


This book, written by one of the most distinguished of contemporary
philosophers of mathematics, is a fully rewritten and updated
successor to the author's earlier The Unprovability of Consistency
(1979). Its subject is the relation between provability and modal
logic, a branch of logic invented by Aristotle but much disparaged
by philosophers and virtually ignored by mathematicians. Here it
receives its first scientific application since its invention.

Modal logic is concerned with the notions of necessity and
possibility. What George Boolos does is to show how the concepts,
techniques, and methods of modal logic shed brillant light on the
most important logical discovery of the twentieth century: the
incompleteness theorems of Kurt Godel and the "self-referential"
sentences constructed in their proof. The book explores the effects
of reinterpreting the notions of necessity and possibility to mean
provability and consistency. It describes the first application of
quantified modal logic to formal provability as well as the results of
applying modal logic to well-known formal systems of mathematics.

This book will be of critical importance to all logicians and
philosophers of logic and mathematics and to many mathemati-
cians.

"I found it lively, lucid, and informative... Boolos' style of writing
is unusually kind to the reader. When an argument becomes tricky,
he breaks it down into a lot of small steps, showing the reader in
detail just how to proceed. A result is that the book is remarkably
easy to read."

Vann McGee
Rutgers University
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Preface

When modal logic is applied to the study of provability, it becomes
provability logic. This book is an essay on provability logic.

In the preface to the precursor to this work, after expressing
regret at not being able to include a treatment of the application
of quantified modal logic to proof theory, I mentioned that one
major question then (1979) open was whether quantified provability
logic could be axiomatized. It was a natural enough problem to
pose in a work on the application of modal logic to proof theory,
and I hoped that the solver, whoever it might be, would send me
the answer. I imagined that one morning I would go to the office,
get my mail, and find in it an envelope from an unfamilar source,
which would turn out to contain a preprint of the long-desired
solution.

Well, it happened exactly that way, but the blessed thing turned
out to be in Russian. In August 1985, Valery Vardanyan sent me
his proof that there is no axiomatization of quantified provability
logic. It was contained in a 52-by-82 in. pamphlet, the cover of
which read:

B. A. BAPJLAHSIH

O HPE)HKATHOA JIOI'HKE
)J OKA3YEMOCTH

(npenpHHT)

Knowing the Greek alphabet, I deciphered "predikatnoj", "logike",
and "preprint" quickly enough, and on noticing inside the telltale:
II2 as well as formulas like

`dxVyVz(x+y=z- (x+y=z))
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I sped out the door and bought the only plausible Russian-English
dictionary I could then find.

I spent the next week deciphering the pamphlet; and as soon as
I became convinced that Vardanyan had indeed proved that quanti-
fied provability logic could not be axiomatized, plans for this book
began to form.

After exchanges of letters, personal contacts with Soviet logicians,
as they were once called, began at the Eighth International Congress
of Logic, Methodology and the Philosophy of Science, which was
held in Moscow in 1987. ("Have you seen the front page of Pravda
today?" "Ssh, not over the telephone," was the current joke.) There
I made the acquaintance of Vardanyan and of Sergei Artemov and
his remarkable group of students and junior associates, who then
included Giorgie Dzhaparidze (from Tbilisi), Lev Beklemishev, and
Vladimir Shavrukov; Konstantin Ignatiev would later join their
number. Without the results of Vardanyan, Artemov, Dzhaparidze,
and Ignatiev, there would have been no call for this book.

"Is it a new book or [just] a second edition of your other book?"
my colleagues have asked me.

New book.
All right, there are borderline cases, aren't there? (Hmm, maybe

books don't exist since we lack strict criteria of book identity.) And
cases over the border, but near it, too. That's what I think the
situation is with The Logic of Provability: there's enough new
material in it for it to be a new book. Of course, when I thought
I couldn't do better than I had done in The Unprovability of
Consistency, I unashamedly copied sections from it. But I think
I may call this work the "successor" to that.

What is entirely new is the material in the last six chapters.
Chapters 13 and 14 contain proofs of theorems due to Robert
Solovay. The theorems were announced in his fundamental 1976
paper, "Provability interpretations of modal logic", and concern
set-theoretical interpretations of the box (0) of modal logic and
the modal properties of the notion "provable in second-order
arithmetic with the aid of the w-rule". Proofs of the theorems appear
here, for the first time, I believe. Chapter 15 contains completeness
theorems due to Dzhaparidze for systems of "bi"-modal logic with
two boxes (0 and O) intended to represent ordinary provability
and the dual of w-consistency. Chapter 16 contains, among other
things, the fixed point theorem, due to Ignatiev, for the system
discussed in Chapter 15.
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The basic theorems on quantified provability logic are contained
in Chapter 17. The first result in this area was obtained in 1984 by
Artemov: the set of formulas of quantified modal logic that are
true under all substitutions of formulas of arithmetic is not arith-
metical, i.e., not definable by a formula of the language of arithmetic.
The other theorems are Vardanyan's result mentioned above and a
theorem refining Artemov's theorem that is due to Vann McGee,
Vardanyan, and the author. These last two results state that the
class of formulas provable under all substitutions from arithmetic
and the class of formulas true under all such substitutions are as
undecidable as it is a priori possible for them to be. Explanations
and precise definitions are supplied in the chapter, but for those
who know, the classes are l2-complete and I°-complete in the
truth set for arithmetic, respectively.

Without Chapter 18, this book would be prettier and easier to
read. Found in that final chapter are proofs of the remarkable
results of Vardanyan that the theorems of Chapter 17 hold for the
fragmentary language of quantified modal logic containing only
one one-place predicate letter and forbidding nesting of boxes. The
proofs there are intricate; perhaps simpler ones will be found. I
hope so. Significant stretches of argumentation in that chapter are
due to McGee, Warren Goldfarb, Shavrukov, and the author.

Two other quite major differences between this book and The
Unprovability of Consistency are the simplification of the semantical
(Kripke model) completeness theorem for the books' main system of
modal logic - it's now only very slightly less easy than the complete-
ness proof for K, the modal system with the simplest completeness
proof of all - and the expansion of the chapter on provability in
Peano Arithmetic, now about four times as long as its counterpart.

I've also decided to change the name of the main system, from
`G' to `GL'. `GL' slights neither M. H. Lob nor Peter Geach. The
system G* has also become GLS, the `S' for Solovay.

My hope in expanding the chapter on provability in arithmetic
was to make it plain how syntax could be developed in a system
of arithmetic that explicitly quantifies only over the natural numbers
and whose primitive symbols are 0, s, +, and x. What is problema-
tical is not so much the technique of Godel numbering as the develop-
ment in arithmetic of the theory of the "cut-and-paste" operations
used to construct new formulas and proofs from old. Via Godel
numbering, formulas and proofs can be construed as finite sequences,
or finite sequences of finite sequences, of natural numbers. But how
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to do the theory of finite sequences and the cut-and-paste operations
on them? As a student I was perplexed by the fact that although the
#-function is introduced to do the work of finite sequences in defin-
ing in arithmetic such primitive recursive functions as ! (factorial),
the standard proof that the #-function works as desired appeals to
the existence of n!. So how to formalize that proof if one is to prove
the second incompleteness theorem for arithmetic in arithmetic? I
hope those who read Chapter 2 on arithmetic will cease to be
troubled by such perplexities and will have the sense that they are
taking nothing on faith. (By the way, the solution is to make a
minor change in the standard proof. The only property of n! that
is used in that proof is that n! is a number divisible by all positive
integers between 1 and n; but the existence of such a number can
easily be proved, by the obvious induction on n. One need not
appeal to the existence of n!.)

Other chapters of the book are meatier and (I hope) neater than
their analogues in the earlier book. The chapter on the fixed point
theorem, in particular, now contains three quite different proofs of
that theorem. And I hope that the exposition of Solovay's theorem
now lets one see exactly where the rabbit is at all times.

An annotated list of the contents of the book is found at the end
of the introduction.

Some important topics not discussed in the body of the book
are the modal logic of relative interpretability (a very significant
application of modal logic to the study of provability in formal
systems); Rosser sentences and the modal logics that have been
developed to treat the notion: S has a proof with a smaller Godel
number than S'; the bimodal logic of provability in systems like
ZF and PA, where one system is much stronger than the other (these
two topics are well covered in Craig Smorynski's Self-Reference and
Modal Logic); the Sienese algebraic treatment of provability; modal
logics that treat the notion: conservative extension; theorems on
the classification of the kinds of propositional provability logics
there are; and diagonalizable algebras.

The diagonalizable algebra of a theory T, with a provability pre-
dicate P(y), is the Boolean algebra of T-equivalence classes [S] of
sentences S, augmented with a one-place operator such that for
all S, [S] = [P(r5,)]. A recent remarkable theorem of Shavrukov's
is that the diagonalizable algebras of ZF and PA are not isomorphic.
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The major open question in provability logic now is whether the
first-order theory of the diagonalizable algebra of PA, with Bew(x),
is decidable. [Added July 1993; Shavrukov has just announced that
it is not decidable.]

I wish to thank the National Science Foundation for grant SES-
8808755: a monograph on the logic of provability and the incomplete-
ness theorems. Here it is.

I am also grateful to Josep Macia-Fabrega, Joana Rosellb-Asensi,
and Andrew Sutherland for helpful comments on a draft of Chapter
2 as well as to David Auerbach and an anonymous Cambridge
University Press referee for useful comments on the whole.

Vann McGee wrote a long, careful, and detailed commentary on
a draft of this book. Moreover, he rescued the book's final chapter
from a fatal error, one he had detected some months before finding
the remedy for it.

Ideas of Warren Goldfarb seem to have found their way onto
almost every other page of this book. I hope, but doubt, that I've
managed to acknowledge them all. I have been greatly encouraged
over the years by his support and that of several of his colleagues.
It is they who have made Cambridge, Massachusetts, so stimulating
a location in which to work on this material.

Finally, I am also grateful to Giovanni Sambin, Giorgie
Dzhaparidze, and Sergei Artemov for incredible hospitality, both
scientific and personal, some of it provided in rather unusual
circumstances.





Introduction

The theme of the present work is the way in which modal logic, a
branch of logic first studied by Aristotle, has been found to shed
light on the mathematical study of mathematical reasoning, a study
begun by David Hilbert and brought to fruition by Kurt Godel.

Modal logic

The basic concepts of modal logic are those of necessity and pos-
sibility: A statement is called "possible" if it might be true (or might
have been true) and "necessary" if it must be true (or could not
have been untrue). E.g., since there might be a war in the year 2000,
the statement that there will be a war then is possible; but the
statement is not necessary, for there might not be one. On the other
hand, the statement that there will or won't be a war in 2000 is
necessary.

Necessity and possibility are interdefinable: a statement is neces-
sary if (if and only if) its negation is not possible, and, therefore,
a statement is possible if its negation is not necessary.

The customary sign for necessity in modal logic is the box,
read `necessarily', or `it is necessary that...'; the sign for possibility
is the diamond `O', read `possibly,' or `it is possible that...'. Thus
like n and v and V and 3, either one of and O can be regarded
as defined from the other, as -, O-, and O as -, --i. We shall
usually take as primitive and O as defined: `O A' will abbreviate:

-, A'.
Because of the metaphysical character of the notions of necessity

and possibility, their remoteness from sensory experience, and the
uncertain application of the terms "necessary" and "possible",
modal logic has always been a subject more or less on the periphery
of logic. Aristotle himself, who developed the theory of the syllogism
in almost perfect form, also worked on a theory of modal syllogisms,
in which premisses and conclusions may contain the terms "necessary"
and "possible". Sympathetic commentators have found the theory
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defective. According to Jan Lukasiewicz, "Aristotle's modal syllogis-
tic is almost incomprehensible because of its many faults and
inconsistencies".' William and Martha Kneale write that his theory
of modal syllogisms "is generally recognized to be confused and
unsatisfactory".'

Medieval logicians such as Abelard continued to study modal
notions, which also figured importantly in the writings of Leibniz.
In our century, the most important contributors to modal logic
have been C. I. Lewis and Saul Kripke. Despite the work of these
authors, the subject has not been considered to be of central interest
to contemporary logic.

Moreover, although the term "logic" (in one of its main uses)
has come to refer to the one system known as classical first-order
predicate calculus and "set theory" likewise to Zermelo-Fraenkel
set theory (ZF), "modal logic" still stands for a family of systems,
of a bewildering profusion. Most systems of modal logic agree on
what counts as a (well-formed) formula or sentence of the logic:
One almost always adds to the formation rules of ordinary logic,
whether propositional or quantificational, just one clause stating
that if A is a formula, then so is A. It is with with respect to the
notion of asserted sentence, or theorem, that the systems of modal
logic differ from one another. It is difficult to avoid the suspicion
that the diversity of modal systems is to be explained by the absence
of any intelligible or clear notion of necessity whose properties it
is the task of modal logic to codify.

We are going to use modal logic to study not the notion of
necessity but that of formal provability, a concept at the heart of
the subject of logic, and the fundamental notion studied in Kurt
Godel's famous paper of 1931, "On formally undecidable proposi-
tions of Principia Mathematica and related systems I". We shall be
interested in the effects of construing the box to mean "it is provable
that..." rather than "it is necessary that..." and, dually, of taking
the diamond to mean "it is consistent that..." rather than "it is
possible that...". Here provability and consistency are taken with
respect to some one formal system, usually classical first-order
arithmetic ["Peano arithmetic" (PA)]. In our study of formal
provability we shall pay particular attention to a system of proposi-
tional modal logic that we call GL, for Godel and M. H. Lob.

The same expressions count as well-formed sentences in GL as
in the more common systems of propositional modal logic; these
are set out in Chapter 1. Moreover, as with the other usual systems,
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all tautologies and all sentences (A -+ B) -+ ( A -+ B) are axioms
of GL, and modus ponens and necessitation (if a sentence A is a
theorem, so is A) are its rules of inference. Substitution is also a
derived rule of inference of GL. And all sentences A-+ A

turn out to be theorems of GL.
But familiarity ends here. For:

(1) The sentence p -+ p is not a theorem of GL
(2) The sentences ( p -+ p) -+ p, (( p -+ p) A ( p -+ p)) -> p,

and ( 1-+ 1) -+ 1 are theorems of GL, as are
Op-* O(pA -ip)and 0 T-4-,00 T.

(3) Indeed, all sentences of the form ( A -+A)-+ A are axioms
of GL; these are the only axioms of GL that have not yet been
mentioned.

(4) No sentence of the form OA, not even O(p-+p) or O T, is a
theorem of GL; nor is -i 1 a theorem of GL.

(5) O T is not a theorem of GL.
(6) Whenever a sentence of the form A -+ A is a theorem of GL,

so is the sentence A.
(7) J_ +--* O T is a theorem of GL.

Here T and 1 are the two 0-place propositional connectives: T
counts as a tautology and 1 as a contradiction. Negation may be
defined from -+ and 1 in ordinary propositional logic: -, A is
equivalent to A -+ I. And of course T itself is equivalent to I.

To recapitulate: the sentences of GL are 1, the sentence letters
p, q, r,..., and (A -+ B) and A, where A and B are themselves
sentences; the axioms of GL are all tautologies and all sentences

(A - B) - ( A - B) and ( A -> A) -+ A; and the rules of
inference are modus ponens and necessitation.

The odd properties of GL described in (1)-(7) reflect the strange
properties enjoyed by provability and consistency in formal systems:
For example, as -, 1 is not a theorem of GL, so the statement
that 2 ± 2 = 5 is not a theorem of ZF is not a theorem of ZF (if,
as we suppose, ZF is consistent). Indeed, although for every theorem
S of ZF, there is also a theorem of ZF to the effect that S is a
theorem of ZF, for no non-theorem S' of ZF is there a theorem of
ZF to the effect that S' is a non-theorem of ZF (again, if ZF is
consistent).

C. I. Lewis, who began the modern study of modal logic, conceived
of the subject as the relation that holds between propositions p and
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q when p can be correctly said to imply q. (Lewis, reasonably enough,
held that more is needed for p to imply q than that p should be
false or q true.) In early formulations of modal logic the fishhook
" 3 " was used as the sign for implication, and either "A 3 B" was
defined as: (A -+ B), or " 3 " was taken as primitive and " A"
defined as: (A -> A) 3 A. Lewis claimed that one proposition implies
another when the latter is deducible from the former.

Exactly what Lewis had in mind by "implies" or "deducible" is
uncertain. Some passages in his and Langford's Symbolic Logic, a
work published almost twenty years after he first published a paper
on modal logic, suggest that he was thinking of deducibility in
formal systems, like that of Principia Mathematica:

17.32 -.ros... For example, if a postulate p implies a
theorem r, and a postulate q implies a theorem s, and the two postulates
are consistent, then the theorems will be consistent. A system deduced
from consistent postulates will be consistent throughout.'
[With reference to Principia Mathematica]: When mathematical ideas
have been defined - defined in terms of logical ideas - the postulates for
arithmetic, such as Peano's postulates for arithmetic ... can all be deduced
[Lewis's italics]."

Other passages indicate that he meant to be treating a notion of
necessity now commonly called logical, mathematical, or meta-
physical necessity. For example:

It should also be noted that the words "possible," "impossible," and
"necessary" are highly ambiguous in ordinary discourse. The meaning
here assigned to Op is a wide meaning of "possibility" - namely, logical
conceivability or the absence of self-contradiction.'

However unclear Lewis may have been about the nature of the
subject matter of the systems of modal logic he himself created, he
was certainly right to think that deducibility can and should be
studied with the aid of formal systems of modal logic similar to his
own. Despite the striking differences between the metaphysical
notions of necessity and implication and the logical notions of
provability and deducibility, the symbolism of modal logic turns out
to be an exceedingly useful notation for representing the forms of
sentences of formal theories that have to do with these fundamental
logical notions, and the techniques originally devised to study
systems of modal logic disclose facts of great interest about these
notions and their strange properties.
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The development of modal logic was greatly advanced with the
introduction, by Saul Kripke and others, of mathematical models
(now called Kripke models) of Leibniz's fantasy of the actual world
as one "possible world" among others. In Kripkean semantics,
sentences are true or false at various possible worlds, but, typically,
not all worlds are possible relative to, or "accessible from", others.
A Kripke model is a triple <W, R, V>, consisting of a domain W,
the set of (possible) worlds, a binary relation R on W, the accessibility
relation, and a relation V between worlds and sentence letters
specifying which sentence letters are true at which worlds. The truth-
value of a truth-functional compound at a world w is computed in
the familiar manner from the truth-values of its components at w.
And a sentence O A is true at w if A is true at all worlds x such
that wRx. (Thus the box acts like a universal quantifier over possible
worlds.) A sentence is valid in a model <W, R, V> if it is true at all
worlds in W.

Kripke proved a number of adequacy (= soundness + completeness)
theorems of the form: a sentence A is provable in the system ... if
and only if A is valid in all models < W, R, V>, where R is ___. For
example, A is provable in the system S4 if A is valid in all < W, R, V >,
where R is transitive and reflexive on W.

A similar adequacy theorem holds for GL. A relation R is called
wellfounded if and only if there is no infinite sequence w0, w1, w2, .. .
such that ... w2Rw1Rwo. Krister Segerberg proved that the theorems
of GL are precisely the sentences valid in all models < W, R, V>,
where R is transitive and the converse of R is wellfounded. (If the
converse of R is wellfounded, then R is irreflexive; otherwise for
some w, ... wRwRw. Thus in Kripke models for GL, no world is
accessible from itself!) The adequacy theorem for GL can be streng-
thened: W can be taken to be finite.

There are two central theorems concerning GL. One is the fixed
point theorem, due to Dick de Jongh and Giovanni Sambin. The
fixed point theorem yields highly interesting information about the
truth-conditions of "self-referential sentences" of arithmetic and
other formal theories. We give three different proofs of the fixed
point theorem in Chapter 8. Although all of these proofs use the
techniques of modal semantics, the theorem can in fact be proved
purely syntactically and without Kripke semantics.

The other theorem is the arithmetical completeness theorem for
GL, due to Robert Solovay. Solovay's theorem states that the
theorems of GL are precisely the sentences of modal logic that are
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provable in arithmetic under all substitutions of sentences of arith-
metic for sentence letters. We prove Solovay's theorem in Chapter 9;
the proof involves a kind of "embedding" of Kripke models into
formal systems. Solovay's theorem is a deep theorem about prova-
bility in formal systems; many interesting generalizations have been
found and the technique of its proof has become a fundamental
method in the investigation of provability and related notions. But
unlike the fixed point theorem, all known proofs of Solovay's
theorem make use of Kripke semantics. If ever scientific justification
were needed for the study of modal logic or the semantical notions
developed for its investigation, Solovay's theorem and its proof
provide it.

Formal arithmetic

In "On formally undecidable propositions...", Godel introduced a
formal system of arithmetic, which he called "P", and proved two
celebrated incompleteness theorems concerning P and other systems
related to it.

P can be described as the result of adding three Dedekind-Peano
axioms for the natural numbers to a version of the (simple) theory
of types. For each positive integer n, P contains (infinitely many)
variables In the intended interpretation of P the
variables x1, yl, zl,... range over the natural numbers, x2, y2, z2, ...
over the classes of natural numbers, x3, Y3, z3, ... over the classes
of classes of natural numbers, and so forth. Besides the usual logical
apparatus, there are signs for the number zero, the successor function,
and the relation that holds between the members of a class and
that class. (We shall depart from Godel's notation and write these:
0, s, E.) The numeral n for the natural number n is the term ss ... sO
(n occurrences of s); under the intended interpretation of P, the
numeral n does indeed denote n.

The rules of inference of P are modus ponens and universal
generalization. In addition to standard logical axioms, P also has
axioms of extensionality:

1 x = Y)

asserting that classes with the same members are identical, and
axioms of comprehension

asserting, for each variable x of type n + 1 and each formula A (in
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which x is not free), the existence of the class, of type n + 1, of items
of type n satisfying A.

The remaining three axioms of P are the Dedekind-Peano
axioms,

Vx1--1 0 = sx

Vx1VY1(sx = sY - x = y)

VZ2(OEZ A bxl(xEZ-+SxEZ)->bx1xeZ)

which say, respectively, that 0 is not the successor of any natural
number, that different natural numbers have different successors,
and that mathematical induction holds for natural numbers.

A formal system is said to be incomplete if there are statements
that can be formulated in the language of the system but neither
proved nor disproved by the means of proof available in the system;
such statements are called undecidable propositions of the system.

A formal system is called co-inconsistent if for some formula A(x),
3x-, A(x) and all of A(O), A(1), A(2),.... are provable. Here we assume
that x is a variable whose intended range is the set of natural
numbers, and for each natural number n, n is the numeral for n in
the language of the system. (So if the system in question is P or one
of its extensions, x would be one of x1,Yl,z1,....) And of course a
system is co-consistent if it is not co-inconsistent.

If a system is co-consistent, then not everything is provable in the
system, and therefore it is (simply) consistent. Godel was the first
to construct examples of consistent but co-inconsistent systems.
Thus the condition of co-consistency is stronger than that of "simple"
(i.e., ordinary) consistency.

A primitive recursive extension of a system is one obtained from
the system by the addition of a primitive recursive set of axioms.
A set is primitive recursive if the set of Godel numbers of its members
is. We give the definition of "primitive recursive" in Chapter 2. For
now it will suffice to say that the primitive recursive sets form a
proper subclass of the recursive sets and that by the Church-Turing
thesis, a set is recursive if and only if it is decidable (a different
usage of the term from that of "undecidable proposition"), that is,
if and only if there exists an algorithm for deciding membership in
the set. (One should be aware that in "On formally undecidable
propositions..." Godel defined the term "rekursiv" to apply only
to those sets now called "primitive recursive".) At the time of writing
"On formally undecidable propositions...", Godel did not know of



xxii INTRODUCTION

a satisfactory definition of decidable set. Suitable definitions were
provided later, notably by Church and Turing.

Godel gave what has come to be called the first incompleteness
theorem as Theorem VI of "On formally undecidable proposi-
tions...". It runs: any w-consistent primitive recursive extension of
P is incomplete. Later in the article Godel noted that the condition
that the set of new axioms be "primitive recursive" can be replaced
by the weaker condition that the set be "numeralwise expressible"6;
only after Church and Turing provided their definitions of a decid-
able set was it proved that the numeralwise expressible sets are
precisely the recursive ones.

It was J. B. Rosser who, in 1936, showed that the condition of
w-consistency could be replaced by that of simple consistency in
the statement of the first incompleteness theorem. It is noteworthy
that Rosser did not show (and could not have shown) the undecid-
ability of the statements described by Godel to follow from the
simple consistency of the relevant systems; instead he found different
statements whose undecidability so follows.

The second incompleteness theorem, given as Theorem XI of
"On formally undecidable propositions...", states that if P is consis-
tent, then the proposition asserting that P is consistent is not a
theorem of P; moreover, the same holds for each consistent primitive
recursive extension P of P: the proposition asserting the consistency
of P" is not provable in P.

Godel only outlined the proof of the second theorem, announcing
at the very end of his paper that a detailed proof would be given
in a sequel. The sequel, alas, never appeared. The crucial sentence
of Godel's sketch reads,

We now observe the following: all notions defined (or statements proved)
in Section 2, and in Section 4 up to this point, are also expressible (or
provable) in P. For throughout we have used only the methods of definition
and proof that are customary in classical mathematics, as they are formal-
ized in the system P.

In Section 3 of his paper Godel shows that the arithmetical relations,
those definable from addition and multiplication with the aid of
quantifiers ranging over the natural numbers, propositional connec-
tives, and identity, are closed under the operation of primitive
recursion; thus all primitive recursive relations are arithmetical. But
it is uncertain whether Godel realized at the time of writing "On
formally undecidable propositions..." that the argumentation leading
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to the first incompleteness theorem could be formalized not just in
P but in first-order arithmetic as well, so that the second theorem
could be proved for systems whose means of expression and proof
were far weaker than those of P. One may speculate that the detailed
proof in the projected sequel might have also proved the second
theorem for first-order systems of arithmetic, which contain variables
only for natural numbers and not for classes of natural numbers.

In any event, the proof for a system of first-order arithmetic was
carried out fairly soon afterwards, in the second volume of Hilbert
and Bernays's Grundlagen der Mathematik, published in 1939.

Henceforth it is first-order arithmetic with which we shall mainly
be concerned, in particular with the first-order theory called Peano
arithmetic8 (PA), or arithmetic. Arithmetic is classical first-order
arithmetic with induction and the usual axioms concerning zero,
successor, addition, and multiplication, symbolized in PA by 0, s,
+, and x. We describe this theory at length in Chapter 2. To
explain the connection between modal logic and arithmetic that is
of interest to us, we need to recall the idea of a Godel numbering: a
mechanical (effective, algorithmic, computational) one-one assign-
ment of numbers to the expressions and sequences of expressions
of a language. We suppose the expressions of PA (and sequence of
them) to have been assigned Godel numbers in some reasonable
way.

If F is an expression, we shall let 'U-1' denote the numeral for
the Godel number of F. Thus if n is the Godel number of F, r-F-1
is identical with the expression n, which, it will be recalled, is 0
preceded by n occurrences of s.

We write `I- F' to indicate that F is a theorem of PA.
Following Godel's procedure in "On formally undecidable pro-

positions...", we can construct a formula Bew(x) (from beweisbar,
"provable") that expresses that (the value of the variable x) is the
Godel number of a sentence that is provable in PA.9 The construction
of Bew(x) is described in Chapter 2, where we also show that for all
sentences S, S' of PA, Bew(x) satisfies the following three conditions:

(i) If F- S, then F- Bew ('S,);
(ii) F- Bew(r(S -+ S'),) --> (Bew(rS,) - Bew(rS',));

(iii) F- Bew(rS,) - Bew(rBew(rS-,)-,).

It is important to be clear about the distinction between and
`Bew(x)'. `I-' is a verb of our language, one that means "is provable
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in PA". It is a verb that happens to be written before certain noun
phrases, such as `Bew(rS1)', that refer to formulas of PA. `Bew(x)'
is a noun phrase of our language; it refers to a certain formula of
PA, one that, in the language of PA, plays the role of a verb phrase
and can be said to mean "is provable in PA".

Conditions (i), (ii), and (iii) are an attractive modification, due to
Lob, of three rather more cumbersome conditions that Hilbert and
Bernays showed to be satisfied by the analogue of Bew(x) in the
system "(Zµ)" for which they were concerned to give a proof of
the second incompleteness theorem. They are now known as the
(Hilbert-Bernays-Lob) derivability conditions.

We shall refer to Bew(rS1) as the sentence that asserts, or says,
that S is provable (in PA), or as the sentence that expresses the
provability of S, etc. According to (i), if S is provable, so is the
sentence that says that S is provable. According to (ii), it is always
provable that if a conditional and its antecedent are provable, so
is its consequent. According to (iii), it is always provable that if S
is provable, then it is provable that S is provable, i.e., always
provable that any sentence S satisfies (i).

Perhaps the most striking aspect of "On formally undecidable
propositions..." was the technique Godel used to produce a sentence
that is equivalent in P to the assertion that it itself is unprovable in
P. In Chapter 3 we shall see how to construct an analogous sentence
for PA, which would be a sentence G such that

F- G+-» Bew(rG,)

It is clear from condition (i) alone that if PA proves no falsehoods,
then any such sentence G must be undecidable in PA: For if F- G,
then F--,Bew(rG,), and by (i), also F-Bew(rG,); and so G proves
at least one falsehood. Thus ` G; i.e., G is unprovable, and therefore
Bew(rG,) is false. And then if H-i G, then since
the falsehood Bew(rG,) is provable. So neither F-G nor F--G.

A sentence S is called a fixed point10 of a formula P(x) in a theory
T if S+P(rS-I) is a theorem of T. So a sentence G such that
F-G.- Bew(rG-1) is a fixed point of -, Bew(x) (in PA). A fixed point
of P(x) may be said to assert that it itself has whatever property is
expressed by P(x). In Section 35 of his Logical Syntax of Language,
Rudolf Carnap observed that in systems like PA, any formula P(x)
whatsoever has a fixed point: a noteworthy observation.

Following Godel, we can show that
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(*) If PA is consistent, then no fixed point of -i Bew(x) is provable
in PA; and
if PA is co-consistent, then no fixed point of -iBew(x) is dis-
provable in PA

Thus, since fixed points of --,Bew(x) exist, we have Godel's first in-
completeness theorem for PA: if PA is co-consistent, PA is incomplete.

We can also show that

(**) Every conditional whose antecedent is the sentence of PA
that expresses the consistency of PA and whose consequent
is a fixed point of -iBew(x) is provable in PA

Godel's second incompleteness theorem for PA then follows: if
PA is consistent, then the sentence that expresses the consistency
of PA is not provable in PA.

For if the sentence that expresses the consistency of PA is provable
in PA, then, by (**) so is some, indeed every, fixed point of -i Bew(x),
and then PA is inconsistent, by (*).

Exactly which sentence is meant by "the sentence of PA that
expresses the consistency of PA"? Although there are several different,
but coextensive, definitions of consistency that can be given (not
all sentences provable, no' contradiction provable, no conjunction
of theorems disprovable, no sentence and its negation provable,
some absurd sentence, e.g., 0 = 1, unprovable), for a theory in which
the 0-place connective 1 is one of the primitive symbols, one defini-
tion of consistency seems salient: 1 is not a theorem of the theory.
1 will be a primitive symbol in our formulation of PA, and we
therefore take the sentence expressing the consistency of PA to be:

Bew(r- L1)

The second incompleteness theorem for PA may then be crisply put:

K-,Bew(r1-1) if V 1

In 1952 Leon Henkin raised the question whether fixed points
of Bew(x), sentences S such that HSHBew(rS-1), are provable or
not. A fixed point of Bew(x) thus asserts that it itself is provable.
Unlike fixed points of -iBew(x), it was not at all evident what the
answer to Henkin's question was, or even that it must be the same
for all fixed points of Bew(x): perhaps some are provable and hence
true, while others are unprovable and hence false. In advance of
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the solution and remembering the "truth-teller" sentence "This very
sentence is true"," one might well guess that all fixed points of
Bew(x) are false. (Liars are not known for denying that they are
telling the truth.)

The surprising answer to Henkin's question, that all such fixed
points are in fact provable and hence true, was discovered by Lob
in 1954. Henkin observed that Lob's original proof that these fixed
points are all provable actually proved that if HBew(rS,)-+ S, then
I-S; the result, in this improved formulation, is now called Lob's
theorem. We prove Lob's theorem in Chapter 3.

Around 1966,'Kripke realized that Lob's theorem is a direct
consequence of Godel's second incompleteness theorem for single-
sentence extensions of PA. Here is the argument:

Let PA+ be the result of adjoining -1 S as a new axiom to PA.
PA+ is consistent if S is not provable in PA, and the sentence
expressing the consistency of PA+ is equivalent even in PA, and
hence in PA+, to -i Bew(rS,). Thus Bew(rS-1) -+S is provable in PA
if -i S-» Bew('S,) is provable in PA; if -, Bew(rS-I) is provable
in PA+; if the sentence expressing the consistency of PA+ is
provable in PA+; if, by the second incompleteness theorem for
PA +, PA + is inconsistent; if S is provable in PA.

Conversely, as Kreisel had observed in 1965, the second in-
completeness theorem for PA follows instantaneously from Lob's
theorem: if I, then 4 Bew('1,) -> I, and so -i Bew(r1-'), since
-, p and p 1 are equivalent.

Modal logic and arithmetic

We now turn to the link between modal logic and PA, the inter-
pretation of the box of modal logic as the formula Bew(x) of
PA. We want to capture the idea that, e.g., if the sentence letters p
and q are assigned the sentences S and S' of PA, then the modal
sentence ( p A p) -+ q should be assigned the sentence
(Bew(FS,) A S)-+Bew(rBew((S',),) of PA.

We thus define a realization to be a function that assigns to each
sentence letter of modal logic a sentence of the language of arith-
metic. We shall use the asterisk (*) as a variable over realizations.

We define the translation A* of the sentence A of modal logic
under * as follows:

p* = *(p) for any sentence letter p;
1*=1;
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(A - B)* = (A* - B*);
if A = B, then A* = Bew(rB*1).

A* is thus always a sentence of arithmetic.
We suppose that truth-functional connectives are defined from -

and l; so (i A)* = -1 (A*), (A A B)* _ (A* A B*), etc., and: OA is
taken to abbreviate: - A.

Thus, for example, if *(p) is ssO + ssO = ssssO and *(q) is
sssO=ssOx0,then

(Bew(rss0 + ss0 = ssss0,) A ss0 + ss0 = ssssO)

-> Bew(rBew(1sss0 = ssO x 01),)

And no matter what * may be, (--1 I -> 1)* is

Bew(r'1,) - -l Bew(r-, Bew(r1

which is the sentence of PA that expresses the second incomplete-
ness theorem for PA.

We call a sentence A of modal logic always provable if for every
realization *, A* is provable in PA. In Chapter 3 we shall see that
every theorem of GL is always provable, a result that may be called
the arithmetical soundness theorem for GL. In Chapter 9 we shall
prove the converse, Solovay's arithmetical completeness theorem:
Every modal sentence that is always provable is a theorem of GL.
Thus the theorems of GL are precisely the sentences of modal logic
that are always provable.

The sentence ( p -+ p) --> p is an axiom of GL; every sentence
of arithmetic is p* for some *. The arithmetical soundness of GL
thus implies that, for every sentence S of arithmetic, the sentence

Bew(r(Bew(rS-,) - S),) -. Bew(rS,)

is provable in arithmetic. That is to say, every instance of Lob's
theorem is provable (not merely in informal mathematics or in set
theory but) in arithmetic.

A sentence of PA is true (without qualification) if it is true when
its variables range over the natural numbers and 0, s, +, and x
denote zero, successor, addition, and multiplication. Every theorem
of PA is of course true (or we are very badly mistaken!), and therefore
every sentence Bew(rS,) -* S of arithmetic is true.

We may call a sentence A of modal logic always true if for every
realization *, A* is true. Which sentences are always true? We know



xxviii INTRODUCTION

that every sentence that is always provable is always true, we have
just seen that every sentence A - A is always true, and it is
obvious enough that if (A -> B) and A are always true, then so is
B. Are any other sentences always true other than those required
to be by these obvious constraints?

The answer is no, as another theorem of Solovay tells us. Let
GLS be the system whose axioms are all theorems of GL and all
sentences A - A and whose sole rule of inference is modus ponens.
Then, as we have just noticed, every theorem of GLS is always true
(the soundness theorem for GLS). Solovay's completeness theorem
for GLS is that the converse holds: every sentence that is always
true is a theorem of GLS.

Not only is necessitation not one of the primitive rules of inference
of GLS, it is not a derived rule either: there are theorems A of GLS
such that A is not a theorem. is one example. It is an
axiom and hence a theorem, but if ( 1 -+ 1) is a theorem, then
by soundness Bew(r(Bew(n1,)--> 1),) is true, and so Bew(r1,)-

1 is provable in PA, and therefore so is -, Bew(r1,), contra the
second incompleteness theorem.

The set of axioms of GLS was given as the set of all theorems
of GL and all sentences A -+A. In fact, this set of axioms is
decidable, since as we shall prove in Chapter 5, GL is decidable.
However, a more transparent axiomatization of GLS is given in
Chapter 3.

It is clear that A is always provable if A is always true. The
proof of Solovay's completeness theorem for GLS supplies a reduc-
tion in the opposite direction: A is always true if (A { B -+ B: B
is a subsentence of Al -+ A) is always provable. It follows that GLS,
like GL, is decidable.

Constant sentences and fixed points

There is a natural class of sentences of PA12 of which GL provides
us with an excellent understanding: those built up from 1 with the
aid of truth-functional connectives and We call these the
constant sentences. Among the constant sentences are

-' Bew(r1,),
Bew(r-i Bew(r1,),),

Bew('1,)-> -1 Bew(ri Bew(r1and
Bew(r-i Bew(r1,) -* -, Bew(r--i Bew(r1,),),).
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The first of these asserts that PA is consistent; it is true but
unprovable. The second asserts that the consistency of PA is
provable; it is false. The third expresses the second incompleteness
theorem for PA; it is true and provable. The fourth says that the
second incompleteness theorem for PA is provable; it too is true
and provable. Which constant sentences are true? which provable?
It would be nice to be able to tell.

Since a constant sentence S is provable if the sentence Bew(rS,),
which is also a constant sentence, is true, an algorithm for calculating
the truth-value of any constant sentence can also be used to tell
whether a constant sentence is provable or not.

A letterless sentence is a sentence of modal logic, such as -10 1->
-l 1, that contains no sentence letters at all. The constant

sentences are precisely the sentences A* for some letterless sentence
A. (A is letterless, and therefore the identity of A* does not depend
on the choice of *.) In Chapter 7 we shall show how to find from
any letterless sentence A a truth-functional combination B of the
sentences 1, 1, 1, ... such that GL proves A+-+ B,
whence A* is true if B* is true. But since we know that 1*,

1*, 1*,... are all false (PA proves nothing false), we
do have our desired algorithm for telling whether a constant
sentence is true or false.

Above, we called the fixed point theorem of de Jongh and Sambin
one of the two central results concerning GL. We state a version
of it now.

A modal sentence A is called modalized in the sentence letter p
if every ocurrence of p in A lies in the scope of an occurrence of

. Thus, e.g., p, q, p -+ -i p, 1, and p -> 1 are
modalized in p, but p and p -+ p are not.

Then the fixed point theorem asserts that for any sentence A that
is modalized in p, there is a sentence H containing only sentence
letters contained in A that are distinct from p and such that

is a theorem of GL. Two of the three proofs of the fixed point
theorem found in Chapter 8 explicitly provide explicit algorithms
for constructing H from A.

For example, if A is p, -i p, p, p, p - -, p, or
p -q, then, as we shall later see, H may be chosen to be T,

1, 1, 1, 1-> 1, or q --> q, respectively.
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The fixed point theorem may be used to demystify certain "self-
referential" characterizations of sentences of PA. Let us consider
the second case, where A is -, p and, according to the algorithm
provided by one of the proofs of the theorem, H is I.

Let S be an arbitrary sentence and let * be some realization such
that p* = S. Since (pH p) +-+ (pH 1) is a theorem of
GL, by the soundness of GL, we have that

1))*, i.e.

F- Bew (1(S 4-+-1 Bew(rS l))-')H Bew(r(S H-, Bew (r- -L -1))-1)

Since anything provable in PA is true,

HS*--,Bew('S,) if
Thus we see that a sentence is equivalent in PA to the assertion

of its own unprovability if it is equivalent to the assertion that PA
is consistent.

We can likewise show that

F-SHBew(rSI) if F-SH T,
F- SH Bew(rl Sl) if F- SH Bew(r1,),

F-SE-+ IHS »Bew(riS,) if

and (a more complex example)

F- S H (Bew (rS,) --> Bew (r S,)) if
F- SH(Bew(rBew(r11),) Bew(r1,))

The last example shows that a sentence is equivalent to the assertion
that it itself is disprovable if provable if it is equivalent to the
assertion that arithmetic is inconsistent if the inconsistency of
arithmetic is provable.

Thus with the aid of the fixed point theorem we can see how to
replace certain "self-referential" characterizations of sentences of
arithmetic, e.g. "sentence that is equivalent to the assertion that it
itself is disprovable", with equivalent descriptions, such as "sentence
that is equivalent to the assertion that PA is inconsistent", that
involve no such self-reference. If a sentence is characterized in such
a self-referential manner, it may be far from clear that unique
conditions have been specified under which it is true, and farther
still what those conditions might be; but in a vast variety of cases
of interest, the fixed point theorem shows that unique truth-condi-
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tions have indeed been given and tells us what those conditions
are. Thus a theorem of pure modal logic sheds brilliant light upon
the concept of provability in formal systems.

w-consistency, set theory, second-order arithmetic

A sentence S is consistent with a theory T if T + S, the theory that
results when S is added to T as a new axiom, is consistent. Similarly,
S is co-consistent with T if T + S is w-consistent.

The second incompleteness theorem may be formulated: if PA
is consistent, then the negation of the sentence expressing that PA
is consistent with PA is consistent with PA. Suppose that to each
occurrence of "consistent" in this formulation of the theorem we
prefix an 'co-'. Is the resulting statement provable?

In 1937, in a paper entitled "Godel theorems for non-constructive
logics", Rosser gave the answer "yes" for the system P of "On formally
undecidable propositions...".13 Rosser proved analogues of both
incompleteness theorems for each of a series of extensions Pk of P,
where P0 is P and Pk+1 is the theory obtained from Pk by taking
as new axioms all sentences VxF(x) such that for all n, F(n) is a
theorem of Pk. It is not hard to see that Pk+1 is simply consistent
if Pk is co-consistent, and that that fact can be proved in P0. Rosser's
argumentation certainly carries over to PA.

One might wonder what the properties of w-consistency are that
can be expressed in the language of propositional modal logic.

It is easy to see that S v S' is w-consistent (with PA) if either S
or S' is co-consistent, and it can be shown without too much difficulty
that if a statement to the effect that a certain statement S is
w-consistent is itself w-consistent, then S is w-consistent. Both of
these facts, moreover, can be proved in PA.

It turns out to be a routine matter to modify the proofs of
Solovay's completeness theorems in order to prove14 that GL is the
modal logic of w-consistency, in the same sense in which it is the
modal logic of (simple) consistency. That is, let w-Con(x) be the
formula of PA expressing w-consistency and redefine the transla-
tion scheme for modal sentences so that if A = B, then A* =
-, w-Con(r_i B*_1). Then the sentences A of modal logic such that
I- A* for all * are precisely the theorems of GL, and the sentences
A such that A* is true for all * are precisely the theorems of GLS.

Another result in Rosser's paper is that the consistency of P0
can be proved in P,. The analogous result for PA is that the negation
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of the consistency assertion is co-inconsistent with PA. (Since the
undecidable statement constructed by Godel is equivalent to the
consistency assertion, this result follows immediately from the
second part of the first incompleteness theorem for PA.)

Thus we are led to study bimodal propositional logic, whose
language contains a second pair of operators 4 and O, intended
to represent w-consistency and its dual.

The principles concerning consistency and w-consistency that we
have mentioned are codified in the following system, GLB (B for
"bimodal"):

The axioms of GLB are all tautologies and all sentences:

(A->B)-+(El A-> 1 B),0

(MA->A)-+ WA,0
A-+ W A, and

The rules of inference of GLB are modus ponens and -necessita-
tion (from A, infer A). Of course Eli -necessitation is a derived
rule of GLB.

The scheme of translation for sentences of GLB is then the
obvious one: if A = B, then A* = Bew(rB*1) (as before), and if
A = I B, then A* = -' w-Con(r-, B*-1).

It is easy to show GLB arithmetically sound. Since consistency
follows from w-consistency, any bimodal sentence A - A is
always provable; A --> A is also always provable: if S is
consistent, then the assertion that S is inconsistent is w-inconsistent.

In 1985, Giorgie Dzhaparidze proved the arithmetical complete-
ness of GLB. He also proved the arithmetical completeness of a
system GLSB related to GLB as GLS is to GL. Both of his theorems
are proved in Chapter 15.

Dzhaparidze's proof was a tour de force and anything but a
routine modification of Solovay's original argument. Insurmount-
able difficulties arise when one attempts to formulate a Kripke-style
semantics for the whole of GLB. In 1990, Konstantin Ignatiev gave
simpler proofs of Dzhaparidze's theorems for GLS and GLSB.
Ignatiev's main idea was to isolate a subsystem of GLB for which
a reasonable Kripke-style completeness theorem could be proved.
Ignatiev also succeeded in proving the fixed point theorem for GLB
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by proving a closely related version for his subsystem and then
readily deducing the theorem for GLB. These results are all proved
in Chapters 15 and 16.

In Chapters 13 and 14 we prove two theorems of Solovay's on
set-theoretical interpretations of and a third on the connections
between modal logic and the co-rule. [The (o-rule is the "infinitary"
rule of inference that permits a divine mathematician to infer VxA(x)
once she has proved the infinitely many particular statements A(n),
n a natural number.] These two chapters are, unfortunately, not
self-contained - all others are - and we shall be brief about the
theorems here. Those having to do with set theory give modal
completeness theorems for the notions "true in all transitive models
of set theory" and "true in all universes". (A set is transitive if every
member of a member of it is a member of it; a universe is a set
VK, is inaccessible.) The theorem on the co-rule states that GL is also
the modal logic of provability in analysis (alias second-order arith-
metic) under unrestricted application of the co-rule.

Necessity, quantification

It seems appropriate here to mention one philosophical misunder-
standing that must be obviated, which has to do with W.V. Quine's
well-known critique of the notions of necessity and possibility. Quine
has argued that we have no reason to believe that there are any
statements with the properties that necessary truths are commonly
supposed to have. If is read "it is (logically, metaphysically,
mathematically) necessary that...", then it would be irrational of us
to suppose that there are any truths of the form p. According to
Quine, for all anyone has been told, the box is a "falsum" operator.
We do not wish to argue either that logical necessity is a viable,
respectable, intelligible, legitimate, or otherwise useful notion, or
that it is not, but it is part of the purpose of this work to show
that the mathematical ideas that have been invented to study this
notion are of interest and use in the investigation of fundamental
questions of logic. It may be odd that mathematical techniques
devised to study notions of no philosophical or mathematical value
should turn out to be of great logical interest - but then they have
that interest.

Far from undermining Quine's critique of modality, provability
logic provides an example of the interpretation of the box whose
intelligibility is beyond question. Quine has never published an
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opinion on the matter, but it would be entirely consonant with the
views he has expressed for him to hold that provability logic is
what modal logicians should have been doing all along.

In a number of publications, Quine has also questioned the
intelligibility of "quantifying in", constructing sentences such as
b x 3y x = y, in which at least one modal operator occurs within
the scope of at least one quantifier. However, if quantifiers are taken
as ranging over the natural numbers and the box as referring to
some formal system of arithmetic (e.g., PA), then all such "in"
quantifications may be interpreted readily and without problems.
One need only explain under what conditions a formula

A(x 1, ... , xn) is true with respect to the assignment of natural
numbers i 1, ... , in to the variables x1, ... , x.. And this can easily be
done: A(x 1, ... , xn) is true with respect to this assignment if
A(i1,... , in), the sentence that results from the formula A(x1,... , xn)
when the numerals i1, ... , in for the numbers i 1, ... , i, are respectively
substituted for the variables x1,. .. , xn, is provable. So, for example,
`dx 3y y = x will make the (true, indeed provable) assertion that
for every number i, the sentence 3y y = i is provable. A sort of
quantified modal logic is thus available to the Quinean.

Under such a treatment of quantified modal logic, which may
be called quantified provability logic, the Barcan formula `dx Fx -

VxFx, named for Ruth Barcan Marcus, does not turn out to be
always true: substitute for Fx the formula of PA expressing that
the value of x is not the Godel number of a proof of I. Then the
antecedent is true, for it asserts that every number is such that it
can be proved not to be a proof of 1; but the consequent is false,
for it says that consistency is provable. The converse Barcan formula
VxFx -+`dx Fx is, however, always provable, for if a universally
quantified sentence is provable, then so are all its instances.

In view of the undecidability of quantificational logic, we cannot
hope that quantified provability logic is decidable, but we might
hope that it could be axiomatized.

There are two questions that one might ask: Is there an axiomat-
ization of the formulas F of quantified modal logic that are provable
(in PA) under all substitutions of formulas of arithmetic for the
predicate letters in F? and ditto, but with "true" in place of "provable
(in PA)".

In the spring of 1985, Sergei Artemov answered the second
question negatively; shortly afterwards Valery Vardanyan answered
the first, also negatively. The main new idea in both proofs is the
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use of Stanley Tennenbaum's theorem that there are no nonstandard
recursive models of PA. In 1984 Franco Montagna had shown that
there are formulas provable under all arithmetical substitutions
that are not theorems of the result of adding quantificational logic
to GL. Vardanyan showed that the set of always provable formulas
of quantified modal logic was as undecidable as it was a priori
possible for it to be "n'-complete". Later McGee, Vardanyan, and
the author extended Artemov's result to show that the set of always
true formulas was also as undecidable as it could, a priori, be:
"fl -complete" in the set of Godel numbers of true sentences of
arithmetic. (The notions of n'-completeness and of H°-complete-
ness in a set are explained in Chapter 17.) These perhaps disappoint-
ing results concerning quantified provability logic settled natural
and long-standing questions. Proofs and further elaboration are
found in Chapter 17.

A stunning extension of these two results was proved by
Vardanyan: they hold even for formulas containing only one one-
place predicate letter and in which no box occurs nested within the
scope of another. Vardanyan's extensions, which require much
trickery and are as yet little understood, are proved in Chapter 18.

Let us close our introduction with a description of the contents of
the rest of the book:

1. GL and other systems of propositional modal logic (K, K4, T,
S4, B, and S5).

2. Peano arithmetic, Bew(x), and the Hilbert-Bernays-Lob deriv-
ability conditions.

3. The diagonal lemma, Lob's theorem, the second incomplete-
ness theorem, and the arithmetical soundness of GL and GLS.

4. Kripke semantics for GL and other systems of modal logic.
5. Soundness and completeness theorems for GL and other modal

logics.
6. Canonical models for systems of modal logic.
7. The normal-form theorem for letterless sentences of GL, reflec-

tion principles and iterated consistency assertions, the rarity of
reasonable normal forms in GL, and the incompactness of GL.

8. Three proofs of the fixed point theorem for GL and the Craig
and Beth theorems for GL.

9. Solovay's completeness theorems for GL and GLS and exten-
sions of them.



xxxvi INTRODUCTION

10. The method of trees for GL.
11. The incompleteness of the system K + { (AH A) -+ A}, a

simplest possible incomplete modal logic.
12. The system Grz(egorczyk), which extends S4, and its complete-

ness under the interpretation of as meaning "true and
provable".

13. Modal logics for three set-theoretical interpretations of ,
under which it is read as "provable in ZF", "true in all transitive
models", and "true in all models V,,, lc inaccessible".

14. The analytical completeness of GL (for provability) and GLS
(for truth) with respect to ordinary provability and, more
interestingly, provability under unrestricted use of the (0-rule.
(Analysis is second-order arithmetic.)

15. The arithmetical completeness of GLB and GLSB.
16. The fixed point theorem for GLB, a normal form theorem for

letterless sentences of GLB, and a short discussion of the
"analytical" completeness of GLB and GLSB with respect to
ordinary provability in analysis and provability in analysis
under unrestricted use of the co-rule.

17. The set of always provable formulas of quantified modal logic
and the set of always true formulas are as undecidable as it is
possible, a priori, for them to be: 1-1'-complete and n'-complete
in the set of Godel numbers of true sentences of arithmetic.

18. The results of Chapter 17 are extended to the case in which
modal formulas contain only one one-place predicate letter and
nested boxes are forbidden.
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GL and other systems of
propositional modal logic

We are going to investigate a system of propositional modal logic,
which we call `GL', for Godel and Lob.l GL is also sometimes
called provability logic, but the term is also used to mean modal
logic, as applied to the study of provability. By studying GL, we
can learn new and interesting facts about provability and consistency,
concepts studied by Godel in "On formally undecidable propositions
of Principia Mathematica and related systems I", and about the
phenomenon of self-reference.

Like the systems T (sometimes called `M'), S4, B, and S5, which
are four of the best-known systems of modal logic, GL is a normal
system of propositional modal logic. That is to say, the theorems
of GL contain all tautologies of the propositional calculus (includ-
ing, of course, those that contain the special symbols of modal
logic); contain all distribution axioms, i.e., all sentences of the form

(A -+ B) -> ( A -+ B); and are closed under the rules of modus
ponens, substitution, and necessitation, according to which A is
a theorem provided that A is. Nor does GL differ from those other
systems in the syntax of its sentences: exactly the same sequences
of symbols count as well-formed sentences in all five systems.

GL differs greatly from T, S4, B, and S5, however, with respect
to basic questions of theoremhood. All sentences ( A -+ A)

A are axioms of GL. In particular, then, ( p - p) -* p and
( (p A -i p) - (p A -, p)) -+ (p A -i p) are axioms of GL. The

other axioms of GL are the tautologies and distribution axioms;
its rules of inference are, like those of the other systems, just modus
ponens and necessitation.

It follows that either GL is inconsistent or some sentence A -> A
is not a theorem of GL or some sentence ( A -> A) is not a
theorem of GL. For if ( A - A) - A, ( A - A), and A -> A
are always theorems of G, then for any sentence A whatsoever, e.g.
(p A -i p), two applications of modus ponens show A to be a theorem
of GL, and GL is inconsistent.



2 THE LOGIC OF PROVABILITY

It will turn out that GL is perfectly consistent; we shall see quite
soon that neither p -+ p nor its substitution instance (p A p) ->
(p A -i p) is a theorem of GL and, later, that ( p - p) is also not
a theorem.

In order to contrast GL with its better-known relatives, we shall
take a general look at systems of propositional modal logic. Much
of the material in this chapter may be quite familiar, but it will be
important to reverify certain elementary facts in order to establish
that they hold in the absence of p -+ p, which we shall be living
without in most of the rest of this book. The material of this chapter
will be of a purely syntactic or "proof-theoretical" character. We
take up the semantics of modal logic in Chapter 4.

We begin our general look at modal logic by defining the notion
of a sentence of propositional modal logic, or "modal sentence" or
"sentence" for short.

Modal sentences. Fix a countably infinite sequence of distinct
objects, of which the first five are 1, -, , ( and ) and the others
are the sentence letters; `p', `q', ... will be used as variables over
sentence letters. Modal sentences will be certain finite sequences of
these objects. We shall use `A', 'B',... as variables over modal
sentences. Here is the inductive definition of modal sentence:

(1) 1 is a modal sentence;
(2) each sentence letter is a modal sentence;
(3) if A and B are modal sentences, so is (A -> B); and
(4) if A is a modal sentence, so is (A).

[We shall very often write: (A - B) and: (A) as: A -+ B and: A.]

Sentences that do not contain sentence letters are letterless. For
example, 1, 1, and 1-> 1 are letterless sentences.

Since a handy, perfectly general, and non-arbitrary way to say
that a system is consistent is simply to say that 1 is not one of its
theorems, taking the 0-ary propositional connective 1 to be one
of our primitive symbols provides a direct way to represent in the
notation of modal logic many interesting propositions expressible
in the language of arithmetic concerning consistency and provability.
Thus, e.g., the letterless sentence 1 will turn out to represent
the proposition that arithmetic is consistent; -1 1, the proposi-
tion that the consistency of arithmetic is provable in arithmetic;
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and -i 1-b -i 1, the second incompleteness theorem of
Godel.

Of course, with the aid of 1 and ->, all connectives of ordinary
propositional logic are definable: -i p may be defined as (p -> 1),
and as is well known, all propositional connectives are definable
from -i and --.

A (and), v (or), and H (iff) are defined in any one of the usual
ways. The 0-ary propositional connective T has the definition
1-> 1. O A is defined as -, -I A, i.e., as (A -> 1) -+ 1.

The inductive definition of subsentence of A runs: A is a subsentence
of A; if B -+ C is a subsentence of A, so is B and so is C; and if B
is a subsentence of A, so is B. A sentence letter p occurs, or is
contained, in a sentence A if it is a subsentence of A.

We shall take a system of propositional modal logic to be a set of
sentences, the axioms of the system, together with a set of relations
on the set of sentences, called the rules of inference of the system.
As usual, a proof in a system is a finite sequence of sentences, each
of which is either an axiom of the system or deducible from earlier
sentences in the sequence by one of the rules of inference of the
system. (B is said to be deducible from A1,.. . , A by the rule of
inference R if is in R.) A proof A,B,...,Z is a proof
of Z, and a sentence is called a theorem of, or provable in, the
system if there is a proof of it in the system. We write: L I- A to
mean that A is a theorem of the system L.

A set of sentences is said to be closed under a rule of inference
if it contains all sentences deducible by the rule from members of
the set.

Modus ponens is the relation containing all triples <(A -+ B), A, B>.
Necessitation is the relation containing all pairs <A, A>.

Let F be a sentence. The result (FP(A)) - Fp(A) for short, or even
F(A), if the identity of p is clear from context - of substituting A
for p in F may be inductively defined as follows:

If F = p, then FP(A) is A;
if F is a sentence letter q 0 p, then FP(A) is q;
if F = 1, then FP(A) is 1;
(F - G)P(A) = (FP(A) -+ GP(A)); and

(F)P(A) = (FP(A))
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Thus Fp(A) is the result of substituting an occurrence of A for
each occurrence of p in F.

A sentence F,(A) is called a substitution instance of F.
Substitution is the relation containing all pairs <F, F,(A)>.

Simultaneous substitution. Let pl,... , pn be a list of distinct sentence
letters, F, A, , ... , A. a list of sentences. We define the simultaneous
substitution F,,, ,...,,, (A1, ... , An) analogously:

If F = pi (1 <, i < n), then F,,, ,...,,,(A1, ... , An) is A;;
if F is a sentence letter q 0 p, , ... , pn, then F,,1 ,...,,, (A 1, .... An) is q;
the other cases are as in the previous definition.

Note that FP(A)q(B) need not be identical with Fp,q(A, B). For
example, let F = (p A q), A = (p v q), B = (p -+ q). Then F,(A) =
((p v q) A q), and Fp(A)q(B)=((p v (p- q)) A (p-*q)). But Fp,q(A, B) =
((p v q) A (p - q)). However, a set of sentences that is closed under
(ordinary) substitution is closed under simultaneous substitution.
For let q,, ... , qn be a list of distinct new sentence letters, i.e., sentence
letters none of which is identical with any of pt,. .. , pn and that
occur nowhere in F, A1,..., An. Then F,,,..., pn(A 1, ... , An) is identical
with

FP, (g 1)P2(g2)...pjgn)q, (A1)92(A 2

any so any set containing F and closed under substitution will
contain Fp,(g1), FPjg1)P2(g2),..., and

A distribution axiom is a sentence of the form

( (A -+ B) -> ( A - B) ), i.e., a sentence that is
( (A -+ B) - ( A -> B) ), for some sentences A, B.

A system is called normal if the set of its theorems contains all
tautologies and all distribution axioms and is closed under modus
ponens, necessitation, and substitution. (According to Kripke's
original definition,' the axioms of a normal system had also to
include all sentences A -+ A. The definition we have given, which
does not impose this further requirement, is now the standard one,
however.)

We now present seven systems of modal logic. In each system, all
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tautologies and all distribution axioms are axioms and the rules of
inference are just modus ponens and necessitation.

The system K, which is named after Kripke, has no other axioms.
The other axioms of the system K4 are the sentences A -> A.
The other axioms of the system T are the sentences A --> A.

The other axioms of the system S4 are the sentences A -> A andA- A.
The other axioms of the system B are the sentences A - A and

A->El OA.3
The other axioms of the system S5 are the sentences A -> A and

OA-. OA.
The other axioms of the system GL are the sentences ( A A) -->

A.

A system L' extends a system L if every theorem of L is a theorem
of L'. If we write `2' and `g;' to mean "extends" and "is extended
by", then it is evident that we have:

GL
IU

KsK4
in in

S52TcS4
In

B

By the end of the chapter we shall have shown that in fact:

KcK4cGL
In in

TsS4
In in

BgS5

But our first task will be to verify that these systems are normal.
To see that they are, it is necessary only to verify that any substitution
instance of a theorem is itself a theorem. Thus suppose that F1, ... , F"
is a proof in one of the systems - call it L. We want to see that
F(A),. .. , FP(A) is also a proof in L. But it is clear that it is a proof,
since if F is an axiom of L, so is its substitution instance F,(A),



6 THE LOGIC OF PROVABILITY

and if F` is immediately deducible from F' and F" by modus ponens
or from F' by necessitation, then the same goes for F,(A), FP (A),
and F ,(A), by the definitions of (F -). G)p(A) and (F)p(A). Thus if
F" has a proof in L, so does its substitution instance Fp(A).

Normal systems are also closed under truth-functional con-
sequence, for if B follows truth-functionally from the theorems
A1,. .. , A. of a normal system, then the tautology
A, - ( -> (A" -> B) ...) is also a theorem of the system, and therefore
so is B, which can be inferred from these theorems by n applications
of modus ponens.

Until further notice, assume that L is a normal system.

Theorem 1. Suppose L H A - B. Then L F- A -+ B.

Proof. Applying necessitation gives us that L F- (A -+ B). Since
L F- (A -i B) -* ( A -> B), L F- A - B, by modus ponens. -I

Theorem 2. Suppose L H A.-> B. Then L F- A -* B.

Proof. By truth-functional logic, L F- A -> B and L F- B --* A. By
Theorem 1, L F- A -+ B and L F- B -+ A. The conclusion
follows truth-functionally from these. -1

Theorem 3. L F- (A A A A B).

Proof. We have L F- (A A B) -+ A and L F- (A A B) -+ B, whence by
Theorem 1,

(1)
(2)

L F- A A B)), whence by Theorem 1,
(3) D- A - (B -> (A A B)), and
(4) L F- (B (A A B)) -' ( B -> (A A B)) (distribution).

The theorem follows truth-functionally from (1), (2), (3), and (4). -I

Theorem 4. LF- (A1 A A A A A").

Proof. The theorem holds if n = 0, for the empty conjunction is
identified with T, and L F- T. The theorem is trivial if n = 1 and
has just been proved if n = 2. If n > 2, then

(A1A(A2A...AAn))
n (A2 n ... A A")
A A2... A A")
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The first of these equivalences holds by Theorem 2, the second by
Theorem 3, and the third by the induction hypothesis. -1

We write: AHB, HC, etc. to mean: (AHB) A (B<->C), etc.

Theorem 5. Suppose L F- A 1 A . . A A. -+ B. Then
LF- A1 n n

Proof. By the supposition and Theorem 1, L F- (A 1 A A

B. The conclusion then follows by Theorem 4. H

Theorem 6. Suppose L F- A -+ B. Then L F- O A -. O B.

Proof. Truth-functionally, we have
L F--1 B -» A, whence
L F- B --> -, A by Theorem 1, and then truth-functionally
LF---i H

Theorem 7. Suppose L H A H B. Then L F- O A<- O B.

Proof. The theorem follows from Theorem 6 via truth-functional
logic and definitions. -

Theorem 8. L F- O A n B -> O (A A B).

Proof. By the definition of O, it is enough to show that
L F- - (A A B) A B -> -i A. But this is clear, since
LF- -i(A n B)-> (B->-,A). -1

Henceforth we shall refer to the facts stated in Theorems 1-8,
together with obvious consequences of these, as normality.

The first substitution theorem. Suppose LF-AHB. Then
L F- FP(A)HFP(B).

Proof. Induction on the complexity of F. If F = p, the sentence
asserted in the conclusion to be a theorem of L is just A<-+B; if
F = q, it is q Hq, and if F = 1, it is 1 H 1, both theorems of L. If
F = (G H) and the conclusion of the theorem holds for G and H,
then it holds for F by propositional logic and the definition of
substitution. Finally, if F = (G) and L F- GP(A)H GP(B), then by
Theorem 2,
L F- (GP(A)) - (GP(B)), i.e.,
L F- (G)P(A)<-+ (G)P(B), i.e.,
L F- FP(A)-FP(B). H
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Definition. For any modal sentence A, D A is the sentence

The definition has a point since A-+ A is not, in general, a
theorem of K, K4, or GL. The notation El is most useful when one
is considering K4 or one of its extensions, e.g., GL.

Theorem 9. K4I- D A;

El A+-+ 0 D A.

A -+ A, and so by normality we have

K4 A H A is proved similarly.

Theorem 10. Suppose L extends K4 and L I--
LI- EIA-> B.

0 A-+B. Then

Proof. We have L I- 0 A --> B, whence by Theorem 9, L A -'
B, and then by the definition of El, L I- A -+ B. H

The second substitution theorem. K4 I- 0 (A H B) -+
(FP(A)HFP(B))

Proof. The proof is a formalization in K4 of the first substitution
theorem and proceeds by induction on the complexity of F. If F is
p, q (: p), or 1, then the sentence asserted to be a theorem of K4
is the tautology 0 (A +-+ B) -* (A ++B), the tautology 0 (A +-+ B) ->
(q F- q), or the tautology El (A H B) -+ (1 H 1), respectively. If F =
(G - H) and the theorem holds for G and H, then, truth-functionally
it holds for F. Finally suppose that F = (G) and
K41- (AHB) - (GP(A) H G p(B) ). Then
K41- (AHB)-+ (GP(A)HGP(B)), whence
K4 F- 0 (A H B) ( (GP(A)) H (G p(B)) ), and then by the defini-

tion of substitution,
K4 F- i.e.,
K41- El By Theorem 9,
K41- and we are done. -1

Corollary. K4 F- (A H B) (FP(A) H FP(B) );
K41- El (AHB) -> (FP(A)HFp(B))

Proof. By the theorem and Theorem 10. H

The next theorem is a somewhat surprising result about K4.4
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Theorem 11. K4 F- O O A H O A.
Proof. We begin by observing that K F- (O B A C -> O D)

whenever
K F- (B A C -* D), for then K F- (C A -i D --» B),
KF-El (CA-,D->-,B),
KF- n D-> -,B), whence
KF- (OB n C- OD). Similarly, K

whenever
KF- (B A C->D).

Since, evidently,

KF-
A and

But
K4 F- O O O O A -+ O A, whence
K4F- (O O O OA-> OA), and so
K41-0(000AA
K4F-000 OAA

OA.
Conversely,

KF-OA n n OA), and so
KF- OAA

n OA. But
K4F-El OA,
K4 F- O A n OA). Thus
K4F-00A-+0000A. --

We emphasize that no use of p - p has been made thus far;
the two substitution theorems and their corollary are results about
K4 and hence about all extensions of K4.

Theorem 12. TF- A --> O A; TF- A-> OA.

Proof. T F- -1 A - A; contraposing, we obtain T F- A -+ O A. Since
also. -1

Theorem 13. S4 F- O O A -> O A.

Proof. By contraposition, from S4 F- -i A -> -, A. H

Theorem 14. S4 F- A.-* A; 0 A H 0 0 A.



10 THE LOGIC OF PROVABILITY

Theorem 15. S4}-0 p
1 1Op

p Op

A modality is a sequence of s and -, s. It follows from Theorems 11,
14, and 15 that there are at most 14 inequivalent modalities a in
S4, i.e., at most 14 inequivalent sentences of the form up, namely
the 7 mentioned in Theorem 15 and their negations. The complete-
ness theorem for S4 given in Chapter 5 will enable us to see that
these 14 modalities are in fact inequivalent. The completeness
theorems for B and GL also found there can be used to show that
no two of the modalities [empty], , , ... are equivalent in
either of those logics.

We now examine S5. We first show that S5 has an alternative
axiomatization. Let S5* be the system of modal logic whose axioms
are all the sentences that are either axioms of S4 or B and whose
rules of inference are modus ponens and necessitation.

Theorem 16. S5* I A S5 F- A.Iff

Proof. It is enough to show that for every A, S5 F- A -+ A,
S5F-A-> OA, and S5*I- OA-> OA.
S5 F- A -* A: Since S5 extends T,
S5 F- A - O A; also
S5 F- O A - O A (because S5 F- O B -. O B), and therefore
S5F-El A. But also
S5 F- O A -+ A (because S5 F- O - A -+ O A), whence by

normality
S5
S5F-El A->El El A.
S5 F- A -> O A: This is immediate from
S5F-A- OA and S5F-0 A-* OA. Finally,
S5* F- O A - O A: For since
S5* F- O O A -+ O A (S5* extends S4), by normality,
S5* F- O O A -> OA. But also
S5* F- O A -> O O A (S5* extends B), and so we have what we

want. -I

Theorem 17. S5F-(O OA- OA) A ( OA+-+OA) A
(AHA)A(OAHA).
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According to Theorem 17, if 6 is a string containing a positive
number of s and O s ending in or in O but not -i, then up
is equivalent to p or to O p, respectively. Thus there are at most
six inequivalent modalities in S5: , [empty], O, and their nega-
tions. The completeness theorem for S5 given in Chapter 5 will
enable us to see that no two of these six modalities are in fact
equivalent in S5.

We shall now show that p -> p is not a theorem of GL and that
GL is consistent: Define A* by 1* = 1, p* = p (for all sentence
letters p), (A-+ B)* = (A* -> B*), and (A)* = T. (Then A* is the
result of taking to be a verum operator in A.) If A is a tautology,
so is A*; if A is a distribution axiom, then A* is T -> (T -+ T); and
if A is a sentence ( B -* B) -+ B, then A* = T --> T. Moreover
if A* and (A -+B)* are tautologies, so is B*, and if A* is a tautology,
then so is (A)* = T. Thus if A is a theorem of GL, A* is a
tautology. But ( p -+ p)* = (T -> p), which is not a tautology. Thus

p -> p is not a theorem of GL, hence not one of K4 or K.
Similarly, ( p -+ p) -+ p is not a theorem of S5, hence not

one of B, S4, T, K4, or K. Define 1 *, p*, and (A--* B)* as before,
but now let (A)* = A*. (A* is now the result of taking to be
decoration in A.) Again if A is a theorem of S5, A* is a tautology.
But (El (El p-+ p)- p)* is now ((p-+ p)-p), which is not a tautology.
Therefore ( ( p p) -> p) is not a theorem of S5.

GL and T are thus consistent normal systems of modal logic,
but there is no consistent normal system that extends both of them.

A remarkable fact about GL, the proof of which was independently
discovered by de Jongh, Kripke, and Sambin, is that p -* p
is a theorem of GL and thus that for all sentences A, A -> A
is a theorem of GL. ("Had" p --> p not been a theorem of
GL, we should have been interested in the smallest normal extension
of GL in which it was one!) In practice, sentences A -+ A are
treated rather as if they were axioms of GL.

Theorem 18. GL F- A -+ A.

Proof. Truth-functionally, we have
GL F- A -> (( A A A) - ( A A A)), whence by normality,

A A A)). By normality again,
A A A)).Butwhere

B B is an axiom of G L, i.e.,
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GU- ( ( A A A) -, ( A A A))--+ ( A A A). Truth-functionally,
GL I- A - ( A A A). But by normality,
GL F- ( A A A) -> A. From these last two, we have

GL extends K4; it is worth mentioning that the
substitution theorems therefore hold when `K4' is replaced by `GL'.

Theorem 19. GL F- ( A -> A)H A, H ( A A A).
Proof. Immediate by normality and Theorem 18. -I

Theorem 20. If GLf-(0A1 A Al A A A A A. A B)-*B,
then A A

A A A A A A A :,')-.B. Then
GL F- A1 A Al A A A A By normality,
GU- n Al) n A n A.) -+ By both

equivalences of Theorem 19,
n ... n

Theorem 21. GL H 1 H O p.

