Faron Moller
Georg Struth

Modelling
Computing Systems

Mathematics for Computer Science

. a @ Springer

UTiCS

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for un-
dergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and mod-
ern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored
by established experts in their fields, reviewed by an international advisory board, and contain numer-
ous examples and problems. Many include fully worked solutions.

For further volumes:
www.springer.com/series/7592

http://www.springer.com/series/7592

Faron Moller « Georg Struth

Modelling
Computing Systems

Mathematics for Computer Science

@ Springer

Faron Moller Georg Struth

Department of Computer Science Dept. Computer Science
Swansea University University of Sheffield
Swansea, UK Sheffield, UK

Series editor

Ian Mackie

Advisory board

Samson Abramsky, University of Oxford, Oxford, UK

Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK

Dexter Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA

Iain Stewart, University of Durham, Durham, UK

ISSN 1863-7310 Undergraduate Topics in Computer Science

ISBN 978-1-84800-321-7 ISBN 978-1-84800-322-4 (eBook)
DOI 10.1007/978-1-84800-322-4

Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013943907

© Springer-Verlag London 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this pub-
lication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permis-
sions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable
to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publica-
tion, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors
or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com

CONTENTS v

Contents

Starred sections are optional and often represent advanced material.

Preface

0 Introduction

0.1 Examples of System Failures
0.1.1 Clayton Tunnel Accident
0.1.2 USSScorpion
0.1.3 Therac 25 Radiotherapy Machine
0.1.4 London Ambulance Service
0.1.5 Intel Pentium
0.1.6 Ariane5
0.1.7 Needham-Schroeder Protocol

0.2 System, Model, Abstraction and Notation

0.3 Specification, Implementation and Verification . .

Part I: Mathematics for Computer Science

1 Propositional Logic

1.1 Propositions and Deductions
1.2 The Language of Propositional Logic
1.2.1 Propositional Variables
1.2.2 Negation
1.2.3 Disjunction L.
1.2.4 Conjunction.
1.2.5 Implication
1.2.6 Equivalence
1.2.7 The Syntax of Propositional Logic
1.2.8 Parentheses and Precedences
1.2.9 Syntax Trees
1.3 Modelling with Propositional Logic
1.4 Ambiguities of Natural Languages
1.5 Truth Tables
1.6 Equivalences and Valid Arguments
1.7 Algebraic Laws for Logical Equivalences
1.8 Additional Exercises

2 Sets

2.1 Set Notation
2.2 Membership, Equality and Inclusion
2.3 Sets and Properties. oL

2.3.1 Russell’s Paradox

xiii

15

17

...... 18
...... 21
...... 22
...... 22
...... 23
...... 25
...... 25
...... 27
...... 27
...... 28
...... 30
...... 32
...... 35
...... 40
...... 45
...... 47
...... 50

Vi

CONTENTS

*
*
*
*x 3

4
*x 5

2.4

2.5
2.6
2.7
2.8
2.9

Operationson Sets
2.4.1 Union e
2.4.2 Intersection
2.4.3 Differenceo
2.44 Complement
245 Powerset. Lo
2.4.6 Generalised Union and Intersection
Ordered Pairs and Cartesian Products
Modelling with Sets
Algebraic Laws for Set Identities
Logical Equivalences versus Set Identities
Additional Exercises

Boolean Algebras and Circuits

3.1
3.2
3.3
3.4
3.5

3.6

Boolean Algebraso
Deriving Identities in Boolean Algebras
The Duality Principle
Logic Gates and Digital Circuits
Making Computers Add
3.5.1 Binary Numbers
3.6.2 Adding Binary Numbers
3.5.3 Building Half Adders.
3.56.4 BuildingFull Adders
3.5.5 Putting It All Together
Additional Exercises

Predicate Logic

4.1
4.2

4.3
4.4
4.5

Predicates and Free Variables
Quantifiers and Bound Variables
4.2.1 Universal Quantification
4.2.2 Existential Quantification
4.2.3 Bounded Quantifications.
Rules for Quantification,
Modelling in Predicate Logic
Additional Exerciseso oo

Proof Strategies

5.1
5.2
5.3
5.4
5.5
5.6

A First Example o000
Proof Strategies for Implication
Proof Strategies for Negation
Proof Strategies for Conjunction and Equivalence
Proof Strategies for Disjunction
Proof Strategies for Quantifiers
5.6.1 Universal Quantification

87
87
90
93
95
100
100
102
103
104
105
106

109
109
111
113
115
118
120
124
127

CONTENTS vii

6

7

8

9

5.6.2 Existential Quantification 149
5.6.3 Uniqueness i 152
5.7 Additional Exercises 153
Functions 155
6.1 Basic Definitions L 155
6.2 One-To-One and Onto Functions 160
6.3 Composing Functions 163
6.4 Comparing the Sizesof Sets 166
6.5 The Knaster-Tarski Theorem 173
6.6 Additional Exerciseso 176
Relations 179
7.1 Basic Definitions o o000 179
7.2 Binary Relations 181
7.2.1 Functions as Binary Relations 185
7.3 Operations on Binary Relations 186
7.3.1 Boolean Operations 186
7.3.2 Inverting Relations 187
7.3.3 Composing Relations. 188
7.3.4 The Domain and Range of a Relation 189
7.4 Properties of Binary Relations 190
7.4.1 Reflexive and Irreflexive Relations 190
7.4.2 Symmetric and Antisymmetric Relations 191
7.4.3 'Transitive Relations 191
7.4.4 Orderings Relations 192
7.4.5 HEquivalence Relations 193
7.4.6 Equivalence Classes and Partitions 195
7.5 Additional Exercises 197
Inductive and Recursive Definitions 201
8.1 Inductively-Defined Sets 201
8.2 Inductively-Defined Syntactic Sets 205
8.3 Backus-Naur Form 207
8.4 Inductively-Defined Data Types 210
8.5 Inductively-Defined Functions 212
8.6 Recursive Functions 000 216
8.7 Recursive Procedures 218
8.8 Additional Exercises 220
Proofs by Induction 223
9.1 Convincing but Inconclusive Evidence 223
9.2 A Primary School Induction Argument 227

9.3 The Induction Argument 228

vii CONTENTS

9.4
9.5

9.7
9.8
9.9

Strong Induction L.
Induction Proofs from Inductive Definitions
Fun with Fibonacci Numbers
9.6.1 A Fibonacci Number Test
9.6.2 A Carrollean Paradox
9.6.3 Fibonacci Decompositions
When Inductions Go Wrong
Examples of Induction in Computer Science
Additional Exerciseso

10 Games and Strategies

10.1
10.2
* 10.3
10.4
10.5
10.6
10.7

Strategies for Games-of-No-Chance
Nim e

Bridg-Ito
Additional Exerciseso

Part II: Modelling Computing Systems

11 Modelling Processes

11.1
11.2
11.3

11.4
11.5
11.6

Labelled Transition Systems
Computations and Processes
A Language for Describing Processes
11.3.1 The Nil Process O
11.3.2 Action Prefix
11.3.3 Process Definitions
11.3.4 Choice
Distinguishing Between Behaviours
Equality Between Processes
Additional Exercises L.

12 Distinguishing Between Processes

12.1
12.2
12.3
12.4
* 12.5

12.6

The Bisimulation Game
Properties of Game Equivalence.
Bisimulation Relations 0L
Bisimulation Colourings
The Bisimulation Game Revisited: To Infinity and Beyond!

12.5.1 Ordinal Numbers
12.5.2 Ordinal Bisimulation Games
Additional Exerciseso

CONTENTS ix

*

13 Logical Properties of Processes

13.1 The Mays and Musts of Processes.
13.2 A Modal Logic for Properties
13.3 Negation Is Definable.
13.4 The Vending Machines Revisited
13.5 Modal Properties and Bisimulation
13.6 Characteristic Formulee
13.7 Global Semantics
13.8 Additional Exercises

14 Concurrent Processes

14.1 Synchronisation Merge
14.2 Counters.
14.3 Railway Level Crossing.
14.4 Mutual Exclusion

14.4.1 Dining Philosophers

14.4.2 Peterson’s Algorithm
14.5 A Message Delivery System
14.6 Alternating Bit Protocol
14.7 Additional Exercises

15 Temporal Properties

15.1 Three Standard Temporal Operators
15.1.1 Always: OP
15.1.2 Possibly: OP
15.1.3 Until: PUQ

15.2 Recursive Properties
15.2.1 Solving Recursive Equations
15.2.2 Fixed Point Solutions

15.3 The Modal Mu-Calculus

15.4 Least versus Greatest Fixed Points
15.4.1 Approximating Fixed Points

15.5 Expressing Standard Temporal Operators

15.5.1 Always: OP
15.5.2 Possibly: OP
15.56.3 Until: PUQ
15.6 Further Fixed Point Properties
15.7 Additional Exercises

Solutions to Exercises

Index

333

List of Figures

1.1
1.2

2.1

3.1

4.1

6.1
6.2
6.3
6.4

7.1

8.1
8.2

9.1
9.2
9.3

10.1
10.2
10.3
10.4
10.5
10.6
10.7

11.1
11.2
11.3
11.4
11.5
11.6
11.7

The formule of propositional logic. 28
B="*the symbol is black”, C="“the symbol is a circle”. 34
An example Venn diagram. 62
The Laws of Boolean Algebra. 88
A Sudoku puzzle. 126
A function f:A— B fromAtoB. 156
The graph of the function f(z) =z®-=z. 159
Enumerating the positive rationals. 172
Enumerating the rational numbers 178
James Bond Films. oL 181
Towers of Hanoi with five disks. 220
A family tree of male (") and female (Q) bees. 222
Counting regions in circles. 226
Dominoes inductively falling down. 229
Induction as a boot-strapping operation. 230
The game tree for a simple coin game. 257
An analysis of 3x4 CHOMP. 266
The HEx board. 267
HeEx never endsinadraw.. 268
The BripGg-IT board. 269
BRIDG-IT never ends ina Draw. 270
The winning strategy for Bripg-IT. 271
A simple calculator. L oL, 280
An example labelled transition system. 283
The LTS of the Man-Wolf-Goat-Cabbage Riddle. 286
A process computing the GCD of 246 and 174. 288
A simple lamp control process. 289
Syntax and semantics of the process language Proc. 297

Clock processes. v i i e 298

xii LIST OF FIGURES

11.8 Three implementations of a vending machine. 299
11.9 Transition systems for the three vending machines. 300
11.10A car seat belt safety system. 306
12.1 Example transition systems. oL L. 310
12.2 Example transition systems. 317
13.1 Syntax and semantics of the modal logic HML. 338
13.2 Global semantics of the modal logic HML. 352
14.1 The railway level crossing. 362
14.2 Dining Philosophers. 366
14.3 The message-passing system. 374
15.1 Global semantics of the modal mu-calculus. 390
15.2 Venn diagram for Exercise 2.15. 417
15.3 Venn diagram for Exercise 2.27. 420
15.4 The LTS of the Missionaries and Cannibals Riddle. 460
15.5 The LTS of the change-making machine. 468
15.6 The LTS for Exercise 11.16. 469

15.7 The enhanced message-passing system. 487

Preface

The good news about computers is that they do what you tell them
to do. The bad news s that they do what you tell them to do.
- Ted Nelson.

Computer Science is a relatively young discipline. University Computer
Science Departments are rarely more than a few decades old. They will
typically have emerged either from a Mathematics Department or an Engi-
neering Department, and until recently a Computer Science degree was pre-
dominantly about writing computer programs (the mathematical software)
and building computers (the engineering hardware). Textbooks typically
referred to programming as an “art” or a “craft” with little scientific basis
compared to traditional engineering subjects, and many computer program-
mers still like to see themselves as part of a pop culture of geeks and hackers
rather than as academically-trained professionals.

However, the nature of Computer Science is changing rapidly, reflecting
the increasing ubiquity and importance of its subject matter. In the last
decades, computational methods and tools have revolutionised the sciences,
engineering and technology. Computational concepts and techniques are
starting to influence the way we think, reason and tackle problems; and
computing systems have become an integral part of our professional, eco-
nomic and social lives. The more we depend on these systems — particularly
for safety-critical or economically-critical applications — the more we must
ensure that they are safe, reliable and well designed, and the less forgiv-
ing we can be of failures, delays or inconveniences caused by the notorious
“computer glitch.”

Unlike traditional engineering disciplines which are solidly rooted on
centuries-old mathematical theories, the mathematical foundations under-
lying Computer Science are younger, and Computer Scientists have yet to
agree on how best to approach the fundamental concepts and tasks in the
design of computing systems. The Civil Engineer knows exactly how to
define and analyse a mathematical model of the components of a bridge
design so that it can be relied on not to fall down, and the Aeronautical
Engineer knows exactly how to define and analyse a mathematical model of
an aeroplane wing for the same purpose. However, Software Engineers have
few universally-accepted mathematical modelling tools at their disposal. In
the words of the eminent Computer Scientist Alan Kay, “most undergrad-

xiv Preface

uate degrees in computer science these days are basically Java vocational
training.” But computing systems can be at least as complex as bridges or
aeroplanes, and a canon of mathematical methods for modelling computing
systems is therefore very much needed. “Software’s Chronic Crisis” was the
title of a popular and widely-cited Scientific American article from 1994,
and, unfortunately, its message remains valid today.

University Computer Science Departments face a sociological challenge
posed by the fact that computers have become everyday, deceptively easy-
to-use objects. A single generation ago, new Computer Science students
typically had teenage backgrounds spent writing Basic and/or Assembly
Language programs for their early hobbyist computers. A passion for this
activity is what drove these students into University Computer Science pro-
grammes, and they were not disappointed with the education they received.
Their modern-day successors on the other hand — born directly into the
heart of the computer era — have grown up with the internet, a billion dollar
computer games industry, and mobile phones with more computing power
than the space shuttle. They often choose to study Computer Science on
the basis of having a passion for using computing devices throughout their
everyday lives, for everything from socialising with their friends to down-
loading the latest films, and they often have less regard than they might
to the considerations of what a University Computer Science programme
entails, that it is far more than just using computers.

There is a universal trend of large numbers of first-year students trans-
ferring out of Computer Science programmes and into related programmes
such as Media Studies or Information Studies. This trend, we feel, is often
unjustified, and can be reversed by a more considered approach to modelling
and the mathematical foundations of system design, one which the students
can connect and feel at home with right from the beginning of their Univer-
sity education. This has been our motivation in writing this textbook aimed
at teaching first-year undergraduate students the essential mathematics and
modelling techniques for computing systems in a novel and relatively light-
weight way.

The book is divided into two parts. Part I, subtitled Mathematics for
Computer Science, introduces concepts from Discrete Mathematics which
are in the curriculum of any University Computer Science programme, as
well as much which often is not. This material is typically taught in service
modules by mathematicians, and new Computer Science students often find
it difficult to engage with the material presented in a purely mathemati-
cal context. We attempt here to present the material in an engaging and
motivating fashion as the basis of computational thinking.

Part II of the book — Modelling Computing Systems — develops a par-

Preface xv

ticular approach to modelling based on state transition systems. State tran-
sition systems have always featured in the Computer Science curriculum,
but traditionally (and increasingly historically) only within the study of
formal languages. Here we introduce them as general modelling devices,
and explore languages and techniques for expressing and reasoning about
system specifications and (concurrent) implementations. Although Part I
covers twice as many pages as Part II, the title of the book is nonetheless
justified: much of the Mathematics presented in Part I itself is used directly
for modelling systems, and forms the basis on which the approach developed
in Part II is based.

The main benefit of mathematical formalisation is that systems can be
modelled and analysed in precise and unambiguous ways; but formal pre-
cision can also be a major pitfall in modelling since it can compromise
simplicity and intuition. In this book, therefore, we always try to start from
intuition and examples, and we aim at developing precise concepts from that
basis. How and when to be precise is certainly not less important to learn
than precision itself: the ability to give mathematical proofs often does not
depend on knowing precise formal definitions and foundations. One can,
for example, write down recursive functions without having a precise formal
concept in mind.

There is a long standing tradition in disciplines like Physics to teach
modelling through little artifacts. The fundamental ideas of computational
modelling and thinking as well can better be learned from idealised exam-
ples and exercises than from many real world computer applications. This
book builds on a large collection of logical puzzles and mathematical games
that require no prior knowledge about computers and computing systems;
these can be much more fun and sometimes much more challenging than
analysing a device driver or a criminal record database. Also, computa-
tional modelling and thinking is about much more than just computers!

In fact, games play a far more important role in the book: they provide
a novel approach to understanding computer software and systems which is
proving to be very successful both in theory and practice. When a computer
runs a program, for example, it is in a sense playing a game against the
user who is providing the input to the program. The program represents
a strategy which the computer is using in this game, and the computer
wins the game if it correctly computes the result. In this game, the user
is the adversary of the computer and is naturally trying to confound the
computer, which itself is attempting to defend its claim that it is computing
correctly, that is, that the program it is running is a winning strategy. (In
Software Engineering, this game appears in the guise of testing.) Similarly,
the controller of a software system that interacts with its environment plays

xvi Preface

a game against the environment: the controller tries to maintain the system’s
properties, while the environment tries to confound them.

This view suggests an approach to addressing three basic problems in
the design of computing systems:

1. Specification refers to the problem of precisely identifying the task to
be solved, as well as what exactly constitutes a solution. This problem
corresponds to the problem of defining a winning strategy.

2. Implementation or Synthesis refers to the problem of devising a
solution to the task which respects the specification. This problem
corresponds to the problem of implementing a winning strategy.

3. Verification refers to the problem of demonstrating that the devised
solution does indeed respect the specification. This problem corre-
sponds to the problem of proving that a given strategy is in fact a
winning strategy.

This analogy between the fundamental concepts in Software Engineering on
the one hand, and games and strategies on the other, provides a mode of
computational thinking which comes naturally to the human mind, and can
be readily exploited to explain and understand Software Engineering con-
cepts and their applications. It also motivates our thesis that Game Theory
provides a paradigm for understanding the nature of computation.

There are over 200 exercises presented throughout each chapter, all of
which have complete solutions at the back of the book, as well as over 200
futher exercises at the end of each chapter whose solutions are not provided.
The exercises within the chapters are often used to explore subtleties or
side-issues, or simply to put lengthy arguments into an appendix, and as
such should all be attempted; their solutions at the back of the book should
be looked at as well, as they often explain the issues which the exercises are
attempting to highlight.

Most of the material in this book has been used successfully for over a
decade in first-year Discrete Mathematics and Systems Modelling modules.
Countless eyes have passed over the text, and a thousand students have
solved its exercises. Nonetheless there will inevitably be a (hopefully small)
flurry of errors in the text for which we accept full responsibility and offer
our sincere apologies.

Faron Moller Georg Struth
Swansea Sheffield

Chapter 0
Introduction

... for by the error of some calculator the vessel often splits upon
a rock that should have reached a friendly pier ...
- Henry David Thoreau.

We all know from personal experience that computers do not work cor-
rectly all the time. For most of us this realisation manifests itself with
nothing more serious than delays and frustrations as we encounter auto-
matic bank tellers which are out-of-order or Web sites which are faulty, or
face long waits at airports as glitches in the booking, check-in, or even the
flight control system are being catered for.

However, the problems of systems failures become more serious (costly,
deadly) as automatic control systems find their way into almost every aspect
of our daily lives. It is recognised — and accepted — that complete reliability
of any major software system is beyond expectation. While, for example,
civil and mechanical engineers can build impressive bridges which are guar-
anteed to remain standing, and aeronautical engineers can design aeroplane
wings which behave in precise and predicatable ways, Software Engineers
are almost never so successful. Computers carry viruses, hang, crash or die;
and their software is full of security leaks and bugs. Designing dependable
high quality computing systems remains a challenge for Software Engineers.

Quality expectations, of course, have much to do with culture and con-
text. Many of us are willing to accept as a mere inconvenience that a train
can be delayed, a cash machine can be out of order, or a mail server can
temporarily be down. But we don’t tolerate bridges that fall down, nuclear
meltdowns in power stations, or security leaks in public data bases. Engi-
neers speak about safety critical applications when system failure cannot
be tolerated, but we should expect software systems to be user friendly,
safe and dependable in any application context. Why is this so difficult to
achieve?

There are several answers to this question. One of them is that software
systems can be extremely complex — more complex even than most other sys-
tems that Engineers can design and build. They may consist of large num-
bers of heterogeneous components that can change over time and interact

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_1, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_1

2 Introduction

0.1.1

in intricate and sophisticated ways. Another answer is that our knowledge
and experience in designing such systems, and our expertise in organising
their design process, are still in their infancy compared to building bridges,
chemical plants or railway networks. A third answer — and perhaps the
most important one — is that rigorous mathematical tools and methods are
much less employed in Software Engineering than in other engineering dis-
ciplines. While traditional engineers have always been academically trained
to use tools and techniques from mathematics and physics to guarantee the
quality of their products, software designers and programmers are still often
self-taught and have traditionally relied very much on their intuition and
intelligence. Many of them seem to have a rather fatalist attitude towards
bugs.

This attitude is more and more difficult to defend. Programs and soft-
ware systems are themselves mathematical structures; many software sys-
tems rely on sophisticated mathematical mechanisms such as audio com-
pression, public key cryptography, or Web search ranking; and there are
powerful domain-specific mathematical tools and techniques that can help
us to understand, design, implement and analyse them in a better, more
structured, and more scientific way.

The aim of this book is to introduce some of the techniques which, when
applied, can help to reduce the number of errors present in a system. Er-
rors can arise at many points in the software development process, from
understanding exactly the requirements and behaviour of the system being
built, to ensuring that these requirements are correctly captured in the de-
sign and implementation of the system. By working within the confines of a
precise structured method, the occurrence of such errors can be drastically
curtailed.

Examples of System Failures

To understand and appreciate the role of mathematics in modelling comput-
ing systems, it is helpful to look at a variety of examples of system failure.
Some of these failures are of an entirely technological nature, others have to
do with the ways in which humans and machines interact or in which rules
of communication between different agents have been designed. In every
case, they arise from errors in information processing, which is at the very
core of computational modelling.

Clayton Tunnel Accident

Up until the mid-nineteenth century, collisions between trains were avoided
solely by enforcing a minimum time interval between trains. Railway em-

Examples of System Failures 3

ployees (known as “policemen”) would stand at regular intervals (“blocks”)
along the line and signal trains with hand gestures to slow down if too lit-
tle time had elapsed since the previous train had passed. In the case of a
break-down of a train, the guard in the rear of the train would run back
along the track to warn any oncoming trains of the danger ahead.

With ever-increasing traffic, growing lapses in this system eventually
led to the installation of crude block signalling in particularly troublesome
places, in which some protocol would be followed to ensure that only one
train occupied a given stretch of track at any given moment. Such a proto-
col typically involved railway workers at each end of the section signalling
each other via telegraph of the passage of trains: having let one train pro-
ceed, the signalman would hold back any further trains until a message was
received indicating that the first train had cleared the section ahead. The
first commercial electric telegraph was constructed in Britain for use on
the Great Western Railway, and the first section of track to be protected
by block signalling using telegraph communication was the track through
Clayton tunnel outside Brighton. However, on the morning of Sunday 25
August 1861, this protocol failed to prevent a catastrophic collision inside
the tunnel which killed 23 people and injured a further 176.

In normal operation, when a train arrived at Clayton tunnel, it would
meet a rail-side signal which would be set at “danger” unless the signalman
at the entrance to the tunnel set it to “all right” authorising the train to enter
the tunnel. This signalman would telegraph a “train in tunnel” message to
the signalman at the other end of the tunnel, and the rail-side signal would
be reset to “danger” to prevent any further trains from entering the tunnel
until the signalman received a “tunnel clear” message by telegraph from
the signalman at the other end of the tunnel, indicating that the train had
emerged from the other side.

On the fateful morning in question, three trains left Brighton Station
within a seven-minute period and steamed towards Clayton tunnel. These
trains were scheduled to depart at 8:05, 8:15 and 8:30, respectively; however,
the first train was running late, and the assistant stationmaster in charge
that morning — one Charles Legg — opted to ignore the strict regulation of
ensuring a minimum five-minute separation between trains by sending them
off at 8:28, 8:31 and 8:35, respectively. The first train was given the “all
right” signal to enter the tunnel, and the signalman — named Henry Killick
— telegraphed the “train in tunnel” message to his counterpart — a man by
the name of Brown — at the other end. He was then taken by surprise by the
quick arrival of the second train, which passed the rail-side signal before he
had had a chance to reset it to “danger.” In desperation, he rushed out of
his cabin furiously waving his red flag to stop the second train just as it was
disappearing into the tunnel; there was no way for him to know, however,
whether or not the driver had seen the flag.

4 Introduction

0.1.2

0.1.3

Killick telegraphed to Brown a further “train in tunnel” message and
waited tentatively for a response. Killick telegraphed a further message to
Brown asking if the tunnel was clear; and to his relief he finally received the
“tunnel clear” message from Brown. Unfortunately for Killick, Brown had
not realised from Killick’s repeated “train in tunnel” message that a second
train had entered the tunnel; his “tunnel clear” message was in response to
the passing of the first train. The driver of the second train — unbeknownst
to Killick — had in fact seen the red flag; and having finally brought his heavy
load to a stop, he was in the process of cautiously reversing back towards
Killick. When, at that moment, the third train arrived at the entrance to
the tunnel, Killick offered it the “all right” signal — with fatal consequences.

The Clayton tunnel accident is obviously not the result of a computer
failure, but it is based on a poorly designed communication protocol between
distributed agents, and therefore typical for computing systems. Mutual ez-
clusion algorithms, which prevent more than one computing agent at a time
accessing a resource such as a printer or a global variable, are instrumental
parts of any operating system. The accident also shows a standard pitfall of
systems design: the whole idea of the signalling protocol at Clayton tunnel
was to ensure that two trains could not occupy the same block at the same
time. But it couldn’t handle the exceptional case it was supposed to pre-
vent. (For details, see L.T.C. Rolt, Red for Danger: The Classic History
of Railway Disasters, The History Press, 2009.)

USS Scorpion

In 1968, the nuclear submarine USS Scorpion was destroyed killing all of
its 99 crew members. Though the cause of its destruction has long been
steeped in mystery, evidence which was only declassified three decades later
suggests that the submarine may in fact have been destroyed by one of its
own torpedoes which had been accidentally activated and thus ejected. The
torpedo had been cleverly designed to seek out its nearest target, which
is precisely what it did on this occasion, with devastating consequences.
(For details, see P G Neumann, Computer Related Risks, Addison Wesley,
1994.)

The negative implications of seemingly sensible and harmless design deci-
sions often arise only in hindsight as unintended consequences after disaster
has struck. Clearly, every eventuality needs to be accounted for, especially
in safety-critical designs where failure of the system could lead to injury,
illness or loss of life; serious environmental damage; or major financial loss.

Therac 25 Radiotherapy Machine

The Therac 25 was a radiation therapy machine that intermittently gave
the wrong radiation doses over a period of three years (1985-87) due pre-

Examples of System Failures 5

0.1.4

dominantly to errors in the software controlling its operation, as well as its
poor interface design. The problems with the Therac 25 have been very
thoroughly analysed, and six accidents — three of them fatal — have been
attributed to its failures. (For details, see N Leveson and C S Turner, “An
Investigation of the Therac-25 Accidents,” IEEE Computer 26(7), pages
18-41, July 1993.)

The basic issue involved the replacement of hardware interlocks used in
previous models by a software-only system. The machine had two modes
of operation: electron mode and photon (or X-ray) mode, which were used
for treating tumours at different depths in a patient’s body. Electron mode
involved a low-power electron beam, while photon (X-ray) mode involved a
high power electron beam (three orders of magnitude more powerful), but
with a metal plate between the device and the patient, to generate the X-
rays. The electron beam had to be in low-power mode if the plate was
not present, and in earlier designs (Therac 6 and Therac 20) there was a
mechanical interlocking device which physically ensured this. This hardware
interlock was removed from the Therac 25 which was left to rely on a (faulty)
software interlock.

The software was poorly specified (there was no documentation on its
software specification), designed and tested; and much of it was imported as-
is from the previous models despite changes in requirements, without any
form of integration testing. The problem was compounded by a complex
user interface. In some cases, if the operator tried to enter certain control
sequences (either in error or as shortcuts), the machine would operate in-
correctly, using the high-power beam with no plate. It would then report
an error, which it would normally do when no treatment had been deliv-
ered. Often in response to such an error report, operators would repeated
the whole process, leading ultimately to fatal unintended consequences.

Leveson and Turner draw the following conclusion: “Virtually all com-
plex software will behave in an unexpected or undesired fashion under some
conditions — there will always be another bug. Accidents are seldom simple —
they usually involve a complex web of interacting events with multiple con-
tributing technical, human, and organisational factors.” To improve the sit-
uation, they appeal to education: “Taking a couple of programming courses
or programming a home computer does not qualify anyone to produce safety-
critical software.” The lesson is clear: the same rigorous standards should
be applied to Software Engineering as to Engineering in general.

London Ambulance Service

In October 1992, the London Ambulance Service installed a computer aided
dispatch (CAD) system, known as LASCAD, to control the dispatching of
ambulances across London. It was to automatically match up each call to
be responded to with the closest available ambulance. However, the system

6 Introduction

0.1.5

was unable to cope with real-time data, which was on the order of 5000
calls per day. As it became more and more swamped with information and
requests, it generated more and more exception messages requiring human
intervention. The volume of these messages caused the exception messages,
together with information needing to be dispatched to ambulances, to scroll
off the top of the controllers’ screens. As many as thirty deaths have been
attributed to failings of the system. For example, it was reported that one
ambulance arrived to find the patient had died and long since been collected
by the undertaker; and that another ambulance took 11 hours to reach its
destination — five hours after the stroke victim had made their own way to
the hospital.

The London Ambulance Service quickly reverted partially to its man-
ual dispatching system. However, after eight days, the automated system
crashed completely, leading the service to revert completely to the origi-
nal manual system. Taking responsibility for the £1.5 million failure, the
chief executive of the London Ambulance Service duly resigned from his
post. (For details, see A Finkelstein and J Dowell, “A Comedy of Errors:
The London Ambulance Service Case Study,” in The Eighth International
Workshop on Software Specification and Design, IEEE CS Press, pages
2-4, 1996.)

As in our previous examples, this disaster was caused by a complex web
of managerial and economic pressure, incompetence and technical failure;
but Finkelstein and Dowell conclude that “at the heart of the failure are
breakdowns in specification and design common to many software develop-
ment projects.”

Intel Pentium

When the Intel Pentium PC was initially released in 1994, problems were
found in its floating-point unit. With certain inputs, the unit gave inaccurate
results when performing division, thus rendering it useless for mathematical
or scientific work.

The error had been caused in the design stage of the chip when a new al-
gorithm for floating-point division was implemented which was three to five
times faster than previous methods. This algorithm is based on using look-
up tables to calculate intermediate results. The hardware was implemented
using a program to download values into the look-up tables; however, an
error in this software caused five of the 1066 entries to be inadvertently
omitted.

Because the calculations recursively use information from the look-up
tables, the errors that can accrue magnify in scale. For example, performing
the sum z — (z/y) * y should return the answer 0 for any inputs z and y.
Given that computers have to deal with approximations to real numbers,
we typically have to settle for a value close to zero to be returned. But

Examples of System Failures 7

0.1.6

0.1.7

with input values z = 4195835 and y = 3145727 the first Pentium release
gave the answer 256. (For details, see T R Halfhill, “The Truth Behind the
Pentium Bug,” Byte 20(3), pages 163-164, March 1995.)

Ariane 5

In June 1996, the maiden flight of the Ariane 5 satellite launch rocket,
Flight 501, ended in disaster: the rocket veered off course and exploded 40
seconds after lift-off. Its self-destruct system was initiated when the rocket
detected it was disintegrating. This damage was caused by friction with the
atmosphere as the rocket was travelling at too shallow an angle.

The flight path of the rocket was controlled by two software components,
one providing the flight data, and the other converting this data into signals
which controlled nozzles that direct the rocket’s boosters. The problem was
found to be with the software providing the flight data, which was imported
as-is from the earlier Ariane 4 (a similar problem underlying the Therac 25
failure).

The software executed an instruction to convert a 64-bit integer to a
16-bit representation on a number that was too big to be stored as a 16-bit
integer. (Ariane 5 used a different flight path from Ariane 4 which involved
a shorter period of vertical ascent before yawing over to accelerate, thus
reaching shallower angles than Ariane 4 sooner in the flight; this problem
thus never arose with Ariane 4.) As there was no code to deal with this
exception, the program crashed, and the ensuing error messages generated
by the system were interpreted by the guidance system as flight data. Iron-
ically, the part of the software that failed was only needed by Ariane 4
before lift-off, and was only active during the first part of the flight due to
the possibility of a short hold prior to lift-off. This piece of software was
unnecessary for Ariane 5.

The Ariane 501 Inquiry Board reported that the failure was “due to spec-
ification and design errors in the software of the inertial reference system”
because the Ariane 5 Development Programme “did not include adequate
analysis and testing of the inertial reference system or of the complete flight
control system.” It recommended that the European Space Agency should
in the future ascertain that “specification, verification and testing are of con-
sistently high quality.” (For details see “Ariane 501 Inquiry Board report,”
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf.)

Needham-Schroeder Protocol

When communicating over the Internets, where anyone can intercept and
read the messages you send, it is important to securely encrypt any sensitive
information that you may send out, such as your credit card details, so that
only the intended recipient of your message can decrypt and read it. The

8

Introduction

Needham-Schroeder protocol was devised to allow two parties — commonly
referred to as “Alice” and “Bob” - to authenticate themselves over such an
insecure channel: after executing such a protocol, Alice will believe that
she is talking to Bob and vice versa, and hence they will have established
mutual trust for further transactions.

The Needham-Schroeder protocol is based on public-key cryptography:
Bob (and anyone else) can, for instance, use Alice’s public key — which
he can obtain from some trusted server — for encrypting messages to Alice
which only Alice can decrypt and read using her private key which she keeps
secret. The protocol then works as follows:

1. Alice sends a message to Bob — encrypted with his public key — consist-
ing of a random number along with some statement about her identity.

2. Bob decrypts this message with his private key, and sends a message
in response to Alice - encrypted with her public key — consisting of
Alice’s random number along with a random number of his own.

3. Alice decrypts Bob’s message with her private key, and sends another
message to Bob — again encrypted with his public key — consisting of
Bob’s random number.

When Alice receives Bob’s response to her first message, she will believe that
she is talking to Bob, as only Bob could have decrypted her message and
discovered the random number that she had sent him. Equally, when Bob
receives Alice’s second message, he will believe that he is talking to Alice,
as only she could have decrypted his message and discovered the random
number that he had sent her. Hence, after executing this protocol, Alice
and Bob will both have reason to trust each other’s identities.

This protocol was devised in 1978, and for over 15 years it gave no cause
for concern to the network community. Indeed, there were a variety of
“proofs” attesting to the correctness and reliability of this protocol. Despite
this evidence of the protocol’s security, in 1995 it was discovered to be
susceptible to a very basic man-in-the-middle attack: an intruder could
participate in the protocol and convincingly impersonate another agent —
even without breaking the encryption. Here is how it works:

1. The intruder masquerades as Bob so that Alice encrypts her initial
message with the intruder’s public key and sends her message to him.

2. The intruder decrypts Alice’s message with his private key, then en-
crypts it with Bob’s public key and sends this on to Bob.

3. Bob sends Alice’s random number together with his own, encrypted
with Alice’s public key, to the intruder, who forwards it — unaltered —
to Alice.

4. Alice decrypts Bob’s message, encrypts Bob’s random number with
the intruder’s public key and sends it to the intruder.

System, Model, Abstraction and Notation 9

5. The intruder decrypts this message, encrypts it with Bob’s public key
and sends this on to Bob.

As far as Alice and Bob are concerned, the results of this interaction as
interfered with by the intruder appear identical to those of the original
interaction, so they will once again believe — this time incorrectly — that
they are talking directly to each other. Their subsequent correspondence
will all be via the intruder, who will be able to read all of Alice’s messages,
as they will continue to be encrypted using the intruder’s public key and
re-encrypted by the intruder with Bob’s public key before being sent on to
Bob. The intruder will still not be able to read Bob’s messages, though,
as these will all be encoded using Alice’s public key, and the intruder will
only be able to forward these unaltered to Alice. (For details, see G Lowe,
“An attack on the Needham-Schroeder public key authentication protocol,”
Information Processing Letters 56(3), pages 131-136, November 1995.)

In contrast to the previous examples, this is a pure design error, which is
again rather unexpected and surprising given the simplicity and stringency
of the protocol. The difficulty with detecting this flaw is that intruders can
behave in various unexpected ways that — being unpredictable — are very
difficult to analyse. Even very simple protocols can lead to a wide variety
of different system behaviours that need to be considered. It seems rather
improbable that such diversity can be catered for simply by testing.

The various failures discussed above have complex and generally multiple
causes, and most of them can be traced back to poor software development
processes. What is lacking in the development process is a rigorous engi-
neering discipline through which a thorough understanding of the system
being developed is obtained before the system is constructed. In traditional
engineering disciplines, the methods for obtaining such an understanding are
well established and based on formally modelling an appropriately-abstract
version of the system being developed. The challenge for Software Engineer-
ing is to mimic these methods; to do so requires an understanding of how
to describe and analyse abstract models of software systems. Of course, this
first requires an understanding of these terms.

System, Model, Abstraction and Notation

”

The notions of “system,” “model,” “abstraction” and “notation” are essen-
tial to this book. In this section we provide various dictionary-style defini-
tions of these concepts, interspersed with some examples and thoughts.

10

Introduction

System

An assemblage of objects arranged in a regular subordination, or after
some distinct method, usually logical or scientific; a complete whole
of objects related by some common law, principle, or end; a complete
exhibition of essential principles or facts, arranged in a rational depen-
dence or connection; a regular union of principles or parts forming one
entire thing.

How do we understand systems and put them together? In the object ori-
ented approach to software design, one is guided by the above dictionary
definition and methodically describes the whole by giving descriptions of the
constituent parts along with how these parts are put together. If you have
tried and trusted building blocks, then you can reliably use them again.

To understand and analyse the world in terms of systems is very impor-
tant to science; and to build them is the fundamental task of Engineers.
Systems can be described, for instance, in terms of their structure — how
they can be decomposed into parts and how these parts are related to each
other; or in terms of their behaviour — how they evolve and interact with
their environment; or in terms of their functionality — what their goals
and objectives are. Systems are often contrasted with the environments in
which they are embedded and with which they interact. A prime example
from the world of computers is the operating system, which manages our
interactions with the computer hardware.

This book addresses computing systems. However, we understand the
term “computing” in a rather loose sense. We do not identify computing
systems with computers, but with all kinds of systems that access, store,
process and communicate information. Many biological, physical, econom-
ical and social systems have recently been studied from this point of view,
and many of the concepts and techniques introduced in this book can be
used in these contexts.

Model

(1) A miniature representation of a thing, with the several parts in
due proportion; sometimes, a facsimile of the same size. (2) Some-
thing intended to serve, or that may serve, as a pattern of something
to be made; a material representation of or embodiment of an ideal;
sometimes a drawing or a plan; a description of observed behaviour,
simplified by ignoring certain details.

Building models is at the core of any scientific and engineering discipline.
Scientists need models to interpret their data and make predictions; and
traditional engineering products such as bridges and aeroplanes are never
built until models of them have been developed and studied to understand

System, Model, Abstraction and Notation 11

the characteristics of the product. These models may be small-scale versions
of the product which are tested in wind tunnels; or they may be purely ab-
stract models described on paper using some formal notation which are then
analysed more formally, for instance through simulations on a computer.

Modelling techniques are also becoming more and more important in
software engineering, as computing systems become ever more complex and
ubiquitous, and their proper functioning is often extremely critical. It is
no longer possible to rely on the cleverness of our programming skills when
building computing systems. In this book we shall explore basic modelling
techniques for software engineering; consider various simple illustrative yet
sufficiently interesting computing systems; and describe models that capture
those aspects of their behaviour that interest us.

Models come in all shapes and sizes, and are designed to capture specific
aspects of the thing they represent. Consider, for example, the following
two uses of simple railway models.

e If we are interested in teaching the history of the development of rail-
way locomotives, then full scale working replicas would be fun, but
probably inconvenient; small scale working replicas might do, or even
non-working replicas. Meaning (1) is appropriate.

o If we are interested in developing strategies for safe shunting, then a
child’s train set might do. But we could also make do with a paper
and pencil model with a sketch of the track and buttons representing
the engines and rolling stock; or a computer model with a graphical
interface and a simulator might even be more useful. Meaning (2) is
appropriate.

Note that models allow complex systems to be understood, and their be-
haviour predicted, only within the scope of the model; they may give in-
correct descriptions and predictions for situations outside the scope of their
intended use. For example, a toy train set would not be much use if we
were interested in the stresses and strains induced in real rolling stock when
shunting. Building good models not only requires formal training, but also
a lot of experience, and a critical mind.

Abstraction

The act or process of leaving out of consideration one or more proper-
ties of a complex object so as to attend to others.

Abstraction is an important part of model building: identifying those fea-
tures that are essential for inclusion in the model and separating out those
features that can be neglected since the essential elements do not rely on
their presence.

12

Introduction

As an example of an abstraction, OS (Ordnance Survey) maps are used
by walkers in Britain who usually want to know where they are, where they
are going (how far, which direction), and how long it will take. OS maps
are to scale (typically 4 cm to 1 km), and include (easting, northing) grid
reference pairs allowing the user to pinpoint locations very accurately. For
example, Perriswood near Reynoldston has the grid reference (502, 888) on
the Gower map (OS Explorer Map 164). By eye or by laying a piece of
string along a proposed route, experienced walkers can estimate its length
fairly accurately, and then use a simple formula such as Naismith’s Rule
of 5 kilometres per hour plus 10 minutes for each 100 metres of uphill to
estimate their walking time. To be useful to walkers, OS maps are portable
(they fold flat), are to scale, and use contours and shading to show heights
and indicate steepness.

The London Underground train map and A to Z street atlas have dif-
ferent formats from OS maps, and from each other, as they serve different
purposes. The first A to Z street atlas was designed in 1936 by Phyllis
Pearsall, a portrait artist, due to her frustration at getting lost during her
walks through London while trying to follow an OS map. The Underground
train map, on the other hand, would be of very little use to a walker. It was
originally designed in 1931 by Harry Beck, a draughtsman educated in elec-
tronics, and is reminiscent of an electronic circuit board diagram with only
vertical, horizontal and 45-degree lines. Train stations are not depicted ge-
ographically accurately; the connections between stations are accurate, but
the stations and routes of the trains are distorted to provide an aesthetically-
pleasing image. As such, it provides an ideal model for using the Tube, when
you don’t need to know where you are geographically as you would if you
were walking, but rather are only interested in where to get on, where to
change lines, and where to get off. By distorting the geography, in particular
by pulling in very remote stations located at the ends of lines, a balanced
and concise diagram results which is easy to use and pleasant to look at.

Notation

Any particular system of characters, symbols, or abbreviated expres-
sions used in art, or in science, to express briefly technical facts, quan-
tities, etc. Especially the system of figures, letters, and signs used in
arithmetic and algebra to express number, quantity, or operations.

Notation is one of the most undervalued idea in computer science. It is
prevalent in the form of programming languages, but typically ignored at
any higher level. A good notation provides the shortest distance between
the idea in your head and a piece of paper.

Florian Cajori’s two-volume masterpiece A History of Mathematical
Notations (1928-1929) points out that scientific progress was sometimes

Specification, Implementation and Verification 13

held back for years, decades, or even centuries because there wasn't the
right notation around in which to express the relevant ideas. Compare Ro-
man and Arabic numerals for addition, subtraction, etc. Consider also zero,
the decimal point, complex numbers, the calculus. Imagine expressing same-
ness in quantity before Robert Recorde’s invention of the equality sign. The
effect that notation has on facilitating problem-solving is aptly summarised
by Alfred North Whitehead as follows: “By relieving the mind of all un-
necessary work, a good notation sets it free to concentrate upon more
advanced problems”.

Specification, Implementation and Verification

The concepts and methods of computational modelling and thinking are rel-
evant to many different fields, but their foremost domain is the development
of high quality and dependable software. To set the scene, we briefly discuss
three tasks that are central to software development and its formalisation
through computational modelling.

1. Specification refers to the task of modelling a computing system
together with its functionality and behaviour. This can be understood
as a formal description of a problem to be solved.

2. Implementation refers to the task of programming the specification
so that it can be executed on a computer. This can be understood as
an effective solution to the problem posed by the specification.

3. Verification refers to the task of rigorously demonstrating that the
implementation does indeed respect the specification. This can be
understood as a proof that the implementation does indeed solve the
problem specified.

The development of mathematical methods that formalise these three
tasks is sometimes considered to be the Holy Grail of Software Engineer-
ing. In an ideal world, such methods could make software testing obsolete
and software bugs history. But after four decades of research on such meth-
ods, this still remains an ideal, and there are mathematical results about
decision problems, program termination and incompleteness of theories that
suggest that this may be necessarily so.

However, while nobody would expect mathematical formalisation to solve
all problems of science or engineering, mathematical methods and tools have
significantly contributed to the success of these disciplines. The situation
is similar in computing: many light-weight mathematical methods for mod-
elling computing systems have already made their way into industrial ap-
plications from programming languages to design and analysis tools for the

14 Introduction

specification, implementation and verification of software systems. By de-
veloping and adopting such industrial-strength methods to avoid errors, the
task of searching for and repairing software bugs will hopefully become more
and more unnecessary — or at least simpler and more routine — thus making
“Software’s Chronic Crisis” of system failures something of mere historical
interest.

Part 1

Mathematics for

Computer Science

Chapter 1

Propositional Logic

Either this man is dead or my watch has stopped.
- Groucho Marx.

Like her three older brothers before her, little Amanda always wants to
know “Why”: “Why do I have to go to school?” “Why does it only snow
in Winter?” As young as she is, she can understand that - logically — the
responses she gets satisfy each and every one of her queries: “You go to
school to learn things.” “It only snows in Winter because that’s the only
time it gets cold.” However, these answers rarely satisfy her — they merely
open the way for yet more queries to explain the reasons she gets as answers
to her previous questions: “Why do I have to learn things?” “Why does
it only get cold in the Wintertime?” Her impatient father rarely wins this
game; it inevitably ends either with a definitive “Just because!” or, more
usually, with a simple “Gee, I don't know, that’s a very good question! Go
ask your mother.”

This behaviour demonstrates more than mere curiosity; and in fact cu-
riosity typically has little to do with it. It is the fun of the game of logical
reasoning which motivates her: the pursuit of the absolute, unquestionable
premises from which all the other points follow. Her father’s goal in this
game, of course, is to identify these premises as quickly as possible. (Her true
goal, one can’t help but feel, is to get her father to give up in exasperation.)

It is in our nature as human beings to reason about the world and our
existence, to assimilate the knowledge which we accumulate and to make
logical deductions based on this knowledge. Despite the fact that we are
born with a built-in propensity to apply logical rules to make deductions
from our knowledge — if we do something potentially dangerous such as step
out into the street without looking for cars, then we may get hurt, and
therefore we shouldn’t do such things — it is nonetheless the case that we
are very bad at doing this correctly consistently. The problem lies to a great
extent with the ambiguities in our language.

In this chapter we shall see how logically correct reasoning manifests
itself in a multitude of ways, and we shall learn how to tame our use of

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_2, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_2

18 Propositional Logic

language in order to prevent the types of ambiguities and mismatches which
lead to the sorts of invalid logical arguments which all too typically underly
system failures. We will see that precise rules of logical reasoning can be
written down and mechanically applied like the rules of chess. But, due to
their universality as laws of thought, they are much more than a mere formal
game. They can be applied to model and reason about a huge variety of
systems and situations. In particular, they can be very useful in detecting
unexpected misbehaviour or inconsistency of computing systems.

Logic in fact lies at the very core of computing. Historically, the concepts
of computation and effective computability have been developed from a
logical basis and they were motivated by questions about the mathematical
foundations of logic. All computer programming languages rely on logical
notions in their specifications, their implementations and their constructs.
Logics are also among the most popular and effective methods for specifying
and analysing computational systems in formally rigorous ways. And, last
but not least, the design and implementation of digital systems is strongly
based on logic.

@ Propositions and Deductions

Consider the following argument.

1. Either this man is dead or my watch has stopped.
2. My watch is still ticking.
Therefore
3. This man is dead.
This is an example of the sort of reasoning which we (mostly unconsciously)

perform constantly all day long. If we analyse the structure of the argument,
we see the following elements.

A. The argument involves three statements, or propositions, by which
we mean declarations which are either true or false (but not both).
Each of the statements in the argument is declared to be true.

B. The first statement expresses an option between two simpler state-
ments, namely

la. This man is dead.
or

1b. My watch has stopped.

C. A deduction or inference is made to infer the truth of the third
statement from the truth of the first two statements. The third state-
ment is referred to as the conclusion of the argument, while the first

Propositions and Deductions 19

two statements from which we draw the conclusion are referred to as
the premises of the argument.

Such arguments can be formalised in propositional logic. The syntaz
(structure) of propositional logic provides a language for modelling systems,
situations and arguments. The semantics (meaning) of propositional logic
gives an interpretation to the symbols of the language. The language of
propositional logic starts with atomic propositions, such as “This man
is dead”, and builds up larger compound propositions using a variety of
propositional connectives, such as “or”. Each connective is given a
precise prescribed meaning which aims to reflect its everyday use in natural
language. The purpose of this formalization is to remove ambiguities which
are prevalent in the use of English or any other natural language.

Example 1.1

The following rules, adapted from those specified by the World Chess Fed-
eration FIDE, describe the conditions for castling. Castling is a move of
the king and either rook of the same colour, counting as a single move of the
king, and executed as follows: the king is transferred from its original square
two squares towards the rook in question, and then that rook is transferred

to the square which the king has just crossed.

1. The right for castling with a particular rook has been lost:

(a) if the king has already moved; or
(b) if the rook in question has already moved.

2. Castling with a particular rook is prevented:

(a) i the right for castling with that rook has been lost; or

(b) 4f there is a piece between the king and the rook in question; or

(c) if the square on which the king stands, or the square which it
must cross, or the square which it is to occupy, is under attack
by one or more of the opponent’s pieces.

The conditions that permanently or temporarily prevent castling use the
propositional connectives “or” and “if” to express constraints under which
castling is prohibited.

Arguments are all about truth. Therefore, not all sentences can take part
in arguments, simply because not all sentences express statements which can
be true or false. This is the case with questions like “Is that man dead?”
and requests like “Bring me a watch that works.” To be true or false,
a sentence must state a potential fact, hence be related to a potential bit
of reality. This criterion distinguishes statements or propositions from all
other kinds of sentences.

2]

20 Propositional

Logic

Exercise 1.1) (Solution on page 405)

Which of the following are statements (propositions)?

1
2
3
4
5.
6
7
8

. 2+3=5.

. 2+3=6

. Do your homework, Joel!

. Joel didn’t do his homework.
Is there life on Mars?

. False

. What Felix says is false.

. What this sentence says is false.

Each atomic statement can, of course, be further analysed with respect to
its grammatical structure — Joel, for instance, is a subject noun, do a verb,

and

homework an object noun — but this is of no relevance to propositional

logic. It is concerned solely with the distinction between logical and non-
logical components and, correspondingly, with the way in which the truth
of simpler statements determines that of more complex ones.

Exercise 1.2 (Solution on page 405)

Which of the following are valid deductions?

1.

If the fire alarm sounds, then everyone must leave the building.
Everyone is leaving the building.
Therefore the fire alarm has sounded.

. If the fire alarm sounds, then everyone must leave the building.
The fire alarm has sounded.
Therefore everyone is leaving the building.

. If the signal is green, then the train may proceed.
The signal is red.
Therefore the train must wait.

. The right for castling with a particular rook has been lost if the king
has already moved.
Both rooks have already moved.
Therefore the right for castling with a particular rook has been lost.

. The right for castling with a particular rook has been lost if the king
has already moved, or if the rook in question has already moved.
One of the two rooks has already moved.

Therefore the right for castling with a particular rook has been lost.

The Language of Propositional Logic 21

6. It is unlawful for any person to keep more than three dogs and three
cats on their property within the city.
Charles keeps five dogs (but no cats) on his property in the city.
Therefore Charles is breaking the law.

(Exercise 1.3) (Solution on page 406)

Which of the following are valid deductions?

1. Epimenides is a Cretan.
All Cretans are liars.
Therefore Epimenides is a liar.

2. Epimenides is a Cretan.
Epimenides said that “All Cretans are liars.
Therefore Epimenides is a liar.

”

3. Epimenides is a Cretan.
Epimenides said that “All Cretans are liars.
Therefore all Cretans are liars.

4. Epimenides is a Cretan.
Epimenides said that “All Cretans are liars.
Therefore not all Cretans are liars.

”

5. Epimenides is a Cretan.
Aristotle said that “All Cretans are liars.”
Therefore Epimenides is a liar.

@ The Language of Propositional Logic

The syntax of propositional logic is the formal definition of the language,
the object language of formal logic. This definition is given in a meta-
language — natural language in this case — in which we speak about the
language of propositional logic. The metalanguage itself will use logical no-
tions and reasoning, albeit at an informal level; since the levels can be kept
separate, there should be no conceptual confusion.

The definition of syntax has two steps. In the first step, the basic sym-
bols of the language are defined. In the second step, the rules for writ-
ing formule with these symbols is defined; these represent statements or
propositions. The precise definition of a formula will be given at the end of
this section; we first introduce the components of this definition informally.

22 Propositional Logic

1.2.1

1.2.2

Propositional Variables

In propositional logic, the meaning of a particular atomic proposition is given
solely by its truth or falsity. We therefore abstract from these propositions
and introduce propositional variables instead.

In algebra, variables such as z, y and z are used to represent unknown
numbers. The occurrences of the variable z in the quadratic equation z2 +
2z — 15 = 0 are place holders for some value, in this case a number. The
equation restricts the admissible values of z to being either 3 or —5. That
is, if 3 is substituted for every occurrence of z in the equation, or if —5
is substituted for every occurrence of z in the equation, then the equation
holds; and when any other number is substituted, it doesn’t.

We use variables in a similar way in propositional logic. Propositional
variables such as P, Q, R, ... represent unknown propositions. In algebra
we may assign a specific value to a variable; for example, we might write
“let x=3" and then interpret every subsequent occurrence of the variable z
by the value 3. Similarly we may let a propositional variable represent a
specific proposition, for example writing “let Dead represent the statement:
This man is dead.” (Following good programming style, we will typically
use meaningful words as propositional variables rather than mere letters to
obtain more readable statements.)

In algebra, values (including unknown values represented by variables)
can be combined using various operations, such as addition (+), subtraction
(-), multiplication (x) and division (+). In propositional logic, we may
combine propositions using various propositional connectives, specifi-
cally “not” (), “or” (V), “and” (A), “if ... then...” (=), and “... if, and
only if, ...” (<). An informal description of the connectives of propositional
logic is given in the follow sections.

Negation

The negation —p of a statement p, pronounced “not p”, is a statement
which is true if, and only if, p is false. This is typically expressed in English
in one of the following ways:

e not p; (more precisely, the statement p with “not” modifying the
verb, typically by appearing tmmediately after it.)
e p does not hold / is not true / is false,

e it is not the case that p.

Example 1.3

If Dead stands for the statement “This man is dead,” then —Dead says “It
is not the case that this man is dead,” or, equivalently, “This man is not

The Language of Propositional Logic 23

dead.”

If a proposition is not true, then it must be false; and conversely, if it is
not false, then it must be true. In particular then, if a proposition is not
not true, then it is true: ——p is the same as p. This is referred to as the
Law of Double Negation.

(Exercise 1.4) (Solution on page 406)

1.2.3

Rewrite the following statements without negations at the start.

1. = “The Earth revolves around the sun.”
2. = “All of my children are boys.”
3. a(2+2<4).

Disjunction

The disjunction pV q of two statements p and g, pronounced “p or ¢”, is
a statement which is true if, and only if, p is true or ¢ is true (or indeed
if both are true); that is, at least one of p and ¢ is true. This is typically
expressed in English in one of the following ways:

e porg;

e p or q or both;
e p and/or g,

e p unless q.

In the context of the disjunction pV g, the propositions p and g are individ-
ually referred to as disjuncts.

Example 1.4

If Dead stands for the statement “This man is dead” and Watch stands for
the statement “My watch has stopped,” then Dead V Watch says “Either
this man is dead or my watch has stopped,” or, equivalently, “If this man
is alive, then my watch must have stopped.” This does not preclude the
possibility that the man is dead and my watch has stopped, in which case
Dead v Watch will still be true.

Example 1.5

In chess, the right for castling with a particular rook has been lost if the
king has already moved, or if the rook in question has already moved. This

24 Propositional Logic

condition can be formalised as KingMoved vV RookMoved, where KingMoved
and RookMoved are propositional variables stand for the statements “The
king has moved” and “The rook has moved,” respectively. In particular,
therefore, one may not castle with a particular rook if both the king and
the rook in question have already been moved.

Recalling that —p is true if p is not true, we can note that p vV —p must
always be true regardless of what proposition p stands for: either p is true, or
it is not true. This fact is referred to as the Law of the Ezcluded Middle:
there is no middle ground when it comes to the truth of a propositional
formula.

(Exercise 1.5) (Solution on page 406)

Are the following disjunctions true or false?

1. (3<2) Vv (3<5b)
2. (6<4) Vv (7<5)
3. (5<6) Vv (6<28)

Note that p Vv ¢ is true if (though not only if) both p and g are true.
In propositional logic, there can be no ambiguity: the “or” is always taken
in this inclusive sense. In some everyday circumstances, however, “or” is
used in the ezclusive sense: the statement “Either you be quiet now or
you won't get an ice cream!” certainly is not supposed to be true in the
case in which the child under consideration is quiet but still doesn’t get
the ice cream — that would be an unfair trick. Such an “exclusive or” is
in fact provided by a different connective from the (inclusive) “or” used
in propositional logic; it is written @, and it has its own different truth
conditions: p @ q is true if, and only if, one of p and ¢ is true and the other
is false; that is, precisely one of p and q is true. Note that this connective is
not formally a part of the definition of propositional logic; however, it can
be expressed using the connectives of propositional logic (see Example 1.10
on page 29).

(Exercise 1.6) (Solution on page 406)

For each of the following disjunctive statements, decide whether you think
the speaker intends to use the inclusive or exclusive sense of the disjunction.

1. Joel came in last place in the round-robin competition; so that mean
that either Felix beat him or Oskar beat him.

2. The light is either on or off.

3. You can have tea or coffee.

The Language of Propositional Logic 25

1.2.4

Conjunction

The conjunction p A q of two statements p and ¢, pronounced “p and g”,
is a statement which is true if, and only if, both p and ¢ are true. This is
typically expressed in English in one of the following ways:

e pand q,

e p butg;

e not only p but also gq.

In the context of the conjunction p A g, the propositions p and ¢ are indi-
vidually referred to as conjuncts.

Example 1.6

If Dead stands for the statement “This man is dead” and Watch stands for
the statement “My watch has stopped,” then Dead A Watch says “This man
is dead and my watch has stopped,” or, equivalently, “Not only is this man
dead, but so is my watch!”

Recalling that —p is false if p is true, we can note that p A —p must always
be false regardless of what proposition p stands for: p and —p cannot both
be true at the same time.

(Exercise 1.7) (Solution on page 407)

1.2.5

Are the following conjunctions true or false?
1. (3<2) A (3<5b)
2. (5<4) A (7T<5)
3. (5<6) A (6<8)

Implication

Given two statements p and g, the implication p = g, pronounced “p
implies ¢”, is a statement which is true if, and only if, p is false, or q is true;
that is, if p is true then ¢ must also be true. In other words, p = ¢ is false
if, and only if, p is true and q is false. This is typically expressed in English
in one of the following ways:

e p implies q;

e if p then q:

® qifp;

e p only if q;

26 Propositional Logic

e g whenever p;
e p 15 a sufficient condition for q;

® g 15 a necessary condition for p.

In the context of the implication p = ¢, p is referred to as the premise and
q is referred to as the conclusion.

Example 1.7

]

Let the variable SignalDanger stand for the statement “The signal shows
danger,” and let the variable TrainStop stand for the statement “The train
stops.” Then SignalDanger = TrainStop stands for the statement “If the
signal shows danger then the train stops.”

The only event in which this statement can be false is when the signal
shows danger and yet the train does not stop. Hence the rule allows the case
that the signal does not show danger and yet the train nevertheless stops.

Exercise 1.8) (Solution on page 407)

Letting JoelHappy stand for “Joel is happy” and AmandaHappy stand for
“Amanda is happy,” each of the following statements translates as either
JoelHappy = AmandaHappy or as AmandaHappy = JoelHappy. Determine
which in each case.

1. “Joel is happy whenever Amanda is happy.”
2. “Joel is happy only if Amanda is happy.”
3. “Joel is happy unless Amanda is not happy.”

(Exercise 1.9) (Solution on page 407)

On the door of a particular house is the following warning to potential
thieves:

Barking dogs don’t bite.

My dog doesn’t bark.

Should a potential thief necessarily be concerned?

The Language of Propositional Logic 27

1.2.6

Equivalence

The equivalence p < q of two statements p and g, pronounced “p if, and
only if, ¢”, is a statement which is true if, and only if, both p and ¢ are true,
or both p and q are false; that is, if p and ¢ have the same truth value. This
is typically expressed in English in one of the following ways:

e p if, and only if, q;
e p 15 equivalent to q;
e p 15 a necessary and sufficient condition for q.

The symbol for equivalence < looks like the symbol for implies = point-
ing in both directions. This is very much by design since, with a bit of
thought, it is evident that p < ¢ is true if, and only if, p = g and p < ¢
(that is, ¢ = p) are both true.

Example 1.9

1.2.7

Let the variable TrainEnter stand for the statement “The train enters the
tunnel,” and let the variable TunnelClear stand for the statement “The tunnel
is clear.” Then TrainEnter < TunnelClear stands for the statement “The train
enters the tunnel if, and only if, the tunnel is clear.”

This statement is false if the train enters the tunnel while the tunnel is
not clear, or if the tunnel is clear but the train does not enter.

The Syntax of Propositional Logic

We can now summarise the above discussion of propositional logic in the
following formal definition. A statement written in propositional logic is
called a propositional formula, and is either:

e an atomic formula, typically represented by a variable such as P, @
or R; or

e a compound formula, in which case it is built up using the above
propositional connectives as summarised in Figure 1.1.

There are two special atomic propositional formule, true (representing the
proposition which is always true) and false (representing the proposition
which is always false).

The above defines the formal syntax of the language of propositional
formulz. To emphasise that a propositional formula must be written syn-
tactically correctly according to Figure 1.1, it is also referred to as a well-
formed formula (wff).

Note that in Figure 1.1 (as well as throughout this whole chapter) the
letters p and g are not propositional variables, but rather metavariables
which stand for arbitrary propositions.

28 Propositional Logic

1.2.8

If p and ¢ are propositional formulza, then so are the following:

true truth
false falsity
P atomic proposition
-p not p negation
pVg porg disjunction
PAg p and q congunction
P=4q if p then q implication

pPEq p if, and only if, q equivalence

Figure 1.1: The formulea of propositional logic.

Parentheses and Precedences

It is common to use parentheses when writing mathematical expressions such
as (54 3) x 2, in order to disambiguate such expressions. Most mathemati-
cians (as well as many hand-held calculators) will calculate 5 + 3 x 2 = 11,
as it is standard to consider multiplication as binding more tightly than
addition; that is, multiplications are applied before additions whenever pos-
sible. Multiplication is said to have a higher precedence than addition.
However, with parentheses the meaning of this expression changes dramat-
ically: (5 + 3) x 2 = 16. Similarly, we would use parentheses to calculate
5—(3—-1) =5—2 = 3, as without them we would naturally apply the
subtractions left-to-right and calculate 5—-3—-1=2-1=1.

In a similar vein we can and will regularly make use of parentheses within
propositional formulae to ensure that the meaning of our formule is clear.
For example, the formula PV Q = R can be read either as (PV Q) = R or
as PV (Q = R), so we shall write the formula with parentheses in one of
the above ways in order to make sure it is read as intended. We shall thus
extend our definition of a well-formed formula to include parentheses which
enclose subformulee.

However, to reduce the need for parentheses, we will consider — as bind-
ing more tightly than A, which will bind more tightly than Vv, which will
bind more tightly than =, which will bind more tightly than <. Apart
from this, the connectives will be applied right-to-left, so that for example
an expression of the form

p=>qgAT =35

would be interpreted as

The Language of Propositional Logic 29

p = (gAT) = s
due to A binding more tightly than =, and thus as
p= (grr) = s)

due to the right-to-left application order of the = connectives.

Omitting parentheses by adopting the above precedence and application
orders on connectives will often make formula easier to read. However,
parentheses can and should still be used despite these conventions in cases
when confusions can easily arise. For example, we will typically write

p = ((q/\r) = s)

despite the redundancy of the parentheses.

Example 1.10

We can express the “exclusive or” operation p @ ¢ — which says that one of
p and g is true and the other is false — as a simple equivalence, by noting
that p @ ¢ says that one of p and ¢ is true if, and only if, the other is not
true. It can thus be defined simply by:

p®g = pe g
or, equivalently, by
p®g = p&g.

Both of these options abide by the hint that p @ ¢q says that one of p and ¢
is true if, and only if, the other is not true.
You may be tempted to define it as

p®qg = (pe—q9) AN (¢ D)

which would be correct, but this would be overkill; with a little thought you
should realise that p & —q is the same as ¢ & —p.

Exercise 1.10) (Solution on page 407)

]

Express the following connectives using the connectives of propositional
logic.
1. The NAND connective p|g which is true if, and only if, p and g are
not both true.

2. The NOR connective p | ¢ which is true if, and only if, neither p nor ¢
are true.

3. The conditional connective g<pt>r which is true if, and only if, either
p and ¢ are both true, or —p and r are both true. In other words: “If
p 1s true then q must be true; otherwise r must be true.”

30 Propositional Logic

1.2.9

Syntax Trees

It can be helpful to view a well-formed propositional formula as a tree-
like diagram, called a syntax tree, in which the tree structure reflects
the way in which the formula is constructed. For example, the formula
(PV Q)= —(P AQ) corresponds to the following syntax tree:

To recognise the expression (PV Q) = —(PAQ) as a well-formed proposi-
tional formula, we need only break it down to its constituent parts, and to
reconstruct it from the inside out:

e P and @, being propositional variables, are propositional formulz.

e Since P and @ are propositional formule, so too are their disjunction
P Vv @ and conjunction P A Q.

e Since PAQ is a propositional formula, so too is its negation =(P A Q).

e Since PV @ and —(P A Q) are propositional formule, so too is their
implication (PV Q) = —(PAQ).

This decomposition is directly reflected in the syntax tree, and also provides
a method for determining whether or not the formula is true.

The syntax tree makes it clear how the expression should be parsed,
without the need for parentheses or precedence rules to tell the reader how
to interpret the formula. Without the rules of precedence, there are many
different ways to read the expression PV Q = —P A @, all of which having
completely different meanings and syntax trees.

]

Example 1.11

Consider the expression P = —Q V R = Q. According to the precedence
rules, it is represented by the following syntax tree:

The Language of Propositional Logic 31

In order to evaluate this expression - that is, to determine its truth value
— we first need to know the truth values of the propositional variables P,
@ and R. We then compute —Q, as — binds more tightly than the other
connectives; then (—Q) V R is computed, as Vv binds more closely than =;
then ((-Q) V R) = Q is computed followed by P = (((-Q) V R) = Q),
since the two = connectives are computed in a left-to-right order.

Fully bracketed, the formula is thus interpreted as

P= ((FQVR)=Q).

Example 1.12

The string of symbols =(P A (Q Vv 7)) is not a well-formed propositional
formula. This can be seen by applying the formation rules in Figure 1.1
backwards.

(P A(Q V7)) is a formula only if (P A (Q Vv —)) is a formula.

(PA(QV 7)) is a formula only if P and (Q V —) are formule.
e P is a propositional variable and is therefore a formula.

e (QV) is a formula only if @ and — are formulz.

e () is a propositional variable and is therefore a formula.

e However, — is a logical connective; it is neither a propositional variable
nor a compound formula, so it is not a formula.

o Therefore, =(P A (Q V —)) is not a well-formed formula.

(Exercise 1.12) (Solution on page 407)

Which of the following are well-formed formulae? Rewrite each well-formed
formula using a minimal number of parentheses without changing its mean-

ing, and draw its syntax tree.

L(P=Q) & (@=P)).

2. PVQ(AP).

3. (PVQ)AP.

4. (PVQ) & (R-5)).

5. (PV(QAR)) & (PV(QA(PVR)).

32 Propositional Logic

13)

Modelling with Propositional Logic

Propositional logic is very important for modelling real-life scenarios, in
which we define propositional variables to represent particular properties
which may be true or false. Indeed we have described many such examples
already above. We shall here consider a few further such examples.

Example 1.13

A particular computer program contains the following lines of code:

if CabinPressure < MinPressure then PrepareForLanding;
if FlightHeight < MinHeight then PrepareForLanding;

A software engineer assessing this code proposes that it could be optimised
as follows:

if (CabinPressure < MinPressure and FlightHeight < MinHeight)
then PrepareForLanding;

Is this correct?

Logically, we can use the variables Pressure and Height to express the
two conditions that signal a need to land; and the variable Land to express
the execution of PrepareForLanding. The program then gives rise to the
following propositional formula:

(Pressure = Land) A (Height = Land)
while the suggested optimisation corresponds to
(Pressure A Height) = Land.

The formula corresponding to the program is false if, and only if, either
Pressure is true and Land is false, or Height is true and Land is false; this is
the case if, and only if, either Pressure or Height is true while Land is false.

The formula for the suggested optimisation, on the other hand, would
only be false if both Pressure and Height are true while Land is false; for exam-
ple, having the cabin pressure drop below its minimum allowed value would
wrongly not cause the aeroplane to prepare for landing if the aeroplane is
cruising above its minimum allowed height.

The correct variant of the propositional formula — one which is equivalent
to the formula corresponding to the program — would be

(Pressure V Height) = Land.

Modelling with Propositional Logic 33

That is, the optimised code should should have a disjunction (or) in the
condition, not a conjunction (and). Of course this logical analysis only
confirms our intuition: The aeroplane should prepare for landing if either
condition is satisfied, not if both of them hold.

Example 1.14

Consider the following four symbols: a white circle, a black circle, a white

square, and a black square:

OO @ [N

Let B represent the proposition that the symbol in question is black, and
C represent the proposition that the symbol in question is a circle.

e B is true of the black circle and the black square, but false of the white
circle and the white square.

e —B is true of the white circle and the white square, but false of the
black circle and the black square.

e BV (C is true of the white circle, the black circle and the black square,
but false of the white square.

e BAC is true of the black circle, but false of the white circle, the white
square and the black square.

e B = C istrue of the white circle, the black circle and the white square,
but false of the black square.

e B & C is true of the black circle and the white square, but false of
the white circle and the black square.

These facts are summarised in the table in Figure 1.2. Almost all of them
are self-evident, though you should spend time considering carefully when
B = C is true and when it is not true. Specifically, the only way that it
can be false is if the symbol in question is black yet is not a circle.

The Oxford mathematician Charles Lutwidge Dodgson (1832-1898), bet-
ter known as Lewis Carroll, the author of Alice in Wonderland, enjoyed
inventing puzzles which required careful logical reasoning to solve. The
following is a typical example.

Exercise 1.14) (Solution on page 408)

Lewis Carroll concludes that “Amos Judd loves cold mutton” from the fol-
lowing seven assumptions:

1. All the policemen on this beat sup with our cook.

34 Propositional Logic

B X | v | X || (it’s black)

-B v | X | v | x| (it’s not black)

BVvC | v | v | x|y | (it’s black or it’s a circle)

BAC | x | v | X | x| (it’s black and it’s a circle)

B=C| v | v |v|X| (i it’s black then it’s a circle)

B&C| x| v | v | x| (it’s black if and only if it’s a circle)

Figure 1.2: B="the symbol is black”, C="“the symbol is a circle”.

N O ot W N

. No man with long hair can fail to be a poet.
. Amos Judd has never been in prison.

. Our cook’s cousins all love cold mutton.

. None but policemen on this beat are poets.

. None but her cousins ever sup with our cook.

. Men with short hair have all been in prison.

Explain how Lewis Carroll can draw his conclusion.

(Exercise 1.15) (Solution on page 410)

Translate the rules for castling in chess presented in Example 1.1 into propo-
sitional logic using the following propositional variables:

RightToCastleLeft / RightToCastleRight:
You have the right to castle with the rook to the left / right.

MayCastleLeft / MayCastleRight:
You may perform a castling move with the rook to the left / right.

KingMoved: The king has moved.

LeftRookMoved / RightRookMoved:
The left / right rook has moved.

