


Mathematics: Theory & Applications

Series Editor
Nolan Wallach



Gabriel Daniel Villa Salvador

Topics in the Theory of
Algebraic Function Fields

Birkhäuser
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To Martha, Sofı́a, and my father

Give a man a fish and you feed him for a day. Teach him how to fish
and you feed him for a lifetime.

Lao Tse

He who is continually thinking things easy is sure to find them difficult.
Lao Tse

La educación es un seguro para la vida y un pasaporte para la
eternidad.

(Education is an insurance for life and a passport for eternity.)
Aparisi y Guijarro



Preface

What are function fields, and what are they useful for? Let us consider a compact
Riemann surface, that is, a surface in which every point has a neighborhood that is
isomorphic to an open set in the complex field C. Now assume the surface under
consideration to be the Riemann sphere S2; then the meromorphic functions defined
in S2, by which we mean functions from S2 to C ∪ {∞} whose only singularities are
poles, are precisely the rational functions f (z)

g(z) , where f (z) and g(z) are polynomials
with coefficients in C. These functions form a field C(z) called the field of rational
functions in one variable over C. In general, if R is a compact Riemann surface, let
us consider the meromorphic functions defined on R. The set of such functions forms
a field, which is called the field of meromorphic functions of R; it turns out that this
field is a finite extension of C(z), or, in other words, a field of algebraic functions of
one variable over C.

Now, two Riemann surfaces are isomorphic as Riemann surfaces if and only if their
respective fields of meromorphic functions are C-isomorphic fields. This tells us that
such Riemann surfaces are completely characterized by their fields of meromorphic
functions.

In algebraic geometry, let us consider an arbitrary field k, and let C be a nonsingu-
lar projective curve defined on k. It turns out that the set of regular functions over C
is a finite extension of the field k(x) of rational functions over k. This field of regular
functions on C is a field of algebraic functions of one variable over k.

The correspondence between curves and function fields is as follows. Assume k to
be algebraically closed. If C is a nonsingular projective curve, consider the field k(C)
consisting of all regular functions in C . Conversely, for a given function field K/k
(see Chapter 1), there exists a nonsingular projective curve C (which is unique up to
isomorphism), such that k(C) is k-isomorphic to K . On the other hand, the places (see
Chapter 2) are in one-to-one correspondence with the points of C : to each point P of
C we associate the maximal ideal mP of the valuation ring ϑP .

There exists a third area of study in which function fields show up. This is number
theory. Here a field of functions of one variable will play a role similar to that of a
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finite extension of the field Q of rational numbers. This is the point of view that we
will be adopting in the course of this book.

The reader who is familiar with elementary number theory may consider that the
field k(x) of rational functions over k is the analogue of the rational field Q, the poly-
nomial ring k[x] is the analogue of the ring of rational integers Z, and finally that a
field of functions of one variable is the analogue of a finite extension of Q. It turns out
that the analogy is much stronger when the field k is finite.

The mentioned analogy works in both directions. Oftentimes a problem that gets
posed in number fields or, in other words, in finite extensions of Q, admits an analo-
gous problem in function fields, and the other way around. For example, if we consider
the classical Riemann zeta function ζ(s), it is still unknown whether Riemann’s con-
jecture on nontrivial zeros of ζ(s) holds (although a proof of its validity has been
announced, this has not been confirmed yet). The analogue of this problem in function
fields was solved by Weil in the middle of the last century (Chapter 7).

In a similar way, the classical theorem of Kronecker–Weber on abelian extensions
of Q has its analogue in function fields. The Kronecker–Weber theorem establishes
that any abelian extension ofQ is contained in a cyclotomic extension. In other words,
the maximal abelian extension of Q is the union of all its cyclotomic extensions. The
analogue to this result is the theory of Carlitz–Hayes, which establishes, first of all,
the analogues in function fields of the usual cyclotomic fields. The mere fact of adding
roots of unity, as in the classical case, does not get us very far, since it would provide
us only with what we shall call extensions of constants, which is far away from giving
us all abelian extensions of a rational function field k(T ), where k is a finite field.
The theory of Carlitz–Hayes (Chapter 12) provides us with the authentic analogue of
cyclotomic fields, which leads us to the equivalent to the Kronecker–Weber theorem in
function fields. This same theory may be generalized by considering not only k(T ) but
also finite extensions. The study of this generalization gives as a result the so-called
Drinfeld modules, or elliptic modules, as Drinfeld called them. A brief introduction to
Drinfeld modules will be presented in Chapter 13.

In the other direction we have Iwasawa’s theory in number fields. The origins of
this theory are similar (in number fields) to considering a curve over a finite field and
extending the field of constants k to its algebraic closure; in order to do this one must
adjoin all roots of unity. In the number field case, adjoining all roots of unity gives a
field too big, and for this reason one must consider only roots of unity whose order is
a power of a given prime number. In this way, Iwasawa obtained the Zp-cyclotomic
extensions of number fields, where Zp is the ring of p-adic integers.

In the study of function fields, one may put the emphasis on the algebraic–
arithmetic aspects or on the geometric–analytic ones. As Claude Chevalley rightly
points out in his book [22], it is absolutely necessary to study both aspects of the the-
ory, since each one has its own strengths in a natural way. However, even though both
viewpoints may be treated in a textbook, one of them must be selected as the main
focus of the book, since keeping both at the same time would be like superposing
two photographs of the same object taken from different angles; the result would be a
blurred and dull image of the object.
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Our point of view in all the book will be the algebraic–arithmetic approach, and
our principal interest will be the study of function fields as part of the algebraic theory
of numbers. This by no means should be interpreted in the sense that we consider
unimportant the analytic and the geometric approaches.

As we mentioned before, when the base field k of a function field is a finite field,
the analogy between these fields and number fields is much closer. In this situation it
is possible to define zeta functions, L-series, class numbers, etc. However, it must me
stressed that there are fundamental differences between these two families of fields:
the number fields have archimedean absolute values and the function fields do not
(see Chapter 2); the ring of rational integers Z and the rational field Q are essentially
unique, as opposed to polynomial rings k[x] and rational function fields k(x), which
are respectively isomorphic to many rings and fields. Consequently, the situation of Z
being contained in Q admits not only one analogue in function fields, but an infinity
of them. Therefore, it is very important to keep in mind both aspects: the similarities
between both families of fields as well as their fundamental differences.

This book may be used for a first-year graduate course on number theory. We
tried to make it self-contained whenever possible, the only prerequisites being the
following: a basic course in field theory; a first course in complex analysis; some
basic knowledge of commutative algebra, say at the level of the Atiyah–Macdonald
book [4]; and the mathematical maturity required to learn new concepts and relate
them to known ones.

The first four chapters can be used for an introductory undergraduate course for
mathematics majors, and Chapters 5, 6, 7, and 9 for a second course, avoiding the
most technical parts, for instance the proofs of the Riemann hypothesis, Čebotarev’s
density theorem, the computation of the different, and Tate’s genus formula.

The introductory chapter was written mainly to motivate the study of transcen-
dental extensions, absolute values of Q, and compact Riemann surfaces. However, in
order to avoid making it long and tedious, we will establish the results needed for each
topic at the moment they are required. The reason for this selection is as follows. A
function field K over k is really just a finitely generated transcendental extension of
k, with transcendence degree one. On the other hand, the study of such fields leads us
to the study of their absolute values, whose analogues are, up to a certain point, the
absolute values in Q. Finally, compact Riemann surfaces constitute a splendid geo-
metric representation of function fields. In the case of Riemann surfaces we shall not
provide proofs of the presented results, since our interest is only that the reader know
the fundamental results on compact Riemann surfaces, and use them as a motivation
to study more general situations.

Chapter 2 is the introduction to our main objective. There, we define general con-
cepts that will be necessary in the course of this volume, such as fields of constants,
valuations, places, valuation rings, absolute values, etc. Once these concepts are mas-
tered, we shall study the completions of a field with respect to an absolute value. The
usefulness of the study of completions with respect to a metric is well known in the
area of analysis. In our case, we shall use these completions as a basic tool for the
study of the arithmetic properties of places in field extensions (Chapter 5). For this
chapter it is convenient, but not necessary, that the reader be familiar with the com-
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pletion of a metric space or at least with the standard completion of Q with respect to
the usual absolute value obtaining the field of real numbers R. We finish the chapter
with Artin’s approximation theorem, which can be considered as the generalization
of the Chinese remainder theorem and which establishes the following: Given a finite
number of absolute values and an equal number of elements of the field, we can find
an element of the field that approximates the given elements in each absolute value
as much as we want. Theorem 2.5.20 is the characterization of the completion of a
function field.

Chapter 3 is dedicated to the famous Riemann–Roch theorem (Theorem 3.5.4 and
corollaries) which is, without any doubt, the most important result of our book. The
Riemann–Roch Theorem states the equality between dimensions of vector spaces, de-
gree of a field extension and a very important field invariant: the genus. In order to es-
tablish the Riemann-Roch Theorem one requires various preliminary concepts, which
will be defined in this chapter and will play a central role in the rest of the book: divi-
sors, adeles or repartitions, Weil differentials, class groups, etc. The whole theory of
function fields depends heavily on the Riemann–Roch theorem.

An important part of the work of any mathematician at any level is to develop
and know examples concerning the topic on which he or she is working. Chapter 4
is dedicated to giving examples of the results found in Chapter 2 and 3. In the first
two sections we present examples and characterize the function fields of genus 0 and
1 respectively, and in the last section we calculate the genus of a quadratic extension
of a rational function field. Even though the genus can be found much more easily
using the Riemann–Hurwitz genus formula (Theorem 9.4.2), the methods we use in
this chapter are valuable by themselves.

Chapter 5 deals with Galois theory of function fields. After Chapter 3, this chapter
can be considered as the second in importance. It is dedicated to the arithmetic of
function fields (decomposition of places in the extensions, ramification, inertia, etc.).
Here we study the relationship between the decomposition of places in an extension of
function fields and the decomposition in the corresponding completions. Section 5.6
contains many technical details necessary to understand the notion of a different in an
extension and the different in an extension of Dedekind domains, which is the way we
study the arithmetic of number fields (Theorem 5.7.12). The last section of the chapter
concerns the study of the different by means of the local differents (Theorem 5.7.21).
The proof can be omitted without any loss of continuity. We end this chapter with an
introduction to ramification groups.

Chapter 6 deals with congruence function fields, that is, function fields whose
constant field is finite. As we said previously, the analogy between this kind of function
fields and number fields is much closer. In this chapter we study zeta functions and L-
series, as well as their functional equations.

Chapter 7 is dedicated to the Riemann hypothesis in function fields (Theorem
7.2.9). The proof that we present here is essentially due to Bombieri [7]. The reader
can omit the details of the proof without any loss of continuity. As an application of
the Riemann hypothesis we present an estimation on the number of prime divisors in
a congruence function field, as well as the determination of the fields of class num-
ber 1.
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Chapter 8 studies constant extensions in general, a particular case of which was
seen in Chapter 6, namely the case that the constant field is finite. We have preferred to
present first this special case for the readers that are interested in the most usual cases,
that is, when the constant field is a perfect field, in order to avoid all the technical
details of the general case. In this chapter we study the concepts of separability and of
a separably generated field extension. We also study the genus change in this kind of
extension and will see that the genus of the field decreases.

Chapter 9 concerns the Riemann–Hurwitz genus formula for geometric and sepa-
rable extensions, which is probably the best technique for calculating the genus of an
arbitrary function field. For inseparable extensions, Tate [152] used a substitute for the
ordinary trace and found a genus formula for this type of extension. That substitute
is the one used in the Riemann–Hurwitz formula. In Section 9.5, we present Tate’s
results. In the last section of the chapter, we revisit function fields of genus 0 and
1 and present the automorphism group of elliptic function fields. We conclude with
hyperelliptic function fields, which will be used in Chapter 10 for cryptosystems.

In Chapter 10 we apply the theory of function fields, especially Chapter 6 and 7, to
cryptography. We begin with a brief general introduction to cryptography: symmetric
and asymmetric systems, public-key cryptosystems, the discrete logarithm problem,
etc. Once these concepts are introduced we apply the theory of elliptic and hyperellip-
tic function fields to cryptosystems. In this way, we shall see that some groups that are
determined by elliptic function fields, as well as some Jacobians, may be used both for
public-key cryptosystems and for digital signatures and authentication.

Chapter 11 is a brief introduction to class field theory. We study Čebotarev’s den-
sity theorem and briefly introduce profinite groups. Finally we present, without proofs,
basic results of global as well as local class field theory. These results will be used in
Chapter 12 to prove Hayes’s theorem, which is analogous to the Kronecker–Weber
theorem on the maximal abelian extension of a congruent function field, that is, a
function field whose constant field is finite.

Chapter 12 is dedicated to the theory of cyclotomic function fields due to L. Carlitz
and D. Hayes [15, 61]. We shall see that these fields are the analogue of the usual
cyclotomic fields.

In Chapter 13 we give a brief introduction to Drinfeld, or elliptic, modules. The
original objective of Drinfeld’s module theory was to generalize the analogue of the
Kronecker–Weber theorem to a function field over a general finite field, as well as
complex multiplication and elliptic curves. We begin by presenting the Carlitz module,
which is studied in Chapter 12 and is the simplest Drinfeld module. Using the analytic
theory of exponential functions and lattices, we shall see that Drinfeld modules are
ubiquitous. On the other hand, these modules provide us with an explicit class theory
for general function fields over a finite field. We end the chapter with the application
of Drinfeld modules to cryptography.

The last chapter is a study of the automorphism group of a function field. First
we give a notion of differentiation due to H. Hasse and F. Schmidt [58] and then we
use it to study the Wronskian determinant and Weierstrass points in characteristic p.
We will see that the behavior in characteristic p is different from that in characteristic
0. We will use Weierstrass points to prove the classical result about the finiteness of



xii Preface

the automorphism group of a function field K/k of genus larger than 1, where k is an
algebraically closed field.

The appendix, which deals with group cohomology, is independent from the rest of
the book. The reason why we decided to include it is that anyone interested in a further
study of the arithmetic properties of function and local fields needs as a fundamental
tool the cohomology of groups, particularly Theorem A.3.6.

Sometimes the way we present the topics is not the shortest possible, but since
our main purpose was to write a textbook for graduate students, we chose to present
particular cases first and later on give the general result. For instance, in Chapter 4 we
state a formula for the genus of a quadratic extension of a rational function field and in
Chapter 9 we present the Riemann–Hurwitz genus formula that generalizes what was
done in Chapter 4. The same happens with the study of constant extensions.

It is important to specify that many of our results are a lot more general than what
is presented here. For example, in Chapter 5 we study Galois theory of function fields,
but most results hold for field extensions in general. Our motivation for emphasizing
the particular case of function fields is to stress the beauty of this theory, independently
of the fact that some of its particularities are really not particular but apply to the
general case.

In order to limit the size of the book, we had to leave aside various topics such as
the inverse Galois problem, topics in class field theory, the algebraic study of Riemann
surfaces, holomorphic differentials, the Hasse–Witt theory, Jacobians, Zp-extensions,
the Deuring–Šafarevič formula, etc.

The taste of this book is classical. We tried to preserve most of the original presen-
tations. Our exposition owes a great deal to Deuring’s monograph [28] and Chevalley’s
book [22].

There are many people to thank, but I will mention just a few of them. First of
all, I am grateful to Professor Manohar Madan for teaching me this beautiful theory.
I would like to thank Professors Martha Rzedowski Calderón and Fernando Barrera
Mora for the time they spent doing a very careful reading of previous versions of this
work, giving invaluable suggestions and correcting many errors. I also want to thank
Ms. Anabel Lagos Cordoba and Ms. Norma Acosta Rocha for typing part of this book.
I gratefully acknowledge Professor Simone Hazan for correcting the English version.
I also thank Ms. Ann Kostant, executive editor of Birkhäuser Boston, and Mr. Craig
Kavanaugh, assistant editor, for their support and interest in publishing this book. Fi-
nally, many thanks to the Department of Automatic Control of CINVESTAV del Insti-
tuto Politécnico Nacional, for providing the necessary facilities for the making of this
book. Part of the material was written during my sabbatical leave in the Mathematics
Department of the Universidad Autónoma Metropolitana Iztapalapa. Part of this work
was supported by CONACyT, project 36552-E.

México City,
November 2005 Gabriel D. Villa Salvador
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1

Algebraic and Numerical Antecedents

In this introductory chapter we present three topics. The first one is the basic theory
of transcendental fields, which is needed due to the fact that any function field is a
finitely generated transcendental extension of a given field.

The second section is on distinct absolute values in the field of rational numbers
Q. In the development of number theory, it happens in a similar way as with contin-
uous functions, that the “local” study of a field provides information on its “global”
properties, and vice versa. The local structure of function fields and of number fields
is closely related to that of the absolute values defined in them. We shall explore the
existing parallelisms and differences between absolute values in Q and in rational
function fields respectively.

The third topic of the chapter is Riemann surfaces, which serve as an infinite source
of inspiration for a similar study, namely when the base field is completely arbitrary
instead of being the complex field C. Several concepts of a totally analytic nature such
as those of differentials, distances, and meromorphic functions may be studied from an
algebraic viewpoint and are consequently likely to be translated into arbitrary fields,
including fields of positive characteristic.

We will not present here all prerequisites that will be needed in the rest of the book.
Instead, these will be presented only at the moment they are necessary.

1.1 Algebraic and Transcendental Extensions

Definition 1.1.1. Let L/K be any field extension. A subset S of L is called alge-
braically dependent (a. d.) over K if there exist a natural number n, a nonzero poly-
nomial f (x1, x2, . . . , xn) ∈ K [x1, x2, . . . , xn] and n distinct elements s1, s2, . . . , sn
of S such that f (s1, s2, . . . , sn) = 0. If S is not algebraically dependent over K , it is
called algebraically independent (a. i.) over K .

Example 1.1.2. Let K [X, Y ] be a polynomial ring of two variables over an arbitrary
field K and let f (X, Y ) = X2 − Y − 1. Consider the field L := K/( f (X, Y )).
Then S := {x}, where x := X mod f (X, Y ) is algebraically independent over K
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and T := {x, y}, where y := mod f (X, Y ) is algebraically dependent over K since
f (x, y) = 0.
It is easy to see that if S = {s1, s2, . . . , sn} is an algebraically independent set over

K , then K (s1, s2, . . . , sn) is isomorphic to the field K (x1, x2, . . . , xn) of rational
functions with n variables.

The algebraically independent sets can be ordered by inclusion, and applying
Zorn’s lemma, we can prove easily prove the existence of maximal algebraically inde-
pendent sets.

Definition 1.1.3. Let L/K be a field extension. A transcendental basis of L over K
is a maximal subset of L algebraically independent over K .

If S is a transcendental basis, it follows from the definition that L/K is algebraic
if and only if S is the empty set.

Example 1.1.4. In Example 1.1.2 we have that {x} and {y} are transcendental basis of
L over K .

Proposition 1.1.5. Let L/K be a field extension, S an algebraically independent set
over K , and x ∈ L \ K (S). Then S ∪ {x} is algebraically independent over K if and
only if x is transcendental over K (S).

Proof. Assume that S ∪ {x} is algebraically independent over K but x is not transcen-
dental over K (S). Then there exists a nonzero relation

fn (s1, . . . , sn) x
n + fn−1 (s1, . . . , sn) xn−1 + · · ·
+ f1 (s1, . . . , sn) x + f0 (s1, . . . , sn) = 0

with fi (s1, s2, . . . , sn) ∈ K [s1, s2, . . . , sn]. But this contradicts the fact that S ∪ {x}
is algebraically independent

The proof of the converse is similar. ��

Corollary 1.1.6. Let L/K be a field extension and S ⊆ L be an algebraically inde-
pendent set. Then S is a transcendental basis over K if and only if L/K (S) is an
algebraic extension. ��

Corollary 1.1.7. If L/K (S) is an algebraic extension, then S contains a transcenden-
tal basis. ��

Theorem 1.1.8. Any two transcendental bases have the same cardinality.

Proof. Let S be a transcendental basis. First we assume that S is finite, say S =
{s1, s2, . . . , sn} with |S| = n. If T is any algebraically independent set, we will show
that |T | ≤ n. Let {x1, x2, . . . , xm} ⊆ T be any finite subset of T and assume that
m ≥ n. By hypothesis, there exists a nonzero polynomial g1 with n+ 1 variables such
that
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g1 (x1, s1, s2, . . . , sn) = 0.
Since {x1} and {s1, s2, . . . , sn} are algebraically independent, it follows that x1 and
some si (say s1) appear in g1, so that s1 is algebraic over K (x1, s2, . . . , sn).

Repeating this process r times, r < m, and permuting the indices s2, . . . , sn if nec-
essary, by induction on r we obtain that the field L is algebraic over K (x1, x2, . . . , xr ,
sr+1, . . . , sn). Therefore, there exists a nonzero polynomial g2 with n + 1 variables
such that

g2 (xr+1, x1, . . . , xr , sr+1, . . . , sn) = 0
and such that xr+1 appears in g2. Since the xi are algebraically independent, some s j
with r + 1 ≤ j ≤ n also appears in g2. By permuting the indices if necessary, we may
assume that sr+1 is the one that appears in g2, that is, sr+1 is algebraic over

K
(
x1, . . . , xr , xr+1, sr+2, . . . , sn

)
,

so that L is algebraic over K
(
x1, . . . , xr , xr+1, sr+2, . . . , sn

)
. Since the process can

be repeated, it follows that we can replace the s’s by x’s and hence L is algebraic over
K (x1, . . . , xn). This proves that m = n.
In short, if a given transcendental basis is finite, any other basis is also finite and

has the same cardinality.
Now we assume that a transcendental basis S is infinite. The previous argument

shows that any other basis is infinite. Let T be any other transcendental basis. For
s ∈ S, there exists a finite set Ts ⊆ T such that s is algebraic over K (Ts). Since L is
algebraic over K (S) and S is algebraic over K

(⋃
s∈S Ts

)
, it follows that L is algebraic

over K
(⋃

s∈S Ts
)
. Finally, since

⋃
s∈S Ts ⊆ T , we have

⋃
s∈S Ts = T , where Ts is a

finite set.
Therefore |T | ≤ ∑

s∈S |Ts | ≤ ℵ0 |S| = |S|. By symmetry we conclude that
|T | = |S|. ��
Definition 1.1.9. A field extension L/K is called purely transcendental if L = K (S),
where S is a transcendental basis of L over K . In this case, K (S) is called a field of
rational functions in |S| variables over K .
Definition 1.1.10. Let L/K be a field extension. The cardinality of any transcendental
basis of L over K is called the transcendental degree of L over K and is denoted by
tr L/K .

Example 1.1.11. In Examples 1.1.2 and 1.1.4 we have that the transcendental degree
of L/K is 1 since K (x)/K is purely transcendental and L/K (x) is algebraic (y2 =
x − 1).
Proposition 1.1.12. If K ⊆ L ⊆ M is a tower of fields, then trM/K = trM/L +
tr L/K. ��

1.2 Absolute Values over Q

Definition 1.2.1. Let k be any field. An absolute value over k is a function ϕ : k −→
R, ϕ(a) = |a|, satisfying:
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(i) |a| ≥ 0 for all a ∈ k, and |a| = 0 if and only if a = 0,
(ii) |ab| = |a||b| for all a and b ∈ k,
(iii) |a + b| ≤ |a| + |b| for all a and b ∈ k.

Note that if | | is an absolute value then |1| = 1 and | − x | = |x | for all x ∈ K
(Exercise 1.4.10).

The usual absolute value in Q is the most immediate example of the previous
definition. Also, for any field k, the trivial absolute value is defined by |a| = 1 for
a �= 0 and |0| = 0.
Example 1.2.2. Let p ∈ Z be a prime number. For each nonzero x ∈ Q, we write
x = pn ab with p � ab and n ∈ Z. Let |x |p = p−n and |0| = 0. We leave to the reader
to verify that this defines an absolute value over Q. It is called the p-adic absolute
value, and it satisfies

|x + y|p ≤ max
{|x |p, |y|p}

for all x, y ∈ Q. An absolute value with this last property is called nonarchimedean.
We note that limn→∞ |pn|p = 0.
Definition 1.2.3. An absolute value | | : k −→ R, is called nonarchimedean if |a +
b| ≤ max {|a|, |b|} for all a, b ∈ k. Otherwise, | | is called archimedean.
Definition 1.2.4. Two nontrivial absolute values | |1 and | |2 over a field k are called
equivalent if |a|1 < 1 implies |a|2 < 1 for all a ∈ k.

The relation given in Definition 1.2.4 is obviously reflexive and transitive. We also
have the following result:

Proposition 1.2.5. For any two nontrivial equivalent absolute values | |1 and | |2, we
have |a|2 < 1 whenever |a|1 < 1, that is, the relation is symmetric. Therefore the
relation defined above is an equivalence relation.

Proof. Let |a|2 < 1. If |a|1 > 1, we have
∣∣a−1∣∣1 = |a|−11 < 1. Therefore

∣∣a−1∣∣2 =
|a|−12 < 1, which is impossible. Hence |a|1 ≤ 1. If |a|1 = 1, let b ∈ k be such that
0 < |b|1 < 1. Such a b exists since | |1 is nontrivial. Now

∣∣ba−n∣∣1 = |b|1|a|−n1 =
|b|1 < 1. Thus

∣∣ba−n∣∣2 = |b|2|a|−n2 < 1. Therefore |b|1/n2 < |a|2, which implies that

1 = lim
n→∞ |b|

1/n
2 ≤ |a|2 < 1,

a contradiction that proves |a|1 < 1. ��

Remark 1.2.6. If | |1 and | |2 are two absolute values and |a|1 < 1 implies |a|2 < 1,
then if | |1 is nontrivial, | |2 is nontrivial. Indeed, if b ∈ k is such that 0 < |b|1 < 1,
then we have 0 < |b|2 < 1.

From this point on all absolute values under consideration will be nontrivial.
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Theorem 1.2.7. Let | |1 and | |2 be two equivalent absolute values. Then there exists a
positive real number c such that |a|1 = |a|c2 for all a ∈ k.
Proof. Let 0 < |b|1 < 1, so that 0 < |b|2 < 1. Put

c = ln |b|1
ln |b|2 .

We have |b|1 = |b|c2 with c > 0 and c ∈ R. Now let a ∈ k, a �= 0 and let |a|1 = |b|r1
for some r ∈ R. Let αn, βn ∈ Z, βn > 0, be such that

αn

βn
≤ r and lim

n→∞
αn

βn
= r.

Then, since |b|1 < 1, we have

|a|1 = |b|r1 ≤ |b|αn/βn1 ,

that is, ∣∣aβn b−αn ∣∣1 ≤ 1,
so that

∣∣aβn b−αn ∣∣2 ≤ 1, which implies that
|a|2 ≤ |b|αn/βn2 .

Therefore we have |a|2 ≤ |b|r2.
Now taking αn

βn
≥ r , it can be shown in a similar fashion that |a|2 ≥ |b|r2. Therefore

|a|1 = |b|r1 = |b|cr2 = |a|c2. ��

Corollary 1.2.8. If | |1 and | |2 are two equivalent absolute values in a field k, they
define the same topology in k. ��

Proposition 1.2.9. Let k be a field, and M the subring of k generated by 1, that is,
M = {n × 1 | n ∈ Z}. Let | | be an absolute value in k. Then | | is nonarchimedean if
and only if | | is bounded in M.

Proof. If | | is nonarchimedean, we have for n ∈ Z, n > 0,

|n × 1| = |1+ · · · + 1| ≤ max {|1|, . . . , |1|} = |1| = 1,
and for n ∈ Z, n < 0,

|n × 1| = | − n × 1| ≤ |1| = 1,
so | | is bounded in M .

Now assume that | | is bounded in M , say |m × 1| ≤ s for all m ∈ Z. If a, b ∈ k
and n ∈ N, we have
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|a + b|n =
∣∣∣∣∣ n∑
i=0

(
n

i

)
aibn−i

∣∣∣∣∣ ≤ n∑
i=0

∣∣∣∣(ni
)∣∣∣∣ |a|i |b|n−i

≤ s
n∑
i=0
|a|i |b|n−i ≤ s(n + 1)|a|n,

where it is assumed that |a| = max{|a|, |b|}.
Hence

|a + b| ≤ s1/n n
√
n + 1 |a| −−−→

n→∞
|a| = max{|a|, |b|},

and | | is nonarchimedean. ��

Corollary 1.2.10. Every absolute value in a field of positive characteristic is nonar-
chimedean. ��

We finish this section characterizing the absolute values over the field of rational
numbers.

Theorem 1.2.11 (Ostrowski). Let ϕ be an absolute value in Q. Then ϕ is trivial or
it is equivalent to the usual absolute value or it is equivalent to some p-adic absolute
value.

Proof. Let ϕ be a nontrivial absolute value. Let us assume that there exists n ∈ N,
n > 1, such that ϕ(n) ≤ 1. For m ∈ N, we write

m = a0 + a1n + · · · + arn
r

with 0 ≤ ai ≤ n − 1, ar �= 0. Now

ϕ (ai ) = ϕ(1+ · · · + 1) ≤ ϕ(1)+ · · · + ϕ(1) = ai < n,

so

ϕ(m) ≤
r∑
i=0
ϕ
(
ain

i
)
=

r∑
i=0
ϕ (ai ) ϕ (n)

i < n
r∑
i=0

1 = n(1+ r).

Since m ≥ nr , we have

r ≤ lnm

ln n
and ϕ(m) <

(
1+ lnm

ln n

)
n.

Applying the above to ms , s ∈ N, we have

ϕ(m)s = ϕ (ms) < (1+ lnms

ln n

)
n =

(
1+ s

lnm

ln n

)
n,
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which implies

ϕ(m) <

(
1+ s

lnm

ln n

)1/s
n1/s −−−→

s→∞
1.

We have shown that ϕ(m) ≤ 1, so ϕ is bounded in Z and ϕ is nonarchimedean.
Let A = {m ∈ Z | ϕ(m) < 1}. It can be verified that A is an ideal. Now if ab ∈ A,

then ϕ(ab) = ϕ(a)ϕ(b) < 1, so ϕ(a) < 1 or ϕ(b) < 1. Therefore A is a prime
ideal. Let A = (p), where p is prime and ϕ(p) < 1. Let c ∈ R, c > 0 be such that
ϕ(p) = p−c. If m /∈ A, we have p � m and ϕ(m) = 1. Therefore, for

x ∈ Q such that x = pn
a

b

with p � ab, we have

ϕ(x) = ϕ(p)n ϕ(a)
ϕ(b)

= ϕ(p)n = p−cn = |x |cp,

so ϕ is equivalent to | |p.
Now we assume that ϕ(n) > 1 for n ∈ N, n > 1. Let m, n ∈ Z,m, n > 1, and put

mt = a0 + a1n + · · · + arn
r , where 0 ≤ ai ≤ n − 1, ar �= 0.

We have r ≤ lnmt

ln n . Now we have

ϕ
(
mt) = ϕ(m)t ≤ r∑

i=0
ϕ (ai ) ϕ (n)

i <

r∑
i=0

nϕ (n)r = n(1+ r)ϕ(n)r

≤ n

(
1+ lnmt

ln n

)
ϕ(n)(lnm

t )/(ln n).

Therefore,

ϕ(m) ≤ n1/t
(
1+ t

lnm

ln n

)1/t
ϕ(n)(1/t)((lnm

t )/(ln n))

= n1/t
(
1+ t

lnm

ln n

)1/t
ϕ(n)(lnm)/(ln n) −−−→

t→∞
ϕ(n)(lnm)/(ln n).

That is, ϕ(m) ≤ ϕ(n)(lnm)/(ln n) or, equivalently,

ϕ(m)1/(lnm) ≤ ϕ(n)1/(ln n).

By symmetry we obtain ϕ(m)1/(lnm) = ϕ(n)1/(ln n). Let c ∈ R, c > 0, be such that
ϕ(m)1/(lnm) = ec for all m ∈ Z such that m > 1.

We have ϕ(m) = ec lnm = elnm
c = mc = |m|c for all m > 1, m ∈ Z.
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For m = 1, ϕ(1) = 1 = 1c.
For m = 0, ϕ(0) = 0 = |0|c.
For m < 0,m ∈ Z, ϕ(m) = ϕ(−m) = | − m|c = |m|c.

Finally, let x ∈ Q such that x = a
b . We have

ϕ(x) = ϕ(a)
ϕ(b)

= |a|
c

|b|c = |x |
c.

Therefore ϕ(x) = |x |c for all x ∈ Q. This shows that ϕ is equivalent to | |, the usual
absolute value of Q. ��

1.3 Riemann Surfaces

First we recall the definition of a Riemann surface.

Definition 1.3.1. Let R be a connected Hausdorff topological space. Then R is called
a Riemann surface if there exists a collection {Ui ,�i }i∈I , such that:
(i) {Ui }i∈I is an open cover of R and �i : Ui −→ C is a homeomorphism over an
open set of the complex plane C for each i ∈ I .

(ii) For every pair (i, j) such thatUi ∩Uj �= ∅,� j�
−1
i is a conformal transformation

of �i
(
Ui ∩Uj

)
onto � j

(
Ui ∩Uj

)
.

In other words, a Riemann surface is a manifold that is obtained by gluing in a
biholomorphic way neighborhoods that are homeomorphic to open sets of C.

�
�

�
�

�
��

�−1i

�
�

�
���

� j

Ui ∩Uj

�i (Ui ∩Uj )

� j (Ui ∩Uj )
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Definition 1.3.2. An algebraic function w(z) of a complex variable z is a function
satisfying a functional equation of the type

a0(z)w
n + a1(z)w

n−1 + · · · + an(z) = 0,
where a0(z) �= 0 and ai (z) ∈ C[z] for 0 ≤ i ≤ n.

Definition 1.3.3. A Riemann surface R of an algebraic function w(z) is a connected
complex manifold (that is, “locally” the same as C) where w(z) can be defined as an
analytic function (w : R → C ∪ {∞}) and w(z) is single-valued. (If A ⊆ B are two
Riemann surfaces of w(z), A is open and closed in B, so A = B.)

If R and R′ are two such connected complex manifolds, then R and R′ are confor-
mally equivalent. That is, R is essentially unique, and therefore we will say that R is
the Riemann surface of w(z).

��������������������������������
����

����
����

����
����

����
����
����
����
����
����

����
����

����������������������������1�

In order to clarify the previous definition, we consider the “function” defined by
w(z) = √z (that is, w(z)2 − z = 0). When we begin to evaluate w(1) we have two
possible choices, w(1) = 1 or w(1) = −1. Say that we choose w(1) = 1. If we take
the analytic continuation ofw(z) around the curve of equation �(t) = eit , 0 ≤ t ≤ 2π ,
we obtain, when we come back to the point z = 1, the value w(1) = −1 (and vice
versa). If we go around for a second time with the analytic continuation, we obtain
w(1) = 1. This procedure tells us that in order to obtain a solution to this prob-

��
�	

��
�	

∼=

 





N = ∞

S = 0

N = ∞

S = 0

��

∼=


 
1− 1+ 
 
1−1+

lem, the point 1 is to be “divided” into
two points, or, more precisely, all real
values between 0 and ∞ included are
to be divided into two parts. In other
words, when we consider the Riemann
surface S2, we must remove the posi-
tive real curve starting at 0 and ending
at ∞. When we separate this cut, the
set obtained may be assumed to be the
same as a half Riemann sphere with
the ray of positive real numbers as the
border and such that it appears twice.
When we continue w(z) through the
curve �(t) = eit and we come back
to the point 1, we take the point 1 in
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the second hemisphere instead of the first one. If we identify the respective borders
we will obtain again the Riemann sphere, but with the previous process, w(z) will be
single-valued.

This is fundamentally the Riemann approach to make single-valued functions from
multivalued ones.

We point out that this problem is defined not only for algebraic functions but also
for many other multivalued functions, for instance the logarithmic function. Although
in this case the problem can be solved in a similar fashion, the Riemann surface ob-
tained will be different from the Riemann surfaces obtained from algebraic functions,
which are compact.

Now we state some basic results of the theory of Riemann surfaces that will be
generalized later to other situations. For the moment, they will serve us as a motivation
and a basis of our general theory of algebraic functions.

Theorem 1.3.4. The Riemann surface of an algebraic function is a compact Riemann
surface (according to Definition 1.3.1).

Proof. [72, Theorem 4.2, p. 156], [34, Corollary, p. 248]. ��
The converse also holds.

Theorem 1.3.5. If a Riemann surface is compact, then it is conformally equivalent to
a Riemann surface of an algebraic function.

Proof. [72, Theorem 4.3, p. 161], [34, Corollary IV.11.8, p. 249]. ��

Theorem 1.3.6. Every compact Riemann surface R is homeomorphic to a Riemann
surface with g handles, where g is a nonnegative integer called the genus of R. There-
fore two Riemann surfaces are topologically equivalent if and only if they have the
same genus.

Proof. [72, Theorems 4.8 and 4.9, p. 172], [164, Teorema 5.92, p. 261]. ��

Theorem 1.3.7. Every compact Riemann surface R of genus g is conformally equiva-
lent to a cover of (g + 1) sheets of the Riemann sphere. ��

The previous results characterize all compact Riemann surfaces: on the one hand,
the compact Riemann surfaces are exactly the Riemann surfaces of algebraic func-
tions; on the other hand, they are topologically equivalent to a bidimensional sphere
with g handles and conformally equivalent to a cover of a Riemann sphere.

We observe that the genus g characterizes the compact Riemann surfaces topolog-
ically but not analytically. For instance, there are infinitely many Riemann surfaces of
genus 1 that are conformally inequivalent pairwise. This topic will be studied later and
in a much more general setting.

Let P ∈ R and P ∈ U where U is an open set of R. Let ϕ : U −→ ϕ (U ) =
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h : V

ϕ−1

C

U
f

V ⊆ C be a homeomorphism given in Definition 1.3.1.
For a given f : U −→ C, let h = f ◦ ϕ−1. We say that
f is holomorphic (meromorphic) inU if h is holomorphic
(meromorphic) in V . The same definitions are given for a
global function f : R −→ C.

Theorem 1.3.8. Let R be a Riemann surface and let X (R) = { f : R → C | f
is meromorphic}. Then X (R) is a finitely generated field over C with transcendence
degree 1; that is, X (R) ∼= C(x, y) where x and y are two indeterminates over C
satisfying a nonzero relation F(x, y) = 0, for F a polynomial in two variables.

Proof. [72, Theorem 3.4, p. 95 and Theorem 4.3, p. 161], [34, Corollary, p. 250]. ��
Finally we have the following theorem.

Theorem 1.3.9. Let R1, R2 be two compact Riemann surfaces. Then R1 and R2 are
conformally equivalent (that is, isomorphic as Riemann surfaces) if and only if X (R1)
and X (R2) are C-isomorphic as fields (that is, there exists a field isomorphism ϕ :
X (R1)→ X (R2) such that ϕ(α) = α for all α ∈ C).

Proof. [72, Theorems 4.5 and 4.6, p. 164]. ��
Thus, we see that the study of compact Riemann surfaces can be done by means

of their fields of meromorphic functions. This allows us to view algebraic function
fields as Riemann surfaces over an arbitrary field (in place of C). Of course we do not
have all the analytic machinery available as in the field of complex numbers, but we
can algebrize the properties of the Riemann surfaces and in this way find results of the
same kind over an arbitrary field of constants.

By this method we will obtain the Riemann–Roch theorem, the Riemann–Hurwitz
genus formula, the concept of a holomorphic differential or abelian differential of
the first type, differentials, etc. On the other hand, when k is an arbitrary field, in
particular not necessarily algebraically closed or of characteristic 0, k may have proper
algebraic extensions or inseparable extensions. This necessarily implies that the theory
will differ substantially from the analytical case.

1.4 Exercises

Exercise 1.4.1. Verify that the function | |p defined in Example 1.2.2 is an absolute
value.

Exercise 1.4.2. Prove that the p-adic absolute value | |p is nonarchimedean.
Exercise 1.4.3. Prove Proposition 1.1.12.

Exercise 1.4.4. What is the topology on Q given by the trivial absolute value?

Exercise 1.4.5. Prove that if p and q are two different rational prime numbers, then
the p-adic and the q-adic topologies in Q are different.
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Exercise 1.4.6. Find trC/Q, trR/Q, and trC/R.

Exercise 1.4.7. Show that AutC := { f : C → C | f is a field automorphism} is an
infinite set.

Exercise 1.4.8. Prove that if S = {s1, . . . , sn} is an algebraically independent set over
a field K , then K (s1, . . . , sn) is isomorphic to the field K (x1, . . . , xn) of rational
functions in n variables.

Exercise 1.4.9. Prove that an extension L/K is algebraic if and only if any transcen-
dental basis of L/K is the empty set.

Exercise 1.4.10. If | | is an absolute value on a field K , prove that |1| = 1 and |− x | =
|x | for all x ∈ K .



2

Algebraic Function Fields of One Variable

This chapter will serve as an introduction to our theory of function fields. Using as a
source of inspiration compact Riemann surfaces, and especially their fields of mero-
morphic functions, we first generalize the concept of a function field. In this way we
will obtain the general definition of a function field, and establish its most immediate
properties.

Our second goal in this chapter will be to study absolute values in function fields,
following the philosophy according to which the local study of an object provides in-
formation on its global properties, and vice versa. We will use the fact that the concept
of an absolute value is equivalent to other concepts of a more algebraic nature: val-
uation rings, valuations, places, etc. This equivalence will be studied in Section 2.2,
together with its basic properties. The places (Definition 2.2.10) correspond to points
on a projective, nonsingular algebraic curve (at least over an algebraically closed field).

Next, we shall recall the definition of the completion of a field with respect to an
absolute value, which is a particular case of a metric space. Such completions con-
stitute the mentioned local study of function fields, which will be used for the global
study of these fields.

In Section 2.4 we characterize all valuations of a field of rational functions that are
trivial on the field of constants. Together with Chevalley’s lemma, which states that
places extend to overfields, this characterization will allow us to study valuations over
an arbitrary function field.

In the last section we will present Artin’s approximation theorem, which states the
following: Given a finite number of distinct absolute values and the same number of
arbitrary elements of a function field, we can find an element of the field that approxi-
mates the given elements as much as we want, each one in the corresponding absolute
value.

We conclude the chapter with a characterization of the completion of a function
field with respect to a given place. As we shall see, such completions are simply Lau-
rent series, which makes their study easier than that of number fields; indeed, although
the latter admit series representations, the series involved are not Laurent series, due
to the difference in characteristics.
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2.1 The Field of Constants

Definition 2.1.1. Let k be an arbitrary field. A field of algebraic functions K over k is
a finitely generated field extension of k with transcendence degree r ≥ 1. K is called
a field of algebraic functions of r variables.

Example 2.1.2. Let k be any field and let K = k[X, Y ]/( f (x, y)), where k[X, Y ] is
the polynomial ring of two variables, k is any field, and f (X, Y ) = X3−Y 2+1. Then
if x := X mod ( f (X, Y )) and y := Y mod ( f (X, Y )), we have K = k(x, y) with
x3 = y2 − 1. Therefore K = k(x, y) is a field of algebraic functions of one variable.

From this point on we will study only the case r = 1, that is, K will be a field
of functions of one variable. We will call such a field a function field and it will be
denoted by K/k.

We observe that if x ∈ K is transcendental over k, then K/k(x) is a finite extension
(since it is algebraic and finitely generated).

Now, if z is any other element of K that is transcendental over k, then since K/k
has transcendence degree 1, {x, z} cannot be algebraically independent. Therefore
there exists a nonzero polynomial p (T1, T2) ∈ k [T1, T2] such that p(x, z) = 0. Since
x and z are transcendental over k, x and z must appear in the expression of p(x, z).
Therefore, it follows immediately that x is algebraic over k(z) (and z is algebraic over
k(x)). Thus

[K : k(z)] = [K : k(x, z)][k(x, z) : k(z)] ≤ [K : k(x)][k(x, z) : k(z)] <∞,

as we mentioned before. This shows that any two elements x, z of K that are tran-
scendental over k satisfy similar conditions, that is, K/k(x) and K/k(z) are finite.
However, in general [K : k(z)] and [K : k(x)] are distinct. This is one of the principal
differences with number fields, since a number field E has as base subfield its prime
field, namely Q, and [E : Q] is well and uniquely defined. In the case of algebraic
functions K , we take as base field k(x) with x ∈ K transcendental over k, but k(x) is
not uniquely determined. On the other hand, if x, z ∈ K are transcendental over k, we
have k(x) ∼= k(z).

As a simple example of the previous remarks, we consider K = Q(x, z), where
x, z are variables over Q that satisfy x2 + z4 = 1. We have [K : Q(x)] = 4, [K :
Q(z)] = 2, [K : Q

(
x2
)] = 8, etc.

Definition 2.1.3. Let K/k be a function field. The algebraic closure of k in K , that is,
the field k′ = {α ∈ K | α is algebraic over k}, is called the field of constants of K .
Example 2.1.4. Let K = R(x, y) with x, y two variables over R satisfying

x6 + 2x3y2 + y4 = −1.

Since x3 + y2 = i = √−1, it follows that the field of constants of K is C.
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Example 2.1.5. If k = R, K = k(x, y)with x2 = −y2−1, then i �∈ K since otherwise
x = i

√
y2 + 1 ∈ K and

√
y2 + 1 ∈ K and it would follow that K = k(x, y) =

k(i
√
y2 + 1, y). However, it is easy to see that i = p(i

√
y2 + 1, y) has no solution

for any p(X, Y ) ∈ R[X, Y ]. Therefore in this case the field of constants is k = R.

Note that k ⊆ k′ and since K/k′ cannot be algebraic, we have

1 ≤ tr K/k′ ≤ tr K/k = 1.
Thus K/k′ is also a function field, now over k′, with the additional property that every
element x ∈ K \ k′ is transcendental.
Proposition 2.1.6. If x ∈ K \ k′, we have [k′ : k] = [k′(x) : k(x)]. More generally, if
x is a transcendental element over k and k′, then [k′ : k] = [k′(x) : k(x)].
Proof. Let [k′ : k] = n with n finite or infinite. We will see later that n must be finite.

Let {αi }i∈I be a basis of the vector space k′ over k, |I | = n. Let
p(x) ∈ k′(x), say p(x) = a(x)

b(x) , with a(x), b(x) ∈ k′[x]. We write
a(x) =∑m

i=0 ai xi , with ai ∈ k′.

k′ k′(x)

k k(x)We have

ai =
ri∑
j=1

ai jα j , ai j ∈ k, 0 ≤ i ≤ m.

Let t = max {ri | i = 0, . . . ,m} and ai j = 0 for ri < j ≤ t . We may write ai =∑t
j=1 ai jα j . Thus

a(x) =
m∑
i=0

ai x
i =

m∑
i=0

(
t∑
j=1

ai jα j

)
xi =

t∑
j=1
α j

(
m∑
i=0

ai j x
i

)
=

t∑
j=1

p j (x)α j ,

with p j (x) =
∑m

i=0 ai j xi ∈ k[x].
Therefore a(x) is algebraic over k(x).
If we apply the above argument to b(x) ∈ k′[x], we obtain as a particular case that

there exists a relation

r∑
	=0

t	(x)b(x)
	 = 0 with t	(x) ∈ k[x], t0(x) �= 0, and tr (x) �= 0.

In particular,

b(x)

{
r∑
	=1

t	(x)b(x)
	−1
}{
−t0(x)−1

}
= 1,

that is,

b(x)−1 = −
r∑
	=1

t	(x)

t0(x)
b(x)	−1.
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Hence, p(x) = a(x)b(x)−1 = ∑s
i=0 ci (x)αi for ci (x) ∈ k(x). Therefore {αi }i∈I

generates k′(x) over k(x).
Assume that there exists a relation

∑s
i=0 qi (x)αi = 0, with qi (x) ∈ k(x)

and such that some q j (x) is nonzero. Clearing denominators, we may assume that
qi (x) ∈ k[x]. Now, in case x | qi (x) for all i , we take qi (x) = xq ′i (x) and we ob-
tain x

∑s
i=0 q ′i (x)αi = 0, so that

∑s
i=0 q ′i (x)αi = 0. Therefore, we may assume that

x � q j (x) for some j , or equivalently, q j (0) �= 0. Now,
∑s

i=0 qi (x)αi = 0 implies∑s
i=0 qi (0)αi = 0, but then qi (0) ∈ k and q j (0) �= 0 imply that {αi }i∈I is not linearly

independent over k.
Hence, {αi }i∈I is also a basis of k′(x)/k(x) and therefore [k′(x) : k(x)] = [k′ : k].

��
Coming back to the function field K/k, we have

[K : k(x)] = [K : k′(x)][k′(x) : k(x)] = [K : k′(x)][k′ : k] <∞,
so n = [k′ : k] is finite in Proposition 2.1.6.

From now on, unless otherwise stated, we will always assume that k′ = k, that is,
when mentioning a function field K/k, we will be assuming that the field of constants
of K is k or, equivalently, that k is algebraically closed in K .

2.2 Valuations, Places, and Valuation Rings

Definition 2.2.1. An ordered group G is an abelian group (G,+) with a relation <
satisfying, for α, β, γ ∈ G:
(i) α < β or β < α or α = β (trichotomy),
(ii) If α < β and β < γ then α < γ (transitivity),
(iii) If α < β then α + γ < β + γ (preservation of the group operation).

As usual, α ≤ β will denote α < β or α = β.
For an ordered group G, we define G0 = {α ∈ G | α < 0}, where 0 denotes the

identity of G. Then we have the disjoint union G = G0 ∪ {0} ∪ {−G0}. Furthermore,
for all α, β ∈ G we have α < β if and only if α − β ∈ G0.

Conversely, if (G,+) is an abelian group with identity 0 such that there exists
a semigroup H ⊆ G satisfying that G = H ∪ {0} ∪ {−H} is a disjoint union, we
can define for α, β ∈ G, α < β ⇐⇒ α − β ∈ H . It is easy to see that < satisfies
the conditions of Definition 2.2.1 and G is an ordered group whose set of “negative
elements” is H .

We observe that if G is a nontrivial finite group, then G cannot be ordered since if
α ∈ G and α �= 0, say α > 0, then for any n ∈ N,

nα = α + · · · + α > 0+ · · · + 0 = 0,
that is, nα �= 0. In particular, if G is an ordered group then every nonzero element of
G is of infinite order, that is, G is torsion free.

The most obvious examples of ordered groups are Z, Q, and R with the sum and
the usual order.
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Definition 2.2.2. Let K be an arbitrary field. A valuation v over K is a surjective
function v : K ∗ −→ G, where G is an ordered group called the value group or
valuation group, satisfying

(i) For a, b ∈ K ∗, v(ab) = v(a)+ v(b), that is, v is a group epimorphism,
(ii) For a, b ∈ K ∗ such that a + b �= 0, v(a + b) ≥ min{v(a), v(b)}.
We define v(0) = ∞, where ∞ is a symbol such that ∞ /∈ G, α < ∞ for all

α ∈ G and∞+∞ = α +∞ =∞+ α = ∞ for all α ∈ G.
The purpose of including the symbol∞ is simply to be able to define v(0) in such

a way that conditions (i) and (ii) of the definition are also satisfied.
As an example of valuation we have K = Q,G = Z, and v = vp the p-adic

valuation, for p ∈ Z a rational prime. That is, for x ∈ Q∗ we write

x = pn
a

b
, n ∈ Z, p � ab and vp(x) = n.

We leave it to the reader to verify that this is in fact a valuation. Also, observe the
similarity of vp with the p-adic absolute value (Example 1.2.2).

A fancier example, which is a simple generalization of the previous one, is the
following. Consider a number field K , that is, [K : Q] < ∞, and let ϑK be the
integral closure of Z in K , that is,

ϑK = {α ∈ K | Irr (α, x, K ) ∈ Z[x]} ,
where Irr (α, x, K ) denotes the irreducible polynomial of α in Q[x].

Let P be a nonzero prime ideal of ϑK . It is known that ϑK is a Dedekind domain
(see Definition 5.7.1), so that if x ∈ K ∗, the principal fractional ideal (x) can be
written as Pn A

B with n ∈ Z, where A, B are ideals of ϑK that are relatively prime
to P . Then we define vP (x) = n. As in the case of Q, vP is a valuation that is an
extension of the p-adic valuation vp of Q, where (p) = P ∩ Z.

In general we have the following result:

Proposition 2.2.3. Let K be any field and let v be a valuation over K . Then

(i) v(1) = 0,
(ii) v

(
a−1
) = −v(a) for all a �= 0,

(iii) v(a) = v(−a),
(iv) if v(a) �= v(b), then v(a + b) = min{v(a), v(b)},
(v) v

(∑n
i=1 ai

) ≥ min1≤i≤n {v (ai )} and equality holds if v (ai ) �= v
(
a j
)
for all

i �= j ,
(vi) if

∑n
i=1 ai = 0, n ≥ 2, then there exist i �= j such that v (ai ) = v

(
a j
)
.

Proof.

(i) We have v(1) = v(1× 1) = v(1)+ v(1), so, by the cancellation law property
of abelian groups, it follows that v(1) = 0.

(ii) We have 0 = v(1) = v
(
aa−1

) = v(a) + v (a−1). Therefore v (a−1) =
−v(a).
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(iii) We have

v(1) = 0 = v((−1)(−1)) = v(−1)+ v(−1),
that is, 2v(−1) = 0. Since the unique torsion element of an ordered abelian
group is 0, we have v(−1) = 0. Therefore we obtain that

v(−a) = v((−1)a) = v(−1)+ v(a) = 0+ v(a) = v(a).
(iv) We have v(a + b) ≥ min{v(a), v(b)}. Now if v(a) �= v(b), say v(a) > v(b),

then

v(b) = v(b + a − a) ≥ min{v(a + b), v(−a)}
= min{v(a + b), v(a)} ≥ v(b).

Then from v(b) = min{v(a + b), v(a)} and v(b) < v(a) we conclude that
v(a + b) = v(b) = min{v(a), v(b)}.

(v) The case n = 2 is given in (iv). For n > 2, by induction on n we obtain

v

(
n∑
i=1

ai

)
= v

(
n−1∑
i=1

ai + an

)
≥ min
1≤i≤n

{v (ai )} ,

and if v (ai ) �= v
(
a j
)
for all i �= j , then

v

(
n−1∑
i=1

ai

)
= min
1≤i≤n−1

{v (ai )} �= v (an) .

Therefore

v

(
n∑
i=1

ai

)
= min

{
v

(
n−1∑
i=1

ai

)
, v (an)

}

= min
{
min

1≤i≤n−1
{v (ai )} , v (an)

}
= min
1≤i≤n

{v (ai )} .

(vi) For n ≥ 2, if∑n
i=1 ai = 0, then v

(∑n
i=1 ai

) = v(0) = ∞.
If min1≤i≤n {v (ai )} = ∞, then v (ai ) = ∞, that is, ai = 0 for all i .
If min1≤i≤n {v (ai )} < ∞, then v (∑n

i=1 ai
) �= min1≤i≤n {v (ai )}. Hence,

from (v), we have v (ai ) = v
(
a j
)
for two different indices i �= j .

��
Now we consider an arbitrary field K and a valuation of K with values in an

ordered group G. Let ϑv = {x ∈ K | v(x) ≥ 0}. Then, since
v(x) = v(−x), v(xy) = v(x)+ v(y),
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and since G is an ordered group, it follows that ϑv is a ring. Furthermore, for x ∈ K ,
then if x /∈ ϑv , we have v(x) < 0. Thus v

(
x−1
) = −v(x) > 0, that is, x−1 ∈ ϑv .

Hence, given x ∈ K , we have x ∈ ϑv or x−1 ∈ ϑv . Furthermore, for x ∈ K , if x ∈ ϑv
then x = x

1 ∈ ϑv , and if x /∈ ϑv , then x−1 ∈ ϑv and therefore x = 1
x−1 ∈ quotϑv ,

where quotϑv denotes the field of quotients of ϑv , which proves that K = quotϑv .
Now, x ∈ ϑv is a unit if and only if x−1 ∈ ϑv , that is, v(x) ≥ 0 and v

(
x−1
) =

−v(x) ≥ 0. Therefore

ϑ∗v = {x ∈ K | v(x) = 0} .

Let Pv = {x ∈ K | v(x) > 0} consist of the nonunits of ϑv . We will see that in fact
Pv is an ideal. If x ∈ Pv and y ∈ ϑv , we have

v(xy) = v(x)+ v(y) ≥ v(x) > 0,

so xy ∈ Pv . On the other hand, if x, y ∈ Pv , then

v(x + y) ≥ min{v(x), v(y)} > 0.

Therefore ϑv is a local ring with maximal ideal Pv . Finally, v : (K ∗, ·) −→ (G,+) is
a group epimorphism with ker v = ϑ∗v . Thus

(G,+) ∼= (K ∗/ϑ∗v , ·) .
The above discussion can be summed up as follows.

Proposition 2.2.4. If K is a field and v a valuation over K , then ϑv = {x ∈ K |
v(x) ≥ 0} is a subring of K such that for all x ∈ K, x ∈ ϑv or x−1 ∈ ϑv . In
particular, ϑv is a local ring with maximal ideal

Pv = {x ∈ K | v(x) > 0} = ϑv \ ϑ∗v , ϑ∗v = {x ∈ K | v(x) = 0} .

Furthermore, we have quotϑv = K and the value group of v is isomorphic to K ∗/ϑ∗v .
��

Definition 2.2.5. Every integral domain A that is not a field and such that each x ∈
quot A satisfies x ∈ A or x−1 ∈ A is called a valuation ring.

Proposition 2.2.6. If A is a valuation ring and K = quot A, then K ∗/A∗ is an ordered
group and the natural projection is a valuation with valuation ring A and value group
K ∗/A∗.

Proof. We know that K ∗/A∗ is an abelian group. If x, y ∈ K ∗, define

x mod A∗ ≤ y mod A∗ if yx−1 ∈ A

(x mod A∗ < y mod A∗ ⇐⇒ yx−1 ∈ A \ A∗).
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Observe that if x mod A∗ = x1 mod A∗ and y mod A∗ = y1 mod A∗, then x =
ax1, y = by1 with a, b ∈ A∗. Therefore yx−1 = by1 (ax1)−1 = ba−1y1x−11 . Thus
yx−1 ∈ A ⇐⇒ y1x

−1
1 ∈ A, which proves that the order relation does not depend on

the representatives.
Given three elements α, β, γ ∈ K ∗/A∗, we take x, y, z ∈ K ∗ such that α =

x mod A∗, β = y mod A∗, γ = z mod A∗. Since A is a valuation ring, we have
xy−1 ∈ A or

(
xy−1

)−1 = yx−1 ∈ A, so that α ≤ β or β ≤ α. Therefore, the relation
is trichotomic.

Now if α ≤ β and β ≤ γ , then yx−1 ∈ A, zy−1 ∈ A and yx−1zy−1 = zx−1 ∈ A,
which shows that α ≤ γ . If α < β and β < γ , it is easy to see that α < γ .

Finally, if α ≤ β, then yx−1 ∈ A so yzz−1x−1 = yz(zx)−1 ∈ A, that is, αγ ≤
βγ .

Therefore K ∗/A∗ is an ordered group; now consider the natural projection

v : K ∗ −→ K ∗/A∗.

We have

v(xy) = xy mod A∗ = (x mod A∗) (y mod A∗)
for any x, y ∈ K ∗. If x + y �= 0 then v(x + y) = (x + y) mod A∗. Let us assume that
x mod A∗ ≤ y mod A∗, that is, yx−1 ∈ A. We have

(x + y)x−1 = 1+ yx−1 ∈ A,

that is,

v(x + y) = (x + y) mod A∗ ≥ x mod A∗ = min {x mod A∗, y mod A∗} .
This proves that v is a valuation.

Finally, the valuation ring of v is given by

ϑv =
{
x ∈ K ∗ | v(x) ≥ 1̄} ∪ {0} = {x ∈ K ∗ | x1−1 = x ∈ A

}
∪ {0} = A. ��

Propositions 2.2.4 and 2.2.6 show that the concepts of valuation rings and valua-
tions are essentially the same.

Definition 2.2.7. Let v1 : K ∗ −→ (G1,+) and v2 : K ∗ −→ (G2,+) be two valua-
tions of a field K . We say that v1 and v2 are equivalent if v1(α) > 0⇐⇒ v2(α) > 0
for all α ∈ K ∗.

Observe that if α ∈ K ∗, then v1(α) < 0 ⇐⇒ v1
(
α−1

)
> 0 ⇐⇒ v2

(
α−1

)
>

0 ⇐⇒ v2(α) < 0 and by complementation, we obtain v1(α) = 0 ⇐⇒ v2(α) = 0.
Therefore we have shown that if v1 and v2 are equivalent, then ϑv1 = ϑv2 ; in particular,
the value groups are isomorphic since both are isomorphic to K ∗/ϑ∗v1 .

Now let v1 and v2 be two equivalent valuations with value groups G1 and G2
respectively. For α ∈ G1, let a ∈ K ∗ be such that v1(a) = α and define
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σ : G1 −→ G2 such that σ(α) = v2(a).
Clearly, σ is defined by means of the formula σv1 = v2. The first fact we have to verify
is that σ is well defined, i.e., if v1(a) = v1(b), then v2(a) = v2(b). Let a, b ∈ G. We
have

v1(a) = v1(b) �⇒ v1

(
ab−1

)
= v1(a)− v1(b) = 0

�⇒ v2

(
ab−1

)
= v2(a)− v2(b) = 0 �⇒ v2(a) = v2(b).

Now, if v1(a) = α and v1(b) = β, then v1(ab) = v1(a)+ v1(b) = α + β, so
σ (α + β) = v2(ab) = v2(a)+ v2(b) = σ (α)+ σ (β) ,

and hence σ is a group homomorphism. Now given γ ∈ G2, let v2(a) = γ . If v1(a) =
α, we have σ (α) = γ . Therefore σ is an epimorphism. Also, if σ (α) = σ (β), then
v2(a) = v2(b) with a, b satisfying v1(a) = α, v1(b) = β. Now

v2(a) = v2(b) �⇒ v2

(
ab−1

)
= 0 �⇒ v1

(
ab−1

)
= 0

�⇒ α = v1(a) = v1(b) = β,
that is, σ is injective. We have shown that σ is a group isomorphism.

Finally, if α < β with α, β ∈ G1, that is, β − α > 0, we have v1
(
ab−1

)
> 0,

where v1(a) = α, v1(b) = β. Then v2
(
ab−1

)
> 0, so σ (α) < σ (β), which means

that σ is order-preserving.
Conversely, let v1, v2 be two valuations over a field K with value groups G1,G2

respectively such that there exists an order-preserving isomorphism ϕ : G1 → G2
such that ϕv1 = v2. If v1(a) > 0 we have (ϕv1) (a) = v2(a) > 0, which tells us that
v1 and v2 are equivalent.

We collect all the above discussion in the following proposition:

Proposition 2.2.8. Two valuations v1, v2 over a field K with value groups G1,G2
respectively are equivalent if and only if there exists an order-preserving group iso-
morphism ϕ : G1 −→ G2 such that ϕv1 = v2. ��

On the other hand, if ϑv1 = ϑv2 , then Pv1 = Pv2 is the unique maximal ideal of
ϑv1 = ϑv2 . We have v1 (α) > 0⇐⇒ α ∈ ϑv1 \ Pv1 = ϑv2 \ Pv2 ⇐⇒ v2 (α) > 0. We
have proved the following result:

Proposition 2.2.9. Two valuations over a field are equivalent if and only if they have
the same valuation ring. ��

Next, we will define the concept of a place.
Let E be an arbitrary field, and let∞ be a symbol such that ∞ /∈ E . We define

the set E1 = E ∪ {∞} and partially extend the field operations to E1 in the following
way:
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x +∞ =∞+ x = ∞ for all x ∈ E,

x · ∞ = ∞ · x for all x ∈ E∗,

and

∞ ·∞ = ∞.

Note that∞+∞, 0 · ∞, and∞ · 0 are not defined.
Definition 2.2.10. A place on a field K is a function ϕ : K −→ E ∪ {∞} (E a field)
satisfying:

(i) ϕ (a + b) = ϕ (a)+ ϕ (b) for all a, b ∈ K ;
(ii) ϕ (ab) = ϕ (a) ϕ (b) for all a, b ∈ K ;
(iii) There exists an element a ∈ K such that ϕ (a) = ∞;
(iv) There exists an element b ∈ K such that ϕ (b) �= ∞ and ϕ (b) �= 0.
Conditions (iii) and (iv) are given in order to keep ϕ from being trivial.
Observe that ϕ(0) = 0 and ϕ(1) = 1 (Exercise 2.6.3). Given a place ϕ we define

ϑϕ = {a ∈ K | ϕ (a) �= ∞} = ϕ−1 (E) .

Proposition 2.2.11. ϑϕ is an integral subdomain of K , ϑϕ �= K, and ϑϕ �= 0.
Proof. If a, b ∈ ϑϕ we have ϕ(a + b) = ϕ(a) + ϕ(b) ∈ E , that is, a + b ∈ ϑϕ . If
a ∈ ϑϕ , then ϕ(a) �= ∞ and since

0 = ϕ(0) = ϕ(a − a) = ϕ(a)+ ϕ(−a), we have ϕ(−a) = −ϕ(a) ∈ E .

It follows that −a ∈ ϑϕ .
Now for a, b ∈ ϑϕ we have ϕ(ab) = ϕ(a)ϕ(b) ∈ E . Therefore ϑϕ is an integral

domain.
Since there exist a, b ∈ K such that ϕ(a) = ∞, ϑϕ �= K , ϕ(b) �= 0, and ϕ(b) �=

∞, we have ϕ(b) ∈ E and b �= 0, so ϑϕ �= 0. ��
Observe that ϕ : ϑϕ → E is a homomorphism such that kerϕ ={

a ∈ ϑϕ | ϕ(a) = 0
} = Pϕ = ϕ−1(0). Then ϑϕ/Pϕ ∼= ϕ

(
ϑϕ
) ⊆ E , and kerϕ = Pϕ

is a prime ideal of ϑϕ .
If b ∈ K \ ϑϕ, ϕ(b) = ∞ and

1 = ϕ(1) = ϕ
(
b
1

b

)
= ϕ (b) ϕ

(
1

b

)
,

we have ϕ
(
1
b

)
�= ∞ since ∞∞ = ∞. Thus ϕ

(
1
b

)
∈ E . If ϕ

(
1
b

)
�= 0, then 1 =

∞ϕ
(
1
b

)
= ∞, which is absurd. Hence ϕ

(
1
b

)
= 0 and in particular 1b ∈ ϑϕ . This

proves that for any x ∈ K we have x ∈ ϑϕ o x−1 ∈ ϑϕ , i.e., ϑϕ is a valuation ring.
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The maximal ideal P of ϑϕ is the nonunit set of ϑϕ , that is, x ∈ P if x = 0 or x �= 0
and x−1 /∈ ϑϕ . Therefore ϕ

(
x−1
) = ∞ or x = 0. The relations

1 = ϕ(1) = ϕ
(
xx−1

)
= ϕ (x) ϕ

(
x−1
)

and ϕ
(
x−1
)
= ∞

imply ϕ(x) = 0, i.e., x ∈ kerϕ, and conversely, so P = Pϕ .
We saw above how to obtain a valuation ring from a place. Conversely, consider

a valuation ring ϑ , P its maximal ideal and K = quotϑ . Let E be the field ϑ/P and
E1 = E ∪ {∞}. Let ϕ : K −→ E1 be given by

ϕ(x) =
{
x mod P if x ∈ ϑ
∞ if x /∈ ϑ .

We leave it as an exercise to verify that ϕ is a place. We have by definition

ϑϕ = {a ∈ K | ϕ (a) �= ∞} = ϑ.

Therefore we have shown that the concepts of place and valuation ring are the same.

Definition 2.2.12. Two places ϕ1 : K −→ E1 ∪ {∞} and
ϕ2 : K −→ E2 ∪ {∞} are called equivalent if there exists a
field isomorphism λ : T1 −→ T2, where T1 = ϕ1

(
ϑϕ1
)
and

T2 = ϕ2
(
ϑϕ2
)
, such that ϕ2 = λϕ1 (with the convention that

λ(∞) = ∞).

K
ϕ1 ϕ2

� �
T1

λ
T2

If ϕ1 and ϕ2 are equivalent, then

ϑϕ1 = ϕ−11 (E1) = ϕ−11 (T1) = ϕ−12 (λ (T1)) = ϕ−12 (T2) = ϕ−12 (E2) = ϑϕ2 .

Conversely, if ϑϕ1 = ϑϕ2 , we have Pϕ1 = Pϕ2 and it follows that T1 ∼= ϑϕ1/Pϕ1 =
ϑϕ2/Pϕ2 ∼= T2.

In short, we have the following:

Proposition 2.2.13. Two places ϕ1 and ϕ2 over a field K are equivalent if and only if
ϑϕ1 = ϑϕ2 . ��

Let K be a field and let v be a valuation over K . If the value group G of v is
contained in (R,+), then the valuation defines a function | | : K −→ R given by
|x |v = e−v(x), where v(0) = ∞, and e−∞ = 0 by definition.
Proposition 2.2.14. The function |x |v defined by the valuation v over K is a nonar-
chimedean absolute value that is nontrivial over K .

Proof. For all x, y ∈ K we have:

(i) |x |v = e−v(x) ≥ 0 and |x |v = e−v(x) = 0⇐⇒ v(x) = ∞⇐⇒ x = 0.
(ii) |xy|v = e−v(xy) = e(−v(x)−v(y)) = e−v(x)e−v(y) = |x |v|y|v .
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(iii) |x + y|v = e−v(x+y). Now, v(x + y) ≥ min{v(x), v(y)}, so that

−v(x + y) ≤ −min{v(x), v(y)} = max{−v(x),−v(y)}.

Since the exponential function is increasing, we have

|x + y|v = e−v(x+y) ≤ emax{−v(x),−v(y)}

= max
{
e−v(x), e−v(y)

}
= max {|x |v, |y|v} .

Finally, from the fact that v is nontrivial, it follows that | |v is nontrivial. ��
The converse of Proposition 2.2.14 also holds. The proof is straightforward.

Proposition 2.2.15. Let | | : K −→ R be a nonarchimedean absolute value over K .
Then the function v| | defined by v| | = − ln |x |, where by definition − ln |0| = +∞, is
a valuation with value group contained in (R,+). ��

Proposition 2.2.16. Let | |1 and | |2 be two absolute values over a field K and let
v1, v2 be the valuations associated with | |1 and | |2 respectively. Then | |1 and | |2 are
equivalent if and only if v1 and v2 are equivalent.

Proof. We have vi = −ln|x |i , |x |i = e−vi (x), i = 1, 2. Assume that | |1 and | |2 are
equivalent valuations, that is, |x |1 < 1⇐⇒ |x |2 < 1. Then

v1(x) > 0⇐⇒ |x |1 = e−v1(x) < 1⇐⇒ |x |2 = e−v2(x) < 1⇐⇒ v2(x) > 0.

So v1 and v2 are equivalent.
The converse is analogous. ��
The above discussion proves that the concepts of nonarchimedean absolute value,

valuation with value group contained in R, valuation ring, and place are essentially
the same concept and they correspond to their respective equivalence classes. This
correspondence can be summarized as follows:

Absolute value Valuation with value
nonarchimedean group contained in R

|x | � v(x) = − ln |x |
e−v(x) � v(x)

Valuation Valuation ring

v(x) � ϑ = {x ∈ K | v(x) ≥ 0}
v : K ∗ −→ K ∗/ϑ∗
v(x) = x mod ϑ∗ � ϑ
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Valuation ring Place

ϑ with maximal ideal P � ϕ(x) =
{
x mod P if x ∈ ϑ
∞ if x /∈ ϑ

ϑ = {x ∈ K | ϕ(x) �= ∞} � ϕ

In the number field case, there exist archimedean absolute values. In our case,
the function field case, all absolute values are nonarchimedean, and in fact, they are
discrete, that is, the value group is isomorphic to the ring Z of rational integers. So
even though this section is of a general nature, the reader may consider only, if he or
she wishes to, discrete valuations.

Proposition 2.2.17. Let v1, v2 be two valuations over a field K with value group con-
tained in R. Then v1 and v2 are equivalent if and only if there exists α ∈ R, α > 0,
such that v1 = αv2.
Proof. If |x |i = evi (x) are the associated absolute values, then v1 ∼ v2 ⇐⇒ | |1 ∼
| |2 ⇐⇒ there exists c > 0 such that | |1 = | |c2, v1 = − ln | |1 = − ln | |c2 =
c (− ln | |2) = cv2. ��

Definition 2.2.18. Let K be a field. A prime divisor, or simply a prime, of K is an
equivalence class of the set of nontrivial absolute values of K . If the absolute values
in the class are archimedean, the prime is called infinite; it is called finite otherwise.

Hence, in the nonarchimedean case, a prime divisor can be considered a place or
the maximal ideal of the valuation ring associated with the absolute value. When we
study function fields, the prime divisors will be identified with the maximal ideal of
the valuation ring.

Note 2.2.19. Given a nonarchimedean absolute value | | over a field K , the ring
{x ∈ K | |x | ≤ 1} is a valuation ring whose maximal ideal is {x ∈ K | |x | < 1}. This
is an immediate consequence of the fact that v(x) = − ln |x | defines a valuation with
valuation ring

ϑv = {x ∈ K | v(x) ≥ 0} = {x ∈ K | − ln |x | ≥ 0}
= {x ∈ K | ln |x | ≤ 0} =

{
x ∈ K | |x | ≤ e0 = 1

}
and maximal ideal of ϑv

Pv = {x ∈ K | v(x) > 0} = {x ∈ K | |x | < 1} .

In Exercise 2.6.14, the reader is asked to give an independent proof of these facts
using only the properties of a nonarchimedean absolute value and not the valuation v.

We will end this section with the study of discrete valuation rings. Let K be a
field and v : K ∗ −→ Z a valuation with valuation ring ϑ and maximal ideal P . Let
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π ∈ P be such that v(π) = 1 (π is called a prime element or uniformizing element
of the valuation). Then given x ∈ K ∗ such that v(x) = n, we have v

(
π−nx

) = 0,
that is, π−nx ∈ ϑ∗, so that x can be written x = aπn with a ∈ ϑ∗ and n ∈ Z.
This representation is unique since if x = bπm with b ∈ ϑ∗ and m ∈ Z, we have
v(x) = v (bπm) = m = n. Thus a = b. In particular, if x ∈ P then x = aπn with
n ≥ 1, and a ∈ ϑ∗ so P = (π). Therefore P is principal.

Let A be any ideal of ϑ such that A �= 0 and A ⊆ P . Let n = min{v(x) | x ∈ A}.
Then n ≥ 1. Then there exists x ∈ A such that v(x) = n, that is, x = aπn ∈ A
with a ∈ ϑ∗. This implies that πn ∈ A and (πn) ⊆ A. If y is an arbitrary nonzero
element of A, we have v(y) ≥ n. Then y = bπm with m ≥ n and b ∈ ϑ∗. Hence
y = (bπm−n)πn, bπm−n ∈ ϑ . Therefore y ∈ (πn), that is, A = (πn) = Pn . Hence,
every nonzero ideal of ϑ is a power of P . We have the following theorem:

Theorem 2.2.20. If v is a discrete valuation over a field K , the valuation ring ϑ (which
is called a discrete valuation ring) satisfies that its maximal ideal P is principal and
is generated by any prime element. Every nonzero ideal of ϑ is a power of P and the
groups K ∗ and ϑ∗ × Z are isomorphic.

Proof. The first part of the statement was proved in the above discussion. To prove
the last part, let x ∈ K ∗. We can write x = aπn in a unique way, and therefore the
function ϕ : K ∗ −→ ϑ∗ ×Z, defined by ϕ(x) = (a, n), is the isomorphism needed. ��

2.3 Absolute Values and Completions

In this section, we will use the notation | | for the usual absolute value in the field of
real numbers R. Let K be a field with absolute value ‖ ‖.
Definition 2.3.1. Let K be any field. A sequence {an}∞n=0 ⊆ K is called Cauchy
if limn,m→∞ ||an − am || = 0. We say that an converges to an element a if
limn→∞ ||an − a|| = 0, or in other words, if an converges to a with respect to the
topology given by the absolute value.

Definition 2.3.2. A field K is called complete if every Cauchy sequence in K con-
verges to some element of K .

Example 2.3.3. Let Q with | |p the p-adic absolute value, that is, |x |p = e−v(x),
vp(x) = n, where x = pn ab , p � ab.

We consider the sequence an = 1+ p+ p4+· · ·+ pn2 . If n ≤ m we have am−an =
p(n+1)2 + · · · + pm

2
and |am − an|p = e−(n+1)2 −−−→

n→∞
0. That is, an is a Cauchy

sequence in
(
Q, | |p

)
; however, it can be proved that {an}∞n=0 does not converge in

Q (see Exercise 2.6.2), and so Q is not complete with respect to the absolute value
| |p. It is well known that Q is not complete with respect to the archimedean absolute
value either, and since there are no other absolute values in Q, it follows that Q is not
complete with respect to any absolute value.
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The completion of Q with respect to its usual absolute value is done using the
same procedure as with a metric space. The completion obtained is the set R of real
numbers.

We say that two Cauchy sequences {bn}∞n=1 and {an}∞n=1 are equivalent, and we
write {an} ∼ {bn}, if limn→∞ ||an − bn|| = 0. It is easy to see that this defines an
equivalence relation. Let K̄ be the collection of all these equivalence classes and let
[{an}] ∈ K̄ . We define ||[{an}]|| = limn−→∞ ||an||. The latter is well defined since
{||an||} ⊆ R. Now if

{
a′n
}
defines the same element in K̄ , we will have∣∣||an|| − ∣∣∣∣a′n∣∣∣∣∣∣ ≤ ∣∣∣∣an − a′n

∣∣∣∣ so that lim
n−→∞ ||an|| = lim

n−→∞
∣∣∣∣a′n∣∣∣∣ .

Thus, ‖ ‖ is well defined in K̄ .
Let α, β, γ ∈ K̄ where α = [{an}] , β = [{bn}] , γ = [{cn}]. We define α + β =

[{an + bn}] and αβ = [{anbn}]. We leave it as an exercise to verify that {an + bn} and
{anbn} are Cauchy sequences and that the definitions of α + β and αβ do not depend
on the representatives.

With this structure, K̄ is a commutative ring with unit, 0 and 1 being the represen-
tatives of the constant sequences 0 and 1 respectively.

If α �= 0, {an} is not equivalent to the constant sequence 0. So
lim
n→∞ ||an − 0|| = lim

n−→∞ ||an|| �= 0.

That is, there exists n0 such that for n ≥ n0, an �= 0. Therefore
{
a−1n
}∞
n=n0 is defined

and it is a Cauchy sequence. Now, since ana−1n = 1 for n ≥ n0,

α−1 =
[{
a−1n
}∞
n=n0

]
is defined and αα−1 = 1. Thus K̄ is a field.

Now the function ϕ : K −→ K̄ , defined by ϕ(a) = ā, where ā is a representative
of the sequence {an} and an = a for all n, is a field monomorphism. We note that

||ϕ(a)|| = lim
n→∞ ||an|| = lim

n→∞ ||a|| = ||a|| .

Therefore the function ‖ ‖ in K̄ is an extension of the absolute value defined in K . It
is easy to see that ‖ ‖ defined in K̄ is an absolute value.

Now, ‖ ‖ is a nonarchimedean absolute value in K if and only if ‖ ‖ is a nonar-
chimedean absolute value in K̄ . We will see that K is dense in K̄ . Given the monomor-
phism ϕ, we can assume without loss of generality that K is contained in K̄ . Let
α ∈ K̄ , ε > 0, and

B (α, ε) = {β ∈ K̄ | ||β − α|| < ε} .
Wewill see that B (α, ε)∩K �= ∅. There exists n0 such that for n ≥ n0,

∣∣∣∣an − an0
∣∣∣∣ <

ε. We take the constant sequence an0 =
{
an0
} ∈ K . Then an0 ∈ B (α, ε) ∩ K . This

proves that K is dense in K̄ .
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Finally, let us see that K̄ is complete, that is, every Cauchy sequence in K̄ con-
verges in K̄ . Let αm =

[{
am,n

}∞
n=1
]
, with {αm}∞m=1 a Cauchy sequence in K̄ . Since K

is dense in K̄ , for each m ∈ N there exists a constant sequence (i.e., an element of K )

xm =
[{
x (m)n

}∞
n=1

]
∈ K , such that ||xm − αm || < 1

m

for all m ∈ N. We will see that {xm}∞m=1 is a Cauchy sequence.
We have

||xm − xn|| ≤ ||xm − αm || + ||αm − αn|| + ||αn − xn|| .
Now, since {αm}∞m=1 is a Cauchy sequence, given ε > 0 there exists N such that if
n,m ≥ N ,

1

n
<
ε

3
,
1

m
<
ε

3
, and ||αm − αn|| < ε

3
.

Therefore ||xm − xn|| < ε for n,m ≥ N . Hence {xm}∞m=1 is Cauchy sequence.
Let x (m)n = x (m) ∈ K for all n. We have

||xm − xn|| = lim
t→∞

∣∣∣∣∣∣x (m)t − x (n)t

∣∣∣∣∣∣ = ∣∣∣∣∣∣x (m) − x (n)
∣∣∣∣∣∣ < ε

for n,m ≥ N , whence
{
x (m)

}∞
m=1 ⊆ K is a Cauchy sequence and it defines an element

α ∈ K̄ , α = [{x (m)}]∞m=1.
We have

||αn − α|| ≤ ||αn − xn|| + ||xn − α|| < 1

n
+ lim

p→∞

∣∣∣∣∣∣x (n) − x (p)
∣∣∣∣∣∣ .

Since
{
x (r)
}∞
r=1 is a Cauchy sequence, given ε > 0 there exists N ∈ N such that for

n, p ≥ N ,
∣∣∣∣x (n) − x (p)

∣∣∣∣ < ε
2 and

1
n <

ε
2 . Thus, for n ≥ N we have ||αn − α|| < ε.

Therefore {αn}∞n=0 converges to α ∈ K̄ , so K̄ is complete.

Let Y be any other complete metric space such that there exists a metric space
isometry λ : K −→ Y (that is, λ is a distance-preserving map) and such that λ (K ) is
dense in Y . We will see that there exists a bijective isometry ψ : Y −→ K̄ . Consider
the diagram. If y ∈ Y , where y = limn→∞ λ (yn) and yn ∈
K , then {ϕ (yn)} is a Cauchy sequence in K̄ and we can define
z = limn→∞ ϕ (yn). Let ψ(y) = z. It can be verified that
ψ(y) does not depend on the sequence {yn}∞n=0 and that ψ is
an isometry. Since the process can be inverted, we obtain a

Y K̄

K

λ ϕ

function φ : K̄ −→ Y , with φψ = IdY and ψφ = IdK̄ . It is easy to see that φ and ψ
are inverse isometries. We sum up the previous development in the following theorem:

Theorem 2.3.4. Let K be any field and let | | be an absolute value in K . There exists
a unique field K̄ (up to isometry) such that (i) K ⊆ K̄ and (ii) there is a unique way
of extending | | to K̄ such that

(
K̄ , | |) is a complete field and K is dense in K̄ . ��
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Definition 2.3.5. The field obtained in Theorem 2.3.4 is called the completion of K
with respect to | |.
Example 2.3.6. GivenQ with the usual absolute value, the completion ofQ is the field
of real numbers R.

Example 2.3.7. Given Q with the p-adic absolute value, the completion is denoted by
Qp and it can be represented as

Qp =
{ ∞∑
n=m

an p
n | m ∈ Z, an ∈ {0, 1, . . . , p − 1}

}
.

Qp is called the field of p-adic numbers. For instance, −1 is represented as follows:

−1 = p − 1
1− p

= (p − 1)
∞∑
n=0

pn =
∞∑
n=0
(p − 1)pn .

In fact,

Sm =
m∑
n=0
(p − 1)pn =

m∑
n=0
(pn+1 − pn) = pm+1 − 1 vp−−−→

m→∞
0− 1 = −1.

The closure of Z in Qp is called the ring of p-adic integers and denoted by Zp.
We can represent it as

Zp =
{ ∞∑
n=0

an p
n | an ∈ {0, 1, . . . , p − 1}

}
.

Notation 2.3.8. Given a field K with a nonarchimedean absolute value | |, let v| | be
the valuation associated to | |. Then the completion of K with respect to | | will be
denoted by KP , where P is the maximal ideal of the valuation ring associated to the
valuation.

Definition 2.3.9. Let | | be a nonarchimedean absolute value over a field K , ϑ =
{x ∈ K | |x | ≤ 1}, and let P = {x ∈ K | |x | < 1} be the maximal ideal of ϑ . The
field ϑ/P is called the residue field of K with respect to P .

Assume that ϑ is a discrete valuation ring. Let KP be the completion of K with
respect to | |. For x ∈ KP , we can write x as the limit of a sequence {xn}∞n=0 ⊆ K .
We have |x | = limn→∞ |xn|, so the absolute value is nonarchimedean in KP . On the
other hand, the valuation v can be extended to KP by setting

v(x) = lim
n→∞ v(xn).

Indeed, we have
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|x | = e−v(x) = lim
n→∞ |xn| = lim

n→∞ e−v(xn) = elimn→∞ v(xn).

In particular v
(
K ∗P
) = Z = v (K ∗) since {v (xn)}∞n=0 is constant starting from some

index n0.
Hence ϑ̂ = {x ∈ KP | |x | ≤ 1} is a discrete valuation ring and

P̂ = {x ∈ KP | |x | < 1}

is its maximal ideal. It follows form the definitions that ϑ̂ and P̂ are the closures of
ϑ and P in KP respectively. Furthermore, if P = (π) = πϑ then v(π) = 1. Thus π
also generates P̂ in ϑ̂ , that is, P̂ = πϑ̂ .
Proposition 2.3.10. For any n ∈ N, we have ϑ/Pn ∼= ϑ̂/P̂n.

Proof. Let ϕ : ϑ → ϑ̂/P̂n be the natural homomorphism, that is, ϕ (x) = x mod P̂n .
First we will see that ϕ is an epimorphism. If x ∈ ϑ̂ , there exists {xm}∞m=1 ⊆ ϑ such
that x = limn→∞ xm . In particular, there exists N ∈ N such that for m ≥ N ,

x − xm ∈ P̂n = {y ∈ KP | v(y) ≥ n} = {y ∈ KP | |y| ≤ e−n
}
.

Then x mod P̂n = xm mod P̂n = ϕ (xm).
Finally,

kerϕ =
{
x ∈ ϑ | x ∈ P̂n

}
= {x ∈ ϑ | v(x) ≥ n} = Pn,

from which we obtain the result. ��

Corollary 2.3.11. The residue fields of K and KP are isomorphic.

Proof. This is just the case n = 1 of Proposition 2.3.10. ��

Notation 2.3.12. When we consider a convergent sequence sn =
∑n

i=m ai , the limit
is written as the series

∑∞
i=m ai = limn→∞ sn .

Proposition 2.3.13. Each element α �= 0 in KP has a unique series representation of
the form

α = πm
∞∑
i=0

siπ
i ,

with v (α) = m ∈ Z, si ∈ S ⊆ ϑ, s0 �= 0, S any set of representatives of ϑ/P ∼= ϑ̂/P̂ ,
and 0 ∈ S.
Proof. First we note that for any m ∈ Z and {sn}∞n=0 ⊆ S, πm

∑∞
i=0 siπ i is an element

of KP . This follows from the fact that the sequence an = πm
∑n

i=0 siπ i is Cauchy
and that KP is complete.

Now let us see that the representation is unique. If
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α = πm
∞∑
i=0

siπ
i = πm1

∞∑
i=0

s′iπ
i , with s0 �= 0 and s′0 �= 0,

then v (α) = m = m1. Hence,
∑∞

i=0 siπ i =
∑∞

i=0 s′iπ
i , that is,

s0 + s1π + · · · = s′0 + s′1π + · · · .

Therefore (
s0 − s′0

)+ s1π + · · · = s′1π + · · · .
The right side has valuation greater than or equal to 1, so s0 − s′0 = 0. By induction
on i it is easy to conclude that si = s′i for all i .

Finally, let us see that every element of KP admits this kind of representation. Let
α ∈ KP with α �= 0 and v (α) = m. Then v

(
π−mα

) = 0, that is, α = πmα0 with
α0 ∈ ϑ̂∗. We have

α0 ≡ s0 mod P̂, s0 ∈ S, and s0 �= 0.
Since α0 − s0 ∈ P̂ it follows that v (α0 − s0) ≥ 1. Therefore α0 = s0 + πα1, α1 ∈ ϑ̂ .
Repeating the process we obtain, for each n,

α0 = s0 + s1π + · · · + snπ
n + αn+1πn+1, with si ∈ S and αn+1 ∈ ϑ̂ .

The sequence rn =
∑n

i=0 siπ i satisfies α0−rn = αn+1πn+1, that is, v (α0 − rn) ≥
n + 1. Thus rn converges to α0 and α = πm

∑∞
i=0 siπ i . ��

In the particular case of the p-adic valuation v in Q, we have

ϑ = {x ∈ Q | vp(x) ≥ 0
} = {a

b
| p � b

}
= Z(p),

which is the localization of Z at (p). The maximal ideal is (p)Z(p) and the residue
field is

Z(p)/(p)Z(p) ∼= Z/(p)Z ∼= Fp,

the finite field of p elements.
A set of representatives is {0, 1, . . . , p − 1} = S. Therefore,

Qp =
{
pm

∞∑
n=0

sn p
n | m ∈ Z, sn ∈ S

}
.

Furthermore,

ϑ̂ = closure of Z(p) in Qp =
{
x ∈ Qp | v(x) ≥ 0

}
=
{ ∞∑
n=0

sn p
n | sn ∈ S

}
= Zp,
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the ring of p-adic integers.
An interesting observation is that there is no analogue to the uniqueness in the

archimedean case. For instance in R,

0.0999 · · · =
∞∑
n=2

9×
(
10−1

)n = 0.1 = 1× (10−1) .
Theorem 2.3.14 (Hensel’s lemma). Let K be a complete field with respect to a nonar-
chimedean absolute value. Let K̄ be the residue field, ϑ the valuation ring, which we
assume to be a discrete valuation ring, and let P be the maximal ideal, i.e., K̄ ∼= ϑ/P .
We assume that f (x) ∈ ϑ[x] is a monic polynomial. Let f̄ (x) = f (x) mod P ∈ K̄ [x]
and suppose that f̄ (x) = h(x)g(x) with h(x), g(x) ∈ K̄ [x] and h(x), g(x) relatively
prime. Then there exist H(x), G(x) ∈ K [x] such that

f (x) = H(x)G(x), H̄(x) = h(x), Ḡ(x) = g(x),

and

deg H(x) = deg h(x), degG(x) = deg g(x).

Proof. Since f (x) is a monic polynomial, it follows that deg f (x) = deg f̄ (x) = n.
Now let h(x), g(x) be of degrees r and n − r respectively. Let H1(x),G1(x) ∈ ϑ[x]
be such that

H̄1(x) = h(x), Ḡ1(x) = g(x), deg H1 = deg h, degG1 = deg g.

Then

f (x)− G1(x)H1(x) ∈ P[x].

Assume that for k ≥ 1 we have constructed Gk(x), Hk(x) ∈ ϑ[x] such that

f (x)− Gk(x)Hk(x) ∈ Pk[x], degGk(x) ≤ deg g(x), deg Hk(x) ≤ deg h(x),
Ḡk(x) = g(x), and H̄k(x) = h(x).

Now define

Gk+1(x) = Gk(x)+ πkm(x) and Hk+1(x) = Hk(x)+ πkn(x),

with m(x), n(x) to be determined and π a prime element for P . We have

f (x)− Gk+1(x)Hk+1(x)

= f (x)− Gk(x)Hk(x)− πk(m(x)Hk(x)+ n(x)Gk(x))− π2km(x)n(x).

Now P = (π), Pk = (πk), and f (x)− Gk(x)Hk(x) ∈ Pk[x]. Therefore
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u(x) = f (x)− Gk(x)Hk(x)

πk
∈ ϑ[x]

and

f (x)− Gk+1(x)Hk+1(x) ∈ Pk+1[x]⇐⇒
πk (u(x)− m(x)Hk(x)− n(x)Gk(x))− π2km(x)n(x) ∈ Pk+1[x].

Since 2k ≥ k + 1 we need to find m(x), n(x) ∈ ϑ[x] such that
u(x)− m(x)Hk(x)− n(x)Gk(x) ∈ P[x].

Given that H̄k(x) = h(x) and Ḡk(x) = g(x) are relatively prime, we choose m(x)
and n(x) such that

ū(x) = m̄(x)H̄k(x)+ n̄(x)Ḡk(x).

Furthermore m(x) and n(x) can be chosen such that

degm(x) ≤ n − r and deg n(x) ≤ r.

Then

degGk+1(x) ≤ degGk(x) ≤ n − r and deg Hk+1(x) ≤ deg Hk(x) ≤ r,

and therefore

v (Gk+1 − Gk) ≥ k and v (Hk+1 − Hk) ≥ k.

It follows that

{Gk(x)}∞k=1 and {Hk(x)}∞k=1 ⊆ ϑ[x]
are Cauchy. Since K is complete, these sequences converge to polynomials G(x),
H(x). Further, since

Ḡk(x) = g(x) and H̄k(x) = h(x),

we have

Ḡ(x) = g(x), H̄(x) = h(x),

degG(x) ≤ deg g(x) = n − r, deg H(x) ≤ deg h(x) = r.

Finally, since

f (x)− Gk(x)Hk(x) ∈ Pk[x],

we have

lim
k→∞

( f (x)− Gk(x)Hk(x)) = 0,

that is, f (x) = H(x)G(x) with all the required properties. ��
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Example 2.3.15. As an application of Hensel’s lemma we will prove that the p-adic
field Qp, p > 2, contains the (p− 1)th roots of unity. We consider the monic polyno-
mial

f (x) = x p−1 − 1 ∈ Zp[x] ⊆ Qp[x].

The residue field ofQp is Fp, (ϑ = Zp,P = pZp). Hence, f̄ (x) = x p−1−1 ∈ Fp[x].
We know that in Fp[x] we have

x p−1 − 1 =
∏
α∈F∗p

(x − α),

and if α, β ∈ F∗p with α �= β, then x −α and x −β are relatively prime. Therefore, by
Hensel’s lemma, f (x) splits into linear factors ofQp[x], that is, the (p− 1)th roots of
unity belong to Qp.

Proposition 2.3.13 tells us that every complete field under a nonarchimedean val-
uation can be represented as a “Laurent series” with “indeterminate” a prime element
and coefficients in a set of representatives of the residue field. Here we note that the
algebraic structure of the field does not always correspond to the structure of the field
of Laurent series in an indeterminate with coefficients in a field. More precisely, let k
be an arbitrary field and let t be a transcendental element over k. We define the ring of
formal series as

k[[t]] =
{ ∞∑
i=0

ai t
i | ai ∈ k

}
with the usual operations, that is,

∞∑
i=0

ai t
i +

∞∑
i=0

bi t
i =

∞∑
i=0
(ai + bi ) t

i ;

∞∑
i=0

ai t
i
∞∑
i=0

bi t
i =

∞∑
i=0

(
i∑

k=0
akbi−k

)
t i .

It is easy to see that k[[t]] is an integral domain with field of quotients equal to

k((t)) =
{ ∞∑
i=m

ai t
i | m ∈ Z, ai ∈ k

}
=

∞⋃
n=1

1

tn
k[[t]].

The latter field is called the field of Laurent series.
In k((t)) we define the natural valuation v : k((t)) → Z as follows. If f (t) ∈

k((t)), f (t) �= 0, we write f (t) = tng(t) with n ∈ Z, g(t) ∈ k[[t]] and g(0) �= 0.
Then v( f (t)) := n. The valuation ring of v is ϑv = k[[t]], the maximal ideal is (t),
the residue field is k ∼= k[[t]]/(t), and the absolute value is given by ‖ f (t)‖ = e−n .

Coming back to the case of a complete field, let us consider Qp as an example.
Each element Qp is represented as

∑∞
i=m ai pi or

∑∞
i=m aiπ i , where π is a prime



2.3 Absolute Values and Completions 35

element and ai ∈ {0, 1, . . . , p − 1}. However, Qp is not isomorphic to Fp((π)).
Indeed, on the one hand, Q ⊆ Qp implies that Qp is of characteristic 0 and on the
other hand, since Fp ⊆ Fp((π)), Fp((π)) is of characteristic p > 0. Later on we will
prove that in a function field, the completions are in fact fields of Laurent series.

Now a natural question is what happens with complete fields with respect to an
archimedean valuation. The answer is very simple: the only complete archimedean
fields are R and C. We finish this section with a proof of this fact.

Proposition 2.3.16. Let F be a field containing C. Suppose that F is complete under
an archimedean absolute value ‖ ‖ defined such that ‖α‖ = |α| for α ∈ C, where | |
is the usual absolute value of C. Then for x ∈ F, σ (x) = {λ ∈ C | x − λ1 = 0} is
nonempty. Therefore F = C.

Proof. We can consider F as a vector space over C. Furthermore, F is a normed space
(with norm its absolute value), so that in particular, F is a Banach space. Let x ∈ F
and λ0 /∈ σ(x), so that (x − λ01)−1 �= 0. From the Hahn–Banach theorem [130,
Theorem 5.16], we know that there exists a bounded linear functional

� : F → C such that �
[
(x − λ01)−1

]
�= 0.

Let

f : C \ σ(x)→ C be defined by f (λ) = �
(
(x − λ1)−1

)
.

Then f (λ0) �= 0, and f is a differentiable function since

f (λ)− f (µ)

λ− µ = �
(
(x − λ1)−1)−� ((x − µ1)−1)

λ− µ

=
�
(

1
x−λ1 − 1

x−µ1
)

λ− µ =
�
(

λ−µ
(x−λ1)(x−µ1)

)
λ− µ

= �
(

1

(x − λ · 1) (x − µ1)
)
−−−→
µ→λ

�
(
(x − λ · 1)−2

)
.

Therefore, if σ(x) = ∅, then f is an entire function. Now we have

λ f (λ) = �
[
λ (x − λ1)−1

]
= �

[( x
λ
− 1
)−1] −−−→

λ→∞
�(−1),

that is, limλ→∞ f (λ) = limλ→∞ �(−1)
λ

= 0, which tells us that f is bounded at the
infinite point, and by Liouville’s theorem [130, Theorem 10.23], f is constant and
equal to 0. Therefore f (λ0) = 0, which contradicts our choice.

For x ∈ F , there exists λ ∈ C such that x − λ1 = 0, that is, x = λ1 = λ ∈ C.
Therefore, F ⊆ C. ��
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Theorem 2.3.17. Let F be any field and assume that F is complete under an archime-
dean absolute value. Then F = R or F = C.

Proof. Since F has an archimedean absolute value, F is of characteristic 0. There-
fore Q ⊆ F . When we restrict the absolute value of F to Q, we obtain the unique
archimedean absolute value of Q, which is the usual one. Since F is complete, F
contains the completion of Q with respect to this absolute value, that is, R ⊆ F .
Now if i = √−1 we have R (i) = C ⊆ F(i), so [F(i) : F] is equal to 1 or 2. If
F(i) = F , then using Proposition 2.3.16 we set F = F(i) = C. If F(i) �= F ,
then F(i) = {a + bi | a, b ∈ F}. The absolute value of F can be extended to F(i) by
putting

||a + bi || =
√
|a|2 + |b|2,

and it is easy to see that F(i) is complete. Then from Proposition 2.3.16, we conclude
that F(i) = C and since R ⊆ F , it follows that F = R. ��

Remark 2.3.18. Proposition 2.3.16 is essentially the Gelfand–Mazur theorem [130,
Theorem 18.7], and Theorem 2.3.17 is called the theorem of Ostrowski. For the proof
of Proposition 2.3.16 we have used the theorem of Hahn–Banach, which is a standard
result in the theory of functional analysis that can be found in any book in that area,
for instance [130, Theorem 5.16]. The other ingredient, Liouville’s theorem, should
be well known from any basic course in complex analysis [130, Theorem 10.23].

Corollary 2.3.19. The only archimedean fields are the subfields of C with the usual
absolute value. ��

2.4 Valuations in Rational Function Fields

The purpose of this section is to find the analogue of Theorem 1.2.11, that is, to char-
acterize all valuations in k(x), for k an arbitrary field, such that the valuation is trivial
on k.

First we study all valuations defined in a similar way as the p-adic valuations in
Q. Let f (x) ∈ k[x] be an irreducible monic polynomial. For α(x) ∈ k(x), we write

α(x) = h(x)

g(x)
= f (x)s

u(x)

v(x)

with u(x) and v(x) ∈ k[x] relatively prime to f (x), and s ∈ Z. Let

v f : k(x)
∗ → Z be defined by v f (α(x)) = s.

Then v f is a valuation. We have

ϑv f = ϑ f =
{
a(x)

b(x)
∈ k(x) | (b(x), f (x)) = 1

}
= k[x]( f ),
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and

Pv f = P f =
{
a(x)

b(x)
∈ k(x) | f (x)|a(x), (b(x), f (x)) = 1

}
,

where k[x]( f ) denotes the localization of k[x] at S =
{
f (x)n

}∞
n=0. Now, ϑ f �= k(x)

since 1
f /∈ ϑ f . If f �= g with f, g ∈ k[x] monic and irreducible polynomials, we have

v f ( f ) = 1 > 0 and vg( f ) = 0. Therefore v f and vg are inequivalent. Furthermore, if
α ∈ k∗ then v f (α) = 0, that is, v f is trivial over k.

The residue field is

ϑ f /P f = k[x]( f )/( f )k[x]( f ) ∼= k[x]/( f )

and k[x]/( f ) is a finite extension of k of degree equal to the degree of f .
Now, if y = 1

x we have k(y) = k(x). Each monic polynomial that is irreducible in
k[y] has an associated valuation; in particular, for y ∈ k[y] we have a valuation that
we denote by vy = v∞. Now we study v∞. Let α(x) ∈ k(x)∗. Then α(x) = a(x)

b(x) and
we have

α(x) =
a
(
1
y

)
b
(
1
y

) = y− deg aa1(y)
y− deg bb1(y)

= y−(deg a−deg b)
a1(y)

b1(y)
,

with a1(y), b1(y) relatively prime to y. Therefore

v∞ (α(x)) = vy
(
y−(deg a−deg b)

a1(y)

b1(y)

)
= −(deg a − deg b) = − degα(x),

where we define deg a(x)
b(x) = deg a(x)− deg b(x).

Now if f (x) ∈ k[x] is a monic and irreducible polynomial, we have v f ( f ) = 1
and v∞( f ) = − deg f < 0. Therefore v f and v∞ are inequivalent.

Finally, we have

ϑv∞ = ϑ∞ = k[y](y) =
{
f (x)

g(x)
| deg f − deg g ≤ 0

}
,

Pv∞ = P∞ =
{
f (x)

g(x)
| deg f − deg g < 0

}
,

and the residue field is

ϑ∞/P∞ ∼= k[y](y)/yk[y](y) ∼= k[y]/(y) ∼= k.

The result we are looking for is given in the following theorem:

Theorem 2.4.1. The set of valuations v over k(x) such that v(a) = 0 for a ∈ k∗ is
exactly
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v f | f (x) ∈ k[x] is a monic and irreducible polynomial

} ∪ {v∞} .
Furthermore, all of them are pairwise inequivalent and the residue field is a finite
extension of k. In case the valuation is v f , the degree of the residue field is equal
to the degree of the polynomail f and in case the valuation is v∞, the degree of the
residue fiels is equal to one. Finally, all these valuations are discrete.

Proof. It remains only to verify that given any nontrivial valuation v : k(x)∗ → G
such that G is an ordered group and v(a) = 0 for all a ∈ k∗, then v is equivalent to
v∞ or to some v f , where f (x) ∈ k[x] is monic and irreducible.

Let ϑ be the valuation ring of v and let P be its maximal ideal. Now, if x ∈ ϑ ,
then k[x] ⊆ ϑ . Let ℘ = P ∩ k[x]. We have ℘ is a prime ideal of k[x], k ∩ ℘ = {0},
and 1 /∈ ℘. It follows that ℘ = ( f ), where f is a monic and irreducible polynomial or
f = 0.
If f = 0, then v (k[x]∗) = {0}, so v (k(x)∗) = 0. But then we have k(x) = ϑ ,

which contradicts the hypothesis that v is nontrivial. Therefore ℘ = ( f ) with f �= 0.
Let g, h ∈ k[x] with f � h and h /∈ ℘, that is, h is a unit in ϑ . We have v ( gh ) ≥ 0,
which implies ϑ f ⊆ ϑ .

Now assume that u(x) ∈ k(x) \ ϑ f . Then u = g
h with (g, h) = 1 and f | h.

If u ∈ ϑ , since g ∈ ϑ∗f ⊆ ϑ , it follows that h−1 = g−1u ∈ ϑ . However, we have
h ∈ P ⊆ ϑ , and this implies that h is a nonunit, which is absurd. Hence u /∈ ϑ and we
have ϑ ⊆ ϑ f , so ϑ = ϑ f . Therefore v and v f are equivalent.

If x /∈ ϑ , then y = 1
x = x−1 ∈ ϑ . From the above discussion, we conclude that

P∩k[y] = (	(y)), where 	(y) is a monic and irreducible polynomial. Now x = y−1 /∈
ϑ , which is equivalent to saying that y is not a unit. Thus y ∈ P ∩ k[y] = (	(y)) and
	(y) | y, which proves that 	(y) = y. Therefore ϑ = ϑ∞ and v is equivalent a v∞. ��

Note 2.4.2. From this point on, a valuation in a function field K with K/k(x) finite
will mean a nontrivial valuation v such that v(a) = 0 for all a ∈ k∗.

Now we will study the case of a function field K with field of constants k. If
x ∈ K \ k, K/k(x) is a finite extension. If v is a valuation in K , v|k(x) is a valuation in
k(x). Therefore we need to study extensions of valuations, or equivalently, extensions
of places.

Let K ⊆ L be a field extension and let ϕK : K −→ E ∪ {∞} be a place over K .
We want to show that there exists a place over L , ϕL : L −→ E1 ∪ {∞}, such that
E ⊆ E1 and ϕL |K = ϕK . For this purpose, we will prove the following result:
Theorem 2.4.3 (Chevalley’s lemma). Let K be a field, ϑ a subring of K , and let
ϕ : ϑ −→ F be a ring homomorphism, where F is an algebraically closed field. Let

x ∈ K ∗. Then ϕ can be extended to at least one of the rings ϑ [x] and ϑ
[
1
x

]
.

Proof. We may assume that ϕ �= 0, since otherwise the result is trivial. Let P = kerϕ.
Then P is a prime ideal of ϑ . Let ϑP =

{ a
b | a, b ∈ ϑ, b /∈ P

} ⊇ ϑ . The map ϕ can
be extended to ϕ̃ : ϑP −→ F by putting
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ϕ̃
(a
b

)
= ϕ(a)
ϕ(b)

.

We have ϕ̃ (ϑP ) = quotϕ (ϑ) = E . Set ϕ̃(a) = ā. Let T, T̄ be two indeterminates
over ϑP and E respectively. Then ϕ̃ can be extended in a unique way to ϕ̄ : ϑP [T ] −→
E
[
T̄
]
such that

ϕ̄

(
n∑
i=0

ai T
i

)
=

n∑
i=0

āi T̄
i .

Define

A = {p(T ) ∈ ϑP [T ] | p(x) = 0} and Ā = ϕ̄ (A) .

Then A is an ideal of ϑP [T ] and Ā is an ideal of E
[
T̄
]
.

If Ā = (0), we define � : ϑP [x] −→ F by �(x) = α ∈ F for some arbitrary α.
Then

�

(
n∑
i=0

ai x
i

)
=

n∑
i=0

āiα
i .

If
∑n

i=0 ai xi = 0, then
∑n

i=0 ai T i ∈ A, so that

n∑
i=0

āi T̄
i = ϕ

(
n∑
i=0

ai T
i

)
∈ Ā = (0) and

n∑
i=0

āiα
i = 0.

Thus � is the required extension.
If Ā �= 0 and Ā �= E

[
T̄
]
, we have Ā = (

f
(
T̄
))
, where f is a nonconstant

polynomial over E . Let α be a root of f
(
T̄
)
in F . Such a root exists since F is

algebraically closed. Let ϕ̄(x) = α. Then ϕ̄ can be extended in a unique way to a
homomorphism of ϑP [x] since the image ϕ̄ of any polynomial that vanishes at x is of
the form g

(
T̄
)
f
(
T̄
)
and therefore vanishes at T̄ = α.

Finally, if Ā = E
[
T̄
]
, then ϕ̄ cannot be extended to ϑP [x]. Indeed, for P̄

(
T̄
) ∈

E[T̄ ] \ {0}, let P(T ) ∈ A be such that ϕ(P(T )) = P̄(T̄ ); if ϕ could be extended to
ϕ̄ : ϑP [x]→ F , then we would have

0 = ϕ̄(0) = ϕ̄(P(x)) = P̄ (ϕ̄(x)) ,

which is impossible since ϕ̄(x) would be a root of any polynomial.

Now we assume that ϕ̄ cannot be extended to ϑP
[
1
x

]
either. Let

B =
{
p(T ) ∈ ϑP [T ] | p

(
1

x

)
= 0
}

with B̄ = ϕ̄ (B) .

Then we must have B̄ = E
[
T̄
]
. Thus there exist f (T ), g(T ) ∈ ϑP [T ] with
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f (T ) = anT
n + · · · + a1T + a0 and g(T ) = bmT

m + · · · + b1T + b0

such that ϕ̄( f ) = 1 = ϕ̄(g) and f (x) = g
(
1
x

)
= 0.

We choose n,m to be minimal with this property. Without lost of generality, we
may assume m ≤ n. Therefore

ā0 = b̄0 = 1 and āi = b̄ j = 0 for i, j > 0.

Let g0(T ) = b0Tm + · · · + bm−1T + bm . Using the division algorithm, we obtain

bn0 f (T ) = g0(T )Q(T )+ R(T )

with Q(T ), R(T ) ∈ ϑP [T ], and deg R < m = deg g0(T ).
Now

g0(x) = xm
(
b0 + · · · + bm−1

(
1

x

)m−1
+ bm

(
1

x

)m)
= xmg

(
1

x

)
= 0

and so

bn0 f (x) = 0 = g0(x)Q(x)+ R(x) = 0+ R(x) = R(x),

that is, R(x) = 0.
On the other hand, we have

1 = b̄n0 f̄
(
T̄
) = ḡ0

(
T̄
)
Q̄
(
T̄
)+ R̄

(
T̄
) = Q̄

(
T̄
)
T̄ m + R̄

(
T̄
)
.

Therefore Q̄
(
T̄
) = 0, R̄

(
T̄
) = 1, which contradicts the minimality of n = deg f ,

since R(T ) satisfies

R̄
(
T̄
) = 1, R(x) = 0, and deg R < m ≤ n.

Hence ϕ can be extended to ϑP
[
1
x

]
. ��

As a consequence of Chevalley’s lemma, we will obtain the existence of extensions
of places:

Theorem 2.4.4. Let K be a field, and let ϑ ⊆ K be a subring. Let ϕ : ϑ −→ F be a
ring homomorphism, where F is an algebraically closed field. Then ϕ can be extended
to a monomorphism of K to F or to a place of K to F ∪ {∞}.
Proof. We may assume that ϕ �= 0. Let

X ={ (ϕα, ϑα) | ϑ ⊆ ϑα ⊆ K , ϑα subring of K ,

ϕα : ϑα −→ F a homomorphism such that ϕα|ϑ = ϕ
}
.

We define an order in X by (ϕα, ϑα) ≤
(
ϕβ , ϑβ

)
if and only if ϑα ⊆ ϑβ and

ϕβ |ϑα = ϕα .
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We have (ϕ, ϑ) ∈ X, so X �= ∅. Now if {(ϕα, ϑα)}α∈I ⊆ X is a chain, let ϑI =⋃
α∈I ϑα and ϕI : ϑI −→ F be defined by ϕI (x) = ϕα (x) for all x ∈ ϑα . Then

(ϕI , ϑI ) is an upper bound of the chain.
By Zorn’s lemma, X has a maximal element

(
�,ϑ ′

)
. First we will see that ϑ ′

is a valuation ring or ϑ ′ = K . If not, there exists x ∈ K such that x /∈ ϑ ′ and
x−1 /∈ ϑ ′. By Chevalley’s lemma, � can be extended to a homomorphism of ϑ ′[x]
or a homomorphism of ϑ ′

[
1
x

]
= ϑ ′ [x−1] in F , but in any case this contradicts the

maximality of
(
�,ϑ ′

)
.

Now if ϑ ′ = K ,� is a monomorphism. If ϑ ′ �= K , then for x ∈ ϑ ′ with x /∈ (ϑ ′)∗,
we must have �(x) = 0, since otherwise the formula �

(
x−1
) = �(x)−1 would

define an extension of � to ϑ ′
[
1
x

]
, a contradiction to the maximality of

(
�,ϑ ′

)
.

Hence, we have�(x) = 0 for x ∈ ϑ ′ \ (ϑ ′)∗, the latter being the maximal ideal P
of ϑ ′. Finally,� can be extended to a place of K by defining�(y) = ∞ for y ∈ K \ϑ ′.

��

Corollary 2.4.5. If K ⊆ L is a field extension and ϕ : K −→ E ∪ {∞} is a place of
L, then ϕ can be extended to a place of L.

Proof. Let F be an algebraic closure of E and consider the ring

ϑϕ = {x ∈ K | ϕ(x) �= ∞} .

It follows from the remark after Proposition 2.2.11 that ϑϕ is a valuation ring. Since
ϑϕ is a subring of L , by Theorem 2.4.4, ϕ can be extended either to a monomorphism
of L or to a place of L . However, since there exists x ∈ K such that ϕ (x) = ∞, the
extension is necessarily a place of L . ��

Corollary 2.4.6. If v is a valuation in a field K and L is an extension of K , then v can
be extended to a valuation of L.

Proof. The statement follows from the correspondence between valuations and places
and from Corollary 2.4.5. ��

Corollary 2.4.7. If K/k is a function field and x ∈ K is a transcendental element
over k, then there exists at least a valuation v over K such that v(x) > 0.

Proof. In k(x)we have vx (x) = 1 > 0. If v is any extension of vx in K , then v(x) > 0.
��

Now we will show that every valuation in a function field is discrete, which will
allow us to assume that the value group of the valuation isZ. We will need two lemmas.

Lemma 2.4.8. Let W be an ordered group that containsZ and such that [W : Z]<∞.
Then W ∼= Z.
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Proof. Since W/Z is finite, there exists n ∈ N such that 0 �= nW ⊆ Z. Therefore
nW ∼= Z and since W is torsion free, we have nW ∼= W . ��

Lemma 2.4.9. Let L/K be a finite field extension with [L : K ] = n. Let v be a
valuation over L with value group V . If W = v (K ∗) ⊆ V , then [V : W ] = m ≤ n.

Proof. See Exercise 2.6.5. ��
As an immediate consequence we obtain the following theorem:

Theorem 2.4.10. Every valuation on a function field K/k is discrete.

Proof. If v is a valuation over K , let x ∈ K be transcendental over K . It follows from
Theorem 2.4.1 that v|k(x) is discrete. The fact that v is discrete is a consequence of
Lemmas 2.4.8 and 2.4.9. ��

Next we will define the degree of a place in a function field. Let K/k be a function
field, where k is the exact field of constants. If ϕ is a place over K , let ϑ and P be the
valuation ring and the maximal ideal associated to ϕ respectively, that is,

ϕ : K → k (P) ∪ {∞},
where k (P) = ϕ (ϑ) ∼= ϑ/P (recall that ϑ = {x ∈ K | ϕ(x) �= ∞}, P = {x ∈ K |
ϕ(x) = 0}, k ⊆ ϑ , and k ∩ P = (0)).
Notation 2.4.11. If v is a valuation in K ,P the associated ideal, and ϑP the valuation
ring, we will write k (P) ∼= ϑP/P for the residue field associated to P .

Resuming the above development, we have k ⊆ ϑ, k∩P = (0), so ϕ : k −→ k (P)
is a monomorphism. Therefore k (P) is an extension of k. The importance of this
extension is that it is finite.

Theorem 2.4.12. Let K/k be a function field and let P be a maximal ideal associated
to a place of K . Then fP = dK (P) = [k (P) : k] <∞.

Proof. Let ϕ be the place associated to P , i.e.,

ϕ : K −→ k (P) ∪ {∞}, with ϕ (P) = 0.
For x ∈ P \ {0}, we have ϕ(x) = 0. Since k ⊆ ϑ where ϑ is the associated valuation
ring, ϕ|k : k −→ k (P) is a field monomorphism. Therefore ϕ(x) = 0 implies that
x = 0 or x is transcendental. Since we chose x �= 0, x is necessarily transcendental.
We have [K : k(x)] = n <∞. It will be shown that in fact [k (P) : k] ≤ n.

Let α1, α2, . . . , αn+1 ∈ k (P) be all distinct (if this is not possible, that is, if
|k (P)| ≤ n, the result is immediate). Let ai ∈ ϑ be such that ϕ (ai ) = αi . Since
[K : k(x)] = n, there exist polynomials { fi (x)}n+1i=1 ⊆ k[x] such that

n+1∑
i=1

ai fi (x) = 0 (2.1)
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with some f j (x) = bmxm + · · · + b1x + b0, b0 �= 0. Let fi (x) = ci + xgi (x) with
ci ∈ k, and, of course, c j = b0 �= 0. Then from (2.1), we obtain the relation

n+1∑
i=1

ai ci = −x
n+1∑
i=1

ai gi (x). (2.2)

Applying ϕ to each side of (2.2) we obtain

n+1∑
i=1

ciαi = −ϕ (x)
n+1∑
i=1
αi gi (ϕ (x)) = 0

with some c j �= 0, which implies that the set {αi }n+1i=1 is linearly dependent over k.
Hence [k (P) : k] ≤ n. ��

Definition 2.4.13. The number fP = dK (P) = [k (P) : k] is called the degree of the
place P or the inertia degree of P .

Example 2.4.14. If K = k(x) and P corresponds to the valuation given by the monic
polynomial f (x) ∈ k[x], then k(P) ∼= k[x]/( f (x)). Hence [k(P) : k] = deg f . Also,
if P corresponds to the valuation given by 1/x , we have [k(P) : k] = 1.
Corollary 2.4.15. For any place P, fP satisfies 1 ≤ fP ≤ n, where n = [K : k(x)],
x is any element such that vP (x) �= 0, and vP is the associated valuation.

Proof. If ϕ is the place associated to vP , vP (x) �= 0 is equivalent to ϕ(x) = 0 or
ϕ(x) = ∞. The case ϕ(x) = ∞ can be reduced to ϕ

(
x−1
) = 0, k(x) = k

(
x−1
)
. ��

Corollary 2.4.16. If the field of constants of k is algebraically closed, then fP = 1
for every place P .

Proof. Since k is algebraically closed and k (P) is a finite extension of k, in particular
algebraic, then k (P) = k. Therefore fP = [k (P) : k] = 1. ��

2.5 Artin’s Approximation Theorem

The theorem that we will prove in this section, as indicated by the title, is due to
Emil Artin. This result essentially establishes that given a finite number of pairwise
inequivalent absolute values over a field K , and given the same number of elements of
K , we can approximate simultaneously all those elements by a single element of K ,
each approximation being given in the respective absolute value. Here the phrase “a
finite number of absolute values” is necessary in the sense that there does not exist an
approximation theorem for an infinite number of absolute values. The approximation
theorem can be considered as a generalization of the Chinese remainder theorem.
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For instance, given ε1 = 10−25, ε2 = 10−30, | · |1, | · |2 the 5-adic and the 17-adic
absolute values respectively, there exists x ∈ Z such that |x − 2|1 < ε1 and |x − 7|2 <
ε2. We use the Chinese remainder theorem to find x satisfying x ≡ 2 mod 5n and
x ≡ 7 mod 17n for some n to be given later. Thus we may write x = 2 + 5nt and
x = 7+ 17ns, so
|x − 2|1 = |5nt |1 ≤ |5n|1 = 5−n and |x − 7|2 = |17ns|2 ≤ |17n|2 = 17−n .

Therefore if we choose n > 25 log5 10 and n > 30 log7 10, x satisfies |x − 2|1 < ε1
and |x − 7|2 < ε2.

Recall that two nontrivial absolute values | |1, | |2 over a field K are called equiva-
lent if |x |1 < 1⇐⇒ |x |2 < 1, or, which is the same, if they define the same topology
on K .

Proposition 2.5.1. Let K be an arbitrary field, and let | |1, . . . , | |n be n nontrivial
pairwise inequivalent absolute values over K . Then there exists an element a of K
such that |a|1 > 1 and |a|2 < 1, . . . , |a|n < 1.
Proof. We will proceed by induction on n. If n = 2, then there exist elements b, c ∈ K ∗
such that

|b|1 > 1, |b|2 ≤ 1 and |c|2 > 1, |c|1 ≤ 1.
Let a = b

c . We have

|a|1 = |b|1|c|1 ≥ |b|1 > 1 and |a|2 = |b|2|c|2 < |b|2 ≤ 1.

Therefore a is the element we are looking for.
Let’s assume that the result holds for n − 1 ≥ 1. For n, we begin by choosing

b ∈ K such that

|b|1 > 1 and |b|2 < 1, . . . , |b|n−1 < 1,
and c ∈ K such that

|c|1 > 1, |c|n < 1.
Now if |b|n ≤ 1, then for m ∈ N, a = bmc satisfies

|a|1 = |b|m1 |c|1 > 1,
|a|i = |b|mi |c|i −−−→m→∞

0, 2 ≤ i ≤ n − 1,
|a|n = |b|mn |c|n < 1.

Hence, taking m to be large enough, a = bmc satisfies |a|1 > 1 and |a|i < 1, i =
2, . . . , n.

Now assume that |b|n > 1. Then
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bm

1+ bm
= 1

1
bm + 1

| |n−−−→
m→∞

1

0+ 1 = 1

since (
1

b

)m | |n−−−→
m→∞

0 and
bm

1+ bm
| |i−−−→

m→∞
0, i = 2, . . . , n − 1.

Thus ∣∣∣∣ bmc

1+ bm

∣∣∣∣
n
−−−→
m→∞

|c|n < 1;∣∣∣∣ bmc

1+ bm

∣∣∣∣
i
−−−→
m→∞

0, i = 2, . . . , n − 1;∣∣∣∣ bmc

1+ bm

∣∣∣∣
1
−−−→
m→∞

|c|1 > 1.

Therefore a = bmc
1+bm , for a large enough natural number m, is the required element. ��

Proposition 2.5.2. Let | |1, . . . , | |n be nontrivial pairwise inequivalent absolute val-
ues over a field K . Given ε > 0, ε ∈ R, there exists x ∈ K such that |1− x |1 < ε and
|x |i < ε for i = 2, . . . , n.
Proof. Let a ∈ K be such that

|a|1 > 1, and |a|i < 1, i = 2, . . . , n.
Let

x = am

1+ am
−−−→
m→∞

⎧⎨⎩
1 for | |1,

0 for | |i , 2 ≤ i ≤ n.
.

For m large enough, x satisfies the conditions of the proposition. ��

Theorem 2.5.3 (Approximation Theorem). Let | |1, . . . , | |n be nontrivial pairwise
inequivalent absolute values over a field K . Given ε > 0, ε ∈ R, and a1, a2, . . . , an ∈
K, there exists y ∈ K such that |y − ai |i < ε for 1 ≤ i ≤ n.

Proof. Let M = max
{|ai | j | 1 ≤ i, j ≤ n

}
. If M = 0, the result is immediate. Let

M �= 0. It follows from Proposition 2.5.2 that there exist b1, b2, . . . , bn such that

|1− bi |i <
ε

Mn
for i = 1, . . . , n and

∣∣b j ∣∣i < ε

Mn
for 1 ≤ i �= j ≤ n.

Let y = a1b1 + · · · + anbn . Then we have for 1 ≤ i ≤ n, y − ai =
∑n

j=1
j �=i

a j b j +
ai (bi − 1), so that
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|y − ai |i ≤
n∑
j=1
j �=i

∣∣a jb j ∣∣i + |ai |i |bi − 1|i ≤ M
n∑
j=1
j �=i

∣∣b j ∣∣i + M |bi − 1|i <

< M(n − 1) ε
Mn

+ M
ε

Mn
=
(
n − 1
n

+ 1

n

)
ε = ε.

Hence y satisfies the conditions of the theorem. ��
The next results are applications of some versions of the approximation theorem.

In particular, Example 2.5.7 will be very useful.

Corollary 2.5.4. Let | |1, . . . , | |n be pairwise nontrivial inequivalent absolute values
over a field K . Denote by Ki the topological space whose underlying set is K and the
topology is generated by | |i . Let K1 × · · · × Kn be given with the product topology

and let
K → K1 × · · · × Kn
x �→ (x, . . . , x)

be the diagonal map. Then K is dense in K1×· · ·×Kn.
��

Corollary 2.5.5. Let v1, . . . , vn be n nontrivial pairwise inequivalent absolute values
over a field K whose value groups are contained in R. Then given a1, a2, . . . , an ∈ K
and M ∈ R, there exists x ∈ K such that vi (x − ai ) ≥ M for i = 1, . . . , n.
Proof. Let |x |i = e−vi (x). Then | |1, . . . , | |n are nontrivial pairwise inequivalent ab-
solute values satisfying vi (x) = − ln |x |i . The required solution is

vi (x − ai )i = − ln |x − ai |i ≥ M ⇐⇒ |x − ai |i ≤ e−M . ��
Corollary 2.5.6. Let v1, . . . , vn be nontrivial inequivalent pairwise absolute values
over a field K with respective value groups G1, . . . ,Gn satisfying Gi ⊆ R. Then
given g1 ∈ G1, . . . , gn ∈ Gn and a1, . . . , an ∈ K, there exists z ∈ K such that
vi (z − ai ) = gi for i = 1, . . . , n.
Proof. Let x be such that vi (x − ai ) > gi for i = 1, . . . , n. Such x exists by Corollary
2.5.5. Let ci ∈ K be such that vi (ci ) = gi and let y ∈ K be such that vi (y − ci ) > gi .
Then

vi (y) = vi (y − ci + ci ) = min {vi (y − ci ) , vi (ci )} = gi , i = 1, . . . , n.
Let z = x + y. Then

vi (z − ai ) = vi (y + x − ai ) = min {vi (y) , vi (x − ai )} = gi , i = 1, . . . , n. ��
Example 2.5.7. Let K be a number field or a function field. Let P1, . . . , Pn be n dis-
tinct places of K . Let a1, a2, . . . , an ∈ K be arbitrary elements and letm1,m2, . . . ,mn

be arbitrary natural numbers. Then the system of congruences x ≡ ai mod Pmi
i has

a solution in K . The notation x ≡ a mod Ps means that x − a ∈ Ps , where P is
the ideal of the valuation. The existence of the solution follows from the fact that
x − a ∈ Pmi

i ⇐⇒ vi (x − ai ) ≥ mi , which in turn follows from Corollary 2.5.6.
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Remark 2.5.8. Corollaries 2.5.5 and 2.5.6 can be proved assuming only that the value
groups are archimedean. The proof is similar to that of Theorem 2.5.3. We say that
an ordered group G is archimedean if for any a, b ∈ G such that a > 0, there exists
n ∈ N such that na > b.

In Proposition 2.3.13 we proved that given a field K with discrete valuation v and
prime ideal p, if Kp is the completion of K with respect to v and π is a prime element,
then every element x of Kp can be written in a unique way as

n∑
i=m

αiπ
i , m ∈ Z, αi ∈ S,

where S is a set of representatives of the residue field and 0 ∈ S.
In the case of a number field, the residue field is of characteristic p > 0 and

the completion is of characteristic 0, so that Kp cannot be isomorphic to the field of
Laurent series k (p) ((π)) since these two fields are of different characteristic.

In the case of a function field K/k, the residue field k (p) is a finite extension of
the field of constants k. Therefore k (p) , k, K , and Kp all have the same characteristic.
We will prove that in this case, Kp and k (p) ((x)) are isomorphic, where k (p) ((x)) is
the field of Laurent series in the indeterminate x .

Definition 2.5.9. Let K/k be a function field, p be a place of K , and Kp the com-
pletion of K with respect to p. Let ϑ and ϑ̂ be the rings of integers of K and Kp

respectively. Let k(p) := k̄ ∼= ϑ/p ∼= ϑ̂/p̂ be the residue field. A field S ⊆ ϑ̂ that can
be mapped isomorphically onto k̄ is called a coefficient field in ϑ̂ .

Proposition 2.5.10. If S is a coefficient field, then Kp is isomorphic to S((x)) alge-
braically and topologically. Here the topology of M((x)) is the one corresponding to
the valuation

v
( ∞∑
n=m

anx
n
)
= m,

where am �= 0.
Proof. If ϕ : S → k̄ is the isomorphism defined by ϕ(s) = s mod p, it follows from
Proposition 2.3.13 that the map

ψ : S((x))→ Kp

∞∑
n=m

anx
n �→

∞∑
n=m

ϕ(an)π
n

is an algebraic and topological isomorphism since ψ(x) = π . ��
The next result proves that ϑ̂ always contains a coefficient field. The hard case is

that in which k is not perfect.
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Definition 2.5.11. Let k̄ be of characteristic p > 0. A set S = {θi }i∈I ⊆ k̄ is called a
p-basis of k̄ if

k̄ = k̄ p[S] and
[
k̄ p[θ1, . . . , θn] : k̄

p
]
= pn

for any distinct elements θ1, . . . , θn ∈ S.
It is easy to see that the empty set is a p-basis if and only if k̄ is perfect.

Proposition 2.5.12. Let k̄ be an imperfect field. Then there exist p-bases for k̄.

Proof. Let A = {S ⊆ k̄ | for any distinct θ1, . . . , θn ∈ S,
[
k̄ p[θ1, . . . , θn] : k̄ p

] =
pn
}
. Then ∅ ∈ A and A �= ∅. We define a partial order in A as follows:

S1 ≤ S2 ⇐⇒ S1 ⊆ S2.

Clearly every chain
{
Sα
}
α∈I has an upper bound S :=

⋃
α∈I Sα ∈ A, so by Zorn’s

lemma, A contains a maximal element S. We have k̄ = k̄ p[S], since otherwise we
may choose a ∈ k̄ \ k̄ p[S], and if θ1, . . . , θn , are n distinct elements of S, we have
a �∈ k̄ p[θ1, . . . , θn] and a p ∈ k̄ p, so that[

k̄ p[θ1, . . . , θn, a] : k̄
p]

= [k̄ p[θ1, . . . , θn, a] : k̄ p[θ1, . . . , θn]][k̄ p[θ1, . . . , θn] : k̄ p] = ppn = pn+1.

Thus S ∪ {a} ∈ A and S � S ∪ {a}. The result follows. ��

Definition 2.5.13. Assume that char k̄ = p > 0. Let a ∈ k̄. An element α ∈ ϑ̂ is called
a multiplicative representative or Teichmüller representative of a if ᾱ = α mod p = a

and α ∈⋂∞m=0 K pm
p .

Proposition 2.5.14. Let α, β ∈ ϑ̂ and vp(α − β) ≥ m with m ∈ N. Then vp
(
α p

n −
β p

n ) ≥ n + m.

Proof. We have α − β ∈ p̂m . If π is a prime element for p, let α = β + πmδ with
δ ∈ ϑ̂ . Then

α p =
p∑
j=1

(
p

j

)
β p− j

(
πmδ

) j + β p. (2.3)

We have p mod p = p̄ = 0 in k̄. Thus vp(p) ≥ 1. For 1 ≤ j ≤ p − 1, p divides (pj);
hence vp

((p
j

)) ≥ 1 and
vp

((p
j

)
β p− j

(
πmδ

) j) ≥ 1+ 0+ mj ≥ m + 1

for j = 1, . . . , p − 1. For j = p, we have
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vp

((p
p

)
β p−p

(
πmδ

)p) = pm ≥ m + 1.

Thus by (2.3) we have vp
(
α p − β p) ≥ m + 1. The result follows by induction. ��

Proposition 2.5.15. An element a ∈ k̄ has a multiplicative representative if and only if
a ∈ ⋂∞m=0 k̄ pm . In this case the multiplicative representative is unique. Furthermore,
if α and β are the multiplicative representatives of a and b respectively, then αβ is the
multiplicative representative of ab.

Proof. First let a ∈⋂∞m=0 k̄ pm . Since k is of characteristic p, for each m there exists a
unique am ∈ k̄ such that a p

m

m = a. Choose βm ∈ ϑ̂ such that β̄m = am . We have

β
p
m+1 = a pm+1 = am = β̄m .

Hence, vp
(
β
p
m+1 − βm

) ≥ 1. From Proposition 2.5.14 we obtain
vp
(
β
pn+1
m+1 − β p

n

m
) ≥ n + 1 for all n ≥ 1.

In particular, the sequence
{
β
pn

i+n
}∞
n=0 is Cauchy.

Let αi = limn→∞ β
pn

i+n ∈ ϑ̂ . Then

α
pi

i = lim
n→∞β

pi+n
i+n = lim

n→∞β
pn
n = α0 ∈ K pi

p

for i ≥ 0. Since a0 = β
pn
n = a for all n, we have ᾱ0 = a0 = a, that is, α0 is a

multiplicative representative of a.
Conversely, if a ∈ k̄ has a multiplicative representative α, then α ∈⋂m≥0 K

pm
p so

that a = ᾱ ∈⋂m≥0 k̄ p
m
.

To show the uniqueness, let α and β be two multiplicative representatives of a ∈ k̄.
Then, writing α = α pmm and β = β pmm with αm, βm ∈ ϑ̂ , we get ᾱ p

m

m = β̄ pmm . It follows
that ᾱm = β̄m since char k̄ = p. Hence vp(αm − βm) ≥ 1. By Proposition 2.5.14 we
have

vp(α − β) = vp
(
α
pm
m − β pmm

) ≥ m + 1
for all m. Thus α = β.

Finally, if α and β are the multiplicative representatives of a and b respectively,
then αβ = ᾱβ̄ = ab and αβ ∈ ⋂m≥0 K

pm
p . Therefore, αβ is the multiplicative

representative of ab. ��

Corollary 2.5.16. Let R be the set of multiplicative representatives of k̄ in ϑ̂ . If k̄ is
a perfect field, then every element of k̄ has its multiplicative representative in R. The
map r : k̄ → R, a �→ α, induces an isomorphism k̄∗ ∼−→ R \ {0}.
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Proof. Since k̄ is perfect, we have k̄ p
m = k̄ for all m ≥ 0. ��

Definition 2.5.17. The correspondence r : k̄ → R defined in Corollary 2.5.16 is called
the Teichmüller map.

If k̄ is finite then R \ {0} is a cyclic group of order ∣∣k̄∣∣− 1.
Corollary 2.5.18. If α and β are the multiplicative representatives of a and b ∈ k̄
respectively, then α + β is the multiplicative representative of a + b.

Proof. Let α = α pmm and β = β pmm with m ≥ 0. Then

α + β = α pmm + β pmm = (αm + βm)pm .
Hence α + β ∈⋂m≥0 K

pm
p and α + β = a + b. ��.

Proposition 2.5.19. Let � = {θi}i∈I be a p-basis of k̄. For each i ∈ I , let αi ∈ ϑ̂ be
such that ᾱi = θi . Then there exists an extension L of Kp, where L is a complete field,
such that

L̄ =
∞⋃
m=0

k̄ p
−m
.

Here L̄ is the residue field of L and for each i ∈ I , αi is the multiplicative repre-
sentative of θi in L, and k̄ p

−m
is the field of the roots of the polynomials T pm − y,

y ∈ k̄.
Proof. For each m ∈ N, let Lm = Lm−1

({
αi,m

}
i∈I
)
where for all i ∈ I α pi,m = αi,m−1,

L0 = Kp and αi,0 = αi . If L is the completion of L∗ =
⋃

m≥0 Lm , then L satisfies
the conditions of the proposition. Since αi ∈

⋂∞
m=0 L p

m
, it follows that αi is the

multiplicative representative of θi . ��
Now we are ready to prove our main result.

Theorem 2.5.20. Let K/k be a function field, p a place of K , Kp the completion of K
with respect to p, and π a prime element of p. Then Kp is isomorphic to k (p) ((π)),
where k (p) is the residue field of p. More precisely, ϑ̂ contains a coefficient field S. If
k(p)/k is separable we may choose k ⊆ S, and S is unique satisfying this property. If
k(p)/k is not separable, then S is not necessarily unique.

Proof.
I.-Separable Case: We have k (p) ∼= ϑ/p ∼= ϑ̂/p̂. Let k (p) /k be separable. We

write k (p) = k (α), with α ∈ k (p). Let f (x) be the irreducible polynomial of α over
k. Since α is separable, we have

f (x) = (x − α) g(x) with g(x) ∈ k (p) [x], and g (α) �= 0.
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Therefore, x − α and g(x) are relatively prime. Now consider f (x) as a polynomial
with coefficients in ϑ̂ . If we apply Hensel’s lemma to f , we can see that f admits
a factor of degree one, ax + b ∈ ϑ̂[x], and such that the residue is a ≡ 1 mod p̂,
−b ≡ α mod p̂.

Let α1 = − b
a ∈ ϑ̂ be such that α1 mod p̂ = α. Now, α1 is algebraic over k since

f (α1) = 0. Let n = deg f . The elements 1, α, . . . , αn−1 are linearly independent
over k, so that k (α1) is a set of representatives of k (p) and k (α1) is a field with
k ⊆ Kp, α1 ∈ Kp, and so k (α1) ⊆ ϑ̂ .

In order to prove the uniqueness of the field k (α1), consider a subfield E ⊆ ϑ̂

such that E is a set of representatives of k (p). Let α2 ∈ E be such that α2 mod p̂ = α.
We have k (p) = k [α], so that E = k [α2] = k (α2). Now f (α2) mod p ≡ f (α) ≡ 0,
and hence f (α2) = 0. Recall that

f (x) = (ax + b)g(x), f (α2) = (aα2 + b) g (α2) ,

but

g (α2) mod p ≡ g (α) �= 0.

Thus aα2 + b = 0, that is, α2 = − b
a = α1 and E = k (α1).

Now if π is a prime element, then S = k (α1) is the set of representatives of
k (p). We have S ⊆ Kp and π ∈ Kp. Any element

∑∞
n=m anπn of S((π)) is the

limit of the Cauchy sequence
{∑n

i=m aiπ i
}∞
n=m ⊆ Kp and therefore converges in Kp.

Conversely, every element of Kp can be represented as a series. By all the above, the
theorem follows.
II.-Inseparable Case: In this case, we have char k = p > 0. By Proposition

2.5.10, it suffices to show that there exists a coefficient field in ϑ̂ . Let L be as in
Proposition 2.5.19. We have L̄ p = L̄ , so L̄ is a perfect field and by the first case there
is a unique coefficient field N of L̄ in ϑL . Let S be the subfield of N corresponding to
k̄ = k(p). If γ ∈ S, then γ̄ ∈ k̄ pm [�] for some m, where � = {θi}i∈I is a p basis of
k̄. With the notation of Proposition 2.5.19 there exists an element

βm ∈ ϑ̂
[{
αi,m

}
i∈I
]
such that β̄m = γ̄ p−m .

It follows that

βm ≡ γ p−m mod pL ,

where pL is the maximal ideal of the valuation ring ϑL . From Proposition 2.5.14 we
obtain that β p

m

m ≡ γ mod pm+1L . Since

β
pm
m ∈ ϑ̂ pm [{αi}i∈I ] ⊆ ϑ̂,

it follows that
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γ = lim
m→∞β

pm
m ∈ ϑ̂ .

Therefore S ⊆ ϑ̂ and S is a coefficient field of k̄ in ϑ̂ . ��

Remark 2.5.21. When k(p)/k is inseparable, there exist infinitely many coefficient
fields. This follows from the proof of Theorem 2.5.20. That is, if we apply the given
construction to another set of elements α′i ∈ ϑ̂ with ᾱi = ᾱ′i (see Proposition 2.5.19),
then we obtain a coefficient field S′ containing α′i . Since p̂ ∩ S = p̂ ∩ S′ = (0), we
have S �= S′.

Remark 2.5.22. When k (p) /k is not separable, then it is not always possible to choose
the coefficient field S so that k ⊆ S.

Example 2.5.23. Let k be a nonperfect field of characteristic p, that is, k p �= k. Let
a ∈ k \ k p and

K = k(x), f (x) = x p − a ∈ k[x].

Then f is irreducible and defines a place p with vp (x p − a) = 1. We have k (p) ∼=
k(b) with bp = a. Let us see that a is not a p-power in Kp. We have that x p − a is a
prime element for p̄ (see after Definition 2.3.9). Assume that there exists y ∈ Kp such
that y p = a. Then

(y − x)p = y p − x p = a − x p = − f (x),

whence

1 = vp( f (x)) = vp
(
(y − x)p

) = pvp(y − x),

which is impossible. Hence, if S is any field contained in ϑ̂ that is a system of repre-
sentatives, then a /∈ S. Indeed, if a ∈ S ∼= k (p), then there exists b1 ∈ S ⊆ Kp such
that bp1 = a. Therefore k �⊆ S.

2.6 Exercises

Exercise 2.6.1. Let K = k(x) and y = 1/x . Let g(y) ∈ k[y] be a monic irreducible
polynomial in y and vg be the valuation associated to g(y). Which valuation in the set
{v f , v∞ | f (x) ∈ k[x] irreducible} does vg correspond to?
Exercise 2.6.2. Let x = ∑∞

n=m an pn ∈ Qp, where an ∈ {0, 1, 2, . . . , p − 1}. Prove
that x ∈ Q if and only if there exists n0 ∈ Z, n0 ≥ m, and k ∈ N such that an+k = an
for all n ≥ n0, that, is x is periodic after a certain index.

Exercise 2.6.3. Let ϕ be a place of K . Show that ϕ(0) = 0 and ϕ(1) = 1.
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Exercise 2.6.4. Let p ∈ Z be a prime number. Let vp : Q → Z be the p-adic valua-
tion, that is, if x = pα ab ∈ Q∗, a, b ∈ Z, p � a, p � b, then vp(x) = α.

Let v be any valuation of Q. We have v(n) ≥ v(1) ≥ 0 for all n ∈ N. Prove that
there exists p ∈ N minimum such that v(p) > 0.

Show that p is a prime number and that v is equivalent to vp.

Exercise 2.6.5. Let L/E be a field extension and ω : L → G ∪ {∞} be a valuation
such that ω(L∗) = G. Let H = ω(E∗) < G.

Show that if x1, . . . , xn ∈ L are such that ω(x1), . . . , ω(xn) are distinct classes
of G modulo H , then x1, x2, . . . , xn are linearly independent over E . In particular,
[G : H ] ≤ [L : E].
Exercise 2.6.6. Let K/k be a function field. Show that all valuations of K that are
trivial on k∗ are discrete.

Exercise 2.6.7. Let f (x) ∈ k[x] be a monic and irreducible polynomial. Let v f be
the valuation associated with the valuation ring ϑ f and maximal ideal ℘ f . Prove that
ϑ f /℘ f ∼= k[x]/( f (x)).

Exercise 2.6.8. Let k be an arbitrary field and K = k(x) be the rational function field.
Let y = f (x)

g(x) ∈ k(x) with ( f (x), g(x)) = 1 and y �∈ k.
Prove that [k(x) : k(y)] = max{deg f (x), deg g(x)}.
Let ϕ : K → K be such that

ϕ ∈ Autk K = {
ϕ : K → K | ϕ is automorphism of K and ϕ(α) = α ∀ α ∈ k}.

Prove that ϕ(x) = ax+b
cx+d with a, b, c, d ∈ k, and ad − bc �= 0.

Exercise 2.6.9. Let k be any field, K = k(x) be a rational function field over k, and
z = ax+b

cx+d with a, b, c, d ∈ k and ad − bc �= 0. Let f (z) ∈ k[z] be a monic and
irreducible polynomial. Then there exists a unique place p of K such that vp( f (z)) =
1. Describe p in terms of x .

Exercise 2.6.10. Find |Autk k(x)| when k = Fq is the finite field containing q ele-
ments.

Exercise 2.6.11. Let K be a number field, that is, [K : Q] < ∞. Let ℘1, . . . , ℘s be
different places of K (in this case we may consider place = ideal of ϑK ),m1, . . . ,ms ∈
N, and a1, . . . , as ∈ K arbitrary. Show that there exists x ∈ K such that x ≡ ai mod
℘
mi
i , 1 ≤ i ≤ s, where ℘mi

i denotes the mi th power of the prime ideal ℘i .

Exercise 2.6.12. Let E ⊆ F be two arbitrary fields. Let x be any element in some field
containing F such that x is transcendental over F . Prove that [F : E] = [F(x) : E(x)]
(finite or infinite).
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Exercise 2.6.13. Let ϑ be a valuation ring, P its maximal ideal, let K = quotϑ and
E = ϑ/P . Let E1 = E ∪ {∞} and consider ϕ : K → E1 given by

ϕ(x) =
{
x mod P if x ∈ ϑ ,
∞ if x �∈ ϑ .

Prove that ϕ is a place and ϑϕ = ϑ .
Exercise 2.6.14. Given a nonarchimedean absolute value | | over a field K , prove using
only the properties of a nonarchimedean absolute value that {x ∈ K | |x | ≤ 1} is a
valuation ring with maximal ideal {x ∈ K | |x | < 1}.
Exercise 2.6.15. Prove Corollaries 2.5.5 and 2.5.6 assuming only that the values are
archimedean instead of being contained in R.

Exercise 2.6.16. Let ϑ be a discrete valuation ring and let K = quotϑ . Prove that if
ϑ ⊆ R � K for a ring R, then ϑ = R.
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The Riemann–Roch Theorem

The Riemann–Roch theorem relates various numbers and invariants of a function field,
by means of an equality that plays a central role in our whole theory: It allows us to
obtain elements that satisfy given properties, to construct automorphisms or homo-
morphisms with given characteristics, etc. On the other hand, this equality introduces
an arithmetic invariant that is intrinsic to any function field, namely its genus.

We begin by defining divisors, which codify a finite number of places and provide
us with relevant information on elements of the field that satisfy given conditions. We
study basic properties of divisors as well as some vector spaces associated to them.
Thanks to these vector spaces, which are subsets of the function field, we are able to
introduce in a natural way the genus of the field and obtain Riemann’s theorem.

Riemann’s theorem is just an inequality that relates the dimension of the vector
space associated to a divisor, the degree of the divisor, and the genus of the field. The
missing quantity that would allow us to have equality corresponds to the Riemann–
Roch theorem, and in order to find out what the inequality is, we will need the concept
of a differential.

We will motivate the definition of a differential by means of the line complex
integral. Using the residue theorem, we shall make these analytic concepts algebraic,
obtaining in this way the general definition of a Weil differential and the missing term
in Riemann’s theorem.

From this point on, by K/k we will mean a function field with field of con-
stants k.

3.1 Divisors

Notation 3.1.1. For a function field K , let PK (or simply P when there is no confusion
possible), be the set of all places of K , that is,

PK = {P | P is a place of K } .
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Definition 3.1.2. Given a function field K , the free abelian group generated by all the
elements of PK is called the divisor group of K and will be denoted by DK . The places
are also called prime divisors. The divisor group will be written multiplicatively.

Hence, an arbitrary divisor A can be written uniquely as
∏

P∈PK
PvP(A), where

vP (A) ∈ Z and vP (A) = 0 for almost allP (almost all means all but a finite number).
The unit divisor, that is, the divisor

∏
P∈PK

P0, is denoted byN. The divisorN is the
only one satisfying vP (N) = 0 for every place P .
Definition 3.1.3. A divisor A is called integral if vP (A) ≥ 0 for every place P . We
say that a divisor A divides another divisorB if there exists an integral divisor C such
that B = AC. This is equivalent to saying that vP (B) ≥ vP (A) for all P . When A
dividesB we will write A | B.
Definition 3.1.4. We say that two divisors A, B are relatively prime or coprime if
vP (A) �= 0 �⇒ vP (B) = 0, that is, A andB have no common prime divisors.

Note that all the above are just generalizations of definitions and notation that are
used in the usual arithmetic.

Recall that given a place P, fP = [k (P) : k] denotes the degree of P (Definition
2.4.13), where k (P) is the residue field. We extend this definition to any divisor.

Definition 3.1.5. Let A be a divisor. We define the degree of A, which will be denoted
by dK (A), or d (A) in case there is no possible confusion, by

dK (A) =
∑
P∈PK

fPvP (A) , where A =
∏

P∈PK

PvP(A).

Definition 3.1.6. Let S be a set of prime divisors of K and letA be a divisor. We define
� (A|S) = {x ∈ K | vP (x) ≥ vP (A) for all P ∈ S}.

Note that x ∈ � (A|S) if and only if |x |P = e−vP (x) ≤ e−vP (A) for all P in S,
that is, � (A|S)measures how many elements in K have their absolute values | |P less
than or equal to the values e−vP (A) for every prime divisor P in S.

For instance, if K = k(x), A = P31P
−2
2 P−47 , where Pi corresponds to the polyno-

mial x − i and S = {P1,P2}, then �(A|S) = {(x − 1)n(x − 2)mh(x) | n ≥ 3,m ≥
−2, h(x) ∈ k(x), vP1(h(x)) = vP2(h(x)) = 0}.
Proposition 3.1.7. � (A|S) is a vector space over the field k of constants of K .
Proof. Exercise 3.6.3. ��

The proof of the next proposition is left to the reader.

Proposition 3.1.8.

(i) If A | B, then � (B|S) ⊆ � (A|S).
(ii) If S ⊆ S1 then � (A|S1) ⊆ � (A|S).
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(iii) If C := AB−1 = ∏
P∈PK

PvP(C) satisfies vP (C) = 0 for all P ∈ S, then
� (A|S) = � (B|S). ��

From Proposition 3.1.8, we obtain that given S and A, we can define A0 =∏
P∈S PvP(A) (that is, A0 has support in S and its components are equal to those

of A). Then � (A0|S) = � (A|S).
The next theorem, which is very important, allows us to measure the relative di-

mension of the vector spaces � (A|S).
Theorem 3.1.9. Let S be finite and A|B. Then

dimk
� (A|S)
� (B|S) = d (B0)− d (A0) = d

(
B0A

−1
0

)
.

Proof. By Proposition 3.1.8 (iii) we may assume B = B0 and A = A0. Since A|B,
we have B = AP1 · · ·Pn with Pi ∈ S (not necessarily distinct). We have � (A|S) ⊇
� (AP1|S) ⊇ � (AP1P2|S) ⊇ · · · ⊇ � (AP1 · · ·Pn|S) = � (B|S). Therefore

dimk
� (A|S)
� (B|S) = dimk

� (A|S)
� (AP1|S) + dimk

� (AP1|S)
� (AP1P2|S) + · · ·

· · · + dimk
� (AP1 · · ·Pn−1|S)

� (B|S)
(3.1)

If we prove dimk
�(C|S)
�(CP |S) = d (P) for P ∈ S, then by (3.1) it will follow that

dimk
� (A|S)
� (B|S) = d (P1)+ · · · + d (Pn) = d

(
BA−1

)
.

Hence it suffices to consider the case B = AP,P ∈ S, which means we must
prove the equality

dimk
� (A|S)
� (AP|S) = d (P) = fP = [k (P) : k] = f.

First, from the approximation theorem (Corollary 2.5.6) there exists u ∈ K such
that vS (u) = vS (A) for all S ∈ S. In particular, u ∈ � (A|S).

If x1, x2, . . . , x f , x f+1 are any f + 1 elements in � (A|S), then

vP
(
xiu

−1
)
= vP (xi )− vP (u) = vP (xi )− vP (A) ≥ 0.

Thus, for i = 1, . . . , f + 1, xiu−1 ∈ ϑP , where ϑP is the valuation ring of P .
Since k (P) = ϑP/P is of degree f over k, there exist a1, a2, . . . , a f , a f+1 ∈ k,

not all zero, such that
∑ f+1

i=1 ai xi u
−1 ∈ P . Equivalently,

∑ f+1
i=1 ai xi ∈ Pu. Therefore∑ f+1

i=1 ai xi ∈ � (AP|S). This shows that

dimk
� (A|S)
� (AP|S) ≤ f.
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Conversely, let y1, y2, . . . , y f ∈ ϑP be such that their classes yi mod P = ȳi ∈
k (P) are linearly independent over k. Again by the approximation theorem (Corollary
2.5.5), there exist y′i ∈ K such that

vP
(
y′i − yi

)
> 0 and vS

(
y′i
) ≥ 0 whenever S ∈ S and S �= P.

Then y′i ≡ yi mod P , and ȳ′i = ȳi ∈ k (P). Now if u is as before, we will have
vS
(
uy′i
) = vS (u) + vS (y′i ) ≥ vS (u) + 0 = vS (u) = vS (A) for all S ∈ S such

that S �= P .
On the other hand,

vP
(
uy′i
) = vP (u)+ vP (y′i ) = vP (A)+ 0 = vP (A)

since ȳi = ȳ′i ∈ k (P) and ȳi �= 0. Hence y′i , yi ∈ ϑP \ P , that is, vP
(
y′i
) =

vP (yi ) = 0.
Therefore,

{
uy′i
} f
i=1 ⊆ � (A|S). Now we will see that these elements are linearly

independent modulo � (AP|S). Let∑ f
i=1 aiuy

′
i ∈ � (AP|S) with ai ∈ k. Then for all

S ∈ S we have

vS

(
f∑

i=1
aiuy

′
i

)
= vS(u)+ vS

(
f∑

i=1
ai y

′
i

)
= vS (A)+ vS

(
f∑

i=1
ai y

′
i

)
≥ vS (AP) = vS (A)+ vS (P) .

Thus

vS

(
f∑

i=1
ai y

′
i

)
≥ vS (P) for all S ∈ S.

In particular, takingS = P , we obtain

vP

(
f∑

i=1
ai y

′
i

)
≥ vP (P) = 1,

that is,
∑ f

i=1 ai y
′
i ∈ P , whence ∑ f

i=1 ai ȳ
′
i = 0 ∈ k (P). Since

{
ȳ′i
} f
i=1 is linearly

independent over k, it follows that ai = 0, i = 1, . . . , f . Therefore

dimk
� (A|S)
� (AP|S) ≥ f. ��

Definition 3.1.10. Let A be any divisor of K . We denote by LK (A) or L (A) the k-
vector spaces � (A | PK ). That is,

L (A) = {x ∈ K | vP (x) ≥ vP (A) for all P ∈ PK } .
For instance, if K = k(x), A = P31P

−2
2 P−47 , where Pi corresponds to the polyno-

mial x − i , we have
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L(A) = {(x − 1)3(x − 2)−2(x − 7)−4h(x) | h(x) ∈ k[x], deg h(x) ≤ 3}.
Note that L(A) measures how many elements of K have all their absolute values

less than or equal to the values e−vP (A) for every prime divisor P of the field.
We have that L (A) is a k-vector space and if A | B, then L (A) ⊇ L (B). These

vector spaces play a central roll in the Riemann–Roch theorem.

Theorem 3.1.11. For any divisor A, we have 	 (A) := dimk L (A) < ∞. If A | B,
then

	 (A)+ d (A) ≤ 	 (B)+ d (B) .

Proof. Let S be the set of prime divisors P such that vP (A) �= 0 or vP (B) �= 0. Then
S is finite.

We have

L (A) ∩ � (B|S) = L (B) . (3.2)

On the other hand, L (A) + � (B|S) ⊆ � (A|S), so applying the isomorphism
theorems we obtain that there exists a monomorphism

L(A)
L(B)

→ �(A|S)
�(B|S) , which shows

that dimk
L(A)
L(B)

≤ dimk
�(A|S)
�(B|S) = d (B)− d (A) <∞ (see Exercise 3.6.24).

Let B be an integral divisor with B �= N, where N is the unit divisor. For x ∈
L (B)\{0}, we have x /∈ k. Indeed, sinceB is an integral divisor that is different from
N, there exists a prime divisor P such that vP (x) ≥ vP (B) > 0, that is, vP (x) > 0,
and therefore x is transcendental. Furthermore, vS (x) ≥ vS (B) ≥ 0 for all S. This
is impossible since the valuation v∞ in k(x) is such that v∞(x) = −1 < 0. If we
extend v∞ to K , then if v is such an extension we have v(x) < 0.

Hence, L (B) = {0} for an integral divisor B �= N. Given A arbitrary, we will
prove that there exists an integral divisorB �= N such that A | B. Let

B = S
∏

P∈PK
vP(A) �=0

P|vP(A)|+1 with S ∈ PK such that vS (A) = 0.

Then there exists an integral divisorB such that vS (B) = 1 > 0,B �= N, and

C = BA−1 = S
∏

P∈PK
vP(A)�=0

P|vP(A)|−vP(A)+1

is an integral divisor. Therefore, A | B and we have

L (A)

L (B)
= L (A)

{0} = L (A) and 	 (A) = dimk
L (A)

L (B)
≤ d (B)− d (A) <∞.

This shows that 	 (A) <∞ for any divisorA. The second part follows immediately

since 	 (A)− 	 (B) = dimk
L(A)
L(B)

≤ d (B)− d (A). ��
In the process of proving the above theorem, we have obtained the following corol-

lary:
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Corollary 3.1.12. If B is an integral divisor and B �= N, then L (B) = 0. ��

For the next proposition, and only for it, we consider the possibility that the field
k′ of constants of a function field over k properly contains k. In any case, we have
[k′ : k] <∞ (Proposition 2.1.6).

Proposition 3.1.13. Let K be a function field over k. Let k′ be the field of constants of
K . Then if N is the principal divisor of K , we have L (N) = k′.

Proof. If x is transcendental over k, the valuation v∞ in k′(x) satisfies v∞(x) = −1.
When we extend v∞ to a valuation v in K , we obtain v(x) < 0. On the other hand, we
have

L (N) = {z ∈ K | vP (z) ≥ vP (N) = 0 for all P} .

Therefore L (N) ⊆ k′.
Now if α ∈ k′ and α �= 0, then α is algebraic over k. Hence there exist

a0, . . . , an−1 ∈ k such that

αn + an−1αn−1 + · · · + a1α + a0 = 0, that is, αn = −
n−1∑
i=0

aiα
i �= 0.

Assume that vP (α) �= 0 for some prime divisor P . Then for ai �= 0,

vP
(
aiα

i
)
= vP (ai )+ ivP (α) = ivP (α) �= jvP (α) for i �= j.

That is,

vP

(
−

n−1∑
i=0

aiα
i

)
= min

ai �=0
{ivP (α)} �= nvP (α) ,

which is absurd.
Hence, we have obtained that vP (α) = 0 for all α ∈ k′ such that α �= 0, so

k′ ⊆ L (N), proving the equality. ��

Corollary 3.1.14. If α ∈ k′ is nonzero, then vP (α) = 0 for any prime divisor P . ��

Coming back to our usual notation, namely when k denotes the exact field of con-
stants of K , we have the following corollary:

Corollary 3.1.15. L (N) = k and dimk L (N) = 1. ��
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3.2 Principal Divisors and Class Groups

The first part of this section will be dedicated to proving two important results, which
are:

(i) If x ∈ K is nonzero there exist only a finite number of places P such that
vP (x) �= 0.
As a consequence of (i), for any x ∈ K ∗ we can define the divisor of x by (x)K =∏

P∈PK
PvP (x). This will allow us to prove:

(ii) d ((x)K ) = 0 for all x ∈ K ∗.

In other words, (x)K codifies all the absolute values or valuations of x in a single
divisor, which will be of degree 0.

Theorem 3.2.1. If x ∈ K ∗, there exists only a finite number of places P such that
vP (x) �= 0.
Proof. If x ∈ k∗, then vP (x) = 0 for all P and there is nothing to prove. Now assume
that x ∈ K \ k, that is, x is transcendental. Let [K : k(x)] = N <∞. Let P1, . . . ,Pn
be n distinct places such that vPi (x) > 0 for i = 1, . . . , n. We will see that n ≤ N .
LetB =∏n

i=1 PvPi (x). ClearlyB is an integral divisor. Let S = {P1, . . . ,Pn}. From
Theorem 3.1.9 we obtain

dimk
� (N|S)
� (B|S) = d (B)− d (N) = d (B) =

n∑
i=0

fPi vPi (x). (3.3)

Let y1, y2, . . . , yN , yN+1, be N + 1 distinct elements of � (N|S). That is,

vP
(
y j
) ≥ vP (N) = 0, with P ∈ S and j = 1, 2, . . . , N + 1.

Since [K : k(x)] = N , there exist polynomials f j ∈ k[x] of which at least one has a
nonzero constant term such that

∑N+1
j=1 f j (x)y j = 0. We write f j (x) = a j + xg j (x)

with a j ∈ k. Then
∑N+1

j=1 a j y j = −x∑N+1
j=1 g j (x)y j , where some a j is nonzero.

Since vPi (x) > 0, we have vPi

(
g j (x)

) ≥ 0. Therefore
vPi

(
N+1∑
j=1

a j y j

)
= vPi (x)+ vPi

(
N+1∑
j=1

g j (x)y j

)
≥ vPi (x) = vPi (B) , i = 1, . . . , n,

that is,
∑N+1

j=1 a j y j ∈ � (B|S). Hence

dimk
� (N|S)
� (B|S) =

n∑
i=1

fPi vPi (x)) ≤ N .

In particular, n ≤ N .
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We have proved that there are at most N distinct places P such that vP (x) > 0.
Taking y = 1

x , we show the existence of at most N different places S such that
vS(y) = −vS(x) > 0, or vS(x) < 0. Therefore there are at most 2N different places
P such that vP (x) �= 0. ��

Definition 3.2.2. Given x ∈ K ∗, we define the principal divisor of x in K as (x)K =∏
P∈PK

PvP (x). If there is no possible confusion, we will write (x) instead of (x)K .

Definition 3.2.3. Given x ∈ K ∗, we define the divisor of zeros of x by

Zx =
∏

P∈PK
vP (x)>0

PvP (x)

and the pole divisor of x by

Nx =
∏

P∈PK
vP (x)<0

P−vP (x).

We observe that both Zx and Nx are integral divisors and that

(x)K = ZxN
−1
x = Zx

Nx
.

Proposition 3.2.4. The set of all principal divisors {(x)K | x ∈ K ∗} is a subgroup
of DK .

Proof. From the properties of valuations it follows that (xy)K = (x)K (y)K and that(
x−1
)
K = (x)−1K . ��

Definition 3.2.5. The subgroup of principal divisors is denoted by PK and it is called
the principal divisor subgroup of K . The quotient CK = DK /PK is called the com-
plete group of divisor classes of K or class group of K .

Remark 3.2.6. Theorem 3.2.1 proves that for x ∈ K \ k, we have d (Zx ) ≤ N and
d (Nx ) ≤ N , where [K : k(x)] = N . The next theorem proves that equality holds.

Theorem 3.2.7. For x ∈ K \ k, d (Zx ) = d (Nx ) = N = [K : k(x)].

Proof. Let y ∈ K be an integral element over k[x]. Then y satisfies an equation of the
form

ym + fm−1(x)ym−1 + · · · + f1(x)y + f0(x) = 0 (3.4)

with fi (x) ∈ k[x].
If P � Nx (that is, P is not a pole of x), then vP (x) ≥ 0 and
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vP
(
ym
) = mvP (y) = vP

(
−

m−1∑
i=0

fi (x)y
i

)
≥ min
0≤i≤m−1

{vP ( fi (x))+ ivP (y)}
≥ min
0≤i≤m−1

{ivP (y)} = tvP (y), t ∈ {0, 1, . . . ,m − 1}.

It follows that (m − t)vP (y) ≥ 0 with m − t > 0, so that vP (y) ≥ 0. Therefore
P � Ny .

Now let y be an arbitrary element of K ∗. Since y is algebraic over k(x), it satisfies
an equation of the form

gr (x)y
r + gr−1(x)yr−1 + · · · + g1(x)y + g0(x) = 0 (3.5)

with gi (x) ∈ k[x] and gr (x) �= 0. Multiplying the equation (3.5) by gr (x)r−1, we
obtain

(gr (x)y)
r + gr−1(x) (gr (x)y)r−1 + · · ·
+ gr (x)

r−2g1(x) (gr (x)y)+ gr (x)
r−1g0(x) = 0,

that is, z = gr (x)y is an integral element over k[x].
Let [K : k(x)] = N and let y1, y2, . . . , yN be a basis of K/k(x). From the above

remarks, we may assume that y1, y2, . . . , yN are integral elements over k[x]. For any
r ≥ 0, the set {

xi y j
}i=0,... ,r
j=1,... ,N

is linearly independent over k. Now, from the previous observations we obtain that if
P | Ny j then P | Nx , say Nx = PaA and Ny j = PbB, where A and B are integral
divisors that are relatively prime to P and a, b > 0.

Let α j ≥ b
a , with α j an integer. Then

N
α j
x
(
y j
) = N

α j
x Zy j

PbB
= Pα j a−bZy jAα j

B
with α j a − b ≥ 0,

so vP
(
N
α j
x
(
y j
)) ≥ 0. This shows that there exists a natural number s such that

Ns
x

(
y j
)
is integral for all j .

Also, we have thatNr+s
x

(
xi
) (
y j
)
are integral for i = 0, . . . , r and j = 1, . . . , N .

In particular, xi y j ∈ L
(
N−r−sx

)
for i = 0, . . . , r and j = 1, . . . , N and these

(r + 1)N elements are linearly independent over k. Since N−r−sx |Nx , by Theorem
3.1.11 we have

	
(
N−r−sx

)+ d
(
N−r−sx

) ≤ 	 (Nx )+ d (Nx ) .

On the other hand, since x is transcendental, thenNx is different fromN andNx is an
integral divisor, so by Corollary 3.1.12, 	 (Nx ) = 0.
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We obtain

(r + 1)N ≤ 	 (N−r−sx

) ≤ 	 (Nx )+ d (Nx )− d
(
N−r−sx

)
= 0+ d (Nx )+ (r + s)d (Nx ) = (r + s + 1)d (Nx ) for all r ≥ 0.

Thus we have d (Nx ) ≥ N (r+1)
r+s+1 −−−→r→∞

N , and d (Nx ) ≥ N . Since we obtained

d (Nx ) ≤ N in the proof of Theorem 3.2.1, we have the equality d (Nx ) = N .

Finally, we have Zx = N1/x . Since k(x) = k
(
1
x

)
we apply the above argument to

1
x with

[
K : k

(
1
x

)]
= N . Hence, we obtain

d (Zx ) = d
(
N1/x

) = N . ��

Remark 3.2.8. Observe that for x ∈ K ∗, (x)K = N if and only if x ∈ k∗.
Corollary 3.2.9. For x ∈ K ∗, d ((x)K ) = 0.
Proof. If x ∈ k∗ then (x)K = N with d ((x)K ) = d (N) = 0. If x ∈ K \ k, then

[K : k(x)] = N and d ((x)K ) = d (Zx )− d (Nx ) = N − N = 0. ��

Definition 3.2.10. We say that an element x of K ∗ is divisible by a divisor A, and we
write A | x , if A | (x)K . If x, y ∈ K ∗, we write x ≡ y mod A whenever x = y or
A | x − y.

Note 3.2.11. With the previous notation we have L (A) = {x ∈ K | A | x}. Also note
that for x ∈ K ∗, x ∈ L(A) if and only if (x)K = AC for an integral divisor C.

Now let d : DK −→ Z be the degree function. By definition d is a group homo-
morphism and the image of d is a nonzero subgroup of Z, that is, d (DK ) = mZ with
m ∈ N. Therefore d (DK ) and Z are isomorphic as groups. Let

ker d = DK ,0 = {A ∈ DK | d (A) = 0}

be the subgroup of divisors of degree 0. We have

PK ⊆ DK ,0 and DK /DK ,0 = DK /ker d ∼= d (DK ) ∼= Z.

We have the exact sequence

1 −→ DK ,0 −→ DK
d−→ mZ −→ 0.

It follows that DK ∼= DK ,0 ⊕ Z (Exercise 3.6.2).
On the other hand, consider the function i : K ∗ −→ PK defined by i(x) = (x)K .

Clearly, i is a group epimorphism and ker i = k∗ (Exercise 3.6.2). Therefore we obtain
the exact sequence
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1 −→ k∗ −→ K ∗ −→ PK −→ 1 and PK ∼= K ∗/k∗.

Since PK ⊆ DK ,0, d induces an epimorphism d̃ : CK = DK /PK −→ mZ, and
ker d̃ = CK ,0 = {A mod PK | d (A) = 0} ∼= DK ,0/PK .

That is, the degree function can be defined in a class C ∈ CK as d(C) = d (A)
where A ∈ C . This definition does not depend on the representative A since if A and
B determine the same class C of CK , then there exists x ∈ K ∗ such that

A = B(x)K and d (A) = d (B)+ d ((x)K ) = d (B)+ 0 = d (B) .

Definition 3.2.12. The degree of a class C ∈ CK is defined by d (C) = d (A), where
A is any divisor belonging to C .

Definition 3.2.13. The group CK ,0 is called the group of classes of divisors of de-
gree 0.

We observe that since

1 −→ CK ,0 −→ CK
d−→ mZ −→ 0

is exact it follows that CK ∼= CK ,0 ⊕ Z (see Exercise 3.6.2). In particular CK is never
a finite group.

Definition 3.2.14. IfCK ,0 is finite, the number hK =
∣∣CK ,0

∣∣ is called the class number
of the field K .

We collect the above discussion into the following theorem:

Theorem 3.2.15. Let K/k be a function field. The degree function d : DK → Z
defines an exact sequence

1 −→ DK ,0 −→ DK
d−→ mZ −→ 0,

where m ∈ N, mZ ∼= Z, DK ∼= DK ,0 ⊕ Z, DK ,0 = ker d is the subgroup consisting
of all divisors of degree 0 of K , and PK ⊆ DK ,0. This sequence induces the exact
sequence

1 −→ CK ,0 −→ CK
d−→ mZ −→ 0,

which implies

CK ∼= CK ,0 ⊕ Z.

Finally, we have the exact sequence

1 −→ k∗ −→ K ∗ i−→ PK −→ 1,

where i(x) = (x)K , and as a consequence the sequence

1 −→ k∗ −→ K ∗ i−→ DK
π−→ CK −→ 1

is exact, where π is the natural projection. ��
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For further reference, we list all the exact sequences obtained:

1 −→ DK ,0 −→ DK

1
m d−→ Z −→ 0, DK ∼= DK ,0 ⊕ Z, (3.6)

1 −→ CK ,0 −→ CK

1
m d−→ Z −→ 0, CK ∼= CK ,0 ⊕ Z, (3.7)

1 −→ k∗ −→ K ∗ i−→ PK −→ 1, (3.8)

1 −→ k∗ −→ K ∗ i−→ DK
π−→ CK −→ 1, (3.9)

1 −→ PK −→ DK −→ CK −→ 1. (3.10)

Example 3.2.16. Let K = k(x) be a rational function field. LetA be a divisor of degree
0, that is, A ∈ DK ,0. We write A = ∏r

i=1 P
αi
i , where each Pi (1 ≤ i ≤ r ) is a prime

divisor of K . We have d (A) =∑r
i=0 αi d (Pi ) = 0.

Now choose Pr to be P∞, i.e., the place corresponding to the valuation v∞. Each
Pi (1 ≤ i ≤ r − 1) is associated to some irreducible polynomial fi (x) of k[x]. We
have d (P∞) = 1.

Therefore αr = −
∑r−1

i=0 αi deg fi . Now, for any valuation v �= v fi , v∞, we have
v ( fi ) = 0, v fi ( fi ) = 1, and v∞ ( fi ) = − deg fi . Hence the divisor of fi is ( fi )K =Pi

Pdeg fi∞
, where Pi is the divisor corresponding to v fi and Pr = P∞ is the prime divisor

corresponding to v∞. Therefore(
r−1∏
i=1

fi (x)
αi

)
K

=
r−1∏
i=1
( fi (x))

αi
K =

r−1∏
i=1

Pαii
Pαi deg fi∞

=

=
(
r−1∏
i=1

Pαii

)
P−

∑r−1
i=1 αi deg fi∞ =

r∏
i=1

Pαii = A,

that is, A is principal since A = (α(x))K , where α(x) =
∏r−1

i=1 fi (x)
αi ∈ k(x)∗. We

observe that if r = 0, then A = N = (1)K , 1 ∈ k∗.
This shows that DK ,0 = PK . Thus DK ,0/PK = CK ,0 = {1} and hK = 1.
In short, we have proved that any rational function field has class number 1.
Finally, since d (P∞) = 1, the degree function d is surjective: d (DK ) = Z and

CK ∼= Z.

Note 3.2.17. If d (DK ) = mZ with m ∈ N, we have

m = min {n ∈ N | there exists a divisor A such that d (A) = n} .
When K = k(x) we have m = 1. If k is algebraically closed every prime divisor is of
degree 1 so that m = 1. This is not true in general. Later on we will see an example
where m = 2 (Proposition 4.1.9). An important result is that when k is a finite field,
m = 1. This will be proved in Chapter 6 (Theorem 6.3.8).

We end this section with a generalization of Corollary 3.1.12.



3.3 Repartitions or Adeles 67

Proposition 3.2.18. If B is a divisor such that d (B) > 0 or d (B) = 0 and B
is not principal, then L (B) = {0}. In particular, if B is integral and B �= N then
L (B) = {0}. IfB = (x)K is principal, we have L (B) = {αx | α ∈ k} and 	(B) = 1.
Proof. If d (B) > 0 and x ∈ L (B) \ {0}, then (x)K = BC, where C is an integral
divisor. Thus 0 = d ((x)K ) = d (B) + d (C) ≥ d (B) > 0, which is absurd. Hence,
we have L (B) = {0}.

Now if d (B) = 0 andB is not principal, assume that there exists x ∈ L (B)\ {0}.
Then (x)K = BC for some integral divisor C. Therefore 0 = d ((x)K ) = d (B) +
d (C) = d (C), that is, C is integral and of degree 0, so C = N and B = (x)K , which
contradicts the hypothesis.

In particular, if B is an integral divisor, we have B �= N with d (B) > 0 and
L (B) = {0}.
Finally, ifB = (x)K is principal, then if y ∈ L ((x)K )\{0}, we have (y)K = (x)K .

Hence y = αx for some α ∈ k∗ and L ((x)K ) = {αx | α ∈ k}. ��

3.3 Repartitions or Adeles

We start this section by proving Riemann’s theorem, which constitutes half of the
Riemann–Roch theorem, the most important result of this book. For this purpose we
need the following proposition:

Proposition 3.3.1. Let x ∈ K be a transcendental element. Then there exists an inte-
ger a ∈ Z depending only on x such that 	

(
N−mx

)+ d
(
N−mx

) ≥ a for all m ∈ Z.

Proof. In the proof of Theorem 3.2.7 we obtained that there exists s ∈ N such that for
all r ≥ 0 we have
	
(
N−s−rx

) ≥ N (r + 1) = d (Nx ) (r + 1), and N = d (Nx ) = [K : k(x)].

For m = r + s ≥ s we have

	
(
N−mx

)+ d
(
N−mx

) ≥ (r + 1)d (Nx )− md (Nx ) = (r + 1− m)d (Nx )

= (−s + 1)d (Nx ) = a,

where we define a to be (−s + 1)d (Nx ).
Now, for m < s, we have N−sx | N−mx , so from Theorem 3.1.11 we obtain

	
(
N−mx

)+ d
(
N−mx

) ≥ 	 (N−sx )+ d
(
N−sx

) ≥ a. ��
Theorem 3.3.2 (Riemann). Let x be a transcendental element and let

1− g = sup {a | 	 (N−mx )+ d
(
N−mx

) ≥ a for all m ∈ Z
}
,

that is, 1− g is the greatest lower bound of the set{
	
(
N−mx

)+ d
(
N−mx

) | m ∈ Z
} ⊆ Z.

Then for any divisor A ∈ DK we have 	 (A)+ d (A) ≥ 1− g.
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Proof. IfA,B are integral divisors and C = A
B = AB−1, thenB−1|C and by Theorem

3.1.11, we have

	 (C)+ d (C) ≥ 	
(
B−1

)
+ d

(
B−1

)
.

This shows that the theorem holds in general if it holds for divisors of the type
B−1, whereB is an integral divisor. Now let z ∈ K ∗, and let A ∈ DK be arbitrary.

Let

ϕ : L (A) −→ K be defined by ϕ(y) = zy.

Since z �= 0, ϕ is k-linear and injective. Its image is contained in L ((z)A). On the
other hand, consider the function

ψ : L ((z)A) −→ K defined by ψ(y) = z−1y.

Clearly ψ is injective and its image is contained in L (A). Therefore L ((z)A) ∼= imϕ
and

L ((z)A) ∼= L (A) (3.11)

as k-vector spaces. In particular,

	 ((z)A) = 	 (A) (3.12)

for all z ∈ K ∗ and A ∈ DK . On the other hand, we have d ((z)A) = d ((z))+d (A) =
d (A), that is,

	 (A)+ d (A) = 	 ((z)A)+ d ((z)A) . (3.13)

LetB be an arbitrary integral divisor and m ≥ 0. By Theorem 3.1.11, we have
	
(
N−mx B

)+ d
(
N−mx B

) ≥ 	 (N−mx )+ d
(
N−mx

) ≥ 1− g.

Now since x is transcendental, then d (Nx ) > 0, so

	
(
N−mx B

) ≥ −d (N−mx B
)+ 1− g = md (Nx )− d (B)+ 1− g −−−→

m→∞
∞.

Pick an m large enough so that 	
(
N−mx B

)
> 0. In particular there exists y ∈

L
(
N−mx B

)
, so we obtain the following implications

N−mx B | (y) �⇒ (y)Nm
x B−1 is integral �⇒ N−mx | (y)B−1

�⇒ 	
(
B−1

)
+ d

(
B−1

)
= 	

(
(y)B−1

)
+ d

(
(y)B−1

)
≥ 	 (N−mx )+ d

(
N−mx

) ≥ 1− g,

which is what we wanted to prove. ��
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Corollary 3.3.3. The number 1− g is the greatest lower bound of the set

{	 (A)+ d (A) | A ∈ DK }

and also the greatest lower bound of the set{
	
(
N−mz

)+ d
(
N−mz

) | m ∈ Z
}

for any z ∈ K \ k. In particular, 1− g is independent of z. ��

Definition 3.3.4. The number g = gK is called the genus of the field K .

Example 3.3.5. Let K = k(x). Then it will be proved that 	(p−t∞ ) = t + 1 (Proposition
4.1.3), where p∞ is the pole divisor of x . Therefore

	(p−t∞ )+ d(p−t∞ ) = t + 1− t = 1.
It follows that gk(x) = 0.
Example 3.3.6. Let K = k(x, y) where y2 = f (x) ∈ k[x] is a polynomial of even
degree m, f (x) is square-free and char k �= 2. We will see (Corollary 4.3.6) that
	(N−tx ) = 2t + 2− m

2 and (N
−t
x ) = −td(Nx ) = 2t . Thus

	(N−tx )+ d(N−tx ) = 2t + 2−
m

2
− 2t = 2− m

2
.

Therefore gK = m
2 − 1.

Proposition 3.3.7. We have g ≥ 0.
Proof. The statement follows from 	 (N)+ d (N) = 1+ 0 ≥ 1− g. ��

Definition 3.3.8. Let A ∈ DK . The nonnegative integer

δ (A) = 	
(
A−1

)
+ d

(
A−1

)
+ g − 1 = 	

(
A−1

)
− d (A)+ g − 1

is called the specialty degree of A.
If δ (A) = 0, A is called nonspecial.
If δ (A) > 0, A is called special.

Remark 3.3.9. From the proof of Riemann’s theorem, we have obtained that for all
x ∈ K ∗ and for all A ∈ DK , 	 ((x) A) = 	 (A), that is, if C ∈ CK and A ∈ C ,
	
(
A−1

)
does not depend on A but only on C . In other words, if A,B ∈ C , we have

A = B(x), A−1 = B−1
(
x−1
)
, and 	

(
A−1

)
= 	

(
B−1

(
x−1
))
= 	

(
B−1

)
.

Definition 3.3.10. Let C ∈ CK . We define the dimension N (C) of the class C
by N (C) = 	

(
A−1

)
for an arbitrary A ∈ C . Equivalently, N (C) = 	 (A) for any

A−1 ∈ C .
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For each place P of K , let ξP ∈ KP , where KP is the completion of K
with respect to P . The approximation theorem establishes that given a finite set
P1,P2, . . . ,Pn of distinct places of K , there exists x ∈ K such that vPi

(
x − ξPi

)
>

0 for all i = 1, . . . , n. In fact, the approximation theorem shows this for ξPi ∈ K , but

if ξPi ∈ KPi , we choose ξ
′
Pi
∈ K such that vPi

(
ξPi − ξ ′Pi

)
> m for m sufficiently

large.
A natural question is whether the approximation theorem is also true for an infinite

number of places, even with a weaker condition: given ξP ∈ KP for each place P of
K , does there exist x ∈ K such that vP (x − ξP ) ≥ 0 for all P?
A necessary condition for the answer to the above question to be positive is that

vP (ξP ) ≥ 0 for almost all P , since if P is such that vP (ξP ) < 0, the condition
vP (x − ξP ) ≥ 0 implies

vP (x) = vP (x − ξP + ξP ) = min {vP (x − ξP ) , vP (ξP )} = vP (ξP ) < 0,

and this is possible only for a finite number of places P .
The above condition motivates the following definition.

Definition 3.3.11. A repartition or adele is a function ϕ : PK −→
⋃

P∈PK
KP such

that ϕ (P) ∈ KP for all P and vP (ϕ (P)) ≥ 0 for almost all P .
Equivalently, a repartition ξ is a sequence ξ = {ξP }P∈PK

∈ ∏P∈PK
KP such

that ξP ∈ ϑP for almost all P , where ϑP denotes the valuation ring of KP . For a
repartition θ , θP denotes its component at P .

The space of all repartitions of K will be denoted by XK = �K , or� = X in case
that the underlying field is clearly K .

We leave the proof of the next proposition to the reader.

Proposition 3.3.12. The set XK is a k-algebra, that is, XK is a k-vector space and
it is also a ring with its operations defined componentwise. In other words, for a ∈
k, ξ, θ ∈ X we define (aξ)P = aξP ; (ξ + θ)P = ξP + θP ; (θξ)P = ξPθP . ��

The function K
φ−→ X, defined by φ(x) = ξx , where (ξx )P = x for all P , is a

monomorphism. Thus, under this injection we will assume that K ⊆ X by identifying
each x ∈ K with the constant repartition equal to x for every component.

Proposition 3.3.13. For a place P , the valuation vP can be extended to X by defining
vP (ξ) = vP (ξP ) for all ξ ∈ X. This extension satisfies the same properties as the
original valuation on K , that is:

(i) vP (ξ + θ) ≥ min {vP (ξ) , vP (θ)} for all ξ, θ ∈ X,
(ii) vP (ξθ) = vP (ξ)+ vP (θ) for all ξ, θ ∈ X,
(iii) vP (ξx ) = vP (x) for all x ∈ K.

Proof. The result follows immediately from the definition. ��
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Definition 3.3.14. Let A ∈ DK and ξ ∈ XK . We say that A divides ξ or that ξ is
divisible by A and we write A | ξ if vP (ξ) ≥ vP (A) for all P ∈ PK . We say that
two repartitions ξ , θ are congruent modulo A, and we write ξ ≡ θ mod A, if ξ − θ is
divisible by A.

Notation 3.3.15. Let A ∈ DK . We denote by

X (A) = {ξ ∈ X | A | ξ} = {ξ ∈ X | vP (ξ) ≥ vP (A) for all P ∈ PK }

the set of repartitions that are divisible by A. Clearly X (A) is a k-vector space. We
will also write �K (A) = XK (A).

The set X(A) is similar to L(A) with repartitions instead of elements. Since we
may consider that the set of repartitions contains K ∗ this allows us a greater degree of
flexibility in the study of valuations.

The question previous to Definition 3.3.11 can be reformulated and generalized in
the following way: given ξ ∈ X, does there exist x ∈ K such that x ≡ ξ mod A? This
will be true if and only if A | ξx − ξ , which is equivalent to vP (x − ξP ) ≥ vP (A) for
all P ∈ PK . The original question corresponds to the case A = N.

Theorem 3.3.16. Let A, B ∈ DK be such that A | B. Let S = {P ∈ PK | vP (A) �=
0 or vP (B) �= 0}. Then S is finite and

� (A|S)
� (B|S)

∼= X (A)

X (B)
(3.14)

as k-vector spaces. In particular,

dimk
X (A)

X (B)
= d (B)− d (A) <∞. (3.15)

Proof. For x ∈ � (A|S), we define the repartition µx by

(µx )P =
{
x if P ∈ S
0 if P /∈ S.

Observe that vP (µx ) = vP ((µx )P ) ≥ vP (x) ≥ vP (A) for all P ∈ PK , that is,
µx ∈ X (A). Define ϕ : � (A|S) −→ X (A) by ϕ(x) = µx . It is easy to verify that ϕ
is k-linear

For x ∈ � (A|S) we have

ϕ(x) = µx ∈ X (B)⇐⇒ vP (x) ≥ vP (B) for all P ∈ S ⇐⇒ x ∈ � (B|S) ,

which means that the function ϕ̃ :
�(A|S)
�(B|S) −→ X(A)

X(B)
induced by ϕ is a k-

monomorphism.
We will see that ϕ̃ is also surjective. Let ξ ∈ X (A). By the approximation theorem,

there exists x ∈ K such that
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vP (x − ξ) ≥ vP (B) for all P ∈ S.

Since ξ ∈ X (A), we have µx ∈ X (A). Indeed, if P /∈ S, then

vP (µx ) = vP (0) = ∞,

and if P ∈ S, then

vP (µx ) = vP (x) = vP (x − ξP + ξP ) ≥ min {vP (x − ξP ) , vP (ξP )}
≥ min {vP (B) , vP (A)} = vP (A) .

Furthermore,

vP (µx − ξ) ≥ vP (B) for all P ∈ PK ,

so µx ≡ ξ mod X (B). Thus, for P ∈ S, we have vP (x) ≥ vP (A). Therefore x ∈
� (A|S) and we have

ϕ̃(x) = µx + X (B) = ξ + X (B) ,

that is, ϕ̃ is surjective and we have proved the first part of the theorem. The second
part is an immediate consequence of Theorem 3.1.9. ��

3.4 Differentials

Our main goal in this section is to define the concept of differential in a general func-
tion field. The original concept of differential is, naturally, analytic. Our first objective
is, starting from its analytic nature, to extract an algebraic representation of a differen-
tial in the complex plane in order to be able to give a general definition. It would have
been possible to give the definition directly without any previous motivation, but the
reason why we call this object a differential would be obscure as well as its similarity
with the differentials that everyone knows. The differentials defined here are the Weil
differentials. In Chapter 9 we will study the Hasse differentials, and in Chapter 14 we
will study successive differentials, namely the Hasse–Schmidt differentials.