Proof. GL F-1-+ O p. Thus by normality,
GL F- 1-> O p. Conversely,
GL F- O p - O T, and by the definition of O,
GLF-O T Thus
GL H O p -> ( 1-+ 1), and by normality,
GL F- O p -+ ( 1-- 1). Since
GL F- ( 1, we also have that

GL

1 Theorem 21 and weaken. -
In Chapter 3 we shall see how Theorem 21 can be regarded as

telling us that (PA) asserts of each sentence S that PA is inconsistent
if and only if it is provable (in PA) that S is consistent (with PA).
Theorem 22, we shall also see there, will similarly tell us that the
second incompleteness theorem is a theorem of PA.

Our proof that p - p is not a theorem of GL cannot be used
to show that p - O p and O p - O p are not theorems of GL.
In Chapter 3 we shall see that 1 is not a theorem of GL. It
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follows from Theorem 21 that T -+ O T and O T -* O T are
both equivalent to O T. Thus neither is provable in GL, and
therefore p -+ O p and O p -+ O p are also unprovable in GL.

The proof of the next theorem formalizes the argument used in
the proof of Lob's theorem. As we shall see in Chapter 3, the theorem
may be used in a variant proof of a basic fact about GL: every
theorem of GL is provable in PA under every translation.

Theorem 23. K4 (q-+( q -+ p)) --> ( ( p -- p) -+ p).

Proof.
(1) K4F-0 since K4 is

normal.
(2) K4 F- ( q -+ p) -+ ( q -+ p) - a distribution axiom.
(3) K4F- q-+ q.
(4) K4 F- (q --* ( q -+ p)) -+ ( q - p) - (4) follows truth-

functionally from (1), (2), and (3).
(5) K4 F- (q +-+( q -+ p)) -+ ( q - p) - (5) follows

from (4) by normality,
(6) the

form A -+ A.
(7) K4 F- by

normality.
(8) K4 I (q- p)- q), by normal-

ity. -1

Theorem 23 then follows truth-functionally from (6), (5), (7), (8),
and (4).

Theorem 24
(a)

GLF-
GLF-

(p p) (p -+
p)

K4 F- (p p) -+ p p) by normality. But
K4F- Op--+ El Op and
K4E- p A -i p-+ 1. Thus
K4 F- p) -+ ( p -+ 1). Since
K4F-1-+p,
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K4F-0 (p+-+--i p) El (E] p+-+ 0 -L), and so

K4 F- (pH--i 1), whence

Conversely, by Theorem 21 (with I for p),

GLF- (pH- 1) By Theorem 21 (with -ip
for p)

GL F- pH 1. Thus
GL F-- (p<-+--1 1)-+ 1) and
GU- 0(p+-*

1

Since GL F-
GL p,

Substituting -i p for p in (a) yields
GL F- ( pH-, p)H ( pH-, 1). Simplifying, we obtain
GL F- (p *-+ -i p) +-* (p<-+ 1), i.e., (c).

We can obtain (d) by similarly substituting p for p in (b). -I

As we shall see, Theorem 24 will tell us that it is a theorem of
PA that a sentence S is equivalent (in PA) to the assertion that S
is unprovable/provable/disprovable/consistent if and only if S is
respectively equivalent to the assertion that PA is consistent/that
0 = 0/that PA is inconsistent/that 0 = 1. Many other interesting
facts about PA can be learned from a study of GL.



2

Peano arithmetic

Peano arithmetic (PA, or arithmetic, for short) is classical first-order
arithmetic with induction. The aim of this chapter is to define the
concepts mentioned in, and describe the proofs of, five important
theorems about Bew(x), the standard "provability" or "theorem-
hood" predicate of PA:

(i) If F- S, then I- Bew(rS,),
(ii) F- Bew(r(S -+ T),) -* (Bew(rS,) -> Bew(rT,)),
(iii) F- Bew(rS,) -> Bew(rBew(rS,),),
(iv) Bew(rS,) is a E sentence, and
(v) if S is a E sentence, then- F- S -+ Bew(rS,)

(for all sentences S, T of Peano arithmetic).

'F-' is, as usual, the sign for theoremhood; in this chapter we write
`f- S' to mean that S is a theorem of PA. rS, is the numeral in PA
for the Godel number of sentence S, that is, if n is the Godel number
of S, then r-S, is 0 preceded by n occurrences of the successor sign
s. Bew(rS,) is therefore the result of substituting rS-1 for the variable
x in Bew(x), and (iii) immediately follows from (iv) and (v). Bew(rS,)
may be regarded as a sentence asserting that S is a theorem of PA.
E sentences (often called E 1 sentences) are, roughly speaking, sentences
constructed from atomic formulas and negations of atomic formulas
by means of conjunction, disjunction, existential quantification, and
bounded universal quantification ("for all x less than y"), but not
negation or universal quantification. A precise definition is given
below.

Notice the distinction between `Bew(x)' and `Bew(x)' denotes
a certain formula of the language of PA and thus Bew(x) is that
formula; it is a formula that is true of (the Godel numbers of) those
formulas of PA that are provable in PA. on the other hand, is
a (pre-posed) predicate of our language (logicians' English, a mixture
of English, mathematical terminology, and symbolism) and has the
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meaning "is a theorem of PA". Thus when we write

If F- S, then F-Bew(rS,)

we are claiming that if S is a theorem of PA, then so is the sentence
that results when rS, is substituted for the variable x in the formula
Bew(x).

(i), (ii), and (iii) are known as the (Hilbert-Bernays-Lob) derivability
conditions [for Bew(x) and PA]. They are called derivability condi-
tions because they are sufficient conditions on an arbitrary formula
B(x) and an arbitrary theory Z for the second incompleteness theorem,
with B(x) playing the role of Bew(x), to be derivable in Z. That is,
if Z is a theory in which a few simple facts about the natural numbers
(namely, the first six axioms of PA and Vx(x # 0 -i 3y x = sy)) are
provable, and for all sentences S, T of Peano arit'. netic,

if Z F- S, then Z F- B(rS,),
Z F- B(r-(S -* T),) -+ (B(rS-1) --* B(rT-1)), and
Z F- B('S,) - B(rB(rP),),

then if Z is consistent, Z -i B(r 1,).
In their proof of the second incompleteness theorem for a system

related to PA called Z,,, Hilbert and Bernays had listed three some-
what ungainly conditions,' from whose satisfaction they showed
the second incompleteness theorem for Zµ to follow. The isolation
of (the attractive) (i), (ii), and (iii) is due to Lob.2

(v) and the notion of a T. sentence are used only in later chapters;
by the time we reach these, we shall have established a number of
striking results about the notions of provability, consistency, relative
consistency, and diagonal sentences (fixed points). The reader who
does not like incomplete and (apparently) irremediably messy proofs
of syntactic facts may wish to skim over the rest of this chapter
and take it for granted that Bew(x) satisfies the three derivability
conditions. Many of the details of the proofs of (i)-(v) have been
explicitly included, however, with a view to reducing the number
of propositions that have to be taken on faith.

We begin with a (partial) characterization of PA.
vo, v,.... is a countably infinite sequence of distinct (individual)

variables. In addition to the variables, there are four other logical
symbols of PA, I (the 0-place truth-functional connective for logical
falsity), the conditional sign -, the universal quantifier `d, and the
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sign = of identity. The remaining four primitive symbols of PA
are the non-logical symbols of PA, the individual constant 0, the
1-place function symbol s ("successor"), and two 2-place function
symbols + and x . (Since zero can be proved in PA to be the
unique number k such that j + k =j for all j and the successor of
i can be proved to be the unique k such that j x k =j x i +j for all
j, 0 and s could have been dispensed with, but it simplifies matters
considerably for them to be taken as primitives.)

Caution! 1 (e.g.) is a symbol. What sort of thing the symbol 1
is, whether it is a shape with a stem and a base, or whether it is a
set or a number, or something else entirely, we have not said (and
need not say). `1', in contrast, is the name of 1 (and is itself also
a symbol, maybe the same one as 1, maybe not); `1' definitely does
have a stem and a base.

We want now to make explicit some of our "background" assump-
tions concerning the existence of objects of various sorts.

We assume that for any objects a and b, there is an object <a, b>,
the ordered pair of a and b. The law of ordered pairs is: if <a,b> _
<c,d>, then a=c and b=d.

The ordered triple <a,b,c> of a, b, and c is the ordered pair
< a, < b, c > >. Thus if < a, b, c > = <d,e, f> then a = d, b = e, andc = f.

A finite sequence is an object s with a length k (a natural number)
and, for each i < k, an object si that is its value at i. We assume
that there are a finite sequence of length 0 and, for each finite
sequence s of length k and each object a, a finite sequence s' of
length k + 1 such that for each i < k, s' = s; and sk = a. If s is a finite
sequence of length k, then so is the first value of s; sk _ 1 is the last;
and s, is an earlier value of s than sj for i <j. The law of finite
sequences is: Finite sequences are identical if they have the same
length k and the same values at all i < k. (Sometimes the values of
a finite sequence are called its "terms", but we shall use the word
"term" with another meaning.) We write: [so, ... , Sk _ 1 ] for the finite
sequence s of length k whose value at each i < k is s;; thus [] is
the finite sequence of length 0. When referring to a finite sequence
of positive length, we often omit the brackets.

The terms and formulas of PA are constructed from the four
non-logical constants in the standard way. Here is a definition of
term of PA:

Every variable is a term;
0 is a term;
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if t is a term, then st is a term; and
if t and t' are terms, then (t + t') and (t x t') are terms.

We shall follow Smullyan3 in supposing that st is the ordered
pair of s and t and that (t + t') and (t x t') are the ordered triples
of +, t, and t' and of x , t, and t'.

The definition of term just given was an inductive one. Using the
notion of a finite sequence, we recast this inductive definition as
an explicit one, which we regard as the "official" definition of term:

Explicitly, then, an object t is a term of PA if and only if there
is a finite sequence whose last value is t, each value of which is
either 0, a variable, the ordered pair of s and an earlier value of
the sequence, the ordered triple of + and two earlier values of the
sequence, or the ordered triple of x and two earlier values of the
sequence.

t = t' is the ordered triple of =, t, and t'.
F is an atomic formula if either F is the symbol I or for some

terms t, t', F is t = t'.
(F -* F) is the ordered triple of F, and F; VvF is the ordered

triple of `d, v, and F. The advantage of taking terms and formulas
to be ordered pairs and triples instead of finite sequences of primitive
symbols is that the unique readability of terms and formulas is
immediate: it follows directly from the law of ordered pairs that
each term or formula can be parsed in exactly one way.

An object F is defined to be a formula of PA if and only if there
is a finite sequence whose last value is F, each value of which is
either an atomic formula, the ordered triple of -+ and two earlier
values of the sequence, or the ordered triple of V, a variable, and
an earlier value of the sequence.

-l F, the negation of F, is defined as (F --+ 1). t 0 t' abbreviates
t = t', as usual. We suppose that the other familiar logical symbols,

A, v, -+, F-+, and 3, are defined in any one of the usual ways, and
we often omit parentheses and the multiplication sign when it is
reasonable to do so.

G is said to be a consequence by modus ponens of (F -+ G) and F
and VvF is said to be a consequence by generalization of F. We
shall assume given some standard axiomatic formulation of logic
in which the rules of inference are modus ponens and generalization,"
but we leave it open exactly which formulas in the language of PA
we take as logical axioms.
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The (non-logical axioms) of PA are the recursion axioms for
successor, sum, and product, which are the six formulas

(1) 0 0 sx, (Here we suppose that x is the variable
(2) sx = sy - x = y, vo and y is the variable v1.)
(3) x+0=x,
(4) x+sy=s(x+y),
(5) x x 0=0, and
(6) x x sy = (x x y) + x,

and the induction axioms, which are the (infinitely) many formulas
of PA:

(Vx(x = A Vy[Vx(x = y -+F) -Vx(x = sy-*F)])->F

where F is any formula, x is any variable, and y is any variable
not in F and different from x. Each induction axiom expresses a
statement to the effect that any number at all has a property
(expressed by F) provided that zero has it and the successor of
every number with the property also has it.

Thus the axioms of PA are the logical axioms, the recursion
axioms for successor, sum, and product, and the induction axioms.

As one would expect, a proof in PA of the formula F is a finite
sequence of formulas, each value of which is either an axiom of PA
or a consequence by modus ponens or generalization of earlier
formulas in the sequence and whose last value is F. The formula
F is provable in or a theorem of PA if there is a proof of F in PA.

Other definitions pertaining to the syntax of PA:
A term is closed if no variable occurs in it.
The variable v is free in the formula F has the following explicit

definition: there is a finite sequence h0,.. . , h, such that ho is an
atomic formula t = t' and v occurs in either t or t', h, is F, and for
all i < r, either for some formula F, hi+ 1 = (hi --> F) or (F' -+ hi), or
for some variable u different from v, hi+1 =`duhi.

A formula is a sentence, or closed, if no variable is free in it.
The result '(t) of substituting the term t for the variable v in the

term t' can be explicitly defined by saying that there are two
sequences of the same length, one constructing t' and its subterms
from the ground up, the other substituting t into subterms of t' pari
passu.5 There is a similar definition of the result of substituting
the term t for the variable v in the formula F, but we shall omit it.
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These definitions having been made, each induction axiom is then
logically equivalent to a formula

F.,(0) -> (Vx(F -+ FX(sx)) -> F)

The semantics of PA requires only brief discussion: A sentence
of PA is called true if it is true when its variables range over the
natural numbers 0, 1, 2,..., and 0 and s, +, and x denote zero
and the successor, addition, and multiplication functions. Each
closed term t denotes a unique natural number: 0 denotes 0, and if
t and t' denote i and i', then st, t + t', and t x t' denote i + 1, i + i',
and i x i'. The numeral i for the number i is the closed term that
is the result of attaching i occurrences of the successor sign s to 0.
Thus 3 is sss0, 1 is s0 (and 0 is 0). i denotes i and a sentence 3xF
is true if and only if for some number i, the result Fx(i) of substituting
i for x in F is true. A formula F with x its sole free variable defines
the class of numbers i such that Fx(i) is true. More generally, a formula
F, together with a sequence x1,. .. , x of distinct variables among
which are all variables free in F, defines the n-place relation that holds
among exactly those numbers i1,...,in such that
is true. We sometimes say that F (together with a sequence of
variables) is true of numbers if and only if the relation
defined by F (together with the sequence) holds among i 1, ... , in.

Before discussing (i)-(v) and their proofs, we shall need to discuss
the capacity of PA to prove various facts about the natural numbers.
Since the language of PA contains only the non-logical symbols
0, s, +, and x , it is not immediately apparent that much interesting
mathematics can be formulated, let alone proved, in PA. It may
not even be apparent whether formulas in the language of PA like
x + y = y + x, which express elementary generalizations about the
natural numbers, can actually be proved in PA. In fact, PA's
capacity to express and to prove facts about the natural numbers
is quite strong, and we shall need to see how to utilize that capacity.
Let us begin by showing that certain familiar laws of numbers are
provable in PA.

(1) I-x=Ov3yx=sy

Proof. Let F be the formula (x = 0 v 3y x = sy). Then Vx(x = 0 -> F)
and Vx(x = sy - F) are logical truths. Thus I- Vx(x = 0 --+ F) and
I- Vy(Vx(x = y - F) -+ Vx(x = sy By an induction axiom, F- F,
i.e., I- x = 0 v 3y x = sy. -i
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(2) F-x+y=y+x

Proof. F- 0 + 0 = 3 0;
F- 0 + x = x -> 0 + sx = 4 s(0 + x) = ant. sx; thus by an induction axiom,
F- O + x =x; since
F-x=3x+0,
HO+x=x+0;
F-y+s0=4s(y+0)=3sy=3sy+0;
F-y+sx=sy+xxy+ssx=4 s(y+sx)=ai,.s(sy+x)=4 sy+sx;

thus by an induction axiom, y + sx = sy + x.
(by

the foregoing) sy + x. Thus by an induction axiom,
F-x+y=y+x. -1

(The subscripts "3" and "4" indicate which axiom of PA justifies
the identity, "ant." means that the identity is justified by the
antecedent of the conditional.)

F-x+(y+z)=(x+y)+z
F-xx(y+z)=(xxy)+(xx z)
xx(yxz)=(xxy)xz
F-xxy=yxx
If i+j=k, then F-i+j=k

Notice that here we are claiming that if the sum of the numbers i
and j is the number k, then the formula i + j = k of PA is provable
in PA.

Proof. If i +j = k and j = 0, then i = k and the numeral j is 0, and
F-i+j=i+0=i= k. And if for all k, F-i+j=kwhenever i+j=k,
then the same holds for j + 1: If i + (j + 1) = k, then for some m,
i +j = m, k = m + I and k is sm. Thus F-i+j=m, whenceF- i+sj=
s(i+j)=sm=k. -

(8) If ixj=k, then F-ixj=k
(9) If t is a closed term and t denotes i, then F- t = i

Proof. Induction on the construction of t: If t is 0, then t denotes
0. If t denotes i and t' denotes j, then t + t' denotes i + j. Let k = i + j.
By the induction hypothesis, F- t = i and F- t' = j. By (7), F- i + j = k.
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Thus F- t + t' = i + j = k. Similarly for successor and multiplica-
tion. -I

(10) If t and t' are closed and t = t' is true, then I- t = t'

Proof. Let t and t' denote i and i'. By (9), I- t = i and I- t' = i'.
If t = t' is true, then i = i' and i is the same numeral as V. Thus
I- t = t'. -1

Definition. x < y is the formula 3z x + sz = y.

Definition. x > y is the formula y < x; x < y is the formula
(x < y v x = y); and x > y is the formula y < x.

(11)

F- x + sz = s(x + z) # 0. -I

(12) F- x< sy"x < y v x= y

Proof. F-x<syF-'3zx+sz=sy, 4-->3zs(x+z)=sy, H3zx+z=y,
i-+[by (1)] (x+0=y v 3wx+sw=y), Hx=yvx <y.

Definition. V {x = j: j < i} is the disjunction of all sentences
x = j for j < i and is 1 if i=0.

(13) F-x<i*-'V{x=j:j<i}

Proof. Induction on i. If i = 0, F-- x < 0, whence F- x < 0 E-' 1.
Suppose F-x < i<-' V {x = j: j < i}. Then by (12) and the induction
hypothesis, F- x < si <-' (x < i v x = i), <-' (V {x = j: j < i } v x = i),
HV{x=j:j<i+l}. H

(14) (Strong induction) For any formula F(x),

F- Vx(Vy(y < x - F(y)) --. F(x)) - F(x)

Proof. Assume

(*) Vx(Vy(y < x - F(y)) - F(x))

Define G(x) as (Vy(y < x -' F(y)) A F(x)). We shall show G(x), whence
F(x) follows. By induction, it is enough to show G(0) and Vx(G(x) -
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G(sx)). G(0): By (11), dy-iy < 0, whence by logic, Vy(y < 0 F(y)),
and then by (*), F(0), and thus G(0). `dx(G(x)-+G(sx)): Assume G(x),
i.e., Vy(y < x -+ F(y)) and F(x). By (12), Vy(y < sx -> F(y)), whence
by (*), F(sx), and thus G(sx). H

The least number principle: F- F(x) -+ 3x(Fx A Vy(y < x -> -i F(y)))
follows directly from strong induction: substitute -i F(x) for F(x).

(15) F---1 x<x;x<y<z-*x<z;x<yvx=yvy<x;

(16) If i<j, then F-i<j
If i j, then F- i 0j
If i >,j, then F--, i < j

Proof. If i < j, then for some k, i + (k + 1) = j, and F- i + sk = j by
(7); thus F- i < j. If i 0j, then i < j or j < i and F- i < j or F- j < i,
whence F-i 0 j by the first conjunct of (15). If i - j, then j < i or j = i,
whence F- j < i or F- j = i and thus F--i i < j by the second or first
conjunct of (15). -

As will soon become apparent, it is not our intention to give a
thorough axiomatization of even the most elementary portions of
arithmetic or to supply full proofs in PA (!) of theorems like (v)
above or the second incompleteness theorem of Godel. Our interest,
rather, lies in showing that, and how, such theorems can be proved
in PA and in showing how to prove the metatheory of PA in PA
itself. We want to show that certain notions and statements can be
defined and proved in PA; to do so, it is not necessary to exhibit
formal derivations in PA. We shall rely heavily on the reader's good
sense and knowledge of logic and (very) elementary arithmetic,
which will enable us to omit sufficiently many details of proofs to
make our development (in PA) of the theory of PA's own syntax
comprehensible; but, as we have said, we will take pains to exhibit
all necessary details where particular difficulties arise, e.g., in the
definitions of "finite sequence" and "term of PA". Our intention is
to omit only those proofs that are, in our view, thoroughly routine,
e.g., that of the associativity of multiplication. One example of a
theorem whose proof is not routine is the statement that a prime
that divides ab divides a or b; we need to know that this (ancient)
theorem is actually provable in PA; below we give enough detail
to enable the reader to see that it is.
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Hoping to improve readability, we shall frequently use English
expressions instead of their symbolic counterparts in our claims
that certain sentences of PA are theorems of PA; where we do so,
we shall sometimes also use lightface instead of boldface type, which
we avoid altogether in proofs. Thus we shall write "F- If x > 1, then
some prime divides x" to mean that the formula of PA,

(x > 1-+ 3p(Prime(p) A p I x))

is a theorem of PA ("Prime" and "I" being suitably defined). We
use English in this manner, of course, only where it is plain which
formulas of PA are the counterparts of the English expressions.
Typically, a proof of ours that a certain formula is provable in PA
will constitute an outline of a formal derivation in PA of that
formula.

In what follows, we shall use sans serif `x', here exemplified, to
abbreviate 'x1,.. . , Notice the difference between `x' and Y.

Pterms and E formulas

Since the only non-logical symbols of PA are the constant 0, the
1-place function symbol s, and the 2-place function symbols + and
x, it might appear that the class of functions that PA is capable
of treating is quite limited. Indeed, it is quite easy to see that no
term of PA denotes the function 2": if a term of PA were to denote
2", then it could be assumed to contain only the variable x (0 could
be substituted for any other variables); but any term of PA containing
only x is provably identical to a polynomial in x; and all polynomials
in x denote functions that are eventually majorized by 2".

Nevertheless, PA can quite often discuss functions that are not
denoted by any terms of its language. Call a formula F(x, y) of the
language of PA a pterm (with respect to the variable y) if the formula
3! yF(x, y), i.e., the formula

3y(F(x, y) A Vz(F(x, z) --* y = z))

is provable in PA ("p" is for "pseudo"). Any pterm F(x, y) defines
an n-place function, and many functions, among them exponentia-
tion and 2x, not denoted by terms of PA can be discussed in PA
by means of pterms that define them. If F(x, y) is a pterm, we shall
often refer to it as: f (x) instead of as: F(x, y), omitting the variable
y and changing upper case to lower. And where A(y) is a formula
of PA and F(x, y) a pterm, we write: A(f (x)) to denote the PA
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formula 3y(F(x, y) A A(y)). In view of the provability of relevant
formulas of the form 3! yF(x, y), expressions such as B(h(g(x)) g(x)),
with B(w, z) a formula and G(x, y) and H(x, y) pterms, are unambig-
uous: all "disabbreviations" of such formulas are provably equivalent
in PA. Let us observe that since 3! yF(x, y) is provable, A(f (x)), i.e.,
3y(F(x,y) A A(y)), is equivalent to Vy(F(x, y) -+ A(y)).

We use Vy < xF and 3y < xF to abbreviate Vy(y < x -> F) and
3y(y < x n F).

We now define two important classes of formula: the E formulas
and the A formulas.

We call a formula a strict I formula if it is a member of the
smallest class that contains all formulas u = v, 0 = u, su = v, u + v = w,
and u x v = w, and contains (F A G), (F v G), 3xF, and Vx < yF
whenever it contains F and G. A E formula is one that is equivalent,
i.e., provably equivalent in PA, to a strict E formula. (E formulas
are usually called E, formulas; but we shall not now need to consider
the classes of Y-29131... formulas and have accordingly dropped
the subscript.)

All atomic formulas are E formulas, for any atomic formula
whatsoever is equivalent to a formula constructed by conjunction
and existential quantification from formulas of the five forms: u = v,
0= u,su=v,u+v= w, and u x v = w. E.g.,x+sy=s0isequivalent
to 3u 3v 3w(sy = u A x + u = v A O=W A sw = v). It follows that x <y,
i.e., 3z(x + sz = y), is also a E formula. Thus if F is a E formula, so
is 3x < yF and the E formulas are closed under both bounded
universal and bounded existential quantification. It also follows
that the negation of any atomic formula is a E formula, since by
(15), x = y is equivalent to x < y v y < x. The adjective "atomic"
was indispensable just then; it is not the case that the negation of
a E formula is always E.

A E sentence is just a E formula that is a sentence. If F is a E
formula and S is a sentence obtained from F by the substitution
of closed terms, such as numerals, for free variables in F, then S
is a E sentence. The following theorem gives a key fact about E
sentences.

(17) If S is a true E sentence, then F-S

Proof. If S is a true atomic formula, then F- S, by (10). If (S A S') is
true, then S and S' are true, whence I- S and I- S', and so E- (S A S').
If (S v S') is true, then S or S' are true, whence I- S or I- S', and so
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F- (S v S'). If 3xF is true, then for some i, F(i), the result of substitut-
ing i for x in F is true; thus F- F(i), and so F- 3xF. If Vx < iF is true,
then for every j < i, F(j) is true, and thus for every j < i, F- F(j) and
F-x=j-+F.But F-x<iHV{x=j:j<i}by(13).So F-x<i-Fand
F- Vx < W. Finally, if S is equivalent to a provable sentence, S is
provable. -

In due course the wide scope of the class of E sentences will
become apparent: it will turn out that, e.g., the negation of the
Goldbach conjecture can be expressed by a E sentence. Thus if
Goldbach's conjecture is undecidable in PA, i.e., neither provable
nor disprovable in PA, then it is true (!); for if Goldbach's conjecture
is false, then its negation is expressed by a true E sentence, which
by (17) is provable, and Goldbach's conjecture itself is therefore
disprovable, not undecidable.

PA will be seen to fail to prove some truths, and indeed truths
whose negations are E sentences (so-called true n, or II, sentences.)
But (17) tells us that PA proves all truths to the effect that a certain
sentence is provable (in some particular formal system) or that a
certain computational device eventually halts, for these can all be
expressed as E sentences of the language of arithmetic, as will be
evident by the end of this chapter. The provability of all true E
sentences can therefore be considered as a significant partial
(non-in)completeness theorem for PA.

A formula A is called a A formula if A and A, the negation of
A, are both E formulas. We note some closure properties of the
class of A formulas.

Each atomic formula t = t' is A, for, as we have noted, atomic
formulas and their negations are both E.

t < t' is A: t < t' is equivalent to 3x3y(t = X A t' = y A x < y), which
is E, and -' t < t' is equivalent to t = t' v t' < t.

The negation of a A formula is obviously A. If A and B are A,
so is their conjunction, for then A, B, -i A, and - B are all E, and
therefore so are A A B and - A v -l B. Thus the A formulas are
closed under all Boolean operations. Since the E formulas are closed
under both bounded universal and bounded existential quantifica-
tion, the A formulas are also closed under both kinds of bounded
quantification: If A and --i A are E, so is Vx < yA, and --i Vx < yA
is equivalent to the E formula 3x < y-i A. Similarly for bounded
existential quantification.
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If F(x, y) is E and a pterm, then it is A, for by the provability of
3! yF(x, y), -t F(x, y) is equivalent to the E formula 3z(F(x, z) A -' z = y).

If A(y) is A and F(x, y) is a E pterm, then A(f (x)) is A: For A(f (x))
is the E formula 3y(F(x, y) A A(y)), and since this formula is equi-
valent to Vy(F(x, y) A(y)), -t A(f (x)) is equivalent to the E formula
3y(F(x, Y) A - A(y)).

In brief, the A formulas contain all atomic formulas and all
formulas t < t' and are closed under boolean operations, bounded
quantification, and substitution of E pterms.

We shall often write: 3x <, yF and: Vx < yF instead of: 3x < syF
and: Vx < syF. Clearly these are E or A if F is.

It follows from (17) that if F(x) is a A formula and i an n-tuple
of natural numbers, then either I- F(i) or I- F(i). For since F(x)
is A, F(i) and -i F(i) are both E. By (17), whichever of these is true
is a theorem of PA. Thus all instances of A formulas are decidable,
and therefore A formulas are, to use Godel's term, entscheidungsdefinit
("numeralwise expressible").

We now resume our consideration of the more arithmetical
aspects of PA.

Division, quotient, and remainder

Definition. d I x is the formula 3q q x d = x. ("I" is read
"divides"; we are assuming that 0 divides n if n = 0.)

d I x is visibly a E formula. The next theorem shows that the
formula d I x is actually A, since it is equivalent to one built up from
atomic formulas by boolean operations, bounded quantification,
and substitution of E pterms:

(18) F-3gq x d=x->3q(q<x Aq x d=x)

(19) I-dld

(20) I-dlx n xlY->dly

(21) E-dlx--+(dl(x+Y)Hdly)

(22) Hd#0->3g3r(x=qxd+rAr<dA
`dq'Vr'(x=q' x d+r' n r'<d-+q =q' n r= r'))

We now define rm ("remainder"). We shall take the remainder
on dividing a number x by 0 to be x:
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Definition. Rm(x, d, r) is the formula
((r<dA3gx=qxd+r)v(d=0Ar=x)).

Rm(x, d, r) is E and, in virtue of (22), a pterm.

(23) I- rm (x, 0) = x

(24) I-dIx rm(x,d)=0

(25) F-rm(x+yd,d)= rm(x,d)

Subtraction is not a total function on the natural numbers. We
introduce a pterm for a variant, sometimes called "cut-off subtrac-
tion" or "monus", that is total: x monus y is x minus y if y < x and
is 0 if y > x. Since we do not deal with negative integers, we use
the usual subtraction sign "-" to mean "monus".

(26) F-y<x--*3!zx=y+z

Definition. Monus(x, y, z) is (x = y + z v (x < y n z = 0)).

Monus(x, y, z) is clearly a E pterm; we write: x - y instead of:
monus(x, y).

Definition. Prime(p) is (p 1 A Vd(dI p-+d = 1 v d = p)).

Prime(p) is not visibly 0; but notice that since !- d i p -+ d < p, Prime(p)
is equivalent top 961 n V d < p(d p -> d =1 v d = p), which is 0, for
it is constructed from A formulas by truth-functional operations
and bounded quantification.

(27) I- 2 is the least prime

(28) I- If x > 1, then some prime divides x

Proof. Consult Euclid's Elements, Book VII, theorem 31. The proof
given there may be formalized in PA with the aid of the least
number principle. -I

Definition. RelativelyPrime(a, b) is Vd(d I a n d I b -+d = 1).

RelativelyPrime(a,b) is A, since it is equivalent to
`dd < a(dia A dib-+d =1).

(29) F- a and b are relatively prime if no prime divides both a and b
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Proof. By (20) and (28). -1

The following proposition states an important fact about relatively
prime numbers.

(30) I- If a and b are greater than 1 and relatively prime, then for
some x, y, ax + 1 = by.

Proof. Call a number i good if 3x 3y ax + i = by. We must show
that 1 is good, on the supposition that a and b are greater than 1
and relatively prime. a is good: take x = b - 1 and y = a; and b is
also good: take x = 0 and y = 1. If i is good, then so is qi. And if i
and i' are good and i >, i', then i - i' is also good. For if ax + i = by
and ax' + i' = by', letx"=x+by'+(b-1)x'andlet y" = y + ax' +
(a - 1)y'. Then, as is readily checked, ax" + (i - i') = by". Let d be
the least positive good number. Then if i is good, d I is for some
q, r, i = qd + r and r < d; so qd is good and i,>qd; since i - qd = r,
r is good, r = 0 (by leastness of d), i = qd, and d I i. Since a and b are
good, d I a, d (b, d = 1, and 1 is good. --l

(31) I- If p is prime and divides ab, then p divides a or p divides b

Proof. Suppose p divides ab. If p does not divide a, then a and p
are relatively prime; by (30), for some x, y, ax + 1= py and then
abx +b = pby. Since p I ab, p l abx and p l pby; whence by (21), p 1 b. -I

Least common multiple

In what follows M(x, y) and H(x, y) are arbitrary pterms of PA.
(Notice that "m" and "h" are lower case "M" and "H".)

(32) F-- If for all i < k, m(i) > 0, then there is a (unique) least positive
l such that for all i < k, m(i) 11.

Proof. By induction on k, if for all i < k, m(i) > 0, then there is a
positive 1 such that for all i < k, m(i) 11: 1 is an 1 that works for k = 0,
and multiply any 1 that works for k by m(k) to get an 1 that works
for k + 1. Then apply the least number principle. -1

Definition. Lcm [m(i): i < k] (1) is the formula

(Vi <km(i)>O n 1>O n Vi <km(i)l1
AVj<I-i[j>OnVi <km(i)I j])v(3i<km(i)=Onl=O)
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This definition is a definition-schema, yielding from any pterm
M(x, y) the definition of a formula Lcm [m(i): i < k] (1) with the free
variables k and 1. By (32), Lcm [m(i): i < k] (1) is a pterm. If M(x, y)
is a E pterm, then so is Lcm [m(i): i < k] (1) (with respect to the
variable 1).

Here "lcm" is short for "least common multiple". The contrast
between the least common multiple and the product of the values
of a sequence of numbers is noteworthy: the former, but apparently
not the latter, can be easily defined in the language of PA and easily
proved in PA to exist.

(33) I- j < k m(j)llcm [m(i): i < k]

(34) F- Any multiple of all m(i), i < k, is a multiple of 1cm [m(i): i < k]

Proof. Suppose m(i) I x for all i < k. Let 1= lcm [m(i): i < k]. We may
suppose that 1 > 0. For some q, r, x = ql + r and r < 1. Since m(i) 11, x,
m(i) I r for all i < k, contra leastness of I if r > 0. Thus r = 0 and
I I X. -i

(35) I- If p is prime and p I lcm [m(i): i < k], then p I m(i) for some
i<k

Proof. An induction on k: If k = 0, 1cm [m(i): i < 0] = 1 and p does
not divide lcm [m(i): i < 0]. Suppose p I lcm [m(i): i < k + 1]. lcm [m(i):
i < k + 1] I lcm [m(i): i < k] x m(k) by (34) since every m(i), i < k + 1,
divides lcm [m(i): i < k] x m(k). By (31) either p I lcm [m(i): i < k],
whence by the induction hypothesis p divides some m(i), i < k, or
p I m(k) -
(36) (The Chinese remainder theorem)

I- [Vi < k(1, h(i) < m(i)) A d i, j(i < j < k -> m(i) and m(j) are re-
latively prime)] -> 3a < lcm [m(i): i < k] Vi < k rm(a, m(i)) = h(i)

The Chinese remainder theorem is a standard theorem of number
theory, proved in nearly every textbook on the subject. The proof
we shall give is somewhat more complicated than usual because
we are working with the natural numbers (which, unlike the integers,
are not closed under subtraction), we must avoid the concept of a
finite sequence of natural numbers, we will later need the bound
"a < lcm [m(i): i < k]", and we wish to make it clear that the entire
argument can be carried out in PA.

Proof of the Chinese remainder theorem. Assume the antecedent.
Use induction on n < k. If n = 0, let a = 0. a < 1=1cm [m(i): i < 0].
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Suppose n < k, a < 1cm [m(i): i < n], and rm(a, m(i)) = h(i) for all
i < n. Let I =1cm [m(i): i < n], m = m(n). I and m are relatively prime:
if p 1 1, then by (35) for some i < n, p I m(i), and since m(i) and m are
relatively prime, p does not divide m.

Since I and m are relatively prime, by (30) for some x, y, lx + 1 =
my. Multiplying both sides by a + (I - 1)h(n) shows that for some
(other) x, y, Ix + a + (1-1)h(n) = my. Let a* = l(x + h(n)) + a. Then
a* = my + h(n). If i < n, then since m(i)11, rm(a*, m(i)) = rm(a, m(i)) =
h(i), and rm(a*, m(n)) = rm(a*, m) = h(n), since h(n) < m(n) = m. Let
1' = lcm [m(i): i < n + 1]. If a* < l', we are done. If a* > 1', then let b
be the greatest multiple of l' that is < a*, and let a** = a* - b.
Then a** < 1', and since m(i) l' h b for all i < n + 1, rm(a**, m(i)) _
rm(a* - b, m(i)) = rm(a*, m(i)) = h(i). --I

(37) F- For every k there is a unique greatest value of m(i), i < k.

Definition. Max [m(i): i < k] (1) is
[3 i < k m(i) = l n t1 i < k m(i) < 1].

Max[m(i): i < k](I) is a E pterm.

Definition. Max(x, y, z) is [(x > y A z = x) v (x < y A z = y)].

Max(x, y, z) is a E pterm.

The ternary function fi is defined as follows: #(a, b, i) = the
remainder on dividing a by 1 + (i + 1)b.

Godel introduced the function fi in order to code finite sequences
of natural numbers as pairs of numbers; the main result concerning
fi is the fl-function lemma, whose provability in PA in recorded as
proposition (38):

Definition. Beta(a, b, i, r) is rm(a,1 + (i + 1) x b) = r.

Beta (a, b, i, r) is a E pterm.

As was stated above, H(x, y) is an arbitrary pterm.

(38) (Godel's #-function lemma)
F- For every k, there are a, b such that for all i < k, beta(a, b, i) _
h(i); moreover, where s = max(k, max [h(i): i < k]) + 1, a and
b can be so chosen that b < lcm [i + 1: i < s] + 1 and a<
lcm[1+(i+1)b:i<k]
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Proof. Let s be as in the statement of the lemma. Then s > k and
for all i < k, s > h(i). Let b = lcm [i + 1: i < s]. Suppose i < j < k. We
shall show 1 + (i + 1)b and 1 + (j + 1)b relatively prime. Assume
p I 1 + (i + 1)b and p I 1 + (j + 1)b. Then p divides their difference
(j-i)b, and so either phj-i or p1b. Since 1 <j-i<k<s, j-i1b.
In either case, p I b, and so p I (i + 1)b. Since p I 1 + (i + 1)b, p divides
their difference 1, contradiction. Thus if i <j < k, 1 + (i + 1)b and
1 + (j + 1)b are relatively prime. Moreover, for all i < k, h(i) < s
b < 1 + (i + 1)b and 1 < 1 + (i + 1)b. By (36), now taking m(i) =
1 + (i + 1)b, for some a < lcm [1 + (i + 1)b: i < k], beta(a, b, i) = h(i)
foralli<k. -I

Note that the pterms that provide bounds on a and b in the
#-function lemma are E provided that H(x, y) is. These pterms will
enable us to see that certain notions concerning the syntax of PA,
such as "Godel number of a term of PA" and "Godel number of
a formula of PA" are defined by A formulas.

(39) I- For any c, d, k, n there exist a, b such that beta(a, b, k) = n
and for all i < k, beta(a, b, i) = beta (c, d, i)

Proof. Define H(i, y) by y = beta(c, d, i) if i < k and = n otherwise,
and let a, b be as in the fl-function lemma (with "k + 1" instantiating
"for every k"), -I

We now begin to develop the syntax of PA within PA itself. The
development within a theory of that theory's own syntax has been
called "pulling the metalanguage into the object language" but
might more informatively be termed "proving the metatheory in
the object theory."

The way in which PA proves the statements about its own syntax
that constitute its metatheory is rather different from the way in
which it proves statements about the natural numbers.

For PA to prove a statement about the natural numbers is simply
for a sentence or formula of the language of PA expressing that
statement to be a theorem of PA. For example, let S be the sentence
VxVy x + y = y + x. S is a theorem of PA and expresses the commu-
tativity of addition, i.e., the statement that for any natural numbers
i and j, i plus j equals j plus i. S expresses the commutativity of
addition because it is, as we suppose, interpreted in accordance
with the usual interpretation N of PA, as we standardly give that
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interpretation. We standardly define, or "give", N by saying: Under
N the variables x, y.... range over the natural numbers 0, 1, 29...,
and the nonlogical symbols have their usual meanings (+ denotes
plus etc.). Having so described N, we are entitled to say, not only
that S is true if and only if addition is commutative, but also that
it expresses the commutativity of addition. What sentences of the
language of PA express depends upon how the range of their
variables and the denotations of their non-logical symbols are
characterized, as well as upon what the range is and what the non-
logical symbols denote. When we say that + denotes plus in N.
using "plus" or a synonym to say so, we allow it to be understood
that + is to have the sense of "plus", whatever that might be (and
not, say, that of "plus the cube root of the square root of the cube
of the square of"). Similarly for the other symbols of the language,
including the variables, the manner of specification of whose range,
i.e., as over the natural numbers, contributes in large measure to
the determination of the meanings of quantified sentences of PA.

Under N, given in the standard way, sentences of PA can express
statements only about the natural numbers and relations and
operations on them definable in N in the language of PA. Thus it
is not to be expected that PA could, in the same way in which it
can prove the commutativity of addition, prove even so simple a
truth about its own syntax as that the universal quantifier d is not
a variable, let alone the significant statement to the effect that if I
is not provable in PA, then neither is -l Bew(' J. ).

Nevertheless, it seems entirely justifiable to regard PA as capable
of proving facts about its own syntax for the following reason.

Let us give the name "Syntax" to the informal mathematical
theory of the syntax of PA, whose rudiments we developed when
we gave our description of PA. Syntax is an informal theory, and
we leave it vague exactly what it contains. The language of Syntax,
as we have presented it, is (a portion of) logicians' English, containing
names such as 'Y' and predicates such as "is a formula". The objects
of Syntax, those with which Syntax deals, are the primitive symbols
of PA and various ordered pairs and finite sequences of objects.

There is a double correspondence between Syntax and PA: first,
between the objects of Syntax and the objects of PA, which are the
natural numbers, and secondly, between the names and predicates
of the language of Syntax and the terms and formulas of the
language of PA. The numbers that correspond to the objects of
Syntax are called the Godel numbers, or code numbers, of those
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objects; we shall shortly present a system of Godel numbering. A
term of (the language of) PA that corresponds to a name in (the
language of) Syntax denotes the Godel number of the object
denoted by that name (e.g., if the symbol d has the Godel number
5, then the name "b"' of the language of Syntax, which denotes the
symbol V, corresponds to the term sssssO of the language of arithmetic,
which denotes the number 5); a formula of PA that corresponds to
a predicate of Syntax is true of exactly those numbers that are the
Godel numbers of the objects of Syntax of which the predicate
holds. Furthermore, various proof-theoretical and definitional con-
nections hold among terms, formulas, and sentences of, and proofs
in, PA that resemble, more or less roughly, those that hold among
names, predicates, and sentences of, and (informal mathematical)
proofs in, Syntax: the correspondence between names and predicates
of Syntax and terms and formulas of PA naturally extends itself to
one between sentences of Syntax and sentences of PA built up from
terms and formulas corresponding to the names and predicates
from which the sentences of Syntax are formed; under the corres-
pondence, sentences of PA are provable in PA only if their counter-
parts are demonstrable in Syntax. (We cannot say "if and only if",
for in Syntax we can, for example, prove that I is not a theorem
of PA, by means not available to us in PA.6) However, the sentences
of Syntax that express the familiar and elementary (and some not
so elementary) syntactic truths will be counterparts of provable
sentences of PA. Moreover, the correspondence extends to the
definition of complex notions: definitions of complex correlated
formulas of PA from simpler ones frequently resemble the informal
definitions by means of which their counterpart predicates in Syntax
are defined from one another. Finally, the correspondence also
extends, significantly more roughly, to one between informal proofs
in Syntax and proofs in PA: to the sequences of (open and closed)
sentences expressing informal proofs in Syntax of syntactic facts
there will often correspond (portions of) proofs in PA of sentences
whose counterparts in the language of Syntax formulate those
facts.

This double correspondence between a major portion of Syntax
and PA thus supplies a sufficiently clear sense to the assertion that
elementary parts of the syntax of PA can be replicated, mirrored,
copied, reproduced, treated, developed, executed, carried out, formal-
ized, encoded, interpreted, proved, given, or done, in PA; it will be
in virtue of our having established such a far-reaching general
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correspondence that we shall consider ourselves entitled to say that
various particular statements about the syntax of PA are provable
in PA, including both the triviality that the universal quantifier is
not a variable and the significant result that I is provable in PA
if Bew(rl,) is. Recognition of the way in which PA contains a
copy of a part of Syntax can be facilitated by the use of names for
the terms and formulas of PA that are orthographically similar to
their counterpart names and predicates. If this part is replicated in
PA in this manner, the formal development resembles the informal
one so strikingly that it becomes entirely natural to regard the
terms, formulas, and sentences mentioned in the development as
concerned with syntactic, rather than arithmetical, matters.

We now associate with each primitive symbol of PA a natural
number, called its Godel number, or code. To the eight symbols
1, `d, _909s, +, and x, we assign the numbers 1,3,5,7,9,11,13,
and 15. To the variable vi, we assign the number 2i + 17. Thus
every primitive symbol of PA has an odd Godel number.

Let n(i, j) = 2((i +j)(i +j) + i + 1). We now stipulate that if the
objects x and y (whether symbols or ordered pairs) have Godel
numbers i and j, then the ordered pair < x, y > shall have the Godel
number n(i, j). n(i, j) is even and therefore not the Godel number
of a primitive symbol of PA.

All terms and formulas of PA have now acquired Godel numbers,
for each term or formula either is a variable, the symbol 0, or the
symbol 1, all of which have expressly been assigned Godel numbers,
or is an ordered pair (or an ordered triple, which is itself an ordered
pair) of items with Godel numbers.

Before we begin to prove the syntax of PA in PA, we shall develop
the rudiments of the theory of finite sequences of natural numbers
in PA; to do so we must first give a development in PA of the
theory of ordered pairs of natural numbers. For this we need only
supply a E pterm Pair(x, y, z) for which we can prove in PA the
law of ordered pairs; if < i, j > = < i , j' >, then i = i' and j = j'. Shoenfield
has observed that the number (i +j)(i +j) + i + 1 can be used as
the code of < i, j >; we follow his pretty treatment, except that since
we want all Godel numbers of ordered pairs to be even, we multiply
by two.

Definition. Pair(x, y, z) is the formula 2((x + y)(x + y) +
x + 1) = z. Pair(x, y, z) is a E pterm. We write (x, y) instead
of pair (x, y).
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Where we can, we shall henceforth give explicit definitions of
pterms by means of definitional identities, writing them, e.g.,

Definition. (x, y) = 2((x + y)(x + y) + x + 1).

and avoiding the rigmarole of introducing predicates that will never
be seen again.

(40) I- If(x,y)=(x',y'), then x=x' and y=y'

Proof. Assume the antecedent. Then (x + y)(x + y) + x + 1 =
(x'+ y')(x'+ y') + x'+ 1. If x + y < x'+ y', then (x + y)(x + y) + x +
1'< (x+y+1)(x+y+1)<(x'+y')(x'+ y')<(x'+y')(x'+y')+x'+1,
impossible. Similarly, if x' + y' < x + y, then (x', y') < (x, y),
impossible. Thus x + y = x' + y', x = x', and y = y'. -I

PA thus tells us that the function it adequately codes pairs of
natural numbers as single numbers. We note that every term or
formula of PA either has an odd Godel number or has a Godel
number of the form ir(i, j), with i odd.

Further useful features of Shoenfield's definition are given in the
next theorems.

(41) I-x,y<(x,y)

Notice that the Godel number of a term is larger than that of
each of its proper subterms, that the Godel number of an atomic
formula t = t' is larger than that of t or t', that the Godel number
of a formula is larger than that of each of its proper subformulas,
and that the Godel number of a formula VvF is larger than that of
the variable v.

(42) I-x<x'-->(x,y)<(x,y), y<y'-* (x,y)<(x,y')

Definition. Fst(z, w) is the formula
(3y<z(w,y)=z v (-i3x,y<z(x,y)=z A w=0)).

Definition. Snd(z, w) is the formula
(3x <z(x,w)=z v (-,3x,y<z(x,y)=z A w=0)).

As usual, Fst(z, w) and Snd(z, w) are E pterms.

(43) I- fst((x, y)) = x, snd((x, y)) = y
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We define a pterm for the ordered triple < i, j, k >:

Definition. (x, y, z) = (x, (y, z)).

Definition. ft(w) = fst(w); sd(w) = fst(snd(w)); td(w) _
snd(snd(w)).

(44) F-ft((x,y,z))=x; sd((x,y,z))=y; td((x,y,z))=z

(45) F-x,y,z<(x,y,z)

Coding finite sequences

An ordered pair is determined by its first and second components.
Similarly, a finite sequence ho,..., hk _ 1 is determined by its length
k, and its values h; at integers i less than k: different finite sequences
with the same length have different values for some integer less
than their common length.

We now define "finite sequence". We have already arranged
matters so that no formula of PA other than I. has the same
Godel number as any primitive symbol of PA. Because proofs will
be defined as finite sequences of a certain sort, we shall wish to
assign them Godel numbers that are different from those of primitive
symbols or formulas. Since every primitive symbol has an odd
Godel number, every formula of PA other than I has a Godel
number of the form ir(i, ir(a, b)), with i odd, and ir(a, b) is even, we
can achieve this aim by taking the Godel numbers of finite sequences
to be certain numbers of the form ir(n(a, b), k), namely those such
that for every c, d for which ir(c, d) < n(a, b), there is some i < k such
that #(c, d, i) /3(a, b, i).

Definition. FinSeq(s) is the formula
3a < s3b < s3k < s(s = ((a, b), k) A
V c < s`d d < s((c, d) < (a, b) -> 3 i < k beta(c, d, i) :0 beta (a, b, i)).

Definition. lh (s) = snd (s).

Definition. val(s, i) = beta(fst(fst(s)), snd(fst(s)), i).

FinSeq(s) is a A formula and lh(s) and val(s, i) are E pterms. We
write: s, instead of: val (s, i).
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It is now immediate that the law of finite sequences is provable
in PA:

(46) I- (FinSeq(s) n FinSeq(s') n lh(s) = lh(s') n `di < lh(s) si = s') -> s = s'

(47) !- 3! s (FinSeq(s) n lh(s) = 0)

Proof. ((0, 0), 0) is a finite sequence whose length is 0. Uniqueness
follows from (46).

Definition. [] _ ((0, 0), 0).

(48) n lh(s')=sk n `di <ks'=si n sk=n)

Proof. Suppose lh(s) = k. Let c = fst(fst(s)), d = snd(fst(s)). By (39),
there exist a, b such that beta(a, b, k) = n and for all i < k, beta(a, b, i) =
beta(c, d, i). Let s' _ ((a, b), sk). Then lh(s') = sk, s ' = beta(a, b, i) _
beta(c, d, i) = si, for all i < k, and s k = beta(a, b, k). By the least
number principle we may suppose (a, b) minimal. -A

(49) For any pterm H(i, y), we have !-3!s(FinSeq(s) A lh(s) = k n
Vi < k si = h(i))

Proof. An induction on k, using (47) when k = 0 and appealing to
(48) with n = h(k) when k is positive. H

To treat the "scissors-and-paste" operations of truncation and
concatenation, which enable us to define new terms, formulas, and
proofs from old, we need the next two theorems.

(50) !-e<j<knlh(s)=k->
3! s'(FinSeq(s) A lh(s') =j - e n Vi <j - e s' = se+i).

Proof. Induction on j - e. If j = e, [] works. And if e <j + 1 < k
and s' works for j, then by (48), let s" be such that lh(s") = j - e + 1,
s" = s' for i <j - e and s' _ e = s;. Then s" works for j + 1. -
(51) !-lh(s)=kAlh(s')=k'nj,<k+k'

- 3s"(FinSeq(s") A lh(s") =j n
Vi<j(i<k-+s" =siAk<i<j->s" =s'_k)

Proof. A similar induction on j, starting with [], and using (48)
to tack on appropriate values to longer and longer sequences. H
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(52) I-lh(s) = k n lh(s') = k'
3s"(FinSeq(s") A lh(s") = k + VA

`di<ks" =S AVi<k's"+i=s/)

Proof. By (51). -1

The truncation of the finite sequence ho, ... , he, ... , h;, ... from e
to j is the sequence he,. .. , h; _ 1. It is the null sequence in case j < e.
The result of concatenating a finite sequence a,. .. , b of length k
with a finite sequence c,.. . , d of length k' is the finite sequence
a,. .. , b, c, ... , d of length k + V. [n] is the finite sequence of length
1 whose value at 0 is n.

Definition. Trunc(s, e, j, s') is the formula (-i e <j < lh(s) A
s'=[])v(e<,j<lh(s)AFinSeq(s')Alh(s')=j-e AVi<j-e
Si = se+;). Trunc(s, e, j, s') is a E pterm. Write: ste.>> instead
of: trunc(s, e, j).

Definition. Concat(s, s', s") is the formula (FinSeq(s') A lh(s") =
lh(s) + lh(s') A Vi < lh(s) s = Si A Vi < lh(s') s'h(s)+L = sI).
Concat(s, s', s") is a E pterm. Write: s*s' instead of: concat(s, s').

Definition. Seq(n, s) is the formula FinSeq(s) A lh(s) = 1 A
so = n. Seq(n, s) is a F. pterm. Write: [n] instead of: seq(n).

(53) F- If s is a finite sequence, then [] *s = s = s* []

(54) F- If s, s', and s" are finite sequences,
then s*(s'*s") = (s*s')*s"

Proof. Let the lengths of s, s', and s" be k, k', and k". Let u = s'*s",
u' = s*s', v = s*u, and v= u'*s". Then, as an easy argument using
the associativity of addition shows, v and v' are finite sequences of
length k + V+ k", and for all i < k + V+ k", v; = v'. The conclusion
follows by the law of finite sequences. -1

A digression: With the aid of the notions we have just introduced,
we can construct many pterms defining functions not denoted by
terms of PA: for example, let Exp(x, y, z) be the formula

3s(lh(s)=y+1 ASO=1 Avi<ysi+1=s; XXAsy=z)

Then Exp(x, y, z) is visibly E and defines exponentiation, x'. It is
also a pterm, as a routine induction on y shows.
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Many other functions can be similarly shown to be defined by
E pterms. Among these are the primitive recursive functions, which
are defined as follows: The zero function is the 1-lace function
whose value is 0 for every natural number. The successor function
is the 1-place function whose value is i + 1 for every natural number
i. If 1 < m <, n, there is an n-place identity function whose value for
all n-tuples 11,.. . , in of natural numbers is lm. If f is an m-place
function and g1,. .. , g,,, are all n-place functions, then the n-place
function h comes from f and g1i... , gm by composition if for all
il, ... , in, h(i 1, ... , in) = f (g 1(i 1, ... , in),... , gm(i 1, ... , in)). And if f is an
n-place and h an (n + 2)-place function, then the (n + 1)-place function
h comes from f and g by primitive recursion if h(i 1, ... , in, 0)=
f(i1,...,in) and for all j, h(i1,...,in,j+ 1)=g(i1,...9in,j,h(i1,...,in,j))
The primitive recursive functions are the members of the smallest
class that contains the zero, successor, and identity functions and
contains all functions that come from members of the class by
composition and primitive recursion.

The only difficulty in seeing that all primitive recursive functions
are defined by E pterms is in the case of primitive recursion. Suppose
that F(x 1, ... , xn, y) and G(x 1, ... , xn, xn + 1, xn + 2, y) are E pterms that
define an n-place and an (n + 2)-place function. Then the function
that comes from these by primitive recursion is defined by the E
pterm H(xl,...,xn,xn+l,y):

3s(lh(s) = xn+ 1 + 1 A F(x1,... , xn, so)

A bw<xn+1G(x1,...,x,,,w,Sw) Sw+1) A Sx., =y)

This formula is visibly E; it may be shown to be a pterm by induction
on x,+ 1. Moreover,

F-h(x1,...,xn,0) = f(x1,...,xn) and
I h(xl,...,xn,w+ 1)=g(x1,...,xn9 w,h(x1,...,xn,w))

However, it is not only primitive recursive functions that are defined
by E pterms. The Ackermann function ack, defined by

ack(i, 0) = 2

ack(0, j + 1) = ack(0, j) + 2

ack(i + 1, j + 1) = ack(i, ack(i + 1j))

is not primitive recursive' but is defined by the E pterm H(x, y, z),
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3s(lh(s) = x + 1 A Vi <, x(lh(si) > 1 A si,0 = 2) A lh(sx) = y + 1 A

sx,y = Z A Vj < lh(so) so,;+ 1 = so,; + 2 A

Vi < xVj < lh(si+ 1) - 1(si+ 1,; < lh(si) A Si+ 1,i+ 1= si,si+ 1,;))

where we have written, e.g., "sx,y" instead of "sx,,". End of digression.

Terms and formulas of PA in PA

We can now treat the terms and formulas of PA.
If a is a term or formula of PA or one of the symbols 1, --)., `d, =, 0,

s, +, x, and i is its Godel number, then we write: ra, instead of: i.

Definitions. r 1-1r _,-1rye r = -1 r0, rs, r+ , and r x ,
are, respectively, the terms 1,3,5, 7, 9,11,13, and 15.

The Godel number of 0 is 9; but that of r0,, i.e., 9, i.e., sssssssssO,
is very large.

Definition. Variable(v) is the A formula 3i < v v = 2 x i + 17.

(55) H-i Variable(r 1)

Thus it is provable in PA that d is not a variable.
We earlier gave the definition of term of PA: t is a term if and

only if there is a finite sequence whose last value is t, each value
of which is either 0, a variable, the ordered pair of s and an earlier
value of the sequence, the ordered triple of + and two earlier values
of the sequence, or the ordered triple of x and two earlier values
of the sequence.

Definition. Term(t) is the formula

3s[FinSeq(s) A lh(s) > 0 A sih(s)_ 1= t n

Vi < lh(s)(si = r0, v Variable(si) v 3j, k < i[si = (rs,, sj) v

Si = (r+ 1, s;, sk) v Si = (r x ,, s;, sk)] )]

Let "A(s, t)" abbreviate "[FinSeq(s) A )] )]" in the definition of
Term(t). A(s, t) is clearly a A formula and so Term(t) is clearly a E
formula. But because of the unbounded quantifier "Y', further
argument is needed to show that Term(t) is A. (Cf. Definition 23
of "On formally undecidable propositions... ." and the accompany-
ing footnote.) The following theorem, whose (grisly) proof provides
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that argument, shows that Term(t) is indeed A:

(56) H 3sA(s, lcm [i + 1: i < t + 2] + 1
3a<lcm[1+(i+l)b:i<t+1]3s<((a,b),t+l)A(s,t)

Proof. In outline: Ifs is a finite sequence that shows t to be a term,
then there is an irredundant finite sequence s' of which each value
is < t. By an application of the pigeonhole principle, the length
of s' is t + 1. By the /3-function lemma, there is such a sequence

((a, b), t + 1) for some a, b bounded as in the statement of the
theorem by functions defined by E pterms.

In full detail: The - direction is obvious. For the converse,
suppose that A(s, t). Then there is a sequence s' such that A(s', t)
and (*) for all i < lh(s'), si < t. (Intuitively, we obtain s' from s by
inductively deleting values larger than t from right to left.)

For: by induction on j, there is a sequence s' such that A(s', t)
and (*j) if j < lh(s') = k', then for all i, if k' - j < i < k', then s' < t.

For if j = 0, s is a suitable s'. Suppose that A(s', t), (*j) holds for
s', and j + 1 < lh(s') = V. Let c = k' - (j + 1). If s' > t, let s" be the
result of deleting s' from s', i.e., the sequence 1,k>; otherwise
let s" = s'. Then (*j + 1) holds for s". Moreover, A(s", t): if s' > t,
l > c, and s,= (say) (gn (+ ), s;., s;..), then si,, si , < s, < t, and s,,, s. sc.

Setting j = lh(s') in (*j) gives an s' such that A(s', t) and for which
(*) holds. A similar argument shows that we may also assume that
for all Q, if i <j < lh(s'), then s' 0 s'.

Relettering: s' as: s, we may assume that for all i < lh (s), s; < t,
and for all i <j < lh(s), s; r s;.

It follows by a version of the pigeonhole principle (which states
that if m pigeonholes contain among them n letters and n > m, then
some pigeonhole contains at least two letters) that lh(s) < t + 1.

For: for all finite sequences s, if for all i < t + 1, s; < t, then for
some i, j, i < j < t + 1 and s; = s;. The proof is by induction on t:
The statement is trivial for t = 0. Suppose it true for t. Assume that
for all i < t + 2, s; < t + 1. We must show that for some i < j < t + 2,
si = s;. Clearly, we may assume that for at most one i < t + 2, s; = 0.
Let s' be a sequence such that for all i < t + 1, s'= s; - 1. (The
existence of such an s' can be proved by induction as above.) Then
for all i < t + 1, s' < t, and by the induction hypothesis, for some
i,j, i<j<t+1, s=s'.. If for no i<t+1, s;=0, then s;=s'+1=
s + 1 = s j, and we are done. Thus we may assume that there is
exactly one 1 < t + 1 such that s, = 0 and hence that st+ 2 0. Let
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s" be such that s"=s,-1 ifi<1and =si+1-1ifl+1<i<t+2.
Then for all i < t + 1, s< < t; by the induction hypothesis for some
Q, i <j < t + 1, s = s , and thus for some i, j, i <j < t + 2, s; = Si.

We conclude that for some finite sequence s, A(s, t), lh(s) < t + 1,
and for every i < lh(s), s< < t. By the fl-function lemma, there
are a, b such that for all i < t + 1, #(a, b, i) = si, b < lcm [i + 1:
i<max(t+1,max[s,:i<t+1])+1]+1=lcm[i+1:i<t+2]+1,
and a < lcm[1 + (i + 1)b: i < t + 1]. So for some finite sequence
s' <((a, b), t + 1), A(s', t). -1

The atomic formulas of PA are identities and I.
AtForm(x) is the formula

(3t <x3t' < x[Term(t) A Term(t') A X = ( _,, t, t')] v x = 1,)

AtForm(x) is a A formula, since Term(t) is A.
Since the formulas of PA are built up in the usual manner from

atomic formulas by means of truth-functional connectives and
quantifiers, the definition of Formula(x) is similar to that of Term(t).

Formula(x) is the formula

3s[FinSeq(s) A lh(s) > 0 A sm(s)_ 1= X A

Vi < 1h(s)(AtForm(si) v 3j, k < is, = s;, sk) v

3j < i3v[Variable(v) A Si = (r'`d,, v, sk)])]

There are unbounded quantifiers 3s and 3v in the definition of
Formula(x). The proof that these can be bounded by x" is quite
similar to that of (56) and we omit it.

Of course, it is now possible to prove in PA the sentence
Vx(Formula(x) Formula ((-+ ,, x, r1,)), asserting the existence of
the negation of any formula, as well as many other sentences of
PA stating syntactic facts of a similarly elementary and familiar
character. We shall not undertake any systematic exposition of the
elementary syntactic facts of this kind that can be proved in PA.

Under any standard formulation of logic, e.g., that of Tarski and
Monk,' "axiom of PA" turns out to be defined by some A formula
Ax(x) of PA. We suppose such a definition given. We also suppose
given a E pterm sub(t, i, x) for the operation of substituting the term
that is the value of t for (all free occurrences of) the ith variable in
the formula that is the value of x.9

We now complete the sequence of our definitions of the main
concepts of Syntax.
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ConseqByModPon(x, y, z) and ConseqByGen(x, y) are the A for-
mulas

(Formula(x) n Formula(z) n y = (r-->-I, z, x)) and
3v < x(Formula(y) A Variable(v) A x = (Y1, v, y)), respectively.

The last A formula in our series is Pf (y, x),

(FinSeq(y) A Slh(y)_ 1 = x A Vi < lh(y) - 1 [Ax(yi) v

3j < i3k < i ConsegByModPon(yi, Y j, Yk) v

3j < i ConsegByGen(yi, yj)] )

The formula Bew(x), which expresses provability in PA, is simply

3yPf(y,x)

It is evident that Bew(x) is E; but Bew(x) is not A (unless PA is
inconsistent). We may now begin to investigate what PA proves
about provability in PA.

The basic properties of Bew(x)

Since Bew(x) is a E formula, for any sentence S of PA, Bew(rS,)
is a E sentence; i.e., (iv), found at the beginning of this chapter,
holds. Thus if S is a sentence and I-S, then Bew(rS-1) is a true Z
sentence, and by (17), HBew(rS,); i.e., (i) holds.

We now show that (ii) also holds.

(57) Let S and T be sentences of PA
Then F- Bew (r(S -* T),) -' (Bew (rS,) -+ Bew (I- T-1))

Proof. It is sufficient to observe that

I- Pf(y,' (S-+T)')A rTl)
(Intuitively, since modus ponens is one of the two rules of inference
of PA, the finite sequence whose values are those of a proof of
S - T, followed by those of a proof of S, followed by the sentence
T, is a proof of T.) -

(v) remains: we must show that f- S -+ Bew(rS-1) for any E sentence
S. We first need to show that the function that assigns to every
number i the Godel number of the numeral i is defined by a Z pterm.
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Definition. Num(x, y) is the formula

3s(lh(s)=x+1 A so=r'0, A Vi<xsi+1 =(rs-l,5;) A sx=y)
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Num(x, y) clearly works as desired.
We also need a E pterm for the function that assigns to each i

the Godel number of the ith variable.

Definition. var(x) = 2 x x + 17.

Definition. su(x, y, z) = sub(num(x), var(y), z).

The value of the function defined by the E pterm su(x, y, z) for any
i, j, k is (the Godel number of) the result, F f(i), of substituting i for
the jth variable vj in the formula with Godel number k. So, e.g.,

(58) I. su(3, 4, rv4 = v11) = F3 = v1,

We must now explain a piece of notation: `Bew [F]'.
Suppose that F is a formula of PA in which exactly m variables

are free and that these are vk,, ... , vkm, with k1 < . . < km. Then
Bew[F] is the formula

Bew(su(vkm, km, ... , su (vk2, k2, su(vk,, k1, rF l)) ...) )

Notice that Bew [F] has the same variables free as F, namely,
Vk,..... vkm. Bew [F] is true of the numbers j1,.. . , im (when these are
assigned to Vk,, ... , vkm, respectively) if and only if the result

m)

of respectively substituting the numerals i 1, ... , im denoting those
numbers for the variables vk,, ... , vkm in F is a theorem of PA. If F
has no free variables, i.e., if F is a sentence, then Bew [F] is to be
Bew('F").

(59) ("provable modus ponens")
For any formulas F, G of the language of PA,
H Bew [(F -. G)] -. (Bew [F] -> Bew [G] )

Proof. To reduce clutter, let us suppose that the free variables of
F are v2 and v3, and that those of G are v1 and v3. Then
Bew [F] is Bew(su(v3, 3, (su(v2, 2, r-F,)))),
Bew [G] is Bew(su(v3, 3, (su(v1,1, rG-1)))), and
Bew [(F - G)] is Bew(su(v3, 3, su(v2, 2, su(v1,1, r(F -> G)-')))).
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Observe now that

su(v3, 3, su(v2, 2, su(v1,1, r(F -> G),)))

= (rte-i, su(v3, 3 (su(v2, 2, rF,))), su(v3, 3, (su(v1,1, rG-1))))

(Intuitively: substitution of numerals in two formulas commutes
with forming their conditional.) Then, as in the proof of (57),

F- Pf (y, su(v3, 3, su(v2, 2, su(v1,1, r(F -+ G),))))

A Pf (y', su(v3, 3, (su(v2, 2, IF'))))

--> Pf (y*y'* [su(v3, 3, (su(v1,1, rG,)))], su(v3, 3, (su(v1,1, rG,))))

An analogue of (i) also holds:

(60) For any formula F of PA, if F- F, then I- Bew [F]

Proof. Suppose, again for the sake of simplicity, that m = 2 and the
two free variables of F are v3 and v5. Then Bew[F] is the formula
Bew(su(v5, 5, su(v3, 3, IF1))). Let G be `dv3`dv5F. Then G is a sentence,
and by (i), F-Bew(rG'). Let H be `dv5F. We want to see that
I-Bew(rG-1)- Bew [H]. [Intuitively: is provable by logic
alone and is indeed an axiom of many formulations of logic; thus
to obtain a proof of H3(i), append a proof of (G -> to a proof
of G, and apply modus ponens.]

Thus, since
F- 3y Pf (y, (r-'-1, rG-1, su(v3, 3, rH-1))) and
F- Pf (y, (r-',, rG,, su(v3, 3, rH,))) A Pf (y', rG,)

- Pf (y'*y* [su(v3, 3, rH,)], su(v3, 3, rH,)),
existentially quantifying, we have that
F- Bew(rGl) Bew(su(v3, 3, rH,)), i.e.,
F- Bew('G,) --> Bew [H]. Similarly,
F- Bew [H] - Bew [F], and therefore F- Bew [F]. -1

We will now prove that for any E formula F, F- F -+ Bew [F]. (v)
is the special case of this result in which F is a sentence. In particular,
since Bew(rS-1) is a E sentence, F- Bew(rS,) -p Bew(rBew(rS,),), i.e.,
(iii) holds.

(61) ("Provable E -completeness")
For any E formula, F- F -+ Bew [F]

Proof. We begin by observing that we may suppose F to be a strict
E formula, for if F is E, then for some strict E formula G, F is equi-
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valent to G, i.e., H F - G and I G -+ F, whence by (60), H Bew [G -> F].
But then by (59), F- Bew [G] -* Bew [F]. And then if I- G -* Bew [G],

F - Bew [F].
We first consider the case in which F is some formula u + v = w.

Suppose that F is the formula v5 + v2 = v3. We want to see that
I-v5+V2=v3-- Bew[v5+v2=v3]

Here is an argument, formalizable in PA, that shows this. The
argument is nothing but an elaboration of the proof of (7)

Let i5 be arbitrary. (In the formalization, the variable v5 plays
the role of i5 in the present argument.)

Suppose that for an arbitrary i3, i5 + 0 = i3. (In the formaliza-
tion, axiom (3) is written down at about this point.) Then i5 = i3,
and i5 is i3. (Here identity axioms from logic would be used.)
vo + 0 = vo is an axiom of PA, hence provable. Then by generaliza-
tion, Vvo vo + 0 = vo is provable. `dvo vo + 0 = vo i5 + 0 = i5 is a
logical axiom. Thus i5 + 0 = i5, i.e., i5 + 0 = i3 is provable. Thus for
all i3, i5 + 0 = i3 is provable if i5 + 0 = i3.

Let i2 be arbitrary. Suppose that for all i3, i5 + i2 = i3 is provable
ifi5+12=13.Let 14 =i2+ 1. We shall show that for all'3,15+14=13
is provable if i5 + i4 = i3. Now let i3 be arbitrary and assume that
',5+'4='3. Then i5 +02+ 0=05 +'2)+ 1 ='3- Since 0 is not a
successor, i3 zA 0, and thus for some number il, i3 = i1 + 1. So
(i5 + l2) + 1 = it + 1 and i5 + i2 = il. By the supposition, i5 + i2 = it
is provable. By the axiomhood of (4), Vvodvl vo + svl = s(vo + v1)
is provable, and therefore so is i5 + sit = sil. But sit is i4 and sil is
i3. Thus i5 + i4 = i3 is provable. Therefore for all i3, 15 + 14 = 13
is provable if is + i4 = i3. Thus for all i2, if for all i3, i5 + i2 = i3 is
provable if i5 + i2 = i3, then, where i4 = i2 + 1, for all i3, 15 + 14 = 13
is provable if i5 + i4 = i3.

By induction (at this point in the formalization, an induction
axiom occurs), for all i3, is + i2 = i3 is provable if i5 + i2 = i3. Thus
if i5 + i2 = i3, then the result is + i2 = i3 of respectively substituting
i2, i3, and is for the 2nd, 3'd, and 5" variables in v5 + v2 = v3 is
provable.

Similarly for other choices of variables, and similarly if F is a
formula u = v, 0 = u, su = v, or u x v = w.

To prove the theorem, it suffices to show that I F -- Bew [F], if
F is a formula that comes from formulas G such that f- G - Bew [G]
by conjunction, disjunction, existential quantification, or bounded
universal quantification.
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Conjunction: Suppose that F is (G A H),
G-*Bew[G] and

H -> Bew [H]. Then
F -* (Bew [G] A Bew [H] ). Now

F- G -* (H -* F). By (60),
H Bew [(G --> (H -- F))]. But by (59),
F- Bew [(G (H -> F)] -> (Bew [G] -+ Bew [(H -+ F)]) and
F- Bew [(H -> F)] - (Bew [H] -+ Bew [F] ). By the propositional calculus,
F-F-+Bew[F].