PieceBetweenLeft / PieceBetweenRight:
There is a piece between the king and the rook to the left / right.

KingAttack: The king is under attack.

Ambiguities of Natural Languages 35

e LeftSquareAttack / RightSquareAttack:
The square to the left / right of the king is under attack.

e KingMoveleftAttack / KingMoveRightAttack:
The square two to the left / right of the king is under attack.

The following puzzle may appear hard at first sight, but it becomes
surprisingly simple when approached logically.

(Exercise 1.16) (Solution on page 410)

Joel, Felix and Oskar give Amanda the following puzzle. The three of them
each write their name on a piece of paper, and then exchange the pieces of
paper so that no one has the piece with their own name on it. They then
hold these pieces of paper so that Amanda can’t see what’s on them, but
tell her that each has the name of one of the others, and they challenge her
to figure out who is holding each name. She is allowed to look at the name
written on any one piece of paper.

1. Give a propositional formula which expresses the fact that each boy
holds one of the pieces of paper but no one holds the piece of paper
with their own name on it. Use the following propositional variables
to do this.

JonF: “Joel” is on Felix’s paper.
JonO: “Joel” is on Oskar’s paper.
FonJ: “Felix” is on Joel’s paper.
FonO: “Felix” is on Oskar’s paper.
OonJ: “Oskar” is on Joel’s paper.
OonF: “Oskar” is on Felix’s paper.
2. Suppose Amanda looks at Joel’s paper and sees “Oskar” written on it.

Use the formula above to deduce what name is written on the other
two pieces of paper.

Ambiguities of Natural Languages

Despite their intentionally obfuscated form, the statements in the Amos
Judd puzzle in Exercise 1.14 are precise and unambiguous. There are, how-
ever, many common abuses of logical arguments arising from the ambiguities
of a natural language such as English. In the following examples we consider
particular difficulties which beginning logicians often find problematic.

36 Propositional Logic

Example 1.16

Children can get very unruly in the back seat of the family car during long
drives. In such instances, an increasingly exasperated father in the driving
seat might find himself making promises such as the following:

“Everyone who sits quietly for the next hour
will get an ice cream when we stop for petrol.”

What exactly does this statement say? And more importantly, does it ex-
press what the father means to say? You might well imagine that he wants
to suggest that:

“Anyone who misbehaves will not get ice cream.”

However, this does not follow from his statement: the children who get ice
cream will include those who sit quietly, but may well include the noisy ones
as well. In fact, he knows that even greater problems of retribution will arise
later on during the drive if only some of the children get the promised ice
cream, so it is always his unspoken intention that all of the children will get
ice cream, regardless of their behaviour (within reason).

His aim in making the statement was to manipulate language to his
benefit, as well as to provide a lesson for his children in its logical use. He
was being intentionally vague, relying on his children to misinterpret his
statement as saying something more than it actually does, namely that any
misbehaving children will not get ice cream. When in the end even the
misbehaving children get ice cream, those that sat quietly in anticipation of
their reward would be mildly upset at the unfairness of it all, but they could
not argue with their father’s explanation that he did not actually say that
the unruly children would lose out. Without a doubt he spoke the truth.

Needless to say, this strategy would not work for very long, as the children
will quickly become keen interpreters of any statements that their father
makes.

Example 1.17

Suppose a menu at a restaurant states the following:

“You may have coffee or tea with your meal.”
This clearly expresses a disjunction of two atomic propositions:

“You may have coffee with your meal
or you may have tea with your meal.”

However, does it really do this? Clearly the intention is that if you ask for
coffee, then you will be served coffee. But consider the following scenarios.

Ambiguities of Natural Languages 37

1. Suppose the coffee maker is broken on the day you visit, and only tea
is available that day; is the menu wrong in this case? Certainly not
logically, assuming that you may still have tea.

2. Suppose the restaurant doesn’t have a coffee maker, and never actually
serves coffee at all; is the menu wrong in this case? Still as certainly
not logically, assuming that it serves tea.

The real intention of the proposition on the menu is something more akin
to conjunction rather than disjunction, as follows.

“You may have coffee with your meal
and you may have tea with your meal.”

However, this is still not true either, as it is unlikely that the restaurant
intends to allow you to order both beverages with your meal. The following
proposition might be a more accurate interpretation of the intended option
on the menu.

“You may have coffee with your meal
and you may have tea with your meal,
but not both.”

Are you satisfied with this? There is in fact still something seriously wrong
with this proposition. To see this clearly, let us introduce the following two
atomic propositions.

A = You may have coffee with your meal.
B = You may have tea with your meal.

Then the above proposition is
(AAB) A ~(AAB).

However, this proposition is of the form p A =p; and recalling the fact noted
after Example 1.6 that no proposition p (such as A A B) can be true at the
same time as its negation —p, this means that the menu is giving no option
whatsoever!

The problem here is one of modality. That we may have a coffee, and
that we indeed do have a coffee, are different propositions, and we need to
be careful how we treat such modalities.

To correctly formulate the option, we might introduce the following two
atomic propositions.

C = You have coffee with your meal.
T = You have tea with your meal.

Then the option stated on the menu would stipulate that one, and only
one, of these atomic propositions are true. This can be rendered in many
(equivalent) ways, such as

38 Propositional Logic

(CvT) A ~(CAT)

“You have coffee with your meal
or you have tea with your meal,
but not both.”

or
(CA=T) vV (-CAT)

“You have coffee but not tea with your meal
or you have tea but not coffee with your meal.”

But this is still not the end of the story. Perhaps a particular diner drinks
neither coffee nor tea. The menu surely doesn’t force the diner to accept
one of these beverages; the diner surely has the option of having neither.
The option on the menu thus is merely stipulating the following

-(CAT)
“You do not have both coffee and tea with your meal.”
or equivalently
-C v T
“You do not have coffee with your meal
or you do not have tea with your meal.”

From this simple English proposition has sprouted a plethora of compli-
cations. This is the greatest problem in formulating the design of systems,
and hence of getting such designs correct.

Example 1.18

If p is false then by definition p = ¢ is true regardless of the truth of q.
This observation gives rise not so much to a problem of ambiguity, but to
one of misunderstanding and confusion. For example, assuming that Carlos
is an ordinary man who is not the King of Spain, the following proposition
is false:

“If Carlos is a man, then Carlos is the King of Spain.”
However, the following statement is true:
“If Carlos is a woman, then Carlos is the King of Spain.”

Do not be distracted by the falsity of the conclusion; the only way that
the above statement can be false is if the premise is true whilst the conclu-
sion is false. It is unfortunately a common misconception that the above
implication is false, as the implication should be as follows:

Ambiguities of Natural Languages 39

“If Carlos is a woman, then Carlos is the Queen of Spain.”

This statement is true as well, for precisely the same reason that the previous
one is true: the premise of the implication is false.

Though this is a common confusion, it is well understood and properly
applied in several instances of natural language. For example, the statement

“If I told you once, I told you a hundred times!”

is meant to convey that you have been told something a hundred times
(assuming that you’ve been told once). This statement, of course, is typically
false due to an intended use of hyperbole — it is highly unlikely that you
have been told something so many times.

As another example, the statement

“If he ever pays me back, then I’ll be a monkey’s uncle!”

expresses the doubt (i.e., falsity) that money lent will ever be returned,
by concluding an obviously-false conclusion from the premise which is being
denied. As I can never be a monkey’s uncle, the only way that this statement
can be true is if he never pays me back.

Example 1.19

Suppose your teacher says the following to you:

“If you understand implication, then you will pass the exam.”
There are four scenarios to consider:

1. Suppose you understand implication, and you pass the exam. Clearly
you would consider the above statement to be true.

2. Suppose you don’t understand implication, and you fail the exam.
Again you would consider the above statement to be true, and you
might even think your teacher to be a wise sage. However, this thought
would just go to show that you indeed don’t understand implication.
The reason you failed the exam is not (necessarily) because you don’t
understand implication. To understand this point, consider the next
scenario.

3. Suppose you don’t understand implication, but nonetheless you pass
the exam, because you understand enough of the rest of the material.
This does not contradict your teacher’s claim; it is still true.

4. Suppose, finally, that you understand implication, but you fail the
exam nonetheless. In this case you may feel angry towards your
teacher, since he was obviously lying to you. (Of course, your teacher
would maintain that it is you who are lying, in claiming that you
understand implication.)

40 Propositional Logic

In summary, the only way for the teacher’s statement to be false is if the
premise is true (i.e., you understand implication) while the conclusion is
false (you fail the exam).

Exercise 1.19) (Solution on page 411)

Consider the following four symbols: a white circle, a black circle, a white
square, and a black square:

OO @ [1

I have in mind one of these four symbols. I will accept any symbol which
either has the same colour or the same shape (or both) as the one I have
in mind, and otherwise I will reject it. If I accept the black square, what
does this suggest to you about whether I accept or reject the other three
symbols?

(Exercise 1.20) (Solution on page 411)

15)

If two’s a company and three’s a crowd, what’s four and five?

Truth Tables

By thinking carefully about the logical connectives, we can informally un-
derstand their intended meanings. However, we still need to express these
meanings precisely; that is, we need to define the meaning of the con-
nectives. In doing this, the semantics of propositional logic is formally,
rigorously and unambiguously defined.

One way in which we can do this concisely is by explicitly listing out
the truth values which a compound formula takes for each of the possible
combinations of truth values of its constituent propositions. A table which
contains this listing is called a truth table.

For example, negation —p can be defined by specifying its truth value
for each of the two possible truth values of p: if the truth value of p is true,
then the truth value of —p will be false; and if the truth value of p is false,
then the truth value of —p will be true. For ease of presentation, we shall
reserve the symbols T for true and F for false. The truth table for negation
is thus as follows.

- N
n 43

Truth Tables 41

The remaining four connectives are similarly defined by the following truth
tables, which all have four rows corresponding to the four distinct combina-
tions of truth values for the two propositions p and ¢ being combined using
the connectives.

Truth tables can also be used to understand far more complicated for-
mulae, such as in the following example.

Example 1.20

Consider the statement from Example 1.16 made by a certain father:

“Everyone who sits quietly for the next hour
will get an ice cream when we stop for petrol.”

Let us define the following atomic propositions.

Quiet = You sit quietly.
Ice = You get an ice cream.

For you, as a perfectly logical child, the above statement translates to
Quiet = Ice — if you remain quiet then you will get an ice cream — which has
the following truth table:

Quiet Ice ‘ Quiet = Ice

F F T
F T T
T F F
T T T

The only scenario in which the above statement can be considered false is
if Quiet is true and lIce is false — that is, if you do not get an ice cream

42 Propositional Logic

despite being quiet; in this instance you would be justified in being angry
with your father for lying to you. However, your father, being trustworthy,
would never allow this scenario.

It is tempting to be angry that your noisy siblings also get ice cream.
However, there is no justification in this based on the above statement. As
is clear from the second row of the truth table, the statement is true even in
the instance that a noisy child gets an ice cream. It is a common pitfall to
interpret p = ¢ as p < ¢ (that is, to understand from the above statement
that you will get an ice cream if, and only if, you are quiet), and to believe
that p = ¢ implies that ¢ = p (that is, to understand from the above
statement that you will not get an ice cream if you are not quiet).

The above statement is giving you a guarantee that you will get an ice
cream if you are quiet — and therefore you best be quiet. If you are not
quiet, then there is no guarantee that you will get an ice cream, but there
is no guarantee that you won’t!

(Exercise 1.21) (Solution on page 411)

Recall the statement from Example 1.19 made by a certain teacher:

“If you understand implication, then you will pass the exam.”

Translate this statement into a propositional formula, and use its truth table
to justify when it is true or false.

Example 1.21

]

Catherine wishes to go to a party tonight, and would be happy to go with
either Jim or Jules. However, as she is currently dating both Jim and Jules,
she doesn’t want to go to the party if they will both be there.

Let us define the following atomic propositions.

Cat = Catherine goes to the party.
Jim = Jim goes to the party.
Jules = Jules goes to the party.

Catherine’s predicament then can be formalised as follows.
Cat = —(Jim A Jules).

This proposition states that Catherine goes to the party only if Jim and
Jules don’t both go to the party. We can determine when this proposition
is true or false by building up a truth table based on all possible values of
the atomic propositions Cat, Jim and Jules, and the values of the constituent
propositions which make up the complete proposition. The resulting truth
table is as follows.

Truth Tables 43

4 —~(Jim A Jules) I
Cat Jim Jules | Jim A Jules Cat = —(Jim A Jules)
F F F F T T
F F T F T T
F T F F T T
F T T T F T
T F F F T T
T F T F T T
T T F F T T
T T T T F F Y

The first three columns systematically list out the eight distinct combina-
tions of truth values for the three propositions Cat, Jim and Jules; the next
column applies the rules from the truth table for A to the columns for Jim
and Jules; the next column applies the rules for — to the column just con-
structed; and the final column applies the rules for = to the columns for
Cat and —(Jim A Jules). From this we can discover that the proposition is
true in all cases except when all three atomic propositions are true; that is,
it is false if, and only if, all three participants in this love triangle go to the
party.

As a point of interest, we can build truth tables in a more concise way
which entails writing the proposition of interest along the top row of the
truth table, and filling in columns defined by the propositional variables
and connectives, working from the “inside out.” The truth table for the
above example would then be rendered as follows:

/Cat Jim Jules Cat = — (Jim A Jules)

F F F F T T F F F

F F T F T T F F T

F T F F T T 1T F F

F T T F T F T T T

T F F T T T F F F

T F T T T T F F T

T T F T T T T F F

T T 7T T F F T T T
\(0) ©) (0 H @ eoe o

The bottom row of numbers is included in this example to indicate at what
stage each column was filled in:

(0) The three initial columns are filled in, representing all 8 possible com-
binations of truth values for the atomic propositions Cat, Jim and Jules.

(1) The columns for the propositional variables are then filled in during
the first stage.

44 Propositional Logic

(2) After this the column for Jim A Jules is filled in (under the A symbol)
during the second stage.

(3) Then the column for —(Jim A Jules) is filled in (under the — symbol)
during the third stage.

(4) Finally the column for Cat = —(Jim A Jules) is filled in (under the =
symbol) during the fourth stage.

Each column is computed by referring to columns which have been computed
in earlier stages.

(Exercise 1.22) (Solution on page 412)

How many rows will there be in a truth table involving four propositional
variables P, @, R and S? What if there are five propositional variables?
What if there are n propositional variables?

(Exercise 1.23) (Solution on page 412)

Construct truth tables for the following propositions.

1. 2(P & —Q).
2. (PAQ) V (AP A-Q).
3. (PAQ) = (-RVS).

]

Exercise 1.24) (Solution on page 413)

The “exclusive or” operation p @ ¢ has the following truth table:

That is, p @ q is true if, and only if, one of p and q is true and the other is
false.

Confirm that the formula you gave in Example 1.10 (page 29) for ex-
pressing p @ ¢ in propositional logic gives the same truth table.

Equivalences and Valid Arguments 45

Equivalences and Valid Arguments

We have seen that a given proposition can be expressed as a formula in
propositional logic in different yet equivalent ways. As a further example,
the formula

Cat = —(Jim A Jules) “If Cat then not both of Jim and Jules.”

from Example 1.21 is equivalent to the formula

—(Cat A Jim A Jules) “Cat, Jim and Jules cannot all be true.”
as well as
—Cat vV —Jim Vv —Jules. “One of Cat, Jim or Jules is false.”

To verify that two compound formula p and g are equivalent, we could
construct truth tables for p and ¢ and observe that they have the same
truth values under all interpretations of their respective atomic propositions.
Alternatively we could build the truth table for the formula p < ¢ and
observe that it is true under all interpretations. If so, the two propositions
p and q are said to be logically equivalent.

A proposition which is true regardless of the truth values of its atomic
propositions is called a tautology, and the proposition is said to be valid. A
contradiction on the other hand is a proposition which is false regardless of
the truth values of its atomic propositions, and is said to be unsatisfiable.
A proposition which is true under some interpretation of its atomic propo-
sitions — that is, one that is not a contradiction — is said to be satisfiable.

Example 1.24

]

Any formula of the form p Vv —p is a tautology, while any of the form p A —p
is a contradiction. These facts were noted already in Section 1.2, and can
be verified formally by constructing the truth tables for these formulee.

p | p pv-p p| p pAp
F | T T Fl T F
T | F T T | F F

Each entry in the column for p VvV —p is true, confirming that p v —p is a
tautology, while each entry in the column for p A —p is false, confirming that
p A —p is a contradiction.

Note that if we take p = A A B, then the contradiction

pA-p = (ANB) A =(AAB)

46 Propositional Logic

is precisely the formula which appeared in Example 1.17 (page 37).

(Exercise 1.25) (Solution on page 413)

Construct truth tables for each of the following formulae to determine which
are tautologies and which are contradictions.

LpVv (pAg).
2. (pAg) A —(pVa).
3. (p= —p) & —p.
4 (p=q) =p
5. p=(¢=p).

Tautologies are important in ascertaining the validity of arguments. Con-
sider, for example, our first argument from Section 1.1 (page 18):
1. Either this man is dead or my watch has stopped.
2. My watch is still ticking.
Therefore
3. This man is dead.

This argument is valid if the conjunction of the two premises implies the
conclusion, that is, if the following implication is valid:

(Dead vV Watch) A —~Watch = Dead

Again, this means that the proposition is a tautology, that it is true regard-
less of the truth values of its atomic propositions. We can easily confirm
this by constructing a truth table for this proposition:

Dead Watch ‘ (Dead v Watch) A — Watch = Dead

F Foo F F F FT F T F
F T FT T FF T T F
T F T T F TT F T T
T T TT T FF T T T

In contrast, consider the argument suggested by Exercise 1.9 (page 26):

1. If my dog barks, then my dog doesn’t bite.
2. My dog doesn’t bark.

Therefore
3. My dog bites.

Algebraic Laws for Logical Equivalences 47

Its formalisation yields the following truth table:

Barks Bites ‘ (Barks = - Bites) A —Barks = Bites
F F F TTF TTF F F
F T F TF T TTF T T
T F T TTF FF T T F
T T T FF T FFT T T

The first row of this truth table shows that the proposition — and hence the
argument it represents — is not valid. It presents a scenario in which the
proposition may be false: a dog that neither barks nor bites satisfies both
premises, but not the conclusion. Such a dog provides a counterexample
to the validity of the argument.

(Exercise 1.26) (Solution on page 414)

In Example 1.13 we represented a piece of computer program in proposi-
tional logic as:

p = (Pressure = Land) A (Height = Land).
We also considered two optimisations of this program represented as

q = Pressure A Height = Land,
r = Pressure V Height = Land.
Of course, an optimisation is only correct if the representation of the opti-

mised program code is equivalent to the original one. Explain which of the
two optimisations is correct and which is not.

Algebraic Laws for Logical Equivalences

Using truth tables to prove properties about propositions, specifically that
two propositions are equivalent, can quickly become tedious. However, we
can avoid relying on truth tables by reasoning equationally much as we
would do in algebra and arithmetic.

For example, we might conclude that 3 x (4+5) = 27 in the following
way:

3x(4+5) = (3x4) + (83x5)
= 12 + 15 = 27.

In the first line of this calculation we used the algebraic law that says that
multiplication distributes over addition: a(b+c) = ab+ac; and in the second

48 Propositional Logic

line we used the principle that we can replace equals by equals: if a = b and
c=dthena+c=0b+d.

A similar kind of reasoning is possible with propositional logic, with
equivalence < playing the role of equality =. Once we have determined that
two propositions p and g are equivalent, that p < ¢, we can then replace
one with the other. First, though, we need to know what equivalences we
can use as our "algebraic laws”. A large number of these are given as follows.

Commutativity Laws

pVqg & qVp PAGg < gAD

Associativity Laws

pv(gvr) & (pvgVvr PA(GAT) & (PAGIAT

Idempotence Laws

pVp & p PAD & P

Distributivity Laws

pv(gAr) & (pvg A(pVr) pA(gVvr) & (pAg)V(pAT)

De Morgan’s Laws
“(pve) & pAq “(prg) & pVq
Double Negation Law

-p & D

Tautology Laws

pVtrue & true pAtrue & p

Contradiction Laws

pVfalse & p pAfalse & false

Excluded Middle Laws

pV-p & true pA—-p < false

Absorption Laws

pV(pAg) & p pA(PVe) & p

Implication Law

p=4q < pVg

Algebraic Laws for Logical Equivalences 49

Contrapositive Law

pP=q < 7¢q="p

Equivalence Law

peq & (p=9A(@=>Dp)

You can (and should) show that all of the above laws are valid tautologies
by constructing appropriate truth tables. However, some laws can be shown
to be valid by using laws that have already been previously confirmed. For
example, we can verify the validity of the Contrapositive Law as follows:

Pp=>q & —pVgq (Implication)
& gV p (Commutativity)
& —qV-op (Double Negation)

& —g= —-p (Implication)

Of course, this derivation relies on the Implication, Commutativity and
Double Negation Laws being verified first.

More importantly, we can use the above equivalences to derive ever more
equivalences, bypassing the need to construct truth tables to justify them.

Example 1.26

We can derive the equivalence pV (-p A q) < pV ¢ using the following
sequence of steps:

pV (-pAg) & (pV-Dp) A (pVq) (Distributivity)

< true A (pVaq) (Ezcluded Middle)
< (pVg) A true (Commutativity)
& pVg (Tautology)

We can equally use this technique to verify that a proposition p is a
tautology by demonstrating that p < true.

Example 1.27

We can demonstrate that (p = ¢) V (¢ = r) is a tautology as follows:

50 Propositional Logic

=9 V (g=r)

=

U

(pvg) Vv (mgVvr)
p VvV ((gv=g)Vvr)
-p V (truevr)
(mp VvV 7)Vtrue

true

(Implication, twice)
(Associativity, twice)
(Bzcluded Middle)
(Commutativity, Associativity)

(Tautology)

As in algebra, we will usually not mention applications of associativity and
commutativity, and write formulae like p V ¢ V r instead of pV (¢ V r) or
(pV q) VvV r. This allows us to represent the above calculation in a more
compact way as follows:

=49 VvV (g=r)

=4

=

&

pVqgV qVr
-p V true V. r

true

Exercise 1.27) (Solution on page 415)

(Implication, twice)
(Bzcluded Middle)
(Tautology)

Give derivations of the following equivalences.

P A(pVg) & pAg.

. (p=q)

1
2
3.p=(gVvr)
4. p=(gAT)
5. (pAg)=r
6. (pvg)=>r

< p A q.

K DR

p=q Vv (p=r)
=49 A (p=r).
(p=r1) Vv (g=r).
(p=r1) A (g=r).

Additional Exercises

1. Which of the following are statements?

(a) “17 is an odd integer.”
(b) “Manchester is the capital of Great Britain.”
(c) “Unload the dishwasher if it has completed its washing cycle.”

(d) “Are all roses red?”

Additional Exercises 51

(e) “All roses are red.”

2. Negate each of the items from above that you determine to be state-
ments.

3. Which of the following are valid deductions?

(a) Mammals are warm-blooded animals.

Whales are mammals.

Therefore whales are warm-blooded animals.
(b) Mammals are warm-blooded animals.

Fish are not mammals.

Therefore fish are not warm-blooded animals.
(c) Some doctors are surgeons.

Some women are doctors.

Therefore some women are surgeons.
(d) All horses are animals.

Therefore all horses’ heads are animal heads.
(e) Some girls are better than others.

Therefore some girls’ mothers are better than other girls’ mothers.

4. Formalise the following statement of Sherlock Holmes in propositional
logic:

“If I’'m not mistaken Watson, that was the Dore and Totley
tunnel through which we have just come, and if so we shall
be in Sheffield in a few minutes.”

5. Let F and T and W represent the following propositions.

E: Your laptop’s warranty has expired.
T: You have tampered with the electronics in your laptop.
W Your laptop is covered by its warranty.

(a) Translate the following statements into propositional logic.

W1: Your laptop is covered by its warranty as long as the warranty
has not expired and you have not tampered with the laptop’s
electronic components.

W,: Your laptop is not covered by its warranty if the warranty has
expired or if you have tampered with the laptop’s electronic
components.

(b) How do these two statements differ? Which one would you prefer
to see on the warranty of your new laptop?

6. Given that P and R are true while @ is false, determine the truth
values of the following formulae. Verify these by building truth tables
for the given formulee.

52 Propositional Logic

() PA(QVER)

(b) (PAQ)VR

() (PAQ) A R
(d) “P V ~(-Q A R)

7. Write each of the following statements symbolically in the form P = @
(using the suggested propositional variables), and then express them
in English in the form “If ... then”

(a) I will play golf tomorrow (G) unless it rains (R).

(b) I'll do it (D) if you ask me nicely (N).

(c) Ann cries (C) every time she watches The Titanic (W).

(d) I never leave the house (L) without locking the door (D).

(e) A rectangle is a square (.S) only if all four of its sides are the same
length (L).

(f) A rectangle is a square (.S) if all four of its sides are the same
length (L).

8. Letting CatAway stand for “The cat's away” and MicePlay stand for
“The mice will play,” translate each of the following into propositional
logic.

(a) “The mice will play whenever the cat’s away.”
(b) “The mice will play only if the cat’s away.”
(c) “The mice will play unless the cat’s not away.”

9. Suppose I lay the following four cards on the table, each of which has
a shape on one side (either a circle or a square) and a pattern on the
other side (either stripes or dots).

I claim that:

“Every card with a circle on one side
always has stripes on the other side.”

Which card(s) do you need to turn over in order to be certain that I
am telling the truth?

This exercise is known as a Wason Selection Test after the psychol-
ogist Peter Wason who first described it in 1966. Be careful with your
answer: studies rarely result in a reported success rate of over 20%)!

Additional Exercises 53

10.

11.

12.

13.

14.

15.

Explain the difference between the following three offers:

(a) You can watch TV if you tidy your room.
(b) You can watch TV only if you tidy your room.

(c) You can watch TV if, and only if, you tidy your room.

Which offer should a logical parent make to their children?

Give the truth tables defining the NAND, NOR and conditional con-
nectives p | ¢, p | ¢ and ¢ < p > 7 defined in Exercise 1.10, and show
that these are the same as the truth tables for the formulz you gave
in Exercise 1.10 for these connectives.

Propositional Logic is based on the three connectives —, V and A;
the Implication Law and the Equivalence Law show that the two
connectives = and < can be defined in term of the other three.

(a) Show how to express —p, pV ¢ and p A g using only the NAND
connective |.

(b) Show how to express —p, p V ¢ and p A g using only the NOR
connective |.

A friend proposes the following game to you. You keep tossing a coin
over and over until one of the following two things happens:

e if two heads occur in a row, then the game ends; you win, and
your friend will give you £2;

e if a tail occurs followed immediately by a head, then the game
ends; your friend wins, and you must give your friend £1.

Is it worth playing this game?

In a certain country, every inhabitant is either a truth teller who always
tells the truth, or a liar who always lies. While travelling in this
country, you meet two people, Abe and Ben. Abe says, “Ben and I are
both liars.” Is Abe a truth teller or a liar? What about Ben?

Argue that Superman doesn’t exist. To do this, start by making the
following four assumptions:

Xi: If Superman were able and willing to prevent evil, he would do
s0.

X,: Superman does not prevent evil.

X3: If Superman were unable to prevent evil, he would be impotent;
and if he were unwilling to prevent evil, he would be malevolent.

X,: If Superman exists, he is neither impotent nor malevolent.

Argue as follows. First introduce the following variables:

54 Propositional Logic

“Superman is able to prevent evil.”
“Superman is willing to prevent evil.”
“Superman is impotent.”

“Superman is malevolent.”
“Superman prevents evil.”
“Superman exists.”

mv R~ S

(a) The first assumption translates into the following formal logical
statement:
Xi: (AANW) = P.
Translate the remaining assumptions X,, X3 and X, into formal
logical statements.
(b) Use assumptions X; and X, to argue that =A v -W.
(c) Use assumption X3, and the fact from (b), to argue that I v M.

(d) Use assumption X4, and the fact from (c), to draw your conclu-
sion.

16. Which of the following statements is true?

(a) All of the below.
(b) None of the below.
(c) All of the above.
(d) One of the above.
(e) None of the above.
(f) None of the above.

17. The following famous puzzle is referred to as the Einstein Riddle as
Albert Einstein is sometimes credited with inventing it as a boy. He
is also credited with claiming that only two percent of the world’s
population can solve it.

You are given the following information about five houses sitting in a
row on some street which are each painted a different colour, and whose
inhabitants are of different nationalities, own different pets, drink dif-
ferent beverages, and smoke different brands of American cigarettes.
In statement (e), right refers to the reader’s right.

(a) The Englishman lives in the red house.

(b) The Spaniard owns the dog.

(d) The Ukrainian drinks tea.

)

)
(c) Coffee is drunk in the green house.

)
(e) The green house is immediately to the right of the ivory house.
)

(f) The Old Gold smoker owns snails.

Additional Exercises 55

18.

(g) Kools are smoked in the yellow house.

(h) Milk is drunk in the middle house.

(i) The Norwegian lives in the first house.

(j) Chesterfields are smoked next door to the man with the fox.

(k) Kools are smoked next door to the house where the horse is kept.
(1) The Lucky Strike smoker drinks orange juice.

(m) The Japanese smokes Parliaments.

(n) The Norwegian lives next to the blue house.

The question is: Who drinks water? Who owns the zebra?

Verify the Laws of Equivalence from Section 1.7, either directly by
using truth tables, or by deriving them from previous laws which have

already been verified.

19. Verify the following laws for implication and equivalence.

(@) p=rp

() p=aAr(@=r1) = (p=1).
() (p=q = (pvr=gqvVvr).
(d) (p=q) = (PAT=4qAT).
(e) (p=4q) & (ng¢= —p).
() pep

(8) (pe4q) = (2 p).

)
h) pegnr(ger) = (pern).
() (peq) = (PVregvr).
() pe g = (pAT S gAT).
&) (peg & (pe 9.

Chapter 2

Sets

I refuse to join any club that would have me as a member.
- Groucho Marx.

Propositional logic allows us to reason about the world by inferring new
facts from facts that we already know. However, we also need to structure
our knowledge by grouping things together and by relating such collections
of things with each other. In the parlance of Computer Science, we don’t
only need algorithms that process information, but also data structures that
collect and store it.

There are many words in English for describing a collection of things
(especially animals) such as: a pack (of wolves), a school (of fish), a gaggle
(of geese), a host (of angels), a den (of thieves), a crowd (of onlookers), or a
fleet (of cars). The idea of regarding a collection of things as a single entity
is fundamental in mathematics as well as in everyday parlance. However,
mathematics usually restricts itself to using a single collective noun: set.

@ Set Notation

A set is a collection of objects which typically share a property. The objects
belonging to the collection are individually referred to as its elements, or
members. The number of objects in a set A is referred to as its cardinality,
and is written |A|. If there are not too many elements in the set, then it is
most typically described by writing its elements in a comma-separated list
between curly braces, as in the following four examples of sets:

o {false, true};

e {3,7,14}

e {red, blue, yellow };

e {Joel, Felix, Oskar, Amanda }.

e { Aberystwyth, Bangor, Cardiff, Lampeter, Newport, Swansea };

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_3, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_3

58 Sets

The above sets all contain a small number of elements — their cardinalities are
2, 3, 3, 4 and 6, respectively — and as such are easily written out. Larger sets
which aren’t so easily written out explicitly are often informally described
using an ellipsis “...”, as in the following three examples:

e {1,3,5,...,99} (the set of 50 odd positive integers below 100);
e {a,bc ..., 2z} (the set of 26 letters of the alphabet);
e {2,3,5,7 11, 13,17, ... } (the infinite set of prime numbers).

Though we shall freely use this notation, it is generally inadequate. For
example, how confident are you that the final set above denotes the set
of prime numbers? Having an infinite number of elements, it would be
impossible to list them all inside curly braces, so we would have to stop
somewhere. But perhaps the next element we have in mind in the sequence
after 17 is 21. Perhaps it isn’t even a number; perhaps the next element in
the sequence is Groucho Marx!

To avoid any ambiguity, sets are typically describe not by explicitly list-
ing the elements between curly braces, but rather by describing the property
that the elements share. In general, we shall describe sets using the following
set-builder notation:

{z : z has property P}.

That is, this set consists of exactly those objects which satisfy the prop-
erty P. We may, of course, use a more appropriate variable than z.

Example 2.1

The following are all examples of sets:

1. The collection of all beaches on the Gower Peninsula:
{b : bis a beach on the Gower Peninsula }.
2. The collection of all people who have climbed Mount Kailash:
{p : p has climbed Mount Kailash }.
3. The collection of all prime numbers:
{n : nis a prime number }.
4. The collection of all sets of people who have a common grandmother:

{A : Aisaset of people who share a common grandmother }.

Membership, Equality and Inclusion 59

The first set is finite, and its members can be explicitly listed by referring
to a map of the Gower Peninsula. The second set — as far as we know — has
no members. The third set has infinitely many members, and so could not
be explicitly listed. The members of the fourth set are themselves sets.

You will likely be familiar with many standard mathematical sets such
as the following.

0={} (the empty set)

B ={0,1} (the binary digits, or bits)
N =4{0,1,23...} (the natural numbers)
Z=4...,-3-2,-1,01,2,3,...} (the integers)
Q={T":mmneZ n#0} (the rational numbers)

R = {z : z is a real number } (the real numbers)

Note that @ and {0} are different sets; the set @ contains no elements,
while the set {0} contains one element, namely the set 0 itself, and hence
is not the same as the empty set 0.

Also note that each set in the above list is bigger than the one above it,
in the sense that it includes all of the elements of the set above it plus other
elements not in the set above.

(Exercise 2.1) (Solution on page 416)

Write out the following sets explicitly, by listing their elements within curly
braces.

1. {z : z is an odd integer with 0 < z < 8}.
2. {z : z is a day of the week not containing the letter n}.
3. {z : z was a wife of Henry VIII }.

4. {z : z starred as James Bond in the official series of films }.

(2.2) Membership, Equality and Inclusion

A set is defined solely by its members, so clearly the most basic question
we can pose is to ask if an object z is a member of a set A. Membership
is denoted by €, pronounced “s an element (or a member) of”, as for
example in

7 € {3,7,14} (“7 is an element of the set {3, 7, 14}"),

60 Sets

or
Felix € { Joel, Felix, Oskar },
whilst non-membership is denoted by ¢, as for example in
8 ¢ {3,7,14} (“8 is not an element of the set {3, 7, 14}”),
or
Amanda ¢ { Joel, Felix, Oskar }.

That is, z ¢ A is the same as =(z € A).

(Exercise 2.2) (Solution on page 416)

Write out the following sets explicitly, by listing their elements within curly
braces.

1. {z : z is an integer with z = 2y where y € {1, 2, 3, 4,5} }.
2. {z : z is an integer with 2z = y where y € {1, 2, 3, 4,5} }.

(Exercise 2.3) (Solution on page 416)

Which of the following propositions are true?

.2¢€{1,2,3}.

{2} e {1,2,3}

{2} e {{1}, {2}, {3}}
.0e{}

.0e{0}.

ot W N =

Since a set is defined solely by its members, two sets are equal if, and
only if, they have the same elements. So when you list the elements of a
set, the order in which you list them, and the number of times you list each
element, doesn’t matter. Thus, for example,

{3,7,14} = {7,14,3,7,3}
while
{ Joel, Felix, Oskar } # { Joel, Felix, Oskar, Amanda}.

If you want to show that two sets are different, it suffices to find a witness
to this fact; that is, an element of one set which is not in the other.

(Exercise 2.4) (Solution on page 416)

Which of the following sets are equal?

Membership, Equality and Inclusion 61

A={1,{1,2}}
B = {1, {2}}
e C = {1 {1}}
D = {{1,1}, 1}
E = {{2,1}, 1}

One set A is a subset of another set B if, and only if, each element of
A is an element of B; in such a case we write A C B. We also say that
A is included, or contained, in B; or that B is a superset of A, written
B D A; or that B includes, or contains, A. Reflecting on the description
of equality of sets above, two sets A and B are thus equal, A = B, if, and
only if, each is included in the other:

A=B & ACB A BC 4

that is, if any element of one is an element of the other.

As further notation, we write A ¢ B to denote that A is not a subset
of B, that is, if there is an element of A which is not an element of B. In
other words, A ¢ B is the same as =(A C B). Finally, we write AC B if A
is a proper subset of B, that is, if A C B but A # B.

Example 2.4

As already noted above, the binary digits form a proper subset of the natural
numbers; the natural numbers form a proper subset of the integers; the
integers form a proper subset of the rational numbers; and the rational
numbers form a proper subset of the real numbers:

0PCBCNCZCQCR

A useful graphical way of depicting sets, and in particular the relation-
ship between them, is by so-called Venn diagrams. Such a diagram is
obtained by laying out the elements of a set on a piece of paper and then
encircling them. For example, we can depict the sets

X ={1,2,3,4,5}

Y = {2,3,4}

Z = {3,4,5,6}
by the Venn diagram in Figure 2.1. The rectangle represents some under-
stood universal set U, referred to as the universe of discourse consisting

of all elements under consideration, which in this example we take to be the
integers from 1 to 10:

62 Sets

(U I
X 7z
(GED
10
8 9

Figure 2.1: An example Venn diagram.

- /

U = {1,2,3,4,56,7,8,9, 10},

and the sets X, Y and Z are represented by encircling the relevant elements.
depicted in the Venn diagram in Figure 2.1, The diagram clearly shows
that ¥ C X, and indeed Y C X, since 1 € X but 1 ¢ Y; whereas Z is
incomparable to both X and YV: X ¢ Z and Z € X; and Y ¢ Z and
ZZY.

Furthermore, it is clear that for any set A: § C A and A C U; and that
for any sets A, B and C: if AC Band BC C then ACC.

(Exercise 2.5) (Solution on page 416)

Which of the following propositions are true?

1. {2} C{1,2,3}
2. {1,283 c{{1}, {2} {3} }
3. {{1,2}}rC{{1,2,3}}

As a final observation, we can note the following special properties of the
subset relation, all of which are obvious using Venn diagrams.

1. Tt is reflexive, meaning that A C A holds for every set A.

2. It is antisymmetric, meaning that if A C Band B C Athen A= B.

3. It is transitive, meaning that if A C B and B C C then A C C.

Moreover, the empty set is the least set with respect to inclusion; that is, it
is contained in any other set: § C A holds for each set A.

Sets and Properties 63

@ Sets and Properties

We have already seen that listing elements is not appropriate for defining
sets with infinitely many elements. Instead of writing

Primes = {2,3,5,7, 11,13,17,19, ...}
for the set of all prime numbers, we use the set-builder notation
Primes = {z : z is a prime number }.

to define Primes as the set of all objects z such that z is a prime number.
More generally, we use the notation

{z : z has the property P}

to indicate that we are building (defining) the set of all objects z which
satisfy the property P.

This set-builder notation is typically used to define a subset B of an
existing set A, in which case we write:

B = {z € A : z has the property P}
instead of
B = {z : z € A and z has the property P}

The set-builder notation used in this way separates the objects in set A
which satisfy a given property from those that do not.

Example 2.5

Philosophers have classified humans as rational animals (albeit a reasonable

rationality criterion might be to disagree with this classification). Accord-
ingly, the property of being rational separates humans from all other animals;
it holds of all humans, and of no other animals. Letting Animals denote the
set of all animals and Humans the set of all humans, we can write

Humans = {z € Animals : z is rational }.

Thus, £ € Humans if, and only if, £ € Animals and z is rational.

Example 2.6

]

Given two real numbers a, b € R the following four intervals frequently occur
in mathematics:

64 Sets

[a, b] {zeR :a<z<b}
(a,] = {zeR :a<z<b}
[a,) {zeR :a<z<b}
(a,b)

Given two integers m, n € Z the interval between them is defined as

{zeR:a<z<b}

m.n] ={ke€Z: m<k<n}

In all of the above intervals, if the first (left-hand) value is greater than the
second (right-hand) value, then the interval defined is the empty set 0.

Example 2.7

2.3.1

Obviously, z is in the set
{ Joel, Felix, Oskar, Amanda }
if, and only if,
z = Joel or z = Felix or £ = Oskar or z = Amanda,

which is a property of z. Therefore, the above set can be rewritten, some-
what tediously, using set-builder notation as:

{z : z = Joel or z = Felix or z = Oskar or z = Amanda }.

Russell’s Paradox

The set-builder notation is very powerful; however, it must be used with
some care.

We have seen that sets can contain any type of object, including sets
themselves. Normally a set will not be a member of itself, but there is noth-
ing to preclude us considering abnormal sets that are elements of themselves.
Consider, then, the set of normal sets: those sets that are not elements of
themselves; this set, which we call R, can be defined using the set-builder
notation as follows:

R = {A:A¢A}.

We can then ask: is R itself a normal set? That is, do we have R € R? Or
do we have R ¢ R? Certainly one of these two must be true: either R is a
normal set, or it isn’t.

e Suppose that R € R. Then R must satisfy the property required of
being an element of R, namely we must have that R ¢ R.

Operations on Sets 65

e Suppose that R ¢ R. Then R must fail to satisfy the property required
of being an element of R, namely we must not have that R ¢ R; that
is, we must have that R € R.

By the Law of the Excluded Middle, one of the above two cases must hold.
This means that we must have both R € R and R ¢ R; that is, R is both a
normal set and an abnormal set. This is a contradiction, and as such cannot
be true.

This anomaly is known as Russell’s Paradoz, after the philosopher
Bertrand Russell who devised it to demonstrate the need to be vigilant
in how you define sets. In particular, it should not be possible to speak
of the set of all sets, as such circularity leads directly to contradictions.
Fortunately, this anomaly cannot arise as long as we restrict the use of the
set-builder notation to the restricted form

{z € A : z has the property P}

in which we define the set as a subset of another given set which has been
previously defined. We also need not worry about using the general set-
builder notation if we have an implicit underlying universe of discourse.

(Exercise 2.7) (Solution on page 416)

24.1

Let A be any set, and define the set R by
R={XeA: X¢X}

Do we now have R € R? Or do we have R ¢ R? Why is Russell’s Paradox
not a problem here?

Operations on Sets

In the previous sections we have seen that sets can be constructed directly by
putting curly braces around a listing of its elements, or indirectly using the
set-builder notation. In this section we will consider a variety of operations
which can be used to construct new sets from old.

Union

The union AU B of two sets A and B consists of exactly those elements of
the universe of discourse which are in either A or B (or both):

AUB = {z : z€Aorz € B}.

Thus,

66 Sets

tcEAUB & €AV z€B.

This is depicted by the following Venn diagram, where the gray area repre-

sents AU B.

u

Example 2.8

]

{1,2,3,4,5} U {2,4,6,8, 10} = {1,2 3,4,5,6,8 10}

Example 2.9

]

The union of the set of people who can speak English and the set of people
living in France is the set of people who can either speak English or who
live in France (or both).

2.4.2 Intersection

The intersection AN B of two sets A and B consists of exactly those
elements of the universe of discourse which are in both A and B:

ANB = {z :z€Aandz € B}.
Thus,
zcANB & z€ANzEB.

This is depicted by the following Venn diagram, where the gray area repre-

sents AN B.

u

Example 2.10

{1,2,3,4,5} N {2,4,6,8,10} = {2,4}

Operations on Sets 67

Example 2.11

The intersection of the set of people who can speak English and the set of
people living in France is the set of people living in France who can speak
English.

Two sets A and B are said to be disjoint if they have no elements in
common; that is to say, if their intersection is empty: AN B = 0. In terms
of Venn diagrams, this means that the regions depicting A and B do not
overlap.

There will typically be fewer elements in the union of two finite sets A
and B, |AU B|, than |A| + |B|; the whole will generally be less than the
sum of the parts. This is due to the fact that |A|+ |B| counts the members
of the intersection A N B twice. To balance this, we have the the following

principle.
(Theorem 2.11) Inclusion-Exclusion Principle
For finite sets A, B and C: |AUB| = |A| + |B] — |AnB|.

2.4.3 Difference

The difference A\ B of two sets A and B consists of exactly those elements
of the universe of discourse which are in A but not in B:

A\B = {z€A:z¢ B}
Thus,
z€A\B & z€AANz¢B.

This is depicted by the following Venn diagram, where the gray area repre-

sents A\ B.
. :

u

Example 2.12

]

{172l37415}\{27416787 10} = {173l5})

and

68 Sets

{2,4,6,8,10} \ {1,2,3,4,5} = {6,8,10}.

Example 2.13

2.4.4

The difference of the set of people who can speak English and the set of
people living in France is the set of English-speaking people who do not live
in France.

Conversely, the difference of the set of people living in France and the set
of people who can speak English is the set of non-English-speaking people
living in France.

Complement

The complement A of a set A is the set consisting of exactly those elements
of the universe of discourse which are not elements of A:

A={z:z¢gA}
Thus,
zed & z¢A

The set A is thus the same as U \ A, and is depicted by the following Venn
diagram, where the gray area represents A.

U

Example 2.14

Assuming the universe of discourse is/ = {1, 2, 3,4,5,6,7,8,9, 10},
{17 21 37415} = {6’ 77 8797 10})
and

{2,4,6,8, 10} = {1,3,57,9}

Example 2.15

Assuming the universe of discourse is the set of people in the world, the
complement of the set of people who can speak English is the set of non-
English-speaking people; and the complement of the set of people living in
France is the set of people who do not live in France.

Operations on Sets

69

Exercise 2.15) (Solution on page 416)

Consider the following sets:

U=1{1,2,3,4,5,6,728,9,10}, (the universe of discourse)
A={1,3,571709},

B=1{3,4,5}

C={567829}

Draw a Venn diagram depicting these sets, and compute the following sets:

1.
2.
3.
4.
5.

ANC.

(AnB)uC
AN(BUC)
(AUB)\C.

(AuB)nc.

(Exercise 2.16) (Solution on page 417)

Let A, B and C be sets.

1.
2. If A C B, what can you say about A and B?

3

4.

5. If ACC and B C C, how is C related to AU B?

If A C B, what can you say about AU B and AN B?

. What is j, the complement of the complement of A?

If C C Aand C C B, how is C related to AN B?

2.4.5 Powerset

The powerset P (A) of a set A is the set consisting of all subsets of A:

Thus,

P(A) = {X : X C A}

zeP(4A) & zCA

In particular, § € P (A) and A € P (A).
We might only be interested in finite subsets. In this case we shall denote
by Psn (A4) the set consisting of all finite subsets of A:

Pan(A) = {X : X C Aand X is finite }.

70 Sets

Example 2.16

1. The set {0, 1} has four subsets:

P({0,1}) = {0, {o}, {1}, {0, 1}}
More specifically, there are the following subsets:

e one subset with no elements (the empty set);
e two singleton subsets (one for each element in the set); and

e one subset with two elements (the whole set itself).
2. The set { cola, fanta, sprite } has eight subsets:

P ({ cola, fanta, sprite })
= {0,
{cola}, {fanta}, {sprite},
{ cola, fanta }, {cola, sprite }, {fanta, sprite },
{ cola, fanta, sprite} }.

More specifically, there are the following subsets:

e one subset with no elements (the empty set);
e three singleton subsets (one for each element in the set);

e three subsets with two elements (one for each element left out);
and

e one set with three elements (the whole set itself).

3. The set { Joel, Felix, Oskar, Amanda } has 16 subsets:
P ({ Joel, Felix, Oskar, Amanda })
= {0,
{Joel}, {Felix}, {Oskar}, { Amanda},

{ Joel, Felix }, { Joel, Oskar }, { Joel, Amanda},
{ Felix, Oskar }, { Felix, Amanda}, { Oskar, Amanda},

{ Joel, Felix, Oskar }, { Joel, Felix, Amanda},
{ Joel, Oskar, Amanda}, {Felix, Oskar, Amanda},

{ Joel, Felix, Oskar, Amanda} }
More specifically, there are the following subsets:
e one subset with no elements (the empty set);

e four singleton subsets (one for each element in the set);

e six subsets with two elements (one for each pair);

Operations on Sets 71

e four subsets with three elements (one for each element left out);
and

e one set with four elements (the whole set itself).

4. In general, if |A| = n then |P (A)| = 2": a set with n elements has 2"
different subsets.

]

Example 2.17

Amanda has invited the following six friends to her birthday party: Daniel,
Ella, Mia, Rhodri and Zoe. However, some of them might not show up. If
we let

Friends = {Daniel, Ella, Mia, Rhodri, Zoe }

then the collection of combinations of friends that might come to Amanda’s
party is given by P (Friends). For example, perhaps Ella and Rhodri are
busy that day, but the others all come; then the set of friends that come to
Amanda’s party is:

{ Daniel, Mia, Zoe} € P (Friends).

(Exercise 2.17) (Solution on page 417)

List the elements of P (Friends), where Friends is the set defined in Exam-
ple 2.17 above. How many sets of each size are there?

(Exercise 2.18) (Solution on page 418)

Form the following sets from the empty set 0:

1. the set A = P (0);
2. the set B =P (A);
3. the set C =P (B).

How many elements are in each of these sets?

(Exercise 2.19) (Solution on page 418)

Given an arbitrary set A, what are P (A)NQ and P (A)n{0}?

72 Sets

*x 2.4.6

Generalised Union and Intersection

It makes perfect sense to take the union or intersection of any number of
sets, not just two. For example, we can consider the union

AUBUC

of three sets A, B and C, meaning the set whose elements are those objects
which are members of any of the sets A, B or C; or the intersection

AnBnCnDNE

of five sets A, B, C, D and F, meaning the set whose elements are those
objects which are members of all of the sets A, B, C, D and E. We don’t
have to worry about which order we take the sets; for example, the set
AU (BUDQC) is clearly the same as (C U A) U B. This is because the union
and intersection operations are associative:

AU(BUC) = (AUB)UC and AN(BNC) = (ANB)NC;
and commutative:
AUB = BUA and AUB = BUA.

In fact, we can extend union and intersection to apply to arbitrary fam-
ilies (sets) of sets: if F is a set of sets, then

UF = {z : z€ Afor some Ac F}
NF {z:zcAforall Ac F}

In particular, AUB = U {A, B} and ANB = N{A4, B}. With a little thought,
the following identities become apparent:

1. A=U{A4} and A=N{A}
2. A=UP(A) and 0 =NP(A).
3. 0 =UD and U = N0, where U is the universe of discourse.

The final two identities are worth further explanation. By definition, z € J0
if, and only if, z € A for some A € 0; but since there can be no such A € 0,
there can be no such z € A.

Similarly, by definition, z € N0 if, and only if, z € A for all A € 0; but
since there can be no such A € 0, it is vacuously true that z € A for each of
these A € 0.

Example 2.19

Suppose, e.g., that CS101 is the set of all students enrolled on the course
Computer Science 101, and that ClassLists is the set of all class lists, so
that, for example, CS101 € ClassLists. Then the set Students of all students,
that is, all people who are enrolled on some course, would be

Ordered Pairs and Cartesian Products 73

Students = |J ClassLists.

The set N ClassLists would likely be empty, as it would contain those students
who are enrolled on all courses.

Exercise 2.20) (Solution on page 418)

(25)

Given an arbitrary set A, what are N Ps, (4) and U Pan (4)7

Ordered Pairs and Cartesian Products

An ordered pair is simply a pair of objects (a, b) with first coordinate a
and second coordinate b. For example, points in the zy-plane are denoted
by ordered pairs; the ordered pair (4, 9), for example, denotes the point with
z-coordinate 4 and y-coordinate 9. The ordered pair (a,d) is different from
the set {a,b} in that it is ordered; (a,b) # (b,a) (unless, of course, a=b),
whereas {a, b} = {b,a}. More precisely,

(a,b) = (c,d) 1if, and only if, a =cand b=d.

The Cartesian product A x B of two sets A and B is the set of all
ordered pairs in which the first coordinate a is an element of A and the
second coordinate b is an element of B.

AxB = {(a,b) : acAandbe B}.
Thus,
(a,0) EAxB & acAANDbeEB.

For example, R x R, typically written as R2, denotes the set of points in the
zy-plane.

Example 2.20

The Cartesian product [1..m] x [1..n] of the intervals [1..m] and [1..n] can
model a finite grid, such as the points of an LCD screen or the squares on a
chess board.

(1,1) (1,2) --- (1,n)

(2,1) (2,2) -+ (1,n)

(m,1) (m,2) --- (m,n)

74 Sets

Example 2.21

Many programming languages offer abstract data types that allow you to
store and retrieve data using key-value pairs. These data types have dif-
ferent names in different programming languages, such as associative array,
dictionary, map, or table. But key-value pairs are always ordered pairs from
a Cartesian product Keys x Values, where Keys is a set of keys and Values is
a set of values. The values are the pieces of information that are stored in
the data type, and the keys — which are unique for each value — allow you
to retrieve the value.

As an example, we may have a national database in which each person is
assigned a unique identification number. In this case, names serve as keys
and the values are the identification numbers associated with each name:

IDNumbers = { (Joel, 7613),
(Felix, 8217),
(Oskar, 6457),
(Amanda, 9601),

3.

As another example, a correspondence can be made between countries and
their capital cities:

CapitalCities = { (France, Paris),
(Peru, Lima),
(Japan, Tokyo),
(Mali, Bamako),

We can form the Cartesian product of any number n € N of sets, whose
elements are n-tuples. For example

AxBxC = {(a,b,c) : a€c A, beBandceC}

represents the set of triples (a, b, ¢) in which the first coordinate a is an ele-
ment of A, the second coordinate b is an element of B, and the third coordi-
nate c is an element of C. In general, we write A™ to denote A x A X --- x A,
that is, the Cartesian product of n copies of the set A. Three-dimensional
space, thus, is defined by R® =R x R x R.

Note that the number of elements in a product is the product of the
number of elements in the individual sets. In particular, for any set A,

AxD = 0 = 0x A

Ordered Pairs and Cartesian Products 75

Example 2.22

Let S represents all students, C represents all courses, and G represents
possible grades. Then S x C x G represents all triples (s, ¢, g) where s € S
is a student, ¢ € C is a course and g € G is a grade. A University student
database would be represented as a subset of this set, recording the grades
for all students registered in each course.

Example 2.23

A pixel is a point on a computer screen, and these are laid out in a rect-
angular grid [1..h] x [1..v] as in Example 2.20, with the number of pixels
dependent on the size and resolution of the screen.

Each pixel is displayed as a dot of a certain colour. In the RGB model,
a colour is specified by a triple

(r,g,b) € [0,1]® where [0,1]={z€eR :0<z<1}

representing an intensity of red, green and blue, respectively, with 0 being
no intensity at all and 1 being maximum intensity. For example, black is
represented by (0,0,0) (no colours) while white is represented by (1,1, 1)
(maximum intensity of all colours); and red, green and blue are obviously
represented by (1,0,0), (0,1,0) and (0,0, 1), respectively. We can thus define
the following two sets:

Pixel = [1..h] x [1..v] and
Colour = [0, 1]3,

and use them to define a point on the screen as a member of the set
Point = Pixel x Colour

which assigns a colour to a pixel. Each point is therefore represented by
an ordered pair ((z,y), (7,9,b)) whose first coordinate is the ordered pair
(z,v), and whose second coordinate is the ordered triple (r, g, b).

(Exercise 2.23) (Solution on page 418)

Every rational number can be represented as an ordered pair of integers.
The number 3/4, for example, corresponds to the ordered pair (3, 4). Define
the operations of addition and multiplication on ordered pairs of integers
such that they correspond to the standard operations on fractions.

76 Sets

Modelling with Sets

As the fundamental data structures of mathematics, sets inevitably occur in
the specifications of systems. In many cases, sets capture system properties
more concisely than propositional logic. In this section, we explore a number
of examples, starting with revisiting Amos Judd.

Example 2.24

Consider the following three assumptions:

1. All candy has sugar.

2. John eats only healthy foods.

3. No healthy food contains sugar.
We can reason about these assumptions by introducing the sets H, S, J and
C to represent, respectively, the set of healthy foods, the set of sugary foods,

the set of foods that John eats, and the set of candy. The above assumptions
can be expressed, equationally and with a Venn diagram, as follows:

1.CCS
2. JCH
3. SNH=0

From this picture it is clear that no candy is healthy, and as such that John

doesn’t eat candy.

Exercise 2.24) (Solution on page 418)

Recall the situation regarding Amos Judd from Exercise 1.14 (page 33), in
which the fact that Amos Judd loves cold mutton could be inferred from
the following assumptions:
1. All the policemen on this beat sup with our cook.
. No man with long hair can fail to be a poet.
. Amos Judd has never been in prison.
. Our cook’s cousins all love cold mutton.
. None but policemen on this beat are poets.

. None but her cousins ever sup with our cook.

N O ot WwN

. Men with short hair have all been in prison.

Modelling with Sets 77

Demonstrate how to solve this problem by reasoning about appropriately-
defined sets.

(Exercise 2.25) (Solution on page 419)

Another one of Lewis Carroll’'s famous puzzles has the following premises:

All babies are illogical.
Nobody is despised who can manage a crocodile.

Illogical persons are despised.

Use an appropriate Venn diagram to deduce from these premises that no
baby can manage a crocodile.

Exercise 2.26 (Solution on page 420)

Use an appropriate Venn diagram to determine whether or not the following
argument is valid.

All oceans are full of water.
No ponds are oceans.

Therefore no ponds are full of water.

Example 2.26

At a certain hospital, 40 patients each have at least one of the following
symptoms: a fever, a sore throat, or an earache. 18 of them have an earache
and 25 of them have a sore throat, while eight of them have both an earache
and a sore throat. Of the fever sufferers, 11 of them have sore throats, nine
have earaches, and two have both a sore throat and an earache. How many
fever sufferers are there?

We can use a Venn diagram to solve this problem, by drawing the three
sets of patients as follows:

Sore Throat

Earache
o %

78 Sets

The question marks represent the numbers of patients in the relevant sub-
sets, and these numbers must add up to 40. We merely need to replace these
question marks with the relevant numbers based on the information given
in the problem, which we can do by working from the inside out.

We first put a 2 in the intersection of all three sets, depicting the two
patients who are suffering from all three symptoms.

Since eight patient are suffering from both a sore throat and an earache,
six of these must not have fever, so we can put a 6 in the relevant place
in the diagram.

Next, there are 11 fever sufferers who have a sore throat; we know that
two of these also have an earache, so nine of these must not have an
earache, so we can thus put a 9 in the relevant place in the diagram.

Also, there are nine fever sufferers who have an earache; we know that
two of these also have a sore throat, so seven of these must not have a
sore throat, so we can thus put a 7 in the relevant place in the diagram.

There are 18 patients with earaches, 15 of which have other symptoms;
thus three have no other symptoms, so we can put a 3 in the relevant
place in the diagram.

There are 25 patients with sore throats, 17 of which have other symp-
toms; thus eight have no other symptoms, so we can put an 8 in the
relevant place in the diagram.

As there are 40 patients in total, and 35 are accounted for as having
either a sore throat or an earache, there are five patients who only suffer
from fever, so we can put a 5 in the relevant place in the diagram.

The Venn diagram thus looks as follows:

-

S Throat
Fever ore Throa

FEarache
o %

Note that this is mot a Venn diagram in the usual sense: the elements
of the universe are not the numbers {2,3,5,6,7,8,9}. Rather, the 5, for
example, represents five elements of the set of patients who are suffering
only from fever. The Venn diagram would more rightly look something like
the following:

Algebraic Laws for Set Identities 79

Fever

FEarache
o %

Sore Throat

Here, each dot represents a distinct patient. However, the original Venn
diagram, with just the numbers, is far easier to read.
With this, a final simple count tells us that 23 patients suffer from fever.

Algebraic Laws for Set ldentities

We can often represent the same set in a variety of ways; for example, we’ve
already noted that it doesn’t matter whether we write AU B or BU A as
these give the same set. In this section we list a variety of identities, which
will allow us to reason algebraically about sets. All of the laws presented
can be verified informally by considering the appropriate Venn diagrams.

Commutativity Laws

AUB = BUA

Associativity Laws

Au(BUC) = (AUB)UC

Idempotence Laws

AUA = A

Distributivity Laws

AUu(BnC) = (AuB)N(AuC)

De Morgan’s Laws

(AuB) = AnB

Double Complement Law

ANB = BnA

An(BnC) = (AnB)NnC

ANA = A

AN(BUC) = (AnB)U(ANC)

(AnB) = AUB

80 Sets

|l

= A

Universe Laws

AuU =U AnU = A

Empty Set Laws
AUd = A ANG =10

Complement Laws

AUA =U ANA =10
Absorption Laws
AU(ANB) = A An(AuB) = A

You can (and should!) convince yourself of all of the above identities by
constructing appropriate Venn diagrams.

(Exercise 2.27) (Solution on page 420)

Draw the Venn diagrams which justify the two Distributive Laws.

We can use the above identities to derive even more identities, bypassing
the need to construct Venn diagrams to justify them.

Example 2.27

We can derive the identity AU(ANB) = AU B using the following sequence
of steps:

AU (AnB) = (AUA) N (AUB) (Distributivity)

= Un (AUB) (Complement)
= (AuB)nU (Commutativity)
= AUB (Unsverse)

(Exercise 2.28) (Solution on page 420)

Give a derivation of the identity AN (AU B) = An B.

The above laws allow us to reason about set inclusions as well as identi-
ties, by observing first that the set inclusion X C Y can be expressed as a
set identity, in any of the following ways:

XUY=Y, XnY=X, X\Y=0, XUY =U.

Logical Equivalences versus Set Identities 81

That each of the above are equivalent to the proposition that X C Y can
be readily be checked by considering the appropriate Venn diagram:

u

Y

Example 2.28

We can derive the new law A C AU B as follows:

e By Associativity and Idempotence, AU(AUB) = AU B.
o Letting X = Aand Y = AU B, this says that X uY =Y.
e By the above, this means that X C Y; that is, that A C AU B.

Exercise 2.29) (Solution on page 421)

* 28

Derive the law AN B C A.

Logical Equivalences versus Set ldentities

The astute reader will have noticed that there is a direct correspondence
between the Equivalence Laws for Propositional Logic from Section 1.7 and
the Set Identities from the previous Section 2.7. For convenience, these laws
are listed once again here, side-by-side.

Commutativity Laws
PvQ & QVP
PAQ & QAP

Associativity Laws
PV(QVR) & (PVQ)VR
PA(QAR) & (PANQ)AR

Idempotence Laws

PVP & P

Commutativity Laws
AUB = BUA
ANB = BNA

Associativity Laws
AU(BUC) = (AUuB)UC
ANn(BNnC) = (AnB)NC

Idempotence Laws

AUA = A

82 Sets

PANP & P

Distributivity Laws
PV(QAR) & (PVQ)A(PVR)
PA(QVR) & (PAQ)V(PAR)

De Morgan’s Laws
“(PVQ) & P A ~Q
“(PAQ) & —P VvV —Q

Double Negation Law
-—-P & P

Tautology Laws
P Vtrue & true

P Atrue & P

Contradiction Laws
Pvfalse & P

P Afalse < false

Excluded Middle Laws
PV -P & true

P A-P & false

Absorption Laws
PV(PAQ) & P
PA(PVQ) & P

Each law of equivalence for propositions gives rise to a set identity by
replacing vV by U, A by N, and — by - (as well as false by @ and true by
U). This exploits a tight analogy between logical equivalence P < @ and
equality of sets A = B, which can be extended to logical implication P = @

ANA = A

Distributivity Laws
AU(BNC) = (AUB)N(AuC)
AN(BUC) = (ANB)U(ANC)

De Morgan’s Laws

(AuB) =
(AnB) =

N

|

hS
sy}

Double Complement Law

A=A

Universe Laws
AulU = U
AnU = A

Empty Set Laws
AU = A
ANnO =0

Complement Laws
AUA =U
ANA =10

Absorption Laws
AU (AN B) A
AN(AUB) = A

and subset inclusion A C B as in the following example.

Additional Exercises 83

]

Example 2.29

The Implication Law from Section 1.7:
P=Q & -PVQ
gives rise to the following property of sets:
A C B if, and only if, AUB =U.

This property is arrived at by translating P = Q into A C B, and expressing
PV Qas P V Q < true before translating it in the above fashion.
(The equivalence symbol itself is translated merely into English.)

(Exercise 2.30) (Solution on page 421)

Find properties of sets corresponding to the following laws for propositions
taken from Section 1.7.

1. Contrapositive Law: P = Q < —-Q = —P.
2. Equivalence Law: P& Q & (P=Q) A (Q= P).

Although the analogy between propositions and sets is tight, care must
be taken when trying to use it. You should always check the validity of a
property of sets which is so derived, for example by considering the relevant
Venn diagrams.

]

Exercise 2.31) (Solution on page 421)

What property of sets is suggested by the following law for propositions:
“(P=>Q) & PA-Q

If you do this exercise carefully, you may well arrive at a property which is
generally not true of sets. This exercise thus serves to point out that it is
dangerous to rely on informal, intuitively-correct arguments.

Additional Exercises
1. Let A={1,2,3,4,5}, B={4,5,6,7,8,9},and C ={2, 4,6, 8}
What are the following sets?

(a) AuBUC.
(b) AnBNC.

84 Sets

() (AnB)uC.
(d) An(BUC).

. What sets are defined by {z : z#z}and {z€ A : z=2z}7
. Draw Venn diagrams to justify the two De Morgan Laws AU B = ANB

and ANB=AUB.

. Draw the Venn diagrams which justify the following laws.

(a) (AUB)\C = (4\C) U (B\C).
(b) AN (B\C) = (ANB)\(ANC).

() A\(BNC) = (4\B) U (4\0).

(d) (A\B)\C = 4\(BUC).

() AU (B\C) = AU ((AUB)\ (AUC)).

. What can you say about the sets A and B if we know the following to

be true?

(a) AuB=A.
(b) AnB = A.
(c) A\ B=A.

(d) A\B=B\A.

. Form the following sets from the set A ={a}:

(a) the set B =P (4);
(b) the set C =P (B);
(c) the set D =P (C).

. Let A={1,{2,3},{4,5 {6}}}.

(a) What is P (A4)?
(b) State whether the following are true or false.

i. pe A

ii. 1€ A.

ii. {2,3}C A.

iv. {{2,3}}C A.
v. {4,5,{6}}C A.

8. The symmetric difference of two sets A and B, denoted A @ B is

the set which contains those elements which are in A or B but not in
both A and B.

(a) Draw a Venn diagram depicting A @ B.
(b) Draw Venn diagrams to justify the following laws.

i. A@B = (A\B) U (B\A).

Additional Exercises 85

9.

10.

11.

12.

13.

14.

ii. A@B = (AUB)\ (AN B).

(c) What propositional connective does & correspond to?

Use the Inclusion-Exclusion Principle of Fact 2.11 to show the following
three-set version: for finite sets A, B and C,

|JAUBUC| = |A| + |B| + |C|
— |AnB| — |[ANnC| — |BNC|
+ [AnBNC|.

Explain informally why this principle holds.

Use the three-set version of the Inclusion-Exclusion Principle from the
previous exercise to solve the hospital problem of Example 2.26.

Felix, Oskar and Amanda play a game to see who can list the most
countries in five minutes. They each make a list, and after five minutes
they compare these lists, crossing off any countries that are on more
than one list.

Felix had listed the most countries, 29, but they were mostly common
countries that the other two got: in fact, 23 of them were on Oskar’s
list, and 12 of these 23 were also on Amanda’s list.

Amanda had listed the fewest countries, 22, but — with more than a
little help from Joel — she had come up with many obscure countries:
she had listed seven countries that were not on Felix’s list, and nine
countries that were not on Oskar’s list.

After crossing out all of the duplicated countries, they were left with
a total of 13 countries on their lists.

Who won the game?

The ordered pair (z,y) can be defined as the set {{z}, {z,y}}.

(a) With this definition, show that (z,y) = (u,v) if, and only if, z=u
and y=v.
(b) Why can we not define the ordered pair as (z,y) = {z, {y}}?

In a certain town lives a barber, who is a man, who shaves every man
in the town who does not shave himself.

The question is: Who shaves the barber? Explain your answer.

An adjective is autological if it describes itself. For example, “short”
is autological since it is short; and “pentasyllabic” is autological since
it is pentasyllabic; that is, it has five syllables. Any adjective that is
not autological is said to be heterological. For example, “long” and
“monosyllabic” are heterological.

86 Sets

The question is: Is “heterological” autological, or is it heterological?
Explain your answer. What about “autological”?

Chapter 3

* Boolean Algebras and Circuits

There are 10 types of people in this world: those who understand
binary numbers and those who don'’t.
- Anonymous.

At the end of the last chapter we noted a close analogy between Equivalence
Laws for Propositional Logic on the one hand, and Set Identities on the
other. In this chapter we explore this connection by looking at Boolean
algebras, the mathematical structures underlying both propositional logic
and sets.

This analogy extends to the world of digital computers and other elec-
tronic devices, which are built from circuits which have binary inputs and
outputs; that is, they manipulate values from the set B = {0, 1}. At the im-
plementation level these binary inputs and outputs are delivered by voltages
on wires, with a low voltage being interpreted as 0 and a high voltage being
interpreted as 1. The simplest components of digital circuits, logic gates,
are based on the connectives of propositional logic, with 0 (low voltage) and
1 (high voltage) being interpreted as F (false) and T (true), respectively.
Composing logic gates together to create ever more complicated electronic
components can thus be done in a way which is amenable to analysis via
propositional logic. In this chapter we shall examine the fundamental role
of Boolean algebra in underlying the building blocks of digital computers.

@ Boolean Algebras

A Boolean algebra is a set B which contains (at least) two distinct special
elements 0 and 1, referred to as zero and untt, respectively, along with two
binary operators + and -, referred to as sum and product, as well as a
unary operator ’, referred to as complementation. That is, for every pair
(z,y) of elements of B there are three further (but not necessarily different)
elements of B denoted z+y, z-y, and z’. These operators must all satisfy
the ten Laws of Boolean Algebra given in Figure 3.1.

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_4, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_4

88 Boolean Algebras and Circuits

Associativity:

Distributivity:

Identity:

Complement:

Commutativity:

— y+z
=zt (y+z)
=z-(y 2)

(z+y)-(z+2)
= (z-y)+(z-2)
=1
=0

Figure 3.1: The Laws of Boolean Algebra.

(Comm1)
(Comm2)

(Associ)
(Assoc2)

(Distr1)
(Distr2)

(Ident1)
(Ident2)

(Compl1)
(Compl2)

Boolean algebras provide an abstract representation of familiar ideas in
various areas of study. Indeed we have already met concrete examples of

Boolean algebras in the form of sets and propositions.

]

Example 3.1) The Boolean Algebra of Sets

The power set P (U) of a set U gives rise to a Boolean algebra, with the

roles of 0, 1, +, - and ' taken by @, U, U, N and ~, respectively.

In this case, the laws give rise to the following set identities, which we

confirmed in Section 2.7:

Commutativity:

Associativity:

Distributivity:

Identity:

Complement:

AUB
ANB

(AuB)UucC
(AnB)nC

AU(BNCQC)

ANn(BUC) =

AUD =

ANU
AUA
ANA

BUA
BnA

AU(BUC)
AN(BNC)

(AuUB)Nn(AUCQC)
(ANB)U(ANCQC)

A

A
U
0

(Comm1)
(Comm2)

(Assocl)
(Assoc2)

(Distr1)
(Distr2)

(Ident1)
(Ident2)

(Compl1)
(Compl2)

Boolean Algebras 89

Example 3.2) The Boolean Algebra of Propositions

The set of propositions gives rise to a Boolean algebra, with the roles of 0,
1, +, - and ' taken by false, true, V, A and -, respectively. (Equality p = ¢
is interpreted by equivalence p < g.)

In this case, the laws give rise to the following equivalences, which we
confirmed in Section 1.7:

Commutativity: pVg & gVp (Comm1)
PAQ & qAD (Comm2)

Associativity: (pvg)vr & pVv(gVvr) (Assoc1)
(A AT & DA(gAT) (Assoc2)

Distributivity: pV (gAr) & (pVa)A(pVr) (Distr1)
pA(gVvr) & (pAQ)V(PAT) (Distr2)

Identity: pVfalse & p (Ident1)
pAtrue & p (Ident2)

Complement: pV-p & true (Compl1)
pA—p & false (Compl2)

Example 3.3) The two-valued Boolean Algebra

The two-element set B = {0, 1} itself gives rise to an important Boolean
algebra, with the operations defined as follows:

T y T+y T y Ty T T
00 0 00/ o 0| 1
01 1 01] o0 1] 0
10 1 10/ 0
11 1 11| 1

As we shall see, this particular algebra is of fundamental importance in the
design of digital circuits.

(Exercise 3.3) (Solution on page 421)

Verify that the laws of Boolean algebra hold for the two-valued Boolean
algebra B.

From now on we shall typically omit - and write zy rather than z-y, and
freely omit parentheses by allowing - to bind tighter than + and ’ to bind
tighter than -; thus for example, we shall write z+ (y-(2')) simply as z +yz'.

