x being some positive constant.
L is said to be a nonvariational (elliptic) operator since its principal part
cannot in general be put into divergence, or variational, form. Problem
(3.36) is called a nonvariational b.v.p. The condition on 8Q\I' is, of course,
the (homogeneous) Dirichlet condition; the one on I' is called a (non-
homogeneous) regular oblique derivative condition.

3.6.1. The Case of Smooth Coefficients

If the regularity assumptions about the coefficients of L and B are
suitably strong not only can the principal part of L be put into variational
form, but indeed the whole problem (3.36) can be given a variational
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formulation to which previous results apply. This is illustrated by the next
two lemmas.

LEMMA 3.18. (c) If a" e C°.'(.Q), a', a e L0(Q), fl', fi e there
exists a constant C, depending on the coefficients of L and B through the
bound imposed on their respective norms as well as through a, such that

I u 1x'.-ca) < CU Lu Ipla + I Bu IH1/p'.ycr) + I u IH'.pcm) (3.37)

when u e 2 < p < oo, vanishes on 8D\r.
(ii) If a" e C'-'(.D), a', a e C°.k(S2), fi', fl (= a similar estimate

I u IO'.dww) < C(I Lu Icm,B) + I Bu Ict.k(r) + I u Ic14w) (3.38)

holds when u e vanishes on a.Q\r.

set

PaooF. We set f = Lu, t = Bu, and proceed in two steps.

Step 1: The variational formulation of (3.36). Consider the case (i) and

8 = atjI
V' rk = 0Rk -

Y Vt

Thus, (r', ... , rv) is a vector field on r satisfying vkrk = 0 identically.
Let a'j e be such that a''I1. = vir'; then

(a"I r - al r)vt = Ti.

Finally, let di c- C0.1(D) be such that djIr. = Bflvi. We define a bilinear
form on H1(S2) by setting

a(u, v) - J [(a'tuzi + dtu)v.t + (biu., + cu)v] dx
n

= Ja {[(aci + ati - diu]v.,

+ [(a+ 4,+ as'- as + d')ur1 + (a + dU)u]v} dx; (3.39)

notice that d'il:;l:, = a'il=jE . Inspection shows that whenever u e He(S2),

d(u, v) = J (Lu)v A for v e Ho (S2)
n

and

(a1tu,, + d'u)I rvi = OBu



182 Chapter 3

[i.e., OBu is the conormal derivative of u with respect to the bilinear form
(3.39)].

Notice also that

J (Ev + d'v=,) dx = f
o

+ (ddv)zt] dx = J av dx +
J

(d'v)I rv' do
a n Q r

= J av dx + J Bfivlr do for v c V. (3.40)
o r

Now write C = zlr, with z e H I,p(Q V I').
If 0 = tlr, vi = n'jrwith t, ni E let J = tzn4: then

I P IHlm(Q) C I Z IHI.P(Q)

Moreover,

J (1.1,v + Pt,.,) dx = J (fv)PI dx = J (f'v)I rvi do
o Q r

= J BCvh r do for v E V.r

Notice that, as a consequence, C < 0 implies f Q (/4v + f'v21) dx < 0 if
VE V is >0.

Lemma 2.6 can at this point be utilized to ascertain that u c HI(Q)
solves (3.36) if and only if

u E V,
(3.41)

@(u, v) = J (f °v + f'v:,) dx = J + f:i)v + f iv,(] dx for v E V.
a n

Analogous conclusions are easily obtained in the case (ii).

Step 2: Proof of (3.37) and (3.38). Let U E 2 <p < a'. To
(3.41) we can apply the estimates of Theorem 3.17(ii):

I U IHl.P(Q) < C( I fo Ip;Q + X,I I P IHI.P(Q) + I U HI(D)

C(I f Ip;Q + I Z I U

By letting z vary in the equivalence class that defines C, we arrive at

I U IHI.P(Q) : C(I f I + I C IH"P'.P(r) + I U IHI.P(Q)),
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i.e., (3.37). The proof of (3.38) is perfectly analogous, since Theorem
3.17 (iii) provides the C°,°(.D) estimate on solutions to (3.36). 0

LEMMA 3.19. Suppose a > 0 in 52 and ft > 0 on T, with in addition
ess sups a -}- maxi fl > 0 if r = O.Q.

Under the assumptions of Lemma 3.18(i), (3.36) admits a unique solu-
tion u e H2-v(D) if f e LD(S2), l c 2 < p < co; under the as-
sumptions of Lemma 3.18(ii), (3.36) admits a unique solution u e C2,'(D)
iffc c° °(D), C E Cl.°(T).

Additionally, u < 0 if f < 0 and C < 0.

PaooF. Let d(u, v), f o, fl, ... , fN be defined as in Step 1 of the
previous proof. Thanks to (3.40), the present assumptions about a and #
imply d(1, v) > 0 whenever v c V is > 0, and also d(l, v) # 0 for some
v e V if T = 80, so that the assumptions of the corollary to Theorem
2.4 are satisfied. Therefore (3.41) admits a unique solution u. Let f < 0
and C < 0: if v E V is > 0, then f a (f ov + /tv ,) dx < 0. Hence u < 0.

There remains to show that u has the required regularity [so that it
satisfies (3.36)]. This can be done thanks to Theorem 3.17(ii) in the case
(i) of Lemma 3.18, and to Theorem 3.17(iii) in the case (ii) of Lemma
3.18. 0

3.6.2. The General Case

When the leading coefficients of L are less than Lipschitz continuous,
there can be no hope of transforming (3.36) into a variational problem.
Yet, Lemma 3.18 itself can be utilized to provide sufficient conditions in
order that estimates such as (3.37) and (3.38) remain valid. Indeed we
have the following lemma.

LEMMA 3.20. (i) Let a1 a C°(.l), a', a e L'%12), #', ft e C°,1(T). There
exists a constant C, depending on the coefficients of L and B through the
bound imposed on their respective norms as well as through a and r, such
that (3.37) is satisfied whenever u e H'.a(52), 2 < p < oo, vanishes on 852\T.

(ii) Let a'j, a', a e C°,d(.i), p', ft e c,,6(1'), There exists a constant C,
depending on the coefficients of L and B through the bound imposed on their
respective norms as well as through a, such that (3.38) is satisfied whenever
u e C3"8(12) vanishes on 852\T.

PaooF. We shall only prove (i), leaving the proof of (ii) to the reader
(see Problem 3.9).
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We fix x° E P and set 4042 = afi(x°), Lou = -otiu.,., + alua( + au.
Let r > 0 be so small that n e3Q c P. Denoting by g,,, a cutoff
function from C°°(RN) with 0 < g,.,, < 1, supp g,*,, c: B,,(xl) and g,,,
= 1 on $,(x°), let u' = u ;p, = g0,, u. We can apply Lemma 3.18(i) with
L replaced by L. and u by u'. Thus,

I u I I U

I Ia;D + I I u IH1.P(D)).

Notice that C, while independent of r, depends on the ai1's through a and
the bound on I aif IPP;Q-

We can majorize I (L - 4°)u' lava = I (L - 4°)u by T(2r)
X ENi-1 I Ip;D. Thus,

I u' IH'.P(D) < C[I Lu' Ia;D + I Bu' I H1ia'.a(rl + r(20 I u lH1.P(D) + I u' IHLP(D))

If now r = r(x°) is so small that in the above inequality r(2r) < e with
e > 0 suitably chosen we obtain

I U IH1.P(D) C C(I Lu' Ia;D + I Bu IHUP'.a(r1 + I U IH1.P(a))'

Similar considerations show that if x° c 8S2\P (or x° E 0), there
exists a positive number r = r(x°) such that B,,(x°) n 8S2 c O.Q\P (or
B°t(x°) cc 92), and the function u' = u;.,, = ge,, u satisfies

u IH1.a(D) C C(I Lu' la;D + I 1H-.P(D))-

Since .l is compact there exists a finite number m of pairs (x0A, rA)
with rh - r(x°A), chosen with the criterion illustrated above, such that
.{3 c I,JA, B,a(x°A). By defining uk -- we therefore have

IH1.a(DI A IH1.a1DII U

1n

< C E (I l 4 Ia;D + I BuA IH11P'.P(!' + I uA IH'.P(D))'
A-1

A straightforward computation shows that each term I Lu,' la;o is bounded
by C(I Lu 1,;o + I U IH1.PI0)), each term I Bu, IH1.";(r) by CC Bu IHlmbalr)
+ I u lJ1,P(D)) and each term I UA' IH1.P(a) by C I U IH1.P(ai, so that (3.37)
obtains. 0

The right-hand sides of both (3.37) and (3.38) depend not only on the
norms of Lu and Bu but also on some norms of u itself. We can, however,
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get rid of such an inconvenient dependency through a suitable zero-order

"penalization" of L, as the next lemma shows.

LEMMA 3.21. There exists a positive constant 1, dependent on the coeffi-
cients of L and B through the bound imposed on I ail, a', a Im,a and on

P lcoa(n as well as through a and r, such that the following is true:

(i) Same assumptions as in Lemma 3.20 (i). For any A > A and any
p c (2, co[ there exists a constant C, dependent on the coefficients of L and
B through the bound imposed on their respective norms as well as through
a and r, such that

I u I CO Lu + du Iv;a + I Bu I Hvvm(n)

whenever u E H'-v(Q) vanishes on aQ\r.

(ii) Same assumptions as in Lemma 3.20(ii). For any d > I there exists
a positive constant C, dependent on the coefficients of L and B through the
bound imposed on their respective norms as well as through a, such that

I u I c'.a(6( < C(I Lu + Au co.a(n( + I Bu lc'-d(n)

whenever u e C2 %Q) vanishes on dt1\r.

Pxooe. Step 1: Proof of (i) for p = 2. Let a,ii, n E N, be the restric-
tions to D of regularizations e, * a "'t (see the introductory considerations
of Section 3.1): thus, a; i -. a'1 in C°(.2). Let L. be the operator obtained
from L after replacing a a`1 by an i and let d,(u, v) be the bilinear form
analogously obtained from d(u, v) [see (3.39); the function 0 utilized in
the definitions of the coefficients must be replaced by 9, = a,, flr v`vil fkvk].
We provide estimates on I u Ia,a and I L,u Is;o as follows.

Let u e HI(D), ulaa.r = 0. By the Green formula,

fo
dx = d,(u, u) -

J
0,(Bu)u I r do

o r
IPuIs:o-C(n) I uIz;n- Z IuCIBu IJpn(r.

where we have minorized d,(u,u) as in Section 2.2.1 and have majorized

I f r 0,(Bu)ulr do I (independently of n) by

CIBule;rlulriz;r
2 Iu `H'(a(+CIBuI'Hu'(n
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Thus,
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LRu+Au 12:a+ Z iu12:n?J (LRu+ku)udx
a

[A - C(n) - 2 ] I U Is.n - C I Bu I!i1»Ir),

[with C(n) dependent on the a'3's only through a and the bound on I a'
so that there exists a positive constant A'(n) such that

lliv.ln for 2>d'(n).

Moreover,

LRu+ Au Iz:n= ILRuIQ:n+2A f
n

I Lnu IY:n + A2 I u 19:a - 2A[C(n) + 2 ] i U

- 2AC I Bu }(=nlr.,.

so that there exists A"(n) > 0 such that

LRu 122;0 < 1 LRu + Au Is;a + 2AC I Bu I for d > l"(n).

Ic;a].

We can apply Lemma 3.20(i) with L replaced by L,,, the constant
of the estimate being independent of it Thanks to the interpolation in-

equality
N

U n1(a) E I UZ)zl 12;Q + C(E) I U Iz:ni j-l

(see Lemma 1.37) we have

I U limo < Q 4U 12;Q +I BU I'nln(r) + I U 1I2;0)

< C[I Lnu + Au Is:n + (2A + 1) 1 Bu &n (n]

for A > A(n) - A'(n) V A"(n). At this point we fix an index if so large
that

N
aa"d - a" Iw;o < E, hence I (LR - L)u Ie:n CE E I Uziz/ 12;0.

i.j-1

with e suitably small. Note that n can be fixed so that it depends on the
a's's only through T. Then the inequality

ILxu+Au le;0G2ILu+2ula:a+2I(Lr, -L)uI2;a
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yields
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Iula+(a(<C[ILu+AuILa+(21+1)1BuI'a.(ynl

for A > .l = 1(n), hence the desired conclusion in the case at hand.

Step 2: Completion of the proof. Let A > 1. By (3.37) we have

I U Inf.a(a) G C[I Lu + Au Ip:a + I Bu I (1 + 1) 1 u Iui.p(ml

For brevity's sake we restrict ourselves to N> 3. If 2 <p < 2', Theorem
1.33 yields H'(Q) c so that

I U asm(m : C[I Lu + lu I,no + I Bu I (A + 1) 1 u I utim)

< C(.1)(I Lu+Au 1p:a + I Bu l nvp'.a(n + I Lu+Au ls:o + I Bu lx(nir()

by Step I of the present proof, and the inequality required by (i) holds.
If instead 2* < p < 2 we utilize the continuous imbedding c
H1-P(Q) and the inequality just proven with p replaced by 2*; proceeding
thus, we conclude the proof of (i) in a finite number of steps for any choice
of p. For the proof of (ii) it suffices to utilize (i) with p so large that
c C'"'(t) and apply (3.38). 0

3.7. Unique Solvability of Nonvariational Boundary Value Problems

3.7.1. Regularity of. Solutions

Instead of (3.36) consider the nonvariational b.v.p.

Lu+lu=f in Sa,

uI 0, Bu + Aulr = (' on F.

We have the following lemma.

(3.42)

LEMMA 3.22. Let 1 be the positive constant provided by Lemma 3.21,
let 4> 1 be so large that a + A0 > 0 in Q, # + A0 > 0 on P, and let
1 > l0.

(i) If a{i e C0(.Q), a', a e L°'(Q), j9', # e C0-'(I') and f e Lp(.Q), C e
H"p p(I') with 2 < p < co, then (3.42) admits a unique solution u e H'-p(Sl).
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(ii) If a", a', a e C°-a(.)), flu, fl e C'-a(I') and f E C c- CI-6(11,
then (3.42) admits a unique solution u e C2-6(D).

In all cases u < 0 in 12 if f < 0 in 12 and C < 0 on P.

PROOF. We shall give only the proof of (i), since the proof of (ii) is
perfectly analogous.

Uniqueness follows immediately from the a priori estimate of Lemma
3.21(i) (with B replaced by B + A). Passing to existence, we consider the
same functions and operators L. as in the proof of Lemma 3.21.
Moreover, we fix b', b e with b'lr = f', bar = ft. By Lemma 3.19
each b.v.p.

in S2,

0, Bun + C on P

is uniquely solvable in H2-P(D), and u < 0 in 12 if f:5 0 in S2, < 0 on
T. Moreover, Lemma 3.21(i) yields the existence of a uniform bound

I un IH'.eco) < Q f 1,;n + I S Invn'.a(ri)-

By the reflexivity of we can extract from {un} a subsequence,
still denoted for simplicity's sake by the same symbol, such that un -. u
in H''9(Q). Hence un u in by Rellich's Theorem 1.34. Of
course, u < 0 in 12 if un < 0 in 12 for all n e N. Let v 6 CO(D). In the
integral identities

fo
+ a'un:, + (a + d)un]v dx =

J
ft dx

a e

we can pass to the limit as n -* oo and obtain

fD
+ Au)v dx = J fv dx,

o a

which shows that Lu + Au = f in 12 by the arbitrariness of v. On 812\P
u vanishes, as do all functions un. Finally, an easy application of the
divergence theorem (whose details are left to the reader) yields

f r + Au.Ir)n do J (Bu + 2ulr)°] da
r r

whenever rl e C'(P), so that Bu + AuIr = C on P. 0

We can now arrive at a regularity result for solutions of (3.36).
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THEOREM 3.23. Let u e H'(.Q) solve (3.36).

(i) If a'5 c C°(.f5), a', a e L'°(SZ), #', f E and f E L'(S2), { E
Hi/y'-'(P) with p e ]2, oo[, then u E H'''(Q).

(ii) If a'5, a', a E C°,°(.Q), #', f e and f e C°.'(.Q), C''"(.Q),
then u E C2.6(.O).

PROOF. Let us simply prove (i). We fix ?. > A. (see Lemma 3.22) and
write (3.36) as

Lu+Au=f+2u in P,

0, Bu + AuIr = C + AuIr on P.

Again, we take N > 3. Let p1 = p A Since H'(D) c (.Q), we have
f + Au E L''(Q) and C + lul r E H11y ,''(I'). Lemma 3.22 provides the
existence of a unique solution w e H'-''(Q) to the b.v.p.

Lw+2w=f+Au in 92,

0, Bw + Awl, =C + 2ulr on P.

But then w is also the unique function from H'(.Q) which solves the same
problem; since u is already one such function, it must be it = w, hence
u E If p1 = p we are done. Otherwise, we repeat the above
argument a suitable number of times to reach the desired conclusion. 0

3.7.2. Maximum Principles

At this point we want to provide a suitable maximum principle for
solutions to (3.36). The following observation casts light on the various
stages through which we shall proceed: Let W E C°(Q), a = 0, and let
u E Ca(D) satisfy Lu < 0 in 92; then it cannot achieve a local maximum
at a point x° E Q. In order to show this all we have to do is recall that
at an interior maximum point x° the gradient Pu(x°) vanishes, the Hessian
matrix [u,,,1(x°)]1,;_1..... N is nonpositive, and therefore 0 > Lu(x°) _
-ai1(x°)u,1,1(x°), but also a'0(x°)u,1,1(x°) < 0 {by a well-known result of
linear algebra which utilizes the fact that [a'5(x°)];,5_...... N is nonnegative),
hence a contradiction.

When u is only in some space so that the Hessian matrix of
u at x° is not defined, a more sophisticated tool is needed, namely, the
following Bony maximum principle.
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LEMMA 3.24. Let u e p > N, achieve a local maximum at
x° a D. Then,

ess lim inf a'i(x)uu2,(x) < 0.
N.O

Pxoop. It suffices to proceed under the stronger assumption that
u(x°) is a strict local maximum. This is certainly true if u(x) is replaced
by u'(x) = u(x) - I x - x° 14; moreover,

ess lim inf a`t(x)u,,r,(x) = ess lim inf a`i(x)u ,(x).
s-no z+s^

Let Ucc S2 be an arbitrary open neighborhood of x° such that
u < u(x°) in U\{x°}, and let W be its (relatively closed) subset defined by

W = {y e U I u(x) < u(y) + Vu(y) (x - y) for x e C);

notice that H2.n(12) c by Theorem 1.41. Since u(x°) is a
strict maximum we can fix r > 0 so small that

u(x) < u(x°) + ri (x - x°) for x c 8U

whenever rJ C RN satisfies I 71 1 < r. Thus for any rt as above the maximum
over U of the function x '--. u(x) - ri x can only be achieved in the
interior of U: in other terms, there exists y e U such that

u(x)<u(y)+rl (x - y) for xE C.

But this implies rr = Vu(y) and therefore y e W.
Now let the mapping 1:.' -. RN be defined by .?(y) = Vu(y) so

that by the above considerations 1(W) 2 B,. We claim that the Lebesgue
measure of W cannot be zero. Indeed, by Theorem 1.41 there exists a
constant C such that, whenever Q c S2 is an open cube, each derivative
uu E satisfies

I uu(x') - uu(x'") I < C(diam Q)1-Nrol
U., la1,P(Q)

for x', x" e (see Problem 1.17). Thus,

I-?'(Q) 15 C(diam Q)N11-N1p)l

u

Assume I W 0. Then for any a > 0 there exists a sequence (Q.) of
pairwise disjoint cubes Q. cc S2 such that W c u .1 Qp, 1(diam Qn)N
< E.
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But then, setting a" _ (diam Q_)", b, u Ia.p aT , we have

m
( W) I [ 17(Q.) I C Y aql-N/p

1-N/p
b N/p < C(E aq) I E bq)

N/p

T-1 T_1 T-1 T-1

1-N/
(

N/p
= C[ > (diarn QJN I I u Ipa'.piaT )

where use has been made of the Holder inequality. This implies

IO(W) <_ Lel-N/p I U IH'I.p(a), hence IY(W) I = 0,

which is absurd since .7(W) contains a sphere.
By Theorem 1.20 u,,:/ is a classical derivative at almost any point of

Sd, hence in particular of W. Let E be fixed in the unit spherical surface
S of RN: by the change of coordinates formula, at almost any point y e W
each first derivative uu admits a classical directional derivative with respect
to E, and we can apply the MacLaurin formula to the function 0(t)
u(y + te), t e R with I I I < dist(y, 8U). Thus,

a

u(x) _ qS(t) _ 0(0) + t# (0) + 2 [¢u(0) + a(t)]
a

= u(y) + Pu(y) (x - y) + 2 [u:,y(y)E'E; + a(t)],

a(t) -. 0 as t-. 0,

for x = y + tE. Since u(x) < u(y) + Vu(y) (x - y) for any x as above,
it cannot be u,,,,(y)E;E;> 0. Now let {E'")} be a countable dense subset
of S. From the above considerations it follows that at almost any point
y e W we have "'E;'" < 0 for n e N, hence also u.(y)E;E; 5 0
whenever e C S.

Summing up, we have proven that any open neighborhood U of x°
has a subset of positive measure where the Hessian matrix of u is non-
positive and therefore a'fu,,, < 0, which concludes the proof. 0

Next we have the weak maximum principle for the nonvariational
operator L.

LEMMA 3.25. Let It e p > N, satisfy Lu < 0 in Q. Then,

maxIt =maxu
b an

if a = 0,
max u < max u+

a an
if a > 0 in Q.



192 Chapter 3

PROOF. Step 1: The case a = 0. Let us for just a minute strengthen
our assumption about Lu into Lu < 71 < 0 in 0 (almost everywhere). If
u achieved a local maximum at a point x° E S2, the Bony maximum principle
would imply ess lim super,,. Lu(x) > 0, hence a contradiction (see the ob-
servation preceding Lemma 3.24). In the general case Lu < 0 we fix y > 0
so large that

ay'- Ib' Io;oY>0;

then for any e > 0 the function u,'(x) = u(x) + ee", satisfies

Lu; (x) < e[-a11(x)y2 + b'(x)y]e' ' < e(-ay' + I b' Ic;uy)ex'

<ri(s) <0

almost everywhere. Since u; cannot achieve an interior maximum, the

conclusion in the case at hand follows from the inequality

u(x) + sex' < max [u(y) + ceW"']
Veaa

for x e .0,

valid for any c > 0. Notice that at no stage did we make use of any reg-
ularity assumption about 8Q.

Step 2: The case a > 0 in Q. If u < 0 in S2 there's nothing left to
prove. Let ,{2+ _ {x a 52 I u(x) > 0} # P. Since Vu - Lu - au < -au
< 0 in S2+ we can apply the conclusion of Step I with S2 replaced by 52+,
L by V. Thus,

max u= max u < max u = max u. 9
a o+ ao+ ao

We can now prove the Hopf boundary point lemma.

LEMt a 3.26. Let u C p > N, satisfy Lu < 0 in 52. If u achieves
a strict local maximum at a point x° a 852 and if (ft0', ... , fl N) E RN with
f 'v'(x°) > 0, then fl0'ur,(x°) > 0 provided either a = 0, or a > 0 in S2
and u(x°) > 0.

PROOF. Our regularity assumptions about the boundary of 52 imply
the existence of a sphere BR(y) c 52 which is tangent to 8D at x°. To see
this it is enough to consider the case when x° is the origin of R' , 52 n B
lies above 852 n B, and the latter is the graph of a function xN =
t(x') which vanishes together with all its first derivatives for x' = 0. The
mean value theorem yields the existence of a constant C such that 11(x') I
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C I x' 12. hence the existence of a sufficiently small number R E ]0, }[
such that the distance of the point y - (0, ... , 0, R) from any point of
dD n B is not less than R.

Now let v(x) = e-1-YI' - ey'1', where y is a positive constant to be
determined. Computation shows that

Lv(x) = e-ris-Yip{-4yea'i(x)(x, - yJ(xi - yi)
+ 2y[a"(x) - ai(x)(xc - yJ]} + a(x)v(x)

< e- l z-YI'{-4aye I x - y I' + 2y[a;;(x) + I a`(x) I I xt - y: I + a(x)]}.

By the boundedness of the coefficients of L to any e e ]0, R[ we can as-
sociate y > 0 so that the last term of the above inequalities is < 0 whenever
e < I x - y I < R. Since R can always be assumed so small that u(x°)
> u(x) for x e BR(y), on Se(y) we have u - u(x°) < 0 and therefore
u - u(x°) + ev < 0 provided c > 0 is also sufficiently small. The function
u - u(x°) + ev is < 0 on SR(y) where v = 0. In addition, L(u - u(x°) +
cv) = Lu + eLv - au(x°) < -au(x°) < 0 in BR(y)\BQ(y) both if a = 0
and if a > 0 in Si, u(x°) ? 0. We can apply Lemma 3.25 with Si replaced
by BR(y)\Be(y) to obtain u - u(x°) + ev < 0 throughout the annulus.
Since x° is a maximum point for the function u(x) - u(x°) + ev(x),
elementary considerations show that

$0'a:,(x°) ? -efi°'v.'(x°) > 0. a

The following result is the important strong maximum principle.

THEOREM 3.27. Let it e H'-Y(D), p > N, satisfy Lu < 0 in Si and
Bu < 0 on T. Unless it is a constant, and specifically a nonpositive one if
ess sup, a + maxr ft > 0, the maximum M of u on 1 cannot be achieved
on Si V T if either a= 0 and fi = 0, or a > 0 in Si, # > 0 on F, and
M>0.

PRooF. We need only rule out the possibility that u equals M at some
point x° e Si U T without coinciding with M throughout D. To this end
we assume the existence of a sphere BR(y) c Si and of a point x° a SR(y)
n (Si V T) such that u(x) < M for x e BR(y) and u(x°) = M. Lemma
3.26 can be applied with Si replaced by BR(y). Therefore flo4U3(x°) > 0
whenever fi0`(x," - yJ/I x° - y I > 0. But this is absurd because all first
derivatives of u must vanish at the maximum point x° if the latter is interior
to Si, whereas fl0`u,,(x°) < -fiM < 0 with fl,' _ f'(x°) if x° a T. 0
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REMARK. In all four results above the a`i's might have been taken in
L-(D) instead of C°(t3).

3.7.3. Existence and Uniqueness

A uniqueness criterion for solutions to (3.36) can now easily be proved.
In fact we have more than that:

THEOREM 3.28. (i) Let a'1 a C°(. ), a', a E L°°(S2) with a > 0 in 92,
e with fi > 0 on I', and in addition let ess sups a + maxr #

> i? > 0 if r = a(. Then there exists a constant C, depending on the
coefficients of L and B through the bound imposed on their respective norms
as well as through a, r, x, and ri if F= ail, such that

I U IH'.Pmc < C(I Lu IP:a + I Bu Ie"Pr.v(F))

whenever u e H',P(D), 2 <p < oo, vanishes on aid\I'.
(ii) Let a'i, at, a e with a > 0 in i2, f i, ft e C'-a(I) with ft

> 0 on I', and in addition let maxa a + maxr f >71 > 0 if r = ail. Then
there exists a constant C, depending on the coefficients of L and B through
the bound imposed on their respective norms as well as through a, x, and Pi
if r= aid, such that

I u c.,a(n) < C(I Lu Icmcn) + 1 Bu

whenever u e CAD) vanishes on ail\P.

PROOF. We shall only prove (i), the proof of (ii) being perfectly
analogous. Suppose that no constant C as required exists.

We can then construct sequences c CO(D), and c
L°°(4), {fin } and c C°-'(I'), {u,} c H2'(12), with the following
properties:

I an", an', a, I,e:a < C, all matrices [an'i]1 i_ ... T sharing the same
constant of ellipticity a, and all functions the same modulus of
uniform continuity r;

f,'P' > x, Yn = bn'I r and fi, = b,1r where b , b E with
I bn', b. ICO..cn) s C;

f=OD;
0, 1 u, IH'.PCm = 1, 0 in LP(Q), 0 in
with the obvious definitions of L. and B.
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By making use of either Ascoli-Arzelh or Rellich compactness results
in the various function spaces at hand (and passing to subsequences if
necessary) we can always find aii a C°(.(1), a', a e L°°(Q), b', b e Cd.'(52)
and u e H'-p(Q) such that

a'i in C°(.Q), a,' -a' and a -a in L'(d2);
b - b' and b -* b in CO(D);
U. - it in hence u. -. u in HI-P(D).

It is clear that Lu = 0 and uld, = 0. Besides, let z a U Il,
Znlr = Bpra , I zn I HX.,(n) = I B,u I HU,'.,(n: then z = bn unz( + Z,
vanishes on F, tends to b`uz( + bu in LD(D), and verifies I z Ha,ia) < C,
so that it satisfies Bu = 0 on I' with the coefficients of B defined by $'

b'Ir, f = b'r
The regularity result provided by Theorem 3.23 yields u C- 111-9(D)

for any q < oo, so that Theorem 3.27 can be applied to it even if the original
exponent p has not been chosen > N. Consequently u, the strong limit in

of u,,, vanishes on Si. Let us now apply the inequality (3.37) [see
Lemma 3.20(i)] as follows:

I u,1 I/r..p(a) C C(I L8u ID:a + I B,u IHllp'.,(r) + I UT 6-P(D)),

where the constant C is independent of n. Since not only I L,u1,,a and
I B,u IH ',p(ri tend to 0 by construction, but so does I un I H p(a) by the
preceding considerations, we obtain

I
it, 0. This contradicts the

initial requirement I u, IH.,,(a) = 1. p

The following theorem can now be deduced from Theorem 3.28 by
exactly the same techniques utilized to deduce Lemma 3.22 from Lemma
3.21.

THEOREM 3.29. (i) Same assumptions about the coefficients of L and B
as in Theorem 3.28(i). If fe La(.Q) and C E with 2 <p < cc,
then (3.36) admits a unique solution u e

(ii) Same assumptions about the coefficients of L and B as in Theorem
3.28(ii). IfS f e C a unique solution
u E

In all cases jr < 0 in Si and C < 0 on I' imply u < 0 in Si.

The two preceding theorems guarantee that in problem (3.36)
is well-posed, that is, it admits a unique solution that depends continuously
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on the data f and i;, provided the coefficients of L and B satisfy a suitable
set of assumptions. Among these the continuity of the a`i's plays an es-
sential role, as the next example shows.

EXAMPLE. Let

a'r(x)=8ci+ N1
R-2

If I it is easy to ascertain that the matrix [a'i];,;_....... is uniformly
elliptic in B\{O}. Set at = a = 0, 92 = B, and P = 0. The corresponding
problem (3.36) is not well-posed in H2 v(B) for p < N/(2 - A), since the
function u(x) = I x I" - I belongs to that space and solves the homoge-
neous problem Lu = 0 in B, u = 0 on S = 8B.

Notice that the first derivatives of u are not essentially bounded in B
[compare with the regularity result provided by Theorem 3.23 in the case
a'i C- C°(O)].

3.8. The Marcinkiewicz Theorem and the John-Nirenberg Lemma

We shall now give two results that were utilized in the proof of Lem-
ma 3.6.

The first one is known as the Marcinkiewicz interpolation theorem.
We present it under the particular formulation adopted for our pur-
poses.

THEOREM 3.30. Let to, of be bounded domains of RN, let 1 < q < r
< co, and let S be a subadditive mapping of both weak types q and r from
to into w', with

] F(f) 4;., <- C, I f Iq;w for fe LQ((,),

I F(f)G;., <- C, If I,;w for f e L'(w).

Then for any p e ]q, r[ fis is of the strong type p, and

I g'(f) I,.' < CCq'_x C,' I f Ip;w for f e LP(w), (3.43)

where C = C(p, q, r) and d e ]0, 1[ is defined by 1 /p = (1 - .I)/q + 2/r
ifr<oo, l/p=(l-A)/gifr=co.
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PROOF. Step 1: Preliminaries. When f : w -. R is measurable we
denote by S(f, s) the set {x c- (o 11 f(x) I > s} and call u(s) = I S(f, s) I
the distribution function (over w) of I f I. Notice that if x H F(x, s) is the
characteristic function of the set S(f, s), Fubini's theorem yields

rr r if i r
J If(x)Ivdx=Judx] psv lds=pjdx]msv'F(x,s)ds

0 0

= P Jm sv 1 ds Jw F(x, s) dx = p Jm sv-'p(s) ds (3.44)
0 0

whenever f E LP(w) with 1 < p < oo.
At this point we fix fin LP(w) for q < p < r < co and denote by h

the function tb-(f), by v(s) the distribution function (over (0') of I h I. For
any choice of z > 0 we set fp(x) = (-r) V f(x) A r, fi(x) - f(x) - fe(x):
then f' E LP(w) c Lq(w), fq E Lo(w) S Lr((o). We put hi - F(f;) and de-
note by p;(s), v;(s) the respective distribution functions of I f; I. I hi I for
i = 1, 2. It is easy to verify that the subadditivity of a leads to

v(2s) < vl(s) + v2(s) for s > 0. (3.45)

Since the integral 2vp fo sv-'v(2s) ds equals p .° sv-'v(s) ds = I h I,:., if
finite, the conclusion of the theorem will follow from suitable estimates on
the right-hand side of (3.45). By assumption

vl(s) < Cg" I fi IS;w.

Since pl(t) = p(t + r) for t > 0, we see that

J

m
sv-'vl(s) ds < Cqq f sv-q-1 ds

f. I fi Iq dx
0

= gCgqJ sn-q-1 ds f I,-'p1(t) dt
0 0

= gCgq f sv-q-1 ds
J

m (t - r)r-'p(t) dt

< qCq' f Sp-q-1 ds T tq-'p(t) dt - 11.

For what concerns ve(s) we must distinguish between the two cases r < oo
and r = oo.
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Step 2: The case r < o. Since r is finite we have

va(s) < C rs-' I A I',;.,

and therefore

f m sv-'v,(s) ds < C.' f m SP-'-1 ds f
d

If. I' dx
0 0

= rCi f msv-'-' ds f' t'-'µ,(t) dt
0 0

=rCtr
fm5D-'-1

ds f
0 0

because 1L,() = p(t) for 0 < t < r, pe(t) = 0 for t > r.

Let r = r(s) = s/A with A = CQQttR-'tC; t'-Q'. The quantities I, and
1, are, respectively, computed as follows:

At

It = gCrR f tR-'P(t) dt f sn-q-' ds
0 0

= P q
q CQQ f 0 tR-'µ(t)[sv-Q]0At di = P q q CQQAD Q f R tn-'!t(t) dt

= e CQ+Otn Q)/w aCan QUtt-0t t"-11A(1) dtP-q Q o

q CQna-A)CPA t>'-'tt(t) dt,P-9 0

is
= rCr f

o
t"µ(t) dt f

At
SP-7-1 ds

p
r

C`r f
o t'-'U(t)[sP At dt

r

r r
P C,/A'-' f

o

tv-'µ(t) dt

rrP
f u to-'µ(t) dt

r CQau-,tC a' f tn-11A(1) dtr-P

o
[notice P2 = (Pr - qr)l (r - q), P(l - A) = (qr - Pq)l (r - q)].
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From (3.45) we deduce

(2s) dsI h I;;, = Zap sv-17
T,

< 2vp( q + r )CQVt1-uC,y3 r tV-'µ(t) di

=
2ap(p

q + r 1 p )CgP(1-A)C
VAp Jo IV-'µ(t) dt-

= CCgVU-z>Cax If ID

which amounts to (3.43) in the case at hand.