First, let K = C(x) be the rational function field over the field of complex num-
bers. Let u ∈ K . The object u dx can be viewed as a “linear integral element” in
the following way: if γ is any path in C not containing any pole of u, then the linear
integral

∫
γ
u dx is well defined. For a ∈ C, let Pa be the zero divisor of x − a, that is,

(x − a)K = Pa
P∞ , and write

vPa (u) =: order of u dx in Pa .

In the Riemann sphere, for a = ∞ ∈ C∞ = S2, we have



3.4 Differentials 73

y = 1

x
, dy = − 1

x2
dx

and ∫
γ

udx = −
∫
γ

uy−2dy = −
∫
γ

u

y2
dy.

Since C(x) = C(y) and Nx = Zy , it is reasonable to define the order of u dx in P∞
to be vP∞(u)− 2.

In short, we define the

order of u dx in a ∈ S2 as
{
vPa (u) if a ∈ C,
vP∞(u)− 2 if a = ∞.

If a ∈ C and γ is a simple positively oriented closed path such that a is in the
interior of γ and γ does not contain any other pole of u in its interior, we have

1

2π i

∮
γ

u dx = Residue of u in (x = a) = Res
x=a u := Residue of u dx in Pa .

For a = ∞, we choose γ to be a simple positively oriented closed path containing
every pole of u in the interior of γ in the finite plane C. In other words, ∞ is not
contained in the interior of the path when this path is considered in C. We have

Res
x=∞ u = − 1

2π i

∮
γ

u dx := Residue of u dx in P∞.

Hence, by definition we have

Res
Pa

u dx = Res
x=a u, a ∈ C∞.

Now, if a1, a2, . . . , ah ∈ C are all the poles of u in C and � is a simple posi-
tively oriented closed path containing a1, a2, . . . , ah in its interior, then by the residue
theorem, we have

1

2π i

∮
γ

u dx =
h∑
i=1

Res
x=ai

u = − Res
x=∞ u,

that is,
�

�


a1
 


ah
 


� ∑
a∈C∞ ResPa u dx = 0.

If P is any place of K and α is an element of the completion of KP of K with
respect to P , then we can define ResP α dx in an analogous way to the case α ∈ K .
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To that end, first we write P = Pa with a ∈ C∞. By means of a change of variable
x −→ x − a or x −→ 1

x , we may assume that P is the divisor of zeros P0 of x . Then
α ∈ C((x)) (Theorem 2.5.20). If α =∑∞

n=m anxn , then

α dx =
∞∑
n=m

anx
n dx and Res

P
α dx = a−1.

By this observation we may take ξ ∈ XK = X, and u dx is as before and K =
C(x). Then if P is any place, we define

ωP (ξ) = residue in P of ξPu dx .

We note that since vP (ξP ) ≥ 0 and vP (u) ≥ 0 for almost all P , then ωP (ξ) = 0 for
all but a finite number of places P . Then the function

ω : X −→ C given by ω (ξ) =
∑
P∈PK

ωP (ξ)

is well defined and clearly C-linear. Our objective now is to study kerω.
If t ∈ K , then ξt ∈ X satisfies

ω (ξt ) =
∑
P∈PK

ωP ((ξt )P ) =
∑
P∈PK

ωP (t) =
∑
a∈C∞

Res
a
tu dx = 0,

that is, K ⊆ kerω.
If A = ∏P∈PK

PvP(A) is any divisor, we say that u dx ≡ 0 mod A if the order
of u dx in P is greater than or equal to vP (A) for all P ∈ PK .

Let A be a divisor such that u dx ≡ 0 mod A. Set

X
(
A−1

)
=
{
ξ ∈ X | A−1 | ξ

}
=
{
ξ ∈ X | ξ ≡ 0 mod A−1

}
= {ξ ∈ X | vP (ξ) ≥ −vP (A) ,P ∈ PK } .

If ξ ∈ X
(
A−1

)
, then vP (ξ) ≥ −vP (A) for all P ∈ PK . Therefore

order ξPudx =
⎧⎨⎩
vP (ξP )+ vP (u) if P �= P∞

vP (ξP )+ vP (u)− 2 if P = P∞
≥ −vP (A)+ vP (A) = 0,

so ωP (ξ) = 0 for all P ∈ PK . In particular, we have ω (ξ) = 0, that is, X
(
A−1

) ⊆
kerω.

Therefore ω vanishes on K + X
(
A−1

)
, where A is any divisor such that u dx ≡

0 mod A.
All the previous discussion motivates the general definition of differential in an

arbitrary function field.
From this point on, K/k will denote an arbitrary function field.
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Definition 3.4.1. Let K/k be an arbitrary function field. A differential (Weil differen-
tial) in K is a k-linear function ω : XK −→ k such that there exists a divisor A ∈ DK

with the property that kerω ⊇ K +X
(
A−1

)
. In this case we say that A divides ω and

we write A | ω.
Definition 3.4.2. A differential ω in a function field K is said to be of the first kind or
a holomorphic differential if N | ω, that is, if K + X (N) ⊆ kerω.
Proposition 3.4.3. If A and B are divisors such that B | A, then if A | ω, we have
B | ω.
Proof. Since B | A, we have A−1|B−1. Therefore X

(
B−1) ⊆ X

(
A−1

)
and

X
(
B−1)+ K ⊆ X

(
A−1

)+ K ⊆ kerω, soB | ω. ��

Theorem 3.4.4. If A and B are divisors in a function field K/k such that A | B, then
we have the following exact sequence of k-vector spaces:

0 −→ L (A)

L (B)
−→ X (A)

X (B)
−→ X (A)+ K

X (B)+ K
−→ 0. (3.16)

In particular,

dimk
X (A)+ K

X (B)+ K
= (	 (B)+ d (B))− (	 (A)+ d (A)) .

Furthermore,

dimk
X

X (B)+ K
= δ

(
B−1

)
= 	 (B)+ d (B)+ g − 1

for any divisor B.

Proof. The natural injection i : X (A) −→ X (A) + K , composed with the natural

projection π : X (A)+ K −→ X(A)+K
X(B)+K , gives an epimorphism

f = π ◦ i : X (A) −→ X (A)+ K

X (B)+ K
.

Clearly X (B) ⊆ ker f , so f induces an epimorphism

f̃ :
X (A)

X (B)
−→ X (A)+ K

X (B)+ K
.

To finish we use two equalities (see Exercise 3.6.10):

(1) X (A) ∩ (X (B)+ K ) = L (A)+ X (B),
(2) L (A) ∩ X (B) = L (B).
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Applying (1) and (2) we have

ker f̃ = X (A)
⋂
(X (B)+ K )

X (B)
= L (A)+ X (B)

X (B)
∼= L (A)

L (A)
⋂

X (B)
= L (A)

L (B)
.

This proves (3.16).
Then we have

dimk
X (A)+ K

X (B)+ K
= dimk

X (A)

X (B)
− dimk

L (A)

L (B)
.

From Theorem 3.3.16, we obtain that dimk
X(A)
X(B)

= d (B)− d (A). Therefore,

dimk
X (A)+ K

X (B)+ K
= d (B)− d (A)− (	 (A)− 	 (B))
= (	 (B)+ d (B))− (	 (A)+ d (A)) .

In order to prove the last equality, consider C to be any divisor such that 	 (C) +
d (C) = 1 − gK , where gK is the genus of K . For each P ∈ PK , let uP =
min {vP (B) , vP (C)} and let A1 =

∏
P∈PK

PuP . Then A1 | B and A1 | C. From
Theorems 3.1.11 and 3.3.2 we obtain

1− g ≤ 	 (A1)+ d (A1) ≤ 	 (C)+ d (C) = 1− g,

that is, 	 (A1)+ d (A1) = 1− g. Therefore

dimk
X

X (B)+ K
≥ dimk

X (A1)+ K

X (B)+ K
= (	 (B)+ d (B))− (	 (A1)+ d (A1))

= (	 (B)+ d (B))− (1− g) = 	 (B)+ d (B)− 1+ g

= δ
(
B−1

)
.

For the other equality, consider τ1, . . . , τm to be m elements of X that are linearly
independent over the k-module X (B)+ K . Set

wP = min
1≤i≤m

{vP (τi ) , vP (B)} .

Let A2 =
∏

P∈PK
PwP . Then A2 | τi for all 1 ≤ i ≤ m, that is, τi ∈ X (A2). Thus

m ≤ dimk
X (A2)+ K

X (B)+ K
= (	 (B)+ d (B))− (	 (A2)+ d (A2)) ≤

≤ 	 (B)+ d (B)− (1− g) = δ
(
B−1

)
.

Therefore dimk
X

X(B)+K = δ
(
B−1). ��
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Proposition 3.4.5. Let A be a divisor in K . We define

D (A) = {ω | ω is a differential such that A | ω} .
Then D (A) is isomorphic to the dual of the k-vector space X

X(A−1)+K . In particular,

dimk D (A) = dimk
X

X
(
A−1

)+ K
= δ (A) = 	

(
A−1

)
+ d

(
A−1

)
− 1+ g.

Proof. Recall that given a vector space V over k, the dual V ∗ of V is the vector space
of all linear functionals from V to k. Furthermore, if dimk V <∞ we have dimk V =
dimk V ∗. Here, taking V = X

X(A−1)+K , we have

V ∗ =
{
f :

X

X
(
A−1

)+ K
−→ k | f is k−linear

}
.

Now,

D (A) = {ω | ω is a differential such that A | ω}
=
{
ω : X −→ k | kerω ⊇ X

(
A−1

)
+ K

}
.

Therefore ω ∈ D (A) induces in a unique way

ω̃ :
X

X
(
A−1

)+ K
−→ k, ω̃ ∈ V ∗, ω̃

(
ξ mod

(
X
(
A−1

)
+ K

))
= ω (ξ) .

Conversely, given f ∈ V ∗, let ω = f ◦ π , where π is the natural projection of X
in X

X(A−1)+K . The functions

D (A)
φ−→ V ∗, V ∗

ψ−→ D (A)

defined by φ (ω) = ω̃ and ψ ( f ) = f ◦ π respectively, are clearly k-linear, and we
have

(φ ◦ ψ) ( f ) = φ (ψ ( f )) = φ ( f ◦ π) = ˜( f ◦ π) = f ;
(ψ ◦ φ) (ω) = ψ (ω̃) = ω̃ ◦ π = ω.

In other words, φ and ψ are inverse isomorphisms, which proves the proposition. ��

Corollary 3.4.6. We have dimk D (N) = g, where g is the genus of K . That is, the
dimension of the vector space of holomorphic differentials is g.

Proof. By Proposition 3.4.5, we have

dimk D (N) = dimk
X

X (N)+ K
= δ (N)

= 	 (N)+ d (N)− 1+ g = 1+ 0− 1+ g = g. ��
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Proposition 3.4.7. Let ω1, ω2 be two differentials, and A1 | ω1, A2 | ω2, A1,
A2 ∈ DK . Then if A is the greatest common divisor of A1 and A2, that is, A =∏

P∈PK
PuP , uP = min {vP (A1) , vP (A2)}, we have A | ω, where ω = ω1 + ω2.

Proof. Exercise 3.6.11. ��

Proposition 3.4.8. The set DifK of all differentials over K is a K -vector space with
the operations (Xω) (ξ) = ω (Xξ), X ∈ K, ω ∈ DifK , ξ ∈ X. Furthermore, if A | ω,
and X �= 0, then (X)K A | Xω.
Proof. First let us see that Xω is k-linear. If ξ , θ ∈ X and α, β ∈ k, we have

(Xω) (αξ + βθ) = ω (X (αξ + βθ)) = ω (αXξ + βXθ)
= αω (Xξ)+ βω (Xθ) = α (Xω) (ξ)+ β (Xω) (θ) .

Now, if A | ω and ξ ∈ X
(
(X)−1K A−1

)
, we have

vP (ξ) ≥ vP
(
(X)−1K A−1

)
= −vP (X)− vP (A) ,

so vP (Xξ) = vP (X) + vP (ξ) ≥ −vP (A), i.e., Xξ ∈ X
(
A−1

)
. Therefore

(Xω) (ξ) = ω (Xξ) = 0. This proves that Xω is a differential and that (X)K A | Xω.
The equalities

(XY ) ω = X (Yω) ,

(X + Y ) ω = Xω + Yω,

X
(
ω + ω′) = Xω + Xω′,

for X , Y ∈ K , and ω, ω′ ∈ DifK are immediate and show that DifK is a K -vector
space. ��

The next result proves that the differentials are of dimension 1 over K . In particu-
lar, it says that the differentials u dx that we considered at the beginning of this section
are all such differentials existing in C(x).

Theorem 3.4.9. Let ω0 ∈ DifK with ω0 �= 0. Then every differential ω can be ex-
pressed in a unique way as ω = Xω0 for some X ∈ K. In particular, dimK DifK = 1.
Proof. If ω = 0, it suffices to take X = 0. Let ω �= 0. LetB0 | ω0,B | ω. Let A be an
integral divisor different fromN. We consider

ϕ : L
(
A−1B−1

0

)
−→ D

(
A−1

)
, defined by ϕ (X) = Xω0,

and

ψ : L
(
A−1B−1

)
−→ D

(
A−1

)
, defined by ψ (X) = Xω.
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Then φ and ψ are k-monomorphisms (see Exercise 3.6.12).
By Theorem 3.3.2, we have(

	
(
A−1B−1

0

)
+ 	

(
A−1B−1

))
+
(
d
(
A−1B−1

0

)
+ d

(
A−1B−1

))
≥ (1− g)+ (1− g) = 2− 2g.

Therefore 	
(
A−1B−1

0

)
+ 	 (A−1B−1) ≥ 2d (A)+ d (B0)+ d (B)+ 2− 2g.

We have

dimk D
(
A−1

)
= δ

(
A−1

)
= 	 (A)+d (A)+ g − 1 = d (A)+ g − 1.

Thus, if we choose d (A) such that

2d (A)+ d (B0)+ d (B)+ 2− 2g > d (A)+ g − 1,

or equivalently,

d (A) > −d (B0)− d (B)+ 3g − 3,
we will have dimk imϕ + dimk imψ > dimk D

(
A−1

)
, which implies that imϕ ∩

imψ �= {0}. Therefore there exist A, B ∈ K ∗ such that Aω0 = Bω. Equivalently,
ω = A

Bω0. The uniqueness follows from the fact that DifK is a K -vector space. ��
The next step is to assign to each differential ω �= 0 a unique divisor.

Proposition 3.4.10. Assume that ω ∈ DifK and A, B ∈ DK are such that A | ω and
B | ω, and that C is the least common multiple of A andB, that is, C =∏P∈PK

PuP ,
where uP = max {vP (A) , vP (B)}. Then C | ω.
Proof. Let ξ ∈ X

(
C−1

)
, that is, vP (ξ) ≥ −vP (C) = −max {vP (A) , vP (B)}. We

define ξ ′, ξ ′′ ∈ X with the property

ξ ′P = ξP and ξ ′′P = 0 for P such that vP (A) ≥ vP (B) ;
ξ ′P = 0 and ξ ′′P = ξP for P such that vP (A) < vP (B) .

Then ξ = ξ ′ + ξ ′′. We also observe that if vP (A) ≥ vP (B), then vP (C) =
vP (A), so

vP
(
ξ ′
) = vP (ξ ′P) = vP (ξP ) ≥ −vP (C) = −vP (A) .

On the other hand, if vP (A) < vP (B), then

vP (C) = vP (B) and vP
(
ξ ′
) = vP (0) = ∞ > −vP (A) ,

that is, A−1 | ξ ′. Similarly, we obtainB−1 | ξ ′′. Thus
ω (ξ) = ω (ξ ′ + ξ ′′) = ω (ξ ′)+ ω (ξ ′′) = 0+ 0 = 0,

which shows that X
(
C−1

)+ K ⊆ kerω. Therefore, C | ω. ��
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Theorem 3.4.11. For each differential ω �= 0, there exists a unique divisor, which will
denoted by (ω)K , such that A | ω ⇐⇒ A | (ω)K . The divisor (ω)K is the divisor
associated to the differential ω.

Proof. First let us see that the degrees of all possible divisors A such that A | ω have
an upper bound.

Let A | ω. Consider ϕ : L (A−1) −→ D (N), defined by ϕ (X) = Xω. Then ϕ is
well defined since A | ω and A−1 | (X)K implyN | Xω.

Furthermore, ϕ is a k-monomorphism, so 	
(
A−1

) ≤ dimk D (N) = g. On the
other hand,

	
(
A−1

)
+ d

(
A−1

)
≥ 1− g,

so

d
(
A−1

)
= −d (A) ≥ 1− g − 	

(
A−1

)
≥ 1− g − g = 1− 2g.

Thus, we have

d (A) ≤ 2g − 1.
We define (ω)K to be a divisor of maximum degree such that (ω)K | ω. We will

see that (ω)K is unique.
If A,B are two divisors of maximum degree such that A | ω andB | ω, then if C

is the least common multiple of A and B, then C | ω and d (C) ≤ d (A). Now, since
A | C and B | C, we have d (C) ≥ d (A). Hence, d (C) = d (A), which implies that
C = A = B. Therefore (ω)K is unique.

Let A | ω. Let B be the least common multiple of A and (ω)K . Then B | ω and
d (B) ≥ d ((ω)K ), which implies that d (B) = d ((ω)K ). Therefore B = (ω)K and
A | (ω)K . Conversely, if A | (ω)K , then ω vanishes on

X
(
(ω)−1K

)
+ K ⊇ X

(
A−1

)
+ K ,

that is A | ω. ��

Corollary 3.4.12. If X ∈ K ∗ and ω ∈ DifK with ω �= 0 then (Xω)K = (X)K (ω)K .
Proof. If A | ω, by Proposition 3.4.8 we obtain (X)K A | Xω. Therefore (X)K A |
(Xω)K and since (ω)K | ω, we have (X)K (ω)K | (Xω)K .

Conversely, ω = X−1Xω = X−1 (Xω), so that from the above argument we
obtain

(
X−1

)
K (Xω)K = (X)−1K (Xω)K | (ω)K , which is equivalent to (Xω)K |

(X)K (ω)K . It follows that (Xω)K = (X)K (ω)K . ��
An important consequence of Corollary 3.4.12 is that the set consisting of the

divisors of the nonzero differentials form exactly a class in CK . More precisely, let
ω ∈ DifK with ω �= 0. Let (ω)K ∈ C and C ∈ CK = DK /PK . If ω′ is another



3.5 The Riemann–Roch Theorem and Its Applications 81

nonzero differential, then ω′ = Xω, X ∈ K ∗. Therefore
(
ω′
)
K = (X)K (ω)K , that

is,
(
ω′
)
K and (ω)K differ just by a principal divisor, and

(
ω′
)
K ∈ C . Conversely, if

A ∈ C and A ∈ DK , then A, (ω)K ∈ C , so

A ≡ (ω)K mod PK , that is, A = (X)K (ω)K = (Xω)K
for some X ∈ K ∗. Therefore A is the divisor of the nonzero differential Xω. We have

C = {(ω)K | ω ∈ DifK , ω �= 0} .

Definition 3.4.13. The class C consisting of all divisors of the nonzero differentials of
a function field is called the canonical class and is denoted by W = WK .

3.5 The Riemann–Roch Theorem and Its Applications

In Sections 3.3 and 3.4 of this chapter, we have developed the concepts of repartitions
or adeles and that of differentials. On the other hand, Riemann’s theorem (Theorem
3.3.2) essentially establishes that for each divisor A ∈ DK we have the formula

δ
(
A−1

)
= 	 (A)+ d (A)+ gK − 1,

where gK is the genus of the field.
Furthermore, Proposition 3.4.5 establishes that

δ
(
A−1

)
= dimk D

(
A−1

)
= dimk

X

X (A)+ K
,

that is, δ
(
A−1

)
is the dimension of the k-vector space of all differentials vanishing on

X (A)+ K , or equivalently all differentials such that A−1 | ω.
What remains to do in order to obtain the Riemann–Roch theorem is to interpret

δ
(
A−1

)
as the dimension of a certain space L (B), and on the other hand, to determine

the dimension of a class C ∈ CK by means of the divisors A ∈ C . We proceed to do
this immediately.

Definition 3.5.1. Let C ∈ CK be an arbitrary class and let A be any divisor in C . If
A1, . . . ,An ∈ C , we have Ai

A = (xi )K for each xi ∈ K ∗. We say that the divisors
A1, . . . ,An are linearly independent if x1, . . . , xn are linearly independent over k.

An apparent problem with this definition is that it seems to depend on the divisor
A. The next result proves that this in not the case.

Proposition 3.5.2. Definition 3.5.1 does not depend on A or on the elements xi , 1 ≤
i ≤ n.
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Proof. Let A and x1, x2, . . . , xn be as in the definition. We need to prove that if
(xi )K = (

x ′i
)
K , then

{
x ′1, . . . , x

′
n

}
is also linearly independent over k. To this end

we observe that if u, v ∈ K ∗ are such that (u)K = (v)K , then
(
u−1v

)
K = N, so that

v = αu, α ∈ k∗. Therefore x ′i = αi xi , with αi ∈ k∗, i = 1, . . . , n. Thus
{
x ′1, . . . , x

′
n

}
are linearly independent over k.

Finally, if B ∈ C is arbitrary and Ai
B = (yi )K for i = 1, . . . , n, we must prove

that {y1, y2, . . . , yn} is a linearly independent set over k.
Observe that A, B ∈ C , and hence A

B = (z)K with z ∈ K ∗. Therefore (yi )K =
Ai
B = Ai

A
A
B = (xi )K (z)K = (xi z)K . That is, yi = αi zxi with αi ∈ k∗, z ∈ K ∗,

i = 1, . . . , n. From this, it follows immediately that {y1, y2, . . . , yn} is a linearly
independent set over k. ��

In Definition 3.3.10 we defined the dimension of a class C ∈ CK as N (C) =
	
(
A−1

)
, for an arbitrary A ∈ C . The following proposition relates the dimension to

the maximum size of a subset of C consisting of linearly independent integral divisors.

Proposition 3.5.3. Let C ∈ CK be any class. Then N (C) is equal to the maximum
number of linearly independent integral divisors belonging to C. In particular, this
number is finite.

Proof. Let n be the maximum size of a linearly independent subset of C consisting of
integral divisors and let A1, . . . ,An be such a subset. Let A ∈ C . Put Ai

A = (xi )K for
i = 1, . . . , n. Then x1, x2, . . . , xn are linearly independent over k. Therefore we have

(xi )K = A−1Ai �⇒ xi ∈ L
(
A−1

)
, so n ≤ 	

(
A−1

)
= N (C).

On the other hand, if y1, y2, . . . , yN (C) is a basis of L
(
A−1

)
, then (yi )K =

A−1Ci , where the Ci ’s are integral divisors and Ci ∈ C, 1 ≤ i ≤ N (C), with{
y1, y2, . . . , yN (C)

}
linearly independent. Thus N (C) ≤ n, proving the result. ��

We are ready to state and prove the Riemann–Roch theorem.

Theorem 3.5.4 (Riemann–Roch). Let K/k be a function field and C ∈ CK any class.
Let W be the canonical class and g the genus of K . Then

N (C) = d(C)− g + 1+ N
(
WC−1

)
.

Equivalently, if A is any divisor and ω is any nonzero differential, we have

	
(
A−1

)
= d (A)− g + 1+ 	

(
(ω)−1K A

)
.

In other words,

δ (A) = 	
(
A−1

)
+ d

(
A−1

)
+ g − 1 = 	

(
(ω)−1K A

)
= N

(
WC−1

)
for all A ∈ C.
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Proof. Let C be an arbitrary class and let A ∈ C . We have

N (C) = 	
(
A−1

)
= d (A)− g + 1+ δ (A) = d(C)− g + 1+ δ (A) .

Furthermore, δ (A) = dimk D (A), where D (A) = {ω ∈ DifK | A | ω}. By Theo-
rem 3.4.11, we have

D (A) = {ω ∈ DifK \{0} | A | (ω)K } ∪ {0}
=
{
ω ∈ DifK \{0} | A−1 (ω)K is integral divisor

}
∪ {0}.

Therefore

δ (A) =max {n | ω1, ω2, . . . , ωn ∈ DifK \{0} linearly independent over
k such that (ω1)

K A−1, . . . , (ωn)K A−1 are integral divisors
}

=N
(
WC−1

)
= 	

(
(ω)−1K A

)
,

which proves the theorem. ��

Corollary 3.5.5. Let W be the canonical class. Then N (W ) = g and d(W ) = 2g− 2.
In particular, the dimension of the holomorphic differentials is g (see Corollary 3.4.6).

Proof. Clearly, 	
(
A−1

) = d (A) − g + 1 + 	
(
(ω)−1K A

)
. Therefore, taking A = N,

we have

	 (N) = 1 = d (N)− g + 1+ 	
(
(ω)−1K

)
= 0− g + 1+ 	

(
(ω)−1K

)
.

Thus N (W ) = 	
(
(ω)−1K

)
= 1+g−1 = g (this has already been obtained in Corollary

3.4.6).
Now if A = (ω)−1K , we have

N (W ) = g = d(W )− g + 1+ N
(
WW−1

)
= d(W )− g + 1+ N (PK ) .

On the other hand,

N (PK ) = 	 (N) = 1,

so

d(W ) = g + g − 1− 1 = 2g − 2. ��

Corollary 3.5.6. If A is a divisor such that d (A) > 2g − 2 or d (A) = 2g − 2 and
A /∈ W, then 	

(
A−1

) = d (A)− g + 1. In particular, 	 (A−1) ≥ g − 1.
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Proof. If d (A) > 2g − 2 we have d
(
(ω)−1K A

)
> (2g − 2) − (2g − 2) = 0, so

	
(
(ω)−1K A

)
= 0 (Proposition 3.2.18).

If d (A) = 2g − 2 and A /∈ W , then (ω)−1K A is a nonprincipal divisor of degree 0.

Hence, from Proposition 3.2.18 we obtain 	
(
(ω)−1K A

)
= 0.

In any case, we obtain 	
(
A−1

) = d (A)− g + 1+ 	
(
(ω)−1K A

)
= d (A)− g + 1

and, in particular, 	
(
A−1

) = d (A)− g + 1 ≥ 2g − 2− g + 1 = g − 1. ��

Corollary 3.5.7. If W ′ ∈ CK and g′ ∈ Z are such that N (C) = d(C) − g′ + 1 +
N
(
W ′C−1

)
for all classes C, then W ′ = W and g′ = g. In other words, W and g are

uniquely determined by the Riemann–Roch theorem.

Proof. Taking C = W ′, we have

N (W ′) = d(W ′)− g′ + 1+ N
(
W ′ (W ′)−1)

= d(W ′)− g′ + 1+ N (PK )

= d(W ′)− g′ + 1+ 1
= d(W ′)− g′ + 2.

If C = PK , then

N (PK ) = 1 = d (PK )− g′ + 1+ N
(
W ′P−1K

)
= 0− g′ + 1+ N (W ′),

whence

N (W ′) = 1+ g′ − 1 = g′ and d(W ′) = N (W ′)+ g′ − 2 = 2g′ − 2.
If C is now any class such that d(C) > 2g′ − 2, then N (W ′C−1

) = 0 by Propo-
sition 3.2.18. Therefore N (C) = d(C)− g′ + 1.

Hence, applying Corollary 3.5.6 and the above, we obtain that for any class C such
that d(C) > max

{
2g − 2, 2g′ − 2}, we have N (C) = d(C)− g′ +1 = d(C)− g+1,

which implies that g = g′.
In particular, N (W ′) = g′ = g, d(W ′) = 2g′ − 2 = 2g − 2, whence, W ′W−1 is

of degree zero and

g = N (W ′) = d(W ′)− g + 1+ N
(
W ′W−1

)
= 2g − 2− g + 1+ N

(
W ′W−1

)
,

which implies that N
(
W ′W−1) = g− 2g+ 2+ g− 1 = 1. It follows that W ′W−1 =

PK , since PK is the only class of degree 0 and positive dimension. Therefore,
W ′ = W . ��

The following corollary states that there always exist elements with a unique given
pole (or zero).
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Corollary 3.5.8. Let P be a prime divisor and let n > 2g − 1 (n > 0 if g = 0). Then
there exists an element x in K such that Nx = Pn, that is, there exists an integral
divisor B such that B is relatively prime to P and (x)K = B

Pn .

Proof. Exercise 3.6.13. ��

Definition 3.5.9. We say that a divisor A divides a class C , and we write A | C , if A
dividesB for every integral divisorB of C .

For the next result we use the notation C A to denote the class C C ′, whereA ∈ C ′.
Theorem 3.5.10. Let C ∈ CK and A ∈ DK , with A an integral divisor. Then

N (C) ≤ N (C A) ≤ N (C)+ d (A) .

Furthermore,

N (C) = N (C A)⇐⇒ A | C A and N (C A) = N (C)+ d (A)⇐⇒ A | W C−1.

Proof. Let B ∈ C so N (C) = 	 (B−1). Let x ∈ L
(
B−1). Then (x)K has the form

C
B , where C is an integral divisor. Since A is an integral divisor we have (x)K = CA

BA .
Hence x ∈ L

(
B−1A−1

)
, so L

(
B−1) ⊆ L

(
B−1A−1

)
and N (C) = 	

(
B−1) ≤

	
(
B−1A−1

) = N (CA).
Now, if N (C) = N (CA), then L

(
B−1) = L

(
B−1A−1

)
for all B ∈ C . Let

T ∈ CA, where T is an integral divisor and T = BA, B ∈ C . In this case, N (C) =
N (CA) > 0. Therefore there exists an integral divisor B0 ∈ C . Thus T and B0A ∈
C A. Then T

B0A
= (x)K is a principal divisor and x ∈ L

(
B−1
0 A−1

)
= L

(
B−1
0

)
.

Therefore, (x)K = BA
B0A

= B
B0
andB is an integral divisor. We have T = BA, which

means that A | T .
Conversely, if A | CA let x ∈ L

(
B−1A−1

)
with B ∈ C . Then (x)K = C

BA ,

where C is an integral divisor. Since C
BA is principal, we have C ∈ C A and A | CA.

Hence (x)K = C
BA = C1

B , that is, x ∈ L
(
B−1). Therefore

L
(
B−1A−1

)
⊆ L

(
B−1

)
⊆ L

(
B−1A−1

)
,

which implies that N (CA) = N (C).
For the remaining part of the proof we apply the Riemann–Roch theorem, and we

obtain

N (CA) = d (CA)− g + 1+ N
(
WC−1A−1

)
= d(C)+ d (A)− g + 1+ N

(
WC−1A−1

)
.

Using the first part, we obtain
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N
(
WC−1A−1

)
≤ N

(
WC−1A−1A

)
= N

(
WC−1

)
,

and by applying again the Riemann–Roch theorem, we get

N (CA) = d(C)+ d (A)− g + 1+ N
(
WC−1A−1

)
≤ d(C)+ d (A)− g + 1+ N

(
WC−1

)
= N (C)+ d (A) .

Finally, again by the first part we have

N (CA) = d(C)+ d (A)⇐⇒ N
(
WC−1A−1

)
= N

(
WC−1

)
⇐⇒ A | WC−1A−1A = WC−1. ��

Corollary 3.5.11. For any class C, we have N (C) ≤ max {0, 1+ d(C)}.
Proof. If N (C) = 0, there is nothing to prove. If N (C) > 0, there exists an integral
divisor A ∈ C such that

N (C) = N (PKA) ≤ N (PK )+ d (A) = 1+ d (A) = 1+ d(C). ��
The next result will make clearer the reason why we use the term special for a

divisor A ∈ DK .

Proposition 3.5.12. Let A ∈ DK .

(i) A is nonspecial if and only if 	K
(
A−1

) = dK (A)+ 1− gK .
(ii) If dK (A) > 2gK − 2, then A is nonspecial.
(iii) The property of a divisor A being special or nonspecial depends only on the class

A ∈ C ∈ CK of A in the divisor class group.
(iv) If A ∈ WK , then A is special.
(v) If A satisfies 	K

(
A−1

)
> 0 and dK (A) < gK , then A is special.

(vi) If A is nonspecial and A | B, then B is nonspecial.

Proof.

(i) This follows from Definition 3.3.8.
(ii) This follows from Corollary 3.5.6 and (i).
(iii) This follows from Remark 3.3.9.
(iv) This A ∈ WK , then δK (A) = 	K

(
(ω)−1K A

) = 	K ((ω)−1K (ω)K ) = 	K (N) = 1 �=
0.

(v) We have 1 ≤ 	K
(
A−1

) = dK (A)+1−gK+δK (A). Thus, δK (A) ≥ gK−dK (A) >
0, and A is special.

(vi) If A | B, thenB−1 | A−1, and by Theorem 3.1.11 we have
δ(B) = 	K

(
B−1)+ dK

(
B−1)+ gK − 1

≤ 	K
(
A−1

)+ dK
(
A−1

)+ gK − 1 = δ(A).
Thus 0 ≤ δ(B) ≤ δ(A) = 0. It follows that δ(B) = 0 andB is nonspecial. ��
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Lemma 3.5.13. Let K/k be any function field of genus g > 0. Let T be any set con-
sisting of prime divisors of K of degree 1. If |T | ≥ g, then given any integral divi-
sor A such that 	K

(
A−1

) = 1 and dK (A) ≤ g − 1, there exists p ∈ T such that
	K
(
A−1p−1

) = 1.
Proof. Let p1, . . . , pg ∈ T be any set of g distinct elements of T such that dK (pi ) = 1
for i = 1, . . . , g. Assume that for all i = 1, . . . , g,

	K
(
A−1p−1i

)
> 1.

There exist elements xi ∈ LK
(
A−1p−1i

) \ LK (A−1) for i = 1, . . . , g. We have
vpi (xi ) = −vpi (A)− 1 and vp j (xi ) ≥ −vp j (A) for i �= j.

It follows from Proposition 2.2.3 (v) that {1, x1, . . . , xg} is a linearly independent set
over k. Let C be any divisor such that

Ap1 · · · pg | C
with dK (C) = 2g−1. Such C clearly exists since we have dK

(
Ap1 · · · pg) = dK (A)+

g ≤ 2g − 1. Then
1, x1, . . . , xg ∈ LK

(
C−1

)
.

Thus, 	K
(
C−1

) ≥ 1+ g. On the other hand, from Corollary 3.5.6 we obtain that

	K
(
C−1

) = dK (C)− g + 1 = g.

This contradiction proves the lemma. ��

Proposition 3.5.14. With the conditions of Lemma 3.5.13, there exists a nonspecial
integral divisor A with degK A = g and if p is a prime divisor such that p | A, then
p ∈ T .
Proof. Let p1, . . . , pg be any set of g distinct prime divisors in T . Using Lemma 3.5.13
we can find divisors

pi1 | pi1pi2 | · · · | pi1pi2 · · · pig =: A,

with 1 ≤ i j ≤ g for all j , such that

	K
(
p−1i1 · · · p

−1
i j

) = 1
for j = 1, . . . , g. In particular, 	K

(
A−1

) = 1. We have
dK (A)+ 1− g = g + 1− g = 1 = 	K

(
A−1

)
.

From Proposition 3.5.12 (i) we conclude that A is nonspecial. ��
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Definition 3.5.15. Let K/k be an arbitrary function field of genus g > 0. A set of g
different prime divisors p1, . . . , pg of degree 1 is called a nonspecial system if

	K
(
(p1 · · · pg)−1

) = 1,
or equivalently if δK (p1 · · · pg) = 0.
Proposition 3.5.16. Let k be an algebraically closed field. Let K/k be a function field
of genus g > 0. Then there exists a nonspecial system p1, . . . , pg in K . Furthermore,
p1 may be chosen arbitrarily and p2, . . . , pg may be chosen arbitrarily with finitely
many exceptions.

Proof. Let p1 ∈ PK be arbitrary. Then, since g > 0, K is not a rational function field
and LK

(
p−11
) = k. Thus, 	K

(
p−11
) = 1. It follows that

δK (p1) = 	K
(
p−11
)+ dK

(
p−11
)+ g − 1 = g − 1.

From the proof of Lemma 3.5.13, we see that there are at most g−1 prime divisors
p such that p �= p1 and

	K
(
p−11 p−1

) �= 1.
For any p2 not in this set and such that p2 �= p1 we have

	K
(
p−11 p−12

) = 1 and δK (p1p2) = g − 2.

The result follows immediately by induction. ��

Remark 3.5.17. Proposition 3.5.16 provides an explanation of the terminology of a
nonspecial divisor. That is, A = p1 · · · pg is nonspecial for all but finitely many
p1, . . . , pg .

Corollary 3.5.18. If k is not an algebraically closed field, and K/k is a function field
of genus g > 0, then there exists a finite constant extension k′ such that we can find a
nonspecial system in K ′ = Kk′.

Proof. Let k̄ be a separable closure of k. Then in K̄ = K k̄ there exist nonspecial
systems. Let p1, . . . , pg be one of them. Then p1, . . . , pg are of degree 1 in some
finite constant extension of K . ��

3.6 Exercises

Exercise 3.6.1. Let K be a function field over k. Let k′ be the exact field of constants,
k′ ⊇ k. Show that if α ∈ (k′)∗ then v℘(α) = 0 for all places ℘. Conclude that
k′ = {x ∈ K | v℘(x) = 0 for every place ℘

} ∪ {0}.
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Exercise 3.6.2. Let K be a function field with constant field k. Let DK be the divisor
group of K , PK the principal divisor group, and CK = DK /PK (analogously, let
DK ,0, PK ,0,CK ,0 be the respective groups of degree 0). Show that:

(i) DK ∼= DK ,0 ⊕ Z.
(ii) CK ∼= CK ,0 ⊕ Z.
(iii) PK ∼= K ∗/k∗.

Exercise 3.6.3. Let K be a function field, A a divisor, and S ⊆ PK the set of prime
divisors of K . Prove that �(A|S) is a vector space over the field of constants k.
Exercise 3.6.4. Consider K = k(x) in the context of the previous exercise. Under
what conditions does it hold that dimk �(A|S) <∞?
Exercise 3.6.5. Let K = k(x) and let ℘ be the place corresponding to the irreducible
polynomial p(x) ∈ k[x]. Prove that f℘ = deg p(x).
Exercise 3.6.6. Under what conditions does it hold that dimk �(A) <∞, where

�(A) = X(A) = {ξ ∈ XK | A | ξ}?

Exercise 3.6.7. Give an example of a function field K and a repartition ξ ∈ XK such
that there does not exist x ∈ K with v℘(x − ξ℘) ≥ 0 ∀ ℘ ∈ PK . (It is not necessary to
give explicitly the example, just to show that such an example in fact exists. You may
assume that there exist function fields with genus g > 0.)

Exercise 3.6.8. IfB | A, show that �(B−1)+ K ⊆ �(A−1)+ K .

Exercise 3.6.9. Let K = k(x). Describe the divisors of the form (x−a)K , with a ∈ k.
More generally, describe (α)K with α ∈ K ∗.

Exercise 3.6.10. Let A,B be divisors such that A | B. Prove that

(X(B)+ K ) ∩ X(A) = X(B)+ L(A) and L(A) ∩ X(B) = L(B).

Exercise 3.6.11. If A,B are divisors and ω, δ are two differentials such that A | ω and
B | δ, prove that C | �, where � = ω + δ and C = (A,B) is the greatest common
divisor of A andB.

Exercise 3.6.12. Let A be an integral divisor, ω �= 0 a nonzero differential, and let
B be a divisor such that B | ω. Let ϕ : L(A−1B−1) → D(A−1) be defined by
ϕ(x) = xω.

Prove that in fact x ∈ L(A−1B−1) ⇒ ϕ(x) ∈ D(A−1) and that ϕ is a k-
monomorphism.

Exercise 3.6.13. Let ℘ be a prime divisor and let n > max{2g−1, 0}. Prove that there
exists x ∈ K with a unique pole ℘ of order n, that is,Nx = ℘n .
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Exercise 3.6.14. Let K/k be a function field.

(i) Prove that if A is not principal and d(A) = 0, then 	(A−1) = 0.
(ii) If A �∈W , d(A) = 2g − 2, show that 	(A−1) = g − 1.
Exercise 3.6.15. Let k be a finite field such that k ∼= Fq . Let C be a class and let N (C)
be its dimension. Prove that the number of integral divisors in C is qN (C)−1q−1 .

Exercise 3.6.16. For a function field K/k we could have defined a repartition in K as
a function

ϕ : PK → K

such that vp(ϕ(p)) ≥ 0 for almost all p. Prove that all the results of this chapter hold
with this definition of repartition.

Exercise 3.6.17. Let K/k be a function field of genus g > 0. Let p be any place of K .
Prove that there exists a holomorphic differential ω in K such that vp(ω) = 0, that is,
p is not a zero of ω.

Exercise 3.6.18. Let K/k be a function field. LetA be an integral divisor. If 	
(
A−1

) =
d(A)+ 1 with d(A) > 0, prove that K is of genus 0.
Exercise 3.6.19. Let K/k be a function field of genus gK ≥ 1 and let W be its canon-
ical class. If A ∈ W−1, prove that if A | B with A �= B, then 	(A) �= 	(B), that is,
	(B) < 	(A).

Exercise 3.6.20. With the notation of Exercise 3.6.19, let p be a prime divisor of de-
gree 1. Prove that 	(A) = 	(Ap−1

)
.

Exercise 3.6.21. With the notation of Exercise 3.6.20, show that if deg p > 1 then
	(A) �= 	(Ap−1

)
.

Exercise 3.6.22. Let K/k be any function field. Let A be any divisor such that
LK
(
A−1

) �= {0}. Prove that there exists an integral divisor B in the divisor class
of A.

Exercise 3.6.23. If W ′ is any class in the function field K/k such that dK (W ′) =
2gK − 2 and 	K (W−1

K ) = gK , prove that W ′ = W is the canonical class of K .

Exercise 3.6.24. Let a | b and let S = {p ∈ PK | vp(a) �= 0 or vp(b) �= 0
}
. Show that

there exists a natural monomorphism L(a)
L(b)

ϕ−→ �(a|S)
�(b|S) . In particular, 	K (a)− 	K (b) ≤

dK (b)− dK (a).

Exercise 3.6.25. Prove Proposition 3.3.12.
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Exercise 3.6.26. Let k be a finite field such that |k| = q and let K/k be a function
field.

(i) Prove that the number of integral divisors of degree m ∈ N is finite.
(ii) If m ≥ gK , prove that each class of degree m contains an integral divisor. There-

fore the set Cm consisting of the classes of degree m is finite.
(iii) IfM is a divisor of degree m ≥ gK , then

ϕ : CK ,0→ Cm, defined by ϕ(A) = AM,

is a bijection. Therefore ∣∣Ck,0∣∣ = |Cm | <∞.



4

Examples

In this chapter we present examples that illustrate how one can apply our results of
Chapters 2 and 3. We shall first recall a few facts about rational function fields and
characterize fields of genus 0.

Our second goal is to examine function fields of genus 1, among which are found
elliptic function fields that correspond to the most important and widely investigated
elliptic curves of algebraic geometry.

Finally, we present quadratic extensions of k(x) in characteristic different from 2,
and we compute the genus of such extensions. Among these fields are found hyper-
elliptic function fields, which, up to an abuse of the formal definition, contain elliptic
function fields. We shall study those fields in detail in Section 9.6.4.

The reader will encounter hyperelliptic and elliptic function fields in Chapter 10
again, where they will be used in their applications to cryptography.

It should be mentioned that the computation of the genus could be done in a faster
and more efficient way using the Riemann–Hurwitz genus formula, which will be
studied in Chapter 9. However, the methods presented in this chapter, aside from their
mathematical beauty, allow us to investigate the fields involved in detail and to get
acquainted in a deeper way with their structure.

4.1 Fields of Rational Functions and Function Fields of Genus 0

First we consider the field K = k(x) of rational functions where k is an arbitrary field
and x a transcendental element over k. We recall some results about k(x) that we have
already obtained.

In Section 2.4 we characterized the set of all valuations on K , namely{
v f | f (x) ∈ k[x] is monic and irreducible

} ∪ {v∞}
(Theorem 2.4.1).

Example 3.2.16 shows that every divisor of degree 0 is principal; in particular,
CK ,0 = 1 and the class number hK is equal to 1.
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Proposition 4.1.1. Let K be a purely transcendental extension over a field F. Then F
is algebraically closed in K . In particular, the field of constants of a rational function
field k(x) is k.

Proof. Let {xi }i∈I be a transcendence base of K over F , that is, K = F
({xi }i∈I ).

Let α ∈ K be algebraic over F . We must prove that α ∈ F . Since α ∈ K , α is a
polynomial in a finite number of variables, that is, there exists a finite subset J of I
such that α ∈ F

({xi }i∈J ). This shows that we may assume, without loss of generality,
that I is finite, or, which is the same, that K = F (x1, x2, . . . , xn).

We will prove the result by induction on n. For n = 0, K is equal to F and there
is nothing to prove. If n = 1, then α ∈ F(x). If α ∈ F(x) \ F , we have

α = f (x)

g(x)
, f (x), g(x) ∈ F[x],

and f , g relatively prime. Then x satisfies the equation

h(T ) = f (T )− αg(T ) ∈ F (α) [T ].

Therefore

[F(x) : F (α)] ≤ deg h(T ) = max {deg f, deg g} <∞,
so [F (α) : F] = ∞. Thus α is transcendental over F .

We assume that the result holds for n − 1 with n ≥ 2. In order to prove it for n, let
α ∈ F (x1, . . . , xn) be algebraic over F . In particular, α is an algebraic element over
F (x1, . . . , xn−1) and it follows from the case n = 1 that α ∈ F (x1, . . . , xn−1). By
the induction hypothesis, we conclude that α ∈ F . ��

Corollary 4.1.2. Let α ∈ k(x) \ k be of the form α = f (x)
g(x) , where f (x), g(x) ∈ k[x]

are relatively prime. Then [k(x) : k (α)] = max {deg f, deg g} (see Exercise 2.6.8).
Proof. Since α ∈ k(x) \ k, α is transcendental. The divisor of α is

(α)K =
A f

Ag
P(deg g−deg f )∞ ,

where

A f = Pα1p1 . . .P
αr
pr , f (x) = p1(x)

α1 . . . pr (x)
αr ,

pi (x) are distinct irreducible polynomials, and similarly for Ag . Now, since k (α) =
k
(
1
α

)
, we may assume deg g ≥ deg f . By applying Theorem 3.2.7 to k(x)/k (α),

we obtain

[k(x) : k (α)] = d (Nα) = d
(
Ag
) = deg g = max {deg f, deg g} . ��
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Proposition 4.1.3. The genus of k(x), gk(x), is zero.

Proof. If f (x) ∈ k(x) is a rational function, we write f (x) = p1(x)α1 . . . ps(x)αs ,
where p1(x), . . . , ps(x) are distinct irreducible polynomials in k[x] and αi ∈ Z. Then

( f (x))k(x) =
(

s∏
i=1

Pαipi

)
P− deg f∞ .

Let t ≥ 0 be arbitrary. Then

L
(
P−t∞

) = { f (x) ∈ k(x) | ( f (x))k(x) = A

P t∞
, A is an integral divisor

}
,

and this is the set of polynomials of degree at most t .
Therefore 	

(
P−t∞

) = t + 1.
Let g be the genus of k(x) and let t > 2g − 2 be such that d (P t∞

) = td (P∞) =
t > 2g − 2. By Corollary 3.5.6, we have

t + 1 = 	 (P−t∞ ) = d
(
P t
∞
)− g + 1 = t − g + 1,

whence, g = 0. ��
Now, if W is the canonical class, we have

d (W ) = 2g − 2 = 0− 2 = −2.
On the other hand, since CK ,0 = 1, for each n ∈ Z there exists a unique class Cn of
degree n, which implies that

W = C−2 = P−2∞ Pk(x).

Since P−2∞ belongs to C−2, there exists a differential ω such that (ω)k(x) = P−2∞ and
every differential is of the form f (x) ω, with f (x) ∈ k(x). We will now describe this
differential ω.

Let ξ ∈ X be given by

ξP∞ =
1

x
, and ξP = 0 for all P �= P∞.

From Theorem 3.3.16, we obtain

dimk
X (P∞)
X
(
P2∞
) = d

(
P2∞
)
− d (P∞) = 2− 1 = 1.

Since v∞ (ξ) = v∞
(
ξP∞

) = 1, we have ξ ∈ X (P∞) \ X
(
P2∞
)
and furthermore,

ξ ∈ (X (P∞)+ K ) \ (X (P2∞)+ K
)
. On the other hand, we have

δ
(
P−1∞

)
= dimk

X

X (P∞)+ K
= d (P∞)+ 	 (P∞)+ g − 1 = 1+ 0+ 0− 1 = 0.
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Therefore, X = X (P∞)+ K and L (P∞) = {0}. From Theorem 3.4.4, we get
X (P∞)
X
(
P2∞
) ∼= X (P∞)+ K

X
(
P2∞
)+ K

= X

X
(
P2∞
)+ K

,

the latter being of dimension 1. Therefore every repartition θ can be written as

θ = aξ + ξ1, with ξ1 ∈ X
(
P2∞
)
+ K .

Let

ω : X→ k be such that (ω) = P−2∞ , that is, X
(
P2∞
)
+ K ⊆ kerω.

Then

ω (θ) = aω (ξ)+ ω (ξ1) = aω (ξ) .

We define ω (ξ) = −1. This is approximately something like the following:

Res
Pa

ω =
{

0 , a �= ∞,
−1 , a = ∞.

Then (ω)k(x) = P−2∞ and ω is uniquely determined by the conditions

ω
(
X
(
P2∞
)
+ K

)
= 0 and ω (ξ) = −1.

Indeed, if ω′ is any other differential with the same conditions, then for any repartition

θ = aξ + ξ1, with ξ1 ∈ X
(
P2∞
)
+ K and a ∈ k,

we have (
ω − ω′) (θ) = a

(
ω (ξ)− ω′ (ξ))+ (ω (ξ1)− ω′ (ξ1))

= a(−1− (−1))+ (0− 0) = 0.
Thus ω = ω′.
Definition 4.1.4. The differential ω of k(x), defined by

ω
(
X
(
P2∞
)
+ K

)
= 0, ω (ξ) = −1,

where

ξP∞ =
1

x
and ξP = 0 for all P �= P∞,

will be denoted by ω = dx .
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Every differential is of the form f (x) dx , with f (x) ∈ k(x). We have

(dx)k(x) =
1

P2∞
.

Proposition 4.1.3 shows that a rational function field k(x) is of genus zero. A
natural question is the following: Is every function field K/k of genus zero a rational
function field? The answer is, as we will see immediately, no. It is necessary to have
an extra condition, namely that there exist a prime divisor of degree one. This situation
holds if k is algebraically closed or if k is finite but may not hold in other cases (in the
case that k is finite it will be necessary to use the Riemann hypothesis, Chapter 7).

Independently from the above discussion, what we have in any case the following
result:

Proposition 4.1.5. If K/k is any field of functions such that gK = 0, then CK ,0 = {1}
and consequently, hK = 1.
Proof. Let C be a class of degree 0. We wish to prove that C = PK . Since d(C) =
0 > −2 = 2gK − 2, it follows by Corollary 3.5.6 that

N (C) = d(C)− gK + 1 = 0− 0+ 1 = 1,
whence, there exists an integral divisor A in C with degree 0. The only integral divisor
of degree 0 isN, so N ∈ C . Therefore C = PK . ��

Proposition 4.1.6. If K/k is a field of functions of genus 0, then K contains integral
divisors of degree 2, and in particular it contains prime divisors of degree 1 or 2.
Moreover, there exists x ∈ K \ k such that [K : k(x)] ≤ 2.
Proof. Let W be the canonical class of K , d(W ) = 2gK − 2 = −2. We have
d
(
W−1) = 2 > −2 = 2gK − 2. By Corollary 3.5.6,

N
(
W−1

)
= d

(
W−1

)
− gK + 1 = 2− 0+ 1 = 3,

that is, there exist at least three integral divisors in W−1, and all of them are of degree
2. Since every divisor is a product of prime divisors, it follows that there exist prime
divisors of degree 1 or 2. Indeed, if A is an integral of degree 2, then

A = P, P1P2, or P2

for some prime divisors P , P1, P2.
Since N

(
W−1) = 3, there exist two integral divisors A1, A2 of degree 2 with

A1 �= A2. Since A1, A2 ∈ W−1, A1
A2
= (x)K is principal and x /∈ k. By eliminating

all common prime factors in A1 and A2, we obtain (x)K = B1
B2
, whereB1 andB2 are

relatively prime integral divisors of degree 1 or 2 and B1 �= B2. By Theorem 3.2.7
we have [K : k(x)] = d (Nx ) = d (B2) ≤ 2. ��

We observe that if K = k(x), then K contains prime divisors of degree 1, for
instance P∞; furthermore, for each a ∈ k with (x − a)K = Pa

P∞ , Pa is of degree 1 and
in fact {Pa,P∞ | a ∈ k} is the set of all prime divisors of degree 1.
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Theorem 4.1.7. Let K/k be a function field. If K = k(x) then gK = 0. Conversely,
if gK = 0, then K is a rational function field or a quadratic extension of k(x). Fur-
thermore, K contains prime divisors of degree 1 or 2. Finally, K = k(x) if and only if
there exists at least one prime divisor of degree 1.

Proof. It remains to prove that if gK = 0 and K contains a prime divisor of degree 1,
then K is a rational function field.

Let P be a place of degree 1. We have d (P) = 1 > −2 = 2gK − 2. By Corollary
3.5.6,

	
(
P−1

)
= d (P)− gK + 1 = 1− 0+ 1 = 2.

Therefore, there exist elements x1, x2 in L
(
P−1

)
that are linearly independent over k,

which implies x1
x2
∈ K \ k. On the other hand, we have

(x1)K =
A

P and (x2)K =
B

P ,

where A, B are integral divisors and d (A) = d (B) = 1. Hence, if x = x1
x2
, then

(x)K = A
B and x /∈ k. Thus, by Theorem 3.2.7, [K : k(x)] = d (Nx ) = d (B) = 1,

so K = k(x). ��

Corollary 4.1.8. If K/k is a function field of genus 0 and k is algebraically closed,
then K = k(x) is a rational function field.

Proof. IfP is a place of K , then k (P) is an algebraic extension of k. Therefore k (P) =
k and fP = [k (P) : k] = 1, that is, every place is of degree 1. ��

We finish this section with an example of a field of genus 0 that is not a rational
function field.

Let R be the field of real numbers and let K = R (x, y), where x , y are transcen-
dental elements over R satisfying the equation

x2 + y2 + 1 = 0.

Let K0 = R(x). Then since y2 = −x2 − 1, we have y /∈ K0, so [K : K0] = 2.
The field of constants of K is a finite extension of R. Therefore it is R or C. Let us

see that it is in fact R. For the sake of contradiction, let us assume that C is the field of
constants of K , that is, i = √−1 ∈ K . Since i /∈ K0, it follows that [K0 (i) : K0] = 2.
Therefore K0(i) = K . On the other hand, K0(i) = R(x)(i) = C(x) implies y ∈ C(x).
However, since y2 = −x2 − 1, we have y = ±i√x2 + 1, which is not a rational
function of x . Therefore the field of constants of K is R.

Now we will see that K is not a rational function field. If this were the case, we
would have K = R(z) with z ∈ K \R. Now, by the remark we made before Theorem
4.1.7, there would exist infinitely many places of degree 1. To prove that this is not the
case, we will show that there can only be finitely many degree-1 places.
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Let P be a place of K such that vP (x) ≥ 0. Observe that all but finitely many
places satisfy this condition, that is, there are only finitely many places S such that
vS(x) < 0 (Theorem 3.2.1). Let

ϕ : K −→ (ϑP/P) ∪ {∞}
be the corresponding place (see Section 2.2, particularly 2.2.10–2.2.13). We have
[ϑP/P : R] < ∞ (Theorem 2.4.12). Hence ϑP/P is isomorphic to R or C, so P
is of degree 1 (in the case ϑP/P ∼= R) or 2 (in the case ϑP/P ∼= C).

We will prove that ϑP/P ∼= C. The condition vP (x) ≥ 0 is equivalent to ϕ(x) �=
∞ (see Definition 2.2.10). If ϕ(x) ∈ C \ R there is nothing to prove. If ϕ(x) ∈ R, the
equation x2+y2+1 = 0 implies ϕ(x)2+ϕ(y)2+1 = 0, so that ϕ(y)2 = −ϕ(x)2−1 ∈
R. Since the latter is negative, we have ϕ(y) = ±i

√
ϕ(x)2 + 1 ∈ C \ R. In any case,

we get ϕ(K ) �⊂ R ∪ {∞}. Therefore ϑP/P ∼= C and d (P) = 2.
By the above, K contains at most finitely many places of degree 1, which implies

that K is not a rational function field over R.
We will prove that in fact K has no degree-1 places. The case that remains to

analyze is vP (x) < 0. If this is the case, let x ′ = 1
x and y

′ = y
x and observe that(

x ′
)2+ (y′)2+1 = 0. If ϕ is the corresponding place, then ϕ (x) = ∞, which implies

ϕ
(
x ′
) = 0 �= ∞. Hence, as before, we obtain ϑP/P ∼= C and d (P) = 2. This shows

that every place in K is of degree 2.
Finally, we will prove that the genus of K is 0. In R(x) we write (x)R(x) = P0P∞

and in K , (x)K = B0
B∞ . We observe that since [K : R(x)] = d (B0) = d (B∞) = 2

and every prime divisor of K is of degree 2, bothB0 andB∞ are prime divisors. Now,
if v∞ is the valuation corresponding to B∞, which is the extension of P∞ to K , we
have v∞(x) = −1. Thus

v∞
(
−x2 − 1

)
= min

{
v∞
(
x2
)
, v∞(−1)

}
= min {2v∞ (x) , v∞(−1)}

= min{−2, 0} = −2.

In particular, we have

2 v∞(y) = v∞
(
y2
)
= v∞

(
−x2 − 1

)
= −2,

which implies that v∞(y) = −1.
For m ≥ 1, we have
L
(
N−mx

) ⊇ {a(x)+ yb(x) | a(x), b(x) ∈ R[x], vB∞ (a(x)+ yb(x)) ≥ −m} .
We have

vB∞ (a(x)) =
{
∞ if a(x) = 0
− deg a(x) if a(x) �= 0.

If deg a(x) �= deg b(x) + 1, then since v∞(y) = −1, we have v∞(a(x)) �=
v∞(yb(x)), in which case
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v∞(a(x)+ yb(x)) = min {v∞(a(x), v∞(yb(x))} = min{− deg a,−1− deg b},

and

a(x)+ yb(x) ∈ L (N−mx )
if and only if deg a ≤ m, deg b ≤ m − 1.

If deg a(x) = deg b(x)+ 1, we write
a(x) = r xn + a1(x) and b(x) = sxn−1 + b1(x),

with deg a1(x) ≤ n − 1, deg b1(x) ≤ n − 2, and rs �= 0. Therefore
a(x)+ yb(x) = xn−1(r x + sy)+ a1(x)+ yb1(x).

Now we have

v∞ (a1(x)+ yb1(x)) ≥ min {v∞ (a1(x)) , v∞ (yb1(x))}
= min {− deg a1(x),−1− deg b1(x)}
≥ min {1− n,−1+ 2− n} = 1− n.

Since K = K0(y) = K0(r x + sy), we have

[K0(r x + sy) : K0] = 2 = d
(
Nr x+sy

)
,

and for every place B �= B∞, vB(r x + sy) ≥ 0. It follows that (r x + sy)K = A
B∞ ,

that is, v∞ (r x + sy) = −1.
Since v∞

(
xn−1

) = 1− n, we have

v∞
(
xn−1(r x + sy)

)
= 1− n − 1 = −n < 1− n.

Using Proposition 2.2.3 (iv), we conclude that

v∞ (a(x)+ yb(x)) = −n.

Therefore, the following also holds in this case:

a(x)+ yb(x) ∈ L (N−mx )
if and only if − n = − deg a = − deg b − 1 ≥ −m,

or equivalently,

deg a(x) ≤ m and deg b(x) ≤ m − 1.
In short,

L
(
N−mx

) ⊇{a(x)+ yb(x) | a(x), b(x) ∈ R[x],

deg a(x) ≤ m, deg b(x) ≤ m − 1}.
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It follows that

	
(
N−mx

) = dimR L
(
N−mx

) ≥ (m + 1)+ m = 2m + 1.

On the other hand, we have

d
(
Nm
x

) = md (Nx ) = md (B∞) = m(2) = 2m.

By the Riemann–Roch Theorem (Corollary 3.5.6), when m is large enough, we have

2m + 1 ≤ 	 (N−mx ) = d
(
Nm
x

)− gK + 1 = 2m + 1− gK .

Therefore gK ≤ 0. Hence gK = 0.
We sum up the previous discussion into the following proposition:

Proposition 4.1.9. Let K = R(x, y), where x and y are transcendental elements over
R satisfying x2 + y2 + 1 = 0. Then the field of constants of K is R, and K has genus
0 and is not a rational function field. Finally, every place of K is of degree 2. ��

Remark 4.1.10. Proposition 4.1.9 provides an example in which the degree function
d : DK −→ Z is not surjective, since every prime divisor is of degree 2. It follows
that d (DK ) = 2Z �= Z.

4.2 Elliptic Function Fields and Function Fields of Genus 1

In the previous section we studied function fields of genus 0 and we saw that they are
“almost” fields of rational functions. Now we will study the function fields of genus 1
that “almost” are fields of elliptic functions.

Definition 4.2.1. Let K/k be a function field of genus gK = 1. Then K is called an
elliptic function field if K contains a prime divisor of degree 1.

Example 4.2.2. Let K = R(x, y) where x , y are transcendental elements over R sat-
isfying the equation

x2 + y4 + 1 = 0.

Then K is of genus 1 (see Section 4.3, in particular Corollary 4.3.9) but every prime
divisor of K is of degree 2. The proof is exactly the same as in Proposition 4.1.9.

In this section we characterize the elliptic function fields of characteristic different
from 2. The case char k = 2 will be studied in Section 9.6.2.

Let P be a prime divisor of degree 1 in the elliptic function field K/k with g =
gK = 1. If W denotes the canonical class of K , we have d(W ) = 2g−2 = 2−2 = 0,
and on the other hand, N (W ) = g = 1. Thus W is a class of degree 0 and positive
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dimension, which implies, by Proposition 3.2.18, that W = P = PK . Therefore the
canonical class and the principal class are the same.

Now we have d (P) = 1 > 0 = 2g − 2, so by Corollary 3.5.6,

	
(
P−n

) = d
(
Pn)− g + 1 = nd (P)− 1+ 1 = n, for n ≥ 1.

In particular we have 	
(
P−1

) = 1 and 	 (P−2) = 2. Let {1, x} be a basis of L (P−2).
Then (x)KP2 is an integral divisor, that is, Nx | P2. On the other hand, since K �=
k(x), we have [K : k(x)] = d (Nx ) ≤ 2, which implies that

Nx = P2 and [K : k(x)] = 2 = d (Nx ) .

We have L
(
P−2

) ⊆ L
(
P−3

)
and 	

(
P−3

) = 3, so there exists y ∈ K such that
y /∈ L

(
P−2

)
and {1, x, y} is a basis of L (P−3). Since y /∈ L

(
P−2

)
it follows that

Ny = P3. Now the denominators of the divisors of 1, x, y, x2, xy, x3, and y2 are,
respectively,

N, P2, P3, P4, P5, P6, and P6.

Since the first six elements listed have distinct denominators, they are linearly inde-
pendent over k and all of them belong to L

(
P−6

)
, which is of dimension 	

(
P−6

) = 6.
Thus, they form a basis and there exist γ , δ, αi ∈ k, i = 0, 1, 2, 3, such that the relation

y2 + γ xy + δy = α3x3 + α2x2 + α1x + α0 (4.1)

holds. We will see that y /∈ k(x). Let us assume that y = f (x)
h(x) ∈ k(x) with f (x), h(x)

relatively prime.
We have from (4.1)

f 2 + γ x f h + δ f h
h2

= α3x3 + α2x2 + α1x + α0.

Then h | f 2, which implies that h = 1. That is, we have

f 2 + γ x f + δ f = α3x3 + α2x2 + α1x + α0. (4.2)

From (4.2) it follows that f is a polynomial of degree at most 1. Now we have

y = f (x), Ny = P3, −3 = vP (y) = vP ( f (x)) = vP (ax + b) = vP (x) = −2,

which is absurd. Hence, we have y /∈ k(x). Therefore

[k(x, y) : k(x)] ≥ 2 = [K : k(x)],

which implies that K = k(x, y).
Let char K �= 2. We have
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y2 + γ xy + δy = y2 + y (γ x + δ)

= y2 + y (γ x + δ)+
(
γ x + δ
2

)2
−
(
γ x + δ
2

)2
=
(
y +

(
γ x + δ
2

))2
−
(
γ x + δ
2

)2
.

Therefore, if z = y +
(
γ x+δ
2

)
, then

K = k(x, z) with z2 = f (x) and deg f (x) ≤ 3.
If f (x) has degree 1, then z = √

α2x + α3 and K = k
(√
α2x + α3

)
is a rational

function field, and hence of genus 0. If deg f (x) = 2, then K is of genus 0 (see
Corollary 4.3.10 below). Thus deg f (x) = 3 and α3 �= 0. By multiplying (4.1) by α23
and making a change of variables y1 = α3y, x1 = α3x , we may assume that α3 = 1.
On the other hand, f (x) has no repeated irreducible factors since if z2 = f (x) =
h(x)2g(x) with deg h(x) = deg g(x) = 1, then

z21 =
(

z

h(x)

)2
= g(x)

and

K = k (x, z1) = k
(
x,
√
ax + b

)
= k

(√
ax + b

)
.

Therefore K is a rational function field and thus is of genus 0.
In short, we have the following result:

Proposition 4.2.3. Let K/k be an elliptic function field. Then K = k(x, y), where x
and y are transcendental over k and satisfy a relation g(y) = f (x) for some monic
separable polynomials f (x) ∈ k[x] and g(y) ∈ k[y] of respective degrees 3 and 2.
Furthermore, if char K �= 2, then f (x) and g(y) can be chosen such that f (x) is
square-free and g(y) = y2. ��

The converse also holds when char K �= 2.
Theorem 4.2.4. Let K/k be a function field such that char K �= 2. Then K/k is an
elliptic function field if and only if K = k(x, y) where x and y are transcendental
elements over k, y2 = f (x) and f (x) is a square free polynomial of degree 3.

Proof.
(�⇒) This is just Proposition 4.2.3.
(⇐�) By Corollary 4.3.11 below, K is of genus 1. Now it suffices to see that K
contains a place of degree 1.

Since y2 = f (x) with f (x) of degree 3, P | Nx implies P3 | N f (x). Therefore
N f (x) = N3

x and N2
y | N3

x . On the other hand,
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[K : k(x)] = [k(x, y) : k(x)] = 2 and [K : k(y)] = [k(x, y) : k(y)] = 3.
Thus, we obtain

d
(
N3
x

)
= 3d (Nx ) = 3[K : k(x)] = 6 = 2[K : k(y)] = 2d (Ny

) = d
(
N2
y

)
.

HenceN2
y = N3

x . Since d (Nx ) = 2, we have
Nx = P1, Nx = P2P3 or Nx = P24

with Pi prime divisors, d (P1) = 2 and d (Pi ) = 1, i = 2, 3, 4.
Now N3

x is P31 or P32P33 or P64 , but N2
y = N3

x implies that the exponents of N3
x

must be divisible by 2, whence it follows that Nx = P2, d (P) = 1 and Ny = P3. In
particular, K contains a prime divisor of degree 1. ��

Now assume that char k �= 2, 3. By (4.1) and the case char k �= 2, we have K =
k(x, y) with

y2 = x3 + α2x2 + α3x + α4. (4.3)

Let x ′ := x − α2
3 . Then

x3 + α2x2 + α3x + α4 =
(
x ′ − α2

3

)3 + α2(x ′ − α2
3

)2 + α3(x ′ − α2
3

)
+ α4

= (x ′)3 + ax ′ + b.

Thus

(2y)2 = 4(x ′)3 + 4ax ′ + 4b.
In short, when char k �= 2, 3, there exist x, y ∈ K such that

y2 = 4x3 − g2x − g3, with g2, g3 ∈ k. (4.4)

Definition 4.2.5. The equation (4.4) is called theWeierstrass form.

Finally, we consider a function field K/k of any characteristic and gK = 1. If K
contains a divisor of degree 1, then there exists an integral divisor of degree 1 (Exercise
3.6.22). Thus there exists a prime divisor of degree 1 and K/k is an elliptic function
field.

We sum up the above discussion into the following theorem.

Theorem 4.2.6. Let K/k be a function field of genus 1. Then K/k is an elliptic func-
tion field if and only if there exists a divisor of degree 1.

If char k �= 2, K/k is an elliptic function field if and only if K = k(x, y) with

y2 = f (x), (4.5)

where f (x) is a monic separable polynomial of degree 3.
Furthermore, if char k �= 2, 3, then K = k(x, y) with

y2 = 4x3 − g2x − g3 and g2, g3 ∈ k. (4.6)

��
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4.3 Quadratic Extensions of k(x) and Computation of the Genus

In Sections 4.1 and 4.2, the study of the fields of genus 0 and 1 led us to encounter
several function fields K such that [K : k(x)] = 2. When gK ≥ 2 these fields are a
special type of hyperelliptic function field, which will be examined in Section 9.6.4.
In this section we fill in the gaps remaining from Section 4.2, namely the computation
of the genus (Example 4.2.2 and Theorem 4.2.4). We could have proceeded differ-
ently and started with this section and then applied directly the results obtained here.
However, we consider that the way we chose provides the reader with a motivation
consisting in seeing the examples first and calculating the genus in quadratic exten-
sions of k(x). It is also important to clarify that later on, when we develop ramification
theory and the Riemann–Hurwitz genus formula, we will have at our disposal a much
more general method for calculating the genus of a function field.

In this section we consider a function field K/k such that there exists x ∈ K with
[K : k(x)] = 2 and char K �= 2.
Lemma 4.3.1. We have K = k(x, y), where y2 = f (x) and f (x) ∈ k[x] is square-
free.

Proof. Let y ∈ K \ k(x). Then
k(x) ⊆ k(x, y) ⊆ K and [k(x, y) : k(x)] ≥ 2 = [K : k(x)],

which implies that K = k(x, y). Now, since y is of degree 2 over k(x), the irreducible
polynomial of y is of the form y2 + ay + b = 0 with a, b ∈ k(x). Since char K �= 2,
by completing squares we obtain

y2 + ay + a2

4
= a2

4
− b, or

(
y + a

2

)2 = a2

4
− b.

Now let z = y+ a
2 , K = k(x, z), and z2 = c with c ∈ k(x). We can write c = h(x)

g(x)
for some relatively prime elements h(x), g(x) of k[x]. Then

(g(x)z)2 = h(x)g(x).

Put u = g(x)z and t (x) = h(x)g(x). We then have K = k(x, u) and u2 = t (x).
Finally, we can write t (x) = r(x)2 f (x) with f (x) square-free. Then if v = u

r(x) , then

K = k(x, v) and v2 = f (x), where f (x) is square-free. ��
From this point on, K will denote a field of the form

k(x, y), where y2 = f (x)

for some square-free polynomial f (x) of degree m. Since [K : k(x)] = 2 and
char K �= 2, K/k(x) is a Galois extension. Let Gal(K/k(x)) = {1, σ } with

K = k(x, y), y2 = f (x) and σ(y) = −y.
Let P be an arbitrary place with valuation ring ϑ and associated valuation vP . We

define vPσ by vPσ (z) := vP
(
σ−1(z)

) = vP (σ (z)).
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Lemma 4.3.2. vPσ is a valuation with maximal ideal Pσ = {σ (α) | α ∈ P} and val-
uation ring ϑσ .

Proof. It is straghtforward. ��
Now, σ can be extended to DK in a natural way; that is, if

A =
r∏
i=1

Pαii ∈ DK we define Aσ :=
r∏
i=1

(
Pσi
)αi ∈ DK .

For z ∈ K , we have

vPσ (σ (z)) = vP
(
σ−1 (σ (z))

)
= vP (z).

Therefore we obtain the following lemma:

Lemma 4.3.3. If z ∈ K ∗, then (z)σK = (zσ )K .

Proof. If (z)K = Zz
Nz
, then vPσ (σ (z)) = vP (z), that is, Zσz = Zσ(z) and Nσz = Nσ(z).

Therefore

(z)σK =
Zσz
Nσz

= Zσ(z)

Nσ(z)
= (σ (z))K =

(
zσ
)
K . ��

Proposition 4.3.4. Let t ∈ N and let Nx be the pole divisor of x. If z ∈ L
(
N−tx

)
,

then σ (z) ∈ L
(
N−tx

)
. In particular, if z = a(x) + yb(x) with a(x), b(x) ∈ k(x) and

z ∈ L (N−tx ), then σ(z) = a(x)− yb(x) ∈ L (N−tx ).
Proof. Let z ∈ L

(
N−tx

)
be nonzero. Then (z)K = A

Nt
x
, for some integral divisor A.

Therefore Aσ is an integral divisor and

(z)σK = (σ (z))K =
Aσ(
Nt
x

)σ = Aσ

Nt
σ(x)

= Aσ

Nt
x
,

which implies σ(z) ∈ L (N−tx ). ��

Proposition 4.3.5. For t ∈ N we have

L
(
N−tx

) = {a(x)+ yb(x) | a(x), b(x) ∈ k[x], deg a ≤ t and deg b ≤ t − m

2

}
.

Proof. Let z ∈ L (N−tx ) be of the form
z = a(x)+ yb(x) with a(x), b(x) ∈ k(x).

We have

σ(z) = a(x)− yb(x) ∈ L (N−tx ) ,
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and hence

z + σ(z) = 2a(x) ∈ L (N−tx ) .
Therefore a(x) ∈ L (N−tx ) since char K �= 2. Now, if

a(x) = s(x)

r(x)
, where s(x), r(x) ∈ k[x]

are relatively prime and r(x) is a nonconstant polynomial, there exists an irreducible
polynomial g(x) in k[x] such that g(x) | r(x), that is,

vg(a(x)) < 0 in k(x) and vg �= v∞.
Now if v is an extension of vg to K , we have v(a(x)) < 0, where v �= v′∞ and v′∞
is any extension of v∞ to K . However, since a(x) ∈ L

(
N−tx

)
, t ≥ 1 implies that

v(a(x)) ≥ 0. This contradiction proves that a(x) ∈ k[x].
Now we write

a(x) = anx
n + · · · + a1x + a0, with an �= 0.

If P | Nx , then

vP
(
ai x

i
)
=
{
∞ if ai = 0,
ivP (x) if ai �= 0.

Therefore since vP (x) < 0 we get

vP (a(x)) = min {ivP (x) | 0 ≤ i ≤ n, ai �= 0} = nvP (x).

In particular, we have Na(x) = Nn
x . Since a(x) ∈ L

(
N−tx

)
, it follows that n ≤ t . In

short, a(x) is a polynomial of degree at most t .
On the other hand, y2 = f (x) implies

zzσ = (a(x)+ yb(x))(a(x)− yb(x)) = a(x)2 − y2b(x)2

= a(x)2 − f (x)b(x)2 ∈ L
(
N−2tx

)
.

Indeed, from

(z)K = A

Nt
x
, we get

(
zσ
)
K =

Aσ

Nt
x
, so

(
zzσ
)
K =

AAσ

N2t
x
.

It follows from the previous discussion that a(x)2 − f (x)ḃ(x)2 is a polynomial of
degree at most 2t , which implies that f (x)b(x)2 is a polynomial of degree at most 2t .
Since f is square-free, it follows that b(x)must be a polynomial and since deg f = m,
we have deg b ≤ 2t−m

2 = t − m
2 .
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Conversely, let a(x) ∈ k[x] be of degree at most t and let b(x) ∈ k[x] be of degree
at most t − m

2 . Observe that for any valuation v such that v(x) ≥ 0, we have v(y) ≥ 0
since y2 = f (x) and v( f (x)) ≥ 0. Then

(y)2K =
(
y2
)
K
= ( f (x))K = A

N
deg f
x

= A

Nm
x
,

so (y)K = A1
N
m/2
x

for some integral divisor A1.

Let z = a(x) + yb(x). Then zσ = a(x) − yb(x) and z ∈ L
(
N−nx

)
for some n.

Now, if P | Nx , we have

vP
(
z + zσ

) = vP (2a(x)) = vP (a(x)) = deg a(x)vP (x)
≥ tvP (x) = vP

(
xt
)
,

and

vP
(
z − zσ

) = vP (2yb(x)) = vP (y)+ vP (b(x))
= m

2
vP (x)+ deg b(x)vP (x) =

(m
2
+ deg b(x)

)
vP (x)

≥ tvP (x) = vP
(
xt
)
.

Therefore z + zσ and z − zσ belong to L
(
N−tx

)
, which implies that

2z = (z + zσ
)+ (z − zσ

) ∈ L (N−tx ) ,
whence z ∈ L (N−tx ). ��

Corollary 4.3.6. We have

	
(
N−tx

) =
⎧⎪⎪⎨⎪⎪⎩
0 if t < 0,

t + 1 if 0 ≤ t ≤
[
m+1
2

]
− 1,

2t + 2−
[
m+1
2

]
if t ≥

[
m+1
2

]
.

Proof. If t < 0, thenN−tx is an integral divisor, so L
(
N−tx

) = {0} and 	 (N−tx ) = 0.
Let t ≥ 0. We have

L
(
N−tx

) = {a(x)+ yb(x) | deg a ≤ t, deg b ≤ t − m

2

}
.

If

t ≤
[
m + 1
2

]
− 1 =

[
m + 1− 2

2

]
=
[
m − 1
2

]
<
m

2
,

then
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t − m

2
< 0, so b(x) = 0.

Therefore

L
(
N−tx

) = {a(x) | deg a ≤ t} and 	
(
N−tx

) = t + 1.

Finally, if t ≥
[
m+1
2

]
≥ m

2 , we have

deg b ≤
[
t − m

2

]
=
{
t − m

2 if m is even,
t − 1− m−1

2 = t − m+1
2 if m is odd

Therefore,

	
(
N−tx

) = t + 1+
[
t − m

2

]
+ 1 =

{
t + 1+ t − m

2 + 1 if m is even
t + 1+ t − m+1

2 + 1 if m is odd

=
{
2t + 2− m

2 if m is even
2t + 2− m+1

2 if m is odd
= 2t + 2−

[
m + 1
2

]
. ��

Corollary 4.3.7. We have

g = gK =
[
m + 1
2

]
− 1 =

{ m
2 − 1 if m is even,
m−1
2 if m is odd.

Proof. We have [K : k(x)] = 2 = d (Nx ). If t > g, then t ∈ N and d
(
Nt
x

) =
td (Nx ) = 2t > 2g − 2. By Corollary 3.5.6, 	 (N−tx ) = d

(
Nt
x

) − g + 1. Therefore
for t > max

{
0, g,

[
m+1
2

]}
, we have

	
(
N−tx

) = 2t + 2− [m + 1
2

]
= d

(
Nt
x

)− g + 1 = 2t − g + 1.

Hence g = 2t + 1− (2t + 2)+
[
m+1
2

]
=
[
m+1
2

]
− 1. ��

Now all cases pending from Section 4.2 are an immediate consequence of Corol-
lary 4.3.7.

Corollary 4.3.8 (see Proposition 4.1.9). If K = R(x, y) with x2 + y2 + 1 = 0, then
gK = 0.

Proof. Since y2 = − (x2 + 1), we have m = 2 and g =
[
m+1
2

]
− 1 =

[
3
2

]
− 1 =

1− 1 = 0. ��

Corollary 4.3.9 (see Example 4.2.2). If K = R(x, y) with x2 + y4 + 1 = 0, then
g = 1.
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Proof. We have x2 = − (y4 + 1), so K = k(y)(x) with m = 4. Then g =
[
m+1
2

]
−

1 =
[
4+1
2

]
− 1 =

[
5
2

]
− 1 = 2− 1 = 1. ��

Corollary 4.3.10. If K = R(x, y) where y2 = f (x) and f is square-free and of
degree 2, then g = 0.

Proof. Put m = 2 and g =
[
2+1
2

]
− 1 = 1− 1 = 0. ��

Corollary 4.3.11 (see Theorem 4.2.4). If K = R(x, y) is such that y2 = f (x), with
f (x) square-free and deg f (x) = 3, then g = 1.

Proof. g =
[
3+1
2

]
− 1 = 2− 1 = 1. ��

Remark 4.3.12. In Proposition 4.1.9, we obtained that if

K = R(x, y) and x2 + y2 + 1 = 0,

then K is not a rational function field. Now, if

K = C(x, y) with x2 + y2 + 1 = 0, and g = 0,

then since C is algebraically closed, K surely is a rational function field. It is natural
to ask what the difference is between this and the real case. To answer this question,
observe that

y2 = −
(
x2 + 1

)
= −(x + i)(x − i) = −(x + i)2

x − i

x + i
.

Then

y = i(x + i)

√
x − i

x + i
,

so

K = C(x, y) = C(x, z),

where

z =
√
x − i

x + i
or z2 = x − i

x + i
,

whence x = −i z2+1
z2−1 , that is, x ∈ C(z). Thus K = C(z). The previous argument

would not have been possible with R in place of C.
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4.4 Exercises

Exercise 4.4.1. Let K/k be a function field of genus 0 that is not a rational function
field. Prove that there exists a constant extension k′/k of degree 2 such that Kk′ is a
rational function field.

Exercise 4.4.2. Let K = R(x, y) with x4 + y2 + 1 = 0. Prove that every place of K
is of degree 2.

Exercise 4.4.3. Let K/k be a function field. Let

� := min{n ∈ N | there exists p ∈ PK , dK (p) = n},
and

d := min{n ∈ N | there exists A ∈ DK , dK (A) = n}.

Prove that d divides � and if gK = 1, then d = �.
Exercise 4.4.4. Let K = R(x, y)with xn+y2+1 = 0. Characterize the set of positive
integers n ∈ N such that every place of K is of degree 2.

Exercise 4.4.5. Let char k = 2 and consider K = k(x, y) given by x3 + y2 + 1 = 0.
Show that gK = 0 and conclude that Corollary 4.3.7 does not hold for character-
istic 2.

Exercise 4.4.6. Let char k = 2 and let f (x) ∈ k[x] be a separable polynomial of
degree 3. Let K = k(x, y) be given by y2 − y = f (x). Show that K contains a prime
divisor of degree 1 and gK ≤ 1.
Exercise 4.4.7. With the conditions of Exercise 4.4.6, if f (x) is separable of degree
4, what can we say about gK ?
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Extensions and Galois Theory

This chapter is about the Galois theory of function fields. Many of the results presented
here are of a general nature, but our interest and emphasis will be focused on function
fields.

Most of our main results are based on the situation in which the constant field k is
perfect. When the field of constants is not perfect, strange things may happen, and we
shall mention a few of them in Chapter 9.

In Section 5.4 we study the completions of a field extension; as we shall see, the
knowledge of extensions of such completions, or in other words the local case, is
useful for the study of the global case.

Section 5.5 is dedicated to entire bases, which will be indispensable when we study
Tate’s genus formula for inseparable extensions in Chapter 9.

We shall consider ramification in cyclic extensions, both Kummer extensions and
Artin–Schreier extensions. Moreover, we shall obtain Kummer’s theorem on the de-
composition type of a prime in an extension.

We end the chapter with ramification groups, which are useful for the study of
extensions with wild ramification.

After Chapter 3, which treats the Riemann–Roch theorem, this chapter may be
considered as the second in importance of our book, due to the fact that it contains
basic concepts and results of the theory such as ramification, decomposition of places,
norm, and different.

5.1 Extensions of Function Fields

Definition 5.1.1. Let K/k and L/	 be two function fields. We say that L is an exten-
sion of K if K ⊆ L and 	 ∩ K = k.

Proposition 5.1.2. Let L/	 be an extension of K/k, and let x ∈ K be transcendental
over k. Then x is transcendental over 	.

Proof. We have x ∈ K \ k, so x �∈ K ∩ 	 = k. Thus x �∈ 	, that is, x ∈ L \ 	. Therefore
x is transcendental over 	. ��.
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Definition 5.1.3. Let L be an extension of K . A place P of L is called variable or
trivial over K if vP (x) = 0 for all x ∈ K ∗. This is equivalent to saying that K ⊆ ϑP .

If P is nontrivial over K , then vP |K defines a nontrivial valuation in K . In other
words, there exists a prime divisor ℘ of K such that vP |K ∼= v℘ (here the symbol ∼= is
used to mean that the two valuations are equivalent).

Definition 5.1.4. When P is nontrivial over K , and hence vP |K ∼= v℘ , we say that P
is over ℘ or that P is above ℘ or that P divides ℘, and this is denoted by P | ℘ or
P|K = ℘.

Consider an extension L of K , P a nontrivial place of L over K and P|K = ℘.
Since the valuations are discrete and normalized, it follows that vP : L∗ −→ Z and
v℘ : K ∗ −→ Z are surjective. On the other hand, vP |K is not surjective in general, so
vP (K ∗) = eZ for some e ≥ 1. Thus we have vP (x) = ev℘(x) for all x ∈ K .

Definition 5.1.5. The number e obtained above is called the ramification index of P
over ℘ and it is denoted by e = e (P|℘) = eL/K (P|℘).
Example 5.1.6. Let K = k(x, y) be defined by y2 = x . Let P0 be the zero divisor of
y. Then vP0(x) = vP0(y

2) = 2. Therefore if p0 is the zero divisor of x , P0|k(x) = p0
and e(P0|p0) = 2.
Proposition 5.1.7. If L/	 is any extension of K/k, and P is a place of L over a place
℘ of K , then k (℘) = ϑ℘/℘ can be embedded in a natural way in 	 (P) = ϑP/P .
Proof. Since P|K = ℘, we have ϑP ∩ K = ϑ℘ and P ∩ K = ℘. Hence the natural
map from ϑ℘/℘ to ϑP/P is a monomorphism of fields. ��

Proposition 5.1.8. Let L/	 be an extension of K/k. The following conditions are
equivalent:

(1) [	 : k] <∞.
(2) [L : K ] <∞.
(3) If P is any place of L over a place ℘ of K , then

[
	 (P) : k (℘)

]
<∞.

Proof. By Theorem 2.4.12 we have
[
k (℘) : k

]
<∞ and [	 (P) : 	] <∞. From

[	 (P) : k] = [	 (P) : k (℘)] [k (℘) : k] = [	 (P) : 	] [	 : k] ,
it follows that [

	 (P) : k (℘)
]
<∞ ⇐⇒ [	 : k] <∞,

which proves the equivalence of (1) and (3).
Now let x ∈ K \ k. Then x ∈ L \ 	. By definition we have [K : k(x)] < ∞ and

[L : 	(x)] <∞, so
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[L : k(x)] = [L : K ] [K : k(x)] = [L : 	(x)] [	(x) : k(x)] .

Therefore,

[L : K ] <∞ ⇐⇒ [	(x) : k(x)] <∞.
By Proposition 2.1.6, we have [	(x) : k(x)] = [	 : k], which implies that (1) and (2)
are equivalent. ��

Similarly, we obtain the following proposition:

Proposition 5.1.9. Let L/	 be an extension of K/k. The following conditions are
equivalent:

(1) 	 is algebraic over k,
(2) L is algebraic over K ,
(3) If P is a prime divisor of L over the prime divisor ℘ of K , then 	 (P) is algebraic

over k (℘).

Proof. Exercise 5.10.8. ��

Definition 5.1.10. Let L/K be an extension of function fields, and let P be a place of
L over a place ℘ of K . We define the relative degree of P over ℘ by dL/K (P|℘) =[
	 (P) : k (℘)

]
(which can be finite or infinite).

Proposition 5.1.11. If dL (P) = [	 (P) : 	] and dK (℘) =
[
k (℘) : k

]
, then

dL (P) [	 : k] = dL/K (P|℘) dK (℘) .
Proof. The result follows from the following diagram, which allows us to calculate
[	 (P) : k] in two different ways.

k (℘)
dL/K (P |℘)

dK (℘)

	 (P)
dL (P)

k
[	:k]

	

��

Proposition 5.1.12. If L/	 is an algebraic extension of K/k, then no place of L is
variable over K .

Proof. Assume that there exists a valuation v of L that is trivial over K . For each
α ∈ L , consider

f (x) = xn + an−1xn−1 + · · · + a0 ∈ K [x],

where f (x) is the irreducible polynomial of α. Then

αn + an−1αn−1 + · · · + a0 = 0 with ai ∈ K , i = 0, . . . , n, and a0 �= 0.
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We have

0 = v (a0) = v
(
−α
(
αn−1 + an−1αn−2 + · · · + a1

))
= v (α)+ v

(
αn−1 + an−1αn−2 + · · · + a1

)
.

Therefore, if we choose α ∈ L such that v (α) > 0, we obtain

v
(
αn−1 + an−1αn−2 + · · · + a1

)
≥ min {(n − 1)v (α) , . . . , 0} = 0.

Thus

0 = v (α)+ v
(
αn−1 + an−1αn−2 + · · · + a1

)
≥ v (α) > 0,

which is impossible. ��

Theorem 5.1.13. Let L/	 be an algebraic extension of K/k. Given a place ℘ of K ,
the number of places of L over ℘ is finite and nonzero.

Proof. Let g = gK be the genus of K and let C ∈ CK be the class of the divisor ℘g+1.
Then

d(C) = dK
(
℘g+1

)
= (g + 1)dK (℘) ≥ g + 1,

so

N (C) ≥ d(C)− g + 1 ≥ 2.

Hence there exist another integral divisor S ∈ C and x ∈ K \ k such that ℘g+1S =
(x)K . Then x is transcendental over k, v℘(x) > 0, and v℘′(x) > 0 if and only if
℘′ = ℘. It follows from the definition of extension of function fields that x /∈ 	. Now
the divisor of x in L is

(x)L =
Pa1
1 . . .P

ah
h

(Nx )L
, with h ≥ 1 and ai > 0.

We will see that P1, . . . ,Ph are precisely the places of L over ℘. If P is any
place of L over ℘, we have vP (x) = e (P|℘) v℘(x) > 0. Therefore P | (Zx )L =
Pa1
1 . . .P

ah
h , that is, P ∈ {P1, . . . ,Ph} and conversely. ��

The most important arithmetical result in algebraic extensions of function fields is
the following formula:

Theorem 5.1.14. Let L/	 be an extension of K/k (finite or infinite). Let ℘ be a place
of K and let P1, . . . ,Ph be the places of L over ℘. Then

[L : K ] =
h∑
i=1

dL/K (Pi |℘) eL/K (Pi |℘) .
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Proof. If h = ∞, the result follows immediately. Assume that h is finite. By Proposi-
tion 5.1.8, we have

[L : K ] = ∞ ⇐⇒ dL/K (Pi |℘) = ∞ for i = 1, . . . , h.

Therefore the formula holds trivially in this case.

Now suppose that [L : K ] <∞, and let x ∈ K \ k be such that (x)K = ℘g+1
S for

some integral divisor S �= ℘g+1. Let

A =
h∑
i=1

dL/K (Pi |℘) eL/K (Pi |℘) .

We have

(x)L = (Zx )L
(Nx )L

= Pa1
1 . . .P

ah
h

(Nx )L
= PvP1 (x)1 . . .PvPh (x)h

(Nx )L
.

It follows by Theorem 3.2.7 that

[L : 	(x)] = dL ((Zx )L) =
h∑
i=1
vPi (x)dL (Pi )

=
h∑
i=1
v℘(x)eL/K (Pi |℘) dL (Pi )

= v℘(x)dK (℘)
[	 : k]

h∑
i=1

dL/K (Pi |℘) eL/K (Pi |℘) (Proposition 5.1.11)

= dK
(
℘v℘(x)

)
[	 : k]

A = dK ((Zx )K )

[	 : k]
A = [K : k(x)]

[	 : k]
A (Theorem 3.2.7).

On the other hand, we have

[L : 	(x)] = [L : K ][K : k(x)]

[	(x) : k(x)]
= [K : k(x)]

[	 : k]
[L : K ].

Hence we obtain A = [L : K ]. ��

Corollary 5.1.15. With the above notation, we have

h ≤ [L : K ], dL/K (Pi |℘) ≤ [L : K ] and eL/K (Pi |℘) ≤ [L : K ]

for i = 1, . . . , h. ��



118 5 Extensions and Galois Theory

Proposition 5.1.16. Consider any tower of function fields of the form K/k ⊆ L/	 ⊆
M/m. For any prime divisor P of M that is nontrivial over K , let P = P |L and
℘ = P |K= P |K . Then

eM/K (P|℘) = eM/L (P|P) eL/K (P|℘)
and

dM/K (P|℘) = dM/L (P|P) dL/K (P|℘) .
Proof. If x ∈ K ∗, we have vP(x) = eM/K (P|℘) v℘(x), and on the other hand,

vP(x) = eM/L (P|P) vP (x) = eM/L (P|P) eL/K (P|℘) v℘(x).
Picking x ∈ K ∗ such that v℘(x) �= 0, we obtain the first equality.

Furthermore, we have

dM/K (P|℘) =
[
m (P) : k (℘)

] = [m (P) : 	 (P)] [	 (P) : k (℘)]
= dM/L (P|P) dL/K (P|℘) . ��

5.2 Galois Extensions of Function Fields

We first recall some general results of field theory. Let L/K be an algebraic extension
of fields and let Ls = {x ∈ L | x is separable over K }; Ls is called the separable
closure of K in L , L/Ls is purely inseparable, and Ls/K is separable. Furthermore,

[L : K ]s = [Ls : K ] separability degree of L/K ,

[L : K ]i = [L : Ls] inseparability degree of L/K ,

and

[L : K ] = [L : K ]s [L : K ]i .
Now let

Li = {x ∈ L | x is purely inseparable over K } .
Then Li is a subfield of L and clearly Li/K is purely inseparable. However, if L/K
is not normal, then L/Li is not necessarily separable.

Example 5.2.1. If X , T are two variables over k = F2, consider the fields K =
k
(
T, X4 + T X2 + 1) and L = k (T, X). We leave it to the reader to verify the fol-

lowing assertions: Ls = k
(
T, X2

)
, and Li = K (see Exercise 5.10.3).

Hence, in this case we have Ls Li = Ls �= L . In fact, in general we have Ls Li = L
if and only if L/Li is separable.

Definition 5.2.2. Let K ⊆ L be an arbitrary field extension. We define the group of
K -automorphisms of L by

Aut (L/K ) = AutK (L) := {σ : L → L | σ is an automorphism, σ |K = IdK } .
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If L/K is any Galois extension, we have Gal(L/K ) = Aut(L/K ). If H is any
group of automorphisms of a field L , the fixed field of L under H is

LH = {a ∈ L | σ(a) = a for all σ ∈ H} .

If Gal(L/K ) is finite, by Artin’s theorem, L/LH is a Galois extension such that
Gal

(
L/LH

) ∼= H .
Now if L/K is any finite normal extension and G = Aut(L/K ), then L/LG is a

Galois extension that is separable, and LG/K is purely inseparable. In this case, we
have Li = LG and Li Ls = LGLs = L (compare with Example 5.2.1).

Hence, in the normal case we obtain[
L : LG

]
= [L : K ]s and

[
LG : K

]
= [L : K ]i .

Definition 5.2.3. Assume that L/	 is a finite extension of K/k, where L/	 and K/k
are function fields. If P is a place of L and ℘ = P|K , we define

dL/K (P|℘)i =
[
	 (P) : k (℘)

]
i

and

dL/K (P|℘)s =
[
	 (P) : k (℘)

]
s .

A prime divisor P is called separable if dL/K (P|℘)i = 1, inseparable if
dL/K (P|℘)i > 1, and purely inseparable if dL/K (P|℘) = dL/K (P|℘)i .
Definition 5.2.4. Let L/	 and M/m be two extensions of K/k and let σ : L −→ M
be a field isomorphism such that σ (	) = m and σ |K = IdK . Then for a place P
of L we define the place σ (P) of M by means of the valuation vσP , defined by
vσP (x) = vP

(
σ−1x

)
for all x ∈ M .

Proposition 5.2.5. If we interpret P as the maximal ideal of the valuation ring ϑP
corresponding to vP , then σ (P) is simply the image of P under σ , that is, σ (P) =
{σ (α) | α ∈ P}.
Proof. This is clear. ��

Proposition 5.2.6. The map that associates σ(P) to each place P is a permutation of

the prime divisors of L and M. Furthermore, we have 	 (P)
σ∼= m (σP) and ϑP

σ∼=
ϑσP . Finally, if P is over the place ℘, then σ (P) is over ℘ and the isomorphism

σ̄ : 	 (P)
∼=−→ m (σP) is such that σ̄ |k(℘)= Idk(℘). In particular, we have

dL/K (P|℘) = dM/K (σP|℘) and eL/K (P|℘) = eM/K (σP|℘) .

Proof. All assertions follow immediately from the definitions. ��
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Theorem 5.2.7. Let L/	 be a normal finite extension of K/k. Let P be a place of
L over the place ℘ of K . Let P ′ be any other place of L over ℘. Then there exists
σ ∈ G = Aut(L/K ) such that σP = P ′. In other words, G acts transitively on the
places of L that divide a given place of K .

Proof. Exercise 5.10.9. ��

Definition 5.2.8. Let L/	 be a finite normal extension of K/k. If P is a place of L
over ℘ of K , we define the decomposition group of P by

D (P|℘) = DL/K (P|℘) = {σ ∈ Aut(L/K ) | σ (P) = P} .
By Theorem 5.2.7, G = Aut(L/K ) acts transitively on

A = {P | P is a prime of L such that P|K = ℘} .

Thus

|A| = |G|
|D (P|℘)| , which is the number of prime divisors of L over ℘.

Proposition 5.2.9. Let L/	 be a finite normal extension of K/k. Let σ ∈ Aut(L/K ).
Then D (σP|℘) = σD (P|℘) σ−1.
Proof. We have

θ ∈ D (σP|℘)⇐⇒ θσP = σP ⇐⇒
(
σ−1θσ

)
(P) = P

⇐⇒ σ−1θσ ∈ D (P|℘)⇐⇒ θ ∈ σD (P|℘) σ−1. ��
Theorem 5.2.10. Let L/	 be a finite normal extension of K/k. Let P be a place of L
over the place ℘ of K . Then 	 (P) is a normal extension of k (℘). Furthermore, there
exists a natural epimorphism from D (P|℘) to Aut (	 (P) /k (℘)).
Proof. LetP = P1, . . . ,Ph be all prime divisors of L over℘. Let ȳ ∈ 	 (P) = ϑP/P ,
with y ∈ ϑP . Let y′ ∈ L be such that vP1(y − y′) > 0 and vP j (y

′) > 0 for all
j = 2, . . . , h. By the approximation theorem (Corollary 2.5.6), such y′ exists. Then
y − y′ ∈ P . In particular, we have y′ ∈ ȳ. Hence, replacing y by y′, we may assume
that vP1(y) ≥ 0 and vP j (y) > 0 for j = 2, . . . , h.

Let G = Aut(L/K ). We have

f (x) =
{∏
σ∈G

(x − σ y)
}[L:K ]i ∈ ϑP [x] ⊆ K [x].

For σ /∈ D (P|℘), we have σ−1P �= P , so vP (σ y) = vσ−1P (y) > 0. Therefore, if
we set

f (x) = f (x) mod ℘, then σ /∈ D (P|℘) implies σ y = 0.
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Thus, we have

f (x) =
{ ∏
σ∈D(P |℘)

(x − σ y)
}[L:K ]i

xs, with s ∈ N ∪ {0}, and f (x) ∈ k (℘) [x].

This implies that f (x) has all its roots in 	 (P), and since ȳ a root of f (x), it follows
that 	 (P) is a normal extension over k (℘).

If σ ∈ D (P|℘), we have σ (P) = P and σ (ϑP ) = ϑP , so σ̄ is an automor-
phism of 	 (P) = ϑP/P . Since σ |K = Id, we have that σ |k(℘) = Idk(℘). Thus
σ̄ ∈ Aut (	 (P) /k (℘)).

It is clear that the function

D (P|℘) ϕ−→ Aut (	 (P) /k (℘)) = H

is a group homomorphism. Notice that 	 (P) is a Galois extension over k1 = 	 (P)H ⊇
k (℘). Let 	 (P) = k1 (ȳ) with ȳ ∈ 	 (P) and y ∈ ϑP . Clearly, every element of H is
uniquely determined by its action on ȳ. The conjugate elements of ȳ are of the form
σ̄ (ȳ) for some σ ∈ D (P|℘) (this follows from the above arguments). That is, every
θ ∈ H is of the form θ = σ̄ , σ ∈ D (P|℘). Therefore ϕ is an epimorphism. ��

Definition 5.2.11. The kernel of the natural epimorphism

D (P|℘)→ Aut (	 (P) /k (℘))

is called the inertia group of P over ℘, and it is denoted by

I (P|℘) = IL/K (P|℘) .

We will assume that L/K is a (finite) normal extension for Corollary 5.2.12 up to
Corollary 5.2.19.

We have

I (P|℘) = {σ ∈ D (P|℘) | σ̄ = Id	(P)
}

= {σ ∈ D (P|℘) | σ x ≡ x mod P for all x ∈ ϑP }
= {σ ∈ Aut(L/K ) | σ x ≡ x mod P for all x ∈ ϑP } .

Corollary 5.2.12. Aut (	 (P) /k (℘)) is isomorphic to D (P|℘)/I (P|℘). ��

Corollary 5.2.13. If h is the number of places in L over the place ℘ of K , we have
|Aut(L/K )| = h |D (P|℘)|.
Proof. If G = Aut(L/K ), we have Aut(L/K ) = Gal (L/LG). Therefore

|G| =
[
L : LG

]
= [L : K ]s = |G|

|D (P|℘)| |D (P|℘)| = h |D (P|℘)| . ��
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Corollary 5.2.14.
[
D (P|℘) : I (P|℘)] = dL/K (P|℘)s .

Proof. We have[
D (P|℘) : I (P|℘)] = |Aut (	 (P) /k (℘))| = [	 (P) : k (℘)]s = dL/K (P|℘)s . ��

Proposition 5.2.15. With the same conditions as in Theorem 5.2.10, we have I (σP|℘) =
σ I (P|℘) σ−1.
Proof. We have

I (σP|℘) = ker (D (σP|℘) −→ Aut (	 (σP) /k (℘)))

= ker
(
σD (P|℘) σ−1 −→ Aut (	 (σP) /k (℘))

)
= σ (ker (D (P|℘) −→ Aut (	 (P) /k (℘)))) σ−1 = σ I (P|℘) σ−1. ��

Proposition 5.2.16. For all i = 1, . . . , h, we have
d = dL/K (P|℘) = dL/K (Pi |℘) and e = eL/K (P|℘) = eL/K (Pi |℘) .

Proof. Let Pi = σ (P). Then
	 (Pi ) = 	 (σ (P)) = ϑσ(P)/σP = σ̄ (ϑP/P) ∼= ϑP/P = 	 (P) .

Hence

dL/K (Pi |℘) =
[
	 (Pi ) : k (℘)

] = [	 (P) : k (℘)] = dL/K (P|℘) .
If x ∈ K ∗ satisfies v℘(x) �= 0, we have

vPi (x) = eL/K (Pi |℘) v℘(x)

and

vPi (x) = vσP (x) = vP
(
σ−1x

)
= vP (x) = eL/K (P|℘) v℘(x).

Therefore eL/K (Pi |℘) = eL/K (P|℘). ��

Corollary 5.2.17. We have

[L : K ] = edh, where e = eL/K (P|℘) and d = dL/K (P|℘) .
Proof. This is an immediate consequence of Theorem 5.1.14 and Proposition 5.2.16.

��

Corollary 5.2.18. With the notation of the previous corollary, we have

ed = [L : K ]i |D (P|℘)| .
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Proof. We have

ed = [L : K ]

h
= [L : K ]

|Aut(L/K )| |D (P|℘)| (Corollary 5.2.13)

= [L : K ]

[L : K ]s
|D (P|℘)| = [L : K ]i |D (P|℘)| . ��

Whenever there is no confusion possible, we will denote eL/K (P|℘) by e,
dL/K (P|℘) by d , dL/K (P|℘)i by di , etc.

Corollary 5.2.19. |I | = edi
[L:K ]i

.

Proof.

|I | = |D|
[D : I ]

= ed

[L : K ]i ds
= edi
[L : K ]i

(Corollaries 5.2.14 and 5.2.18). ��

Proposition 5.2.20. If L/K is a separable algebraic extension, then 	/k is also a
separable extension.

Proof. If 	/k is infinite and not separable, there exists an element α of 	 that is not
separable over k. Thus k(α)/k is inseparable and [k(α) : k] < ∞. Hence we may
assume that 	/k is finite.

Next, we may assume that 	/k is normal since if 	̃/k is the normal closure, then
K 	̃ ⊆ L̃ , where L̃ is the Galois closure of L/K . In the case that 	̃/k is not separable,
we have 	̃i �= k. Therefore there exists x ∈ 	̃i \ k such that x pt ∈ k and p = char k.
We have x ∈ L̃ \ K and x pt ∈ K , which is impossible since L̃/K is separable.

Hence we may assume that 	/k is normal. If 	/k is not separable, there exists
α ∈ 	 \ k such that α pt ∈ k for some t ≥ 1. We have α ∈ L and since K ∩ 	 = k,
α /∈ K . This together with α p

t ∈ K contradicts the separability of L/K . ��

Theorem 5.2.21. If L/K is an algebraic separable extension and the field 	 of con-
stants of L is a perfect field, then for every place P of L and ℘ = P|K , 	 (P) /k (℘)
is a separable extension.

Proof. Since L/K is a separable extension, it follows that E = K	 is a separable
extension of K . Now 	 ⊆ E ⊆ L , so the field of constants of E is 	. Let B = P|E .
Then k (℘) ⊆ 	 (B) ⊆ 	 (P). Since 	 is a perfect field and 	 (B) is a finite extension of
	 (Theorem 2.4.12), 	 (B) is a perfect field too. Therefore 	 (P) /	 (B) is a separable
extension, and we may assume that L = K	.

Let us assume that P is an inseparable place. Thus 	 (P) /k (℘) is not separable.
Let y ∈ L be such that ȳ ∈ 	 (P) is an inseparable element over k (℘). Since y ∈ K	 is
a finite linear combination of elements of K and 	, we have y ∈ L1 = K (α1, . . . , αn),
where αi ∈ 	 and L1/K is a finite extension. Taking every conjugate of each of the αi ,
we may assume that L1/K is a normal extension. That is, it is a finite Galois extension.
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Since ȳ is inseparable in 	 (P) /k (℘), if P1 is a place of L1 over ℘, then ȳ ∈
	1 (P1) is inseparable over k (℘), where 	1 is the field of constants of L1. We have
(Corollary 5.2.19)

|I (P1|℘)| = eL1/K (P1|℘) dL1/K (P1|℘)i ≥ dL1/K (P1|℘)i > 1.

Thus there exists σ ∈ I = I (P1|℘), with σ �= Id. Since L1/K is normal, it follows
that 	1/k is normal (see Exercise 5.10.20).

Now we have L1 = K (α1, . . . , αn), with αi ∈ 	1 ⊆ ϑP1 , and

σ (αi ) ≡ αi mod P1 for i = 1, . . . , n.

Equivalently,

vP1 (αi − σ (αi )) > 0 for i = 1, . . . , n.

Since all αi and σ (αi ) are constants, it follows that vP1 (αi − σ (αi )) > 0 implies
αi = σ (αi ). Therefore σ = Id. ��

Remark 5.2.22. If 	 is not a perfect field in Theorem 5.2.21, then there may exist in-
separable places (see Exercise 5.10.18 and Theorem 5.2.33).

Corollary 5.2.23. Let L/K be a finite separable normal extension, i.e., a Galois ex-
tension. Assume that the field 	 of constants of L is a perfect field. If P is a place of L,
put ℘ = P|K , e = eL/K (P|℘) and d = dL/K (P|℘); let h be the number of places of
L over ℘, I = IL/K (P|℘), and D = DL/K (P|℘). Then

[L : K ] = edh, |D| = ed, |I | = e, and [D : I ] = d.

Proof. By Proposition 5.2.20 and Theorem 5.2.21, all inseparability degrees are equal
to 1. The result follows using Corollaries 5.2.14, 5.2.17, 5.2.18, and 5.2.19. ��

For the purely inseparable case we have the following theorem:

Theorem 5.2.24. Let L/	 be a finite purely inseparable field extension of K/k. Then
for each place ℘ of K , there exists a unique place P of L such that P|K = ℘. Fur-
thermore, if p = char k, then eL/K (P|℘) = pt for some t ≥ 0. Finally, 	 (P) /k (℘)
is purely inseparable.

Proof. Let y ∈ L . There exists n ∈ N such that y0 = y p
n ∈ K . Let P be any place of

L over ℘, so that

pnvP (y) = vP
(
y p

n
)
= vP (y0) = eL/K (P|℘) v℘ (y0) .

Therefore, if P1 and P2 are two places of L over ℘, and if we choose y such that
vP1(y) �= 0, then vP2(y) �= 0, v℘(y0) �= 0, and
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vP1(y) = vP2(y) =
eL/K (P|℘) v℘ (y0)

pn
.

Thus vP1 = vP2 , which means that P1 = P2.
Now if y ∈ L is such that vP (y) = 1, then pn = eL/K (P|℘) v℘ (y0). Hence

e = eL/K (P|℘) | pn , which implies that e = pt for some t ≥ 0.
Finally, if α ∈ 	 (P), let y ∈ ϑP be such y mod P = α. Then y p

t ∈ K , so
α p

t ∈ k (℘). Thus 	 (P) /k (℘) is purely inseparable. ��

Example 5.2.25. Let k be an algebraically closed field of characteristic p > 0 and let
x be a transcendental element over k. Set

y = x p, K = k
(
x p
) = k(y), and L = k(x).

Let ℘ be a place of K . If ℘ is the infinite place, then

(y)K = ℘0
℘

and (y)L =
(
x p
)
L = (x)

p
L =

P
p
0

P
p
∞
.

Thus ℘ is ramified.
If ℘ is not the infinite place, there exists a ∈ k such that

(y − a)K = ℘

℘∞
.

We have

(y − a)L =
(
x p −

(
a1/p

)p)
L
=
((
x − a1/p

))p
L
= Pp

P
p
∞
.

Therefore ℘ is ramified. Hence every place of K is ramified in L/K .

We will see that the phenomenon of the previous example can occur only in insep-
arable extensions.

In fact, we have the following corollary:

Corollary 5.2.26. Let L/	 be a purely inseparable finite extension of K/k. If k is a
perfect field, then every place ℘ of K is fully ramified in L.

Proof. Let P be any place of L that divides ℘. We have

[L : K ] = he(P|℘) f (P|℘).

Now since 	(P)/k is separable and 	(P)/k(℘) is purely inseparable, it follows that
	(P) = k(℘) and

h = 1 and f (P|℘) = [	(P) : k(℘)] = 1.
Thus e(P|℘) = [L : K ]. ��
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Definition 5.2.27. In any extension L/	 of K/k, a place P of L is called ramified if
e = eL/K (P|℘) > 1, where ℘ = P|K . Also, we say that ℘ is ramified in L/K .

When L/K is an infinite extension, by e > 1 we will mean that e > 1 in some
finite subextension.

Proposition 5.2.28. Let K ⊆ L ⊆ E be a tower of function fields with [E : K ] <∞,
and let P be a place of E. Let P := P|L and ℘ := P|K . Then P is ramified in E/K
if and only if P is ramified in E/L or ℘ is ramified in L/K.

Proof. The statement follows from Proposition 5.1.16. ��

Definition 5.2.29. Let L/	 be an extension of K/k. We say that L/K is a constant
extension if L = K	, and that L/K is a geometric extension if 	 = k.

Remark 5.2.30. Given a function field K/k and an extension 	 of k such that 	∩K = k,
the field of constants of L = K	 may contain 	 properly.

Example 5.2.31. Let k0 be a field of characteristic p > 0, and u, v be two elements
that are algebraically independent over k0. Let k = k0(u, v) and x be a variable over
k. Let

K = k(x, y) be such that y p = ux p + v.

Let k′ be the field of constants of K . Then [K : k(x)] is equal to 1 or p. We will see
that k′ = k. If k′ �= k, then [k′ : k] = [k′(x) : k(x)] | [K : k(x)], that is, [k′ : k] = p
and K = k′(x). Therefore y = u1/px + v1/p ∈ k′(x), so u1/p, v1/p ∈ k′ and

p = [k′ : k] ≥ [k(u1/p, v1/p) : k]
= [k(u1/p, v1/p) : k(u1/p)][k(u1/p) : k] = pp = p2,

which is absurd. Whence, we have k′ = k.
Let 	0 = k

(
v1/p

)
and L = K	0. Then

	0 ∩ K = k and u1/p = y − v1/p
x

∈ K	0 = L .

Therefore the field 	 of constants of L contains 	0 properly since

	 ⊇ k
(
u1/p, v1/p

)
� 	0.

In Chapter 8 we will study the general constant extension L = K	.

Theorem 5.2.32. Let L/	 be an algebraic separable extension of K/k and assume
that L = K	. That is, L is an extension of constants of K . Then no place of L is
ramified or inseparable over K .
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Proof. For the sake of contradiction, let P be a ramified or inseparable place of L
and let ℘ := P|K . If P is ramified, choose y ∈ L such that vP (y) = 1. Since

y is of the form
∑n

i=1 αi xi∑m
j=1 β j z j

with αi , β j ∈ 	 and xi , z j ∈ K , y must lie in a finite

extension K (γ1, . . . , γr ) of K with γi ∈ 	. By adding the conjugates of the elements
γi , 1 ≤ i ≤ r , we may assume that L1 = K (γ1, . . . , γr ) is a finite normal separable
extension of K . Let P := P|L1 . Since y ∈ L1, we have vP(y) = vP (y), so P|P is
unramified and it follows thatP is ramified over K . If P is inseparable, pick y ∈ 	(P)
inseparable over k(℘). Since ȳ ∈ 	1(P), we have Irr(ȳ, T, 	(P)) = Irr(ȳ, T, 	1(P)),
so ȳ is inseparable over k(℘).

Thus we may assume that L = K	 is a finite Galois extension over K . Therefore
|I | = |I (P|℘)| = eL/K (P|℘)dL/K (P|℘)i > 1.

Let σ ∈ I with σ �= Id. Since σ(γi ) ≡ γi mod P for all 1 ≤ i ≤ r , we have
vP (σγi − γi ) > 0. Finally, γi ∈ 	, so we obtain that σγi = σi for all 1 ≤ i ≤ r .
Hence σ = Id. ��.

Theorem 5.2.33. Let L/	 be an algebraic separable extension of K/k. Then there are
at most finitely many prime divisors of L that are ramified or inseparable.

Proof. First assume that L/K is a finite Galois extension. We have L = K (z) =
K
(
1
z

)
for some z ∈ L . Let P be a place of L . Then z or 1z belongs to the valuation

ring of P . Therefore

P ramified or inseparable

⇐⇒ |I | = |I (P|℘)| = eL/K (P|℘) dL/K (P|℘)i > 1
⇐⇒ there exists σ ∈ I, σ �= Id⇐⇒
⇐⇒ vP (σ (z)− z) > 0 when z ∈ ϑP or vP

(
1

σ(z)
− 1

z

)
> 0 when

1

z
∈ ϑP .

Now since |Gal(L/K )| < ∞, there are only finitely many places satisfying
vP (σ (z)− z) > 0 or vP

(
1
σ(z) − 1

z

)
> 0, namely, only the divisors appearing in

the support of (σ (z)− z)L or in the support of
(

1
σ(z) − 1

z

)
L
, where σ ∈ G, σ �= Id.

When L/K is a finite separable extension, we take the Galois closure L̃ . Since the
theorem holds for L̃/K , it also holds for L/K .

Now let L/K be an arbitrary algebraic separable extension. Let x ∈ K \ k. Then
x /∈ 	, so L/	(x) is a finite extension. Since K	 ⊇ 	(x), it follows that L/K	 is a
finite extension. Therefore the theorem holds for L/K	. Finally, by Theorem 5.2.32
there are no places in K	/K that are ramified or inseparable, so the theorem holds
for L/K . ��

Definition 5.2.34. A field k is called separably closed if any algebraic extension k′/k
is purely inseparable. Any separably closed field is infinite.
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Corollary 5.2.35. If k is a separably closed field and K/k is separably generated, that
is, there exists x ∈ K \ k such that K/k(x) is separable, then K contains infinitely
many divisors of degree 1 and there exist nonspecial systems in K .

Proof. Let x ∈ K \ k be such that K/k(x) is a finite separable extension. Since k is
separably closed, k is infinite. Thus k(x) contains infinitely many prime divisors of
degree 1 (for any a ∈ k, (x − a)k(x) = PaP∞ , where Pa is a prime divisor of degree 1).
By Theorem 5.2.33 there exist finitely many inseparable prime divisors in K over k(x).
If ℘ is a separable prime divisor of K , then k(℘)/k is separable and thus k(℘) = k.
Therefore if ℘ is above a prime divisor of degree 1 in k(x), ℘ is of degree 1.

Finally, the existence of nonspecial systems in K follows immediately from the
proof of Lemma 3.5.13 (see also Proposition 3.5.16). ��

5.3 Divisors in an Extension

Given a finite extension L/	 of K/k we want to define a group monomorphism

ϕ : DK −→ DL such that ϕ (PK ) ⊆ PL ,

that is, ϕ ((x)K ) = (x)L .
If (x)K =

∏m
i=1 ℘

v℘i (x)
i , we have

(x)L =
m∏
i=1

hi∏
j=1

Pei jv℘i (x)
i j =

m∏
i=1

hi∏
j=1

P
vPi j (x)
i j ,

where ei j = eL/K
(
Pi j |℘i

)
and for i = 1, . . . ,m, the Pi j ’s (1 ≤ j ≤ hi ) are all the

places of L over ℘i . This justifies the following definition:

Definition 5.3.1. Let ϕ : DK −→ DL be defined on the set of generators of DK by
ϕ (℘) = ∏h

i=1 P
ei
i , where ei = eL/K (Pi |℘), ℘ is a place of K , and P1, . . . ,Ph are

all the places of L that are above ℘. Then ϕ extends in a natural way to DK .

More precisely, if A = ∏m
i=1 ℘

v℘i (A)
i , then ϕ (A) = ∏m

i=1
∏hi

j=1 P
ei jv℘i (A)
i j =∏m

i=1
∏hi

j=1 P
vPi j (A)
i j .

The function ϕ is called the conorm of K to L , and it is denoted by conK/L .
From the definition we have the following result:

Proposition 5.3.2. The map conK/L is a monomorphism from DK to DL such that
conK/L (PK ) ⊆ PL and such that if x ∈ K ∗, then conK/L ((x)K ) = (x)L . Finally,
conK/L induces a group homomorphism conK/L : CK −→ CL. ��

We will see later that in fact, conK/L
(
DK ,0

) ⊆ DL ,0.
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Remark 5.3.3. Observe that conK/L is not necessarily injective (see Exercise 5.10.21).
Also, since conK/L is injective, we will assume that DK ⊆ DL .

Theorem 5.3.4. Let L/K be an arbitrary extension of function fields. There exists
λL/K ∈ Q such that λL/K > 0, λL/K depends only on L and K , and for all A ∈ DK ,

dL (A) = dK (A)

λL/K
.

In particular, dL (A) = 0 if and only if dK (A) = 0. Therefore conK/L induces a group
homomorphism

conK/L : CK ,0 −→ CL ,0.

Finally, if [L : K ] <∞, then λL/K = [	:k]
[L:K ] .

Proof. Since dL and dK are group homomorphisms, it suffices to prove our assertions
for a place ℘ of K .

First, assume that [L : K ] < ∞ and let ℘ = Pe1
1 · · ·Peh

h . Since conK/L (℘)
= Pe1

1 · · ·Peh
h with ei = eL/K (Pi |℘), we have

dL (℘) =
h∑
i=1

eidL (Pi )

=
h∑
i=1

eidL/K (Pi |℘) dK (℘)
[	 : k]

(Proposition 5.1.11)

= dK (℘)

[	 : k]

h∑
i=1

eidL/K (Pi |℘) = dK (℘)

[	 : k]
[L : K ] (Theorem 5.1.14).

Therefore λL/K = [	:k]
[L:K ] .

Now let L/K be an arbitrary extension. To finish the proof of the theorem, it
suffices to show that for any prime divisors A,B ∈ DK (of degree different from 0),

dL (A)

dK (A)
= dL (B)

dK (B)
> 0.

Indeed, λL/K can then be defined as
dK (A)

dL(A)
for any prime divisor A.

Assume that there are two places A,B of K such that

dL (A)

dK (A)
<

dL (B)

dK (B)
, that is,

dL (A)

dL (B)
<

dK (A)

dK (B)
.

Let nm ∈ Q be such that

dL (A)

dL (B)
<

n

m
<

dK (A)

dK (B)
. (5.1)
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Then from (5.1) we obtain, for t ∈ N large enough,

dK
(
AmtB−nt) = t (mdK (A)− ndK (B)) > 2gK − 1

and

dL
(
AmtB−nt) = t (mdL (A)− ndL (B)) < 0.

By the Riemann–Roch theorem (Corollary 3.5.6) there exists x ∈ K such that
x ∈ LK

(
A−mtBnt

)
. We have (x)K = CA−mtBnt , where C is an integral divisor.

Therefore

dL ((x)L) = dL (C)− t (mdL (A)− ndL (B)) > 0

for t large enough. This contradicts Corollary 3.2.9 and proves the theorem. ��
Let L/	 be a finite extension of K/k and let L1 be the normal closure of L/K .

Let 	1 be the algebraic closure of 	 in L1, so 	1 is the field of constants of L1. Put
G = Aut (L1/K ) and H = Aut (L1/L) ⊆ G. Consider the set G/H of left cosets of
H in G.

Definition 5.3.5. We define the norm of y ∈ L over K as

NL/K (y) =
{ ∏
σ̄∈G/H

σ y
}[L:K ]i = {∏

σ∈T
σ y
}[L:K ]i

,

where T = {σ : L −→ L1 monomorphism with σ |K = Id}.
We have |T | = [L : K ]s = [L1:K ]s

[L1:L]s
= |G|
|H | .

Clearly,
{∏

σ∈T σ y
}
∈ LG1 , and this implies

{∏
σ∈T σ y

}[L:K ]i ∈ K . Therefore

NL/K (y) ∈ K .

Definition 5.3.6. We define the norm of DL in DK to be the function NL/K : DL −→
DK defined by NL/K (A) =

{∏
σ̄∈G/H σA

}[L:K ]i
.

In the above definition, what is meant by σA is {σa | a ∈ A} ⊆ L1. We will see
that in fact, NL/K (A) ∈ DK , or, more precisely, NL/K (A) = conK/L1 (B) for some
B ∈ DK .

Theorem 5.3.7. The norm N defined above is multiplicative and satisfies:

(1) For all A ∈ DL, NL/K (A) ∈ DK ; more precisely, there exists B ∈ DK such that
NL/K (A) = conK/L1 (B).

(2) If P is a prime divisor of L over the prime divisor ℘ of K , we have NL/K (P) =
℘d , where d = dL/K (P|℘).

(3) For all y ∈ L, NL/K ((y)L) =
(
NL/K (y)

)
K .

(4) If A ∈ DK , then NL/K (A) = A[L:K ], or, more precisely,

NL/K
(
conK/L (A)

) = A[L:K ].
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(5) If M ⊇ L ⊇ K is a tower of fields, we have NM/K = NL/K ◦ NM/L .
Proof. It is clear that N is multiplicative.

(2) Let L1 be the normal closure of L/K ,G = Aut (L1/K ), H = Aut (L1/L) ⊆
G, and let S be a prime divisor of L1 over P . Let ZK = DL1/K (S|℘) ⊆ G
and ZL = DL1/L (S|P) ⊆ H . Since L1/L is a normal extension, it follows
by Theorem 5.2.7 or Proposition 5.2.16 that

(P)L1 = conL/L1 (P) =
{ ∏
σ̄∈H/ZL

σS
}e ∈ DL1 , e = eL1/L (S|P) .

Then

NL/K (P)|ZL | =
∏

θ̄∈G/H
θ
{( ∏
σ̄∈H/ZL

σS
)e|ZL |[L:K ]i}

=
∏

θ̄∈G/H
θ
{ ∏
σ̄∈H/ZL

(σS)
|ZL |}e[L:K ]i

=
∏

θ̄∈G/H
θ
{(∏
σ∈H

σS
)e[L:K ]i} = ( ∏

θ̄∈G/H

∏
σ∈H

θσS
)e[L:K ]i

=
(∏
δ∈G

δS
)e[L:K ]i = ( ∏

δ̄∈G/ZK
(δS)|ZK |

)e[L:K ]i
=
{( ∏
δ̄∈G/ZK

δS
)eL1/K (S|P)} [L:K ]i |ZK |eL/K (P|℘) = (conK/L1 ℘)r ,

with r = [L:K ]i |ZK |
eL/K (P |℘) .

We have

[L : K ]i |ZK |
eL/K (P|℘) =

[L1 : K ]i
[L1 : L]i

∣∣DL1/K (S|℘)
∣∣

eL1/K (S|℘)
eL1/L (S|P) =

(Proposition 5.1.16)

= [L1 : K ]i
∣∣DL1/K (S|℘)

∣∣
eL1/K (S|℘)

eL1/L (S|P)
[L1 : L]i

= dL1/K (S|℘)
dL1/L (S|P)

∣∣DL1/L (S|P)
∣∣ (Corollary 5.2.18)

= dL/K (P | ℘) |ZL | (Proposition 5.1.16).

Therefore, if d = dL/K (P|℘) we have obtained NL/K (P)|ZL | = ℘d|ZL |,
which implies that NL/K (P) = ℘d .
(1) This is an immediate consequence of (2).
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(4) Since σ (A) = A for all σ ∈ G, it follows that NL/K (A)

=
(∏

σ̄∈G/H σA
)[L:K ]i = A[L:K ]s [L:K ]i ) = A[L:K ].

(3) We have

NL/K ((y)L) =
( ∏
σ̄∈G/H

σ ((y)L)
)[L:K ]i = ( ∏

σ̄∈G/H
(σ (y))L

)[L:K ]i
=
(( ∏
σ̄∈G/H

(σ (y))
)[L:K ]i)

K
= (NL/K (y))K .

(5) It suffices to prove the statement for a prime divisor P of M . The result
follows immediately from (2) and from Proposition 5.1.16. ��

Corollary 5.3.8. For A ∈ DL, we have dK
(
NL/KA

) = [	 : k] dL (A).
Proof. Since the degree and the norm maps are multiplicative, it suffices to prove the
statement for a prime divisor A. In this case A = P is a prime divisor of L , ℘ = P|K ,
and we have

dK
(
NL/KP

) = dK
(
℘dL/K (P |℘)

)
(Proposition 5.1.11)

= dL/K (P|℘) dK (℘) = [	 : k] dL (P) . ��
Corollary 5.3.9. The norm map NL/K induces in a natural way maps

NL/K : CL → CK and NL/K : CL ,0→ CK ,0.

Furthermore, we have

NL/K ◦ conK/L(C) = Cn, where n = [L : K ], and C ∈ CK .

Proof. By Theorem 5.3.7, we have NL/K (PL) ⊆ PK . Hence NL/K induces in a natural
way the homomorphism NL/K : CL = DL/PL −→ DK /PK = CK , and by Corollary
5.3.8 we obtain NL/K

(
DL ,0

) ⊆ DK ,0.
Finally, NL/K ◦ conK/L(C) = Cn follows by Theorem 5.3.7 (4). ��

5.4 Completions and Galois Theory

Consider a finite extension L/K of function fields. For a place ℘ of K , let P1, . . . ,Ph
be all the places of L over ℘. We will denote by K℘ the completion of K with respect
to the valuation v℘ and by LPi , 1 ≤ i ≤ h, the completion of L with respect to the
valuation vPi .

For 1 ≤ i ≤ h, let Li be the topological field with underlying set L and the
topology given by vPi , 1 ≤ i ≤ h. Observe that in spite of having the same underlying
set, for i �= j the identity map is not a homeomorphism from Li to L j since vPi
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and vP j are inequivalent valuations (Li and L j might be, in some cases, topologically
isomorphic, under an isomorphism different from the identity). On the other hand, K
is considered with the topology given by v℘ . Thus K ⊆ Li in both the algebraic and
the topological sense.

Since LPi is the completion of Li and K ⊆ Li , it follows immediately that K℘ ⊆
LPi . The inclusion K℘ ⊆ LPi means that when we obtain Li by means of Cauchy

sequences, we obtain a natural injection Li
λ−→ LPi defined by λ (α) =

[{αn}∞n=1],
where αn = α for all n. Thus λ (K ) is a subfield of LPi and the closure λ (K ) in
LPi is a complete field containing λ (K ). Clearly the latter is a minimal complete field
containing λ (K ). Therefore λ (K ) is the completion of λ (K ) ∼= K , and λ (K ) ∼= K℘
(algebraically and topologically). This is the meaning of the inclusion K℘ ⊆ LPi .

As we remarked above, the L pi ’s are not necessarily topologically isomorphic.
Furthermore, in some cases, they are not even algebraically isomorphic, and what is

more they may satisfy
[
LPi : K℘

] �= [LP j : K℘
]
for some pair of indices i �= j . The

reason that this phenomenon can happen is that in fact, we may have more than one
minimal extension containing both L and K℘ . Of course this would not occur if K℘
and L were both contained in a larger field, in which case LPi would be the subfield
generated by K℘ and L .

In order to clarify why the fields LPi can be quite different, we present briefly the
theory of composition of fields.

Definition 5.4.1. Let K be an arbitrary field and let E/K and L/K be two extensions
of K . By a composition of the fields E and L we mean a triple (M, ϕ, σ ), where M is
a field containing K , and ϕ : E −→ M and σ : L −→ M are field monomorphisms
such that σ |K = ϕ|K = IdK and M is generated by ϕ (E) and σ (L).

Remark 5.4.2. When E and L are contained in a field �, unless otherwise stated, we
will understand the composite EL ⊆ � as the minimum subfield of � containing E
and L .

Definition 5.4.3. Two compositions (M, ϕ, σ ),
(
M ′, ϕ′, σ ′

)
of E/K and L/K are

called equivalent if there exists an isomorphism λ : M −→ M ′ such that

λ ◦ ϕ = ϕ′ and λ ◦ σ = σ ′
E

ϕ ϕ′

� �
M

λ
M ′

L
σ

��

σ ′

� �
M

λ
M ′

The above relation defines an equivalence relation. The problem now consists in
determining all its equivalence classes. Even though Definitions 5.4.1 and 5.4.3 apply
to the general case, for our purposes we will study only the case of a finite extension.

Consider L/K such that [L : K ] = n <∞ and let E/K be an arbitrary extension.
Let (M, ϕ, σ ) be a composition of E and L . Put E ′ = ϕ(E), L ′ = σ(L), and let

E ′L ′ =
{∑r

i=1 ei	i | ei ∈ E ′, 	i ∈ L ′, r ∈ N
}
.



134 5 Extensions and Galois Theory

Clearly E ′L ′ is a subalgebra of M/K . Since E ′L ′ ⊆ M , and M is a field, E ′L ′
is an integral domain. On the other hand, if {α1, . . . , αn} is a basis of L/K , the set
{σ (α1) , . . . , σ (αn)} generates E ′L ′/E ′. Since E ′ is a field, it follows that E ′L ′ is a
field. Therefore E ′L ′ = M . Now, let

θ : E ⊗K L → M be defined by θ (e ⊗K 	) = ϕ (e) σ (	) .

Clearly θ is a K -epimorphism and M is isomorphic to (E ⊗K L)/ker θ . Since M is a
field, M = ker θ is a maximal ideal. Furthermore, K is isomorphic to K ⊗K K and
θ |K = IdK , soM ∩ K = (0). Observe that the homomorphisms

E
i−→ E ⊗K L , i(e) = e ⊗K 1,

L
j−→ E ⊗K L , j (	) = 1⊗K 	,

are injective since θ ◦i and θ ◦ j are injective homomorphisms and (θ ◦ i) (E) = ϕ(E),
(θ ◦ j) (L)= σ(L). HenceM∩E =M∩L = (0). Furthermore, sinceM is a maximal
ideal,M has no units. This implies the following theorem:

Theorem 5.4.4. Let K be an arbitrary field and let E/K, L/K be two extensions of
K . Then the equivalence classes of compositions of E with L over K are in a bijective
correspondence with the maximal ideals of the K -algebra E ⊗K L. In particular, the
composition of fields always exists.

Proof. We already have seen that to each composition corresponds a maximal ideal.
Conversely, letM be a maximal ideal of E⊗K L and let M be the field (E ⊗K L)/M.
Define

E
i−→ (E ⊗K L)/M by i(e) = (e ⊗K 1)+M

and

L
j−→ (E ⊗K L)/M by j (	) = (1⊗K 	)+M.

SinceM is a maximal ideal, it does not contain units, so i and j are injective, that is, i
and j are monomorphisms and clearly M is generated by i(E) and j (L). Furthermore,
i |K = j |K = IdK . Therefore (M, i, j) is a composition of E and L .

Now let (M, ϕ, σ ) and
(
M ′, ϕ′, σ ′

)
be two compositions with

M ∼= (E ⊗K L)/M and M ′ ∼= (E ⊗K L)/M′.

If M and M ′ are equivalent, then there exists an isomorphism

λ : M → M ′ such that λ ◦ ϕ = ϕ′ and λ ◦ σ = σ ′.

Let
∑r

i=1 ei ⊗K 	i ∈M. We have the implications
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r∑
i=1
ϕ (ei ) σ (	i ) = 0 in M

�⇒ λ

(
r∑
i=1
ϕ (ei ) σ (	i )

)
=

r∑
i=1
(λϕ) (ei ) (λσ) (	i )

=
r∑
i=1
ϕ′ (ei ) σ ′ (	i ) = 0 in M ′

�⇒
r∑
i=1

ei ⊗K 	i ∈M′.

HenceM ⊆M′. Since both ideals are maximal, it follows thatM =M′.
Conversely, letM =M′. Then if θ and θ ′ are the isomorphisms from (E ⊗K L)/M

to M and M ′ respectively,

(E ⊗K L)/M −−−−→ (E ⊗K L)/M′⏐⏐*θ ⏐⏐*θ ′
M −−−−→

θ ′θ−1
M ′

then λ = θ ′θ−1 is the isomorphism from M to M ′ and

ϕ = θ ◦ i
σ = θ ◦ j ,

ϕ′ = θ ′ ◦ i = θ ′ ◦ θ−1 ◦ θ ◦ i = λ ◦ ϕ,
σ ′ = θ ′ ◦ j = θ ′ ◦ θ−1 ◦ θ ◦ j = λ ◦ σ,

which gives equivalent extensions. ��
The next result states that the number of maximal ideals in E ⊗K L is finite.

Theorem 5.4.5. Let T be a field, and A an algebra over T such that A has finite
dimension and an identity element. Then A contains a finite number of maximal ideals.

Proof. Let dimT A = n < ∞ and M1, . . . ,Mr be distinct maximal ideals of A. Let
N =⋂r

i=1Mi . By the Chinese remainder’s theorem, we have

A/N ∼=
r⊕
i=1

A/Mi .

Observe that A/N and A/Mi are T algebras. Furthermore,

n = dimT A ≥ dimT A/N =
r∑
i=1

dimT A/Mi ≥ r.

Thus r ≤ n. ��
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Corollary 5.4.6. If K is any field, and E/K and L/K are extensions of K such that
[L : K ] = n < ∞, then the number of composition classes of E and L over K is
finite. In fact, the number of such composition classes is less than or equal to n.

Proof. It is clear that if {α1, . . . , αn} is a basis of L/K , then 1 ⊗K α1, . . . , 1 ⊗K αn
generate E ⊗K L over E . That is, dimE (E ⊗K L) ≤ dimK L = n. The result follows
by Theorem 5.4.5. ��

We consider the case that L = K (θ) is a finite simple extension of K . Then
L ∼= K [x]/( f (x)), where f (x) = Irr (θ, x, K ). Let

f (x) = p1(x)
e1 · · · pr (x)er ∈ E[x]

be the composition of f (x) as a product of irreducible factors in E[x]. We have

E ⊗K L ∼= (E ⊗K (K [x]/( f (x)))) ∼= (E ⊗K K [x])/( f (x))

∼= E[x]/( f (x)) ∼=
r⊕
i=1

(
E[x]/

(
pi (x)

ei
))
.

The compositions of E with L over K are given by E[x]/(pi (x)), since the maxi-
mal ideals of E[x]/( f (x)) are precisely (pi (x))/( f (x)), 1 ≤ i ≤ r .

We have the equalities

dimE (E ⊗K L) = deg f (x) =
r∑
i=1

ei deg pi (x) = [L : K ].

Let θi be a root of pi (x) for i = 1, . . . , r . When L/K is a separable extension, we
have ei = 1, and

E ⊗K L ∼=
r⊕
i=1
(E[x]/(pi (x))) ∼=

r⊕
i=1

E (θi )

is the direct sum of all the compositions of E with L over K .
Now we return to our main concern.

Theorem 5.4.7. Let K be a complete field with respect to a valuation v and let L/K
be a finite extension of fields. Then there exists a unique extension w of v to L. Fur-
thermore, L is complete.

Proof. The existence of w follows from Corollary 2.4.6. Let | |K and | |L be the corre-
sponding absolute values. Let α ∈ L∗ and β = αn/N (α), where n = [L : K ] and N
denotes the norm of L in K . Then N (β) = N (αn)

N (α)n = N (α)n

N (α)n = 1.
We claim that if γ ∈ L is such that |γ |L < 1, then |N (γ )|K < 1. Indeed, let

|γ |L < 1 and set

γ t = x (t)1 ω1 + · · · + x (t)n ωn,
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where {ω1, . . . , ωn} is a basis of L/K . Since |γ |L < 1, it follows that

γ t −−−→
t→∞

0, so that x (t)i −−−→
t→∞

0 for 1 ≤ i ≤ n.

Now N
(
γ t )
) = (N (γ ))t is a homogeneous polynomial in x (t)1 , . . . , x (t)n , so
N
(
γ t
) −−−→

t→∞
0, which implies that |N (γ )|K < 1.

Similarly, |γ |L > 1 implies |N (γ )|K > 1.
This shows that |β|L = 1 whenever N (β) = 1. Hence,

1 = |β|L =
|α|nL

|N (α)|L
�⇒ |α|L = n

√
|N (α)|L = n

√
|N (α)|K .

We have proved that the extension of the absolute value is unique. ��
We now consider function fields L/	 and K/k such that [L : K ] = n. We wish to

show that if ℘ is a place of K and P1, . . . ,Ph are all the places of L over ℘, then the
result obtained from the discussion after Corollary 5.4.6 holds in the case that L/K is
not simple.

Theorem 5.4.8. Let ei = eL/K (Pi | ℘) and fi = dL/K (Pi | ℘). Then[
LPi : K℘

] = ei fi .

Proof. Let πK be a prime element of K and let πL be a prime element of L . Then
vL (πK ) = e = ei . By Theorem 2.5.20 and Proposition 2.3.10, we have k′ = k (℘) =
ϑ℘/℘ ∼= ϑ̂℘/℘̂ and 	′ = 	 (Pi ) = ϑPi /Pi ∼= ϑ̂Pi /P̂i . Thus K℘ = S ((πK )) and
LPi = T ((πL)), where S and T are fields such that S ∼= k′ and T ∼= 	′.
Since vL

(
π sL

) = s < e for s = 1, . . . , e − 1, we have [K℘ (πL) : K℘] ≥ e. Now
assume f = fi =

[
	′ : k′

]
. Since LPi = K℘ (πL) T , it follows that

[
LPi : K℘

] ≥ e f .
On the other hand, L is dense in LPi and LPi is a complete field that is a finite

extension of K℘ . It follows that LPi must be the composition of the fields L and K℘
over K . By the proof of Theorem 5.4.5 (and also by Corollary 5.4.6 and Theorem
5.1.14), we have

[L : K ] = n ≥ dimK℘

(
L ⊗K K℘

) ≥ h∑
i=1

dimK℘ LPi ≥
h∑
i=1

ei fi = n.

Therefore these inequalities must be in fact equalities. In particular,
[
LPi : K℘

] =
ei fi . ��

Corollary 5.4.9. With the notation above, we have
(
L ⊗K K℘

) ∼=⊕h
i=1 LPi .
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Proof. For each 1 ≤ i ≤ h, there exists a maximal ideal Mi such that LPi is isomor-
phic to (L ⊗K K℘)/Mi . Therefore, ifN =⋂h

i=1Mi ,

(
L ⊗K K℘

)
/N ∼=

h⊕
i=1

(
L ⊗K K℘

)
/Mi ∼=

h⊕
i=1

LPi .

On the other hand, since dimK℘

(
L ⊗K K℘

) = n = ∑h
i=1
[
LPi : K℘

]
, it follows

thatN = (0). ��
As a consequence of the fields LPi being exactly the distinct compositions of L

with K℘ over K , we have the following:

Theorem 5.4.10. Let L/	 be a finite extension of K/k. Let ℘ be a place of K and let
P1, . . . ,Ph be the places of L over ℘. If L/K is separable, then LPi /K℘ is separable
for all i = 1, . . . , h. If L/K is normal, then LPi /K℘ is normal for i = 1, . . . , h.
Finally, if L/K is Galois then LPi /K℘ is Galois and Gal

(
LPi /K℘

) ∼= DL/K (Pi |℘).
Proof. If L/K is separable (normal) ((Galois)), then LPi = K℘L is separable (normal)
((Galois)) over K℘ .

If L/K is Galois, then clearly DL/K (Pi |℘) ⊆ Gal
(
LPi /K℘

)
. By Corollary

5.2.18 and Theorem 5.4.8, we have∣∣DL/K (Pi |℘)
∣∣ = ei fi =

[
LPi : K℘

] = ∣∣Gal (LPi /K℘
)∣∣ .

It follows that DL/K (P|℘) ∼= Gal
(
LPi /K℘

)
. ��

5.5 Integral Bases

We will use the results of this section in the study of the Tate genus formula for insep-
arable extensions in Chapter 9.

Let K/k be any function field.

Proposition 5.5.1. Let x ∈ K\k and let R be the ring of elements of K that do not have
any pole outside the set of zeros of x. Then there exists a finite subset {ω1, . . . , ωm}
of R that contains a basis of K over k(x) and such that every element of R is a linear
combination of ω1, . . . , ωm with coefficients in k[x−1], that is, R =∑m

i=1 k[x−1]ωi .

Proof. By definition we have

R = {y ∈ K | vq(y) ≥ 0 ∀ q ∈ PK , q � Zx } =
∞⋃
s=0

LK (Z
−s
x ).

Set n = [K : k(x)] = d(Zx ). Let {u1, . . . , un} be any basis of K/k(x). Then for
any 1 ≤ i ≤ n, there exists a relation
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uni =
n−1∑
j=0

ci j u
j
i , with ci j ∈ k(x), i = 1, . . . , n, j = 0, . . . , n − 1.

Define ci j = ai j
bi
with ai j , bi ∈ k[x−1]. Let ωi := biui . Then

ωni = bni u
n
i =

n−1∑
j=0

bni ci j u
j
i =

n−1∑
j=0

ai j b
n− j−1
i ω

j
i

with ai j b
n− j−1
i ∈ k[x−1].

Therefore ωi is integral over k[x−1] ⊆ k(x) (see the proof of Theorem 3.2.7) and
since ωi = biui , bi ∈ k[x−1], and {u1, . . . , un} is a basis of K/k(x), it follows that
{ω1, . . . , ωn} is a basis of K over k(x).

Let P1, . . . ,Ph be the prime divisors dividing Zx . Let r ∈ Z be such that r ≥ 0
and

vP j (ωi ) ≥ −r for all 1 ≤ j ≤ h and 1 ≤ i ≤ n.

Choose an integer M such that M > r and consider x−tωi for 0 ≤ t ≤ M − r and
1 ≤ i ≤ n. Then

vP j (x
−tωi ) = −tvP j (x)+ vP j (ωi ) ≥ −tvP j (x)− r

≥ −tvP j (x)− rvP j (x) ≥ −MvP j (x).

Thus

x−tωi ∈ LK (Z−Mx ) =: LM .

Let L′M be the k-vector space generated by
{
x−tωi

}1≤i≤n
0≤t≤M−r . As in the proof of

Theorem 3.2.7, we have dimk L′M = (M − r + 1)n and

	K (Z
−M
x ) ≤ 	K (Zx )+ d(Zx )− d(Z−Mx ) = (M + 1)d(Zx ) = (M + 1)n.

Therefore

dimk LM − dimk L′M ≤ rn

for all M ∈ Z. Put

a = max
M∈Z

{dimk LM − dimk L′M }.

Let z1, . . . , zb ∈ R be such that their residue classes modulo
∑n

i=1 k[x−1]ωi are
linearly independent over k. Let M > 0 be such that z1, . . . , zb ∈ LM . Then any
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nontrivial k-linear combination of {z1, . . . , zb} does not belong to L′M since L′M ⊆∑n
i=1 k[x−1]ωi . It follows that b ≤ a.
Thus, there exist elements ωn+1, . . . , ωm (withm−n ≤ a) such that every element

of R belongs to

n∑
i=1

k[x−1]ωi +
m∑

j=n+1
kωi .

This proves the proposition. ��
Now we consider a finite extension L/	 of K/k. Let p be a prime divisor of K and

let {P1, . . . ,Pn} be the places of L above p. Let {y1, . . . , yn} be a basis of L over K .
Proposition 5.5.2. Let R be the ring of elements of L which do not have any pole
outside {P1, · · · ,Pn}. There exists a nonzero element u of K depending only on p
and on the basis {y1, . . . , yn} such that if

y =
n∑
i=1

xi yi with xi ∈ K , 1 ≤ i ≤ n, and y ∈ R,

then

uxi ∈
∞⋃
s=0

LK (p
−s) = � for all i = 1, . . . , n.

Proof. Let x ∈ K \ k be such that p is the only zero of x (Corollary 3.5.8). Let
{ω1, . . . , ωN } ⊆ K be such that R =∑N

i=1 	[x−1]ωi .
Since [L : K ] <∞, it follows that [	(x) : k(x)] = [	 : k] <∞. Let {v1, . . . , vm}

be a basis of 	 over k. Then every element of 	[x−1] can be written as a linear combi-
nation of v1, . . . , vm with coefficients in k[x−1]. Thus

R =
m∑
j=1

N∑
i=1

k[x−1]v jωi . (5.2)

Let

v jωi =
n∑
t=1

a jit yt with a jit ∈ K for all j, i, t, (5.3)

and let q1, . . . , qr be the places of K such that the poles of {a jit } are contained in
{q1, . . . , qr }. Put

Mν = min
j,i,t
vqν (a jit )

and
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dK (p
s

r∏
ν=1

qMνν ) −−−→s→∞
∞.

By the Riemann–Roch theorem, there exists u ∈ K \ k such that u ∈
LK (p−s

∏r
ν=1 q

−Mν
ν ) for s ! 0.

We have vqν (ua jit ) = vqν (u) + vqν (a jit ) ≥ −Mν + vqν (a jit ) ≥ 0, so the pole
divisor of ua jit is ps0 for some s0 ≥ 0 and ua jit ∈ �.

Now, k[x−1] ⊆ �, so if y = ∑n
t=1 xt yt ∈ R, then by (5.2) and (5.3) we have

xt =
∑m

j=1
∑N

i=1 zi j a ji t with zi j ∈ k[x−1] ⊆ � and ua jit ∈ �. Hence uxt ∈ �. ��
Similarly we will prove the following result:

Proposition 5.5.3. Let p and {y1, . . . , yn} be as in Proposition 5.5.2. There exists a
nonzero element v of K , depending only on p and on the basis {y1, . . . , yn}, such that
if y =∑n

i=1 xi yi with xi ∈ K, 1 ≤ i ≤ n, and y satisfies

y ∈ ϑ :=
h⋂
j=1
ϑP j =

{
ξ ∈ L | vP j (ξ) ≥ 0, 1 ≤ j ≤ h

}
,

then vxi ∈ ϑp for all 1 ≤ i ≤ n.

Proof. Let p′ be a place of K such that p′ �= p. Put �′ := ⋃∞
s=0 LK

(
(p′)−s

)
and

R′ :=⋃h′
i=1
⋃∞

n=0 LL
(
(P′i )

−n), where P′1, . . .P
′
h′ are the places of L above p′.

Let {B1, . . . ,Br } be the set of polesBi of y such thatBi lies above some place
of K distinct from p′. Let q j := B j |K , 1 ≤ j ≤ r . For each j , we take m j ≥ 0 such
that if ξ ∈ K , then vq j (ξ) ≥ m j ⇒ vB j (ξ y) ≥ 0. For any M > 0,

ξ ∈ LK
(
(p′)−M

r∏
j=1

q
m j
j

)
(5.4)

implies ξ y ∈ R′.
Choose M to be large enough such that if AM := (p′)M

∏r
j=1 q

−m j
j , then

dK (AM ) ≥ 2gK − 2+ dK (p).
By Corollary 3.5.6,

	K (A
−1
M ) = dK (AM )− gK + 1 and 	K (pA

−1
M ) = 	K (A−1M )− dK (p).

Let ξ ∈ LK (A
−1
M ) \ LK (pA−1M ) and notice that ξ y ∈ R′ by (5.4). On the other hand,

since y ∈ ϑ , y is integral with respect to B1, . . . ,Bh , so q j �= p for all 1 ≤ j ≤ r .
Since ξ �∈ LK (pA−1M ), we have vp(ξ) = 0 and hence ξ is a unit of ϑp.

Let u′ be the element of Proposition 5.5.2 corresponding to p′ and the basis
{y1, . . . , yn}. Since y =

∑n
i=1 xi yi ∈ ϑ with xi ∈ K , it follows that

ξ y =
n∑
i=1
(ξ xi )yi ∈ ϑ, and u′ξ xi ∈ �′.
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In particular, u′ξ xi ∈ ϑp. Since ξ is a unit of ϑp, it follows that v = u′ satisfies the
conditions of Proposition 5.5.3. ��

Remark 5.5.4. If we fix the basis {y1, . . . , yn} and the place p′ of Proposition 5.5.3,
then the element v found in Proposition 5.5.3 works for every place p �= p′. There are
only finitely many places p that fail to satisfy all the following conditions:

(1) p �= p′.
(2) vB(yi ) ≥ 0 for all 1 ≤ i ≤ n,B ∈ PL andB | p.
(3) vp(v) = 0.

Definition 5.5.5. With the same notation, we call {y1, . . . , yn} an integral basis at p if
(a) yi ∈

⋂
B|pϑB = ϑ.

(b) If y = ∑n
i=1 xi yi ∈ ϑ with xi ∈ K , 1 ≤ i ≤ n, then xi ∈ ϑp for all

1 ≤ i ≤ n.

From Remark 5.5.4 we obtain the following:

Theorem 5.5.6. Any field basis of L with respect to K is an integral basis at almost
all places of K . ��

Now we consider a finite extension L/	 of K/k and a field basis {y1, . . . , yn} of
L over K . Let p be a place of K such that {y1, . . . , yn} is an integral basis at p. Let
B | p and consider the valuation ring ϑB atB.

We have {y1, . . . , yn} ⊆ ϑB and

ϑ :=
⋂
B|p
ϑB = ϑpy1 + · · · + ϑpyn .

Let ϑ̂B be the completion of ϑB. If z ∈ ϑ̂B, by the approximation theorem (Corol-
lary 2.5.5) there exist ym ∈ L with m ∈ N such that

vB(z − ym) > m for all m ∈ N

and

vB′(ym) ≥ 0 for all B′ �= B such that B′|p.

Therefore limm→∞ ym = z in ϑ̂B and ym ∈ ϑ . We have

ym =
n∑
i=1

xim yi with all xim ∈ ϑp.

It is easy to see that
{
xim
}∞
m=1 is a Cauchy sequence in ϑp (see Theorem 5.4.7), so{

xim
}∞
m=1 converges. Let x̂i := limm→∞ xim ∈ ϑ̂p. We have
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z =
n∑
i=1

x̂i yi ∈ ϑ̂py1 + · · · + ϑ̂pyn .

Furthermore, from Corollary 5.4.9 we obtain that

ϑ̂p⊗ϑp ϑ
∼=
⊕
B|p
ϑ̂B

and {y1, . . . , yn} is basis of
⊕

B|p ϑ̂B over ϑ̂p.
We have proved the following theorem:

Theorem 5.5.7. Let L/	 be any finite extension of the function field K/k and let
{y1, . . . , yn} be any field basis of L over K . Then for almost all places p of K ,
y1, . . . , yn generate the completion ϑ̂B of ϑB over ϑ̂p, where B | p. ��

We state two corollaries of Theorem 5.5.7 that we will use in Chapter 9.

Corollary 5.5.8. Let L/	 be any finite extension of K/k and let {y1, . . . , yn} be any
field basis of L/K. Then

XL = XK y1 + · · · + XK yn,

where XL and XK are the rings of repartitions of L and K respectively. Here XK may
be considered as a subset of XL; indeed, we can define φ : XK → XL by φ(ξ) = λ
for all ξ ∈ XK , where λB = ξp for any B | p.
Proof. Clearly, XK y1 + · · · + XK yn is a subset of XL . Let λ ∈ XL , let p be a place of
K , and letB1, . . . ,Bh be places of L above p. Since⊕

B|p
LB

θ∼= L ⊗K Kp =
( n∑
i=1

Kyi
)⊗K Kp,

we have (λB)B|p = θ
((∑n

i=1 xi yi
) ⊗ ∑m

j=1 z j
)
with xi ∈ K , z j ∈ Kp. Thus

λ ∈ V y1 + · · · + V yn , where

V :=
∏

p∈PK

Kp.

We need to prove that the “coefficients” of yi belong to XK , that is, that the com-
ponents are integers for almost all p ∈ PK .

For almost allB, we have

λB ∈ ϑ̂B, that is, vB(λB) ≥ 0.
If λB =

∑n
i=1 xi yi , then by Theorem 5.5.7 we have xi ∈ ϑ̂p for almost all p. Hence

XL = XK y1 + · · · + XK yn . ��
The next corollary will be used when we consider the genus change in purely

inseparable extensions.
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Corollary 5.5.9. Let L/	 be a purely inseparable extension of K/k of degree p. Let
L = K (α), where α p = a ∈ K. Then, for almost all p ∈ PK , ϑ̂B = ⊕p−1

i=0 ϑ̂pα
i ,

where B is the only place of L above K .

Proof. The statement follows from the facts that there is only one place above p (Theo-
rem 5.2.24), that ϑ̂B is a free ϑ̂p-module of rank p (see, for example, Theorem 2.5.20),
and from Theorem 5.5.7. ��

Remark 5.5.10. Corollary 5.5.9 states that for almost all p, if

y =
p−1∑
i=0

xiα
i ∈ ϑ̂B

then xi ∈ ϑ̂p, for all 0 ≤ i ≤ p − 1.
Now that we have studied the structure of the extensions LPi /K℘ , it is neces-

sary to mention the role played by the places. When we start with a place ℘ of K ,
℘ can be seen as the maximal ideal of the corresponding valuation ring ϑ , and sim-
ilarly for Pi . The place ℘̂ of K℘ is the same ideal ℘ but considered in the valuation
ring ϑ̂ that is the completion of ϑ with respect to the topology given by the valua-
tion. More precisely, ℘̂ = ℘ϑ̂ , where ℘̂ is the completion of ℘. Furthermore, since
ϑ̂/℘̂ ∼= ϑ/℘ (Proposition 2.3.10), we can consider that ℘ and ℘̂ are one and the same
place. Since LPi has only a unique extension of ℘̂ (Theorem 5.4.7), namely P̂i , the ad-
vantage of working with LPi /K℘ is that there is only one place “above” and only one
place “below,” which does not hold in L/K , where there are infinitely many places.

Furthermore, by the above argument, we have eLPi /K℘
(
P̂i |℘̂

)
= eL/K (Pi |℘) and

dLPi /K℘
(
P̂i |℘̂

)
= dL/K (Pi |℘).

Finally, we prove the following results on bases:

Proposition 5.5.11. Let α1, . . . , α f be elements of ϑPi such that
{
ᾱ j
} f
j=1 is a basis

of 	 (Pi ) /k (℘), and let πi be a prime element of L with respect to vPi . Then the

elements
{
α jπ

s
i

} j=1,... , f
s=0,... ,e−1 form a basis of LPi /K℘ .

Proof. This follows from the facts that LPi = 	 (Pi ) K℘ (πi ), K℘ = k (℘) ((π)),
where π is a prime element of K , and

[
LPi : K℘

] = e f . ��

Proposition 5.5.12. Let k be an algebraically closed field of characteristic zero. Let
L and K be function fields over k with K ⊆ L and such that L/K is of finite degree.
Assume that e is the ramification index of a place P of L over p. Then if � is a prime
element of LP, there exists a prime element π of Kp such that

π = �e.
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Proof. Let�1 be any prime element of LP forP. For any prime element π of Kp, we
have

vP(π) = evp(π) = e.

Thus, π has an expansion in LP
∼= k((�1)) defined as follows:

π = ae�
e
1 + ae+1�e+1

1 + · · · , ai ∈ k, ae �= 0.

Let

� = b1�1 + b2�
2
1 + · · · , bi ∈ k, b1 �= 0,

be another prime element. Then

�e = c1�
e
1 + c2�

e+1
1 + · · · + cn�

n+e−1
1 + · · · ,

where cn is a polynomial of degree n + e − 1 in b1, . . . , bn . Furthermore,
cn =

∑
(i1,... ,ie),i j≥1

i1+i2+···+ie=n+e−1

bi1 · · · bie .

We have cn = p(n)(b1, . . . , bn−1)+ebe−11 bn , where p(n)(b1, . . . , bn−1) is a poly-
nomial in b1, . . . , bn−1 with rational integer coefficients. Thus there exist b1 �= 0 and
b2, . . . , bn, . . . ∈ k satisfying cn = an for all n ≥ 1. It follows that �e = π . ��

Definition 5.5.13. Let E/F be an extension of fields and let α ∈ E . The function
Tα : E −→ E , defined by Tα (z) = αz, is an F-linear transformation. The charac-
teristic polynomial of Tα , namely fα(x) = det (x I − Tα), is called the characteristic
polynomial of α.

Let A be the matrix associated to Tα with respect to a basis of E/F .

Proposition 5.5.14. We have

NE/F (α) = norm of α = det A = det Tα = (−1)n fα(0) = (−1)nb0,
TrE/F (α) = trace of α = trace of A = trace of Tα = −bn−1,

where fα(x) = xn + bn−1xn−1 + · · · + b1x + b0. ��

Let L/	 be a finite extension of K/k, ℘ a place of K , and P1, . . . ,Ph the places
of L above ℘.

Theorem 5.5.15. Let α ∈ L. If fα(x) is the characteristic polynomial of α over K and
f (i)α is the characteristic polynomial of α ∈ LPi over K℘ , then fα(x) =

∏h
i=1 f

(i)
α (x).
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Proof. The K -linear transformation Tα : L −→ L , corresponds to the K℘-linear
transformation

Tα ⊗ 1 : L ⊗K K℘ −→ L ⊗K K℘.

Furthermore, we have L ⊗K K℘ ∼=
⊕h

i=1 LPi . Thus

(Tα ⊗ 1) (x1, . . . , xn) = (αx1, . . . , αxn) with xi ∈ LPi .

By Proposition 5.5.11, we can choose a basis of LPi /K℘ whose members belong to
L , and the result follows. ��
Now we state several corollaries.

Corollary 5.5.16. Let e = eL/K (Pi |℘) and f = dL/K (Pi |℘). Let y ∈ LPi be

nonzero. Then v℘
(
NLPi /K℘ y

)
= f vPi (y).

Proof. Let m = vPi (y). Then y = ωπmi , where πi is a prime element for vPi and
ω is a unit. The norm of ω is a unit, so NLPi /K℘ y = Ny = (Nω) (Nπi )m . Now,

Nπi = ω1πe fi for a unity ω1, and πei = ω2πK for a unit ω2 in LPi where πK is a

prime element for v℘ . Therefore Ny = ω3π f m
K , where ω3 is a unit. Thus we obtain

that v℘(Ny) = f m = f vPi (y). ��

Corollary 5.5.17. For i = 1, . . . , h, define

NPi = NLPi /K℘ , TrPi = TrLPi /K℘ , and N = NL/K , Tr = TrL/K .

Then for α ∈ L we have

Trα =
h∑
i=1

TrPi α and Nα =
h∏
i=1

NPiα.

Proof. The statement follows from Theorem 5.5.15 and Proposition 5.5.14. ��

Corollary 5.5.18. Let α ∈ L. Then v℘
(
NL/Kα

) = ∑h
i=1 fivPi (α), where fi =

dL/K (Pi |℘).
Proof. By Corollaries 5.5.16 and 5.5.17, we have

v℘
(
NL/Kα

) = v℘ ( h∏
i=1

NPiα

)
=

h∑
i=1
v℘
(
NPiα

) = h∑
i=1

fivPi (α) . ��
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5.6 Different and Discriminant

Let L/K be a finite separable extension of function fields, P a place of L , and
℘ = P|K . Denote by e and f the ramification index and relative degree of P over
℘ respectively. By Theorem 5.4.10, LP is separable over K℘ and

[
LP : K℘

] = e f .
Let πL and πK be prime elements of vP and v℘ respectively, with vP (πK ) = e ≥ 1.

Now consider the Galois closure L̃ of L/K , and assume thatS is a place in L̃ over
P . Let 	̃ be the field of constants of L̃ . We have the following diagram:

S 	̃(S) L̃ L̃S

P 	(P) L LP

℘ k(℘) K K℘

Let D = D (S|℘) = Gal
(
L̃S/K℘

)
, D1 = D (S|P) = Gal

(
L̃S/LP

)
, I =

I (S|℘), and I1 = I (S|P).
The set of classes Aut

(
	̃ (S) /k (℘)

)
/Aut

(
	̃ (S) /	 (P)

)
is in bijective corres-

pondence with Aut (	 (P) /k (℘)). Furthermore,

Aut
(
	̃ (S) /k (℘)

) ∼= D/I

and

Aut
(
	̃ (S) /	 (P)

) ∼= D1/I1 = D1/(D1 ∩ I ) ∼= D1 I/I.

Therefore the elements of Aut (	 (P) /k (℘)) are in correspondence with the cosets
of

(D/I )/(D1 I/I ) ∼ D/D1 I .

For z ∈ ϑ , we denote by z̄ its equivalence class modulo the ideal. That is, z̄ is in
the residue field. We have

(
TrLP/K℘ (z)

) = ( ∑
σ∈D/D1

σ z

)
=

∑
σ∈D1 I/D1

σ̄
∑

θ∈D/D1 I
θ z

= |D1 I/D1|
(
Tr	(P)/k(℘) (z)

)
.

Now, |D1 I/D1| = |I/(I ∩ D1)| = |I/I1| = |I |
|I1| = e (P|℘) = e. It follows that(

TrLP/K℘ (z)
) = e

(
Tr	(P)/k(℘) (z̄)

)
. (5.5)

We write Tr = TrLP/K℘ .
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Theorem 5.6.1. There exists m ≥ 0 such that if x ∈ LP satisfies vP (x) ≥ −m, then
v℘ (Tr x) ≥ 0. Also, there exists x0 with vP (x0) < −m and v℘ (Tr x0) < 0.

Proof. If vP (x) ≥ 0, then x ∈ ϑP . Therefore Tr x ∈ ϑ℘ and v℘ (Tr x) ≥ 0 (see
Corollary 5.7.6). On the other hand, let y ∈ ϑP be such that Tr y �= 0. This element
exists since LP/K℘ is separable. If x ∈ K is such that v℘(x) < −v℘(Tr y), we have

v℘(Tr xy) = v℘(x Tr y) = v℘(x)+ v℘(Tr y) < 0.
Let

A = {n ∈ Z | vP (x) ≥ n �⇒ v℘ (Tr x) ≥ 0
}
.

Notice that 0 ∈ A, N ⊆ A, but there exists n ∈ Z such that n < 0 and n /∈ A (for
example, pick n = n0 = vP (xy) above). Furthermore, if n0 /∈ A, we have n0− 1 /∈ A
since vP (x) ≥ n0 �⇒ vP (x) ≥ n0 − 1.

Let t = inf A. We have t ∈ Z and t ≤ 0. Let m = −t . Then m ≥ 0 and if x ∈ LP
is such that

vP (x) ≥ −m = t ∈ A then v℘(Tr x) ≥ 0.
On the other hand, since t − 1 /∈ A there exists x ∈ LP with

vP (x) ≥ t − 1 = −m − 1 and v℘(Tr x) < 0.

If vP (x) > t − 1, then vP (x) ≥ t = −m, which contradicts the fact that t ∈ A. Thus,
vP (x) = t − 1 = −m − 1 < −m. ��

Definition 5.6.2. The maximum nonnegative integer satisfying Theorem 5.6.1 is de-
noted by m(P) and called the differential exponent of P with respect to K .

The importance of this exponent is that it shows up only in the presence of ram-
ification or inseparable residue field extensions. This is stated more precisely in the
following theorem:

Theorem 5.6.3. We have m (P) ≥ e − 1. Furthermore, m (P) > e − 1 if and only if
at least one of the following two conditions holds:

(1) p = char k divides e.
(2) 	 (P) /k (℘) is inseparable.

Proof. If y ∈ LP satisfies vP (y) ≥ −(e − 1), then since vP (πK ) = e, we have
vP (πK y) ≥ 1. Therefore πK y ∈ P .

It follows that Tr (πK y) = e Tr (πK y) = 0 and Tr (πK y) ∈ ℘. Hence
v℘ (Tr (πK y)) = v℘ (πK Tr y) = 1 + v℘ (Tr y) ≥ 1. That is, Tr y ≥ 0. We have
obtained that m (P) ≥ e − 1.

Now if 	 (P) /k (℘) is not separable, let y be such that vP (y) ≥ −e. We have
πK y ∈ ϑP . Since Tr	(P)/k(℘) ≡ 0, we have TrπK y = 0. Thus
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v℘ (TrπK y) = 1+ v℘ (Tr y) ≥ 1 or, equivalently, v℘ (Tr y) ≥ 0.
Hence m (P) ≥ e.

If p | e, again if vP (y) ≥ −e then πK y ∈ ϑP and Tr (πK y) = e Tr (πK y) = 0.
Therefore v℘ (Tr y) ≥ 0 and m (P) ≥ e.

Conversely, assume that 	 (P) /k (℘) is a separable extension and that p � e. Since
	 (P) /k (℘) is separable, there exists y ∈ ϑP such that Tr	(P)/k(℘) (ȳ) �= 0.

We have

Tr y = e Tr	(P)/k(℘) (ȳ) �= 0 �⇒ v℘(Tr y) = 0 and v℘

(
Tr
(
π−1K y

))
= −1.

On the other hand,

vP
(
π−1K y

)
= −e and v℘

(
Tr
(
π−1K y

))
= −1 < 0 implies that m (P) < e.

Since e − 1 ≤ m (P) < e, it follows that m (P) = e − 1. ��
Now, since we are considering the case in which L/K is separable, we have the

following corollary:

Corollary 5.6.4. We have m (P) = 0 for all but a finite number of places P .
Proof. If P is a separable nonramified place, then m (P) = eL/K (P|℘)−1 = 1−1 =
0. By Theorem 5.2.33, the number of placesP that are ramified or inseparable is finite.

��

Definition 5.6.5. The divisor DL/K = ∏
P∈PL

Pm(P) is called the different of the
extension.

A similar definition can be made using completions exclusively.

Definition 5.6.6. For the completions LP/K℘ we define the local different as DP =
P̂α(P), where α (P) is the maximum integer such that v℘(Tr y) ≥ 0 whenever y ∈ LP
satisfies vP (y) ≥ −α (P).

It is easy to see that α (P) is the same integer m (P) defined before. Therefore we
have the following result:

Proposition 5.6.7. Identifying the place P of L with its completion P̂ in LP , we have
DL/K =

∏
P∈PL

DP . Furthermore, the equality DP = (1) holds except when P is
either ramified or inseparable. ��

Definition 5.6.8. We define the discriminant ∂L/K of the extension L/K as
NL/KDL/K = ∂L/K . The discriminant ∂L/K is a divisor of K .
Proposition 5.6.9. A place ℘ divides ∂L/K if and only if ℘ is ramified or ℘ is insep-
arable, that is, if there exists a place P in L such that P|K = ℘ and P is ramified or
	 (P) /k (℘) is inseparable.
Proof. The statement follows immediately from Definition 5.6.8. ��
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5.7 Dedekind Domains

Now we study the differents and discriminants in Dedekind domains in order to relate
them later on to our definition. By an integral domain, we understand a commutative
ring with unity and without nonzero zero divisors.

Definition 5.7.1. Let A be an integral domain that is not a field and let K be the field
of quotients of A. We call A a Dedekind domain if it satisfies:

(i) Every nonzero prime ideal P is maximal.
(ii) A is Noetherian.
(iii) A is integrally closed. That is, if x ∈ K satisfies a relation xn + an−1xn−1+ · · ·+

a1x + a0 = 0 with ai ∈ A, then x ∈ A.

Example 5.7.2. If k is a field, then the ring k[x] of polynomials in one variable is
a Dedekind domain. If K is any finite number field and ϑK is its ring of inte-
gers, then ϑK is a Dedekind domain. Indeed, we have [K : Q] < ∞ and ϑK =
{α ∈ K | Irr (α, x,Q) ∈ Z[x]}.
Definition 5.7.3. Let A be a Dedekind domain and let K be the quotient field corre-
sponding to A. An A-module M ⊆ K is called a fractional ideal if M �= 0 and M is
finitely generated. Equivalently, there exists a ∈ A such that a �= 0 and aM ⊆ A. A
fractional ideal is called invertible if there exists another fractional ideal M ′ such that
MM ′ = A.

Theorem 5.7.4. If A is a Dedekind domain, every nonzero ideal A of A can be written
in a unique way as a product of prime ideals.

Proof. Let P be a nonzero prime ideal. Let

P−1 := {x ∈ K | xP ⊆ A} .
Then P−1 is an A-module. If a ∈ P is nonzero we have aP−1 ⊆ PP−1 ⊆ A, so P−1
is a fractional ideal. Since PP−1 ⊆ A, PP−1 = A is an ideal of A. Clearly we have
A ⊆ P−1, and hence PP−1 ⊇ PA = P . Now P is a maximal ideal, so we must have
PP−1 = P or PP−1 = A.

First we will see that A � P−1. For this purpose we will prove that every nonzero
ideal I of A contains a product of prime ideals P1 · · ·Pr such that Pi ⊇ I , 1 ≤ i ≤ r .
For the sake of contradiction, assume that there exists some ideal I not satisfying the
above property. Since A is Noetherian, we can choose I ′ to be maximal among those
ideals not satisfying the property. Clearly I ′ is not a prime ideal. Therefore there exist
a, b ∈ A \ I ′ such that ab ∈ I ′. Put A = I ′ + (a) andB = I ′ + (b). We have

I ′ � A, I ′ � B and AB ⊆ I ′.

Since I ′ is maximal, it follows that both A and B contain a product of prime ideals,
which in turn contain A andB. Therefore they contain I ′. This contradicts our choice
of I ′.
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Now we will show that A � P−1. Let c ∈ P be such that c �= 0 and (c) �= P .
Notice that if (c) = P , then

(
c2
)

� (c) since c is not a unit. The ideal generated by c
contains a product of r prime ideals P1, . . . ,Pr such that Pi ⊇ (c). Choose r to be
the least integer satisfying the above property. Then

P1 · · ·Pr ⊆ (c) � P.

Since P is a prime ideal, P must contain some Pi , say P1 (otherwise if Pi �⊆ P for all
1 ≤ i ≤ r , let ai ∈ Pi \ P , a = a1 · · · ar ∈ P1 · · ·Pr , a /∈ P).

Since P1 ⊆ P and P1 is maximal, we have P = P1. Observe that r > 1 since
otherwise r = 1 and P ⊇ (c) ⊇ P , which would imply that (c) = P . Since r is
minimum, we have (c) �⊇ P2 . . .Pr . Let a ∈ P2 . . .Pr be such that a /∈ (c). Then
a
c /∈ A and (a

c

)
P ⊆

(
1

c

)
P(a) ⊆

(
1

c

)
P1P2 · · ·Pr =

(
1

c

)
(c) ⊆ A.

Therefore a
c ∈ P−1 \ A.

Therefore, A � P−1. Now, if PP−1 = P , then PP−2 = PP−1 = P . It follows
that in general, PP−n = P for all n ≥ 1. Hence, if a ∈ P and b ∈ P−1 are such
that a �= 0 and b /∈ A, we have abn ∈ P for all n ≥ 0. Put J = 〈abn | n ≥ 0〉
and Jn =

〈
a, ab, ab2, . . . , abn

〉
. We have I ⊆ P and Jm ⊆ Jm+1 for all m. Since

A is Noetherian, there exists n such that Jn = Jn−1. In other words, there exist
c0, . . . , cn−1 ∈ A such that abn = ∑n−1

i=0 ciab
i . Equivalently, bn = ∑n−1

i=0 cib
i with

all ci ∈ A, which implies that b ∈ A, a contradiction. Therefore PP−1 = A.
Now we will see that every nonzero ideal A of A can be written in a unique way

as a product of prime ideals. First we will show the existence.
If A = A, then A = P0, where P is a prime ideal. Assume that A �= A and

let P1 · · ·Pr ⊆ A with Pi ⊇ A, i = 1, . . . , r , and assume that r is the minimum
integer satisfying this condition. We will demonstrate the existence by induction on r .
If r = 1, then P1 ⊇ A ⊇ P1 and therefore P1 = A. Now suppose r > 1. Let P be
maximal such that P1 · · ·Pr ⊆ A ⊆ P , so that P contains some Pi , say P1. Thus

P1 = P and PP2 · · ·Pr ⊆ A ⊆ P.

Multiplying by P−1, we have P2 · · ·Pr ⊆ P−1A ⊆ A. Therefore P−1A = S1 · · ·Ss

is a product of prime ideals, and A = PS1 . . .Ss .
Now we will see the uniqueness. Assume

A = P1 · · ·Pr = P ′1 · · ·P ′s .
If r = 1 or s = 1, say r = 1, we have A = P1 = P ′1 · · ·P ′s . Therefore there exists
some index i such that P ′i ⊆ P1 = P , say P ′1 ⊆ P , which implies P ′1 = P . Therefore,
A = P = PP ′2 · · ·P ′s . Multiplying by P−1, we obtain A = P ′2 · · ·P ′s , so s − 1 = 0.
Indeed, otherwise P ′2 · · ·P ′s would be a proper ideal. Now assume that r > 1 and
s > 1. We have P1 ⊇ P1 · · ·Pr = P ′1 · · ·P ′s and, as before, P ′1 = P1. Multiplying by
P−11 we obtain
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P2 · · ·Pr = P ′2 · · ·P ′s .
By the induction hypothesis we have r = s and P ′i = Pi , for i = 2, . . . , r = s. ��

Now consider M to be an arbitrary fractional ideal. Let a ∈ A be such that a �= 0
and aM = A ⊆ A. By Theorem 5.7.4, aM = P1 · · ·Pr . Setting (a) = S1 . . .Ss ,
we obtain for M an expression M = P1 · · ·PrS−11 · · ·S−1s . In other words, every
fractional ideal M is expressed as a product Pα11 · · ·Pαrr of prime ideals, where each
Pi is a prime ideal of A and αi ∈ Z.

Now we assume that there exist two different expressions:

Pα11 · · ·Pαrr = P
′β1
1 · · ·P ′βr

r .

Writing positive and negative powers separately, we have

M = AB−1 = CD−1, where A, B, C, D are ideals of A.

Therefore AD = BC. By the uniqueness of the ideals of A and since neither A and
B nor C and D have any common factors, it follows that A = C and B = D. The
uniqueness is proved, and we have the following theorem:

Theorem 5.7.5. Every fractional ideal of A can be written in a unique way as a prod-
uct of prime ideals of A with powers in Z. ��

Corollary 5.7.6. The set of fractional ideals of A form a free abelian group whose
generators are the nonzero prime ideals of A. ��

Theorem 5.7.7. Let A be a Dedekind domain and let K be the field of quotients of A.
Let L/K be a finite extension with [L : K ] = n. Put

B = {α ∈ L | Irr (α, x, K ) ∈ A[x]} .
Then B is a Dedekind domain called the integral closure of A in L.

Proof. We present the proof when L/K is separable. The proof of the general case can
be found in [78, Chapter I, Theorem 6.1]. Let Tr : L → K be the trace map. Since
L/K is a separable extension, it follows that Tr is surjective. If x ∈ B, the conjugate
elements of x have the same irreducible polynomials as x . Therefore Tr x ∈ A. Let
{e1, . . . , en} be a basis of L/K with ei ∈ B (it is easy to see that if α ∈ L , there
exists a ∈ A such that a �= 0 and aα ∈ B). Let C be the A-free module generated
by {e1, . . . , en}, that is, C = ⊕n

i=1 Aei . For any A-submodule M ⊆ L , let M∗ =
{x ∈ L | Tr(xy) ∈ A for all y ∈ M}.

We have C ⊆ B ⊆ B∗ ⊆ C∗. Since C∗ is the A-free module generated by the
dual basis of {e1, . . . , en} with respect to the nondegenerate bilinear form Tr(xy), it
follows that C∗ is Noetherian. Therefore B is finitely generated as an A-module. In
particular, B is Noetherian.

Now, if α ∈ L satisfies
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αn + bn−1αn−1 + · · · + b1α + b0 = 0 with each bi ∈ B,

then the A-module A [α] is finitely generated since B is. Set

A [α] = 〈x1, x2, . . . , xm〉 .
Then αxi =

∑m
j=1 ai j x j for 1 ≤ i ≤ m. Therefore

m∑
j=1

(
δi jα − ai j

)
x j = 0, where δi j =

{
1 if i = j,
0 if i �= j.

In terms of matrices we have⎡⎢⎢⎢⎢⎣
α − a11 −a12 · · · −a1m
· · · · · ·
· · · · · ·
· · · · · ·

−am1 −am2 · · · α − amm

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1
·
·
·
xn

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
0
·
·
·
0

⎤⎥⎥⎥⎥⎦ .
If M = [

δi jα − ai j
]
1≤i, j≤m , let N be the adjoint matrix of M . Then NM =

(detM)In and (detM)xi = 0 for 1 ≤ i ≤ m. But 1 ∈ A ⊆ A [α] implies that
(detM)1 = detM = 0. On the other hand,

detM = αn + cn−1αn−1 + · · · + c1α + c0 = 0
with ci ∈ A, so α ∈ B. Therefore B is integrally closed.

Finally, let P be a nonzero prime ideal of B. Assume for the sake of contradiction
that P is not maximal, and let S be a maximal ideal such that P � S � B. Now
P ∩ A is a nonzero prime ideal of A, and so is S ∩ A. Since A is a Dedekind domain
and P ∩ A is a prime ideal of A we have P ∩ A = S∩ A. Let x ∈ S \P . Then x ∈ B
and x satisfies a relation

xn + an−1xn−1 + · · · + a1x + a0 = 0, with ai ∈ A and a0 �= 0.
We have a0 ∈ A ∩S = A ∩ P , which means that

a0 = −x
(
xn−1 + an−1xn−2 + · · · + a2x + a1

)
∈ P.

Since x /∈ P , we have

xn−1 + an−1xn−2 + · · · + a2x + a1 ∈ P.

Therefore a1 ∈ S ∩ A = P ∩ A, which implies

x
(
xn−2 + an−1xn−3 + · · · + a3x + a2

)
∈ P,

and so on. It follows that a0, . . . , an−1 ∈ P . Thus, we obtain that x + an−1 ∈ P , and
consequently x ∈ P , which is absurd. This proves that P is in fact maximal, and B is
a Dedekind domain. ��
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5.7.1 Different and Discriminant in Dedekind Domains

The module B∗ defined in the proof of Theorem 5.7.7 is a finitely generated A-module.
Since B ⊆ B∗ ⊆ L , the B-module B∗ is finitely generated, and hence B∗ is a frac-
tional ideal. The inverse of this module is the different. More precisely:

Definition 5.7.8. Let A be a Dedekind domain and put K = quot A. Let L/K be a
separable finite extension and B the integral closure of A in L . Define

D−1B/A := {x ∈ L | Tr(xy) ∈ A for all y ∈ B} .

It is easy to see thatD−1B/A is a fractional B-module whose inverseDB/A is an ideal of
B, called the different of B over A.
The norm NL/KDB/A is an ideal of A called the discriminant of B over A.

We will now study the case of function fields in order to relate the two definitions
of different.

Let K/k be a function field and let x ∈ K \ k. Then K/k(x) is a finite extension.
Clearly, k[x] is a Dedekind domain. Note that there exists a one-to-one correspon-

dence between the prime ideals of k[x] (considered as a ring) and the places of k(x)
distinct from the infinite place ℘∞, that is, from the place given by (x)k(x) = ℘0

℘∞ .
More precisely, if ℘ is a place of k(x) and ℘ �= ℘∞, the ring ϑ℘ is the localization of
k[x] at a prime ideal ( f (x)) of k[x] (see Section 2.4) and the prime ideal ℘ = ( f (x))
corresponds to the ideal ℘ϑ℘ . Let P1, . . . ,Pr be the places of K over ℘∞.
Theorem 5.7.9. The integral closure of k[x] in K is

⋂
ϑP , where P runs through all

the places of K distinct from P1, . . . ,Pr .
Proof. Let ϑ be the integral closure of k[x] in K . If α ∈ ϑ , we have

αn + pn−1(x)αn−1 + · · · + p1(x)α + p0(x) = 0 with pi (x) ∈ k[x].
It follows that if P /∈ {P1, . . . ,Pr }, then vP (pi (x)) ≥ 0 for each i . There-
fore vP (α) ≥ 0 and α ∈ ϑP whenever P is distinct from all the Pi ’s. Thus
ϑ ⊆⋂P /∈{P1,... ,Pr } ϑP .

Conversely, let α ∈⋂P /∈{P1,... ,Pr } ϑP and

f (T ) = Irr (α, T, k(x)) = T n + an−1T n−1 + · · · + a1T + a0 with ai ∈ k(x).
Let K̃ be the normal closure of K/k(x) and let α(1) = α, α(2), . . . , α(n) be the distinct
conjugates of α. Then each ai is a symmetric function of α(1), α(2), . . . , α(n), and for
any irreducible polynomial f (x) ∈ k[x], v f (ai (x)) ≥ 0. Indeed, all extensions P that
are not extensions of ℘∞ satisfy vP (ai ) ≥ 0. This proves that ai (x) ∈ k[x]. Therefore
α is integral over k[x]. ��

Theorem 5.7.10. Let K/k be any function field and let P1, . . . ,Pr , r ≥ 1, be any
finite set of distinct prime divisors. Then there exists an element x of K whose poles
are precisely P1, . . . ,Pr , i.e., vPi (x) < 0 for 1 ≤ i ≤ r and vP (x) ≥ 0 for all
P /∈ {P1, . . . ,Pr }.
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Proof. By the Riemann–Roch theorem, there exist xi ∈ K \ k and ni > 0 such that
Nxi = Pni

i (Corollary 3.5.8). Clearly, x = x1 + · · · + xr is the element satisfying the
required property. ��

Corollary 5.7.11. Let P1, . . . ,Pr , r ≥ 1, be any set of places of K . If ϑ =⋂
P /∈{P1,... ,Pr } ϑP , there exists x ∈ K \ k such that ϑ is the integral closure of k[x] in

K . In particular, ϑ is a Dedekind domain.

Proof. Let x be given by the previous theorem. Then ℘∞ = Pn1
1 · · ·Pnr

r , and hence
P1, . . . ,Pr are precisely the prime divisors of K above the infinite prime ℘∞ of k(x).

��
It follows from the above that given a finite collection of prime divisorsP1, . . . ,Pr

of K , A = ⋂P /∈{P1,... ,Pr } ϑP is a Dedekind domain whose prime ideals are in bijec-
tive correspondence with the prime divisors of K distinct from P1, . . . ,Pr ; indeed, if
P is a prime ideal of A, then AP is a valuation ring of K . Therefore AP = ϑP ′ for
some P ′ and PAP = P ′ϑP ′ and conversely. In view of this correspondence we may
assume that the prime ideals of A are the places of K distinct from P1, . . . ,Pr .

In what follows, the set of prime divisors T = {℘1, . . . , ℘r } of K will be fixed.
Let L/K be a finite separable extension of K and T ∗ = {P | P is a place

of L ,P | ℘i for some 1 ≤ i ≤ r}. Put ϑK =
⋂
℘/∈T ϑ℘ and let ϑL be the integral clo-

sure of ϑK in L . It is easy to see that ϑL =
⋂

P /∈T ∗ ϑP (Exercise 5.10.25). Let DL/K

be the different as defined in Definition 5.6.5 and let D′L/K be the different according
to Definition 5.7.8, with D′L/K = DϑL/ϑK .

Theorem 5.7.12. DL/K = D′L/K
∏

P∈T ∗ PαP for some αP ≥ 0.

Proof. First note that if S is a multiplicative set of a Dedekind domain, then S−1A is a
Dedekind domain (Exercise 5.10.24).

By Exercise 5.10.26, if A is a Dedekind domain and K = quot A, L/K is a finite
separable extension, and B is the integral closure of A in L , then S−1B is the integral
closure of S−1A in L . We have S−1DB/A = DS−1B/S−1A since if x ∈ D−1B/A,

Tr(x B) ⊆ A �⇒ Tr
(
S−1x B

)
= S−1 Tr(x B) ⊆ S−1A

and conversely.
Applying the above argument to an arbitrary prime ℘ of A, we consider S = A\℘

and we set S−1D′L/K = S−1DϑL/ϑK = D(ϑL )℘/(ϑK )℘ .
Now since A is a Dedekind domain, A℘ is a discrete valuation ring. In fact, if

π ∈ ℘ \ ℘2 we have (π) = π A = ℘A with (A, ℘) = (1), so that (A \ ℘) ∩ A �= ∅.
Therefore AA℘ = A℘ . Consequently π A℘ = ℘A℘AA℘ = ℘A℘ . This shows that
the maximal ideal ℘A℘ is principal. Next, if BA℘ is any nontrivial ideal of A, then
BA = ℘nC with (C, ℘) = (1), n ≥ 0, so

BA℘ = ℘n A℘CA℘ = ℘n A℘ =
(
πn
)
A℘.
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Hence A℘ is a valuation ring. Furthermore, A℘ = ϑ℘ . If P is any prime ideal of
B over ℘, we have BP = ϑP , from which we obtain that the completions of B̂P
and ϑ̂P are the same, whence we have vP

(
DL/K

) = vP (DP ) = vP
(
DB̂P/ Â℘

)
by

definition.
We will demonstrate the following: If A℘ is a discrete valuation ring and P is

an ideal above the maximal ideal ℘ of A℘ , let Â℘ and B̂P be the corresponding
completions. ThenDB℘/A℘ B̂P = DB̂P/ Â℘ .