90 Boolean Algebras and Circuits

(3.2) Deriving Identities in Boolean Algebras

From the Laws of Boolean Algebra, we can derive very many identities which
must be true in any Boolean algebra (in particular, as set identities and log-
ical equivalences). In this section we derive some important identities, and
leave it as an exercise to consider what these identities say as set identities
and logical equivalences, many of which were derived already in previous
chapters. We shall state our new identities as Theorems (true statements),
and justify their truth using proofs (step-by-step derivations of their truth);
the appearance of the box symbol “[1” indicates the end of a proof.

(Theorem 3.3) Further Distributive Laws

(z+y)z = zz+yz (Distr3)
zy+z = (z+2)(y+2) (Distr4)

Proof: We prove only the first identity, and leave the second as an exercise.

(z+y)z = z(z+vy) (Comm2)
2z + 2y (Distr2)

Tz +yz (Comm2, twice) O

(Theorem 3.4) Idempotence Laws

T+ =<z (Idemp1)
T = 2 (Idemp2)

Proof: We prove only the first identity, and leave the second as an exercise.

z+z = (z+2)1 (Ident2)
= (z+z)(z +2) (Compl1)
= ¢+ zz' (Distr1)
=2z+40 (Compl2)
=z (Ident1) O

(Theorem 3.5) Domination Laws

z+1 =1 (Dom1)
0 (Domz2)

z0

Deriving Identities in Boolean Algebras 91

Proof: We prove only the first identity, and leave the second as an exercise.

z+1 =z+(z+2) (Compl1)

= (z+z)+2 (Assocl)
=z+2z (Idemp1)
=1 (Compl1) O
(Theorem 3.6) Absorption Laws
THzy = 2 (Absorp1)
z(z+y) =2 (Absorp2)

Proof: We prove the first identity here, and present the proof of the second
in Example 3.11.

z+zy = zl+zy

= z(1+y)
z(y +1)

=zl

=T

(Ident2)

(Distr2)

(Comm1)

(Dom1)

(Ident2) O

Next, we prove a law that we shall find useful in further calculations.
(Theorem 3.7)
If z+y=2+2 and zy=1zz then y==z.
Proof:
y = y(z+y) (Comm1, Absorp2)

= y(z + 2) (Assunption 1)
= yz+yz (Distr2)
= 2T+ 2y (Comm2, Assumption 2)
= z(z+y) (Distr2)
= z(z +2) (Assumption 1)
=z (Comm1, Absorp2) O

92 Boolean Algebras and Circuits

Next, we consider a few results about complementation. The first of
these is the observation that the two Complementation Laws z +z' = 1 and
zz' = 0 uniquely determine the complement: there is no value y different
from z’ which satisfies these two equations.

(Theorem 3.8) Uniqueness of Complement

If t+y=1 and zy = 0 then y = z'. That is to say, ¢’ is the only
element which satisfies ¢ + z' = 1 and zz' = 0.

Proof: Suppose that z + y =1 and zy = 0. Then
z+y =1 (Assumption 1)
=z+7 (Compl1)

and
zy =0 (Assumption 2)
= zz' (Compl2)
Thus, by Theorem 3.7, y = z'. d
(Theorem 3.9) Involution Law
(@) - s
Proof:
z+ () =1 (Compl1)
=z +z (Comm1, Compl1)
and
z'(z') =0 (Compl2)
=2’z (Comm2, Compl2)
Thus, by Theorem 3.7, (z') = z. O

(Exercise 3.9) (Solution on page 422)

Prove that 0 = 1and 1’ = 0.

(Theorem 3.10) De Morgan Laws

(z+y) =2y (DeMorgani)
(zy) = '+ (DeMorgan2)

The Duality Principle 93

Proof: We prove only the first identity, and leave the second as an exercise.
We first note that it suffices to show that

(z+y)(@'y) =0 and (z+y)+(zy) =1

as then, by the Uniqueness of Complement Theorem 3.8, we would get that

(z+y) = z'yY.
(z+y)(z'y) = z(z'y) + y(z'y') (Distrs)
= 0y’ + 0z’ (Assoc2, Comm2, Compl2)
=0+0 (Domz2)
=0 (Idemp1)

(z+9)+(@Y) = (@+y)+) (@ +1)+y) (Distr)
(y+1)(z+1) (Assocl, Commi, Compl1)
1-1 (Dom1)

=1 (Idemp2) O

(Exercise 3.10) (Solution on page 422)

Prove the following theorems.

1. (zy+2'y') = zy' + 2'y.

2. If z+y=z+2z and z'+y=1z'4+2z then y =2
3. If z4y=0 then z=y=0.

4. z =0 if, and only if, y = zy' + z'y for all y.

(3.3) The Duality Principle

Given any formula in a Boolean algebra, its dual is formed by interchanging

0 and 1, and + and -, throughout. More generally, the dual of a statement

involving Boolean algebra is that statement with every formula replaced

with its dual. Thus for example, the dual of z + y'z =1 is z(y'+z) = 0.
The following is a fundamental principle of Boolean algebras.

[

Theorem 3.11) The Principle of Duality

The dual of every theorem of Boolean algebra is also a theorem.

Proof: To see that this is a valid principle, we merely need realise that a
proof of a theorem becomes a proof of the dual of the theorem simply by

94 Boolean Algebras and Circuits

replacing each formula used in the proof by its dual. This is so since the
Laws of Boolean Algebra consist of five statements and their duals. |

Example 3.11

Consider the following derivation of the second Absorption Law z(z+y) = z:

z(z+y) = (z+0)(z+y) (Ident1)
= z+0y (Distr1)
= z+y0 (Commz2)
=z+0 (Domz2)
=z (Ident1)

If we compare this derivation with that given in the proof of the first Ab-
sorption Law z + (zy) = z in Theorem 3.6, the duality is immediately
apparent: the two derivations are identical, but for the fact that each ex-
pression is replaced by its dual, and the identity justifying each step in the
above derivation is the dual of the identity justifying the same step in the
first derivation.

This principle allows us to infer the validity of the dual of any theorem
that we prove, since a proof of the dual theorem can be constructed auto-
matically from the proof of the theorem, simply by replacing every formula
and identity with its dual, as in the above example. Throughout the previ-
ous section we provided theorems presenting pairs of identities; and in each
case we only proved the first of each identity, leaving the proof of the second
as an exercise. In fact, the second identity in each case is the dual of the
first; so by using the Duality Principle, proofs of these are unnecessary. The
Duality Principle guarantees that they are valid.

(Exercise 3.11) (Solution on page 423)

Write out the dual of each of the following theorems from Exercise 3.10.

1. (zy+2'y) =zy + 2'y.
2. If z4+y=2z+2z and z'+y = z'+2 then y = z.
3.If z+4y=0 then z=y=0.

4. £ =0 if, and only if, y = zy' + z'y for all y.

Logic Gates and Digital Circuits 95

Logic Gates and Digital Circuits

Computers manipulate all forms of information: numbers, names, sounds,
pictures, videos; but an electronic computer can only reliably represent data
in essentially one way: either a wire has a high voltage, or it has a low volt-
age. By interpreting a high voltage as the number 1 and a low voltage as the
number 0, every piece of data represented and manipulated by an electronic
computer is reduced within the electronics of the machine to combinations
of the binary digits (the bits) 0 and 1.

At its lowest level, a computer manipulates this binary data using dig-
ital circuits which transform voltages on wires feeding into the circuit into
voltages on wires leading out from it. How the electronics works (using
transistors) to cause the output voltages to reflect the correct values accord-
ing to the input voltages is not a question that will concern us here; such
concerns are left to physicists and electronics engineers.

Example 3.12

Consider a circuit HA with two input wires, labelled z and y, and two output
wires, labelled s and ¢. Such a circuit might be represented as follows:

T — — S
HA
Y — —c

Note that when we draw a circuit, we will assume that its input lines enter
from the left and its output lines exit from the right.

Such a picture may represent the circuit simply as a black box as above,
with no indication as to how the output values relate to the input values.
However, we can describe the behaviour of the circuit by indicating what
output values are produced from each of the possible input values. To do
this, we can list all of the possibilities in the form of a truth table. For
example, the circuit HA which we have in mind above behaves as follows:

T s C
0 00
0 10
1 10
1 01

Thus, for example, if both input wires z and y hold high voltages, thus both
representing the value 1, then the output wire s will be given a low voltage,
representing the value 0, and the output wire ¢ will be given a high voltage,
representing the value 1.

Computer circuits can be extremely complicated — far more complicated
than the above example. However, all circuits, including the one above, can

96 Boolean Algebras and Circuits

be built up from three very basic building blocks (which can all be easily
implemented using transistors): OR gates, AND gates and NOT gates.

An OR gate is a simple component circuit which takes two inputs z
and y and produces the single output z+y defined by

1 f z=1 or y=1;
Tty =)
0 otherwise.

Graphically it is drawn as follows:

T
LD

An AND gate is a simple component circuit which takes two inputs z
and y and produces the single output z-y defined by

1 f z=1 and y=1;
Ty =

0 otherwise.

Graphically it is drawn as follows:

A NOT gate is a simple component circuit which takes one input z and
produces the single output z’ defined by

) 1 if z=0;
T =
0 if z=1.

Graphically it is drawn as follows:

Truth tables defining these three gates are as follows:

T z+y Ty z-y z T
0 0 00 0 0 1
0 1 01 0 1 0
1 1 10 0
1 1 11 1

We can observe from the above definitions that the three basic gates com-
pute exactly the functions of the two-valued Boolean algebra B defined in
Example 3.3. (Note that, as before, we shall typically write zy instead of
z-y.) This section makes clear, then, the fundamental importance of this

Logic Gates and Digital Circuits 97

particular Boolean algebra. It is absolutely essential in the design of digital
computers.

We can build large complicated circuits from these three basic gates
by stringing them together — always in a left-to-right fashion. (Allowing
feedback wires provides its own uses — and complications — which we shall
not explore.)

Example 3.13

Consider the following circuit:

T
)

z

There are three inputs z, y and z to this circuit. The inputs z and y feed
into an AND gate which outputs an intermediate value u = zy. Meanwhile,
the input 2 feeds into a NOT gate which outputs a second intermediate value
v = 2. The two intermediate values u and v output by the first two gates
then feed as inputs into an OR gate which outputs the final value w = u+wv.
The effect of the whole circuit, therefore, is to output the value w = zy+2'.
The value that is output is thus given according to the following table:

T Y 2z u v w
0 0O 01 1
0 01 00 0
010 01 1
011 00 0
1 00 01 1
1 01 00 0
1 10 11 1
111 1 0 1

For example, if the inputs have values =1, y=0 and z=1, then the output
of the AND gate will be 0, as will the output of the NOT gate; and since
both of the inputs to the OR gate will be 0, the value of the output w will

also be 0:
z=1
y=0 0
z=1 0 w=0

The relationship between the table defining the function w = zy + 2’ and
the truth table for the proposition (P A @) V =R is, hopefully, obvious.

98 Boolean Algebras and Circuits

Example 3.14

Consider the following circuit with three input lines a, b and ¢, and one
output line m:

a—= T
b w
Y m
C
-

Note that we have used a dot to split a line, directing the same value (volt-
age) to two different inputs; and we have allowed lines to cross without
interference (as if they were insulated from each other).

We can analyse the behaviour of this circuit as follows:

e the inputs a and b feed into the first AND gate to produce an inter-
mediate value z = ab;

e the inputs a and c feed into the second AND gate to produce an
intermediate value y = ac;

e the inputs b and c feed into the third AND gate to produce an inter-
mediate value z = bc;

e the values z and y then feed into the first OR gate to produce a further
intermediate value w = z + y;

e finally, the values w and z feed into the second OR gate to produce
the final value m = w + z.

We can tabulate the value that is output by this circuit on any set of inputs

as follows:
a b c T Yy z w m
000 0 0O 0 0
0 01 0 0O 0 0
010 0 0 O 0 0
011 0 01 0 1
100 0 0O 0 0
1 01 010 1 1
110 100 1 1
111 111 1 1

Algebraically, the effect of the circuit is to output the value

m = w+2z = z+y+ 2 = ab + ac + bc.

Logic Gates and Digital Circuits 99

In other words, this circuit computes the majority function: the output m
will be 1 exactly when at least two of the input values are 1.

(Exercise 3.14) (Solution on page 423)

The exclusive-OR gate, or XOR gate, has the following definition (and
gate symbol):

:I:y|a:€By
T S
01 | 1 y coERy
10| 1
1 1] o0

That is, the output z = 2@y has the value 1 when exactly one of the inputs
z or y has the value 1 (and the other has the value 0).
Build a circuit which realises this gate.

(Exercise 3.15) (Solution on page 423)

Describe the behaviour of the following circuit by providing a Boolean ex-
pression and a truth table defining the output value r.

a—¢

b >

(Exercise 3.16) (Solution on page 424)

Consider a car safety system in which a warning bell rings whenever the
motor is running while a door is open or a seat belt is unbuckled. This is
to be implemented as a Boolean circuit which takes three inputs M, D and
B, respectively representing the states of the motor, doors and seat belts:

e M will be 1 if the motor is running and 0 otherwise;
e D will be 1 if the doors are closed and 0 otherwise;
e B will be 1 if the seat belts are fastened and 0 otherwise.

The circuit is to produce a single output R which should be 1 if the warning
bell should ring and 0 otherwise. Build a circuit for this system.

100 Boolean Algebras and Circuits

(35)

3.5.1

Making Computers Add

In this section we consider the problem of constructing a circuit which will
add two integers. To do this, we must first understand how integers are
represented and manipulated by a computer using just the binary digits.

Binary Numbers

People have ten fingers, and children learn early on to count using the ten
digits on their hands. When counting beyond ten on your fingers, the natural
thing to do is to keep track of how many times you run through your fingers,
which you can ask someone else to do using their ten fingers. Then a third
person in turn can use their ten fingers to keep track of how many times the
second person runs through all of their fingers, which happens every time
you reach 100 (i.e., each time you run through your own ten fingers ten
times). When the third person runs out of fingers, you will have counted
ten lots of 100, i.e. up to 1000. If you are still counting, a fourth person
can use their ten fingers to keep track of how many lots of 1000 you have
counted. A fifth person can then keep track of how many lots of 10000 are
counted; a sixth how many lots of 100000; etc.

This mechanism for counting is reflected in our use of decimal numbers,
which is a positional notation for expressing quantities. For example, when
we write the decimal number 6538, we interpret the four digits as follows:

e the 8 in the rightmost position represents 8 ones;

e the 3 in the second position from the right represents 3 lots of tens;

e the 5 in the third position from the right represents 5 lots of hundreds
(ie, tens of tens); and

e the 6 in the fourth position from the right represents 6 lots of thousands
(ie, tens of hundreds, or tens of tens of tens).

That is,
6538 = 6 x 102 = 6x1000 = 6000
+ 5x10° = 5x 100 = 500
+3x100 = 3x 10 = 30
+ 8x10° = 8x 1 = _ 8
6538

Digital computers have access to only the two binary digits, 0 and 1,
not the ten decimal digits. Therefore, they naturally represent quantities
as binary numbers rather than decimal numbers, which are sequences of
binary digits (bits) rather than decimal digits. For example, the binary
number 11101 is interpreted as follows:

Making Computers Add 101

e the 1 in the rightmost position represents 1 one;
e the 0 in the second position from the right represents 0 lots of twos;

e the 1 in the third position from the right represents 1 lot of fours (ie,
twos of twos);

e the 1 in the fourth position from the right represents 1 lot of eights
(ie, twos of fours, or twos of twos of twos); and

e the 1 in the fifth position from the right represents 1 lot of sixteens
(ie, twos of eights, or twos of twos of twos of twos).

That is,

11101 = 1x2¢ = 1x16 = 16
+1x22 = 1x 8 =
+1x22 = 1x 4 =
+0x2 = 0x 2 =
+1x20 = 1x 1 = 1

29

Any natural number can be represented as a binary number, just as easily
as it can be represented as a decimal number. The method for translating
from binary to decimal can be extracted from the above description; and the
method for translating from decimal to binary is almost as easy: we merely
have to keep subtracting from the number in question the largest power of
two that we can.

Example 3.16

To translate the decimal value 51 into binary:

e subtract 2° = 32 from 51 to give a remainder of 19;
e subtract 2* = 16 from 19 to give a remainder of 3;
e subtract 2! = 2 from 3 to give a remainder of 1;

e subtract 2° = 1 from 1 to give a remainder of 0.

We can thus express the decimal number 51 = 32+ 16 + 2 + 1 in binary as:

110011 = 1x2° = 1x32 = 32
+1x2* = 1x16 = 16

+0x22 = 0x 8 = 0

+0x22 = 0x 4 = 0

+1x2! = 1x 2 = 2

+1x20 = 1x 1 = 1

51

102 Boolean Algebras and Circuits

3.5.2

Adding Binary Numbers

Consider how we would naturally add two (decimal) numbers by hand. We
would first line the numbers up one on top of the other. Then we would
add the units, writing down the unit sum digit and moving the carry digit
(if there is one) to the top of the tens column; then we would add the three
numbers in the tens column, writing down the tens sum digit and moving
the carry digit to the top of the hundreds column; then we would add the
three numbers in the hundreds column, writing down the hundreds sum
digit and moving the carry digit to the top of the thousands column; and
continue doing this same calculation with each column from right to left.

This same method works equally well for binary numbers, and is the
basis for how digital computers add numbers represented in binary.

Example 3.17

To add the two binary numbers 11101 and 10110, write them one over the
other and add the bits column-wise from right to left, including carries where
necessary, as indicated:

111

11101
10110
110011

The first two columns on the right each gives a sum of 1 with no carry; but
the third column from the right give a 0 sum with a carry, as then does the
fourth column. The fifth column gives a sum of 1 with a carry, which gives
a sum of 1 for the new sixth column.

(Exercise 3.17) (Solution on page 424)

What decimal sum is being calculate in the above example?

We are now in a position to design a digital circuit which adds two in-
tegers represented as binary numbers. More specifically, we shall build a
circuit which will have 8 input lines representing two 4-bit binary num-
bers azasa;ap and bzbsb by, and 5 output lines representing the 5-bit binary
number s45352515¢ resulting from adding azasaiagq and b3byb; by:

ag — So
a; —
ay — . 51
az — 4-bit

S2
by —— Adder
by — 83
by —
b3 E— Sa

Making Computers Add 103

3.5.3

The construction we give can be easily scaled up to add arbitrarily-long bit
strings.

Building Half Adders

The basic component from which we shall build our 4-bit adder is the circuit
HA from Example 3.12 (page 95), which takes the two inputs z and y and
produces the two outputs s and c representing the sum of z and y, with s
being the sum bit and c being the carry bit. Such a circuit is called a half
adder.

Our first task is to express the outputs in terms of the functions of the
basic gates. For a start, computing the carry bit c is obvious: being 1 exactly
when both z and y are 1, it is their product ¢ = zy. The sum bit s is only
slightly more cumbersome. It is 1 when one of the inputs is 1 and the other
is 0: s =z'y+zy'.

Towards building these functions in a circuit using the three basic gates,
we can first note the following two circuits that compute z'y and zy’, re-

T
DT oy el)

These can then be combined to give a circuit for z'y+zy’ as follows:

spectively:

T —

z’y—i—:ny’

Y —-e

The above circuit computes the sum bit of the half adder; it only remains
to add a further AND gate which computes the carry bit to complete the
circuit:

T —8

This circuit consists of six gates: three AND gates, two NOT gates and
one OR gate. The question then arises: is it possible to build a simpler
circuit which performs the computation of a half adder. Such questions
are important when contemplating fitting ever-more computing power on
a computer chip; you would certainly want to find the smallest possible
circuits to compute the functions that are implemented on the chip.

Using the laws of Boolean algebra, we can make the following calculation:

104 Boolean Algebras and Circuits

3.5.4

Ty+azy = zy + 3’y (commutativity)
= (zy+2'y) (Ezercise 3.10(1))
= (zy)'(z'y") (DeMorgani)

(zy)'(z" +v") (DeMorgan2)
(zy)'(z +v) (Involution, twice)

(z+y)(zy)’ (commutativity)

This complicated calculation, in fact, tells us something natural: that having
one input line holding the value 1 and the other holding the value 0: z'y+zy’
is the same as having one of the input lines holding the value 1 and not
having both input lines holding the value 1: (z+y)(zy)'.

Indeed, such intuitive observations are where ideas for optimisations typ-
ically arise. The above derivation was a necessary step in the design process,
in justifying the intuition which suggested the optimisation.

Importantly, the final expression (z+y)(zy)' is simpler to evaluate than
z'y+zy', requiring only four basic operations rather than five; moreover, the
product zy, is calculated in the process, so we need no further operations
to complete the half adder circuit. The corresponding circuit is as follows:

zHBJ_WD s = (z+y)(zy)’

We have thus managed to build the half adder using four gates instead of
six. Improving designs like this in order to reduce the number of gates — in
this case by a third — is of obvious importance when it comes to fitting more
power within the limited space on a circuit board. Reasoning with Boolean
algebra is a crucial activity in the design of computer processors.

Building Full Adders

We are designing a circuit which will add two binary numbers using the usual
method of summing bits column-by-column. So far we have constructed a
half adder which takes two bits and adds these together, producing a sum
bit and a carry bit. However, we will also need a circuit which adds not just
two digits, as the half adder does, but rather three digits, to cater for the
carry bit. Such a circuit is called a full adder and has the following form:

Z— —s
Y— FA
z— —c

The input wires z, y and z each have the value 0 or 1, and sum up to either
0, 1, 2 or 3, which is reflected in the output wires s and c.

The sum bit s will be 1 if exactly one or all three of the input bits z, y
and z are 1:

Making Computers Add 105

3.5.5

s = zy'z + 1'y2' + 'Y’z + zyz;
and the carry bit will be 1 if at least two of the input bits are 1:
c = zyz +zy'z + 'yz + Tyz.

Letting ¢ = yz'+vy'z be the value of the sum bit from a half adder with
inputs y and z, and noting from Exercise 3.10(1) that ¢ = yz+y'z’, we can
note that

s = zy'z + 'y’ + 2'y'z + zyz

z'(yz'+y'z) + z(yz+y'z’) (commutativity/distributivity)

z't + zt’
and
c=zyz +zy'z +2'yz + Yz
= z(y2'+y'z) + yz(z+z') (distributivity)
=zt+yz (identity)

These outputs are generated by combining two half adders and an OR gate
as follows:

T s=zt' +z't
t HA ot

yi | I
7 HA | yz »—c=1zt+ yz

Putting It All Together

Having defined a full adder, adding two n-bit numbers is then achieved by
stringing n such full adders together. In particular, to build our 4-bit adder,
which adds together the two 4-bit binary numbers azasa;aq and b3bsbibg to
produce the 5-bit binary number s,53525150, we would use the following
circuit:

ag—— So

HA

a — S1
a L

L] - 59
II;O j FA
1 — —— $3
by | FA
b3 —— Sa

We start with a half adder, as we don’t have to worry about a carry bit for
the first two bits ag and b,. Of course, stringing more full adders together
would allow larger values to be added, meaning that this circuit can be easily
scaled up.

106 Boolean Algebras and Circuits

Additional Exercises

1.

Prove the second Further Distributive Law, the second Idempotence
Law, the second Absorption Law, and the second Domination Law,
all using the Laws of Boolean Algebra. (That is, do not rely on the
Duality Principle.)

. Prove that the set S = {1, 2,5, 10} of divisors of 10 is a Boolean algebra

with zero 1 and unit 10, with = + y interpreted as the least common
multiple of z and y, lcm(z, y); zy interpreted as the greatest common
factor of z and y, ged(z,y); and 2’ = 10/z.

. Prove that if we take S = {1, 2, 3,6, 12} to be the set of divisors of 12

in Exercise 2 above, then we would not get a Boolean algebra.

. Does the finite powerset Ps, (U) of a set U give rise to a Boolean

algebra (with, as usual, the roles of 0, 1, 4+, x and - taken by 0, U, U,
N and -, respectively)? Justify your answer.

(a) Prove that zy' = 0 if, and only if, ' + y = 1.

(b) State and prove the dual of the theorem in part (a).
(a) Prove that z = y if, and only if, zy' + z'y = 0.

(b) State and prove the dual of the theorem in part (a).

. The NAND gate has the following definition (and symbol):
gy |z|y
00| 1 z B
01 | 1 Y j}z =ely
1 0 1
11 0

That is, the output z = | y has the value 0 if both of the inputs z
or y have the value 1; otherwise it has the value 1.

(a) Build a circuit using AND, OR and NOT gates which implements
this operator.

(b) Show how to build circuits for computing z', z+y and zy only
using NAND gates.

. The NOR gate has the following definition (and symbol):

8
8
<

O O O |+

= = O O
= O = o

Additional Exercises 107

10.

11.

12.

That is, the output z = z | y has the value 1 if neither of the inputs
z nor y has the value 1; otherwise it has the value 0.

(a) Build a circuit using AND, OR and NOT gates which implements
this operator.

(b) Show how to build circuits for computing z', z+y and zy only
using NOR gates.

. Build circuits which implement the following Boolean expressions.

(@) (a+b)(b+c)
(b) a’b+ (b+c)
(c) (ab)’ + (be)

Describe the behaviour of the following circuits by providing a Boolean
expression and a truth table defining the output value X.

(2)
b

(b)
F

Joel, Felix and Oskar are using a simple voting machine to cast se-
cret ballots to decide which DVD to watch tonight, the choice being
between the latest Final Destination film and the new Fockers film.
Each of them will vote either “0” for Final Destination or “1” for the
Fockers; and they will then watch whichever film receives the majority
of the three votes.

Build a circuit which accepts three inputs J, F' and O representing
their respective votes, and produces one output X representing the
outcome of the election.

A multiplexer is a circuit with three input lines z,, z; and s, and
one output line 7, defined as follows:

108 Boolean Algebras and Circuits

s ITg I r
00 0 0
o —| 00 1 1]0
01 0 1
— T 01 1 1
Ty — 100 O
10 1 1
11 0 0
s 11 1 1

The s line acts as a selector; the value of the output r will be either
that of zy or that of z;, depending on the value of s.

Build a circuit which implements this multiplexer.

(Hint: First argue that r = s'zq + sz;.)

Chapter 4

Predicate Logic

Death s more universal than life; everyone dies but mot everyone
lwves.
- Andrew Sachs.

Propositional logic allows us to express and reason about simple proposi-
tions. However, we quickly run into its limitations. For example, Augustus
De Morgan put made the following deduction:

All horses are animals.

Therefore, all horse-heads are animal-heads.

This deduction is certainly valid. However, this cannot be demonstrated
using propositional logic, as there is no way to discuss the properties of
individual horses or animals, let alone their heads.

In this section we extend propositional logic to include predicates —
properties which may be true or false of particular elements in a given uni-
verse — and quantifiers — the means by which we refer to elements which
satisfy such properties.

Predicates and Free Variables

Recall how we defined the set of prime numbers:
{z : z is a prime number}.

We used this example to introduce the general scheme for defining sets as
the collection of all objects which satisfy some property:

{z : z has property P}

denotes the set of all objects which satisfy the property P. Such a property
is referred to as a predicate, and we write P(z) to say that “the object
has property P.” A predicate is an indeterminate proposition which is true
or false of any particular element z of a given universe. Thus, for example,

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_5, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_5

110 Predicate Logic

Prime(z) = “z is a prime number”

denotes the predicate which stipulates that the element z is a prime number;
the universe of discourse in this instance, that is, the set of values which
z may range over, would most naturally be the set of natural numbers N
(though it could be anything; in the case that z were not a natural number,
the predicate Prime(z) would be false).

Predicates differ from propositions in that they do not have a fixed truth
value, since we do not know the value of the object to which it refers:
Prime(z) may be true or false, depending on what value z refers to. The
variable z is referred to as a free variable. If we instantiate the free variable
in such a predicate, we would get a proposition. For example, Prime(7) is
a true proposition (7 is a prime number), while Prime(9) is a false propo-
sition (9 = 3-3 is not a prime number). The set of objects which satisfy a
predicate, that is, which make the predicate true, is called the truth set of
the predicate. Thus, for example, the truth set of the predicate Prime(z)
is the set of prime numbers. When we define a set by {z : P(z)}, we are
defining it to be the truth set of the predicate P(z).

Example 4.1

Let the universe of discourse be the Duck family:

Ducks = {Quackmore, Hortense, Scrooge,
Donald, Della, Huey, Louis, Dewey },
and define the following predicate:
Female(z) = “z is a female.”
Then

e Female(Hortense) and Female(Della) are both true;

e Female(Quackmore), Female(Scrooge), Female(Huey),
Female(Louis) and Female(Dewey) are all false;

e the truth set of the predicate Female(z) is { Hortense, Della }.

Predicates may range over more than one element. As familiar examples,
equality and set inclusion are predicates that range over two elements. In
these cases, infiz notation “z=7y"” and “z Cy” is more natural to use than
prefix notation “=(z,y)” and “C(z,y).” The statement 5=25, for example,
is true, whereas the statement {0} =0 is false.

The truth set of a predicate which ranges over more than one element
consists of tuples of values; the number of coordinates of the tuples is equal
to the number of free variables in the predicate. The tuples in the truth

Quantifiers and Bound Variables 111

set represent those values that we can instantiate the free variables with in
order to turn the predicate into a true proposition.

J

Example 4.2

We may use Divides(z,y) to denote the two-place predicate over integers
which stipulates that z divides evenly into y. In this case,

Divides(3, 15)
is true, since 3 divides evenly into 15 (5 times), while
Divides(4, 15)

is false, since 4 does not divide evenly into 15. The truth set of the predicate
Divides is the set of pairs (z,y) such that z divides evenly into y:

{(z,vy) : = divides evenly into y }.

The standard mathematical symbol for this predicate is | and is written in
infix notation, as in 3 | 15 and 4 1 15.

(Exercise 4.2) (Solution on page 424)

What are the truth sets of the following predicates?

. Even(z) = “z is an even integer.”

. BvenPrime(z) = “z is an even prime number.”

1

2

3. DeadlySin(z) = “z is a deadly sin.”

4. Sum(z,y,z) = “z,y and z are integers, and z + y = z.”
5

. Sum(u,5,v), where Sum(z,y, 2) is the predicate defined above.

Quantifiers and Bound Variables
Before Joel, Felix, Oskar and Amanda go to school in the morning, they
have to remember to brush their teeth; that is, the predicate

Teeth(z),

which denotes that child z has brushed their teeth, must be true of each
of them. To this end, each child is asked in turn if they have brushed their
teeth, in order to ensure that the compound proposition

Teeth(Joel) A Teeth(Felix) A Teeth(Oskar) A Teeth(Amanda)

112 Predicate Logic

is true. The universe of discourse is the set consisting of the four children:
Children = {Joel, Felix, Oskar, Amanda }.

After this final check, they get into the car and head off to school. One
of the children has to sit in the front passenger’s seat, as there is only room
for three passengers in the back seat. Thus, the predicate

Front(z),

which denotes that child z sits in the front seat, must be true of some one
of them. They regularly argue over who this will be — either for, if they
want to get away from their siblings, or against, to continue a joint activity
— but the compound proposition

Front(Joel) vV Front(Felix) V Front(Oskar) V Front(Amanda)

must somehow be true.

In fact, as there is only room for one child in the front seat, the predicate
Front(z) must be true of ezactly one child; that is, it must be true of one
and false of all of the others. This means that the following proposition
must be true:

(Front(Joel) A —Front(Felix) A - Front(Oskar) A - Front(Amanda))
\Y
(—Front(Joel) A Front(Felix) A —~Front(Oskar) A —Front(Amanda))
vV
(—Front(Joel) A ~Front(Felix) A Front(Oskar) A = Front(Amanda))
\Y
(—Front(Joel) A ~Front(Felix) A ~Front(Oskar) A Front(Amanda))

That is: either Joel sits in the front seat and none of the others do; or Felix
sits in the front seat and none of the others do; or Oskar sits in the front
seat and none of the others do; or Amanda sits in the front seat and none
of the others do.

These propositions are lengthy already when there are only four elements
in the universe of discourse. Furthermore, we would not be able to write out
formulae to check if some or all elements satisfy a property if the universe
of discourse is infinite. For example, to express the fact that every prime
number greater than 2 is odd, using the predicate Odd(z) to mean that z
is an odd number, would require an infinitely-long conjunction:

0dd(3) A Odd(5) A Odd(7) A Odd(11) A Odd(13) A ---

Similarly, to express the statement that some primes are square, using the
predicate Square(z) to mean that z is a prefect square, would require an
infinitely-long disjunction:

Quantifiers and Bound Variables 113

4.2.1

Square(2) vV Square(3) vV Square(5) Vv Square(7) V ---

However, we cannot express infinite conjunctions and disjunctions in propo-
sitional logic.

Predicate logic provides two forms of quantification which allow you to
express when properties are true of all elements in the universe of discourse,
or true of at least some elements in the universe. These are outlined as
follows.

Universal Quantification

When we want to express that a predicate P(z) is true of all elements z of
the universe of discourse, we can write:

Vz P(z)
which is pronounced as
“for all z, P(z)”;

it is true if, and only if, the predicate P(z) is true of all possible values of z.
This is called universal quantification.
For example, instead of writing

Teeth(Joel) A Teeth(Felix) A Teeth(Oskar) A Teeth(Amanda)
to express that Teeth(z) is true of all four children, we can simply write
Vz Teeth(z)

which says the same thing, that everyone has brushed their teeth (assuming
the universe of discourse is the set of the four children).

Notice that Vz Teeth(z) is a proposition: it has a definite truth value.
The variable z is not a free variable in this case; it is a bound variable; it
is bound by the quantifier “vz”.

J

Example 4.3

The statement
“Nobody did the homework”
is expressed as:

Vz —H(z)

where H(z) = “z did the homework”.

114 Predicate Logic

The universe of discourse is (assumed to be) the set of students who were
assigned the homework to do.

Notice that saying something is true of nobody is a universal quantifica-
tion: it is the same as saying that this something is not true of everybody.
In this case, we are saying that everybody did not do their homework.

Example 4.4

The statement

“Fvery dog that has stayed in the kennel will have to go into quar-
antine”

is expressed as:

vz (K(z) = Q(z))
where K(z) = “z has stayed in the kennel”

Q(z) = “z will have to go into quarantine”.

The universe of discourse is (assumed to be) the set of dogs, only some of
which have stayed in the kennel in question.

This example demonstrates how to quantify universally over a subset
of the universe of discourse: we simply stipulate that a property holds of
something whenever it is a member of the subset of interest (that is, if
it satisfies the predicate defining this subset). In this case, by using the
implication

K(z) = Q(z)

we are not stating that every dog will have to go into quarantine, but only
those dogs that have stayed in the kennel. If a particular dog = has not
stayed in the kennel - that is, if K (z) is not true — then that dog z need not
go into quarantine — that is, Q(z) need not be true. (Of course, this dog z
might have to go into quarantine for some other reason; it is not necessarily
the case that Q(z) is false.)

Note that universal quantification is assumed to bind more strongly than
all of the propositional connectives; that is, it is given higher precedence.
For example, in the above example we wrote

vz (K(z) = Q(z))
and not
vz K(z) = Q(z)

as the latter would be interpreted as

Quantifiers and Bound Variables 115

(Ve K(z)) = Q(z)

which says “f every dog has stayed in the kennel then = will have to go
into quarantine.” This is certainly not what is intended; in particular, it
is a predicate with a free variable z — appearing in Q(z) - and is therefore
not a proposition.

Example 4.5

The statement

“Nobody likes a sore loser”
is expressed as:

vz (S(z) = Vy-L(y,z))
where S(z) = “z is a sore loser”
L(y,z) = “y likes z”.

The universe of discourse is (assumed to be) the collection of all people.
This proposition is saying the following is true of every person z: if z is
a sore loser, then every person y does not like z.

Exercise 4.5) (Solution on page 424)

Using the predicates

B(z) = “z is a bee”
F(z) = “z is a flower”
L(z,y) = “z likes y”
write each of the following statements in predicate logic.

1. All bees like all flowers.
2. Bees only like flowers.

3. Only bees like flowers.

4.2.2 Existential Quantification

When we want to express that a predicate P(z) is true of at least some
element z of the universe of discourse, we can write:

Jz P(z)

which is pronounced as

116 Predicate Logic

“there ezists z such that P(z)”;

it is true if, and only if, the predicate P(z) is true of some value of z. For
example, instead of writing

Front(Joel) vV Front(Felix) V Front(Oskar) V Front(Amanda)

to express that Front(z) is true of at least one of the four children, we can
simply write

Jz Front(z)

which says the same thing, that someone sits in the front seat (again, as-
suming the universe of discourse is the set of the four children).

Again, the variable z in 3z Front(z) is a bound variable, bound by the
quantifier “Jz”; and like universal quantification, existential quantification
is assumed to bind more strongly than all of the propositional connectives.

Example 4.6

The statement

“Someone didn’t do the homework”
is expressed as:

Jz-H(z)
where H(z) = “z did the homework”.

The universe of discourse is again (assumed to be) the set of students who
were assigned the homework to do.

This proposition states that —H(z) holds of some student: perhaps no
one did the homework (as expressed by the proposition given in Exam-
ple 4.3); or perhaps several did the homework while several others didn’t;
or perhaps all but one person did the homework. This proposition doesn’t
distinguish between these possibilities; it merely notes that at least one ele-
ment of the universe of discourse satisfies the predicate, that is, at least one
person did not do the homework.

Example 4.7

The statement

“If some dog that has stayed in the kennel has been in contact with
a dog with rabies, then every dog that has stayed in the kennel will
have to go into quarantine”

is expressed as:

Quantifiers and Bound Variables 117

3z (K(z) A 3y (C(z,y) AR(y))) = Va(K(z)= Q(z))
where K(z) = “z has stayed in the kennel”
R(z) = “z has rabies”
C(z,y) = “z and y have been in contact”

Q(z) = “z will have to go into quarantine”.

Exercise 4.7) (Solution on page 424)

Assuming the universe of discourse is the set of human beings, consider the
following predicates

Male(z) = “z is male”

Female(z) = “z is female”

Parent(z,y) = “z ts a parent of y”
Father(z,y) = “z is the father of y”
Mother(z, “c 1s the mother of y”

(z,y) =
Sibling(z,y) = “z and y are siblings”
(z,y) =

Cousin(z, ‘c and y are cousins”

Using these predicates, express the following properties in predicate logic.

Every human is either male or female, but no human is both.

Mothers are female parents.

1.
2.
3. Every human has exactly one mother and exactly one father.
4. Siblings have the same parents.

5.

Cousins each have a parent who are siblings.

(Exercise 4.8) (Solution on page 425)

Using the following predicates:

Horse(h) = “h is a horse”

Animal(a) = “a is an animal”
Head(z,y) = “c is the head of y”
formalise the following argument in predicate logic:
All horses are animals.
Therefore, all horse heads are animal heads.

Explain why the argument is valid.

118 Predicate Logic

4.2.3

Bounded Quantifications

There are two forms of bounded quantification which we use for conve-
nience. These restrict the range of the variables being quantified.

Firstly, to declare that the predicate P(z) is true of every element of the
set A, we write

VzeA P(z)
which is pronounced as
“for all values z in A, P(z)”.

This is logically equivalent to
vz <$€A = P(z))

Similarly, to declare that the predicate P(z) is true of some element of the
set A, we write

JzeA P(z)
which is pronounced as

“there is some value z in A such that P(z)”.
This is logically equivalent to

2 (meA A P(ac)).

One further useful restriction for the existential quantifier is declare that
exactly one value z satisfies P(z). This is written

Az P(z)
which is pronounced as
“there is ezactly one value z such that P(z)”.

This is logically equivalent to
Jdz (P(m) A =Fy(Ply) Ay # a:))

This says that there is a value z such that P(z), but there is not a different
value y#z such that P(y). For example, if the predicate Front(z) denotes
that child z sits in the front seat of the car, where, again, the universe of
discourse is the set of the four children, then

Az Front(z)

Quantifiers and Bound Variables 119

states that exactly one of the children sits in the front seat.

Note that you can combine the last two constructions to declare that
exactly one value from a set A satisfies P(z): 3!z € A P(z). Also note that
z is of course bound by the quantifiers in each case.

J

Example 4.8

You may be aware that /2 is irrational: that it cannot be expressed as a
fraction p/q. (We shall justify this claim in Example 5.6, page 139.) In fact,
any nonnegative integer is either a perfect square, such as 25 = 52, or its
square root is irrational. We can express this fact as follows:

VneZ(IkeZ(n=k) Vv -IgeQ(n=4g?).

This says that for all integers n, either there exists another integer k£ such
that n = k2 (that is, n is a perfect square with square root k), or there does
not exist a rational number g such that n = ¢* (that is, it does not have a
rational square root).

Example 4.9

Recall the following puzzle from Exercise 1.16 (page 35). Joel, Felix and
Oskar each write their name on a piece of paper, and then exchange the
pieces of paper so that no one has the piece with their own name on it.
They then hold these pieces of paper so that Amanda can’t see what’s on
them, but tell her that each has the name of one of the others, and they
challenge her to figure out who is holding each name. She is allowed to look
at the name written on any one piece of paper. She decides to look at Joel’s
piece, and finds “Oskar” written on it.

Let Boys = {Joel, Felix, Oskar } be the set of three boys; and let
Papers = { J, F, O} be the set of three pieces of paper with names written
on them: J is the piece with “Joel” written on it; F' is the piece with “Felix”
written on it; and O is the piece with “Oskar” written on it. Furthermore,
let Holds(b, p) be the predicate which says that boy b holds the piece of
paper p. Then we can formulate the conditions describe in this problem as
follows:

1. Each boy holds precisely one piece of paper:
Vb € Boys J!p € PAPERS Holds(b, p).

2. Each piece of paper is held by precisely one boy:
Vp € PaPERSs b € Boys Holds(b, p).

3. No piece of paper is being held by the boy whose name is on the paper:

120 Predicate Logic

—Holds(Joel, J) A —Holds(Felix, F) A = Holds(Oskar, O).
4. Joel’s piece of paper has “Oskar” written on it:

Holds(Joel, O).

(Exercise 4.9) (Solution on page 425)

Let T'(s, c) stand for the predicate “student s takes course c.” Express the
following statements in predicate logic.

1. Alice and Bob take ezactly one course together.”

2. Alice and Bob take ezactly two courses together.”

Rules for Quantification

If it is not the case that the predicate P(z) is true for all values of z, then
this must mean that P(z) is not true for some value of z; that is,

-Vz P(z) & Fz-P(z).

Equally, if it is not the case that the predicate P(z) is true for some value
of z, then this must mean that P(z) is not true for all values of z; that is,

-3z P(z) < Vz-P(z).
These two laws coincide with De Morgan’s Laws:
-(PAQ) & PV -Q
“(PV Q) & —PA-Q
if we consider universal quantification as a (potentially) infinite conjunction,

and existential quantification as a (potentially) infinite disjunction. Suppose
that the universe of discourse is/ = {a, b, ¢, ... }. Then

—VzP(z) & —(P(a) A P(b) A P(c) A --+)
< —P(a) V =P(b) V =P(c) V --- (De Morgan’s Law)
& Jz—-P(z);
and
-3zP(z) < —(P(a) V P(b) V P(c) V ---)
—P(a) A =P(b) A =P(c) A --- (De Morgan’s Law)
< Vz—P(z).

¢

Rules for Quantification 121

Example 4.10

Recall from the Example in Section 4.2 that Joel, Felix, Oskar and Amanda
must all brush their teeth before going to school in the morning; that is,
that the proposition

Vz Teeth(z)

is true, where — as before — we use Teeth(z) to denote the statement that
child z has brushed their teeth, and we continue to take the universe of
discourse to consist of the set of four children in question:

Children = {Joel, Felix, Oskar, Amanda }.

On a particular day, it may be discovered that this statement is not true.
For example, perhaps Joel, Oskar and Amanda have all brushed their teeth,
but Felix has not. This is the reason that Vz Teeth(z) is false, i.e., that

—Vz Teeth(z)

is true: that there is someone (namely Felix) who has mot brushed their
teeth:

Jz - Teeth(z)
This is an example of the general law that
-Vz P(z) < Jz-P(z).

We have also earlier noted that, when driving to school, one of the chil-
dren must sit in the front seat of the car: that is, that the statement

Jz front(z)

must be true, where — as before — we use front(z) to denote the statement
that child z sits in the front seat. For this statement to be false, it would
have to mean that none of the children are sitting in the front seat, or in
other words that all of them are not sitting in the front seat:

vz —front(z).
This is an example of the general law that

-3z P(z) & Vz—P(z).

Exercise 4.10) (Solution on page 425)

For each of the following statements, identify which of the options provided
correctly expresses its negation. Translate each statement into predicate
logic to confirm your choices.

122 Predicate Logic

1. Some people like mathematics.

(a) Some people dislike mathematics.
(b) Everybody dislikes mathematics.
(c) Everybody likes mathematics.

2. All cats have fur and a tail.

(a) No cat has fur and a tail.
(b) Some cats are bald and tailless.
(c) Some cats are bald or tailless.

3. Everyone who had not been vaccinated got sick.

(a) Everyone who had been vaccinated did not get sick.
(b) Some people who had been vaccinated got sick.
(c) Some people who had not been vaccinated did not get sick.

Having established how quantifiers interact with negation, we next con-
sider how they interact with conjunction and disjunction. Specifically, we
may wonder which of the following is true:

1. Vz(P(z) A Q(z))
2. dz(P(z) A Q(z))
3. v (P(z) v Q(z))
4. 32(P(z) v Q(z))

We carefully consider each of these in turn.

& VzP(z) A VzQ(z).
& 3zP(z) A 32Q(z).
& VzP(z) v VzQ(z).
& 3zP(z) v 32Q(z)
1. This property is valid.

If P(z) A Q(z) is true of every object z, then certainly P(z) must be
true of every object z and Q(z) must be true of every object z.

Equally, if P(z) is true of every object z and Q(z) is true of every
object z, then P(z) A Q(z) must be true of every object z.

2. This property is not valid.

If P(z) AQ(z) is true of some object z, then P(z) must be true of that
object z and Q(z) must be true of that object z.

However, P(z) may be true of some object, and Q(z) may be true of
some different object, while P(z) A Q(z) may never be true of the
same object z.

For example, it is true that prime numbers and perfect squares exist:

dz Prime(z) A Jz Square(z) is true.

Rules for Quantification 123

For instance Prime(17) is true and Square(25) is true. However, no
number can be both prime and a perfect square at the same time:

Jz(Prime(z) A Square(z)) is false.
We have, however, established the weaker property:
2. 3z(P(z) A Q(z)) = 3zP(z) N JzQ(z).

3. This property is not valid.

If P(z) is true for all objects z, then certainly P(z) v Q(z) must be
true of all objects z; Equally, if Q(z) is true for all objects z, then
P(z) v Q(z) must be true of all objects z.

However, P(z) VvV Q(z) may be true of all objects z without it being
the case that P(z) is true of all objects z, nor that Q(z) is true of all
objects z.

For example, it is true that all integers are either even or odd:
Vz (Bven(z) Vv Odd(z)) is true.
However, not every integer is even, and not every integer is odd:
Vz BEven(z) V Vz Odd(z) is false.
We have, however, established the weaker property:
3. Vz(P(z) v Q(z)) < VzP(z) VvV VzQ(z).

4. This property is valid.

If P(z)V Q(z) is true of some object z, then either P(z) must be true
of that object z or @(z) must be true of that object .

Equally, if P(z) is true of some object z or Q(z) is true of some object
z, then P(z) A Q(z) must be true of that object z.

As a final note, the following are clearly valid properties:

1. VzVy P(z,y) < VYyVz P(z,y);
2. 3z3y P(z,y) & 3Jy3Iz P(z,y).

That is, we can rearrange the order in which universal quantifications are
applied, as well as the order in which existential quantifications are applied.
It is common practice to write these as Vz,y P(z,y) and 3z,y P(z,y), re-
spectively. However, as we see in the following example, we cannot rearrange
different quantifiers:

Vedy P(z,y) ¢ Jyvz P(z,y).

124 Predicate Logic

Example 4.11

A certain mathematics textbook has an exercise which asks its reader to
translate the following sentence into predicate logic:

“Fvery real number is smaller than some integer.”

This informal English sentence can be interpreted in (at least) the following
two different ways:
1. VreR IAn€Z (r < n)
Given any real number r, we can find a larger integer n.
2. An€ZVreR (r < n)
There 1s an integer which is larger than every real number.
The first of these statements is true — and is undoubtedly the interpretation
intended by the author — while the second statement is blatantly false. The

author of this mathematics textbook was trying to state a basic fact about
numbers, but the ambiguity of English complicated this task.

Modelling in Predicate Logic

The language of predicate logic gives us tools on top of propositional logic
and set theory with which to model scenarios. In this section we we present
a few examples.

Example 4.12

Recall the Carrollean puzzle from Exercise 2.25, where we are given the
three premises:

All babies are illogical.
Nobody is despised who can manage a crocodile.

Illogical persons are despised.

from which we are to deduce that no baby can manage a crocodile. Let us
introduce the following predicates:

B(z) = “z is a baby”
I(z) = “z 1is illogical”
D(z) = “z is despised”

M(z) = “z can manage a crocodile”

Modelling in Predicate Logic 125

Then the above three premises translate into the following propositions:

1. Vz(B(z) = I(z))
2. Vz(M(z) = ~D(z)) or, equivalently, Vz(D(z) = ~M(z))
3. Vz(I(z) = D(z))

and the conclusion translates into Vz(B(z) = ~M(z)).

However, for any z such that B(z) is true (if z is a baby), by first premise,
I(z) is true (z is illogical); and thus by the third premise, D(z) is true (z is
despised); and therefore by the second premise, =M(z) is true (z cannot
manage a crocodile).

Hence the conclusion does indeed follow from the premises.

]

Exercise 4.12) (Solution on page 426)

Formalise the following two arguments in predicate logic:

1. Everybody loves somebody.

Therefore somebody is loved by everybody.
2. Somebody loves everybody.

Therefore everybody is loved by somebody.

In each case, discuss any ambiguities that you identify in the English state-
ments, but use what you consider to be the intended interpretations.
Are these arguments valid?

Example 4.13

Figure 4.1 presents an example Sudoku puzzle which consists of a 9 x 9
grid with numbers entered into some of the squares. The objective is to
completely fill in the grid so that each column, each row, and each of the
nine 3 x 3 blocks contains the digits from 1 to 9 exactly once. Properly set,
the initial numbers will allow for only one valid solution.

This is a classic logic-style puzzle, and as such is perfectly suited for
modelling in predicate logic. If you struggle with solving the puzzle given
in Figure 4.1, an Internet search engine will find any number of Web sites
which will solve it for you; and the means by which these Web sites’ software
does this will inevitably work on the following formal representation (or
something very similar).

We start by defining the universe of discourse to be the interval I = [1..9]
of integers from 1 to 9. This reflects the fact that there are:

e 9 rows, listed from top to bottom as row 1 through to row 9;

126 Predicate Logic

6 |7
9
8
2 3
2 6 5
1 4
3 4 7 9
1 6
8
Figure 4.1: A Sudoku puzzle.

e 9 columns, listed from left to right as column 1 through to column 9;

e 9 blocks, listed from left to right and top to bottom as block 1 through

to block 9;

e 9 values, 1 through 9, to be inserted into the squares.

We then define the following predicate:

V(4,7,k) = “square (¢, 7) holds the value k.”

That is, the number & is in the square located in row ¢ and column 5. Thus,
for the example puzzle in Figure 4.1, the following propositions are true:

V(1,8,6
V(21,4
V(3,1,3

V(4,5,2
V(5,2,2

V(6,3,1
V(7,2,3

V(8,5,1

V(9,1,9)

)
)
)
)
)
)
)
)

V(1,9,7)
V(2,5,9)
V(3,4,2)
V(4,6,3)
Vv (5,5,6)
V(6,4,7)
V(7,3,4)
V(8,9,6)
V(9,2,8)

V(3,7,9)
V(4,7,6)
V(5,8,5)
V(6,5,4)
V(7,6,7)

Next we define the following predicate:

V(3,8,8)

V(7,9,9)

Additional Exercises 127

B(3,3,b) = “square (z,7) is in block b.”

This property is represented by the following nine propositions (one for each

block):

B(4,7,1) & (4,7) €[1..3] x[1..3]
B(4,4,2) & (4,5) €[1..3] x [4..6]
B(4,4,3) < (4,5) €[1.3] x [7..9]
B(i,5,4) & (4,7) €[4.6] x [1..3]
B(4,,5) < (4,5) € [4..6] x [4..6]
B(1,7,6) & (4,5) €[4..6] x[7..9]
B(4,5,7) < (4,5) €[7.9] x [1..3]
B(1,7,8) & (4,5) €[7..9] x [4..6]

[7..9] x [7..9]

B(ilji 9) <:> (17]) E 7"

Finally, we are ready to represent the properties satisfied by a valid
solution to the puzzle.

1. Every square (%, j) holds exactly one value k: ViVj 3k V (3,], k).

2. Every row ¢ contains every value k: ViVk3j V (3, 4, k).

3. Every column j contains every value k: V5 Vk 3V (4,7, k).

4. Every block b contains every value k: VbVk3:3j V (3,7, k) A B(3, 7,b).
All that is required now is to deduce truth values of the predicates V (3, j, k)
which satisfy these properties. This is a non-trivial and tedious task to do

by hand, but is the sort of thing that computers can do very well (and very
rapidly).

(Exercise 4.13) (Solution on page 426)

Solve the Sudoku puzzle in Figure 4.1.

Additional Exercises

1. Let V(z) stand for the predicate “z visits his parents every weekend”,
where the domain of discourse is the set of students in your class.
Express each of the following quantifications in English:

(a) FzV (=)
(b) V2V (z)

128 Predicate Logic

(c) Fz—-V(z)
(d) Vz—V (z)

2. Using the predicates:
B(z) = “z is a bee”
F(z) = “z is a flower”
L(z,y) = “z likes y”
write each of the following statements in predicate logic.

(a) All bees like some flowers.
(b) No bee likes only flowers.
(c) No bee hates (that is, does not like) all flowers.

3. Express the negation of each of the statements in the previous question,
both in English as well as in predicate logic.

4. Let T'(s,c) stand for the predicate “student s takes course c¢.” Ex-
press the following statements in predicate logic.

(a) “Alice and Bob take all the same courses.”

(b) “Alice and Bob do not take any courses together.”

5. Express the following properties in predicate logic, using only the usual
operations of addition and multiplication as well as the less than rela-
tion < between numbers.

(a) z is a divisor of y.
(b) z and y have no common divisors.
(c) z is a prime number.

(d) Every integer greater than one has a unique smallest prime divi-
sor.

(e) (Goldbach’s Conjecture) Every even integer greater than two
can be written as the sum of two primes.

6. Express in English what each of the following propositions is saying
about the set of real numbers R, and determine whether they are true
or false.

(@) VzIy(z+y =z).
(b) JyVz (z+y ==z).
(c) Vz3y (22 =y).

(@) VyIz(z2=1y).

(e) VzVy(z<y V y<z).

Additional Exercises 129

10.

11.

12.

. Express the following in predicate logic.

(a) At least three items have property P.
(b) At most 3 items have property P.
(c) Exactly three items have property P.

. A particular jazz standard recorded by Doris Day has the following

title and lyrics:

Everybody loves my baby
But my baby don’t love nobody but me

Express the above in predicate logic. What can you deduce from these
two statements about who “my baby” is?

. Samuel Goldwyn, on being told by a friend told him that he had

named his son Sam, exclaimed, “Why did you do that? Every Tom,
Dick and Harry is named Sam!” Assuming Goldwyn was right, and
assuming he was restricting his attention to first names, how many
Sams, Dicks and Harrys are there? Formulate your answer in predicate
logic, including the assertion that every person has exactly one first
name.

Lewis Carroll made the following argument.

Everybody who is sane can do logic.
No lunatics are fit to serve on a jury.
None of your sons can do logic.

Therefore, none of your sons s fit to serve on a jury.

Formulate the four claims in predicate logic. Do you consider this a
valid argument?

Lewis Carroll also made the following three claims.

No professor s ignorant.
All ignorant people are vain.

No professor is vain.

Formulate these three claims in predicate logic. Do any of them follow
from the other two?

What is wrong with the following argument:
A ham sandwich s better than nothing.

Nothing s better than eternal happiness.

Therefore, a ham sandwich is better than eternal happiness.

Chapter 5

* Proof Strategies

You want proof? I'll give you proof!
- Sidney Harris.

So far, we have concentrated on developing formal languages for rigorously
and unambiguously expressing properties of systems, namely the languages
of propositional logic, predicate logic, sets and Boolean algebras. In the case
of propositional logic we have used truth tables to determine the validity
of logical arguments. We have also learned what it means for statements
of predicate logic to be true or false, but we have not yet seen a procedure
for determining truth or falsity. This is perhaps not too surprising, as pred-
icates can range over infinite universes of discourse, hence infinitely many
candidates potentially need to be inspected to test statements such as “This
program will terminate (with the correct result) at some point in time.”

A proof of a (true) statement is a demonstration of its validity which
contains sufficient detail to convince someone that the statement is true.
Statements which are provable are called theorems. We encountered formal
proofs already in Chapter 3, where we derived the truth of various theorems
of Boolean algebra; each such derivation ended with the symbol [J indicating
that the truth of the theorem had been established.

Proofs allow us to reason formally about properties of systems, so that
(ultimately) we can provide convincing and irrefutable evidence of their cor-
rectness. We have already explored some basic proof techniques, for instance
reasoning with logical equivalences in propositional logic and reasoning equa-
tionally with Boolean algebras. However, thus far we have asked no more of
our reader than to use common sense to follow our reasoning.

Proofs of theorems often require creativity and inspiration. Furthermore,
there will always be many different ways to prove a given theorem, and any
valid proof of a given theorem will be just as correct a proof as any other.
However, some proofs will be more elegant and more easily grasped than
others. The mathematician Paul Erdés often referred to “The Book” in
which God keeps the most elegant proof of each mathematical theorem, and
noted that “You don't have to believe in God, but you should believe in

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_6, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_6

132 Proof Strategies

The Book.”

Elegance aside, all formal proofs follow certain patterns that can be
learned like the rules of chess. Different proof strategies can be applied,
depending only on the form of the property being considered. Once these
strategies are learned, proofs can be easily — even mechanically — constructed
and checked. In this chapter, we develop such proof strategies that will allow
us to verify (or indeed falsify) system properties from a systematic point of
view, relieving us of the need for too much Eureka!/-invoking inspiration.

@ A First Example

It is obvious — by drawing a Venn diagram — that the union A U B of two
sets A and B contains both A and B as subsets:

AC AUB and B C AUB.

But AU B is a very special superset of A and B: it consists of precisely the
elements of A and the elements of B — no more and no less — and is therefore
the least superset of both A and B. In other words, any set C which is a
superset of both A and of B is also a superset of AU B:

u C

Although this fact should be intuitively clear, its validity deserves a
formal proof such as the following.

]

Theorem 5.1

Let A, B and C be sets. Then

ACC NBCC = AuBCC.

Proof: Assume that A C C and B C C; we must show that AUB C C.
To do this, we expand the definition of the set inclusion AU B C C:

every element of AU B must also be in C.

So we pick an arbitrary element £ € AU B and we show that z € C. Noting
that ¢ € AU B is the sameas z € A V ¢ € B, we proceed by case analysis
on whether z € Aor z € B.

A First Example 133

1. If z € A, then z € C, since we assumed that A C C.
2. If z € B, then again = € C, since we assumed that B C C.

In each case, z € C follows from the assumptions. 0

At first sight you might find this proof perhaps more difficult to un-
derstand and less revealing than, for instance, a Venn diagram. However,
in a few steps, it can be completely reduced to some basic proof strategies
for predicate logic and some basic principles about sets. Everyone who has
learned these strategies and principles can then easily check this proof, and,
in fact, even machines can do that for you.

So let us take a quick initial look at some of the proof strategies that occur
in this argument. They are based on logical principles of reasoning with
propositional connectives and quantifiers. They deal with these connectives
and quantifiers in two essentially different ways.

First, in order to prove the implication

ACC ANBCC = AUBCC,

we have assumed that A C C A B C C and proved that AUB C C from this
assumption. The underlying proof strategy allows us to prove an arbitrary
implication P = @ by assuming P and proving @ from this assumption. In
a similar fashion, instead of proving

Vz(z € AUB = z€C),

we have proved z € AU B = z € C for an arbitrary z taken from the
universe of discourse.

One way of understanding these proof strategies is that they decompose
a proof goal, replacing it with a simpler one from which the original goal
follows more or less automatically. These strategies narrow the distance be-
tween the assumptions and the goal from the goal side, hence in a bottom
up way. Another way of understanding these strategies is to observe that
they introduce a logical connective or quantifier into a proof. They can
therefore be characterised as introduction strategies for connectives or
quantifiers. The strategies mentioned above, for instance, introduce impli-
cation and universal quantification, respectively.

A second kind of strategy allows us to use complex assumptions or in-
termediate proof results (which can also be seen as assumptions) in proofs.
In the above proof, for instance, we have used a strategy that allowed us
to decompose the assumption A C C A B C C into two separate as-
sumptions A C C and B C C. Also, to prove z € C from the assumption
z € AV z € B, we have used a case analysis strategy and proved z € C
first from z € A and then from z € B. The underlying proof strategy allows
us to prove a goal R from a disjunction P V @ by case analysis, that is, by
proving R from the assumption P and from the assumption @ separately.

134 Proof Strategies

This second type of strategy can be understood as narrowing the distance
between the assumptions and the goal from the assumptions side, hence in
a top down way. They eliminate logical connectives or quantifiers and can
therefore be characterised as elimination strategies.

When faced with the prospect of proving a theorem, a sensible approach
would be to:

1. write out any assumptions, and previously-established facts that you
suspect may be relevant, at the top of a page;

2. write out the statement which you wish to prove at the bottom of the
page;
3. repeatedly apply elimination strategies to the statements at the top,

and introduction strategies to the statements at the bottom, and look
for how to make the logical argument meet in the middle.

With this in mind, we will present basic introduction and elimination strate-
gies for each of the propositional connectives and quantifiers, and depict
these as proof outlines with “holes” in the middle that need to be filled in.
The justification behind each such proof outline will be made evident.

(Exercise 5.2) (Solution on page 427)

Let A, B and C be sets. Prove the converse of Theorem 5.1, that

AUBCC = ACC A BCC.

@ Proof Strategies for Implication

A proof of a theorem consists of a sequence of statements, each either being
assumed or known to be true, or logically inferred from (i.e., implied by)
earlier statements appearing in the proof. It is sensible, therefore, to start
by considering proof strategies for implication.

In our introductory example we proved the theorem
ACC ANBCC = AuBCC.

by assuming that A C C A B C C and showing from this that AU B C C.
This idea can be generalised to the following proof strategy for implication.

Proof Strategies for Implication 135

K Assume P. \

Then

proof of @

\Therefore, P=Q. D/

This is an introduction strategy for implication, as it gives a method for
introducing a statement of the form P = @ into a proof.

Example 5.2

]

Consider the fact that the average of two different numbers lies somewhere
strictly between the two. For example, the average of the two numbers
13 and 25 is 19, which lies strictly between the two given numbers 13 and
25. This general fact is intuitively obvious. However, once it is rendered
in precise mathematical terms, it becomes something that is nonetheless
deserving of a proof.

As a mathematical statement, the above fact becomes:

If a<b then a<aT+b and GTH<b.
More precisely, this statement is of the form
P = Q
where
P = a<b, and
Q = a<aFb A afboy
Here we prove one half of this result:
If a<b then aT"'b<b.
Proof: Assume that a < b.
Then, by adding b to both sides, we get that a+b < b+b.
Thus, by dividing both sides by 2, we get that @30 < b+ b,

2 2
Since bgb:b, we get that a—2i-b < b.

Therefore, if a < b then aTer < b. |

The introduction strategy for implication is so fundamental that one
usually just assumes P and proves @ without even mentioning that this
yields a proof of P = Q.

136 Proof Strategies

Example 5.3

Prove that the product of two even integers is an even integer.

Proof: Assume that a and b are even integers.

An even integer is twice an integer.
Thus a = 2p and b = 2q for some integers p and gq.
Hence ab = (2p)(2q) = 4pg

= 2k for the integer k = 2pq.

Therefore, ab is an even integer. a

(Exercise 5.3) (Solution on page 427)

Prove that the product of two odd integers is an odd integer.

There is another introduction strategy for implication which may be
more natural to apply on occasion. We can assume that @ is false and prove
that, under this assumption, P must also be false. The form of such a proof
would thus be as follows.

/ Assume —Q. \

Then

proof of =P

\\Therefore, P=Q. D/

A proof which employs this strategy is referred to as a proof by contrapo-
sition.

Example 5.4

Prove, by contraposition, the result from Example 5.2 that, for any two real
numbers a and b, if a < b then GTH < b.

Proof: Suppose that & '2" b > b.

Then, by multiplying both sides by 2, we get that a + b > 2b.
Thus, by subtracting b from both sides, we get that a > b.

Proof Strategies for Implication 137

Therefore, if a < b then 2 '2" b < b. 0

Corresponding to the above two introduction strategies, there are two
elimination strategies for implication which allow us to draw inferences from
statements in a proof that involve implication. These strategies are as fol-
lows.

1. If P = @ is true and P is true, then @ is true.

A use of this proof strategy is referred to as modus ponens, and takes
the following form.

)

proof o]; P=qQ

.

proof. of P
N
\Therefore, Q. O /

2. If P = @ is true and —@ is true, then —P must be true.

A use of this proof strategy is referred to as modus tollens, and takes
the following form.

/

\

proof 01; P=qQ

proof IOf -Q

Therefore, —P. O
- /

Indeed, we have already seen these proof principles in action, particularly ex-
tensively in the solution to the Amos Judd puzzle of Exercise 1.14 (page 33).

138 Proof Strategies

Example 5.5

Prove that if a€ A and AC B then a € B.

Proof: Assume that a € A, and that A C B.

By definition, A C B means that z € A= z € B for any z.

In particular,a € A= a € B.

Thus, by modus ponens, a € B. O

(Exercise 5.5) (Solution on page 427)

Prove that the number 9839853 is divisible by 3. (You may use the fact
that a number is divisible by 3 if the sum of its digits is divisible by 3.)

@ Proof Strategies for Negation

The main approaches to proving a property of the form —P is to assume
that P is true and to infer from this a contradiction. By this, we mean
that both some property @ and its negation =@ can be inferred from our
assumption P; as such a contradiction is impossible, the assumption from
which it was inferred must be invalid. The form of such a proof would thus
be as follows.

K Assume P. \

Then

proof of contradiction

Therefore, —P. 0
\ %

This is the standard negation introduction strategy. The associated negation
elimination strategy is nearly identical, allowing positive results to be proven
by contradiction. It takes the following form.

Proof Strategies for Negation 139

/ Assume —P. \

Then

proof of contradiction

Therefore, P. 0
. L

A proof which employs either of these strategies is referred to as a proof by

contradiction or, more fancily, as reductio ad absurdum.
Our first example of a proof by contradiction is over 2000 years old and
is attributed to the school of Pythagoras.

Example 5.6

Prove that /2 is irrational; that is, v/2 ¢ Q.

Proof. Suppose to the contrary that /2 € Q; specifically, suppose that
V2 = % where a and b are positive integers and % is a fraction in
lowest form; in particular, a and b are not both even.

2
Then squaring both sides gives us that 2 = %,
both sides by b? gives us that 2b° = a?.

and then multiplying

Hence a must be even (since, by Exercise 5.3, if a were odd then a2
would also be odd); that is, a = 2c¢ for some integer c.

As a and b are not both even, b must be odd.

But then 2b? = a? = (2¢)? = 4¢?, so b® = 2¢?, which means that b must
be even, contradicting our earlier observation that b must be odd.

This must mean that our assumption that /2 is rational must be in-
valid; that is, +/2 must in fact be irrational. 0

Another famous example of a proof by contradiction that is also over
2000 years old, this time due to Euclid, is the following argument that there
are infinitely many prime numbers. The proof relies on the Fundamental
Theorem of Arithmetic — also proved by Euclid and which we prove in
Exercise 9.9, page 235 — which states that every positive integer can be
expressed as a product of prime numbers; in particular, every such number
is divisible by some prime number.

140 Proof Strategies

Example 5.7

Prove that there are infinitely many prime numbers.

Proof. Suppose to the contrary that there are finitely many prime numbers,
which we may list as { p1, p2, D3, .-+, D I

Letm = (py Xpa XP3 X -+ Xpg) + 1.

This number cannot be prime, as it is clearly larger than every
one of the k prime numbers p; through ps.

Thus, by the Fundamental Theorem of Arithmetic, some prime
number p; must divide evenly into n.

However this is impossible, as dividing n by p; clearly leaves a
remainder of 1, and hence p; does not divide evenly into p.

Therefore, our assumption that there are finitely many prime numbers
must be invalid; that is, there must in fact be infinitely many prime
numbers. O

Example 5.8

Suppose that AN C C B and that a € C. Prove that a ¢ A\ B.

As always, before blindly starting a proof, you should try to get a good
impression in your mind as to what it is you are trying to prove. If possible,
this is best done by drawing a picture, which in this case means a Venn
diagram:

Here we have depicted three sets A, B and C which satisfy the premise of
the proposition that we wish to prove: that AN C C B. From this we need
to infer that any element a € C (i.e., which lies in the light gray area) will
not be in A\ B (i.e., cannot lie in the dark gray area). This seems obvious
in the picture, but a rigorous argument is still demanded. Fortunately, now
that we have a clear picture in our mind, a rigorous proof seems trivial.

Proof. Assume that the premises of the proposition are true, that ANC C B
and that a € C. We shall show that assuming that a € A\ B leads to
a contradiction.

Suppose that a € A\ B; that is, that a € A but that a ¢ B.

Proof Strategies for Negation 141

Since a € A and a € C (from the premise of the proposition), we
have that a € AN C.

But since ANC C B (again from the premise of the proposition),
from a € AN C we get that a € B, contradicting a ¢ B.

Therefore, we cannot have a € A\ B; that is, we havea ¢ A\ B. O

As usual, there are various ways that this proposition can be proven, all of
which being equally valid. The following is provided as an example.

A Different Proof. Assume that the premises of the proposition are true,
that ANC C B and that a € C.

As a € A\ B if, and only if, a € A and a ¢ B, we shall show that
a ¢ A\ B by showing that we cannot have both a € A and a ¢ B;
that is, if we assume that a € A then we can deduce that a € B.

Suppose then that a € A.

Since a € C (from the premise of the proposition), we have that
ae AnC.

But then since ANC C B (again from the premise of the propo-
sition), we have that a € B.

Therefore, we cannot have both a € A and a ¢ B; that is to say, we
must have a ¢ A\ B. O

Example 5.9

Assume that a and b are positive real numbers.

Prove that either a < vab or b< vab.

Proof. Suppose to the contrary that a > +/ab and b > vab.
Then ab > (\/ﬁ)z = ab, which is impossible.

Therefore, either a < +/ab or b < v/ab. O

(Exercise 5.9) (Solution on page 427)

Prove that there is no such thing as the smallest positive rational number.

142 Proof Strategies

(Exercise 5.10) (Solution on page 428)

Prove that every integer greater than 1 can be written as a product of prime

numbers.

(Note that a prime number is the trivial product of one prime number.)

Proof Strategies for Conjunction and Equivalence

There is very little interesting or needed to say about dealing with conjunc-
tions in proofs. To prove a property of the form P A Q, we simply prove P
and @ separately. The form of such a proof will look as follows.

proof of P
N
R

proof of @
N
\Therefore, PAQ. O /

This is the basic introduction strategy for conjunction. The basic elimina-
tion strategy is equally straightforward: we may infer the truth of one of
the conjuncts of an established conjunction. The form of such a proof will
look like one of the following following.

proof o.f PAQ

Therefore, P. O Therefore, Q. 0

proof o.f PAQ

These will rarely be used in isolation, and their use inevitably comes natu-
rally. As such, the following examples — while instructive — are somewhat

contrived and superfluous.

Example 5.10

Prove that if z € Aand z € Bthenz € AN B.

Proof Strategies for Conjunction and Equivalence 143

Proof: Assume that z € A and that z € B.

By the conjunction introduction strategy, we can infer from this that
z € A A z € B, which by definition means that z € AN B. |

Example 5.11

]

Prove that if z € AnBthenz € Aand z € B.
Proof: Assume that z € AN B
By definition this means that z € A A z € B.

By the conjunction elimination strategy, we can infer from this both
that z € A and that z € B. d

An equivalence P & @Q between properties P and @ simply represents
the fact that each property implies the other; it is true if, and only if, P = @
and Q = P. As such, proof strategies for equivalence are naturally based
on those for conjunction. To prove P < @, we simply prove P = @ and
@ = P separately. The form of such a proof will look as follows.