The argument for disjunction is similar but somewhat easier.
Existential quantification: Suppose that F is 3xG and

F- G - Bew [G]. By logic,
F- G -> F. By (59) and (60),
F- Bew [G] - Bew [F]. Thus
F- G Bew [F]. The variable x is not free in F, hence not free in

Bew [F], which has the same free variables as F. By logic,
F- 3xG - Bew [F], i.e.,
F- F -> Bew [F].

Bounded quantification is delicate: Let H be an arbitrary formula.
We wish to see that Bew [Hy(sy)] and Bew [H]y(sy) are equivalent.
Suppose that y is Vk, the kth variable, and suppress mention of
variables other than y and numbers other than the one whose
numeral is substituted for y. Then by a formalization of the proof
of the claim that for any number i, the result of substituting si for
y in H is the result of substituting i for y in Hy(sy),
F- su(y, k, rHy(sy),) = su(sy, k, rH,). Now
Bew [Hy(sy)] is Bew(su(y, k, rH,,(sy),)) and
Bew[H]y(sy) is Bew(su(sy,k,nHl)); thus
F- Bew [Hy(sy)] H Bew [H] y(sy).
Similarly, since y is not free in Hy(0),
F- su(y, k, rHy(0)1) = rHy(0) l = su(0, k, rH,), and
F- Bew [Hy(0)] <--> Bew [Hy] (0).

Now suppose that F is Vx < yG and
F- G -+ Bew [G]. Thus Fy(0) is Vx(x < 0 -> Gy(0)). Since

x<0,
F- Fy(0),
F- Bew[Fy(0)] by (60),
F- Bew [F]y(0) by the foregoing, and
F- Fy(0) -> Bew [F]y(0), i.e.,
F- (F --> Bew [F])y(0). Then since
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F-x<sy*x <yvx=y,
F- Fy(sy)E-+(F A G), whence by (59) and (60),

Bew [F] A Bew [G] - Bew [Fy(sy)]. Since
H G - Bew [G],
F- (F -* Bew [F]) -> (Fy(sy) -> Bew [F] A Bew [G] ). And since
I- Bew [Fy(sy) ] <- Bew [F] y(sy),
I- (F -+ Bew [F]) -+ (Fy(sy) - Bew [F]y(sy) ), i.e.,
F- (F -+ Bew [F]) -+ (F -+ Bew [F])y(sy), and therefore
F- Vy((F -> Bew [F]) - (F -+ Bew [F])y(sy)). By an induction axiom,
F- F - Bew [F].

Thus for every E formula F, I- F -+ Bew [F]. -I

Afterword on the choice of PA

In the next chapter we are going to show how to construct from
any formula P(y), a sentence S for which the biconditional sentence

S is then equivalent in PA to the
assertion that S has the property expressed by P(y). To carry out
the construction, which is given in the proof of the generalized
diagonal lemma, the full power of PA is not needed; in fact, the
subtheory Q of PA, whose axioms are axioms (1)-(6) and the
theorem x = 0 v 3y x = sy of PA, suffices.

Q is an extremely weak theory, incapable even of proving the
commutativity of addition, and is certainly not a sufficient theory
in which to develop a theory of the syntax of PA or of any other
system. But the full power of PA is also not needed to obtain the
theorems about the syntax of PA and the concept of provability
in PA that we have been concerned to establish in the present
chapter. Certain appreciably weaker systems, whose axioms do not
include all of the induction axioms, suffice for the theory of finite
sequences and the proofs of the derivability conditions (for PA and
for those weaker systems themselves). In those weaker theories, it
should also be noted, stronger theorems about the syntax of PA
than those we have stated can also be proved. One example is the
single sentence of the language of PA that generalizes condition (ii)
and asserts that all provable conditionals with provable antecedents
have provable consequents; another is a similar generalization of
condition (iii).

The phenomenon of a theory able to prove facts about its own
syntax is as much an example of "self-reference" as is that of a
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sentence asserting its own unprovability (say); but PA, as we have
said, is by no means the weakest theory wherein this phenomenon
is displayed.

PA does, however, have a noteworthy trait: among standard
arithmetical theories capable of proving the diagonal lemma and
results about their own syntax like the derivability conditions, PA
is distinguished as the simplest, i.e., simplest to describe, now known.
For this reason it will be the theory we primarily use and examine
in the pages that follow.



3

The box as Bew(x)

One of the principal aims of this study is to investigate the effects
of interpreting the box of modal logic to mean "it is provable (in
a certain formal theory) that...". When modal logic is viewed in
this way, a question immediately comes to mind: Which principles
of modal logic are correct when the box is interpreted in this way?
The answer is not evident; near the end of this chapter we shall
say what the answer is, and in Chapter 9, when we prove the arith-
metical completeness theorems of Solovay, we shall show that it is
the answer.

In order to express our question precisely, we make two definitions:

A realization' is a function that assigns to each sentence letter a
sentence of the language of Peano arithmetic. It is standard practice
to use "*" as a variable over interpretations; we shall use "#" as well.

The translation A* of a modal sentence A under a realization * is
defined inductively:

(1) 1 = 1

(2) p* = *(p) (p a sentence letter)
(3) (A-'B)*=(A*-'B*)
(4) (A)* = Bew [A*]

(Bew[A*] = Bew(rA*,), as A* is a sentence.)

We have taken 1 and to be among the primitive logical
symbols of PA, and therefore the translation of any modal sentence
under any realization is a sentence of the language of PA. Clauses
(1) and (3) guarantee that the translation (under *) of a truth-
functional combination of sentences is that same truth-functional
combination of the translations of those sentences. Clause (4)
ensures that if the translation of A is S, then the translation of A
is Bew(rS,), the result of substituting the numeral for the Godel
number of S for the free variable x in Bew(x), which is a sentence
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of Peano arithmetic that may be regarded as expressing the assertion
that S is provable.

If * and # are realizations that assign the same sentences of arith-
metic to all sentence letters occurring in A, then A* = A#. Thus if
A is a letterless sentence, A* = A# for all realizations * and ##, and
the identity of the sentence A* of arithmetic does not depend on *.

Our original question - Which principles of modal logic are correct
if the box is taken to mean "it is provable that..."? - now gives way
to two precisely formulated questions: Which modal sentences
A are such that, for all realizations *, A* is true (in the standard
model N)? Which modal sentences A are such that, for all realizations
*, A* is provable in PA? Since A* is provable in PA if A* is
true, an answer to the first of these questions, which seems a more
likely explication of our original question, immediately supplies one
to the second. Both, however, are interesting questions with interest-
ing answers, and we shall be able to give a satisfactory answer to
the first only by using techniques devised to answer the second.

Recall the system K4 from Chapter 1. Its axioms are all tautologies,
all distribution axioms, and all sentences A -> A, and its rules
of inference are modus ponens and necessitation. We shall show
below that if A is a theorem of GL, then for every realization *,
A* is a theorem of PA. In order to do so, we first show that the
same holds for the subsystem K4 of GL.

Theorem 1. If K4 I- A, then for every realization *, PA I- A*.

Proof. If A is a tautological combination of modal sentences, then
A* is the same tautological combination of sentences of the language
of PA, and therefore PA F- A*.

In Chapter 2 we saw that for every pair S, T of sentences of the
language of PA, PA I- Bew(r(S - + T)-') -> (Bew(rS-') -- Bew(rT,)).
Thus for every realization * and every pair A, B of modal sentences,
PA I- Bew(r(A* - B*),) - (Bew(rA*,) - Bew(rB*,)). Since

Bew(r(A* -+ B*),) - (Bew(rA*,) - Bew(rB*,))
= (E] (A -+ B) -+ (E] A -+ El B))*,

we have that for every pair A, B of modal sentences, PA B) ->

In Chapter 2 we also saw that for every sentence S of the language
of PA, PA 1- Bew(rSS',) -+ (Bew(rS,)-1). Thus for every realization *
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and every modal sentence A, PA 1- Bew(rA*,) --> Bew(rBew(rA
Since Bew (rA*,) -+ Bew ('Bew (r-A *,),) = ( A -> A)*, we have
that for every modal sentence A, PA I- ( A --> A)*.

If PAI-(A->B)* and PAI.A*, then FB*, since (A --o B)* = (A* -+ B*).
Lastly, if PA I- A*, then, as we also saw in Chapter 2,

PA I- Bew(rA*,), and thus PA F-- A*, since Bew(rA*,) = A*.
It follows that if A is a theorem of K4, then A* is a theorem of

PA. -l

In order to prove that every translation of every theorem of GL
is a theorem of PA, we prove a fundamental theorem about PA
and other formalized theories, the (generalized) diagonal lemma.

The generalized diagonal lemma. Suppose that Yo, , Yn,
Z1,.. . , z,n are distinct variables and that Po(Yo, , Y z), . . . ,

Pn( Yo, , Yn, z) are formulas of the language of PA in which
all free variables are among Yo, ... , yn, z. (`z' abbreviates
6z,,..., Then there exist formulas SO(z), ... , Sn (z) of the
language of PA in which all free variables are among z, such
that

PA I- So (z) -+ Po (rSo (z),, ... , rSn (z),, z), ... , and
PA I- S.(z)+--+Pn(rS0 (z)1, ... , rSn(z)1, z)

Proof. Let Su (w, xo, ... , x, , y) be a E pterm for the (n+2)-place
function subst whose value at a, bo,... , bn is the Godel number of
the result of respectively substituting the numerals b0,. .. , bn for the
variables x0, ... , xn in the formula with Godel number a.

For each i < n, let k, be the Godel number of

PL(su(x0, x0'...' xn), ... , su(xn, x0) ... , xn), z)

and let S;(z) be the formula

P; (su(ko, k0,. .. , kn), ... , su (kn, ko,... , kn), z)

We need only show that

PA I- su (k;, ko,... , kn) = rS; (z),

But the result of respectively substituting the numerals k0. .... , kn

for the variables x0,. .. , xn in the formula with Godel number k;,
i.e., in the formula

P, (su (x0, x0, ... , xn), .... , su(xn, x0, ... , xn), z)
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is the formula S,(z) and therefore subst(k;, ko,... , kJ = the Godel
number of S;(z). Therefore the E sentence

/ r /

is true, and by the provability of true E sentences,
PA H su(k;, ka, ... , kn) _ rSi(z)-1 -I

Let us observe that if the formulas PO (y0, , Yn, z), . .

Pn (YO, , Yn, z) are all E or all 0, then the formulas S0 (z), ... , Sn (z)

are also all E or all 0, respectively.

Corollary 1. Suppose that PO(YW, , Yn), , Pn(Yo, .. , Yn)

are formulas of the language of PA in which all free variables
are among Yo, ... , yn. Then there exist sentences Se, ... , Sn of
the language of PA such that

PA I - So H Po (rSo,, ... , rSn,), ... , and
PA F- Sn<-->Pn(rS0,, ..J-Sn,).

Proof. This is just the case of the generalized diagonal lemma in
which m = 0. -I

Corollary 2 (the diagonal lemma). Suppose that P(y) is a
formula of the language of PA in which no variable other
than y is free. Then there exists a sentence S of the language
of PA such that

Proof. This is just the case of Corollary 1 in which n = 0. -1

In 1952, Leon Henkin raised the question2 whether the sentence
S constructed as in the diagonal lemma by taking P(x) to be Bew(x)
is provable or not; for such S, PA H S H Bew (rS,). The question was
answered in 1954 by M. H. Lob, who showed that for all sentences
S, if PA Bew(rS,) - S, then PA F- S.3 This result is now known
as Lob's theorem. Lob's theorem, of course, immediately settles
Henkin's question, for if PA SHBew('S,), then PA H Bew(rS,) -. S,
and therefore PA F- S.

Lob's theorem is utterly astonishing for at least five reasons.
In the first place, it is often hard to understand how vast the
mathematical gap is between truth and provability. And to one
who lacks that understanding and does not distinguish between
truth and provability, Bew(rSl) -> S, which the hypothesis of Lob's
theorem asserts to be provable, might appear to be trivially true
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in all cases, whether S is true or false, provable or unprovable. But
if S is false, S had better not be provable. Thus it would seem that
S ought not always to be provable provided merely that (the
possibly trivial-seeming) Bew(rS,) S is provable.

Secondly, Bew seems here to be working like negation. After all,
if -' S -i S is provable, then so is S; proving S by proving -' S -* S
is called reductio ad absurdum (or, sometimes, the law of Clavius).
Moreover, inferring S solely on the ground that (S -> S) is demon-
strable is known as begging the question, or reasoning in a circle.
To one who conflates truth and provability, it may then seem that
Lob's theorem asserts that begging the question is an admissible
form of reasoning in PA.

Thirdly, one might have thought that at least on occasion, PA
would claim to be sound with regard to an unprovable sentence
S, i.e., claim that if it proves S, then S holds. But Lob's theorem
tells us that it never does so: PA makes the claim Bew(rS-') -. S
that it is sound with regard to S only when it obviously must, when
the consequent S is actually provable. As Rohit Parikh once put
it, "PA couldn't be more modest about its own veracity".

Fourthly, one might very naturally suppose that provability is a
kind of necessity, and therefore, just as ( p -> p) always expresses
a truth if the box is interpreted as "it is necessary that" - for then

( p - p) says that it is necessarily true that if a statement is
necessarily true, it is true - Bew(r(Bew(rS I) -* S),) would also
always be true or at least true in some cases in which S is false and
not true only in the rather exceptional cases in which S is actually
provable.

Finally, it seems wholly bizarre that the statement that if S is
provable, then S is true is not itself provable, in general. For isn't
it perfectly obvious, for any S, that S is true if provable? Why are
we bothering with PA if its theorems are false? And how could any
such (apparently) obvious truth not be provable?

The proof of Lob's theorem we are about to present is reminiscent
of Curry's paradox, which is a negation-free version of Russell's
paradox:

Let "SC" abbreviate "Santa Claus exists". Let c = {x: if xcx, SC}. Assume
that cc-c; then c meets the defining condition of c, and thus if cec, SC;
thus, on the assumption that cec, SC. We have now shown outright, i.e.,
on no assumptions at all, that if cc-c, SC. Thus c does after all meet the
defining condition of c, and so cc-c, whence SC.
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On reading Lob's proof, Henkin devised the following para-
doxical "proof" that SC:

Let Sam be the sentence "if Sam is true, SC". Assume that Sam is true;
then "if Sam is true, SC" is true; thus if Sam is true, SC; and so SC by
modus ponens. Thus we have shown that SC on the assumption that Sam
is true and have therefore shown outright that if Sam is true, SC. But
then "If Sam is true, SC" is true, i.e., Sam is true, and by modus ponens
again, SC.

Henkin's paradox appeals to the Tarski truth scheme:

'-' is true if and only if
in place of the unrestricted comprehension principle of naive set
theory,

3y`dx(xey+-+... x ... )

by which the existence of c was inferred in Curry's paradox.

Lob's theorem. If PA I- Bew (rS l) -+ S, then PA F- S.

Proof. Let Q(x) be (Bew(x) -+ S). By the diagonal lemma, there is a
sentence I such that

PA F- I F-+Q(rn), that is,

PA I- I<-+(Bew('I') -+ S).

It will enhance readability if we abbreviate "Bew(' fl), etc., by "PI",
etc. Thus we have

(1) PARK-+(PI-*S)

By (1),

(2) PA F- I -* (PI -+ S)

whence by (i) of Chapter 2,

(3) PA I- P(1-+ (PI -> S))

By (ii) of Chapter 2,

(4) PA H P(I - (PI -+ S)) -+ (PI -+ P(PI -+ S) )

By (3) and (4),

(5) PA F- PI -+ P(PI -+ S)

By (ii) of Chapter 2 again,

(6) PA F- P(PI -+ S) -+ (PPI -+ PS)
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Thus by (5) and (6),

(7) PA H PI -+ (PPI -> PS)

By (iii) of Chapter 2,

(8)

PA H PI , PS

Now suppose that PA F Bew(rS,) S, i.e., that

(10) PAI-PS-->S

By (9) and (10),

(11) PAI-PI -+S

By (1) and (11),

(12) PA}-I

By (i) -of Chapter 2,

(13) PA I-- PI

whence by (11) and (12),

(14) PAl-S

There is a variant proof of Lob's theorem due to Kreisel and
Takeuti. Suppose that

(1) PAI-PS-IS

Let t(x) be a E pterm for a function whose value for any number
that is the Godel number of a sentence J is the Godel number of
the conditional with antecedent J and consequent S. Setting P(y) =
Bew(t(y)) in the diagonal lemma yields a sentence J such that
PA I- J H Bew (t(rJ,) ). Since PA I- t(rJ1) = r(J -+ S),, we have

(2) PAlJHP(J->S)

By (2),

(3) PAI-P(J->S)->J

whence by (i) of Chapter 2,

(4) PA I- P(P(J -* S) -+ J)
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By (ii) of Chapter 2,

(5)

whence by (4) and (5),

(6) PA F- PP(J -+ S) - PJ

By (iii) of Chapter 2,

(7) PAHP(J-+S)->PP(J->S)

By (6) and (7),

(8) PA H P(J - S) -> PJ

By (ii) of Chapter 2,

(9) PA F- P(J -. S) -+ (PJ -> PS)

Thus by (8) and (9),

(10) PA H P(J -> S) --> PS

By (1) and (10),

(11) PAHP(J-*S)->S

whence by (2) and (11),

(12) PMF-J-S
By (i) of Chapter 2,

(13) PA F- P(J - S)

and then by (2) and (13),

(14) PAF-J

whence by (12) and (14),

(15) PA l- S

The second incompleteness theorem for PA is an immediate
consequence of Lob's theorem:

The second incompleteness theorem for PA. If PA is
consistent, then PAV-i Bew (r- -L -1).

Proof. If PA H-i Bew(r1-'), then PA F- Bew(rl,) -> 1, whence by
Lob's theorem, PM- 1 and PA is inconsistent. -I
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The Lob rule is the modal-logical rule of inference:

From F- ( A - A), infer F- A

59

Let K4LR be the system of modal logic whose axioms are those
of K4 and whose rules of inference are modus ponens, necessitation
and the Lob rule.

According to Theorem 1, if K4 F- A, then for all realizations *,
PA F- A*. We now also know that if K4LR F- A, then PA F- A*. For
if PA F- ( A -> A)*, i.e., if PA F- Bew (rA *,) - A*, then by Lob's
theorem, PA F- A*. We now want to see that GL and K4LR have
the same theorems.

According to Theorem 18 of Chapter 1, GL F- A -> A. And
GL is closed under the Lob rule, for if
GL F- A -+A, then by necessitation,
GL F- ( A - A). But also
GL F- ( A -> A) - A, whence by modus ponens
GL F- A, and by modus ponens again,
GLF-A.

Thus if K4LR F- A, GL F- A. To show the converse, let
B = ( A --> A), C = A, and D = B --> C. We are to show that
K4LR F- D. We have that
K F- D --> ( B -* C) (a distribution axiom) as well as
K F- B -+ ( C -+ C) (another distribution axiom). Since B begins with,
K4 F- B -> B, whence by the propositional calculus
K4 F- D -. (B -. C), i.e.,
K4 F- D - D. By the Lob rule,
K4LR F- D, Q.E.D. -1

Theorem 2. If GL F- A, then for every realization *, PA F- A*.

Proof. K4LR and GL have the same theorems. -I

We call a modal sentence A always provable if for every realization
*, PAF-A*.

A variant proof of Theorem 2 may be given by appealing to
Theorem 1, the diagonal lemma, and Theorem 23 of Chapter 1,
according to which, K4 F- In
view of Theorem 1, it suffices to show that for any realization *,
PA F- ( ( A - A) -+ A)*. Let P(x) be the formula (Bew(x) -- A*).
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By the diagonal lemma, there exists a sentence S such that
PA F- i.e.,
PA F- SH(Bew(rS,) -> A*). By (i) of Chapter 2,
PA I- Bew(r(SH(Bew(rS,) - A*)),). Let # be a realization such that

#(p) = A* and #(q) = S. Then
PA F- (q H ( q -> p))#. By Theorem 23 of Chapter 1 and

Theorem 1,
PA I ( (q - (E] q --> p)) --- ( ( p - p) -> p))#, and therefore,

PA F- Bew(r(Bew(rA*,) -> A*) - A*) -> Bew(rA*,), i.e.,
-I

The arithmetical completeness theorem for GL, proved by Robert
Solovay, states that the converse of Theorem 2 holds and thus that
a modal sentence A is a theorem of GL if for every realization *,
PA H A*, if A is always provable. Solovay's theorem is proved in
Chapter 9.

Let us now look at some elementary examples of the ways in
which a study of GL can give us information about provability in
arithmetic.

Recall that Bew[S] is just Bew(rS,) if S is a sentence.

Terminology. Suppose that S and S' are sentences of the language
of arithmetic. Then the arithmetization of the assertion that

S is provable (in arithmetic) is the sentence Bew [S];
S is consistent (with arithmetic) is the sentence -i Bew [-i S];
S is unprovable is the sentence -i Bew [S];
S is disprovable (refutable) is the sentence Bew [-i S];
S is decidable is the sentence Bew [S] v Bew [, S];
S is undecidable is the sentence -, Bew [S] A - Bew [- S];
S is equivalent to S' is the sentence Bew [(S-S')];
S implies S' (S' is deducible from S, S' follows from S) is the

sentence Bew [(S S')];
... arithmetic is consistent is the sentence -i Bew [I]; and
... arithmetic is inconsistent is the sentence Bew [I].

The arithmetization of the assertion that if... then-is the
conditional whose antecedent and consequent are the arithmetiza-
tions of the assertion that ... and the assertion that-(and similarly
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for the other propositional connectives). An assertion is said to be
provable in PA when its arithmetization is. We shall often say "it
is provable that ...... meaning "the assertion that... is provable"
and shall often allow ourselves a certain amount of stylistic variation
in the choice of expressions with which we refer to assertions; for
example, we may use "the consistency of arithmetic" to refer to the
assertion that arithmetic is consistent or we may anaphorically use
"it" in place of "S", etc.

The second incompleteness theorem of Godel (for PA) is the
assertion that if arithmetic is consistent, then the consistency of
arithmetic is not provable in arithmetic. An easy argument, which
uses the fact that ( 1-> 1) 1 is a theorem of GL, shows that
the second incompleteness theorem, which of course is mathematic-
ally demonstrable, is in fact provable in PA: Since

GL F--,El and then
by Theorem 2, PA F- ( 1-p -, 1)*, that is,
PAF--1 Bew[1] -1 Bew[- Bew[1]]. But this theorem of PA is
just the arithmetization of the assertion that if arithmetic is consistent,
then the consistency of arithmetic is not provable in arithmetic.

Moreover, GL H J_ -+ 1, GL H 1, and so
GL 1-> (-, 1 n 1). Therefore the fol-
lowing assertion is provable in PA: if the inconsistency of arithmetic
is not provable, then the consistency of arithmetic is undecidable.

A theory T whose language is that of PA is said to be to-consistent
if there is no formula A(x) such that both T F- 3xA(x) and for
every number n, T F--i A(n). A sentence S in the language of a
theory T is said to be undecidable in T if neither T F- S nor T F--, S.
And T is incomplete if there is at least one sentence4 that is
undecidable in T. The first incompleteness theorem of Godel is the
assertion that if arithmetic is co-consistent, then arithmetic is
incomplete.

A theory T in the language of PA is said to be 1-consistent if
there is no A formula A(x) such that both T F- 3xA(x) and for every
number n, T F--, A(n).

If PA is co-consistent, then it is 1-consistent; and if 1-consistent,
then consistent (otherwise 1, and hence every sentence, is a
theorem).

We recall from Chapter 2 that Proof (y, x) is A. Thus if S is not
a theorem of PA, then no m is the Godel number of a proof of S,
for every m, Proof (m, r_5') is a true E sentence, and therefore
PA F- -, Proof (m, rS-).
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If PA is 1-consistent and S is not a theorem of PA, then Bew[S]
is not a theorem of PA. For if S is not a theorem, then for every
m, PA F--, Proof (m, rS,); and since Proof (x, r-S,) is A, if PA is
1-consistent, then Bew(rS,), = 3x Proof (x, rS,) is not a theorem
either. Thus if PA is 1-consistent, then 1 is not a theorem, Bew[±]
is not a theorem, Bew [Bew [1] ] is not a theorem,....

The foregoing argument that if PA is 1-consistent, then Bew [1]
is not a theorem can be formalized in PA; it is thus provable in
PA that if PA is 1-consistent, then the inconsistency of arithmetic
is not provable. As (suitable arithmetizations of) the assertions (a)
that if PA is co-consistent then PA is 1-consistent, (b) that if PA is
consistent then the consistency of arithmetic is not provable, and
(c) that if the consistency of arithmetic is undecidable then PA is
incomplete can all be proved in PA, the first incompleteness theorem
of Godel can also be proved in PA.

PA is 1-consistent. (Indeed, PA is w-consistent. Indeed, every
theorem of PA is true.) So none of 1, Bew [1], Bew [Bew [1] ],... is
a theorem of PA; by Theorem 2 it follows that none of 1, 1,

1, ... is a theorem of GL.
Lob's theorem states that for every sentence S, if PA F- Bew [S] S,

then PA F- S. Formalized Lob's theorem states that for every sentence
S, PA F- Bew(r(Bew(rS,) -- S),) -+ Bew(rS,), i.e., for every sentence
S, the conditional assertion that S is a theorem of PA if S is deducible
from the assertion that S is provable in PA is provable in PA. Since
GL F- ( p --* p) -> p, by Theorem 2, for every realization *,
PA F- ( ( p --* p) -+ p)*. Since every sentence S is *p for some
realization *, formalized L'ob's theorem does indeed hold.

A consequence is a "self-strengthening" of Lob's theorem: If
PA F- Bew('R,) A Bew(rS,) -> S, then PA F- Bew(rR,) S. Thus if
a statement is deducible from the hypotheses that it and another
statement are provable, then the statement is deducible from the
sole hypothesis that that other statement is provable: For suppose

PA F- Bew('R,) A Bew(rS,) -+ S. By the propositional calculus,
PA F- Bew (rR,) -* (Bew (rS,) - S), whence by (i) and (ii) of Chapter 2,
PAF-Bew(rBew(rR,),)-+Bew(rBew(rS,)-+S,). By (iii) of Chapter 2,
PA F- Bew(rR,) -+ Bew(rBew(rR,),). By formalized Lob's theorem,
PA F- Bew(rBew(rS,) -> S,) -+ Bew(rS,). Thus
PA F- Bew (rR,) -. Bew(rS,), and by the supposition,
PA F- Bew (rR,) -* S.

Can we prove (in PA) that if arithmetic is consistent, then it is
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1-consistent? If we let 1 Con be a suitable arithmetization of the
assertion that arithmetic is 1-consistent, we are asking whether
PA F- - Bew [ 1 ] -+ 1 Con. Four paragraphs back we saw that
PA F-1 Con -+ Bew [Bew [1 ] ]. The answer to our question is thus
"No, on pain of 1-inconsistency". For if we can prove
PA F--,Bew [ 1 ] -> 1 Con, then PA F- --iBew [ 1 ] -+ --,Bew [Bew [±],
and so PA F- Bew [Bew [ 1 ] ] -p Bew [ 1 ], whence by Lob's theorem,
PAI-Bew[±], and PA is 1-inconsistent.

A similar argument shows that PA fr` Bew [Bew [ 1 ] ] -+ 1 Con.
For PA F-1 Con -+ Bew [Bew [Bew [ 1 ] ] ], and thus we should
otherwise have PA F- - Bew [Bew [ 1 ] ] - Bew [Bew [Bew [ 1 ] ] ],
PA F- Bew [Bew [Bew [ 1 ] ] ] -+ Bew [Bew [ 1 ] ], and then by Lob's
theorem again, PA F-Bew [Bew [1] ], and PA would again be
1-consistent.'

If S is a sentence of the language of PA, then the sentence
Bew [S] -+ S is called the reflection principle for S, or reflection for
S. Lob's theorem thus asserts that for all sentences S, S is provable
if reflection for S is provable. No sentence consistent with PA implies
all reflection principles: If PA F- S -+ (Bew [R] -+ R) for all sentences
R, then PA F- S -+ (Bew [- S] -+ -7 S), whence by the propositional
calculus, PA F- (Bew [-, S] -i S), and by Lob's theorem, PA F- S,
that is, S is not consistent with PA.

-, Bew [ ± ] is, of course, equivalent to the reflection principle
Bew [ 1 ] - ±. And because PA F- Bew [ 1 ] -+ Bew [Bew [ 1 ] ],
-i Bew [Bew [1 ] ] is equivalent to the conjunction of the reflection
principles Bew [Bew [ 1 ] ] - Bew [± ] and Bew [ 1 ] -> 1. But there
is no single reflection principle that implies Bew [Bew [± ] ]. To
see this, we appeal to the fact that GL F- (( p -> p) -+ 1) -+

I. A direct proof of this result is not particularly difficult, and
the reader may wish to try to prove it now; however, the semantic
techniques to be developed in subsequent chapters yield, a proof
that is both instructive and satisfying. A proof is given in Chapter 7.

Thus if PA F- (Bew [S] -- S) -* - Bew [-i Bew [ 1 ] ], then where
p*=S, is true; it follows that I*
is true, and thus Bew [ 1 ] is provable, and PA is 1-inconsistent.

According to Theorem 24(a) of Chapter 1, GU- (pH p) -+
(p4-+ 1). From Theorem 2 it follows that for every sentence
S of the language of arithmetic, it is provable that if S is equivalent
to the assertion that S is unprovable, then S is equivalent to the
assertion that arithmetic is consistent. Since GL F- 1) ->
(0 p<-+0 --1 ±) (normality) and GL F-- -, 1+--+ 1 by Theorem
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21 of Chapter 1, GL I- (pH--i 1) -> ( pH 1). Thus, for every
S, it is provable that if S is equivalent to the assertion that S is
unprovable, then S is provable if arithmetic is inconsistent.

According to Theorem 24(b) of Chapter 1, GL I- (p H p) ->
(p+--+ T). For every sentence S, therefore, it is provable that if S
is equivalent to the assertion that S is provable, then S is equivalent
to anything that is provable. And since GL I- (p H p) -> p, if
S is equivalent to the assertion that S is provable, then S is provable.
In like manner, Theorem 24(c) shows that it is provable that if S
is equivalent to the assertion that S is disprovable, then S is equi-
valent to the assertion that arithmetic is inconsistent; 24(d) shows
that it is provable that if S is equivalent to the assertion that S is
consistent with arithmetic, then S is equivalent to anything that is
disprovable.

A conjecture arises. Every occurrence of p in each of -' p, p,
p, and -' p lies in the scope of some occurrence of .

Let us call a sentence modalized in p if every occurrence of p in that
sentence lies in the scope of some occurrence of .

Is it the case that for every other sentence A modalized in p and
containing no sentence letter other than p, there is a letterless
sentence H such that GL I- (pHA)- (p*-+H)? By Theorem 24
of Chapter 1, if A = p, p, p, or -i -i p, then we may
take H = -l 1, T, 1, or 1, respectively. And for a harder case, if
A= then we may take H= 1-

1. (Thus if S is equivalent to the assertion that the inconsistency
of arithmetic is deducible from S if deducible from its negation,
then S is equivalent to the assertion that if it is provable that the
inconsistency of arithmetic is provable, then the inconsistency is
provable.) In Chapter 8 we shall show that the answer is yes (the
Bernardi-Smorynski theorem). Indeed, the theorem holds in general
for modal sentences A containing sentence letters other than p: for
every sentence A that is modalized in p, there is a sentence H
containing only sentence letters found in A other than p, such that

(the fixed point theorem of de Jongh
and Sambin). We shall give three different proofs of this beautiful
theorem.

One fact about GL and PA might appear to have been overlooked,
or at any rate insufficiently attended to, in the foregoing discussion,
namely, that every theorem of PA is true (in the standard model
N). And because every theorem of PA is true, for every sentence S
of the language of arithmetic, if Bew [S] is true, then S is a theorem,
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and S is thus true. Thus for every realization * and every modal
sentence A, ( A-+ A)* is true.

And, of course, if A is a theorem of G, then A* is a theorem of
PA, and therefore A* is true.

We now introduce a system of propositional modal logic that
we shall call GLS ('S' for Solovay). The axioms of GLS are all
theorems of GL and all sentences A -+A; its sole rule of inference
is modus ponens. The following theorem is then evident:

Theorem 3. If GLS F- A, then for every realization *, A* is
true.

We call a modal sentence A always true if for every realization
*, A* is true.

The second completeness theorem of Solovay, also proved in
Chapter 9, is that the converse of Theorem 3 is true. Thus the
theorems of GLS are precisely the modal sentences that are always
true.

In Chapter 5 and again in Chapter 10 we prove that there is a
decision procedure for theoremhood in GL. (We also prove, in
Chapter 9, that there is a decision procedure for theoremhood in
GLS.) GLS is thus a system of propositional modal logic with a
recursive set of axioms.

The axiomatization of GLS given above may be found somewhat
opaque, invoking as it does the notion of a theorem of GL. There
is a more perspicuous axiomatization6: Let GLS' be the system
whose sole rule is modus ponens and whose axioms are all necessita-
tions of axioms of GL [i.e., all sentences B, where B is either a
tautology, a distribution axiom, or a sentence ( A - A) - A]
and all sentences A -> A and A -* A.

Theorem 4. For any modal sentence B, GLS F- B iff GLS' F- B.

Proof. Since all axioms of GLS' are theorems of GLS, the right-left
direction is clear. To show the converse, it suffices to show, by
induction on proofs in GL, that if B is a theorem of GL, then
GLS' F- B. If B is an axiom of GL, then certainly GLS' F- B.
Suppose that B is inferred from A -> B and A by modus ponens.
By the induction hypothesis, GLS' F- (A -). B) and GLS' F- A. We
now observe that all axioms of GL are theorems of GLS', for if C
is an axiom of GL, then GLS' F- C and GLS' F- C - C, whence
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GLS' F- C. Thus GLS'F- (A -> B) -. ( A -> B), and by two appli-
cations of modus ponens, GLS' F- B. Finally suppose that B is
inferred from A by necessitation. Then B = A and by the induction
hypothesis, GLS' F- A. Then also GLS' F- B; i.e., GLS' F- A,
since GLS' F- A -* A. -1

GLS is not a normal system of modal logic. Although the theorems
of GLS are closed under modus ponens and substitution, they are
not closed under necessitation. For example, 1, i.e.,
is an axiom and hence a theorem of GLS, but -l 1 is not a
theorem; otherwise by Theorem 3, 1* is true, and the
consistency of arithmetic is provable, which is not the case. The
theorems of GLS are closed under "possibilification," unlike those
of GL. (GL F- T; GL VL O T.) For if GLS F- A, then since

GLS F- GLS F- O A. Thus T, O T, O O T,... are all
theorems of GLS.

If a correct-modal-principle-when- -means-"provable" is an al-
ways true modal sentence, then all theorems of GLS are indeed
correct-modal-principles-when- -means-"provable". Conversely,
too, as we shall see.

We conclude with some observations on the way GL and GLS
shed light on the first incompleteness theorem.

One quite usual way to prove the first incompleteness theorem
for PA involves applying the diagonal lemma to the formula
-i Bew (y) to obtain a sentence G such that

(*)

One then argues that if PA F- G, then on the one hand, by condition
(i) of Chapter 2, PA F-Bew [G], and on the other, by (*),
PA F- -i Bew [G]; therefore if PA F- G, then PA F- 1; and thus if P is
consistent, then PA frL G. And if PAF--i G, then by condition (i),
PA F- Bew [- G] and by (*) PA F- Bew [G]. But then, since
GLF- p A p- 1, PAF-Bew[1]. Thus if PAV`Bew[1], as
is certainly the case, then P is consistent, and G is undecidable:
PAVG and PAV-iG.

Let us note that G+- Bew[G] truth-functionally implies
(Bew [G] -+ G; therefore, if PA is consistent, then PA does not
imply reflection for G. Lob's theorem or no, not every reflection
principle is provable.
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We have noticed that GL F--, 1-> (--1 -i 1 A
and

GL F- A --10 1- -10 p A -,p. Trans-
lating as usual, we see that if, like G, S is equivalent to its own
unprovability and inconsistency is unprovable, then S is undecidable.
Indeed, S is equivalent to consistency and hence to G. But by Lob's
theorem, we cannot hope to prove the undecidability of any such
S merely from the assumption that arithmetic is consistent. For then

and thus if A

-,Bew[-, S], then PAF--Bew[1]-+-iBew[Bew[1]], whence by
contraposition and Lob, PA F- Bew [1], which is not the case.

We have just seen that there is no sentence equivalent to its own
consistency whose undecidability follows (merely) from consistency.
We might wonder whether there exists some other sort of sentence
whose undecidability does so follow. Now there is a sentence whose
undecidability follows from consistency if (O T -.-i p A -i -ip)
is "sometimes true", i.e., if (O T - -l p A p) is not
always true. Once we prove Solovay's result that the theorems of
GLS are precisely the always true sentences, it will follow there is
a sentence whose undecidability follows from consistency iff

(O T -> -' p A -i p) is not a theorem of GLS. But as we
shall then be able to see, it is not a theorem of GLS and there is a
sentence of the desired sort (as Rosser was the first to show).

Exercise. Show that for every formula Q(z), there exists a
formula S(z) such that for all natural numbers n,
PA F- S(n) *-+ Q(rS(n),).

Answer. Let Su(w, x, y) be a E pterm for the 2-place function
whose value at a, b is the result of substituting the numeral
b for the free variable in the formula with Godel number a.
Let P(y,z) be the formula Q(su (y, z) ). By the generalized
diagonal lemma, for some formula S(z), F- z),
HQ(su(rS(z),,z)). Then for any natural number n, F-- S(n) +--*
Q(su(rS(z)1, n)). But F- su(rS(z),, n) = rS(n),. Thus F- S(n)H
Q(rS(n)r).



4

Semantics for GL and other modal logics

The semantical treatment of modal logic that we now present is due
to Kripke and was inspired by a well-known fantasy often ascribed
to Leibniz, according to which we inhabit a place called the actual
world, which is one of a number of possible worlds. (It is a further
part of the fantasy, which we can ignore, that because of certain of
its excellences God selected the possible world that we inhabit to
be the one that he would make actual. Lucky us.) Each of our
statements is true or false in - we shall say at - various possible
worlds. A statement is true at a world if it correctly describes that
world and false if it does not. We sometimes call a particular state-
ment true or false, tout court, but when we do, we are to be
understood as speaking about the actual world and saying that the
statement is true or false at it. Some of the statements we make are
true at all possible worlds, including of course the actual world;
these are the so-called necessary statements. A statement to the effect
that another is necessary will thus be true if the other statement is
true at all possible worlds. It follows that if a statement is necessary,
then it is true. Some statements are true at at least one possible
world; these are the possible statements. Since what is true at the
actual world is true at at least one possible world, whatever is true
is possible. A statement is necessary if and only if its negation is
not possible, for the negation of a statement will be true at precisely
those worlds at which the statement is false. And if a conditional
and its antecedent are both necessary, then the consequent of the
conditional is necessary too.

There is a question, raised by Kripke, to which this description
of Leibniz's system of possible worlds does not supply the answer.
We are said to inhabit the actual world. Are the other possible
worlds of whose existence we have been apprised absolutely all of
the other worlds that there really are, or are they only those that
are possible relative to the actual world? The description leaves it
open whether or not, if we had inhabited some other world than
the actual world, there might have been worlds other than those we



4 SEMANTICS FOR GL AND OTHER MODAL LOGICS 69

now acknowledge that were possible relative to that other possible
world; in brief, our description does not answer the question
whether or not exactly the same worlds are possible relative to each
possible world as are possible relative to the actual world.

A possible world is called accessible from another if it is possible
relative to that other. If we do not assume that the worlds accessible
from the actual world are precisely the worlds accessible from each
world - even though it may appear self-evident that they are - then
questions arise about the nature of the accessibility relation. For
example, is the relation transitive? If so, then all worlds accessible
from worlds that are accessible from the actual world will themselves
be worlds that are accessible from the actual world. It follows that
if a statement A is necessary, then A will be true at all worlds x
accessible from the actual world; and therefore A will be true at
every world y that is accessible from some world x accessible from
the actual world (for all such worlds y are accessible from the actual
world if accessibility is transitive); and therefore the statement that
A is necessary will be true at every world x accessible from the actual
world; and therefore the statement that A is necessary will itself be
necessary. Thus, on the assumption that the accessibility relation
is transitive, if a statement A is necessary, then the statement that
A is necessary will also be necessary. In like manner other determina-
tions of the character of the accessibility relation can guarantee
the correctness of other modal principles. (The system of seman-
tics for GL that we shall give in this chapter will differ from
Leibniz's system in that no world will ever be accessible from
itself!)

Set-theoretical analogues of these metaphysical notions were
defined by Kripke in providing what has become the standard sort
of model-theoretical semantics for the most common systems of
propositional modal logic.'

Definitions, most of them familiar:

R is a relation on W if for all w, x, if wRx, then w, x E W.
A relation R on W is reflexive on W if for all w in W, wRw.
R is irreflexive if for no w, wRw.
R is antisymmetric if for all w, x, if wRx and xRw, then w = x.
R is transitive if for all w, x, y, if wRx and xRy, then wRy.
R is symmetric if for all w, x, if wRx, then xRw.
R is euclidean if for all w, x, y, if wRx and wRy, then xRy. (Thus

also, if wRx and wRy, then yRx.)
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R is an equivalence relation on W if R is reflexive on W, symmetric,
and transitive.

A symmetric relation is transitive if and only if it is euclidean,
and a reflexive relation on W that is euclidean is symmetric. Thus
a relation is an equivalence relation on W if and only if it is euclidean
and reflexive on W.

A frame is an ordered pair < W, R > consisting of a nonempty set
W and a binary relation R on W. < W, R > is finite if W is. The
elements of W are called "possible worlds" or sometimes just
"worlds". W is called the domain of < W, R > and R the accessibility
relation. (It is occasionally useful to read "R" as "sees". Thus a
world sees those worlds accessible from it.)

A. frame < W, R > is said to have some property of binary relations,
e.g., transitivity, if R has that property. (< W, R > is called reflexive
if R is reflexive on W.)

A valuation2 V on a set W is a relation between members of W
and sentence letters, i.e., a set of ordered pairs of members of W
and sentence letters. (It is sometimes convenient to read "V" as
"verifies".)

A model is a triple < W, R, V >, where < W, R > is a frame and V
is a valuation on W. A model < W, R, V > is said to be based on the
frame < W, R >.

A model is finite, reflexive, transitive, etc., if the frame on which
it is based is finite, reflexive, transitive, etc.

For each modal sentence A, each model M, _ < W, R, V >, and
each world w in W, we define the relation

M,wkA

as follows:

if A = p (a sentence letter), then M, w k A if wV p;
if A = 1, then not: M, w k A;
if A = (B -> C), then M, w k A if either - M, w k B or M, w k C; and
if A = B, then M, w k A if for all x such that wRx, M, x k B.

Some evident consequences of this definition: if A = -' B, then
M, w k A if it is not the case that M, w k B; if A = (B A C), then
M,wkA if M,wkB and M,wkC; if A=(B v C), then M,wkA if
M, w k B or M, w k C, etc. Moreover, if A = O B, then M, w k A if for
some x such that wRx, M, x k B.
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It is worth mentioning that M, w k E A if for all x such that either
wRx or w=x, M,xkA.

A sentence A is said to be true at a world w in a model M if
M, w k A. A sentence A is said to be valid in a model M, = < W, R, V )',
if for all w in W, A is true at w in M. And A is said to be valid in
a frame < W, R > iff A is valid in all models based on < W, R >.

Similarly, a sentence is satisfiable in a model M, = < W, R, V >, if
for some w in W, A is true at w in M. And A is said to be satisfiable
in a frame < W, R > if A is satisfiable in some model based on
<W,R>.

Important notational conventions. Unless there is some clear indica-
tion to the contrary, when `M' is used to denote a model, it will
denote the model also denoted: < W, R, V >. Moreover, where context
makes it clear which model is in question, we shall feel free to write,
e.g., `w I A', instead of `M, w k A' or `< W,, R, P>, w k A'. When we do
so, `w' is of course understood to denote a member of the set W of
worlds of the model M in question.

Suppose that M is a model and w c- W. Then every tautology is true at
w. And if A and (A -* B) are true at w, so is B. Moreover, every distri-
bution axiom (A -+ B) -+ ( A -+ B) is true at was well: for sup-
pose that w k (A -. B) and w k A. Then if wRx, both x k (A -> B) and
xIA,whence xIB.Thus
w k A, then w k B; it follows that w k (A -> B) -> ( A - B).

Thus all tautologies and all distribution axioms are true at every
world in every model and the set of sentences true at a world in a
model is closed under modus ponens.

Furthermore, if A is valid in M, so is A: for assume A valid
in M, i.e., true at every world in M. Let w be an arbitrary member of
W. Then for all x such that wRx, x k A; therefore, w k A. Since w
was arbitrary, A is valid in M.

Thus all tautologies and all distribution axioms are valid in every
model and the set of sentences valid in a model is closed under
both modus ponens and necessitation.

Thus all theorems of K are valid in all models and hence in all
frames.

It is not in general true that if a sentence is valid in a model, then
every substitution instance is valid in that model: let < W, R, V > be
a model in which wVp and not: wVq for every w in W. Then p is
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valid in < W, R, V >, but q, which is a substitution instance of p, is
not. What is true is that if a sentence is valid in a frame, then every
substitution instance of it is also true in that frame.

Theorem 1. Suppose F is valid in the frame <W,R>. Then
every substitution instance FP(A) of F is also valid in < W, R >.

Proof. Let V be an arbitrary valuation on W. Let M = < W, R, V >.
Define the valuation V* on W by: wV*p if M,wIA, and wV*q iff
wVq for every sentence letter q other than p. Let M* = < W, R, V* >.
It follows by an easy induction on the complexity of subsentences
G of F that M*, w k G if M, w k GP(A). So M*, w k F if M, w k FP(A).
Since F is valid in < W, R >, M*, w k F. Thus M, w k FP(A). Since w
and V were arbitrary, FP(A) is valid in < W, R >. -1

Let R be a binary relation on a set W. For each natural number i,
define R` as follows: R° is the identity relation on W; R` + 1= { < w, y >:
3 x(wR`x A xRy) }. Thus R' = R and wR"y if 3x° . . . 3 x"(w = x°R.. .

Rx" = y).
Let A be a modal sentence. Define `A as follows: °A = A;
"'A = A. Define O 'A similarly.

Theorem 2. w k `A iff for all y, if wR`y, y k A; w k O 'A iff for
some y, wR`y and y k A.

Proof. Induction on i. The basis step is trivial. As for the induction
step, w k 0 "'A if w k O O 'A; if for some x, wRx and x k O 'A; if
by the induction hypothesis, for some x, wRx and for some y, xR'y
and y k A; if for some y, wR` +' y and y k A. The result for holds
by de Morgan. H

Here is a theorem about what the truth-value of a sentence at
a world depends upon. Let A be a modal sentence, M a model, and
WE W.

Define d(A) as follows: d(p) = d(1) = 0; d(A -- B) = max(d(A), d(B));
and d( A) = d(A) + 1. Thus d(A) is the maximum number of nested
occurrences of in A. d(A) is called the (modal) degree of A.

Theorem 3 (the "continuity" theorem). Let M and N =
<X, S, U> be models, WE W. Let P be a set of sentence letters.
Suppose that d(A) = n, all sentence letters that occur in A
are in P, X 2 {x: 3i < n wR`x}, S = { <x, y>: x, yEX n xRy},
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and xUp iff xVp for all xeX and all sentence letters in P.
Then M,wkA iff N,wkA.

Proof. We show that for all subsentences B of A, if for some i,
wR`x and d(B) + i < n (so that i <, n and xeX), then M, x k B if
N, x k B. Since wR°w and d(A) = n, the theorem follows.

The cases in which B =1 and B is a sentence letter are trivial.
If B = (C -+ D), then d(C), d(D) < d(B), and the result holds for B if
it holds for C and D.

Suppose B = C, wR'x, and d(B) + i < n. Then xeX and d(B) _
d(C) + 1. If xRy, then wR`+'y, d(C) + i + 1 < n, yeX, and so xSy,
and by the induction hypothesis, M, y k C if N, y k C; since S g R,
xRy if xSy. But then M, x k B if for all y such that xRy, M, y k C;
if for all y such that xSy, M, y k C; iff, by the i.h., for all y such that
xSy, N,ykC;iffN,xkB. -I

Theorem 4 (the generated submodel theorem). Let M be a
model, WE W, X = {x: 3i wR`x}, S = { <x, y): x, yEX A xRy},
and xUp f xVp for all XEX and all sentence letters p. Let
N=<X,S,U>. Then M,wkA if N, wk A. (N is called the
submodel of M generated from w.)

Proof. Let P be the set of all sentence letters, and n = d(A). Then
X ? {x: 3i < n wR`x}, and the generated submodel theorem follows
from the continuity theorem. -

The following corollary is a useful immediate consequence of the
continuity theorem.

Corollary. Let A be a sentence. Let M and N, = < W, R, U
be models, and wVp iff wUpfor all w in W and all p contained
in A. Then M, w k A iff N, w k A.

We now want to investigate the conditions under which each of
the modal sentences p - p, p - p, p -> O p, O p - O p,
and ( p -* p) -+ p is valid in a frame < W, R >.

Theorem 5. p - p is valid in < W, R > jR is reflexive on W.

Proof . Suppose p - p is valid in < W, R >. Let w be an arbitrary
member of W. We want to show that wRw.

Let V be a valuation on W such that for all x in W, xVp if wRx.
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If wRx, then x Vp and M, x k p; thus M, w k p. Since M, w k p --> p,

M, w k p, wV p, and wRw.
Conversely, suppose R is reflexive on W. Let V be a valuation

on W, and suppose wE W. Then if M, w k p, for all x such that
wRx, M, x k p; since wRw by reflexivity, M, w k p. Thus if M, w k p,
then M, w k p; so M, w k p --. p. -1

Theorem 6. p -,. p is valid in < W, R > iff R is transi-
tive.

Proof. Suppose p -+ p is valid in < W, R >, wRx and xRy.
Let V be a valuation on W such that for all z in W, zVp if wRz.
Then w k p, for if wRz, z Vp. So w k p, whence x k p, y k p,
and wRy. Conversely, suppose R is transitive. Let V be an arbitrary
valuation. Suppose w k p and wRx. If xRy, then by transitivity,
wRy and y k p. Thus x k p. So w k p. H

Theorem 7. p -+ O p is valid in < W, R > f R is symmetric.

Hintfor proof. Suppose wRx. Let V be such that zVp iffz = w. H

Theorem 8. O p -> O p is valid in < W, R > f R is euclidean.

Hint for proof. Suppose wRy, wRx. Let V be such that zVp if
z=y. --j

Theorem 9 (six soundness theorems)
(a) if K I- A, then A is valid in all frames.
(b) if K4 I- A, then A is valid in all transitive frames.
(c) if T F- A, then A is valid in all reflexive frames.
(d) if S4 H A, then A is valid in all reflexive and transitive

frames.
(e) if B I- A, then A is valid in all reflexive and symmetric

frames.
(f) if S5 F- A, then A is valid in all reflexive and euclidean

frames.

Proof of (d). Suppose that S4 F- A and < W, R > is reflexive and
transitive. We must show A valid in < W, R >. But p --+ p and p --*

p are valid in < W, R > by Theorems 5 and 6, and therefore
every sentence A -+ A and A -> A is valid in < W, R >, for

A -. A is a substitution instance of p - p, as is A --* A
of p -+ p. Since all tautologies and all distribution axioms
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are valid in all models, all axioms of S4 are valid in < W, R >. And
since the sentences valid in < W, R > are closed under modus ponens
and necessitation, A is also valid in < W, R >.

The proofs of (a), (b), (c), (e), and (f) are similar. -i

What about GL?
A relation R is called wellfounded if for every nonempty set X,

there is an R-least element of X, that is to say, an element w of X
such that xRw for no x in X.

And a relation R is called converse wellfounded if for every
nonempty set X, there is an R-greatest element of X, an element
w of X such that wRx for no x in X.

If R is converse wellfounded, then R is irreflexive, for if wRw,
then {w} is a nonempty set with no R-greatest element.

And if R is a converse wellfounded relation on W, then to prove
that every member of W has a certain property >/i, it suffices to
deduce that an arbitrary object w has 0 from the assumption that
all x such that wRx have 0. (This technique of proof is called
induction on the converse of R.) To see that the technique works,
assume that for all w, w has 0 if all x such that wRx have 0, and
let X = {wG W: w does not have tfi}. We show that X has no
R-greatest element: suppose WEX. Then w does not have t/i, and
by our assumption, for some x, wRx and x does not have >/i. xE W
(since R is a relation on W), and so XEX. Thus X indeed has no
R-greatest element. Since R is converse wellfounded, X must be
empty, and every w in W has 0.

Theorem 10. ( p - p) -* p is valid in < W, R > iff R is
transitive and converse wellfounded.

Proof . Suppose that ( p -> p) -+ p is valid in < W, R >. Then
all sentences ( A -> A) - A are also valid in < W, R >, and as
above, all theorems of GL are valid in < W, R ).. By Theorem 18 of
Chapter 1, p -+ p is valid in < W, R >, and so by Theorem 6,

W, R > is transitive.
And R is converse wellfounded: for suppose that there is a

nonempty set X with no R-greatest element. Let wEX, and let V
be a valuation on W such that for every aeW, aVp if aoX. We
shall show that w k ( p - p) and w V p, contradicting the vali-
dity in <W,R> of

Suppose wRx, whence xeW. Assume xVp. Then not: x Vp, xeX,
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and therefore for some yeX, xRy, yE W, not: yVp, y V p, and therefore
Thus x1 LIp-+p and

And since weX, for some xEX, wRx, and xE W. Thus not: xVp,

Conversely, suppose that < W, R > is transitive and converse well-
founded and that < W, R, V >, w V p. Let X = (X E W: wRx A x V p}.
Since w p, for some z, wRz and zV p. Thus zeX, X is nonempty,
and by converse wellfoundedness, for some xeX, xRy for no y in X.
Since xeX, wRx, and xVp. Suppose xRy. Then y 0 X and since wRy
by transitivity, y k p. Thus x k p, x V p -+ p, and w V ( p -+ p).
So ( p -+ p) -+ p is valid in < W, R >. -I

We will need an alternative characterization of the finite transitive
and converse wellfounded relations.

Theorem 11. Suppose that F, = < W, R > is finite and transi-
tive. Then F is irreflexive if and only if F is converse well-

founded.

Proof. We have already observed that if F is converse wellfounded,
F is irreflexive. Suppose that F is irreflexive. If x 1, ... , x is a sequence
of elements of W such that xiRxi+ 1 for all i < n, then xi xj if i < j:
otherwise x, = xj, and by transitivity xiRxJ, contra irreflexivity. Now
assume that F is not converse wellfounded. Let X be a nonempty
subset of W such that d w e X 3 x c- X wRx. Then it is clear by induc-
tion that for each positive n, there is a sequence x1,. .. , x of elements
of X such that xiRxi+ 1 for all i < n. Therefore for each n, there are
at least n elements of X c W. Thus W is infinite, contradiction. -i

Thus a frame is finite transitive and converse wellfounded if and
only if it is finite transitive and irreflexive.

We thus have established the following soundness theorem for GL.

Theorem 12. If GL I- A, then A is valid in all transitive and
converse wellfounded frames, and A is also valid in all finite
transitive and irreflexive frames.

We conclude with two remarks on the non-characterizability of
converse wellfounded frames.

Frames < W, R > are naturally thought of as models interpreting
formal languages that contain a single two-place predicate letter
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p. A frame is reflexive, transitive, symmetric, or euclidean if and
only if the first-order sentence b wwpw, d WV x b y(wpx A xpy -+ wpz),
`d w`d x(wpx - xpw), or bwVxV y(w px A wpy -xpy), respectively, is
true in the frame. For "converse wellfounded" it is otherwise: there
is no first-order sentence that is true in < W, R > if < W, R > is
converse wellfounded.

Proof. Suppose that a is a counterexample. Let ao, a I.... be an
infinite sequence of distinct new constants. Then every finite subset
of {a} u {a;po : i < j} has a model, and by the compactness theorem,
the entire set has a model < W, R, ao, a1,...>. But the binary relation
R that interprets p is not converse wellfounded (because aoRa1R...),
and thus < W, R > is not converse wellfounded either, even though
a is true in R, a0, a 1, ... > and hence in < W, R >. -

The same argument also shows that there is no first-order sentence
that is true in just those frames that are transitive and converse
wellfounded.

We know that ( p -* p) - p is a modal sentence that is valid
in just the transitive converse wellfounded frames3; however, no
modal sentence is valid in exactly those frames that are converse
wellfounded.

Proof. Suppose that A is a counterexample. Let W be the set of
natural numbers and R the successor relation on W, i.e., { < w, x >: w,
x E W A W + 1 = x}. Then < W, R > is not converse wellfounded, and
so for some valuation V on W, some w in W, < W, R, V >, w V A. Let
n=d(A),and let X={w,w+1,...,w+n},S={<x,y>:x,yeXand
xRy}, and xUp if xVp for every p contained in A. By the continuity
theorem, < X, S, U >, w V A, But <X, S > is converse wellfounded,
contradiction. -i

Exercise. True or false: if A is satisfiable in some finite
transitive and irreflexive model and contains at most one
sentence letter, then A is satisfiable in some finite transitive
and irreflexive model in which for all w0, w 1, ... , Wd(A) in W,
not: woRw1R... Rwd(A)'
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Completeness and decidability of GL and
K, K4, T, B, S4, and S5

We are now going to establish a completeness theorem for each of
the seven modal systems we have considered. We call a frame (or a
model) appropriate to K4, T, B, S4, S5, or GL if and only if it is
transitive, reflexive, symmetric and reflexive, transitive and reflexive,
euclidean and reflexive, or transitive and converse well founded,
respectively of course. All frames are appropriate to K. In Chapter
11 we shall give a general definition of a frame's being appropriate
to a normal system, but as yet we have only defined the notion
with respect to seven particular normal systems.

We are going to show that a modal sentence A is a theorem of
one of our seven systems L if A is valid in all finite frames that are
appropriate to L - equivalently, if A is valid in all finite models
appropriate to L.

Thus, e.g., we shall show that if A is valid in all finite transitive
and reflexive frames, then A is a theorem of S4. When we have
done so, we shall have established the coextensiveness of the
conditions:

validity in all transitive and reflexive frames;
validity in all finite transitive and reflexive frames;
provability in S4.

For, as we saw in Chapter 4, if A is a theorem of S4, A is valid in all
transitive and reflexive frames, and thus certainly valid in all finite
transitive and reflexive frames.

Similar comments apply to the other six systems K, K4, T, B,
S5, and GL.

Now let L be one of the seven systems.
Suppose that D is a modal sentence that is not a theorem of L.
For want of a better term, we shall call a sentence a formula if

it is either a subsentence of D or the negation of a subsentence of
D. There are only finitely many subsentences of any sentence,
therefore only finitely many formulas, and therefore only finitely
many sets of formulas.



5 COMPLETENESS AND DECIDABILITY OF GL 79

We shall call a set X of formulas L-consistent, or consistent for
short, if A X. (A X is the conjunction of all members of X.)
Thus X is consistent if L does not refute the conjunction of members
of X.

A set X of formulas is called maximal (L-) consistent, if X is
consistent and for each subsentence A of D, either A or -i A is a
member of X. If A is a subsentence of D and X is a maximal
consistent set, then AEX if A0X, for if both A and -i A belong
to X, then since certainly L F- -i (A A -i A), L H - A X.

If X is maximal consistent, A1, ... , A.EX, L I- A 1 A A A,, -> B,
and B is a subsentence of D, then B is also in X; otherwise -i BEX,
L I- i(A 1 A n A. n -1 B), and then L I- - A X.

If X is consistent, then X is included in some maximal consistent
set: By the propositional calculus A X is equivalent to some dis-
junction E1 v v En, in each disjunct E, of which each subsentence
of D or its negation occurs,' and all members of X occur. At least
one disjunct E. must be L-consistent; otherwise L I- (-i E 1 A . . . A
-i En), and then L I- (E 1 v v En), whence L I- -, A X. The set of
conjuncts of E, will be a maximal consistent set including X.

Since L f` D, { -i D} is consistent, and therefore included in some
maximal consistent set y.

Now let W = the set of maximal consistent sets. Since y is
maximal consistent, ye W, and W is nonempty.

For each we W and each sentence letter p, let wVp if p occurs
in D and pew.

We shall define an accessibility relation R, which depends on L,
so that the following two conditions are both met:

(1) For every subsentence B of D and every WE W, Bew if for
all x such that wRx, Bex.

(2) < W, R > is appropriate to L.

Assuming that an R has been defined meeting conditions (1) and
(2), we complete the proof as follows: Let M = < W, R, V > (as ever).

Lemma. For every subsentence A of D and every we W, AE w
iff w kA.

Proof. If A = 1, then A0 w, as L I- -, 1, and w is consistent; but
w(E 1. If A is a sentence letter p occurring in D, then pew if wVp,
if w k p. Suppose that A = (B --> C) and the lemma holds for B and
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C, which are themselves subsentences of D. Then since L I- -i A -> B,
and A 0 w if -iAew; if BEw

and - CEw; if by maximal consistency, BEw and Cow; iff by the
induction hypothesis, w k B and w V C; if w V A. Thus AEw if w k A
in this case.

Now suppose that A = B and the lemma holds for the sub-
sentence B of D. Then AEw if, by condition (1), for every x such
that wRx, BEx. But since B is itself a subsentence of D, Bex if
x k B, by the induction hypothesis. Thus AEw if for every x such
that wRx, x k B; if w k B; if w k A. This proves the lemma. -I

ye W, y is maximal consistent, and D E y. Thus D O y and by the
lemma, y V D. D is therefore not valid in the finite frame < W, R)',
which by condition (2) is appropriate to L.

We must now show how to define an accessibility relation R
meeting (1) and (2) for each of the seven systems.

K. Define: wRx if for all B in w, Bex. < W, R> is appropriate to
K (all frames are), and condition (2) holds. Moreover, it is immediate
from the definition of R that one half of condition (1) also holds,
for if Bew and wRx, then certainly BEx. To verify the other half,
it has to be shown that if B0w, then for some x, wRx and Box.

Let X = {- B} u {C: Cew}. Is X K-consistent? If not, then
KF-, AX, i.e., A where
are all the necessitations that belong tow. But then K k- C1 A A C ->
B, and by normality K F-- C1 A A C. -> B. Since C1, ... ,

C. are all in w and B is a subsentence of D, BE w. Thus if
B0 w, X is consistent, and therefore there is a maximal consistent

set x X. - BeX s x, and therefore Box. Moreover, if C is in
w, then CeX s x, and thus by the definition of R, wRx.

K4. Define: wRx if for all B in w, both B and B are in x. R
is evidently transitive and therefore < W, R > is appropriate to K4.
Moreover, evidently if BEw and wRx, then Bex.

For the converse of (1), let X = {-iB} u {C: Cc- w) u { C:
Cew}. If X is K4-inconsistent, then, where C1,..., C. are

all the necessitations in w,

K4I--,(-1BAC1
K4 k- C1 A A C A Cl A A C. -> B, whence by normality
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K4 F- C1-> C1, we have
C,, B.

And since Cl,..., C,, are all in w, so is B. Thus if Bow,
X is consistent, hence included in some maximal consistent set x.
Since -iBEX, Box. And if Cew, then C, CEx, and wRx.

T. R is the same as for K. We must see that < W, R > is appropriate
to T, that is, that R is reflexive on W; i.e., that for all we W, wRw;
i.e., that if BE w, BE w. But since T F- B -> B, if BE w, BE w.

S4. R is the same as for K4. Again we must see that R is reflexive
on W. But since T F- B -+ B, the argument given for T works.

B. Define: wRx if both for all BEw, Bex, and for all BEx,
BE w. R is clearly symmetric, and since each sentence B -> B is a
theorem of the system B, R is reflexive on W, and < W, R > is
appropriate to B. Moreover, it is clear that if Be w and wRx, then
BEX.

Now let X = {- B} u {C: CEw} u {--i E: E is a subsen-
tence of D and -i EEw}. If X is B-inconsistent then B F- C, A A

C,, n -, E, A Em -+B, where C,, ... , C are all the
necessitations that are in w, and E,, ... , - E. are all the
sentences E such that E is a subsentence of D and -' EEw.
But then,

B
B F- E1 -i E;, and
BF- C, n n n A

Since all conjuncts of the antecedent are in w, if Bow, X is
consistent, hence included in some maximal consistent set x. But
then Box, and if CEw, CEx. Moreover, if Eex but Eow, then
-, EEw, and -, EEX C x, impossible. Thus wRx.

SS. Define: wRx if both for all B, BEw if BEx. R is clearly
reflexive on W, transitive, and symmetric, and therefore condition
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(2) holds. But both halves of condition (1) now require argument.
Suppose BEw. Then if wRx, BEx, and since S5 F- B -4 B,

BEX.
Conversely, suppose Bow. Let X = {- B} u { C: CEw} u

{-, E: -i EEw}. If X is inconsistent, then S51- C1 A A

A n-lEl E.-+ B, where El
C in w, and E1,. .. , -' E. are all the sentences

-l E in w. By normality.

S5F- C1 n A C A E1 n A -, E.4 B. Since

have
S5F-El C1 A... A A...

and therefore BEw. Thus if Bow, then X is consistent, and there
is a maximal consistent x 2 X containing C1,.., C,, and omitting

E1,..., E.. Thus if CEw, Cex; and if Eex, but Eow,
then -, EEw, and then by the definition of X, -, EEX c x, im-
possible. So wRx.

GL.2 Define: wRx if both for all B in w, B and B are in x and
for some E in x, -i E is in w.

R is transitive. Suppose wRx and xRy. Then if CEw, CEx
and C, CEy. Moreover since wRx, for some E, -' EEw and

EEx, and then EEy. So wRx.
And R is irreflexive. If wRw, then for some E, EEw and
EEw, which is impossible as w is consistent.

W, R > is finite transitive and irreflexive, and therefore by
Theorem 11 of Chapter 4, < W, R > is transitive and converse well-
founded, i.e., appropriate to GL. Thus condition (2) holds. We now
show that condition (1) holds.

If BEw and wRx, then clearly BEx.
Let X = {-i B, B} u {C, C: Cc-w}.
If X is inconsistent, then

GLF--i(-,BA BAC1A C1A

A C A C,, whence by nor-
mality,

A C,, B); but since
GLF-(B->B)->Band
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GL have

Suppose now that Bow. Then, since C1,..., C,, are all in
w, X is consistent and for some maximal consistent set x, X c x.
Since -i BEX, -' BEx and Box. If C is in w, then C and C
are in X S x. Moreover, since B0w, -' BEw, and BEX c x.
Thus wRx, and condition (1) holds.

A familiar sort of consideration shows that the proof of completeness
we have just given for each of the seven systems L shows that L is
decidable, i.e., that there is an effective method for deciding whether
or not an arbitrary modal sentence D is a theorem of L. For let k be
the number of subsentences of D. No consistent set contains any
subsentence of D and its negation, and there are therefore at most
2k consistent sets of formulas. Our proof shows that if D is not a
theorem of L, then there is a finite model < W, R, V > appropriate
to L, in which W contains no more than 2' members, at one of
whose worlds D is false, and such that for any sentence letter p,
wVp only if p occurs in D. Thus D is a theorem of L if and only if
D is valid in all models < { 1, ... , n}, R, V >, where n < 2k, R is
appropriate to L, and wVp only if p occurs in D. There are only
finitely many such models. Since effective procedures exist for
finding all such models from D and for deciding whether or not D
is valid in any given finite model, L is decidable.

We close with two disparate remarks.

1. A slight strengthening of the completeness theorem for GL is
worth stating: A transitive frame < W, R > is called a tree if for every
w, x, yE W, if wRy and xRy, then either wRx or w = x or xRw.

M a tree a um

The term "tree" will often be more appropriate to a generated
submodel of a tree than to the original model. Finite transitive and
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irreflexive trees, or generated submodels of them, are in general
easier to visualize than arbitrary finite transitive and irreflexive
frames. And as the following theorem shows, it turns out that a
sentence is a theorem of GL if it is valid in all finite transitive and
irreflexive trees.

Theorem. A sentence is valid in all finite transitive and ir-
reflexive frames iff it is valid in all finite transitive and
irreflexive frames that are trees.

Proof. Let < W, R, V > be a finite transitive and irreflexive model.
Call a function x an R-sequence if for some natural number m,

x: {0,1,-, m} -+ W, and for all i < m, x(i) Rx(i + 1).
Let X be the set of all R-sequences. Say that xSy if x is properly

extended by y, i.e., if for some m, n, x: {0, I,-, m} -> W, y: {0,1, ... , n} ->
W, and for all i < m, x(i) = y(i).

X is finite if W is.
<X, S> is clearly a transitive, irreflexive tree.
For xeX, x: {O, I,-, m} - W, let xUp if x(m)Vp.
Let N=<X,S,U>.
An obvious induction on the complexity of A shows that if

xe X, x: {0,1, ... , m} - W, then N, x k A iff M, x(m) k A. -1

2. The completeness proof for K4 may be applied to give an
alternative proof of Theorem 23 of Chapter 1:

Let M be an arbitrary transitive model, wE W. Then

(*) If wk q and wk (qH( q-> p)), then wk p
For if wRx but xVp, then xkq, p)), and thus xf q,
whence for some y, xRy and y V q; but by transitivity wRy, and y k q.

Now if w k (q q -* p)), w k ( p -* p) but w V p, then by
(*), w V q, and for some x, wRx, x V q, x k q -- p)), x k q,
xVp, xk p-*p, and xV p; but also xk contra
(*), with x playing the role of w: for if xRy, wRy by transitivity, and

Thus (q -( q -> p)) -, ( ( p -, p) -> p) is valid in M, and
by the completeness theorem for K4, it is a theorem of K4.
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Canonical models

We shall now present a method' for constructing modal-logical
models. The method enables us to construct from each consistent
normal system L of propositional modal logic a model ML, = < WL,
RL, VL>, called the canonical model for L, in which all and only the
theorems of L are valid. Although canonical models are of great
interest in the study of systems of modal logic other than GL, the
canonical model for GL is not particularly useful for the study of
GL itself. (Outside this chapter, the notion of a canonical model is
used to prove only one theorem in this book, Theorem 3 of Chapter
13.)

We shall begin by defining the canonical model for a consistent
normal system L and then prove a completeness theorem for each
member of a quite large family of systems that includes K, K4, T,
S4, B, and S5 - but not GL, alas.

Let L be a consistent system of normal modal propositional logic.
Thus L (f 1.

A set X of arbitrary modal sentences is called (L-) consistent if
for no finite subset Y of X, L F A Y. If X is consistent, at most
one of A and - A belongs to X; otherwise, evidently, L F--i(A A -iA),
and X is not consistent.

Lemma 1. If S is consistent, then either S u {A} is consistent
or S u {-i A } is consistent.

Proof. Suppose both inconsistent. Then for some finite sets Y and
Z, YcSu{A}, Z9Su{-iA}, LI--i A Y, and LF-- AZ. Let
U = Y- {A} and V = Z - {-iA}. Then U and V are finite subsets
of S, L F- -i (A U A A), and L I - (A VA -i A). Truth-functionally,
then L F- - A (U u V). But U u V is a finite subset of S, and S is
therefore inconsistent. --I

A set X is a maximal (L-) consistent set of sentences if it is consistent
and for every modal sentence A, either AEX or AEX. The follow-
ing lemma is standard.
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Lemma 2. Every consistent set X of sentences is included in
some maximal consistent set.

Proof. Let A0, A1,... be an enumeration of all modal sentences.
Define a sequence So, S, , ... of sets of sentences as follows:

So=X

S + 1` 1

(S; u {A;} if Si u {A;} is consistent

Siu {-, A.} otherwise

Then if i <j, Si g S.
Every Si is consistent: For X = So is consistent. And if Si is

consistent, then either S, u {A;} is consistent, in which case
S;+, = Sj u {A;}, or S; u {A,} is inconsistent, in which case
Si+, = Si u {-1 A;}, which, by Lemma 1, is consistent. Thus in this
case too, S,+, is consistent.