Step 3 : The case r = oo. Let r = r(s) = s/C . Then I he Im,w <

C. I fk 1.; , < s and therefore v,(s) = 0. Since I, is evaluated as in Step 2
except for A replaced by C., we can again arrive at the desired con-
clusion. 0

We now turn to the fundamental result known as the John-Nirenberg
lemma:

LEMMA 3.31. Let Q be an open cube of RN and let h e L'(Q). Assume
that for a fixed r e )1, oo[ the quantity

k
I Qk I'-'(f

qk I

h - (h)Qk I dx),

is uniformly bounded whatever the countable decomposition d: 0 = Uk (2k,
the Qt s being mutually disjoint open cubes with edges parallel to those of
Q. Let M(h) = M,(h) be defined by

IM(h)P = sup Y, I Qk 1'-r(Jak I h - (h)Qk I dx)
A k

Then the function h - (h)Q belongs to Lr(Q}weak, and there exists a con-
stant C = C(r) independent of h such that )h - (h)Q[,;Q < CM(h).

SKETCH OF THE PnooF. Since ((h)Q)Q, = (h)Q the function h - (h)Q

satisfies the same hypotheses as h, so that it can without loss of generality
be assumed that (h)Q = 0.

Introducing the distribution function v(s) _ measN{x e Q I I h(x) I
> s) of I h I we reformulate the thesis of the lemma by requiring that

v(s) < C[M(h)/sp (3.46)
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for s > 0. Since P(s) < I Q I we can associate to any d > 0 a constant C
such that (3.46) holds for 0 < s < d. Consequently we only need to show
the validity of (3.46) for all s larger than some suitable d > 0.

Assume now that a constant C has been found with the property

v(s) < C[M(h)/s]"'-vd`) I Q I' '+' (3.47)

whenever

2-"s/[r(e° - 1) + 1] ? M(h) I Q I-v' (3.48)

j = 0, 1, 2, ... , where e = r/(r - 1) is the conjugate exponent of r. Let
d = 2"M(h) I Q I-1/' and take any s > d. If j is the largest integer such
that (3.48) holds, for j + 1 we have the opposite inequality and therefore

sIQI"IM(h)<2"[r(ei+'-1)+1]<2"rei+.

[we consider only the nontrivial case M(h) > 01. But then (3.47) yields
(3.46) since

v(s) < C[M(h)/s]'[s I Q I v'/M(h)]'id'< C[M(h)/s]'(2"rei+')TQ4

< C[M(h)/s]'.

We are thus left with the task of proving (3.48) > (3.47). Notice
that a constant C as required certainly exists if for any nonnegative in-
teger j, (3.48) implies

f f(

vd
v(s) < 2-"elite...+fid(2"r(1 - MI J p I h I

dxl

This is obviously true when j = 0. The proof of the lemma depends on
showing that the above implication holds for a natural number j provided
it does so for j - 1. We omit this part of the proof not on the grounds
that it is only computational (it is not), but because the computations
involved are rather cumbersome. However, we mention that the inductive
assumption concerning the value j - I is applied with Q replaced by K
and h by h - (h)K,, where {Kq} is a countable family of disjoint open
cubes of Q with the following properties:

. I h l< t a.e. in Q\U K,,,
R

I(h)K, I < 25t,

EIK.I<t-=1 Ihldx
a
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where t = 2-A's/[r(et - 1) + 1], hence

IQI-'J0 Ihidx
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by (3.48). The existence of such a family {K,} can be demonstrated as
follows. Let Q be divided into 2N equal subcubes and denote by K,m
those among them for which (I h I)K.. > t, hence t I Kim I < 5K,,, I h I dx
<2Nt I K,, I by the choice of t. Next, apply the same procedure to each
remaining subcube of Q and denote by K=m those, among all the subcubes
of this second decomposition, for which (I h I)K,, > I and therefore

tIK,m1<J IhIdx<2Nt1K2.1.
Kim

By iteration a sequence of subcubes of Q, renamed {K,}, is constructed
with the property that t I K. I < JK, I h I dx - 2111 K, 1. Almost any point
x E QNU, K. belongs to cubes K; with edge-length 2-i, i = 1, 2, ... ,
such that (I h I)K; < t. The first property required on the part of {K,}
is therefore satisfied, and so obviously are the second and the third ones.
Notice that for a.a. x e Q the inequalities I h(x) I > s > 2-'t imply x c- K
hence I h(x) - (h)K, I > s - 2Nt, for some n e N. Consequently, v(s) <
E. meas.,{x a K. I I h(x) - (hK,) I > s - 2Nt). U

Problems

3.1. Use (3.44) to prove that Le(m)-weak c LP(w) whenever m is a bounded
domain of RN and 1 < p < q < oo,

3.2. This and the next six problems develop the H.,v theory for p in the range
11, 2[.
Let 2Q be of class C'.d (with 1' closed) and take a0, dJ e C0.d(.f)), for
some 6 e p, 1[. If a(u, v) (from 3.11) is coercive on V = H,'(.Q U T) and
f', ... , f° c L'(.Q) with I <p < 2, there exists a unique solution to the
variational b.v.p.

u e u T), a(u, v) = f
o

dx for v E H,'.n'(Q U I').
0

To see this, begin with the proof of existence for f' = ... = fN = 0. Let
f, g e L'(f1), and define bounded linear operators Tj, S1: L'(t1) -+ L(.Q),
j = 0, 1, ... , N, as follows:
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T° f - M. Ti f = u for i = 1, ..., N, where

uE V, a(u,v)=J fvndx for vE V;L
. S°g = z,,, S'g = z',, for i = 1, .. , N, where

z°EV, a(v,z°)=J gvdx forvEV,
n

z' a V, a(v, z9 _ f
o

dr for v E V.
0

Then <T, f, g> _ <S'g, f). Each S' is continuous from LP'(Q) into LP'(Q),
and each T, has a continuous extension LP(Q) LP(Q). If now f' is the
limit in LP(Q) of {f) c L'(Q), solve

U. E V, a(u,,, v) _ Av,i dx for v e u T)
0

and pass to the limit. As for uniqueness: if u is a solution of the b.v.p.
for jr' = = fN = 0, take fin LP'(O), solve

uT), a(w,v)=J fwdx for wE V,
0

and replace w by u through a continuity argument: thus, f o fu dx = 0.

3.3. Let a", d' E CO-'(D). If u satisfies
r

u E H"P(Q), a(u, v) _ <F, v> n
f a

+ fv:,) dx for v c H°'.P'(S1)
a

with f' e LP(.Q), f', ... , f v e H'"P(n), I < p < 2, the conclusion of Theo-
rem 3.8 remains valid (with the understanding, here as well as in Problems
3.4 and 3.5 below, that in the estimates the H' norm of u is replaced by
the H''P norm). To see this, it suffices to consider the case d' = b'
= c = 0, supp u c 0, supp f' c 0, so that the above equation holds for
v E without loss of generality, 8Q can be assumed of class CIA.
Fix any s = 1, ... , N and solve the Dirichlet b.v.p.

r r
w E H "P(Q),

f
o

a"w,,v,] dx = J o [-f °v., + (f:°, - dx for v e H°I.P'(,Q).

Let g E C°°°(Q): the solution b of the Dirichlet b.v.p.

0 E H°'(.Q)
f o

a"z,u=' dx = fa gz dx for z e H0'(Q)

belongs to for any finite q. Since fa u,,(a' B1)P, dx equals - fa a"
X WX,uZj dx as well as - f o gut, dx [after an approximation of u in H'-P(.Q)
with functions from C.°O(.Q)], the identity uP, = w follows by the arbitrari-
ness of g.
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3.4. Let a'', d', F be as in Problem 3.3 except for Q replaced by Bt. Let u solve
either

u e H 1,P(B' u Se), a(u, v) _ <F, v> for v e H,''P'(B+)
or

u E H'.P(B`), a(u, v) _ <F, v> for v E H, ,v'(B« U S°).

Then the conclusion of Theorem 3.15 remains valid. (The same technique
as in the preceding problem can be followed for s = 1, ... , N - 1.)

3.5. Suppose dQ of class (with r closed) and au, d', F as in Problem 3.3.
If u satisfies

u e ."(Q U r), a(u, v) = <F, v> for v E U r),

the conclusion of Theorem 3.17(ii) remains valid. Note that, as a conse-
quence, both Lemmas 3.18(i) and 3.20(i) hold true if 1 < p < 2.

3.6. If C E HIP'-P(r), I < p < 2, there exists u E H1,P(Q), u = 0 on BQ\r,
such that Bu = C. Indeed, let Lu s -du + u, and correspondingly con-
struct d(u, v) as in (3.39): the solution of the b.v.p.

u e u r), d(u, v) = fo (f'v)P, dx for v E Hot"(Q U r),

where the P's are chosen as in Step 1 of the proof of Lemma 3.18, has
the required properties.

3.7. For I < p < 2 Lemma 3.21(i) can be proven under the additional assump-
tion Bu = 0, as follows. Let d,(u, v) be defined as in Step I of the proof
of Lemma 3.21, and solve

W E H,'P'(Q u r),

d,(v, w) + AJ wv d x = f
o

u I P-'uv dx for v E u r),
n

A large enough. Choose v = I w IP'-'w and utilize the inequality

I I V w I I w K P ' - ' d x 5 (
I Iwl

'IPwI'dxla.(J
IwIP'dxY.

then there exists A. such that
ff

fJ

I w 1,,; 5 (A - A,)-' I u ln:j for A > A,.

On the other hand,

J (Lou + Au)w dx = 6,(u, w)
+

fo wudx = I u IP dx.

At this point, utilize the inequalities

ILu Ip; S

I U 5 C(r)I U Ip; + e I u:t11

I u Ip;a <- (A - A,)-'(I Lu + Au IP; + l (L - L,)u Ip;o)

in (3.37), and choose a suitably large value of n.
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3.8. Prove Theorems 3.28(i) and 3.29(i) for I <p < 2.
3.9. Prove (ii) of Lemma 3.20 by proceeding as in the proof of (i); in order

to majorize I (L - L°)u' I c°.e,n, use the inequality

max I u:,,t s (4r)°Iu;,:,)e;nn + I In-' u=,:t I,;o
ono

and estimate I u; ,Oj I,;a through (i).

3.10. Use a cutoff technique and a bootstrap argument to demonstrate the fol-
lowing local counterpart of Theorem 3.23(i): if .Q" = R' n n, where A'
is an open subset of RN, and if u E H'(Q") with Lu = f E LP(Q" ),
UIo,nia0 J') = 0 and (Bu)Ia,nr = C E HIP'-P(r) (2 < p
< co), then u E H'-P(w) whenever w c 11" is open with dist(w, R\Q")
> 0. An analogous statement can be given as a local counterpart to Theo-
rem 3.23(ii).

3.11. Suppose that for some k E N, 811 is of class Ck+1,1 a't a' a E C°-','(.fl),
f', # e C" 1(r), f E and C is the trace on r of some function
z E 2 < p < c. Then any solution u E H'(Q) of (3.36) belongs
to To see this, consider the case k = 1. Take difference quo-
tients of u (in all directions near a point x' a R, and in all tangential
directions, after straightening a suitable portion of the boundary, near a
point x° E 8!1). Utilize a local counterpart of Lemma 3.20(i) to obtain LP
uniform bounds on the corresponding difference quotients of all second
derivatives of it.

3.12. State and prove the regularity result in Ci a(.f)) analogous to that of Problem
3.11 in H°.P(A).

3.13. Let it E H,x(O) n C°(d)) solve (3.36) with a'1 E C'(1)), f e LP(Q) (N/2 <
p < oo), r = o. The equation -a"v,,y + a'v, = f - an in O can have
at most one solution v e H, °(.O) n C°(.Q) vanishing on 80, and u belongs
to

3.14. Thanks to Sobolev inequalities, Lemma 3.20(i) (see Problem 3.5 as well)
remains valid if #I, P are taken in some space H1110'4(r), for a suitable
choice of q > N/2 depending on p c ]l, 00[, instead of C°"'(r). This can
be ascertained (after fixing x° E r) by replacing Bu' with B°u'
where #°H) is the CO-' vector field on r defined by

R is so small that B,0(x°) n 80 c r and v'(x)f ' > x/2 for x E B,0(x°) n F.
Note that (B - B°)u' = [(b' - f bu'] I r if b', b E H' 0(O) are such
that b'I r = P', bI r = P and r is small enough.
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Variational Inequalities

The minimum problem we mentioned in the introduction to Chapter 2
can be generalized as follows:

minimize ( )= 1 f (I Vv 1£+v2)dx-J fudx
2 a o

over a convex subset K of Hot(S2 u I')

[with .f c L2(S2), r of class C1]. If u is a solution to this problem, for any
choice of v in K the function 7(u + k(v - u)) of A E [0, 1] must attain
its minimum at l = 0; hence, it must satisfy the condition

u K, d2'°(u+2(v-WAfor vE K,

which amounts to

u E K, a(u, v - u) > f f(v - u) dx for v E K (4.1)
a

[where a(u, v) denotes the symmetric bilinear form f a (u ,vim, + uv) dx].
Vice versa, a solution of (4.1) necessarily minimizes 7(v) over K (see
Lemma 4.1 below). These simple observations are sufficient to introduce
the content of the present chapter.

In Section 4.1 we study the existence and uniqueness of solutions to
a wide class of problems which includes (4.1) and involves bilinear forms,
not necessarily symmetric, on a Hilbert space V. In Section 4.2 we gener-
alize further and replace bilinear forms by mappings (A(u), v>, with it, v
varying in a Banach space V, and A (not necessarily linear) going from V
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to V'; in particular, whenever the choice of K = V is admissible, we extend
the corresponding theory of equations for linear operators A (see Sec-
tion 2.1).

At this point we focus on V = H0'(D U F) or V = U F).
In Section 4.3 we investigate the applicability of previous abstract

results to more concrete examples of convex subsets of V, of bilinear forms
and, especially, of nonlinear operators. We also show how to formulate
certain types of problems like (4.1) as differential ones. In Section 4.4 we
prove existence and uniqueness of solutions in some cases that are not
covered by the general abstract theory.

Sections 4.5-4.8 are devoted to the study of conditions ensuring some
regularity properties of solutions u, such as

u E H2"P(Q), U E U E C'.d(.Q).

In Section 4.9 we tackle instead a class of nonlinear operators that
do not enter the abstract theory of Section 4.2, and prove the existence of
solutions to problems involving either a special type of proper convex
subset K of V, or K = V.

4.1. Minimization of Convex Functionals, and Variational Inequalities
for Linear Operators

4.1.1. A Class of Minimum Problems

Consider the problem of finding a vector it such that

U E K, 1(u) < 7(v) for v e K, (4.2)

where K is a subset of a Hilbert space V and

7(v)= 2 I vlv'-<F,v> for vE V

with F given in W. To investigate the minimum problem (4.2) we single
out the following properties of the quadratic functional 7:

0V' is convex, that is,

g (U + (1 - A)v) < 27(U) -1- (I - ))7(v)
for u,vc V, 0<2<1;

and, more precisely,
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, is strictly convex, that is,

;(u + (1 - A)v) < A (u) + (I - d)7(v)
for u,veV with a#v, 0<d<1

[note that 2(u, v)y < I U Iy2 + I V I? if u # v];

O is coercive, that is,

I,,- (v) -. oo as I v lv 00;

7 is weakly lower semicontinuous in the sense that

lint inf7(vn) > 7(v) when vn- v in V
n,m
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(a consequence of the analogous property of the norm I ly);

7 is Gateaux differentiable at any u c- V.

This means that there exists an element of V', denoted by 7'(u) and
called the Gateaux derivative of f` at u, with the property

<'(u), v> = x 7(u + dv)I1-o for v c- V;

computation shows that

(7'(u), v> = (u, v)y - <F, v> for v E V. (4.3)

When K is convex the first and the last of the above properties of o;
lead to the following characterization of solutions to (4.2). Let u solve
(4.2), and let v E K be arbitrarily fixed. Then u + A(v - u) E K for 0 <
2 < 1; the real function A H l-'[a`Y(u + A(v - u)) - V(u)) of A E 10, 11
is nonnegative and so too is its limit <, '(u), v - u) as A -. 0+. This
means that u satisfies

uE K, <7'(u), v-u)>0 for vE K. (4.4)

Vice versa, for v E K and 0 < A < 1 the convexity of 7 implies

A-1 [7(u + .1(v - u)) -7(u)) <o`r(v) -7(u),

so that another passage to the limit as A -. 0+ yields

«'(u), v - u) :5,7(v) - Au)
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and consequently (4.2) if u solves (4.4). Summing up, we have proved the
following lemma.

LEMMA 4.1. Let K be a convex subset of V. Then (4.2) is equivalent
to (4.4).

Passing to existence and uniqueness we have the following lemma.

LEMMA 4.2. If K is a nonvoid closed and convex subset of V, (4.2)
admits a unique solution.

PROOF. Let c K be a minimizing sequence foray over K, that is,

9(u.) inf f(v) as n oo.
veK

By the coerciveness of f, is bounded and therefore contains a weakly
convergent subsequence thanks to the reflexivity of V. Let u denote
the weak limit of the u,, 's. Since K is closed and convex, u e K (see Lemma
I.Q. The weak lower semicontinuity of T implies

7(u) < lim inf f` (u..) = infaY(v),k ffK

so that u solves (4.2).

As for uniqueness: if the minimum of 9 over K were also attained
at another vector w e K, the strict convexity off would imply

.(Au + (l - A)w) < inf f(v) for 0 < A < 1,
vcK

hence a contradiction. 9

REMARK. In the particular case K = V any vector v = u + w, w e V,
is admissible in (4.4). By the two lemmas above, therefore, to any given
F E V' there corresponds a unique vector u E V such that (u, w)v = <F, w>
for WE V. This amounts to a new proof of the Riesz representation
theorem.

Because of (4.3) we can rewrite (4.4) as

uCK, (u,v-u)y><F,v-u> for v e K, (4.5)

or as

u E K, <9-'u - F, v - u> > 0 for v E K (4.6)
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(where the operator 9': V' - V is the Riesz isomorphism), or as

u e K, (u - z, v - u)v > 0 for v E K (4.7)

with z = .'F. When K :A 0 is closed and convex, the solution u to (4.7),
being the minimum point for 7(v) = } I v IVs - (z, v)v over K, is also
the solution to the least distance problem (so familiar from calculus in the
case V = R")

tEK, Iu - z Iv<Iv - z IV for vE K.

We call u the projection of z over K and write it as PK(z). The mapping
PK: V K so defined is not linear unless K is a linear subspace of V
(a case that can be investigated as an easy exercise). PK is, however, con-
tinuous, and even more than that: it is nonexpansive, in the sense of the
next result.

LEMMA 4.3. Let K be a nonvoid closed and convex subset of V. Then

IPK(zl)-PK(z:)IV <Izl-zeIV for z1,z2e V.

PROOF. For h = 1, 2, (4.7) becomes

(PK(zs) - zn, v - PK(zs))v > 0 for v e K.

Take V = PK(Z2) when h = 1 and v = PK(zl) when h = 2: the sum of
the two inequalities so obtained yields

I PK(z.) - PK(za) I V2 = (PK(z.) - PK(za), PK(z1) - PK(zs))V

(zl - ze, PK(zl) - PK(zx))v

I zr - za Iv I PK(z1) - PK(Z2) IV,

hence the desired result. 0

4.1.2. Variational Inequalities

We now proceed to generalize (4.5), (4.6) as follows. On V we intro-
duce a bilinear form a(u, v) which we assume to satisfy the boundedness
(i.e., continuity) requirement

Ia(u,v)I<MIuIvIvIv for u,vcV (M>0);
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a bounded linear operator A: V -. V' is consequently defined by

<Au, v> = a(u, v) for u, v e V. (4.8)

We are interested in the variational inequality (henceforth, v.i.)

ueK, a(u, v - u) ><F, v - u) for v e K, (4.9)

which can also be written as

ueK, <Au-F,v-u)>0 forveK, (4.10)

where K S V and Fe V' are given: (4.9) is the customary formulation
of the v.i. for a bilinear form on a Hilbert space, whereas (4.10) is a formu-
lation which can be extended to cover the case of a nonlinear operator
on a Banach space (see Section 4.2).

When the coerciveness and symmetry requirements

a(u, u) > ao I U Iy2 for u e V (a0 > 0)

and

a(u, v) = a(v, u) for u, v e V

are satisfied in addition to boundedness, a(u, v) is a scalar product on V
equivalent to (u, v)v and A is the inverse of the corresponding Riesz
isomorphism. Replace the definition (4.2) of JV by

,7(v)= 2 a(v,v)-<F,v) for veV:

because of symmetry,

"'(u), v) = a(u, v) - <F, v> = <Au - F, v> for v e V,

u e V, and (4.4) is nothing but the v.i. introduced above. The latter is
therefore uniquely solvable whenever a(u, v) is continuous, coercive, and
symmetric and K 0 is closed and convex, thanks to Lemmas 4.1 and 4.2.

When the symmetry assumption is dropped, (4.9) is no longer equiv-
alent to a minimum problem such as (4.1). We can, however, directly
provide the following existence and uniqueness result for v.i.'s.

THEOREM 4.4. Let a(u, v) be a continuous and coercive bilinear form
on V and let K :f- 0 be a closed and convex subset of V. Then, for any
choice of F e V', (4.9) admits a unique solution u and the mapping F u
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so defined is (with an obvious extension of terminology from the special case
V = R) Lipschitzian from V' into V with Lipschitz constant ao '.

PROOF. Step 1: Existence and uniqueness. By making use of the Riesz

isomorphism .7 we rewrite (4.10) as

u c K, (9'(Au - F), v- u)v > 0 for v c k

or equivalently as

uE K, (u - Tu, v -u)v>0 for vE K

with Tou = u - e > 0. Thus u solves (4.10) if and only if
it satisfies u = P,t(Tou) for some (and consequently for every) e > 0.

Let us show the existence of some positive number e such that the
mapping PR o To is a contraction on V: this will prove the existence of a
unique fixed point u = PK(Tu), hence of a unique solution to (4.10).

For u,, u2 E V Lemma 4.3 yields

I FR(Tu,) - PK(TQUZ) I VI I Teu2 - Tu2 Iv2

_ (u, - u2 - e2A(u, - u2), u, - u2
- e-7A(u, - ua))v

I u, - u2 IV' - 2e<A(u, - u2), it, - u2)

+ 2 I A(u, - u2) Iv3

By coerciveness

e<A(u, - u2), it, - n2> ? eaa I it, - u2 Iv2,

whereas by boundedness

I '4(u,- u2) Ir'<MI it, -2 IV'
Therefore,

I Fg(Teu,) - Pa(Teu2) I v2 < (I - 2eao + e2M2) I u, - u2 Iv2.

This shows that PR o T, is a contraction provided I - 2eao + e2M2 < 1,
that is, 0 < e < 2ao/M'.

Step 2: Lipschitz dependence. For h = 1, 2 fix Fh E V' and solve

uh E K, a(uh, v - uh) > <Fh, v - uh> for v e K.
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In the above v.i. take v = u2 when h = 1 and v = u, when h = 2: by
coerciveness, the sum of the two inequalities so obtained yields

a0 I u, - I(2 I V2 < a(u, - U2, U1 - U2)

< <F1 - F2, u1 - U2> I F1 - F2 I V' I u1 - U2 IV,

hence the sought-for Lipschitz inequality

IU1-U21v<as'IFF-F2IV

(compare with the proof of Lemma 4.3). 0

REMARK 1. When K = V any vector v = it f w, w C V, is admissible
in (4.9), which becomes

ue V, a(u,w)=<F,w> for we V.

Theorem 4.4 contains a proof of the unique solvability of the above equa-
tion, hence a new proof of the Lax-Milgram theorem.

REMARK 2. Let a(u, v) be bounded and coercive and let each element
v of the nonvoid closed and convex set K c V be the strong limit in V

of a sequence each v belonging to a closed and convex set K. c V.

The reader may easily verify (by an argument that is also utilized
for Theorem 4.5) that the solution it of (4.9) is the weak limit in V of the
sequence each u being the solution of (4.9) with K replaced by K,,.

This is the simplest example of convergence of solutions to v.i.'s under
perturbations of the convex sets. For this aspect of the theory of v.i.'s we
refer to U. Mosco [1191.

For what concerns existence of solutions, the assumption of coercive-
ness can be weakened by requiring that a(u, v) be nonnegative, i.e.,

a(u, u) > 0 for u c- V,

and satisfy a growth condition such as

there exist R E ]0, oo[ and v0 a K, I vo Iv < R,

such that

a(u,vo-u)<<F,v0-u> forueK IuIv=R;
(4.11)
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as a matter of fact, even (4.11) can be dispensed with if K is bounded.
This is illustrated by the next two results.

THEOREM 4.5. Let a(u, v) be a continuous nonnegative bilinear form on
V and let K= 0 be a closed and convex bounded subset of V. Then for
any choice of Fe V' (4.9) admits at least one solution.

PROOF. For each n E N consider the v.i.

a(u,,,v-un)-l 1 (un,v-un)V><F,v-un) for vEK,
n (4.12)

which enters the coercive case dealt with in Theorem 4.4 and is therefore
uniquely solvable. By the boundedness of K, a subsequence of

c K converges weakly in V to some vector u; u c- K, because the
convex set K is closed (see Lemma I.Q. By weak lower semicontinuity

a(u, u) < ll f u..) + n1{ I unk Iv!].

so that (4.12) yields

a(u, u) < lim inf v) + v)y - <F, v -
F+w L nk

=a(u,v)-(F,v-u) for vE K,

hence (4.9). 0

THEOREM 4.6. Let a(u, v) be a continuous nonnegative bilinear form on
V satisfying (4.11) where K# 0 is a closed and convex subset of V.
Then for any choice of F c V' (4.9) admits at least one solution.

PROOF. Set

KR={vEKIJvIv<R),

where R is the positive number appearing in (4.11). The previous theorem
provides the existence of a solution u to the v.i.

a(u,v-u)>(F,v-u) for (4.13)

From (4.11) it follows that I u Iv < R. Let w c K be arbitrarily fixed
and correspondingly let d E ]0, 1 [ be so small that v -- u + A(w - u) E K
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satisfies I v Iv < R. With this choice of v, (4.13) yields a(u, w - u) >
<F, w - u> so that u solves (4.9). 0

Theorem 4.6 can in its turn be utilized to deal with the following
situation. Let the norm I Iv on V be equivalent to

I
111, where

is a seminorm on V and I In is a norm on another Hilbert space H,
into which V is compactly injected.

The assumption

a(u, u) > ao[u]v2 for u e V (a0 > 0),

referred to as semicoerciveness, is intermediate between coerciveness and
nonnegativity (and implies coerciveness relative to H).

THEOREM 4.7. Let a(u, v) be a bounded semicoercive bilinear form and
let K 3 0 be a closed and convex subset of V. Then (4.9) admits at least
one solution for FE V' if either

W n K is bounded (4.14)

or

F=Fo+F1, with I<Fo,v>I<C[v]v for veV
and <F,, w> < 0 for w e W n K\{0},

where W= (w c- V I [w] V = 0).

(4.15)

PROOF. By Theorem 4.5 we need only consider the case when K is
not bounded; by Theorem 4.6 we can limit ourselves to prove (4.11) with
vo = 0. We shall proceed in two steps.

Step 1: The case (4.14). Suppose that (4.11) is not satisfied. Then to
each n e N we can associate u e K with

I un IV =n, a(un,un)<<F,u,).

By semicoerciveness,

ao[un]VZ < <F,

u u Iv-1. From the bounded sequence we can extract
a subsequence which converges weakly in V, hence strongly in H,
toward some vector w.
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Fix any A > 0: (4.16) yields

ao[2wn ]v' = "I U, Iv-'ao[u.t]v'

< A2 I unt I v-'<F, w.k> = lnk-'<F, Aw.t>,

hence

[.lw.i]v -. 0 as k -. oo,

and finally [,Iw]v = 0 by the weak lower semicontinuity of the norm
I I n + [- ]v (see Problem 1.2), hence also of the seminorm [- ]v. Therefore
Aw E W; moreover, dw.y - Aw in V thanks to the equivalence of the norms

I .lw.t Iv = A, w is 0; moreover, since both 0 and u.r are in
the convex set K, 2w., belongs to K whenever Iu.jIv = nt > A, and
consequently Aw belongs to K for all A > 0. In the case (4.14) this is a
contradiction.

Step 2: The case (4.15). If (4.11) is not satisfied, consider the same
sequences {u.,} and {w.e} as in Step 1, and take A = 1. From (4.16) and
our assumption about F. we deduce that

I u.t I vao[w.Jv' - C[wn.]v <F., wok>.

Letting k -. oo we see that

<F1, w> > 0,

since [w..]v - 0. This contradicts our assumption about F, since w C
W n K\{0}. p

REMARK. Theorem 4.7 can be greatly improved: see G. Fichera [48],
C. Baiocchi, F. Gastaldi and F. Tomarelli [9, 10].

4.2. Variational Inequalities for Nonlinear Operators

Many of the results of the previous section can be extended, sometimes
with no substantial change (or even no change at all) in their proofs, to
much more general settings. In the present section we shall show this,
assuming at the outset that V is a reflexive Banach space.
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4.2.1. Monotone and Pseudomonotone Operators

Beginning with minimum problems such as (4.1), we remark that
(strict) convexity, coerciveness, weak lower semicontinuity, and Gateaux
differentiability can be defined for nonlinear functionals 7 on V exactly
as in the Hilbert case. Therefore the proofs of Lemmas 4.1 and 4.2 can
be repeated word by word to yield the following more general results.

LEMMA 4.8. Let K be a convex subset of V and let ; be a Gateaux
differentiable convex functional on V. Then (4.2) is equivalent to (4.4).

LEMMA 4.9. Let K be a nonvoid closed and convex subset of V and let
o7 be a weakly lower semicontinuous, coercive and convex functional on V.
Then (4.2) admits at least one solution; uniqueness holds if f is strictly
convex.

By the two lemmas above we can tackle the analog of (4.10), which
we rewrite as

ueK, (A(u)-F,v-u)>0 forvcK (4.17)

for a nonlinear operator A: V -. V', whenever u e V and A(u), hence
also A(u) - F, is the Gateaux derivative at u of some convex functional
on V. In order to pass from this setting to more general ones, we introduce
the following definitions. We say that a nonlinear operator A: V -. V' is

hemicontinuous if each real function

d <A((1 - A)u + dv), v - u)

with u, v c- V, is continuous on R;

monotone, if

(A(u) - A(v), u - v> > 0 for u, v e V;

strictly monotone, if the requirement

(A(u)-A(v), u-v>=0>u=v

is added to monotonicity.

Note that each of these three properties holds for u i--> A(u) - F, F e V',
if and only if it does for u H A(u). Note also that, when V is a Hilbert
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space, the linear operator u' A(u) = Au associated to a continuous
bilinear form a(u, v) [see (4.8)] is automatically hemicontinuous; it is

monotone if and only if a(u, v) is nonnegative, and strictly monotone if
a(u, v) is coercive.

The next result casts light upon the above definitions.

LEMMA 4.10. Let 7 be a Gateaux differentiable functional on V. If
7 is convex (strictly convex), then 7` ' is both hemicontinuous and monotone
(strictly monotone); iff` "' is monotone (strictly monotone), then .7 is convex
(strictly convex).

PROOF. Fix u, v e V, u v and set y(A) = 7((l - A)u + lv). Then
q '(,l) exists and equals (7'((I - ).)u + Av), v - u) for d E R.

If 7 is convex on V, so is go on R. By well-known properties of convex
functions on R, qi is continuous, and consequently 7' is hemicontinuous.
Moreover, q is nondecreasing: therefore

(0) = <7'(u), v - u) < <7'(v), v - u) = V (1

and 7' is monotone.
Vice versa, if ,2" is monotone, qi is nondecreasing, and consequently

q, is convex. The conclusion about the convexity of 7 follows easily.
The proof of the "strict" case is perfectly analogous. 0

Strict monotonicity immediately leads to a uniqueness result for (4.17),
since the latter implies

<A(ui) - A(ua), u, - us) < 0

whenever u, and us are solutions. Therefore, we have the following lemma.

LEMMA 4.11. If A: V -'. V' is strictly monotone, (4.17) can have at
most one solution.

Before passing to the existence of solutions we move a step further
in generality. An operator A: V , V' is pseudomonotone if it is bounded
(i.e., it maps bounded subsets of V into bounded subsets of V') and satisfies

lim inf <A(un), un - v> > <A(u), u - v> for v E V (4.18)
n+ra

whenever the sequence {un) converges weakly in V toward it with

IS sup <A (un), un - u) < 0.
n+w
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When V is finite-dimensional, A is pseudomonotone if it is continuous
[and vice versa: see Lemma 4.14(ii) below].

LEMMA 4.12. Let A: V - V' be bounded, hemicontinuous, and monotone.
Then A is pseudomonotone.

PRooF. Let {un} be a sequence as required in the definition of pseudo-
monotonicity. Since A is monotone,

<A(un), un - u> <A(u), u - u):

letting n - oo, we see that the right-hand side of the above inequality tends
to 0. Therefore,

<A(un), un - u) - 0 as n (4.19)

Again by monotonicity, we have

<A(un) - A(w), uft - w> > 0

for w= (1 - d)u + Zv, 0<1< 1. Hence,

2<A(un), u - v> ? - <A(un), un - u)

+ <A(w), U. - u) + A<A(w), u - v).

Let n - oo: by (4.19) the above inequality yields

A lim inf <A (u.), u - v) > i(A(w), u - v),

and also

lim inf <A(un), un - v) = lim inf [<A(u ), un - u> + <A(un), u - v)]
nrm

> <A (w), u - v).

We let A (in the definition of w) tend to 04: (4.18) follows from hemicon-
tinuity. 0

We now introduce another class of nonlinear operators A: V -. V'.
To wit, we say that A is a Leray-Lions operator if it is bounded and satisfies

A(u) =.V(u, u) for u e V,
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where .V., V x V -. V' has the following properties:

(i) whenever u E V, the mapping v.-..a'(u, v) is bounded and hemi-
continuous from V to V', with

<-V(u, u) - si(u, v), u - v) > 0 for v E V;

(ii) whenever v e V, the mapping u -->..ci(u, v) is bounded and hemi-
continuous from V to V';

(iii) whenever v e V, .V((., v) converges weakly to -V(u, v) in V' if
{un} c V is such that un_s a in V and

<-V(U., Un) - -V(UA, U), U. - u) - 0;

(iv) whenever v c V, (.1.i'(u. , v), u,) converges to <F, u> if c V is
such that u in V, a'(un, v)_s F in V'.

LEMMA 4.13. Every Leray-Lions operator A: V -. V' is pseudomo-
notone.

PROOF. Let u _s u in V, with

lim sup (A(un), u - u) < 0.

Since {,V(un, u))n is bounded in V', we can extract a subsequence
{,d(unk, u)}k which converges weakly in V' toward some functional F.
Thus, u), u,,) -. (F, u> by (iv), and also (si(u.., u), unk -u)0.