- I

proof o]-‘ P=Q

proof oJ; Q=P

\\Therefore, P s Q. O J

This is the basic introduction rule for equivalence. The basic elimination
strategy is to infer the implication in one direction or the other from an
established equivalence. The form of such a proof will look as follows.

proof o]; P&eq@ proof o];P S Q

Therefore, P = Q. O Therefore, @ = P. O

144 Proof Strategies

55)

Proof Strategies for Disjunction

To prove that a disjunctive property P V Q, it suffices to prove one or the
other of the disjuncts. The basic introduction strategy for disjunction is
thus of the following forms.

proof of P

proof of Q

Therefore, PV Q. O Therefore, Pv Q. O

The above is rather weak, though. It might not be the case that one
of P or @ always holds; rather, which holds might depend on some other
factors. That is, it might be that P holds whenever some property R holds,
and that @ holds when the property R does not hold. In this case the proof
of PV @ needs to be broken into cases. The relevant introduction strategy
would then be of the following proof form.

/ Assume R. \

Then

proof of P

Next, assume —R.

Then

pTOOf of @

\ Therefore, PV Q. O /

Example 5.12

Prove that for any integer n, the remainder of n2 when divided by 4 is either
Oor 1.

Proof: Either n is even or it is odd.

Proof Strategies for Disjunction

145

e If n is even, then n = 2k for some integer k&, and

n? = (2k)? = 4k?

which clearly has a remainder of 0 when divided by 4.

e If n is odd, then n = 2k + 1 for some integer k&, and

n? = (2k+1)? =

4k +4k+1 =

4(k*+ k) +1

which clearly has a remainder of 1 when divided by 4.

Thus the remainder of n? when divided by 4 is either 0 or 1.

A special case of the above strategy is to take the property R to be P
itself. In this case, there would be no effort needed to infer P from the
assumption P, so the form of the proof would be as follows.

/ Assume —P.

Then

proof of Q

K Therefore, PV Q.

x

0/

Example 5.13

Prove that if z is a real number with z? > z then either z < 0 or z > 1.

Proof: Assume as given that z2 > z. Clearly this means that z # 0.

If it is mot the case that z < 0, then z > 0, and we can divide each side
of the given inequality z2 > z by z to deduce that z > 1.

Hence, either z < 0 or z > 1.

(Exercise 5.13) (Solution on page 428)

d

Prove that if the product of two integers is even, then one of these two

integers is itself even.

146 Proof Strategies

Exercise 5.14) (Solution on page 429)

Prove that if A C B then either £ ¢ Aor z € B.

The elimination strategy for disjunction is more interesting. If we have
as given a property P V @, we can prove that a further property R holds
by breaking the proof into cases; that is, we show that P = R and @ = R.
This being the case, regardless of which of P or @Q is true, R must be true.
The form of this elimination strategy is thus as follows.

Example 5.14

-

\\whichever of P or Q is true).

proof o} PvQ@

Thus, either P is true, or Q is true.
Assume first that P is true.

Then

proof of R

Thus R must be true.

Next, assume that @ is true.

Then

proof of R

Thus, once again, R must be true.

Therefore, R is true (regardless of

\

0

Prove that AN (BUC) C (ANB)UC.

Proof. Letz € AN(BUC)=(ANB)U(ANC).

Then either z € AN B, in which case z € (AN B) UC;

Proof Strategies for Quantifiers 147

or z € (ANC), in which case z € C so againz € (ANB)UC. O

Example 5.15

Prove that if |z — 3| > 3 then 22 > 6z.
Proof. If |z — 3| > 3 then either z > 6, in which case z2 > 6z;
or z < 0, in which case > > 0 > 6. O

Exercise 5.15) (Solution on page 429)

Prove the triangle inequality: For real numbers a and b, |[a +b| < |a|+ [b].

(Exercise 5.16) (Solution on page 429)

Prove that if n is an integer, then the final (units) digit of n? must be either
0, 1, 4, 5, 6 or 9; that is, n? cannot end with a 2, 3, 7 or 8.

(Exercise 5.17) (Solution on page 430)

5.6.1

What is wrong with the following proof?
Fact: If z4+y = 12 then £ # 7 and y # 8.

Proof: Assume that the conclusion is false, that is, that it is not the
case that z # 7 and y # 8.

Then 2 =7 and y = 8,

Hence if z+y = 12 then 2 # 7 and y # 8. d

Proof Strategies for Quantifiers

Universal Quantification

A universal quantification Vz P(z) represents a potentially-infinite conjunc-
tion, asserting that P(a) is true for every value a of the universe of discourse
for the predicate P. As such, we look at how to generalise the proof strate-
gies for conjunction.

To prove a property of the form Vz P(z), let a stand for an arbitrary
object, and prove P(a). The form of such a proof would thus be as follows.

148 Proof Strategies

Let a be arbitrary.

proof (;f P(a)

Therefore, Vz P(z). O

As long as we make no assumptions about a in the proof of P(a), then this
proof will be valid for whatever choice of a we make. That is, we will have
shown that P(z) must be true for every z (that is, for any and every choice
of value a for z). It should be apparent how this introduction strategy
generalises that for conjunction.

Note that we have already been tacitly using this strategy. For instance,
in Example 5.9 we proved a result held for all positive real numbers a and b,
by assuming as given arbitrary values for a and b. Usually this is fine — we
generally don’t have to think twice about taking arbitrary values as given.
However, we do sometimes have to be more careful with introducing values.

We can next look to the elimination strategy for conjunction to derive
a straightforward generalisation which tells us how to use a universal quan-
tification within a proof. If we have ascertained that Vz P(z) is true and a
is an element in the universe of discourse for the predicate P, then we can
immediately infer that P(a) is true. The form of such a proof will look as
follows.

proof of. Vz P(z)

Therefore, P(a). O

Example 5.17

Prove that if AnB = A then AC B.

Proof. Assume that AN B = B. We need to demonstrate that A C B, that
is, that for any z, if z € A then z € B:

Ve(z € A = z € B).

To this end, let a be an arbitrary value.

Proof Strategies for Quantifiers 149

To show that a € A = a € B, we assume that a € A and prove
from this assumption that a € B.

Assume then that a € A.

Since ANB = A (from the premise of the proposition), this means
that a € AN B.

But this means that a € A and a € B; in particular, that a € B.

Therefore, Vz (z € A = z € B); that is, A C B. d

Example 5.18

Prove that Vz (P(z) A Q(z)) < Ve P(z) A Vz Q(z).

Proof. (=) Suppose Vz (P(:v) A Q(:c)), and let a be an arbitrary value.
Then P(a) A Q(a), so P(a) and Q(a).

Since a is arbitrary, we can infer that Vz P(z) and Vz Q(z);
that is, Vz P(z) A Vz Q(z).

(«<) Suppose Vz P(z) A Vz Q(z), and let a be an arbitrary value.
Then P(a) and Q(a), so P(a) A Q(a).

Since a is arbitrary, we can infer that Vz (P(x) A Q(z)) O

(Exercise 5.18) (Solution on page 430)

Prove that if A and B\ C are disjoint then AN B C C.

5.6.2 Existential Quantification

An existential quantification Jz P(z) represents a potentially-infinite dis-
junction, asserting that P(a) is true for some value a of the universe of
discourse for the predicate P. As such, we look at how to generalise the
proof strategies for disjunction.

To prove a property of the form 3z P(z), we need only find a value a for
which P(a) holds, and prove P(a). The form of such a proof would thus be
as follows.

150 Proof Strategies

Let a be some value (which you believe satisfies P).

proof c;f P(a)

Therefore, 3z P(z). O

Note the difference between this introduction strategy and the introduction
strategy for Vz P(z). To prove Vz P(z) you need to prove that P(a) holds
for an arbitrary value a without making any assumptions about a. To prove
Jz P(z) you need to prove that P(a) holds for a single chosen value of a.
We next look to the elimination strategy for disjunction to derive a gen-
eralisation which tells us how to use an existential quantification within a
proof. If we have ascertained that 3z P(z) is true, and if some property R
holds under the assumption that P(a) holds regardless of the specific value
a of the universe of discourse, then we can infer that R is true. The form of

~

such a proof will look as follows.

/

proof of. Jdz P(z)

Let a be arbitrary, and assume P(a).

Then

proof of R

\Therefore, R is true. O /

Example 5.19

Prove that, if z # 1, then z% = z for some y.

Proof. Let y = % (noting that, since z # 1, 1—z # 0, and so we are

not inadvertently dividing by 0 in defining y).

_z+2 — 2(1-2) 3z
Then y-2 = =———F——" = 15,

_z+2 4+ 1—z _ 3
and y+1 = =57 = 74,

Proof Strategies for Quantifiers 151

o it = (25)/(2) = (&)< (%) == O

The difficulty with proving the existence of an object a for which a
property P holds is: how do we find the particular value a? In the above
example, why did we choose to take y = %? The answer in this case — as
it typically will be — lies in working backwards. Since we wanted to find a
value y such that Z—ﬁ = z, we worked from this equation:

e by multiplying both sides by (y+1) we get y—2 = z(y+1) = zy + z;
e by rearranging terms to get all (and only) terms involving y on one side
(i.e.. by adding 2—zy to both sides) we get z+2 = y—zy = y(1—z).

e Dividing each side by (1—z) — noting that this will not be an illegal

division by zero, since the premise stipulates that £ # 1 — we arrive at
T+2

the value we seek: y = =

(Exercise 5.19) (Solution on page 430)

Prove that for every real >0 there is a real y such that y(y+1) = z.

Although typically the case, it isn’t strictly necessary (nor sometimes
even possible) to explicitly find the specific value z which witnesses the fact
that 3zP(z); the mere fact that such a value exists is all that needs to be
demonstrated.

Example 5.20) A Strange Proof of Existence

Fact: There are irrational numbers a and b such that a® is rational.

Proof. We know from Example 5.6 that /2 is irrational.

Vo)
Furthermore, either (ﬁ) is rational or it is irrational.
V2, .
e Suppose (ﬂ) is rational. Let a = b= /2.

e V2, .
Then a and b are irrational, and a® = (ﬁ) is rational.

e Suppose (\/5) V2 is irrational. Let @ — (\ﬁ)\/2 and b = /2.

Then a and b are irrational, and

@ = ()" = (A~ (i) -2

is rational. O

152 Proof Strategies

What is strange about this example is that we demonstrated the ezistence
of two particular irrational numbers a and b which satisfy our conditions
without discovering for certain what these particular numbers are!

(Exercise 5.20) (Solution on page 431)

Prove that Jz (P(a:) \Y Q(:c)) < Jz P(z) Vv JzQ(z).

(Hint: refer to the proof in Example 5.18.)

5.6.3 Uniqueness

There are two approaches to proving a property of the form 3!z P(z), the
first by proving existence and uniqueness separately, and the second by

combining these two concerns.
1. First prove ezistence: 3z P(z)
and then uniqueness: VyVvz [(P(y) A P(z)) = y:z].
2. Prove Jz [P(:c) AVy (P(y) S y= a:)]

Either way, the proof strategies are derived from existing strategies.

Example 5.21

Prove that for every z there is a unique y such that z2y = z—y.

__z
Proof. Let V=1
3 2 _
o _z(z*+1)—z
Thenzy_z2+1_ 241 = z—y.
Furthermore, if 22z = z—2, then 2(z%2+ 1) = z,
Y
S0 z712+17y. O

Example 5.22

Suppose F is a family of sets. Prove that there is a unique set A that has

the following two properties:

1. F CP(A).
2. VB (FCP(B)= AC B).

Proof. Let A=UF.

Additional Exercises 153

1. Suppose X € F.
Then X C U F; thatis, X C A.
Hence X € P(A).
2. Suppose B is any set satisfying F C P(B).
Let a € A; that is, a € UF.
Then 49X € F with a € X.
Thus X € P(B),so X C B.
Hence a € B. |

(Exercise 5.22) (Solution on page 431)

Prove that there is a unique set A such that, for every set B, AUB = B.

@ Additional Exercises

. Prove that, for any two real numbers a,b € R: ifa < bthena < aT—i—b.

. Assume that m and n are integers. Prove that if m+n is even, then

m and n are either both even or both odd.

. Assume that n is an integer. Prove that if 3n + 2 is an odd integer,

then n must be an odd integer.

. Prove that there is no even prime number greater than 2.
. Prove that /3 is irrational.

. Prove or disprove each of the following.

(a) The sum of two rational numbers is rational.

(b) The sum of two irrational numbers is irrational.

. Assume that n is an integer. Prove that n? > n.

. Prove that if n is an integer, then the final digit of n* must be either

Oor1orb5or6.

. Prove that there are no integer solutions to the equation z2 +2y? = 24.

10.

Prove the Distributivity Laws for sets:

(a) An(BUC) = (ANB)U(ANC).
(b) Au(BnC) = (AuB)Nn(AuQC).

154 Proof Strategies

11. Prove the following.

@ P = (Q=P).
(b) (P=Q) = (PVR = QVR).
() (P=Q) = (PANR = QAR).
12. Prove the following.
(a) vz(P(z) A Q(z))
(b) 3z(P(z) v Q(z))
(c) Vz(P(z) vV Q(z))
(d) Fz(P(z) A Q(z))

13. Prove that the two approaches to proving 3!z P(z) from Section 5.6.3
are equivalent.

& Vz P(z) A VzQ(z).
< JzP(z) v JzQ(z).
< Vz P(z) Vv Vz Q(z).
= dzP(z) A JzQ(z).

Chapter 6
Functions

Home computers are being called upon to perform many new func-
tions, including the consumption of homework formerly eaten by the
dog.

- Doug Larson.

We regularly want to associate to each value of one set A some particular
value taken from another set B (which may be the same set A). Such a
mapping of values in A to values in B is referred to as a function.

Functions arise everywhere in people’s lives. For example, shoppers are
ever calculating (or at least estimating) for themselves the cost of their bas-
ket of goods from the number and unit costs (plus relevant sales taxes).
Functions are especially relevant to the computer scientist’s world. Com-
puter programs are written to turn input values into output values, and the
design and implementation of Boolean circuits will inevitably start from a
definition of the function of the circuit which describes its behaviour on each
possible input. For this reason, it is necessary to take a careful look at what
a function is and understand its definition and the various properties that
it may enjoy.

Basic Definitions

A function f from a set A to a set B is an assignment of exactly one
element of B to each element of A. We write f : A — B to denote that f
is a function from A to B, and we write f(a) to refer to the unique element
of B assigned to the element a of A by the function f. Thus f maps each
element a of A to an element b = f(a) of B, which we will also denote by
f:aw— b. Figure 6.1 gives a pictorial representation of such a function.

Example 6.1

Each person in a class of twelve students is assigned a particular grade,
in the form of an integer percentage between 0 and 100, which appears as

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_7, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_7

156 Functions

A

N

‘
I E——

Figure 6.1: A function f: A — B from A to B.

B

follows on a list posted on a bulletin board:

‘ Andrews 75
‘ Archer 92
 Collins 64
‘ Davies 88

Evans 78
Fletcher 46
Greene 68
Lewis 54

Parker 64
Smith 59
Taylor 100
Williams 78

Here, each person in the set

Class = { Andrews, Archer, Collins, Davies, Evans, Fletcher,

is assigned a value from the set

Greene, Lewis, Parker Smith, Taylor, Williams }

Marks = {0,1,2,3,4,...,100}.

This describes a function

score : Class — Marks

in which, for example, score(Greene) = 68; the function score maps the value
Greene to the value 68, that is, score : Greene — 68.

It is possible for a function f : A — B to assign the same value from B
to two different values of A. In the above example,

score(Collins) = score(Parker) = 64.

However, only one value of B may be assigned to any value of A. In this
sense, a function f : A — B may be viewed as a machine into which you
input a value z € A and — depending only on that value — some value
f(z) € B will be output in response:

input =z f

f(z) output

Basic Definitions 157

If the same value for z is input on two separate occasions on the left, then
the same value will be output on the right for f(z) on both occasions.

If f: A— B is a function from A to B, we refer to A as the domain of
f and B as its codomain. If f(a) = b we refer to a as an argument of the
function f, and to b as the value of the function f on argument a.

If the domain of the function f is the Cartesian product A; x Ay x---x A,,
then we say that f has arity n or that f takes n arguments. A function
which takes two arguments is called a binary function. Common binary
functions are often written in ¢nfiz form z fy rather than f(z,y). For
example, we would naturally write 2 + 2 = 4 rather than +(2, 2) = 4.

The range of the function f : A — B, denoted range(f), is the subset of
the codomain B consisting of all values that the function f can produce:

range(f) = {f(a) : a€ A}

Given a subset S C A of the domain of f, the ¢mage of S under f,
denoted by f(S), is the subset of the codomain B consisting of all values
that the function f can produce: from arguments in S:

f(8) = {f(a) : a€ S}

Thus, for example, range(f) = f(A).

Given a subset T' C B of the codomain of f, the preimage of T under f,
denoted by f~(T), is the subset of the domain A consisting of all arguments
of f which produce values in T':

fFYUT) = {a € A : f(a)eT}.

Notice in particular that f 1(B) = A, since every argument in A produces
some value in B. We can also note that images and preimages allow us to
view f and f~' as functions between the powersets P (A) and P (B):

f:P(A)—P(B) and f7t: P(B) = P(4).

Example 6.2

Consider the function f: {1, 2, 3} — {a, b, ¢} defined, as depicted below,
by f(1) = c, f(2) = a and f(3) = c.
f
~ The domain of f is {1, 2, 3}.

The codomain of f is {a, b, c}.

‘ The range of f is {a, c}.
f({1,2}) = {a,c} and f({1,3}) = {c}.
f({be}) ={1,3}and f'({c}) ={1,3}.

158 Functions

(Exercise 6.2) (Solution on page 431)

1. What is the range of the function score from Example 6.17

2. If a score of 70 or higher is considered to be a first-class mark, express
the set of students who have scored a first-class mark as a preimage of
an appropriate set.

Example 6.3

Here are three example functions defined with respect to an arbitrary set A.

1. The identity function idg : A — A is the function which maps each
element a of A to itself: ida(z) = z for all z € A.

2. the cardinality function |-| : Pg, (A) — N maps each finite subset
of A to the number of elements in that subset: |X| = the number
of elements of X. (The cardinality of a set is simply the number of
elements in the set.)

Note that this function is only well-defined on finite sets. For example,
there is no natural number n which denotes the number of elements
in the set N.

3. Given a subset S C A of A, its characteristic function Xs : A — B
indicates whether or not an object is an element of S:
1, iof z€S;

X —
s(@) {o, if od8.

(Exercise 6.3) (Solution on page 432)

Indicate which of the following are functions from the set Humans of all
humans to itself. For each that is not a function, indicate why it fails to be
a function.

1. Mother(z) represents the mother of z.

2. Parent(z) represents the parent of z.

3. Child(z) represents the child of z.

4. FirstBornChild(z) represents the first-born child of z.

Example 6.4

Functions are common in mathematics, where they are typically given by a
formula. For example, the function f : R — R defined by

Basic Definitions 159

Figure 6.2: The graph of the function f(z) = z° — z.

flz) = 28—z

takes a real value z € R and returns another real value f(z) € R which is
computed from z by the formula z3 —z. We can use this formula to calculate

the value of f(z) when z = %:
3y _ (3)\¢ 3 _ 27 3 _ 1
3 =06 -3=%-3=%
Such functions are typically plotted as a graph on the zy-plane as in Fig-

ure 6.2, where we have indicated the point (%, %) on the graph.

Motivated by the above example, we can represent a function f: A — B
from A to B as a set of pairs over the Cartesian product A x B. The graph
of f, denoted graph(f), is the set of all pairs (a, b) € Ax B such that b = f(a).
Thus, for every a € A there is exactly one b € B such that (a, b) € graph(f),
namely b = f(a). As an example, for the score function from Example 6.1,

graph(score) = {(Andrews, 75), (Archer, 92), (Collins, 64),
(Davies, 88), (Evans, 78), (Fletcher, 46),
(Greene, 68), (Lewis, 54), (Parker, 64),

(Smith, 59), (Taylor, 100), (Williams, 78) };
and for f(z) = z® -z,

graph(f) = {(z,z® —z) : = € R}.

160 Functions

The graph of a function provides a complete description of the function, in
that two functions defined over the same domain and codomain are equal if,
and only if, their graphs are equal. This is easily proven in the following.

Theorem 6.4

Let f,g : A — B be two functions defined on the same domain and codomain.
Then f(a) = g(a) for all a € A if, and only if, graph(f) = graph(g).

Proof: Suppose that f(a) = g(a) for all a € A, and let (a,b) € A x B be
arbitrary. We need to show that (a,b) € graph(f) < (a,b) € graph(g). But

(a,b) € graph(f) & b= f(a)
< b=g(a) & (a,b) € graph(g).
Suppose now that graph(f) = graph(g), and let a € A be arbitrary.
We need to show that f(a) = g(a). But (a, f(a)) € graph(f), and since
a’)

graph(f) = graph(g), we have (a, f(a)) € graph(g), and hence f(a) = g(a).
O

(Exercise 6.4) (Solution on page 432)

What is the graph of the function f from Example 6.27

One-To-One and Onto Functions

A function f : A — B associates a single value b € B to each value a € A,
but the same value b € B may be associated to more than one value in A;
that is, we may have two different values a,a’ € A such that f(a) = f(a').
For example, given the function f(z) = z® — z there are three values of z
for which f(z) =0, namelyz = -1,z =0and z = 1.

If a function does not assign the same value to two different inputs, it is
said to be one-to-one (1-1), or injective.

]

Definition 6.4

A function f: A — B is one-to-one (1-1), or injective, if, and only
if, f(a) = f(a') implies that a = o' for all a,a’' € A. More formally:

Va,a’EA(f(a):f(a’) — a:a’).

In other words, there do not exist two different values in A which f maps
to the same value in B:

One-To-One and Onto Functions 161

ﬂHaEAHa’GA(f(a) = f(a') A a;éa’).

(Exercise 6.5) (Solution on page 432)

Indicate which of the following functions are one-to-one. For those that are
not one-to-one, indicate the reason that they fail to be one-to-one.

1. The function score : Class — Marks from Example 6.1.
2. The function f: R — R defined by f(z) = z2.
3. The function f: N — N defined by f(z) = z2.

(Definition 6.5)

A function f : A — B is onto, or surjective, if, and only if, its range is
equal to its codomain, range(f) = B; that is, every value b € B is the image

of some value a € A:

Vbe BIac A(f(a)=b).

(Exercise 6.6) (Solution on page 432)

Indicate which of the following functions are onto. For those that are not
onto, indicate the reason that they fail to be onto.

1. The function score : Class — Marks from Example 6.1.
2. The function f : R — R defined by f(z) = z2.
3. The function f: N — N defined by f(z) = z°.

A function f : A — B which is both one-to-one and onto is particularly
special: it defines a perfect correspondence between the sets A and B, in
that the function f pairs up the elements of A and B, with each element of
one set paired to exactly one element of the other set. Such a function is
referred to as a bijection.

Definition 6.6)

A function f is a bijection if it is both one-to-one and onto.

(Exercise 6.7) (Solution on page 432)

Indicate which of the functions fi, fs, fz or fs depicted by the following
diagrams are one-to-one, which of them is onto, and which of them is both
(i.e., a bijection).

162 Functions

fi f I3 fa
—A —A —A —A
7) GF) 58 (i
Q
1\ < "‘~ ’L‘

Let f : A — B be a bijection. Since f is onto, every element b € B is
the image of some element a € A; and since f is one-to-one, every element
b € B is the image of a unique element a € A. This suggest that we can
turn the mapping around, to wnvert it, and associate a unique element of A
with each element of B.

(Definition 6.7)

If f is a bijection, then the inverse function f~! : B — A is the function
that assigns to each element b € B the unique element a € A such that
f(a) = b. That is, f~*(b) = a if, and only if, f(a) = b. This can be pictured
as follows:

f

N

_
.

f—l
The function f~': B — A is also a bijection, and (f~!)™* = f.

Example 6.7

The function f : R — R defined by f(z) = 2z + 3 is a bijection, with
fY(z) = (y — 3)/2. For example,

A B

f(6) = 2-54+3 = 13
and

f(13) = (13-3)/2 = 5.

More generally, if f : A — B is one-to-one, then f provides a bijection
from A to range(f), and we can define the inverse function f~! : range(f) —
A.

Composing Functions 163

Example 6.8

Let A = {a,b,¢ ..., 2z} be the set consisting of the usual 26 characters
of the alphabet. We can use a bijection f : A — A as the basis of a simple
encryption scheme. For example, suppose we take the bijection f defined as

follows:
a b ¢ d e f 9 nh 1+ 3 k I m
r717 17117 v 171771771717 7171
Yy k t e ¢ s§ w u b m 2z v]
m o P ¢ r s ¢t w v w T Y =z
L e A A e A
9 9 4 P o 3 f r KB m a T 1

To encode a message we apply the function f to each letter of the message.
For example, the message

WE ATTACK AT DAWN
would be encoded as
NC YFFYTZ YF EYNQ

It is important that the function f is a bijection. No two letters can be
mapped to the same letter, as otherwise it would be impossible to decode
since different messages would give rise to the same encrypted text.

In order to decode messages that we receive which are encoded as above,
we simply apply the inverse function f~! to each of the letters of the en-
crypted text.

This encryption method is insecure; it is very easy to decode encrypted
messages even if you don’t know the function f with which they are en-
crypted. However, the idea of using a bijection f to encode messages, thus
allowing such messages to be decoded with the inverse function f~!, is fun-
damental.

(Exercise 6.8) (Solution on page 433)

What is the inverse of the function f of Example 6.87

Composing Functions

If we have a function f : A — B from A to B and another functiong : B — C
from B to C, we can:

164 Functions

e first apply the function f to some argument a € A to arrive at a value
b= f(a) € B;
e then use the value b = f(a) € B as an argument to the function g to
arrive at a value ¢ = g(f(a)) € C.
Composing two function applications, one after the other, is a very common
thing to do; it is commonly denoted by go f, and can be pictured as follows:

gof

(90 f)(a)
= 9(f(a))

Definition 6.8)

Given a function f : A — B from A to B and a function g : B — C from B
to C, the composition of g and f is the function go f : A — C from A to
C defined by

(90 f)(z) = 9(f(2))-

Note that the co-domain of the function f must be the same as the do-
main of the function g in order to form the composition. Also note carefully
the order of the functions: the composition g o f of the functions g and
f first applies the function f to its input before applying the function g
to the result. The reason for writing g o f rather than f o g is to coin-
cide with the order in which the individual function applications appear:

(90 f)(z) = g(f(2))-

(Exercise 6.9) (Solution on page 433)

Consider the following two functions f and g from {1, 2, 3, 4} to itself:

f g
A A

b I~ __
S e

Composing Functions 165

Find fog and go f.

If f: A— A then we can compose f with itself. In this case we typically
write f2 for f o f, and more generally f"*! = f o f". In other words,

fr=fofo--of
n times
As special cases we have f* = id4 and f! = f, noting that foids = f (see
exercise 8, page 177).
If we compose two one-to-one functions, we will arrive at yet another
one-to-one function. The same is true of onto functions. These facts are
demonstrated in the following two theorems.

Theorem 6.9)

Iff: A— B and g : B — C are both one-to-one, then sois go f : A — C.

Proof: Suppose (go f)(z) = (90 f)(y); thatis, g(f(z)) = g(f(y))-
What we need to demonstrate is that z = y.

Since g is one-to-one, f(z) = f(y).

Hence, since f is one-to-one, z =y. |

]

Theorem 6.10

If f: A— Bandg: B — C are both onto, thensoisgo f: A— C.

Proof: Suppose c € C.
What we need to demonstrate is that ¢ = (g o f)(a) for some a € A.

Since g is onto, ¢ = g(b) for some b€ B.
Since f is onto, b = f(a) for some a € A.

Hence c= g((a)) = (¢ o f)(a). O

Exercise 6.10) (Solution on page 433)

Prove that if f : A — B and g : B — C are both bijections, then so is
gof:A—C.

(Exercise 6.11) (Solution on page 433)

Prove that if f : A — B is a bijection, then f~'o f =idy and fo f~! = idp.

166 Functions

Exercise 6.12) (Solution on page 433)

* (64

Prove that function composition is associative: if f : A —- B, g: B — C
and h:C — Dthenho(gof)=(hog)of.

Comparing the Sizes of Sets

We can easily compare the sizes (the cardinalities) of two finite sets simply
by counting their elements; the size of one is greater than the size of the
other if it contains more elements, and the two sets are the same size if they
contain the same number of elements.

Counting the number of elements in a finite set involves listing them in
some arbitrary order, denoting one of them to be the first element, another
to be the second element, and so on to the last element. For example, we
would conclude that the set { Joel, Felix, Oskar, Amanda } has four elements
by virtue of the fact that we could find a one-to-one and onto function (a
bijection)

f:{1,2,3,4} — {Joel, Felix, Oskar, Amanda }

which effectively lists the elements of the set. For example, the function f
may list this set (alphabetically) as follows:

f : 1~ Amanda
2 — Felix
3 +— Joel
4 +— Oskar

This bijection demonstrates that the two sets { Joel, Felix, Oskar, Amanda }
and {1,2,3,4} are the same size (i.e., have the same cardinality).

We can compare the sizes of any two sets by trying to find a bijection
between them which would demonstrate that the two sets are the same size.
If such a bijection doesn’t exist, then one set must be bigger than the other.
For example, if we try to find a bijection

f : {Joel, Felix, Oskar, Amanda } — { cola, fanta, sprite }

we would quickly realise that this would be impossible, as no such function
could be one-to-one: some element of the second set would have to be the
image of more than one element of the first set since there are not enough
elements in the second set to go around. If this function was aimed at
providing each child with a drink, then it is clear that some drink would
have to be shared.

For the same reason, no function

Comparing the Sizes of Sets 167

f + {cola, fanta, sprite } — { Joel, Felix, Oskar, Amanda }

could be onto. If this function was aimed at distributing drinks to children,
then it is clear that at least one child would not get a drink.

Given two arbitrary sets A and B, we would naturally consider B to be
at least as large as A if we could find a one-to-one function f : A — B, since
f would associate each element of A with its own element of B, so intuitively
there would have to be at least as many elements of B as there are of A. On
the other hand, we would naturally consider A to be at least as large as B
if we could find an onto function f : A — B, since f would associate each
element of B with at least one element of A which is not associated with
any other element of B, so intuitively there would have to be at least as
many elements of A as there are of B. Finally, we would naturally consider
the two sets to be of the same size (cardinality) if we could find a bijection
f : A — B giving a direct correspondence associating each element of one
of the sets with its own element of the other set. We will denote that a set
A is no bigger than, no smaller than, and the same size as B by A < B,
A > B, and A = B, respectively, and summarise this discussion as follows.

(Definition 6.12)

e A < B if, and only if, there exists a one-to-one function f : A — B.

e A > B if, and only if, there exists an onto function f : A — B.

e A= B if and only if, there exists a bijection f: A — B.

The following results show that these definitions make sense in terms of
comparing sizes of sets. The first result says that one set is no bigger than
a second if, and only if, the second is no smaller than the first. The second
result says that two sets are the same size if, and only if, each is no larger
than the other.

Theorem 6.12

A < B if, and only if, B > A. That is, there exists a one-to-one function
f:+ A— B if, and only if, there exists an onto function g : B — A.

Proof: Suppose that f : A — B is one-to-one, and fix some element
ag € A We can define the function g : B — A as follows:

e if b € range(f) then b = f(a) for a unique value a € A, and we define
9(b) to be this unique value q;

e if b ¢ range(f) then we define g(b) to be aq.

TIf no such aq exists, that is if A = @, then @ trivially represents the graph of a one-to-one
function from A to B, as well as the graph of an onto function from B to A.

168 Functions

This function g is onto, as a = g(f(a)) for each element a € A.

Suppose now that g : B — A is onto. For each value a € A, fix some
value b, such that g(b,) = a. Then the function f : A — B defined as
f(a) = b, for each a € A is clearly one-to-one. O

(Theorem 6.13) Schroder-Bernstein Theorem

A= B if, and only if, A< B and B < A.

Proof: Suppose we have functions f : A — B and g : B — A which are
both one-to-one; we wish to construct a bijection h: A — B.

For any a € A, consider the sequence generated from a by alternately
applying ¢ ! and f ! whenever possible:

a = oga) = fe@) & o (F e M) -

This is possible since f and g are one-to-one, and hence f! : range(f) — A
and g7! : range(g) — B are well-define functions. However, this sequence
may stop at some point, either at an element of A not in the range of g (and
hence for which g~! is not defined) or at an element of B not in the range
of f (and hence for which f~! is not defined).

We can then define our bijection h : A — B as follows:

g *(a), if the sequence generated by a
h(a) = ends at an element of B;

f(a), otherwise.

This is a well-defined function, since g~'(a) will be defined if the sequence
generated by a ends at an element of B (in particular, not at a). It remains
to demonstrate that this function is one-to-one and onto.

To demonstrate that h is one-to-one, let us assume that h(z) = h(y),
and show that we must have z = y.

e If the sequences generated by z and y both end at elements in B,
then h(z) = g7 *(z) and h(y) = g~ (y), so g7 *(z) = 97'(y), and hence
T =y.

e If neither sequence generated by z and y ends at an element of B, then
h(z) = f(z) and h(y) = f(y), so f(z) = f(y), and hence z = y.

e If the sequence generated by z ends at an element of B, but not so for
the sequence generated by y, then h(z) = g~*(z) and h(y) = f(y), so
g (z) = f(y). But then y = f (g (z)) would appear (as the third
element) in the sequence generated by z, contradicting the assumption
that its sequence ends differently to that generated by z.

Comparing the Sizes of Sets 169

e If the sequence generated by y ends at an element of B, but not so for
the sequence generated by z, then h(y) = g~!(y) and h(z) = f(z), so
9 1(y) = f(z). But then z = f~!(g7'(y)) would appear (as the third
element) in the sequence generated by y, contradicting the assumption
that its sequence ends differently to that generated by y.

To demonstrate that A is onto, let us assume that b € B, and show that
we must have b = h(a) for some a € A.

e If the sequence generated by g(b) ends at an element of B, then
h(g(b)) = g7 (g(b)) = b.

e If the sequence generated by g(b) does not end at an element of B,
then f !(b) must be defined and appear (as the third element) in the
sequence generated by g(b), and hence A(f71(d)) = f(f71(b)) =b. O

These definitions are unremarkable for finite sets, but reveal surprising
relationships between infinite sets, as the following example demonstrates.

Example 6.13

The set N of nonnegative integers in some sense contains almost twice as
many elements as the set E = {0, 2, 4, ... } of nonnegative even integers.
However, the function f : N — E defined by f(n) = 2n provides a bijection
from N to E, demonstrating that there are in fact the same “number” of even
integers as there are integers. This bijection can be pictured as follows:

f:

o —Oo

1
T
2

S
o —w
00—
5 o
5o
=
5 oo
5o
8

The confusion arising from the above example is with the idea of the
“number” of elements of an infinite set. There are in fact an infinite num-
ber of objects in each of the sets, and as such there is no problem with
considering them to have the same cardinality.

Realising that the set of even integers is no smaller than the set of all
integers, it may seem that one infinite set is as big as any other. In fact,
some infinite sets are larger than others. To explore this idea, we start with
the following definitions.

Definition 6.13)

A set A is said to be finite if, and only if, there is a bijection

f:{1,2,3,...,n}— A

170 Functions

for some n € N. This function effectively lists all of the elements of A, and
the value n is the cardinality of A: |A| = n.

A set A is said to be countably infinite if, and only if, there is a
bijection

f:N— A

This function lists the elements of A in an infinite list.

Finally, a set is said to be countable if, and only if, it is finite or count-
ably infinite; and it is said to be uncountable if, and only if, it is not
countable.

Example 6.14

]

The set of integers Z is countable. A bijection f : N — Z witnessing this
fact can be defined as

ndl ifn s odd;
fln) =

-5 ifn s even.

This function would list the integers as follows:

f:0 1 2 3 4 5 6 7 8 9 10
L A e e e |
0 1 -1 2 -2 3 -3 4 -4 5 -5

Clearly this function is one-to-one and onto, as every integer will appear
exactly once in this list.

Exercise 6.14) (Solution on page 433)

What is the inverse f~' : Z — N of the bijection f : N — Z given in
Example 6.147

(Exercise 6.15) (Solution on page 434)

Prove that A = B for any two countable sets A and B.
That is, given bijections f : N — A and g : N — B, show how to
construct a bijection h: A — B.

As an example of the difference between countable and uncountable sets,
we shall see that there are far more numbers on the real number line than
just the integers; that is, the set of real numbers R is uncountable. This
may seem perfectly sensible, as these numbers fill the number line: between

Comparing the Sizes of Sets 171

any two different real numbers, no matter how close they are to each other,
you can find a third. The integers, on the other hand, are relatively few and
far between.

While such an intuitive argument gives rise to a valid result in this case,
the same intuition would lead you to believe that there are uncountably-
many rational numbers, as between any two different rational numbers,
no matter how close they are to each other, you can find a third. How-
ever, before we demonstrate that there are uncountably-many reals, we first
demonstrate that this intuition about the rationals is faulty; the rationals
are countable, and hence no more numerous that the integers.

Example 6.15

The set Q' of positive rational numbers is countable. To see this, we need
to find a bijection

f: N—=Q"

which completely lists them. To this end, we first note that a positive
rational is a number of the form g, where p and ¢ are positive integers, and
we can arrange these in an infinite number of infinite rows by:

e listing all the rationals with numerator p = 1 in the first row,
e listing all the rationals with numerator p = 2 in the second row,

e listing all the rationals with numerator p = 3 in the third row,

and so on as depicted in Figure 6.3. We can then zigzag diagonally through
this arrangement as depicted in Figure 6.3, listing the rationals in the order
in which they are encountered. However, we only list rationals that appear
in lowest form, and ignore those (depicted crossed out in grey circles in

Figure 6.3) that are not in lowest form; for example, we do not include % in

our listing as it will have already appeared earlier in our list as %

The resulting listing provides the required bijection f : N — Q*:

HE= — O
HIN) «— =
Nl—= < o
W= < W
(I I
=i <« ot
NwW «~— o
WIN —
= < 00
(S We]
»—l\tﬂ<—|8

This function is one-to-one and onto as only rationals g in lowest form
appear in the list and each of these is encountered once and only once while
zigzagging through the arrangement.

Extending this result to show that the set QQ of all the rational numbers
is countable is straightforward.

172 Functions

Figure 6.3: Enumerating the positive rationals.

(Exercise 6.16) (Solution on page 434)

Prove that the set Q of all rationals is countable.

Example 6.16

The set [0, 1] of nonnegative real numbers no greater than 1 is uncountable.
To see this we must show that no bijection f : N — [0, 1] exists. To this
end, assume that f is such a function, and consider the listing of the real

numbers that it gives:

f:

Each number in this list, being a nonnegative real number no greater than
1, is given by an infinite decimal expansion with a leading 0. In particular,

0
1

2
3
4
5

— 0. @] do1 doo dos dos dos
= 0. di @] dio diz dis dis
> 0. dy dyn (dgg) dy das dos
= 0.dsy da1 da @] dsa dss
= 0.dyo du dip da degs -
= 0.dso dsi dsz ds3 dss @j

The Knaster-Tarski Theorem 173

the value 0 appears as 0.00000 - - - and the value 1 appears as 0.99999- - -
Consider now the real number

r = 0.7.79T3T4T5 + -
in which the sth decimal digit r; is given by
r; = (di; + 5) mod 10.

That is, the sth decimal digit of r is defined to differ by 5 from the :th
decimal digit of f(z).

Assuming that the function f above is indeed a bijection, and in partic-
ular onto, the value r must appear somewhere in the list; that is, we must
have r = f(n) for some n € N. However, for each n, r differs (by 5) from
f(n) in the nth decimal place, meaning that we cannot have r = f(n).

An infinite set may thus be either countably infinite or uncountably
infinite. In Exercise 6.15 we saw that any two countably-infinite sets are the
same size, but the same is not true of two uncountable sets. The following
exercise demonstrates that given any set, no matter how big, you can always
construct an even bigger set by merely taking its powerset.

(Exercise 6.17) (Solution on page 434)

* 65

Show that the powerset P (A) of any set A is strictly larger than A, by
showing that no function f: A — P (A) can be onto.

(Hint: Show that the set B={z € A : z ¢ f(z)} is different from f(a)
foralla € A.)

The Knaster-Tarski Theorem

In this section, as an example in working with sets, we prove an important
result on the existence of (greatest and least) fixed points of monotonic func-
tions defined on the powerset of a given set. We also describe a procedure
for calculating these fixed points.

Definition 6.17

Let S be a set, and let f : P (S) — P (S) be a function which maps subsets
of S to subsets of S.

e f is monotonic if, and only if, f(A) C f(B) whenever A C B.
e AC S is a fized point of f if, and only if, f(A) = A.

174 Functions

e A C S is the greatest fized point of f — denoted gfp(f) - if, and
only if, A is a fixed point (ie, f(A) = A) and A is larger than all other
fixed points: if f(B) = B then B C A.

e A C S is the least fized point of f — denoted Ifp(f) — if, and only if,
A is a fixed point (ie, f(A) = A) and A is smaller than all other fixed
points: if f(B) = B then A C B.

Note that fixed points need not exist; and even if they do exist, then
there is no guarantee that greatest and/or least fixed points exist.

Example 6.17
Let S = {0} and define f: P(S) — P (S) by f(0) = S and f(S) = 0.
Clearly f does not have a fixed point.

(Exercise 6.18) (Solution on page 434)

Define a function f : P (S) — P (S) over the set S = {1, 2} which has two
fixed points which are neither greatest nor least fixed points.

The following result, however, shows that both greatest and least fixed
points exist for monotonic functions.

(Theorem 6.18) Knaster-Tarski Theorem

If f:P(S) — P(S) is monotonic, then f has both greatest and least fixed
points. Furthermore, these can be defined as follows:

e 9fo(f) = U{ACS : AC f(A)}; and
o Ifp(f) = N{ACS : f(4)C A}

Proof: We will prove the result about the greatest fixed point gfp(f) and
leave the result about the least fixed point ifp(f) as an exercise (Exercise 12,
page 178).

To this end, let G = U{ACS : AC f(A)} as in the Theorem. We
first demonstrate that G C f(G) by showing that given any a € G we must
have that a € f(G).

Suppose a € G. By the definition of G, this means that a € A for some
A C S such that A C f(A). Hence a € f(A). Moreover, A C G (as
G is the union of all such sets), so by the monotonicity of f we have
that f(A) C f(G). Hence a € f(G) as required.

Next, we demonstrate the reverse inclusion, that f(G) C G.

The Knaster-Tarski Theorem 175

Since we’ve shown that G C f(G), by the monotonicity of f we have
that f(G) C f(f(G)). This means that f(G) is one of the sets in the
family of sets whose union is G, and hence f(G) C G.

We've thus shown that G is a fixed point of f. It remains to show that it
is the greatest fixed point. To this end, suppose that X is any fixed point
of f. Since X C f(X), X is one of the sets in the family of sets whose union
is G, and hence X C G. |

Beyond knowing that greatest and least fixed points of f exist, we would
like to know how to calculate them without having to calculate f(A) for all
subsets A C S. To do this, we can exploit the following observations.

Theorem 6.19

For alln € N,

1. f*(0) C f**1(0) and f*(0) C Ufp(f);
2. f(8) 2 f+(S) and f*(S) 2 afp(f)-

From this we can deduce the following:

(2) Unen f(0) C ifp(f) and Unen f*(S) 2 afp(f);

(b) If f*(0) = f~+1(0) then Ifp(f) = f"(0);

(c) If f(8)=f*'(S) then gfp(f)= f"(S);

(d) If |S|=n then Ufp(f)= f(0) and gfp(f) = f™(S).

Proof: We prove only 1., by straightforward induction, and leave 2. and
the corollaries (a)-(d) as exercises (Exercise 13, page 178).
For the base case, f°(0) = 0, so clearly f°(0) C f!(0) and f°(0) C Ifp(f)-
For the induction case, assuming that f»~1(0) C f™(0) and that f~~!(0) C
ifo(f),

o f7(0) = F(f77N()
o f7(0) = f(F"7HD)

N

f(f(@)) = f+(0); and

N
[y
=
=X
[,
—
Nl
Il
=
(S
—
O

Thus, in order to calculate the least fixed point Ifp(f) of f, we can
repeatedly apply f starting from the empty set 0 until we arrive at a fixed
point, which by above will be ifp(f):

0 = f°(0) C f1(0) C f2(0) C--- C f7(0) = f~(0) = Up(f)-

A similar procedure, starting from S, will give us the greatest fixed point.
This is guaranteed to work if the set .S is finite; however, if S is infinite, we

176 Functions

may generate infinite sequences of sets which approach yet never reach the
fixed points.

(Exercise 6.20) (Solution on page 434)

Let f: P (N) — P (N) be defined by f(S)={0}u{n+2 : ne S}

1. Prove that f is monotonic.
2. Show that f*(@) C f**(@) and f*(N)D f**}(N) for each n € N.
3. Determine the least and greatest fixed points Ifp(f) and gfp(f).

Additional Exercises

1. Identify the domain, codomain, and range of the following functions.

(a) the function that assigns to each nonnegative integer the least
prime number greater than it.

(b) the function that assigns to each pair of positive integers the
maximum of these two values.

2. Let A = {1,2,3,4}and B = {a, b, ¢,d}, and let fi, f, and f; be
functions from A to B with the following graphs:
graph(fl) {(1:d)1 (270‘)1 (376)1 (476)}
graph(fg) = {(]vd): (210)1 (3,0,), (4wb)}
graph(f3) {(11b)7 (zic)i (310‘)7 (41d)}

Indicate which of these functions are one-to-one, which are onto, and
which are bijections.

3. Give an example of a function from N to N that is

a) one-to-one but not onto.

(a)

(b) onto but not one-to-one.

(c) one-to-one and onto, but which does not map any value to itself.
)

(d) neither one-to-one nor onto.

4. Find all functions from X = {a, b} to Y = {1, 2, 3}. In each case,
indicate whether or not the function is one-to-one, and whether or not
it is onto.

5. Define the function f : [0,1] — (0,1) by: f(0) = 1/2; f(1/n) =
1/(n+2) for all positive integers n; and f(z) = z otherwise. Prove
that f is a bijection.

Additional Exercises 177

6.

10.
11.

Consider the following three functions f, g and A from {1, 2, 3} to
itself:

f g h
VY VY VY

\/

>

pN 1] 17X

Find fog,gof, foh,hof,goh,hog.

. Find go f and fog, where f(z) = z2+1 and g(z) = z—2 are functions

from R to R.

. Prove that for any function f: A — B, f = foidg and f = idgo f,

where idx : X — X is the identity function on X, that is, f(z) = z
forall z € X.

. Assuming that f : A — B and g : B — C, prove or disprove the

following.

(a) If f and go f are both one-to-one, then g must also be one-to-one.
(b) If g and go f are both one-to-one, then g must also be one-to-one.
(c) If f and g o f are both onto, then g must also be onto.
(d) If g and g o f are both onto, then g must also be onto.

Prove that if A C B and B is countable, then A is countable.

In Example 6.15 we saw how to construct a function f : N — QT
which listed all of the positive rational numbers by zigzagging through
an infinite array of rational numbers. However, we had to disregard the
rational numbers that we came across which were not in lowest terms.
In this exercise we explore an alternative approach which avoids this
complication.

Consider the tree-like diagram in Figure 6.4 which is constructed by
starting with 1/1 at the top, and from each branching point labelled
1/j drawing a left branch labelled 7/(i+7) and a right branch labelled

(i+3)/3.
Argue that every positive rational number appears exactly once in this
tree, by arguing that each of the following is true.

(a) Every node is labelled by a rational number in lowest form.
(b) Every rational number appears somewhere in the tree.

(c) No rational number appears twice in the tree.

178 Functions

1
1

1/\2
2 1
VRN S\,
3 2 3 1
/\ /\ /\ /\
' A A
/N /NN N N NN

Figure 6.4: Enumerating the rational numbers

Thus, to list the rational numbers without repetition we need merely
list the successive rows of the tree.

12. Prove the second part of Theorem 6.18 from page 174, that L as defined
there is the least fixed point of f.

13. (a) Prove the second part of Theorem 6.19 (page 175).
(b) Prove the four corollaries (a)-(d) to Theorem 6.19 (page 175).

Chapter 7
Relations

It 1s a melancholy truth that even great men have their poor rela-
tions.
- Charles Dickens, Bleak House.

In previous chapters we looked at grouping objects together into sets, as well
as logics to reason about the elements in a set. We also studied functions
f: A — B mapping elements in one set A to elements in another set B.

In this chapter we shall turn our attention towards more general rela-
tionships between elements of sets than simple mappings. Some everyday
examples of such relationships are “parenthood” amongst the set of people
(“A is a parent of B”) and “divisibility” amongst the set of integers (“z
divides evenly into y”). More generally, relationships can exist between
elements of different sets, such as the “enrolment” relationship between the
sets of students and courses (“student s takes course c¢”). Relationships
may even exist amongst elements of three or more sets, such as the “grade”
relationship between students, courses and grades (“student s got a grade
of g in course c”).

@ Basic Definitions

We start by recalling that the truth set of a predicate such as
S(z,y,2) = “student z, in course y, scored a grade of z”

denotes a subset of a Cartesian product, in this case S x C x G, where S,
C and G are the sets of students, courses, and grades, respectively. In this
example, S(s,c, g) is true if, and only if, s is a student who scored a grade
of g in course c; and the truth set for this property is

Grades = {(s,c,g) : s is a student who
scored a grade of g in course ¢ }.

An n-ary relation R is just such a subset of n-tuples. In the above exam-
ple, the set Grades is a ternary (that is, a 3-ary) relation over S x C x G:

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_8, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_8

180 Relations

Grades C S x C x G.

The most obvious use of n-ary relations is in representing databases. For
example, the above relation Grades might represent a particular University’s
database of students’ course grades.

Example 7.1

The Internet Movie Database (IMDb) http://www.imdb.com is a Web site
which contains a massive, and ever-increasing, online database of films and
TV shows, associating with each of these its actors and production crew per-
sonnel (directors, writers, producers, etc), as well as many other attributes
such as year of release and genre.

For example, the table in Figure 7.1 represents the database of James
Bond films, recording their title, year of release, starring actor, and director.
This is a fraction of the information, presented in tabular form, delivered by
IMDbD as a result of a search on the term “James Bond”. It can be viewed
as a relation

BondFilms C TITLES x N x NAMES x NAMES
over the sets
TiTLES = film titles;
N = natural numbers representing years;

NaMEs = names of people;

containing the 20 records (i.e., 4-tuples):
r01 = (Dr. No, 1962, Sean Connery, Terence Young)
r02 = (‘Thunderball, 1965, Sean Connery, Terence Young)

r20 = (Skyfall, 2012, Daniel Craig, Sam Mendes).

The main use to which such a database is put is for being queried. As an
example, we may wish to query the database to find out which James Bond
films star Roger Moore. The answer to this query would be a particular set
of records:

Q = {r € BondFilms : r stars Roger Moore }
= {r06, r07, r08, r10, r11}.

Exercise 7.1) (Solution on page 435)

Express and answer the following queries about the above database of James
Bond Films.

Binary Relations

181

” | Title | Year ‘ Star Director
701 | Dr. No 1962 | Sean Connery | Terence Young
702 | Thunderball 1965 |Sean Connery | Terence Young
703 | You Only Live Twice |1967 Sean Connery | Lewis Gilbert
704 | On Her Majesty’s 1969 | George Lazenby | Peter R. Hunt
Secret Service
705 | Diamonds Are Forever | 1971 | Sean Connery Guy Hamilton
706 | The Spy Who 1977 | Roger Moore Lewis Gilbert
Loved Me
707 | Moonraker 1979 | Roger Moore Lewis Gilbert
708 | For Your Eyes Only 1981 | Roger Moore John Glen
709 | Never Say 1983 | Sean Connery |Irvin Kershner
Never Again
710 | Octopussy 1983 | Roger Moore John Glen
r1l | A View to a Kill 1985 | Roger Moore John Glen
712 | The Living Daylights |1987 Timothy Dalton | John Glen
713 | Licence to Kill 1989 | Timothy Dalton | John Glen
r14 | Golden Eye 1995 | Pierce Brosnan | Martin Campbell
715 | Tomorrow Never Dies | 1997 | Pierce Brosnan | Roger
Spottiswoode
716 | The World Is 1999 | Pierce Brosnan | Michael Apted
Not Enough
r17 | Die Another Day 2002 | Pierce Brosnan | Lee Tamahori
r18 | Casino Royale 2006 | Daniel Craig Martin Campbell
719 | Quantum of Solace 2008 | Daniel Craig Marc Forster
720 | Skyfall 2012 | Daniel Craig Sam Mendes

Figure 7.1: James Bond Films.

1. Which Bond films were directed by Lewis Gilbert?
2. Which Bond Films were released in the 1970s?

Binary Relations

Binary (that is, 2-ary) relations are the most common types of relations,
and are of particular importance. Concepts such as

e order (“element a comes before element b”),

182 Relations

e equivalence (“element a is the same as element b”), and

e function (“input a results in output b”)

are all examples of binary relations, relating one thing a to another thing b.
They are often written in infix style, so that we would write aRb rather
than (a,d) € R.

A binary relation R C A x B is thus just a set of ordered pairs, and is
said to be a relation from the set A to the set B. The sets A and B are
referred to as the source and target, respectively, of R.

A binary relation R C A x A from a set A to itself is said to be a relation
on A. In this case, the relation is said to be homogeneous, whereas a
relation R C A x B with A # B is said to be heterogeneous.

Example 7.2

As an example of a binary relation on the natural numbers N we can take
the usual less-than-or-equal-to relation < C N x N:

< =A{(z,y) r z<y}

= {(0,0), (0,1), (1,1), (0,2), (1,2), (2,2), --- }-

As an example of a binary relation from the set H of humans to the
natural numbers N we can take the relation R C H x N given by:

R = {(z,n) € HxN : z has n children }.

As an example of a binary relation from the set C of cities to the set N
of countries (nations) we can take the relation R C C x N given by:

R = {(¢,n) € Cx N : cislocatedin n }.

Example 7.3

Joel likes mint ice cream and coffee ice cream; Felix likes vanilla ice cream
and cherry ice cream; Oskar likes vanilla ice cream and chocolate ice cream;
and Amanda likes chocolate ice cream and mint ice cream. These properties
can be related by the binary relation

Likes C Children x Flavours

where
Children = {Joel, Felix, Oskar, Amanda} and
Flavours = { Vanilla, Chocolate, Coffee, Cherry, Mint }

consisting of the following ordered pairs:

Binary Relations 183

Likes = {(Joel,Mint), (Joel, Coffee),
(Felix, Vanilla), (Felix, Cherry),
(Oskar, Vanilla), (Oskar, Chocolate),
(Amanda, Chocolate), (Amanda, Mint) }.
Thus,
Likes = {(c, f) € Children x Flavours :
child ¢ likes ice cream flavour f }.

Put differently, this relation is the truth set of the predicate L defined by

L(c, f) = child c likes ice cream flavour f.

(Exercise 7.3) (Solution on page 435)

Referring to the database of James Bond films in Example 7.1, give the
binary relation Starsin C NAMES x TITLES defined by

StarsIn = {(z,y) : stars as James Bond in y }.

Binary relations can be visualised pictorially by drawing arrows connect-
ing the related objects.

e A heterogeneous relation R C Ax B from A to B would most naturally
be depicted by drawing the two sets A and B side-by-side, and drawing
an arrow from each element a € A in the first set to each of those
elements b € B to which it is related; i.e., such that (a,d) € R.

e A homogeneous relation R C A x A on A on the other hand might
more naturally be depicted by simply laying out the elements of A
in some natural fashion, and drawing an arrow froma € Atobe A
whenever (a,b) € R.

Example 7.4

The relation Likes of Example 7.3 is pictured as follows:

Likes

184 Relations

We have an arrow from a child ¢ € Children to a flavour f € Flavours whenever
(c, f) € Likes.

Example 7.5

The subset relation C on the powerset of {a, b }:

P({a b)) = {0, {a}, {b}, {a, 0}]

is pictured as follows:

a

{a, b}

C\{a}/f \{bQ
7

0

O

We have an arrow from one set A to another set B whenever A C B.

(Exercise 7.5) (Solution on page 435)

Referring to the database of James Bond films in Example 7.1, let

BonpDAcTOrRs C NAMES

be the set of six actors who have played the role of James Bond, and de-
fine the two binary relations Before and FirstBefore on BONDACTORS as
follows:

Before = {(z,y) : z stars as James Bond in an earlier film
than one in which y stars as James Bond };

FirstBefore = {(z,y) : z starred as James Bond before y did }.

Present these relations pictorially as well as list out their elements.

(Be careful with this exercise. The way that the binary relation Before
is defined allows each of two actors to appear before the other, and for one
actor to appear before himself!)

Kinship relations are prime examples of binary relations. We all have
an intuitive grasp of these and we can name a wide range of relationships,
e.g. father, mother, sibling, great uncle. The English language is not even

Binary Relations 185

particularly rich in this respect. In Swedish, for example, you don’t just refer
to your aunt or your uncle, but more specifically to your farbror (father's
brother), your morbror (mother’s brother) your faster (father’s sister), or
your moster (mother’s sister).

Example 7.6

The Duck family consists of the parents Hortense and Quackmore Duck,
and their two children Della and Donald. Hortense has a brother Scrooge,
and Della has three sons: Huey, Louis and Dewey. Let us consider the set
of these eight Ducks:
Ducks = {Quackmore, Hortense, Scrooge,
Donald, Della, Huey, Louis, Dewey }

There are a variety of kinship relations defined over Ducks x Ducks, such
as the following:

Father = { (Quackmore, Donald), (Quackmore, Della) }

Mother = {(Hortense, Donald), (Hortense, Della),
(Della, Huey), (Della, Louis), (Della, Dewey) }.

Parent = { (Quackmore, Donald), (Quackmore, Della),
(Hortense, Donald), (Hortense, Della),
(Della, Huey), (Della, Louis), (Della, Dewey) }

Uncle = {(Scrooge, Donald), (Scrooge, Della),
(Donald, Huey), (Donald, Louis), (Donald, Dewey) }

(Exercise 7.6) (Solution on page 436)

7.2.1

Define the kinship relations Child, Brother, Sister and Sibling on the Duck
family of Example 7.6, and present the Chzild relation pictorially.

Functions as Binary Relations

We have defined a function f : A — B to be an assignment of exactly one
element of B to each element of A, and noted in Theorem 6.4 that such a
function is completely determined by its graph:

graph(f) = {(a,b) e Ax B : b= f(a) }.

186 Relations

The graph of the function f is a binary relation from A to B satisfying the
following special property: every element a € A is related to exactly one
element b € B.

Conversely, any binary relation R C A x B which satisfies this property
defines a function fr: A — B.

Theorem 7.6

7.3.1

A binary relation R C A x B is the graph of a function from A to B if, and
only if,

Vae Adlbe B((a,b) € R) (%)

Proof: If the relation R C A x B satisfies the property (%), then we can
define a function fr : A — B by mapping each a € A to the unique b € B
such that (a,b) € R. Clearly, graph(fr) = R, as given any (a,b) € A x B,

(a,b) € graph(fz) & fa(a)=b (by definition of graph(fz))
< (a,b)€ER (by definition of fr).

Conversely, if R = graph(f) for some function f : A — B, then R must
clearly satisfy (x), as the graph of any function must satisfy (x). O

Operations on Binary Relations

We have defined binary relations as certain sets; specifically, a binary relation
from A to B is a subset of A x B. With this view in mind, there are various
operations which we can apply to binary relations to extract information
from them, or to build further binary relations, typical of the sort employed
by database queries.

Boolean Operations

As binary relations are sets (of pairs), the usual set operations can be applied
to these, often quite usefully. In the above Duck family Example 7.6, for
instance, the Parent relation is defined simply as the union of the Father
and Mother relations:

Parent = Father U Mother.

This is intuitively clear, as z is a parent of y if, and only if, either z is the
father of y, or z is the mother of y:

(z,y) € Parent if, and only if, (z,y) € Father or (z,y) € Mother.

Operations on Binary Relations 187

We can also express the Father relation in terms of the Parent and
Mother relations, noting that a father is someone who is a parent but not a
mother:

Father = Parent \ Mother.

Note that in order to apply set operations to binary relations, the rela-
tions being operated on must be defined over the same sets (in this case,
Ducks x Ducks). It would not make much sense, for example, to take
the union Father U Before of the relation Father C Ducks x DucCks from
Example 7.6. and the relation Before C NAMES x NAMES from Exercise 7.5.

]

Exercise 7.7) (Solution on page 437)

7.3.2

Let R;, Ry and Rj represent the less-than relation <, the equality relation
=, and the less-than-or-equal-to relation <, respectively, all on the set N
of natural numbers:

Ri={(z,9)eN 1 z<y}
Ry={(z,y)eN : z=y}
RBy= {(z,9)eN* : z<y}.
What are the following relations?

1. Rl @] Rg
2. Rs N Ry
3. R3 \ Rl

Inverting Relations

Given a binary relation, an obvious and natural thing to do is to turn it
around, or invert it, and consider the converse relation. For example, the
opposite, or inverse, of the less-than-or-equal-to relation < is the greater-
than-or-equal-to relation > (as z < y if, and only if, y > z); and the
opposite, or inverse, of the Parent relation is the Child relation (as z is a
parent of y if, and only if, y is a child of z).

Given a binary relation R C A x B from a set A to a set B, the inverse
relation R~ C B x A from B to A is defined as

R = {(b,a) : (a,b) € R}.

If we consider the pictorial representation of the relation R, we can derive
the pictorial representation of R~! simply by reversing the direction of all
of the arrows, thus replacing each arrow from a to b where (a,b) € R by an
arrow from b to a.

188 Relations

Example 7.7

The inverse of the relation Likes C Children x Flavours from Example 7.3 is
the relation Likes * C Flavours x Children of “is liked by”:

For example, (Joel, Mint) € Likes indicates that Joel likes mint ice cream,

while (Mint, Joel) € Likes " indicates that mint ice cream is liked by Joel.

(Exercise 7.8) (Solution on page 437)

7.3.3

What is Sibling™!, the inverse of the Sibling relation?

Composing Relations

As well as turn relations around, another natural operation is to combine,
or compose, two relations by following one with another. Given relations
RC Ax B from Ato Band S C B x C from B to C, the composition of
S and R is the relation So R C A x C from A to C defined as

SoR = {(a,c) € AxC : 3be€ B such that
(a,b) € R and (b,c) € S}.

If we consider the pictorial representation of the relations R and S, we can
derive the pictorial representation of S o R simply by following an R-arrow
by an S-arrow, as in the following example:

SoR

R S AN

A

V|

<]

QO O O O
QO O O O

Operations on Binary Relations 189

Note that the target of the relation R must be the same as the source of the
relation S in order to form the composition. Also note carefully the order of
the relations: the composition S o R of the relations S and R first “applies”
the relation R to its source before “applying” the relation S to the result. In
this sense, the definition coincides with the composition of functions given
in Definition 6.8.

Example 7.8

J

A grandfather is a father of a parent, and we can use this characterisation
to define the Grandfather relation:

Grandfather = Parento Father.

The order in which we write the two relations which are being composed is
important. For example, a grandfather is a father of a parent, which is not
the same thing as a parent of a father:

Father o Parent # Parento Father.

(Solution on page 437)

Define the relations Uncle and Nephew in terms of simpler relations, and
derive these relations for the Duck family of Example 7.6.

7.3.4 The Domain and Range of a Relation
Given the relation R C A x B from A to B,
e the domain of R is the set
domain(R) = {a € A : 3b¢€ B such that (a,b) € R};
e the range of R is the set
range(R) = {b€ B : Ja € A such that (a,b) € R}.

That is to say, the domain of a relation consists of all elements of the source
A of the relation which are related to something in the target B, and the
range of a relation consists of all elements of the target B of the relation
which are related to something in the source A.

Example 7.9

]

Consider the following relations on humans H:

190 Relations

Parent = {(z,y) : = is a parent of y }
Brother = {(z,y) : z is a brother of y }

Then
domain(Parent) = the set of parents (not all of H);
range(Parent) = the set of children (all of H);
domain(Brother) = the set of brothers (males with siblings);

range(Brother) = the set of humans with a brother.

(Exercise 7.10) (Solution on page 438)

Prove that if R C A x B is the graph of a function f : A — B, then
domain(R) = A (i.e., the domain of f) and range(R) = range(f).

Properties of Binary Relations

There are various properties that a binary relation on a set A may or may
not satisfy. Of particular interest are the properties of reflezivity, symmetry
and transitivity, all of which we shall explore in this section.

7.4.1 Reflexive and Irreflexive Relations

The difference between the less-than relation < and the less-than-or-equal-
to relation < on numbers is that any number is less-than-or-equal-to itself
(since it is equal to itself), but no number is less-than itself. For example,
2 < 21is true but 2 < 2 is not true. This motivates our first property.

Definition 7.10)

A relation R on a set A is reflexive if, and only if, every element of A is
related to itself by R:

Vz € A (zRz).
The relation is irreflexive if, and only if, no element of A is related to itself:

Vz € A—(zRz).

Thus, for example, the less-than-or-equal-to relation < is reflexive,
while the less-than relation < is irreflexive. Note that irreflexive is not
the same as non-reflexive: it is possible for a binary relation to relate some

Properties of Binary Relations 191

but not all elements to themselves, thus making the relation neither reflexive
nor irreflexive.

(Exercise 7.11) (Solution on page 438)

Is the relation Before from Exercise 7.5 reflexive, irreflexive, or neither?
What about the relation FirstBefore?

7.4.2 Symmetric and Antisymmetric Relations

Equality between objects suggests — amongst other things — a certain symme-
try between the objects, which is captured by the next property of interest.

(Definition 7.11

A relation R on a set A is symmetric if, and only if, y is related to z
whenever z is related to y:

Vz,y € A (zRy = yRz).

The relation is antisymmetric if, and only if, y is never related to z
whenever z is related to y, except possibly for when x = y:

Vz,y€c A ((zRy/\sz) >z :y).

Thus, for example, the relations < and < are both antisymmetric, while
the relation = is symmetric (as well as anytisymmetric).

(Exercise 7.12) (Solution on page 438)

Is the relation Before from Exercise 7.5 symmetric, antisymmetric, or nei-
ther? What about the relation FirstBefore?

7.4.3 Transitive Relations

If one number is less than a second number which is itself less than a third
number, then clearly the first number will also be less than the third number.
This property of the less-than relation is embodied in the final property of
interest.

Definition 7.12

A relation R on a set A is transitive if, and only if, z is related to z
whenever z is related to some y which is related to z:

Vz,y,z€ A ((:I:Ry ANyRz) = a:Rz).

192 Relations

Thus, for example, the relations < and < are both transitive.

(Exercise 7.13) (Solution on page 438)

Is the relation Before from Exercise 7.5 transitive? What about the relation
FurstBefore?

Example 7.13

Consider the sibling (brother or sister) relationship over people.

1. This is not reflexive, as you would not consider someone to be their
own sibling. It is in fact irreflexive.

2. It is symmetric as anyone is obviously a sibling to each of their siblings.
Clearly it is not antisymmetric.

3. Finally, it is not transitive, as this would imply that any person who
has a sibling must be a sibling of themselves. Also, if we allow half-
siblings, one person may be a sibling to a second person due to sharing
a common father whilst having different mothers; and the second per-
son may be a sibling to yet a third person due to sharing a common
mother whilst having different fathers. In this scenario, the first and
third children would not be siblings, as they do not share a common
parent.

(Exercise 7.14) (Solution on page 439)

744

Consider the relations is-an-ancestor-of and is-married-to defined over
people. Indicate whether these are reflexive, irreflexive, symmetric, anti-
symmetric, and/or transitive. Justify your answers.

Orderings Relations

Various common binary relations arrange the elements of their domain into
some specific ordering. For example the less-than-or-equal-to relation <
orders the natural numbers into an increasing sequence: 0 <1 <2<3< .-
Note that this ordering is total in the sense that any two numbers a and b
are related in one way or the other: either a < bor b < a.

Whether or not a particular binary relation defined on a set orders the
elements of that set depends on whether or not it satisfies certain of the
properties defined above. Naturally, a less-than-or-equal-to relation should
be:

Properties of Binary Relations 193

e reflexive — any element should be less-than-or-equal-to itself;

e antisymmetric - if a is less-than-or-equal-to b and b is also less-than-
or-equal-to a, then a and b should be equal.

e transitive — if a is less-than-or-equal-to b and b is less-than-or-equal-
to c, then a should be less-than-or-equal-to c.

In fact, these three properties taken together indicate that a relation is an
ordering relation as defined as follows.

Definition 7.15)

A binary relation R on a set is a partial order if, and only if, it is reflexive,
antisymmetric, and transitive. It is a total order if, and only if, it is a
partial order in which any two elements are related in one way or the other:

Vz,y € A(zRyV yRz).

Example 7.15

e The equality relation = on integers is a partial order, but it is not a
total order.

e The less-than-or-equal-to relation < on integers is a total order. How-
ever, the less-than relation < on integers is not a (total or partial)
order, as it is not reflexive.

e The subset relation C on sets is a partial order but not a total order;

for example, {1} Z {2} and {2} Z {1}.

7.4.5 Equivalence Relations

A binary relation on a set may reflect a notion of sameness between elements
of that set, defining when we might want to consider two elements of the
set to be indistinguishable — that they are in some sense equivalent.

As with orderings, whether or not a particular relation over a set defines
an equivalence between elements of that set depends on whether or not it
satisfies certain of the properties defined above. Naturally, such a relation
should be:

e reflexive — any element should be the same as itself;

e symmetric — if a is the same as b then b should be the same as a;

e transitive —if a is the same as b and b is the same as c, then a should
be the same as c.

194 Relations

These three properties suffice to define a notion of sameness.

(Definition 7.16)

A binary relation R on a set is an equivalence relation if, and only if, it
is reflexive, symmetric, and transitive.

Example 7.17

e The equality relation = on integers is an equivalence.

e The less-than-or-equal-to relation < on integers is not an equivalence
relation, as it is not symmetric. Furthermore, the less-than relation
< on integers fails to be an equivalence relation for this same reason,
as well as for not being reflexive.

e The subset relation C on sets is not an equivalence relation, as it is
not symmetric.

Example 7.18

Consider splitting up a set A of people into twelve groups depending on the
month of their birthday; for example, one of the groups might consist of
all those people in A whose birthday is in September. (There may actually
be fewer than twelve groups, if there are months in which no one in A was
born.) This naturally defines an equivalence relation R on A in which two
people are related if, and only if, their birthdays are in the same month:

R = {(z,y) : z and y have birthdays in the same month }.

Clearly this relation is reflexive, symmetric and transitive.

(Exercise 7.18) (Solution on page 439)

Which of the following binary relations on N are partial orders? Which are
total orders? Which are equivalences? Explain your answers.

1. The identity relation I = {(n,n) : neN}.
2. The universal relation U = {(m,n) : m,neN}.

3. The parity relation P = {(m,n) : m=n (mod2)}.

Exercise 7.19) (Solution on page 439)

Consider a set S of students who are each taking some number of courses
chosen from a set C' of courses. Define the following binary relations on S:

Properties of Binary Relations 195

R, {(s1,82) : s1 and s, take all the same courses }.

Ry, = {(s1,82) : s and s, take some course together }.

Are either of these an equivalence relation? Justify your answer.

7.4.6 Equivalence Classes and Partitions

Consider the equivalence relation R from Example 7.18 defined over some
set A of people:

R = {(z,y) : z and y have birthdays in the same month }.

We based this equivalence relation on a partitioning of the set A into disjoint
sets. This idea is formalised in the following.

]

Definition 7.20

A partition of a set A is a collection { A; : i € I} of disjoint non-empty
subsets of A which together contain all of A. That is:

1. A;N A; = 0 whenever i # j; and
2 Uit 4 = A

The subsets A; are called the blocks of the partition. We say that one
partition is a refinement of a second partition if, and only if, every block of
the first is a subset of some block of the second.

Example 7.20

We can refine the relation R from Example 7.18 by splitting the people of A
not just according to the month of their birth, but according to sex as well,
thus creating (up to) 24 groups; for example, one of the groups might consist
of all females in A whose birthday is in September. This new partition of A
is clearly a refinement of the original coarser partition defined only by birth
month.

(Exercise 7.21) (Solution on page 439)

What is the finest partition of a set A, in the sense that it cannot be refined
into a different partition? What is the coarsest (i.e., least fine) partition?

Any partition of a set A naturally defines an equivalence relation, in
just the way the partition of Example 7.18 gave rise to the equivalence
relation R; two elements of A will be deemed equivalent if, and only if, they
appear in the same block of the partition. Just as clearly, any equivalence

196 Relations

relation partitions the elements over which it is defined into disjoint non-
empty subsets, called equivalence classes.