To prove the latter statement, it suffices to show that vP
(
DB℘/A℘

) = vP (DB̂P/ Â℘

)
.

Let Tr be the trace of L to K , and let TrP be the trace of LP to K℘ . By Corollary
5.5.17 we have Tr = ∑h

i=0 TrPi , where P1, . . . ,Ph are all the primes of B dividing
℘. We write P = P1. Let x ∈ LP and assume that TrP

(
x B̂P

)
⊆ Â℘ , that is,

x ∈ D−1
B̂P/ Â℘

. It follows from the approximation theorem (Theorem 2.5.3) that there

exists ξ ∈ L such that
|ξ − x |P < ε and |ξ |Pi

< ε, 2 ≤ i ≤ h, for some small enough ε.

For y ∈ B℘ , there exists ε′ small enough such that
∣∣TrPi (ξ y)

∣∣
℘
< ε′ for 2 ≤ i ≤ h,

and TrP (ξ y) ∈ A (because the local trace is a continuous function). Therefore ξ ∈
D−1B℘/A℘ , and we obtainD−1B℘/A℘ ⊇ D−1

B̂P/ Â℘
, where the bar denotes closure in LP .

Conversely, let x ∈ D−1B℘/A℘ and y ∈ B̂P . Write DBP/A℘ = Pn1
1 · · ·Pnh

h for

ni ≥ 0. Then x ∈ D−1B℘/A℘ if and only if vPi (x) ≥ −ni for 1 ≤ i ≤ h.
Let ξ ∈ L be such that vP1 (ξ − x) = m1 > vP1(x) and vPi (ξ − x) = mi ! 0.

Notice that in particular, ξ ∈ D−1B℘/A℘ .
Now let η ∈ B℘ be such that η is very close to y with respect to P1 and very

close to 0 with respect to P2, . . . ,Ph . Since ξ ∈ D−1B℘/A℘ and η ∈ B℘ , we have

Tr (ξη) ∈ A℘ . On the other hand, for 1 ≤ i ≤ r , TrPi (ξη) ∈ Â℘ , since TrPi is
continuous and ξ and η are very close to 0. Hence

∣∣TrPi (ξη)
∣∣
℘
< 1 for 2 ≤ i ≤ r .

Since Tr (ξη) = TrP1 (ξη)+
∑h

i=2 TrPi (ξη) ∈ Â℘ , we have TrP1 (ξη) ∈ Â℘ . On
the other hand, |ξη − xy|P1 < ε implies TrP1 (xy) ∈ Â℘ and x ∈ D−1

B̂P/ Â℘
. Thus we

have D−1B℘/A℘ B̂P ⊆ D−1
B̂P/ Â℘

.

Therefore, DBP/A℘ is dense inDB̂P/ Â℘ , from which we obtain the result.
Finally, we have

vP
(
D′L/K

)
= vP

(
D′B/A

)
= vP

(
DB℘/A℘

) = vP (DB̂P/ Â℘

)
= vP

(
DL/K

)
,

which is what we wanted to prove. ��

Remark 5.7.13. Theorem 5.7.12 can be used to obtain the different of L/K by means
of the differents of certain Dedekind domains. For instance, if we take A1 =

⋂
℘ �=℘1 ϑ℘ ,

A2 =
⋂
℘ �=℘2 ϑ℘ , then
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DL/K = DB1/A1

∏
P |℘1

PαP , DL/K = DB2/A2

∏
P |℘2

PβP ,

so DL/K is the least common multiple ofDB1/A1 and DB2/A2 .

By proving Theorem 5.7.12 we have also obtained the following:

Proposition 5.7.14. Assume that A is a discrete valuation ring with maximal ideal p.
Let K := quot A, L/K be a finite separable extension, B the integral closure of A in
L, and P is any ideal of B above p. Denote by Â and B̂ the completions of A and B
at p and P respectively. Then DB/A B̂ = DB̂/ Â. ��.

Theorem 5.7.15. Let K ⊆ L ⊆ M be a tower of finite separable extensions of function
fields. Then

DM/K = DM/L conL/M DL/K . ��
Proof. Since the number of ramified or inseparable places is finite (Theorem 5.2.33),
we may take A = ∩ ϑ℘ , where ℘ runs through any set containing all inseparable
and ramified prime divisors. Then by Theorem 5.7.12, it suffices to demonstrate that
DC/A = DC/B conB/C DB/A, where B is the integral closure of A in L and C is the
integral closure of A in M .

Assume that R is any Dedekind domain, F = quot R, E/F is a finite separable
extension, and S is the integral closure of R in E . For a fractional ideal B of S, we
have

TrB ⊆ A⇐⇒ A−1 TrB ⊆ R ⇐⇒ Tr
(
A−1B

)
⊆ R ⇐⇒ A−1B ⊆ D−1S/R

⇐⇒ B ⊆ A D−1S/R .

Now, coming back to our case, we have

C ⊆ D−1C/B ⇐⇒ TrM/L (C) ⊆ B ⇐⇒ D−1B/A TrM/L (C) ⊆ D−1B/A

⇐⇒ TrL/K
(
D−1B/A TrM/L (C)

)
⊆ A.

Notice that D−1B/A ⊆ L and that D−1B/A can be considered as a fractional ideal of C .
Thus

TrM/L
(
conB/C D−1B/AC

)
= D−1B/A TrM/L (C) ,

or equivalently,

TrM/L
(
D−1B/AC

)
= D−1B/A TrM/L (C) .

Hence
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TrL/K
(
D−1B/A TrM/L (C)

)
⊆ A⇐⇒ TrL/K TrM/L

(
conB/C D−1B/AC

)
= TrM/K

(
conB/C D−1B/AC

)
⊆ A⇐⇒ conB/C D−1B/AC ⊆ D−1C/A

⇐⇒ C ⊆ conB/C DB/AD
−1
C/A.

Therefore, D−1C/B = conB/C DB/AD
−1
C/A. ��

Corollary 5.7.16. With the hypothesis of Theorem 5.7.15, we have

∂M/K = ∂nL/K NL/K
(
∂M/L

)
, n = [M : L]. ��

5.7.2 Discrete Valuation Rings and Computation of the Different

Throughout this subsection we will assume that the residue field extensions are sepa-
rable.

Theorem 5.7.17. Let A be a Dedekind domain and K = quot A. Let L = K (α) be a
finite separable field extension of degree n and let B be the integral closure of A in L.
If B = A [α], then DB/A =

(
f ′ (α)

)
, where f (x) = Irr (α, x, K ).

Proof. Considering B as an A-module, we have the basis
{
1, α, . . . , αn−1

}
. On the

other hand, T = D−1B/A is the fractional ideal {x ∈ L | Tr (x B) ⊆ A}.
Since L/K is separable, the trace is surjective. It follows that φ (x, y) = Tr(xy)

is a nondegenerate bilinear form. Now assume that {α1, . . . , αn} is any basis of the
A-module B and {β1, . . . , βn} is the dual basis. We have

Tr
(
βiα j

) = δi j = {1 if i = j,
0 if i �= j.

,

and hence {β1, . . . , βn} ⊆ T .
Conversely, if x ∈ T , let ai = Tr (xαi ) ∈ A and y = x −∑n

i=1 aiβi . Then

Tr
(
yα j
) = Tr (xα j )− n∑

i=1
ai Tr

(
βiα j

) = a j − a j = 0, j = 1, . . . , n,

which implies that y = 0. Therefore

x = a1β1 + · · · + anβn, so T ∼= Aβ1 ⊕ · · · ⊕ Aβn .

Put

g(x) = f (x)

x − α = b0 + b1x + · · · + bn−1xn−1.

We will see that
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bi
f ′ (α)

}n−1
i=0

is the dual basis of
{
1, α, . . . , αn−1

}
.

Let α = α1, . . . , αn be the n distinct roots of f (x) =
∏n

i=1 (x − αi ). For 0 ≤ r ≤
n − 1, consider the polynomial

h(x) = xr −
n∑
i=1

f (x)αri
(x − αi ) f ′ (αi ) .

Since f (x)
(x−α j)

∣∣∣∣
x = α j

= f ′
(
α j
)
, we have

h
(
α j
) = αrj −∑

i �= j

f (α j )αri(
α j − αi

)
f ′ (αi )

+
(

f (x)(
x − α j

) ∣∣∣∣
x = α j

)
αrj

f ′
(
α j
) = 0.

The degree of h(x) is at most n − 1; on the other hand, h(x) has n roots, so
h(x) ≡ 0. It follows that for r = 0, 1, . . . , n − 1,

xr =
n∑
i=1

f (x)αri
(x − αi ) f ′ (αi ) .

Now

Tr xr = nxr =
n∑
i=1

Tr

(
f (x)αri

(x − αi ) f ′ (αi )
)
= n Tr

(
f (x)αr

(x − α) f ′ (α)
)
�⇒

xr = Tr
(

f (x)αr

(x − α) f ′ (α)
)
= Tr

(
1

f ′ (α)
αr
(
b0 + b1x + · · · + bn−1xn−1

))
=

n−1∑
i=0

Tr

(
αr

f ′ (α)
bi

)
xi �⇒ Tr

(
αi

f ′ (α)
b j

)
= δi j .

Therefore the dual basis of {1, α, . . . , αn} is
{

b0
f ′(α) ,

b1
f ′(α) , . . . ,

bn−1
f ′(α)

}
. We will

see that A [α] = B = A
[
b0, . . . , bn−1

]
. Indeed,

f (x) = (x − α)
(
b0 + b1x + · · · + bn−1xn−1

)
=

n−1∑
i=0

bi x
i+1 −

n−1∑
i=0
αbi x

i = bn−1xn +
n−1∑
i=1
(bi−1 − αbi ) xi − αb0.

Hence, if f (x) = a0 + a1x + · · · + an−1xn−1 + xn with ai ∈ A, we have

bn−1 = 1 and bi−1 − αbi = ai for 1 ≤ i ≤ n − 1, and − αb0 = a0.
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In particular, A [α] = B = A
[
b0, . . . , bn−1

]
.

Therefore, we have

D−1L/K = T =
n−1⊕
i=0

A

[
bi
f ′ (α)

]
= A

[
b0, . . . , bn−1

]
( f ′ (α))

= B

f ′ (α)
= ( f ′ (α))−1 ,

so DB/A =
(
f ′ (α)

)
. ��

Unfortunately, the case B = A [α] is very rare, one instance of this case being our
former case when we completed at each prime (Corollary 5.7.20 below). This is the
reason why the way to calculate the different is reduced to the complete case.

We begin with the following theorem:

Theorem 5.7.18. Assume that A is a discrete valuation ring with maximal ideal ℘ and
that B has only one prime ideal P over ℘. Further, assume that B/P is a separable
extension of A/℘. Then B = A [α] for some α ∈ B.

Proof. Let β ∈ B be such that (A/℘)
[
β̄
] = B/P , where β̄ = β mod P . Let f (x) ∈

A[x] be a monic polynomial such that f (x) mod ℘ = Irr (β̄, x, A/℘). Let π ∈ P\P2.
Then vP (π) = 1 and we have

f (x) = f (β)+ f ′ (β) (x − β)+ · · · + f n−1 (β)
(n − 1)! (x − β)

n−1 + (x − β)n .

Therefore f (β + π) ≡ ( f (β)+ f ′ (β) π
)
mod π2.

Since B/P is separable over A/℘ we have f ′ (β) �≡ 0 mod π .
On the other hand, f̄

(
β̄
) = 0 implies vP ( f (β)) ≥ 1. If vP ( f (β)) = 1, then

f (β) is a prime element of B. Assume vP ( f (β)) > 1. Since

f (β + π)− f (β) = π f ′ (β) mod π2,

we have

vP ( f (β + π)− f (β)) = vP (π)+ vP
(
f ′ (β)

) = 1,
so vP ( f (β + π)) = 1.

In any case, the ring A [β] or A [β + π ] contains a prime element of P . Let α = β
or β+π be such that A [α] contains a prime element π ′ of P . Then A [α, π ′] = A [α].
Furthermore, ℘B = Pe with e ≥ 1. Let C = A [α]. We will see that C + ℘B = B.

Since α generates the residue field, we have B ⊆ C + PB. Now for all r ≥ 0,
Pr/Pr+1 is isomorphic to B/P under the isomorphism

B → Pr/Pr+1,
x �→ x(π ′)r , with π ′ ∈ P \ P2.

In other words,
{
αi (π ′) j

}i≥0
j=0,1,... ,e−1 generates B/P

eB = B/℘B over A/℘. There-

fore if x ∈ B, we have x ≡∑i, j di jα
i (π ′) j mod ℘B for some di j ∈ A, which proves

that C + ℘B = B.
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Now B/C = (C + ℘B)/C implies ℘ (B/C) = (C + ℘B) /C = B/C , so if
M = B/C then ℘M = M . Let {x1, x2, . . . , xn} be a set of generators of M over A.
We have

x1 = p11x1 + · · · + p1nxn
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
xn = pn1x1 + · · · + pnnxn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ with pi j ∈ ℘.

In terms of matrices, this translates to[
δi j − pi j

]
i, j [xi ]1≤i≤n = [0], with δi j =

{
1 if i = j,
0 if i �= j.

Multiplying by the adjoint matrix of[
δi j − pi j

]
i, j = N , we obtain that (det N )xi = 0 for all i,

that is, (det N )M = 0. Now, det N = 1 + x for some x ∈ ℘, so det N ∈ A \ ℘.
Therefore det N is a unit, and this implies that M = 0. We obtain B = C = A [α]. ��

Remark 5.7.19. The last part of the proof of Theorem 5.7.18 is known as Nakayama’s
lemma. More precisely, Nakayama’s lemma establishes that if A is a ring, a is an ideal
contained in every maximal ideal of A and M is a finitely generated A-module such
that aM = M , then M = 0.

We apply Theorem 5.7.18 to the complete fields case, in which the rings ϑ̃℘ are
discrete valuation rings and there exists a unique prime ideal over ℘.

Corollary 5.7.20. Let L/K be a separable extension of function fields such that the
field of constants 	 of L is a perfect field. LetP ∈ PL and p := P|K . Then ϑP = ϑp[α]
for some α ∈ ϑP.

Proof. ϑP and ϑp are discrete valuation rings, and ϑP/P = 	(P) is a separable
extension of ϑp/p = k(p) (Theorem 5.2.21). ��

Theorem 5.7.21. Let A be a Dedekind domain, K = quot A, let L/K be a finite
separable extension, and let B be the integral closure of A in L. Then DB/A is the
greatest common divisor of the set{

f ′ (α) | α ∈ B, L = K (α) , f (x) = Irr (α, x, K )}
= 〈 f ′ (α) | α ∈ B, L = K (α) , f (x) = Irr (α, x, K )〉 .

Proof. Let α ∈ B, so A [α] ⊆ B. By Theorem 5.7.17 we have

D−1B/A = {x ∈ L | Tr (x B) ⊆ A} ⊆ {x ∈ L | Tr (x A [α]) ⊆ A} = ( f ′ (α))−1 .
Therefore

(
f ′ (α)

) ⊆ DB/A, or, equivalently,DB/A |
(
f ′ (α)

)
.
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To prove the converse, notice that sinceDB/A =
∏

P∈PL
DP , the equality

DB/A =
〈
f ′ (α) | α ∈ B, L = K (α) , f (x) = Irr (α, x, K )〉

holds if for each P of B, we can find α ∈ B such that vP
(
DB/A

) = vP ( f ′ (α)) (note
that we always have vP

(
DB/A

) ≤ vP ( f ′ (α))).
Let ℘ = P|A = P ∩ A. Let T = {

σ : L −→ K̄℘ | σ |K = IdK
}
, where K̄℘

denotes an algebraic closure of K℘ . Clearly, σ (L) K℘ is a complete field that contains
K℘ . Thus σ (L) K℘ = LPi for some i , where ℘B = Pe1

1 · · ·P
eg
g . Hence, σ (L) K℘ is

one of the completions of K℘ .
We define an equivalence relation in T by: σ ∼ τ if σ (L) K℘ = τ (L) K℘ , or

equivalently there exists a K̄℘-automorphism λ such that λ|KP = IdKP and λσ |L =
τ |L . Observe that if [σ ] denotes the equivalence class of LPi , the distinct classes of ∼
are the K℘-monomorphisms of LPi in K̄℘ . Thus there are

[
LPi : K℘

]
elements in this

class. On the other hand we have |T | = [L : K ], which coincides with our formula
[L : K ] =∑g

i=1
[
LPi : K℘

]
.

Let σ1 ∈ T be in the class determined by LP and P = P1. Let

α ∈ L , L = K (α) , f (x) = Irr (α, x, K ) =
∏
σ∈T

(x − σα),

f ′ (α) =
∏
σ∈T
σ �=Id

(α − σα), and σ1
(
f ′ (α)

) = ∏
σ∈T
σ �=σ1

(σ1α − σα) = f ′ (σ1α) .

By Theorem 5.7.18, there exists β ∈ BP such that BP = A℘ [β]. Since A and B
are Dedekind domains, their localizations are discrete valuation rings (see the proof
of Theorem 5.7.12). Observe that if β ′ ∈ BP , is such that

∣∣β − β ′∣∣ < ε for ε small
enough, then A℘

[
β ′
] = BP . Indeed, put BP = ⊕r−1

i=0 A℘β
i and let � ∈ P \ P2,

℘BP = Pe, choose ε ≤ 1
r2
|�|e. Let ∣∣β − β ′∣∣ < ε. We have that x ∈ BP satisfies

|x |P ≤ 1, so∣∣∣∣∣r−1∑
i=0

aiβ
i −

r−1∑
i=0

ai (β
′)i
∣∣∣∣∣P

≤
r−1∑
i=1
|ai |P

∣∣β − β ′∣∣P (∣∣∣β i−1 + β i−2β ′ + · · · + (β ′)i−1∣∣∣P)
< εrr = εr2 ≤ |�|e,

so A℘
[
β ′
]+ ℘BP = BP = A℘ [β]. By the same argument as that given in the proof

of Theorem 5.7.18 (Nakayama’s lemma), we obtain A℘
[
β ′
] = A℘ [β] = BP .

For λ ∈ T , we denote by LPλ the completion given by λ (L) K℘ ⊆ K̄℘ .
Now, if {λ} varies in a finite set of K℘-automorphisms of K̄℘ , then the elements

λβ have residue classes conjugated over A℘/℘ since λ|K℘ = Id. Therefore, if these
classes are zero, then |λβ|Pλ < 1, and hence |λβ − 1|Pλ = 1. If these classes are
nonzero, then |λβ|Pλ = |λβ − 0|Pλ = 1.
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In any case, |λβ − a|Pλ = 1 for a equal to 0 or 1. Let σ1, . . . , σg ∈ T be rep-
resentatives of the distinct classes corresponding to completions LP1 , . . . , LPg . By
Artin’s approximation (Theorem 2.5.3), there exists α ∈ L such that |σ1α − β|P and
for 2 ≤ i ≤ g, |σiα − a|Pi

are very small. We may assume that α ∈ B (see Exercise
5.10.27).

If L �= K (α), we write α1 = α+π tγ , where L = K (γ ), γ is an integral element,
and v℘(π) = 1. Then α1 is integral. We will see that for t large enough, L = K (α1).
Let E = K (α1) ⊆ L . If for each completion the equality LP ′ = EP ′ holds, then

[E : K ] =
∑
P ′|℘

[
EP ′ : K℘

] =∑
P ′|℘

[
LP ′ : K℘

] = [L : K ],
so E = L . Therefore, it suffices to see that LP ′ = EP ′ .

Assume that K is a complete field and L = K (γ ) = K (α1 − α) = K (α1, α).
Let t be such that

|α1 − α| = |π |t |γ | < |σα − α|
for any isomorphism σ of K (α) satisfying α �= Id. Whenever τ is a K (α1)-
monomorphism of K (α1, α) into an algebraic closure over K (α1), we have τ (α1 − α) =
α1 − τα. Recall that the unique extension of the absolute value of a complete field is
given by |ξ | = |Nξ |1/n (Theorem 5.4.7). Since τ (α1 − α) and α1 − α have the same
norm over K (α1), we have

|α1 − τα| = |α1 − α| < |σα − α| for σ �= Id .

Thus

|τα − α| = |τα − α1 + α1 − α| ≤ max {|τα − α1| , |α1 − α|}
< |α − σα| for σ �= Id .

Therefore τ = Id, and in particular, K (α1, α) = K (α1).
Returning to our case, we may assume that L = K (α1) by setting α1 = α + π tγ .

Again, we denote α1 by α.
It follows from that fact that |σ1α − β|P1 is small that BP = A℘ [σ1α] (see the

proof above). Now DP = Ps for some s ≥ 0. Since this different is given by(
g′ (α)

) = ( ∏
σ∼σ1
σ �=σ1

(σ1α − σα)
)
,

we have s =∑σ∼σ1
σ �=σ1

vP (σ1α − σα) = vP
(
DB/A

)
.

Finally, it remains to prove that

vP

⎛⎜⎝∏
σ �∼σ1
σ∈T

(σ1α − σα)

⎞⎟⎠ = ∑
σ �∼σ1
σ∈T

vP (σ1α − σα) = 0,
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or equivalently, that

|σ1α − σα|P = 1 whenever σ �∼ σ1.

Suppose that

σ �∼ σ1, where σ = λσi for some 2 ≤ i ≤ g,

and

|σ1α − σα|P = |σ1α − λσiα|P =
∣∣∣λ−1σ1α − σiα∣∣∣P

λ−1

=
∣∣∣λ−1σ1α − a + a − σiα

∣∣∣P
λ−1

since |a − σiα|P
λ−1 was chosen to be small enough. We have

|σ1α − σα|P =
∣∣∣λ−1σ1α − a

∣∣∣P
λ−1
=
∣∣∣λ−1σ1α − λ−1β + λ−1β − a

∣∣∣P
λ−1
.

Also,
∣∣λ−1σ1α − λ−1β∣∣P

λ−1
= |σ1α − β|P is small enough, so we obtain

|σ1α − σα|P =
∣∣λ−1β − a

∣∣P
λ−1
= 1, which proves the theorem. ��

For an application of Theorem 5.7.21 see Examples 5.8.8 and 5.8.9 below.

Remark 5.7.22. The argument used to prove K (α, α1) = K (α1) is known as Krasner’s
lemma:

Theorem 5.7.23 (Krasner’s Lemma). Let K be a field that is complete under a val-
uation. Let α, β belong to an algebraic closure of K and assume that α is separable
over K (β). If for any monomorphism σ �= Id of K (α) into an algebraic closure of K
over K we have

|β − α| < |σα − σ |,

then K (α) ⊆ K (β).

Proof. Exercise 5.10.28. ��

5.8 Ramification in Artin–Schreier and Kummer Extensions

We begin this section with a theorem due to Kummer that establishes the decomposi-
tion of a prime ideal in Dedekind domains. First, we present a particular case that is
much easier to prove, and next we give the general function field case.
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Theorem 5.8.1 (Kummer’s Theorem). Let A be a Dedekind domain, K = quot A,
and let L/K be a finite separable extension of K . Let B be the integral closure of A in
L. Assume that B = A [α] for some α. Put f (x) = Irr (α, x, K ) and let℘ be a nonzero
prime ideal of A. Let f̄ be the reduction modulo ℘, i.e., f̄ (x) ∈ A/℘[x]. Let f̄ (x) =
p̄1(x)e1 · · · p̄g(x)eg be the decomposition as a product of irreducible polynomials in
A/℘[x]. Then

℘B = Pe1
1 · · ·P

eg
g

where

Pi = ℘B + pi (α) B for 1 ≤ i ≤ g,

with pi (x) a monic polynomial in A[x] whose reduction modulo ℘ is p̄i (x).

Proof. Let p̄ be any irreducible factor of f̄ , ᾱ a root of p̄, and S the prime ideal of B
that is the kernel of the natural epimorphism

B = A [α] −→ Ā [ᾱ] , Ā = A/℘.

Then ℘B + p (α) B ⊆ S. Conversely, if g (α) ∈ S with g(x) ∈ A[x], we have
ḡ (ᾱ) = 0, which implies that ḡ = p̄h̄ with h̄ ∈ Ā[x]. Hence g − ph ∈ ℘[x] and
g (α) ∈ ℘B + p (α) B, from which we obtain ℘B + p (α) B = S.

Since
[
B/S : A/℘

] = [ Ā [ᾱ] : Ā] = deg p̄i , the inertia degree of S is precisely
the degree of p̄i , whence for each i such that 1 ≤ i ≤ g,

Pi = ℘B + pi (α) B

is a prime ideal that lies above ℘. Furthermore, if i �= j then Pi �= P j , since otherwise
pi (α) = p j (α) a+ tb, for t ∈ ℘ and a, b ∈ B. Therefore p̄i (x)−a p̄ j (x) = 0, which
is impossible since pi (x) and p j (x) are distinct irreducible polynomials of A/℘[x].

Let Si = ℘B + pi (α)ei B. It is clear thatSi = Pe′i
i for some e

′
i . Now, we have

g∏
i=1

Si ⊆ ℘B + p1 (α)
e1 · · · pg (α)eg B ⊆ ℘B.

Therefore P1, . . . ,Pg are all the ideals over ℘. Furthermore, for 1 ≤ i ≤ g, ℘ ⊆ Si ,
so

℘B ⊆
g⋂
i=1

Si =
g∏
i=1

Si = Pe′1
1 · · ·P

e′g
g ⊆ ℘B.

It follows that ℘B = Pe′1
1 · · ·P

e′g
g . Moreover,

Pe1
1 · · ·P

eg
g ⊆ S1 · · ·Sg = Pe′1

1 · · ·P
e′g
g ,
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which implies that ei ≥ e′i for 1 ≤ i ≤ g.
Finally, we have the analogue of Theorem 5.1.14, namely

[L : K ] =
g∑
i=1

e′i degPi =
g∑
i=1

e′i deg p̄i ≤
g∑
i=1

ei deg pi = deg f (x) = [L : K ],

and hence ei = e′i for 1 ≤ i ≤ g. ��

Theorem 5.8.2 (Kummer’s Theorem). Let K/k be a function field and let p be
a place of K . Assume that L = K (α), where α is integral over ϑp. Let p(T ) =
Irr(α, T, K ) ∈ ϑp[T ] be the minimal polynomial of α over K , and let

p̄(T ) := p(T ) mod p =
r∏
i=1

p̄i (T )
ai

be the decomposition of p̄(T ) in k(p)[T ]. Let pi (T ) ∈ ϑp[T ] be such that deg pi (T )
= deg p̄i (T ) and pi (T ) mod p = p̄i (T ) for 1 ≤ i ≤ r .

Then there exist r different places Pi of L above p such that pi (α) ∈ Pi and
dL/K

(
Pi |p

) ≥ deg p̄i (T ).
Assume furthermore that ai = 1 for 1 ≤ i ≤ r or {1, α, . . . , αn−1} is an integral

basis for p, where n = [L : K ]. Then P1, . . . ,Pr are all the places of L above p,

conK/L p =
r∏
i=1

P
ai
i , ϑPi /Pi ∼= k(p)[T ]

( p̄i (T ))
,

and hence dL/K (Pi |p) = deg p̄i (T ).

Proof. Let k(p)i := k(p)[T ]
( p̄i (T ))

for 1 ≤ i ≤ r . Then [k(p)i : k(p)] = deg p̄i (T ). Consider
the natural ring epimorphism

π : ϑp[T ]→ ϑp[α] and πi : ϑp[T ]→ k(p)i ,

defined by

π( f (T )) = f (α) and πi ( f (T )) = f̄ (T ) mod p̄i (T ).

Then kerπ = (p(T )) and πi (p(T )) = 0. Therefore kerπ ⊆ kerπi for 1 ≤ i ≤ r , and
πi induces a ring epimorphism

�i : ϑp[α]→ k(p)i

such that �i ◦ π = πi , i.e.,

�i (h(α)) = h̄(T ) mod p̄i (T ).

Notice that pϑp[α] ⊆ ker �i and pi (α)ϑp[α] ⊆ ker �i . It follows that
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pϑp[α]+ pi (α)ϑp[α] ⊆ ker �i .

Conversely, let h(α) =∑n−1
j=0 b jα

j ∈ ker �i , with h(T ) ∈ ϑp[T ]. We have

h̄(T ) = p̄i (T )ḡ(T ) with g(T ) ∈ ϑp[T ].

Thus

h(T )− pi (T )g(T ) ∈ pϑp[T ] and h(α)− pi (α)g(α) ∈ pϑp[α].

Therefore h(α) ∈ pϑp[α]+ pi (α)ϑp[α], and we have

ker �i = pϑp[α]+ pi (α)ϑp[α]. (5.6)

By Theorem 2.4.4 there exists a placePi of L extending �i (note that ker �i �= 0).
Therefore ϑp[α] ⊆ ϑPi , so Pi | p and pi (α) ∈ Pi . Furthermore,

k(p) ⊆ k(p)i ∼= ϑp[α]/ ker �i ⊆ ϑPi /Pi .

Thus

dL/K (Pi |p) =
[
ϑPi /Pi : ϑp/p

] = [k(Pi ) : k(p)
] ≥ [k(p)i : k(p)] = deg p̄i (T ).

For i �= j , p̄i (T ) and p̄ j (T ) are distinct irreducible polynomials in
(
ϑp/p

)
[T ]

= k(p)[T ]. Hence there exist Ā(T ), B̄(T ) ∈ k(p)[T ] such that
1 = Ā(T ) p̄i (T )+ B̄(T ) p̄ j (T ).

It follows that Ā(α) p̄i (α) + B̄(α) p̄ j (α) − 1 ∈ pϑp[α]. Thus 1 ∈ ker �i + ker � j and
Pi �= P j since ker �i ⊆ Pi and ker � j ⊆ P j . This proves the first part of the theorem.

Now assume that ai = 1 for all 1 ≤ i ≤ r . We have

p(T ) =
r∏
i=1

p̄i (T ).

From Theorem 5.1.14, we obtain

[L : K ] = deg p(T ) =
r∑
i=1

deg p̄i (T ) ≤
r∑
i=1

dL/K (Pi |p)

≤
r∑
i=1

dL/K (Pi |p)eL/K (Pi |p) ≤ [L : K ].

It follows that eL/K (Pi |p) = 1, dL/K (Pi |p) = deg p̄i (T ), andP1, . . . ,Pr are all the
prime divisors in L dividing p.

Now assume that {1, α, . . . , αn−1} is an integral basis for p. If ϑ is the integral
closure of ϑp in L , then ϑ = ϑp[α].
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Let P be any place of L above p. We have

0 = p(α) ≡
r∏
i=1

pi (α)
ai mod p,

so p(α) ∈ P. Therefore pi (α) ∈ P for some i such that 1 ≤ i ≤ r . We have

ker �i ⊆ P ∩ ϑp[α]. (5.7)

It follows from the maximality of the ideal ker�i that

ker �i = P ∩ ϑp[α] = Pi ∩ ϑp[α]. (5.8)

Since {1, α, . . . , αn−1} is an integral basis for p, we have ϑp[α] =
⋂

P|pϑP. By
Artin’s approximation theorem (Corollary 2.5.6), there exists y ∈ L such that vP(y) >
0 and vB(y) = 0 for all B �= P such that B | p. It follows that y ∈ ⋂B|pϑB and
y ∈ P. Using (5.8) we obtain that y ∈ Pi and vPi (y) > 0. Hence P = Pi for some
i , that is, P1, . . . ,Pr are all the prime divisors above p.

Next we will prove that dL/K (Pi |p) = deg pi (T ). Again, using Artin’s approxi-
mation theorem we obtain βi ∈ L such that vPi (βi ) = 1 and vP j (βi ) = 0 for j �= i
and 1 ≤ i ≤ r . Let π be a prime element of p, that is, vp(π) = 1. Then by (5.6) and
(5.8),

βi ∈ ϑp[α] ∩Pi = pi (α)ϑp[α]+ pϑp[α] = pi (α)ϑp[α]+ πϑp[α].

We write βi = pi (α)si (α)+ π ti (α) with si (α), ti (α) ∈ ϑp[α]. Then

r∏
i=1
β
ai
i = s(α)

r∏
i=1

pi (α)
ai + π t (α)

for some s(α), t (α) ∈ ϑp[α].
Since p(α) ≡∏r

i=1 pi (α)ai mod πϑp[α] and p(α) = 0, we have
r∏
i=1
β
ai
i = πu(α) with u(α) ∈ ϑp[α].

In particular, a j = vP j

(∏r
i=1 β

ai
i

)
≥ vP j (π) = e

(
P j |p

)
.

Now, by (5.8) we have

k(p)i ∼= ϑp[α]/ ker �i = ϑp[α]/(Pi ∩ ϑp[α]).

Let ϕ : ϑp[α]→ ϑPi /Pi be defined by ϕ(h(α)) = h(α) mod Pi . Clearly, ϕ is a ring
homomorphism and kerϕ = Pi ∩ ϑp[α] = ker �i . If y ∈ ϑPi , by Artin’s approxi-
mation theorem there exists z ∈ L such that vPi (y − z) > 0 and vP j (z) ≥ 0 for all
j = 1, . . . , r such that j �= i . Thus z ∈ ⋂r

j=1 ϑP j = ϑp[α] and y ≡ z mod Pi , so
ϕ(z) = y mod Pi . Hence ϕ is an epimorphism and
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k(p)i ∼= ϑp[α]/ ker �i = ϑp[α]/(Pi ∩ ϑp[α]) = ϑp[α]/ kerϕ ∼= ϑPi /Pi .

It follows that

dL/K (Pi |p) =
[
ϑPi /Pi : k(p)

] = [k(p)i : k(p)] = deg pi (T ).
Using Theorem 5.1.14, we obtain that

[L : K ] =
r∑
i=1

eL/K (Pi |p)dL/K (Pi |p)

≤
r∑
i=1

ai deg pi (T ) = deg p(T ) = [L : K ].

In particular, we get ai = eL/K (Pi | p) and conK/L p =∏r
i=1P

ai
i . ��

Now we recall the basic facts about Kummer and Artin–Schreier extensions. Let
K/k be any function field.

Theorem 5.8.3. Let L/K be a cyclic extension of degree n. Let G = Gal(L/K ) =
〈σ 〉. Consider α ∈ L. Then
(i) TrL/K α = 0 if and only if there exists β ∈ L such that α = β − σβ.
(ii) NL/Kα = 1 if and only if there exists β ∈ L such that α = β/σβ.
Proof.

(i) (⇐) If α = β − σβ, then
TrL/K α = TrL/K β − TrL/K (σβ) = TrL/K β − TrL/K β = 0.

(⇒) Since L/K is a separable extension, there exists γ ∈ L such that
TrL/K γ = a �= 0, with a ∈ K . Then TrL/K (a−1γ ) = a−1 TrL/K γ = 1.
Assume that TrL/K α = 0. We have σ 0α = −

∑n−1
j=1 σ

jα.

Let β =∑n−2
i=0

(∑i
j=0 σ jα

)
σ iγ . Then β − σβ = α.

(ii) This is just Hilbert’s Theorem 90 (Theorem A.2.16), for a cyclic group G. ��

Theorem 5.8.4 (Artin–Schreier Extensions). Let char k = p > 0. Then L/K is a
cyclic extension of degree p if and only if there exists z ∈ L such that L = K (z) with
Irr(z, T, K ) = T p − T − a ∈ K [T ].

Proof. (⇒) Let G = Gal(L/K ) = 〈σ 〉, with o(σ ) = p. Then TrL/K 1 = p1 = 0.
By Theorem 5.8.3, there exists z ∈ L such that σ z − z = 1 or σ z = z + 1. Hence
σ i z = z + i and σ i z = z if and only if p | i . Therefore

Irr(z, T, K ) =
p−1∏
i=0
(T − (z + i))
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is of degree p.
Notice that

σ(z p − z) = (σ z)p − σ z = (z + 1)p − (z + 1) = z p − z.

Hence

z p − z = a ∈ K and z p − z − a = 0.

It follows that Irr(z, T, K ) = T p − T − a (and T p − T − a = ∏p−1
i=0 (T − (z + i)),

a = z p − z).
(⇐) If L = K (z) and Irr(z, T, K ) = T p − T − a, then for any i ∈ Z,

i p ≡ i mod p and (z + i)p − (z + i) = z p + i p − z − i = z p − z = a.

Therefore z, z + 1, . . . , z + (p − 1) are the roots of Irr(z, T, K ). In particular, z
and z + 1 are conjugates over K and L = K (z) is a Galois extension over K . Let
G = Gal(L/K ). There exists σ ∈ G such that σ z = z + 1. Then σ i z = z + i and
o(σ ) = p. Thus G = 〈σ 〉 is a cyclic extension of degree p. ��

Theorem 5.8.5 (Kummer Extensions). Let char k = p ≥ 0 and let n ∈ N be such
that p � n (n can be chosen arbitrarily in the case p = 0). Suppose that k contains
a primitive root of unity ζn. Then L/K is a cyclic extension of degree n if and only if
there exists z ∈ L such that L = K (z) and

Irr(z, T, K ) = T n − a ∈ K [T ].

Proof. (⇒) Let G = Gal(L/K ) = 〈σ 〉 and o(σ ) = n. We have NL/K ζn = ζ nn = 1.
Thus, by Theorem 5.8.3 there exists z ∈ L such that σ z = ζnz. Since σ i z = ζ inz and
σ i z = z if and only if n | i , it follows that z, ζnz, . . . , ζ n−1n z are distinct conjugates
of z. Thus

Irr(z, T, K ) =
n−1∏
i=0
(T − ζ inz).

On the other hand, σ(zn) = (σ z)n = (ζnz)n = zn . Hence zn = a ∈ K and
z, ζnz, . . . , ζ n−1n z are the roots of T n − a ∈ K [T ]. Therefore

Irr(z, T, K ) = T n − a and zn = a ∈ K .

(⇐) For a �= 0, T n−a is a separable polynomial with distinct roots z, ζnz, . . . , ζ n−1n z,
where z is any element of the algebraic closure K̄ of K such that zn = a. Therefore
L = K (z) is a normal and separable extension of K , and L/K is a Galois extension.
Now, since T n − a is assumed to be irreducible, z and ζnz are conjugates over K .
Thus, there exists σ ∈ G = Gal(L/K ) such that σ z = ζnz. It follows that o(σ ) =
n = o(G) = [L : K ] and L/K is a cyclic extension of degree n. ��

Next, we turn our attention to the case that two cyclic extensions L1/K and L2/K
of the type considered in Theorems 5.8.4 and 5.8.5 are the same.
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Proposition 5.8.6. Let char k = p > 0 and let Li = K (zi )/K, i = 1, 2, be two
cyclic extensions of degree p given by z pi − zi = ai ∈ K, i = 1, 2. The following are
equivalent:

(i) L1 = L2.
(ii) z1 = j z2 + b for 1 ≤ j ≤ p − 1 and b ∈ K.
(iii) a1 = ja2 + (bp − b) for 1 ≤ j ≤ p − 1 and b ∈ K.

Proof. If z1 = j z2 + b, then z2 = j ′z1 − j ′b with j j ′ ≡ 1 mod p. Thus L1 = L2.
Conversely, if L1 = L2, then if G = Gal(L1/K ) = Gal(L2/K ) = 〈σ 〉, we may
choose σ such that σ z1 = z1+1. Now, since σ z2 is a conjugate of z2 over K , we have
σ z2 = z2 + j ′ with 1 ≤ j ′ ≤ p − 1. Let 1 ≤ j ≤ p − 1 be such that j j ′ ≡ 1 mod p.
Then

σ( j z2) = jσ z2 = j z2 + j j ′ = j z2 + 1.

Therefore σ(z1 − j z2) = z1 − j z2. It follows that z1 − j z2 = b ∈ K .
Next, if z1 = j z2 + b, then

z p1 − z1 = a1 = ( j z2 + b)p − ( j z2 + b) = j (z p2 − z2)+ (bp − b)

= ja2 + (bp − b).

Conversely, if a1 = ja2 + (bp − b) we have z p1 − z1 = ( j z2 + b)p − ( j z2 + b),
i.e.,

(z1 − ( j z2 + b))p − (z1 − ( j z2 + b)) = 0.

It follows that ω = z1 − j z2 − b is a root of ωp − ω = 0. Thus ω ∈ Fp. ��

Proposition 5.8.7. Let char k = p ≥ 0 and let K contain a primitive nth root ζn of 1
with (n, p) = 1. Let Li = K (zi ) (i = 1, 2) be two cyclic extensions of K of degree n,
given by zni = ai . The following are equivalent:

(i) L1 = L2.
(ii) z1 = z j2c for all 1 ≤ j ≤ n − 1 such that ( j, n) = 1 and c ∈ K.

(iii) a1 = a j2c
n for all 1 ≤ j ≤ n − 1 such that ( j, n) = 1 and c ∈ K.

Proof. The equivalence of (ii) and (iii) is clear.
Assume L1 = L2. If G = Gal(L1/K ) = Gal(L2/K ) = 〈σ 〉, choose σ such that

σ z1 = ζnz1. Now, σ z2 is a conjugate of z2 over K , so

σ z2 = ζ j
′

n z2 with 1 ≤ j ′ ≤ n − 1.

Let d = ( j ′, n). Then σ n/d z2 = ζ j
′n/d

n z2 = z2, and hence σ n/d = Id. Since o(σ ) = n,

we have d = ( j ′, n) = 1. Choose j such that j j ′ ≡ 1 mod n. Thus σ(z j2) = ζ j j
′

n z j2 =
ζnz

j
2, and
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σ(z1z
− j
2 ) = z1z

− j
2 , so z1z

− j
2 = c ∈ K .

Conversely, if z1 = z j2c ∈ L2, ( j, n) = 1, and c ∈ K , then L1 ⊆ L2, and if
j j ′ ≡ 1 mod n,

z j1 = z j j
′

2 c j = z1+	n2 c j = z2a
	
2c

j , so z2 = z j1a
−	
2 c− j ∈ L1.

Therefore L1 = L2. ��
In order to study ramification in Artin–Schreier and Kummer extensions we pro-

vide the following two examples due to Hasse [52]. These two examples are for the
case of rational function fields. The general case will be given later on.

Example 5.8.8. Let K = k(x) be a rational function field where k is a perfect field of
characteristic p > 0. Let L = K (y) be a cyclic extension of degree p. Then, since
L/K is an Artin–Schreier extension, y satisfies an equation of the form

y p − y = r(x), where r(x) ∈ k(x) and r(x) /∈ {g(x)p − g(x) | g(x) ∈ k(x)} .
It is easy to see that α (T ) = Irr (y, T, k(x)) = T p − T − r(x). The roots of the

latter polynomial are all y + i such that i ∈ Fp. Observe that L = K (z), where

z p − z = h(x) ∈ k(x) ⇐⇒ z = j y + m(x), with m(x) ∈ k(x) and j ∈ F∗p.

Note that by substituting y by j y+m(x), with m(x) ∈ k(x) and j ∈ F∗p, the resulting
expression for r(x) becomes jr(x)+ m(x)p − m(x).

We will see that we can substitute y in such a way that r(x) takes the form

(r(x))K = C

℘
λ1
1 · · ·℘λss

,

where C is integral divisor relatively prime to ℘i , λi > 0, and λi �≡ 0 mod p for
i = 1, . . . , s.

First, write

r(x) = g(x)

f (x)
, where f (x) =

n∏
i=1

pi (x)
αi ,

( f (x), g(x)) = 1, and p1(x), . . . , pn(x) are distinct irreducible polynomials. Using
partial fractions we obtain that the expression for r(x) is

g(x)

f (x)
= s(x)+

n∑
i=1

αi−1∑
k=0

t (i)k (x)

pi (x)αi−k

with

deg t (i)k (x) < deg pi (x) for k = 0, 1, . . . , αi − 1.
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Let v℘i be the valuation over k(x) corresponding to pi (x). We have

v℘i (r(x)) = −αi and v℘(r(x)) ≥ 0 for any ℘ �= ℘1, . . . , ℘n, ℘∞.

Then v℘ (y p − y) ≥ 0, and since v℘ (y p − y) ≥ min {pv℘(y), v℘(y)}, it follows that
v℘(y) ≥ 0. Thus y is integral with respect to A℘ , or in other words, y ∈ ϑP for a
place P above ℘.

Now,

α (T ) =
p−1∏
i=0
(T − y − i) and α′ (T ) =

p−1∑
i=0

∏
j �=i
(T − y − j) ,

so

α′ (y) =
p−1∏
j=1
(y − y − j) =

p−1∏
j=1
(− j),

and
(
α′ (y)

)
L is the unit divisorN. Therefore ℘ is unramified (Theorem 5.6.3).

It follows that the only ramified places can be ℘1, . . . , ℘n, ℘∞.
Returning to our decomposition, if p divides αi , we write αi = λi p. Then

r(x) = t (i)0 (x)

pi (x)λi p
+ t1(x) with v℘i (t1(x)) > −λi p.

Since [k[x]/(pi (x)) : k] < ∞ and k is a perfect field, M = k[x]/(pi (x)) is perfect,
that is, Mp = M . Thus there exists m(x) ∈ k[x] such that

m(x)p ≡ t (i)0 (x) mod pi (x).

Let n(x) = − m(x)
pi (x)λi

. If u = y + n(x), then L = K (u) = K (y), and we have

u p − u = y p − y + n(x)p − n(x) = r(x)+ n(x)p − n(x)

= t (i)0 (x)

pi (x)λi p
+ t1(x)− m(x)p

pi (x)λi p
+ m(x)

pi (x)λi
= h(x).

Finally,

v℘i (h(x)) ≥ min
{
v℘i

(
t (i)0 (x)− m(x)p

pi (x)λi p

)
, v℘i (t1(x)) , v℘i

(
m(x)

pi (x)λi

)}
,

v℘i

(
t (i)0 (x)− m(x)p

pi (x)λi p

)
≥ 1− λi p > −λi p;

v℘i (t1(x)) > −λi p;
v℘i

(
m(x)

pi (x)λi

)
≥ 0− λi > −λi p.
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Therefore (h(x))k(x) = A

℘
β
i

, where β < λi p and A is relatively prime to A℘i .

Observe that for j �= i , we have

v℘ j

(
t (i)0 (x)

pi (x)λi p

)
≥ 0;

v℘ j

(
m(x)p

pi (x)λi p

)
≥ 0;

v℘ j

(
m(x)

pi (x)λi

)
≥ 0;

v℘ j (t1(x)) = v℘ j (r(x)) = −α j < 0.

Thus v℘ j (h(x)) = v℘ j (t1(x)) = v℘ j (r(x)) = −α j . This means that in the previous
argument, the values v℘ j do not change for j �= i . We also have v℘ (h(x)) ≥ 0 for
℘ �= ℘1, . . . , ℘n , ℘∞.

Continuing with this process, we eventually transform our expression L = K (ω)
into

ωp − ω = α(x) ∈ k(x) and (α(x))k(x) =
C

℘
λ1
1 · · ·℘λmm

℘s∞,

where C is an integral divisor that is relatively prime to ℘1, . . . , ℘m, ℘∞, and λi > 0,
(λi , p) = 1, i = 1, . . . ,m.

Now working with ℘∞, if s ≥ 0 or s < 0 and (p, s) = 1, ℘∞ is also of the
required form. Finally, assume s < 0 and p | s, say s = −pt , with t > 0. Let

α(x) = f1(x)

g1(x)
, s = v∞ (α(x)) = − degα(x) = − deg f1(x)+ deg g1(x) < 0.

Then deg g1(x) < deg f1(x), and by the division algorithm,

f1(x) = g1(x)q1(x)+ r1(x) with r1(x) = 0 or deg r1(x) < deg g1(x),

so

α(x) = f1(x)

g1(x)
= q1(x)+ r1(x)

g1(x)
.

We have v∞
(
r1(x)
g1(x)

)
> 0. Therefore

v∞ (α(x)) = s = −pt = − deg q1(x).

We can write q1(x) as the sum of ax pt with terms of lower degree. Since q1(x) ∈
k[x] and k is a perfect field, there exists b ∈ k such that bp = a. Let ω1 = ω − bxt .
Then
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ω
p
1 − ω1 = q2(x)+ r1(x)

g1(x)
with deg q2(x) ≤ pt − 1 < −s.

It is easy to see that any place ℘ satisfies the following: if v℘ (α(x)) ≥ 0 then

v℘

(
q2(x)+ r1(x)

g1(x)

)
≥ 0, and if v℘ (α(x)) < 0, then v℘

(
q2(x)+ r1(x)

g1(x)

)
= v℘ (α(x)).

By iterating this process we obtain an equation of the type

y p − y = α(x), where (α(x))K =
C

℘
λ1
1 · · ·℘λmm

,

C is an integral divisor relatively prime to ℘1, . . . , ℘m , λi > 0, and (λi , p) = 1,
i = 1, . . . ,m. We have already noted that if ℘ �= ℘1, . . . , ℘m , then ℘ is unramified.

Now we will see that ℘1, . . . , ℘m are exactly the ramified prime divisors. If P is
a place over some ℘i , then

e = e (P|℘i ) and vP (α(x)) = ev℘i (α(x)) = −eλi .

On the other hand,

vP (α(x)) = vP
(
y p − y

)
< 0, so vP (y) < 0.

Therefore vP (y p − y) = pvP (y). Thus p divides eλi and since (p, λi ) = 1, p
divides e. Consequently e ≥ p. But since [L : K ] = p ≥ e, we must have e = p, and
furthermore, each ℘1, . . . , ℘m is ramified. Let pi (x) ∈ k[x] (or pi (x) = 1

x in the case
℘i = ℘∞), with v℘i (pi (x)) = 1. Let ℘i = P p

i in DL . Set P = Pi .
We have vPi (y) = −λi . We wish to computeDP , the different at P .
Let π be a prime element for P , that is, vP (π) = 1. Then ϑP̂ = ϑ℘̂i [π ] (because

℘i is ramified) and we haveDP̂ = P̂s with s = vP
(
g′(π)

)
and g(T ) = Irr (π, T, K )

(Theorem 5.7.17).
Now, since (λi , p) = 1, there exist u, v such that −uλi + vp = 1. We have

vP
(
yu pi (x)

v
) = uvP (y)+ vvP (pi (x)) = −uλi + vp = 1.

Therefore we may pick π = yu pi (x)v . The conjugates of π are the elements
(y + j)u pi (x)v , so that g(T ) =

∏p−1
j=0 (T − (y + j)u pi (x)v) and

g′(π) =
p−1∏
j=1

(
(y + j)u − yu

)
pi (x)

v =
p−1∏
j=1

(
u jyu−1 + s j (y)

)
pi (x)

v,

where s j (y) =
∑u−2
	=0

(u
	

)
y	 ju−	, and

vP
((

u

	

)
y	 ju−	

)
= 	vP (y) > (u − 1)vP (y) .

It follows that
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vP
(
g′(π)

) = vP
(
p−1∏
j=1

(
juyu−1 pi (x)v

))
= vP

((
yu pi (x)v

y

)p−1)
= (−(u − 1)λi + vp) (p − 1) = (λi + 1) (p − 1).

Therefore DP = P(λi+1)(p−1).
In short, assume L = K (y), where

y p − y = α(x) and (α(x))k(x) =
C

℘
λ1
1 · · ·℘λnn

,

C an integral divisor relatively prime to ℘1, . . . , ℘n , λi > 0, and (λi , p) = 1, 1 ≤ i ≤
n. Then ℘1, . . . , ℘n are the ramified primes in L/K and if ℘i = P p

i in DL , we have

DL/K =
n∏
i=1

P(λi+1)(p−1)i and ∂L/K = NL/KDL/K =
n∏
i=1
℘
(λi+1)(p−1)
i .

Example 5.8.9. Let K = k(x) and L = K (y), where L/K is a cyclic extension of
degree n, p � n, and p = char k (or char k = 0). Assume that k contains the nth roots
of unity. Then, since L/K is a Kummer extension, we may assume yn = f (x) with
f (x) ∈ k[x] and f (x) nondivisible nth-powers.
Let

( f (x))k(x) =
℘
λ1
1 · · ·℘λrr
℘t∞

, where t = deg f (x) and 0 < λi < n.

As in Example 5.8.8, ℘1, . . . , ℘r are the ramified prime divisors, and possibly ℘∞
too. For ℘∞, let t = nq + r , 1 ≤ r ≤ n. Substituting y by z = y

xq+1 we obtain

zn = yn

x (q+1)n
= f (x)

xnq+n

and

v∞
(

f (x)

xnq+n

)
= v∞ ( f (x))− v∞

(
x (q+1)n

)
= −t + qn + n = n − r

with 0 ≤ n − r ≤ n − 1. As before, ℘∞ is ramified⇐⇒ n − r �= 0⇐⇒ n �= r ⇐⇒
n � t = deg f (x).

Let ℘i be one of the ramified prime divisors. Since (p, n) = 1, p does not divide
the ramification index e of ℘i . We have in DL : ℘i =

(
P(i)1 · · ·P(i)gi

)e
. Let P be any

prime above ℘i . We have vP (yn) = nvP (y) = λi e. Therefore vP (y) = λi e
n . Let

di = (λi , n). We have n
di
vP (y) = λi

di
e, and since

(
n
di
,
λi
di

)
= 1,
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n

di

∣∣∣∣ e and
λi

di

∣∣∣∣ vP (y).
Now if z = yn/di then zdi = yn and di | λi . Hence(

z

pi (x)λi /di

)di
= zdi1 = h(x) ∈ k[x] and v℘i (h(x)) = 0.

Therefore ℘i is unramified from K to K (z). Since [L : K (z)] = n
di
, we have e ≤ n

di
,

which shows that e = n
di
and vP (y) = λi

di
.

Since p � e, it follows by Theorem 5.6.3 that DP = Pe−1 = P(n/di )−1. If ℘i =(
P(i)1 · · ·P(i)gi

)n/di
, we have n

di
fi gi = n, where each fi is the relative degree of P =

P(i)j over ℘i . Finally, note that if ℘∞ is ramified, then n � t = deg f (x) and the
ramification index is

e∞ = n

(n − r, n)
= n

(r, n)
= n

(t, n)
.

Therefore the discriminant at ℘i is given by

∂℘i = ℘(n/di−1) fi gii = ℘(n/di−1)dii = ℘di (ei−1)i .

In the general case, it is not always possible to write all prime divisors at a time
under the form prescribed in Examples 5.8.8 and 5.8.9. However, the following result
shows that we can do so for any fixed prime divisor in the case of a perfect field of
constants.

Theorem 5.8.10. Let k be a perfect field of characteristic p > 0. Let p be a fixed place
in K . If L/K is a cyclic extension of degree p, then L = K (y) with y p − y = a and

vp(a) ≥ 0 or vp(a) = λ < 0, and (λ, p) = 1.
Proof. Let L = K (z) with z p − z = B. If vp(B) ≥ 0, we set a = B and we are done.
Assume that vp(B) = µ < 0. If (µ, p) = 0 there is nothing to prove. Otherwise, let
µ = −pλ, λ > 0. By Theorem 2.5.20, we have

B = b−pλ
π pλ

+ b−pλ+1
π pλ−1 + · · · +

b−1
π
+ b0 + b1π + · · · , (5.9)

where bi ∈ k(p), b−pλ �= 0, and π is a prime element for p.
Since k(p) is a perfect field, we may choose c ∈ k(p) such that cp = b−pλ. Let

C ∈ ϑp be such that C mod p = c ∈ k(p) = ϑp/p. Set y := z − Cπ−λ, L = K (y),
and

y p − y = z p − C pπ−pλ − z + Cπ−λ = B − C pπ−pλ + Cπ−λ.

Since vp(C) = 0, it follows by (5.9) that
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vp(a) ≥ −pλ+ 1 with a = B − C pπ−pλ + Cπ−λ.

If vp(a) ≥ 0 or vp(a) < 0 and (vp(a), p) = 1 we are done. Otherwise, we repeat
the process. We obtain the result in a finite number of steps. ��

Theorem 5.8.11. In the situation of Theorem 5.8.10, if vp(a) ≥ 0, then p is unramified
(in this case the hypothesis that k is a perfect field is not necessary), and if vp(a) < 0
and (vp(a), p) = 1 then p is ramified and the local different is given by

DP = P(λ+1)(p−1),

where p = Pp and λ = −vp(a).
Proof. Let f (T ) = T p − T − a = Irr(y, T, K ). First, assume that vp(a) ≥ 0. Since
y p − y = a, if P is any place in L above p, we have vP(y) ≥ 0. Thus y is integral
with respect to P. Now f ′(y) = −1, and by Theorem 5.7.21 it follows that P is
unramified. Note that for this case we do not need the hypothesis that k is a perfect
field.

Next, assume that vp(a) = −λ < 0 and (λ, p) = 1. LetP be a prime divisor in L
dividing p. Then vP(y p − y) = vP(a) < 0. Therefore vP(y) < 0 and

vP(y
p − y) = pvB(y) = vP(a) = e(P|p)vp(a) = −λe, where e = e(P | p).

The conditions that (p, λ) = 1, p | e, e = p, and p is ramified in L/K imply p = Pp.
We also have vP(y) = −λ.

Let u, v ∈ Z be such that −λu + pv = 1. Then if π is a prime element for p, we
have

vP(y
uπv) = uvP(y)+ vvP(π) = −λu + pv = 1.

Therefore � = yuπv is a prime element for P. By Proposition 5.5.11, ϑ
P̂
= ϑp̂[π ],

where ϑ
P̂
and ϑp̂ denote the completions of ϑP and ϑp respectively. By Theorem

5.7.17, we have v
P̂
(D̂

P̂
) = vp(DL/K ) = vp(g′(�)), with g(T ) = Irr(�, T, K ). The

set of conjugates of� is{
σ j� = (y + j)uπv, j = 0, 1, . . . , p − 1} = {�0,�1, . . . ,�p−1

}
.

Thus

g(T ) =
p−1∏
i=0
(T −�i ) and g′(T ) =

p−1∑
j=0

∏
i �= j
(T −�i ).

We have
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g′(�) =
p−1∏
i=1
(yuπv − (y + i)uπv)

= πv(p−1)
p−1∏
i=1

(
yu −

u∑
	=0

(
u

	

)
y	iu−	

)
= (−1)p−1πv(p−1)

p−1∏
i=1
(uiyu−1 + si (y))

with si (y) =
∑u−2
	=0

(u
	

)
y	iu−	. Thus vP(si (y)) > vP(uiyu−1) = (u − 1)(−λ).

Therefore

vP(g
′(�)) = vp(p − 1)+

p−1∑
i=1
(u − 1)(−λ)

= vp(p − 1)− λ(p − 1)(u − 1)
= (p − 1)(vp − λu + λ) = (p − 1)(1+ λ). ��

We obtain analogous results for Kummer extensions.

Theorem 5.8.12. Let k be any field of characteristic p ≥ 0. Let L/K be a cyclic
extension of degree n with (n, p) = 1. Assume that k contains a primitive nth root of
unity ζn. Let p be a fixed place of K . Then L = K (y) with yn = a and 0 ≤ vp(a) ≤
n − 1; p is unramified in L/K if and only if vp(a) = 0.

If vp(a) = m > 0 and P is a prime divisor of L above p, we have

e(P|p) = n

(n,m)
and vP(DP) =

n

(n,m)
− 1.

Proof. Let L = K (z) with zn = b, vp(b) = tn + r and 0 ≤ r ≤ n − 1. If π is a prime
element for p, then

(
z
π t

)n = b
πnt

and vp
(

b
πnt

)
= r . The rest of the proof is the same

as in Example 5.8.9. ��

Definition 5.8.13. We say that the equation given in Theorem 5.8.11 or Theorem
5.8.12 is in normal form or standard form at the prime p.

Remark 5.8.14. The hypothesis that k is perfect is not necessary in Theorem 5.8.12.
However, if k is not a perfect field, in general we cannot write an equation like the one
in Theorem 5.8.11 in a normal form for a given prime divisor. For instance, assume
that k is not a perfect field and let a ∈ k \ k p. If K = k(x) and L = K (y) with

y p − y = ax p (5.10)

then (5.10) cannot be modified in order to have the infinite prime of K written in
normal form (see Exercise 5.10.18, Exercise 5.10.29, Example 14.3.12, and Exercise
14.5.16).
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5.9 Ramification Groups

Theorem 5.6.3 shows a clear difference between ramification types, depending on the
divisibility of the ramification index by the characteristic p. A more detailed study of
this difference originates in the definition of the ramification groups, which we will
study now.

Consider any Galois extension L/K of function fields with Galois group G =
Gal(L/K ). If P is a prime divisor of L and ℘ = P|K , then the decomposition group
satisfies DL/K (P|℘) = D = Gal

(
LP/K℘

)
(Theorem 5.4.10). We will assume that

the residue field extension 	(P)/k(℘) is separable. To study the ramification, it suf-
fices to consider the ramification in LP/K℘ . Therefore we will assume that L/K
is a Galois extension of complete fields. We also assume that the residue field ex-
tension is separable. Within this situation, K is complete with respect to the valua-
tion v℘ , the valuation ring is ϑ℘ , and the valuation has a unique extension vP to L .
We have ϑP = ϑ℘ [β] for some β (Theorem 5.7.18). If f (x) = Irr (β, x, K ), then
DP =

(
f ′ (β)

)
(Theorem 5.7.17) and the discriminant satisfies ∂℘ =

(
NL/K f ′ (β)

)
.

Proposition 5.9.1. Let β1 = β, β2, . . . , βn be the conjugates of β. Then

NL/K
(
f ′ (β)

) = (−1)n(n−1)/2 n∏
i< j

(
βi − β j

)2 = n∏
i �= j

(
βi − β j

)
.

Proof. We leave the proof to the reader (Exercise 5.10.31). ��

Definition 5.9.2. Let e = eL/K (P|℘) and let K̄ be the residue field ϑ℘/℘. Let p =
char K̄ . If p | e, ℘ is called wildly ramified, and if p � e, ℘ is called tamely ramified.

We write AL = ϑP and AK = ϑ℘ . Let x ∈ AL be such that AL = AK [x], and
let π ∈ AL be such that vP (π) = 1. Let G = Gal(L/K ) (which corresponds to the
decomposition group before taking completions).

Proposition 5.9.3. Let σ ∈ G, and i ∈ Z be such that i ≥ −1. The following three
conditions are equivalent:

(a) σ acts trivially on AL/P i+1;
(b) vP (σ (a)− a) ≥ i + 1 for all a ∈ AL;
(c) vP (σ (x)− x) ≥ i + 1.

Proof. We leave the proof to the reader (Exercise 5.10.32). ��

Theorem 5.9.4. For each i ≥ −1 put Gi = {σ ∈ G | vP (σ (x)− x) ≥ i + 1}. Then
Gi ⊇ Gi+1, each Gi is a normal subgroup of G, G−1 = G, and G0 is the inertia
group. Furthermore, for i large enough, Gi = Id.
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Proof. Since Pσ = P , we have

vP (σ (x)− x) = vPσ−1
(
x − σ−1(x)

)
= vP

(
σ−1(x)− x

)
,

so σ ∈ Gi implies σ−1 ∈ Gi .
If σ , θ ∈ Gi , we have

vP (σθ(x)− x) = vP ((σθ) (x)− σ(x)+ σ(x)− x)

≥ min {vP ((σθ) (x)− σ(x)) , vP (σ (x)− x)}
= min

{
vPσ−1 (θ(x)− x) , vP (σ (x)− x)

}
≥ i + 1.

Therefore, Gi is a subgroup of G.
Now let σ ∈ Gi and φ ∈ G. We have

vP
((
φ−1σφ

)
(x)− x

)
= vPφ ((σφ) (x)− φx) = vP

(
σ x ′ − x ′

)
, x ′ = φ(x).

Since

AL = φ (AL) = φ (AK [x]) = AK [φ(x)] = AK [x
′],

it follows, by Proposition 5.9.3, that vP
(
σ(x ′)− x ′

) ≥ i + 1. Thus Gi is a normal
subgroup of G.

Clearly, Gi ⊇ Gi+1. Furthermore,

G0 = {σ ∈ G | vP (σ x − x) ≥ 1} = {σ ∈ G | σ y ≡ y mod P ∀ y ∈ AL} ,

which is the definition of the inertia group.
Finally, for σ �= Id, there exists x such that σ x �= x , so vP (σ x − x) = iσ �= ∞.

Let r = max {iσ | σ �= Id}. Then

σ ∈ Gr ⇐⇒ vP (σ x − x) ≥ r + 1 > iσ ⇐⇒ σ = Id .

Thus Gr = Id. ��

Definition 5.9.5. For i ≥ −1, the group Gi is called the i th ramification group of G
or i th ramification group of L/K .

Definition 5.9.6. We define the function iG : G −→ Z∪{∞} by iG (σ ) = vP (σ x − x).

As a consequence of what we have already proved, we obtain the following result:

Proposition 5.9.7.

(1) iG (σ ) = ∞ if and only if σ = Id,
(2) iG (σ ) ≥ i + 1 if and only if σ ∈ Gi ,
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(3) iG
(
gσg−1

) = iG (σ ) for all σ , g ∈ G. ��

Proposition 5.9.8.
∑
σ �=Id iG (σ ) =

∑∞
i=0 (|Gi | − 1).

Proof. Let ri = |Gi |−1. If σ ∈ Gi−1\Gi , then vP (σ x − x) = i , so iG (Gi−1 \ Gi ) =
i and |Gi−1 \ Gi | = ri−1 − ri .

Therefore ∑
σ �=Id

iG (σ ) =
∞∑
i=0

∑
σ∈Gi−1\Gi

iG (σ ) =
∞∑
i=0

i (ri−1 − ri ) .

Let t be such that Gt = Id. Then rt+1 = 0 and

∞∑
i=0

i (ri−1 − ri ) =
t+1∑
i=0

i (ri−1 − ri ) =
t+1∑
i=0

iri−1 −
t+1∑
i=0

iri

=
t∑

i=0
(i + 1)ri −

t+1∑
i=0

iri =
t∑

i=0
ri − (t + 1)rt+1

=
t∑

i=0
ri =

∞∑
i=0

ri =
∞∑
i=0
(|Gi | − 1) . ��

Theorem 5.9.9. We have DP = Ps , where s =∑σ �=Id iG (σ ) =
∑∞

i=0 (|Gi | − 1).
Proof. Let

AL = AK [x], [L : K ] = e f = n, and f (T ) = Irr (x, T, K ) =
∏
σ∈G

(T − σ x).

Then

f ′(T ) =
∑
σ∈G

∏
θ �=σ

(T − θx) and f ′(x) =
∏
σ �=Id

(x − σ x).

By Theorem 5.7.17, we have

s = vP ( f ′(x)) =
∑
σ �=Id

vP (σ x − x) =
∑
σ �=Id

iG (σ ) =
∞∑
i=0
(|Gi | − 1) . ��

Corollary 5.9.10. ℘ is wildly ramified if and only if G1 �= {Id}.
Proof. We have |G0| = e (Corollary 5.2.23) and |G0| − 1 = e− 1. By Theorem 5.6.3,
s > e − 1⇐⇒ p | e⇐⇒ ℘ is wildly ramified.

On the other hand, s > e − 1 if and only if |G1| − 1 > 0. ��
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Corollary 5.9.11. If char K̄ = 0, then G1 = {Id}. ��

Example 5.9.12. Let K = k(x, y) be the function field defined by

yq − y = xm where q = pu, p = char k,m > 1 and m | q + 1.
Set q + 1 = mn. Then we will prove that gK = (m−1)(q−1)

2 .
First we consider a root α of T q − T − xm . Then for any µ ∈ Fpu = Fq ,

(α + µ)q − (α + µ) = αq + µq − α − µ = αq + µ− α − µ = αq − α = xm .

Therefore {y + µ | µ ∈ Fq} is the set of roots of T q − T − xm .
In particular, K/k(x) is a Galois extension. LetB be a prime divisor in K dividing

the infinite prime ℘∞ of k(x). We have

vB(y
q − y) = mvB(x) = me(B|℘∞)v℘∞(x) = −me(B|℘∞) < 0.

Therefore vB(y) < 0, since otherwise we would have vB(yq − y) ≥ 0. Thus

vB(y
q − y) = min{vB(yq), vB(y)} = qvB(y).

It follows that qvB(y) = −me(B|℘∞). Since (q,m) = 1, q divides e(B|℘∞).
Therefore ℘∞ is fully ramified, e(B|℘∞) = q, and [K : k(x)] = q. We also have
vB(y) = −m.

For any µ ∈ Fq , let σµ ∈ Gal (K/k(x)) be defined by
σµ(y) = y + µ.

Then θ :
(
Fq ,+

)→ Gal (K/k(x)) is a group isomorphism.
Now, for any prime divisor P distinct from B, we have vP(y) ≥ 0 since

vP(xm) ≥ 0. Thus y ∈ ϑP. We have

α(T ) = T q − T − xm =
∏
µ∈Fq

(T − y − µ).

Hence α′(T ) = ∑
β∈Fq

∏
µ �=β
(T−y−µ), so α′(y) =∏µ�=0(y−y−µ) = (−1)q−1∏µ∈Fq

µ.

Therefore (α′(y))K is the unit divisor N. It follows by Theorem 5.7.21 that P is un-
ramified in K/k(x). Hence DK/k(x) = Bs for some s. Next we determine the ramifi-
cation groups Gi forB.

Since vB(y) = −m and vB(x) = −q, we have vB(y−nx) = nm − q = 1. Thus
y−nx is a prime element forB. Now, G−1 = G0 = G and for µ ∈ F∗q ,

σµ
(
y−nx

)− y−nx = (y + µ)−n x − y−nx

= x

(
yn − (y + µ)n
(y + µ)n yn

)
= −µy

n−1 + · · ·
(y2 + µy)n x .
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Thus

vB(σµ(y
−nx)− y−nx) = (n − 1)vB(y)+ vB(x)− 2nvB(y)

= (n + 1)m − q = q + 1+ m − q = m + 1.
It follows by Theorem 5.9.4 that σµ ∈ Gm and σµ /∈ Gm+1. Therefore

G = G−1 = G0 = · · · = Gm, Gm+1 = {1}.

Using Theorem 5.9.9 we obtain that

s =
∞∑
i=0
(|Gi | − 1) =

m∑
i=0
(q − 1) = (m + 1)(q − 1).

Applying the Riemann–Hurwitz genus formula we get

gK = 1+ q(0− 1)+ 1

2
(m + 1)(q − 1) = (m − 1)(q − 1)

2
.

Definition 5.9.13. Let UL = U (0)L be the set of units of AL , i.e., UL =
{y ∈ AL | vP (y) = 0}. For i ≥ 1, let U (i)L = 1+ P i .

Proposition 5.9.14.

(1) U (0)L /U
(1)
L
∼= 	(P)∗.

(2) For i ≥ 1,U (i)L /U (i+1)L
∼= P i/P i+1 ∼= 	(P).

Proof.

(1) Let ϕ : U (0)L −→ 	(P)∗ = (AL/P)∗ be the natural map. Clearly, ϕ is surjec-
tive and we have

kerϕ =
{
x ∈ U (0)L | x + P = 1+ P

}
= 1+ P = U (1)L .

(2) Let i ≥ 1 and let ϕ : P i → 1+P i = U (i)L be defined by ϕ(y) = 1+ y. Then
ϕ is a bijective function that is not a homomorphism. The function

ϕ̃ : P i −→ U (i)L /U
(i+1)
L

is surjective. We will see that ϕ̃ is a homomorphism.
We have ϕ̃(y + z) = 1+ (y + z) mod U (i+1)L . On the other hand,

ϕ̃(y)ϕ̃(z) = (1+ y)(1+ z) mod U (i+1)L

= 1+ (y + z)+ yz mod U (i+1)L .
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Since y, z ∈ P i , we have yz ∈ P2i ⊆ P i+1. Thus 1 + yz ≡ 1 mod U (i+1)L ,
from which we obtain

ϕ̃(y)ϕ̃(z) = 1+ (y + z) mod U (i+1)L = ϕ̃(y + z).

This proves that ϕ̃ is an epimorphism.
Furthermore, it is clear that ker ϕ̃ = P i+1. Therefore

(
P i/P i+1,+) ∼=(

U (i)L /U
(i+1)
L , ·

)
.

Finally, the AL/P-modules P i/P i+1 and AL/P are isomorphic and hence
they are isomorphic as L̄-vector spaces. It follows that P i/P i+1 has dimen-
sion 1. Indeed

AL
ψ→ P i/P i+1

x �→ π i x + P i+1

is an epimorphism and kerψ = P . ��

Proposition 5.9.15. σ ∈ Gi if and only if σ(π)/π ∈ U (i)L .

Proof. By substituting G by G0 and K by KG0 if necessary, we may assume that L/K
is totally ramified. In this case AK [π ] = AL (Proposition 5.5.11).

By Proposition 5.9.3, it follows that

σ ∈ Gi ⇐⇒ vP (σ (π)− π) = 1+ vP
(
σ(π)

π
− 1
)
≥ i + 1

⇐⇒ vP
(
σ(π)

π
− 1
)
≥ i

⇐⇒ σ(π)

π
= 1+ t, t ∈ P i ⇐⇒ σ(π)

π
∈ 1+ P i = U (i)L . ��

Theorem 5.9.16. The function that to each σ ∈ Gi assigns
σ(π)
π

induces, by taking

quotients, a monomorphism of Gi/Gi+1 into a subgroup of U (i)L /U
(i+1)
L . Furthermore,

this monomorphism is independent of the prime element π chosen.

Proof. If π ′ is any other prime element, then π ′ = πu with u ∈ UL . Therefore
σ(π ′)
π ′ =

σ(π)
π

σ(u)
u . If σ ∈ Gi we have σ(u) ≡ u mod P i+1. Thus

σ(u)

u
≡ 1 mod U (i+1)L , so

σ(π ′)
π ′

≡ σ(π)
π

mod U (i+1)L .

Hence the function θ : Gi −→ U (i)L /U
(i+1)
L , defined by θ (σ ) = σ(π)

π
mod U (i+1)L ,

does not depend on the prime element.
If σ , φ ∈ Gi we have

(σφ) (π)

π
= (σφ) (π)

φπ

φπ

π
= σ(π)

π

φ(π)

π

σ(v)

v
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with v = φ(π)
π
. Since φ(π) ≡ π mod P i+1, it follows that v ∈ UL , σvv ≡ 1 mod

U (i+1)L . Therefore θ is a homomorphism, and clearly

ker θ =
{
σ

∣∣∣ σ(π)
π

≡ 1 mod U (i+1)L

}
= Gi+1. ��

Corollary 5.9.17. G0/G1 is a cyclic group whose order is relatively prime to the char-
acteristic of 	(P).

Proof. We have G0/G1 ⊆ U (0)L /U
(1)
L
∼= 	(P)∗. Thus G0/G1 is a finite subgroup of

the group of units of L̄∗. Therefore it is a cyclic group whose order is relatively prime
to the characteristic of 	(P). ��

Corollary 5.9.18. If ℘ is tamely ramified, then G0 is a cyclic group.

Proof. In this case G1 is trivial. ��

Corollary 5.9.19. If the characteristic of 	(P) is p > 0, then the quotients Gi/Gi+1
(i ≥ 1) are elementary abelian p-groups, i.e., Gi/Gi+1 ∼= (Z/pZ)α for some α. Also,
G1 is a p-group.

Proof. For i ≥ 1, U (i)L /U (i+1)L is isomorphic to 	(P). Therefore it is an abelian group
such that p

(
U (i)L /U

(i+1)
L

)
= 0. It follows that Gi/Gi+1 is an elementary abelian

p-group.
Since |G1| =

∏∞
i=1 |Gi/Gi+1|, each Gi/Gi+1 is of order pri for some ri ≥ 0.

Furthermore, for i large enough we have |Gi/Gi+1| = 1. Hence G1 is a p-group. ��

Corollary 5.9.20. G0 is a solvable group.

Proof. This follows from the facts that G0/G1 is a cyclic group, in particular solvable,
and that G1 is a p-group. ��

5.10 Exercises

Exercise 5.10.1. Let K/k be a function field and let x, y ∈ K \ k be such that [K :
k(x)] and [K : k(y)] are relatively prime. Prove that K = k(x, y).

Exercise 5.10.2. Give an explicit example of an extension of function fields L/K and
a valuation v on L such that v|K : K ∗ → Z is not surjective.

Exercise 5.10.3. Let X , T be two variables over the field of two elements k = F2. Let
K = k

(
T, X4 + T X2 + 1) and L = k (T, X). Prove that Ls = k

(
T, X2

)
, and that

Li = K . In particular, we have Li Ls �= L .
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Exercise 5.10.4. Let L/K be a finite extension of fields. Prove that L = Ls Li if and
only if L/Li is a separable extension.

Exercise 5.10.5. With the notation of Exercise 5.10.4, prove that if L/K is a normal
extension, then L = Ls Li .

Exercise 5.10.6. Prove or give a counterexample: Let L/	 be an arbitrary extension of
K/k. Then no place of L is variable over K . (See Proposition 5.1.12).

Exercise 5.10.7. Give an example of a function field extension L/K , and places P of
L and p of K , such that:

(i) eL/K (P|p) > 1.
(ii) dL/K (P|p) > 1.
Exercise 5.10.8. Let L/	 be an extension of K/k. Show that the following conditions
are equivalent:

(i) 	 is an algebraic extension of k.
(ii) L is an algebraic extension of K .
(iii) If P is a prime divisor of L above the place p of K , then 	(P) is an algebraic

extension of k(p).

Exercise 5.10.9. Let L/E be a finite normal field extension and let G := Aut(L/E).
Let v be a valuation of E . If w is an extension of v to L and σ ∈ G, we define

(σw)(x) = w(σ−1x) for x ∈ L . Equivalently, (σw)(σ y) = w(y).
Assume that there exist two extensions w and w′ of v such that σw �= w′ for all

σ ∈ G.
Then by the approximation theorem there exists x ∈ L such that w′(x) > 0,

(σ−1w)(x) = 0, and σ−1w′(x) ≥ 0 for all σ ∈ G.
Consider y = NL/E x .
Prove that the above implies v(y) > 0 and v(y) = 0.
This contradiction shows that given two arbitrary extensions w, w′ of v, there

exists σ ∈ G such that σw = w′. That is, G acts transitively over the extensions w
of v.

Exercise 5.10.10. Let k be an algebraically closed field and let K/k be a function
field. Let L/K be a finite Galois extension, p be a prime divisor of K , and P a prime
divisor of L such that P | p. We have P|K = p. Prove that D(P|p) = I (P|p).
Exercise 5.10.11. With the hypotheses of Exercise 5.10.10, assume that k is a finite
field. Prove that D(P|p)I (P|p) is a cyclic group.

Exercise 5.10.12. Let L/K be a finite Galois extension of function fields and let
F/K be an arbitrary extension such that L ∩ F = K . Let E = LF . The function
ϕ : Gal(E/F)→ Gal(L/K ) defined by ϕ(σ) = σ |L is an isomorphism.

LetP be a prime divisor of F andQ be a prime divisor of E overP. Put p = P|K
and let ℘ = Q|L . Prove that:
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(i) D(Q | P)|L ⊆ D(℘ | p);
(ii) I (Q | P)|L ⊆ I (℘ | p);
Deduce that if P is ramified in E/F and the field of constants 	 of L is perfect,

then p is ramified in L/K .
Note that if 	 is not perfect, then pmay be unramified. In this case p is inseparable.

See Exercise 5.10.18.

Exercise 5.10.13. Let L/K be a finite separable extension and let L̃ be the Galois
closure of L/K . We have

L̃ =
∏
σ∈H

Lσ , H = {σ : L → K̄ | σ |K = Id
}
,

where K̄ denotes the algebraic closure of K . Assume that the field of constants k of
K is a perfect field.
Let p be a prime divisor of K such that p is nonramified in L . Prove that p is

nonramified in L̃/K .
Hint: Let I (P|p) be the inertia group of P | p in L̃/K . Let F = L I (P|p) be the

fixed field. Prove that Lσ ⊆ F for all σ ∈ H .

Exercise 5.10.14. Let k be an algebraically closed field and K = k(x). Let p1, p2, p3
be three distinct prime divisors of K and let σ ∈ Autk k(x) be such that pσi = pi for
i = 1, 2, 3.

Prove that σ = IdK .
Is the same result true in the case that k is not algebraically closed?

Exercise 5.10.15. Let k be a finite field and let K be a function field over k. Suppose L
and E are two distinct Galois extensions of K of degree p, where p is a prime number,
such that L ∩ E = K .

LetPK be a prime divisor of K . LetPL andPE be places of L and E respectively
such that PK = P

p
L , PK = P

p
E in L/K and E/K respectively. In other words, we

are assuming that PK is ramified in L/K as well as in E/K .
Set F = LE and letPF be a place of F such thatPF | PK . If p is different from

the characteristic of k, the inertia group I (PF |PK ) is a cyclic group.
Using this fact, prove that there exists a unique field M satisfying K � M � F

(that is, [M : K ] = p) such that PK is not ramified in M/K .

Exercise 5.10.16. Prove that 	 = k
(
u1/p, v1/p

)
in Example 5.2.31.

Exercise 5.10.17. Let K ⊆ M ⊆ L be any tower of function fields. Prove that λL/K =
λL/MλM/K (see Theorem 5.3.4).

Exercise 5.10.18. Let L = k(x, y) be given by y p− y = ax p, where k is an imperfect
field of characteristic p and a ∈ k \ k p. Then L/k(x) is a separable extension and the
field of constants of L is k. Show that if p∞ is the infinite prime in k(x) and q is a
place in L above p∞, then q | p∞ is purely inseparable. In particular, Theorem 5.2.21
is no longer true if k is not a perfect field.



5.10 Exercises 189

Exercise 5.10.19. Let k be any field of characteristic p and let K/k be a function field
over k. If L/K is a cyclic extension of degree p such that L = K (y) with y p − y = α
and vp(α) ≥ 0 for a place p of K , prove that p is unramified.

Exercise 5.10.20. Prove that if L/K is a normal extension of function fields then 	/k
is a normal extension, where 	 and k are the fields of constants of L and K respectively.

Exercise 5.10.21. Give an example in which con: CK → CL and con: C0,K → C0,L
are not injective (see Exercise 8.7.20).

Exercise 5.10.22. Let L/	 be a finite extension of K/k. Is it true that [	 : k] ≤ [L :
K ]?

Exercise 5.10.23. Let A be a Dedekind domain with only a finite number of prime
ideals. Prove that A is a principal ideal domain.

Exercise 5.10.24. Let A be a Dedekind domain and let S be a multiplicative subset of
A. Prove that S−1A is a Dedekind domain.

Exercise 5.10.25. Let K be a function field and let T = {p1, . . . , pr }, r ≥ 1, be
a finite set of prime divisors of K . Let L/K be a finite separable extension and let
T ∗ = {P | P is a place of L ,P | pi for some 1 ≤ i ≤ r}. Let ϑK := ⋂p∈T ϑp and
ϑL :=

⋂
P∈T ∗ ϑP. Prove that ϑK is the integral closure of ϑK in L .

Exercise 5.10.26. If A is a Dedekind domain, K := quot A, L/K is a finite separable
extension, and B is the integral closure of A in L , prove that S−1B is the integral
closure of S−1A in L , where S ⊆ K is a multiplicative subset of K .

Exercise 5.10.27. Prove the claim that we may assume that the element α found in the
proof of Theorem 5.7.21 belongs to B.

Exercise 5.10.28. Prove Theorem 5.7.23.

Exercise 5.10.29. Let L/K be the extension given in Exercise 5.10.18, and suppose
a ∈ k \ k p. Prove that L/K is an unramified extension, i.e., every place of k(x) is
unramified in L .

Exercise 5.10.30. Let L/K be a cyclic extension of function fields of degree pn ,
where p is a prime number and n ≥ 1. Assume that the field of constants of K is
perfect. Let p be a prime divisor of K . Let K0 = K ⊆ K1 ⊆ · · · ⊆ Kn = L be such
that [Ki : K0] = pi .

Assume that p is unramified in Ki/K0 but ramified in Ki+1/K0. Prove that any
prime divisor P of Ki that lies above p is fully ramified in L/Ki . Deduce that
e(B|p) = e(B|P) = pn−i , where B is a prime divisor in L above p. In other words,
if a prime divisor in this kind of extension starts ramifying at some point, it keeps
ramifying all the way.

Exercise 5.10.31. Prove Proposition 5.9.1.
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Exercise 5.10.32. Prove Proposition 5.9.3.

Exercise 5.10.33. Give an example of a constant function field extension such that
there exist ramified prime divisors and unramified prime divisors. That is, if the field
of constants is not perfect, then Corollary 5.2.26 and Theorem 5.2.32 are no longer
true.

Exercise 5.10.34. Let A be a Dedekind domain, and let a, b be nonzero integral ideals
such that a ⊆ b. Show that there exists d ∈ A \ {0} such that (a, (d)) = a+ (d) = b.

Exercise 5.10.35. Let A be a Dedekind domain and a, b, c nonzero integral ideals such
that a ⊆ b. Show that the A-modules bc

ac and
b
a are isomorphic.

Exercise 5.10.36. Let A be a Dedekind domain, and a, b nonzero integral ideals of A.
Prove that there exists an integral ideal c such that ac is principal and b+ c = (b, c) =
(1) = A.
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6.3 Zeta Functions and L-Series

Definition 6.3.1. For a prime divisor ℘ of K , the cardinality of k (℘) is called the
norm of ℘ and it will be denoted by N (℘).

Observe that if f℘ =
[
k (℘) : k

] = dK (℘) and |k| = q, then N (℘) = |k (℘)| =
qdK (℘).

Definition 6.3.1 can be extended to arbitrary integral divisors

A =
�
℘∈PK

℘v℘(A)

as follows:

N (A) =
�
℘∈PK

N (℘)v℘(A) =
�
℘∈PK

qdK (℘)v℘(A) = q
∑
℘ dK (℘)v℘(A) = qdK (A).

Clearly we have N (AB) = N (A) N (B) for A,B ∈ DK .

Definition 6.3.2. We define the zeta function of K as

ζK (s) =
∑

A integral

1

(N (A))s
=

∑
A integral

q−dK (A)s .

Theorem 6.3.3. The series ζK (s) converges absolutely and uniformly in compact sub-
sets of {s ∈ C | Re s > 1}.
Proof. Let t = 2g−2

�
. We have

ζK (s) =
∑

A integral

1

(N (A))s
=

∑
A integral

1

qdK (A)s
=

∞∑
n=0

A�nq
−n�s

=
t∑

n=0
A�nq

−n�s +
∞∑

n=t+1
A�nq

−n�s .

By Theorem 6.2.6,

∞∑
n=t+1

A�nq
−n�s = h

q − 1
∞∑

n=t+1

(
qn�−g+1 − 1

)
q−n�s .

Now

∞∑
n=t+1

∣∣∣(qn�−g+1 − 1) q−n�s∣∣∣ = ∞∑
n=t+1

(
qn�−g+1 − 1

)
q−n�Re s

= 1

qg−1
∞∑

n=t+1

(
q1−Re s

)n� − ∞∑
n=t+1

(
q−Re s

)n�
,
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from which the result follows. ��
We make the substitution u = q−�s , Bn = A�n . Then ZK (u) = ζK (s) =∑∞
n=0 Bnun .
The canonical class W is of degree 2g − 2; there are (h − 1) classes C of degree

2g − 2 that are different from the class W , and we have
N (W ) = g, and N (C) = (2g − 2)− g + 1 = g − 1

for C �= W, and d(C) = 2g − 2 (Corollaries 3.5.5 and 3.5.6).
Therefore A2g−2 = qg−1

q−1 +(h−1) q
g−1−1
q−1 and A�n = h

(
q�n−g+1−1

q−1
)
for n > 2g−2

�
.

Proposition 6.3.4. Let t = 2g−2
�

. Then

B j −
(
q� + 1) Bj−1 + q�Bj−2 = 0 for j > t + 2

and

Bt+2 −
(
q� + 1) Bt+1 + q�Bt = qg+�−1.

Proof. For j > t + 2, we have
j� > (t + 2)� = t� + 2� = 2g − 2+ 2� ≥ 2g,

( j − 1)� > (t + 1)� = t� + � = 2g − 2+ � ≥ 2g − 1,
( j − 2)� > t� = 2g − 2.

It follows that Bj − (q� + 1) Bj−1 + q�Bj−2 = 0.
On the other hand, Bt+2 − (q� + 1) Bt+1 + q�Bt = q�+g−1. ��
Now we consider

(1− u)
(
1− q�u

)
ZK (u)

=
(
1− (

1+ q�
)
u + q�u2

)
ZK (u)

=
∞∑
n=0

Bnu
n −

∞∑
n=0

(
1+ q�

)
Bnu

n+1 +
∞∑
n=0

q�Bnu
n+2

=
∞∑
n=0

(
Bn −

(
1+ q�

)
Bn−1 + q�Bn−2

)
un (with B−1 = B−2 = 0)

=
t+2∑
n=0

(
Bn −

(
1+ q�

)
Bn−1 + q�Bn−2

)
un

(Proposition 6.3.4, with
A0 = B0 = 1)

= 1+ (
B1 −

(
q� + 1)) u + t+2∑

n=2

(
Bn −

(
1+ q�

)
Bn−1 + q�Bn−2

)
un .

Thus the element (1− u) (1− q�u) ZK (u) = PK (u) of Z[u] is a polynomial.
Let PK (u) = a0+ a1u+ a2u2+· · ·+ at+2ut+2, a0 = 1, a1 = B1− (q� + 1), and

at+2 = qg+�−1 (Proposition 6.3.4).



6.3 Zeta Functions and L-Series 197

Theorem 6.3.5. The function ZK (u) is a rational function and satisfies

ZK (u) = PK (u)

(1− u) (1− q�u)
,

where PK (u) ∈ Z[u] is a polynomial of degree t + 2 = 2g−2
�
+ 2.

Furthermore, PK (1) = h q
�−1
q−1 = limu→1(1− u) (1− q�u) ZK (u).

Proof. Setting B−1 = B−2 = 0, we have

PK (1) =
t+2∑
n=0

(
Bn −

(
1+ q�

)
Bn−1 + q�Bn−2

)
=

t+2∑
n=0

(
Bn − Bn−1 − q�Bn−1 + q�Bn−2

)
= Bt+2 − B−1 − q� (Bt+1 − B−2)
= At�+2� − q�At�+�
= A2g−2+2� − q�A2g−2+�

= h
q2g−2+2�−g+1 − 1

q − 1 − q�h
q2g−2+�−g+1 − 1

q − 1
= h

q − 1
(
qg+2�−1 − 1− qg+2�−1 + q�

)
= q� − 1

q − 1 h. ��

Corollary 6.3.6. ZK (u) has a simple pole for u = 1. ��

In order to prove the equality � = 1, we need another expression for ζK (s).
Theorem 6.3.7 (Product Formula).

ζK (s) =
�
℘∈PK

(
1− N (℘)−s

)−1
with Re s > 1.

Proof. Let ℘ be a prime divisor, and d (℘) = n. Then

a℘ =
(
1− N (℘)−s

)−1 − 1 = 1

1− q−ns
− 1 = q−ns

1− q−ns
= 1

qns − 1 .

We have |qns − 1| ≥ |qns | − 1 = qnα − 1, with α = Re s > 1. Therefore
∣∣a℘∣∣ ≤

1
qnα−1 ≤ 2

qnα for n sufficiently large.
Now,

|{℘ | d (℘) = n}| ≤ An = h

(
qn−g+1 − 1

q − 1

)
, with n > 2g − 2.
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Therefore we have

∑
n!0

∣∣a℘∣∣ ≤ h

q − 1q
−g+1

∞∑
n=0

2

qn(α−1)
− h

q − 1
∞∑
n=0

2

qnα
<∞,

and hence
#
℘∈PK

(
1− N (℘)−s

)−1 is absolutely convergent. Rearranging the terms
of the product, we obtain�
℘∈PK

(
1− N (℘)−s

)−1 = �
℘∈PK

(
1

1− N (℘)−s

)

=
�
℘∈PK

( ∞∑
n℘=0

(
N (℘)−n℘s

)) =∑
N

(
℘
α1
1 · · ·℘αrr

)−s
,

where the sum is taken over all powers of the divisors ℘1, . . . , ℘r and αi ≥ 0 for
i = 1, . . . , r . Therefore�

℘∈PK

(
1− N (℘)−s

)−1 = ∑
℘1,... ,℘r∈PK

αi≥0

N
(
℘
α1
1 · · ·℘αrr

)−s
=

∑
A∈DK integral

1

(N (A))s
= ζK (s) . ��

Let |k| = q , 	 = Fq f , and let L = K	 be the extension of constants. We wish
to compare ζL (s) with ζK (s) when f = �. For a place ℘ of K , � divides dK (℘),
and if P1, . . . ,Pr are the prime divisors of L over ℘, by Theorem 6.2.1 we have
r = (dK (℘) , �) = �, whence there always exist � factors in L over any given prime
divisor of K . Furthermore, we have

dL (Pi ) = dK (℘)

(dK (℘) , �)
= dK (℘)

�
.

On the other hand, N (Pi ) = (q�)dL (Pi ) = q�dK (℘)/� = qdK (℘) = N (℘).
Therefore

ζL (s) =
�

P∈PL

(
1− 1

N (P)s
)−1

=
�
℘∈PK

⎛⎝�
P |℘

(
1− 1

N (P)s
)−1⎞⎠

=
�
℘∈PK

(
1− 1

N (℘)s

)−�
=

⎛⎝ �
℘∈PK

(
1− 1

N (℘)s

)⎞⎠−� = ζK (s)� .
Thus ζL (s) = ζK (s)�. On the one hand, by Corollary 6.3.6, both ζL (s) and ζK (s)

have a pole of order 1 at s = 0 (or at u = 1 with the change of variables u = q−�s).
On the other hand, ζK (s)� has a pole of order � at s = 0. It follows that � = 1.

We have obtained the following theorem:



6.3 Zeta Functions and L-Series 199

Theorem 6.3.8 (F.K. Schmidt). Let K/k be any congruence function field and set

� = min {n ∈ N | there exists A ∈ DK , d (A) = n} .

Then � = 1. ��

Corollary 6.3.9. ZK (u) = PK (u)
(1−u)(1−qu) , where u = q−s , PK (u) ∈ Z[u] is of degree

2g, PK (u) = 1+ (A1 − (q + 1)) u+· · ·+qgu2g, and PK (1) = h is the class number
of K .

Proof. In Proposition 6.3.4 we wrote t = 2g−2
�
, so that Bn = A�n = An , t = 2g − 2,

q�−1
q−1 = 1, etc. Substituting these expressions in Theorem 6.3.5 we obtain the result. ��

Corollary 6.3.10. If K is a congruence function field of genus 0, then ZK (u) =
1

(1−u)(1−qu) . ��

Now we will study the L-series of a congruence function field.

Definition 6.3.11. A character χ of finite order of the group of classes CK is a homo-
morphism χ : CK −→ C∗ defined so that there exists n ∈ N satisfying χn = 1. In
other words, χ (CK ) ⊆ {ξ ∈ C | ξn = 1 for some n ∈ N}.

A character χ can be extended to the group of divisors χ : DK → C∗, by setting
χ (A) = χ (APK ), where PK is the principal class. Note that |χ(A)| = 1.
Definition 6.3.12. Given a character χ of finite order over DK , we define the L-series
associated to χ by

L (s, χ, K ) =
∑

A integral

χ (A)
1

(N (A))s
, where s ∈ C and Re s > 1.

Theorem 6.3.13. The series
∑

A integral χ (A)
1

(N(A))
s converges absolutely and uni-

formly in compact subsets of {s ∈ C | Re s > 1}.
Proof. This follows from Theorem 6.3.3 and from the fact that |χ (A)| = 1 for all
A ∈ DK . ��

We have the following product formula, which is an immediate consequence of
Theorem 6.3.7:

Theorem 6.3.14. L (s, χ, K ) =#
℘∈PK

(
1− χ(℘)

N (℘)s

)−1
for all s such that Re s > 1.

��
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6.4 Functional Equations

In this section, we consider the case g = gK = 0, which implies that

ZK (u) = 1

(1− u)(1− qu)
or ζK (s) = 1(

1− q−s
) (
1− q1−s

) .
We have

q−sζK (s) = 1(
1− q−s

)
(qs − q)

= 1

q−s (qs − 1) q (
qs−1 − 1)

= qs−1
1

(1− qs)
(
1− qs−1

) = qs−1ζK (1− s) .

Therefore, q−sζK (s) = qs−1ζK (1− s) and g = 0.
For g > 0, consider u = q−s and ZK (u) = ζK (s). Then

ZK (u) = PK (u)

(1− u)(1− qu)
,

PK (u) = a0 + a1u + · · · + a2gu
2g, a0 = 1, and a2g = qg.

Theorem 6.4.1. For 0 ≤ i ≤ 2g, we have a2g−i = aiqg−i .

Proof. For i = 0, we have a2g = a2g−0 = qg = a0qg−0. In general, ai = Ai −
(q + 1)Ai−1+ q Ai−2, where Ai is the number of integral divisors of degree i (see the
argument preceding Theorem 6.3.5). We obtain Ai =

∑
C∈CK
d(C)=i

qN (C)−1
q−1 .

By the Riemann–Roch theorem, we have

N (C) = d(C)− g + 1+ N
(
WC−1

)
= i − g + 1+ N

(
WC−1

)
.

Now, d
(
WC−1

) = 2g−2−i , and when C runs through all classes of degree i ,WC−1
runs trough all classes of degree 2g − 2− i .

Since there are h classes of each degree, where h is the class number of K , we
have

(q − 1)Ai =
∑

d(C)=i
qN (C) −

∑
d(C)=i

1 =
∑

d(C)=i
qN (C) − h.

Hence,

(q − 1)Ai + h =
∑

d(C)=i
qN (C) =

∑
d(C)=i

qi−g+1+N (WC−1)

= qi−g+1
∑

d(C)=i
qN (WC−1) = qi−g+1

∑
d(C)=2g−2−i

qN (C)

= qi−g+1
(
(q − 1)A2g−2−i + h

)
.
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Therefore

(q − 1)A2g−2−i = (q − 1)Ai + h

qi−g+1
− h,

(q − 1)A2g−1−i = (q − 1)A2g−2−(i−1) = (q − 1)Ai−1 + h

qi−g
− h,

(q − 1)A2g−i = (q − 1)A2g−2−(i−2) = (q − 1)Ai−2 + h

qi−g−1
− h.

It follows that a2g−i = qg−i ai . ��

Corollary 6.4.2. We have

PK

(
1

qu

)
= q−gu−2g PK (u) and u1−g ZK (u) = (qu)g−1 ZK

(
1

qu

)
.

Proof. Notice that

PK

(
1

qu

)
= a0 + a1

(
1

qu

)
+ · · · + a2g

(
1

qu

)2g
= 1

(qu)2g

2g∑
i=0

ai (qu)
2g−i

= q−gu−2g
2g∑
i=0

aiq
g−i u2g−i = q−gu−2g

2g∑
i=0

a2g−i u2g−i

= q−gu−2g PK (u).

Also,

ZK

(
1

qu

)
=

PK
(
1
qu

)
(
1− 1

qu

) (
1− q

qu

) = q−gu−2g PK (u)
(qu − 1)(u − 1)qu

2

= q1−gu2(1−g)
PK (u)

(1− u)(1− qu)
= q1−gu2(1−g)ZK (u). ��

Corollary 6.4.2 is the functional equation of the zeta function in terms of the vari-
able u = q−s . Since ζK (s) = ZK

(
q−s

)
, we obtain, in terms of the variable s, the

following result:

Theorem 6.4.3 (Functional Equation for the Zeta Function). We have

qs(g−1)ζK (s) = q(1−s)(g−1)ζK (1− s) for all s ∈ C.

In particular, ζK (s) is a meromorphic function in the whole complex plane C with
simple poles in�

s
∣∣∣ q−s = u ∈

�
1,
1

q

��
=

�
a + 2kπ i

ln q

∣∣∣ k ∈ Z, a = 0, 1
�
.
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Proof. Setting u = q−s , we obtain

qs(g−1)ζK (s) = u1−g ZK (u) = (qu)g−1ZK
(
1

qu

)
= q(1−s)(g−1)ZK

(
qs−1

)
= q(1−s)(g−1)ζK (1− s) .

In the expression ZK (u) = PK (u)
(1−u)(1−qu) , the denominator is equal to zero for u = 1

and u = 1
q . On the other hand, PK (1) = h �= 0 (Corollary 6.3.9) and PK

(
1
q

)
=

q−g PK (1) = q−gh �= 0 (Corollary 6.4.2). Therefore u = 1 and u = q−1 are the only
poles of ZK (u) and they are simple.

In terms of the variable s we have the following equivalences:

u = q−s = 1⇔ qs = es ln q = 1⇔ s ln q = 2π j i, j ∈ Z ⇔ s = 2π j i

ln q
, j ∈ Z,

u = q−s = q−1 ⇔ qs = q ⇔ qs−1 = 1⇔ s = 1+ 2π j i

ln q
, j ∈ Z. ��

Coming back to the series L , let χ be a character of finite order.

Proposition 6.4.4. If χ
(
CK ,0

) = 1, then
L (s, χ, K ) = ζK

(
s − 2π iα

ln q

)
,

where χ (C0) = e2π iα and C0 is a class of degree 1. Equivalently,

L (s, χ, K ) = ZK
(
e2π iαu

)
.

Proof. CK is isomorphic to CK ,0 ⊕ 〈C0〉 under the following identification: if C is an
arbitrary class of degree n, C = CC−n0 Cn

0 . Then

χ (C) = χ (
CC−n0

)
χ

(
Cn
0

) = χ (C0)n = e2π iαn .

We have

L (s, χ, K ) =
∑

A integral

χ (A)

(N (A))s
=

∑
C ′ ∈CK ,0

∑
A∈C ′ Cn0
A integral

∞∑
n=0

χ (A)

(N (A))s

=
∑

C ′ ∈CK ,0

∑
A∈C ′ Cn0
A integral

∞∑
n=0

e2π iαnq−ns

=
∑

C ′ ∈CK ,0

∑
A∈C ′ Cn0
A integral

∞∑
n=0

q(
2π iα
ln q −s)n

=
∑

A integral

(N (A))−(s−
2π iα
ln q ) = ζK

(
s − 2π iα

ln q

)
.
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Also, ζK
(
s − 2π iα

ln q

)
= ZK

(
q−sq2π iα/ln q

) = ZK
(
e2π iαu

)
. ��

Corollary 6.4.5. If χ
(
CK ,0

) = 1, then the series L satisfies the functional equation
qs(g−1)L (s, χ, K ) = χ (W ) q(1−s)(g−1)L (1− s, χ̄ , K ) ,

where W is the canonical class and χ̄ is the conjugate of χ , i.e., χ̄ (A) := χ (A) =
χ(A−1).

Proof. Using the functional equation of Corollary 6.4.2 and setting u ′ = e2π iαu, we
obtain

qs(g−1)L (s, χ, K ) = qs(g−1)ZK
(
u ′

) = qs(g−1)(qu ′ )g−1(u ′ )g−1ZK
(
1

qu ′

)
= q(s+1)(g−1)q−s(2g−2)

(
e2π iα

)2g−2
ZK

(
1

qu
e−2π iα

)
= q(1−s)(g−1)

(
e2π iα

)2g−2
ZK

(
e−2π iα

qu

)
.

Since d(W ) = 2g − 2, χ (W ) = (
e2π iα

)(2g−2)
, and χ̄ (C0) = e−2π iα , it follows

that

qs(g−1)L (s, χ, K ) = q(1−s)(g−1)χ (W ) ZK
(
qs−1−

2π iα
ln q

)
= q(1−s)(g−1)χ (W ) ζK

(
1− s + 2π iα

ln q

)
and

L (1− s, χ̄ , K ) = ζK
(
1− s −

(
−2π iα
ln q

))
= ζK

(
1− s + 2π iα

ln q

)
.

Therefore

qs(g−1)L (s, χ, K ) = q(1−s)(g−1)χ (W ) L (1− s, χ̄ , K ) . ��
The functional equation given by Corollary 6.4.5 is satisfied for any character of

finite order. However, we need to provide a different proof from the one given in the
case χ

(
CK ,0

) = 1.
Let χ be such that χ

(
CK ,0

) �= 1. Then CK ,0 �= 1 and g > 0 (Proposition 4.1.5).
Let C ′0 be a class of degree 0 such that χ

(
C ′0

) �= 1. We have
χ

(
C ′0

) ∑
C0∈CK ,0

χ (C0) =
∑

C0∈CK ,0
χ

(
C ′0C0

) = ∑
C0∈CK ,0

χ (C0) ,

that is,
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(
χ

(
C ′0

)− 1)
⎛⎝ ∑
C0∈CK ,0

χ (C0)

⎞⎠ = 0.
Since χ

(
C ′0

) �= 1, it follows that∑C0∈CK ,0 χ (C0) = 0.
Let C1 be a class of degree 1. We have

(q − 1)L (s, χ, K ) = (q − 1)
∑

A integral

χ (A)
1

(N (A))s

=
∞∑

d(C)=0
(q − 1)

{
qN (C) − 1
q − 1 χ (C) q−d(C)s

}

=
∞∑
n=0

∑
C0∈CK ,0

χ
(
C0C

n
1

)
q−ns

(
qN (C0C

n
1 ) − 1

)
=

∑
C0∈CK ,0

χ (C0)
∞∑
n=0
χ (C1)

n
(
qN (C0C

n
1 ) − 1

)
q−ns

=
∑

C0∈CK ,0
χ (C0)

2g−2∑
n=0

χ (C1)
n
(
qN (C0C

n
1 ) − 1

)
q−ns

+
∑

C0∈CK ,0
χ (C0)

∞∑
n=2g−1

χ (C1)
n
(
qn−g+1 − 1

)
q−ns .

The second sum is equal to 0 since
∑

C0∈CK ,0 χ (C0) = 0. Therefore

(q − 1)L (s, χ, K ) =
∑

C0∈CK ,0
χ (C0)

2g−2∑
n=0

χ (C1)
n qN (C0C

n
1 )q−ns

−
∑

C0∈CK ,0
χ (C0)

2g−2∑
n=0

χ (C1)
n q−ns .

Again using the fact that
∑

C0∈CK ,0 χ (C0) = 0, we obtain

(q − 1)L (s, χ, K ) =
∑

C0∈CK ,0
χ (C0)

2g−2∑
n=0

χ (C1)
n qN (C0C

n
1 )q−ns .

Writing u = q−s , we have (q − 1)L (s, χ, K ) = ∑2g−2
d(C)=0 χ (C) q

N (C)ud(C),
which is a polynomial in u of degree at most 2g − 2.

The coefficient of u2g−2 is

a =
∑

d(C)=2g−2
χ (C) qN (C) =

∑
C0∈CK ,0

χ (WC0) q
N (WC0).
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From the Riemann–Roch theorem we obtain

N (WC0) = d (WC0)− g + 1+ N
(
C−10

)
,

N
(
C−10

)
= 0 if C0 �= PK , and N (PK ) = 1.

Thus

N (WC0) = 2g − 2− g + 1 = g − 1 if C0 �= PK and N (W ) = g,

and

a =
∑

C0∈CK ,0
C0 �=PK

χ (W ) χ (C0) q
g−1 + χ (W ) qg

= χ (W )
∑

C0∈CK ,0
χ (C0) q

g−1 + χ (W )
(
qg − qg−1

)
=

(
qg−1

)
(q − 1)χ (W ) �= 0.

Therefore (q − 1)L (s, χ, K ) is a polynomial of degree 2g − 2 and its coefficient
of highest degree is (q − 1)χ (W ) qg−1.

Applying again the Riemann–Roch theorem we obtain

(q − 1)L (s, χ, K ) =
2g−2∑
d(C)=0

χ (C) qN (C)ud(C)

=
2g−2∑
d(C)=0

χ (C) qd(C)−g+1+N (WC−1)ud(C)

= qg−1u2g−2χ (W )
2g−2∑
d(C)=0

χ
(
CW−1

)
q−2g+2+d(C)+N (WC−1)ud(C)−2g+2

= qg−1u2g−2χ (W )
2g−2∑
d(C)=0

χ
(
C−1W

)
qd(W

−1C)+N (WC−1)ud(W
−1C)

= qg−1u2g−2χ (W )
2g−2∑

d(C)=0)
χ

(
WC−1

)
qN (WC−1)

(
1

qu

)d(WC−1)

= qg−1u2g−2χ (W )
2g−2∑
d(C)=0

χ̄(C)qN (C)
(
1

qu

)d(C)

= qg−1u2g−2χ (W ) (q − 1)L (1− s, χ̄ , K )

= qg−1q−2s(g−1)(q − 1)χ (W ) L (1− s, χ̄ , K ) .

Therefore L (s, χ, K ) = q(g−1)(1−2s)χ (W ) L (1− s, χ̄ , K ), or in other words,
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qs(g−1)L (s, χ, K ) = q(1−s)(g−1)χ (W ) L (1− s, χ̄ , K ) .

In short, we have the following theorem:

Theorem 6.4.6 (Functional Equation for L-Series ). Let K/k be a congruence func-
tion field with |k| = q, let W be the canonical class, and let χ be a character of finite
order. Then

qs(g−1)L (s, χ, K ) = χ (W ) q(1−s)(g−1)L (1− s, χ̄ , K ) . ��
We end this chapter with a result that relates L series to the zeta function of an

extension of constants.
Let K/k be a congruence function field with k = Fq , 	 = Fqr , and L = K	. Let

χ j be the character of K that satisfies χ j (C) = e
2π i j
r in every class of degree 1. Then

χ j
(
CK ,0

) = 1 for j = 1, . . . , r , and we have the following result:
Theorem 6.4.7.

ζL (s) =
r�
j=1

L
(
s, χ j , K

)
.

Proof. First, notice that if a, b ∈ N,

a�
n=1

(
1− e

2π in
a bz

)
=

(
1− z

a
(a,b)

)(a,b)
.

Now

ζL (s) =
�

P∈PL

(
1− 1

N (P)s
)−1

=
�
℘∈PK

�
P |℘

(
1− q−srdL (P)

)−1
=

�
℘∈PK

�
P |℘

(
1− q

−s rdK (℘)
(dL/K (P|℘),r)

)−1
(Theorem 6.2.1).

There are (r, dK (℘)) factors of the form P | ℘. Therefore

ζL (s) =
�
℘∈PK

{
1− (NK (℘))−s

r
(r,dK (℘))

}−(r,dK (℘))
=

�
℘∈PK

r�
n=1

(
1− 1

N (℘)s
e
2π in
r dK (℘)

)−1
(a = r, b = dK (℘))

=
r�

n=1
ζK

(
s − 2π in

r ln q

)

=
r�

n=1
L (s, χn, K ) (Proposition 6.4.4). ��
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6.5 Exercises

Exercise 6.5.1. Let k be a finite field with |k| = q. Let K be an elliptic function field
over k with class number h. Find ζK (s) explicitly.

Exercise 6.5.2. Let k be a finite field with |k| = q, and K = k(x, y) with ym = x ,
m ∈ N. Find ζK (s) explicitly.

Exercise 6.5.3. Let K/Fq be a hyperelliptic function field of genus 2. Find ζK (s) ex-
plicitly (see Exercise 10.9.4).
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The Riemann Hypothesis

In Chapter 6 we defined the zeta function of a congruence function field. This def-
inition arises from the natural extension of the usual Riemann zeta function ζ(s) =∑∞

n=1
1
ns . It is known that ζ(s) has a meromorphic extension to the complex plane,

with a unique pole at s = 1. This pole is simple with residue 1. Furthermore, ζ(s)
has zeros at s = −2n (n ∈ N) and these are called the trivial zeros of ζ(s). On the
other hand, ζ(s) has no zeros different from the trivial ones in C \ {s | 0 ≤ Re s ≤ 1}.
Finally, the Riemann hypothesis states that the zeros of ζ(s) other than the trivial ones
lie on the line of equation Re s = 1

2 .
The latter is still an open problem. However, for function fields the answer is

known and is positive. This was proved by André Weil in 1940–1941 [158, 159] and
the main goal of this chapter is to give a proof of the Riemann hypothesis as well as
some applications.

In particular, when considering extensions of constants whose degree is a power
of a prime number, we find that the analogue of Iwasawa’s invariant µ for number
fields is 0 in our case. We end the chapter with the presentation of the analogue of the
Brauer–Siegel theorem on number fields.

7.1 The Number of Prime Divisors of Degree 1

Let k = Fq be a finite field and kr = Fqr the extension of degree r ≥ 1 of k. One
of our goals is to estimate the number of prime divisors of degree n in K/k. For this
purpose we will frequently use the Möbius function µ and the Newton identities. We
now state the definitions and then will prove their main properties.

Definition 7.1.1. An arithmetic function in Q is any function f : N −→ Q. The
Möbius function is the function µ : N −→ Q defined as follows. If n ∈ N and∏r

i=1 p
ai
i is its decomposition into prime divisors, then

µ(n) =
⎧⎨⎩
1 if n = 1,
(−1)r if a1 = · · · = ar = 1,
0 in any other case.
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Lemma 7.1.2. We have ∑
d|n
µ(d) = ε(n) =

{
1 if n = 1,
0 if n > 1.

Proof. We leave the proof to the reader (Exercise 7.7.1). ��
Theorem 7.1.3 (Inversion Formula of Möbius). If f , g are two arithmetic functions
such that

g(n) =
∑
d|n

f (d)

for all n ∈ N, then

f (n) =
∑
d|n

g(d)µ
(n
d

)
=
∑
d|n

g
(n
d

)
µ(d).

Proof. For any two arithmetic functions h and k we define the product h ∗ k by
(h ∗ k)(n) =

∑
d|n

h
(n
d

)
k(d) =

∑
d|n

h(d)k
(n
d

)
.

This product is called the convolution product. The set of arithmetic functions together
with ∗ is a commutative ring with unit element ε, where

ε(n) =
{
1 if n = 1,
0 if n > 1.

Furthermore, if we denote by 1 the function with constant value 1, then by Lemma
7.1.2, µ ∗ 1 = ε. Thus µ = 1−1.

Now, we have g(n) =∑d|n f (d), that is, g = f ∗1. Therefore f = g∗1−1 = g∗µ,
and hence f (n) =∑d|n g(d)µ

( n
d

)
. ��

Now let k be any field, K = k (X1, X2, . . . , Xn) the field of rational functions in
n variables, and let f (T ) =∏n

i=1 (T − Xi ) ∈ K [T ]. Then

f (T ) = T n − σ1T n−1 + σ2T n−2 − · · · + (−1)sσsT n−s + · · · + (−1)nσn,
where σs is the s-symmetric elementary function in X1, X2, . . . , Xn , i.e.,

σ0 = 1,
σ1 =

n∑
i=1

Xi ,

σ2 =
∑
i< j

Xi X j ,

· · · · · ·
σs =

∑
i1<···<is

Xi1 · · · Xis ,

· · · · · ·
σn = X1 · · · Xn .
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Let �m = Xm1 + · · · + Xmn ,m ≥ 1 and �0 = n.

Theorem 7.1.4 (Newton identities). We have

�m − �m−1σ1 + · · · + (−1)m−1�1σm−1 + (−1)mσmm = 0 for 1 ≤ m ≤ n − 1,

and

�m − �m−1σ1 + · · · + (−1)n�n−mσn = 0 for m ≥ n.

Proof. Consider the series T 1−n f ′(T ) in the field of Laurent series K ((T )) (K any
field of characteristic 0). We have

T 1−n f ′(T ) = T 1−n f (T )
f ′(T )
f (T )

= T 1−n
( n∑
i=0
(−1)iσi T n−i

)( n∑
i=1

1

T − Xi

)
= T

( n∑
i=0
(−1)iσi T−i

)( n∑
i=1

∞∑
m=0

Xmi T
−m−1

)
=
( n∑
i=0
(−1)iσi T−i

)( ∞∑
m=0

�mT
−m
)

(7.1)

=
∞∑
m=0

( m∑
s=0
(−1)sσs�m−s

)
T−m,

where σ j = 0 for j > n.
On the other hand,

T 1−n f ′(T ) = T 1−n
(
n−1∑
m=0
(n − m)(−1)mσmT n−m−1

)

=
n−1∑
m=0
(n − m)(−1)mσmT−m . (7.2)

Equating coefficients in (7.1) and (7.2) we obtain the Newton identities. ��

Proposition 7.1.5. Letψ(d) be the number of monic irreducible polynomials of degree
d in Fq [T ]. Then ψ(n) = 1

n

∑
d|n µ

( n
d

)
qd .

Proof. Exercise 7.7.2. ��
If K is a function field with field of constants k, Kr will denote the extension of

constants Kkr = Kr ; the field of constants of Kr is kr (Theorem 6.1.2). Let ZK (u) =
ζK (s) be the zeta function of K , where u = q−s , and let Zr (v) = ζKr (s) be the zeta
function of Kr , where v = (qr )−s = q−rs = ur . Then Zr (v) = Zr (ur ).

Theorem 6.4.7 demonstrates that ζKr (s) =
∏r

j=1 L
(
s, χ j , K

)
, where χ j is the

character satisfying χ j (C) = ξ jr in every class of degree 1, and ξr = e
2π i
r for j =

1, . . . , r .
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By Proposition 6.4.4, L
(
s, χ j , K

) = ζK (s − 2π i j
r ln q

)
.

We have

ζK

(
s − 2π i j

r ln q

)
= ZK

(
q−sq

2π i j
r ln q

)
.

Since q
2π i j
r ln q = eln q

2π i j
r ln q = e

2π i j
r ln q ln q = ξ jr , it follows that

Zr
(
ur
) = Zr (v) = ζKr (s) =

r∏
j=1

L
(
s, χ j , K

) = r∏
j=1

ZK
(
ξ
j
r u
)
.

Thus Theorem 6.4.7 yields the following:

Theorem 7.1.6. If Kr is the extension of constants of degree r of the field K , we have

ZKr (u
r ) =∏r

j=1 ZK
(
ξ
j
r u
)
, where u = q−s and ξr = e

2π i
r . ��

If K0 = Fq(x), we have ZK0 (u) = Z0 (u) = 1
(1−u)(1−qu) by Corollary 6.3.10 and

ZK (u) = PK (u)
(1−u)(1−qu) = Z0 (u) PK (u), PK (u) = ZK (u)

Z0(u)
.

Now PK (u) =
∑2g

i=0 aiu
i with a2g−i = aiqg−i for 0 ≤ i ≤ 2g (Theorem 6.4.1).

We have a0 = 1, a2g = qg , and a1 = A1 − (q + 1), where A1 is the number of
integral divisors of degree 1 and is equal to the number of places of degree 1 (Corollary
6.3.9). We have deg (PK (u)) = 2g and if ω−11 , . . . , ω−12g are the roots of PK (u), then
PK (u) =

∏2g
i=1 (1− ωi u).

Proposition 7.1.7. We have qg = ∏2g
i=1 ωi and N − (q + 1) = −

∑2g
i=1 ωi , where N

is the number of prime divisors of degree 1. Furthermore, PK
(
ω−1i

)
= 0 if and only

if PK
(
ωi
q

)
= 0.

Proof. From PK (u) =
∑2g

i=0 aiu
i =∏2g

i=1 (1− ωi u), it follows that

a2g = qg =
2g∏
i=1
(−ωi ) =

2g∏
i=1
ωi ; a1 = N − (q + 1) = −

2g∑
i=1
ωi .

On the other hand, the functional equation of PK (u) (Corollary 6.4.2) estab-

lishes that PK
(
1
qu

)
= q−gu−2g PK (u). Therefore PK

(
ω−1i

)
= 0 if and only if

PK

(
1

qω−1i

)
= PK

(
ωi
q

)
= 0. ��

We have

1

ωi
= ωi

q
⇐⇒ ω2i = q ⇐⇒ ωi = ±√q.
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Therefore we may rearrange the inverses of the roots of PK (u) to obtain the sequence

ω1, ω
′
1, . . . , ω f , ω

′
f ,
√
q, . . . ,

√
q,−√q, . . . ,−√q

with

f ≤ g, ωi �= ω′i , and ωiω
′
i = q, i = 1, . . . , f.

Let t be the number of times that
√
q appears and let s be the number of times

that −√q appears. Thus 2 f + t + s = 2g. Since qg = ∏2g
i=1 ωi , we have q

g =
q f qt/2(−1)sqs/2. It follows that s is even and so is t . In particular, we may take
f = g, that is, ω1, ω′1, . . . , ωg, ω

′
g, ωiω

′
i = q for all 1 ≤ i ≤ g.

Thus we obtain PK (u) =
∏g

i=1 (1− ωi u)
(
1− ω′i u

)
.

Theorem 7.1.8. The following conditions are equivalent:

(i) The zeros of the zeta function ζK (s) lie on the line of equation Re s = 1
2 ,

(ii) The zeros of the function ZK (u) lie on the circle of equation |u| = q−1/2,
(iii) If ω1, . . . , ω2g are the inverses of the roots of PK (u), then |ωi | = √q for
i = 1, . . . , 2g.

Proof.
(i)⇐⇒ (ii): This equivalence follows from the facts that u = q−s , |u| = q−Re s ,

and ZK (u) = ζK (s). Therefore ZK (u) = ZK
(
q−s
) = ζK (s).

(ii) ⇐⇒ (iii): This follows from ZK (u) = PK (u)
(1−u)(1−qu) , PK (1) = hK �= 0, and

PK
(
1
q

)
= q−g PK (1) �= 0. Therefore the roots of ZK (u) are the roots of PK (u),

which are the ω−1i ’s. Hence (ii) is equivalent to
∣∣∣ω−1i ∣∣∣ = |ωi |−1 = q−1/2, that is,

|ωi | = √q . ��
Our goal is to prove the following analogue of the classical Riemann hypothesis:
Riemann hypothesis: The conditions in Theorem 7.1.8 hold for any congruence

function field.
The proof will be done in several steps.

Proposition 7.1.9. Let N be the number of prime divisors of degree 1 in K . If the
Riemann hypothesis holds, then |N − (q + 1)| ≤ 2g√q.
Proof. We have

N − (q + 1) = −
2g∑
i=1
ωi , so |N − (q + 1)| ≤

2g∑
i=1
|ωi | = 2g√q. ��

Proposition 7.1.10. The Riemann hypothesis holds for the field K if and only if it
holds for the field Kr .
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Proof. By Theorem 7.1.6, we have (with the natural notation)

PKr
(
ur
) = ZKr (u

r )

Z0,r (ur )
=

r∏
j=1

ZK
(
ξ
j
r u
)

Z0
(
ξ
j
r u
) = r∏

j=1
PK
(
ξ
j
r u
)

=
r∏
j=1

2g∏
i=1

(
1− ωiξ jr u

)
=

2g∏
i=1

(
1− ωri ur

)
.

Hence, PKr (u
r ) = ∏2g

i=1
(
1− ωri ur

)
. Therefore ωr1, . . . , ω

r
2g are the inverses of

the zeros of PKr , whence |ωi | =
√
q if and only if

∣∣ωri ∣∣ = √qr , qr = ∣∣Fqr ∣∣, and Fqr
is the field of constants of Kr . ��

Let Nr be the number of prime divisors of degree 1 in Kr .

Proposition 7.1.11. If there exists c > 0 such that |Nr − (qr + 1)| ≤ cqr/2 for all r ,
then the Riemann hypothesis holds for K .

Proof. Applying the operator D = −u d
du ln to both sides of the equality PK (u) =∏2g

i=1 (1− ωi u), we obtain

D (PK (u)) = −u d

du
ln

(
2g∏
i=1
(1− ωi u)

)
= −u

(
2g∑
i=1

d

du
ln (1− ωi u)

)

=
2g∑
i=1

ωi u

1− ωi u =
2g∑
i=1

∞∑
n=1
ωni u

n =
∞∑
n=1

(
2g∑
i=1
ωni

)
un .

We have −∑2g
i=1 ω

n
i = Nn − (qn + 1). Our hypothesis implies that
∣∣Nn − (qn + 1)∣∣ =

∣∣∣∣∣
2g∑
i=1
ωni

∣∣∣∣∣ ≤ cqn/2.

Therefore, if R is the radius of convergence of the series, we have

R = lim sup
n→∞

(∣∣∣∣∣
2g∑
i=1
ωni

∣∣∣∣∣
)−1/n

≥ lim sup
n→∞

(
cqn/2

)−1/n = q−1/2,

and hence R ≥ 1√
q .

On the other hand, D (PK (u)) =
∑2g

i=1
ωi u
1−ωi u implies that the only singularities

are u = ω−1i , 1 ≤ i ≤ 2g, so that

R = min
1≤i≤2g

∣∣∣ω−1i ∣∣∣ ≥ q−1/2. Thus |ωi | ≤ √q for 1 ≤ i ≤ 2g.

Finally, by Proposition 7.1.7, qg = ∏2g
i=1 |ωi | ≤

∏2g
i=1
√
q = qg , which implies

that |ωi | = √q, 1 ≤ i ≤ 2g. ��
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7.2 Proof of the Riemann hypothesis

The purpose of this section is to prove that the conditions of Theorem 7.1.8 hold for
any congruence function field K . Let k = Fq be the field of constants of K .

We first note that in order to prove the Riemann hypothesis, by Proposition 7.1.10
we may assume, extending the field of constants if necessary, that:

(i) q = a2 is a square,
(ii) q > (g + 1)4, where g is the genus of K ,
(iii) K contains a prime divisor of degree 1.

Indeed, K2 = KFq2 has as field of constants Fq2 and q2 is a square. Since q2 > 1,
there exists n such that q2n = (qn)2 > (g + 1)4, so that K2n = Fq2n K has as field of

constants Fq2n , the genus of K2n is equal to g (Theorem 6.1.3), and q2n > (g + 1)4.
Finally, if ℘ is a prime divisor of degree m in K , then if P is above ℘ in K2nm =
Fq2nm K , we have, by Theorem 6.2.1, dL (P) = m

(m,2nm) = m
m = 1. Then K2nm satisfies

(i), (ii), and (iii).
By the above, we may assume that K satisfies (i), (ii), and (iii). Let N be the

number of prime divisors of degree 1 in K . If σ ∈ Aut (K/Fq), then for each place ℘,
℘σ is a place of K and the respective valuations satisfy v℘σ (x) = v℘

(
σ−1x

)
.

Let F̃q be an algebraic closure of k := Fq and let K̃ be an algebraic closure of K .
Consider the Frobenius automorphism

� : K̃ → K̃ , defined by �(x) = xq , � ∈ Aut(K̃/k).

Let ℘ be a prime divisor of K . For any σ ∈ Aut(K/k), consider the corresponding
prime divisor ℘σ . Explicitly, if ϕ℘ is the place associated to ℘, then ϕ℘σ is the place
σϕ℘ given by

ϕ℘σ (α) = σϕ℘(α) = ϕ℘(σ−1α).

Define ℘q as the prime divisor given by the Frobenius automorphism, that is,

ϕ℘q (α) := �ϕ℘(α) = ϕ℘(�−1α) = ϕ℘(α1/q) = ϕ℘(α)1/q .

Notice that ℘q is not the qth power of ℘. Now the respective valuation rings of ℘
and ℘q are given by

ϑ℘ = {α ∈ K | ϕ℘(α) �= ∞} and ϑ℘q = {α ∈ K | ϕ℘q (x) = ϕ℘(x)1/q �= ∞}.

Thus ϑ℘ = ϑ℘q . Therefore ϕ℘ and ϕ℘q are equivalent (Proposition 2.2.13). We
will use the notation ℘ = ℘q to mean that ϕ℘ = ϕ℘q instead of the usual meaning.
Proposition 7.2.1. We have ℘ = ℘q if and only if dK (℘) = 1.
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Proof. Clearly, dK (℘) =
[
ϑ℘/℘ : k

]
. Consider ϕ℘ : K → (

ϑ℘/℘
) ∪ {∞} and

ϕ℘q : K →
(
ϑ℘q /℘

q
) ∪ {∞}. The following equivalences hold:
�ϕ℘(y) = ϕ℘(y)1/q = ϕ℘(y) for all y ∈ K

⇐⇒ ϕ℘(y) = ϕ℘(y)q for all y ∈ K ⇐⇒ ϕ℘(α) = ∞ or ϕ℘(y) ∈ Fq
⇐⇒ ϑ℘/℘ = ϑ℘q /℘q = Fq ⇐⇒ dK (℘) = dK (℘

q) = 1. ��
Proposition 7.2.1 is one of the main results we will be using in the proof of the

Riemann hypothesis. Actually, the N1 = N prime divisors of degree 1 in K/k are
precisely those such that ℘ = ℘q . The Riemann hypothesis is equivalent to |N − (q+
1)| ≤ 2g√q (Propositions 7.1.9, 7.1.10, and 7.1.11). Therefore it suffices to show that
for r large enough and for Kr := KFqr , if Nr denotes the number of places P such
that Pqr = P, then Nr satisfies |Nr − (qr + 1)| ≤ 2gqr/2.

The proof of the Riemann hypothesis presented here is essentially due to Bombieri
[7] (see also [38, 148]). The idea is to construct a function u on K such that every prime
divisor of degree 1 but one is a zero of u, and on the other hand, the degree of u is not
very large.

We have q = a2. Set m = a−1, n = a+2g, and r = m+an. Then the inequality
N − (q + 1) < (2g + 1)√q

becomes

N − 1 < q + (2g)√q +√q = a2 + (2g)a + a

= a(a + 2g)+ a = an + m + 1 = r + 1.
Thus N − 1 ≤ r .

Let S be a divisor of degree 1 in K/k. We have

L
(
S−1

)
⊆ L

(
S−2

)
⊆ · · · ⊆ L

(
S−n

) ⊆ · · · .
Furthermore, since S−n | S−(n−1), then by Theorem 3.1.11,

	
(
S−n

)+ d
(
S−n

) ≤ 	 (S−(n−1))+ d
(
S−(n−1)

)
.

Therefore

0 ≤ 	 (S−n)− 	 (S−(n−1)) ≤ d
(
Sn)+ d

(
S−n+1

)
= n − (n − 1) = 1.

Let t ∈ N and let It be the set of numbers i (1 ≤ i ≤ t) such that 	
(
S−i

) −
	
(
S−(i−1)

) = 1. For each i ∈ It , let ui ∈ L
(
S−i

) \ L (S−(i−1)). The pole divisor of
ui is Nui = Si .

Proposition 7.2.2. The system {ui | i ∈ It } is a k-base of L
(
S−t

)
.
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Proof. If
∑

i∈It ai ui = 0 with ai ∈ k and ai �= 0 for some i , then vS (aiui ) = −i , so
the valuations of the nonzero terms in the sum are all distinct. Therefore ai = 0 for all
i ∈ It , and the system {ui | i ∈ It } is linearly independent.

On the other hand,

	
(
S−t

) = t∑
i=1

dimk
L
(
S−i

)
L
(
S−(i−1)

) = t∑
i=1
δi with δi =

{
0 if i /∈ It ,
1 if i ∈ It ,

so 	
(
S−t

) = |It | = |{ui | i ∈ It }|. Therefore {ui | i ∈ It } is a basis of L
(
S−t

)
. ��

As a particular case of Proposition 7.2.2, we take t = m = a−1 = √q−1, where
a is a power of the characteristic and n = a + 2g. The set

L
(
S−n

)a = {ya | y ∈ L (S−n)} ⊆ Ka

is a k-vector space of the same dimension as that of L
(
S−n

)
.

The space M = {∑
i∈Im ui y

a
i | yi ∈ L

(
S−n

)}
is a k-vector space generated by

U =
{
uiuaj | i ∈ Im, j ∈ In

}
. Note that since a = √q is a power of the characteristic,

Ka is a field.

Proposition 7.2.3. The set U is linearly independent over k.

Proof. Since uaj ∈ Ka and k ⊆ Ka , it suffices to prove that {ui | i ∈ Im} is linearly
independent over Ka .

Let
∑

i∈Im ui y
a
i = 0 with some yi �= 0. This implies that two elements have the

same valuation (Proposition 2.2.3 (vi)). Thus there exist yi �= 0, y j �= 0, with i �= j

and vS
(
ui yai

) = vS (u j yaj ). Hence,
−i + avS (yi ) = − j + avS

(
y j
)

or i ≡ j mod a.

Since i , j ∈ Im for 1 ≤ i, j ≤ m = a − 1 < a, the latter congruence is impossible. ��
As a consequence of Proposition 7.2.3 we obtain dimk M = |U | = |Im | |In| =

	
(
S−m

)
	
(
S−n

)
. By the Riemann–Roch theorem we have the inequality

dimk M = 	 (S−m) 	 (S−n) ≥ (m − g + 1)(n − g + 1)
= (a − g)(a + g + 1) = a2 + a − g(g + 1) = q +√q − g(g + 1).

Now consider the k-vector space

M ′ =
{∑
i∈Im

uai yi | yi ∈ L
(
S−n

)}
.

For i ∈ Im , we have uai yi ∈ L(S−amS−n).
Again, from the Riemann–Roch theorem and the equality
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dK
(
SamSn) = ma + n = a2 − a + a + 2g = q + 2g > 2g − 2,

we obtain

dimk M
′ ≤ 	 (S−amS−n

) = (q + 2g)− g + 1 = q + g + 1.

Now, because of our choice of q > (g + 1)4, we have
√
q − g(g + 1) > (g + 1)2 − g(g + 1) = g + 1.

Thus

dimk M ≥ q +√q − g(g + 1) > q + g + 1 ≥ dimk M
′.

Let

θ : M −→ M ′ be defined by θ

(∑
i∈Im

ui y
a
i

)
=
∑
i∈Im

uai yi .

Since kq = k, θ is k-linear. Moreover, dimk M > dimk M ′ implies that ker θ �= {0}.
Hence, there exist yi ∈ L

(
S−n

)
(i ∈ Im), such that

∑
i∈Im u

a
i yi = 0 and not all yi are

zero. Thus

u =
∑
i∈Im

ui y
a
i ∈ L

(
S−r

) \ {0} and u ∈ ker θ.

If ℘ is any place of K/k distinct from S, then ϕ℘ (yi ) �= ∞ and ϕ℘ (ui ) �= ∞ for all
i ∈ Im .

Furthermore, if ℘ satisfies ℘ = ℘q , then for all α ∈ K , we have ϕ℘(α) =
ϕ℘q (α) = ϕ(α)1/q or ϕ℘(α) = ϕ(α)q , so ϕ℘(α) ∈ Fq . This implies that for
a = √q = pu , ϕ℘(α)a = ϕ℘(α). From

∑
i∈Im u

a
i yi = 0 we obtain

ϕ℘ (u) =
∑
i∈Im

ϕ℘ (ui ) ϕ℘ (yi )
a =

∑
i∈Im

ϕ℘ (ui )
a ϕ℘(yi ) = 0.

Thus ℘ belongs to the support of the divisor of zeros of u, Zu . Therefore∏
℘ �=S
℘=℘q

℘ =∏ ℘ �=S
degK ℘=1

℘

∣∣∣ Zu , and
dK
( ∏
℘ �=S
℘θ=℘q

℘
)
= N − 1 ≤ dK (Zu) = dK (Nu) ≤ dK

(
Sr ) = r.

This is what we wanted to prove.

Theorem 7.2.4. We have N − (q + 1) < (2g + 1)√q. ��
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To finish the proof of the Riemann hypothesis we must now find a lower bound
for N − (q + 1). The upper bound we have obtained is not good enough to obtain the
Riemann hypothesis. For example, if K is of genus one and ω1 and ω2 are the inverses
of the roots of PK (u), then ω1 = q and w2 = 1 satisfy N = q + 1 −∑2g

i=1 ωi =
q + 1− q − 1 = 0, ω1ω2 = q, but |ωi | �= √q.

In order to obtain a lower bound, we consider an automorphism θ ∈ Aut(K/k)
and an algebraic closure k̃ of k. Let K̃ = K k̃. We extend θ to θ̃ ∈ Aut(K̃/k) by
defining θ̃ (α) = αq for every α ∈ k̃. Let ℘ be any prime divisor of K/k of degree
d and Kd = KFqd . Then by Theorem 6.2.1, ℘ decomposes into d prime divisors
P1, . . . ,Pd of degree one in Kd . Let ϕ℘ , ϕ℘q , ϕ℘θ , ϕPi , ϕP

q
i
, ϕ

Pθ̃
i
be the places

associated to ℘, ℘q , ℘θ , Pi , P
q
i , and Pθ̃i (1 ≤ i ≤ d) respectively.

We have ϕ℘θ (x) = ϕ(θ−1x) and ϕ℘q (x) = ϕ℘(x1/q) = ϕ℘(x)1/q . For x ∈ K we
have

ϕ
Pθ̃
i
(x) = ϕPi (θ̃

−1x) = ϕ℘(θ−1x) = ϕ℘θ (x)

and

ϕP
q
i
(x) = ϕPi (x)

1/q = ϕ℘(x)1/q .

For α ∈ Fqd ,

ϕ
Pθ̃
i
(α) = ϕPi (θ̃

−1α) = ϕPi (α
1/q) = ϕP

q
i
(α).

Therefore ℘q = ℘θ if and only if Pq
i = Pθ̃i for all 1 ≤ i ≤ d.

We define N (θ) := ∑℘θ=℘q dK (℘). By the above, N (θ) is the number of prime
divisorsP of K k̃/k̃ for whichPθ̃ = Pq . Furthermore, Theorem 7.2.4 can be extended
to N (θ) (see Exercise 7.7.3).

Proposition 7.2.5. Let K be a function field over k. Let L be a geometric Galois ex-
tension of K with Galois group G. If θ ∈ Aut(L/k) is such that θ(K ) = K, then

N (θ)(K ) = [L : K ]−1
∑
g∈G

N (θg)(L).

Proof. Let P be a prime divisor of L/k and let ℘ = P|K . The places of L over ℘θ are
the places

(
Pθ
)g
for g ∈ G, and the one over ℘q is Pq . Thus

℘θ = ℘q ⇐⇒ there exists g ∈ G such that (Pθ )g = (Pθg) = Pq . (7.3)

Now assume that P , P1, P2 are prime divisors in L over a prime divisor ℘ of K .
Since G acts transitively in {P ∈ PL | P | ℘}, then if ϕP1 and ϕP2 denote the places
corresponding to P1, P2 respectively, we have
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The following equivalences hold:

ϕσP = ϕP ⇐⇒ ϕσP (x) = ϕP
(
σ−1x

)
= ϕP (x) for all x ∈ ϑP

⇐⇒ σ−1x − x ∈ kerϕP = P ⇐⇒ σ−1x ≡ x mod P for all x ∈ ϑP
⇐⇒ σ−1 ∈ IL/K (P|℘)⇐⇒ σ ∈ IL/K (P|℘) . (7.4)

Therefore,
∣∣{σ ∈ G | ϕσP1 = ϕP2}∣∣ = eL/K (P|℘). Let I = IL/K

(
Pθ |℘θ ).

We have∑
g∈G

N (θg)(L) =
∑
g∈G

∑
Pθg=Pq

dL (P) =
∑
σ̄∈G/I

∑
g∈I

∑
Pθσg=Pq

dL (P)

=
∑
σ̄∈G/I

∑
Pθσ=Pq

eL/K
(
Pθ |℘θ ) dL (P) (by (7.2))

=
∑
℘θ=℘q

∑
P |℘

eL/K (P|℘) dL/K (P|℘) dK (℘)

(Proposition 5.1.11 and (7.3))

= [L : K ]
∑
℘θ=℘q

dK (℘) (Theorem 5.1.14)

= [L : K ]N (θ)(K ). ��

Let θ ∈ Aut(K/k) be an automorphism of finite order and let E = K (θ) be the
fixed field. Then K/E is a cyclic extension with Galois group 〈θ〉.
Proposition 7.2.6. There exists an element x ∈ E \ k such that E/k(x) is separable.
Proof. Since there exists a divisor of degree 1 (Theorem 6.3.8), there exists a prime
divisor ℘ of E of degree t with (t, p) = 1 and p = char k. Let m ∈ N be such that
m > 2g − 1 and (m, p) = 1. Then by the Riemann–Roch theorem (Corollary 3.5.8),
there exists an element x in E such that Nx = Pm . Therefore [E : k(x)] = mt and
(mt, p) = 1 with p = char E , which implies that E/k(x) is separable. ��
E K

k(x)

Let x ∈ E \ k enjoy the property of Proposition 7.2.6.
Let K̂ be the Galois closure of K/k(x) and k̂ be the field of
constants of K̂ . Then both K̂ and K k̂ admit k̂ as field of con-
stants. Also, θ is extendable to an element of Aut

(
K̂/k̂(x)

)
.

E K K k̂ K̂

k(x) k(x) k̂(x)
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Extending constants of K̂ if necessary, we may assume that if |k̂| = q̂, then q̂ = a2

is a square, q̂ >
(
gK̂ + 1

)4, q̂ > (gK k̂ + 1)4 = (gK + 1)4, and K̂ has a prime divisor
of degree 1.

Whence, we may assume that K/k satisfies the following conditions:

(1) K/k contains an element x ∈ K \ k such that K/k(x) is separable, and the
Galois closure K̂ of K/k(x) has as field of constants k,

(2) |k| = q = a2 is a square and q > (ĝ + 1)4, ĝ = gK̂ ,

(3) K̂/k contains a prime divisor of degree 1.

Proposition 7.2.7. Let m = [
K̂ : K

]
, n = [

K̂ : k(x)
]
, and θ ∈ Aut(K/k). Then

N (θ) − (q + 1) ≥ − n−m
m

(
2ĝ + 1)√q.

Proof. Let H = Gal
(
K̂/K

)
and G = Gal

(
K̂/k(x)

)
. We have θ ∈ G and m = |H |,

n = |G|. By Proposition 7.2.5,

N (θ)(K ) = 1

m

∑
h∈H

N (θh)
(
K̂
)
and q + 1 = N (k(x)) = 1

n

∑
g∈G

N (g)
(
K̂
)
.

K
H

K̂

G

k(x)

It follows by Theorem 7.2.4 and Exercise 7.7.3 that∑
g∈G

N (g)
(
K̂
)
=
∑
h∈H

N (θh)
(
K̂
)
+

∑
g∈G\θH

N (g)
(
K̂
)

≤
∑
h∈H

N (θh)
(
K̂
)
+

∑
g∈G\θH

(
(q + 1)+ (2ĝ + 1)√q)

=
∑
h∈H

N (θh)
(
K̂
)
+ (n − m)

(
q + 1+ (2ĝ + 1)√q) .

Since
∑

g∈G N (g)(K̂ ) = nN (Id)(k(x)) = n(q + 1) (Proposition 7.2.5), we have∑
h∈H

N (θh)
(
K̂
)
≥ n(q + 1)− (n − m)

(
q + 1+ (2ĝ + 1)√q)

= m(q + 1)− (n − m)
(
2ĝ + 1)√q.

Finally, by Proposition 7.2.5, we have
∑

h∈H N (θh)(K̂ ) = mN (θ)(K ), so

N (θ)(K ) ≥ (q + 1)− (n − m)

m

(
2ĝ + 1)√q. ��
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Corollary 7.2.8. Let K/k be a congruence function field and consider an element
θ ∈ Aut(K/k) of finite order. Then there exists a finite extension k′ of k with q ′
elements and a constant c > 0 such that for all r ≥ 1 the extension k′r of degree r of
k′ satisfies

∣∣N (θ) (K ′r )− ((q ′)r + 1)∣∣ ≤ c(q ′)r/2, where K ′r = Kk′r .

Proof. Let k′ be the extension of k satisfying Proposition 7.2.7 and Theorem 7.2.4. The
numbers n, m, ĝ given in Proposition 7.2.7 are the same for extensions of constants
(Theorem 6.1.3). Therefore, for all r ≥ 1, we have |k′r | = (q ′)r and

− (n − m)

m

(
2ĝ + 1) (q ′)r/2 ≤ N (θ)

(
K ′r
)− ((q ′)r + 1) ≤ (2ĝ + 1) (q ′)r/2.

With c = max
{
(n−m)
m

(
2ĝ + 1) , 2ĝ + 1} we obtain the result. ��

Finally we have the following theorem:

Theorem 7.2.9 (Riemann hypothesis). Let K/k be a congruence function field,
where |k| = q. Then:

(i) The zeros of the zeta function ζK (s) belong to the line of equation Re s = 1
2 .

(ii) The zeros of the function ZK (u) belong to the circle of equation |u| = q−1/2.
(iii) If ω1, . . . , ω2g are the inverses of the roots of PK (u), then |ωi | = √q, for i =

1, . . . , 2g.
(iv) If N1 denotes the number of prime divisors of degree 1 in K , then |N1 − (q + 1)| ≤

2g
√
q.

Proof. The statements follow from Theorem 7.1.8, Propositions 7.1.9, 7.1.10, 7.1.11,
and Corollary 7.2.8. ��

7.3 Consequences of the Riemann Hypothesis

An immediate consequence of the Riemann hypothesis is the following:

Theorem 7.3.1. Let K/k be a congruence function field of genus 0. Then K is a field
of rational functions.

Proof. If N is the number of prime divisors of degree 1 in K , then by applying Propo-
sition 7.1.9 we get |N − (q+ 1)| ≤ 2g√q = 0. Thus N = q+ 1, so K contains prime
divisors of degree 1. The result follows by Theorem 4.1.7. ��

Our goal is to estimate the number of prime divisors of degree n in K/k.

Theorem 7.3.2. If K = Fq(x) is a rational function field over Fq and if ni is the
number of prime divisors of degree i in K , then n1 = q+1 and ni = 1

i

∑
d|i µ

( i
d

)
qd

for i > 1.
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Proof. The prime divisors different from ℘∞ are in bijective correspondence with the
monic irreducible polynomials (Theorem 2.4.1). Since ℘∞ is of degree 1, the result
follows by Proposition 7.1.5. ��

We will generalize the preceding method in order to estimate the number of prime
divisors of degree m in any function field K over k = Fq .

Let K/k be a function field and let x ∈ K \ k be such that [K : k(x)] < ∞. Let
ζ0 (s) be the zeta function of k(x) and let ζ(s) be the zeta function of K . Denote by
Nm the number of prime divisors of degree m in K . We have, by Theorem 6.3.7,

ζ(s) =
∏

P∈PK

(
1− 1

(NP)s
)−1

=
∞∏
m=1

(
1− 1

qms

)−Nm
whenever Re s > 1.

Then

ζ ′(s)
ζ(s)

= [ln ζ(s)]′ =
[ ∞∑
m=1

−Nm
(
ln

(
1− 1

qms

))]′
= − ln q

( ∞∑
t=1

ct
qts

)
,

where ct =
∑

m mNm and where m runs though the natural numbers such that there
exists r ∈ N with rm = t . That is, ct =

∑
m|t mNm .

Therefore we have

ζ ′(s)
ζ(s)

= − ln q
∞∑
t=1

(∑
m|t

mNm

)
1

qts
whenever Re s > 1.

In particular, for K = k(x) we have

ζ ′0(s)
ζ0(s)

= − ln q
∞∑
t=1

(∑
m|t

mnm

)
1

qts
whenever Re s > 1.

On the other hand, ζ0(s) = 1
(1−q1−s)(1−q−s) , so

ζ ′0(s)
ζ0(s)

= (ln ζ0(s))′ = − ln q
( ∞∑
n=1

qn + 1
qns

)
.

In particular, equating coefficients we obtain
∑

m|t mnm = qt+1, and this formula
is equivalent to that of Theorem 7.3.2.

Notation 7.3.3. For two real functions f (x), g(x) with g(x) ≥ 0, we write f = O(g)
if there exists a constant c > 0 such that | f (x)| ≤ c|g(x)| for x large enough.
Theorem 7.3.4.

ζ ′(s)
ζ(s)

= − ln q
∞∑
t=1

(∑
m|t

mNm

)
1

qts
, Re s > 1 and nm = qm

m
+ O

(
qm/2

m

)
.
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Proof. The first part was already proved in the course of the previous argument. Since

nm = 1

m

∑
i |m

qiµ
(m
i

)
= qm

m
+ 1

m

∑
i |m
i �=m

qiµ
(m
i

)
,

it follows that∣∣∣∣nm − qm

m

∣∣∣∣ ≤ 1

m

∑
i≤m

2

qi = qm/2

m

⎛⎝∑
i≤m

2

qi−m/2
⎞⎠ ≤ qm/2

m

∞∑
r=0

1

qr
= qm/2

m

1

1− 1/q .

��
On the one hand, we have

ζ ′(s)
ζ(s)

= − ln q
∞∑
t=1

(∑
m|t

mNm

)
1

qts

and on the other hand

ζ(s)

ζ0(s)
= PK (s) =

2g∏
i=1

(
1− ωi

qs

)
,

where ω1, . . . , ω2g are the inverses of the roots of PK (u), u = q−s , where |ωi | = √q
from the Riemann hypothesis.

Now(
ln
ζ(s)

ζ0(s)

)′
= ζ

′(s)
ζ(s)

− ζ
′
0(s)

ζ0(s)
= P ′K (s)

PK (s)
=
(
2g∑
i=1

ln q
ωi q−s

1− ωi q−s
)

= ln q
2g∑
i=1

ωi q−s

1− ωi q−s = ln q
2g∑
i=1

∞∑
n=1
ωni q

−ns = ln q
∞∑
n=1

sn
qns
,

where sn =
∑2g

i=1 ω
n
i .

We also have

ζ ′(s)
ζ(s)

− ζ
′
0(s)

ζ0(s)
= − ln q

∞∑
t=0

(∑
m|t

m (Nm − nm)

)
1

qts
.

Therefore we obtain
∑

m|t m (Nm − nm) = −st .
From the Möbius inversion formula, we obtain

t (Nt − nt ) = −
∑
m|t
µ

(
t

m

)
sm,

and hence
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Nt = nt − 1

t

∑
m|t
µ

(
t

m

)
sm

with sm =
∑2g

i=1 ω
m
i .

Since |ωi | = q1/2, we deduce

t |Nt − nt | ≤
t∑

m=1
|sm | ≤

t∑
m=1

2g∑
i=1
|ωi |m =

t∑
m=1

2gqm/2 = 2gq1/2 q
t/2 − 1

q1/2 − 1 .

Therefore, Nt = nt + O
(
qt/2

t

)
.

In short we have the following theorem:

Theorem 7.3.5. Let K/k be a congruence function field with k = Fq . If nm and Nm
denote the prime divisors of degree m in k(x) and K respectively, then

nm = 1

m

∑
d|m
µ
(m
d

)
qd for m > 1 and n1 = q + 1,

Nm = nm + O

(
qm/2

m

)
,

nm = qm

m
+ O

(
qm/2

m

)
.

Furthermore, ∑
d|m

d (Nd − nd) = −sm

and

m (Nm − nm) = −
∑
d|m
µ
(m
d

)
sd ,

where sd =
∑2g

i=1 ω
d
i and µ is the Möbius function. ��

We end this section by relating the number of integral divisors to the number of
prime divisors and comparing the number of prime divisors in extensions of constants.

Proposition 7.3.6. Let K/k be a congruence function field with k = Fq and for each
n ∈ N, let Kn be the extension of constants of K of degree n. That is, Kn = KFqn .
Let N j be the number of prime divisors of degree j in K and let N (n)1 be the number
of divisors of degree 1 in Kn. Then

N (n)1 =
∑
d|n

dNd and Nn = 1

n

∑
d|n
µ
(n
d

)
N (d)1 .
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Proof. By Theorem 6.2.1, if d divides n and ℘ is a prime divisor of degree d in K ,
then ℘ decomposes into (d, n) = d prime divisors of degree d

(d,n) = 1 in Kn . There-
fore for each prime divisor of degree d in K we obtain d prime divisors of degree 1.
Conversely, if P is a prime divisor of degree 1 in Kn and ℘ = P|K , then by Proposi-
tion 5.1.11 we have 1 · n = dK (℘) dKn/K (P|℘). Thus dK (℘) divides n and N (n)1 =∑

d|n dNd . By the Möbius inversion formula we obtain nNn =
∑

d|n µ
( n
d

)
N (d)1 . ��

Now as in Chapter 6 we denote by An the number of integral divisors of degree n.

Recall that An =
∑

d(C)=n
qN (C)−1
q−1 and An = h

(
qn−g+1−1

q−1
)
for n > 2gK − 2, where

h is the class number of K .

Theorem 7.3.7. We have

An =
∑

k1+2k2+···+nkn=n
ki≥0

n∏
i=1

(
ki + Ni − 1

ki

)
,

where the sum runs through all partitions of n, i.e., the n-arrays (k1, . . . , kn) with
ki ≥ 0 and

∑n
i=0 iki = n.

Proof. We provide two proofs, the first one analytic and the second of combinatorial
nature. First recall that f (x) = 1

1−x =
∑∞

n=0 xn for |x | < 1. Therefore by taking the
derivative of both sides p − 1 times we obtain

1

(1− x)p
=

∞∑
n=0

(
n + p − 1
p − 1

)
xn for |x | < 1.

Now, the zeta function is ZK (u) =
∑∞

i=0 Anun for u = q−s .
Thus

ζK (s) =
∏

P∈PK

(
1− 1

(NP)s
)−1

=
∞∏
n=1

(
1− 1

qns

)−Nn
=

∞∏
n=1

(
1

1− un

)Nn
=

∞∏
n=1

( ∞∑
kn=0

(
kn + Nn − 1
Nn − 1

)
unkn

)

= ZK (u) = 1+
∞∑
t=0

⎛⎜⎜⎝ ∑
k1+2k2+···+tkt=t

ki≥0

t∏
i=1

(
ki + Ni − 1
Ni − 1

)⎞⎟⎟⎠ ut .

Since
(ki+Ni−1

Ni−1
) = (ki+Ni−1ki

)
the equality follows by equating coefficients.

Now we give the combinatorial proof. Let g (k1, . . . , kn) be the number of distinct
products of k1 prime divisors of degree 1, k2 prime divisors of degree 2, . . . , kn prime
divisors of degree n.

We have g (k1, . . . , kn) =
∏n

i=1 fi (ki ), where fi (ki ) is the number of products
of ki prime divisors of degree i .
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In general, if P1, . . . ,PNi are all prime divisors of degree i , a product of ki of

them has the general form Pa1
1 · · ·P

aNi
Ni

with a1 + · · · + aNi = ki . These products
correspond bijectively to the choices of Ni − 1 elements from a set of ki + Ni − 1,
namely the elements a1+ 1, a1+ a2+ 2, . . . , a1+ · · · + aNi + (Ni − 1), as indicated
in the following diagram:

P1 · · ·P1 � P2 · · ·P2 � · · · � PNi · · ·PNi
↔ ↑ ↔ ↑ ↑ ↔
a1 a1+1 a2 a1+a2+2 a1+···+aNi−1+(Ni−1) aNi

Therefore fi (ki ) =
(ki+Ni−1

Ni−1
)
.

It follows that

An =
∑

k1+2k2+...+nkn=n
g (k1, . . . , kn) =

∑
k1+2k2+...+nkn=n

n∏
i=1

fi (ki )

=
∑

k1+2k2+...+nkn=n

n∏
i=1

(
ki + Ni − 1
Ni − 1

)
. ��

7.4 Function Fields with Small Class Number

We saw in Chapter 6 that if PK (u) is the numerator of the zeta function of a congruence
function field, then PK (u) = a0+ a1u+ · · · + a2gu2g , u = q−s , a2g−i = aiqg−i , and
a0 = 1, a2g = qg . Furthermore, ai = Ai − (q + 1)Ai−1 + q Ai−2.

On the other hand, PK (u) =
∏2g

i=1 (1− ωi u), |ωi | = q1/2 for 1 ≤ i ≤ 2g.
Finally, h = PK (1) =

∑2g
i=0 ai =

∑g−1
i=0 ai

(
1+ qg−i

)+ ag =
∏2g

i=1 (1− ωi ).
Proposition 7.4.1. Let g = gK be the genus of a function field K over k = Fq , and let
hK = h be the class number. Let

S(q, g, r) = (q − 1)
[
q2g−1 + 1− 2gq(2g−1)/2

]
− r(2g − 1) (qg − 1) .

Then if S(q, g, r) > 0, we have h > r .

Proof. Let K2g−1 be the constant extension of degree 2g − 1 of K . By the Riemann
hypothesis applied to K2g−1 with field of constants Fq2g−1 (K2g−1 is also of genus g),
if N ′1 is the number of prime divisors of degree 1 in K2g−1, then∣∣∣N ′1 − (q2g−1 + 1)∣∣∣ ≤ 2gq(2g−1)/2, so N ′1 ≥ q2g−1 + 1− 2gq(2g−1)/2.

Now if d divides 2g−1, a prime divisor of degree d in K splits into (d, 2g−1) = d
prime divisors of degree d

(d,2g−1) = 1 in K2g−1 (Theorem 6.2.1). On the other hand,
if a prime divisor of degree 1 in K2g−1 restricts to a prime divisor of degree d, then by
Proposition 5.1.11, d divides 2g − 1.
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Also, at most 2g − 1 places of degree 1 in K2g−1 can restrict to the same place
in K . If P1, . . . ,Ps are prime divisors of degree 1 that restrict to the same prime ℘
in K with s ≤ 2g − 1, then ℘(2g−1)/dK (℘) is an integral divisor of degree 2g − 1 in
K . Hence, with at most 2g − 1 divisors of degree one in K2g−1, we obtain an integral
divisor of degree 2g − 1 in K . Since there are N ′1 places of degree 1 in K2g−1, there
exist at least

N ′1
2g − 1 ≥

q2g−1 + 1− 2gq(2g−1)/2
2g − 1

integral divisors of degree 2g − 1 in K .
We have

A2g−1 = h
qg − 1
q − 1 ≥

q2g−1 + 1− 2gq(2g−1)/2
2g − 1 .

Therefore

h ≥
(
q2g−1 + 1− 2gq(2g−1)/2) (q − 1)

(2g − 1)(qg − 1) = R.

If S(q, g, r) > 0, then R > r , which implies that h > r . ��
As an exercise of basic calculus, it can be verified that S(q, g, 1) is increasing as a

function of g for q = 4, g ≥ 2 or q = 3, g ≥ 3 or q = 2, g ≥ 5.
On the other hand,

S(4, 2, 1) = 3(50− 32) = 54 > 0,
S(3, 3, 1) = 2

(
179− 54

√
3
)
> 0,

S(2, 5, 1) = 2
(
117− 80

√
2
)
> 0.

Hence, we obtain the following result:

Theorem 7.4.2. We have hK > 1 whenever q = 4 and g ≥ 2, q = 3 and g ≥ 3, or
q = 2 and g ≥ 5. ��
On the other hand, we have the following:

Theorem 7.4.3. If g ≥ 1, then hK > 1 whenever q ≥ 5.
Proof. Let PK (u) =

∏2g
i=1 (1− ωi u) be the numerator of the zeta function of K . Then

by the Riemann hypothesis we have

h = PK (1) =
2g∏
i=1
(1− ωi ) =

∣∣∣∣∣
2g∏
i=1
(1− ωi )

∣∣∣∣∣ =
2g∏
i=1
|1− ωi |

≥
2g∏
i=1
(|ωi | − 1) =

2g∏
i=1

(√
q − 1) = (√q − 1)2g ≥ (√q − 1)2 ≥ (√5− 1)2 > 1.

Thus h > 1. ��
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Thus we see that the number of possibilities for a field K to have class number 1
is very limited. If g = 0 then h = 1, but if g ≥ 1, h = 1 can hold only in the cases
q = 4, g = 1; q = 3, g = 1, 2; q = 2, g = 1, 2, 3, 4.

We can study the function S(q, g, r) for several values of r and give criteria in
order to have h > r . Here we present only the results for 2 ≤ r ≤ 10 enumerating the
possibilities for g and q . This procedure by no means implies that given (q, g, r) such
that S(q, g, r) < 0, there necessarily exists a field of genus g with field of constants
Fq and class number h = r .

Theorem 7.4.4. Let K be a congruence function field with field of constants k = Fq ,
genus g ≥ 1, and class number h satisfying 2 ≤ h ≤ 10. Then we necessarily have

(i) If h = 2, then q = 2, 3, 4 and
if q = 4, then g = 1,
if q = 3, then g ∈ {1, 2},
if q = 2, then g ≤ 5.

(ii) If h = 3, then q ≤ 7 and g ≤ 6.
(iii) If h = 4, then q ≤ 8 and g ≤ 6.
(iv) If h = 5, then q ≤ 9 and g ≤ 7.
(v) If h = 6, then q ≤ 11 and g ≤ 7.
(vi) If h = 7, then q ≤ 13 and g ≤ 7.
(vii) If h = 8, then q ≤ 13 and g ≤ 8.
(viii) If h = 9, then q ≤ 16 and g ≤ 8.
(ix) If h = 10, then q ≤ 17 and g ≤ 8. ��

Remark 7.4.5. Theorem 7.4.4 can be improved by fixing first h, then g, and finally the
possible q . For instance, if h = 10, and g = 6, then q is 2 necessarily, whereas the
theorem states only that q ≤ 17.

Now we state the result that describes all possible fields K with class number 1 (of
genus at least 1). The proof is based on a detailed analysis of the function PK (u).

Theorem 7.4.6 (Leitzel, Madan, Queen [94, 95]). There exist, up to isomorphism,
exactly 7 congruence function fields K/Fq with class number 1 and genus g �= 0. If
K = Fq(X, Y ) is such a field, then the 7 fields are given as follows:

(i) q = 2, g = 1, Y 2 + Y = X3 + X + 1
(ii) q = 2, g = 2, Y 2 + Y = X5 + X3 + 1,
(iii) q = 2, g = 2, Y 2 + Y = (X3 + X2 + 1) (X3 + X + 1)−1,
(iv) q = 2, g = 3, Y 4 + XY 3 + (X2 + X

)
Y 2 + (X3 + 1) Y

+ (X4 + X + 1) = 0,
(v) q = 2, g = 3, Y 4 + (X3 + X + 1) Y + (X4 + X + 1) = 0,
(vi) q = 3, g = 1, Y 2 = X3 + 2X + 2,
(vii) q = 4, g = 1, Y 2 + Y = X3 + α, α ∈ F4 \ {0, 1}. ��

Now we detail one of the techniques used to prove this kind of result.
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Let 1 = h = PK (1) =
∑2g

i=0 ai =
∑g−1

i=0
(
qg−i + 1) ai + ag . Let Sn =∑2g

i=1 ω
n
i , where PK (u) =

∏2g
i=1 (1− ωi u). Then by Theorem 7.3.5, we have −Sn =∑

d|n d (Nd − nd).
Now,

u−2g PK (u) =
2g∏
i=1

(
u−1 − ωi

)
= a0u

−2g + a1u
−2g+1 + · · · + a2g,

that is, ω1, . . . , ω2g are the roots of u−2g PK (u) = P ′K (v), with v = u−1. Thus

P ′K (v) = b0 + b1v + · · · + b2gv
2g =

2g∏
i=1
(v − ωi )

with bi = a2g−i = qg−i ai and b2g = a0 = 1.
We have

b2g−i = ai = (−1)2g−iσi = (−1)iσi ,

where σi is the i th elementary symmetric function in
{
ω1, . . . , ω2g

}
, so that by New-

ton’s identities (Theorem 7.1.4)

Sm + Sm−1a1 + · · · + S1am−1 + mam = 0 for 0 ≤ m ≤ 2g − 1.
Hence

S1 + a1 = 0, a1 = −S1,

S2 + S1a1 + 2a2 = 0, a2 =
S21 − S2
2

,

a3 = −
S31 − 3S1S2 + 2S3

6
,

a4 =
S41 − 6S21 S2 + 8S1S2 + 3S22 − 6S4

24
, etc.

On the other hand, since

nd =
{
q + 1, d = 1,
1
d

∑
f |d µ

(
d
f

)
q f , d > 1.

and Sn = −
∑

d|n d (Nd − nd), we obtain, after making all necessary substitutions,

a1 = N1 − (q + 1),
2a2 = N 21 − (2q + 1)N1 + 2N2 + 2q,
6a3 = N 31 − 3qN 21 + (3q − 1)N1 − 6(q + 1)N2 + 6N1N2 + 6N3,
24a4 = (4q − 2)N1 − N 21 + (2− 4q)N 31 + (12+ 24q)N2

+12N 22 + N 41 − (12+ 24q)N1N2 + 12N 21 N2
−24(q + 1)N3 + 24N1N3 + 24N4.
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For g ≥ 1, we have N1 ≤ 1. Indeed, if there exist two prime divisors of degree
1, say P1, P2, then since h = 1, P1P2 = (x) is a principal divisor. Thus [K : k(x)] =
deg (Nx ) = deg (P2) = 1 (Theorem 3.2.7), so g = 0, which is absurd. Therefore
N1 ≤ 1.
Now if q = 3, g = 2, we obtain

PK (1) = h =
(
q2 + 1

)
a0 + (q + 1)a1 + a2

= 10+ 4a1 + a2 =
−6+ N1 + N 21 + 2N2

2
.

It follows that h = 1 if and only if N 21 + N1 + 2N2 = 8.
On the other hand, by the Riemann hypothesis, the inverses of the roots of PK (u)

are
√
3e±iθ1 ,

√
3e±iθ2 , so

PK (u) =
(
1−

√
3eiθ1u

) (
1−

√
3e−iθ1u

) (
1−

√
3eiθ2u

) (
1−

√
3e−iθ2u

)
=
(
1− 2

√
3 cos θ1u + 3u2

) (
1− 2

√
3 cos θ2u + 3u2

)
.

Comparing coefficients we obtain

cos θ1 + cos θ2 = (4− N1)
√
3

6

and

cos θ1cosθ2 =
N 21 − 7N1 + 2N2 − 6

24
.

Since N 21 + N1 + 2N2 = 8, we get cos θ1 cos θ2 = −7N1+8−N1−6
24 = 1−4N1

12 .

Let f (x) = (x − cos θ1) (x − cos θ2) = x2 + (N1−4)
√
3

6 x + 1−4N1
12 . Then cos θ1

and cos θ2 are roots of f (x). Notice that

0 ≤ (1− cos θ1)(1− cos θ2) = f (1) =
(
12+ 1− 8√3

)
+ N1

(
2
√
3− 4

)
12

< 0,

which is absurd. Therefore, if q = 3 and g = 2, then we must have h > 1.

7.5 The Class Numbers of Congruence Function Fields

Let K/Fq be a congruence function field. Its zeta function is given by

ZK (u) = PK (u)

(1− u)(1− qu)
,

where
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PK (u) =
2g∑
i=0

aiu
i , a2g−i = aiq

g−i for 0 ≤ i ≤ 2g,

and g = gK is the genus of K (Theorem 6.4.1). Then PK (1) = hK is the class number
of K (Corollary 6.3.9).

Let Kn := KFq	n be the constant extension of degree 	
n , where 	 is a rational

prime (q = pu , 	 = p or 	 �= p). Then

ZKn
(
u	

n ) = 	n∏
j=1

ZK
(
ζ
j
	n u
)
,

where ζ	n is any 	n th primitive root of 1 in C∗ (Theorem 7.1.6).
We have

PK (u) =
2g∏
i=1

(
1− α−1i u

)
,

where α1, . . . , α2g are the roots of PK (u). Thus

PKn
(
u	

n ) = 2g∏
i=1

(
1− α−	ni u	

n )
.

Therefore, if hn is the class number of Kn , we have

hn
h
= PKn (1)

PK (1)
=
∏2g

i=1
(
1− α−	ni

)∏2g
i=1
(
1− α−1i

)
=
∏2g

i=1
∏	n

j=1
(
1− ζ j	nα−1i

)∏2g
i=1
(
1− α−1i

) =
2g∏
i=1

	n−1∏
j=1

(
1− ζ j	nα−1i

)
.

Theorem 7.5.1. With the above notation, let 	en be the exact power of 	 dividing hn.
Then

en = λn + γ
for n sufficiently large, with 0 ≤ λ ≤ 2g and γ ∈ Z.

Proof. We have

hn
h
=
	n−1∏
j=1

2g∏
i=1

(
1− ζ j	nα−1i

) = 	n−1∏
j=1

PK
(
ζ
j
	n

)
.

Now, PK (T ) ∈ Z[T ], so PK (T ) has the form PK (T ) = 1+ a1T + · · · + qgT 2g . Let

RK (T ) = PK (T + 1) = 1+ a1(T + 1)+ · · · + qg(T + 1)2g
= b0 + b1T + · · · + b2gT

2g.
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We have

PK
(
ζ
j
	n

) = RK
(
ζ
j
	n − 1

) = b0 + b1
(
ζ
j
	n − 1

)+ · · · + b2g
(
ζ
j
	n − 1

)2g
. (7.5)

Note that RK (−1) = PK (0) = a0 = 1. Therefore there exists 0 ≤ λ ≤ 2g such that
	 � bλ. Choose λ to be minimal with this property.

In the cyclotomic number field Q
(
ζ	n
)
/Q, 	 is fully ramified and (	) = (

1 −
ζ	n
)φ(	n) = (

1 − ζ j	n
)φ(	n) for all ( j, n) = 1 and φ is the Euler φ-function ([156,

Proposition 2.1, p. 9]). Let L = (1 − ζ	n ) be the prime ideal of Q
(
ζ	n
)
above 	, i.e.,

vL
(
1− ζ	n

) = 1. Clearly, if j = 	m j1, m < n, ( j1, 	) = 1, then

1− ζ j	n = 1− ζ j1	n−m =
(
1− ζ	n

)	m
u

with u a unit in Q(ζ	n ). Hence vL
(
1 − ζ j	n

) = 	m = v	( j). Therefore, in (7.5) we
obtain

vL
(
bi
(
ζ
j
	n − 1

)i ) = vL(bi )+ ivL
(
ζ
j
	n − 1

) = v	(bi )φ(	n)+ iv	( j).

Let ζ be a primitive 	n th root of unity. Then, for 0 ≤ i ≤ λ− 1,
vL
(
bi (ζ − 1)i

) ≥ φ(	n)+ i > λ = vL
(
bλ(ζ − 1)λ

)
for n such that φ(	n) > λ− i .

For λ < i ≤ 2g,
vL
(
bi (ζ − 1)i

) ≥ i > λ = vL
(
bλ(ζ − 1)λ

)
.

Therefore, for a primitive 	n th root ζ of 1 with φ(	n) > λ,

vL
(
PK (ζ )

) = vL(RT (ζ − 1)) = λ. (7.6)

Let n0 ∈ N be such that φ(	n0) > λ. For n − 1 > λ we have

hn
hn−1

= hn
h

1( hn−1
h

) = ∏	n−1
j=1 PK

(
ζ
j
	n

)
∏	n−1−1

j=1 PK
(
ζ
j
	n−1
) =∏

ζ

PK (ζ ),

where the latter product runs through all the primitive 	n th roots of unity. Using (7.6)
and the fact that there are φ(	n) primitive roots of unity, we obtain

v	(hn) = v	(hn−1)+ v	
(∏
ζ

PK (ζ )
) = v	(hn−1)+ 1

φ(	n)
vL
(∏
ζ

PK (ζ )
)

= v	(hn−1)+ 1

φ(	n)
φ(	n)λ = v	(hn−1)+ λ.

Therefore

v	(hn) = λ(n − n0)+ v	(hn0) = λn + (v	(hn0)− n0λ) = λn + γ. ��
Remark 7.5.2. Theorem 7.5.1 states that the Iwasawa µ invariant for congruence func-
tion fields is 0 (see [156, Chapter 7]).
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7.6 The Analogue of the Brauer–Siegel Theorem

The Brauer–Siegel theorem is a theorem in number fields, that is, finite extensions
of Q. For a number field F , let d be its discriminant, R its regulator, and h its class
number.

Theorem 7.6.1 (Brauer–Siegel).We have lim|d|→∞ ln(hR)
ln
√|d| = 1. ��

The goal of this section is to present an analogue of the theorem of Brauer and
Siegel. Let K/k be a congruence function field with k = Fq . All extensions of K
considered in this section have k as their exact field of constants.

If nm and Nm denote the number of divisors of degree m in the rational function
field k(x) and in K respectively, then (Theorem 7.3.5)

∣∣∣∣nm − qm

m

∣∣∣∣ =
∣∣∣∣∣∣∣
∑
d|m
d<m

µ
(m
d

)
qd

∣∣∣∣∣∣∣ ≤
[m/2]∑
d=1

qd = q
q[m/2] − 1
q − 1

≤ 2
(
q[m/2] − 1

)
< 2qm/2,

|Nm − nm | = 1

m

∣∣∣∣∣∑
d|m
µ
(m
d

)
sd

∣∣∣∣∣ ≤ 1

m

(
m∑
d=1

∣∣∣∣∣
2g∑
i=1
ωdi

∣∣∣∣∣
)

≤ 2g

m

m∑
d=1

qd/2 = 2g

m
q1/2

qm/2 − 1
q1/2 − 1 ≤ 4gq

m/2.

Now, the number of integral divisors of degree 2g is A2g = h q
g+1−1
q−1 , and we have

N2g ≥ n2g − 4gqg > q2g

2g − 2qg − 4gqg = q2g

2g − (4g + 2)qg .
Thus

h
qg+1 − 1
q − 1 = A2g ≥ N2g >

q2g

2g
− (4g + 2)qg.

Therefore

h >
(q − 1)(
qg+1 − 1)

(
q2g

2g
− (4g + 2)qg

)
.

Theorem 7.6.2. If k is fixed, then lim infg→∞ ln h
g ln q ≥ 1.

Proof. We have h ≥ qg−1 C2g , where C is a constant and g is large enough. Therefore

ln h ≥ (g − 1) ln q + lnC − ln 2g, ln h

g ln q
≥ 1− 1

g
+ lnC

g ln q
− ln 2g

g ln q
,
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and the right-hand side goes to 1 when g goes to∞, which implies the result. ��
In order to obtain an analogue to the Brauer–Siegel theorem, we must prove that

lim supg→∞ ln h
g ln q ≤ 1. This remains an open problem. We will prove that the result

holds with a restriction, namely that for K , there exist x ∈ K \ k and m such that
[K : k(x)] ≤ m with m

g → 0.

Theorem 7.6.3. We have limm
g→0

ln h
g ln q = 1, where g is the genus of K , h is the class

number of K , and m is the minimum integer such that there exists x ∈ K \ k with
[K : k(x)] = m.

Proof. For an integral divisor A, it follows from the Riemann–Roch theorem that

	
(
A−1

) ≥ d (A) − g + 1, so that An ≥ h q
n−g+1−1
q−1 . Therefore if ζK (s) is the zeta

function for s ∈ R such that s > 1, then

ζK (s) =
∞∑
n=0

Anq
−ns ≥

∞∑
n=g

Anq
−ns ≥

∞∑
n=g

h
qn−g+1 − 1

q − 1
1

qns

= h

qgs

∞∑
n=g

qn−g+1 − 1
q − 1

1

q(n−g)s
= h

qgs

∞∑
n=0

qn+1 − 1
q − 1

1

qns
= h

qgs
ζ0 (s) ,

where ζ0 (s) is the zeta function of k(x).
Hence ζK (s) ≥ h

qgs ζ0 (s) for s ∈ R, s > 1.

On the other hand, ζK (s) =
∏

P∈PK

(
1− 1

N (P)s
)−1

.

Let P be a divisor of K of relative degree t and ℘ = P|k(x). Then

deg (℘) t = d (P) , NP = qd(P) = qtdeg℘

and

1− 1

N (P)s = 1−
1

qd(P)s
= 1− 1

q(deg ℘)ts
≥
(
1− 1

qd(℘)s

)t
.

Therefore if P1, . . . ,Pr are the prime divisors of K over ℘ in k(x), r ≤ m = [K :
k(x)], and each relative degree is ti , then

r∏
i=1

(
1− 1

N (Pi )s
)
≥

r∏
i=1

(
1− 1

N (℘)s

)ti
≥
(
1− 1

N (℘)s

)m
.

Thus

ζK (s) =
∏

P∈PK

(
1− 1

N (P)s
)−1

≤
∏

℘∈Pk(x)

(
1− 1

N (℘)s

)−m
= ζ0 (s)m .

It follows that
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ζ0 (s)
m ≥ ζK (s) ≥ h

qgs
ζ0 (s) , that is, ζ0 (s)

m−1 ≥ h

qgs
.

Taking logarithms, we obtain

(m − 1) ln ζ0 (s) ≥ ln h − gs ln q.

Therefore

s ≥ ln h

g ln q
− (m − 1) ln ζ0 (s)

g ln q
.

Let ε > 0 be fixed and let s = 1 + ε. If mg → 0, then taking g large enough, we

have 1+ ε ≥ ln h
g ln q − ε, so lim supmg→∞

ln h
g ln q ≤ 1.

The result follows by the above and Theorem 7.6.2. ��
An interesting problem that remains open is to determine whether a complete ana-

logue of the Brauer–Siegel theorem holds, that is, limg→∞ ln h
g ln q = 1 without any

restriction. To finish this chapter we present some approximations to this result.

Theorem 7.6.4. We have
(√

q − 1)2g ≤ h ≤ (√q + 1)2g.
Proof. We have h = PK (1) = |PK (1)| =

∏2g
i=1 |1− ωi |, where |ωi | =

√
q. Therefore√

q − 1 ≤ |1− ωi | ≤ √q + 1, from which the result follows. ��

Corollary 7.6.5. We have

2 ln
(√

q − 1)
ln q

≤ ln h

g ln q
≤ 2 ln

(√
q + 1)

ln q
. ��

Now for n > 2g − 2, then An = h
(
qn−g+1−1

q−1
)
by Theorem 6.2.6.

On the other hand, An =
∑

p(n)
∏n

i=1
(ki+Ni−1

ki

)
, where p(n) is the set of partitions

of n (Theorem 7.3.7).
Taking n = 2g − 1, we obtain the equality

h

(
qg − 1
q − 1

)
=

∑
p(2g−1)

2g−1∏
i=1

(
ki + Ni − 1

ki

)
.

Let M = maxp(2g−1)
∏2g−1

i=1
(ki+Ni−1

ki

)
.

Then M ≤ h
(
qg−1
q−1

)
≤ |p(2g − 1)|M .

Furthermore, it is well known that |p(2g − 1)| < eT
√
2g−1, where T = π

(
2
3

)1/2
.

Therefore M ≤ h
(
qg−1
q−1

)
≤ eT

√
2g−1M , whence



7.7 Exercises 237

lnM

g ln q
≤ ln h

g ln q
+ ln (qg − 1)− ln(q − 1)

g ln q
≤ T

√
2g − 1

g ln q
+ lnM

g ln q
.

Now,

lim
g→∞

ln (qg − 1)− ln(q − 1)
g ln q

= 1 and lim
g→∞

T
√
2g − 1
g ln q

= 0,

from which we obtain that

lim
g→∞

ln h

g ln q
exists if and only if lim

g→∞
M

g ln q
exists.

Furthermore,

lim
g→∞

ln h

g ln q
= lim sup

g→∞
M

g ln q
− 1.

Therefore, proving the analogue of the Brauer–Siegel theorem is equivalent to proving
that lim supg→∞ M

g ln q ≤ 2.

7.7 Exercises

Exercise 7.7.1. Prove Lemma 7.1.2.

Exercise 7.7.2. Prove Proposition 7.1.5

Exercise 7.7.3. Prove Theorem 7.2.4 for any θ ∈ Aut(K/k), i.e.,

N (θ) − (q + 1) < (2g + 1)√q.



8

Constant and Separable Extensions

We have seen (Remark 5.2.30 and Example 5.2.31) that the field of constants of a
constant extension K	 can contain 	 properly . On the other hand, if 	 is a finite field,
the constant field of K	 is 	 (Theorem 6.1.2).

Our goal in this chapter is to give a full account on the constant extension K	. Our
main reference is Deuring’s monograph [28].

In particular, we shall study the change of genus in extensions of constants; as we
shall see, in this case the genus does not increase (Theorem 8.5.3), in contrast to the
geometric separable case, in which the genus does not decrease.

At the end of the chapter we present a few results on inseparable extensions.

8.1 Linearly Disjoint Extensions

Definition 8.1.1. Let F and M be two extensions of a field E that are

contained in an algebraic closed field�. Then F is said to be linearly
disjoint from M over E if every finite set of elements of F that is
linearly independent over E is also linearly independent over M.

F FM

E MWe can see right away that the relation defined above is symmetric.

Proposition 8.1.2. Let F be linearly disjoint from M over E. Then M is linearly dis-
joint from F over E.

Proof. Let α1, . . . , αn be elements of M that are linearly independent over E . Assume
that there exists a nontrivial linear combination

a1α1 + · · · + amαm = 0 (8.1)

where the elements a1, . . . , am of F are not all zero.
Suppose that the elements a1, . . . , as (s ≥ 1) are linearly independent over E and

as+1, . . . , am are linear combinations
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ai =
s∑
j=1
βi j a j , βi j ∈ E, i = s + 1, . . . ,m.

Then (8.1) can be written as

s∑
	=1

a	α	 +
m∑

i=s+1

( s∑
j=1
βi j a j

)
αi = 0. (8.2)

The coefficient of a	(1 ≤ 	 ≤ s) in (8.2) is
(
α	 +

∑m
i=s+1 βi	αi

)
.

Therefore

s∑
	=1

(
α	 +

m∑
i=s+1

βi	αi

)
a	 = 0.

Since {α1, . . . , αm} is linearly independent over E , it follows that

α	 +
m∑

i=s+1
βi	αi �= 0 for 1 ≤ 	 ≤ s. (8.3)

But (8.3) contradicts the linear independence of {a1, . . . , as} over E . ��

Example 8.1.3. We have that Q(
√
2) and Q(

√
3) are linearly disjoint over Q.

Example 8.1.4. The fields Q(ζ3
3
√
2) and Q( 3

√
2) are not linearly disjoint over Q.

Our next result shows that the relation of being linearly disjoint is transitive. More
precisely:

Proposition 8.1.5. Let E ⊆ F and E ⊆ M be two field extensions and let N be an
intermediate field, i.e., E ⊆ N ⊆ M. Then F and M are linearly disjoint over E if
and only if

(i) F and N are linearly disjoint over E and
(ii) FN and M are linearly disjoint over N.

Proof.Assume that F and M are linearly disjoint over E .
IfA ⊆ F is any finite set that is linearly independent over
E , then it is linearly independent over M . In particular,
A is linearly independent over N . Therefore F and N are
linearly disjoint over E .

F FN FM

E N M

Now letA = {α1, . . . , αn} ⊆ M be linearly independent over N . Let β1, . . . , βn ∈
FN be such that

n∑
i=1
βiαi = 0. (8.4)
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Each βi is a quotient of elements of the form
∑

j a j b j with a j ∈ F and b j ∈ N .
Clearing denominators we may assume that βi =

∑mi
j=1 ai j bi j , with ai j ∈ F and bi j ∈

N . Furthermore, since we are dealing with a finite number of elements {bi j }1≤ j≤mi
1≤i≤n in

N , we may choose a finite set {d1, . . . , dn} ⊆ N that is linearly independent over E
and such that βi =

∑m
j=1 ci j d j for all 1 ≤ i ≤ n, ci j ∈ F .

Therefore (8.4) becomes

m∑
j=1

n∑
i=1

ci j d jαi = 0.

Since {d jαi }1≤i≤n1≤ j≤m ⊆ M is linearly independent over E and M and F are linearly
disjoint over E , it follows that ci j = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Therefore βi = 0
for 1 ≤ i ≤ n.

Hence M and FN are linearly disjoint over N .
Conversely, assume that N and F are linearly disjoint over E , and M and FN are

linearly disjoint over N .
Let {αi }i∈I and {β j } j∈J be bases of N over E and of M over N respectively. Then

{αiβ j }(i, j)∈I×J is a basis of M/E .
Let {δk}k∈K be a basis of F over E . Suppose that we have a relation∑

i∈I, j∈J

(∑
k∈K

aki jδk

)(
αiβ j

)
= 0, (8.5)

where only finitely many aki j ’s in E may be nonzero.
Then ∑

j∈J

(∑
k∈K
i∈I

aki jδkαi

)
β j = 0. (8.6)

Since {β j } j∈J is a basis of M over N , M and FN are linearly disjoint over N , and∑
i∈I,k∈K aki jδkαi ∈ FN , it follows that

∑
i∈I,k∈K aki jδkαi = 0 for all j .

Thus
∑

i∈I

(∑
k∈K aki jδk

)
αi = 0 for all j ∈ J . Since {αi }i∈I is a basis of N over

E , and N and F are linearly disjoint over E , it follows that
∑

k∈K aki jδk = 0 for all
i ∈ I and j ∈ J .

Finally, since {δk}k∈K is a basis of F over E , we have ak,i, j = 0 for all i ∈ I ,
j ∈ J , and k ∈ K . Hence M and F are linearly disjoint over E . ��
For the basic properties we use for tensor products we refer to [89], [69], and [4].

Proposition 8.1.6. Let F/E and M/E be two field extensions and � be an alge-
braically closed field such that F,M ⊆ �. Let F ⊗E M denote the tensor product
of F and M over E. The natural map ϕ : F ⊗E M → FM satisfies imϕ = F[M] ={∑n

i=1 αiβi | n ∈ N, αi ∈ F, βi ∈ M
}
. Then F and M are linearly disjoint over E if

and only if ϕ is a monomorphism.
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Proof. Let {βi }i∈I be a basis of M over E . Every element of F ⊗E M can be written
as
∑

i∈I αi ⊗E βi with αi = 0 for almost all i . Since tensor product commutes with
direct sum and A⊗R R ∼= A for any R-module A and R a commutative ring, we have
that if {βi }i∈I is a basis of M over E , then {1⊗E βi }i∈I is a basis of F ⊗E M over F
(with the extension of scalars: λ(a ⊗E b) = λa ⊗E b, λ ∈ F). From this we obtain
that

∑
i∈I αi ⊗ βi = 0 if and only if αi = 0 for all i .

Since ϕ

(∑
i∈I αi ⊗ βi

)
=∑i∈I αiβi , the result follows. ��

We now introduce the concept of a free or algebraically disjoint set.

Definition 8.1.7. Let F and M be two extensions of a field E . We say that F is free
or algebraically disjoint from M over E if every finite subset of F that is algebraically
independent over E remains algebraically independent over M .

Like linear disjointness, freeness is defined in an asymmetric way. However, as we
did for linear disjointness, we shall prove that the relation is in fact symmetric.

Proposition 8.1.8. If F is free from M over E, then M is free from F over E.