Let
Xk = (. V(un u, ) --V(W,., U), Un. - U):

we have Xk > 0 by (i)] as well as

lim sup Xk < 0,
k.m

hence

Xk-.0 as k -. co.

But then (iii) implies

JV(un,, w) - ,at'(u,w) in V' (4.20)
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whenever w E V, and (iv) yields

(.l(Unk w), U,,) y <JV(U, W), U),

hence

<JV(unk, W), unk - U) '0. (4.21)

Since Xk > 0 we arrive at

lint inf <JV(unk, Un), Unk- u) >0
k-+cc

by taking w = u in (4.21), hence

«(Unk, unk), u,, - U) --+ 0. (4.22)

We now arbitrarily fix v c- V and take

w=u+A(v-u), AE]0,1[.

From the inequality

<`V(u.,, Unk) - .i'(Unk, W), Unk - w) > 0

we deduce that

A<JV(Uny, Unk), U - V) - <-V\unk, Un), Unt - U)

+ <'i(Unk, W), Unk - U) + A<C'K(Unk, W), U - V),

hence that

d lim inf <-V(unk, unk), unk - v) _ A lint inf [<`. (vnk, unk), Unk - U)k. k-wu

+ <-V(Unk, Un), U - V)]

> A lint <` V(Unk, W), U - v)
k+m

A<,s(U, U + Z(V - U)), U - V)

by (4.20), (4.21), and (4.22).
At this point we first divide by A, then let A -. 0+: by hemicontinuity

the result is that

lint inf <A(unk), unk - v> > <A(u), u - v),

and pseudomonotonicity easily follows. 0
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When V is a Hilbert space and u H A(u) = Au is the linear operator
associated with a bounded bilinear form, the weak (strong) convergence
in V of a sequence {un} toward a vector u implies the weak (strong) con-
vergence of {Aun} toward Au. For pseudomonotone operators on reflexive
Banach spaces we have instead the following lemma.

LEMMA 4.14. Let A: V -* V' be a pseudomonotone operator.

(i) If un - u in V and A(un) - F in V', with

lim sup <A(un), u,,) < (F, u),
n-wo

then F = A(u).

(ii) If un -'- a in V, then A(un) -s A(u) in V'.

PROOF. Step 1: Proof of (i). Since

lim sup <A(un), un - u> < lim sup <A(un), lim <A(un), u) < 0,
ntioa n+oo

pseudomonotonicity yields (4.18). Therefore,

<A(u), u - v> < lim sup <A(un), un - v)
ntim

<<F,u-v) for ve V,

and finally A(u) = F by taking v = u + w, w e V.

Step 2: Proof of (ii). Since the image under A of the bounded sequence
{un} is bounded in the reflexive Banach space V', there exists a subsequence
of indices such that A(unt) -s F in V' as k -. oo. Since <A(unk), unt - u)
-*0 as k-.co,

<F, u - v> = lim inf <A(unt), une - v)k-
> <A (u), u - v) for v e V,

hence F = A(u). By uniqueness, the whole sequence {Aun} converges
weakly in V toward A(u). 0

Finally we provide the following criterion for the stability of the class
of pesudomonotone operators under perturbations.

LEMMA 4.15. Let A,, As: V -> V', with Al pseudomonotone and A.
bounded, hemicontinuous, and monotone. Then A = Al + Ae is pseudo-
monotone.
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PROOF. Let {un} converge weakly in V toward u, with

lim sup <A(un), un - u) < 0.

Then,

<A1(un), un - u) _ <A(un), un - u> - <A2(un), U. - u)

<A(un), un - u> - <A2(u), U. - u)

(by the monotonicity of A2), and

lim sup <A,(un), u - u) < 0,
n-wo

which implies

lim inf <A,(un), un - v> > <A,(u), u - v> for v C V (4.23)

(by the pseudomonotonicity of A,).
This implies that <A,(un), un - u> -. 0 as n -. oo, hence

lim sup <A2(un), un - u> = lim sup [<A(un), un - u>
ntim n-*

- <A,(un), un - u)] < 0
and

lim inf <A2(un), un - v) > <A2(u), u - v> for v e V (4.24)

by Lemma 4.12. Summing (4.23) and (4.24) we obtain the inequality

lim inf <A(un), un - v> > <A(u), u - v> for v E V,
n-

which completes the proof since A is obviously bounded. 0

4.2.2. Existence and Approximation of Solutions

Returning to (4.17) we prove the following generalization of Theo-
rem 4.5.

THEOREM 4.16. Let A be a pseudomonotone operator V - V' and let
K 0 be a closed and convex bounded subset of V. Then for any choice
of FE V' (4.17) admits at least one solution.
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PROOF. We shall proceed in two steps.

Step 1: The finite-dimensional case. If V is a finite-dimensional space,
it can be endowed with a scalar product Then (4.17) can be re-
written as

u E K, (_7(A (u) - F), v - u)V > 0 for v c K,

hence as (4.7) with z - u - .tY(A(u) - F).

We need to prove that the mapping Hg: u F--> PK(u - 5(A (u) - F))
has a fixed point.

Since A is continuous from V into V' [by Lemma 4.14(ii): in the
finite-dimensional case weak = strong], ,' o A is continuous from V into
V, and so is Pg (by Lemma 4.3). Thus 17g: K -* K is continuous, and the
Brouwer fixed point Theorem 1.1 yields the existence of u = Hg(u).

Step 2: The general case. We proceed under the additional assumption
that V is separable; if it is not, the proof requires a few minor modifica-
tions as in H. Brbzis [18].

Every subspace of a separable metric space is separable. By the rep-
arability of V we can therefore construct a sequence {V,} of Banach sub-
spaces of V, dim V. < n, and a sequence of nonvoid closed and
convex sets K S V,,, with K c K., so that U.'-1 K. is dense in K.
For each n c N, Step 1 enables us to solve the v.i. (which we write with
a slight abuse of notation)

forvEK,,. (4.25)

Since K is bounded, a suitable subsequence of the bounded sequence
{uq}, say the original sequence itself, converges weakly in V toward some
vector u; since K is convex and closed, u c K. Let e > 0 be arbitrarily
fixed and let fi E N, u E Kt be such that I u - u Iv < e. Then

<A(un), u - u) _ <A(un), u - u) + <A(un), u - u)
< <F, u - u) + e sup I IV'

,EN

for n > A, hence

lim sup <A(u ), u - u> < <F, u - u) + e sup I IV'
a m neN

< e(I F IV, + sup I A(un) IV,).
,EN
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By the arbitrariness of e, lim <A(un), u - u> < 0, so that
pseudomonotonicity yields

lim inf <A(un), u - v> > <A(u), u - v> for v c V.

that
By taking v in some Kj. we deduce from (4.25), written for n > flo,

lim inf <A(u ), u - v> < <F, u - v),
n-we

hence

<A (u), u - v> <<F, a - v> for ve U KK.
n-i

By density u solves (4.17). 0
If now the analog of the growth condition (4.11) is formulated for a

nonlinear operator A as follows:

there exist R e ]0, oo[ and va a K, I vo Iv < R,

such that (4.26)

(A(u)-F,va-u><0 forueK, I uIv=R,

we can proceed as in the proof of Theorem 4.6, this time by making use
of Theorem 4.16, and prove the following theorem.

THEOREM 4.17. Let A be a pseudomonotone operator V -. V' satis-
fying (4.26), where K # 0 is a closed and convex subset of V. Then for
any choice of Fe V' (4.17) admits at least one solution.

REMARK. Since K = V is admissible in Theorem 4.17, the latter con-
tains an existence result for the equation

ueV, A(u)=F.

Also Theorem 4.7 admits a generalization to the case of a nonlinear
operator A. To see this we consider the following situation: V is compactly
imbedded into a Banach space X, and where is
a seminorm on V. Calling semicoercive a nonlinear operator A: V -. V'
such that

<A(u), u> > ao[u]vQ for u e V (ao > 0, q> 1),

we can proceed as in the proof of Theorem 4.7 with a few, obvious changes;
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notice that now Theorem 4.17 must be utilized. Thus we have the following
theorem.

THEOREM 4.18. Let A: V -. V' be a pseudomonotone semicoercive
operator and let K 3 0 be a closed and convex subset of V. Then (4.17)
admits at least one solution for Fe V' if either

W n K is bounded

or

F=Fe+F1, with I<Fo,v)I<C[v]v forveV
and <F1, w) < 0 for w e W n K\{O},

where W

We conclude this section by showing how solutions to v.i.'s can be
approximated by solutions to suitable equations (necessarily nonlinear,
even when the v.i.'s are of the form (4.10), A linear).

First, we call a bounded operator A: V -. V' coercive (relative to K)
if there exists ve e K such that

IuIv'<A(u),u-vo)-.oo as lulu- co,

This terminology reflects the fact that a linear operator u A(u) =
Au associated with a bounded bilinear form on a Hilbert space V is coercive,
in the above sense, if a(u, v) is coercive in the usual sense. Note that (4.26)
holds if K is unbounded and A coercive.

Next, we say that a bounded, hemicontinuous and monotone operator
fi: V -. V' is a penalty operator associated with K S V if

p(u)=0aue K.

THEouEM 4.19. Let K A: 0 be a closed and convex subset of V, let A
be a pseudomonotone and coercive operator V -. V', and let /1 be a penalty
operator associated with K. Then there exists a sequence where each
u, satisfies

U. E V, A(a.) + e(n) Y(un) = F

with e(n) -.0+ as n which converges weakly in V toward a solution
to (4.17).
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PrtooF. Let e > 0 be arbitrarily fixed. The operator u.-. A(u) +
(I/e)$(u) is pseudomonotone by Lemma 4.15. It is also coercive since
the coerciveness of A implies

IuIv'<A(u)+ E fl(u),u-oo>

= I u I v '<A(u) + E (Au) - R(vo)], U - vo>

>lulv'<A(u),u-vo>-.oo as IuIv-.oo

by the membership of vo in K and the monotonicity of P. Theorem 4.17
can therefore be applied with K = V, and the equation

U. E V, A(u,) + I fJ(u,) = F
E

admits at least one solution u,. Moreover, the above inequality implies
the existence of a constant C, independent of the choice of e > 0, such
that I u, Iv < C. Therefore I A(u,) I v is also bounded independently of e,
and finally the equation implies

fl(u,) = e[F - A(u,)] -. 0 in V' as a , 0+.

A sequence {e(n)} can be found, with the property that e(n) -. 0+

and u,= u.j, - u in Vas n - oo.
Let v e V be arbitrarily fixed; then the inequality

<#(u.) - P(V), U. - V> > 0

yields «(v), u - v> < 0, hence <fi(u - Aw), w> < 0 with the choice of
v = u - Aw with 2 > 0 and w e V. By hemicontinuity we can let A -. 0+
and obtain «(u), w> < 0, hence P(u) = 0 by the arbitrariness of w.
Therefore u E K. Next we fix v e K, so that fl(v) - 0. From the equation
we deduce

<A(u.) - F, v - u.> = e(n) «(v) - AU.), v - u.> >- 0,

hence

and finally

lim sup <A(u ), u - u> < lim sup <F, u - u> = 0,

Jim inf <A(u ), u - v> > <A(u), u - v>

by pseudomonotonicity. This suffices to show that u satisfies (4.17). 0
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REMARK. Theorem 4.19 provides a constructive approximation method
if (4.17) is uniquely solvable. Notice that if this is the case, the solution
u is the weak limit in V of {u,} as a O+.

4.3. Variational Inequalities in Sobolev Spaces

We now proceed to exhibit fundamental examples of convex sets and
bilinear forms, or nonlinear operators, entering the theory of v.i.'s when
the underlying space V is some closed subspace of H'(D), or of H'-P(D)
with 1 <p <c. We are also going to show that v.i.'s associated with
unilateral or bilateral constraints (in the sense specified in Section 4.3.1
below) can be interpreted as obstacle problems.

4.3.1. Convex Sets

The abstract results of Section 4.1 can be applied to any closed and
convex subset K # 0 of a closed linear subspace V of H'(S2).

The most important instance of a convex subset of V occurring in
the theory of v.i.'s is

K= (V E V l v< V in 0} (4.27)

with y, measurable. K is obviously closed (see Theorem l.Q). Sufficient
conditions in order that K# 0 can easily be given in the special case
when V = H°'(S2 u r), with r of class C'. If Ip e H'(D) with Ip > 0 on
aQ\r in the sense of H'(S2), then K9 'p A 0. If instead V E C°(S) with
V > 0 on OS2\r, we can easily construct V' E C'(D) with y,' > 0 on aS2\r
and +p' < ,p (see Theorem I.N and Lemma 1.7), so that +p' A 0 belongs to
HI(Q) with supp(y A 0) c SI u r and finally 'p' A 0 e K. Note that the
above requirement that +p > 0 on aS2\r cannot be weakened by replacing
> with >, as the following example shows.

EXAMPLE. Let N = 1, 0 = ]0, 1[, r = 0, +p E C°(.D), ,p(x) = - I X I °
with 0 < d < 1 /2 for 0 < x < 1/2, ,p(1) > 0. Any function v e K would
simultaneously belong to C°.1"2([0, 1]) (by Theorem 1.41) and satisfy
I v(x) - v(0) 1 _ -v(x) > I x 1° for x c [0, 1], which is contradictory.

We introduce another important class of nonvoid closed and convex

subsets of V = H°I(D u r) by setting

K = {v E V j v < on E in the sense of H'(Q)}, (4.28)
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where E c 0 V F and 0 e C°(E) with inf$ yr > -eo. If E equals r and
the latter is also closed, (4.28) becomes

K = {v e V I v < ip on F in the sense of H'(92)}. (4.29)

Note that the requirement V' e CO(F) can then be replaced by V' e H''r(I'),
in which case K contains any function ' E V with *y', ='Y.

The convex sets considered up to now are defined by unilateral con-
straints (the latter ones being placed above: unilateral constraints placed
below can be dealt with through obvious changes). They are cones (i.e.,
they verify v E K> dv e K whenever 0 < A < cc) if ,p, or vanishes
identically.

A closed convex set defined by bilateral constraints is the following:

K={v Vjgi<v<+p in 0} (4.30)

with 92 and +p measurable on S2, to < V. By considerations analogous to
those developed about (4.27) it can be checked that when V = H°1(Q U I'),
K # 0 if p and V belong either to H'(D) with p < 0 < V on 8S2\,V in
the sense of H'(Q) [so that K3 p V (+p A 0)], or to C°(S3) with 4' <'o in
S1 V I', gllaa.r < 0 < Vlan r-

An important example of a nonvoid, closed, and convex subset of

V which is not of the obstacle type is given by

K={veVII1vI<I in 92} (4.31)

(see the Notes to this chapter).
All the above considerations can be easily extended to the case when

the Hilbert space H'(S2) is replaced by the reflexive Banach space H'-p(Q)
for some p e ] 1, co[.

4.3.2. Bilinear Forms and Nonlinear Operators

As in Section 2.2.1 we introduce a bounded bilinear form a(u, v) on
HI(D), as well as bounded linear operators A: H'(Q) -b [H'(Q)]' and
L: H'(S2) -. H-'(0), by setting

<Au, v) = a(u, v)

f o
+ dtu)v., + (b'u., + cu)v] dx for u, v e HI(Q)

a (4.32)
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and

(Lu, v> = a(u, v) for u e H'(Q), v e H°1(.f2), (4.33)

under the assumptions

a'j, dj, bi, c e Lm(.f2),

a'ie;Ej > a I E IE a.e. in d2 for E e Rx (a > 0).

Again, we also view A as a bounded linear operator H'(Q) V'
whenever V is a closed subspace of H'(.Q), V 2 H°'(Q)

The example of Section 2.2.1 provides us with a sufficient condition
in order that a(u, v) be coercive on V, so that the v.i. (4.9) can be investi-
gated in the light of Theorem 4.4.

Other abstract results of Section 4.1 can be utilized to investigate (4.9)
in some cases when coerciveness does not hold for the bilinear form (4.30).
For instance, we illustrate Theorem 4.7 with the following example.

EXAMPLE. Let 8Q be of class C', so that Rellich's theorem holds,
and set di = b' = c = 0. Then a(u, v) is semicoercive on V = H'(Q), with
H = L=(Q) and [u]y = I Vu le;o.

We must, however, mention that in applications of the theory of
v.i.'s the most relevant semicoercive examples involve bilinear forms of
types different from (4.32): see G. Fichera [48], C. Baiocchi, G. Gastaldi,
and F. Tomarelli [9, 10].

Passing from H'(S2) to HI,P(S1) with p arbitrarily fixed in ]l, co[, we
denote by V a closed subspace of V 2 H',P(Q). We define a
nonlinear operator A: H1,P(92) -. V' by setting

<A(u), v) = f [A'(u, Vu)v., + A°(u, Vu)v] dx

for u e v e V, (4.34)

where, for j 0, 1, ... , N, Aj(r7, E) is the function x aj(x, Ift), E(x))
if t , 6,, ... , Ev denote measurable functions on 0, E _ (E ... , $,,);
aj is supposed to be a Carath6odory function of x e S2 and (77, E) a R'+",
with

I a'(x, ri, e) I < C(I 271 P-' + I E Iv-') + h(x)
(4.35)

for a.a. x e S2 and any (77, E) a R'+v [h a L "(Q)].
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We also define L: H',n(Q) -. H-'.n'(S2) by setting

<L(u), v> _ <A(u), v> for u e H',n(S2), v e

that is

L(u) _ - aal A'(u, Vu) + A°(u, Vu).

Chapter 4

In the sequel we shall call A: V' bounded, or hemicon-
tinuous, or monotone, if the restriction of A to V is such. For what con-
cerns hemicontinuity (and boundedness) note that whenever n, C,, ... , v
are functions from LD(S2), (4.35) implies Aj(n, C) E Ln'(92) (and even

IA'(n,f)Ip':oSC if In,e1,...,FBIv;n<C).

Thus, by a theorem of M. A. Krasnosel'skii, Aj is continuous from
[Lv(S2)]'+v into LD'(S2). This circumstance, which implies hemicontinuity
of A, can also be ascertained as a consequence of the following simple
lemma.

LEMMA 4.20. Let g be a Carathe odory function of x e Si and C e RM
such that

Ig(x,C)I<CICI'+h(x) fora.a.xeS2 and anyCERM,

with h e Lr(Q), h > 0,
(4.36)

I < q < oo, 1 < r < x. Then the operator G: [LP(Q)]M -. L°(S2), p rq,

defined by G(C): x-*g(x, C(x)) for S = (Cl, , Cnr) e [LP(f2)lm is con-
tinuous.

PROOF. For j = 1, ... , M let C.j - Cj in Ln(12) as n -. vo, hence also

Cij = Cn,; -* Cl

I Ck, I :5 Cj* E Lv(.Q)

a.e. in Si as k -. oo,

a.e. in Si for h c- N

for a suitable subsequence of indices (see Theorem I.Q. Because of (4.36)
this implies that the sequence {I G(C ') - G(C) Ie}k, where Ck' _ (Ckl,
.... CkM), is dominated by CE 1 (Cj*)' + hD] e L'(92); by Lcbesgue's
theorem,

G(CS) G(C) in Le(S2) as k -* co.
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Since the passage to a subsequence is at this point nugatory, we have
proved that, as n - oo,

G(C,) in L°(n)
whenever

C. -* 4 in [L'(Q)]M. 0

If the requirement

[a°(',0,

a'(.,'2', t) ? 0
a.e. in S2 for rl, rj e R and 4, E' a RN

(4.37)

is added to (4.35), A is rapidly seen to be monotone; as for strict mono-
tonicity, it holds if a.e. in d2 the equality sign in (4.37) implies ri = rj and
e = or even if it only implies e = ' provided Poincar6's inequality
(as in Lemma 1.46) is valid in V. As a matter of fact, (4.37) implies more
than monotonicity. To wit, let u, v e with (u - v)+ c- V: then,
Theorem 1.56 implies

<A(u) - A(v), (u - v)+> = f {[A'(u, Vu) - A'(v, Vv)](us, - V.)

+ [A°(u, Vu) - A°(v, Vv)](u - v)} dx

with ,Q+ _ {x c- H I u(x) > v(x)}.
Consequently, <A(u) - A(v), (u - v)+) is > 0, and > 0 for 112+

> 0 if a.e. in d2 the equality sign in (4.37) implies n = 7j', E = ', or even
if it only implies e = and Poincar6's inequality holds in V. This property
of the specific operator A defined by (4.34) underlies the following defini-
tion. A nonlinear operator A: V' is said to be

T-monotone, if

<A(u) - A(v), (u - v)+> > 0

for u, v c- with (u - v)+ c V,

strictly T-monotone, if the equality sign in the above inequality can
only hold when u <v in S2;

T-monotonicity implies monotonicity, since

<A(u) - A(v), u - v> _ <A(u) - A(v), (u - v)+>
+ <A(v) - A(u), (v - u)+> for is, v e V.
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EXAMPLE. Let $(x, >), e) be continuously differentiable and convex
with respect to (n, e) e e2'+N for a.a. x e 92, measurable with respect to
x e Q for any (rl, E) a R'+N. By Lemma 4.10 in Ft'+N the functions a° =
0,,, a' _ .t, ... , aN = 0t satisfy (4.37), with the strict inequality sign
for (rl, e) (rl', e') if convexity is required to be strict. Under assumption
(4.35), A(u) from (4.37) is the Gateaux derivative of the convex functional

9 u r o(x, u(x), Vu(x)) dx.
D

If (4.37) is weakened into

a.e. in 92 for n e R and e, e' e RN
(4.38)

(which is the case when, in the above example, 0 is assumed to be convex
with respect toe only), monotonicity can no longer be claimed. However,
we have the following theorem.

THEOREM 4.21. Let V be compactly imbedded into LP(Q) and let A
be, defined by (4.34) under assumption (4.35). Suppose that (4.38) holds,
with the strict inequality sign for e # e'. Then A is a Leray-Lions operator,
hence a pseudomonotone operator, when restricted to V.

[For what concerns sufficient conditions in order that the injection
V e Ln(f2) be compact, see Theorem 1.34 and the remark following
Lemma 1.46.]

The proof of Theorem 4.21 is by no means straightforward. It requires
the first part of the following technical result. (The second part will be
utilized for Theorem 4.47.)

LEMMA 4.22. Same assumptions as in Theorem 4.21. If c V is
such that u - u in V and f a D. dx -. 0, where

D. = [A'(u,,, Pun) - A°(un, Vu)](u - u)i,, (4.39)

then A1(u,,, Vup) - A3(u, Vu) in L"'(Q) for j = 0, 1, ... , N. If, moreover,

a'(x,rl,e)et?aI eI"-AInI"-g(x)
for a.a. x E S2 and any ('7, e) e pt'+N (4.40)

(a > 0, A > 0 and g E L'(Sl), g > 0),
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then u u in V and therefore

A3(u,,, Vu.) -. A1(u, Vu) i n L"'(Q) for J = 0, 1, , N.

(For p = 2 compare (4.35), (4.40) with (2.54), (2.55).]

PROOF. Step 1: The general case. By the strong convergence of
in L'(D) and in L'(Q) (D being > 0), we can find a measurable
subset Z of 12, 1 Z I = 0, with the property that throughout Q\Z every
function at hand is well-defined, and

ak - uv. -. U, Dk = Dx. -. 0 as k -. oo

for a suitable subsequence of indices (see Theorem I.Q). We fix x e Q\Z
and set '

rI = u(x), ',Jk -- uk (x), Vu(X), Eki = uk:.(x), Ek = (Ekl, , ELV)

We claim that {et') remains bounded. Suppose the contrary. Then

for a subsequence of indices we have

IEt.-EI>1. (Ek,-E)IIEk.-EI 7L 0

But then (4.38) yields

0 < [a'(x, 'kk, Ek.)

hence also

as h -. oo.

_ lla'(x, n,.,, E +
Erp

0 < ai(X, kk, E + EkA - E - ai(x, rikk, E)](Ekki
t EkA-E

_ [ai(x, 74, E + Etp - E 1 - r7ku, Ek.)
k.

+ ai(x, rlk., Ek.) - a'(X, rlk., E)](Ek.i - Ei) : De.(x)

Letting h co we obtain

[ai(x, 8, E + ai(x, 17, E)]E:` = 0,

hence E` = 0, a contradiction.
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If now is the limit of a converging subsequence of the bounded

sequenc:; we have

0 = [a'(x, r7, a'(x, rl, f)](s`; - E;)

But then = , so that Ek E and

forj=0,1, N.

We have proved that, as k -. oo,

AJ(uk, Vuk) -. AJ(u, Vu) a.e. in 0;

since the functions AJ(uk', Vuk), k E N, are uniformly bounded in LA'(Q)
by (4.35), we arrive at

AJ(uk, Vuk) AJ(u, Vu) in LP'(Q)

(see Problem 1.12), so that the weak convergence of the whole sequence

{AJ(u,,, follows easily.

Step 2: The case (4.40). We return to the subsequence {uk'} of Step

1, which verifies uk -b u in LP(Q) as well as

uk U, uls1 - uz,, .. , uL. - ui a.e. in Q.

The functions

bk = A'(uk, Vuk)u!., + A I uk I' + g

are integrable and verify

bk' 6 = Ai(u, Vu)us, + 2 I u 1' -I g a.e. in S2;

note that, by (4.40)
bk(x) > a 1 Vuk (x) V. (4.41)

By assumption, as k -r. the quantity

r Ukdx= f dkdx - lJ Iuk1°dx-J gdx - JA'(uk,Vuk)us,dx
n n n o a

- J A'(uk, Vu)(uk., - u,) dx
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tends to 0. But

fa
A'(ut , Vuk )u2, dx fa

A'(u, Vu)us, dx

by Step 1, whereas

f A'(uk , Vu)(uk:, - u:,) dx -. 0
O

since A'(uk , Vu) -. A'(u, Vu) in L''(Q) (see Lemma 4.20) and ukZ, - u,,
in L'(Q). Thus,

JR

dkdx -.JR 6 dx.

We now set ilk = dk A d = d - (d - dk)+. Since 0<3k< 6 and 3k
-. d a.e. in Sd, the dominated convergence theorem yields

in L'(Q).

But then,

in L'(Q),

and finally

J
16 -dkIdx=2J (d-dk)+dx - f

an n R

Thus the sequence {6k} converges to 6 in L'(Q) as well as a.e. in Q, and
has uniformly absolutely continuous integrals by Vitali's theorem; because
of (4.41) this is also true of the sequence {I Vuk' I'}. Vitali's theorem can
therefore be applied to the sequences

{I Uki, - uz, I°}, .. , {I UL" - UzN I'},

so that for i= 1,..., N

uks, , u,,, in L'(Q) as k -. oo.

The strong convergence of u to u in V [hence also of A'(u,,, to
Ai(u, Vu) in L''(Q), by Lemma 4.20] follows immediately. 0
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PROOF OF THEOREM 4.21. A is obviously bounded. For u, v, w e V
we set

<.A" (u, v), w) = J A'(u, Vv)w,, dx,r
<Ja'"(u), w) =

J
A°(u, Vu)w dx,

/J4u, V) = J1"(u, v) +. d"(u),

so that V(u, u) = A(u), and proceed to verify requirements (i)-(iv) from
the definition of Leray-Lions operators.

The boundedness properties required in (i) and (ii) are obviously
satisfied; as for the hemicontinuity properties, they immediately follow
from the stronger property ensured by Lemma 4.20. Finally, (4.38) implies
that

<Jd'(u, U) -J/(u, v), u - V) = <si'(u, U) -Jd (u, v), u - v) ? 0.

Thus it remains to prove (iii) and (iv).
Let (u°) c V be such that u s u in V and JU D. dx -. 0, with D.

defined by (4.39). Then in particular A°(u,,, Vu°)- A°(u, Vu) in LD'(Q)
by Lemma 4.22, hence

"(u) W.

Since the convergence of Ji''(u°, v) to v) is ensured by Lemma
4.20 because u, -. u in LF(92), (iii) follows.

Now let {u°} c V be such that u in V and a'(u., v) s F in W.
Then

<-W"01., v), u°) ti <si'(u, v), u)

by Lemma 4.20. On the other hand, the inequality

I <Jd/"(u°), U. - u) I C I U. - u In,o

yields <Ja'"(u°), u - u) -. 0. Since

<..Y"(u.), u> = <Ji(u., v), u> - <Ji'(u°, v), u) <F, u) - <&"(u, v), u),

we have <-V "(u.), u,.) -. <F, u) - <JW'(u, v), u); finally, <.a'(u,,, v), u°)
-+ <F, u). 0
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The considerations developed in this section up till now provide us
with a satisfactorily wide class of concrete cases entering the abstract set-
ting of Theorem 4.17, except possibly for what concerns the growth condi-
tion (4.26). We therefore conclude this subsection with the following non-
linear extension of the example of Section 2.2.1.

EXAMPLE. Assume (4.35) for j = 0, I, ... , N and let (4.40) hold with
I = 0. Suppose that a°(x, rl, 4)r7 > co 1 rl I' for a.a. x e Q and any (rl, )

E 12'+.v(co > 0).
Then, whatever the choice of V (and K), A is coercive, hence a fortiori

satisfies (4.26). The same conclusion remains valid even when it is only
supposed that C from (4.35) for j = 0 and A from (4.40) are < e, with
e > 0 sufficiently small, provided Poincar6's inequality holds in V. We
leave details to the reader.

4.33. Interpretation of Solutions

Fix V = H0'(D u I') with r of class C' and let a(u, v) and A be
defined by (4.32), L by (4.33), B as the conormal derivative operator [see
(2.16)1.

We first consider the v.i. (4.9) associated with the convex set (4.27)
(supposed # 0), that is, the unilateral v.i.

uE V, u < V in 0,
a(u, v - u) > <F, v - u) for v e V, v <'V in Q.

(4.42)

If w is a nonnegative element of V the choice of v = u - w is admis-
sible in (4.42), so that a(u, w) < <F, w> and therefore Au < F (in the
sense of V') by the arbitrariness of w. Denote by f the restriction of F
to H0'(D); then, Lu <f in S2 [in the sense of H-'(Q)].

Of course, a function u satisfying (4.42) vanishes on 00\P [in the
sense of H'(Q)] by its mere membership in V.

In order to proceed further with the interpretation of (4.42) we tackle
a special situation.

LEMMA 4.23. Let P bef closed and let V E H'(S2),

(F, V) =
J

fv dx + (C, vI r) for v e V,
a

with f e L2(Q) and 1 E [H1's(P)]'.
(4.43)
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A function u c HI(S2) with Lu c L=(S2) solves (4.42) if and only if it
satisfies

u<.p, Lu<f and (Lu-f)(u-+p)=0 in D,

is = 0 on 8D\P in the sense of HI(D), (4.44)

ul r <'pI r, Bu < C on I', and <Bu - C, (u - W)Ir) = 0.

PROOF. Step l : The "if" part. Let is satisfy (4.44). Then u E V and

<Au,v-u)=a(u,v-u)=J Lu(v-u)dx+<Bu,(v-u)Ir)

for v E V by the definition of the conormal derivative Bu. Take in particular
v < gyp: then (v - u)+I r < (W - u)I r, and Bu < C on I' {in the sense of
[H't'(F)]') implies

<Bu - C, (v - u)+Ir) < 0
as well as

<Bu-C,(v-u)+Ir)><Bu-C,('p-u)Ir)=0.

On the other hand, (v - u)' can differ from 0 only where 'p - u is
> 0 and therefore Lu - f vanishes. Thus,

<Au-F,v-u)=J (Lu - f)(v - u) dx + <Bu - C, (v-u)Ir)

J
(Lu-f)(v-u)-dx-<Bu-C, (v-u)-Ir)>0

Q

because (v - u)- is a nonnegative element of V. This suffices to show
that u solves (4.42). Note that, when I' _ 0, the requirement 'p C- Hl(fl)
can be relinquished.

Step 2: The "only if" part. Under the assumptions of the implication
we want to prove, the functions u - +p and Lu - f are < 0. We fix any
measurable subset I of S2 having a positive distance from 8S2 and denote
by a sequence of functions from C,-(Q) satisfying 0 < Xn < 1, X

Xr (characteristic function of 1) a.e. in S2; note that Xt is the limit of
the sequence of its regularizations in every LD(S2), p < Do, hence also
(after passing to a subsequence, see Theorem l.Q) a.e. in Q. We can insert
v = u + u) in (4.42) and obtain

0 < <Au - F, Xn(W - u)) =
1

(Lu - u) dx,
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hence also

r

0 < J (Lu - f)X1(w - u) dx f= (Lu - f)(v - u) dx
r

after passing to the limit as n --* oo with the help of the dominated con-
vergence theorem. By the arbitrariness of I, (Lu - f)('p - u) > 0 and
finally (Lu - f)(v' - u) = 0 a.e. in Q.

Next, let {Xa} c U P) satisfy 0 < 1 in and X. = 1
near r, X, -> 0 a.e. in 12. Since Au < F we have

0><Au-F,Xnw>= J (Lu-f)Xwdx+<Bu-C,wlr>

whenever w e V, w > 0. We can again pass to the limit under the integral
sign and verify that f (Lu - jr) znw dx -* 0 as n -* oo: hence Bu < C
follows from <Bu - C, wl r) < 0 by the arbitrariness of w, hence of wl..
We now insert v = u + 2 (v' - u) in (4.42) and obtain

J (Lu - f)Xn(y' - u) dx + <Bu - C, (9' - u)I r),

hence

<Bu-C,(v-u)Ir>>0

after a passage to the limit as n -, co, and finally

<Bu-C,(V-u)Ir)=0

because ('p - u)I r is a nonnegative element of H""(P). 0
We call (4.44) an obstacle problem, more precisely a variational uni-

lateral problem; we say that the condition on P is a unilateral Neumann
condition, the one on 812\P being of course the homogeneous Dirichlet
condition.

We do not develop here the study of (4.9) in the case when K is given
by (4.28) under general assumptions about the set E: the reader is referred
to G. Stampacchia [141] for an illustration of connections to potential
theory. Let us take up instead the special case (4.29), that is,

u c- V, u < fp on Pin the sense of H'(12),

a(u,v-u)><F,v-u> (4.45)

for v e V, v < *V on Pin the sense of H'(Q),
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with r closed and either ry" e C°(F) or w E H'"'(F). Again, Au < F. More-
over, any function v = u + w, w E H°'(Q), is admissible in (4.45), which
therefore implies Lu = f with f = restriction of F to H°'(Q). At this point
the following result can be proven by proceeding as in the proof of Lemma
4.23.

LEMMA 4.24. Let r be closed, let W = VIr, +p E H'(D), and assume
(4.43). A function u E H'(Q) solves (4.45) if and only if it satisfies

Lu =f in Q,

u = 0 on 39\F in the sense of H'(Q), (4.46)

uIr<'pIr, Bu<C on F, and <Bu-C, (u-+p)Ir)=0.

We now consider the v.i. (4.9) associated with the convex set (4.30),
that is, the bilateral v.i.

u V, 99 <u<vp in 9,
(4.47)

a(u,v-u)><F,v-u) for vE V, q <v<' in 9.