(Definition 7.21

Given an equivalence relation R on a set A, the equivalence class of an
element a of A with respect to R, denoted [a]r, is the set of elements of A
which are related to a by R:

[alg = {z €A : aRz}.

Theorem 7.22

The collection of equivalence classes {[a]r : a € A} of an equivalence
relation R is a partition of A.

Proof: To prove this we need to show the following:
1. Each [a]g is non-empty.
This is true since a € [a]z.
2. The union of the equivalence classes is A.
This is true since each a € A is in the equivalence class [a]z.

3. The equivalence classes are disjoint; in other words, two non-disjoint
equivalence classes must be equal.

To see this, let us assume that [a]r and [b]r are not disjoint, that
they contain a common element z; that is, aRz and bRz, which by
symmetry means also that zRa, and thus by transitivity that bRa.
Then

y € [alr & aRy
< bRy (by transitivity, since bRa and aRy)

Thus we must have that [a]g = [b]r- O

(Exercise 7.23) (Solution on page 440)

What are the equivalence relations defined by the finest and coarsest parti-
tions of a set A identified in Exercise 7.217

(Exercise 7.24) (Solution on page 440)

Let the relation R on the set A = {1,2,3,...,29} of positive integers less
than 30 be defined by:

Additional Exercises 197

(z,y) € R if, and only if, z and y have the same prime factors.

For example, (12,18) € R since 12 = 2x2x3 and 18 = 2x3x3 have the
same prime factors 2 and 3. Clearly this is an equivalence relation.

How many equivalence classes does R partition A into? List each of these
equivalence classes.

Additional Exercises

1. Consider the following family members of Don Vito Corleone and his
wife Carmella have four children: Santino, Federico, Michael and Con-
stanzia. Santino is married to Sandra and they have four children:
Santino Jr, Francesca, Kathryn and Frank. Michael is married to Kay
and they have two children: Anthony and Mary. Constanzia is mar-
ried to Carlo and they have two children: Victor and Michael Francis.
Federico is not married and has no children.

(a) List out the set CORLEONES of all persons mentioned above.

(b) List out the relations Father, Mother, Husband and Sibling.

(c) Define the relation Father in terms of Mother and Husband.

(d) Define the relations Parent, Wife and Spouse in terms of the
above relations, and list these out.

(e) Define the relations Father-In-Law, Mother-In-Law and Cousin
in terms of the above relations, and list these out.

2. Indicate which of the following relations defined over the integers Z
are reflexive, which are irreflexive, which are symmetric, which are
antisymmetric, and which are transitive. Justify your answers.

(@) Ri = {(a,b) : a=bora=-b}.
(b) Ra = {(a,b) : a=b-1}

(c) Rz = {(a,b) : a+b<10}.

(d) Ry = {(a,b) : a<2b}.

3. Indicate which of the following relations defined over the positive in-
tegers are reflexive, which are irreflexive, which are symmetric, which
are antisymmetric, and which are transitive. Justify your answers.

(a) The divisibility relation a | b which holds if, and only if, a divides
evenly into b.

(b) The relatively prime relation which holds between a and b if,
and only if, their greatest common divisor is 1.

198 Relations

12.

(c) The relation which holds between a and b if, and only if, their
difference (i.e., the larger minus the smaller) is divisibly by 3.

. What does a symmetric and transitive relation look like? Is it true

that any binary relation which is symmetric and transitive must also
be reflexive? Justify your answer.

. Suppose R and S are symmetric relations on a set A. Which of the

following must be a symmetric relation? Justify your answers.

(@) RUS. (B)RNS. ()RoS. (AR (e R

. Suppose R and S are transitive relations on a set A. Which of the

following must be a transitive relation? Justify your answers.

(a) RUS. (b) RNS. (c) RoS. (d) R (e) R

. Match the property of the binary relation R on A listed on the left to

a characterisation of that property on the right:

1. reflexive (a) RoRCR

2. irreflexive (b) idanR=10

3. symmetric (c) R=R"

4. antisymmetric (d) ida CR

5. transitive () RNR1Cidy

. The reflexive closure of a relation R over a set A is the smallest

reflexive relation that contains R. Similarly, the symmetric closure
of a relation R over a set A is the smallest symmetric relation that
contains R, and the transitive closure of a relation R over a set A
is the smallest transitive relation that contains R.

Compute the reflexive, symmetric and transitive closures of the binary
relation R = {(0,1), (1,2), (3,4), (4,3)} over theset A = {0, 1,2, 3, 4}.

. Prove that R U {(a,a) : a € R} is the reflexive closure of R.
10.
11.

Prove that RU R™! is the symmetric closure of R.
Prove that
{(ai,a,) : Jas,as,...,a, 1 such that (a;,a;4;) € R
foreachi=1,2,...,n—1}
is the transitive closure of R.

Let us say that two real numbers z and y are approximately equal,
and write z ~ vy, if, and only if, they differ by no more than 1,/1000.
Thus, the relation ~ on R is defined as follows:

~ = {(z,y) : |z —y| <1/1000}.

Additional Exercises 199

Intuitively this ought to be an equivalence relation. Explain why this
relation is — or is not — reflexive, symmetric and transitive.

13. Consider the relation < defined on a Boolean algebra B as follows: for
allz,y € B,z <y if and only if, z+y = y.

(a) Prove that < is a partial order.

(b) What does < correspond to in the Boolean algebra of sets?

(c) What does < correspond to in the Boolean algebra of proposi-
tions?

14. Assuming that R is an equivalence relation on A, show directly from
the definitions that the following statements about two elements a and
b of A are equivalent:

(a) aRb (b) lalr = [0]r (c) lalrN (bl # 0

Chapter 8

Inductive and Recursive
Definitions

Great fleas have little fleas,
Upon their backs to bite ’em,
And little fleas have lesser fleas,
And so ad infinitum.
- Augustus De Morgan.

Most of the objects under study within Computer Science are defined induc-
tiwely: that is, they are defined in terms of smaller instances of themselves.
Numbers, lists, binary trees, and even computer programs themselves, are
all built up from smaller objects of the same type. For example, two com-
puter programs stuck together, typically with a semicolon between them,
so that the second is executed once the first completes its task is nothing
more than a program defined in terms of two smaller programs. Also, func-
tions defined over such objects are typically given by inductive definitions,
whereby the value of the function on an inductively-defined object is defined
by the value of the function on smaller objects. More generally, a recursive
definition allows a function to be defined in terms of its value on arbitrary
objects, not necessarily smaller objects, and can be meaningfully employed.

Understanding inductively-defined objects, and the functions defined on
them, will naturally rely on understanding the inductive nature of such defi-
nitions. In this chapter, we explore such inductive definitions and recursively-
defined functions.

Inductively-Defined Sets

As we saw, we can define finite sets by simply listing their elements, such as

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_9, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_9

202 Inductive and Recursive Definitions

BinaryDiaITs = {0, 1}
DecmmaLDicits = {0, 1,2, 3,4,5,6,7,8,9}

LerTERS = {a,b,c,d,e,f g h,i,j,k, 1, m,
n107p7qirls!tlulvlwlxlylz}

Children = {Joel, Felix, Oskar, Amanda}

However, for infinite sets we have had to resort to using some (implicit or
explicit) rule for generating their members. For example, the set of natural
numbers

N = {0,1,2,3,...}

which we defined (informally) in Chapter 2 relies on our ability as intelligent
beings to extract the implicit rule hinted at by the ellipses which says that
adding one to any element of this set gives the “next” element in the set.
However, this approach to defining sets is fraught with complications.

1. How can we expect a non-intelligent entity (such as a computer) to
be able to understand such a definition? At the very least we would
somehow have to make explicit the rule for generating the elements of
the set.

2. How can we even be certain of the implicit rule underlying the defining
equation? For example, the author of the above definition may intend
N to represent the decimal digits (and thus end at the digit 9), or the
roots (i.e., solutions) of the equation z* — 623+ 1122 — 6z = 0 (in which
case N would contain only the four values listed).

3. The order in which we list the elements of a set is irrelevant, so what
sense does it make to refer to the “next” element in a set?

4. How can we determine when some object, 1/9 say, is in the set we are
defining while another object, 1/10 say, is not?

One easy way of defining an infinite collection of objects is to provide
a method for generating new elements from existing ones. This idea is
encompassed by the following definition.

(Definition 8.1)

An inductive definition of a set has three components.

1. The basis clause, which establishes that certain objects are in the
set. These elements constitute the “building blocks” for constructing
further elements in the set.

2. The tnductive clause, which defines the ways in which elements of a
set can be used to produce further elements which are also in the set.

Inductively-Defined Sets 203

3. The extremal clause, which asserts that no object is an element of
the set being defined unless its membership can be established from the
first two clauses. In other words, the set being defined is the smallest
set which satisfies the first two clauses.

Example 8.1

We can represent precisely the set N of natural numbers by way of the

following inductive definition.

1.oeN
2. (n+1) € N whenever n € N.
In other words, n € N = (n+1) € N.

3. Nothing else is in N. That is, nothing is in N unless it can be con-
structed from the first two clauses.

In other words, N is the smallest set satisfying the first two clauses.

The basis clause declares the number 0 as a basic element of the set N; and
the inductive clause says that given a natural number n, we can produce
another natural number n+1 by adding 1 to the given number n. In this
way we can conclude that 1/9 = 3 is an element of N, since 0 is an element of
N (by the basis clause), and hence 0+1 = 1 is an element (by the inductive
clause), and hence 1+1 = 2 is an element (again by the inductive clause),
and thus finally 2+1 = 3 is an element (by a further use of the inductive
clause).

The extremal clause tells us that an element of N has to be either 0
(from the basis clause) or the successor of another element of N (from the
inductive clause). We could not infer that 1/10 ~ 3.16 is an element of N,
as there is no way to construct 1/10 from these basis and inductive clauses:
4/10 is clearly not 0; and no matter how many times we add 1 to 0 we will
never generate the value +/10. Hence we must conclude that /10 is not an
element of N as defined.

Alternatively, we can easily see that the set {0, 1, 2, 3, 4, ... } satisfies
clauses (1) and (2) of the definition. Therefore, since N is being defined to
be the smallest set satisfying these clauses, N must be a subset of this; since
this set does not contain /10, 1/10 ¢ N.

(Exercise 8.1) (Solution on page 440)

Explain, using this inductive definition of N, why 4 € N while 4.5 ¢ N.

]

Example 8.2

We can inductively define the set

204

Inductive and Recursive Definitions

Opp = {1,3,5,7,...}
of odd natural numbers as the smallest set satisfying the following:

1. 1 € Opp.
2. If n € ODD then (n+2) € ODD.

Note that in this example, we incorporated the extremal clause into the
preamble of the definition, by defining the set to be the smallest set satisfying
the basis and inductive clauses; being the smallest such set, only those
elements which must be in the set due to the basis and inductive clauses
are actually members. We could have instead included the extremal clause;
however, the above is a common useful abbreviated form.

(Exercise 8.2) (Solution on page 441)

The set N satisfies the two clauses in the definition of ODD; that is, it
contains 1, and it contains (n+2) whenever it contains n. Why does this
not imply that Opp = N?

(Exercise 8.3) (Solution on page 441)

Give an inductive definition for the set POWERS-OF-2 of powers of 2,

POWERS-OF-2 = {1,2,4,8,16,32,64,...}.

Example 8.3

Given a finite set S, we can define the powerset P(S) of S inductively as
the smallest set satisfying the following:

1. 0 € P(S).

2. If X € P(S) and a € S then X U {a} € P(S).
For example, if S = {1, 2,3}, then by the basis clause @ € P(S), and by

one application of the inductive clause we get that the following sets are in
P(S):

oufty ={13 ou{2} ={2} 0u{3} ={3}

This application reveals that all of the singleton sets {1}, {2} and {3} are in
P(S). A second application of the inductive clause tells us that the following
sets are in P(S):

Inductively-Defined Syntactic Sets 205

ou{i} ={1} 0u{2} ={2} 0u{3} ={3}
{tpud{ty ={1p {1pu{2} ={1,2} {1}u{3} ={1,3}
{2tud{1} ={1, 2} {2}u{2} ={2} {2}u{3} ={2,3}
{3rud{i} ={1,3} {3ru{2} ={2,3} {3ru{3} ={3}
This second application reveals that all of the two-element sets {1, 2}, {1, 3}
and {2, 3} are alsoin P(S). A third application of the inductive clause would
reveal that, apart from the above sets, the three-element set S = {1, 2, 3}

itself is in P(.S). Further applications of the inductive clause would generate
no new elements.

(Exercise 8.4) (Solution on page 441)

Why can the above definition not be applied to infinite sets? (Hint: Why
would this definition not provide Opp € P(N), where ODD is as defined in
Example 8.27)

Inductively-Defined Syntactic Sets

The elements of the set N of natural numbers as defined above are semantic
values, not syntactic objects. To understand the distinction clearly, if we
define the set

Children = { Joel, Felix, Oskar, Amanda }

we have to make clear whether we mean the set of four names, or the col-
lection of people which make up four specific children. Each name in the
list is merely a syntactic object unless we assign some meaning or semantic
content to it.

In the same way, we have that 1/9 is an element of N, as +/9 = 3 and
3 is an element of N. The set N represents the collection of values making
up the natural numbers, not some arbitrary representation of them such as
decimal numbers (sequences of decimal digits) or binary numbers (sequences
of binary digits).

To define sets of such syntactic objects, we first introduce some termi-
nology. An alphabet is a finite set of symbols or characters. A finite
sequence of characters from an alphabet A is called a string or word over
A. The length of a word w = a,a.a3---a,, where n € N and a; € A for
each 1 < 1 < n, is given by the number n of (occurrences of) characters
in w. We shall use the special symbol &€ (which cannot be a character of the
alphabet A) to denote the empty word, that is, the only word of length 0.
Note that ew = we = w for any word w.

206 Inductive and Recursive Definitions

Finally, we shall use A* to denote the set of all words over A, and A*
to denote the set of non-empty words over A. We can define these two sets
inductively as follows.

Definition 8.4

The set A* of words over alphabet A is the smallest set satisfying the fol-
lowing:

1. e€ A*; and
2. if w e A* and a € A then aw € A*.

The set AT of non-empty words over alphabet A is the smallest set satisfying
the following:

1. a € A for each a € A; and
2. if we AT and a € A then aw € A™.

Example 8.4

If A= {a, b}, then A* is the set consisting of all sequences of a's and b’s,
including the empty sequence containing no characters:

A* = {¢, a, b, aa, ab, ba, bb, aaa, aad, aba, abb, ... }.
This is since:

e by the first (basis) clause, € € A*;

e by the second (inductive) clause, adding either an a or a b to the front
of any word in A* gives a word in A*, and as we know £ € A*, this
means that {a, b} C A%

e but then by the second (inductive) clause, since we now know that
{e, a, b} C A* we can infer that {a, b, aa, ab, ba, bb} C A*;

e by a third application of the second (inductive) clause, we can now
infer that

{ a, b, aa, ab, ba, bb,
aaa, aab, aba, abb, baa, bab, bba, bbb} C A*

and each new application of the second (inductive) clause adds more new
strings to the set.

Similarly, AT is the set consisting of all non-empty sequences of a’s and
b’s:

At = {a, b, aa, ab, ba, bb, aaa, aab, aba, abd, ... }.

Backus-Naur Form 207

We could have defined the sets A* and A" in various other equivalent
ways. For example, we could have used wa instead of (or as well as) aw in
each of the second (inductive) clauses; or we could have provided just one
inductive definition and defined the second set directly in terms of the first,
by observing that A* = AT U{e} and At = A*\ {e}.

We can now define the sets of decimal and binary numbers as the sets of
non-empty words over decimal, respectively binary, digits.

DECIMALNUMBERS = DEciMALDIGITS '

BINARYNUMBERS = BINARYDIGITS™

(Exercise 8.5) (Solution on page 441)

Give an inductive definition of PosDECIMALNUMBERS, the set of positive
decimal numbers. Such numbers should not have leading zeros; that is,
35 € PosDeciMALNUMBERS but 035 ¢ POsDECIMALNUMBERS.

Backus-Naur Form

A common style of presenting an inductive definition of a set of syntactic
objects is the so-called Backus-Naur Form (BNF), in which the syntac-
tic forms are presented equationally. For example, the set A* of words over
A is given by the BNF equation

w = €| aw
and the set AT of non-empty words over A is given by the BNF equation
w = a | aw

where in both cases a is taken to range over the alphabet A. In this way,
BNF provides a short-hand form of writing out inductive definitions.

As another example, the natural numbers N were defined in terms of
zero 0 and the successor function s(n) = n+1. These elements can be
specified by the BNF equation

n == 0] s(n).

Hence, for example, the number 4 is formally defined as s(s(s(s(0))))-
Inductive definitions of sets of syntactic expressions are very common

in Computer Science. Indeed we have seen several already, such as the

set of propositional formule, which we can now define formally as follows.

208 Inductive and Recursive Definitions

Example 8.5

The set of propositional formule can be defined inductively as the smallest
set satisfying the following:

1. true and false are propositional formule, as is every propositional vari-
able P.

2. If p and g are propositional formula then so are —p, pV g, pAg, p = ¢q
and p & gq.

More succinctly, the following is a BNF equation for propositional formulae.
p,g == true | false | P [-p [pVag [pAg [p=q | Dp&g

Here, P is taken to range over the set of propositional variables.

(Exercise 8.6) (Solution on page 441)

Give an inductive definition of the set of formule of predicate logic.

BNF notation was invented in 1959 by John Backus (and later simplified
by Peter Naur) to define the syntax of the ALGOL programming language.
It then became a common feature of the appendix to programming language
reference books. This is due to the fact that the set of programs which can
be written in a given programming language can be defined inductively from
the constructs of the language.

Example 8.6

The following BNF equation describes a very simple programming language.

p = z:=e | p1;p> | if b then p; else p, | while b do p
For readability, this is typically rendered in list fashion as follows:

p = z:=e
‘ D1;P2
| if b then p; else p,
| while b do p

In the above, z is taken to range over program variables; and e and b range
over integer expressions and Boolean expressions, respectively, which them-
selves will similarly be defined inductively. Thus a program in this program-
ming language is either

e an assignment statement “z:=e” which evaluates the integer expres-
sion e and assigns this value to the variable z; or

Backus-Naur Form 209

e the sequential composition “p; ; p;” of two (smaller) programs p; and pa,
which first executes the program p;, and then executes the program
P, if and when program p; has terminated; or

”

a conditional statement “if b then p; else p,” involving a Boolean
test b and two (smaller) programs p; and p,, which first evaluates the
Boolean expression b, and then either executes the program p; if b
evaluated to true, or executes the program p, if b evaluated to false;
or

a while loop “while b do p” involving a Boolean test b and a (smaller)
program p, which repeatedly executes the program p for as long as the
Boolean test b is true; that is, it first evaluates the Boolean expression
b, and then either terminates if b evaluated to false, or executes the
program p and repeats itself (starting with re-evaluating the Boolean
expression b) if b evaluated to true.

We shall include one further minor — yet essential — piece of syntax in
this language: we will allow ourselves to add braces around any program,
thus writing {p}, in order to avoid ambiguity. This is illustrated in the
following example.

The following is a program in this language for computing the sum of
the first n positive integers: s =1+2+3+---+n.

i :=0;
s := 0;
while i<n do
{i:=1i+1;
s := s+i }

This 5-line program consists of two smaller programs combined with the
sequential composition symbol:

S0l
= 0;

S

while i<n do
{i:=1i+1;

s := s+i }

The first of these programs is a simple assignment statement, while the
second program is itself built up from two even smaller programs combined
with the sequential composition symbol:

while i<n do

{i:=1i+1;

s := s+i }

210 Inductive and Recursive Definitions

Again, the first of these programs is a simple assignment statement, while the
second program is a while loop, the body of which is a program consisting of
two simple assignment statements combined with the sequential composition
symbol. The whole program thus breaks down as follows:

while i<n do
{i= i1
s := s+i }

It is possible to interpret this program differently, namely as two programs
combined with the sequential composition symbol, the first being itself two
simple assignment statements composed together sequentially, and the sec-
ond being the while loop. The break down would then look as follows.

i= 0]
s =0 |5

while i<n do
{[i=ae]s
}

This particular ambiguity is harmless. However, the potential for dangerous
ambiguity is why the program includes braces around the body of the while
loop. Without these, it would be possible (and moreover likely) that the
program would be interpreted wrongly as follows.

s :=0 ;

while i<n do

i=i+1
s = s+1i

This program — or rather this interpretation of the program — would return
the incorrect result s = n, as the while loop would do nothing but increment
the counter 7 until it reached this value.

Inductively-Defined Data Types

Most data types used in computer programming languages are inductively
defined, either by the compiler (the integers, for example) or by the pro-

Inductively-Defined Data Types 211

grammer. For example, a list of natural numbers can be defined by the
following BNF equation.

In this definition, n ranges over natural numbers, and the colon symbol
“” represents the operation of adding an element to the front of a list.
Thus, a list is either the empty list [] (the list containing no items), or
a list obtained by adding a natural number n to the head of a (smaller)
list L. For example, the list [1,2,3] is built up inductively starting from
[Jas1:2:3:[] For clarity this could be written using parentheses as
1:(2:(3:011))-

Of course, we could choose any other type of data to form a list over;
e.g., a list of names is defined as above but by letting n range over names
rather than numbers.

As a further example, the binary tree is a widely used data structure,
and can be defined inductively as follows.

Example 8.7

We may inductively define binary trees using the following BNF equation.

t = % ‘ N(tl,tg)
That is, a tree is either a leaf % or an in- N
ternal node N(t,,t;) with two subtrees N/ \N
t; and t,. For example, the tree */ * N/ *
PN
*
N(N (%, %), N(N (5, N(x, %)), %)) AN

may be represented by the picture shown.

This binary tree definition only provides the structure of the data struc-
ture, but you typically want to store data in data structures. For example, a
dictionary might be represented by a binary tree with names stored in the
(internal) nodes, with the intention that all names stored in the left subtree
precede (alphabetically) the name stored in the parent node, and all names
stored in the right subtree follow the name stored in the parent node. For
example, valid dictionaries for storing the list of names

{Joel, Felix, Oskar, Amanda}

may be given by either of the following trees:

212 Inductive and Recursive Definitions

Felix Amanda
SN /N
Amanda Oskar * Felix
/N N 4
* Joel
* * Joel * \
/ \ * Oskar
* *

*/ *

Exercise 8.7) (Solution on page 441)

Give an inductive definition for the the dictionary data structure outlined
above. Note that the data structure would only define the syntactic struc-
ture; the fact that the names are stored in proper lexicographic order is a
semantic issue which will not be reflected in the definition.

Inductively-Defined Functions

We can exploit the inductive definition of a set to provide convenient defi-
nitions for functions on that set. The function is defined by specifying its
values on the basic elements of the set, and then specifying its values on the
inductively-defined elements in terms of its previously-defined values.

For example, an infinite sequence

Qg, A1, A2, A3, A4, As, . . .

is provided by a function whose domain is N, and can often be defined by
specifying the initial value agq and each subsequent value a, in terms of the
values a; for £ < n.

Example 8.8

The factorial function n! is defined to be the product of the integers
from 1 to n:

n!l = 1x2x3x -+ Xn.

More formally, it can be defined inductively as follows.
0'=1; and
nl=nx (n-1)! (forn>0).

Thus, for example,

Inductively-Defined Functions

213

5! = 5 x 4!
= 5x(4x3
=5x4x(3x2
=5x4x3x(2x1)
=5x4x3x2x(1x0!
= b5x4x3x2x1x1
= 120

(Exercise 8.8) (Solution on page 442)

Compute the first few values of the sequence s, defined inductively by:

30:0

Spn = Sp_1 + 2n — 1

Can you recognise this sequence as a function of n?

Example 8.9

]

The harmonic numbers H, are informally defined by

_ 1,1 .1 1
H, = 1+5+35+ - +4

and can be defined inductively as follows.
Hy, = 0; and
H, = H, ; + % (for n>0).

(Exercise 8.9) (Solution on page 442)

Compute the harmonic number Hg from its inductive definition.

Example 8.10

]

The Fibonacci numbers are defined inductively as follows.
fo =0
fi =1, and
fn = fn—l + fn72 (fo""ﬂ > 1)

That is, each number in this sequence is obtained by adding together the
previous two numbers in the sequence. The first few Fibonacci numbers are

214

Inductive and Recursive Definitions

0,1,1,2, 3,5, 8, 13, 21, 34, 55, 89, 144, 233,

This sequence derives its name from the Italian mathematician Leonardo
of Pisa, more commonly known by his nickname Fibonacci. Fibonacci was
instrumental in spreading the use of the modern Hindu-Arabic numeral sys-
tem to Europe, as an alternative to Roman numerals, through his book on
arithmetic Liber Abaci (The Book of Calculation), which was published
in the early 13th century. The Fibonacci numbers appear in the solution of
the following problem posed in this book.

(Exercise 8.10) (Solution on page 442)

Suppose you have a pair of new-born rabbits at the start of month 1, and
that each pair of rabbits produces a new pair of rabbits after 2 months and
each month thereafter. How many pairs of rabbits will you have at the start
of the nth month? (Work out the first few months and look for a pattern.)

It is worth looking more carefully at the above inductive definitions of
sequences. As the natural numbers N are defined inductively in terms of
zero 0 and the successor function s(n) = n+1, functions over them are
naturally defined inductively. The above sequences are simple examples,
but induction can be used to define more complicated functions than just
sequences.

Example 8.11

By resorting to the inductive definition of the natural numbers
n == 0] s(n).

as given on page 207, we can inductively define the function
add:NxN— N

which adds two numbers as follows:
add(m,0) =m; and
add(m, s(n)) = s(add(m, n)).

The first clause merely states that m+0 = m; and the second, inductive,
clause is the precise way of writing what we would more naturally write as:

add(m,n+1) = add(m,n) + 1.

Thus, for example,

Inductively-Defined Functions 215

add(3,2)

add(3,1) + 1
add(3,0) + 1 + 1
3+1+4+1

= b.

Exercise 8.11) (Solution on page 443)

Give an inductive definition of the function

mult : Nx N — N

which multiplies two numbers, in terms of zero and the successor function,
as well as the function add defined above.

We can, of course, define functions inductively over any inductively-
defined set. The inductive function definitions will naturally follow the
structure of the inductive definitions of the domain.

Example 8.12

]

The length of a word w € A* can be defined inductively as follows.
length(e) = 0
length(aw) = 1+ length(w) (forac A).

The length of a list of natural numbers can be defined inductively as follows.

length([]) 0
length(n : L) = 1+ length(L) (for n € N).

The height of a binary tree can be defined inductively as follows.
height(x) = 0
height(N(¢;,t2)) = 1+ max (height(¢,), height(¢,)).

(Exercise 8.12) (Solution on page 443)

Give an inductive definition of the function sum(L) which computes the
sum of a list L of numbers. Use it to verify that sum(][6,2,5]) = 13.

(Exercise 8.13) (Solution on page 443)

The append function L; -+ L, joins two lists L; and L, together. For
example, [1,2]+[3,5,7] = [1,2,3,5,7]. Give an inductive definition of the
append function.

216 Inductive and Recursive Definitions

(Exercise 8.14) (Solution on page 443)

Referring to the inductive definition for formula of predicate logic given for
Exercise 8.6 (page 208), give an inductive definition for a function which
takes a formula of predicate logic and returns the set of variables which
appear free in that formula.

Recursive Functions

In each of the functions defined in the previous section, the value of the
function on a given argument is defined either directly, or in terms of its
values on smaller arguments. In particular, for functions defined over N the
value of the function on the argument 0 is defined directly, as there are no
natural numbers k<0.

Such inductively-defined functions are examples of recursive func-
tions, which merely means that the value of a function applied to a given
argument is expressed in terms of the value of that function applied to
other — not necessarily smaller — arguments. Such definitions may not be
well-founded, though. For example, it would not make sense to define a
function by f(n) = f(n + 1)+ 1; in this case, we’d be forever lost trying to
compute f(0) = f(1)+1=f(2)+2=f(B8)+3="--.

Example 8.14

McCarthy’s 91-function f : N — N is defined as follows.

n — 10, if n. > 100;
f(n) = .
f(f(n+11)), if n <100.
This function is recursively defined, but not inductively defined. Because of
this, it is difficult even to see that this definition is well-founded — that is,

that it even defines a value for each argument. In actual fact, f(n) = 91 for
each n < 100, and f(n) = n—10 for each n > 100.

(Exercise 8.15) (Solution on page 443)

Prove that McCarthy’s 91-function does indeed satisfy f(n) = 91 for each
n < 100, and f(n) = n—10 for each n > 100.

Example 8.15

Consider the following function f: N — N.

Recursive Functions 217

1, ifn <1,
f(n) = § f(n/2), ifn>1even;
f(3n+1), ifn > 1 odd.

We can attempt to calculate the first few values of f:

f0) =1
fm=1
@)= 1) =1

f@3)=f(10) = f(5) = f(16) = f(8) = f(4) = f(2) = F(1) =1
f@) =72 =rf1)=1
f(8) = f(16) = f(8) = f(4) = f(2) = f(1) =1
f(6) = £(3) = f(10) = £(5) = f(16) = f(8) = f(4) = f(2) = F(1) =1
f(7)=f(22) = f(11) = f(34) = f(17) = £(52)

= f(26) = f(13) = f(40) = f(20) = f(10)

= f(5) = f(16) = f(8) = f(4) = F(2) = f(1) =1
f@)=f4)=f2)=71)=1

We quickly realise that the value of the function must be 1 — if it has a value:
the only value it could have on some input n is

) = = f@) = 1

Indeed, this function seems to be well-defined: we don’t seem to get into
any cycles like

fn) = -+ = f(n)

and we always seem eventually to “bottom out” at f(1) = 1, although
the route to this is rather chaotic: it took 6 unrollings of the function
definition to compute f(5), 9 unrollings to compute f(6), and 17 unrollings
to compute f(7). It takes 11 unrollings to compute f(26) (as can be seen
in the calculation of f(7) above), but it takes no fewer than 112 unrollings
to compute f(27), including computing f(9232) along the way which itself
requires only 35 unrollings.

It is unknown whether or not this function is in fact well defined, that
is, that every sequence n, f(n), f2(n), f3(n), ... eventually arrives at 1,
although it has been confirmed for all numbers up to

n = 5.764 x 10" = 5,764,000, 000,000,000, 000.

The Collatz conjecture is the unproven claim that this sequence does
converge to 1 regardless of the starting value n.

218 Inductive and Recursive Definitions

Recursive Procedures

As the data manipulated by computer programs is typically defined induc-
tively, it should come as no surprise that programs typically manipulate
this data recursively. That is, programs are written to run on some input
data by recursively calling themselves to run on (generally smaller) input —
unless the input data is so trivial that the program can immediately solve
the problem at hand.

Example 8.16) Insertion Sort

Consider the problem of sorting a list of integers into increasing order. One
method for doing this, called Insertion Sort, works as follows:

1. If the list only has only one element in it, then there is nothing to do:
the list is clearly already sorted.

2. Otherwise, put the top card to one side and sort the remaining cards.

3. Insert the reserved card into the correct position in the sorted list.

This breaks the problem of sorting a list of numbers down to that of sorting
a smaller list. But the trick is that this procedure is applied recursively in
Step 2: the smaller list is itself sorted by the same procedure of putting one
card to the side and (recursively) sorting the remaining cards — again with
the above procedure — before inserting the reserved card into the resulting
sorted list.

This procedure is based on the following function defined inductively
over lists of numbers:

isort [| =]
isort (a: L) = (inserta) (isort L)

The definition of the auxiliary function (insert a), which inserts the number
a into a sorted list, is left as an exercise.

(Exercise 8.16) (Solution on page 444)

Define the function (inserta) inductively over (sorted) lists of numbers.
Your definition should look as follows:

(inserta) [| = ..

(inserta) (b: L) = --- (inserta) L ---

You can use the insertion sort procedure to sort a deck of 52 cards into
some fixed order, say Ace through King, with all of the Clubs first, followed

Recursive Procedures 219

by the Diamonds, then Hearts, and finally the Spades. To sort the cards,
you put the top one down onto a table and sort the remaining 51 cards; to
do this, you put the top one down onto the table and sort the remaining 50
cards; continuing in this way, you will eventually find yourself with one card
in your hand and 51 cards on the table, which you pick up one-by-one and
insert into the correct place into the cards you are holding in your hand.

By doing this, the essence of recursion is hidden; the procedure could
simply start with all 52 cards on the table, and picking them up and inserting
them one-by-one into your hand, as many bridge players are accustomed to
doing. The following example, however, gives a good example of the power
of recursion in providing a sorting procedure which works much faster in
practice than insertion sort.

Example 8.17) Merge Sort

Another method for sorting a list of numbers, called Merge Sort, works as
follows:

1. If the list only has only one element in it, then there is nothing to do:
the list is clearly already sorted.

2. Otherwise, divide the list into two equal-sized lists (plus-or-minus one
number, if the list consists of an odd number of integers).

3. Sort each of the two shorter lists.

4. Merge the two sorted lists together to produce the desired sorted list.

This breaks the problem of sorting a list of numbers down to that of sorting
two smaller lists. But the trick is that this procedure is applied recursively
in Step 2: the two half-sized lists are each sorted by the same procedure of
dividing them into equal-sized lists and (recursively) sorting them — again
with the above procedure — before merging them together.

This procedure can be elegantly demonstrated by having a group of
people sort a deck of cards. Everyone in the group is to carry out the
following procedure if they are handed a pile of cards:

1. If there is only one card in the pile that they are handed, then hand
the pile right back to the person who gave it to you.

2. Otherwise, split the pile into two equal-sized piles and pass these
smaller piles to two other people who are not holding any cards.

3. Take each of the two piles back when they are handed back to you.
You will discover that — as if by magic — these two piles are each sorted.

4. Merge these two sorted piles into one sorted pile, and hand this sorted
pile back to the person who gave it to you.

220 Inductive and Recursive Definitions

Figure 8.1: Towers of Hanoi with five disks.

(Exercise 8.17) (Solution on page 444)

Figure 8.1 depicts the puzzle of the Towers of Hanot in which we have
three pegs and a number of discs of varying diameter; each disc has a hole in
its centre allowing it to be positioned on the pegs. Starting with all of the
discs on the first peg in increasing size with the largest on the bottom and
the smallest on the top, the puzzle is to move all of the discs to a different
peg by moving discs one at a time from peg to peg without ever placing any
disc on top of a smaller disc.

Describe a recursive procedure for solving this puzzle. How many in-
dividual disc moves would your procedure take on the five-disc puzzle in
Figure 8.17

Additional Exercises

1. Consider the two quotes given at the start of this chapter and the next
chapter. Only one of these properly underlies the principle of inductive
definitions. Why is this? (Hint: Consider what the base case may be
in each quote.)

2. Consider the set X C N defined as follows.

(a) 0e X.

(b) if » € X then (n+3) € X and (n+7) € X.

(c) Nothing is in X unless its membership can be established from
the above.

Give three elements of N which are elements of X, and three elements
of N which are not elements of X, explaining for each one why it is or
is not an element.

Can you give a complete description of the set X7

Additional Exercises 221

10.

11.

. Describe the set P defined as the smallest set satisfying the following:

(@) {e,0,1} C P.
(b) if w € P then {Ow0,1w1} C P.
Give three elements of {0,1}* which are elements of P, and three

elements of {0, 1}* which are not elements of P, explaining for each
one why it is or is not an element.

. Give an inductive definition of the function nodecount(t) which com-

putes the number of internal nodes in the binary tree ¢, where the
definition of a binary tree is as given in Example 8.7. Us this function
to verify that

nodecount (N(N(*, %), N(N (%, N(x,%)), *))) = 5.

. Give a BNF equation for (a fragment of) your favourite programming

language.

. Given an inductive definition of the function listnames(d) which takes

a dictionary of names d, as defined by Exercise 8.7, and produces a
list of names in alphabetic order (assuming the names are properly
arranged alphabetically in the dictionary).

. Give an inductive definition for a function which takes a formula of

predicate logic and returns an equivalent formula in which negation
symbols appear only applied to predicates.

. Give an inductive definition of the function rev which takes a list and

returns its reverse. Thus, for example, rev([1,2,4]) = [4,2,1].

Use your definition to compute rev([1,2,4]).

. Male bees hatch from unfertilised eggs, and so have a mother but no

father. Female bees hatch from fertilised eggs, and so have both a
mother and a father. The family tree of a male bee can be seen in
Figure 8.2 How many ancestors does a male bee have in the tenth
generation back? How many of these ancestors are male?

Give an inductive definition of the function msort upon which merge
sort is based. You will want to define auxiliary functions split which
splits a list into two equal-size lists, and merge which merges two
sorted lists into one list.

Ackermann’s Function is defined inductively as follows. For n > 0,
A(0,m) = n+1;

and for m,n > 1,
A(m,0) = A(m-1,1) and
A(m,n) = A(m—1, A(m,n-1)).

222

Inductive and Recursive Definitions

Figure 8.2: A family tree of male (J') and female (@) bees.

This is an extremely fast growing function. For example, that value of
A(4,2) has 19, 729 decimal digits; and the value of A(4,3) is already
well beyond astronomical.

(a) Work out the first few values of A(1,n) to convince yourself that

A(l,n) =n+2.
(b) Work out the first few values of A(2,7n) to convince yourself that
A(2,n) = 2n+3.

(c) Work out the first few values of A(3,7n) to convince yourself that
A(3,n) =2n+ — 3.
(d) Work out the value of A(4,1).

Chapter 9

Proofs by Induction

In the middle of a cloudy thing is another cloudy thing, and within
that another cloudy thing, inside which is yet another cloudy thing...

. and in that is yet another cloudy thing, inside which is something
perfectly clear and definite.
- Ancient Sufi saying.

One of the most common forms of reasoning used within the subject of Com-
puter Science is inductive reasoning. This is due to the fact, explored in
the previous chapter, that Computer Science deals heavily with manipulat-
ing inductively-defined objects. Reasoning about such objects will naturally
rely on exploiting the inductive nature of their definitions.

In Section 5.6 we explored the general technique for proving a property
of the form Vz P(z), namely, to allow z to stand for an arbitrary value of the
domain and to prove that P(z) holds without making any assumptions about
the value of z. Such a general approach is typically too weak to prove facts
about natural numbers; we would like to be able to exploit the inductively-
defined structure of natural numbers to arrive at our result. Such is the role
of induction proofs.

Convincing but Inconclusive Evidence

Consider the following claim that the sum of the first n positive integers is
n(n+1)

Claim: Forallm>0, 1+2+4+3+:--+n = n(n2+1).

Note that the sum of the first zero natural numbers, which above is awk-
wardly written as 1 + 24 3+ --- 4+ 0, is naturally 0.

We can easily confirm this claim for various values of n:

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_10, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_10

224 Proofs by Induction

0= 0(21), so the claim is true when n = 0.
1 =1= 1(22), so the claim is true when n = 1.
1+2 =3 = 2(23), so the claim is true when n = 2.
_ 5 .34 i _
1+2+3 = 6 = =5*, so the claim is true when n = 3.
1+2+3+4 =10= 4(25), so the claim is true when n = 4.
5(6)

1+2+3+4+5=15= =, so the claim is true when n = 5.

Each instance of the claim which we verify to be true seems to lend support

to the validity of the claim. However, no (finite) amount of checking of

individual cases can confirm the validity of the claim for all values of n.
Now consider each of the following claims.

e Fermat’s Last Theorem claims that for no integer n>2 does there
exist a trio of positive integers z, y and z such that z” +y™ = 2™. This
claim went unproven for 350 years until Andrew Wiles’ celebrated
proof in the 1990s. By then, the conjecture was confirmed with the
help of vast computer resources for all values of n up to 4 million.
However, even if computers could have confirmed the truth of this
conjecture for all values of n up to ten zillion, there would still be no
reason why the conjecture should be true for ten zillion and one.

Pierre de Fermat, after whom Fermat’s Last Theorem is named, fa-
mously wrote the following about this Theorem in the margin of a text-
book on arithmetic: “Cuius ret demonstrationem mairabilem sane
detezi. Hanc marginis eziguitas non caperet.” (“I have a truly mar-
vellous proof of this proposition which this margin is too narrow to
contain.”) It is universally believed that whatever argument he may
have had in mind could not have been valid. This is partly due to
the fact that no proof was ever found amongst his papers, and partly
due to the extreme complexity of the only known proof by Wiles —
which can be understood in its entirety by only a small number of
mathematicians worldwide. It also partly due to the fact that Fermat
believed many things which ultimately turned out to be false, such as
the next example.

e Fermat numbers are integers of the form F, = 22" + 1. They are so
called on account of the fact that Pierre de Fermat wrote, in a letter
to Marin Mersenne on 25 December 1640, that: “If I can determine
the basic reason why

3, 5, 17, 257, 65,537,

are prime numbers, I feel that I would find very interesting re-
sults.” Based on the properties of the first few numbers of this form,

Convincing but Inconclusive Evidence 225

Fermat believed that they were all necessarily prime. Indeed the first
few Fermat numbers listed by Fermat are prime:

Fp= 22°+1 = 2! 41 =

Fp= 2241 = 22 +1 =

B= 2241 = 20 41 = 17

Fy = 2241 = 28 +1 = 257
F, = 2241 = 2641 — 65,537

Unfortunately for Fermat, his conjecture fails with the very next Fer-
mat number:

F, = 22 41 = 2% 4 1 — 4,204,067,297.

Fermat can be forgiven for not recognising this monstrosity to be a
composite number. It was the great mathematician Leonhard Euler
who first discovered in 1732 that this number can be factored as

641 x 6,700, 417.

Indeed, it is unknown whether any further Fermat numbers are prime
(though it is known that a vast many are not).

e Goldbach’s conjecture, which states that every even number greater
than 2 can be expressed as the sum of two prime numbers, has been
confirmed, again with the help of vast computer resources, for all even
numbers up to 10'® (i.e., 1,000,000, 000,000, 000,000). But as far as
anyone knows, there might be a yet larger even number which is not
the sum of two primes. It worked out well for Fermat’s Last Theorem,
but this gives no reason for hope, as demonstrated by the next two
examples.

e In 1919, the Hungarian mathematician George Pdlya conjectured that
most (i.e., more than 50%) of the natural numbers less than any given
number have an odd number of prime factors. For example, every
prime number has an odd number of prime factors, namely one, as
does 12 = 2x2x3 (three prime factors), while 14 = 2x7 has an even
number (two) of prime factors. By the mid 1950’s empirical evidence
for Pélya’s conjecture seemed clear: the conjecture was verified for all
numbers up to 800,000. However, contrary to this ever-growing evi-
dence, Pélya’s conjecture was disproved in 1958 when C. Brian Hasel-
grove showed that it had to be false for some value around 2x 103!
(that is, a 2 followed by 361 zeros). It has since been shown to fail
already for n = 906, 150, 257.

e Consider the following claim:

226 Proofs by Induction

N A
AL

Figure 9.1: Counting regions in circles.

For all n > 1, 991n2 + 1 is not a perfect square;
that is, v/991n2+1 is not an integer.

We could confirm the validity of this claim for as many values of n
as we have patience, but we could never conclude on the basis of the
validity of a large number of cases that the claim is valid for all values
of n. The claim is in fact false; however, the first value of n for which
the claim fails is

n = 12,055, 735,790, 331,350, 447, 442, 538, 767.

We cannot be content with the mere experience of witnessing various in-
stances of when a claim is true to lend reckless support to its universal
truth. We cannot confidently lend any credence to Collatz’s conjecture of
Example 8.15 despite the comfort offered by the knowledge it holds for all
values up to 2.22x 108, Similarly, and more worrisome, a train may run per-
fectly for arbitrarily long — several years even — before a fault in its software
control system contributes to a devastating crash.

(Exercise 9.1) (Solution on page 444)

Some number of spots are placed randomly around the circumference of a
circle, and every spot is connected to every other spot by a straight line.
Assuming that no three lines intersect at a point inside the circle, we would
like to know into how many regions is the circle divided?

For example, given 1, 2, 3, 4, or 5 spots, the circle is divided into 1,
2, 4, 8, or 16 regions, respectively; the final three of these are depicted in
Figure 9.1.

How many regions are created by connecting six spots?

A Primary School Induction Argument 227

A Primary School Induction Argument

Suppose you wish to check that the formula

1
1+424+34+---4+n = %
is true for the first 30 values of n, and you ask a classroom of 30 ten-year-
olds to check this formula, each child checking if it is true for some value of
n. For example, the 17th child will check that

14243+ 417 = 1718
You watch each child working diligently on their individual problems and,
as expected the first few children, working on confirming the formula for
small values of n, are quick to report their success. Those working on larger
values of n are taking longer. For example, it is taking a long while for the
17th child to add up the first 17 numbers to find they add up to 153, and
then to compute &218
Some children are reporting failure before checking their work and finding
errors in their calculations before ultimately reporting success.

Alone in the crowd is the 28th child, a little girl who is sitting quietly
reading a novel instead of working away on her calculations. You ask her if
she is done, and she says yes. You ask her if the formula is true for n=28
and she says she doesn’t know — yet. Confused, you look at her sheet of
paper and see the following calculation:

— 153 to discover that the claim is true for n=17.

14+2+34---+28 = 14243+ ---+27 + 28

_ 2728 4 28

28x(2—27 +1)

- m(®

= 28x%29
2

As you look over this calculation, the boy at the next desk announces that
he has finished adding up the first 27 numbers and that they add up to
378 = %228 as expected: the formula is true for n=27. The little girl
immediately responds to this by announcing that the formula is true for
n=28.

What this precocious little girl realised was that she could leave most of
the hard work of adding up the first 28 numbers to her friend beside her,
the little boy who is busily adding up the first 27 numbers. Once he has
done that, all she needs to do is add 28 to his total. Knowing what the first

228 Proofs by Induction

27 numbers are supposed to add up to, namely %, she doesn’t wait for

him to do his job, but rather goes to work under the assumption that her
friend will confirm this expectation. This is the calculation that she carried
out.

Having carried out this calculation, can she say that the first 28 numbers
add up to %? Not right away, as she made the assumption that the

first 27 numbers add up to %; once her friend, the 27th child, confirms
this assumption, she can (and does) announce boldly that the formula is
true for n=28.

There is nothing special about the number 28, just something special
about this little girl. If she had the problem of checking the formula for
any other number, she would have done the same thing. She was no doubt
quietly wondering why her friend beside her was busily adding up all the
first 27 numbers; and indeed why her other friend on her other side was
busily adding up the first 29 numbers.

Exercise 9.2) (Solution on page 445)

What calculation would this little girl do if she was the 27th child?

(Exercise 9.3) (Solution on page 445)

When he was ten years old, the great mathematician Carl Friedrich Gauss
was reportedly set the problem of adding up the first 100 numbers. His
teacher’s intention was to keep the class busy and quiet for some time, but
Gauss solved the problem almost immediately. What clever trick did young
Gauss employ?

The Induction Argument

Just as we can inductively define functions over inductively-defined domains,
we can exploit the structure of an inductive definition to reason about the
objects it defines. For example, mathematical induction allows you to
prove that a property P(n) of natural numbers n € N holds for all natural
numbers if:

1. (Base Case) it holds for the value 0, that is, P(0); and

2. (Induction Step) it holds for the value k+1 whenever it holds for k;
that is,

P(k) = P(k+1).

The Induction Argument 229

Figure 9.2: Dominoes inductively falling down.

P(k) is referred to as the inductive hypothesis, from which we want
to deduce P(k+1).

Clause 2 can be equally expressed as follows

2'. it holds for the value k£ > 0 whenever it holds for £—1; that is,
P(k—1) = P(k).

The little girl discussed above did precisely this type of reasoning in showing
that the property P(n), which states that the first n numbers add up to
%, holds for the value 28 assuming it holds for the value 27.

As an analogy, imagine a (possibly infinite) string of dominoes standing
side-by-side as in Figure 9.2. If we can prove that the first domino falls
(i-e., gets pushed over), and that if one domino falls, the next domino will
fall (i.e., gets pushed over by the preceding domino), then this is enough to
conclude that all of the dominoes will fall over.

We can think of induction as a method of extending our knowledge of
the truth: we establish the claim for the first relevant value (typically 0).
Next we show that if the claim is true for some value k then it must also be
true for the next value k+1. The important thing to note here is that & is
not given a specific value although it might have some conditions imposed
on it (in this case k > 0). Now since we know the claim to be true for 0, it
must also be true for 1; but then it must also be true for 2; but then it must
also be true for 3; and continuing in this fashion, we realise that the claim
must be true for any value n € N. In this way we are viewing induction
proofs as a form of bootstrapping argument, as depicted in Figure 9.3.

Alternatively, we can think of induction as a proof by contradiction: if
the claim is false — that is, if the property does not hold for all values of
n € N — then it must fail for some smallest value n > 0; that is, the claim
holds for all values less than n but not for n itself. The question then is:
what can n be? It cannot be 0, as the base case established that the claim

230 Proofs by Induction

true
forn=20

if true for n = k
then true for n = k+1

v

Figure 9.3: Induction as a boot-strapping operation.

holds for n=0. But then by the induction step, n cannot be 1 either; and
hence not 2 either; and hence not 3 either; and hence not 4 either. We can
carry on this reasoning indefinitely to show that n cannot be any value; for
example, n cannot be 1,594 since, being the smallest value for which the
claim is false, the claim would be true for 1,593, and thus by the induction
step it must also be true for 1,594. Continuing in this fashion, we realise

our contradiction: the claim cannot actually fail for any value n € N.

Following this extensive discussion, we can finally offer the first formal
proof by induction, as a model on which to base all other induction proofs.

Example 9.3

i

Fact: For alln > 0,

14243+ -+n = ML
Proof: By induction on n.
Base Case: We note that
1+2+3+-+0 =0 = 20

Induction Step: We assume that, for some k,

14243+ 4k = B

and from this assumption (the inductive hypothesis) we prove that

L4+ 24384+ k+ (k1) = EFUESD)

The Induction Argument 231

That is, we demonstrate that if the statement of the theorem is true
when n = k, then it must also be true when n = k+1.

By the inductive hypothesis we can rewrite the left-hand side of this
equation that we want to prove true as

M + (k+1).

We can then take out the common factor (k+1) from these two terms,
giving us

(k+1) (§+ 1),

which is the same as
k+2
(k+1) (T)
or in other words,

(k+1)(k+2)
2)

which is the right-hand side that we desire.

In other words, we carried out the following equational derivation:

T+2+3+ -+ k+ (k+1)

= M + (k+1) (by the inductive hypothesis)

) (§ 1)
(

k+>
2

(k+1)

_ (k+1)(k+2)
= g

At this point you should reflect on what the little girl in the Primary
School problem from Section 9.2 did, and relate it to the induction step of
the above argument. If her reasoning is clear, the following formule should
be straightforward to verify.

(Exercise 9.4) (Solution on page 446)

Show, by induction on n, that the following formula are true for all n > 0.

112 + 22 4 3% 4 ... 4 n? 7"(7”1)6(2"“).

2214345+ -+ (2n-1) = n?

232 Proofs by Induction

3.12 + 23 + 34 + - + n(ny1) = "oFRFD)

(Exercise 9.5) (Solution on page 447)

Show, by induction on n, that for all n > 0:

FoXF1><"'><Fn: n+172

where F, = 22" 4+ 1 are the Fermat numbers.

Induction is a very common technique for establishing mathematical for-
mulz such as the following.

(Exercise 9.6) (Solution on page 448)

Show, by induction on n, that for any real number r # 1,

n+1
l+r+r+r 4.4 = L2008

for all n > 0.

Note that if —1 < 7 < 1 then 7™*! approaches 0 as n approaches
infinity; hence, as a corollary to the above, we can deduce that for any real
r with |r| < 1,

L+r+r 47+ ... =

1—1r

So far we have used induction merely to prove simple formulz. However,
induction is more general than this, and the base case can be some value or
values other than 0, as the next examples demonstrate.

]

Example 9.6

Fact: Any amount of postage of at least 8 pence can be made up from
just 3-pence and 5-pence stamps.

Proof: By induction on n.

Base Case: A 3-pence stamp and a 5-pence stamp make up 8 pence.

Induction Step: Assume that we have a collection of such stamps
adding up to a total of n» > 8 pence.

e if there is a 5-pence stamp in this collection, remove it and
replace it with two 3-pence stamps;

e If there are no 5-pence stamps, then there must be (at least)
three 3-pence stamps in the collection; remove these and re-
place them with two 5-pence stamps.

The Induction Argument 233

In either case, we arrive at a collection of stamps adding up to
(n+1) pence. O

]

Example 9.7

Fact: The sum of the interior angles of a convex polygon with n sides is
equal to (n—2)180° for all n > 3. (A polygon is convez if every line
joining two points of the polygon lies within the polygon.)

Proof: By induction on n.

Base Case: The sum of the interior angles of any triangle is 180°.

Induction Step: We assume that the theorem is true for some value
k>3: that the sum of the interior angles of any convex polygon
with k sides is equal to (k—2)180°.

From this inductive hypothesis, we demonstrate that it must also
be true for k+1: that the sum of the interior angles of any convex
polygon with k+1 sides is equal to (k—1)180°.

Any (k+1)-gon can be decomposed into a triangle
and a k-gon by connecting two non-adjacent vertices, .
as depicted in the diagram.

The sum of the interior angles of this (k+1)-gon is then the sum
of the interior angles of the triangle, 180°, added to the sum of
the interior angles of the k-gon which, by induction, is

180° + (k—2)180° = (k—1)180°.

(Exercise 9.7) (Solution on page 449)

Suppose we draw n circles (n>1) so that any two intersect at two points but
no three intersect at any point. Prove, by induction on n, that these circles

divide the plane into n?—n+2 regions. Deduce from this that we cannot
draw a Venn diagram for four or more sets with circles representing sets.

Induction is of immense importance in Computer Science where a great
many of the objects under study are inductively defined. It is imperative
that a Computer Scientist be comfortable with inductive reasoning in or-
der to be successful with designing and understanding computing systems.

234 Proofs by Induction

The following provides an example of reasoning inductively about a simple
program.

(Exercise 9.8) (Solution on page 449)

Consider the following piece of recursive program code:

function f(n)
if n=0 then return 0
else return f(n—1)+2n—1

This program code computes the following inductively-defined function:

0, if n=0
f(n—1)+2n—1, if n>0.

ﬂm:{

Show, by induction on n, that f(n) = n? for alln > 0.

Strong Induction

In a proof by induction we demonstrate that some property holds of some
number based on the assumption that the property holds of the the previous
number. Occasionally we may want to assume that the property holds of
other smaller numbers, not just the previous number. An alternative form
of induction which permits this is strong induction which allows you to
prove that a property P(n) of natural numbers holds of all natural numbers
by demonstrating the following:

e P(n) holds for n whenever it holds for all k<n; that is,
(Vk<n:P(k)) = P(n).

You may well wonder at this point: what happened to the base case? In the
case of n=0, the assumption that P(k) holds for all values k<n is vacuous,
since there are no such values, and hence this one clause incorporates the
base case of demonstrating that P(0) holds under no assumption.

Example 9.8

Let
0, if n=0;
f(n)=1< 2-f(n/2), ifn>0 even,
f(n—1)+1, ifn odd.

Induction Proofs from Inductive Definitions 235

Fact: f(n)=n for every n > 0.

Proof: By (strong) induction on n, arguing by cases on the “structure” of
n.

n=0: f(0)=0.
n>0even: f(n)=2-f(n/2)

—2.(n/2)=n. (By induction)
nodd: f(n)=f(n—1)+1

=(n-1)+1=n. (By induction)

Exercise 9.9) (Solution on page 450)

Prove, by strong induction, that every integer n>1 is either prime or a

product of primes.
This result, attributed first to Euclid over 2000 years ago, is referred to
as the Fundamental Theorem of Arithmetic.

Induction Proofs from Inductive Definitions

We showed earlier how to define functions inductively, e.g., the Harmonic
numbers H, (Example 8.9) and the Fibonacci numbers (Example 8.10).
Induction proofs are naturally used to reason about such inductively-defined
functions, as evidenced by the following examples.

Example 9.9

Fact: For alln > 0,

H1 + Hg + H3 + - 4+ Hn = (7L+1)Hn — n.
Proof: By induction on n.

Base Case (n = 0):
H + Hy + Hy + --- + Hj = 0 = (0+1)H, 0.

236 Proofs by Induction

Induction Step: (n > 0):
H, + H, + Hy + --- + Hy

= (Hi + Hy + H3 + ---H, 1) + H,

= nH, ,—(n-1) + H, (by inductive hypothesis)
= n(an%)—(n—l) + H, (since H, = H, 1 + %)
= (n+1)H, — n. O

(Exercise 9.10) (Solution on page 450)

Prove that for allm > 1 and all n > m, H, - H, > 2™

Do this by assuming m > 1 and proving the result by induction on n.

Example 9.10

Fact: fo+fi+fot -+ fu = fapp—1lforalln>0.

Proof: By induction on n.

Base Case (n = 0):
fotfitfot--+fo=fo=0=1-1= fo—1

Induction Step (n > 0):

fotfitfot o+ fat fon
= (faza — 1)+ fas1 (by the inductive hypothesis)

=(fagr+ fag2) =1 = foys—1 O

(Exercise 9.11) (Solution on page 450)

Show, by induction on 7, that

(fo)? + (A + (f2)> +--(fa)* = fafan

for all n > 0.

We have seen that the base case may be some value n other than 0.
There are also instances in which more than one base case is required. A
simple example of this is provided by the following.

Fun with Fibonacci Numbers 237

Example 9.11

9.6.1

Fact: Forallm >2andforalln>1, foimo = fafmo1 + frn1fm_o-

Proof: We assume that m > 2 is fixed, and we prove the result by induction
on n.

Base Case (n=1): fiymo2 = fmo1 = fifm-1 + fofm—2.
Base Case (n=2): faym 2 = fm = fm1+ fm2 = fofm1 + fifm o
Induction Step: (n > 2):

fn+m—2 = f(n—1)+m—2 + f(n—2)+m—2

= (fn—lfm—l + fn72fm—2) + (fn—Qfm—l + fn—3fm—2)
(by inductive hypothesis, twice)

= (fn—l + fn—2)fm—1 + (fn—2 + fn—S)fm—Q

= fnfm—l + fn—lfm—Q O

The above proof required two base cases, as the inductive hypothesis is
invoked twice for the two values n—1 and n—2. If in the above proof we
only do the base case for n = 1, and in the induction step we try to cater
for all cases of n > 1 (in particular, n = 2), then the second invocation of
the inductive hypothesis would be invalid in the particular instance where
n=2.

Fun with Fibonacci Numbers

In this section we explore three extended induction arguments involving
Fibonacci numbers.

A Fibonacci Number Test

Suppose we are given an arbitrary positive integer z and asked whether or
not it is a Fibonacci number. For example, how might we determine whether
or not the number 517 is a Fibonacci number? The only apparent way is to
use the inductive definition to compute successive Fibonacci numbers until
we reach (or — more likely — exceed) 517. This is, however, not necessary;
we can instead use the following simple test:

A positive integer = 15 a Fibonacci number if, and only if,

5z2 + 4 is a perfect square.

238 Proofs by Induction

For example, =3 is a Fibonacci number, and 5-3%2 +4 = 49 = 72, and z=5
is a Fibonacci number, and 5 - 52 — 4 = 121 = 112. However, z=4 is not a
Fibonacci number, and neither 5-42 — 4 = 76 nor 5- 42 4 4 = 84 is a perfect
square.

For our less-modest example z = 517 above, a few calculator keystrokes
tells us that 5-517%2 —4 = 1336441, and pressing the square root button gives
us 1156.0454, so 5z? — 4 is clearly not a perfect square; and 5-517% + 4 =
1336449, and pressing the square root button gives us 1156.0489, so 5z2 + 4
is also not a perfect square. Therefore, this test tells us that z = 517 is not
a Fibonacci number. On the other hand, testing the value =610, a few
calculator keystrokes tells us that 5- 6102 — 4 = 1860496, and pressing the
square root button gives us 1364; in this case 5z — 4 is a perfect square,
meaning that the value =610 is a Fibonacci number (indeed f;5 = 610).

The following two exercises provide the basis for the argument that this
test is valid.

(Exercise 9.12) (Solution on page 451)

Show, by induction on n, that for all n > 0 the pair (z,y) = (fa, fn+1)
satisfies the equation

2 —zy — 122 = +1.

(Exercise 9.13) (Solution on page 451)

Show, by induction on z+y, that if the pair (z, y) of positive integers satisfies
the equation

2 —zy—12% = +1

then (z,y) = (fn, fnr1) for some n > 0. (Hint: For the induction step, show
that the “smaller” positive integer pair (y—=z,z) also provides a solution.)

Theorem 9.13 Fibonacci Test

]

A positive integer z is a Fibonacci number if, and only if, 5z%+ 4 is a perfect
square.

Proof: We start by recalling the quadratic formula which states that
the quadratic equation

ay’+by+c =0

is solved by the following values of y:

—b £ b*>—dac
Y 2a .

Fun with Fibonacci Numbers 239

In particular, for a given positive value of z, the quadratic equation
y? —zy — 1% = +1

is solved by the following positive value of y:

TP+ 4@ 1) o4 B ia

vy = 2 = 2 -

By Exercise 9.12, if ¢ = f,,, then the value of y given by this formula must
be fn.1, from which we can deduce that 522 4- 4 must be a perfect square.

Conversely, if 522+ 4 is a perfect square for some positive integer z, then
the value of y given by this formula, like z, must be a positive integer, in
which case Exercise 9.13 tells us that z (as well as y) must be a Fibonacci
number. O

9.6.2 A Carrollean Paradox

The following result is known as Cassini’s Identity.

(Exercise 9.14) (Solution on page 452)

Show, by induction on n, that f2,, — fafsie = (—1)" foralln > 0.

Cassini’s Identity forms the basis of a famous puzzle devised by Lewis
Carroll. The puzzle is described in the following exercise.

Exercise 9.15 (Solution on page 452)

Take a square whose sides are 8 units long, cut it into four sections (two
triangles and two quadrilaterals), and rearrange these four sections into a
rectangle whose sides are 5 units and 13 units long as shown here:

8
~l
3 ™ 3
~ 8 5
™~
7/ ~
5 5 5 ™~ 5
/ ~
~
3 5 5 8

The area of the 8x8 square is 64 square units, but the area of the 5x13
rectangle is 65 square units! Where does the extra square unit come from?

This same phenomenon occurs with any square whose sides are of length
taken from the Fibonacci numbers. For example consider the following
13x13 square cut up and rearranged into an 8x21 rectangle:

240 Proofs by Induction

9.6.3

13

5 8 8 13

In this case, the area of the square is 169 square units, but the area of the
rectangle is 168 square units, so this time we lose one square unit. Where
did it go?

Fibonacci Decompositions

The Unique Prime Factorisation Theorem states that any positive integer
n has a unique decomposition into the product of prime numbers. For
example, the number n=364 decomposes uniquely into the product of primes
as follows:

364 = 2-2-7-13.

The proof of this theorem is carried out by induction on 7, and can be found
in any but the most basic algebra reference book. Here, we present a similar
decomposition result which we shall find useful later.

Example 9.15) Zeckendorf's Theorem

Fact: Every integer N > 0 can be expressed uniquely as
N = fo, + foo + fos + -+ fa,

where 0 € k; € by € k3 € -+ < k. (Here, 1 < j means that ¢ < j-2.)
For example, 100 = 3+8+89 = fs+ fs + fu1.
Proof: First we demonstrate, by induction on n, that for alln > 1,

Jeo + oo+ fro+ o+ o < fratt
whenever 0 <€ ky € ky K ks <€ -+ - < k.
Base Case (n=1): fi, < fr,41 as ky > 2 since 0< k;.

Induction Step (n > 1):

When Inductions Go Wrong 241

Jeo + foo + fro + -+ fonss + frn
< frpat1 + frn (by inductive hypothesis)
S fknfl + fkn (Since knfl < kn; S0 kn71+1 S kn_l)

= frnt1 (by definition)

Thus if N = fi, + fap + fas + -+ fr, Where 0 < k1 < by < -+ < ky
then we must have that fi, < N < fr,11.

The main result then follows by induction on N > 0.
Base Case (N =0): Trivially 0 = fi, + fro + fes + - + fro-
Induction Step (N > 0): Let k be such that f < N < fr,1. Then
(N—=£) < firn—fi = fer-
If N is to be represented as required, then by the above result, f; must
be one (indeed the largest) of the summands.
But then by the inductive hypothesis, (N — fi) > 0 can be expressed
uniquely as

(N~ f&) = fao + fro + fos + -+ [,

where 0 € k1 € by € k3 <€ - - K k.

Furthermore, since fi, < (N — fi) < fr_1, we must have that k,<k—1,
i.e. that &, < k.

Taking k,,1 = k, we thus get that N is expressed uniquely in the
required form as

N = fi, + foo + foa + -+ frn + Frnis- |

When Inductions Go Wrong

We give here a few examples illustrating common mis-applications and mis-
conceptions of induction.

Example 9.16

Let T : Z — 7Z be the function which is defined by:

T(n) n+6, if n <0;
B T(T(n—"7)), otherwise.

242 Proofs by Induction

We can show that T'(n) =6 for all n > 0. To do this, it is tempting to use
induction on n as follows.

Base Case (n=0): T(0) = 0+6 = 6.

Induction Step (n > 0): T(n) = T(T(n-7))
= T(6) (by inductive hypothesis)
=6 (by inductive hypothesis)

There are two errors in the above argument. First of all if n» < 7 then
n—7 < 0 and the first inductive hypothesis cannot be applied. Secondly the
claim that 7'(6) = 6 certainly doesn’t follow from the inductive hypothesis
unless n > 6. These observations show that to make the induction work we
need to verify a range of base cases, namely, T'(n) = 6 for 0 < n < 6.

Although the claim is true in the above Example, the argument presented
demonstrates how easy it is to make illegitimate arguments to back up a
claim. On the other hand, the following exercise demonstrates a blatantly
false claim to be true through a seemingly innocuous induction argument.

Example 9.17) Sorites Paradox

Consider the following “proof” that sandpiles do not exist.

Claim: For each n > 0, n grains of sand do not make a sandpile.

Proof: By induction on n.

Base Case (n = 0):

If there is no sand, then there can be no sandpile.

Induction Step: (n > 0):

Suppose we have (n+1) grains of sand which constitute a sandpile.
Clearly taking away a single grain of sand from a sandpile will still
leave us with a sandpile. However, we will only have n grains of sand
left, which by induction does not constitute a sandpile. Hence our
n+1 grains of sand cannot constitute a sandpile. O

This is known as the sorites paradox or the heap paradox. The name
comes from the Greek word soros (owpéds) meaning “heap”. It relies on the
vagueness of words such as “heap” and “pile” and has many variations, each
of which being a precise and accurate application of valid logical principles
to arrive at a nonsensical conclusion.

e A man with only 1 hair is clearly bald.

When Inductions Go Wrong 243

e If a man with only 1 hair is bald,
then a man with only 2 hairs is bald.

e If a man with only 2 hairs is bald,
then a man with only 3 hairs is bald.

e If a man with only 9,999 hairs is bald,
then a man with only 10,000 hairs is bald.

Each of these observations is precise and valid, yet chaining them all together
allows us to conclude that a man with 10,000 hairs on his head is bald, a
wholly nonsense claim.

In reasoning about systems, it is imperative that we use great care to
employ only concepts that are as rigorously defined and precise as the logical
means we use to analyse them.

The sorites paradox provides a playground for philosophers wanting to
debate the validity of inductive arguments, but relies heavily on ill-defined
terms removed from the rigour of mathematics. However, in the next ex-
ercise we provide a subtle error hidden in an otherwise air-tight inductive
argument which leads to a clearly false conclusion. Can you uncover this
error?

(Exercise 9.17) (Solution on page 452)

What is wrong with the following “proof” that all people are the same age?

We show, by induction on n, that for every collection .S of n > 0 people, all
people in S are the same age.

Base Case (n = 0): Trivially the claim holds when S consists of 0 people.
Base Case (n = 1): Trivially the claim holds when S consists of 1 person.

Inductive Step (n > 1): Assuming that the claim holds for all collections
of size less than n, we show that it holds for any collection of size n.
Let S be a collection of n people. Let S’ and S” be two overlapping
collections of people which together make up S: S = S'U S”. By the
inductive assumption, all people in S’ are the same age, and all people
in S” are the same age. As S’ and S” overlap, all people in S must be
the same age.

244 Proofs by Induction

Examples of Induction in Computer Science

The following example is typical of the type of analysis which arises in the
study of algorithms.

Example 9.18

Consider the following recursive algorithm MINMAX(A4, p, q) for calculating
(z,vy) where z and y are, respectively, the minimum and maximum values
appearing in the array A[l---n] between the indices p and g, inclusively
(the intention is to initially call the algorithm with MINMax(A4, 1, n)).

MinMax(A4,p,q)
1 if p = ¢ then return (A[p], A[p])
2 else if p =g—1 then
3 if A[p] < Alg] then return (A[p], Alq])
4 else return (A[q], Alp])
5 else
6 (minL, mazL) := MINMAX(A4, p, p+1)
7 (minR, mazR) := MINMAX (A, p+2,q)
8 return (min(mmL, minR), max(mazL, mazR))
We are interested in calculating the number of comparisons which this algo-
rithm makes, as an indication of how long it takes to execute (a comparison
is made in line 3, and two are made in line 8 through the use of the functions
min and max). A simple analysis gives us that the number T'(n) of compar-
isons made by a call to MINMax(A, p, q) with n = g—p+1 is as follows:

1. if n = 1, that is, if p = ¢, then the algorithm terminates on line 1
without making any comparisons. Thus 7'(0) = 0.

2. if n = 2, that is, if p = ¢—1, then the algorithm terminates on line 3
after making one comparison. Thus T'(2) = 1.

3. if n > 2 then the algorithm makes

(a) T'(2) comparisons on line 6; followed by
(b) T(n—2) comparisons on line 7; followed by

(c) 2 comparisons on line 8
before terminating. Thus T'(n) = T'(2) + T'(n—2) + 2 for all n > 2.

The inductive definition of T'(n) is thus summarised as follows.

T(1) =0
T(2) =1
T(n) = T(2) + T(n—2) + 2 (for n > 2)

Examples of Induction in Computer Science 245

Fact T(n) = [%ﬂ —2 (where [z] is z rounded up to the nearest integer.)

Proof: By induction on n.
Base Case (n < 2): Clearly the result is true when n=1 or n=2.

Induction Step (n > 2): Suppose the result is true for all values k < n
for some n > 2. In particular,

T(n—2) = {waz = [3] -5

Thus
T(n)

T2) + T(n—2) + 2

1+ ([37n-| — 5) + 2 (by inductive hypothesis)

- [%]-2 .

The next two examples describe the technique of structural induction,
which is arguably the most important variant of induction within computing.

Example 9.19

Let A be an alphabet containing (at least) two distinct characters a and b.

Fact aw # wb for all words w € A*.

Proof: By induction on length(w).
Base Case (length(w) = 0): In this case, we must have that w = ¢, so
aw = a # b = wb.

Induction Step (length(w) > 0): We consider two subcases, depending on
whether w begins with the character a or with some other character c.

w =au: Since length(u) = length(w)—1 < length(w), au # ub by
the inductive hypothesis. Hence
aw = aau # aub = wb.

w=cu (wherec#a): aw = acu # cub = wb. O

The above is an example of a proof based on structural induction: the
inductive hypothesis assumes that the claim holds for all smaller structures
(in this case, for all shorter words), and uses this assumption to establish
that the claim holds for the structure in question. For this reason, such

246 Proofs by Induction

a proof is typically referred to as a proof by induction on the structure of
words, and would more naturally be presented as follows.

Proof: By induction on the structure of words (that is, we prove the result
for a word w under the inductive hypothesis that it is true for all smaller
words), arguing by cases on the structure of w (that is, we consider in turn
three possible forms of w, namely €, au and cu where ¢ # a).

w=¢e: aw = a # b = wb.

w =au: By induction (since u is smaller than w), au # ub, so
aw = aau # aub = wb.

w=cu (wherec#a): aw = acu # cub = wbh.

We give one further example, without the excessive explanations.

Example 9.20

Fact: Every binary tree ¢ has exactly one more leaf than internal node.

Proof: By induction on the structure of ¢, arguing by cases on the structure
of ¢.

t =*: The tree x has 1 leaf and 0 internal nodes.

t = N(t1,t,): By induction, ¢; (for ¢ = 1,2) must have n; nodes and n;+1
leaves, for some n1,n,. But then N(¢1,¢s) must have n;+n,+1 nodes
and (n1+1) + (ne+1) = (n1+na+1)+1 leaves. O

Exercise 9.20) (Solution on page 453)

Prove by induction that length(L;+Ls) = length(L;) + length(L,) for all
lists L; and L, using the inductive definition of the length of a list from
Example 8.12, and your inductive definition of the append function from
Exercise 8.13.