Proof. Let y1, . . . , yn be elements of M that are algebraically independent over E .
If y1, . . . , yn are dependent over F , then they are so in a subfield K of F that is
finitely generated over E . Let tr K/E = r . Since F is free from M over E , then
tr(K (y1, . . . , yn)/E(y1, . . . , yn)) = r .

F

K
<n

r

K (y1, . . . , yn)

r

E
n

E(y1, . . . , yn) M

We have, on the one hand,

tr

(
K (y1, . . . , yn)/E

)
= tr

(
K (y1, . . . , yn)/E(y1, . . . , yn)

)
+ tr

(
E(y1, . . . , yn)/E

)
= r + n;

on the other hand,

tr

(
K (y1, . . . , yn)/E

)
= tr

(
K (y1, . . . , yn)/K

)
+ tr(K/E) < n + r.

This contradiction shows that M is free from F over E . ��
The next proposition proves that linear disjointness implies algebraic disjointness.
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Proposition 8.1.9. If F and M are linearly disjoint over E, then they are algebraically
disjoint over E.

Proof. Let y1, . . . , yn be elements of F that are algebraically independent over E . If
y1, . . . , yn are algebraically dependent over M , then there exists a relation of the type

p(y1, . . . , yn) = 0 =
∑

(i1,... ,in)∈I
ai1...in y

i1 · · · yinn , ai1...in ∈ M,

where p(T1, . . . , Tn) ∈ M[T1, . . . , Tn] is a nonzero polynomial.
Therefore {yi11 · · · yinn }(i1,... ,in)∈I is linearly dependent over M . On the other hand,

since {yi11 · · · yinn }(i1,... ,in)∈I is linearly independent over E this contradicts the linear
disjointness of F and M over E . ��

An important result that we will need later, when we study the general constant
extensions of function fields, is the following:

Proposition 8.1.10. Let F be a field extension of E and letA be a set of elements that
are algebraically independent over F. Then E(A) is linearly disjoint from F over E.

Proof. Let f1, . . . , fr ∈ E(A) be linearly independent over E .
Then there exists a finite set {y1, . . . , yn} ⊆ A such that fi = ai

bi
,

with ai , bi ∈ E[y1, . . . , yn]. Let b =
∏r

i=1 bi . If α1, . . . , αr ∈ F
are such that

∑r
i=1 αi fi = 0 then

∑r
i=1 αi (b fi ) =

∑r
i=1 αi gi =

0 with gi = b fi ∈ E[y1, . . . , yn], and {g1, . . . , gr } is linearly

F F(A)

E E(A)

independent over E .
Now if some αi is nonzero there is a nontrivial algebraic relation of {y1, . . . , yn}

over F . This is impossible since {y1, . . . , yn} is algebraically independent over F .
Therefore { f1, . . . , fr } is linearly independent over F , and F and E(A) are linearly
disjoint over E . ��

An observation we shall be using frequently is the following:

Remark 8.1.11. When we need to test whether two fields are either linearly or alge-
braically disjoint, it suffices to assume that these fields are finitely generated over the
base field since in either case the definitions involve only a finite number of elements
at a time.

Corollary 8.1.12. Let F be any purely transcendental extension of E, and let M be
any extension of E. If F is algebraically disjoint from M over E, then F is linearly
disjoint from M over E.

F = E(A)

E M
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Proof. Let F = E(A), where A is a transcendence base. Then A is algebraically
independent over M . The result follows immediately by Proposition 8.1.10. ��

Corollary 8.1.13. If F is an algebraic extension of E, and M is a purely transcenden-
tal extension of E, then F and M are linearly disjoint over E.

Proof. Exercise 8.7.7. ��

8.2 Separable and Separably Generated Extensions

Definition 8.2.1. A field extension F/E is called separably generated if there ex-
ists a transcendence basis {αi }i∈I of F over E such that F/E({α}i∈I ) is algebraic
and separable. Such a basis {αi }i∈I is called a separating transcendence basis for F
over E.

Definition 8.2.2. A field extension F/E is called separable if for any subfield E ⊆
M ⊆ F with M/E finitely generated, M/E is separably generated.

Proposition 8.2.3. If E is a field of characteristic 0, any field extension F/E is both
separable and separably generated.

Proof: Let F/E be any field and let A = {αi }i∈J be any transcendence basis of F/E .
Then F/E(A) is algebraic and therefore separable. Thus F/E is separably generated.
Also, if E ⊆ M ⊆ F is any intermediate field with M/E finitely generated, then as
before, M/E is separably generated. Hence F/E is separable. ��

Remark 8.2.4. We will prove in Theorem 8.2.8 that a separably generated extension is
separable. The converse is not true in general (Example 8.2.10). The general definition
of separability is compatible with the definition for algebraic extensions. Since every
field extension of characteristic 0 is separable and separably generated, in the rest of
this section we shall consider fields of characteristic p > 0.

Let E be a field of characteristic p > 0 and let F/E be an extension. Let F̄ be an
algebraic closure of F , n ∈ N, and

E1/p
n
:= {α ∈ F̄ | α pn ∈ E

}
. (8.7)

Then E1/p
n
is a field and E ⊆ E1/p

n ⊆ Ē ⊆ F̄ . Set

E1/p
∞
:=

∞⋃
n≥0

E1/p
n
. (8.8)

Then E1/p
∞
is also a field.

For algebraic extensions, we have the following proposition:
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Proposition 8.2.5. Let F/E be an algebraic extension of fields of characteristic
p > 0. Then F/E is separable if and only if F and E1/p are linearly disjoint.

Proof.
(⇒) Let M = F pE ⊆ F . Since F/E is separable, F/M is separable too. If α ∈ F ,
then α p ∈ F p ⊆ F pE . Therefore F/EF p is purely inseparable, and F = EF p.

Now let a1, . . . , an ∈ F be elements that are linearly independent over E . Let
K = E(a1, . . . , an). We have n ≤ m = [K : E] <∞. We complete {a1, . . . , an} to
a basis {a1, . . . , an, an+1, . . . , am} of K/E .

Clearly, K = E(a1, . . . , an) =
∑m

i=1 Eai =
⊕m

i=1 Eai .
Since K/E is separable, we have K = EK p = E(a p1 , . . . , a

p
m) =

∑m
i=1 Ea

p
i .

It follows from [K : E] = m that {a p1 , . . . , a pm} is a basis of K/E . In particular,
{a p1 , . . . , a pn } is linearly independent over E .

Let b1, . . . , bn ∈ E1/p be such that
∑n

i=1 biai = 0. Hence
∑n

i=1 b
p
i a

p
i = 0 with

bpi ∈ E . We have bpi = 0 (1 ≤ i ≤ n), so bi = 0 (1 ≤ i ≤ n). It follows that F and
E1/p are linearly disjoint over E .
(⇐) Let F and E1/p be linearly disjoint over E . Let α ∈ F and h(x) = Irr(α, x, E)
with deg h(x) = n. We will show that h(x) is separable. It suffices to see that h(x) �∈
E[x p].
The elements 1, α, . . . , αn−1 are linearly independent over E . Therefore 1, α, . . . ,

αn−1 are linearly independent over E1/p. This is equivalent to saying that 1, α p, α2p,
. . . , α(n−1)p are linearly independent over E . If h(x) = g(x p), then Irr(α p, x, E) |
g(x) and [E(α p) : E] ≤ deg g = deg h

p . This contradicts the independence of

{1, α p, . . . , α(n−1)p}. ��
Now we are ready to prove the following result:

Theorem 8.2.6 (MacLane). Let F/E be a field extension of characteristic p > 0.
Then the following conditions are equivalent:

(1) F/E is separable.
(2) F and E1/p

n
are linearly disjoint over E for some n ∈ N.

(3) F and E1/p
∞
are linearly disjoint over E.

Proof.
(1)⇒(3): By Remark 8.1.11 we may assume that F/E is finitely generated. Let
{y1, . . . , ym} be a transcendence base of F over E such that F/E(y1, . . . , ym) is
algebraically separable.

E(y1, . . . , ym)

E E1/p
∞

Clearly the set {y1, . . . , ym} is algebraically independent over E1/p∞ . By Propo-
sition 8.1.10, E(y1, . . . , ym) and E1/p

∞
are linearly disjoint over E . The composite
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field E1/p
∞
E(y1, . . . , ym) = E1/p

∞
(y1, . . . , ym) = K is purely inseparable over

E(y1, . . . , ym).
We have the following diagram: F

separable

E(y1, . . . , ym)
purely

inseparable
K

Let L = E(y1, . . . , ym). If α ∈ F , then α is algebraically separable over L . Hence
K (α)/K is separable. Let h(x) = Irr(α, x, K ) ∈ K ′[x], where K ′/L is a finite purely
inseparable extension with K ′ ⊆ K .

F

L(α)
purely

inseparable

separable

K ′(α)

separable

L
purely

inseparable
K ′

It is easy to see that
[
K ′(α) : L

]
s = [L(α) : L] = [

K ′(α) : K ′
]
. It follows that

F and K = E1/p
∞
(y1, . . . , ym) are linearly disjoint over L = E(y1, . . . , ym). The

result follows from Proposition 8.1.5.

F FK

L K = LE1/p
∞

E E1/p
∞

(3)⇒ (2) This implication follows from the fact that E1/p
n ⊆ E1/p

∞
.

(2)⇒ (1) By Remark 8.1.11, we may assume that F is finitely generated over E .
Let F = E(y1, . . . , ym) and let r be the transcendence degree of F over E . If

r = m, the result follows. Otherwise, let {y1, . . . , yr } be a transcendence base. Then
yr+1 is algebraic over E(y1, . . . , yr ).
Let p(T1, . . . , Tr , Tr+1) ∈ E[T1, . . . , Tr , Tr+1] be a polynomial of minimum de-

gree such that p(y1, . . . , yr , yr+1) = 0.
Clearly, p(T1, . . . , Tr , Tr+1) is irreducible. We shall prove that not all Ti , 1 ≤ i ≤

r+1, appear to the pth power throughout. Indeed, assume for the sake of contradiction
that

p(T1, . . . , Tr+1) =
∑

a(i1,... ,ir+1)S(i1,... ,ir+1)(T1, . . . , Tr+1)
p, (8.9)
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where the S(i1,... ,ir+1)’s are monomials and a(i1,... ,ir+1) ∈ E .
Taking the pth roots in (8.9), we see that the S(i1,... ,ir+1)(y1, . . . , yr+1) are lin-

early dependent over E1/p. Since p(T1, . . . , Tr , Tr+1) is of minimum degree possi-
ble, it follows that {S(i1,... ,ir+1)(y1, . . . , yr+1)} is linearly independent over E . This
contradicts the linear disjointness of E1/p and E(y1, . . . , ym).

Say that T1 does not appear as a pth root throughout but appears in p(T1, . . . , Tr+1).
Since p(T1, . . . , Tr+1) is irreducible in E[T1, . . . , Tr+1] it follows that the equation
p(T1, . . . , Tr+1) = 0 is separable for y1 over E(y2, . . . , yr+1). Hence y1 is separable
and algebraic over E(y2, . . . , yr+1) and over E(y2, . . . , ym).

If {y2, . . . , ym} is a transcendence base, the proof follows immediately. Otherwise,
proceeding as before we can show that one yi , say y2, is separable and algebraic over
E(y3, . . . , yn). Therefore F is separable over E(y3, . . . , ym).
It is easy to see that we can go on with this process until we find a transcendence

base. This proves that (2)⇒ (1). ��

Remark 8.2.7. The proof of (2)⇒ (1) in Theorem 8.2.6 shows that a separating tran-
scendence base for E(y1, . . . , ym) over E can be selected from a given set of genera-
tors {y1, . . . , ym}.
Theorem 8.2.8. Let F/E be an extension of fields of characteristic p.

(1) If F/E is separably generated, then F/E is separable.
(2) If F/E is separable and finitely generated, then F/E is separably generated.

Proof.

(1) Let A be a transcendence base of F/E such that F/E(A) is an algebraic
separable extension.
It is clear that A is algebraically independent over E1/p. Hence, by Proposi-
tion 8.1.10, E1/p and E(A) are linearly disjoint.

E1/p E1/p(A)

E E(A) F

Now, F/E(A) is algebraic and separable and E1/p(A)/E(A) is algebraic and
purely inseparable. It follows that F and E1/p(A) are linearly disjoint over
E(A) (see the proof of (1) ⇒ (3) in Theorem 8.2.6). Thus, by Proposition
8.1.5, E1/p and F are linearly disjoint over E . Using MacLane’s criterion
(Theorem 8.2.6) we obtain that F/E is separable.

(2) Let F/E be a finitely generated separable extension, say F = E(y1, . . . , ym).
By Remark 8.2.7 we may choose a subset of the set {y1, . . . , ym} that is a
separating transcendence base for F over E . In particular, F/E is separably
generated. ��
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Remark 8.2.9. The hypothesis that F/E is a finitely generated extension cannot be
dropped. Indeed, there exists an extension F/E that is separable but not separably
generated.

Example 8.2.10. Let E be a perfect field of characteristic p > 0. Then E1/p = E .
In particular, E1/p and F are linearly disjoint over E and F/E is separable for any
extension F .

Let x be a transcendental element over E . Let F = E
({
x1/p

m}∞
m=0

)
. Then F/E

is separable and tr F/E = 1 (actually
(
x1/p

m )pm = x ∈ E(x); thus F/E(x) is alge-
braic). Let {y} be any transcendence base of F/E . There exist n ∈ N and a rational
function

f (T1, . . . , Tn) ∈ E(T1, . . . , Tn)

such that y = f (x, x1/p, . . . , x1/p
n−1
). Then E(y) �= F since x1/p

n �∈ E(y) and
F/E(y) is purely inseparable. Therefore F/E(y) is not separable and F/E is not
separably generated.

Corollary 8.2.11. If E is a perfect field, any extension F of E is separable over E.

Proof. Exercise 8.7.8. ��
As a consequence of MacLane’s criterion we obtain the following corollaries.

Corollary 8.2.12. If F is separable over E and E ⊆ M ⊆ F, then M in separable
over E.

Proof. Exercise 8.7.9. ��

Corollary 8.2.13. If M/E and F/M are separable field extensions, then F/E is sep-
arable.

Proof. Exercise 8.7.10. ��

Proposition 8.2.14. Let F be a separable extension of E and assume that F is al-
gebraically disjoint from L over E with E ⊆ L. Then FL is a separable extension
of L.

Proof. The elements of FL are of the form
∑n

i=1 a j bi∑m
j=1 c j d j

with ai , c j ∈ F and bi , d j ∈ L . In particular, any
finitely generated subfield of FL is contained in a
composite ML , where M is a subfield of F that is

F FL

E L

finitely generated over E . If for any such M we
can prove that ML is a separable extension of L , the separability of FL over L will
follow by Corollary 8.2.12 and Theorem 8.2.8 (2).

Therefore we may assume that F is finitely generated over E . Let {y1, . . . , ym}
be a transcendence base of F over E . Since F and L are algebraically disjoint over
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E , it follows that {y1, . . . , ym} is a transcendence base of FL over L . Every ele-
ment of F is separable and algebraic over E(y1, . . . , ym), so it is also separable over
L(y1, . . . , ym). Thus FL is separably generated over L . The result follows by Theo-
rem 8.2.8. ��

Corollary 8.2.15. Let F and L be two separable extensions of E. If F and L are
algebraically disjoint over E, then FL is separable over E.

Proof. Exercise 8.7.11. ��

Proposition 8.2.16. If F and L are two extensions that are linearly disjoint over E,
then F is separable over E if and only if FL is separable over L.

Proof.
(⇒) Proposition 8.2.14 and Proposition 8.1.9.
(⇐) If F is not separable over E , then by MacLane’s criterion, F is not linearly dis-
joint from E1/p over E . Hence F is not linearly disjoint from LE1/p over E (Propo-
sition 8.1.5).

F

E E1/p LE1/p

F FL

E L LE1/p L1/p

Using MacLane’s criterion we obtain that FL is not linearly disjoint from LE1/p

over L . Therefore FL and L1/p are not linearly disjoint over L . By Theorem 8.2.6,
FL is not separable over L . ��
We are now ready to characterize separably algebraic finitely generated extensions.

Proposition 8.2.17. Let F be a finitely generated extension of E. If F pm E = F for
some m ∈ N, then F is separably algebraic over E and F pn E = F for all n ∈ N.
Conversely, if F is separably algebraic over E, then F Pm E = F for all m ∈ N.

Proof. If F pm E = F for some m, then F is an algebraic extension of E (see Exercise
8.7.16). Now F = F pm E ⊆ F pE ⊆ F . Therefore F = F pE . Furthermore, for all
n ≥ 1, F pn E = (F p)p

n−1
E = (F pE)p

n−1
E = F pn−1E . Thus F pn E = F for all

n ∈ N.
Let T be the separable closure of E in F . Then F is a purely inseparable extension

of T . Since F is algebraic and finitely generated over E , F is a finite extension of E . In
particular, there exists n ∈ N such that F pn ⊆ T . It follows that F = F pn E ⊆ T ⊆ F .

Conversely, let F be a separably algebraic extension of E . We have E ⊆ F pE ⊆
F and F is a purely inseparable extension of F pE . Hence F = F pE . As before, it
follows that F = F pm E for all m ∈ N. ��
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8.3 Regular Extensions

We now study the class of extensions that we will be dealing with when we consider
extensions of function fields.

Proposition 8.3.1. Let k be algebraically closed in an extension K . Let x be an ele-
ment of the algebraic closure k̄ of k. Then k(x) and K are linearly disjoint over k and
[k(x) : k] = [K (x) : K ].

k(x) K (x)

k K

Proof. Let p(T ) = Irr(x, T, k) ∈ k[T ]. If q(T ) ∈ K [T ] is a
nonconstant factor of p(T ), then the coefficients of q(T ) are al-
gebraic over k. Since k is algebraically closed in K , we have
q(T ) ∈ k[T ]. Hence p(T ) is irreducible in K [T ]. It follows that
[k(x) : k] = [K (x) : K ] and that k(x) and K are linearly disjoint

over k. ��

Theorem 8.3.2. Let K/k be a field extension, and let k̄ be an algebraic closure of k.
Then the following conditions are equivalent:

(1) k is algebraically closed in K and K is separable over k.
(2) K and k are linearly disjoint over k.

Proof.
(1)⇒ (2) By Remark 8.1.11 we may assume that K is finitely generated over k, and
it suffices to show that K and L are linearly disjoint over k, where L is any finite
algebraic extension of k. In this situation, if L is separable over k, then L is of the
form L = k(α), with α algebraic over k. The result follows by Proposition 8.3.1.

In general, if Ls is the maximum separable extension of k in L , then Ls and K
K K Ls

k Ls L

are linearly disjoint over k. By Proposition 8.1.5, it suf-
fices to show that L and K Ls are linearly disjoint over Ls .
Let {y1, . . . , ym} be a separating transcendence base for K
over k. Then K is separably algebraic over k(y1, . . . , ym).

K K Ls

k(y1, . . . , ym) Ls(y1, . . . , ym)

k Ls L

Since k(y1, . . . , ym) and Ls are linearly disjoint over k (Proposition 8.1.10),
{y1, . . . , ym} is also a separating transcendence basis of K Ls over Ls , and K Ls
is separably algebraic over Ls(y1, . . . , ym). Thus K Ls is separable over Ls . Since
L/Ls is a purely inseparable extension, it follows that K Ls and L are linearly disjoint
over Ls .
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(2)⇒ (1) We have k1/p ⊆ k, so k1/p and K are linearly disjoint over k. By Theorem
8.2.6, K/k is separable. If α ∈ k ∩ K , then since K and k(α) are linearly disjoint, it
follows that [k(α) : k] = [K (α) : K ] = 1. Hence α ∈ k and k is algebraically closed
in K .

��

Definition 8.3.3. An extension K of k is called regular if k is algebraically closed in
K and K/k is separable, or equivalently, if K is linearly disjoint from k̄ over k.

Remark 8.3.4. In the case of function fields K/k, we are assuming that k is alge-
braically closed in K . Therefore K/k is regular iff there exists x ∈ K such that
K/k(x) is a finite separable extension.

Proposition 8.3.5. Let K be a regular extension of k. If k ⊆ K ′ ⊆ K, then K ′ is a
regular extension of k.

Proof. Since K ′ ⊆ K , K ′ is linearly disjoint from k over k. ��

Proposition 8.3.6. Regularity is transitive, that is, if K is a regular extension of k and
L is a regular extension of K , then L is a regular extension of k.

Proof. k is algebraically closed in K and K is algebraically closed in L . Therefore k is
algebraically closed in L . The fact that L is separable over k follows from Corollary
8.2.13. ��

Proposition 8.3.7. If k is algebraically closed, then every extension of k is regular.

Proof. We have k = k. If K is any extension of k, then K is linearly disjoint from
k = k over k. The fact that K is separable over k follows from Corollary 8.2.11 since
k is a perfect field. ��

The converse of Proposition 8.1.9 holds for regular extensions:

Theorem 8.3.8. Let F and L be two extensions of a field E such that F and L are con-
tained in some field�. If F is a regular extension of E, and F and L are algebraically
independent over E, then F and L are linearly disjoint over E.

Proof. By Remark 8.1.11 we may assume that F is finitely generated over E . Let
{α1, . . . , αm} be elements of F that are linearly independent over E . If {α1, . . . , αm}
are not linearly independent over L , let β1, . . . , βm ∈ L be such that

β1α1 + · · · + βmαm = 0 (8.10)

and at least one of the βi ’s is nonzero.
Removing the elements that are equal to 0, we may assume that βi �= 0 for all

1 ≤ i ≤ m.
Let ϕ : L → Ē ∪ {∞} be a place of L such that ϕ|E = IdE . Let {y1, . . . , yn}

be a transcendence base of F over E . Then {y1, . . . , yn} is algebraically independent
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over L . We can extend ϕ to a place ϕ̃ : LF → F̄ ∪ {∞} such that ϕ̃|E(y1,... ,yn) =
IdE(y1,... ,yn). Set � = ϕ̃|F . If ξ ∈ F∗, then ξ is algebraic over E(y1, . . . , ym) = M .
Hence there exists a relation

ξ t + at−1ξ t−1 + · · · + a1ξ + a0 = 0

with a0, a1, . . . , at−1 ∈ M , and a0 �= 0.
Since a0 �= 0 it follows that ϕ(ξ) �= 0. Similarly, ϕ

(
1
ξ

)
�= 0. Now 1 = �(1) =

�
(
ξ 1
ξ

)
= �(ξ)�

(
1
ξ

)
, so ϕ(ξ) �= ∞. Hence � is a field homomorphism and

ϕ(F) = �(F) ∼= F .
By Exercise 8.7.12, there exists an index j0 (say j0 = m) such that ϕ

(
βi/βm

) �= ∞
for all i .

Dividing (8.10) by βm , we obtain

β1

βm
α1 + β2

βm
α2 + · · · + αm = 0 (8.11)

and hence

m∑
i=1
ϕ

(
βi

βm

)
ϕ(αi ) = 0,

where ϕ

(
βi
βm

)
∈ E . Consequently {ϕ(α1), . . . , ϕ(αm)} are linearly dependent over

E . Since ϕ is an isomorphism of F onto ϕ(F), it follows that {α1, . . . , αm} is linearly
dependent over E . This contradicts the regularity of F . Therefore F and L are linearly
disjoint over E . ��

Theorem 8.3.9. Let K be a regular extension of k such that K and L are algebraically
disjoint over k. Then K L is a regular extension of L.

Proof. Let y1, . . . , ym be elements of K that are algebraically independent over k.
Then {y1, . . . , ym} is algebraically independent over L .

Therefore m = tr L̄(y1, . . . , ym)/L = tr L̄(y1, . . . , ym)/L̄ + tr L̄/L (Proposition
1.1.12). Since tr L̄/L = 0, it follows that {y1, . . . , ym} is algebraically independent
over L̄ . In particular, K is algebraically disjoint from L̄ over k.

By Theorem 8.3.8, K is linearly disjoint from L over k. Using Proposition 8.1.5
we deduce that K L is linearly disjoint from L over L . Hence K L is regular over L . ��

Corollary 8.3.10. Let K and L be regular extensions of k. If K and L are alge-
braically independent over k, then K L is a regular extension of k.

Proof. Exercise 8.7.13. ��
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8.4 Constant Extensions

Let K/k be an algebraic function field. Given any extension 	′ of k we wish to obtain
the constant extension K	′. In order to be able to construct K	′, we need two condi-
tions, first that K and 	′ be contained in a larger field (see Section 5.4), and second
that K ∩ 	′ = k (see Definition 5.1.1). Given K and 	′, both conditions are not always
satisfied. However, we can construct a function field L over a constant field 	 such that
	 contains a subfield that is k-isomorphic to 	′.

Proposition 8.4.1. If a field k is algebraically closed in K and {Xi }i∈A is an
algebraically independent set over K , then k({Xi }i∈A) is algebraically closed in
K ({Xi }i∈A).
Proof. Let α ∈ K ({Xi }i∈A) be algebraic over k({Xi }i∈A). There exists a relation

αr + fr−1αr−1 + · · · + f1α + f0 = 0 (8.12)

with f0, . . . , fr−1 ∈ k({Xi }i∈A).
Since only finitely many Xi ’s appear in (8.12), we may assume that A is a finite

set, say A = {X1, . . . , Xn}.
We will prove the result by induction on n.
Assume that n = 1 and X1 = x . Let α ∈ K (x) be a nonzero

algebraic element over k(x). We may write α = Ah(x)
g(x) , where

h(x), g(x) ∈ K [x], (h(x), g(x)) = 1, A is a nonzero element of
K , and h(x), g(x) are monic.

K K (x)

k k(x)
There exist f0, . . . , fr−1, fr ∈ k[x] such that ( f0, . . . , fr ) = 1 and

fr (x)α
r + · · · + f1(x)α + f0(x)α = 0. (8.13)

Clearing denominators in (8.13) we obtain

fr (x)A
rh(x)r + fr−1(x)Ar−1h(x)r−1g(x)+ · · ·

+ f1(x)Ah(x)g
r−1(x)+ f0(x)g

r (x) = 0.
(8.14)

Let a be a root of h(x) ∈ K [x]. By means of the substitution x = a in (8.14) we
obtain

f0(a)g
r (a) = 0.

Then g(a) �= 0, since h and g are relatively prime. It follows that f0(a) = 0.
Thus every root of h is algebraic over k. Because h(x) is monic, the coefficients

of h are algebraic over k. Since k is algebraically closed, it follows that h(x) ∈ k[x].
Similarly, g(x) ∈ k[x].

Now let a be a root of h(x)− g(x). The equality 0 = h(a)− g(a) and the fact that
h and g are relatively prime imply h(a) = g(a) �= 0.

Substituting x by a in (8.14) we obtain
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fr (a)h(a)
r Ar + · · · + f1(a)h(a)g

r−1(a)A + f0(a)g
r (a) = 0.

Now, fr , . . . , f1, f0 are relatively prime, so there exists i such that fi (a) �= 0. It
follows that A is algebraic over k. Since k is algebraically closed in K , we have A ∈ k.

Therefore α = Ah(x)
g(x) ∈ k(x) and k(x) is algebraically closed in K (x).

Now assume that the result holds for n − 1. For n, let α ∈ K (X1, . . . , Xn−1, Xn).
Let E = k(X1, . . . , Xn−1) and F = K (X1, . . . , Xn−1). By the induction hypothesis
E is algebraically closed in F . Since Xn is transcendent over F , it follows from the
case n = 1 that E(Xn) is algebraically closed in F(Xn). Thus if α ∈ K (X1, . . . , Xn)
is algebraic over k(X1, . . . , Xn), then α ∈ E(Xn) = k(X1, . . . , Xn). ��

Theorem 8.4.2. Let K/k be an algebraic function field and let k′ be any extension of
k. Then there exists a function field L/	 that is an extension of K/k such that:

(1) There exist a subfield 	′ such that k ⊆ 	′ ⊆ 	 and a k-isomorphism λ : 	′ → k′.
(2) L = K	′.

Moreover, if M/m is another extension such that there exist a subfield m′ of m
and a k-isomorphism µ : m′ → k′ satisfying (1) and (2), then there exists a K -
isomorphism � : M → L such that �|m′ = λ−1 ◦ µ : m′ � 	′.

Finally, 	 is a purely inseparable finite extension of 	′.

Proof. First we construct a composite field L = K	′. Let {yα}α∈A be a transcendence
base of k′ over k.

Let {Xα}α∈A be an algebraically independent set over K . Then the cardinality of
{Xα}α∈A is the same as the cardinality of the transcendence degree of k′ over k. Let
� be an algebraic closure of K ({Xα}α∈A).

There exists a k-isomorphism λ1 from k ({yα}α∈A) to k ({Xα}α∈A) such that
k′ λ2−−−−→ �B⏐⏐ B⏐⏐

k({yα}α∈A) −−−−→
λ1

k({Xα}α∈A)

λ|k = Idk and λ(yα) = Xα . Since k′ is algebraic
over k({yα}α∈A), λ1 can be extended to an iso-
morphism of k′ onto a subfield λ2(k′) =: 	′ of
�.

Then � contains both K and 	′ ∼= k′. Therefore we may take the composite field
K	′ in � (see Remark 5.4.2).
Let T ∈ K \ k be transcendental over k. If T is

not transcendental over 	′, there exists a finite sub-
set {X1, . . . , Xm} of the transcendence base {Xα}α∈A
such that T is algebraic over k(X1, . . . , Xm). There-
fore there is a relation

∑r
i=0 fi T i = 0 where fi ∈

k[X1, . . . , Xm] and at least one of the fi ’s is a non-
constant polynomial. This implies that {X1, . . . , Xm}
is not algebraically independent over K . Hence T is

�

K K	′ = L

k 	′

transcendental over 	′. In particular, we have 	′ ∩ K = k.
Now let L = K	′. Then 	′ ⊇ k and [L : 	′(T )] ≤ [K : k(T )] <∞.
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K K	′ = L

k(T ) 	′(T )

k 	′

Therefore L/	′ is a function field. Let 	 be the field of constants of L . The field L/	
satisfies conditions (1) and (2) of the theorem and [	 : 	′] = [	(T ) : 	′(T )] ≤ [L :
	′(T )] <∞.

Next, consider another extension M/m of K/k satisfying (1) and (2). We need to
find an isomorphism � : M → L such that �|K = IdK and �|m′ = λ−1 ◦ µ := θ ,
where µ : m′ → k′ is the k-isomorphism of m′ ⊆ m onto k′.

Now each element of M = Km′ can be written in the form
∑n

i=1 ai bi∑n
j=1 c j d j

with ai , c j ∈
K and bi , d j ∈ m′. Therefore � must satisfy

�

( ∑n
i=1 aibi∑m
j=1 c j d j

)
=
∑n

i=1 aiθ(bi )∑m
j=1 c jθ(d j )

. (8.15)

Let � : M → L be given by (8.15). To prove that � is well defined, we have to verify
that if

0 =
n∑
i=1

aibi , then 0 =
n∑
i=1

aiθ(bi ).

We need to prove that � is an isomorphism and also that if the denominator
∑m

j=1 c j d j
is nonzero in (8.15) then �

(∑n
j=1 c j d j

)
is nonzero. Thus we have to show that

m∑
j=1

c jθ(d j ) = 0 implies
m∑
j=1

c j d j = 0.

It will suffice to establish that for αi ∈ k, βi ∈ m′,
n∑
i=1
αiβi = 0 if and only if

n∑
i=1
αiθ(βi ) = 0. (8.16)

Since the expressions in (8.16) involve a finite number of elements, we may as-
sume that 	′ is finitely generated over k.

Assume 	′ is a purely transcendental field extension of k, say 	′ = k(y1, . . . , yn).
Thus m′ = k(z1, . . . , zn) with zi = θ−1(yi ). If X ∈ K is transcendental over k, then
X is transcendental over 	′. Hence

tr K (y1, . . . , yn)/k = tr K (y1, . . . , yn)/k(y1, . . . , yn)+ tr k(y1, . . . , yn)/k
= 1+ n = tr K/k + tr K (y1, . . . , yn)/K = 1+ tr(K (y1, . . . , yn)/K ).
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Therefore tr K (y1, . . . , yn)/K = n. It follows that y1, . . . , yn are algebraically in-
dependent over K , and so are z1, . . . , zn . Thus M = Km′ = K (z1, . . . , zn),
L = K	′ = K (y1, . . . , yn) and hence the map � : M → L , such that �(zi ) = yi for
1 ≤ i ≤ n, is the required isomorphism.

Further, in this case, L = K	′ = K (y1, . . . , yn) satisfies that the field 	′ =
k(y1, . . . , yn) is algebraically closed in L (Proposition 8.4.1) so that the field of con-
stants of L is 	 = 	′.

Also, to prove the pure inseparability of 	/	′ and m/m′, it suffices to assume that
	′/k and m′/k are finitely generated. Therefore, to prove the general case we may
assume that 	′/k and m′/k are finitely generated.

K −−−−→ K	′′ = K (y1, . . . , ym) −−−−→ K	′ = LB⏐⏐ B⏐⏐ B⏐⏐
k −−−−→ 	′′ = k(y1, . . . , ym) −−−−→ 	′

Suppose 	′ is finitely generated and let {y1, . . . , yn} be a transcendence base of 	′
over k. Consider 	′′ = k(y1, . . . , yn). Then 	′/	′′ is a finite extension and similarly
for M/m′.

Let � be the isomorphism

� : Km′′ −→ K	′′

zi �−→ yi (1 ≤ i ≤ n).

In order to find an isomorphism �1 : M → L such that �1|Km′′ = � will follow
from the fact that M/Km′ is a finite extension. Thus we may assume that 	′/k is a
finite extension.

K −−−−→ Km′′ = K (z1, . . . , zm) −−−−→ Km′ = MB⏐⏐ B⏐⏐ B⏐⏐
k −−−−→ m′′ = k(z1, . . . , zm) −−−−→ m′

Let 	 = k(α1, . . . , αn), where αi algebraic over k for 1 ≤ i ≤ n. Assume that
the result holds for n − 1 and let 	1 = k(α1, . . . , αn−1). We have L1 = K	1 =
K (α1, . . . , αn−1). Let βi = θ−1(αi ) (1 ≤ i ≤ n − 1), m1 = k(β1, . . . , βn−1), and
M1 = Km1 = K (β1, . . . , βn−1). Set m′ = m1(βn) and let 	2 and m2 be the algebraic
closures of 	1 and m1 in L1 and M1 respectively.

K L1

	2

k 	1

K M1

m2

k m1
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By the induction hypothesis, there exists an isomorphism �1 : M1 → L1 such

that �1|m1 = θ : m1
∼=−→ 	1 and �1|K = IdK . Also, 	2/	1 and m2/m1 are purely

inseparable.
Let αn = α and β = θ−1(α). Then L = L1(α) and M = M1(β).
It suffices to extend �1 to an isomorphism � : M → L such that �(β) = α and

that the constant field 	 of L is purely inseparable over 	2 (and hence over 	′).
In other words, �1 can be extended to � if

�1(Irr(β, X,M1)) = Irr(α, X, L1).

Let p(X) = Irr(β, X,M1) ∈ M1[X ]. Since β in algebraic over k, the coefficients
of p(X) are algebraic over k. Hence p(X) ∈ m2[X ]. Now, since m2/m1 is purely
inseparable, it follows that Irr(β, X,m1) = Irr(β, X,M1)

pt for some t ≥ 0 (where p
is the characteristic).

Since θ is an isomorphism of m′ = m1(β) onto 	′ = 	1(α) with θ(β) = α,
we obtain that θ(Irr(β, X,M1)

pt ) = �1(Irr(β, X,M1))
pt = Irr(α, X, 	1). Since

�1(m1) = 	1, we have �1(m2) = 	2. Hence �1(Irr(β, X,M1)) = Irr(α, X, L1) be-
cause �1(Irr(β, X,M1)) is the only irreducible factor of �1(Irr(β, X,M1))

pt over 	2.
This shows that �1 can be extended to an isomorphismwith the required properties.
It remains to prove that the field of constants 	 of L is purely inseparable over 	′.

Now since 	2 is purely inseparable over 	1, 	2(α) is purely inseparable over 	1(α) =
	′. Hence it suffices to prove that 	 is purely inseparable over 	2(α).

K L1 L = K	′

	

	2 	2(α)

k 	1 	1(α) = 	′

Since 	2 is algebraically closed in L1, we have Irr(α, X, L1) = Irr(α, X, 	2), so

[L1(α) : L1] = [	2(α) : 	2]. (8.17)

If x ∈ L is transcendental over 	′, we have

[	2(α, x) : 	2(x)] = [	2(α) : 	2] (8.18)

(Proposition 2.1.6).
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Now

[L1(α) : 	2(x)] = [L1(α) : L1][L1 : 	2(x)] = [L1(α) : 	2(α, x)][	2(α, x) : 	2(x)].
(8.19)

From (8.17), (8.18) and (8.19) we obtain

[L1 : 	2(x)] = [L1(α) : 	2(α, x)][	2(α, x) : 	2(x)]

[L1(α) : L1]

= [L1(α) : 	2(α, x)][	2(α) : 	2]

[	2(α) : 	2]
= [L1(α) : 	2(α, x)].

(8.20)

Let δ be a constant of L1(α), that is, δ ∈ 	. There exists t ∈ N such that δ p
t
is separably

algebraic over 	2(α). Being δ p
t
separable over 	2(α), 	2(α, δ p

t
) is a simple extension

	2(γ ) of 	2. We have, by (8.20),

[L1(α) : 	2(α, δ
pt , x)] = [L1(γ ) : 	2(γ, x)] = [L1 : 	2(x)]. (8.21)

Using (8.21) with L1(α) and 	1(α), we obtain

[L1(α) : 	2(α, δ
pt , x)] = [L1(α) : 	2(α, x)].

Hence 	2(α, δ p
t
, x) = 	2(α, x) and δ pt ∈ 	2(α, x).

Since δ p
t
is algebraic over 	2(α) and 	2(α) is algebraically closed in 	2(α, x), it

follows that δ p
t ∈ 	2(α) and δ is purely inseparable over 	2(α).

This completes the proof of the theorem. ��

Remark 8.4.3. Example 5.2.31 shows that the field of constants of K	′ can contain 	′
properly.

Our next result characterizes when the field of constants K	′ is 	′.

Theorem 8.4.4. Let L = K	′ be a constant field extension of K such that the field of
constants 	 contains 	′. Then the following conditions are equivalent:

(i) K and 	 are linearly disjoint over k.
(ii) For every finitely generated field 	0 over k such that 	0 ⊆ 	′, the constant field of

L0 := K	0 is 	0.

If these conditions are fulfilled, then for any extension 	0 over k such that 	0 ⊆ 	′
(not necessarily finitely generated), the constant field of L0 := K	0 is 	0. In particular,
the field of constants of L = K	′ is 	′.

Proof.
(i) ⇒ (ii) Let k ⊆ 	0 ⊆ 	′. Let 	′0 be the field of constants of L0 = L	0, and we
have 	0 ⊆ 	′0 ⊆ 	. It follows from (i) and Proposition 8.1.5 that 	′0 and K are linearly
disjoint.
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K K	′0 = L0

k(x) 	0(x) 	′0(x)

k 	0 	′0

Let x ∈ K \ k. By Proposition 8.1.5, k(x) and 	′0 are linearly disjoint over k, and K
and 	′0k(x) = 	′0(x) are linearly disjoint over k(x).

Since 	0(x) ⊆ 	′0(x) and L0 = K	0(x) = K	′0(x), we have

[L0 : 	
′
0(x)] ≤ [L0 : 	0(x)] ≤ [K : k(x)]. (8.22)

On the other hand, since K and 	′0(x) are linearly disjoint over k(x), we obtain

[L0 : 	
′
0(x)] = [K : k(x)]. (8.23)

From (8.22) and (8.23), it follows that 	0(x) = 	′0(x).
Since x is a transcendental element over 	′0, using Proposition 2.1.6 we deduce

	0 = 	′0.
(ii)⇒ (i) To prove that K and 	 are linearly disjoint over k, it is enough to prove that
any finitely generated subfield of 	 over k is linearly disjoint from K over k (Remark
8.1.11).

Let 	0 be a finitely generated subfield of 	. We have 	0 ⊆ L = K	′ =⋃
	′0 finitely generated over k

k⊆	′0⊆	′
K	0. Therefore 	0 ⊆ K	′0 for some finitely generated ex-

tension 	′0 of k contained in 	
′. Since the field of constants of K	′0 is 	

′
0, we have

	0 ⊆ 	′0 ⊆ 	′.
Therefore it is enough to prove that any finitely generated subfield 	0 of 	′ over k

is linearly disjoint from K over k.
Let 	0 = k(α1, . . . , αm) with ki = k(α1, . . . , αi ) and Ki = Kki for i =

1, . . . ,m.

K0 = K K1 K2 · · · Ki · · · Km = K	0

k0 = k k1 k2 · · · ki · · · km = 	0
By Proposition 8.1.5, it suffices to show that ki and Ki−1 are linearly disjoint over
ki−1 for 1 ≤ i ≤ m.

By hypothesis the field of constants of each Ki is ki , so that ki is algebraically
closed in Ki for 0 ≤ i ≤ m. Since ki = ki−1(αi ), by Proposition 8.3.1 ki and Ki−1
are linearly disjoint over ki−1. This proves (i).
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Notice that the proof of (i) ⇒ (ii) actually shows a stronger statement, namely
that if K and 	′ are linearly disjoint, then the field of constants of K	0 is 	0 for any
k ⊆ 	0 ⊆ 	′. This finishes the proof of the theorem. ��

Remark 8.4.5. The conclusion of Theorem 8.4.4 would not hold under the mere hy-
pothesis that K and 	′ are linearly disjoint over k.

Example 8.4.6. Let k0, 	0, u, v, k, and K be as in Example 5.2.31. Since k is alge-
braically closed in K and 	0 = k(v1/p) with v1/p algebraic over k, it follows by
Proposition 8.3.1 that K and 	0 are linearly disjoint over k. However, the field of con-
stants of K is 	 = k(u1/p, v1/p) � 	0.

Corollary 8.4.7. If either K or 	′ is separable over k, then the field of constant of
L = K	′ is 	 = 	′.
Proof. By Theorem 8.4.4, we may assume that 	′ is finitely generated over k. If 	′
is purely transcendental, the field of constants of K	′ is 	′ = 	 (Proposition 8.4.1).
Therefore we may assume that 	′/k is a finite extension.

If 	′/k is separable, then 	′ = k(α), where α algebraic and separable over k. Since
Irr(α, T, K ) divides Irr(α, T, k), it follows that L = K (α) is a separable extension
of K .

K L

k(x) 	′(x)

k 	′

Now if β ∈ 	, we have Irr(β, T, K ) ∈ k[T ]. Hence β is
separable and 	/	′ is separable. Since by Theorem 8.4.2 	/	′ is
a purely inseparable extension, it follows that 	 = 	′. Next, as-
sume that K/k is separable. Let x ∈ K \ k be such that K/k(x)
is a finite separable extension. Then L is a finite separable exten-
sion of 	′(x), and hence 	(x)/	′(x) is a finite separable extension.
Therefore 	/	′ is separable (Proposition 5.2.20). Again we obtain
	 = 	′. ��

Corollary 8.4.8. If either K or 	′ is separably generated over k, then the field of con-
stants of K	′ is 	 = 	′.
Proof. Since a separably generated extension is separable (Theorem 8.2.8), the result
follows by Corollary 8.4.7. ��

Remark 8.4.9. If k is a perfect field (for example k algebraically closed, of characteris-
tic 0, finite), then any function field K/k is separable (Corollary 8.2.11). Thus for any
extension 	 of k, the field of constants of the constant extension L = K	 is 	. Hence,
Theorem 6.1.2 is a particular case of Corollary 8.4.7

Now we study the constant λL/K introduced in Theorem 5.3.4, that is, if L/K is
any function field extension, there exists λL/K ∈ Q+ such that dK (A) = λL/K dL(A)
for any divisor A ∈ DK .
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Theorem 8.4.10. Let L = K	′ be a constant field extension. If the characteristic of k
is 0, then λL/K = 1, and if char k = p > 0, then λL/K = pt for some t ∈ N ∪ {0}.
Furthermore, if 	 is the field of constants of L, λL/K = 1 if and only if K and 	 are
linearly disjoint over k.

Proof. Let x ∈ K \ k and A = Zx . By Theorem 3.2.7 we have

dK (A) = [K : k(x)] and dL(A) = [L : 	(x)]. (8.24)

Hence λL/K = 1 ⇐⇒ dK (A) = dL(A) ⇐⇒ [K : k(x)] = [L : 	(x)].
Now [K : k(x)] = [L : 	(x)] if and only if K and 	(x) are linearly disjoint over

k(x). Since the field of constants of 	(x) = k(x)	 is 	, it follows that k(x) and 	 are
linearly disjoint over k (see the proof of Theorem 8.4.4). Therefore λL/K = 1 if and
only if K and 	 are linearly disjoint over k.

K L

k(x) 	(x)

k 	

If char k = 0, then K/k is separable, and by Corollary 8.4.7, K and 	 are linearly
disjoint and λL/K = 1. Let char k = p > 0 and let K0 be the separable closure of k(x)
in K . Set L0 = K0	′. Since K0/k is separable, it follows that K0 and 	′ are linearly
disjoint over k. Thus [K0 : k(x)] = [L0 : 	′(x)].

K L = K	′

K0 L0

k(x) 	′(x)

k 	′

Also, K/K0 is a purely inseparable extension, say of degree ps with s ≥ 0. Hence
L/L0 is a purely inseparable extension, say of degree ps0 with s0 ≤ s. We have

λL/K = [K : k(x)]

[L : 	(x)]
= [K : k(x)][	(x) : 	′(x)]

[L : 	′(x)]

= [K : K0][K0 : k(x)]

[L : L0][L0 : 	′(x)]
[	 : 	′] = ps−s0 [	 : 	′].
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Since 	/	′ is a finite purely inseparable extension, then λL/K = pt for some t ≥ 0.
��

Assume that k is a finite field, K/k a function field, and L = K	 a constant ex-
tension. If P is a place of L and p its restriction to K , then the residue fields satisfy
k(p)	 = 	(P) (Theorem 6.1.4). We study this property for arbitrary constant exten-
sions.

Theorem 8.4.11. Let K/k be a function field and let L = K	 be an extension of
constants. Let P be a prime divisor of L lying over the prime divisor p of K . If 	 is a
separably generated extension of k, then the residue fields satisfy

	(P) = k(p)	.

Proof. By Proposition 8.2.16 and Corollary 8.4.7, L is a separably generated extension
of K . First we assume that 	 is purely transcendental over k. Since k(p) is an algebraic
extension of k, then k(p) and 	 are linearly disjoint over k (Corollary 8.1.13). For any
y ∈ ϑP, put y = y mod P ∈ 	(P) = ϑP/P.
Let y ∈ ϑP ⊆ L , y �= 0. Then y can be written in the form

y =

n∑
i=1

aibi

m∑
j=1

a′j b
′
j

for some ai , a
′
j ∈ K and bi , b

′
j ∈ 	, (8.25)

where {bi }ni=1 and {b′j }mj=1 are chosen to be linearly independent over k.
Let α, β ∈ K be such that

vp(α) = − min
1≤i≤n

vp(ai ) and vp(β) = − min
1≤ j≤m

vp(a
′
j ). (8.26)

We have vp(αai ) = vp(α)+ vp(ai ) ≥ vp(α)+min1≤i≤n vp(ai ) = 0, so αai ∈ ϑp.
Similarly, vp(βa′j ) ≥ 0 for 1 ≤ j ≤ m. Also, there exist indices i0, j0 such that

1 ≤ i0 ≤ n and 1 ≤ j0 ≤ m, vp(αai0) = 0, and vp(βa′j0) = 0. Thus αai0 �= 0 and

βa′j0 �= 0 in k(p).
It follows that

∑n
i=1 αaibi ∈ ϑP and

∑m
j=1 βa′j b

′
j ∈ ϑP.

We also have
∑n

i=1 αaibi = ∑n
i=1 (αai )bi �= 0 and

∑m
j=1 βa′j b

′
j =∑m

j=1 (βa′j )b
′
j �= 0 since {bi }ni=1 and {b′j }mj=1 are linearly independent over k,

βa′j0 �= 0, and 	 and k(p) are linearly disjoint. In particular,

vP

( n∑
i=1
αaiβi

)
= 0 and vP

( m∑
j=1
βa′j b

′
j

)
= 0.

Now
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vP

(
α

β
y

)
= vP(α)+ vP

( n∑
i=1

aibi

)
− vP

( m∑
j=1
βa′j b

′
j

)

= vP(α)+ vP
( n∑
i=1

aibi

)
≥ vP(α)+ min

1≤i≤n

{
vP(ai )+ vP(bi )

}
= vP(α)+ min

1≤i≤n

{
vP(ai )+ 0

}
= 0.

Hence α
β
y ∈ ϑP,

(
α

β
y

)
=

n∑
i=1
(αai )bi

m∑
j=1
(βa′j )b

′
j

,

and
∑n

i=1 (αai )bi �= 0,
∑m

j=1 (βa′j )b
′
j �= 0. Therefore αβ y �= 0 in k(p)	.

Since y ∈ ϑP, we have
β
α
∈ ϑp and y =

(
β
α

) (
αy
β

)
∈ k(p)	.

This shows that 	(P) ⊆ k(p)	 ⊆ 	(P) or 	(P) = k(p)	 when 	 is a purely
transcendental extension of k.

Now assume that 	 is separably algebraic over k. Any element α ∈ 	(P) = ϑP/P
is the image α = y of an element y ∈ K	′, where 	′ a finite extension of k. Therefore,
if we prove the theorem for finite separable extensions, it will follow that α ∈ k(p)	′ ⊆
k(p)	 and thus 	(P) ⊆ k(p)	, so the theorem will be established for any algebraic
separable extension of k.

Suppose that 	 is a finite separable extension of k. Then 	 is a simple extension of
k : 	 = k(α) satisfying [	 : k] = n. LetP = P1,...,Ph be all prime divisors of L lying
over p. Let L ′ be the Galois closure of L/K and let B be a prime divisor of L ′ lying
over P. For any σ ∈ Gal(L ′/K ), we have σB|L = P j for some j .

Pick ȳ ∈ 	(P). By the approximation theorem (Theorem 2.5.3) there exists an
element ξ ∈ L such that

vP(ξ − y) > 0 and vP j (ξ) ≥ 0 for 2 ≤ j ≤ h.

In particular, ξ = y. By Theorems 5.3.4, 8.4.4, and 8.4.10 and Corollary 8.4.8, we
have ξ ∈ L = K	 = Kk(α) = K (α) and λL/K = [	:k]

[L:K ] = 1.
Thus

[K (α) : K ] = [L : K ] = [	 : k] = [k(α) : k].

It follows that ξ can be written uniquely in the form

ξ = a0 + a1α + · · · + an−1αn−1 with ai ∈ K , i = 0, . . . , n − 1. (8.27)

Taking a conjugate for ξ in (8.27), we have



264 8 Constant and Separable Extensions

ξ (i) = a0 + a1α
(i) + · · · + an−1(α(i))n−1 for 1 ≤ i ≤ n. (8.28)

Since α is separable of degree n over K , the Vandermonde determinant

det

⎡⎢⎣1 α
(1) · · · (α(1))n−1

...
...

...

1 α(n) · · · (α(n))n−1

⎤⎥⎦ =∏
i> j

(
α(i) − α( j))

is nonzero, so (8.28) has a unique solution (a0, . . . , an−1) in Kn , where for t =
0, . . . , n − 1,

at =

∣∣∣∣∣∣∣
1 α(1) · · · ξ (1) · · · (α(1))n−1
...
...

...
...

1 α(n) · · · ξ (n) · · · (α(n))n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 α(1) · · · (α(1))t−1 · · · (α(1))n−1
...
...

...
...

1 α(n) · · · (α(n))t−1 · · · (α(n))n−1

∣∣∣∣∣∣∣
= ct

d
with d ∈ 	 \ {0}.

Now

vB(ξ
(i)) = vσ−1B(ξ) = eL ′/L(σ

−1B|P j )vP j (ξ) ≥ 0, (8.29)

where σ ∈ Gal(L ′/L) is such that σξ = ξ (i) and P j = σ−1B|L .
From (8.29) we obtain that

vB(at ) ≥ 0, vP(at ) ≥ 0, and vp(at ) ≥ 0.

Thus ak ∈ ϑp and

y = ξ = a0 + a1α + · · · + an−1αn−1 ∈ k(p)	.

It follows that 	(P) = k(p)	 when 	 is separably algebraic over k.
The general case follows immediately since 	/k is separably generated. ��
In the process of proving Theorem 8.4.11, we have obtained the following:

Proposition 8.4.12. Let K/k be a function field and 	 a purely transcendental exten-
sion of k. Let L = K	, P a prime divisor of L, and p = P|K . Let {b1, . . . , bn} ⊆ 	
be a system that is linearly independent over k. Then for a1, . . . , an ∈ K, we have

vP

( n∑
i=1

aibi

)
= min
1≤i≤n

vp(ai ). (8.30)
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Proof. Let a1, . . . , an ∈ K with ai �= 0 for some index i and set α = −min1≤i≤n vp(ai ).
Then as in the proof of Theorem 8.4.11, we have vp(αai ) ≥ 0 and there exists an index
i0 such that 1 ≤ i0 ≤ n and vp(αai0) = 0 and αai0 �= 0 in k(p).

It follows that
∑n

i=1 αaibi =
∑n

i=1 (αai )bi , and hence vP
(∑n

i=1 αaibi
) ≥ 0.

Now 	 and k(p) are linearly disjoint over k, {b1, . . . , bn} ⊆ 	 is linearly independent
over k, and hence {b1, . . . , bn} is linearly independent over k(p) and αai0 �= 0, so∑n

i=1 (αai )bi �= 0. Therefore

vP(α)+ vP
( n∑
i=1

aibi

)
= vP

( n∑
i=1
αaibi

)
= 0 = min

1≤i≤n
vP(αai )

= vP(α)+ min
1≤i≤n

vP(ai ). ��

We also have the following result:

Proposition 8.4.13. With the hypotheses of Proposition 8.4.12, for each prime divisor
p there exists a unique prime divisor P in L lying over p.

Proof. Since 	(P)/	 and k(p)/k are finite extensions, it follows that 	(P) is a purely
transcendental extension of k(p) and any transcendence
base of 	 over k is also a transcendence base of 	(P)
over k(p). Also, 	 and k(p) are linearly disjoint and the
structure of 	(P) is uniquely determined; namely, for
any transcendence basis {αi }i∈I of 	 over k and basis

k(p) k(p)	 = 	(P)

k 	

{β j }mj=1 of k(p) over k, we have 	(P) = k ({αi }i∈I )
(
{β j }mj=1

)
.

Given any two prime divisorsP,P′ of L lying over p and using the notation of the

proof of Theorem 8.4.11, we have Y =
(
β
α

)(
αY
β

)
for any Y ∈ ϑP, where α, β ∈ K ,

β
α
∈ ϑp = K ∩ ϑP = K ∩ ϑP′ , and the definition of Y depends only on K , p, and 	

and not on P and P′. It follows that ϑP = ϑP′ and hence P = P′. ��

8.5 Genus Change in Constant Extensions

The genus of a geometric extension L/K has been studied in previous chapters, for
example in Section 4.3. In Chapter 9 we will examine the general case of the genus of
a separable extension L of K (Theorem 9.4.2).

In this section we consider the case of a constant extension L = K	′ of K , where
	 ⊇ 	′ is the field of constants of L .
Proposition 8.5.1. If λL/K = 1, that is, K and 	 are linearly disjoint over k, then
gL ≤ gK . For any divisor q ∈ DK , any basis of LK (q) is a subset of a basis of LL(q).
In particular, 	K (q) ≤ 	L(q).
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Proof. We have LK (q) ⊆ LL(q). If α1, . . . , αn ∈ LK (q) are linearly independent
(over k), then α1, . . . , αn are linearly independent over 	 since K and 	 are linearly
disjoint. Hence 	K (q) ≤ 	L(q).

Now choose q ∈ DK such that dK (q) > 2gK − 2 and dL(q) > 2gL − 2. By
Corollary 3.5.6 we have

	K (q
−1) = dK (q)− gK + 1

and

	L(q
−1) = dL(q)− gL + 1 (8.31)

Since λL/K = 1, it follows that dK (q) = dL(q). Also, 	K (q−1) ≤ 	L(q
−1). From

(8.31) we obtain

−gK + 1 ≤ −gL + 1. ��
Theorem 8.5.2. If 	′ is separably generated over k, then gL = gK and any basis of
LK (q) is also a basis of LL(q) for any q ∈ DK . Hence 	K (q) = 	L(q).
Proof. Suppose the result has been proved for 	′ = k(y) with y transcendental and for
	′ = k(α), where α is a separable algebraic element. For 	′ separably generated over
k, let z ∈ LL(q). Then z belongs to a field L0 = K	0, where 	0 is a finitely separably
generated extension of k, so z ∈ LL0(q). By induction on the transcendence degree
of 	0 over k, and using the finite separable case, we obtain LL0(q) = LK (q)	0. It
follows that LL(q) = LK (q)	 and 	L(q) = 	K (q). The proof of the equality gK = gL
proceeds along the same lines as that of Proposition 8.5.1.

Therefore we assume first that 	′ = k(y) with y transcendental over k. Let ξ ∈
LL(q). Then ξ can be written uniquely as

ξ = f (y)

g(y)
=
∑n

i=0 ai yi∑m
j=0 b j y j

(8.32)

with f (y), g(y) ∈ k[y], ( f, g) = 1, and bm = 1.
Let P be a prime divisor of L lying over an arbitrary prime divisor of K . Using

Proposition 8.4.12 we obtain

vP(g(y)) = vP
( m∑
j=0

b j y
j
)
= min
0≤ j≤m

{
vP(b j )

}
= min
0≤ j≤m−1

{
0, vP(b j )

}
≤ 0.

(8.33)

Statement (8.33) implies that vP(Z(g(y))) = 0 for any place of L that is not variable
over K ; thus the only possible prime divisors that occur in the zero divisor of g(y) are
those that are variable over K .

Now ξ ∈ LL(q), so

(ξ)Lq
−1 = Z( f (y))N(g(y))

N( f (y))Z(g(y))q
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is an integral divisor in L . Since
(
Z(g(y)),N(g(y))

) = 1, any prime divisor dividing
Z(g(y)) must divide Z( f (y)). Moreover, f and g are relatively prime, so

α(y) f (y)+ β(y)g(y) = 1 (8.34)

for some α(y), β(y) ∈ k[y].
If Q is any prime divisor of L that is variable over K , then if α(y) =∑s

	=0 c	y	,
then vQ(c	) = 0 for c	 �= 0 and vQ(y) = 0. Therefore

vQ(α(y)) ≥ min
0≤	≤s

vQ(c	y
	) = min

0≤	≤s

(
vQ(c	)+ 	vQ(y)

)
= 0. (8.35)

Similarly,

vQ(β(y)) ≥ 0. (8.36)

From (8.34), (8.35), and (8.36) we obtain

0 = vQ(1) ≥ min
{
vQ(α(y))+ vQ( f (y)), vQ(β(y))+ vQ(g(y))

}
≥ min{vQ( f (y)), vQ(g(y))}.

It follows that Z( f (y)) and Z(g(y)) cannot have a common prime divisor. Thus
Z(g(y)) = N and g(y) = 1.

Using (8.32) and Proposition 8.4.12 we obtain that for any prime divisor p of K ,

vp(ξ) = vp( f (y) = min
0≤i≤n

{
vp(ai )

} ≥ vp(q). (8.37)

Thus ai ∈ LK (q). It follows that LL(q) is the vector space generated over 	 = 	′ by
LL(q) or, equivalently, LK (q)	 = LL(q).
Since K and 	 are linearly disjoint, we get 	K (q) = 	L(q). This proves the theorem

in the case 	′ = k(y), where y is a transcendental element over k.
Now we consider the case 	′ = k(α) where α is a finite separable element over k.

Let ξ ∈ LL(q). Then ξ can be written uniquely in the form
ξ = c0 + c1α + · · · + cn−1αn−1 where ci ∈ K (i = 0, . . . , n − 1) (8.38)

and n = deg Irr(α, x, k) = deg Irr(α, x, K ).
Let L1 be the Galois closure of L/K . By changing each side in (8.38) into its

conjugate, we obtain

ξ (i) = c0 + c1α
(i) + · · · + cn−1(α(i))n−1 for 1 ≤ i ≤ n. (8.39)

Since α is a separable element, we have

 = det

⎡⎢⎣1 α
(1) · · · (α(1))n−1

...
...

1 α(n) · · · (α(n))n−1

⎤⎥⎦ =∏
i> j

(α(i) − α( j)) �= 0,
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where  ∈ 	.
Therefore there exists a unique solution to the system of linear equations (8.39),

namely

at =

∣∣∣∣∣∣∣
1 α(1) · · · (α(1))t−1 ξ (1) (α(1))t+1 · · · (α(1))n−1
...
...

...
...

...
...

1 α(n) · · · (α(n))t−1 ξ (n) (α(n))t+1 · · · (α(n))n−1

∣∣∣∣∣∣∣
 

= bt
 

for 0 ≤ t ≤ n − 1. (8.40)

Each bt is a linear combination of ξ (i) with coefficients in 	′ = 	. Since q ∈ DK and
ξ ∈ LL1(q), it follows that ξ

(i) = ξσ ∈ LL1(q
σ ) = LL1(q) for some σ : L → L1

whose restriction to K is the identity. Thus at ∈ LL1(q) ∩ K and at ∈ LK (q).
Therefore LL(q) = LK (q)	 and the equality 	L(q) = 	K (q) follows from the

linear disjointness of K and 	 over k. ��
In Proposition 8.5.1 we obtained gL ≤ gK when λL/K = 1. This inequality is true

for any constant extension. Actually, the following general result holds:

Theorem 8.5.3. For any constant field extension of function fields L of K , we have

λL/K gL ≤ gK .

In particular, gL ≤ gK .

Proof. Let L = K	′ and let A be a transcendence base of 	′/k. Set 	0 = k(A)
and L0 = K	0. By Corollary 8.4.8 and Theorem 8.4.10, we have proved λL0/K =
1. Hence gL0 ≤ gK (Proposition 8.5.1). Since λL/K = λL/L0λL0/K , if we prove
λL/L0gL ≤ gL0 , it will follow that

λL/K gL = λL/L0gL ≤ gL0 = λL0/K gL0 ≤ gK .

Therefore we may assume that 	′/k is an algebraic exten-
sion. First consider the case that 	′ is a finite extension of k.
Then [L : K ] = m ≤ n = [	′ : k]. We can take a subset
{α1, . . . , αm} of a basis {α1, . . . , αn} of 	′ over k that is a basis
of L over K . Let X′K be the vector subspace over k of the repar-

K K	′ = L

k 	′

titions of K such that if ξ ∈ X′K and p ∈ PK , then ξ(p) ∈ K ⊆ Kp. Similarly, define
X′L over 	.

Let ϕ :
∏m

i=1 X′K → X′L be defined by

ϕ(ξ1, . . . , ξm) = θ

where for any place P of L ,
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θ(P) =
m∑
i=1
ξi (p)αi ∈ L ⊆ LP

and P|K = p is the prime divisor in K .
Then θ belongs to XL because ξi (p) ∈ ϑp for almost all p ∈ PK . Furthermore,

since {α1, . . . , αm} is a basis of L/K it follows that ϕ is a k-monomorphism.
Let X0L = ϕ

(∏m
i=1 X′K

)
⊆ X′L . Then X0L is a vector subspace of X

′
L (over k).

If X1, . . . , Xm ∈ K and the ξXi = (Xi )p∈PK are the principal repartitions, then
ϕ
(
ξX1 , . . . , ξXm

) = ξy whenever y =∑m
i=1 αi Xi ∈ L .

It follows that L ⊆ X0L . Let q be any divisor of K . Then if X
′
L(q) := XL(q) ∩X′L ,

we have

X0L + X′L(q) ⊆ X′L . (8.41)

Let θ ∈ X′L and p ∈ PK . Let P1, . . . ,Ph be the prime divisors of L lying over p. By
the approximation theorem (Theorem 2.5.3), there exists yp ∈ L such that

vPi

(
yp− θ(Pi )

)
≥ vPi (q) for 1 ≤ i ≤ h. (8.42)

Let δ ∈ X′L be defined by

δ(P) =

⎧⎪⎨⎪⎩
yp if P | p and vP(q) �= 0,
yp if P | p and vP′(θ(P′)) < 0 for some P′ | p,
0 otherwise.

(8.43)

Let P ∈ PL and p = P|K . If vP(q) �= 0 or vP′(ϑ(P′)) < 0 for some P′ dividing p,
then δ(P) = yp, so

vP(θ − δ)(P) = vP(θ(P)− yp) ≥ vP(q).

Now if vP(q) = 0 and vP′(θ(P′)) ≥ 0 for every P′ | p, then

vP((θ − δ)(P)) = vP(θ(P)) ≥ 0 = vP(q).

It follows that θ − δ ∈ X′L(q).
For any p ∈ PK , let yp ∈ L be defined as in (8.42).
Let yp =

∑m
i=1 αi Xip, Xip ∈ K and δ′i ∈ X′K be given by

δ′i (p) =
{
Xip if vp(q) �= 0 or vP(q) < 0 for some P | p,
0 otherwise.

Then ϕ(δ′1, . . . , δ
′
m)(P) =

∑m
i=1 αiδ′i (p) = δ(P). Thus δ ∈ X0L , and θ = (θ−δ)+δ ∈

X′L(q)+ X0L . It follows that
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X′L ⊆ X0L + X′L(q). (8.44)

Using (8.41) and (8.44) we obtain

X′L = X0L + X′L(q). (8.45)

By Exercise 3.6.16 and Corollary 3.4.6 we have

dimk
X′K

X′K (N)+ K
= gK (8.46)

and

dim	
X′L

X′L(N)+ K
= gL . (8.47)

Using (8.46) we obtain

mgK = dimk

m∏
i=1

(
X′K

X′K (N)+ K

)
= dimk

∏m
i=1 X′K∏m

i=1(X′K (N)+ K )
.

Applying the k-monomorphism θ , we get

mgK = dimk
X0L

X0L(N)+ L
,

where X0L(q) := ϕ
(∏m

i=1 X′K (q)
) ⊆ X′L for any q ∈ DK .

On the other hand, by (8.45),

ngL = n dim	
X′L

X′L(N)+ L
= dimk

X′L
X′L(N)+ L

= dimk
X0L + X′L(N)+ L

X′L(N)+ L
= dimk

X0L

X0L ∩ (X′L(N)+ L)
.

Now X0L(N)+ L ⊆ X0L ∩ (X′K (N)+ L), so

ngL = dimk
X0L

X0L ∩ (X′L(N)+ L)

= dimk
X0L

X0L(N)+ L
− dimk

X0L ∩ (X′L(N)+ L)

X0L(N)+ L

= mgK − dimk
X0L ∩ (X′L(N)+ L)

X0L(N)+ L
.

Therefore
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ngL ≤ mgK . (8.48)

By Theorem 5.3.4, we obtain

λL/K = [	 : k]

[L : K ]
= n

m
. (8.49)

Therefore it follows from (8.48) and (8.49) that

λL/K gL = n

m
gL ≤ gK .

Next, consider 	′ to be an arbitrary algebraic extension of k. Let x ∈ K \ k and set
r := dK (Nx ) = [K : k(x)] and s := dL(Nx ) = [L : 	(x)].

Any basis {α1, . . . , αr } of K over k(x) spans L over 	(x). Thus we obtain r − s
relations

r∑
i=1
αi ci j = 0 ( j = 1, 2, . . . , r − s),

with coefficients ci j ∈ 	(x) and such that the r − s vectors (c1 j , . . . , cnj ) are linearly
independent over 	(x).

Notice that ci j ∈ 	(x), so the coefficients of ci j belong to a finitely generated
(and thus finite) extension 	′0 of k, with 	

′
0 ⊆ 	. Clearly, L0 = L	′0 is spanned by{α1, . . . , αr } over 	′0(x) and ci j ∈ 	′0(x). Therefore if 	0 is the field of constants of

L0, we obtain

dL0(Nx ) = [L0 : 	0(x)] ≤ [L0 : 	′0(x)] ≤ s = dL(Nx ).

It follows that

1 ≤ λL/L0 =
dL0(Nx )

dL(Nx )
≤ 1,

and hence λL/L0 = 1. Using the case of a finite extension and Proposition 8.5.1, we
deduce that

λL/K gL = λL0/KλL/L0gL ≤ λL0/K gL0 ≤ gK . ��
Corollary 8.5.4. With the hypotheses of Theorem 8.5.3, if λL/K > 2, then

λL/K gL < gK .

Proof: Suppose λL/K gL = gK . Let ω be a nonzero differential of K .
We have

dL((ω)) = dK ((ω))

λL/K
= 2gK − 2

λL/K
.

Thus λL/K | 2gK −2. Now λL/K gL = gK implies that λL/K divides gK and therefore
λL/K divides 2. ��
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Remark 8.5.5. If λL/K = 2, it is possible to have
λL/K gL = 2gL = gK .

Example 8.5.6. Let k be a field of characteristic 2 and let α0, α1 be elements of k
satisfying [k(α1/20 , α

1/2
1 ) : k] = 4 (see Example 5.2.31). Let x be a transcendental

element over k and let y be such that

y2 = α0 + α1x2. (8.50)

By Example 5.2.31 (with p = 2), if K = k(x, y), then

[K : k(x)] = 2 = d(Nx ) (8.51)

and the field of constants of K is k.
If P is any place of K such that vP(y) < 0, we have

2vP(y) = vP(y2) = vP(α0 + α1x2)

= min
{
vP(α0), vP(α1)+ 2vP(x)

}
= 2vP(x).

Similarly, if vP(x) < 0 then vP(x) = vP(y). It follows that Ny = Nx . Thus
1, x, x2, . . . , xn, y, yx, . . . , yxn−1 ∈ L(N−nx ) and these elements are linearly inde-
pendent. In particular,

	(N−nx ) ≥ 2n + 1. (8.52)

Using the Riemann–Roch theorem (Corollary 3.5.6), (8.51), and (8.52), we obtain
for n large enough

2n + 1 ≤ 	(N−nx ) = d(Nn
x )− gK + 1 = 2n − gK + 1.

Hence gK = 0.
Now set 	′ = k(α1/20 ). We have [	′0(α

1/2
1 ) : 	′0] = 2. Put L = K	′. Since

λL/K gL ≤ gK = 0, it follows that gL = 0.
By Exercise 5.10.17, the constant field of L is 	 = k(α1/20 , α

1/2
1 ) and L =

	′(x, y) = k(α1/20 , α
1/2
1 )(x, y).

Now y2 = α0 + α1x2, so y = α1/20 + α1/21 x ∈ k(α1/20 , α
1/2
1 )(x). Consequently

L = k(α1/20 , α
1/2
1 )(x) = 	(x) and dL(Nx ) = 1. Therefore

λL/K = dK (Nx )

dL(Nx )
= 2

1
= 2.

An interesting remark is that this example covers the general case:

Proposition 8.5.7. Let L = K	′ be a constant extension such that gL = gK and
λL/K > 1. Then gL = gK = 0, λL/K = 2, K = k(x, y) with y2 = α + βx2, α, β ∈ k
such that [k(α1/2, β1/2) : k] = 4, and [	′(α1/2, β1/2) : 	′] < 4.
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Proof. If gL �= 0, then gL < λL/K gL ≤ gK = gL . Therefore gK = gL = 0. By
Corollary 8.5.4, we obtain λL/K = 2.

Let W be the canonical class of K . By Corollaries 3.5.5 and 3.5.6, we have

dK (W
−1) = 2 and NK (W

−1) = 3.
Let q be a integral divisor in W−1 with dK (q) = 2 and 	K (q−1) = 3. Let {1, x, y}
be a basis of LK (q−1). Now x �∈ k and x ∈ LK (q−1), so q−1 divides (x), Nx divides
q and dL(q) = 2. It follows that dK (Nx ) is 1 or 2. If dK (Nx ) = 1, then K = k(x)
(Theorem 3.2.7). Thus L = K	′ = 	′(x) and dL(Nx ) = 1. This is impossible because
λL/K = dK (Nx )

dL (Nx )
> 1.

Therefore we have dK (Nx ) = 2, Nx = q, and

[K : k(x)] = dK (Nx ) = 2. (8.53)

Now consider y. If y ∈ k(x), we have y = f (x)
g(x) with f (x), g(x) ∈ k[x] and ( f, g) =

1. It follows that

(y)K = Z( f )

Z(g)
N
deg g−deg f
x .

Since y ∈ LK (q−1) = LK (N−1x ), (y)KNx is an integral divisor and (y)K =
B
Nx
, where B is an integral divisor. Therefore Z(g) = N, g(x) is constant, and

deg f (x) = 1.
This is a contradiction to the fact that 1, x , and y are linearly independent over k.

Therefore y �∈ k(x) and by (8.53) it follows that K = k(x, y).
Now since λL/K �= 1, using Theorem 8.4.10 and Corollary 8.4.7 we deduce that y

is purely inseparable over k(x). Thus

y2 = h(x)

m(x)

with h(x),m(x) ∈ k[x], and (h(x),m(x)) = 1. Therefore

(y2)K = (y)2K =
Z(h)

Z(m)
N
degm−deg h
x .

Since (y)KNx is integral and (y)2K = B2

N2
x
, it follows that Z(m) = N, m(x) is constant,

and deg h(x) = 2 and Z(h) = B2. Thus

h(x) = α + βx2 = y2.

Now [k(α1/2, β1/2) : k] divides 4, so [k(α1/2, β1/2) : k] is 1, 2, or 4. Assume
[k(α1/2, β1/2) : k] �= 4. Then 1, α1/2, β1/2 cannot be linearly independent over k
and there exist a, b, c ∈ k, not all zero, such that

aα1/2 + bβ1/2 = c.
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Say a �= 0. Then α1/2 = c−bβ1/2
a . Since y = α1/2 + β1/2x ∈ K , it follows that

y = c

a
− β1/2

(
b

a
+ x

)
, β1/2 =

c
a − y
b
a + x

∈ K , and α1/2 = c

a
− b

a
β1/2 ∈ K .

Thus α1/2, β1/2 ∈ k and y ∈ k(x), which is absurd, whence [k(α1/2, β1/2) : k] = 4.
Let 	 be the field of constants of L = K	′. Since λL/K = 2, it follows that

dL(Nx ) = 1 and L = 	(x) = 	′(x, y). Hence α1/2, β1/2 ∈ 	.

K

2

	(x) = L

k(x) 	′(x)

k 	′

Therefore

[	′(α1/2, β1/2) : 	′] ≤ [	 : 	′] = [	(x) : 	′(x)] = [L : 	′(x)] ≤ [K : k(x)] = 2. ��

Corollary 8.5.8. If gL = gK > 0, then λL/K = 1.
Proof:We have 0 �= gL ≤ λL/K gL ≤ gK = gL . ��

We establish the following generalization of Theorem 8.5.2.

Theorem 8.5.9. Let L = K	 be a constant extension of K . Then LL(q) = LK (q)	 for
any q ∈ DK if and only if gL = gK and λL/K = 1.

If these conditions hold, we have in particular 	K (q) = 	L(q).
Proof:
(⇒) We have 	L(q) = 	K (q) for all q ∈ DK . Let q ∈ DK be such that −dK (q) >
2gK − 2 and −dL(q) > 2gL − 2.

By the Riemann–Roch theorem (Corollary 3.5.6) we have

	K (q)+ dK (q) = 1− gK and 	L(q)+ dL(q) = 1− gL .

Thus

λL/K = dK (q)

dL(q)
= 1− gK − 	K (q)
1− gL − 	L(q) −−−−−−−→dK (q)→−∞

1.

Therefore λL/K = 1, dK (q) = dL(q) for any q ∈ DK and gL = gK .
(⇐)We have 	LK (q) ⊆ LL(q). Since λL/K = 1, it follows by Theorem 8.4.10 that 	
and K are linearly disjoint over k. Thus
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	K (q) = dim	 	LK (q) ≤ dim	 LL(q) = 	L(q). (8.54)

Let q ∈ DK be such that −dK (q) = −dL(q) > 2gK − 2.
Using Corollary 3.5.6 we obtain

	K (q)+ dK (q) = 1− gK and 	L(q)+ dL(q) = 1− gL .

Since gK = gL and dK (q) = dL(q), it follows that

	K (q) = 	L(q), 	LK (q) = LL(q).

Therefore the result holds for any divisor q ∈ DK satisfying −dK (q) > 2gK − 2 or
dK (q) < 2− 2gK .

Let q ∈ DK be an arbitrary divisor and let p1, p2 be two prime divisors of K
such that vp1(q) = vp2(q) = 0. Let n,m ∈ N be large enough so that if B = p−n1 q,
L = p−m2 q, then dK (B) < 2−2gK and dK (L) < 2−2gL . The least common multiple
ofB and L is q and therefore

LK (B) ∩ LK (L) = LK (q) and LL(B) ∩ LL(L) = LL(q).

Let {α1, . . . , αr } be a basis of LK (q). We complete this basis to a basis {β1, . . . , βs,
α1, . . . , αr } of LK (B) and to a basis {γ1, . . . , γt , α1, . . . , αr } of LK (L).

Now we will prove that {α1, . . . , αr , β1, . . . , βs, γ1, . . . , γt } is linearly indepen-
dent over k. Assume

r∑
i=1

aiαi +
s∑
j=1

b jβ j +
t∑

u=1
cuγu = 0, with ai , bi , cu ∈ k.

Notice that
∑r

i=1 aiαi +
∑s

j=1 b jβ j ∈ LK (B) and −
∑t

u=1 cuγu ∈ LK (L), so∑t
u=1 cuγu ∈ LK (B) ∩ LK (L) = LK (q). Therefore c1 = · · · = ct = 0. Similarly,

b1 = · · · = bs = 0. It follows that a1 = · · · = ar = 0.
Since 	 and K are linearly disjoint over k, the set

{α1, . . . , αr , β1, . . . , βs, γ1, . . . , γt }

is linearly independent over 	.
Let y ∈ LL(q) = LL(B) ∩ LL(L). Since y ∈ LL(B), we have

y =
r∑
i=1

aiαi +
s∑
j=1

b jβ j , with ai , b j ∈ 	. (8.55)

Moreover, y ∈ LL(L) implies that

y =
r∑
i=1

a′iαi +
t∑

u=1
cuγu with all a′i , cu in 	. (8.56)
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It follows from relations (8.55) and (8.56) and the linear independence of the set
{α1, . . . , αr , β1, . . . , βs, γ1, . . . , γt } that

ai = a′i (1 ≤ i ≤ r), and b j = cu = 0 (1 ≤ j ≤ s, 1 ≤ u ≤ t).

Therefore y ∈ 	LK (q) and LL(q) = 	LK (q). By the linear disjointness of 	 and K
over k, we obtain 	K (q) = 	L(q). ��

A very important corollary is the following:

Corollary 8.5.10. If gK = gL and λL/K = 1, the natural homomorphism ϕ of the
class group CK of K into the class group CL of L is a monomorphism. We also have
ϕ(WK ) = WL .

Proof. Let q ∈ kerϕ, that is, q ∈ DK and q is principal when considered in L . Then
dL(q) = 0 and 	L(q) = 1. Using Theorem 8.5.9, we obtain dK (q) = 0 and 	K (q) = 1.
Therefore q ∈ PK and ϕ is an injective homomorphism.

Now dL(WK ) = dK (WK ) = 2gK − 2 = 2gL − 2 and 	L(W−1
K ) = 	K (W−1

K ) =
gK = gL . Therefore ϕ(WK ) = WL (Exercise 3.6.23). ��

8.6 Inseparable Function Fields

In this section we recall some of the properties of inseparable function field extensions.
In Theorem 5.2.24 we proved that if L/	 is a finite purely inseparable extension of
K/k, then for each place p of K there exists a unique placeP of L such thatP∩K =
p. Furthermore, if k is a perfect field every place of K is fully ramified in L (Corollary
5.2.26).

Now let K/k be a function field of characteristic p > 0.

Proposition 8.6.1 (Stichtenoth). The following conditions are equivalent.

(i) K/k is inseparable.
(ii) [K : K pk] ≥ p2.
(iii) For any place P of K , k(P)/k is inseparable.

Proof:
(i)⇒ (ii): Let L/k be a subfield of K/k such that [K : L] = p and K/L is insepara-
ble. Then for any α ∈ K , α p belongs to L . Therefore K pk ⊆ L .

Let x ∈ K \ k. Then K/k(x p) is not a separable extension. Thus there exists an
extension k(x p) ⊆ L ⊆ K such that K/L is of degree p and purely inseparable. We
have K pk ⊆ L and

[K : K pk] ≥ [K : L] = p.

If [K : K pk] = p, let y ∈ K \ K pk. Then K/k(y) is inseparable since K/k is not
separably generated. There exists L1 such that k(y) ⊆ L1, [K : L1] = p, and K/L1 is
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a purely inseparable extension. Since K pk ⊆ L1, It follows that K pk = L1. Therefore
y ∈ K pk. This contradiction shows that [K : K pk] ≥ p2.
(ii)⇒ (iii) Let P be a place of K/k and set p = P ∩ K pk. Since K/K pk is purely
inseparable, it follows by Theorem 5.2.24 that P is the only place above p. Let e =
e(P|p) and f = f (P|p). Let z ∈ K be a prime element of P. Then z p ∈ K pk and
p = vP(z p) = evp(z p). Therefore e ≤ p. Since e f = [K : K pk] ≥ p2, it follows
that f ≥ p and k(P)/k(p) is inseparable. Thus k(P)/k is inseparable.
(iii)⇒ (i): Assume that (iii) holds and suppose for the sake of contradiction that K/k
is separable. There exists x ∈ K such that K/k(x) is separable. By Theorem 5.2.33
it follows that all but finitely many places of k(x) are separable. Thus K/k is insep-
arable. ��

Corollary 8.6.2. K/k is separable if and only if [K : K pk] = p. ��

Corollary 8.6.3. If K/k is separable then every element x of K \ K pk is a separating
element and every subfield L/k of K/k is separable.

Proof: Assume that there exists x ∈ K \K pk, such that K/k(x) is not separable. Then
k(x) ⊆ K pk. If L/k is a subfield of K/k, then by Corollary 8.2.12, L/k is separable.

��

Theorem 8.6.4. Let K/k be an inseparable extension. Then [K : K pk] = ps where s
is the minimum number of generators of K/k.

Proof: Let [K : K pk] = ps and let {x1, . . . , xt } be a set of generators of K/k,
that is, K = k(x1, . . . , xt ). Then K pk = k(x p1 , . . . , x

p
t ). Thus [K : K pk] ≤ pt

and it follows that s ≤ t . Since K/K pk is of degree ps , there exist y1, . . . , ys ∈
K \ K pk such that K pk(y1, . . . , ys) = K . Now s ≥ 2, so y2 belongs to K \ k and
[K : k(y2)] < ∞, which implies that K/k(y2, . . . , ys) is a finite extension. Let L =
k(y1, y2, . . . , ys). If K/L is not separable, there exists N such that L ⊆ N ⊆ K , K/N
is inseparable, and [K : N ] = p. Thus K pk ⊆ N and y1, . . . , ys ∈ N , so N = K .
This contradiction shows that K/L is a separable extension. Let T = k(y2, . . . , ys).
Then T (y1) = L and K/L is separable. Let Ts be the separable closure of T in K
and let z ∈ Ts ⊆ K be such that Ts = T (z). Notice that Ts(y1) ⊇ L , and hence
K/Ts(y1) is separable. Therefore K = Ts(y1) = T (z, y1) and z ∈ K is separable
over T . Let z1 = z, . . . , zm be all the roots of Irr(z, x, T ) = f (x), where z1, . . . , zm
are all distinct and deg Irr(z, x, T ) = m. Let y1 = y(1), . . . , y(n)1 be all the roots of
Irr(y1, x, T ) = g(x). For all i = 2, . . . , n and j = 2, . . . ,m, choose α ∈ T such

that α �= y1−y(i)1
z j−z . Set ω = y1 + αz. Then ω �= y(i)1 + αz j for all i = 2, . . . , n,

j = 2, . . . ,m. Let h(x) = g(ω − αx) ∈ T (ω)[x]. We have h(z) = g(ω − αz) =
f (y1) = 0. Since the roots of g(x) are y1, y(2)1 , . . . , y(n)1 (not necessarily distinct), we

have h(z j ) = g(ω − αz j ) �= 0 because ω − αz j �= y(i)1 for j ≥ 2, i ≥ 2.
Now h(x) and f (x) have a common factor Irr(z, x, T (ω)) in T (ω)[x], which is

linear since z is the only common root of h(x) and f (x). Thus x − z ∈ T (ω)[x] and
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z ∈ T (ω). We also have y1 = ω−αz ∈ T (ω). Therefore K = T (y1, z) ⊆ T (ω) ⊆ K ,
and K = T (ω) = k(ω, y2, . . . , ys). In particular, K can be generated by s elements
over k. ��

For n ∈ N, set Kn = K pnk. Then Kn+ j = K p j
n k. In particular, Km+1 = K p

mk.
Therefore [Km : Km+1] ≥ p and [K : Km+1] = [K : Km][Km : Km+1] ≥ p[K :
Km]. We obtain

1 ≤ p−1[K : K1] ≤ p−2[K : K2] ≤ . . . ≤ p−m[K : Km] ≤ . . . .

Note that p−n[K : Kn] ∈ N.

Proposition 8.6.5. There exists n ∈ N such that Kn/k is separable and for all m ≥ n,

p−m[K : Km] = p−n[K : Kn].

Proof: Let M ⊆ K be a maximal subfield of K such that M/k is separable. For
example, we may choose M to be the separable closure of k(x) in K , where x ∈ K \k.
Then K/M is purely inseparable. Since K/M is finitely generated, it follows that
K pn ⊆ M for some n ∈ N and Kn = K pnk ⊆ M . In particular, Kn/k is a separable
extension. Now M/Km is a separable extension for allm ≥ n and Kn/Km is separable.

By Corollary 8.6.2 we have
[
Kn+i : Kn+i+1

] = [Kn+i : K p
n+i k

] = p for all i ≥ 1.
Thus

[Kn : Km] =
m−n−1∏
i=0

[
Kn+i : Kn+i+1

] = pm−n .

It follows that

p−m [K : Km] = p−m [K : Kn] [Kn : Km]

= p−m [K : Kn] p
m−n = p−n [K : Kn] . ��

Proposition 8.6.5 gives an important invariant for any function field.

Definition 8.6.6. Let K/k be any function field of characteristic p > 0 and let n ∈ N
be such that Kn = K pnk/k is separable. We define the invariant

µK := p−n [K : Kn] .

Remark 8.6.7. µK is a power of p and provides a measure of the inseparability of
K/k. We have µK = 1 if and only if K/k is separable. If s is the minimum number
of generators of K/k, then

µK ≥ p−1 [K : K1] = p−1 ps = ps−1.
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Theorem 8.6.8. Let P be a place of K/k. Then µK divides dK (P).

Proof: Let n ∈ N be such that µK = p−n [K : Kn], p = P ∩ Kn , e = e(P|p),
f = f (P|p) and let π be a prime element forP. Since π pn ∈ Kn , we have

pn = vP(π pn ) = evp(π
pn ),

so e ≤ pn . Now, K/Kn is purely inseparable, so it follows by Theorem 5.2.24 that
P is the only place in K dividing p and e f = [K : Kn]. Hence f = e−1 [K : Kn] ≥
p−n [K : Kn] = µK . Since f is a power of p, we have µK | f . Finally, since f
divides dK (P) it follows that µK divides dK (P). ��

Corollary 8.6.9. The genus of K/k satisfies

gK ≡ 1 mod µK if p �= 2,
gK ≡ 1 mod 1

2
µK if p = 2.

Proof. µK divides dK ((ω)K ) = 2gK − 2, where ω is a nonzero differential of K , and
hence 2gK ≡ 2 mod µK .

Since µK is a power of p with p �= 2, it follows that 2 is invertible mod p and the
statement holds. ��

Theorem 8.6.10. Let K/k be any function field. There exists a finite purely insepara-
ble extension 	/k such that 	 is the field of constants of L = K	 and L/	 is separable.

Proof. If K/k is separable there is nothing to prove. Let p > 0 be the characteristic of
K and let K = k(x1, . . . , xs). Let n ∈ N be such that Kn = K pnk = k(x p

n

1 , . . . , x
pn
s )

is separable over k. Since
[
Kn : Kn+1

] = [
Kn : K

p
n k
] = p, there exists 1 ≤ i ≤

s such that x p
n

i �∈ K p
n k and thus x

pn

i is a separating element of Kn/k (Corollary

8.6.3). We may assume i = s. Therefore, Kn/k(x
pn
s ) is a separable extension. For

i = 1, . . . , s − 1, let fi (x p
n

i , x
pn
s ) = 0 be a separable equation of x p

n

i over k(x p
n

s ).
Let 	 be the field obtained by adjoining the pn roots of the coefficients of each fi to k.
Then 	/k is a finite purely inseparable extension.

Considering the equations in 	, we have fi (x
pn

i , x
pn
s ) = gi (xi , xs)p

n = 0 where
gi (xi , xs) = 0 is a separable equation of xi over 	(xs). Let L = K	 = 	(x1, . . . , xs).
Then L/	(xs) is a separable extension. Therefore L/	 is separable. Let 	1 be the field
of constants of L . Then 	1/	 is a purely inseparable extension (Theorem 8.4.2), and
hence 	1(xs)/	(xs) is purely inseparable. On the other hand, 	1(xs) is a subset of L
and L/	(xs) is separable. It follows that 	1 = 	. ��

Theorem 8.6.11. Let K/k be a function field and let L = K	 be a constant extension
of K/k such that the field of constants of L is 	 and L/	 is separable. Then there exists
a field m satisfying k ⊆ m ⊆ 	 and
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(i) m is the field of constants of M = Km.
(ii) M/m is separable.
(iii) If m′ is another field such that k ⊆ m′ ⊆ 	 and satisfying (i) and (ii), then m ⊆ m′.

Proof. It suffices to prove that if m1 and m2 are two fields such that k ⊆ mi ⊆ 	 for
i = 1, 2 and satisfying (i) and (ii), then m3 = m1 ∩ m2 also satisfies (i) and (ii).

Set Mi = Kmi for i = 1, 2, 3. Let m′ be the field of constants of M3. Then
m′ ⊆ Mi for i = 1, 2. Therefore m′ ⊆ mi for i = 1, 2, and m′ = m3.

Now L p	 = (K	)p	 = K p	 = (K pk)	. Since K/K pk is a geometric extension,
L p	/K pk is a constant extension, and [K : K pk] ≥ p > 1, it follows that K cannot
be contained in K p	. Let x ∈ K \ L p	. Then x ∈ Mi \ Mp

i mi for i = 1, 2. Therefore
Mi/mi (x) is a separable extension for i = 1, 2 (Corollary 8.6.3). We will prove that
M3/m3(x) is also separable.
Let y ∈ M3 and consider F(Y ) =

∑n
i=0 fi (x)Y i ∈ m1(x)[Y ] to be the irreducible

polynomial for y over m1(x).
Since the field of constants of L = K	 = M1	 is 	, it follows by Theorem 8.4.4

that M1 and 	 are linearly disjoint over m1. Hence M1 and 	(x) are linearly disjoint
over m1(x) (Proposition 8.1.5).

Since {1, y, . . . , ym−1} is linearly independent over m1(x) where m = degy F ,
it follows that {1, y, . . . , ym−1} is linearly independent over 	(x) and F is irre-
ducible over 	(x). Then same thing happens for the irreducible polynomial G(Y ) =∑n

i=0 gi (x)Y i for y over m2(x). Thus we obtain that n = m and gi (x) = fi (x) ∈
m1(x) ∩ m2(x) = m3(x).

Therefore y is separable over m3(x), and the result follows. ��

Corollary 8.6.12. Given any function field K/k, there exists a minimal extension 	/k
such that if L = K	, the field of constants of L is 	 and L/	 is separable. This
extension 	/k is a finite purely inseparable extension.

Proof. Exercise 8.7.17. ��
Now we study the relationship between µK (Definition 8.6.6) and the invariant

λL/K defined in Chapter 5 (Theorem 5.3.4). If L = K	, with 	 as in Corollary 8.6.12,
then by Theorem 5.3.4 we have λL/K = [	:k]

[L:K ] .

Theorem 8.6.13. Let L be a finite constant extension of K/k and let 	 be the field of
constants of L. Assume that L/	 is separable. Then

µK = λL/K .

Proof. Proposition 8.6.5 provides a positive integer n such that Kn = K pnk/k is
separable. Consider the following diagram. Since L = K	, we have
L p

n
	 = K pn	 = Kn	. Since Kn/k is separable, it follows that

Kn and 	 are linearly disjoint over k (Corollary 8.4.7 and Theorem
8.4.4). Hence λKn	/Kn = 1 by Theorem 8.4.10. We have [	 : k] =
[Kn	 : Kn], and hence

K L

Kn Kn	
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pnµK [L : K ] = [K : Kn][L : K ] = [L : Kn] = [L : Kn	][Kn	 : Kn]
= [L : L pn	][	 : k] = pn[	 : k].

Therefore µK = [	:k]
[L:K ] = λL/K . ��

Corollary 8.6.14. If L/	 is any constant extension of K/k such that L/	 is separable,
then µK = λL/K .
Proof. There exists a finite purely inseparable extension 	′ of k such that 	′ ⊆ 	,
L ′ = K	′ admits 	′ as field of constants, and L ′/	′ is separable (Corollary 8.6.12).
Hence µK = λL ′/K . Since λL/L ′ = 1 (Theorem 8.4.4, Corollary 8.4.7, and Theorem
8.4.10) and λL/K = λL/L ′λL ′/K , the result follows. ��

Corollary 8.6.15. If L/	 is a finite constant extension of K/k, we have

µK = µLλL/K .
Proof. Using Theorem 8.6.10 we obtain a finite constant extension L ′/	′ of L/	 such
that L ′/	′ is separable. By Theorem 8.6.13 and Corollary 8.6.14, we have

µK = λL ′/K = [	′ : k]
[L ′ : K ]

= [	′ : 	]
[L ′ : L]

[	 : k]

[L : K ]
= λL ′/LλL/K = µLλL/K . ��

Corollary 8.6.16. If L/	 is any constant extension of K/k we have µK = µLλL/K .
Proof. Exercise 8.7.18. ��

8.7 Exercises

Exercise 8.7.1. Give an example of a function field K with constant field k such that
K/k is not separably generated or show that any function field K is separably gener-
ated over its constant field k.

Exercise 8.7.2. Let K/k be a separably generated function field and Kn = kK pn .
Prove that K/Kn is a purely inseparable extension of degree pn .

If k ⊆ F and K/F is a purely inseparable extension of degree pn , prove that
F = Kn .

Exercise 8.7.3. Let K/k be a separably generated function field. If k ⊆ F ⊆ K and
K/F is not a separable extension, prove that F ⊆ K pk.

Exercise 8.7.4. Let F/E and M/E be two field extensions with [F : E] <∞. Prove
that F and M are linearly disjoint if and only if [FM : M] = [F : E].
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Exercise 8.7.5. Give an example of two fields F and M that are not linearly disjoint
over Q such that F ∩ M = Q.

Exercise 8.7.6. Assume [F : Q] = n and [E : Q] = m. Prove that F and E are
linearly disjoint over Q if and only if [EF : Q] = nm.

Exercise 8.7.7. Prove Corollary 8.1.13.

Exercise 8.7.8. Prove Corollary 8.2.11.

Exercise 8.7.9. Prove Corollary 8.2.12.

Exercise 8.7.10. Prove Corollary 8.2.13.

Exercise 8.7.11. Prove Corollary 8.2.15.

Exercise 8.7.12. Let ϕ : K → E ∪ {∞} be a place on K . Given a finite number of
nonzero elements α1, . . . , αn ∈ K , we define αi ≤ α j if αiα

−1
j ∈ ϑϕ = {ξ ∈

K | ϕ(ξ) �= ∞}, where ϑϑ is the valuation ring corresponding to ϕ. Prove that ≤ is
transitive. Conclude that there exists an index j0 such that αiα

−1
j0
∈ ϑϕ for all i .

Exercise 8.7.13. Prove Corollary 8.3.10.

Exercise 8.7.14. Let E, K , L be subfields of � with E ⊆ K , E ⊆ L , and [K : E] =
n < ∞. Show that the composite K L is a finite extension of L and [K L : L] ≤ n.
Furthermore, prove that [K L : L] = n iff K and L are linearly disjoint over E .

Exercise 8.7.15. Let µK be given as in Definition 8.6.6. Prove that µK = 1 if and
only if K/k is separable.

Exercise 8.7.16. Prove that if L/E is a finitely generated extension of fields of char-
acteristic p and F pm E = E , then F/E is an algebraic extension.

Exercise 8.7.17. Prove Corollary 8.6.12.

Exercise 8.7.18. Prove Corollary 8.6.16.

Exercise 8.7.19. Let k be a perfect field of characteristic p. Let K/k be a separably
generated function field with x ∈ K \ k. Prove that if x is not a separating element,
then x1/p ∈ K .

Exercise 8.7.20. Let L/K be a constant extension, L = K	′ with k the constant field
of K . Suppose that 	′/k is separably generated. Then

conK/L : CK ,0→ CL ,0 and conK/L : CK → CL

are injective (see Exercise 5.10.21).
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The Riemann–Hurwitz Formula

Given a function field K/k, the divisor of any nonzero differential ω has degree 2gK−
2 (Corollary 3.5.5). Consider an extension L/	 of K/k; if we could find a differential
� of L coming from ω, then we would be able to compare the degrees of � and ω,
thus obtaining a relation between the respective genera of L and K . In the separable
geometric case, we can obtain such a relation betweenω and� by means of the cotrace
of ω, and in this way we get the Riemann–Hurwitz formula.

In the inseparable case, the cotrace does not exist, due to the fact that the trace is
trivial. J. Tate [152] discovered a function that is similar to the trace and can substitute
it; this led him to prove his genus formula. The two mentioned formulas constitute the
body of this chapter.

In the course of this discussion we shall present the Hasse differentials, whose
advantage consists in being more natural than the Weil differentials. However, their
disadvantage is to be definable only in the case that the field of constants is perfect. In
fact, it will be shown that when the constant field is perfect, the Weil and the Hasse
differentials are one and the same.

Finally, once the genus formulas have been established, we revisit and characterize
fields of genus 0 and 1, now without restriction on their characteristic. On the other
hand, we study in detail hyperelliptic function fields, which will be applied in Chapter
10 to cryptography, and in Chapter 14 to Weierstrass points, both in characteristic 0
and in positive characteristic.

9.1 The Differential dx in k�x�

In Section 4.1, we defined the differential dx in k(x) as the differential that vanishes
at X

(
p2∞
) + K and such thas if ξ is the repartition satisfying ξp∞ = 1

x and ξp = 0
for every place p �= p∞, then dx (ξ) = −1 and (dx)k(x) = 1

p2∞
. Here k denotes an

arbitrary field.
Throughout this chapter K/k will denote a function field, where k is an arbitrary

field of constants.
Let ξ be a repartition and ω a differential.
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Definition 9.1.1. For any place P of K , we define the Pth component of ω as

ωP (ξ) = ω
(
ξP
)
, where ξP denotes the repartition whose Pth component is the

same as that of ξ (namely ξP), and every other component of ξP is zero.

Symbolically we will write ωP(ξ) = ω(ξP). Clearly, ωP is k-linear.

Proposition 9.1.2. Let ω be any differential and let ξ ∈ XK = X. Then ωP (ξ) is zero
for all but a finite number of places P and ω (ξ) =∑P∈PK

ωP (ξ).

Proof. Let (ω)K = A = ∏P∈PK
Pα(P). All but a finite number of places P satisfy

the following conditions: α (P) = 0 and vP (ξ) ≥ 0. Let S1, . . . ,Ss be the places
that do not satisfy at least one of these two conditions.

IfP is a place that does not belong to
{
S1, . . . ,Ss

}
, then ξP is a repartition that

is a multiple ofA−1, and ξP satisfies vS
(
ξP
)
≥ vS

(
A−1

)
for every placeS. Indeed,

vS

(
ξP
)
= ∞ for S �= P and vP

(
ξP
)
= vP

(
ξP
) ≥ 0 = −α (P) = vP (A−1).

Therefore ω
(
ξP
)
= ωP (ξ) = 0.

Let ξi be the repartition such that (ξi )Si
= ξSi and (ξi )S = 0 for S �= Si . Thus

ξi = ξSi . Now set ξ ′ = ξ1+· · ·+ ξs . Then ξ − ξ ′ is a multiple of A−1, which implies
ω
(
ξ − ξ ′) = 0. It follows that

ω (ξ) = ω (ξ ′) = s∑
i=1
ω (ξi ) =

s∑
i=1
ωSi (ξ) =

∑
P∈PK

ωP (ξ) . ��

Remark 9.1.3. In general, ωP is not necessarily a differential.

Example 9.1.4. Let K = k(x), ω = dx , and let ξ be the repartition given by ξP = 1
x

for all P ∈ PK . Then

ωP∞(ξ) = ω(ξP∞) = ω(1
x

)
= −1 �= 0.

In other words, ωP∞ , does not vanish on K .

Theorem 9.1.5. Let K/k be a function field and ω a nonzero differential of K . Let
(ω)K =

∏
P∈PK

PβP. Then βP is the largest integer m such that ωP(α) = 0 for

every α ∈ K (KP) satisfying vP(α) ≥ −m. That is, βP satisfies ωP(α) = 0 for
all α ∈ K (KP) such that vP(x) ≥ −βP, and there exists α ∈ K (KP) such that
vP(α) = −βP− 1 and ωP(α) �= 0.

Equivalently, we have

βP = sup{m ∈ Z | α ∈ K (KP), vP(α) ≥ −m ⇒ ωP(α) = 0}.
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Proof. Let α ∈ K (KP) be such that vP(α) ≥ −βP. Let αP be the repartition satisfy-

ing
(
αP
)

P
= α, and

(
αP
)

q
= 0 for all q �= P. We have

αP ∈ XK

(
(ω)−1K

)
,

so ωP(α) = ω
(
αP
)
= 0.

On the other hand, let ξ ∈ XK

(
P−1 (ω)−1K

)
be such that ω (ξ) �= 0. If q �= P, we

have vq
(
ξq
) ≥ −βq, and hence

ωq (ξ) = ωq (ξq) = 0.
By Proposition 9.1.2 we have 0 �= ω(ξ) = ∑q∈PK

ωq(ξ) = ωP (ξ), so ωP(ξ) �= 0
and vP

(
ξP
) ≥ −βP− 1. ��

Corollary 9.1.6. If ω �= 0, then ωP �= 0 for all P ∈ PK . ��

In order to describe completely dx in k(x) we must determine all pth components
(dx)p. Since k(x) is dense in k(x)p, it suffices to determine (dx)p(u), with u ∈ k(x).
Indeed, if u′ ∈ k(x)p, let u ∈ k(x) be such that vp(u′ − u) ≥ −m, where m is the
exponent of p in (dx)k(x). Then ωp(u′ − u) = 0 and ωp(u′) = ωp(u).

Let p �= p∞. Let f (x) ∈ k[x] be a monic irreducible polynomial such that
( f (x))k(x) = p

p
deg f
∞

. For u ∈ k(x), if vp(u) ≥ 0 and ξu denotes the repartition de-

fined by (ξu)p = u, and (ξu)p′ = 0 for p′ �= p, then ξu ∈ X
(
p−2∞
)
since p �= p∞ and

(dx)p(u) = dx (ξu) = 0.
Now let u(x) = a(x)

f (x)r b(x) , where r ≥ 1, a(x), b(x) ∈ k[x] are relatively prime and
each of them is relatively prime to f (x). Since b(x) and f (x)r are relatively prime,
there exist α(x), β(x) ∈ k[x] such that

a(x) = α(x) f (x)r + β(x)b(x).

Thus

u(x) = α(x) f (x)
r + β(x)b(x)

f (x)r b(x)
= α(x)

b(x)
+ β(x)

f (x)r
.

We may write

β(x) = g0(x)+ g1(x) f (x)+ · · · + gr−1(x) f (x)r−1 + t (x) f (x)r ,

with gi (x) ∈ k[x] and deg gi (x) < deg f (x). Therefore

u(x) = v(x)+ g0(x)

f (x)r
+ g1(x)

f (x)r−1
+ · · · + gr−1(x)

f (x)
,
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where v(x) ∈ k(x), the denominator of v(x) is not divisible by f (x), and deg gi (x) <
deg f (x) for 0 ≤ i ≤ r − 1.

Since (dx)k(x) = p−2∞ , it follows that p does not divide (dx)k(x). Therefore
(dx)p (v(x)) = 0 (Theorem 9.1.5). Now if S is any place different from p and p∞,
then vS

(
gr−i (x) f (x)−i

) ≥ 0, so (dx)S (gr−i (x) f (x)−i ) = 0.
Since the differentials vanish at the constant repartitions, we obtain

0 = (dx)
(
gr−i (x) f (x)−i

)
=
∑

S∈PK

(dx)S
(
gr−i (x) f (x)−i

)
= (dx)p

(
gr−i (x) f (x)−i

)
+ (dx)p∞

(
gr−i (x) f (x)−i

)
,

so (dx)p
(
gr−i (x) f (x)−i

) = −(dx)p∞ (gr−i (x) f (x)−i ).
Using the fact that deg gr−i (x) < d = deg f (x), we deduce that if i > 1, then

deg
(
gr−i (x) f (x)−i

)
< d − id.

Therefore vp∞
(
gr−i (x) f (x)−i

)
> (i − 1)d ≥ d ≥ 1. It follows that

(dx)p∞
(
gr−i (x) f (x)−i

)
= 0

for i = 2, . . . , r (Theorem 9.1.5).
Let gr−1(x) = a0 + a1x + · · · + ad−1xd−1. Then

gr−1(x)
f (x)

− ad−1
x

= a0x + · · · + ad−1xd −
(
ad−1xd + · · · + b0ad−1

)
f (x)x

,

where f (x) = xd + · · · + b1x + b0.
Hence deg

(
gr−1(x) f (x)−1 − ad−1x−1

) ≤ −2, and
(dx)p∞

(
gr−1(x)
f (x)

− ad−1
x

)
= 0.

Thus (dx)p∞
(
gr−1(x)
f (x)

)
= (dx)p∞ ( ad−1x ) = −ad−1 and (dx)p(u) = ad−1.

We have proved the following result:

Theorem 9.1.7. Let f (x) ∈ k[x] be a monic irreducible polynomial of degree d,
Z( f (x)) = p, and let u ∈ k(x) be represented by

u(x) = v(x)+ g0(x)

f (x)r
+ g1(x)

f (x)r−1
+ · · · + gr−1(x)

f (x)
,

where g0(x), . . . , gr−1(x) ∈ k[x] are polynomials of degree at most d−1 and v(x) ∈
k(x) has a denominator that is not divisible by f (x). Then (dx)p (u) is the coefficient
of xd−1 in gr−1(x). ��
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The simplest case is d = 1, i.e., f (x) = x − a with a ∈ k. In this case, the p-adic
completion is

k(x)p = k((x − a)) =
{ ∞∑
i=m

ai (x − a)i | ai ∈ k,m ∈ Z

}
.

Thus, the completion is the Laurent series in x − a (Theorem 2.5.20). Then Theorem
9.1.7 can be stated as follows:

Theorem 9.1.8. Let a ∈ k and pa = Z(x−a) in k(x). Set y =
∑∞

i=m ci (x − a)i with
ci ∈ k, and assume that y belongs to the pa-adic completion of k(x). Then

(dx)pa (y) = c−1. ��
Next we find another expression for (dx)p(u). Let f (x) be a monic irreducible

polynomial that is not necessarily of degree 1, and p = Z( f (x)). We will assume that
the residue field k (p) is separable over k. Let r ∈ X = Xk(x) be a repartition such that
vp(r) ≥ −1, and let ξ be the residue class of x in k (p). Then ξ is a root of f (x). We
have

k (p) = ϑp/p = k[x] f / f k[x] f ∼= k[x]/( f (x)) ∼= k (ξ) .

Since f (x) is separable, it follows that f ′ (ξ) �= 0. Now vp(r) ≥ −1 implies
vp
(
rp f (x)

) ≥ 0. Let ζ be the residue class of rp f (x) in k (p) = k (ξ). We write

rp = g(x)

f (x)
+ v

with v ∈ k(x)p, vp (v) ≥ 0, and g(x) ∈ k[x] has degree less than d = deg f (x). Then
rp f (x) = g(x) + v f (x), and therefore ζ = g (ξ). On the other hand, by Theorem
9.1.7, (dx)p(r) is the coefficient of xd−1 in g(x).

Proposition 9.1.9. Let 	 = k (ξ), where ξ is an algebraic separable element over

k. Let f (x) be the minimal polynomial of ξ of degree d. Then Tr	/k
ξ i

f ′(ξ) = 0 for

0 ≤ i < d − 1, and Tr	/k ξ
d−1
f ′(ξ) = 1.

Proof. (See Theorem 5.7.17). Let ξ = ξ1, . . . , ξd be the d roots of f (x) in an algebraic
closure of k. Let gi (x) = f (x)

(x−ξi ) f ′(ξi ) for 1 ≤ i ≤ d.
Each gi (x) is a polynomial of degree d − 1 and we have

gi (ξi ) = 1 and gi
(
ξ j
) = 0 for i �= j.

Let

h j (x) =
d∑
i=1
ξ
j
i gi (x) for 0 ≤ j ≤ d − 1.
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Clearly, h j (x) is a polynomial of degree at most d − 1 and we have h j (ξi ) = ξ ji for
1 ≤ i ≤ d . Therefore h j (x) = x j . Indeed both polynomials take the same value at d
distinct points, and both have degree less than or equal to d − 1.

Then for x = 0, we have

h j (0) =
d∑
i=1
ξ
j
i gi (0) =

d∑
i=1
ξ
j
i

f (0)

(−ξi ) f ′ (ξi )

= − f (0)
d∑
i=1

ξ
j−1
i

f ′ (ξi )
= − f (0)Tr	/k

ξ j−1

f ′ (ξ)
.

Since

h j (0) =
{
1 if j = 0,
0 if 1 ≤ j ≤ d − 1,

we obtain

f (0)Tr	/k
ξ j−1

f ′ (ξ)
=
{−1 if j = 0,
0 if 1 ≤ j ≤ d − 1.

Let

f (x) = xd + a1x
d−1 + · · · + ad−1x + ad = xd +

d∑
t=1

at x
d−t .

We have

f (0) = ad and 0 = f (ξ) = ξd +
d∑
t=1

atξ
d−t , so ξd−1 = −

d∑
t=1

atξ
d−t−1.

Therefore

Tr	/k
ξd−1

f ′ (ξ)
= −

d∑
t=1

at Tr	/k
ξd−t−1

f ′ (ξ)
= −ad

( −1
f (0)

)
= 1.

Finally, we obtain

Tr	/k
ξ i

f ′ (ξ)
=
{
0 if 0 ≤ i < d − 1,
1 if i = d − 1. ��

As an immediate consequence we have the following result:

Theorem 9.1.10. Let r ∈ X be such that vP(r) ≥ −1, P = Z f , and f (x) ∈ k[x] is
a monic irreducible polynomial. Let k (P) /k be separable and ξ be the class of x in
k (P). Then if ζ is the class rP f (x) in k (P), we have

(dx)P(r) = Trk(P)/k
ζ

f ′ (ξ)
.
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Proof. If rP = g(x)
f (x)+v with vP(v) ≥ 0 and deg g(x) ≤ d−1, then (dx)P(r) = ad−1,

which is the coefficient of xd−1 in g(x).
Since ζ = g(ξ), we have ζ

f ′(ξ) = g(ξ)
f ′(ξ) , so if g(x) = a0 + a1x + · · · + ad−1xd−1,

we have by Proposition 9.1.9,

Trk(P)/k
ζ

f ′ (ξ)
= Trk(P)/k

∑d−1
i=0 aiξ

i

f ′ (ξ)
=

d−1∑
i=0

ai Trk(P)/k
ξ i

f ′ (ξ)
= ad−1.

Therefore (dx)P(r) = ad−1 = Trk(P)/k ζ
f ′(ξ) . ��

To conclude our analysis of dx , we state the following result.

Proposition 9.1.11. Let u ∈ k(x) be represented by u = p(x) + a−1x−1 + v, with
p(x) ∈ k[x], v ∈ k(x)p∞ , and vp∞(v) ≥ 2. Then (dx)p∞(u) = −a−1.
Proof. For i ≥ 0, we have (dx)p∞ (xi ) = −∑p�=p∞(dx)

p
(
xi
) = 0 (Theorem 9.1.7).

Clearly, (dx)p∞
(
x−1
) = −1 (Definition 4.1.4), and since (dx)k(x) = p−2∞ we con-

clude immediately that (dx)p∞ (v) = 0. Therefore

(dx)p∞ (u) = 0− a−1 + 0 = −a−1. ��

9.2 Trace and Cotrace of Differentials

In this section, L/	 denotes a finite extension of K/k.

Definition 9.2.1. Let ξ ∈ XK be a repartition. The cotrace of ξ , which we will denote
by cotrK/L ξ , is the repartition ζ ∈ XL defined as follows: if P is a place of L ,
P|K = p, and ξp is the pth component of ξ with ξp ∈ Kp ⊆ LP, then ζP := ξp.

To see that ζ is in fact a repartition, just notice that there exist only finitely many
places such that vp

(
ξp
)
< 0, and above each one of these, there exist finitely many

places in L .
The following proposition follows immediately from the definition.

Proposition 9.2.2. If ξx is the principal repartition associated to x ∈ K, i.e., (ξx )p =
x for every place p of K , then cotrK/L ξx = ζx . Furthermore, if λ, λ′ ∈ k and ξ ,
ξ ′ ∈ XK , we have cotrK/L

(
λξ + λ′ξ ′) = λ cotrK/L ξ + λ′ cotrK/L ξ ′, that is, cotrK/L

is k-linear. ��

Definition 9.2.3. We define the trace of a repartition ζ ∈ XL as TrL/K ζ = ξ , where
ξp =

∑h
i=1 TrLPi /Kp ζPi , and P1, . . . ,Ph are the places of L over p.

It is easy to see that TrL/K ζ ∈ XK . It follows from Corollary 5.5.17 that if y ∈ L ,
then TrL/K y =∑h

i=1 TrLPi /Kp y. Thus we obtain the following proposition:
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Proposition 9.2.4. If ζy is the principal repartition of XL associated to y, then

TrL/K ζy = ξTrL/K y

is the principal repartition ofXK associated to TrL/K y ∈ K. Furthermore, if λ, λ′ ∈ k
and ζ , ζ ′ ∈ XL , we have

TrL/K
(
λζ + λ′ζ ′) = λTrL/K ζ + λ′ TrL/K ζ ′. ��

Theorem 9.2.5. Let ξ ∈ XK and z ∈ L. Then TrL/K (z cotrK/L ξ) = (TrL/K z)ξ .
Proof. Let p be a place of K and let P1, . . . ,Ph be the places of L over p. We have

A = (TrL/K (z cotrK/L ξ)) (p) = h∑
i=1

TrLPi /Kp

(
z cotrK/L ξ

)
(Pi ) .

Since
(
cotrK/L ξ

)
(Pi ) = ξp ∈ Kp, it follows by Corollary 5.5.17 that

A =
(

h∑
i=1

TrLPi /Kp(z)

)
ξp =

((
TrL/K z

)
ξ
)
(p) . ��

Definition 9.2.6. Let � be a differential of L and ξ ∈ XK . The function ω defined by

ω (ξ) = � (cotrK/L ξ)
is called the trace of � and it is denoted by ω = TrL/K �.
Theorem 9.2.7. ω = TrL/K � is a differential of K .

Proof. By Proposition 9.2.2, ω is k-linear. Now if ξx ∈ XK , we have cotrK/L ξx =
ζx ∈ XL , from which we obtain that ω (ξx ) = TrL/K �(ζx ) = 0. Thus K ⊆ kerω.

If � = 0, it follows at once that ω = 0. If � �= 0, let (�)L =
∏

P∈PL
Pa(P) be

its divisor. Let p be a place of K and let P1, . . . ,Ph be the places of L above p with
respective ramification indices ei (1 ≤ i ≤ h). Let a′ (p) be the greatest integer such
that eia′ (p) ≤ a (Pi ) for 1 ≤ i ≤ h. Then a′ (p) = 0 for all but a finite number of
places.

LetA =∏p∈PK
pa
′(p) be a divisor of K . Let ξ ∈ XK be such that ξ ≡ 0 mod A−1.

Thus, ξ ∈ XK
(
A−1

)
and vp (ξ) ≥ −vp (A) = −a′ (p) for every place p of K . If P is

a place of L above p, we have

vP
((
cotrK/L ξ

)
(P)
) = vP (ξp) = eL/K (P|p) vp

(
ξp
) ≥ −ea′ (p) ≥ −a (P) ,

where e = eL/K (P|p). Therefore we have cotrK/L ξ ∈ XL((�L)
−1) and

�
(
cotrK/L ξ

) = 0, which implies ω (ξ) = 0. Thus XK
(
A−1

) ⊆ kerω, which proves
that ω is a differential of K . ��
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Proposition 9.2.8. If �, �′ are two differentials of L and x an element of K , then

TrL/K (�+�′) = TrL/K (�)+ TrL/K (�′) and TrL/K (x�) = x TrL/K (�).

Proof. The first formula is obvious. For the second one, consider a repartition ξ ∈ XK .
We have(

TrL/K (x�)
)
(ξ) = TrL/K

(
x�
(
cotrK/L ξ

)) = TrL/K (� (cotrK/L xξ))
= (TrL/K �) (xξ) = x(TrL/K �)ξ. ��

According to the Proposition 9.2.8, an operation of trace of differentials corre-
sponds to the cotrace operation on repartitions. Conversely, we wish to associate an
operation of cotrace on differentials corresponding to the operation of trace on repar-
titions. However, at this point a difficulty arises with respect to linearity, for we have
only k-linearity. This forces us to consider only geometric extensions, i.e., the case
	 = k. The general case can be solved using Theorem 9.5.17.

Thus, we consider a finite geometric extension L/K of function fields.

Definition 9.2.9. Let ω be a differential in K . For ζ ∈ XL we define

�(ζ) = ω (TrL/K ζ ) .
We say that � is the cotrace of ω and we denote it by � = cotrK/L ω.
Theorem 9.2.10. In the geometric case 	 = k, the cotrace � is a differential of L.

Proof. By Proposition 9.2.4, � is k-linear. On the other hand, if ζy is the principal
repartition in L corresponding to y, it follows by Proposition 9.2.4 that TrL/K ζy =
ξTrL/K y is the principal repartition in K associated to TrL/K y, so �

(
ζy
) = 0.

Now, if L/K is inseparable, we have TrL/K ≡ 0. Thus � = 0 and � is a dif-
ferential. Assume that L/K is a separable extension. Let ω �= 0 and let (ω)K =∏

p∈PK
pa(p) be its divisor.

For each divisor P of L , let p = P|K , e (P) = eL/K (P|p) be the ramification
index of P over p, and let m (P) be the exponent of P in the differentDL/K .

Let u ∈ LP and letM be the repartition that takes the value u atP, and 0 at every
other place. Then TrL/K M is the repartition that takes the value 0 at any place other
than p. At p we have

(
TrL/K M

)
p =

h∑
i=1

TrLPi /Kp MPi = TrLP/Kp u,

so

�P (u) = �(M) = ω (TrL/K M
) = ωp (TrLP/Kp u

)
.

Let π ∈ K be such that vp(π) = 1. If vP(u) ≥ −e (P) a (p)− m (P), then



292 9 The Riemann–Hurwitz Formula

vP

(
πa(p)u

)
= vP

(
πa(p)

)
+ vP (u) = e (P) a (p)+ vP(u) ≥ −m (P) .

Thus, by Theorem 5.6.1 and Definition 5.6.2, we have

vp

(
TrLP/Kp π

a(p)u
)
= vp

(
πa(p) TrLP/Kp u

)
≥ 0.

Therefore vp
(
TrLP/Kp u

) ≥ −vp (πa(p)) = −a (p). Hence,
�P (u) = ωp (TrLP/Kp u

) = 0.
On the other hand, there exists an element z ∈ LP such that

vP(z) = −m (P)− 1 with vp
(
TrLP/Kp z

)
< 0.

Since vP(π z) ≥ −m (P), we have vp
(
π TrLP/Kp z

) ≥ 0. It follows that
vp
(
TrLP/Kp z

) = −1. Now, a (p) is the exponent of the divisor of ω, so by Theo-
rem 9.1.5 there exists an element y ∈ K such that

vp (y) = −a (p)− 1 and ωp (y) �= 0.

Then

vP

(
yz
(
TrLP/Kp z

)−1) = vP (y)+ vP (z)− vP (TrLP/Kp z
)

= e (P) (−a (p)− 1)− m (P)− 1− e (P) (−1)
= −e (P) a (p)− m (P)− 1.

Furthermore,

�P
(
yz
(
TrLP/Kp z

)−1) = ωp
(
TrLP/Kp

(
yz
(
TrLP/Kp z

)−1)) = ωp (y) �= 0.

Thus � is a k-linear function from XL to k vanishing in L as well as in

XL

(
D−1L/K

(
conK/L (ω)K

)−1). Therefore � is a differential of L when 	 = k. ��

9.3 Hasse Differentials and Residues

In Section 3.4 we gave the definition of differential based on the “usual” differentials
in the complex plane. The differentials defined in Section 3.4 are due to A. Weil. Hel-
mut Hasse ([53, 54]) established a theory of differentials for function fields whose
field of constants is a perfect field, which constitutes a natural extension of the clas-
sical notion. We will see that this new concept of differentials (which we will call
H-differentials) is essentially the same as that of the Weil differentials. Actually, the
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differentials presented in Section 3.4 for the sake of motivation are the Hasse differ-
entials.

Let K/k be a function field, where k is a perfect field. Let P be a place of K
and let KP be the completion of K at P. Let π be a prime element of P. Then by
Proposition 2.3.13 and Theorem 2.5.20 an arbitrary element α ∈ KP can be uniquely
expanded as

α =
∞∑

i=vP(α)
siπ

i , where si ∈ k(P) ⊆ KP.

Definition 9.3.1. The derivative dα
dπ , or differentiation with respect to π , is defined by

dα

dπ
=

∞∑
i=vP(α)

isiπ
i−1.

Proposition 9.3.2. The derivative d
dπ : KP → KP is continuous and satisfies

(1) d
dπ (aα + bβ) = a dαdπ + b dβdπ for all a, b ∈ k(P) and α, β ∈ KP.

(2) d
dπ (αβ) = α dβ

dπ + β dα
dπ for all a, b ∈ k(P) and α, β ∈ KP.

(3) d
dπ (α

n) = nαn−1 dαdπ for all n ∈ Z.

Proof: Exercise 9.7.1. ��
Now let π1 be another prime element forP. Since d

dπ and
d
dπ1

are continuous, the
derivative of a convergent power series can be carried out term by term.

Let α ∈ KP, α =
∑∞

i=vP(α) s
′
iπ

i
1, s

′
i ∈ k(P). Then

dα

dπ1
=

∞∑
i=vP(α)

is′iπ
i−1
1 .

On the other hand,

dα

dπ
=

∞∑
i=vP(α)

d

dπ
(s′iπ

i
1) =

∞∑
i=vP(α)

s′i
d

dπ
(π i1) =

∞∑
i=vP(α)

s′i iπ
i−1
1

dπ1
dπ

= dα

dπ1

dπ1
dπ
.

Proposition 9.3.3. The differentiation with respect to prime elements π, π1 of P sat-
isfies

dα

dπ
= dα

dπ1

dπ1
dπ
. (9.1)

��

Let AP = {(a, b) | a, b ∈ KP}.
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Definition 9.3.4. Put (α, β) ∼H (α′, β ′) if for a prime element π of P on KP the
equality

α
dβ

dπ
= α′ dβ

′

dπ
(9.2)

holds. Clearly, ∼H is an equivalence relation on AP.

Proposition 9.3.5. The class does not depend on the prime element.

Proof. If (α, β) ∼H (α
′, β ′) with respect to the prime element π , then

α
dβ

dπ
= α′ dβ

′

dπ
.

It follows that α dβ
dπ1

= α dβ
dπ

dπ
dπ1

= α′ dβ ′dπ
dπ
dπ1

= α′ dβ ′dπ1
.

Thus the equivalence classes do not depend on the prime element. ��

Definition 9.3.6. The classes in AP/ ∼H are called the local Hasse differentials
of KP. The class of (α, β) is denoted by α dβ and we will use the notation ∼ instead
of ∼H .

If (α, β) ∼ (α′, β ′), then for any γ ∈ KP we have (γ α, β) ∼ (γ α′, β ′). It follows
that we can define the product γα dβ as the class of (γ α, β), i.e.,

γα dβ = (γ α) dβ. (9.3)

In particular, α dβ is the product of α and dβ = 1 dβ.
Proposition 9.3.7. For any two prime elements π and π1 for P we have

vP

(
α
dβ

dπ

)
= vP

(
α
dβ

dπ1

)
.

Proof. Since π and π1 are prime elements we have, vP
(
dπ1
dπ

)
= 0, and

vP

(
α
dβ

dπ

)
= vP

(
α
dβ

dπ1

dπ1
dπ

)
= vP

(
α
dβ

dπ1

)
+ vP

(
dπ1
dπ

)
= vP

(
α
dβ

dπ1

)
. ��

Definition 9.3.8. We define the order of α dβ at P by

vP(α dβ) := vP
(
α
dβ

dπ

)
,

where π is any prime element forP.

If vP
(
α
dβ
dπ

)
= m > 0,P is called a zero of order m of α dβ. If m < 0, P is

called a pole of order −m.
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The following result establishes that the “residue” of a differential does not depend
on the prime element considered.

Theorem 9.3.9. Let π and π1 be prime elements in KP for P. Let α, β ∈ KP and

α
dβ

dπ
=
∑
i

siπ
i , α

dβ

dπ1
=
∑
i

s′iπ
i
1.

Then s−1 = s′−1.

Proof. Let

π1 =
∞∑
i=1

aiπ
i , where a1 �= 0 and ai ∈ k(P), i = 1, 2, . . . ,∞.

If m = vP
(
α
dβ
dπ

)
, then

∞∑
i=m

siπ
i = α dβ

dπ
= α dβ

dπ1

dπ1
dπ

=
( ∞∑
i=m

s′iπ
i
1

)
dπ1
dπ

=
∞∑
i=m

s′1

( ∞∑
j=1

a jπ
j

)i ( ∞∑
j=1

ja jπ
j−1
)
. (9.4)

For i = −1 we obtain

s′−1

( ∞∑
j=1

a jπ
j

)−1 ( ∞∑
j=1

ja jπ
j−1
)

= s′−1
(
a−11 π

−1
)(
1+

∞∑
	=1

a−11 a	+1π	
)−1 ( ∞∑

j=1
ja jπ

j−1
)

= s′1a
−1
1 π

−1
(
1− a−11 a	+1π + · · ·

)
(a1 + 2a2π + · · · )

= s′−1
π
+

∞∑
	=0

s′′	 π
	.

To prove the theorem it suffices to show that for i �= −1, the expansion of( ∞∑
j=1

a jπ
j

)i ( ∞∑
j=1

ja jπ
j−1
)

(9.5)

does not contain the term π−1.
First we consider the case char k = 0. Let π i+11 = ∑∞

	=i+1 ε	π	. Then for any
i �= −1, we have
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j=1

a jπ
j

)i ( ∞∑
j=1

ja jπ
j−1
)
= π i1

dπ1
dπ

= 1

i + 1
dπ i+11

dπ
= 1

i + 1
∞∑

	=i+1
	ε	π

	−1.

(9.6)

The coefficient of π−1 in (9.6) is 0ε01+i = 0.
Now consider the case char k = p > 0. Let {yn}∞n=1 be an algebraically indepen-

dent set that replaces the above set of coefficients {an}∞n=1. Let M = Q
({yn}∞n=1).

Then (9.5) takes the form

∑
	

w	π
	 =

( ∞∑
j=1

y jπ
j

)i ( ∞∑
j=1

j y jπ
j−1
)
, with wn ∈ M and i �= −1.

(9.7)

By the characteristic 0 case, the coefficient ω−1 of π−1 in (9.7) is 0.
Notice that w	 is a rational function on a finite subset of {yn}∞n=1 whose denom-

inator is at most a power of y1 and whose numerator is a polynomial with coeffi-
cients in Z. When we take the numerator modulo p, we obtain a rational function
wi ∈ Fp({yn}∞n=1) = M . Thus, by viewing (9.7) as a power series in π with coeffi-
cients in M , we obtain

∑
	

w	t
	 =

( ∞∑
j=1

y jπ
j

)i ( ∞∑
j=1

j y jπ
j−1
)
mod p. (9.8)

We have a1 �= 0. Let ξ	 = w	(a1, a2, . . . ) ∈ k(P). From (9.8) we obtain
∑
	

ξ	t
	 =

( ∞∑
j=1

a jπ
j

)i ( ∞∑
j=1

ja jπ
j−1
)
.

Since w−1 = 0, it follows that w−1 = 0 and ξ−1 = 0. ��

Definition 9.3.10. Let α dβ be a local Hasse differential, π a prime element, and

α dβ =
∞∑
i=m

siπ
i ∈ KP.

Then the residue of α dβ is defined by

Res
P
α dβ := Trk(P)/k s−1 ∈ k.

Theorem 9.3.9 proves that the residue is independent from the prime element.
Recall that we are considering a perfect field k, so Trk(P)/k �≡ 0.

To define the global Hasse differential, we consider an arbitrary function field
K/k, where k is a perfect field. Set A = K × K . For (α, β) ∈ A, P ∈ PK , and
α, β ∈ KP, let (α dβ)P be the local Hasse differential atP. We define
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(α, β) ∼H (α
′
1, β

′)

if (α dβ)P = (α′ dβ ′)P for all P ∈ PK .
It is easy to see that ∼H defines an equivalence relation in A.

Definition 9.3.11. The equivalence class corresponding to (α, β) ∈ A is called a
Hasse differential or H-differential, and the class of (α, β) is denoted by α dβ.

Since k is a perfect field, it follows by Corollary 8.2.11 that K/k is separable. The
separating elements of K are characterized by the following theorem.

Theorem 9.3.12. An element x of K is a separating element if and only if dx �= 0.
Furthermore, when x is a separating element we have (dx)P �= 0 for all P ∈ PK .

Proof. If K is of characteristic 0, every x in K \ k is a separating element. Since if for
some prime divisor P and some prime element π at P, dxdπ = 0 implies x ∈ k, the
result follows.

Consider k to be of characteristic p > 0. LetP ∈ PK and let π be a prime element
atP. Let x ∈ K . If x is not a separating element, then y = x1/p ∈ K (Exercise 8.7.19).
Hence

dx

dπ
= dy p

dπ
= py p−1

dy

dπ
= 0. (9.9)

Since (9.9) holds for any P ∈ PK it follows that dx = 0.
Conversely, let x ∈ K be a separating element. Let K = k(x, y)with f (x, y) = 0,

where f (T1, T2) ∈ k[T1, T2] is an irreducible polynomial. Using the chain rule, we
obtain

fx (x, y)
dx

dπ
+ fy(x, y)

dy

dπ
= 0, (9.10)

where fx and fy denote the usual partial derivatives.
Since f (T1, T2) is irreducible and y is separable over k(x) it follows that

fy(x, y) �= 0. (9.11)

Suppose that dxdπ = 0. From (9.10) and (9.11) we obtain
dy

dπ
= 0.

Let x =∑i siπ
i and y =∑i tiπ

i , with si , ti ∈ k(P). Since dx
dπ = 0 = dy

dπ it follows
that si = ti = 0 for i �≡ 0 mod p. Therefore x = ∑ j spjπ

pj and y = ∑ j tpjπ
pj ,

that is, x and y are power series in π p. Since K = k(x, y), every element of K is
a power series of π p. We may assume without loss of generality that π ∈ K . This
contradiction proves that dx

dπ �= 0, i.e., (dx)P �= 0. Furthermore, this holds for any
P ∈ PK . ��

Now we prove the analogue of Theorem 3.4.9 for H-differentials.
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Theorem 9.3.13. Let β ∈ K be such that dβ �= 0. Then any H-differential in K can
be written uniquely as α dβ for some α ∈ K.

Proof. Let x ∈ K be arbitrary. To prove the theorem it suffices to prove that there
exists a unique α ∈ K such that dx = α dβ.

It is clear that K/k(β) is a finite separable extension. Thus there exists an irre-
ducible polynomial g such that

g(x, β) = 0.
Let P be an arbitrary place and let π be a prime element at P. Using the chain

rule, we obtain

gx (x, β)
dx

dπ
+ gβ(x, β)

dβ

dπ
= 0.

Now β is a separating element, x is separable over k(β), and g is irreducible, so
we have dβ

dπ �= 0 and gx (x, β) �= 0.
Let α = − gβ(x,β)

gx (x,β)
∈ K . Then

dx

dπ
= α dβ

dπ

for any P. It follows that dx = α dβ.
The uniqueness is a consequence of the fact that the H-differentials form a K -

vector space. ��

Theorem 9.3.14 (Residue Theorem). Let α dβ be any H-differential. Then
ResP αdβ = 0 for almost all places P. Furthermore,∑

P∈PK

Res
P
(α dβ) = 0. (9.12)

Proof. For P such that vP(α) ≥ 0 and vP(β) ≥ 0, we have

α
dβ

dπ
=
( ∞∑
i=0

aiπ
i

)( ∞∑
j=1

jb jπ
j−1
)
=

∞∑
i=0

ciπ
i ,

so ResP(α dβ) = 0.
Since vP(α) ≥ 0 and vP(β) ≥ 0 hold for almost all P, we obtain the first part of

the theorem.
For any perfect field k, if x is a separating element of K and L/K is a finite

separable extension, then if p is a place of K we have

Res
p
(TrLP/Kp(y)dx) = Res

P
(y dx), (9.13)

where P is place of L dividing p. It follows that
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Res
p
(TrL/K (y)dx) =

∑
P|p

Res
P
(y dx). (9.14)

In particular,

Res
p0
(TrK/k(x)(y)dx) =

∑
p|p0

Res
p
(y dx), (9.15)

where p0 = p∩ k(x). For a proof of (9.13), (9.14), and (9.15) see Exercises 9.7.18 and
9.7.19 as well as the above proof of the case in which k is algebraically closed.

By the above argument we may assume that k is algebraically closed.
If dβ = 0, (9.12) follows. Now assume that dβ �= 0, i.e., β is a separating element

of K .
For K = k(β) we leave the verification of (9.12) to the reader (Exercise 9.7.20).
For the case K �= k(β), it suffices to show that if P is an arbitrary place on k(β)

and ℘1, . . . , ℘h are the places on K above P, we have

h∑
i=1

Res
℘i
(α dβ) = Res

P
(TrK/k(β)(α)dβ). (9.16)

Indeed, from (9.16) and the case K = k(β) we obtain∑
℘∈PK

Res
℘
(α dβ) =

∑
P∈Pk(β)

Res
P

(
TrK/k(β) α)dβ

) = 0.
Since β is a separating element of K , let y be such that

K = k(β, y) and f (β, y) = 0, (9.17)

where y is separable over k(β).

Set F(T ) := f (β, T ) =
h∏
i=1

pi (T ) in k(β)P[T ].

By Corollary 5.4.9,

K ⊗k(β) k(β)P ∼=
h⊕
i=1

K℘i .

Indeed, we have

K ⊗k(β) k(β)P = k(β)[T ]/(F(T ))⊗k(β) k(β)P

∼= k(β)P[T ]/(F(T )) ∼=
h∏
i=1

k(β)P/(pi (T )) ∼=
h⊕
i=1

K℘i .

By Corollary 5.5.17, we have

TrK/k(β) y =
h∑
i=1

TrK℘i /k(β)P y
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and

Res
P
(TrK/k(β) y dβ) =

h∑
i=1

Res
P
((TrK℘i /k(β)P y)dβ).

Thus, to prove (9.16), it suffices to show that

Res
℘i
(y dβ) = Res

P

(
(TrK℘i /k(β)P y)dβ

)
.

In other words, we need to prove that if L/k(β)P is a finite extension and ℘ is the
extension of P to L , then for any α ∈ L ,

Res
℘
(α dβ) = Res

P
((TrL/k(β)P α)dβ). (9.18)

Let π be a prime element forP. Then if Tr = TrL/k(β)P, we have

Tr(α)dβ = Tr(α) dβ
dπ

dπ = Tr
(
y
dβ

dπ

)
dπ

because dβ
dπ ∈ k(β)P. Thus it suffices to prove

Res
℘
(αdπ) = Res

P
((Trα)dπ). (9.19)

We know that Tr is a linear and continuous map. Furthermore, any α has a unique
expansion

α =
∞∑
i=m

si t
i with si ∈ k,

where t is any prime element of ℘. Thus it suffices to prove that

Res
℘
(tndπ) = Res

P
(Tr(tn)dπ) for n ∈ Z. (9.20)

Since k is algebraically closed, it follows that
[
L : k(β)P

] = e is the ramification
index of P. If k is of characteristic 0, we use Proposition 5.5.12. That is, we may
assume that te = π .

Using Newton’s identities (Theorem 7.1.4) it is easy to see that

Tr(tn) =
{
0 for e � n,
eπm for n = me.

(9.21)

It follows that

Res
P
(Tr(tn)dπ) =

{
0 for n �= −e,
e for n = −e.
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Now, since tn dπdt = tn(ete−1) = etn+e−1, we have

Res
℘
(tndπ) =

{
0 for n �= −e,
e for n = −e.

Note that this proves (9.20) in the case te = π . But for te = π , (9.20) implies (9.19).
Therefore, we obtain (9.20) for arbitrary prime elements t and π .

Thus (9.20) holds when k has characteristic 0.
Now we consider k to be algebraically closed of characteristic p > 0. We have[

L : k(β)P
] = e and L = k(β)P(t). Let

te

π
= a0 + a1t + · · · + ae−1te−1 with ai ∈ k(β)P and a0 �= 0.

We have v℘(ai t i ) = evP(ai ) + i �= evP(a j ) + j whenever 0 ≤ i, j ≤ e − 1, i �= j ,
ai �= 0, a j �= 0.

It follows that 0 = v℘
(
te
π

)
= min0≤ j≤e−1

{
evP(a j )+ j

}
. Thus vP(a j ) ≥ 0 and

vP(a0) = 0. Since a0π is a prime element for P in (k(β))P, we rewrite a0π as π
again. We have k(β)P = k((π)). Hence

te = π(1+ A1(π)t + · · · + Ae−1(π)te−1),

where

Ai (π) =
∞∑
j=0

ai jπ
j , ai j ∈ k,

and Ai (π) ∈ k((π)) is considered as a power series.
Let M = Q(zi j ) for 1 ≤ i ≤ e − 1 and j ∈ N, where {zi j } is a set of variables

corresponding to ai j . Let M be an algebraic closure of M and

A∗i (π) =
∞∑
j=0

zi jπ
j ∈ M((π))

corresponding to Ai (π). Set L = M((π))(t), where

te = π(1+ A∗1(π)t + · · · + A∗e−1(π)t
e−1). (9.22)

Let ℘0 be the zero divisor of π (considered as a variable).
Since M((π)) is a complete field, there exists a unique prime divisorP0 above ℘0

(Theorem 5.4.7).
By (9.22) we have

vP0(t
e) = evP0(t) = vP0(π)+ 0 = e(P0|℘0)vP0(π).

It follows that e(P0|℘0) = e,
[
L : M((π))

] = e, and the equation (9.22) is irre-
ducible in t .
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Since the characteristic of M is zero, we have by (9.20),

Res
P0

(tndπ) = Res
℘0
(Tr(tn)dπ). (9.23)

Now we obtain from (9.22) that

π = te − π(A∗1(π)t + · · · + A∗e−1(π)t
e−1). (9.24)

If we substitute the expression of π again in the right-hand side of (9.24), we
conclude that the terms containing π contain π2. Repeating this process and using
limm→∞ πm = 0, we obtain

π =
∞∑
	=e
β	t

	 with β	 ∈ M and βe = 1. (9.25)

We already knew the existence of an expression such as (9.25), but with this
method of computation we obtain the additional information that the β	 are all poly-
nomials in zi j with coefficients in Z. Thus

tn
dπ

dt
=

∞∑
	=e
	β	t

	−1+n

is also a polynomial in zi j with coefficients in Z.
On the other hand, by (9.24) we have

1

t
= −A∗(π)− A∗2(π)t − · · · − A∗a−1(π)t

e−2 + te−1

π
.

Let

Tr(tn) =
∑
m

cnm(zi j )π
m, with cnm(zi j ) ∈ M .

Then each cnm belongs to Z[zi j ]. In particular,

Res
℘0
(Tr(tn)dπ) = cn,−1(zi j ) ∈ Z[zi j ].

It follows that (9.23) is a polynomial identity. Let cnm = cnm mod p ∈ Fp[zi j ]
and substitute zi j by ai j . Then the equation (9.23) holds mod p, which implies that
(9.18) holds for the extension L/k(β)p. This completes the proof. ��

With Theorem 9.3.14 at hand, we can now see that Weil differentials and Hasse
differentials are the same when the ground field k is perfect.

Theorem 9.3.15. Let K/k be an algebraic function field where k is a perfect field. Let
α dβ be an arbitrary H-differential in K . Define
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w : XK �→ k

by

w(ξ) =
∑

P∈PK

Res
P
(ξPα dβ). (9.26)

Then w is a differential in K . Furthermore, the correspondence y dx ↔ w is a
K -module isomorphism.

Proof. We denote by DifH and DifW the Hasse and the Weil differentials respectively.
Let ϕ : DifH �→ DifW be the function given in (9.26), that is,

ϕ(α dβ)(ξ) =
∑

P∈PK

Res
P
(ξPα dβ).

For any ξ ∈ XK there are only finitely many elements P of PK such that
vP(ξP) < 0. It follows that ResP(ξPα dβ) is equal to zero except for finitely many
P ∈ PK . Thus the sum in (9.26) is well defined.

Now we will see that w is a differential. Since ResP and Trk(P)/k are linear, it
follows that w is k-linear. Let A =∏P Pa(P), where

a(P) =
{
vP(α dβ) if vP(α dβ) < 0,

0 otherwise.

If ξ ∈ XK is such that A−1 divides ξ and vP(ξP) ≥ −vP(A), then
vP(ξPα dβ) = vP(ξP)+ vP(α dβ) ≥ −vP(A)+ vP(α dβ) ≥ 0

for all P ∈ PK . Thus ResP(ξPα dβ) = 0 for all P ∈ PK . If x ∈ K , by the
residue theorem (Theorem 9.3.14) we have w(x) = ∑

P∈PK
ResP(xα dβ) = 0.

Hence X(A−1)+ K � kerw and w is a differential.
Next, if α dβ = 0, thenw = 0. If α dβ �= 0, letP ∈ PK be such that (α dβ)P �= 0.

Let a ∈ KP be such that

Res
P
(aα dβ) �= 0 and Trk(P)/k Res

P
(aα dβ) �= 0.

Such an a exists since k(P)/k is separable.
Let ξ ∈ XK be defined by

ξq =
{
a if q = P,
0 otherwise.

Then w(ξ) = ResP(aα dβ) �= 0, so ϕ is one-to-one.
Finally, if ϕ(α1 dβ) = w1, ϕ(α2 dβ) = w2 and x ∈ K , then

ϕ(α1 dβ + α2 dβ) = w1 + w2
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and
ϕ(zα1 dβ) = zw1. (9.27)

Thus ϕ is a one-to-one K -linear homomorphism and since both DifH and DifW are
one-dimensional K -modules, it follows that ϕ is a K -isomorphism. ��
Corollary 9.3.16. With the hypotheses of Theorem 9.3.15, we have

wP(ξ) = Res
P
(ξPα dβ). ��

Finally, we have the following theorem:

Theorem 9.3.17. Let α dβ be a nonzero H-differential in K and let w be the corre-
sponding W-differential given in Theorem 9.3.15. Then the divisor of w is given by

vP((w)K ) = vP(α dβ).
Proof. Let A be a divisor such that vP(α dβ) ≥ vP(A) for all P ∈ PK . Let ξ ∈
X(A−1). Then

vP(ξP) ≥ −vP(A) ≥ −vP(α dβ).
Hence vP(ξPα dβ) ≥ 0 and ResP(ξPα dβ) = 0. It follows that w(ξ) = 0 and A
divides w.

Now letB be a divisor such that for a P ∈ PK , vP(B) > vP(α dβ). Let a ∈ KP

be such that ResP(aα dβ) �= 0. Such an a exists since (α dβ)P �= 0 and k(P)/k is
separable. Furthermore, we may choose a such that vP(aαdβ) = vP(a)+vP(α dβ) =
−1. Thus

vP(a) = −1− vP(α dβ) > −1− vP(B).
Hence vP(a) ≥ −vP(B). Let ξ ∈ XK be given by

ξq =
{
a if q = P,
0 otherwise.

Then w(ξ) = ResP aα dβ �= 0, and the result follows. ��
Let w be any (Weil) differential over an algebraic function field K/k, where k is a

perfect field. Let α dβ be the corresponding Hasse differential. Then

Res
P
(α dβ) = w(ξ),

where

ξq =
{
0 if q �= P,
1 if A = P.

Therefore ResP(α dβ) = wP(1).
We have not defined H-differentials in the case of an imperfect field, but we may

define the residue of a differential. We use the idea of the H-differentials. First we
recall a basic result from basic algebra.
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Proposition 9.3.18. Let E be any field and let V be a finite-dimensional E-vector
space. Let V ∗ = Homk(V, E). Then V ∗ and V are isomorphic as E-vector spaces.
Furthermore, if φ : V × V → E is a nondegenerate bilinear form (that is, for any
nonzero v ∈ V , there exists w ∈ V such that φ(v,w) �= 0), then for any T ∈ V ∗ there
exists a unique v ∈ V such that T (w) = φ(v,w) for all w ∈ V .
Proof: Let {e1, . . . , en} be a basis of V over E . Let v ∈ V be written as v =∑h

i=1 xi ei , xi ∈ E .
Define fi : V → E by fi (v) = xi . Then fi ∈ V ∗, { f1, . . . , fn} is a basis of

V ∗ and dimE V ∗ = dimE V . Next, let φ : V × V → E be a nondegenerate bilinear
form. Let Ti ∈ V ∗ be defined by Ti (w) := φ(ei , w). Then {T1, . . . , Tn} is linearly
independent over k and since dimE V ∗ = n, given T ∈ V ∗, there exist a1, . . . , an ∈ E
such that

T =
n∑
i=1

ai Ti .

Thus

T (w) =
n∑
i=1

ai Ti (w) =
a∑
i=1

aiφ(ei , w) = φ(
n∑
i=1

ai ei , w).

It follows that T (w) = φ(v,w) for all w ∈ V with v = ∑n
i=1 ai ei . Clearly v is

unique. ��
Now let K/k be an arbitrary function field. Let w be any (Weil) differential. Then

if P ∈ PK , the local component wP of w is a function

wP : KP → k.

Since k is not necessarily perfect, we consider the separable closure k(P)s of k in
the residue field k(P).

Then the function

ϕ : k(P)s × k(P)s → k

defined by ϕ(a, b) = Trk(P)s/k(ab) is a nondegenerate bilinear pairing. It follows by
Proposition 9.3.18 that for the k-linear map

wP|k(P)s : k(P)s → k

there exists a unique � ∈ k(P)s such that

wP|k(P)s = ϕ(−, �).

Thus

wP(α) = Trk(P)s/k(α�) for all α ∈ k(P)s .
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Definition 9.3.19. Let K/k be an arbitrary function field. Letw be a (Weil) differential
on K . For P ∈ PK , we define the residue of w at P as the element Trk(P)s/k � ∈ k
satisfying wP(α) = Trk(P)s/k(α�) for all α ∈ k(P)s . We use the notation

Trk(P)s/k � = Res
P
w.

We have

wP(1) = Res
P
w. (9.28)

Proposition 9.3.20. Let w be a differential in a function field K/k. If P ∈ PK is not
a pole of w, then

Res
P
w = 0.

In particular, ResPw �= 0 for only finitely many P ∈ PK .

Proof: If P is not a pole of w, i.e., vP((w)K ) ≥ 0, then wP(α) = 0 for any α ∈ KP

such that vP(α) ≥ 0 (Theorem 9.1.5). In particular, wP(α) = 0 for all α ∈ k(P)s .
The result follows. ��

Definition 9.3.21. A differential w is said to be of the second kind if ResPw = 0 for
all P ∈ PK .

It is easy to see that if w is of the first kind (that is, holomorphic), then w is of the
second kind.

Theorem 9.3.22 (Residue Theorem). For any differential w of a function field K/k,
we have ∑

P∈Pk

Res
P
w = 0. (9.29)

Proof: By (9.28), we have

0 = w(1) =
∑

P∈PK

wP(1) =
∑

P∈PK

Res
P
w. ��

Let K/k be any function field, and let A be any divisor. If DK (A) = {w | A | w},
then

DK (A) ∼=
(

XK

XK (A−1)+ K

)∗
,

where ∗ denotes the dual k-vector space (Proposition 3.4.5).
This isomorphism can be obtained from the k-bilinear pairing

ϕ : DifK ×XK → k

ϕ(w, ξ) = w(ξ). (9.30)
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Thus (9.30) can be written as

w(ξ) =
∑

P∈PK

wP(ξ) =
∑
P

Res
P
(ξPw)

(Corollary 9.3.16).
We have obtained the following result:

Proposition 9.3.23. For any function field K/k, XK
X(A−1)+K and DK (A) are dual k-

vector spaces obtained from the bilinear pairing defined by

ϕ : DifK ×XK → k

ϕ(w, ξ) =
∑

P∈PK

Res
P
(ξPw). (9.31)

��

9.4 The Genus Formula

We begin this section by observing that in the last part of the proof of Theorem 9.2.10
we have shown more than is stated. Indeed, assume that L/K is a finite separable
geometric extension. If A denotes the divisor conK/L (ω)K , where ω is a nonzero
differential of K and � = cotrK/L ω, then �P vanishes at every u ∈ LP with

vP(u) ≥ −e (P) a (p)− m (P)

and there exists an element u ∈ LP such that

vP(u) = −e (P) a (p)− m (P)− 1 and �P(u) �= 0.
As an immediate consequence of what was proved in Theorems 9.2.10 and 9.1.5,

we have the following theorem:

Theorem 9.4.1. Let L/K be a finite separable geometric extension of function fields,
ω a nonzero differential of K , and � = cotrK/L ω. Then � �= 0 and (�)L =
DL/K conK/L (ω)K .

Proof. According to what was seen in Theorem 9.2.10, the exponent of P appearing
in (�)L is

e (P) a (p)+ m (P) ,

where p = P|K , m (P) is the exponent of P in DL/K , a (p) is the exponent of p in
(ω)K , and e (P) is the ramification index ofP over K . On the other hand, e (P) a (p)+
m (P) is the exponent of P appearing in the divisor DL/K conK/L (ω)K . This proves
the result. ��

As a corollary we obtain the Riemann–Hurwitz genus formula:
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Theorem 9.4.2 (Riemann–Hurwitz Genus Formula). Let L/K be a finite geometric
separable extension of function fields and gL , gK the genera of L and K respectively.
If dL

(
DL/K

)
denotes the degree of the different of the extension, we have

gL = 1+ [L : K ] (gK − 1)+ 1

2
dL
(
DL/K

)
.

Proof. By Corollary 3.5.5 the degree of the divisor of any nonzero differential in a field
E is 2gE −2. On the other hand, by Theorem 5.3.4 we have dL

(
conK/L (ω)K

) = [L :
K ]dK ((ω)K ). Finally, using Theorem 9.4.1 we get

2gL − 2 = dL ((�)L) = dL
(
DL/K conK/L (ω)K

)
= dL

(
DL/K

)+ dL
(
conK/L (ω)K

)
= dL

(
DL/K

)+ [L : K ]dK ((ω)K )
= dL

(
DL/K

)+ [L : K ] (2gK − 2) ,
from which the result follows. ��

Now we consider L/K to be an arbitrary finite separable extension of function
fields. Let 	 and k be the fields of constants of L and K respectively. Then by Propo-
sition 5.2.20 and Corollary 8.4.7, 	 is the field of constants of K	 and

[K	 : K ] = [	 : k]. (9.32)

Now, by Proposition 5.2.32, K	/K is unramified and every place is separable.
HenceDK	/K = N (Proposition 5.6.7). Using Theorem 5.7.15 we get

DL/K = DL/K	 (9.33)

and by Theorem 8.5.2 we have

gK	 = gK . (9.34)

Since L/K	 is a geometric extension we obtain from Theorem 9.4.2, (9.32),
(9.33), and (9.34) that

gL = 1+ [L : K	](gK	 − 1)+ 1

2
dL
(
DL/K	

)
= 1+ [L : K ]

[K	 : K ]
(gK − 1)+ 1

2
dL
(
DL/K

)
= 1+ [L : K ]

[	 : k]
(gK − 1)+ 1

2
dL
(
DL/K

)
.

Thus we have proved the following generalization of the Riemann–Hurwitz genus
formula.
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Corollary 9.4.3 (Riemann–Hurwitz Genus Formula). Let L/K be a finite separa-
ble extension of function fields. If 	 and k denote the fields of constants of L and K
respectively, then

gL = 1+ [L : K ]

[	 : k]
(gK − 1)+ 1

2
dL
(
DL/K

)
. ��

Example 9.4.4. Here we will apply the genus formula to obtain gK , where K =
k(x, y), y2 = f (x), f (x) ∈ k[x] is square-free, and char K �= 2 (that is, what we have
already done in Section 4.3). Let f (x) = p1(x) . . . pr (x), m = deg f =

∑r
i=1 deg pi .

Set Zpi (x) = pi . By Example 5.8.9, the ramified prime divisors are p1 . . . , pr and
possibly p∞. Moreover, p∞ is ramified if and only if m is odd.

Since char K �= 2, it follows thatDK/k(x) = p1 · · · prpε∞ with

ε =
{
0 if m is even,
1 if m is odd

(Theorem 5.6.3). Therefore d
(
DL/K

) = m+ε. Now gk(x) = 0, so using the Riemann–
Hurwitz formula we obtain

gK = 1+ 2(0− 1)+ 1

2
(m + ε) = m + ε − 2

2

=
⎧⎨⎩

m
2 − 1 if m is even,

m+1
2 − 1 = m−1

2 if m is odd,

which coincides with Corollary 4.3.7.

Example 9.4.5. Let yn = f (x) ∈ k[x], where k is a perfect field and
f (x) = p1(x)

λ1 · · · pr (x)λr , with 0 < λi < n for 1 ≤ i ≤ r,

and p1(x), . . . , pr (x) are distinct irreducible polynomials.
Let K = k(x, y), and assume that the nth roots of 1 are contained in k, and that

char K � n or char K = 0. Set (pi (x))k(x) = pi

p
deg pi∞

and mi = deg pi (x). Let

conk(x)/K (pi ) =
(
P
(1)
i · · ·P(gi )i

)n/di
with di = (λi , n). For convenience we will assume that p∞ is not ramified, that is, n
divides deg f (x) (Example 5.8.9).

Finally, let fi be the relative degree of P
( j)
i over pi , so that fimi is equal to the

degree of P( j)i .
Then

DK/k(x) =
r∏
i=1

(
P
(1)
i · · ·P(gi )i

)(n/di )−1
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and

d
(
DK/k(x)

) = r∑
i=1

(
n

di
− 1
)
(gi ) dK

(
P
( j)
i

)
=

r∑
i=1

(
n

di
− 1
)
gi fimi

=
r∑
i=1

n

di
gi fimi −

r∑
i=1

gi fimi .

We have n
di
gi fimi = [K : k(x)]mi = nmi , so

d
(
DK/k(x)

) = n
r∑
i=1

mi −
r∑
i=1

dimi = n deg f (x)−
r∑
i=1

dimi .

Therefore

gK = 1+ n(0− 1)+ 1

2

(
n deg f (x)−

r∑
i=1

dimi

)

= 1

2

(
n deg f (x)+ 2− 2n −

r∑
i=1
(λi , n) deg pi (x)

)
.

Example 9.4.6. Let K = k(x, y), where

y p − y = f (x)

p1(x)λ1 · · · pr (x)λr ,

f (x), pi (x) ∈ k[x], p1(x), . . . , pr (x) are distinct irreducible polynomials, λi > 0,
p � λi , char k = p, and k is a perfect field. For convenience we will assume that p∞ is
not ramified. By Example 5.8.8, if

(pi (x))k(x) =
pi

p
deg pi∞

and conk(x)/K (pi ) = P
p
i ,

thenDK/k(x) =
∏r

i=1P
(λi+1)(p−1)
i . It follows that

d
(
DK/k(x)

) = r∑
i=1
(λi + 1) (p − 1)dK (Pi )

=
r∑
i=1
(λi + 1) (p − 1)dk(x) (pi )

=
r∑
i=1
(λi + 1) (p − 1)mi ,

where mi = deg pi (x). Therefore
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gK = 1+ [K : k(x)]
(
gk(x) − 1

)+ 1

2

(
d
(
DK/k(x)

))
= 1+ p(0− 1)+ 1

2

r∑
i=1
(λi + 1) (p − 1)mi

= 1

2
(p − 1)

{
r∑
i=1
(λi + 1)mi − 2

}
.

9.5 Genus Change in Inseparable Extensions

We have studied the genus change in constant extensions and in finite separable ex-
tensions. In the latter case, the trace was used to find differentials in a subfield. Since
we were considering separable extensions, the trace was nontrivial. When we consider
inseparable extensions, the trace is the trivial map and we cannot use the trace map
any longer to find nontrivial differentials.

In this section we present a substitute for the trace map due to John Tate [152].
Let E be a field of characteristic p > 0 and let F be an inseparable extension of E

of degree p. Let α be any generator of F over E , that is, F = E(α). Let ξ ∈ F . Then
ξ can be expressed uniquely in terms of α as

ξ = a0 + a1α + · · · + ap−1α p−1, with ai ∈ E . (9.35)

Definition 9.5.1. We define the nontrivial E-map

Sα : F → E by putting

Sα(ξ) = ap−1 for all ξ ∈ F. (9.36)

Proposition 9.5.2. We have

ξ =
p−1∑
i=0

Sα(ξα
p−1− j )α j .

Proof: Let X p − b = Irr(α, X, E). Then
ξα p−1− j = a0α

p−1− j + · · · + a jα
p−1 + a j+1b + · · · + ap−1bα p−1− j−1.

It follows that Sα(ξα p−1− j ) = a j , and the result follows by (9.35) ��
Since the map Sα depends on the generator α, the question that arises is how Sα

changes when α is replaced by another generator β. First we note that Sα is E-linear.
Let φ : F × F → E be given by

φ(x, y) = Sα(xy).

Then φ is E-bilinear and if Sα(z) �= 0, then for any x �= 0, φ(x, x−1z) = Sα(z) �= 0.
Thus φ is a nondegenerate bilinear form on F . In particular, for any E-linear map
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S : F → E , there exists an element γ in F uniquely determined by S and such that
S(ξ) = Sα(ξγ ) for all ξ ∈ F (Proposition 9.3.18).

In particular, there exists a unique γ ∈ F such that

Sβ(ξ) = Sα(ξγ ) (9.37)

for all ξ ∈ F .

Definition 9.5.3. Let R be a commutative ring. A derivation D of R is a mapping
D : R→ R such that

D(x + y) = Dx + Dy and D(xy) = x Dy + y Dx

for all x, y ∈ R.

Example 9.5.4. Let R = k[x], where k is a field. Then for f (x) = ∑n
i=0 ai xi , the

mapping D defined by Df (x) = f ′(x) =∑n
i=1 iai xi−1 is a derivation.

Example 9.5.5. Let R = k[x1, . . . , xn], where k is a field. Then the usual partial
derivative ∂

∂xi
is a derivation of k[x1, . . . , xn].

Given any derivation D of R, x ∈ R, and n ∈ N, we have D(xn) = nxn−1Dx .
In our case, F is an inseparable extension of E of degree p. Let

D : E[x]→ E[x]

f (x) �→ f ′(x).

We have ((x p − b) f (x))′ = (x p − b)′ f (x)+ (x p − b) f ′(x) = (x p − b) f ′(x). Thus
D maps the principal ideal x p− b into itself. Since F is inseparable over E , it follows
that F is isomorphic to E[x]/((x p − b)) for some b ∈ E . Let α be the root of x p − b
and set F = E(α). Then the kernel of the epimorphism

φ : E[x]→ E(α) = F

f (x) �→ f (α)

is the ideal (x p − b).
It is easy to see that D induces a well-defined derivation in F ,

E[x]
D−−−−→ E[x]

φ

⏐⏐* ⏐⏐*φ
E(α) −−−−→

Dα
E(α)

which will be denoted by Dα . Notice that Dα is given by the formula Dα( f (α)) =
f ′(α).
If ξ = a0 + a1α + · · · + ap−1α p−1, then

Dα(ξ) = a1 + 2a2α + · · · + (p − 1)ap−1α p−2.
It follows that Dα(ξ) = 0 if and only if a1 = a2 = · · · = ap−1 = 0 if and only if

ξ = a0 ∈ E . Also, Dα is E-linear.
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Proposition 9.5.6. We have

Sα(Dα(ξ)) = 0
for all ξ ∈ F.

Proof: Let ξ = a0 + a1α + · · · + ap−1α p−1. Then

Sα(Dα(ξ)) = Sα(a1 + 2a2α + · · · + (p − 1)ap−1α p−2) = 0
by (9.36). ��

Proposition 9.5.7. The map Sα satisfies Sα(ξ p−1Dαξ) = (Dαξ)p for all ξ ∈ F.
Equivalently,

Sα

(
Dαξ

ξ

)
=
(
Dαξ

ξ

)p
for all ξ ∈ F \ {0}.
Proof: For any ξ ∈ F , ξ p belongs to E , so if ξ �= 0 we have

Sα(ξ
p−1Dαξ) = Sα

(
ξ pDα(ξ)

ξ

)
= ξ pSα

(
Dαξ

ξ

)
and (Dαξ)p =

(
Dαξ
ξ

)p
ξ p. The stated equivalence follows.

Let R = {ξ ∈ F | Sα(ξ p−1Dαξ) = (Dαξ)p
}
. Let T : F \ {0} → E be defined by

T ξ = Sα
(
Dαξ
ξ

)
−
(
Dαξ
ξ

)p
. We have

T (ξξ1) = Sα

(
Dα(ξξ1)

ξξ1

)
−
(
Dα(ξξ1)

ξξ1

)p
= Sα

(
ξDαξ1 + ξ1Dαξ

ξξ1

)
−
(
ξDαξ1 + ξ1Dαξ

ξξ1

)p
= Sα

(
Dαξ1
ξ1

+ Dαξ

ξ

)
−
(
Dαξ1
ξ1

+ Dαξ

ξ

)p
= T (ξ)+ T (ξ1).

Thus T is a group homomorphism of F \ {0} into E . The kernel of T is R \ {0}, so
R \ {0} is a multiplicative subgroup of F \ {0}.
Now if ξ ∈ R we have Dα(ξ + 1) = Dαξ and ((ξ + 1)p−1 − ξ p−1)Dαξ =∑p−2
i=0 aiξ

i Dαξ for some ai ∈ E .

Also, ξ i Dαξ = Dα
(
ξ i+1
i+1
)
. Hence, using Proposition 9.5.6 we obtain

Sα(((ξ + 1)p−1 − ξ p−1)Dαξ) =
p−1∑
i=0

ai Sα

(
Dα

(
ξ i+1

i + 1

))
= 0.
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In particular, since ξ ∈ R we have

Sα((ξ + 1)p−1Dα(ξ + 1)) = Sα((ξ + 1)p−1Dαξ)
= Sα(ξ

p−1Dαξ) = (Dαξ)p = (Dα(ξ + 1))p.
It follows that ξ + 1 ∈ R. Finally, if ξ ∈ R and η is a nonzero element of R, we

have ξ + η = η(η−1ξ + 1) ∈ R. Thus R\{0} is a multiplicative group and R is closed
under addition. Hence E � R and α ∈ R, so R is a subfield of F containing E and α.
Therefore E(α) � R � F = E(α). ��

Now we can find the relationship between two generators α and β.

Theorem 9.5.8. If α and β are two generators of F over E, then

Sβ(ξ) = Sα(ξ(Dαβ)
1−p) for all ξ ∈ F. (9.38)

Proof: Since both sides of (9.38) are E-linear, it suffices to prove (9.38) for ξ = β i
(0 ≤ i ≤ p − 1).

Multiplying both sides by (Dαβ)p ∈ E , the equality becomes

(Dαβ)
pSβ(β

i ) = Sα(β
i Dαβ) (0 ≤ i ≤ p − 1). (9.39)

For i < p − 1, we have β i Dαβ = Dα
(
βi+1
i+1
)
, so by Proposition 9.5.6 and (9.35),

both sides of (9.39) are equal to zero.
For i = p − 1, we have (Dαβ)pSβ(β p−1) = (Dαβ)p. Therefore by (9.35) and

Proposition 9.5.7 we have

Sα(β
p−1Dαβ) = (Dαβ)p.

Thus (9.38) holds also for i = p − 1. ��
Nowwe establish some basic facts about an inseparable extension L/K of function

fields of degree pn .

Proposition 9.5.9. Let K be a function field, L a purely inseparable extension of K ,
and P a place of L lying over the place ℘ of K . Then the local degree satisfies

[LP : K℘] = [L : K ].
Proof: By Theorem 5.2.24, P is the only place above ℘. On the other hand, using
Theorem 5.1.14, the proof of Corollary 5.4.6, and Theorem 5.4.10 we obtain

[L : K ] = dimK L =
∑
P|℘

[LP : K℘] = [LP : K℘]. ��

Corollary 9.5.10. Any repartition ξ ∈ XL of L can be written uniquely in the form

ξ = ξ0 + ξ1α + · · · + ξpn−1α pn−1,
where ξ0, . . . , ξpn−1 ∈ XK are repartitions of K , L = K (α), and [L : K ] = pn.
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Proof: The statement follows immediately from Corollary 5.5.8, Proposition 9.5.9,
and the fact that {1, α, . . . , α pn−1} is a basis of LP over K℘ . ��

Proposition 9.5.11. If L is a purely inseparable extension of K of degree p, then for
any place P of L lying over the place ℘ of K , there exists β ∈ ϑP such that

ϑP = ϑ℘[β]. (9.40)

Thus ϑP has a power basis over ϑ℘ .

Proof:We have [LP : K℘] = p. If LP is unramified over K℘ let β ∈ ϑP be such that
β generates 	(P) over k(℘) (i.e., β ∈ ϑP\(ϑ℘ +P)). Since

ϑP
∼= 	(P)[[π ]] and ϑ℘ ∼= k(℘)[[π ]],

where π ∈ ϑ℘ satisfies vP(π) = v℘(π) = 1 (Theorem 2.5.20), it follows that ϑP =
ϑ℘[β].

If LP is ramified over K℘ and πL is a prime element for P, then π
p
L = πK ∈ K℘

is a prime element for ℘. We have 	(P) = k(℘) = m, ϑP is isomorphic to m[[πL ]],
and ϑ℘ to m[[πK ]]. It follows that ϑP = ϑ℘[πL ]. ��

The values vP(Dαβ) are fundamental for the genus formula we will establish
below.

Proposition 9.5.12. Let L be a purely inseparable extension of K of degree p, and
L = K (α). Let ℘ be the place of K that lies below the place P of L. Set

r℘ = r = max
x∈K℘

{v℘(a − x p)},

where α p = a ∈ K. Then

pnvP(Dβα) degL P =
{
r degK ℘ if p | r,
(r − 1) degK ℘ if p � r,

where β ∈ ϑP satisfies ϑP = ϑ℘[β] and pn = [	 : k].

Proof: Since LP = K℘(α) = K℘(a1/p) and [LP : K℘] = p, it follows that a is not
a pth power in K℘ . Therefore a − x p �= 0 for all x ∈ K℘ and r is finite.

Let b ∈ KP be such that r = v℘(a − bp).
If p divides r , put r = sp. Let π be a prime element in K℘ such that v℘(π) = 1

and set τ = (α − b)π−s ∈ LP. Then τ p = (α p − bp)π−sp = (a − bp)π−sp satisfies
vP(τ

p) = r − sp = 0. Therefore τ p is a unit in ϑ℘ .
If the residue class of τ p were a pth power of a residue class in K℘ , there would

exist c ∈ K℘ such that

cp ≡ (a − bp)π−sp mod ℘.
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Then if x = b + π sc, x would satisfy
vP(a − x p) = v℘(a − bp − π spcp) = v℘(π sp((a − bp)π−sp − cp))

= sp + v℘((a − bp)π−sp − cp) ≥ sp + 1 = r + 1.
This contradicts the maximality of r . It follows that

[k(℘)(τ ) : k(℘)] = p and 	(P) = k(℘)(τ ).

In this case Proposition 9.5.11 yields ϑP = ϑ℘[β] with β = τ .
We have Dβα = (Dαβ)−1 = π s (see Exercise 9.7.7). Thus vP(Dβα) = s and by

Theorem 5.3.4,

vP(Dβα)p
n degL P = spn degL P = spn

degK ℘

λL/K

= spn
degK ℘

[	 : k]
[L : K ] = spn

degK ℘

pn
p

= ps degK ℘ = r degK ℘.

Now assume that p does not divide r . Let u, v ∈ Z be such that ru − pv = 1. Let
π be a prime element in K℘ and τ = (α− b)uπ−v ∈ LP. Then τ p = (a− bp)uπ−vp
satisfies

v℘(τ
p) = ru − vp = 1.

It follows that τ is a prime element in LP and by Proposition 9.5.11, ϑP = ϑ℘[β]
with β = τ , and LP/K℘ is a ramified extension.

We have

Dαβ = Dατ = u(α − b)u−1π−v = u(α − b)uπ−v(α − b)−1 = u(α − b)−1τ.

Hence Dβα = Dτ α = (Dατ)−1 = u−1(α − b)τ−1 and since (u, p) = 1, it follows
that

vP(Dβα) = vP((a − bp)1/pτ−1) = r − 1.

We have ℘ = Pp. Moreover, degL ℘ = p degL P = degK ℘
λL/K

= p degK ℘ because

λL/K = [	:k]
[L:K ] = 1

p (n = 0).
Thus vP(Dβα)pn degL P = (r − 1) degK ℘. ��
The map Sα given in Definition 9.5.1 can be extended to a K -linear map of XL

into XK as follows.

Definition 9.5.13. Let K be a function field, L a purely inseparable extension of K of
degree p, and α a generator of L over K . For ξ ∈ XL , ξ can be written as

ξ = ξ0 + ξ1α + · · · + ξp−1α p−1 with ξ0, . . . , ξp−1 ∈ XK . (9.41)
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We define the K -linear map

Sα : XL → XK

by
Sα(ξ) = ξp−1.

Proposition 9.5.14. Let Sα be the K -linear map that we have just defined. Given a
divisor A ∈ DK there exists U ∈ DL such that A | Sα(ξ) = ξp−1 whenever U di-
vides ξ .

Proof: Let A ∈ DK be an arbitrary divisor. For any place P of L lying over the place
℘ of K , let βP ∈ ϑP be such that ϑP = ϑ℘[βP] (Proposition 9.5.11).

Let π℘ be a prime element for ℘. Set U =
∏

P PcP, where

cP = e(P|℘)v℘(A)+ vP(DβPα)
p−1. (9.42)

According to Corollary 5.5.9 we may choose βP = α for almost all P ∈ DL . In
particular, vP((DβPα)

p−1) = 0 for almost all P. Thus U is a divisor in L . Further,
the Pth component in (9.41) is

ξP = ξ0,P+ ξ1,Pα + · · · + ξp−1,Pα p−1 ∈ LP, with ξi,P ∈ K℘ for 0 ≤ i ≤ p − 1.
If U divides ξ , then vP(ξP) ≥ vP(U) = cP. Therefore

vP(ξP(DβPα)
1−pπ−v℘(A)℘ ) ≥ cP+ vP((DβPα)

1−p)− e(P|℘)v℘(A) ≥ 0.

It follows that ξP(DβPα)
1−pπv℘(A)℘ ∈ ϑP. By Proposition 9.5.2 we have

ξP(DβPα)
1−pπ−v℘(A)℘ =

p−1∑
i=0

SβP(ξP(DβPα)
1−pπ−v℘(A)℘ β

p−1−i
P )β iP.

Now, {1, βP, . . . , β
p−1
P } is an integral basis of ϑP over ϑ℘ , so

SβP(ξP(DβPα)
1−pπ−v℘(A)℘ β

p−1−i
P ) ∈ ϑ℘.

In particular, for i = p − 1 we have

SβP(ξP(DβPα)
1−pπ−v℘(A)℘ ) ∈ ϑ℘. (9.43)

We obtain from Theorem 9.5.8 that

Sα(ξPπ
−v℘(A)
℘ ) = SβP(ξP(DβPα)

1−pπ−v℘(A)℘ ). (9.44)

Using (9.43) and (9.44), it follows that

v℘(Sα(ξPπ
−v℘(A)
℘ )) = v℘(π−v℘(A)℘ Sα(ξP)) = −v℘(A)+ v℘(Sα(ξP)) ≥ 0.

Therefore A divides Sα(ξP). ��
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Definition 9.5.15. Let w be a nontrivial differential of K . We define

� : XL → k by �(ξ) = w(Sα(ξ)).
Assume that y ∈ L and ξy is the principal repartition (i.e., (ξy)P = y forP ∈ PL ).

Then if

y = a0 + · · · + ap−1α p−1

and ξp−1,ap−1 is the principal repartition of K (i.e.,
(
ξp−1,ap−1

)
℘
= ap−1), we have

�(ξy) = w(Sα(ξy)) = w(ξp−1,ap−1) = 0.
By Proposition 9.5.14, there exists a divisor U in L such that if U divides ξ then

(w) divides Sα(ξ); so if U divides ξ we have

�(ξ) = w(Sα(ξ)) = 0.
In particular we have the following proposition:

Proposition 9.5.16. If 	 = k, i.e., L is a geometric extension, then the map � given in
Definition 9.5.15 is a nontrivial differential in L. ��

We are interested in the genus change from K to L . We might proceed as at the end
of Section 9.4, namely assuming first that L/K is a geometric extension and finding a
formula relating gL to gK . Then we would apply the constant field extension and use
the results of Chapter 8.

Instead of this approach we prove in general that the map � given in Definition
9.5.15 can be replaced by a true differential of L . For this purpose we prove the fol-
lowing theorem:

Theorem 9.5.17. Let k be any field and let 	 be a finite extension of k. Let T : 	→ k
be a nontrivial k-linear map of 	 into k. Then if V is any vector space over 	 and � is
any k-linear map of V into k, there exists a uniquely determined 	-map� from V into
	 such that

� = T�, i.e., �(ξ) = T (�(ξ))

for all ξ ∈ V .
Proof:

V

� ��

�
k

	

T

�������

If such a map � actually exists, it must satisfy

T (α�(ξ)) = T (�(αξ)) = �(αξ)
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for all α ∈ 	. If we fix ξ ∈ V , let ϕξ : 	→ k be defined by ϕξ (α) = �(αξ). Then ϕξ
is a linear map from 	 into k.

Since T is nontrivial, there exists a unique element αξ in 	 such that

ϕξ (α) = T (ααξ ) for all α ∈ 	

(apply Proposition 9.3.18 to the nondegenerate form

φ : 	× 	→ k such that φ(a, b) = T (ab)).

Let � : V → 	 be defined by �(ξ) = αξ . Then

T (�(ξ)) = T (αξ ) = ϕξ (1) = �(1× ξ) = �(ξ)
and T (α�(ξ)) = �(αξ).

Given α ∈ 	, a, b ∈ 	, and ξ, ξ ∈ V , we have
T (α�(aξ + bξ1)) = �(α(aξ + bξ1)) = �(αaξ)+�(αbξ1)

= T (αa�(ξ))+ T (αb�(ξ1)) = T (α(a�(ξ)+ b�(ξ1))).

Therefore α(�(aξ + bξ1)− a�(ξ)− b�(ξ)) ∈ ker T for all α ∈ 	.
Since T is nontrivial, there exists w ∈ 	 such that T (w) �= 0. Given any nonzero

v ∈ 	, let α = wv−1 ∈ 	 be such that T (αv) = T (w) �= 0. We have
�(aξ + bξ1) = a�(ξ)+ b�(ξ) for all a, b ∈ 	 and ξ, ξ,∈ V1. ��

Returning to our case, let T : 	→ k be an arbitrary but fixed nontrivial map from
	 into k (where 	 and k are the constant fields of L and K respectively).

Given a nontrivial differential w of K , let � be given as in Definition 9.5.15, that
is, �(ξ) = w(Sα(ξ)) for all ξ ∈ XL .

Consider the 	-linear map � : XL → 	 defined in Theorem 9.5.17 and satisfying

T (�(ξ)) = �(ξ) = w(Sα(ξ)). (9.45)

Corollary 9.5.18. The map � satisfying (9.45) is a nontrivial differential of L. ��

Recall that� depends on the choice of α. In order to compute the divisor of�, we
define

Dα =
∏
P

PγP, (9.46)

where γP = vP((DβPα)
1−p), ϑP = ϑ℘[βP], and ℘ = P|K .

Theorem 9.5.19. Let L/K be a purely inseparable extension of degree p of function
fields with L = K (α). If w is a nontrivial differential of K and� is given as in (9.45),
then the divisors of � and w are related by the formula

(�)L = (conK/L(w)K )Dα,
where Dα is defined as in (9.46).
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Proof: Let U = conK/L(w)KDα =
∏

P PcP, where

cP = e(P|℘)v℘((w)K )+ vP((DβPα)
1−p).

Let ξ ∈ XL and

ξ = ξ0 + ξ1α + · · · + ξp−1α p−1, with ξ0, . . . , ξp−1 ∈ XK .

Each component ξP ∈ LP (P ∈ PL ) satisfies

ξP = ξ0,P+ ξ1,Pα + · · · + ξp−1,Pα p−1 ∈ LP, with ξ0,P, . . . , ξp−1,P ∈ K℘.

If U−1 divides ξ , then for any a ∈ 	, U−1 divides aξ and by Proposition 9.5.14
(see (9.42)), (w)−1K divides Sα(aξ). It follows that

T (a�(ξ)) = �(aξ) = w(Sα(aξ)) = 0
for all a ∈ 	. Therefore �(ξ) = 0, and U divides (�)L . We have

vP((�)L) ≥ cP. (9.47)

Now let ϑP = ϑ℘[βP] and βP ∈ ϑP.
Let ξP ∈ L � LP be such that vP(ξP) = −vP((DβPα)

1−p)− 1.
Then vP(ξP(DβPα)

1−p) = −1 and by Proposition 9.5.2 and Theorem 9.5.8, we
have

ξP(DβPα)
1−p =

p−1∑
i=0

SβP(ξP(DβPα)
1−pβ p−1−iP )β iP

=
p−1∑
i=0

Sα(ξPβ
p−1−i
P )β iP /∈ ϑP.

Therefore there exists i such that 0 ≤ i ≤ p − 1 and

Sα(ξPβ
p−1−i
P ) /∈ ϑ℘.

Also, there exists y ∈ K such that v℘(y) = −v℘((w)K )− 1 and w℘(y) �= 0. The
definition of � establishes that in local components

T (�P(ξ)) = w℘(Sα(ξ)) for all ξ ∈ LP.

Let z = (Sα(ξPβ p−1−iP ))−1 ∈ ϑ℘ be such that v℘(z) ≥ 1. Then

T (�P(yzξPβ
p−1−i
P )) = w℘(Sα(yzξPβ p−1−iP ))

= w℘(yzSα(ξPβ p−1−iP )) = w℘(yzz−1) = w℘(y) �= 0.
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Thus �P(yzξPβ
p−1−i
P ) �= 0 and

vP(yzξPβ
p−1−i
P ) = e(P|℘)(v℘(y)+ vP(z))+ vP(ξPβ p−1−iP )

= e(P|℘)(−v℘((w)K )− 1)+ e(P|℘)v℘(z)+ vP(ξPβ p−1−iP )

≥ −e(P|℘)v℘((w)K )− e(P|℘)+ e(P|℘)− vP((DβPα)
1−p)− 1

= −e(P|℘)v℘((w)K )− vP((DβPα)
1−p)− 1.

It follows that

vP((�)L) ≤ cP. (9.48)

We deduce the result from (9.47) and (9.48) . ��

Corollary 9.5.20 (Tate Genus Formula). The genera of L and K are related by the
formula

2gL − 2 = p1−n(2gK − 2)+ (1− p)
∑

P∈PL

vP(DβPα) degL P,

where for each P ∈ PL , we have ℘ = P|K , ϑP = ϑ℘[βP], and [	 : k] = pn for
some n ≥ 0.
Proof: By Corollary 3.5.5 we have dL((�)L) = 2gL − 2 and dK ((w)K ) = 2gK − 2.
On the other hand, using Theorem 5.3.4 we obtain

dL(conK/L(w)K ) = dK ((w)K )

λL/K
= [L : K ]

[	 : k]
dK ((w)K ) = p1−n(2gK − 2).

The results follows immediately by (9.46) and Theorem 9.5.19. ��

Corollary 9.5.21. Let K be a function field of characteristic p > 2. Let L be a purely
inseparable finite extension of K . Then gL − gK is divisible by p−1

2 .

Proof: Since the extension is obtained from a finite number of successive extensions
of degree p, it suffices to consider the case [L : K ] = p. Multiplying the formula of
Corollary 9.5.20 by pn and using the fact that pn ≡ 1 mod (p − 1), we obtain

2gL − 2 ≡ 2gK − 2 mod (p − 1).
The result follows. ��

Example 9.5.22. Let k be a field of characteristic p > 0 such that p �= 2. Let K =
k(x, y) be the hyperelliptic function field generated by

y2 = x p − a, with a /∈ k p.
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By Corollary 4.3.7 we have

gK =
[
p + 1
2

]
− 1 = p + 1

2
− 1 = p − 1

2
.

Let L = K (α) with α = a1/p. Then L = k(x, y)(a1/p) = k(a1/p)(x, y) =
k(a1/p)(z), where z = y

(x−α)(p−1)/2 .

Then gL = 0 and gL − gK = − p−1
2 .

Remark 9.5.23. Example 9.5.22 shows again that even though K℘ is isomorphic to
k′((π)), k is not contained in k′ (see Example 2.5.23).

Proposition 9.5.24. Let K be a function field of characteristic p > 0 such that gK <
p−1
2 . Then for any constant extension L = K	′, we have gL = gK .

Proof: If A is a transcendence basis of 	′ over k and if L1 = Kk(A), we have gL1 =
gK (Theorem 8.5.2).

Therefore we may assume that 	′/k is algebraic. If 	′s is the separable closure of k
in 	′, then if L2 = K	′s we have gL2 = gK (Theorem 8.5.2).

Thus we may assume that 	′/k is purely inseparable. We have gL ≤ λL/K gK . If
gL < gK , the change of genus can be obtained in a finite extension 	′/k (see the proof
of Theorem 8.5.3).

Hence, we may assume that 	′/k is a finite purely inseparable extension.
By Corollary 9.5.21,

p − 1
2

| gK − gL and gK − gL ≥ 0.

It follows that 0 ≤ gK − gL ≤ gK <
p−1
2 . Therefore gK = gL . ��

Definition 9.5.25. A function field K is called conservative if any constant extension
L = K	 satisfies gL = gK .

Example 9.5.26. K is conservative in the following two cases:

(i) char K = 0 (Theorem 8.5.2)
(ii) gK <

p−1
2 and char K = p (Proposition 9.5.24).

For constant extensions we have the following result:

Theorem 9.5.27. Let L be a finite purely inseparable constant extension of K/k. Then

2gK − 2 = λL/K (2gL − 2)+ µK (p − 1)A,

where A is a nonnegative integer and µK is the invariant given in Definition 8.6.6. If
λL/K > 1, we have A > 0.
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Proof: We proceed by induction on [L : K ]. If L = K , there is nothing to prove.
Assume [L : K ] ≥ p (where p is the characteristic). Since L/K is purely inseparable,
there exists L ′ such that K ⊆ L ′ ⊆ L and [L : L ′] = p. By the induction hypothesis
we have

2gK − 2 = λL ′/K (2gL ′ − 2)+ µK (p − 1)A′. (9.49)

Applying Tate’s genus formula (Corollary 9.5.20) to the purely inseparable exten-
sion L/L ′, we get

2gL − 2 = p1−n(2gL ′ − 2)+ (1− p)
∑

P∈PL

vP(DβPα) degL P,

where pn = [	 : 	′]. Therefore p1−n = p
pn = [L:L ′]

[	:	′] = λ−1L/L ′ .
Let aP = vP(DβPα). We obtain

2gL ′ − 2 = λL/L ′(2gL − 2)+ λL/L ′(p − 1)
∑

P∈PL

aP degL P. (9.50)

Notice that aP belongs to Z and aP = 0 for almost all P. Since L/L ′ is a constant
extension, it follows that aP ≥ 0 (Proposition 9.5.12).

By Theorem 8.6.8, µL divides degL P, and by Corollary 8.6.15, µLλL/L ′ = µL ′ .
Using (9.50) we obtain

2gL ′ − 2 = λL/L ′(2gL − 2)+ µL ′(p − 1)A′′ (9.51)

with A′′ ∈ Z and A′′ ≥ 0.
It follows from (9.49) and (9.51) that

2gK − 2 = λL ′/K (2gL ′ − 2)+ µK (p − 1)A′
= λL ′/KλL/L ′(2gL − 2)+ λL ′/KµL ′(p − 1)A′′ + µK (p − 1)A′
= λL/K (2gL − 2)+ µK (p − 1)A,

where A = A′ + A′′ ≥ 0 (here we have used the facts that λL/K = λL ′/KλL/L ′ and
λL ′/KµL ′ = µK ).

Finally, assume λL/K > 1. Then if λL ′/K > 1 it follows by the induction hypoth-
esis that A′ > 0 and A ≥ A′ > 0.

If λL ′/K = 1, then λL/L ′ > 1 and λL/L ′gL ≤ gL ′ (Theorem 8.5.3). We have

2gL ′ − 2 > 2λL/L ′gL − 2λL/L ′ = λL/L ′(2gL − 2).
Using (9.51), we conclude that A′′ > 0 and A ≥ A′′ > 0. ��

Theorem 9.5.28. Let K/k be an inseparable function field and L/	 the minimum con-
stant extension of K/k such that L/	 is separable. Then

gK = µK
(
gL − 1+ 1

2
(p − 1)A

)
+ 1

with A ∈ N.
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Proof: By Theorem 8.6.13 we have µK = λL/K . The result is a consequence of The-
orem 9.5.27 since µK = λL/K > 1 (see Remark 8.6.7). ��

Corollary 9.5.29. If K/k is any inseparable function field we have

gK ≥ (p − 1)(p − 2)
2

.