LEMMA 4.25. Let r be closed, let p, W E H'(Q), and assume (4.43).
A solution u of (4.47) such that Lu E Lt(D) is also a solution of

.P<u<-9', (Lu-f)(u-4') <0
and (Lu-f)(u-+p)GO in 2,

u = 0 on d9\F in the sense of H'(D), (4.48)

wIr < uIr <,Ir, <Bu - S, (u - p)Ir) < 0

and <Bu - {, (u - vp)Ir) < 0.

For the proof, see Step 2 of the proof of Lemma 4.23: note that
whenever X is a function of C,-(Q U F) that lies between 0 and 1, the
functions u + X(q) - u) and u + X(vp - u) are in V and lie between p
and V.

We say that the obstacle problem (4.48) is a variational bilateral problem
with the homogeneous Dirichlet condition on i39\F and a bilateral Neu-
mann condition on F.
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REMARK. As in Lemma 2.6, likewise in Lemmas 4.23-4.25,an impor-
tant role is played by the circumstance that Lu C- L°(d2). It must, however,
be noted that in Lemmas 2.6 and 4.24 such a circumstance is a straight-
forward consequence of the assumption about F, whereas in Lemmas 4.23
and 4.25 it must be assumed at the outset: that this assumption is not
unnatural will be seen in Section 4.5 below.

Considerations analogous to preceding ones of this subsection can be
made when V = U I'), 1 < p < oo, and (4.9) is replaced by (4.17)
with A(u) defined by (4.34), Lu being then replaced by L(u).

For what in particular concerns the behavior of a solution u on r
when the latter is closed, it suffices to introduce the functional B(u) e
[H" ''p(I')]' defined by

<B(u), vI r) _ <A(u), v> -
J

L(u)v &c for v e V
a

if L(u) a Ln'(d2). We leave the details to the reader.

4.4. Existence and Uniqueness Results for a Class
of Noncoercive Bilinear Forms

Throughout this and the next four sections we shall specialize in the
study of (4.9) with a(u, v) given by (4.32), the underlying space being
V = H0'(Q u I') with I' of class C'.

If a(u, v) is of the most general noncoercive type [i.e., if it is merely
coercive on V with respect to L2(S2)], but V is compactly injected in Lr(d2),
and the operator A: H'(Q) -. V' verifies the weak maximum principle (see
for instance Theorem 2.4), we know that the equation

Q E V, a(u, v) = <F, v) for v e V (4.49)

(Fe V') admits a unique solution by dint of the Fredholm alternative
(see Theorem 2.2). When dealing with v.i.'s instead of equations, we do
not have any counterpart of Fredholm's theory at our disposal; yet, we
can again arrive at existence and uniqueness results, at least for convex
sets of either unilateral or bilateral type. This will be seen in the present
section.
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4.4.1. Unilateral Variational Inequalities

We say that z e H'(Q) is a subsolution of (4.42) if z < ' in 92, z <0
on dQ\P in the sense of H'(S2), Az < F [i.e., a(z, w) < <F, w) for w e V,
w > 0]; of course, a solution of (4.42) is a subsolution as well.

LEMMA 4.26. Let a(u, v) be coercive on V and let F e V' be given. if
u solves (4.42) with V measurable in 0, then u is maximal among all sub-
solutions.

PROOF. Let z be a subsolution of (4.42). The function v = z V u
belongs to V and satisfies v <,p in 92 so that (4.42) yields

a(u, (z - u)+) ? <F, (z - u)+)

by the identity z V u - u = (z - u)+. But we also have

a(z, (z - u)+) < <F, (z - u)+),
so that

0>a(z-u, (z-u)+)=a((z-u)+, (z-u)+)

By coerciveness, I (z - u)+ In'(,) = 0 and therefore z < u in Q. 0

The preceding lemma admits the following straightforward corollary.

COROLLARY. Let a(u, v) be coercive on V. For h = 1, 2 let Fh belong
to V' and ph be measurable in 92, with Fl < F, and <,p,. If u = uh
solves (4.42) with F = Fh and V = +ps, then ui < u2.

REMARK. Lemma 4.26 and its corollary have obvious extensions to
the case when HI(D) is replaced by HI-P(D), I <p < co, and (4.42) by
its analog for a strictly T-monotone operator A: HI.P(S2) -. V'.

We shall utilize Lemma 4.26 and its corollary for the following theorem,
which generalizes Theorem 4.4 under the present choice of V, K, and
a(u, v) (see also Theorem 2.3).

THEOREM 4.27. Let l be such that V injects compactly into L2(S2). Let
the weak maximum principle hold for A: HI (92) -. V', let Fe V' be given,
and let the closed and convex set (4.27) be nonvoid. Then the v.i. (4.42)
admits a unique solution, which in addition is maximal among all subsolution.
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PROOF. We shall proceed in three steps.

Step 1: Existence of subsolutions. Fix d > 0 so that

az(u, v) = a(u, v) + A f uv dx (4.50)
n

is coercive. By Theorem 4.4 there exists a unique solution to the v.i.

IEV, f<V in S2,

at(f, v - f) > 0 for v e V, V < N in Q.

Since Al + Al < 0, the weak maximum principle for A + A yields
f < 0 in Q. Now let z solve the equation

z e V, a(z, v) = az(f, v) for v e V.

Since Az = Af + Al < Al, the weak maximum principle for A im-
plies z < f, hence z < V. This shows that at least when F = 0, (4.42)
admits a subsolution z. When F is arbitrarily fixed in V', construct a
subsolution z' to (4.42) with F replaced by 0 and V by V - 0 [see (4.49)]:
the original v.i. then admits the subsolution z - z' + a.

Step 2: Existence of solutions. Define by recurrence: uo = u,

U, E V, U. < tU in S2,

az(un. v - un) > <F+ lun-., v - un) (4.51)

for ve V, v<w in S2,

n E N, with aa(u, v) as in (4.50). Lemma 4.26 and its corollary can be
applied with a(u, v) replaced by ax(u, v) so that

u > z in S2 for n e N

whenever z is a subsolution of (4.42): note that the weak maximum prin-
ciple for A implies z < us, hence Az + 2z < F + Auo.

By fixing v in (4.51) we see that the sequence {un}, being bounded in
L'(Q), is also bounded in V because the bilinear form (4.50) is coercive;
thus (us) converges weakly in V and strongly in V(D) toward some func-
tion u (no need to pass to a subsequence, thanks to monotonicity). Since

aa(u, u) < lim inf a,2(u,,, un),
n
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we have

U E V, a <'N in 12,

az(u,v-u)><F+2u,v-u) forveV, v<y, in d2

as well as
u > z in 0

whatever the subsolution z of (4.42).
Conclusion: (4.42) admits a solution that is maximal among all sub-

solutions.

Step 3: Uniqueness. We shall prove uniqueness by showing that any
solution of (4.42) is maximal among subsolutions, more precisely that,
whenever u. and u, are respectively a subsolution and a solution, the func-
tion u = (u, - u3)* E V satisfies An < 0, hence u < 0 by the weak maxi-
mum principle and finally u, < u,. The compactness of V c L2(.Q) will
play no role.

Suppose that the inequality Au < 0 does not hold. Then there exists
a function w c- C,'(Q u 1l, 0 < w < 1, such that a(u, w) > 0. For c > 0
consider the nonnegative function w, = Ow/(a + E): note that We E V
with w., = awz1/(u + E) + Ewur,/(4 + E)2 (see Lemma 1.57). Since Ew,
< a, the function v = u, + ew, < u, + u = u, V u, can be inserted into
(4.42) written for u = u2. We thus obtain the inequality

a(u2, w.) ? <F, w.>

which, together with the other inequality

a(ui, w.) < <F, w.>,

yields

0 > a(u, - u2, w.) = a(a, w.)

f.
a

a

a+ E I(a ra: + dfa)w,, + (b uzs + cG)w] dx

+ E J
frI

:i a=,a, , u a,
ll

0 (u+ r+ zd+E a+EJ

/1 (E) + EI2(E)

(since w, = 0 whenever ur - us < 0). As e -. 0+, 1,(E) tends toward the
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positive quantity a(u, w) so that

lim sup Eir(e) < 0 (4.52)

Let us prove that (4.52) is self-contradictory. Indeed, by uniform
ellipticity the inequality ls(e) < 0 implies the following integral estimate on
the function G,(a) - wits I Vu I/(u + e):

a f G,(u)s dx < f wait uust dx
n a (u + E)s

<- r1I wdt
tl dx<C

tI1'

G,(a)dx.
Ja a+E t/+E Jo

By the Cauchy-Schwarz inequality, therefore, I G,(a) 1s,a can be
bounded independently of e > 0. But then the inequality

1 le(e) 1 < C(I G.(a) 12;Q + G.(u) Is:n)

implies els(e) -> 0 as e , 0+, which contradicts (4.52). This proves that
the assumption a(u, w) > 0 was absurd. 0

The maximality property ascertained in Step 3 of the proof of Theorem
4.27 leads to the following corollary.

COROLLARY. The conclusion of the corollary to Lemma 4.26 remains
valid if the coerciveness assumption about a(u, v) is weakened into the require-
ment that A satisfies the weak maximum principle.

REMARK. All considerations developed until now can be repeated,
with obvious changes, if (4.42) is replaced by (4.45).

Another consequence of the maximality property (more precisely of
Lemma 4.26) is the following result, which we already utilized in Section
2.4.1.

LEMMA 4.28. Let tD = Vh'_ 0, m E N, where each 0 belongs to HI (S2),
and let there exist Ve 1 ATA e V'. Then

m
AT < V ATA (in the sense of V'). (4.53)

A-1

An analogous statement is valid if V is replaced by A, provided < in
(4.53) is replaced by >.
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PROOF. Suppose first that a(u, v) is coercive on V and consider (4.42)
with y, = 0, F = \/`h_i A? - Ap. Then the unique solution u is maximal
among all subsolutions; in particular u > ph - T because`lew-1

A? - AT. Passing to the supremum over h we obtain u > \V -1 0
-p=0, hence u=0 and O=Au<F.

If a(u, v) is not coercive, fix d > 0 so that the bilinear form (4.50) is
coercive. Then the family (Arph + is order bounded from
above by G -- V t1 Ash + AT, and there exists VA'-, (Arph + A?) by
Lemma 1.54. By the preceding part of this proof,

AT+.1T<V (AT'+ITh)<G,
h-1

and (4.53) again holds. o
Under the same assumption about A as in Theorem 4.27 a result

stronger that uniqueness holds:

THEOREM 4.29. Let the weak maximum principle hold for A: H'(IJ)
- V'. For h = 1, 2 let ph be measurable, with Yh - +po a L°°(D). If u = uh
solves (4.42) with ip = +ph, then ul - ug belongs to L°(Q) and verifies

lul-u2 Iw;a<-CIw1 -V3IO;a. (4.54)

where C> 1 depends only on A, and C = 1 if Al > 0.

PROOF. Solve the v.i.

zoE V, zo>0 in Sl,

a(zo, v - zo) > <-A 1, v - zo) for v e V, v > 0 in dl

with the help of Theorem 4.27. Note that zo = 0 when Al > 0; even when
the latter requirement is not fulfilled, zo still belongs to L°°(dl) because
v = zo - (zo - k)+ is admissible in the above v.i., which therefore yields

a(zo, (zo - k)+) G <-Al, (zo - k)+)

whenever k > 0: see Lemma 2.8 and the remark following it.
Let f = zo + 1 , so that f > 1 , ;F-1 if A l >0, and 41>0. Next,

let k - I'o. -'pa .;a, u - (ul - u. - kf)+ and we = uw/(ie + e), where
e>0andweC°t(QvP),0<w<1.Since Au1<Fwehave

a(u1 - k2, w.) < <F, w.);
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on the other hand, the function

ll = U2 + EW. < u2 + fi _ (u1 - k£) V u2

(u, - k) V U2 < (u, -'p, + q)2) V U2 G q12

is admissible in (4.42) written for V = V'2, u = u2, and therefore

a(u2, w.) ? <F, w.).

Summing up,

0 > a(u, - u2 - k2, w.) = a(u, w.)

(because w, = 0 whenever u, - u2 - k2 < 0). We can at this point proceed
as in the proof of Theorem 4.27 and show that Au < 0, hence u < 0 by
the weak maximum principle, and finally u, - u2 < k1:5 k 12 Im;a

Since the roles of u, and u2 can be interchanged, (4.54) holds with
Clfh,a. 0

REMARK. Dependence of solutions on free terms could be tackled
through an argument utilized for a special case in the proof of Theorem
5.5 below.

4.4.2. Bilateral Variational Inequalities

THEOREM 4.30. Let I' be such that V is compactly imbedded into L2(0).
Let the weak maximum principle hold for A: H'(Q) V', let q' and W be
measurable functions in S2, and let F e V'. If the closed and convex set (4.30)
is 0, the v.i. (4.47) admits a unique solution.

PROOF. We shall proceed in two steps.

Step 1: Existence. To qp and y we associate a bounded, closed and
convex subset .rl 0 of L2(Q) as follows. If rp, V e L2(Q), we set.
{v e L2(Q) 19) < v <,p in 92). If p e L2(Q) but q' g L2(92), we utilize
Theorem 4.27 to solve (4.42), call u' the solution, and set

n- {v a L2(Q)I go V u' < v < p in S2).

The definition of %l in each remaing case, that is, when either 'p c
L2(Q), V 0 L2(Q) or' 0 L2(Q), p 0 L2(Q), is at this point obvious.
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Let the bilinear form (4.50) be coercive, and define a continuous
mapping S: L'(Sl) -. V by

S(u)e V, q9 < S(u) < y, in S?,

ax(S(u), v - S(u)) > <F + du, v - S(u)> (4.55)

for v e V, la < v < ip in S1,

where Theorem 4.4 is taken into account.
We claim that S maps. T into itself. To see this we can safely restrict

our considerations to the case when p 0 L2(.Q), ' e L2(.fl); let us prove
that S(u) > p V u' for u o f The function v - S(u) + [u' - S(u)]+ is
admissible in (4.55), so that obvious passages lead to

0 > A f
o

- u)[u' - S(u)]+ dx > az(u' - S(u), [u - S(u)]+)
0

= aA([a - S(u)]+, [u' - S(u)II)

and finally to [u' - S(u)]+ = 0 by coerciveness. This proves that S(u) > u',
hence S(u) e.91.

Again by coerciveness, S maps bounded subsets of V(D) into bounded
subsets of V, hence into relatively compact subsets of L2(S2). Thus, the
Schauder theorem (see Theorem 1.J) yields the existence of a fixed point
u = S(u) e9Y, hence of a solution to (4.47).

Step 2: Uniqueness. Let u, and u, solve (4.47) and set a = (u, - u,)+,
w, - aw/((I + e) with e > 0 and w e C,'(Q U P), 0 < w < 1. Then both
functions u, - ew, > u, - a and u2 + ew, < u2 + a lie between T and
w: by proceeding as in Step 3 of the proof of Theorem 4.27 it can be proved
that Aa < 0, hence that it, < u, by the weak maximum principle. 0

REMARK. For what concerns existence, the weak maximum principle
plays a role only when p 0 L'(Q) and/or ' 0 L2(0). As for uniqueness,
note that the compactness of the imbedding V c L2(Q) plays no role.

Just as the proof of uniqueness carries over from Theorem 4.27 to
Theorem 4.30, so does the proof of the L`° estimate from Theorem 4.29
to the following theorem.

THEOREM 4.31. Let the weak maximum principle hold for A: H'(S1)
- V'. For h = 1, 2 let PA, Nh be measurable with qp, - p, +p, - ql, a L°°(J2).
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If u = uA solves (4.47) with W = WA, W = .pa, then ul - u2 belongs to
L°°(Q) and verifies

I ul - U2 h;0 < C maxC Wl - Wa Ioo;a' I Wi - Wz Im;o),

where C > 1 depends only on A, C = 1 if Al > 0.

4.5. Lewy-Stampacchia Inequalities and Applications to Regularity

We now turn to regularity of solutions to v.i.'s. Let us mention at
the outset that in our study an essential role will be played not only by
the regularity required on r, 8Q\r, F, and the coefficients of a(u, v)
(which was the case for equations: see Chapters 2 and 3), but also by
specific features of the convex sets K under consideration. As a matter of
fact, even when solution to the corresponding equation [i.e., to (4.9) with
K replaced by V] would belong to C°°(.2), a solution to the v.i. need not
belong, say, to Hl.(.Q). This is illustrated by the following simple example.

EXAMPLE. Let N = 1 and take Q = ]-1, 1 [, V = H0'(Q), a(u, v) _
f'_1 u'v' dx, 'p(x) = I x - 1/2, F = 0.

<'p,The function u(x) = 1(I x - 1) satisfies (4.42) since it e V, it
and

to 1

a(u,v-u) r_-}
i J
(v'+1/2)dx+} fo(u -1/2)dx

J

-I[v(0)+1/2]-#[v(0)+112]>0

whenever v e V satisfies v < W in 0.
The regularity of u does not go beyond its being Lipschitz continuous,

since u' is not a function, but is instead the Dirac measure concentrated
at 0 (see Problem 1.10).

In the light of the above, we shall tackle problems of regularity by
separately considering various classes of convex sets, though all of obstacle
type.

Beginning with convex sets defined by unilateral constraints we have
the following theorem.

THEOREM 4.32. Let F E V' and We H'(92), 'p > 0 on 8Q\r in the
sense of HI (Q), be such that there exists (A'p) A FE V'. Then a solution
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it of (4.42), if existing, satisfies

(AV) A F< Au < F (in the sense of V'). (4.56)

More generally: if w = /\n 1?h with yiha HI (Q), iVh> 0 on OQ\P in the
sense of H'(dl), and there exists /\h'-, (A.Vh) A Fe V', then a solution of
(4.42), if existing, satisfies

m
A (AV') A F < Au < F (in the sense of V'). (4.57)
h-1

PxooF. Since u is already known to be a subsolution of (4.42), there
remains to prove the left-hand-side inequalities of (4.56) and (4.57).
Beginning with the former, we first assume that the bilinear form is coercive
on V and solve

U, C- V, u'>u in d2,
(4.58)

a(v',v-u')><(AiV)AF,v-u'> for ve V, v>u in S2

in the light of Theorem 4.4. The function u' satisfies

Au' > (AV) A F (in the sense of V'). (4.59)

As a matter of fact, by (the obvious analog of) Lemma 4.26, u' minimizes
the family of all functions z e H'(Q) satisfying z > 0 on 2.f2\P, z > W
in 0, Az > (AV) A F; in particular, u' < V. But then the choice of v = u'
is admissible in (4.42), which yields

a(u, u' - u) > <F, u' - u> > <(AV) A F, u' - u>,

whereas (4.58) yields

a(u',u-u')><(AV)AF,u-u')

with the choice of v = u; thus,

a(u'-u,u'-u)<0.

By coerciveness u' = u, so that (4.59) amounts to the left-hand side
inequality of (4.56).

Let us now drop the assumption that a(u, v) is coercive on V. Fix A
so large that the bilinear form (4.50) is coercive: since G = (AV) A F
+ Au is a lower bound for AV + 1v' and F + Au, the previous part of
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the proof yields

Au+Au> (A,p+2') A (F+Au)> G

(see Lemma 1.54), hence again the desired conclusion.
For what concerns (4.57) it suffices to take into account that, by

Lemma 4.28, G = nn 1 (AVA) A F is a lower bound for A+p and F. 0

The estimates from below provided by (4.56) and (4.57) are called
the (unilateral) Lewy-Stampacchia inequalities. Their interpretation presents
no difficulty when T = 0, since A then coincides with the bounded linear
functional L: HI(Q) -. H-'(S2) defined in (4.33). Thus, say, (4.57) amounts
to

A-1
A (L?) Af < Lu < f [in the sense of H-'(S2)], (4.60)

where we have written f instead of F for consistency with the general case.
From (4.60) we can deduce regularity properties of the distribution Lu, in
the sense that the latter belongs to some space LD(Q), p > 1, whenever
f and A'1 (L?) A f do. The next example shows that the membership
of Lu in L°°(D) is a regularity threshold for solutions of (4.42).

EXAMPLE. Take N = 1 and let S2 = ]-1, 1[, a(u, v) = f'1 u'v' dx,
f = 0, +p(x) = 4x' - 1. We choose E e ]-1, 0[ so that the tangent line
y = +'(E) +'y'(E)(x - E) passes through the point (- 1, 0) of the (x, y)
plane. Analogously, we choose rl c ]0, 1[ so that the line y = +p(n) +
V '(71)(x -?) passes through the point (1, 0). Then the function

+p(4) + V (E)(x - E) for -1 < x < E,
u(x) = V (x) for E < x < r),

N(+1)+p'(,?)(x-r7) for l<x<1

is in H 1(Q), lies below 'p and satisfies

f
a(u, v - u) = J Y (f)[v'(x) - 'P(E)] dx

+ J ''V (x)[v (x) - V '(x)] dx + f' V ('J)[v (x) - V'(,?)] dx
C n

= 001W) - N (E)& + 1)]

+V (x)[v(x) -',(x)] I - JV"(x)Iv(x) - N(x)] dx
E E

+00[-v('1) - 000 -'/)]
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whenever v E H°'(d2). But 'p (E)(& + 1) and V'(rl)(1 - rl) _ -+p(rl)
so that

a(u, v - u) fe

"(x)[v(x) -'p(x)] dx
t

8 I [v(x) - V(x)] dx,

and finally a(u, v - u) > 0 if v < V.
We have Lu = -u" E L°°(d2), but Lu ¢ C°(d)) although the free term

and the obstacle are analytic functions.

When r 0 the interpretation of the Lewy-Stampacchia inequalities
requires, so to speak, that they be decomposed into a part inside S2 and a
part on r. In its generality this procedure requires the full machinery of
order dual spaces as developed by B. Hanouzet and J. L. Joly [72]. We
can, however, handle it rather simply under slightly restrictive assumptions,
as the next result shows.

LEMMA 4.33. Suppose that F is defined as in (4.43), that 'p = A'1 +pA,
where +ph E H'(92), p' > 0 on add\r in the sense of H'(Q), L? E Lr(Q),
and that By', ... , Bct, t admit a greatest lower bound A'1 (B?) A E

[H"'(Q)]'. If u solves (4.42), then Lu and Bu satisfy

and

m
A (L ph) / f < Lu < f in d2 (4.61)

A-1

A (BVh) A Bu < in the sense of [H112(S2)]' (4.62)
A-1

respectively.

PROOF. Atp', ..., A'p'^ and F admit a lower bound G E V' defined by

<G,
v> - J [ A

(L+pb) A f Iv dx + (' (Be) A c, viv) for v V.
a A-1 A-1

Theorem 4.32 therefore yields

G < Au < F in the sense of V',

which immediately implies (4.61). As a consequence, Lu belongs to L2(Q),
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u admits a conormal derivative Bu on P, and (4.62) follows (see the proof
of Lemma 4.23). 0

Under the assumptions of Lemma 4.33 we can view u as a variational
solution of a b.v.p.

Lu =f' in 9,

u=0 on 8D\P, Bu=(' on r,

where f' E L2(D) and ' e [IP'2(P)]' are of course unknown. Local and
even global regularity results for u can at this point be deduced from the
regularity theory for b.v.p.'s developed in Chapters 2 and 3. Indeed, we
have the following lemma.

LEMMA 4.34. In addition to the hypotheses of Lemma 4.33 suppose that
the coefficients a'i, di of a(u, v) are Lipschitz continuous on D and that f,
An , (LVh) A fe L'(D), 2 < p < 00. Then a solution u of (4.42) is in
Hf3g(Q). If in addition P is closed and 8Q\P is of class C'.', the H2'
regularity of u extends up to Odd\P. Finally, if it is also assumed that Jr
is of class C',' and that C e with t < B+ph in the sense of [H"E(P)]'
for h = 1, ..., m, then u e IP"(D).

PROOF. By (4.61) interior regularity follows from Theorem 3.8; the
regularity up to dl\P follows from Theorem 3.17(ii) via a cutoff argument.
As for regularity up to r, notice that under our present assumptions,
(4.62) implies Bu = C, so that the conclusion follows from Theorem
3.17(ii). (See Step I of the proof of Lemma 3.18.) 0

Passing from unilateral to bilateral v.i.'s we can easily arrive at (bi-
lateral) Lewy-Stampacchia inequalities by observing that, in the proof of
Theorem 4.32, the solution u' of (4.58) satisfies not only u' <,p but also
u' > qi if u > T. Thus we have the following theorem.

THEOREM 4.35. Let F e V' and q, ,p a H'(D), p < 0 < V on 8.4\P
in the sense of H'(Q), be such that there exist (AT) V F, (A+p) A Fe V'.
Then a solution u of (4.47), if existing, satisfies

(AV) A F < Au < (Ago) V F (in the sense of V').

More generally: let T = _,'p" with ?h e H'(l),'p < 0 on 8d1\P in the
sense of H'(D), w = AM, +ph with y" e H'(Q), Vh > 0 on 8Q\P in the
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sense of H1(Q), and let there exist

m m
V (Aq A) V F, A (A?) A Fe V'.
A-1 A-I

Then a solution of (4.47), if existing, satisfies

m m
A (A?A) A F < Au < V (A.p?) V F (in the sense of V').
A-I A-1

Consequently (see Lemma 4.33), we have the following lemma.

LEMMA 4.36. Suppose that F is defined as in (4.43), that p = Ve 1 4pA,

y = ^h'-1 ph where opA, epA a H'(.Q), T' < 0 < epA on 8d2\r in the sense
o f H'(Q), Lrp1, L?A e L2(S2), that.BT', ... , Bp-, { admit a least upper
bound \IA'-1 (Bp') V C E [H112(r)]', and that Bipl, ... , B?p-, C admit a
greatest lower bound /fin, (Bep") A 1 E [H112(r)]'. Let u solve (4.47). Then
Lu and Bu satisfy

m m

A (Ly')Af<Lu<V (LcA)Vf in S2
h-1 A-I

and

m m

A (BV") A C < Bu < V (Bq,') V C in the sense of [H1re(h]]
A-1 A-1

respectively.

Finally (see Lemma 4.34), we have the following lemma.

LEMMA 4.37. In addition to the hypotheses of Lemma 4.36 suppose that
the coefficients ail, di of a(u, v) belong to C0.1(12) and that V f,
AA L, (Ly'A) A f e LE(Q), 2 <p < co. Then a solution u of (4.47) is in

If in addition P is closed and OQ\P is of class the
regularity of u extends up to 8Q\P. Finally, if it is also assumed that r
is of class and that { e with Bw" < C < B? in the sense
of [HI"Z(P)]' for h = 1, ... , m, then u e H2,'(Q).

REMARK 1. By the same techniques utilized in the proofs of Theorems
4.32 and 4.35, unilateral and bilateral Lewy-Stampacchia inequalities can
be proven when V equals V r), I < p < oo, and A denotes a
bounded, hemicontinuous, strictly T-monotone (hence pseudomonotone)
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and coercive operator V': see Theorem 4.17, as well as Lemma
4.26 and the remark following it. Decompositions analogous to those of
Lemmas 4.33 and 4.36 can also be proven by taking the final observation
of Section 4.3 into account. Much more complex is instead the task of
arriving at regularity results extending those of Lemmas 4.34 and 4.37 to
the nonlinear case, e.g., we refer to G. Stampacchia [143].

REMARK 2. Both Lemmas 4.34 and 4.37 can be extended to the case
of any p e ]I, 2[ such that L'(Q) c V': see Problem 3.8.

4.6. Further Regularity

In Section 4.5 we entirely based our approach to regularity on
Lewy-Stampacchia inequalities, thus automatically sidestepping two im-
portant questions that we are now going to discuss.

4.6.1. W- Regularity

In Lemma 4.34 we did not take into consideration the case p = o.
The reason for this is that for N> 1 the membership of Lu in L1°(Q)
[which follows from (4.61) under suitable assumptions about Q and f]
does not suffice to guarantee that u c H12. (S2), no matter how regular
the coefficients of L are: see the example following Theorem 3.5. On the
other hand, we already stressed that essential boundedness is a regularity
threshold for Lu. Thus, the membership of u in H° °°(S2) does not follow
from the regularity of Lu via the regularity theory for equations; it can
instead be proven by directly exhibiting L°° bounds on second derivatives,
as we shall do in the proof of the next result.

THEOREM 4.38. Take 8Q of class C'-', l = 0, and a't E
di e C',"(D), b', e, f c CO.6(.D) (0 < 6 < 1). Let p E H2.c0(S2) with v'Iao > 0.
Then a solution of the unilateral v.i. (4.42) (with F = f) belongs to JP (i2).

PROOF. Step 1: Preliminary reductions. Since

N-.
vyv + a iu.Nv,,) dx

N-1
[E [(a'N + (a.,.'u:, - az,'u,,)v] dx for v c- H01(Q),

- i-1 O
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we can without loss of generality assume

aN' = 0 for i = 1,..., N - 1. (4.63)

Moreover, it is not restrictive to take a(u, v) = f a a'"u,,vs, dx, since in the
general case f can be replaced by f + (diu),, - b'u., - cu which still be-
longs to CO.'(.)) by Lemma 4.34 and Theorem 1.41. The solution of (4.42)
is then unique by the coerciveness of a(u, v) on Hv'(S2)

Let G be a smooth function of t c R such that G' E L-(R) and

G(t) = 0 if and only if t < 0,

G'(t) > 0 for all r, G"(t) > 0 for t < 1.
(4.64)

It is easy to check that the mapping fl: w H G(w - y) is a penalty operator
associated with the convex set intervening in our v.i., so that the solution
u is the weak limit in H0'(Q) of the sequence (u,) defined by

u, E Ho'(D), Lue + G.(u. - N) = f in £2,

with G, = e'G, e > 0 (see Theorem 4.19 and the remark following it).
A straightforward bootstrap argument based on Lemma 1.57 and Theorem
3.17 shows that u, e Cs,d(,)): we shall demonstrate the theorem by providing
a bound, independent of e, on I u, ja,.-(m. For the moment we claim that

I Lu, Im.n < C (4.65)

and therefore [Theorem 3.17(ii))

I U. H+.nin < C(p) for all finite p. (4.66)

To prove (4.65) we fix any q > 2 and utilize the equation for u, to obtain

fD
- ty)[G.(u. -'{,)]e-r dx + J [G.(u. - v)1° dx

n a

= Jn (jr - L+p)[G.(u. -'p)]e-' dx.

Since (u, - +y)Iao = -Y'1an < 0 and therefore G,(u, - W)Ian = 0, the func-
tion G,(u, - p) belongs to H0'(Q) and the first integral on the left-hand
side above equals

(q - 1) J a"(u. - +p).,(u. - +y).,[G.(u. - V)]9-'G. (u. - W) dx.
0
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By uniform ellipticity and (4.64) we arrive at

fD[G.(u.-V)Hdx< f all-LvpI [G.(u.-vp)J-'dx

that is,

257

l\ "If.< rr\fo
I f - LV I" dx) [G.(u. - vp)]e

dxfv-vq,

IG.(u,-V)I9:a<-If -LVIq;o,
and finally at

I Lu.-Ih;o= I G.(u.-+p)Im;, If - L'ph;a

after letting q o . This yields (4.65). Note that, by Sobolev inequalities,
(4.66) implies u, -. u in for ally E [0, 1 [, in particular u, < vp + 1
and therefore G,'(u, - vp) > 0 if a is small enough.

It will be convenient to have L replaced by Lo = -a4iO218x1Oxi =
L + a'Z8/8x;. Thus u, solves

U. E H0'(Q), Lou, + G.(u. - V) = f in .f2

with f, = f + a' ,u,,,; note that by (4.65) and (4.66),

I Lou. Im;a < C (4.67)

and

If. C

with constants independent of E.

Step 2: Interior bounds. We fix ru cc Q and proceed to obtain a
uniform bound on I u, This we do in the special case of solutions
to

Lou. + G,(u, - ip) = K in S2, (4.68)

K being some constant, under the assumption

Love > 1 in D. (4.69)

[In the general case we need only replace u, by u, + W,K and vp by vp + WK,
where

w.K E HOW), LOw.K = K - f,

with K large enough: w,K is in 0.6(0) with norm bounded independently
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of e.] By a bootstrap argument the validity of (4.68) implies u,E H4-P(S2)
for every finite p (Problem 3.11).

Let r, s be arbitrarily fixed in the range from I to N and let A > 0
be so small that

x4,E, > 0 in 93 for e Rb, ± 2W&, > -1 a.e. in Q. (4.70)

By taking partial derivatives in (4.68) we easily see that the function
A = L°u, + satisfies an equation of the form

L°iT + G, 'a = G,'yi + G,'du(u, - p),,(u, - +y),, + h° + hip in D.

Here G,' stands for G, '(u, - ry) and G6' for Ge'(u, - +p), whereas i is
given by L°,p + d'i by ari - A8+.di, (= a" - A if i = r and j = s,
= a'% otherwise); finally, the functions h° c CO(D), h' e C°(S)) n H'(Q)
depend on d, hence on e, with

I hf IP;n < C(1 + I u, for any p < oo, j = 0, 1, ..., N,

with C independent of e. Since both G,' and Ge' are > 0, so are also G;'N
and Ge 'd" (u, - - +p)s, by (4.69), (4.70). Let U = gd with g e

0 <g < I in S2, g = I on cu. Since

L°U = gL°U + i7L°g + 2u(atig.,):, - 2(a0pggy)i,,

U satisfies a differential inequality of the form

L°U+G.U>HO +H& (4.71)

in S2, where the Hf's have the same properties as the h1's. This means
that U is a function from H°'(Q) satisfying

(L° U + G. T, v> =
J

> f

[a" U., v.j + (Q , U., + Ge U)v] dx

(H°v + H'v,) dx for v e H°'(Q), v > 0.

We have no control over I Ge I.;n as a varies, but since Ge > 0, we can
avail ourselves of the remark after Lemma 2.8. Thus U, and by (4.67)
dgu,, as well, is bounded from below by a constant depending on a only
through the bound on the norms I Hr IP;n, hence on the norms I u, IW,P(n),
for p finite and large enough. Since the same conclusion holds with A
replaced by -A, we have obtained a uniform bound on I u. In+,«ee)
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Step 3: Global bounds. Let A: C -. B be a C3 1 diffeomorphism that
straightens a portion U n 811 of 811, U being some bounded open subset
of RN. In the new local coordinates y = A(x) the function ii, _ (u o A-')IR+
satisfies

u, a H°'(B+ U S+), L.ou, + G,(01 - ip) = f in B+:

here Lo = -d Oelayeaye with V(y) =
yr = (V o A-')1a+, and f is a function from bounded in norm by
a quantity C(1 + 14. IcI.e(u++)), hence [see (4.66)] by a constant independent
of e. For the purpose of providing a bound on I u, or equiv-
alently on u, IH'. R , , we may safely replace u1 by u, + iv,g and w by
y + W,K, where iv,K solves

w,a a Ho'(B+), Lows = K - 1. in B+

and therefore belongs to with

I w,x C(R) independent of e,

whatever R e ]0, 1 [ [Theorem 3.13(ii)]. These considerations show that the
bound on norms need only be proven in the special case when
U n 11 = B+, U n 811 = So, and u, satisfies

U. a HO'(B+ U S+), Lou. + G,(u, - w) = K in B+

with K so large that

Lo?p > 1 in B+;

for R e ]0, 1[ u, belongs to whenever p is finite (Problem 3.11),
and the above equation is satisfied at every point of B+ U S".