Additional Exercises

1. Prove the following hold for all n > 0, by induction on n.

Additional Exercises 247

(a) 1® + 22 +3 + - +n® = (14+2+3+---+n)
(This is known as Nicomachus’s Theorem.)

(B) 1 + 3 + 8 + - + (2n-1)2 = MEn=1)Cntl)

() 1 + 3 +5 + ... + (2n—1)* = n?(2n?-1).

(d) 1-2:3 + 2:3-4 + 345 + -
<+ n(n+1)(n+2) =

(e) 1(11) + 2(2) + 3(3") + -+ + n(n!) = (n+1)!-1.

(£) 4(1%71 + 4(2%71 + 4(3%71 ot 4(n21)71 = T

. Show that every m > 0 can be expressed uniquely as

n(n+1) (n4+2) (n+3) _

(1) + c(2) 4+ e3(3) + - + cu(n!)
where 0 <c¢; < 7.
. Prove, by induction on (m+n), that for all m,n > 0:
1.2:3----m + 2:34-----(m+1) + 3-4:5-----(Mm+2)
+ -+ + n(n+l)(n+2)---(n+m—1)

n(n+1)(n+2)(n+3) - - - (n+m)
m+1 ’

. Prove, by induction on n, that a finite set with n elements has 2

subsets.
. Define the sequence (go, 91,92, - ..y as follows: go = 0; g1 = 1; g2 = 1;
and for all n > 2,

Gom1 = 92 1+ 92 and 9on = Goi1 — a1

Thus for example:

2 2

n=2: g3:gf+g§ 94 =03 — 01
n=3: 9 =92 + g 9 =09 — 9
n=4: 9 =95 + g2 9 =05 — 93

Show, by induction on n, that g, = f, for alln > 0.
. Define the sequence (zo,z1, Za, .. .) as follows:
zo = 0; Tpp1 = ﬁ (n >0).

Show, by induction on n, that z, = ff"l for all n > 0.
n+

. Provide a correct proof for the claim made in Example 9.16.

. Suppose that in a particular country, every road is one-way, and every
pair of cities is connected by exactly one direct road. Show, by induc-
tion on the number n of cities, that there exists a city which can be
reached from every other city either directly or via only one other city.

248 Proofs by Induction

9.

10.

11.

12.

Imagine drawing n straight lines in the plane (extending to infinity in
both directions). The resulting configuration is to be coloured like a
map, with no two bordering “countries” having the same colour (but
two countries which meet at a single point may have the same colour).

Show, by induction on n, that only two colours are needed.

(Hint: Suppose you have such a coloured plane with n lines, and you
draw a new line; clearly the colouring condition fails nowhere except
across this new ‘border’. How can you restore the colouring condition
without altering the colours on one side of this border?)

A collection of n circles drawn in the plane divide the plane into parts.
Show that you can colour the parts with two colours so that no two
parts with a common boundary line are coloured the same way.

(Hint: Similar to the previous exercise.)

You are given a 2™ x 2" checkerboard with one black square arbitrarily
placed on the board and the remaining 4" —1 squares white. You are
also given a supply of tiles which look like 2 x 2 checkerboards with one
corner square removed. You want to tile the checkerboard so that each
white square is covered exactly once, while the black square remains
uncovered.

Show, by induction on n, that the 2" x 2™ checkerboard can be so tiled,
for all n > 0.

(Hint: For the inductive step, place the first tile in
the centre of the board with the gap in the quadrant
containing the black square, and look at the four
271 x 2"7! quadrants.)

77% [
5
L

You are given a checkerboard in the shape of an equilateral triangle
with sides of length 2" made up of smaller equilateral triangles with
sides of unit length. The topmost equilateral triangle is black but all
others are white. You are also given a supply of tiles in the form of
bucket-shaped trapeziums made from three small equilateral triangles.

g

You want to tile the large triangular-shaped checkerboard so that each
white triangle is covered exactly once, while the black triangle remains
uncovered.

Additional Exercises 249

13.

14.

15.

16.

Show, by induction on 7, that the whole checkerboard can be so tiled,
for all » > 0.

There are n identical cars on a circular track. Among all of them, they
have just enough petrol for one car to complete a lap. Show that there
is a car which can complete a lap by collecting petrol from the other
cars on its way around.

(Hint: For the induction step, first argue that there is a car A which
can reach the next car B. Then consider removing B from the track,
emptying its petrol into A.)

I put two cards on a table and tell two people that the cards have
different positive integers written on their undersides. I tell them to
take one card each at random and secretly look at the number written
on their card. They are then put in a room with a clock which rings a
bell every minute. They are not allowed to communicate in any way,
but are instructed to wait in the room until one of them knows which
card has the lower number and which has the higher number, and then
to announce this fact the next time the clock rings.

There seems to be no escape for these two people, as there seems to
be no way for either of them to discover who has the larger number.
Imagine being one of the two, sitting with a card with the number 26
written on it; how could you possibly determine whether the card held
by the other person has a number which is smaller than this or greater
than this? Paradoxically, it is doable.

Prove, by induction on n>1, that if n is the lower of the two numbers
written on the two cards, then the person who has this card will an-
nounce that he has the card with the lower number after the bell rings
n times.

What is wrong with the following “proof” that
14+24+3+---4+n = w

Proof: By induction on n.

1+2+3+ - +n

1+2+3+--+(n-1) +n
= %2(”'4_1) +n (by inductive hypothesis)
_ (n*1)2(n+2). O

What is wrong with the following “proof” that every natural number

250 Proofs by Induction

is interesting!.

Proof: By induction on n.

Base Case (n = 0): 0 is interesting as it is the smallest natural
number.
Induction Step: (n > 0):

Suppose every number less than n is interesting. If n itself is in-
teresting for some reason, then we are done. On the other hand,
if there is nothing interesting about n, then it is in fact the first
natural number which is not interesting, which makes it an inter-
esting number indeed! O

17. What is wrong with the following “proof” that z=2z for all real num-
bers z>07

Proof: By induction on z.

Base Case (z=0): z=0=2-0=2z.
Induction Step: (z > 0):
Suppose y = 2y for every positive real number y less than z.
In particular, since § <z, § =2(%) = .
But then z = 2(%) = 2z (by induction). O

18. Despite seeming more powerful, the principle of strong induction fol-
lows from ordinary induction, and hence provides added convenience
but not added power. This can be demonstrated as follows.

Suppose, for a property P(n) of natural numbers, the premise of strong
induction holds:

vn ((Vk<n P(k)) = P(n))

That is, P(n) holds of a particular value n whenever it holds for all
smaller values. We will show, by ordinary induction, that Vn P(n) is
true. Let Q(n) be the property Vk<n P(k).

(a) Show that Vn P(n) < VnQ(n) without using induction.

(b) Show that Vn Q(n) by ordinary induction. Thus, by part (a),
Vn P(n) .

TThis proof is clearly wrong, as no number is interesting. Proof: Suppose some numbers
are interesting; then there must be a smallest interesting number n. So what, who cares?

Chapter 10

Games and Strategies

You have to learn the rules of the game. And then you have to play
better than anyone else.
- Albert Einstein.

Games-of-chance derive this title from the fact that luck plays a part in
deciding the winner of a play of the game. Sometimes the game consists
solely of luck, as with CoIN-FLIPPING (“heads wins”) or CARD-CUTTING
(“highest card wins”). Typically, though, this isn’t the case, and a sensible
strategy is needed to beat a good player who isn’t burdened by a string of ex-
traordinarily bad deals of the cards (in the case of, e.g., POKER or BRIDGE),
or throws of the dice (in the case of, e.g., BACKGAMMON or MONOPOLY).
However, casinos operate (very successfully!) on the premise that (most of)
their clientele do not play with luck on their side.

What we might call games-of-no-chance are those games for which
the winner is decided based solely on ability. Examples of such games are
CHess and Go. They involve no decisions taken on the results of random
events such as the deal of cards or the throw of dice, and no information is
hidden from the players (apart from what moves the other player will choose
to make during the play of the game).

For example, in the children’s paper-and-pencil game NOUGHTS AND
CrossEs (also known as T'1c-Tac-ToE), two players alternately place crosses
(x) and noughts (o) in nine square spaces arranged in a 3 x 3 grid. The
goal of the first player is to align three crosses in a line (row, column or
diagonal), and the goal of the second player is to align three noughts in a
line (row, column or diagonal). A player wins the game if they achieve their
goal before the other player does so. A game that ends with a full grid
without a line of crosses or noughts is a draw.

When children first learn to play this game, the outcomes will be vari-
able; sometimes the first player wins, sometimes the second player wins,
and sometimes the game ends in a draw. However, every child eventually
becomes bored with this game, as they discover that they can only win if
their opponent makes a silly error. This is regardless of whether they are

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_11, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_11

252 Games and Strategies

playing as first player or second player, though it seems that the first player
should have a distinct advantage.

Strategies for Games-of-No-Chance

In this chapter we shall be interested in such two player games-of-no-chance.
We shall typically refer to the first player as A (for Alice) for whom we shall
use female pronouns (she, her), and the second player as B (for Bob) for
whom we shall use male pronouns (he, his). Furthermore, these will be
games of perfect information, meaning that both players will be aware
of all aspects of the game: at every point in the game, both players know
what moves have been made up to that point in time, as well as what moves
their opponent can make in response to any move that they themselves
make. The game of PAPER-ScCISSORS-ROCK, for example, is not a game of
perfect information, as neither player has information regarding the move
being made by the other player. While there is no element of chance in
the players’ decision making, as each player is free to choose whatever move
they wish, the lack of information about the opponent’s move makes luck a
factor in this game.

Another typical feature of the games that we shall consider is finiteness.
A finite game is one that is guaranteed to terminate within a finite number
of steps. This isn’t true of many games, for example CHESS (unless some rule
is introduced which declares a game to be a draw if it continues indefinitely,
the standard rule being that a draw is declared if 50 consecutive moves have
been made without a piece being captured nor a pawn being moved). If
a play of a particular game may continue indefinitely, we will rule infinite
plays to be predetermined in some way; that is, either the first player wins
every infinite play, or the second player wins every infinite play, or the game
is declared to be a draw. For example, we may declare that every infinite
play of the game of CHESS is ruled to be a draw.

We shall at times consider games in which the first player is in the role
of an attacker; she makes attacking moves which the second player, in the
role of a defender, must defend against with his responses. We may refer
to such games as attacker-defender games. The first player’s aim is to
achieve some goal (which will end the game), while the second player’s aim
is to prevent her from doing this. The important aspect of these games is
that a play which continues forever is a positive result for the second player;
that is, every infinite play of an attacker-defender game is ruled to be a win
for the second player.

A strategy for a player in a game is a rule which tells that player what
move to make each time it is their turn to move. A strategy which guar-
antees that you will win the game regardless of what moves your opponent

Strategies for Games-of-No-Chance 253

makes is referred to as a winning strategy. If a game may end in a draw,
then a strategy which guarantees that your opponent will not win (without
guaranteeing that you will win) is referred to as a drawing strategy.

A position in a game is a winning position if the player whose turn it
is has a winning strategy from this position; it is a losing position if the
other player (whose turn it is not) has a winning strategy from this position;
and finally, it is a drawing position if neither player has a winning strategy
from this position. Clearly, from a winning position there must be a move
to a losing position, while every move from a losing position must lead to a
winning position. From a drawing position there must be some move to a
drawing position, perhaps some moves to winning positions, but no moves
to losing positions.

For a given game it is not possible for both players to have a winning
strategy, though it is possible that neither player has one. For example, we
noted above that neither player has a winning strategy in NOUGHTS AND
CROSSES; the game can be played out through the maximum nine moves
filling in all nine squares in the grid without either player winning, regardless
of how cleverly they play. The first player does not have a winning strategy
because:

1. no matter what the first player does
there is something that the second player can do such that
no matter what the first player does
there is something that the second player can do such that

no matter what the first player does

2
3
4
5
6. there is something that the second player can do such that
7 no matter what the first player does

8 there is something that the second player can do such that
9

no matter what the first player does
she will not have formed a line of crosses.

Similarly, the second player does not have a winning strategy because:
1. there is something that the first player can do such that
no matter what the second player does
there is something that the first player can do such that
no matter what the second player does

2
3
4
5. there is something that the first player can do such that
6 no matter what the second player does

7

there is something that the first player can do such that

254 Games and Strategies

8. no matter what the second player does
he will not have formed a line of noughts.

The simplicity of this game makes it easy to analyse; a play consists of
(at most) nine moves, and the game is very symmetric. Thus a drawing
strategy for both players is easy to discover, which ultimately renders the
game uninteresting to play.

All such games are boring in this sense. At most one of the two players
has a winning strategy; and by following this strategy, they ensure that the
other player cannot do anything to avoid losing. If draws are possible, then
both players may have strategies which prevent the other from winning.
This important fact is recorded by the following theorem.

Theorem 10.1

In any two-player game-of-no-chance of perfect information, either one of the
two players has a winning strategy, or they both have drawing strategies.

Proof: Clearly, if one of the two players has a winning strategy, then the
other player cannot have a winning strategy: Fixing the strategies of the
two players, only one of the two players can win the game, so only one of
these two strategies can be a winning strategy.

Assume, then, that neither player has a winning strategy. That the first
player does not have a winning strategy means that the second player may
respond to each move made by the first player in such a way that either:

e the game ends in a draw or as a win for the second player; or
e The game continues forever, and infinite games are either ruled to be

draws or ruled to be wins for the second player.

That is to say, the second player has a strategy for ensuring that the first
player does not win. Equally, that the second player does not have a win-
ning strategy means that the first player has a strategy for ensuring that
the second player does not win. Each of these strategies, therefore, must be
a drawing strategy for its associated player. a

Corollary 10.1

If a game cannot end in a draw, then one of the two players has a winning

strategy.

Example 10.1

Consider the following game: starting with a pile of 10 coins, two players
take turns removing either 2 coins or 3 coins from the pile. The player who
takes the last coin wins; if one coin remains, then the game is a draw.

Strategies for Games-of-No-Chance 255

We can systematically analyse this game from the end backwards as
follows:

(1)

(2)

®3)

(4)

(5)

(6)

(8)

(9)

If there is 1 coin left, then the game is a draw. This is thus a drawing
position.

If there are 2 coins left, then you can win the game by taking both

coins. This is thus a winning position.

If there are 3 coins left, then you can win the game by taking all three
coins. This is thus a winning position.

If there are 4 coins left, then you can either:

— take 2 coins and leave 2, thus leaving the other player in what we
know from (2) above is a winning position; or

— take 3 coins and leave 1, thus leaving the other player in what we
know from (1) above is a drawing position.

Clearly the latter option is the correct one to make, and this is thus a
drawing position.

If there are 5 coins left, then you can either:

— take 2 coins and leave 3, thus leaving the other player in what we
know from (3) above is a winning position; or

— take 3 coins and leave 2, again leaving the other player in what
we know from (2) above is a winning position.

Whatever you do will leave the other player in a winning position.
This is thus a losing position.

If there are 6 coins left, then you can either:

— take 2 coins and leave 4, thus leaving the other player in what we
know from (4) above is a drawing position; or

— take 3 coins and leave 3, thus leaving the other player in what we
know from (3) above is a winning position.

Clearly the first option is the correct one to make, and this is thus a
drawing position.

If there are 7 coins left, then you can take 2 coins and leave 5, which
we know from (5) above is a losing position. This is thus a winning
position.

If there are 8 coins left, then you can take 3 coins and leave 5, which
we know from (5) above is a losing position. This is thus a winning
position.

If there are 9 coins left, then you can either:

256 Games and Strategies

— take 2 coins and leave 7, thus leaving the other player in what we
know from (7) above is a winning position; or

— take 3 coins and leave 6, thus leaving the other player in what we
know from (6) above is a drawing position.

Clearly the latter option is the correct one to make, and this is thus a
drawing position.

(10) If there are 10 coins left (that is, if you are at the start of the game),
then you can either:

— take 2 coins and leave 8, thus leaving the other player in what we
know from (8) above is a winning position; or

— take 3 coins and leave 7, again leaving the other player in what
we know from (7) above is a winning position.

Whatever you do will leave the other player in a winning position.
This is thus a lostng position.

We can summarise this analysis concisely in the following table:

(012 3[4]5 6]7 8]9][10]
L|p|lw w|p|L D|w|w|D|L
—=T2 3|3|- 2|2 3|3 -

The top row indicates the running total; the middle row indicates whether
the current player is in a winning position (W), or a losing position (L), or
in a drawing position (D); and the bottom row indicates how many coins
(2 or 3) the player should remove from the pile in that turn (there being no
entry in the cases where the player is in a losing position).

Figure 10.1 depicts this game as a so-called game tree for this game. The
nodes of this tree represent positions in the game (labelled by the number
of coins remaining in the pile), and the arrows represent the possible moves
which a player can make in the given position (labelled by the number
of coins removed by that move). The winning positions are depicted by
circled nodes, while the losing positions are depicted by boxed nodes; the
nodes which are neither circled nor boxed depict drawing positions. The
important observations to make are:

1. every winning position has at least one move leading to a losing posi-
tion, (that is, every circled node has an arrow leading to a boxed node,
emphasised in the figure by a double arrow);

2. every move from a losing position leads to a winning position (that is,
every arrow from a boxed node leads to a circled node); and

3. every drawing position has a move to another drawing position; pos-
sibly a move to a winning position; but no move to a losing position

Strategies for Games-of-No-Chance 257

Figure 10.1: The game tree for a simple coin game.

(that is, every undecorated node has an arrow to another undecorated
node, emphasised in the figure by a double arrow; possibly an arrow
to a circled node; but no arrow to a boxed node).

These three observations respectively define what it means for a position to
be a winning position, a losing position, or a drawing position.

Exercise 10.1 (Solution on page 453)

]

In the game of TAKE-3, there is a single pile of coins, and two players
alternately remove either 1, 2, or 3 coins from the pile. The player who
takes the last coin wins.

1. For each number n from 1 to 10, explain who has the winning strategy
in TAKE-3 starting from a pile of n coins. In the cases in which the
first player has the winning strategy, state how many coins (1, 2 or 3)
the first player should take.

2. Generalise the above by explaining who has the winning strategy in
TAKE-3 starting from a pile of n coins for an arbitrary n.

3. Generalise the above further by explaining who has the winning strat-
egy in TAKE-k starting from a pile of n coins for an arbitrary n, but
where players may alternately remove between 1 and k coins (above,
we had k=3).

258 Games and Strategies

4. MISERE TAKE-3 is played exactly like TAKE-3, but the object of the
game is to not take the last coin; that is, you wish to force your oppo-
nent to take the last coin. How does this change the above analysis?

(Exercise 10.2) (Solution on page 454)

In the game of MISERE NOUGHTS AND CROSSES, the aim is to avoid placing
three of your symbols in a row, but rather to force your opponent to place
three of their symbols in a row.

1. The first player does not have a winning strategy in this game. Explain
how the second player can play to avoid losing.

(Hint: It is a good idea to occupy two adjacent side squares first, and
then a square which is aligned with only one of these two side squares.
Why is this possible, and why does it work?)

2. The second player also does not have a winning strategy in this game.
Explain how the first player can play to avoid losing.

(Hint: Start by placing the first cross in the middle, and then “mir-
roring” every move of the second player by placing each subsequent
cross directly opposite to where the second player places his noughts.
Why is this a good idea?)

(Exercise 10.3) (Solution on page 454)

The game of CLOCK-2-3 is played on a board which looks like the face of a
12-hour clock such as depicted as follows:

A token is placed on one of the hours (1 through 12) and the players take
turns moving the token either 2 or 3 hours forward (i.e., in a clockwise
fashion). The player who moves the token onto the 12 o’clock slot wins the
game.

Strategies for Games-of-No-Chance 259

Explain who has the winning strategy in CLock-2-3 starting from each
of the 12 hours. In the cases in which the first player has the winning
strategy, state how many hours forward (2 or 3) the first player should move
the token. (As a start, the first player clearly has a winning strategy starting
from either 9 o’clock or 10 o’clock, by moving 3 and 2 hours, respectively, to
land on 12 o’clock. Thus the second player has the winning strategy starting
from 7 o’clock, as the first player will be forced to move the token to either
9 o-clock or 10 o'clock.)

Exercise 10.4) (Solution on page 456)

The following depicts a simple variant of the children’s board game SNAKES
AND LADDERS.

Q8 9
o s

1 2 3

In this game, a single shared counter is started on square 1, and two players
take turns moving the counter either one or two spaces forward (with the
player moving deciding whether to move one or two spaces). If the counter
lands at the foot of a ladder, it climbs to the top of the ladder; and if the
counter lands on the head of a snake, it slides down to the tail of the snake.
The object of this game is to be the one to move the counter to the final
square number 9.

Identify which of the positions are winning positions; which are losing
positions; and which are drawing positions. (Recall that a winning position
is one from which there is a move to a losing position, whereas a losing
position is one from which every move leads to a winning position; all other
positions are drawing positions, as from these you cannot force a win nor
be forced to lose.) As a start, 9 is a losing position in both games, while 8
is a winning position in both games, as you can win by moving one space
forward. For the non-losing positions, indicate the optimal move(s).

The CHESs-playing computer Deep Blue attributes a large part of its
success in its ability to search for a winning strategy in a manner similar to
the above analysis. The salvation for such games comes from the fact that
there are astronomically-many configurations to consider, far too many for

260 Games and Strategies

a modern (and indeed any conceivable) computer to analyse. Today’s Kas-
parovs are safe in the fact that CHEss-playing computers such as Deep Blue
must still invoke questionable decision-making procedures, but perhaps one
day a Very Deep Blue will render CHEss-playing, like playing NOUGHTS
AND CROSSES, a pointless activity.

In the rest of this chapter we consider several moderately-simple two-
player games-of-no-chance, and try to understand the strategies which a
player should use in order to win them.

Nim

NiM is a simple and ancient game played with coins, thought to be Chinese
in origin. To play this game, an arbitrary number of piles of coins are
formed, each with an arbitrary number of coins in them, and two players
alternate in removing one or more coins from any one pile. Whoever takes
the last coin is declared to be the winner.

This game is trivial when played with only one or two piles of coins, or
with three very small piles. The analysis of the game in these cases is as
follows.

1. In the one-pile game, the first person has a trivial winning strategy:
take all the coins in the first move.

2. In the two-pile game,

(a) if the piles contain an equal number of coins then the second
player has a winning strategy: always take the same number of
coins as the first player, repeatedly leaving the first player with
equal-sized piles.

(b) if the piles contain an unequal number of coins, then the first
player has a winning strategy: start by taking coins from the
larger pile to leave equal-sized piles, and then use the strategy
described in 2(a) for the second player.

3. In the three-pile game,

(a) if two of the piles are equal, then the first player has a winning
strategy: take all of the coins in the third pile, leaving just the two
equal-sized piles (and one empty pile), and then use the strategy
described in 2(a) for the second player.

(b) if the piles contain one, two, and three coins, respectively, then
the second player has a winning strategy:

Nim 261

i. if the first person takes the whole of one of the piles, then
there will be just two unequal piles left (and one empty pile),
and the second player can win using the strategy described
in 2(b) for the first player.

ii. if the first player takes just part of one of the piles, then there
will be three non-empty piles remaining, two of which must
be equal, and the second player can win using the strategy
described in 3(a) for the first player.

The game is traditionally played with three piles, containing three, four,
and five coins, respectively, and even here its complexity starts to become
convincing; after playing many times, it remains difficult to glean any good
long-term strategy. The only approach to the game which comes immedi-
ately to mind, reminiscent of games like CHEsS, is to look ahead several
moves, anticipating the moves of the other player, in order to avoid bad po-
sitions. With time, it is possible to recognise more and more bad positions,
and become better at avoiding these. However, the character of the game
changes with four, five, or more piles.

In fact there is a straightforward winning strategy for this game, either for
the first player or the second player, depending on the number of piles and
the number of coins in each pile. To see this, write out the numbers of coins
in the piles in binary notation, one above the other, and add up the columns
modulo 2; that is, compute the sum of a column to be 0 if it has even parity
(i.e., there are an even number of 1’s in the column), and 1 if it has odd
parity (i.e., there are an odd number of 1’s in the column). If all columns
have an even parity, we shall say that the position is balanced; otherwise
we say that the position is unbalanced. The following observations can be
made:

1. If every column has even parity (i.e., we are in a balanced position),
then every move will result in some column having odd parity (i.e.,
every move leads to an unbalanced position).

2. If one or more columns have odd parity (i.e., we are in an unbalanced
position), then some move will result in every column having even
parity (i.e., some move leads to a balanced position).

. . 3:011 3:011
For example, in the 3-4-5-7 game, the first and third 4100 = 1001

columns have odd parity (while the second column 5101 5101
has even parity). By taking 3 coins from the second 7. 111 7111
pile, we give the first and third columns even parity 101 000
(while leaving the parity of the second column even). T

From this new position, whatever coins are removed, there will result at
least one column with odd parity.

With the above two observations, along with the insight that the ultimate
goal of the game is to make all columns add up to zero, and hence an even

262 Games and Strategies

number, it is clear that:

1. the first player has a winning strategy if one or more of the columns
has odd parity: the correct move is to remove coins so as to leave all
columns with even parity;

2. the second player has a winning strategy if all of the columns have
even parity: regardless of what move is made, the resulting parity of
at least one column will be odd.

Exercise 10.5) (Solution on page 456)

If a player is in a winning position in NimM, then there will in general be more
than one winning move. (Two moves are different if they involve different
piles, or if they involve the same pile but removing different numbers of
coins.) What is the maximum number of different winning moves possible
from a NiM position with n piles? Justify your answer.

(Exercise 10.6) (Solution on page 456)

10.3

Suppose we change the rules of Nim slightly so that the first player, instead
of removing some coins from a pile, has the additional option of creating a
new pile of any size (with at least one coin in it); the first player may do
this at most once during a play of the game. Under which circumstances can
the first player force a win with the help of this extra move? (Consider, in
particular, the two situations in which the game starts from an unbalanced,
respectively a balanced, position.) Justify your answer.

Fibonacci Nim

The next game we consider is a variation on NiMm called FiBoNAcct Nim.
In this game we have a single pile containing n>2 coins. The first player
removes one or more coins but not the whole pile. From then on, the players
alternate moves, each person removing one or more coins, but not more than
twice as many coins as the other player has taken in the preceding move.
The player who removes the last coin wins.

The analysis of this game is complicated by the fact that a player’s
available moves depend on the opponent’s last move. However, we can
nonetheless easily analyse small instances of this game:

2 coins: the first player must take 1 coin, leaving the second player to take
the last coin. Hence in this case, the second player has a (trivial)
winning strategy.

Fibonacci Nim 263

3 coins: The first player must take 1 or 2 coins; in either case the second
player can take all remaining coins. Hence in this case, the second
player again has a (trivial) winning strategy.

4 coins: The first player can take 1 coin, leaving the second player to take
either 1 or 2 of the remaining 3 coins; the second player can thus not
avoid losing as described in the 3-coin game for the first player. Hence
in this case, the first player has a winning strategy.

5 coins: If the first player takes more than 1 coin, then the second player
will be able to take all remaining coins; thus, in order to win the first
player must take only 1 coin, leaving 4 coins. But then the second
player can win by using the strategy described in the 4-coin case for
the first player. Hence in this case, the second player has a winning
strategy.

6 coins: The first player can take 1 coin, leaving 5 coins to the second
player. The second player can then not avoid losing as described in
the 5-coin case for the first player. Hence in this case, the first player
has a winning strategy.

7 coins: The first player can take 2 coins, leaving 5 coins to the second
player. The second player can then not avoid losing as described in
the 5-coin case for the first player. Hence in this case, the first player
has a winning strategy.

8 coins: If the first player takes more than 2 coins, then the second player
will be able to take all remaining coins; thus, in order to win the first
player must take only 1 or 2 coins, leaving either 7 or 6 coins. The
second player can then win by using the strategy described in the 7-
coin or 6-coin case for the first player. Hence in this case, the second
player has a winning strategy.

9 coins: The first player can take 1 coin, leaving 8 coins to the second
player. The second player can then not avoid losing as described in
the 8-coin case for the first player. Hence in this case, the first player
has a winning strategy.

We can exhaustively work out winning strategies this way, but the reasoning
is indeed exhausting. It would be a major effort, for example, to work out
if we have a winning strategy as the first player starting with 100 coins, and
if so how many coins we should take. There is, however, a straightforward
way to work out who has the winning strategy, and what the winning move
is if one exists. To determine this, we first recall the following.

264 Games and Strategies

Theorem 10.6) The Fibonacci Number System

Every integer N > 0 can be expressed uniquely as a sum of Fibonacci
numbers

N = fk1+fk2+fk3++fkn
where 0 <€ k; € ky € k3 € - < k,. (Here, i < j means that 1 < j—2.)

For example, 100 = 3+8+89 = f;+ fo + fi1-

Proof: This is Zeckendorf’s Theorem which we proved in Example 9.15.
O

Theorem 10.7)

The first player has a winning strategy in FiBoNnaccl NiM starting with
n coins if, and only if, n is not a Fibonacci number. In this case, the
winning strategy, when n coins remain, is always to take fr, coins, where
n = fu,+f et + e (With 0<k; <ko<L - - - <k,) is the representation of n
in the Fibonacci number system.

For example, in the game starting with 100 = f,+ fs+ f11 coins, the winning
opening move is to take f, = 3 coins.

(Exercise 10.7) (Solution on page 457)

Prove Theorem 10.7.

Chomp

In the game of CHOMP, we have an mxn chocolate bar, in which the
leftmost-topmost square (1, 1) is poisonous. Two players take turns taking
bites out of the chocolate bar, with each player having to choose a remaining
square and eat it along with all remaining squares below and to the right.
The goal is to force the other player to eat the poisonous square.

As before, we can easily analyse small instances of this game.

1. In the 1x1 case, the first player loses right away; hence the second
player has a trivial winning strategy.

2. In the 1xn case with n>1 (or, similarly, the mx1 case with m>1), the
first player has a trivial winning strategy: bite off all but the poisonous
square, leaving just the poisonous square for the second player to take.

Chomp 265

3. In the 2xn (or mx2) case, the first player has a simple winning
strategy: bite off one square, leaving a 2xn rectangle with the bottom-
right square missing.

(a) if the remaining chocolate is a 2xk rectangle with the bottom-
right square missing, then every move will result in a shape dif-
ferent from this.

(b) if the remaining chocolate is not in the shape of a 2xk rectangle
with only the bottom-right square missing, then some move will
result in a shape of this form.

With this observation, along with the insight that the ultimate goal of
the game is to leave just the poisonous square which has the shape of
a 2x1 rectangle with the bottom-right square missing, it is clear that
the first person has a winning strategy.

4. In the nxn (square) case, the first player again has a simple winning
strategy: bite off the (n—1)x(n—1) sub-square, leaving just the top
row and left column. From here, just mimic every move of the second
player, biting off as many squares from the row (respectively, column)
as the second player bites off the column (respectively, row).

Apart from these special cases, very little is known about winning strategies
in this game. The only way to find the winning strategy is to explore
moves, and responses to moves, and responses to responses to moves, etc.
For example consider the 3x4 game. In this case, it is not a good idea to
take just one square (as was the strategy in case 3 above), nor to take all but
the first row and first column (as was the strategy in case 4 above). However,
the first player does have a winning strategy, which starts by biting off a
2x2 square. This leaves the second player with 7 moves to choose from;
whatever move the second person takes, though, will be bad, as can be seen
in Figure 10.2.

Despite the difficulty of this game, we can easily prove the following
remarkable fact.

(Theorem 10.8)

Except for the degenerate 1x1 case, the first player always has a winning

strategy.

Proof: Suppose, for the sake of argument, that the second player has a
winning strategy. This means, in particular, that whatever move the first
person opens the game with, the second person has a response which will
leave the chocolate in a configuration from which the first person cannot
win.

Consider the response that the second person makes using this winning
strategy if the first person opens by biting off just a single square. Whatever

266 Games and Strategies

10.5

In 3x4 CHOMP the first The second player has 7

player has a winning strat- H XX possible responses to this

egy, in which the opening [[[X[X move, but every one of

move is to bite off a 2x2 \L them is bad: the first

square. 13 player has a response to
each of these which will
bring victory closer.

/ A
XX gux\ _NES EJXM

Figure 10.2: An analysis of 3x4 CHOMP.

this response, it is a move which the first player could equally have opened
the game with, thus leaving the second player to play from the losing con-
figuration.

This contradicts the assumption that the second player has the winning
strategy. O

This is indeed an interesting state of affairs. In this game, we know
that the first player has a winning strategy, but apart from exhaustively
analysing all possible plays of the game, there is no way of knowing how to
win as the first player.

Hex

The game of HEX is played on a board consisting of an n xn grid of hexagons,
as shown in Figure 10.3. At the beginning of the game, the first player is
considered to own the territories to the North-East and South-West of the
board (the two sides labelled with crosses x in the figure), while the second
player is considered to own the territories to the North-West and South-East
of the board (the two sides labelled with noughts o in the figure). The object
of the game for each player is to create a path through the board joining
their disconnected territories. The players alternate moves; the first player
places a cross x in a vacant hexagon, and the second player follows on by
placing a nought o in a vacant hexagon. The winner of the game is the first
player to connect their two sides of the board with a contiguous chain of
hexagons labelled with their symbol.

o
e Se Y%
O CHEHA0
g Ueats

R

Figure 10.3: The Hex board.

(Theorem 10.9)

The game of HEX can never end in a draw.

Proof: An informal argument runs as follows. Think of the crosses as land
and the circles as water; when all the hexagons are labelled, either there is an
isthmus connecting the two continents. or else water flows between the two
oceans, In the first case, the first player has a winning chain of x-labelled
hexagons, while in the latter case the second player has a winning chain of
o-labelled hexagons.

A formal proof would require a fair amount of explanation; here we pro-
vide only an outline. Assuming that every hexagon is labelled with a cross
x or a nought o, we show that one of the opposite pairs of sides is con-
nected in a winning fashion. To see this, we imagine tracing a path along
the boundaries of the hexagons, entering the grid at the left-most corner. At
each junction we look at the territory we are facing; if it is labelled x then
we turn left, and if it is labelled o then we turn right. If we do this, then
we shall trace a path which always has x on its right and o on its left, and
the path will exit the grid either at the top or at the bottom. In the first
case, the x-hexagons to the right of the path include a winning path for the
first player, and in the second case, the o-hexagons to the left of the path
include a winning path for the second player. Figure 10.4 gives an example
in which the second player has a winning chain. O

Knowing that this game can never ends in a draw, we can then prove
the following.

268 Games and Strategies

Figure 10.4: HEX never ends in a draw.

Theorem 10.10)

The first player always has a winning strategy for HEX.

Proof: Suppose for the purpose of argument that the second player has a
winning strategy. Then the first player may play as follows.

1. She may label any hexagon chosen at random, and then forget that
she has done this.

2. She may then pretend from this point on that she is playing the game
as the second player, using the (supposed) winning strategy for the
second player.

3. If at any time this strategy dictates that she should label the pre-
labelled hexagon, then she should simply label any other unlabelled
hexagon at random, pretend that it isn’t labelled, and pretend that
her response was to label the pre-labelled hexagon.

In this fashion, the first player is stealing the winning strategy from the
second player, and using it to win the game. This proves that if the second
player has a winning strategy, then the first player has a winning strategy,
which of course is a contradiction. |

Again, as with CHOMP, we are able to prove that the first player has the
winning strategy in HEX, but our proof gives no indication as to what that
strategy might be!

Bridg-It 269

Figure 10.5: The BrIDG-IT board.

Bridg-It

The game of BRIDG-IT is similar to HEX, but is played on a staggered n x n
board as depicted in Figure 10.5. The goal of the first player is to link
the left- and right-hand borders, while the goal of the second player is to
link the top and bottom borders. The two players alternate moves; the
first player joins two neighbouring spots e either horizontally or vertically,
and the second player joins two neighbouring circles o either horizontally
or vertically. Neither player can cross a link previously made by the other
player.

(Theorem 10.11

The game of BRIDG-IT can never end in a draw.

Proof: Assuming that no further moves can be made, the board will depict
a simple maze pattern, such as that given in Figure 10.6. Entering the maze
from the bottom left, there is a unique path through the maze, which always
has the first player’s e-links on its left and the second player’s o-links on its
right. This path must exit the maze at either the bottom right or the top
left. (The path cannot exit the maze at the top right, as then it would end
with o-links on its left and e-links on its right.) In the first case, the e-links
to the left of the path contain a winning path for the first player, and in the
second case, the o-links to the right of the path contain a winning path for
the second player. |

270 Games and Strategies

Figure 10.6: BRIDG-IT never ends in a Draw.

Knowing that this game can never ends in a draw, we can then prove
the following.

(Theorem 10.12

The first player always has a winning strategy for BRIDG-IT.

Proof: The reasoning is identical to that used in the proof of the analogous
result for HEX. d

Yet again this proves that the first player has a winning strategy without
giving any indication as to what that strategy might be. However, in this
case, we can explicitly describe a winning strategy for the first player. Re-
ferring to Figure 10.7, the first player should open with the link indicated.
From that point onwards, each link that the second player makes will touch
the end of one of the dotted lines depicted in Figure 10.7; in response, the
first player should add the link which touches the other end of this dotted
line. In this way, the first player will successfully block any attempt by
the second player to create a path linking the top and bottom borders, and
hence she will herself eventually win.

Exercise 10.12) (Solution on page 459)

Argue that the above does indeed describe a winning strategy for the first
player.

Additional Exercises 271

Figure 10.7: The winning strategy for BrRipG-IT.

Additional Exercises

1. Consider the following game:

Starting with 5 coins, two players take turns taking 1 or 2 coins;
and whoever ends up with an odd number of coins wins.

(a) Draw the complete game tree for this game, and determine who
has the winning strategy.

(b) Who has the winning strategy in this game when started with
n coins, where n is an arbitrary odd number? (Hint: for each
n = 1,2,3,... determine whether or not you have a winning
move if it is your turn and there are n coins left. and you are
currently holding an even number of coins; in parallel to this,
determine whether or not there is a winning move if it is your
turn and there are n coins left. and you are currently holding an
odd number of coins. Look for a pattern.)

2. Consider the following game:

Starting with 5 coins, each player takes turns taking 1, 2 or 3
coins; and whoever ends up with an odd number of coins wins.

(a) Draw the complete game tree for this game, and determine who
has the winning strategy.

272 Games and Strategies

(b)

Who has the winning strategy in this game when started with n
coins, where n is an arbitrary odd number? (The same hint as
for question 1(b) applies.)

3. Consider the following game:

Starting with a single pile of coins, two players alternate taking
either 1 coin or half of the remaining coins, including the leftover
coin if there is an odd number of coins remaining. Thus, for
example, if there are 25 coins in the pile then a move consists of
taking either 1 coin or 13 coins; if 13 coins are taken leaving 12
in the pile, then the next move will consist of taking either 1 coin
or 6 coins. The player who takes the last coin wins.

For each number n from 1 to 10, explain who has the winning
strategy in this game starting from a pile of n coins. In the cases
in which the first player has the winning strategy, state how many
coins the first player should take.

Argue that the first player has a winning strategy in the game
starting with n coins if, and only if, the binary representation of
n ends in an even number of 0’s. Specifically,

e if the binary representation of n ends in an even number of
0’s, then either n=1 and you can win by taking the single
coin, or there is a move which leaves a number of coins whose
binary representation ends in an odd number of 0’s; and

e if the binary representation of » ends in an odd number of
0’s, then every move leaves a number of coins whose binary
representation ends in an even number of 0’s.

4. Consider the following game:

Starting with a pile of n coins, two players alternately remove a
number of coins which is a power of 2. That is, a player may take
1 coin, or 2 coins, or 4 coins, or 8 coins, or 16 coins, or 2* coins
for any k. The player who takes the last coin wins.

Argue that the second player has a winning strategy if, and only if, n
is a multiple of 3.

5. Consider the following game:

Starting with a pile of n coins, two players alternately remove
either 1 or 3 or 8 coins. The player who takes the last coin wins.

Argue that the second player has a winning strategy if, and only if, n
is of the form 11k or 11k+2 or 11k+4 or 11k+6.

Additional Exercises 273

6.

(a)

(b)

(b)

The game of CLoOCK-1-3 is identical to the game of CLoOCK-2-
3 from Exercise 10.3 (page 258) except in this game the token
moves either 1 or 3 hours forward.

Work out who has the winning strategy in the game of CLOCK-
1-3 starting from each of the 12 hours. In the cases in which
the first player has the winning strategy, state how many hours
forward (1 or 3) the first player should move the token.

The game of CLOCK-1-4 is identical to the game of CLOCK-2-
3 from Exercise 10.3 (page 258) except in this game the token
moves either 1 or 4 hours forward.

Work out who has the winning strategy in the game of CLock-
1-4 starting from each of the 12 hours. In the cases in which
the first player has the winning strategy, state how many hours
forward (1 or 4) the first player should move the token.

The game of DAYS-OF-THE-YEAR is played by two players who
take turns naming a date of the year starting from January 1st.
On any move a player may increase the month or the day but not
both. Thus, for example, the first player can start the game by
naming any day in January (apart from the 1st), or the 1st of any
month of the year (apart from January). The player who names
December 31st wins.

Work out who has the winning strategy for this game. For a
start, you can note that there is a winning move from any date in
December (apart from the 31st), as well as from the 31st of any
month (apart from December).

The game of DAYS-OF-THE-CENTURY is played by two players
who take turns naming a date in the 20th century starting from
1st January 1900. On any move a player may increase the month
or the day or the year, but only one of these three. The player
who names 31st December 1999 wins.

Work out who has the winning strategy for this game.

8. In MisERE NouGHTs AND CROSSES, it would seem sensible to avoid

placing the first cross in the centre, as the centre is involved in the
most winning lines. However, as the Hint in Exercise 10.2 suggests, a
sensible opening move in M1sSERE NOUGHTS AND CROSSES is to place
a cross in the centre.

This is in fact the only sensible opening move. Suppose that the first
player starts by placing a cross somewhere other than the centre, that
is, in a corner or side square. Show that the second player has a
winning strategy from this position.

274 Games and Strategies

9.

10.

11.

12.

13.

14.
15.

The following depicts a simple variant of the children’s board game
SNAKES AND LADDERS.

7qg
) U
2

A

The rules of the game are as described in Exercise 10.4 (page 259).

Identify which of the positions are winning positions; which are losing
positions; and which are drawing positions. (The game is played as
described in Exercise 10.4 on page 259.) For the non-losing positions,
indicate the optimal move(s).

Who has the winning strategy in NiM when you start with n piles each
containing an equal number of coins? Justify your answer without
referring to the general theory of Nim, that is, without referring to
balanced versus unbalanced positions.

In MisERE NiM, the objective is to not take the last coin. What is
the winning strategy for this variation?

The game of NiM-k is played just like NiMm except that in a single
move a player can remove (a different number of) coins from up to k
different piles. Thus NiM-1 is the usual game of Nim.

Prove that there is a winning strategy in Nim-k from a given collec-
tion of piles if, and only if, when writing out the numbers of coins
in the piles in binary notation, one above the other, and adding up
the columns, the sum of at least one of the columns is not divisible
by k+1.

Does the first player have any other safe opening moves in 3x4 CHOMP
apart from the one outlined in Figure 10.27

What are the possible safe opening moves in 3x5 CHOMP?

In this exercise we use a simple game to prove the result from Exam-
ple 6.16 that the set [0,1] = {z : 0 < z <1} is uncountable.

In this game, a subset S C [0, 1] of real numbers between 0 and 1 is
fixed, and the two players A and B take turns choosing real numbers
ag, bg, a1, b1, a9, by, ... — with A choosing the a;s and B choosing the b;s

Additional Exercises 275

16.

— starting from aq =0 and b, = 1. When choosing a;, A must choose a
value satisfying a; ; < a; < b; 1; and when choosing b;, B must choose
a value satisfying a; < b; < b;_;. That is, A starts at 0 and B starts
at 1, and they take turns moving towards — but never reaching — the
other.

The increasing sequence ag, a1, @s, ... which A is choosing must con-
verge towards a limit value a; that is, a is the smallest real value which
is bigger than every a,. If a € S then A wins the game; otherwise B
wins the game.

(a) Prove that if S is countable then B has a winning strategy in
this game. (Hint: Given an enumeration s;, sz, S3,... of S, B’s
winning strategy is to choose b, = s; whenever possible.)

(b) Deduce from the above that [0, 1] is uncountable. (Hint: A clearly
has the winning strategy when S = [0, 1].)

This exercise exposes a paradox devised by the mathematician William
Zwicker.

Professor Bertrand likes every game which can never be played for-
ever; and he hates any game which may potentially go on forever. For
example, he likes NiM, but he hates lawn tennis, as it could potentially
get into an infinite “advantage-deuce” cycle.

Consider the game of Russell whose rules are as follows:

e The first player chooses any game that must terminate.

e The two players play the chosen game, with the second player
making the first move in the chosen game.

Does Professor Bertrand like the game of RUSSELL? Explain.

Part 11

Modelling
Computing Systems

Chapter 11

Modelling Processes

If you can’t describe what you are doing as a process, then you don’t
know what you’re doing.
- W. Edwards Deming.

Having mastered the basic mathematical machinery presented in the first
part of this book for modelling computing systems, the first question we
must then address is: What exactly do we mean by a computing system?
We are not speaking here of the various hardware components of a digital
computer — as Edsger W. Dijkstra noted, computer science is no more about
computers than astronomy is about telescopes. Rather what we have in
mind is any computational process. Roughly speaking, a process describes
the behaviour of a system as performing various actions that change the
system’s state. These changes are controlled by a set of rules which depend
only on the state of the system and the state of its environment.

For example, if it is raining and we are outside holding a closed umbrella,
then we should perform the action of opening the umbrella. This doesn’t
change the state of the environment — it continues to rain — but it changes
our state; we are now under the protection of the umbrella. The rules that
we abide by might then stipulate that we should close our umbrella once
again if and when the rain stops, or when we enter a building.

As another example which has a more computational flavour, consider
the simple calculator in Figure 11.1. The actions which may be performed
are button-presses, which may change the state of the calculator — most
obviously by changing the display, but also by changing the internal state
of the calculator. Of course, if the calculator is off, then the only action
which has any effect is pressing the button which starts the calculator
in its initial state; and at any time when the calculator is on, this button
can be pressed to turn it off, or the “clear” button can be pressed to put
the calculator into its initial state. Thus, pressing the button when the
calculator is on has the same effect as pressing the button twice.

Consider carrying out a simple calculation such as 123 = 45 using the
following sequence of button presses (starting from the initial state of the

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_12, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_12

280 Modelling Processes

(T)

12345678.
=718 9|+
YAl 4|56]]X
CE[| L[| 2] 3] —
cllo = ||+

\& ' >,

Figure 11.1: A simple calculator.

calculator):
20 (3 |5] 4] [50 =

As you press the first three numeric buttons, the calculator simply accumu-
lates these digits, displaying the sequence of digits as it increases in length.
When you then press the E| button, the calculator stores the number 123
in its memory, along with the operation of division, and awaits the entry of
a second number made up from a further sequence of digits, in this instance
the number 45. Pressing the ’q button tells the calculator that the sec-
ond number has been completely entered, and that the operation + in its
memory should be applied between the first number 123 that it has stored
in its memory and this second number 45. The calculator will respond by
displaying the value 2.7333333.

There are many design decisions which must be made when describing
the behaviour of a calculator, though for such a simple calculator as above
most decisions are widely-accepted. For example, the sequence of button
presses

EIREIN IR R I

is virtually universally accepted to mean 123 - 45, recognising that the user
inadvertently pressed the button and corrected this by subsequently
pressing the El button to “overwrite” the operation!. However, we have

TThis interpretation is generally, though less universally, accepted in the instance when

the user presses E after another operator button; the correct sequence of button-presses

for calculating 123 x (—45) is of course E E

Labelled Transition Systems 281

barely started describing the behaviour of this calculator. To specify its
complete behaviour as above would require many pages. It is not uncom-
mon for realistic — yet nonetheless modest — systems to have specification
documents running into several hundred pages.

Expressing the whole behaviour of a system in English prose as above
quickly becomes a tedious, lengthy, and extremely error-prone activity. We
clearly need a formal framework with which to describe the behaviour of
such processes, as well as a language for expressing them. Also, we need
an understanding as to when such a process is correct, that is, exhibits the
behaviour that we expect (i.e., specify) that it should. These are all the
concerns of the present chapter.

Labelled Transition Systems

In considering how we might wish to view a computational process, we can
identify various of its underlying properties. Firstly, at any given moment
in time, the process will be in a specific state. Secondly, in a given state,
certain events or actions may happen which will cause the process to evolve
into a new state. In fact, a state of a process may be completely determined
by what actions may occur in that state, and to what new states each action
might lead.

As a very simple example, consider a light switch that is either in the
“off” position and may be switched on, or is in the “on” position and may
be switched off. At any given moment in time the system (ie, the light) will
be in one of two states, which we might refer to as OFF and ON. In the OFF
state you can turn the light on (ie, do an on action) to take the system to
the ON state, whereas in the ON state you can turn the light off (ie, do an
off action) to take the system to the OrF state. We can picture this simple
system as follows:

on

o

Here, the two states of the system are represented by circles, and there
are arrows leading from one state to another; each arrow is labelled by the
action which causes the process to make a transition from one state to the
next. (For convenience we've also labelled the two states — by OFF and
ON, respectively — but these labels are inessential: they do not add any
information about what the process can do in any given state.)

As aslightly more complicated example, consider a simple drinks vending
machine which accepts a 50p coin and allows the user to decide whether to

282 Modelling Processes

press a coffee button or a tea button, before returning to its initial state.
Its behaviour can be pictured as follows:

coffee

tea

Again we have two states represented by circles, and arrows leading from
one state to another, each labelled by the action which causes the change to
the state. (In this case, we’ve not bothered labelling the states.)

This way of depicting processes is captured by the following definition
of a labelled transition system.

]

Definition 11.1

A labelled transition system (LTS) is a triple T = (States, Actions, —)
consisting of:

e a set States of states;
e a set Actions of actions or events; and

e a set — C States x Actions X States of transitions between states
labelled by actions (a transition relation,).

a
We will generally write s - ¢, or the more pictorial @/_i@, instead of
(s,a,t) € —, meaning that in state s, we may do the action a and thereby
evolve into the state t. We will also write s - to signify that there are no
a-labelled transitions leading out of state s, and s -/ to signify that there
are no transitions leading out of s.

Definition 11.2

Given an LTS T = (States, Actions, —), the extended transition relation
— C States x Actions* x States is defined inductively as follows. (We use
the notation introduced above in writing s — t instead of (s,t) €é—; and
give two clauses in our inductive definition: one base case for the empty
string € and one inductive case for aw where a € Actions and w € Actions®.)

e s> s; and
aw . . a I’LU 7
e s — t if, and only if, s — s’ — t for some s'.

That is, for w = aja, - - - a, we have s — t if, and only if,

Labelled Transition Systems 283

Figure 11.2: An example labelled transition system.

.Sg-g-"'-%t.

As depicted in the examples above, labelled transition systems are typi-
cally presented pictorially with states represented by circles, and transitions
represented by arrows between states labelled by actions. States, actions and
transitions are exactly the properties that define computational processes.

Example 11.2

Figure 11.2 depicts a labelled transition system with:

e state set States = {A,B,C,D, E, F'};

e action set Actions = {a, b}; and

e transition relation — = { (4,q, 4), (4,a,C), (4,q,E),
(B,a,B), (B,a,C), (B,a,F),
(C,a,C), (C,a,D), (D,b,E),
(B,a,C), (E,a,E),
(F,a,C), (F,a,D), (F,b,F)}.

Labelled transition systems provide an ideal tool for modelling situations
which evolve over time, as in the following example.

Example 11.3) The Man-Wolf-Goat-Cabbage Riddle

The following is a very old riddle — in fact it was posed by Alcuin of York in
the 8th century (and solved in 2009 by Homer Simpson in The Simpsons
episode titled Gone Maggie Gone). It reads as follows.

284 Modelling Processes

A man needs to cross a rwer with a wolf, a goat, and a cabbage.
His boat 1s only large enough to carry himself and one of his three
possessions, so he must transport them one at a time. However, if
he leaves the wolf and the goat together unattended, then the wolf
will eat the goat; similarly, if he leaves the goat and the cabbage
together unattended, then the goat will eat the cabbage. How can
the man get across safely with his possessions?

Initially all four entities are on one side of the river (the left-hand side, say).
We can represent this state of affairs by . By this we mean that
the man M, wolf w, goat ¢ and cabbage c are all on the left-hand side of the
river (to the left of the wiggly lines representing the river), while nothing is
on the right-hand side of the river (to the right of the wiggly lines).

From the initial state the man can do one of four things.

1. He may cross the river with the goat, leaving the wolf and cabbage
together on the left-hand side of the river. We represent the resulting
state by , denoting that the wolf and cabbage are on the
left-hand side while the man and goat are on the right-hand side. Note
that this labelling of the state is purely for our benefit and is not itself
a part of the definition of the process.

Using g to represent the action of the man crossing the river with the
goat, this gives us the following transition:

g9
—
2. He may cross the river with the wolf, leaving the goat and cabbage
together on the left-hand side of the river. We represent the resulting

state by GGG W MWD. We shade this state to indicate that this is an

unacceptable state of affairs, as the goat will in this instance eat the
cabbage. Note however that this shading — just like the labelling of
the state — is not in itself a part of the definition of the process.

Using w to represent the action of the man crossing the river with the
wolf, this gives us the following transition:

Qiwee 1> — EEUMD

3. He may cross the river with the cabbage, leaving the wolf and goat
together on the left-hand side of the river. The resulting state will

then be represented by . Again the shading indicates that

this is an unacceptable state of affairs, as the wolf will eat the goat.

Using c to represent the action of the man crossing the river with the
cabbage, this gives us the following transition:

@wse B> — RN

Labelled Transition Systems 285

4. He may cross the river on his own, leaving the wolf, goat and cabbage
together on the left-hand side of the river. The resulting state will
then be represented by . Once again the shading indicates
that this is an unacceptable state of affairs, as the wolf will eat the
goat, which may itself have had the time and opportunity to first eat
the cabbage.

Using m to represent the action of the man crossing the river alone,
this gives us the following transition:

Quwee U — @SS WD

It is clear from the above considerations that the man initially has just one
viable option, which is to cross the river with the goat.

In this fashion, we can model the problem using a labelled transition
system, using states to represent the possible states of affairs, and transitions
to represent the actions available to the man. There will be a total of 16
states in this L'TS:

o The initial state is represented by the state , and the de-
sired final state is represented by the state .

e There are 8 further safe states, namely

e Finally there are 6 dangerous states, namely

it
it
@

;
i

1
i
i

The transitions will be labelled according to which of the four actions the
man takes:

m: the man crosses the river on his own.
w: the man crosses with the wolf.
g: the man crosses with the goat.
c: the man crosses with the cabbage.
The resulting LTS is presented in Figure 11.3. From this LTS we can readily
read off a solution to the riddle (which is not unique) by following a path
from the initial state to the final state which passes only through safe states.
Again note that the labelling of the states, including the shading of what

we recognise to be dangerous states, is not part of the definition of an LTS.
This is included solely for our own convenience.

286 Modelling Processes

Figure 11.3: The LTS of the Man-Wolf-Goat-Cabbage Riddle.

(Exercise 11.3) (Solution on page 459)

Three missionaries are travelling with three cannibals when they come upon
a river. They have a boat, but it can only hold two people. The river is
filled with piranha, so they all must eventually cross in the boat; no one
can cross the river by swimming. The problem is: should the cannibals ever
outnumber the missionaries on either side of the river, the outnumbered
missionaries would be in deep trouble. Each missionary and each cannibal
can row the boat.
How can all six get across the river safely?

Computations and Processes 287

Exercise 11.4) (Solution on page 461)

In the 1995 film Die Hard: With a Vengence, New York Detective John Mc-
Clane (played by Bruce Willis) and Harlem dry cleaner Zeus Carver (played
by Samuel L. Jackson) had to solve the following problem in order to pre-
vent a bomb from exploding at a public fountain. Given only a five-gallon
jug and a three-gallon jug, neither with any markings on them, they had to
fill the larger jug with ezactly four gallons of water from the fountain, and
place it onto a scale in order to stop the bomb’s timer and prevent disaster.
How did they manage this feat?

Exercise 11.5 (Solution on page 461)

You are sitting in a pub wearing a blindfold, and I put in front of you a
square tray with a beer mat in each of the four corners, each of which is
either face-up or face-down, but not all the same.

You reach out and — blindly feeling your way around the tray — you turn
over as many beer mats as you wish. When you are through, if the beer
mats are all oriented the same way (either all face-up or all face-down) then
you win. Otherwise, I will rotate the tray by an arbitrary amount, and let
you try again.

What strategy will guarantee that you win the game?

Computations and Processes

Consider the following algorithm, attributed to Euclid (c. 300 BC), for com-
puting the greatest common divisor (GCD) of two numbers x and y, that is,
the largest integer which evenly divides both z and y. (In the code below,
the modulus function x mod y simply returns the remainder when dividing
x by y, and := represents the assignment operation.)

loop begin
x:=xmod y;
if x=0 then return y;
y :=y mod X;
if y=0 then return x
loop end

This algorithm repeatedly “executes” the four lines of code between “loop
begin” and “loop end” until a value is returned. For example, if we apply
this algorithm to the values =246 and y=174, we get the value 6 returned,
which is indeed the GCD of 246 and 174.

288 Modelling Processes

Figure 11.4: A process computing the GCD of 246 and 174.

To understand how this program works, we might try hand-turning it,
keeping track of the state (i.e., values) of the variables. For example, starting
in the state in which the variables have the values =246 and y=174, the
first action which takes place is the assignment x :=x mod y; this action has
the effect of changing the state of the system by updating the value of x.

This computation is captured by the labelled transition system depicted
in Figure 11.4.

]

Exercise 11.6) (Solution on page 462)

Consider the transition system depicted in Figure 11.4.

1. How many states are there? List them.
2. How many distinct actions are there? List them.

3. How many transitions are there? List them.

As an example of a more abstract process, consider the workings of the
simple table lamp represented in Figure 11.5 which has a string to pull for
turning the light on and off, and a reset button which resets the circuit if a
built-in circuit breaker breaks when the light is on. At any moment in time
the lamp can be in one of three states:

e OFF - in which the light is off (and the circuit breaker is set);
e ON - in which the light is on (and the circuit breaker is set); and

e BROKEN — in which the circuit breaker is broken (and the light is off).

Computations and Processes 289

pull
Figure 11.5: A simple lamp control process.

In any state the string can be pulled, causing a transition into the appro-
priate new state (from the state BROKEN, the new state is the same state
BROKEN). In the state ON, the circuit breaker may break, causing a transi-
tion into the state BROKEN in which the reset button has popped out; from
this state, the reset button may be pushed, causing a transition into the
state OFF.

Exercise 11.7 (Solution on page 463)

Extend the lamp process by adding actions “blow” and “replace”, which
model the blowing and replacing of the light bulb. Assume that the bulb can
only blow when the light is on, and that only a blown bulb can be replaced.
Keep in mind that the string can still be pulled even if the bulb is blown,
and that when a bulb is replaced, the lamp may be on or off depending on
the pulls of the string.

]

Example 11.7

We can model a very simple clock that does nothing but tick repeatedly

forever as follows:
tick%

This simple transition system has only one state C1 and one transaction
Cl t1—>Ck C1, but it can be “unrolled” into the following infinite-state transi-

tion system:

tick tick tick tick tick

290 Modelling Processes

Here, the state C1 is reproduced infinitely-many times; however, these two
transition systems display identical behaviours.

A more realistic clock will typically tick only a finite number of times and
then stop. For example, a clock which ticks exactly 3 times before falling
silent would be modelled as follows:

tick tick tick

Here the state C1; represents the state of interest. However, we can see that
the additional states Cl,, C1; and Cl, represent clocks which tick exactly 2,
1, and 0 times, respectively. We can immediately generalise this example to
model an infinite number of states C1, (for n € N) where state C1, represents
a clock which ticks exactly n times before falling silent.

tick tick tick tick tick

This is very similar to the unrolled version of the infinitely-ticking clock
above; they both have an infinite number of states, with each state making
a single tick action to get to the next state. However, in this system with
the different states C1,, each tick action takes us one step closer to the state
Clg in which the clock stops. In the unrolled system above each state is the
same as any other state in that an infinite number of tick actions can be
performed from it. In particular, there is no state like C1y from which no
tick action can occur.

(Exercise 11.8) (Solution on page 463)

Draw a model of a Clock C1, which can tick any number of times, but may
stop ticking after any tick. How many states, actions, and transitions does

your model have?

Example 11.8

In this example we consider a simple elevator which moves between three
floors. The state of the elevator reflects three entities:

e Which floor it is at or, if it is between floors, which pair of floors it
is travelling between; along with the direction it is travelling. This
information will be one of the following:

Computations and Processes 291

1: at 1 (heading up); 1*: moving from 1 to 2;
2": at 2 (heading up); 27: moving from 2 to 3;
2: at 2 (heading down); 2 : moving from 2 to 1;

3: at 3 (heading down); 37: moving from 3 to 2.

e Whether the door is open or closed.

e Which set of floors it has to travel to — and in which direction — due
either to a call button being pressed on a floor, or a floor button
being pressed in the elevator. This information will be a subset of the
following:

1: collect from or drop off at floor 1;
2": collect from or drop off at floor 2 while heading up;
2}: collect from or drop off at floor 2 while heading down;

3: collect from or drop off at floor 3.
A state, therefore, will be of the form (floor, door, stops) where

floor € {1,212}, 3} u { 1%, 2+, 27, 3L},
door € { open, closed}; and
stops C {1, 2", 2 3}.

There will therefore be as many as 8 x 2 x 2* = 256 states.

(Exercise 11.9) (Solution on page 463)

Augment the above description of the states of the elevator system by de-
scribing: the set of possible actions; when (in which states) each possible
action can occur; and how the state changes when that action occurs. (Of
course, with 256 states, it is unreasonable to draw out this labelled transition
system, so don't even try!)

(Exercise 11.10) (Solution on page 466)

Consider the process of flipping a coin, in which the following three actions
are possible at different times:

e a toss action in which the coin is tossed into the air;
e a heads action in which the coin lands with heads showing; and

e a tails action in which the coin lands with tails showing.

292 Modelling Processes

11.3.1

Upon doing a toss action, either a heads action or a tails action will occur,
and the process will be back in its initial state in which the coin may once
again be flipped.

Draw two different models of this process: the first in which the outcome
of the flip is determined already when the coin is tossed, and the second in
which the outcome of the flip is determined only when it is observed. What
are the implications of these different interpretations of determinism? Which
do you consider to be the most realistic model?

A Language for Describing Processes

Drawing processes graphically is fine for small examples. However, you
would never draw the labelled transition system for even moderately-complex
processes. For example, drawing the labelled transition system for the ele-
vator in Example 11.8 above would not only be tedious and error-prone, it
would not be very insightful.

We will need a proper language for describing bigger and more compli-
cated systems. A formal description language can also be programmed and
analysed (verified) on a machine. In this section we shall present such a
language. The language, which we refer to as Proc, will have

e (process) variables, such as OFF, ON, and BROKEN; and

e events or actions, such as pull, break, and reset.

Every expression in the language will represent a state in a labelled transition
system. Each process variable is itself an expression in the language, and all
of the expressions in the language will be built up from actions and process
variables using simple operations for combining them. In the remainder of
this section we shall explore the two basic operations in the language: action
prefiz and choice, as well as the means by which processes are defined.

The Nil Process 0

The most basic process expression in the language is 0, which is referred to
as the mil process and represents a state which has no transitions leading

out of it:

For example, the state C1, from Example 11.7 is an example of the nil pro-
cess. A process which evolves into such a state 0 is said to have deadlocked.

A Language for Describing Processes 293

11.3.2

Action Prefix

If a is an action and E is a process expression, then the action prefix
expression a.F represents a state in a process which has one transition: an
a-transition leading to the state represented by E:

a

As an example, the clock C1; which ticks once and then falls silent is repre-
sented by the expression

tick.0
which depicts the following process:

tick

By repeatedly applying the action prefix operation, we can express the clock
Cl; which ticks three times before falling silent as follows:

tick.tick.tick.0

which depicts the following process:

tick tick tick

For an example based on the lamp process of Figure 11.5, if pull is an
action and ON is a process variable (and hence a valid expression), the action
prefix expression

pull.ON
represents the following state with a single pull transition:

pull

294 Modelling Processes

11.3.3

Process Definitions

Each process variable, being a process expression, represents a state in a
labelled transition system, and as such stands for some process. Every
process variable X must therefore have a defining equation

X g
where E is the process expression for which X stands. The transitions
leading from the state represented by X are determined by (that is, are the
same as) those leading from the state represented by E.

For example, in the simple table lamp process of Figure 11.5, the state
represented by the process variable OFF has a single transition leading out
of it labelled pull and leading into the state represented by the variable ON.
The process variable OFF can thus be defined as follows:

orF & pull.ON

The one and only transition from the state represented by the expression
pull.ON is

pull

and since OFF — by definition — has the same transitions leading out of it
as pull.ON, the one and only transition from the state represented by the
expression OFF is

pull
The process definition X 4 E thus defines which transitions are

possible from the state represented by the variable X, namely precisely
those possible from the expression E. In other words, X is defined to be
identical in behaviour to E. Formally,

def

if X< FE and ESFE
then X = E'.
In the lamp process, since

Il
Orr % pullOn and pullOn 2% Ow,

we have the transition

pull
Orr — ON.

A Language for Describing Processes 295

11.3.4

Choice

The state OFF in the lamp process is particularly simple as there is only one
transition leading out of it. However, the other two states offer a choice of
transitions:

e from the state ON there is a transition pull leading to the state OFF
and a transition break leading to the state BROKEN; and

e from the state BROKEN there is a transition pull leading back to the
state BROKEN and a transition reset leading to the state OFF.

Thus, the state ON may behave either like the state pull. OFF or like the
state break.BROKEN, and the state OFF may behave either like the state
pull. BROKEN or like the state reset.OFF.

Such choices between behaviours are catered for in the language Proc
by the choice operation: given expressions F and F', the expression F + F'
represents the process state which has all of the transitions of £ and of F;
in essence, it can behave as either E or as F', with the choice being taken at
the moment the first transition occurs. More formally,

if E% B then E+F -3 BE', and
if F% F' then E+ F > F'.

Referring to the lamp example, from the state ON we can either perform a
pull action to go to state OFF or a break action to go to state BROKEN; and
from the state BROKEN we can either perform a pull action to go to state
BROKEN or a reset action to go to state OFr. The two process variables ON
and BROKEN thus have the following definitions:

on & pull. OFF + break.BROKEN

BrokeN = pull. BROKEN + reset.OFF

By the above rules for choice, we thus have the transitions

ull
pull. OFF + break.BROKEN p—) OFF and

pull. OFF + break.BROKEN bﬂk BROKEN

and hence (by the process definition operation) the transitions

ull
OnN p—) OfFrF and ON bﬂz}k BROKEN.
From state ON we can chose to perform action pull to go into state OFF or
to perform action break to go into state BROKEN.
By analogous reasoning we can infer the following two transitions for the
state represented by the variable BROKEN:

ull
BROKEN p—) BROKEN and BROKEN %t OFF.

296 Modelling Processes

Exercise 11.11) (Solution on page 467)

Explain how these last two transitions for BROKEN can be inferred.

We can extend the choice operation in the natural way to any finite sum
B+ B+ + By

to describe a choice of doing the actions of any of the summand process
terms E; (where 1 < 7 < n). We shall also sometimes write the choice
operation as an indexed sum; that is, instead of writing B, + Ey +--- + E,
we may write, for example, any of the following:

S>E; or Y E; or " {E, BE,,...,E,} or Y{E; : 1<i<n}.
i=1 1<i<n
More generally, given any (possibly infinite) set .S of process expressions, we
can write Y. S to represent a choice over all of these. For example, instead
of writing

on %f pull. OFF + break.BROKEN

we could write

on & > { pull.OFF, break.BROKEN }.
The transitions that the process expression y° S can perform are determined
by the process expressions in S. Formally,

if EcS and E-3 E' then .5 > E'

Furthermore, as S may be an infinite set of process expressions, we may use
this notation to express infinite choices. For example, the infinite choice

E, + By + B3 + By + ---

can be written as ;5 E;.

An interesting case of this generalised choice operation occurs when S
is the empty set (. The process expression 3. (, by definition, can make no
transitions, and thus provides a definition of the nil process: 0 & > 0.

The syntax (notation) and semantics (meaning) of the language ProcC
is summarised in Figure 11.6.

Example 11.11

Continuing with Example 11.7, we can give the following process definitions
to the simple clock C1 that ticks forever, and the clocks Cl, (for n € N)
which tick exactly n times:

€1 ¥ tickCl Cly &0 Clp, & tick.Cl,

A Language for Describing Processes 297

Name Syntax Semantics
PROCESS VARIABLE X fESE and X¥E
then X > E'
ACTION PREFIX a.E aE 5 E
CHOICE (1) E+F If B> B
then E+ F % F'
If F3 F

then B+ F > F'
CHOICE (2) S{E; :i€I} If B; 5 E with jeI
then S{E; : i€ I} > E'

def

NiL 0 no transitions (X = Y 0)

Figure 11.6: Syntax and semantics of the process language PRocC.

Consider now a clock, which we will call Clock, which may tick some
finite but indeterminate number of times depending on the amount of energy
powering it and then stop. There is no way of knowing a priori how many
times it will tick; it will tick once when it is started, and then continue to
tick until its energy source is depleted. Thus, after the first tick, the clock
will be in a state in which it will tick again some precise finite number of
times. That is, it will be in the state C1, for some n € N. Its definition as
a process is given as follows:

Clock & > tick.CL,.
>0

Finally, consider yet another clock, which we will call Clock,, which may
behave like Clock, but might decide — upon performing the first tick - to
continue ticking forever. That is, it has the possibility to evolve into the
state C1 after the first tick. Its definition as a process is given as follows:

Clock, *f S tick.Cl; + tick.CL.
>0

These processes all appear in the transition system depicted in Figure 11.7.

Exercise 11.12) (Solution on page 467)

Give a process definition for the Clock process Cl, which you defined in

Exercise 11.8.

298 Modelling Processes

Figure 11.7: Clock processes.

Exercise 11.13) (Solution on page 467)

]

Design a simple change-making process which will initially accept a 5p, 10p
or 20p coin, and dispense any sequence of 1p, 2p and 5p coins which sum
up to the value of the coin inserted, before returning to its initial state.

To do this, introduce the process variables C, for n € {0,1,2,...,20},
and the following actions:

15: insert a 5p coin di: dispense a 1p coin
710: insert a 10p coin d2: dispense a 2p coin
220: insert a 20p coin ds: dispense a 5p coin

Each variable C,, is to represent the process in the state in which n pence
remains to be dispensed. In particular, the process variable Cy is to represent
the initial state of the process, and has the following definition:

CO d:ef iE.Cs + Z‘lO.Cm + i20.020

1. Give the definitions for the remaining process variables C1, Cs, . .., Caq.

2. Draw the labelled transition system representing this process.

Distinguishing Between Behaviours 299

] def 10p.10p. (coffee.collect.V; (coffee tea
+ tea.collect.V7) @ @
Vs ot 10p. (10p.coffee.collect.Vs D
10p

+ 10p.tea.collect.Vs)

V3 = 10p.10p.coffee.collect.V3

collect
+ 10p.10p.tea.collect.V3 g J

Figure 11.8: Three implementations of a vending machine.

Distinguishing Between Behaviours

Consider the problem of designing a simple vending machine which will allow
a user to insert two 10p coins in succession, and then push a coffee or a
tea button; the user will then be allowed to collect the relevant beverage,
after which the machine will return to its original state, permitting the next
person to use it.

This informal description is typical of how an actual “specification” may
appear, but demonstrates the sort of ambiguity which arises in such loose
specifications. The problem in this case stems from the ambiguity of the
word “or.” The vending machine might be implemented by any one of the
three programs in Figure 11.8. We can draw these three processes as in
Figure 11.9. Note that the states of these transition systems, though not
spelt out, all represent expressions of the language Proc. For example, the
four states of the first process, from left to right, represent the following
expressions:

Vi

10p. (coffee.collect.V; + tea.collect.V;)
coffee.collect.V; + tea.collect.V;
collect.V)

The transitions are easily derived using the semantic rules for inferring tran-
sitions. For example,

10
Vi —p> 10p. (coffee.collect.V; + tea.collect.V;)
since
def

Vi = 10p.10p.(coffee.collect.V; + tea.collect.V;)

and by the action prefix rule,

300 Modelling Processes

collect

collect

Figure 11.9: Transition systems for the three vending machines.