Let S = U{Si: ieN}. Thus each Si c S; in particular X = So g S.
S is consistent: otherwise for some finite subset Y of S, L f- - A Y.

Every A in Y is in some Si. For each AE Y, let iA be the least j such
that Ac-S;, and let i = max {iA: AE Y}. Then Yc S,, and Si is
inconsistent, which is not the case.

Moreover, S is maximal consistent: for if A;OS, then Al S1+,,
Si u {A;} is inconsistent; thus Si u {-i Ail = Si+, s S, and therefore

A; E S.

Thus X S S, which is maximal consistent. -I

Let us note that if S is maximal consistent and L F- A, then A e S;
otherwise, -i A e S, and then L I- -i { - A }, contra the consistency
of S.

Moreover if S is maximal consistent, L f- A, A A A. -+ B, and
S, then BeS; otherwise -BES, and LF--i(A, A A

A. A B), again contra the consistency of S.
We can now define the canonical model ML for L.
WL is the set of all maximal (L-) consistent sets.
For every w, xe W, wRLx if for every sentence A, if A e w, then

Aex. (Equivalently, wRLx if for every sentence Bex, OBew.)
For every wE W, every sentence letter p, wVLp if pew.
Then ML = < WL, RL, VL >.

Lemma 3. For every sentence A, every w in WL, Aew iff
WL, RL, VL >, w k A.
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P r o o f. -L w and w L 1. pew if wVLp, iff w k p.
Suppose A = (B -> C) and the lemma holds for B and C. Then

L --i(B->C)H(B n -, C), and therefore by maximality of w,
-i(B-+C)ew if Bew and -iCew. Thus (B-.C)Ew if
if either Bew or Cow, if, by maximality, either Bow or Cew,
if, by the i.h., either w V B or w k C, iff w k B -> C.

Suppose A= B and the lemma holds for B. If Bew, and
wRx, then by the definition of R, BE x, and x k B by the i.h. Thus if
Bew, wk B. Conversely, if Bo w, then by maximality of w,

BEw. Let X = {-iB} u {D: Dew}. X is consistent. Otherwise,
for some D1,..., D in w,
Lf--i (-i B A D1 n A

D 1 A . A D,. -* B, whence by normality,
B,

and therefore BEw,-, Bew, and w is inconsistent, contradiction.
Thus for some maximal x, X c x. Since {D: Dew} c x, wRx. Since
-, BeX g x, and x is consistent, Box, whence by the induction
hypothesis, x V B, and therefore w (t B. H

Another fundamental lemma concerning canonical models is the
following.

Lemma 4. If L F- A f A is valid in ML.

Proof. If L H A, then for every w in WL, A c w, whence by Lemma
3, w k A. If LEA, then { -, A} is L-consistent (else L H A {-i A },
and then L I- A), and by Lemma 2, for some maximal consistent w,
{-i A } c w. Thus -, A e w, A 0 w, and by Lemma 3, w V A. Thus A is
not valid in ML. H

We have thus re-established the completeness theorem for K:
K [--A if A is valid in all models: for if so, then A is valid in MK,
and therefore K H A.

We are now going to use canonical models to prove a general
soundness and completeness theorem that has the soundness and
completeness theorems for K, K4, T, S4, B, and S5 as special cases.

We recall from Chapter 4 the definition of R`, R an arbitrary
binary relation and i a natural number:

mR'y if 3z° ... 3zi (x = z°R ... Rz; = y)

Thus xR°y if x = y, and xR'y if xRy.
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And we recall the definitions of `A and O 'A:

and

First, a lemma relating these notions to canonical models.

Lemma 5. Let L be an arbitrary consistent normal modal
logic. Then wRix iff for every sentence A, if `AEW, then
AEx. Therefore also, wRix iff for every sentence B, if Bex,
then O`BEw.

Proof. Induction on i. If i = 0, the lemma is trivial. Suppose wR 'x
and `+'A = Then for some z, wRiz and zRLx. By the
induction hypothesis, A Ez, and then by the definition of RL, AEx.

Conversely, suppose that for every A, if `+'AEw, then Ac-x.
Let Z = { O B: BEx} u {C: `CE w}. We wish to show Z consistent.
Suppose that it is not and thus that for some B,,...,BgEx, some
C1,...,CP1 `C,,..., `Cpewand LH-i(OB, A A OBq A C, n
n Cp). Let C = C, n . . . n CP and B = B, n n Bq. Bex and

`C E w. By normality, L I O B -> O B, A A O Bq, and therefore
L I- (0 B A C), and L F- C -1 B. But then by normality,
L F- `C -> `+ 1 B. Thus `+' -i B E w, and therefore -,BEx,
contradiction.

Thus Z is consistent, and by Lemma 2, for some maximal
consistent z, Z c z. For every C, if `CEw, CEz; and then by the
induction hypothesis, wRiz. For every B, if Bex, O Bez; thus zRLx.
So wRLZRLX, and so wR lx. -I

Now let i, j, m, n be natural numbers. We say that R is i, j, m, n
convergent if for all x, y, if for some w, wR`x and wR'y, then for
some z, xRmz and yR"z:

x
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We shall say that L proves the i, j, m, n scheme if for all sentences
A, L O' '"A -> ' O "A.

Theorem 1. Suppose that R is i, j, m, n convergent. Then every
sentence O' '"A -+ iO "A is valid in M.

Proof For aE W, a k O'B if for some b such that aRkb, b k B, and
dually, a k kB if for every b such that aR"b, b k B.

Suppose now that w k O' El "A and wR'y. We must show that for
some z, yR"z and z k A. But we have that for some x, wR'x and
x k A. By i, j, m, n convergence, for some z, xRmz, whence z k A,
and yR"z, and we are done.

Theorem 2. Suppose that L proves the i, j, m, n scheme. Then
RL is i, j, m, n convergent.

Proof. Suppose that wR'x and wRLy. We must show that there is
a z such that xRLz and yRLZ. Let Z= {A: mAEx} u {B: "BEy}.
If Z is consistent, then by Lemma 2, some maximal consistent z
includes Z, and then by Lemma 5, we are done.

So suppose that for some A1,...,AP,B1i...,B9, ' A1,..., mApEx,
"B1,..., "BgEy, and Lk--i(A1 A AAP A BI A AB,). Let
A = A 1 A A AP and B = B 1 A ABV Then L I A - B, whence
by normality, L F O "A -> 0"--i B, and therefore

(*) L

But also "'A E x and "BEy, and then O' '"A E w by Lemma 5.
Since L I - O' D °'A -> ' O "A, ' O "A E w. But wR1y, and then again
by Lemma 5, O"AEy,whence by(*),-, "BEy, contradiction. --q

Now let a be a set of quadruples (i, j, m, n). Ka will be the system
of normal modal logic whose axioms are those of K together with all
sentences <C ' '°A --> 'O "A, (i, j, m, n)Ea. We will say that M is
a-convergent if for every (i, j, m, n)Ea, M is i, j, m, n convergent.

The next theorem is the main result of this chapter.

Thoerem 3. Ka I- A iff A is valid in all a-convergent models.

Proof. Suppose Ka I- A and M is a-convergent. By Theorem 1 every
axiom of Ka is valid in M, and therefore A is valid in M. Conversely,
by Theorem 2, the canonical model for Ka is a-convergent. Thus
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if A is valid in every a-convergent model, then A is valid in the
canonical model for Ka, and by Lemma 4, Ka [--A. --j

Theorem 4 brings Theorem 3 down to earth.

Theorem 4
(a) R is transitive iff R is 0, 2, 1, 0 convergent.
(b) R is reflexive iff R is 0, 0, 1, 0 convergent.
(c) R is symmetric iff R is 0, 1, 0, 1 convergent.
(d) R is euclidean iff R is 1, 1, 0, 1 convergent.
(e) K is K0.
(f) K4 is K{(0,2,1,0)}.
(g) T is K{(0,0,1,0)}.
(h) S4 is K{ (0, 0, 1, 0), (0, 2, 1, 0) }.
(i) B is K{(0,0,1,0), (0,1,0,1)}.
(j) S5 is K{(0,0,1,0), (1,1,0,1)}.

Proof. (e)-(j) are immediate from (a)-(d) and the definitions of the
systems. (a)-(d) are exercises in predicate logic with identity. We'll
do (a).

By definition, R is 0, 2, 1, 0 convergent if Vxdy(3w(w = x A wR2y)
3z(xRz A y=z)), if VxVy(xR2y->xRy), if bx`dy(3v(xRv A vRy)-+xRy),
if VxdvVy(xRv A vRy-.xRy), if R is transitive. (b), (c), and (d) fall
out in similar fashion. -A

Theorem 5
(a) K F- A ff A is valid in all models.
(b) K4F- A iff A is valid in all transitive models.
(c) T F- A iff A is valid in all reflexive models.
(d) S4 F- A iff A is valid in all reflexive and transitive models.
(e) B F- A iff A is valid in all reflexive and symmetric models.
(f) S5 F- A iff A is valid in all reflexive and euclidean models.

Proof. Immediate from Theorems 3 and 4. -1

GL proves all sentences A -> A; i.e., GL proves the 0, 2, 1, 0
scheme. By Theorem 2, R61 is 0, 2, 1, 0 convergent, i.e., transitive.
Thus the canonical model for GL is transitive.

Unfortunately, it is not converse wellfounded, as the following
argument, due to Giancarlo Meloni, shows: Let * be an arbitrary
realization and let w = {A: A* is true}. w is GL-consistent: other-
wise, there are A1,.. . , A such that At,. .. , A* are true and
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GLF--,(A1 A A An), and then A AA*) and at least
one of A*,..., A* is false, contradiction.

Moreover, w is maximal GL-consistent: if A*w, then A* is not
true, (-i A)* is true, and then AEw.

Finally, wRGLw: if AEw, then (E JA)* is true, A* is provable,
A* is true, and Ac-w. So RGL is not irreflexive, and therefore not
converse wellfounded, either.

More work is needed to extract a completeness theorem for GL
from results about MGL, about as much, in fact, as it took us to
prove the completeness theorem for GL from scratch.

Exercises. 1. A binary relation R is called serial if Vx3yRxy,
functional if dxbyVz(Rxy A Rxz -+ y = z), and dense if
VxVy(Rxy -+ 3z(Rxz A Rzy)). Formulate soundness and
completeness theorems concerning these properties of
relations.
2. Call R terminated if Vw(3x wRx -* 3x(wRx A Vy-i yRx)).
Show that K + (O T -). -l O T) F- A if A is valid in all
terminated models. Find a terminated model in which

( p -> p) -> p is invalid.



On GL

We here present a number of results about the system GL. Some
of these will be of direct interest for the study of provability in PA;
others are simply independently interesting (we hope), and these
occur toward the end of the chapter. The discussion here of letterless
sentences and the notions of rank and trace will be particularly
important in the next chapter, where we take up the fixed point
theorem, certainly one of the most striking applications of modal
logic ever made.

We begin with one of the oldest results of the subject of provability
logic, the normal form theorem for letterless sentences. Recall that
a modal sentence is called letterless if it contains no sentence letters,
equivalently if it is a member of the smallest class containing 1
and containing (A-+ B) and A whenever it contains A and B.

As ever, °A = A and `+ 1A = `A.
We shall say that a letterless sentence C is in normal form if it is

a truth-functional combination of sentences of the form `1.

The normal form theorem for letterless sentences

If B is a letterless sentence, there is a letterless sentence C in normal
form such that GL f-

Proof. It clearly suffices to show how to construct a letterless
sentence in normal form equivalent to C from a letterless sentence
C in normal form.

First of all, put C into conjunctive normal form, i.e., rewrite C
as a conjunction D 1 A . . . n Dk of disjunctions of sentences `1
and negations of such sentences. Since GL I- (D 1 A A DJ +--*

( D 1 A A Dk), it suffices to find a suitable equivalent for D
from any disjunction D of sentences "1 and negations of such
sentences.

Let
D occurs unnegated, replace D by ° 1 v D;
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thus we may assume that there is at least one unnegated disjunct

Since GL F- ` 1-+ ' 1 whenever 0<0<_j, replace D by"1 n=max(nl,...,np)and m=min(ml,...,m9).
Thus replace D by "1 if there are no disjuncts mk 1.

We shall now show that D is equivalent either to "+' 1 or
to T, both of which are in normal form. (T is a 0-place connective,
hence a truth-functional compound of letterless sentences.)

If -, '-L is absent, then D is "1, and GL F-- D- "+ 11

Thus we may assume that neither "1 nor '"1 is absent;
rewrite D as m 1-+ "1.

If m < n, then GL I D, and therefore GL F- D <-+ T.
If m > n, however, then n + 1 ( m, GL I- "+' J_ -+ m 1, and so

1-+ "1), whence by normality,
GL F-- but since
GU-
GL H ( m 1-+ " 1) _+ "+ 1 1. Conversely,
GL I "+ 1 1-+ ( ' _L -+ " 1), and therefore

-1

If B is a letterless sentence then B* = B# for any realizations *
and #. We shall call a sentence of PA a constant sentence' if it is
a member of the smallest class containing 1 and containing (S -+ S')
and Bew(rS-1) whenever it contains S and S'. For every constant
sentence S, there is a letterless sentence B such that for all realizations
*, S = B*. The class of constant sentences, which contains (arith-
metizations of) a large number of assertions that involve the concepts
of provability and consistency, is a natural class to investigate.
Among the constant sentences are the arithmetizations of the
assertion that arithmetic is consistent, that the consistency of arith-
metic is not provable, that if arithmetic is consistent, then it is
consistent that it is consistent, etc. The arithmetization of the second
incompleteness theorem is also a constant sentence, of course. The
constant sentences were introduced by Harvey Friedman, who
posed the question2 whether an effective method exists for deciding
their truth:

35. Define the set E of expressions by (i) Con is an expression; (ii) if A, B
are expressions so are (- A), (A&B), and Con(A). Each expression 0 in E
determines a sentence cb* in PA by taking Con* to be "PA is consistent,"
(-A)* to be -(A*), (A&B)* to be A*&B*, and Con(A)* to be "PA +'A*'
is consistent." The set of expression 4' EE such that 0* is true is recursive.
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The formalized second incompleteness theorem reads - Con(Con &
- Con((- Con)))*.'

The answer to Friedman's question4 is yes: From an arbitrary
constant sentence S find a letterless B such that B* = S. Put B into
normal form. ( i 1)* has the same truth-value as 1, for all i > 0.
To compute the truth-value of S, then, we may simply delete every
occurrence of from the normal form of B and evaluate the result,
which will be a truth-functional compound of T and 1, according
to the usual rules of the propositional calculus. We obtain the value
T if and only if S is true.

To decide whether a constant sentence S is provable, find a
letterless B such that B* = S and then decide the truth of B.

Rank and trace

In order to study letterless sentences and the constant sentences
that are their translations into arithmetic we introduce the notions
of the rank of a world in a finite transitive and irreflexive frame
and the trace of a letterless sentence.

Let < W, R > be a finite transitive and irreflexive frame. Suppose
that for some w,,, ... , w1, wo in W, Rw1 Rwo. Then if j > i,
by transitivity wjRwi, and by irreflexivity wi wj. Thus for every
w in W, there is a greatest n, which will be less than the number
of members of W, such that for some w...... wl, wo in W, w=

Rw1 Rwo.
For each we W, we define the rank p<W,R> (w) of w as the greatest

such n. (We omit the subscript "< W, R >".) Thus if wRx for no x in
W, p(w) = 0.

If wRx, then clearly p(w) > p(x) + 1 and so p(w) > p(x).
Moreover, as the following lemma shows, p(w) > i if for some x,

wRx and p(x) = i.

Lemma 1. If p(w) > i, then for some x, wRx and p(x) = i.

Proof. Suppose p(w) = n > i and w = Rw1Rwo. Let x = wi.
Then wRx by transitivity. We must show that p(x) = i. Clearly
p(x) > i. Suppose p(x) =j > i. Then for some xi, ... , x 1, xo, X=
x; R ... Rx 1 Rxo, wi = x;, and therefore

w = Rwi+ I Rwi = xjR ... Rx1 Rxo

Thus p(w) > n - i +j > n, contradiction. -A
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If B is a letterless sentence, then we define the traces [B]] of B,
which is a set of natural numbers, as follows:

jC
BJ]={n:Vi<nie][B]]}

Thus [-iB]]=N-I[B]], TBnC]]=TB]]n4C]], ]{OB]]={n:3m<n
melB]]}, and, e.g.,
N-{1}.

A set X of natural numbers is said to be cofinite if N - X is
finite. As any subset of a finite set is finite, any superset of a cofinite
set is cofinite.

Lemma 2. For every letterless B, ([B]] is either finite or
cofinite.

Proof. ][1 is certainly finite. If ([B]] is finite or [[C]] is cofinite,
then N - ][B]J is cofinite or ][CD is cofinite, and then [B --> C]] is
cofinite; but if ([B] is cofinite and ([C]] is finite, then N - ([B]] is
finite and DiC]] is finite, and therefore their union [[B -> C]] is also
finite. If QB]] = N, then [[ B]] = N, which is cofinite; but 'if [[B]] # N,
then for some least n, n0[[B]], and then TO BJ[ = {m: m < n}, which is
finite. -I

Lemma 3. Let M be a finite transitive and irreflexive model,
WE W, and B letterless. Then M, w k B iff p(w)E ][B]].

Proof. w V 1 and
If the lemma holds for C and D and B = (C -- D), then w k C -> D

iff w V C or w V D, iff p(w)o QC]] or p(w)E QD]], iff p(w)E ([C - D]].
Suppose B = C and the lemma holds for C. If w V C, then for

some x, wRx, x V C, and by the i.h., p(x)0QC]]. Since wRx, p(x) < p(w),
and therefore p(w)o [ C]. Conversely, if p(w)o [ CD, then for some
i < p(w), iO([C]]. By Lemma 1, for some x, p(x) = i and wRx. By the
i.h., x V C, and therefore w V C. -I

It follows that whether or not a letterless sentence holds at a world
in a model depends solely on the rank of that world (with respect
to the frame on which the model is based).

Lemma 4. If B is letterless, then GL B iff [[B]] = N.
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Proof. Suppose GL I- B. For every n, there exists a finite transitive
and irreflexive model M, = <W, R, V>, such that for some wE W,
p(w) = n. But certainly M, w k B, and then by Lemma 3,
n = p(w)e E[B]. Conversely, if GL f B, there exist a finite transitive
and irreflexive model M and wE W such that M, w V B. But then by
Lemma 3, p(w)OTBJ. -A

It follows from Lemma 4 and the definition of BJJ that if B and
C are letterless, then {BJ g {C]J if GL F- B -> C and IB}J = OiCJ if
GLIBHC.

Lemma 5. For every n, {m: m < n}.

Proof. Induction on n. T1 = {m: m < 0}. And if
{m:m<n}, then
{m:`di<mi<n}={m:m<n+1}. -{

Lemma 6. For every n, {n}.

Proof. By Lemma 5. H

Lemma 7. Suppose QBJI is finite. Let C = V {-'
nEI{BJ1 } (well-defined, since {BJ is finite.) Then

GLHBHC.

Proof. Let M be a finite transitive and irreflexive model, we W.
Then by Lemmas 3 and 6, M, w k B if p(w)E JBJ, if p(w) = n for some
nEE{BJl, if p(w)eh for some nelBJI, if

for some nE4B]1, if M,wkC. Thus B and
C hold at exactly the same worlds in all models, is valid,
and by the completeness theorem for GL, GL I- B H C. H

Lemma 8. Suppose [BJ is cofinite. Let C =
A Then GL f- B+-+ C.

Proof. Like that of Lemma 7. -
Lemmas 2, 7, and 8 yield another proof of the normal form

theorem: if B is letterless, by Lemma 2, I{BJ1 is finite or cofinite,
and by Lemma 7 or 8 respectively, C is a sentence in normal form
such that GLf-B*C. Together with Lemma 4, they also yield
proofs of the "letterless" cases of Solovay's completeness for GL and
GLS, as the next two theorems show. (The much harder proofs of
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the full theorems, in which the proviso that B be letterless is absent,
are given in Chapter 9.)

Theorem 1. Let B be letterless, * arbitrary. Then GLS F- B
iff B* is true.

Proof. "Only if" is clear. If [B] is finite, then by Lemma 7,
V and, since (on, 11)* is

false, B* is false. (If [B]] = 0, C* is the empty disjunction, thus
equivalent to 1, and B* is again false.) Thus if B* is true, I[B] is
cofinite, GL H BE--, A 10"+ 11-, "1: n 4 QB]] } by Lemma 8, and
therefore GLS I- B, for then B is equivalent in GL to a conjunction
of axioms D -> D of GLS. -1

Theorem 2. Let B be letterless, * arbitrary. Then GL I- B iff
PAI-B*.

Proof. "Only if" is clear. If TB]] is finite, B* is false, as we have just
seen, and so unprovable. If TBD is cofinite but i44B]1, then
GLI--BHC,where C= and El"'-L,

` 1 is a conjunct of C; but ( `+ 11-> ` 1)* is not provable (Lob),
and therefore neither are C* nor B*. Therefore if B* is provable,
JB]] = N, and by Lemma 4, GL F- B. -1

Theorem 3 (Goldfarb). Let B be letterless. Then
GLh--1

Proof. If 04B]], lc-4 B]], and 101-10B]]; if 04 4B]], Oe h--IB]],
1 e Q --1 B]j, and 10 Q-i -i B]]. In either case, 10 -i B A B]].

And OE f B]] for all B; thus O 0 [-i B n --, -, B]]. Since
10 O T ]] = N - {0,1 }, the theorem follows by the remark immediately
after Lemma 4. -1

Theorem 4. Let B be letterless. Then
GL -,B.

Proof. Otherwise, by Theorem 3, GL I O T - O O T, which is not
the case. -I

At the end of Chapter 3 we saw that if S is equivalent to its own
unprovability, or, what comes to the same thing, if S is equivalent
to the consistency of PA, then the undecidability of S does not
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follow in PA from the consistency of PA. It follows from Theorems 2
and 4 that the same holds for any letterless sentence S.

Theorem 5. Let B be letterless. Suppose GL I- O T - B, but
GLKB. Then GLI-B*--3OT.

Proof. Q O T ]] = N - {0}. By Lemma 4, O T B] = N, but
B]ON. Then QB]]=N-{0}=I[OT]1. -1

Thus no unprovable constant sentence is strictly weaker than
consistency. And no consistent constant sentence is stronger than
all of consistency, the consistency of consistency, etc.:

Theorem 6. Let B be letterless. Suppose B. Then for
some n, GLV-B-> O"T.

Proof. If for all n, GUHB-.O"T, then by Lemmas 4 and 5, for
all and TB]]= 0, whenceGLH-B,
again by Lemma 4. -I

Reflection principles and iterated consistency assertions

We now employ GL to examine reflection principles, sentences
( p - p)* of arithmetic, and sentences of arithmetic that may be
called iterated consistency assertions, i.e., sentences (O"T)*. An
iterated consistency assertion is a constant sentence of the form
-,Bew('Bew(... Bew(r L 1)...) 1). The next theorem, for all its
simplicity, turns out to be quite useful, and it is applied again in
the proof of the main theorem of Chapter 12.

Theorem 7. Let M be transitive. Suppose that for some natural
number n, w" R ... Rw l Rwo, and X = { Ai -* Ai: i < n}. Then

for some j < n, wj k A X.

Proof. If for every j < n, there is an i < n such that wj V Ai - Ai, then
by the pigeonhole principle, for some i < n, there are j, k, 0 <j < k <, n,
such that w; V Ai -> Ai and wk V Ai -* Ai. Thus w; V Ai and
Wkk Ai. But by transitivity of R, WkRwj, contradiction. -I

In the next two theorems, we assume that X = { Ai -+ Ai: i < n}.

Theorem 8 (Daniel Leivant). Suppose GL I- A X -+ ( kp -> p).
Then k < n.
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Proof. Let W= {n,...,1,0, -11,wRxiffw>x,andwVpiffw= - 1.
<W, R, V> is appropriate to GL. Suppose k > n. Then if 0 < j < n,
j V p and j k '+ 1p, whence j k kp. Thus by the supposition of the
theorem and the soundness theorem for GL, for every j, 0 <j < n,
j V A X, contra Theorem 7. -I

Theorem 9. GL 1 (A X-> O"T)-.(O"T -+ AX).

Proof. Use the completeness theorem. Suppose w k (A X --> O " T )
andwk O"T.p(w)>n,andthen forsome w,,...,w1,w0,w=wnR...
Rw1 Rwo, and p(w) = j for j < n. By transitivity, if j < n, wRwj and
wjk(AX-+O"T). But for j<n, p(w) <n, and therefore w;VO"T
and w j V A X. By Theorem 7, w k A X. H

Let C" = (on T)*; we call Cn the nth iterated consistency assertion.
C. asserts the consistency of the consistency of... the consistency
of arithmetic (n `consistency's). It follows from Theorem 9 that if
C. follows from a conjunction of n reflection principles, then Cn implies
that conjunction. For suppose

PA F- A {Bew(rS1') -* Si: i < n} Cn. Then
PA F- Bew(r A {Bew(rSi,) -. Si: i < n } -+ C,,).

Let po,... , pn _ 1 be n distinct sentence letters and let * be such that
for each i < n, p* = Si. Then

PA F- (A { pi -> p): i < n} -> O" T)*. By Theorem 9,
A{El pi -.pi):i<n}),

and therefore
PA F- (O" T -+ A { pi -> pi): i < n})*, i.e.,
PA F- C. -+ A {Bew('Si') -+ Si: i < n}.

The nth iterated consistency assertion (0")* is equivalent to
and (since GL F- '1- + '1 if i < j) also to (0"-L -+

"-11)* A A ( 21--> 11)* A ( 11 01)*, a conjunction
of n reflection principles.

But no conjunction of fewer than n reflection principles implies .

C,,: for suppose m < n and a conjunction R of m reflection principles
implies Cn. Then since m < n, C,,, which is (O"T)*, implies C., and
R implies Cm. Thus C. implies R back, and therefore C. implies
Cn. But i.e., (O'° T)*, certainly does not imply C. (unless PA
is 1-inconsistent).

Thus the nth iterated consistency assertion is equivalent to a
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conjunction of n fewer reflection principles, but no conjunction of
fewer than n reflection principles implies it.

The following result was mentioned in Chapter 3.

Theorem 10.

Proof. Suppose w k (( p -> p) -+ -10 1), but w V 1. Then
w k O O T, and p(w) > 2. So for some x, wRx, p(x) = 1, and

Since p(x) = 1, for some y, xRy, and p(y) = 0. But then wRy
and and since xRy, ykp,
y k 1, contra p(y) = 0.

Letterless sentences are unusual in having nice normal forms

According to the normal form theorem for letterless sentences, every
letterless sentence is equivalent to a truth-functional combination
of sentences `1. We now prove a theorem of Solovay's that shows
that the letterless sentences are exceptional in possessing such
normal forms.

Let Ho be the set of all sentences containing no sentence letter
other than p and equivalent (in GL) to one of p, -gyp, T, and 1;
let H.,1 be the set of all sentences containing no sentence letter
other than p and equivalent to some truth-functional combination
of sentences O'B, where r >,O and Every modal sentence
containing no letter but p is in some H. By the normal form
theorem for letterless sentences, every letterless sentence is in H1.
And since r in the definition of 1 may equal zero, H. c 1,
and thus if m < n, H. s H,,. Solovay's theorem is that the sequence

is properly increasing.

Theorem 11 (Solovay). For every n, H. H. + 1.

Proof.' Let A, = Op; A,,, 1= O (p A A A

A Op)). A1EH1; if AneH,,, then since peH0 s H, P A
and A5 + 1 1. Thus for every n, We shall prove the
theorem by showing that 1 0H,,.

Consider the model M, where, in the structure depicted below,
W= {a _ 1, ao, bo, co, a1, b1, c1, ...}, wRx iff there is a nonempty se-
quence of arrows from w to x, and wVp iff w is one of the as
(including a_ 1) or one of the bs.



101

11

IXIXr

a-,

We first show by induction on i that if A EHi, i >, 0, then ai k A
if bi k A. Since ao k p and bo k p, the basis step is clear. For the
induction step, assume AEHi+ 1 and for all B in Hi, ai k B if bi k B.
ai+ 1 k p and bi+ 1 k p; thus we may assume that A = O'B, where r > 0
and BEHi.

If r > 1, then ai+ 1R'd if bi+ 1R'd, and therefore ai+ 1 k O'B if for
some d, ai+ 1R'd and d k B; if for some d, bi+ 1R'd and d k B; if
bi+ 1 k O'B. So suppose r = 1. If ai+ 1Rd, then either d = ai or bi+ 1Rd,
as a glance at the diagram shows; if bi + 1 Rd, then either d = bi or
ai+ 1Rd; ai+ 1Rai; and bi+ 1Rbi. By the induction hypothesis, ai k B .
if bi k B. Thus a i + 1 B if bi + l k K B.

Thus if if
Since a k A,.+ . But there is no sequence d,,, ... ,

do such that b Rdo and for all i, 0 <j < n, d;Vp. Thus
b.V A,,+ 1. So A,.+ 10H -A
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Incompactness

The compactness theorem states that if every finite subset of a set
of sentences has a model, so does the entire set. The compactness
theorem holds for propositional and first-order logic and fails for
(standard) second-order logic. Does it hold for GL? Say that a set
of sentences is true at a world w in a model if all its members are
true at w. Our question may then be put: Is every set every finite
subset of which is true at some world in some model appropriate
to GL itself true at some world in some model appropriate to GL?

The answer is no, a result due to Kit Fine and Wolfgang Rautenberg.
Let POI p1, P2, ... , be an infinite sequence of distinct sentence letters.
Let U = { Opo} u { (p; - Op1+ 1): iEN}. Then every finite subset
of U is a subset of { O po} u { (p; -+ O p;+ 1): i < n}, for some natural
number n. And then every sentence in { O po } u { (pi 0 p, + 1):
i < n} is true at win <W, R, V>, where W is the set of nodes in the
diagram:

w-3w0->w1--+...__+ wn

xRy if there is a nonempty sequence of arrows from x to y, and
xVp; if x = wj. <W, R, V> is finite transitive and irreflexive.

But the whole set U is true at no world in any transitive and
converse wellfounded model: for suppose on the contrary that
wk Opo and for every i, wk (p;-+ Opi+1). Let X = {x: wRx A for
some i, xkp;}. Since wk Opo, X is nonempty. Suppose that xEX.
Then wRx, and for some i, xkp;. But w k (p; - O p; + 1). Since wRx,
xkp;-+Opi+1. Thus xkOp;+1, and for some y, xRy and ykp,+1.
By transitivity, wRy, and so yeX. Thus X is nonempty, but every
member of X bears R to some member of X. R is therefore not
converse wellfounded, contradiction.

There are infinitely many sentence letters in the sentences in U.
Is there a set of sentences containing no sentence letter other than
p that similarly shows the incompactness of G?

Yes, according to an observation of Goldfarb. For each natural
number i, let C, = p A ` 1, B. = O C;, and A. = B; A B; + . Then
the set iEN} is true at no world in any
model appropriate to GL, as the argument two paragraphs back
shows. However, for any n, { O Ao} u { (A, -+ O A, + 1): i < n} has
a model < W, R, V> appropriate to GL. Consider the transitive frame
<W,R>:
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w

1

wo -4 xo

I
wi -'xi Yii
I
W2 -+x2 Yzi -+ Y22
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1

1

wi xi -'Yii->...->Yii

I

1
wn -+ xn -' Yn i -> ... -> Y..-

Let zVp if z = x;, some j. <W, R, V> is clearly appropriate to GL.
z k C, if z = xj for some j < i. Then if z w, z k Bi if z = w j for

some j < i. And then if z O w, z k A; if z = wi. Thus wk O AO and if
i<n, wk(Ai-OAi+i).
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The fixed point theorem

The beautiful fixed point theorem for GL, due independently to
Dick de Jongh and Giovanni Sambin, is the most striking applica-
tion of modal logic to the study of the concept of provability in
formal systems.

We recall the two definitions necessary for the statement of the
theorem.

0 A is the sentence ( A A A).
A sentence A is said to be modalized in p if every occurrence of

the sentence letter p in A is in the scope of an occurrence of ;

equivalently, A is modalized in p if and only if A is a truth-functional
compound of sentences of the form D and sentence letters other
than p.

The fixed point theorem then reads: For every sentence A
modalized in p, there is a sentence H containing only sentence
letters contained in A, not containing the sentence letter p, and such
that GL F- (p+-+A)+-+ El (p+-+ H).

Any such sentence H is called a fixed point of A.
If GL F- HHI, then GL F- El and therefore GL I- (pHH)

H 0 (p+-*I). And if GL F- 0 (p*-H).--> El and neither H nor
I contains p, then substituting H for p yields GL F- El (HHH)H
D (H4-+I), whence GLF-HHI. It follows that any sentence equi-
valent in GL to a fixed point of A and containing only sentence
letters in A other than p is itself a fixed point of A, and that all fixed
points of A are equivalent in GL.

A fixed point H does not contain p. Thus writing: A(p) instead
of: A, we have that GLF- El (HHA(H)) 0(H<-- H), by substi-
tution in the theorem, and therefore GL F- H H A(H).

By Theorem 9 of Chapter 1, GL F- BH El B; by normality it
also follows from the theorem that if A is modalized in p, then for
some sentence H containing only letters in A but not p,
GL H (pE-*A(p))H (pHH).

Notational convention: Until the section of this chapter on the
Craig interpolation lemma, A will be a sentence that is modalized
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in p, n will be the number of boxed subsentences of A, i.e., subsen-
tences of A of the form D, and these will be D I, ... , D. The
number n turns out to be a significant constant in the study of fixed
points.

The table below provides a number of instances of the theorem.
If A is the sentence on the left, H may be taken to be the corre-
sponding sentence on the right:

1. -1 p
2. p
3. -ip
4.

5.

6.

-1 1
T

1
El _L

7.

8. p-+q q->q
9. (p-q) q

10. pnq qnq
11. (pnq) q
12. T
13. -i (q-+p) 0q
14.

15. qn -iq
16. OT-*(qA-,El
17. (p A r)

According to line 3, GL F- (pH p) +-+ I (p - 1). It follows
that S is a sentence that is equivalent (in arithmetic) to its own
disprovability if and only if S is equivalent to the assertion that
arithmetic is inconsistent. For let * be such that S = *p. Then if S
is equivalent to its own disprovability, that is, PAF-S`--).Bew(r_l S,),
i.e., PA I- (pH 1 p)*, therefore also PA F- (p<- -i p)*, and
PA I- El (pH -' p)*. But by Theorem 2 of Chapter 3,
PA F- ( O (p *- 1))*, and therefore
PA O 1)*, whence PAI-(p*-- 1)*, i.e.,
that is, S is equivalent to the inconsistency of arithmetic. The proof
of the converse proceeds in like manner.

We can similarly infer from lines 1 and 6 of the table that a
sentence of arithmetic is equivalent to its own unprovability if and
only if it is equivalent to the assertion that arithmetic is consistent
and that a sentence is equivalent to the assertion that it is dis-
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provable-if-provable if and only if it is equivalent to the assertion
that arithmetic is inconsistent if the inconsistency of arithmetic is
provable.

From line 10 we can infer that for arbitrary sentences S and U
of arithmetic, S is equivalent to the conjunction of assertions that
S is provable and that U is true if and only if S is equivalent to
the conjunction of assertion that U is provable and true: let * be
such that *p = S and *q = U, and argue as above. And so on.

You may have noticed that, roughly speaking, the sentence H in
the table has the overall shape of the sentence A of which it is a
fixed point. In certain cases, the similarity could have been brought
out more sharply by replacing entries by equivalent sentences; e.g.,
in line 2 we could have replaced T by T, or T by q v T in
line 12.

From line 6 we see that a fixed point may have a greater modal
degree than a sentence of which it is a fixed point. 1-> 1,
which has degree 2, is a fixed point of the sentence p -+ -i p of
degree 1. Every letterless sentence of degree 1 is equivalent to 1,

I, -' 1, or T; none of these is equivalent to I -> I.
Thus every fixed point of p -p -i p is of higher modal degree
than it. Similarly for the sentence A of line 7.

However, as inspection of the table may also suggest, A always
has a fixed point whose degree is at most n.

We are going to give three quite different proofs of the fixed
point theorem. The first proof will make plain why a sentence
modalized in p has a fixed point roughly similar to it in shape. The
second will prove that every sentence A modalized in p has a fixed
point of modal degree < n. The third proof will obtain the existence
of a fixed point as a corollary of a lemma on the uniqueness of
fixed points and the Beth definability theorem for GL, which in
turn may be derived in the usual manner from the Craig interpola-
tion lemma for GL.

The special case of the fixed point theorem, in which the sentence
A modalized in p contains no sentence letter other than p itself, is
of great independent interest. The special case was proved before
the general case by Claudio Bernardi and Craig Smorynski (inde-
pendently).

The special case is illustrated in lines 1-6 of the table. The original
sentence constructed by Godel in "On formally undecidable propo-
sitions..." can be seen as expressing its own unprovability; line 1
gives us a significant piece of information about such sentences: they
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are the sentences equivalent to the assertion that arithmetic is
consistent. Line 2 encapsulates Lob's answer to Henkin's question.
Line 4 tells us that the refutable sentences are those equivalent to
their own consistency. Many, perhaps most, questions about the
status of arithmetical sentences described "self-referentially" as
equivalent to their own satisfaction of some predicate constructed
from truth-functional operators and Bew(x) can be answered with
the aid of a proof of the special case of the fixed point theorem.
Before giving our three proofs of the full fixed point theorem, we
shall give a separate proof of the special case, which brings out the
close connection between that case and the normal form theorem
for letterless sentences. The proof yields a particularly simple proce-
dure for calculating, and determining the truth- and provability-
values of, such self-referential sentences of arithmetic.

By Theorem 10 of Chapter 1, if GL F- B -> C, then GL F- 0 B -+
0 C. Then to prove the theorem, it suffices to find a suitable H such
that GLF- 0(pHA)- (pHH) and GLF- (pHH)->(pHA).

We first show that it is enough to find a suitable H such that
GLF-

Theorem. Suppose that H does not contain the sentence letter
p and GL I El (pHA)-*(p4--.H). Then GL F-- El (p<-+H)-->
(p4- A).

Proof(Goldfarb). Suppose that M is a finite transitive and irreflexive
model in which E is invalid. Then for some w, and
hence for some w of least rank, M, w k El (pHH), whence M, w k p+-+
H, and M, w (E p H A. If wRx, then M, x k (p H H), but since x is
of lower rank than w, M, x k pHA. Let V be just like V, except that
wV'p niff' wVp. (Thus xV'q if xVq, provided that either x w or
q p.) Let N = < W, R, V'>. N is certainly a finite transitive and
irreflexive model.

We now repeatedly appeal to the corollary to the continuity
theorem of Chapter 4.

A is a truth-functional compound of sentences D and sentence
letters q other than p. M, w k D if M, x k D for all x such that wRx,
if N, x k D for all x such that wRx (continuity), if N, w k D. Also
M,wkq if N,wkq. Thus M,wkA if N,wkA. M,wkp niff N,wkp,
by the definition of N. Therefore N, w k pH A, and by continuity
again, N, x k p -i A for all x such that wRx. Thus N, w k El (pHA).

H does not contain p. By continuity, M, w k H if N, w k H. Since
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M, w k p niff N, w k p, N, w V p H H and therefore D (p - A)-'(p4-'H)
is invalid.

Thus, by soundness and completeness, if GL F- D (p-A)-*(p'-*H),
then GLk- O(pHH)-o.(p.--.A).

To prove the fixed point theorem, it now suffices to prove that
GL We first discuss the special case, where
A contains no sentence letters but p.

The special case of the fixed point theorem

Our proof of the special case of the fixed point theorem makes use
of the notion of rank p and a generalization of the notion of trace;
these notions were introduced in Chapter 7.

We shall call a sentence a p sentence if it contains no sentence
letter other than p. Every p sentence is a truth-functional compound
of p and necessitations of p sentences.

Generalizing the notion of trace, we now define the A-trace O1BJJA
of B for each p sentence B.

There is an enumeration B0, B1,..., of all p sentences in which p
comes after A and in which truth-functional compounds always
come after their components. (Thus B0 is either 1 or a sentence

D.) We pick one such and call it the standard enumeration. We
define whether mEQBDA or not by a double induction, the outer
induction on m, and the inner induction on the standard enumeration:

TB->CIA=(N-QBDUMA
IM: Vi <m iETD]IA}

NA = AL
the question whether mEE{B-'CL is reduced to the

questions whether me BJJA and mE MA (the inner induction: B -> C
comes after B and C); the question whether mENA is reduced to
the question whether m4 4AJI A (the inner induction: p comes after
A); and the question whether mE Q D]IA is reduced to questions
whether i e (DJI A for i < m, (the outer induction).

Thus DIBJI A is well defined for each p sentence B.
As before, El-i B]]A = N - (B]A, (B A CIA = E[B]A n MA, etc., and

O B]A = { is 3m < i mE (BM. Moreover, Q `1]A = { j: j < i} (as one
may prove by affixing "A" to " J" in the proof of Lemma 5 of
Chapter 7). We therefore have the following:
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Lemma 1. Fi (0"' _L + `1la = W-

Henceforth, we shall almost always omit "A" after "J".

Lemma 2. Let M be a finite transitive and irreflexive model
in which (p *-+A) is valid. Let B be a p sentence. Then M, w k B
iff p(w)E

Proof. We prove the theorem by an outer induction on p(w) and
an inner induction on the standard enumeration. Since A is a
truth-functional compound of p sentences D, and w k p if w k A,
whence JpJ = JAI, we may suppose that B = D and the theorem
holds for all p(x) < p(w). But then the argument of Lemma 3 of
Chapter 7 works: If w V D, then for some x, x (E D, wRx, and so
p(x) < p(w); by the i.h., p(x)0QD]j, whence p(w)0T D]. Conversely,
if p(w) O J DJ, then for some i < p(w), i O TDJ; by Lemma 1 of
Chapter 7, for some x wRx and p(x) = i, and then by the i.h., x V D,
whence w V D. H

Every subsentence of A is a truth-functional combination of p
and D1,...,

Lemma 3. Let B be a subsentence of A. Then either T BJ c
{0,1, ... , n} or N - {0,1, ... , n} c fB]J.

Proof. (a) It is evident from the definition of f DJ that if k < j and
j E T D]1, then k E T DJ1.

(b) Thus there exists an i, 0 < i < n, such that for every subsentence
D of A, i E J DJ if i + 1 E Q DD. Otherwise by (a), for every i,

0 < i < n, there is a subsentence D of A such that i c- T D] and
i + 10T D}J. But there are only n subsentences D of A, and
therefore by the pigeonhole principle, there is a subsentence D
of A such that for some i, j, 0<, i < j <n, i E [ DJ], i+ 1 0 [ DJ1,

j c- [ D], and j + 10 Q D], which is absurd, again by (a).
(c) If for every subsentence D of A, j c- IJ DI if j + 1 E If DJI,

then (since A is a truth-functional compound of D 1, ... ,
jeIA]1 iff j + IEQA]1, whence jeJpJ if j + IEQp] and therefore) for
every subsentence B of A, j e IfBJl iff j + 1 E QB]I.

(d) If for every subsentence B of A, j c- JBJ1 if j + 1 E If B], then
(where D is a subsentence of A, for all k < j + 1, kE E[D if for all
k < j + 2, kEQDJI and therefore) for every subsentence D of A,
j+ iff j+2EIfDj.
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By (b), (c), and (d), there exists an i 5 n such that for every
subsentence B of A and every j ->- i, ieQB]] if je]BJ1. The lemma
now follows at once. -I

By Lemma 3, either [AD c {0, 1, ... , n} or N - {0, 1, ... , n} c T
If the former, let H = V {-i ( `+' 1-. `1): i e ][A] }; if the latter, let
H = J_ > `1): i o JA] }. By Lemma 1, ]H]] _ TA]] _ ]p]],
and so Q pH H] = N. We now show that GL F- (p+-+ A) -+ (p+-+H).

The special case of the fixed point theorem. Suppose that A
contains no sentence letter other than p. Then GLF- (p+A)-
(p4-'H).

Proof. Suppose that Mis an arbitrary finite transitive and irreflexive
model and M', w k EJ (pHA). Let M be the submodel of M' gene-
rated from w. (Cf. Chapter 4.) M is finite transitive and irreflexive
since M' is. By the generated submodel theorem, M, w k 0 (p +-+A).
By the definition of M, W = {w} u {x: wRx}. Thus for all xe W,
M, x k pHA, and pHA is valid in M.

By Lemma 2, M,wkpHH if p(w)E4pHH]]. But, as we saw,
N. Thus M, w k pHH, and by the generated submodel

theorem again, M', w k pHH.
Thus M', w k (pHA) --* (pHH); by the completeness theorem

for GL, GLF- (pHA)->(pHH). -1

Thus a fixed point of A is true if A]]A is cofinite; a fixed point
of A is provable if A]]A is the entire set N of natural numbers.

The proof of the special case of the fixed point theorem yields
a proof of the normal form theorem for letterless sentences: Suppose
A letterless. Then GL F-- 0 (p4-4 A) -> (pHH). By substitution, GL F-
0 (AHA)-*(AHH). Since GL F- El (A<-+A), GLHAHH. And H is
in normal form.

There is a simple truth-table-like procedure for calculating fixed
points; we shall not describe the method in full but will give a
completely typical illustration of it, in which the sentence A, whose
fixed point is to be found, is p -> p:

p -ip p -ip I 1 1
0 T T T T 1 I T T
1 T 1 1 1 T I I T
2 1 1 T T 1 I I 1
3 1 1 T T 1 I I 1
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The lines of the table correspond to ranks of worlds. On the top
line, line 0, all sentences D get T; truth-functional compounds
inherit their truth-values on a line from those of their components
as usual (thus 1 gets 1 on every line), on any line A gets T if
A gets T on all lines with lower numbers, and p gets T on a line
if A does. (Since A is a truth-functional combination of sentences

D, its truth-value on any line can be calculated before the
truth-value of p on that line.) Line 3 repeats line 2, and therefore
any later line would also repeat line 2 (cf. Lemma 3); thus we need
not write any line > 3. A is false at line 1 and nowhere else; thus
TABA = N - { 11, and H = 1--> 1. Note that, had it been in
the table, 1-> 1 would also have gotten 1 on line 1 and
nowhere else.

We turn now to the general case, whose proof seems to require far
more than the mere insertion of a sequence of parameters into a
proof of the special case. It is noteworthy that none of the three
proofs we shall give can be considered a generalization of the proof
we have given for the special case. Whether there is such a gene-
ralization would appear to be an open question. In view of the
existence of simple normal forms for letterless sentences, the non-
equivalence of O (p A O p) to any truth-functional compound of
sentences ` 1, ' p and `--i p (cf. Theorem 11 of Chapter 7), and
the facts that GL I-1-> 1 but GL If p - p, it would not be
surprising if no such proof existed.

First proof of the (general) fixed point theorem

The first proof we shall give is due to Giovanni Sambin and Lisa
Reidhaar-Olson.2

Call F k-decomposable if for some (possibly empty) sequence
q 1, ... , qk of distinct sentence letters, some sentence $(q 1, ... , qk) not
containing p but containing all of q1,. .. , qk, and some sequence of
distinct sentences D 1(p),(p), Dk(p), each containing p,

Since A is modalized in p, for some k, A is k-decomposable.
If A is 0-decomposable, then by the definition, for some sentence

B not containing p, A = B; more simply, A does not contain p, and
A is a fixed point of A. To prove the theorem, it thus suffices to
suppose that every k-decomposable sentence that is modalized in p
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has a fixed point, assume that A is (k + 1)-decomposable and moda-
lized in p, and show that A has a fixed point.

By our assumption, A = B( D 1(p), ... , Dk11 (M for suitable B,
q1,.. . , 4k + 1, and D 1(p), ... , Dk + 1(P)

For each i, 1 < i < k + 1, let Ai be the sentence

T, Di+1(p),..., Dk+1(P))

Each A, is k-decomposable and modalized in p and thus has a fixed
point Hi. Let H be the sentence

B( D1(H1),..., Dk+1(Hk+1))

We shall show that H is a fixed point of A.
This construction of the fixed point H is due to Sambin, who

gave a syntactic proof of its correctness; Reidhaar-Olson showed
that the usual semantics could be used to give an exceedingly
perspicuous version of his proof.

Recall the substitution theorem: GL F- O (B +-+ B') -, (F(B) H F(B'))
and its consequence: GL F- 0(BHB')-+ (F(B)HF(B')). In the
next four lemmas, M is a finite transitive and irreflexive model,
w,x,yeW, and I <i,<k+ 1.

Lemma 4. Suppose that y k El (p *-*A) and y k D.(p). Then
y k D;(p)<-+D;(H,) and y k Di(p)<-+ D. (Hi).

Proof. Since y k Di(p), for all z such that yRz, z k Di(p),
y k Di(p)H T, and for all z such that yRz, z k D.(p)" T. Thus
y k El ( D,{ p) H T). By substitution, y k 0 (A H Ai). Since
yk EI(p*A), yk and since H, is a fixed point of A;,
yk EI (pH H,). By substitution, yFD,(p)HD,(Hi) and
yk -1

Lemma 5. x0 El (pHA)-. ( Di(P) -> Di(Hi))D

Proof. Suppose that x k El (pH A), xRy or x = y, and y k Di(p).
Then y k 0 (pHA) and by Lemma 4, y k D1(Hi). H

Lemma 6. wk O(pHA)-.

Proof. Suppose that w k El (pHA), wRx or w = x, and x k Di(p).
Then for some y of least rank, xRy and y k - Di(p). Then for all z
such that yRz, we have xRz, p(z) < p(y), and so z k D,(p), whence
y k D,{ p). Since w k EI (pHA) and wRy, y k El (p+-+ A). By Lemma 4,
ykDi(p)HD,{Hi). Thus yk-iD,(Hj), and therefore H
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Lemma 7. wk

Proof. By Lemmas 5 and 6. -I

The fixed point theorem is now immediate. Using Lemma 7 and
repeatedly substituting, we have that

wk D (p
HB( D1(H1), D2(P),..., Dk+i(P))
HB( D1(H1), D2(H2),..., Dk+AP))H...

HB( D1(H1), D2(H2), ..., Dk+ 1(Hk+ 1)),

i.e., wk Thus (p*A)--+(A-*H) is valid in all
finite transitive and irreflexive models and by the completeness
theorem is a theorem of GL.

Note that in this proof H comes from A by substituting various
fixed points for various occurrences of p in A; the results of these
substitutions can often be simplified internally. It is therefore un-
surprising that a fixed point of A has an overall aspect similar to
that of A.

The analysis of A as obtained from B by substitution of sentences
D(p) into B need not be unique. E.g., if A = p, then we may

take B(q1) = q and D1(p) = p, or we may take B(q1) = q1 and
D1(p) = p. When applied to different analyses of A, the algorithm
may yield fixed points that differ considerably in complexity (though
of course they are equivalent in GL).

For example, let A = ( (p n q) n (p n r) ); then n = 3. If we
take B = q1, so that D1(p) = (p A q) A (p A r), then we obtain
H = ( (T A q) A (T A r) ), of degree 2, the degree of A. But if
we take B = (q1 A q2), so that D1(p) = p A q and D2(p) = p A r, we
obtain H= n n T) n r)) n q) n

( ( ( (T A T) A q) A T) A r) ), whose degree is 5. (Both fixed
points are equivalent to q n r.) Thus an injudicious analysis
of A may produce a fixed point of needlessly high modal degree.

But simplification of H to a sentence of the degree of A is not
always possible: as we have seen, I --> 1 is a fixed point of

p -+ -i p, but it is equivalent to no sentence of degree 1. In the
next proof, we obtain a fixed point whose degree is guaranteed to
be no greater than n, but at a cost: the fixed point will be a
disjunction of sentences of low degree but one that is very long.
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Second proof of the fixed point theorem

The second proof of the full fixed point theorem is a semantical
version, discovered by Zachary Gleit, of a proof given by the author.
The fixed point of A will be seen to be of modal degree 5 n.

Let s be the number of sentences other than p that occur in A.
(s = 0 if there are no letters other than pin A.) Let these be q1,. .. , qs

We now define the notion of an m-character, m > 0.3
The 0-characters are the 2s sentences ± q1 A A + qs. (Of course,

± B is either B or B. If s = 0, T is the sole 0-character.)
Suppose that the m-characters are the t sentences V1,..., V, Then

the (m + 1)-characters are the 2S+` sentences

n±OV,
For any fixed m, the disjunction of all m-characters is a tautology

and any two m-characters are truth-functionally inconsistent. Thus
for any model, M and any w in W, there is exactly one m-character
U - call it U(m, w, M), or U(m, w) for short - such that M, w k U.

Conventions: w,w',w0EW, N=<X,S,Q>, and x,x',x0EX. We
will often omit "M" and "N".

Lemma 8. Suppose that M and N are finite transitive and
irreflexive models, M, wo k (pHA), N, x0 k (p*-+A), and
U(n,wo,M)= U(n,x0,N). Then M,wokp iff N,x0kp.

Proof. Suppose wo k p niff x0 k p.
Let P(i, Z, w, x, D) if and only if the following eight conditions

hold:
(1) Z is a set of subsentences of A of the form B;
(2) Z contains i members;
(3) woRw or wo = w;
(4) x0Sx or x0 = x;
(5) for every sentence B in Z, w k B and x k B;
(6) U(n - i, w, M) = U(n - i, x, N);
(7) D is a subsentence of A; and
(8) w k0 D niff x k D (whence DOZ).

Then
(*) if i < n and for some Z, w, x, D. P(i, Z, w, x, D),

then for some Z', w', x', D', P(i + 1, Z', w', x', D').

For suppose that i < n and P(i, Z, w, x, D). Without loss of gene-
rality we may assume that w V D and x k D. Then for some w',
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wRw', whence woRw' (3'), w' k D and w' V D. Since i < n, n - (i + 1)
and U(n - (i + 1), w') are defined. Let V = U(n - (i + 1), w'). Then
w' k V, and w k O V. Thus O V is a conjunct of U(n - i, w) = U(n - i, x).
So x k O V, and thus for some x', xSx', whence xoSx' (4'), and x' k V.
Thus U(n - (i + 1), x') = V = U(n - (i + 1), w') (6'). Since xSx', x' k D
and x' k D. Let Z' = Z v { D} (1'). Then Z' contains i + 1 members
(2'). Since wRw' and xSx', for every sentence B in Z', w' k B and
x' k B (5'). It remains to find a suitable Y.

D is a subsentence of A, w' V D, and x' k D. Thus either

(a) w'kpniffx'kpor
(b) w' k qk niff x' k qk for some k, 1 < k < s, or
(c) w' k D' niff x' k D' for some subsentence D' of A.

But since woRw' and xoSx', w' k pHA and x' k pHA. Thus if (a)
holds, w' k A niff x' k A, and thus either (b) or (c) holds, since A is a
truth-functional compound of the sentence letters q1,. .. , qs and
boxed sentences. But (b) does not hold, for U(n - (i + 1), w') = U(n -
(i + 1), x'). Thus (c) holds (7', 8'), and (*) is established.

Since wok pHA, xo k pHA, and U(n, wo) = U(n, xo), it follows in
exactly the same way that for some subsentence D of A, wok D
niff xo k D; thus P(0, 0, wo, x0, D). By induction, for some Z', w', x',
D', P(n, Z', w', x', D'). But it is absurd that Z' is a set of boxed
subsentences of A, Z' contains n members, D' is a subsentence of
A, and D'OZ': n is the number of boxed subsentences of A. H

We now complete the second proof of the fixed point theorem.
Let H = V { U: U is an n-character and GL I- 0 (pH A) A U -> p}.
We shall show that GLI- EI(p-+A)-3.(p4-H).

Let M be a finite transitive and irreflexive model. Suppose
wk EI(pHA). Let U = U(n, w). U is the only n-character that holds
at w, and thus if w k H, then U is a disjunct of H, and
GL I- O (p<--*A) n U --> p; since w k U, wkp. Therefore w k H + p.

Now assume wkp. If U is not a disjunct of H,
GL O (p A U - p, and for some finite transitive and irreflexive
model N, some world x of N, x k (pHA), x k U, and x V p. But
the only n-character that holds at x is U(n, x). Thus U(n, w) = U =
U(n, x), contra Lemma 8. So U is a disjunct of H, and since w k U,
wkH. Thus wkp->H, and so wkp«->H.

By the completeness theorem for GL, GL I- EJ (pE-+A) -
and the fixed point theorem is proved.
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It is immediate by induction on m that the degree of each m-
character is m; therefore the degree of H, which is a disjunction of
n-characters is n, and we have proved that a fixed point of A always
exists whose modal degree is no greater than the number of boxed
subsentences of A. Thus although fixed points of A may have to
be more complex than A, on the most natural measure of comp-
lexity, they need not be much more complex.

It is instructive to examine the m-characters when there are no
sentence letters q1,. .. , qs, i.e., when s = 0. Then the sole 0-character
is T, which is the same sentence as O ° T, and it is consistent.

Suppose that the consistent m-characters are equivalent to 0m T,
O'T n 0--1T,...,. , 02T n 01T, O'T A O°T. From

A

O`T).-- 0'+' T. Then the consistent (m + 1)-characters are equi-
valent to those of + O m +' T n + Om T n n + O' T that are
consistent. But GL 1__ o k +'T -+ O ` T; thus the consistent (m + 1)-
characters are equivalent to 0"T, -10"T A O- T,...,

O 2 T A O' T, and - O T. So for all m, the consistent m-characters
are equivalent to 0-T, 0-T A 0 2 T A 01T,
-, O T, in other words, to the letterless sentences with traces {i: i '> m},
{m -1 }, ... , { 1), and {0}.

The role of modalization

The somewhat mysterious presence of the rather technical condition
on A, that it be modalized in p, may require explanation.

It is certainly not the case that arbitrary sentences B have fixed
points. For example, if B is p itself, then a fixed point of B would
be a letterless sentence H such that GL I- (p H H); there is no such
H. If B is -' p, a fixed point of B would be a sentence H such that
GL H (HH H); again, there is no such H.

Moreover, as we shall shortly show, p is not equivalent to any
sentence modalized in p, and therefore neither is p.

There are, however, sentences equivalent to no sentence modalized
in p for which fixed points exist. p v p is one example.

Proposition 1. Suppose that B is modalized in p. If GL I- p -* B,
then GU-B.

Proof. Suppose GL If B. Then for some finite transitive and ir-
reflexive M and some w, M, w V B. Let V be such that wV'p and
otherwise just like V, and let M' = < W,, R, V'>. B is a truth-func-
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tional compound of sentences D and sentence letters other than
p. By continuity, M', w V B. But M', w I p. Thus M', w V p -. B, and
GL p ->B. -4

Thus p is equivalent to no sentence modalized in p.

Proposition 2. For no B modalized in p, GL I- B +-+ (E] p v p).

Proof. Otherwise, GL I- p -> B, whence by Lemma 1, GL F- B, GL F-
p v p, whence GL F- 1 v 1 by substitution, which is certainly

not the case. -I

Proposition 3. GL F- p v p)H (p.-+ T).

Proof. The right-left direction is clear. For the left-right direction:

GL I- 1.1 (p-El pvp)-. 0
0 0
0
0
0 P

(p4-I T) H

( p -> p) (Theorem 9 of Chapter 1)

Thus although B's being modalized in p is, as the fixed point theorem
tells us, a sufficient condition for a fixed point of B to exist, it is
by no means a necessary one. Is there an interesting necessary and
sufficient condition on B for there to be a fixed point of W. (Not a
rhetorical question.)

The interest of the condition being modalized in p is that, as it
happens, a great many assertions about which we are curious
because they can be characterized as equivalent to their own
satisfaction of some formula can also be described as sentences S
such that for some * such that S = p* and some sentence B that is
modalized in p, PA F- For example, the sentences equivalent
to their own unprovability are the sentences S such that
PAF-(pH-, p)*, if S= p*. The fixed point theorem can then be
invoked to give us further information about those assertions.

There is a natural correspondence between sentences B modalized
in p and the formulas [B] (x) of arithmetic containing just x free
defined below; under the correspondence, PA I- B* -+ [B] (rS,), and
therefore PA I- (p *-+ B)* if PA I- S [B] (rS-1), provided that p* = S.
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(Under the correspondence the sentence letter p turns into the free
variable x of the formula [B] (x).) The formulas [B] (x) are frequently
the formulas involved in the characterization of the assertions that
interest us.

Let cond(x, y) be a E pterm for a function whose value for any
i, j is the Godel number of (F -> G) whenever i is the Godel number
of a formula F and j that of a formula G, and let bew(x) be a E
pterm for a function whose value for any i is the Godel number of
Bew(rF,) whenever i is the Godel number of a formula F.

For every modal sentence B containing no letter other than p
we define the pterm {B}(x):

{p} (x) is x;
{1}(x} is r1,;
{(B-+ C)}(x) is cond({B}(x), {C}(x)); and
{ B) (x) is bew ({ BI (x) ).

It is entirely routine to prove that if p* = S, then for every modal
sentence B, PA I- {B} (rS,) = r-B*,.

For every truth-functional combination B of sentences D, we
define the formula [B] (x):

[1](x) is 1;
[(B -> C)] (x) is ([B] (x) -> [C] (x)); and
[ B] (x) is Bew({ B} - (x)).

It is also routine to prove that if p* = S, then for every such B,
PA F- B* H [B] (rS,). Since the sentences modalized in p are the
truth-functional combinations of sentence letters other than p and
sentences D, [B] (x) has been defined for every sentence B modal-
ized in p.

Thus if p* = S and B is modalized in P, PA I- B* E-* [B] (r S-').
The correspondence can be generalized to one taking pairs (B, #)

of sentences modalized in p and realizations # to formulas [B, #] (x)
of arithmetic such that PA f - B* 4--* [B, #] (rS,) whenever p* = S and
q* = q# for sentence letters q other than p occurring in B, but we
shall omit the definition of [B, #] (x).

The Craig interpolation lemma for GL

The Craig interpolation lemma4 for GL, from which we shall derive
our third proof of the fixed point theorem, reads: If GL F- A -> C,
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then there is some sentence B such that GL F- A --> B, GL F- B -> C,
and every sentence letter that occurs in B occurs in both A and C.

Proof (Smorynskis). Let A and C be modal sentences. Let 20 be
the set of sentences all of whose sentence letters occur in A. Let 2 1

be the set of sentences all of whose sentence letters occur in C. Let
21 _ Yo n 2' 1. Let X = {D: D is a subsentence of A or of -i C}. Let
Y={-iD:DEX}. For SgXuY, i=0,1,let S,=Sn9s. Then S =
So u S1. A sentence B is said to separate a set S, 9 X u Y, if BE 21,
GL F- A So -> B, and GL F- A S, -+ -, B.

S is inseparable if no sentence B separates S.
If S is consistent, S is inseparable; and if S is inseparable, each

S, is consistent (otherwise one of 1 or T could be used as a B
separating S). H

Lemma 9. Suppose S is inseparable and DeX. Then either
S u {D} or S u { -i D} is inseparable.

Proof. Suppose not. Either De2, DeYo - 211, or Dell - Yo.
If De21, then for some B,B'eI,

GLF- ASoAD->B,
GL F- A S1 A
GL I-- A So n -iD-.B', and
GLF- ASIA D --»B'.

Let B* _(D--.B) A (-iD->B'). B*EY. Then
GL F- A So -> B*, and
GL F- A S 1--> (D -> -' B) A (-1 D - B'), whence
GLF-AS1->--i B*.
Thus B* separates S, which is not the case.

If D E Yo - 2'1, then for some B, He 21,
GLF- ASoAD->B,
GLF- ASI -+ B,
GL F-ASo n-1D-*B',and
GL F- A S1- + B'. Let B* = B v B'. B* e Y. Then
GL F- A and
GL F- A S1-+ i B*.
Again B* separates S, which is not the case.

And similarly, not: De-T 1 - `Po. -1

Call w maximal if w is inseparable and for every DeX, either
Dew or -iDew. By Lemma 9, every inseparable set is included in
some maximal set.
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As in the completeness proof for GL, let W be the set of maximal
sets; let wRx if for all EEw, E, EEx and for some EEx,

E0w; and let wVp if pEw. Then W is finite, and R is transitive
and irreflexive.

Lemma 10. Let weW, DeX. Then M,wkD iff Dew.

Proof. The lemma is trivial if D = p.
Since DEX, either DElo or DEl1. Let i (= 0,1) be such that

Dc 2; and let w i = w n 2'i. Then Dew if D E wi, and if E is a
subsentence of D or the negation of one, then Eew if EEw;.

If D = 1 and DEw, then 1Ewi and wi is inconsistent, contra
inseparability of w; but also w V 1. Thus the lemma holds if D = I.

Suppose D = (E -i E'). EEw; if EEw, if -7 Eow, if -i Eowi, and
similarly E'ewi if -l E'0 w.. If DEw;, then by consistency of wi either
Eowi or -i whence Eowi or E'Ewi; conversely, if Eowi or
E c- wi, then --i EEw; or E' e wi, and therefore DEw; (otherwise DEw;,
contra consistency). Thus DEw if D E wi, if either E 0 wi or -i E0 wi,
if either E o w or E' E w, if (i.h.) w V E or w k E', if w k D.

Suppose D = E. Assume EEw. If wRx, then EEx, and by the
i.h., x k E; thus w k E.

So assume E o w. Then - EEw. Let S = { H 1, H 1, ... ,
H., H., I1, I1, ... , I, E, -, E}, where H 1, ... , H. are

all the sentences of the form G in wi and I1, ... , I are all
the sentences of the form Gin w1 _ Suppose S is not inseparable.

Case 1. D 0 1 Then for some B E -T,
nH1 n... A

GU- I1 A I1 A A 1,, n I,, -» B. Then
n ... n

H1 n ... A Hm A -,B-> E, and
GLF- HI n ...n B; also
GU- I1 n 11 n . n I A and

A ... A B.
If i = 0, -10 B separates w; if i = 1, B does; but w is inseparable,
contradiction.

Case 2. D E 2' 1 _ i, as well as 2'i. Then for some B E 1,
AH1 A A HmAHmn En-1E-*Band

GU- 11 A I, A . . A 1 A I. A E n -i E -+--iB. We have
GL F- 1, n I1 A A I, A I,, -+ (B - ( E -p fl), whence, as

usual,
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GL F- A A A A H. (-i B -* ( E -+ E) ), whence
A A H. (--1 and therefore

G A A

H A--1 E-»
All of H1, ... , H., I1, ... , and -, E are in w, and

(B -+ ( E --+ E)) separates w, which is not the case.
Thus S is inseparable and included in some maximal x. Since

S S x, wRx ( E0w, but EEx), -i EEx, and so E0x, whence by
the i.h. x V E, and w V E. -I

Now suppose that there is no sentence B whose sentence letters
all occur in both A and C such that GL H A B and GL F- B -> C.
Then {A,-i C} is inseparable and by Lemma 9 is included in some
maximal inseparable set w. By Lemma 10, w k A, w k -i C, w $ C,
wVA-+C, and thus

GL A -+ C, then there is some sentence B whose sentence
letters all occur in both A and C and such that GL F- A -> B and
GL F- B C: the Craig interpolation lemma for GL is proved.

Third proof of the fixed point theorem

Our third proof of the fixed point theorem begins with a proof of
the analogue for GL of Beth's well-known theorem on definability
in the predicate calculus; the standard derivation of the Beth
definability theorem from the Craig interpolation lemma for the
predicate calculus carries over to GL.

The Beth definability theorem for GL. Suppose that q p,
D' is exactly like D except for containing an occurrence of
q at all and only those places where D contains an occurrence
of p, and GL F- D A D'-+(p4-+q). Then for some sentence H
containing only sentence letters both contained in D and other
than p, GL F-- D -+ (p+-+H).

Proof. By the supposition, GL F- D A p -+ (D'-+ q). D'-+ q does not
contain p nor does D A p contain q; any letter contained in both
D A p and D' -+ q is thus contained in D and other than p. By the
Craig interpolation lemma for GL, there is a sentence H, containing
only sentence letters contained in D and other than p, such that
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GLF-D n p--*H and GLI-H-*(D'-*q). Then GL F- D -+ (p --+ H),
GL F- D'-+ (H -+ q), and therefore by the substitution of p for q it
the latter, GL H D -+ (H --> p). Thus GL F- D -* -I

We now prove a lemma on the uniqueness of fixed points.

Lemma 11 (Bernardi). Suppose that q does not occur in A, A
is modalized in p, and A' is exactly like A except for containing
an occurrence of q at all and only those places where A contains
an occurrence of p. Then GL F- O (pHA) A 0 (q H A') --
(p'--'q).

Proof. For every subsentence B of A A p, let B' be the result of
replacing every occurrence of p in B by an occurrence of q. Thus
p' is q. We shall prove that for every subsentence B of A A p,
GL F- A) A (q#-A') -* (B-.B'); the lemma follows.

So suppose that for some finite transitive and irreflexive model
M and some w of least rank, M, w k El (pHA) A 0 (q-*A') but
M, w f B of A n p. Since w k p<-+q if
w k A H A', it is clear that we may suppose B = D and B' = D'
for some D. But then, if wRx, x k EI (p *-+ A) A 0 (q +-+ A'), and by
leastness of the rank of w, x k D iff x k D', but then w k B iff x k D for
all x such that wRx, if x k D' for all x such that wRx, iff w k B, con-
tradiction. -1

The fixed point theorem is an immediate consequence of Lemma
11 and the Beth definability theorem for GL:

Let A be modalized in p. Let q, p, be a sentence letter not in
A, and let A' be the result of replacing each occurrence of p in A
by one of q. By Lemma 11, GL F- El A El (gHA')-+(p4-q).
The hypothesis of the Beth definability theorem for GL is now
satisfied, with D = El (p +--* A) and D' = El (qHA'). By the theorem,
for some sentence H containing only sentence letters both contained
in El (p +-+A) and other than p, i.e., both contained in A and other
than p, GU- (pHA)-*(p4-H).

Exercises. 1. (de Jongh) Suppose that A is modalized in p
and that B does not contain p. Show, without using the fixed
point theorem, that if GL F- (p4-+ A) -. B, then GL F- B.
(Hint: by induction on rank, adjust the truth-value of p at
each world of some M in which B is invalid to make pHA
true at each world.)
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2. (Osamu Sonobe) Suppose that A is modalized in all
sentence letters.. Show that either GL I- O T - O A or
GL I- O T -> O A. (Hint: A is either true at all worlds of
rank 0 or false at all worlds of rank 0.)
3. (Smullyan) Formulate and prove a double analogue of
the fixed point theorem beginning, "Suppose that A and B
are modalized in both p and q. Then there exists a sentence

H...)).

4. Let S be an arbitrary sentence of arithmetic. Show that
there is a sentence G+ such that PA )- G H-i Bew(rS --> G+,).
Show that for any such G+, PAF-G+H-, Bew(rt S,). (Hint:
line 13.)
5. "If this statement is consistent, then you will have a test
tomorrow but you cannot deduce from this statement that
you will have a test tomorrow." Discuss.
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The arithmetical completeness theorems
for GL and GLS

GL, we know, is sound and complete with respect to transitive
converse wellfounded models. That is, the modal sentences that are
theorems of GL are precisely the sentences that are valid in all and
only the models of that sort. We also know that all translations of
all theorems of GL are theorems of PA. We are now going to prove
the converse, the arithmetical completeness theorem for GL, due
to Robert Solovay, which asserts that a modal sentence is a theorem
of GL if it is always provable, that is, if all of its translations are
theorems of PA. The arithmetical completeness theorem for GL
thus tells us that if a modal sentence A is not a theorem of GL,
then there is a realization *, possibly depending on A, such that
A* is not a theorem of PA.

It would be a mistake to suppose the arithmetical completeness
theorem for GL to be of interest merely because it informs us about
the power of the modal calculus GL; the theorem tells us much
that is of interest about PA (and other systems too). For example,
consider the sentence ( p v -, p) -+ ( p v -i p), which, though
evidently a theorem of GLS, fails at 1 in the converse wellfounded
model

i

2 3

P -P

and therefore is not a theorem of GL. By the theorem, for some
sentence S,

Bew(r(Bew(rS-1) v Bew(riS,)),)-+(Bew(rS-I) v Bew(riS,))

is not a theorem of PA, and thus, perhaps surprisingly, there is a
sentence S such that it is consistent with PA that both S is undecid-
able and it is provable that S is decidable.