We now take g e C,-(B) with 0 < g < 1 in B, g = I on B1,2 and
arrive again at (4.71), this time in B+, for the function U defined corre-
spondingly.

When r and s are both fixed in the range from 1 to N - I, minor
changes in the techniques of Step 2 yield a uniform bound on I u,= r, 1.;1re;+
Indeed, U vanishes near SF and is > - I Lou, I.;+ on S" because ua,a Is.
- 0: since U+ I Lou, m;+ satisfies the same inequality (4.71) as U, the
weak maximum principle (Theorem 2.4) implies U+ I Lou, h:+? z,
where

z e Ho1(B+), <Lz + G; z, v> = f (H°o + H'us,) dx for v e H0'(B' ).
D+
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Lemma 2.8 applies to z, so that we arrive at a uniform bound from below
for 0(x), hence for +Ag(x)u,1,.1(x), x6 B+.

Things become considerably more difficult if one of the two indices r
and s, say s, equals N. This is the case we are going to take up now.

Since (u, - vp)Is < 0 and G,'(1) = 0 fort < 0, we have

(Lou.), = -G.'(u. - vV):i = 0 on S°

for i = 1, ... , N. This implies, first of all, that the conormal derivative

BLou, = -[aiN(Loue)zi]js.

vanishes identically. Moreover, since uez,,/Iyw = 0 for i, j = 1, ... , N - I,
the identities

IN iN ivQ GexrZNZi (Q u.ZiZN)Zr - ax, ae2)ZN

N-1
N- - (Lou.), - a 1atztz! zr - azr UezizN

i, nl

[see (4.63)] show that

BU,z,ZN = -(aiNUez,ZNZ5)ISo = ai Ut;ZNIS°.

Summing up, we have

I BC Ioo;S. G C I ue IU!.m(B+)

0 is a function from H°I(B+ U S°) satisfying (4.71) in B+, hence

JB+ [a'1 61.,v,, + (azlUj, + G, 0)v] dx

fB+ (H°v - H'v,,) dx - f
s.

(H-"Is. + BO)vLNo dx'

for v e H°I(B+ u S°), v> 0.

In the above inequality the right-hand side is minorized by

fB1
- Hivq) A - M, f vIso dx' = f (H°v - H'v., + M,vZN) dx,

B+ 3° D+

where M, is a quantity C(1 + I U.
Without loss of generality we now assume 10 iz;+ = 1. Denoting by

B+(k) the set {x a B+ 10(x) < -k} we recall, from the proof of Lemma
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2.8 (see Lemma 2.9) that I B+(k1 + k) I = 0, i.e., 0 > -k1 - k, provided
k1 is suitably large, say k1 > CO, and k is chosen accordingly. We can
always suppose C. > 1, C. > 2 I L°u, h;+ for every E. Take A > 0. Then
in B+(k1) we have

gu.:,:A, C (-kl - gLou.)/A C -kl/22,
so that

I B+(kl) I meas{x a B+ gu.=,=N(x) I ? kl/2A}

(2,1)Dki D
J

I u.:,=,JD dx
a*

for any finite p. As for k, in the present situation it is bounded from above
by a quantity

C(kt + I U. la',°(a+)) I B+(kl) I",

where C and r1 are some positive constants independent of E. Therefore,

17> -k1 - C1(1 + I U, (where C1 depends on p).

At this point we take

kl = [(Coo + Cl)(1 + I U. IDa,°(a+))]lra

and arrive at

0> - [(C02 + Cl)(1 + I U. IW,-(a+))]l/a

-[(C02 + Cl)(l + I U. Imo,°ID+I)]1+11-ODI/8

hence

0 -CU + I U,

if p is chosen large enough, and finally

+ Ag(x)u.:,=,,.(x) > -CO + I U. n+.-ca+))1", x C B++, (4.72)

for r= 1, ... , N - 1. But since

aNVU.zyzy - - L arsU1.riV - K
r-1

on S°,

the same technique utilized for the case r, s < N shows that (4.72) holds
for r = N as well. Summing up, we have proved

I U. Iw.-(e,,.) <- C(l + I U. Irn.-is+))va (4.73)
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Now let it = Uj_o w,, where a), cc Q and w{ = U, n 12 with
C4 = A '(B,,2), A being a diffeomorphism of class for i = 1, ... , M.
From Step 2 and (4.73) it is easy to deduce

I U. CO + I U.

and this yields the desired bound on I u, lip.-(m.

4.6.2. H2 Regularity up to l under General Conditions

a

In Lemma 4.34 we imposed a very strong condition on By', ... ,
Bp" and tin order to extend the regularity of u up to F. We cannot
do any better than this as long as we confine ourselves to the use of (4.62),
which can at most yield Bu a L°(I') if the inequalities Be > C are not
assumed: (4.62) is therefore insufficient to guarantee the H' regularity of
u near F no matter how regular Lu is. The following question now naturally
arises: can a general criterion be given for the regularity near I'
of a solution u to (4.42), aside from (4.62) degenerating into Bu =

e H11P'.P(F)?

The next example shows that the answer is negative when p is "too
large."

EXAMPLE. Let N = 2 and set

u(x1, x,) - -X(I z 12) Re za18 = -X(el)?'2 cos(30/2)

with z = x3 + ix2 = e exp(iO) (i8 = -1), X being a smooth function on
[0,oo[such that 0<XS1,X(r)=1for 0<r<1/4,X(r)=0for r>1.
In R2\(0} the function Re za12 is harmonic; moreover, when x, = 0 the
Cauchy-Riemann equations yield

a Re z3h2 = -
a Im za/2 - r0 for x, > 0,

axl ax, l- IIxrIl/' forx,<0.

Let 12 be such that 12 n B = B+, with ail regular: then u belongs to
CI(D) n H2(Q), and by the above considerations the function f - -Au
is in C'(D). Moreover, u satisfies

au l

an
<

era

au
Ulan < 0, av

0, Ulan - = 0.
an
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[Note that for -I < x1 < 1 and xr = 0,

8v Ian = - ax = X(I z Ir) axa Re z3/2.}

Now let 'p e 0 < 6 < 1, solve the b.v.p.

-d'p =fin S?, y = 0 on 8i?

[see Theorem 3.17(111)]: by the weak maximum principle (see Theorem 2.4),
'p > u on D. This shows that u satisfies (4.44) with r = 8S?, L = -d
(and therefore B = 8/8v), C = 0. However, u does not belong to
-nor to if 6 > 1/2, for the matter.

In the light of the above, we are left with the task of investigating
regularity near l only when p is close to 2. We take p = 2 and begin

by studying (4.45) instead of (4.42). Of course, we need only consider the
case V = H'(Q).

THEOREM 4.39. Let BS? = l be of class Assume that a'i, di are
Lipschitz continuous on .?, that F is given by (4.43) with C C_ H112(aD), and
that 'p ='plan with 'p e H'(Q). Then any solution u of (4.45) belongs to
H°(S?); moreover,

I U Imca' <- C(I f 12:0 + I C IH'ncam + IV 1m(D) + I U IH=(m), (4.74)

where C (independent of u, F, V) depends on the coefficients of a(u, v) through
the constant of uniform ellipticity a and the bound imposed on

I att, di I b', c Im:n

PROOF. For i = 1, ... , N let n4 e C0.1(.D?) be such that nilan = v'. If
z e H'(S?) is such that zlan = C and I Z IH4n) = I C 611(am, the functions
fi - n'z satisfy

f (fv + f'v2) dx = f Cvl an da for v e V
n an

and therefore

<F,v>= f (f°v+f'v.,)dx for veV
n
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with f° = f + f, as well as

.v

I f° If;a + If' IH'40) <- C (I f 6;a +I C I Hvvam)

Set
N

x(F u) -- I f° le;a + Y I P IR=ia) + I u 16a)
S-1

Since u - V satisfies (4.46) with f replaced by f - LW, +Vlao by 0 and
C by C - By, we can without loss of generality assume ±y = 0.

Moreover, since f° - b'uz, - cu c Lt(Q) and fi - d'u a HI (D) with
norms bounded by Cx(F; u)"", we can also assume that all coefficients
of a(u, v) except the leading ones vanish identically.

Let us consider the special case when .Q n B = B+, OQ n B = S°.
It is clear that u, when restricted to B+, satisfies

u c- H'(B+), u< 0 on S°,

f B+
- u)z, dx > (F, v - u) (4.75)

H

for v e H'(B+), supp(v - u) c B+ U S°, V<0 on S°.

Fix s = 1, ... , N - 1 and write

6Aw(x) = dA'w(x) = h-'[w(x + he) - w(x)]

for h e R\{0}, e being the sth unit coordinate vector. Let g E C-(RN)
with suppgcB,0<g<1,g=1 on BR with 0CR<1. For0<Ih!
< dist(supp g, S+) the function

vh(x) - u(x) + Eg() [u(x + he)g(x + he)

+ u(x - he')g(x - he) - 2u(x)g(x))

satisfies

vA < u[I - 2eg'/h2] < 0 on S°

provided e < h8/2. We can therefore insert v = vA in (4.75) and obtain

a'JU:,[gb-A6A(gu)jr, dx > <F, gb-A8A(gu))Je+
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on the other hand,

Since

a'iu.,(gv)., dx = <F, gv> for v E H°1(B+).
B+

fB+
auiu.,(gw).1 dx = f

B+
[ai1(gu),w, + ai;u5,gw - acsug.,wz,] dx

and

<F, gw> = fs~ [U°g + fig:,)w + f'gw.,] dx

whenever w c- Hl(B+), we are in the situation considered in Remark I
after Lemma 2.22 with u replaced by gu, f° by f°g - a'iuA + f'&, E
Le(B+), f' by fig + ai'ugs, e H'(B+). Hence gu e H"(B+), which implies
UIB,+ E H'(BB+), with

I U IBVB,,+) < I gu Ia')B+) < Cx(F; u).

Now let U be a bounded domain of R" such that U n 812 is
straightened by a diffeomorphism A: U - 9. Then the function
u' = (uoA-1)IB+ solves a problem such as (4.75) and ul,,, where w

A-1(BR+), belongs to H°((o) with

I u Ik,(a) < Cx(F; u).

Finally, we write .f 2 as U b wi, where w1, ... , to,,, are chosen by
the same criterion illustrated above for w and w° cc S2: the full conclusion
of the theorem is obtained by patching together the H' regularity results
and estimates on w1, ... , w,,, as well as on w° (see Lemma 2.21). 0

Returning to (4.42) we have the following theorem.

THEOREM 4.40. Same assumptions about 8S2 = 1, a'i, di and C as in
Theorem 4.39. Let .p e P(Q). Then any solution u of (4.42) with F given
by (4.43) belongs to HI(Q) with norm estimate (4.74).

PROOF. Since, by Lemma 4.33, u satisfies (4.46) with f replaced by
Lu E L2(Q), we are led back to the situation investigated in Theorem
4.39. 0
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4.7. Regularity in Morrey and Campanato Spaces

4.7.1. The Case of Continuous Leading Coefficients

We are going to give sufficient conditions in order that all first deriva-
tives of a solution u to (4.42) belong to L'-'(Q) whenever all first derivatives
of the obstacle p do; this will lead to the membership of u in
with 6 = (p + 2 - N)/2, if N - 2 < p < N, and even in with
6 = (p - N)/2, if N < p < N + 2 [see Theorems 1.17(ii) and 1.40].

THEOREM 4.41. Assume 8.D of class C', P closed, ait e CO(D). Take p
in ]0, N[ and let u solve (4.42) with

<F, v> =
J

(f°v + f'v1) dx for v e V,
n

where f ° E L2.(p-s)+(D), f', ... , fN E V E H'(D), W I a, ? 0,
w:1 e L2' (Q) for i = 1, ... , N. Then all first derivatives of u belong to
L'-P(Q) with norm estimate

N

I Vu Ie., o < CI f° I9.(p 8)D + I f' I2.Y:D
-1

+Iw1a;D + I Vw 12p;D + I u lm(a)). (4.76)

where C depends on the coefficients of a(u, v) through the bound imposed
on their L°°(Q) norms, as well as through the constant a of uniform ellipticity
and the modulus s of uniform continuity of the a'i's.

PROOF. Step 1: Preliminary reductions. We need only prove the the-
orem under the additional assumption that u e L2"'(Q) with I u

bounded by a quantity such as the right-hand side of (4.76). [This assump-
tion is certainly satisfied for p <2 by the mere membership of u in H'(S2):
see Theorem 1.40.] For, if it is only known that u c L2,'(Q) with p' < p,
then the theorem itself with p replaced by p' yields u e L2.0'+'(S2) with
norm estimate by Theorem 1.40, so that we can again arrive at the con-
clusion of the theorem with p replaced by min(p, µ' + 2), etc.

At this point it is not restrictive to assume di = 0, since fi - ddu has
the same regularity as f1. Nor is it restrictive to assume that the bilinear
form is coercive on V: in the general case, we need only replace the coef-
ficient c by c + A and the free term f° by f° + Au, with d large enough.
Finally, it is not restrictive to take F = 0, since we can always replace u
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by u - a and 'p by yr - a, with a defined by

O E V, a(a, v) = (F, v) for v c- V (4.77)

[the bilinear form being coercive; see Theorem 3.16(i) for what concerns
the regularity of a].

Step 2: Interior regularity. Let u. cc .Q, x° E th, 0 < r < d
[dist(rv, 8D)] A 1/2, and solve

z E Ho'(B,(x°)),

f (e)
dx - f a° 'u,,v, dx for v c- H°'(B,(x°)),

B, (1°l J B,(s°l

ao " - a'i(x°), with the help of Theorem 2.1 and of the corollary of The-
orem 1.43. Then (4.42) with di = 0, F = 0 yields

o'rz1,(v - u)1, dx
e,(z°l

[a'fu1,(v - u)1, + (aoii - a0)u1,(v - u)1,) dx
D,(z°l

- J [(blu1, + cu)(v - u) + (a0, - u)1,] dx
B,(1°l

whenever v E H'(B,(x°)) with v <'p in B,(x°) and v - u e H'(B,(x°)):
note that the trivial extension of v - u to S2 is in V, so that v is the restric-
tion to B,(x°) of a function from V which equals u throughout Q\B,(x°).

We now set w=u-z, so that v-u=v-w-z, and obtain

aoiiz2,zl, dx < {(b'u1, + cu)(v - w - z)
B,(1°) Br(e)

+ (a'i - a°")uz,[(v - w)1, - z1,]
+ a°"z:,(v - w).,} dx. (4.78)

Poincard's inequality applies to the functions v - w, z E H°'(B,(x°))
(see the corollary of Theorem 1.43 again): for c > 0 we have

J I(b'u1,+cu)(v-w-z)I dx

< C(I Vu 12;z°.r + I U I.;>..°.,)(I v - w I2:1°,. + I Z I.:z°.r)

< C(I Vu 12;10., + I u I.;O,,)r(I V(v - w)12;1°., + I Vz

< C(c)r2(I Vu IE:z°., + 1 U + e(I V(v - w) I2':1°.. + I Vz IE;2o,,).
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The remaining terms on the right-hand side of (4.78) are bounded
by a quantity

C(E)W(r) I Vu I:;e., + I V(v - w)1E;z°,d + E I Vz

By taking e = a/4 we can therefore deduce from (4.78) that

I Vz 11s , < C{[r' + r'(r)] I Vu IY:t°.,

+ I V(v - w)12;e,r + w+' I u (4.79)

Let 0 < p < r. The function w belongs to H'(B,(x°)) and satisfies

J
a°'5w, pv, dx = 0 for v e H°' (B,(x°)),

B,cz')

so that Lemma 3.1 yields

N N

I VW Iz:t,p< C 2N
I Vw 12;e,r C C ON (I Vu 1'2;z-., + I Vz I91:e,r)

and finally

I Vu 1a,z.p < 2(1 Vw I2;,°,p + I Vz Iz;zo. )

< C( 2N
I Vu Ir:z°,r + I Vz la::,r}

<
f

C j[
ON
N + r2 + r'(r)] I Vu le:r,r

11ll+ I V(v - w) IE:x°.r + rr+ 1 u 12,v:o}

(4.80)

We now choose v = w A +p, which is admissible since w A p - u
_ (w - u) A (gyp - u) = (-z) A (V - u) belongs to H'(B,(x°)).

The function w A +p - w belongs to H°'(B,(x°)) and vanishes at all
points of B,(x°) where w < p, hence satisfies

5
a° 1(w nip - w)s,(w A +p - w),, dx

a°"(w Ap):.(w AyJ - w),,dx
B,cri

a°"p:,(w A V - w),, dx,
B,isi
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so that

I V(w A ' - w) Id:z°.r C C I VV Ih, !5 Cr' I VV ILz:a'

Summing up,

IIf N 11

I Vu IE;z°.P C1 f I eN +

r`t

r2 + r2(r) I I Vu IY:so..r

rp I V IY.M;a + rY+19 I U B.M:aI

At this point we need only proceed as in Step 1 of the proof of Lemma
3.3 to conclude that u.ll,,, ... , u:RL belong to L°'µ(w) with norm estimate.

Step 3: Completion of the proof. Let

9nB=B+, BQnB=(8Q\fnB=S°.

Let x° a SR , 0 < R < 1, and fix r e ]0, (1 - R)/2[. We solve

z c Hl(B,+(x°)),

J
,(Jz: vet dx = J dx for v e Ho' (BR+(x°)).

B,+)xO)

so that w = u - z belongs to Ho'(B,+(x°) u S,+(x°)) and satisfies

J
a°'iw,,vt dx = 0 for v e H01(B+(x°)),

whereas w A ' - u belongs to Hol(B,+(x°)). We can estimate I Pz I:;e,r.+
by proceeding as in Step 2 of the present proof: the only major difference
is that here Poincar6's inequality in Hol(B,+(x°)) must be utilized (see the
corollary of Theorem 1.43). Next, we estimate I Pw I,:,.,,,+ with the help
of Lemma 3.9. At this point the same techniques employed in the first
two steps of Lemma 3.11 yield u11 IBR+, ... , u1, IBR+ a LZ.M(BR+) with
norm estimate.

Now suppose that S2 n B = B+, 8.Q n B T n B = S°. After fixing
x° a SR for 0 < R < I and r e 10, (1 - R)/2[ we solve

z C H°1(B,+(x°) U S°(x°)),

r ,0z,w. dx = J aoiiuz v dx for v e Ho1(B,+(x°) v S,(x°))
Bme)

with the help of Poincar6's inequality in H0'(B,+(x°) U S,°(x°)) (see the
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corollary of Theorem 1.45); thus, w = u - z belongs to H'(B,+(x°)) and
satisfies

J
a°'Jw,)v,, dx = 0 for v c H°' (B,+(x°) V S°(x°)),

B,+(se)

whereas w A y - u belongs to H°'(B,+(x°) V S,°(x°)). We can again
estimate I Vz 1';=0.,,+ by proceeding as in Step I of the present proof:
here Poincar6's inequality in H°'(B,+(x°) v S,°(x°)) must be utilized again.
After I Vw la;s,,e,+ has been estimated with the help of Lemma 3.9, the
same techniques employed in Step I and 2 of the proof of Lemma 3.11
again yield u, IBB+, ... , UXRIBR+ E L''e(BH+) with norm estimate.

The final global result can at this point be obtained by locally straight-
ening both ad2\r and 1' through C' diffeomorphisms, then patching
together local regularity results in the interior of S2 as well as near as2\I'
and 1. 0

4.7.2. The Case of Holderian Leading Coefficients

THaoREM 4.42. Theorem 4.41 remains valid if µ is taken in ]N, N + 2[,
provided aQ is assumed of class C''d, 1'= 0, and a'J, dJ e C°'d(d3), where
d = (p - N)/2: C in (4.76) then depends on the coefficients of a(u, v)
through the bound imposed on I ail, dJ Icc dcjj) and I b', c Im;a as well as
through a.

PROOF. As in Step I of the proof of Theorem 4.41 it can be proven
that it is not restrictive to assume dJ = 0 (note that u c- C°-d(.)), with
norm estimate, by Theorem 4.41 itself), F = 0.

Let us study interior regularity. We repeat the same procedure as

in Step 2 of the preceding proof, and arrive at

I Vz C[(ra + r'°) I Vu + I V(v - w) IL,aa.,+ rN+a I U 12 ;Q].

Since Lemma 3.1 yields
v+a

Vw - (Vw)2. I2:i°.e < C eN+'

<C eN+'

- rN+2

eN+'<C

Vw - (Vw)1.,

I Vw - (Vu)ro., la:za.,

(I Vu - (Vu),,, I2;z0,, + I Vz IP:2,r)'
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we have

Vu (Vu)s°.e I22:x°.P < I Vu - (Vw)1o, IP:Z.°

G 2(1 Vw - (Vw)x°.e I2:x°,e + I VZ 122:s°.e)

I Y+E

C eN+E
I Vu - (VU)," I22;xo., + (r2 + r'd) I Vu 122

+ I V(v - w) Iz;z°., + rN+E I U IL;a] .

In order to bound I V(v - w) 122;x,., we again choose v = w A V.
This time we make use of the circumstance that since w A V' - w C
H'(B,(x°)), we have

aoi'('x,)xc,, J (w A 'y - w)x, dx = 0

by the divergence theorem, and obtain

a I V(w A V - w) Iz.=°,, <-
J

ao'3(w A V - w)x,(w AV - w)s, A
8,(xo)

_ ao"[yz' - ('P1,)e,,](w A'V - w)x, dx
B,fx'7

<
2

I V(w A V - w) + C I VV - (Vv)e,,

Finally we remark that all first derivatives of u belong to
by Theorem 4.41, so that

N+E

Vu - (Ne,p I22;x°,e < C(ev++a I Vu - (Vu)..,, Iz;x°., + rx+e I Vu 1'2.,v-a:n

+r°I Vv I22.N:a+rN+'Iulm;o).

We can now proceed as in Step 4 of the proof of Lemma 3.3 and
arrive at the membership of ux,1®..... uxylm in Co.'E('u) first, and then
in CO,e(a)

Regularity near 8S2 presents no difference with respect to the above
except that Lemma 3.9 must be used instead of Lemma 3.1. Note that
using the same symbols as in Step 3 of the previous proof, we are only
concerned with the case when the function w A 'V - w belongs to
H°1(B,+(x°)) because r = 0.

Global regularity is at this point obvious. U
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REMARK. Let r # 0. The example of Section 4.6.1 shows that The-
orem 4.42 cannot remain valid, because u cannot be expected to belong
to for 6 > 1/2. For 6 < 1/2, however, C'-"O regularity can still
be proven: see L. Caffarelli [25].

4.73. The Case of Discontinuous Leading Coefficients

We return to the setting of Theorem 4.41, except for a'f E C°O)
weakened into aii c- L°°(Q); we take N> 3. The proof of L'-N(Q) regu-
larity of u,,, ... , uZN, must accordingly be modified as follows.

To begin with, for any solution u of (4.77) the only available regularity
result t0r,, ... , O=H E L2,(D) (with norm estimate) concerns the range

0<IA <µ°=N-2+28°, (4.81)

where 6° is the Holder exponent of Theorem 2.14 (see Theorem 2.19).
We shall therefore limit ourselves to the case (4.81).

It can again be proven that it is not restrictive to suppose that
u c- L'-N(Q) with norm estimate, that di = 0, that the bilinear form is
coercive, and that F = 0.

If z solves
z E H°'(B,(x°)),

.a'izz v,, dx = a'"usv,, dx
8,410) B,IZ°)

for v E H°' (B,(x°)),

where x° E o with ru cc 0, 0 < r < [dist(w, 8S2)] A 1/2, we arrive at an
estimate such as

I Vz C(ra I Vu 14:=°.. + I V(v - w) IE:0.. + m+2 I U IY,N:a)

instead of (4.79). To the function w = u - z we apply Lemma 2.17 instead
of Lemma 3.1 and obtain

I Vw Is:=°.Q C om (I Pu Ia:.;.., + I Vz

instead of (4.80), for 0 < p < r. We thus arrive at an inequality

a aPu Is:s°.e C[I?r + reI Vu

+ro I V'P122µ:v+r"+aIula,r:D
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which implies the regularity u..1...... u:Nla E and the correspond-
ing norm estimate with the choice (4.81) of p.

Regularity up to aD can be proven similarly: the analog of Lemma
2.17 for functions w satisfying either

w E H '(B +(xo) U S,+(xo)),

aitw.,vzt dx = 0 for v E H0'(B+(x0))
B, +(O)

or

w E H'(B,+(x0)),

a'jws4v,t dx = 0 for v e H0'(B,+(x0) U S0(xo))

can be deduced from Lemma 2.17 itself by proceeding as in the proof

of Lemma 2.18.
Summing up, we have the following lemma.

LEMMA 4.43. For µ satisfying (4.81), with 80 as in Theorem 2.14,
Theorem 4.41 remains valid if the air's are merely taken from L°°(D); the
constant C in (4.76) depends on the coefficients of the bilinear form only
through the bound imposed on their respective L°°(Q) norms and through a.

For N - 2 < p < N - 2 + 260 the previous lemma implies Holder
continuity of u throughout .0, with Holder exponent 6' _ (p + 2 - N)/2.
We are now going to utilize Lemma 4.43 and prove that if the bilinear
form is assumed coercive on V and p is simply required to be continuous,
or Holder continuous, then u is also continuous, or Holder continuous.

First we take ip e C0(.D), ip > 0 on aD\l, and construct a sequence
{,,,,} of regular functions such that y > V and V. -, +p in C0(.' ). If the
bilinear form is coercive on V, there exists a unique solution u of (4.42)
with +p replaced by +pn; moreover,

Iu° - Urn oo;a <_ CIV.-V.Io;a

(see Lemma 4.29).
Assume f 0 E L='iN-ri+(Q), f', ... , f9 E with N - 2 < p <

N - 2 + 280: then, each u is continuous on .0 by Lemma 4.43, and so
is the limit u' of the Cauchy sequence in C0(.2). But, since v < V
implies v <,p,,, is also bounded in V by coerciveness: hence,

u satisfies (4.42). We have thus proved the following theorem.
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THEOREM 4.44. Same assumptions as in Lemma 4.43, except for a(u, v)
being assumed coercive on V and 'p being simply taken from C°(92), with
'p > 0 on aS2\P. Then the solution of (4.42) belongs to C°(.).

Next, we have the following theorem.

THEOREM 4.45. Same assumptions as in Lemma 4.43, except that µ is
supposed > N - 2, a(u, v) is assumed coercive on V, and V) is taken from

0 < 6, < 1, with 'p > 0 on dS2\P. Then the solution of (4.42)
belongs to for some 6 e ]0, bl[.

PROOF. Once again it is not restrictive to assume F = 0; note that
the solution of (4.77) is in C0.6'(D) for 6' = (p + 2 - N)/2. Let us first
consider the case

'p > e > 0 on OS2\P (4.82)

Denoting by V' a controlled extension of 'p to Rx (see Theorem 1.2),
we set

V. = (en w)IL-

Thus, pn > 0 on OD\P for n sufficiently large, and

I TR - T Im:a 5 n-11 I V IC°.61(15)

I V. la(n) 5 I V

(see the remark following Lemma 1.8). Next we denote by un the solution
of (4.42) with 'p replaced by 'p, , F = 0: since v = 'pn A 0 is admissible
in the v.1., we have

I U. IV 5 C I 'pn In'(o)

by coerciveness, and from Lemma 4.43 we deduce

I un I c°rd'(c?) 5 C I V. I c.(.3) 5 Cn'-", I 'p Ico.s')n)

At this point we utilize the fact that

I U. - If Im;a <_ C I'pn - w Im:o 5 Cn" I V Ic°,a,)i;)

(see Lemma 4.29) to obtain

Iu(x) - u(y)I Iu(x) - un(x)I + I u(y) - u(y)I + Iun(y) - un(x)I

c C I V + n'-s' I x - y 1")
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for x, y E S, 0 < I x - Y I< 1. By choosing n between I x - y I-81 and
Ix-yl-°'+1 we arrive at

I u(x) - u(Y) I <_ C IV Ic^.al;sl I x - Y 1° °',

thus proving the theorem with 6 - 3'd,, under the additional assumption
(4.82). The latter can finally be removed by first replacing 'p by 'p + e
and solving the corresponding v.i., then letting a 0+. 0

REMARK. In Theorems 4.44 and 4.45 the coerciveness assumption
about a(u, v) can be dispensed with if f° e L°(.Q) and f', ... , f`' E L'(Q),
where p > N and q = pN/(N + p). Then, indeed, the function u - -u,
which satisfies

a(G, (ii - k)+) < <-F, (a - k)+)

for every k > max,5 I V 1, is bounded not only from below, but also from
above (see the remark following Lemma 2.8). This means that f°+ Au
satisfies the same assumptions as f°, so that a(u, v) can be replaced by
a(u, v) + A Ja uv A.

4.8. Lipschitz Regularity by the Penalty Method

We again take N> 3.

THEOREM 4.46. Assume 812 of class Cr, l = 0, a`i e C°,'(.{F), die
C °(.Q) for some d E ]0, 1[. Let u solve (4.42) with

<F, v) =J (f°v+f'v.)dx for vE V,

where f° E L2,p-8(12), f', ... , fv E L2'µ(12) for some IA in ]N, N + 2[, and
v e CO-I(D), ,p > 0 on 812\I'. Then u E and

.v

I U C`I f 1a.µ-a;e + E If' 12.µ:a + I'V loath + I u 1mimi

where the constant C depends on the coefficients of the bilinear form through
the bound imposed on their respective norms as well as through a.

PROOF. Step 1: Preliminary reductions. Under our present assumptions
Theorem 4.41 yields us , ... , u.r, e and therefore u e L2,µ'+8(,Q)
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for any µ' < N; thus, f° - b'u,, - Cu E LZ.M-'(Q) and f' - d'u e
for µ = g A (N + 26). By dint of Theorem 3.16(iii) a simple translation
argument shows that it is not restrictive to assume dJ = b' = c = 0, F = 0.

Step 2: The penalized equation. Set fl(w)(x) - [w(x) - V(x)]+. It is
easy to verify that fi, as an operator H'(Q) V', is bounded, hemicon-
tinuous, and T-monotone. Since fl(w)(x) = 0 c . w(x) < V(x), ft is a pen-
alty operator associated with the convex set (4.27), and the solution of
(4.42) (under the simplifications stipulated in Step 1) is the weak limit in
V, as a -. 0+, of the sequence {u,} defined by

U. E V, Lu, + e N(u,) = 0, (4.83)

L = -a(a'Jalax3/3x1 (see Theorem 4.19 and the remark following it).
Note that an easy bootstrap argument based on Sobolev inequalities yields
u, E for any p e [2, oo[ [see Theorem 3.17(ii)].

Step 3: Boundary estimates. Since aQ is of class G', there exists a
positive number r such that, whenever x° a 3Q, B,(y) n .D = x° for a
suitable choice of y = y(x°) in RN (a property that is usually expressed
by saying that Q satisfies a uniform exterior sphere condition; compare with
the beginning of the proof of Lemma 3.26).

We now fix x° a a.Q, translate the origin of RN in the center y of the
corresponding exterior sphere, and introduce the smooth function

w'+:(x) _ C(r ' - I x 1'), x E RN\{O},

with C, rt > 0 to be determined later. Of course, w'+'(x) > 0 for x e Q;
moreover,

"Ae;'(x) = C°]xi I X I-iv+a)

"'=,='t (x) = Crld'J I X I-4+2) - CO(rl + 2)x,x, I x I-in+ai

with b'J = 0 for i # J, = 1 for i = j.
Let M be the essential supremum over Q of the function x --* 4(x)xi

+ a'J(x)d'J and take p so large that

Lw'+4(x) _ -aZ(x)wl+'(x) - a'Jw':+r'y(x)

= CC71 I x 1-('+a)[a"(x)(0 + 2)xix1 I x 1 - aZ(x)xi - a'(x)6iJ]
C', I x 1-(q*2)[a(', + 2) - MI > 0,

for x e Q; a fortiori Lw'+' + (1/e)ft(w'+') > 0 in Q.
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Next we denote by p a positive real number such that S2 c B0, and
fix C = I 'p Icy. caiP°+'/0: hence,

I VwW(x) I = 07 I X I-'°+11 > C+iP '°+v = I V' IC'..la)

for x E B,\B,.
If x is arbitrarily taken in 9, we draw a line segment from x to 0

and denote by f the point on that segment that minimizes dist(x, 812).
Let w'-' - -w'+): since w'-' is a radial function,

w'-i(x) - w'-'(R) I w'-'(x) - w'-'(R) I
<-minIVw'-OIIx -RI

by the mean value theorem, and

w'-'(x) -'W(x) <- w'-'(x) - w'-'(R) - [p(x) - $1)]
<min IVw'-'IIx-RI+IWIcb.'in,Ix-1I<0.

h B,

because '(R) > 0. This shows that fi(w'-') = 0 throughout 9, hence that
Lw'-> + (1/E)fl(w'-') = Lw'-i = -Lw'+) < 0 in D.

Summing up, the functions w'f' have the properties

w'-i(x°) = 0 = w'+'(x°).

W(-)(x) < 0 < w'+'(x) for x E 852,

Lw'-' + 1 B(w") < 0 < Lw'+: + fi(wt+') in Q,
E E

which can be expressed by saying that w'-I(w'+)) is a lower (an upper)
barrier in 52 relative to L + at x°. Then, the T-monotonicity of
fl(.) yields

0 >
J

{aci(u - w(+)).,[(u. - w(+))+),,
0

+ E [8(u.) - P(w'+')](u. - w'+))+} dx

J a'f[(u. - w'+i)+]. [(u - w'+))+]s dx,

hence I V[(u, - w'+')+] I,,a = 0 by coerciveness, and finally u, < w'+' on
d} by Poincarb's inequality in H°'(52). Analogously, u, > w'-' on D. Thus,

w'-'(x) - w'-'(x°) < u.(x) - u.(x°) < w"W - w'+'(x°)
Ix - x°I Ix - x°I Ix - x°I
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for x E Q. We have obtained a uniform bound on

Iu,(x)-u,(x°)1/Ix-xaI for x"E8S2, xES2, a>0;

since u, = 0 on 852, a passage to local coordinates shows that

117u,l < C on 8D for e > 0.

Step 4: Completion o f the p r o o f . Fix e > 0 and k c {1, ... , N}. By
(4.83) the function z = u,.r [which belongs to for any p < cc]
satisfies

LZ + E xw(= - wsJ = (a u.z)., (4.84)

in the sense of 9'(D), xo+ denoting the characteristic function of the set
S2+ c S2 where u, >'p. We fix 0 > I Vu, Io;aQ V I V,p I.;o and set

'Q1-{X E S2I Z,(X) Z(X)-0>0},
521= {XE1IZ,(X)Z(x)+0<0}.

By our choice of 0, for i = 1, 2 we have 52; cc 52 and z; E H01(52;)
(see Problem 1.22); moreover, from (4.84) it follows that

Lz1 < ( u,.,)s, in the sense of H-'(521),

L(-z2) < -(a in the sense of H-'(521).