Proof: Since µK is a power of p and µK > 1, we have µK ≥ p.
Therefore

gK ≥ p(0− 1+ 1

2
(p − 1)× 1)+ 1 = 1

2
p(p − 1)+ (1− p)

= (p − 1)
2

(p − 2). ��

Remark 9.5.30. There exist examples where the equality gK = 1
2 (p−1)(p−2) holds.

Example 9.5.31. Let K = k(x, y) be the function field given in Example 5.2.31. Recall
that k = k0(u, v), where k0 is a field of characteristic p,

[
k(u1/p, v1/p) : k

] = p2, and
y p = ux p + v. By Corollary 9.5.29 we have

gK ≥ (p − 1)(p − 2)
2

since K/k is not separable. Indeed, the field of constants of L = Kk(u1/p) is
k(u1/p, v1/p) �= k(u1/p). LetNx be the pole divisor of x in K . For t large enough, we
have

	(N−tx ) = t degK (Nx )− gK + 1 = pt − gK + 1

(because [K : k(x)] = p = dK (Nx )). We have Nx = Ny = A and Nxi y j = Ai+ j .
Therefore xi y j ∈ L(A−t ) for i ≥ 0, 0 ≤ j ≤ p−1, and i+ j ≤ t , and these elements
are k-linearly independent (since j ≤ p − 1). Let t ≥ p − 1. Then

|{(i, j) | i ≥ 0, 0 ≤ j ≤ p − 1, i + j ≤ t}|

=
p−1∑
j=0
(t − j + 1) = pt − p(p − 1)

2
+ p = pt − p

2
(p − 3).

Thus pt − gK + 1 = 	(A−t ) ≥ pt − p
2 (p − 3).

Therefore gK ≤ 1+ p
2 (p − 3) = (p−1)(p−2)

2 , and it follows that

gK = (p − 1)(p − 2)
2

.
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9.6 Examples

9.6.1 Function Fields of Genus 0

Let K/k be a function field of genus 0 that is not rational, and let A be any divisor.
We will prove that dK (A) is even. First suppose that dK (A) = 1. Then

dK (A) = 1 > 2gK − 2 = −2.
Using Corollary 3.5.6 we obtain that

	K (A
−1) = dK (A)− gK + 1 = 2.

According to Exercise 3.6.22, there exists an integral divisor P of degree 1. Thus
P must be a prime divisor. By Theorem 4.1.7, it follows that K is a rational function
field. This contradiction shows that dK (A) must be different from 1.

Now assume that there exists a divisor A of odd degree, say dK (A) = 2n + 1 with
n ∈ N. By Proposition 4.1.6 there exists a prime divisor P of degree 2. Thus AP−n
has degree 1.

In particular, it follows that dK (DK ) = 2Z.
Proposition 9.6.1. A function field K/k of genus 0 is a rational function field if and
only if K contains a divisor of degree 1. ��

Let x ∈ K \ k be such that [K : k(x)] = 2. Then

(x)K = P1

P
,

where P1,P are prime divisors of degree 2.
Since dK (P) = 2 > 2gK −2 = −2, it follows by Corollary 3.5.6 that 	K (P−1) =

dK (P) − gK + 1 = 3. Let {1, x, y} be a basis of LK (P−1). If y = f (x) ∈ k[x], we
have (y)K = P2

P = ( f (x))K , with P2 �= P1, so [K : k( f (x))] = 2.
Consequently we have k( f (x)) = k(x), where f (x) ∈ k[x] has degree 1.

This contradicts the independence of {1, x, y}. Thus K = k(x, y). We also have
	K (P

−2) = 5. Since {1, x, y, x2, y2, xy} ⊆ LK (P−2) it follows that there is an
equation

ax2 + by2 + cxy + dx + ey + f = 0 (9.52)

with a, b, c, d, e, f ∈ k not all zero.
If a = 0, (9.52) reduces to by2 + (cy + d)x + ey + f = 0.
We have cy + d �= 0 since otherwise by2 + ey + f = 0. Hence cy + d �= 0.
It follows that x ∈ k(y). In particular, K = k(x, y) = k(y) and K is rational. This

proves that a �= 0. Similarly, we obtain b �= 0. Therefore F(X, Y ) = aX2 + bY 2 +
cXY + dX + eY + f is an irreducible polynomial in k[X, Y ].

We may assume b = 1. In this case, (9.52) can be written as



326 9 The Riemann–Hurwitz Formula

y2 + (cx + e)y + (ax2 + dx + f ) = 0. (9.53)

If char k �= 2, then (9.53) can be reduced to

y2 = h(x),

where h(x) ∈ k [x] and h(x) has degree 1 or 2. The degree 1 case is not possible
because otherwise K would be a rational function field.

Furthermore, h(x) must be irreducible, since otherwise, if h(x) = (Ax + α)(x +
β), α, β ∈ k, then if α �= 0 or β �= 0, we have

y2

(x + β)2 =
(

y

x + β
)2
=
(
Ax + α
x + β

)
.

Let z =
√

Ax+α
x+β . Then y = ±(x + β)z ∈ k(x, z) and

x = α − βz
2

z2 − A
∈ k(z).

If α = β = 0, then y2 = Ax2 and y = √Ax ∈ k(
√
A)(x). Thus

√
A = y

x ∈ K
and K is rational. Therefore f (x) is irreducible.

Let us now consider the case char k = 2. If cx + e = 0, the extension K/k(x) is
inseparable of degree 2. Assume that K/k(y) is also an inseparable extension, that is,

x2 = g(y) ∈ k(y).

As before, g(y) ∈ k [y] is a polynomial of degree 2. Thus

g(y) = αy2 + βy + γ, with α, β, γ ∈ k.

We have x4 = α2y4 + β2y2 + γ 2 = α2(ax2 + bx + c)2 + β2(ax2 + bx + c)+ γ 2 =
α2a2x4 + (α2b2 + β2a)x2 + β2bx + (α2c2 + β2c + γ 2).

It follows that

α2a2 = 1, α2b2 + β2a = 0, β2b = 0, and α2c2 + β2c + γ 2 = 0.

Thus b = 0, β = 0, αa = 1, and γ = αc = c
a .

The latter imply that x2 = 1
a y
2 + c

a , or

y2 = ax2 + c.

Note that a1/2 and c1/2 ∈ k cannot occur since in this case y = a1/2x + c1/2 and
K = k(x) = k(y).
Now in the case that K/k(y) is separable we may assume, by exchanging the roles

of and x and y, that K/k(x) is separable and cx + e �= 0 in (9.53).
Let z = y

cx+e . Then K = k(x, z) and
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z2 − z = ax2 + dx + f

(cx + e)2
= h(x). (9.54)

Note that ax2 + dx + f and cx + e are relatively prime, since otherwise z2 − z =
Ax+B
cx+e and z ∈ k, or x ∈ k(z) and K = k(z).

If c �= 0, setting x1 = 1
cx+e , (9.54) reduces to

z2 − z = h1(x1),

where h1(x1) is a polynomial of degree 2.
Therefore, when K/k(x) is separable, x and y can be chosen such that

y2 − y = f (x) ∈ k[x] with deg f (x) = 2.
We have proved the following theorem:

Proposition 9.6.2. Let K/k be a function field of genus 0 that is not a rational function
field. Then there exist x, y ∈ K such that K = k(x, y), [K : k(x)] = 2 = [K : k(y)],
and x, y satisfy

ax2 + y2 + cxy + dx + ey + f = 0 for some a �= 0, (9.55)

where F(X, Y ) = aX2 + Y 2 + cXY + dX + eY + f is an irreducible polynomial in
k[X, Y ].

Furthermore:

(a) If char k �= 2, then (9.55) can be reduced to
y2 = f (x) ∈ k[x], where deg f (x) = 2 and f (x) is irreducible.

(9.56)

(b) If char k = 2 and either K/k(x) or K/k(y) is separable, (9.55) can be
reduced to

y2 − y = f (x) ∈ k[x], with deg f (x) = 2. (9.57)

(c) If char k = 2 and both K/k(x) and K/k(y) are purely inseparable, then
y2 = ax2 + c ∈ k[x] (9.58)

with a1/2 /∈ k or c1/2 /∈ k. ��

To see which conditions (9.55), (9.56), (9.57), and (9.58) must satisfy in order for
K to be or not be a rational function field, first consider the case K = k(x, y) with
x, y satisfying (9.55).

If this equation is of the first degree (a = b = c = 0), then K is rational. If the
equation is reducible, then again K is rational. If there is an algebraic element α in k\k
such that (α, x) is a solution of (9.55), then k(x) ⊆ k′(x) ⊆ K and

[
k′(x) : k(x)

] =
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k′ : k

] ≥ 2 = [K : k(x)]. Thus K = k′(x) is a rational function field. Therefore we
may assume that K is not rational. We will show that K has genus 0. As before, we
have a �= 0 and we may assume b = 1.

Let ℘∞ be the pole divisor of x in k(x). If P∞ is a prime divisor in K satisfying
P∞|k(x) = ℘∞, then dK (P∞) = 2 since K is not rational. Thus dK (P−s∞ ) = −2s for
all s ∈ N.

Let A = {a(x)+ yb(x) | a(x), b(x) ∈ k[x], deg a(x) ≤ s, deg b(x) ≤ s − 1}.
Then A � LK (P−s∞ ) by Proposition 4.3.5 (see Exercise 9.7.9). Thus 	K (P−s∞ ) ≥

2s+1. Let s ∈ N be such that 2s > 2gK−2. We have 	K (P−s∞ ) = dK (Ps∞)−gK+1 =
2s + 1− gK ≥ 2s + 1. It follows that gK = 0.

Now we consider (9.56) (char k �= 2). In this case, K/k(x) is a separable exten-
sion. If K is not rational, then f (x) is not a square and for any place

ϕ : K → k(P) ∪ {∞},
we have k(P) �= k. This means that the prime divisor P is of degree larger than 1.
Assume thatP is such that ϕ(x) �= ∞. This is equivalent to vP(x) ≥ 0, i.e.,P �= P∞,
which implies ϕ(x) /∈ k or ϕ(y) /∈ k. If ϕ(y) ∈ k then ϕ(x) /∈ k, and

ϕ(y)2 = f (ϕ(x)).

It follows that f (x)− α2 is irreducible for any α ∈ k.
Conversely, if f (x) − α2 ∈ k[x] is irreducible for all α ∈ k, then for any place ϕ

of K such that ϕ(x) �= ∞, we have k(P) �= k.
Now if char k = 2 and K = k(x, y) is given by (9.57), then k(P) �= k if and only

if f (x)− (α2 − α) ∈ k[x] is irreducible for all α ∈ k.
Next, assume char k = 2 and let K = k(x, y) be as in (9.58).
If k(a1/2) = k(c1/2) = k′, then y ∈ k′(x) and k′K = k′(x, y) = k′(x), with

[k′(x) : k(x)] = [k′ : k] = 2. Hence K = k′(x) and K is rational. Therefore if K is
not rational, we have [k(a1/2, c1/2) : k] = 4.

Conversely, if [k(a1/2, c1/2) : k] = 4 we will prove that K is not rational. Set
k′ = k(a1/2). Then Kk′ = k(a1/2, c1/2)(y) and

4 = [k(a1/2, c1/2) : k] = [k(a1/2, c1/2)(x) : k(x)] = [Kk′ : k(x)]
= [Kk′ : k′(x)][k′(x) : k(x)] = 2[Kk′ : k′(x)].

Thus
[
Kk′ : k′(x)

] = 2.
If ϕ : K → k(P) ∪ {∞} is any place of K the restriction of ϕ to k is the identity

(see the discussion in Section 2.2). Thus

ϕ(y)2 = aϕ(x)2 + c or ϕ(y) = a1/2ϕ(x)+ c1/2.

It follows that ϕ(x) /∈ k or ϕ(y) /∈ k, and hence there is no place of degree 1 in K .
We have proved the following theorem:

Theorem 9.6.3. Let K/k be a function field. Then K is of genus 0 iff K = k(x, y)
with
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ax2 + by2 + cxy + dx + ey + f = 0. (9.59)

Furthermore, (9.59) can be reduced to:

(a) y2 = f (x) if char k �= 2, where f (x) ∈ k[x] is a polynomial of degree 2.
In this case K is a rational function field if and only if there exists α ∈ k such that
f (x)− α2 ∈ k[x] is reducible.

(b) y2 − y = f (x), where f (x) has degree 2 if char k = 2, and K/k(x) is separable.
In this case, K is a rational function field if and only if there exists α ∈ k such
that f (x)− (α2 − α) ∈ k[x] is reducible.

(c) y2 = ax2 + c for some a �= 0 if char k = 2, and K/k(x) and K/k(y) are purely
inseparable.
In this case, we have that K is a rational function field if and only if[
k(a1/2, c1/2) : k

]
< 4. ��

We end the discussion with a result on the differentDK/k(x).

Theorem 9.6.4. Let K/k be a function field of genus 0.

(a) Assume that K = k(x, y), char k �= 2, y2 = f (x), f (x) = p1(x)e1 · · · pr (x)er
with r = 1 or r = 2, ei = 1, and

∑r
i=1 ei deg pi = 2. If (pi (x))k(x) =

℘i℘
− deg pi∞ , then DK/k(x) =

r∏
i=1

PiP
ε∞, where the Pi ’s are the prime divisors

in K lying above ℘i , B∞ is a prime divisor above ℘∞, and ε is 0 or 1.
(b) Assume that y2 − y = f (x) ∈ k(x), deg f = 2, DK/k(x) = Pδ∞, and δ is 0, 1,

or 2, where P∞ is the prime divisor in K above the pole divisor of x in k(x), and
dK (P∞) is 1 or 2.

Proof: (a) This is just Example 5.8.9.
(b) Since k is not a perfect field we cannot apply directly Example 5.8.8. Clearly

K/k(x) is a separable extension. If K/k(x) is a constant extension, then K = k′(x),
[k′ : k] = 2, k′/k is a separable extension and for any place P we have k′(P) =
k′k(℘) (Theorem 8.4.11). Thus there are no inseparable or ramified places (Theorem
5.2.32), and DK/k(x) = N. If K/k(x) is a geometric extension, then since K/k(x) is
separable, we may apply the genus formula and we obtain

0 = gK = 1+ (gk(x) − 1)[K : k(x)]+ 1

2
dK (DK/k(x)) = 1

2
dK (DK/k(x))− 1.

It follows that dK (DK/k(x)) = 2. On the other hand, by Example 5.8.8 the only
ramified prime of k(x) in K can be the pole divisor ℘∞ of x in k(x). Therefore ℘∞
ramifies or is inert in K and we have

P∞ = ℘δ∞
with δ = 1 if and only if ℘∞ is inseparable or δ = 2, if and only if ℘∞ is ramified. It
follows thatDK/k(x) = Ps∞ with sdK (P∞) = 2. ��

Note that P∞|℘∞ may be inseparable (see Exercise 5.10.18).
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9.6.2 Function Fields of Genus 1

Let K/k be a field of genus 1. Let WK denote the canonical class of K . Then
dK (WK ) = 2gK − 2 = 0, and we have

N (WK ) = dK (WK )− gK + 1+ N (W−1
K WK ) = 0− 1+ 1+ 1 = 1.

It follows that WK = PK is the principal class.
For a function field of genus 0, there exist divisors of degree 2. This is not the case

for function fields of genus 1.

Proposition 9.6.5. Let n ∈ N. Then there exists a function field K/k with gK = 1
such that dK (DK ) = nZ.

Proof: Corollary to Theorem 7 of [91], [133, Theorem 2]. ��
In Section 4.2 we studied elliptic function fields K/k such that char k �= 2. In this

section we will consider the case char k = 2.
By (4.1) we have K = k(x, y) with

y2 + γ xy + δy = α3x3 + α2x2 + α1x + α0. (9.60)

As in Section 4.2, we also haveNx = P2 andNy = P3, whereP denotes a prime
divisor of degree 1. Thus [K : k(y)] = 3. It follows that α3 �= 0 (since otherwise x
satisfies an equation of degree 2 over k(y) and then [K : k(y)] = [k(x, y) : k(y)] ≤
2). Multiplying by α23 and putting y1 = α3y, x1 = α3x , we may assume α3 = 1.
Hence K = k(x, y) with

y2 + (γ x + δ)y = x3 + α2x2 + α1x + α0. (9.61)

First we handle the case γ x + δ = 0 in (9.61). In this case K/k(x) is a purely
inseparable extension of degree 2. By means of the substitution x1 = x + α2, (9.60)
reduces to

y2 = x3 + ax + b, with a, b ∈ k. (9.62)

Consider any function field K = k(x, y) satisfying (9.62). Let

(x)k(x) = ℘0

℘∞
, where v℘∞(x) = −1.

Let P be any prime divisor in K that lies above ℘∞. Since vP(x) < 0, we have

vP(x
3 + ax + b) = min{vP(x3), vP(ax), vP(b)} = vP(x3)

= 3vP(x) = 3e(P|℘∞)v℘∞(x) = −3e(P|℘∞).
Thus

vP(y
2) = 2vP(y) = −3e(P|℘∞).
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Therefore 3 divides vP(y) and P3 divides Ny .
Since 3 ≥ [K : k(y)] = dK (Ny) ≥ 3, it follows that

Ny = P3 and e(P|℘∞) = 2.
In particular, dK (P) = 1 and k is the field of constants of K .

Let n be such that n > 2gK−2. For 2 ≤ m ≤ n, we writem = 3t+r , r ∈ {0, 1, 2}.
If r = 0, consider the element yt . If r = 1, then m = 3t + 1 = 3(t − 1) + 4 ≥ 2
and hence t ≥ 1. In this case we can work with yt−1x2. If r = 2, consider the element
yt x . In any case, for any 2 ≤ m ≤ n, there exist i and j such that 0 ≤ i , 0 ≤ j , and
vP(yi x j ) = −(3i + 2 j) = −m. It follows that 	K (P−n) ≥ n. Therefore

n ≤ 	K (P−n) = dK (P
−n)− gK + 1 = n − gK + 1.

Thus gK ≤ 1.
Proposition 9.6.6. Assume that K = k(x, y) has characteristic 2 and is given by
(9.62). Then K contains a prime divisor of degree 1 and gK ≤ 1. ��

In order to study the situation in which gK = 0 and gK = 1, consider the equation
y2 = x3 + ax + b, and let k′ = k(

√
a,
√
b). In K ′ = Kk′, we have

y2 = x3 + a21x + b21 = x(x2 + a21)+ b21,

where a21 = a, b21 = b, and a1, b1 ∈ k′.
It follows that

x =
(
y + b1
x + a1

)2
.

Therefore, if z = √x = y+b1
x+a1 , the field K

′ = k′(z) is a rational function field. Assume
that P′ is a prime divisor of K ′ above P; then vP′(z) = −1. In Kk′ we have Nx =
(P′)2 and Ny = (P′)3.

It is easy to see that gK = 0 if and only if 	K (P−1) = 2 (and gK = 1 if and only
if 	K (P−1) = 1).

Now, in K ′, we have

y2 = x3 + ax + b = z6 + a21z
2 + b21 = (z3 + a1z + b1)

2,

that is,

y = z3 + a1z + b1. (9.63)

Assume that gK = 0. Since K contains a prime divisor of degree 1, it follows that
K is a rational function field. In this case we have 	K (P−1) = 2, or equivalently, there
exists w ∈ K \ k such that Nw = P.

Since {1, z} is a basis of LK ′((P′)−1) and w ∈ LK (P−1) ⊆ LK ′((P′)−1), there
exist α, β ∈ k′ such that
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w = α + βz ∈ K . (9.64)

Also, {1, w,w2, w3} is a basis of LK (P−3). Therefore there exist A, B,C, D in k
such that

y = A + Bw + Cw2 + Dw3. (9.65)

Taking squares in (9.65) and substituting w by its value given by (9.64), we obtain

x3 + ax + b = y2 = A2 + B2(α2 + β2x)+ C2(α4 + β4x2)+ D2(α2 + β2x)3
= A2 + B2α2 + B2β2x + C2α4 + C2β4x2 + D2α6

+ D2α4β2x + D2α2β4x2 + D2β6x3

= (A2 + B2α2 + C2α4 + D2α6)+ (B2β2 + D2α4β2)x

+ (C2β4 + D2α2β4)x2 + D2β6x3.

It follows that

A2 + B2α2 + C2α4 + D2α6 = b,

B2β2 + D2α4β2 = a,

C2β4 + D2α2β4 = 0,
D2β6 = 1.

Therefore β3 = 1/D ∈ k. In particular, k(β)/k is separable. Since k′/k is purely
inseparable, it follows that β ∈ k.

We also have C2 + D2α2 = 0, and hence α = C
D ∈ k.

Thus gK = 0 implies z ∈ K and by (9.63), we have a1, b1 ∈ k. The converse is
clear. We have proved the following proposition:

Proposition 9.6.7. If K = k(x, y) is given by (9.62), then gK = 0 (and K is a rational
function field) if and only if

√
a,
√
b ∈ k. In this case, we have K = k(

√
x). ��

As an application of Tate’s genus formula (Corollary 9.5.20) we present another
proof that if K/k is a function field such that K = k(x, y) and

y2 = x3 + ax + b = f (x)

with k(
√
a,
√
b) �= k, then gK = 1.

We have already proved that ifP divides℘∞ where (x)k(x) = ℘0
℘∞ , then℘∞ = P2,

dK (P) = 1, and k is the field of constants of K .
We now compute the numbers r℘ given in Proposition 9.5.12. Let B be a prime

divisor in K , ℘ = B|k(x), and ℘ �= ℘∞. Let h(x) ∈ k[x] be a prime element for ℘.
Then h(x) satisfies

(h(x))k(x) = ℘

℘
deg h
∞

.
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Notice that since v℘( f (x)) is nonnegative, r℘ is nonnegative too. We wish to show
that r℘ = 0 or r℘ = 1. Assume for the time being that r℘ ≥ 2. Let ξ ∈ k(x)℘ be such
that

v℘( f (x)− ξ2) = r℘.

Since k(x) is dense in k(x)℘ , there exists t (x) ∈ k(x) such that
v℘(ξ − t (x)) > r℘.

We have v℘(ξ2 − t (x)2) = 2v℘(ξ − t (x)) > 2r℘ . Thus

v℘( f (x)− t (x)2) = v℘( f (x)− ξ2) = r℘.

Let t (x) = p(x)
q(x) , where p(x), q(x) ∈ k[x] and (p(x), q(x)) = 1. Since

v℘(t (x)) ≥ 0, it follows that (h(x), q(x)) = 1. Let c(x), d(x) ∈ k[x] be such that
hn(x)c(x)+ q(x)d(x) = p(x) for a given n ∈ N. Then

t (x)− d(x) = p(x)

q(x)
− d(x) = p(x)− d(x)q(x)

q(x)
= hn(x)c(x)

q(x)
.

Thus v℘(t (x) − d(x)) ≥ n and c(x) ∈ k[x]. If we take n > r℘ , it follows that
v℘( f (x)− c(x)2) = r℘ , and we may assume that t (x) ∈ k[x].

Since r℘ ≥ 2, we have
f (x)− t (x)2 = h(x)2s(x) (9.66)

with s(x) ∈ k[x]. Taking the usual derivative in (9.66), it follows that
x2 + a = f ′(x) = h(x)2s′(x).

Hence s′(x) ∈ k[x], deg s′(x) = 0 and h(x) = x + √a. Thus √a ∈ k and s(x) =
	(x2)+ x + β with 	(0) = 0.

Substituting in (9.66) we obtain

x3 + ax + b = f (x) = (x2 + a)(	(x2)+ x + β)+ t (x)2.

Therefore

b = x2	(x2)+ βx2 + a	(x2)+ aβ + t (x)2. (9.67)

Let 	(x) = dmxm + · · · + d1x, t (x) = cnxn + · · · + c1x + c0.
It follows from (9.67) that n = m + 1 and

dm + c2m+1 = 0
...

...
...

di + adi+1 + c2i+1 = 0
...

...
...

d1 + ad2 + c22 = 0
β + ad1 + c21 = 0
aβ + c20 = b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (9.68)
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From (9.68) we deduce that b belongs to k2, which is a contradiction. Thus for all
℘ �= ℘∞, we have r℘ = 0 or r℘ = 1. Since k is the field of constants of K , it follows
by Proposition 9.5.12 that

vB(DτBα) degK B = 0.

Now assume ℘ = ℘∞. Then

r℘∞ ≥ v℘∞( f (x)) = −3.

For any ξ ∈ k(x)℘∞ ,

v℘( f (x)− ξ2) = min{v℘( f (x)), 2v℘(ξ)} = min{−3, 2v℘(ξ)} ≤ −3.

Hence r℘∞ = −3 and since 2 = p � −3, we have v℘(DτPα) degK P = −4.
Therefore

vB(DτBα) degK B =
{
0 ifB|k(x) = ℘ �= ℘∞,
−3− 1 = −4 ifB = P.

Using Tate’s genus formula, we obtain

2gK − 2 = 21−0(2gk(x) − 2)+ (1− 2)
∑
B

vB(DτBα) degK B

= 2(−2)− (−4) = 0.
It follows that gK = 1, which was to be shown.

Now we consider the case γ x + δ �= 0 in (9.61).
Let y1 = y

γ x+δ . Then K = k(y1, x) and

y21 − y1 = y21 + y = y2

(γ x + δ)2 +
y

γ x + δ =
y2 + (γ x + δ)y
(γ x + δ)2

= x3 + α2x2 + α1x + α0
(γ x + δ)2 .

Clearly, K/k(y) is a separable extension of degree 2. We distinguish two subcases. If
γ = 0, then denoting y1 by y, we have

y2 − y = f (x) ∈ k[x], (9.69)

where f (x) is a polynomial of degree 3.
If γ �= 0, let x1 = x + δ/γ . Then

x3 + α2x2 + α1x + α0 = x31 + ε2x21 + ε1x1 + ε0
and
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y2 − y = x1
γ 2
+ ε2

γ 2
+ ε1

γ 2x1
+ ε0

γ 2x21
. (9.70)

Note that if gK = 1, ε0 = ε1 = 0 does not hold. Indeed, if this were the case, x1
would belong to k(y) and K would be a rational function field.

Assuming that ε0 is a square in k (which happens when k is a perfect field), then
if β0 ∈ k is such that β20 = ε0, let

y1 = y + β0

γ x1
.

We have

y21 − y1 = y21 + y1 = y2 − y + β20

γ 2x21
− β0

γ x1
= x1
γ 2
+ ε2
γ2
+ ε3

γ 2x1
.

Let x2 = x1
γ 2
+ ε2
γ 2
. Then

y21 − y1 = x2 + 1

αx2 + β for some α ∈ k∗. (9.71)

If ε0 is not a square in k, the substitution x2 = x1
γ 2
+ ε2
γ 2
reduces (9.70) to

y21 − y1 = x2 + αx2 + β
δx22 + ε

for some δ �= 0. (9.72)

If (αx2 + β, δx22 + ε) �= 1, (9.72) reduces to (9.71). We now assume that (αx2 +
β, δx22 + ε) = 1, with δ �= 0. Then (9.72) can be written as

y2 − y = x + a′x + b′

x2 + c′
, (9.73)

where (x2 + c′, a′x + b′) = 1. Then(
x + a′x + b′

x2 + c′

)
k(x)

= A

℘∞℘
or

A

℘∞℘2

according to whether
√
c /∈ k and dk(x)(℘) = 2 or

√
c ∈ k and dk(x)(℘) = 1 respec-

tively. Even though k is not a perfect field we can use Example 5.8.8 to see that ℘∞ is
ramified in K . Furthermore, dK (P) = 1,P divides ℘∞, and k is the field of constants
of K . If

√
c /∈ k, then by Example 5.8.8 we have

P2P2
1 | DK/k(x),

where dK (P1) ≥ 2. In this case gK = 2. Thus
√
c ∈ k.

We are now ready to prove the following theorem:
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Theorem 9.6.8. Suppose that k has characteristic 2. Then an elliptic function field
K/k is given by K = k(x, y), where:

(1) If K/k(x) is purely inseparable, then

y2 = x3 + ax + b

with k(
√
a,
√
b) �= k.

(2) If K/k(x) is separable, then K is given by one of the following equations:

(a) y2 − y = f (x) ∈ k[x], where deg f (x) = 3 and f (x) is irreducible.
(b) y2 − y = x + 1

ax+b , with a ∈ k∗.
(c) y2 − y = x + αx+β

(x+ε)2 , where (αx + β, x + ε) = 1.
When k is a perfect field, K/k is given by either (a) or (b).

Conversely, any of the above equations defines an elliptic function field.

Proof:We have already proved (1) (Proposition 9.6.7). On the other hand, any elliptic
function field K such that K/k(x) is separable is given by (a), (b), or (c).

Now if K/k is defined by (a) or (b), let (x)k(x) = ℘0
℘∞ . Then either

( f (x))k(x) = A

℘3∞
, for some integral divisor A

or (
x + 1

ax + b

)
k(x)

= B

℘1℘∞
,

whereB is an integral divisor and ℘1 is a prime divisor of degree 1.
It follows by Example 5.8.8 that

DK/k(x) = P4 or DK/k(x) = P2
1P

2,

whereP1,P are prime divisors in K that lie above ℘1 and ℘∞ respectively. In partic-
ular, ℘∞ is ramified, k is the field of constants of K , and dK (P) = 1. Using the genus
formula we obtain in both cases that

gK = 1+ (gk(x) − 1)[K : k(x)]+ 1

2
dK (DK/k(x)) = 1− 2+ 1

2
(4) = 1.

Finally, consider (c). We have(
x + αx + β

(x + ε)2
)
k(x)

= A

℘∞℘2ε
,

where A is an integral divisor relatively prime to ℘∞℘ε.
It follows by Example 5.8.8 that ℘∞ is ramified. Moreover, ifP divides ℘∞, then

dK (P) = 1 and k is the field of constants of K . Also, Nx = P2 and Ny = P3. Let
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n > 2gK − 2. For any m satisfying 2 ≤ m ≤ n, there exists an element yi x j such that
ηy j xi = Pm . Hence

n ≤ 	K (P−n) = dK (P
n)− gK + 1 = n + 1− gK .

Thus gK ≤ 1. Let k′ = k(
√
β). Then, as before, K ′ = Kk′ can be given by

y2 − y = x + 1

ax + b
, where a ∈ k′ \ {0}

and gK ′ = 1. Since K ′ is a constant extension of K , by Theorem 8.5.3 we have

1 = gK ′ ≤ gK ≤ 1.
Thus gK = 1 and K is an elliptic function field (and as a corollary we obtain that

DK/k(x) = P2P2
ε). ��

9.6.3 The Automorphism Group of an Elliptic Function Field

Now we study the automorphism group of an elliptic function field.
Let K/k be an arbitrary elliptic function field, CK the divisor class group of K ,

and CK ,0 its subgroup of divisor classes of degree 0 (see Section 3.2).
Set MK = {P ∈ PK | dK (P) = 1}. Let P0 ∈ MK be fixed and K = k(x, y) with

Nx = P2
0,Ny = P3

0. Let

ϕ : MK → CK ,0

be defined by

ϕ(P) =
[

P

P0

]
. (9.74)

Proposition 9.6.9. The function ϕ given in (9.74) is bijective.

Proof: Let B be a divisor of degree 0. Then dK (BP0) = 1 > 0 = 2gK − 2. By
Corollary 3.5.6 we have

	K (B
−1P−10 ) = dK (BP0)− gK + 1 = 1.

If α ∈ LK (B−1P−10 ), α is nonzero and satisfies (α)K = P
BP0

, whereP is an integral

divisor of degree 1. Thus P is a prime divisor andB =
(

P
P0

)
= ϕ(P).

Now if ϕ(P) = ϕ(P1), then
P
P0

and P1
P0

define the same class. Therefore

P
P0

(
P1
P0

)−1 = P
P1
, which is principal. Let (x)K = P

P1
. If P �= P1, we have

[K : k(x)] = dK (Zx ) = dK (P) = 1, which contradicts the fact that K is of genus 1.
It follows that P = P1, and ϕ is bijective. ��



338 9 The Riemann–Hurwitz Formula

Remark 9.6.10. The bijection ϕ provides MK with an additive group structure whose
operation ⊕ is defined by

P⊕P1 := ϕ−1 (ϕ(P)ϕ(P1)) = ϕ−1
([

PP1

P2
0

])
.

In the other words,P⊕P1 = P2, where

(
PP1

P2
0

)
=
(

P2
P0

)
. We haveP⊕P0 = P and

P⊕P1 = P2 if and only if
PP1
P2P0

is principal. With this structure, MK is isomorphic
to CK ,0.

Now consider

Autk(K ) = {σ : K → K | σ is an automorphism of K and σ |k = Idk}.
Proposition 9.6.11. Let K/k be any function field and let σ, θ ∈ Autk(K ) be such
that ℘σ = ℘θ for all ℘ ∈ PK . Then σ = θ .
Proof: Put ϕ = σθ−1. It follows from the choice of σ, θ that ℘ϕ = ℘ for all ℘ ∈ PK .
Let z ∈ K be such that (z)K = ℘a11 · · ·℘arr . Then

(zϕ)K = (z)ϕK = (℘ϕ1 )a1 · · · (℘ϕr )ar = ℘a11 · · ·℘arr = (z)K .
Thus there exists Cz ∈ k such that

zϕ = Czz.

If z1 and z2 are linearly independent over k, we have

(z1 + z2)
ϕ = Cz1+z2(z1 + z2) = zϕ1 + zϕ2 = Cz1 z1 + Cz2 z2.

Therefore Cz1+z2 = Cz1 = Cz2 . Since C1 = 1, it follows that Cz = 1 for all z ∈ K
and ϕ = IdK . Hence σ = θ . ��

Now we return to the case of an elliptic function field K/k. Let P and P1 be two
prime divisors of degree 1, not necessarily distinct. We choose P0 = P as in Remark
9.6.10. We have 	K ((PP1)

−1) = dK (PP1)− gK + 1 = 2.
Let z ∈ K \ k be such that z ∈ LK ((PP1)

−1). Then (z)K = A
PP1

for some
integral divisor A such that A �= PP1. We have [K : k(z)] = 2 = d(Nz).

Next, assume that K/k(z) is a separable extension.
Let Gal(K/k(z)) = {1, σ }, where σ �= Id and σ(z) = z. Notice that σ fixes

A(PP1)
−1 (such an automorphism is called a reflection automorphism of P and P1

in K ). IfP �= P1, thenP andP1 are the prime divisors above the pole divisor ℘∞ of
z in k(z), and thus σP = P1, σP1 = P (because Gal(K/k(z)) = {1, σ }).

Let q be a divisor of degree 1 in K . Then(
q

P

)(
q

P

)σ
= qqσ

PPσ
,
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and the latter is a divisor of degree 0 in k(z), and hence a principal divisor. This means
that

q⊕ qσ = Pσ = P1 or qσ = Pσ � q.

In particular, takingP1 = P, we get qσ = �q.
Let us denote

σP,P1 (9.75)

by σ for P and P1. Then

qσP,P1 = P1 � q, and so qσP,P = �q.

Set

τ = τP,P1 = σP,P ◦ σP,P1 . (9.76)

For any prime divisor q of degree 1, the divisor qσP,P

P
qτ

P1
= (z) is principal. Thus

qτ ⊕ qσP,P = qτ � q = P1, and we have

qτP,P1 = q⊕P1. (9.77)

Because of (9.77) τP,P1 is called the translation automorphism from P to P1.
Assume that τ ′ = τP,P2 is another translation automorphism. Then if q ⊕P1 =

q1 = qτ , it follows that q1 is a prime divisor of degree 1 and

qτ
′
1 = q1 ⊕P2.

Thus

qττ
′ = (qτ )τ ′ = qτ

′
1 = q1 ⊕P2 = q⊕P1 ⊕P2.

Therefore τP,P1 ◦ τP,P2 has the same effect as τP,P1⊕P2 on prime divisors of degree
one.

Proposition 9.6.12. With the above notation we have

τP,P1 ◦ τP,P2 = τP,P1⊕P2 .

Proof: Let G = Autk(K ) and G = Autk(K ), where k is an algebraic closure of k and
K = Kk is the constant field extension.
The natural map from G to G is a monomorphism of groups. (If σ ∈ G, the

extension of σ to K is defined as follows: if α =
n∑
i=1
αi xi with αi ∈ k and xi ∈ K ,

then σ(α) =
n∑
i=1
αiσ(xi ). See the proof of Corollary 14.3.9.)

All the prime divisors of K are of degree 1 since k is algebraically closed, and
τP,P1 ◦ τP,P2 and τP,P1⊕P2 have the same effect on all prime divisors of K . The
statement follows by Proposition 9.6.11. ��
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Theorem 9.6.13. Let

G = {τP,P1 | P1 ∈ PK of degree 1
}

be the set of all translation automorphisms. Then G is a group that is isomorphic to
MK and to CK ,0.

Proof: Let ϕ : G → MK be given by ϕ(τP,P1) = P1 (respectively, let ϕ̃ : G → CK ,0

be given by ϕ̃(τP,P1) =
[

P1
P

]
). Then ϕ(τP,P1 ◦ τP,P2) = ϕ(τP,P1⊕P2) = P1 ⊕

P2 = ϕ(τP,P1)ϕ(τP,P2).
Hence ϕ is a group homomorphism. Clearly ϕ is bijective. ��

Theorem 9.6.14. Let G = Autk(K ) and set G = {τP,P1 | dK (P1) = 1,P1 ∈ PK }.
Then G is a normal subgroup of G that satisfies |G/G| <∞.

Proof: Let σ ∈ G and τ = τP,P1 ∈ G. Let q be a prime divisor of degree 1. Set
ϕ = στσ−1. Using (9.77) we see that qτ = q⊕P1 is equivalent to

qP1

qτP
= (z)K being principal or qτ = (z−1)K qP1

P
= qP1

(z)KP
.

It follows that(
qϕ

Pϕ

)
=
(

q

P

)ϕ
=
(

q

P

)στσ−1
=
(

qσ

Pσ

)τσ−1
=
(
(qσ )τ

(Pσ )τ

)σ−1
=
(

qσP1

P(z1)K

P(z2)K
PσP1

)σ−1
=
(

qσ

Pσ

)σ−1 ( zσ−12

zσ
−1
1

)
K

=
(

q

P

)(
zσ
−1
2

zσ
−1
1

)
K

.

Thus Pϕq
Pqϕ is principal, and qϕ = q⊕Pϕ.

Therefore ϕ = τP,Pϕ = στP,P1σ
−1 and G is a normal subgroup of G. Further-

more, we have Pστ = Pσ ⊕ P1 and
PσP1
PPστ is principal, and so is

(
PσP1
PPστ

)σ−1 =
PPσ−1

1

Pσ−1Pϕ
. It follows that

Pϕ ⊕Pσ
−1 = Pσ

−1
1

or

Pϕ = Pσ
−1
1 � Pσ

−1
.

Now let σ ∈ G and set P1 = Pσ . Then
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PτP,P1 = P⊕P1 = P1 = Pσ .

Therefore τP,P1σ
−1 = σ−1τP,Pϕ fixes P. Thus if we show that StatG(P) ={

θ ∈ G | Pθ = P
}
is finite, it will follow that

|G/G| ≤ |StatG(P)| <∞.

We have 	K (P−n) = dK (Pn)− gK + 1 = n for every n ≥ 1.
Let {1, x} be a basis of LK (P−2) and {1, x, y} a basis of LK (P−3) (with Nx =

P2,Ny = P3). Let σ ∈ StatG(P). We have

LK (P
−2)σ = LK (P

−2) and LK (P
−3)σ = LK (P

−3).

It follows that

σ x = ax + b for some a �= 0, and σ y = c + dx + ey for some e �= 0.
(9.78)

If char k �= 2, 3, then by (4.6) we have K = k(x, y) with

y2 = 4x3 − g2x − g3. (9.79)

Substituting (9.78) in (9.79) we obtain

(c + dx + y)2 = 4(ax + b)3 − g2(ax + b)− g3.

Hence

c2 + d2x2 + e2y2 + 2cdx + 2cey + 2dexy
= 4a3x3 + 12a2bx2 + 12ab2x + 4b3 − g2ax − g2b − g3.

It follows that

2d

e
= 0, 2c

e
= 0, and

d2

e2
= 12a2b

e2
,

4a3

e2
= 4. (9.80)

Therefore d = c = 0, b = 0 and e2 = a3.
If λ = e

a , we have a = e2

a2
= λ2, so e = aλ = λ3.

Therefore

σ x = λ2x and σ y = λ3y. (9.81)

If we substitute (9.81) in (9.79) we obtain

λ6y2 = 4λ6x3 − g2λ
2x − g3.

Hence
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y2 = 4x3 − g2
λ4
x − g3

λ6
= 4x3 − g2x − g3.

If g2 and g3 are nonzero we have λ4 = λ6 = 1, so λ2 = 1, i.e., λ = ±1. If g2 = 0,
then clearly λ6 = 1. If g3 = 0, then λ4 = 1. Therefore StabG(P) is isomorphic to
C2,C4, or C6. In any case, it is finite.

If char k = 3, by (4.3) we have
y2 = x3 + α2x2 + α3x + α4. (9.82)

Substituting (9.78) in (9.82), we obtain

(c + dx + ey)2 = (ax + b)3 + α2(ax + b)2 + α3(ax + b)+ α4,
so

c2 + d2x2 + e2y2 + 2cdx + 2cey + 2dexy
= a3x3 + b3 + α2a2x2 + 2α2abx + α2b2 + α3ax + α3b + α4.

Hence

a3

e2
= 1, 2d

e
= 0, and

2c

e
= 0.

Thus c = d = 0, e = λ3, a = λ2, and λ ∈ k∗.
It follows that σ x = λ2x + b and σ y = λ3y. We have
λ6y2 = λ6x3 + b3 + α2λ4x2 + 2α2λ2bx + α2b2 + α3λ2x + α3b + α4

= λ6x3 + α2λ4x2 + x(2α2λ
2b + α3λ2)+ (b3 + α2b2 + α3b + α4).

Therefore

b3 + α2b2 + α3b + α4(1− λ6) = 0, α2

λ2
= α2, and

2α2b + α3
λ4

= α3.

If α2 �= 0 then λ2 = 1 and λ6 = 1, so b3 + α2b2 + α3b = 0.
Hence λ can take at most two values (±1) and b can take at most three values; it

follows that StabG(P) is a finite group. If α2 = 0, then α3 �= 0 since x3 + α2x2 +
α3x + α4 is a separable polynomial. Therefore λ4 = 1, and thus the possible number
of λ’s and b’s is finite.

Finally we consider char k = 2. Since we are assuming that K/k(x) is separable,
by Theorem 9.6.8 we have

y2 − y = f (x) ∈ k[x], with deg f (x) = 3, (9.83)

y2 − y = x + 1

Ax + B
, with A ∈ k∗, (9.84)

or
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y2 − y = x + αx + β
(x + ε)2 , where (αx + β, x + ε) = 1. (9.85)

Note that in the proof of Theorem 9.6.8, we showed that in a quadratic constant exten-
sion, (9.85) reduces to (9.84). Thus if k′ is this quadratic extension of k and K ′ = Kk′,
we have gK ′ = 1 and the stabilizer StabG(P) in k is contained in the stabilizer in K ′.
Consequently we may assume that K is given by (9.83) or (9.84) and also that f (x) is
monic.

If K = k(x, y) is given by (9.83) and f (x) = x3 + α2x2 + α1x + α0, we have
(c + dx + ey)2 − (c + dx + ey) = (ax + b)3 + α2(ax + b)2

+α1(ax + b)+ α0,
c2 + d2x2 + e2y2 − c − dx − ey = a3x3 + a2bx2 + ab2x + b3 + α2a2x2

+α2b2 + α1ax + α1b + α0.
Hence

1

e
= 1,

a3 = 1,
a2b + α2a2 − d2 = α2,
ab2 + α1a + d = α1,

b3 + α2b2 + α1b + α0 − (c2 − c) = 0,
d2 = a2b + α2(a2 + 1),
d = ab2 + α1(a + 1),
d2 = a2b4 + α21(a2 + 1),

a2b + α2(a2 + 1) = a2b4 + α21(a2 + 1),
a2b(1− b3) = (α21 + α2)(a2 + 1).

Therefore there is a finite number of choices for b, and thus for d and c also. Thus
StatG(P) is finite.

Finally, if K is given by (9.84), we have

(c2 + d2x2 + e2y2)− (c + dx + ey) = ax + b + 1

A(ax + b)+ B
.

Then 1
e = 1, so e = 1 and

y2 − y = (a + d)x + (b + c2 − c)+ d2x2 + 1

Aax + (Ab + B)
= x + 1

Ax + B
.

Hence d = 0 and

(a + d − 1)x + (b + c2 − c) = 1

Ax + B
− 1

Aax + (Ab + B)
.
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It follows that a = 1, b + c2 − c = 0, Ab + B = B, b = 0, c2 = c, and therefore
c = 0 or 1.

This proves that in any case StabG(P) is finite. ��

9.6.4 Hyperelliptic Function Fields

Definition 9.6.15. A function field K/k is called hyperelliptic if gK ≥ 2 and K is a
quadratic extension of a field of genus 0.

First we consider the special case of K/k a quadratic extension of a rational func-
tion field. Assume [K : k(x)] = 2. If char k �= 2, then K = k(x, y) with

y2 = f (x) ∈ k[x].

Recall that f (x) is a square-free polynomial of degree m, and by Corollary 4.3.7,

gK =
[
m+1
2

]
− 1. Thus K is hyperelliptic if and only if m ≥ 5.

Proposition 9.6.16. A function field K/k is a hyperelliptic function field that is a
quadratic extension of a rational function field if and only if gK ≥ 2 and there ex-
ists A ∈ DK such that d(A) = 2 and 	(A−1) ≥ 2.
Proof: Assume [K : k(x)] = 2 and gK ≥ 2. Let Nx be the pole divisor of x . By
Theorem 3.2.7, d(Nx ) = [K : k(x)] = 2. Since 1 and x belong to LK (N−1x ) and are
linearly independent, it follows that 	(N−1x ) ≥ 2.

Conversely, if gK ≥ 2 and A is a divisor of degree 2 such that 	K (A−1) ≥ 2, let
y ∈ LK (A−1) \ k. Then (y)K = A−1B for some integral divisor B. Since y /∈ k,
it follows that d(B) = d(A) = 2 and 	K (B−1) = 	K (A−1) ≥ 2 (see the proof of
Theorem 3.3.2).

Let x ∈ LK (B−1) \ k. Then Nx divides B and d(Nx ) = [K : k(x)] ≤ 2. Since
K �= k(x), we have [K : k(x)] = 2 and K is hyperelliptic. ��

Corollary 9.6.17. If K is any function field of genus 2, then K is hyperelliptic.

Proof: Exercise. ��

Example 9.6.18. Let n ∈ N be any positive integer, and let k be any field. We consider
extensions K/k(x) such that the field of constants of K is k and [K : k(x)] = 2.
(1) If K/k(x) is separable, then we distinguish two subcases:

(a) char K �= 2. Then K = k(x, y) and y2 = f (x) ∈ k[x], where f (x)
is a separable polynomial of degree m. By Corollary 4.3.7, gK =[
m+1
2

]
− 1. Let m = 2n + 1. Thus gK = n.
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(b) char K = 2. Then K = k(x, y) and y2 − y = f (x) ∈ k(x). Let
f (x) = 1

xλ
, where (2, λ) = 1 and λ ∈ N. By Example 5.8.8 we have

DK/k(x) = P(λ+1)(2−1) = Pλ+1,

where P is the prime divisor of K that lies above the pole divisor of
x in k(x). Using the genus formula we obtain

gK = 1+ 2(gk(x) − 1)+ 1

2
(λ+ 1) = λ− 1

2
.

Let λ = 2n + 1. Then gK = n.

(2) Now we consider K/k(x) to be purely inseparable. In this case we have
K = k(x, y) and

y2 = f (x) ∈ k[x],

where f (x) is a separable polynomial of degree m and char k = 2.
First we will see that if gK �= 0, then k is an imperfect field (see also the proof
of Proposition 9.6.7). Assume for the sake of contradiction that k is perfect
and let f (x) = amxm + am−1xm−1 + · · · + a1x + a0.
Let bi ∈ k be such that b2i = ai for 0 ≤ i ≤ m. Then

y2 = f (x) = b2mx
m + b2m−1x

m−1 + · · · + b21x + b0 = xg(x)2 + h(x)2

for some g(x), h(x) ∈ k[x], where g(x) �= 0 since f (x) is assumed to be a
separable polynomial. Hence

x =
[
y − h(x)

g(x)

]2
= z2

with z = y−h(x)
g(x) ∈ K . Therefore K = k(z), where z = √x , K is a rational

function field, and gK = 0.
Now assume that k is an imperfect field and let α ∈ k \ k2. Let m be an odd
positive integer and

f (x) = xm − α ∈ k[x].

We will calculate gK using Tate’s genus formula. Consider (x)k(x) = ℘0
℘∞ and

let P be a prime divisor in K such that P divides ℘∞. Then

vP(y
2) = 2vP(y) = vP( f (x)) = e(P|℘∞)v℘∞( f (x)) = −e(P|℘∞)m.

Sincem is odd, we have e(P|℘∞) = 2, dK (P) = 1, and the field of constants
of K is k.
Let ℘ be any divisor of k(x) distinct from ℘∞. Set
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r℘ = max
ξ∈k(x)℘

{
v℘( f (x)− ξ2)

}
.

Let ξ ∈ k(x)℘ be such that v℘( f (x)− ξ2) = r℘ .
We have r℘ ≥ v℘( f (x)) ≥ 0. Since k(x) is dense in k(x)℘ , there exists
h(x) ∈ k[x] such that

v℘(h(x)− ξ) > r℘.

Thus v℘(h(x)2 − ξ2) = 2v℘(h(x)− ξ) > 2r℘ ≥ r℘ .
It follows that

v℘( f (x)− h(x)2) = r℘. (9.86)

Let h(x) = p(x)
q(x) with p(x), q(x) ∈ k[x] and (p(x), q(x)) = 1.

We have v℘(q(x)) = 0 since otherwise, v℘(q(x)) > 0 and

0 ≤ r℘ = v℘( f (x)− h(x)2) = min{v℘( f (x)), 2v℘(h(x))}
= 2v℘(h(x)) = −2v℘(q(x)) < 0.

Assume that r℘ ≥ 2. From (9.86) we obtain

f (x)− a(x)2 = 	(x)2s(x), s(x) ∈ k[x] (9.87)

with 	(x) ∈ k[x] a prime element for ℘. Taking the derivative with respect to
x in (9.87) we get

xm−1 = mxm−1 = 	(x)2s′(x).

Since 	(x) is a prime element for ℘, it follows that 	(x) = x and s′(x) =
xm−3. Thus

s(x) = xm−2 + r(x2) for some r(x) ∈ k[x].

Using (9.87) we deduce that

xm − α = a(x)2 + x2(xm−3 + r(x2)).

Furthermore, we obtain

α = a(0)2 ∈ k2,

which is a contradiction. Thus

r℘ = 0 or r℘ = 1 for all ℘ �= ℘∞.
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For ℘ = ℘∞, we have r℘∞ ≥ v℘∞( f (x)) = −m, which is an odd number.
For any ξ ∈ k(x)℘∞ , we have v℘∞( f (x)−ξ2) = min{v℘∞( f (x)), 2v℘∞(ξ)} ≤
v℘∞( f (x)). Thus r℘∞ = −m.
Since the field of constants of K is k, Tate’s genus formula yields

2gK − 2 = p1(2gk(x) − 2)+ (1− p)
∑
B

vB(DτBα) degK B

= 2(0− 2)− 1((r℘∞ − 1) deg℘∞)
= −4− 1(−m − 1) = −4+ m + 1 = m − 3.

Therefore gK = m−1
2 . If we set m = 2n + 1, we get gK = n.

In any case we have obtained a hyperelliptic function field of genus n for any
n ∈ N.

By Example 9.6.18, if K/k is a hyperelliptic function field with [K : k(x)] = 2
and K/k(x) separable (for instance if char k �= 2 or char k = 2 and k a perfect field),
then K is given by K = k(x, y) with

y2 = f (x) ∈ k[x], (9.88)

if char k �= 2 and deg f = m. In this case gK =
[
m+1
2

]
− 1 ≥ 2. That is,

m =
{
2gK + 1 if m is odd,
2gK + 2 if m is even.

Now if char k = 2, then K/k(x) is an Artin–Schreier extension and K = k(x, y) can
be given by

y2 − y = a(x)

b(x)
, where a(x), b(x) ∈ k[x] and (a(x), b(x)) = 1. (9.89)

When k is a perfect field, we know from Example 5.8.8 that we may modify y in such
a way that

y2 − y = r(x) ∈ k(x)
with (r(x))k(x) = A

℘
λ1
1 ···℘λmm

, where ℘1, . . . , ℘m are prime divisors, A is an integral

divisor relatively prime to ℘1, . . . , ℘m , λi > 0, and (λi , 2) = 1.
The genus of K is given by the equation

gK = 1

2

m∑
i=1
(λi + 1) deg℘i − 1

(see Example 5.8.8 and Theorem 9.4.2).
Now we study an important characterization of hyperelliptic function fields.
Let K/k be any function field of genus g > 0. If w0 is a nonzero differential,

then by Theorem 3.4.9, for any differential w there exists a unique z ∈ K such that
w = zw0.
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Definition 9.6.19. The element z defined above is called the ratio of the differentials
w and w0 and it is denoted by z = w

w0
.

Now we consider a function field K/k of genus g ≥ 2. Let {w1, . . . , wg} be a
basis of the holomorphic differentials. Assume that zi = wi

w1
∈ K for i = 2, . . . , g,

and z1 = 1. Let L = k(1, z2, . . . , zg).

Proposition 9.6.20. If L �= K, then K is a hyperelliptic function field.

Proof: Let [K : L] = m ≥ 2 and let A be a canonical divisor in WK . We may choose
A to be integral since g = gK ≥ 2. By Corollary 3.5.5,

	(A−1) = N (WK ) = g.

Let {y1, . . . , yg} be a basis of LK (A−1). For any nonzero x in K , the set {xy1, . . . , xyg}
is a basis of LK ((x)KA−1) and (x)KA−1 ∈ WK .

We may assume that z1 = 1, z2, . . . , zg form a basis of LK (A−1).
LetP be an arbitrary prime divisor of K . Since zi ∈ LK (A−1), we have vP(zi ) ≥

vP(A
−1) for 2 ≤ i ≤ g. Thus

vP(A
−1) ≤ min

2≤i≤g
vP(zi ).

On the other hand, by Exercise 3.6.19, there exists an index i0 such that 2 ≤ i0 ≤ g
and zi0 /∈ L(A−1P).

Thus vP(A−1) = vP(zi0). We have

vP(A
−1) = min

2≤i≤g
vP(zi ), with P ∈ PK . (9.90)

It follows that A−1 ∈ DL is a divisor of L .
By Theorem 5.3.4, we have

dL(A
−1) = λK/LdK (A−1) = 2− 2g

[K : L]
= 2− 2g

m
.

Since z1, . . . , zg ∈ L and LL(A−1) ⊆ LK (A−1), it follows that

	L(A
−1) = 	K (A−1) = g.

Using the Riemann–Roch theorem we obtain

	L(A
−1) = dL(A)− gL + 1+ 	L(W−1

L A),

gK = −2− 2gK
m

− gL + 1+ 	L(W−1
L A).

Therefore

m(	L(W
−1
L A)− gL) = mgK + 2− 2gK − m = (m − 2)(gK − 1) ≥ 0.
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It follows that 	L(W
−1
L A) ≥ gL = 	L(W−1

L ). But W
−1
L divides W−1

L A, so

	L(W
−1
L A) ≤ 	L(W−1

L ).

Thus (m − 2)(gK − 1) = (m − 2)(g − 1) = 0, and m = 2.
The case gL �= 0 is not possible (Exercise 3.6.19), so gL = 0 and K is a hyperel-

liptic function field. ��
We will prove that the converse of Proposition 9.6.20 holds.

Proposition 9.6.21. If K/k is any function field of genus g = gK ≥ 2 and L ⊆ K is
such that gL = 0, then{

α1z1 + · · · + αgzg | αi ∈ L , 1 ≤ i ≤ g
} �= K ,

where z1, . . . , zg are as in Proposition 9.6.20.

Proof: By Proposition 3.4.5 and Corollary 3.4.6, we have

dimk
XL

XL(N)+ L
= gL = 0.

It follows thatXL = XL(N)+L . LetA be a canonical divisor such that {z1, . . . , zg} is
a basis of LK (A−1). If ξ ∈ XL(N), then ξ zi ∈ XL(N)XK (A

−1) = XK (A
−1), which

implies

g∑
i=1

XL(N)zi ⊆ XK (A
−1). (9.91)

It follows that

g∑
i=1
(XL(N)+ K )zi ⊆ XK (A

−1)+ K .

On the other hand, we have

dimk
XK

XK (A−1)+ K
= δK (A) = 	K (W−1

K A) = 	K (N) = 1.

In particular,

XK (A
−1)+ K �= XK .

Therefore

g∑
i=1

XL zi =
g∑
i=1
(XL(N)+ L)zi ⊆

g∑
i=1
(XL(N)+ K )zi

� XK (A
−1)+ K � XK .
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Now if Lz1 + · · · + Lzg = K held, then by Corollary 5.5.8 it would follow that

XL z1 + · · · + XL zg = XK .

This contradiction shows that Lz1 + · · · + Lzg �= K . ��
The converse of Proposition 9.6.20 is also true:

Theorem 9.6.22. Let z1, . . . , zg be as before. If K/k is a hyperelliptic function field,
then

L = k

(
z2
z1
, . . . ,

zg
z1

)
is the only quadratic subfield of K of genus 0.

Proof: If E is a quadratic subfield of K of genus 0, we have [K : E] = 2, and by
Proposition 9.6.21,

E ⊆ Ez1 + · · · + Ezg �= K .

Thus E = Ez1 + · · · + Ezg, zi ∈ E , and

F = k

(
1,
z2
z1
, . . . ,

zg
z1

)
⊆ E �= K .

By Proposition 9.6.20, we have

[K : F] = 2.

Therefore F = E = k
(
z2
z1
, . . . ,

zg
z1

)
and k

(
z2
z1
, . . . ,

zg
z1

)
is the only quadratic subfield

of genus 0 of K . ��

Remark 9.6.23. The above results are no longer true for elliptic function fields. Clearly

the explicit construction of k
(
z2
z1
, . . . ,

zg
z1

)
= E implies g ≥ 2. When g = 1 we have

E = k. The uniqueness of the quadratic subfield does not hold when gK = 1. For
instance, if k is an algebraically closed field, and K/k is an elliptic function field,
then K = k(x, y) with Nx = P2, and Ny = P3 for some prime divisor. If we
choose a prime divisor q such that q �= P and q is not ramified in K/k(x), we have
	K (q

−2) = 2. If z ∈ LK (q−2) \ k, then Nz = q2 and [K : k(z)] = 2. Thus z /∈ k(x),
since otherwise k(x) = k(z) and

z = ax + b

cx + d
.

This is impossible sinceN ax+b
cx+d

�= q2.
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9.7 Exercises

Exercise 9.7.1. Prove Proposition 9.3.2.

Exercise 9.7.2. With the notation of Section 9.3, prove that if (α, β) ∼ (α′, β ′), then
for any γ ∈ Kp we have (γ α, β) ∼ (γ α′, β ′).
Exercise 9.7.3. Prove Equation (9.21).

Exercise 9.7.4. Let K = k(x). Prove that the Hasse differential dx corresponds to the
differential dx given in Definition 4.1.4.

Exercise 9.7.5. Prove Equation (9.27).

Exercise 9.7.6. Prove that the differentials of the second kind form a k-vector space
of infinite dimension.

Exercise 9.7.7. If L/K is a purely inseparable extension of function fields of degree
p, prove that for all α, β ∈ L \ K , (Dαβ)(Dβα) = 1.
Exercise 9.7.8. Using Theorem 9.5.17 give a new proof of Corollary 9.4.3.

Exercise 9.7.9. With the notation of Section 9.6.1, prove that A ⊆ LK
(
P−s∞

)
.

Exercise 9.7.10. Let L/k(x) be a geometric separable proper extension and let k be a
perfect field. Prove that there exists at least one prime divisor in k(x) that is ramified
in K .

Exercise 9.7.11. Show that Exercise 9.7.10 is no longer true if we do not assume k to
be perfect.

Exercise 9.7.12. Let K/k be a function field with gK > 1. Prove that dK
(
DK
) = nZ

with n ≤ 2gK − 2. Compare with Proposition 9.6.5.
Exercise 9.7.13. Let K be a field of genus 2. Prove that K is a hyperelliptic function
field.

Exercise 9.7.14. Let K/k be any function field such that char k = 2, given by K =
k(x, y), with y2 = f (x) ∈ k[x]. Prove that there exists a constant extension k′ of k
such that K ′ is a rational function field where K ′ = Kk′.

Exercise 9.7.15. Let K = k(x, y), where

y2 = (x − α1)(x − α2) · · · (x − α2n+1), n ≥ 2,

and α1, . . . , α2n+1 are distinct elements of k. If char k �= 2 then the places pαi (i =
1, . . . , n + 1) and p∞ of k(x) are ramified in K/k(x) with ramification index 2. Let
P1, . . . ,P2n+1 and P∞ be the prime divisors in K above pα1 , . . . , pα2n+1 , and p∞
respectively. Prove that



352 9 The Riemann–Hurwitz Formula

(dx)K = P1 · · ·P2n+1
P3∞

and (y)K = P1 · · ·P2n+1
P2n+1∞

.

From the above, deduce that gK = n and that the holomorphic differentials can be
written as

β0 + β1x + · · · + βn−1xn−1
y

dx, with βi ∈ k.

Exercise 9.7.16. Assume char k = 2 and let α1, . . . , αn+1 be distinct elements of k.
Let K = k(x, y) be such that

y3 = (x − α1)(x − α2) · · · (x − αn+1).

Prove that the places pαi and p∞ can be extended to Pi and P∞ in K in such a way
that the ramification indices are 3. Prove that

(dx)K =
(
P1P2 · · ·Pn+1

)2
P4∞

and that gK = n.

Exercise 9.7.17. Let L/K be a geometric extension of function fields. Let ω be a
nonzero differential in K . Prove that L/K is separable if and only if cotrK/L ω �= 0.
Exercise 9.7.18. Let F be a perfect field and consider a finite separable extension L/K
of formal series L = F((T )), with K = F((t)). For α ∈ L , set αdt = α dt

dT dT and
α dt
dT =

∑∞
n=m cnT n , with ResT α dt = c−1.

(i) Show that if char F = 0 and α = Tm for some m ∈ Z, then ResT αdt =
Rest (TrL/K α) dt .

(ii) Prove that the same holds for char F = p using formally what was obtained in (i).
(iii) Prove that for any α ∈ L , ResT αdt = Rest (TrL/K α)dt .
Exercise 9.7.19. Let k be a perfect field. Let K/k be a function field over k and let
L/K be a finite separable extension. Let p be a place of K andP|p a place of L . Prove
that Resp

(
TrLP/Kp(y)dx

)
= ResP(y dx).

Deduce that Resp
(
TrL/K (y)dx

)
=∑P|pResP(y dx).

Exercise 9.7.20. Prove the residue theorem for k(x) when k is an algebraically closed
field.

Exercise 9.7.21. Prove Lüroth’s theorem: Let K = k(x) be a rational function field.
Let k � T ⊆ K be any intermediate field other than k. Then T = k(t) for some
t ∈ K \ k.
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Cryptography and Function Fields

10.1 Introduction

The term cryptography comes from the two Greek words: kryptós (hidden, secret)
and gráphein (to write). In this way, cryptography may be understood as a method of
writing in a secret way. More precisely, it is the art of transforming written information
from its original or standard form to one that cannot be understood unless one knows
a secret key.

Cryptography consists of two processes. The first one, called encryption, is a way
of codifying the information, which means concealing it in a such a way that it be-
comes unintelligible to persons that are not authorized to read it; various methods are
known for keeping messages or data secret. The second and inverse process is the de-
cryption of the codified message; in order to decode or decipher the codified message,
one needs special knowledge.

Let us assume that a person, who from now on will be called Arnold, wishes to
share a given piece of information with another person, say Charlotte, in such a way
that no one other than Charlotte can understand it. We will say that Arnold wants
to send a message, which we shall call plaintext, to Charlotte. In order to keep the
message inaccessible to eavesdroppers and understandable by Charlotte only, Arnold
codifies it, obtaining in this way a new message, which will be called ciphertext. Once
Charlotte receives the message, she decodes it, obtains the plaintext, and reads it.

How does such a process work? First of all, Arnold needs to use an encryption
key in order to obtain the ciphertext from the original message; second, Charlotte must
use a decryption key to be able to decipher the message and obtain the plaintext. The
decryption key must be kept secret from everyone else so that the method can work
properly.

There are two basic types of codification: symmetric and asymmetric. Let us as-
sume that the encryption and decryption keys are called a and b respectively. We say
that the codification system is symmetric if a = b or b can be computed easily from
a. Observe that if Arnold and Charlotte are using a symmetric system, they need to
exchange the secret key before they begin sending each other information.
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In symmetric cryptography, exchanging keys is a process of capital importance,
since if a is not kept secret anyone could deduce b from a and then decipher the
message.

In the case of an asymmetric cryptosystem, a and b are distinct and the computa-
tion of b from a is not achievable. The advantage of such a system is that a may be
made public without danger. Asymmetric systems work as follows: If Charlotte wishes
to receive an encrypted message, she publishes the encryption key a while keeping b
secret. When Arnold sends a message to Charlotte, he uses a to obtain the ciphertext.
Only Charlotte can decipher the message, since she is the only one who knows b; not
even Arnold would be able to obtain the original message from the encrypted one.

For the mentioned reason, asymmetric cryptosystems are called public-key cryp-
tosystems. Some of the most popular public-key systems will be described in Sec-
tion 10.2.

Symmetric cryptosystems used to work efficiently when communication systems
were still restricted, for instance, between spies and intelligence and counterintelli-
gence agencies (if one may call that intelligence). In these cases a small number of
select persons know the keys from the beginning, and they are the only ones who use
them.

Nowadays the situation has changed drastically; all kinds of persons, and not only
at governmental levels, use cipher systems to exchange information. This is done in
big businesses such as banks and credit card companies, etc. At the personal level,
cryptosystems are used for various purposes, for example exchanging scientific papers
between various collaborators who prefer to keep their work unpublicized in order to
avoid plagiarism. It is in such cases that public-key cryptosystems are useful; indeed,
sometimes it is not possible for several persons who live at a distance from one another
to get together and agree on a secret key.

10.2 Symmetric and Asymmetric Cryptosystems

One of the simplest cryptosystems is the so-called Caesar cipher. In this case,
the plaintext is written using the twenty-six usual letters of the alphabet ! =
{A, B,C, . . . , Z}. The encryption and decryption keys are one and the same, namely
a = b ∈ � = {0, 1, . . . , 25}, where each letter of the alphabet is identified with a
member of �. The codification scheme is

ϕ : ! → !,

x �→ x + a mod 26.

The decoding function is

ψ : ! → !,

y �→ y − b mod 26.

Arnold and Charlotte just need to know a in order to exchange information. Since
we have only 26 choices for a, it is easy to guess its value and thus to obtain the
plaintext from the ciphertext. This shows that the Caesar cipher is quite unsecured.



10.2 Symmetric and Asymmetric Cryptosystems 355

A major problem with symmetric cryptosystems is key distribution and key man-
agement. If Arnold and Charlotte use such a system, they must exchange the secret
key before exchanging messages.

In public-key systems, key exchange is no longer a problem. Charlotte makes pub-
lic the encryption key a so that anyone who wants to send a message to her uses a.
When Charlotte receives a ciphertext, she uses the decryption key b that she has kept
secret.

The most popular public-key cryptosystem is the RSA cryptosystem, named after
Ron Rivest, Adi Shamir, and Len Adleman, created in 1978 [123]. In fact, this was one
of the first public-key cryptosystems to be invented, and nowadays it remains the most
important one. The security of this cryptosystem is due to the difficulty of finding the
factorization of a composite positive integer that is the product of two large primes.
Let us see how it works.

Charlotte finds two large prime numbers p and q and computes n = pq. Then she
chooses any integer a such that 1 < a < ϕ(n) = (p−1)(q−1) and gcd(a, ϕ(n)) = 1.
Because of this choice, there exists b ∈ {0, . . . , ϕ(n)−1} such that ab ≡ 1 mod ϕ(n).
The number b can be computed using the extended Euclidean algorithm ([12]).

Charlotte publishes the pair (n, a) and her private key is b. Note that if an attacker
or an eavesdropper is able to find the prime factorization of n, then (s)he can easily
find b and the system breaks down. Therefore the security of the system depends on
making the factorization of n infeasible. If p and q are sufficiently large, it seems that
nobody yet knows how to factor n.

Let the plaintext be an integer m such that 0 ≤ m < n. The ciphertext is c :=
ma mod n. If Arnold wants to send the message m to Charlotte, then since he knows
a and n, he can encrypt m and send c.

Example 10.2.1. Let p = 17 and q = 29. Then n = 17 × 29 = 493 and ϕ(n) =
(p−1)(q−1) = 16×28 = 448. Let a = 5. Then b = 269. If m = 75 is the plaintext,
then c = 755 mod 493 = 249 is the ciphertext.

Note that c269 mod 493 = 75 = m.

Now, the way Arnold sends a message is as follows. Assume that the alphabet
contains N letters and he assigns to each letter a unique number between 0 and N −1.
Set t := [logN n] and assume that Arnold has a text m1m2 . . .mk , where each mi is
the number corresponding to a letter. Then he defines

m :=
t∑

i=1
mi N

t−i .

We have 0 ≤ m ≤ (N − 1)∑t
i=1 Nt−i = Nt − 1 < n. Let c := ma mod n be the

ciphertext, and write c in base N .
Since 0 ≤ c < n < Nt+1, the N -adic expansion of c has length at most t + 1, that

is,

c =
t∑

i=0
ci N

t−i with ci ∈ {0, 1, . . . , N − 1} for 0 ≤ i ≤ t.
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Therefore the encrypted message consists of the integer c = c0c1 . . . ck .

Example 10.2.2. Suppose that our alphabet consists of the set of vowels {a, e, i, o, u},
that is, N = 5. In the setting of Example 10.2.1 we have k = [log5 493] = 3 since
53 = 125 < 493 < 625 = 54. The numerical assignment of our alphabet is

a �→ 0,

e �→ 1,

i �→ 2,

o �→ 3,

u �→ 4.

If Arnold encrypts eio, which corresponds to 123, he obtains

m = 1× 52 + 2× 5+ 3× 50 = 25+ 10+ 3 = 38.
The encrypted integer is

c = 385 mod 493 = 208.
Writing 208 in its 5-adic expansion, we obtain

208 = 1× 53 + 3× 52 + 1× 5+ 3× 50.
Therefore the ciphertext is eoeo, which corresponds to 1313. Again note that

208269 mod 493 = 38.
The reason why the RSA system works is the following elementary result.

Theorem 10.2.3. If p and q are distinct prime numbers, n = pq, ϕ(n) = (p−1)(q−
1), and a is such that (a, ϕ(n)) = 1, whenever 0 ≤ m < n we have

(ma)b mod n = m,

where b is such that ab ≡ 1 mod ϕ(n).
Proof. Exercise 10.9.1. ��

10.3 Finite Field Cryptosystems

As we already mentioned in Section 10.2, the RSA cryptosystem is the most impor-
tant public-key cryptosystem. The concept of a public key was defined by Diffie and
Hellman in 1976 ([29]); the difference with respect to symmetric cryptosystems lies
in the idea of using a one-way function for encryption.

There are several public-key cryptosystems. We are interested in elliptic and hy-
perelliptic cryptosystems, which are applications of elliptic and hyperelliptic function
fields. We will study these cryptosystems later on.

First we introduce some concepts that are necessary in studying the feasibility,
security, and efficiency of a cryptosystem.
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10.3.1 The Discrete Logarithm Problem

Let F∗p = {1, 2, . . . , p−1} be the multiplicative group of the finite field of p elements.
We choose an element g of F∗p, which will be called the “base.” The discrete logarithm
problem in F∗p with respect to the base g is that of, given y ∈ F∗p, determining an
integer x such that y = gx (that is, x“ = ” logg y). Of course, the existence of x is
equivalent to y belonging to the subgroup of F∗p generated by g.

The discrete logarithm problem can be defined for any finite group. More pre-
cisely:

Definition 10.3.1. The discrete logarithm problem for the finite group G is the follow-
ing: given a base g ∈ G and y ∈ G, find x ∈ Z such that gx = y if such an x exists,
that is, if y ∈ 〈g〉. In other words, the discrete logarithm problem consists in finding
x = logg y.

Another useful concept for making a cryptosystem realizable is that of a hash func-
tion. The idea behind these functions is that in order to make a cryptosystem secure,
we need keys that require a lot of space, often much more than what is realistically
possible. For instance, we frequently need several numbers, each of which has several
thousand digits. To be able to reduce the quantity of space, we use a function, say
H : Z/sZ → Z/tZ, where s is much larger than t . Usually s is of the order of several
millions of bits and t is smaller than 200 bits. Since t < s, the function H is not in-
jective. We say that H is a hash function if its values can be computed in an easy and
efficient way, and if on the other hand it is not computationally feasible to find two
distinct elements x1, x2 such that H(x1) = H(x2).

Definition 10.3.2. A cryptographic hash function is a function H : Z/sZ → Z/tZ
such that s > t and:

(i) Given m, H(m) can be easily computed.
(ii) Given n, it is not computationally feasible to find m such that H(m) = n. We say

that H is preimage resistant.
(iii) It is not computationally feasible to find x1, x2 ∈ Z/sZ such that x1 �= x2 and

H(x1) = H(x2). We say that H is collision resistant.

There exist several good hash functions. For a complete discussion see [110].
Another issue to be considered in cryptography is that concerning the signature of

the message. When Charlotte receives a message that supposedly comes from Arnold,
she must make sure with a reasonable degree of certainty that Arnold is really the one
signing the message. Whenever one sends a message, it must be sent together with a
digital and nonfalsifiable signature; that is what we mean by a digital signature.

10.3.2 The Diffie–Hellman Key Exchange Method and the Digital Signature
Algorithm (DSA)

Assume that Arnold and Charlotte want to agree upon an integer to be used as a key for
their private-key cryptosystem. They must use some public communication channel
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like the Internet, telephone, e-mail, or regular mail in order to achieve this agreement.
First of all, both of them agree on a large prime number p and a base g ∈ F∗p. This is
agreed publicly, so any eavesdropper knows p and g. Second, Arnold secretly chooses
a large number a < p, computes ga mod p, and communicates his result to Charlotte.
Meanwhile, Charlotte does the same: she secretly chooses a large integer b < p and
communicates gb mod p to Arnold. Finally, they agree upon a key, which will be the
integer gab ∈ F∗p.

The eavesdropper knows g, ga , and gb ∈ F∗p, and faces the problem of finding
gab. This is the Diffie–Hellman problem. It is known that anyone who can solve the
discrete logarithm problem in F∗p can solve the Diffie–Hellman problem as well. The
converse is still an open question ([84]).

Now we present a digital signature public-key cryptosystem that was proposed in
1991. It is the analogue to the older Data Encryption Standard, which is a private-key
cryptosystem. This cryptosystem is called the Digital Signature Algorithm (DSA). Let
us see how it works.

Arnold chooses a large prime number p, say that p is of order about 1050. This
can be achieved using a random number generator and a primality test (see [12]).
Secondly, he chooses a second prime number 	 ≡ 1 mod p of more than 512 bits and
whose number of bits is a multiple of 64. Hence 	 is larger than 10154.

Thirdly, Arnold chooses a generator of the unique cyclic subgroup of F∗	 of order
p by computing y = g(q−1)/p0 mod 	 for a random integer g0; note that if y �= 1, then
g0 is a generator.

Finally Arnold takes a random integer x such that 0 < x < p as his secret key,
and sets as his public key z = gx mod p.

If Arnold sends a message, he first applies a hash function to the plaintext, ob-
taining an integer H such that 0 < H < p. Next, he chooses an integer k, computes
gk mod 	 = A, and sets r = A mod p. Finally, let tk ≡ H + xr(modp). Arnold’s
signature is then the pair (r, t) mod p.

Charlotte verifies the signature as follows. Let α = t−1H mod p and β =
t−1r mod p, and consider gαzβ mod 	. If gαzβ ≡ r mod p, then Charlotte is rea-
sonably satisfied.

The DSA signature scheme uses relatively short signatures, since they consist of
numbers of order about 1050. The security of the system depends on the nontreatability
of the discrete logarithm problem in the large-order field F	. The DSA seems to have
attained a fairly high level of security without sacrificing small signature storage and
implementation time.

We are interested in a variant of DSA using elliptic function fields, which is even
harder to break than the DSA described in this subsection.

10.4 Elliptic Function Fields Cryptosystems

Elliptic curves and elliptic function fields can be used to implement public-key cryp-
tosystems. The Diffie–Hellman key exchange described in Section 10.3.2 can be im-
plemented in this case if instead of using finite fields we use elliptic function fields
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over finite fields. We will also present a variant of the DSA given in Section 10.3.2
using elliptic function fields.

Elliptic cryptosystems were first proposed in 1985 by Neal Koblitz [81] and Vic-
tor Miller [111]. There are two good reasons for using these cryptosystems. The first
one is that there exists only one finite field of q elements, whereas there are many
elliptic function fields over Fq . The second and more important one is the absence
of subexponential-time algorithms to break the system if the elliptic function field is
chosen to be nonsupersingular. In fact, Menezes, Okamoto, and Varistone [109] found
a way to tackle the discrete logarithm problem using the Weil pairing in elliptic curves
to embed them in F∗

qk
, thus reducing the discrete logarithm problem to the discrete log-

arithm problem in F∗
qk
. This is useful only if k is small; in fact, the only elliptic curves

for which k is small are essentially the supersingular ones. The supersingular elliptic
function fields are those such that C0,KFq

(p) = {1}, where p is the characteristic.
Now, K is a supersingular elliptic function field over Fq if and only if N1(Fq) ≡

1 mod p, where N1(Fq) denotes the number of prime divisors of degree 1 (see [157,
Proposition 4.29]). Moreover, as a consequence of the Riemann hypothesis (Theorem
7.2.9 (iv)), if p ≥ 5, then K is supersingular if and only if N1(Fp) = p + 1.

Therefore we must choose a nonsupersingular elliptic function field. Even though
nobody seems to know how to find a subexponential-time algorithm for the discrete
logarithm problem on nonsupersingular elliptic function fields, the progress made in
computing discrete logarithms for finite fields and in factoring integers implies that
the key sizes necessary for the public-key systems to be secure grow every single day.

10.4.1 Key Exchange Elliptic Cryptosystems

In this subsection we present the Diffie–Hellman key exchange adapted for elliptic
function fields. Let Fq be a finite field and let K be an elliptic function field with exact
field of constants Fq . Let MK be the set of prime divisors of K of degree 1. Choose
P0 ∈ MK such that K = Fq(x, y) with Nx = P2

0, Ny = P3
0 and let

ϕ : MK → CK ,0

P �→
[

P

P0

]
be the bijection given in Proposition 9.6.9 and Equation (9.74). Therefore the set of
prime divisors of degree 1 forms an abelian group.

To any prime divisorP �= P∞, whereP∞ = P0 is the infinite prime, corresponds
a unique rational point (a, b) ∈ F2q satisfying the defining equation

y2 − h(x)y = f (x)

of the elliptic function fields, where f (x) is a polynomial of degree 3 (see Exer-
cise 10.9.1). Here h(x) = 0, f (x) is square-free if char k �= 2 and h(x) �= 0, and
deg h(x) ≤ 1 if char k = 2 (see Exercise 10.9.2). The infinite prime P∞ corresponds
to the point at infinity (∞,∞).
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First we choose a random prime divisor of degree one in an elliptic function field
K as the key. Of course, Arnold and Charlotte have agreed in advance on a method
to convert an arbitrary point on an elliptic curve or a prime divisor of degree one on
an elliptic function field into an integer. One way to do this is to use the fact that
to any prime divisor of degree one corresponds a rational point (a, b) ∈ F2q of the
corresponding elliptic curve over Fq and then to convert a ∈ Fq into an integer after
choosing a suitable map from Fq to Z.

Next, Arnold and Charlotte choose an elliptic function field K over Fq where the
discrete logarithm problem is hard, and a prime divisor p ∈ PK of degree one. Now
Arnold chooses an integer α, computes pα := pα , and sends pα to Charlotte. In the
same way, Charlotte chooses a secret integer β, computes pβ := pβ , and sends it to
Arnold. Now Arnold and Charlotte compute

pαβ = pβα = pβα = pαβ = pαβ = pβα.

Suppose that the eavesdropper John is spying on Arnold and Charlotte. Then John
has to find P = pαβ knowing p, pα , and pβ , but neither α nor β. John’s task is what
is called the Diffie–Hellman problem for elliptic curves or elliptic function fields. That
is, he has to solve the

Diffie–Hellman problem for elliptic function fields:

Given p, pα , and pβ in DK , compute pαβ .

Note that if John solves the discrete logarithm problem in elliptic function fields,
he can obtain α using p and pα . Thus he can find pαβ = (pβ)α . That is, the elliptic
function field discrete logarithm problem with respect to the base A ∈ DK is, given
B ∈ DK , to find a ∈ Z such that B = Aa if such an a exists. Therefore, if John can
solve the discrete logarithm problem, then he can solve the Diffie–Hellman problem.

10.5 The ElGamal Cryptosystem

The ElGamal cryptosystem [33] is quite close to the Diffie–Hellman key exchange,
and its security is based on the difficulty of solving the Diffie–Hellman problem. Let
us first consider its implementation in the finite field F∗p.

Let p be a prime number and let g be an element of F∗p, preferably but not nec-
essarily a generator. Arnold chooses a random exponent α ∈ {0, 1, . . . , p − 2} and
computes a = gα mod p. Arnold’s public key is (p, g, a) and his secret key is α. Note
that in the setting of the Diffie–Hellman protocol, a is Arnold’s key, which is fixed in
the ElGamal cryptosystem.

When Charlotte wants to encrypt a plaintext m, which we will assume, as usual, is
an integer in {1, . . . , p − 1}, she obtains (p, g, a) from Arnold. Then she chooses a
random exponent β ∈ {1, . . . , p − 2} and computes b = gβ mod p.

Again b is Charlotte’s key in the Diffie–Hellman cryptosystem. Charlotte finds

c = aβm mod p.
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That is, Charlotte encrypts the message m by multiplying it mod p by the Diffie–
Hellman key. The ElGamal ciphertext is (b, c).

Once Arnold gets (b, c), he computes

c

bα
≡ cbp−1−α mod p.

We have

cbp−1−α ≡ aβmgβ(p−1−α) ≡ aβm(gp−1)βg−αβ

≡ aβm(1)a−β ≡ m mod p.

The implementation of the ElGamal cryptosystem for elliptic function fields runs
as follows.

Charlotte chooses an elliptic function field K over the finite field Fq such that the
discrete logarithm problem is infeasible for C0K . Then she picks a prime divisor p of
degree one such that the order of the class of p̄ is a large prime number. Next, she
selects a secret integer α and computes A = pα . The elliptic function field K , Fq , p,
and A constitute Charlotte’s public key. Her private key is α.

Now when Arnold wants to send a message to Charlotte, say that it corresponds
to a prime divisor of degree one q, he selects a secret random integer β and computes
B = pβ and C = qAβ . Finally, Arnold sends (B,C) to Charlotte. Charlotte simply
computes CB−α . This method works since

CB−α = qAβp−αβ = qpαβp−αβ = q.

The eavesdropper John knows Charlotte’s public key, namely K , Fq , p, and A =
pα and also B and C. If he could solve the discrete logarithm problem, he could get
α from p and A, where A = pα and α = logp A, and use α to find q = CB−α . The
same result is obtained if John obtains β from p and B, β = logp B, and computes
q = CA−β (where CA−β = qAβA−β = q).

Thus the security of this method relies on the infeasibility of solving the discrete
logarithm problem.

Note that if Arnold chooses β all the time, then when he sends two different mes-
sages q and q1, we haveB = B1 = pβ , and hence

C1C
−1 = q1p

βq−1p−β = q1q
−1.

Now, depending on the kind of message, sooner or later q is made public (say that
the message informing about the status of the stock market has to be published some
days later) and John then knows q, C1, and C, so he knows q1 = C1C

−1q.

10.5.1 Digital Signatures

As we established in Section 10.3.2, digital signatures are used to legitimate a message
or a document. The traditional way, which we use in everyday life, is the written
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signature; but when we send a message, secret or not, and the addressee of our message
needs to be reasonably sure that the message comes from us, it is necessary to use
another kind of signature, namely a digital signature. Here we present the ElGamal
digital signature method using elliptic function fields.

Again, our old friends Arnold and Charlotte wish to share some information with-
out the knowledge of John. As before, for several good reasons, Arnold and Charlotte
have to use public key exchange. The digital signature must satisfy the following con-
ditions:

(i) The signature must depend on the document or message in such a way that
nobody can use it in another message.

(ii) It should be possible for Charlotte to find out that Arnold has sent the mes-
sage.

First, Arnold must select a public key. He uses an elliptic function field K over Fq
such that the discrete logarithm problem cannot be solved (at least for now) for K . Let
p ∈ PK be of order 	, usually a very large prime number although this is not necessary.
Then Arnold chooses a secret integer α and computesA = pα . As explained in Section
10.4.1, he chooses a function from PK toZ (say f : PK → Z, f (q) = ϕq(x), where ϕq

is the place corresponding to q, that is, f (q) = ϕq(x) = x mod q where K = k(x, y),
y2 = u(x) or y2 + y = u(x)).
The public information given by Arnold is K , f , p, and A. Now when Arnold

sends a message, he first represents it as an integer m (see Section 10.2) and selects
an integer β that is relatively prime to 	. Next he computes B = pβ and takes γ ≡
β−1(m − α f (B)) mod 	. Recall that B is represented by a pair (a, b) satisfying the
equation that defines K (see Exercise 10.9.3).

The signed ciphertext is (m,B, γ ). In this way m is not kept secret. If Arnold
wants to make m secret, he may use any cryptosystem to perform this task. The main
point is that Charlotte receives (m,B, γ ) or (m′,B, γ ); in the former case, m is not
secret, and in the latter m′ is the encryption of m and Charlotte wants to verify that
Arnold is sending the message.

Charlotte computes C = A f (B)Bγ and D = pm . If the signature is valid then

C = A f (B)Bγ = pα f (B)pβγ = pα f (B)+(m−α f (B)) = pm = D.

Therefore, if C = D Charlotte can be reasonably sure that the signature is valid.
Again we see that if John is able to compute discrete logarithms, then he can use

p and A to find α = logp A, and this enables him to sign any message as if he were
Arnold.

Now, Arnold’s secret keys are α and β and he must use a different β for every
document. Indeed, assume he keeps the same β every time, say that he sends two
messages m and m′ with β = β ′. Then John gets (m,B, γ ) and (m′,B′, γ ′) but
B = pβ = pβ

′ = B′, so he recognizes that the same key has been used. Thus, John
obtains

βγ ≡ (m − α f (B)) mod 	
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and

βγ ′ ≡ (m′ − α f (B)) mod 	.
He deduces that β(γ − γ ′) ≡ (m − m′) mod 	, which implies that if r is the greatest
common divisor of 	 and γ − γ ′ (r = 1 if 	 was chosen to be prime), then r divides
m − m′ and

β ≡
(
γ − γ ′
r

)−1 (m − m′

r

)
mod

	

r
≡ A mod

	

r
, 0 < A ≤ 	

r
− 1.

Thus β ∈ {i A | 1 ≤ i ≤ r}. Then John tries these r values and obtains β (that is, until
he gets B = pβ ). Once he knows β he can obtain α as follows. He knows γ , f (B),
and m. From

α f (B) ≡ (m − βγ ) mod 	
he obtains, as before, r = gcd( f (B), 	) possible values for α. Each candidate can be
tested until A = pα is reached.

10.6 Hyperelliptic Cryptosystems

In 1989, Koblitz [83] generalized the use of elliptic curve cryptosystems to the use
of hyperelliptic curves. In this section we show how hyperelliptic function fields may
be used in cryptography. We shall see that among all function fields, the hyperelliptic
ones are differentiated by some special properties. Of course, one can consider elliptic
fields as forming part of the class of hyperelliptic fields although they are formally
defined otherwise. Everything presented in the rest of the chapter is valid for fields of
elliptic functions.

The main reason why hyperelliptic fields may be used in cryptography is that their
group of divisor classes of degree 0 has some special representatives that can be op-
erated within a computationally feasible algorithmic form. This does not happen with
other function fields.

Let K = Fq(x, y) be a hyperelliptic function field where K/Fq(x) is a quadratic
separable extension. Thus the defining equation of K is

y2 = g(x) ∈ Fq [x] if char K �= 2 (10.1)

and

y2 − y = g1(x) ∈ Fq(x) if char K = 2, (10.2)

where g(x) is square-free, g1(x) = α(x)
β(x) , α(x), β(x) are relatively prime elements of

Fq [x], and if p(x) is an irreducible polynomial dividing β(x), then the power of p(x)
dividing β(x) is odd.

Assume that the infinite prime of Fq(x) or, more precisely, the pole divisor of
x in Fq(x), ramifies in K . Let g be the genus of K . Then the defining equation of
K = Fq(x, y) can be written as
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y2 − h(x)y = f (x), (10.3)

where h(x) is a polynomial of degree at most g, h(x) = 0 if char K �= 2, h(x) is
nonzero and relatively prime to f (x) if char K = 2, and f (x) is a polynomial of
degree 2g+ 1. Furthermore, we may choose h(x) and f (x) as follows. If char K = 2,
the ramified primes in K/k(x) are precisely the infinite prime and the prime divisors
of h(x); if char K �= 2, then f (x) is square-free and the ramified primes in K/k(x)
are the infinite prime and the prime divisors of f (x) (see Exercise 10.9.2). We will
denote the infinite prime in K by P∞ and the infinite prime in k(x) by p∞.

The following definition is standard in algebraic geometry.

Definition 10.6.1. Given any function field K/k, the group CK ,0 of divisor classes of
degree 0 is called the Jacobian of K . It will be also denoted by JK , or simply J if the
underlying field K is implicitly known.

In the case of a hyperelliptic function field over an algebraically closed field, there
is a way to represent every member of J: every class C contains a unique reduced
divisor. That is, there is a correspondence between reduced divisors and the Jacobian
of K . Furthermore, there are algorithms that are computationally feasible that multiply
two reduced divisors and provide the reduced divisor in the class of the product.

In the rest of this section, K = k(x, y) will be a hyperelliptic function field over
an algebraically closed field of constants k.

Definition 10.6.2. Let K = k(x, y) be a hyperelliptic function field over an alge-
braically closed field k (usually k = Fq ) given by Equation 10.3. A divisor A ∈ DK ,0
of degree 0 is called reduced if:

(1) A = B
Pn∞ , where B is an integral divisor of degree n that is relatively prime to

P∞.
(2) If p ∈ Pk(x) is not ramified and conk(x)/K p = PP′, then vP(B) > 0 implies that
vP′(B) = 0.

(3) If p ∈ Pk(x) is ramified, p �= p∞, and conk(x)/K p = P2, then vP(B) ∈ {0, 1}.
(4) degK B = n ≤ g = gK .

If A satisfies (1)–(3), then A is said to be semireduced.

The reasons to consider hyperelliptic function fields and not a general function
field for cryptosystem issues are the following:

(i) Every class divisor of degree 0 can be represented in a unique way by a re-
duced divisor.

(ii) Every reduced divisor can be represented by two explicit functions.
(iii) The sum of two reduced divisors can be effectively computed.

Before proving these facts, we give the following notation and definition.
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Definition 10.6.3. Given any two divisors A,A1 ∈ DK ,0, we define the 0-greatest
common divisor of A and A1 as

[A,A1]0 := A2, where

vP(A2) = min{vP(A), vP(A1)} for P �= P∞ and

vP∞(A2) = −
∑

P�=P∞
vP(A2).

Notice that A2 ∈ DK ,0.
The following result is due to Mumford [114].

Theorem 10.6.4. Let A = ∏P PvP(A) = ∏r
i=1P

αi
i · Pβ∞ be a semireduced divisor

and assume that for 1 ≤ i ≤ r , we have,Pi∩k[x] = pi , (x−ai )k(x) = pi
p∞ ,Pi∩k[y] =

qi , and (y − bi )k(x) = qi
q∞ . In other words, if ϕPi is the place corresponding to Pi ,

then ϕPi (x) = ai and ϕPi (y) = bi . If p(x) =
∏r

i=1(x − ai )αi , then there exists a
unique polynomial q(x) such that:

(1) deg q(x) < deg p(x),
(2) q(ai ) = bi for 1 ≤ i ≤ r ,
(3) p(x) | (q(x)2−h(x)q(x)− f (x)) where h(x) and f (x) are as in Equation (10.3).

Furthermore, we have A = [(p(x))K , (q(x)− y)K ]0.

Proof. Assume that 1 ≤ i ≤ r and pi is unramified. Consider y ∈ KPi = k(x)pi .
Since x − ai is a prime element for Pi , then y =

∑∞
j=0 c j (x − ai ) j with c0 = bi .

Define qi (x) :=
∑αi−1

j=0 c j (x − ai ) j . We have:

(1) deg qi (x) ≤ αi − 1 < αi = deg(x − ai )αi .
(2) qi (ai ) = c0 = bi .
(3) Reducing the equation y2 − h(x)y = f (x) modulo (x − ai )αi and using the

fact that y mod (x − ai )αi = qi (x), we obtain

q2i (x)− h(x)qi (x) ≡ f (x) mod (x − ai )
αi .

Hence (x − ai )αi divides qi (x)2 − h(x)qi (x)− f (x).

Now if t (x) is another polynomial satisfying (1)–(3), then

(x − ai )
αi divides (qi (x)− t (x))(qi (x)+ t (x)− h(x)).

In case h(x) = 0, that is, char K �= 2, we have y2 = f (x), b2i = f (ai ). If (x − ai )
divides q(x) + t (x), then q(ai ) + t (ai ) = 2bi = 0, so bi = 0, (x − ai ) | f (x) and
(x−ai ) | qi (x). Since f (x) is square-free, (x−ai )2 does not divide f (x) and (x−a)2
divides qi (x)2. It follows that αi = 1 and q(x) = g(x) = c0 = bi = 0 (in fact this
case is impossible sincePi would be ramified).

Now if char K = 2, we have h(x) �= 0. Because of (2), (x − ai ) divides (qi (x)−
t (x)); then since the ramified primes are precisely those dividing h(x), it follows that
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h(ai ) �= 0, so (x−ai ) � (qi (x)− t (x)−h(x)). Hence (x−ai )αi divides (qi (x)− t (x)).
Since deg(qi (x)− t (x)) ≤ αi − 1, we conclude that qi (x) = t (x).

We have shown that in any case, qi (x) is the unique polynomial satisfying (1)–(3).
Now we study the case of pi ramified. Then αi = 1, and hence qi (x) = bi is the

unique polynomial satisfying (1)–(3). It follows by the Chinese remainder theorem
that there exists a unique polynomial q(x) such that q(x) ≡ qi (x) mod (x − ai )αi

for 1 ≤ i ≤ r and deg q(x) <
∑r

i=1 αi . It is easy to verify that q(x) is the unique
polynomial satisfying statements (1)–(3) of the theorem.

Now let P1, . . . ,Ps be the unramified prime divisors and let Ps+1, . . . ,Pr be
the ramified ones. Set pi = Pi ∩ k[x] and conk(x)/K pi = PiP

′
i for 1 ≤ i ≤ s. Then

(p(x))K =
∏s

i=1(PiP
′
i )
αi
∏r

i=s+1P
2αi
i

Pα∞
for some α ≥ 0.

Now for q(x)− y, ifP is distinct fromP1, . . . ,Pr ,P∞, then vP(q(x)− y) ≥ 0.
For 1 ≤ i ≤ s we have y ≡ q(x) mod (x − ai )αi , so vPi (y − q(x)) ≥ αi .
Finally, for s + 1 ≤ i ≤ r , the conjugate of y − q(x) is −y − q(x) if char k �= 2,

and y + h(x)− q(x) if char k = 2. Now the product of y − q(x) and its conjugate is
−y2+q(x)2 or y2+h(x)y−h(x)q(x)+q(x)2, that is, f (x)−h(x)q(x)+q(x)2. It is
easy to verify that (x−ai )2 � q(x)2−h(x)q(x)− f (x). Therefore vPi (y−q(x)) = 1.

We have proved that [(p(x))K , (y − q(x))K ]0 = A. ��

Definition 10.6.5. The divisor [(p(x))K , (y − q(x))K ]0 will be denoted by div(p, q).

Another key fact concerning the use of hyperelliptic function fields in cryptogra-
phy is the following.

Theorem 10.6.6. Let C ∈ JK be any element of the Jacobian of K . Then there exists
a unique reduced divisor B in C.

In other words, every divisor of degree 0 is equivalent to a unique reduced divisor.

Proof. Let C be any class of degree zero and let C ∈ C be any arbitrary divisor in C .
Then degK (CP

g
∞) = g. By the Riemann–Roch theorem it follows that

	(C−1P−g∞ ) ≥ g − g + 1 = 1.
Therefore there exists an integral divisor A of degree g such that A

P
g
∞
∈ C . Let A1

be of degree n ≤ g, such that (A1,P∞) = 1 and A1
Pn∞ ∈ C . Note that such an element

exists for any function field (such that degK P∞ = 1).
Next we consider M to be the set of prime divisors other than P∞ that are not

ramified in K/k(x). Consider the partition M1 ∪ M2 of M . If p ∈ Pk(x) splits as
conk(x)/K p = PP′ and if vP(A1) ≥ vP′(A1), then P ∈ M1 and P′ ∈ M2. Define

B := A1

Pn∞

∏
P∈M2

(αP)
−vP(A1)
K

∏
P ramified
P�=P∞

(αP)
−[vP(A1)/2]
K ,
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where (αP)k(x) = P|k(x)
p∞ . Note that

(αP)K =

⎧⎪⎪⎨⎪⎪⎩
P2

P2∞
if P is ramified,

PP′
P2∞

if P is not ramified.

Thus B = ∏P∈M1 PsP
∏

P ramified
P�=P∞

PtP ·Pu∞, where sP = vP(A1) − vP′(A1) ≥ 0,

tP = vP(A1) − 2
[
vP(A)
2

]
∈ {0, 1}, and u ≤ 0. Clearly B is a reduced divisor and

B ∈ C .
It remains to prove that B is unique. Now, since K is hyperelliptic and P∞ is

ramified, it can be shown that 	K (P−2t∞ ) = 	K (P−(2t+1)∞ ) = t + 1 for 0 ≤ t ≤ g − 1
and that there is no α ∈ K ∗ such that Nα = P2t+1∞ for 0 ≤ t ≤ g − 1 (see Corollary
14.2.72).

Now for t ≥ 2g − 1, using the Riemann–Roch theorem we obtain 	K (P−t∞ ) =
t − g + 1.

Next, let B be a principal semireduced divisor. Say (α)K = B =
∏t
i=1 Pi

Pt∞
. Then

t is even. Let 	K (P−t∞ ) = t/2 + 1 and notice that t/2 ≥ 0. We have 	K (P−t∞ ) =
	k(x)(p

−t/2
∞ ). For each Pi such that 1 ≤ i ≤ t , we set (x − ai )K = PiP

′
i

P2∞
, where

Pi = P′i if Pi is ramified and Pi �= P′i otherwise. Thus a basis of LK (P
−t∞ ) is

{1 = α0, α1, . . . , αt/2}, where αi =
∏i

j=1(x − a j ).

Therefore α =∑t/2
t=0 λiαi ∈ k[x]. Assume t ≥ 2. Then α(a1) = 0 and λ0 = 0, so

P1 and P′1 divide Nα . But this contradicts the fact that B is semireduced; it follows
that t = 0 andB = N.

Now let B1 and B2 be two reduced divisors in the same class, i.e., B1PK =
B2PK . Say B1 = A1P

−a1∞ and B2 = A2P
−a2∞ , deg(A1A2) ≤ 2g, and as in the

first part of the proof, we construct a semireduced divisor B3 such that B3PK =
B1B

−1
2 PK .
If we assume that B1 �= B2, there exists a prime divisor T1 �= P∞ such that

vT1(B1) �= vT1(B2). We may assume that vT1(B1) > vT1(B2) and vT1(B1) ≥
vT′1(B2) if T1 �= T′1. It is easy to see that vT1(B3) > 0, soB3 �= N. This contradicts

the equalitiesB1B
−1
2 PK = Pk = B3PK . HenceB1 = B2. ��

10.7 Reduced Divisors over Finite Fields

We apply the results of Section 10.6 to finite fields. Let K = k(x, y) be the hyperellip-
tic function field given by Equation (10.3), where k is a finite field. Then JK = CK ,0 is
a finite group (Theorem 6.2.2). Now if k̄ is an algebraic closure of k and K̄ = K k̄, then
by Exercise 8.7.20 we have CK ,0 ⊆ CK̄ ,0 and each element of CK ,0 admits a unique
representation as a reduced division div(p, q), where p, q ∈ k[x], deg p(x) ≤ g, and
deg q(x) < deg p(x).
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Given two reduced divisors A1 = div(p1, q1) and A2 = div(p2, q2), Koblitz [83]
presented an algorithm to find the reduced divisor A3 = div(p3, q3) such that A1A2 =
A3. In this way it is possible to compute the Jacobian of a hyperelliptic function field.
For general function fields it is difficult to compute the Jacobian.

The first part of the algorithm is as follows:
Let A1 = div(p1, q1) and A2 = div(p2, q2). Set d1 = (p1, p2) and let α1, α2 ∈

k[x] be such that d1 = α1 p1+α2 p2. Set d2 = (d1, q1+q2−h), d2 = β1d1+β2(q1+
q2 − h), γ1 = α1β1, and γ2 = α2β1, γ3 = β2. We have

d2 = γ1 p1 + γ2 p2 + γ3(q1 + q2 − h).

Next, put p := p1 p2
d22

and q := γ1 p1q2+γ2 p2q1+γ3(q1q2+ f )
d2

mod p. We obtain the

following theorem:

Theorem 10.7.1. A = div(p, q) is a semireduced divisor that satisfies A = A1A2.

Proof. [84, Page 173, Theorem 7.1]. ��
The second part of the algorithm starts with a given semireduced divisor A =

div(p, q). The task is to find the reduced divisor A3 = div(p3, q3) such that A = A3
in CK ,0.

Let p′3 := f+hq−q2
p and q ′3 = (h − q) mod p′3. If deg p

′
3 > g we repeat the

process. Once we get deg p′3 ≤ g, we finally set p3 := a−1 p′3 and q3 = q ′3, where a
is the leading coefficient of p′3. Then A3 = div(p3, q3) is reduced and A3 = A ([84,
p. 176, Theorem 7.2]).

Remark 10.7.2. Note that the computations take place in the field k.

Example 10.7.3. Consider the hyperelliptic curve of equation K = F24(x, y) over
F24 = F16, where y2+ x(x+β)y = x5+1 and β ∈ F22 \F2 so β2 = β+1. Consider
p(x) = x4 + x3 + x2 + x1 + 1 = x5+1

x+1 ∈ F2[x]. Notice that p(x) is irreducible over
F2[x] and let ξ1, ξ2, ξ3, ξ4 ∈ F16 be its roots. Fix one of them, say ξ = ξ1.

The ramified prime divisors of k(x) in K , where k := F24 , are p0 and pβ , which
correspond to x and (x + β) respectively, and the infinite prime p∞. Let P0, Pβ , and
P∞ be the prime divisors in K that lie above p0, pβ , and p∞ respectively. Define
h(x) := x(x + β) and f (x) := x5 + 1 = (x + 1)p(x). If p1 and pξ are the prime
divisors in k(x) corresponding to x + 1 and x + ξ respectively, then p1 and pξ split
in K/k(x). If p1 = P1P

′
1 and pξ = PξP

′
ξ , then from the defining equation of K we

obtain that

ϕP1(y) = 0; ϕP′
1
(y) = 1+ β; ϕPξ

(y) = 0; ϕP′
ξ
(y) = ξ.

In this way we deduce that the divisor of y in K is

(y)K = P1
∏4

i=1Pξi
P5∞

.
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Now we apply the algorithm to the divisors A1 = P1PβPξ

P3∞
and A2 = P′

1P0P
′
ξ

P3∞
.

Applying the first part of the algorithm we obtain p1, q1, p2, q2 such that A j =
div(p j , q j ) for j = 1, 2. We have

p1(x) = (x − 1)(x − β)(x − ξ); q1(x) = 1

β + ξ (x − 1)(x − ξ)

and

p2(x) = (x − 1)x(x − ξ); q2(x) = (1+ ξ−1)x2 + (1+ ξ−1 + β)x + 1

Therefore d1 = (p1, p2) = (x − 1)(x − ξ) = α1 p1+α2 p2, from which we obtain
α1 = α2 = β + 1. Next, we have d2 = (d1, q1 + q2 + h) = (x − 1)(x − ξ). Thus
d2 = β1d1 + β2(q1 + q2 + h) = 1 × d1 + 0 × (q1 + q2 + h), that is, β1 = 1 and
β2 = 0. Hence we have γ1 = α1β1 = α1 = β + 1, γ2 = α2β1 = α2 = β + 1, and
γ3 = β2 = 0.

In this way, we get

p(x) = p1 p2
d22

= x(x − β)

and

q(x) = γ1 p1q2 + γ2 p2q1 + γ3(q1 + q2 + f )

d2
mod p = x + 1.

Note that if ϕP0 and ϕPβ
are the places associated to P0 and Pβ respectively, we

have

ϕP0(y − q) = ϕP0(y)− q(0) = 1− 1 = 0

and

ϕPβ
(y − q) = ϕPβ

(y)− q(β) = β + 1− (β + 1) = 0.

Using this valuation it is easy to check that vP0(y − q) = vPβ
(y − q) = 1.

Therefore the semireduced divisor in the class of A1A2 is

B = div(p, q) = [(p(x))K , (y − q(x))K ]0 =
[

P2
0P

2
β

P4∞
,
P0PβQ

P5∞

]
0

= P0Pβ

P2∞
,

where Q is an integral divisor relatively prime toP0P∞.
Observe that sinceB is already a reduced divisor, the second part of the algorithm

is not necessary.
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Example 10.7.4. Consider again the hyperelliptic curve of equation y2+ x(x +β)y =
x5 + 1 over F24 as in Example 10.7.3, and the divisors of degree zero A1 = P1PβPξ

P3∞
and A2 = P′

1P0

P2∞
. Then A1A2 = P1P

′
1P0PβPξ

P5∞
. Using the first part of the algorithm

as in Example 10.7.3, we obtain that the semireduced divisor that belongs to the same
class as A1A2 is (see Exercise 10.9.5)

B = P0PβPξ

P5∞
.

Now we use the second part of the algorithm to find the reduced divisor A3 that
belongs to the same class asB.

LetB = div(p, q), where
p(x) = x(x + β)(x + ξ), q(x) ≤ 2;

q(0) = 1, q(β) = β + 1, and q(ξ) = 0.

It is easy to see that q(x) = ξ4+1
ξ+β

(
x + β+ξ

ξ+1
)
(x + ξ).

To simplify the notation, we set µ = ξ + β ∈ F24 \ F22 . Then we have p(x) =
x3 + µx2 + µ13x and q(x) = x2 + µ5x + 1.

Using the algorithm we obtain

p′3(x) =
f + hq − q2

p
= (x + 1)(x + µ12) = x2 + µx + µ12 (ξ4 = µ12)

and

q ′3(x) = h − q mod p′3 = (x2 + µ10x)− (x2 + µ5x + 1) mod p′3 = x + 1.

It follows that (p′3(x))K =
P1P

′
1Pξ4P

′
ξ4

P4∞
. We have y − q ′3 = y − x − 1, vP∞(y −

x − 1) = −5, and vP1(y − x − 1) ≥ 0, vP′
1
(y − x − 1) = vP

ξ4
(y − x − 1) =

vP′
ξ4
(y − x − 1) = 0.
Therefore A3 = div(p′3, q ′3) = [(p′3(x))K , (y − q ′3(x))K ]0 = P1

P∞ .

10.8 Implementation of Hyperelliptic Cryptosystems

The advantage of using hyperelliptic function fields cryptosystems as compared to
elliptic ones is that we can construct such a cryptosystem at the same security level as
the elliptic one using a smaller defining field. More precisely, the order of the Jacobian
of a hyperelliptic function field of genus g over a field of q elements is approximately
qg . This means that if we have an elliptic function field, i.e., of genus one, with a field
size of q of order 2200, then a hyperelliptic curve of genus two, three, or four can have
field size of order 2100, 267, or 250 respectively.
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The Diffie–Hellman key exchange and the ElGamal message transmission can be
implemented in the Jacobian of a hyperelliptic function field. We need to choose k =
Fq and a suitable K for the implementation.

Now K must satisfy several conditions to be suitable for implementation. We
summarize the main security requirements for our function field. First, given the cur-
rent state of computing power, the class number h over Fq must be divisible by a
large prime p of order larger than 2160 ≈ 1.47 × 1050 in order to avoid Pollard-rho
([118, 119]), Shanks’s Baby-Step/Giant-Step, and Pohlig–Hellman ([116]) attacks.
These attacks are discrete logarithm problem algorithms. Second, after Gaudry [47]
it is recommended that the genus should be less than four so that one can construct a
secure hyperelliptic cryptosystem. Next, the order of the field base should be a prime
power of two in order to protect the cryptosystem against Weil descent on the Jaco-
bian of K (for instance see [40]). Finally, Frey and Rück [37] reduced the discrete
logarithm problem in CK ,0 to the discrete logarithm problem in F∗qm . Therefore to
avoid the Frey–Rück attack, p must not divide qm − 1 for “small” m, say of order
about m ≈ 2000/ log2 q , that is, p must not divide qt − 1 for 1 ≤ t ≤ 2000/ log2 q.

In short, assume that K/Fq is a hyperelliptic function field of genus g suitable for
implementation in cryptography. If p is a prime dividing the order of the class group
of K , then K , g, q , and p must satisfy:

• p > 2160,
• g = 2 or g = 3,
• q = 2r with r a prime number,
• The smallest s ≥ 1 such that qs ≡ 1 mod p should be greater than 2000/ log2 q.

In order to determine the class group, we use the Riemann zeta function. Let K be a
congruence function field over Fq and let Kr := KFqr with r ≥ 1. If Pr (u) = PKr (u)
is the numerator of the zeta function of Kr and if hr denotes the class number of Kr ,
we have

h := h1 = P1(u) =
g∏
i=1
|1− αi |2,

where {αi , αi } are the roots of P(u). We also have for any r ≥ 1 (see Theorem 7.1.6),

hr =
g∏
i=1
|1− αri |2.

We write P(T ) = P1(T ) = 1+ a1T + · · · + agT g + qag−1T g+1 + · · · + qgT 2g .
Denote by Nr the number of divisors of degree 1 in Kr = KFqr . Then a1 = N1−1−q
and a2 = (N2 − 1− q2 − a21)/2.

To compute hr in the case of genus g = 2, we may use Exercise 10.9.4.
Example 10.8.1. Consider y2 − y = x5 + x . Here the only ramified prime is p∞, and
the genus is 2.

Using Exercises 10.9.3 and 10.9.4 we find that N1 = 5 and N2 = 9. Then a1 = 0
and a2 = 2. The solutions of the equations T 2 + (−2) = 0 are

√
2 and −√2. Finally
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we obtain α1 = −
√
2ζ̄3 and α2 =

√
2ζ̄3, where ζ3 = −1+√3i

2 is a primitive third root
of unity.

It follows that

hr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2r/2 − 1)4 if r ≡ 0 mod 6,
1+ 2r + 22r if r ≡ 1, 5 mod 6,
(1+ 2r/2 + 2r )2 if r ≡ 2, 4 mod 6,
(2r − 1)2 if r ≡ 3 mod 6.

(10.4)

For r ≤ 666 all these hyperelliptic function fields satisfy that if a prime number
p divides hr then it divides 2i − 1 for some i ≤ 2000. This follows from Equation
(10.4), since 23r − 1 = (2r − 1)(22r + 2r + 1). Therefore all such function fields
are vulnerable to the Frey–Rück attack for r ≤ 666. That is, the discrete logarithm
problem can be solved in F∗

2i
for some i ≤ 2000 and therefore all these hyperelliptic

function fields offer no security and are not suitable for cryptography.

Note that this example is quite similar to that of Koblitz [84, Example 6.1, p. 149].

Example 10.8.2. Consider the equation y2+x(x+β)y = x5+1 over F4 = F22 , where
β2 = β + 1. Let ξ5 = 1 be such that ξ ∈ F16 \ F4. We use the element µ = ξ + β for
the explicit computations described below. Note that µ3 = ξ , µ5 = β2, etc. We have
F4 = {0, 1, µ10, µ5} and F∗16 = {µi | 0 ≤ i ≤ 14}, µ15 = µ0 = 1. Using Exercises
10.9.3 and 10.9.4 we find by direct computation N1 = 5 and N2 = 23. Therefore
a1 = 0 and a2 = 3.

The solutions of the equation x2+a1x+(a2−2q) = 0 are γ1 =
√
5 and γ2 = −

√
5.

Finally, one of the roots of x2−√5x+4 is α1 =
√
5−√11i
2 and a root of x2+√5x+4

is α2 = −√5+√11i
2 . We have α2 = −α1. It follows that

hr = |1− αr1|2|1− αr2|2 = |1− αr1|2|1− (−1)rαr1|2

=
⎧⎨⎩
|αr1 − 1|4 if r is even,

|1− α2r1 |2 if r is odd.

For instance, for r = 61 we obtain hr = (271)2 p2 where p is the fifty-three-digit
prime number

44947399259371741314172478713222775636987866517942801 ≈ 4.5× 1052.

Furthermore, p does not divide 2i − 1 for 1 ≤ i ≤ 1000 = 2000/ log2 q. However, K
might not be completely suitable for cryptography purposes because the base field is
of order 461, which is not a prime power of 2 and thus is vulnerable to the Weil descent
on the Jacobian.

In the next examples we present some hyperelliptic function fields. For the algo-
rithms used to compute the order of the Jacobian we refer to the original papers.
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Let p(t) ∈ F2[t] be a monic irreducible polynomial of degree m and let λ be a root
of p(t). Then F2m = F2(λ).

For any element α = ∑m−1
i=0 αiλ

i ∈ F2m , αi ∈ F2, we represent α by the integer∑m−1
i=0 αi2

i written in hexadecimal notation. For instance, the hexadecimal number
C1 represents the element α = λ7 + λ6 + 1.

We will use the above notation in the following examples.

Example 10.8.3 ([64]). Let p = 100013000640014200121 and consider the genus-2
hyperelliptic function field defined by

y2 + y = αx5, or equivalently (y′)2 = αx5 + 4−1,

over Fp, where α ∈ Fp and α is not a 5th power. Then the class group h is of order
h = 5× 	, where

	 = 2000520059203862158324190070180683302981.

This cryptosystem is not secure since K is defined over Fp where p is a large prime.

Example 10.8.4 ([24]). Let F283 = F2(λ), where λ is a root of p(t) = t83+ t7+ t4+
t2+ 1 and let K/F283 be the genus-2 hyperelliptic function field given by the equation

y2 + (α0 + α1x + α2x2) = x5 + β4x4 + β3x3 + β2x2 + β1x + β0,

where

α0 = 4D168CAB78F1F7EB78D54, α1 = 3B167A2F520486B2A8A60,
α2 = 507FC6D8D98A1411D1F24,
β0 = 6ABF379716E615F0997AF, β1 = 1D13C5C10A58A238681F3,
β2 = 3ACC287DAA28D01EDDB58, β3 = 74BF8FFD1A04B1E8B845B,
β4 = 10046A0ED36CF3B146071.
The order of the class group of K/F283 is 2p, where

p = 46768052394612054553468807679365619497317916118893 ≈ 4.68× 1049.

Now p does not divide 2i − 1 for i = 1, 2, . . . , 25. Moreover, we have
2000/ log2 q = 2000/83 ≈ 24.0964 < 25. Hence the system is reasonably secure
and therefore suitable for being used in cryptography.

Example 10.8.5 ([24]). Let F259 = F2(λ), where λ is a root of p(t) = t59+ t7+ t4+
t2 + 1, and consider the genus-3 hyperelliptic curve given by

y2 + (α0 + α1x + α2x2 + α3x3)
= x7 + β6x6 + β5x5 + β4x4 + β3x3 + β2x2 + β1x + β0,

where
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α0 = 44EC0A3F607D5FE, α1 = 183AFFC60B6C97A,
α2 = 5E8C286F052173E, α3 = 39BFF4C327D0FCC,
β0 = 2CE03A6BD01418F, β1 = 15160EE501E A31D,
β2 = 2DDF3B805A56673, β3 = 72E AAC2B03D6F33,
β4 = 30BF8CAF4CF398A, β5 = 288F45CEB700047,
β6 = 692BDF3913214F7.

The order of the class group of K/F259 is 2p, where

p = 95780971232851005943503002779523943538413536699032693
≈ 9.58× 1052.

Now, 2000/ log2 q = 2000/59 ≈ 33.9 < 34 and p does not divide 2i − 1 for 1 ≤ i ≤
34. Thus K is suitable for cryptography purposes.

Example 10.8.6 ([80, 67]). Assume F259 = F2(λ), where λ is a root of p(t) = t59 +
t6+ t5+ t4+ t3+ t + 1. Let K/F259 be the hyperelliptic genus-3 function field given
by

y2 + (x3 + x2 + ax + b)y = x7 + x6 + cx5 + dx4 + ex3 + f,

where

a = 6723B8D13BC30C7, b = 72D7EE15A5C9CF5,
c = 6723B8D13BC30C7, d = 72D7EE15A5C9CF4,
e = 24198E10C3B7566, f = 1EB9AF07BD3B303.

The order of the Jacobian of K/F259 is 2p, where

p = 95780971304118053647396689122057683977359360476125197
≈ 9.58× 1052.

Finally, 2000/ log2 q = 2000/59 ≈ 33.9 < 34 and p does not divide 2i − 1 for 1 ≤
i ≤ 34. It follows that the hyperelliptic function field K is suitable for cryptography
purposes.

10.9 Exercises

Exercise 10.9.1. Prove Theorem 10.2.3.

Exercise 10.9.2. Let K = k(x, y) be a hyperelliptic function field of genus g over an
arbitrary constant field k, and assume [K : k(x)] = 2. Show that if the pole divisor of
x in k(x) is ramified, then the defining equation of K can be given as follows:

(i) If char K �= 2 then y2 = f (x) ∈ k(x), where f (x) is a square-free polynomial of
degree 2g+ 1 and the ramified primes in K/k(x) are precisely the prime divisors
of f (x) and the pole divisor of x .
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(ii) If char K = 2 then y2 − h(x)y = f (x), where f (x) is a polynomial of degree
2g+1, h(x) is a nonzero polynomial of degree at most g that is relatively prime to
f (x), and the ramified primes in K/k(x) are precisely the prime divisors of h(x)
and the pole divisor of x .

Exercise 10.9.3. Let K = k(x, y) be a hyperelliptic or an elliptic function field of
genus g ≥ 1 given by

y2 − h(x)y = f (x),

where

deg h(x) ≤ g, deg f (x) = 2g + 1,

h(x) = 0, f (x) is square-free if char k �= 2 and h(x) �= 0 if char k = 2.
Let p be a prime divisor of degree 1 and let ϕP be the associated place. IfP �= P∞

then ϕP(x), ϕP(y) ∈ k ∼= ϑP/P and ϕP∞(x) = ϕP∞(y) = ∞. Prove that

ϕP �→ (ϕP(x), ϕP(y) if P �= P∞
ϕP∞ �→ (∞,∞)

defines a 1-to-1 correspondence between the set of places of degree 1 in K and the set
of “rational points”: A = {(a, b) ∈ k2 | b2 − h(a)b = f (a)} ∪ {(∞,∞)}.
Exercise 10.9.4. Let K/Fq be a hyperelliptic function field of genus 2 and let hr ,
r ≥ 1, be the class number of Kr = KFqr . Show that the following procedure works
for finding hr :

(i) Let Nr be the number of prime divisors of degree 1 in Kr . Find by direct compu-
tation N1 and N2 (you may use Exercise 10.9.3).

(ii) The coefficients of the numerator P(u) of the zeta function of K are given by
a1 = N1 − 1− q and a2 = (N2 − 1− q2 + a21)/2.

(iii) Solve the equation T 2 + a1T + (a2 − 2q) = 0. Let b1 and b2 be its roots.
(iv) Solve T 2 − bi T + q = 0 for i = 1, 2 to obtain α1, α1, α2, and α2.
(v) Finally, obtain hr = |1− αr1|2|1− αr2|2.
Exercise 10.9.5. Let K = F24(x, y) be the hyperelliptic function field given by

y2 + x(x + β)y = x5 + 1,

where β2 + β = 1. Set A1 = P1PβPξ

P3∞
and A2 = P′

1P0

P2∞
. Using Koblitz’s algorithm,

show that the semireduced divisor in the class of A1A2 isB = P0PβPξ

P5∞
, where ξ �= 1

is a root of x5 + 1.
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Introduction to Class Field Theory

11.1 Introduction

The notion of class fields is usually attributed to Hilbert, but the concept was already
in the mind of Kronecker and the term was used by Weber before the appearance of
the fundamental papers of Hilbert.

During the years 1880 to 1927, class field theory developed into three topics: prime
decomposition, abelian extensions, and class groups of ideals.

In 1936 Chevalley introduced the concept of idele in order to formulate a class
field theory for abelian extensions.

There is another way to study class fields, given by Hasse at the beginning of the
of the 1930s. This approach uses the theory of simple algebras, which belongs to the
area of noncommutative algebra.

Generally speaking, class field theory is the study of extensions where the prime
divisors of degree 1 decompose totally. Particular features of the theory are the study
of abelian extensions of k(x) and of Q, where k denotes a finite field, as well as the
“reciprocity law.”

There are several approaches to the theory of class fields:

(1) Relations between groups of congruence classes and abelian extensions (We-
ber).

(2) Theory of adeles (repartitions) and ideles (Chevalley and Weil).
(3) Theory of simple algebras (Hasse, Noether, Witt).
(4) Nonabelian L series (Artin).
(5) Providing natural generators for class fields as values of transcendental func-

tions (Kronecker).

Unfortunately, a systematic treatment of class field theory would be too long and
technical for our goals, so we have to confine ourselves to an explicit description of
the abelian extensions of k(x), where k is a finite field. This work is due to Carlitz
and Hayes and is the objective of Chapter 12. The study of abelian extensions of a
congruence function field K can be done by means of the so-called elliptic modules
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or Drinfeld modules. We will discuss Drinfeld modules in Chapter 13. In this chapter
we present the Čebotarev density theorem, profinite groups and infinite Galois theory.

We will end this chapter with the principal results, without proof, of the theory of
class fields for local as well as for global fields.

11.2 Čebotarev’s Density Theorem

The proof we present here of Čebotarev’s density theorem is based on [38]. In the rest
of this chapter, the fields under consideration are congruence function fields. Let L/	
be a Galois extension of K/k with Galois group G. Let P be a place of L , and ℘ =
P|K . If D and I are the decomposition and inertia groups of P over ℘ respectively,
then by Corollary 5.2.12, Gal (	 (P) /k (℘)) is isomorphic to D/I . Since 	 (P) and
k (℘) are finite fields, it follows that D/I is a cyclic group generated by the Frobenius
automorphism

σ : 	 (P) −→ 	 (P) , defined by σ (x) = xq
f
,

where |k| = q and f = [k (℘) : k], i.e., |k (℘)| = q f = N℘.
If ℘ is not ramified, then I = {1}. Therefore D is generated by the Frobenius

automorphism.

Definition 11.2.1. Let P be a place in L and ℘ = P|K , where ℘ is not ramified. Then[
L/K
P
]
denotes the Frobenius automorphism of 	 (P) /k (℘).

Whenever we use the symbol
[
L/K
P
]
we will understand that P is not ramified.

Proposition 11.2.2. The Frobenius automorphism is characterized by the property[
L/K

P

]
(x) ≡ xN (℘) mod P for all x ∈ ϑP ,

where ℘ = P|K .

Proof. Let σ =
[
L/K
P
]
. If σ̄ is the image of σ in Gal (	 (P) /k (℘)), then σ̄ x = xN (℘)

for x ∈ 	 (P) = ϑP/P . The result follows. ��

Proposition 11.2.3. We have
[
L/K
σ(P)

]
= σ

[
L/K
P
]
σ−1 for all σ ∈ G.

Proof. Let σ ∈ G and put θ = σ
[
L/K
P
]
σ−1. Pick x ∈ ϑσP = σ (ϑP ). Then σ−1x ∈

ϑP , which implies that[
L/K

P

]
σ−1x ≡

(
σ−1x

)N (℘)
mod P.
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From the latter we obtain

θx = σ
[
L/K

P

]
σ−1x ≡ σ

((
σ−1x

)N (℘))
mod σP = xN (℘) mod σP.

Therefore

σ

[
L/K

P

]
σ−1 =

[
L/K

σ (P)

]
. ��

Proposition 11.2.4. Assume K ⊆ E ⊆ L, where E/K is also a Galois extension.
Then

res |E
[
L/K

P

]
=
[
E/K

P ∩ E
]
.

Proof. Let θ =
[
L/K
P
]
,℘ = P|K , and x ∈ ϑP∩E = ϑP∩E . Then θx−xN (℘) ∈ P∩E .

��
When P run through the prime divisors above ℘, the Frobenius automorphisms

runs through a conjugation class of G (Proposition 11.2.3).

Definition 11.2.5. The Artin’s symbol
(
L/K
℘

)
of a place ℘ of K is the conjugation

class (
L/K

℘

)
=
{
σ

[
L/K

P

]
σ−1 | σ ∈ G

}
, with P|K = ℘.

Definition 11.2.6. Let A be a set of places of K . Then the limit (s ∈ R, s > 1)

δ (A) = lim
s→1+

∑
P∈A (NP)−s∑
P∈PK

(NP)−s ,

is called Dirichlet’s density of A, in case this limit exists.

Proposition 11.2.7. If A is finite, then δ (A) = 0.

Proof. Let ζK (s) =
∏

P∈PK

(
1− (NP)−s

)−1. Then ζK (s) has a pole at s = 1, so
lim
s→1+

∏
P∈PK

(
1− 1

(NP)s
)−1

= lim
s→1+

∏
P∈PK

1

1−
(

1
NP
)s = ∞.

Therefore

lim
s→1+

∏
P∈PK

(
1− 1

(NP)s
)
= 0,
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which implies that

lim
s→1+

∑
P∈PK

(NP)−s = ∞.

Now if A is finite, then
∑

P∈A (NP)−s is uniformly bounded, and we have

δ (A) = lim
s→1+

∑
P∈A (NP)−s∑
P∈PK

(NP)−s = 0. ��

Proposition 11.2.8. Assume that A, B are disjoint sets of prime divisors such that
δ (A) and δ (B) exist. Then δ (A ∪ B) = δ (A)+ δ (B).
Proof. The statement is an immediate consequence of the definition. ��

In what remains of this section, we will use the following notation. Let L/	 be a
finite Galois extension of K/k with Galois group G and |k| = q. Let x ∈ K \k, where
K/k(x) is a finite separable extension. Set

n = [	 : k] = [K	 : K ] , d = [K : k(x)] , m = [L : K	] ,
P (K ) = {℘ ∈ PK |℘|k(x) �= ℘∞

}
, ord τ = o(τ ), for τ ∈ G.

Define

Pnr (K ) = {℘ ∈ P(K ) | ℘ is not ramified over k(x)} .
For i ∈ N, let

Pi (K ) = {℘ ∈ Pnr (K ) | dK (℘) = i} ,

Ci (L/K ,C) =
{
℘ ∈ Pi (K ) |

(
L/K

℘

)
= C

}
,

where C is a given conjugation class of G. For τ ∈ G, let

Di (L/K , τ ) =
{
P ∈ P(L) |

[
L/K

P

]
= τ,P ∩ K ∈ Pi (K )

}
.

The Frobenius automorphism of the algebraic closure k̄ of k will be denoted by ϕ.
Thus ϕ : k̄ −→ k̄ is defined by ϕ(x) = xq .

Let C =⋃∞i=1 Ci (L/K ,C) = {℘ ∈ Pnr (K ) |
(
L/K
℘

)
= C

}
.

The Čebotarev density theorem states that δ(C) = |C|/|G|.
Proposition 11.2.9. Let i ∈ N, ℘ ∈ Ci (L/K ,C), and τ , τ ′ ∈ C.

(1) There are exactly [L : K ]/ ord (τ ) prime divisors of Pnr (K ) that lie above ℘.
(2) If C ′i ⊆ Ci (L/K ,C) and D′i (τ ) is the set of prime divisors in Di (L/K , τ ) lying

above C ′i , then
∣∣C ′i ∣∣ = |C| ord (τ ) ∣∣D′i (τ )∣∣ [L : K ]−1.
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Proof.

(1) Let h be the number of prime divisors over ℘. We have dL/K (P|℘)= ord (τ )
since eL/K (P|℘) = 1. Furthermore, by Theorem 5.1.14 [L : K ] = e f h =
f h = ord (τ ) h. Hence h = [L:K ]

ord(τ ) .

(2) For σ ∈ G = Gal(L/K ), we have D′i
(
στσ−1

) = σD′i (τ ). If τ
′ ∈ C is

distinct from τ , then D′i (τ ) and D
′
i

(
τ ′
)
are disjoint. Therefore

⋃
τ ′∈C D

′
i

(
τ ′
)

is the set of prime divisors of Pnr (L) over C ′i . By (1),∣∣C ′i ∣∣ [L : K ]ord (τ )
=
∑
τ ′∈C

∣∣D′i (τ ′)∣∣ = |C| ∣∣D′i (τ )∣∣ . ��

Proposition 11.2.10. Let T be an intermediate field, i.e., K ⊆ T ⊆ L, and let t be the
field of constants of T . Let τ ∈ Gal(L/T ). Set |t | = qr . If r divides i then

Di (L/K , τ ) = Di/r (L/T, τ ) ∩ {P ∈ P(L) | dK (P ∩ K ) = i} .
Proof. Let P ∈ Pnr (L) be such that ℘ = P ∩ K is of degree i . Thus N℘ = qi . Let
S = P ∩ T be of degree s, that is, NS = (qr )s = qrs . By definition,[

L/K

P

]
= τ ⇐⇒ τ x ≡ xq

i
mod P for all x ∈ ϑP (11.1)

and [
L/T

P

]
= τ ⇐⇒ τ x ≡ xq

rs
mod P for all x ∈ ϑP . (11.2)

Thus, it suffices to prove that
[
L/K
P
]
= τ implies rs = i . Since τ ∈ Gal(L/T ),

(11.1) implies that x ≡ xq
i
mod P for all x ∈ ϑS. Hence t (S) ⊆ Fqi . On the other

hand, t (S) ⊇ k (℘) = Fqi , so t (S) = Fqi . Finally, we have t (S) = F(qr )s , i.e.,
i = rs. ��

Corollary 11.2.11. With the hypotheses of Proposition 11.2.10, let C, C′ be the conju-
gation classes of τ ∈ G and of τ ∈ Gal(L/T ) respectively. Assume that r divides i
and let

C ′i/r = Ci/r
(
L/T,C′

) \ {S ∈ P(T ) | dK (S ∩ K ) ≤ i/2} .

Then |Ci (L/K ,C)| =
|C|
∣∣∣C ′i/r ∣∣∣

|C′|[T :K ] .

Proof. Put s = i
r . The set

D′i (τ ) = Ds (L/T, τ ) ∩ {P ∈ P(L) | dK (P ∩ K ) = i}

is the set of prime divisors in Ds (L/T, τ ) that lie above
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C ′′i = Cs
(
L/T,C′

) ∩ {S ∈ P(T ) | dK (S ∩ K ) = i} .
We have

[L : K ]

|C| ord (τ ) |Ci (L/K ,C)| = |Di (L/K , τ )| (Proposition 11.2.9)

= ∣∣D′i (τ )∣∣ (Proposition 11.2.10)

= [L : T ]

|C′| ord (τ )
∣∣C ′′i ∣∣ (Proposition 11.2.9).

Therefore,
∣∣C ′′i ∣∣ = [T :K ]|C′|

|C| |Ci (L/K ,C)|.
By the above, it suffices to prove that C ′′i = C ′i/r . If S ∈ Pnr (T ) is of degree s

and ℘ = S ∩ K , then k ⊆ k (℘) ⊆ t (S) = F(qr )s = Fqrs = Fqi . Therefore dK (℘)
divides i . It follows that dK (℘) = i or dK (℘) ≤ i

2 . ��

Proposition 11.2.12. Let i ∈ N be such that τ |	 = ϕi |	 (where ϕ is the Frobenius
automorphism) for all τ ∈ C. Let 	′ be a finite extension of 	 and let L ′ = L	′. Then
L ′/K is a Galois extension, the field of constants of L ′ is 	′, gL = gL ′ and for each
τ ∈ C there exists a unique τ ′ ∈ Gal(L ′/K ) such that τ ′|L = τ and τ ′|	′ = ϕi |	′ .
Furthermore:

(i) ord
(
τ ′
)
is the least common multiple of ord (τ ) and

[
	′ : 	′ ∩ Fqi

]
,

(ii) C′ = {τ ′ | τ ∈ C
}
is a conjugation class of Gal(L ′/K ),

(iii) Ci
(
L ′/K ,C′

) = Ci (L/K ,C).

Proof. Since L/K and 	′/k are Galois extensions and L ′ = L	′, it follows that L ′/K is
a Galois extension. By Theorem 6.1.2, 	′ is the field of constants of L ′ and by Theorem
6.1.3, gL = gL ′ . Now assume that τ ∈ C and G ′ = Gal(L ′/K ); since K	′ ∩ L = K	,
we have G = G ′/H , where H = Gal(L ′/L) ∼= Gal (	′/	).

L
∼

L ′

K K	
∼

K	′

k 	
∼

	′

If τ1 ∈ G ′ is such that τ1|L = τ , then τ1|	 = τ |	 =
ϕi |	. It follows that θ = (τ1)−1 ϕi |	′ ∈ Gal

(
	′/	

) ∼= H .
Therefore τ ′ = τ1θ and τ ′|L = τ1|Lθ |L = τ1|L = τ ,
τ ′|	′ = τ1|	′θ |	′ = ϕi |	′ . This proves the existence of
τ ′. The uniqueness follows immediately from L ′ = L	′.
Now, ord

(
τ ′|	′

) = ord (ϕi |	′) = [	′ : 	′ ∩ Fqi
]
and

ord
(
τ ′
) = [ord (τ ′|L) , ord (τ ′|	′)] = [ord (τ ) , [	′ : 	′ ∩ Fqi

]]
,

which proves (i).
To establish (ii), let C′ = {τ ′ | τ ∈ C

}
and θ ′ ∈ Gal(L ′/K ). Then

θ ′τ ′
(
θ ′
)−1 |L = θ ′|Lτ ′|L (θ ′)−1 |L = θτθ−1,

where θ = θ ′|L and θ ′τ ′
(
θ ′
)−1 |	′ = θ ′|	′τ ′|	′

(
θ ′
)−1 |	′ = τ ′|	′ = ϕi |	′ , since

Gal(	′/k) is a cyclic group. Now θτθ−1 ∈ C implies θ ′τ ′
(
θ ′
)−1 ∈ C′.



11.2 Čebotarev’s Density Theorem 383

Finally, in order to verify (iii) it suffices to demonstrate the following: Assume that

S ∈ Pnr (L ′), ℘ = S ∩ K is of degree i , and P = S|L . Then
[
L/K
P
]
= τ if and only

if
[
L ′/K
S

]
= τ ′.

To prove this, suppose that
[
L/K
P
]
= τ . Then τ x ≡ xq

i
mod P for x ∈ ϑP . If

x ∈ 	′, we have ϕi (x) = xq
i
. Furthermore, ϑS = 	′ϑP since L ′ = L	′ (Exercise

11.7.1). It follows that τ ′x ≡ xq
i
mod S for all x ∈ ϑS. Therefore

[
L ′/K
S

]
= τ ′.

Conversely, if
[
L ′/K
S

]
= τ ′, then by Proposition 11.2.4,

[
L ′/K

S

] ∣∣∣∣
L

= τ ′|L =
[
L/K

S ∩ L
]
=
[
L/K

P

]
. ��

Corollary 11.2.13. If L = K	 is the extension of constants and τ ∈ Gal(L/K ) satis-
fies τ |	 = ϕi |	, then Ci (K/K , Id) = Ci (L/K , {τ }).
Proof. Notice that in the context of Proposition 11.2.12, K plays the role of L and L
plays the role of L ′. We have C = {Id} and C′ = {τ }, so the result follows. ��

Proposition 11.2.14. Suppose that K	 = L and that τ |	 = ϕ|	, C = {τ }, τ ∈ G. Then

||C1 (L/K ,C)| − q| < 2
(
gL + gLd + d2

)
q1/2.

Proof. Taking i = 1 in the previous corollary, we haveC1 (L/K , {τ }) = C1 (K/K , {Id})
= P1(K ). Here C = {τ } since G = Gal (	/k) is a cyclic group. We will denote by
P̄1(K ) the set of all prime divisors of degree 1. By Theorem 6.1.3 we have gL = gK ,
so using the Riemann hypothesis (Theorem 7.2.9 (iv)) we obtain that∣∣∣∣P̄1(K )∣∣− (q + 1)∣∣ ≤ 2gKq1/2.
Now by Theorem 9.4.2, we have

gK = 1+
(
gk(x) − 1

)
[K : k(x)]+ 1

2
d
(
DK/k(x)

) = 1− d + 1

2
d
(
DK/k(x)

)
,

and hence d
(
DK/k(x)

) = 2gK−2+2d. This implies that there are at most 2gL−2+2d
prime divisors of k(x) that are ramified in K . On the other hand, there exist at most
d elements in P̄1(K ) above each element of P̄1(k(x)). Thus there are at most d prime
divisors of K above Nx = ℘∞ in k(x). Clearly, none of these divisors belongs to
P1(K ), but they could belong to P̄1(K ). Then

P̄1(K ) \ P1(K ) =
{
℘ | dK (℘) = 1, ℘ is ramified in K/k(x) or ℘|k(x) = ℘∞

}
,

so



384 11 Introduction to Class Field Theory∣∣P̄1(K ) \ P1(K )∣∣ ≤ d (2gL − 2+ 2d)+ d = d (2gL − 1+ 2d) .

Therefore

|P1(K )− q| ≤ ∣∣|P1(K )| − |P̄1(K )|∣∣+ ∣∣|P̄1(K )| − q
∣∣

≤ d (2gL − 1+ 2d)+ 2gLq1/2 + 1 < 2√q
(
gL + gLd + d2

)
. ��

Proposition 11.2.15. For each finite extension M of K and for each natural number
i , we have

|{S ∈ Pnr (M) | dK (S ∩ K ) ≤ i/2}| ≤ 4[M : K ] (gK + 1) qi/2.
Proof. For each prime divisor in P(K ) there exist at most [M : K ] places in P(M).
Therefore

|{S ∈ Pnr (M) | dK (S ∩ K ) ≤ i/2}| ≤ [M : K ]
∑
j≤i/2

∣∣Pj (K )∣∣ .
By Theorem 6.2.1, for each ℘ ∈ Pj (K ) there exist precisely j divisors of Fq j K

of degree 1. Hence, using the Riemann hypothesis (Theorem 7.2.9), we obtain that∣∣Pj (K )∣∣ ≤ 1

j

∣∣P̄1 (Fq j K )∣∣ ≤ 1

j

(
2gKq

j/2 + q j + 1
)
.

For i ≥ 4 we have
[i/2]∑
j=1

1

j
q j ≤ 2

i
qi/2 +

[i/2]−1∑
j=0

q j = 2

i
qi/2 + q[i/2] − 1

q − 1 ≤ 2qi/2.

For i = 1, 2, 3 we also obtain the inequality.
Similarly,

∑[i/2]
j=1

1
j

(
q j + 1) ≤ 4qi/2. Combining all these inequalities, we obtain∣∣{S ∈ Pnr (M) | dK (S ∩ K ) ≤ i/2

}∣∣
≤ [M : K ]

∑
j≤i/2

1

j

(
2gKq

j/2 + q j + 1
)

≤ [M : K ]
{
2gK

(
2qi/2

)
+ 4qi/2

}
= 4[M : K ]qi/2 (gK + 1) . ��

Nowwe will prove the following result, from which the Čebotarev density theorem
will be an immediate consequence.

Proposition 11.2.16. Let a ∈ N be such that τ |	 = ϕa |	 for all τ ∈ C. If i �≡ a mod n,
then Ci (L/K ,C) = ∅. If i ≡ a mod n, then∣∣∣∣Ci (L/K ,C)− |C|im qi

∣∣∣∣ < 4 |C|(d2 + 1

2
gLd + 1

2
gL + gK + 1

)
qi/2.
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Proof. Since τ |	 = ϕa |	, if P ∈ P(L) is above ℘ ∈ Ci (L/K ,C), we have

ϕa |	 =
[
L/K

P

] ∣∣∣∣
	

= ϕi |	.

This shows that if Ci (L/K ,C) �= ∅, then we necessarily have i ≡ a mod n.
Now assume that i ≡ a mod n. We substitute 	 by a finite extension 	′ such

that i ord (τ ) divides
[
	′ : k

]
. Set L ′ = L	′. Since L ′/L is

an extension of constants, we have K	′ ∩ L = K	. Therefore[
L ′ : K	′

] = [L : K	] = m and gL ′ = gL . Furthermore, by
Proposition 11.2.12 there exists a unique τ ′ ∈ Gal(L ′/K ) such
that τ ′|L = τ , τ ′|	′ = ϕi |	′ ,

L L	′ = L ′

K	 K	′

ord
(
τ ′
)
is the least common multiple of

{
ord (τ ) ,

[
	′ : Fqi

]} = [	′ : Fqi
]
,

and

Ci
(
L ′/K ,C′′

) = Ci (L/K ,C) , (11.3)

where C′′ is the conjugacy class of τ ′ in Gal(L ′/K ) and
∣∣C′′∣∣ = |C|.

We substitute L by L ′ and take T to be the fixed field of L ′ under
〈
τ ′
〉
, as in

Proposition 11.2.10. Then K ⊆ T ⊆ L ′ and

Dj
(
L ′/K , τ ′

) = Dj/r
(
L ′/T, τ

) ∩ {P ∈ P(L ′) | dK (P ∩ K ) = j
}
.

Here t is the field of constants of T , |t | = qr , and r divides i . Observe that t =
	′ ∩ T is the fixed field of 	′ under ϕi and therefore equal to Fqi .

Then
[
	′ : Fqi

] = [L ′ : T ] = ord
(
τ ′
)
. In particular, T 	′ = L ′, so

[
T : Fqi K

] =[
L ′ : 	′K

] = m, and [T : K ] = [T : Fqi K
] [

Fqi K : K
] = mi .

	′ 	′K
m

L ′

Fqi

i

Fqi K
m

T = (L ′)〈τ ′〉

Fq = k K

Now T = L ′〈τ
′〉, so if we substitute L by L ′ in Corollary 11.2.11, we obtain∣∣C′∣∣ = 1 for r = i . By Proposition 11.2.15 and Corollary 11.2.11,
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[T : K ]

∣∣C1 (L ′/T, {τ })∣∣− ∣∣Ci (L ′/K ,C′′)∣∣∣∣∣∣
= |C|
[T : K ]

(∣∣C1 (L ′/T, {τ })∣∣− ∣∣C ′1∣∣)
≤ |C|
[T : K ]

|{S ∈ Pnr (T ) | dK (S ∩ K ) ≤ i/2}| ≤ 4 |C| (gK + 1) qi/2.
(11.4)

By Proposition 11.2.14,∣∣∣∣∣C1 (L ′/T, {τ })∣∣− qi
∣∣∣ < 2 (gL + gLd + d2

)
qi/2.

Multiplying the last inequality by |C|/(im), where im = [T : K ], we obtain∣∣∣∣ |C|
[T : K ]

∣∣C1 (L ′/T, {τ })∣∣− |C|
im

qi
∣∣∣∣ ≤ 2 |C|

im

(
gL + gLd + d2

)
qi/2. (11.5)

Hence by (11.3), (11.4), and (11.5) we get∣∣∣ |Ci (L/K ,C)| − |C|
im

qi
∣∣∣

≤
∣∣∣∣∣∣Ci (L ′/K ,C′′)∣∣− |C|

[T : K ]

∣∣C1 (L ′/T, {τ })∣∣∣∣∣∣
+
∣∣∣∣ |C|
[T : K ]

∣∣C1 (L ′/T, {τ })∣∣− |C|
im

qi
∣∣∣∣

≤ 4 |C| (gK + 1) qi/2 + 2 |C|
im

(
gL + gLd + d2

)
qi/2

= 4 |C|
(
gK + 1+ gL

2im
+ gLd

2im
+ d2

2im

)
qi/2

< 4 |C|
(
d2 + 1

2
gLd + 1

2
gL + gK + 1

)
qi/2. ��

Notation 11.2.17. For two functions f (x) and g(x) of a real variable, we will write
f (x) = O(g(x)) as x → c to express the fact that | f (x)| ≤ M |g(x)| when x is in
a neighborhood of c. In particular, if g(x) = 1, f (x) = O(1) means that f (x) is
bounded in a neighborhood of c (see Notation 7.3.3).

Proposition 11.2.18.

∞∑
j=1

xa+ jn

a + jn
= −1

n
ln(1− x)+ O(1) when x → 1−.

Proof. If ξ is an nth root of 1, then ξ is distinct from 1 and satisfies 1+ ξ + ξ2+ · · ·+
ξn−1 = 0. Therefore
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−1
n

n−1∑
i=0

ln
(
1− ξ i x

)
ξ−ia = 1

n

n−1∑
i=0

∞∑
j=1

(
ξ i x
) j
j
ξ−ia

= 1

n

∞∑
j=1

x j

j

(
n−1∑
i=0
ξ i( j−a)

)

= 1

n

∑
j≡amodn

x j

j
n =

∑
j≡amodn

x j

j
=

∞∑
t=1

xa+tn

a + tn
.

Since for 1 < i ≤ n−1, ln (1− ξ i x) is bounded in a neighborhood of 1, the result
follows. ��

Proposition 11.2.19. If a ∈ N is such that 0 < a ≤ n and τ |	 = ϕa |	 for all τ ∈ C,
then ∑

P∈C
(NP )−s = −

|C|
[L : K ]

ln
(
1− q1−s

)
+ O(1), s → 1+.

Proof. Recall that C =⋃∞i=1 Ci (L/K ,C). We have∑
P∈C

1

(NP)s =
∞∑
j=0

∑
P∈Ca+ jn(L/K ,C)

(NP)−s

=
∞∑
j=0

( |C|
m(a + jn)

qa+ jn + O
(
q
1
2 (a+ jn)

))
q−(a+ jn)s

(Proposition 11.2.16)

= |C|
m

∞∑
j=0

q(1−s)(a+ jn)

a + jn
+ O

(
q(

1
2−s)a

∞∑
j=0

q(
1
2−s) jn

)

= − |C|
mn

ln
(
1− q1−s

)
+ O(1)+ O

(
q(

1
2−s)a

1− q(
1
2−s)n

)
(Proposition 11.2.18

with x = q1−s)

= − |C|
[L : K ]

ln
(
1− q1−s

)
+ O(1), s → 1+. ��

Theorem 11.2.20 (Čebotarev’s Density Theorem). Let L/K be a finite Galois ex-
tension of congruence function fields and let C be a conjugacy class of Gal(L/K ).
Then the Dirichlet density of the set{

℘ ∈ PK |
(
L/K

℘

)
= C

}
exists and is equal to |C|

[L:K ] .
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Proof. In Proposition 11.2.19 we take L = K and obtain∑
℘∈PK

(N℘)−s = −ln
(
1− q1−s

)
+ O(1), s → 1+.

Since the number of prime divisors of k(x) above ℘∞ is finite and so is the number
of ramified prime divisors, then the Dirichlet density of the set

{
℘ ∈ PK |

(
L/K
℘

)
= C

}
is equal to the density of C = ⋃∞i=1 Ci (L/K ,C). Hence by Propositions 11.2.7 and
11.2.8 we have

δ

({
℘ ∈ PK |

(
L/K

℘

)
= C

})
= δ (C) = lim

s→1+

∑
℘∈C (N℘)

−s∑
℘∈PK

(N℘)−s

= lim
s→1+

− |C|
[L:K ] ln

(
1− q1−s

)+ O(1)

−ln (1− q1−s
)+ O(1)

= |C|
[L : K ]

. ��

11.3 Inverse Limits and Profinite Groups

Definition 11.3.1. By a directed partially ordered set or a directed poset we under-
stand a nonempty partially ordered set I such that if i, j ∈ I , there exists k ∈ I
satisfying i ≤ k and j ≤ k.

Now suppose that I is an ordered set such that to any i ∈ I is associated a set Ai
(which might be just a set, a group, a ring, a field, a topological space, etc.) in such a
way that whenever i ≤ j , there exists a map

φ j i : A j −→ Ai

which, depending on Ai , is a map, a group homomorphism, a ring homomorphism, a
continuous map, etc., such that

(i) φi i = IdAi ,
(ii) φ j i ◦ φk j = φki for i ≤ j ≤ k.

Ak
φk j

φki � �

A j

φ j i

Ai

Definition 11.3.2. The system {Ai , φ j i , I }i, j∈I
i≤ j

above is called an inverse system or a

projective system.
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Definition 11.3.3. Given an inverse system {Ai , φ j i , I } we say that (X, ϕi )i∈I is an
inverse limit of the system if there exist maps (group homomorphisms, continuous
maps, etc.)

ϕi : X −→ Ai

for all i ∈ I such that φ j i ◦ ϕ j = ϕi whenever i ≤ j

A j
φ j i

Ai

X

ϕ j ϕi

and such that if (Yi , ξi )i∈I is any other object with maps

ξi : Y −→ Ai

for all i ∈ I such that φ j i ◦ ξ j = ξi whenever i ≤ j , then there exists a unique map
(group homomorphism, continuous map, etc.)

ξ : Y −→ X

such that ϕi ◦ ξ = ξi for all i ∈ I .

Y
ξ

ξi � �

X

ϕi

Ai

We write X = lim←−
i∈I

Ai = lim←−
i

Ai = lim←− Ai .

Theorem 11.3.4. Given an inverse system {Ai , φ j i , I }, there exists an inverse limit
(X, ϕi )i∈I , X = lim←

i

Ai . Furthermore, (X, ϕi )i∈I is unique in the following sense: if

(Z , θi )i∈I is another inverse limit, there exists a unique map α : X → Z (α group
homomorphism, continuous map, etc.) such that α is an isomorphism satisfying θi ◦
α = ϕi for all i ∈ I .

X
α

ϕi � �

Z

θi

Ai
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Proof: First we prove uniqueness. Since X and Z are both inverse limits, there exist
unique maps α : X → Z and β : Z → X such that the following diagrams commute:

X

ϕi � �

α
Z

θi

��

β
X

ϕi

Ai

Thus β ◦ α and IdX satisfy ϕi ◦ (β ◦ α) = ϕi = ϕi ◦ (IdX ). By the uniqueness,
we have β ◦ α = IdX . Similarly, α ◦ β = IdZ . It follows that α and β are inverse
isomorphisms (of groups, rings, topological spaces, etc.).

To see the existence, let B = ∏i∈I Ai be the direct product, considered with the
product topology (and with the algebraic operations defined componentwise).

Let X = {(ai )i∈I ∈ B | ai = ϕ j i (a j ) for all i ≤ j}. Let ϕi : X → Ai be the map
induced by the projection (ϕi = πi |X ):

πi :
∏
j∈I

A j −→ Ai

(a j ) j∈I �−→ ai .

Then (φ j i ◦ ϕ j )((ak)k∈I ) = φ j i (a j ) = ai = ϕi ((ak)k∈I ) for all (ak)k∈I ∈ X . Assume
that (Y, ξi )i∈I is another object such that the maps ξi : Y → Ai satisfy φ j i ◦ ξ j = ξi
for all i ≤ j . Let

ξ : Y → X

be defined by

ξ(y) = (ξi (y))i∈I .

Notice that ξ is well defined since (φ j i )(ξ j (y)) = ξi (y) and we have

(ϕi ◦ ξ)(y) = ϕi ((ξk(y)k∈I )) = ξi (y),

so (ξ(y))i∈I ∈ X . Thus X is an inverse limit of {Ai , φ j i , I }. ��

Remark 11.3.5. Given an inverse system {Ai , φi j , I }, we denote by A :=
∏

i∈I Ai the
direct product. Then

lim←−
i∈I

Ai =
{
(. . . , ai , . . . ) ∈ A | φk j (ak) = a j for all j ≤ k

}
is the inverse limit or the projective limit.
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Given an inverse system {Ai , φ j i , I }, let
πi : A −→ Ai
(a j ) j∈I �−→ ai

be the natural projection. For each i ∈ I , let

φi := πi |lim←
i

Ai : lim←−
i

Ai −→ Ai

be the map induced by the projection. We have φ jk ◦ φ j = φk for k ≤ j .

lim←−
i

Ai φk

φ j � �

Ak

A j

φ jk

���������

Now if for each i ∈ I , Ai is a topological Hausdorff space, we provide A with
the product topology and lim←−

i

Ai is a topological space with the induced topology. We

always assume that the maps φ j i are continuous.
Notice that the maps φi are always continuous; indeed, if U is an open set of Ai ,

we have

φ−1i (U ) = π−1i (U ) ∩ lim←−
i

Ai ,

where π−1i (U ) is an open set by definition of the product topology. In fact, the topol-
ogy of lim←−

i

Ai is generated by unions and finite intersections of the sets φ
−1
i (Ui ) such

that Ui is open in Ai . Furthermore, if T is open in lim←−
i

Ai , we shall see that T contains

some φ−1k (Uk) for some k and some Uk that is open in Ak . Since T is generated by
unions and finite intersections of sets of the form

π−1j (Uj ) ∩ lim← Ai ,

it suffices to see that

φ−1i (Ui ) ∩ φ−1j (Uj ) = φ−1k (Uk) for some k.

Choose k ≥ i, j and let

Uk := φ−1k j (Uj ) ∩ φ−1ki (Ui ).

Then

φ−1k (Uk) = φ−1k (φ−1k j U j )) ∩ φ−1k (φ−1ki (Ui )) = φ−1j (Uj ) ∩ φ−1i (Ui ).
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Definition 11.3.6. Let I be a directed poset. Let I ′ be a subset such that I ′ is also a
directed poset with the order induced by the one in I . We say that I ′ is cofinal in I if
for every i ∈ I , there exists i ′ ∈ I ′ such that i ≤ i ′.

If {Ai , φ j i , I } is an inverse system, then {Ai , φ j i , I ′} becomes an inverse system
and we say that {Ai , φ j i , I ′} is a cofinal subsystem of {Ai , φ j i , I }.
Theorem 11.3.7. If {Ai , φ j i , I } is an inverse system of groups, compact topological
spaces, or compact topological groups, and I ′ ⊆ I is cofinal in I , then

lim←−
i∈I

Ai ∼= lim←−
i∈I ′

Ai .

Proof: Let X :=
(
lim←−
i∈I

Ai , ϕi

)
and Y :=

(
lim←−
i ′∈I ′

Ai ′ , ϕ
′
i ′

)
. For j ∈ I , let j ′ ∈ I ′ be

such that j ≤ j ′. We define

ϕ̃ j : Y → A j

by ϕ̃ j := φ j ′ j ◦ ϕ′j ′ .

Y
ϕ̃ j

ϕ′
j ′ ��

A j

A j ′

φ j ′ j

If k ∈ I ′ satisfies j ≤ k, let 	 ∈ I be such that j ′, k ≤ 	. Then

φ j ′ jϕ
′
j ′ = φ j ′ jφ	j ′ϕ′	 = φ	jϕ′	 = φk jφ	kϕ′	 = φk jϕ′k .

Thus ϕ̃ j is independent of the choice of j ′ ∈ I ′. Furthermore, if i, j ∈ I and i ≤ j ,
then if k ∈ I ′ satisfies j ≤ k, we have

φ j i ϕ̃ j = φ j iφk jϕ′k = φkiϕ′k = ϕ̃i .

Therefore, there exists a unique map

ϕ : Y −→ X

such that ϕ jϕ = ϕ̃ j for all j ∈ I . If (a′i )i ′∈I ′ ∈ Y and ϕ((a′i ′)i ′∈I ′) = (bi )i∈I , then
bi ′ = ai ′ for i ′ ∈ I ′. It follows that ϕ is an injection.

Now if (bi )i∈I ∈ X , we define (ai ′)i ′∈I ′ ∈ Y by ai ′ = bi ′ for all i ′ ∈ I ′. Then
ϕ((ai ′)i ′∈I ′) = (bi )i∈I since I ′ is cofinal in I and ϕ is a surjection. In the case of an
algebraic structure, ϕ is an isomorphism. In the case of compact topological spaces, ϕ
is a continuous bijection and since X and Y are compact spaces, it follows that ϕ is a
closed map and that X and Y are homeomorphic. ��
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Theorem 11.3.8. Let {Ai , φ j i , I } be an inverse system of nonempty compact Haus-
dorff topological spaces Ai over a directed poset I . Then the set lim←− Ai is nonempty.
In particular, the inverse limit of an inverse system of nonempty finite sets is nonempty.

Proof: For each j ∈ I , let Y j = {(ai ) ∈
∏
Ai | φ jk(a j ) = ak for all k ≤ j}.

By the axiom of choice, Y j is nonempty. Note that Y j ⊇ Y j ′ for j ≤ j ′. In par-
ticular, the intersection of finitely many Y j ’s is a nonempty set. Since

∏
i∈I Ai is a

compact topological space,
⋂

j∈I Y j is nonempty. Now⋂
j∈I

Y j = lim←−
i

Ai ,

so the result follows. ��

Proposition 11.3.9. The set lim←−
i

Ai is closed in A =
∏

i∈I Ai .

Proof: Let (ai )i∈I ∈ A \ lim←−
i

Ai . There exist i ≤ j such that φ j i (a j ) �= ai . Since

Ai is Hausdorff, we can find open neighborhoods U of φ j i (a j ) and V of ai such that
U ∩ V = ∅. Set W := φ−1j i (U ). Then W is an open set of A j . Let Ũ = V × W ×∏

k �=i, j Ak ⊆ A. Clearly, Ũ is an open set of A, and (ai )i∈I ∈ Ũ . Moreover, since

φ j i (W ) ⊆ U andU ∩V = ∅, we have Ũ ∩ lim←−
i

Ai = ∅. It follows that lim←−
i

Ai is closed

in A. ��

Definition 11.3.10. A group G is called a topological group if G is a topological space
such that the group operations

i : G −→ G and · : G × G −→ G
x �−→ x−1 (x, y) �−→ x · y

are continuous.

Proposition 11.3.11. Let G be a topological group. Then G is Hausdorff if and only
if {e} is closed in G, where e denotes the identity of G.
Proof:
(⇒) Since G is T2, it is T1.
(⇐) Let

ϕ : G × G −→ G

(x, y) �−→ xy−1.

Since ϕ = ·(Id, i), it follows that ϕ is continuous. Furthermore,
ϕ−1({e}) = {(x, y)|xy−1 = e} = {(x, x)|x ∈ G} =  ,
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and therefore the diagonal  is closed in G × G. Thus G is a Hausdorff space. ��
Now for each x ∈ G, the map

ξx : G −→ G

y �−→ xy

is continuous and satisfies ξ−1x = ξx−1 (because (ξx−1 ◦ ξx )(y) = x−1(xy) = y). Thus
ξx is a homeomorphism and V is a open neighborhood of e if and only if ξx (V ) = xV
is an open neighborhood of {x}. This means that the topology of G is determined by
the neighborhoods of {e}.
Definition 11.3.12. A profinite group is a topological group G that is Hausdorff, com-
pact, and contains a basis of open neighborhoods of {e} that consists of normal sub-
groups of G.

Theorem 11.3.13. Let G be a compact Hausdorff topological group. Then G contains
a basis of open neighborhoods of {e} consisting of normal subgroups if and only if G
is totally disconnected (that is, every element of G is its own connected component).

Proof:
(⇒) Let x �= e. Since G is a Hausdorff space, there exist open sets U and V such that
e ∈ U , x ∈ V , and U ∩ V = ∅. Let N be a normal subgroup of G. Then N is open
and contained in U . We have

G =
(⋃
g �∈N

gN

)
∪ N .

Thus x ∈⋃g∈N gN = W , which is an open set. Moreover, W ∩ N = ∅ and W ∪ N =
G. Thus the connected component of {e} is {e}.

Now for any y ∈ G, the map
ξy : G −→ G

Z �−→ yZ

is a homeomorphism. Therefore the connected component of y is the image under ξy
of the connected component of {e}, namely ξy({e}) = {y}. It follows that G is totally
disconnected.
(⇐) Assume that G is a totally disconnected topological group. Let V be an open
set of G containing e. Then V c := G \ V is a closed set and e �∈ V c. Since G is a
compact space, it follows that V c is also compact. On the other hand, G is a Hausdorff
space, so for each x ∈ V c there exist open sets Wx , Ux , such that e ∈ Wx , x ∈ Ux ,
and Wx ∩ Ux = ∅. Thus V c ⊆ ⋃

x∈V c Ux . Since V c is a compact set, there exist
x1, . . . , xn ∈ V c such that V c ⊆ U :=⋃n

i=1Uxi .
Let W :=⋂n

i=1Wxi . Then e ∈ W and W ∩U = ∅, so W ⊆ Uc andUc is a closed
set. It follows that W ⊆ Uc.

Therefore
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∅ = W ∩U ⊇ W ∩ V c,

and W ⊆ V . Thus, there exists an open neighborhood W of e such that W ⊆ V and
W is a compact set.

Next we show that {e} =⋂U∈AU , where

A = {U | e ∈ U and U is open and closed in G}.

Let A = ⋂
U∈AU ⊇ {e}. It suffices to show that A is connected. Assume that

A = C ∪ D, C ∩ D = ∅, and C and D are closed in A (and therefore closed in G).
Since G is Hausdorff (therefore a normal space) and C and D are disjoint compact
subsets, there exists open subsets C ′ and D′ in G such that C ′ ⊇ C , D′ ⊇ D, and
C ′ ∩ D′ = ∅. Now A ⊆ C ′ ∪ D′, so (C ′ ∪ D′)c ⊆ Ac = ⋃

U∈AUc. Now since
(C ′ ∪ D′)c is closed and compact and Uc is open, U ∈ A, it follows that there exist
finitely many U1, . . . ,Un ∈ A such that

(C ′ ∪ D′)c ⊆
n⋃
i=1

Uc
i or

n⋂
i=1

Ui = P ⊆ C ′ ∪ D′,

P is open and closed in G. Now x ∈ P = (P ∩ C ′) ∪ (P ∩ D′), say x ∈ P ∩ C ′,
which is open. Also P ∩ D′ is open. Since C ′ ∩ D′ = ∅, we have P ∩ C ′ = P \
(P ∩ D′) = P ∩ (P ∩ D′)c. Hence P ∩C ′ is also a closed subset of G. It follows that
P ∩ C ′ ∈ A and A ⊆ P ∩ C ′. Therefore A ∩ D ⊆ A ∩ D′ = ∅. Then A is connected
and A =⋂U∈AU = {e}.

Next we show that ifW is an open neighborhood of x , there exists a closed domain
P (that is, P is an open and closed set) such that {e} ⊆ P ⊆ W . Now W is closed
and Wc ⊆ {e}c = ⋃U∈AUc, with Uc an open set. Since Wc is compact, there exist
finitely manyU1, . . . ,Un ofA such thatWc ⊆⋃U∈AUc

i . Thus P
′ :=⋂n

i=1Ui ⊆ W
is a closed domain and x ∈ P ′ ⊆ W .

Let Q = {q ∈ G | P ′q ⊆ P ′} and H = Q ∩ Q−1, take q ∈ Q and x ∈ P ′.
Then xq ∈ P ′ and since P ′ is open, it follows by the continuity of the product that
there exist open sets Ux and Vx containing x and q respectively, Ux , Vx ⊆ P ′ such
thatUxVx ⊆ P ′. Since P ′ is closed and thus compact, and P ′ =⋃x∈P ′ Ux , there exist
x1, . . . , xm ∈ P ′ such that P ′ = ⋃m

i=1Uxi . Let V
′ = ⋂m

i=1 Vxi . Then q ∈ V ′ and
P ′V ′ ⊆ P ′, so V ′ ⊆ Q. It follows that Q is open.
Now let r ∈ G \ Q. There exists p ∈ P ′ such that pr �∈ P ′. Since G \ P ′ is an

open set and the product is a continuous map, there exists an open neighborhood W
of r such that pW ′ ⊆ G \ P ′. Therefore W ′ ⊆ G \ Q, G \ Q is open, and hence Q is
closed. Since Q−1 is homeomorphic to Q, it follows that H = Q ∩ Q−1 is an open
and closed set of G.

For y ∈ Q, we have y = ey ∈ P ′, so Q ⊆ P ′. Also, P ′e = P ′ ⊆ P ′, and hence
e ∈ Q.

Let h1, h2 ∈ H . Then h1 ∈ Q, h−12 ∈ Q, and

P ′(h1h−12 ) = (P ′h1)h−12 ⊆ P ′h−12 ⊆ P ′.
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Therefore h1h
−1
2 ∈ Q. Similarly, (h1h

−1
2 )

−1 = h2h
−1
1 ∈ Q, so h1h

−1
2 ∈ Q−1. It

follows that h1h
−1
2 ∈ H and H is a subgroup of G.

We have shown that H is an open and closed subgroup of G. Finally, since G is
compact and G =⋃x∈G Hx , where Hx is open for each x ∈ G, it follows that H is of
finite index in G, [G : H ] = t <∞, and G = ⋃t

i=1 Hxi . Let N =
⋂

x∈G xHx−1 =⋂t
i=1 xi Hx

−1
i . Then N is a normal subgroup of G, and we have e ∈ N ⊆ H ⊆ W ⊆

W ⊆ V . Furthermore, N is an open and closed normal subgroup of G of finite index.
This proves the theorem. ��

Remark 11.3.14. If G is a finite group, then G is a topological group with the discrete
topology. Clearly G is a profinite group.

The term profinite group comes from the following theorem.

Theorem 11.3.15. Let G be a profinite group. Then if N runs through all open normal
subgroups of G, we have

G ∼= lim←−
N

G/N

algebraically and topologically (note that G/N is finite), that is, G is the inverse limit
of finite groups.

Conversely, if {Gi , φ j i } is a projective system of finite groups Gi with the discrete
topology, then the group G := lim← Gi is a profinite group.

Proof: First, let G be a profinite group. Let N be an open and normal subgroup of G.
Then G = ⋃

x∈G/N xN , where xN is homeomorphic to N for all x ∈ G. Since G
is a compact space, we have [G : N ] < ∞. Thus G/N is a finite group and since
N = G \⋃x∈G/N

x �∈N
xN and

⋃
x∈G/N
x �∈N

xN is open, it follows that N is a closed subgroup

of G.
Let A = {Ni | i ∈ I } be the set of all open normal subgroups of G and let Gi :=

G/Ni for each i ∈ I . We define a partial order on I by setting i ≤ j ⇐⇒ Ni ⊇ N j .
Now for i ≤ j , let

f j i : G j = G/N j −→ G/Ni = Gi

x mod N j �−→ x mod Ni

be the natural projection.
Given i, j ∈ I , let Nk := Ni ∩ N j . Then Nk ∈ A and i ≤ k, j ≤ k. Therefore

{Gi , f j i } is a projective system. Let

f : G −→ lim←−
i

Gi

σ �−→
∏
i∈I
σi , where σi := σ mod Ni .
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Then f is a group homomorphism whose kernel is
⋂

i∈I Ni = {e}. Indeed, {Ni |
i ∈ I } is a fundamental system of open neighborhoods of {e} and G is a Hausdorff
space. Therefore f is a monomorphism of groups.

Now {US :=
∏

i �∈S Gi ×
∏

i∈S{eGi } | S ⊆ I, S finite} is a subbasis of neighbor-
hoods of e ∈∏i∈I Gi . We have

f −1
(
US ∩ lim←−

i

Gi

)
=
⋂
i∈S

Ni .

Since the latter is open, it follows that f is a continuous map.
Now, G is compact, so f (G) is a compact space too. Thus f (G) is a closed subset

of lim←−
i

Gi . Let ϕ = (ϕi )i∈I ∈ lim←−
i

Gi . Then ϕ(US ∩ lim←−
i

Gi ) is a basic open neighbor-

hood of ϕ. Let Nk :=
⋂

i∈S Ni and let σ ∈ G be such that σ mod Nk = ϕk ∈ G/Nk .
Then the diagram

G/Nk
fki

G/Ni

G

πk
πi

ϕk ϕi

σ

commutes for i ∈ S. Therefore σ mod Ni = ϕi . It follows that f (σ ) ∈ ϕ(US ∩
lim←−
i

Gi ). Hence f (G) is dense in lim←−
i

Gi and since f (G) is closed, we conclude that f

is onto. In particular, f is an algebraic isomorphism.
Finally, if T ⊆ G is closed, then T and f (T ) are compact. Therefore f (T ) is a

closed set in lim←−
i

Gi . It follows that f is a closed map and f is a homeomorphism.

Conversely, let {Gi , f j i } be a projective system where for all i ∈ I , Gi is a finite
group considered with the discrete topology.

Let G := lim←−
i

Gi . Then G is closed in
∏

i∈I Gi . Since each Gi is compact, it

follows by Tychonov’s theorem that
∏

i∈I Gi is a compact space. Therefore G is a
compact group. Also, since each Gi is a Hausdorff space, so is

∏
i∈I Gi , and G is

Hausdorff too.
Let V be an open neighborhood of e ∈ G. Then V = V ′∩lim←−

i

Gi , where V ′ an open

neighborhood of e ∈ ∏i∈I Gi . Therefore there exists a finite subset S ⊆ I such that
US =

∏
i �∈S Gi ×

∏
i∈S Hi ⊆ V ′ with Hi *Gi for each i ∈ S. Thus e ∈ US ∩ lim←−

i

Gi ⊆
V . It follows that

{
US ∩ lim←−

i

Gi | S ⊆ I finite
}
is a basis of neighborhoods of e ∈ G

and since US is a normal subgroup of
∏

i∈I Gi , we have US ∩ lim←−
i

Gi * lim←−
i

Gi . By

Theorem 11.3.13, it follows that G is a profinite group.
��

We have proved the following theorem:
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Theorem 11.3.16. Let G be a topological group. The following conditions are equiv-
alent

(i) G is a profinite group.
(ii) G is the inverse limit of finite groups.
(iii) G is a topological group that is Hausdorff, compact, and totally disconnected.
(iv) G is a topological group that is a Hausdorff compact space that contains a basis

of neighborhoods of e consisting of open normal subgroups of G. ��

Example 11.3.17. If G is a finite group, then G is a profinite group.

Example 11.3.18. Let I = N = {1, 2, . . . , }. We define n ≤ m ⇐⇒ n | m.
Let fm,n : Z/mZ −→ Z/nZ be the natural projection

a mod m �−→ a mod n.

Set Ẑ := lim←−
n∈N

Z/nZ. Then Ẑ is called the Prüfer ring. We have Ẑ <
∏∞

n=1 Z/nZ. Let

ϕ : Z −→ Ẑ
a �−→ (a mod n)n∈N. (11.6)

Let α = (αn)n∈Z ∈ Ẑ and let V be an open neighborhood of α. Then there exists

a finite set S ⊆ N such that W = α
((∏

n∈S{1} ×
∏

n �∈S Z/nZ
)
∩ Ẑ

)
⊆ V . Let

m =∏s∈S s. Then s ≤ m for all s ∈ S. Let a ∈ Z be such that a ≡ αm mod m.
Then a mod s ≡ αs mod s for all s ∈ S. Hence ϕ(a) ∈ W , and ϕ(Z) is dense

in Ẑ.
For n ∈ N, the map

θn : Ẑ −→ nẐ
x �−→ nx := x + · · · + x

is an algebraic and topological isomorphism. Thus nẐ ∼= Ẑ and therefore nẐ is open
and closed in Ẑ.

Conversely, let H < Ẑ be an open subgroup. Since Ẑ is compact, H is a closed
subgroup and [Ẑ : H ] = n <∞.

In particular, nẐ ⊆ H . Now the map ϕ given in (11.6) satisfies ϕ(nZ) ⊆ nẐ and
induces

Z
ϕ−→ Ẑ π−→ Ẑ/nẐ

ϕ̃ : Z −→ Ẑ/nẐ;

ϕ̃ is dense and Ẑ/nẐ is finite. Hence ϕ̃ is onto and kerϕ = nZ, so Z/nZ ∼= Ẑ/nẐ.
Therefore [Ẑ : nẐ] = [Z : nZ] = n = [Ẑ : H ],

Ẑ/nẐ −→ Ẑ/H
x mod nẐ �−→ x mod H
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is an epimorphism, and nẐ = H .
Therefore the open subgroups of Ẑ are the subgroups nẐ with n ∈ N.

Example 11.3.19. Let p ∈ N be a rational prime. For n ∈ N ∪ {0} := N0 and m ≤ n,
the natural projection

fn,m : Z/pnZ −→ Z/pmZ
x mod pn �−→ x mod pm

defines an inverse system. Set

Y := lim←−
n

Z/pnZ.

Let Zp =
{∑∞

n=0 an pn|an ∈ {0, 1, . . . , p − 1}
}
(see Example 2.3.7) and let

ϕ : Zp −→ Y
∞∑
n=0

an p
n �−→

( i∑
n=0

an p
n
)
i∈N0

.

Clearly, ϕ is a monomorphism of groups. If (αi )i∈N0 ∈ Y , then the class of αi in
Z/piZ contains an element xi such that 0 ≤ xi ≤ pi − 1. Put

xi =
i−1∑
n=0

ain p
n

with ain ∈ {0, 1, . . . , p − 1}. Since for i ≥ j , f j i (x j ) = xi , it follows that ain = a jn
for 0 ≤ n ≤ j . Set

an := ain for n ≤ i.

Then (αi )i∈N0 =
(∑i−1

n=0 an p
n
)
i∈N0

= ϕ
(∑∞

n=0 an pn
)
and ϕ is a group isomor-

phism.
Let V = ∏s∈S US ×

∏
n �∈S Z/pnZ be a basic open neighborhood, and S ⊆ N0 a

finite set. Let t = sup S. Then if α = (αi )i∈N0 ∈ V ∩ Y , we have

αt mod p
t ≡ a0 + a1 p + · · · + at−1 pt−1,

ϕ−1(
∏
s∈S
{αs} ×

∏
n �∈S

Z/pnZ) = (a0 + a1 p + · · · + at−1 pt−1)+ ptZp

is open in Zp, and ϕ−1(V ∩Y) is a finite union of such subsets. Thus ϕ is continuous.
Finally, ϕ is closed. Indeed, if T ⊆ Zp is closed, then T is compact and so is ϕ(T ).

Thus ϕ(T ) is closed in Y . We have

Zp ∼= lim←−
n∈N0

Z/pnZ
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algebraically and topologically.
As in Example 11.3.18, the open subgroups of Zp are precisely those of the form

pnZp with n ∈ N0.
Now let H be a closed subgroup of Zp.
If H �= (0), let x ∈ H be such that vp(x) is minimal and put vp(x) = n.
We haveZx = {mx | m ∈ Z} ⊆ H . Since H is closed, it follows thatZx = Zpx ⊆

H . We have x = a0 pn with vp(a0) = 0. Hence a−10 ∈ Zp and pn = a−10 x ∈ Zpx .
Thus pnZp ⊆ H . On the other hand, if y ∈ H \ {0}, we have vp(y) = m ≥ n,
so y = pmb0 = pn(pm−nb0) ∈ pnZp. Consequently H = pnZp. In particular, the
closed subgroups of Zp are {0} and pnZp for n ∈ N ∪ {0}.
Example 11.3.20. Let A be an abelian torsion group. Then for any a ∈ A there exists
n ∈ N such that na = 0. Let Q/Z = {x = x + Z | x ∈ Q} (we have Q/Z ∼= {ξ ∈ C |
ξm = 1 for some m ∈ N}). We define the Pontryagin dual of A as

χ(A) = Hom(A,Q/Z).

Then A =⋃i∈I Ai , where the union runs through all finite subgroups Ai of A.
We define i ≤ j ⇐⇒ A j ⊇ Ai . For i ≤ j , let

fi j : Ai −→ A j

be the natural injection
Let

φ j i : χ(A j )→ χ(Ai )

be given by φ j i (σ ) = σ ◦ fi j . Then
{
χ(Ai ), φ j i , I

}
is an inverse system. Note that

χ(Ai ) ∼= Âi ∼= Ai , where Âi denotes the group of characters of Ai .
Then χ(A) is isomorphic to lim←

i

χ(Ai ) (see Exercise 11.7.14).

11.4 Infinite Galois Theory

Definition 11.4.1. Let k be any field and k̄ the separable algebraic closure of k. The
Galois group Gal(k̄/k) =: Gk is called the absolute Galois group of k.

In general, Gk is an infinite group and the usual main theorem of Galois theory
does not hold anymore in the usual sense. The next example explains this difference.

Example 11.4.2. Let Fp be the finite field of p elements, andG = GFp = Gal(Fp/Fp).
Let

ϕ : Fp −→ Fp

x �−→ x p
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be the Frobenius automorphism. Let H = (ϕ) = {ϕn | n ∈ Z}. Note that if x ∈ FH
p ,

then ϕ(x) = x p = x , so x ∈ Fp. Therefore

Fp = FH
p = FGp .

We will now see that H �= G.
Let n ∈ N and write n = bn pvp(n), where (bn, p) = 1. Let xn, yn ∈ Z be such that

1 = bnxn + pvp(n)yn .

Define an = bnxn ∈ Z. If m divides n, then

m = bm p
vp(m) | bn pvp(n) = n,

so

bm | bn and vp(m) ≤ vp(n).
Now, an − am = bnxn − bmxm . Hence bm divides an − am and

an − am =
(
1− pvp(n)yn

)
−
(
1− pvp(m)ym

)
= pvp(m)ym − pvp(n)yn .

It follows that pvp(m) divides an − am , and

an ≡ am mod m whenever m divides n.

Now assume that there exists an integer a such that an ≡ a mod n for all n. If q is
any prime other than p and α ∈ N is arbitrary, consider n = qα . Then

an = qαxn ≡ a mod qα.

Thus qα divides a for all α, so a = 0. But
ap = p − 1 �≡ 0 mod p.

This contradiction shows that there does not exist a ∈ Z such that an ≡ a mod n for
all n.

Let ψn = ϕan |Fpn
∈ Gal(Fpn/Fp). If Fpm ⊆ Fpn , then m divides n, so an ≡

am mod m. Since o(ϕ|Fpm
) = m we have

ψn|Fpm
= ϕan |Fpm

= ϕam |Fpm
= ψm .

Let ψ ∈ G be defined as follows. If x ∈ Fp, then x ∈ Fpn for some n, and we put
ψ(x) = ψn(x). Clearly, ψ is a well-defined element of G. If ψ ∈ H = (ϕ), then
ψ = ϕa for some a ∈ Z. Then ψ |Fpn

= ϕan |Fpn
= ϕa |Fpn

. Hence an ≡ a mod n for
all n. This contradiction shows that H �= G but

FH
p = FGp .
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In order to establish the “right” main theorem of Galois theory we must take into
account the topological nature of the Galois group of an arbitrary Galois extension.

Let K/F be an algebraic, normal, and separable extension of fields, that is, a Ga-
lois extension. Let

K = {Ki | i ∈ I }
be the collection of all intermediate subfields Ki (F ⊆ Ki ⊆ K ) such that Ki/F is a
finite Galois extension. Then

K =
⋃
i∈I

Ki .

Let G := Gal(K/F) and Ni = Gal(K/Ki ). We have Ki = K Ni = {α ∈ K |
σα = α ∀ σ ∈ Ni }. Then:
(1) For i ∈ I, Ni * G and G/Ni ∼= Gal(Ki/F) is a finite group.
(2) For every i, j ∈ I, Nk := Ni ∩ N j satisfies that Nk *G and G/Nk is a finite group

(in fact, if Ki = K Ni and K j = K Nj , then Kk = K Ni K N j = K Ni∩N j ).
(3)

⋂
i∈I Ni = {1}.

We define a topology on G by taking the cosets

σNi , i ∈ I,

as a basis of neighborhoods of σ for each σ ∈ G.
Proposition 11.4.3. For the topology defined above, the multiplication and the inver-
sion maps

G × G
ϕ→ G G

i→ G
(σ, ϕ) �→ σψ σ �→ σ−1

are continuous.

Proof: The statement follows from the facts that ϕ−1(σψN j ) ⊇ σN j × ψN j and

i−1(σ−1N j ) = σN j

for all j ∈ I . ��

Definition 11.4.4. The topology defined above on G is called the Krull topology and
with this topology G becomes a topological group.

Theorem 11.4.5. The Galois group G = Gal(K/F) endowed with the Krull topology
is a profinite group. Moreover, we have

G ∼= lim←
i∈I

G/Ni ∼= lim←
i∈I
Gal(Ki/F)

algebraically and topologically, where Ni = Gal(K/Ki ) and Ki runs through the set
{Ki | F ⊆ Ki ⊆ K, and Ki/F is a finite Galois extension}.
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Proof: For each i ∈ I , denote by Gi the group Gal(Ki/F), which is isomorphic to
G/Ni .

We define a partial order ≤ in I by
i ≤ j ⇐⇒ Ki ⊆ K j or equivalently, i ≤ j ⇐⇒ Ni ⊇ N j .

Then I is a directed poset since if i, j ∈ I , the composite Kk := Ki K j is a finite
Galois extension of F and Ki , K j ⊆ Kk .

Now, if i ≤ j , let

φ j i : G j → Gi

σ �→ σ |Ki .
We have obtained an inverse system {Gi , φ j i , I } of finite Galois groups. Let

� : G −→ lim←−
i∈I

Gi ⊆
∏
i∈I

Gi

σ �−→ (σ |Ki )i∈I .
Clearly, � is a group homomorphism whose kernel is

⋂
i∈I Gi = {1}.

Now consider the following composition:

G
�−→ lim←−

i∈I
Gi

φi−→ Gi .

For each i ∈ I , φi ◦ � is continuous. Indeed, Gi is a finite group with the discrete
topology, so if A ⊆ Gi , we have

(φi ◦�)−1(A) =
⋃
a∈A
(φi ◦�)−1(a) =

⋃
a∈A

�−1(φ−1i (a))

=
⋃
a∈A
{σ ∈ G | σ |Ki = a} =

⋃
a∈A

aGal(K/Ki ) =
⋃
a∈A

aNi ,

which is open. It follows that if S ⊆ I is a finite set, then

�−1
((∏

i∈S
Ai ×

∏
i /∈S

Gi

)
∩ lim←

j∈I
G/N j

)
=
⋂
i∈S
(φi ◦�)−1(Ai )

is open. Therefore � is continuous.
Now we have

�(Ni ) =
(
lim←−
j∈I

Gi

)⋂[( ∏
K j �⊆Ki

Gi

)
×
( ∏
K j⊆Ki

{1} j
)]

and { j ∈ I | K j ⊆ Ki } is finite, so�(Ni ) is an open set. Therefore� is an open map.
Finally, if (σi )i∈I ∈ lim← Gi , let σ : K → K be such that σ(α) = σi (α) for

α ∈ Ki . Then σ is a well-defined element of G and �(σ) = (σi )i∈I . Thus � is a
group epimorphism. The result follows. ��
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Example 11.4.6. Assume q = pu for some prime number p and some u ∈ N. Let
Fq be the finite field of q elements. For each n, there exists a unique extension Fqn
of Fq , and Fqn/Fq is a cyclic extension. It follows that Fq =

⋃∞
n=1 Fqn and Gn :=

Gal(Fqn/Fq) ∼= Z/nZ. Therefore

Gal(Fq/Fq) ∼= lim←
n

Z/nZ ∼= Ẑ.

Example 11.4.7. Let q = pu as in Example 11.4.6 and let 	 be any prime number
(	 = p or 	 �= p). Let Tn := Fq	n .

Then Hn := Gal(Fq	n /Fq) ∼= Z/	nZ. If T	 =
⋃∞

n=0 Tn , then T	/Fq is a Galois
extension and

Gal(T	/Fq) ∼= lim←−Gal(Tn/Fq) ∼= lim←−Z/	nZ ∼= Z	.

Since T	 ⊆ Fq , if N	 = Gal(Fq/T	), then Z	 ∼= Ẑ/N	. By Exercise 11.7.16,

T	 ∩
⎛⎝∏
	′ �=	

T	′

⎞⎠ = Fq and
∏
	 prime

T	 = Fq .

Therefore

Ẑ ∼= Gal(Fq/Fq) ∼=
∏
	 prime

Gal(T	/Fq) ∼=
∏
	 prime

Z	.

Example 11.4.8. For each n ∈ N, let ζn denote a primitive nth root of 1 in C (for
example ζn = e2π i/n). Let Q(ζn) be the nth cyclotomic number field. Then

Gal(Q(ζn)/Q) ∼= Un = (Z/nZ)∗.

If n = pα11 · · · pαrr , then Un ∼=
r∏
i=1

Up
αi
i
. We have

U2 = {1}, U22 ∼= Z/2Z, U2α ∼= Z/2Z× Z/2α−2Z

for α ≥ 3 and

Upn ∼= Z/(p − 1)Z× Z/pn−1Z

for each odd prime p.
Let Q(ζ∞) :=

⋃∞
n=1 Q(ζn). Then

G∞ := Gal(Q(ζ∞)/Q) ∼= lim←−
n

Gal(Q(ζn)/Q).

If Q(ζp∞) :=
⋃∞

n=1 Q(ζpn ), where p is any prime, then
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Q(ζ∞) =
∏

p prime

Q(ζp∞) and Q(ζp∞) ∩
∏
q �=p

Q(ζq∞) = Q.