10p.10p. (coffee.collect.V; + tea.collect.V;)

10
—p) 10p. (coffee.collect.V; + tea.collect.V;).

(Exercise 11.14) (Solution on page 467)

List the states of the other two vending machine processes.

Clearly the behaviour of V; is different from the behaviour of V5 and Vs.
Specifically, the following property is true of V; but not true of V5 nor of V3.

After inserting two 10p coins,
we are guaranteed to be able to press the coffee button.

In other words,

No matter how we do a 10p action,
we must end up in a state in which,

Distinguishing Between Behaviours 301

no matter how we do a 10p action,
we must end up in a state in which
we may do a coffee action.

In contrast, the following property is the negation of the above property,
and as such is true of V; and V; but not V;.

We may do a 10p action and end up in a state in which
we may do a 10p action and end up in a state in which
we cannot do a coffee action.

Notice that the negation of a must property (i.e., a necessity) is a may
property (a possibility), and vice versa.

It is less clear, but still true, that the behaviour of V; is different from
the behaviour of V3. In particular, the following property is true of V3 but
not true of V; nor of V5.

Already after inserting the first 10p coin,
we have lost either the possibility of selecting a coffee,
or the possibility of selecting a tea.

Even simpler,
We may do a 10p action and end up in a state in which,
no matter how we do a 10p action,

we must end up in a state in which
we cannot do a tea action.

(Exercise 11.15) (Solution on page 468)

Negate this property to get a property which is true of V; and V; but not
true of Vs.

The question then is: How do we formally distinguish between pro-
cesses? Clearly, the answer to this question lies at the heart of the problem
of verifying the correctness of systems. Answering this question is the goal
of the next chapter.

(Exercise 11.16) (Solution on page 469)

Let

def

A Y beco + bdo C*® 4B+ ad

def

B ¥ A+ b.(cO + d.0) D ¥ 4B

1. Draw a transition system which includes the above states A, B, C
and D.

2. Explain clearly how the states C' and D behave differently.

302 Modelling Processes

Equality Between Processes

At the start of Section 11.1 we posited that a state of a process is completely
determined by what actions may occur in that state, and what new states
each action might lead to. With this in mind, we would naturally consider
two states £ and F' to be equal, F = F, whenever it is the case that for all
actions a and states G: E - G if, and only if, F = G. That is, E = F
whenever the following is true:

eif E-% G then F-5 G, and
o if #F-% G then E > G.

(Exercise 11.17) (Solution on page 469)

Show that this notion of equality is an equivalence relation over process
expressions; namely that it is reflexive, symmetric and transitive.

By equating states of a process in this way, we can show that the following
equations are true of process terms defined in the language Proc.

(S:) E+0 = E.

(S:) E+E = E.

(S:) E+F = F+E.

(S:) (E+F)+G = E+ (F+G).

def

(Ss) If X % E then X = E.

BEach of these equations is easily justified by considering the rules by which
transitions can be inferred.

Example 11.17

To show that £ + 0 = E, we need to confirm the validity of the following
two propositions:

o if E+0-5 G then E-3 G; and
e if E-5G then E+0->G.

The second proposition follows immediately from the rule for choice.

For the first proposition, if B + 0 — G then the rule for choice says that
either B = G or 0 = G; but since there are no transitions leading out of
0, we must have that B -% G as required.

Exactly when two states should be deemed equal is explored in detail in
the next chapter; however, the above equations will certainly be true. Even
further, we can recursively extend the notion of equality between states

Additional Exercises 303

by declaring two states £ and F to be equal, E = F, not only if they
possess exactly the same transitions, but whenever each transition of one
can be matched, up to equality, by the other; that is, £ = F' whenever the
following is true:

o if E-% E' then F -3 F' for some F' such that ' = F’; and
o if F-% F' then E -3 E' for some F' such that B' = F'.

We can represent this situation pictorially as follows:

B F
oo _
AR R M

With this refinement to the notion of equality between states, we can show
the following equations to be true.

(C,)If E=F then E+G = F +G.
(Cs) If E=F then a.F = a.F.

These are important properties for any notion of equality between process
terms, as they ensure that a term does not change when we replace a subterm
within the term by an equal subterm.

Exercise 11.18) (Solution on page 469)

Consider the following processes, all of which perform a-transitions over and
over, ad infinitum.

A% g4 and

A; def a.A;;; foreachie N
Clearly, A and A, exhibit the same behaviour. However, explain why we
cannot infer that A = A,.

Additional Exercises

1. As we saw from Example 11.3, modelling puzzles have a long history.
Water jug puzzles of the type presented in Exercise 11.4 are referred
to as Tartaglian water measuring problems as they were favourites
of the 16th-century Italian mathematician Niccold Tartaglia (though
these days you'd no doubt be more successful searching online for
“Diehard water puzzle” than “Tartaglian water puzzle”). In fact, the

304 Modelling Processes

problem faced by John and Zeus in Exercise 11.4 was adapted from
the following puzzle posed by Abbot Albert in the 13th century.

Given an eight-unit jug filled with water, an empty five-unit jug and
an empty three-unit jug, how can we divide the water into two parts,
each exactly four-unit? (None of the jugs have any markings on them,
and we cannot estimate quantities by eye; we can only measure exact
quantities by pouring water from one jug to another until one of the
two jugs becomes either full or empty.)

2. (a) Three married couples wish to cross a river. Their boat, however,
can only carry two people at a time. Also, the husbands are very
jealous: each one of them refuses to let his wife be in the presence
of another man unless he himself is present as well. How can they
cross the river using the fewest number of trips?

(b) Argue that the above problem cannot be solved if you have four
couples wanting to cross the river.

(c) Show that five couples can cross the river in a boat that can carry
three, but that six couples cannot.

3. Alice, Bob, Carol and Dave want to cross a river in a boat. However,
their boat can only hold 100 kg. Alice is 46 kg, Bob is 49 kg, Carol is
52 kg and Dave is 60 kg. Also, Bob has a broken arm and can’t row.

How can they all get across the river?

4. Alice, Bob, Carol and Dave want to cross a bridge in the dark of night.
However, the bridge is rigged with a bomb which is due to explode,
destroying the bridge, in 17 minutes. They have one flashlight which
must be used when crossing the bridge, but the bridge can hold only
two people at once. Their walking speeds allow them to cross in 1, 2,
5 and 10 minutes, respectively; when two of them cross together, they
must walk together with the flashlight.

How can they all get safely across the bridge?

5. This question considers further bridge-crossing problems based on that
in question 4.

(a) How quickly can six people cross a bridge two-at-a-time aided by
a single flashlight, if their crossing times are 1, 3, 4, 6, 8 and 9
minutes, respectively?

(b) How quickly can seven people cross a bridge three-at-a-time aided
by a single flashlight, if their crossing times are 1, 2, 6, 7, 8, 9
and 10 minutes, respectively?

6. A queen, her son, and her daughter are being held captive in the tower
of a castle. Outside the tower window is a rope running over a pulley
with baskets of equal weight attached to the ends of the rope. One

Additional Exercises 305

10.

11.

basket is empty and is outside the window, while the other basket is on
the ground with a 30 kg rock in it. One basket can be safely lowered
to the ground using the other basket as a counterbalance as long as the
difference in weight between the two baskets does not exceed 6 kg; if
one basket is more than 6 kg heavier than the other, the heavier basket
will crash to the ground. The queen weighs 78 kg, her daughter 42 kg
and her son 36 kg. Each basket can hold two people, or one person
and the rock.

How can the queen and her children escape to the ground using the
smallest number of steps?

. We can compute the value of x mod y using the following simple algo-

rithm:

while x>y do x =x-y
return x

(a) Draw the transition system associated with the computation of
the value 72 mod 30.

(b) List the states, actions and transitions of this transition system.

. Consider the following process definition.

def

X = a0+ aZz Y

def def

a.Z Z a.Z

(a) Draw the labelled transition system for the above process.
(b) Explain in words how states X and Y differ, behaviourally.

. Argue that the process Clock2 given by the process definition

Clock2 % S c1,
i>0

defines the same process as the process Clock from Example 11.11.

Design a keypad lock which has three buttons labelled A, B and C.
Any of the keys can be pressed at any time, and if the correct sequence
of 5 key presses, namely BBC' BA, is keyed in, then the lock will open.

In this question, we study the specification of a car safety system, in
which a bell rings (repeatedly) whenever the ignition is on while the
door is open or the seat belt is unbuckled.

The labelled transition system for this specification is pictured in Fig-
ure 11.10 Here we have a system with

e eight states S = {Xl, Xo, X3, Xay Xs, Xo, Xz, Xg}, and

e seven actions A = {open, close, buckle, unbuckle, on, off, ring }

306 Modelling Processes

X3
on open
buckled |
closed
off off
buckled buckled
closed open
I I3 I3 I
©]]]]
= o’ o o g
~ = I £ =
o a Q Q a
El = ~ ~ s
2 @ a @ @

Figure 11.10: A car seat belt safety system.

For example, in state X4, the ignition is on, the seat belt is buckled,
the door is open, and the alarm is ringing.

(a) The eight states in S can be given process definitions, such as

def

X

off. Xy + open.X; + unbuckle. X5

Give such a definition for each of the state variables in S.
(b) Let D(z), B(z), M(z) and R(z) be predicates defined over the
states S as follows:
D(z) = “the door is open in state z.”
B(z) = “the seat belt is buckled in state z.”
M(z) = “the ignition is on in state z.”
R(z)

“the bell is ringing in state z.”

For each of these four predicates, indicate the states for which
they are true.

Additional Exercises 307

12.

13.

14.

15.

16.

Adapt the elevator system from Example 11.8 (page 290) so that it
serves four floors rather than three.

Adapt the elevator system from Example 11.8 (page 290) so that it
models two elevators operating side-by-side, which are called using
the same call buttons on each floor.

Give a process definition for the behaviour of the simple calculator of
Figure 11.1 (page 280).

Justify the following equalities from Section 11.5. (The first one was
demonstrated in Example 11.17, page 302.)

(S) E+0 = E.
(S;) E+E = E.

(S3) E+F = F+E.

(S:) (BE+F)+G = E+ (F+G).

(Ss) If X ' B then X = E.

Justify the following equalities from Section 11.5.

(C)If E=F then E+G = F+G.
(Cy) If E=F then a.E = a.F.

Chapter 12

Distinguishing Between
Processes

Satire is a lesson, parody is a game.
- Vladimir Nabokov, Strong Opinions.

If we consider the properties which we used to distinguish between the
vending machines from Section 11.4, we quickly notice an analogy with
the way in which strategies for the two-player games of Chapter 10 were
discussed; they both rely heavily on the use of modal verbs such as may
and must to describe capabilities. In this chapter, we shall exploit this
analogy by devising a two-player game for distinguishing between two given
processes. In this game,

e the first player will aim to show that the two processes are different, by
looking for an action that one process can do which the other cannot;

e the second player will aim to show that the two processes are the same,
by showing that each process can copy every action made by the other.

In this game, one of the two players will always have a winning strategy
(draws will not be possible); the two processes will be declared to be the
same if the second player has a winning strategy, and different if the first
has a winning strategy.

12.1) The Bisimulation Game

In this game we start by choosing two process states F and F' (i.e., two
designated states of some transition system). For example, we may consider
the states X and U taken from the first of the two transition systems depicted
in Figure 12.1. We may also define an a prior: “time limit” of n € N moves,
or declare that the game has no time limit (i.e., take n = 00). A game thus
defined is represented either by G, (E, F') or G (E, F'). The game is played
between two players, who have the following goals.

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_13, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_13

310 Distinguishing Between Processes

Figure 12.1: Example transition systems.

1. The first player wishes to demonstrate that the two chosen states are
in some way inherently different.

2. The second player wishes to demonstrate that the two chosen states
are inherently the same.

To play the game, we start by placing tokens on the two states £ and F,
and then proceed as follows.

1. The first player chooses one of the two tokens, and moves it forward
along an arrow to another state of her choosing; if this is impossible
(that is, if there are no arrows leading out of either of the states on
which the tokens sit), then the second player is declared to be the
winner.

2. The second player must move the other token forward along an arrow
which has the same label as the arrow used by the first player; if this
is impossible, then the first player is declared to be the winner.

This exchange of moves is repeated for as long as neither player gets stuck,
or for a total of n exchanges of moves in the case where a finite time limit
n is defined. Note that the first player gets to choose which token to move
every time it is her turn; she does not have to keep moving the same
token. If the second player succeeds in matching every move of the first
player, then he is declared to be the winner. If there is no time limit, then
the second player is declared to be the winner of any play of the game that
goes on forever. (It may seem rather strange to declare a player to be the
winner of a play which lasts forever. However, there is nothing paradoxical

The Bisimulation Game 311

about this, and by doing so we ensure that there is always a winner; the
game cannot end in a draw.)

]

Example 12.1

Suppose we start with the tokens on states X and U of the first transition
system of Figure 12.1, and we assume that the time limit is (at least) 2.

1. the first player can move the token on state U along the a-labelled
arrow to state V; in response the second player must move the token
on state X along the a-labelled arrow to state Y.

2. The first player can then move the token on state Y along the c-labelled
arrow to state Z; the second player cannot respond to this move, as
there are no b-labelled arrows leading out of state V', so the first player
wins.

As the second player never has any options — and thus he can never have
made a bad move — this defines a winning strategy for the first player.

Example 12.2

Consider the following game played on the second transition system in Fig-
ure 12.1 with the tokens on states 1 and 2, where we assume that the time
limit is (at least) 3.

1. The first player starts by moving the token on state 1 along the arrow
labelled a to state 5. In response, the second player has to move the
token on state 2 along an arrow labelled a; there are three ways to do
this: by moving the token to state 2, to state 3, or to state 6; after
some thought, he chooses to move the token to state 6.

2. The first player then moves the token on state 6 along the arrow la-
belled a to state 4. In response, the second player has to move the
token on state 5 along an arrow labelled a; there are two ways to do
this: by moving the token to state 3 or to state 5; he chooses to move
the token to state 3.

3. The first player then moves the token on state 4 along the arrow la-
belled b to state 5. In response, the second player has to move the
token on state 3 along an arrow labelled b; however, this is impossible,
so the first player is declared to be the winner.

In this case, the first player was lucky: the second player had several options
open to him in response to the moves of the first player, and he simply chose
poorly. Had the second player responded to the opening 1 -2 5 move of the
first player by making the move 2 — 2, he could then have responded to all

312

Distinguishing Between Processes

subsequent moves of the first player. In fact, the second player has a winning
strategy in this game. This fact will be made evident in Section 12.4

For such a simply-defined game, the fact that there is no possibility of a
draw implies that one of the two players has a winning strategy. This fact
is embodied in the following.

(Theorem 12.2

For any game G,(E, F) or G (E, F), either the first player has a winning
strategy, or the second player has a winning strategy.

(Exercise 12.2) (Solution on page 470)

Prove Theorem 12.2 for finite games G, (E, F'), by induction on n.

Induction cannot be used to prove the result for infinite games G (E, F').
Its proof is left as an exercise at the end of the chapter (Exercise 6, page 330).

(Definition 12.2

We say that two process states E and F' are n-game equivalent, written
E ~, F, if, and only if, the second player has a winning strategy in the
game G,(E, F). Similarly, we say that E and F' are co-game equivalent,
written B ~, F, if, and only if, the second player has a winning strategy
in the game G (E, F).

For example, if we again consider the three vending machines from Sec-
tion 11.4, we can note that their starting states are pairwise 2-game equiv-
alent but pairwise not 3-game equivalent.

1. Vi~ V; for 4,5 € {1,2,3}.

The second player has a winning strategy in the game which ends after
the exchange of only two moves, as all three machines start with two
consecutive 10p transitions.

. Vi obs Vo and Vi o5 Va.

The first player has a winning strategy in the game which lasts for
three exchanges of moves, namely to play arbitrarily for the first two
exchanges of moves, and then to take the transition in the V; process
(coffee or tea) which is not available to the other process. The second
player will be stuck at this point and lose the game.

. Vo s V.

The first player has a winning strategy in the game which lasts for
three exchanges of moves, namely to open with the transition in the

Properties of Game Equivalence 313

V3 process towards the coffee transition, and then in the second move
to take the transition in the V; process towards the tea transition. The
first player can then take the tea transition in the V5 process, which
the second player cannot respond to.

Exercise 12.3) (Solution on page 471)

Recall the following processes from Exercise 11.16.

A T bco + bdo c ¥ aB+ a4
B * A+ b(cO + do) D ¥ 4B

For which n do we have that C ~,, D? Justify your answer.

12.2) Properties of Game Equivalence

In this section, we explore various properties of game equivalences, beginning
with the following characterisation which in particular provides an elegant
inductive definition of finite game equivalences.

(Theorem 12.3)

1. E ~q F for all processes F and F'.
2. E ~,, F if, and only if,

e if E-> E' then F % F' for some F' such that E' ~, F'; and
e if F-% F' then E > E' for some E' such that E' ~,, F'.

3. E ~ F if, and only if,

e if E-% E' then F > F' for some F' such that E' ~, F'; and
e if F % F' then E > E' for some E' such that B' ~., F'.

Pictorially, 2. and 3. can be represented as follows:

N"'_H_ oo
B~ -~ B~ - F
la l(l la la
P e - g - @

Proof: The first result about 0-game equivalence is trivially true, as the
second player is immediately declared to be the winner of any game which
lasts for only 0 exchanges of moves.

314 Distinguishing Between Processes

For the second result, we note that the second player has a winning
strategy in the game G, (F, F) if, and only if, regardless of what move the
first player makes — either B - B or F - F' — the second player can make
a response — either FF % F' or E = E' - in such a way that he still has
a winning strategy in the game G,(E', F'). But this is precisely what the
statement in the theorem says.

Similarly for the third result, we note that the second player has a win-
ning strategy in the game G (E, F) if, and only if, regardless of what move
the first player makes — either B = E' or F - F' — the second player can
make a response - either FF - F’ or B - E' — in such a way that he still
has a winning strategy in the game G, (E', F'). Again this is precisely what
the statement in the theorem says. a

We can use Theorem 12.3 to prove that these game equivalence relations
are indeed equivalence relations.

(Theorem 12.4

The relations ~, and ~., are all equivalence relations.

Proof: To show that the relations ~, and ~,, are reflexive, that is, that
E ~, E and E ~ E for all E, we need to prove the following.

The second player has a winning strategy in any game in which the
two tokens start on the same state E of some transition system.

This is obvious, as the second player need merely copy every move of the
first player; wherever the first player moves one of the tokens, the second
player moves the other token to the same place.

To show that the relations ~, and ~. are symmetric, that is, that
F ~, E whenever F ~, F and that F ~, FE whenever F ~., F, we need
to prove the following.

If the second player has a winning strategy in a game in which the
tokens start on states E and F' of some transition system, then he
also has a winning strategy in the same game but with the tokens
starting on states F' and E.

Again this is obvious, due to the symmetry of the game. The second player
need merely use (essentially) the same winning strategy.

To show that the relations ~,, and ~, are transitive, that is, that £ ~,, G
whenever £ ~, F and F ~, G, and that F ~,, G whenever F ~,, F' and
F ~ G, we need to prove the following.

If the second player has a winning strategy in a game in which
the tokens start on states E and F' of some transition system, and

Bisimulation Relations 315

he has a winning strategy in the same game but with the tokens
starting on states F and G, then he also has a winning strategy
in the same game but with the tokens starting on states E and G.

The details of this are left as an exercise. O

(Exercise 12.4) (Solution on page 471)

Prove, by induction on n, that the relation ~,, is transitive for each n.

That the relation ~, is transitive cannot be proved by induction, but is
proven in Exercise 12.7 (page 317).

(Theorem 12.5)

The relations ~,, and ~, are strictly decreasing: ~q D ~q D rg D--+ Dy,
In particular, if E ~, F then E ~ F for all k < n.

Proof: If the first player has a winning strategy in a game of length n, then
she can use that strategy to win any game with a longer time limit (and in
particular, the game with no predetermined finite time limit). Alternatively,
if the second player has a winning strategy in a game of length n, or one
with no predetermined finite time limit, then he can use that strategy to
win any game with a shorter time limit. This demonstrates the sequence of
inclusions of the relations: if a pair of states is in ~; it will be in ~; for all
7<t, and hence ~g D~y D ~g D v+ D~

That these inclusions are strict can be noted by observing that for all
n € N, C1, ~, C1 but C1, %, C1; and that for all n € N, Clock ~, Clock,
but Clock 4 Clock,, where these clock processes were defined in Exam-
ple 11.11 (page 296). O

(Exercise 12.5) (Solution on page 472)

Prove the above claims, that for all n € N, C1,, ~, C1 but C1, #,; C1; and
that for all » € N, Clock ~, Clock, but Clock 7 Clock,.

Bisimulation Relations

We might expect ~, to be the “limit” of the ~, relations, that is, that the
second player should have a winning strategy in the infinite game whenever
he has a winning strategy for arbitrarily-long finite games. Alas, the above

316 Distinguishing Between Processes

example disproves this intuition, as the two clocks Clock and Clock, are
n-game equivalent for all » but they are not infinite-game equivalent.

Clearly these two clocks cannot be considered to be the same; the first one
is guaranteed to stop after some indeterminate number of ticks, whereas the
latter has the potential to tick forever. Infinite-game equivalence is thus the
relation we wish to consider as defining equivalence between processes, and
we shall henceforth generally refer to it as equivalence rather than infinite-
game equivalence; that is, when we declare that two processes are equivalent,
we shall mean that they are infinite-game equivalent.

If our intuition had been right, then to demonstrate that two processes
were equivalent we could exploit Theorem 12.3 and use induction to prove
them to be n-game equivalent for all n € N. However, in general we need
an alternative proof strategy to induction. Motivated by Theorem 12.3(3),
we define the following notion to capture the essence of a winning strategy
for the second player in an infinite game.

(Definition 12.5)

A bisimulation relation is a binary relation R over states which satisfies
the following property: if ERF then

o if E % E' then F % F' for some F' such that E'RF'; and
o if F % F' then E = E' for some F' such that B'RF'.

We can represent this situation pictorially as follows:

R
g-"" "~ F
la la

R
R

As desired, a bisimulation relation R represents a winning strategy for
the second player in an infinite game: whenever the two tokens are on states
which are related by R, the second player can match any move of the first
player in such a way as to ensure that the tokens once again end up on
states related by R. In this way, the second player can repeatedly match
the moves of the first player ad infinitum.

[

Theorem 12.6

The second player has a winning strategy in an infinite game with the tokens
starting on states E and F' if, and only if, ERF for some bisimulation
relation R. Hence in particular, R C ~, for any bisimulation relation R.

Proof: If ERF for some bisimulation R, then the second player can merely
use the winning strategy represented by R as outlined above in order to win
the infinite game with the tokens starting on states £ and F'.

Bisimulation Relations 317

Figure 12.2: Example transition systems.

Conversely, by Theorem 12.3(3), the relation ~, itself is a bisimulation
relation. Hence, if the second player has a winning strategy in an infinite
game with the tokens starting on states F and F', then ERF for the bisim-
ulation relation R = ~. O

Example 12.6

Consider the two transition systems in Figure 12.2. It is straightforward
to confirm, from Definition 12.5, that the following binary relation is a
bisimulation relation:

R = {(Plin)! (P27Q2)7 (P27Q4)! (p3yQ3): (P37Q5) }

As (P, Q) € R, by Theorem 12.6 we get that P, ~q, Q1.

(Exercise 12.6) (Solution on page 473)

Prove that the relation R in Example 12.6 is a bisimulation relation.

Exercise 12.7) (Solution on page 473)

Prove that if R and S are bisimulation relations over the states of a labelled
transition system, then so is R o S. Infer from this that ~, is a transitive:
that if B ~o F and F ~,, G then F ~, G.

As a final observation regarding the relationship between the finite-game
equivalences ~, and the infinite-game equivalence ~.,, we note that the
reason ~o, # [lnen ~n in the case of the two clocks — that is, that we can
have Clock ~, Clock, for all n € N but Clock 4, Clock, — is solely due to

318 Distinguishing Between Processes

the fact that these clocks can perform their initial tick action in infinitely-
many ways, leading to infinitely-many states. If this were not the case, then
the relations would coincide. This is made precise as follows.

Definition 12.7)

A process is image-finite if, and only if, for every state E of the process,
and for every label a, the set { F : E — F} is finite.

Theorem 12.7

For image-finite processes, ~o = (lnecn ~n-

Proof: Inclusion in one direction, ~o C ,cn ~n, is guaranteed by Theo-
rem 12.5: ~o, C ~, foralln € N, 50 ~o, C Npen ~n-

To show inclusion in the other direction, N ey ~n € ~, it suffices to
prove that the relation R = N,y ~» is a bisimulation relation, for then by
Theorem 12.6 we would have that R C ~, as desired.

To this end, let ERF be an arbitrary pair of states related by R, that
is, B ~, F for all n € N. Assume first that F 2 E'. Since E ~pi1 F
for all 7 € N, by Theorem 12.3(2) we have that for each n € N, F - F,
for some F, with E' ~, F,. However, by image-finiteness there can be
only finitely-many such F,,. Hence the same state F’ must appear as F, for
infinitely-many values of n; that is, FF — F' with E' ~, F' for infinitely-
many n € N, and hence by Theorem 12.5 for all n € N. Hence E'RF".

By a symmetric argument, we can show that if F = F’ then E — F'
for some E' with E'RF'. Hence R is indeed a bisimulation. O

(Exercise 12.8) (Solution on page 474)

In the definition of the bisimulation game, the first player was free to move
either token at each move. Suppose instead she must always move the same
token with each move. For example, if for her first move she moves the
token on state F', then she must always move that token in every move; at
no time can she switch and move the token which started on state £. Let
E =, F if, and only if, the second player has a winning strategy in this new
game played for at most n rounds (where n may be 00).

1. Show that =, is an equivalence relation.

2. Show that B ~, F implies F =<, F. That is, if the second player has
a winning strategy in the bisimulation game, then he has a winning
strategy in this new game.

3. Show that F x, F' in general does not imply that £ ~, F. (Hint:
consider the processes a.b.0 and a.b.0 + a.0.)

Bisimulation Colourings 319

Bisimulation Colourings

Given that we cannot in general employ the inductive characterisation for
finite-game equivalences to prove that two process states are (infinite-game)
equivalent, we here devise an alternative approach to inferring if and when
a winning strategy exists for the second player in an infinite game. The
approach relies on colouring the states of the process in a particular fashion,
thus partitioning the states into equivalence classes defined by colour.

Definition 12.8)

A bistmulation colouring of a transition system is a colouring of the states
which satisfies the following property:

If some state with some colour C has a transition leading out of it
into a state with some colour C’, then every state coloured C has an
identically-labelled transition leading out of it into a state coloured C".

For example, if some red state has an a-transition leading to a blue
state, then every red state has an a-transition leading to a blue state.

That is to say, if E and F' have the same colour, then

o if E-> E' then F % F' for some F' such that E' and F' have the
same colour; and

o if F-% F' then E % E' for some E' such that E' and F' have the
same colour.

Two states E and F' are bistmulation equivalent or bisimilar, written
E ~ F, if they have the same colour in some bisimulation colouring.

As a trivial example, if we assign each state its own unique colour, then
this would clearly be a bisimulation colouring. However, finding a bisimu-
lation colouring which assigns the same colour to two different states allows
us to conclude that these two states are equivalent. This fact is recorded in
the following.

(Theorem 12.8)

E ~ F if, and only if, E ~, F.

Proof: Given a bisimulation colouring of a transition system, the binary
relation R which relates like-coloured states is clearly a bisimulation relation
(according to Definition 12.5), and hence, by Theorem 12.6, any two like-
coloured states must be infinite-game equivalent. That is, if & ~ F' (i.e., E
and F have the same colour in some bisimulation colouring) then E ~, F.

320 Distinguishing Between Processes

Conversely, consider colouring a transition system in such a way that any
two states £ and F' have the same colour if, and only if, F ~., F. By Theo-
rem 12.3(3), this colouring is clearly a bisimulation colouring (according to
Definition 12.8). Thus, if F ~ F then F and F have the same colour in
this bisimulation colouring, and hence E ~ F. d

This new characterisation of equivalence gives rise to the following ap-
proach to demonstrating that two states of a transition system are (or are
not) equivalent. We start with all states being the same colour (white, say),
and refine this colouring, always maintaining the following invariant:

(Invariant: If E~ F then E and F have the same colour.]

In this way, we start with a single equivalence class of states (ie, start with all
states assigned the same colour), and refine this partition by subdividing the
equivalence classes (by assigning some of the states in an equivalence class
a new colour). This partition refinement algorithm can be effectively
implemented to prove (or disprove) equivalences.

As an illustrative example, consider the second transition system of Fig-
ure 12.1.

The initial all-white colouring is not a bisimulation colouring, as the white
state 4 has a b-transition to a white state 5, whereas the other white states
1, 2, 3, 5 and 6 do not have b-transitions to white states. Hence, by the
invariant, state 4 cannot be equivalent to the other white states; in any
bisimulation colouring, state 4 must have a different colour from states 1,
2, 3, 5 and 6. Hence we may safely refine our colouring by making state 4 a
different colour (black, say).

Bisimulation Colourings 321

This is still not a bisimulation colouring, as the white states 3 and 6 have
a-transitions to black states, whereas the other white states 1, 2 and 5 do
not. Hence, by the invariant, states 3 and 6 cannot be equivalent to the
other white states; in any bisimulation colouring, states 3 and 6 must have
a different colour from states 1, 2 and 5. Hence we may safely refine our
colouring by making states 3 and 6 a different colour (grey, say).

This colouring is a bisimulation colouring, which by construction satisfies
our invariant. To confirm this, we merely enumerate the possibilities.

1. every white states has an a-labelled arrow leading into a white state,
and an a-labelled arrow leading into a grey state;

2. every grey state has an a-labelled arrow leading into a grey state, and
an a-labelled arrow leading into a black state; and

3. every black state has a b-labelled arrow leading into a white state.

Hence, two states in this transition system are equivalent if, and only if,
they have the same colour.

For the first transition system in Figure 12.1, a little reflection reveals
that no bisimulation colouring of the states of this transition system exists
in which the states X and U have the same colour.

(Exercise 12.9) (Solution on page 475)

Prove the above claim that the states X and U of the first transition system

in Figure 12.1 cannot have the same colour in any bisimulation colouring.

This completes the outline of our algorithm for determining whether
two states of a transition system are equivalent. The algorithm works by
partitioning the states into equivalence classes, by starting with the trivial
partition consisting of a single class containing all states, and repeatedly
refining the partition by splitting one of the classes into two separate sub-
classes; it does this when it discovers that none of the states of one of
the new sub-classes can be equivalent to any of the states of the other.
If we carry this procedure out on a transition system with n states, then
clearly it can perform no more than n refinements, as each refinement gives

322 Distinguishing Between Processes

rise to a new class and we cannot produce a partition with more than n
classes. Furthermore, during each iteration we need only scan the edges
of the transition system looking for a transition with which we can split
a partition. Hence if there are k£ edges in the transition system, then this
naive implementation of the algorithm would execute in time proportional
to nk.

As a useful by-product, this algorithm produces a minimal-sized (in
terms of the number of states) transition system which is equivalent to the
original transition system. In the above example, the minimal-sized transi-
tion system has three states, which we might refer to as white, black and
grey, and is depicted as follows.

(Exercise 12.10) (Solution on page 475)

12.5

Carry out the above bisimulation colouring algorithm on the first transition
system of Figure 12.1, explaining each step in detail as above.

Note that the algorithm is nondeterministic; there may be several ways of
splitting a set of like-coloured states. For example, starting with all states
of the transition system in question white, there are three possible ways to
proceed.

1. White states U and X both have an a-transition leading to a white
state, while white states V, W, Y and Z do not.

2. White states V and Y both have a b-transition leading to a white state,
while white states U, W, X and Z do not.

3. White states W and Y both have a c-transition leading to a white
state, while white states U, V, X and Z do not.

It doesn’t matter which choice you make; the end result will be the same.

The Bisimulation Game Revisited: To Infinity and
Beyond!

As we observed, the relations ~, representing n-game equivalence do not,
in general, provide an adequate sequence of approximations to ~,, the oco-
game equivalence. This was demonstrated in Exercise 12.5 by the example

The Bisimulation Game Revisited: To Infinity and Beyond! 323

12.5.1

of the clocks, in which Clock ~, Clock, for all » € N but Clock e
Clock,. All is not lost with the idea of approaching ~., by a sequence of
approximations. The solution — which seems very odd on first encountering
it — is to take the advice of Buzz Lightyear and go to infinity and beyond.
The example of the clocks shows that it is not enough just to go to infinity
through the natural numbers ~q, ~1, ~3, ~3,.... All we need to do is make
sense of the idea of going beyond infinity.

Consider two young children playing the game of “Who can name the
largest number?” in which they take turns naming larger and larger num-
bers. They quickly run up against the problem of what numbers come
after one-mallion, one-billion, one-trillion, one-quadrillion, ..., until one
of them discovers the number googol (10'®, a one followed by 100 zeros);
but the other quickly responds with an even bigger number: googol-plus-
one! The first child’s argument that “There’s mo such thing, googol is
the biggest number!” is of course wrong. But then eventually, one of the
children names the “number” infinity.

It is possible to accept the idea of naming infinity as a number, which
by definition is bigger than any natural number, and even to give it its own
symbol: w. But we will then be able to consider w+1 as a bigger number,
and w+2 as an even bigger number, and even w+w as a far, far greater
number; these are all infinitely-big numbers, but some are just bigger than
others.

We already noted in Section 6.4, when comparing the sizes (cardinal-
ities) of sets, that infinity comes in different varieties; in particular, the
cardinality of the set of rational numbers is the same as the cardinality of
the set of natural numbers (Exercise 6.16) but strictly smaller than the car-
dinality of the set of reals (Example 6.16). Infinite counting numbers (as
opposed to measuring numbers) also exist as mathematical objects, and are
collectively known as ordinal numbers. These are what will allow us to
approximate ~q.

Ordinal Numbers

The ordinal numbers are an extension of the natural numbers as motivated
above. The initial segment of ordinals is as follows:

0,1, 2 ...,w, wtl, w+2, ..., wtw, wtw+l, wtw+2, ...

Thus, after all finite ordinals have been listed (the natural numbers), the first
infinite ordinal w is listed, and we can once again list ever-bigger ordinals by
successively adding one; after adding each natural number to w we reach the
ordinal w+w, or wx2, from which we continue the scheme, ad infinitum.
The collection of ordinal numbers is denoted by O. We shall not concern
ourselves with the complete theory of ordinal numbers. All we will need to
know about ordinals are the following four facts:

324 Distinguishing Between Processes

1. Every ordinal X has a successor X+1, whose predecessor is X.

2. An ordinal is either: zero (i.e., 0); or a successor ordinal (i.e., X+1 for

some ordinal X); or a l#mit ordinal which has a value which is greater
than all previous ordinals, but has no predecessor.

The first limit ordinal — which is the first infinite ordinal - is w. It
is the smallest ordinal greater than any finite ordinal (i.e., natural)
number; the next limit ordinal is w+w (which is also written wx2),
then w+w+w (or wx3), and so on.

. Given any set S there is an ordinal X € O which represents the cardi-

nality of S; that is, there is a bijection between the set S and the set
{Yeo:v<Xx}

. In order to show that a property P(X) holds for all ordinals X, it

suffices to show the following:
P(X) holds for X whenever P(Y) holds for all Y < X; that is,
(vv < X : P(Y)) = P(X).

This principle is known as transfinite induction and is a restatement
of the principle of strong induction from Section 9.4.

For those who find this brief initiation into the world of ordinal numbers
confusing, you may find it helpful to concentrate on the natural numbers,
and just think of w whenever limit ordinals are mentioned in what follows.

Example 12.10

12.5.2

Consider the set Nx N of pairs of natural numbers ordered lexicographically:
(3,7) < (p,q) if, and only if, either 1 < p or 4 = p and j < ¢. Thus, we can
list these out in order as follows:

(0,0) < (0,1) < (0,2) < --- < (1,0) < (1,1) < (1,2) < ---
(2,0) < (2,1) < (2,2) < -+
(3,0) < (3,1) < (3,2) < ---
(4,0) < (4,1) < (4,2) < -+

VA NANVANRRVAN

This gives us a way to view the start of the list of ordinal numbers, namely
by associating the pair (z,5) € N x N with the ordinal number wxi + j.

Ordinal Bisimulation Games

In Section 12.1 we defined the bisimulation game as either lasting for a
predefined finite number n of exchanges of moves, denoting the game by

The Bisimulation Game Revisited: To Infinity and Beyond! 325

Gn(E,F); or as continuing for as long as each player can make a move,
denoting the game in this case by G (E, F'). We can refine this notion by
defining the game Gx(F, F') for any ordinal number X. From now on, we
shall use Gx(E, F') to denote both the game itself as well as the position
that the game is in, with X denoting in a precise sense the length of the
game.

1. From position Gy(E, F'), the second player is declared to be the winner.

This reflects the idea that the second player automatically wins any
game of length 0, as he need not copy any moves of the first player.

2. From position Gx;1(E, F'), the two players exchange moves once as
usual, and the play continues from Gx(E', F'), where E' and F' are
the states to which the two tokens have been moved.

This reflects the usual idea that a game of length X+1 consists of a
single exchange of moves followed by a game of length X.

3. From position G,(E, F) where) is a limit ordinal, the first player
chooses a value X <), and the play continues from position Gx(E, F').

This reflects the idea that G, (E, F)) encompasses all games of length
less than A; that is, Gx(F, F) for any X < A. If the second player has
a winning strategy in all such shorter games then he can force a win in
any such game that the first player chooses, so the second player can
force a win in this game G,(E, F'). However, if the first player has a
winning strategy in some such shorter game, then she can choose that
game and use her winning strategy to win the game G, (E, F).

The following result corresponds to Theorem 12.2 (page 312), and is
similarly proved but by transfinite induction rather than simple induction
over the natural numbers.

Theorem 12.10)

For any game Gx(E, F), either the first player has a winning strategy, or
the second player has a winning strategy.

Proof: By transfinite induction. For the case X = 0, the second player
clearly has a winning strategy for the game Go(E, F).

Suppose that X = Y+1 is a successor ordinal, and that for any game
Gy (E', F') one of the two players has a winning strategy.

Suppose that X = Y+1 is a successor ordinal, and that for any game
Gy (E', F') one of the two players has a winning strategy. The argument
that one of the two players has a winning strategy in the game Gy (&, F)
is identical to the induction step in the proof of Theorem 12.2.

e Suppose that no matter what the first player does as her first move
in the game Gy 1(E, F), the second player can respond in such a way

326 Distinguishing Between Processes

that he gets into a position in which he has a winning strategy in the
game of length Y. This clearly provides a winning strategy for the
second player in the game Gy, ;(E, F).

e Hence, if the second player does not have a winning strategy in the
game Gy 1(E, F'), then the first player can make a move in such a way
that any response the second player makes results in a position from
which the second player does not have a winning strategy in the game
of length Y'; but then by the inductive hypothesis, the first player has a
winning strategy in the game of length Y from this resulting position,
which means she has a winning strategy for the game Gy 1(E, F').

Suppose finally that X is a limit ordinal, and that for any game Gy (E', F")
with Y < X one of the players has a winning strategy.

e Ifthere is some Y < X such that the first player has a winning strategy
in the game Gy (E, F), then she can choose this value Y < X and use
this winning strategy to win the game Gx(E, F).

e If there is no Y < X such that the first player has a winning strategy
in the game Gy (E, F'), then by the induction hypothesis the second
player has a winning strategy for the game Gy (E, F') for each Y < X,
and hence a winning strategy for the game Gx(E, F). d

(Definition 12.10)

We say that two process states E and F' are X -game equivalent, written
E ~x F, if, and only if, the second player has a winning strategy in the
game Gx(E, F).

Example 12.11

From Exercise 12.5 we know that Clock ~, Clock, since Clock ~, Clock,
for all n € N (i.e., Clock ~x Clock, for all X < w).

. tick
However, Clock +,.; Clock,, since the move Clock, "X a1 by the
first player in the game G, ;(Clock,, Clock) must be matched by a move

Clock tz_ck) Cl1, for somen € N, but for no n € N do we have that C1 ~, C1,.
On the other hand, we do have that tick.Clock, ~ 1 tick.Clock.

(Exercise 12.11) (Solution on page 477)

Give process states E, and F,, such that E, ~, ., F, but B, 2%y ini1 Fn.

We can now extend the results of Section 12.2 about game equivalence to
ordinal game equivalence. We leave most of the proofs as exercises, as they

The Bisimulation Game Revisited: To Infinity and Beyond! 327

are straightforward adaptations of the proofs of the analogous results pre-
sented in Section 12.2. However, we prove the last result, which is the goal
of this section: that the sequence of equivalences ~x does indeed properly
approximate ~q.

(Theorem 12.11

1. E ~¢ F for all processes E and F'.

2. E ~xy1 F if, and only if,

e if E-% E' then F % F' for some F' such that E' ~x F'; and
e if F % F' then E % E' for some E' such that E' ~x F'.

3. For limit ordinals A\, E ~, F' if, and only if, E ~x F for all X <).

(Theorem 12.12

The relations ~x are all equivalence relations.

Theorem 12.13

The relations ~x are strictly decreasing. That is, ~x C ~y whenever
X>Y.
Specifically, if for each ordinal X € O we define the process

def
Ex = Z a.By,
Y<X

then for all ordinals X and Y with X < Y, EX ~x Ey but EX /76X+1 Ey.

Theorem 12.14

|

~Noo — mxeo ~X.

Proof: Suppose that E ~, F; we shall show by transfinite induction that
E ~x F forall X € O.

e If X =0 then clearly E ~; F.

e Suppose that X =Y + 1 is a successor ordinal.

—If E % E'then F -5 F' for some F' such that B' ~ F’, and
hence by induction E' ~y F'.

—If F % F' then E > E' for some E' such that B’ ~ F’, and
hence by induction E' ~y F'.

328 Distinguishing Between Processes

Thus we must have that B ~y; F.

e Suppose finally that X is a limit ordinal. Then by induction we have
that £ ~y F for all Y < X, and hence E ~x F.

To show inclusion in the other direction, Nxcp ~x C ~u, it suffices to
prove that the relation R = Nxcp ~x is a bisimulation relation, for then by
Theorem 12.6 we would have that R C ~, as desired.

To this end, let ERF be an arbitrary pair of states related by R, that
is, E ~x F for all X € ©. Assume first that E = E'. Since E ~x1 F for
all X € O, by Theorem 12.11(2) we have that for each X € O, F 2 Fy
for some Fx with E' ~x Fx. The set { Fx : X € O} can be no greater
that the set of all states which are reachable from the state F', and there
are ordinal numbers X which are arbitrarily larger than the cardinality of
this set of states. Hence there must be some state F’ which appears as
Fy for arbitrarily-large values of X; that is, FF — F’ with E' ~x F' for
arbitrarily-large X € O, and hence by Theorem 12.13 for all X € O. Hence

E'RF.
By a symmetric argument, we can show that if F 2 F'then E 5 E'
for some E’' with B'RF’'. Hence R is indeed a bisimulation.]

Additional Exercises

1. Carry out the bisimulation colouring algorithm step-by-step on the
labelled transition system defined by the following process definition,
and use this to provide an equivalent system with a minimal number

of states.
W bXx + ez x 4y
y ¥ X + b2 Z ¥ oW + oY

2. Carry out the bisimulation colouring algorithm step-by-step on the
labelled transition system defined by the following process definition,
and use this to provide an equivalent system with a minimal number
of states.

X, ¥ aX, + b.Xs X, aX, + bXs

X ®aXs +aXs +0X: Xs®aXs + aXs + bX;

X; % a.X; Xs®aX; + a.Xs + b.X,

3. Consider the following labelled transition system.

Additional Exercises 329

a

(a) Which states are 2-game equivalent to state X¢?
(b) Which states are 2-game equivalent, but not 3-game equivalent,

to state Xg?
(c) Which states are n-game equivalent to state X5 for all n?

4. Consider the following labelled transition system.

a
()
(a) For which n do we have W; ~, X;? Justify your answer.
(b) For which n do we have W; ~, Y;? Justify your answer.
(c) For which n do we have W; ~, Z;? Justify your answer.
(d) For which n do we have X; ~, Y17 Justify your answer.
(e) For which n do we have X; ~, Z;? Justify your answer.

(f) For which n do we have Y; ~, Z;? Justify your answer.

5. Show that the algebraic laws from Section 11.5 are true of bisimulation

equivalence:

330 Distinguishing Between Processes

(S3) E+F ~ F+E.
(Ss) (E+F)+G ~ E+(F+G).

def

(S5) If X *E then X ~ E.

(Ci) f E~F then E4+G ~ F+G.
(Cy) If E~ F then a.E ~ a.F.

6. Prove that the following binary relation on the states of a labelled
transition system is a bisimulation relation:

R = {(E,F) : the first player does not have
a winning strategy in the game Go.(E, F') }.

Conclude from this the result from Theorem 12.2 that for any game
G (B, F), either the first player has a winning strategy, or the second
player has a winning strategy.

7. In Theorem 12.7, only one of the two processes need be image-finite
in order for the conclusion to be true. Prove this by showing that the
relation

R = {(E,F) : F is image-finite and E ~; F for all k € N}

is a bisimulation relation.

8. The trace set of a state F is defined as
T(E) = {s€ A* : E-> F for some F'}.

Two states E and F' are trace equivalent, written E =, F, if, and
only if, T(E) = T(F). Finally, a state E is deterministic if, and
only if, for all s € A* there is at most one state F' such that E - F.
That is, no state that is reachable from E has two transitions with the
same label leading out of it.

(a) Prove, by induction on the length of s, that if B ~, F and E -
E' with k = length(s) < n, then F = F' for some F' with
E' ~,_; F'. Deduce from this that if & ~ F then F =; F.

(b) Prove that R = {(E,F) : E =, F and E, F are deterministic}
is a bisimulation relation. Deduce from this that if £ =; F' and
FE and F' are deterministic, then £ ~ F'.

9. A trace bisimulation relation is a binary relation R over states
which satisfies the following property (where the extended transition
relation —-C S x A* x S is defined in the previous exercise):

If ERF then

e if E-> E' then F - F' for some F' such that E'RF’; and

Additional Exercises 331

e if F> F' then E > E' for some E' such that E'RF’

In terms of the bisimulation game, this reflects a change in the rules
which allows the first player to make a sequence of transitions, rather
than a single transition, which the second player must copy.

Prove that R is a trace bisimulation relation if, and only if, R is a
bisimulation.

10. A set R C ¥ is a refusal set of E if, and only if, B -% for any a € R.
A pair (w,R) € ©* x 2% is a failure of E if, and only if, B - F
for some F' such that R is a refusal set of F. F and F are failures
equivalent, written E =; F, if, and only if, they possess the same
failures.

(a) Prove that E ~ F implies E =; F, and that £ =; F implies
E—=F.

(b) Recalling the vending machines V4, V; and V3, prove that V; #; Vs
but that V2 =; V3, thus showing that the reverse implications do
not hold in general.

(c) What is the relationship between =; and <, the simulation equiv-
alence from Exercise 12.87

11. Ordinal numbers, viewed as sets, can be defined as follows:

e if S is a set of ordinals, then so is U S;

e if X is an ordinal, thensois X* = X U{X };

e nothing is an ordinal number unless it is constructed from the
above two rules.

Thus we can construct the first few ordinals as follows:
0=yUo=0
el1=0"=0u{0}=0u{0}={0}
2=1t*=1U{1}={0, 1}
e3=2t=20{2}={0,1,2}

n={0,1,2,...,n—-1}

«luzu{o, 1,2..}=40,1,2,...}
euwtl=wr=wU{w}={0,1,2,...,w}

Intuitively, an ordinal is the set of ordinals less than it; and the less-
than relation corresponds to membership: X < Y if, and only if,
Xey.

332 Distinguishing Between Processes

Prove the following facts about ordinal numbers X, Y and Z as defined
above.

a) Every element of an ordinal X is itself an ordinal.
E 1 t of dinal X is itself dinal
(Proof: By induction on X.)

(b) f X €Y and Y € Z then X € Z; that is, € is transitive.
(Proof: By induction on Z.)

(c) fX €Y then X CY.

(Proof: Follows directly from previous result.)
d X ¢X.

(Proof: By induction on X.)
() X NY is an ordinal.

(Proof: By induction on X.)
12. Prove Theorem 12.11. (page 327).
13. Prove Theorem 12.12 (page 327).
14. Prove Theorem 12.13 (page 327).

Chapter 13

Logical Properties of Processes

I summed up all systems in a phrase, and all existence in an epi-
gram.
- Oscar Wilde.

Thus far in Part II of the book, we have developed the understanding
of what a process is, namely a labelled transition system, as well as the
means for describing processes formally with a simple process language. We
have also defined when two processes are equivalent — namely when they are
bisimilar, which we presented as game equivalent — as well as a procedure
for determining if two processes are equivalent.

Determining equivalence between processes is instrumental for finding
out if a proposed implementation of a computing system matches its speci-
fication. However, we are often not interested in the complete behaviour of
a system, but rather only in certain aspects. For example, we may not be
interested — for the moment — in what actions a certain system does, but
rather we might only want to know if it can ever deadlock, that is, evolve
into a state in which it can perform no actions. This would be very useful
in the analysis of systems which are expected to be perpetual, such as op-
erating systems (particularly those running on critical systems). In other
instances we may be interested only in knowing if a given system may or
will ever perform a particular action, for example service a request such as
printing a document that has been sent to the printer queue.

In this chapter we shall consider a simple logic for expressing properties of
systems, as well as the means for determining whether or not a given process
satisfies such properties. The properties which the logic can express will be
dynamic (behavioural) properties which describe what actions a process can
or cannot do, rather than static properties such as how many states a process
has which are irrelevant for its correct functioning.

A given property will potentially hold of many different systems, and
fail to hold of many others. However, the properties that we express should
respect our understanding of equivalence: if a given property holds of a par-
ticular process, then it should hold of any other equivalent process. Con-

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_14, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_14

334 Logical Properties of Processes

versely, if two processes are not equivalent, then you should be able to
express a property which distinguishes between these two processes; that is,
a property which holds of one of the processes but not the other. The logic
which we describe in this chapter is of this nature.

Example 13.1

Consider the following two statements about a particular computer:

1. “The computer consists of three parts: a CPU, a memory unit, and a
bus for communicating with the environment.”

2. “CONTROL-ALT-DELETE can be pressed; this will shut down the
computer, which will then not do anything further.”

The first statement does not refer to the (dynamic) behaviour of the com-
puter, but rather to its (static) structure. As such it cannot be used to
distinguish between the behaviour of this and any other computer. An-
other computer may (and likely will) consist of the same three parts yet
behave completely differently; while yet another may behave identically to
the computer in question despite being built completely differently.

By contrast, the second statement describes one particular aspect of the
behaviour of the computer which we may want our computer to demonstrate.
Another computer built from the same three parts may be unacceptable if
it does not behave the same when you press the CONTROL-ALT-DELETE
combination of keystrokes.

13.1) The Mays and Musts of Processes

In trying to understand the differences between the behaviours of the various
vending machines in Section 11.4, we were led to making statements such
as the following two:

1. We may do a ‘10p’ action and end up in a state in which
we may do a ‘10p’ action and end up in a state in which
we cannot do a ‘coffee’ action.

2. We may do a ‘10p’ action and end up in a state in which
no matter how we do a ‘10p’ action
we must end up in a state in which
we cannot do a ‘tea’ action.

Thus we are expressing capabilities (and inabilities) of a process using the
two auxiliary verbs may and must, which are known as modal helping
verbs as they help set the modality — necessity or possibility — of the main

The Mays and Musts of Processes 335

verb. In fact, we are using these verbs in a very strict manner, namely in
the following two contexts:

(a)P: we may do an ‘a’ action and
end up in a state in which P 1s true;

[a]P: mno matter how we do an ‘a’ action
we must end up in a state in which P 1s true.

We will use the above notation, (a)P (pronounced “diamond-a” P) and [a|P
(pronounced “box-a” P), for writing down such statements.

How, then, can we express the simple property that we may do a ‘coffee’
action? It doesn’t suffice to simply write:

(coffee)
as — following the translations given above — this reads in English as:
we may do a ‘coffee’ action and end up in a state in which.

This is not grammatically correct. In order to complete the sentence, we
must indicate a property that we require to be true of the state into which
the process evolves after doing the ‘coffee’ action. Every modality “(a)”
and “[a]” has to be followed by some property P.

In this case, however, we don’t require anything in particular to be true
in the state we get into after doing the ‘coffee’ action; we are only content
that we can evolve into such a state. To solve this problem, we can use the
property true, which of course is itself true of any process state. Thus, to
express the property that we may do a ‘coffee’ action, we would write:

(coffee)true
which more fully says

we may do a ‘coffee’ action and
end up in a state in which true 1s true.

Although the final clause is redundant, as true is always true (that is, true is
true in every state), it is nonetheless necessary in order to turn the expression
into a complete logical statement.

We may now express the two properties of our vending machines:

1. (10p){10p)—(coffee)true
2. (10p)[10p]—(tea)true
If we read these two lines as English statements following the translations

given above for the new notation — as well as reading the negation of a
property, =P, as “it is not the case that P” — we arrive at the following:

336 Logical Properties of Processes

1. We may do a ‘10p’ action and end up in a state in which
we may do a ‘10p’ action and end up in a state in which
it 15 not the case that
we may do a ‘coffee’ action and
end up in a state in which true 1is true.

2. We may do a ‘10p’ action and end up in a state in which
no matter how we do a ‘10p’ action
we must end up in a state in which
it 18 not the case that
we may do a ‘tea’ action and
end up in a state in which true 1is true.

]

Exercise 13.1) (Solution on page 477)

Explain what each of the following properties expresses.

1. (coffee)true

A

2. (coffee)false
3. [coffeeltrue
4. |

coffeelfalse

(Exercise 13.2) (Solution on page 477)

How can we express the property that we cannot do two ‘a’ actions in a row?
Give your answer using the above notation, and write out your property in
English.

(Exercise 13.3) (Solution on page 478)

How can we express a property that distinguishes between the clock C1 from
Example 11.7 which ticks forever, and the clock C1, from Exercise 11.8 which
may tick forever or may stop ticking after any tick? That is, give a property
using the above notation which is true of C1 but false of C1,. Write out your
property in English as well.

A Modal Logic for Properties

In the previous section we presented the core of a simple logical language
for expressing properties which may be true or false of a given process.

A Modal Logic for Properties 337

In this section we complete the description of this simple logic, which we
shall simply call HML (for Hennessy-Milner Logic, after its inventors). This
language consists essentially of propositional logic with the additional two
modal connectives (a)P (“diamond-a” P) and [a]P (“box-a” P):

P,Q u= true | false | =P | PAQ | PVQ | (a)P | [a]P.

A formula P of HML represents a property which may or may not be
true in a given state F of a process. If it is true in that state, we shall write
E = P and say that the state E satisfies the property P; otherwise we
will write F# P and say that the state F does not satisfy the property P;
that is, by F # P we mean —(F = P). If a property is true in some state,
then we say that the property is satisfiable; and if it is true in every state,
then we say that it is valid.

Whether or not a property is true in a given state is defined inductively
on the structure of the formula P as follows:

e E |=true for all E.

The property true is true in every state.
e E# false for all E.

The property false is not true in any state.
e E |= P if, and only if, B P.

The property =P is true in a state if, and only if, P is not true in that
state.

e EEPAQ if,andonly if, E= P and E E Q.

The property P AQ is true in a state if, and only if, both P and Q are
true in that state.

e E=-PVvQ if,andonly if, E =P or E Q.
The property PV @ is true in a state if, and only if, either P or Q@ (or
both) is true in that state.

e E|= (a)P if, and only if, F |= P for some state F such that £ — F.

The property (a)P is true in a state if, and only if, you can do an ‘a’
transition from that state to a state in which the property P is true.

e E |=[a]P if, and only if, F' = P for all F such that B - F.

The property [a]P is true in a state if, and only if, the property P is
true in every state that you can get to by doing an ‘a’ transition from
that state.

The syntax and semantics of the logic HML is summarised in Figure 13.1.
We shall make use of the following shorthand abbreviations:

338 Logical Properties of Processes

E =true for all E.

E |=false for no E.

E =-P if, and only if, E}£ P.

ElE=PAQ if,and only if, E =P and E = Q.
EEPvVQ if,andonly if, E=P or E = Q.

E |= (a)P if, and only if, F |= P for some F such that B — F.

—

—

E |=[a]P if and only if, F = P for all F such that B - F.

Figure 13.1: Syntax and semantics of the modal logic HML.

(—)P = \/{a)P where the disjunction ranges over the whole set of actions
of a process.

This property is true in a state if, and only if, you can do some tran-
sition from that state to a state in which the property P is true.

[-]P = A\la]P where the conjunction ranges over the whole set of actions
of a process.

This property is true in a state if, and only if, the property P is true in
every state that you can get to by doing a transition from that state.

(K)P = \/ (a)P where K is a set of actions (typically written without
ack set braces, as in (a, b, c)P).
This property is true in a state if, and only if, you can do an ‘a’
transition from that state, for some a € K, to a state in which the
property P is true. This is the same as (a) P when K = {a}; the same
as (—)P when K is the set of all actions of a process; and the same as
false when K = 0.

[K]P =)\ [a]P where K is a set of actions (typically written without
ack set braces, as in [a, b, c|P).
This property is true in a state if, and only if, the property P is true
in every state that you can get to by doing an ‘a’ transition from that
state, for some a € K. This is the same as [a]P when K = {a}; the
same as [—|P when K is the set of all actions of a process; and the
same as true when K = 0.

(-K)P = (K)P where K is a set of actions (typically written without
set braces, as in (—a, b, c) P).

A Modal Logic for Properties 339

This property is true in a state if, and only if, you can do an ‘a’
transition from that state, for some a ¢ K (i.e., for some a € K), to a
state in which the property P is true.

[-K|P = [K|P where K is a set of actions (typically written without
set braces, as in [—a, b,] P).
This property is true in a state if, and only if, the property P is true
in every state that you can get to by doing an ‘a’ transition from that
state, for some a ¢ K (i.e., for some a € K).

Note that in all of the above shorthand formula we assume that the number
of possible actions is finite; the logic HML does not have infinite conjunction
or disjunction.

]

Example 13.3

Consider the following two simple processes:

E® 4400 F = a.a.0 + a.0

@/“>vo @(fL;O/—*o

These differ in that process F' may deadlock immediately after performing
the first ‘a’ action, whereas process F is guaranteed to be able to perform a
second ‘a’ action after performing the first ‘a’ action. These can be rendered
in modal logic as follows:

e F |=(a)~(a)true whereas FE [~ (a)—(a)true.

We may do an ‘a’ action and end up in a state in which
we cannot do another ‘a’ action.

This is true in state F' but not true in state .

e B = atrue whereas F [~ atrue.

No matter how we do an ‘a’ action,
we must end up in a state in which
we may do another ‘a’ action.

This is true in state E but not true in state F'.

When first learning to think logically with the modal verbs “may” and
“must,” it is easy to misinterpret properties, particularly when expressing
them in the language of HML. A common mistake arises when wanting to
express the property

340 Logical Properties of Processes

I must do an ‘a’ action.

This property is not captured by the formula (a)true which expresses the
property
I may do an ‘a’ action

as this allows the possibility of doing something other than an ‘a’ action;
if, for example, I could also do a ‘b’ action, then it would clearly not be the
case that I must do an ‘a’ action.

The next misconception is that — being a “must” property — we would
express the desired property (that an ‘a’ action must happen) as [a]true.
However, this formula only expresses what must be true i:f and when you
do an ‘a’ action; it doesn’t even assert that an ‘a’ action is even possible!
More precisely, it asserts that:

no matter how we do an ‘a’ action
we must end up in a state in which true is true

which is true of every state of a system whether or not it can do an ‘a’
action!

So how then do we express the property that an ‘a’ action must happen?
The answer is: precisely when an ‘a’ action may happen and no other
action may happen, which we can express in HML as follows:

(a)true A\ —(b)true
b#a
or more simply using our shorthand as follows:

(a)true A —(—a)true

(Exercise 13.4) (Solution on page 478)

Consider the following transition system:

Which of the following are correct?

1.EE a)true 9. EE

(a)true 5. F = (a){
((

) [a]
2. E = (b)true 6. E = (a)(b)true 10. E |= [a](b)true
3. E = [alfalse 7. E = (a)[alfalse 11. E |= [a][a]false
4. E |~ [bfalse 8. F |= (a)[blfalse 12. E = [a][b]false

Negation Is Definable 341

(Exercise 13.5) (Solution on page 478)

Express the following properties regarding the lamp process from Section 11.2
pictured in Figure 11.5 (page 289). In each case, indicate which of the three
states of the process (OFF, ON, BROKEN) satisfy the property in question.
1. I may do two ‘pull’ actions in a row followed by a ‘break’ action.
2. I may do two ‘pull’ actions in a row followed by a ‘reset’ action.
3. I cannot do a ‘pull’ action.
4

. I can only do a ‘pull’ action (that is, I must do a ‘pull’ action).

Negation Is Definable

In Section 11.4 we observed that the negation of a must property is equiva-
lent to a may property, and vice versa. This should have become apparent
as well from Exercise 13.4.

More precisely, we consider two formula of our modal logic to be equiv-
alent if, and only if, they are true in the same states: P < @ if, and only
if, for all states E: E = P < E |= Q. Our observations about negating
modal properties are then expressed as follows:

—(a)P & [a]-P and
—-[a]P < (a)-P
In words these say the following: the property which states that

we cannot do an ‘a’ action and
end up in a state in which P 1s true

is equivalent to

no matter how we do an ‘a’ action
we must end up in a state in which —P 1s true;

and the property which states that

it 15 not true that no matter how we do an ‘a’ action
we must end up in a state in which P 1is true

is equivalent to

we may do an ‘a’ action and
end up in a state in which —P 1s true.

342 Logical Properties of Processes

We can motivate this correspondence by expressing the meaning of the
modal connectives in predicate logic. A may property says something about
some state to which you can go, whereas a must property says something
about all states to which you can go:

E |= (a)P if, and only if, 3F (E -3 F A F = P)

E |=[a]P if, and only if, VF(E 5 F = F = P)

We can then reason about these properties using the rules for quantification
from Section 4.3:

—Vz P(z) & Jz-P(z) and -3z P(z) & Vz—P(z).
For example, we can show the equivalence —(a)P & [a]—P as follows:
EE—-(a)P & E - (a)P
& -3F(ESF A FEP)
& VF-(E3F AFEP)
o VF(ESF = FI-P)
& VF(E3F = Fl=-P)
< E E[a]-P

(Exercise 13.6) (Solution on page 478)

Show the equivalence —[a]P < (a)—P by using the rules for quantification
to prove that £ |= —[a]P < E = (a)—P.

Example 13.6

In order to express that we cannot do an ‘a’ action, we can write

—(a)true (It is not the case that we can do an ‘a’ action.)

By the above observation, since —true = false this is equivalent to the ex-
pression

[alfalse (No matter how we do an ‘a’ action
we must end up in a state in which false is true.)

Since false cannot be true in any state, this means that there must be no
possibility of doing an ‘a’ action, as if we could do an ‘a’ action we would
have to end up in a state in which false is true.

Although HML includes negation, we can show that any property that
can be expressed in HML can be expressed without using negation. That

Negation Is Definable 343

is, any formula P of HML can be transformed into a formula pos(P) which
contains no negation symbol and is semantically equivalent to P in the sense
that E |= pos(P) if, and only if, £ = P. This transformation is defined
together with a dual transformation neg(P) which transforms the formula
P into one which contains no negation symbols yet is semantically equivalent
to =P in that E = neg(P) if, and only if, F i P. Both transformations
involve pushing negations into formulas using De Morgan’s Laws, and are
defined inductively on the structure of the formula P as follows:

pos(true) = true neg(true) = false
pos(false) = false neg(false) = true
pos(—P) = neg(P) neg(—P) = pos(P)

pos(P A Q) = pos(P) Apos(Q@) neg(P A Q) = neg(P) V neg(Q)
pos(P Vv @) = pos(P) V pos(Q) neg(P Vv Q) = neg(P) A neg(Q)
pos({a)P) = (a)pos(P) neg((a)P) = [a]neg(P)
pos([a]P) = [a]pos(P) neg([alP) = (a)neg(P)
It is immediately clear that pos(P) and neg(P) are negation-free terms,

as negation does not appear on the right-hand side of any of the defining
equations.

(Theorem 13.6)

For any process E and any formula P of HML:

1. E | pos(P) if, and only if, E = P; and
2. E = neg(P) if, and only if, EH P.

Proof: By induction on the structure of P. The details are left as an
exercise.

Exercise 13.7) (Solution on page 478)

Prove Theorem 13.6

(Exercise 13.8) (Solution on page 482)

Prove, by induction on the structure of P, that neg(neg(P)) = P.

344 Logical Properties of Processes

The Vending Machines Revisited

We can now express precisely the differences between the three vending
machines Vi, V5 and V; introduced in Section 11.4, by writing down formulae
of the logic HML which distinguish between them. Specifically, we shall
produce three formule P;, P, and P; of HML such that V; = P, for each i,
but V; # P; whenever ¢ # j. That is, formula P, will distinguish the
machine V; from the other two machines by expressing a property which is
true of machine V; but not true of the others.

1. P, = [10p][10p](tea)true

This formula expresses the property that after doing two consecutive
‘10p’ actions, we must be in a state in which we can do a tea move.
This is true of V; as there is only one state in which we can be after
doing the two ‘10p’ actions, namely the state

coffee.collect.V; + tea.collect.V;

and it is certainly the case that we may do a tea move from this state.

However, this is neither true of V, nor of V;; in both of these cases it
is possible to do two consecutive ‘10p’ actions and end up in a state
where a ‘tea’ action is not possible (only a ‘coffee’ action). That is,
V5 and V3 satisfy the formula

P = (10p){10p)[tealfalse

while V; does not. (This formula is the negation of the one in question.)
2. P, = 10p[tea]false

This formula expresses the property that after doing a ‘10p’ action, we
will be able to do a further ‘10p’ action and end up in a state where
we cannot do a ‘tea’ action. This is true of V5 as there is only one
state in which we can be after doing the first ‘10p’ action, namely the
state

10p.coffee.collect.V; + 10p.tea.collect.V;
and we can indeed do a further ‘10p’ action, getting to the state
coffee.collect.V;

in which we cannot do a ‘tea’ action.

However, this is neither true of V; nor of V3; in these cases it is possible
to do the following ‘10p’ actions:

10
o V] _p) 10p. (coffee.collect.V; + tea.collect.V;)

The Vending Machines Revisited 345

10p
e V; —> 10p.tea.collect.V;

In both cases we end up in a state from which, after doing a further
‘10p’ action, we can do a ‘tea’ action. V; and V; thus satisfy the
formula

P; = (10p)[10p](tea)true

while V; does not. (This formula is the negation of the one in question.)
3. P, = (10p)[10p][tea]false

This formula expresses the property that it is possible to do a ‘10p’
action and end up in a state from which we cannot do a further ‘10p’
action followed by a ‘tea’ action. This is true of V3 as we can make
the transition

10
Vs _p) 10p.coffee.collect.V;

and indeed find ourselves in a state from which we cannot do a further
‘10p’ action followed by a ‘tea’ action.

However, this is neither true of Vi nor of V5; in each of these cases
there is only one 10p transition possible, namely:

10

o V] _p} 10p. (coffee.collect.V; + tea.collect.V7)
10

o 1, —P> 10p.coffee.collect.V, + 10p.tea.collect.V,

In both cases we end up in a state from which we can do a further ‘10p’
action followed by a ‘tea’ action. V; and V, thus satisfy the formula

» = 10p(tea)true

while V5 does not. (This formula is the negation of the one in question.)

(Exercise 13.9) (Solution on page 482)

Recall the following processes from Exercise 11.16.

A% beco + bdo c ® 4B+ aA
B ¥ A+ b(cO + d.0) D a.B

Give two formulae of HML which distinguish between C and D: one formula
which is true of C but not true of D; and one formula which is true of D
but not true of C.

346 Logical Properties of Processes

Modal Properties and Bisimulation

We have now developed two methods for distinguishing between processes.

1. In Chapter 12 we explicitly defined what it means for two processes to
be equivalent, in terms of winning strategies in games.

2. In this chapter we defined a modal logic for expressing properties of
processes with which we can distinguish between two processes.

We may well wonder if these two methods give the same results.

1. We should be disturbed if two equivalent processes could be differen-
tiated by some formula of the modal logic. This would question the
usefulness of the logic as a tool for reasoning about the behaviour of
processes.

2. It would also be disappointing, though less of a concern, if the modal
logic could not distinguish between some pair of non-equivalent pro-
cesses. This would mean simply that the logic is too weak to express
all aspects of the behaviour of a process.

However, we devised the equivalence based on a consideration of the ca-
pabilities of the processes as expressed using precisely the types of modal
verbs which form the basis of our logic HML. Hence our intuition suggests
that the distinguishing power of the modal logic should coincide with the
equivalence. In this section we explore and confirm this intuition.

To determine if two processes are n-game equivalent, we need to explore
only the first n transitions of the processes; the behaviour of the processes
after n transitions is irrelevant. In the same way, in order to determine
whether or not some formula of the modal logic is true of some process, we
need only to explore the initial behaviour of the process; exactly how deeply
we need explore the process depends on the complexity of the formula, as
defined by its modal depth.

Definition 13.9)

The modal depth md (P) of a formula P of HML is defined inductively as

follows.
md (true) = 0 md (P A Q) = max(md (P), md(Q))
md (false) = 0 md (PV Q) = max(md (P), md(Q))
md (-P) = md (P) md ((a)P) = 1+ md(P)
md ([a]P) = 1+ md(P)

The modal depth simply counts the maximum number of modal oper-
ators along any path in the syntax tree of an HML formula. For example,

Modal Properties and Bisimulation 347

the formula (a)([b]false A [a]{b)true) has a modal depth of 3, as evidenced
by the following syntax tree for the formula.

(a) md ((a)([b]false A [a](b)true))
/|\ = 1+ md([b]false A [a](b)true)
= 1+ max(md ([b]false),
[b] / \ [l md ([a](b)true))
| | = 1+ max(1,2)
false (b) =142
trlue =3

The following theorem demonstrates that no formula of modal depth n
can distinguish between two processes which are n-game equivalent. The
immediate corollary to this is our first desired result: that we cannot use
the logic to distinguish between equivalent processes.

Theorem 13.9

[

If E=P and E ~, F where n=md(P), then F = P. That is, no
formula of modal depth n can distinguish between two n-game equivalent
processes.

Proof: By induction on the structure of P, arguing by cases on the struc-
ture of P:

P = true: The result is immediately true in this case, as the conclusion
F |= true is always true.

P = false: The result is vacuously true in this case, as the premise £ |~ false
is false.

P =-Q: Since FE = —Q, we have E £ @, and hence F # @ by induction,
so F = Q.

P = Q; AQ>: Note that n;=md (Q:) < n and n,=md (Q2) < n; hence
E~, Fand E ~,, F.
Since F = @1 AQ2, we have that E = @, and that F = Q.. Hence by

the induction hypothesis (applied twice), we have that F = Q; and
that F' = Q,, and thus that F' = Q1 A Qs.

P =Q;VQ,: Note that n;=md(Q:) < n and n,=md (Q2) < n; hence
E~, Fand E ~,, F.

348 Logical Properties of Processes

Since E = Q1 V Q2, we have that E = Q; or that £ = Q.. Hence
by the induction hypothesis (applied twice), we have that F' |= Q; or
that F' = @Q., and thus that F' = Q; V Q,.

P = (a)Q: Note first that n=md (P) > 0, and md (Q) = n—1.

Since E |= (a)Q, we have that B — E' for some E' such that E' = Q.
But then, since E ~, F, we must have that F % F’ for some F' such
that B’ ~,_; F'. Hence by the induction hypothesis, we have that
F' = Q, and thus that F' = (a)Q as required.

P = [a]Q: Note first that n=md (P) > 0, and md (Q) = n—1.

To show that F' = [a]Q, we need to show that F' = Q whenever
F3F.

Suppose then that F = F'. Since E ~, F we must have that E = E'
for some E' such that E' ~,_; F'; furthermore, since E [[a|Q, we
must have that E' = Q. Thus by the induction hypothesis, we must
have that F' = Q as required. d

We can express this result more succinctly if we first formulate the notion
of logical equivalence with respect to the formula of HML of a fixed bounded
modal depth.

Definition 13.10

|

Let
HML, = {PeHML : md(P)<n}
be the subset of HML consisting of all formula of modal depth at most n.