Since z1: 52, -. R and z1: 'Q2 -. R are nonnegative bounded functions, we
arrive at a uniform bound

Iz;Ier;o,<C

(see Problem 2.5, with p = 2). We have thus found a bound on I Z
since .Q = S21 u 521 u {x e 52 I z(x) < 0}, hence also on I Vu, IQ.;a for e
> 0 by the arbitrariness of the index k.

By repeating the above procedure a convenient finite number of times
we arrive at a uniform bound on I Vu, for some p > N, so that

Iztlw;o,<<C

by Lemma 2.8; hence,

IzI.;e<C,
and finally

IVu,I.;o<C fore>0.



Varlational inequalities 279

By the compactness of the imbedding H'(D) c L'(Q), {u,} converges
to u in L2(D), therefore (after extraction of a subsequence) a.e. in Q.
Lipschitz continuity follows from the inequalities

Iu,(x)-u,(e)I<CIx-i:I for x, E>0;

for the norm estimate see Problem 4.14.

REMARK. When (4.42) is replaced by (4.48), the choice of

fl(w)(x) = [w(x) - 4'(x)]- + [w(x) - Ve(x)]'

0

yields a penalty operator which plays exactly the same role as the one of
the preceding proof. Thus, Theorem 4.46 admits an obvious counterpart

for the bilateral case.

4.9. Problems Involving Natural Growth of Nonlinear Terms

We momentarily go back to the minimum problem considered in the
introduction to the present chapter and generalize it slightly as follows:

minimize 7(v) =
21

J [a(v) I Vv I' + 01 dx - J
°

fv dx
° (4.85)

over a convex subset K of H0'(Q u r),

where a(t) is a nonconstant bounded and smooth function > 1 of t E R,
a'(t) I < C. The above functional fails to satisfy the requirement of

being Gateaux differentiable at every u e Ha'(II U I'): for v E H0'(Q V I')
n L-(D) the function A -- 7(u + 2v) does indeed admit a derivative
at A = 0, given by

dA
, "(u + .lv)11 = J [ '(U) I Vu 1ev + a(u)u.,vy, + uv -fv] dx,

but the term

Jn
a(u)2

1Vu12Vdx

does not make sense if u and v are arbitrarily chosen in H'(.Q U I)
(unless N = 1). Thus, there can be no hope of tackling (4.85) in the light
of Lemma 4.9.
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If K c L°°(Q) we can still consider the v.i.

ucK, <.4(u),v-u>>J F(u, Vu)(v - u) dx for ye K, (4.86)
n

where

<A(u), v> = [a(u)u.,vz, + uv] dx, F(u, Vu) =I- a (u) I Vu 1s.fo

Note that the term [a'(u)/2] I Vu I' cannot be absorbed into the nonlinear
functional A(u) E [Ho1(.fQ u r)]' by conveniently redefining the latter;
hence, (4.86) cannot be reduced to (4.17). If K ¢ L°°(D), (4.86) must be
replaced by

uEK, <A(u),v-u)>J F(u,Vu)(v-u)dx
n

for v E K such that v - u e

which in the case K = Ho'(f? V r) becomes

l
u c- HO'(Q U r), <A(u), v> =

J
F(u, Vu)v dx

for v e Ho'(D V I') n L°°(Q)
(4.87)

[the Euler-Lagrange equation of the minimum problem (4.85)]. It is intu-
itively clear that (4.86) must be somewhat easier to handle than (4.87). In
this section we shall deal with rather general problems of the above types,
starting with bilateral v.i.'s.

We fix p in ]1, oo[ and take V = U I') with r of class C',
assuming that the imbedding V c L'(Q) is compact. Let A be the operator

V' defined in (4.34) under assumptions (4.35), (4.38) with
strict inequality sign when 6 :pL t', (4.40) with g e L"'(.Q); we also assume
A coercive with respect to the convex set defined by the bilateral constraints.
Next, we introduce a Caratheodory function f of x e Q and (71, $) E R1+N
such that given any r c ]0, oo[,

If(x,17,0)15CIEIV+fo(x)
for a. a. x e d2 and any (,7, e;) C- RI+N, 1711<_r,

(4.88)

where the constant C > 0 and the function jo > 0, jo e L"'(Q), depend
on r; (4.88) is called a natural growth condition (see our introductory re-
marks in the case p = 2).
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We denote by F(u, Vu), u c- the function f(x, u(x), Vu(x))
of x E D.

THEOREM 4.47. Under the above assumptions about V, u i--s A(u) and
u i--. F(u, Vu), there exists at least one solution to the bilateral v. i.

uE V, w<u<V in .f2 (4.89)

<A(u),v-u)>f F(u,Vu)(v-u)dx for ye V, p<v<v in S2
O

provided T, tU belong to L°°(Q) and there exists v° E V such that rp < v° < W.

PROOF. Step 1: A class of auxiliary v.i.'s. For n e N we introduce
the bounded function

0 forf(x,rl,e)=0
In(x, o, )

f(x,'7' 6) n A I f(x, rl, f) I
I Ax, 77, f) I

for f(x, rl, 4') # 0

and set [F,(u, Vu)](x) - f,(x, u(x), Vu(x)). It is obvious that f, is a Cara-
th6odory function of x E (2 and (rl, 4') E R'+s; moreover, the function
a°(x, rl, 4') - f,(x, ri, f) satisfies the same type of growth condition (4.35)
as a°(x, 71, 4'). By Theorem 4.21, therefore, the operator B,: V -. V' de-
fined by

<B,(u), v> - <A(u), v) -
J

F,(u, Vu)v dx
0

for u, v e V is of the Leray-Lions type, hence pseudomonotone. Since the
coerciveness of A implies the coerciveness of B from Theorem 4.17 (with
A replaced by B F by 0) we deduce that the bilateral v.i.

u, E V, r4p < u, < V in S2

(A (u.), v - u,) -
J

F,(u Vu,)(v - u,) dx > 0 (4.90)
n

forveV, 9, <v5W inl
admits at least one solution.

Step 2: A uniform bound on I U, I H2,P( ) For any t > 0 we can find
a positive number 6(t) such that 8(t) d (t), with W(t) = eu" °.' (where v°
is the function required in the statement of the theorem), is < 1 a.e. in D.
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This means that the function

V. = [1 - d(t)'(1)]u. + 4(0)'(t)v°

is an element of V which lies between y' and V (see Lemma 1.57). We
insert v = v. in (4.90). Since

v. - U. = -d(t)(u. - p.)9,(1)
and

(v. - u.), = -6(1)(u. - v°).,W (t) - 26(t)t(u. - vo)s(u. - v°)r,X(t),

we have

J A'(u., Vu.)u.=,[1 + 21(u. - vo)rlg'(t) dx

C
J

{A,(u4, Vull)v°F1[1 + 21(u. - vo)r]

+ [F.(u., Vu.) - A°(u., Vu.)](u. - v°)}W(t) dx.

Since both u and v° lie between go and V, from (4.35), (4.40), and
(4.88) [which clearly holds also with f replaced by f,,, r being chosen
> max(I op I W

I Vu. I'[1 + 2t(u. - vo)2]W(t) dx

<C°J [(t+g)(1+2t)+(t+IVu.I'-'+h)IVv0I(1+21)

+IVu.I'Iu.-voI+fo+l+IVu.I°-'+h]W(t)dx.

At this point we utilize the following estimates:

J I Vu. I'-1 I Vvo I'(t) dx

l< [J I Vu.IP'(t) dx]1-"'[f. I Vvo

I dx

I Vu. Ivg'(t)
dx]i-'P[J

F(t) dx]"',
n

C . IVu.l'Iu.-voIF(t)dx

<
S

2
J I Vu. ID'(t) dx +

2a J
I Vu . I'(u. - v°)rK(1) dx.
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By choosing t = C°2/4a' we arrive at the inequality

a J C',)dx<c[1+ J 1vu,I'w(4- )dx]r rv
Q Q

which yields a uniform bound on f Vu, I"W(C°914a') dx, hence on
I Vu,, 1 on [0, eo[. Note that by (4.35) this yields, for
each j = 0, 1, ... , N, a uniform bound on I A1(u,,, Vu,,) In,;Q as well.

Step 3: Completion of the proof. By reflexivity, the conclusions of the
preceding step yield

u - u in V, u u in LP(Q), u,,(x) -. u(x) for a.a. x e .Q,

A5(u,,, Vu,) _s ht in L''(Q) for j = 0, 1, ... , N

as n oo (with the same symbol for a suitable subsequence of indices
as for the original sequence). We are now going to show that with the
notation (4.39),

f D. dx -. 0 as n -. co. (4.91)
Q

For t > 0 set .1V-(t) = e'°° °'', and let 6(t) > 0 be such that b(I)IF(I)
< I a.e. in Q. Since v = [I - b(t)f(t)]u + b(t).r(t) is admissible in
(4.90), we arrive at the inequality

f D
Vu.)(u - u).,[l + 2t(u. - u)9]r(1) dx

n

< J Vu,,) - A°(u,,, u).Y(t) dx,
n

whose right-hand side is majorized by a quantity

C[J (f°+1+I Vu, I'-r+h)Iu,-ulr(t)dx
a

J I Vun I'.q7(t) dx + ze J I Vu, IV(u, - u)9.Q-(ta
D

) dx]

for e > 0 (see Step 2 above). Because of (4.40) we have

of
I Vu, I't(t) dx < J A`(u Vu,)u.,,(t) dx + J (C + g)r(t) dx,

D n

a f I Vu,, I'(u - u)'.F(t) dx

< J A'(u,,, u)1,17(t) A + f
o

g)(u, - U)2,9-(t) dx.
O O
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We set

P4Q) f (f.+I+IVunI°-'+h)Iun-uI,4r(t)dx,

Q(t) = f (I + g)9(t) dx,

Rn(Q = f (1 + g)(un - u)'Y(t) dx
n

+ f A'(un, Vun)u.,(un - u)'r(t) dx;

Chapter 4

note that since un converges to is in LP(S2) and I un - u Iw;a, I Pun
I Ai(un, Vun) are uniformly bounded,

lim P,(t) = lim R,(t) = 0
n-wo n m

for every fixed I. Thus,

fD
Vu,)(un - u)21[1 + 2t(un - u)']V(t) dx

O

G C, [P.(1) + 2a
f A1(un, Vun)(un - u), (t) dx

111 a

+ 2a f A'(un, Pun)u,,r(t) dx + 2a Q(t)

1

+ tea f A'(un, Vun)(un - u).,(un - u)'.17(t) dx

1

+ tea Rn(t) I .

We set t = K, = C,/4ca with e < 2a/C, and obtain

1 1 - 2a' f A'(un, Vun)(ua - u)ztc (K) dx
0

< C,[Pn(K) + E-2n, f Ai(un, Vun)u:F(K,) A

+ 2a Q(K) + tea Rn(K)] ,
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hence

(I - ! ) J dx

- (I - Z1 ) J Vu)(u - u).,V(K,) dx

+
2a

1 dx
n

+ 2a Q(K.) + 2Ea

Since .(K) > 1, we arrive at

(I - C'Elimsup J e
J (h'u.,+1+g)dxla-) -. n 2a n

285

because Vu) -. A(u, Vu) in LD'(D), us, in L'(l), and (4.91)
follows by letting e -. 0+ since the integral on the left-hand side above
is>0.

At this point, since (4.40) holds, we can apply Lemma 4.22 and obtain

u u in V,

so that

A'(u, Vu) in LP'(D) for j = 0, 1, ..., N

by Lemma 4.20. As a matter of fact, the proof of Lemma 4.20 can also
be easily adapted to prove that

F(u, Vu) in L'(.4);

after passing to a subsequence, we therefore have

F(u, Vu) a.e. in .f2

with

I I < f a.e. in Sd,

f e L'(.f2) (see Theorem 1.Q). Hence,

JO dx - Jn F(u, Vu)u dx
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by the dominated convergence theorem. We can prove that u solves (4.89),
therefore, by a passage to the limit in (4.90). 0

Theorem 4.47 will now be utilized to investigate the solvability of the
equation

r
U G V, <A(u), v> =

J
F(u, Vu)v dx for v c V n L°°(Q); (4.92)

note that (4.92) implies

-A`(u, Vu),, + A°(u, Vu) = F(u, Vu) in the sense of 9'(Q).

We take V as in Theorem 4.47. For what concerns the operator A,
we strengthen our previous assumptions by requiring also that it be strictly
T-monotone and coercive. Finally, we again assume (4.88).

THEOREM 4.48. In addition to the above assumptions, suppose that
,p, V E n L°°(Q) with T < 0 < up on aQ\r in the sense of
H'-'(Q), A(w) < F(p, V( p), A('p) > F(vp, Vvy) in the sense of V'. Then
(4.92) admits at least one solution u, which lies between 99 and V.

PROOF. Consider the v.i. (4.90). Since A(w) and F,(u,,, Vu,) [A(V) and
F,(u Vu,)] admit an order upper bound F(w, V F,(u Vu,) E LP'(Q)
[an order lower bound F(p, VV) A F,(u Vu,) E Lv''(D)], we have

F(W, VV) A FF(un, Vu,,) : A(un)

F((p, Vqv) V F,(u Vu,) in the sense of V'.
(4.93)

(see Remark 1 at the end of Section 4.5).
The first consequence we draw from (4.93) is that the linear functional

A(u,) can be continuously extended from V to L'(Q). In other words,
there exists f,' E Lp'(Q) such that

<A (u.), v> =
J

f,'v dx for v e V.
O

By (4.90),

fn V.* forvEV, 99<v<y'.

n

We can successively take v = u,+ Xk(9' - u,) and v = u, + Xk(vy - u,)
in the above inequality, where {Xk}k C CM-Q), 0 < Xk < 1, Xk -' Xr a.e.
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in S2, with Xr = characteristic function of a measurable subset I of S2,
dist(l, 8S2) > 0. We let k -. oo and obtain

U,' - F,,(Un, Vun)](99 - un) > 0,

V.* - Fn(un , Vun)](+V - un) > 0

a.e. in S2, by the arbitrariness of I. Write S2 = U' o 52;, with

in 0o, T=un<y, in521,

in D2, in Sty.

By (4.94) and Theorem 1.56 we have

f.* = Fn(un, Vun) in f 2o,

f,,* > F,,(un, Vun), F(p, Vtp) = F(un, Vun) in D1,

fns < F,(un, Vun), F(+V, Vy,) = F(un, Vun) in Qs,

F(9,, VW) = F('V, VV) = F(un, Vun) in Q.

(4.94)

From (4.93) we therefore deduce

F(un, Vun) A F,(un, Vun) <fn} < F(un, Vu,,) V Fn(un, Vun) a.e. in Sl,

hence

J
[F(un, Vun) A F.(Un, Vun)]v dx

< <A(un), v) < [F(u,,, Vun) V Vun)]v dx

for v e V n L°'(D), v> 0.

Since un -. u in V, A(un) - A(u) in V', F(un, Vun) A F,(un , Vun) -
F(u, Vu) and F(un, Vu,,) V F,(un, Vun) -. Flu, Vu) in L1(Q) (for a sub-
sequence of indices; see Step 3 of the preceding proof), u solves (4.83). 0

REMARK 1. Under the same assumptions about A as in Theorem
4.47, Theorem 4.48 can be given a (more difficult) proof that does not
utilize the result about bilateral v.i.'s: see L. Boccardo, F. Murat, and J. P.
Puel [16].

REMARK 2. Under a natural growth assumption about the nonlinear
function f, regularity results for solutions of equations or v.i.'s are extremely
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delicate. We refer the reader to S. Campanato [32], J. Frehse [52], J. Frehse
and U. Mosco [53], M. Giaquinta and E. Giusti [66]. Let us also mention
that some of the results of the next chapter will imply existence of regular
solutions to problems such as (4.89) or (4.92), in the case of linear opera-
tors A. See also the remark following Theorem 5.14 below.

Problems

4.1. For the existence of a solution to (4.2), the proof of Lemma 4.2 utilizes
the circumstance that Hilbert spaces are reflexive. An alternative method
can be based on the identity

(d,.'+d.')- 1 z- U. + U.
2

Y V

where z=. Fand d.-Ian -zIY-inf,E, Iu-z IV.
4.2. We identify R" with its dual (RI'. If ,7E CI(RN) is (strictly) convex,

then A(x) g V7(x) is (strictly) monotone on V. On the other hand, an
operator R' - R' such as

A(x) = (x,, x, + c(x,)),

where qD is a nonconstant function from CI(R) with I q: 1 < 1 on R, is
strictly monotone without being the gradient of a convex function.

4.3. For a counterexample to uniqueness under the assumptions of Theorem
4.17, take q E N, p = 2(q + 1), V = K = H,''n(Q) and

A(u) = - (I u=, I'° u.)., + (2q + 1)z,, I u=, IN,

where z is a given function from C,° (O). (See J. A. Dubinskii [46].)

4.4. Let K be a convex subset of a reflexive Banach space V, and let A be a
monotone and hemicontinuous operator V -' V'. Then (4.17) is equiva-
lent to:

iEK, <A(v)-F, v-u)>_0 for aE K;

as a consequence, the set of solutions to (4.17) is convex. (See G. J. Minty
(113].)

4.5. In addition to the assumptions of Problem 4.4, suppose that the equation

u e V, A(u) = 0

can have at most one solution, and that K satisfies the strict convexity
condition: u, u E K, u # v and 0 < x < I - Au + (1 - A)v c interior of K.
Then (4.17) can have at most one solution.
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4.6. For h = 1, 2 let K, be a nonempty, closed and convex subset of a Hilbert
space V; let u = u, solve (4.9) with K = K,, a(u, v) coercive, F E V'; and
let W, E K, be such that w, + w, = u, + u, and a(w, - u,, w, - u) = 0.
Then w, = u,. In particular, consider (4.47) with p = g' and sp = rp,
measurable in A: if p, > p, and 'p, > w then w, = u, V u, and w, =
u, t u, are admissible, and u, ? u,. Consider also (4.43) with V = gyp,
measurable in A, y, ? V,, and compare with the corollary to Lemma
4.26. (See Y. Haugazeau [741.)

4.7. Give the explicit expression of the solution to the v.i.

u E K, j o
f f(v-u)dx for vE K,

a Jo

where K = {v E L'(D) 9, < v <- 7 in 9} with f, p, and 9 given in L'(Q).
4.8. A v.i. associated with a fourth-order operator is

ueK,
f a

for ve K,
O

where K = (v E H0'(4) n H'(Q) I -I < dv < 1 in A) and F = f.4, with
f' e L'(Q), 2 < p < cc. Introduce the solution u to the Dirichlet problem
a = 0 on 80, -du = F, solve the v.i. for du and prove that, if 8A is suf-
ficiently regular, then u c H'"a(0). See H. BrGzis and G. Stampacchia (23].

4.9. Let u solve (4.42) with W replaced by supposing that {Vn} converges
to p in V. Assume a(u, v) coercive on V. Then u -- u in V, where u is
the solution of (4.42).

4.10. Utilize the method of translations to discuss the one-dimensional v.i.

U E K, J u'(v' - a) dx > f f(v - u) dx for V E K
E

o-

where K = {v E H0'(Q) I v < 0 in O}, -Q _ ]0, 1[, and f is a first-order
polynomial in x. Give numerical examples.

4.11. Let f = f° - f,!, ft c L%O), satisfy f < 0 in the sense of H-'(0). Then
there exists {f,} c L'"(A), f, < 0 a.e. in 51, such that f, fin H-'(51).
To see this, approximate f in H-'(Q) with (1) c C00O(Q) and solve

u, E H0'(Q), Jo u,>:,vs, dx =
f0

J .v dx for v c Ho'(Q),

then solve

r
U. E H0'(O), U. < u, in 0,

f o
- u,),, dx > 0 for v c H.'(-Q), v < u, in D,

a

and finally pass to the limit: the functions j = -du, have the required
properties. (See G. M. Troianiello [146].)
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4.12. Let V = LL°'(Q u r) with r # 0 of class C'. Assume F E V' and +y E
H'(91), N > 0 on aQ\r, are such that there exists (Lip) A f c H-'(S1),
with L defined by (4.33) and f = restriction of F to H°'(Q). Then a solu-
tion u of (4.42) satisfies

(Lip) Al <_ Lu < j [in the sense of H-'(9)].

(Compare with Theorem 4.32.) To see this, suppose that a(u, v) is coercive
on H°'(Q), solve

it - u e J(D), Lit = Ly' in n,

and utilize the Lewy-Stampacchia inequality for the v.i. in H'(Q) with
obstacle 'p - a and free term j - Lv.

4.13. Give a local counterpart to Theorem 4.38 as follows. If w is an open subset
of D, take Sl' open with f' c 1F, 011' of class and dist(m, a.0' n S1)
> 0. Let g e CC-(R`) with dist(supp g, 01' n S1) > 0, g = I on Co, and
write the v.i. for gu in SY with obstacle gyp: the H''°° regularity of ul°,
depends only on the suitable regularity of the data on f'.

4.14. Give the norm estimate of Theorem 4.46 by evaluating the various constants
appearing in the proof.
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Nonvariational Obstacle Problems

The first section in this chapter is based on the following considerations.
Obstacle problems such as (4.44) and (4.48) can be formulated even when
the operator L is of the nonvariational type; candidates as solutions are
those functions u whose first and second derivatives are defined a.e. in Q,
so that Lu certainly makes sense. We can still avail ourselves of existence,
uniqueness, and regularity results for v.i.'s if the leading coefficients of L
are smooth. If not, we can approximate L by a sequence of operators to
which variational tools do apply.

Now let the given functions f and { be replaced by functions F(u, Vu)
and Z(u) that depend on the solution u itself [so that the linear operators

u i--> Lu, u i-- Bu

are replaced by the nonlinear ones

u i-,Lu - F(u, Vu), uHBu-Z(u)].

We tackle the corresponding obstacle problems in Section 5.3. Our ap-
proach to existence results, centered around the Leray-Schauder fixed point
theorem, utilizes the existence and uniqueness results of the first section in
conjunction with a priori H2 estimates on solutions. It is to the derivation
of estimates of this sort that Section 5.2, in its turn, is devoted.

The last section deals with unilateral problems for the operator
u H Lu - F(u, Vu) (under Dirichlet boundary conditions) in cases when
regularity assumptions about the obstacle ,p are too weak to guarantee
the existence of a solution u in the previous, strong sense. We therefore
introduce an appropriate substitute for a regular solution. This new notion
enables us, in particular, to tackle problems where W depends on u itself.
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5.1. Obstacle Problems for Linear Operators

Set

Lu _ -a'?ul,st + a'u., + au, Bu - flair.

Throughout this chapter the following properties of regularity will be sup-
posed to hold:

P is closed in 251, the latter being of class C'-';

a'5 E C°(51) with a modulus of continuity r, a't = a1', and

aiif,F,?aIEI' on D for feKN (a>0);

#', ... , fiN e C°,'(I'), and fl'v' > 0 on I'.

In the present section we shall also assume a', ... , aN, a e L-(Q), a > 0
in Q, fl e fi> 0 on r, and

ess sup a + max # >0 if I'= 051.
n r

5.1.1. Bilateral Problems

We begin with the problem

9<u<1p, (Lu-f)(u-9)<0
and (Lu - f)(u - w) < 0 in Q, (5.1)

0, Bu = { on I.

This is a nonvariational bilateral problem, although of a special type: the
condition on F is the same as in (2.19) or (3.36), not as in (4.48).

rn THEOREM 5.1. For 2 < p < oo assume f e L"(Q), C a H"y'w(I'), q' _
V A-1 9A with pA E H'-P(D), ?lao,:5 0 and BMA < C on F, ' = Aa 1 v'
with V1 E HLv(51), VAIaa\ r 0 and Bry? > Con I, .p < W in 51. Then (5.1)
admits a unique solution u E which satisfies the Lewy-Stampacchia
inequalities

m m

A (L?) A f:5 Lu < V (L?) v f in D. (5.2)
A-1 A-1
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PROOF. Step 1: Existence. We consider the same functions On,

operators L., and bilinear forms @ (u, v) as in Step 1 of the proof of Lemma
3.21, so that O .B is the conormal derivative with respect to 3a(u, v).

Our present assumptions about a and fi yield 8n(l,v) > 0 whenever
v c- Hl (D U I') is > 0 in .Q, and also 8n(1, v) # 0 for some v e H1(S2) if
l = 8Q. This implies (Theorem 2.4) the validity of the weak maximum
principle, so that the bilateral v.i.

un E Hol(Q u 77, 9, < u < r, in Q,

dn(un , v - un) ? Je J(v - un) dx + f r - un)Ir do (5.3)
r

for v e H01(.Q u fl, w< un < w in .Q

admits a unique solution by Theorem 4.30. Moreover, un belongs to
and satisfies

q < un < lu, (L.ufl - f)(u. - c') <- O
and (Lnun - f)(un - V) < 0 in S?, (5.4)

0, Bua = C on I',
as well as

A (Ln'V A) A f< Lnun < V (L.0) V f
A-1 A-1

in .Q, (5.5)

by Lemmas 4.25, 4.36, and 4.37. But then, Theorem 3.28(i) yields a uniform
bound

Ius .'(rJ

by reflexivity, a subsequence of {un}, still denoted by the same symbol,
converges weakly in [and strongly in H',p(Q)] toward some func-
tion u. We pass to the limit in (5.4) (as in the proof of Lemma 3.22 for
what concerns Bun) and in (5.5), thus showing that u solves (5.1) and
satisfies (5.2).

Step 2: Uniqueness. Assume that ul, us E H'-p(Q) are two solutions
to our problem. By Step 1, the problem

9) <v<u1Au2, (Lv-f)(v-w)<0
and (Lv-f)(v-ulAur)<0 in la,

ulda-,r = 0, By = C on r
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admits a solution v E Put

S2' = -the subset of H where v < ul A U22

92" the subset of Sl where v = ua < u
Sl' = the subset of S2 where v = u,.

In Sl' we have Lv > f and Lu, < f (since u, > 9)); in .Q" we have Lv
= Lug > f (since u, < o) and Lu, < f (since u, > op); finally, in S2"' we
have Lv = Lu,. [We have repeatedly exploited the fact that the first and
second derivatives of a function w e H2'D(Q) vanish a.e. in the subset of
92 where w = 0: see Theorem 1.56.] Thus,

Lv > Lu, in 0,

B(v-u,)=0 on I,

so that Theorem 3.29 yields v > u, and therefore v = u,. It can analogously
be proven that v = u2, whence uniqueness follows.

Note that, by uniqueness, the whole sequence of Step 1 converges
weakly to u in H',n(d2). 0

5.1.2. Unilateral Problems

The unilateral counterpart of (5.1) is

u<V, Lu<f and (Lu-f)(u-w)=0 in H,

ulaa.r = 0, Bu = C on P.

We have the following theorem.

(5.6)

THEOREM 5.2. Under the same assumptions about f, (, and 'N as in
Theorem 5.1, (5.6) admits a unique solution u c H'-P(Q), which satisfies the
Lewy-Stampacchia inequality

Lu>n(Le)Af
n-1

in D. (5.7)

PROOF. For existence and (5.7) we could again use an approximation
procedure as in the proof of Theorem 5.1, this time with the aid of Theorem
4.27 and Lemmas 4.23, 4.33, 4.34. An alternative method utilizes instead
Theorem 5.1 itself, as follows.
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Let w be any function from H?,n(Q) satisfying

w < y, and Lw < f in .Q,

wlaQ.r<0, Bw<C on r

[a possible choice being the solution of the b.v.p.

(5.8)

M
Lw = A (L,p'') A f in 12,

n-1

WIac,r = 0, Bw = C on r;

Theorem 3.29 then yields

w < sp in .Q].

By Theorem 5.1 the bilateral problem

w<u<V, (Lu-f)(u-w)<0
and (Lu-f)(u-+p)<0 in S2,

0, Bu = C on r

admits a unique solution u c- H2,D(S2), which verifies

m

A (L?)Af<Lu<(Lw)Vf<f in Q.
A-I

Then u satisfies (5.7), as well as the inequalities of the first line of (5.6);
from them, the equality (Lu - f) (u - W) = 0 follows since (Lu - f)
x(u-+p)<0.

Uniqueness can be proven as in Theorem 5.1, this time assuming
u u2 a H2.n(0) to be solutions of (5.6) and solving: v e

v<u,nur, Lv<f and (Lv-f)(v-u,nus)=0 in Q,

ylaa,r = 0, By = 0 on r,

then showing v = u v = u2.
Observe that once uniqueness has been ascertained, the first part of

this proof shows that the solution u is maximal among all functions
w e H2' (Q) satisfying (5.8). 0

For the case 1 < p < 2 in Theorems 5.1 and 5.2 solve Problem 5.1.
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If r# 0, the most general formulation of a nonvariational unilateral
problem is

u < tp, Lu < f and (Lu - f)(u -+p) = 0 in S2,

0,

ulr! WIr, Bu <C and (Bu-C)(u-y+)Ir=0 on P

[see (4.44)], which contains (5.6) as a special case. As the example of
Section 4.6.2 shows, we cannot expect to solve (5.9) in for p much
larger than 2, unless (5.9) reduces to (5.6). We take p = 2. By analogy
with the definition introduced in Section 4.4.1, we call w E Hl(S2) a sub-
solution of (5.9) if it satisfies (5.8). When the assumptions about the leading
coefficients of L are suitably strengthened, (5.9) can be tackled in the light
of the variational theory. Indeed, we have the following lemma.

LEMMA 5.3. Take the a't's in C°,'(o). Assume f e L'(D), C e H'11(P)
if r :A 0, and w measurable in S2 if P = 0, N e H'(D) otherwise. A solution
u e H2(.f2) of (5.9), if existing, is then maximal among all subsolutions (and
therefore unique). Moreover, under the additional requirement that y E H2(S2)
with wla,r > 0, such a solution does indeed exist and satisfies the Lewy-
Stampacchia inequalities

Lu > (Lry) A f in d2,

Bu > (BV) A C on r

as well as a norm estimate

I u Intm, G C(I f 12;D + I C l I' Irn(o)), (5.10)

where C (independent of u, j C, gyp) depends on the coefficients of L only
through a and the bound on I a'1 ICe.,(6), I a', a I,o.a.

Pxoop. We introduce the same function 0 and bilinear form a(u, v)
as in Step 1 of the proof of Lemma 3.18, so that OBu is the conormal
derivatives of u with respect to a(u, v). Any solution u E H2(Q) of (5.9)
is also a solution of the v.i.

uEHol(S2UP), a<tp in d2,

a(u,v-u)> Jo f(v-u)dx+J 0C(v-u)Irda
r (5.11)

forvEH0'(QVP), v<W in S2
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(Lemma 4.23). Since d(1, v) > 0 if v e H0'(Q v I') with v > 0, and in
addition a(l, v) # 0 for some v e H'(.Q) if I' = B.Q, the weak maximum
principle holds and Theorem 4.27 applies.

The maximality property of u follows immediately, because any sub-
solution of (5.9) is a subsolution of (5.11) as well. Moreover, if +p a H°(.Q)
with +plaa--r > 0, (5.11) admits a unique solution u, and the Lewy-
Stampacchia inequalities follow from Lemma 4.33, the H2(Q) regularity
with norm estimate

IUIu(n) SC(Iflz;a+ICIH(n(r(+IsNIW(o(+Iuln'(o() (5.12)

from Theorem 4.40. By Lemma 4.23, u satisfies (5.9): notice that the
pairing (Bu - C, (u - ,)Ir> equals the integral Jr (Bu - C)(u - Or do,
and the latter equals 0 if and only if the nonnegative function (Bu - C)
x (u - Y')Ir vanishes a.e. [N - 1] on I'.

In order to pass from (5.12) to (5.10) we first of all apply the inter-
polation inequality (Lemma 1.37)

IuIa,(a(5eIuIn=ca(+C(e)I uI2:0, e>0,

which enables us to replace I U Irn(a( with I u I2.a in the right-hand side
of (5.12). Then we utilize Theorem 3.29 and solve: w e H'(Q),

Lw=- IfI - ILyI in Q,

wlao.r=0, Bw= - ICI - IBwI on I'

(where Theorem 1.61 has also been taken into account). Thus,

Iwlrr'la7<-CC!120+ICIn'n(r)+IVIHP(o))

by Theorem 3.28(i). Since w is a subsolution of (5.9), we have u > w in
addition to u <,p, so that I u Is;a 5 I V 12;a + I w Iz;o and (5.10) follows. 0

We now return to the general case ait e C0(S).

THEOREM 5.4. Lemma 5.3 is still valid if the leading coefficients of L
are merely taken in C°(.Q); the constant in (5.10) now depends on them only
through the bound on their L°(Q) norms as well as through a and r.

PROOF. Step 1: Maximality among subsolutions. Let (a si) e C°°(S5)
be the usual sequence of restrictions to .) of regularizations p * 8'i and set

Lnu -- a'u.c + au.
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A solution u c H2(Q) of (5.8) is also a solution of its analog with L replaced
by L,, and f by f + (Ln - L)u. Let w be any subsolution of (5.9) and
consider the b.v.p.

Lnzn = - I (Ln _ L)u 1 - I (Ln - L)w I in SZ,

0, Bzn = 0 on P.

By Theorem 3.29 such a problem admits a unique solution Z. E H2(S2),
which in addition is < 0; by Theorem 3.28(1), zn -. 0 as n -. oo. The
function wn - w + zn verifies

wn <,p and Lnwn < f + (Ln - L)u in .f2,

0, Bwn < t on L',

so that wn < u by Lemma 5.3 and finally w < u.

Step 2: Proof of the norm estimate. We now follow a procedure
analogous to the one utilized in the proof of Lemma 3.20.

Consider a point x° c F and fix any r > 0 such that B2,(x°) n 812 c P.
Let g - go,, c- C°(R") with 0 < g:5 1, supp g c B21(x°) and g = I on

B,(x°). The function u' = u;,°., - gu satisfies

u' < V" L°u < f' and (L°u' - f')(u' - v') = 0 in (,
0,

u'Ir:5V'I,., Bu'<C' and (Bu'-C')(u'-w)I,.=0 on P,

where 4 ° - -a'i(x°)a2/ax;ax; + a'a/axi + a, and y' - gµ', f' - gf +
(L° - L)u' - 2a'tu;gz, + uLg, ;' = gI rC + fl'g:,I ruI r: notice that

I f' 12;o C CO f I2;a + -r(2r) I u' IHt(a) + I g h( tN ) I u I H(a)],

I C' IHin(r) C CO C I H- 4r) + I g I U IJP(a))

with C independent of r. We can apply Lemma 5.3 with L, u, f, C, +p,
respectively, replaced by L°, u', f', C', +y', thus obtaining, for a small
enough r, a bound

Iu Im(a) :5 C(If12:0 + I C In-(r) + I 'p 110101 + I U Iw(01)

with C = C(r) independent of u, f, C, V. Similar considerations can be
repeated if x° E an\r or x° E Q.
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At this point we utilize a straightforward compactness argument and
arrive at (5.12), hence also at (5.10) (with the required type of dependence
of C on the aii's) by the same considerations as in the proof of Lem-
ma 5.2.