Therefore G∞ is isomorphic to
∏

p prime Gal(Q(ζp∞)/Q).
Now

Gal(Q(ζp∞)/Q) ∼= lim←
n

Gal(Q(ζpn )/Q) ∼= lim←
n

Upn

∼=
{

Z/2Z× Z2 if p = 2,
Z/(p − 1)Z× Zp if p > 2.

From Example 11.4.7, we obtain that

G∞ ∼= (Z/2Z×
∏
p>2

Z/(p − 1)Z)× Ẑ.

Now we are ready to state the main theorem in Galois theory

Theorem 11.4.9 (Fundamental Theorem in Galois Theory). Let K/F be a Galois
extension of fields with Galois group G = Gal(K/F). Set

F(K/F) = {L | L is a field and F ⊆ L ⊆ K }

and

S(G) = {H | H is a closed subgroup of G} .
Let

� : F(K/F)→ S(G) and � : S(G)→ F(K/F)

be defined by

�(L) = {σ ∈ G | σ |L = IdL} = Gal(K/L)

and

�(H) = {α ∈ K |σα = α ∀ σ ∈ H} = K H .

Then � and � are mutually inverse bijections. Furthermore, we have L1 ⊆ L2 if
and only if �(L1) ≥ �(L2), and H1 ≤ H2 if and only if �(H1) ⊇ �(H2).

Finally, if σ ∈ G and L ∈ F(K |F), then
Gal(K/σ L) = �(σ L) = σ�(L)σ−1 = σ Gal(K/L)σ−1.

In particular, L ∈ F(K/F) is a normal extension of F if and only if Gal(K/L) is
normal in G, and in this case, Gal(L/F) ∼= Gal(K/F)

Gal(K/L) .
The open subgroups of G correspond to the finite subextensions of K/F.



406 11 Introduction to Class Field Theory

Proof: It is easy to see that � and � reverse inclusions. By Theorem 11.4.5, �(L) =
Gal(K/L) is a profinite group, so �(L) is closed in G. Hence �(L) ∈ S(G).

Let L ∈ F(K/F). Then ��(L) = �(Gal(K/L)) = KGal(K/L) ⊇ L . Suppose
that y ∈ KGal(K/L). Then if f (x) = Irr(y, x, L), every root of f (x) is of the form σ y
for some σ ∈ Gal(K/L). Thus

f (x) = (x − y)n ∈ L[x].
Since K/F is a separable extension, we have n = 1 and y ∈ L . This shows that
��(L) = L .

Conversely, pick H ∈ S(G). Let L = �(H) = K H . Then ��(H) =
Gal(K/K H ) ⊇ H . To see that ��(H) = H , it suffices to show that H is dense
in Gal(K/L) since H is closed.

Let L ⊆ N ⊆ K be such that N/L is a finite Galois extension, and let τ ∈
Gal(K/L). We wish to show that

τ Gal(K/N ) ∩ H �= ∅.
If σ ∈ H , since σ |L = IdL and N/L is normal, we have σ(N ) = N .

Let H1 = {σ |N | σ ∈ H} ≤ Gal(N/L). Then NH1 ⊇ NGal(N/L) = L . If
α ∈ NH1 , then σα = α for all σ ∈ H . Hence α ∈ K H = L , and we have NH1 = L .
Using finite Galois theory, we obtain

H1 = Gal(N/L).
In particular, there exists σ ∈ H such that σ |N = τ |N , i.e., σ ∈ τ Gal(K/N ) ∩

H �= ∅. Therefore ��(H) = H . This shows that � and � are inverse bijections.
Now consider σ ∈ G and L ∈ F(K/F). Let �(L) = H = Gal(K/L) and

�(σ L) = H1 = Gal(K/σ L). We have θ ∈ H1 ⇔ θ(σα) = σα ∀ α ∈ L ⇔
(σ−1θσ )(α) = α ∀ α ∈ L ⇔ σ−1θσ ∈ H ⇔ θ ∈ σHσ−1. Thus H1 = σHσ−1.

When L/F is normal the group homomorphism

G = Gal(K/F) �→ Gal(L/F)

σ �→ σ |L
is onto because every F-automorphism of L can be extended to any algebraic exten-
sion. Since

ker� = {σ ∈ G | σ |L = IdL} = Gal(K/L)
we obtain that

Gal(L/F) ∼= Gal(K/F)

Gal(K/L)
.

Finally if H is an open subgroup, H is also closed and of finite index. ��
We have shown that the Galois group of any G extension is a profinite group.

(Theorem 11.4.5). We also know that any finite group G is the Galois group of a
certain Galois extension. Next we show that this is also true for an arbitrary profinite
group, or in other words, that the converse of Theorem 11.4.5 also holds.
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Theorem 11.4.10 (Leptin). Let G be any profinite group. Then there exists a Galois
extension of fields K/F such that

G ∼= Gal(K/F).
Proof: Consider any field E . Let T be the disjoint union of all the sets G/N , where N
runs through the collection of all open normal subgroups of G. We have

T :=
•⋃

N*G
[G:N ]<∞

G/N =
•⋃

N*G
[G:N ]<∞

( ⋃
θ∈G/N

θN

)
.

For each t ∈ T , define xt such that {xt }t∈T = T is an algebraically independent set
over E . Let K = E(T ) be the field of rational functions with indeterminates in T and
coefficients in E . Notice that G acts on T in a natural way: if σ ∈ G and θN ∈ G/N ,
then σ(θN ) = (σθ)N or σ(xt ) = xσ t , where t = θN and σ t = (σθ)N .

This action induces an action on K in a natural manner: if f ∈ K , then in the
expression of f appear only finitely many variables xt ∈ T . Then if σ ∈ G and
f = f (xt1 , . . . , xtn ), put

σ f = f (xσ t1 , . . . , xσ tn ).

Let F := KG = {α ∈ K | σα = α for all σ ∈ G}. Let α ∈ K and

Gα = {σ ∈ G | σα = α}.
Then Gα is a subgroup of G and if the indeterminates that appear in the expression

of α are {xti |ti ∈ G/Ni , 1 ≤ i ≤ m}, we have

Gα ⊇
n⋂
i=1

Ni = N .

Since each Ni is open, N is open too and thus [G : N ] < ∞. It follows that
Gα =

⋃
g∈Gα gN is open and [G : Gα] <∞.

The orbit of α is the finite set C(α) = {σα | σ ∈ G} containing [G : Gα] elements
(it is well known that

G/Gα → C(α)

gGα �→ gα

is a well defined bijection). Let fα(x) =
∏
σ̄∈G/Gα (x − σα).

Clearly, τ fα = fα for all τ ∈ G and thus fα(x) ∈ F[x]. It follows that α is alge-
braic over F and since the roots of fα are all distinct, K/F is an algebraic separable
extension. Now Irr(α, x, F) divides fα(x) and all the roots of fα(x) belong to K . Thus
K/F is a normal extension. (Furthermore, σα is a conjugate of α for all σ ∈ G, so
fα(x) = Irr(α, x, F) although we do not need this fact.)
Let H = Gal(K/F) and notice that G ⊆ H . Consider the natural injection
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i : G ↪→ H.

Let N be an open normal subgroup of H and let K N = {α ∈ K |σα = α for all
σ ∈ N }. By the fundamental theorem of Galois theory (Theorem 11.4.9), K N/F is a
finite Galois extension, say, K N = F(α1, . . . , αm). Then

i−1(N ) = G ∩ N ⊇
m⋂
j=1

Gα j

is an open set in G. It follows that i is continuous. Since G is compact, i(G) = G is
compact. Hence G is closed in H . Finally, K H = KG , so by Theorem 11.4.9, H = G.

��

Remark 11.4.11. Artin’s theorem establishes that if G is a finite group of automor-
phisms of a field L , then L/LG is a Galois extension with Galois group G. This theo-
rem is no longer true for a profinite group.

Example 11.4.12. Let G be any infinite profinite group and let F be any field. For each
g ∈ G, consider an indeterminate xg such that {xg}g∈G is algebraically independent
over F . Let E = F(xg | g ∈ G) be the rational function field on the variables {xg}g∈G
over F .

Then G acts on E naturally: if f (xg1 , . . . , xgn ) ∈ E and h ∈ G, then
h ◦ f (xg1 , . . . , xgn ) = f (xhg1 , . . . , xhgn ).

If α ∈ E \ F , we have α = f (xg1 , . . . , xgn ). Let h ∈ G \ {gi g−11 | 1 ≤ i ≤ n}.
Then hg1 /∈ {g1, . . . , gn} and h ◦ α �= α. Thus EG = F. Clearly E/F is not a Galois
extension.

In any case we establish a light version of Artin’s theorem for profinite groups.

Theorem 11.4.13 (Artin). Let L be any field and G any profinite group of automor-
phisms of L, i.e., G is a subgroup of {σ : L → L | σ is a field automorphism}.

Assume that for any α ∈ L, the stabilizer
Gα = {σ ∈ G | σα = α}

is of finite index in G. Then L/LG is a Galois extension with Galois group G.

Proof: The orbit of α is C(α) = {τα | τ ∈ G}, which is a finite set with [G : Gα] = n
elements. Let C(α) = {α1, . . . , αn} = {σ1α, . . . , σnα} and let f (x) =

∏n
i=1(x −

σiα).
Since τ f (x) = f (x) for all τ ∈ G we have f (x) ∈ K [x], where K = LG . Then

f (x) is a separable polynomial and all the conjugates of α are in L . It follows that
L/K is a Galois extension.

Let H = Gal(L/LG). Then G ⊆ H . Let i : G ↪→ H be the natural embedding. If
N is a normal subgroup of H , then [H : N ] <∞ and

[
LN : K

]
is a finite extension,
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say LN = K (α). Thus i−1(N ) = N ∩ G ⊇ ⋂n
j=1 Gα j , where α1, . . . , αn are the

conjugates of α. By Exercise 11.7.6, Gα j is open for all j and so is i
−1(N ). Therefore

i is a continuous map. Since G is compact, it follows that G is closed in H and K =
LG = LH . By Theorem 11.4.9, we have G = H . ��

11.5 Results on Global Class Field Theory

In this section and the next, we will not present the proofs of the stated results. We
present only the main results, since a systematic treatment is beyond the scope of this
book. The principal references are [17, 76, 90, 115].

In what follows K/k is a function field with k = Fq . Let L/K be a finite Galois
extension and S(L/K ) = {℘ | ℘ ∈ PK , ℘ is totally decomposed in L}. Then ℘ ∈
S(L/K ) if and only if

(
L/K
℘

)
= {1} (see Exercise 11.7.2).

Theorem 11.5.1 (Bauer). For two finite Galois extensions L1 and L2 of K , we have
S (L1/K ) ⊆ S (L2/K ) if and only if L2 ⊆ L1.

Proof.
(⇐�) This is immediate.
(�⇒) Let L = L1L2. Then S(L/K ) = S (L1/K ) and by the Čebotarev density
theorem (Theorem 11.2.20),

δ (S(L/K )) = 1

[L : K ]
= 1

[L1 : K ]
= δ (S (L1/K )) .

This implies that [L : K ] = [L1 : K ] and since L1 ⊆ L = L1L2, it follows that
L1 = L1L2, or, equivalently, L2 ⊆ L1. ��

Definition 11.5.2. The idele group JK of K is defined as

JK :=
{ (
. . . , x℘, . . .

) ∈ ∏
℘∈PK

K ∗℘ | x℘ ∈ ϑ∗℘ for almost all ℘
}
.

The group JK is provided with the following topology: a basis of open sets consists
of the subsets of the form

∏
℘∈PK

A℘ , where A℘ ⊆ K ∗℘ is open for all℘ and A℘ = ϑ∗℘
for almost all ℘ ∈ PK ([17, p. 62]). In other words, the topology of JK is generated
by the open sets

US =
∏
℘∈S

A℘ ×
∏
℘/∈S

ϑ∗℘,

where S is a finite set and S ⊆ PK , A℘ ⊆ K ∗℘ is open.
We have K ∗ ⊆ JK under the diagonal embedding and K ∗ is a discrete subgroup

of JK .
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Definition 11.5.3. We define the idele class group of K as CK = JK /K ∗.

Let S be a finite set of prime divisors of K such that for some extension L/K , S
contains all the ramified prime divisors. Let I S be the free abelian group generated by
the prime divisors ℘ /∈ S. In other words, I S = DK /〈S〉.

If L/K is an abelian extension with Galois group G and ℘ /∈ S,
(
L/K
℘

)
consists

of a unique element. This defines a function

ψL/K (℘) =
(
L/K

℘

)
from PK \ S into G.

Then ψL/K can be extended to

ψL/K : I
S −→ G, ψL/K

(
℘
a1
1 · · ·℘arr

) = ψL/K (℘1)a1 · · ·ψL/K (℘r )ar .
For x ∈ JK , we write (x)S =

∏
℘/∈S ℘v℘(x℘) ∈ I S .

Definition 11.5.4. We say that the reciprocity law holds for an abelian extension L of
K if there exists a homomorphism ψ : JK −→ Gal(L/K ) such that:

(i) ψ is continuous,
(ii) ψ (K ∗) = 1,
(iii) ψ(x) = ψL/K

(
(x)S

)
for x ∈ J SK =

{(
x℘
)
℘∈PK

| x℘ = 1, ℘ ∈ S
}
, where S

consists of the ramified prime divisors in L/K .

In this case K ∗ ⊆ kerψ . Therefore ψ can be viewed as ψ : CK = JK /K ∗ −→
Gal(L/K ).

Theorem 11.5.5. When there exists a map ψ satisfying the three conditions of Defini-
tion 11.5.4, it is unique.

Proof. See [17, Chapter 7, Section 4, Proposition 4.1, p. 169]. ��
The next theorem describes the global class field theory.

Theorem 11.5.6 (Takagi–Artin).

(i) Every finite abelian extension L/K satisfies the reciprocity law.
(ii) The Artin map ψL/K is surjective and its kernel is K ∗NL/K (JL), where NL/K is

the norm map. Therefore ψL/K induces an isomorphism from CK /NL/KCL onto
Gal(L/K ).

(iii) (Existence Theorem) For each open subgroup N of finite index in CK , there exists
a unique finite abelian extension L/K such that NL/KCL = N.

Proof. [17, Chapter 7, Section 5, Theorem 5.1, p. 172]. ��
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Remark 11.5.7. Since the reciprocity law holds for any finite extension L/K we have
the map

φL/K : J → Gal(L/K ).

By the universal property of inverse limits, we have the reciprocity law homomor-
phism φ:

φ : J → Gal
(
Kab/K

)
,

where Kab is the maximal abelian extension of K . Thus

Kab =
⋃

L/K finite
abelian

L , Gal
(
Kab/K

) ∼= lim←
L

Gal(L/K ),

where φ is the unique homomorphism given by φL/K . We have kerφ = K ∗.

11.6 Results on Local Class Field Theory

Here we consider the completion K℘ of a congruence function field K at a prime
divisor ℘. Recall that K℘ is of the form k((π)) for some finite field k. In this section
K will denote a field of the form k((π)), where k is a finite field.

Theorem 11.6.1. If L/K is a finite abelian extension, there exists a function ψL/K :
K ∗ −→ Gal(L/K ), ψL/K (a) = (a, L/K ), that induces an isomorphism between
K ∗/NL/K L∗ and Gal(L/K ). ��

Definition 11.6.2. The map ψL/K of Theorem 11.6.1 is called Artin’s local map.

Theorem 11.6.3 (Existence Theorem). If H ⊆ K ∗ is an open subgroup of finite
index, then there exists a unique abelian extension L/K such that H = NL/K L∗.
Furthermore, if L1 and L2 are finite extensions of K ∗ we have NL/K L∗1 ⊇ NL/K L∗2 if
and only if L1 ⊆ L2. ��

11.7 Exercises

Exercise 11.7.1. Let K/k be a congruence function field, 	/k a finite extension, L =
K	. If P ∈ PL and p = P ∩ K , prove that ϑP = ϑp	.

Exercise 11.7.2. Let L/K be a finite Galois extension of congruence function fields.
Let p ∈ PK be an unramified prime divisor. Show that p splits completely in L/K if

and only if
(
L/K

p

)
= 1.
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Exercise 11.7.3. For a finite Galois extension of congruence function fields L/K set
S(L/K ) = {p ∈ PK | p splits completely in L/K }. Prove that if L and L ′ are
two finite Galois extensions of a congruence function field K such that S(L/K ) and
S(L ′/K ) differ by only finitely many elements, then L = L ′.

Exercise 11.7.4. With the notation of Exercise 11.7.3, prove that the Dirichlet density
of S(L/K ) is equal to 1

[L:K ] .

Exercise 11.7.5. If U is an open subgroup of a profinite group G, show that U is
closed.

Exercise 11.7.6. Let G be a profinite group and let [G : H ] < ∞. Prove that H is
open and closed in G.

Exercise 11.7.7. Give an example of nonempty topological spaces Ai such that
lim←
i

Ai = ∅.

Exercise 11.7.8. Prove that if Ai is a group for all i , and ϕ j i : A j → Ai is a group
homomorphism, then lim←

i

Ai �= ∅.

Exercise 11.7.9. Let
(
Ai , ϕ j i , I

)
be such that each Ai is a nonempty compact Haus-

dorff topological space and ϕ j i is a surjective morphism for each i, j ∈ I . Prove that

ϕ j : lim←
i

Ai → A j

is a surjection for all j ∈ I .

Exercise 11.7.10. Let G be any group. Let A := {
N | N � G,

∣∣G/N ∣∣ < ∞}. If
N ,M ∈ A we define

N ≤ M ⇐⇒ M ⊆ N .

Put GN := G/N . Define

ϕMN : GM → GN

g mod M �→ g mod N .

Then
{
GN , ϕMN ,A

}
is an inverse system. Let

Ĝ := lim←
N

GN = lim←
N

G/N .

Ĝ is called the completion of G. Show that there exists a canonical group homomor-
phism φ : G → Ĝ and that Ĝ is a complete topological space. Show that φ(G) is
dense in Ĝ. Is φ necessarily a monomorphism?
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Exercise 11.7.11. Prove that if G is a finite group, then G is also a profinite group that
is isomorphic to its own completion.

Exercise 11.7.12. Let G be any group and p a prime number. Set

Ap :=
{
N | N � G,

∣∣G/N ∣∣ = pn <∞, n ∈ N ∪ {0}}.
Let Ĝ p := lim←

N∈Ap

G/N . Is it true that Ĝ ∼=∏p prime Ĝ p?

Exercise 11.7.13. If G = Zp, what is Ĝ	 for 	 a prime number? Consider the cases
	 = p and 	 �= p (see Exercise 11.7.12).

Exercise 11.7.14. In Example 11.3.20 show that χ(A) ∼= lim←
i

χ
(
Ai
)
.

Exercise 11.7.15. Prove that χ
(
Q/Z

) ∼= Ẑ and that χ
(
Qp/Zp

) ∼= Zp. Also show that
χ
(
Zp
) ∼= Qp/Zp.

Exercise 11.7.16. Let p be a prime number and q = pu for some u ∈ N. Let 	 be
another prime number, not necessarily distinct from p, and set T	 :=

⋃∞
n=0 Fq	n .

Prove that

T	 ∩
( ∏
	′ �=	

T	′
)
= Fq and F̄q =

∏
	 prime

T	.

Exercise 11.7.17. Let Gn : =
(
Rx/
(
xn+1
))∗

F∗q
where Rx = Fq [x] is the ring of polyno-

mials in one variable. For n ≤ m, consider the natural epimorphism

ϕm,n : Gm → Gn .

Then
{
Gn, ϕm,n,N

}
is an inverse system. Prove that

G∞ := lim←
n

Gn ∼=
{
f (x) ∈ Fq [[x]] | f (0) = 1

}
,

where Fq [[x]] is the formal power series in one variable over Fq .

Exercise 11.7.18. Let K be a local field that is complete with respect to a discrete
valuation v whose residue class field is finite. Let ϑ be the ring of integers and p the
maximal ideal. Prove that

ϑ
ϕ∼= lim←

n

ϑ/pn

a �→ (∏
n

a mod pn
)

where

ϕm,n : ϑ/pm → ϑ/pn

a mod pm �→ a mod pn

is the natural map for m ≥ n. In particular, ϑ is a profinite ring.



414 11 Introduction to Class Field Theory

Exercise 11.7.19. With the notation of Exercise 11.7.18, the group of units U of ϑ is
closed in ϑ , hence Hausdorff and compact. Furthermore, the subgroupsU (n) := 1+pn

form a basis of neighborhoods of 1 ∈ U . Prove that
U ∼= lim← U/U (n)

and conclude that U is a profinite group.

Exercise 11.7.20. Let K/F be any Galois extension of fields with Galois group G =
Gal(K/F). Let H be a subgroup of G. Prove that K H = K H̄ , where K A := {α ∈ K |
σα = α ∀ σ ∈ A} and H̄ denotes the closure of H .

Exercise 11.7.21. In this exercise, the Mi ’s could be other structures such as groups
or fields. Let I be a direct poset and (Mi )i∈I a family of A-modules, where A is a
commutative ring with unit. For i ≤ j , let µi j : Mi → Mj be an A-homomorphism
and assume that the set of µi j ’s satisfies:

(i) µi i = IdMi for all i ∈ I .
(ii) µik = µ jk ◦ µi j whenever i ≤ j ≤ k.

Then (Mi , µi j , I ) is a direct system. SetC =
⊕

i∈I Mi and let D be the submodule
ofC generated by the elements of the form xi−µi j (xi )with i ≤ j . Let M = C/D. Let
µ : C → M be the projection and let µi = µ|Mi . Then (Mi , µi , I ), µi : Mi → M , is
called the direct limit of the system (Mi , µi j , I ) and we write M := lim−→

i

Mi . We have

µi = µ j ◦ µi j if i ≤ j .
Prove that every element M can be written as µi (xi ) for some i ∈ I and some

xi ∈ Mi .

Exercise 11.7.22. Prove that if µi (xi ) = 0, there exists j ≥ i such that µi j (xi ) = 0
in Mi .

Exercise 11.7.23. Show that the direct limit satisfies the following universal property.
Let P be an A-module such that for each i ∈ I , there exists an A-module homomor-
phism αi : Mi → P such that αi = α j ◦ µi j whenever i ≤ j . Then there exists a
unique homomorphism α : M → P satisfying αi = α ◦ µi for all i ∈ I .

Conclude that the direct limit is unique up to isomorphism.

Exercise 11.7.24. Let (Mi )i∈I be a family of A-submodules of an A-module such that
for every i, j ∈ I , there exists k ∈ I such that Mi + Mj ⊆ Mk . Define i ≤ j to mean
Mi ⊆ Mj and let µi j : Mi → Mj be the natural embedding. Show that

lim−→
i∈I

Mi =
∑
i∈I

Mi =
⋃
i∈I

Mi .

Exercise 11.7.25. Assume that L/K is a Galois extension, L =⋃i∈I Ki , where [Ki :
K ] <∞, Ki/K is a Galois extension, and L = lim−→

i∈I
Ki . Prove that

Gal(L/K ) = Gal(lim−→
i∈I

Ki/K ) ∼= lim←−
i∈I
Gal(Ki/K ).
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Cyclotomic Function Fields

12.1 Introduction

As we have seen, there is a close analogy between algebraic number fields and alge-
braic functions, and this analogy is even more pronounced if we consider the case of
congruence function fields, that is, when the field of constants is finite.

Since the nineteenth century, it is well known that every abelian extension of Q
is contained in a cyclotomic extension. This result is known as the Kronecker–Weber
theorem. In other words, the maximal abelian extension of Q is

⋃∞
n=1 Q(ζn), where

ζn = eeπ i/n . Note that ζn is a torsion element of Z acting on Q∗, where Q denotes an
algebraic closure of Q. More precisely, Q∗ is a multiplicative abelian group, that is, a
Z-module. The torsion of Q is M = tor Q∗ = {ζ ∈ Q∗ | ζ n = 1, some n ∈ N} =
roots of 1. Therefore Q(M) is the maximal abelian extension of Q.

If we want to describe something similar for function fields, the role of Q must
be played by k(T ), where k is a finite field, |k| = q, and T is a variable. The role of
Z will then be played by k[T ]. This choice is not canonical since k(T ) = k

( aT+b
cT+d

)
,

ad − bc �= 0, a, b, c, d ∈ k, and the corresponding ring of polynomials is k
[ aT+b
cT+d

]
.

Here the infinite prime is different in each case. In the case of Z, the infinite prime
is canonical and it corresponds to the unique archimedean valuation of Q. Fur-
thermore, for n ∈ N, k(T 1/n) and k(T n) are rational function fields over k and[
k(T 1/n) : k(T )

] = n = [
k(T ) : k(T n)

]
. Notice that the case of a rational congru-

ence function field k(T ) differs from that of Q in the following sense: If A ⊆ Q is a
field, then A = Q and if B is an overfield of Q strictly containing Q, then Q is not
isomorphic to B. This is not the case for k(T ).

Using the ideas of Carlitz [14], Hayes [61] gave a description for the class field
theory of a rational function field over the finite field k similar to that of Q. In the rest
of this chapter we describe the work of Carlitz and Hayes.



416 12 Cyclotomic Function Fields

12.2 Basic Facts

As usual, let k = Fq be the finite field of cardinality q. Let K be a rational function
field over Fq , K = Fq(T ), and let RT = Fq [T ]. Here K will play the role of Q and
RT the role of Z. Let K̄ be an algebraic closure of K and set

A = EndFq(K̄ ) ={ϕ : K̄ → K̄ | ϕ(a + b) = ϕ(a)+ ϕ(b),
ϕ(αa) = αϕ(a) ∀ α ∈ Fq and ∀ a, b ∈ K̄ }.

Thus, A is the Fq -algebra (meaning an Fq -module that has a ring structure) consisting
of the Fq -endomorphisms of the abelian additive group of K̄ .

We consider two special elements of A.

Definition 12.2.1.

(i) Let ϕ ∈ A be the Frobenius automorphism of K̄/Fq , that is, ϕ : K̄ → K̄ is given
by u �→ uq .

(ii) Denote by µT the element of A that acts as multiplication by T , that is, µT : K̄ →
K̄ is given by u �→ Tu.

Given any f (T ) ∈ RT , the substitution T → ϕ + µT in f gives an element of A.
In other words, if f (T ) = anT n + · · · + a1T + a0 then

f (ϕ + µT )(u) = an(ϕ + µT )n(u)+ · · · + a1(ϕ + µT )(u)+ a0(u)

for all u ∈ K . Thus we obtain a map ξ : RT → A given by ξ(T ) = ϕ + µT , and
ξ( f (T )) = f (ϕ + µT ). It is easy to see that ξ is a ring homomorphism. Therefore ξ
provides K̄ with the structure of a RT -module.

Remark 12.2.2. We have

(ϕ ◦ µT )(u) = ϕ(Tu) = T quq ,

(µ
q
T ◦ ϕ)(u) = µqT (uq) = T quq .

Therefore ϕ ◦ µT = µqT ◦ ϕ. In particular, ϕ ◦ µT �= µT ◦ ϕ.

Notation 12.2.3. If u ∈ K̄ and M ∈ RT we write uM = M(ϕ + µT )(u). That is,
M ◦ u = ξ(M)(u) = M(ϕ + µT )(u).
Remark 12.2.4. For α ∈ Fq , we have uα = αu, so the RT -action preserves the Fq -
algebra structure of the algebraic closure of K .

For u ∈ K and M, N ∈ RT , we have

uM+N = uM + uN and uMN = (uM )N .
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Theorem 12.2.5. If M = adT d + ad−1T d−1 + · · · + a1T + a0 with ad �= 0, then

uM =
d∑
i=0

[
M

i

]
uq

i
,

where

[
M

i

]
is a polynomial of RT of degree (d − i)qi . Furthermore, we have

[
M

0

]
= M,

[
M

d

]
= ad and

[
M

i

]
= ai +

d∑
n=i+1

anhn(i, T )

where each hn(i, T ) =
∑
0≤ j1≤ j2≤···≤ jn−i≤i T

q j1+q j2+···+q jn−i is a polynomial of de-
gree (n − i)qi (here we put j0 = 0).
Proof. First we consider the case uT

n
. We will prove by induction on n that

uT
n =

n−i∑
i=0

⎛⎝ ∑
0≤ j1≤ j2≤...≤ jn−i≤i

T q
j1+q j2+···+q jn−i

⎞⎠ uq
i + uq

n
,

i.e.,

uT
n =

n−1∑
i=0

hn (i, T ) u
qi + uq

n
. (12.1)

For n = 1 we have uT = (ϕ + µT )(u) = uq + Tu = Tu + uq and

n−1∑
i=0

hn(i, T )u
qi + uq

n = h1(0, T )u
q0 + uq ,

h1(0, T ) =
∑

0≤ j1≤···≤ j1= j1−0≤0
T (q

j1+···+q j1−0 ) = T q
0 = T 1 = T .

Thus (12.1) holds for n = 1. Assume that (12.1) holds for a given n ≥ 1. For n+1
we have

uT
n+1 = (uT n )T = (µT + ϕ)(uT n ) = TuT

n + (uT n )q

=
n∑
i=0

⎛⎝ ∑
0≤ j1≤···≤ jn−i+1≤i

T q
j1+···+q jn−i+1

⎞⎠ uq
i + uq

n+1
.

Thus uT
n+1 = ∑n

i=0 hn+1(i, T )uq
i + uq

n+1
and (12.1) holds for uT

n+1
. Define

hn(i, T ) = 1 if i = n and hn(i, T ) = 0 if i > n.

Now M = a0 + a1T + · · · + adT d =
d∑

n=0
anT n , where ad �= 0. Hence



418 12 Cyclotomic Function Fields

uM = u
∑d

n=0 anT n =
d∑

n=0
anu

T n =
d∑
i=0

(
d∑

n=0
anhn(i, T )

)
uq

i
.

Therefore for 0 ≤ i ≤ d − 1, we have[
M

i

]
=

d∑
n=0

anhn(i, T ) =
d∑
n=i

anhn(i, T )

= ai +
d∑

n=i+1
anhn(i, T ).

Finally, [
M

0

]
=

d∑
n=0

anhn(0, T ) =
d∑

n=0
anT

n = M,

[
M

d

]
=

d∑
n=0

anhn(d, T ) = adhd(d, T ) = ad . ��

Remark 12.2.6. It is easy to see that if

[
M

i

]
= 0 for i < 0 and i > degM , then[

αM + βN
i

]
= α

[
M

i

]
+ β

[
N

i

]
for α, β ∈ Fq ,[

T d+1

i

]
= T

[
T d

i

]
+
[
T d

i − 1
]q
.

Remark 12.2.7. It turns out that in spite of the fact that the action uM is technically
complicated, it is the counterpart in Q∗ to exponentiation.

More precisely, Z acts on Q∗ = Q \ {0} as follows: For n ∈ Z and u ∈ Q∗, put
nu = un . The cyclotomic number fields correspond to {u ∈ Q̄∗ | un = 1} = {ζ an }n−1a=0,
where ζn = e2π i/n .

Q

Z Q

K

RT = Fq [T ] K = F1(T )

In our case RT acts on K by exponentiation: For M ∈ RT and u ∈ K , we have
M ◦ u = uM . The cyclotomic function fields will correspond to {u ∈ K | uM = 0}.
Definition 12.2.8. Let�M be the set of elements in K̄ corresponding to the M-torsion
of K . Thus

�M = {u ∈ K̄ | uM = 0} is the set of zeros of the polynomial uM in u.
�M is called the Carlitz–Hayes module of M.
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Now RT is a commutative ring, so if u ∈ �M and N ∈ RT , we have

N ◦ u = uN ∈ �M

since M ◦ uN = (uN )M = uNM = (uM )N = 0N = 0. Therefore we obtain the
following result:

Proposition 12.2.9. �M is an RT -submodule of K . ��

Remark 12.2.10. If α ∈ Fq \ {0}, we have �M = �αM since
λαM = (λM )α = αλM = 0⇐⇒ λM = 0.

Proposition 12.2.11. Considered as a polynomial in u over K , uM is a separable
polynomial of degree qd , where d = degM. Therefore �M is a finite set with qd

elements. Furthermore, �M is a vector space of dimension d over Fq .

Proof. We have uM = ∑d
i=0

[
M

i

]
uq

i
. Thus d

du (u
M ) =

[
M

0

]
= M �= 0, where

d
du (u

M ) is constant with respect to u. It follows that uM is a separable polynomial of
degree qd , and |�M | = degu u

M = qd . Finally, since �M is an Fq -module, we have
dimFq �M = d . ��

Remark 12.2.12. Over Q we have �n = {ξ ∈ Q∗ | ξn = 1} = Wn ∼=
∏r

i=1Wp
αi
i
,

where n = pα11 · · · pαrr , p1, . . . , pr are rational primes, and Ws denotes the group of
sth roots of 1. Thus �n is Z-cyclic.

One would think intuitively that the same happens over K̄ , i.e.,

�M = {u ∈ K | uM = 0} ∼=
r∏
i=1
�P

αi
i
,

where M = ∏r
i=1 P

αi
i , P1, . . . , Pr are irreducible polynomials in RT , and �M is

RT -cyclic. It turns out that this is true.

Proposition 12.2.13. If M =∏i
i=1 P

αi
i , then �M ∼=

⊕r
i=1�P

αi
i
as RT -modules.

Proof.We know that �M is an RT -module and RT is a principal ideal domain. Every
torsion RT -module A decomposes as A =

⊕
P A(P), where the sum runs over all

prime elements of RT and A(P) = {a ∈ A | Pn ◦ a = 0 for some n ∈ N}.
For A = �M , we have (see Exercise 12.10.4)

A(P) =
{
0 if P �∈ {P1, . . . , Pr },
�P

αi
i

if P = Pi .

Thus �M ∼=
⊕r

i=1�P
αi
i
. ��
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Proposition 12.2.14. Assume that M = Pn for some irreducible polynomial P ∈ RT
and some positive integer n. Then �M is a cyclic RT -module.

Proof.We proceed by induction on n. For n = 1, let ξ be a nonzero element of �P .
Define φ : RT → �P given by N �→ ξ N . Notice that φ �= 0 since φ(1) = ξ1 = ξ �=
0. On the other hand, φ(P) = ξ P = 0, so P ∈ kerφ and (P) ⊆ kerφ. Now since RT
is a principal ideal domain and P is a nonzero irreducible polynomial, it follows that
(P) is a maximal ideal. Hence

(P) ⊆ kerφ � RT and (P) = kerφ.
(We might also proceed as follows: If N �∈ (P), we have (P, N ) = 1. Let A, B ∈ RT
be such that 1 = AP + BN . If φ(N ) = 0 = ξ N we have ξ = ξ1 = ξ PA+N B =
(ξ P )A + (ξ N )B = 0+ 0 = 0.) Returning to our proof, we obtain

RT /(P) ∼= RT / kerφ ∼= φ(RT ).
On the other hand, we have |φ(RT )| = |RT /(P)| = qd = |�P |. Hence φ(RT ) = �P

and �P is isomorphic to RT /(P). Finally, for any S ∈ RT , RT /(S) is a cyclic RT -
module (because 1 is a generator). Thus �P is RT -cyclic (or simply �P = φ(RT ) =
{ξ N |N ∈ RT } = 〈ξ〉).

Now for any n ∈ N we consider

θ : �Pn+1 → �Pn

u �→ uP .

Then θ is an RT -homomorphism and ker θ = �P .
It follows that �Pn+1/�P is isomorphic to θ(�Pn+1) and

|θ(�Pn+1)| =
∣∣�Pn+1/�P

∣∣ = qd(n+1)

qd
= qnd = |�Pn |.

Therefore θ is onto and �Pn+1/�P ∼= �Pn .
Let λ ∈ �Pn+1 be such that λ

P = θ(λ) generates �Pn . We will prove that λ
generates �Pn+1 .

Let u ∈ �Pn+1 . Then θ(u) = uP = θ(λ)A = λPA for some A ∈ RT . It follows

that u − λA ∈ �P = ker θ . Since θ(λP
n
) = λPn+1 = 0, λP

n
belongs to �P . Now

λP generates �Pn , so (λP )P
n−1 = λPn �= 0. It follows from the case n = 1 (or the

fact that �P is a 1-dimensional RT /(P)-vector space) that λP
n
is a generator of �P .

Therefore there exists B ∈ RT such that u−λA = λPn B , so u = λA+Pn B ∈ 〈λ〉. Thus
λ generates �Pn+1 as an RT -module and �Pn+1 is a cyclic RT -module. ��

Corollary 12.2.15. Let P be an irreducible polynomial in RT . Then:

(i) �P is a one-dimensional RT /(P)-vector space whose scalar product is given by
uN+(P) = uN for each u ∈ �P and N ∈ RT .

(ii) For n ∈ N, we have �Pn ⊆ �Pn+1 and �Pn+1/�P ∼= �Pn .
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(iii) Given n ∈ N, if λ ∈ �Pn+1 is such that λ
P generates �Pn , then λ generates

�Pn+1 . Conversely, if λ generates �Pn+1 , then λ
P generates �Pn . ��

Corollary 12.2.16. Let M be a nonzero element of RT and let M = αPn11 · · · Pnrr
be its factorization in RT in terms of irreducible monic polynomials. For each i =
1, . . . , r , let λi be a generator of �Pni

. Then �M is a cyclic RT -module and λ1 +
· · · + λr is a generator of �M.

Proof.We have�M =
⊕r

i=1�P
αi
i
. Each�P

αi
i
is a cyclic RT –module and�P

αi
i
is the

Pi th primary component of �M . The result follows. ��
A more precise version of Corollary 12.2.16 is the following.

Theorem 12.2.17. For each M ∈ RT \{0}, the RT -module�M is canonically isomor-
phic to RT /(M). In particular, �M is a cyclic RT -module.

Proof. If λ is a generator of�M , define θ : RT → �M given by A �→ λA. Then θ is an
epimorphism of RT -modules and �M ∼= RT / ker θ , where ker θ = {A ∈ RT | λA =
0} = ann(λ) = ann(�M ).

Clearly, M ∈ ker θ since λM = 0 (λ ∈ �M ). Thus (M) ⊆ ker θ . On the other
hand, |�M | = |RT /M | = qd , where d = degM . Therefore ker θ = (M) and �M is
isomorphic to RT /(M). ��

Definition 12.2.18. For M ∈ RT \ {0} we define �(M) as the order of the group
of units of RT /(M), that is, �(M) = ∣∣(RT /(M))∗∣∣. Equivalently �(M) =
|{N ∈ RT |(N ,M) = 1, deg N < degM}|.
Remark 12.2.19. � is the analogue of the Euler function φ on N, defined for n ∈ N by
φ(n) = |{m ∈ N|(m, n) = 1,m < n}|.
Proposition 12.2.20. For M, N ∈ RT , we have:

(i) If (M, N ) = 1, then �(MN ) = �(M)�(N ).
(ii) If P ∈ RT is irreducible, then �(P) = qd − 1, where d = deg P.
(iii) If P ∈ RT is irreducible, then

�(Pn) = |RT /(Pn−1)|�(P) = qnd − q(n−1)d ,

where d = deg P.
Proof. Exercise 12.10.5. ��

Proposition 12.2.21. The RT -cyclic module�M contains precisely�(M) generators.
In fact, if λ is any generator of �M, then for A ∈ RT , λA is a generator if and only if
(A,M) = 1.
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Proof. Let λ be a generator of�M . If (A,M) = 1, let ξ ∈ �M and let B ∈ RT be such
that ξ = λB . Let S,U ∈ RT be such that SA + UM = 1. Then B = SAB + UMB.
It follows that

ξ = λB = λSAB+UMB = λSAB + (λM )UB = (λA)SB + 0 = (λA)SB .

Thus λA is a generator of �M .
Conversely, if λA is a generator of�M , then there exists B ∈ RT such that λAB =

λ. Hence λAB−1 = 0. Since λ is a generator it follows that if λC = 0 for some
C ∈ RT , then M divides C . Therefore M divides AB − 1. Thus AB ≡ 1 mod M and
(A,M) = 1. ��

12.3 Cyclotomic Function Fields

Let RT = Fq [T ] and K = Fq(T ) as before.

Definition 12.3.1. The pole divisor p∞ of T in K , defined by (T )K = p0
p∞ , is called

the infinite prime in K .

Definition 12.3.2. Let M ∈ RT \{0}. The field K (�M ) generated over K by adjoining
�M = {u ∈ K̄ | uM = 0} is called the cyclotomic function field determined by M
over K .

Proposition 12.3.3. K (�M )/K is a Galois extension.

Proof. Since �M ∼= RT /(M), which is a cyclic RT -module generated by λ, we have
λRT = �M = {λA|A ∈ RT }, so K (�M ) = K (λ). Indeed, any element ξ ∈ �M is of
the form λA for some A ∈ RT and

ξ = A(µT + ϕ)(λ) ∈ K (λq , {T Sλ}) = K (λ).

Finally, since K (�M ) is the decomposition field of the separable polynomial F(u) =
uM ∈ K [u], it follows that K (�M )/K is a Galois extension. ��

Remark 12.3.4. Let M(T ) = adT d + · · · + a1T + a0. Then

uM = adu
qd +

[
M

d − 1
]
uq

d−1 + · · · +
[
M

1

]
uq + Mu ∈ RT [u],

uM = ad
[
uq

d + · · · + a−1d Mu
]

with uq
d + · · · + a−1d Mu ∈ RT [u] and the leading coefficient is 1. It follows that the

elements of �M are integral over RT .

Definition 12.3.5. We will denote the Galois group of K (�M )/K by GM , i.e., GM =
Gal (K (�M )/K ).
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Proposition 12.3.6. The action of GM over K (�M ) commutes with the action of RT .
In other words, if u ∈ K (�M ), σ ∈ GM, and N ∈ RT , then σ(uN ) = σ(u)N .
Proof. Let u ∈ K (�M ). First note that uN ∈ K (�M ) since if u =

∑r
i=1 aiui with

ai ∈ K and ui ∈ �M , we have uN =
∑r

i=1 a
N
i u

N
i , where a

N
i ∈ K and uNi ∈ �M .

Therefore uN ∈ K (�M ). Now

σ(uN ) = σ
(
deg N∑
i=0

[
N

i

]
uqi

)
=
deg N∑
i=0

[
N

i

]
σ(u)q

i = σ(u)N . ��

When the fields under consideration are number fields, if Q(ζn)/Q is the cyclo-
tomic extension, we have Gal (Q(ζn)/Q) ∼= Un = (Z/nZ)∗. The analogue for func-
tion fields would be

Gal(K (�M )/K ) ∼= (RT /(M))∗ = GM .

We will see that this is indeed the case.

Proposition 12.3.7. The group GM is a subgroup of (RT /(M))∗. In particular,
K (�M )/K is an abelian extension and

[K (�M ) : K ] ≤ �(M) =
∣∣(RT /(M))∗∣∣ .

Proof. Since K (�M ) = K (λ), an element σ of GM is determined by its action on λ.
Now, σλ is a conjugate of λ, so σ(λ) ∈ �M and σ(λ) = λA for some A ∈ RT . We
will show that σλ must be a generator of �M .

If ξ ∈ �M , then σ−1(ξ) ∈ �M , so σ−1(ξ) = λB for some B ∈ RT . Hence
ξ = (σλ)B . Therefore σλ is a generator of �M and it follows that (A,M) = 1.
Thus A mod M ∈ (RT /(M))∗. To see that A does not depend on λ, let λ1 be another
generator of �M , say λ1 = λB for some B ∈ RT . Then

σλ1 = σ(λB) = σ(λ)B = λAB = (λB)A = λA1 .

Now, if σ(λ) = λA = λA1 , we have λA−A1 = 0. Thus A − A1 ∈ (M) and A ≡
A1 mod M .
Define θ : GM → (RT /(M))∗ given by σ �→ A mod M where σλ = λA.
If � ∈ GM , we have �(λ) = λB and (� ◦ σ)(λ) = �(λA) = λAB . Hence

θ(�σ) = AB mod M = θ(�)θ(σ ). Therefore θ is a group homomorphism.
Finally, if θ(σ ) = 1 mod M , we have σ ∈ ker θ and σλ = λ1 = λ, so σ = Id and

θ is a monomorphism. It follows that

GM ⊆ (RT /(M))∗ and |GM | = [K (�M ) : K ] ≤
∣∣(RT /(M))∗∣∣ = �(M).

Since (RT /(M))∗ is abelian, GM is abelian too and the proof is complete. ��
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Definition 12.3.8. Let S ∈ RT be a monic polynomial. We define the S-cyclotomic
polynomial or the cyclotomic polynomial with respect to S by

�S(u) =
∏

(B,S)=1
deg B<deg S

(u − λBS ),

where λS is a generator of �S . We have �S(u) ∈ K (�S)[u].

Proposition 12.3.9. For any monic polynomial S ∈ RT we have �S(u) ∈ K [u].

Proof. Let σ ∈ GS = Gal(K (�S)/K ). Then σ(λS) = λAS , with (A, S) = 1. There-
fore σ(�S(u)) =

∏
(B,S)=1

deg B<deg S
(u − λABS ). Now (A, S) = 1 and (B, S) = 1 imply

(AB, S) = 1. If AB = QS + B1 with deg B1 < deg S, then λABS = λB1S . Similarly,
if AB = Q1S + B1 and AC = Q2S + C1 with deg B1 < deg S and degC1 < deg S,
then AB ≡ AC mod S implies B1 ≡ C1 mod S.

Therefore
∏

(B,S)=1
deg B<deg S

(u − λABS ) = ∏ (B1,S)=1
deg B1<deg S

(u − λB1S ) = �S(u). It follows

that σ(�S(u)) = �S(u) for all σ ∈ GS , and hence �S(u) ∈ K [u]. ��

Remark 12.3.10. We have deg�S(u) = �(S). For R, S ∈ RT we choose generators
λR , λS , λRS of �R , �S , and �RS such that λRRS = λS and λSRS = λR .

We wish to prove that we may choose such generators for all M ∈ RT . More
precisely:

Proposition 12.3.11. There exists a system {λM } M∈RT
M monic

such that λM generates �M

as an RT -module and for all N ,M ∈ RT such that N divides M, we have λNM =
λM/N .

Proof.We call a subset I of RT admissible if for all A ∈ I , A is a monic polynomial
and there exists {λA}A∈I ⊆ K such that for all A ∈ I , λA generates �A and if B is an
element of I that divides A, we have λBA = λA/B .

LetA = {I |I is admissible}. ThenA is nonempty since I = {P, 1} ∈ A, where P
is a monic irreducible polynomial (here we choose λP to be any generator of �P and
λ1 = 0).

We define a relation ≤ in A as follows: I ≤ J if I ⊆ J and for all A ∈ I , λA,I =
λA,J . Clearly ≤ is a partial order in A and if {I }I∈A is a chain in A, I = ⋃I∈A I is
an upper bound of {I }I∈A.

Let I0 be a maximal element ofA. If I0 does not contain all monic polynomials of
RT , there exists a monic polynomial M in RT \ I0.
Let M = Pα11 · · · Pαrr . Note that if N is monic and M divides N , then N �∈ I0

since otherwise, N ∈ I0 and λM := λN/MN would satisfy all the conditions.
Let M ∈ RT be a monic polynomial of minimal degree such that M �∈ I0. Then

Pβ11 · · · Pβrr ∈ I0 for all
∑r

i=1 βi deg Pi <
∑r

i=1 αi deg Pi . Let Hi = M
Pi
∈ I0, and let
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λHi be the generator of �Hi . Since {Pi }ri=1 are relatively prime, there exist elements
γi ∈ RT satisfying 1 =

∑r
i=1 γi Pi . Let λM := λγ1H1 + · · · + λ

γr
Hr
. Then

λ
Pi
M = λγ1PiH1

+ · · · + λγi PiHi
+ · · · + λγr PiHr

, and γi Pi = 1−
∑
j �=i
γ j Pj .

Hence

λ
Pi
M =

(
λ
Pi
H1
− λP1Hi

)γ1 + · · · + (γ PiHi−1 − λPi−1Hi

)γi−1 + λHi
+
(
λ
Pi
Hi+1 − λ

Pi+1
Hi

)γi+1 + · · · + (λPiHr − λPrHi)γr .
Now for all j �= i , we have λPiHj

= λHj /Pi = λM/Pi Pj = λHi /Pj = λ
Pj
Hi
.

Therefore λPiM = λHi and λM satisfies λSM = λM/S for all S ∈ RT such that S | M .
In particular, I1 = I0 ∪ {M} is an element of A that is strictly larger than I0. This
contradicts the maximality of I0 and proves the proposition. ��

Remark 12.3.12. Since �M is isomorphic to RT /(M) we may take λM = 1 mod M
for all M . However, Proposition 12.3.11 provides a system that does not depend on
the identification �M ∼= RT /(M).

Proposition 12.3.13. We have

(1) If N and M are two distinct monic polynomials in RT , then (�N (u),
�M (u)) = 1.

(2) uM =∏ N |M
N monic

�N (u), where M is a monic polynomial in RT .

(3) �M (u) =
∏

N |M
N monic

(uN )µ(M/N ), where

µ(D) =

⎧⎪⎪⎨⎪⎪⎩
1 if D = 1,
(−1)s if D = P1 · · · Ps, where the P1, P2, . . . , Ps are

distinct irreducible monic polynomials of RT ,
0 otherwise,

and M is a monic polynomial.

Proof. Exercises 12.10.6, 12.10.8, and 12.10.12. ��

Proposition 12.3.14. Let P ∈ RT be a monic irreducible polynomial of degree d and
let M = Pn with n ∈ N. Then:

(1) No divisor in K other than p∞ and p is ramified in K (�M )/K. Here (P)K =
p

p
degp
∞

.

(2) The ramification index of p in K (�M )/K is

e(p) = �(M) = qdn − qd(n−1) = [K (�M ) : K ] .
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Proof. Let ϑM be the integral closure of RT in K (�M ). Since RT is a Dedekind
domain, then ϑM is a Dedekind domain (Theorem 5.7.7). The ramified primes in
K (�M )/K other than the infinite prime p∞ are those appearing in the discriminant
∂ϑM/RT .

ϑM K (�M )

RT K

Let λ be a generator of �M . Then RT [λ] ⊆ ϑM . Set g(u) := Irr(λ, u, K ) ∈
K [u]. Let f (u) = uM . Since f (λ) = 0, there exists h(u) ∈ K [u] such that f (u) =
h(u)g(u). Therefore

M = f ′(u) = h′(u)g(u)+ h(u)g′(u). (12.2)

Substituting u by λ in (12.2) we obtain

M = f ′(λ) = h′(λ)g(λ)+ h(λ)g′(λ) = h(λ)g′(λ).

It follows that (g′(λ))ϑM | (M)ϑM = PnϑM . By Theorem 5.7.21, the different
DϑM/RT satisfies

DϑM/RT = gcd{(F ′(α)) | α is integral, K (�M ) = K (α), F(u) = Irr(α, u, K )}.
Therefore DϑM/RT | (g′(λ))K (�M ) = Pn = (p1 · · · ph)en , where

PϑM = (p1 · · · ph)e. (12.3)

It follows that the only possible ramified prime divisors in K (�M )/K are p and p∞.
This proves (1).

Next, we calculate e = eK (�M )/K (pi |P). Let d = deg P . We have

uP
n = (uPn−1)P =

d∑
i=0

[
P

i

]
(uP

n−1
)q

i

= uP
n−1
(

d∑
i=0

[
P

u

]
(uP

n−1
)q

i−1
)
= u p

n−1
t (u)

with t (u) ∈ RT [u] and

t (u) = uP
n

uPn−1
=

d∑
i=0

[
P

i

]
(uP

n−1
)q

i−1.

Therefore t (α) = 0 ⇐⇒ α ∈ �Pn \�Pn−1 , or in other words, t (α) = 0 ⇐⇒ α is
generator of �Pn . Recall that �Pn/�Pn−1 ∼= �P (see Exercise 12.10.3).

Therefore
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t (u) =
∏

(A,M)=1
(u − λA) =

[
P

0

]
+

d∑
i=1

[
P

i

]
(uP

n−1
)q

i−1

= P +
d∑
i=1

[
P

i

]
(uP

n−1
)q

i−1.

For u = 0, we have

t (0) = ±
∏

(A,M)=1
λA = P. (12.4)

Now by Theorem 12.2.5, uA = u(F(u)) for some F(u) ∈ RT [u].
Thus λA = λF(λ) and λ divides λA in ϑM . If (A,M) = 1, then λA is a generator

and by symmetry we obtain λA | λ, so

λ = βAλA (12.5)

with βA ∈ ϑ∗M .
Using Equation (12.4) we obtain±P = β0λ�(M) for some β0 ∈ ϑ∗M . Hence (12.3)

yields (p1 · · · pn)e = (P)ϑM = (λ)�(M). Now vpi (λ) ≥ 1, so e = vpi ((p1 . . . pn)e) =
vpi
(
λ�(M)

) ≥ �(M). Therefore e ≥ �(M) = ∣∣(RT /(M))∗∣∣ ≥ [K (�M ) : K ] ≥ e. It
follows that

e = �(M) = [K (�M ) : K ] = qdn − qd(n−1).

This proves (2) and the proposition. ��

Remark 12.3.15. We have

t (u) = uP
n

uPn−1
=
∏

N |Pn �N (u)∏
N |Pn−1 �N (u)

= �Pn (u) =
∏

(A,M)=1
(u − λA).

Thus the polynomial t (u) found in the proof of Proposition 12.3.14 is nothing other
than the Pn-cyclotomic polynomial.

Theorem 12.3.16. Let M ∈ RT \ {0} be a monic polynomial. Then
(1) t (u) = �M (u) = Irr(λ, u, K ). In particular,�M (u) is an irreducible polynomial.
(2) GM = Gal(K (�M )/K ) ∼= (RT /(M))∗.
(3) [K (�M ) : K ] = �(M).
(4) If M = Pn for some irreducible polynomial P, then p is totally ramified in

K (�M )/K, where (P)K = p

p
deg P
∞

.

Proof. If M = Pn , where P is an irreducible polynomial, we have

[K (�M ) : K ] = �(M) =
∣∣(RT /(M))∗∣∣ = |GM |.
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By Proposition 12.3.7, GM is a subset of (RT /(M))∗. Since both sets have the same
order, they must be isomorphic. Further, P is totally ramified since e = �(M) =
[K (�M ) : K ]. From the latter we obtain (4).

Now let M = Pα1 · · · Pαrr , where Pi , . . . , Pr are distinct irreducible polynomials
in RT . Then �M ∼=

⊕r
i=1�P

αi
i
.

If we prove that [K (�M ) : K ] = �(M) we will be able to deduce that GM ∼=
(RT /(M))∗ since GM ⊆ (RT /(M))∗ and both sets have the same order �(M). Then
(2) and (3) will follow, and then (1) will follow too from the facts that t (λ) = 0,
deg(t (u)) = �(u) = deg Irr(λ, u, K ), and Irr(λ, u, K ) divides t (u), so �M (u) =
t (u) = Irr(λ, u, K ). To prove that [K (�M ) : K ] = �(M), notice that K (�P

α1
1
), . . . ,

K (�Pαrr ) are pairwise linearly disjoint because each pi is totally ramified in K (�P
αi
i
)/K

and unramified in
∏

j �=i K (�Pαi )/K .
It follows that

[K (�M ) : K ] =
r∏
i=1

[
K (�P

αi
i
) : K

]
=

r∏
i=1
�(Pαii ) = �(M). ��

Corollary 12.3.17. For any M ∈ RT \{0}, the extension K (�M )/K is geometric, that
is, the field of constants of K (�M ) is the same as that of K .

Proof. Let M = Pα11 · · · Pαrr , where P1, . . . , Pr are distinct irreducible polynomials
of RT . Then

K (�M ) =
r∏
i=1

K
(
�P

αi
i

)
.

K (�M )

Ei K (�P
αi
i
)

K

For each i = 1, . . . , r , let Ei = K (�M/P
αi
i
). Then Gal (K (�M )/Ei ) is isomor-

phic to Gal(K (�P
αi
i
/K )). Let L be the maximal unramified extension of K contained

in K (�M ), K ⊆ L ⊆ K (�M ). Since K (�M )/Ei is totally ramified at the prime divi-
sors above pi and Ei L/Ei is unramified, it follows that Ei L = Ei . Thus L ⊆ Ei for
1 ≤ i ≤ r .

Therefore K ⊆ L ⊆⋂r
i=1 Ei = K , and L = K . In particular, it follows that every

extension S/K such that K � S ⊆ K (�M ) is ramified. If Fqs is the field of constants
of K (�M ) and Fq is the field of constants of K , then Fq(T ) = K ⊆ Fqs (T ) ⊆
K (�M ) and Fqs (T )/Fq(T ) is unramified (Theorem 5.2.32). Thus Fqs (T ) = Fq(T )
and by Proposition 2.1.6,

1 = [Fqs (T ) : Fq(T )
] = [Fqs : Fq

] = s. ��
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Proposition 12.3.18. Let P be a monic irreducible polynomial in RT and M = Pn

for some n ≥ 1. Then

�Pn (u) = uP
n

uPn−1

is an Eisenstein polynomial over RT at P. In other words, if

�Pn (u) = ud + ad−1ud−1 + · · · + a0 ∈ RT [u],

then P divides ai for 0 ≤ i ≤ d − 1, and P2 does not divide a0.
Proof.We have �Pn (u) =

∏
(A,Pn)=1(u − λAPn ), and P is totally ramified.

Let p�(M) = PϑM . We have �Pn (0) = P = ±∏(A,Pn)=1 λAPn . It follows that
vp(P) = �(M) =

∑
A

vp(λ
A) =

∑
A

v
pA−1 (λ)

=
∑
A

vp(λ) = �(M)vp(λ).

Thus vp(λA) = vp(λ) = 1, so

�Pn (u) = u�(P
n) − f�(Pn)−1({λA)}A)u�(Pn)−1 + · · ·

+ f1
(
{λA}A

)
u + (−1)�(Pn) f0

(
{λA}A

)
,

where the fi ({λA}A) are the elementary symmetric polynomials in {λA}A and
f0({λA}A) = �Pn (0) = P . Hence

�Pn (u) = u�(M) + β�(M)−1u�(M)−1 + · · · + β1u + β0 ∈ RT [u],

P divides βi for 1 ≤ i ≤ �(M)− 1, β0 = ±P , and β�(M) = 1. ��
As a corollary we recover the irreducibility of �Pn (u).

Corollary 12.3.19. The polynomial �Pn (u) ∈ RT is irreducible.

Proof. The statement is an application of Eisenstein’s criterion. ��

12.4 Arithmetic of Cyclotomic Function Fields

In the case of number fields, assume that Q(ζn)/Q is a cyclotomic extension, where
n ∈ N is such that n �≡ 2 mod 4. Then a rational prime p is ramified in Q(ζn)/Q if
and only if p divides n and the infinite prime is ramified. Furthermore, if p is a finite
prime not dividing n, then

pϑQ(ζn) = P1 · · ·Pg,
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where [ϑQ(ζn)/Pi : Z/p] = f , f g = φ(n), and f = o(p mod n), that is

f = min{m ∈ N | pm ≡ 1 mod n}.

We will see that the same statements hold in the function field case. The key result
is that p∞ is tamely ramified in K (�M )/K . We need two general facts: Newton’s
method (Section 12.4.1) and Abhyankar’s lemma (Section 12.4.2).

12.4.1 Newton Polygons

Let F be a complete field with respect to a discrete valuation v with place p. Let � be
an algebraic closure of F and

f (x) = a0 + a1x + · · · + anx
n ∈ F[x], where a0an �= 0.

We associate to each term of f (x) a point in R× (R ∪ {∞}) as follows:
If ai xi �= 0, i.e., if ai �= 0, we take the point (i, v(ai )).
If ai xi = 0, i.e., if ai = 0, we take the formal point (i,∞) = (i, v(ai )) (which is

the same as not taking any point of R× R).

•(0, v(a0))
	
	
	
	
	
	

(1, v(a1))

•
(i, v(ai ))








•

•

•
•

•

•( j, v(a j ))�
�

�
�

�
•(n, v(an))

Consider the bottom convex cover of the set

{(i, v(ai ))|i = 0, 1, . . . , n, |ai �= 0}.

Definition 12.4.1. This cover is called a Newton polygon.

More precisely, the set of vertices of this bottom cover is{
(0 = i0, v(a0)), (i1, v(ai1)), . . . , (im = n, v(an))

}
,

where a0, ai1 , . . . , an satisfy the following. First, consider S = {i > 0 | ai �= 0} and
let i1 be maximum such that
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v(ai1)− v(a0)
i1 − 0 = min

{
v(a j )− v(a0)

j − 0 | j ∈ S
}
.

•(0, v(a0))
	
	
	
	
	
	•

•(i ′, v(ai ′))

(i1, v(ai1))










•(i2, v(ai2))•

(i ′′, v(ai ′′))

Now let i2 be maximum such that

v(ai2)− v(ai1)
i2 − i1

= min
{
v(a j )− v(ai1)

j − ai1
| j ∈ S, j > i1

}
and so on.

Theorem 12.4.2. Let [(r, v(ar )), (s, v(as))] be any segment of the Newton polygon
corresponding to f (x). Let v(as )−v(ar )s−r = −m be its slope. Then f (x) has exactly s−r
roots α1, . . . , αs−r satisfying v(α1) = · · · = v(αs−r ) = m.

Furthermore, define fm(x) =
∏s−r

i=1(x − αi ). Then fm(x) ∈ F[x] and fm(x)
divides f (x).

Proof. Let f (x) = a−1n f (x) = a−1n anxn + a−1n an−1xn−1 + · · · + a−1n a1x + a−1n a0.
Then

v(aia−1n )− v(a ja−1n )
i − j

= v(ai )− v(a j )
i − j

and the Newton polygon corresponding to g(x) is obtained from the one corresponding
to f (x) by a translation of −v(an) in the y-direction, as follows:

(i, v(aia
−1
n )) = (i, v(ai )− v(an)) = (i, v(ai ))− (0, v(an)).

Moreover, the roots of g(x) and f (x) are the same. Thus we may assume that an = 1.
Let α1, . . . , αn ∈ � be the roots of f (x). We partition the set of αi ’s according to the
value v(αi ), obtaining

v(α1) = · · · = v(αs1) = m1,

v(αs1+1) = · · · = v(αs2) = m2,

...

v(αst+1) = · · · = v(αst+1) = mt+1,

with m1 < m2 < · · · < mt < mt+1.
We have
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f (x) =
n∏
i=1
(x − αi ) = xn − h1(α1, . . . , αn)x

n−1 + h2(α1, . . . , αn)x
n−2 − · · ·

+ (−1)n−1hn−1(α1, . . . , αn)x + (−1)nhn(α1, . . . , αn),
where h j (α1, . . . , αn) =

∑
i1<···<i j αi1 , . . . αi j = (−1) j an− j , 1 ≤ j ≤ n.

Also v(an) = v(1) = 0.
For 0 ≤ u < s j+1 − s j , we have n − s j ≥ n − s j − u > n − s j+1, so

v(an−s j−u) = v(hs j+u(α1, . . . , αn)) = v
⎛⎝ ∑
i1<···<is j+u

αi1 . . . αis j+u

⎞⎠
≥ min

i1,··· ,is j+u
{v(αi1 . . . αis j+u )}

= v(α1 · · ·αs1αs1+1 · · ·αs2αs2+1 · · ·αs j+1αs j+2 · · ·αs j+u)
= s1m1 + (s2 − s1)m2 + · · · + (s j − s j−1)m j + um j . (12.6)

For an−s j+1 there is a single term with minimum valuation such that

v
(
an−s j+1

) = v( ∑
i1<···<is j+1

αi1 · · ·αis j+1
)
= v(α1 · · ·αs1 · · ·αs j+1 · · ·αs j+1)

= s1m1 + (s2 − s1)m2 + · · · + (s j+1 − s j )m j+1. (12.7)

We will deduce from (12.6) and (12.7) that the vertices of the Newton polygon of f (x)
are

(0, v(a0)) = (0, v(an−st+1))
= (n − st+1, s1m1 + (s2 − s1)m2 + · · · + (st+1 − st )mt+1),

(n − st , v(an−st )) = (n − st , s1m1 + (s2 − s1)m2 + · · · + (st − st−1)mt ),

...

(n − s2, s1m1 + (s2 − s1)m2),

(n − s1, s1m1),

(n, 0).

Now the slope between (n− s j+1, v(an−s j+1)) and (n− s j , v(an− s j )) is given by
v(an−s j+1)− v(an−s j )
(n − s j+1)− (n − s j )

=
[
m1s1 + (s2 − s1)m2 + · · · + (s j+1 − s j )m j+1

]− · · ·
−(s j+1 − s j )

· · ·

· · · · · · −
[
m1s1 + (s2 − s1)m2 + · · · + (s j − s j−1)m j

]
−(s j+1 − s j )

= − s j+1 − s j
s j+1 − s j

m j+1 = −m j+1.
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Thus the slope is s j+1 − s j , which is the number of roots of f with valuation m j+1.
This proves the first part.

For the second part, we proceed by induction on n to show that fm(x) =
∏s−r

i=1(x−
αi ) ∈ F[x]. Clearly, fm(x) divides f (x).

For n = 1, f0(x) = x + a0 and there is nothing to prove.
For n = 2, we consider two cases. If f (x) is irreducible, assume that E is the

decomposition field of f (x); then the other root of f (x) is either α (if E/F is insepa-
rable) or σα, where Gal(E/F) = {1, σ }. In any case we obtain

v(σα) = vp(σα) = vσ−1p(α) = vp(α) = v(α)
because F is a complete field. Therefore all the roots have the same valuation and the
Newton polygon is a segment.

Suppose that f (x) is reducible. If both roots have the same valuation, there is
nothing to prove and if the two roots have different valuation, we have f (x) = (x −
a)(x − b), with a, b ∈ F , so we are done.

Now assume that fm(x) ∈ F[x] and that f (x) is any polynomial of degree less
than n. For n, let

fs j (x) =
s j+1∏

i=s j+1
(x − αi ), j = 0, 1, . . . , t (with s0 = 0), f (x) =

t∏
j=0

fs j (x).

Let g(x) = f (x)
Irr(α1,x,F)

. Then g(x) ∈ F[x]. Since every conjugate of α1 has the same

valuation, it follows that Irr(α1, x, F) | fs0(x). Let g0(x) =
fs0 (x)

Irr(α1,x,F)
. Then g(x) =

g0(x)
∏t

j=1 fs j (x). Since deg g(x) < deg f (x) = n, we use induction on deg g(x) to
conclude that fs j (x) ∈ F[x], for j = 1, . . . , t , and g0(x) = gs0(x) ∈ F[x].

Therefore fs0(x) = g0(x) Irr(α1, x, F) ∈ F[x]. ��

12.4.2 Abhyankar’s Lemma

The other ingredient needed to determine the ramification type of p∞ in K (�M )/K is
Abhyankar’s lemma. First we establish a result on finite groups.

Proposition 12.4.3. Let G be a finite group and let U be a normal subgroup of G of
order pn, where p a rational prime or p = 1. Let G/U be a cyclic group of order
relatively prime to p.

Assume that H1 is a subgroup of G whose order is a multiple of pn. Then for any
subgroup H2 of G we have |H1 ∩ H2| = (|H1| , |H2|).
Proof. Since |H1 ∩ H2| divides |Hi | for i = 1, 2, it follows that |H1 ∩ H2| | (|H1|, |H2|).
Put |H1| = a1 pn and |H2| = a2 pm with (a1, p) = (a2, p) = 1, and let d = (a1, a2).
Then (|H1|, |H2|) = dpm with (d, p) = 1. In particular, |H1 ∩ H2| ≤ dpm .

By hypothesis, the normal subgroup U is the p-Sylow subgroup of G (or U =
{e}). Thus U contains any subgroup of G of order pm . Therefore, if W is a p-Sylow
subgroup of H2, of order pm , then W ⊆ H2 and W ⊆ U ⊆ H1. It follows that
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W ⊆ H1 ∩ H2 and pm | |H1 ∩ H2| . (12.8)

Let π : G −→ G/U be the canonical epimorphism.
We have π(Hi ) = HiU

U
∼= Hi

U∩Hi . Hence |π(Hi )| =
|Hi |
|U∩Hi | = ai for i = 1, 2.

Since G/U is a cyclic group, π(H1) ∩ π(H2) is a cyclic group of order d =
(a1, a2). In particular, there exists x ∈ H1∩H2 such that d divides o(x). Since (d, p) =
1 it follows by (12.8) that

dpm | |H1 ∩ H2| and |H1 ∩ H2| = dpm = (|H1|, |H2|) . ��

Theorem 12.4.4 (Abhyankar’s Lemma). Let L/K be a finite separable extension of
function fields. Suppose that L = K1K2 with K ⊆ Ki ⊆ L. Let p be a prime divisor
of K and P a prime divisor in L above p. Let Pi = P ∩ Ki for i = 1, 2. If at least
one of the extensions Ki/K, i = 1, 2, is tamely ramified at p, then

eL/K (P|p) =
[
eK1/K (P1|p), eK2/K (P2|p)

]
.

Proof. Let L̃ be the Galois closure of L/K and letB be a prime divisor in L̃ such that
B|L = P.

B

�
�
� L̃

P L = K1K2

P1 K1

℘

P2 K2

p K

Let G = I (B|p) and let Hi = I (B|Pi ), i = 1, 2, be the inertia groups. Define

p =
{
char K if char K �= 0,
1 if char K = 0.

We may assume without loss of generality that K1/K is tamely ramified at P1. Then
(e(P1|p), p) = 1.

Let U be a p-Sylow subgroup of G. Then U corresponds to the wild ramification
of p in L̃/K . Thus U is the first ramification group (Corollary 5.9.10) and U � G
(Theorem 5.9.4). Set |U | = pn . Since the ramification in P1|p is tame, it follows by
Corollary 5.9.17 that U ⊆ H1 and G/U is a cyclic group.

Therefore H1 and H2 satisfy the conditions of Proposition 12.4.3, and we have
|H1 ∩ H2| = (|H1| , |H2|). Now since L = K1K2, it follows that Gal(L̃/L) =
Gal(L̃/K1)∩Gal(L̃/K2) and I (B|P) = I (B|P1)∩ I (B|P2) = H1∩ H2. Therefore
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e(B|P) = |I (B|P)| = |H1 ∩ H2| = (|H1|, |H2|)
= (e(B|P1), e(B|P2))

= (e(B|P)e(P|P1), e(B|P)e(P|P2))

= e(B|P)(e(P|P1), e(P|P2)).

Hence (e(P|P1), e(P|P2)) = 1. We have
e(P|p) = e(P|P1)e(P1|p) = e(P|P2)e(P2|p),

on the other hand. If a, b, x, y ∈ Z \ {0} satisfy ax = by and (x, y) = 1, then
[a, b] = ax = by (see Exercise 12.10.16).

Therefore e(P|p) = [(e(P1|p), e(P2|p)]. ��
12.4.3 Ramification at p∞

The main objective of this subsection is to prove that for any M ∈ RT \ {0}, with
RT = Fq [T ], the infinite prime of K = Fq(T ), where (T )K = p0

p∞ , is tamely ramified
in K (�M )/K .

Proposition 12.4.5. Assume M = Pn ∈ RT , where P is a monic irreducible polyno-
mial of degree d. Then p∞ decomposes into�(M)/(q − 1) prime divisors in K (�M ).
The ramification index of p∞ in K (�M ) is e∞ = q − 1 and each prime divisor in
K (�M ) is of degree 1, so the relative inertia degree f∞ is 1.

B− K (�M )

P− K (�P )

p∞ − K

Proof: Let B be a prime divisor of K (�M ) that lies above p∞. Since
K (�M )/K is a Galois extension of degree �(M), it suffices to prove
that e∞ = e(B|p∞) = q − 1 and f∞ = f (B|p∞) = 1. Let P :=
B ∩ K (�P ). First we will prove that eP = e(P|p∞) = q − 1, fP =
f (P|p∞) = 1, and that P decomposes fully in K (�M )/K (�P ). Let
g(u) = uP/u = �P (u). Then K (�P ) is obtained by adjoining the
roots of g(u) to K .

We have g(u) =∑d
i=0

[
P

i

]
uq

i−1 = h(uq−1) where h(u) =∑d
i=0

[
P

i

]
u
qi−1
q−1 and

degT

[
P

i

]
= (d − 1)qi .

Let K∞ be the completion of K at p∞ and denote by v∞ the corresponding val-

uation. Clearly, v∞
([

P

i

])
= −(d − i)qi = − degT

([
P

i

])
. We write h(u) =

∑ qd−1
q−1
j=0 f j (T )u j where f j (T ) �= 0 ⇐⇒ j = qi−1

q−1 for some 0 ≤ i ≤ d.
We draw the Newton polygon corresponding to h(u) in K∞. The vertices of the

coefficients are given by

(
j, v∞( f j (T ))

) = (qi − 1
q − 1 ,−(d − i)qi

)
= βi

for j = qi−1
q−1 .
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The slope from βi to βi+1 is

si = −(d − (i + 1))q
i+1 + (d − i)qi

qi+1−1
q−1 − qi−1

q−1
= −d(q − 1)+ q + i(q − 1) < si+1.

•βi
	
	
	
	
	
	•
βi+1










•βi+2

Thus the slopes increase with i and therefore β0, β1, . . . , βd are the vertices of the
Newton polygon of h(u).

The slope from β0 to β1 is s0 = −d(q − 1)+ q. Hence h(u) contains q
1−1
q−1 − 0 =

1− 0 = 1 root θ in K∞ such that v∞(θ) = d(q− 1)− q. Now since g(u) = h(uq−1),
it follows that K (�P )P = K∞(λ), where λ is a root of uq−1 − θ . Thus λq−1 = θ .

Let vP be the valuation above v∞. We have

vP(λ
q−1) = (q − 1)vP(λ) = vP(θ) = e∞v∞(θ) = e∞(d(q − 1)− q).

Since (d(q − 1)− q, q − 1) = 1, it follows that (q − 1) divides e∞ and

e∞ ≤ e∞ f∞ =
[
K (�P )P : K∞

] = [K∞(λ) : K∞] ≤ q − 1 ≤ e∞.

Therefore e∞ = q − 1 and f∞ = 1, so K (�P )P/K∞ is totally ramified.
Now we will prove that P decomposes fully in K (�Pn )/K (�P ). Let λ be a root

of g(u), and vP(λ) = d(q − 1) − q. We have uP = ug(u). Then uM = uP
n =

(uP )P
n−1 = uP

n−1
g(uP

n−1) (in other words, �Pn (u) = �P (uP
n−1
) = uP

n
/uP

n−1
).

The field K (�M ) is obtained by adjoining any root of g(uP
n−1
) to K (�P ). If λPn

is a generator of�Pn = �M , then λP
n−1

Pn = λPn/Pn−1 = λP = λ is a generator of�P .

Therefore K (�M ) is obtained from K (�P ) by adjoining a root of uP
n−1 − λ.

Next, we determine the Newton polygon of uP
n−1 − λ. We have

uP
n−1 − λ =

d(n−1)∑
i=0

[
Pn−1

i

]
uq

i − λ.

Define

γ−1 = (0, vP(−λ)) = (0, d(q − 1)− q),

and
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γi = (qi , vP
([

Pn−1

i

])
=
(
qi , e(P|p∞)v∞

([
Pn−1

i

]))
= (qi ,−(q − 1)(d(n − 1)− i)qi ) for 0 ≤ i ≤ d(n − 1).

The slope from γ−1 to γ0 is
−(q − 1)(d(n − 1))− (d(q − 1)− q)

1− 0 = −(q − 1)(d(n − 1)+ d)+ q

= −dn(q − 1)+ q = t−1.

Next, for 0 ≤ i ≤ d(n − 1) the slope from γi to γi+1 is given by

ti = −(q − 1)(d(n − 1)− (i + 1))qi+1 + (q − 1)(d(n − 1)− i)qi

qi+1 − qi

= −q(d(n − 1)− (i + 1))+ (d(n − 1)− i) = −(q − 1)(d(n − 1)− i)+ q

= −(q − 1)d(n − 1)+ i(q − 1)+ q.

Therefore ti < ti+1. Similarly t−1 = −dn(q − 1)+ q < −(q − 1)d(n − 1)+ q = t0,
so t j is an increasing function of j .

It follows that γ−1, γ0, . . . , γd(n−1) are precisely the vertices of the Newton poly-
gon of u p

n−1 − λ. Now the segment from γ−1 to γ0 shows that u p
n−1 − λ has a

root in K (�P )P. Since the extension K (�M )B/K (�P )P is Galois, it follows that

K (�M )B = K (�P )P. Thus u p
n−1 − λ decomposes in K (�P )P[u] and f (B|P) =

e(B|P) = 1. This proves the proposition. ��
Theorem 12.4.6. Let M be a nonzero polynomial of RT . Then p∞ is tamely ramified
in K (�M )/K. Furthermore, we have e∞ = q − 1 and f∞ = 1, and there are exactly
h∞ = �(M)/(q − 1) prime divisors of K (�M ) above p∞.
Proof. Let M = Pα11 · · · Pαrr and K (�M ) =

∏r
i=1 K (�P

αi
i
). By Proposition 12.4.5,

eK (�αiPi )
= q−1. Moreover, p∞ is tamely ramified in K (�P

αi
i
)/K for every i . Indeed,

set p = char K , where q = pn for some n ≥ 1; then p does not divide q − 1.
We obtain from Abhyankar’s lemma that

e∞ =
[
eK (�

P
α1
1
), . . . , eK (�Pαrr

)

]
= [q − 1, . . . , q − 1] = q − 1.

Pi B

K (�P
αi
i
) K (�M )

K K (�M/P
αi
i
)

p∞

�
�
�
�
�
�
�
�
�
�
�

qi

�
�
�
�
�
�
�
�
�
�
�
�
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We wish to prove by induction on r that f∞ = 1. The case r = 1 is a consequence
of Proposition 12.4.5. For the general case, letB be a prime divisor in K (�M ) that lies
above p∞. LetPi = B∩K (�p

αi
i
) and qi = B∩K (�M/p

αi
i
). Then 1 = f (Pi |p∞) ≥

f (B|qi ) and f (B|p∞) = f (B|qi ) f (qi |p∞) = f (B|qi ). By the induction hypothesis
f (qi |p∞) = 1. It follows that f∞ = f (B|p∞) = 1. Finally, the equality h∞ =
�(M)/(q − 1) follows from Corollary 5.2.17 and the facts that e∞ = q − 1, f∞ = 1,
and [K (�M ) : K ] = �(M). ��

12.5 The Artin Symbol in Cyclotomic Function Fields

First we determine the Artin symbol in an extension K (�M )/K (see Definition
11.2.5).

Theorem 12.5.1. Let M ∈ RT \ {0} and let P be an irreducible polynomial that does
not divide M. Then the map

ϕP : �M −→ �M

λ �−→ λP

corresponds to the Artin symbol
[
K (�M )/K

P

]
.

Proof. Let (RT )P denote the localization of P , i.e.,

(RT )P =
{
f

g
| f, g ∈ RT , P � g

}
.

If (P)K = p

p
deg P
∞

, then k(p) = (RT )P/P(RT )P ∼= RT /(P) ∼= Fqd , where d = deg P
(see Section 2.4).

Let P be a prime divisor in K (�M ) that divides p.
Clearly, N (p) = |Fqd | = qd and �M ⊆ ϑP. It follows by Proposition 11.2.2 that[

K (�M )/K

P

]
(λ) ≡ λqd mod P.

We have uP = u�P (u) = u
(
uq

d−1 + βqd−2uq
d−2 + · · · + β1u + β0

)
. Moreover, by

Proposition 12.3.18, P divides βi for all 0 ≤ i ≤ qd − 2. Hence λP ≡ λqd mod P.
Now

uM =
∏

AmodM

(u − λA), (12.9)
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so taking the derivative with respect to u in (12.9) we obtain, using Proposition
12.2.11,

M =
∑

AmodM

( ∏
B �=A

BmodM

(u − λβ)
)
, (12.10)

which is constant with respect to u.
Taking u = λC in (12.10), we obtain M = ∏C �=B(λC − λB). Since P does not

divide M , it follows that λC �≡ λB mod P whenever C �≡ B mod M .
Hence λP ≡ λQ mod P implies λP = λQ .
Finally, from λP ≡

[
K (�M )/K

P

]
(λ) ≡ λqd , we conclude that ϕP =

[
K (�K )/K

P

]
. ��

Proposition 12.5.2. Let M ∈ RT \ {0} and let P be an irreducible polynomial that
does not divide M. In K (�M )/K we have

eP = 1, fP = o(P mod M), and hP = �(M)/ fP .
Proof. Let λ = λM be a generator of �M . Then K (�M ) = K (λ).

Let P be a prime divisor in K (�M ) dividing p, where (P)K = p

p
deg P
∞

. Then

ϑP =
{
ξ ∈ K (�M )|vP(ξ) ≥ 0

}
and

fP =
[
ϑP/P : (RT )P/P(RT )P

] = [(ϑM )P/P(ϑM )P : RT /(P)
]

= [ϑM/PϑM : RT /(P)] ,

where ϑM denotes the integral closure of RT in K (�M ).
Set d = deg P . By Proposition 12.3.14, p is not ramified in K (�M )/K . Further-

more, the Artin symbol ϕP =
[
K (�M )/K

P

]
at P is given by ϕP (λ) = λP . Then eP = 1

and hP = [K (�M ) : K ] / fP = �(M)/ fP .
Now fP = o(ϕP ), so fP is the minimum natural number such that

ϕ
fP
P = Id ∈ GM = Gal (K (�M )/K ).

We have

ϕ
f
P = Id ⇐⇒ ϕ

f
P (λ) = λP

f = λ
⇐⇒ λP

f−1 = 0 ⇐⇒ M | P f − 1
⇐⇒ P f ≡ 1 mod M.

Thus fP = o(P mod M). ��
We are ready to state the general theorem about the behavior of prime divisors in

cyclotomic extensions.
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Theorem 12.5.3. Let M = Pα11 · · · Pαrr ∈ RT , where P1, . . . , Pr are irreducible poly-
nomials, and let K (�M )/K be a cyclotomic extension. If P ∈ RT is distinct from
P1, . . . , Pr , P∞, then

eP = 1, fP = o(P mod M), and hP = �(M)/ fP .

If P = Pi , then

eP = �(Pαi ), fP = o

(
Pi mod

M

Pαii

)
,

and

hP = �(M)

�(Pαii ) fP
= �(M/Pαii )

o(Pi mod M/P
αi
i )
.

If P = P∞, then

e∞ = q − 1, f∞ = 1, and h∞ = �(M)/(q − 1).

Proof. The statement follows from Proposition 12.3.14, Theorem 12.4.6, and Proposi-
tion 12.5.2. ��

Next we determine the inertia group of the infinite prime.

Proposition 12.5.4. We have F∗q = G0, where G0 denotes the inertia group of any
prime divisor of K (�M ) above p∞.

Proof. Let P be a prime divisor of K (�M ) above p∞. If M is a nonzero element of
RT , then for A = α ∈ F∗q ⊆ (RT /(M))∗ we have σA(λ) = σα(λ) = λα = αλ, where
λ = λM is a generator of �M .

Since f∞ = f (P|p∞) = 1, it follows that G0 is equal to the decomposition group
of P. Assume that M = Pn for some irreducible polynomial P . Then

GM = Gal (K (�M )/K ) ∼=
(
RT /(P

n)
)∗

and

|GM | = �(Pn) = qdn − qd(n−1) = qd(n−1)(q − 1),

where d = deg P .
It follows by the decomposition law for abelian groups that GM contains a unique

subgroup or order (q − 1), and this can only be F∗q .
On the other hand, we have |G0| = e∞ f∞ = (q − 1)1 = q − 1. Thus G0 ∼= F∗q .

Now let M ∈ RT \ {0} be arbitrary. Assume that P divides M . First we will see that
there exists λ ∈ �P ⊆ �M such that vP′(λ) = −1, where P′ = P ∩ K (�P ).

For λ ∈ �P \ {0},
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λP

λ
= λqd−1 +

[
P

d − 1
]
λq

d−1−1 + · · · +
[
P

1

]
λq−1 + P = 0, (12.11)

where d = deg P and
[
P

i

]
∈ RT is of degree (d − i)qi .

Dividing by T q
d−1 in (12.11) we obtain(

λ

T

)qd−1
+ gd−1

(
1

T

)(
λ

T

)qd−1−1
+ · · · + g1

(
1

T

)(
λ

T

)q−1
+ g0

(
1

T

)
= 0,

where gi
(
1
T

)
∈ Fq

[
1
T

]
,

gd−i
(
1

T

)
= 1

T (qd−1)−(qd−i−1)

[
P

d − i

]
= 1

T qd−qd−i

[
P

d − i

]
,

and

v∞
(
gd−i

(
1

T

))
= v∞

([
P

d − i

])
− v∞

(
T q

d−qd−i
)

= −iqd−i + qd − qd−i = qd − (i + 1)qd−i .
Therefore

v∞
(
gd−1

(
1

T

))
= qd − 2qd−1 < qd − (i + 1)qd−i

= v∞
(
gd−i

(
1

T

))
for all i > 1.

Now λ
T is an integral element with respect to P′ | p∞, since it satisfies a monic

polynomial with coefficients in Fq
[
1
T

]
. Since 1

T is a prime element at p∞ it follows

that λT is integral with respect to 1
T . Thus vP′

(
λ
T

) ≥ 0. Assume for the sake of

contradiction that vP′

((
λ
T

)qd−1)
< vP′

(
gd−1

(
1
T

))
. Then

vP′

((
λ

T

)qd−1)
< vP′

(
gd−i

(
1

T

))
< vP′

(
gd−i

(
1

T

)(
λ

T

)qd−i−1)
for all i > 0.

Thus,

∞ = vP′(0) = vP′

((
λ

T

)qd−1
+ gd−1

(
1

T

)(
λ

T

)qd−1−1
+ · · ·

+ g1

(
1

T

)(
λ

T

)q−1
+ g0

(
1

T

))
= vP′

((
λ

T

)qd−1)
�= ∞.
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This shows that

(qd − 1)(vP′(λ)− vP′(T )) = vP′

((
λ

T

)qd−1)

≥ vP′

(
gd−1

(
1

T

))
= e(P′|p∞)v∞

(
gd−1

(
1

T

))
= (q − 1)(qd − 2qd−1).

Therefore

vP′(λ) ≥ (q − 1)(q
d − 2qd−1)

qd − 1 + vP′(T ) ≥ −1.

In particular, vP′(λ) < 0 ⇒ vP′(λ) = −1. By Exercise 12.10.19,[
K (�P ) : Fq(λ)

] = qd−1.
Therefore degZλ = degNλ = qd−1 and e∞ = q − 1, where (q − 1, qd−1) = 1.
It follows that there are qd−1 prime divisors q of K (�P ) such that vq(λ) = −1 in

the pole divisor of λ.
Note that since λ ∈ �P , λ belongs to ϑP . Thus the pole divisor of λ consists of

prime divisors dividing p∞. Therefore if q is any prime divisor in K (�P ) that divides
Zλ, then vq(λ) = −1. Let A ∈ RT be such that σA−1(q) = P′, σA(λ) = λA, and
σA ∈ GP .

Thus vP′(λA) = vP′σA−1 (λ) = vq(λ) = −1. We may assume λ = λA.
Our claim is thereby proved. Now since P | P′ is unramified (Theorem 12.4.6),

then vP(λ) = e(P|P′)vP′(λ) = 1 × vP′(λ) = −1. In short, there exists an element
λ ∈ �Pn ⊆ �M such that vP(λ) = −1. Then 1

λ
is a prime element for P | p∞, that

is, vP
(
1
λ

)
= 1. Finally, if α ∈ F∗q , then σα

(
1
λ

)
= α 1

λ
. Therefore σα(K (�M )P) =

σα(Fqd ((λ))) = Fqd ((λ)) = K (λM )P. Thus σα ∈ Gal(K (λM )P/Kp), so Pσα = P
and F∗q ⊆ D(P | p∞) = G0. Since F∗q and G0 are of order q − 1, the result follows. ��

Definition 12.5.5. Let M be a nonzero element of RT , and

K (�M )
+ := K (�M )

G0 .

K (�M )
+ is called the maximal real subfield of K (�M ).

Remark 12.5.6. We have
[
K (�M ) : K (�M )

+] = |G0| = q − 1 and p∞ decomposes
totally into �(M)/(q − 1) prime divisors in K (�M )

+/K .

Remark 12.5.7. The inertia group of the infinite prime divisors in the cyclotomic
number field Q(ζn)/Q is G0 = {1, J }, where J denotes complex conjugation, and
Q(ζn)+ = Q(ζn) ∩ R = Q(ζn){1,J }. The above equality motivates Definition 12.5.5.

For any M ∈ RT , denote by ϑM the integral closure of RT in KM = K (�M ).

Proposition 12.5.8. Assume that M = Pn for some irreducible polynomial P. Then
ϑM = RT [λM ], where λM is a generator of �M.
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Proof. Set λ = λM . Since λ is integral, we have RT [λ] ⊆ ϑM . Let α ∈ ϑM . Since
{1, λ, . . . , λ�(M)−1} is a basis of KM/K , there exist a1, a2, . . . , ar ∈ K such that
α = a0 + a1λ+ · · · + arλr , where r = �(M)− 1. We wish to show that ai ∈ RT for
i = 1, 2, . . . , r . By the proof of Proposition 12.3.14 we have vP(λ) = 1, where P is
the (unique) prime divisor of KM above p and (P)K = p

p
deg P
∞

.

Clearly, vP(aiλi ) = i + �(M)vp(ai ) ≡ i mod �(M). Thus, whenever i �= j ,
ai �= 0, and a j �= 0, we have vP(aiλi ) �= vP(a jλ j ). It follows that

0 ≤ vP(α) = min
ai �=0

{
vP(aiλ

i )
}
= min

ai �=0
{
i +�(M)vP(ai )

}
.

Hence vP(ai ) ≥ 0 for all i . Now for any σA ∈ GM = Gal(KM/K ) such that σA(λ) =
λA, we have

αA = σA(α) = a0 + a1λ
A + · · · + ar (λ

A)r , (12.12)

where A mod M ∈ (RT /(M))∗. If {A1, . . . , A�(M)} is a set of representatives of
(RT /(M))∗ we obtain from (12.12), writing αi = αAi , λi = λAi , that⎛⎜⎝ α1

...

α�(M)

⎞⎟⎠ =
⎛⎜⎝1 λ1 λ21 · · · λr1
...
...

...
...

...

1 λr+1 λ2r+1 · · · λrr+1

⎞⎟⎠
⎛⎜⎝a0...
ar

⎞⎟⎠ .
The determinant of the matrix

[
λ
j
i

]
0≤ j≤r
1≤i≤r+1

is a Vandermonde determinant, so that

det
[
λ
j
i

]
=∏1≤t≤	≤r+1(λ	 − λt ) = d (see Exercise 12.10.22). Therefore

ai =

det

⎡⎢⎣1 λ1 · · · λi−11 α1 λi+11 · · · λr1
...
...

...
...

...
...

1 λr+1 · · · λi−1r+1 αr+1 λ
i+1
r+1 · · · λrr+1

⎤⎥⎦
det

⎡⎢⎣1 λ1 · · · · · · λr1
...
... · · · · · · ...

1 λr+1 · · ·· · · λrr+1

⎤⎥⎦
= bi

d
,

where bi ∈ ϑM .
By the proof of Proposition 12.3.14 ((12.5)), for all A mod (RT /(M))∗, we have

λ = βAλA and P = β0λ�(M) for some βA, β0 ∈ ϑ∗M .
Then for any prime divisor q in K (�M ) dividing neither p nor p∞, we have

vq(λ) = vq(λ
A) = 0. It follows that the support of the pole divisor of ai can con-

sist only of p and p∞. Since vp(ai ) ≥ 0, we have ai ∈ RT . Thus ϑM = RT [λ]. ��
Proposition 12.5.8 holds for any M ∈ RT \ {0}. To see this fact, first we prove the

following proposition:
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Proposition 12.5.9. Let M, N ∈ RT \ {0} be two relatively prime polynomials. Then
ϑMN = ϑMϑN .
Proof. By Theorem 5.7.15,

DϑMN /RT = DϑMN /ϑM conM/MN DϑM/RT = DϑMN /ϑN conN/MN DϑN /RT .

Since p∞ is not being considered in the Dedekind domain ϑE (E ∈ {N ,M, NM})
and M and N are relatively prime, it follows by Theorem 12.5.3 and Proposition 5.6.7
that conM/MN DϑM/RT and conN/MN DϑN /RT have no common factor, and neither do
DϑMN /ϑM and DϑMN /ϑN .

KM KMN

K KN

Thus

conM/MN DϑM/RT = DϑMN /ϑN and conN/MN DϑN /RT = DϑMN /ϑM . (12.13)

Now since RT is a principal ideal domain and ϑE is a torsion-free RT -module, it
follows using the theory of finitely generated modules over principal ideal domains
that ϑE is RT -free. Let V be a basis for ϑM/RT and V ∗ the dual basis of V with
respect to the trace map. Then V ∗ generates D−1ϑM/RT as an RT -module. By (12.13) it
follows that V ∗ generates D−1ϑMN /ϑN

. Hence V ∗∗ = V generates ϑMN over ϑN , and
therefore ϑMN = ϑMϑN . ��

As a corollary, we obtain the following theorem:

Theorem 12.5.10. For any M ∈ RT \ {0}, let λ = λM be a generator of the Carlitz–
Hayes module �M. Then ϑM = RT [λ].

Proof. Let M = αPα11 · · · Pαrr , where P1, . . . , Pr are distinct monic irreducible poly-
nomials in RT . Using Propositions 12.5.8 and 12.5.9 we obtain

ϑM =
r∏
i=1
ϑP

αi
i
=

r∏
i=1

RT
[
λP

αi
i

] = RT [λ]. ��

Next we present a particular case of an analogue of Dirichlet theorem on distribu-
tion of primes in arithmetic progressions without using the Čebotarev density theorem.

Proposition 12.5.11. Let M ∈ RT \ {0}. If M is not a prime power, then �M (u) ≡
1+ Cuq−1 (mod u2(q−1)), where C ∈ RT and degC = (degM − 1)(q − 1)− 1.
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Proof. By Exercise 12.10.12, �M (u) =
∏

A|M (uA)µ(M/A). Since M is not a prime
power, it follows that

∑
A|M µ(M/A) = 0 (Exercise 12.10.9). Hence �M (u) =∏

A|M (uA/u)µ(M/A). Let y = uq−1. By Theorem 12.2.5, uA/u ≡ A+
[
A

1

]
y mod y2.

Thus

�M (u) ≡
∏
A|M

(
A +

[
A

1

]
y

)µ(M/A)
mod y2

≡
(∏
A|M

Aµ(M/A)
)∏

A|M

(
1+

([
A

1

]
/A

)
y

)µ(M/A)
mod y2.

By Exercise 12.10.23,

�M (u) ≡
∏
A|M

(
1+

([
A

1

]
/A

)
y

)µ(M/A)
mod y2

≡ 1+ C(T )y mod y2,

where C(T ) =∑A|M µ(M/A)
([

A

1

]
/A

)
. Therefore

M(T )C(T ) =
∑
A|M

µ(M/A)

(
M

A

)[
A

1

]
.

Set d1 = deg A. Then

deg

(
M

A

)[
A

1

]
= degM − d1 + (d1 − 1)q
= (degM − 1)q + (d1 − degM)(q − 1) ≤ (degM − 1)q,

and we have equality if and only if d1 = degM , i.e., A = M . Hence

degC = (degM − 1)q − degM = (degM − 1)(q − 1)− 1. ��
Corollary 12.5.12. If M ∈ RT \ {0} is not a prime power and λ ∈ �M is a generator,
then λ is a unit in ϑM.

Proof. We have 0 = �M (λ) = 1 + C(T )λq−1 mod λ2(q−1). Therefore 1 =
λ(−C1(T )λq−2 + λ2q−3α) for some α ∈ ϑM . It follows that λ is invertible in ϑM . ��

Definition 12.5.13. Let P ∈ RT be a monic irreducible polynomial and let A ∈ RT .
We say that

ô(A mod P) = M ∈ RT

if M is monic and of minimal degree satisfying AM ≡ 0 mod P .
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Remark 12.5.14. The notation given in Definition 12.5.13 is ô(A mod P) instead of
o(A mod P), that is, the one that denotes the order of an element in a quotient group.

Remark 12.5.15. Assume that N ∈ RT satisfies AN ≡ 0 mod P , and let N = QM+R
with Q, R ∈ RT and R = 0 or deg R < degM . Then AN = (AM )Q + AR . It follows
that AR ≡ 0 mod P . Therefore R = 0 and M divides N . In particular, the polynomial
M given in Definition 12.5.13 is unique.

Remark 12.5.16. Since RT /(P) is finite, {AM mod P | M ∈ RT } is finite too, and
there exist two distinct elements M1, M2 in RT such that AM1 ≡ AM2 mod P . Hence
AM1−M2 ≡ 0 mod P .
Proposition 12.5.17. Let P ∈ RT be an irreducible polynomial and M ∈ RT monic
polynomial not divisible by P. If A ∈ RT , then

P | �M (A) ⇐⇒ ô(A mod P) = M.

Proof. First assume that P divides �M (A). Since uM =
∏

D|M �D(u) it follows that

AM =∏D|M �D(A) ≡ 0 mod P .
Let ô(A mod P) = N . Then N divides M . Hence AN = ∏D|N �D(A) ≡ 0 mod

P . Therefore, there exists D0 dividing N such that P | �D0(A).
Suppose that D0 �= M . Then AM = �M (A)�D0(A)

∏
D|M

D �=D0,D �=M
�D(A) ≡

0 mod P2. Now �M (A + P) ≡ �M (A) mod P ≡ 0 mod P and �D0(A + P) ≡
�DO (A) mod P ≡ 0 mod P . Hence 0 ≡ (A + P)M = AM + PM ≡ PM mod P2.
We have

PM =
degM∑
i=0

[
M

i

]
Pq

i = MP + P2C ≡ MP mod P2.

But this is impossible since P � M . It follows that ô(A mod P) = M .
Conversely, let ô(A mod P) = M , where AM =∏D|M �D(A) ≡ 0 mod P . Thus

P divides �D(A) for some D dividing M . If D �= M , then AD = ∏D′|D �D′(A) ≡
0 mod P , which contradicts the fact that ô(A mod P) = M . Hence D = M and P
divides �M (A). ��

Proposition 12.5.18. Let P ∈ RT be an irreducible polynomial, and M ∈ RT a monic
polynomial such that P � M. Then P divides �M (A) for some A ∈ RT if and only if
P ≡ 1 mod M.

Proof: If P divides �M (A) for some A ∈ RT , then by Proposition 12.5.17, ô(A mod
P) = M . By Proposition 12.3.18, the polynomial �P (u) = uP/u is Eisenstein.
Thus uP = u�P (u) ≡ uq

d
mod P , where d = deg P . In particular, we have

AP ≡ Aq
d
mod P .

Since �(P) = qd − 1 = ∣∣(RT /(P))∗∣∣, it follows that if P � A, we have Aq
d−1 ≡

1 mod P , so that Aq
d ≡ A mod P . If P divides A, we have Aq

d ≡ 0 ≡ A mod P .
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In any case we obtain Aq
d ≡ A mod P . Therefore AP ≡ A mod P , or AP − A =

AP−1 ≡ 0 mod P . Since ô(A mod P) = M , it follows by Remark 12.5.15 that M
divides (P − 1). Thus P ≡ 1 mod M .

Conversely, assume that P ≡ 1 mod M . Then d = deg(P − 1) = deg P and

uP−1 = ∑d
i=0

[
P − 1
i

]
uq

i
. Hence (uP−1)′ mod P ≡ (P − 1) mod P ≡ −1 mod

P �≡ 0.
Therefore the polynomial uP−1 mod P ∈ (RT /(P)) [u] is separable.
Since degu u

P−1 = qd = |RT /(P)| and AP−1 ≡ 0 mod P for all A ∈ RT , it
follows that

uP−1 mod P =
∏

D|P−1
�D(u) mod P =

∏
AmodP
A∈RT

(u − A) mod P.

Therefore there exists A ∈ RT such that ψM (A) ≡ 0 mod P . Thus P divides �M (A)
and ô(A mod P) = M . ��

Corollary 12.5.19. For any nonconstant polynomial M ∈ RT , there exist infinitely
many irreducible polynomials P in RT such that P ≡ 1 mod M.

Proof. Let {P1, . . . , Pr } be any finite set of irreducible polynomials satisfying Pi ≡
1 mod M . Set N = MP1 · · · Pr and let Q ∈ RT be arbitrary. Then �M (NQ) ≡
�M (0) mod N . Since we may take r ≥ 1 and P1 not dividing M , it follows that M
is not a prime power. By Exercise 12.10.26, we have �M (0) = 1. Thus �M (NQ) ≡
1 mod N . In particular,

�M (NQ) ≡ 1 mod M and �M (NQ) ≡ 1 mod Pi for 1 ≤ i ≤ r.

It follows from the above that if P is any irreducible polynomial dividing �M (NQ),
we have P ≡ 1 mod M by Proposition 12.5.18, and P �= Pi for 1 ≤ i ≤ r . ��

Remark 12.5.20. Corollary 12.5.19 is a particular case of Dirichlet’s theorem (The-
orem 12.5.21 above), which is an easy consequence of Čebotarev’s density theorem
(Theorem 11.2.20). However, the proof we provided for Corollary 12.5.19 does not
use Čebotarev’s density theorem.

Theorem 12.5.21 (Dirichlet). Let M, N ∈ RT be two nonconstant monic polynomi-
als such that (M, N ) = 1. Then there exist infinitely many irreducible polynomials
P ∈ RT such that P ≡ N mod M.

Proof. Consider the extension K (�M )/K with Gal(K (�M )/K ) ∼= (RT /(M))∗. Let
σ ∈ Gal(K (�M )/K ) be the element of the Galois group corresponding to the element
N mod M ∈ (RT /(M))∗. Then σ(λM ) = λNM , where λM is a generator of �M .

By Theorem 12.5.1, the Artin symbol
[
K (�M )/K

P

]
corresponds to the map

ϕP : K (�M )→ K (�M )

λM �→ λPM .
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By Čebotarev’s density theorem, there exist infinitely many irreducible polynomials

P ∈ RT such that
[
K (�M )/K

P

]
= σ . Therefore σ = ϕP for infinitely many irreducible

polynomials P ∈ RT . Now

σ = ϕP ⇐⇒ λNM = λPM ⇐⇒ N ≡ P mod M. ��

12.6 Dirichlet Characters

Definition 12.6.1. Let M ∈ RT \ {0} be a monic polynomial. A Dirichlet character
mod M is a homomorphism

X : (RT /(M))
∗ → C∗.

Remark 12.6.2. Assume that M divides an element N of RT and consider the canoni-
cal homomorphism

ϕN ,M : (RT /(N ))
∗ → (RT /(M))

∗

A mod N �→ A mod M.

Then for any Dirichlet character modM , X : (RT /(M))∗ → C∗, ϕN ,M induces a
Dirichlet character modN , namely X ◦ ϕN ,M : (RT /(N ))∗ → C∗.

(RT /(M))∗

ϕM,F

X
C∗

(RT /(F))∗
ξ

Conversely, if X is a Dirichlet char-
acter mod M , we say that we may de-
fine X mod F for F | M if there ex-
ists ξ : (RT /(F))∗ → C∗ such that
ξ ◦ ϕM,F = X .

Next we show the existence of the conductor. Let X : (RT /M)∗ → C∗ be a
Dirichlet character and A and B such that A | M , B | M , and X = XA ◦ ϕM,A and
X = XB ◦ ϕM,B . Consider C = (A, B) and set D as the product of all the monic
irreducible polynomials dividing M but not dividing B. It follows that C = (DA, B).
Consider any U, V ∈ RT such that (UV,M) = 1 and U ≡ V mod C . By the Chinese
remainder theorem, there exists S ∈ RT such that S ≡ U mod DA and S ≡ V mod B.

If P is any irreducible polynomial such that P | S and P | M , then writing
S = V +QB, we deduce that P � B, since otherwise P | V and then P | (V,M) = 1.
Now since P | M and P � B, it follows that P | D. Therefore P | DA and P | S.
Hence P | U and P | (U,M) = 1. This contradiction shows that (S,M) = 1. It
follows that

X (S) = XA ◦ ϕM,A(S) = XDA ◦ ϕM,DA(S) = XDA ◦ ϕM,DA(U ) = X (U )

and

X (S) = XB ◦ ϕM,B(S) = XB ◦ ϕM,B(V ) = X (V ).

Thus X (S) = X (U ) = X (V ). Therefore X can be defined mod C .



12.6 Dirichlet Characters 449

(RT /(M))∗

ϕM,C

X
C∗

(RT /(C))∗
XC

In particular, if X can be defined mod F1 and mod F2 with F1 and F2 monic of mini-
mal degree, then since it can be defined mod C , C = (F1, F2) and C | F1 and C | F2,
it follows that C = F1 = F2.

Theorem 12.6.3. Given a Dirichlet character X , there exists a unique monic polyno-
mial F in RT of minimal degree dividing M such that X can be defined mod F. ��

Definition 12.6.4. Given a Dirichlet character X mod M the conductor of X is F if
F ∈ RT is a monic polynomial of minimal degree dividing M such that X can be
defined mod F . We denote the conductor of X by FX .

Example 12.6.5. Let X :
(
RT /(T 3)

)∗ → C∗ (with q = 2) be given by X (1) = 1,
X (T + 1) = −1,X (T 2 + T + 1) = −1, and X (T 2 + 1) = 1.

Let ξ :
(
RT /(T 2)

)∗ → C∗ be defined by ξ(1) = 1 and ξ(T + 1) = −1.
Then ϕT 3,T 2 :

(
RT /(T 3)

)∗ → (
RT /(T 2)

)∗
is given by

ϕT 3,T 2(1) = ϕT 3,T 2(T 2 + 1) = 1

and

ϕT 3,T 2(T + 1) = ϕT 3,T 2(T 2 + T + 1) = T + 1.

Hence ξ ◦ ϕT 3,T 2 = X . Clearly T 2 is minimal since (RT /(T ))∗ = {1}. Therefore
FX = T 2.

Example 12.6.6. Let X :
(
RT /(T 2(T + 1))

)∗ → C∗ with q = 2 given by

X (1) = 1 and X (T 2 + T + 1) = −1.

Then ξ ◦ϕT 2(T+1),T 2 = X where ξ(1) = 1 and ξ(T + 1) = −1. Hence FX = T 2.

Remark 12.6.7. Given a Dirichlet characterX wemay regardX as a mapX : RT → C
by defining X (Q) = 0 if (Q, FX ) �= 1. Unless otherwise specified, we will always
view X as being defined modulo its conductor.

Definition 12.6.8. A Dirichlet character X defined modulo its conductor is called
primitive. In this case X (Q) = 0 as infrequently as possible. Also notice that when X
is defined modulo its conductor, we have X (A+ FX ) = X (A). Thus X is periodic of
period FX .
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Notation 12.6.9. Whenever we mention the characters of (RT /(M))∗ for M ∈ RT
or characters mod M , we will be including all characters whose conductor divides M
and the trivial character of conductor 1. The trivial character ε satisfies ε(Q) = 1 for
all Q ∈ RT .

Definition 12.6.10. Let X and φ be two Dirichlet characters of conductors FX and Fφ
respectively. We define the product of X and φ as follows. First let

Q = [FX , Fφ] and define γ : (RT /(Q))
∗ → C∗

by γ (A) = X (A)φ(A). Then the product Xφ is defined as the primitive character
associated to γ .

Remark 12.6.11. It is not true in general that (Xφ)(A) = X (A)φ(A).
Example 12.6.12. Let q = 2, and X mod T 2(T 2 + 1) be given by

X (1) = 1, X (T 2 + T + 1) = 1, X (T 3 + T 2 + 1) = −1,
and

X (T 3 + T + 1) = −1.
If FX is the conductor of X , then

FX ∈
{
1, T, T + 1, T (T + 1), T 2, T 2(T + 1), T 2 + 1, T (T 2 + 1), T 2(T 2 + 1)

}
.

Note that
∣∣(RT /(T ))∗∣∣ = ∣∣(RT /(T + 1))∗∣∣ = ∣∣(RT /(T (T + 1)))∗∣∣ = 1. Thus

FX �= 1, T , T + 1, T (T + 1).
Now T 3 + T 2 + 1 mod T 2 = 1, X (T 3 + T 2 + 1) = −1 �= 1, T 3 + T + 1 mod

(T 2 + 1) = 1 and X (T 3 + T + 1) = −1 �= 1. Thus FX �= T 2, T 2 + 1. Finally we
have

T 3 + T 2 + 1 mod T 2(T + 1) = 1, X (T 3 + T 2 + 1) = −1 �= 1,
T 3 + T + 1 mod T (T 2 + 1) = 1, X (T 3 + T + 1) = −1 �= 1.

Hence FX �= T 2(T + 1), T (T 2 + 1). It follows that FX = T 2(T 2 + 1). Now let
ϕ mod (T 2) be given by ϕ(1) = 1 and ϕ(T + 1) = −1. Then Fϕ = T 2.

Consider the product Xϕ. We have
[
FX , Fϕ

] = [T 2(T 2 + 1), T 2] = T 2(T 2+1).
Define γ :

(
RT /T 2(T 2 + 1)

)∗ → C∗ by γ (A) = X (A)ϕ(A). Then
γ (1) = X (1)ϕ(1) = 1× 1 = 1,

γ (T 2 + T + 1) = X (T 2 + T + 1)ϕ(T 2 + T + 1) = (1)(−1) = −1,
γ (T 3 + T 2 + 1) = X (T 3 + T 2 + 1)ϕ(T 3 + T 2 + 1) = (−1)(1) = −1,
γ (T 3 + T + 1) = X (T 3 + T + 1)ϕ(T 3 + T + 1) = (−1)(−1) = 1.

Let ξ :
(
RT /(T 2 + 1)

)∗ → C∗ be such that ξ(1) = 1 and ξ(T ) = −1.
Then ξ ◦ ϕT 2(T 2+1),T 2+1 = γ . Thus Fγ = T 2 + 1 and ξ = Xϕ. Notice that

ξ(T ) = −1 �= 0 = ϕ(T ) = X (T )ϕ(T ).
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Definition 12.6.13. If X is any Dirichlet character, we define the conjugate X of X
by X (A) = X (A). Notice that X (A) = X (A)−1 for any A such that (A, FX ) = 1.
Hence XX is the trivial character defined by

XX (A) ≡ 1 for all A ∈ RT .

Remark 12.6.14. We have GM = Gal(K (�M )/K ) ∼= (RT /(M))∗, where RT =
Fq [T ], K = Fq(T ), and �M = {λ ∈ K | λM = 0}. Then a Dirichlet character
is a character of GM for some M ∈ RT . In this case the Dirichlet character may be
considered as a Galois character.

Example 12.6.15. Let X be as in Example 12.6.5. Then

X :
(
RT /(T

3)
)∗ ∼= GT 3 = Gal

(
K (�T 3)/K

)→ C∗

and kerX = {1 mod T 3, (T 2+1)mod T 3}. ThereforeX is a character of
(
RT /(T 3)

)∗
/

kerX ∼= (RT /(T 2))∗ ∼= Gal(K (�T 2)/K ) and it may be considered as a character of
Gal(K (�T 2)/K ).

Example 12.6.16. Let X be as in Example 12.6.6. Then
(
RT /T 2(T + 1)

)∗ ∼=(
RT /T 2

)∗
, and since any character mod T 2(T+1) or mod T 2 is the same character,

it follows that K (�T 2(T+1)) = K (�T 2).

Our main interest in the topic of Dirichlet characters is the study of some arithmetic
properties of cyclotomic function fields. For this purpose, we need some general facts
on group characters, which we now review.

Definition 12.6.17. Let G be any finite group. The character group of G is

Ĝ = Hom(G,C∗).

Assume thatX ∈ Hom(G,C∗). SinceC∗ is an abelian group, we haveX ([a, b]) =
1 for any a, b ∈ G, where [a, b] = aba−1b−1 is the commutator of a and b. Therefore
we can factor X through [G,G] = 〈[a, b]|a, b ∈ G〉 by defining X̃ : G/[G,G] =
Gab −→ C∗. In particular, Ĝ = Hom(G,C∗) ∼= Hom (Gab,C∗) = Ĝab. For in-
stance, if G is a simple nonabelian group, we have [G,G] = G and Ĝ = {Id}.

From now on, all groups considered will be abelian (and finite).

Proposition 12.6.18. Any abelian group G is isomorphic to its character group Ĝ.

Proof. If G is a cyclic group of order m and if a is a generator of G, let X ∈ Ĝ be
given by X (a) = ζm , where ζm is a generator of the mth roots of 1 in C∗. We have
X n(a) = X (a)n = ζ nm . Hence o(X ) = m.

Now let ϕ ∈ Ĝ be arbitrary. Then ϕ(a) ∈ C and since 1 = ϕ(1) = ϕ(am) =
ϕ(a)m , it follows that ϕ(a) = ζ im for some 0 ≤ i ≤ m − 1. Thus ϕ = X i and Ĝ =
〈X 〉 ∼= Z/mZ ∼= G. In general, let G ∼=∏r

i=1 Z/miZ. If X ∈ Ĝ, let Xi : Z/miZ −→
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C∗ be given by Xi (a) = X (0, . . . , 0, a, 0, . . . , 0). It is clear that X = ∏r
i=1 Xi and

this factorization is unique. Moreover,

Ĝ ∼=
r∏
i=1

(
̂Za/miZ

) ∼= r∏
i=1
(Z/miZ) ∼= G. ��

Now we consider the pairing � : G × Ĝ → C∗, (g,X ) �→ X (g).

Proposition 12.6.19. � is a perfect pairing, which means that � is not degenerate. In
other words, if g ∈ G is such that X (g) = 1 for all X ∈ Ĝ, then g = 1. Conversely, if
X ∈ Ĝ is such that X (g) = 1 for all g ∈ G, then X = 1 (by definition).
Proof. If g �= 1, it follows by Proposition 12.6.18 that there exists X ∈ Ĝ such that
X (g) �= 1. ��

Proposition 12.6.20. There is a canonical isomorphism between G and ˆ̂G.

Proof. We have ˆ̂G = ( ˆ̂G) ∼= Ĝ ∼= G. Furthermore, if g ∈ G, let ĝ ∈ ˆ̂G be defined

by ĝ(X ) = X (g) = �(g,X ) for all X ∈ Ĝ. Then θ : G −→ ˆ̂G is a natural group
homomorphism. It follows by Proposition 12.6.19 that θ is an isomorphism. ��

Definition 12.6.21. Let G be an abelian group, and H a subgroup of G. We define

H⊥ =
{
X ∈ Ĝ | X (h) = 1 for all h ∈ H

}
=
{
X ∈ Ĝ | H ⊆ kerX

}
.

If M is a subgroup of Ĝ, let

M⊥ = {g ∈ G | X (g) = 1 for all X ∈ M}
=
{
ĝ ∈ ˆ̂G | ĝ(X ) = 1 for all X ∈ M

}
.

Proposition 12.6.22. For any H < G and any M < Ĝ we have

H⊥ ∼=
(
Ĝ/H

)
and M⊥ =

(
̂̂G/M

)
.

Proof. If suffices to exhibit an isomorphism between H⊥
and Ĝ/H . If X ∈ H⊥ then X (h) = 1 for all h ∈ H and
X can be factored as X̃ ◦ π .

G

π

X
C∗

G/H
X̃

Thus H⊥ → Ĝ/H , X �→ X̃ is a group isomorphism. ��

Proposition 12.6.23. For any subgroup H of G, Ĥ is isomorphic to Ĝ/H⊥.
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Proof. Let X ∈ Ĝ. Then the restriction map Ĝ → Ĥ , X �→ X |Ĥ is a group homo-
morphism with kernel H⊥. Thus Ĝ/H⊥ ⊆ Ĥ . On the other hand,

|Ĝ/H⊥| = |Ĝ|
|H⊥| =

|G|
|(Ĝ/H)|

= |G|
|G/H | = |H | = |Ĥ |.

It follows that Ĝ/H⊥ ∼= Ĥ . ��

Proposition 12.6.24. With the identification G = ˆ̂G, we have (H⊥)⊥ = H.

Proof. If h ∈ H , then for any X ∈ H⊥ we have X (h) = 1. Hence ĥ(X ) = X (h) = 1,
so ĥ ∈ (H⊥)⊥. Thus H ⊆ (H⊥)⊥. Finally, by Proposition 12.6.23,

|(H⊥)⊥| =
∣∣∣∣( ̂Ĝ/(H⊥)

)∣∣∣∣ = |G|
|H⊥| =

|G|∣∣∣Ĝ/H ∣∣∣ = |G|
|G|/|H | = |H |.

Therefore H = (H⊥)⊥. ��

Definition 12.6.25. Let M ∈ RT \ {0} and let

X ∈ ̂(RT /(M))
∗ ∼= ĜM = ̂Gal(K (�M )/K )

be a Dirichlet character mod M . We have F∗q ⊆ GM . We say that X is even if X (α) =
1 for α ∈ F∗q , and odd otherwise.

Definition 12.6.26. Let X be any Dirichlet character mod M with conductor M , that
is, X ∈ ĜM . Let kerX ⊆ GM and

KX = K (�M )
kerX .

Then KX is called the field belonging to X or the field associated to X .

Remark 12.6.27. We have that X is even iff p∞ decomposes totally in KX /K .

Remark 12.6.28. Let X be a Dirichlet character modM and let N ∈ RT \ {0} be a
multiple of M . Consider the Dirichlet character X̃ defined modN , that is,

(RT /(N ))∗

ϕN ,M

X̃
C∗

(RT /(M))∗
X

X̃ = X ◦ ϕN ,M .

Let K1 = K (�M )
kerX and K2 = K (�N )

ker X̃ . Then

kerϕN ,M = {A mod N | A ≡ 1 mod M}
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and

(RT /(N ))
∗ / kerϕN ,M ∼= (RT /(M))∗ .

Since GN ∼= (RT /(N ))∗ and GM ∼= (RT /(M))∗,

H

⎧⎪⎪⎨⎪⎪⎩
K (�N )∣∣∣∣
K (�M )∣∣∣∣ GM

K

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
GN

it follows that K (�M ) = K (�N )
H , where H = Gal(K (�N )/K (�M )). Hence

kerϕN ,M ∼= Gal (K (�N )/K (�M )).
Now, ker X̃ = ϕ−1N ,M (kerX ), and since ϕ−1N ,M (kerX ) � ϕ−1N ,M ({1}) = kerϕN ,M ,

we have K2 = K (�N )
ker X̃ ⊆ K (�N )

kerϕN ,M = K (�M ). Thus K2 ⊆ K (�M )
kerX =

K1. On the other hand,

| ker X̃ | =
∣∣∣ϕ−1N ,M (kerX )∣∣∣ = ∣∣kerϕN ,M ∣∣ |kerX |

= [K (�N ) : K (�M )] [K (�M ) : K1]

= [K (�N ) : K1]

and | ker X̃ | = [K (�N ) : K2]. Therefore K1 = K2.
Thus, given any Dirichlet character X defined mod M (the conductor does not

matter) the field KX ,M = K (�M )
kerX depends only on X and not on M .

Definition 12.6.29. Let X be any finite group of Dirichlet characters. Let M be the
least common multiple of {FX | X ∈ X}. Then X ⊆ ĜM . Set H =

⋂
X∈X kerX and

KX = K (�M )
H ; KX is called the field belonging to X or the field associated to X .

When X = 〈X 〉, we have KX = KX .

Remark 12.6.30. H is a subgroup of GM and GM/H ∼= Gal (KX/K ). Therefore, by
Proposition 12.6.22, H⊥ ∼= ̂Gal(KX/K ). Since GM is abelian, it follows that H⊥ ∼=

̂Gal(KX/K ) ∼= Gal(KX/K ).

Also, if X ∈ X < ĜM , then since kerX ⊇ H , we can consider the induced map
X̃ : GM/H → C∗. Therefore X ⊆ ĜM/H ∼= H⊥. Now X⊥ < GM and if α ∈ X⊥,
then X (α) = 1 for all X ∈ X . Hence α ∈ H and X⊥ ⊆ H , so H⊥ ⊆ X⊥⊥ = X .

It follows that

X = H⊥ ∼= Gal K̂X/K ) ∼= Gal(KX/K ). (12.14)

Let X be any finite group of Dirichlet characters. Since X ∼= ̂Gal(KX |K ), we can
consider the natural pairing
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� : Gal(KX/K )× X −→ C∗

(g,X ) �−→ X (g).

Under � we have that if L is a subfield of KX , let

YL = Gal(KX/L)
⊥ ∼= Gal ̂(KX/K )

Gal(KX/L)
∼= ̂Gal(L/K ).

Conversely, if Y ⊆ X is a subgroup of X , let LY = KY⊥
X . Then LY is the fixed

subfield of {g ∈ Gal(KX/K ) | X (g) = 1 for all X ∈ Y }.
We have Y⊥ = Gal(KX/LY ), so Y = Y⊥⊥ = Gal(KX/LY )⊥ = YLY . Conversely,

LYL = K
Y⊥L
X = K (Gal(KX /L)⊥)⊥

X = KGal(KX /L)
X = L . In other words, we have the

following theorem:

Theorem 12.6.31. There is a bijective correspondence between A = {Y | Y < X}
and B = {L | L ⊆ KX } given by

A←→ B
Y −→ LY = KY⊥

X

̂Gal(L/K ) ∼= Gal(KX/L)
⊥ = YL ←− L .

In particular, we obtain a one-to-one correspondence between all groups of Dirichlet
characters and subfields of cyclotomic function fields. ��

Remark 12.6.32. Since Gal(L/K ) is a finite group, we have Gal(L/K ) ∼= ̂Gal(L/K ) ∼=
YL . This may be expressed by means of the natural nondegenerate pairing

Gal(L/K )× YL −→ C∗

(g,X ) �−→ X (g).

Proposition 12.6.33. Let X1, X2 be two groups of Dirichlet characters and let Ki =
KXi (i = 1, 2) be the field belonging to Xi . Then
(1) X1 ⊆ X2 ⇐⇒ K1 ⊆ K2,
(2) K〈X1,X2〉 = K1K2.

Proof. See Exercise 12.10.28. ��
Now we shall see the way Dirichlet characters may be applied to study some arith-

metic properties of cyclotomic function fields.
Let M ∈ RT \ {0} and let M = ∏r

i=1 P
αi
i be its decomposition as a product of

irreducible polynomials. Then

(RT /(M))
∗ ∼=

r∏
i=1

(
RT /(P

αi
i )
)∗
. (12.15)
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IfX is a Dirichlet character mod M , then corresponding to (12.15) letX =∏r
i=1 XPi

where XPi is a character mod P
αi
i . In other words,

X (A mod M) =
r∏
i=1

XPi

(
A mod Pαii

)
.

Example 12.6.34. Let X and ϕ be as in Example 12.6.12. Then X is defined mod
T 2(T 2 + 1) and ϕ is defined mod T 2. Let φ := Xϕ, where φ is defined mod T 2 + 1.
We have X = (Xϕ)ϕ−1 = φϕ−1 and φ is defined mod T 2 + 1, so XT 2 = ϕ−1 = ϕ,
and XT 2+1 = φ.
Definition 12.6.35. Let X be any finite group of Dirichlet characters. Then for a monic
irreducible polynomial P in RT we set

XP = {XP | X ∈ X} .
Theorem 12.6.36. Let X be a finite group of Dirichlet characters and KX its associ-
ated field. Let P ∈ RT \ {0} be an irreducible polynomial and set (P)K = p

p
deg P
∞

. Let

P be a prime divisor of KX that lies above p and set e = e(P|p). Then e = |XP |.
Proof. Let M be the least common multiple of {FX |X ∈ X}. Then KX ⊆ K (�M ). Let
M = Pa A, where A ∈ RT and P does not divide A. Let L = KX (�A) = KX K (�A).

L = KX K (�A)

unramified

��
��

��
��

��
��

��
��

��

unramifiedK (�Pa )

KXP

totally ramified

KX K (�A)

unramified

K

By Proposition 12.6.33,

L = KX K (�A) = KX KĜA
= K〈X,Ĝ A〉.

Thus L is the field belonging to the group generated by X and Ĝ A. Equivalently, the
group of characters of L is generated by X and each Dirichlet character of GM whose
conductor is prime with P . Thus

〈X, Ĝ A〉 ∼= XP × Ĝ A.

We have KXP ⊆ K (�Pa ) and L = KXP K (�A).
Notice that p is unramified in K (�A)/K . It follows that the ramification index of

p in KX/K is the same as that of L/K . Since L/KXP is not ramified in the prime
divisors above p and p is fully ramified in KXP /K (Proposition 12.3.14), we conclude
that e = [KXP : K

] = |XP |. ��
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Example 12.6.37. Set q = 2 and consider the character X given in Example 12.6.12.
The conductor of X is T 2(T 2 + 1). By Example 12.6.34 we have XT 2 = ϕ and
XT 2+1 = φ. Note that

�(T 2) = �(T 2 + 1) = qdn − qd(n−1) = 21×2 − 21×(2−1) = 22 − 2 = 4− 2 = 2.

Hence
[
K (�T 2) : K

] = [K (�T 2+1) : K
] = 2. We have

uT
2 =

2∑
i=0

[
T 2

i

]
uq

i = T 2u +
[
T 2

1

]
uq + uq

2
.

Now

[
T 2

1

]
= T

[
T

1

]
+
[
T

0

]q
= T + T q = T + T 2, where

[
T

1

]
= a1 = 1. Thus

uT
2 = T 2u + (T + T 2)u2 + u4. We also have

�T 2(u) = uT
2
/uT = T 2u + (T + T 2)u2 + u4

Tu + u2
= u2 + Tu + T .

Hence each root α of�T 2(u) is of the form
(
α
T

)2+( αT ) = − 1
T = 1

T . Hence K (�T 2) =
K (β), where β is a root of the Artin–Schreier extension satisfying β2 − β = 1

T .
Similarly, K (�T 2+1) = K (γ ) where γ 2− γ = 1

T+1 . It follows that KX = K (ε) with

ε2 − ε = 1
T (T+1) and we have the following diagram:

K (�T 2(T 2+1)) = K (β, γ )

K (β)

XT 2

K (ε)

X

K (γ )

XT 2+1
K

In K (ε)/K , T and T + 1 are the ramified primes; in K (β)/K , T is the only ramified
prime and in K (γ )/K , T + 1 is the only ramified prime.
Corollary 12.6.38. Let X be a Dirichlet character. Then P ramifies in KX /K if and
only if X (P) = 0 (or equivalently P divides FX ). If X is any finite group of Dirichlet
characters, then P is unramified in KX/K if and only if X (P) �= 0 for all X ∈ X.

Proof. We have the following equivalences: P is ramified in KX/K ⇔ XP �= 1 ⇔
∃ X ∈ X such that XP �= 1⇔ ∃ X ∈ X with P | FX ⇔ ∃ X ∈ X with X (P) = 0. ��

The inertia group and the decomposition group are related to Dirichlet characters
in the following manner:
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Theorem 12.6.39. Let X be a finite group of Dirichlet characters and let KX be its as-
sociated field. Let P ∈ RT , and Y = {X ∈ X | X (P) �= 0}, Z = {X ∈ X | X (P) = 1}.
Set (P)K = p

p
deg P
∞

and consider P to be a prime divisor in KX lying above p. Then

X/Y ∼= Î (P|p) ∼= I (P|p) and X/Z ∼= D(P|p).
In particular, e = e(P|p) = [X : Y ], f = f (P|p) = [Y : Z ], and h = [Z : 1] = |Z |,
where h is the number of prime divisors in KX above p. Finally, the group Y/Z is
cyclic of order f .

Proof. Let KY be the field corresponding to Y . Since Y ⊆ X we have KY ⊆ KX .
By Corollary 12.6.38, KY /K is the maximal extension in which p is unramified.
Since KX/K is an abelian extension, it follows that any place in KY above p is fully
ramified in KX/KY and KY = K I (P|p)

X . By Theorem 12.6.31, KY = KY⊥
X . Thus

Y⊥ = I (P|p) = Gal(KX/KY ). Therefore, using Proposition 12.6.23 we obtain

X/Y = ̂Gal(KX/K )/Gal(KX/KY )
⊥ ∼= ̂Gal(KX/KY ) = I (P̂|p) ∼= I (P|p).

Now, p is unramified in KY /K . Let M be the least common multiple of {FX |
X ∈ Y }.

By Corollary 12.6.38, P does not divide M and Y ⊆ ĜM , so by Proposition
12.6.33, KY ⊆ K (�M ). Clearly, the Frobenius map ϕP for K (�M ) corresponds to
the map λM −→ λPM , where λM is a generator of �M . Thus ϕP ∈ GM ∼= (RT /(M))∗
corresponds to P mod M . Since

Gal(KY /K ) ∼= Gal(K (�M )/K )

Gal(K (�M )/KY )
,

the Frobenius map ϕ̃P for KY /K corresponds to the coset of P in this quotient.
If X ∈ Y , kerX ⊇ Gal(K (�M )/KY ). Then X (ϕ̃P ) = X (P). In particu-

lar, X (ϕ̃P ) = 1 if and only if X (P) = 1. Thus Z = 〈ϕ̃P 〉⊥ under the pairing
Gal(KY /K )× Y → C∗.

Using Propositions 12.6.18 and 12.6.23 we obtain

Y/〈ϕ̃P 〉⊥ = Y/Z ∼= 〈̂̃ϕP 〉 ∼= 〈ϕ̃P 〉.
The latter is a cyclic group of order f = [Y : Z ].

Set L = K 〈ϕ̃P 〉Y . Then L is the decomposition field of p, so p is fully decomposed in
L/K and any prime divisor in L above p is inert in KY /L (because [	(q) : k(p)] = 1
and [kY (P) : k(p)] = [kY (P) : 	(q)] = [KY : L] = o(ϕ̃P ), where q is a prime divisor
of L above p and 	, k, and kY are the fields of constants of L , K , and KY respectively).
Therefore if h is the number of prime divisors in KX above p, we have

h = [L : K ] = [KY : K ]

[KY : L]
= |Y |
|〈ϕ̃P 〉| = |Z |.

In KX/K , the splitting field of p is the fixed field of the decomposition group, and this
is L . Thus L is the field corresponding to Z , and Z = ̂Gal(L|K ).
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X/Y

⎧⎪⎪⎨⎪⎪⎩
KX∣∣∣∣
KY

Y/Z

⎧⎨⎩
∣∣∣∣
L∣∣∣∣ Z
K

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

X

By Exercise 12.10.29,

X/Z =
̂Gal(KX/K )

̂Gal(L/K )
∼=

̂Gal(KX/K )

̂(
Gal(KX /K )
Gal(KX /L)

) ∼= ̂Gal(KX/L) ∼= D̂(P|p). ��

Lemma 12.6.40. Let P ∈ RT be a monic irreducible polynomial of degree d and let
n = pt . Then (RT /(Pn))

∗ contains a cyclic subgroup of order pta for any a dividing
qd − 1.
Proof. We have

∣∣ (RT /(Pn))∗ ∣∣ = �(Pn) = qdn − qd(n−1) = qd(n−1)(qd − 1).
Therefore the groups (RT /(Pn))

∗ is isomorphic to a direct sum H ⊕ A where |H | =
qd(n−1) and |A| = qd − 1. Note that A is the only subgroup of (RT /(Pn))∗ of order
qd − 1. Define

θ :
(
RT /(P

n)
)∗ −→ (RT /P)

∗

B mod Pn �−→ B mod P.

Then θ is an epimorphism and (RT /(Pn))
∗ / ker θ ∼= (RT /(P))∗.

Since
∣∣ (RT /(P))∗ ∣∣ = �(P) = qd − 1, it follows that
A ∼= (RT /(P))∗ and H ∼= ker θ ∼= {B mod Pn|B ≡ 1 mod P} .

But RT /(P) and Fqd are isomorphic, so Amust be the multiplicative group of nonzero
elements of a field, and therefore A is a cyclic group.

Now let B = 1+ P . We wish to determine the order of B mod Pn in the quotient
RT /Pn . Since B belongs to ker θ , we have B ∈ H and o(B) = ps for some s ≥ 0.
Then

B ps = 1+ P ps ≡ 1 mod Pn ⇔ ps ≥ n = pt ⇔ s ≥ t.

Thus o(B) = pt , and the result follows. ��

Theorem 12.6.41. Let G be any finite abelian group. There exist fields E and F such
that:

(i) Gal(F/E) ∼= G.
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(ii) F/E is unramified at all prime divisors.
(iii) F/K is an abelian extension and E/K is a cyclic extension, where, as usual,

K = Fq(T ).
(iv) The field of constants of E and F is Fq .

Proof.AssumeG ∼= Z/m1Z×· · ·×Z/mrZ. Letmi = pti ai with (ai , p) = 1 for ti ≥ 0
and 1 ≤ i ≤ r . Let d ′i = o(p mod ai ) for 1 ≤ i ≤ r , that is, pd

′
i ≡ 1 mod ai . Suppose

d1 < d2 < · · · < dr , where each d ′i divides di (for instance, take d1 = d ′1, di =
2di−1d ′i , i = 2, . . . , r ). Let Pi ∈ RT be a monic irreducible polynomial of degree
di . Such a Pi exists since Fqdi = Fq(αi ) for some αi and if Pi = Irr(αi , T,Fq), then
Fq(αi ) ∼= RT /(Pi ). By Lemma 12.6.40,

(
RT /(P

pti
i )
)∗
contains an element of order

pti ai = mi . Since the character group of
(
RT /(P

pti
i )
)∗
is isomorphic to the group,

there exists a character Xi mod P
pti
i and order mi . Thus, Xi satisfies o(Xi ) = mi and

FXi = Psii with si ≤ pti .
Let Pr+1 be another monic irreducible polynomial of degree dr+1 > dr such

that a1 · · · ar | qdr+1 − 1. Such dr+1 exists since (a1 · · · ar , q) = 1. Let Xr+1 be
a Dirichlet character defined mod P pt

r+1 for t = t1 + · · · + tr and order mr+1 =
pt (qdr+1 − 1) (Lemma 12.6.40). Then m1 · · ·mr = a1 · · · ar pt1+···+tr | mr+1. Let
X = X1 · · ·XrXr+1 and E = KX be the field corresponding to X = 〈X 〉. Let
Y = 〈X1, . . . ,Xr ,Xr+1〉 and F = KY be the field corresponding to Y . We have
K ⊆ E = KX ⊆ KY = F ⊆ K (�M ), where

M = Pα11 · · · Pαrr Pαr+1r+1 with αi = pti , 1 ≤ i ≤ r, and αr+1 = pt .

Thus the field of constants of E and F is Fq . This proves (d). Also, F/K is an abelian
extension.

Now by (12.14), the group Gal(E/K ) ∼= X = 〈X 〉 is cyclic. This proves (c).
We have Y = 〈X1, . . . ,Xr ,Xr+1〉 = 〈X1, . . . ,Xr ,X 〉. Moreover, o(X ) =

o(Xr+1) = mr+1 and since m1 · · ·mr divides mr+1, X is of maximal order. It fol-
lows that on the one hand, Y/X = Y/〈X 〉 ∼= 〈X1, . . . ,Xr 〉, and on the other hand, by
Exercise 12.10.29,

Y/X =
̂Gal(KY /K )

̂Gal(KX/K )
∼=

̂Gal(KY /K )

̂(
Gal(KY /K )
Gal(KY /KX )

) ∼= ̂Gal(KY /KX )

∼= ̂Gal(F/E) ∼= Gal(F/E).

KY∣∣∣∣
KX∣∣∣∣
K
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Thus Gal(F/E) ∼= 〈X1, . . . ,Xr 〉 ∼= Z/m1Z× · · · × Z/mrZ ∼= G. This proves (a).
Finally, by Theorem 12.5.3 the ramified primes in F/K are p1, . . . , pr , pr+1, and

p∞, where (Pi )K = pi

p
deg Pi∞

. Notice that the ramification index of p∞ in E/K is q − 1
as well as in F/K since E is the field belonging to X , q − 1 | o(X ),

(
RT /(P

pt

r+1)
)∗

contains a unique subgroup of order q − 1 (Lemma 12.6.40), and this subgroup is
precisely the inertia group of p∞ (Proposition 12.5.4). Therefore p∞ is unramified in
F/E . Finally, we have YPi = 〈Xi 〉 = XPi . By Theorem 12.6.36, the ramification index

in F/E of any prime divisor in F above pi is
|YPi |
|XPi | = 1. Thus F/E is unramified for

every prime divisor. This proves (b) and the theorem. ��

12.7 Different and Genus

Let M ∈ RT \{0} be a monic nonconstant polynomial. We denote byDM the different
of the extension K (�M )/K and by gM the genus of K (�M ). Since the extension
K (�M )/K is geometric and separable we may apply the Riemann–Hurwitz genus
formula. For an irreducible polynomial P ∈ RT , we write (P)K = p

p
deg P
∞

.

Proposition 12.7.1. Let P be a monic irreducible polynomial of degree d and let n ∈
N. If M = Pn, then

DM = Ps
∏

B|p∞
Bq−2,

where P is the only prime divisor in K (�M ) above p,

s = n�(M)− qd(n−1) = nqdn − nqd(n−1) − qd(n−1) = nqdn − (n + 1)qd(n−1),

and

2gM − 2 = (dqn − dn − q)
�(Pn)

q − 1 − dqd(n−1).

Proof. By Theorem 12.5.3 any prime divisor other than p and p∞ is unramified in
K (�M )/K . Also, p is fully ramified, e∞ = q − 1, and p∞ is tamely ramified. Thus
DM = Ps∏

B|p∞ Bq−2.
Now we shall find s. To this end we calculate (DM )p = D(K (�M )P/Kp) = Ps .

Clearly, K (�M )P is generated over Kp for a root λ of �Pn (u) = uP
n

uPn−1
.

By Proposition 12.5.8, {λi }�(M)−1i=0 is an integral basis of the extension K (�M )P/Kp.

By Theorem 5.7.17, we have (DM )P =
(
� ′Pn (λ)

)
P. Now uP

n = uP
n−1
�Pn (u), so

Pn = (uPn )′ = (uPn−1)′�Pn (u)+ uP
n−1
� ′Pn (u)

= Pn−1�Pn (u)+ uP
n−1
� ′Pn (u).
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Therefore Pn = λPn−1� ′Pn (λ) and
(
� ′Pn (λ)

) = ( Pn

λP
n−1

)
.

Since λP
n−1 ∈ �P and �P (u) =

∏
(A,P)=1(u − λAP ), it follows that

�P (0) = P = ±
∏

(S,P)=1
λSP = (unity) × λ�(P)P .

We obtain that

((
λP

n−1)�(P)) = (P) and if q is the prime divisor of K (�P )

above p, we have vq
(
λP

n−1) = vq(P)
�(P) =

e(q|p)vp(P)
�(P) = 1 because q|p is totally rami-

fied in K (�P )/K . Then vP
(
λP

n−1) = e (P|q) vq
(
λP

n−1) = �(Pn)
�(P) . Consequently,

s = vP
(
� ′Pn (λ)

) = vP( Pn

λP
n−1

)
= n�(Pn)− qd(n−1).

Finally, by Theorem 9.4.2 we have

2gM − 2 = (dnq − dn − q)
(
�(Pn)/(q − 1))− dqd(n−1). ��

Now we state the general result.

Theorem 12.7.2 (Genus and Different formulas). Let M ∈ RT \ Fq be a monic
polynomial of the form M = Pα11 · · · Pαrr , where P1, . . . , Pr are distinct irreducible
polynomials. Set di = deg Pi . Then

DM =
r∏
i=1

⎛⎝∏
P|pi

P

⎞⎠si ∏
B|p∞

Bq−2,

where (Pi )K = pi

p
deg Pi∞

, si = αi�
(
Pαii
)− qdi (αi−1), and

2gM − 2 = −2�(M)+
r∑
i=1

di si
�(M)

�(Pαii )
+ (q − 2)�(M)

q − 1 .

Proof. For each i ∈ {1, . . . , r}, pi is fully ramified in K (�P
αi
i
)/K and unramified in

K (�M )/K (�P
αi
i
).

Now, for each q prime divisor in K (�P
αi
i
) that lies above pi , there are

�(M)/�(P
αi
i )

fi
prime divisors in K (�M ) above q, each of them of relative degree fi . Therefore the

contribution to DM of pi is
(∏

P|pi P
)si
, where si is as in Proposition 12.7.1. We

have degK (�M )

(∏
P|pi P

)
= di

�(M)/�(P
αi
i )

fi
fi = di

�(M)
�(P

αi
i )
. Thus DM =∏r

i=1
(∏

P|pi P
)si ∏

B|p∞ Bq−2 and
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2gM − 2 = (2gK − 2) [K (�M ) : K ]+ degK (�M )
DM

= −2�(M)+
r∑
i=1

si di
�(M)

�(Pαii )
+ (q − 2)�(M)

q − 1

with si = αi�(Pαii )− qdi (αi−1). ��

12.8 The Maximal Abelian Extension ofK

We will denote by A the maximal abelian extension of K . We will construct A explic-
itly, namely A is generated by certain extensions of finite degree over K , each one of
which is generated by roots of a polynomial that can be given explicitly. We can also
describe Artin’s reciprocity law over these roots (Theorem 11.5.6).

It turns out that A is the composition of three pairwise linearly disjoint extensions
E/K , KT /K , and L∞/K .

12.8.1 E/K

Let E be the union of constant extensions of K . More precisely, E = ⋃∞n=1 Fqn (T ).
By Theorem 6.1.3,

[
Fqn (T ) : Fq(T )

] = [Fqn : Fq
] = n and

Gal
(
Fqn (T )/Fq(T )

) ∼= Gal (Fqn/Fq) ∼= Z/nZ.

Recall that Fqn (T ) is obtained by adding the roots of uq
n − u = f (u) to K .

We have

Gal(E/K ) = Gal
( ∞⋃
n=1

Fqn (T )/Fq(T )

)

= Gal
(
lim−→
n

Fqn (T )/Fq(T )

)
∼= lim←−

n

Gal(Fqn/Fq) = lim←−
n

Z/nZ. (12.16)

The inverse limit in (12.16) is given by maps πm,n : Cm := Z/mZ → Z/nZ =
Cn , x mod m �→ x mod n for n dividing m.

Thus Gal(E/K ) ∼= lim←−
n

Z/nZ ∼= Ẑ, where Ẑ denotes the Prüfer ring, which is the

completion of Z.
More precisely, assume that n divides m. Then n = Pα11 · · · Pαrr and m =

Pβ11 · · · Pβrr for some αi ≤ βi and 1 ≤ i ≤ r . We have πm,n = π
P
β1
1 ,P

α1
1
× · · · ×

π
Pβrr ,P

αr
r
where π

P
βi
i ,P

αi
i
: Z/Pβii Z → Z/Pαii Z, x mod Pβii �→ x mod Pαii .

Therefore lim←−
n

Z/nZ ∼=∏p prime lim←−
α

Z/pαZ. Now lim←−
α

Z/pαZ ∼= Zp, where Zp is

the ring of p-adic integers.
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Theorem 12.8.1. GE := Gal(E/K ) ∼= Ẑ ∼=∏p prime Zp. ��

Remark 12.8.2. Topologically, the group GE = Gal(E/K ) is generated by the Frobe-
nius automorphism σ : E → E , u �→ uq .

12.8.2 KT /K

Put KT =
⋃

M∈RT K (�M ). Now Gal (K (�M )/K ) ∼= (RT /(M))∗, and we have

GT := Gal(KT /K ) = Gal(lim−→
M

K (�M )/K )

∼= lim←−
M

Gal(K (�M )/K ) ∼= lim←−
M

(RT /(M))
∗ .

We define an action of GT on KT as follows. If u ∈ KT , then u ∈ K (�M ) for some
M ∈ RT . For σ ∈ GT , we have σ |K (�M ) = φ with φ(λM ) = λAM and (A,M) = 1.

In fact, if G := lim←−
M

(RT /(M))∗, there exists a natural projection G
πM−→ (RT /(M))

∗,

which corresponds to the restriction σ(λM ) = πM (σ )(λM ).
We shall now describe explicitly GT ∼= G.

Proposition 12.8.3. Let M = Pn ∈ RT , where n ≥ 1 and P is a monic irreducible
polynomial. Then (RT /(M))∗ ∼= HM ⊕ Cqd−1, where HM is a p-group of order

qd(n−1) and Cqd−1 is a cyclic group of order qd − 1 with d = deg P.

Proof. The group (RT /(M))∗ is abelian of order�(M) = qdn−qd(n−1) = qd(n−1)(qd−
1). It follows that (RT /(M))∗ ∼= HM ⊕ B with |HM | = qd(n−1) and |B| = qd − 1.
Finally, since

θ : (RT /(M))
∗ −→ (RT /(P))

∗

C mod M �−→ C mod P

is an epimorphism, it follows that B is isomorphic to (RT /(P))∗, which is a cyclic
group because it is the multiplicative group of the nonzero elements of a finite field. ��

Remark 12.8.4. In fact we have

HM ∼= ker θ =
{
D mod Pn|D ≡ 1 mod P} .

That is, if D ∈ HM , then D ≡ 1 + CPs mod Pn with C ∈ RT , (C, P) = 1, and
1 ≤ s ≤ n. Now the elements of HM of the form D ≡ 1 + CPs mod Pn , where
1 ≤ s ≤ n − 1 and (C, P) = 1, are in correspondence with (RT /(Pn−s))∗. Therefore
HM contains�(Pn−s) = qd(n−s)−qd(n−s−1) elements of the form 1+CPs mod Pn
with 1 ≤ s ≤ n − 1, and (C, P) = 1.
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Proposition 12.8.5. Set M = Pn and let t be the positive integer satisfying pt−1 <
n ≤ pt . Let n0 =

[
n

pt−1

]
be the integral part of n/pt−1. Then the elements of maximum

order in HM are those of order pt . Furthermore

(i) If n0 = n/pt−1, then the number of elements of order pt in HM is

qd(n−1) − qd(n−n0).

(ii) If n0 < n/pt−1, then the number of elements of order pt in HM is

qd(n−1) − qd(n−n0−1).

Proof.We have

(1+ CPs)p
m ≡ 1+ CPm Psp

m
mod P pm+1 . (12.17)

Thus o(1+ CPs) = pm ⇔ spm ≥ n and spm−1 < n.

Since any s ≥ 1 satisfies spt ≥ n, we have H pt

M = {1} and (1 + P)p
t−1 ≡

1+ P pt−1 �≡ 1 mod Pn . Therefore HM is exactly of exponent pt .
It follows from (12.17) that the elements of order pt are those such that spt ≥ n

and spt−1 < n. Since spt ≥ n for any s ≥ 1, we get o(1 + CPs) = pt if and only if
1 ≤ s < n

pt−1 .

If n0 = n
pt−1 , then 1 ≤ s ≤ n0 − 1 and there exist

n0−1∑
s=1

(
qd(n−s) − qd(n−s−1)

)
= qd(n−1) − qd(n−n0)

elements of order pt in HM .
If n0 < n/pt−1, there are

n0∑
s=1

(
qd(n−s) − qd(n−s−1)

)
= qd(n−1) − qd(n−n0−1)

elements of order pt in HM . ��

Corollary 12.8.6. With the notation of Proposition 12.8.5 assume

HM ∼=
(
Z/ptZ

)α × Z/pn1Z× · · · × Z/pnsZ = G

with t > n1 ≥ · · · ≥ ns ≥ 0. Then
(i) α = ud(n0 − 1) if n0 = n/pt−1,
(ii) α = udn0 if n0 < n/pt−1,

where q = pu. In particular, if n = pt , then α = ud(p − 1).
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Proof. The element (a1, . . . , aα, b1, . . . , bs) of G is of order pt if and only if
(ai , p) = 1 for some i ∈ {1, . . . , α}. Therefore G contains(

pαt − pα(t−1)
)
pn1+···+ns = (pα − 1)pα(t−1)+m = pαt+m − pα(t−1)+m

elements of order pt , where m = n1 + · · · + ns .
Thus if n0 = n/pt−1, we obtain using Proposition 12.8.5 that

qd(n−1) − qd(n−n0) = pud(n−1) − pud(n−n0) = pud(n−n0)
(
pud(n0−1) − 1

)
= pα(t−1)+m

(
pα − 1) .

Hence α = ud(n0 − 1). Now if n0 < n
pt , we have

pud(n−n0−1)
(
pudn0 − 1

)
= pα(t−1)+m(pα − 1).

So α = udn0 in this case. ��
Now for each t ∈ N, let pHP pt denote the subgroup of HPpt consisting of all

elements of the form v p with v ∈ HPpt .

Proposition 12.8.7. For every integer t ≥ 2, the map � : H
Ppt−1 −→ pHP pt defined

by

�
(
(1+ CPs) mod P pt−1

)
=
(
(1+ CPs) mod P pt

)p
,

with (C, P) = 1 and 1 ≤ s ≤ pt−1, is a group isomorphism.

Proof. Clearly, � is a well-defined epimorphism. Now

(1+ CPs) mod P pt−1 ∈ ker�
⇐⇒

(
(1+ CPs) mod P pt

)p = (1+ C pPsp
) (
modP pt

)
≡ 1 mod P pt

⇐⇒ 0 ≡ C pPsp mod P pt ⇐⇒ s = pt−1 ⇐⇒ 1+ CPs ≡ 1 mod P pt−1 .

Thus � is a monomorphism and consequently a group isomorphism. ��

Theorem 12.8.8. We have

(i) HPp ∼= (Z/pZ)α1 with α1 = ud(p − 1)
(ii) For t ≥ 2, HP pt

∼=∏t
i=1
(
Z/piZ

)αi ,
where αi = udpt−i−1(p − 1)2 if 1 ≤ i ≤ t − 1 and αt = ud(p − 1).
Proof. Each element of HPp\{0} is of order p, and since |HPp | = qd(p−1) = pud(p−1),
statement (i) follows. We shall prove (ii) by induction on t for t ≥ 2.

We have
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H
Pp2

∼=
(
Z/p2Z

)α2 × (Z/pZ)α1

and |H
Pp2 | = pud(p

2−1), where α2 = ud(p − 1) and α1 ≥ 0.
Thus ud(p2 − 1) = 2ud(p − 1) + α1, and α1 = ud(p − 1)2. It follows that (ii)

holds for t = 2. Now by Proposition 12.8.7, pH
P pt+1 and HPpt are isomorphic. Hence

pH
P pt+1 ∼=

∏t
i=1
(
Z/piZ

)αi+1 , where αi+1 = udpt−i−1(p−1)2 if 1 ≤ i ≤ t −1 and
αt+1 = ud(p − 1).

Therefore H
Ppt+1 ∼= ∏t+1

i=1
(
Z/piZ

)αi for some α1 ≥ 0. Since |H
Ppt+1 | =

pud(p
t+1−1), we have

ud(pt+1 − 1) =
t+1∑
i=1

iαi = (t + 1)ud(p − 1)+
t∑

i=2
iαi + α1.

Thus α1 = udp(t+1)−2(p − 1)2. This proves (ii). ��

Theorem 12.8.9. If P is an irreducible polynomial of degree d in RT and q = pu,
then:

(i) Gal(K (�P p )/K ) ∼= (Z/pZ)α1 × (Z/(qd − 1)Z) with α1 = ud(p − 1).
(ii) For each positive integer t ≥ 2,

Gal(K (�P pt )/K ) ∼=
t∏

i=1

(
Z/piZ

)αi × Z/(qd − 1)Z

where αi = udpt−i−1(p − 1)2 if 1 ≤ i ≤ t − 1 and αt = ud(p − 1).
Proof. The statements follow immediately by Proposition 12.8.3 and Theorem 12.8.8.

��
We have �P ⊆ �P2 ⊆ · · · ⊆ �Pn ⊆ · · · , so K ⊆ K (�P ) ⊆ · · · ⊆ K (�Pn ) ⊆

· · · is a tower of field extensions. In particular, for each n ≥ 1 there exists t ≥ 1 such
that K (�Pn ) ⊆ K (�Pt ). Let K (�P∞) :=

⋃∞
n=1 K (�Pn ) =

⋃∞
t=1 K (�P pt ).

Theorem 12.8.10. With the previous notation, we have

Gal (K (�P∞)/K (�P )) ∼= lim←−
t

HP pt
∼= lim←−

t

(
t∏

i=1

(
Z/piZ

)αi)
,

where αi = udpt−i−1(p − 1)2 if 1 ≤ i ≤ t − 1, αt = ud(p − 1), and q = pu.

Proof. For each t ≥ 2, denote by �t the composition of the homomorphisms
HPpt −→ pHP pt −→ H

Ppt−1

(1+ CPs) mod P pt �−→
(
(1+ CPs) mod P pt

)p �−→ (1+ CPs) mod P pt−1 .
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Let λ be a generator of �P pt . Then λP
(pt−pt−1)

is a generator of �
P pt−1 . Let

σ ∈ HPpt , and let C ∈ RT be such that (C, P) = 1 and σ(λ) = λC . We

have σ
(
λP

(pt−pt−1)) = (λP(pt−pt−1))C . Therefore, �t is the homomorphism HPpt →
H
Ppt−1 , σ �→ σ |K (�

P p
t−1 ). Hence the homomorphisms �t (t ≥ 2) induce the projec-

tive system of the groups Gal(K (�P pt )/K (�P )), and consequently

Gal (K (�P∞)/K (�P )) = lim←−
t

Gal
(
K (�P pt )/K (�P )

) ∼= lim←−
t

HP pt .

The second isomorphism follows using Theorem 12.8.9. ��
The next result is a corollary of Theorem 12.8.10.

Theorem 12.8.11. We have

Gal (K (�P∞)/K ) ∼= lim←−
t

Gal
(
(�P pt )/K (�P )

)× (Z/(qd − 1)Z)
∼= lim←−

t

(
t∏

i=1

(
Z/piZ

)αi)× (Z/(qd − 1)Z)
∼= Z∞p ×

(
Z/(qd − 1)Z

)
,

where αi = udpt−i−1(p− 1)2 if 1 ≤ i ≤ t − 1, αt = ud(p− 1), and Z∞p denotes the
direct product of a countable number of copies of the ring of p-adic integers.

Proof. The result is a consequence of the fact that the inverse limit commutes with

direct product and the isomorphism between lim←−
i

(
Z/piZ

)
and Zp. ��

Theorem 12.8.12. LetM be the set of all monic irreducible polynomials in RT . Then

Gal (KT /K ) ∼= Z∞p ×
∏
p∈M

(
Z/(qdP − 1)Z

)
,

where dP = deg P for each P ∈M and KT =
⋃

M∈RT K (�M ).

Proof. Let M ∈ RT be a nonconstant polynomial, and let M = αPn11 · · · Pnrr be its
factorization into powers of monic irreducible polynomials.

We have K (�M ) = K
(
�P

n1
1
, . . . , �Pnrr

)
= ∏r

i=1 K (�P
ni
i
). Therefore KT =∏

P∈M K (�P∞).
For each P ∈ M, if (P)K = p

p
deg P
∞

, then p is fully ramified in K (�P∞)/K and

unramified in
∏

Q∈M\{P} K (�Q∞)/K . In particular, if P, Q are distinct elements of
M, then K (�P∞) and K (�Q∞) are linearly disjoint over K .

Thus Gal(KT /K ) ∼=
∏

P∈MGal (K (�P∞)/K ) and the result follows by Theorem
12.8.11. ��
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12.8.3 L∞/K

Note that EKT cannot be the maximal abelian extension of K because p∞ is tamely
ramified in EKT /K . We need certain extensions for which p∞ is wildly ramified. For
instance consider the Artin–Schreier extension K (y), where

y p − y = T .

Since (T )K = p
p∞ , it follows by Example 5.8.8 that p∞ is the only ramified prime in

K (y)/K and the index of ramification of p∞ is e = p = [K (y) : K ]. Thus p∞ is
wildly ramified in K (y)/K .

Let X = 1
T . Then K = Fq(X) and RX = Fq [X ] = Fq

[
1
T

]
. For n ≥ 1, put Fn =

K (�Xn+1) and let λXn+1 be a generator of the cyclic RX -module �Xn+1 = �T−n−1 .
Any polynomial N ∈ RX acts on Fn . Furthermore, we have

Gal(Fn/K ) ∼=
(
RX/(X

n+1
)∗

∼=
{
f (X) mod Xn+1| f (X) ∈ RX and f (0) �= 0

}
.

If N = β ∈ F∗q , then β ∈
(
RX/Xn+1

)∗
, so F∗q ⊆ Gal(Fn/K ).

We have λβ = βλ, where λ = λXn+1 . Let Ln be the subfield of Fn fixed by F∗q :

Ln := F
F∗q
h . Then

[Ln : K ] = [Fn : K ]

[Fn : Ln]
= qn(q − 1)

q − 1 = qn .

It is easy to see that p∞ is totally ramified in Fn/L . The only other ramified prime
in Fn/K is p0, where (T )K = p0

p∞ . Here p0 is the infinite prime in RX . Now, p0 is
tamely ramified in Fn/K with ramification index q − 1. The decomposition group
corresponds to F∗q (Proposition 12.5.4).

(
Rx

(Xn+1)

)∗
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fn∣∣∣∣ F∗q
Ln∣∣∣∣ (

RX /Xn+1
)∗

F∗q
K

In the extension Ln/K the only ramified prime is p∞

and it is totally and wildly ramified.

Theorem 12.8.13. Let Gn be the group of polynomials in RX mod Xn+1 with constant
term equal to 1, namely

Gn :=
{
f (X) ∈

(
RX/(X

n+1
)∗ | f (0) = 1} .

Then for each n ≥ 1, Gal (Ln/K ) and Gn are isomorphic.
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Proof. Define φ :
(

RX
Xn+1

)∗ → Gn , f (X) �→ f −1(0)
(
f (X)

)
. Notice that if f (X) =

b0 + b1X + · · · + bn Xn with b0 �= 0, then

φ( f (X)) = 1+ (b−10 b1)X + · · · + (b−10 bn)X
n .

Clearly φ is a group epimorphism and

kerφ =
{
f (x) | f (0)−1 f (X) = 1

}
=
{
f (X) | f (X) = f (0)

}
= F∗q .

Thus Gn ∼=
(
RX /(Xn+1)

)∗
F∗q

∼= Gal(Ln/K ). ��

Now we have Ln ⊆ Ln+1 for all n ≥ 1. Let L∞ :=⋃∞n=1 Ln .
Theorem 12.8.14. We have that L∞/K is an abelian extension, where p∞ is the only
ramified prime and it is totally and wildly ramified. Furthermore,

G∞ := Gal(L∞/K ) = lim←−
n

Gn ∼=
{
f

(
1

T

)
∈ Fq

[[
1

T

]]
| f (0) = 1

}
.

Proof: For each positive integer n, the extension Ln/K is abelian, where p∞ is totally
and wildly ramified and there is no other ramified prime. Thus the same holds for
L∞/K . We also have Gal(L∞/K ) = lim←−

n

Gal(Ln/K ) ∼= lim←−
n

Gn . Finally, if H ={
f (X) ∈ Fq [[X ]]| f (0) = 1

}
, define � : H → Gn , f (X) �→ f (X) mod Xn+1. Then

� is a group epimorphism that satisfies the universal property of the inverse limit (see
Exercise 11.7.17). Hence H is isomorphic to lim←−

n

Gn . ��

12.8.4 A = EKT L∞

Let A be the composite of E, KT , and L∞. Since E/K , KT /K , and L∞/K are abelian
extensions, it follows that A/K is an abelian extension too.

Theorem 12.8.15. The extensions E/K, KT /K, and L∞/K are pairwise linearly dis-
joint over K . Therefore the Galois group of A/K is naturally isomorphic to

GE × GT × G∞.

Proof. First note that for any finite subextension of EKT /K , p∞ is tamely ramified;
indeed, the extension is contained in the composition of a finite subextension of E
with one of KT (and therefore in K (�M ) for some M ∈ RT ). In both subextensions
p∞ is tamely ramified. On the other hand, in any subextension of L∞, p∞ is totally
and wildly ramified since any finite subextension of L∞/K is contained in some Ln .
It follows that EKT and L∞ are linearly disjoint over K . In particular, E and L∞ as
well as KT and L∞ are linearly disjoint over K .
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To prove that E and KT are linearly disjoint over K , it suffices to show that for
any M ∈ RT , K (�M ) ∩ E = K .

If M is constant, then K (�M ) = K and there is nothing to prove. Now if R =
E ∩ K (�M ) and R �= K , then R/K is ramified (see the proof of Corollary 12.3.17 or
Remark 12.6.30 together with Theorem 12.6.36).

On the other hand, R/K is unramified by Theorem 5.2.32. Thus R = K . This
proves the theorem. ��

Now we will prove that A is the maximal abelian extension of K . For this purpose,
we consider first (see Definition 11.5.2)

J = JK =
{
α = (αp)p∈PK |αp ∈ K ∗p for all p and

vp(αp) = 0 for almost all p
}
.

Thus, J consists of all sequences (αp)p∈PK such that αp �= 0 for all p, αp belongs to
the completion Kp of K at p and such that all but finitely many αp are units, αp ∈
ϑ∗p := Up. The topology of J is given in Definition 11.5.2.

Our next task is to construct a group homomorphism

� : J −→ Gal(A/K ).

This will be done by writing J as a direct product of four subgroups of J and then
defining� on each factor separately. The map will be trivial on one factor and the other
three factors map into the Galois groups of E/K , KT /K , and L∞/K respectively.

We choose a canonical prime element πp for p defined by:

(a) πp = P if p is not the infinite prime p∞ and P is the monic irreducible polynomial
in RT such that (P)K = p

p
deg P
∞

.

(b) πp = 1
T if p = p∞ is the infinite prime.

Every element ζ ∈ K ∗p can be written uniquely as

ζ = uπnp (12.18)

for some u ∈ Up = ϑ∗p and n ∈ Z.

Definition 12.8.16. For ζ ∈ K ∗p given by (12.18) we define

sgnpζ := u,

where u is the residue class of u in the class field k(p).

Remark 12.8.17. The map sgn:K ∗p −→ k(p)∗ is a multiplicative epimorphism.
For α ∈ F∗q , we identify α with sgnp(α).

Definition 12.8.18. We define the groups

Vp := ker(sgnp) and K (1)p := Vp ∩Up = Vp ∩ ϑ∗p.



472 12 Cyclotomic Function Fields

Proposition 12.8.19. As a topological group, Vp is isomorphic to K
(1)
p × Z.

Proof: Using (12.18) we obtain a map

K (1)p × Z
φ−→ Vp

(α, n) �−→ απnp .

Since sgnp(απ
n
p) = sgnp(α), φ is a well-defined epimorphism of groups. Now if

ζ �∈ ϑ∗p , then vp(ζ ) = n ∈ Z \ {0}. Thus ‖ζ‖p �= 1, where ‖ ‖p denotes the absolute
value associated to p. Therefore if ε = |1− ‖ζ‖p| > 0 and ζ ′ ∈ B(ζ, ε) = {x ∈ Kp |
‖x − ζ‖p < ε}, we have∣∣‖ζ ′‖p− ‖ζ‖p∣∣ ≤ ‖ζ − ζ ′‖p < ε = ∣∣1− ‖ζ‖p∣∣ .
Hence ‖ζ ′‖p �= 1, and ϑ∗p is open in Kp. It follows that K

(1)
p = Vp∩ ϑ∗p is open in Vp.

Let C be an open set in K (1)p and B ⊆ Z. Then φ(C × B) =⋃n∈B Cπnp , which is
open in Vp since C is open and so is Cπnp . Thus φ is an open map.

Now if U is any open set of Vp, then since for all n ∈ Z, πnpU is homeomorphic to
U , the set πnpU ∩ K (1)p is open in K (1)p . Therefore

φ−1(U) = φ−1
(
U
⋂(⋃

n∈Z

πnpK
(1)
p

))
=
⋃
n∈Z

φ−1
(
U ∩ πnpK (1)p

)
=
⋃
n∈Z

((
π−np U ∩ K (1)p

)
× {n}

)
is open in K (1)p × Z. The result follows. ��

Definition 12.8.20. Let ξ ∈ J . We define

∂ξ =
∏

p∈PK

pvp(ξp) and dT ξ = sgnp∞(ξp∞)
∏

p∈PK
p�=p∞

π
vp(ξp)
p .

Since ξ ∈ J , πp ∈ K we have ∂ξ ∈ DK and dT ξ ∈ K ∗.

Lemma 12.8.21. The maps ∂ : J → DK and dT : J → K ∗ are group epimorphisms.

Proof. This is clear. ��

Definition 12.8.22. Consider K ∗ ⊆ J with the discrete topology (K ∗ ⊆ J along the
diagonal x �→ (x)p∈PK ) (see Exercise 12.10.35). We can view V∞ = K (1)p∞ × Z as a
subgroup of K ∗p∞ ⊆ J , by identifying V∞ with the group of ideles with all components
equal to 1 except the component corresponding to p∞.

Finally, consider the subgroup UT of J consisting of all ideles whose p∞-component
is 1 and whose other components are elements of ϑ∗p .
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Remark 12.8.23. The topology of K ∗p∞ considered as a subgroup of J is the same as its
usual topology (if C ⊆ K ∗p∞ is open in the usual topology, then C ×

∏
p�=p∞ Up = U

is open in J and U ∩ K ∗p∞ = C). Also the topological groups UT and
∏

p�=p∞ Up are
equal.

Theorem 12.8.24. We have

J ∼= K ∗ × UT × K (1)p∞ × Z

both algebraically and topologically.

Proof. Let ξ ∈ J and consider

dT (ξ) = sgnp∞(ip∞)
∏

p�=p∞
π
vp(ξp)
p ∈ K ∗ ⊆ J and let ξ∗ = dT (ξ)

−1ξ.

For p �= p∞, we have

ξ∗p =
(
sgnp∞

(
ξp∞

) ∏
q�=p,p∞

π
vq(ξq)
q

)−1
π
−vp(ξp)
p uπ

vp(ξp)
p ,

where u ∈ Up. Thus ξ∗p ∈ Up for all p �= p∞.
For p = p∞ we have

ξ∗p∞ = sgnp∞(ξp∞)
−1ξp∞u ∈ Vp∞ = K (1)p∞ × Z for some u ∈ Up∞ .

Thus ξ∗ ∈ UT × Vp∞ and

ξ = dT (ξ)ξ
∗. (12.19)

The decomposition of ξ ∈ J as a product of an element of K ∗ and an element of
UT × Vp∞ is unique since if ξ = αθ is another such decomposition with α ∈ K ∗ and
θ ∈ Vp∞ , then for all p �= p∞,

vp(ξ) = vp(ξp) = vp(α)+ vp(θp) = vp(α) = vp(dT ξ).
Now degK ((α)K ) = degK ((dT ξ)K ) = 0, so (α)K = (dT ξ)K . Thus α = CdT ξ with
C ∈ k∗.

Since C = α(dT ξ)−1 = θ−1p∞ξ
∗
p∞ ∈ K ∗ ∩ V∞ = {1}, it follows that α = dT ξ and

θ = ξ∗.
In particular, J and K ∗×UT ×Vp∞ are isomorphic as groups. Now since Vp∞ is an

open subgroup of K ∗p∞ (because Vp∞ = sgn−1p∞({1}) and {1} is open in k(p∞) ⊆ Kp∞ ),
it follows that UT × Vp∞ is open in J . Using the fact that K

∗ is a discrete subspace of
J , we obtain

J ∼= K ∗ × UT × Vp∞ .

Finally, since Vp∞
∼= K (1)p × Z we obtain the result using Proposition 12.8.19. ��
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Theorem 12.8.25. The group UT is isomorphic to GT = Gal(KT /K ) in a natural
way. The isomorphism will be denoted by ψT .

Proof. Let ξ ∈ UT and let M ∈ RT be a monic polynomial. Suppose M = ∏ Pn is
the factorization of M . By the Chinese remainder theorem, there exists C ∈ RT such
that C ≡ ξp mod Pn for every P dividing M , where (P)K = p

p
deg P
∞

. Then C is unique

mod M and C mod M determines a unique automorphism σC of K (�M )/K such that
σC (λ) = λC or all λ ∈ �M .

Define �M
T : UT → Gal(K (�M )/K ), ξ �→ σC . Then

(
�M
T

)−1({σC }) = {ξ ∈
UT | ξp ≡ C mod Pn ∀ P | M

}
.

For each P dividing M , let

Tp =
{
X ∈ Up | X ≡ C mod Pn

}
=
{
X ∈ K ∗p | ||X − C ||p < ||P||n−1p

}
and notice that Tp is open in K ∗p.

Set S = {p ∈ PK \ {p∞} | vp(M) �= 0
}
. Then(

�M
T

)−1
({σC }) =

∏
p∈S

Tp×
∏

p′∈PK \(S∪{p∞})
Up′ ,

which is open in UT . It follows that �M
T is a continuous epimorphism.

On the other hand, if M divides N the restriction of �N
T to K (�M ) is just �M

T .
Using the universal property of inverse limits (GT = lim←−

M

Gal(K (�M )/K )) we obtain

a continuous homomorphism

�T : UT −→ GT .

If ξ ∈ ker�T , then for every p �= p∞, ξp ≡ 1 mod Pn for all n ∈ N and vp(ξp−1) ≥ n
for all n. Thus ξp = 1 and ξ is the unit idele.

Now let τ ∈ GT and let N be an open normal subgroup of GT . Since KT =⋃
M∈RT K (�M ), if L = K N

T we have L ⊆ K (�M ) for some M . Let ξ ∈ UT
be such that �T (ξ)|K (�M ) = τ |K (�M ). Then τ

−1�T (ξ)|K (�M ) = IdK (�M ) and
τ−1�T (ξ)|L = IdL . Hence τ−1�T (ξ) ∈ N and �T (ξ) ∈ τN . Therefore �T (UT )
is dense.

Since UT is compact, it follows that �T is onto and hence an isomorphism of
topological groups. ��

Theorem 12.8.26. As a topological group, K (1)p∞ is naturally isomorphic to G∞ =
Gal(L∞/K ). The corresponding isomorphism from K (1)p∞ to G∞ will be denoted by
�∞.

Proof.By Theorem 12.8.14,G∞ ∼=
{
f (X) ∈ Fq [[X ]] | f (0) = 1

}
. On the other hand,

by Theorem 2.5.20, ϑp∞
∼= Fq [[X ]] since degK p∞ = 1. Now K (1)p∞ = Vp∞ ∩Up∞ =
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f (x) ∈ Fq [[x]] | f (0) = 1

}
. The action of K (1)p∞ on L∞ is described in Section

12.8.3. ��
Finally we have the monomorphism

�Z : Z −→ GE = Gal(E/K ) ∼= Ẑ

defined in such a way that �Z(1) is the Frobenius automorphism.
Since Z has the discrete topology, �Z is a dense continuous monomorphism.
By Theorem 12.8.24, any element ξ in J can be written uniquely as

ξ = dT (ξ)ξT ξ∞ξZ (12.20)

with dT (ξ) ∈ K ∗, ξT ∈ UT , ξ∞ ∈ K (1)p∞ , and ξZ ∈ Z. Note that ξ∞ �= ξp∞ .
Definition 12.8.27. We define a homomorphism of topological groups

� : J −→ Gal(A/K ) ∼= GT × G∞ × GE

as follows: If ξ ∈ J , then ξ can be written as in (12.20), and we put

�(ξ) = �T (ξ
−1
T )�∞(ξ

−1
∞ )�Z(ξZ). (12.21)

Since �T and �∞ are isomorphisms and �Z is a monomorphism, it follows that
ker� = K ∗ (= {dT (ξ) | ξ ∈ J }) and that � is continuous.

Therefore we have proved the following result:

Theorem 12.8.28. The map � defined by (12.21) is a continuous dense homomor-
phism from J into Gal(A/K ) whose kernel is K ∗. ��

Remark 12.8.29. Our reason for defining

�(ξ) = �T (ξ
−1
T )�∞(ξ

−1
∞ )�Z(ξZ)

instead of

�(ξ) = �T (ξT )�∞(ξ∞)�Z(ξZ)

is that the former yields Artin’s reciprocity law homomorphism for K , as will now be
seen.

Let A∗ be the maximal abelian extension of K . Since A/K is abelian, A ⊆ A∗.
Let �∗ : J −→ A∗ be the reciprocity law homomorphism (see Remark 11.5.7).

Let res : Gal(A∗/K ) −→ Gal(A/K ) be the restriction map.
We will prove that res ◦�∗ = � and since ker� = ker�∗ = K ∗ it will follow

that

K ∗ = ker� = (�∗)−1(ker res) = (�∗)−1({1}).
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Thus ker res = 1, res is an isomorphism, and res = Id. Therefore A = A∗.
Now in order to show that res ◦�∗ = �, it suffices to prove that for any idele

ξ ∈ J , �∗(ξ)|F = �(ξ)|F for all K ⊆ F ⊆ A such that [F : K ] < ∞. Any
such extension L is contained in the composite Fqm K (�M )Ln for some m, n ∈ N,
M ∈ RT , and K (�M ) =

∏
P|M K (�Pt ). Thus it will be sufficient to show that

�∗(ξ) |F = �(ξ)|F for any F that has one of the following forms:

(i) F = Fqm for some m ≥ 1,
(ii) F = K (�Pt ) for some monic irreducible polynomial P ∈ RT and t ≥ 1,
(iii) F = Ln for some n ≥ 1. (12.22)

Let F/K be a finite extension of type (i), (ii), or (iii). The restriction of �∗(ξ)
from Gal(A∗/K ) to Gal(F/K ) induces

�∗F : J −→ Gal(F/K ).

The Takagi–Artin theorem (Theorem 11.5.6) yields the following characterization of
�∗F : For any finite set S of prime divisors containing all those prime divisors that
ramify in F/K , then �F is the unique homomorphism J → Gal(F/K ) such that

(a) �∗F is continuous,
(b) �∗F (K

∗) = 1,
(c) �∗F (ξ) =

∏
p�∈S

(
F/K

p

)vp(ξp)
=
(
F/K
∂ξ

)
, where

(
F/K

)
is the Artin symbol (Def-

inition 11.2.5).

In short, we need to verify that �F : J → Gal(F/K ) satisfies (a), (b), and (c) on
all extensions of type (i), (ii), or (iii) of (12.22).

By (12.21), �F satisfies (a) and (b), so we only need to prove (c). For p ∈ PK we
call an idele a p-idele if ξ ∈ J is such that for some p ∈ PK ,

ξp′ =
{
µp′ if p′ �= p,

P = πp if p′ = p,

where (P)K = p

p
deg P
∞

(or if p = p∞, ξp∞ = 1
T ) and µp′ ∈ Up′ .

Now every ξ ∈ J S can be written as the finite product of p-ideles and inverses of
p-ideles for various p �∈ S, so it suffices to prove (c) for a p-idele ξ .

Proposition 12.8.30. If F is of any of the three types of (12.22) and ξ is a p-idele, then
�F = �∗F .
Proof.
Case 1: F/K is a finite constant field extension. The extension F/K is unramified.
Let S = {p∞}. Let ξ be a p-idele with p �= p∞. Then ∂ξ = p and by Proposition

11.2.2,

(
F/K

p

)
= σ degp, where σ is the Frobenius automorphism.
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On the other hand, if θ = ξdT (ξ)−1 then

θp∞ = ξp∞
(
sgnp∞ξp∞

)−1 ∏
p′∈PK
p′ �=p∞

π
−vp′ (ξp′ )
p′ = 1× 1× π−1p = P−1 ∈ Vp∞ .

Thus vp∞(θp∞) = degRT P = deg p. Therefore ξZ = deg p.
Since F/K is a constant extension, it follows that

�F (ξ) = �Z(ξZ) = σ degp.

Hence in this case we obtain �F = �∗F .
Case 2: F = K (�Pt ) for a monic irreducible polynomial P ∈ RT and some t ≥ 1.
In this case the only ramified primes are p and p∞, where (P)K = p

p
deg P
∞

(Theorem

12.5.3).
Set S = {p, p∞}. Let q be a prime divisor such that q �∈ S and let ξ ∈ J S be a q-

idele. Then dT (ξ) = Q = πq. We write ξ = dT (ξ)ξ∗ ∈ J S . Therefore ξp = 1 = Qξ∗p ,
and ξ∗p = Q−1.

Now ξ acts on K (�Pt )/K via the pth component of ξ∗, so on K (�Pt ) �(ξ) =
�T (ξ

−1
T ) is the automorphism �Pt → �Pt , λ �→ λQ . By Theorem 12.5.1 this corre-

sponds to the Artin symbol at Q = ∂ξ . This proves that �F = �∗F in this case.
Case 3: F = Ln for some n ≥ 1. Set S = {p0, p∞} where (T )K = p0

p∞ . The only

ramified prime is p∞. Let ξ ∈ J S be a p-idele where p corresponds to some P ∈ RT
distinct from T . Note that

dT (ξ)
−1 = π−1p = P−1 = (P−1T d)(1/T )d ,

where d = deg P and P−1T d is a unit at p∞. Hence the p∞-coordinate of ξ∗ =
ξdT (ξ)−1 is ξ∗p∞ = P−1. Therefore ξ∞ = P−1T d . Now if P = T d + ad−1T d−1 +
· · · + a1T + a0 with a0 �= 0, then

ξ−1∞ = P(T )

T d
= 1+ ad−1

T
+ · · · + a1

T d−1
+ a0
T d
= a0P1(1/T ),

where P1 is a monic polynomial. We have vp(P1) = vp

(
P
T d

)
= 1. Thus P1 is the

canonical uniformizer when we consider K = Fq(1/T ), i.e., 1/T is a generator of
K . By definition ξ acts on Ln via the component of ξ∞, that is, �(ξ) = �∞(ξ−1∞ ).
Considered on Ln/K this is the restriction of the automorphism of Fn = K (�T−n−1)
such that �T−n−1 → �T−n−1 , λ �→ λa0P1 . The restriction of this automorphism to Ln
is the same as the restriction of the automorphism

�T−n−1 −→ �T−n−1

λ �−→ λP1 (12.23)

because the automorphism of Fn associated to a0 ∈ F∗q fixes Ln . By Theorem 12.5.1
the automorphism defined by (12.23) corresponds to the Artin symbol in Fn at p and
therefore its restriction to Ln is the Artin symbol in Ln at p.
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This shows that �F = �∗F in this case, and the proof is complete. ��
We have obtained the analogue of the Kronecker–Weber theorem for function

fields:

Theorem 12.8.31. The extension A/K constructed in Section 12.8.4 is the maximal
abelian extension of K , and the homomorphism

� : J −→ Gal(A/K )

given in (12.21) is the Artin reciprocity law homomorphism. ��

In particular, A and � do not depend upon the original choice of the generator T .
As a corollary of Theorem 12.8.31 we have the following:

Theorem 12.8.32. The maximal abelian extension of K is KT K1/T .

Proof. According to the construction of �, the group of ideles fixing KT is K ∗Vp∞ =
K ∗Kp∞ . Similarly, the group of ideles fixing K1/T is K

∗Kp0 (where (T )K = p0
p∞ ).

The intersection of these two groups is K ∗, so the kernel of the map

J −→ Gal(KT K1/T /K ),

induced by restriction, is K ∗ = ker�. It follows that A = KT K1/T . ��

12.9 The Analogue of the Brauer–Siegel Theorem

As we saw in Section 7.6, the analogue of the Brauer–Siegel theorem for function
fields is the limit

lim
g→∞

ln h

g ln q
= 1, (12.24)

where g is the genus, h is the class number, and q is the cardinality of the constant
field. In this section we prove that the analogue of the Brauer–Siegel theorem holds for
the class of cyclotomic function fields. We shall prove that in the class of cyclotomic
function fields over the finite field of constants Fq , we have

lim
g→∞

�(M)

g
= 0,

where g = gM is the genus of K (�M ) and �(M) = [K (�M ) : K ] =
∣∣(RT /(M))∗∣∣.

Therefore, in this class of function fields, the conditions of Theorem 7.6.3 are
satisfied and we have

lim
g→∞

ln h

g ln q
= 1.
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Let M = ∏t
i=1 P

ni
i be the factorization of M ∈ RT \ Fq into powers of irreducible

polynomials with ni ≥ 1 and di = deg(Pi ) ≥ 1 for i = 1, . . . , t . Let gM be the genus
of K (�M ). Then by Theorem 12.7.2,

gM = �(M)
2

( t∑
i=1

(
nidi − di

qdi − 1
)
− q

q − 1
)
+ 1. (12.25)

Now if d = degM , using (12.25) we obtain

gM ≤ �(M)d + 1 = d
t∏

i=1
qdi (ni−1)(qdi − 1)+ 1

≤ d
d∏
i=1

qdi ni + 1 = dqd + 1. (12.26)

Suppose that d is sufficiently large so as to satisfy d ≥ 4q
q−1 . If ni = di = 1 for some

i ∈ {1, . . . , t}, we have �(M) = (q − 1)∏t
j=1
j �=i
�
(
P
n j
j

)
.

Since we want to estimate the quotient �(M)/gM when gM is sufficiently large
and the number of irreducible polynomials of degree one in RT is finite, we may
assume that ni ≥ 2 or di ≥ 2 for i = 1, . . . , t . Hence for i = 1, . . . , t , we have
ni (qdi − 1) ≥ 2. Therefore

nidi − di
qdi − 1 ≥

nidi
2

(12.27)

for i = 1, . . . , t .
Using (12.25) and (12.27) we obtain

gM ≥ gM
�(M)

≥ 1

2

( t∑
i=1
(nidi − di

qdi − 1
)
− q

q − 1
)

≥ 1

2

( t∑
i=1

nidi
2
− q

q − 1
)
= 1

2

(
d

2
− q

q − 1
)
≥ d

8
.

Therefore we obtain the following

Proposition 12.9.1. In the class of cyclotomic function fields K (�M ) over the finite
field of constants Fq , we have

gM −→∞ ⇐⇒ d −→∞,

where M ∈ RT \ Fq , d = degM and gM is the genus of K (�M ). Furthermore,

lim
gM→∞

�(M)

gM
= 0. ��
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As a corollary we get the following theorem:

Theorem 12.9.2. In the class of cyclotomic function fields K (�M ) over the finite field
of constants Fq , we have

lim
gM→∞

ln hM
gM ln q

= 1,

where hM is the class number of K (�M )/Fq .

Proof. The statement is an immediate consequence of Theorem 7.6.3 and Proposition
12.9.1. ��

12.10 Exercises

Exercise 12.10.1. Let M, N ∈ RT = Fq [T ], u ∈ K̄ , and K = Fq(T ). Prove that

uM+N = uM + uN and uMN = (uM )N .

Exercise 12.10.2. Let k be any field and let T be an indeterminate over k. Prove that
for all n ∈ N, [

k(T 1/n) : k(T )
] = [k(T ) : k(T n)] = n.

Exercise 12.10.3. Prove that if P ∈ RT is an irreducible polynomial and n ∈ N, then
�Pn/�Pn−1 ∼= �P .

Exercise 12.10.4. Let M = ∏r
i=1 P

αi
i ∈ RT , where P1, P2, . . . , Pr are irreducible

polynomials. Let A = �M . Prove that

A(P) =
{
0 if P �∈ {P1, . . . , Pr },
�P

αi
i

if P = Pi ,

where A(P) denotes the P-torsion of A.

Exercise 12.10.5. Let �(M) = ∣∣(RT /M)∗∣∣ for M ∈ RT . Prove that:

(i) If M = P is irreducible with d = deg P , then �(P) = qd − 1.
(ii) If M, N ∈ RT are relatively prime, then(

RT /(MN )
)∗ ∼= (RT /M)∗ × (RT /N)∗.

(iii) If M, N ∈ RT are relatively prime, then

�(MN ) = �(M)�(N ).
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(iv) If M = Pn with P irreducible of degree d, then

�(Pn) = ∣∣(RT /(Pn−1))∗∣∣�(P) = qdn − qd(n−1).

Exercise 12.10.6. If M and N are distinct elements of ∈ RT \ {0}, prove that
(
�M (u),

�N (u)
) = 1.

Exercise 12.10.7. If M ∈ RT \ {0} is of degree d, prove that∑
D|M

D monic

�(D) = qd .

Exercise 12.10.8. Let M ∈ RT \ {0} be a monic polynomial. Prove that

uM =
∏
D|M

D monic

�D(u).

Exercise 12.10.9. Let µ : RT \ {0} → Q be given by

µ(D) =

⎧⎪⎪⎨⎪⎪⎩
1 if D = 1,
(−1)t if D = P1 · · · Pt , Pi ∈ RT

distinct irreducible,
polynomials,

0 otherwise.

Prove that

∑
D|M

D monic

µ(D) = ε(M) =
{
1 if M is a nonzero constant,
0 otherwise.

Exercise 12.10.10. Let E be a field and let A = {ξ : RT \ {0} → E}. We define the
convolution product ∗ in A by

(ξ ∗ φ)(M) =
∑
D|M

M monic

ξ(D)φ(M/D).

Prove that (A, ∗,+) is a commutative ring with unit 1A = ε, where ε : RT \{0} →
E is defined by

ε(M) =
{
1 if M is a nonzero constant,
0 otherwise.

Exercise 12.10.11. Prove that if f, g ∈ A are such that

g(M) =
∑
D|M

D monic

f (D)
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for all M ∈ RT \ {0}, then

f (M) =
∑
D|M

D monic

g(D)µ

(
M

D

)
,

where µ is as in Exercise 12.10.9.

Exercise 12.10.12. Prove that

�M (u) =
∏
D|M

D monic

(
uD
)µ(M/D)

.

Exercise 12.10.13. Let M, N ∈ RT \ {0}. Prove that(
uM , uN

)
= u(M,N ),

where ( , ) denotes the greatest common divisor.

Exercise 12.10.14. Show that if P ∈ RT is a monic polynomial and n ∈ N, then

�Pn (u) = �P

(
uP

n−1)
.

Exercise 12.10.15. Show that the vertices of the Newton polygon of f (x) given in the
proof of Theorem 12.4.2 are

(n − st+1, v(an−st+1), (n − st , v(an−st ), . . . ,
. . . , (n − s2, s1m1 + (s2 − s1)m2), (n − s1, s1m1), (n, 0).

Exercise 12.10.16. Let a, b, x, y ∈ Z \ {0} be such that (x, y) = 1 and ax = by.
Prove that [a, b] = ax = by where [ , ] denotes the greatest common divisor.

Exercise 12.10.17. Let F be a complete field with respect to a discrete valuation v.
Prove that if f (x) ∈ F[x] has all its roots with distinct valuations, then f (x) is a
product of linear factors in F[x].

Exercise 12.10.18. Let F and v be as in Exercise 12.10.17. Let f (x) ∈ F[x]. Prove
that if f (x) is irreducible, then the Newton polygon of f (x) is a segment.

Exercise 12.10.19. Let M = Pn , where P ∈ RT = Fq [T ] is a monic irreducible
polynomial of degree d . Let λ be a generator of the Carlitz–Hayes module �M . Let
N1 and N2 be the zero and pole divisors of λ respectively.