9 THE ARITHMETICAL COMPLETENESS THEOREMS 125

If a modal sentence A is a theorem of GLS, then it is always
true: all translations of A are true. Solovay's arithmetical complete-
ness theorem for GLS asserts that the converse also holds. We shall
prove the arithmetical completeness theorem for GLS after proving
the arithmetical completeness theorem for GL. The proof of the
theorem for GLS will show the decidability of GLS, for it will show
how to effectively associate with each modal sentence A a sentence
AS such that GLS F- A iff GL F- AS. Since, as we have seen, GL is
decidable, it follows that GLS is decidable as well.

Towards the end of the chapter, we shall prove a strengthened
theorem, the uniform arithmetical completeness theorem for GL,
due to Sergei Artemov, Franco Montagna, Arnon Avron, Albert
Visser, and the author, according to which there exists a single
realization * such that for every modal sentence A, if A is not a
theorem of GL, then A* is not a theorem of PA. Thus for any such
*, for all A, GL F- A iff PA F- A*. We end with a theorem of Visser's
that describes the provability logic of E sentences. Our primary
goal, though, is to prove the arithmetical completeness theorems
for GL and GLS.

The arithmetical completeness theorem for GL

We begin the proof by appealing to the semantical completeness
theorem for GL that was established in Chapter 5.

Suppose that GL V A. Then there is a finite transitive and converse
wellfounded model M, = < W, R, V )', such that for some WE W, w V A.

We shall construct an interpretation * from M and w such that
PA f A*. We are now dealing with PA, and it will help if our
"possible worlds" are natural numbers.

So since W is finite, we assume without loss of generality that
W= w= 1, and lRi iff 1 <i ,<n. Thus M, 1 V A.

We are going to find sentences So, S 1, ... , S. of PA for which we
can prove a certain lemma, Lemma 1 below: taking p* (for any
sentence letter p) as the disjunction of all Si such that iVp, we will
prove there that for iE W and B a subsentence of A, if M, i k B, then
PA F- Si -, B*; but if M, i V B, then PA F- Si -+ B*. Once we do so,
we shall have shown that PA F- S 1-> A* (since 1 E W and A is a
subsentence of itself).

What about So? We will also show that PA F- So -> -i Bew (rte S 1,)
and that So is true. And once we have shown all this, we shall argue:
since PA I- S i - -1 A*,
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PAI-A*-+--iS1,
PA H Bew(rA *,) -> Bew (ri S,-1),
PA f-- Bew(r_i S1,) -+-, Bew(rA*1), and therefore
PA F- So - --i Bew (rA*,).

Therefore, since whatever PA proves is true, So -* -i Bew(rA*,) is
true. But So is true, and consequently so is Bew(rA*,); that is
to say, A* is not provable in PA.

But how shall we find the "Solovay sentences" So, S1,. .. ,
We begin by expanding M to a new model M'. Let W' = W u {O};

R' = R u { <0, i >:1 < i < n}. Like R, R' is transitive and converse
wellfounded. For all sentence letters p and all i, 1 < i < n, let iV'p
if iVp and OV'p if 1Vp. Let M' = <W',R', V'>. So our new model
has a new world 0 from which the other worlds are accessible and
which treats sentence letters as 1 does. It is M' that we shall actually
embed into PA.

Each sentence S; will be a sentence asserting that the values of
a certain function h of natural numbers has the limit j.

Suppose that h is some function whose domain is N. We shall
say that the limit of h is j if h(m) =j for all sufficiently large m, that
is, if for some m, h(m) =j and also for all m' > m, h(m') =j.

Suppose further that the values of h all lie in W' and that if
h(m) = i, then either h(m + 1) = i or h(m + 1) = j for some j such that
iR'j. Since W' is finite, and R is transitive and irreflexive, it is clear
that (a) the limit of h exists.

Moreover, it is clear from the transitivity of R' that (b) if h(m) = i
for some m, then either the limit of h = i or the limit of It = j for
some j such that iR'j.

The h that we are going to define in PA will have the further
properties that (c) h(0) = 0 and (d) if h(m) = i, then h(m + 1) = i unless
m is the Godel number of a proof in PA of the sentence - S; stating
that it is not the case that the limit of h =j, for some j such that
iR'j, in which case h(m + 1) = j.'

We appear to be in a circle: Our function h is defined in terms
of proofs of negations of sentences S;; but each S; asserts that the
limit of h is a certain number. Of course we shall use the diagonal
lemma to break out.

We begin the escape by noting that if H(a, b) is a formula of PA
defining the binary relation { <a, b>: h(a) = b}, then the sentence S;
may (and will) be taken to be 3cVa(a c -> 3b(b = j n H(a, b))).
[Informally, Sj says that for all sufficiently large a, h(a) =j.]
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But how to define H(a, b)? Informally, h(a) = b if and only if there
is a finite sequence s of length a + 1 such whose first value is 0
[since h(0) = 0], whose last value is b, and such that for each x < a,
if sx = i, then sx+ 1 =j if x is the Godel number of a proof of

-' 3cVa(a >, c -* 3b(b = j n H(a, b)))

for some j such that iR'j; but sx+, = sx provided that x is not the
Godel number of a proof of 3cVa(a >, c -+ 3b(b = j n H(a, b))) for
any j such that iR'j.

We now use the diagonal lemma to convert this heuristic account
of h into proper definitions of H(a, b) and the S; in six stages.

First of all, let F. be the formula with Godel number m.
Secondly, let notlim(x,, x2) be a E pterm for a function whose

value for each m, j is the Godel number of the formula

3c`da(a > c -+ 3b(b = j n F.))

(m goes with x,, j with x2.)
Thus if some formula F(a, b) with Godel number m defines a

function, then notlim(m,j) denotes the Godel number of the negation
of the sentence saying that j is the limit of the function defined by
F(a, b).

Thirdly, let B(y, a, b) be the formula

3s(FinSeq(s) A lh(s) = a + 1 A so = 0 A Sa = b n

,.[Vx<a ni:o,i,n[sx=i,{n j.iR =j]
A [{Ai:iR'T Pf(x,notlim(y,j))}-+sx+1 =sx]}])

If (the value of) y is the Godel number of some formula F defining
a function f, then B(y, a, b) says there is a finite sequence of length
a + 1 with first value 0, last value b, and such that for each x < a,
if sx = i, then sx+ 1 =j provided that iR'j and x is the Godel number
of a proof of the negation of the sentence 3c`da(a >, c -+ 3b(b = j n F))
to the effect that j is the limit of f; and = sx if x is not the Godel
number of any such proof.

Fourthly, by the generalized diagonal lemma (Chapter 3), there
is a formula H(a, b) with just the variables a and b free such that

PA I- H(a, b)+-->B(rH(a, b)', a, b)

Fifthly, let m be the Godel number of H(a, b). So H(a, b) is
And sixthly, for each j, 0 <j < n, let Sj be

3cVa(a >, c 3b(b = j n H(a, b)))
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Then

PA F- notlim(rH(a, b),, j)

= notlim(m, j) = r-7 3cVa(a > c -+ 3b(b = j n H(a, b))1= r-i S j-1

and so

(1) PAF-H(a, 3s(FinSeq(s) n lh(s) = a + 1 n So = 0 n sQ = b

AVx<aAi:0<i<n[Sx=i,{A j:iR,j[Pf(x,r_1Sj,)_*sx+1 =]]
A [{Aj:iR'j1Pf(x,r_,Sj,)}-'sx+1 =sx]}])

Note that since Pr(x, y) is a 0 formula, H(a, b) is a E formula.
H(a, b) defines the function h described above, and for each j < n,
S j is the sentence of PA that states that the limit of h =j.

Having found H(a, b), we are now going to show that PA proves
various facts about the Solovay sentences Sj constructed from it.
We shall see that PA proves that h has a unique limit < n (2,4);
that if iR'j, PA proves (Si -+ "S j is consistent") (5); that if i > 1, then
PA proves (Si -+ "Si is refutable") (6); and that if i > 1, then PA also
proves (Si -> "the limit of h is some j such that iR'j") (7).

Since PA F- 3! bH(a, b), as may be readily seen by an induction on
the variable a, we clearly have

(2) PAF--I (Si A Sj) if0<i <j <n
W', R'> is a finite frame that is transitive and converse well-

founded. We now show by induction on the converse of R' (otherwise
put, by induction on rank) that

(3) PA F- H(a, i) -+ (Si v V j:iR' jS j)

So we may assume that for all j such that iR'j,

PAF-H(a,j)(Sj v Vk:jR'kSk). From (1), we have that
PA F- H(a, i) Vc(c > a -+ [H(c, i) v V j;iR, j H(c, j)]),

which, together with the inductive assumption, yields

PA F- H(a, i) - Vc(c > a -+ [H(c, i) v V j:iR' j(S j v V k:jR'k Sk)] ), whence
PAF-H(a,i) (Vc(c>a-*H(c,i)) v V j:iR'j(Sj v Vk:jR,kSk)), i.e.,
PA F- H(a, i) --* (Si v V j:iR'j(S j V V k:jR'kSk))

Since R' is transitive, (3) holds.
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It follows from (3) that PA F- H(a, 0) - (So v S 1 v . v S.). Since
PA F- H(0, 0), we have

(4) PM-(So v S 1 v... v

Now suppose that iR'j. Note that PA proves that every theorem
of PA has infinitely many proofs (any proof can be lengthened by
repeating its last formula). Thus for every S,

PA F- Bew(rS,) -+ bx3y(y > X A Pf (y, rS-1))

The following argument can then be formalized in PA: Suppose
that the limit of h = i. Let m be the least number such that for all
r > m, h(r) = h(m) = i. Since each theorem of PA has infinitely many
proofs, if -i S j is a theorem of PA, for some least k > m, k is the
Godel number of a proof of Sj, and then h(k + 1) = j 0 i, con-
tradiction. Thus -iSj is not a theorem of PA. Formalizing this
argument shows that

(5) If iR'j, then PA F- Si -+- Bew(rte Sj,)

(6) If i > 1, then PA F-Si Bew(-, Si,)

Proof. Suppose that i > 1. By (1),
PA k- H(a, i) -+ 3x Pf (x, r-, Si,). Since
PA Si -> 3aH(a, i), we have
PAHS;-*Bew('-iSi-1). -i

(7) If i > 1, then PA E_ Si + Bew( V j:iR, jS j,)

Proof. By (3), PA1-- 3aH(a,i)-->(Si v V j:iR'jSj). Thus
PA F- Bew(r3aH(a, i)1) -> Bew(rSi v V j:iR'jS j,). But
PA F- Bew(r i Si ')A Bew(r(S1 v V J.,t.R'jSJJ)l) --+ Bew(r V J...t.R'jSJ,).
PA f- 3aH(a, i) -> Bew(r3aH(a, i),) since H(a, b) is E, and
PA f- Si -> 3aH(a, i). By (6), if i > 1,
PA I- Si -> Bew(r-, S1,). These last five theorems yield (7). -1

For each sentence letter p, let p* = V i:iv,PSi.

Lemma 1. For all i, 1 < i S n [n.b.], and all subsentences B
of A, if M, i k B, then PA F Si -* B*; and if M, i V B, then
PAI-- Si--»B*.
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Proof. Induction on the complexity of B. Suppose that B = p. Then
_B* V i:iV'p'si'

Ifikp, then iVp, whence iV'p, and so PAF-Si->p*, i.e., PAF-Si->B*.
If i V p, then not: i Vp, whence not iV'p, as i 0. Then for every

disjunct S; of p*, Si is different from S;, and then by (2), PA H Si -->-i S;;
therefore PA F- Si -> p*, i.e., PA F- Si -' -i B*.

The truth-functional cases are completely straightforward.
Now suppose that B = C. Then B* = Bew(rC*l).
If i k B, then for all j such that iRj, j k C, and then by the induction

hypothesis, for all j such that iRj,
PA F- Si _+ C*. Since i > 1, iRj iff iR'j, and so
PAF- V

j:.R'jSj+C*.

PA F- Bew(r V j:1R'jS;_1) -> B*, whence by (7),

PA F- Si -> B*.
Finally if i V B, then for some j, j > 1, iRj, whence iR'j, and j (E C;

thus by the induction hypothesis,
PA F- Si -» C*, and so
PA F--i Bew(r-, S;,) Bew(rC*-'). By (5),
PA F- Si -+ -' Bew(r S;,), and therefore
PA F- Si B*. --I

It follows from Lemma 1 that

PA F- Bew (rA *,) --> Bew (ri S 1,), and

PA I- So -+ -i Bew(ri S11), and therefore

(8)

We now conclude the proof of Solovay's completeness theorem
for GL; this part of the argument cannot be formalized in PA: Every
theorem of PA is true. If i > 1, then according to (6), if S, is true,
so is Bew(r i Si,), and then -i Si is a theorem of PA, and so Si
is true. Thus if i >, 1, Si is not true. But according to (4), at least
one of So, S 1, ... , S is true. So So is true. According to (8),
So -+-' Bew(rA*,) is also true, and therefore so is -, Bew(rA*,).
But then A* is not a theorem of PA, Q.E.D.

(What can be proved in PA is the sentence
A i:l s i .. [Bew(r- Si,) - , Si] -> which follows from
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(4), (6), and (8). However, the antecedent of this conditional, true
though it is, cannot be proved in PA.)

The arithmetical completeness theorem for GLS

We now prove Solovay's theorem on the arithmetical completeness
of GLS, that a modal sentence A is always true, i.e., true under all
translations, if and only if it is a theorem of GLS.

For each modal sentence A, let AS be
(A { ( C -+ C): C is a subsentence of A} -+ A).

Theorem (the arithmetical completeness theorem for GLS).
For every modal sentence A, the following three conditions
are equivalent: (a) GL F- AS; (b) GLS F- A; (c) A is always true.

Proof. (a) implies (b): if GL F- AS, then GLS F- AS; since GLS is closed
under truth-functional consequence and GLS F- ( C - C), it follows
that GLS F- A.

(b) implies (c): this is the arithmetical soundness of GLS and was
proved in Chapter 3.

(c) implies (a): suppose that GL V` A. We must show that A* is
false for some realization *. By the semantical completeness theorem
for GL, we have that for some M, = < { 1, ... , n}, R, V>, with R
transitive and irreflexive, M,1 V AS, and 1Ri if 1 < i < n. Let W', R', V',
So, S1, ... , S,,, and * be defined from M as above. We shall show
that A* is false. Let us observe that we are entitled to use Lemma
1 for all subsentences of AS, and hence certainly for all subsentences
of A (a subsentence of AS).

Since 1 V AS, for all subsentences C of A, 1 k C -+ C, and 1$ A.
We shall now show that for all subsentences B of A, if 1 k B, then
PA F- So -> B*, and if 1 B, then PA F- So -+ -i B*.

Suppose that B = p. If 1 k p, then 1 Vp, OV'p by the definition of
V, and So is one of the disjuncts of p*. Thus F- So -+p*. But if I (p,
then So is not one of the disjuncts of p*, and so by (2), F- So --+-, p*.

The truth-functional cases are straightforward.
Suppose that B = C.
If 1 k C, then for all i, 1 < i < n, i k C, and so by Lemma 1,

PA F- Si C*. Since 1 k C -+ C, 1 k C, whence by Lemma 1,
PA F- S1-> C*, and by the hypothesis of the induction (C being
simpler than B), PA F- So + C*. But by (4), PA F- So v S1 v v S.
Thus PA F- C*, and so PA F- Bew (1C*1), i.e., PA F- (E] C)*, and there-
fore PAF-So->(C)*.
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And if 1 V C, then for some i, 1 < i <_ n, i V C, and by lemma 1.
PA F- S; -» C*, whence PA F---iBew(r-, Si,) ->-, ( C)*. Since OR'i,
by (5) we have PA F- So Bew(r, Si,), and therefore

PA F- So A*
So A* is false, which establishes Solovay's theorem

on the arithmetical completeness of GLS. -I

The uniform arithmetical completeness theorem for GL

Neither p nor -i p is a theorem of GLS, but for any realization *,
either p* or -i p* is true. Thus there is no one realization * such
that for all modal sentences A, if A* is true, then GLS F- A. Moreover,
there is no realization * such that for all A and PAF-(A* A#);
otherwise let Al = p, p#' = 1, A2 = -i p, and p#2 = T; then
PA F- p* --+ I and PA F--i p* -* -i T, whence PA F- 1, which is not
the case.

But there is a single realization * such that for all A and #, if
PA F- A*, then PA F- A#, and by the arithmetical completeness theorem
for GL, .such that if PA F- A*, then GL I- A.

The uniform arithmetical completeness theorem for GL
(Artemov, Avron, Montagna, Visser, Boolos). There exists a
realization * such that for all modal sentences A, if PA F- A*,
then GL [--A.

The idea of the proof is simple. For each modal sentence that is
not a theorem of GL, pick a finite transitive and irreflexive counter-
model, taking the domains of the countermodels to contain only
positive integers and to be disjoint from one another, paste the
models together with 0 at the top to obtain an infinite but transitive
converse wellfounded model, and carry through the construction
of h as before. The only change needed is that since h can now take
infinitely many values, we must define a predicate S(x) for which
S(i) can play the role of Si in the proof of the arithmetical complete-
ness theorem for GL. Details follow.

Let Q(x, y) be a E pterm for a function f such that for every
natural number k, f (k) is a code for a quintuple < Wk, Rk, Vk, Wk, Ak >,
where Wk is a finite set of positive integers, Rk is a transitive and
irreflexive relation on Wk, Wk = {wk} v {i: wkRki}, if ie Wk and p is
a sentence letter not in Ak, not: iVk and < Wk, Rk, Vk >, Wk Ak; for
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every j, k, if j :A k, Wj and Wk are disjoint; for every i 1, i E U Wk;
and every modal sentence that is not a theorem of GL is Ak for
some k.

The existence of such a E pterm is evident in view of the fact
that if A is a sentence containing k symbols that is not a theorem
of GL, then there is a countermodel < W, R, V > to A such that for
some n < 2k, W = { 1, ... , n}; if wRx, then 1 < w, x < n; and V contains
at most nk pairs <w,p>. There are at most 2k x 2(21)2 x 2(211) such
<W,R,V>.

Let R'= U Rk U { <0, i>: for some k, ieWk}. R' is thus transitive
and converse wellfounded. Each i > 1 bears R' to finitely many
numbers.

Let V'= U Vk.
Now let R(x, y) be a A formula constructed from Q(x, y) such that

(i) PAF-R(O,y)4-'y#0,
(ii) PA F-R(i, y)+-- V j:jR'iy = j, if i > 1,

(iii) PA I- VxVyVz(R(x, y) A R(y, z) -> R(x, z)), and
(iv) PA I- Vx(Vy(R(x, y) -+ F(y)) - F(x)) -+ VxF(x) for all formulas

F(x) of PA.

By (i) and (ii) R(x, y) defines R' in PA: if iR'j, PA I- R(i, j), and if
not: iR'j, PA F- R(i, j). (iii) and (iv) formalize the transitivity and
converse wellfoundedness of R'.

Let ex(x1, x2) be a E pterm for a function whose value at m, r is
j if r is the Godel number of a proof of - 3cVa(a >, c -+ 3b(b = j n F))
and is 0 otherwise. (ex extracts j from the last line of suitable proofs;
m goes with x1, r with x2.) Note that iR'O for no i.

We may suppose nonlim and ex have been so chosen that
(v) PA I-ex(x1,x2)

By the generalized diagonal lemma there is a formula G(a, b) with
Godel number g such that

(1') PA F- G(a, b)H3s(FinSeq(S) n lh(s) = a + 1 n So = 0 n So = b n
Vx <a{[R(sx,ex(g,,x))-+sx+1=ex(g,x)] n

[-iR(sx,eX(g,x))- sx+1 =Sx]1)
Since R(x, y) is a A formula and ex(x1, x2) a E pterm, G(a, b) is E.
We let S(x) be the formula 3cVa(a > c -* 3b(b = x A G(a, b))).
Like H, G defines a function h such that h(0) = 0 and h(r + 1) = h(r)

unless r is the Godel number of a proof that it is not the case
that the limit of h is j for some j such that h(r)R'j, in which case
h(r + 1) =j. For each j, S(j) says that the limit of h is j.
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We now prove analogues (2')-(7') of (2)-(7).

(2') PA!-S(x) A S(y)->x = y

Proof. As before, PA F- 3! bG(a, b).

(3') PA F- G(a, x) -+ S(x) v 3y(R(x, y) n S(y))

Proof. Induction, this time in PA, on the converse wellfounded
relation R' defined by R(x, y). Let F(x) be G(a, x)-> S(x) v 3y(R(x, y) A
S(y)). Now work in PA. Suppose Vy(R(x, y) -> F(y)) and G(a, x). By
(1'), G(a, x), provable transitivity, and induction on d, we have
Vd(d > a - G(d, x) v 3y(R(x, y) A G(d, y)). By
Vy(R(x, y) -> F(y)), we have
Vd(d >, a -> G(d, x) v 3y(R(x, y) A (S(y) v 3z(R(y, z) A S(z))))), and so
S(x) v 3y(R(x, y) A (S(y) v 3z(R(y, z) A S(z)))), whence
S(x) v 3y(R(x, y) A S(y)).

As before, PA F- G(a, 0) -> S(0) v 3y(R(0, y) A S(y)), and PA F- G(0, 0).
Thus,

(4') PA F- 3xS(x) -1

(5') If iR'j, then PA F- S(i) -+-, Bew (r---iS(j)')

Proof. Like that of (5). -I

(6') If i,>1, then PA F- S(i) -* Bew(ri S(i)')

Proof Assume G(a, i). Since i >, 1 and G(0, 0) holds, a > 0. Thus
for some s, c, lh(s) = a + 1, c < a, sc s,+1 = sa = i = ex(g, c) and
R(s, ex(g, c)) hold. Since i # 0 holds, so does Pf (c, nonlim(g, ex(g, c)))
by (v), and therefore so does Bew(ri S(i),). Formalizing, we obtain
PA F- G(a, i) - Bew (rte S(i),), and then (6') follows as did (6). -1

(7') If i,>1, then PA F- S(i) -- Bew(r V j:iR,jS(j)-,)

Proof. By (3'),
PA F- 3aG(a, i) -+ S(i) v 3y(R(i, y) A S(y)). By (ii),
PA F- 3aG(a, i) -> S(i) v V J:,R,JS(j).

The rest of the proof is like that of (7), with an appeal to (6') instead
of (6). -1
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Now let V(x, y) be a A formula [obtained from Q(x, y)] defining
the relation I< i, n>:

For each n, let p* = 3x(S(x) A V(x, n)).

Lemma. For all k, all subsentences B of Ak, and all i E Wk, if
< Wk, Rk, Vk>, i k B, then PA F- S(i) -> B*, and if
< Wk, Rk, Vk >, i V B, then PA I_ S(i) --> -, B*.

Proof. Induction on the complexity of B. (We drop '< Wk, Rk, Vk >'.)
Suppose B=p,,. If i k B, then iVk p,,, iV'p,,, PA F- V(i, n), and

PA F- S(i) -> 3x(S(x) A V(x, n)), i.e., PA F- S(i) -+ B*. If i V B, then not
iVkpf, not PAF--i V(i,n), whence by (2'),
PA F- S(i) 3x(S(x) A V(x, n)), i.e., PA F- S(i) -> -i B*.

The truth-functional cases are unproblematic. The argument for
the case in which B = C proceeds as in the earlier proof, with
appeals to (7') and (5') in place of those to (7) and (5), except that
we must now observe that since iE Wk, iRk j if iR'j, and if iRk j,
JEWk. --i

To complete the proof of the theorem, suppose that GL 4` A.
Then for some k, A = Ak, and therefore < Wk, Rk, Vk>, wkV Ak. Let
i = Wk. By the lemma, PA F- S(i) -> A*, and therefore
PA F- Bew(ri S(i),) -* Bew(rA*,). OR'i, and thus by (5'),
PA F- S(O) -> -i Bew (rA *,).

By (2') and (4'), S(i) is true for exactly one i. By (7'), S(i) is true
for no i other than 0. Thus S(O) is true, and A* not provable.

The provability logic of E sentences

E sentences, which figure prominently in our subject, enjoy an extra
modal property not in general possessed by arbitrary sentences of
arithmet; - .. S is E and p* = S, then PA H (p --. p)*. We end with
a characterization, due to Albert Visser, of their provability logic.

We shall call a realization * a E realization if p* is a E sentence
for every sentence letter p. We wish to characterize the modal
sentences A such that for every E realization *, PA F- A*, and those
such that for every E realization *, A* is true. To this end, we
introduce two systems, GLV and GLSV.

The axioms of GLV are those of GL together with all sentences
p -> p (p a sentence letter); the rules of inference of GLV are modus
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ponens and necessitation. GLV is not a normal system, for it is not
closed under substitution.

The axioms of GLSV are the theorems of GLV and all sentences
A -> A; its sole rule of inference is modus ponens.
A model M is appropriate to GLV if W is finite, R is irreflexive

and transitive, and V meets a special condition: For all w, xcW and
all sentence letters p, if wRx and wVp, then xVp.

Theorem (Visser)
(a) GLV I- A iff A is valid in all appropriate models; iff for

all E realizations *, PA H A*.
(b) GLSV [--A if f for all E realizations *, A* is true.

Proof. (a) It is clear that if GLV I- A, then for all E realizations *,
PA I- A*.

We now want to show that if A is valid in all appropriate models,
then GLV F- A. So suppose GLV V A.

Let d = {B: B is a subsentence of Al, -4 = d v { p: ped}, and
W = 9 v {- B: Be.}. Let W be the set of maximal GLV-consistent
subsets of '. Define R, V, and M as in the completeness proof for
GL. We can then prove as before that for any subsentence B of A
and any w e W, BE w iff w k B, and that therefore A is invalid in M
(since for some maximal consistent w, Aow). To prove that M is
appropriate, we must also show that V meets the special condition.
So suppose wRx and wVp. We are to show xVp.

But since wVp and p is a sentence letter, w k p and pEd, whence
pEwand peP. SinceGLVF-p-+ p, pEw, and since wRx,pEx,
xkp, and so xVp.

So if A is valid in all appropriate models, GLV F- A.
The Solovay construction is as before, but we must now show

that p*, = V {Si: iV'p n 0 < i < n}, is E. Let S = V {3aH(a, i): iV'p n
0 < i < n}. It is enough to show that Hp*+-,S, for since H(a, b) is
E, S is E. And since PA F- Si - 3aH(a, i), it is enough to show that
PA F- S - p*. There are two cases:

(1) 1 Vp. Then by the special condition, for all i, 1 <, i < n, iVp, and
also O V'p. Thus for all i, 0 < i 5 n, i V'p. By (4), PA F- So v S, v
v i.e., PA F- p*, and so certainly PA F- S -> p*.

(2) Not: 1Vp. Then neither OV'p nor 1V'p, and S = V {3aH(a,i):
iVp A 1 < i < n} and p* = V {Si: iVp A 1 < i , n}. If iVp and
1 < i < n, then by (3), PA F- H(a, i) -+ (Si v V J.iR'iS j), and there-



9 THE ARITHMETICAL COMPLETENESS THEOREMS 137

fore PA I- H(a, i) -> p*, for Si is a disjunct of p*, and if iR'j, then
iRj, 1 <j, and by the special condition, jVp, and so S; is also a
disjunct of p*. Thus again PA I- S -* p*.

As for (b), the left-right direction is clear, and if GLV ` As, then
for some M appropriate to GLV and * constructed from M as in
the proof of the arithmetical completeness theorem for GLS, A* is
false. Since M is appropriate to GLV, * is E. -I



10

Trees for GL

The method of truth-trees, due to Smullyan, is a proof procedure
for propositional and predicate logic that is an attractive simplifica-
tion of the proof procedure due to Beth called the method of
semantic tableaux, which is in turn an adaptation of proof procedures
due to Gentzen and Herbrand. Kripke showed how the method of
semantic tableaux for the propositional calculus could be extended
to provide completeness proofs for several systems of propositional
modal logic. In the present chapter we shall adapt Kripke's methods
to show how the method of trees may be extended to prove the
completeness of GL with respect to finite transitive and irreflexive
models. The extension to GL of the method of trees also supplies
us with a quite practical decision procedure for GL. We shall assume
that the reader is already familiar with some presentation of the
method of truth-trees for the propositional calculus, such as the
one in Smullyan's First-Order Logic, Jeffrey's Formal Logic: Its
Scope and Limits, or Hodges's Logic.

Let us first take a look at a few examples before formally
describing our extension of the method of trees.

To test a sentence for theoremhood (or validity) in the method
of trees, one tests its negation for consistency (satisfiability). Let us
test ( p - p) -> p for theoremhood in GL (Example 1).

Example 1 GL - p) - p ?
(1) - P) - QP)

(2) P)
,QP

,p

P
(3) p -+ p

P)

,QP P
x (4) x

x

(5)
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In step (1) we write down its negation -i( ( p -- p) -* p). In step
(2) we apply the propositional calculus rules as many times as we
can, inferring ( p -> p) and p from -i ( ( p --> p) --+ p) and
checking it to indicate that we have finished with it. (Recall that
we apply propositional calculus rules only to unchecked occurrences
of sentences; that when we apply a propositional calculus rule to
an occurrence of a sentence, we check that occurrence; and that we
write: x at the bottom of a branch to indicate that it is closed.) In
step (3) we "open a window onto a possible world." We (guess how
much space we will later need and) write:

_p
QPp-'P

P)

meaning: O ( p A p A ( p -+ p) n ( p -> p)). The justification
for doing so is that

GLF--1 p n O(-,p n p n A

We then check -' p. Since there are no further sentences - A
in our tree, in step (4) we apply the propositional calculus rules
inside the window as many times as possible, obtaining a closed
tree in the window. In step (5) we close the branch on which the
window lies because there is a closed tree in the window. Our
justification here is that if GL F-- F and GL F- E -+ O F, then
GL F- - F, and so GL F- -i E. Since all branches of the outermost
tree are closed, the tree is closed, and - ( ( p -> p) p) is not
consistent with GL, that is, ( p -+ p) -> p is a theorem of GL
(as of course we knew).

In Example 2, we negate the sentence that we are testing for theorem-
hood and apply the propositional calculus rules as many times as
we can. We obtain a tree with a single branch; there are two sentences
- C: p and - p and one sentence D: (p v p) on
the branch. We then open two windows, one for each of the
sentences - C, on the branch. At the top of one of them we write
-i p, p, p v p, and (p v p); at the top of the other, we put

p, p, p v p, and (p v p). We then apply the proposi-
tional calculus rules as many times as possible. We have then
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Example 2 GL I- (p V p) - (Dp V IP) ?
V P) - V mp))
(p v p)

V P)
-QP

-'P

P
P V p
(p V p)

P P
x

-'p

P P
X

finished with the top window: one branch is closed, but the other
is open. In the bottom window, one branch is closed, the other is
open, but we have not finished, since there is a sentence C,
namely p, on this open branch. We therefore open a window
on this open branch: since two sentences D, namely p and
(p v p),lieonthebranch,wewrite-ip, p, p, p, p v p,
and (p v p) on the top. (We can omit the repetition of p if
we like.) We then again apply the propositional calculus rules as
many times as possible. One branch is closed, but the other remains
open. There is then nothing more to do, and we have in fact
constructed a model in which the sentence that we were testing is
invalid. The model looks like this:
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0

3

At world 2, p is true; but p is false at worlds 0, 1 and 3. Worlds 1
and 2 correspond to the open branches of the trees in the top and
bottom windows, and world 3 corresponds to the open branch of
the tree in the window within the bottom window. World 0 is the
world at which the negation of the original sentence is true.

So if we take W= 10, 1,W={0,1,2,3} and R = { <0,1 >, <0, 2>, <2,3>,
<0, 3>1, and let wVp iff w= 2, then Ok-, ( (p v p)-*( p v p)),
as an easy calculation shows. W is finite and R is transitive and
irreflexive. Thus GL K (p v p) -+ ( p v p).

We now describe the extension to GL of the method of trees for
the propositional calculus. We must first define the degree of a tree,
define "closed", and then state the modal rule.

The degree of a tree is the least number greater than the degrees
of all trees in windows on branches of the tree. Thus a tree with
no windows on any of its branches has degree 0, and a tree has
degree n + 1 if and only if some tree of degree n is in a window on
one of its branches, but no tree of degree > n is.

All trees in windows of a tree of degree n are of degree < n. So,
inductively, we call a tree (of degree n) closed if all its branches are
closed, and call a branch (of a tree of degree n) closed if it either
contains 1 or contains some sentence and its negation or contains
a window in which there is a closed tree (which will be of degree
<n). "Open" means "not closed".

The modal rule. If there is an unchecked occurrence of C
on a branch b, write down on b a window containing the (one-
branch) tree

--I CC
D1

D1

Dn

Dn
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where D 1, ... , D are all the sentences B on b, and then check
the occurrence of C.

Our procedure for developing trees to test a sentence for theorem-
hood in GL is this: Write down the negation of the sentence, then
apply the propositional calculus rules as many times as possible,
then apply the modal rule as many times as possible, then apply
the propositional calculus rules as many times as possible, then
apply the modal rule as many times as possible,.... We come to a
stop if we cannot make any changes to the tree. (Thus if after
completing a cycle of applications of propositional calculus rules,
no changes to the tree can be made, we stop and do not go through
another cycle of applications of the modal rule.)

We thus develop a tree as far as we can using the propositional
calculus rules, then use the modal rule as many times as we can to
open windows (perhaps within windows, etc.) containing one-branch
trees, then develop the trees in those windows as far as we can
using the propositional calculus rules, etc.

A point of terminology: an occurrence of a sentence A on a
branch c of a tree in a window on a branch b is not on b. (Some
other occurrence of A may be on b, of course.)

We shall show that no matter which sentence we apply it to, the
procedure eventually comes to a stop, that if we stop with a closed
tree, the sentence under test is a theorem of GL, and that if we
stop with an open tree, the sentence is invalid in some finite
transitive and irreflexive model. We will have thus reproved the
completeness theorem for GL, if A is valid in all finite transitive
and irreflexive models, then (when the procedure is applied to A,
we come to a stop with a closed tree and) GL F- A. We will also,
of course, have reproved the decidability of GL.

Now let A be the sentence to which the procedure is applied.
We first show that the procedure always comes to a stop.
Let n be the number of subsentences of A of the form B. We

want to see that in applying the procedure for developing trees, we
go through the modal cycle at most n times and therefore go through
the propositional calculus cycle at most n + 1 times.

Note that before we go through the modal cycle for the kth time,
there is no sequence b0, b 1, ... , bk of open branches, each, except.
the first, a branch of a tree in a window on its predecessor; after
we have gone through the modal cycle for the kth time, there is at
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least one such sequence, obtained from some sequence bo, b 1, ... ,
bk _ 1 by opening a window on bk _ I

To see that we cannot go through the modal cycle more than n
times, let us observe that if c is an open branch of a tree in a window
on an open branch b, then every sentence D on b is also on c,
and there is a sentence -i C on b such that C is also on c. Thus
c will contain at least one more unnegated subsentence D of A
than does b. If k > n, then, there can then be no sequence bo, b1,...,
bk of open branches, each, except the first, a branch of a tree in a
window on its predecessor. Thus we do not go through the modal
cycle more than n times and our procedure eventually comes to a
stop.

We now show that if the procedure comes to a stop with a closed
tree, then A is a theorem of GL. To this end, we (simultaneously)
define the notions of the characteristic sentence (T) of a tree T and
the characteristic sentence (b) of a branch b, as follows:

(T) = V { (b): b is a branch of T); (b) =
A {E: E is a sentence on b} A A { O(T): T is a tree in a window on b}.

(The definition is not circular; trees in windows on branches of T
have degrees lower than that of T.)

Suppose that U is the tree that results from a tree T when one
of the rules is applied to an occurrence of a sentence E on a branch
b of T. We want to see that GL H (T)-+(U). Note that E is a conjunct
of (b).

Case 1. The rule is the modal rule. Then E is a sentence C.
Let D 1, ... , D be all the sentences B that occur on b. Let c
be the branch of U obtained from b by this application. Then (c) =
(b)AO(-iCADCD and
GL I-(-, C A D1 A A D,,)-> O(-C A C A D1 A D1

A ... A D A
GLf-(b)<--*(c), and so GU-(T)H(U).

Case 2. The rule is the positive rule for -. Then E is a sentence
(F -> G). After the rule is applied, b will have split into two branches
of U, c and d, with (c) = (b) n -1 F and (d) = (b) n G. Since (F -. G)
is a conjunct of (b), (b) is truth-functionally equivalent to (c) v (d),
and so GLI-(T)H(U).



144 THE LOGIC OF PROVABILITY

Case 3. The rule is the negative rule for ->. Then E is a sentence
- (F -> G). Let c be the branch of U obtained from b by this
application. Then (c) = (b) A F A G, (b) is truth-functionally equi-
valent to (c), and again GU-(T)+(U).

The case for any other propositional calculus rule is perfectly
analogous to Case 2 or Case 3.

In all cases, then, GLF-(T)*(U). If T is in a window on a branch
d of a tree X, and U, e, and Y are the tree, branch, and tree that
result from d when a rule is applied to an occurrence of a sentence
in T, then since GLF-(T)H(U), GU- 0(T)HO(U), GLF-(d)H(e),
and GU-(X)+(Y).

By induction on degree, we infer that if U is the tree that results
when a rule is applied anywhere in T, then GLF-(T)<-+(U). Further-
more, if V is a tree that contains just one branch and that one
branch contains just the one sentence -i A, then (V) = -' A. It
follows that if T is the tree produced when we stop, then
GL F- A H (T). And since GL F- -1 O E if GL F- -, E, it follows by
induction on degree that if T is a closed tree, then GL F- (T): for
if b is a branch of T, then either 1 is on b, or some sentence and
its negation are, or some window on b contains a closed tree of
lower degree, and in each of these cases, GL F- (b).

Thus if T is the tree generated by our procedure when it stops
and T is closed, then GL F-- (T), GL F- A E-, (T), and therefore
GLF-A.

It remains to show that if our procedure stops with an open tree
T, there is a finite transitive irreflexive model <W, R, V > in which
A is invalid. W will turn out to be a certain set of open branches
obtained from T.

If U is an open tree, then U contains at least one open branch.
Define S, a relation on branches: xSy if x is open and y is the

leftmost open branch of a tree in a window on b.
Let w be the leftmost open branch of the open tree T.
Recall that xS°y if x = y and xS`+'y if 3x(xS`z A zSy).
Let W = {x: 3i > 0 wS`x}, wE W. The degree of T is finite, and

therefore W is finite. Every member of W is open.
Let xRy if (<x, y>: x, yE W n 3i > 1 xS`y}.
Thus the worlds of our model are the leftmost open branch of

T, the leftmost open branches of any trees in windows on that
branch of T, the leftmost branches of any trees in windows on
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those branches of those trees, etc. And if x and y are worlds in our
model, then xRy if y is an open branch of a tree in a window on
x or an open branch of a tree in a window on an open branch of
a tree in a window on x or ... .

R is transitive and irreflexive.
Let xVp if the sentence letter p is one of the sentences lying on

branch x.
Our desired model is < W, R, V>.

Lemma. For every sentence E and every x in W, if E lies on
x, then x k E, and if - E lies on x, then V E.

Proof. Induction on E. There are four cases.

(i) E is 1. Since x is open, 1 does not lie on x. And whether or
not 1 lies on x, xV I.

(ii) E is a sentence letter p. If p lies on x, then x Vp and x k p. If
-i p lies on x, then since x is open, p does not lie on x, not: x Vp,
and xVp.

(iii) E is (F - G). If (F G) lies on x, then the positive rule for
has been applied to all occurrences of (F -), G) on x, and there-
fore either -i F lies on x or G lies on x. By the i.h., either x V F
or x k G. In either case, x k (F -+ G). If -' (F -+ G) lies on x, then
the negative rule has been applied to all occurrences of (F -> G)
on x, and therefore F and -' G both lie on x. By the i.h., x k F
and x V G, and therefore x V (F -+ G).

(iv) E is B. if -' B lies on x, then there is a window on x in
which there is a tree U at whose very top the sentence -, B
occurs. Since x is open, there is at least one branch of U. Let
y be the leftmost open branch of U. xSy, and since xE W, yE W.
-' B lies on every branch of U, and hence on y. By the i.h., y V B.
But since xSy, xRy, and x V B. Finally, suppose that B lies
on x. If we can show that B lies on y whenever xRy, we shall
be done, for then by the i.h., y k B whenever xRy, and x k B.
But observe that if z, a are both in W, zSa, and B lies on z,
then both B and B lie on a: for since zSa, a is a branch of
a tree U in a window on z; at the top of U, and hence on every
branch of U including a, are -1 C, C, D 1, D 1, ... , D,,,
where - i C is some sentence on z and D1, ... , D. are all
the sentences D on z, one of which is B. Thus if for some
i > 1, xS`y, both B and B lie on y, and therefore if xRy, B
lies on y. -l
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We are thus done. A lies on every branch of T, and hence on
w. By the lemma, w V A. Therefore A is invalid in the finite transitive
and irreflexive model <W, R, V >. In fact, < W, R > is a tree in the
different sense of Chapter 5: for every x, y, ze W, if xRz and yRz,
then either xRy or x = y or yRx. Thus the theorems of GL are
precisely the sentences valid in all finite transitive and irreflexive
trees. Furthermore, if A is not a theorem of GL and there are n
subsentences of A of the form D, then A is invalid in some finite
irreflexive transitive tree < W, R > such that woRw1 R ... RwnRwn+ 1,
for no in W.

Like GL, K is closed under the Lob rule

An easy modification of the argument just given shows that if K I- A,
then A is invalid in some finite frame < W, R > in which for all
wo, wl,... , wn in W, not w0Rw1 R... RwnRwn. Thus R "contains no
loops" and is therefore converse wellfounded.

First of all, change the modal rule to: If C occurs on a branch
b, write down on b a window containing the (one-branch) tree

--I C

D

Dn,

where D 1i ... , D. are all the sentences B on b, and then check
the occurrence of -l C.

Then observe that the procedure always terminates, in this case
because the maximum of the modal degrees of sentences on b is
strictly greater than that of the degrees of sentences on c. As for
showing that K I- A if we stop with a closed tree, the key observation
is that KI-(-i Cn
To show that if we stop with an open tree, then A is invalid in a
model of the desired sort, we define w, W, and V as before, but
now let R simply equal S and note that if z,aeW, zSa, and B
lies on z, then B lies on A.

(We thus have another way to see that there is no sentence valid
in all and only those frames that are converse wellfounded. Suppose
A is a counterexample. Since there are some frames that are not
converse wellfounded, A is not valid in all frames. Therefore K VA.
Therefore, as we have just seen, A is not valid in some frame that
is converse wellfounded, contradiction.)
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It follows that for any sentence A, if K I- A -+ A, then K I- A, i.e.,
that K is closed under the Lob rule. For if K A, then A is invalid
in some finite frame <W,R> in which for all wo,w1.... ,w in W,
not: wo Rw 1 R ... Rw Rwo. Then for some win W, w V A, but for all x,
x k A if wRx. (Otherwise, there would be an R-loop.) Thus w k A,
and wV A-+A is invalid in <W,R>, and K-DA-+A.

Exercise 1. Use the procedure to determine which of these
are theorems of GL:

a.
b. n q)-p)-
c. (p -
d. v 1)-, (p-> 1)))-'(p-*( 1--* l)).
e. p n Oq-> O(p n 1)
f. (p- (P-*q))-> (p- q)
g. n n

Exercise 2. Modify our completeness proof to prove the
completeness of other modal systems with respect to appro-
priate sorts of models.
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An incomplete system of modal logic

Lob's theorem states that a sentence S is a theorem of PA if the
apparently weaker sentence Bew('-Sl) -+S is a theorem. As PA is
closed under tautological consequence, it follows from Lob's theorem
that for any sentence S, if SHBew(rS,) is provable in PA, then so
is S. Henkin's question (for PA), whether or not the sentence express-
ing its own provability is provable,' thus receives an affirmative
answer.

Let us use "YES" to refer to the statement that for all sentences
S, if SF+Bew(rS1) is a theorem of PA, then so is S. (YES for: the
answer to Henkin's question is yes, for all such S.) Thus YES follows
from Lob's theorem. Conversely, with the aid of the Hilbert-Bernays-
Lob derivability conditions (i), (ii), and (iii), which are used to prove
Lob's theorem, YES easily implies Lob's theorem: for if

F- Bew(rS,) -> S, then by (i) and (ii),
F- Bew (rBew (rS1) --+ Bew (rS-1). But by (iii),
F- Bew ('S,) - Bew (Bew (rS,),), whence
F- Bew(r'S-')HBew(r-Bew(rS,),). By YES,
F- Bew(rSl), and therefore by modus ponens,
1--s.

The use of (i), (ii), and (iii) in this derivation of Lob's theorem
from YES and their absence from the converse derivation might
suggest that in some sense Lob's theorem is a better result than
YES. By considering the question from the point of view of modal
logic, we can in fact define a sense in which this is so.

YES and Lob's theorem may be formalized as rules:

If then F-A (YR)
If F- A -. A, then H A (LR)

or as schemata:

(YS)
(LS)
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To raise questions about the strength of these four modal principles,
we need to choose a background system. Two obvious candidates
are K and K4.

Adding any one of (YR), (LR), (YS), or (LS) to K4 yields a system
whose theorems are the same as those of GL, for by Theorem 18
of Chapter 1, all sentences A - A are theorems of GL; as
was shown in Chapter 3, GL is the result of adding (LR) to K4;
and by an argument that parallels the foregoing deduction of Lob's
theorem from YES, GL is also the result of adding (YR) to K4.
Finally, adding (YS) to any normal system such as K4 gives closure
under (YR): If A H A, then I (A H A), whence A and
I-- A. Thus K4 is too strong a system to enable us to distinguish
the four principles.

With K taken as the background system, however, interesting
differences among them appear. Unlike K4, K is closed under (LR),
as we saw at the end of the previous chapter, and hence under (YR).

Let us use H (for Henkin) to refer to the system that results when
(YS) is added to K, i.e., H is the normal system whose new axioms
are all sentences (A H A) - A. H is clearly a proper extension
of K, since (p H p) -> p is not a theorem of K. For let
M = < N, <, V>, where for all n in N, not: nV p. Then p is false, p
is false, pH p is true, (pH p) is true, and therefore (pH p)->

p is false, at all n in M.
It is evident that GL is an extension of H. We shall show that

it is in fact a proper extension, that neither p -+ p nor
( p -+ p) - p is a theorem of H, and that although H, as we

saw three paragraphs back, is closed under (YR), it is not closed
under (LR).

As we shall see, H turns out to be an example of an incomplete
system of modal logic.

A frame is said to be appropriate to a normal modal logic L if
and only if all theorems of L are valid in the frame. The definition
agrees with the particular definitions of "appropriate to" that we
gave in Chapter 5 for the particular logics K, K4, T, S4, B, S5, and
GL. E.g., we there called a frame appropriate to K4 if it is transitive,
and indeed all theorems of K4 are valid in very transitive frame.

A system L of propositional modal logic is called complete if
every sentence that is valid in every frame appropriate to L is a
theorem of L.

So to continue the example, K4 is complete: for if A is valid in
every frame appropriate to K4, A is valid in every transitive frame,
and therefore, as we saw in Chapter 5, A is a theorem of K4.
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We have also seen that GL, K, T, S4, B, and S5 are complete,
and in Chapter 12 we shall see that the system Grz defined there
is complete as well.

Let us forestall a possible confusion. The theorems of any normal
logic L are precisely the sentences valid in all models in which all
theorems of L are valid, for if a sentence is not a theorem of L,
then it is not valid in the canonical model for L. The definition of
"complete" mentions frames, however, and not models.

All tautologies and all distribution axioms are valid in all
frames, and the rules of modus ponens, necessitation, and sub-
stitution preserve validity in a frame. Thus all theorems of H are
valid in a frame if and only if (p4 -. p) -> p is valid in that
frame.

We are going to show that the frames in which (p +-* p) --* p
is valid are exactly the same frames as those in which ( p -+ p) -+

p are valid, i.e., the transitive and converse wellfounded frames.
Thus a frame is appropriate to H if and only if it is appropriate to
GL. We shall then show that the sentence p -+ 0 p is not a
theorem of H. It follows that H is incomplete, since p -* p is
a theorem of GL, and therefore valid in every frame appropriate
to GL, that is to say, valid in every frame appropriate to H.

Recall from Chapter 4 that the degree of a modal sentence A is
the maximum number of nested occurrences of in A. The sentence

(p <--> p) - p is of degree 2 and contains one sentence letter,
p. After proving the incompleteness of H, we shall also prove that
if X is a set of sentences of degree 1 and L is the normal logic
obtained from K whose new axioms are all substitution instances
of all members of X, then L is complete. Thus, on one natural
measure of simplicity, H is an incomplete modal logic that is as
simple as possible.

We begin by proving a theorem due to Lon Berk.

Theorem 1. and are
valid in the same frames.

Proof. It is clear that (p +-+ p) -* p is valid in every frame
in which ( p -* p) -> p is valid. For the converse, suppose

and wRx. We must show that M, x k p.
For y in W, let yUp if for all n ? 0, Let N=<W,R,U>.
Suppose wRy. Then

(*) M,ykp--*p
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and the following are equivalent:
N, y k p;
yUp;
for all n > 0, M, y k "p;
for all n >, 1, M, yk "p [by (*)];
for all n >, 0, for all z such that yRz, M, z k "p;

for all z such that yRz, for all n 3 0, M, z k "p;

for all z such that yRz, zUp;
for all z such that yRz, N, z k p;

N, y k p w

the validity in < W, R > of (p H p) -, p, N, w k p; and then
since wRx, N, x k p; x Up; for all n >, 0, M, x k "p; and M, x k ° p,

i.e., M, x k p. -1

It follows from Theorem 1 that all theorems of GL, including
p -> p, are valid in all frames in which (p<-+ p) -. p is

valid. As we shall now show, p-p p is not a theorem of H,
and therefore neither is ( p -* p) -,. p. So H is incomplete. The
incompleteness of H was conjectured by the author and proved by
Roberto Magari, who in 1980 constructed a model in which all
axioms of H are valid, but in one of whose worlds p-> p
is false, proving thereby that p -+ p is not a theorem of H.
A number of years later, Max Cresswell considerably simplified
Magari's original construction.

Following Cresswell's argument, we let N*, _ {0*,1 *, 2*, ... } be
a disjoint copy of N, = {0, 1, 2, ... }. Define m* < n* iff m < n.

Let W = N v N*. Let wRx if either for some m, neN, w = m*,
x=n* and m,<n+ 1, orwisinN* and xisin N,orw,x are in N
and w > x. Note that for all n, n*Rn* and (n + 1)*Rn*, and also
n*R(n + 1)*, n*R(n + 2)*,... .

Let wVp iff w 0*. Cresswell's model is < W, R, V>, depicted here:

N N*

O
0 1 2 ... ... y2*-

OP

wRx if either w is to the right of x or there is a (single)
arrow from w to x. p is false at 0* and nowhere else.
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(The right-hand piece of the frame on which Cresswell's model is
based is known as the recession frame.)

For any modal sentence A, let [A] _ {w: w k A}. A subset X of
W is cofinite if W- X is finite.

Lemma. For every sentence A, [A] is either finite or cofinite.

Proof. Induction on A. For every sentence letter p, [p] = W- {0*},
which is cofinite. [1] = 0, which is certainly finite. And [A -+ B] =
(W - [A]) u [B]. Thus if [A] is cofinite and [B] is finite, then
[A -> B] is finite. But if [A] is finite or [B] is cofinite, [A -' B] is
cofinite.

For the step from A to A, we distinguish two cases.
Case 1. For some n in N, no [A]. Then [CA] is finite, for if

either WEN* or WEN and w> n, then wRn and
Case 2. N g [A]. By the induction hypothesis, [A] is either

finite or cofinite and is therefore cofinite. Thus there is some k
such that for all xo[A], xeN* and x <k*. It follows that is
cofinite, for if wo [ A], then for some x, wRx and x* [A], and
thus xeN* and x < k*; but then WEN* and w < (k + 1)*, and there
are only finitely many such w. -4

Theorem 2. p -> p is not a theorem of H.

Proof. We first show that every sentence (A <-). A) -> A is valid
in M. Assume that for some win W, w k (A H A) and w f A.

We distinguish the same cases.
Case 1. For some n in N, n V A; we may assume n the least such.

Then n k A, n V (A E-). A), not: wRn, and w n. Since R is connected
(for all y, zE W, yRz or y = z or zRy), nRw. Thus WEN and n > w.
Since w $ A, for some x, x V A, wRx, x c- N, n > w > x, contra
leastness of n.

Case 2. N c [A]. By the lemma, W - [A] is finite. Since w V A,
W - [A] is nonempty. Let k* be its greatest member. Then k* A,
(k + 1)* k A, and (k + 1)* A since (k + 1)*Rk*. For some x, wRx
and x V A, and since N s [A], xEN* and for some n, x = n* and
n < k. Since wRx, weN* and for some m, w = m* and m n + 1.
Then m < (k + 1) + 1 and wR(k + 1)*, whence (k + 1)* k (A H A),
contradiction.

Thus all the axioms of H are valid in the model M, for all
tautologies and distribution axioms are valid in M. Consequently,



11 AN INCOMPLETE SYSTEM OF MODAL LOGIC 153

all theorems of H are valid in M, since modus ponens and necessita-
tion preserve validity in M.

But 2*Rx iff x = 1*, 2*, 3*,..., or x is in N; thus 2*Rx iff x :0*.
Hence 2* k p. But 0* V p, 1* V p, 2* V p, whence 2* V p ->

p.
Thus p - p is not valid in M and is therefore not a theorem

of H. H

It follows from Theorem 2 and the next result that H is not
closed under (LR).

Theorem 3. HF

Proof. Let A = (Op -> p). Then
and

KH p-> A D p-+p n p). Thus
n pH p n p)) and
n n p))), whence
n p)), and finally,

H

Before the discovery of Magari's theorem it was known that there
is a sentence of degree 2 containing two sentence letters of which
the result to adding all substitution instances as new axioms to K
is incomplete; and similarly for a sentence of degree 3 containing
one sentence letter. The following theorem, due to David Lewis,
shows that Magari's theorem is best possible.

Theorem 4. Let X be a set of sentences and suppose that the
degree of every sentence in X is S 1. Let L be the system
obtained from K by taking as new axioms all substitution
instances of members of X. Then LI-A iff A is valid in every
frame in which all theorems of L are valid, and L is complete.

Proof. The left-right direction is obvious. Suppose then that L fr` A.
Fix an enumeration A0, A1, ... of all modal sentences. Let d be
the set of all subsentences of A, -4 be the set of truth-functional
combinations of members of sad, and c' be the set of maximal
L-consistent conjunctions of subsentences of A and negations of
subsentences of A that occur earlier in the enumeration than any
other conjunction with exactly the same conjuncts.
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For each C in 16 let we be a maximal L-consistent set containing
C. (Cf. Lemma 2 of Chapter 6.) Let W= {w,: CES}. Let wRx if
for all B in -4, if Bew, then BEx. We shall show A invalid, but
all members of X valid, in the frame < W, R )'. The theorem follows
since validity in a frame is preserved under substitution.

Let wVp if pew. Let [B] = {we W: M, wIB}, and IBI = {we W:
BEw}.

Lemma. (1)[p]=IpI;(2)[1]=111 =0;(3)if[B]=(Bland
[C] =ICI, then [B--+ C] = I B -* Q; (4) if Begs and [B] = I B I,
then I BI.

Proof. (1) and (2) are clear and (3) follows in the usual way from
the fact that members of W are maximal L-consistent sets. As for
(4), assume that Be-4 and [B] = IBI. Let we W. If wel BI, then
BEw, and thus if wRx,Bex,xelBl = [B] and so xI B; thus w B
and w e [ B]. Therefore I B I c [ B]. Conversely, suppose that

Then Let Y={-,B}u{CE_4: CEw}. Ysi .4.
If Y is not L-consistent, then for some C11 ... , Ck in -4, C1,. .. ,

Ck E w, and L I- C1 A A Ck -+ B, whence by the normality of L,
L I-- C1 A A Ck -> B, and w is inconsistent, contradiction.
Thus Y is L-consistent. For some C in ', then, L F- C -- E for all E
in Y and Y wc, whence wRwc. Thus -i Be Y s wc, B0 wc, wco I B I=
[B], we 0 B, w B, and w 0 [ B]. The lemma is proved.

It follows from the lemma that for every B in -4, [B] = I B I.
Since LEA, for some w in W, -iAew, Aow, and wolAI. Thus

w 0 [A], w A, and A is invalid in < W, R >.
We now show all members of X valid in < W, R >. Let V be a

valuation on W, and M' = < W, R, V'>. For any sentence D, let
[D]' = {wEW: M', wkD}. Now suppose DeX. We must show that
[D]'= W.

For each sentence letter p, let EP= V {Ce': wcV'p}. C is the
unique member of ' in wc, and therefore EPEwc if C is a disjunct
of EP, if wcV'p. Thus IEP I = [p]'. Since EPeR, [EP] = IEPI. For any
sentence D, let D' be the result of substituting EP for each p in D.
Then p' = EP, and therefore [p] = [p]'. By a straightforward induc-
tion on subsentences of D, [D] = [D]'. As the degree of D < 1 and
each EPe-4, D' is a truth-functional combination of necessitations
of members of -4, and by the lemma, [D] = I D' I. Since DeX, L I- D',
and I D' I = W. Thus [D]'= W. H
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An S4-preserving proof-theoretical
treatment of modality

The unprovability of consistency, and hence of reflection, is a
striking feature of the concept of formal provability. Bew(rS,) - S
is not, in general, a provable sentence of PA, and ( p -> p) is there-
fore not an always provable sentence of modal logic.

However, there is an interpretation of the language of proposi-
tional modal logic that makes use of the notion of formal provability
and preserves not only ( p -* p) but all other theorems of S4 as
well: interpret to mean: 0

We have defined the notation: El A to mean: ( A A A). It is
obvious that (0 A--+ A) is a tautology, and it is also evident that
K F- (A - B) -+ ( El A - O B); Theorem 9 of Chapter 1 asserts that
K4 A -. 0 0 A. Moreover if K41- A, then also K41- A, whence
K4 A. Thus the result of "dotting" all boxes in any theorem of
S4 is a theorem of K4.

More precisely, we define the
sentences A:

`p = p (p a sentence letter);
`1 = 1;
`(A -+ B) = (`A --*'B); and

`A modal

`A all boxes in A. Then if S4 1- A, K4 F `A.
(The proof of the converse will be left as an exercise.)

For any realization * and any modal sentence A, we define the
sentence *A of arithmetic as follows:

P = P* = *(P);
*1=1;
*(A - B) = (*A *B); and
* A = (Bew(r*A,) A *A).

We may call *A the truth-translation of A under the realization *.
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We cannot define the notion true sentence by a formula of
arithmetic - that is, no formula T(x) of arithmetic defines the set
of Godel numbers of true sentences of arithmetic - but for each
particular sentence S of arithmetic, we may take the arithmetization
of the assertion that S is true to be S itself. If p* = S, then * p
will assert that S is provable and true.

If *A = (`A)*, then * A = (Bew(r*A,) A *A) = (Bew(r-(`A)*,) A
(`A)*) = (DA A `A)* = ('D A)*. Thus for every modal sentence A,
*A = (`A)*.

We are thus led to ask the questions: Which modal sentences are
provable under all truth-translations? and: Which modal sentences
are true under all truth-translations? It turns out, perhaps surpris-
ingly, that these questions have the same answer, and that the
answer is not: exactly the theorems of S4.

We shall give the name Grz, after Andrzej Grzegorczyk, to the
modal system whose rules of inference are those of K and whose
axioms are those of K and all sentences

S4Grz is the system that similarly results from adjoining to S4 all
those sentences as new axioms.

S4Grz properly extends S4, for ( (p -> p) -> p) -+ p is not a
theorem even of S5: Let W = {0,1 }, R is the universal relation
{ <0, 0>, <0,1 >, < 1, 0>, < 1,1 > } on W, which is an equivalence rela-
tion, not: OV p and 1 V p (any sentence letter p). Then O V p, 1 V p, 1 k p,

0k and 0V p)-+ p)-, p.
A relation R is antisymmetric if for all w, x, if wRx and xRw, then

w=x.
A relation R is called converse weakly wellfounded if for every

nonempty set X, there is an R-maximal element of X, that is, an
element w of X such that wRx for no x in X other than w.

We use "reflexive" to mean: reflexive on W, when the context
makes it clear which set W is meant.

The main result of this chapter is the equivalence of the following
ten conditions:

(1)
(2) Grz F- A;
(3) GL [--'A;
(4) for all realizations *, PA F- *A;
(5) GLS 1--'A;
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for all realizations *, *A is true;
for any such realization * as in the uniform arithmetical
completeness theorem for GL, PA F- *A;
for any such realization * as in the uniform arithmetical
completeness theorem for GL, PA F- (`A)*;
A is valid in all finite transitive, reflexive, and antisymmetric
frames;
A is valid in all transitive, reflexive, and converse weakly well-
founded frames.

*A, we have observed, is identical with ('A)*. Thus (7) is equivalent
to (8), and by the arithmetical completeness theorem for GL, (3) is
equivalent to (4). (5) is equivalent to (6) by the arithmetical complete-
ness theorem for GLS, and (3) to (8) by the uniform arithmetical
completeness theorem for GL. Moreover, (1) evidently implies (2),
and (3) evidently implies (5).

(2) implies (1).1

Proof. We must show that Grz F- A -+ A and Grz F- A -+ A.
A -+ A is easy: we have that

KF- A-+
(A -+ A) -+

A
A -+ A - A A.

Then by the propositional calculus, we have
A A)-+ A)--(A--+ A), i.e.,

KF-(C-- A)--(A-> A). Since
KF-C->A,

K F- (C -+ C) -+ (A -+ A); therefore, by the normality of K,
KF- (C-+ i.e.,
K F- (C -+ C) -+ B, and then by necessitation,

(*)

K F- A -+ [ (C -+ C) -+ A], which with (*) yields
K F- A -+ [ (C -+ C) -. (B A A) ], i.e.,
K F- A -+ [ (C -+ C) -+ C]. But since

Grz F- A -+ C, whence since
GrzF-C-+(A-+A),
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Grz I- A -+ ( A A), and therefore
-I

(1) implies (10).

Proof. Suppose that < W, R > is transitive, reflexive, and converse
weakly wellfounded. p -> p and p -* p are valid in < W, R >.
It suffices to show ( (p -> p) -+ p) -+ p valid in < W, R >. Let V
be a valuation on < W, R >.

Let X0={wEW:Wk and wVp}, and X,=
{weW:wk wV p, and wkp}. XonX, =Q.

If weX0, by reflexivity, wk (p--> p)--* p, and then wV (p-> p).
Therefore, for some x, wRx, x k p, and x V p. Since wRx, by
transitivity, x k ( (p -> p) - p). Thus x e X, .

If WE X1, then for some x, wRx, and x V p. By transitivity again,
xk p)- p). Thus xEX0.

Thus for every w in Xi (i = 0, 1), there is an x in X, such that
wRx. Let X = X0 u X,. Since XonX, = 0, for every win X, there
is an x in X such that wRx and w 0 x. By converse weak well-
foundedness, X = 0, and therefore X0 = 0. Thus for every we W,

-1

(10) implies (9).

Proof. It suffices to show that if < W, R > is finite, transitive, reflexive,
and antisymmetric, then R is converse weakly wellfounded. But if
W is finite and < W, R > is (merely) transitive and antisymmetric,
then < W, R > is converse weakly wellfounded: For if X is a nonempty
set, of which each member bears R to some other member, then
for every n, there is a sequence x1,.. . , x of n distinct members of
X, each of which bears R to all later members, contra the supposi-
tion that W is finite. (If x1,. .. , x is such a sequence, then for some
y in X, x Ry and x y. By transitivity x;Ry for all i < n; if y = xi
for some i < n, then by transitivity, and by antisymmetry,
x = y, contradiction. Then x1,... , x,,, y is such a sequence of n + 1
distinct members of x.) -I

(9) implies (1) (the completeness theorem for S4Grz).2

Proof. Let A be an arbitrary sentence. Let sad = {B: B is a subsentence
of Al, let -4 = d v { (C -> C): CE S4}, and let = -4 v {- B:

RBe}.
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Let W = {w: w is a maximal Grz-consistent subset of '}. As usual,
every Grz-consistent subset of ' is included in some w in W

Let wQx if for every C in W, if Cew, then CEx.
Let wRx if both wQx and if xQw, then w = x.
Q is transitive. R is clearly reflexive and antisymmetric. And R

is transitive: Suppose wRxRy. Then wQxQy, whence wQy. Suppose
yQw. Then yQwQx, whence yQx. Since xRy, y = x, and so wRy.

W is finite and so < W, R > is a finite transitive, reflexive, and
antisymmetric frame.

For p a sentence letter, we W, let wVp if pew.

Lemma. For all B in d, w in W, Bew if M,wkB.

Proof. The atomic case is immediate from the definition of V. 10w
and w V 1. If B = C -> D, then C, D e d, and therefore C --* D E w iff
either C o w or Dew (maximal consistency), if either w V C or w k D
(induction hypothesis), if w k C -* D.

Assume B = C. Suppose Cew. If wRx, then wQx, Cex,
and since Grz I- C - C and x is maximal consistent, CEx, and
by the i.h., x k C. Thus w k C.

Now suppose Cow. Then CEW. If Cow, then by the i.h.,
w V C and since wRw, w V C. So we may assume CEw. Then,
since (C -> C)e-4, (C - C)ow; otherwise since Cew and
Grz k- (C -* C) A C -* C, Cew. Let D 1, ... , Dk be all the
sentences D in w. Let X = { D1, ... , Dk, (C -> C), - C}.
If X is inconsistent, then
GrzH D1 n ... A
GrZE-DOD, n ... A Dk-+
GrzI-DOD,
Grz I- D 1 A A Dk -> C, and since
Grz l- D; - Dj,
GrzI- D 1 A A Dk C, which is impossible, for

D 1, ... , Dk, -' Cew and w is Grz-consistent. So X is also Grz-
consistent and is thus included in some x in W Since D1, ..., DkEx,
wQx. Since (C - C)ex, but Ow, not xQw. Thus wRx. But -i Cex,
Cox, by the i.h. x V C, and so w C. -1

Then if Grz ` A, {-i A} is a consistent subset of ', - A is in some
w in W, A 0 w, and by the lemma w V A, and therefore A is invalid
in the finite transitive, reflexive, and antisymmetric frame < W, R>.
Thus (9) implies (1).

(9) is equivalent to (3).3
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Proof. Suppose that R is a relation on W. Let R + = R u { <x, x )':
xe W} and R- =R- {<x, x>: xe W}. R+ is reflexive and R- is
irreflexive. If R is irreflexive, then R + - = R; if R is reflexive, then
R - + = R. Moreover, as is easily verified, if R is transitive, reflexive,
and antisymmetric, then R - is transitive and irreflexive; if R is
transitive and irreflexive, then R + is transitive, reflexive, and anti-
symmetric.

If R is a transitive and irreflexive relation on W, then < W, R, V>,
w k `B if < W, R +, V >, w k B, as we may see by induction on the com-
plexity of B; the only case that requires attention is the one in which
B = C.Butthen<W,R, A `C),
if < W, R, V >, w k `C and < W, R, V >, w k 'C, if for all x such that
wRx, < W, R, V >, x k C and < W, R, V >, w k C, if for all x such that
wR+x, <W,R,V>, xk`C, if by the i.h., for all x such that wR+x,
<W,R+,V>, xkC, iff <W,R+,V>, wk C.

Thus if GL L A, then for some finite transitive and irreflexive
model < W, R, V>, some we W, < W, R, V>, w VA, whence < W, R+, V>,
w $ A, and A is invalid in the finite transitive, reflexive, and anti-
symmetric frame < W, R + >. Conversely, if < W, R > is a finite transitive,
reflexive, and antisymmetric frame and < W, R, V)', w V A, then
R = R- + and < W, R - +, V >, w V A, < W, R -, V>, w V `A, `A is invalid
in the transitive and irreflexive frame < W, R ->, and therefore
GLV`A. -I

(5) implies (3).4 Suppose GL K A. Then there is a finite transitive
and irreflexive model M such that W contains 0, W contains no
positive integers, W = {0} u {x: 0Rx}, and M, 0V `A.

Let n be the number of subsentences of `A of the form C.
Let X=Wu{i:1 <i,< n}. Let Q={<j,i>:1 <i<j<n}u{<i,x>:

1 < i n xeW} u R. <X, Q> is a finite transitive and irreflexive frame.
Let U= V u { <i, p>: I < i ,<n A OVp}. Let N= < X, Q, U>.

Lemma. For any sentence B, any i, 0 < i < n, N, i + 1 k `B iff
N,ikB.

Proof. (We drop "N".) If B is a sentence letter p, `B = p, and i + 1 k p
if i + 1 Up, if OVp, if iUp, if i k p. The truth-functional cases are
straightforward.

Note that i + 1Sx if x = i or iSx; thus for any sentence D, i + 1 k
D if i k D and i k D. Now suppose B= C. Then i+ 1 k ` C

i + 1 k i k i i k `C `C, if
-1
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By continuity, N, 0 VA, and by the lemma, for all i, 0 < i <, n, N,
`A.WA.
Let X = { C - C: C is a subsentence of 'Al. X contains n

members. By Theorem 7 of Chapter 7,5 for some i, 0 < i < n, N,
i k C - C for all subsentences C of `A. (`A)s = (A {E1 C -+ C: C
is a subsentence of `A} -+A). Thus N, i V (A)s, (`AY is invalid in the
finite transitive irreflexive frame <X, Q>, and GL (`A)s. By the
arithmetical completeness theorem for GLS, GLS VL'A.

Thus the ten conditions are indeed equivalent. The equivalence
of (2) and (9) shows the decidability of Grz in the usual manner.

The schema: ( (A -+ A) -> A) -' A came to light in the
investigation of the connections between intuitionistic and modal
logic. (For an account of intuitionistic logic, the reader may be
referred to Heyting's Intuitionism: an Introduction and Dummett's
Elements of Intuitionism.) In his 1933 paper "An interpretation of
the intuitionistic propositional calculus," Godel asserted that the
intuitionistic propositional calculus I could be interpreted in the
modal system S4 if the following translation scheme were used:

-i A is to be translated as -' A
A-+B A-> B
AvB Av B
AAB AAB

Godel's claim was that for any sentence A built up from sentence
letters by -, , ->, v , and A, if I F- A, then S4 F- A', where A' is the
translation of A under this scheme. Godel conjectured that the
converse holds; McKinsey and Tarski proved the conjecture.'
Grzegorczyk showed that the Godel-McKinsey-Tarski result also
holds if one replaces S4 by a system deductively equivalent to
S4Grz.' Thus for all sentences A as above, I F- A if S4Grz F- A'.'

Stringing together the equivalences of the main theorem yields
a translation of the intuitionistic propositional calculus into (classical)
arithmetic: I F- A if S4Grz F- A', if GL F- `(A'), if `(A') is always
provable, if `(A') is always true. (Shades of the intuitionists' doctrine
that mathematical truth is to be identified with provability!) By
the uniform arithmetical completeness theorem for GL, there is a
realization * under which all and only the theorems of GL are
provable in PA. Thus also I F- A iff PA F- (`(A'))*. This result is an
analogue, for classical arithmetic, of an earlier theorem of de Jongh9
that states that there is a translation scheme ° under which for all
sentences A of the intuitionistic propositional calculus, I F- A if
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HA F- A°, i.e., if A° is provable in Heyting (intuitionistic) Arithmetic.
We close with five disjointed remarks on Grz.
1. Let B(p) = p A p. By the equivalence of (3) and (1), ' is a

function from and to modal sentences that commutes with truth-
functional operators and is such that for all sentences A, `( A) = B(tA)
and Grz F- A if GL F- `A. But there can be no analogous converse
reduction of GL to Grz given by a sentence like B(p):

For K F- T H T and T F- 1 H 1. Therefore any letterless
sentence is equivalent in T either to T or to 1, and the same holds
for Grz, which extends T. Thus if B'(p) is a sentence containing
a single sentence letter p and f is a function from and to modal
sentences that commutes with truth-functional operators and is
such that for all sentences A, f (D A) = B'(f (A)), then either f (-i 1)
or f (D 1) is equivalent in Grz to T, and therefore either
Grz F- f ( 1) or Grz F- f (O 1). But GL -10 1 and GL K 1.