Step 3: Existence and Lewy-Stampacchia inequalities. We again con-
sider the sequence of operators {L,j introduced in Step I, and find the
unique solution u of (5.9) with L replaced by L,, thanks to Lemma 5.3.
Because of the type of dependence the constant C in (5.10) now has on
the leading coefficients, the norms 1 u IH'(Q) are uniformly bounded. Hence,
(a subsequence of) {up} converges weakly in H2(Q) toward some function
u, and u - u in H'(Q), r- Uxjr in H1t2(P) (see Problem 1.27). A
passage to the limit (with the aid of Lemma 1.60 for what concerns in-
equalities on l) shows that u satisfies (5.9) and the Lewy-Stampacchia
inequalities. 0

REMARK. The maximality property of solutions to (5.9) implies their
monotonicity with respect to f, C, and V.

5.1.3. An Approximation Result

Under the assumptions of Theorem 5.1 about f, (', rp, and W we solved
(5.1) by introducing c C`°(t) with a'i in CO(O) and showing
that u [solution of (5.3)]-s u[solution of (5.1)] in H2-n(9). Since numerical
tools such as the finite element method are available for the investigation
of v.i.'s (see the notes to Chapter 4), the above approximation procedure
is also useful in the numerical analysis of (5.1), provided the rate of con-
vergence of u to u is estimated in some convenient norm. The result we
have (with the above notations) is as follows.

THEOREM 5.5. Let q be the number Np/(N - 2p) for 2p < N, any

real number for 2p = N, oo for 2p > N. Then,

max P In2.Pl0)
i.1-1....,9 L 1

+ I Y' IH',D,a)) + If Ip;a+ I (5.13)

where C (independent of u, f, C, go and +y) depends on the coefficients of L
only through the bound on their L°°(Q) norms, as well as through a and Y.
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PxooF. Without loss of generality [since we can always operate the
translations

%-"V-u, ui-.u - u

with uE H'. (51) solution of

La =f in!),
ulan\r = 0, Bu = C on I'],

we assume f = 0, C = 0. Then (5.3) becomes

in 12,

J.(u v - 0 for v e Ha'(.4 V 1), w < v < N in 1?,

and its analog with n replaced by r can be rewritten as

u,E Ho'(Qul), c5U,<W in Sl,

v - u,) > J [(L - L,)u,](v - u,) dx
n

(5.14)

forveHo'(DuI'), T<v<,V in S2 (5.15)

[because u, c- with Bu, = 0 on I']. Let u - (u, - w, =-
4w/(ii + e) with e > 0 and w c- C,'(Q U I'), 0 < w < 1, so that both
functions v' - u + ew, and v" - u, - ew, lie between q) and y. We
insert v = v' in r(5.14), v = v" in (5.15), and obtain

J
g.,w. dx > d,(u, - U,,, w.) = d.(u, w.) (5.16)

with g,,, - (L - L,)u, where it, > u,,, g., - 0 elsewhere. By proceeding
as in Step 3 of the proof of Theorem 4.27, we decompose d,(6, w,) as a
sum 1,(e) + eIQ(e), with 1,(e) -. w) as a -. 0+. If

w) > f
a

dx (5.17)
n

for some function w as above, we arrive at

lim sup e12(E) < 0 (5.18)

[see (4.52)] since

1 g.,w. dx -. f
o

dx.
O
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But (5.18) is self-contradictory, and (5.17) must be false. This shows that

dn(A, w) < J gnrw dx for w e Ho (S? U P), w > 0;
n

by the weak maximum principle, (u, - un)+ < zn, in S2, where

zn, E H 1(S2 u r), dn(zn v) = J gn,v dx for v c HO'(Q U I').
u

But z,,, belongs to HI,P(Q), with

I Znr IH2.P(Q) C C I gnr IDID

< C (L,, - L,)u, IDA
<C max all S - ar Ioo;n ar IHLDIaI

id-I....,N

At this point we recall that

Z,,, l q:Q C I Zn, I

by Theorems 1.33 and 1.41, and that

ur C C /, (I 9,A IHIMW) + w

with C independent of r. Since the roles of r and n can be interchanged,
we have proved that (5.13) (with f = 0, = 0) holds if u is replaced by
u,,aij by aril, and the sought-for conclusion follows as r oo. p

5.1.4. Systems of Unilateral Problems

In the proof of Theorem 5.2 we solved a unilateral problem by re-
ducing it to a bilateral one. We now take I'= 0 (for simplicity's sake)
and consider two unilateral problems which are coupled through their
respective obstacles as follows:

v' < V 2 - W, V 15 V' + w.

Lv1 < f', Lv° < f', (5.19)

(Lvt-f')(v'-v2+0 =(Lva-f°)(v2-vl-ry)=0 in D,

v'Iaa = vrlao = 0.
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where f', f2, p, and W are measurable functions on Q. If (v', v') E [H2(D)12
satisfies (5.19) the function u = v° - v' is an element of H2(dl) which
vanishes on 812 and verifies

p<u<_V
as well as

(Lu - f)(u - (p) _ (Lv' - f°)(u - p) + (-Lo' + f')(u - p)

(-Lv'+f')(v'-v'-p) = 0
and

(Lu - f)(u - p) _ (Lv' - f')(u - ') + (-Lv' + f')(u -y)
5 (Lv2 -f2)(vt-v1 -w)=0

in 12, with f = fx - f, This means that a solution u of the bilateral prob-
lem (5.1) with r = 0 can be obtained from a solution (v', v2) of the
system of unilateral problems (5.19). Vice versa we have the following
theorem.

THEOREM 5.6. Take p, v' as in Theorem 5.1 (p = 2), f = P - f'
with f', f2 E L'(D). Suppose that u c- H2(12) satisfies (5.1) with 1'= 0
and let u', u' E H2(D) solve the b.v.p.'s

Lu'=f'-(Lu-f)+, Lu'=f -(Lu-f)- in 12,

0190 =u'lm=0,

so that u' - u' = u. Then (u', u') is the maximal solution of (5.19); unique-
ness holds if and only if the set

S = {x E 12 I p(x) = ,(x)}

has measure 0.

PROOF. From p < u < v, we deduce

u' Cue - p, u'<u'+p
Besides, the inequalities

Lu'<f', Lu'<J'

are obvious. On the other hand,

(Lu' - f')(u' - u' + p) = (Lu - f)+(u - p) = 0,
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the latter equality consequent on the fact that Lu <f in any measurable
subset of S2 where u > v, and analogously

(Lu' -.P) (u' - u' - v) = (Lu - f)-(v - u) = 0.

This suffices to prove that (u', u') is a solution of (5.19).
Now let (v', v') a [H'(Q)]' be any other such solution. By our pre-

vious considerations, uniqueness yields v' - v' = u and therefore

Lv'-f'-(Lv'-f')=Lu-f=(Lu-f)+-(Lu-f)-.

This implies the existence of a function g e L'(Q), g < 0, such that the
nonpositive functions Lv' - f' and Lv' - f' satisfy

Lv' - f' = -(Lu-f)++g,
LO-f'=-(Lu-f)-+g in Q.

By Theorem 3.29,

v' < u' and v' < u' in S2,

(5.20)

thus the maximality of (u', u'). On the other hand, we cau find a necessary
and sufficient condition on a function g as above in order that the corres-
ponding pair (v', v') in (5.20) satisfy (5.19). Indeed, the identity

0=(Lv'-f')(v'-v'+9,)=(Lu-f)+(u-9P)-g(u-v)

is valid in .Q if and only if, in any measurable subset of S2 where u - v > 0
and therefore (Lu -f)+ = 0, the identity g(u - v) = 0 is valid and there-
fore g = 0. By the same token, the identity

0 = (Lv' - f')(v' - v' - v) = -(Lu - f)-(u - w) + g(u - w)

is valid in S2 if and only if g = 0 in any measurable subset of S2 where
u - ry < 0. Summing up, any solution (v', v') a [H'(d2)]' to (5.19) must
satisfy (5.20) with

g=0 in d2\S.

IfISI=0,then g=0a.e.in£,and(v',v')=(u',u').Ifinstead ISI>0,
then the solution (v', v') a [H'(D)]' to (5.20) with g = characteristic func-
tion of S satisfies (5.19) and differs from (u', u'). 0
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System (5.19) is a particular case of the following system of unilateral
problems:

Vk < Mk(v), Lvk <fk, (Lvk - fk)[vk - Mk(V)] = 0 in £7,

Vklaa = 0 for k = 1, ... , m,

ak<Lvk<fk inD, vk9aa=0 for k= 1, ...,m}.

where v - (v', ... , v") and

AMk(v) = A\ vj + Yk.jtk

For m > 2 we cannot solve (5.21) by reducing it to a bilateral problem.
We proceed instead by putting some more restrictions on the ,pk's.

THEOREM 5.7. F o r k = 1, ... , m let fk E LI(D), ,pk E H2(S1) with
V'Iao > 0 and L(Vj + +pk) ? 0 if j :f- k. Then (5.21) admits a maximal
solution u - (u', ... , u") c [H2(S2)]".

PROOF. We set

ak
L22 - v

\ 2
- f+l

z

(obviously, ak < fk) and

D- {v- (v', ...,v")E [H'(Q)]"'

D is convex and closed; moreover, it is also bounded in [H2(Q)]m by
Theorem 3.28(i). Let v c D. For each k Theorem 5.2 yields the existence
of a unique function zk c- H2(Q) such that

zk < Mk(v), Lzk < fk,

moreover,

(Lzk - fk)[zk - M"(v)] = 0

zklaa = 0;

in S?,

(5.21)

(5.22)

Lzk > (A Lvj + L,pk) A fk in D. (5.23)
is"

Since V E D implies

ALvj + L,pk > A aj + L,pk
j5k in

11I=n
j*k

n ak + L'p' +
Lwk

ak + 1 n L(+pj + 'pk),
( 2 2 2 1*kin
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(5.23) yields Lzk > ak by the restriction imposed on the +yk's. Thus, z
(z', ... , z'") a D. Denote by a the mapping v z: we have proved

that a(D) c D.
Now let ok a H2(Q) solve

Luo = fk in D,

ukiaa=0.

Of course, uo - (uo', ... , u"'") belongs to D, and for each component of
u, - a(uo) e D Theorem 3.29 yields

U,k < up in Q.

Let up+1 - a(u") for n e N. If U"k < u,k,_ for each k, then Mk(u")
Mk(u"_1), and therefore Uk+, < by monotonicity with respect to ob-
stacles (see the remark after Theorem 5.4). Thus each sequence {u"k}" c D,
being nonincreasing as well as bounded in H°(.Q), converges weakly in
that space and strongly in H'(S2). We can pass to the limit as it cc in
the system of unilateral problems (5.22) written for v = u,,, z = µ,+,
Let uk - lim" u"k, u - (u', ... , um). Then not only u E D, but also

Uk < Mk(U), LUk <J k, (LUk -fk)[Uk - Mk(u)] = 0 in Sl,

uklao=0 for k= 1, ...,m.

This shows that u is a solution to (5.21). As for maximality: if v E [H2(.Q)]'"
is any other solution, Theorem 3.29 applied to each component vk of v
yields vk < uok, hence vk < u"k for n e N by recurrence, and finally vk < uk. 0

5.2. Differential Inequalities

From now on we suppose that the coefficients a', ... , av, a (from the
definition of L) and lq (from the definition of B) vanish identically.

In this section we provide global and local bounds on functions u

satisfying a differential inequality

ILuI<KIVu I'+fo in.0
with K > 0 and fo E Lv(S2), f" > 0.

(5.24)

As a preliminary, we give an interpolation inequality in H2.D(Q) which
will be needed in the sequel.
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5.2.1. Interpolation Results

LEMMA 5.8. Let 1 <p < co, 1 < q < oo, and 21r-- 1 /p + I /q < 2
(where 1/0o stands for 0). There exists a constant C such that

N

I Vu I';RN < C I u=t=a p:RR I u 1P,RN (5.25)
f.)-t

whenever u c C,-(RN).

PROOF. We begin with the case N = 1, 1 < p < oo, 1 < q < oo.
Let u e Cp(R). We claim that, whenever I is a bounded interval of

lenght 2,
\\ r[a

fl J
Iulydx<C[2t+r-rta(II l

/r /P1

+ 2-a+r-t'P) 1\I I u IQ dx`
IrJ

(5.26)
r

with C independent of u as well as of L. To prove (5.26) we set ]a, b[ = I
and apply the mean value theorem in any interval [g, rl] with a < E <
a+2/4, b- 2/4<71<b:

u('q) - u(f) = UV)

for a suitable C between f and ri, hence

I u'(x) I = I fu"(t)dt+u(i;) < f[ Iu"(t)Idt+2 Iu(E)I ± Iu(77)1

for x c I. After integrating with respect to E from a to a + 2/4 and with
respect to 11 from b - 2/4 to b, we find((

Iu'(x)I<f[Iu"(t)Idt+ x J1Iu(t)Idt

< 21-1/PGr
I

U" IP dt Iva + C2-t-ve\f
r I

U I°
dt)t[a

by Holder's inequality; therefore,

I
1I

/ 19f I G' Ir dx < 1.q 1 21+r-r1P(fI

1\I

u" IP dx)r
P

+ 2t-r-r/YI f 1 G IQ dx Ir I >

[ L ! [

the last inequality amounting to (5.26) because 1 - r/q = r/p - 1.
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We shall now prove

rf rff
J

Iu'I'dx<24 (T Iu
Iadxl.aa

(j
Iul°dx)r la

ft //
J/

(5.27)

which is nothing but (5.25) in the case at hand by the arbitrariness of 1.
Without loss of generality we assume supp u c ]0, oo[ and restrict

ourselves to intervals I = 10, A[ Let A. = A/k with k e N arbitrarily fixed,
and consider (5.26) with I replaced by Io = ]0, Ao[. If

A-n+r-rfai I u IQ dx)tla (5.28)Aar+r-rip(
I u"

11 dx)r
a > r rit

rV / r, J

we set I. = I. and obtain

f l u' 'dx C 2C\kl
r

11+r-rip(J
f

l

u" p
dx)rip

(5.29)
r,

Suppose that (5.28) does not hold: we then denote by I, the bounded
interval of length A, obtained by increasing the right endpoint of I. until
we reach the equality sign in (5.28) with I. replaced by 1, and A. by A,.
(Note that u" cannot vanish identically unless u does.) We obtain

J Iu'Irdx<2C(J
lu'Iadxlrlsa/r IuIQdx`'rz@.

(5.30)
r, r, /l lJ r,

Starting at the right endpoint of I, we repeat the above procedure,
choosing an interval I, of length A and so on until I is covered. This
requires k steps at most.

We now sum our estimates (5.29) and (5.30) with I, replaced by Ij,
A, by Aj, and arrive at

rr
I l

u' Ir dx < 2C(k
)'+r-rlpk(J

I u" I a

dx)as

+2C(J/ (1
Iu' Ip dx)

r/ep

(I_cc I u Ig

dx)rf 4

with the aid of Holder's inequality. Now let k oo: since p > 1, (5.27)
follows.

If N > I we apply the preceding one-dimensional result to each func-
tion xi u(x ... , xi, ... , x,.) treating the variables xj for j i as
parameters, and obtain (5.25) by utilizing Holder's inequality in N - l
dimensions.
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Finally, we cover the cases q = oo and p = I through easy passages

to the limit. 0
Lemma 5.8 is instrumental in proving the following theorem.

THEOREM 5.9. Take p, q, r as in Lemma 5.8. If uC n Lq(Q)
then ur), ... , urN, a L'(.Q) and there exists a constant C (independent of u)
such that

I Vu 1';0 :5 C I U I U Iq;a. (5.31)

PROOF. By Theorem 1.30 u admits an extension a e with
compact support and

I U In-,Paw) < C I U Iff-ma)

Moreover, the construction of il shows that the latter belongs to Lq(RN)
with

IiIq;RN<CIUIr;a.

The proof of the theorem is achieved by showing that ar,, ... , al,, e L'(RN)
and that (5.25) holds with u replaced by a. To do this we approximate
ii, both in JP.'(RN) and in LO(RN), with the regularizing sequence {pR + a}
c C, (RN): Lemma 5.8 shows that {(e. * a),), i = 1, ... , N, is a Cauchy
sequence in L'(RN), and the conclusion follows from a passage to the
limit. 0

REMARK. It is clear that the above result remains valid if the regularity
assumption about 8.Q is weakened into the requirement that .Q has the
extension property (2, p). In particular consider cubes, denoted by Qn,
such as ]-R, R[N or ]-R, R[N-' x ]0, 2R[ (see Problem 1.17). If u e

n Lq(QR) and R' > R we first estimate the L'(QR,) norms of
first derivatives of the function x u(Rx/R'), x e QR,, then perform the
change of variables x N R'x/R inside the integrals, and finally obtain

N

VU If:QR C`I u ID;QR/R' + I Vu Ip;QR/R + E I Ur)st ID;QR) U Iq;QR

with C = C(R') independent of R.

5.2.2. A Global Bound

From now on we assume p > N [so that injects compactly
in C'(.4)).
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LEMMA 5.10. Let u E satisfy (5.24) as well as ula, = 0,
and let M E ]0, oo[ be > I u IW;a + I Bu con. Then there exists a constant
x, depending on u only through M, such that

I U If'-s(Q) 5 ie(I + I Bu Ia w4niri) (5.32)

PROOF. Step 1: The case fa E L°°(Q). If fo belongs to L°°(D) the absolute
value of the function

g(x) = [Lu(x) + u(x)]I [I Vu(x) I' + 11

is bounded a.e. in Si by K + I fo 1.;n + 1 u ]-,a.
introduce the b.v.p.

For t, a E [0, I ] we

(L+l)z'°=ag(I Vz'°I'+t) in S?,

z'Iao,r = 0, Bz'° + z'lr = ta(Bu + ul r) on P.
(5.33)

If z'° E solves (5.33) and z'° E HE,D(Q) its analog with I replaced
by s, we set w = z" - f°, M' s - t I (M + I g I.;a). The function
M' - w satisfies

(L + I)(M' - w) - ag(z° + zt°):,(M' - w):,
=M'-ag(s-t)>0 in S1

as well as

(M' - w)Ianlr> 0,
B(M' - w) + (M' - w)I r = M' - (s - t)a(Bu + ul,.) > 0 on P.

We can apply Theorem 3.29 to the operator

-a'ia°/axi ax; - ag(z'° + #)"a/axi + I

and deduce that M' - w > 0. Analogously, M' + w > 0. We have thus
proved that

I w 1m,0 <- I s- I I Of + I g Im:o) (5.34)

Hence a solution of (5.33), if existing, is unique; moreover, the choice
t = 0 yields

I Z' -;a S M+ 1 91 . : Q - (5.35)
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On the other hand, w satisfies

(L + 1)w = ag(I Vz'° I' - I V(w - z'°) I') + ag(s - t) in d?,

wI aa.r = 0,

Bw + wIr = (s - t)a(Bu + uIr) on

and Theorem 3.28(i) yields a bound

I W In-aw, < CII g Ioo;o(I I Vza° I' Ia:

+ I I Vw 12 p;Q + 1) + I BU + uIr 1uhlp .ptr11. (5.36)

To estimate Vw I' Ipso we apply (5.31) with q = oo and r = 2p, so that

I I Vw 12 Ip;o < C I W IH..p(m I W J.;a. (5.37)

We proceed analogously for what concerns I I Vza° I' Ipso, and deduce
from (5.34)-(5.37) an estimate

I z'° - z'° Ix.-p(D) 5 C{I g Ioo;ol(M + I g I°°;a)(I Z"' I HI,1(o)

+$ - tI I Za°-Z'°IH'.p(a))+I]
+ Bu +uIrI&I(p'.p(rf).

In particular, if I s - t I < m-1 with m c- N large enough we obtain

z`° I H'.P(a) 5 I z'° Irn.p(a) + C{I g Ioo;a[(M + I g I.;a) I z° IR'.pm) + 1]

+ I Bu + UIr It(I,ptp(r)}. (5.38)

For i = 1, ... , m we now denote by ui the solution (whenever it exists)
of (5.33) with t = i/m and a = 1. We shall prove that u...... it,,, do
indeed exist and satisfy

I Us Im,P(a) 5 x;(1 + I Bu + uIr IzIP'.pir)), (5.39)

where each x; depends on the same parameters as x in (5.32). This will
accomplish the proof for jp E L°°(Q), since u = u,,, and

I Bu + uIr IHIIP'.P(r) I Bu Inup',p(r) + I U IUI.p(a)

I BU H'P'-P(r) + e I U Irn.pm) + C(e)M I S2 I1/p

for all e > 0 (see Lemma 1.37).
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If vl exist, the corresponding estimate (5.39) follows immediately from
(5.38) with s = 0, 1 = 11m, or = 1. To prove existence we apply the Leray-
Schauder fixed point theorem. Let z be arbitrarily given in C'(.{2), a in
[0, 11, and denote by in (a, z) the solution v e HI,P(Q) of the linear b.v.p.

(L+ 1)v=ag(IVz I'+I/m) in £2,

1
0, By + vlr =

m
a(Bu + uIr) on P

(see Theorem 3.29(i)]. By taking Theorem 3.28(i) into account it is easy
to ascertain that t is a compact mapping from [0, 1]xC'(S) into C'(.U).
If v = g(a, v) (and therefore v = z"/Ao) for some a E [0, 1], a uniform
bound on I v Iavn) follows from (5.38) with t = 1/m and s = 0. Finally,
5'(0, z) = 0. The existence of the fixed point ui of the mapping W(1, )

is now consequent on Theorem I.K.
By the same token, (5.33) with t = I/m is uniquely solvable (with

norm estimate) also for 0 < a < 1. This means that for 0 < a < 1 a
uniform H'.P bound on z(8/m)°, whenever the latter exists, is provided by
(5.38) with s = 1 /m, t = 2/m. We can therefore apply Theorem 1.K again,
and arrive at the existence of u, [with the corresponding norm estimate
(5.39)]. The final conclusion follows by repeating the above procedure a
convenient number of times.

Step 2: The genera! case. If fo does not belong to L°°(Q), we introduce
the bounded function

h(x) _ [Lu(x) + u(x)]l [I Vu(x) I' +fo(x) + 1]

and solve the linear b.v.p.

(L+1)v=h(1+fo) in Q,

0, Bu = 0 on P.

The function w = it - v satisfies

(L+I)w=8(IVw1'+1),
wlaa.r = 0, Bw = Bu on r

where g' = h I Vu I'/(I Vw I' + 1). Since

Ig'I<Ih1
2 1VVw+ 2

1Vw1'
in 0,
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and

I v Im.=ia) <- C(K+ M+ 1)(1 + If0I,;0),

by Theorem 3.28(i), (5.32) follows from Step I with u replaced by w. 0

5.23. A Local Bound

LEMMA 5.11. Let u e vanish on a12 n f2' and satisfy (5.24)
with 92 replaced by S2" = 1 n S2', where dY is some open subset of RN.
Whenever w is an open subset of S2 whose closure lies in 0', there exists a
constant k, depending on u only through its modulus of uniform continuity
in 17" and the bound on I u such that

I U Im.r(c) < x. (5.40)

PROOF. Step 1: A family of cubes. We suppose that Co contains the

origin 0 of RN.
If 0 E Q we denote by Q; the cubes ]-r(1 - a), r(l - a)[," for

0 < a < I and 0 < r < R, where R is so small that QR c S2".
If instead 0 E a1 we suppose that a relatively open portion of a(

near 0 lies on the hyperplane xN = 0, and denote by Q,' the cubes
]-r(1 - a), r(l - a)[N-' x ]0, 2r(1 - a)[ for 0 < a < 1 and 0 < r < R,
where R is so small that Qn c S2" and

]-R, R[N'' x {0} c a( n S2'.

In both cases above elementary considerations show that we can
construct cutoff functions g,° E C°°°(RN) with

0 5 g,° < 1, g,° = 1 on Q,°, g,. = 0 in .D\Q; 12,

I e. 1 < C/ar and I g,,., I < C/(ar)' (i,1 = 1, ... , N)

whenever 0 < a < 1 and 0 < r < R.

Step 2: Estimates over cubes. We let a vary in ]0, 1/2] and set wr
g; u. From (5.24) we deduce

a a

= I g,'Lu + uLg,2 + 2ai'us,g i, In; Q,

<KI I Vu I'Ip;Q.,.+ If. ID;Q.,.

+ C I Vu Iv;Q.n + C2 I U (5.41)
or (or)



Nomariational Obstacle Probl m 313

To estimate I Vu I' Ip;Q ;n we introduce the function z - (u - uo) x
(gr'')'P, with uo = u(O) and therefore uo = 0 if 0 e 851. Since Z E Ho'(Q, *),
we have

It = {I(u71)t]'D '}z,2 dx

1 p 1/O/1)2P + (v - ao)[(gi ")N O dx

Y N

f 1(u.)±1 2p(g, a/2)2p dx

i-t Q,U

- 2p
(
J Q:

[(u:1)118'-1(u - u0)(g a/2):p-1g':,2 dx

as well as

(5.42)

It = (2p - 1) f [(u:)t)ss su ((u - uo)(g ")s9 dx (5.43)
Q,tl

by Theorem 1.56 and Lemma 1.57. We utilize (5.42) and (5.43) to majorize
Vu I' In;Q; n with

Nf
Q

I Vu I °y(g,°")" dx < C osc u(fQ I Vu I8(p-1) f E, I I dx
'W' I

+ I Vg,&1 1-;RN f I Vu I 'v-' dx),

where

Finally, since

osc u - max u - min u.
Q,° Q1.

StI<op I9Ip+ tlp
p p P

for s, t e It and 6 > 0, Holder's inequality yields
1 pr

I Vu 12Ip;Qi "8 C C osc U(f I Vu I'p dx) (I U IH--'(Q, )
r Qou

+ I Vg m' Ic;RN I Vu Ip;Q: )

< C(s)(osc U)p' f I Vu 1U' dx
r Q m

+ ap(I u IR..p(Q, ) + I Vg:" .';RN I Vu I;;Q,MJ (5.44)

for s > 0, with C(s) independent of a and r.
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Next, we majorize fQ a14 I Vu 12D dx with

Jr v`
Co U m;Q, 1 LE I U, ID;Q,a,.

+ [(1 - a/4)r] I Vu 1 ;Q: 1. + [(1 - a/4)r]-" I u ID;Qi1.},

where Co = C0(R) is independent of a and r (see the remark after Theorem
5.9). Let r = r(E) > 0 be so small that

C(E)(osc u)y'C0I is I ' o < En:r

since (I - a/4)r > ar, from (5.44) we deduce (if E < 1) an estimate

VU I2IY;QiI.<2E'IUTA..DIQ.aa

+ C[(ar)-' I Vu ID;Q, " + (ar) 2' I U ID;Q, 141

with C independent of a and r.
At this point we go back to (5.41): by Theorem 3.28(i) we have

I u I I

u ID;Qt1.]. (5.45)

with C. independent of E, a, and r. Let E be so small that C1Ea < 1/(2 x 42P+1),
and let r be fixed correspondingly. As in Problem 1.18 an estimate

I Vu I'D;QP1. < d l U I;r..D Q,dI., +
C2

I u

with C. independent of 6 as well as of a and r, is valid whenever 6 > 0
is sufficiently small, say 6 < C(l - a/4)'rv. We take 6 = (nar)y, where
71 > 0 satisfies (7ir/2)y < C(7r/8)y and C1rt' < 1/(2x4=y+I) With the
above choice of e, r, and rl (5.45) yields

l U I9LDIQi , < 42D+1 I U IH'.D(Q,alq

+ C1[Ifo 1;;Q;,. + (1 + Can ")(ar)-" I u In;Q.1a (5.46)

whenever 0 < a < 1/2. Set 0(a) = a2' I U ,

H(a) = C1[azy I fo Ip';a" + (1 + Cprl ')r y I u I;;].
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From (5.46) it follows that

O(a) < 4
(a) + H(a),

and by recurrence

Letting n -. co we obtain

O(a) < Y 4 H(a < H(a)
iro / o

315

because 0 is bounded on ]0,1/2] and H is increasing. This provides a

bound on, say, I u

Step 3: Completion of the proof. Let x be arbitrarily fixed in Co.
If x lies in S2 a bound of the required type on I u In.,,iQ mil, where

Q(x) c S2 is a suitable open cube centered at x, is obtained from Step 2
through a translation of x into the origin 0 of V.

If instead x is a boundary point we straighten a relatively open portion
of S2' n 80 near x, say U(x) n 852, through a C'-' diffeomorphism A:
U(x) -. B with A(x) = 0 [U(x) being a suitable bounded domain of Rte].
Since (5.24), with 12 replaced by U(x) n S2, is transformed by A into a
similar inequality in B+, Step 2 again yields the desired 2. P bound in a
suitable cube ]-e, e[`-' x ]0, 2e[ c B+, hence also in its image under
A-'. We set

Q'(x) = A-'(]-e, e[1-1

x ]-2e, 2e[).

Since Co is covered by the family of all open sets Q(x), x e co n 52,
and Q'(x), x e ru n 852, the sought-for bound in w follows from
the compactness of W. 0

REMARK 1. Both in (5.32) and in (5.40) x depends on the ai1's only

through the bound on their Lm(Q) norms, a and r.

REMARK 2. A major difficulty in the proof of Lemma 5.11 comes
from the type of dependence the constant z is required to have on u. The
reader may want to give a simpler proof of (5.40) with x depending on
u through I u See J. Frehse [51]. 0
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5.3. Obstacle Problems for Nonlinear Operators

We generalize (5.1) as follows:

9P
<u<V, [Lu-F(u,Vu)](u-9)<0

and [Lu - F(u, Vu)](u - p) < 0 in Q, (5.47)

ulaa.r = 0, Bu = Z(u) on P.

Here and throughout F(u, Vu) denotes the function x f(x, u(x), Vu(x)),
x e .f2, f(x, rl, E) being a Carathbodory function of x c 11 and (rl, E) E R1+9
whereas Z(u) denotes the function x C(x, u(x)), x e P, where C belongs
to Of course, (5.47) amounts to (5.1) when F(u, Vu) _ -a'ur,
- au + f with f = f(x), and Z(u) = -flub + C with C = C(x).

We shall first investigate the solvability of (5.47), then apply the
results thus obtained to the nonlinear generalization of (5.6), that is,

u < xp, Lu < F(u, Vu) and [Lu - F(u, Vu)](u - +p) = 0 in 12,

0, Bu = Z(u) on P,

as well as to the unconstrained nonlinear b.v.p.

Lu = F(u, Vu) in S2,

ul 0, Bu = Z(u) on P.

(5.48)

(5.49)

[Note the difference with the linear case: for (5.49) we have not proved
yet existence and uniqueness results corresponding to Theorem 3.29.]

5.3.1. Existence

On the function f(x, ri, E) we now impose the following natural growth
condition: given any r e ]0, oo[,

If(x,i?.E)I <-KIEI'+f°(x)
for a.a. x e S 2 and any (ri, E) E RI}N,

1 , 7 1

where the constant K > 0 and the function f° > 0, f° E L'(Q), depend on r.
[Compare with (4.88).]

In the proof of the next result a crucial role is played by Lemma 5.10.
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THEOREM 5.12. Assume (5.50). Let q' = V', 99° with ta" E
?laa-r 5 0 and Bps < Z(ph) on r, +' = A', Vh with +p^ E Hr'n(S2),

V11arr`r ? 0 and Bw° > Z(?) on I'. If 9? < y on.0, (5.47) admits a maximal
and a minimal solution in

PROOF. Step 1: An intermediate existence result. For x E l the func-
tion (1(x, ri) = C(x, rl) + Arl, where A is any positive number > [C]1;rxn,
is nondecreasing. We denote by Zj(w) the function x. C1(x, w(x)), and
set 2A(w) = Zl(q V w A V). It is easy to verify that

q
I La(w) Iiv'v'.slr) S C(l + I w

if w belongs to C0.1(D), or in particular (see the remark at the end of
Section 1.2.2) to C'(.O). Moreover,

B9Ps + A0°I r < 21(w) < BV' + A'Pslr on F.

Let w be arbitrarily fixed in C'(D), a in [0, 1]. By Theorem 5.1 the bilateral
problem

aq<v<atp, [Lv-F(w,Vw)](v-atp)<0
and [Lv - F(w, Vw)](v - aV) < 0 in Q,

0, By + 2vIr = a21(w) on I'

admits a unique solution v e moreover,

A (aLVh) A F(w, Vw) < Lv < V (CL?) V F(w, Vw) in D. (5.51)
A-1 A-1

We denote by 8- the operator (a, w) v. Note that F(0, w) = 0 for all w.
Let w vary in a bounded subset of C'(13). Then F(w, Vw) remains

bounded in Ly(Q) and 21(w) in H'"T',9(I'); by (5.51), fl a, w) remains
bounded, independently of a, in [Theorem 3.28(i)]. As

F(w, Vw) in Ly(Q) and 21(w,) -. 21(w) in C°(I') whenever w° -. w
in C'(D), it is easy to conclude that 6 is a compact operator [0, 1]
xC'(t))-.C'(& ). Theorem 1.K can be applied to the mapping W(1, - ),

and the existence of a solution to (5.47) can thus be proven, if an a priori
bound on I v I eva) is provided for all possible fixed points v = lis(a, v),
0 < a < 1. But any such function v satisfies (5.51) with w = v, hence

ILvI <IF(v, Vv)I+ (ILgp°I+IL? I) in Q.
1
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Fix some r> max( (p Ic;o. I W Iw;o): (5.50) yields (5.24) with u replaced
by v, fo by jo + EAi (I L?k I + I LV'k 1). By Lemma 5.10,

1 V IA"."(O) :5 x(I + I cZ2(v) - ZvIr Ix'f"(r))

with x independent of v since the quantity I v Iw.o + I By lco(f.( is uniformly
bounded. It is easy to majorize the right-hand-side term above with a
quantity C(1 + I v Ic,(n(). But, exactly as in Lemma 1.37, it can be proven
that

I V IC1(5) < E I V IR'.r(a) + C(E) I V IL'(al

for e > 0. This enables us to arrive at an a priori bound on I v 17(2.a(al,
hence on IV Ie,(m

Step 2: Maximal and minimal solutions. We define

u.(x) = sup{u(x) I u solves (5.47)),

um( (x) = inf {u(x) I u solves (5.47)},

and proceed to prove that both um and umin are solutions.

Denoting by {xk}k a countable dense subset of .0, we construct for

each k a sequence c M2,n(S2) of solutions to (5.47) such that

u,.(xk) = Jim uk.n(xk).

Then we consider (5.47) with q) replaced by and correspondingly find
a solution U' a H',D(Q). The open subset {U' > (p} of Si where U' is
strictly larger than V' can be decomposed as {U1 > u','} v {U' = w}.
In {U' > the inequality

[LU' - F(U', VU')](U' - 0

yields

LU' < F(U', VU'),

and therefore also

[LU1 - F(U', 1U')](U' - q') < 0. (5.52)

In {U' = u'' > rp}, verifies

F(u''', Vu'')
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as well as (by Theorem 1.56)

Lu'.' = LU'
and

Vu''') = F(U', VU'),

so that (5.52) is again satisfied. This shows that (5.52) is valid throughout
9, hence that U' is still a solution of the original problem (5.47).