(i) Let gn(T, u) = �Pn (u) considered as a polynomial in two variables T and u.
Prove that

degT gn(T, u) =
{
qd−1 if n = 1,
qd(n−1)−1(qd − 1) if n > 1.
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(ii) Let hn(z) = gn(z, λ). Deduce from (i) that

deg hn(z) =
{
qd−1 if n = 1,
qd(n−1)−1(qd − 1) if n > 1,

(iii) Using the irreducibility of �Pn (u), prove that hn(z) is an irreducible polynomial
in z with coefficients in Fq [λ].

(iv) Show that if T is a root of hn(z) and L = Fq(λ), then K (�M ) = L(T ), where
K = Fq(T ). Therefore [K (�M ) : Fq(λ)] = degz hn .

(v) Deduce that

deg N1 = deg N2 = deg hn =
{
qd−1 if n = 1,
qd(n−1)−1(qd − 1) if n > 1.

Exercise 12.10.20. Let k be a field of characteristic p > 0 such that Fp2 ⊆ k, and let
K = k(x) be a rational function field over k. Let L = K (y) = k(x, y) where

y p
2 − y = x . (12.28)

Let ℘∞ be the infinite prime divisor in K and p a prime divisor in L above ℘∞.

(i) Show that vp(y) < 0 using equation (12.28).
(ii) Deduce from (i) that p2 | e(p|℘∞).
(iii) Deduce from (ii) that [L : K ] = p2 and that ℘∞ is totally ramified in L/K .
(iv) Prove that

T p2 − T − x =
∏
α∈Fp2

(T − (y + α)).

(v) Prove that L/K is a Galois extension with Galois group

Gal(L/K ) ∼= (Fp2 ,+) ∼= Cp × Cp.

(vi) Using two subextensions F1, F2 such that K ⊆ Fi ⊆ L and [Fi : K ] = p,
i = 1, 2, deduce that Abhyankar’s lemma does not hold for two wildly ramified
extensions.

Exercise 12.10.21. Let λ ∈ �P \ {0}. Prove that [K (�P ) : Fq(λ)] = q − 1.
Exercise 12.10.22. Let E be a field, β1, . . . , βn ∈ E , and

A =

⎡⎢⎣1 β1 · · · β
n−1
1

...
...
...

...

1 βn · · · βn−1n

⎤⎥⎦ .
Prove that det A =∏1≤i< j≤n(β j − βi ).
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Exercise 12.10.23. Prove that if M ∈ RT \ {0} and µ is the function given in Exercise
12.10.9, then

∏
A|M

Aµ(M/A) =
{
P if M = Pn, P an irreducible polynomial,

1 otherwise.

Exercise 12.10.24. Let P ∈ RT be an irreducible polynomial. Prove that

�P (u) = 1+
∏

D|(P−1)
D �=1

�D(u).

Exercise 12.10.25. Let P ∈ RT be an irreducible polynomial. Let M := RT /(P).
We define an action of RT on M as follows: if A mod P ∈ M and Q ∈ RT , then
Q ◦ (A mod P) := AQ mod P .
Prove that this action is well defined, that is, if A ≡ B mod P then AQ ≡

BQ mod P .
Show that AP ≡ A mod P for all A ∈ RT and deduce thatM is an RT /(P − 1)-

module. Does it hold thatM ∼= RT /(P − 1) as modules?

Exercise 12.10.26. Prove that �M (0) =
{
P if M = Pn for some n ∈ N,
1 otherwise.

Exercise 12.10.27. If χ , φ are two Dirichlet characters such that (Fχ , Fφ) = 1, prove
that Fχφ = Fχ Fφ .

Exercise 12.10.28. Prove Proposition 12.6.33.

Exercise 12.10.29. Let G be a finite abelian group and let H < G. Prove that there
exists an exact sequence of groups

1 −→ (̂G/H) −→ Ĝ
φ−→ Ĥ −→ 1

where φ(σ) = σ |H . In particular, Ĝ/(̂G/H) ∼= Ĥ .

Exercise 12.10.30. Let G be a finite abelian group and let H < G. Prove that G
contains a subgroup isomorphic to G/H .

Exercise 12.10.31. Let X be a finite group of Dirichlet characters. Describe in terms
of X the maximal abelian extensions L of KX such that L is abelian over K , the field
of constants of L is Fq , and L/KX is unramified at every prime divisor.

Exercise 12.10.32. Let χ be a Dirichlet character and let χ = ∏P χP be its decom-
position.

(i) Prove that (χψ)P = χPψP .
(ii) Prove that if (Fχ , Fφ) = 1 then χ(A)ψ(A) = (χψ)(A) for all A ∈ RT .
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(iii) Prove that if χ and ψ are two arbitrary Dirichlet characters, then χ(A)ψ(A) =
(χψ)(A) unless χ(A) = ψ(A) = 0.

Exercise 12.10.33. Prove that if χ is any nontrivial character of conductor Fχ = F ,
then

∑
AmodF χ(A) = 0.

Exercise 12.10.34. Let M ∈ RT and A ∈ RT be such that A �≡ 1 mod M and
(A,M) = 1. Prove that there exists a character χ defined modulo M and of conductor
F = Fχ | M such that χ(A) �= 1.
Conclude that

∑
χmodM χ(A) = 0.

Show that if q = 2 and M = T 2(T 2 + 1), then∑χmodM χ
(
T 2
) �= 0.

Exercise 12.10.35. Show that the subgroup K ∗ of JK is discrete.

Exercise 12.10.36. Let P ∈ RT be an irreducible monic polynomial and let λ ∈ �P

be a generator. Prove that P =∏degM<deg P λ
M , where the product is over all nonzero

polynomials of degree less than deg P .

Exercise 12.10.37. Let M := {M | M ∈ RT , degM < deg P monic} and let � =∏
M∈M λM . Using Exercise 12.10.36, obtain that P = (−1)deg P�q−1.

Exercise 12.10.38. Assume that d divides q−1. If M ∈ RT is such that P � M , prove

that Nd ≡ M mod P is solvable if and only if M
qd−1
d ≡ 1 mod P , where d = deg P .

The order of the element M
qd−1
d is a divisor of d in (RT /P)∗. In particular, M

qd−1
d ≡

α mod P for a unique α ∈ F∗q . We write M
qd−1
d ≡ (MP )d mod P and call (MP )d the

dth power residue symbol. Set
(M
P

)
d = 0 if P | M . Also define (MP ) := (M

P

)
q−1.

Thus
(M
P

)
d =

(M
P

) q−1
d .

Exercise 12.10.39. If Q and P are two distinct monic irreducible polynomials, prove

that ϕQ(�) =
(
P∗
Q

)
�, where � is given in Exercise 12.10.37, ϕQ is the Artin auto-

morphism (Theorem 12.5.1), and P∗ := (−1)deg P P = �q−1.
Exercise 12.10.40. Show that every nonzero residue class module P has a unique rep-
resentative of the form µM , where µ ∈ F∗q and M ∈ M. Let S ∈ RT be such that
P � S. For M ∈ M write SM = µMM ′ mod P with µM ∈ F∗q and M ′ ∈ M. Show

that
( S
P

)
q−1 =

( S
P

) =∏M∈M µM .

Exercise 12.10.41. Using Theorems 12.5.1 and 12.5.3, show that ϕQ(�) =∏
M∈M λQM . Use Exercise 12.10.40 to show that ϕQ(�) =

(
Q
P

)
�.

Exercise 12.10.42. Combine Exercises 12.10.39 and 12.10.41 to show that if P and Q

are two distinct monic irreducible polynomials, then
(
P
Q

) (
Q
P

)−1 = (−1)deg P deg Q .
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Drinfeld Modules

13.1 Introduction

In this chapter we present a brief introduction to Drinfeld modules or, as they were
called by Drinfeld himself, elliptic modules. The main goal of V. G. Drinfeld [30] was
to generalize three classical results: a) the Kronecker–Weber Theorem; b) the Eichler–
Shimura Theorem on ζ functions of modular curves and c) the fundamental theorem
on complex multiplication.

In Chapter 12 we studied cyclotomic function fields, that is, the Carlitz–Hayes
theory. These fields are the analogue to the classical cyclotomic fields Q(ζn), and,
as we saw, this analogy provides an explicit class field theory for congruence rational
function fields (Theorem 12.8.31). The Drinfeld paper cited above provides an explicit
class field theory for arbitrary congruence function fields.

Independently, D. Hayes [62] applied one rank Drinfeld modules in order to de-
velop explicit class fields for global fields in characteristic p. His method does not
require the use of the scheme-theoretic machinery used by Drinfeld; instead, Hayes
used methods which are similar to Deuring’s complex multiplication theory of elliptic
curves.

With these results of Drinfeld and Hayes, Hilbert’s problem 12 becomes com-
pletely solved for the function field case. Note that there is no similar explicit class
field theory for number fields except for Q and the imaginary quadratic extensions of
Q, which are in some way similar to one rank Drinfeld modules.

The case considered in Chapter 12 is a particular case of Drinfeld modules, namely,
the Carlitz module. The study of this module, provides explicit class fields, namely,
the cyclotomic function fields. Drinfeld modules are one-dimensional objects and their
rank can be any positive integer. When such a module is of rank one, as we mentioned
before, there are some analogies with number fields, whereas in rank two there are
analogies with the theory of elliptic curves. Nothing analogous to the classical case is
known for Drinfeld modules of rank larger than or equal to three.

In Section 13.5 we apply the theory of rank one Drinfeld modules over the ana-
logue in characteristic p of the field of complex numbers and, as in Chapter 12, we
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find explicit class fields over an arbitrary congruence function field K and we give
explicitly the maximal abelian extension of K .

We follow very closely the seminal paper of D. Hayes [63]. Other important
sources are the class field paper of Hayes [62] and the books of Goss [51] and of
Thakur [151].

13.2 Additive Polynomials and the Carlitz Module

Our first goal in this section will be to define an exponential function in character-
istic p > 0. Assume RT = Fq [T ] and K = Fq(T ). The usual power series for
ez =∑∞

n=0
zn
n! does not make sense in positive characteristic, in which case we do not

even know what e means. Recall that the classical exponential function ez is multi-
plicative, that is, ez+w = ezew for all z, w ∈ C. Consider a multiplicative function f
in characteristic p, that is, f (x+y) = f (x) f (y). Assume that f is defined on some in-
tegral domain of characteristic p. Then f (x)p = f (px) = f (0) = f (0+0) = f (0)2.
Therefore f (0) is 0 or 1, and f (x) is identically 0 or 1.

On the other hand, there exist several additive functions in characteristic p; indeed,
any polynomial of the form f (x) =∑n

i=0 ai x p
i
is additive: f (x+ y) = f (x)+ f (y).

Moreover, in the zero characteristic case, any additive function f satisfies f (x) = cx
for some constant c.

Now let C∞ be the completion of an algebraic closure of Kp∞ , where p∞ is the
pole divisor of T . We want to define an additive exponential ex : C∞ → C∞.

In the classical case we have ez = 1 if and only if z is of the form 2nπ i with n ∈ Z,
and such elements are zeros of multiplicity one of the equation ez − 1 = 0. Therefore
the analogous situation in positive characteristic would be a function ex(u) satisfying
ex(u) = 0 if and only if u = π̃M with M ∈ RT (u ∈ C∞) for some π̃ ∈ C∞, which
would be similar to the classical 2π i .

Considering ex(u) as an infinite product, we obtain

ex(u) = cu
∏

λ∈π̃RT \{0}

(
1− u

λ

)
. (13.1)

We normalize (13.1) by taking c = 1. Observe that since the zeros of ex(Tu) and∏
λ∈(π̃/T )RT /π̃RT (ex(u)− ex(λ)) are the same, it follows that

ex(Tu) = α
∏

λ∈(π̃/T )RT /π̃RT
(ex(u)− ex(λ)) (13.2)

for some α �= 0. We normalize (13.2) by taking α = 1. It follows that ex(Tu) is an
Fq -linear polynomial in ex(u) of degree q = |RT /T RT | = |(π̃/T )RT /π̃RT |.

From Corollary 13.2.5 below, we obtain

ex(Tu) = ex(u)q + T ex(u). (13.3)

Note that (13.3) corresponds to the action given in Definition 12.2.1:
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uT = (ϕ + µT )(u) = ϕ(u)+ µT (u) = uq + Tu.

For this reason (13.3) is called the Carlitz exponential and uT = uq + Tu defines the
Carlitz module. It is clear that if M ∈ RT , then ex(Mu) is a polynomial CM (ex(u)) in
ex(u). In fact, it can be shown that ex(u) = CM (ex(u/M)) = limdegM→∞ CM (u/M),
which is the analogue of ez = limn→∞

(
1+ z

n

)n in the classical case.
Definition 13.2.1. Let E be a field of characteristic p > 0 and p(x) ∈ E[x]. We say
that p(x) is additive if p(x + y) = p(x) + p(y) whenever x + y ∈ E[x, y] in the
polynomial ring of two variables.

Example 13.2.2. Let τp(x) = x p. Then τp is additive.

Example 13.2.3. If p(x) and h(x) are additive, then p(x)+ h(x), αp(x) and p(h(x))
are additive for any α ∈ E .

Proposition 13.2.4. If p(x) ∈ E[x] is an additive polynomial, then p(x) =∑n
i=0 ai x p

i

for some a0, . . . , an.

Proof. Consider the equality p(x + y) = p(x) + p(y) and take the formal derivative
of both sides with respect to x . We obtain p′(x + y) = p′(x) and p(0) = 0. It follows
that p′(y) = p′(0) = c0 ∈ E . Thus

p(x) = c0x +
m∑
j=1

c j x
pj = c0x + p1(x)

p,

where p1(x) ∈ E[c1/p1 , . . . , c1/pm ][x] and p1(x) is additive. By induction on deg p(x),

we obtain p1(x) =
∑m1

t=0 bt x
pt . Thus p(x) = c0x +

∑m1
t=0 b

p
t x

pt+1 ∈ E[x]. ��

Corollary 13.2.5. If E contains Fq (q = pu) and p(x) ∈ E[x] is Fq -linear, that is,
p(x) is additive and satisfies p(αx) = αp(x) with α ∈ Fq , then p(x) is of the form
p(x) =∑n

i=0 ai xq
i
.

Proof. Since p(x) = ∑m
j=0 b j x p

j
and p(αx) = αp(x) for all α ∈ Fq , we have∑m

j=0 b jα p
j
x p

j = ∑m
j=0 b jαx p

j
. Thus α p

j = α for every j such that b j �= 0, and
the result follows. ��

It follows from Example 13.2.3 and Corollary 13.2.5 that the set of Fq -linear maps
in E[x], where Fq is contained in E , forms a ring under composition.

Definition 13.2.6. Let E be a field containing Fq , and let R be the ring of Fq -linear
polynomials in E[x]. Set τ(x) = xq . Then R ∼= E〈τ 〉, where E〈τ 〉 is the twisted
polynomial ring consisting of the Fq -algebra generated by E and the element τ such
that

τu = uqτ (13.4)

for all u ∈ E .
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In other words, E〈τ 〉 is similar to a polynomial ring except that the multiplication
of τ by elements of E is given by (13.4).

Definition 13.2.7. Let RT = Fq [T ] and K = Fq(T ) as usual. The Carlitz module for
RT defined over K is the Fq -algebra homomorphism

C : RT → K 〈τ 〉
M �→ CM

such that CT = T + τ .
Note that Definition 13.2.7 is the same as Definition 12.2.1. Also, Definition 13.2.7

provides an Fq -algebra homomorphism such that the constant term of CM is M and
there exists M ∈ RT , for instance M = T , such that CM �∈ K .

13.3 Characteristic, Rank, and Height of Drinfeld Modules

In this section we generalize the definition of a Carlitz module, which is the simplest
example of a Drinfeld module.

Let K be a congruence function field whose exact field of constants is the finite
field Fq of q elements. We fix a prime divisor P∞ of K , which will be called the
infinite prime. Let A ⊂ K be the ring of elements in K whose only poles are at P∞.
That is, A =⋃∞t=1 L(P−t∞ ).

Now, A is the integral closure of some Fq [T ] with T ∈ K (choose T such that
NT = Pt∞ for some positive t). By Theorems 5.7.7 and 5.7.9, A is a Dedekind domain
whose prime ideals other than zero are in one-to-one correspondence with the prime
divisors of K other thanP∞: ifP is a prime divisor, distinct fromP∞, then A ⊂ ϑP

and P ∩ A is the corresponding nonzero prime ideal of A.
We set d∞ = degK P∞ ≥ 1. Let k be any field containing Fq and consider the

twisted polynomial ring k〈τ 〉, where τ(u) = uq , u ∈ �, and � is any k-algebra. The
action of k〈τ 〉 on � is given by( n∑

i=0
aiτ

i
)
(u) =

n∑
i=0

aiu
qi ∈ k[u],

where
∑n

i=0 aiuq
i
is an additive polynomial. Let D : k〈τ 〉 → k be the augmentation

homomorphism, that is, D
(∑n

i=0 aiτ i
)
= a0.

Definition 13.3.1. Let ι : k → k〈τ 〉 be the inclusion map defined by ι(α) = α(= ατ 0).
A Drinfeld module over k is a homomorphism ρ : A→ k〈τ 〉 of Fq -algebras such that
ρ �= ι ◦ D ◦ ρ. We denote ρ(a) by ρa .
Remark 13.3.2. δ := Dρ : A → k is a homomorphism of Fq -algebras. We say that k
is an A-field. Also, notice that D(ρa) = δ(a) for a ∈ A. The condition ρ �= ι◦D◦ρ =
ι ◦ δ means that ρ does not factor through k via ι.



13.3 Characteristic, Rank, and Height of Drinfeld Modules 491

A

δ
��

ρ
k〈τ 〉

k

ι

Alternatively, if we fix a homomorphism δ : A→ k, a Drinfeld A-module over k is
a homomorphism ρ : A→ k〈τ 〉 of Fq -algebras such that D ◦ ρ = δ and ρa �= δ(a)τ 0
for some a ∈ A.

Example 13.3.3. Assume that A = RT , k is any field containing A, and δ : A → k
is any Fq -algebra homomorphism. Let n be an integer greater than or equal than one
and an a nonzero element of k. Let ρT = δ(T )+

∑n
i=1 aiτ i be arbitrary with an �= 0,

n ≥ 1. Then ρ can be extended in a unique way to a homomorphism ρ : A → k〈τ 〉,
and ρ is a Drinfeld A-module.

Definition 13.3.4. The kernel P of the map δ : A → k is called the characteristic of
ρ. If P = (0), we say that ρ has generic characteristic or infinite characteristic in
order to avoid confusion with the usual 0 characteristic. If P �= (0) we say that ρ has
finite characteristic. We denote the characteristic of a Drinfeld A-module by char(ρ).

Proposition 13.3.5. The map ρ given above is injective.

Proof. Exercise 13.7.1. ��
Note that Drinfeld A-modules are essentially nontrivial embeddings of A into k〈τ 〉.

Example 13.3.6. Assume A = RT , k = K = Fq(T ), δ = id : RT
id−→ K , ρ =

C : RT → K 〈τ 〉, ρ(M) = ρM = CM , and CT = T + τ is the Carlitz module. Then C
is a Drinfeld module.

Notation 13.3.7. We use the notation DrinA(k) for the set of all Drinfeld A-modules
over k once the map δ = Dρ : A→ k has been fixed.

In practice δ is either an inclusion or a reduction map module over some nonzero
prime ideal of A.

Now, given any k-algebra V , A acts con V via δ if we define

a ◦ v = δ(a)v for all v ∈ V and a ∈ A. (13.5)

In this way V is an A-module. However, if we consider ρ, V is also an A-module
under the operation defined by

a ∗ v = ρa(v) for all v ∈ V and a ∈ A. (13.6)

The linear term of a ∗v is δ(a)v = a ◦v but by the definition of a Drinfeld module,
there exists a ∈ A such that a ∗ v �= a ◦ v. Thus, the idea of a Drinfeld module may
be understood as the deformation of a standard A-module. The A-module structure of
V given by (13.6) will be denoted by Vρ .
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Definition 13.3.8. Given two Drinfeld A-modules ρ, ρ′ over k, an isogeny from ρ to
ρ′ is a twisted polynomial f ∈ k〈τ 〉 such that fρa = ρ′a f for all a ∈ A.

The product of two isogenies is easily seen to be again an isogeny. In this way,
using the language of categories, we may say that DrinA(k) is a category whose mor-
phisms are the isogenies. The isogenies from ρ to ρ′ will be denoted by Isog(ρ, ρ′).

In particular, the isomorphisms in DrinA(k) are the invertible twisted polynomi-
als in k〈τ 〉 and these polynomials are precisely the nonzero constant polynomials k∗.
Therefore ρ and ρ′ are isomorphic if and only if there exists an element α ∈ k∗ such
that αρa = ρ′aα for all a ∈ A.

Example 13.3.9. Assume as usual A = RT and K = Fq(T ), and consider the follow-
ing two Drinfeld A-modules, where δ : A→ K is the inclusion map:

ρ := C : A→ K 〈τ 〉
T �→ CT = T + τ and

ρ′ := C ′ : A→ K 〈τ 〉
T �→ T − τ.

Then C is the Carlitz module. Now ρ and ρ′ are isomorphic if and only if there exists
α ∈ k∗ such that αCM = C ′Mα for all M ∈ RT . It is easily seen that α must be a
(q − 1)th root of −1 (see Exercise 13.7.2).

For p �= 2, K does not contain any (q − 1)th root of −1 and therefore C and C ′
are not isomorphic over K . However, they are isomorphic over any overfield of K that
contains the (q − 1)th roots of −1.

More generally, if α1 ∈ A and k is a field containing Fq
(
T, α1/(q−1)1

)
then the

module ρT = T + α1τ is isomorphic to the Carlitz module over K .
Now we will define the rank of a Drinfeld A-module ρ ∈ DrinA(k). Let φ : A→ Z

be defined by φ(a) := − deg ρa (in τ ). Then φ is a nontrivial valuation on A (Exercise
13.7.3).

Now the unique extension of φ to K = quot A defines the prime divisor P∞.
Therefore there exists a unique rational number rρ such that

deg ρa = −d∞ × rρ × vP∞(a) (13.7)

for all a ∈ A.

Definition 13.3.10. The number rρ is called the rank of ρ.

We will see (Theorem 13.3.19) that rρ is a positive integer.

Example 13.3.11. Assume that C is the Carlitz module. Then d∞ = 1 and degCT =
1 = −d∞ × rC × vP∞(T ) = −1× rC × (−1) = rC . Therefore the Carlitz module is
of rank one.

Now we define another number attached to a Drinfeld A-module ρ. If char(ρ) = 0,
define the height of ρ by hρ = 0.

Assume that P = char(ρ) �= 0 and let vP be the valuation associated to the place
P. Let a be a nonzero element of A, and ρa =

∑n
i=0 αiτ i . Pick i0 such that αi0 �= 0

and α j = 0 whenever 0 ≤ j ≤ i0 − 1. We define
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jρ(a) = ord(ρa) = i0.

Note that ord(ρa) > 0 if and only if a ∈ P. Furthermore, jρ defines a nontrivial
valuation on A (Exercise 13.7.3) that is equivalent to vP.

Hence, there exists a positive rational number hρ such that

jρ(a) = ord(ρa) = hρ × vP(a)× degK P (13.8)

for all a ∈ A.

Definition 13.3.12. The number hρ defined above is called the height of the Drinfeld
A-module ρ.

We will prove (Theorem 13.3.19) that hρ is a nonnegative integer.

Example 13.3.13. If C is the Carlitz module, the structural map δ is injective, so the
height of C is hC = 0.
Example 13.3.14. Let A = RT , k be any field containing Fq , and ρ : A → k〈τ 〉 a
Drinfeld module of rank r and height h. Then ρT =

∑r
i=0 αiτ i with α0, . . . , αr ∈ k

and αr �= 0, since
deg ρT = −dP∞ × rρ × vP∞(T ) = rρ = r.

Now δ(T ) = α0, so δ( f (T )) = f (δ(T )) = f (α0). Therefore

char(ρ) =
{
(0) if α0 is transcendental over Fq
(Irr(α0, T,Fq)) if α0 is algebraic over Fq .

If P is any nonzero prime ideal of A, k = A/P, and δ is the canonical projection,
then char(ρ) = P.

In general, assume that char(ρ) = P �= (0). Then if α0 = 0, we have P = (T )
and ord(ρT ) = i0 = hρ × vP(T )× degK (T ) = hρ × 1× 1 = hρ = h.

Therefore if k = Fq = A/(T ), δ : A→ k is the canonical projection and ρ : A→
k〈τ 〉, then ρT = τ h + τ r is a Drinfeld A-module of height h and rank r . Note that if
α0 �= 0, α0 algebraic over Fq , and P = (Irr(α0, T,Fq)) = ( f (T )), then
ord(ρ f (T )) = hρ × vP( f (T ))× degK ( f (T )) = hρ × degT f (T ) = h × degT f (T ),

that is, h = ord(ρ f (T ))
degT f (T ) .

In order to show that the rank rρ and the height hρ of a Drinfeld A-module are in-
tegers, we need the basic general results on finitely generated modules over Dedekind
domains. The structure of these modules is similar to that of finitely generated modules
over principal ideal domains.

Let ρ be a Drinfeld A-module over k. If A is an integral ideal of A, then A can
be generated by at most two elements (Exercise 13.7.4). Let k be any field containing
Fq . Given any two twisted polynomials f (τ ), g(τ ) ∈ k〈τ 〉 with g(τ ) �= 0 there exists
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a unique pair of twisted polynomials q(τ ) (the right quotient) and r(τ ) (the right
residue) such that deg r(τ ) < deg g(τ ) and

f (τ ) = q(τ )g(τ )+ r(τ ). (13.9)

The proof of (13.9) is similar to that in the case of a polynomial ring k[x]. As in
that case, we deduce that every left ideal of k〈τ 〉 is principal. Now if we assume that
k is a perfect field, we obtain the left analogue of (13.9), namely, if f (τ ), g(τ ) ∈ k〈τ 〉
and g(τ ) �= 0, then there exists a unique pair q1(τ ) and r1(τ ), consisting of the left
quotient and the left residue, such that deg r1(τ ) < deg g(τ ) and

f (τ ) = g(τ )q1(τ )+ r1(τ ). (13.10)

Again, the proof is similar to the polynomial ring case but here we need the fact that
kq = k. As a consequence we obtain that when k is perfect, every right ideal of k〈τ 〉
is principal.

Example 13.3.15. If k = Fq(T ), f (τ ) = T + τ − τ 2, and g(τ ) = τ + T 2, then using
the same Euclidean algorithm and the relation (13.4) (τa = aqτ for a ∈ k), we obtain

−τ 2 + τ + T = (−τ + (1+ T 2)q)(τ + T 2)+ (T − (1+ T 2)qT 2).

Therefore q(τ ) = −τ + (1+ T 2)q and r(τ ) = T − (1+ T 2)qT 2 = T − T 2− T 2q+2.
In the algebraic closure k̄ of k we have

−τ 2 + τ + T = (τ + T 2)(−τ + (1+ T 2)1/q)+ T + T 2(1+ T 2)1/q .

Therefore q1(τ ) = −τ+(1+T 2)1/q and r(τ ) = T+T 2(1+T 2)1/q = T+T 2+T 2+2/q .
Definition 13.3.16. Given f (τ ), g(τ ) ∈ k〈τ 〉, the right greatest common divisor of
f (τ ) and g(τ ) is the monic generator of the left ideal of k〈τ 〉 generated by f (τ ) and
g(τ ). We will denote it by rgcd( f (τ ), g(τ )).

If h(τ ) = rgcd( f (τ ), g(τ )), the left ideal of k〈τ 〉 generated by f (τ ) and g(τ ) is
k〈τ 〉h(τ ).
Example 13.3.17. We have rgcd(T + τ − τ 2, τ + T 2) = 1. In fact,

rgcd( f (τ ), g(τ )) = gcd( f (x), g(x))x=τ
(see Exercise 13.7.5).

Now let ρ ∈ DrinA(k), and let A = (a, b) be an integral ideal of A. Let ρa, ρb ∈
k〈τ 〉, and consider rgcd(ρa, ρb) := ρA. That is, ρA denotes the monic generator of the
left ideal of k〈τ 〉 generated by ρa and ρb.
Definition 13.3.18. Let k̄ be an algebraic closure of k and ρ ∈ DrinA(k). We define
ρ[A] ⊆ k̄ as the set of roots of ρA in k̄. Note that

ρ[A] = {u ∈ k̄ | ρa(u) = 0 ∀ a ∈ A
}

(this corresponds to the �M given in Definition 12.2.8).
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Note that ρ[A] is a finite additive subgroup of k̄ since ρa is an additive polynomial.
Furthermore, if a ∈ A and u ∈ ρ[A], let ρa(u) ∈ k̄∗. Then for f ∈ A, we have
ρ f ◦ ρa(u) = ρ f a(u) = ρa f (u) = ρa ◦ ρ f (u) = ρa(0) = 0.

In other words, ρ[A] is also a finite A-module under the action given in (13.6).
This is the natural generalization of Proposition 12.3.6.

Theorem 13.3.19. Let ρ ∈ DrinA(k) be any Drinfeld A-module of rank r and height
h. Then r is a positive integer and h is a nonnegative integer.

Proof. Let ρA = ai0τ
i0+· · ·+anτ n , where i0 := ord ρA, ai0 , an �= 0, and n = deg ρA.

Then |ρ[A]| = qn−i0 = qdeg ρA−ord ρA. Let P be any nonzero prime ideal of A. The
sequence

0→ ρ[P]→ ρ[Pm]
ϕ−→ ρ[Pm−1]→ 0, (13.11)

where ϕ : ρ[Pm] → ρ[Pm−1] is defined by ϕ(u) = π × u with π ∈ P \ P2, is
exact (this result corresponds to the proof of Proposition 12.2.14). Now ρ[P] is an
A-module that is annihilated by P. Thus ρ[P] is a finite A/P vector space, say of
dimension dP. From (13.11) we obtain that

|ρ[Pm]| = |ρ[Pm−1]||ρ[P]| = |A/P|mdP = qmdP degK P.

By Exercise 13.7.6, there exists m ∈ N such thatPm = (a) is principal. Therefore
ρ[a] := ρ[(a)] = ρ[Pm]. Since |ρ[a]| = qdeg ρa−ord ρa , it follows that

mdP degK P = deg ρa − ord ρa, (13.12)

where Pm = (a) and dP = dimA/P ρ[P].
If P �= char(ρ), then ρa is separable since δ(a) �= 0. Hence |ρ[a]| = qdeg ρa and

we obtain

m × dP× degK P = deg ρa = −d∞ × r × vP∞(a).

Now in K , we have (a)K = Pm

P
−vP∞ (a)∞

. Thusm degK P = −vP∞(a)d∞, and therefore

m × dP× degK P = r × m × degK P. It follows that r = dP = dimA/P ρ[P] ∈ N.
In the case that ρ is of generic characteristic, we have hρ = 0. Otherwise, as-

sume P = char(ρ) and that ρ is of finite characteristic. Then ord ρa = jρ(a) =
hvP(a) degK P = hm degK P.

From (13.12) we obtain

mdP degK P = rm degK P− hm degK P.

Therefore dP = r − h, and h is an integer. ��
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Remark 13.3.20. We have obtained that

ρ[P] ∼=
{
(A/P)r if P �= char(ρ),
(A/P)r−h if P = char(ρ).

Using the theory of Dedekind domains, it can be proved that for any m ≥ 1,

ρ[Pm] ∼=
{
(A/Pm)r if P �= char(ρ),
(A/Pm)r−h if P = char(ρ).

For the reader who is familiar with the torsion of the Jacobian (which is isomorphic
to CK ,0) of a function field over an algebraically closed field, we observe that if p =
char k and 	 is any prime number, then

CK ,0(	) ∼=
{
R2gK if 	 �= p,

RλK if 	 = p,

where R = Q	/Z	, gK is the genus of K , and λK is the Hasse–Witt invariant of K .
Thus the rank r of a Drinfeld module is the analogue of 2gK and r − h is the analogue
of λK .

13.4 Existence of Drinfeld Modules. Lattices

As we saw in Example 13.3.3, if A = Fq(T ) and δ : A→ k is any Fq -algebra homo-
morphism, then any assignment T �→ f (τ ) ∈ k〈τ 〉 \ k, where f (0) = δ(T ), can be
extended to a Drinfeld A-module.

Now we want to construct Drinfeld A-modules for a general A. The method for
achieving this goal is due to Drinfeld, and we will follow D. Hayes’s papers [62, 63]
and M. Rosen’s book [128] to present the construction.

The idea is to make an analogous construction to the one used in the classical case
of elliptic curves over C. More precisely, consider a lattice � = Zω1 + Zω2 in C,
with im ω1

ω2
> 0. Then C/� corresponds to an elliptic curve over C, and � and �′ give

C-isomorphic elliptic curves if and only if there exists a nonzero complex number α
such that α� = �′.

Thus the procedure to obtain a Drinfeld A-module ρ over C∞ is to define an A-
lattice � in C∞ and to find a Drinfeld A-module ρ� attached to �. Finally, we will see
that every Drinfeld A-module ρ over C∞ is of the form ρ� for some lattice �.

Let K∞ = KP∞
∼= Fqd∞ [[π ]] be the completion of K at P∞ and let π be a

uniformizer atP∞. Let K̄∞ be an algebraic closure of K∞. Then K̄∞ is not a complete
field, but its completion C∞ is algebraically closed. We consider C∞ as the function
field analogue of C. The analytic theory of power series and infinite products can be
developed similarly to the way it is done in C (see [51, Chapter 2]).

Let δ : A → k be any Fq -algebra monomorphism. By abuse of language we also
use the notation δ for the extension δ : K → k. Let k〈〈τ 〉〉 by the ring of left twisted
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power series generated over k by τ . Thus the relation (13.4), τα = αqτ , holds for
all α ∈ k. Finally, let D be the derivative at 0 or the augmentation homomorphism
D : k〈〈τ 〉〉 → k, defined by D( f (τ )) := f (0).

Definition 13.4.1. Any ring homomorphism ρ : K → k〈〈τ 〉〉 such that D ◦ ρ = δ is
called a formal K -module over k. We assume that ρ is nontrivial, or in other words,
that ρ(K ) is not contained in k.

Note that if ρ ∈ DrinA(k) satisfies char(ρ) = 0, then ρa is invertible in k〈〈τ 〉〉 for
each a ∈ A\{0}. The proof is the same as in the case of formal power series. Therefore
ρ extends to a nontrivial K -module. This extension is also called ρ.

For the rest of this section, δ : A → C∞ will denote the inclusion map. As we
mentioned before, the exponential map ez : C → C is a fundamental entire function
on C. The exponential functions associated to lattices in C∞ have turned out to be
an important source for the construction of Drinfeld A-modules of arbitrary rank. Our
main goal in this section is to sketch a proof of one of the fundamental results in the
analytic theory of Drinfeld modules. The result is the analytic uniformization theorem
for Drinfeld A-modules over C∞.

Theorem 13.4.2 (Analytic Uniformization Theorem). Let ρ be a Drinfeld A-module
over C∞. There exists a unique lattice � in C∞ such that ρ = ρ� .

We will see the meaning of ρ� soon.

Definition 13.4.3. A lattice � is a discrete finitely generated A-submodule of C∞.

In other words, � is discrete in the topology of C∞ and the action of A on � is
multiplication in C∞.

Definition 13.4.4. If � is a lattice, then the dimension over K∞ of the K∞ vector
space K∞� is called the rank of � and will be denoted by r� := dimK∞ K∞�.

Example 13.4.5. Let {α1, . . . , αr } ⊆ C∞ be linearly independent over K∞ (we have
[C∞ : K∞] = ∞, so r can be chosen arbitrarily). Pick any nonzero elements
a1, . . . , ar in A. Then

� := A
α1

a1
+ · · · + A

αr

ar

is a lattice of rank r� = r .

The following result is the nonarchimedean analogue of the Weierstrass factoriza-
tion theorem.

Theorem 13.4.6. Let f : C∞ → C∞ be an entire function, that is, a function that can
be represented as a power series f (u) = ∑∞

n=0 anun ∈ C∞[[u]] that is convergent
everywhere. Let {λ}λ∈I be the nonzero roots of f inC∞, where each λ is of multiplicity
mλ. Then I is at most countable, {λ}λ∈I = {λ1, . . . , λt , . . . }, limt→∞ vP∞(λt ) =
−∞, and if n is the multiplicity of the zero of f at z = 0, we have
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f (u) = cun
∞∏
t=1

(
1− u

λt

)mt

(13.13)

for some constant c ∈ C∞ and where mt = mλt . Conversely (13.13) defines an entire
function on C∞.

Proof. See Goss [51]. ��
An entire function f (u) =∑∞

n=0 anun that is Fq -linear satisfies that if q � n then
an = 0. Thus f must be of the form f (u) = ∑∞

n=0 bnqαnq . We define the derivative
at 0 by Df = b0(= f (0)).

As a corollary of Theorem 13.4.6, we obtain the following:

Corollary 13.4.7. Assume that f1(u), f2(u) are two Fq -linear entire functions with
D f1 = Df2 �= 0, and f1(u) and f2(u) have the same set of roots with the same
multiplicities. Then f1(u) = f2(u). ��

In order to define the exponential function of a lattice, we need the following result,
whose proof is left to the reader.

Proposition 13.4.8. If � is a lattice, then
∑
γ∈�\{0}

1
γ
is absolutely convergent in C∞.

��

Definition 13.4.9. Let � be a lattice. We define the exponential function associated to
� as the entire function defined by

e�(u) = u
∏

γ∈�\{0}

(
1− u

γ

)
. (13.14)

The usual exponential function is multiplicative; indeed, we have ez1+z2 = ez1ez2

for all z1, z2 ∈ C. As expected, we have the following result:

Proposition 13.4.10. The exponential function e� associated to any lattice � is Fq -
linear, that is,

e�(αu + βw) = αe�(u)+ βe�(w)

for all α, β ∈ Fq and u, w ∈ C∞.

Proof. Let N be a positive integer and let �N := {
λ ∈ � | |λ|P∞ ≤ N

}
. Since

limγ∈� |γ |∞ = ∞, �N is finite and clearly it is an Fq -linear space.
Let pN (u) = u

∏
γ∈�N

(
1− u

γ

)
∈ C∞[u]. Since limN→∞ pN (u) = e�(u), it

suffices to show that pN (u) is Fq -linear. More generally, if V is a finite Fq -linear
space and we define fV (u) = A

∏
v∈V (u − v) for a constant A ∈ C∞, then fV (u) is

an Fq -linear polynomial.
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We will prove the latter statement by induction on dimFq V = n. For n = 0, we
have fV (u) = Au and the result follows. Assume n ≥ 1 and let W be an (n − 1)-
dimensional subspace of V . Then for v0 ∈ V \W , we have V = W + Fqv0.

Therefore fV (u) = A
∏
w∈W
µ∈Fq

(u− (w+µv0)). Let fW (u) =
∏
w∈W (u−w). Then

fW (u) is Fq -linear and

fV (u) = A
∏
w∈W

(u − w)×
∏
w∈W
µ∈F∗q

((u − µv0)− w)

= A fW (u)×
∏
µ∈F∗q

fW (u − µv0)

= A fW (u)×
∏
µ∈F∗q

(( fW (u))− µ fW (v0))

= A ×
∏
µ∈F∗q

( fw(u)− µ fW (v0))

= A[ fW (u)][ fW (u)
q−1 − fW (v0)

q−1].

Thus fV (u) is Fq -linear. ��
Note that since the polynomial pN (u) defined in the proof of Proposition 13.4.10

is Fq -linear, it follows by Corollary 13.2.5 that pN (u) = u +∑n
i=1 aiuq

i
. Therefore,

the power series extension of e�(u) is of the form e�(u) = u +∑∞
i=1 ciuq

i
. Since e�

is a nonconstant entire function, it follows that e� : C∞ → C∞ is an epimorphism. In
fact, any nonconstant entire function has a zero (see [51, Proposition 2.13]). Therefore
if f is any nonconstant entire function and c ∈ C∞, then g = −c+ f has a zero. Thus
f is onto.
The importance of the lattices and exponential functions is that for any lattice � of

rank r we will obtain a Drinfeld A-module ρ� over C∞ of rank r .
Now we consider two lattices �, �′ such that � ⊆ �′ and � is of finite index in �′.

Since e�(u) is periodic with group of periods �, it follows that e�(�′) and �′/� are
isomorphic as Fq -vector spaces. In particular, e�(�′) is a finite set.

Definition 13.4.11. Let �, �′ be two lattices such that � ⊆ �′ and � has finite index
in �′. We define,

P(�′/�; u) = u
∏

λ∈e�(�′)\{0}

(
1− u

λ

)
(13.15)

which is an Fq -linear polynomial of degree |�′/�| associated to �′/�.
Proposition 13.4.12. Let �, �′, �′′ be three lattices such that �′′ ⊇ �′ ⊇ � and � has
finite index in �′′. Then

e�′(u) = P(�′/�; e�(u)) with u ∈ C∞ (13.16)
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and

P(�′′/�; u) = P(�′′/�′; P(�′/�; u)). (13.17)

Proof. The roots of the left side of (13.16) are elements λ of �′, and the roots of
the right side are precisely the elements u such that e�(u) ∈ e�(�′). Therefore
both sides of (13.16) are entire functions with the same roots and D(e�′(u)) =
D(P(�′/�; e�(u)) = 1. Thus (13.16) is a consequence of Corollary 13.4.7.
Finally, (13.17) follows from (13.16) and (13.15). ��
Next, we will see that the lattice� provides a Drinfeld A-module ρ� ∈ DrinA(C∞).

First note that if a ∈ A \ {0}, then a−1� ⊇ �.
Theorem 13.4.13. Let � be a lattice of rank r. For a ∈ A \ {0}, let ρ�a : C∞ → C∞
be given by

ρ�a (u) := aP(a−1�/�; u). (13.18)

Then ρ�a ∈ C∞〈τ 〉. Let ρ� : A→ C∞〈τ 〉 be defined by ρ�(a) = ρ�a if a �= 0 and
ρ�(0) = 0. Then ρ� is a Drinfeld A-module of rank r over C∞.

Proof. We have ρ�a ∈ C∞〈τ 〉 by Definition 13.4.11. Now

ρ�a (u) = aP(a−1�/�; u) = au
∏

λ∈e�(a−1�)\{0}

(
1− u

λ

)
.

Therefore D(ρ�a ) = a = δ(a), where δ : A → C∞ is the inclusion map. Thus
D ◦ ρ� = δ. Now we have

ea−1�(u) = u
∏

λ∈a−1�\{0}

(
1− u

λ

)
= u

∏
µ∈�\{0}

(
1− u

a−1µ

)

= a−1(au)
∏

µ∈�\{0}

(
1− au

µ

)
= a−1e�(au). (13.19)

Using (13.16) and (13.19), we obtain

e�(au) = aea−1�(u) = aP(a−1�/�; e�(u)) = ρ�a (e�(u)). (13.20)

If a, b ∈ A, we have

ρ�a+b(e�(u)) = e�((a + b)u) = e�(au)+ e�(bu) = ρ�a (e�(u))+ ρ�b (e�(u)),
ρ�ab(e�(u)) = e�(abu) = ρ�a (e�(bu)) = ρ�a (ρ�b (e�(u)).

Since the exponential map is onto, it follows that

ρ�a+b = ρ�a + ρ�b and ρ�ab = ρ�a ρ�b for all a, b ∈ A.



13.4 Existence of Drinfeld Modules. Lattices 501

Therefore ρ� ∈ DrinA(C∞). It remains to show that the rank of ρ� is r . Now
ρ�a (u) = aP(a−1�/�; u), so we have degu ρ�a (u) = |a−1�/�|. Since � is of rank r ,
� is isomorphic to a sum of r fractional ideals of A. Moreover, if A is any fractional
ideal, we have a−1A/A ∼= a−1A/A ∼= A/aA, and hence |a−1�/�| = |A/aA|r =
qr degK a . It follows that

r degK a = logq |a−1�/�| = degτ ρ�a = −d∞rρ�vP∞(a) = rρ� degK a.

Hence rρ� = r . ��
Now we are ready to present a sketch of the proof of Theorem 13.4.2.

Proof of Theorem 13.4.2 (sketch). First pick an element φ in the left twisted power
series C∞〈〈τ 〉〉 such that D(φ) = α is a transcendental element over Fq . By equating
coefficients, we obtain a unique power series λφ =

∑∞
i=0 ciτ i ∈ C∞〈〈τ 〉〉 such that

λφα = φλφ (13.21)

and c0 = 1.
Next, we show that for each β ∈ C∞,

τβ = λφβλ−1φ
is the unique power series C∞〈〈τ 〉〉 with constant term β that commutes with φ. Fi-
nally, we obtain that if � : K → C∞〈〈τ 〉〉 is a formal K -module over C∞, then there
exists a unique power series λ� =

∑∞
i=0 ciτ i such that c0 = 1 and

�a = λ�δ(a)λ−1� (13.22)

for all a ∈ K .
For the proofs of the above statements see [62, 63] and [51, Chapter 4].
Now for the given Drinfeld A-module ρ, let λρ =

∑∞
i=0 ciτ i be the twisted power

series defined by (13.22). Then λρ(u) =
∑∞

i=0 ciuq
i
converges for all u ∈ C∞. This

can be proved using (13.21). Now λρδ(a) = ρaλρ is equivalent to the relation given in
(13.20) with λρ(u) replacing e�(u). Finally, it can be shown that the roots of λρ form
a lattice �. Hence ρ = ρ� . ��

Example 13.4.14. Consider the Carlitz module C ∈ DrinA(C∞), where A = RT =
Fq [T ]. Since C has rank 1, if � is the lattice such that C = ρ� , then � is of rank 1
over A. It follows that there exists π̃ ∈ C∞ such that � = Aπ̃ . � is the set of roots
of the Carlitz exponential. Note that π̃ plays the role of 2π i ∈ C since the lattice of
zeros of the complex function ez − 1 is {2nπ i | n ∈ Z} = (2π i)Z.

To compute π̃ , notice that the Carlitz exponential function ex is given by (13.3),

ex(Tu) = T ex(u)+ ex(u)q .
Consider the power series expansion of ex:
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ex(u) =
∞∑
i=0

uq
i

Di
. (13.23)

It follows by (13.3) that the coefficients in (13.23) are given by

D0 = 1 and Di = (T qi − T )Dq
I−1 for i > 0. (13.24)

We write [i] := T q
i − T . Then

Di = [i][i − 1]q · · · [1]qi−1 .

Thus we have degT Di = iqi , vP∞(Di ) = −iqi , and vP∞(u
qi /Di ) = −qivP∞ +

iqi > 0 for i large enough. Therefore lim
i→∞‖‖∞

uq
i
/Di = 0 for all u ∈ C∞ and (13.23) is

convergent for all u ∈ C∞.
Since ex is periodic, it is clearly not injective. However, we may define an inverse

function, called logarithm, in a neighborhood of 0. Let

L(u) =
∞∑
i=0

(−1)i uqi
Li

(13.25)

be the logarithm. It follows from (13.3) that

T L(u) = L(Tu + uq).

On the other hand, (13.25) yields

Li = (T qi − T )(T q
i−1 − T ) · · · (T q − T ) = [i][i − 1] · · · [1].

Now degT Li = q(qi−1)/(q−1) and vP∞(u
qi /Li ) = −qivP∞(u)+q(qi−1)/(q−

1). Therefore vP∞(u
qi /Li ) > 0 for i large enough if and only if d∞(u) < q/(q − 1).

Thus (13.25) is convergent for u of degree less than q/(q − 1).
Our goal is to find an expression for π̃ and find its degree (which must be q/(q−1)

since the set of zeros of ex(u) is Aπ̃ , and the inverse around 0 is defined for elements
of degree less than q/(q − 1)). For x ∈ C∞ we write

ex(xL(u)) =
∞∑
j=0

[
x

j

]
uq

j
.

Equating coefficients, we obtain[
x

j

]
=

j∑
i=0
(−1) j−i xq

i

Di L
qi

j−i
.

If we write the Carlitz module as
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CM =
d∑
i=0

CM,iτ
i

where M ∈ RT \ {0} is of degree d, then CM,i =
[
M

i

]
. Note that CM,i is the same as

in Theorem 12.2.5.
If d = degM < t ∈ N, then CM,t = 0. Therefore every polynomial of degree less

than t is a zero of

[
x

t

]
, and there are qt polynomials of degree less than t . Define

ext (x) :=
∏
M∈RT
degM<t

(x − M) = At x
∏

M∈RT \{0}
degM<t

(
1− x

M

)
,

where At = ±
∏

M∈RT \{0}
degM<t

M . Then At = (−1)t Dt/Lt , and
[
x

t

]
= ext (x)

αt
for some

constant αt ∈ K = Fq(T ).

By Theorem 12.2.5, we have

[
T t

t

]
= 1. Thus αt = ext (T t ) =

∏
M∈RT
degM<t

(T t−M).
The reader should try to conclude that in fact, αt = Dt and hence Dt is the product of
all monic polynomials of degree t . In short, we have[

x

t

]
= (−1)

t

Lt
x

∏
M∈RT \{0}
degM<t

(
1− x

M

)
.

Thus

x
∏

M∈RT \{0}
degM<t

(
1− x

M

)
= (−1)t Lt

[
x

t

]
= (−1)t Lt

t∑
i=0
(−1)t−i xq

i

Di L
qi

t−i

=
t∑

i=0
(−1)i Lt

Di L
qi

t−i
xq

i
.

It follows that

∞∑
i=0

π̃q
i
uq

i

Di
= ex(π̃u) = π̃u

∏
M∈RT \{0}

(
1− u

M

)

= π̃ lim
d→∞

exd(u)

Ad
= π̃ lim

d→∞

⎛⎝ d∑
i=0
(−1)i Ld

Di L
qi

d−i
uq

i

⎞⎠
= π̃

∞∑
i=0

⎧⎨⎩ lim
d→∞

(−1)i Ld

Lq
i

d−i

⎫⎬⎭ uq
i

Di
.
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Therefore

π̃q
i−1 = lim

d→∞
(−1)i Ld

Lq
i

d−i
. (13.26)

It follows from (13.26) that deg π̃ = q/(q − 1) and that π̃ is a (q − 1)th root of
limd→∞ (−Ld )

Lqd−1
.

L. Carlitz [14] found an explicit expression for π̃ in the form of an infinite product.
First note that [i + 1]− [i] = [1]qi . Let

αi :=
i∏
j=2

(
1− [ j − 1]

[ j]

)
= [1](q

i−1)/(q−1)

L j
.

Since
∑∞

j=2
[ j−1]
[ j] is convergent, each αi is convergent. Furthermore, |αi |∞ = 1

since degαi = 0. Let α = limi→∞ αi ∈ C∞, where |α| = 1. Notice that αi+1 − αi =
− [i]
[i+1]αi and deg(αi+1 − αi ) = −qi (q − 1).
Let δi = αi − α, where deg δi = −qi . From this expression Carlitz deduced that

lim
d→∞

d∑
i=0
(−1)i Ld

Di L
qi

d−i
uq

i =
∞∑
i=0

(−1)i
Di

uq
i
αq

i−1xi ,

where xi = [1](qi−1)/(q−1). In particular,

lim
d→∞

(
−Ld

D1L
q
d−1

)
= (−1)

D1
αq−1x1 = (−1)αq−1.

Therefore limd→∞
(
−Ld
Lqd−1

)
= (−[1])αq−1 = π̃q−1.

Choose a fixed (q − 1)th root ξ of −[1] = T − T q . We have

π̃ = ξα = ξ
∞∏
i=1

(
1− [i − 1]

[i]

)
. (13.27)

The arbitrary character of the choice of a (q − 1)th root of −[1] is the analogue of
the fact that in the classical case we may choose 2π i or −2π i .

13.5 Explicit Class Field Theory

As we saw in Chapter 12, the maximal abelian extension of K = Fq(T ) is obtained
by considering the torsion of the Carlitz module, first for A = Fq [T ] and then for
A′ = Fq [1/T ] (Theorem 12.8.32). D. Hayes [62] developed an explicit class field
theory for a general A using Drinfeld modules.
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In fact, this explicit class field theory uses the theory of rank-one Drinfeld modules
and provides explicit abelian extensions. Finally, using the general theory of class
fields, it is shown that the abelian extensions found are the ones prescribed by the
reciprocity map. In this section we present an introduction to explicit class field theory
of general congruence function fields. For a more complete history and proofs see
[62, 63, 128, 151].

We use the same notations as in Sections 13.3 and 13.4. We set F∞ := Fqd∞ as the
residue field of K∞ at P∞. The class group of A is denoted by Pic A (see Exercise
13.7.6) and hA denotes the cardinality of Pic A. The group Pic A also receives the
name of Picard group of A. For a nonzero ideal A we use the notation NA or �(A)
for the cardinality of the group of units of A mod A (A/A)∗. For any nonzero element
x ∈ K , we define deg x := −d∞vP∞(x), and we put N (x) = qdeg x .

Note that the Drinfeld A-module ρ is of rank one if deg ρa = −d∞vP∞(a) =
deg a for all a ∈ A.

For an ideal A of A and a Drinfeld A-module ρ ∈ DrinA(k), recall that ρ[A]
denotes the A-torsion of k̄, that is, ρ[A] = {u ∈ k̄ | ρa(u) = 0 ∀ a ∈ A} = {u ∈ k̄ |
ρA(u) = 0}. The next result is completely similar to Proposition 12.3.7.
Proposition 13.5.1. If ρ is a Drinfeld A-module of rank one over K and if a ∈ A\{0},
then K (ρ[a])/K is an abelian extension and Gal(K (ρ[a])/K ) is isomorphic in a
natural way to a subgroup of (A/(a))∗.

Proof. Let P = char(ρ). If (a) is relatively prime to P then ρ[a] and A/(a) are
isomorphic as A-modules (see Exercise 13.7.10). Choose a generator λ of ρ[a]. If
σ ∈ G := Gal(K (ρ[a])/K ), then σλ ∈ ρ[a], so that σλ = ρaσ (λ) for a unique
aσ ∈ (A/(a)). Now, since σλ is also a generator of ρ[a], we have aσ ∈ (A/(a))∗ and
the correspondence σ �→ aσ is a group monomorphism of G into (A/(a))∗.

Suppose that P �= 0. Then hρ = 1. If (a) = P, then ρ[a] = 0, so that K (ρ[a]) =
K . This case is analogous to the situation in which in characteristic p we adjoin pth
roots of unity, which can only be 1.

More generally, if a ∈ P, then (a) = CPn for some (C,P) = 1. Thus ρ[a] =
ρ[CPn] = ρ[C], and we are in the first case. Therefore G ⊆ (A/(C))∗ ⊆ (A/(a))∗. ��

13.5.1 Class Number One Case

Now we generalize the results of Sections 12.3, 12.4, and 12.5 when A has class num-
ber one. We will use the following notations. We take k = K and the Drinfeld modules
ρ ∈ DrinA(K ) under consideration will be of rank one unless otherwise stated. In case
hA = 1, any nonzero ideal A of A is principal and αA will denote a generator of A
such that the leading coefficient of ραA is one. Note that ραA = ρA. Let λA denote a
generator of the A-module ρ[A]. The Galois group of the extension K (ρ[A])/K will
be denoted by GA (we will prove shortly that the extension K (ρ[A])/K is an abelian
extension).

Definition 13.5.2. If A has class number one and A is a nonzero ideal of A we define
the cyclotomic polynomial with respect to A by
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�A(u) =
∏

αB∈(A/A)∗
(u − ρB(λA))

where the product runs through a set of representatives αB ∈ A of (A/A)∗. We have
�A(u) ∈ K (ρ[A])[u].

Note that if αB �= αB′ thenB �= B′ since otherwise αB = ξαB′ with ξ a unit of
A and ραB = ρξραB′ has leading coefficient ξ = 1.
Proposition 13.5.3. If A has class number one, then for any nonzero ideal A of A we
have, �A(u) ∈ K [u].

Proof. Let σ ∈ GA. Then σ(λA) is a generator of ρ[A] = ρ[αA] = ker ραA
∼= A/A

(see Remark 13.3.20). The argument follows as in Proposition 12.3.9. ��

Proposition 13.5.4. Let A be a prime power ideal of A, A = Pm with P a nonzero
prime ideal of A and m ∈ N. Then

(1) P is fully ramified in K (ρ[Pm])/K.
(2) The ramification index of P in K (ρ[Pm])/K is [K (ρ[Pm]) : K ].
(3) If T is any prime divisor in K other than P∞ and P, then T is not ramified in

K (ρ[Pm])/K.

In particular we have GPm ∼= (A/Pm)∗.

Proof. It is analogous to the proof of Proposition 12.3.14 and the details are left to the
reader (see Exercise 13.7.12). ��

Note that ρPm (u) = ρP(ρPm−1(u)). Now we have ρP = αPu + a1uq + · · · +
aduq

d
. Hence ρPm (u) = αPρPm−1(u)+ a1ρPm−1(u)q +· · ·+ adρPm−1(u)q

d
. That is,

ρPm (u) = ρPm−1(u)H(u)

with H(u) a polynomial in K [u] and H(0) = αP. Furthermore, the roots of H(u) are
precisely the elements of ρ[Pm] \ ρ[Pm−1]. Hence H(u) = �Pm (u), αP = H(0) =
±∏αC∈(A/Pm )∗ ρC(λPm ) and �Pm (u) = Irr(λPm , u, K ).

Assume that A is of class number one and let a be a nonzero element of A. We
write (a) = aA = A = ∏t

i=1P
si
i . Then (A/(a))

∗ ∼= ∏t
i=1(A/P

si
i )
∗. Let Psi

i = (ai )
for i = 1, . . . , t . It follows that the fields K (λP

si
i
) are pairwise linearly disjoint over

K since Pi is fully ramified in K (λP
si
i
)/K and unramified in

∏t
j=1
j �=i

K (λ
P
s j
j
)/K . We

have obtained

Theorem 13.5.5. Assume A has class number one, that is, hA = 1. For a nonzero
element a of A, let A = (a). Then
(1) �A(u) = Irr(λA, u, K ). In particular �A(u) is an irreducible polynomial.
(2) GA = Gal(K (λA)/K ) = Gal(K (ρ[A])/K ) = Gal(K (ρ[a])/K ) ∼= (A/(a))∗ =
(A/A)∗.
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(3) [K (ρ[a]) : K ] = �((a)). ��

Next, we determine the Artin symbol of the extension K (ρ[a])/K with a any
nonzero element of A.

Theorem 13.5.6. If A has class number one and ρ ∈ DrinA(K ) is a Drinfeld A-
module of rank one over K , then if P is a prime ideal of A not dividing (a), we have
for λ ∈ ρ[a]

λϕP = ρP(λ)

where ϕP denotes the Frobenius automorphism
[
K (ρ[a])/K

P

]
.

Proof. Let λ = λ(a) and Q be a prime divisor of K (ρ[a]) above P. Then ρP(u)/u
is Eisenstein at P. The proof goes as in Proposition 12.3.18. It follows that ρP(λ) ≡
λq

d
mod Q. It follows that ρP(λ) ≡

[
K (ρ[a])/K

P

]
(λ) mod Q. To prove the equality

and not just the congruence, consider the derivative of ρa(x) =
∏

b∈A/(a)(x − ρb(λ)),
that is, ρ′a(λ) = a = ∏b∈A/(a)

b �=c
(ρc(λ) − ρb(λ)). Since vQ(a) = 0, we have ρc(λ) �=

ρb(λ) mod Q for all c �≡ b mod (a). It follows that ρP(λ) =
[
K (ρ[a])/K

P

]
(λ). ��

Since the Frobenius automorphism at P acts as P, it follows that the decompo-
sition of prime divisors in K (ρ[a])/K is analogous to the cyclotomic cases, both the
classic and function field one (see Theorem 12.5.3).

13.5.2 General Class Number Case

Now we try to generalize the results of Section 13.5.1. Here A will be arbitrary and
ρ ∈ DrinA(C∞) a Drinfeld A-module of rank one. By a class field of A we mean a
finite abelian extension field of K on which P∞ splits completely. By a narrow class
field of A we mean a finite abelian extension of K .

Definition 13.5.7. Let ρ be a Drinfeld A-module over C∞ such that δ(a) = a for all
a ∈ A. Let E be a subfield of C∞ containing K . We say that ρ is defined over E or
that E is a field of definition for ρ if ρ is isomorphic over C∞ to a Drinfeld A-module
ρ′ such that ρ′a ∈ E〈τ 〉 for all a ∈ A.

Example 13.5.8. If ρ is a Drinfeld module of rank one, then K∞ is a field of definition
for ρ (see Exercise 13.7.11).

Next result proves that there always exists a smallest field of definition for ρ.

Theorem 13.5.9. Let ρ be a Drinfeld A-module over C∞ of any rank. Then there
exists a field of definition Kρ , finitely generated over K , which is contained in every
field of definition for ρ.
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Proof. For a ∈ A, let ρa = a +∑rρ deg a
i=1 ciτ i . For any ξ ∈ C∞ we have

(ξρξ−1)a = a +
rρ deg a∑
i=1

ξ1−q
i
ciτ

i .

Fix a nonconstant a ∈ A and consider the set S of indices such that ci �= 0. Let g
be the greatest common divisor of the set {qi−1 | i ∈ S} and let g =∑ j∈S α j (q j−1)
with α j ∈ Z. For each i ∈ S consider the element

Ii := ci
(∏
j∈S

c
α j
j

)(1−qi )/g ∈ C∞, (13.28)

which is invariant under the map c j �→ ξ1−q j c j . Therefore the elements {I j | j ∈ S}
belong to any field of definition of ρ. Let Kρ be the field generated over K by the
elements Ii , i ∈ S.

Let ξ ∈ C∞ be chosen such that

ξ g =
∏
i∈S

cαii . (13.29)

Then Ii = ξ1−qi ci . It follows that ξρaξ−1 has coefficients in Kρ . By (13.22) we obtain
that ξρxξ−1 has coefficients in Kρ for all x ∈ A. Therefore ρ is defined over Kρ . ��

Definition 13.5.10. The field Kρ is called the smallest field of definition for ρ or the
field of invariants of ρ.

We will show in Section 13.5.4 that for ρ of rank one, Kρ is the maximal unrami-
fied abelian extension of K in whichP∞ splits completely. Thus for rank one Drinfeld
A-modules over C∞, Kρ is independent of the choice of ρ.
To see the role that Kρ plays in class field theory, we consider an action of Pic(A)

(see Exercise 13.7.6) on DrinA(k). Let A be an integral ideal of A and ρ ∈ DrinA(k).
Consider the left ideal IA of k〈τ 〉 generated by {ρa}a∈A and let ρA ∈ k〈τ 〉 be a gener-
ator: IA = k〈τ 〉ρA. We write

ρA = f1(τ )ρa1 + · · · + fm(τ )ρam

for some fi (τ ) ∈ k〈τ 〉 where ai ∈ A for 1 ≤ i ≤ m.
Since A is an ideal, we have IAρa ⊆ IA for a ∈ A. Therefore, for any a ∈ A there

exists a unique ρ′a ∈ k〈τ 〉 such that
ρAρa = ρ′aρA. (13.30)

Then ρ′ : A→ k〈τ 〉, a �→ ρ′a , is a Drinfeld A-module over k. We denote this module
by

ρ′ := A ∗ ρ. (13.31)
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Clearly, if E is a field of definition for ρ, then E is also a field of definition for
A ∗ ρ for any nonzero ideal A in A.

Now if A = (a) is principal with a �= 0, let α be the leading coefficient of ρa .
Then ρA = α−1ρa and (A ∗ ρ)b = α−1ρbα for all b ∈ A. It follows that A ∗ ρ and ρ
are isomorphic. Thus Pic(A) acts on the isomorphism classes of Drinfeld A-modules
ρ over K such that rρ = r and D ◦ ρ = δ.

We will now see that this action defines the Hilbert class field HA of A.

Definition 13.5.11. The Hilbert class field HA of A is the maximal abelian extension
of K in which the infinite prime P∞ splits completely.

For a rank one Drinfeld A-module ρ, we will show that Kρ = HA. In particular,
for rank one A-modules Kρ is independent of ρ.

To show Kρ = HA we use a sign function sgn (see Definition 12.8.16) and use
it to define Pic+ A which is an extension of Pic A and corresponds to the extension
H+A of K , where every finite place of A is unramified. With the addition of the sign
function we control the top coefficient of ρa and this turns out to be more efficient than
controlling Kρ . In this way we do not have to deal with isomorphism classes of rank
one A-modules.

For the rest of this section we will consider only rank one Drinfeld A-modules
over C∞: ρ ∈ DrinA(C∞). We recall the definition of a sign function.
Definition 13.5.12. A sign function sgn: K ∗∞ → F∗∞ is a homomorphism which is the
identity on F∗∞ and trivial on U (1) := U (1)K∞ = 1 + P̂∞ the group of units congruent
to one mod P∞ (see Definition 5.9.13). We also use the convention sgn(0) = 0.

For σ ∈ Gal(F∞/Fq), the composite map σ ◦ sgn is called twisting of the sign
function sgn.

Note that there are |F∗∞| = qd∞ − 1 sign functions, depending on the choice of
the prime element at P∞. In fact, if sgn and sgn′ are two sign functions, the map
x �→ sgn(x)/ sgn′(x) with x a nonzero element of K∞, is trivial on the units UP∞ of
K∞ so it factors through vP∞ : K

∗∞ → Z. Thus

sgn(x) = sgn′(x)ξdeg x/d∞

for some ξ ∈ F∗∞.

Definition 13.5.13. ADrinfeld A-module overC∞, ρ ∈ DrinA(C)∞ is called normal-
ized if the leading coefficientµρ(x) of ρx belongs to F∞ for all x ∈ A. If for some sign
function sgn, the map x �→ µρ(x) is a twisting of sgn, ρ is called sgn–normalized.

We have defined the map x �→ µρ(x) as the leading coefficient ρx , x ∈ A. Now
we will show that the map µρ can be extended to K = quot A.

For x, y ∈ A we have (see Exercise 13.7.13)

µρ(xy) = µρ(x)µρ(y)r deg x = µρ(y)µρ(x)r deg y, (13.32)

where A is of rank r .
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Fix a prime element π ∈ K at P∞. Let x ∈ K ∗∞. Then x can be written uniquely
as

x = cξπm = sgn(x)ξπm

with c ∈ F∗∞, ξ ∈ U (1) and m ∈ Z.
Let b ∈ A be chosen such that a = bx ∈ A. In fact we can make this

choice since if Nπm = P
α1
1 · · ·Pαtt , by the Riemann–Roch Theorem, there exists

b ∈ K such that P
α1
1 · · ·Pαtt | Zb and Nb = Pu∞ for some u large enough.

That is, b ∈ LK (P
α1
1 · · ·Pαtt P−u∞ ): just take u > 2gK − 1 + ∑t

i=1 αi degK Pi .
Therefore a = bx and we may define µρ(x) by the rule given in (13.32), that is,
µρ(a) = µρ(x)µρ(b)r deg x or

µρ(x) := µρ(a)µρ(b)−r deg x . (13.33)

We leave to the reader to verify that this definition is independent of a and b and
satisfies (13.32) (see Exercise 13.7.14).

We fix a sign function sgn and the object we study will be denoted by (K ,P∞, sgn).
In this way, this object is analogous toQ with its archimedean place and the usual sign
function on R. Therefore an element a of A is called positive if sgn(x) = 1.

One key result is the following theorem.

Theorem 13.5.14. Every Drinfeld A-module ρ ∈ DrinA(C∞) is isomorphic over C∞
to a sgn–normalized A-module ρ′.

Proof. Let π be a prime element at P∞ which is positive for sgn. Let ξ ∈ C∞ be
such that ξq

d∞−1 = µρ(π−1)−1. Let ρ′ := ξρξ−1. Then µρ′(π−1) = 1 (see Exercise
13.7.13).

For x ∈ K ∗∞ we write x = cξπn with c ∈ F∗∞, ξ ∈ U (1) and n ∈ Z. Then
sgn(x) = c ∈ F∗∞. In particular for x = a ∈ A, by Exercise 13.7.13, and since
µρ′(ξπ

n) = 1, we obtain

µρ′(a) = µρ′(cξπn) = µρ′(c) = µρ′(sgn(a)).

Now the restriction of µρ′ to the residue field F∞ of K∞, is an automorphism
ιρ′ : F∞ → F∞ fixing pointwise Fq . Therefore µρ′(a) = ιρ′(sgn(a)). Therefore ρ s
isomorphic to ρ′ which is a sgn–normalized A-module. ��

The next step is to find how many sgn–normalized A-modules are there in each
isomorphism class. We restrict ourselves to rank one modules. First we give the defi-
nition of Hayes modules.

Definition 13.5.15. A Hayes A-module is a sgn normalized rank one Drinfeld A-
module over C∞.

The set of Hayes modules will be denoted by H.

The Carlitz module is a Hayes module.
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Proposition 13.5.16. If ρ and ρ′ = ξρξ−1 are sgn–normalized rank one Drinfeld
A-modules over C∞, then ξ ∈ F∗∞ and µρ = µρ′ .
Proof. Since µρ(π−1) = µρ′(π

−1) = 1 by Exercise 13.7.13 (4), we obtain that

ξ1−qd∞ = 1. Hence ξ ∈ F∞. Finally we obtain for any a ∈ A

µρ′(a) = ξ1−qdeg aµρ(a) = µρ(a). ��

Corollary 13.5.17. Each isomorphism class of Drinfeld A-modules or rank one over
C∞ contains exactly (qd∞ − 1)/(q − 1) sgn–normalized A-modules.
Proof. Given any ρ ∈ DrinA(C∞) of rank one, ρ is isomorphic to a sgn–normalized
one ρ′. Now, every A-module ρ′′ isomorphic to ρ′ is given as ρ′′ = ξρ′ξ−1. By
Proposition 13.5.16 if ρ′′ is also a sgn–normalized A-module, then ξ ∈ F∗∞. Finally,
since Aut(ρ) ∼= F∗q we obtain exactly |F∗∞|/|F∗q | = (qd∞−1)/(q−1) sgn–normalized
modules isomorphic to ρ′. ��

Now, we consider the set of Hayes modules H. If ρ ∈ H and A is a nonzero ideal
of A, let ρ′ = A ∗ ρ (see (13.31)). Then ρ′ satisfies ρAρa = ρ′aρA for all a ∈ A.

Since ρ is sgn–normalized, for each α ∈ A we have µρ(α) ∈ F∞, so ξ :=
µ(ρA) ∈ F∞. It follows that ρ′ = A ∗ ρ is also sgn–normalized.

The Galois group Gal(C∞/K∞) acts naturally on C∞〈τ 〉 and hence if ρ ∈
DrinA(C∞) and σ ∈ Gal(C∞/K∞), σρ is also a Drinfeld A-module. See Exercise
13.7.15. Clearly, if ρ ∈ H then σρ ∈ H. Furthermore, if A is a nonzero ideal and
σ ∈ Gal(C∞/K∞), then, from the definition we obtain that

A ∗ σρ = σ(A ∗ ρ).

Since every Drinfeld A-module ρ is obtained from a unique lattice � in C∞: ρ =
ρ� (Theorem 13.4.2), it can be proven that the fractional ideals of A act transitively
on the isomorphism classes of Drinfeld A-modules over C∞ such that the nonzero
principal ideals operate trivially on these classes since if A = aA is principal and
ρ ∈ DrinA(C∞), then

A ∗ ρ = µρ(a)−1ρµρ(a) (13.34)

(see [63, §§8-9]).
It follows that Pic A acts on the isomorphism classes of Drinfeld A-modules. Fur-

thermore, the set of isomorphism classes of rank one A-modules over C∞, D1, is a
principal homogeneous space for Pic A, that is, the action of Pic A on D1 is faithful.
We recall that faithful means that if Ā ∈ Pic A is such that A ∗ ρ = ρ for all ρ ∈ D1,
then Ā = 0. In particular |D1| = |Pic A| (see [63, Proposition 9.2]). That is
Theorem 13.5.18. There are exactly hA isomorphism classes of rank one Drinfeld A-
modules over C∞, and D1 is a principal homogeneous space for Pic A under the ∗
action. ��
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Now let ρ ∈ H be a Hayes module and let A be a nonzero ideal of A such that
A ∗ ρ = ρ. In particular the class Ā of A in Pic A and ρ̄ the isomorphism class of ρ,
satisfy Ā ◦ ρ̄ = ρ̄. Since the action of Pic A is transitive on D1, the stabilizer of ρ̄
is the set of nonzero principal ideals of A. Therefore A = x A is principal. Now, by
(13.34) we have

A ∗ ρ = µρ(x)−1ρµρ(x) = ρ. (13.35)

That is µρ(x) ∈ Aut(ρ) = F∗q .
Therefore the stabilizer of ρ is

{x A | x ∈ A, µρ(x) ∈ F∗q} = {x A | x ∈ A, sgn(x) = 1}.
Let

P+A = {x A | x ∈ K , sgn(x) = 1} and Pic+ A = MA

P+A
, (13.36)

where MA denotes the set of fractional ideals of A.

Definition 13.5.19. The group Pic+ A is called the narrow class group of A relative
to sgn.

The induced sgn function provides an isomorphism between PA/P
+
A and F∗∞/F∗q .

Therefore

h+A := |Pic+ A| =
qd∞ − 1
q − 1 |Pic A| =

qd∞ − 1
q − 1 hA = |H|. (13.37)

It follows

Theorem 13.5.20. The set H of Hayes modules is a principal homogeneous space for

Pic+ A under the ∗ action and |H| = qd∞−1
q−1 hA = h+A. ��

13.5.3 The Narrow Class FieldH+
A

In this section we study a normalized field, H+A over K that is a narrow class field
where all finite prime divisors are unramified. Let ρ ∈ H be a Hayes module and
let α be a nonconstant element of A. Let H+A be the field generated over K by the
coefficients of ρα . Note that ρβ is uniquely determined by ρα since if ρα =

∑n
i=0 aiτ i

and ρβ =
∑m

j=0 b jτ j , with a0 = α, then the equality
ραρβ = ρβρα

is equivalent to the recurrences

(αq
i − α)bi =

i∑
j=1
(a jb

q j

i− j − aq
i− j
j bi− j ). (13.38)
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Since α is nonconstant, α is transcendental over Fq and so αq
i − α �= 0 for all

i ≥ 1. It follows that every bi is uniquely determined.
It follows from (13.38) that H+A is independent of α. By (13.30) and (13.31) we

also have that all Hayes A-modules A ∗ ρ for nonzero ideals A in A are defined over
H+A . Thus, H

+
A /K is independent of ρ. However, it does depend upon choice of the

sign function sgn.

Definition 13.5.21. The field H+A is called the normalizing field for rank one Drinfeld
A-modules over (K ,P∞, sgn).

Proposition 13.5.22. The extension H+A /K is a finite abelian extension with Galois
group isomorphic to a subgroup of Pic+ A.

Proof. Fix ρ ∈ H, a Hayes module. For any σ ∈ Aut(C∞/K ), σρ is a sgn–normalized
Drinfeld A-modules, so σρ is defined over H+A . In particular H

+
A contains all the

conjugates of its generators. It follows that H+A is a finite normal extension of K .
Now, H+A contains the smallest field of definition Kρ of ρ. By Exercise 13.7.11,

Kρ/K is a finite subextension of K∞/K . It follows that Kρ/K is a separable exten-
sion. Let ξ ∈ C∞ and ρ′ = ξρξ−1 be such that ρ′ is defined over Kρ . Let a be any
nonconstant positive element of A. Then by Exercise 13.7.13 (3)

ξ1−q
r deg a

µρ(a) = µρ′(a) ∈ Kρ,

which implies that Kρ(ξ)/Kρ and K (ξ)/K are separable extensions. It follows that
H+A /K is separable and therefore Galois since H

+
A is a subextension of Kρ(ξ).

By Exercise 13.7.15 we have A ∗ σρ = σ(A ∗ ρ) for any σ ∈ Gal(C∞/K ),
ρ ∈ DrinA(C∞) and A any nonzero ideal of A. Therefore the action of Gal(H+A /K )
commutes with the action of Pic+ A.

Define θ : Gal(H+A /K ) → Pic+ A as follows. If σ ∈ Gal(H+A /K ), then θ(σ ) =
Āσ where Aσ satisfies σρ = Aσ ∗ ρ. The homomorphism θ is injective by Theorem
13.5.20 since σρ �= ρ for σ �= Id. ��

In order to study ramification in H+A /K we need to consider the inertia group
which is related to the reduction map mod P for a place P. Therefore we study the
reduction map. Let B+ be the integral closure of A in H+A .

At this point we make a detour to discuss how a Drinfeld module can be reduced
to some residue fields.

In general, let ρ ∈ DrinA(k) of rank r . Suppose that the field k has a discrete
valuation v and with all the coefficients of ρa integral at v. Let ϑv be the valuation ring
at v with maximal ideal p and residue field k(p). We take the coefficients of ρa mod p
and denote this reduction by ρ(p). In general ρ(p) is not a Drinfeld A-module if all the
nonconstant terms are congruent to 0 mod p.

Definition 13.5.23. We say that ρ has stable reduction at p, if there exists a Drinfeld
A-module ρ′ ∈ DrinA(k) isomorphic to ρ such that the coefficients of ρ′a are integral
at v for all a ∈ A and ρ′(p) is a Drinfeld A-module ρ′(p) ∈ DrinA(k(p)).

We say that ρ has good reduction at p if in addition ρ′(p) has rank r .
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Remark 13.5.24. If ρ has rank one, then every stable reduction is good.

The key fact is that even if ρ has no stable reduction at p, there exists an extension
k′ of k such that ρ has stable reduction over k′.

Definition 13.5.25. We say that ρ has potential stable reduction (resp. potential good
reduction) if there exists an extension k′ of k such that ρ has stable reduction (resp.
good reduction) over k′.

Example 13.5.26. If A = Fq [T ], then for any r > 1 the Drinfeld A-module ρT =
T + τ + a2τ 2 + · · · + ar−1τ r−1 + T τ r has stable reduction but not good reduction.
Also, the Drinfeld A-module φT = T + T τ + T τ 2 + · · · + T τ r does not have stable
reduction.

Theorem 13.5.27. Every Drinfeld module ρ over a field k with a discrete valuation v
has potential stable reduction. In particular if ρ is of rank one, ρ has potential good
reduction.

Proof. For a ∈ A let ρa =
∑
aiτ i , and set

γa = min
i>0

v(ai )

qi − 1 .

Let x1, . . . , xs be a set of generators of A as Fq–algebra and set γ := min1≤ j≤s γx j .
There exists a finite extension k′ of k with a valuation v′ extending v and an element
x ∈ k′ such that v′(x) = γ . Then it is easy to verify that conjugation by x gives a
Drinfeld module isomorphic to ρ which has stable reduction. ��

We return to our discussion. In our case a sgn-normalized A-module ρ of rank one
is defined over B+ by Theorem 13.5.27 and ρ may be reduced at every nonzero prime
ideal T of B+. Let πT : B+ → B+/T be the reduction map and letP := T ∩ A.

Proposition 13.5.28. The reduction map ρ �→ πT ◦ ρ is injective on H.

Proof. Assume that ρ and ρ′ belonging to H reduce modulo T to the same φ ∈
DrinA((B+/T)), that is, φ = ρ(T) = ρ′(T). By Theorem 13.5.20 there exists an ideal
A of A such that ρ′ = A ∗ ρ. Using an argument similar to that of Exercise 5.10.36,
we may assume that A is relatively prime to T.

Reducing the defining equation ρAρx = ρ′xρA modulo T, we obtain ρAρx ≡
ρxρA mod T for all x ∈ A. It follows that πT(ρA) ∈ End(πT ◦ ρ). Now we know that
End(πT ◦ ρ) = A (see [63, Corollary 5.14] or [151, Theorem 2.7.2]). Therefore there
exists a ∈ A such that

ρA ≡ ρa mod T. (13.39)

Since the leading coefficient of ρA is one, µρ(a) = 1. Thus a is a positive element
of A. The proof will follow if we prove that A = aA (see (13.34)). Define B :=
A+aA. By (13.39) the torsion modules ρ(T)[B], ρ(T)[A] and ρ(T)[aA] in an algebraic
closure B+/T of B+/T are the same. From the proof of Theorem 13.3.19 we obtain
that |A/A| = |A/B| = |A/aA|. It follows thatB = A = aA. ��

Now we can prove our claim about the ramification of H+A /K .
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Proposition 13.5.29. The extension H+A /K is unramified at every finite place P of A.

Proof. Let σ be an element of the inertia group ofP. Therefore σρ ≡ ρ mod Q, where
Q is the prime ideal of B+ above P.

From Proposition 13.5.28, it follows that σρ = ρ. Since H+A is generated by the
coefficients of ρ, it follows that σ = Id. The result is now a consequence of Corollary
5.2.19. ��

For a nonzero ideal A in A, let σA =
(
H+A /K

A

)
be the Artin automorphism associ-

ated to A. That is, σA =
∏s

i=1 σ
αi
Pi
where A = ∏s

i=1P
αi
i is the prime decomposition

of A and σPi =
(
H+A /K

Pi

)
is the Artin symbol for the prime Pi .

One of the main results in the theory of Drinfeld A-modules of rank one over C∞
is the following theorem.

Theorem 13.5.30. For every Hayes A-module ρ, we have

σAρ = A ∗ ρ. (13.40)

In particular Gal(H+A /K ) is isomorphic to Pic
+ A and [H+A : K ] = qd∞−1

q−1 hA =
qd∞−1
q−1 d∞hK .

Proof. Since for any nonzero ideals A,B of A we have

A ∗ (B ∗ ρ) = (AB) ∗ ρ,

it suffices to show (13.40) for A = P a nonzero prime ideal of A.
LetQ be a prime divisor of B+ aboveP and consider the Frobenius automorphism

σQ at Q where σQ = σP is the Artin symbol at P. Then

σP(x) ≡ xNP mod Q for all x ∈ B+.

Let ρ′ = P ∗ ρ. then for any y ∈ A we have

ρPρy = ρ′yρP. (13.41)

Now the reduction ρ mod Q := φ satisfies that rφ = 1. Since charφ = Q and
1 ≤ hφ ≤ rφ = 1, we have hφ = 1. By the proof of Theorem 13.3.19 we obtain that
φP = τ degP. Reducing (13.41) mod Q we obtain

τ degPρy = ρ′yτ degP mod Q. (13.42)

Let ρy =
∑deg y

i=0 aiτ i , ρ′y =
∑deg y

j=0 b jτ
j . Then (13.42) implies

aN (P)i ≡ bi mod Q.
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Therefore

σPρy =
deg y∑
i=0
(σPai )τ

i ≡
deg y∑
i=0

aN (P)i τ i ≡
deg y∑
i=0

biτ
i = (P ∗ ρ)y mod Q.

Since reduction mod Q is injective, it follows that σPρ = P ∗ ρ. ��

Corollary 13.5.31. For x ∈ K ∗, define σx as the Artin symbol σx A corresponding to
the principal ideal x A. Then σxρ = µρ(x)−1ρµρ(x).
Proof. Exercise 13.7.17. ��

Finally we prove the Principal Ideal Theorem for H+A .

Theorem 13.5.32. Let A be any nonzero ideal of A. Then conA/B+ A = AB+ =
D(ρA)B+ where D(ρA) is the constant term of ρA.

Proof. It is easy to see that for any two nonzero ideals A and B of A we have
D(ρAB) = D((B ∗ ρ)A)D(ρB). Thus it suffices to consider A = P any nonzero
prime ideal.

We have that all the coefficients of ρP other than the leading coefficient belong
to any ideal Q above P (see (13.42)). Choose x ∈ A such that vQ(x) = 1. We write
x A = PC. Then by Exercise 13.7.16, we obtain ρx = µρ(x)(P ∗ ρ)CρP. It follows
that

1 = vQ(D(ρx )) = vQ(D(P ∗ ρ)C)+ vQ(D(ρP)) ≥ vQ(D(ρP)).

Therefore vQ(D(ρP)) = 1 for any ideal Q of B+ dividing P. The result will
follow by showing that no other nonzero prime ideal of B+ divides D(ρP). Let T be
another prime ideal of B+, T � P. Let e ≥ 1 be such that Pe = yA is principal. Set
D = Pe−1. Then

vT(D((P ∗ ρ)D))+ vT(D(ρP)) = vT(µρ(y)−1y) = 0.
Since both ρ andP∗ρ are defined over B+, it follows that all the above valuations

are nonnegative. Hence vT(D(ρP)) = 0. ��

13.5.4 The Hilbert Class FieldHA

We return to Kρ , the field of definition of a Drinfeld A-module ρ ∈ DrinA(C∞) of
rank one. We may assume that ρ is sgn–normalized. We have KF∞ ⊆ Kρ ⊆ H+A .

Let ξ ∈ C∞ be so that ρ′ = ξρξ−1 is defined over Kρ . Since the group of auto-
morphisms of ρ is F∗q , the greatest common divisor g given in the proof of Theorem
13.5.9 is g = q − 1. From (13.29) we obtain that ξ0 := ξq−1 ∈ H+A , because H

+
A is

the field generated by the coefficients of ρ. Since ρ is sgn–normalized, µρ(π−1) = 1
and by Exercise 13.7.13 (4) we obtain that
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ξ
(qd∞−1)/(q−1)
0 = ξqd∞−1 = µρ′(π−1)−1 ∈ Kρ.

Furthermore, H+A = Kρ(ξ0) since the coefficients of ρx = ξρ′xξ−1 generate H+A for
any nonconstant x ∈ A. Therefore [H+A : Kρ] ≤ (qd∞ − 1)/(q − 1).

Now we consider the exact sequence

1 −→ PA
P+A

−→ Pic+ A θ−→ Pic A→ 0 (13.43)

where θ is the natural map.
We identify Pic+ A with Gal(H+A /K ) ((13.40)). Under this identification, we have

Proposition 13.5.33. The subfield Kρ of H
+
A is the fixed field of H+A of the subgroup of

Pic+ A generated by σx , x ∈ K ∗. Furthermore, the extension H+A /Kρ = Kρ(ξ0)/Kρ
is a cyclic Kummer extension of degree (qd∞ − 1)/(q − 1) and for any x ∈ K ∗ we
have

ξ
σx
0 = µρ(x)q−1ξ0. (13.44)

In particular, Kρ is independent of the choice of ρ.

Proof. From Corollary 13.5.31, σx fixes all the invariants Ii in (13.28) which gener-
ate Kρ . Therefore each σx fixes Kρ . Denote again by σx some extension of σx to a
monomorphism of H+A (ξ) into C∞. Then, by Corollary 13.5.31, we obtain

ρ′ = σxρ′ = ξσxσxρξ−σx = ξσxµρ(x)−1ρµρ(x)ξ−σx
= (ξσx−1µρ(x)−1)ρ′(ξσx−1µρ(x)−1)−1

where ρx = ξρ′xξ−1 for x ∈ A.
Therefore ξσx−1µρ(x)−1 is an automorphism of ρ′ and so it is an element of F∗q .

The definition of ξ0 implies (13.44). It follows that [H
+
A : Kρ] ≥ (qd∞ − 1)/(q − 1)

and therefore [H+A : Kρ] = (qd∞−1)/(q−1). Since PA/P+A is isomorphic to F∗∞/F∗q
and thus of order (qd∞ − 1)/(q − 1), we have that Kρ is indeed the fixed field of the
subgroup {σx | x ∈ K ∗} of Pic+ A. ��

Definition 13.5.34. The common field of definition of the rank one Drinfeld A-
modules over C∞ is called the Hilbert class field of A and it is denoted by HA.

One of the main results in class field theory is next theorem.

Theorem 13.5.35. The prime P∞ splits completely in the extension HA/K and every
prime divisor P of K is unramified in HA/K. The extension HA/K is of degree hA
with Galois group isomorphic to Pic A under the Artin map. If ρ is a Drinfeld A-
module defined over HA, then

σAρ = A ∗ ρ (13.45)

for any nonzero ideal A in A, where σA is the Artin map.
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Proof. Since HA/K is a Galois subextension of K∞/K , it follows that P∞ splits
completely in HA/K . Since HA ⊆ H+A every finite place of K is unramified in HA.

By (13.43) and Proposition 13.5.33 we obtain that Gal(HA/K ) ∼= Pic A. Finally
(13.45) is an immediate consequence of (13.40). ��

Now we have that the maximal unramified abelian extension of K such that P∞
splits completely has Galois group isomorphic to Pic A (see [127]). Thus HA is pre-
cisely this field. That is, HA is the maximal unramified extension of K in which P∞
splits completely.

The proof of the next result can be found in [63, Theorem 15.8] or [151, Theorem
3.5.1].

Theorem 13.5.36. Let B be the integral closure of A in HA. Then every rank one
Drinfeld A-module ρ is isomorphic to an A-module ρ′ which is defined over B and
where µρ′(a) is a unit in B. ��

As a consequence we obtain the following theorem:

Theorem 13.5.37 (Principal Ideal Theorem). Let ρ be a rank one A-module which
is defined over B. If A is any nonzero ideal in A, then AB = D(ρA)B is principal
generated by D(ρA).

Proof. Similar to that of Theorem 13.5.32. ��

13.5.5 Explicit Class Fields and Ray Class Fields

Now we construct the maximal abelian extension of a congruence function field K .
This construction is analogous to that for cyclotomic function fields. We fix a sgn
function. Let m be any nonzero proper ideal of A. Let Km := K (ρ[m]). Exactly as in
Section 13.5.3 we will see that Km is a Galois extension of K unramified away from
the prime ideals dividing m and P∞. We have that Km is a narrow ray class field of
conductor m (see [78]). We define K+m as the maximal extension of K contained in
Km in which P∞ splits completely. It turns out that K+m is the ray class field modulo
m. In this way, we will obtain an explicit description of the maximal abelian extension
of K in whichP∞ splits completely. One obtains all class fields by varyingP∞. The
techniques to study Km are similar to those of H

+
A (see Section 13.5.3).

To begin with, let Mm,A be the fractional ideals of A generated by the prime ideals
P not dividing m and let

P+m,A = {x A | x ∈ K ∗, x positive, x ≡ 1 mod m}.

Definition 13.5.38. The quotient group Pic+m A = Mm,A/P
+
m,A is called the narrow

ray class group modulo m relative to sgn.
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We consider the set of Hayes modules H. We have ρ[m] ∼= A/m as A-modules
(Remark 13.3.20). Recall that �(m) = ∣∣(A/m)∗∣∣. Then ρ[m] has �(m) generators as
an A-module. Consider the set Xm consisting of the pairs (ρ, λ), where ρ ∈ X and λ
is a generator of ρ[m]. We define the action

A ∗ (ρ, λ) := (A ∗ ρ, ρA(λ)) (13.46)

of Mm,A on Xm. As in Section 13.5.3, we have that the stabilizer of any point is P
+
m,A.

Now, on the one hand we have |Xm| = |H|�(m) = |Pic+ A|�(m) and on the other
hand we have the exact sequence

0 −→ Mm,A ∩ P+A
P+m,A

−→ Pic+m A
θ−→ Pic+ A −→ 0.

We have
∣∣∣Mm,A∩P+A

P+m,A

∣∣∣ = �(m) (see [78, Chapter IV]). Hence Xm and Pic+m A have the

same cardinality and therefore we obtain the analogue of Theorem 13.5.20.

Theorem 13.5.39. The set Xm is a principal homogeneous space for Pic+m A under the
action ∗ given in (13.46). ��

Let K (m) := H+A (ρ[m]). As in the case of H
+
A it will be proved that K (m)/K is

a Galois extension and unramified away from P∞ and the prime ideals dividing m.
First we prove the analogue of Proposition 12.3.18

Proposition 13.5.40. Let L/K be a finite extension and let ρ ∈ DrinA(C∞) of rank
one which is defined over a finite valuation ring ϑT in L where T is unramified in
L/K. Let P := T ∩ A. Set A = Pe and B = Pe−1. Then ρB(t) divides ρA(t) in
ϑT[t] and the quotient is Eisenstein at P.

Proof. The proof for the case e = 1 is similar to that given in the proof of Theorem
13.5.32.

For e > 1, let f (t) := (B ∗ ρ)P(t)/t . Then

ρA(t) = f (ρB(t))ρB(t).

By case e = 1, we know that f (t) is Eisenstein at P and ρB(t) ≡ t N (B) mod T (see
Theorem 13.3.19). ��

By Proposition 13.5.40 it follows that in the extension K (m)/K we have the same
type of ramification as in the cyclotomic case. More precisely, we have

Proposition 13.5.41. Let m = Pe where P is a prime ideal of A. Then the exten-
sion K (Pe) = H+A (ρ[P

e])/H+A is fully ramified at T, where T is a prime divisor
of H+A above P and the ramification index is �(Pe). Furthermore, the extension
K (Pe)/H+A is unramified at every finite prime ideal P1 �= P and at P∞. Finally,
we have [K (Pe) : H+A ] = �(Pe).
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Proof. The polynomial f (u) := ρPe (u)/ρPe−1(u) is Eisenstein and f (u) =∏(u−λ)
where the product runs over the set of generators of the A-cyclic module ρ[Pe]. We
also have that degu f (u) = �(Pe). The proof follows as in the one of Proposition
12.3.14. ��

Corollary 13.5.42. For any nonzero ideal m of A, K (m)/H+A is a Galois extension
with Galois group isomorphic to (A/m)∗. The ramified primes are the prime ideals
P dividing m with ramification index �(Pe) where Pe is the exact power of P divi-
ding m.

Proof. Similar to that of Theorem 12.5.3. ��
Now Km := K (ρ[m]) is a normal extension and therefore σ(Km) = K (σρ[m]) =

Km for any σ ∈ Gal(C∞/K ).
Since H+A is generated by the coefficients of ρa , with ρ ∈ H and a a nonconstant

element of A, it follows that Km = K (m).
The next result is a complement of Theorem 13.5.30.

Theorem 13.5.43. Let A be any nonzero ideal of A which is prime to m and let λ ∈
ρ[m]. Then if σA is the Artin automorphism, we have

λσA := σAλ = ρA(λ). (13.47)

Proof. If A and B are two nonzero ideals of A, prime to m and σA and σB satisfy
(13.47), then by Theorem 13.5.30, and Exercise 13.7.16 we have

σAB(λ) = σAσBλ = σBσAλ = σB(ρA(λ)) = (σBρA)(σBλ)

= (σBρA)(ρB(λ)) = (B ∗ ρ)A(ρB(λ)) = ρAB(λ).

Thus, we may assume A = P to be prime. If T in Km is a prime ideal above P, σP

satisfies σPλ ≡ λNP mod T.
Since ρ mod T = φ satisfies φP = τ degP, it follows as in the proof of Theorem

13.5.30 that ρP(λ) ≡ λN (P) mod T, and therefore σP(λ) = ρP(λ). ��
As a consequence of Theorem 13.5.43 we see that Km is independent of ρ (see

(13.38)). We also have that Pic+m A acts on Km as automorphisms via (13.47).
Since Pic+m A and [Km : K ] have the same cardinality, it follows that Pic+m A ∼=

Gal(Km/K ) as in Theorem 13.5.30.
Now, the positive elements of A generate A/m, so the map a �→ σa := σaA, where

a ∈ A is a nonzero element of A prime tom, induces an isomorphism between (A/m)∗
and Gal(Km/H

+
A ). For an element λ ∈ ρ[m] and x ∈ A congruent to 1 mod m in K ∗,

by (13.47) we obtain

σx (λ) = ρx A(λ) = µρ(x)−1λ
and µρ(x)−1 ∈ F∗∞. Therefore Gal(Km/K ) contains a subgroup IP∞ isomorphic to
F∗∞ and in fact Hayes has shown that IP∞ is both the decomposition and the inertia
groups at P∞.
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Definition 13.5.44. The fixed field of Km under IP∞ , K
+
m := K

IP∞
m is called the ray

class field of conductor m.

We have that K+m is the ray class field of K of conductor m that is completely split
over P∞. This situation is analogous to the familiar situation of cyclotomic fields,
where Km plays the role of the usual cyclotomic number field Q(ζm) and K+m that of
Q(ζm)+, the maximal real subfield of Q(ζm). Note that the ramification index of P∞
in Km/K+m and of Km/K is (qd∞ − 1).

Now if K+∞ is the union of all K+m where m runs through all nonzero proper ide-
als m of A. Then K+∞ is the maximal abelian extension of K in which P∞ splits
completely. If K∞ =

⋃
m Km, then K∞ is the fixed field of K+∞ under IP∞ .

We have (Theorem 12.8.25) Gal(K∞/K ) ∼= UP∞ where UP∞ corresponds to the
UT defined in Chapter 12. That is, UP∞ is the subgroup of the idele group whose
P∞ component is 1 and whose other components are elements of ϑ∗P. More precisely,
Gal(K∞/K ) ∼= JK /(K ∗ × K (1)∞ × Z) and K∞ corresponds to K ∗ × K (1)∞ × Z (see
Theorem 12.8.25).

If we take P′∞ �= P∞, P′∞ a prime divisor of K and we consider K ′∞, the inter-
section of the corresponding idele subgroups is {1} so K∞K ′∞ is the maximal abelian
extension of K .

Theorem 13.5.45. Let P∞, P′∞ be two different prime divisors of K . If K∞ and K ′∞
are as above, then K∞K ′∞ is the maximal abelian extension of K . ��

13.6 Drinfeld Modules and Cryptography

The similarity between elliptic curves and Drinfeld modules of rank two allows us to
define a cryptosystem based on Drinfeld modules. In 2001, T. Scanlon [132] used this
idea. Unfortunately, he showed that his approach was insecure. In 2003, R. Gillard et
al. [49] proposed a new public-key cryptosystem based on Drinfeld modules. However,
S. R. Blackburn et al. [6] showed that this cryptosystem is also insecure. In this section
we present these Drinfeld-module-based cryptosystems.

Definition 13.6.1. The discrete logarithm problem for a Drinfeld module ρ : A →
k〈τ 〉 is as follows: given a ∈ A such that ρa : k → k is bijective, find b ∈ A such that
ρb : k → k is the inverse of ρa .

Note that public-key cryptosystems based on the intractability of the discrete algo-
rithm problem for certain groups, for instance, Diffie–Hellman, ElGamal, have natu-
ral Drinfeld module analogues. Likewise, cryptosystems such as RSA admit Drinfeld
module versions. Here we present briefly the Drinfeld module version of the Diffie–
Hellman cryptosystem.
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13.6.1 Drinfeld Module Version of the Diffie–Hellman Cryptosystem

Let A = Fq [T ] and k = Fq . Let ρ : A → k〈τ 〉 be any Drinfeld module, where
δ : A→ Fq is the natural projection. Fix an arbitrary element ξ in k. Then A, k, ρ, δ,
and ξ constitute the public key. Arnold and Charlotte choose a and b in A respectively.
Arnold transmits ρa(ξ) to Charlotte, while Charlotte transmits ρb(ξ) to Arnold. The
common private key is

ρb(ρa(ξ)) = ρba(ξ) = ρab(ξ) = ρa(ρb(ξ)). (13.48)

Now a possible attack to this cryptosystem would come from the fact that the ring
of functions induced by a Drinfeld module on a finite field is isomorphic to a ring of
linear functions (here we are talking of Fp-linearity and not k-linearity).

Proposition 13.6.2. For any Drinfeld module ρ : A→ k〈τ 〉 and any a ∈ A such that
ρa : k → k is bijective, there exist real numbers C and r and an algorithm to find an
inverse to ρa using at most C(logp |k|)r field operations in Fp.

Proof. [132, Proposition 2]. ��
Proposition 13.6.2 proves that cryptosystems based on probable intractability of

inverting the action of a Drinfeld module, for example the Drinfeld version or RSA,
are insecure.

Each polynomial f (τ ) in τ corresponds to an additive map of k, i.e., f (τ ) =∑n
i=0 aiτ i , f (τ )(α) =

∑n
i=0 aiαq

i
. Let ϕ : k〈τ 〉 → Hom(k,+) be this assignment.

Notice that knowing the inverse of ϕ ◦ ρa is not enough to find b. However, with
some additional effort we can find b ∈ A such that ϕ ◦ ρb = (ϕ ◦ ρa)−1 (see [132,
Proposition 3]).

The techniques of Proposition 3 of [132] extend to the discrete logarithm problem
for Drinfeld modules. In fact, we have the following:

Proposition 13.6.3. For any Drinfeld module ρ ∈ DrinA(k) and any elements α, β ∈
k, there exist real numbers C ′, r ′ and an algorithm that computes a ∈ A with ρa(α) =
β, if such an a exists, using at most C ′(logp |k|)r

′
field operations in Fp.

Proof. [132, Proposition 4]. ��
Proposition 13.6.3 proves that no public key cryptosystem based on the supposed

infeasibility of solving the discrete logarithm problem for Drinfeld modules, such as
the Drinfeld module versions of Diffie–Hellman and ElGamal cryptosystems, is se-
cure.

13.6.2 The Gillard et al. Drinfeld Cryptosystem

In this section, we shall define again the cryptosystem proposed by Gillard et al. [49].
Take q = p, A = RT = Fq [T ], k = K = Fq(T ), and let ρ be a Drinfeld A-module
over k such that ρa ∈ A〈τ 〉 for all a ∈ A. Let p(T ) be a monic irreducible polynomial
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of degree d larger than one. LetB = A/(p(T )) ∼= Fqd . For a ∈ A we write ā for the
class a + (p(T )) inB.

Now the ideal (p(T )) is an A〈τ 〉-submodule of A. Hence the relation
f (τ )(ā) := f (τ )(a) for a ∈ A

defines an A〈τ 〉-module structure onB in a natural way. That is, if f (τ ) =∑m
i=0 αiτ i ∈

A〈τ 〉, we have

f (τ )ā =
m∑
i=0
αi a p

i =
m∑
i=0
ᾱi ā

pi .

In particular, the map ψ from B to B: ā
ψ�−→ f (τ )(ā) is Fp-linear. Furthermore,

we have ā p
d = ā. In particular, if we define bi =

∑
j≡imodd ᾱ j for i ∈ {0, 1, . . . , d−

1}, the map ψ is of the form
ψ = b0 + b1τ + · · · + bd−1τ d−1 with bi ∈ B. (13.49)

For x ∈ A, we write ρ̄x for the map ā �→ ρx (ā) discussed above. Now choose
secretly c1 and c2 ∈ A such that the maps λ1 := ρ̄c1 and λ2 := ρ̄c2 are bijective. The
private key is then given by the function ϕ : Fpd → Fpd defined by

ϕ(z) = λ1((λ2(z))e + δ), (13.50)

where δ ∈ Fpd and e ∈ N are secret.
The public key of the system consists of the prime p, the integer d, and some

information about how to compute ϕ (see [49]).
Note that for any y ∈ Fpd and any j ∈ {0, 1, 2, . . . , d − 1}, the private key

(λ1τ
− j y−e, bτ jλ2, e, beτ jδ) gives the same function ϕ in (13.50) as the original

private key (λ1, λ2, e, δ). Thus any of these solutions can be used as a private key
for ϕ.

S. R. Backburn et al. [6] showed how to recover a private key from a public key,
proving in this way that the Gillard et al. cryptosystem is insecure. We refer the reader
to the original paper for details.

13.7 Exercises

Exercise 13.7.1. Let δ : A→ k〈τ 〉 be a Drinfeld A-module. Show that ρ is an injective
map.

Exercise 13.7.2. Let A = RT . Let k be a field containing Fq(T ) and δ : A → k the
inclusion. Let C : RT → k〈τ 〉 and C ′ : RT → k〈τ 〉 be the Drinfeld RT -modules given
by CT = T + τ and C ′T = T − τ . Prove that CT and C ′T are isomorphic if and only if
there exists a (q − 1)th root of −1 in k.

More generally, assume that ρ, ρ′ are Drinfeld RT -modules given by ρT = T + τ ,
ρ′T = T + f1τ , where f1 ∈ k and k ⊇ Fq(T, q−1√ f1). Show that ρ and ρ′ are
isomorphic over k.
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Exercise 13.7.3. Let ρ ∈ DrinA(k) and let φ : A→ Z be given by φ(a) := − degτ ρa .
Show that φ is a nontrivial valuation on A equivalent to vP∞ .

If char(ρ) = P �= 0, consider the map jρ = ord : A → Z defined for a �= 0 by
jρ(a) = i0, where ρa =

∑n
i=0 αiτ i , αi0 �= 0, and α j = 0 for all 0 ≤ j ≤ i0 − 1.

For a = 0 we put jρ(0) = ∞. Prove that jρ is a nontrivial valuation on A equivalent
to vP.

Exercise 13.7.4. Let R be any Dedekind domain, and let I be an integral ideal of R.
Prove that I can be generated by at most two elements.

Exercise 13.7.5. Let k be a field of characteristic p. Let k〈τ 〉 the ring of twisted poly-
nomials and k[x] be the ring of polynomials. Prove that if f (τ ), g(τ ) ∈ k〈τ 〉 then
rgcd( f (τ ), g(τ )) = gcd( f (x), g(x))x=τ . That is, if h(x) denotes the greatest com-
mon divisor of f (x) and g(x), then h(τ ) = rgcd( f (τ ), g(τ )).
Exercise 13.7.6. Let K be a congruence function field and let A be the Dedekind
domain consisting of the elements in K whose only poles are at a fixed place P∞ of
K . Let MA be the abelian group consisting of the fractional ideals of A, and PA be
the subgroup consisting of the principal fractional ideals. The abelian group MA/PA
is called the Picard group of A and is denoted by Pic A. Show that Pic A is a finite
group. We denote the cardinality of Pic A by hA. This is similar to the case of rings of
integers in number fields.

Hint: Consider the class group of K . For a divisorA ∈ DK , writeA = A0P
t∞ with

(A,P∞) = 1. Then
ϕ : CK → Pic A

A �→ A0 ∩ A
is an epimorphism. Consider the restriction

ψ of ϕ to CK ,0. Then show that ψ has finite cokernel. Since CK ,0 is a finite group, it
follows that Pic A is also finite.

Note: For an arbitrary Dedekind domain D, Pic D is not necessarily finite.

Exercise 13.7.7. Let A be as in Exercise 13.7.6. Prove that hA = d∞hK , where hK is
the class number of K and hA = |Pic A|.
Exercise 13.7.8. Let � be a lattice. Prove that the series

∑
γ∈�\{0}

1
γ
is absolutely

convergent inC∞. It follows that the infinite product
∏
γ∈�\{0}

(
1− 1

γ

)
is convergent.

In fact, prove that a series
∑∞

n=0 an inC∞ converges if and only if limn→∞ an = 0.
In this case both products

∏∞
n=0(1± an) converge.

Exercise 13.7.9. Let � be a lattice. Prove that e�(u) is a periodic function with group
of periods �. In particular, C∞/� and C∞ are isomorphic as Fq -vector spaces.

Exercise 13.7.10. Let ρ be a Drinfeld A-module of rank one and let a ∈ A \ {0}. If
(a) is relatively prime to char(ρ), then ρ[a] and A/(a) are isomorphic as A-modules.

Exercise 13.7.11. Let ρ be any Drinfeld A-module of rank one. Assume that δ(a) = a
for all a ∈ A. Prove that K∞ is a field of definition for ρ.

Exercise 13.7.12. Prove Proposition 13.5.4.
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Exercise 13.7.13. Let ρ be a Drinfeld A-module over k of rank r . For each x ∈ A, let
µρ(x) be the leading coefficient of ρx . Prove that

(i) µρ(xy) = µρ(x)µρ(y)r deg x = µρ(y)µρ(x)r deg y for x, y ∈ A.
(ii) If deg x = deg y, then µρ(x + y) = µρ(x)+ µρ(y).
(iii) If ρ′ = ξρξ−1 for some ξ ∈ K ∗∞, then

µρ′(a) = ξ1−qr deg aµρ(a).

(iv) If π is a prime element forP∞, then

µρ′(π
−1) = ξ (1−qd∞r )µρ(π

−1).

Exercise 13.7.14. Verify that (13.33) is independent of a and b.

Exercise 13.7.15. Consider σ ∈ Gal(C∞/K ), ρ ∈ DrinA(C∞). Define σρ as the map
x �→ ρx followed by the action of σ . Prove that σρ ∈ DrinA(C∞) and that for any
nonzero ideal A of A

A ∗ σρ = σ(A ∗ ρ).

Exercise 13.7.16. Prove that for any nonzero ideals A,B of A and any Drinfeld A-
module ρ ∈ DrinA(k) we have

ρAB = (B ∗ ρ)AρB and A ∗ (B ∗ ρ) = (AB) ∗ ρ.

Exercise 13.7.17. Prove Corollary 13.5.31.
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Automorphisms and Galois Theory

In this chapter we continue our study of the arithmetic of extensions in function fields.
We study the group

G = Autk K = {σ : K → K | σ is an automorphism and σ |k = Idk} ,
where K/k is an arbitrary function field. When gK is 0 or 1, the group G is infinite,
except in the case that k is a finite field. For gK ≥ 2, G is almost always a finite group.
In order to investigate G, we need to consider some special points in K called the
Weierstrass points. We also need to know the genus gK of K . It is often difficult to
determine precisely the genus of a function field, so we will derive some bounds for
the genus in special cases. This result is the Castelnuovo–Severi inequality.

14.1 The Castelnuovo–Severi Inequality

In this section we consider a separably generated function field K/k, that is, K/k is a
separably generated extension (Definition 8.2.1).

The proof of the Castelnuovo–Severi inequality that we present here is due to
Stichtenoth [148, Chapter III.10.3] and [147].

Proposition 14.1.1. Let K ′/k be a subfield of K/k and [K : K ′] = n. Assume that
{y1, . . . , yn} is a basis of K/K ′ such that yi ∈ LK (C−1) for some C ∈ DK . Then

gK ≤ 1+ n(gK ′ − 1)+ dK (C). (14.1)

Proof. Let A1 ∈ DK ′ be of sufficiently large degree such that

	K ′(A
−1
1 ) =: t = dK ′(A1)+ 1− gK ′

(Corollary 3.5.6).
Let {x1, . . . , xt } be a basis of LK ′(A−11 ) and A = conK ′/K A1 ∈ DK . Then

A = {xi y j | 1 ≤ i ≤ t, 1 ≤ j ≤ n
} ⊆ LK (A

−1C−1).
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Clearly A is linearly independent over k. Thus

	K (A
−1C−1) ≥ nt = n(dK ′(A1)+ 1− gK ′). (14.2)

Since we may assume that dK (AC) is of sufficiently large degree, we obtain using
Corollary 3.5.6 and Theorem 5.3.4 that

	K (A
−1C−1) = dK (AC)+ 1− gK

= dK (A)+ dK (C)+ 1− gK
= ndK ′(A1)+ dK (C)+ 1− gK . (14.3)

Substituting (14.3) in (14.2) we get

ndK ′(A1)+ n − ngK ′ ≤ ndK ′(A1)+ dK (C)+ 1− gK .

This is (14.1) ��
One of the key points in the proof of the Castelnuovo–Severi inequality is the

following:

Lemma 14.1.2. Let k be a separably closed field, K/k a separably generated function
field, and K1/k, K2/k two subfields of K/k such that K = K1K2 and each K/Ki is
a finite extension. Then:

(i) At least one of the extensions K/Ki , i = 1, 2, is separable.
(ii) K/k (and thus K1/k and K2/k) contains infinitely many places of degree 1.
(iii) If K/K1 is separable and n = [K : K1], then for almost all places ℘ ∈ PK1 of

degree 1, we have:
(a) ℘ decomposes fully in K/K1, that is, ℘ has n distinct extensionsP1, . . . ,Pn

in K/K1.
(b) The restrictions Pi |K2 = Pi ∩ K2, 1 ≤ i ≤ n, are distinct places of K2.

Proof.

(i) If both K/K1 and K/K2 are inseparable, then by Exercise 8.7.3 we have Ki ⊆
K pk for i = 1, 2. Thus K1K2 ⊆ K pk. On the other hand by Exercise 8.7.2 we
have [K : K pk] = p, so K �= K pk. Therefore K/K1 or K/K2 is separable.

(ii) This is just Corollary 5.2.35.
(iii) Since K = K1K2 and K/K1 is separable, there exist y1, . . . , ys ∈ K2 and

α1, . . . , αs ∈ k such that K = K1(y1, . . . , ys) and y := α1y1+· · ·+αs ys ∈ K2,
where K = K1(y).

Let ϕ(T ) = Irr(y, T, K1) = T n + an−1T n−1 + · · · + a1T + a0 ∈ K1[T ] be the
minimal polynomial of y over K1. Since ϕ is separable, its discriminant d = disc(ϕ) ∈
K1 is nonzero. Let ℘ ∈ PK1 be any place satisfying

dK1(℘) = 1, a0, . . . , an−1 ∈ ϑ℘, and v℘(d) = 0. (14.4)
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It is easy to see that almost all ℘ ∈ PK1 of degree 1 satisfy (14.4). For a ∈ ϑ℘ , we
denote by a its residue module ℘, a ∈ ϑ℘/℘ ∼= k. The polynomial

ϕ(T ) = T n + an−1T n−1 + · · · + a1T + a0 ∈ k[T ]

is separable because d = disc(ϕ) �= 0 in ϑ℘/℘. Since k is separably closed we
have ϕ(T ) = ∏n

i=1(T − γi ), where the elements γ1, . . . , γn of k are distinct. For
j = 1, . . . , n we define the homomorphism

τ j : ϑ℘[y]→ k∑
ci y

i �→
∑

ciγ
i
j .

By Theorem 2.4.4, τ j can be extended to a place P j of K/k (the extension is not
a homomorphism of fields since τ j (y − γ j ) = 0 and y − γ j �= 0). Note that each
P j , 1 ≤ j ≤ n, is above ℘ (because ϑ℘ ⊆ ϑ℘[y]). Now the places P j are distinct
and since [K : K1] = n, it follows that ℘ is fully decomposed in K/K1. Finally, if
the restriction of P j to k(y) is P j ∩ k(y) = q j , this satisfies τ j (y − γ j ) = 0 and
τi (y−γ j ) = γi −γ j �= 0, so q1, . . . , qn are distinct in k(y). Therefore the restrictions
of theB j ’s to K2 are distinct. ��

Theorem 14.1.3 (Castelnuovo–Severi Inequality). Let K/k be a function field such
that K/k is separably generated. Let K1/k and K2/k be two subfields of K/k sat-
isfying K = K1K2. Put [K : Ki ] = ni and gi = gKi for i = 1, 2. If g = gK ,
then

g ≤ n1g1 + n2g2 + (n1 − 1)(n2 − 1). (14.5)

Proof. First assume that k is separably closed. By Lemma 14.1.2, K/K1 or K/K2 is
separable. Say that K/K1 is separable and let K = K1(y) with y ∈ K2. By Corollary
5.2.35 there is an integral divisor A ∈ DK2 such that

dK2(A) = g2 and 	K2(A
−1) = 1.

Let ℘0 ∈ PK2 be of degree 1 and relatively prime to A and letB = A
℘0
. Since A is

integral and 	K2(A
−1) = 1, it follows that LK2(A−1) = k. Thus

dK2(B) = dK2(A)− dK2(℘0) = g2 − 1

and if ξ ∈ LK2(B−1) \ {0}, then ξ ∈ LK2(A−1) = k. We have

(ξ)K2 =
C

B
= ℘0C

A
= N for some integral divisor C.

It follows that C = B. Since B is not integral this is impossible and thus
LK2(B

−1) = {0}. In particular, 	K2(B−1) = 0.
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According to Lemma 14.1.2 we may choose P ∈ PK1 of degree 1 satisfying the
following: P has n1 extensions q1, . . . , qn1 in K/k such that the restrictions

Qi = qi ∩ K2 ∈ PK2

are distinct and Qi is relatively prime toB for i = 1, . . . , n1.
Using the Riemann–Roch theorem we obtain

	K2(B
−1Q−1i ) ≥ dK2(BQi )+ 1− g2 = g2 + 1− g2 = 1.

Let ξ ∈ LK2(B
−1Q−1i ) \ {0}. Then (ξ)K2 = C

BQi
. If Qi divides C, we have

ξ ∈ LK2(B−1) \ {0}, which is impossible. ThereforeQi � C and vQi (ξ) = −1.
It follows that for 1 ≤ i ≤ n1, there exists ui ∈ LK2(B

−1Q−1i ) such that
vQi (ui ) = −1 and vQ j (ui ) ≥ 0 whenever i �= j . We will see that

{
u1, . . . , un1

}
is a linearly independent system over K1. Assume that there exist x1, . . . , xn ∈ K1
not all zero such that

∑n
i=1 xiui = 0. We may assume that xi �= 0 for all 1 ≤ i ≤ n.

Let j ∈ {1, . . . , n1} be such that vP(x j ) ≤ vP(xi ) for 1 ≤ i ≤ n.
Since q j | P is unramified in K/K1, we have vq j (x j ) = vP(x j ) and vq j (u j ) ≤

vQ j (u j ) = −1. Therefore vq j (x j u j ) ≤ vP(x j )− 1.
For i �= j , we have

vq j (xiui ) = vq j (xi )+ vq j (ui ) ≥ vP(xi ) ≥ vP(x j ).
In particular, vq j (x j u j ) = vq j (x j )+vq j (u j ) ≤ vq j (x j )−1 < vq j (xi )+vq j (ui ) =

vq j (xiui ) for i �= j . Therefore, by Proposition 2.2.3 (v) we have

∞ = vq j (0) = vq j
(

n∑
i=1

xiui

)
= vq j (x j u j ) <∞.

This contradiction shows that
{
u1, . . . , un1

}
is linearly independent over K1 and

therefore a basis of K/K1. LetD = conK2/K
(
B
∏n1

i=1Qi
) ∈ DK .

We have dK (D) = n2dK2
(
B
∏n1

i=1Qi
) = n2(g2 − 1+ n1).

Since ui ∈ LK2

(
B−1Q−1i

)
⊆ LK2

(
B−1∏n1

j=1Q−1j
)
, it follows that ui ∈

LK
(
D−1

)
. Using Proposition 14.1.1, we obtain

g = gK ≤ 1+ n1(g1 − 1)+ dK (D)

= 1+ n1(g1 − 1)+ n2(g2 − 1+ n1)

= n1g1 + n2g2 + (n1 − 1)(n2 − 1).
This is (14.5) for k separably closed.

Now if k is arbitrary, denote by k̄ its separable closure. Set K̄ = K k̄, K̄i = Kik,
gK̄ = ḡ, gK̄i = ḡi , and

[
K̄ : K̄i

] = n̄i , i = 1, 2.
Since k̄/k is separable it follows by Theorem 8.5.2 that ḡ = g and ḡi = gi for

i = 1, 2. By Theorem 8.4.10 and Corollary 8.5.8, k̄ and K are linearly disjoint over k.
By Proposition 8.1.5 it follows that K and K̄i are linearly disjoint over Ki for i = 1, 2.
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Therefore ni = [K : Ki ] =
[
K : Ki

] = ni for i = 1, 2. Thus

g = g ≤ n1g1 + n2g2 + (n1 − 1)(n2 − 1)
= n1g1 + n2g2 + (n1 − 1)(n2 − 1).

This proves the theorem. ��

Corollary 14.1.4 (Riemann’s Inequality). Let K = k(x, y) be any function field
such that K/k is separably generated. Then

gK ≤ ([K : k(x)]− 1) ([K : k(y)]− 1) .

Proof. Clearly K = K1K2 with K1 = k(x) and K2 = k(y). Thus gK1 = gK2 = 0, and
the result follows immediately by (14.5). ��

Example 14.1.5. Let p be an odd prime and k any field of characteristic p.

Let K = k(x, y) with y p − y = x2
x+1 .

Then [K : k(x)] = p and [K : k(y)] = 2. By Example 5.8.8 we have DK/k(x) =
(P∞P1)

2(p−1) where (x + 1)k(x) = ℘1
℘∞ andP1,P∞ are the prime divisors above ℘1

and ℘∞ respectively.
Using Theorem 9.4.2, we obtain

gK = 1+ [K : k(x)](gk(x) − 1)+ 1

2
dK (DK/k(x))

= 1− p + 1

2
(2(p − 1)+ 2(p − 1)) = (p − 1)

= (2− 1)(p − 1) = ([K : k(y)]− 1)([K : k(x)]− 1).

Example 14.1.5 shows that Castelnuovo’s inequality cannot be improved in gen-
eral.

Proposition 14.1.6. Let K/k be a separably generated function field with K =
k(x, y), where Irr(y, T, k(x)) =∑n−1

j=0 f j (x)T
j+T n, f j (x) ∈ k[x], and deg f j (x) ≤

n − j for 0 ≤ j ≤ n − 1. Then

gK ≤ 1

2
(n − 1)(n − 2).

Proof. Let A := conk(x)/K ℘∞ = Nx where (x)k(x) = ℘0
℘∞ . We have degK A =

[K : k(x)] = n = Irr(y, T, k(x)). Furthermore, A is an integral divisor.
LetP ∈ PK . If vP(x) ≥ 0, then vP( f j (x)) ≥ 0 and since y is integral over k(x) it

follows that vP(y) ≥ 0 (see the proof of Theorem 3.2.7). Thus vP(y) ≥ 0 = −vP(A).
If vP(x) < 0, then P divides ℘∞ and vP(x) = −vP(A).
Now vP( f j (x)) = deg f j (x)vP(x) ≥ (n − j)vP(x) and

vP(y
j f j (x)) = jvP(y)+ vP( f j (x)) ≥ jvP(y)+ (n − j)vP(x).
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In particular, we have vP(y) ≥ −vP(A) = vP(x). Indeed, assume otherwise, i.e.,
vP(y) < vP(x). Then for j = 0, 1, . . . , n − 1,

vP(y
j f j (x)) > jvP(y)+ (n − j)vP(y) = nvP(y) = vP(yn)

and hence∞ = vP(0) = vP
(∑n−1

j=0 f j (x)y
j + yn

)
= vP(yn).

Therefore, we have

vP(y) ≥ −vP(A) for all P ∈ PK . (14.6)

It follows that A−1 | (x)K and A−1 | (y)K . In particular, for any m ≥ n and 0 ≤
j ≤ n − 1, 0 ≤ i ≤ m − j , we have xi y j ∈ LK (A−m). Since deg Irr(y, T, k(x)) = n,
{xi y j }0≤ j≤n−1

0≤i≤m− j
are linearly independent over k. Thus

	K (A
−m) ≥

n−1∑
j=0
(m − j + 1) = n(m + 1)− 1

2
n(n − 1). (14.7)

If m is large enough, we obtain using the Riemann–Roch theorem

	K (A
−m) = dK (A

m)− gK + 1 = mdK (A)− gK + 1 = mn − gK + 1.

By (14.7) we have mn − gK + 1 ≥ n(m + 1)− 1
2n(n − 1), i.e., gK ≤ (n−1)(n−2)

2 . ��

14.2 Weierstrass Points

In the case of compact Riemann surfaces, there exists a finite number of special points.
Here the term special means being the unique pole of a certain order for some element
of the field. Since these points are special, and consequently invariants of the field, they
become permuted under the action of a field automorphism. Therefore, they provide
information about such automorphisms and the arithmetic of the field.

In characteristic p > 0 and algebraically closed field of constants, special points
exist and may be used for the study of the given field. Such points are the Weierstrass
points, which will be considered below.

Definition 14.2.1. Let K/k be any function field and let P be a prime divisor of K .
A natural number n is called a pole number of P if there exists x ∈ K such that
Nx = Pn . Notice that the pole divisor of x is precisely Pn . If n is not a pole number
of P, n is called a gap number of P.

Remark 14.2.2. A natural number n is a pole number of P iff there exists x ∈
LK (P−n)\LK (P−(n−1)). In other words, n is a pole number if and only if 	K (P−n) >
	K (P

−n+1). Furthermore, if n and m are pole numbers ofP then n+m is a pole num-
ber of P (since if Nx = Pn and Ny = Pm , thenNxy = Pn+m).
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By the Riemann–Roch theorem, we have

	K (P
−n) = dK (P

n)− gK + 1+ δK (Pn)

and

	K (P
−n+1) = dK (P

n−1)− gK + 1+ δK (Pn−1).

Therefore 	K (P−n) − 	K (P−n+1) = dK (P) + δK (Pn) − δK (Pn−1). Thus, using
Remark 14.2.2 we obtain the following:

Proposition 14.2.3. A number n ∈ N is a gap number ofP iff 	K (P−n) = 	K (P−n+1)
iff δK (Pn−1)− δK (Pn) = dK (P). ��

Let P be any prime divisor. By Corollary 3.5.8, if n > 2gK − 1 then n is a pole
number of P.

Now we consider a prime divisorP of degree 1, and gK = g > 0. By Proposition
3.1.13, L(P0) = L(N) = k, and by Corollary 3.5.6,

	K (P
−(2g−1)) = dK (P

2g−1)− g + 1 = 2g − 1− g + 1 = g.

We have k = LK (P0) ⊆ LK (P−1) ⊆ . . . ⊆ LK (P−(2g−1)) and

g = dimk LK (P
−(2g−1)) =

2g−1∑
i=1

dimk
LK (P−i )
LK (P−i+1)

+ dimk LK (P
0). (14.8)

For any n ∈ N, we have

	K (P
−n) = dK (P

n)− g + 1+ δK (Pn),

	K (P
−n+1) = dK (P

n−1)− g + 1+ δK (Pn−1).

Hence 	K (P−n) − 	K (P−n+1) = 1 + δK (Pn) − δK (Pn−1). By Theorem 3.4.11
DK (P

n) ⊆ DK (P
n−1) and LK (P−n+1) ⊆ LK (P−n). It follows that

0 ≤ 	K (P−n)− 	K (P−n+1) ≤ 1. (14.9)

Let ti = dimk
LK (P−i )
LK (P−i+1) = 	K (P−i )− 	K (P−i+1) ∈ {0, 1}.

Using (14.8) we obtain g − 1 =∑2g−1
i=1 ti .

In particular there are exactly g− 1 indices i such that 1 ≤ i ≤ 2g− 1 and ti = 1.
The remaining g indices between 1 and 2g− 1 such that ti = 0 are gap numbers ofP.
Theorem 14.2.4 (Weierstrass Gap Theorem). Let K/k be a function field of genus
gK = g > 0. Let P be a prime divisor of K of degree 1. Then there exist exactly g
gap numbers j1, . . . , jg of P such that 1 = j1 < j2 < · · · < jg ≤ 2g − 1. The set
{ j1, . . . , jg} is called the gap sequence of P.
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Proof.We have (1)K = N
N = N

P0 , so 0 is not a gap ofP. If n ≥ 2g−1, then n is a pole
number of P. Finally, if 1 is a pole number, there exists x ∈ K such that Nx = P.
Then [K : k(x)] = degK Nx = 1 implies that K = k(x) and g = 0, a contradiction.
Thus 1 is not a pole number. ��

Corollary 14.2.5. The number n ∈ N is a gap number of the prime divisorP of degree
1 if and only if there exists a holomorphic differential w such that Pn−1 | w and
Pn � w. Equivalently, n is a gap number ofP if and only if there exists a holomorphic
differential w such that vP((w)K ) = n − 1.
Proof.We have

	K (P
−n)− 	K (P−n+1) = 1+ δK (Pn)− δK (Pn−1).

Hence n is a gap number if and only if δK (Pn−1)− δK (Pn) = 1, that is, there exists
w ∈ DK (P

n−1) such that w /∈ DK (P
n). ��

Example 14.2.6. If K is a function field of genus gK = 0 and P is a prime divisor of
degree 1, then K is a rational function field and every n ∈ N is a pole number of P.

Example 14.2.7. If K is a function field of genus gK = 1 and P is a prime divisor of
degree 1, then K is a field of elliptic functions and n = 1 is the only gap number ofP.
Remark 14.2.8. For any function field of genus gK > 0 and any prime divisor of
degree 1, n = 1 is a gap number of P.

In the rest of this section we consider a function field K/k where k is an alge-
braically closed field.

14.2.1 Hasse–Schmidt Differentials

For a rational function field k(x) we consider the usual derivative, that is, the one
induced by

f (x) = a0 + a1x + · · · + anx
n and f ′(x) = a1 + 2a2x + · · · + nanx

n−1

with f (x) ∈ k[x]. We repeat the process with f ′(x) and we obtain f ′′(x) and so on.
Unfortunately, in characteristic p > 0, the nonconstant function f (x) = x p satisfies
f (n)(x) = 0 for all n ≥ 1, where f (n) denotes the nth derivative. If we want to
obtain for function fields of characteristic p > 0 information similar to that obtained
in characteristic 0, we must modify the usual definition of derivative. This was done
by H. Hasse and F. K. Schmidt [58].

In this section we present the work of Hasse and Schmidt. We will use this new
definition of differentiation to study the Wronskian determinant and the arithmetic
theory of Weierstrass points.



14.2 Weierstrass Points 535

Definition 14.2.9. A sequence {D(n)}n∈N∪{0} of maps D(n) : K → K is called a dif-
ferentiation of K/k if

(i) D(0) = IdK .
(ii) D(n)|k = 0 for all n ≥ 1.
(iii) For x, y ∈ K ,

D(n)(x + y) = D(n)(x)+ D(n)(y) (sum rule)

and

D(n)(xy) =
n∑

m=0
D(m)(x)D(n−m)(y) (product rule).

The differentiation {D(n)}∞n=0 is called iterative if
(iv) For all n,m ∈ N ∪ {0},

D(n) ◦ D(m) =
(
n + m

n

)
D(n+m).

Remark 14.2.10. Consider the local field K℘ = k((π)) of characteristic p > 0, and
let α ∈ K . We can express α in K℘ as α =

∑∞
i=m aiπ i .

Then the usual derivative with respect to π yields

dnα

dπn
=

∞∑
i=m

i(i − 1) · · · (i − n + 1)aiπ i−n .

Therefore if n ≥ p, we have i(i − 1) · · · (i − n + 1) ≡ 0 mod p for all i . Thus
dn
dπn ≡ 0 for n ≥ p.

If instead of dn
dπn we define

D(n)π (α) :=
∞∑
i=m

(
i

n

)
aiπ

i−n,

then D(n)π is nonzero. In fact, it is easy to see that {D(n)π }∞n=0 satisfies the iterative rule
(iv) of Definition 14.2.9:

D(n)π ◦ D(m)π =
(
n + m

m

)
D(n+m).

This is the motivation for constructing differentiations that satisfy the iterative rule.

Note that the product rule defined in Definition 14.2.9 is different from the classical
case. We also have

D(n)(y + c) = D(n)y (n ≥ 1) and D(n)(cy) = cD(n)y (n ≥ 0) (14.10)
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for y ∈ k and c ∈ k.
Finally, in characteristic 0 the iterative rule translates into

D(n)y = D(1)(· · · D(1)(y) · · · )
n!

.

Let K/k be a function field and D = {D(n)}∞n=0 a differentiation on K . Let M =
K [[u]] be the power series in u with coefficients in K . Define

φ : K
φ→ M

y �→ φ(y) =
∞∑
n=0
(D(n)y)un . (14.11)

Proposition 14.2.11. φ is a ring monomorphism.

Proof. Clear. ��
If φ : K → K [[u]] is a ring homomorphism such that for all y ∈ K , φ(y) =∑∞
n=0 anun, a0 = y, then D(n)y := an is a differentiation on K . This is a consequence

of the proof of Proposition 14.2.11 and Definition 14.2.9.
Now assume that there exists an iterative differentiation {D(n)}n∈N∪{0} on K and

let φ : K → K [[u]], φ(y) =∑∞
n=0 D(n)(y)un . Then

φ(D(m)y) =
∞∑
n=0
(D(n) ◦ D(m))(y)un =

∞∑
n=0

(
n + m

m

)
D(n+m)(y)un .

We write D(m)u un = (nm)un−m (D(m)u un = 0 for m > n).
With this notation we have

D(m)u (φ(y)) = D(m)u

( ∞∑
n=0

D(n)(y)un
)
=

∞∑
n=0

D(n)(y)D(m)u (un)

=
∞∑
n=0

D(n)(y)

(
n

m

)
un−m =

∞∑
n=m

(
n

m

)
D(n)(y)un−m

=
∞∑
t=0

(
t + m

m

)
D(t+m)(y)ut = φ(D(m)y).

Thus we obtain the following result:

Proposition 14.2.12. A derivation D is iterative if and only if

D(m)u (φ(y)) = φ(D(m)(y)). ��
Theorem 14.2.13. Given a differential D on K , then D can be extended in a unique
way to a finite separable extension L = K (w). If D is iterative, then the extension of
D to L is also iterative.
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Proof. Consider the ring of power series L[[u]] ⊇ K [[u]]. Let

g(t) = Irr(w, t, K ) = tn + an−1tn−1 + · · · + a1t + a0 ∈ K [t]

be the irreducible polynomial of w. Let Ai = φ(ai ) ∈ K [[u]] ⊆ L[[u]] be the power
series corresponding to each coefficient, i.e., Ai =

∑∞
n=0

(
D(n)ai

)
un .

Set G(t) = tn + An−1tn−1 + · · · + A1t + A0 ∈ K [[u]][t]. If we find B ∈ L[[u]]
such that G(B) = 0, and if B = ∑∞

n=0 bnun, b0 = w, then φ : K → K [[u]] can be
extended to φ̃ : L → L[[u]] (φ̃|K = φ) by defining φ̃(w) = B. Thus bn = D(n)w is
the required extension.

Now L[[u]] is a complete field whose absolute value is given by the valuation

v

( ∞∑
n=0

cnu
n

)
= n0, where ci = 0, 0 ≤ i ≤ n0 − 1, and cn0 �= 0.

The residue field is L . Since g(t) = (t − w)h(t) ∈ L[t] and G(t) ≡ g(t) mod u,
it follows by Hensel’s lemma (Theorem 2.3.14) that G has a root B in L[[u]] and
b0 = w.

The uniqueness of the extension of D to L is also a consequence of Hensel’s lemma
since g(t) is separable and then G has a unique root with constant term w.

Finally, assume that D is iterative. If z ∈ L , write Z = φ(z) and Z (m) = φ(D(m)z),
so that Z (m) =∑∞

n=0 D(n)
(
D(m)z

)
. We also have

D(m)u Z =
∞∑
n=0

D(n)(z)D(m)u un .

There are two differentiations in L given by the corresponding Taylor series,
namely φ1(D(m)z) = Z (m) and φ2(D(m)z) = D(m)u Z . Since both homomorphisms
when restricted to K are the same, they yield extensions of D to L . But the exten-
sion is unique, so it follows that φ(D(m)z) = D(m)u φ(z). Thus the extension of D is
iterative. ��

Proposition 14.2.14. For each separating element x ∈ K \k, there exists one and only
one differentiation Dx :=

{
D(n)x

}∞
n=0

of K/k such that

D(1)x (x) = 1 and D(n)x (x) = 0 for n ≥ 2.
Notice that this differentiation is iterative; it is called differentiation with respect to x
and will be denoted by D(1)x = d

dx .

Proof. Let F = k(x), where K/k(x) is separable. If D is any differential satisfying
D(1)x = 1 and D(n)x = 0 for n ≥ 2, then it is easy to verify, using induction and the
product rule, that

D(n)xm =
(
m

n

)
xm−n (14.12)
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for n,m ≥ 0. In particular, D(n)xm = 0 for n > m, and D(n)xn = 1. For any
f (x) = amxm + · · · + a1x + a0 ∈ k[x], we have

D(n) f (x) = am

(
m

n

)
xm−n + · · · + a1

(
1

n

)
x1−n + D(n)(a0).

Also, if g(x) = 1
f (x) with f (x) ∈ k[x], then for n ≥ 1,

0 = D(n)(1) = D(n)( f g) =
n∑
i=0

D(n−i)( f )D(i)(g),

so D(n)(g) is uniquely defined. Now formula (14.12) defines a differential Dx on F
satisfying D(1)x x = 1, and D(n)x x = 0 for n ≥ 2.

We have

(D(n)x ◦ D(m)x )(xt ) = D(n)x

(
t

m

)
xt−m =

(
t

m

)
D(n)x (x

t−m)

=
(
t

m

)(
t − m

n

)
xt−m−n

=
(
m + n

m

)(
t

m + n

)
xt−(n+m) =

(
m + n

m

)
D(n+m)x (xt ).

Therefore Dx is iterative. By Theorem 14.2.13 there exists a unique extension of
Dx to K , and this extension is iterative. ��

Proposition 14.2.15. Let℘ be a place of K/k and π a prime element of℘. For α ∈ K,
consider its power series expansion α =∑∞

n=n0 anπ
n in K℘ . Then

D(m)π α =
∞∑

m=n0
an

(
n

m

)
πn−m . (14.13)

Proof.We have that K℘ is isomorphic to k((π)) and contains K . For f (π) = anπn +
· · · + a1π + a0 ∈ k[π ], we obtain D(m)π f (π) =∑n

i=0 ai
( i
m

)
π i−m .

On the other hand, (14.13) defines an iterative differential D on k((π)). Since D
and Dπ agree on k(π), the result follows. ��

Lemma 14.2.16. Let F be any field and let M = F[[u]] be the field of power series
in u with coefficients in F. Let v = h(u) =∑∞

n=1 anun ∈ M with a1 �= 0. Then there
exists g in M1 = F[[v]], which is the field of power series in v with coefficients in F,
such that (g ◦ h)(u) = u and (h ◦ g)(v) = v.
Proof. If such g exists, let g(v) =∑∞

n=1 bnvn . Then

v = h(g(v)) =
∞∑
n=1

an

( ∞∑
m=1

bmv
m

)n
=

∞∑
n=1

anv
n

( ∞∑
m=1

bmv
m−1

)n
.
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Hence,

a1b1 = 1, so b1 = a−11 ;
a1b2 + a2b1 = 0, so b2 = −a−11 a2b1 = −a2b21;

a1b3 + 2a2b1b2 + a3b1 = 0, so b3 = −a−11 (2a2b1b2 + a3b1)

= −b1(2a2b1b2 + a3b1).

In general, we have

a1bn + a2 p
(n)
1 (b1, b2, . . . , bn−1)+ · · · + an p

(n)
n−1(b1, . . . , bn−1) = 0, (14.14)

where p(n)1 , . . . , p
(n)
n−1 are polynomials in Z[b1, . . . , bn−1].

Then g(v) = ∑∞
n=1 bnvn , where bn is as in (14.14) and satisfies v = h(g(v)).

Now since b1 �= 0, there exists h1(u) ∈ M such that u = g(h1(u)). Thus

h(u) = h(g(h1(u)) = (h ◦ g)(h1(u)) = h1(u). ��

Proposition 14.2.17. Let D be an iterative differential defined on K and let x ∈ K
be such that D(1)x �= 0. Let φ : K → M = K [[u]] be defined by φ(y) =∑∞

n=0 D(n)(y)un and let v = h(u) =∑∞
n=1 D(n)(x)un.

Then if ψ : K → M1 = K [[v]] is defined by

ψ(y)(v) = φ(y)(g(v)) =
∞∑
m=0

bmv
m,

where h(g(v)) = v, g(h(u)) = u, the formula

D(m)1 (y) := bm

defines a differentiation on K . We also have φ(y)(u) = ψ(y)(h(u)).

Proof.We have b0 = ψ(y)(0) = φ(y)(g(0)) = φ(y)(0) = D(0)(y) = y and

ψ(y1 + y2)(v) = φ(y1 + y2)(g(v)) = φ(y1)(g(v))+ φ(y2)(g(v))
= ψ(y1)(v)+ ψ(y2)(v),

ψ(y1y2)(v) = φ(y1y2)(g(v)) = φ(y1)(g(v))φ(y2))(g(v)) = ψ(y1)(v)ψ(y2)(v).

The result follows by Proposition 14.2.11. ��

Corollary 14.2.18. The new differential obtained in Proposition 14.2.17 satisfies
D(1)1 x = x and D(n)1 x = 0 for n ≥ 2. That is, D1 = Dx is the derivative with
respect to x.
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Proof.We have

ψ(x)(v) = φ(x)(g(v)) =
∞∑
n=0

D(n)(x)(g(v))n

= D0x +
∞∑
n=1

D(n)x(g(v))n = x + h(g(v)) = x + v.

Thus D(0)1 (x) = x, D(1)1 (x) = 1, and D(n)1 (x) = 0 for n ≥ 2. ��
Now we consider a separably generated function field K/k.

Theorem 14.2.19. Let D be a differential defined over K such that D(1)c = 0 for all
c ∈ k. Let x ∈ K be such that D(1)x �= 0. Then x is a separating element, that is,
K/k(x) is separable.

Proof. Let t be a separating element. To show that x is a separating element, it suffices
to see that k(x, t)/k(x) is separable, or equivalently that t is separable over k(x).
Assume that t is not separable over k(x). Then if

p(T ) = Irr(t, T, k(x)) ∈ k(x)[T ],

there exists 	(T ) ∈ k(x)[T ] such that p(T ) = 	(T p). In other words, there is an
irreducible equation ∑

n,m

cnmt
nxm = 0 with cn,m ∈ k

such that if cnm �= 0, then p | n. On the other hand, since k(t, x)/k(t) is separable,
there exists cnm �= 0 such that p � m. Therefore x is separable over k(t p). Clearly
we have D(1)α = 0 for all α ∈ k(t p) . By Theorem 14.2.13, D|k(t p) can be extended
uniquely to k(x, t p). Since D(1)|k(x,t p) = 0 is one such extension, it follows that
D(1)x = 0. This contradiction proves the theorem. ��

Theorem 14.2.20. Let D and F be two iterative differentials on the separably gener-
ated function field K/k. Assume that D(1) �≡ 0 and F (1) �≡ 0. Then there exists z ∈ K
such that F is obtained from D as in Proposition 14.2.17. More precisely, define

φ : K → M = K [[u]]

and

ψ : K → M = K [[v]]

by φ(α)(u) = ∑∞
n=0 D(n)(α)un and ψ(α)(v) =

∑∞
n=0 F (n)(α)vn. Then there exists

z ∈ K such that D(1)z �= 0 and if v = h(u) = ∑∞
n=1 D(n)(z)un, then ψ(α)(v) =

φ(α)(g(v)), where h(g(v)) = v, g(h(u)) = u.
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Proof. Let x, y ∈ K be such that D(1)x �= 0 and F (1)y �= 0. Let Dx and Dy be the
differentiations with respect to x and y respectively. By Theorem 14.2.19, x and y are
separating elements of K/k. Thereby k(x, y)/k(x) and k(x, y)/k(y) are separable
extensions.

Let
∑

n,m cn,mx
n ym = 0 be an irreducible equation. Then there exist cn,m �= 0,

cn′,m′ �= 0 such that p � n, p � m′, where char K = p ≥ 0 (if p = 0, the above
condition is vacuous). Thus∑

n,m

ncnmx
n−1ym + D(1)x (y)

∑
n,m

mcn,mx
n ym−1 = 0.

Since
∑

n,m cnmx
n ym = 0 is irreducible, we have∑

n,m

ncnmx
n−1ym �= 0 and

∑
n,m

mcn,mx
n ym−1 �= 0.

Therefore D(1)x (y) = −
∑
ncnmxn−1ym∑
mcnmxn ym−1

�= 0.
Let θ : K → M2 = K [[w]] and δ : K → M3 = K [[t]] be defined by

θ(α)(w) =
∞∑
n=0

D(n)x (α)w
n and δ(α)(t) =

∞∑
n=0

D(n)y (α)t
n .

Set p(w) =∑∞
n=1 D

(n)
x (y)wn . Since D

(1)
x (y) �= 0, by Lemma 14.2.16 there exists

	(t) ∈ M3 such that (	◦ p)w = w and (p ◦ 	)(t) = t . By Proposition 14.2.17 we have
δ(α)(t) = θ(α)(	(t)) and θ(α)(w) = δ(α)(p(w)).

Since D(1)x �= 0 and F (1)y �= 0, then by Lemma 14.2.16 and Proposition
14.2.17 we have the following: Assume that w = h(u) = ∑∞

n=1 D(n)(x)un and
t = h1(v) =

∑∞
n=1 F (n)(y)vn ; then for g and g1 such that g(h(u)) = u, h(g(w)) = w

and g1(h1(v)) = v, h1(g1(t)) = t , we obtain

θ(α)(w) = φ(α)(g(w)) and δ(α)(t) = ψ(α)(g1(t)).
Therefore

ψ(α)(v) = δ(α)(h1(v)) = θ(α)(	(h1(v))) = φ(α)(g(	(h1(v)))) = φ(α)(g2(v)),
where g2 = g ◦	◦h1 and h2 = g1 ◦h ◦ p, then (g2 ◦h2)(u) = u and (h2 ◦ g2)(v) = v.

��
Corollary 14.2.21. If K/k is a separably generated function field and D is any itera-
tive differential such that D(1) �≡ 0, there exists x ∈ K \ k such that D = Dx .

Proof. Let z ∈ K be such that D(1)z �= 0. Assume that v = h(u) = ∑∞
n=1 D(n)(z)un

and g ∈ K [[v]] satisfies g(h(u)) = u and h(g(v)) = v. Then if φ : K → K [[u]] is
defined by φ(α)(u) =∑∞

n=0 D(n)(α)un , the differential ψ : K → K [[v]] given by

ψ(α)(v) = φ(α)(g(v))
is of the form Dy for some y ∈ K (Corollary 14.2.18). Thus φ(α)(u) = ψ(α)(h(u))
is also of the form Dx for some x ∈ K ��



542 14 Automorphisms and Galois Theory

Remark 14.2.22. If Dx y �= 0, then Dyx �= 0. Furthermore, D(1)x (y)D(1)y (x) = 1. This
follows from Lemma 14.2.16 since if

φ : K → K [[u]] is defined by φ(α)(u) =
∞∑
n=0

D(n)x (α)u
n,

then assuming v = h(u) =∑∞
n=1 D

(n)
x (y)un , we obtain

g(v) =
∞∑
n=1

anv
n, where a1 =

(
D(1)x y

)−1 = D(1)y x .

Notation 14.2.23. If Dx y �= 0, we write dy
dx := D(1)x y, so that

dx

dy
= D(1)y (x) =

(
D(1)x (y)

)−1 = (dy
dx

)−1
.

Remark 14.2.24. If x, y are two separating elements of K/k and if F(x, y) = 0 is an
irreducible equation, then using the proof of Theorem 14.2.20 we obtain

D(1)x y = −
∂F
∂x (x, y)
∂F
∂y (x, y)

,

where ∂F
∂x ,

∂F
∂y denote the usual partial derivatives. That is, if F(x, y) =

∑
n,m cn,mx

n ym ,
then

∂F

∂x
(x, y) =

∑
n,m

ncn,mx
n−1ym and

∂F

∂y
(x, y) =

∑
n,m

mcn,mx
n ym−1.

14.2.2 The Wronskian

In the classical case, given a basis of the holomorphic differentials, the zeros of the
Wronskian determinant are the so-called Weierstrass points. These points depend only
on the function field, or equivalently, on the Riemann surface [34, 36]. Since theWeier-
strass points are field invariants, they were used by Weierstrass and others to study the
group of automorphisms of a function field over C [70, 117, 162]. It was noticed that
the Weierstrass points were often related to the branch (ramified) points. H. L. Schmid
[135] assumed that the behavior of the Weierstrass points was the same in character-
istic p > 0 as in characteristic 0. Then he deduced that any ramified prime divisor
in a Galois extension of degree p of a rational function field k(x), where k is alge-
braically closed of characteristic p, is a Weierstrass point. However, the behavior in
characteristic p of the Wronskian determinant differs from the characteristic 0 case.

F. K. Schmidt was the first to study the Wronskian and the Weierstrass points
in characteristic greater than 0. Here we present the theory of the Wronskian and
Weierstrass points for any function field over an algebraically closed field of constants.
We follow very closely the original papers of Schmidt [138, 139].

In this section we consider an iterative differentiation D on K/k such that if
D(n)a = 0 for all n ≥ 1, then a ∈ k and D(1) �≡ 0.
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Proposition 14.2.25. Let {y0, . . . , yn} ⊆ K be linearly independent over k. For 0 ≤
i ≤ n, put

Yi := φ(yi ) =
∞∑
n=0

D(n)(yi )u
n .

Then {Y0, . . . , Yn} ⊆ K [[u]] is linearly independent over K .

Proof. Suppose for the sake of contradiction that {Y0, . . . , Yn} is linearly depen-
dent over K . Then we may assume that {Y1, . . . , Yr } is linearly independent over
K and {Y0, Y1, . . . , Yr } is linearly dependent over K . Let ai ∈ K be such that
Y0 =

∑r
i=1 aiYi . In particular, we have

D(n)y0 =
r∑
i=1

ai D
(n)yi for n ≥ 0. (14.15)

Applying the operator D(m) to (14.15) we obtain

D(m) ◦ D(n)y0 =
r∑
i=1

D(m)(ai D
(n)yi ) =

r∑
i=1

m∑
j=0

D(m− j)(ai )D( j)D(n)(yi ).

Using the iterative rule, we obtain(
n + m

n

)
D(n+m)(y0) =

r∑
i=1

m∑
j=0

(
n + j

n

)
D(m− j)(ai )D(n+ j)(yi )

=
r∑
i=1

m−1∑
j=0

(
n + j

n

)
D(n− j)(ai )D(n+ j)(yi )+

(
n + m

n

) r∑
i=1

ai D
(n+m)(yi ).

Applying (14.15) to n + m, we get

0 =
r∑
i=1

m−1∑
j=0

(
n + j

n

)
D(m− j)(ai )D(n+ j)(yi ). (14.16)

For m = 1, 2, . . . in (14.16) we obtain

m = 1 : 0 =
r∑
i=1

D(1)(ai )D
(n)(yi ) for n ≥ 0,

m = 2 : 0 =
r∑
i=1

D(2)(ai )D
(n)(yi )+

(
n + 1
n

) r∑
i=1

D(1)(ai )D
(n+1)(yi )

=
r∑
i=1

D(2)(ai )D
(n)(yi ), for n ≥ 0,

. . . . . .
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It follows by induction that 0 = ∑r
i=1 D(m)(ai )D(n)(yi ) for any m ≥ 1 and any

n ≥ 0. Therefore we have(
D(m)(a1)

)
Y1 + · · · +

(
D(m)(ar )

)
Yr = 0 for each m ≥ 1.

Since {Y1, . . . , Yr } is linearly independent over K , we have D(m)(ai ) = 0 for
all m ≥ 1 and all i . Thus ai ∈ k, and since Y0 =

∑r
i=1 aiYi it follows that

y0 =
∑r

i=1 ai yi , ai ∈ k. Hence {y0, . . . , yr } is not linearly independent over k. This
contradiction shows that {Y0, . . . , Yn} is linearly independent over K . ��

Theorem 14.2.26. If {y0, . . . , yn} is linearly independent over k, then there exist n
integer numbers m1, . . . ,mn such that 0 < m1 < m2 < · · · < mn and

 m1,... ,mn (y0, . . . , yn) = det

⎡⎢⎢⎢⎣
y0 · · · yn

D(m1)(y0) · · · D(m1)(yn)
... · · · ...

D(mn)(y0) · · · D(mn)(yn)

⎤⎥⎥⎥⎦ �= 0. (14.17)

Proof. By Proposition 14.2.25 the (n + 1) power series
Y0 = y0 + D(1)(y0)u + · · · + D(m)(y0)um + · · ·
...

...
...

...
...
...
...

...
...

Yn = yn + D(1)(yn)u + · · · + D(m)(yn)um + · · ·

form a linearly independent set over K . Thus the rank of the matrix
[
D(m)(yi )

]0≤i≤n
0≤m≤∞

is n + 1. The result follows. ��

We write ỹ =

⎛⎜⎝ y0
...

yn

⎞⎟⎠ and D(m) ỹ :=
⎛⎜⎝ D(m)(y0)

...

D(m)(yn)

⎞⎟⎠. Define integers ε0, . . . , εn as
follows: Set ε0 = 0 and if ε1, . . . , εi have been defined and i ≤ n − 1, let εi+1 =
min{ j ∈ N | D(εi+1)(ỹ) is linearly independent from D(ε0) ỹ, . . . , D(εi ) ỹ}. Thus ε0 <
ε1 < . . . < εn , and {ε0, . . . , εn} is minimal satisfying Theorem 14.2.26.
Definition 14.2.27. Let {ε0, . . . , εn} and {y0, . . . , yn} be as above. Then

W :=  ε1,... ,εn (y0, . . . , yn)
is called the Wronskian determinant. The set {ε0, ε1, . . . , εn} is called the order of

ỹ =

⎛⎜⎝ y0
...

yn

⎞⎟⎠ with respect to D and each εi is called an order of ỹ.
Proposition 14.2.28 (Matzat). Let {α0, . . . , αn} be natural numbers such that 0 ≤
α0 < α1 < · · · < αn and  α0,... ,αn (y0, . . . , yn) �= 0. Then εi ≤ αi for 0 ≤ i ≤ n.
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Proof. Assume that there exists r ∈ {1, . . . , n} such that εi ≤ αi , 0 ≤ i ≤ r − 1, and
αr < εr . By the definition of εi the rank of

[D(0)(ỹ), . . . , D(ε1)(ỹ)]T

is 2, the rank of[
D(0)(ỹ), . . . , D(ε1)(ỹ), D(ε1+1)(ỹ), . . . , D(ε2)(ỹ)

]T
is 3, and so on. In particular, the rank of[

D(0)(ỹ), D(1)(ỹ), . . . , D(εr−1)(ỹ)
]T

is r . It follows that the rank of
[
D(α0)(ỹ), . . . , D(αr )(ỹ)

]
is at most r , a contradiction.

Thus εi ≤ αi for 0 ≤ i ≤ n. ��
Now assume that {y0, . . . , yn} is a linearly independent set over k and V is the k-

vector space generated by {y0, . . . , yn}. If {z0, . . . , zn} is another basis of V , consider
the matrix A defined by

zi =
n∑
j=0

ai j y j for i = 0, . . . , n and ai j ∈ k.

Then D(m)zi =
∑n

j=0 ai j D(m)y j for all m ≥ 0. Hence
Proposition 14.2.29. Whenever 0 = α0 < α1 < · · · < αn, we have

 α1,... ,αn (z0, . . . , zn) = (det A) α1,... ,αn (y0, . . . , yn). ��
A consequence of the latter is that the Wronskian determinant is an invariant of

the space V =∑n
i=1 kyi .

The Wronskian determinant can be determined with the help of the power series
(14.11).

Definition 14.2.30. Two integral domains P, P1 with iterative differentiations D and
D1 respectively are called differentially isomorphic if there exists a ring isomorphism
θ : P → P1 such that θ(D(n)y) = D(n)1 (θ(y)) for all y ∈ P , n ∈ Z, n ≥ 0.

Now for K/k and M = K [[u]], let T = φ(K ) ⊆ M , where φ is given by (14.11),
that is, φ(y) =∑∞

n=0(D(n)y)un . Define D
(n)
u in T by

D(n)u

( ∞∑
m=0

amu
m

)
=

∞∑
m=n

(
m

n

)
amu

m−n .

Then by Proposition 14.2.12, K and T are differentially isomorphic (recall that we are
assuming D to be iterative). Note that if

D(n)u (z) = 0 for all n ≥ 1, then z ∈ K . (14.18)
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Definition 14.2.31. Let z0, . . . , zn ∈ M . We define the Wronskian determinant of
{z0, . . . , zn} by

 ε1,... ,εn (z0, . . . , zn) := det

⎡⎢⎢⎢⎢⎣
D(0)u (z0) · · · D(0)u (zn)

D(ε1)u (z0) · · · D(ε1)u (zn)
...

...

D(εn)u (z0) · · · D(εn)u (zn)

⎤⎥⎥⎥⎥⎦ .
For n + 1 linearly independent power series {z0, . . . , zn} over K , the Wronskian de-
terminant of z0, . . . , zn will be denoted by  (z0, . . . , zn).

Now, T and K are differentially isomorphic, so if {y0, . . . , yn} ⊆ K and φ(yi ) =
Yi for 0 ≤ i ≤ n, then since D is iterative we have

φ( ε0,...εn (y0, . . . , yn)) =  ε1,... ,εn (Y0, . . . , Yn).

Thus

 ε1,... ,εn (Y0, . . . , Yn) ≡  ε1,... ,εn (y0, . . . , yn) mod u (14.19)

whenever 0 < ε1 < · · · < εn .
If {y0, . . . , yn} is a linearly independent set over k, then by Proposition 14.2.25,

{Y0, . . . , Yn} is linearly independent. It follows that (y0, . . . , yn) and (Y0, . . . , Yn)
have the same orders. Thus (Y0, . . . , Yn) is the minimal set, ordered in lexicographic
order, such that

 ε1,... ,εn (Y0, . . . , Yn) �≡ 0 mod u.

Now we define the K -vector space U generated by {Y0, . . . , Yn}. For any other basis
{Z0, . . . , Zn} of U , it follows from Proposition 14.2.29 that the Wronskian determi-
nants  (Y0, . . . , Yn) and  (Z0, . . . , Zn) have the same orders. We may choose a
basis {Z0, . . . , Zn} of U such that

Z j = uh j +
∞∑

n=h j+1
a( j)n un for 0 ≤ j ≤ n (14.20)

with 0 ≤ h0 < h1 < · · · < hn . Note that h0 is the greatest integer such that uh0

divides every element of U , and in general, hi+1 is the maximum integer such that
uhi+1 divides every element of U that is divisible by uhi+1. Therefore h0, . . . , hn are
invariants of the vector space U .

Definition 14.2.32. The powers uhi , 0 ≤ i ≤ n, are called the Hermitian invariants of
U and the basis given in (14.20) is called a Hermitian basis of U over K .

Since the Yi ’s are the power series corresponding to the yi ’s, it follows that h0 = 0.
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Proposition 14.2.33. If {Z0, . . . , Zn} is a Hermitian basis of U/K, with respective
coefficients of highest degree satisfying 0 < h1 < · · · < hn, then

 h1,... ,hn (Z0, . . . , Zn) ≡ 1 mod u.

Proof. Using the definition of the Hermitian basis and D(n)u given in (14.18) we obtain
immediately that D(hi )u Z j is congruent to 1 or 0 modulo u, depending on whether
i = j or i < j respectively. Therefore

 h1,... ,hn (Z0, . . . , Zn) ≡ det

⎡⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
...
...
. . .
...

0 0 . . . 1

⎤⎥⎥⎥⎦ mod u ≡ 1 mod u. ��

Proposition 14.2.34. If {Z0, . . . , Zn} is a Hermitian basis of U over K with leading
coefficients 0 = h0 < h1 < · · · < hn, then if 0 = v0 < v1 < · · · < vn are such that
for some 1 ≤ r ≤ n, v j − h j = 0 for 0 ≤ j ≤ r − 1 and vr − hr < 0, we have

Dv1,... ,vn (Z0, . . . , Zn) ≡ 0 mod u.

Proof. It follows from the form of Zr and the definition of D
(vr )
u that D(vr )u (zr ) ≡ 0

mod u. Thus

 v1,... ,vn (z0, . . . , zn) ≡ det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
. . .

. . .
. . .

0 0 1 0 0 · · · 0
0 0 0 0 0 · · · 0
· · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≡ 0 mod u. ��

Theorem 14.2.35. Let Y0, . . . , Yn be the power series associated to the functions
y0, . . . , yn, that is, Yi := φ(yi ) for 0 ≤ i ≤ n. Then the orders of the Wronskian
determinant  (y0, . . . , yn) are precisely the Hermitian invariants of U the K -vector
space generated by {Y0, · · · , Yn}.

Furthermore, assume that {Z0, . . . , Zn} is a Hermitian basis of U . Let A ∈
Mn+1(K ) be the change of basis matrix, i.e., Yi = AZi for 0 ≤ i ≤ n. Then

 (y0, . . . , yn) = det A.
Proof. By (14.19), the orders of the Wronskian determinant  (y0, . . . , yn) are the
same as those of  (Y0, . . . , Yn). Moreover, by Proposition 14.2.29, these orders are
equal to those of  (Z0, . . . , Zn). Finally, by Propositions 14.2.33 and 14.2.34 the
orders of the Wronskian determinant are equal to the Hermitian invariants of U .

Since

⎛⎜⎝ Y0
...

Yn

⎞⎟⎠ = A

⎛⎜⎝ Z0
...

Zn

⎞⎟⎠, we have
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 (Y0, . . . , Yn) = det(A) (Z0, . . . , Zn).

It follows by Proposition 14.2.33 that  (Y0, . . . , Yn) ≡ det(A) mod u. On the other
hand, using (14.19) we obtain

 (Y0, . . . , Yn) ≡  (y0, . . . , yn) mod u.

These two congruence relations yield  (y0, . . . , yn) = det A. ��
Now we study the Wronskian determinant relative to two (iterative) differenti-

ations on K/k. By Corollary 14.2.21 these differentials are of the forms Dx and
Dy . Let {z0, . . . , zn} be a linearly independent set over k. Let Wx (z0, . . . , zn) and
Wy(z0, . . . , zn) be the Wronskian determinants with respect to Dx and Dy respec-
tively.

Theorem 14.2.36. Wx (z0, . . . , zn) and Wy(z0, . . . , zn) have the same set of orders
{µ0, µ1, . . . , µn} with 0 = µ0 < µ1 < · · · < µn. Furthermore,

Wx (z0, . . . , zn) = Wy(z0, . . . , zn)(D
(1)
x (w))

µ0+···+µn

for some w ∈ K such that D(1)x (w) �= 0.
Proof. Let φ : K → M = K [[u]] and ψ : K → M1 = K [[v]] be given by

φ(α)(u) =
∞∑
n=0

D(n)x (α)u
n and ψ(α)(v) =

∞∑
v=0

D(n)y (α)v
n .

For 0 ≤ i ≤ n, put Ziu := φ(zi ) and Ziv := ψ(zi ). Consider the K -vector spaces
M and N generated by {Ziu}ni=0 and {Ziv}ni=0 respectively.

Let w ∈ K be such that D(1)x w �= 0, given by Theorem 14.2.20 and v = h(u) =∑∞
n=1 D

(n)
x (w)un be such that ψ(α)(v) = φ(α)(g(v)) with g(v) = u.

ClearlyN is obtained fromM by means of the substitution u = g(v).
Let

U0 = 1+
∞∑
m=1

a(0)m um,

U1 = uµ1 +
∞∑

m=µ1+1
a(1)m um,

. . . . . .

Ui = uµi +
∞∑

m=µi+1
a(i)m um,

. . . . . .

Un = uµn +
∞∑

m=µn+1
a(n)m um
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be the elements of a Hermitian basis of M over K . Using the substitution u =
g(v), v = h(u), we obtain the Hermitian basis {W0, . . . ,Wn} of N/K with Wi =(
D(1)x (w)

)µi Ui (g(v)) for 0 ≤ i ≤ n. Let A be the matrix defined by Ziu = AUi
for 0 ≤ i ≤ n, and B the matrix defined by Ziv = BWi for 0 ≤ i ≤ n. Then

BWi = Ziv = Ziu(g(v)) = AUi (g(v)) = A
(
D(1)x (w)

)−µi
Wi . Hence

B =

⎡⎢⎣ (D
(1)
x (w))

−µ0 0
. . .

0 (D(1)x (w))−µn

⎤⎥⎦ A.

By Theorem 14.2.35 we have

Wx (z0, . . . , zn) = det A and Wy(z0, . . . , zn) = det B.

Thus

Wy(z0, . . . , zn) = det B =
(
D(1)x (w)

)−(µ0+···+µn)
det A

=
(
D(1)x (w)

)−(µ0+···+µn)
Wx (z0, . . . , zn). ��

Remark 14.2.37. Note that x and y are separating elements (because D(1)x x = D(1)y y =
1). In particular, D(1)y x is nonzero. Indeed, assume otherwise. Then D(1)y |k(x) = 0. It

follows that D(n)y |k(x) = 0 for all n ≥ 1. Thus the extension of Dy |k(x) to k(x, y)
satisfies D(1)y (y) = 0. The element w given in the proof of Theorem 14.2.36 is the one
that transforms Dx into Dy . This element is w = D(1)x y = dy

dx . In particular, we have

Wx (z0, . . . , zn) =
(
dy

dx

)µ0+µ1+···+µn
Wy(z0, . . . , zn). (14.21)

Now we investigate the arithmetic of the orders of the Wronskian determinant. We
fix an iterative differentiation D on K/k such that D(n)a = 0 for all n ≥ 1 and a ∈ k,
and such that there exists x ∈ K satisfying D(1)x �= 0.

We need to consider the cases of characteristic 0 and p > 0.

Definition 14.2.38. Let p be a rational prime and n,m ∈ N∪{0}. We define the p-adic
order in N ∪ {0} by setting n≤p m if and only if the p-adic coefficients of n are less
than or equal to those of m. More precisely, let

n =
r∑
i=0

ai p
i and m =

r∑
i=0

bi p
i for 0 ≤ ai , bi ≤ p − 1 and 0 ≤ i ≤ r.

Then n≤p m if and only if ai ≤ bi for all i = 0, . . . , r.
For p = 0, we may define n≤0m as the usual order in N ∪ {0}.
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Lemma 14.2.39. Let n,m ∈ N∪{0}. Then p does not divide (nm) if and only if m≤p n
(for p = 0 this may be viewed as the equivalence between (nm) �= 0 and m ≤ n).

Proof. Let p(t) = (1+ t)n ∈ F(t), where F is any field of characteristic p.
We have p(t) = (1 + t)n =∑n

m=0
(n
m

)
tm . Then p �

(n
m

)
if and only if tm appears

in the expansion of p(t).
Let n = a0 + a1 p + · · · + ar pr for 0 ≤ a j ≤ p − 1 and 0 ≤ j ≤ r . Then

p(t) = (1+ t)n =
r∏
j=0
(1+ t)a j p

j =
r∏
j=0
(1+ t p

j
)a j

and (1+ t p j )a j =∑a j
i j=0

(a j
i j

)
t i j p

j
. Therefore the powers tm with nonzero coefficient

in p(t) are those of the form i0 + i1 p + · · · + ir pr with 0 ≤ i j ≤ a j and 0 ≤ j ≤ r .
This proves the lemma. ��

Theorem 14.2.40. Let char k = p ≥ 0 and let ε be an order of Wx (z0, . . . , zn). Then
if µ≤p ε, µ is an order of Wx (z0, . . . , zn).

Proof. Let M = Z0K + · · · + ZnK , where as usual, each Zi = φ(zi ) is the power
series associated to zi . For 0 ≤ i ≤ n, let

Wi = uhi +
∞∑

m=hi+1
a(i)m um

be a Hermitian basis of M. The orders of  (W0, . . . ,Wn) are precisely h0, . . . , hn
with 0 = h0 < h1 < · · · < hn and these are also the orders of Wx (z0, . . . , zn). We
write U (m)j = D(m)u Z j and U (m) = (U (m)0 , . . . ,U (m)n ).

Suppose that ε ∈ {h1, . . . , hn}, 0 �= µ≤p ε and µ /∈ {h1, . . . , hn}. Then
{U (0), . . . ,U (hr ),U (µ)} is linearly dependent over K , where hr < µ < hr+1 = ε.
Now let

U = uε +
∞∑

m=ε+1
bmu

m

be any power series starting at uε. Then

U (µ) =
(
ε

µ

)
uε−µ +

∞∑
m=ε+1

(
m

µ

)
bmu

m−µ.

By Lemma 14.2.39, p does not divide
(
ε
µ

)
. Hence U (µ) = (ε

µ

)
uε−µW with W ≡

1 mod u. On the other hand, uε−µ+1 divides U (hi ) for 0 ≤ i ≤ r . Hence U (hi ) =(
ε
µ

)
uε−µWi with Wi ≡ 0 mod u for 0 ≤ i ≤ r .
Therefore we have
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det

⎡⎢⎢⎢⎢⎢⎢⎣
U0 · · · Ur U

U (h1)0 · · · U (h1)r U (h1)
...

...
...

U (hr )0 · · · U (hr )r U (hr )
U (µ)0 · · · U (µ)r U (µ)

⎤⎥⎥⎥⎥⎥⎥⎦ =
(
ε

µ

)
uε−µ det

⎡⎢⎢⎢⎢⎢⎢⎣
U0 · · · Ur W0

U (h1)0 · · · U (h1)r W1
...

...
...

U (hr )0 · · · U (hr )r Wr

U (µ)0 · · · U (µ)r W

⎤⎥⎥⎥⎥⎥⎥⎦
and

det

⎡⎢⎢⎢⎢⎢⎢⎣
U0 · · · Ur W0

U (h1)0 · · · U (h1)r W1
...

...
...

U (hr )0 · · · U (hr )r Wr

U (µ)0 · · · U (µ)r W

⎤⎥⎥⎥⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎢⎢⎣
1
1 0
. . .

∗ 1
1

⎤⎥⎥⎥⎥⎥⎦ mod u ≡ 1 mod u.

Hence

det

⎡⎢⎢⎢⎢⎢⎢⎣
U0 · · · Ur U

U (h1)0 · · · U (h1)r U (h1)
...

...
...

U (hr )0 · · · U (hr )r U (hr )
U (µ)0 · · · U (µ)r U (µ)

⎤⎥⎥⎥⎥⎥⎥⎦ �= 0.

It follows that {U (0), . . . ,U (hr ),U (µ)} is linearly independent. This contradiction
proves the theorem. ��

Corollary 14.2.41. If char k = 0, then for any system {y0, . . . , yn} in K that is lin-
early independent over k, the numbers 0, 1, . . . , n are the orders of the Wronskian
determinant  (y0, . . . , yn). ��

In the characteristic 0 case, we have D(1)x x = 1. Moreover, for any n the set
{1, x, . . . , xn} is linearly independent and the orders of the Wronskian determinant
are 0, 1, . . . , n.

Now assume that char k = p > 0 and we are given 0 = µ0 < µ1 < · · · < µn
such that whenever ε ∈ {µ0, . . . , µn} andµ≤p ε, thenµ ∈ {µ0, . . . , µn}. In this case
µ0, . . . , µn are precisely the orders of the Wronskian determinant  (xµ0 , . . . , xµn ).

14.2.3 Arithmetic Theory of Weierstrass Points

In this subsection we consider a function field K/k where k is an algebraically closed
field of characteristic p ≥ 0.
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LetP be any prime divisor of K . Since k is algebraically closed,P is of degree 1.
Thus by Theorem 14.2.4 there exist exactly g = gK gap numbers j1, . . . , jg ofP such
that 1 = j1 < j2 < · · · < jg ≤ 2g − 1. The sequence {1 = j1, j2, . . . , jg} depends
on P. In the classical case, that is, when k = C is the field of complex numbers, the
gap sequence of P is {1, 2, . . . , g} for almost all P. Every prime divisor with gap
sequence {1, 2, . . . , g} is called an ordinary point and the finite set of prime divisors
of K with distinct gap sequences is called the set ofWeierstrass points.

Now if g ≥ 2, there exist at least 2g + 2 Weierstrass points and furthermore,
the automorphism group Autk(K ) = {σ : K → K |σ |k = Idk} is finite. Also,
|Autk(K )| ≤ 84(g − 1). This can be proved using the Weierstrass points of the field.

In the arithmetic case, that is, char k = p > 0, some of the above results are no
longer true. We need to change the definition of Weierstrass points since there exist
fields such that for every prime divisor P, its gap sequence { j1, . . . , jg} is different
from {1, . . . , g}. In this case, almost all prime divisors have the same gap sequence
(not necessarily equal to {1, 2, . . . , g}). This is our main result. The proof of this
important fact relies on the theory of the Wronskian determinant. When k is not alge-
braically closed, it is possible to have two infinite disjoint sets A and B of prime divi-
sors, such that every element of A has the same gap sequence {i1, . . . , ir } and every
element of B has the same gap sequence { j1, . . . , js} but {i1, . . . , ir } �= { j1, . . . , jr }.
It can also happen that every possible gap sequence appears for infinitely many prime
divisors (that is, there are no Weierstrass points).

For all the reasons stated above, we will consider k to be algebraically closed in the
rest of this subsection. In particular, K/k is separably generated (Corollary 8.2.11).

When k is of characteristic p > 0, it is possible that there is only one Weierstrass
point for arbitrarily large genus. This is in contrast to characteristic 0, where there
exist at least 2g + 2 distinct Weierstrass points.

For g = 0, we have K = k(x) and the gap sequence of any prime divisor is empty.
For g = 1, the gap sequence of every prime divisor is {1}. Assume g ≥ 2. Let W =
WK be the canonical class in K andw a nonzero differential, (w)K ∈ W . By Corollary
3.5.5, 	K ((w)

−1
K ) = N (W ) = g. Let {y0, . . . , yg−1} be a basis of 	K ((w)−1K ). Then

{y0, . . . , yg−1} is a linearly independent set over k. Let x be any separating element
and let Wx (y0, . . . , yg−1) be the Wronskian determinant. Denote by 0, µ1, . . . , µg−1
the orders of Wx (y0, . . . , yg−1).

Definition 14.2.42. We define the branch divisor by

BK := (w)gK (Wx (y0, . . . , yg−1))K (dx)

g−1∑
i=0
µi

K . (14.22)

Remark 14.2.43. Write dy
dx = D(1)x y. We have

dy = dy

dx
dx .

Here dx and dy denote the Weil differentials. To prove that dy = dy
dx dx , we use the

equivalence between Hasse and Weil differentials (Theorem 9.3.15). In fact, assuming
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that P is any place of K and π is a prime element for P, then if F(x, y) = 0 is
irreducible we have

dy

dx
= D(1)x y = −

∂F
∂x (x, y)
∂F
∂y (x, y)

(see Remark 14.2.24).
Let x =∑n anπ

n and y =∑n bnπ
n be the power series expansions of x and y in

KP. Since F(x, y) = 0, we have 0 = F
(∑

n anπ
n,
∑

n bnπ
n
)
. Using the chain rule

we obtain

0 = d(0)

dπ
= ∂F
∂x

(∑
n

anπ
n,
∑
n

bnπ
n

)∑
n

nanπ
n−1

+ ∂F
∂y

(∑
n

anπ
n,
∑
n

bnπ
n

)∑
n

nbnπ
n−1

= ∂F
∂x
(x, y)

dx

dπ
+ ∂F
∂y
(x, y)

dy

dπ
.

Hence

dy

dπ
= −

∂F
∂x (x, y)
∂F
∂y (x, y)

dx

dπ
= D(1)x y

dx

dπ
. (14.23)

Since (14.23) holds for any place P, we have

dy = D(1)x (y)dx =
dy

dx
dx .

Theorem 14.2.44. The branch divisor BK is independent of the differential w, of the
basis y0, . . . , yg−1 of LK ((w)−1k ), and of the separating element x. Thus BK is an
invariant of the field.

Proof. If t is another separating element, then by (14.21) and Remark 14.2.43 we have

(
Wx (y0, . . . , yg−1)

)
K (dx)

g−1∑
i=0
µi

K = (Wt (y0, . . . , yg−1)
)
K (dt)

g−1∑
i=0
µi

K .

Next, if {z0, . . . , zg−1} is another basis of Lk
(
(w)−1K

)
, then

zi =
g−1∑
j=0

ai j y j for 0 ≤ i ≤ g − 1,

where ai j ∈ k. Thus

⎛⎜⎝ z0
...

zg−1

⎞⎟⎠ = A

⎛⎜⎝ y0
...

yg−1

⎞⎟⎠, where A = (ai j )0≤i, j<g−1 is an invert-
ible g × g matrix with coefficients in k. Therefore by Proposition 14.2.29 we have
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Wx (z0, . . . , zg−1) = det AWx (y0, . . . , yg−1)

and det A ∈ k∗, so (det A)K = N.
Finally, if w′ �= 0 is another differential, put w′ = aw for some a ∈ K ∗ (Theorem

3.4.9). Then, if {y′0, . . . , y′g−1} is a basis of LK ((w′)−1), then {ay′0, . . . , ay′g−1} is a
basis of LK ((w)

−1
K ). Set yi = ay′i , 0 ≤ i ≤ g − 1. Then

Wx (y0, . . . , yg−1) = Wx (ay
′
0, . . . , ay

′
g−1) = agWx (y

′
0, . . . , y

′
g−1).

Since (ag) = (a)g = (w′)gK
(w)

g
K
, we obtain that

(w)
g
K (Wx (y0, . . . , yg−1))K = (w′)gK (Wx (y

′
0, . . . , y

′
g−1))K .

The result follows. ��

Remark 14.2.45. The degree ofBK is

dK (B)K = dK ((w)
g
K )+ dK (Wx (y0, . . . , yg−1)K )+ dK

(
(dx)

∑g−1
i=0 µi

K

)
= g(2g − 2)+ 0+

(
g−1∑
i=0
µi

)
(2g − 2)

= (2g − 2)
(
g +

g−1∑
i=0
µi

)
.

Therefore for g = 1, we have dK (BK ) = 0 and dK (B) > 0 for g ≥ 2. We will prove
thatB is an integral divisor.

Let P be any prime divisor. We may choose w �= 0 such that P and (w)K are
relatively prime. Indeed, assume (w)K = PiA with i ∈ Z \ {0} and (A,P) = 1.
Then for any other prime q �= P and n ∈ N large enough, we have, by Corollary
3.5.6, 	(P−iq−n)− 	(P−i+1q−n) = 1. So there exists z ∈ K such that (z)K = A′

Piqn
,

where (P,A′) = 1 and A′ is integral. Thus z /∈ k, (zw)K = (z)K (w)K = A′A
qn and

vP((z)K (w)K ) = 0.
Let π be a prime element for P, that is, vP(π) = 1. Then P is unramified in

K/k(π) and P|k(π) is relatively prime to (dπ)k(π) in k(π). Therefore P is relatively
prime to (dπ)K = conk(π)/K (dπ)k(π)DK/k(π).

It follows that vP(BK ) = vP
(
(Wπ (y0, . . . , yg−1))K

)
.

Now choose a Hermitian basis of LK
(
(w)−1K

)
with respect to P. Then for any

nonzero element z of LK
(
(w)−1K

)
we have vP(z) ≥ 0. So when we consider z ∈ KP,

we have
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z = azπ
nz +

∞∑
m=nz+1

amπ
m, with az, am ∈ k, nz ≥ 0, and az �= 0.

Thus a−1z z = πnz +∑∞
m=nz+1 bmπ

m . Let h0 be the minimum nonnegative integer
such that

z = πh0 +
∞∑

m=h0+1
amπ

m ∈ LK ((w)−1).

If z′ is another such z, we have (z − z′)a = πh1 + ∑∞
m=h1+1 bmπ

m for some
a /∈ k∗ and h1 > h0. Continuing in this way, we conclude that there exists a basis
{z0, z1, . . . , zg−1} of LK ((w)−1K ) such that

zi = πhi +
∞∑

m=hi+1
a(i)m π

m for 0 ≤ i ≤ g − 1 (14.24)

and h0 < h1 < · · · < hg−1. Since P is relatively prime to (w)K , we have h0 =
0. By Proposition 14.2.33,  h1,... ,hg−1(z0, . . . , zg−1) ≡ 1 mod π and in particular,
 h1,... ,hg−1(z0, . . . , zg−1) �= 0. By Proposition 14.2.28 we have µi ≤ hi whenever
0 ≤ i ≤ g − 1. If µi = hi for all i , then

Wπ (z0, . . . , zg−1) =  µ1,... ,µg−1(z0, . . . , zg−1) ≡ 1 mod π
and vP(BK ) = 0.

Conversely, ifµi < hi for some i , then vP(BK ) ≥
∑g−1

i=0 (hi−µi ) > 0. Therefore
we have the following theorem:

Theorem 14.2.46. The branch divisor BK is an integral divisor. Furthermore, P di-
vides B if and only if the Hermitian powers h0, . . . , hg−1 described in (14.24) satisfy
hi > µi for some i such that 0 ≤ i ≤ g − 1. ��

Theorem 14.2.47. Let P be any prime divisor. If h0, . . . , hg−1 are the Hermitian
powers associated to P, then {hi + 1 | 0 ≤ i ≤ g − 1} is precisely the gap sequence
of P.

Proof. Let zi = πhi +
∑∞

m=hi+1 a
(i)
m π

m ∈ LK
(
(w)−1K

)
. Then (zi )K = Ai

(w)K
for some

integral divisor Ai .
Therefore (ziw)K = Ai and ziw is a holomorphic differential. On the other hand,

vP(zi ) = hi and vP((w)K ) = 0, so vP(Ai ) = hi . By Corollary 14.2.5, hi + 1 is a
gap number of P and conversely. ��

We have obtained the main result of this section:

Theorem 14.2.48. Let K/k be a function field where k is an algebraically closed field.
Let w be any nonzero differential of K . Let {y0, . . . , yg−1} be a basis of LK ((w)−1K )
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and x a separating element of K/k. Denote by µ0, . . . , µg−1 the orders of the Wron-
skian determinant Wx (y0, . . . , yg−1) and by BK the branch divisor of K . Then for
any prime divisor P, the gap sequence of P is µ0 + 1, . . . , µg−1 + 1 if and only if
P � BK . In particular, all but finitely many divisors have the same gap sequence

µ0 + 1, . . . , µg−1 + 1. ��
Definition 14.2.49. Put ϕi = µi−1 + 1 for 1 ≤ i ≤ g. The sequence {ϕ1, . . . , ϕg} is
called the gap sequence of the field K/k.

Remark 14.2.50. If char k = 0, then the gap sequence of the function field K/k is
{1, 2, . . . , g}. This is called the classical gap sequence.
Definition 14.2.51. A prime divisor P of K is called a Weierstrass point if its gap se-
quence is different from the gap sequence of the field. A primeP whose gap sequence
is equal to the gap sequence of the field is called an ordinary point.

Corollary 14.2.52. If gK is 0 or 1, then K has no Weierstrass points. If g ≥ 2, the
number of Weierstrass points is at least 1 and at most (g − 1)g(3g − 1).
Proof. By Remark 14.2.45 we have

dK (BK ) = (2g − 2)
(
g +

g−1∑
i=0
µi

)
.

Now µ0 = 0 < µ1 < µ2 < · · · < µg−1 ≤ 2g − 1. Therefore i ≤ µi ≤ g + i . Hence

g−1∑
i=0
µi =

g−1∑
i=1
µi ≤

g−1∑
i=1
(g + i) = g(g − 1)+ g(g − 1)

2
= 3

2
g(g − 1)

and

g−1∑
i=1
µi ≥

g−1∑
i=1

i = g(g − 1)
2

.

Thus

0 < (g − 1)g(g + 1) = (2g − 2)
(
g + g(g − 1)

2

)
≤ dK (B)

≤ (2g − 2)
(
g + 3

2
g(g − 1)

)
= (g − 1)g(3g − 1). ��

Corollary 14.2.53. If char k = 0, the gap sequence of the function field K/k is
{1, 2, . . . , g} and

dK (BK ) = g3 − g.
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Proof. By Corollary 14.2.41 and Theorem 14.2.46, the sequence {1, 2, . . . , g} is the
gap sequence of the field and we have µi = i for 0 ≤ i ≤ g − 1. Thus

dK (BK ) = (2g − 2)
(
g +

g−1∑
i=0

i

)
= 2(g − 1)

(
g + g(g − 1)

2

)
= (g − 1)(2g + g2 − g) = g3 − g. ��

Definition 14.2.54. The weight of a Weierstrass pointP is defined by vP(BK ), where
BK is the branch divisor.

Remark 14.2.55. Assume that ϕi+1 := µi + 1, 0 ≤ i ≤ g − 1, is the gap sequence
of the field, and {α1, . . . , αg} is the gap sequence of a prime divisor P. Then if
{h01 , . . . , hg−1} is the set of Hermitian powers associated toP, we have

αi+1 = hi + 1 for 0 ≤ i ≤ g − 1

and

g−1∑
i=0
(hi − µi ) =

g∑
j=1
(α j − ϕ j ).

If char k = 0, then

vP(BK ) =
g−1∑
i=0
(hi − µi ) =

g∑
j=1
(α j − ϕ j ).

Now for char k = p we might have strict inequality

vP(BK ) >

g−1∑
i=0
(hi − µi ) =

g∑
j=0
(α j − ϕ j ).

Let P be a prime divisor,

W (P) = {n ∈ N | n is a gap of P},

and

N \W (P) = P(P) = {n ∈ N | n is a pole of P}.

If n,m ∈ P(P) then there exist f, g ∈ K such that N f = Pn and Ng = Pm . Hence
N f g = Pn+m and n + m ∈ P(P). Therefore P(P) is a semigroup. Now we have

|W (P)| = g and W (P) ⊆ {1, 2, . . . , 2g − 1}.
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Thus

|P(P) ∩ {1, 2, . . . , 2g}| = g.

Set P(P) ∩ {1, 2, . . . , 2g} = {β1, . . . , βg} with 1 < β1 < · · · < βg = 2g.
Our next task is to find a lower bound for the number of Weierstrass points of a

function field of characteristic 0.

Lemma 14.2.56. Whenever 0 < i < g we have βi + βg−i ≥ 2g.
Proof. Assume for the sake of contradiction that some i satisfies βi + βg−i < 2g. For
0 < j ≤ i , we have β j ≤ βi , so β j + βg−i ≤ βi + βg−i < 2g. Therefore

βg−i < β1 + βg−i < β2 + βg−i < · · · < βi + βg−i < 2g

and the subset

{βg−i , β1 + βg−i , . . . , βi + βg−i } ⊆ P(P)

has cardinality 1+ i . Thus

{β1 < β2 < · · · < βg−i−1 < βg−i < β1 + βg−i < · · · < βi + βg−i < 2g = βg}
⊆ P(P).

It follows that g = |P(P) ∩ {1, 2, . . . , 2g}| ≥ g − i − 1 + i + 1 + 1 = g + 1,
which constitutes the desired contradiction. ��

Lemma 14.2.57. β1 = 2 iff W (P) = {1, 3, 5, . . . , 2g − 1}.
Proof.We have nβ1 = β1 + · · · + β1 = 2n ∈ P(P). ��

Theorem 14.2.58. We have β1 = 2 for some P if and only if K/k is a hyperelliptic
function field.

Proof. If β1 = 2, there exists x ∈ K such that Nx = P2 and gK ≥ 2. Thus
[K : k(x)] = 2, and by Definition, 9.6.15, K/k is hyperelliptic.

Conversely, if K/k is hyperelliptic, we have gK ≥ 2 and there exists x ∈ K such
that [K : k(x)] = 2. Then degK Nx = 2. Now K = k(x, y) where y2 = h(x) ∈ k(x)
(when char k �= 2 or K/k(x) inseparable) or y2 − y = h(x) (when char k = 2 and
K/k(x) separable). In either case there exists a prime divisor p of k(x) that is ramified
in K/k(x), that is, p = P2. If p′ is another prime divisor in k(x), then p′

p is principal.
Therefore 2 is a pole number of P. ��
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Theorem 14.2.59. Assume that char k = 0 and g = gK ≥ 2. Then K/k is a hyperel-
liptic function field iff K has exactly 2g + 2Weierstrass points, each of them with gap
sequence {1, 3, 5, . . . , 2g − 1} and weight g(g−1)2 . Furthermore, if K/k is hyperellip-
tic, then the Weierstrass points are precisely the ramified prime divisors in K/k(x),
where k(x) is the unique quadratic rational subfield of K .