2. A system L of propositional modal logic is complete if every
sentence valid in all frames appropriate to L, i.e., all frames in which
all theorems of L are valid, is itself a theorem of L. Like GL, K, K4,
T, S4, B, and S5, Grz is complete: (2) implies (10), and therefore if
A is valid in all frames in which all theorems of Grz are valid, then
A is valid in all transitive, reflexive and converse weakly wellfounded
frames, and then Grz F- A, since (10) also implies (2).

3. In which frames are ( (p -> p) -+ p) -> p valid?
(1) implies (10), and therefore if < W, R> is a transitive, reflexive,

and converse weakly wellfounded frame, then ( (p - p) -+ p) --> p
is valid in < W, R >. And conversely, as the following theorem states:

Theorem. Suppose that ( (p -+ p) -+ p) - p is valid in
< W, R >. Then < W, R > is transitive, reflexive, and converse
weakly wellfounded.

Proof. By the equivalence of (2) and (1), p - p and p -> p
are also valid in < W, R >, and thus < W, R > is reflexive and transitive.
Suppose that < W, R > is not converse weakly wellfounded. Then
there is a nonempty set X and such that VweX3xex(wRx A W :A X).

According to the axiom of dependent choice, a consequence of
the axiom of choice, if X is a nonempty set and S a relation on X
such that VweX3xeX wSx, then there exists a function f such that
for every natural number i, f (i)Sf (i + 1). Thus there exists a sequence
wo, w1, w2, ... of elements of W such that for all i, w;Rw;+ 1 and
wi0w1+1-
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Let I= {i: `d j < i wj w; }. 0,1 EI. If 2nE1, then for some m, 2m+ 1 EI
and w2nRw2m+ 1: for either 2n + 1 EI, in which case we may take
m = n, or for some jEI, j < 2n + 1, and w2n+1 = w;. But in this case
we may take m = n - 1. For since w2n+ 1 w2n, j < 2n - 1 = 2m + 1.
Then w;. By transitivity w;Rw2m+1 and therefore
w2nRw2m+ 1

Similarly, if 2m + 1E1, then for some n, 2nEI and W2m+1RW2n.
Now for all w in W, let wVp if for no n, 2nEI and w = w2n.
Suppose now that 2n, 2m + 1 E I; then w2n V p and w2n, + 1 k P,

w2nV p and W2m+1 V P, W2nkP-' p and W2m+1 VP-' P, w2nV
and

W2m+ 1 w2n k ( (p --> p) -> p) (because if w2nRx
but x = w, for no iEI, then x k p, and therefore x k (p -* p) -* p),
and thus w2n ( (p --> p) -+ p) -+p, contradiction: 0 E I. H

4. Open (?) problem. If < W, R > is transitive, reflexive, and converse
weakly wellfounded, then ( (p -+ p) --+ p) -+ p is valid in < W, R >;
if ( (p --> p) p) p is valid in < W, R >, then < W, R > is transitive
and reflexive and there is no sequence w0, w1, w2, ... of elements of
W such that for all i, wiRwi+ 1 and wi # wi+ 1. Can either "if" be
strengthened to "iff" in ZF set theory alone, and hence without
appeal to the axiom of dependent choice?

5. From the equivalence of (2) and (3) it of course follows that
GL I ( (p -+ p) -> p) -> p. It is a good puzzle to see what an
actual derivation might look like, and in order not to spoil the
pleasure of the reader who might like to solve it, we have printed
the solution overleaf:
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By Theorem 9 of Chapter 1,

GL F- (p-+ D p) -+ 1:1 0 (p -+ El p), and so by normality,
GLF- ( 0 (p -' 0 p) - p) -

(p 0 p)-+(p- Op)). And since
GLF- (

have
0 (p --* 0 p) -, p) --> (0 (p -> p p) - p), by normality we

GL F-- (0(p-' p)- p)-> ( (p-* p)-+ p),
Theorem 9 of Chapter 1 again,

GL I-- (El(p- p)-'p)- (p-->
GL F- (E] (p-> p)-> p) -+ El (p-> p), whence

(A) GLH

By the propositional calculus,

GU-(
GLF-
GLF-

(pD
D (0(p-
0 (E1(p-

0

El

whence by

p)), and thus

P)-P)- (p- p)

p) -. p) -+ p, as desired.
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Modal logic within set theory

In the present chapter we are going to investigate the connections
between modal logic and set theory, i.e., Zermelo-Fraenkel set
theory, "ZF", for short.

This chapter and the next, which deals with second-order arith-
metic, or analysis as it is sometimes called, are, unfortunately, not
self-contained. In order even to explain, let alone prove, their most
interesting results we are forced to assume a level of knowledgeability
about logical matters quite a bit higher than was necessary for the
understanding of previous chapters. (Including the necessary back-
ground material would entail a lengthy exposition of matters largely
irrelevant to the aims of this work.) The present chapter consists
mainly of the proofs of two striking completeness theorems that
concern interesting weakenings of the notion of provability: truth
in all transitive models of set theory and truth in all models VK
(alias RK), K inaccesssible. The theorems were discovered by Robert
Solovay in the fall of 1975; their proofs have not hitherto appeared
in print.

To understand the proofs of these results, one has to have a
reasonable acquaintance with basic set theory, as well as some basic
notions involved in proofs of independence a la Godel and Cohen.
An excellent source for this material is Kunen's Set Theory.' The
relevant system of modal logic for the notion: truth in all VK, K
inaccessible, is stronger than that for- truth in all transitive models,
which is itself stronger than GL. (When treating inaccessibles, we
assume that ZF includes the axiom of choice; otherwise not.)

GL, not at all surprisingly, turns out to be the modal logic of
(ordinary) provability in ZF. The proofs of the arithmetical complete-
ness theorems for GL and GLS carry over without essential
change from PA to ZF. To prove that the theorems of GL are all the
sentences all of whose translations into the language of ZF are
provable, we must of course appeal to certain facts that cannot be
proved in set theory, as we appealed to certain facts that could not
be proved in PA in order to establish the arithmetical completeness
theorem for GL.
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We have seen that if A is not a theorem of GL, there are sentences
So, S1, ... , S and a realization * such that

PM-So v S1 v ... v
PA Si Bew(r Si,) if i >, 1, and
PA I- So -> -' Bew(rA*1).

[These are (4), (6), and (8) of Chapter 9.] It follows that

PA I A i:1,i,n[Bew(r-- Si,) -» Si] --» Bew(rA*,)

and therefore the unprovability of A* in PA is implied in PA by a
conjunction of reflection principles. Under appropriate translation
of the language of arithmetic into that of ZF, the antecedent
conjunction of reflection principles can be proved in ZF, and
therefore so can the consequent statement that A* is not provable
in PA.

Similarly the unprovability of A* in ZF for a suitably defined *
is implied in ZF by a conjunction of set-theoretical reflection
principles, which of course cannot now be proved in ZF (provided
that ZF is consistent, of course), but only with the aid of principles
not themselves provable in ZF. In order to obtain completeness
theorems for the notions of truth in all transitive models and truth
in all models V,,, iC inaccessible, we shall again, predictably enough,
have to appeal to principles not themselves provable in set theory.

Truth in all transitive models of set theory

Let * be a function that assigns to each sentence letter a sentence
of the language of set theory, and for each modal sentence A, now
define A* as follows

P* _ *(P),
1*=1,
(A - B)* = (A* -+ B*), and
( A)* = the sentence of the language of set theory that translates

"A* holds in all transitive models of ZF".

A finite prewellordering is a frame < W, R >, where W is finite and
R is a transitive and irreflexive relation such that for every w, x, y
in W, if wRx, then either wRy or yRx.



13 MODAL LOGIC WITHIN SET THEORY 167

Lemma 1. Let < W, R > be a finite transitive and irreflexive
frame. Then < W, R > is a finite prewellordering iff for some
f : W - N, for all w, xE W, f (w) > f (x) iff wRx.

Proof. Suppose < W, R > is a finite prewellordering. < W, R > is ap-
propriate to GL. Let f be p. [For the notion of rank p = p<w,R>I

see Chapter 7.] Then if wRx, p(w) > p(x). And if i = p(w) > p(x) = j,
then for some wi,... , wo, x j, ... , x0, w = w,R... Rwo and x = x;R... Rxo.
By the transitivity of R, wRwj, and thus either wRx or xRwj. But if
xRw;, then xRw;R... Rwo, and p(x) >, j + 1, impossible. Thus wRx.

Conversely, if for all w, xE W, f (w) > f (x) if wRx, then < W, R > is
a finite prewellordering. For suppose wRx and yE W; then since
f (w) > f (x), either f (w) > f (y), whence wRy, or f (y) > f (x), whence
yRx. H

Let I be the system of modal logic that results when all sentences

v

are added to GL as new axioms.

0 A)

Theorem 1 (Solovay). Let A be a modal sentence. Then (A),
(B), and (C) are equivalent:
(A) For all *, ZF H A*.
(B) A is valid in all finite prewellorderings.
(C) I F- A.

In order to prove the theorem, we shall assume that there are
infinitely many a such that L,, is a model of ZF + V = L. We shall
prove that (A) implies (B), (B) implies (C), and (C) implies (A).

(A) implies (B): Suppose that < W, R > is a finite prewellordering,
V is a valuation on W, and < W, R, V >, wV A. In view of Lemma
1, we may suppose without loss of generality that for some natural
numbers n, ro,... , W = { (i, j): i < n and j < r; } and (i, j)R(k, m) if
i>k.

Let W'=Wu{0} and R'=Ru{<O,z>:zEW}.
It suffices to find sentences S,, for x in W' such that

(a) if x 0 y, then ZF F- (Sx A Sr);
(b) ZF I- V {Sx: xE W'};
(c) if xR'y, then ZF I- Sx - "S,, holds in some transitive model";
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(d) if x 0, then PA I- Sx -+"V y.xR,ySY holds in every transitive
model"; and

(e) So is true.

[(a), (b), (c), and (d) correspond to (2), (4), (5), and (7) of the proof
of the arithmetical completeness theorem.]

For if we define p* = V {Sx: xVp}, then the argument at the end
of the proof of the arithmetical completeness theorem shows that
ZF H Sx, -. -, A* and ZF }- So -+ "Sx, holds in some transitive model".
Since So is true, so is " A* holds in some transitive model". By
the soundness of logic, it follows that ZF ` A*.

We let So be the sentence "there are at least n + 1 transitive
models of ZF + V = V. By our assumption, (e) holds.

If i < n and j < r;, we let S0,1) be "2"° = N;+ 1 and there are exactly
i transitive models of ZF + V = V. And if i < n and j = r;, we let
S(;,;) be "2K° > N,; + 1 and there are exactly i transitive models of
ZF+V=L".

(a) and (b) are clearly satisfied. As for (c), suppose xR'y, y = (k, m).
Now working in ZF, we have that if Sx holds, there are at least
k + 1 transitive models of ZF + V = L. Take the (k + 1)S` model of
ZF + V = L, counting the minimal model as the first, and expand
if necessary a la Cohen to a transitive model . of 2'° = 1 with
the same ordinals. By the absoluteness of "transitive model of
ZF + V = L", Sy holds in .elf. Thus (c) holds.

And as for (d), suppose that x 0. Let x = (i, j). then V y.xR,ySy is
equivalent to the statement "there are < i transitive models of
ZF + V = V. Now working in ZF, we have that if Sx holds, then
for some i < n, there are exactly i transitive models of ZF + V = L.
Let . f' be a transitive model of ZF. We must show that V y.xR,ySy
holds in M. But .4f n L is a transitive model of ZF + V = L with
the same ordinals as A', A' n L is thus not in .11, and so there are
< i transitive models of ZF + V = L in M. By absoluteness, V y.xR.ySY
holds in M. So (d) holds.

The proof that (B) implies (C) is a standard sort of maximal set
construction of a model < W, R, V > in which a given non-theorem
A of I is invalid, but the members of W will be maximal sets
consistent with a certain conjunction A of sentences of the form

(E -+ F) that is consistent with A. R and V are then defined asD
in the completeness proof for GL. Lemma 1 is used to show < W, R
a finite prewellordering. The proof that for subsentences of A, "true
at" = "in" is as usual.
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Here are the details. For all sentences C, D,

K4F-0 (0 C->0 D)->[(C-+D)v ((D-C)n
K4F-(D->C)-*[(0C D)v
K4F-(0D-+E1C)-[0(C->0D)v

(D-'C))],
( D -> C)], and
(D->C)].

D
0

Since I F- ( C --+ D) v ( D -i 0 C) and I extends K4,
II-0(0C->0D)v(0(0D->0C)n 0(0D-+C)).

Suppose now that IVA. Then{--, A} is I-consistent. Let .sad = {B: B
is a subsentence of A or the negation of a subsentence of A}. Let
-4 = { (E -* F): E, Fed I. Let B1, ... , B,. be an enumeration of -4.
Let let = {B1} if {- Al u {B1} is I-consistent; otherwise let W1 =
{-B1}, and for i<r let Wi+1 =ceiu{Bi+1} if {-iA}uc'iu{Bi+1}
is I-consistent; otherwise let lei + 1 = cei u {-i Bi + 1 }. For each i < r,
{-i A} u 'i is I-consistent. Let A = A (, n -4). Then I ` A - A, and
I F- A - A, since A is a conjunction of sentences E M.

Let W = the set of maximal subsets w of d such that I 7L A -- A w.
If X c d and I K A - -l A X, then for some w in W, X g w, and
therefore for some wo in W, -l A E wo. If w e W and B -> C E d, then
B-Cew if either Bow or CE w. And W is finite.

Let wRx if w, xE W, for every CEW, Cex and Cc-x; and for
some Dex, Dew. R is irreflexive. And R is transitive, for if
wRxRy, then for some Dey, -10 Dc-x, whence , Dew. We shall
use Lemma 1 to show < W, R > a finite prewellordering. Let f (w)
be the number of sentences -1 C in w. If wRx, then f (w) > f (x).
Suppose f (w) > f (x). Then for some D in d, -, Dew and

DEx. To show that wRx it thus suffices to show that if Cew,
then Cex and CEx.

So suppose Cew. Since I F- El ( C -> D) v (El ( D - C) A
( D -' C)), either 0 ( C -> D) is a conjunct of A or ( D -+D
C) and El ( D -> C) are both conjuncts of A. If El ( C -> D)

is a conjunct, then I F- A --> ( C A D), and so I F- A -+- A w,
contra we W. Thus both 0 ( D -> C) and El ( D -+ C) are con-
juncts. So I F- A - -, ( D A -i C) and I F- A -+ --i( D A -, Q. If
either Cox or Cox, then -l Cex or -i Cex, and then
IF-A-- A x, contra xeW. Thus Cex and Cex, and < W,R> is
a finite prewellordering.

As usual, let w Vp if pe W.

Lemma 2. If weW and Best, then M,wkB iff Bew.



170 THE LOGIC OF PROVABILITY

Proof. Induction on B. The only non-trivial case is the one in which
B = C. If CEw, then as usual, wk C. Suppose then that

C0w. Then Cew. Let D1i ... , D. be all the sentences
D in w. Let X If

A X, then
AD, n ... A D A and so

I I- A -i ( D 1 A A D. -> C) (since I extends GL),
I I- A - -' ( D 1 A . A D. A C) (since I I- A -+ A), and
I k- A -» A w, contra w e W.
Thus I L A -+ -1 A X, and so for some xE W, X c x, whence wRx.
And as usual, since CEX c x, Cox, and x V C by the induction
hypothesis. Thus w V C. H

A#wo and woe W; by Lemma 2, wo V A, and A is invalid in the
finite prewellordering < W, R >.

(C) implies (A): It is a routine matter to verify that if GL I- A,
then ZF F- A*. In the case of ( A --i. A) --> A, we argue: If -, S
holds in some transitive model (of ZF), then for some least a, -' S
holds in some transitive model .,# such that I A" I = a. (Here and
below I I is ordinal rank.) There is no transitive model of -l S in
.,K, and so by the absoluteness of "... is a transitive model of ",
A' is also a transitive model of "S holds in all transitive models".
In the case of ( A - B) v ( B - E IA), we appeal to the
following theorem.'

Theorem (Jensen-Karp). If and -9 are transitive models,
I W I < 1.9 1, and ' k x, then .9 k "x holds in some transitive
model". (The theorem is not obvious, as ' need not be in -9.)

Using the theorem, we may argue in ZF: Suppose that for some
transitive models A#, . V and some sentences Or, T,

..ll k "a holds in all transitive models",
A' k "--IT holds in some transitive model",
.N' k "T holds in all transitive models", and either
.N' k -' a or .K k "-i a holds in some transitive model".

Let d be a transitive model of T that belongs to M. Then
I d I < I ." I and by the theorem, I X I < I A 1. If .iV k - a, the theorem
yields a contradiction. Thus for some transitive model -4 in .K,
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-4 k -' a and 1-41 < I .K 1. But then 1-41 < IM I and the theorem again
gives a contradiction.

We now prove the theorem3
We begin with a theorem of Skolem: for any sentence a there is

an V3 sentence T, i.e., a prenex sentence T in whose prefix all universal
quantifiers precede all existential quantifiers, such that any model
of a has an expansion that is a model of T and the reduct of any
model of T to the language of a is a model of a. (T may contain
new predicate letters.) One example will prove the theorem: if
a = 3x`dy3z3aVb3cWxyzabc, W a quantifier-free formula, then we
may take T to be the result of suitably prenexing the sentence:

3xRx A
Vx(RxHVySxy) A
`d x`d A

A

`dxdy`dzya(Uxyza-*VbVxyzab) A
dxV

Now let all a2, ... be a recursive enumeration of x and the axioms
of ZF. Let T1, T2,... be a recursive enumeration of d3 sentences
constructed from a1, a2, ... as in our example, such that no predicate
letter other than `E' occurs in both T; and T; if i j, and T; =

where
and B; is quantifier-free. Thus any model of a, has an expansion
that is a model of T; and the reduct to the language of ZF of any
model of Ti is a model of a;.

Let d = < A, E I A, R 1, R2, ... > be an expansion of W that is a model
of all Ti. (Since the T; have been suitably constructed from the a;,
the axiom of choice is not needed to guarantee the existence of a.)
We may assume that the sequence Pi' P2, ... of predicate letters
interpreted in .sad by R1, R2, ... can be recursively encoded. Let
no(j) be the least integer k such that all predicate letters in T1,..., T;
are among p 1, ... , P.

If P= <Po,Eo,S1,...,Sk> and Y1 = <P1,E1. T1,..., Tk,...> where
the final ". .." may represent a finite or infinite sequence of relations
and go is a substructure of <P1, E1, T1,..., Tk>, then we shall call
go an almost-substructure of P11 and write go c 91.

Let X be the set of all < j, P1, f >, where j > 1, P1, = <P,E,S1,...,
is a structure with P a finite subset of w, f : P -+ I A 1, and for

all p, q in P, if pEq, then f (p) < f (q).
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Let x1-<xo if xo, x1 EX, jo < j1, Yo 9 91, f0 f1, and for all
i < jo and all p1,..,pn, in Po, Y1 kgj[p1,...,Pn,]-

Lemma 3. <X, -< > is not wellfounded.

Proof. Let Y s X be the set of those < j, 9, f > in X such that for
some isomorphism e of 9 onto an almost-substructure of 4, f (p) =
I e(p) I for all pin P. Y is not empty. Let d' = < {0}, e I {0}, R 1 I {01'...'
Rno(1) 110) >. Then < 1, d', { <0, 0 > } > E Y. Moreover, for every xo in Y,
there is some x1 in Y such that x1-< xo: Suppose that go = <Po, Eo,
S1,. . , Sno(jo) >. xo = < jo, go, fo > is in X, there is an isomorphism
eo of go onto an almost-substructure .4o = < Ao, E I Ao, R 1 I A o, ,

Rno(jo) I Ao > of .sad, and for every p in Po, fo(p) = I eo(p) 1. Then
Ao = eo[Po]. Ao is a finite subset of A. Moreover, for all i < jo,
S ,14'h Ti. Thus if i < jo and a, , ... , an, are in Ao, d k gii[a I.... , an,] and
thus for some b1,.. . , in A, d k 07[a1,. .. , a,,, b1,. .. , b,n,]. Thus there
are a finite set A 1, Ao c A 1 c A, and a structure W 1=< A 1, e I A 1,
R1 such that .moogd1 d and for every
i < jo, every a1,..., an, in Ao, there are b 1, ... , in A 1 for which
dike1[a1,...,an,,b1,...,bm], and therefore d1kg1j[a1,...,an,].
Consequently we may extend Po, go, and eo to P1, Y1, and el so that
Po c P1 s co, P1 is finite, go c Y1 is of the form <P1,E1, T1,...,
Tno(jo+1)>, eo c e1 is an isomorphism of Y1 with .41, and for all
i < j o, all p 1, , pn, in Po, Y 1 k 0 i [ p v , pn; ] If we let j 1 = j o + 1,
f1(p) = le1(p)I f o r all p in P1, and x1 = <j1, Y1, f1 >, then xl -<xo.

Observe now that since I A I, the least ordinal not in c, is in -9,
< X, -< > is itself in -9. And < X, -< > is not wellfounded in -9:
otherwise there are an ordinal in .9 and in function h: X -+ in
-9 such that if xo, x1 EX and xo -< x1, h(xo) < h(x1). But then <X, -<
is wellfounded, contra Lemma 3.

Replacing -9 by -9 n L if necessary, we may assume that the axiom
of choice holds in -9. Then -9 contains a sequence x0, x 1, x2, ... of
members of X such that -< x2 -< x 1 xo, where xk = < jk, gk, fk
and gk = < Pk, Ek, S1.k1 ... , Let 9 be the union, or more
properly, the direct limit of the ?k, thus is, I = < U Pk, U Ek, U S 1,k, ... ,
U Si;k, ... >I where Si;k = Si,k if Si,k is defined and Si,k = 0 otherwise,
YE-9. Let P= UPk;E= UEk.

All T; hold in ?: Suppose p 1, ... , pn, E P. Then for some k, p1, ... ,
pn,EPk and i< jk. Then Yk+10i[P1, ,pn,], and for some q1,...,
qrn,, Yk+ 1 k 0j[p1, ... , q1, ... , q,n,]. Since Pk+ 1 c P and Oi is quanti-
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fier free, Y k 0i[ p,, ... , Pn,, q,, ... , qn ] and Y k 0i1p 1, ... , pn,]. Thus
Ykii.

Let - _ < P, E >. All Qi hold in -4, whence -4 is a model of ZF
and of X. In particular, . is a model of the axiom of extensionality.

-4 is wellfounded: Let f = U fk. If i S j, fi c f; thus f is a function
mapping P into JAI. If p,gEP and pEq, then for some k, p.gEPk,
PEkq and f (p) = fk(P) < fk(q) = f (q).

Thus -4 is a wellfounded model of extensionality, ZF, and x that
belongs to .9. Since -9 is a model of ZF, by the Godel-Mostowski
isomorphism theorem, there is a transitive model of ZF and of x
that belongs to -9. Thus -9 k "x holds in some transitive model".

Truth in all universes

A universe is a set V,,, where K is inaccessible. The sets VK are
sometimes denoted: RK. If K is inaccessible, then V,, is a model of ZF.

Now define A* as before, except that we now redefine ( A)* as
the sentence of the language of set theory that translates "A* holds
in all universes".

A finite strict linear ordering is a frame < W, R >, where W is
finite and R is a transitive and irreflexive relation that is connected
on W, i.e., for all w, x in W, either wRx or w = x or xRw.

Let J be the system that results when all sentences

(OB->A)
are added to GL as new axioms.

The final result of this chapter is another completeness theorem
of Solovay's.

Theorem 2 (Solovay). Let A be a modal sentence. Then (A),
(B), and (C) are equivalent:
(A) For all *, ZF F- A*.
(B) A is valid in all finite strict linear orderings.
(C) J F- A.

In order to prove the theorem, we shall assume that there are
infinitely many inaccessibles.

(A) implies (B): Let M be a finite strict linear ordering. We may
suppose W = { 1, ... , n} and R = < I W, and M,1 V A. Let W'= {0} u
W and R'= < I W'. Then let
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So = "there are at least n universes",

S1 = "there are exactly n - 1 universes",
S2 = "there are exactly n - 2 universes",... ,

S = "there is exactly 1 universe", and
S _ "there are no universes".

Thus by our assumption, So is true. The analogues of (2) and (4)
are clear. Note that "universe" is absolute between universes and
V. As for the analogue of (5), if i < j and Si holds, then there is a
universe in which Si holds. And as for that of (7), if i >, 1 and Si
holds, then in every universe, the disjunction of the S;, j > i, holds.
The proof then goes through as before.

(C) implies (A): The axioms of GL are treated as in the proof of
Theorem 1. As for the new axiom ( A - B) v (EI B -> A) of J,
we argue in ZF: if Al and .K are universes,

k "a holds in all universes",

.N' k "t holds in all universes",

.iVkT, and
Xk--I o,

then & X. Then either . V E. or A & EX, and by the absoluteness
in universes of "... is a universe that is a model of ", we have
a contradiction.

(B) implies (C): For once, canonical models (cf. Chapter 6) come
in handy. < W,,, R,,, V,,> is the canonical model for J.

R. is transitive: suppose wR,,xR,,y, and AEw. We must show
A Ey. But since J extends GL and GL I- A - A, AEw.
And then by the definition of R,,, A E x and so Ac-y.

R,, is also "piecewise connected": If wR,,x and wR,,y, then either
xR,,y or x = y or yR,,x. For if wR,,x, wR,,y, not: xR,,y, x 0 y, and
not: yR,,x, then for some B, C, D, BEx, Boy, CEx, Coy, Dc-y,
and Dox. LetE= -i BvD.Then C->EOx, EEy, E-+ COy,

Since J
(El E -* C), ( C -> E) v (0 E -. C) E w, contradiction.
Assume now that JA. Then for some u in W,,, A0u. If AEu,

let v = u. But if AEu, then since J extends G, J -, A -+
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O ( A A -, A), and for some w in W,,, uR,,w, AEw and -i AEw;
in this case let v = w. In either case, A, -, AEV. Similarly, if C
is a subsentence of A and -' Cev, then for some x in W,,, vRjx,

Cex, and -' CEx; moreover, any such x is unique: if yE W,,, vR1y,
CEy, and -, CEy, then by piecewise connectedness, either xR,y

(but then CEy since CEx) or yR,x (but then CEX) or x = y (the
only possible case).

Let W = {v} u {x: vR,,x and for some subsentence C of A,
CEV, CEx and -' CEx}. W is finite. Let R = R,,I W. R is

transitive, for R,, is. R is irreflexive: if we W, then for some sentence
B, BEw, and - BEw; thus not wR,,w. And R is connected:

suppose x, yeW, x y. If either is v, it bears R,, to the other; and
if x :A v :A y, then vRjx and vR,,y, whence by piecewise connectedness
xR jy or yR,,x. Thus < W, R > is a finite strict linear ordering.

Let wVp if pew.

Lemma 4. If WEW and B is a subsentence of A, then BEw
ff wIB.

Proof. Induction on B. As usual the only non-trivial case is: B =
C. If w V C, then for some x, wRx and x V C; but then wR,x

and, by the i.h., Cox, whence Cow. Conversely, suppose Cow.
Then Cew, and so -, Cev (otherwise Cew, as either v = w
or vR,w). So for some x in W, vR,,x, CEx, and - CEx. Thus
x 0 w, and therefore either xRw or wRx. But if xRw, xR,,w, and

CEw, which is impossible. So wRx, Cox, xV C (i.h.), and thus
wVDC. -I

Since -i A e v, A 0 v, and by Lemma 4, M, v V A. Thus A is invalid
in the finite strict linear ordering < W, R >.

Always truth"

We extended GL to GLS and can likewise extend I to a system IS,
with axioms all theorems of I and all sentences A - A and sole
rule of inference modus ponens. The system JS is similarly obtained
from J. Can we prove the adequacy of these systems?

As in Chapter 9, let AS = A { D -> D: D is a subsentence of
A} -> A. Then it is immediate that if I I- AS, then IS F- A. And with
( A)* defined to mean "A* is true in all transitive models of ZF",
the argument given in the proof of the arithmetical completeness
theorem for GLS shows that if I 4 AS, then for some *, A* is false.
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Analogously for J and JS, when ( A)* is defined to mean "A*
is true in all universes". Thus each of the systems IS and JS is
complete (for an appropriate interpretation of ).

It is the soundness of these systems that is problematic. We can
close the circle and prove that if IS I- A, then for all *, A* is true,
and similarly for is, but only by assuming one or more principles
of set theory not provable in ZF.

Consider IS first. To show its soundness, we need to show that
for all A, *, ( A -> A)* is true, or, equivalently, that for all A, *,
(A -+ O A)* is true. Thus we must show that every instance of the
schema (S -> "S is true in some transitive model of ZF") holds, S a
sentence of the language of set theory.

For JS, we must show that every instance of the stronger schema
(S -+ "S is true in some v,,, K inaccessible") holds.

Levy has shown that the latter schema, and hence the former, is
implied by the following schema: If F is a strictly increasing and
continuous definable function on all ordinals, there is at least one
inaccessible in the range of F. The plausibility of this schema is
briefly discussed in Drake's Set Theory.' Whether the deduction of
the soundness of IS and JS from this schema should count as an
outright proof that these systems are sound is a question we must
leave unanswered.
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Modal logic within analysis

We are going to examine some of the connections between modal
logic and analysis (second-order arithmetic).

The main theorem of the present chapter, announced in Solovay's
1976 paper, but not proved there, is that the modal logic of
provability in analysis under the co-rule is GL. To understand the
proof, one needs some familiarity with notations for constructive
ordinals. Most of this material is contained in Rogers's Theory of
Recursive Functions and Effective Computability or Sacks's Higher
Recursion Theory.'

The modal logic of provability in analysis

Analysis is second-order arithmetic, the theory that results when
the recursion axioms

Osx and
for successor and the induction axiom

XO A dx(Xx-+Xsx)-->Xx

(which is a single second-order formula) are added to axiomatic
second-order logic. Noteworthy among the principles of axiomatic
second-order logic is the comprehension scheme: for any formula
A(x) of the language of analysis, the formula 3XVx(Xx-.A(x)),
asserting the existence of the class of numbers satisfying A(x) is
one of the axioms of analysis. [X is not free in A(x); x is any
sequence of first- or second-order variables.] As Dedekind showed,
addition and multiplication can be defined from zero and successor
in analysis and the recursion axioms for these operations proved
in analysis. Each of the induction axioms for PA then follows from
the induction axiom for analysis and the comprehension scheme,
and therefore analysis is an extension of PA. Robbin's Mathematical
Logic: A First Course2 contains a good discussion of second-order
logic and analysis (which Robbin calls "second-order Peano
arithmetic").
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The proofs of the arithmetical completeness theorems for GL
and GLS carry over without essential change from PA to analysis,
as was the case for ZF.

The modal logic of provability in analysis under the w-rule

The co-rule reads: infer VxA(x) from all (the infinitely many sentences)
A(n), n a natural number. (Thus one might identify the (o-rule for
T with the set-theoretical object {<{A(n): neN}, dxA(x)>: A(x) a
formula of the language of T}.) At one time Hilbert entertained the
idea that the Godel incompleteness theorems might be "overcome"
through use of the co-rule; the rule was also studied in the 1930s
by Carnap, Tarski, and Rosser.

Anco is analysis plus the to-rule. The theorems of Anco are the
sentences that belong to all classes that contain all axioms of
analysis and are closed under the to-rule as well as the ordinary
logical rules of inference.

`F-' means "provable in analysis"; `co F-', "provable in Anco". F
said to be provable (in analysis) under the to-rule if co I- F. Note
that provability under the to-rule is not the dual of to-consistency;
a formula is co-inconsistent if and only if it is provable with the aid
of one application of the to-rule.'

We now prove Solovay's theorem that GL is the modal logic of
provability in analysis under the to-rule. The completeness proof
will differ in structure from that of the arithmetical completeness
theorem in Chapter 9: instead of using the diagonal lemma to
construct a predicate H(a, b) containing a and b free and then
forming "Solovay sentences" So, S1,. .. , S from H(a, b), we shall use
Corollary 1 of the diagonal lemma to construct the Solovay sentences
directly, by a simultaneous diagonalization. The technique is due
to Dzhaparidze, and de Jongh, Jumelet, and Montagna. It will be
used again in the next chapter to prove the arithmetical complete-
ness of a certain system of bimodal logic with two boxes, one for
provability, the other for the dual of co-consistency.

Let 0 be the set of Godel numbers of theorems of Anco. 0 is II i,
as it is the intersection of all sets meeting a certain arithmetical
condition. Let O(x) be a Ill formula of the language of analysis
that naturally defines 0.

A realization * is now a function that assigns to each sentence
letter a sentence of the language of analysis; for each modal sentence
A, we define A* in the obvious manner:
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P* _ *(P)
,*=1

(A -+ B)* _ (A* -> B*)
(A)* = 0(rA*1)

Theorem 1 (Solovay). Let A be a modal sentence. Then (A),
(B), and (C) are equivalent:
(A) GLF-A.
(B) For all *, F- A*.
(C) For all *, co F- A*.

(B) obviously implies (C).
We first show that O(x) and analysis satisfy the following three

analogues of the Hilbert-Bernays-Lob derivability conditions:

(i) if F- S, then F- 0(rS,);
(ii) F- 0('(S - S),) - (0(rS-1) - O(rS' l)); and

(iii) F-49(rS1) 0(r0(rS,) 1)

(for all sentences S, S').
Showing that (i), (ii), and (iii) hold is sufficient to show that (A)

implies (B); we simply repeat the derivation of Lob's theorem, using
O(x) instead of Bew(x). (i) and (ii) are sufficiently evident. Since
0(rS,) is a 11' sentence, (iii) follows from (iv):

(iv) If S is an, sentence, then F-S -> O(rS,).

And the formalization in analysis of the following argument, which
shows that if S is a true Hi sentence then S is provable in Ana,
establishes (iv): _

Suppose that V f 3xR f (x), R a primitive recursive relation such
that if R f (x) holds, so does R f (y), all y > x. (f (x) is the standard
code for the finite sequence [f(%..., f (x - 1)] of length x.) We
wish to show that co F- b f 3xR f (x).

Let Sec = {s: s codes a finite sequence and w F- V f 3xRs* f (x) }.

Lemma 1. If Rs, then sESec.

Proof. Suppose Rs. Then F- Rs, co F- Rs, w F- Rs* [ ], and therefore
co F- V f 3xRs* f (x). -I

Lemma 2. If for all i, s*iESec, then seSec.
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Proof. Suppose that for all i, w F- b' f 3xRs* i* f (x). Then by the w-rule,
co F- VyV f 3xRs*y*f (x). Thus w F- bg`d f 3xRs*g(0)*f (x), and so co F-
V f 3xRs*f (x). -I

Suppose now that [] 0Sec. Define h by h(O) = [] and h(n + 1) =
h(n)*ui[h(n)*i0Sec if h(n)*ioSec for some i, and i = 0 otherwise].
By Lemma 2, for every n, h(n)oSec. By Lemma 1, for every n, not:
Rh(n). Let f (n) = (h(n + 1))a. Then for every n, not: R f (n), which
contradicts our_ supposition that `d f 3nR f (n). Thus [] c Sec, i.e.,
wF-`df3xR[]*f(x), and so w F- Vf 3xRf(x).

Hence if S is a Hi sentence and thus equivalent to a sentence
V f 3xR f (x) (R primitive recursive), then S is provable in Anw if it
is true. Thus (iv) holds.

We now show that (C) implies (A). We shall need certain definitions
and lemmas concerning the constructive ordinals. Since we shall
want to see that our treatment of these matters can be formalized
in analysis, we shall proceed rather carefully. At the outset let us
note that since all ordinals under discussion are countable, we may
regard quantification over such ordinals as disguised quantification
over well-orderings of natural numbers (which, in turn, is to be
understood as quantification over whatever objects the second-
order variables of analysis range over) and mention of ordinal
relations (e.g., < or =) and ordinal functions (e.g., +) as involving
claims about the existence of appropriate wellorderings of natural
numbers and order-preserving maps between them (a la Cantor).
The existence of the necessary relations and maps will be guaranteed
by the (unrestricted) comprehension schema of analysis.

<0, <o> is the standard system of notations for the constructive
ordinals. If aeO, Jal is the ordinal denoted by a, and then 2'E0
and denotes I a I + 1. The wellfoundedness of < o and the scheme
of transfinite induction on < U can of course be proved in analysis.

Oa = {be 0: I b I < I a 1 }. The following result is well-known, but it
will not be amiss to present a proof of it here. We follow Sacks's
Higher Recursion Theory, but with a slight emendation.

Lemma 3. {<a,b>: aE0 A bO0a} is IIi.

Proof The existence of an r.e. relation <' such that for all a, b E 0,
a <'b if a< ob is proved on p. 14 of Higher Recursion Theory
(a <'b = aE Wab)). We shall need to observe that
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(*) If 2"E0, y = 3.5w, and for all n,
I{w}(n)I <Idl and {w}(n)<'{w}(n+ 1),
then ye0 and I YI < 12d I

For, if the antecedent holds, then, since d e 0 and for every n, I{w} (n)I <
Idl, for every n, {w}(n)EO and therefore {w}(n) <o{w}(n + 1), whence
yc0 and IYI < Idl < 12d1
Now let

A(R) VxVyVz(Rx, y, z -> z = 0 v z = 1) A `dx[3y(Rx, y, 0 v Rx, y, 1)

-Vy(Rx,y,OH--1 Rx,y,1)] A dyR1,y,0
A `de{3.5¢EO->Vy(R3.5e,y, I -->3nR{e}(n),y,1))

nVd{2dE0-->Vy(R2d,y,1 -+[y=1 v3z(y=2ZnRd,z,1)
v 3w(y = 3.5' A Vn(Rd, {w} (n), 1

A {w) (n) <'{w}(n+ 1))) ])}

LetR*x,y,ziffxE0andeither (yEOxandz= 1) or (yoOxand z=0).
With the aid of (*) we have by induction on < o that A(R*), and

also that if A(R), then for all x E 0, bydz(R*x, y, z-+Rx, y, z). Since
xe0 if R*x, y, z, VxVyVz(R*x, y, z -* Rx, y, z). Therefore R*x, y, z if
VR(A(R) -), Rx, y, z). A(R) is a Y-'-condition on R [all occurrences of
"E 0" are in negative position in A(R), and hence in positive position
in "VR(A(R) -+ Rx, y, z)"]. Thus R* is fli, and therefore so is {<a, b>:
ac-0 A bo0o}, ={<a,b>: R*a,b,0}. H

Lemma 4. There is a n' relation < with domain 0 such that
{<x, y>: x, yE0 A x < y} reflexively well-orders 0; moreover, if
xe0 and y00, then x < y. (Thus x = y if x< y and y< x.)

Proof. (Uses no assumption about 0 other than that it is II'.)
Since o is n' and 0 is n'-complete, there is a recursive function

g such that for all numbers x, xe0 if g(x)c-0.
Define x<:, y by:

(g(x)EO A g(Y)0Ogcx>) A ((29(xleO A g(Y)0029( )) V X <, Y)

By Lemma 3, < is an' relation. We now show that x < y if

(**) g(x)EO n [g(Y)EO -> Ig(x)I < Ig(Y)I v (lg(x)I = Ig(Y)I n x ,<Y)]

Suppose x <y. Then g(x)c-0. Assume g(y)EO. Then lg(x)I and lg(y)l
are defined. If lg(y)l < Ig(x)I, then g(y)E0OX), impossible. Thus either
I g(x)I < lg(y)l or I g(x)I = lg(Y)h but if the latter, then g(y)E029(,),
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whence x <, y, and (**) holds. Conversely, suppose (**) holds. Then
g(x)EO, and then also 29(x)EO. If g(y)EOQ(x), then g(y)c-0 and
Ig(y)I <Ig(x)I, impossible. Thus g(y)0Oy(x). But if g(y)E02g(,), then
g(y)c-0 and Ig(y)I < Ig(x)I + 1; but since not Ig(y)I < Ig(x)I, Ig(x)I _
Ig(y)I, and therefore x < y.

It is clear from the equivalence of x< y and (**) that x is in the
domain of < if g(x)EO, i.e., if xe6. Moreover, if x,yEO, then
g(x),g(y)E0, and then either Ig(x)I < Ig(y)I, Ig(y)I < Ig(x)I, or both
I g (x) I = I g (y) I and either x < y or y < x. Thus < reflexively well-
orders 6. And if xe6 and y00, then (**), and so x < y. -i

Let p(x, y) be a n' formula of analysis naturally defining <. The
preceding definitions, claims, lemmas, and proofs can be carried
out in analysis, and therefore the sentences (naturally constructed
from p(x, y) and O(x)) stating that < reflexively linearly orders 0
and that x < y provided that xe0 and y00 can be formulated and
proved in analysis."

Suppose now that GL ` A. Then for some n, W, R, V, M, W =
{1,...,n}, M=<W,R,V>, and

We now extend R so that also ORx for all x e W. (That is, define
R' = R u { <0, x >: x E W), but drop the prime on R.)

Let m n. We shall call a function h: {O,. .. , m} -> Wu {0} w-OK
if h(O) = 0, h(m) = w, for all i < m, h(i)Rh(i + 1). Call h OK if h is
w-OK for some w. W is finite, and thus there are only finitely many
w-OK functions h. In what follows we assume that h and h' are
OK and that their domains are {0,..., m} and {0,..., m'}.

Let neg be a pterm such that for all sentences S, Anus I- neg(rS-1) _
r_, S,.

For each WE W v {0}, let P,(yp,... , be the formula

W=Wn V{a,,nPh: his w-OK}

where ah is

A i:i < m A Xh(,)RxP(neg (Yh(1 + 1)), neg(yx) )

and /3,,is

A x:h(m)Rx- O(neg(yx))

By Corollary 1 to the generalized diagonal lemma, there exist
sentences So, S1, ... , S such that for each WE W u {0},

w n V {Ah A Bh: his w-OK}
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where A. is

and B,, is

Ai:i<mAx:h(i)Rx P(r

A x:h(m)Rx-1

Sh(i+1) '
r`sx-1)

(r- Si')

Because of the conjunct w = w in Sx Sx is not the same sentence
as Sx, if x A x'. A,, is an, sentence.

We write: ABh to abbreviate: Ah A Bh.
Say that h' extends h if m < m' and for all i < m, h(i) = h'(i).

Lemma 5. If VA h', then F--i (AB,, A AB,,).

Proof. Case 1. For some j, h(j) and h'(j) are defined and unequal.
Let j be the least such. Since h(O) = 0 = h'(0), j = i + 1 for some i.
Then h(i) = h'(i). Let x = h(i + 1), x' = h'(i + 1). So h(i)Rx, h'(i)Rx',
one of the conjuncts of A. is the sentence p(r-qSx,,r-,Sx.1), and
one of the conjuncts of A,,. is the sentence p(r-i Sx ,, r--,Sx,). But

Sx is not the same sentence as -i Sx., and therefore these two
sentences are incompatible in analysis.

Case 2. h' properly extends h. Then m < m' and h(m) = h'(m). Let
x = h'(m + 1). Then h(m)Rx, and --,O(r--,Sx-1) is a conjunct of Bh and
p(r--iSx,), r_1 Sx,) is a conjunct of A,,.. But again, these sentences
are incompatible in analysis.

Case 3. h properly extends h'. Like Case 2. -
Lemma 6. If x, x'E W u {0}, and x 0 x', then F- (Sx A Si.).

Proof. Let h be x-OK, h' x'-OK. Since x x', ho h'. The lemma
then follows from Lemma 5. -A

Let h*x be the function g with domain {0, ... , m + I), such that
for all i <, m, g(i) = h(i) and g(m + 1) = x.

Lemma 7. F-Ah -+ ABh V V {A,,-x: h(m)Rx}.

Proof. Formalize in analysis: If A,, holds but B,, does not, then for
some x such that h(m)Rx, -i Sx is in 0, and hence for some x, h(m)Rx
and for every y such that h(m)Ry, p(r-iSx,, r1 S,,,) holds. Then h*x
is OK and Ah.x holds. -1

Lemma 8. F-Ah -+ AB,, V V {ABh.: h' extends h}.
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Proof. There is a maximum element, n, that may belong to the
domain of any h. But if n is in h's domain, then h(0)Rh(1)R... Rh(n),
the range of h = W u {0}, m = n, h(m)Rx for no x, and Bh is equivalent
to T. To prove the lemma, then, it suffices to suppose that it holds
for all h' whose domain has maximal element m + 1 and show that
it holds for all h (whose domain has maximal element m). By Lemma
7, I- A,, -> (Bh V V {Ah.x: h(m)Rx} ). If h(m)Rx, then the domain of
h*x has maximal element m + 1. Thus for each x such that h(m)Rx,

Ah.x, ABh.x v V {ABh.: h' extends h*x}, whence
I- Ah -+ (ABh v V { (ABh.x V V {ABh.: h' extends h*x} ): h(m)Rx } ). But
then we are done, since h' extends h if for some x, h(m)Rx and h'
is identical with or extends h*x.

Lemma 9. F-Ah-+S,(m) V V {Sx:h(m)Rx}.

Proof. By Lemma 7, F- Ah -+ ABh V V {ABh.x: h(m)Rx}. h is certainly
h(m)-OK. Thus H ABh -+ Sh(m). Suppose h(m)Rx. h*x is x-OK. By
Lemma 8, F-Ah.x->ABh.x V V {ABh.:h' extends h*x}. HABh*x-'Sx
Suppose h' extends h*x. h' is h'(m')-OK. Thus HABh. +Sh.(m.). Since
h(m)RxRh'(m'), h(m)Rh'(m') - done. -1

Lemma 10. F- V {Sw:weWu{0}}.

Proof. Let h = {<O, 0>}. m = 0; h(m) = 0. By Lemma 9,
F-Ah-+So V V {Sx:0Rx}, i.e., I-Ah-> V{Sw:wEWu{0}}. But since
m=0,F-Ah. -I

Lemma 11. Suppose w c- W u {0}, wRx. Then
F- SW --+ --, 0(r---1 S.,-').

Proof. Let h be w-OK. Then h(m) = w and h(m)Rx. But then we are
done: H Bh -+ -1 0(r--' Sx ')- --I

From this point on, the proof is very much like that of tl'P
arithmetical completeness theorem for GL.

Lemma 12. Let w E W. Then F- Sw -+ O(r--i Sw,).

Proof. Let h be w-OK. h(m) = w. Since w 0, h(1) is defined, m = i + 1
for some i, and
F- Ah -> p(r-Sh(i + 1),, r-Sh(i+ i),), whence
F- Ah -' O(rl Sh(<+ 1),), i.e.,
I- Ah O(r_1 SwI) - done. -1
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Lemma 13. Let WE W. Then F- S,, - 0(r V {Sx: wRx},).

Proof Let h be w-OK. h(m) = w. By Lemma 9,
F- A,, -+ SW V V {Sx: wRx}, whence

O(rA,,- O(rSW V V IS.,: wRx),). Since A,, is IIi,

F- A,, -. 0(rA,,,). Thus
F- S,, --> 0(rSW v V {Sx: wRx},). But by Lemma 12,
I- SW O(r SW,). And so by the derivability conditions for 0(x),
F-SW O(r V {Sx: wRx},).

We now define *: for any sentence letter p, *(p) = V {SW: wVp}.

Lemma 14. Let B be a subsentence of A, WE W. Then if
M,wkB, then F-SW->B*; and if M, then F- S,,, -+ --1 B*.

Proof. Induction on B. Suppose B = p. Then if w k p, SW is one of
the disjuncts of p*. If w 0 p, then by Lemma 6, Sw is incompatible
with each disjunct of p*.

The propositional calculus cases are routine. Suppose B = C.
Assume M, w k C. Then for all x such that wRx, M, x k C. xe W,

and so by the i.h., for all x such that wRx, I- Sx - C*, whence
F- V (Si: wRx} -> C*,

0(r V { Sx: wRx} I-) -> 0(rC*,), i.e.,
0 V {Sx: wRx}-1) + B*. But by Lemma 13,
SW -+ 0(r V {Sx: wRx},).
Assume M, w V C. Then for some x such that wRx, M, x V C.

xE W, and so by the i.h., f- Sx -+-, C*, whence
F- -i 0(r-i Si') -+ -' O(rC*1), i.e.,
F- O(r--i Sx,) -+ B*. But by Lemma 11,
F SW - --, 6(r---1 S.-I). --J

Lemmas 6, 9, 10, 11, 12, 13, and 14 are, respectively, the analogues
of (2), (3), (4), (5), (6), (7), and Lemma 1 of Chapter 9.

The proof ends the way the proof of the arithmetical completeness
theorem ended: Every theorem of Anco is true, If i > 1, then, by
Lemma 12, if S, is true, so is 0(i Si,), and then -' Si is a theorem
of Anw, and so true. Thus if i > 1, Si is not true. But by Lemma
10, at least one of So, S, ... , S. is true. So So is true. By Lemma 14,

F- S1-- A*, and therefore
O(r--i 0(rA*-1). By Lemma 11,
F- So .+ _1 0(r, S 1,), and therefore
F-- So 0(rA*-1).
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Since So is true, so is _10(rA*,). But then A* is not a theorem of
Anco, Q.E.D.

The truth case

Theorem 2 (Solovay). Let A be a modal sentence. Then (D)
and (E) are equivalent:
(D) GLS I- A.
(E) for all *, A* is true.

Since analysis proves only truths, it is clear that (D) implies (E).
The proof of the converse is so similar in detail to that of the arith-
metical completeness theorem for GL that we place it in a note.'
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The joint provability logic of consistency
and w-consistency

Introduction

We recall from Chapter 3 the definition of the (o-inconsistency of
a theory T (whose language contains 0 and s): T is co-inconsistent
if for some formula A(x), T I- 3xA(x), and for every natural number
n, TI--I A(n). T is co-consistent if it is not a)-inconsistent. If T is
co-consistent, then T ` 3x x 0 x, and therefore T is consistent.

It is easy to show, however, that the converse does not hold: Let
T be the theory that results when Bew(r1,) is added to PA. Since
PA does not prove Bew(r'1,), T is consistent and for every n,
the A sentence -, Pf (n, rl,) is true. Thus for every n,
PA F Pf (n, r1,), and so for every n, T F- - Pf (n, r1,) (T extends PA).
But T F- Bew('1,), that is, T F- 3y Pf (y, r1,). So, despite its consis-
tency, T is co-inconsistent.

As a sentence S is said to be inconsistent with T if the theory
whose axioms are those of T together with S itself is inconsistent,
so S is.co-inconsistent (with T) if the theory whose axioms are those
of T together with S is co-inconsistent. S is a)-consistent iff not
co-inconsistent.

We call a sentence S co-provable in T if --,S is co-inconsistent
with T. So if S is provable in T, S is co-provable in T.

In the present chapter we shall study the joint provability logic
of (simple)' consistency and co-consistency with PA, which of course
is also the joint provability logic of provability and co-provability
in PA. We shall introduce a modal system GLB ("B" for "bimodal"),
which, in addition to the usual modal operators and O for
provability and consistency, contains two new operators 1 and 4
representing co-provability and co-consistency.

The sentences A -> Eli A will certainly be among the axioms of
GLB.

We are going to prove the arithmetical completeness and decid-
ability of GLB; these theorems are due to Giorgie K. Dzhaparidze.
In the next chapter we shall also prove the fixed point theorem for
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GLB and give an algorithm for calculating the truth-values of letter-
less sentences of GLB. These last two results are due to Konstantin
N. Ignatiev, who also discovered the simplification that we shall
present here of Dzhaparidze's original proof of arithmetical com-
pleteness.

We shall also prove the arithmetical completeness and decidability
of the system GLSB, related to GLB as GLS is to GL. These
theorems are also due to Dzhaparidze.

GLB is a fragment of a system GLP ("P" for "polymodal")
introduced by Dzhaparidze; the language of GLP contains a count-
ably infinite sequence of diamonds representing a sequence of ever
stronger consistency notions beginning with simple and co-consistency.
We briefly discuss GLP and these notions at the end of the chapter.

Let us straightaway define GLB.
We introduce a new unary operator t; the syntax of is the

same as that of .

The axioms of GLB are all tautologies and all sentences:

(A-+B)->( A-+ B),0

A-.A)- A,0
A-+ A, and

--1 A -> -, A.

The rules of inference of GLB are modus ponens and El -necessita-
tion (from A, infer A).

If GLB f- A, then GLB I- El A, whence GLB I- A; thus ID -neces-
sitation is a derived rule of GLB.

As with GL, we have that GLB A -> ED A (cf. the proof of0
Theorem 18, Chapter 1). Moreover, GLB F- El A -> A, since

Our first main goal is to formulate and prove an arithmetical
soundness theorem for GLB.

The co-rule, it may be recalled, runs as follows: infer VxA(x) from
all (the infinitely many sentences) A(n), n a natural number. A
sentence is said to be provable under the to-rule in T if it belongs
to all classes containing the axioms of T and closed under the
ordinary rules of inference (modus ponens and generalization) and
the to-rule.
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It is clear that the sentences of the language of PA that are true
in the standard model N are precisely the sentences provable under
the co-rule in PA (as Hilbert observed). For all sentences so provable
are certainly true, and it is evident by induction on complexity that
every true sentence of the language of PA is so provable: For all
true atomic sentences and negations of atomic sentences are (simply)
provable and hence provable under the co-rule; if (S A S') is true,
then S and S' are true, and thus by the i.h. provable under the
co-rule, and hence (S A S') is so provable, for it can be deduced from
S and S' (in PA, by the usual rules); similarly for v; if VxA(x) is
true, then so are all the sentences A(n), which by the i.h. are all
provable under the co-rule, as therefore is VxA(x); if 3xA(x) is true,
then so is some sentence A(n), which by the i.h. is provable under
the co-rule, and from which 3xA(x) can be deduced. And every
sentence is equivalent to one built up from n, v, `d, 3 and in which
negation signs occur only in atomic formulas.

Do not confuse the notions "co-provable" and "provable under
the co-rule". If S is co-provable in PA, then S is certainly provable
in PA under the co-rule: For if S is co-inconsistent, then for some
formula A(x), PA I- S -- 3x-i A(x) and PA I--, S A(n) (for all n),
whence Vx(-i S -> A(x)) is provable under the co-rule; but then so is S.

It is evident, however, that since "co-provable" is definable in
arithmetic, it cannot coincide in extension with "provable under
the co-rule", which we have just seen to be coextensive with "true".
["Provable under the co-rule" was defined with the aid of a quantifier
ranging over classes of sentences, as the intersection of all classes
of sentences meeting a certain closure condition; such definitions
cannot in general be made in the language of (Peano, i.e., first-order)
arithmetic, which lacks variables for classes or functions. They can,
of course, be made in the language of analysis.] Thus the sentences
co-provable in PA are properly included in those provable in PA
under the co-rule.

We say that a sentence S is provable in PA by one application
of the co-rule if for some formula A(x), PA F- A(n) for all n and
PA F- VxA(x) -+ S.

If S is co-provable and so for some formula B(x), PA I- -i S - B(n)
for all n and PA F- -i S -* 3x-i B(x), then, letting A(x) be S - B(x),
we have that PA I- A(n) for all n, and then by predicate logic,
PA F- VxA(x) -+ S as well. Thus if S is co-provable it is provable by
one application of the co-rule.
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Conversely, if PA F- A(n) for all n and PA F- VxA(x) -+ S, so that
S is provable by one application of the w-rule, then -, S is co-
inconsistent.

So S is co-provable if provable by one application of the w-rule.
(We might attempt to define a series of more general notions,

calling S provable by m + 1 applications of the co-rule if there are
formulas A 1(x), ... , A. + 1(x) such that

PA F- A 1(n) for all n,
PAHVxA1(x)-*A2(n) for all n,...,
PAF-`dxA1(x) A A VxAm(x)-+Am+1(n) for all n, and
PAF-dxA1(x) A A VxAm+1(x)->S.

But if S is provable by in + 1 applications, it is provable by one:
Let A(x) be

[A1(x) A (`dxA1(x)-+A2(x)) A ... A (`dxA1(x) A ... A `dxAm(x)-'Am+ 1(x))]

Then PA F- A(n) for all n, and PA F- VxA(x) --. S.
We shall call a sentence VxA(x) -> S an w-proof of S if PA F- A(n)

for all n and PA F- VxA(x) -> S. Thus S is w-provable if it has an
w-proof.

Here is one last definition in the same family. Let PA + be the
theory whose axioms are those of PA, together with all sentences
VxA(x) such that for every natural number n, PA F- A(n).

If PA + F- S, then for some formulas A1 (x), ... , A(x) of PA,
PA F- `dxA 1(x) A A `dxAm(x) - S, where for all n, PA F- A 1(n), ... ,
PA F- Am(n); but then, where A(x) is A 1(x) A A Am(x), PA F- A(n)
for all n and PA F- VxA(x) -> S, so that S is provable by one application
of the co-rule. Since it is clear that PA + F- S if S is provable by one
application of the w-rule, we have established the following theorem:

Theorem 1. The following are equivalent:
(a) S is co-provable;
(b) PA+F-S;
(c) S is provable by one application of the (9-rule; and
(d) there is an (o-proof of S.

It is sufficiently clear that these equivalences are provable in PA.
It is also clear that a formalized proof in PA would require about
as much work as the proof of the deduction theorem in PA. (The
deduction theorem states that T v {S} F- A if T F- S -> A.) The reader
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who has come this far will be willing to suppose the necessary work
done.

We now let wPf (y, x) be a formula of the language of PA that
naturally formalizes "is an w-proof of". We let wBew(x) be the
formula 3y wPf (y, x). wBew(x) will then be provably coextensive
with each of the formulas naturally formalizing "w-provable",
"provable in PA+", and "provable by one application of the w-rule".

So PA F- Bew(rS-1) -4 w Bew(rS-1) for every sentence S.
The notion of a realization remains defined as in Chapter 3, and

we now extend the definition of the translation A* of a modal
sentence A under a realization * by making the obvious stipulation:

(5) L (A)* = w Bew(rA*,)

The arithmetical soundness theorem for GLB will state that if
GLB I- A, then for every realization *, PA I- A*.

To prove the arithmetical soundness theorem, we need to proceed
as in Chapter 2, where we introduced the E 1 formulas, there called
E formulas. We will define the notion of a E3 formula, show that
wBew(x) is E3, and show that if S is a E3 sentence, then
PA F- S -> coBew(rS-1). We proceed with greater dispatch than in
Chapter 2.

E1 formulas have been defined. Suppose the notion of a E
formula is defined, n > 1. Then A(x) is a II formula if it is equivalent
to the negation of a E formula; A(x) is a formula if for some
n,, formula B(y, x), A(x) is equivalent to 3yB(y, x).

(OPf (y, x) is 112: for let B(x, y, z) be a E 1 formula expressing: (the
value of) y is the Godel number of a provable conditional; the
consequent of that conditional is the sentence with Godel number
x; and the antecedent is the universal quantification with respect
to the sole free variable of a formula E such that the result of
substituting in E the numeral for z for that variable is provable in
PA. Then w Pf (y, x) is equivalent to `dzB(x, y, z), a n2 formula.
(V = -, 3-,.)

It follows that wBew(x), = 3y wPf (y, x), is a E3 formula.
We want now to show that every true E3 sentence is co-provable.

So let S be a E3 sentence, provably equivalent to 3yVzB(y, z), with
B(y, z) a E1 formula. Then if S is true, for some m, for every n,
B(m, n) is true; therefore for some m, for every n, B(m, n) is provable
(since every true E 1 sentence is provable); thus for some m, `dzB(m, z)
is w-provable, and therefore so are 3yVzB(y, z) and S.

A formalization of this argument in PA shows that if S is a E3
sentence, then PA F- S wBew(rS-1).
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We can now readily prove the arithmetical soundness of GLB:

Theorem 2. For any modal sentence A and realization *, if
GLBF-A, then PAF-A*.

Proof. We need to consider only the "new" axioms D (A - B) ->
D(DA-+A)->DA, A;

the arguments for the remaining axioms and rules of inference of
GLB are as in Chapter 3.

It is evident that if (S--+S') is a theorem of PA +, then if S is a
theorem of PA +, so is S'. By Theorem 1, if (S -+ S') is w-provable,
then if S is co-provable, so is S'. Formalizing our reasoning in PA,
we have that PA F- wBew (rS - S') -+ (wBew (rS,) -> wBew(rS'-,) ),
and thus that PA F- (D (A -> B) - (D A --> D B))*.

Since wBew(x) is E3, and PA H S -+ wBew(rS,), for any sentence
S, PA F- wBew('S,) -> wBew(r(oBew(rS,),).

In Chapter 3 we proved that PA H ( ( A -+ A) A)*. The
only facts about Bew(x) needed (beyond the provability in PA of
all tautologies and the closure of the set of theorems of PA under
modus ponens) were that all sentences Bew(rS -> S',) (Bew(rS,) --
Bew(rS',)) and Bew(rS,)-+ Bew(rBew(rS,),) were theorems and
that if S is a theorem so is Bew(rS,). We now know, though, that
all sentences wBew(rS - S',) -* (coBew(rS,) - wBew(rS',)) and
wBew(rS,) -> wBew(TwBew('S,),) are theorems of PA, and it is
evident that wBew(rS,) is provable if S is, for then Bew(rS,) is
provable. We conclude that the analogue for w-provability of Lob's
theorem holds, that this analogue is also provable in PA, and there-
fore that PA F- (D (D A -+ A) -+ D A)*.

We have already observed that PA I- Bew(rS,) -- wBew('S,); so
DA)*.

For the remaining new axioms, the sentences A D A,
it suffices to observe that the following argument can be formalized
in PA, showing that PA F- (- A -> D A)*: Suppose S is not
provable in PA. Then for all n, n is not the Godel number of a
proof of S in PA. Thus for all n, -' Pf (n, rS,) is true, and therefore
for all n, PA F--i Pf (n, rS,). [Pf (y, x) is A.] But then Vy--I Pf (y, rS,) is
w-provable, and therefore so is -, 3y Pf (y, r_S,), alias Bew(rS,). -1

Thus GLB is arithmetically sound (for provability).
The axioms of GLSB are all theorems of GLS and all sentences
A-+ A; the sole rule of inference is modus ponens. Thus all0

sentences A -+ D A are axioms of GLSB, and therefore all sentences
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A--* A are theorems. Since whatever is (o-provable is true, if
GLSB I- A, then for all *, A* is true: GLSB is arithmetically sound
(for truth).

The trouble with GLB

The trouble with GLB is that it has no decent Kripke semantics.
The difficulty is not that there are two sorts of boxes, and ,

for one can easily enough introduce two kinds of accessibility
relations, one for each sort of box, and we ourselves shall do so
shortly. The problem is that there turns out to be no natural way
to do so for GLB.

A frame for a modal logic with two boxes is a triple < W, R, R1 >,
with R and R1 both relations on W. A model M is a quadruple
< W, R, R 1, V >, where V is a valuation on W. Truth of a modal
sentence at w in M is then defined in the obvious way; the two key
clauses of the definition run:

M, w k A if (as ever) for all x such that wRx, M, x k A and
M, w k ED A if (as expected) for all x such that wR 1 x, M, x k A.

The reader may recall from Chapter 4 a theorem stating that
O p -* O p is valid in a frame < W, R > if R is euclidean, i.e., if for
all w, x, y, if wRx and wRy, then xRy. Equivalently, p --> --1 p
is valid in < W, R > if R is euclidean.

It is easy to prove a similar-looking theorem for one of the axioms
of GLB: --10 p -* 1 -, p is valid in < W, R, R 1 > if for all w, x, y, if
wR 1 x and wRy, then xRy.

For suppose -l p -- --10 p valid in < W, R, R 1 >, wR 1 x and
wRy. Let zVp if z 0 y, and let M = < W, R, R 1, V >. Then y V p,
wk-,El some z,xRzand not: zVp,and so
xRy. Conversely, suppose that for all w, x, y, if wR 1 x and wRy, then
xRy, M = < W, R, R 1, V>, wk--1 p, and wR1x. Then for some y,
wRy and y k-i p, whence xRy, and x k-1 p.

Moreover, p -> l p is valid in < W, R, R 1 > iff for all w, x, if wR 1 x,
then wRx.

For suppose p -> Ul p valid in < W, R, R1 > and wR1 x. Let zVp
iffz x, and let M=<W,R,R1,V>.Then xVp,wk-
for some y, wRy and y V p and so wRx. The converse is as easy as
can be.

And as usual, if ( p -+ p) - p is valid in < W, R, R 1 >, R is
irreflexive. (The behavior of R1 is irrelevant.)
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But now observe (with Dzhaparidze) that if all axioms of GLB,
including p-p p, p-+ p, and are
valid in < W, R, R 1 >, then for no w, x, is it ever the case that wR 1 x:
For if wR1x, then wRx, and so xRx, contra irreflexivity of R.

Thus in no frame in which all axioms of GLB are valid is R1
anything but the empty relation. But if R1 is empty, 1 is valid.
However, by soundness, f E I. Trouble.

Dzhaparidze managed to overcome the difficulty by introducing
a pair of pairs of accessibility relations, one to take care of some
of the axioms, the other to take care of the others, and embedding
the resulting models, unsound for GLB, into arithmetic.

A more elegant treatment was found by Ignatiev, who isolated
a subsystem of GLB that can be given a reasonable Kripke semantics
of a quite familiar sort. Ignatiev's central idea was to preserve much
of Dzhaparidze's original construction and argumentation, but to
demote the axioms A -> EJ A of GLB to antecedents of conditionals,
in a manner reminiscent of Solovay's treatment of sentences A -* A,
while promoting the theorems A -* 1 A to axioms. A weaker
system, which I shall call IDzh,2 results. Kripke models for IDzh
can be embedded into arithmetic a la Solovay. Details begin now.

Semantics for IDzh

The language of IDzh is the same as that of GLB.
The axioms of IDzh are all tautologies and all sentences:

(A-+ B)-.( A-* 1 B),

A->A)-+ A,
A -> A, and

The rules of inference of IDzh are modus ponens, -necessitation,
and 1 -necessitation.

As in the case of GLB, for any modal sentence A, IDzh F- A -
A and IDzh F- A - 1 A.

A IDzh-model is a quadruple < W, R, R 1, V >, where W is a finite
nonempty set; V is a valuation on W; and R and R 1 are transitive,
irreflexive relations on W such that for all w, x, y in W,

If wR 1 x, then wRy if xRy
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So not both wRx and wR 1 x; for otherwise xRx.
We will use "M" to abbreviate "< W, R, R 1, V >" and drop "M"

at every opportunity.
Truth at a world and validity in a model are defined as usual

(and as was described above).

Theorem 3 (the semantical soundness theorem for IDzh). If
IDzh F- A, then A is valid in all IDzh-models.

Proof. It will suffice to treat only the axioms A --> 1 A and
A - 0 A. Let M = < W, R, R 1, V > be a model for IDzh,

WE W
Suppose w k A, wR1 x. We must show x k A. Suppose xRy.

Then wRy, and so y k A. Thus w k A -+ 1 A.
Now suppose w k--i A, wR 1 x. We must show x k-, A. But

for some y, wRy, and y k-'i A. But then xRy. Thus w k-, A ->
1

The proof of the semantical completeness theorem for IDzh also
offers few difficulties.

Theorem 4 (the semantical completeness theorem for IDzh).
If A is valid in all IDzh-models, then IDzh I- A.

Proof. As usual, suppose IDzh b` A. A formula is a subsentence of
A or the negation of a subsentence of A. A set X of formulas is
consistent if IDzh -1 A X; X is maximal consistent if consistent and
for every subsentence B of A, either BEX or -1 BEX. Every consistent
set of formulas is included in some maximal consistent set.

Let W be the set of maximal consistent sets of formulas.
As in the proof for GL, let wRx if wRx iff (a) for all formulas
BEw, B and B are in x; and (b) for some formula DEx,

Dow.
Now, a novelty:

1Let wR 1 x if (a) for all formulas 0 BE w, B and B are in x;
(b) for all formulas C, CE W if CE x; and (c) for some formula

DEx, Dow.
Let wVp if pEw.
It is very easy to verify that M is indeed an IDzh-model. (Pay

attention to the condition " CEw if CEx".)
We now show by induction on the complexity of subsentences

B of A that for any weW, BEW if wkB. The argument in the case
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in which B = C is as in the semantical completeness theorem for
GL. The only interesting case is the new one, in which B = l C.

If M C e w, then w k l C, for if wR 1 x, then Cc-x, whence x k C by the
i.h. Thus suppose 1 C0w. By maximal consistency of w, -, 1 CEw.
Let X = {-,C, 1 C}u{OD,D: l

Few).
If IDzh F- A X, then

1IDzhl- A D,D: DEw} A A
A A { F: FEw}-.(

1IDzh)-A{
A A { C--*C),

1IDzh F- A { D: DEw} A A
A C

which contradicts the consistency of w. Thus X is consistent, and
therefore for some maximal consistent set x, X c x. By the definitions
of X and R 1, wR 1 x. The rest of the proof is as usual: Since -' C E X,

Cex, Cox, and by the i.h., x V C. Thus w f 0 C. And since IDzh ` A,
{- A} is consistent, for some maximal consistent set wE W, -, A E w,
A 0 w, and by what we have just shown, w VA. It follows that A is
not valid in the IDzh-model M. -1

Before we begin to embed IDzh-models into arithmetic, we need
to do some more semantics.

Let < W, R, R 1, V > be an IDzh-model.
"I" means "relative product"; thus wR I R 1 x if for some y, wRyR 1 x.

So w k A if, for all x such that wR I R 1 x, x k A.
Let wTx if w = x v wRx v wR 1 x v wR I R 1 x. Since R and R 1 are

transitive and aRc if aR1bRc, T is transitive.
Suppose now that M is an IDzh-model and we W.
Let T"w = {x: wTx}.
Let M"w = <T"w, R n(T"w)2, R1 r)(T"w)2, { <p, x>: pVx A xE T"w} >.
Then M"w is an IDzh-model, for T"w is certainly finite and

nonempty (we T"w) and the accessibility relations of M"w are just
the restrictions to T"w of those of M.

The generated submodel theorem for IDzh-models states that
for all sentences A, if xc T"w, then M, x k A if M"w, x k A. Its proof
is perfectly straightforward since T"w is closed under both R and R 1.

Some definitions: For any sentence A, M is A-complete if, for all
xE W, M, x k B --> B for all subsentences B of A.
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1For any sentence A, AA is the sentence A A A A A A A.
Then M, w k AA if, for all x such that wTx, M, x k A.
UA is A {0( B - B): B is a subsentence of Al. GLB F- UA,

for any sentence A. (But we do not in general have that IDzh I- UA.)

Lemma 1. Let we W. Then M"w is A-complete iff M, w k UA.

Proof. M"w is A-complete if for all x e T" w, M"w, x k El B -> B
for all subsentences B of A; if, by the generated submodel
theorem, for all subsentences El B of A, all x such that wTx,

-I

The proof of the arithmetical completeness of GLB

We are going to prove the equivalence of the three statements:
IDzh F- UA -> A, GLB F- A, and PA F- A* for all *. Since IDzh c GLB
and GLB F- UA, the first implies the second; the arithmetical sound-
ness theorem for GLB is the assertion that the second implies the
third. So suppose that IDzh f UA --+ A. We must find a realization
* such that PA V A*.

By the completeness theorem for IDzh, there are a model M and
a world e such that M, e V UA --+ A, and hence M, e k UA and M, e V A.
By the generated submodel theorem, we may suppose that M = M"e,
and therefore by Lemma 1 that M is A-complete. Without loss of
generality, suppose that W = { 1, ... , n} and e = 1.

The proof we shall give of the analogue for GLB of Solovay's
arithmetical completeness theorem follows a course similar to that
of the completeness proof given in Chapter 14, but somewhat
different from that of Solovay's original proof of the completeness
theorem for GL, found in Chapter 9. Unlike that proof, which
invokes the diagonal lemma to produce a formula H(a, b) with two
free variables, the proofs in this chapter and the previous one appeal
only to Corollary 1 of the diagonal lemma to produce a sequence
of closed sentences So, S1,. .. , S with certain desirable and familiar
properties. As the present proof presupposes no recursive function
theory, we have repeated a number of the details found in the
previous chapter in order to keep the treatment self-contained.