We can inductively define a nondecreasing sequence {UJ} c
where UJ solves (5.47) with 9' replaced, as it is admissible, by v;_,
V UJ-1. Since

( J
(UJ>q')=IUJ> V uO V U'-1}

ll i-1

{UJ=u'.r>V) U... U {UJ=u",r>rp}
v {U' = UJ-' > w},

an analysis as above shows that, if UJ-' solves (5.47), then UJ satisfies

[LUJ - F(UJ, 17UJ)](UJ -'a) < 0

in P and is therefore a solution of (5.47).
We utilize the final estimate of the previous step for all functions

UJ = ?°(l, UJ) and see that the UJ's are uniformly bounded in
By monotonicity, the whole sequence converges weakly in H' (Q) toward
a function U; a passage to the limit in (5.47) written for u = UJ shows
that U is a solution of the same obstacle problem. Since

lim U(x') _ "inez(xl).J
U satisfies

U(xt) > u(xl)

whatever k e N, and therefore by density

U(x) > u(x)

whatever x e .£, if u is a solution to our problem. This means that through-
out ., U equals um,i, and the latter is a solution. The proof concerning
umi is analogous. 0

We can now easily move on to the study of (5.48) and (5.49).
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THEOREM 5.13. In addition to the assumptions of Theorem 5.12, sup-
pose that each function Th satisfies L.ph < F(9'h, Vqh) in D_ Then the set of
all solutions to (5.48) which lie above 9P coincides with the set of all solutions
to (5.47); therefore, it is not empty and admits a maximal and a minimal
element.

PRoor. It suffices to notice that any solution of (5.47) satisfies

Lu - F(u, Vu) = LTh - F(q,h, Vqih) < 0

in the subset of n where u = TA for some h.
Call a function v E a subsolution of (5.48) if

v < V, Lv < F(v, Vv) in (2,

van'r < 0, By < Z(v) on F:

Theorem 5.13 admits the following corollary.

0

COROLLARY. Same assumptions about f and 'p as in Theorem 5.12. If
(5.48) admits a subsolution, then it admits also a solution from H2,n(D) which
is maximal among all subsolutions (in particular, among all solutions).

Next, we have the following theorem.

THEOREM 5.14. In addition to the assumptions of Theorem 5.13, sup-
pose that each function +ph satisfies LVh > F(Vh, V.ph) in D. Then the set
of all solutions to (5.49) which lie between q' and N coincides with the set of
all solutions to (5.47); therefore, it is not empty and admits a maximal and
a minimal element.

(Compare with Theorem 4.48.)

REMARK. If the a'i's are in C0.1(.O) the operator L can be put into
the divergence form

la"
aai 1a" ax + ax; era; : IP(Q) - H

so that the assumptions of Theorems 5.12-5.14 about g' and +p can be
somewhat weakened. Consider for instance the Dirichlet case r = 0 in
Theorem 5.12: it suffices to assume T, +p c H'(Q) with p <,p a.e. in S2,
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wIaa < 0 < VIaa and LT < h', Ltp > h" in the sense of H-1(.Q), where
h', h" E LP(D)

5.3.2. Uniqueness

We now make the following assumption about the behavior of
f(x, p, 4) in r) and 4:

f(x, if, f') - f(x, 17', e") C a,(1i' - 77") + TX F' - E" I)
for a.a. x c 12,

any 7i',77'ER with 77 >rj' and I1J'I, <r,
any 4', p" a R" with I 5' I , 15" I < r

(5.53)

(0 < r < cc); here, a,(t) is continuous and < 0 for t > 0, T,(1) -.0 as
t 0+. Note that (5;53) is certainly satisfied when f is continuous on
.DxRxR" and decreasing with respect to 77. {Take

a,(t) - max [f(x, r7 + t, F) -f(x, +1, E)],
=Eii,inis..itIsr

T, - modulus of uniform continuity off on S x [-r, r] x B,.)
As for C(x, 77), we require that if r# 0,

T7 r-s C(x, 77) is decreasing for x E P. (5.54)

THEOREM 5.15. Assume (5.53) and (5.54). Then a solution u e H2,"(d2)
of (5.47) with w and 'p measurable in Q, if existing, is unique.

PROOF. Let v e Ha.P(.Q) be another solution of (5.47).
The function v - u cannot attain a positive maximum at a point

x° a I', since then the necessary inequality

t4'(x°)(v2.(x°) - ur.(x°)] > 0

would contradict the other inequality

C(x°, v(x°)) < C(x°, u(x°))

consequent on (5.54). Since v - u vanishes on aQ\I', it can attain a
positive maximum only at a point x° 6 S2, If such a situation occurs there
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exists an open neighborhood U c d2 of x° such that

T<u<v<V
and therefore

Lu > F(u, Vu), Lv < F(v, Vv)

a.e. in U. Since (5.53) implies

F(v, Vv)(x) - F(u, Vu)(x) < a,(v(x) - u(x)) + r,(I Vv(x) - Vu(x)

for a.a. x c- U if r is large enough, we arrive at

ess lint sup L(v - u)(x) < c,[v(x°) - u(x°)] < 0 (5.55)
ztiP

because Vv(x°) = Vu(x°). But (5.55) contradicts Bony's maximum prin-
ciple (Lemma 3.24) and therefore v < u. By the same token v > u, and
uniqueness follows. 0

Theorem 5.15 clearly contains a uniqueness result for (5.48) and (5.49)
as well, since the latter problems can obviously be interpreted as bilateral
ones. More specifically, the same procedure as above yields the following
maximality property for solutions of (5.48).

LEMMA 5.16. Under assumptions (5.53) and (5.54) a solution u e H' %(Q)
of (5.48) with p measurable in 91, if existing, is maximal among all sub-
solutions.

Passing to (5.49), we call v E a subsolution if

Lv < F(v, Vv) in .f2,

0, By < Z(v) on F,

a supersolution if the above inequalities hold with reversed signs; then
we have the following lemma.

LEMMA 5.17. Under assumptions (5.53) and (5.54) a solution u E H°'n(Q)
of (5.49), if existing, is maximal among all subsolutions and minima! among
all supersolutions.

The requirement that f be nonincreasing (instead of decreasing) with
respect to rl, even if fe C°(S)xRXRN), is not sufficient to guarantee
uniqueness:
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EXAMPLE. Let I) be the annulus defined by the inequalities 1 < I x I < 3
and set L = -d,

fix, ii,E)=-(N-1)x;fdlxI'-IEIvr

The unconstrained Dirichlet problem

Lu = F(u, Vu) in 12,

ulao = 0

is solved by the functions uo(x) = 0 and u,(x) - (I I x I - 2 13 - 1)/12,
as well as by all functions

[(t+I- Ixl)3- t3]/12 for I < Ixl <1+t,
u,(x) 0 for I+r<IxI<3-t,

[(IXI-3+q3-t3]/12 for 3-t< jxj<3
with 0<t<1.

5.4. Generalized Solutions and Implicit Unilateral Problems

5.4.1. Generalized Solutions

Up until now our approach to nonvariational obstacle problems has
required that all derivatives up to the second order of a function u belong
to some Lebesgue space for (Lu to make sense and) u to be admissible
as a solution. In the present section we relinquish such a requirement in
the case of problem (5.48) with P = 0, that is,

u <,p, Lu < F(u, Vu) and [Lu - F(u, Vu)](u - ,p) = 0 in Q,

ulaa=0. (5.56)

We denote by £(V) the family of all subsolutions V E H''b(Q) of
problem (5.56) with ,p c L°(Q), by a(y) the supremum in L"(.Q) of £(,p)
if the latter is nonvoid (see Lemma 1.54). Of course, a(,p) < y in Q. Basic
properties of the mapping y, --* a(ry) are listed here below.

LEMMA 5.18. Let ,p E L°°(D) with £(,p) :1' 0. Then

(i) a(a(,p)) exists and equals a(,p);
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(ii) a(vp') exists and verifies the inequality

a('p') > a(V) in 0

if V' E L°°(f2) with vV' > ' in .Q;

(iii) a(V') exists and verifies the norm estimate

Ia(+V')-a(W)1.:a<_I¶0- vVh,a

for all V' c L°°(d2), provided the function rJ F--. f(x, r), l:) is nonincreasing in
R for a.a. X E d2 and any I E RN;

(iv) for
equality

0<A<1, a(Ap+(I-A)vV) exists and verifies the in-

o(AV) + (I - A),p) > Aa(w) + (I - A)a(+v') in .Q

if V' c- L°°(d2) with E(y') = 0, provided the function (p, $) r-> f(x, rl, $) is
concave in Rl+v for a.a. x e D.

PROOF. The obvious identity E(a(y)) = E(V) yields (i). As for (ii),
it follows from the inclusion E(V) c E(y'). Let us pass to (iii) and set
k = I W - V I.;,. We know that a(V) < a(v' + k). But the monoton-
icity hypothesis implies v - k E E(p) and therefore v < a(+V') + k when-
ever v e E(vp' + k), so that a(vp' + k) < a(V') + k, and finally a(V)
- a(vp') < k; the roles of vp and y can obviously be interchanged. To
conclude we tackle (iv). If v e E(V) and V c E(v ), then w = Av + (I - A)v'
satisfies

w<A,p+(I-A)+p'

as well as, by concavity,

Lw = ALv + (l - A)Lv'

< AF(v, Vv) + (I - A)F(v', Vv') < F(w, Vw)

in S2, hence w c- E(Arp + (1 - A)vp). This means that

AE(W) + (I - A)E(w') c E(Ai + (I - A)w'),

and (iv) follows. 0
By the corollary to Theorem 5.13, a(y) is the maximal solution from

H2"(12) of (5.56) if f and tp satisfy the same assumptions as in Theorem
5.12, with E(p) # 0.
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When , is merely required to be continuous on D and > 0 on 3Q,
a(V) still resembles a regular solution of (5.56) as closely as can be expected.
Indeed we have the following theorem.

THEOREM 5.19. Suppose that the function ri H f(x, ,l, E) is non increasing
in R for a.a. x e D and any t; E R", that (5.50) holds, and that 'N E C°(S3)
with iplaa > 0, E(,p):0. Then u = a(V) belongs to CO(D) and ul, to
112,P(cu) whenever co is open with Ca c Dw _ {x t=_ S) I u(x) < vp(x)}. More-
over, u satisfies

u <'p in D, Lu = F(u, Vu) in £2 n Dr,

ulao = 0.

PROOF. Let c with Y'°Iaa > 0, converge toward ry in
C°(.D) as n oo. Since 0, the corollary to Theorem 5.13 yields
the existence of the maximal solution u° = E H'.a(D) to (5.56) with
y replaced by wa. Then u -. u in C°(D) [Lemma 5.18(iii)], so that is is
continuous on D and vanishes on 3D. Now let D' be an open subset of
R" such that ru c Si' and Si n SY c Dr'. For all n sufficiently large we
have u < V. on Si n Si' and therefore

Lun = F(u., in Q n Si'.

By (5.50) (with r > sup I is,, J.;a) we can apply Lemma 5.11 and obtain
a bound on I u IH','(.), which is independent of n because (Theorem I.M)
the u. 's are uniformly bounded throughout D and share a common modulus
of uniform continuity there. At this point standard arguments yield the
full conclusion of the lemma. 0

If a(V) is known to be regular, the last statement of Theorem 5.19
is strengthened as follows.

LEMMA 5.20. In addition to the hypotheses of Theorem 5.19 suppose
that a(V) belongs to Then (5.56) is solvable in H',>'(Q), and a(vp)
is its maximal solution.

PROOF. Since E(a(vp)) 0 and a(y) = 0 on i3SD, (5.56) with V
replaced by a(y) admits a maximal solution is = a(a(vp)) a H'-D(D). But
then a(V) = u by Lemma 5.18(i), and the conclusion follows from the
inequality

Lu < F(u, Vu) in D. 0
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[Of course, a(V) need not belong to even if f vanishes iden-
tically: see the beginning of Section 4.5.]

The considerations of this subsection motivate our calling a(V) the
generalized maximal solution of (5.56).

REMARK. In the case of bilateral problems (for linear operators) a
satisfactory notion of generalized solutions is provided by a rather elaborate
approach based on Theorem 5.6: see M. G. Garroni and M. A. Vivaldi [59].

5.4.2. Implicit Unilateral Problems

We now want to deal with the situation arising when the obstacle
V in (5.56), instead of being kept fixed, "varies with the solution u." More
precisely, we consider an implicit unilateral problem such as

u < M(u), Lu < F(u, Vu)

and [Lu - F(u, Vu)][u - M(u)] = 0 in S2, (5.57)

uiaa = 0,

where M is a mapping between functions spaces.
We cannot expect to find a solution u e H'-n(Q) of (5.57) in the case

of an arbitrary mapping M. We can, however, look for a function u that
equals the generalized maximal solution of (5.56) with +p = M(u), that
is, for a fixed point of the mapping S = a o M. This is the approach we
follow. About f we assume:

that the function ri - f(x, rl, 4) is nonincreasing in R for a.a. x E S2
and any 4 E V';

that the function (rl, 4:) f(x, ri, $) is concave in R'+v for a.a.

that (5.50) holds;

that the unconstrained Dirichlet problem

Lu = F(u, Vu) in S2,

7aa = 0

admits a solution u c- maximizing all subsolutions. [So that
a(V) exists and satisfies a(V) < a in S2 whatever +p E L°°(Q)I.
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As for M, we suppose that it is a continuous, nondecreasing and
concave mapping from the normed space of functions u c- C°(.2) vanishing
on 8Q into C°(.O), so that the same is true of S by Lemma 5.18(ii)-(iv);
moreover, we suppose that there exist u E CO(D) with uIdo = 0 and t E ]0, 1 [
such that

u < u on D, M(u) > 0 on 852,

u,_(1-t)u+to<S(y) on D.
(5.58)

If the nonpositive continuous function u = a(0) is > -1 on i), the above
requirements are met by

[M(u)](x) + A u(y) = 1 + A d(y)e (5.59)
yE5 WAN
yzz Paz

where y > x means y, > x, , ... , y" > x" and d denotes the trivial ex-
tension of u to R", if u e CO(D) with ulao = 0. [Note that u,:5 M(u) for
t > 0 small enough, so that u, e E(M(u)) by the concavity assumption
about f.] The implicit unilateral problem corresponding to the choice of
the operator (5.59) plays a fundamental role in the theory of stochastic
impulse control: see A. Bensoussan and J. L. Lions [13].

THEOREM 5.21. Under the above assumptions about f and M there exists
a unique fixed point u e CO(D), with uldo = 0, of the mapping S; moreover,
u is the limit in C°(5)) of the sequence {S'(u°)}, with rate of convergence

IS"(u°)-uI.:QC(I-OR Iii -uI.;Q, (5.60)

whenever u° E C°(.12) satisfies u < u° < u on .{3.

PROOF. Fix any u° as above. The continuous function M(u°) is > M(u)
on D and in particular > 0 on 852; S(u°) is continuous on D, vanishes
on 8D, and satisfies

u < u, < S(u) < S(u°) on .{)

[see (5.58)]. By induction, u < S4(u°) on .2 for every n E N.
Next, let v, w belong to CO(D) with u < v, w < ii, and denote by 1

a number from ]0, 1] satisfying

d(u-w)<v-w<2(v-u).
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We claim that

(I - t)1[u - S(w)] < S(v) - S(w) < (1 - t)A[S(v) - y]. (5.61)

To prove the right-hand-side inequality we observe that

S(w) > (1 - 1)S(v) + 1S(u),

since S is concave and w verifies

w>(1-1)v+1u;
therefore,

S(w) > (1 - 1.)S(v) + 1[(1 - t)u + tu]

> [1 - 1(1 - t)]S(v) + 1(1 - t)u

because S(u) ? ul and S(v) < u. The left-hand-side inequality is proven

analogously.
At this point we choose v = S(u°), w = u°, A = 1, and deduce that

(1 - ON - S(u°)1 S S'(u°) - S(u°) 5 (1 - t)[S'(u°) - u1

by (5.61). Then we choose v = S'(u°), w = S(u°), A = 1 - t, and arrive at

(1 - 0'[u - S'(u°)1 <- S°(u°) - S'(u°) 5 (1 - 0'[S°(u°) - s].

Thus proceeding we prove that

(I - t)"-'[u - S"-'(u°)1 5 S"(u°) - S"-'(u°) 5 (1 - 1)*-1[S"(u°) - u],

hence that

I S"(u°) S"-'(u°)I.;o 5 (I - t)"-1 111 - u_ I.;Q, (5.62)

for every n e N.
By (5.62) the series [S"(u°) - S"-1(u°)] converges uniformly, and

so does the sequence (S"(u°)), toward a function it c CO(D) with it Iao = 0.
By the continuity of S,

S(S"(u°)) -* S(u) in C°(.{}),

so that it = S(u). Both the uniqueness of the fixed point it and the estimate
(5.60) follow from another iteration of (5.61), starting this time with v = u°,
w=u,1=1. 0
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5.4.3. The Implicit Unilateral Problem of Stochastic Impulse Control

The continuous function u = S(u) whose existence and uniqueness
are guaranteed by Theorem 5.21 "solves" (5.57) only in a weak sense,
namely, that of Theorem 5.19 for V = M(u). But of course, under certain
specific choices of the operator M sufficient information can be obtained
for results of further regularity. This is in particular the case of the operator
(5.59): indeed we have the following theorem.

THEOREM 5.22. For some d c ]0, 1 [ let 812 be of class C2.1 and
die C" (D), f e x R xR v). Suppose the function r) f(x, p, ) non-
increasing in R for (x, 6) a 1xRN, and assume (5.50) with f° constant, say
f0 = K. For M given by (5.59) a fixed point u e C°(12) with u1da = 0 of
the mapping S, if existing, belongs to H2-P(Q) and solves (5.57) in the usual
sense.

The proof of this theorem relies on the circumstance that throughout
S5, M(u) inherits some regularity from the regularity u has in the set
D = {x a .2 I u(x) < [M(u)](x)}, as is illustrated by the next two lemmas.

LEMMA 5.23. Let u e C°(12) with uIya = 0. For every x° a .2 there
exist an open subset V(x°) of RN, a sphere B,(x°) with r = r(x°) > 0, and
a family T(x°) of vectors f > 0 from RA such that

V(x°)ntcD,,

B,(x°) + T(x°) c V(x°)

(5.63)

(5.64)

[M(u)](x) = 1 + A u(x + 6) for x e B,(x°) n Q. (5.65)
ieT(Xol

PROOF. For x e 12 let d (x) denote the set of all vectors y e s2 such
that y > x and u(y) _ [I(u)](x) - [M(u)](x) - 1. If y e d (x), then

1 + u(y) = [M(u)](x) < [M(u)](y)

and therefore u(y) < [M(u)](y). This shows that d(x) c Da, Fix x = x°.
Since d(x°) is compact, there exists some p > 0 such that V(x°) = d(x°)
+ Ba satisfies (5.63). On the other hand, any sequence {y"} such that

y" e d(x") with {x"} c D and x" x° admits a subsequence which con-
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verges toward some y° e 4(x°). This means that given any p > 0, the
inclusion

A (x) c A (x°) + B°

holds for every x e i) with I x - x° I < P provided P > 0 is small enough.
We fix p < p and choose r < P with 2r + g < p: setting

RxI x+Ead(x)},

for every x e B,(x°) n D we have

4'(x) e 4'(x°) + B,+e

and hence

4'(x) + B,(x°) e d (x°) + B27+9 c V(x°).

At this point (5.64) and (5.65) are immediately ascertained for

T(x°) _ U d'(x). 0
z.B,lzoln0

LEMMA 5.24. Let u e C°(.t)) with u130 = 0 and uI, a C°,'(wo) whenever
w is open with ru c D. Then M(u) a

is Lipschitzian and so is ob-PROOF. Fix x° c By (5.63) ul rc=,-,
viously ulvi. From (5.64) and (5.65) it is easy to deduce that

I [M(u)](x) - [M(u)](x") I < [u]i;vjsai I X, - X" I

for x', x" a B,(x°) n 52, hence that M(u) a because .t? can be
covered by a finite number of spheres such as B,(x°). 0

PROOF OF THEOREM 5.22. Thanks to Theorem 5.19 (see also Problem
3.10), our present assumptions about 8D, ai', and f yield ul;,, a CE'"(&)
whenever w is open with Co c D,,, and therefore M(u) a C°'(.D) by the
preceding lemma.

For i, j = 1, ... , N let (a°'t} c Cx(.D) converge to a'f in C°(f)
with bounded independently of n c N (see Lemma 1.8 and the
remark following Lemma 1.9). Each operator

L --aU
8x;8xf
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can be put into divergence form and applied to M(u). We can show that

L°M(u) > -R in the sense of H-'(d2), (5.66)

for some positive constant It To wit, we begin by fixing any x° E S2 and
introducing V(x°), B,(x°), T(x°) as in Lemma 5.23. Let

De,, _ {x E B,(x°) n S2 I u(x + E) < -e/2},

52j'. -(xcB,(x°)n£i(x+E)>-e}

for F E T(x°) and e > 0. Both S2E,, and De, are open, and their union
equals B,(x°) n D. As x varies in 52,.,, x + e varies in 0 as well as [by
(5.64)] in V(x°). But then [by (5.63)] the function u't): x) -. u(x+ $) and
all its first and second derivatives admit, when restricted to S2E an L°°
bound independent of f and e. Therefore,

LOU(t) > -K° in (5.67)

with K° > 0 independent of n as well. Through a partition of unity every
function v E C,°°(B,(x0) n S2), v > 0, can be decomposed as the sum of
two nonnegative smooth functions v' and v" with supp v' c DE',,, supp v"
c Qf,. By Lemma 4.28, therefore, (5.67) suffices for the validity of the
inequality

-K° in the sense of H-'(B,(x°) n S2)

with 0'IB,x°)n0 A (-e) (note that -e in;,), hence also
of the inequality

-K° in the sense of H-1(B,(x0) n 7) (5.68)

with w(f) = after a passage to the limit as e -. 0+. We let I vary in
T(x°): the same proof as in the case of a finite number of the E's (Lemma
4.28) shows that (5.68) implies

L°( A w(F)1 > -K°
1`£e T(x°) ) in the sense of H-'(B,(x°) n S2),

and (5.66) follows easily since

M(u)IB,(z°)no = 1 + A w(t).
&T(.9)
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We now avail ourselves of the remark at the end of Section 5.3.1.
We arbitrarily fix q' = Ve 1 or" with 99° G E(M(u)) and find a solution
v e to the bilateral problem

9, < v < M(u), [Lvn - F(vn, Vv,)](vn - q)) < 0

and [Lnvn - F(vn, M(u)] < 0 in 0,

vaIao = 0,
with

(-f) A F(vn. Pun) C L.V. < V (Ln9t') V F(vn, Vv,)
h-I

and therefore also

in S2, (5.69)

ILnvnI SK(I VvnIr+ 1)+k+ ILn?"I in d2

for a suitable choice of r from (5.50). But then Lemma 5.10 (see also
Remark I at the end of Section 5.2.3) provides a uniform bound

I V. Ian.=m1 < C for n e N.

This means that a subsequence of {vn} converges weakly in H2-v(Q) and

strongly in C'(.D) toward a function v > w, which satisfies

v < M(u), Lv < F(v, Vv)

and [Lv - F(v, Vv)][v - M(u)] = 0 in 0, (5.70)

v1ao = 0

since c" is a subsolution of the above unilateral problem (see Theorem
5.13). Moreover, the left-hand-side inequality of (5.69) becomes

Lv > F(v, Vv) A (-k) in d2,

so that

ILvI <K(I VvIr+1)+k in D.

This means that I v Ian.,(m is bounded independently of the choice of qP.
We can therefore proceed as in Step 2 of the proof of Theorem 5.12 and
prove that (5.70) admits a solution v,,,,1 E which majorizes all
subsolutions. But then v,,,,,, = a(M(u)) = u, and the desired regularity of
u is proven. 0
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Problems

5.1. Theorems 5.1 and 5.2 remain valid for I < p < 2.

5.2. Same assumptions as in Theorem 5.1. If w e HI-P(12) satisfies (5.8), the
solution u of (5.1) satisfies u > w in Q. Compare with Step 1 of the proof
of Theorem 4.30.

5.3. For n = 0, 1, ... denote by u, the solution to (5.6) with 9 = 0, j
and C = C., where j E LP(Q) and C. E (1 <p < oo), C. < 0
on r. If j, - j, in LP(D) and C. C. in H"P'"P(r), then u, - u, in H'-P(Q).
To see this, note that Lu, = f .X, with x. = characteristic function of the
subset 0, of 12 where u, < 0. Passing to suitable subsequences, still in-
dexed by n, one sees that x. - 1 a.e. in Q., so that

J I j.x.- j. IP dx-0.

moreover, since Lru, - Lu in LP(Q),

r

J
I Lu. I P dx =

f o
dx , 0,

a

where g. = I f IP-'j.(1 - Xo) if f, :f 0, g, m 0 otherwise.

5.4. An interesting consequence of Theorem 5.4 is that a function W E H'(Q)
satisfying Lip > 0, VI do-," > 0, (B+p)ipl r :- 0 on r is > 0 in Q: indeed,
the solution u of (5.6) with j= 0, C = 0 vanishes identically. [Compare
with Theorem 3.29 for the case r = 0, and with Lemmas 3.25, 3.26 for
the case 'p E H'-P(Q), p > N.]

5.5. Theorems 5.12-5.14 remain valid, for r = 0, if the linear operator
u » -a"(x)uP,.r is replaced by the nonlinear one u -a"(x, u)u,,,, with
all E C°(3) X R),

for CE RN

whatever (x, q) E ? x R (0 < a < 1). To see this, apply a very general
result of N. S. Trudinger [153], 0. A. Ladyzhenskaya and N. N. Ural'tseva
[95], which in particular provides two constants d E ]0, 1[ and H > 0,
dependent only on a, K, j°, and I u I.;n, such that [u]6;6 < H whenever
u is a\function from satisfying

I a'r(x, u)u,,,, I < K I Vu I' + j. in f2

with j, E LN(Q), j, > 0. (See G. M. Troianiello [150].)

5.6. In (5.56) take a" E C°°(I), F(u, Vu) = -a'u - au - f with a', ... , ax,
a e L°°(f)), a > 0 in O, and f e LP(.Q). If +p E C°(.0), wIao > 0, is such that
the set of functions o E H,'(O) satisfying v < ,p in n is nonvoid, then a(V)
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coincides with the solution of the corresponding variational inequality.
[Note that this is obviously true when the continuity of +y throughout
D is strengthened into the requirement 1o a If the v.i. does not
make sense (as in the example of Section 4.3.1), we can still avail our-
selves of the notion of a generalized solution: the estimate of Problem 2.6
can be utilized to prove that, in addition to all the properties stated in
Theorem 5.19, a(?) belongs to H,,(.4) and satisfies La(y) < j1 in the sense
of H-'(w) whenever w cc 0, with Lu = -(a'tuj1, + (ayt + a')u, + au.

5.7. What is the role of the exponent p in the proof of Theorem 5.22? And
what additional assumption guarantees the membership of the fixed point
u in H'-'(f?) for any finite q?
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to their arguments {although in the literature the intrinsic definition of
H11D'.a(J') is usually preferred to its more rapid construction via the
quotient space technique adopted here: e.g., see A. Kufner, O. John, and
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[152]; the proof in the text is Trudinger's, except for some minor modi-
fications.

The results of Section 2.3 are due to G. Stampacchia [139]; for the
proofs we followed C. Miranda [114].
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to the whole topic has been based partly on E. Giusti [68] (Section 2.4.1),
partly on J. Moser [122] and C. B. Morrey, Jr. [118] (Section 2.4.2), and
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simply than in M. Chicco [37, 38], at the price, however, of less generality
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Lemma 3.24 is taken from J. M. Bony [17]. Lemmas 3.27 and 3.26 are
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The example of Section 3.7 is taken from the Introduction of 0. A. Lady-
zhenskaya and N. N. Ural'tseva [94]. Theorem 3.30 is a special case of a
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Chapter 4

The theory of v.i.'s originated in Italy from the independent works
of G. Fichera 148] and G. Stampacchia [140] in the early 1960s. The intense
research that flourished internationally since can be roughly viewed as
consisting of three strands:
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H. Brbzis [18] to pseudomonotone operators);

regularity results in more "concrete" cases involving partial dif-
ferential operators, still the main source of difficulties;

applications of v.i.'s in such diverse fields as elasticity theory,
control theory, hydraulics, etc.
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strand above: e.g., see J. L. Lions [104], G. Duvaut and J. L. Lions [47],
C. Baiocchi and A. Capelo [8], A. Bensoussan and J. L. Lions [12]. More
attention to regularity questions is devoted by D. Kinderlehrer and G.
Stampacehia [87], A. Friedman [56], and M. Chipot [43].

For the material of our Sections 4.1-4.3 the main reference is J. L.
Lions [103]. The proof of Stampacchia's Theorem 4.4 is taken from J. L.
Lions and G. Stampacchia [105], that of Fichera's Theorem 4.7 from P.
Hess [75]. Theorem 4.21 is a fundamental result of J. Leray and J. L. Lions
199], generalized slightly by dint of a device, due to R. Landes [97], in the
proof of Lemma 4.22; the second part of Lemma 4.22 is taken from L.
Boccardo, F. Murat, and J. P. Puel [16].

The results of Section 4.4 are due to the present author; in more
particular cases Theorem 4.27 was previously proven by M. Chicco [391
and P. L. Lions [107] with completely different methods.
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Lewy-Stampacchia inequalities are named after the paper by H. Lewy
and G. Stampacchia [102], dealing with a potential-theoretic approach to
a minimum problem of the type illustrated in the Introduction. The passage
to a variational setting with applications to regularity of solutions is due
to U. Mosco and G. M. Troianiello [121]. For more general results see
B. Hanouzet and J. L. Joly [72], 0. Nakoulima [125], and U. Mosco [120];
the latter article provides the simple arguments of the proof of Theorem
4.32. Regularity results of the same type as Lemma 4.34 were first obtained,
with different techniques, by H. Lewy and G. Stampacchia [101] and H.
Brbzis and G. Stampacchia [22].

Interior H2 regularity was proved by H. Brbzis and D. Kinderlehrer
[20] and C. Gerhardt [62]. Global H2 regularity was first proved by R.
Jensen (80] who, however, used a norm estimate (Lemma 4.4 in A. Fried-
man [56]) that is-not quite correct: compare with M. Chipot [43]. The
proof of Theorem 4.38 is based on C. Gerhardt [63]. The example of
Section 4.6.2 is attributed to E. Shamir by H. Brbzis and G. Stampac-
chia [22]; the proof of Theorem 4.39 is basically due to J. L. Lions [103]
(see also D. Kinderlehrer [86]).

The techniques of Section 4.7 were introduced (for the study of interior
regularity) by M. Giaquinta [64]; the proof of Theorem 4.45, however, is
essentially that of M. Biroli [15]. For a different approach see J. Frehse [52).

Theorem 4.46 is due to M. Chipot [411.
Except for some minor changes, the proof of Theorem 4.47 comes

from L. Boccardo, F. Murat, and J. P. Puel [16]. The proof of Theorem
4.48 is ours (but see the remark following it); the idea of reducing a non-
linear equation to a v.1. was first utilized by J. P. Puel [131].

By no means does our treatment of (elliptic) v.i.'s do justice to the
richness of existing results. Among our omissions we could mention
numerical aspects (see R. Glowinski, J. L. Lions, and R. Tr6molibres [69]),
regularity of the free boundary (see A. Friedman [56]), and v.i.'s that are
not of the obstacle type {see H. Brbzis and M. Sibony [21] and P. L. Lions
[108] for what concerns the convex set (4.31)}.

Chapter 5

Nonvariational obstacle problems were introduced by A. Friedman
[55] and A. Bensoussan and J. L. Lions [12] as auxiliary tools in the theory
of stochastic control, for the case when the dynamic system at hand is
governed by a merely continuous diffusion term. Among the subsequent
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contributions to the subject we mention the papers by G. M. Troianiello
[147-149], P. L. Lions [106], and M. G. Garroni and M. A. Vivaldi [59,
60], all dealing with linear operators, and the papers by G. M. Troianiello
[150, 151] and M. G. Garroni and M. A. Vivaldi [61], where nonlinear
operators are taken up; for a class of degenerate problems see I. Capuzzo
Dolcetta and M. G. Garroni [34].

The presentation provided here is largely taken from the author's
articles. In particular, the notion of a generalized solution and its applica-
tions to the study of implicit unilateral problems are based on G. M. Troia-
niello [148].

Theorems 5.6 and 5.7 are based on their variational counterparts,
respectively studied by 0. Nakoulima [125] and J. L. Joly and U. Mosco
[82]. Theorem 5.8 extends a result previously proven, with different tech-
niques, by M. G. Garroni and M. A. Vivaldi [61].

The results of Section 5.2.1 are due to L. Nirenberg [129]. Lemma 5.10
is based on H. Amman [5] (see also H. Amman and M. G. Crandall [6]
and K. Inkmann [79]). The proof of Lemma 5.11, due to the present
author, makes a crucial use of some techniques by 0. A. Ladyzhenskaya,
V. Solonnikov, and N. N. Ural'tseva [96] as well as of some by J. Frehse [51 ].

Step 2 of the proof of Theorem 5.12 utilizes an idea in an article by

K. Akb [4], which also contains the example of Section 5.3.2. Theorem 5.14
extends previous results of H. Amann and M. G. Crandall [6] and J. L.

Kazdan and R. J. Kramer [85].
In a variational setting implicit unilateral problems enter the theory

of quasivariational inequalities, introduced by A. Bensoussan and J. L.

Lions [11]: see A. Bensoussan and J. L. Lions [13], J. L. Joly and U.
Mosco [82], C. Baiocchi and A. Capelo [8] as well as, for what concerns
in particular the impulse control problem, J. L. Joly, U. Mosco, and G.
M. Troianiello [83], 1. Capuzzo Dolcetta and M. A. Vivaldi [35], B.
Hanouzet and J. L. Joly [71, 73], L. Caffarelli and A. Friedman [26],
U. Mosco [120], and A. Bensoussan, J. Frehse, and U. Mosco [14].
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Strictly monotone (operator), 216
Strictly T-monotone (operator), 231
Strong convergence, 3
Strong maximum principle, 193
Strong type p, 160
Subadditive mapping, 160
Subsolution (of a nonlinear boundary value

problem), 322
Subsolution (of a nonvariational unilateral

problem), 296, 320
Subsolution (of a variational inequality),

242

Subsolution (of an equation), 110
Summation convention, 89

353

Supersolution (of a nonlinear boundary
value problem), 322

Support (of a continuous function), 9
Support (of a measurable function), 17
Supremum, 76
Symmetric (bilinear form), 91

Tietze extension theorem, 12
T-monotone (operator), 231
Topological dual space, 3
Topologically isomorphic (normed spaces),

3

Trivial extension, 13

Uniform convergence, 8
Uniform exterior sphere condition, 276
Uniformly elliptic (differential operator),

95

Unilateral constraints, 228

Unilateral Lewy-Stampacchia inequalities,
251, 294, 296

Unilateral Neumann condition, 239
Unilateral variational inequality, 237
Upper barrier, 277
Upper bound, 76

Variational bilateral problem, 240
Variational boundary value problem, 101
Variational inequality, 210, 237, 240
Variational solution (of an equation), 100
Variational subsolution (of an equation),

110

Variational unilateral problem, 239

Weak convergence, 3
Weak Lebesgue space, 160
Weak maximum principle, 96, 191
Weak type p, 160
Weakly lower semicontinuous, 207
Well posed (boundary value problem), 195

Zero subset, 25
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