Proof. If K/k is a hyperelliptic function field, there exists x ∈ K such that [K : k(x)] =
2. Let K = k(x, y), y2 = f (x) where f (x) is a separable polynomial of degree m.
We may assume without loss of generality that the infinite prime is unramified, so
m = 2g+2 (see Corollary 4.3.7). Therefore every prime divisor dividing Z f is a ram-
ified prime with the first pole number 2. It follows that all these 2g + 2 prime divisors
are Weierstrass points with gap sequence {1, 3, . . . , 2g − 1} and weight g(g−1)2 . Thus

(g − 1)g(g + 1) = dK (BK ) ≤ (2g + 2)g(g − 1)
2

= (g − 1)g(g + 1).
Hence K/k contains 2g + 2 Weierstrass points, and these are precisely the ramified
primes.

The converse is immediate. ��
Proposition 14.2.60. With the above notation, if β1 > 2 there exists j such that 0 <
j < g and β j + βg− j > 2g.
Proof. If g = 2, then β1 = 3, β2 = 4, and there is nothing to prove. If g = 3, then
{β1, β2, β3} = {3, 4, 6} or {3, 5, 6} or {4, 5, 6} and β1 + β2 ≥ 3+ 4 = 7 > 2(3) = 6.

Now assume g ≥ 4 and suppose that β j + βg− j = 2g for all 0 < j < g. If [x]
denotes the greatest integer less than or equal to x , then

β1, 2β1, · · · ,
[
2g

β1

]
β1 ∈

{
β1, . . . , βg

} = P(P) ∩ {1, . . . , 2g}.

Since β1 > 2, we have β1 ≥ 3 and 2g
β1
≤ 2

3g < g.

Therefore
[
2g
β1

]
≤ 2

3g < g, and there exists a pole number of P that is smaller

than 2g and distinct from β1, 2β1, . . . ,
[
2g
β1

]
β1. Let β be the first pole number of this

type. Then there exists an integer r such that 1 ≤ r ≤
[
2g
β1

]
< g − 1 and rβ1 < β <

(r + 1)β1. Hence β1, β2 = 2β1, . . . , βr = rβ1, βr+1 = β.
Since β j + βg− j = 2g, we have

βg−1 = 2g − β1, . . . , βg−r = 2g − rβ1, βg−(r+1) = 2g − β,
whence

{
βg−(r+1), βg−r , . . . , βg−1

} = {a ∈ P(P)|βg−(r+1) ≤ a ≤ βg = 2g
}
.

Now β1 + βg−(r+1) = β1 + 2g − β = 2g − (β − β1) > 2g − rβ1 = βg−r and
β1 + βg−(r+1) = 2g − (β − β1) < 2g. Therefore

β1 + βg−(r+1) ∈
{
a ∈ P(P)|βg−(r+1) ≤ a ≤ βg = 2g

}
,

but β1+βg−(r+1) /∈
{
βg−(r+1), . . . , βg−1

}
. This contradiction proves the proposition.

��
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Corollary 14.2.61. For any prime divisor P, we have

g∑
i=1
αi =

∑
α∈W (P)

α ≤ g2,

with equality if and only if the first nongap β1 of P is 2.

Proof. By Lemma 14.2.56 we have

2
g−1∑
i=1
βi =

g−1∑
i=1
(βi + βg−i ) ≥ 2g(g − 1).

Thus
∑g

i=1 βi = βg +
∑g−1

i=1 βi ≥ 2g + g(g − 1) = g(g + 1), whence
g∑
i=1
αi =

2g∑
j=1

j −
g∑
i=1
βi ≤ 2g(2g + 1)

2
− g(g + 1)

= g(2g + 1)− g(g + 1) = g2.

Furthermore, by Lemma 14.2.57 and Proposition 14.2.60 we have

g∑
i=1
αi = g2 ⇐⇒

g−1∑
i=1
βi = g(g − 1) ⇐⇒ β1 = 2. ��

Theorem 14.2.62. Assume char k = 0. Then there exist at least 2g + 2 Weierstrass
points in K/k. Furthermore, there are exactly 2g + 2Weierstrass points if and only if
K/k is a hyperelliptic function field.

Proof.We have dK (BK ) = (g− 1)g(g+ 1) = g3− g. Moreover, the gap sequence of
the field is {ϕ1, . . . , ϕg} = {1, 2, . . . , g}. If P is a Weierstrass point and vP(BK ) =
SP, then

SP =
g∑
i=1
(αi − ϕi ) =

g∑
i=1
αi −

g∑
i=1
ϕi ≤ g2 − g(g + 1)

2
= g(g − 1)

2
.

Thus we have at least

(g − 1)g(g + 1)
g(g − 1)/2 = 2(g + 1) = 2g + 2

distinct prime divisors dividing the branch divisorBK . These are precisely the Weier-
strass points.

There are exactly 2g + 2 Weierstrass points if SP = g(g−1)
2 for all P dividing

BK . By Corollary 14.2.61 this happens if and only if β1 = 2. The result follows using
Theorem 14.2.59. ��
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Remark 14.2.63. Assume char k = 0. Since dK (B) = (g − 1)g(g + 1) there exist at
most g3−gWeierstrass points. This happens exactly in the case that every Weierstrass
point has weight 1, and this is possible only if the gap sequence of every Weierstrass
point is {1, 2, . . . , g − 1, g + 1}.

In case char k = p > 0, we have

dK (BK ) = (2g − 2)
(
g +

g−1∑
i=0
µi

)
≤ (g − 1)g(3g − 1),

and there may exist a single Weierstrass point for arbitrarily large genus.

Proposition 14.2.64. If the gap sequence of a function field K/k is nonclassical, then
p + 1 < 2g where char k = p > 0.

Proof. Suppose that p+ 1 ≥ 2g. Then g < p. Thus, if n is the first pole number of an
ordinary point, we have n < g < p since the gap sequence of the field is nonclassical.
If m is the next gap number, then n < m and m − 1 is an order of the field. Now n− 1
is not an order, so by Theorem 14.2.40, n − 1 �≤p m − 1. Therefore m − 1 ≥ p or
m ≥ p + 1 ≥ 2g, which is impossible since m ≤ 2g − 1. ��

14.2.4 Gap Sequences of Hyperelliptic Function Fields

Now we consider an arbitrary field k, not necessarily algebraically closed. Let K/k be
any hyperelliptic function field, not necessarily separably generated. Let g = gK be
the genus of K and W = WK the canonical class of K . Consider any prime divisorP
of degree f . Then n is a gap number iff 	K (P−n)− 	K (P(n−1)) = 0. Equivalently, n
is a gap number iff δK (Pn−1) − δK (Pn) = f = dK (P). We assume that the unique
genus-zero subfield of K is a rational function field k(x).

Lemma 14.2.65. Let x ∈ K be such that [K : k(x)] = 2. Then N
g−1
x ∈ W and

{1, x, . . . , xg−1} is a basis of LK
(
N
−(g−1)
x

)
.

Proof. Clearly 1, x, . . . , xg−1 belong to LK
(
N
−(g−1)
x

)
and 	K

(
N
−(g−1)
x

)
≥ g. On

the other hand, dK
(
N
g−1
x

)
= 2(g − 1) = 2g − 2, so dK

(
W−1Ng−1

x

)
= 0 and

	K

(
W−1Ng−1

x

)
≤ 1. By the Riemann–Roch theorem, we have

	K

(
N
−(g−1)
x

)
= dK

(
N
g−1
x

)
− g + 1+ 	K

(
W−1Ng−1

x

)
≤ 2g − 2− g + 1+ 1 = g.

Thus 	K
(
N
−(g−1)
x

)
= g and 	K

(
W−1Ng−1

x

)
= 1. It follows that Ng−1

x ∈ W . ��
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Lemma 14.2.66. For any integral divisor A in K , we have

	K (AW
−1) = δ(A) = g − µ,

where µ = min{dk(x)(A ∩ k(x)), g}.
Proof. First assume that A and Nx are relatively prime. Then

δ(A) = 	K (AW−1) = 	K
(
AN

−(g−1)
x

)
.

Therefore

y ∈ LK
(
AN

−(g−1)
x

)
⇐⇒ (y)K = AC

N
g−1
x

for some integral divisor C. Since (A,Nx ) = 1, we have

y ∈ LK
(
AN

−(g−1)
x

)
⇐⇒ y ∈ LK

(
N
−(g−1)
x

)
and A | Zy .

Since {1, x, . . . , xg−1} is a basis of LK
(
N
−(g−1)
x

)
we have

LK
(
N
−(g−1)
x

)
= {a0 + a1x + · · · + ag−1xg−1 | ai ∈ k} ⊆ k[x].

In particular, LK (N
−(g−1)
x ) = Lk(x)(N

−(g−1)
x ) and A | Zy if and only if A∩k(x) | Zy .

The divisor A ∩ k(x) corresponds to a polynomial f (x) ∈ k[x], that is, ( f (x))k(x) =
A∩k(x)
℘
deg f
∞

, where ℘∞ = Nx ∩ k(x).
Therefore LK

(
AN

−(g−1)
x

)
= {p(x) ∈ k[x]| deg p(x) ≤ g − 1 and f (x) divides

p(x)}. This proves the statement in this case.
Finally, if Nx and A are not relatively prime and k is infinite, then we can take

x ′ = ax+b
cx+d ∈ k(x) such that k(x ′) = k(x) and (Nx ′ ,A) = 1. If k is finite, k is

a perfect field and we can consider a constant field extension K ′ = Kk′ such that(
A′,Nx

) = 1. The result follows since [K ′ : k′(x)] = 2 = [K : k(x)] and gK ′ = gK
(Theorem 8.5.2). ��

Theorem 14.2.67. Let K/k be a hyperelliptic function field, andP be a prime divisor
of K of degree f . Let ℘ = P ∩ k(x), where k(x) is the unique quadratic subfield of
K . Then if

(i) ℘ decomposes in K , ℘ = PP′, then the gap sequence of P is
{
1, 2, . . . ,

[
g
f

]}
.

(ii) ℘ is inert in K , ℘ = P, then P has no gap numbers.
(iii) ℘ ramifies in K , ℘ = P2, then the gap sequence of P is equal to {2n − 1 | 1 ≤

n ≤
[
g
f

]}
.
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Proof. By Lemma 14.2.66 we have

δ(Pn) = g − µn, (14.25)

where µn = min
{
dk(x) (Pn ∩ k(x)) , g}.

(i) If ℘ decomposes, thenPn ∩ k(x) = ℘n for all n ≥ 0 and dk(x)(℘) = dK (P) = f .
Hence µn = min

{
dk(x)(Pn), g

} = min {ndk(x)(℘), g} = min {n f, g}.
It follows that µn = n f ⇐⇒ n f ≤ g ⇐⇒ n ≤

[
g
f

]
.

For 1 ≤ n ≤
[
g
f

]
, we have

δ
(
Pn−1

)
− δ (Pn) = (g − (n − 1) f )− (g − n f ) = f

and n is a gap number for P.

For n =
[
g
f

]
+1, δ (Pn−1)−δ (Pn) = (g − (n − 1) f )−(g−g) = g−

[
g
f

]
f < f .

For n >
[
g
f

]
+ 1, δ(Pn−1)− δ(Pn) = 0− 0 = 0.

Therefore the gap sequence of P is
{
1, 2, . . . ,

[
g
f

]}
.

(ii) If ℘ is inert and ℘ = P, then dk(x)(℘) = f
2 and

Pn ∩ k(x) = ℘n, degk(x)(Pn ∩ k(x)) = n
f

2
.

We have

µn = min
{
n
f

2
, g

}
= n f

2
⇐⇒ n f

2
≤ g ⇐⇒ n ≤

[
2g

f

]
.

For 1 ≤ n ≤
[
2g
f

]
we have

δ(Pn−1)− δ(Pn) =
(
g − (n − 1) f

2

)
−
(
g − n

f

2

)
= f

2
< f.

For n >
[
2g
f

]
, we have δ(Pn−1)− δ(Pn) ≤ g−

([
2g
f

])
f
2 <

f
2 < f . ThusP has no

gap numbers.
(iii) If ℘ is ramified and ℘ = P2, then degk(x)(℘) = f and

P2m−1 ∩ k(x) = P2m ∩ k(x) = ℘m, or Pn ∩ k(x) = ℘
[
n+1
2

]
.

We have

µn = min
{[

n + 1
2

]
f, g

}
=
[
n + 1
2

]
f ≤ g ⇐⇒

[
n + 1
2

]
≤
[
g

f

]
.
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Let n = 2m − 1; then n+1
2 = m ≤

[
g
f

]
, and

δ
(
Pn−1

)
− δ(Pn) = (g − (m − 1) f )− (g − m f ) = f.

Thus each n = 2m − 1 such that 1 ≤ m ≤
[
g
f

]
is a gap number.

Let n = 2m, where
[
n+1
2

]
= m ≤

[
g
f

]
. We have

δ
(
Pn−1

)
− δ(Pn) = (g − m f )− (g − m f ) = 0.

Finally, assume n is 2m − 1 or 2m with m ≥
[
g
f

]
. Then

δ
(
Pn−1

)
− δ(Pn) ≤

(
g −

[
g

f

]
f

)
< f.

Thus the gap sequence of P is
{
2m − 1 | 1 ≤ m ≤

[
g
f

]}
. ��

Remark 14.2.68. Part (ii) of Theorem 14.2.67 can also be deduced from the fact that
℘ = P and ℘

℘
f
∞
= ( f (x))k(x). Thus N( f (x)−1) = P and 1 is a nongap number for P.

It follows that P has no gap numbers.

Remark 14.2.69. Theorem 14.2.67 shows that when k is not an algebraically closed
field, there might exist several gap sequences of the field K/k. Thus there exist two
infinite disjoint sets A and B of prime divisors such that every P ∈ A has the same
gap sequence {i1, . . . , ir } and every P ∈ B has the same gap sequence { j1, . . . , js},
and {i1, . . . , ir } �= { j1, . . . , jr }. Furthermore we may define Weierstrass points as
those prime divisors P such that only finitely many prime divisors have the same gap
sequence asP. Corollary 4.3.7 shows that there exist function fields of arbitrarily large
genus without Weierstrass points, even in characteristic 0.

Example 14.2.70. Let k = Qp be the field of p-adic numbers (p > 2) and let g ≥ 2.
Then by Eisenstein’s criterion, the polynomial x2g+2 + p is irreducible in Qp[x]. Let
K = k(x, y) with y2 = x2g+2+ p. By Corollary 4.3.7, gK = g. If

(
x2g+2 + p

)
k(x) =

℘

℘
2g+2
∞

, then ℘ is the only ramified prime in K/k(x) and f = dk(x)(℘) = 2g + 2 > g.

Thus
[
g
f

]
= 0.

Next we will see that for each f satisfying 1 ≤ f ≤ g, there are infinitely many
prime divisors in Qp(x) that have degree f and decompose in K/Qp(x). Using The-
orem 14.2.67 we will deduce that K has no Weierstrass points.

Assume 1 ≤ f ≤ g, and set Fp f = Fp(α). Suppose that 	(x) = Irr(α, x,Fp),

deg 	(x) = f , and 	(x) �= x . Let h(x) ∈ Qp[x] be such that h(x) = −xg+1 + 	(x)
where deg h(x) = g + 1. We have
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x2g+2 + p − h(x)2

)
mod p =

(
xg+1 − h(x)

) (
xg+1 + h(x)

)
=
(
xg+1 − h(x)

)
	(x).

If 	(x) | xg+1 − h(x), then 	(x) | 	(x) + xg+1 − h(x) = 2xg+1. This contradiction
shows that 	(x) and xg+1 + h(x) are relatively prime. By Hensel’s lemma (Theorem
2.3.14), we have x2g+2 + p − h(x)2 = m(x)t (x), where m(x) has degree f and
m(x) = 	(x). Thus m(x) is irreducible since 	(x) is irreducible. On the other hand, if
we fixm(x), we havemµ(x) := m(x)+ pµ, whereµ ∈ Zp is another irreducible poly-
nomial of degree f in Qp[x]. In short, there exist infinitely many monic irreducible
polynomials m(x) of degree f and m(x) = 	(x).

Let ϕ be the place associated with a given suchm(x). Let ϑ and ℘ be the valuation
and the maximal ideal associated to m(x). We have

ϑ/℘ ∼= Qp[x]/(m(x)) = F where
[
F : Qp

] = f.

Consider the function

ϕ : Qp(x)→ F ∪ {∞} defined by ϕ(x) := x mod ℘, ϕ|Q p = IdQ p .

Let σ : K → F1 ∪ {∞} be an extension of ϕ to K .
Then [F1 : F] is 1 or 2. In fact, we have F1 = F if and only if σ(y) ∈ F and p

decomposes in K/Qp(x). Now we have

y2 = x2g+2 + p

�⇒ σ(y2) = σ(y)2 = σ(x2g+2 + p) = σ(x)2g+2 + σ(p) =
(
x2g+2 + p

)
mod ℘.

That is, σ(y) ∈ F ⇐⇒ x2g+2 + p− β2 ≡ 0 mod m(x) has a solution β in Qp [x].
If h(x) is as before, then m(x) divides x2g+2+ p−h(x)2. Thus σ(y) ∈ F . This shows
that K has no Weierstrass points.

Example 14.2.71. If K/Fq is a hyperelliptic function field, then there are finitely many
prime divisors of degree 1 in Fq(x) that decompose in K/Fq(x). Therefore these
points are Weierstrass points.

The next result is a generalization of Theorem 14.2.59.

Corollary 14.2.72. If K/k is a hyperelliptic function field for an algebraically closed
field k of characteristic p ≥ 0, then the gap sequence of the field is classical, that
is, equal to {1, 2, . . . , g}. The Weierstrass points correspond to the ramified prime
divisors of K/k(x) and their gap sequence is {1, 3, . . . , 2g − 1}.
Proof. This is an immediate consequence of Theorem 14.2.67, since in this case f = 1.

��
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Example 14.2.73. Let k be an algebraically closed field of characteristic 2. Let K =
k(x, y) where

y2 − y = xm, m ≥ 3, and 2 � m.

Then the only ramified prime in K/k(x) is ℘∞ and

gK = 1+
(
gk(x) − 1

)
[K : k(x)]+ 1

2
(m + 1)(2− 1) = m + 1

2
− 1 = m − 1

2

(see Example 5.8.8 and Theorem 9.4.2).
Since K is a hyperelliptic field, there exist fields of arbitrarily large genus g (g =

m−1
2 or m = 2g + 1) with a single Weierstrass point.
Corollary 14.2.74. If K/k is a hyperelliptic function field for some algebraically
closed field k of characteristic distinct from 2, then K/k has 2g+2Weierstrass points.
Proof. The result follows from Corollary 14.2.72 since there are 2g+2 ramified primes
in K/k(x). ��

14.2.5 Fields with Nonclassical Gap Sequence

In this subsection we consider an algebraically closed field k of characteristic p > 0.

Theorem 14.2.75. Let K = k(x, y) be the function field defined by the equation

yq − y = xm,

where q = pu,m > 1, and m divides q + 1. Set q + 1 = mn. Then

gK = (m − 1)(q − 1)
2

.

Furthermore, the gap sequence of the field is

{rq + s + 1 | r, s ≥ 0, (r + 1)n + (s + 1) ≤ q}.

Proof. From Example 5.9.12 we have gK = (m−1)(q−1)
2 .

Now we compute the cardinality of the set

A = {rq + s + 1 | r, s ≥ 0, (r + 1)n + (s + 1) ≤ q}.

For 0 ≤ r , we have

(r + 1)n + (s + 1) ≤ q ⇐⇒ s ≤ q − (r + 1)n − 1.
Set ar = max{q − (r + 1)n, 0}. Then 0 ≤ s ≤ ar − 1.
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Also, (r + 1)n ≤ q = nm − 1. Hence r ≤ m − 1
n − 1 and r ≤ m − 2. It follows

that

|A| =
m−2∑
r=0

ar =
m−2∑
r=0

{q − (r + 1)n} = (m − 1)q − n
m(m − 1)

2

= (m − 1)q − (q + 1)(m − 1)
2

= (m − 1)
(
2q − q − 1

2

)
= (m − 1)(q − 1)

2
= gK .

By Theorem 9.4.1 we have

(dx)K = conk(x)/K (dx)k(x)DK/k(x) = B−2q+(m+1)(q−1) = Bm(q−n−1).

Denote by ℘ the zero of x in k(x). Let r, s ≥ 0 be such that (r + 1)n + (s + 1) ≤ q.
Set w = xr ysdx . Clearly vP((w)K ) ≥ 0 for all P �= B. Now we have

vB((w)K ) = rvB((x)K )+ svB((y)K )+ vB((dx)K )
= −rq − sm + m(q − n − 1) = −r(nm − 1)− sm + m(q − n − 1)
= m(−rn − s + q − n − 1)+ r = m(q − n(r + 1)− (s + 1))+ r

≥ m(0)+ r = r ≥ 0.

Now the set {xr ysdx | r ≥ 0, s ≥ 0, (r + 1)n + (s + 1) ≤ q} is linearly independent
over k. Moreover, this set is of cardinality g and consists of holomorphic differentials,
so it is a basis of holomorphic differentials.

Therefore the gap sequence of the field is

{µi + 1 | 0 ≤ i ≤ g − 1},

where µ0, . . . , µg−1 are the orders of the Wronskian determinant

Wy(x
r ys | r, s ≥ 0, (r + 1)n + (s + 1) ≤ q)

(Theorem 14.2.48).
We associate the corresponding power series for Dy for each xr ys : φ : K →

K [[u]], where Y = φ(y) = y + u and X = φ(x) = x +∑∞
n=1 D

(n)
y (x)un . Now

yq − y = xm = x
q+1
n , so x = (yq − y)

n
q+1 . Since 1

q+1 = q2 − q + 1− q3

q+1 it follows
that

x =
(
y2 − y

) n
q+1 = (yq − y

)n(q2−q+1) (
yq − y

)− n
q+1 q

3 = (yq − y
)n(q2−q+1)

x−q
3
.

Therefore

X = (Yq − Y
)n(q2−q+1)

X−q
3
. (14.26)
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Next, Xq
3 = xq

3 + uq
3
R(u) for some R(u) ∈ K [[u]]. Thus

X−q
3 = x−q

3 − uq
3
R1(u) for some R1(u) ∈ K [[u]].

Using (14.26) we obtain that

X ≡ (yq − y + uq − u
)n(q2−q+1)

x−q
3
mod (uq+1).

We have

(
yq − y − u + uq

)n(q2−q) = (yq2 − yq − uq + uq
2
)n(q−1)

≡
(
yq

2 − yq
)n(q−1) − n(q − 1)

(
yq

2 − yq
)n(q−1)−1

uq mod uq+1

and

(y2 − y − u + uq)n ≡ (yq − y − u)n + n(yq − y − u)n−1uq

≡ (yq − y − u)n + n(yq − y)n−1uq mod uq+1.

Therefore

X ≡ (yq − y − u + uq)n(q
2−q)(yq − y − u + uq)nx−q

3

≡
[(
yq

2 − yq
)n(q−1) − n(q − 1)

(
yq

2 − yq
)n(q−1)−1

uq
]

[
(yq − y − u)n + n(yq − y)n−1uq

]
x−q

3

≡ a(yq − y − u)n + buq mod uq+1

with

a = x−q
3[(

yq
2 − yq

)n(q−1) − n(q − 1)(yq2 − yq
)n(q−1)−1

uq
]

= x−q
3(
yq − y

)n(q2−q)−q[
(yq − y)q

2 + nuq
]

= x−q
3
xmn(q

2−q)−mq(xmq2 + nuq
) �= 0

and

b = x−q
3(
yq

2 − yq
)n(q−1)

n(yq − y)n−1 = nx−q
3
xmnq(q−1)xm(n−1) �= 0.

Thus

X ≡ a(yq − y − u)n + buq mod uq+1, (14.27)

where a and b are two nonzero elements of K .
Consider the k-vector space
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V = LK
(
(dx)−1K

)
=
⊕
r,s

kxr ys with (r + 1)n + (s + 1) ≤ q,

and the respective K -vector space consisting of the power series of the form

U =
⊕
r,s

K XrY s, with (r + 1)n + (s + 1) ≤ q.

We will find the Hermitian powers associated to U . We have

us = (Y − y)s ≡ 0 mod

(
s⊕
i=0

KY i
)
, (14.28)

and

(yq − y − u)n =
n∑

m=0

(
n

m

)
(yq − y)m(−1)n−mun−m

∈
n∑

m=0

n−m⊕
i=0

KY i =
n⊕
j=1

KY j .

Therefore, using (14.27) we obtain that X ≡ buq mod M1, where M1 is the K -
vector space 〈uq+1, Y i |0 ≤ i ≤ n〉. Since b is a nonzero element of K , it follows
that uq ∈ 〈uq+1, X, Y i |0 ≤ i ≤ n〉 ⊆ 〈uq+1, X jY i | j + i

n ≤ 1〉. Then the K -vector
space

⊕
j+ i

n≤1 K X
jY i = M contains a power series of the form P = uq+uq+1P1 ∈

M . Thus P ≡ 0 mod
(⊕

j+ i
n≤r K X

jY i
)
and if we choose s ≥ 0 such that (r +

1)n+ (s + 1) ≤ q , by (14.28) we have Prus ≡ 0 mod

(⊕
j+ i

n≤r
t≤s

K X jY i+t
)
. Now

nj + i ≤ nr , so

( j + 1)n + (i + t + 1) ≤ nr + n + s + 1 = (r + 1)n + (s + 1) ≤ q.

Hence Prus ∈ U for all r, s such that (r + 1)n + (s + 1) ≤ q.
There are g = (m−1)(q−1)

2 power series of the form Prus from U .
Note that

Prus = urq+s +
∞∑

n=rq+s+1
a(r,s)n un .

That is, {Prus | r, s ≥ 0, (r + 1)n+ (s + 1) ≤ q} is a Hermitian basis of U whose set
of Hermitian invariants is

{rq + s | r, s ≥ 0, (r + 1)n + (s + 1) ≤ q}.

By Theorem 14.2.35 the orders of the Wronskian
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Wy
(
xr ys | r, s ≥ 0, (r + 1)n + (s + 1) ≤ q

)
are precisely {rq + s}r,s . It follows by Theorem 14.2.48 that the gap sequence of the
field is {rq + s + 1}r,s ��

Remark 14.2.76. Theorem 14.2.75 provides us with examples of function fields K/k
where k is algebraically closed of characteristic p > 0 such that the gap sequence of
K is nonclassical.

Example 14.2.77. In the setting of Theorem 14.2.75, let p = q = 3 and m = 4. Then
K = k(x, y) with

y3 − y = x4.

We have g = (m−1)(q−1)
2 = 3 and q + 1 = 4 = mn = 4n, so n = 1. Thus the gap

sequence of the field is

{rq + s + 1 | r, s ≥ 0, (r + 1)n + (s + 1) ≤ q}
= {3r + s + 1 | r, s ≥ 0, r + 1+ s + 1 ≤ 3}
= {3r + s + 1 | r, s ≥ 0, r + s ≤ 1}
= {1, 2, 4} �= {1, 2, 3} .

14.3 Automorphism Groups of Algebraic Function Fields

Let K/k be a function field, and

Autk K := {σ : K → K | σ is a field automorphism σ |k = Idk}.

If K = k(x), then

Autk(k(x)) ∼= GL(2, k)/k∗ ∼= PGL(2, k) = {σ | σ x = ax + b

cx + d
, ad − bc �= 0}.

In particular, if k is infinite, then Autk(k(x)) is infinite too. If K is an elliptic function
field and |k| = ∞, then |Autk(K )| = ∞ by Theorem 9.6.13. Klein and Poincaré
[117] proved using the analytic theory of Riemann surfaces that when g = gK ≥ 2
and k = C is the field of complex numbers, then Autk(K ) is finite. On the other hand,
Weierstrass and Hurwitz gave algebraic proofs of the same result [70, 162]. Because of
its algebraic nature, the latter method is applicable to the case of an arbitrary constant
field k of characteristic 0. In the case of characteristic p �= 0, H. L. Schmid [136]
proved the theorem using Weierstrass points, in a way similar to Hurwitz’s proof.
On the other hand, K. Iwasawa and T. Tamagawa [73, 74, 75] gave another proof of
Schmid’s theorem using the representation of Autk(K ) in the k-vector space DK (0)
of holomorphic differentials of K instead of Weierstrass points.
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In this section we present the proof of Schmid’s theorem following the ideas of
Iwasawa and Tamagawa and of Schmid himself. At the end of the section we give
a proof or Hurwitz’s theorem. Let k be an algebraically closed field of characteristic
p ≥ 0, K/k a function field over k, and G = Autk(K ). We assume g = gK ≥ 1 and
g ≥ 2 for our main result.
Proposition 14.3.1. Let σ ∈ G be such that σ(k(x)) = k(x) for some x ∈ K \ k.
Let n = [K : k(x)]. Assume that p � n whenever p > 0 and n is arbitrary whenever
p = 0. Then

o(σ ) ≤ max{n(2n + 2g − 2)(2n + 2g − 3)(2n + 2g − 4), pn(g + 1)} <∞.
Proof. Set DK/k(x) = P

a1
1 · · ·Pas

s and

{Pi ∩ k(x) | 1 ≤ i ≤ s} = {℘1, . . . , ℘r },

where the latter has cardinality r ≤ s. For each ℘i , let ℘ = ℘i and let

℘ = B
e1
1 · · ·Bet

t , B j ∈ {P1, . . . ,Ps}
be the decomposition of ℘ in K . First assume that p does not divide e j for all 1 ≤ i ≤
r and 1 ≤ j ≤ t (if p = 0 this condition is automatically satisfied). In this case the
contribution of each ℘ to the different is

B
e1−1
1 · · ·Bet−1

t ,

whose degree is equal to

t∑
j=1
(e j − 1) =

t∑
j=1

e j − t = n − t ≤ n − 1.

By the Riemann–Hurwitz genus formula, we have

2(g − 1) = 2(gk(x) − 1)n + dK (DK/k(x)).

Thus dK (DK/k(x)) := d = 2n + 2(g − 1) > 2(n − 1). In particular, 3 ≤ r ≤ d. Now
since σ(k(x)) = k(x), it follows that σ(DK/k(x)) = DK/k(x) and σ permutes the sets
{P1, . . . ,Ps} and {℘1, . . . , ℘r }. With the identification σ ∈ Sr , where Sr denotes the
symmetric group, if

σ = (α(1)1 , . . . , α(1)i1 )(α
(2)
1 , . . . , α

(2)
i2
) · · · (α(u)1 , . . . , α(u)iu

)

is the cyclic decomposition of σ , where i1 + · · · + iu = r , some power σ	 with
	 ≤ i1i2i3 ≤ r(r − 1)(r − 2) ≤ d(d − 1)(d − 2) fixes at least 3 distinct prime
divisors from the set {℘1, . . . , ℘r }. By Exercise 5.10.14, σ	|k(x) = Idk(x). We have
|Autk(x)(K )| | [K : k(x)] = n. Thus σ n	 = IdK . Therefore
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o(σ ) ≤ n	 ≤ nd(d − 1)(d − 2)
= n(2n + 2g − 2)(2n + 2g − 3)(2n + 2g − 4).

Now assume that p divides some e j . In particular, we have p > 0.
Notice that σ |k(x) ∈ Autk(k(x)), so that σ x = ax+b

cx+d with ad − bc �= 0.
If c = 0, then σ x = a

d x + b
d = αx + β for some α �= 0. If α = 1, we have

σ x = x + β. If α �= 1,

σ

(
x + β

α − 1
)
= σ x + β

α − 1
= αx + β + β

α − 1 = αx +
αβ

α − 1 = α
(
x + β

α − 1
)
.

Let y = x + β
α−1 ; then k(x) = k(y) and σ y = αy.

If c �= 0, we may assume that c = 1 and σ x = ax+b
x+d = a + b−ad

x+d .
Therefore σ(x − a) = σ x − a = b−ad

x+d = b−ad
x−a+(a+d) . Put y = x − a. Then

k(x) = k(y) and σ y = α
y+β for some α �= 0. Let λ ∈ k be a solution of the equation

λ2 − βλ− α = 0. Note that λ �= 0 and λ �= β since α �= 0.
Let δ = β−λ

λ
= β

λ
− 1 �= 0 and let z = y+β

y+λ . Then det
(
1 β
1 λ

)
= λ − β �= 0.

Therefore k(x) = k(y) = k(z) and

σ z = σ y + β
σ y + λ =

α
y+β + β
α

y+β + λ
= βy + (α + β

2)

λy + (α + λβ) = δz + 1.

From this point on we can proceed as above.
In short, we may assume without loss of generality that

σ x = αx or σ x = x + α, with α ∈ k.

If σ x = x + α, then σ px = x + pα = x . Therefore o(σ p) ≤ n and

o(σ ) ≤ pn ≤ pn(g + 1).
Now assume σ x = αx with α ∈ k∗. If the divisor of x in K is of the form

(x)K = Qn
1

Qn
2
, where Q1, Q2 are distinct prime divisors, then Q1 and Q2 are fully

ramified prime divisors in K/k(x) and vQ1(DK/k(x)) = vQ2(DK/k(x)) = n−1. Thus
we have

g = 1+ (0− 1)n + 1

2
dK (DK/k(x))

= 1− n + 1

2
(2(n − 1))+ 1

2
dK

(
DK/k(x)

Qn−1
1 Qn−1

2

)

= 1

2
dK

(
DK/k(x)

Qn−1
1 Qn−1

2

)
> 0.
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Therefore DK/k(x) is divided by at least three different prime divisors of k(x) and the
first case of the proof can be applied to this situation. We obtain

o(σ ) ≤ n(2n + 2g − 2)(2n + 2g − 3)(2n + 2g − 4).
Next, suppose that either Nx or Zx , say Nx , is divisible by at least two distinct

prime divisorsQ1,Q2 of K . Since σ x = αx , we haveNσx = Nx and Zσx = Zx . Hence

there exists some 	 ≤ n such that Qσ
	

1 = Q1. Let τ = σ	. We have

	K (Q
−r
1 ) ≥ dK (Q

r
1)− g + 1 = r − (g − 1).

It follows that 	K (Q
−r
1 ) = 2 for some r ≤ g + 1. Let y ∈ LK (Q

−r
1 ) \ k satisfy

Ny = Qs
1 and 1 ≤ s ≤ r ≤ g + 1. Since Qτ1 = Q1, there exist β ∈ k \ {0},

γ ∈ k, such that τ(y) = βy + γ . If β = 1, then τ p(y) = y + pγ = y. Since
[K : k(y)] = dK (Ny) = s ≤ g + 1, we have o(τ p) ≤ g + 1. Hence

o(τ ) ≤ p(g + 1) and o(σ ) ≤ 	p(g + 1) ≤ np(g + 1).

We may assume that β �= 1, and using the same argument as above, we may assume
that τ y = βy. Let F(X, Y ) =∑i, j ai j X

iY j be an irreducible polynomial over k such

that F(x, y) = 0 ([k(x, y) : k(x)] ≤ [K : k(x)] = n). Since τ = σ	, τ x = α	x and
τ y = βy, we have

0 = τ F(x, y) = F(τ x, τ y) = F(α	x, βy).

Therefore

F(α	X, βY ) = ξF(X, Y ) (14.29)

for some nonzero ξ in k.
Now suppose ai j �= 0 and ai ′, j ′ �= 0 for some (i, j) �= (i ′, j ′), and consider

z := xi−i ′ y j− j ′ . Then xi ′ y j ′ z = xi y j . By (14.29), we have

α	i
′
xi
′
β j

′
y j
′ = ξ xi ′ y j ′ and α	i x iβ j y j = ξ xi y j .

Thus

τ(xi
′
y j
′
z) = α	i ′xi ′β j ′ y j ′τ z = ξ xi ′ y j ′ = τ(z) = τ(xi y j ) = αi	xiβ j y j
= ξ xi y j = ξ xi ′ y j ′ z.

It follows that τ z = xi−i ′ y j− j ′ = z. Since Q1, Q2 | Nx , Ny = Qs
1, it is easy to see

that z /∈ k. Now
degX F ≤ [K : k(y)] = s ≤ g + 1 and degY F ≤ [K : k(x)] = n,

so |i − i ′| ≤ g + 1 and | j − j ′| ≤ n. Therefore



574 14 Automorphisms and Galois Theory

[K : k(z)] = dK (Nz) ≤ |i − i ′|dK (Nx )+ | j − j ′|dK (Ny)

≤ (g + 1)n + n(g + 1) = 2n(g + 1).

Finally, τ(z) = z implies that o(τ ) ≤ 2n(g + 1). Hence o(σ 	) ≤ 2n(g + 1) and since
g ≥ 1,

o(σ ) ≤ 2	n(g + 1) ≤ 2n2(g + 1)
≤ n(2n + 2g − 2)(2n + 2g − 3)(2n + 2g − 4).

This completes the proof. ��
Let P be a fixed prime divisor in K . Our next step is to prove that the group

GP = {σ ∈ G | Pσ = P} is finite. We already know this for g = 1 (see the proof of
Theorem 9.6.14). Here we present another proof.

First we prove that the elements σ ofGP have finite order. In characteristic 0 this is
easy to see. Choose r to be the minimum pole number ofP, that is, 	K (P−r ) = 2 and
r ≤ g+1. If x ∈ LK (P−r )\k, then σ x = ax+b with a �= 0. Then [K : k(x)] ≤ g+1
and by Proposition 14.3.1, o(σ ) < ∞. The same argument may be applied in case k
has characteristic p where p � r .

Now we consider the case char k = p ≥ 0. Let n1, . . . , ng, ng+1 be the first g+ 1
pole numbers of P with 1 < n1 < n2 < · · · < ng = 2g < ng+1 = 2g + 1. Choose
x0 = 1 and xi ∈ LK

(
P−ni

) \ LK (P−(ni−1)) for 1 ≤ i ≤ g + 1. Then

	K
(
P−ni

) = i + 1 and {x0, x1, . . . , xi } a k-basis of LK (P−ni )
for 1 ≤ i ≤ g + 1. We have Nxi = Pni . Every σ ∈ GP induces a k-linear
map σ : LK (P−ni ) → LK (P−ni ) for each i . Therefore σ : LK (P−(2g+1)) →
LK (P−(2g+1)) satisfies σ x j =

∑ j
i=1 ai j xi . Thus the matrix Aσ of σ with respect

to the basis {x1, . . . , xg+1} is triangular, that is,

Aσ =

⎛⎜⎝a1 ∗
. . .

0 ag+1

⎞⎟⎠ (14.30)

with ai = aii for 1 ≤ i ≤ g + 1. If Aσ = Idg+1, then σ xg = xg and σ xg+1 =
xg+1. Since

[
K : k(xg, xg+1)

]
divides

[
K : k(xg)

] = dK (Nxg ) = dK (P2g) =
2g and

[
K : k(xg+1)

] = dK (Nxg+1) = dK (P2g+1) = 2g + 1, it follows that[
K : k(xg, xg+1)

] = 1 and K = k(xg, xg+1). Hence σ = 1.
Proposition 14.3.2. Assume that k has characteristic p ≥ 0 and let g ≥ 1. For any
σ ∈ GP, o(σ ) is finite and o(σ ) has an upper bound depending only on g and p.

Proof. The characteristic values of Aσ are {a1, . . . , ag, ag+1}. If Aσ is diagonalizable,
that is, there exists a basis {y1, . . . , yg, yg+1} of LK

(
P−(2g+1)

)
such that

σ yi = ai yi for 1 ≤ i ≤ g + 1
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and yi ∈ LK
(
P−ni

) \ LK (P−ni+1), then
σ(k(yg)) = k(yg) and σ(k(yg+1)) = k(yg+1).

Furthermore, one of the degrees
[
K : k(yg)

] = 2g and
[
K : k(yg+1)

] = 2g + 1 is
relatively prime to p. It follows by Proposition 14.3.1 that

o(σ ) ≤ max{n(2n + 2g − 2)(2n + 2g − 3)(2n + 2g − 4), pn(g + 1)}
with n = 2g or 2g + 1.

Now assume that Aσ is not diagonalizable. Then the minimum polynomial of Aσ
contains a quadratic linear divisor. Using the Jordan canonical form for Aσ , we see
that there exist two k-linearly independent elements y1, y2 in LK

(
P−(2g+1)

)
such that

σ y1 = ay1, σ y2 = y1 + ay2 with 0 �= a = ai = a j and i �= j . Set y′1 = y1, y′2 = ay2.
Then

σ y′1 = σ y1 = ay1 = ay′1

and

σ y′2 = σ(ay2) = aσ y2 = a(y1 + ay2) = a(y′1 + y′2).

Put z = y′2
y′1
. We have σ z = σ y′2

σ y′1
= a(y′1+y′2)

ay′1
= z + 1 and σ(k(z)) = k(z). We have

[K : k(z)] = n = dK (Nz) ≤ dK (Ny′2)+ dK (Zy′1) ≤ 2(2g + 1).
If char k = 0, then by Proposition 14.3.1, o(σ ) is finite and has a bound depending

only on g. If p > 0, then σ p(z) = z. Assuming E = K 〈σ p〉, we get k(z) ⊆ E and
Gal(K/E) = 〈σ p〉. Therefore

o(σ p) = [K : E] ≤ n ≤ 2(2g + 1).
Thus o(σ ) ≤ 2p(2g + 1). ��

Let π be a prime element for P such that vP(π) = 1. For σ ∈ GP, σπ is also a
prime element forP and we have

σπ ≡ γσπ mod P2,

where γσ is a P-unit, that is, γ ∈ (ϑP/P
)∗ = k∗. Define

φ : GP → k∗ (14.31)

by φ(σ) = γσ .

Clearly, φ is a group homomorphism. Let N = kerφ. Thus GP/N ∼= � =
{γσ |σ ∈ G} < k∗. Since the orders of the elements in GP are bounded, it follows
that the orders of the elements of GP/N ∼= � are bounded too. In particular, � < k∗
is the cyclic group consisting of the mth roots of unity in k∗ for some m satisfying
(p,m) = 1.
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Let � ∈ GP, o(�) = m, and let E be the fixed field of �. Then P is fully ramified
in K/E and since p � m, vP(DK/E ) = m − 1. Let ℘1 = P ∩ E and ℘2, . . . , ℘r be
the prime divisors in E that are ramified in K and set

℘1 = Pm, ℘i = (P(i)1 · · ·P(i)gi )ei for 2 ≤ i ≤ r.

Then

d : = dK (DK/E ) = (m − 1)+
r∑
i=2
(ei − 1)gi = (m − 1)+

r∑
i=2
(ei gi − gi )

= (m − 1)+
r∑
i=2

(
m − m

ei

)
= m − 1+ m

(
r∑
i=2

(
1− 1

ei

))
.

Using the genus formula we obtain 2(g − 1) = 2(gE − 1)m + d. If gE = 0, then
2(g−1) = −2m+d . Now d = (m−1)+∑r

i=2(m−gi ) ≤ r(m−1) and−2m+d ≥ 0,
so r ≥ 3. If r = 3, then 2(g − 1) = −2m + (m − 1)+ m

(
1− 1

e2

)
+ m

(
1− 1

e3

)
=

m − 1− m
(
1
e2
+ 1

e3

)
.

Thus 2g − 1 = m
(
1− 1

e2
− 1

e3

)
. The case e2 = e3 = 2 is impossible, so

we conclude that e2 ≥ 2 and e3 ≥ 3. Therefore 2g − 1 = m
(
1− 1

e2
− 1

e3

)
≥

m
(
1− 1

2 − 1
3

)
= m

6 . It follows that m ≤ 6(2g − 1).
Next, if r ≥ 4 we have

2(g − 1) = −2m + (m − 1)+ m
r∑
i=2

(
1− 1

ei

)
≥ −m − 1+ m

(
1− 1

2

)
(r − 1) ≥ −m − 1+ 3m

2
= m

2
− 1.

Thus m ≤ 2(2g − 1) in this case.
Finally, if gE ≥ 1, we have 2(g − 1) ≥ d ≥ m − 1. Hence m ≤ 2g − 1. In any

case, we obtain that

|�| = |GP/N | = m ≤ 6(2g − 1). (14.32)

In order to study N , we consider the basis {x1, . . . , xg+1} given in (14.30). We
have σπ = γπ mod π2 with γ = γσ ∈ k∗. Moreover, for xi ∈ LK

(
P−ni

) \
LK
(
P−(ni−1)

)
, we obtain xi ≡ cπ−ni mod π−ni+1 with c ∈ k∗, so

σ xi ≡ c(σπ)−ni mod π−ni+1 ≡ cγ−niπ−ni mod π−ni+1.

On the other hand, since σ xi = ai xi +
∑

j<i ai j x j , we have

ai cπ
−ni ≡ cγ−niπ−ni mod π−ni+1.
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It follows that ai = γ−ni for 1 ≤ i ≤ g + 1. In particular,

ag = γ−ng = γ−2g and ag+1 = γ−ng+1 = γ−(2g+1).

Now N is the kernel of the map φ given in (14.31), so N consists of the elements σ in
GP for which the matrix Aσ has the form⎛⎜⎝1 ∗

. . .

0 1

⎞⎟⎠ . (14.33)

If p = char k = 0, any such matrix is of infinite order unless it is the unit matrix.
Therefore, using Proposition 14.3.2, we get N = {Id} in characteristic 0. Assume
p > 0. Then any element of N corresponds to a matrix of the form B = Id+A,

where A is of the form A =

⎛⎜⎝0 ∗
. . . ∗

0 0

⎞⎟⎠. Clearly, A is nilpotent and B pn = Id+Apn .

Therefore the order of any element of N is a power of p. We will prove that N is
a finite p-group. If C, D ∈ N , it is easy to verify that CDC−1D−1 is of the form⎛⎜⎜⎜⎝
1 0 ∗ ∗
0
. . .
. . . ∗

0 · · · 1 0
0 · · · 0 1

⎞⎟⎟⎟⎠, so that

N ′ = [N , N ] ⊆

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
1 0 ∗ ∗
0
. . .
. . . ∗

0 · · · 1 0
0 · · · 0 1

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

In this way, we obtain

N (i) =
[
N (i−1), N (i−1)

]
⊆

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

i︷ ︸︸ ︷
0 · · · 0 ∗
. . .

. . .

0
...

0

· · · · · ·
...

...

· · · · · ·

0
...

0

⎫⎪⎬⎪⎭ i
· · · · · · · · · · · ·
0 · · · · · · 0
0 · · · · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Therefore N (g) = {Id} and N is a nilpotent group.
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Proposition 14.3.3. Assume that k has characteristic p > 0, H < GP, and gK > 0.
If H is an abelian group such that the order of any element of H is a power of p and
for any nontrivial finite subgroup U of H, KU is a rational function field, then H is a
cyclic group of order 1, p, or p2.

Proof. Assume that U is a cyclic subgroup of H generated by an element σ of order
p. Then KU = k(x). Since p = [K : k(x)] = |U | we may assume thatNx = Pp. For
any τ ∈ H , we have K 〈σ,τ 〉 ⊆ k(x) and since 〈σ, τ 〉 is abelian, k(x)/K 〈σ,τ 〉 is normal.
Therefore τ(k(x)) = k(x) and Pτ = P. Since o(τ ) is a power of p, it follows that
τ x = x + a, a ∈ k. Thus τ p(x) = x , τ p ∈ U , and τ p2 = e. That is, the order of any
element τ of H is 1, p, or p2. The result will follow if we prove that the only subgroup
of H of order p is U . Assume that there exists V < H , V = 〈τ 〉, such that o(τ ) = p
and U �= V . Then τ x = x + a and since τ �∈ U , a is nonzero. Thus

τ
( x
a

)
= τ(x)

a
=
( x
a

)
+ 1.

Setting y = x
a , we have k(x) = k(y) and τ(y) = y+ 1, σ y = y,Ny = Pp. Applying

the same to V instead of U , we obtain the existence of an element z in K such that
Nz = Pp, τ(z) = z, and σ z = z + 1.

Now z /∈ k(y) since σ z �= z and [K : k(y)] = p. Therefore K = k(y, z). Consider
the subgroupUV of H , and notice that |UV | = p2. Set E = KUV ; then [K : E] = p2

and E a rational function field. Clearly, vP (y p − y) = −p2 and vP(z p − z) = −p2.
We have

σ(y p − y) = y p − y, τ (y p − y) = (τ y)p − τ(y) = y p + 1− (y + 1) = y p − y.

Hence y p − y ∈ E . Similarly, z p − z ∈ E and[
K : k(y p − y)

] = dK (Ny) = p2 = [K : E] .

Therefore E = k(y p − y) = k(z p − z) = k(w), where (w)E = ℘0
℘∞ and ℘∞ = Pp2

in K . Since Ny = Nz = Nw, we have y p − y = Aw + B and z p − z = Cw + D.
In particular, y p − y = β(z p − z) + γ for some β, γ ∈ k such that β �= 0. Let
u = y − β1/pz. Then

u p − u − γ = y p − βz p − y + β1/pz − γ
= β(z p − z)− βz p + β1/pz =

(
β1/p − β

)
z.

If β1/p − β = 0, then u is a constant and therefore k(y) = k(z), which contradicts the
fact that U �= V . If β1/p − β �= 0, then z ∈ k(u) and y ∈ k(u). Thus K = k(y, z) ⊆
k(u), which contradicts gK > 0. This completes the proof. ��

Proposition 14.3.4. Assume char k = p > 0 and let gK > 0. Let H < GP be such
that H is abelian and every element of H is a power of p. Then H is a finite group
such that |H | ≤ p2(2g − 1).



14.3 Automorphism Groups of Algebraic Function Fields 579

Proof. Let U be any finite subgroup of H , say of order n (a power of p). Putting
E = KU , we obtain using the Riemann–Hurwitz genus formula

2(g − 1) = 2n(gE − 1)+ d,

where d = dK (DK/E ). Since Pσ = P for all σ ∈ U,P is fully ramified in K/E and
Pn−1 | DK/E . Therefore d ≥ n − 1. If 2g ≤ n, then

gE = 2(g − 1)− d

2n
+ 1 ≤ n − 2− (n − 1)

2n
+ 1 = − 1

2n
+ 1 < 1.

Thus, in this case, gE = 0. Let U be a maximal finite subgroup of H such that
gE > 0. Then |U | < 2g. We have H/U < Autk(E), so H/U satisfies the condition
of Proposition 14.3.3. Therefore |H/U | ≤ p2, and

|H | ≤ p2|U | ≤ p2(2g − 1). ��
Proposition 14.3.5. Let G be a group with at least n elements (G may be infinite)
and a subgroup H contained in the center of G such that |H | = p and G/H is an
elementary abelian p-group (that is, σ p = e for all σ ∈ G/H and G/H is abelian).
Then G contains an abelian subgroup with at least

√
pn elements.

Proof. If G is infinite, then since every element of G is of order at most p2 (σ ∈ G,
σ p ∈ H , σ p

2 = e), we may replace G by a finite subgroup of order at least n and
assume that G is finite. Let U be a maximal abelian normal subgroup of G. Then
H ⊆ U , where U/H is an elementary abelian p-group. Let σ1, . . . , σs ∈ U be such
that the elements σ i = σi mod H form a basis of U/H . Let σ ∈ G be arbitrary and
let

�i (σ ) = �i := σσiσ−1σ−1i , 1 ≤ i ≤ s.

Since G/H is an abelian group, we have �i (σ ) ∈ H . Define

φ : G → Hs

by φ(σ) = (�1(σ ), . . . , �s(σ )).

It is easy to verify that φ is a group homomorphism whose kernel is

kerφ = {σ ∈ G | �i (σ ) = 1, 1 ≤ i ≤ s} = {σ ∈ G | σσi = σiσ for all i}.
Therefore kerφ ⊇ U and kerφ � G. If σ ∈ kerφ, then σ commutes with U and
〈σ,U 〉 is an abelian subgroup containing U . Since G/U ∼= G/H

U/H is abelian, then
〈σ,U 〉 is a normal subgroup of G. It follows that 〈σ,U 〉 = U and σ ∈ U . Therefore
kerφ = U . Now |G/U | ≤ |Hs | = ps and |U/H | = ps , so |U | = ps+1. Hence

n ≤ |G| = |G/U ||U | ≤ ps ps+1 and
√
pn ≤ |U |. ��

Now we return to GP. The group GP/N = � is finite of order at most 6(2g− 1).
Consider again the basis {x1, . . . , xg, xg+1} as in (14.30). Set x = x1, that is, Nx =
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P−n1 , where {1, x} is a basis of LK (P−n1). By (14.33) σ x = x+ασ where ασ ∈ k for
σ ∈ N . Since forψ, σ ∈ N , we have (ψσ)(x+aσ ) = x+aσ+aψ = x+aψσ , it follows
that� : N → k,�(σ) = aσ , is a group homomorphism. Let N1 = ker�. Then N/N1
is a subgroup of k. Therefore N/N1 is an elementary abelian p-group. If N1 = {Id},
N is abelian and by Proposition 14.3.4 we have |N | ≤ p2(2g − 1) < p3(2g − 1).
Assume N1 �= {Id}. If σ ∈ N1 then σ ∈ Autk(x)(K ). Thus

|N1| ≤ [K : k(x)] = dk(Nx ) = n1.

Since N is nilpotent, there exists N2 such that [N1 : N2] = p, N2 * N and N1/N2 is
contained in the center of N/N2. Let E = K N2 . Then

p [K : E] = [N1 : N2] |N2| = |N1| ≤ [K : k(x)] = n1.

We have N2 ⊆ GP, so P is fully ramified in K/E . Let ℘ = P ∩ E . If gE = 0

there exists z ∈ E such that (z)E = ℘′
℘
and (z)K = q

P[K :E] with [K : E] < n1. This
contradicts the fact that n1 is the first pole number of P. Thus gE > 0.

Next, since K/E is normal and N2 is trivial on E , we may consider N/N2 as a
subgroup of Autk(E). By Proposition 14.3.4 any abelian subgroup of N/N2 is of order
at most p2(2gE − 1).

Let H = N1/N2 < N/N2 = N . Then H is contained in the center of N , |H | = p,
and N/H is elementary abelian. By Proposition 14.3.5, N contains an abelian sub-
group of order at least

√
pn′ if |N | ≥ n′. It follows that√

pn′ ≤ p2(2gE − 1).
Thus pn′ ≤ p4(2gE − 1)2, so |N/N2| ≤ p3(2gE − 1)2 and

|N | ≤ |N2|p3(2gE − 1)2 = |N1|p−1 p3(2gE − 1)2 = |N1|p2(2gE − 1)2.
Finally, using the genus formula and the facts that P is fully ramified in K/E and
[K : E] = |N2|, we obtain

2(gK − 1) = 2[K : E](gE − 1)+ d(DK/E ) ≥ 2|N2|(gE − 1)+ (|N2| − 1).
Hence (2gK − 1)2 ≥ |N2|2(2gE − 1)2 ≥ |N2|(2gE − 1)2. It follows that

|N | ≤ |N1|p2(2gE − 1)2 ≤ |N1|p2 (2gK − 1)
2

|N2| = p3(2gK − 1)2.

Since |GP/N | ≤ 6(2g − 1), we have |GP| ≤ 6p3(2g − 1)3. In characteristic 0, we
have |N | = 1 and |GP| ≤ 6(2g − 1). We have proved the following theorem:
Theorem 14.3.6. Let K/k be a function field of genus g ≥ 1 where k is algebraically
closed of characteristic p ≥ 0. Let P be any prime divisor of K and GP its decom-
position group. Then:

(i) If p = 0,GP is a cyclic group of order at most 6(2g − 1).
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(ii) If p > 0, the p-Sylow subgroup N of GP is normal,

|N | ≤ p3(2g − 1)2,
and GP/N is a cyclic group of order ≤ 6(2g − 1). Finally,

|GP| ≤ 6p3(2g − 1)3. ��
As a corollary of Theorem 14.3.6, we obtain our main result.

Theorem 14.3.7. Let K/k be a function field where k is algebraically closed and of
genus g ≥ 2. Then Autk(K ) is a finite group.
Proof. Define W = {P | P is a Weierstrass point of K }. By Corollary 14.2.52, we
have 1 ≤ |W | ≤ (g − 1)g(3g − 1).

Set G = Autk(K ). If σ ∈ G then W σ = W since the gap sequences P and Pσ

are the same. Thus G acts on W and if P ∈ W we have

[G : GP] = |orbit of P| = |{Pσ | σ ∈ G}| ≤ |W |.
Hence |G| ≤ |W ||GP| <∞. ��

Remark 14.3.8. If char k = 0, we have |W | ≤ g3 − g = (g − 1)g(g + 1) and |GP| ≤
6(2g − 1). Thus |G| ≤ 6(g − 1)g(g + 1)(2g − 1). This bound is much larger than
Hurwitz’s bound, since Hurwitz [70] proved that |G| ≤ 84(g − 1). We present a
proof of Hurwitz’s theorem above (Theorem 14.3.13). If char k = p > 0, P. Roquette
[126] showed that Hurwitz’s bound is valid if p > g + 1 with one exception. Henn
[66] proved that |G| ≤ 3(2g)5/2 when K does not belong to one of four exceptional
classes.

Corollary 14.3.9. Let k be an arbitrary field and K/k any function field. Let k̄ be the
algebraic closure of k and K̄ = K k̄. If gK̄ ≥ 2, then Autk(K ) is a finite group.
Proof. Let σ ∈ Autk(K ). Then σ can be extended to σ̃ ∈ Autk̄(K̄ ) and σ̃ |k̄ = Idk̄ .

In fact, if we consider A = {(ϕ, E)}, where E is a function field such that K ⊆
E ⊆ K̄ and whose field of constants kE satisfies k ⊆ kE ⊆ k̄, and ϕ ∈ AutkE (E)
is such that ϕ|K = σ , then A �= ∅. Indeed, (σ, K ) ∈ A and the relation (ϕ1, E1) ≤
(ϕ2, E2) ⇐⇒ E1 ⊆ E2, ϕ2|E1 = ϕ1 defines a partial order in A. By Zorn’s lemma,
A contains a maximal element (̃σ , F). If F �= K , there exists α ∈ K \ F . Let f (x) =
Irr(α, x, F). Since α ∈ k, we have f (x) ∈ kF [x]. Thus σ̃ ( f (x)) = f (x) and σ̃ can be
extended to F(α) by defining σ̃ α = α. Therefore F = K̄ .

This proves that the function ϕ : Autk(K ) → Autk̄(K̄ ), defined by ϕ(σ) = σ̃ ,
σ̃ |K = σ, σ̃ |k = Id, is a group monomorphism and |Autk(K )| ≤ |Autk̄(K̄ | <∞. ��

Corollary 14.3.10. For any function field K/k of genus g such that gK̄ ≥ 2 we have

|Autk(K )| ≤
⎧⎨⎩
6(2g − 1)(g − 1)g(g + 1) if char k = 0,

6p3(2g − 1)3(g − 1)g(3g − 1) if char k = p.
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Proof. By Theorem 14.3.7 we have |AutK̄ (K̄ )| ≤ 6(2gK̄ −1)(g3K̄ −gK̄ ) if char k = 0,
and |Autk̄(K̄ )| ≤ 6p3(2gK̄ − 1)3(gK̄ − 1)gK̄ (3gK̄ − 1) if char k = p > 0. Since K̄
is an extension of constants, Theorem 8.5.3 yields gK̄ ≤ g. The result follows. ��

Remark 14.3.11. If k is not an algebraically closed field, then Autk(K )may be infinite
even though gK ≥ 2.
Example 14.3.12 (Rosenlicht). Let k be an imperfect separably closed field, that is,
k �= k p, and if 	/k is an algebraic separable extension, then 	 = k. Let a ∈ k be such
that a /∈ k p and set K = k(x, y), where y p − y = ax p.

For each β ∈ k, let α satisfy α p − α = aβ p. Since T p − T − aβ p is a separable
polynomial, we have α ∈ k. Now let σ ∈ Autk(k(x)) be defined by σ x = x + β.
Since K/k(x) is a cyclic extension, σ can be extended to K by putting σ y = y + α
(because (σ y)p − (σ y) = (y + α)p − (y + α) = y p − y + (α p − α) = ax p + aβ p =
a(x + β)p = aσ x p).

Therefore there are infinitely many automorphisms in Autk(K ) defined by σ x =
x + β, σ y = y + α, where α, β ∈ k, α p − α = aβ p.

Using Tate’s genus formula we can prove that gK = (p−1)(p−2)
2 (see Exercise

14.5.16). In particular, if p ≥ 5, we get gK ≥ 6 and |Autk(K )| = ∞.
Theorem 14.3.13 (Hurwitz). Let K/k be a function field of genus g ≥ 2 where k is
algebraically closed of characteristic either 0 or p with p > 2g+1. Then |Autk K | ≤
84(g − 1).
Proof. Let G = Autk K and let F := KG be the fixed field of K under G. Then K/F
is a finite Galois extension of degree m = |Autk K |. Let g′ be the genus of F . By the
Riemann–Hurwitz genus formula (Theorem 9.4.2) we have

g = 1+ m(g′ − 1)+ 1/2 degK (DK/F ). (14.34)

Let p1, . . . , pt be the prime divisors of F that are ramified in K . Then DK/F =∏t
i=1(conF/K pi )

e′i−1, where e′i = ei + εi , each ei is the ramification index of pi in

K/F , and εi ≥ 0. Therefore degK (conF/K pi )
e′i−1 = m + hi (εi − 1), where hi is the

number of prime divisors in K above pi . Hence (14.34) simplifies to

2g − 2 = m(2g′ − 2+ δ), (14.35)

where δ =∑t
i=1 δi , δi = 1+ hi (εi−1)

m = 1+ εi−1
ei
= ei−1+εi

ei
. Notice that δi ≥ ei−1

ei
≥

1
2 for all i = 1, 2, . . . , t .
The proof ofm ≤ 84(g−1) consists of a detailed case-by-case analysis of (14.35).

First we study the possible genus g′. If g′ ≥ 2, it follows from (14.35) that m ≤ g− 1
and we are done. If g′ = 1, then mδ = 2g − 2 > 0. Therefore t > 0, δ ≥ δi ≥ 1/2,
and m ≤ 4(g − 1).

Finally we consider the case g′ = 0. In this situation we obtain 2g − 2 = m(δ −
2) > 0, so δ > 2 and m = 2g−2

δ−2 . Now we consider all the choices for t . If t ≥ 5,
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then since δi ≥ 1/2, we obtain δ ≥ 5/2 and thus m ≤ 4(g − 1). For the case t = 4,
one of the δi ’s must satisfy δi > 1/2, say δ1. Hence δ1 ≥ 2/3 and δ ≥ 2/3 + 3/2, so
δ − 2 ≥ 1/6 and m ≤ 12(g − 1).

The next case is t ≤ 3. First we consider the case that K/F is tamely ramified, that
is, εi = 0 for i = 1, . . . , t . In this situation and since δ1 < 1, δ2 < 1, and δ − 2 > 0,
we have t = 3. Assume that e1 ≤ e2 ≤ e3. It is straightforward to verify that

• if e1 ≥ 3 then m ≤ 24(g − 1),
• if e1 = 2 and e2 ≥ 4, then m ≤ 40(g − 1),
• if e1 = 2 and e2 = 3, then e3 ≥ 7 and m ≤ 84(g − 1),
• if e1 = e2 = 2, then δ3 > 1, which is not possible.

This finishes the tamely ramified case.
It remains to consider the case that g′ = 0, t ≤ 3, and K/F is wildly ramified. In

particular, we have char k = p > 0.We will show that under the hypothesis p > 2g+1
this case does not occur.

Let p = p1 be a wildly ramified prime divisor of F and P = P1 a prime divisor
in K above p. There exists a subgroup H of order p of the inertia group of P/p. Let
E = K H be the fixed field of K under H . Let q := P ∩ E be the prime divisor of
E below P. Then eK/K (P|p) = p. By Example 5.8.8 we know that the power of P
appearing in DK/E is equal to (λ + 1)(p − 1) for some integer λ ≥ 1. In particular,
this power is greater than or equal to 2(p − 1).

Let d := degK (DK/E ). Then by the genus formula, we have

2g − 2 = p(2g′′ − 2)+ d, (14.36)

where g′′ denotes the genus of E . If g′′ ≥ 1, then we obtain from (14.36) and from
d ≥ 2(p − 1) that 2g − 2 ≥ 2p − 2, contrary to our assumption on p.

Thus g′′ = 0 and (14.36) becomes 2g−2 = −2p+d. Let r ≥ 1 be the number of
ramified prime divisors in K/E . Then, if r = 1, by Example 5.8.8 we have (DK/E ) =
P(λ+1)(p−1) with λ ≥ 1. Therefore 2g − 2 = −2p + (λ+ 1)(p − 1).

The case λ = 1 is not possible since in this case we would obtain g = 0. Thus
λ ≥ 2 and then we obtain 2g − 2 ≥ −2p + 3(p − 1) = p − 3. This is contrary to the
hypothesis p > 2g + 1.

Therefore r ≥ 2. This case is also impossible since in this situation, by (14.36) we
have

2g − 2 = −2p + d ≥ −2p + 2r(p − 1)
and this implies g ≥ (p − 1)(r − 1) ≥ (p − 1). ��

14.4 Properties of Automorphisms of Function Fields

Theorem 14.4.1 (Schmid). Let K/k be an algebraic function field such that k is al-
gebraically closed. Let σ ∈ Autk(K ) be such that σ �= Id. Then σ fixes at most 2g+ 2
distinct prime divisors of K , where g denotes the genus of K .
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Proof. If g = 0, it follows by Exercise 5.10.14 that there are at most two places fixed
under σ . Denote by n the order of σ . Since σ is not the identity, we have n > 1. If
g = 1 and σ has at least one fixed point, then o(σ ) <∞ by Theorem 14.3.6. Assume
g ≥ 1 and let E = K 〈σ 〉. Then K/E is a Galois extension with Galois group 〈σ 〉. By
the genus formula,

2(gK − 1) = 2n(gE − 1)+ d, (14.37)

where d = dK (DK/E ). Let P1, . . . ,Pr be r distinct places of K fixed by σ . Since
Pσ1 = Pi and k is algebraically closed, ℘i := Pi ∩ E is fully ramified in K/E .
Therefore (P1 · · ·Pr )

n−1 | DK/E and d ≥ r(n − 1).
It follows by (14.37) that

2(gK − 1) ≥ −2n + r(n − 1),

or

r ≤ 2(gK + n − 1)
n − 1 = 2

(
gK
n − 1 + 1

)
≤ 2(gK + 1). ��

Remark 14.4.2. Theorem 14.4.1 is no longer true if we do not assume that k is alge-
braically closed.

Example 14.4.3. Let K = Fp(x) and let σ ∈ AutFp (K ) be different from the identity

(for instance, σ(x) = x + 1). Let E = Fp(x)〈σ 〉. By Čebotarev’s density theorem
(Theorem 11.2.20), there exist infinitely prime divisors in E such that

(
K/E
℘

)
= 〈σ 〉.

All these primes correspond to fully ramified or fully inert prime divisors, that is,
℘ = Pe in K . Since at most two prime divisors of E are ramified in K (Exercise
14.5.6), there are infinitely many inert prime divisors and Pσ = P for all such prime
divisors.

Using Theorem 14.4.1 we can provide a proof of Theorem 14.3.7 when char k = 0
and K is not a hyperelliptic function field (of course we have used Theorem 14.3.6 to
prove Theorem 14.4.1).

Proposition 14.4.4. Assume that K/k is a function field of genus g ≥ 2 and k an
algebraically closed field of characteristic 0. If K is not a hyperelliptic function field,
then Autk(K ) is finite.

Proof. Let W = {P ∈ PK | P is a Weierstrass point}. By Theorem 14.2.62, |W | >
2g + 2. For any σ ∈ G = Autk(K ), we have σ(W ) = W . Thus there is a group
homomorphism φ from G to the symmetric group SW . We have kerφ = {σ ∈ G |
Pσ = P for all P ∈ W }. By Theorem 14.4.1, kerφ = {Id} and |G| ≤ |SW | <∞. ��

Theorem 14.4.5 (Madden–Valentini). Let k be an algebraically closed field and let
L/K be a finite extension of function fields over k. Suppose that for every intermediate
extension M such that K � M ⊆ L, we have
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gM > [M : K ]2 + 2[M : K ](gK − 1)+ 1.
Then for every σ ∈ Autk(L), we have σ(K ) = K.

Proof. If σ ∈ Autk(L) is such that σ(K ) �= K , let M = Kσ(K ). By the Castelnuovo–
Severi inequality (Theorem 14.1.3) we have

gM ≤ [M : K ]gK + [M : σ(K )]gσ(K ) + ([M : K ]− 1)([M : σ(K )]− 1)
= 2[M : K ](gK − 1)+ [M : K ]2 − 1,

which contradicts the hypothesis. ��

Theorem 14.4.6 (Valentini–Madan [154]). Let K/k be an algebraic function field of
genus g, for an algebraically closed field k. Let T = {P1, . . . ,Pt } be a set of prime
divisors of K with t > 2g + 3. Then for all but finitely many prime divisors Q, the set
T ′ = T ∪ {Q} has the property that the identity is the only element of Autk(K ) that
maps T ′ into itself.

Proof. By Theorem 14.4.1, if θ, σ ∈ Autk(K ) satisfy σ(℘) = θ(℘) for 2g+3 distinct
prime divisors, then σ = θ . Put

� = {σ ∈ Autk(K ) | |σ(T ) ∩ T | ≥ t − 1}.
Let A1, . . . , At be the subsets of T of cardinality t − 1. Any σ ∈ Autk(K ) is

determined by its action on each Ai . Now if �i = {σ ∈ Autk(K ) | Aσi ⊆ T }, then
|�i | ≤ t! and � ⊆ ⋃t

i=1 �i . Therefore |�| ≤ t t! < ∞. For each γ ∈ � such that
γ �= Id, let

Wγ = {Q ∈ PK ,Q /∈ T | Qγ = Q or Qγ ∈ T }.
If |Wγ | > 2g + 3, then since γ �= Id, γ can fix at most 2g + 2 prime divisors. Thus
there exist Q and Q′ ∈ Wγ such that Qγ and (Q′)γ ∈ T . Since |γ (T ) ∩ T | ≥ t − 1,
either Qγ or (Q′)γ ∈ γ (T ) ∩ T . This contradiction shows that |Wγ | ≤ 2g + 3.

Let W =⋃ γ∈�
γ �=Id

Wγ . Then |W | ≤ (2g+3)|�| <∞. LetQ /∈ W ∪ T and let T ′ =
T ∪ {Q}. Suppose that σ ∈ Autk(K ) satisfies σ(T ′) = T ′. Then |σ(T ) ∩ T | ≥ t − 1.
Therefore Qσ = Q or Qσ ∈ T , and σ ∈ �. Since Q /∈ W = ⋃ γ∈�

γ �=Id
Wγ , it follows

that if σ �= Id, we have Q /∈ Wσ , so Qσ �= Q and Qσ /∈ T . This contradiction shows
that σ = Id and proves the theorem. ��

Definition 14.4.7. Let G be a finite group. Then G is called realizable over a function
field K/k, with k algebraically closed, if there exists a Galois extension L/K such
that

AutK (L) = Gal(L/K ) ∼= G.

The group G is called exactly realizable over K if the Galois extension L/K satisfies

Autk(L) = AutK (L) = Gal(L/K ) ∼= G.
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Our next goal is to prove that given any finite separable extension K/k(x) (k
algebraically closed), and any function field F over k of genus at least two, there
exists a separable extension L/F such that

Autk(L) = AutF (L) ∼= Autk(x)(K )

and such that [L : F] = [K : k(x)].

Proposition 14.4.8. Let K/k(x) be a finite separable extension and let M ∈ R satisfy
M > 0. Then there exists a separable extension K1/k(x) such that

(i) [K1 : k(x)] = [K : k(x)],
(ii) Autk(x)(K1) ∼= Autk(x)(K ),
(iii) For any field E such that k(x) � E � K1, we have gE ≥ M.

Proof. Let L be the Galois closure of K/k(x), and G = Gal(L/k(x)). Since there

L

K

k(x)

exist finitely many ramified prime divisors in L/k(x), by means of a
variable substitution x �→ ax+b

cx+d with ad − bc �= 0, we may assume

that if P | Nx or P | Zx , then P is not ramified in L/k(x). Choose
m ∈ N such that m ≥ M + 1 and char k � m. Let t = x1/m . Then
k(t)/k(x) is a cyclic extension of degree m (because the primitive
mth roots of unity are in k) such that the primes ℘0, ℘∞ are the only
prime divisors of k(x) that are ramified in k(t), and they are fully
ramified, where (x)k(x) = ℘0

℘∞ (see Example 5.8.9).

Since ℘0 and ℘∞ are not ramified in L/k(x) and they are fully ramified in
k(t)/k(x), then L and k(t) are linearly disjoint over k(x).

L L(t) = Lk(t)

k(x) k(t)

Using Galois theory, it follows that L(t)/k(t) is a Galois extension and Gal(L(t)/
k(t)) ∼= Gal(L/k(x)).

Also, K (t)/k(t) is a separable extension satisfying [K (t) : k(t)] = [K : k(x)] and
Autk(t)(K (t)) ∼= Autk(x)(K ). In fact, we can exhibit an isomorphism

G1 = Gal(L(t)/k(t)) ϕ−→ Gal(L/k(x)) = G

σ �−→ σ |L .

If K = LH , then K (t) = L(t)ϕ
−1(H). In particular, [K (t) : k(t)] = |G1|

|ϕ−1(H)| =
|G|
|H | =

[K : k(x)].
Finally, Autk(x)(K ) = {σ ∈ G | σ(K ) = K } = ϕ({θ ∈ G1 | θ(K (t)) = K (t)}) =

ϕ(Autk(t) K (t)) ∼= Autk(t)(K (t)).
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L L1 = L(t)

K K1 = K (t)

E E1

k(x) k(t)

Let E1 be any intermediate field such that
k(t) � E1 � K1 = K (t). Let E = E1 ∩ L . Since k
is algebraically closed, E1/E is a cyclic extension
of degree m with [E : k(x)] = [E1 : k(t)] ≥ 2.
Since ℘0 and ℘∞ decompose in E/k(x), the prime
divisors in E above ℘0 and ℘∞ are totally ramified
in E1/E . It follows that dE1(DE1/E ) ≥ 4(m − 1).
Using the genus formula we obtain

gE1 = 1+ m(gE − 1)+ 1

2
dE1(DE1/E ) ≥ 1− m + 2(m − 1) = m − 1 ≥ M.

Therefore K1/k(t) satisfies the conditions of the proposition. ��

Remark 14.4.9. The field extension constructed in the proof of Proposition 14.4.8 is
an extension K1/k(t), where t is not necessarily the same element x given by the
field extension K/k(x). In order that K1/k(x) satisfy the same conditions as in the
proposition, first notice that the map

ψ : k(t)→ k(x)

defined by ψ( f (t)) = f (x)

is a field isomorphism. Since K1/k(t) is an algebraic extension, ψ can be extended to
a field monomorphism

ψ̃ : K1→ k(x),

where k(x) is an algebraic closure of k(x). Therefore if K2 = ψ̃(K1), then K2/k(x)
satisfies the same properties as K1/k(t). Furthermore, since [K1 : k(t)] > 1, there
exists at least one prime divisor in k(t) that is ramified in K1 (Exercise 9.7.10). We
may fix this prime in advance using the change of variables

t �→ at + b

ct + d
,

and therefore we may choose in advance a prime divisor of k(x) that is ramified in
K2/k(x) as well as a prime divisor that is not ramified in K2/k(x). This observation
will be used in our next result.

Theorem 14.4.10 (Stichtenoth). Let K/k(x) be a finite separable extension for an
algebraically closed field k such that [K : k(x)] > 1. Let F/k be any function field
over k with gF ≥ 2. Then there exists a separable extension L/F such that

[L : F] = [K : k(x)] and Autk(L) = AutF (L) ∼= Autk(x)(K ).
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Proof. Let H := Autk(F). By Theorem 14.3.7, H is finite. Let n = |H | and let
T = FH be the fixed field. Then F/T is a Galois extension and Gal(F/T ) = H . Let
q be a rational prime number such that q �= char k, q ≥ 2gF , and (q, n) = 1. If B is
a prime divisor of F , then by Corollary 3.5.8 there exists z ∈ F such that Nz = Bq .
Thus we have:

(a) F/k(z) is a separable extension of degree q (Theorem 3.2.7).
(b) IfP = B∩ k(z), thenP is the pole divisor of z in k(z) andP is fully ramified in

F/k(z).
(c) Since [F : T ] = n, [F : k(z)] = q, and q � n, then k(z) � T (z) � F and since q

is prime, T (z) = F .

Now by Lemma 14.1.2, there exists a place Q in T such
that Q decomposes fully in F/T , that is, there exist n differ-
ent places B1, . . . ,Bn of F dividing Q, and the restrictors
Pi := Bi ∩ k(z) are distinct places of k(z).

T
n

F

q

k(z)
Furthermore, we may choose P1 to be unramified in F/k(z).

Q · · · B1 . . .Bn

T
n

F

q ...

k(z)

P1 · · ·Pn

By Proposition 14.4.8 there exists a separable extension K1/k(z) such that [K1 :
k(z)] = [K : k(x)], Autk(z) K1 ∼= Autk(x) K , and for any intermediate field M satis-
fying k(z) � M � K1, we have gM > 2gF [K : k(x)] + ([K : k(x)] − 1)2. Since
K1 �= k(z) there exists at least one and only finitely many ramified primes in K1/k(z)
(Exercise 9.7.10 and Theorem 5.2.33). By Remark 14.4.9 we may assume that P1 =
B1∩k(z) is ramified in K1/k(z) andP2, . . . ,Pn are unramified in K1/k(z). We may
also assume that P = B ∩ k(z) is unramified
in K1/k(z). In short, Q = B1 · · ·Bn is fully
decomposed in F/T , Pi = Bi ∩ k(z),P =
B∩k(z),P = Bq ,Nz = Bq ,P not ramified in
K1/k(z),P2, . . . ,Pn not ramified in K1/k(z),
P1 ramified in K1/k(z), [K1 : k(z)] = [K :
k(x)],Autk(z) K1 ∼= Autk(x) K , and if k(z) �
M � K1, gM > 2gF [K : k(x)] + ([K :
K (x)] − 1)2. Let L be the Galois closure of
K1/k(z). Thus, by Exercise 5.10.13, P is not
ramified in L/k(z) becauseP is not ramified in
K1/k(z). Since P is fully ramified in F/k(z)

T
n

F

q

K1

k(z)

F E FL

k(z) K1 L

then F and L are linearly disjoint over k(z).
Using basic Galois theory we obtain Gal(FL/F) ∼= Gal(L/F∩L) = Gal(L/k(z)).

Let E := FK1. Then E/F is a separable extension such that [E : F] = [K1 :
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k(z)] = [K : k(x)] and AutF (E) ∼= Autk(z)(K1) ∼= Autk(x)(K ). Obviously,
AutF (E) � Autk(E). Let σ ∈ Autk(E) and let M be an intermediate field such
that F � M � E . Let M1 = M ∩ K1. Then [M : F] = [M1 : k(z)]. It follows that

gM ≥ gM1 > 2[K : k(x)]gF + ([K : k(x)]− 1)2
≥ 2[M : F]gF + ([M : F]− 1)2.

Using Theorem 14.4.5 we get σ(F) = F . Thus σ0 = σ |F ∈ Autk(F) = H .
Since Q = B1 · · ·Bn , where n = |H |, we have that the decomposition group

D(B1|Q) is the identity. Now σ0(B1) = Bi for some i . Since P1 is ramified in
K1/k(z) and P1 is not ramified in F/k(z), it follows that B1 is ramified in E/F .
Therefore σ0(B1) = Bi is also ramified in E/F . On the other hand, for j ≥ 2, B j

is not ramified in E/F since P j = B j ∩ k(z) is not ramified in K1/k(z) (Exercise
5.10.12). It follows that σ0(B1) = B1 and σ0 = IdF . Therefore σ ∈ AutF (E). This
completes the proof of the theorem. ��

Theorem 14.4.10 has several interesting consequences.

Theorem 14.4.11. Let G be any nontrivial finite group, |G| > 1. If G is realizable
over a rational function field, then G is exactly realizable over any function field K
where gK ≥ 2 and k is an algebraically closed field. ��

Theorem 14.4.12. For each function field K/k where k is algebraically closed, gK ≥
2 and for each n ∈ N, n ≥ 3, there exists an extension L/K such that [L : K ] = n
and Autk(L) = {Id}.
Proof. Let E/k(x) be the extension E = k(x, y) where yn−1(y − 1) = x . Then
E = k(y). The pole divisor of x in k(x) has ramification index n, so [E : k(x)] = n.
Since y satisfies

f (T ) = T n − T n−1 − x,

we have f ′(T ) = nT n−1− (n− 1)T n−2 = T n−2 (nT − (n − 1)). If the characteristic
of k divides n, the root of f ′(T ) is 0, which is not a root of f (T ). If the characteristic of
k does not divide n, the roots of f ′(T ) are 0 and n−1

n . Therefore E/k(x) is a separable
extension.

Let σ ∈ Autk(x) k(y). We have (x)E = Pn−1
0 P1

Pn∞ . Since σ x = x and n − 1 ≥ 2, it
follows thatPσ0 = P0,Pσ1 = P1 andPσ∞ = P∞. Using Theorem 14.4.1 or Exercise
5.10.14 we conclude that σ = Id. Therefore Autk(x) E ∼= {Id}. The result follows by
Theorem 14.4.10. ��

Lemma 14.4.13. Let n ≥ 2 and let G be the transitive subgroup of Sn generated by
transpositions. Then G = Sn.

Proof. It suffices to show that at least one transposition belongs to G. We will show
that (1, 2) ∈ G. Since G is transitive, there exists σ ∈ G such that σ(1) = 2. Choose
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σ ∈ G such that σ(1) = 2 and t is minimum, where σ = ε1 · · · εt , εi ∈ G, and εi
a transposition. If t = 1, then σ = (1, 2) and we are done. If t > 1, then we have
ε1 = (1, a1) and a1 �= 2; indeed, assume otherwise. Then ε1 = (x, y)with x �= 1 �= y.
Then since σ(1) �= 1, there exists εi = (1, x) with i > 1. Therefore if σ ′ = ε1σ , we
have σ ′(1) = 2 (because ε1(1) = 1) and σ ′ is a product of t − 1 transpositions
of G. This contradicts the minimality of t . Hence ε1 = (1, a1). If ε2 = (x, y), then
a1 ∈ {x, y} since otherwise, σ ′ = ε1ε3 · · · εt satisfies σ ′(1) = 2 (because ε2(a1) = a1)
and σ ′ is a product of t − 1 transpositions of G. Therefore ε2 = (a1, a2). In this
way we obtain σ = (1, a1)(a1, a2)ε3 · · · εt . Finally, (1, a1)(a1, a2) = (1, a2, a1) ∈
G, (1, a1)(1, a2, a1)2 = (1, a1)(1, a1, a2) = (1, a2) ∈ G and σ ′ = (1, a2)ε3 · · · εt
satisfies σ ′(1) = 2. This shows that t = 1 and (1, 2) ∈ G. ��

Now we will prove that if char k = p ≥ 0 and p � n(n− 1) (n arbitrary for p = 0)
then the equation h(T ) = T n+T −x ∈ k(x)[T ] has Galois group Sn . For this purpose
we first prove two lemmas.

Lemma 14.4.14. Let K be the splitting field of h(T ) over k(x) and let ℘∞ be the pole
divisor of x in k(x). Then ℘∞ ramifies in K/k(x). Further, if p � n, (n arbitrary for
p = 0) then the ramification index of any prime P of K dividing ℘∞ is n.

Proof. First note that h(T ) is separable since the roots of h′(T ) = nT n−1 + 1 belong
to k (if p | n, h′(T ) = 1; if p � n, the roots of h′(T ) are n−1√−1/n ∈ k). On the other
hand, if y is any root of h(T ),

vP(y
n + y) = vP(x) = e(P|℘∞)v℘∞(x) = −e(P|℘∞) �= 0.

Hence vP(yn+y) = nvP(y) = −e(P | ℘∞). Therefore vP(y) = −1, n = e(P|℘∞),
and ℘∞ is fully ramified in k(y)/k(x), so y �∈ k (unless n = 1). Thus K/k(x) is a
Galois extension. If p � n, then ℘∞ is tamely ramified in k(y)/k(x) (y any root
of h(T )). Now K = ∏n

i=1 k(yi ), where y1, . . . , yn are the roots of h(T ). By Ab-
hyankar’s lemma (Theorem 12.4.4) we have

e(P|℘∞) =
[
e(qi |℘∞) | 1 ≤ i ≤ n

] = n,

where qi = P ∩ k(yi ). ��

Lemma 14.4.15. If p � n(n− 1), then for any prime divisor ℘ �= ℘∞ of k(x) ramified
in K/k(x), the decomposition group D = D(P|℘) of any prime P of K dividing ℘
is cyclic of order 2. Moreover, if σ ∈ Gal(K/k(x)) generates D, then the permutation
induced by σ on the roots of h(T ) is a transposition.

Proof. Let x − β be a prime element for ℘ in k(x). Consider h(T ) mod ℘ ∈(
k[x]℘/℘k[x]℘

)
[T ] ∼= k[T ].

We have h(T ) mod ℘ = T n+T−β. If℘ is ramified in K/k(x), then℘ is ramified
in the completions KP/k(x)℘ (Theorem 5.6.3 and Propositions 5.6.7 and 5.6.9). On
the other hand, by Theorems 5.7.18 and 5.8.1, ℘ is ramified if and only if h(T ) ∈
k(x)℘[T ] has a multiple root. By Hensel’s lemma (Theorem 2.3.14), it follows that ℘
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is ramified only when h(T ) mod ℘ has multiple roots. Finally, if h(T ) = h(T ) mod
℘ = T n + T − β has a multiple root α, then

h(α) = αn + α − β = 0 and h′(α) = nαn−1 + 1 = 0.

Thus α �= 0 and αn = −αn = −α + β, and
(
1− 1

n

)
α = β, that is, α = nβ

n−1 . Since

h′′(α) = n(n − 1)αn−2 �= 0, α is of multiplicity two and it is the only multiple root of
h(T ). Hence

h(T ) = (T − z)2
n−2∏
i=1
(T − zi ) ∈ k(x)℘[T ]

with zi �= z j , i �= j , and zi �= z, i = 1, . . . , n − 2. Since D = Gal(KP/k(x)℘), we
have |D| = [KP : k(x)℘

] = 2 and if σ ∈ D and σ �= Id, then σ fixes z1, . . . , zn−2
and thus σ is a transposition. ��

Theorem 14.4.16 (Hayes). Let h(T ) = T n + T − x ∈ k(x)[T ]. If K is the splitting
field of h(T ) over k(x), and if p = char k and p � n(n − 1) (n arbitrary for p = 0),
then K/k(x) is a Galois extension and Gal(K/k(x)) is isomorphic to the symmetric
group Snon n elements.

Proof. By Lemma 14.4.14, h(T ) is separable and thus K/k(x) is a Galois extension.
Let G = Gal(K/k(x)). Let H be the subgroup of G generated by the decomposition
groups of all ramified prime divisors P of K that do not divide the pole divisor ℘∞
of x in k(x). Set F = K H . In F/k(x), the only prime divisor k(x) that can ramify is
℘∞.

If B1, . . . ,Br are the prime divisors of F dividing ℘∞, it follows by Lemma
14.4.14 that ℘∞ is tamely ramified in F/k(x). Thus DF/k(x) = B

e1−1
1 · · ·Ber−1

r ,
where ei is the ramification index e(Bi |℘∞). Therefore

d = dK (DF/k(x)) =
r∑
i=1
(ei − 1) = [F : k(x)]− r.

By the Riemann–Hurwitz formula we have

2gF − 2 = −2[F : k(x)]+ d = −[F : k(x)]− r.

Hence r + [F : k(x)] ≤ 2 and F = k(x). Thus H = G. By Lemma 14.4.15, G
is generated by transpositions. Since G is a transitive subgroup of Sn , using Lemma
14.4.13 we obtain G = Sn . ��

Theorem 14.4.17 (Madden–Valentini, Stichtenoth). Let G be any finite group and
let k be an algebraically closed field. There exists a separable extension K/k(x) such
that Autk(x)(K ) ∼= G.
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Proof. Choose n ∈ N such that p � n(n − 1) (we assume p �= 2), and n ≥ |G|.
Then G < Sn . Let L/k(x) be such that Gal(L/k(x)) ∼= Sn . Let E = LG . Then
Gal(L/E) ∼= G. Choose a prime number q such that 2 < q �= char k and q ≥ 2gE
and choose two places P1,P2 in E that are unramified in L/E . Let A = P1P

q−1
2 .

Since dE (AP−11 ) = dE (AP−12 ) = q − 1 ≥ 2gE − 1 and dE (A) ≥ 2gE , it follows by
the Riemann–Roch theorem that

	E (A
−1) = q − gE + 1 = 1+ 	E (A−1P1) = 1+ 	E (A−1P2).

Therefore LE (A−1P−12 ) and LE (A
−1P1) are proper subspaces of LE (A−1) and since

k is infinite, there exists

x ∈ LE (A−1)\(LE (A−1P1) ∪ LE (A−1P2)).

It follows that Nx = P1P
q−1
2 . Then [E : k(x)] = d(Nx ) = q. Since q �= char k,

E/k(x) is a separable extension of degree q.
We have G = Gal(L/E) = AutE (L) < Autk(x)(L). Let σ ∈

Autk(x)(L), and consider T = L〈σ 〉 ⊇ k(x). Then k(x) ⊆ T ∩
E ⊆ E . Since [E : k(x)] = q is prime and [T ∩ E : k(x)] divides
q , it follows that [T ∩ E : k(x)] is 1 or q and T ∩ E = k(x) or
T ∩ E = E . Assume that T ∩ E = k(x). Since L/E and L/T are

L

G

k(x)
q

E

normal extensions, L/k(x) is a normal extension too.

This is impossible since (x)L = conE/L ((x)E ) = conE/L

(
A

P1P
q−1
2

)
. Now P1

and P2 are unramified in L/E , so we have

conE/L P1P
q−1
2 = (Q1 · · ·Qh)(Q

′
1 · · ·Q′h)q−1.

This contradicts Proposition 5.2.16. It follows that T ∩ E = E and E ⊆ T . Therefore
σ ∈ AutE (L), and

Autk(x)(L) = AutE (L) = Gal(L/E) ∼= G.

This proves the theorem for p �= 2. For p = 2 we consider the equation h(T ) =
T n + T 2 − x ∈ k(x)[T ], where n ≥ 3 and 2 � n. Then h(T ) is separable and since
2 � n, Lemma 14.4.14 holds for h(T ). Also, the conclusion of Lemma 14.4.15 holds
since the only possible multiple root of h(T ) mod ℘ = T n + T 2 − β holds when
β = 0 and this is a root of multiplicity 2. Therefore the Galois group of the splitting
field of h(T ) is Sn . The rest of the proof is the same as in the case p �= 2. ��

Remark 14.4.18. One of the key points in the proof of Theorem 14.4.17 is the fact that
for infinitely many n ∈ N, Sn is the Galois group of some extension K/k(x). In fact,
for every n ∈ N there exists a Galois extension K/k(x) such that Gal(K/k(x) ∼= Sn .

Proposition 14.4.19 (Stichtenoth). Let k be any algebraically closed field and let n ∈
N. Let K = k(x, y) be given by
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y2
n−2∏
i=1
(y − ai )− x(y − an−1)n−1(y − an) = 0,

where a1, . . . , an are n distinct elements of k \ {0}. If K̃ is the Galois closure of
K/k(x), then Gal(K̃/k(x)) ∼= Sn.

Proof. See Exercise 14.5.8. ��

14.5 Exercises

Exercise 14.5.1. LetB be an integral divisor,A any divisor, and n ≥ 0 an integer such
thatB−1 divides An . Prove thatB−1 divides Am for all m satisfying 0 ≤ m ≤ n.

Exercise 14.5.2. If k is an arbitrary field, prove that for a prime divisor p, n is a gap of
p ⇐⇒ δ(pn−1)− δ(pn) = f , where f = dK (p).

Exercise 14.5.3. Prove that Autk(K ) = {Id} where K/k is the function field given in
Example 5.2.31.

Exercise 14.5.4. Give an example where |Autk(K )| <∞, but
∣∣Autk̄(K̄ )∣∣ = ∞, where

k̄ is an algebraic closure of k and K̄ = K k̄.

Exercise 14.5.5. Prove that if F is a field such that the only derivative on F is the
0-derivative, then F is an algebraic extension of Q or Fp. Here a derivative on a ring
R is a function D : R→ R such that

D(x + y) = D(x)+ D(y) and D(xy) = D(x)y + xD(y)

for all x, y ∈ R.

Exercise 14.5.6. Let K = k(x) for some arbitrary field k, and let σ ∈ Autk(K ) be
such that σ �= Id and o(σ ) <∞. Prove that if E = k(x)〈σ 〉, then there are at most two
distinct divisors in E that are ramified in K .

Exercise 14.5.7. Let K/k be an algebraic function field for some algebraically closed
field k. If the genus of gK = g of K is nonzero, prove that any σ ∈ Autk(K ) \ {Id}
has 2g+ 2 fixed points if and only if p = char k �= 2, o(σ ) = 2, and K 〈σ 〉 is a rational
function field. In particular, K/k is an elliptic or a hyperelliptic function field.

Exercise 14.5.8. Let k be an algebraically closed field. Let K̃ be the normal closure
of K/k(x), where K = k(x, y) = k(y) is given by

y2
n−2∏
i=1
(y − ai )− x(y − an−1)n−1(y − an)

and a1, . . . , an ∈ k are distinct elements of k \ {0}. Prove the following statements:
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(i) K/k(x) is separable, that is,

f (T ) = T 2
n−2∏
i=1
(T − ai )− x(T − an−1)n−1(T − an),

where f (T ) ∈ k(x)[T ] is a separable polynomial. Thus K̃/k(x) is a Galois ex-
tension.

(ii) Set (x)k(x) = p0
p∞ . IfP0 is a prime divisor of K̃ above p0, then the decomposition

group D(P0|p0) is a transposition in G = Gal(K̃/k(x)) < Sn .
Hint: See the proof of Lemma 14.4.15.

(iii) Let H < G be such that K = K̃ H , that is, H is a stabilizer in G. Then H is a
maximal subgroup of G. Equivalently, there is no field F such that k(x) � F �
K . This is the same as saying that G is a primitive subgroup of Sn .

(iv) Any primitive subgroup of Sn that contains a transposition is Sn itself.
Hint: Consider a subgroup G of Sn that contains (1, 2) and let H = StabG(1) =
{σ ∈ G | σ(1) = 1}. If there exists r ≥ 2 such that 2h = h(2) �= r for all h ∈ H ,
that is, H is not transitive on {2, . . . , n}, put M = 〈{(1, 2h) | h ∈ H〉. Prove that
MH is a subgroup of G satisfying H � MH � G by showing that there is no
ψ ∈ MH such that ψ(1) = r .

(v) Conclude that Gal(K/k(x)) is Sn .

Exercise 14.5.9. Let k be an algebraically closed field of characteristic p > 0. Let
L/K be a finite separable extension of function fields over k. LetP be a prime divisor
of L that is either unramified or tamely ramified over K . Set p := P ∩ K . If λ is a
gap number of p, then prove that jλ is a gap number of P for any positive integer j
dividing the ramification index e of P in L/K .

Exercise 14.5.10. Let k be an algebraically closed field of characteristic p > 0. Let
L/K be a finite separable extension, P a prime divisor in L that is unramified over
K , and p := P ∩ K . Let A be a divisor of K such that DL/K conK/L A is an integral
divisor of L that is relatively prime toP. If a positive integer λ satisfies

δ
(
pλ−1A

)
− δ (pλA) = 1,

prove that λ is a gap number of P.

Exercise 14.5.11. Let k be an algebraically closed field of characteristic p > 0. Let
K/k(x) be a cyclic extension of degree m with (m, p) = 1. Show that if at least m+3
prime divisors of K are fully ramified, then every fully ramified prime is a Weierstrass
point.

Hint: We have K = k(x, y), ym = ∏s
i=1(x − ai )λi for 0 < λi < m and

λ1, . . . , λm+3 are relatively prime to m (see Example 5.8.9). Prove that m is not a
gap number of Pi where (x − ai )k(x) = pi

p∞ , conk(x)/K pi = Pi , and pi = Pm
i . Show

that vPi (ω) = m where ω = (x − ai )
∏s

j=1(x − a j )b j y−adx ,
aλ j
(m,λ j )

= b j e j + c j for
0 ≤ c j < e j , and 0 < a < m is such that (a,m) = 1 and aλi ≡ m − 1 mod m.

Conclude that the gap sequence of Pi does not satisfy the condition of Theorem
14.2.40.
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Exercise 14.5.12. Let k be an algebraically closed field of characteristic 2 and let
K/k(x) be a cyclic extension of degree 2 with gK ≥ 2. Prove that K is classical,
that is, the gap sequence of K is {1, 2, . . . , gK }, and prove that the Weierstrass points
of K are precisely the ramified prime divisors of K over k(x).

Hint: Use Theorem 14.1.3 or Corollary 14.1.4.

Exercise 14.5.13. Let L/K be an extension of function fields of degree n over an
algebraically closed field of constants k. If gL > n2gK + (n− 1)2, prove that the fully
ramified prime divisors are Weierstrass points of L .

Exercise 14.5.14. Let L/K be as in Exercise 14.5.13. Let r be the number of fully
ramified prime divisors of L/K and assume that n is relatively prime to the char-
acteristic. Prove that if r > 2n(gK + 1), then the fully ramified prime divisors are
Weierstrass points.

Exercise 14.5.15. Let L/K , r , and n be as in Exercise 14.5.14. If r > 4 and L is
classical, prove that the fully ramified prime divisors are Weierstrass points.

Exercise 14.5.16. Let k be any nonperfect field of characteristic p > 0, and let a ∈ k
be such that a �∈ k p. Let K = k(x, y) be the function field defined by

y p − y = ax p.

Prove that gK = (p−1)(p−2)
2 .

Hint: Set k′ := k
(
a1/p

)
. Then K ′ := Kk′ = k′

(
y − a1/px

)
is a rational function

field. Since x p = y p−y
a belongs to both k(y) and k′(y), it follows that K/k(y) and

K ′/k′(y) are purely inseparable extensions of degree p. Using the Tate genus formula
for K ′/k′(y) show that for any place p′ of k′(y) distinct from the infinite prime divisor
p′∞ of k′(y), we have

rp′∞ = −1 and rp′ = 0 or 1.

Deduce that rp is 0 or 1 whenever p is a place of k(y) that is distinct from the infinite
prime p∞ of k(y). Finally, calculate rp∞ .

Exercise 14.5.17. Assume that char k = p > 0. Let a ∈ k be such that a1/p �∈ k, and
K = k(x, y) with y2 = x p − a. Prove that gK = p−1

2 and Autk(K ) = Autk(x)(K ) =
{1, σ } with σ(y) = −y. Conclude that Kk (a1/p) is a rational function field.
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Cohomology of Groups

In this appendix we present a brief introduction to the cohomology of groups. This
topic is independent of the rest of the material contained in the book. The reason why
we decided to include it is that in order to continue the study of arithmetic properties
of function fields, it is absolutely necessary to master group cohomology as a tool.

In this spirit, Theorem A.3.6 is especially useful. Also, notice that Hilbert’s Theo-
rem 90 (Theorem A.2.16) was used in Chapter 5 for the study of Kummer and Artin–
Schreier extensions.

A.1 Definitions and Basic Results

For the results and definitions on modules and rings that we will be using in this
chapter, we refer to [4] and [9].

Definition A.1.1. For a group G we define the integral group ring as

Z[G] = {∑
σ∈G

aσ σ | aσ ∈ Z y aσ = 0 for all but a finite number of σ
}
,

with the operations(∑
σ∈G

aσ σ

)
+
(∑
σ∈G

bσ σ

)
=
∑
σ∈G

(aσ + bσ ) σ,

and (∑
σ∈G

aσ σ

)(∑
σ∈G

bσ σ

)
=
∑
σ∈G

( ∑
θψ=σ

aθbψ

)
σ.

Proposition A.1.2. For any group G, Z[G] is a ring with unity, where the 1 corre-
sponds to

∑
σ∈G aσ σ with aId = 1 and aσ = 0 for all σ �= Id. Furthermore, Z[G] is

commutative if and only if G is abelian.
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Proof. We leave the proof to the reader (see Exercise A.5.1). ��

Definition A.1.3. Let A be an abelian group written additively and let G be an arbi-
trary group. We say that A is a (left) G-module if there exists a group homomorphism
ϕ : G −→ Aut A, where Aut A is the automorphism group of A.

This definition is equivalent to the existence of a function

ψ : G × A −→ A, denoted by ψ (g, a) = ga,

such that

(i) 1a = a for all a ∈ A,
(ii) (gh)a = g(ha) for all g, h ∈ G and a ∈ A,
(iii) g(a + b) = ga + gb for all g ∈ G and a, b ∈ A.

A similar definition is made for a right G-module.
Observe that if A is a G-module, then A is a � = Z[G]-module in a natural way,

that is, (∑
σ∈G

aσ σ

)
(x) =

∑
σ∈G

aσ (σ x) for
∑
σ∈G

aσ σ ∈ � and x ∈ A.

Conversely, if A is a Z[G]-module, then A is an abelian group and we consider the
function

ϕ : G −→ Aut A

given by

θ ∈ G, ϕ (θ) : A −→ A, ϕ (θ) a = θa,

where θ is viewed as the element
∑
σ∈G aσ σ of Z[G] given by

aσ =
{
0 if σ �= θ,
1 if σ = θ.

It is easy to see that ϕ (θ) ∈ Aut A and that ϕ is a group homomorphism.
Therefore a left (right) G-module is the same as a left (right) Z[G]-module.

Example A.1.4. If A is any abelian group, we can give a G-module structure to A by
defining the trivial action; that is, ga = a for all a ∈ A and all g ∈ G. In this case
we say that G acts trivially on A or that A is a trivial G-module. The fact that A is a
trivial G-module is equivalent to the fact that

ϕ : G −→ Aut A satisfies ϕ(G) = 1.
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Definition A.1.5. If A and B are G-modules, a G-homomorphism is a group homo-
morphism

ϕ : A −→ B such that ϕ(ga) = gϕ(a) for all g ∈ G and a ∈ A.

Notation A.1.6. For two G-modules A and B we define

Hom(A, B) = group of all group homomorphisms from A to B,

HomG(A, B) = group of G-homomorphisms from A to B.

HomG(A, B) will be considered only with its group structure.

The proof of the following proposition is easy.

Proposition A.1.7. Hom(A, B) can be given a G-module structure as follows: for all
ϕ ∈ Hom(A, B) and all g ∈ G, let g ◦ ϕ ∈ Hom(A, B) be defined by

(g ◦ ϕ) (a) = gϕ
(
g−1a

)
. ��

Definition A.1.8. If A is a G-module, AG denotes the maximum G-trivial submodule
of A, i.e., AG = {a ∈ A | g ◦ a = a for all g ∈ G}.
Example A.1.9. If L/K is a finite Galois extension of fields with Galois group, L is a
G-module and LG = K .

Proposition A.1.10. We have HomG(A, B) = (Hom(A, B))G. In particular,
HomG(Z, A) = (Hom(Z, A))G ∼= AG.

Proof. If ϕ ∈ HomG(A, B), then ϕ ∈ Hom(A, B). Now if g ∈ G,

(g ◦ ϕ) (a) = g ◦ ϕ
(
g−1a

)
= gg−1ϕ(a) = ϕ(a).

Therefore g ◦ ϕ = ϕ for all g ∈ G. Hence ϕ ∈ (Hom(A, B))G .
Conversely, if ϕ ∈ (Hom(A, B))G , let a ∈ A and g ∈ G; we have

ϕ(ga) = (g ◦ ϕ) (ga) = gϕ
(
g−1(ga)

)
= gϕ (1a) = gϕ (a) .

Thus ϕ ∈ HomG(A, B) and this proves the first part of the proposition.
The last part of the proposition follows from the fact that Hom (Z, A) is isomorphic

to A under the G-isomorphism of modules

θ : Hom (Z, A) −→ A defined by θ (ϕ) = ϕ(1). ��

Theorem A.1.11. Let 0 −→ A
f−→ B

g−→ C −→ 0 be an exact sequence of G-
modules and let P be a projective G-module. Then

0 −→ HomG(P, A)
f ∗−→ HomG(P, B)

g∗−→ HomG(P,C) −→ 0

is an exact sequence of groups, where f ∗ (ϕ) = f ◦ ϕ, g∗ (θ) = g ◦ θ .
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Proof. If f ∗ (ϕ) = f ◦ ϕ = 0, then since f is injective we have ϕ = 0, so f ∗ is
injective.

Next, we have g∗ ◦ f ∗ = (g ◦ f )∗ = 0∗ = 0, and hence im f ∗ ⊆ ker g∗.
Now if ϕ ∈ ker g∗, then g∗ (ϕ) = g ◦ ϕ = 0 (see diagram).

P
ϕ

��
0

��
B

g
C

It follows that ϕ(P) ⊆ ker g = im f = A, so

f −1 ◦ ϕ ∈ HomG(P, A) and f ∗
(
f −1 ◦ ϕ

)
= f ◦ f −1 ◦ ϕ = ϕ,

that is, im f ∗ = ker g∗.
Finally, if ϕ ∈ HomG (P,C), then since the module P is projective, there exists

θ ∈ HomG (P, B) such that g ◦ θ = g∗ (θ) = ϕ. Therefore g∗ is surjective. ��

Note A.1.12. If P is an arbitrary G-module and

0 −→ A −→ B −→ C

is an exact G-sequence, then

0 −→ HomG (P, A) −→ HomG (P, B) −→ HomG (P,C)

is exact, as follows immediately from the previous proof. In fact, the projectivity of P
is equivalent to the exactness of the sequence in Theorem A.1.11 (see [9, Chapter II,
Proposition 4, page 231]).

Note A.1.13. For the definition and basic properties of tensor products, we refer to [4,
Chapter 2], [9, Chapter 2, §3] and [11, Chapter III, §0].

For any ring R, M a right R-module, and N a left R-module, the tensor product of
M and N will be denoted by M ⊗R N . The tensor product is obtained as the quotient
of M ⊗Z N obtained by the relations mr ⊗Z n = m ⊗Z rn, m ∈ M , n ∈ N , r ∈ R.
That is, mr ⊗Z n = m ⊗Z rn for all m ∈ M , n ∈ N , r ∈ R.

In case R = Z[G], the right module can be made a left module by setting gm :=
mg−1, g ∈ G, and conversely. In this way we define the tensor product of two left
Z[G]-modules M and N . Note that for two left Z[G]-modules M and N we have

gm ⊗R gn = mg−1 ⊗R gn = m ⊗R g
−1(gn) = m ⊗R n

for all g ∈ G, m ∈ M , and n ∈ N .
In other words, if we define an action of Z[G] on M ⊗Z N by setting the diagonal

action
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g ◦ (m ⊗Z n) := gm ⊗Z gn,

then for any left Z[G]-modules, M ⊗Z[G] N ∼= (M ⊗Z N )G , the quotient of M ⊗Z N
modulo the elements m ⊗Z n satisfying gm ⊗Z gn = m ⊗Z n for all g ∈ G, the latter
with the diagonal action. In particular, M ⊗Z[G] N ∼= N ⊗Z[G] M .

We will denote the tensor product by M ⊗Z[G] N = M ⊗G N = M ⊗ N .

Theorem A.1.14. Let

0 −→ A
f−→ B

g−→ C −→ 0

be an exact sequence of G-modules and let P be a projective G-module. Then

0 −→ P ⊗ A
1⊗ f−→ P ⊗ B

1⊗g−→ P ⊗ C −→ 0

is exact. Here P ⊗ X denotes the tensor product of the G-modules P and X.

Proof. Since P is projective, P is a direct summand of a free G-module, say

P ⊕ R ∼= T =
⊕
i∈I

Z[G].

Recall that the tensor product commutes with the direct sum. Furthermore, for any
G-module M , Z[G]⊗ M is isomorphic to M . Therefore we have

(P ⊕ R)⊗ M ∼= (P ⊗ M)⊕ (R ⊗ M) ∼=
⊕
i∈I

M.

Now consider

1T ⊗ f : T ⊗ A −→ T ⊗ B, defined by (1T ⊗ f ) (ei ⊗ a) = ei ⊗ f (a),

where ei is the generator of Z[G] viewed as the i th component of T = ⊕i∈I Z[G].
Then 1T ⊗ f is injective since f is. Finally,

(1T ⊗ f ) |P⊗A= 1P ⊗ f,

so that the latter map is injective.
We will see that 1⊗ g is surjective. Given p⊗ c ∈ P ⊗C , there exists b ∈ B such

that g(b) = c, so that (1⊗ g) (p ⊗ b) = p ⊗ g(b) = p ⊗ c.
We have

(1⊗ g) ◦ (1⊗ f ) = 1⊗ g ◦ f = 1⊗ 0 = 0,

hence im (1⊗ f ) ⊆ ker (1⊗ g).
Now let

ϕ : (P ⊗ B) / (ker (1⊗ g)) −→ P ⊗ C
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be the isomorphism induced by 1 ⊗ g. Since im (1⊗ f ) ⊆ ker (1⊗ g), we can con-
sider the epimorphism

ψ : (P ⊗ B) / (im (1⊗ f )) −→ P ⊗ C

induced by ϕ. We have

kerψ = ker (1⊗ g)/im (1⊗ f ).

Let

θ : P × C −→ (P ⊗ B) / (im (1⊗ f ))

be defined by

θ (p, c) = p ⊗ b + im (1⊗ f ) for c = g(b) ∈ C.

To see that θ is well defined, assume that g (b1) = g (b2) = c. Then g (b1 − b2) = 0,
so b1 − b2 ∈ ker g = im f . Thus b1 − b2 = f (a) for some a ∈ A. Therefore

p ⊗ b1 = p ⊗ b2 + p ⊗ f (a) and p ⊗ f (a) ∈ im (1⊗ f ) ,

whence

p ⊗ b1 mod (im (1⊗ f )) = p ⊗ b2 mod (im (1⊗ f )) .

Thus θ is well defined and it is clearly Z-bilinear. Let

θ̃ : P ⊗ C −→ (P ⊗ B) / (im (1⊗ f ))

be the homomorphism induced. It is easy to verify that θ̃ ◦ψ = Id and ψ ◦ θ̃ = Id, so
ψ is an isomorphism. This proves that ker (1⊗ g) = im (1⊗ f ). ��

Remark A.1.15. The projectivity of P was used only once in the proof of Theorem
A.1.14, namely to show the injectivity of 1⊗ f . A module that satisfies this property
is called flat, and what we have proved is that any projective module is flat.

Theorem A.1.16 (Snake Lemma). Let

A
f−−−−→ B

g−−−−→ C −−−−→ 0⏐⏐*α ⏐⏐*β ⏐⏐*γ
0 −−−−→ A′

f ′−−−−→ B ′
g′−−−−→ C ′

be a commutative diagram of G-modules, where the rows are exact. Then there exists
a connecting homomorphism δ : ker γ −→ cokerα such that
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kerα
f̃−→ kerβ

g̃−→ ker γ
δ−→ cokerα

f̃ ′−→ cokerβ
g̃′−→ coker γ

is an exact sequence, where f̃ ′ and g̃′ are the induced homomorphisms from f ′ and g′
respectively and f̃ and g̃ are the restrictions of f and g respectively.

If in addition f is injective, then f̃ is injective and if g′ is surjective, g̃′ is surjec-
tive.

Proof. Let f be injective. If x ∈ kerα, then
(β ◦ f ) (x) = ( f ′ ◦ α) (x) = 0.

Thus f̃ (x) ∈ kerβ and since f is injective,

f̃ = f |kerα : kerα −→ kerβ

is injective too. It is easy to see that sequence is exact at kerβ and at cokerβ.
Now if g′ is surjective, let us see that g̃′ is surjective too. Let c + im γ ∈ coker γ

and let b ∈ B be such that g(b) = c. Then g′ (b + imβ) = c + im γ .
It remains to define δ : ker γ −→ cokerα and to demonstrate that im g̃ = ker δ

and im δ = ker f̃ ′. Let z ∈ ker γ be of the form g(y) with y ∈ B. Then

γ (z) = (γ g) (y) = 0 = (g′ ◦ β) (y).
Therefore we have β(y) ∈ ker g′ = im f ′, so β(y) = f ′(a) for some a ∈ A′. Let
δ(z) = a + imα. We will see that δ is well defined. If z = g(y) = g (y1), then
y − y1 ∈ ker g = im f . Therefore

y = y1 + f (x) for some x ∈ A.

Since β (y1) = f ′ (a1), we have

β(y) = f ′(a) = β (y1)+ β ( f (x)) = f ′ (a1)+ β f (x) = f ′ (a1)+ f ′ (α (x)) .

It follows from the injectivity of f ′ that a = a1+ α(x), so that a+ imα = a1+ imα.
Clearly δ is a G-homomorphism.

Now let z ∈ ker γ . Since z ∈ im g̃, there exists y ∈ kerβ such that g(y) = z. Then

β(y) = 0 = f ′(0), that is (δg̃) (y) = δ(z) = 0+ imα.
Therefore im g̃ ⊆ ker δ. Let z ∈ ker δ. Since δ(z) = 0, it follows that if z = g(y) then
β(y) = f ′(x) for some x ∈ imα. In other words,

x = α(a) and β(y) = ( f ′ ◦ α) (a) = β ( f (a)) .
Thus

y − f (a) ∈ kerβ and g̃ (y − f (a)) = g(y)− (g f )(a) = g(y) = z.
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It follows that the sequence is exact at ker γ .
Finally,(
f̃ ′ ◦ δ)(z) = f̃ ′ (a + imα) = f ′(a)+ imβ, where z = g(y) and β(y) = f ′(a).

Therefore (
f̃ ′ ◦ δ

)
(z) = β(y)+ imβ = 0, i.e., im δ ⊆ ker f̃ ′.

Finally, if a + imα ∈ ker f̃ ′, then

f ′(a) ∈ imβ, so f ′(a) = β(y) for some y ∈ B.

If z = g(y), then δ(z) = a + imα. Therefore the sequence is exact at cokerα. ��

Definition A.1.17. A projective resolution P of Z is an exact sequence of G-modules
of the form

P : · · · −→ Pn
∂n−→ Pn−1 −→ · · · −→ P1

∂1−→ P0
∂0−→ Z −→ 0,

where Z is the trivial G-module and each Pi is projective. In particular, ∂n ◦ ∂n+1 = 0
for all n.

Lemma A.1.18. If P, P ′ are two projective resolutions with respective homomor-
phisms ∂n (n ≥ 0) and ∂ ′n (n ≥ 0), then there exist homomorphisms

εn : P
′
n −→ Pn(n ≥ −1)

such that ∂n ◦ εn = εn−1 ◦ ∂ ′n for all n ≥ 0 and ε−1 = IdZ.

Proof. The proof will be done by induction on n. Let ε−1 = IdZ.
Since P ′0 is projective, there exists ε0 : P

′
0 −→ P0 such that ∂ ′0 =

∂0 ◦ ε0 = IdZ ◦∂ ′0 = ε−1 ◦ ∂ ′0. Assume that we have constructed
ε0, ε1, . . . , εn such that εi : P ′i −→ Pi satisfies ∂i ◦ εi = εi−1 ◦ ∂ ′i
for i = 0, 1, . . . , n.

P ′0
ε0

��
∂ ′0

��
P0

∂0
Z

Pn+1
∂n+1−−−−→ Pn

∂n−−−−→ Pn−1B⏐⏐εn B⏐⏐εn−1
P ′n+1

∂ ′n+1−−−−→ P ′n
∂ ′n−−−−→ P ′n−1

Pn+1
∂n+1

im ∂n+1 0

P ′n+1

εn+1
εn◦∂ ′n+1

Let x ∈ P ′n+1 and notice that (εn ◦ ∂ ′n+1)x ∈ Pn . Since
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∂n
(
εn ◦ ∂ ′n+1

)
(x) = ∂nεn∂ ′n+1(x) = εn−1∂ ′n∂ ′n+1(x) = 0,

we have (
εn ◦ ∂ ′n+1

)
(Pn+1) ⊆ ker ∂n = im ∂n+1.

Since P ′n+1 is projective, there exists

εn+1 : P ′n+1 −→ Pn+1 such that ∂n+1 ◦ εn+1 = εn ◦ ∂ ′n+1. ��
Now given a projective resolution P and a G-module A, let

Ki = HomG (Pi , A) and Ri = Pi ⊗G A = Pi ⊗Z[G] A,

where Pi can be made a right G-module by defining the action

x ◦ g = g−1x for all g ∈ G and x ∈ Pi .

Consider the sequences

0 −→ K0
∂∗1−→ K1

∂∗2−→ · · · −→ Kn−1
∂∗n−→ Kn −→ · · ·

and

· · · −→ Rn
∂+n−→ Rn−1 −→ · · · −→ R1

∂+1−→ R0 −→ 0,

where ∂∗n (ϕ) = ϕ ◦ ∂n and ∂+n (x ⊗ a) = ∂nx ⊗ a.
We have

∂∗n+1 ◦ ∂∗n = (∂n ◦ ∂n+1)∗ = 0∗ = 0 and ∂+n ◦ ∂+n+1 = (∂n ◦ ∂n+1)+ = 0+ = 0,

so im ∂∗n ⊆ ker ∂∗n+1 and im ∂+n+1 ⊆ ker ∂+n .
Definition A.1.19. We define for n = 0, 1, . . . , the nth cohomology group of A with
respect to P to be the group

Hn(P, A) := ker ∂∗n+1/im ∂∗n ,

and the nth homology group to be the group

Hn(P, A) := ker ∂+n / im ∂+n+1.

Here we define ∂∗0 = 0; ∂+0 = 0 (see Remark A.2.6).
Theorem A.1.20. If P and P ′ are two projective resolutions, then

Hn (P, A) ∼= Hn (P ′, A) and Hn (P, A) ∼= Hn
(
P ′, A

)
for all n = 0, 1, . . . .



606 A Cohomology of Groups

Proof. Let εn : P ′n −→ Pn and δn : Pn −→ P ′n be given by Lemma A.1.18, that
is, ∂n ◦ εn = εn−1 ◦ ∂ ′n and ∂ ′n ◦ δn = δn−1 ◦ ∂n . We will construct homomorphisms
hn : Pn −→ Pn+1 such that

∂n+1hn + hn−1∂n = Id−εnδn (A.1)

and similarly, fn : P ′n −→ P ′n+1 such that

∂ ′n+1 fn + fn−1∂ ′n = Id−δnεn . (A.2)

Let h−1 : Z −→ P0 be such that h−1 = 0. We wish to find h0 : P0 −→ P1 such
that ∂1h0 + h−1∂0 = ∂1h0 = Id−ε0δ0.

P1
∂1

im ∂1 0

P0

h0
Id−ε0δ0

For x ∈ P0, we obtain

∂0 (Id−ε0δ0) (x) = ∂0(x)− ∂0ε0δ0(x) = ∂0(x)− ∂ ′0δ0(x) = ∂0(x)− ∂0(x) = 0.
Therefore x ∈ ker ∂0 = im ∂1. Since P0 is projective, there exists

h0 : P0 −→ P1 such that ∂1 ◦ h0 = Id−ε0δ0.
Assume that we have constructed h0, h1, . . . , hn with property (A.1). If x ∈ Pn+1,

we have

∂n+1
(
Id−εn+1δn+1 − hn∂n+1

)
(x) = 0,

and thus im (Id−εn+1δn+1 − hn∂n+1) ⊆ ker ∂n+1 = im ∂n+2.

Pn+2
∂n+2

im ∂n+2 0

Pn+1
hn+1

Id−εn+1δn+1−hn∂n+1

Since Pn+1 is projective, there exists

hn+1 : Pn+1 −→ Pn+2 such that ∂n+2hn+1 = Id−εn+1δn+1 − hn∂n+1.

Similarly for fn : P ′n −→ P ′n+1.
For εn : P ′n −→ Pn , let

ε∗n : HomG (Pn, A) −→ HomG
(
P ′n, A

)
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and

ε+n = εn ⊗ IdA : P ′n ⊗ A −→ Pn ⊗ A

be defined by

ε∗n (ϕ) = ϕ ◦ εn and ε+n (x ⊗ a) = εn(x)⊗ a.

If ϕ ∈ ker ∂∗n+1, we have

∂ ′∗n+1
(
ε∗n (ϕ)

) = ϕ ◦ εn ◦ ∂ ′n+1 = ϕ ◦ ∂n+1 ◦ εn+1 = ε∗n+1 (∂∗n+1 ◦ ϕ) = 0,
so ε∗n

(
ker ∂∗n+1

) ⊆ ker ∂ ′∗n+1. Similarly we have
ε∗n
(
im ∂∗n

) ⊆ im ∂ ′∗n; ε+n
(
ker ∂ ′+n

)
⊆ ker ∂+n ; ε+n

(
im ∂ ′+n+1

)
⊆ im ∂+n+1.

Therefore we have the following induced homomorphisms:

ε̃∗n : H
n (P, A) −→ Hn (P ′, A) and ε̃+n : Hn

(
P ′, A

) −→ Hn (P, A) .

We proceed in a similar way for δ̃∗n and δ̃+n .
Now if ϕ ∈ ker ∂∗n+1, we have

(∂n+1hn + hn−1∂n)∗ ϕ = ϕ∂n+1hn + ϕhn−1∂n
= 0+ ϕhn−1∂n = ∂∗n (ϕhn−1) ∈ im ∂∗n .

Therefore

(∂n+1hn + hn−1∂n)∗ = 0 = (Id−εnδn)∗ = Id∗ − δ̄∗n ε̄∗n,

from which it follows that Id∗ = Id = δ̄∗n ε̄∗n . Similarly we have Id = ε̄∗n δ̄∗n .
We can show analogously that ¯ε+n ¯δ+n = Id and ¯δ+n ¯ε+n = Id. ��

Definition A.1.21. For an arbitrary G-module A and for n = 0, 1, . . . , we define the
cohomology groups Hn (G, A) as Hn (P, A) and the homology groups Hn (G, A) as
Hn (P, A), where P is any projective resolution.

By Theorem A.1.20 the above definition depends only on G and on A and does
not depend on the resolution. On the other hand, to see that Definition A.1.21 is not
vacuous, we need to exhibit at least one projective resolution of A.

Let Gn+1 = G×· · ·×G (n+1 copies) and let An = Z
[
Gn+1] be the group ring.

Then An is an abelian group and G acts on An as follows:

x ◦ (g0, . . . , gn) = (xg0, . . . , xgn) for all x ∈ G and (g0, . . . , gn) ∈ Gn+1.

Thus An is a free Z-module with basis {(g0, . . . , gn) | gi ∈ G}.
The proof of the following proposition is straightforward.
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Proposition A.1.22. For each n ≥ 0, An is a free Z[G]-module with basis {(1, x1,
ldots, xn) | xi ∈ G}. ��

Now put Pi = Ai and let ∂n : Pn −→ Pn−1 be defined by

∂n (g0, g1, . . . , gn) =
n∑
i=0
(−1)i (g0, g1, . . . , ĝi , . . . , gn) ,

where the symbol ĝi means that the element gi does not appear, that is,(
g0, g1, . . . , ĝi , . . . , gn

) = (g0, g1, . . . , gi−1, gi+1, . . . , gn) .
If g ∈ G, then

g ◦ (∂n (g0, g1, . . . , gn)) = g ◦
n∑
i=0
(−1)i (g0, g1, . . . , ĝi , . . . , gn)

=
n∑
i=0
(−1)i (gg0, gg1, . . . , ĝgi , . . . , ggn)

= ∂n (gg0, gg1, . . . , ggn) = ∂n (g ◦ (g0, g1, . . . , gn)) ,
so ∂n is a G-homomorphism.

Now ∂0 : P0 = A0 = Z[G] −→ Z is defined by ∂0(g) = 1 for all g ∈ G.
Proposition A.1.23. The sequence

· · · −→ Pn
∂n−→ Pn−1 −→ · · · −→ P1

∂1−→ P0
∂0−→ Z −→ 0

is G-exact.

Proof. For n = 0, 1, . . . we have

∂n−1 ◦ ∂n (g0, g1, . . . , gn) = ∂n−1
(

n∑
i=0
(−1)i (g0, g1, . . . , ĝi , . . . , gn))

=
n∑
i=0
(−1)i

(
i−1∑
j=0
(−1) j (g0, g1, . . . , ĝ j , . . . , ĝi , . . . , gn)

+
n∑

j=i+1
(−1) j−1 (g0, g1, . . . , ĝi , . . . , ĝ j , . . . , gn)) .

(A.3)

For any two indices 0 ≤ r < s ≤ n, the element
(
g0, . . . , ĝr , . . . , ĝs, . . . , gn

)
appears exactly twice in (A.3) and its coefficient is (−1)r+s + (−1)r+s−1 = 0, which
proves that ∂n−1 ◦ ∂n = 0. Therefore im ∂n ⊆ ker ∂n−1. Now let
hn : Pn−1 −→ Pn, hn (g0, . . . , gn−1) = (1, g0, . . . , gn−1) for n = 1, 2, . . . .
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We also define h0 : P−1 = Z −→ P0 by h0(1) = 1 ∈ Z[G] = P0. We have

(∂nhn + hn−1∂n−1) (g0, . . . , gn−1)

= ∂n (1, g0, . . . , gn−1)+ hn−1

(
n−1∑
i=0
(−1)i (g0, g1, . . . , ĝi , . . . , gn−1))

= (g0, . . . , gn−1)+
n−1∑
i=0
(−1)i+1 (1, g0, . . . , ĝi , . . . , gn−1)

+
n−1∑
i=0
(−1)i (1, g0, . . . , ĝi , . . . , gn−1) = (g0, . . . , gn−1) ,

Thus

∂nhn + hn−1∂n−1 = IdPn−1 for n = 1, 2, . . . .
Observe that hn has been defined as a Z-homomorphism but not as a G-homomor-

phism.
Now if x ∈ ker ∂n−1, we have

x = IdPn−1(x) = ∂nhn(x)+ hn−1∂n−1(x) = ∂n (hn(x))+ hn−1(0) = ∂n (hn(x)) .
Thus x = ∂n (hn(x)) ∈ im ∂n , which proves the exactness of the sequence. ��

The resolution defined in Proposition A.1.23 is called the canonical resolution or
bar resolution.

From now on, unless otherwise stated, by resolution we will mean the canonical
resolution.

We have proved the existence of the homology and cohomology groups for any
G-module A. Now if A and B are two G-modules and f : A −→ B is a G-
homomorphism, we will define in a natural way group homomorphisms

Hn ( f ) : Hn (G, A) −→ Hn (G, B) and Hn ( f ) : Hn (G, A) −→ Hn (G, B) .

Let

P : · · · −→ Pn
∂n−→ Pn−1 −→ · · · −→ P1

∂1−→ P0
∂0−→ Z −→ 0

be a projective resolution. We have

P ⊗G A : · · ·⊗ Pn ⊗ A
∂n⊗1A−→ Pn−1⊗ A −→ · · · −→ P1⊗ A

∂1⊗1A−→ P0⊗ A −→ 0,

where Pi ⊗ A means Pi ⊗Z[G] A.
Let

fn : Pn ⊗ A→ Pn ⊗ B,

fn (x ⊗ a) = x ⊗ f (a) = (1Pn ⊗ f
)
(a).
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We have

fn−1 ◦ (∂n ⊗ 1A) = ∂n ⊗ f = (∂n ⊗ 1B) ◦
(
1Pn ⊗ f

) = (∂n ⊗ 1B) ◦ fn .
If α ∈ ker (∂n ⊗ 1A), then

fn−1 ◦ (∂n ⊗ 1A) (α) = 0 = (∂n ⊗ 1B) ◦ (1⊗ f ) (α) = (∂n ⊗ 1B) fn (α) ,
so fn (α) ∈ ker (∂n ⊗ 1B).

If α ∈ im (∂n+1 ⊗ 1A), then α = (∂n+1 ⊗ 1A) (β). Hence
fn (α) = fn ◦ (∂n+1 ⊗ 1A) (β) = ((∂n+1 ⊗ 1B) ◦ fn+1) (β) ∈ im (∂n+1 ⊗ 1B) .
Therefore fn induces in a natural way the group homomorphisms

Hn ( f ) : Hn (G, A) −→ Hn (G, B) , n = 0, 1, . . . .
We now consider the sequence

HomG (P, A) :
0 −→ HomG (P0, A)

∂∗1−→ HomG (P1, A)
∂∗2−→ · · ·

· · · −→ HomG (Pn−1, A)
∂∗n−→ HomG (Pn, A) −→ · · ·

Let f ∗n : HomG (Pn, A) −→ HomG (Pn, B) be given by f ∗n (ϕ) = f ◦ϕ. We have(
f ∗n ◦ ∂∗n

)
(ϕ) = f ◦ ϕ ◦ ∂n(

∂∗n ◦ f ∗n−1
)
(ϕ) = f ◦ ϕ ◦ ∂n

⎫⎬⎭ �⇒ f ∗n ◦ ∂∗n = ∂∗n ◦ f ∗n−1.

If ϕ ∈ ker ∂∗n+1, then(
∂∗n+1 ◦ f ∗n

)
(ϕ) = ( f ∗n+1 ◦ ∂∗n+1) (ϕ) = 0.

Therefore f ∗n (ϕ) ∈ ker ∂∗n+1.
If ϕ ∈ im ∂∗n , then ∂∗n (θ) = θ ◦ ∂n = ϕ. It follows that

f ∗n (ϕ) =
(
f ∗n ◦ ∂∗n

)
(θ) = (∂∗n ◦ f ∗n−1) (θ) ∈ im ∂∗n .

Hence f ∗n induces in a natural way a group homomorphism

Hn ( f ) : Hn (G, A) −→ Hn (G, B) , n = 0, 1, . . . .
The following result is a powerful tool for studying the arithmetic of fields by

means of the cohomology and the homology groups.

Theorem A.1.24. Let

0 −→ A
f−→ B

g−→ C −→ 0

be an exact sequence of G-modules. Then there exist group homomorphisms
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εn : Hn+1 (G,C)→ Hn (G, A)

and

δn : H
n (G,C)→ Hn+1 (G, A) , n = 0, 1, . . . ,

such that the homology sequence

· · · −→ Hn+1 (G, B)
Hn+1(g)−→ Hn+1 (G,C)

εn−→ Hn (G, A)
Hn( f )−→ Hn (G, B) −→

· · · ε0−→ H0 (G, A)
H0( f )−→ H0 (G, B)

H0(g)−→ H0 (G,C) −→ 0,

and the cohomology sequence

0 −→ H0 (G, A)
H0( f )−→ H0 (G, B)

H0(g)−→ H0 (G,C)
δ0−→ H1 (G, A) −→ · · ·

δn−1−→ Hn (G, A)
Hn( f )−→ Hn (G, B)

Hn(g)−→ Hn (G,C)
δn−→ Hn+1 (G, A) −→ · · · ,

are exact sequences of groups.

Proof. Let

P : · · · −→ Pn
∂n−→ Pn−1 −→ · · · −→ P1

∂1−→ P0
∂0−→ Z −→ 0

be a projective resolution.
We will use the notation

Xn = Pn ⊗ X

Xn = HomG (Pn, X)

⎫⎬⎭ ,
X = A, B, or C and kn = Hn(k), kn = Hn(k), k = f or g.
Consider the following commutative diagrams of groups:

0 −−−−→ An
fn−−−−→ Bn

gn−−−−→ Cn −−−−→ 0⏐⏐*∂n ⏐⏐*∂n ⏐⏐*∂n
0 −−−−→ An−1

fn−1−−−−→ Bn−1
gn−1−−−−→ Cn−1 −−−−→ 0

(A.4)

and

0 −−−−→ An−1
f n−1−−−−→ Bn−1

gn−1−−−−→ Cn−1 −−−−→ 0⏐⏐*∂n ⏐⏐*∂n ⏐⏐*∂n
0 −−−−→ An

f n−−−−→ Bn
gn−−−−→ Cn −−−−→ 0

(A.5)
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Since im ∂n+1 ⊆ ker ∂n , the map ∂n : Xn −→ Xn−1 induces the natural map
∂̃n : coker ∂n+1 −→ ker ∂n−1,

coker ∂n+1 = Xn/im ∂n+1
∂̃n→→ Xn/ker ∂n ∼= im ∂n ⊆ ker ∂n−1.

We have

ker ∂̃n = ker ∂n/im ∂n+1 = Hn (G, X)

and

coker ∂̃n = ker ∂n−1/im ∂n = Hn−1 (G, X) .

Similarly, consider

∂n : Xn−1 −→ Xn .

We have im ∂n−1 ⊆ ker ∂n , so we obtain the natural map
Xn−1/im ∂n−1 −→→ Xn−1/ker ∂n ∼= im ∂n ⊆ ker ∂n+1;

that is,

∂̃n : coker ∂n−1 −→ ker ∂n+1,

ker ∂̃n = ker ∂n/im ∂n−1 = Hn−1 (G, X)

and

coker ∂̃n = ker ∂n+1/im ∂n = Hn (G, X) .

Consider the commutative diagram

0 0 0⏐⏐* ⏐⏐* ⏐⏐*
0 −−−−→ ker ∂n −−−−→ ker ∂n −−−−→ ker ∂n⏐⏐* ⏐⏐* ⏐⏐*
0 −−−−→ An

fn−−−−→ Bn
gn−−−−→ Cn −−−−→ 0⏐⏐*∂n ⏐⏐*∂n ⏐⏐*∂n

0 −−−−→ An−1
fn−1−−−−→ Bn−1

gn−1−−−−→ Cn−1 −−−−→ 0⏐⏐* ⏐⏐* ⏐⏐*
coker ∂n −−−−→ coker ∂n −−−−→ coker ∂n −−−−→ 0⏐⏐* ⏐⏐* ⏐⏐*
0 0 0

(A.6)
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By the snake lemma (Theorem A.1.16), the rows are exact. Now

∂n : Xn −→ Xn−1

induces

0→ Hn (G, X) = ker ∂̃n → coker ∂n+1
∂̃n→ ker ∂n−1

→ coker ∂̃n = Hn−1 (G, X) .

We obtain the diagram

0 0 0⏐⏐* ⏐⏐* ⏐⏐*
Hn(G, A)

fn−−−−→ Hn(G, B)
gn−−−−→ Hn(G,C)⏐⏐* ⏐⏐* ⏐⏐*

coker ∂n+1 −−−−→ coker ∂n+1 −−−−→ coker ∂n+1 −−−−→ 0⏐⏐*∂̃n ⏐⏐*∂̃n ⏐⏐*∂̃n
0 −−−−→ ker ∂n−1 −−−−→ ker ∂n−1 −−−−→ ker ∂n−1⏐⏐* ⏐⏐* ⏐⏐*

Hn−1(G, A)
fn−1−−−−→ Hn−1(G, B)

gn−1−−−−→ Hn−1(G,C)⏐⏐* ⏐⏐* ⏐⏐*
0 0 0

(A.7)

Again by the snake lemma, there exists a group homomorphism εn−1 : Hn (G,C) −→
Hn−1 (G, A) such that

Hn (G, A)→ Hn (G, B)→ Hn (G,C)
εn−1→ Hn−1 (G, A)→ Hn−1 (G, B)→ · · ·

is exact.
Similarly, for the cohomology groups we have diagrams
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0 0 0⏐⏐* ⏐⏐* ⏐⏐*
0 −−−−→ ker ∂n −−−−→ ker ∂n −−−−→ ker ∂n⏐⏐* ⏐⏐* ⏐⏐*
0 −−−−→ An

f n−−−−→ Bn
gn−−−−→ Cn −−−−→ 0⏐⏐*∂n ⏐⏐*∂n ⏐⏐*∂n

0 −−−−→ An+1
f n+1−−−−→ Bn+1

gn+1−−−−→ Cn+1 −−−−→ 0⏐⏐* ⏐⏐* ⏐⏐*
coker ∂n −−−−→ coker ∂n −−−−→ coker ∂n −−−−→ 0⏐⏐* ⏐⏐* ⏐⏐*
0 0 0

(A.8)

and

0 0 0⏐⏐* ⏐⏐* ⏐⏐*
Hn−1(G, A)

f n−1−−−−→ Hn−1(G, B)
gn−1−−−−→ Hn−1(G,C)⏐⏐* ⏐⏐* ⏐⏐*

coker ∂n−1 −−−−→ coker ∂n−1 −−−−→ coker ∂n−1 −−−−→ 0⏐⏐*∂̃n ⏐⏐*∂̃n ⏐⏐*∂̃n
0 −−−−→ ker ∂n+1 −−−−→ ker ∂n+1 −−−−→ ker ∂n+1⏐⏐* ⏐⏐* ⏐⏐*

Hn(G, A)
f n−−−−→ Hn(G, B)

gn−−−−→ Hn(G,C)⏐⏐* ⏐⏐* ⏐⏐*
0 0 0

(A.9)

By the snake lemma there exists δn−1 : Hn−1 (G,C) −→ Hn (G, A) such that
the sequence

Hn−1 (G, A) −→ Hn−1 (G, B) −→ Hn−1 (G,C)
δn−1−→ Hn (G, A)

−→ Hn (G, B) −→ Hn (G,C)

is exact. ��
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A.2 Homology and Cohomology in Low Dimensions

Our goal in this section is to calculate homology groups Hn and cohomology groups
Hn for n = 0, 1, or 2.
Let A be an arbitrary G-module. The homology sequence is

· · · Pn ⊗ A
∂n⊗1A−→ Pn−1 ⊗ A −→ · · · −→ P1 ⊗ A

∂1⊗1A−→ P0 ⊗ A −→ 0,

where {Pi }∞i=0 is the canonical resolution given in Section A.1. In particular, P0 =
Z[G] and P0 ⊗ A ∼= A. Then

H0 (G, A) = (P0 ⊗ A)/(im ∂1 ⊗ 1).

Now, we have

(∂1 ⊗ 1) ((g1, g2)⊗ a) = g1a − g2a,

which implies that

im(∂1 ⊗ 1) = 〈a − ga | g ∈ G, a ∈ A〉 = DA ⊆ A.

Thus H0 (G, A) = AG = A/DA.
Here AG is the maximal quotient module where G acts trivially.
Let IG =

{∑
σ∈G aσ σ |

∑
σ∈G aσ = 0

}
. Here IG is an ideal Z[G]. Furthermore,

Z[G]/IG ∼= Z. If
∑
σ∈G aσ σ ∈ IG with a1 = −

∑
σ �=1 aσ , we have

∑
σ∈G

aσ σ = a11+
∑
σ �=1

aσ σ =
(
−
∑
σ �=1

aσ

)
1+

∑
σ �=1

aσ σ

=
∑
σ �=1

aσ (σ − 1) ∈ 〈σ − 1 | σ ∈ G〉 .

Conversely, we have σ − 1 ∈ IG for σ ∈ G. Thus

DA = 〈a − σa | σ ∈ G, a ∈ A〉 = IG A.

Therefore

H0 (G, A) = A/IG A.

Proposition A.2.1. For any group G, we have IG/I 2G
∼= G/G ′, where G ′ is the com-

mutator subgroup of G.

Proof. Let f : G −→ IG/I 2G be the map defined by f (σ ) = (σ − 1)+ I 2G . Now
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f (σφ) = (σφ − 1)+ I 2G = (σφ − σ + σ − 1)+ I 2G = σ (φ − 1)+ (σ − 1)+ I 2G

= (σ − 1) (φ − 1)+ (φ − 1)+ (σ − 1)+ I 2G ,

and since (σ − 1) (φ − 1) ∈ I 2G , we have f (σφ) = f (σ ) + f (φ). Thus f is a
homomorphism.

Since IG/I 2G is abelian, G/ker f is abelian too. Therefore [G,G] = G ′ ⊆ ker f .
Consider the induced map f̃ : G/G ′ −→ IG/I 2G such that f̃

(
σG ′

) = (σ − 1)+ I 2G .
Let h : IG −→ G/G ′ be defined by h (σ − 1) = σG ′. If x ∈ I 2G , we have

x =
(∑
σ∈G

aσ (σ − 1)
)(∑

σ∈G
bσ (σ − 1)

)
=
∑
σ,θ∈G

aσbθ (σ − 1) (θ − 1)

=
∑
σ,θ∈G

aσbθ [(σθ − 1)− (σ − 1)− (θ − 1)] .

Therefore

h(x) =
∏
σ,θ∈G

[
h (σθ − 1) h (σ − 1)−1 h (θ − 1)−1

]aσ bθ
=
∏
σ,θ∈G

(
σθσ−1θ−1

)aσ bθ
G ′ = G ′.

It follows that h(x) = 1 and I 2G ⊆ ker h. Thus h induces

h̃ : IG/I
2
G −→ G/G ′ defined by h̃

(
(σ − 1)+ I 2G

)
= σG ′.

Clearly f̃ and h̃ are inverse isomorphisms of groups. ��

Definition A.2.2. Let X be an abelian group and let A be theG-module Hom (Z[G], X) ,
where the G-action on X is the trivial one. Any G-module of this kind is called coin-
duced. The action of G on A is defined explicitly as follows:

For all ϕ ∈ A and g, g′ ∈ G, g ◦ ϕ (g′) = gϕ
(
g−1g′

)
= ϕ

(
g−1g′

)
.

Definition A.2.3. Let X be an abelian group and let A be the G-module Z[G]⊗Z X .
Any G-module of this type is called induced and G acts on A as follows:

For all g, g′ ∈ G and x ∈ X, g
(
g′ ⊗ x

) = gg′ ⊗ x .

Proposition A.2.4. Let A = Hom (Z[G], X). Then for any G-module B, the groups
HomG(B, A) and Hom(B, X) are isomorphic.

Proof. Let ϕ ∈ HomG (B, A). Then ϕ(b) ∈ Hom (Z[G], X) for all b ∈ B. Let θϕ ∈
Hom(B, X) be defined by θϕ (b) = ϕ(b)(1). We have
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θϕ (b + b1) = θϕ (b)+ θϕ (b1) ,

so θϕ ∈ Hom(B, X). We also have θϕ+ψ = θϕ + θψ , and θ is a group homomorphism
from HomG(B, A) to HomZ(B, X).

Now assume that θϕ = 0. Then

θϕ : B −→ X satisfies θϕ(b) = ϕ(b)(1) = 0 for all b ∈ B.

Since ϕ ∈ HomG(B, A), we have ϕ(g b) = g ϕ(b) for all g ∈ G and b ∈ B. Now if
g′ ∈ G ⊆ Z[G], we have

(g ϕ(b)) (g′) = g
[
ϕ(b)

(
g−1 g′

)]
= ϕ(b)

(
g−1 g′

)
.

In particular,

ϕ(g b)(1) = (g ϕ(b)) (1) = ϕ(b)
(
g−1
)
,

or, equivalently,

ϕ
(
g−1 b

)
(1) = ϕ(b)(g).

Therefore

θϕ = 0 �⇒ ϕ(b)(g) = 0 for all g ∈ G and b ∈ B.

It follows that ϕ(b) = 0 for all b ∈ B, that is, ϕ = 0. Therefore θ is injective.
Now let σ ∈ HomZ(B, X). We wish to find ϕ ∈ HomG(B, A) such that σ(b) =

ϕ(b)(1) for all b ∈ B. Let ϕ ∈ HomG(B, A) be such that

ϕ(b) : Z[G] −→ X is defined by ϕ(b)(g) = σ
(
g−1b

)
for all b ∈ B.

We have

ϕ(b + b′)(g) = σ
(
g−1(b + b′)

)
= σ

(
g−1 b

)
+ σ

(
g−1 b′

)
= ϕ(b)(g)+ ϕ(b′)(g),

so ϕ ∈ Hom(B, A). Now

[ϕ(g b)] (g′) = σ
(
(g′)−1 g b

)
,

(gϕ(b)) (g′) = g
(
ϕ(b)

(
g−1 g′

))
= ϕ(b)

(
g−1 g′

)
= σ

(
(g′)−1 g b

)
= ϕ(g b)(g′).

Therefore g ϕ(b) = ϕ(g b), i.e., ϕ ∈ HomG(B, A) and ϕ(b)(1) = σ(1−1b) =
σ(b). ��
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Theorem A.2.5. If A = Hom (Z[G], X) is a coinduced module, then for all n ≥ 1
we have Hn (G, A) = 0. (If A is an injective G-module, then Hn (G, A) = 0 for all
n ≥ 1.)
Proof. The cohomology sequence is

0 −→ HomG (P0, A)
∂∗1−→ HomG (P1, A)

∂∗2−→ · · · .

By Proposition A.2.4 this sequence is the same as

0 −→ Hom (P0, X)
∂∗1−→ Hom (P1, X)

∂∗2−→ · · · .

Consider the sequence

· · · −→ Pn
∂n−→ Pn−1 −→ · · · −→ P1

∂1−→ P0
∂0−→ 0.

Since the groups Pi are free, it follows that the sequence is exact starting at P1 and that
the cohomology sequence is exact starting from the first index. Hence Hn (G, A) = 0
for all n ≥ 1. ��

In general, for any module A, it follows from the resolution

· · · −→ Pn
∂n−→ Pn−1 −→ · · · −→ P1

∂1−→ P0
∂0−→ Z −→ 0

that

0 −→ HomG (Z, A)
∂∗0−→ HomG (P0, A)

∂∗1−→ HomG (P1, A)

is exact at HomG (Z, A) and HomG (P0, A). Therefore

H0 (G, A) = ker ∂∗1 = im ∂∗0 = HomG (Z, A) = (Hom (Z, A))G ∼= AG .

Remark A.2.6. Note that the use of ∂0 and ∂∗0 is not the same as that defined in Defini-
tion A.1.19, since here we have an extra term Z in the exact sequence.

In short, what we have obtained up to now for the 0-homology and cohomology
groups, including the discussion previous to Proposition A.2.1, is the following theo-
rem:

Theorem A.2.7. For any G-module A, we have H0 (G, A) = A/DA = AG, where
DA = 〈a − σa | σ ∈ G〉 and H0 (G, A) = AG. ��

Corollary A.2.8. If 0 −→ A −→ B −→ C −→ 0 is an exact sequence of G-modules
and B is a coinduced G-module, then Hq (G,C) = Hq+1 (G, A) for all q ≥ 1.
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Proof. From Theorems A.1.24 and A.2.7 we obtain the exact sequence of groups

0 −→ AG −→ BG −→ CG −→ H1 (G, A) −→ H1 (G, B) −→ H1 (G,C) −→
· · · −→ Hq (G, B) −→ Hq (G,C) −→ Hq+1 (G, A) −→ Hq+1 (G, B) −→ · · · .

Since Hq (G, B) = 0 for q ≥ 1, the result follows. ��

Theorem A.2.9. Let A be an induced G-module of the form A = Z[G] ⊗Z X. Then
Hn (G, A) = 0 for all n ≥ 1. (If A is a projective G-module, then A is flat and
Hn (G, A) = 0 for all n ≥ 1.)
Proof. We have

Pn ⊗G A ∼= Pn ⊗G (Z[G]⊗Z X) ∼= (Pn ⊗G Z[G])⊗Z X ∼= Pn ⊗Z X.

Therefore, from the resolution

· · · −→ Pn −→ · · · −→ P1 −→ P0 −→ Z −→ 0,

we obtain

· · · −→ Pn ⊗G A −→ · · · −→ P1 ⊗G A −→ P0 ⊗G A −→ Z⊗G A −→ 0,

which is equivalent to

· · · −→ Pn ⊗Z X −→ · · · −→ P1 ⊗Z X −→ P0 ⊗Z X −→ Z⊗Z X ∼= X −→ 0.

Since Pi is a free abelian group, the sequence is exact. Therefore Hn (G, A) = 0
for n ≥ 1.

For n = 0, we have H0 (G, A) = (Z[G]⊗Z X) /im ∂1 ∼= A/IG A. ��

Corollary A.2.10. If 0 −→ A −→ B −→ C −→ 0 is an exact sequence of G-
modules and B is induced, then Hq+1 (G,C) = Hq (G, A) for all q ≥ 1.
Proof. From Theorem A.1.24 we obtain the exact sequence

· · · −→ Hq+1 (G, B) −→ Hq+1 (G,C) −→ Hq (G, A) −→ Hq (G, B) −→ · · · .

Since Hq (G, B) = 0 for all q ≥ 1, the result follows. ��

Lemma A.2.11. We have Z[G] ∼= Hom (Z[G],Z) as G-modules. In particular, Z[G]
is coinduced.

Proof. Let A = Hom (Z[G],Z). For f ∈ A, let ϕ( f ) = ∑
σ∈G f (σ ) σ . We have

ϕ : A −→ Z[G]. Then ϕ is a G-isomorphism. ��
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Proposition A.2.12. We have H1 (G,Z) ∼= IG/I 2G
∼= G/G ′.

Proof. Let

0 −→ IG −→ Z[G] π−→ Z −→ 0

be the exact sequence where

π

(∑
σ∈G

aσ σ

)
=
∑
σ∈G

aσ .

Now, since Z[G] is coinduced, we have the exact sequence:

0 = H1 (G,Z[G]) −→ H1 (G,Z) −→ H0 (G, IG)
f−→ H0 (G,Z[G])

h−→ H0 (G,Z) −→ 0.

Therefore H1 (G,Z) = ker
(
H0 (G, IG)

f−→ H0 (G,Z[G])
)
.

By Theorem A.2.7 and Proposition 2.5.1, we have

H0 (G, IG) ∼= IG/I
2
G
∼= G/G ′ and H0 (G,Z[G]) ∼= Z[G]/IG ∼= Z.

From the exactness of the sequence we obtain that im f = ker h. On the other
hand, we have

H0 (G,Z) ∼= Z/IGZ ∼= Z

and since h is a surjective map from Z to Z, we have ker h = 0 = im f . Thus

ker f = H0 (G, IG) ∼= IG/I
2
G
∼= G/G ′. ��

Now we examine the cohomology. Consider the resolution

· · · −→ Pn
∂n−→ Pn−1 −→ · · · −→ P1

∂1−→ P0
∂0−→ Z −→ 0,

where

Pn = Z
[
Gn+1

]
and ∂n (g0, . . . , gn) =

n∑
i=0
(−1)i (g0, . . . , ĝi , . . . , gn) .

If Kn = HomG (Pn, A), we obtain that

0 −→ K0
∂∗1−→ K1 −→ · · · ∂∗n−→ Kn

∂∗n+1−→ · · · ,
and Hn (G, A) = ker ∂∗n+1/im ∂∗n .
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Observe that f ∈ HomG (Pn, A) = HomG
(
Z
[
Gn+1] , A) is determined by its

values on Gn+1 and

f (g0, . . . , gn) = g0 f
(
1, g−10 g1, . . . , g

−1
0 gn

)
.

Hence f is determined by the value it takes at elements of Gn+1 of the from
(1, g1, g1g2, . . . , g1g2 · · · gn). We write

ϕ (g1, . . . , gn) = f (1, g1, g1g2, . . . , g1g2 · · · gn) .
Let
[
g1 | g2 | · · · | gn+1

]
:= (1, g1, g1g2, . . . , g1g2 · · · gn+1). Then

∂n+1
([
g1 | g2 | · · · | gn+1

]) = (g1, g1g2, . . . , g1g2 · · · gn+1)
+

n+1∑
i=1
(−1)i (1, g1, . . . , ̂g1 · · · gi , . . . , g1g2 · · · gn+1

)
= g1 (1, g2, . . . , g2 · · · gn+1)

+
n+1∑
i=1
(−1)i (1, g1, . . . , g1 · · · gi−1, g1 · · · gi gi+1, . . . , g1g2 · · · gn+1)

= g1
[
g2 | · · · | gn+1

]+ n+1∑
i=1
(−1)i [g1 | · · · | gi−1 | gi gi+1 | · · · | gn+1] .

Therefore

f ∈ ker ∂∗n+1 ⇐⇒ ∂∗n+1( f ) = f ◦ ∂n+1 = 0 ⇐⇒ for g1, . . . , gn+1 ∈ G,

( f ◦ ∂n+1)
[
g1 | g2 | · · · | gn+1

] = g1 f
([
g2 | · · · | gn+1

])
+

n+1∑
i=1
(−1)i f ([g1 | · · · | gi | gi gi+1 | · · · | gn+1]) = 0. (A.10)

Since ϕ (x1, x2, . . . , xn+1) = f
([
x1 | x2 | · · · | xn+1

])
, formula (A.10) estab-

lishes that ker ∂∗n+1 consists of the functions ϕ : G
n −→ A satisfying

g1ϕ (g2, . . . , gn+1)

+
n+1∑
i=1
(−1)iϕ (g1, . . . , gi−1, gi gi+1, gi+2, . . . , gn+1) = 0. (A.11)

Theorem A.2.13. We have H1 (G, A) ∼= Z1 (G, A)/B1 (G, A), where

Z1 (G, A) = { f : G → A | f (gh) = g f (h)+ f (g) for all g, h ∈ G}
is the group of crossed homomorphisms from G to A and

B1 (G, A) = { f : G → A | there exists a ∈ A with f (g) = ga − a for g ∈ G} .
In particular, if A is a trivial G-module, then H1 (G, A) = Hom (G, A).
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Proof. We have H1 (G, A) = ker ∂∗2 /im ∂∗1 . By Equation (A.11) we have

ker ∂∗2 = { f : G −→ A | g f (h)− f (gh)+ f (g) = 0} = Z1 (G, A) .

Now let f ∈ im ∂∗1 . We can write

f = ∂∗1 (ϕ) = ϕ ◦ ∂1 with ϕ ∈ HomG (P0, A) ∼= A.

Then f (g) = ϕ ◦ ∂1 ([g]). Let a = ϕ(1) ∈ A. We have

f (g) = ϕ ◦ ∂1 ([g]) = ϕ (∂1 (1, g)) = ϕ(g − 1)
= ϕ (g)− ϕ (1) = gϕ (1)− ϕ (1) = ga − a.

Therefore im ∂∗1 = B1 (G, A).
In particular, if G is trivial then ga − a = 0 for all g ∈ G. Therefore B1 (G, A) =

{0} and

f ∈ Z1 (G, A) ⇐⇒ f (gh) = g f (h)+ f (g) = f (g)+ f (h)

for all g, h ∈ G, that is, f ∈ Hom(G, A). ��
We also have H2 (G, A) = Z2 (G, A)/B2 (G, A). By Equation (A.11) we have

Z2 (G, A) =
{
f : G2 −→ A | g f (h,m)− f (gh,m)+ f (g, hm)− f (g, h) = 0

}
.

An element f ∈ Z2 (G, A) is called a factor set. These sets determine the groups
E such that A�E and E/A ∼= G, for some abelian group A. In other words, the factor
sets determine the groups E given by an exact sequence

0→ A→ E
π→ G → 0

and such that g ∈ G acts on A in the following way:

If g = π(e) with e ∈ E then g ◦ a = eae−1.

Since A is abelian, the action of g does not depend on e ∈ E .
To see how E is determined, let s : G → E be a “section,” that is, s satisfies

π ◦ s = IdG . We have

π(s(g)s(h)) = (πs)(g)(πs)(h) = gh = (πs)(gh).

Therefore

s(g)s(h)s(gh)−1 ∈ kerπ ∼= A.

It follows that there exists an element f (g, h) ∈ A such that
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s(g)s(h) = f (g, h)s(gh) for any g, h ∈ G.

The knowledge of f : G2 −→ A allows us to know E . It can be verified that f is a
factor set.

Two such extensions E and E ′ are called equivalent if there exists on isomorphism
ϕ : E −→ E ′ such that the diagram

E

� �
ϕ

��

0 A

� �

G 0

E ′

is commutative. This defines an equivalence relation whose classes are in bijective
correspondence with H2 (G, A). Note that if E and E ′ are equivalent, then they are
isomorphic, but the converse does not hold (see Exercise A.5.13).

We end this section with some examples of “Galois cohomology.” Consider a finite
extension of fields L/K with Galois group Gal(L/K ) = G. Then L and L∗ are G-
modules in a natural way. Furthermore, L/K has a normal basis ([89, Theorem 13.1,
p. 312]), that is, there exists α ∈ L such that {σα}σ∈G is a basis of L/K and the
G-modules

L =
⊕
σ∈G

K (σα) and K ⊗Z Z[G]

are isomorphic. In particular, L is induced, and we obtain the folowing result:

Proposition A.2.14. We have Hn (G, L) = 0 for all n ≥ 1.
Proof. The statement follows immediately from Theorem A.2.9. ��

In fact, we have Ĥn (G, L) = 0 for all n ∈ Z, where Ĥn (G, L) denotes the nth
Tate cohomology group (see Section A.3 below).

Proposition A.2.15. Let F be any field. If S is any finite set of automorphisms of
F, then S is linearly independent over F; in other words, if S = {σ1, . . . , σn} and
a1, . . . , an ∈ F are such that

a1σ1(x)+ · · · + anσn(x) = 0

for all x ∈ F, then a1 = · · · = an = 0.
Proof. Assume that

a1σ1(x)+ · · · + anσn(x) = 0 (A.12)
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for all x ∈ F with some ai �= 0. Taking a minimal such relation, that is, having as few
nonzero terms as possible, we may assume that n is minimal and ai �= 0 for 1 ≤ i ≤ n.
Note that n > 1. Since σ1 �= σ2, we can choose y ∈ F such that σ1(y) �= σ2(y).

Considering the element xy in (A.12) and multiplying by σ1(y) in (A.12), we
obtain

a1σ1(xy)+ a2σ2(xy)+ · · · + anσn(xy)

= a1σ1(x)σ1(y)+ a2σ2(x)σ2(y)+ · · · + anσn(x)σn(y) = 0 (A.13)

and

a1σ1(x)σ1(y)+ a2σ2(x)σ1(y)+ · · · + anσn(x)σ1(y) = 0. (A.14)

Subtracting (A.14) from (A.13) we obtain

a2
(
σ2(y)− σ1(y)

)
σ2(x)+ · · · + an

(
σn(y)− σ1(y)

)
σn(x) = 0

for all x ∈ F . Since a2
(
σ2(y) − σ1(y)

) �= 0, this contradicts the minimality of n in
(A.12) and proves the proposition. ��

Finally, we have Hilbert’s famous Theorem 90:

Theorem A.2.16 (Hilbert’s Theorem 90). H1 (G, L∗) = 0.
Proof. Let f ∈ Z1 (G, L∗). Then f : G −→ L∗ satisfies f (θσ ) = θ ( f (σ )) f (θ)
for any θ , σ ∈ G. By the linear independence of automorphisms of L (Proposition
A.2.15), there exists x ∈ L∗ such that y =∑σ∈G f (σ ) σ (x) ∈ L∗.

We have, for θ ∈ G,
θ (y) =

∑
σ∈G

(θ f ) (σ ) (θσ ) (x) =
∑
σ∈G

f (θσ ) f (θ)−1 (θσ ) (x) = f (θ)−1 y.

Hence f satisfies

f (θ) = θ(y)−1y ∈ B1
(
G, L∗

)
.

Therefore H1 (G, L∗) = 0. ��

A.3 Tate Cohomology Groups

Definition A.3.1. Let G be a finite group. The element N = ∑
σ∈G σ ∈ Z[G] is

called the norm of G.

For any G-module A, N defines an endomorphism of A given by Na =∑
σ∈G σa ∈ A. This endomorphism is also called the norm of A and in case of sev-

eral G-modules A under discussion, we will use the symbol NA in order to distinguish
between the different norms.
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Let IG = 〈σ − 1 | σ ∈ G〉 ⊆ Z[G]. As we have seen before, IG is the kernel of
the map ε : Z[G] −→ Z defined by ε

(∑
σ∈G aσ σ

) =∑σ∈G aσ .
Now if σ ∈ G, we have

N ((σ − 1) a) =
∑
θ∈G

σθa −
∑
θ∈G

θa = Na − Na = 0,

so IG A ⊆ ker N . On the other hand, since Nσa = σNa = Na, we have N A =
im N ⊆ AG .

Recall that H0 (G, A) = A/IG A, H0 (G, A) = AG , so that at the quotient group
level, N defines a homomorphism N∗ : H0 (G, A) −→ H0 (G, A).

Let Ĥ0 (G, A) = ker N∗ = ker N/IG A and Ĥ0 (G, A) = coker N∗ = AG/N A.
We have the exact sequence

0 −→ Ĥ0 (G, A) −→ H0 (G, A)
N∗A−→ H0 (G, A) −→ Ĥ0 (G, A) −→ 0.

Theorem A.3.2. Let G be a finite group and let 0 −→ A −→ B
π−→ C −→ 0 be an

exact sequence of G-modules. Then the diagram

H1(G,C)
ε0

��

H0(G, A)

N∗A
��

H0(G, B)

N∗B
��

H0(G,C)

N∗C
��

0

��
0 H0(G, A) H0(G, B) H0(G,C)

δ0
H1(G, A)

commutes and its rows are exact. Here ε0 and δ0 denote the connecting homomor-
phisms.

Proof. By Theorem A.1.24 the rows are exact. By definition, it is clear that the inside
squares commute too. To see that the outside squares commute, we will use the explicit
description of ε0 and δ0. We will just verify that the following square commutes, the
proof for the other square being similar:

δ0 : H
0 (G,C) = CG −→ H1 (G, A) = Z1 (G, A)/B1 (G, A).

Let c ∈ CG and let b ∈ B be such that π(b) = c. The function ∂b is defined by

(∂b)(g) = gb − b ∈ A for all g ∈ G.

Now

π(gb − b) = gπ(b)− π(b) = gc − c = c − c = 0

implies that gb − b ∈ A and ∂b ∈ Z1 (G, A).
Hence

δ0(c) = ∂ b mod B1 (G, A) “ = ” ∂ π−1(c) mod B1 (G, A) .
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We want to show that δ0 ◦ N∗C = 0. Let

x ∈ H0 (G,C) = C/IGC, say x = c + IGC, N
∗
C x =

∑
σ∈G

σc.

Then

δ0
(
N∗C x

) = δ0 (∑
σ∈G

σc

)
=
∑
σ∈G

δ0 (σc) =
∑
σ∈G

∂π−1 (σc) =
∑
σ∈G

∂ (σb) ,

where π(b) = c.
We have(∑
σ∈G

∂ (σb)

)
(g) =

∑
σ∈G

(∂ (σb)) (g) =
∑
σ∈G

(gσb − σb) = Nb − Nb = 0

for all g ∈ G. Therefore δ0 ◦ N∗C = 0. ��

Corollary A.3.3. There exists a canonical homomorphism

δ : Ĥ0 (G,C) −→ Ĥ0 (G, A)

that makes the group sequence

Ĥ0 (G, A)→ Ĥ0 (G, B)→ Ĥ0 (G,C)
δ→ Ĥ0 (G, A)→ Ĥ0 (G, B)→ Ĥ0 (G,C)

exact.

Proof. This is just the snake lemma (Theorem A.1.16) applied to Theorem A.3.2. ��

Theorem A.3.4. δ gives an exact sequence:

−→ H1 (G,C)
ε0−→ Ĥ0 (G, A) −→ Ĥ0 (G, B) −→ Ĥ0 (G,C)

δ−→ Ĥ0 (G, A) −→ Ĥ0 (G, B) −→ Ĥ0 (G,C)
δ0−→ H1 (G, A) .

Proof. We have

Ĥ0 (G, A) ⊆ H0 (G, A)
‖ ‖

ker NA/IG A ⊆ A/IG A
; Ĥ0 (G,C) = H0 (G,C)/im N∗C .

The connecting maps ε0 and δ0 given in Theorem A.3.2 satisfy N∗A ◦ ε0 = 0
and δ0 ◦ N∗C = 0. Thus im ε0 ⊆ ker N∗A and im N∗C ⊆ ker δ0. The result follows
immediately. ��
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Definition A.3.5. Let G be a finite group and let A be a G-module. We define the Tate
cohomology groups with exponents in Z by

Ĥn (G, A) = Hn (G, A) for n ≥ 1,
Ĥ0 (G, A) = AG/N A,

Ĥ−1 (G, A) = ker NA/IG A,

Ĥ−n (G, A) = Hn−1 (G, A) for n ≥ 2.

Theorem A.1.24 together with Theorem A.3.4 yields the following result:

Theorem A.3.6. If

0 −→ A −→ B −→ C −→ 0

is an exact sequence of G-modules, then

· · · −→ Ĥn−1 (G,C) −→ Ĥn (G, A) −→ Ĥn (G, B)

−→ Ĥn (G,C) −→ Ĥn+1 (G, A) −→ · · ·

is exact for all n ∈ Z. ��

A.4 Cohomology of Cyclic Groups

Let G be a finite cyclic group of order n, say G = 〈σ 〉. Let N = ∑n−1
i=0 σ

i and
D = σ − 1. Then

ND = DN =
(
n−1∑
i=0
σ i

)
(σ − 1) =

n∑
i=1
σ i −

n−1∑
i=0
σ i = σ n − 1 = 0.

We have

IG = 〈g − 1 | g ∈ G〉
=
〈
σ i − 1 = (σ − 1)

(
1+ σ + · · · + σ i−1

)
| i ∈ Z

〉
= 〈σ − 1〉 = D Z[G].

Thus N and D are maps from Z[G] to itself.

Proposition A.4.1. We have ker N = IG = im D and ker D = Z[G]G = im N.

Proof. Since ND = 0 and DN = 0, it follows that im D ⊆ ker N and im N ⊆ ker D.
Conversely, if s =∑n−1

i=0 aiσ
i ∈ ker N , we have
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Ns =
n−1∑
j=0
σ j s =

n−1∑
j=0
σ j

(
n−1∑
i=0

aiσ
i

)
=

n−1∑
i=0

ai

(
n−1∑
j=0
σ i+ j

)

=
n−1∑
i=0

ai

(
n−1∑
j=0
σ j

)
=

n−1∑
j=0

(
n−1∑
i=0

ai

)
σ j = 0.

This is equivalent to
∑n−1

i=0 ai = 0, i.e., s ∈ IG = D Z[G] = im D.
On the other hand,

s ∈ ker D ⇐⇒ (σ − 1) s = σ s − s = 0 ⇐⇒ σ s = s ⇐⇒ s ∈ Z[G]G .

Let s =∑n−1
i=0 aiσ

i ∈ Z[G]G . Then σ s =∑n−1
i=0 aiσ

i+1 =∑n−1
i=0 ai−1σ

i with a−1 =
an−1. Therefore σ s = s implies ai = ai−1, i = 0, 1, . . . , n − 1, and ai = a ∈ Z for
all i . We have

s = a

(
n−1∑
i=0
σ i

)
= N (a1) ∈ im N . ��

Let Ti = Z[G] for i = 0, 1, . . . , and define ∂i : Ti −→ Ti−1 by

∂i =
⎧⎨⎩
D if i is odd,

N if i is even,

for i = 1, 2, . . . . Let ε : Z[G] −→ Z be the homomorphism defined by

ε

(
n−1∑
i=0

aiσ
i

)
=

n−1∑
i=0

ai .

Proposition A.4.2. The sequence of G-modules

· · · −→ Ti
∂i−→ Ti−1 −→ · · · −→ T1

∂1−→ T0
ε−→ Z −→ 0

is exact.

Proof. If i is even, then ker ∂i = ker N = im D = im ∂i+1. If i is odd, then ker ∂i =
ker D = im N = im ∂i+1.

Finally, ε is surjective and ker ε = IG = im D = im ∂1. ��
{Ti , ∂i+1}∞i=0 is a resolution of Z when G is a finite cyclic group. Therefore, for a

G-module A, we obtain in cohomology:

0 −→ HomG (T0, A)
D∗−→ HomG (T1, A)

N∗−→ · · · .
Now HomG (Ti , A) = HomG (Z[G], A) ∼= A. Thus we obtain:

0 −→ A
D∗−→ A

N∗−→ A
D∗−→ · · · ,
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where

D∗a = Da = (σ − 1) (a) = σa − a, N∗a = Na =
n−1∑
i=0
σ i a.

We have

Ĥ2n−1 (G, A) = H2n−1 (G, A) = ker N∗

im D∗
= ker NA

DA
= Ĥ−1 (G, A) ,

Ĥ2n (G, A) = H2n (G, A) = ker D∗

im N∗
= ker AG

N A
= Ĥ0 (G, A)

for n = 1, 2 . . . .
Similarly, for homology we obtain Ti ⊗G A ∼= Z[G]⊗G A ∼= A and

· · · N∗−→ A
D∗−→ A −→ 0.

Therefore, we obtain

Ĥ−2n (G, A) = H2n−1 (G, A) = ker D∗

im N∗
= AG

N A
= Ĥ0 (G, A) ,

Ĥ−(2n+1) (G, A) = H2n (G, A) = ker N∗

im D∗
= ker NA

DA
= Ĥ−1 (G, A) = Ĥ1 (G, A) ,

for n = 1, 2 . . . .
We have proved the following theorem:

Theorem A.4.3. Let G be a finite cyclic group. Then for any G-module A, we have

Ĥ2n (G, A) ∼= Ĥ0 (G, A) = AG

N A
,

Ĥ2n+1 (G, A) ∼= Ĥ−1 (G, A) = ker NA

DA
,

for all n ∈ Z. ��

Definition A.4.4. Let G be a finite cyclic group, and let A be a G-module such that
Ĥ0 (G, A) and Ĥ1 (G, A) are finite of orders h0(A) and h1(A) respectively. We define
the Herbrand quotient of A by h(A) = h0(A)

h1(A)
.

Theorem A.4.5. Let 0 −→ A
f−→ B

g−→ C −→ 0 be an exact sequence of G-
modules. We have the following exact hexagon,
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Ĥ0(G, A)
f0

Ĥ0(G, B)
g0

Ĥ1(G,C)

δ1

Ĥ0(G,C)

δ0

Ĥ1(G, B)

g1

Ĥ1(G, A)f1

and if two of h(A), h(B), and h(C) are defined, then the third one is defined and we
have h(B) = h(A)h(C).

Proof. The hexagon is simply the exact sequence given in Theorem A.3.6, and the
result follows from the cyclicity of the Tate cohomology groups when G is a finite
cyclic group (Theorem A.4.3).

Now say that h(A) and h(B) are defined. Then h0(C) ≤ h0(B)h1(A) < ∞ and
h1(C) ≤ h1(B)h0(A) <∞. Therefore h(C) is defined.

Also, we have h0(B) =
∣∣∣Ĥ0 (G, B)∣∣∣ = |im g0| |ker g0|, and similarly for A and

C . We obtain

h(B) = h0(B)

h1(B)
= |im g0| |ker g0|
|im g1| |ker g1| ,

h(A)h(C) = h0(A)

h1(A)

h0(C)

h1(C)
= |im f0| |ker f0|
|im f1| |ker f1|

|im δ0| |ker δ0|
|im δ1| |ker δ1| .

From the exactness of the hexagon we obtain that |im f0| = |ker g0| and so on.
The equality h(B) = h(A)h(C) follows. ��

Proposition A.4.6. If A is a finite G-module, then h(A) = 1.
Proof. The sequence

0 −→ AG = ker DA −→ A
D−→ A −→ A/DA = AG −→ 0

is exact. Thus |AG | =
∣∣AG ∣∣.

Now

0 −→ Ĥ1 (G, A) = ker N∗ −→ H0 (G, A) = AG
N∗−→ H0 (G, A) = AG −→ Ĥ0 (G, A) −→ 0

is exact.
Therefore h1(A) = h0(A). ��

Corollary A.4.7. If A and B are two G-modules and f : A −→ B is a G-
homomorphism such that ker f and coker f are finite, then h(A) is defined if and
only if h(B) is defined, and in this case, we have h(A) = h(B).
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Proof. The sequence

0 −→ ker f −→ A
f−→ im f −→ 0

is exact. Thus h(A) is defined if and only if h(im f ) is defined. Now

0 −→ im f −→ B −→ coker f −→ 0

is exact. Therefore h(B) is defined if and only if h(im f ) is defined, if and only if h(A)
is defined.

In this case we have h(A) = h(ker f )h(im f ) = h(im f ) = h(B)
h(coker f ) = h(B). ��

A.5 Exercises

Exercise A.5.1. Prove Proposition A.1.2.

Exercise A.5.2. Let G = 〈σ 〉 be a finite cyclic group of order n. Prove that the G-
modules Z[G] and Z[x]/(xn − 1) are isomorphic, where σ �→ x mod (xn − 1), that
is, the action of σ in Z[x]/

(
xn − 1) is given by multiplication:

σ
(
f (x) mod

(
xn − 1)) = x f (x) mod

(
xn − 1).

Exercise A.5.3. Let G be a finite p-group and let A be a finite G-module whose order
is a power of p. Prove that AG = {0} implies A = {0}.
Exercise A.5.4. Let G be any group, H a normal subgroup of G, and A a G-module.
Consider the map

Res : H1(G, A) �−→ H1(H, A)

defined as follows: if f ∈ H1(G, A) and χ ∈ Z1(G, A) is such that χ mod
B1(G, A) = f with χ : G → A, then Res f = χ |H mod B1(H, A).
Prove that Res is a group homomorphism. The homomorphism Res is called the

restriction homomorphism.

Exercise A.5.5. With the notation of Exercise A.5.4, let

Inf : H1(G/H, AH ) �−→ H1(G, A)

be defined as follows: for f ∈ H1(G/H, AH ) and χ ∈ Z1(G/H, A) such that χ mod
B1(G/H, AH ) = f with χ : G/H → AH , then Inf( f ) = χ ◦ π mod B1(G, A),
where π : G → G/H is the natural projection.

Prove that Inf is a group homomorphism, called the inflation homomorphism.

Exercise A.5.6. With the notation of Exercises A.5.4 and A.5.5, prove that the se-
quence

0 −→ H1(G/H, AH )
Inf−→ H1(G, A)

Res−→ H1(H, A)

is exact.
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Exercise A.5.7. Let G be any group and let H be a normal subgroup of G such that
[G : H ] = n < ∞. If a ∈ AH and σ ∈ G, prove that σa depends only on the left
coset σ mod H . Let NG/Ha :=

∑
σ∈G/H σa. Prove that NG/Ha ∈ AG and that the

map

NG/H : Ĥ
0(H, A) −→ Ĥ0(G, A)

is a well-defined group homomorphism; NG/H is called corestriction in dimension 0
and denoted by Cor.

Exercise A.5.8. Show that
(Cor ◦ Res)(z) = nz

for all z ∈ Ĥ0(G, A), where |G/H | = n.

Exercise A.5.9. Let G be a cyclic group of order p, where p is a prime number. Define
A1 := Zp, Ap−1 := Zp[ζp] = ζp[x]/(�p(x)), and Ap := ζp[G], where Zp is the
ring of p-adic integers, ζp is a primitive pth root of 1, and the action is as in Exercise
A.5.2. Then A1, Ap−1, Ap are G-modules. Prove that

Ĥ0(G, A1) ∼= Cp, Ĥ−1(G, A1) ∼= 0,
Ĥ0(G, Ap−1) ∼= 0, Ĥ−1(G, Ap−1) ∼= Cp,

Ĥ0(G, Ap) ∼= 0, Ĥ−1(G, Ap) ∼= 0,
where Cp is the cyclic group of p elements.

Exercise A.5.10. Let G be a finite group and pm the maximal power of p that divides
|G|. Prove that Ĥ1(G,Zp) ∼= Ĥ−1(G,Zp) = {0} and Ĥ0(G,Zp) ∼= Zp/pmZp. Also
show that Hi (G,Qp) = {0} for all i . You may use that Hi (G,Qp) is a finite group.

Hint: Consider the isomorphism

Qp
n−→ Qp

x �−→ nx

for any n ∈ Z \ {0}.
Exercise A.5.11. With the notation of Exercise A.5.10, prove that

Ĥ i (G, R) ∼= Ĥ i+1(G,Zp)

for all i , where R = Qp/Zp.

Exercise A.5.12. Let G be a finite p-group and M a G-module. Assume that there
exists s ∈ N ∪ {0} such that the groups M and Rs are isomorphic, where R is as in
Exercise A.5.11. Consider the exact sequence

0 −→ pM −→ M
p−→ M −→ 0,
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where the map denoted by p is multiplication by p and pM := {m ∈ M | pm = 0}.
Show that if

αi (M) = dimFp

Ĥ i (G,M)

pĤ i (G,M)
= dimFp p Ĥ

i (G,M),

then Ĥ i (G, pM) ∼= Cαi−1(M)+αi (M)p .

Exercise A.5.13. Give an example of groups E and E ′ such that 0 → A → E →
G → 0 and 0→ A→ E ′ → G → 0 are exact sequences of groups, A � E , A � E ′,
A is abelian, E ∼= E ′, but E and E ′ are not equivalent.

Exercise A.5.14. Let K/k be a function field with k algebraically closed. Let L/K be
a finite Galois extension with Galois group G. If DL denotes the divisor group of L ,
prove that Ĥ−1(G, DL) = {0} and Ĥ0(G, DL) ≡

⊕r
i=1 Cei , where p1, . . . , pr are

the prime divisors in K ramified in L/K with ramification indices e1, . . . , er .



Notations

AG = G-submodule of A where G acts trivially, 599.

AG = maximal G-quotient module of A where G acts trivially, 615.
A℘ = localization of the commutative ring with unity A at the prime ideal ℘.
|A| = cardinality of the set A.
Aut(L/K ) = AutK L = group of K -automorphisms of L , 118.
α dβ = Hasse differential, 294.
C = field of complex numbers.par
char K = characteristic of the field K .par
CK = divisor class group of the field K , 62.
CK ,0 = degree 0 divisor class group of classes of the field K , 65.
DK = divisor group of the field K , 55.
DK ,0 = group of divisors of degree 0 of the field K , 64.
dK (A) = degree of the divisor A, 65.
DL/K = different of the extension L/K , 149.
DB/A = different of the extension of Dedekind domains B/A, 154.
DL/K (P|℘) = decomposition group of the place P over the place ℘, 120.

dL/K (P|℘) = relative degree of the place P with respect to the place ℘, 43, 115.

dx = principal differential, 96.
D (A) = differentials divisible by the divisor A, 77.
DifK = differentials in the field K , 78.
∂L/K = discriminant of the extension L/K , 149.



636 Notations

dimk V = dimension of the k-vector space V .
eL/K (P|℘) = ramification index of the place P with respect to the place ℘, 114.

f = o(g) means | f (x)| ≤ c|g(x)|, for x large enough, 223.
Fq = finite field of q elements, 31.
gK = genus of the field K , 69.
Gal(L/K ) = Galois group of the extension L/K .
� (A|S) = {x ∈ K | vP (x) ≥ vP (A) for all P ∈ S}, 56.
HA = Hilbert class field of the Dedekind domain A, 517.
hK = class number of the field K , 65.
IL/K (P|℘) = inertia group of the place P over the place ℘, 121.

imϕ = image of the homomorphism ϕ.
Irr (α, x, K ) = irreducible polynomial in K [x] of the element α.
kerϕ = kernel of the homomorphism ϕ.
KP = completion of the field K with respect to the valuation vP , 28, 29.
Kρ = smallest field of definition of a Drinfeld module ρ, 508.
k (P) = residue field with respect to the place P , 29.
K (x1, x2, . . . , xn) = rational function field in n variables with coefficients in K .
K [x1, x2, . . . , xn] = ring of polynomials in n variables with coefficients in K .
(K ,P∞, sgn) = triple of a congruence function field K with a fixed prime divisor
P∞ and a fixed sign function sgn, 510.[
L/K
P
]
= Frobenius symbol, 378.(

L/K
℘

)
= Artin symbol, 379.

[L : K ] = degree of the extension L/K .
LK (A) = {x ∈ K | vP (x) ≥ vP (A) for all P ∈ PK }, 58.
	 (A) = dimension of the k-vector space L (A), 59.
lim←−

i∈I Ai = inverse limit, 389.
m ! n means m larger enough than n.

N = set of natural numbers.
ℵ0 = |N|.
N = unit divisor, 56.
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Nx = pole divisor of x , 62.
N (C) = dimension of the class C , 69.
Pic A = class or Picard group of the Dedekind domain A, 505.
PK = principal divisor group of the field K , 62.
P | p = the prime divisor P divides the prime divisor p, 114.

PK = set of all places in the field K , 55.
quot A = field of quotients of the integral domain A, 19.
R∗ = group of units of the commutative ring with unity R.
Q = field of rational numbers.
Qp = field of p-adic numbers, 29.
R = field of real numbers.
tr L/K = transcendental degree of L over K , 3.
TrL/K � = trace of a differential, 290.
Up = group of units of a local field, 471.
A | B = the divisor A divides the divisorB, 56.
A | ξ = the divisor A divides the repartition ξ , 71.
A | ω = the divisor A divides the differential ω, 75.
A | C = the divisor A divides the class C , 85.
vP = valuation with respect to the place P , 43.
(x)K = principal divisor of the element x ∈ K ∗, 62.

XK = �K = repartitions or adeles of the field K , 70.
X (A) = �(A) = repartitions divisible by the divisor A, 71.
WK = canonical class of the field K , 81.
Wx (z0, . . . , zn) =Wronskian determinant with respect to Dx , 548.

H = set of all Hayes–modules, 510.
Z = ring of integers.
ZK (u) = zeta function of the field K , 196.
Zp = ring of p-adic integers, 29.
ζK (s) = zeta function of the field K , 195.
Zx = zero divisor of x , 62.
∅ = empty set.
�� = end of a proof.
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70. Hurwitz, Adolf, Über algebraische Gebilde mit eindeutigen Transformationen in sich,
Math. Ann. 41, 403–442, (1893)

71. Inaba, Eizi, Number of Divisor Classes in Algebraic Function Fields, Proc. Japan
Academy 26, 1–4, (1950)

72. Iwasawa, Kenkichi, Algebraic Functions, Translations of Mathematical Monographs
118, American Mathematical Society, Providence, (1993)

73. Iwasawa, Kenkichi; Tamagawa, Tsuneo, On the group of automorphisms of a function
field, J. Math. Soc. Japan 3, 137–147, (1951)

74. Iwasawa, Kenkichi; Tamagawa, Tsuneo, On the group of automorphisms of a function
field. Correction, J. Math. Soc. Japan 4, 100–101, (1952)

75. Iwasawa, Kenkichi; Tamagawa, Tsuneo, Correction: On the paper “On the group of
automorphisms of a function field”. (This journal, vol. 3 (1951), pp. 137–147), J. Math.
Soc. Japan 4, 203–204, (1952)
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117. Poincaré, Henri, Sur un Théorème de M. Fuchs, Acta Math. 7, 1–32, (1885)
118. Pollard, John H., Monte Carlo methods for index computation (mod p), Math. Comput.

32, 918-924, (1978)
119. Pollard, John H., Kangaroos, monopoly and discrete logarithms, J. Cryptology 13, No.4,

437-447, (2000)
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159. Weil, André, On the Riemann hypothesis in function-fields, Proc. Natl. Acad. Sci. USA

27, 345–347 (1941)



646 References
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Schwarz, Mathematische Werke. II. Abhandlungen 2., New York, (1967)
163. Yan, Song Y., Number Theory for Computing, Springer-Verlag, (2000)
164. Zaldı́var, Felipe, Funciones Algebraicas de una Variable Compleja, Universidad

Autónoma Metropolitana, México, (1995)
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idèle ∼, 411
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Weierstrass, 538, 542
weight of a Weierstrass, 543

pole number, 518
pole of a differential, 294
pole sequence of a divisor P(P), 544
polynomial
cyclotomic, 426

Pontrjagin dual, 402
poset, 390
power residue symbol, 486
prime, 25
divisors, PK , 56
finite, 25
infinite, 25, 424
relatively ∼, 56

product
convolution, 208

Product Formula, 195
projective limit, 390
projective resolution, 590
Prüfer ring, 400
public-key cryptosystems, 356

ramification
tame, 177
wild, 177

ramification index, 112
rank of a Drinfeld module, 494
reciprocity law, 379, 412
regular extension, 249
repartition, 70
cotrace of a ∼, 289
trace of a ∼, 289

repartitions congruent modulo an ideal, 71
residue
of a differential, 305

residue of a differential, 296
resolution
bar, 595
canonical, 595

restriction homomorphism, 618
Riemann Hypothesis, 207, 211, 220
Riemann Inequality, 517
Riemann surface, 8
of an algebraic function, 8

Riemann-Hurwitz
Genus Formula, 307, 308

ring
of formal series, 34
valuation, 19
discrete, 26

RSA cryptosystem, 357

semi-reduced divisor, 366
separable closure, 116
separable extension, 242
separably closed field, 125
separably generated field extension, 242
separating transcendence base, 242
series L , 197
standard form at a prime divisor, 176
symmetric encryption scheme, 355

Tate
cohomology, 610

Tate Genus Formula, 321
Teichmüller map, 50
Teichmüller representative, 48
Theorem
Abhyankar’s Lemma, 432, 435, 436
Analytic Uniformization, 499
Artin, 116, 410
Artin’s Approximation ∼, 45
Bauer, 411
Brauer-Siegel, 231, 480
Cebotarev Density ∼, 389
Chevalley’s Lemma, 38
Dirichlet, 449
existence, 412, 413
Fundamental ∼ of Galois Theory, 407
Gelfand-Mazur, 36
Hahn-Banach, 35, 36
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Hensel’s Lemma, 31
Hilbert’s ∼ 90, 611
Hurwitz, 568
Krasner’s Lemma, 161
Kronecker-Weber, 417, 479
Kummer, 161, 163
Leptin, 409
Liouville, 35, 36
Lüroth, 353
MacLane, 243
Nakayama’s Lemma, 158
Ostrowski, 6, 36
Residue, 298, 306
Residue ∼, 73
Riemann, 67
Riemann-Hurwitz, 307
Riemann-Roch ∼, 82
Snake Lemma, 588
Takagi-Artin, 412
Weierstrass Gap ∼, 519

topological group, 395
transcendental
basis, 2, 3

degree, 3
element, 2
purely ∼ extension, 3

twisted polynomial ring, 491

valuation, 17
discrete ∼ ring, 25

valuations
equivalent ∼, 20

Weierstrass
form, 102

Weierstrass Gap Theorem, 519
Weierstrass point, 538, 542
weight of a Weierstrass point, 543
Wronskian determinant, 528, 530, 532
Wronskian determinant of a set, 532
Wroskian determinant with respect to Dx ,

534

zero greatest common divisor, 366
zero of a differential, 294
zeta function, 193
Zorn’s Lemma, 48
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