Solovay sentences for GLB. We extend R so that also ORx for all
x in W. (I.e., we let R' = R u { ( 0, x>: x c- W), but now write R to
mean R'.)
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Let m < n. We shall call a function h: {0, ... , m} -> W u {0} w-OK
if h(0) = 0, h(m) = w, for all i < m, either h(i)Rh(i + 1) or h(i)R1 h(i + 1),
and for no i, h(i)R1h(i + 1)Rh(i + 2). Call h OK if h is w-OK for
some w. W is finite, and thus there are only finitely many w-OK
functions h. In what follows we assume that h and h' are OK and
that their domains are {0,..., m} and {0,..., m'}. There is a unique
least k, 0 < k < m, such that h(i)R1h(i + 1) for all i, k < i < m. [k = 0
if m = 0; for if m > 0, then h(0)Rh(l) and k > 0.] Thus if m > 0,
h(0)Rh(1) ... R ... Rh(k)R 1 ... R 1 ... R 1 h(m). Let k' be similarly defined
from h'.

Until the end of the chapter, `I-' shall mean `PA I-'.
Let neg be a pterm such that for all sentences S, I-neg(rS')
For each wE W u {0}, let P,, (yo,..., y.) be the formula

W=Wn V{ahn$hnyhnCSh:hisw-OK}

where ah is

A i:i<k A x:h(i)Rx3b(Pf (b, neg(yh(i 11))) n Va < b-i Pf (a, neg(yx)))

flh is

A x:h(k)Rx- Bew(neg(yx))

A is

A i:k s i <m A x:h(i)R,x3b(wPf (b, neg(yh(i+ 1))) A Va < b- i wPf (a, neg(yx)))

and Sh is

A x:h(m)R,x--'w Bew(neg(yx))

By Corollary 1 to the generalized diagonal lemma, there exist
sentences So, S 1, ... , S such that for each w E W u {0},

I-SW4--*W=WA V{AhnBhnChnDh:hisw-OK}

where Ah is

A i:i<k Ax:h(i)Rx3b(Pf(b,r-,Sh(i+1)_') A Va <b-iPf(a,r-,Sx,))

Bh is

A x:h(k)Rx---i eW(r1'Sx-1)

Ch is

A i:k, i <m A x:h(i)R,x3b(wPf (b, r--i Sh(i+ 1),) A Va < b-i (oPf (a, r--i Si'))
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and D,, is
x:h(m)Rix (o Bew(F---i Sr')-A

Because of the conjunct w = w in S,,,, if w # w', S,,, is not the same
sentence as S,.,.. Let us observe that A. is E1, B. is n, C. is 7-31
andDhisII3.

We write: ABh instead of: A,, A B,,, etc.

Lemma 2. If h :A h', then A ABCDh.).

Proof.
Case 1. For some j, h(j) and h'(j) are defined and unequal. Let

j be the least such. Since h(O) = 0 = h'(0), j = i + 1 for some i. Then
h(i) = h'(i). Let x = h(i + 1), x' = h'(i + 1).

Case a. i < k and i < V. Then h(i)Rx, h'(i)Rx', one of the conjuncts
of Ah is the sentence 3b(Pf (b, r Sx,) A Va < b-i Pf (a, r--i Sx, 1)), and
one of the conjuncts of Ah. is the sentence 3b(Pf (b, r_l S..,) A
Va < b-i Pf (a, r--i Sx,)). But Sx is not the same sentence as Sx.,
and therefore these two sentences are incompatible in PA.

Case b. i < k and i > V. Then i = k', h(i)Rx, h'(i)Rlx', one of
the conjuncts of Ah is the sentence 3b(Pf (b, r-1 Sx 1) A
Va < b-i Pf (a, r S..,)), and since h'(k') = h'(i) = h(i)Rx, one of the
conjuncts of B,, is the sentence -, Bew(r-, S.,,-'). Again, these sentences
are incompatible.

Case c. i k and i < V. Like case b.
Case d. i k and i >, V. Then h(i)Sx, h'(i)Sx', one of the conjuncts

of Ch is the sentence 3b(coPf (b, r-1 Sx,) A Va < b-i (oPf (a, r-i S..,)),
and one of the conjuncts of Ch. is the sentence 3b(wPf (b, r-1 S..,) A
Va < b-i wPf (a, r-, Si')). Again, these different sentences are in-
compatible.

Case 2. h' properly extends h. Then m < m' and h(m) = h'(m). Let
x=h'(m+l).

Case a. h(m)Rx. Then -i Bew(r-, Si') is a conjunct of Bh and
3b(Pf (b, r-1 S.,) A Va < b Pf (a, r---i Sx,)) is a conjunct of Ah.. But
these are incompatible.

Case b. h(m)R1 x. Then -i wBew (r-, Sx-1) is a conjunct of Dh and
3 b(wPf (b, r-1Sx1) A V a < b- wPf (a, is a conjunct of Ch..
But these, again, are incompatible.

Case 3. h properly extends h'. Like case 2. -1

Call h R1 free if for no i < m, h(i)R1h(i + 1). If h is R1-free, then
k = m.
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Let h* x be the function g with domain 10,..., m + 11, such that
for all i < m, g(i) = h(i) and g(m + 1) = x.

Lemma 3. Let h be R1 free. F-- Ah --> ABh V V {Ah.x: h(m)Rx}.

Proof. Since his R, -free, k = m. Formalize in arithmetic: If A,, holds
but B. does not, then for some x such that h(m)Rx, there is a proof
of -i Sx, and hence for some x, h(m)Rx and for every y x such that
h(m)Ry, -'Sx has a proof with a smaller Godel number than any
proof of -i S,,. Then h*x is OK and Ah.x holds. -I

Say that h' R-extends h if m < m', for all i < m, h(i) = h'(i), and for
all i, m <, i < m', h'(i)Rh'(i + 1). R1-extends is defined similarly. If h
is R 1-free and h' R-extends h, then h' is also R 1-free.

Lemma 4. Let h be R 1 free. F- Ah ABh V V {ABh.: h' R-
extends h}.

Proof. There is a maximum element n that may belong to the
domain of any h. But if n is in h's domain, then h(0)Rh(1)R...Rh(n),
the range of h = W u {0}, m = n, h(m)Rx for no x, and B. is equivalent
to T. To prove the lemma, then, it suffices to suppose that it holds
for all R 1-free h' whose domain has greatest element m + 1 and
show that it holds for all R1-free h (whose domain has greatest
element m). By Lemma 3, I- Ah - (Bh V V {Ah.x: h(m)Rx} ). If h(m)Rx,
then h*x is R1-free and its domain has maximal element m + 1.
Thus for each x such that h(m)Rx, F- Ah.x -+ ABh.x V V {ABh.: h' R-
extends h*x}, whence I- Ah - (ABh V V { (ABh.x v R V {ABh.: h' R-
extends h*x}): h(m)Rx} ). But then we are done, since h'R-extends
h if for some x, h(m)Rx and h' is identical with or R-extends h*x.

Lemma 5. Let h be R 1 free. H ABh --> ABCDh V V
h(m)R1x}.

Proof. Since h is R1-free, k=m. Now formalize in arithmetic:
Suppose Ah and Bh hold. Since k = m, Ch holds trivially. Then either
for no x such that h(m)R1 x is there an w-proof of -i Sx, in which
case Dh also holds, or for some x such that h(m)R1 x, there is an
w-proof of -,Sx, and there is then a unique x such that h(m)R1x
and 3b(wPf (b, r-l Si') A Va < b-1 (off (a, r-i Si ')) holds for all y such
that h(m)R 1 y. And then Ah*x, Bh.x, and Ch.x all hold. H
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Lemma 6. V V {ABCh.x:h(m)R1x}.

Proof. Like that of Lemma 3. Formalize in arithmetic: If ABCh
holds but Dh does not, then for some x such that h(m)R 1 x, there
is an w-proof of -i Sx, and hence for some x, h(m)R 1 x and for every
y such that h(m)R 1 y, 3b(w Pf (b, r--i Sx,) A Va < b-i co Pf (a, r--i Si ') )
holds. Then h*x is OK and ABCh.x holds. -I

Lemma 7. H ABCh -> ABCDh V V {ABCDh.: h' R 1-extends h}

Proof. Like that of Lemma 4. If n is in h's domain, then the range
of h = W u {0}, m = n, h(m)R 1 x for no x, and Dh is equivalent
to T. Thus it suffices to suppose that Lemma 7 holds for all h'
whose domain has maximal element m + 1 and show that it holds
for h (whose domain has maximal element m). By Lemma 6,
I- ABCh -> (Dh v V {ABCh.x: h(m)R 1 x}). If h(m)R 1 x, then the domain
of h*x has maximal element m + 1. Thus for each x such that
h(m)R1x, F-ABC,.x-*ABCDh.xv V {ABCDh.: h' R1-extends h*x},
whence F- ABCh -. (ABCDh v V { (ABCDh.x v V {ABCDh.: h' R 1-
extends h*x} ): h(m)R 1 x} ). But then we are done, since h' R 1-extends
h if for some x, h(m)R1 x and h' is identical with or R 1-extends
h*x. I

Lemma 8. If x, X' E W u {0}, and x x', then F--, (Sx A Sr.).

Proof. Let h be x-OK, h' x'-OK. Since x x', h h'. Lemma 8 then
follows from Lemma 2. -1

Let wCx if wRx v wR1x v wRIR1x. So wTx if w = x v wCx. If
wCx, then certainly xE W.

Lemma 9. Let h be R 1 free. I- Ah + Sh(m) V V {Sx: h(m)Cx}.

Proof. We first show that
(*) V V {Sx:h(m)Cx}

By Lemma 5, F- ABh -> ABCDh V V {ABCh.x: h(m)R 1 x}. his certainly
h(m)-OK. Thus F- ABCDh Sh(m). Suppose h(m)R1 x. h*x is x-OK.
By Lemma 7, I- ABCh.x - ABCDh.x V V {ABCDh.: h' R 1-extends
h*x}. F- ABCDh.x --* Sx. And since h(m)R1x, h(m)Cx.

Suppose h' R1-extends h*x. h' is h'(m')-OK. Thus we have
F- ABCDh. --* And since h(m)R1 xR1 h'(m'), h(m)Ch'(m'). Thus
(*) is shown.
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We now show that

(**) If h' R-extends h, F- ABh' - V {SX: h(m)Cx}

Suppose h' R-extends h. Then h' is R 1-free, By Lemma 5,
F-ABA,.->ABCDh. v V {ABCh-.X:h'(m')Rlx}. h' is h'(m')-OK. Thus
F- ABCDh. Since h(m)Rh'(m'), h(m)Ch'(m').

Suppose h'(m')R1x. h'*x is x-OK. By Lemma 7,
F-ABCh..X-+ABCDh.*X V V {ABCDh,.: h" R1-extends h'*x}.
F- ABCDh..X -> S. Since h(m)Rh'(m')R 1 x, h(m)Cx.

Suppose h"R1-extends h'*x. Then h" is h"(m")-OK and so
HABCDh"_+Sh"(m"). Since h(m)Rh'(m')R1xR1h"(m"), h(m)Ch"(m").

Thus (**) is shown.
By (*), (**), and Lemma 4, we are done. H

Lemma 10. F-ABCh +Sh(m) V V {SX:h(m)R1x}.

Proof. Since his h(m)-OK, F- ABCDh -* Sh(m). And if h' R 1-extends h,
then h(m)R1 h'(m'), and F- ABCDh. -+ Sh.(m.). By Lemma 7 done. -I

Lemma 11. H V {S,,,: wE W v {0} }.

Proof. Let h = {<0,0>}. h is R1-free. By Lemma 9,
F- Ah - Sh(m) V V {SX: h(m)Cx}, i.e.,
H Ah - So V V {SX: 0Cx}, i.e.,
F- Ah -> V {Sw: wE W U {o} }.
But since k = m = 0, F- Ah. H

Lemma 12. Suppose WE W u {0}, wRx. Then
F- S,,, -> --, Bew [-i SX].

Proof. Let h be w-OK. Then h(m) = w and either h(k) = h(m) or
h(k)R1h(m). In either case, h(k)Rx. But then we are done:
F- Bh -> -, Bew [-1 SX]. H

We write: uoBew[S] to mean: coBew('S,).

Lemma 13. Suppose wR 1 x. Then F- S,, -+ coBew [-, Si].

Proof. Let h be w-OK. Then h(m) = w and we are done:
F- Dh --» coBew [-1 SX]. -I

Let wQx if wCx v 3z(zR 1 w A zCx). wQx if wCx v 3z(zR 1 W A zR 1 x):
for if zR 1 w and zRx, then wRx, and so wCx; and if zR 1 w and
zRyR 1 x, then wRyR x, whence again wCx.

Lemma 14. Suppose w 96 0. Then H S,, -+ Bew [ V {SX: wQx} ].
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Proof. Let h' be w-OK. Let h be "the initial R-segment" of h', i.e.,
h: 10,..., k'} -> W u {0} and for all i < k', h(i) = h'(i). Then his R 1-free,
k = m = k', and either h(m)R 1 w or h(m) = w. In either case, if h(m)Cx,
then wQx. By Lemma 9, F- A,, -- Sh(m) V V {S.,: h(m)CxJ, and so

A,, -> V V {Sx: wQx}, whence
Bew [A,,] -> Bew V V (Si: wQx} ]. Since w 0 0, h(1) is defined,

m = k = i + 1 for some i, and
F- A,, -> 3b(Pf (b, r--I Sn(1+ 1),) A Va < b-, Pf (a, r Sh(i+ 1)whence
F-A,,->Bew(r-,Sn(+1),), i.e.,
F-A,,-+Bew[--, Since A,, is E1,
F- A,, - Bew [A,,]. So
F- Ah -.Bew [ V {Sx: wQx} ]. H

Lemma 15. Suppose w #0. Then F-SK,-+coBew[ V {Sx: wR1x}].

Proof. Let h be w-OK. Then h(m) = w, and since w 0, m = i + 1
for some i, and either k = m, in which case F- A,, -* Bew [- or
k < m, in which case F- C,, -> co Bew [-i Sh(m)]. Since
F- Bew(x) -* coBew(x), in either case,
F- ABC,, coBew [-, SW]. By Lemma 10,
F- ABC,, -> SW V V {Sx: wR 1 x}. Then
F- coBew [ABC,,] -> coBew [SW v V {Sx: wR 1 x} ]. Since ABC,, is a E 3
sentence,
F- ABC,, --> coBew [ABC,,]. Thus
H ABC,, - coBew [SW v V {Sx: wR 1 x} ] A coBew [-i SW], whence
F-ABC,,-+coBew[V{Sx:wR1x}]. H

Lemma 16. If we W, then F- SW -> coBew [-i SW].

Proof. Let we W; then w 0. By Lemma 15,
F- SW -* coBew [ V {Sx: wR 1 x} ]. If wR1 x, then w # x, and by Lemma 8,
F- Sx -> -, SW. Thus F- V {Sx: wR 1 x} -. -, SW, and therefore

We now define *: For any sentence letter p, *(p) = V {SW: w Vp}.

Lemma 17. Let B be a subsentence of A, we W. Then if
M,wkB, then F'-SW-+B*; and if M,wVB, then F- S,,, -+ --1 B*.

Proof. Induction on B. Suppose B = p. Then if w k p, SW is one of
the disjuncts of p*. If w V p, then by Lemma 8, SW is incompatible
with each disjunct of p*.

The propositional calculus cases are routine.
Suppose B = C. Assume M, w k C.



204 THE LOGIC OF PROVABILITY

Suppose that for some x, wQx and M, x V C. Clearly not: wRx.
If wR 1 x, wRyR 1 x, or both zR 1 w and zR1 x, then respectively

1M, w V E C, M, y V (] C, or M, z V C, and then by A-completeness
of M, respectively M, w V C, M, y V C, or M, z V C, whence for
some a, M, a V C, and respectively wRa, wRyRa, or zR 1 w and zRa,
and then in each case wRa, whence M, a k C, contradiction.

Thus for all x such that wQx, M, x k C. Since x e W whenever
wQx, by the i.h., for all x such that wQx, F- Sx -+ C*. Thus
F- V {Sx: wQx} -+ C*, and so F- Bew [ V {Sx: wQx} ] B*. By Lemma 14,
F-S,,-+Bew[ V {Sx: wQx}], and so E-S,,-+B*.

If M, w V C, then for some x, wRx, M, x V C, and by the i.h.,
Sx C*, whence Bew [- Sx] -+-' B*. By Lemma 12,

k- Sµ, -+-, Bew [-i Sx, and so f- B*.
Suppose B = C.
If M, w k C, then for all x such that wR 1 x, M, x k C, and by the

i.h., for all x such that wR 1 x, I Sx -+ C*. So F- V {Sx: wR 1 x} C*,
and thus k- coBew [ V {Sx: wR 1 x} ] -+ B*. By Lemma 15,

S,, coBew [ V {Sx: wSx} ], whence F- S,, -+ B*.
If M, w V C, then for some x, wR 1 x, M, x V C, and by the i.h.,
Sx -+-' C*, whence F- coBew [- Sx] -+-, B. By Lemma 13,

HS,,, -+ 1B*. H

We conclude in the usual manner: By Lemma 17, F- S1 -+ A. Thus
f--i Bew [-, S 1 ] -+-i Bew [A *]. By Lemma 12, F- S0 -- Bew [-i S 1 ].
So 1- So -+-i Bew [A*]. We now appeal to the soundness of PA+:
By Lemma 16, F- Sam, -+ coBew [- Sw] for all win W; thus if we W and
S,, is true, then Sam, is co-provable and therefore S,, is false. By
Lemma 12, I- V {S,,,: we W u {0} }, and therefore one of So, S1, ... , S.
is true. Thus it is So that is true. And since F- So -* i Bew [A*],
-, Bew [A*] is true and A* is not provable in PA.

The truth case

GLSB is the system whose axioms are all theorems of GLB and
all sentences A-+ A, and whose sole rule is modus ponens. All
sentences A -+ A are thus theorems of GLSB.

We want to show that GLSB F- A if A* is true for all *. Let
1HA = A { C -+ C: C is a subsentence of A) A A (111 C - C: C

is a subsentence of A}. Since soundness is evident, it will suffice to
show that if GLBV (HA -+ A), then A* is false for some *.

So suppose that GLB V (HA -+ A). Then for some W = {0,..., n},
M = < {0,..., n}, R, R 1, V>, M is (HA -+ A)-complete and hence A-
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complete, and M, 0 V HA -+ A. (Note: Now OE W, and 0, not 1, is the
world at which HA - A is false.) Thus M, 0 k HA and M, 0 V A.

We now define the Solovay sentences SW, 0 < w < n, from M as
before but without adding a new point or altering R or R 1 in any
way. Thus it is now possible that OR, w. We note that none of the
proofs of Lemmas 2-13 appealed to the assumption that ORh(1),
i.e., that m 0.

Let wQ'x if wQx v w=x=0 v x=OR1w.

Lemma 14'. For all wE {O, ... , n}, F- Sw -+ Bew [ V {Sx: wQ'x} ].

Proof. Let h' be w-OK. As in the proof of Lemma 14, let h be "the
initial R-segment" of h'. Then as before, F- Ah -> Sh(m) V V {Sx: h(m)Cx}
and F- Bew [Ah] --> Bew [Sh(m) V V {Sx: wQx} ].

Case 1. m = k = i + 1 for some i. As before,
Ah -p Bew [ V {Sx: wQx} ], whence F- Ah --> Bew [ V {Sx: wQ'x} ].
Case 2. in = k = 0. Then h(m) = 0 and F- A,,, and therefore

F- So v V {Sx: OCx}. Assume w = 0. Then if x = 0 or OCx, wQ'x. Assume
w 0. Then OR 1 w, since k = 0 and h' is w-OK. Thus if x = 0, wQ'x, and
if OCx, then wQx and thus wQ'x. In each case, F- V {Sx: wQ'x}. Thus
F- Bew [ V {Sx: wQ'x} ], and therefore F- A,, -- Bew [ V (Si: wQ'x} ].

In both cases, F- Ah -> Bew [ V {Sx: wQ'x} ].

Let wRix if wR1x v w=x=0.

Lemma 15'. For all we 10,..., n},
F- Sw -+ wBew [ V {S,,: wRix} ].

Proof. Let h be w-OK. Then h(m) = w.
Case 1. w 0 0. Then, as in the proof of Lemma 15,

I-ABCh -> wBew [ V { Sx: wR 1 x} ], whence
ABCh - wBew [ V {Sx: wRix} ].
Case 2. w = 0. By Lemma 10,

F- v V {Sx: wR 1 x} ]. Since ABC,, is a E3
sentence, we have F- ABCh - wBew [ABCh]. Thus
F- ABCh - wBew [Sw v V {Sx: wR 1 x} ], i.e.,

V {Sx: wRi x} ]. -1

Let *(p) = V {Sw: wVp}.

Lemma 17'. Let B be a subsentence of A. Then for all
wE 10,..., n}, if M, w k B, then F- Sw -> B*; and if M, w V B, then
F- Sw -+1 B*.
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Proof. Induction on B. The atomic and propositional calculus cases
are as usual. So suppose B = C.

Suppose M, w k C.
Assume that for some x, wQ'x and M, x V C. Clearly, not: wRx.

If wR 1 x, wRyR1 x, or zR 1 w and zR 1 x, then we obtain a contradiction
as in the proof of Lemma 17. If w = x = 0, then since M, 0 k HA,
M, 0 k C -+ C, M, 0 k C, contradiction. If x = OR 1 w, then since
M, x V C and M, 0 k HA, M, 0 V C, and then for some a, ORa and
M, a V C; but then since OR 1 w and ORa, wRa and so M, a k C,
contradiction.

Thus for all x such that wQ'x, M, x k C, whence by the i.h., for
all x such that wQ'x, F- Sx -+ C*. Thus F- V {Sx: wQ'x} -+ C*, and
so F- Bew [ V {Sx: wQ'x} ] -> B*. By Lemma 14',
H S,,, -> Bew [ V IS.,: wQ'xl ], and so F-- S,,, --+ B*.

If M, w V C, then for some x, wRx, M, x V C, and by the i.h.,
F- Sx --> - C*, whence F--i Bew [-i Sx] -+ B*. By Lemma 12,
ASH,-»Bew[-iSx], and so F- S,,, B*.

Suppose B = C.
Assume M, w k C. Suppose for some x, wR 1 x and M, x V C. Then

not: wR1x, and so w=x=0. But since M,wkHA, M,wkOC->C,
and so M, w k C, i.e., M, x k C, contradiction.

Thus for all x such that wR 1 x, M, x k C, and by the i.h., for all
x such that wR 1 x, F- Sx -> C*. So F- V {Sx: wR 1 x} _+ C*, and thus
F- coBew [ V {Sx: wR i x} ] -+ B*. By Lemma 15',
F- SH, -+ coBew [ V { Sx: wR 1 x} ], whence F- SH, -+ B*.

If M, w V 1 C, then for some x, wR 1 x, M, x V C, and by the i.h.,
F- Sx -> C*, whence F- coBew [- Sx] -* -' B*. By Lemma 13,
F- SH, -+ coBew [ Sx], and F- SH, - -1 B*. _1

Since M, OV A, by Lemma IT, F- So _+_i A*. Since So is true, A*
is false.

Decidability

By the semantical soundness and completeness theorems for IDzh,
IDzh F- A if A is valid in all IDzh-models. Since IDzh-models have
finite domains, the usual argument shows that IDzh is decidable.

It follows that GLB and GLSB are decidable as well, for GLB F- A
iff IDzh F- UA --> A and GLSB F- A if GLB F- HA -* A, as we have
just seen.
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GLP

A sentence S equivalent to its own inconsistency must be both false
and consistent. It must also be w-inconsistent. For if

F- S H Bew (r-, S,), then
H-, SHE Bew(ri S,),
F- S -> coBew(ri Bew(r-i S,),), and
H-i S -> wBew(ri S,).

Since -, S is true, -, S is w-provable, i.e., S is co-inconsistent.
Likewise a sentence equivalent to its own co-inconsistency must

be both false and co-consistent. Thus any such sentence will suffer
from a drawback that is less serious than either simple or co-
inconsistency. Call it co-w-inconsistency. Then if PA + + is the theory
whose axioms are those of PA+, together with all sentences VxA(x)
such that for every n, PA+ F-A(n), w-w-inconsistency is simply
refutability in PA + +

We might now consider a sentence equivalent to its own co-w-
inconsistency... .

The system GLP contains a countably infinite series of boxes
[0] (= ), [ 11, [2].... representing provability in PA, provability
in PA +, in PA + +, .... (Theirduals <0> (= 0), <1>, <2>,... of course
then represent consistency, (o-consistency, a)-w-consistency,...) The
axioms of GLP are all tautologies, and all sentences:

[n] (A --> B) -> ([n] A --* [n] B),
[n]([n]->A)->[n]A,
[n] A --* [n + 1] A, and
-i[n]A->[n+1]-i[n]A;

the rules of inference are modus ponens and [0]-necessitation. The
axioms of the associated truth system GLSP are all theorems of
GLP and all sentences [n] A - A; the sole rule of inference is modus
ponens. Dzhaparidze actually proved the arithmetical completeness
of GLP and GLSP; a simpler and more accessible proof, on which
our treatment has been based, was given by Ignatiev. Going from
GLB to GLP offers no difficulties remotely comparable to those
involved in taking the step needed to extend GL to GLB. (To prove
the arithmetical completeness of GLP, though, one must observe
that for each modal sentence A there is some n such that A contains
[i] only if i < n.)
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On GLB: The fixed point theorem,
letterless sentences, and analysis

Here we prove the fixed point theorem for GLB, prove a normal
form theorem for letterless sentences of GLB, and indicate the
outlines of a proof of the arithmetical soundness and completeness
of GLB and GLSB for the notions "provable" and "provable under
the w-rule" in analysis. The fixed point theorem and normal form
theorem are due to Ignatiev.

The fixed point theorem for GLB

Our sentences are now bimodal: they may contain occurrences of
the new operator EU.

A sentence A is modalized in p if every occurrence of the sentence
letter p in A is in the scope of an occurrence of either or ;

equivalently, if A is a truth-functional compound of sentences B,
sentences 1 B, and sentence letters other than p.

As in Chapter 1, O A is the sentence ( A A A).
The fixed point theorem for GLB reads: For every sentence A

modalized in p, there is a sentence H containing only sentence
letters contained in A, not containing the sentence letter p, and
such that

GLBI- 0 (pH A)4- (p.-+H)

H of course might now contain both and M. But since GLB
extends GL as well as the trivial notational variant of GL obtained
by inserting a "1" inside all boxes, and since the fixed point theorem
holds for GL and therefore obviously holds for the notational
variant as well, H may be chosen not to contain If if A does not
contain 1, not to contain if A does not contain , and to
contain neither nor l if A contains neither nor .

The proof of the fixed point theorem for GLB closely follows the
second proof given in Chapter 8 of the fixed point theorem for GL.
We begin by reducing the fixed point theorem for GLB to (a version
of) the fixed point theorem for IDzh.
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As in the previous chapter, AA is the sentence (A A A A 1 A A
ED A).

GLB f- A -4 A, whence GLB f- A -> A, and also
GLB f- A -+ A; it follows that GLB f- O A H DA. IDzh is a
subsystem of GL; it will therefore suffice to prove that if A is
modalized in p, then IDzhf-A(pHA) - A(p<-+H) for some H con-
taining only sentence letters other than p and contained in A.

Let s be the number of sentences other than p that occur in A.
Let these be gl,...,gs

We now define the notion of an m-character, m > 0.
The 0-characters are the 2s sentences + q 1 A + A + qS. (If s = 0,

T is the sole 0-character.)
Suppose that the m-characters are the t sentences V1,..., V, Then

the (m + 1)-characters are the 25+2t sentences

For any fixed m, the disjunction of all m-characters is a tautology
and any two m-characters are truth-functionally inconsistent. Thus
for any IDzh-model M = < W, R, R 1, V >, and any win W, there is
exactly one in-character U - call it U(m, w, M), or U(m, w) for short -
such that M, w k U.

Conventions: w, w', etc. E W, N, _ <X, S, S1, Q>, is also a IDzh-
model, and x, etc. EX. We will often omit "M" and "N".

Lemma 1. Suppose that M and N are finite IDzh-models,
M, wo k A(pHA), N, xo k and U(n, w0, M) = U(n, x0, N).
Then M,wokpiffN,xokp.

Proof. Suppose wok p niff x0 k p.
Let j be the number of subsentences of A of the form B, k the

number of subsentences of the form 0 B. If Z is a set containing c
subsentences of A of form B and d subsentences of A of form
0 B, then we shall say that the weight of Z is c(k + 1) + d. Let
n = j(k + 1) + k, which is clearly the maximum weight of any set Z.

Let wEw' iff w = w', wRw', wR1w', or wRIR1w'. Let xFx' if x = x',
xSx', xS 1 x', or xS I S 1 x'. E and F are transitive.

Let P(i, Z, w, x, D) if the following six conditions hold:
(1) the weight of Z is > i;
(2) woEw;
(3) xoFx;

1(4) if
xk UB;
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(5) U(n-i,w,M)= U(n-i,x,N);
(6) either D is a subsentence of A, and w k D niff x k D

(whence DOZ) or D is a subsentence of A, and
w k D niff x k I D (whence DO Z).

Then

(*) if i < n and for some Z, w, x, D, P(i, Z, w, x, D),
then for some Z', w', x', D', P(i + 1, Z', w', x', D').

For suppose that i < n and P(i, Z, w, x, D).
Case 1. w V D and x k D. Then for some w', wRw', whence

woEw'(2'),wk .pandw'VD.Sincei<n,n-(i+1)and U(n-(i+1),
w') are defined. Let V = U(n - (i + 1), w'). Then Wk V, and w k O V.
Thus O Visa conjunct of U(n - i, w) = U(n - i, x). So x k O V, and thus
for some x', xSx', whence xoFx' (3'), and x'k V. Thus U(n - (i + 1), x')_
V = U(n - (i + 1), w') (5'). Since xSx', x k D and x' k D. Let Z' _
{ B: BEZ} u { D}. Let i= the weight of Z'. Since D is not
in Z but is in Z', along with all sentences B in Z, i' > (i - k) +
(k + 1) = i + 1 (1'). (Although up to k sentences E B in Z may be
missing from Z', Z' contains D instead, which adds more to the
weight of Z' than all the l Bs combined.) Since wRw' and xSx', for
every sentence B in Z, Wk B and x' k B, and therefore for
every sentence B in Z', Wk B and x' k B, and trivially the
same holds for every sentence l B in Z' (4').

Case 2. x V D and w k D. Just like Case 1.
Case 3. w V E D and x k D. Then for some w',... [as in case 1,

but with R1, S1, and © in place or R, S, , and O ]... and x' k D.0
Let Z' = Z u { 0 D}. Then the weight of Z' >, i + 1 (1') since D 0Z.
Since wR 1 w' and xS 1 x', W h ED B and x' k B for every sentence 0 B
in Z'. Suppose BEZ'. Then BEZ, wk B, and xk B. If w'Rw",
then since wR t w', wRw", whence w" k B; thus Wk B. Similarly,
x'k B (4').

Case 4. x O D and w k 0 D. Just like Case 3.
It remains to find a suitable D'.
D is a subsentence of A, and in all four cases, Wk D niff x' k D. Thus
(a) W k p niff x' k p,
(b) Wk qk niff x' P qk for some k, 1 < k < s,
(c) Wk D' niff x' k D' for some subsentence D' of A, or
(d) Wk 0 D' niff x' k l D' for some subsentence D' of A.
But since woEw' and xoFx', Wk pHA and x' k p4-+A. Thus if (a)

holds, Wk A niff x' k A, and thus (b), (c), or (d) holds, since A is a
truth-functional compound of the sentence letters q1,. .. , qs and
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sentences B and III B. But (b) does not hold, for U(n - (i + 1), w') _
U(n - (i + 1), x'). Thus (c) or (d) holds (6) and (*) is established.

Since wok pHA, x0 k pHA, and U(n, wo) = U(n, x0), it follows in
exactly the same way that either for some subsentence D of A,
wok D niff x0 k D, or for some subsentence [ D, wo k 0 D niff
xo k 1 D; thus P(0, 0, wo, xo, D). By induction, it follows from (*)
that for some Z, w, x, D, P(n, Z, w, x, D). But it is impossible that Z
has weight >, n, D or [ D is a subsentence of A, and either D
or I] D 0 Z; for then Z v { D} or Z u { O D) has weight > n, which
is absurd. -1

We now complete the proof of the fixed point theorem. Let
H = V {U: U is an n-character and IDzhH(A(p<-- A) A U)--* p}. We
shall show that

Let M be an IDzh-model. Suppose w k A(pHA). Let U = U(n, w).
U is the only n-character that holds at w, and thus if w k H, then
U is a disjunct of H, and IDzhI-(A(pHA) A U)-> p; since wk U,
w k p. Therefore w k H-* p.

Now assume w k p. If U is not a disjunct of H,
IDzh A(pHA) A U -+p, and for some IDzh-model N, some world
x of N, x k A(pHA), x k U, and x p. But the only character that
holds at x is U(n, x). Thus U(n, w) = U = U(n, x), contra the lemma.
So U is a disjunct of H, and since w k U, w k H. Thus w k p -+ H, and
so wkp4+H.

By the completeness theorem for IDzh,
As in the previous chapter, for arbitrary w, xE W, let wTx if

w = x v wRx v wR 1 x v wR I R 1 x, whence T is transitive. Moreover,
w k AB if for all x such that wTx, x k B.

With the aid of the completeness theorem for IDzh, it is easy to
see that if IDzh F- B, IDzh F- AB; IDzh F- A(B -> C) -* (AB -+ AC); and
IDzh I- AB - AAB.

So and therefore IDzhFA(p4-+A)-
A(pHH): one half of the fixed point theorem for GLB is proved.

To prove the other half, we use a version of the argument due
to Goldfarb given in Chapter 8: Let M be an arbitrary IDzh-model.
Let wCx if wRx v wR1x v wRIRlx. Thus wTx if w = x v wCx.
Like R and R 1, C is irreflexive: if wR I R 1 w, then for some y, wRyR 1 w,
and yR1wRy, whence wRw, impossible. And C is also transitive.

Suppose now that for some zE W, M, zkA(pHH), but M, z (pHA).
Let m be the cardinality of W. Then since C is transitive and
irreflexive, for no wo, w1, ... , w,,E W, woCw1C... Cwm. Thus for some
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WE W, zTw, M, w f (p4A), and for all x such that wCx, M, x k (p<-->A).
Now let M' be just like M except that wVp niff wV'p. Then since
A is modalized in p, M, w k A if M', w k A. But since M, w k p niff
M', w k p, for all x such that wTx, M', x k (p+-), A); so M', w K A(p++A),
and therefore by the half of the fixed point theorem just proved,
M', w k pHH. H does not contain p, and so M, w V pHH. But since
zTw and M,zkA(p4-+H), M, wkpHH, contradiction.

So IDzhk-O(pHH)->(p.-+A), whence as above, IDzhI-O(p-*H)-
A(pHA). Thus IDzhHA(pHH)+- A(pHA) and we have proved
the fixed point theorem for GLB.

A normal form theorem for letterless sentences of GLB

Like ordinary letterless modal sentences, a letterless bimodal sen-
tence is true under all realizations if it is true under any one. We
give an algorithm, due to Ignatiev, for telling whether or not any
given letterless sentence of GLB is true (under some/every realiza-
tion).

In what follows, by "ordinal" we shall mean "ordinal < o0°1". It
is a standard fact from set theory that for any ordinal a > 0, there
exist natural numbers 11, ... , l such that 11 > ... > in and a =
o)i' + + w'". (If a = 0, the sum is empty and n = 0.) For the sake of
clarity, we shall sometimes write: < l1, ... 1.> instead of: wi' +... + w ".
Thus < > = 0. We always assume that l1 > > in.

We recall that if a= <11,...,1.> and fi_ <k1,...,kp>, then a> /J
if either f o r every i < p, i, = ki and n > p, or for some i <, p, i > ki
and l; = k; for all j < i.

We now define some operations on ordinals. Let a = < l1, ... , 1,, >.

If a>0,then
a > 0, then da = In. We do not now define d0.

Thus certainly if a > 0, then a- < a, da < a, and a = a- + ooa".
a
-,

_ < 11, ... ,1. >, where m < n and 11, ... are precisely those
of 11,..., l that are >j. Thus a-' a.

We collect in Lemma 2 some technical facts about these operations
that we shall need below.

Lemma 2
(a) a < a+'.
(b) If a-i 0, then d(a-i) >,j.
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(c) If a > fl, da, dfl >, j, then a /3+'.

(d) (a+i)-ci+ n < a.

Proof
(a) With notations as above, either m = n, in which case

a < a+', or m < n, in which case lm+ 1 <j, and again
a<a+'.

(b) If oc :A-' 0, then d(a -') = l, > j.
(c) f +' _ <k1,. .. , kp, j>. Since a > fi, either n > p, in which

case lP+ 1 > l >, j and a > +', or for some i < p, k, < l;,
etc., in which case a > Q+'.

(d) for some
-I

We now assign to each ordinal a a formula Da: DO = l; if a > 0,
Dot= Dot- v `1, where i=da. Since (a+ 1) - =a and d(a+ 1)= 0,
D(a + 1) = Da v 1 = Da. (We often identify obvious equiva-
lents.) If A is a limit ordinal, then D(L + (o) = D(A+ (o 1) _ D.1 v 1.
And if j > 0, Duo' = DO v U'1, i.e., 1 v O'1; but since
F- 1-> ' 1, Dw' = [i] ' 1. So, for example,

DO= 1

D2= I
Dco = 1

D(co+1)=El
D(w- 2) _

1
1

1

1D(w-3)= (
Dw2 = F1 0

D(w2 + (o) _

1

0 1
1 1) v 1V

D(w2 + w-2) _ (
Dw3 =

D(w3+(02)_ 0

lv
1 i
1

31v

1
1v i

1

1) v

21.

1 1

We are going to show how to find from any given letterless
sentence A of GLB a truth-functional combination of sentences Dot
that is GLB-equivalent to A. Since nothing false is provable or
w-provable, it is evident from the definition of Da that every Dot is
false (under every realization). We will therefore have shown how
to determine the truth-value of any given letterless sentence.



214 THE LOGIC OF PROVABILITY

Let us note that neither of Do) =
implies the other: If F- 1->
is impossible. And if F- 1 -*

l 1, then, as usual, F- 1, which
1 and D((o + 1) = O 10

1, thenl
(**) F---i 1->-, 1

1and so F- 01-* --1 ED 1; but thus
F--, 1 -i 1, whence F- O 1 1 1, and by (**)1

F- El 1, impossible.
Thus although it is in general false that if a < /3, F-Dco --+ D/J, we

can prove that if a < /3, F- El Da --+ D fl. First, a lemma.

Lemma 3. Suppose j < i. Then
F- v 0 '1)- A v `1.

Proof. F- v i1)-+ v '1); F--i A -
F- v '1)A 1. Since j<i,
F- ' +' 1-> `1. Then by the propositional calculus,
F- v i1)- A v `1. -I

-i A;

Lemma 4 is fundamental to what follows; on occasion it will be
appealed to without explicit mention.

Lemma 4. Suppose a < /3. Then F- El Dot --+ D/3.

Proof. We may assume that for all y, a < y < /3, F- Da -> Dy. We
may also therefore assume that fl- a < /3, for if a < /3-, then since
/3 - < /3, F- El Dot - D/3 -, whence F- Dot -> El D/3 -; but by the
definition of D fl, F- D/3 - -+ D/3, and of course F- El Da -> Da,
whence

Let us now observe that since /3 - S a < /3, there are natural
numbers i1, ... , im j1, ... jn (where either m or n may be 0), such
that f3=<ll,...,lm,lm+1>, a=<i1,...,im,j1,...,jn>, and /3 =
<ij,...,im>, and im+1 >j1 > .. ,jn

Let AkB = (B v M'-L).
By the definition of D/3, F- D/3 D/3. Since a = f - if n = 0, we

may assume that n > 0. Then Da = Da - v 0^1, and Da =
A;,, Da - = = Oi A J2O D/3 . By Lemma 3 repeatedly,

v V-1 1,
v `'^"1, ...,

v `m"1, i.e., -1

Lemma 5.
(a)
(b) If da % j, then F-Da+'H Da v 1 '1.
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Proof
(a) As we have seen, a +; = a -' + co'. Thus Dot +; = Dot -' v

1 L. By Lemma 2(a), a < cc 1. Thus by Lemma 4,
F- Da -+ Doe", whence I- i1->( Da-o- Dc-'). But
a-' ,<a also, and thus a-' < a + 1. Since D(a + 1) =

Da, F- Da -' -,, Da by Lemma 4, and part (a)
follows.

(b) Da+' = D(a+')- v 1'1. But if dot >,j, (a+')- _
<11,...,ln,JY =a. -1

We now let oo be some large number, say co'. Up to now we
have taken the variable a to range over the ordinals (< co') and the
variable i to range over the natural numbers. But henceforth a shall
range over oo and the ordinals, / over just the ordinals, i over co
and the positive integers, and j over just the positive integers.

We now define Hoo = T = ' 1, and if a is an ordinal, we define
Ha = Da, = D(a + 1). We also define dO = doo = oo.

We shall say that a sentence is in normal form if it is a (possibly
empty) conjunction of disjunctions, each disjunction having one of
the following forms:

(1) Ha v `1
(2) Ha v Hfl v
(3) -,Ha v H/3 v -i

1 `1
`1 v 1

a > Ii
1, a>fl, i>j>0, dot, d/>j

We shall call a sentence nice if it is a truth-functional combination
of sentences Ha and 1 `1. Our main goal is to show how to
construct from any given letterless sentence a nice GLB-equivalent.
[Since Ha = D(oc + 1) or T and 0 `1= Dw or T, any nice sentence
is a truth-functional combination of sentences Da.] We shall do so
in two stages: we first show how to find a sentence in normal form
that is equivalent to any nice sentence; we then show how to
construct nice sentences equivalent to A and 1 A from any
sentence A in normal form.

Stage 1. We suppose that A is nice. We now show how to find
an equivalent of A in normal form.

First rewrite A as a conjunction of disjunctions of sentences Ha,
-,Ha, 1 `1, -' 1 `1. Fix a conjunct B of A. To show how to put A
into normal form, it will suffice to determine whether B is equivalent
to T, for if so, it may be deleted from A; and if not, to find an
equivalent of B in form (1), (2), or (3).

Recalling that -i Hoo and - Eil ' 1 are equivalent to I, we may
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suppose that for some a, i, -iHa and `1 are disjuncts of B. And
using the equivalence 1 '1 H '1 v 1, we may suppose that
if some sentence '1 is a disjunct of B, so is some sentence H/3.
( 1 = HO.) Now according to Lemma 4, either HHa - H/3 or
I-H/3-+Ha [since Hy = Dy = D(y + 1)]. Moreover, either F- i `1-+

'1 or [11 '1-+ V1. Thus by deleting disjuncts -iHa of B of the0
form that imply other disjuncts Ha', and similarly for disjuncts
Ha, -' V1, a] `1, we may assume that B has one of the three forms

-iHav --i ED'I
HavH/v- `1, or
-,HotvHP v `1v0'1.

If B is of the first form, we are done. If B is of the second form but
a < /3, then by Lemma 4, I- Ha -+ H13, and therefore B is equivalent
to T. But if a > /3, we are also done. Thus we may suppose that B
is -, Ha v H/i v -i E `1 v i1. If i < j, then F- 1 `1-+ 0'1, and B
is equivalent to T. Thus we may suppose i >j.

Now if a oo, let a' = a-'; otherwise let a' = oo; and let /3'
By Lemma 5(a), I- E'1-+ [Hot <-+Ha] A [H/3F-+H/i']. If a' = 0, oo,
then da' = oo j; and otherwise da' = d(a-') > j, by Lemma 2(b).
Similarly, d/i' > j. Thus B is equivalent to -i Ha' v H/I' v - `1 v

'1, where i > j, and dot', d/3' > j. If a' > /3', we are again done, for
Ha' -+HP. Thus we may suppose a' > /3'. But now we are done.

Stage 2. We now want to show how to find nice equivalents of
A and El A from a sentence A in normal form. Since and

distribute over A, we may assume that A consists of a single
conjunct of one of the forms (1), (2), (3). We first consider A: If
A is -,Ha v -, 1 `1, then A is equivalent to 1, i.e., to HO.

Suppose that A is Ha v H/i v -i V1, where a > /3. We shall
show that A is equivalent to H(/i + 1) = H/i.

Observe that H H/i A. And since /3 + 1 5 a,
-i Ha -> -i H(/3 + 1), and therefore

H A -+ (-1 H(fl + 1) v H/i v -i V1). Recall that i > 0; thus
H -i 1 `1-+ - pi 1. Moreover, for any sentence C,
I--,(-,El Cv
thus I--, W 1-+( C v C), in particular, since
H/3 = D/i, I- -, [ 1-+ (-i H(/i + 1) v HP), and therefore

A - (-i H(/i + 1) v H/B), whence
A - HP (Lob), and therefore H A -+H(/i + 1).

Finally, suppose that A is -i Ha v H/3 v -i ED `1 v 1 ' 1, where
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a > /3, i > j, and dot, d/3 > j. We shall show that A is equivalent
to H1+'.

By Lemma 2(c), a p+'; thus by Lemma 4,
IA-+ Hf+'vHflv 1 `1v 1'1. By Lemma 5(a),
---i0'"1-+(Hf+;-+H(f+;)-(;")) By Lemmas 2(d) and 4
and the fact that i>j, I- i `1-+(Hp+'->H/3). Thus
I-A--»Hf +' v Hfl v i±. But since dj >j, by Lemma 5(b),
-Dfl+i -H/3 v 0'1. Thus FA-.-,H#+' v Dp+', i.e.,

Df+', and so f-DA
Conversely, again by Lemma 5(b), v 0'1),
whence HHf +' -* A. So A is equivalent to H/3+'.

Now for the easier case of ED A:

Lemma 6. Let F be a truth functional combination of sentences
C. Then F-10 (F v G)4-+(F v G).

Proof. F is equivalent in the propositional calculus to some
conjunction of disjunctions of sentences C and - C, and so is
-iF. But since -1 C,
f- OO F1 v U1F2 -. (F1 v F2), and H F1 n F2 -> 1 (F1 n F2),
it follows that F- F -> 1 F, and likewise, H -i F -> 1 -i F. Since
H 1 F -> (F v G) and I- G-+ 1 (F v G), F-(F v 1 G)-> (F v G).
Conversely, I- -i F --+ l -I F, whence F- -, F n 1 (F v G) -> l G, and
therefore (F v G) --. (F v G). -1

Sentences Ha are of course truth-functional combinations of
sentences C. (If a = oo, Ha is T, which certainly is such a
combination.) If A is of form (1), then by Lemma 6, l A is equivalent
to -, Ha v 1 -i 1 `1, and hence to Ha v E I. If A is of form
(2), E A is equivalent to -i Ha v H/3 v 1 -i 0 `1, and hence to
-'Ha v Hf3 v D 1. If A is of form (3), then A is equivalent to
Ha v H8 v O(-, 1 `1 v 0'1), and thus, since i >j, equivalent to
-i Ha v HP v '+ 11. In all three cases then, we have found a nice
equivalent of A.

GLB is also the joint logic of provability and provability
under the w-rule in analysis

We conclude by stating a theorem about GLB and analysis. For
any realization * (now a function from the sentence letters of modal
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logic into those of analysis) and any bimodal sentence A, define A*
by:

P* _ *(P)
1*=1,

(A -> B)* _ (A* -> B*)
(A)* = Bew (rA *,)

Ill (A)* = O(rA*-')

Here Bew(x) is the standard provability predicate for analysis and
O(x) is the formula defined in Chapter 14, naturally expressing
provability in analysis under the (o-rule.

By routinely superimposing the appropriate notions from analyis
defined in Chapter 14 onto the completeness proofs for GLB and
GLSB of Chapter 15 (replacing w-provability, in particular, by
provability in analysis under the w-rule), the following informative,
but by now unsurprising, theorem can be proved.

Theorem. Let A be a bimodal sentence. Then GLB I- A ifffor
all *, A* is a theorem of analysis; and GLSB I- A iff for all *,
A * is true.
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Quantified provability logic

Here and in our final chapter we study quantified (or predicate)
provability logic. We consider translations of formulas of quantified
modal logic (QML) into the language 2 of arithmetic under which
the box of modal logic is taken, as in earlier parts of this work,
to represent provability in arithmetic. In the "pure" predicate
calculus, function signs, the equals-sign = , and modal logical symbols
such as and O do not occur. We shall define an expression to
be a formula of QML if and only if it can be obtained from a
formula of the "pure" predicate calculus, by replacing (zero or more)
occurrences of the negation sign with occurrences of . Thus
and -i have the same syntax in QML, as was the case in proposi-
tional modal logic.

Our results are negative: we show that there are no simple
characterizations of the always provable or always true sentences
of QML. Apart from the definition of the sentence D and Lemma
7 below, curiously little use is made of the quantificational-modal-
logical properties of Bew(x). Indeed, the main definitions, techniques,
and theorems that are to follow may seem to come from a branch
of logic rather unrelated to the one we have been studying up to now.

We shall suppose that the variables, vo, vl, ... , are common to
the languages of QML and of arithmetic. The first n variables are,
of course, vo, ... , vn _ 1.

A realization is a function * from a set of predicate letters to
formulas of 2 such that for all n, if n is an n-place predicate letter
in the domain of *, then *(n) is a formula in which exactly the first
n variables occur free. A realization of a formula F of QML is a
realization whose domain contains all predicate letters occurring in F.

We write: 7r* instead of: *(ir).
For every formula F of QML and realization * of F, we define

the translation F* of F under * as follows:
If F is the atomic formula 7rx 1, ... , xn, then F* is the result

n*(x1, ... , xn) of respectively substituting x1, ... , xn for v0,. .. , vn _ 1

in -n*. (As usual, the bound variables of 7r* are supposed rewritten,
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if necessary, so that none of x1,. .. , x is captured by a quantifier
in n*.)

(F -> G)* is (F* -> G*);
1* is 1;
[and therefore (-i F)* is -i (F*), (F A G)* is (F* A G*), etc.];
(3xF)* is 3x(F*);
[and therefore (VxF)* is Vx(F*)]; and
( F)* is Bew [F*] (cf. Chapter 2).

Let us notice that F* contains exactly the same variables free as
F, that formulas beginning with quantifiers require no special
treatment, and that F* depends only on the formulas that * assigns
to predicate letters actually contained in F.

We call a sentence S of QML always provable if for all realizations
* of S, S* is a theorem of PA, and always true if for all realizations
* of S, S* is true (in the standard model N). We are going to give
characterizations of the class of always provable sentences and of
the class of always true sentences.

In the present chapter we shall prove that the class of always
true sentences cannot be defined by a formula of the language of
arithmetic and the class of always provable sentences cannot be
axiomatized, i.e., recursively axiomatized. These theorems are due,
respectively, to S. N. Artemov and V. A. Vardanyan and were
discovered in 1984 and 1985. We shall also prove a refinement of
Artemov's result due independently to Vann McGee, Vardanyan,
and the author. In the next chapter we prove a remarkable result,
also due to Vardanyan, according to which these theorems hold
even for the tiny fragment of QML containing only one one-place
predicate letter (and in which nesting of boxes is forbidden!).

We shall try -to make our treatment of these results almost
completely self-contained, and to this end we now give a brief review
of some basic concepts and results of recursion theory. There are
many easily accessible sources in which a full (and adequate) treat-
ment of these notions may be found. -I

A brief review of some recursion theory

We begin with the notion of an oracle machine; like that of a Turing
machine, the idea is due to Turing.
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We say, intuitively, that a function f is computable in a set A of
natural numbers if there is a machine which computes f, but from
time to time interrupts its computation to ask questions of an
external source of information, an "oracle". The questions have the
form: Is neA?, where n is the number of l's on the machine tape
at the time the computation is interrupted. To make this idea
precise, we need the idea of an oracle machine.

An oracle machine is a kind of Turing machine in whose table
there may occur instructions of a special kind, oracle instructions:

< (state)i, (symbol)s, (state) j1, (state) j2

The idea is that an oracle machine whose table contains the instruc-
tion < i, s, j 1, j2 >, when it is in state i scanning a symbol of type s,
stops to ask whether the number of is then on its tape belongs to
a certain set of natural numbers. The machine will resume its
computation and enter state j1 if it receives a "yes" answer from
the oracle and enter state j2 if it receives a "no". Every ordinary
Turing machine (trivially) counts as an oracle machine.

A (halting) computation by an oracle machine will be said to be
correct for a set A of natural numbers if whenever < i, s, j 1, j2 > is a
special instruction in its table, then for any moment of the computa-
tion at which the machine is in state i scanning a symbol of type
s, the machine enters state j1 at the next moment if the number of
is on its tape is in A and enters state j2 at the next moment if not.

We shall assume ourselves to be employing some formulation of
the notion of an oracle machine that satisfies the following condition:
if k is the Godel number of any computation by an oracle machine
and n is a number about which the oracle is questioned during the
computation, then n < k. On all standard accounts, this condition
is met.

We let: i abbreviate: i 1, ... , in.

The relativized Kleene T-predicate T. is the relation that holds
among numbers e, i, k, and set A if and only if k is the Godel number
of a halting computation that is correct for A by the oracle machine
with Godel number e when given the inputs i. One writes: TA (e, i, k),
dropping the subscript `n' when n = 1 and omitting the superscript
`A' when A is N.

A total n-place function f is recursive in the set A of natural
numbers if and only if for some oracle machine M, for all i, f(i) is
the number yielded as output in any halting computation of M
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that is correct for A, when M is given input i. Intuitively, a function
is recursive in A if it can be computed by a machine with the aid
of answers from an oracle which responds with answers that are
correct with respect to the set A whenever an inquiry is made of
it. As ever, a relation is recursive in A if and only if its characteristic
function is recursive in A. A function is recursive if and only if it
is recursive in N (= recursive in 0 = recursive in every set).

For any set A, the relation TA, = { <e, i, k>: TA(e, i, k)}, is recursive
in A: first decide whether k is the Godel number of a halting
computation C for the oracle machine with Godel number e when
given input i. If not, then not: TA(e, i, k). But if so, then test (with
the aid of an oracle for A) each of the finitely many numbers about
which the oracle is questioned during C to determine whether or
not k is correct for A. If so, then TA(e, i, k); if not, then not: TA(e, i, k).

We now inductively define the relations that are E0°, in A and
the relations that are fl in A:

A relation R is Eo in A, or fl in A, if R is recursive in A.
An n-place relation R is Em+ 1 in A if for some (n + 1)-place

relation S that is no in A, R = {i:3jS(i, j)}.
An n-place relation R is rVM+ 1 in A if for some (n + 1)-place

relation S that is Em in A, R = {i: VjS(i, j)}.
Thus a relation is fl in A if and only if its complement is E,°n in A.
The relations that are E° in A are often called recursively enu-

merable in A (r.e. in A, for short).
Every relation R that is recursive in A is both E° and II° in A:R =

{i: 3j(R(i) n j = j)} = {i: `dj(R(i) A j = j)}. (Note that { <i, j>: R(i) A
j = j} is recursive in A if R is.) By similarly tacking on vacuous
quantifiers we see generally that every relation that is either in
AorfminAisbothI,°n+I in A and in A.

The existence of recursive unpairing functions rll and r12 enables
adjacent quantifiers of the same kind, existential or universal, to
be "collapsed". For example, {i: 3 j13 j2S(i, j1, j2)} = {i: 3 jS(i, i1(j),
f12(J))}. (The relation {<i,j>:S(i,ti1(j),rl2(j))} will be in A if
SisE,°ninAandII'°,inAifSisrI0 in A.)

By collapsing adjacent quantifiers we see that the intersection of
two r.e. relations is r.e., the union of two r.e. relations is r.e., and
that the projection (existential quantification) of an r.e. relation is
r.e. A set is arithmetical if it is defined by some formula of the
language 2' of arithmetic. By converting formulas of 2' to prenex
form and collapsing adjacent quantifiers of the same kind, we see
that a set is arithmetical if and only if it is E,° or no, for some m.
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The truth set V is the set of Godel numbers of the sentences of
2' that are true in the standard model N. By Tarski's theorem, V
is not arithmetical. However, for each r, the set V, of Godel numbers
of sentences of 2' that are true and contain < r occurrences of the
logical operators is arithmetical.' Every arithmetical set is recursive
in V: if F(x) defines A, then A = {i: the Godel number of F(i) e V}.

Kleene's enumeration theorem states that for every relation
R recursively enumerable in A, there is an e such that R =
{i: 3 kT ' (e, i, k) }. [Proof : Suppose that R = {i: 3 kR'(i, k) }, with R'
recursive in A. Let e be the Godel number of a machine that, with
the aid of an oracle for A, when given any input i, tests each natural
number k in turn to determine whether or not R'(i, k). If and when
the machine finds a k such that R'(i, k), it outputs 0 (arbitrarily)
and halts. Then R = {i: 3 kTn (e, i, k)}.]

It follows that if a set S is Em in A, then for some e,S=
{is3k,dk2...Qkm\TA(e,i,k1,k2,...,km)}, where Qisdand\TAis TA

ifm is even, and Q is 3 and \TA is TAifmisodd. ForifSisEminA,
then for some relation R recursive in A, S =
{is3k1`dk2...QkmR(i,k,,k2,...,km)}. By Kleene's enumeration
theorem, for some e, { < i, k,, k2, ... , km _ 1 > : 3 km\R(i, k 1, k2, ... , km) }

_ {<i,k1,k2,...,km_1>:3kmTA(e,k,,k2,...,km)}, and therefore S =
{is3klVk2...Qkm\TA(e,i,kI,k2,...,km)}. (Take complements if m
is even.)

Let Km = i,kl, k2,...,km)}. Km is Em in A.
However, N-Km is not Em in A, as the usual Russellian argument
shows: Suppose N-Km is Em in A. Then for some e, N-Km =
{i:3k1Vk2...Qkm\T A(e,i,kl,k2,...,km)}. But then eeN-K An if
3k1Vk2...Qkm\TA(e,e,k,,k2,...,km), iff eeKm, contradiction.

A set S is called nm-complete in A, m > 0, if it is no in A and
for every set S' that is nm in A there is a recursive function f such
that S' _ {i: f(i)ES}. "Em-complete in A" is defined analogously. S
is no-complete in A if N-S is Em-complete in A.

If S is no-complete in A. then it is not Em in A. For suppose S
is Em in A. Then by Kleene's enumeration theorem as above, for
some e,S={i:3kjVk2...Qkm\T A(e,i,kl,k2,...,km)}. Since N-KA
is Hm, if S is also n,-complete in A. there is a recursive function
f such that N-KAA= {i: f(i)eS} = {i:3k,Vk2...TA(e, f(i),kl,k2,...)},
and then N-KA is Em in A. which is not the case.

Thus if a set S is II 2-complete, then it is not 1:1, hence not n °,
E°, or recursive. And if a set S is n'-complete in V. then S is not
E° in V, hence not recursive in V. or arithmetical.

End of the brief review of some recursion theory.
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The full statement of Vardanyan's theorem employs the concept
of a H2-complete set; it states that the class of always provable
sentences of QML is no-complete; the refinement of Artemov's
theorem referred to above is that the class of always true sentences
is II'-complete in the truth set V for arithmetic.

The reader who is already somewhat familiar with elementary
recursion theory may have noticed that the situation as regards the
axiomatizability or decidability of predicate provability logic is
worst possible, in a precise technical sense. For since the identity
of S* depends only on S and on what * assigns to predicate letters
actually occurring in S, S is always provable if and only if S* is
provable in arithmetic for all * that assign formulas to all and only
the predicate letters occurring in S. Such finite realizations * can
be coded by natural numbers, and the set of Godel numbers of
always provable sentences S will then be no at worst, for it is the
set of Godel numbers of sentences meeting the following condition:
for all * (that assign formulas to all and only the predicate letters
of S) there is a proof in PA of the result of substituting n* for each
predicate letter it contained in S. By Vardanyan's theorem and a
basic result of recursion theory reviewed above, the class of always
provable sentences of QML cannot have a characterization that is
simpler than H. Since the class of derivable sentences of any given
axiomatization is always characterizable, more simply, as a E°
(= r.e.) class - a sentence S is a theorem if and only if there is a
proof of S - the always provable sentences cannot be axiomatized.

Similarly, as regards the always true sentences. Since a sentence
S is always true if S* is true for all * (that assign formulas to all
and only the predicate letters of S), the class of always provable
sentences is at worst II° in V: for all * (that assign . . ), S* is true.
The theorem of McGee, Vardanyan, and the author implies that
the always true sentences lack any simpler classification.

The contrast with propositional provability logic and the ordi-
nary, non-modal, predicate calculus is sharp. GL axiomatizes the
class of always provable sentences of propositional modal logic;
GLS, the class of always true sentences of propositional modal
logic. These systems are decidable, as we have seen, and therefore
so are the classes they axiomatize. And according to the Hilbert-
Bernays extension of the Skolem-Lowenheim theorem, a sentence
of the pure predicate calculus that is not valid is false in some model
whose domain is the set of natural numbers and in which the
predicate letters are assigned arithmetically definable relations.'
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Thus the class of valid sentences of the pure predicate calculus,
which, of course, is axiomatized by any standard (Hilbert-style)
formalization of logic, coincides with both the class of always
provable sentences of the pure predicate calculus and the class of
always true sentences of the pure predicate calculus.'

Vardanyan's theorem settled a long-standing problem. In the
precursor to this work, dated 1979, its author wrote, "One major
open question in this area is whether the set of theorems of the
relevant system is recursively enumerable,"4 but the problem had
been formulated by Kripke some fifteen years earlier.

The problem of characterizing the always provable and the
always true formulas of QML is also a highly natural one. In her
pioneering study of quantified modal logic, Ruth Barcan Marcus
had investigated the formula O 3 xFx -> 3 x O Fx, now known as the
Barcan formula. The Barcan formula is not always true, as we may
see by taking F* as Proof (vo, 1-1,), but its converse 3 x O Fx -->
O 3xFx is always provable, as can be seen by formalizing a proof
of the fact that an existential quantification is consistent if one of
its instances is. It is entirely natural to try to characterize axio-
matically the formulas that, like the converse Barcan formula,
exhibit such good behavior.

For a long time, the conjecture went unrefuted that the always
provable formulas are axiomatized by the system obtained simply
by adjoining ordinary quantificational logic to GL. In 1984, how-
ever, Franco Montagna gave an example of an always provable
sentence that was not a theorem of this system. And in the following
year, Vardanyan's II2-completeness theorem put an end to the
search for axiomatizations of quantified provability logic.

There are well-known difficulties that are thought to attach to
quantified modal logic. Quine has argued that, along with the
unclarity of the notion of necessity, there is an extra obscurity that
arises when one "quantifies in", i.e., when one attaches a quantifier
ranging over arbitrary objects to a formula containing a modal
operator meaning "it is necessary that". The difficulty, it should be
observed, is not so much with the quantifier as with the interpreta-
tion of "open sentences" (formulas with free variables) whose princi-
pal connective is ; once the interpretation of a boxed open
sentence . x is determined, there is no further problem in
saying what `d x . . . x means. To do so, one may first say: "It
means: no matter which object x may be," and then say something
U that expresses the meaning of . . . x . Whatever obscurity this
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explanation of the meaning of `dx x. may possess will lie
wholly in U.

Difficulties over the interpretation of boxed formulas with free
variables are sidestepped in our present, arithmetical, context,
thanks to the notions of the numeral for a number and the operation
of substitution. Under the provability interpretation of , a formula

A containing just the n variables x1,. .. , x free will be true of
the numbers i 1, ... , i (with each i; assigned to x) if and only if the
sentence that results when the numerals for are
respectively substituted in A for the variables x1, ... , x is provable.
There is nothing at all in this explanation of the truth-conditions
of A to which even the strictest of Quineans could take exception.

Difficulties, however, would apparently confront one attempting
to do set-theoretical quantified provability logic. How can one give
a definition, even inductively, of what it is for an arbitrary set to
satisfy a formula provably? Only for a language whose symbols were
so numerous as not to form a set, it seems, could one give an account
of the meaning of formulas A containing free variables ranging
over all sets that is parallel to the one we have given for formulas
with free variables over all natural numbers.

Let us now put these worries aside and take up the study of
quantified provability logic in the arithmetical setting in which it
is certainly possible. Our first aim is to develop the techniques
needed for a proof of Artemov's theorem that the set of always true
sentences of QML is not arithmetical: no formula of the language
of arithmetic is true of exactly the Godel numbers of the always
true sentences of QML.

2' is the language {0, s, +, x } of arithmetic.
Let G be a one-place predicate letter.
q+ is 2'u{G}.
For each atomic formula F of 2+, let F be some standard logical

equivalent of F with the same free variables, and built up by
conjunction and existential quantification from atomic formulas of
one of the six forms u = v, 0= u, su = v, u + v = w, u x v = w, and
Gu. For example, if F is ss0 + sO = x, F might be 3y3z3 w(0 = y A sy =
z A SZ = w A w + z = x). We define F for non-atomic formulas of 2'+
by letting n commute with truth-functional operators and quantifiers.

Now let Z be a one-place predicate letter other than G, let E and
S be two two-place predicate letters, and let A and M be two
three-place predicate letters. For each formula F of 2+, let {F} be

the formula obtained from F by replacing each formula u = v, 0 = u,
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su = v, u + v = w, u x v = w by Euv, Zu,, Suv, Auvw, Muvw, respec-
tively. (Formulas Gu are left alone.) {F} is a formula of the pure
predicate calculus with the same free variables as F.

We now introduce a certain sentence T of the language 2' of
arithmetic. Which sentence T may be taken to be will become clear
as we proceed. T should be thought of, for now, as a conjunction
of axioms of arithmetic, among whose conjuncts are the equality
axioms and identity axioms for 0, s, +, and x, the logically valid
sentence 3x 0 = x A bxVy(0 = X A 0 = y-. x = y), together with simi-
lar valid sentences expressing that s, +, and x define functions,
the usual recursion axioms for zero, successor, plus and times, and
certain other theorems of arithmetic. Thus one of the conjuncts of
{T} will be the sentence 3 xZx A `d xV y(Zx A Zy -+ Exy) (which is
definitely not logically valid).

For any realization * of { TI, let *R(x, y), or R(x, y) for short, be
the formula of 2':

3 s(FinSeq(s) A lh(s) = x + 1 A s,, = y n Z*(so) A dz < xS*(sZ, sZ+ 1))

We may think of R(x, y) as saying that y represents x in the
model determined by the realization *. In general, a number x will
be represented by many y, but the class of y that represent x will
turn out be an E*-equivalence class, because axioms expressing the
reflexivity, symmetry, and transitivity of identity are included among
the conjuncts of T.

We now let * be an arbitrary realization.

Lemma 1. PA F- { T} * -* `dx 3 yR(x, y).

Proof. Work in PA. Assume that {T}* holds. Now use induction
on x. Suppose x = 0. Since, as we have assumed, one of the conjuncts
of T is the sentence 3 x 0 = x, one of the conjuncts of { T J is 3 x Zx,
and one of the conjuncts of {T}* is 3xZ*(x). Thus for some y, Z*(y).
Let s be the finite sequence of length 1 such that so = y. Then R(0, y).

For the induction step, suppose as inductive hypothesis that for
some y, R(x, y). Let s be a finite sequence as in the definition of R
that witnesses the truth of R(x, y). Since, as we may assume, one of
the conjuncts of T is `d x 3 x' sx = x', one of the conjuncts of {T}*
is Vx3x'S*(x,x'). Thus for some y', S*(y, y'). Let s' be the finite
sequence of length x + 2 extending s such that sX+ 1 = y'. Then s'
witnesses the truth of R(x + 1, y'). -I

Lemma 2. PA I {T}* A R(x, y) A E*(y, y') -+ R(x, y').
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Proof. The proof is an induction on x like that of Lemma 1. For
the basis step we assume that T contains dxdx'(0 = X A x = X'-+
0 = x'); for the induction step we assume that T contains
`dxdx'Vx" (Sx = x' n x' = x" -* Sx = x"). -i

Lemma 3
(a) PAI .{T}* A R(x,y) A R(x',y')->(x=x'4- E*(y,y'));
(b) PAF-{T}* A R(x,y)->(O=xHZ*(y));
(c) PAF-{T}* A R(x,y) A R(x',y')->(sx = x'+.+S*(y,y'));
(d) PA F- { T} * A R(x, y) A R(x', y') A R(x", y")

(x + x' = x" +-' A*(y, y', y"));
(e) PA F- { T} * A R(x, y) A R(x', y') A R(x", y") -,

(x x x, =
Y" Y"))

Proof. The proof of each of these is similar to that of Lemma 1.
One first observes that a certain finite number of simple theorems
about the natural numbers can be proved in PA. Since these
theorems may be assumed to be conjuncts of T, braced-and-starred
versions of them may thus be assumed to follow form {T}*. One
then appeals to the facts stated in these versions in order to prove
the proposition by induction. H

We readopt a convention we adhered to in Chapter 2. `x' abbre-
viates 'x1, ... , and 'y' abbreviates We let `R (x, y)'
abbreviate `R(x1, Y1) A . A R(x

Lemma 4. Let F(x) be any formula of Y. Then
PAF-{T}* A dy3xR(x,y) A

Proof. Induction on the construction of F, = F(x). We may assume
that every atomic formula of F is of one of the forms u = v,
0 = u, su = v, u + v = w, or u x v = w. Lemma 3 takes care of the
atomic cases; the truth-functional cases are handled as usual. As
for the quantifier case, `d x 3 y R(x, y), which follows from { T} * by
Lemma 1, and `dy3xR(x,y), which is a conjunct of the antecedent,
suffice for the deduction of Lemma 4 for 3xF from Lemma 4 for
F.

We now aim to find a formula D of QML such that D* may
replace the conjunct `dy3 xR(x, y) in Lemma 4.

A bounded formula of £ is one that is built up from atomic
formulas and their negations by truth-functional operations and
bounded existential and universal quantification.
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Lemma 5. Let F(x) be any bounded formula of Y. Then
PAH {T}* A R (x, y)-+(F(x)*.{F)*(y)).

Proof. Induction on the construction of F(x). Lemma 3 takes care
of the atomic case; the truth-functional cases are as ever. In the
bounded quantifier case, suppose that F(x, x) is Vz < xG(x, z) and
Lemma 5 holds for G(x, z). Now proceed by induction in PA on x.
Assume {T}*, R(x, y), and R(x, y). Suppose x = 0. Then certainly
F(x, x). But since R(0, y), Z*(y). We may assume that Vz-i z < 0 is
one of the conjuncts of T. Thus also Vz-i z{ < }*y. But then we
have `dz{ < }*yG(y, y), i.e., {F}*(y, y}.

Suppose x = sx'. Then for some y', R(x', y') and S*(y', y). And
then F(x, x) if F(x, x') and G(x, x'), if by the i.h. and Lemma 5
for G(x, x), {F}*(y, y'), and {G}*(y, y'), if `dz{ < }*y'{G)*(y, z) and
{ G} * (y, y'). Since S*(y', y) and `d x' `dz(z < sx' -+z < x' v z = x') is a
conjunct of T, as we may assume, z { < } *y if z { < } *y' or z { = } *y.
The obvious induction on the construction of G shows that if
z{ = }*y', then {G}*(y, y') iff {G}*(y, z). Thus dz{ < }*y'{G}*(y, z) and
{G}*(y,y') if bz{<}*yG(y,z), i.e., {F}*(y,y). -4

Lemma 6. Let F(x) be any E formula of Y. Then
PAi-{T}* A

Proof. By Lemma 5 it suffices to deduce Lemma 6 for 3xF from
Lemma 6 for F, = F(x, x). Work in PA. Suppose {T}* and R(x, y).
By Lemma 1, for some y, R(x, y). Thus if F(x, x), then by Lemma 6
for F(x, x), {F} *(y, y), and then also 3 x{F} *(y, x), i.e., {3xF} *(y).

Let K(x) be a formula of arithmetic. The formula of arithmetic
expressing that K(x) defines a recursive relation is a formula built
up from K(x) stating that there is a Turing machine u such that
for every n-tuple i of natural numbers, y outputs 0 (yes) if K(i) holds
and outputs 1 (no) if K(i) does not hold.

Let D be the following formula of QML:

OT A
VX(ZX -+ Zx) n `d x(-1 Zx - Zx) A

Vx`dy(Exy-. Exy) A VxVy(-,Exy- -,Exy) A
`dxVy(Sxy -+ Sxy) A d xV y(-i Sxy -1- Sxy) A

Vx`dyVz(Axyz-> Axyz) A Vxb'ydz(-iAxyz- -iAxyz) A
dxVyVz(Mxyz-+ Mxyz) A VxbyVz(-iMxyz-+ -iMxyz)
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Lemma 7. PA I- D* -+ Z*, E*, S*, A*, and M* define recur-
sive relations.

Proof. Work in PA. Suppose D* holds. Then (O T)* holds, i.e.,
arithmetic is consistent. Consider, e.g., A*. The following algorithm
decides A*: Given numbers x, y, z, run through all proofs in PA
until a proof of A*(x, y, z) or a proof of -' A*(x, y, z) is found. If a
proof of the former is found first, output 0; if a proof of the latter
is found first, output 1. By the consistency of arithmetic, it is not
the case that both have a proof; by the law of excluded middle, one
or the other holds; and by the eighth and ninth conjuncts of D*,
whichever holds has a proof. -I

Lemma 8. PAI-{T}* A D*-+by3xR(x,y).

Before we begin the proof of Lemma 8, let us remark on the
strategy of Lemmas 7 and 8. Think of * as defining a model of
some theory of the natural numbers, in the natural numbers. In
this model, the numbers that satisfy Z* will all represent zero; there
may well be more than one of them, but they will all be E*-
equivalent. Lemma 1 assures us that every natural number has a
representative in the model defined by *. We would like to arrange
matters so that, "modulo" E*-equivalence, the model is isomorphic
to the standard model of arithmetic. Now it is a familiar fact that
any model in which a certain small finite number of theorems of
PA hold will have an initial segment that is isomorphic to the
standard model, and according to Tennenbaum's theorem,' such
a model will be standard if the relations assigned to + and x are
recursive.

The first use of Tennenbaum's theorem in a similar situation
appears to be due to V. E. Plisko, who proved that the set of
realizable formulas of the predicate calculus is not arithmetical.'

Lemma 7 has just shown us how, with the aid of a formula of
QML, to guarantee that the relations assigned by * to A and M
are recursive. The consequent in Lemma 8 states that every number
is a representative: the model is standard. Not surprisingly then,
our proof of Lemma 8 recapitulates one of the usual proofs of
Tennenbaum's theorem.

Proof of Lemma 8. Let C(e, x, z) be a E formula defining the notion
"e is the Godel number of a Turing machine that halts on input i
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with output m". Let Co(x) and C 1(x) be the E formulas C(x, x, 0)
and C(x, x, 1). We may assume that T implies the sentence

A C1(x))
Let Bo(a, b, i) and B1(a, b, i) be the formulas

3q(gx(1+(i+1)xb)=a)
and

3q((gx(1+(i+1)x b))+1=a)
fl-function technology (applied to characteristic functions of the

set defined by F(x), so that remainders are either 0 or 1) shows that
for any formula F(x) of arithmetic, the following sentence is a
theorem of PA:

`d k 3 a 3 bV j < b, j)) A (-, F(j) -B1(a, b, j))

In particular, the sentence S

V k 3 a 3 b`d j < k((Co(j) H Bo(a, b, j)) A (-i Co(j)'--' B1(a, b, j))

is a theorem of PA. We assume that T implies S.
Now work in PA. Assume IT)* and D*. Suppose, for reductio,

that d y 3 xR(x, y) is false. Let k be such that for no r, R(r, k). Since
T implies S, { T} * implies {S} *, and S* yields numbers a, b such
that for every j, if j{<}*k, then {Co}*(j) if {Bo}*(a,b, j) and not:
{Co}*(j) if {B1}*(a,b, j).

Since D* holds, by Lemma 7, Z* E*, S*, A*, M* define recursive
relations. Since Z*, E*, S*, A*, M* define recursive relations, {Bo}
and {B1 } are equivalent to formulas built up from Z, E, S, A, M by
existential quantification, conjunction, and disjunction, and {Bo}*
and {B1}* therefore define r.e. relations.

It is apparent from the definition of the formula R(x, y) that since
Z* and S* are recursive, R(x, y) also defines an r.e. relation.

We now describe the action of a certain Turing machine p.
Applied to any number i, p begins by finding a number j such that
R(i, j) holds. According to Lemma 1, some such j will always exist,
and since the formula R(x, y) defines an r.e. relation, j can be found
effectively. p then looks for witnesses to the truth either of
{Bo} *(a, b, j) or of {B1 } *(a, b, j). If it first finds a witness to the truth
of {Bo}*(a,b, j) it outputs 1; if it first finds a witness to the truth of
{B1}*(a,b, j), it outputs 0.

We now show that p is totally defined, that is, gives an output
for every input. It is sufficient to show that if R(i, j), then j { < } *k,
for if j f < } *k, then since C0(j) either holds or does not hold, a
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witness to the truth of {Bo } *(a, b, j) or { B1 } * (a, b, j) will exist and
so p will output 1 or 0 on every input i. We may assume that T
implies `dx0<x,Vx`dx'(x<x'->sx<x'),anddxdx'(x<x' n x x'-+
x<x'). If R(0,j), then by {T}*, j{<}*k. But -iR(O,k), and, by
Lemma 2, -1 E*(j, k). Thus j{ <}*k. For the induction step, suppose
that R(i + 1, j). Then for some j', S*(j', j), R(i, j'), and by the induc-
tion hypothesis, j' { < }*k, whence j { < } *k. But, again, since
-i R(i + 1, k), -, E*(j, k) and so j{ < } *k. Thus for every i, if R(i, j),
j{<}*k.

Now let i be an arbitrary number. Let j be the number such that
R(i, j) that is found by p when given input i. By the above, if < } *k.
If C0(i), then by Lemma 6, {Co}*(j), and therefore {Bo}*(a, b, j) but
not {B1}*(a,b, j), thus p outputs 1. If C1(i), by Lemma 6 again,
{C1}*(j), and then since T implies dx-i(C0(x) A C1(x)), not {Co}*(j);
therefore {B1}*(a, b, j) but not {Bo}*(a, b, j); thus p outputs 0.

Thus p outputs 1 on input i if Co(i), and p outputs 0 on input i
if C1(i), for every naural number i.

It is, however, absurd that there should be such a machine p.
Otherwise, let e be its Godel number. Then if C0(e) holds, p outputs
1 on input e, C(e, e, 1), C1(e), and not C0(e); if not C0(e), then p
does not output 1 on input e, it outputs 0 on input e, C(e, e, 0), and
C0(e). The contradiction shows that `dy3xR(x,y) holds. -I

Artemov's lemma. Let F(x) be any formula of Y. Then
PAI_{T}* A D* A IF) *(y) ).

Proof. Artemov's lemma immediately follows from Lemmas 4, 7,
and 8. -A

Theorem 1 (Artemov). The class of always true sentences is
not arithmetical.

Proof. By Tarski's theorem, V is not arithmetical. To prove the
theorem, it will suffice to show that there is a one-one effective
function ! that reduces V to the class of sentences of QML that are
always true.

For any sentence S of P, let S! be the sentence { T} A D -+ {S} of
QML. We show that S is true if and only if S! is always true.

By specializing Artemov's lemma to the case in which F(x) is a
sentence of 2, we see that for every realization *, the sentence
{T}* A D* is a theorem of PA and therefore true.

Suppose S true. The for every *, {T}* A D* - {S}* is true, and
therefore S! is always true.
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Conversely, suppose S! always true. Then, where * is the realiza-
tion that assigns 0 = vo, vo = v1, svo = v1, vo + v1 = v2, and vo x v1 =
v2 to Z, E, S, A, M, respectively, {T}* A D* --* {S} * is true. But {T}*
is equivalent to T, and hence true, and D* is also true, by the
consistency of arithmetic and provable 1-completeness. Thus {S}*
is true. But {S}* is equivalent to S. -1

The set of Godel numbers of always provable sentences is not r.e.

We turn now to Vardanyan's result that the set of Godel numbers
of always provable sentences is not r.e., and therefore the always
provable sentences cannot be axiomatized.

We remarked above that the set of Godel numbers of always
provable sentences is r12. In full detail: Let R(i, j, k) if and only if
(i is the Godel number of a sentence S of QML and if j is the Godel
number of a realization * that assigns formulas of 2' to all and only
the predicate letters of S, then k is the Godel number of a proof in
PA of the result of substituting in S for those predicate letters the
formulas assigned to them by *). Then R is a recursive relation,
and i is the Godel number of an always provable sentence if and
only if for every j there is a k such that R(i, j, k).

We want now to prove that the set of Godel numbers of always
provable sentences is

n2-complete. To do so, we need an alternative
characterization of the n2 sets.

Lemma 9. S is a II2 set if and only if for some recursive
relation P, S = {n: Yi3 j(j > i n P(n, j)) }.

Proof. Suppose that S = {n: de 3mR(n, e, m) }, with R recursive. Let
P(n, j) iff j is (the Godel number of) a finite sequence such that for
all e < the length of j, je is the least m such that R(n, e, m). P is
recursive. If neS, then for every natural number e there will be such
a finite sequence with length e + 1, and thus there will be infinitely
many such finite sequences. And if there are infinitely many such
sequences, then since any two of them have the same values for
arguments less than their length, there will be at least one
such sequence y of length e + 1, and then R(n, e, je). Thus S =
{n:Vi3j(j> i n P(n, j))}.

Conversely, if P is recursive and S = {n: di3 j(j > i n P(n, j))}, then
S is visibly n,. -I
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Theorem 2 (Vardanyan). The class of always provable sen-
tences is H -complete.

Proof. Suppose that S is n'. Since the class of always provable
sentences is itself r l', to prove the theorem it suffices to show how
to effectively associate with each natural number n, a sentence
of QML such that S = {n: for all *, PA H 4*}.

By Lemma 9, let P be a recursive relation such that S =
{n:Vi3j(j>i n P(n, j))}.

Let Q be a E formula that defines P.
Let E be the sentence `d z`d z'(Ezz' -* ( Gz<-+ Gz')) of QML.
Write Q(n,y) as
Let H(v, z) be a E formula naturally formalizing "v is the Godel

number of a Turing machine that halts on input z". We may take
H(v, z) to be 3 yC(v, z, y), with C as in Lemma 8.

For each n, let &n be the QML sentence

{T} A D A E->3v3w(v{<}w A {Qri}(w) A

We are to show that neS if and only if for every *, PA F-- 45**
Suppose neS. Let * be arbitrary. We show that PA H O*, i.e.,

PAF-{T}*AD*AE*
-*3v3w(v{<}*w A A dz(Bew[G*(z)]<--*{H}*(v,z))).

(1) For some natural number x,
PAF-D*->((3z(R(z0,z) A Bew[G*(z)])HH(x,z0))

Proof. Work in PA. Suppose D* holds. Then, by the argument
of the proof of Lemma 7, Z*, E*, S*, A*, and M* are all equivalent
to E formulas, for (e.g.) i, j satisfy S* if there is a proof of S*(i,j)
with a smaller Godel number than any proof of -i S*(i, j), a property
of pairs of numbers defined by a E formula. Therefore R(zo, z) is a
E formula, and since Bew[G*(z)] is also E, so is the left-hand side
of the consequent. It is routine to show by induction on the
construction of strict E formulas that for every strict E formula
F(z), there is (a Godel number of) a Turing machine y such that
it is provable in PA that µ halts on just those numbers that satisfy
F(z). But the left side the consequent is a E formula, and hence
equivalent to some strict E formula. H

Now fix the number x as in (1).

(2) PAF-{T}* n D* n E* n R(zo,z)_(Bew[G*(z)]F+H(x,zo)).
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Proof. Work in PA. Assume the antecedent. By (1), if Bew[G*(z)],
H(x, zo). Conversely, assume H(x, zo). By Lemma 1, for some z',
R(zo, z') and Bew [ G*(z')]. By Lemma 3, since R(zo, z) and R(zo, z'),
E*(z,z'). But then by E*, Bew[G*(z)]. -1

(3) PAI-{T}* n D* n R(x,v) n R(zo,z)--+(H(x,zo)4_*{H}*(v,z)).

Proof. (3) is an instance of Artemov's lemma. -1

By (2) and (3),

(4) PA I- { T} * n D* n E* n R(x, v) n R(zo, z)

-- (Bew [G*(z)] <--> {H}*(v, z))

By Lemma 8, PA F- { T} * A D* -+ V y3 xR(x, y). Thus from (4), we
have

(5) PA I- { T}* n D* n E* n R(x, v) -> Vz(Bew[G*(z)]+_. {H} *(v, z))

Now, as we have supposed, nES. Thus there exists a number y
such that x < y and Q,(y) holds. Another application of Artemov's
lemma yields

(6) PA I- { T} * A D* A R(x, v) A R(y, w)

-(X < y A Qn(Y)t--*(v{ < }*w A {Qn}*(w)))

Since Q and x < y are

(7) PA I- (x < Y A Qn(Y))

Thus from (6) and (7) we have

(8) PAI-{T}* n D* n R(x,v) n R(y,w)-i(v{<}*w n {Qn}*(w))

Together with (5), (8) yields

(9) PA I- { T} * A D* A E* A R(x, v) A R(y, w)

-->((v{ <}*w A {Qn}*(w)) A Vz(Bew[G*(z)]H{H}*(v,z)))

By the predicate calculus,

(10) PA F- { T} * A D* A E* A 2vR(x, v) A 3 wR(y, w)

-+3v3w((v{ <}*w A {Qn}*(w)) A

Vz(Bew [G*(z)] H {H}*(v, z)))

Since by Lemma 1, PA I- { T} * -> 3 vR(x, v) A 3 wR(y, w), it follows
from (10) that
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PAI{T}*AD*AE*
-+ 3v3w(v{<}*w A A Vz(Bew[G*(z)]*--{H}*(v,z))),

which is what we were trying to prove.
Conversely, suppose that for every *, PA H 4,*. We shall show

that neS.
We consider a series of realizations *,, differing only in what they

assign to G: In *i, Z, E, S, A, M are all standardly interpreted, i.e.,
A*i is the formula vo + v1 = v2, etc., and G*i is the formula vo = i.

Let us observe that every theorem of PA is true and that for every
realization * in which Z, E, S, A, M are standardly interpreted,
{T}* A D* A E* is true. Thus for each i, 3v3w(v{ <}w A {Qn}(w) A
Vz(O GzH{H}(v, z))) *i is true. But that is to say - since *i treats
Z, E, S, A, M standardly - that for each i, there exist natural numbers
v, w such that v < w, holds, and for all z, z = i is provable if
and only if the Turing machine with Godel number v halts on z.
By the consistency of arithmetic, z = i is provable if and only if
z = i, and therefore for each i, there exist natural numbers v, w such
that v < w, Qn(w) holds, and the Turing machine with Godel number
v halts on i and i alone. Of course, if the Turing machine with Godel
number v halts on i and i alone, the Turing machine with Godel
number v' halts on i' and i' alone, and i i', then v v'. Thus for
each i, there exist numbers v and w, with different v for different i,
such that v < w and Thus there are infinitely many numbers
v such that for some w, v < w and Thus for every x, for some
w, x < w and i.e., neS. Theorem 2 is proved.

The class of always true sentences is II ?-complete in V

Our final major result in this chapter is a characterization of the
class of always true sentences.

Vo is the set of Godel numbers of true atomic sentences of Y.
Vo is a recursive set.

Theorem 3 (McGee, Vardanyan, Boolos). The class of always
true sentences is H°-complete in V.

The proof will require a number of definitions and lemmas.
Let F(x) be any formula of Y'. We shall say that F(a1, ... ,

holds at the set A of natural numbers if F(x) is satisfied by numbers
a1,. .. , a when A is assigned to the predicate letter G.

Let 1= {T} A D A bxdx'(Gx' n Exx'-.Gx).

Lemma 10. Let F(x) be any formula of 2'+ and let * be any
realization of 1. Suppose that 1* is true, A = {a: for some b,
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R(a, b) and G*(b) hold), and R(a1, b1), ... , hold. Then
F(a 1, ... , holds at A if and only if {F} *(b 1, ... , bn) holds.

Proof. An induction like the one in the proof of Lemma 4. Lemma
3 takes care of all atomic cases except the one in which the formula
is of the form Gu.

As for that case, suppose R(a, b) holds. Assume G(a) holds at A.
Then for some b, R(a, b') and G*(b') hold. By Lemma 3(a), E*(b, b')
holds. Since VxVy(Gx A Exy -- Gy)* is true, G*(b) holds. The converse
is immediate from the definition of A. Thus if R(a, b) holds, then
G(a) holds at A if G*(b) holds.

The truth-functional cases are treated as usual, and since IT)*
and D* are true, so are Vx3yR(x, y) and `dy3xR(x, y) (Lemmas 1 and
8), and these suffice to handle the quantifier cases. -A

Lemma 11. Let F be any sentence of £+ and let * be any
realization of I. Suppose that I* is true and A = {a: for some
b, R(a, b) and G*(b) hold). Then F holds at A if and only if
{F}* is true.

Proof. Lemma 11 is the special case of Lemma 10 in which F has
no free variables.

We shall say that sets A and B of natural numbers are k-equivalent
if for every m < k, mEA if mEB.

Lemma 12. If TA(e, i, k) and A and B are k-equivalent, then
TB(e, i, k).

Proof. Any number about which an inquiry is made of an oracle
in the course of a computation is less than the Godel number of
that computation. Thus if k is correct for A (see the brief review),
k is also correct for B. -{

Let us now say that A m-approximates V if the following condition
holds:

[(m is not (the Godel number of) a sentence of 2'--+m0A) A
(m is a sentence of 2' -+
V n(n is a subsentence of the sentence m -.

[n is an atomic sentence -+ (ne A H n E V0)] A
[n is a conditional F-.F'->(nEAH(FEA--+F'EA))] A
[n is a universal quantification VxF -

(nEAE--.for all i, F.,(i)EA)]))]
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(For each i, F,,(i) counts as a subsentence of VxF, of course.)
Now let F(x, y), = F(x, y, G), be the formula of 21+ expressing:

Vm(Vj < m-i TA(e, i, j) -+A m-approximates V). Here x, y, G symbo-
lize e, i, A, respectively.

Lemma 13. Suppose that A is arithmetical and F(e, i) holds
at A. Then for some k, TA(e, i, k).

Proof. If for all k, - TA(e, i, k), then for all m, A m-approximates V
and hence is identical with V. But V is not arithmetical. --I

For each e, i, let >// j be the sentence I A {F(e, i) }.

Lemma 14. 3 kT''(e, i, k) iff for some *, e , is true.

Proof. Suppose T'(e, i, k). Let r be a number greater than the
number of occurrences of logical operators in any sentence of 21
with Godel number < k. Let A be the set of Godel numbers of true
sentences of 2' that contain < r occurrences of the logical operators.
A is an arithmetical set and is k-equivalent to V (for if m <, k and
m is the Godel number of a sentence S, then the number of logical
symbols in S is < r, and then m c- A if m c- V; if m is not the Godel
number of a sentence, then m is not in A or V). By Lemma 12,
TA(e, i. k). Moreover, F(e, i) holds at A, for if Vj < m -i TA(e, i, j), then
m < k, and since A is the set of Godel numbers of true sentences
of 2' that contain < r occurrences of the logical operators, A
m-approximates V.

Now define * as follows. Let B(vo) be a formula of 21 defining
the arithmetical set A. Let Z, E, S, A, M receive their standard
realizations (M* is vo x vl = v2, etc.), and let G* be B(vo). Then D*,
{T}*, and VxVx'(Gx' A Exx'-+Gx)* are true; thus 1* is true. More-
over, since R(a, b) holds if a = b, A = {a: for some b, R(a, b) and
G*(b) hold}. By Lemma 11, then, {F(e, i) I* is true, and therefore so
is 0*ej'

Conversely, suppose that >/i* i is true.
Let A = {a: for some b, R(a, b) and G*(b) hold}. Z* and S* define

arithmetical relations, and therefore so does R(x, y). Since G* also
defines an arithmetical set, A is also arithmetical. Since I* and
{F(e, i) } * are true, by Lemma 11, F(e, i) holds at A. By Lemma 13,
for some k, TA(e, i, k). Now suppose m <, k. Then Vj < m-i TA(e, i, j),
and since F(e, i) holds at A, A m-approximates V. Thus if m is not
the Godel number of a sentence, m is not in A or V, but if m is the
Godel number of a sentence F, then by induction on subsentences
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F' of F, if n is the Godel number of a subsentence F' of F, then
nEA if F' is true, if neV. Therefore meA if me V, A is k-equivalent
to V, and by Lemma 12, Tv(e, i, k). -H

We can now prove Theorem 3. The set of Godel numbers of
always true sentences is itself II° in V: Let U(i, j) if and only if (i
is the Godel number of a sentence S of QML and if j is the Godel
number of a realization * that assigns formulas of £ to all and
only the predicate letters of S, then the result of substituting in S
for those predicate letters the formulas assigned to them by * is
true). U is recursive in V, and a sentence is always true if its Godel
number is in {i:`djU(i, j)}.

Now let A be an arbitrary set that is 11° in V. Then N-A is E°
in V, and thus for some e, N-A = {i: 3kTv(e, i, k)}. By Lemma 14,
N-A = {i: for some *, 0e i is true}. Therefore A = {i: tfie,i is always
true}. Theorem 3 is thus proved, for we have shown how to
effectively find from an arbitrary i a sentence 0i of QML so that
A = {i: 4i is always true}: take 4i = -' I/ie,i.

For a change, let us look at an interesting class of quantified
modal sentences that is easily seen to be decidable.

Let K= be the system of quantified modal logic in which = is
the sole predicate letter and whose rules and axioms are those of
quantification theory, the modal system K, and all formulas

(1) 3x(x (n>, 1)

and the formula

(2) (x y -> LI x Y)

Consideration of K= will enable us to give an effective procedure
for deciding the truth-values of sentences of PA built up from
identities (formulas x = y), T, and I by means of truth-functional
operators, quantifiers, and the formula Bew(x).

Theorem 4. Every formula A of K= is equivalent (in K=) to
a truth functional combination of identities and letterless
sentences that contains no free variables not free in A.

Proof. To prove the theorem it clearly suffices to suppose that A
is a truth-functional combination of identities and letterless sentences
and to show that 3xA and D A are equivalent to truth-functional
combinations of identities and letterless sentences that contain no
free variables not free in A.
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3xA can be treated in routine fashion. Rewrite A as a disjunction
(Cl A D1) v v (C A in which each C, is a (possibly null)
conjunction of identities and negations of identities containing the
variable x and Di is a conjunction of letterless sentences and
identities and negations of identities not containing x. Then 3xA
is equivalent to (3xC1 A D 1) v ... v (3 xC A It is thus enough
to show 3xiCi equivalent to T, to 1, or to a (possibly null)
conjunction of identities and negations of identities containing no
new free variables. If x x is a conjunct of Ci, then 3xCi is equivalent
to 1. The identity x = x may be deleted from C,. If x occurs in
some identity x = y or y = x in Ci, then 3xCi is equivalent to the
result of replacing x by y everywhere in Ci, a formula of the requisite
sort; otherwise Ci is a conjunction of negations x y and y x of
identities. But then by (1), 3xCi is equivalent to T.

As for A, call a formula an n -formula, n > 0, if it is a truth-
functional combination of letterless sentences, (any number of)
identities, and formulas B, where B is a truth-functional combi-
nation of letterless sentences and at most n identities. A 0-formula
is thus a truth-functional combination of identities and letterless
sentences, and A is an m-formula for some m. Thus it suffices to
show that any (n + 1)-formula is equivalent to an n-formula contain-
ing the same free variables. Suppose that C is an (n + 1)-formula.
Let x = y be a subformula of some formula B such that B is a
truth-functional component of C; let C(C") be the result of replacing
each occurrence in C of x = y by an occurrence of T (1), and let C!
be the formula (x = y A C) v (x y A C"). C! is an n-formula con-
taining the same free variables as C. Moreover, C! is equivalent to
C: For since x = y -p ( x = x -> x = y) and x = x are theorems
of K=, so is

(3) (x = y -> x = Y)

And since no identity in C occurs in the scope of two or more
nested s,

(4) (x=yA x=Y)-*(C.-'C')
(5) (x y A x 9 y)-,(C4--*C")

are theorems of K=. But (2), (3), (4), and (5) truth-functionally
imply (CHC!).

It follows from the theorem that every quantified modal sentence
containing no predicate letter except = is equivalent in K= to a
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truth-functional combination of letterless sentences. The standard
translation (on which = * is =) of any formula (1) is obviously
provable in PA, and by provable E-completeness so is that of (2).
Since the translations of the other theorems of K= are also
provable in PA, it follows that every sentence of PA built up from
identities, T, and 1 by means of truth-functional operators, quanti-
fiers, and Bew(x) is equivalent in PA to a sentence of PA built up
from T and 1 by means of truth-functional operators and Bew(x).
The procedure given in Chapter 7 for deciding the truth-values of
sentences in the latter class thus provides a decision procedure for
deciding those in the wider former class.

A somewhat surprising corollary of Theorem 4, the result with
which we shall conclude this chapter, is another theorem due to
Vardanyan.

Theorem 5. The Craig interpolation lemma fails for the class
of always provable sentences.

Proof. Let Z', E', S', A', M' be new predicate letters of the same
degrees as Z, E, S, A, M, and for each quantified modal formula
X let X' be the result of priming each predicate letter in X. Let
1 Con be the sentence of 2' saying that PA is 1-consistent.

We redefine D by deleting its first conjunct O T.
The conditional { T} A D A {I Con}-.({T}' n D'-+ ( 1 v { 1 Con}'))

is always provable: for if * is any realization, then by Artemov's
lemma, PAI-{T}* v (I Con +-+ {I Con)*)) and
PA I {T}'* n D'* - ( 1* v (1 Cones {1 Con}'*)), and therefore
PM-{T}* AD* A {1 Con}*-.({T}'* A D'*-+( 1* v {1 Con}'*)).

Suppose now that B is an interpolation formula for this condi-
tional. There are no predicate letters in the language of B except
possibly =. Existentially closing, we may suppose that B is a
sentence. Let C = (B A - 1). By Theorem 4, C is equivalent in
K= to some truth-functional combination of sentences of the form
"1. Let * be the standard realization, i.e., A* = A'* = v, + v2 = v3,
etc. By provable E,-completeness, under the new definition of D,
PAl- {T}* A {T}'* A D* A D'*. In addition, {1 Con}* = {1 Con}'* =
1 Con. Thus PA l- 1 Con -+ B* and PA I B* -,, ( 1 * v 1 Con). Since
PA 1 1 Con -+ 1 *, PA C* H 1 Con. But then 1 Con is equi-
valent to some truth-functional combination of sentences of the
form "1*, which by Theorem 6 of Chapter 7 is certainly not the
case, since 1 Con is true and implies -' "1 for all n. -I
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Quantified provability logic with one
one-place predicate letter'

Let G be a one-place predicate letter. The aim of the present chapter
is to demonstrate the remarkable result of V. A. Vardanyan accord-
ing to which Theorems 2 and 3 (and hence also Theorem 1) of the
previous chapter hold good even for the language {G} of quantified
modal logic in whose formulas no occurrence of lies within the
scope of another occurrence of and in which no predicate letter
other than G occurs. That is to say, the class of always provable
sentences of {G} is fl -complete and the class of always true
sentences of {G} is no-complete in the truth set V. Readers are
warned that although the proofs of these results contain much
ingenuity and trickery, they are torturously intricate. It is quite
possible that simpler proofs exist, but needless to say, none are
known to the author.

We begin by defining two one-place relations of natural numbers,
Z and Y; three two-place relations; V, A', and M'; and two three-
place relations, A" and M":

Zi if i=0;
Yiiffi=1;
Vij if either i = j + 1 or j = i + 1;
A'ij if i#j and either i + i =j or j+j=i;
M'ijiffI j and either i x i =j or jxj=i;
A"ijkiffi96jrA kAiandeither i+j=korj+k=fork+i=j; and
M"ijkiffi j#kq6iandeitherixj=korjxk=i or k x i=j.

Like , each of the relations Z, Y, V, A', M', A", and M" holds of
an n-tuple of numbers only if all coordinates of the n-tuple are
distinct and holds of an n-tuple if it holds of any permutation of
that n-tuple. (This is trivially so for Z and Y.)

Lemma 1. Identity, zero, successor, addition, and multiplica-
tion are all definable from Z, Y, , V, A', M', A", M", and
by means of n and v alone.
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P r o o f. i = j iff (i < j n j < i). S(i,j) iff (Vij n i < j). A(i, j, k) if
([(ZiAj=k]v[ZjAi=k]v[A'ikAi=j]v[A"ijkAi<kAj<k]).
M(i, j, k) iff ([(Zi v Zj) A Zk] V [Yi n j = k] v [Yj n i = k] v
[M'ik A i= j] v [M"ijkA i< k A j< k] ). -j

We shall use Z, Y, , V, A', M', A", M", and < both as relation
letters in a modal language and as denoting the relations of natural
numbers just introduced (or, in the case of and <, the relations
they standardly denote).

Let 9 be the language (of the pure predicate calculus) whose
predicate letters are <, Z, Y, #, V, A', M', A", and M".

Let T be the conjunction of the axioms of a sufficiently rich finite
theory of arithmetic expressed in 91; each of the conjuncts of T is
assumed provable in PA under the definitions of the predicate letters
of 9 given above. As in the previous chapter, the meaning of
"sufficiently rich" will emerge as we proceed. But for now we will
assume that among the conjuncts of T are certain sentences of a
logical character such as Vx x = x, i.e., `dx(x < x A x < x) and others
expressing the existence and uniqueness of zero and (ordinary)
successor, sum, and product, which are not certified as valid in the
pure predicate calculus, as well as translations into 9 of the first
six axioms of PA and other sentences describing elementary proper-
ties of zero, successor, sum, product, and less-than. Lemma 1 and
the definitions of the relations Z, Y, V, A', M', A", M" provide
standard translations between the languages 9 and Y. Where
necessary, we tacitly assume standard translations between these
languages to have been made.

Let G and N be two new one-place relation letters.
We reserve ten individual variables y, , one for each of the ten

predicate letters n of 9 u {N}. We call these the special variables.
We shall consider realizations * of the formulas of the language

9 u {G, N}; we now allow the possibility, however, that in addition
to vo, v1, ..., 1, the formula ir* of PA assigned by * to an n-place
predicate letter n of 9 u {N} may also contain its special variable
as a free variable.

By a E realization, we mean a realization that assigns E formulas
to the ten predicate letters of 9' u {N}. (A E realization may assign
a formula that is not E to G.)

For any formula p of Y u {G}, let pN be the result of relativizing
all quantifiers in p to N. Of course, if p contains no quantifiers,
e.g., if p is x y, then p' is p. Two of the conjuncts of Ti" may thus
be assumed to be {3xZx}" and {dx3yS(x,y)}N.
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Let * be an arbitrary E realization.
Let * R(x, y), or R(x, y) for short, be the formula

3s(FinSeq(s) A 1h(s) = x + 1 A Vz < xN*(S.) A Z*(so)

A bz < x(V*(S., S.+1) A Sz <, *Sz+1) A Sx = Y)

R(x, y) says that y is the image of x in the model determined by *:
there is a finite sequence each of whose values is in the extension
of N*, whose first value is in the extension of Z*, each of whose
values except the first is the *-successor of the previous one, and
whose last value is y. Since N*, Z*, V* and < * are all E formulas,
R(x, y) is E too. It should be borne in mind that PA F- R(x, y)- N*(y).

Our immediate aim is to prove Lemma 10 (below), a version of
Artemov's lemma in which D* is omitted from the antecedent.

Lemma 2. PA F- TN* -> Vx3yR(x, y).

Proof. Like that of Lemma 17.1. We work in PA, assume TN*, and
proceed by induction on x. We need to observe here for the basis
of the induction that since 3xZx is a conjunct of T, by TN*, for
some y such that N*(y), Z*(y), and for the induction step, that
since Vx3x'S(x,x') is also a conjunct of T, if N*(y), then for some
y', N*(y) and S*(y,y') -1

Lemma 3. PA F- TN* A R(x, y) A N*(y') A E*(y, y') -> R(x, y').

Proof. Like that of Lemma 17.2 -1

Lemma 4
(a) PA F- TN* A R(x, y) --> [ZxHZ*(y)];
(b) PA F- TN* A R(x, Y) [Yx'-' Y*(y)];

(c) PA F- TN* A R(x, Y) A R(x', y') -* [x '+-+ y < *y'];
(d) PA F- TN* A R(x, Y) A R(x', y') -> [x x'+-+ y # *y'];
(e) PA F- TN* A R(x, Y) A R(x', y') -* [Vxx'H V*(Y, y')];
(f) PA I TN* A R(x, Y) A R(x', y') -> [A'xx' H A'*(Y, y')];
(g) PA F- TN* A R(x, Y) A R(x', y') + [M'xx' H M'*(y, y')];
(h) PA F- TN* A R(x, Y) A R(x', Y') A R(x", y")

-+ [A"xx'x" <-+A"*(Y, y', y")];
(i) PA F- TN* A R(x, Y) A R(x', Y') A R(x", y")

-,, [M"xx'x".+ M"*(Y, Y', Y") ].

Proof. Like that of 17.3. -1
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Lemma 5. Let F(x) be any formula of 9. Then
PAF-TN* A Vy(N*(y)-+3xR(x, y)) A R(x,y)-'[F(x)HF'*(y)]

Proof. Like that of 17.4. Note that if R(x, y), N*(y). -1

Lemma 6. Let F(x) be any bounded formula of 9. Then
PA F- TN* A R(x, y) -+ [F(x)HFN*(y)].

Proof. Like that of 17.5. -1

Lemma 7. Let F(x) be any T. formula of 9. Then
PA F- TN* A R(x, y) -' [F(x) -* FN*(y)]

Proof. Like that of 17.6. By Lemma 6 it suffices to deduce Lemma
7 for F(x), = 3xF(x, x), from Lemma 7 for F(x, x). Work in PA.
Suppose TN* and R(x, y) hold. If F(x, x) holds, then by Lemma 1,
for some y, so does R(x, y), whence by Lemma 7 for F, F '*(y, y)
holds, and then, since N*(y) holds, so does 3x(N*(x) A F '*(y, x)),
i.e., F '*(y). l

Lemma 8. PA F- TN* -+ tfy(N*(y) -> 3xR(x, y)).

Proof. Like that of Lemma 17.8. Here, however, the fact that *
assigns E formulas to predicate letters makes up for the absence of
D*. The formulae B0 and B1 are now built up from atomic formulae
of 9 by 3, A, and v, and Z*, Y*, S *, *, V*, A'*, M'*, A"*,
M"*, and N* are all E. Thus Bo* and BN* define r.e. relations.
Let the formulas Co and C1 and the sentence S be as before. Assume
TN* and suppose, for reductio, that N*(k), but for no r, R(r, k). As
before, since Z*, V*, < *, and N* define r.e. relations, so does the
formula R(x, y). Routine modifications to the proof of 17.8 now
yield the desired contradiction. --i

Lemma 9. Let F(x) be any formula of 91. Then
PA F- TN* A R(x, y) -* [F(x) H FN*(y)

Proof. By Lemmas 5 and 8. H

Let I = T A Vx`dx'(Gx A Gx' -> x x').

Lemma 10. Let F(x) be a formula of 9 u {G}. Then, where
E(x) is the result of substituting 3 y(R(x, y) A G*(y)) for Gx in
F(x), PAF-1N* A R(x,y)-*(E(x)HFN*(y))

Proof. An induction like the one in the proof of Lemma 9, except
that we must now also consider the case in which F(x) is an atomic
formula Gu.
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In that case we must show that PA F- 1'* A R(x, y)
-> (3z(R(x, z) A Work in PA. Suppose 1'* and R(x, y).
Then if G*(y), 3z(R(x, z) A G*(z)). Conversely, assume R(x, z) and
G*(z). By Lemma 4(d), -iy :A *z and then by the second conjunct
of 1'*, G*(y). -I

The following lemma will be useful later.

Lemma 11. Let F be any sentence of 6" u {G}. Then, where
E is the result of substituting 3y(R(x, y) A G*(y)) for Gx in F,
PA F- I'* -> (EHF'*).

Proof. Lemma 11 is the special case of Lemma 10 in which F has
no free variables. --

We now introduce a magic formula, 0.
By the generalized diagonal lemma, there is a formula 0 with

one free variable such that PA F- O(y)-+"y is a number such that
there is a proof of the negation of the result of substituting the
numeral for y for the free variable of 0, and there is no proof with
a lower Godel number of the negation of the result of substituting
any numeral for the free variable of 0".

It is clear that 0(y) is E.

Lemma 12. (a) PA F- 0(y) n O(z)-+y = z;
(b) PA F- 3y Bew [-, 0(y)] -+ Bew(r1-1).

Proof. (a) is clear. As for (b), working in PA, suppose that for some
i, 0(i) is provable. Let j be the number such that the lowest Godel-
numbered proof of any sentence of the form - 0(k) is a proof of
-i O(j). Then - i O(j) is provable. But 0(j) is true. Since 0(j) is E, 0(j)
is provable. Thus 1 is provable. H

Lemma 13. 0(y) is false of every natural number.

Proof. Suppose 0(y) is true of i. Then there is a proof of 0(i). But
since 0(y) is E and 0(y) is true of i, 0(i) is provable, contra the
consistency of PA. --J

Our next main goal is Lemma 17, which readily follows from the
tedious Lemma 14.

Let D2, D3, ... ,D9 be t l + 16i: ieaa}, {3 + 16i: ieww}, ... , {15 + 16i:
ieww}. These are disjoint infinite sets of odd numbers.
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Let us call <p, q> and <p', q'> equivalent if {p, q} = {p', q'}; similarly,
<p, q, r> and <p', q', r'> are equivalent if {p, q, r} = {p', q', r'}.

Let f2 be a one-one E map of all natural numbers onto D2. Let
f3 be a one-one E map of all natural numbers onto D3. Let f4 be
a E map of all ordered pairs of natural numbers onto D4 that takes
pairs to the same number if and only if they are equivalent. Similarly
for f5 and D5, f6 and D6, and f7 and D7.

Let f8 be a E map of all ordered triples of natural numbers onto
D. that takes triples to the same number if and only if they are
equivalent. Similarly for f9 and D9.

Recall that each of the eight predicate letters Z, Y, :, V, A', M', A",
and M" is true of a k-tuple of numbers only if all coordinates of
the k-tuple are distinct and is true of a k-tuple if it holds of any
permutation of that k-tuple.

Let

C(0) = {0}

C(1) = {0} u {2,4,6,...j
C(2) = {0} u { f2(p): -,Zp}

C(3) _ {0} u { f3(p):- Yp}

C(4) = {0}u{f4(p,q):-p#q}
C(5) = {0} u { f5(p, q): - Vpq}

C(6) = {0}u{f6(p,q):-iA'pq}
C(7) = {0}u{f7(p,q):-iM'pq}
C(8) = {0} u {f8(p, q, r): -iA"pqr}

C(9) = {0} u { f9(p, q, r): -i M"pqr}

C(j+10)={2+2m:m<j}u{f3(p):je{p}}
q,r}}

Let C(w, x) define the relation {m, n: meC(n) }.
We shall write: weC(x) instead of. C(w, x).
Let B(x) = dw(wEC(x)- -1 O(W)).

Lemma 14
(a) PA I- x 3 10 -> Bew [B(0) v B(x)];
(b) PA F- --i x > 10 - (Bew [B(0) v B(x) ] -. Bew (r- 11) );
(c) PAI-x <, v (B(y+ 10)-). B(x+ 10))];
(d) PAF---ix,<y-->(Bew[B(1) v (B(y+ 10)-->B(x + 10))]

Bew(rl,));
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(e) PA F- Zx -> Bew [B(2) v B(x + 10)];
(f) PMH-iZx-->(Bew[B(2) v B(x+ 10)] Bew(r'1,));
(g) PA F- Yx -+ Bew [B(3) v B(x + 10)];
(h) PAF-- v B(x+ 10)]->Bew(r1,));
(i) PA F- x :A y -* Bew [B(4) v B(x + 10) v B(y + 10)];
(j) PA F- -i x y -> (Bew [B(4) v B(x + 10) v B(y + 10) ] ->

Bew(r1,));
(k) PA F- Vxy -,. Bew [B(5) v B(x + 10) v B(y + 10) ];
(1) PA F---1 Vxy -> (Bew [B(5) v B(x + 10) v B(y + 10)] --*

Bew(r-11));
(m) PA F- A'xy -> Bew [B(6) v B(x + 10) v B(y + 10)];
(n) PA F- -, A'xy -> (Bew [B(6) v B(x + 10) v B(y + 10) ] -

Bew(r-l,));
(o) PA F- M'xy -+ Bew [B(7) v B(x + 10) v B(y + 10)];
(p) PA F- -, M'xy (Bew [B(7) v B(x + 10) v B(y + 10) ] -

Bew(r1,));
(q) PA F- A"xyz - Bew [B(8) v B(x + 10) v B(y + 10) v

B(z + 10)];
(r) PA F- -, A"xyz -,.(Bew [B(8) v B(x + 10) v B(y + 10) v

B(z + 10)] -> Bew(r1,));
(s) PA F- M"xyz -,. Bew [B(9) v B(x + 10) v B(y + 10) v

B(z + 10)];
(t) PA F- -i M"xyz -> (Bew [B(9) v B(x + 10) v B(y + 10) v

B(z + 10)] -> Bew(r-1,));
(We have not boldfaced `+' or the numerals for 0, 1, ... ,10.)

Proof. Note first that the antecedent F(x) of each conditional is a
E formula and therefore PA F- F(x) -> Bew [F(x)]. In each of (a), (c),
(e),. .. , (s), it thus suffices to prove the corresponding conditional
from which "Bew [ . . ]" is missing. To prove each of (b), (d), (f ), ... , (t),
which are all of the form it
suffices in each case to find a pterm t such that PA F- F(x) A G(x) -->
-i O(t), for then PA F- F(x) A G(x) A t = y - -, 0(y), and therefore
PA F- Bew [F(x)] n Bew [G(x)] n Bew [t = y] -> Bew [--iO(y)], whence
PA F- Bew [F(x)] A Bew [G(x)] A 3y Bew [t = y] -* 3y Bew [-i 0(y)].
But PA F- F(x) - Bew [F(x)]; certainly PA F- 3y Bew [t = y]; and by
Lemma 12(b), PA F- 3y Bew [-i O(y)] -+ Bew(r1-,), whence we are

done.
We omit the proofs of (g)-(r), since these are not interestingly

different from those of (s) and (t). In each case, work in PA.
(a) Suppose x >,10, -i B(0), and -i B(x). Then for some w, w', wE C(0),
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hence w = 0, We C(x), O(w), and O(w'); by Lemma 12(a), w = w'.
Thus OEC(x), which is not the case since x > 10.

(b) Suppose x < 10. OE C(0) n C(x). Then if either B(0) or B(x),
-i O(0).

(c) Suppose x < y, -iB(1) and - B(x + 10). Then for some w, w',
w c- C(1), hence w 1, w' c- C(x + 10), hence w' 0, O(w), O(w'), and
so w = w'; thus w' is an even number > 2. Since x < y, We C(y + 10).
Thus -,B(y+ 10).

(d) Suppose x > y. Let a = 2 + 2x. Then aE C(1) n C(x + 10), but
a 0 C(y + 10). If either B(1) or B(x + 10), O(a). But if -i B(y + 10),
then for some z, O(z) and zEC(y + 10), whence z a; by Lemma
12(a) -, O(a).

(e) Suppose Zx, -i B(2), and - i B(x + 10). Then, for some w, w', O(w),
O(w'), weC(2), w'EC(x + 10), and w = w'. Since f2 is one-one,
w = f2(p), for some p such that -iZp and xe{p}, impossible.

(f) Suppose -i Zx. Let a = f 2(x). Then ac- C(2) n C(x + 10), and
then if either B(2) or B(x + 10), O(a).

(s) Suppose M"xyz, -i B(9), - B(x + 10), B(y + 10), and -, B(z + 10).
Then x y :A z x and for some w, w', w", wm, O(w), O(w'), O(w"), O(wt),
whence w = w' = w" = wm, and we C(9) n C(x + 10) n C(y + 10) n
C(z + 10). Since weC(9) and 00C(x + 10), w = f9(p, q, r) for some
p, w, r such that M"pqr. And since wE C(x + 10) n C(y + 10)r' C(z + 10)
and f9 takes inequivalent triples to different numbers, x, y, z are all
in {p, q, r}. Thus {p, q, r} = {x, y, z}, and therefore M"pqr iff M"xyz,
contradiction.

(t) Suppose -i M"xyz. Let a = f9(x, y, z). Then ae C(9)n C(x + 10)n
C(y + 10) n C(z + 10), and then if either B(9) or B(x + 10) or B(y + 10)
or B(z + 10), O(a). -A

Lemma 15. For each i,
x > 10 is coextensive (in the standard model) with
Bew[B(0) v B(x)];
x < y, with Bew[B(1) v (B(y + 10)->B(x+ 10))];
Zx, with Bew [B(2) v B(x + 10)];
Yx, with Bew[B(3) v B(x + 10)];
x y, with Bew[B(4) v B(x + 10) v B(y + 10)];
Vxy, with Bew[B(5) v B(x + 10) v B(y + 10)];
A'xy, with Bew[B(6) v B(x + 10) v B(y + 10)];
M'xy, with Bew [B(7) v B(x + 10) v B(y + 10)];
A"xyz, with Bew[B(8) v B(x + 10) v B(y + 10) v B(z + 10)];

and
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M"xyz, with Bew [B(9) v B(x + 10) v B(y + 10) v B(z + 10)].

Proof. By Lemma 14 and the consistency of arithmetic.

By Lemma 15, if x, y, z > 10, x - 10 < y - 10 holds if
Bew [B(1) v (B(y) -. B(x)) ] holds; ... ; and M"x -10, y -10, z-10
holds iff Bew[B(9) v B(x) v B(y) v B(z)] holds.

Lemma 16. Let D(x) be an arbitrary formula. Let B'(x) be
the formula

B(x) A (x < 10 v 3yO(y) v D(x - 10))

Then (a)-(t) of Lemma 14 hold good when B is replaced there
with B', and except for numbers < 10, B'(x) is coextensive with
D(x -10).

Proof. 0(y) is false of every number, by Lemma 13. Therefore B(x)
is true of every number, and thus if n > 10, B'(x) is true of n if
D(x - 10) is. As for (a)-(t) of Lemma 14, we argue as follows:
PA I- 3y0(y) -> Vx(B(x)E-+B'(x)), by the definition of B'. But also
PA I- 3yO(y) -> VxB(x), whence for all i and hence for all i < 10,
Pa I- 3xO(y) B(i). But if i< 10, then PA I- i < 10, and therefore
also PA I---13x0(y) -> B'(i). Thus PA F- (B(0) v B(x))F--(B'(0) v B'(x)),
PA I-(B(1) v (B(y+ 10)-),B(x+ 10)))-(B'(1) v (B'(y'+10)-*B'(x+
10))),..., and PAI-(B(9) v B(x + 10) v B(y + 10) v B(z + 10))<--*
(B'(9) v B'(x + 10) v B'(y + 10) v B'(z + 10)), whence the lemma
follows by Lemma 14 and the rule: if PA I- F(x)<--* G(x), then
PA I- Bew [F(x)] H Bew [G(x)]. -1

Lemma 17. Let x, y, z > 10. Let D(x) and B'(x) be as in Lemma
16. Then
D(x - 10) holds iff B'(x) holds;
x > 10 holds ff Bew [B'(0) v B'(x) ] holds;
x - 10 < y - 10 holds iff Bew [B'(1) v (B'(y) --> B'(x))] holds;
Z(x - 10) holds iff Bew[B'(2) v B'(x)] holds;
Y(x - 10) holds iff Bew[B'(3) v B(x) holds;
x - 10 0 y - 10 holds iff Bew [B'(4) v B'(x) v B'(y)] holds;
V(x -10, y - 10) holds iff Bew [B'(5) v B'(x) v B'(y)] holds;
A'(x - 10, y - 10) holds iff Bew [B'(6) v B'(x) v B'(y)] holds;
M'(x - 10, y - 10) holds iff Bew [B'(7) v B'(x) v B'(y) holds;
A"(x-10,y-10,z-10) holds iff

Bew [B'(8) v B'(x) v B'(y) v B'(z) ] holds;
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M"(x - 10, y - 10, z - 10) holds ijf
Bew [B'(9) v B'(x) v B'(y) v B'(z)] holds.

Proof. As above, and by Lemma 16. -H

We now prove Vardanyan's no-completeness theorem for the
language {G}.

We recall the definition of A m-approximates V from the previous
chapter: A m-approximates V if

[(m is not (the Godel number of) a sentence of 2'-+m0A) A
(m is a sentence of 2' -+
Vn(n is a subsentence of the sentence m -+

[n is an atomic sentence -> (neA-+ne V0)] A
[n is a conditional F-+ F'->(neAH(FEA-+F'EA))] A
[n is a universal quantification V xF -+

(neA<--for all i, F.,(i)EA)]))]

Let H(G, v) be a formula of the language 2'u {G} that naturally
defines: A m-approximates V.

Let S be an arbitrary H2 set. According to Lemma 9 of Chapter 17,
there is a recursive relation P such that S = {n: bi3j(j > i n P(n, j))

We suppose that none of the special variables occurs in the
formula defined below.

Let Q be a E formula that defines P; we shall write instead
of Q(n, y).

For each n, let X. be the formula

I -> 3v3w(v < w A A -H(G, v))

We obtain a formula c of quantified modal logic whose only
predicate letter is G and in which no occurrence of lies in the
scope of another occurrence of as follows:

We replace each occurrence of x < y in xn by an occurrence of
(G(v,) v (G(y) -+ G(x)); and for each m-place predicate letter it of

9 u {N} other than we replace each occurrence of ir(x1.... , XI)
in xN by an occurrence of (G(v,,) v G(x1) v ... v G(xm)). (We leave
G unchanged.) We then universally quantify the result with respect
to the special variables to obtain O,,.

We shall show that neS if and only if 0 is always provable.
Suppose neS. Let # be an arbitrary realization of (Of course

# need do nothing other than assign to G a formula containing
just the variable vo free.)
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Let F(vo) = G#.
We define a E realization * of xn: Let 5 * be Bew [F(v <) v (F(v 1) -+

F(vo))]. For each m-place predicate letter iv of °u {N} other than
, let i* = Bew [F(vn) v F(vo) v v F(v, _ 1)]. And let G* be G#.
Then ¢# is identical with the universal quantification of xn * with

respect to the ten special variables. To show that PA F- 00, it thus
suffices to show that PA F-

xn*.

Let H({x: 3y(R(x, y) A G*(y)) }, v) be the result of substituting
3y(R(x, y) A G*(y)) for Gx throughout H(G, v) (of course relettering
variables if necessary).

For each n >, 1, let sun(x, u) be a E pterm for an (n + 1)-place
function f such that for any k, p, if k is the Godel number of a
formula F(u), then f (k, p) is the Godel number of F(p).

Let S(x, u) be an arbitrary formula.
By the generalized diagonal lemma, there is a formula F(u) such

that
PAF-F(u)H-,S(sun(' F(u)', u), u)

Let i be the Godel number of Vu1...VunF(u).
Inductively, if G(vl,... , v,) is a subformula of F(u),

PA F- H({x: S(x, u) }, i) -+
[For, working in

PA: if {k: k, q satisfy S(x, u)} m-approximates the truth set V, then
a subformula of F(u) will be satisfied by certain numbers if and
only if the result of substituting the numerals for those numbers
for the appropriate variables in the subformula is in some suitably
good approximation to the truth set V; if and only if the Godel
number of that result, together with the q, satisfies S.]

Since F(u) is a subformula of itself, PA F- H({x: S(x, u) }, i) -+
(F(u)E-+S(sun(rF(u)u), u), and therefore PAI- H({x: S(x, u)}, i).

Now let S(x, u) be 3y(R(x, y) A G*(y)) and let i be as above. [Note
that several of the special variables occur in R(x, y), and hence also
in 3y(R(x, y) A G*(y)).]

Then we have

(1) PAF---iH({x:3y(R(x,y) n G*(y))},i)

By Lemma 10, we have

(2) PA F-1N* n R(i, v) -+ (H({x: 3y(R(x, y) n G*(y)) }, i)
_+H''*({ y: G*(y) }, v))

So, by (1),

(3) PA F-1N* n R(i, v) -+ _i H"*({y: G*(y) }, v)
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Since neS, for some j, i < j and holds. Thus i < j n is
true and E, and therefore

(4) PA F- i < j n

By Lemma 9 and (4),

(5) PA F- TN* n R(i, v) n R(j, w) -> (v < *w n Qn *(w))

whence

(6) PA F- IN* A R(i, v) A R(j, w) ->
(v < *w A Q' *(W) A HN*({y:G*(y)}, v))

By Lemma 2, PAF-TN*-.Vx3yR(x,y). Since PM-R(x, y)-+N*(y),
we have

(7) PA F- IN* -+ 3v(N*(v) n 3w(N*(w) n
[(v <*w A Q *(w)) A -1 HN*({y: G*(y)}, v)]))

i.e., PA [__ Xn *.

Thus if n e S, PA
Conversely, suppose that for all realizations #, PA F- 4#. Now fix

i. We must find a j such that i < j and Let D(x) be a formula
of arithmetic defining a set that m-approximates V for all m < i.

Let B'(x) be obtained from D(x) as in Lemma 16.
Let G# = B'(vo). Since PA I- 0#, 010 is true in the standard model.

# begins with a string of universal quantifiers over the special
variables. Let 0 be the result of universally instantiating those
variables VN, v<, VZ, VY, v, , vy, VM', VA", VM.. with 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, respectively. Then 0 is also the result of respectively substitu-
ting B'(x) for Gx, Bew [B(0) v B(x)] for Nx, Bew [B(1) v (B(y) ->
(B(x))] for x <, y, Bew [B(2) v B(x)] for Zx,..., and Bew [B(9) v B(x) v
B(y) v B(z)] for M"xyz in XN . All quantifiers in ,(i are relativized to
Bew [B(0) v B(x)], and by Lemma 17, 0 has the same truth-value,
namely true, as the result of respectively subsituting B'(x) for Gx,
x>10forNx,x-10<, y - 10 for x < y, Z(x - 10) for Zx,..., and
M"(x - 10, y - 10, z - 10) for M"xyz in XN, and therefore the same
truth-value as the result o of substituting D(x) for Gx [for D(x - 10)
is coextensive with B'(x) if x >, 10], x < y for x < y, Zx for Zx,... ,

and M"xyz for M"xyz in X,,. The antecedent of a is true, therefore so
is the consequent, and thus there exist numbers v and w such that
v < j, Q (j) holds and -' H({x: D(x)}, v) holds. Since -' H({x: D(x)}, v)
holds, the set of numbers satisfying D(x) does not v-approximate
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V. But the set of numbers satisfying D(x) m-approximates V for all
m < i. Thus i < v <j, and the theorem is proved.

We conclude by showing that, like the class of always true
sentences of QML, the class of always true sentences of the fragment
{G} of QML is n'-complete in V.

An assignment is a function that assigns numbers to the special
variables VN, v -<, vZ, ... , Vu".

Let F(x) be any formula of 9u {G}. As in the proof of Theorem 3
of the previous chapter, we say that F(al,... , aR) holds at the set A
of natural numbers if F(x) is satisfied by numbers a1,.. . , a when
A is assigned to the predicate letter G. Lemma 11 then asserts that
if F is a sentence of 9 u {G}, * a E realization, a an assignment,
IN* is true under a and A= {a: for some b, R(a, b) and G*(b)
hold under a}, then F holds at A under a if and only if FN* is true
under a.

The definition of "A and B are k-equivalent" is given in the
previous chapter. Lemma 17.12 asserts that if TA(e, i, k) and A and
B are k-equivalent, then TB(e, i, k).

Now let F(x, y), = F(x, y, G), be the formula of 9 u {G} expressing:
`dm(`dj < m_i TA(e, i, j) -+A m-approximates V). As in Chapter 17, if
A is arithmetical and F(e, i) holds at A, then for some k, TA(e, i, k).

For each e, i, let 'f e,j be the sentence I A F(e, i).
Let ae,, be the formula of {G} obtained from 0', by making the

same substitution of modal formulas defined above, i.e., leaving
each occurrence of Gx in >[i'l unchanged, replacing each occurrence
of x < y by an occurrence of (G(v,) v (G(y) -* G(x))), and replacing
each occurrence of n(x 1, ... , where it is a predicate letter of
9 u {N} other than by an occurrence of (G(vR) v G(x1) v . v
G(xm)). Finally, let pe i be the result of existentially quantifying the
special variables in ae,j.

Lemma 18. 3kTi'(e, i, k) iff for some #, p# , is true.

Proof. A modification of that of 17.14. Suppose Ti'(e, i, k). Let r be
a number greater than the number of occurrences of logical operators
in any sentence of 9 with GOdel number < k. Let A be the set of
Godel numbers of true sentences of . that contain < r occurrences
of the logical operators. As in the proof of 17.14, A is an arithmetical
set,TA(e, i, k), and F(e, i) holds at A.

Let D(x) be a formula of 9' defining the arithmetical set A. Let
B'(x) be obtained from D(x) as in Lemma 16. Let* G# be B'(vo).

We define a E realization * by also assigning B'(vo) to G,
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Bew[B'(vN) v B'(vo) ] to N,
Bew [B'(v ,) v (B'(v1) -> B'(vo))] to
Bew [B'(vz) v B'(vo)] to Z, ... , and
Bew[B'(vM..) v B'(vo) v B'(v1) v B'(v2)] to M".

Let a assign 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to the special variables VN,
V<- , VZ, vy, V96, V Y, vM", VA", VM", respectively.

Vxdx'(Gx A -' Gx' -+ x x')N* is true under a if Vx(Bew [B'(0) v
B'(x)] -+ Vx'(Bew[B'(0) v B'(x')] -+(B'(x) A -iB'(x') -> Bew[B'(4) v
B'(x) v B'(x) ]) is true, iff, by Lemma 15, Vx(x > 10 -> Vx'(x' > 10 -
(D(x - 10) n D(x' -10)-+x -10 x' -10), if `dx`dx'(D(x) n -, D(x')-*
x 96 x') is true. Thus Vxdx'(Gx A Gx' -> x x')'* is true under a.
And, in like manner, since T is true under the standard realization,
TN* is also true under a. Thus IN* is also true under a.

By Lemma 15, Z*(y) holds iff y = 10, V *(y, y'), holds if V(y - 10,
y'- 10), and y 0 *y holds if y - 10 0 y'- 10, therefore S*(y, y')
holds iffy'-10=(y- 10) + 1. Thus R(x, y) holds iff y = x + 10, and
{a: for some b, R(a, b) and G*(b) hold under a} ={a: for some
b, b = a + 10 and B'(b) hold} = {a: for some b, b = a + 10 and D(b -10)
hold} = A.

By Lemma 11, F(e, i)N* is true under a, and therefore ke * is true
under a. But a# i e *. Thus 6# is true under a. But pe,, is the
result of existentially quantifying the special variables in ae,j. Thus
p# is true.

Conversely, suppose p# i true. Then for some assignment a, a#
i
is

e.
e,

true under a. Let * be the E realization that assigns G#vo to G, and
as before, Bew[B'(VN) v B'(vo)] to N, Bew[B'(v<) v (B'(v1)-+B'(vo))]
to <, Bew [B'(vz) v B'(vo)] to Z,..., and Bew [B'(vM--) v B'(vo) v
B'(vl) v B'(v2)] to M". Then Oe * = v# ., and so >(ie * is true under
a, i.e., I'* and F(e, i)N* are true under a. G*vo, i.e., G#vo, defines an
arithmetical set. And since Z* V*, *, and N* are all E formulas,
R(x, y) defines an r.e. relation. Let A = {a: for some b, R(a, b) and
G*(b) hold under a}. By Lemma 17, F(e, i) holds at A. A is an arith-
metical set. By Lemma 17.13, for some k, TA(e, i, k), and then, as at
the end of the proof of Lemma 17.14, for some k, T''(e, i, k). H

It follows as in Chapter 17 that the class of always true sentences
of {G} is no-complete in V The class is certainly no in V. Let A
be an arbitrary set that is no in V. Then N-A is E° in V, and thus
for some e, N-A = {i: 3kTT'(e, i, k)}. By Lemma 18, N-A = {i: for
some #, p# is true}. Therefore A = {i: i pe,j is always true), and we
are done.



Notes

Introduction
1. Lukasiewicz, Aristotle's Syllogistic, p. 133
2. Kneale and Kneale, The Development of Logic, p. 86.
3. Lewis and Langford, Symbolic Logic, p. 155.
4. Ibid., p. 23.
5. Ibid., p. 160.
6. Godel's own term was entscheidungsdefinit.
7. It is assumed that the sentence expressing the consistency of P is

obtained from a standard presentation of the new axioms as a primitive
recursive set.

8. Since Peano himself formulated mathematical induction as a single
(second-order) sentence, the name "Peano arithmetic" is, as Warren
Goldfarb has pointed out to me, rather a bad one for a theory whose
variables range only over the natural numbers. (Moreover, as everyone
ought to know, the "Peano postulates" were formulated earlier by
Dedekind.) But the name is unlikely to be changed now.

9. In "On formally undecidable propositions...", Godel used "Bew(x)"
as an open sentence of the language in which he studied P.

10. Elsewhere in mathematics, x is called a "fixed point" of a function f
if fix) = X.

11. Is any "truth-teller" sentence really true?
12. First isolated by Harvey Friedman in "One hundred and two problems

in mathematical logic".
13. The relevant theorem is Theorem 1.
14. Done in Boolos, "Omega-consistency and the diamond".

Chapter 1
1. I used to call the system GL `G', but now prefer the designation `GL',

which slights neither M. H. Lob, whose contributions to this branch
of logic were fundamental, nor P. T. Geach, an important contributor
to modal logic, after whom a different system was once named `G'. GL
is also known as KW, K4W, and PrL.

2. Kripke, "Semantical analysis of modal logic I: Normal modal proposi-
tional calculi".

3. B is named after Brouwer. Cf. the theorem in intuitionistic
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logic. Intuitionists suppose that the negation of a sentence S asserts
that a contradiction is derivable from S; replacing intuitionistic "-i"
by its approximate definition " " yields p - O O p.

4. 1 am grateful to Mike Byrd for telling me of this theorem.

Chapter 2
1. Hilbert and Bernays, Grudlagen der Mathematik, Vol. II., 2d ed., p. 295.
2. M. H. Lob, "Solution of a problem of Leon Henkin".
3. Raymond M. Smullyan, First-Order Logic, p. 7.
4. One particularly attractive formulation of logic, due to Tarski, is found

in Monk's Mathematical Logic.
5. In detail: if t is a term, v a variable, and t' a term, then t' (t) = t" if there

are two finite sequences h'0,. .. , h' and h0...... h; such that (1) h' = t';
(2) h; = t"; (3) for every i < r, either h; is 0 or a variable or for some j, k < i,
h; is sh', (h' + hk) or (h' x hk); (4) if h; is 0 or a variable other than v,
then h" is h'; (5) if i is v, then h" is t; and (6) if i is shy, (hj + k) or
(hi x hk) for some j, k < i, then hi is shi, (h' + k) or (j x h,"), respectively.
[If t or t' is not a term of v not a variable, then t" is (say) 0.]

6. E.g., by a consistency proof of the type first given by Gentzen.
7. For a proof, see Davis and Weyuker, Computability, Complexity, and

Languages, Chapter 13.
8. Monk, Mathematical Logic.
9. We assume that the result of substituting a term in something that is

not a formula is 0 and the result of substituting a term in a formula
for a variable that does not occur free in that formula is that very
formula.

Chapter 3
1. Realizations are sometimes called "interpretations" or "substitutions".

But these terms have other uses, and I prefer to stick with "realization".
2. Journal of Symbolic Logic 17 (1952), p. 160.
3. Lob, "Solution of a problem of Leon Henkin". Henkin was the referee

of Lob's paper and observed that Lob's proof that the answer to his
question was yes actually proved the better result now known as Lob's
theorem, viz., that any statement implied by its own provability is
provable. In Chapter 11 we use K and K4 to compare the strength of
Lob's theorem and the statement that any sentence equivalent to its
own provability is provable.

4. The restriction to sentences, i.e., formulas without free variables, is of
course essential. PA is certainly incomplete, but it is not so solely
because neither x = y nor x y is a theorem.

5. Thanks to Warren Goldfarb for telling me the arguments contained in
the last two paragraphs.

6. Thanks to Vann McGee for a simplification.
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Chapter 4
1. Most notably in Kripke, "Semantical analysis of modal logic I".
2. The term forcing relation is sometimes used for this notion. But since

the clauses for the propositional operators in the definition of `k' are
perfectly classical, that piece of terminology is as unfortunate as can be.

3. It follows that the second-order sentence
is true in

exactly the transitive converse wellfounded frames.

Chapter 5
1. Repeatedly use the distributive laws and the equivalence of p with

(pAq)v(pA-q)
2. This completeness proof for GL, very much simpler than that given in

The Unprovability of Consistency, is due to Solovay and Goldfarb. The
completeness theorem for GL is due to Krister Segerberg.

Chapter 6
1. Due to Dana Scott, E. J. Lemmon, D. C. Makinson, and M. J. Cresswell.

Chapter 7
1. Following a suggestion of Quine's.
2. Friedman, "One hundred and two problems in mathematical logic."

Problem 35 is on p.117.
3. Two (missing) asterisks have been inserted.
4. First given by the author, with the aid of the normal form theorem,

discovered by him in 1973, together with its application to the concept
of provability in formal theories. The affirmative answer to Friedman's
question was the first use of modal logic to settle a significant question
of mathematical logic. Friedman's problem was also solved by Claudio
Bernardi and Franco Montagna; the normal form theorem for letterless
sentences was also proved by Johan van Benthem.

5. This term is due to Artemov.
6. Due to the author.

Chapter 8
1. 'Niff' means 'ilf not:'.
2. The present version is taken from Boolos and Jeffrey, Computability

and Logic, 3d ed.; it is akin to the proof in Sambin and Valentini, "The
modal logic of provability". De Jongh's original proof was never
published; a syntactical version of his proof is found on pp. 22-25 of
C. Smorynski, "Calculating self-referential statements I".

3. The notion of a character was introduced by Kit Fine, in "Logics
containing K4".
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4. Commonly so called. "Craig interpolation theorem" would be preferable.
5. The Craig interpolation lemma for GL was independently found by

Smorynski and the author. The author's original proof, given in The
Unprovability of Consistency, resembled his proof of the fixed point
theorem.

Chapter 9
1. Artemov: "A country will issue you a visa only if you provide proof

that you will not reside there permanently."

Chapter 11
1. The original text of Henkin's problem, received by the Journal of

Symbolic Logic on February 28, 1952, and published in Vol. 17 (1952),
no. 2, on p. 160, reads, "3. A problem concerning provability. If S is any
standard formal system adequate for recursive number theory, a formula
(having a certain integer q as its Godel number) can be constructed
which expresses the proposition that the formula with Godel number
q is provable in S. Is this formula provable or independent in S?" Note
that Henkin's problem is apparently a question about one specific
formula (which depends on S), whose construction is analogous to that
of the Godel formula. Henkin had presumably observed that by the
second incompleteness theorem, the formula could not be refutable in
any such standard and hence consistent system S.

Chapter 12
1. This result is due to W. J. Blok and K. E. Pledger. See van Benthem

and Blok, "Transitivity follows from Dummett's axiom".
2. The proof given here is a simplification, due to Goldfarb, of the

proof of Segerberg's completeness theorem for S4Grz given in The
Unprovability of Consistency.

3. The equivalence of (3) and (9) was first proved by A. V. Kuznetsov and
A. Yu. Muravitsky, "The logic of provability", and independently by
R. Goldblatt, "Arithmetical necessity, provability and intuitionistic
logic".

4. Due to the author.
5. The proof depends only on the most elementary considerations of

Kripke semantics and on no other result of that chapter.
6. McKinsey and Tarski, "Some theorems about the sentential calculi of

Lewis and Heyting".
7. Grzegorczyk, "Some relational systems and the associated topological

spaces". The axiom Grzegorczyk added in his original paper was

n F-> G)-> G))-* G)
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8. For a fuller account of the connections between intuitionist logic and
modal logic, see A. S. Troelstra's introductory note to Godel's paper
in Kurt Godel: Collected Works, Vol. I, pp. 296-299.

9. See Smorynski, "Applications of Kripke models".

Chapter 13
1. Kenneth Kunen, Set Theory: An Introduction to Independence Proofs.
2. I am grateful to Tony Dodd for telling me of this theorem.
3. The proof is short enough and hard enough to find that we have decided

to include it instead of merely citing it. The proof we give is taken from
J. Barwise and E. Fisher, "The Shoenfield absoluteness lemma".

4. I am grateful to McGee for suggesting the material in this section.
5. Frank R. Drake, Set Theory: An Introduction to Large Cardinals. The

discussion is on pp. 123-124.

Chapter 14
1. Hartley Rogers, Theory of Recursive Functions and Effective Comput-

ability; Gerald Sacks, Higher Recursion Theory.
2. Joel W. Robbin, Mathematical Logic: A First Course.
3. For further discussion, see the beginning of Chapter 15.
4. In particular, the reducibility of 6 to 0, it will be recalled, may be proved

by effectively, and uniformly in x, converting the Brouwer-Kleene
ordering K derived from 0 and x into another linear ordering L with
certain desirable properties (e.g., the order type of L = ca C + 1, where

is the order type of K; successors and limits in L can be effectively
recognized) and using the recursion theorem to define a function f on
the field of L such that xe8 if K is a well-ordering, if f embeds L into
<o, if g(x)E0, g(x) being the image under f of the last element of L.
Cf. Rogers, op. cit., pp. 205-212. The formalization in analysis presents
no special difficulties.

5. As in Chapter 9, let As = (A { ( C -. C): C is a subsentence of A} -+ A).
It will suffice to show that if GL 4` As, then for some *, A* is false.

Thus we may suppose that for some n, W, R, V, W = { 1, ... , n}, 1 V As,
and so for all subsentences C of A, 1 k C -> C, and 1 V A. Without
loss of generality, we may assume that if we W and w 96 1, then 1Rw.

We extend R and define the Solovay sentences So, S1, ... , S. as above.
We let *(p) = V {Sx,: wVp v (w = 0 A 1 Vp) ). It will suffice to show in-
ductively that for all subsentences B of A, if 1 k B, then F- So -+ B* and
if I V B, then I- So -» B*, for then since 1 V A and So is true, A* is false.
(Lemma 14 holds for all subsentences of As, hence for all subsentences
of A.)

Suppose B = p. If 1 k p, then So is a disjunct of B*; if 1 p, then by
Lemma 6, So is incompatible with every disjunct of B*.

The cases for the propositional connectives are unproblematic.
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Suppose B = C. Assume 1 k C. Then since I k C - C, 1 k C, and
by the i.h. H So -> C*. Since 1 In C, for every we W, w In C. By Lemma 14,
for every we W, H S,,, -> C*. But since by Lemma 10,1- So v S, v v
whence I- C*, F- O(rC*-'), i.e., 1 B*, and so I- So - B*.

Assume 1 V C. Then for some x, 1 Rx, x V C, whence by Lemma 14,
and so F O( Sx,) B*. But by

Lemma 11.

Chapter 15
1. The word "simple" is sometimes used to distinguish ordinary consistency

or provability from other kinds of consistency or provability, e.g.,
w-consistency, w-provability, or provability under the w-rule.

2. Ignatiev called the system `LN', but there was no reason for this choice
of letters.

Chapter 17
1. For a proof, see, e.g., Chapter 19 of Boolos and Jeffrey's Computability

and Logic.
2. Indeed, A2, i.e., EZ n W, relations; and further improvements are possible.
3. The restriction to the pure predicate calculus is necessary: 3x3y-i x = y

is not valid but is always provable if = is treated as a logical symbol.
4. Boolos, The Unprovability of Consistency, p. viii. The word "system"

must be understood rather loosely for this statement to make sense.
5. A proof of Tennenbaum's theorem is given in Chapter 29 of the third

edition of Boolos and Jeffrey's Computability and Logic.
6. Plisko, "On realizable predicate formulas".

Chapter 18
1. The theorems and techniques of proof in this chapter are due to V. A.

Vardanyan and Vann McGee. I am extremely grateful to Warren
Goldfarb, Vladimir A. Shavrukov, and McGee for explaining to me
important aspects of Vardanyan's argumentation and for correcting
errors. I have appropriated some of their terminology and notation.
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