1. Two processes E and F' are n-logically equivalent, written E =,, F,
if, and only if, the following holds.

For all P € HML,,: E [P if, and only if, F |= P.

That is, no formula of modal depth n (or less) can distinguish between
them.
2. The processes E and F' are logically equivalent, written E = F if]
and only if, the following holds.
for all P € HML: E = P if, and only if, F = P.

That is, no formula (of any modal depth) can distinguish between
them.

Modal Properties and Bisimulation 349

Theorem 13.9 then states simply that £ =, F' whenever E ~, F.

Corollary 13.10

If E ~ F then E = F, that is, no formula of the logic HML can distinguish
between two equivalent processes F and F'.

Proof: If E and F could be differentiated by a formula P of HML, then
by the above we would have that E «, F', where n=md (P), and hence we
would have that E £ F. O

The converse result, that two processes which cannot be distinguished by
any property of HML must be equivalent, is not completely attainable. This
is due to the fact that equivalence is not the limit of the n-game equivalences,
while the logic HML is the limit of the bounded logics HML,,. However,
as was the case with relating the finite-game equivalences to bisimulation
equivalence, this result holds when we restrict ourselves to image-finite pro-
cesses.

Theorem 13.10)

For image-finite processes E and F, if E =, F' then E ~, F.

Proof: We shall prove, by induction on n, the equivalent contrapositive
statement that if & £, F' then there is a formula P of modal depth n such
that E = P but F# P.

The base case (n=0) is vacuously true, as the premise E %, F cannot
hold.

For the induction step, suppose that E 7,,; F, and assume (without
loss of generality) that E 2 B’ for some BE' such that B’ «, F' whenever
F 5 F'. Let

F3F F3F, F3 Ry

be all of the (finitely-many) a-transitions possible from F. Then E' %, F;
for each ¢ = 1,2,...,k, and hence by the induction hypothesis there are
properties Pi, Ps,..., P, of modal depth n such that E' = P, but F; & P,
for each 2 = 1,2,...,k. The property P we seek is then

P = <a>(P1/\P2/\"'/\Pk).

Clearly E = (a)(PL AP, A---ANPB) but FIZ (a)(PLAPy A+ N Fy). O

350 Logical Properties of Processes

Corollary 13.11

13.6

For image-finite processes E and F, if E=F then E ~ F.

Proof: If E=F then F =, F for all n, and hence by the above, £ ~, F
for all n. Thus, since F and F' are image-finite, £ ~ F'. a

The clock processes Clock and Clock, from Example 11.11 pictured in
Figure 11.7 (page 298) provide the counter-example to this Corollary in
the case of infinite-branching processes. In this case, Clock ~, Clock,
for all n € N, and hence Clock =, Clock, for all n € N, meaning that
Clock = Clock,; however, Clock ¢ Clock,.

Characteristic Formulae

Given a process state E, a formula cf(E) of the logic HML is called a
characteristic formula for E if, and only if, for all processes F"

F = cf(E) if, and only if, F ~ E.
For example, the characteristic formula for 0 is
cf(0) = [—]false

as this formula specifies that there are no transitions possible from the state
in question.

(Exercise 13.11) (Solution on page 483)

1. Argue that the characteristic formula for a.0 is
cf(a.0) = (a)true A [—alfalse A [—][—]false.

2. Give a characteristic formula for a.(b.0 + ¢.0).

The existence of characteristic formula further cements the close con-
nection between modal properties and bisimilarity. However, the exact rela-
tionship as presented in the following theorem takes into account the finite
limitation of modal formuleae: that they can reason only about the first steps
of a process up to a number of steps equal to the modal depth of the formula.

Theorem 13.11

For every neEN and every state E of an LTS defined over a finite set of
actions, there is a formula cf,(E) € HML,, such that, for all states F,

Characteristic Formulee 351

F |= cfu(E) iff E~y,F.

Furthermore, for every neN there are only finitely-many such formulee

cfn(E).

Proof: By induction on n.

For the base case we can take cf,(F) = true, since F' |= true and F ~¢ F
for every F' € States. Clearly there are only finitely-many (namely, one)
such formulz.

For the induction step, let
crir(B) = N{(@)cfu(B) : B B
A A {cf(B): ESE
acA

There are two parts to this formula:

e The first conjunction of subformulae characterises what transition are
possible: for each transition E = E’, it must be possible to do an a
transition into a state characterised by the formula cf,(E").

e The second conjunction of subformula characterises the states into
which such a transition must evolve: upon performing an a transi-
tion, the process must evolve into a state characterised by the formula
cfn(E') for some E' such that B - E'.

Recalling the assumption that A is finite, we can note that — even though
there may be infinitely-many transitions E = E' — the two sets of subfor-
mule are, by induction, finite; hence, this is a well-formed formula (ie, it is
of finite size), and there can only be finitely-many such formule.

Suppose that F' | cfni1(E).

o If E > E' then, since F |= (a) cf,.(E'),
F % F' for some F' such that F' = cf,(E'),
and thus by induction E' ~, F".
o If F % F' then, since F' |= [a] \/ cfa(E'),
E—E'
E > E' for some E' such that F' |= cf,(E'),
and thus by induction E' ~, F".

Hence, by the above Lemma, E ~,1 F.
Now suppose that £ ~,,; F.

e If E % E' then, by the above Lemma, F = F' for some F" such that
E' ~, F', and thus by induction F' = cf,(E"). As this is true of all
a € A and all E' such that B > B/,

352 Logical Properties of Processes

|[true|| = States

|[false| = 0

=Pl = [IP]
IPAQI = |IPInQ]
Pvel = [Pyl

l{a)P| = {E € States : E - E' for some E' € ||P|}

l[a]P|| = {E € States : E - E' implies E' € |P||}

Figure 13.2: Global semantics of the modal logic HML.

F = N\ (a)cfa(B)

a
E—E'

e If F % F' then, by the above Lemma, E - E' for some E' such that
E' ~, F', and thus by induction F' = cf,(E'). As this is true of all
a € A and all F’ such that F -2 F,

F = Alal \ cfa(E)

A a
a€ E—E

Hence F' = cfni1(E). O

Global Semantics

An alternative way to define the semantics of properties of HML is by asso-
ciating to each property P € HML the set || P|| of states which satisfy the
property P. Determining whether or not £ |= P then would correspond to
determining if E € ||P||.

An inductive definition of the semantic function ||P|| is given in Fig-
ure 13.2, where the set States represents the set of all states of the underlying
transition system. With this definition, we get the following result.

(Theorem 13.12)

E = P if, and only if, E € ||P|.

Proof: By induction on the structure of P, arguing by cases on the struc-
ture of P.

P =true: E |=true & E € States & FE € |[|true||

Additional Exercises 353

P=false: El=false & E€0 & E ¢ |false|
P=-P: E=-P & Ef{P & E¢|P| © E€||P|| & Ee€|-P|

P:Q]/\QQ: E':QIAQ2® E':QlandE):Qg
& Bel@lnQf & Eecl@iAQ:

P= \Y :E':Q1VQ2@ E':QlorE':Qz
& Be|Quu]Qf < Ecl@Vve.

P=1(a)Q: E={(a)Q & E -5 E'such that E' = Q
& E -5 E'suchthat B' € [|Q|| & E € |{a)Q]

P=1[d]Q: E=[a]Q & E-> E' implies B' |= Q
& E-S B implies B' € ||Q|| & E€|[dQ| O

(Exercise 13.12) (Solution on page 483)

Consider the following transition system:

a
a
Compute the following sets:
L [[a)truel| 3. [[(a)(a)true| 5. ||(a)]alfalse]
2. [(Bytruel| 4. [[(B)(b)truel| 6. | [b](a)true]

Additional Exercises

1. Give properties of the modal logic HML which distinguish between the
clocks C1,, of Example 11.7. That is, for each n € N, give a formula
P, of HML which is true of C1,, but false of C1; for every k # n.

2. What does the property (a)false say? Can you give an example process
which satisfies this property?

354 Logical Properties of Processes

3. Express the negation of each of the following properties without using
negation operator —. In each case, write out each property and its
negation in English.

(@) [a](({b)true A (c)true).

)
(b) [a](b)({a)true V (b)[alfalse).

4. Consider the following 4-state transition system.

X ¥ o047

y © 47

7 % po

Fill in the following table with the states satisfying the relevant prop-
erties. (The first line has been filled in to get you started.)

states states
property P | satisfying P | negation —P | satisfying - P

(a)true X, Y [a]false Z,0

(b)true
bltrue

[a]true
[

(a)(b)true
(a)[b]true

[a](b)true
[a][b]true

5. Consider the following labelled transition system.

Give a modal logic formula which distinguishes between W; and Xj.
Argue why no formula of smaller modal depth can distinguish between
these two states.

Additional Exercises 355

10.

. Give a labelled transition system with a state s which satisfies all of

the following:

e (a)({a)true A (b){(a)true)
o (a)(b)({b)true A [a]false)
)]

A
e (a)(b)(|alfalse A [b]false)

. Recall the specification of the car safety system from Exercise 11 on

page 305.

(a) Express R(z) in the modal logic M in two ways:
i. one way involving only the action “ring”; and
ii. another way not involving the action “ring”.

(Hint: First express R(z) in terms of D(z), B(z) and M (z).)

(b) Which states satisfy the following formulae?
i. (buckle)true A (close)true
ii. (buckle)true A [close]false

i. (on)(ring)true

v. [on](ring)true

V. (open)((buckle)true A <off)true)

vi. (open) ((buckle)true v <off)true)

=i

i

-

. Prove or disprove the following. (Here, equality between formulee

means that the formule express the same properties.)

() (@)(PAQ) = ()P A ()@
(b) (@)(PVQ) = ()P V()@
(c) [al(PAQ) = [a]PAlalQ
(d) [al [PV [a]Q

a

(PVQ) = [alP

. As defined, the modal logic HML involves only binary conjunctions

and disjunctions, P A @ and PV @, and thus by extension finite con-
junctions and disjunctions, A F and \/ F for finite sets of formulae F.
Prove that if we allow infinite conjunctions and disjunctions, then
the logical characterisation of bisimulation equivalence is tight: that
E ~ F if, and only if, F and F satisfy the same (infinitary) modal
logic formulee.

Let HML; be the subset of HML formulae generated by the following
BNF equation:
P := true | (a)P

Show that HML; characterises trace equivalence =; from Exercise 8
on page 330, in the sense that £ =; F' if, and only if, £ and F' satisfy
the same formula of HML;.

356 Logical Properties of Processes

11.

12.

Let HML. be the subset of HML formula generated by the following
BNF equation:

P,Q = true | (a)P | PAQ

Show that HML. characterises simulation equivalence =< from Exer-
cise 12.8 on page 318, in the sense that £ < F' if, and only if, E and
F' satisfy the same formulee of HML..

Let HML; be the subset of HML formula generated by the following
BNF equation:
P := [K]false | (a)P

where K C X is a set of actions. Show that HML; characterises failures
equivalence =; from Exercise 10 on page 331, in the sense that F =; F
if, and only if, £ and F satisfy the same formulae of HML;.

Chapter 14
Concurrent Processes

Many hands make light work.
- John Heywood.

Thus far the systems that we have considered have been simple sequen-
tial processes, and have deviated from the standard (deterministic) notion
of a sequential program only by the presence of (nondeterministic) choice.
Of course the real interest in the study of systems arises when we permit
processes to run in parallel and interact with one another. There are a
variety of ways in which one might introduce operators into the language
to permit such concurrent process behaviour. In this chapter we introduce
a relatively simple operator, referred to as synchronisation merge, and
demonstrate its use in a variety of example applications.

14.1) Synchronisation Merge

In this section, we introduce a parallel composition operator || which allows
two processes E and F' to execute in parallel. The precise fashion in which
this concurrent execution takes place must be defined; in particular, we must
clearly stipulate in what fashion such concurrent processes may interact with
one another. To motivate our study, we start with a simple example.

Example 14.1

Suppose we have a very simple factory employing two workers. The first
worker takes in jobs one at a time and, after carrying out some work on
a job, passes it on to the second worker (assuming the second worker isn’t
still working on an earlier job). The second worker takes jobs one at a time
from the first worker and, after carrying out some work on a job, sends it
out of the factory.

The two workers can be represented by the following two simple processes
P and Q:

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_15, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_15

358 Concurrent Processes

mn

P = in.pass.P o @
pass
pass

0 musnte (a3 Coud>
out

When the two workers start their work day, the first can start working
immediately by taking in the first job, represented by the transition

p- pass.P

However, the second worker has to wait until the first worker has completed
working on the first job and passes it on; that is, the transition

pass
Q — out.Q
cannot take place in reality until the associated transition
pass
pass.P — P

takes place. The two workers synchronise on the pass action; they must
do this action together.

Consider what we would see if we were to watch these two workers.
The behaviour of these two processes P and @ running together would be
represented by the following process, where we represent the two relevant
process states side-by-side separated by parallel lines ||:

mn
o7 0

out

pass.P || out.Q

out

mn

Note that having passed a job on, the first worker can take in another job;
however, this job cannot be passed on until the second worker has sent out
the previous job.

In the above example, two processes P and @ are made to run in parallel.
This parallel composition is written as P || @, and each process is allowed

Synchronisation Merge 359

to perform certain of its actions independent of the other, but is forced
to synchronise with the other process on certain other actions. With this
understanding, we are now prepared to explain the formal definition of the
parallel composition operator |.

We first require each process state F to have a well-defined synchro-
nisation sort Sort(E), denoting the subset of actions of the process on
which it synchronises with other processes; every state of a given process
will possess the same sort. The synchronisation sort of a process identifies
those actions which are, in essence, external to the process, and represent
those actions through which the process communicates with other processes
via synchronisation. They are the actions by which processes are inter-
connected.

Example 14.2

Suppose Sort(P) = {a, b}, Sort(Q) = {a,b,c} and Sort(R) = {b,c}. Com-
posing these processes in parallel gives a system P || @ || R in which the
individual components P, @ and R are directly connected through the ac-
tions of their respective synchronisation sorts. The composed system can
thus be viewed schematically as follows:

a

P\VQ

R c

This depicts the whole system as consisting of the three physical processes P,
Q@ and R all operating independently. The behaviour of these three processes
is not depicted in the diagram, but they are inter-connected through the
three actions a, b and ¢, which may be thought of as physical ports. The
result is a process P || Q || R, which can itself be composed in parallel with
further processes, with the synchronisation sort Sort(P || Q || R) = {a, b, c}:

a

P|QIR —*

(¢

The intention of the synchronisation sort of a process is to define which
actions are of importance when it comes to interaction; the individual actions
of E may take place in the composition E || F so long as they are not in the
sort of the process F. However, £ must synchronise with F' on any action
from the sort of F' which F is prepared to do. That is, F cannot do an
action a € Sort(F') unless F' itself is prepared to do this action, in which
case E and F' can perform this action in synchrony. Note that when we

360 Concurrent Processes

compose two processes F and F', the sort of the resulting processes is the
union of the sorts of the components:

Sort(E || F) = Sort(E)U Sort(F).

With this understanding in place, we may give the formal semantic defi-
nition of the synchronisation merge E || F of processes E and F. There
are three rules governing the behaviour of E || F":

1. one which stipulates that E || F' may perform a transition of £ as long
as it does not involve an action from the synchronisation sort of F';

2. one which stipulates that F || F' may perform a transition of F' as long
as it does not involve an action from the synchronisation sort of E;
and

3. one which stipulates that £ || F' may synchronise on the performance,
by E and F together, of an action in either (or both) of their synchro-
nisation sorts.

Formally, these rules are as follows.
1. If E-% E' and a ¢ Sort(F) then E || F 5 E'| F.
2. If F-5 F' and a ¢ Sort(E) then E | F = E|| F'.
3.If E-5 E and F -5 F' and a € Sort(E) USort(F) then E || F =
E'| F.

One further point to make is that two equivalent processes must have the
same synchronisation sort.

Exercise 14.2) (Solution on page 483)

14.2

Why is it important that equivalent processes have the same sort?

Hint: We wish to make sure that if A ~ B then A || X ~ B || X, that
is, there should be no effect in the functioning of a system if we replace
one component A with an equivalent component B. What might happen,
though, if A and B have the same behaviour but different synchronisation
sorts?

Counters

For any integer k>0, a k-counter is a system which stores an integer value
between 0 and % (inclusively). The k-counter can be:

e 1ncremented, as long as its value is less than k;

Counters 361

e decremented, as long as its value is greater than 0; and

e tested if its value is zero.
For example, we can define a 1-counter C by:
def . .
C = 1szero.C + inc.dec.C

which defines the following transition system:

mnc

1S2€eTo .° @

dec

Almost as simply, we can define a 2-counter by:

def . .
Cy; = iszero.Cy + inc.Ch
, def . "

C, = mc.C) + dec.C,

i def !

Cy = dec.C,

which defines the following transition system:

. nc mnc
dec dec

We can use two copies of the simple 1-counter to “implement” a 2-counter.
Assuming that Sort(C) = {iszero}, the transition system C || C is depicted
as follows:

152€ero '
@ dec.C || dec.C

362 Concurrent Processes

Figure 14.1: The railway level crossing.

Here, the initial state C || C can do an increment action inc in two ways,
either by allowing the left-hand 1-counter C perform this action, or by al-
lowing the right-hand 1-counter C perform it; as this action is not in the
synchronisation sort of C, neither process will block the other from perform-
ing this action.

On the other hand, the iszero action is only possible in the initial state
C || C; as the action ¢szero is in the synchronisation sort of C, both compo-
nents of the parallel composition must participate in this action.

Generalising this result, we can show that a k-counter, for any &, can be
implemented by combining & copies of the simple 1-counter in parallel; that
is,

Ce~ CJCJ---]IC.
~— ———

k copies

(Exercise 14.3) (Solution on page 484)

Prove that C, ~ C || C.

Railway Level Crossing

Consider the railway level crossing depicted in Figure 14.1. This system
consists of three components working in parallel.

e A Rail process, which represents the arrival of trains, assuring that
they only cross if the signal is green.

Railway Level Crossing 363

e A Road process, which represents the arrival of cars, assuring that they

only cross if the barrier is up.

e A Controller process, which regulates the signal and barrier, assuring

that the barrier is never up at the same time that the signal is green.

This is a typical example of a control system, in which a controller process is
regulating the behaviour of other processes in order to prevent undesirable
behaviours. The desirable properties which the controller would like to
attain are of two kinds.

1.

2.

Safety Properties: (No crashes)
e A car may not cross at the same time as a train.
Liveness Properties: (Eventual service)

e If a car arrives, eventually the barrier goes up.

e If a train arrives, eventually the signal turns green.

We shall now describe the behaviour of the three component processes.

1.

Road & car.up.ccross.down.Road,
with Sort(Road) = {up, down}.

The Road process repeatedly carries out the following events.

(a) signals the arrival of a car at the crossing (the car action);
(b) witnesses the raising of the barrier (the up action);
(c) signals the crossing of the car (the ccross action); and finally

(d) witnesses the lowering of the barrier (the down action).

The Road process is thus depicted by the following transition system.

car

CCross

., def . .
. Rail = train.green.tcross.red.Rail,

with Sort(Rail) = {green,red}.

Analogous to the Road process, the Rail process repeatedly carries out
the following events.

364 Concurrent Processes

(a) signals the arrival of a train at the crossing (the train action);
(b) witnesses the signal turning green (the green action);
(c) signals the crossing of the train (the tcross action); and finally

(d) witnesses the signal turning red (the red action).

The Rail process is thus depicted by the following transition system.

train

red green
tcross

3. Controller % green.red.Controller + up.down.Controller,
with Sort(Controller) = {up, down, green, red}.

The Controller process is thus depicted by the following transition
system.

up green

down red

The complete railway level crossing system then consists of the above
three components executing in parallel:

Crossing % Road || Controller | Rail
Its structure can be depicted as follows.

up green

Road Controller Rail
L down red [

Its behaviour is thus given by the following transition system.

Mutual Exclusion 365

Exercise 14.4) (Solution on page 484)

Do the desired safety and liveness properties mentioned above hold? Explain
why or why not. If any of these properties fail,
e can you propose a weaker yet acceptable property which does hold?

e can you propose a way to alter the definitions of the components of
the system so that the property does hold?

Mutual Exclusion

14.4.1

When two tasks are being carried out together, problems can occur if they
want to access some shared resource at the same time. A striking illustration
of this is the Clayton Tunnel Accident (page 2), wherein one train was
allowed to enter the tunnel which was currently occupied by another train.
Mutual exclusion refers to the problem of ensuring that two processes can
never be in their critical section — ie, using a shared resource such as a
shared memory or printer — at the same time. If a process is granted use of
such a shared resource, it must be allowed to maintain exclusive use of this
resource until it has completed its use and released it. This is a ubiquitous
problem in the design of concurrency systems.

Dining Philosophers

The problem of mutual exclusion was first identified and solved in 1965
by Edsger W. Dijkstra who also proposed the following illustration of how
a system can deadlock if due concern is not taken to the use of shared

366 Concurrent Processes

Fl F2

NS

=" S~r
ORNO
F,

Figure 14.2: Dining Philosophers.

resources. It is a very simple problem to consider, yet offers a wealth of
insight into the challenges posed by synchronisation.

Imagine there are five philosophers sitting at a round dining table think-
ing. Each philosopher has a plate of spaghetti in front of them, and there is
a fork between every pair of plates. Figure 14.2 depicts the situation. The
spaghetti is hopelessly tangled, meaning that a philosopher must use two
forks together to eat it!. A philosopher may only use the two forks that
are on either side of their own plate, which they pick up one at a time in
either order. After taking a mouthful of spaghetti, the philosopher then
replaces the two forks, in either order, to where they were lifted from the
table. As the philosophers are deep in their own thoughts, at no point do
they communicate with one another.

Our task is to design a protocol — that is, model the interactions between
the philosophers and the forks — which satisfies the following correctness
properties:

1. A philosopher eats only when holding two forks.

TThe story is often described with rice rather than spaghetti, and chopsticks in place of
forks, making it more immediate that two utensils are needed to eat.

Mutual Exclusion 367

2. No two philosophers may hold the same fork simultaneously (mutual
exclusion).

3. The philosophers never get stuck, with every one of them forever wait-
ing for some fork to become available (deadlock freedom).

To model this problem, we introduce the following actions:
e eat;: philosopher 7 takes a bite to eat.

e lift,;: philosopher ¢ picks up fork j.

e drop,;: philosopher ¢ puts down fork j.

The behaviour of the forks is easy to describe:

o lifts, . drops, . F1 + lifty, . drop,, . Fi

def

F, = Uft,,.drop,,. Fy + lift,,. drop,, . Fy

F & liftys . dropys . Fi3 + lifts; . dropss . Fs

Fy % Uft,, . drop,, . Fy + lifty, . drop,, . Fy

Fs % lift,. . drop,; . Fs + lifty, . dropg . Fs
That is to say, a fork is picked up by one of the two philosophers nearest to
it at the table, and is subsequently placed back on the table by that same
philosopher.

We have some freedom in how to define the behaviour of a philosopher,
in that it is unspecified which order they pick up and set down their forks.
As a first attempt, we assume that they each pick up the fork to their right
first (as well as set this one down first):

def

P, = ULfty, . lift,, . eaty . drop,, . dropys . Py
p lifty, . lift,s . eats . drop,, . drop,; . Py

Py % lift,, . lift,, . eats . drops, . drop,, . Ps

p Y lifty, . liftys . eaty . drop,, . drop,s . P,

p liftss . lifts; . eats . dropss . drops; . Ps
The synchronisation sorts for forks and philosopher processes are defined
naturally as follows:

Sort(F) = {lUft;, drop;; : 1<j <5}
Sort(F;) = {lft;, drop; : 1<i<5}

Unfortunately this protocol has the possibility of deadlocking: every
philosopher may pick up a fork with their right hand before any one of
them picks up the fork to their left, at which time they will all be waiting
forever for their left-hand neighbour to return the fork to the table.

We can resolve this problem by changing the definition of the first (and
only the first) philosopher, who is required to pick up the fork to their left
first:

368 Concurrent Processes

def

P, = ULft,. Lft, . eat, . drop,, . drop,; . P,

With some thought, it becomes apparent that this refined protocol cannot
deadlock.

(Exercise 14.5) (Solution on page 484)

14.4.2

Argue that the refined protocol, in which the first philosopher picks up the
left fork first, cannot deadlock.

Peterson’s Algorithm

There have been various solutions proposed for dealing with the mutual
exclusion problem. Here we examine an elegant solution proposed by Gary
L. Peterson in 1981.

We consider two processes, P, and P,, both of which wanting at times
to enter some critical section. There are two Boolean variables: b1l which is
true if P, wants to enter (or is in) the critical section, and b2 which is true
if P, wants to enter (or is in) the critical section; and a variable k which has
value 1 or 2 indicating which process has “ownership” of (ie, the authority
to enter) the critical section. The Boolean variables bl and b2 are initially
set to false, while the initial value of k is arbitrary.

The two processes are then defined as follows (where the actual details
of the critical and noncritical sections are left unspecified).

P,: while true do P;: while true do
---noncritical section: - ---noncritical section-- -
bl := true; b2 := true;

k = 2; k :=1;

while (b2 and k=2) do while (bl and k=1) do
skip; skip;

-« - critical section- - - -« - critical section: - -

bl := false b2 := false

When process P, wishes to enter the critical section, it indicates this by
setting bl to true, but also sets k to 2 granting authority to the other
process P, to enter the critical section. It then waits until either the other
process P, does not wish to enter the critical region (ie, b2 is false) or the
other process grants it authority to enter the critical region (ie, k has value
1), at which time it enters the critical region; when it exits the critical region
it indicates this by setting b1 to false. Process P, is defined in an identical
fashion.

To model these processes as labelled transition systems, we first need to
represent the variables b1, b2 and k themselves as processes which interact

Mutual Exclusion 369

with the processes P; and P,. The variable b1 is represented by the following
two-state system:

. by rf byrt
Blf d:f blrf.Blf + b1WfB1f + blthlt 1L 1

Blt d:ef blrt.Blt + blthlt + b1WfB1f

Sort(Bi1f) = {byrf, byrt, bywf, bywt }

biwf b,wt

The state B,f (“f” for “false”) signifies that the variable b1 has the value
false, while the state B;t (“t” for “true”) signifies that the variable b1 has
the value true.

e Processes read the value of the variable by synchronising with the
process on the actions b;rf and byrt ("r” for "read”): the action bjrf
represents the process telling the environment that the value of b1 is
false, while the action b;rt represents the process telling the environ-
ment that the value of bl is true. The state of the variable process
does not change on these actions.

e Processes write a value to the variable by synchronising with the pro-
cess on the actions b;wf and b;wt ("w” for ”write”): the action b;wf
(“w” for “write”) represents the value of the variable b1 being set to
false, while the action b; wt represents the value of the variable b1 being
set to true. The state of the variable process changes as appropriate
on these actions.

All of the reading and writing actions are included in the sort of the process,
as clearly these actions must be done in synchrony with this process.
The variable b2 has an analogous definition:
e borf byrt
Bgf d:f ngf.Bgf + bngBgf + bthBgt 2 2
B2t dZEf ng‘t.Bgt + bthBQt + bngBgf

Sort(Baf) = {barf, bort, bowf, bowt }

Finally, the variable k is similarly defined:

K, % k1K, + kwl.K, + kw2.K, k kr2

Ky % kr2.K, + kw2.K,; + kwl.K; @ @

Sort(K;) = {krl, kr2, kwl, kw2 } (O kvl T

370 Concurrent Processes

Again, the variable k is represented by a two-state process, representing the
two values that the variable k can hold (either 1 or 2); and there are actions
representing the reading and writing of these two values.

We now turn our attention to defining the processes P, and P,. As the
behaviour of the processes within the noncritical and critical sections are
irrelevant for our study — we are only interested in ensuring that mutual
exclusion is attained — we ignore these completely. The behaviour of the
process P; thus starts with setting the value of b1 to true and the value of
k to 2:

Pl d:ef blwt - kW2W]
The process W; represents the process at the point of executing the while
loop waiting to enter the critical section:

while (b2 and k=2) do skip

The process will stay in the state W, for as long as the value of b2 is true
(ie, the action b,rt can occur) and the value of k is 2 (ie, the action kr2 can
occur). However, if either of these is false, that is if the value of b2 is false
(ie, the action borf can occur) or the value of k is 1 (ie, the action krl can
occur), then the process will move into a new state R; signifying that the
process is ready to enter the critical section:

def

W1 = bzrt . W1 + kr2. W1 + bgrf. R1 + krl. R1

Finally, in the state R; the process will enter the critical section, then (ul-
timately) exit it, and set the value of the variable bl to be false, before
returning then to the initial state:

R, def enter. exit.bywf. P,

The synchronisation sort of the process P; contains the three relevant writing
events:

Sort(P;) = { bywt, bywf, kw2 },
as the variables can only change value if they are written to.

The process P, is defined analogously to process P;:

def

P2 = bthleWg

Wo & birt. W, + krl. W, + byrf. Ry + kr2.R,
Ry &f enter. exit. bowf. P,

Sort(P,) = { bowt, bowf, kwl}

The two processes P, and P, are then depicted by the following labelled
transition systems:

A Message Delivery System 371

szt

The whole system is then the concurrent composition of the processes
P, and P, with the variable processes:

PETERSON = Py || P, || Bif || Bof || Ki.

(Exercise 14.6) (Solution on page 485)

Argue that the two processes P, and P, can never both be in the critical
section at the same time.

A Message Delivery System

We now wish to specify a simple message delivery system, which models
the sending of a message by a SENDER process to a RECEIVER process. The
SENDER and RECEIVER are not directly connected; rather, the message is
routed through some MEDIUM. For example, the SENDER and RECEIVER
may be two devices on a local area network connected by an Ethernet;
or they may be computers on opposite sides of the globe connected by a
complex mesh of links between routers. In our simple system, we ignore
the actual content of the message being sent, as well as the address of the
RECEIVER, as there will only be a single RECEIVER process.

When the SENDER accepts a message to send to the RECEIVER (modelled
by an “in” action), it sends the message to the MEDIUM (modelled by a
“snd” action), and awaits an acknowledgement that the message has been
successfully delivered to the RECEIVER (modelled by an “ack” action); when
an acknowledgement is received, the SENDER will be ready to accept the next
message to send. It may be the case that the message is lost or corrupted
by the MEDIUM, in which case the MEDIUM signals to the SENDER that
a fault has occurred (modelled by an “err” action); this typically occurs
in practice through a time-out mechanism. The SENDER responds to this
fault by re-transmitting the message to the MEDIUM. The behaviour of the
SENDER is thus modelled by the process Sender defined as follows:

372 Concurrent Processes

Sender def in.snd.S

def

S = ack.Sender + err.snd.S

Sort(Sender) = {snd, ack, err}

Its transition system is depicted thus:

in

err

ack ° snd

The MEDIUM accepts a message from the SENDER(via the snd action),
and either delivers it to the RECEIVER (modelled by a rcv action) and
returns to its original state to await the next message to be sent, or it
signals to the SENDER that a fault has occurred (via the err action) and
again returns to its original state to await the retransmission of the previous
message. The behaviour of the MEDIUM is thus modelled by the process
Medium defined as follows:

Medium % snd.(rcv.Medium + err.Medium)

Sort(Medium) = {snd,rcv,err}

Its transition system is depicted thus:

rcv.Medium
+
err.Medium

Finally, the RECEIVER awaits the delivery of a message (via the rcv ac-
tion), and outputs the message (modelled by an out action) before issuing
an acknowledgement (via the ack action) that the message has been suc-
cessfully received and delivered. Its behaviour is modelled by the process
Receiver defined as follows:

. def .
Receiver = rcv.out.ack.Receiver

Sort(Receiver) = {rcv,ack}

The transition system is depicted thus:

Alternating Bit Protocol 373

rcv

Receiver out.ack.Receiver
ack ack.Receiver out

The complete system is defined to be the composition of these three
components:

System % Sender || Medium | Receiver

and has the following configuration:

rcv

Note that in this simple model, the acknowledgement is communicated di-
rectly from the RECEIVER to the SENDER, which is unrealistic given the
purpose of the System to relay messages between them. In reality, the ac-
knowledgement would be routed through the MEDIUM resulting in a second
phase which is identical to the first but with the roles of the SENDER and
RECEIVER reversed.

The behaviour of the complete system is thus depicted by the transition
system depicted in Figure 14.3.

(Exercise 14.7) (Solution on page 485)

Enhance the simple message passing system so that acknowledgements are
routed through the MEDIUM from the RECEIVER to the SENDER. Don’t
neglect the possibility of acknowledgements being lost.

14.6) Alternating Bit Protocol

The message passing system in the previous section is an example of a very
important concept in communication networks: that of communication
protocols.

374 Concurrent Processes

Sender
|| Medium

|| Receiver .
ack in

S
|| Medium

snd.S
|| Medium

|| ack.Receiver || Receiver

S

|| (rcv.Medium +
err.Medium)

S
|| Medium

|| out.ack.Receiver .
|| Receiver

rcv

Figure 14.3: The message-passing system.

When you click on a link in your favourite browser to a Web site on the
opposite side of the globe, or send an email to your friend who is perhaps
thousands of miles away, a complicated procedure is carried out between
dozens of computers in relaying your message to its destination (either the
computer hosting the Web site you are wanting to access, or the computer
on which your friend reads email). Your message gets relayed, bit-by-bit,
through a long chain of intermediate computers as it gets routed towards its
destination. At any point in this chain, a bit of your message can get lost in
transmission, and the particular computer which sent the bit that got lost
needs to know that the bit was lost so that it can retransmit it.

Of course, one computer cannot tell another computer that it didn’t get
a message, as it wouldn’t know that it was supposed to get one; and in fact
the most common cause of a message being lost in transmission is due to
a receiving computer being broken, and thus unable to receive the message
or send an acknowledgement. Thus, when messages are passed from one

Alternating Bit Protocol 375

computer to another, the sending computer will wait for an acknowledge-
ment from the receiving computer; if this doesn’t come within a reasonable
amount of time, the sending computer will assume that the message got lost
and retransmit it. Of course, it may be the acknowledgement that got lost:
the receiving computer may receive a message and send an acknowledge-
ment and subsequently receive the same message again. In this case, the
receiver will assume that its acknowledgement was lost, leading the sender
to retransmit the message, in which case the receiver will retransmit the
acknowledgement.

There are very many different communication protocols implemented on
computers carrying out the above task. In this section we consider a common
simple protocol: the alternating bit protocol. This protocol again involves
a SENDER and a RECEIVER communicating through a MEDIUM, and works
as follows.

e The SENDER accepts a message to be sent to the RECEIVER (mod-
elled by an “in” action), and sends it into the MEDIUM tagged with
a protocol bit 0 or 1 (modelled by the actions “so” and “s;”, respec-
tively). It then awaits an acknowledgement from the MEDIUM tagged
by the same protocol bit (modelled by the actions “acky” and “ack;”,
respectively).

When the SENDER receives an acknowledgement tagged by the correct
protocol bit, it flips the protocol bit and repeats the protocol for the
next message.

If the SENDER receives an acknowledgement tagged by the wrong pro-
tocol bit, or if it times out waiting for the acknowledgement to arrive
(modelled by a “t” action), it retransmits the message (again with the
corresponding bit attached).

The behaviour of the SENDER is thus defined by the following process:

SenpER ¥ S5, Sort(SENDER) = {s¢,s:}

def

Se = 1in.S} Sy = so.(acke.S1 + ack:.Sy + t.5)

S1 = in.S] S, ¥ s .(acky.Sp + acke.S| + t.5))

376 Concurrent Processes

The synchronisation sort of the SENDER process contains the actions sg
and s;, as the only way the MEDIUM could receive a message is through
a communication with the SENDER; it can only do these actions if and
when the SENDER does them.

e When the RECEIVER receives a message from the MEDIUM tagged by
the expected protocol bit (modelled by the actions “ry” and “r,”, re-
spectively), it outputs the message (modelled by an “out” action) and
sends an acknowledgement into the MEDIUM tagged by that protocol
bit (modelled by the actions “rack,” and “rack;”, respectively).

The RECEIVER then awaits a new message tagged by the opposite
protocol bit, with which it will repeat this protocol. In the meantime,
it will acknowledge any further messages tagged by the old bit.

The behaviour of the RECEIVER is thus defined by the following pro-
Ccess:

RECEIVER = R, Sort(RECEIVER) = {rackg, rack;}.

£
Ry, = rg.out.racke.R; + ri.rack;.Rg

R, et ri.out.rack;.Ry + rg.rackq.R;

The synchronisation sort of the RECEIVER process contains the ac-
tions racky and rack;, as the only way the MEDIUM could receive an
acknowledgement is through a communication with the RECEIVER,; it
can only do these actions if and when the RECEIVER does them.

e The MEDIUM merely passes messages from the SENDER to the RE-
CEIVER and acknowledgements from the RECEIVER to the SENDER.
Its behaviour is defined by the following process:

Mepium ¥ M Sort(MEDIUM) = {rg, r1, acke, ack }.

M so0.rg.M + s;.ri.M + rackg.acke.M + rack;.ack;.M

Additional Exercises 377

The synchronisation sort of the MEDIUM process does not contain the
actions sy and s;; the SENDER may send a message without it being
received by the MEDIUM. Nor does it contain the actions rack, and
rack;; the RECEIVER may send an acknowledgement without it being
received by the MEDIUM. However, it does contain the actions ry and
r1, as the RECEIVER can only receive a message from the MEDIUM; as
well as the actions ackq, and ack;, as the SENDER can only receiver a
message from the MEDIUM.

The complete system is defined to be the composition of these three
components

System % Sender || Medium | Receiver

and has the following configuration:

in

Its complete transition system is large, but by considering it carefully, it can
be verified that the in and out actions occur in an alternating fashion and,
equally important, that the protocol can never deadlock.

(Exercise 14.8) (Solution on page 488)

Argue that the in and out actions occur in alternating fashion in the alter-
nating bit protocol, and that the protocol can never deadlock.

Additional Exercises

1. (a) Give a definition for a 3-counter C3, and draw its labelled transi-
tion system.

378 Concurrent Processes

(b) Draw the labelled transition system for C || C || C, where C is
the 1-counter given in Section 14.2.

(c) Prove that Cs ~C || C || C.
2. Normally, a barrier at a railway level crossing remains up until a train
arrives; this signals the controller, which then lowers the barrier, then
turns the signal green, then turns the signal red again, and finally

raises the barrier once again. Such a controller C is thus represented
by the following LTS:

signal

green

(a) Give a definition for C. This includes defining its sort £(C).

(b) Give the definitions and associated LTS for the new Road and
Rail systems Ro and Ra, respectively, which correspond to the
new Controller C. (Keep in mind that the new Road system starts
in a state where the barrier is up; and the new Rail system must
signal the controller when a train arrives, using the new event
“signal” common to their sorts.)

(c) Now consider the liveness properties again.
i. Is it now the case that, if the barrier is down when a car
arrives, then the barrier will eventually go up?

ii. Is it now the case that, if the signal is red when a train arrives,
then the signal will eventually turn green?

3. Argue that the process for Peterson’s Algorithm can never deadlock.

4. Model Dekker’s Algorithm for mutual exclusion, as outlined as follows.

Additional Exercises 379

P;: while true do P,: while true do
---moncritical section- - - ---moncritical section- -
bl := true; b2 := true;
while b2 do while bl do

if k=2 then if k=1 then
bl := false b2 := false
while k=2 do skip while k=1 do skip
bl := true b2 := true
.- - critical section- - - -- - critical section- - -
k = 2; k :=1;
bl := false b2 := false

. Argue that the complete alternating bit protocol system can never
deadlock, and that the in and out actions alternate as desired.

. Show that the operator || is commutative, by showing that the transi-
tion systems defined by E || F' and F' | E are isomorphic (ie, identical,
disregarding the — irrelevant — labels of the states).

. Show that the operator || is not associative, by showing that (E || F') ||
F = E || (F || F), where E % 0.0 with Sort(E) = {a} and F % ¢.6.0
with Sort(F) = {b}.

What restriction on synchronisation sorts would make this operator
associative?

. Consider a new parallel operator E | F' defined by the following tran-
sition rules:

(a) If B> E' and a ¢ Sort(F) then E |F = E'| F.

(b) If F % F' and a ¢ Sort(E) then E | F = E | F'.

(c)If E-% E and F % F' and a € Sort(E) N Sort(F) then E |
F5E|F.

This is identical to the synchronisation merge except that the transi-
tion rule for synchronising processes requires the action on which the
processes synchronise to be in the sorts of both processes rather than
just one of them.

Show that the operator | is both commutative and associative.

Chapter 15

* Temporal Properties

When I eventually met Mr Right I had no tdea that his first name
was Always.
- Rita Rudner.

The modal logic HML of Chapter 13, while faithfully characterising prop-
erties which are relevant for distinguishing between process behaviours, has
a fundamental drawback: a given formula P € HML can only explore the
initial behaviour of a process, namely its first k steps where £k = md (P) is
the modal depth of the formula. We cannot write a single formula that will
explore a process to an unbounded length of its execution.

Consider, for example, the property of being deadlockable. In various
examples of real-world system verifications, a common question is whether
or not the system in question might at some point in time deadlock, that
is, reach a state from which no action is possible. For example, we might
like to verify that a new operating system design can never get in to a
deadlocked state, one in which the machine on which it is running simply
“hangs” leaving the user to apply the age-old solution of turning it off and
on again.

Such properties are referred to as temporal properties, as they refer
to the long-term behaviour of a system throughout the lifetime of its exe-
cution. Note that, since these properties are still based on the behaviour
of systems, any such property which is true of a given process will be true
of any equivalent process. These properties typically fall under one of the
following two categories:

e Safety properties assert that nothing bad ever happens. Typical
examples of safety properties include: the operating system will never
deadlock; or a car will never be able to enter a level crossing at the
same time as a train.

e Liveness properties assert that something good eventually hap-
pens. Typical examples of liveness properties include: having pressed
the elevator button the elevator will eventually arrive; or if a train
arrives its signal will eventually turn green.

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4_16, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4_16

382 Temporal Properties

15.1.1

In this chapter we will explore various standard temporal properties,
as well as the means to define our own temporal properties from recursive
equations involving operators of the modal logic.

Three Standard Temporal Operators

A variety of fundamental temporal operators have been devised for express-
ing properties. Some of these are described as follows.

Always: [P

The most basic safety property, that nothing bad ever happens, is catered
for by the temporal operator (1P (pronounced “box P”) which asserts that
the property P is true in every state into which the process may evolve.
Formally,

E =0P if, and only if,
F |= P for all F such that E % F for some w € A*.

This is similar to the action “box” operator [a]P except that the transitions
involve arbitrary strings w € A* rather than a single action a € A.

We can view this property as an infinite conjunction; the property asserts
that P is true after any number of transitions:

PoA[HPoA HHP A HEIHR A

That is to say, P is true at the start; and after any single transition; and
after any two transitions; and after any three transitions; and Another
way to view this is as a recursive property: the above infinite conjunction
expresses a property X which satisfies the recursive equation

X = P A [-]X

which describes a property expressing the fact that P is true, and no matter
what transition happens the property defined by X must hold (that is, P
is true, and no matter what transition happens the property defined by X
must hold (that is, ...)). Note that every one of an infinite number of
properties must be true in order to satisfy CIP.

Deadlock-freedom is an example of a property which can be defined with
this operator: being free of deadlocks means that the property of being able
to perform some action, ie (—)true, is true in every state into which the
process may evolve:

Deadlock-free = [O(—)true.

Three Standard Temporal Operators 383

Example 15.1

Consider the two clock processes Clock and Clock, from Example 11.11
pictured in Figure 11.7 (page 298). Recall that these two processes could not
be distinguished by any formula of HML, since they were n-game equivalent
for every n € N, despite the fact that they are not bisimilar (that is, they
are not co-game equivalent). What distinguishes Clock, from Clock is the
possibility that it may evolve into a deadlock-free state:

Clock, = (tick)[I(tick)true but Clock £ (tick)[I(tick)true.

]

Example 15.2

15.1.2

The safety property for our railway level crossing example of Section 14.3 is
that at no time can a car cross at the same time as a train. This is expressed
as

O ([ccross]false V [tcross]false) .

That is to say, it is always the case that either I cannot do a ccross action
(a car cannot cross) or I cannot do a tcross action (a train cannot cross).

Possibly: OP

If we wish to express the possibility that something bad may happen,
we can use another standard temporal operator, OP (pronounced “dia-
mond P”), which asserts that the property P is true in some state into
which the process may evolve. Formally,

E = QP if, and only if,
F |= P for some F such that E — F for some w € A*.

This is similar to the action “diamond” operator (a)P except that the tran-
sitions involve arbitrary strings w € A* rather than a single action a € A.

We can view this property as an infinite disjunction; the property asserts
that P is true after some number of transitions:

PV (9)P V (=)(=)P Vv (=)(=)(9)P V

That is to say, P is true: either at the start; or after some single transition;
or after some two transitions; or after some three transitions; or Another
way to view this is as a recursive property: the above infinite disjunction
expresses a property X which satisfies the recursive equation

X = PV (-)X

384 Temporal Properties

which describes a property expressing the fact that either P is true, or there
is some transition which may happen after which the property defined by
X will hold (that is, either P is true, or there is some transition which may
happen after which the property defined by X will hold (that is, ...)). Note
that some one of an infinite number of properties must be true in order to
satisfy this O P.

The property of being deadlockable, ze the opposite of Deadlock-freedom,
is an example of a property which can be defined with this operator: being
deadlockable means that the property of not being able to perform any
action, te [—|false, is true in some state into which the process may evolve:

Deadlockable = {[—]false.

The properties OP and TP are related in the same way that (a)P and
[a] P are related, in that each is used to express the negation of the other:

QP = O-P and -0OP = O—-P
These operations are thus inter-definable:

e OP = —[J-P: P istruein some reachable state if, and only if,

it is not true that P is false in every reachable state;
e [JP = —~(0—P: P istrue in every reachable state if, and only if,

it is not true that P is false in some reachable state.

(Exercise 15.2) (Solution on page 488)

15.1.3

Use the above relationships between [and ¢ to show that
Deadlock-free = —Deadlockable
where Deadlock-free = [J(—)true and Deadlockable = O[—]false.

Until: PUQ

It is often desirable to express that some property remains true until some
other property becomes true, and that this latter property eventually does
at some time become true. For example, we might wish to assert that when
we send a document to a printer, the document will remain on the printer
queue until it is scheduled to be printed, and it will eventually be printed.
This type of property is expressed by the temporal operator P U@ which
asserts two things: that a particular property @ will eventually be true; and
that until that time the property P will remain true. Formally:

E=PUQ if, and only if,
if E=EBE, 3B 38,3%.. .38, 5
or E=E,3E 3B 38, % ...
then 3k such that By | Q and E; = P for all ¢ < k.

Recursive Properties 385

Note that PUQ is true if @ initially holds; and that P can remain true
when @ eventually holds but doesn’t have to.

We can view the property PUQ as a property X which satisfies the
recursive equation

X =QV (P A {(—)true A [-]X)

which describes a property expressing the fact that: either @ is true; or P
is true, and it is possible to do something, and no matter what you do the
property defined by X must hold (that is: either @ is true; or P is true,
and it is possible to do something, and no matter what you do the property
defined by X must hold (that is: ...)). Again note that some one of an
infinite number of properties must be true in order to satisfy PU Q.

Exercise 15.3) (Solution on page 488)

The generic liveness property asserts that something good eventually hap-
pens. Show how to express the temporal operator Ev P (pronounced “even-
tually P”) using the above standard temporal operators.

Recursive Properties

The temporal operators considered in the previous section could all be
viewed as solutions to recursive equations over the language HML of modal
logic. For example, we noted above that (JP expresses a property X which
satisfies the recursive equation

X = P A [-]X.
Thus we would want F = [P to hold if, and only if, the following is true:
E = X if and only if, E E P A[-]X.

To incorporate this idea into the logic HML, we need to introduce variables
such as X into the language of properties. However, the semantic definition
from Section 13.2 gives us no means by which we can determine if £ = X.
It is not enough to assume that each variable X is defined by some equation
X = P and declare that F = X if, and only if, £ | P. For example, if
E ¥ 0.E and X is defined by X = (a)X, we would only be able to infer
that F = X if, and only if, E = X, either answer - F = X or Ef# X —is
consistent with this observation.

To get around this deficiency, we need to introduce some mechanism to
determine which states satisfy a variable property like X. This is provided
by a valuation function

386 Temporal Properties

V : Variables — P (States)

where Variables is a set of variables (such as X above), and States is the set
of states of the labelled transition system in which we are interested. Modal
formulz involving variables are then interpreted with respect to a valuation
function as follows:

E =y true for all E.

E |y false for no E.

EEvX if, and only if, E € V(X).

E =y -P if, and only if, EHy P.

EE=yPAQ if,andonlyif, E =y P and E £y Q.

EEyPvQ if,andonlyif, E=y P or E =y Q.

E =y (a)P if, and only if, F =y P for some F such that B - F.
E |y [alP if, and only if, F =y P for all F such that E = F.

This is identical to the original definition for F = P but for the extra clause
which determines when a state E satisfies a variable property X; this case
is catered for by the valuation function V which is now attached to the
satisfaction relation kv .

In a similar fashion we can extend the global semantic definition ||P|| to
incorporate the valuation function as follows.

[[truell, = States
[Ifalse|]ly, = 0
X[y = V(X)
=Pl = [Py
IPAQIy = Py NIl
1PVl = Pl UliQll
l{a)P|, = {E € States : E - E' for some E' € |P||, }
|[a]P|, = {E € States : E - E' implies E' € ||P||, }

Theorem 13.12 then extends directly to properties with variables as follows.

Theorem 15.3)

E =y P if, and only if, E € ||P|,.

(Exercise 15.4) (Solution on page 489)

Prove Theorem 15.3

Recursive Properties 387

15.2.1

Solving Recursive Equations

In order to determine if a state E satisfies the property being expressed by
a recursive equation X = P, where P is an HML formula possibly involving
the variable X, we need to somehow “solve” the equation X = P. This
equation simply declares that the set of states which satisfy the property X
being defined is precisely the set of states which satisfy the property P; in
other words, we need to equate the following two sets:

X[y = 1I1Plly-

To solve this equation we need to find a valuation V which makes this a
valid set equation. Since || X||,, = V(X), the answer we seek is the set S
which such a valuation V assigns to the variable X. That is, the solution is
a set S C States satisfying

S = HPHV[XHS]

where V[X — S] denotes the valuation V updated by assigning the set S to
the variable X:

S fY=X

(VX = 1)) = { V(Y) if Y # X,

Example 15.4

Consider a property X which satisfies the equation
X =(a)X.

Informally, this equation suggests that an infinite sequence of consecutive a
actions can be performed:

E=X & E -3 E for some E' such that B = X
o E-5 B % B for some E' and E” such that " =X
C} P
s BSE SE S E"S ... forsome E',E",E", ...
Let S C States be the set of such states:
S={EcStates : E-5. 5. 5.... }.
Then
@)X llvix..s) = { B € States : E < F' for some B/ € S} = S.

Thus, as intended, S satisfies the equation S = [[(a)X||yx.,g]-

One problem that we have is that an arbitrary recursive equation needn’t
necessarily have a solution. For example, if we take the recursive equation

388 Temporal Properties

X =X
then given any valuation V,
X1y = V(X)

7 VX)) = Xl = =Xl

Another problem is that an equation may be satisfied by many different
solutions, as illustrated in the following.

]

Exercise 15.5) (Solution on page 489)

15.2.2

Show that the set S = 0 satisfies the equation S = [|(a)X[|yx, s from
Example 15.4.

However, we will show here that any recursive equations which does not
involve negation has a solution, and moreover we will show how to solve it
to obtain the intended solution.

Fixed Point Solutions

Let f : P (States) — P (States) be defined by

f(8) = ||PHV[X>—>S]'

Then a solution to the recursive equation X = P is merely a fixzed point of
this function: a set .S C States such that S = f(S). By the Knaster-Tarski
Theorem (Theorem 6.18, page 174), this function is guaranteed to have a
fixed point — in fact both greatest and least fixed points — so long as the
function is monotonic. That this function is monotonic is an immediate
corollary of the following result.

Theorem 15.5)

Let P be an HML formula which does not involve negation, and let V and
W be valuations such that V(X) C W(X) for all X. Then ||P||, C ||P||w-

Proof: By induction — and arguing by cases — on the structure of P.
P = true: ||true||, = States = |[|truel|y.

P = false: ||false||,, = 0 = ||false]|,,-

P=X: [[X], = V(X) € W(X) = [[X-

P=QiAQy [|QiAQ:y = [Qilly N [|Qlly
1Qillw N [1Qallw
Q1 A Qallyy

N

Recursive Properties 389

P=Q1Vv@Qax [Qiv@ly = @y U l@:lly
1@illw Y 1@l

Q1 V Qallyy

IN

{E € States : E - E' such that E' € ||Q||\, }
{E ¢ States : E - E' such that B € ||Q||\, }
[[{@)@llw

v
[
Q

s

o

<
Nl

{E ¢ States : E -3 E' implies E' € 1l ¥
{E ¢ States : E-> E' implies E' € ||Ql|,y }
lfa] @Il .

v
[
Q

B

o

<
Nl

The Knaster-Tarski Theorem thus tells us that recursive equations which
do not involve negation have two identifiable solutions, corresponding to
their greatest and least fixed point solutions. This begs the question, when
considering a recursively-defined property, as to which solution — if indeed
either of them — represents the intended solution. That is, if we express a
property as a recursive equation X = P, the set of states which satisfy the
property we have in mind is a fixed point of the function f(S) = ||P|ly x..s);
but is it the greatest fixed point, or the least fixed point, or some fixed point
in between?

This question will be explored in Section 15.4, where we will show that
the answer is roughly:

e least fixed points express liveness properties; and

e greatest fixed points express safety properties.
Before we do this, though, we first look more carefully at adding these two
fixed points to the modal logic HML without negation. The resulting logic

with fixed points is called the modal mu-calculus, and is one of the most
fundamental logics used in the specification of computer systems.

(Exercise 15.6) (Solution on page 490)

What are the least and greatest fixed points of the function

F(8) = () X|lyixos:

corresponding to the property considered in Example 15.4?7

Can you find a fixed point which is neither least nor greatest?

390 Temporal Properties

|[truell,, = States
||[false|l, = 0

PAQly = [IPllvNIQlly

IPvely = [Py ulely
[(a)P||, = {E € States : E - E' for some E' € ||P||,, }
lla]P|l, = {E € States : E - E' implies E' € | P||, }
IX[l, = V()

|uX.Plly = N{SCStates : $2 |Pllyx..s }

lvX.Pll, = U{S C States : S C|Pllyx.s }

Figure 15.1: Global semantics of the modal mu-calculus.

The Modal Mu-Calculus

The syntax of the modal mu-calculus consists of the logic HML — minus
negation — extended with variables and constructs for defining both great-
est and least fixed points. Formally, it is presented by the following BNF
equation:

P,Q := true | false | PAQ | PVQ | (a)P | [a]P
| X | uX.P | vX.P

The symbols x and v are the characters “mu” and “nu” from the Greek al-
phabet (from which the name “mu-calculus” derives). The formula uX.P is
used to represent the least fixed point of the equation X = P (or more cor-
rectly, of the function f(S) = | Pl|yx_,s) Whereas »X.P is used to represent
its greatest fixed point.

An inductive definition of the semantic function || P||,, — defining which
states satisfy the property P with respect to the valuation V — is given
in Figure 15.1. The clauses are identical to those presented for the basic
modal logic HML in Figure 13.2 with the inclusion of the obvious clause
for variables, and clauses for the fixed points as given by the Knaster-Tarski
Theorem (Theorem 6.18, page 174), That the Knaster-Tarski Theorem ap-
plies follows from the fact that the function f(S) = ||P||x,s is monotonic.
We demonstrated this for HML in Theorem 15.5, but we need to extend this
result for the larger logic.

The Modal Mu-Calculus 391

Theorem 15.6)

Let P be a modal mu-calculus formula which does not involve negation,
and let V and W be valuations such that V(X) C W(X) for all X. Then

1Py S 1Pl

Proof: By induction — and arguing by cases — on the structure of P. All
of the cases have been catered for in the proof of Theorem 15.5 — and carry
over directly to the present setting — apart from the cases of variables and
fixed point formulee, which we handle here.

P=X: [[X], = V(X) C W(X) = [Xllw

P=uX.Q: Ec|uXQ|, &

P=vX.Q: E € |vXQ|,

Definition 15.6)

=

N

E € S whenever [Qllyx. s C S
E € S whenever HQHW[X_,S] cs
Ee||uX.Qllw

E € S for some S where S C [|Q|lyx.s)
Ec S for some S where S C [1Qyx. g
E e |[vX.Qllw O

A direct definition of when a state F satisfies a property P of the modal mu-
calculus with respect to a valuation V for interpreting free variables which

appear in P is as follows:

E =y true
E £y false

El=yPAQ
ERyPVQ

E =y (a)P
E):V [G}P
EEy X

E v uX.P

E Ey vX.P

for all E.

for no E.

if,
if,
if,
if,
if,

if,

~

if,

and only if,
and only if,

and only if,
and only if,

and only if,

and only if,

and only if]

E‘:VP and E}:\/Q
E‘:VP or E):\/Q

F =y P for some F such that E = F.
F =y P for all F such that E 5 F.
E e V(X).

VS C States: if E ¢ S then
JF ¢ S such that F =yix_g P

35 C States: E €S and
VFeS: F ':\/[X,_,_ﬂ P

392 Temporal Properties

We leave it as an exercise (Exercise 5, page 402) to prove (by induction on
the structure of P) that E =y P if, and only if, E € || P|},,.

Leaving negation out of the logic is not a real restriction, as the result
from Section 13.3 that negation is definable in the modal logic HML extends
to the whole of the modal mu-calculus. This is justified by the following.

(Exercise 15.7) (Solution on page 490)

The negation of a modal mu-calculus formula can be inductively defined as

follows:
neg(true) = false neg({a)P) = [a]neg(P)
neg(false) = true neg([a]P) = (a)neg(P)
neg(P A Q) = neg(P) V neg(Q) neg(uX.P) = vX.neg(P)
neg(PV Q) = neg(P) A neg(Q) neg(vX.P) = pX.neg(P)
neg(X) = X

Prove that E =g neg(P) if, and only if, E Ry P, where V(X) = V(X).

15.4) Least versus Greatest Fixed Points

We now understand how to interpret recursive logical properties as fixed
points of particular functions between sets of states. However, we are left
with the problem of understanding why the property we intend is expressed
by either the greatest or the least fixed point of this function, as well as
the problem of knowing which. To solve this, we shall explore how such a
recursive property can be understood by “unrolling” it.

Given a property X defined by a recursive equation X = P, we can
unroll the equation by replacing each occurrence of X on the right-hand-
side by P itself. Clearly this will not change the meaning of the property
being defined by the recursive equation.

Example 15.7

Suppose we wish to express the property that an infinite sequence of con-
secutive a actions can happen. That is, denoting this property by X, we
would like the following to be the case:

EE=X if,andonly if, B> .3 2 ...

Least versus Greatest Fixed Points 393

This property is expressed by the recursive equation
X = (@)X

which we can repeatedly unroll as follows:

(a)X

a)(a)X

)(a)(a) X

)(a){a)(a)X

a)(a){a)(a)(a) -

X

a

a

(
(
(
(

Example 15.8

Suppose we wish to express the property that an a action must eventually
occur. This property is expressed by the recursive equation

X = (—)true A [—a]X.

That is: some action is possible; and if anything other than an a action
occurs, then an a action must eventually occur in the resulting state. We
can repeatedly unroll this recursive equation as follows:

X = (—)true A

15.4.1 Approximating Fixed Points

By repeatedly unrolling a recursive equation, we seem to eliminate the vari-
able from the formula. Of course we would have to unroll the equation in-
finitely often in order to get rid of the variable altogether. However, we don’t
have any means for determining whether or not an infinitely-long property
is satisfied. We can, however, define better and better approximations for
such properties, by replacing the variable in the rolled-out formula by either
false or true. To this end, we can define the nth mu- and nu-approximants
as follows.

Definition 15.8)

Given a recursive equation X = P, the nth mu-approrimant u”X.P and
the nth nu-approximant v"X.P are defined inductively as follows:

394 Temporal Properties

wX.P = false VX.P = true
prX.P = P[X +— u"X.P] v"1X.P = P[X — v"X.P|

These definitions extend to all ordinal numbers (see Section 12.5.1), with the

following definitions for the approximants corresponding to a limit ordinal
A

pX.P = \/ u*X.P »X.P = A\ vX.P

a< a<i

Example 15.9

Recall the property from Example 15.7 that an infinite sequence of consec-
utive a actions can happen:

X = (a)X.

Its mu-approximants $,, and nu-approximants ¥,, are as follows:

$y = false Uy, = true

®; = (a)false ¥; = (a)true

®, = (a){a)false ¥, = (a)(a)true
®; = (a)(a)(a)false ¥y = (a)(a){a)true

Clearly none of the mu-approximants ¢, can be satisfied by any state. How-
ever, every one of the nu-approximants ¥,, must be satisfied in order for our
intended property to be satisfied.

This is suggestive of a safety property: checking that something bad
never happens (in this case, that an a action is impossible) amounts to
checking the validity of every unrolling of the formula, starting from true.

Example 15.10

Recall the property from Example 15.7 that an a action must eventually
occur:

X = (=)true A[-alX.

Its mu-approximants ®,, and nu-approximants ¥,, are as follows:

Least versus Greatest Fixed Points 395

$, = false

&, = (—)true A [—alfalse

&, = (—)true A [fa}(<f>true A [fa}false)

& = (“true A [a]((-)true A [~a]((~)true A [~afalse))
¥y = true

¥, = (—)true A [—altrue

Wy, = (—)true A [fa}(<f>true A [fa]true)

To = (e A [a)((true A [~al((true A [altrue)

With a little thought, it is apparent that one of the mu-approximants &,
must be satisfied in order for our intended property to be satisfied. However,
every one of the nu-approximants is satisfied, for example, by a process which
runs forever without ever doing an a action.

This is indicative of a liveness property: checking that something good
eventually happens (in this case, that an a action occurs) amounts to check-
ing the validity of some unrolling of the formula, starting from false.

In the first of the above two examples, the property which we wished
to express was interpreted as the conjunction of all of the nu-approximants
(the unrollings starting from true); while in the second of the two examples,
the property of interest was interpreted as the disjunction of all of the mu-
approximants (the unrollings starting from false). In what follows, we shall
see that the first corresponds to the greatest fixed point interpretation of
the recursive property, while the second corresponds to the least fixed point
interpretation.

In Section 6.5 we described how the least and greatest fixed points of
a monotonic function f defined on the powerset of a given set S could be
constructed, by repeatedly applying the function f to either the empty set 0
(for the least fixed point) or to the whole set S (for the greatest fixed point);
this result was given in Theorem 6.19. This is just the result we are looking
for here, as the nth mu- and nu-approximants correspond, respectively, to
applying the relevant function n times either to the empty set @ or to the
whole set States. These facts are recorded in the following.

396 Temporal Properties

Theorem 15.10)

fr(@) = [|w"X.P||, and f"(States) = [v"X.P||, where f(S) =|[|Pllyx..s-

Proof: We prove only the first result, by induction on n, and leave the
proof of the second as an exercise (Exercise 6, page 402).
For the base case n = 0, we have

PO = 0 = |ffalsell, = [W0X.Pll,
For the induction step, we have that
o) = f(fm(0))
= f(|lu"X.Pl) (by induction)

= ||PHV[X>—>HM"X.PHV]
IP[X = u"X.Plly

~ "1 X.P]), =

Example 15.11

Consider the recursive equation for [P, the property that P holds in every
reachable state:

X = P A [H]X.
This gives rise to the function
f(8) = {E€|P| : E— E'implies B' € S}.

Using the construction from Theorem 6.19 (page 175) starting from the
empty set @, we discover that

@) =0

demonstrating that the least fixed point is the empty set. This certainly does
not correspond to the property [1P. However, starting from the universal
set States, we get that

f°(States) = States
f'(States) = [|P[ly
f?(States) = {E € ||P||, : E — E'implies E' € ||P||,, }

3(States) = {E€||P|, : E—E or E—5— E'
v
implies E' € ||P||\ }

f™(States) = states in which P is true throughout
the duration of the first n transitions.

Expressing Standard Temporal Operators 397

This sequence is approaching the set S of sets in which P is true in every
reachable state, which is the desired solution to our recursive equation and
easily seen to be a fixed point of the function f.

Example 15.12

Consider the recursive equation expressing that a process is deadlockable:
X = [—Jfalse vV (—)X

This gives rise to the function
f(S) = {E€States : E— or E— E' with B' € S}.

Using the construction from Theorem 6.19 starting from the universal set
States, we discover that

f(States) = States

demonstrating that the greatest fixed point is the set of all states. This
certainly does not correspond to the property that a process is deadlockable.
However, starting from the empty set 0, we get that

(o) = @
f1(0) = {E € States : E A}

f?(0) = {EcStates : EAor E— E 4}
f3(0) = {EcStates : E-AHor E— E'
or E—-E =S E" A}
f™(0) = states which can deadlock within the first n transitions.

This sequence is approaching the set .S of states that can deadlock, which is
the desired solution to our recursive equation and easily seen to be a fixed
point of the function f.

Expressing Standard Temporal Operators

The intuition which you should have drawn from above is the following.

e Greatest fixed point properties are those for which you need to unroll
the underlying recursive equation top-down (from true, or the full set of
states) an infinite number of times in order to verify that the property

398 Temporal Properties

15.5.1

15.5.2

15.5.3

is always true; if the property fails for some finite unrolling, then the
fixed point property itself fails.

In this sense, greatest fixed point properties are representative of safety
properties which assert that nothing bad ever happens.

e Least fixed point properties are those for which you need to unroll the
underlying recursive equation bottom-up (from false, or the empty set
of states) a finite number of times in order to verify that the property
is eventually true; if the property fails for every finite unrolling, then
the fixed point property itself fails.

In this sense, least fixed point properties are representative of liveness
properties which assert that something good eventually happens.

We now consider how to express each of the standard temporal operators
introduced in Section 15.1 in the mu-calculus.

Always: OP

The temporal operator [P, expressing that the property P is true in every
state into which the process may evolve, is defined by the recursive equation

X = P A [-]X.

In order to establish the truth of [P, the recursive equation would need to
be unrolled forever, to make sure nothing goes wrong. As such, this property
is expressed by the greatest fixed point formula:

OP = vX.P A [-]X.

Possibly: OP

The temporal operator ¢ P, expressing that the property P is true in some
state into which the process may evolve, is defined by the recursive equation

X =P Vv ()X

In order to establish the truth of ¢ P, the recursive equation would need to
be unrolled only until the property can be verified — that is, only until the
property P becomes true. As such, this property is expressed by the least
fixed point formula:

OP = uX.PV (-)X.

Until: PUQ

The temporal operator P U Q, expressing that the property P remains true
until the property @ becomes true, which it must eventually do, is defined
by the recursive equation

Further Fixed Point Properties 399

X =QV (P A (—)true A [-]X)

In order to establish the truth of P U Q, the recursive equation would need
to be unrolled only until the property can be verified — that is, only until
the property @ becomes true (verifying along the way that P remains true).
As such, this property is expressed by the least fixed point formula:

PUQ = pX.Q V (P A (—)true A [-]X).

Exercise 15.12) (Solution on page 491)

1. OP = vZ.PA[-]Z means P holds in every state.

What does pZ.P A[—]Z mean?
2. OP = pZ. PV (—)Z means P holds in some (reachable) state.
What does vZ.PV (—)Z mean?

3. PUQ = pzQV (P A (—)true A [f}Z) means @ will become true,
and until then P will remain true.

What does vZ.QV (P A (—)true A[~]Z) mean?

Further Fixed Point Properties

In this section we look at a collection of properties that can be expressed in
the mu-calculus.

There is an a* path.

By this, we mean that we can do an infinite number of consecutive a tran-
sitions starting from the state in question.
If we let X represent this property, then X satisfies the recursive equation

X = (a)X (It is possible to do an a transition and
go to a state in which the property holds.)

As we are clearly wanting to unroll this fixed point equation infinitely often,
to verify that the property holds forever, we are in this case interested in
the greatest fixed point solution:

vX.(a)X.

400 Temporal Properties

There is no a“ path.

This is the negation of the previous property, and the most straightforward
way to find a mu-calculus formula which expresses it is to use the construc-
tion from Exercise 15.7:

neg(vX.(a)X) = pX.[a]X.
Unrolling the underlying recursive equation

X = [a]X (If I do an a transition, I must end up
in a state in which the property holds.)

suggests an exploration of each a“ path; as this is a least fixed point property,
this search must terminate, namely at a state in which an a transition is not
possible.

P holds at every state along some a“ path.
This is a simple adaptation of the first property above:

vX.P A (a)X.

P holds somewhere along some a“ path.

We note first that we want to get to a state at which the property P holds
by only doing a transitions. This property is expressed by the recursive
equation
X = PV {a)X (Either P is true, or it is possible to do an a tran-
sition
and end up wn a state in which the property
holds.)

As we need P to be true at some point, this is a least fixed point property:
uX.P Vv (a)X.

This is not the end of the story, as we require that this path of a transi-
tions leading up to the state in which P is true be the start of an a* path.
In other words, the point at which P is true must be the start of an a“ path
— which is the first property we considered above: vX.(a)X. Hence, the
property we seek is as follows:

uX.(P A vX{a)X) V {(a)X.

This formula is fine; however, to avoid confusion it is best to use different
variables for the two fixed point constructions:

uX.(P A vY{a)Y) Vv (a)X.

Additional Exercises 401

P holds at every state along every a“ path.

We first express the property that P holds along every (finite or infinite)
path of a transitions:

vX.P A [a]X.

As a greatest fixed point property, the only way this property can fail is if we
reach a state after some number of a transitions in which P does not hold. If
this is the case, then we want to ensure that we are not on an a“ path; that
is, that from this state in which P fails to hold we cannot continue along
an a* path — which is the second property we considered above: uX.[a]X.
Hence the property we seek is as follows:

vX.(PVupX.[a)X) A [a]X.

Again it is sensible to use different variables for the two fixed point con-
structions:

vX.(PVuY.alY) A [a]X.

(Exercise 15.13) (Solution on page 491)

Give mu-calculus formula for the following properties. In each case give an

intuitive explanation of your solution.

1. P almost always holds along some a“ path.

Note: To say that something holds almost always means always apart
from a finite number of times. Thus, this property says that P holds
everywhere along some a“ path after some point along this path.

2. P holds infinitely often along some a“ path.

Additional Exercises

1. Give a semantic definition for the weak until temporal operator PW Q
which asserts that the property P remains true until the property @
becomes true, but allows that the property @ may never become true
(in which case the property P remains true for as long as the process
evolves).

2. We noted in Section 13.2 that we can express the property that the

action a must happen as:

P = (a)true A N [b]false
b#a

402 Temporal Properties

10.

11.

which says that a may happen and nothing other than a may happen.

What is the difference between the property “eventually a must hap-
pen” as expressed by the temporal formula Ev P (where the Eventually
temporal operator was defined in Exercise 15.3) and the property “a
must eventually happen”?

(Hint: exactly one of these properties holds for the process b.0+a.a.0.)

. Prove Theorem 15.3.
. Prove that if X is not a free variable of P then for any S C States,

[Plvixess) = [Pl

. Prove that £ =y P if, and only if, F € ||P||,, where E ranges over

formulae of the modal mu-calculus.

. Prove the second part of Theorem 15.10, that f™(States) = ||[v"X.P||,

where f(S) = HPHV[XHS]'

. Express the following properties in the modal mu-calculus.

(a) P holds at some state along every a* path.
(b) P almost always holds along every a paths
(c) P holds infinitely often along every a“ path.

. Express the property of mutual exclusion in the modal mu-calculus;

that is, the property that whenever an entry action occurs (signifying
that a process has entered the critical region), then a further entry
action cannot occur until an exit action occurs.

. The extended modality (a)*P expresses that the property P holds

after some number of a transitions, while the extended modality [a]* P
expresses that the property P holds after any number of a transitions.

Express these extended modalities as mu-calculus formulee.

Express the following properties in the modal mu-calculus.

(a) In some run the action a does not happen.

(b) The actions a and b happen alternately forever (starting with the
action a), with any number of occurrences of other actions before
and between the a and b actions.

(c) In any run, a and b happen infinitely often.

(d) If a and b happen infinitely often, then P is true infinitely often.
(e) In any run, P is true at least twice.

(f) In any run, P is true exactly twice.

def def def

Let F = a.E+a.F, F =0bG, and G = a.G, and consider the
following two properties:

& = uY.(vX.(a)true A [-X) Vv [-]Y

Additional Exercises 403

&, = pYwX.((a)tue A [-]X) v [-]Y

The process state E satisfies ®, but not $;.
Can you understand and explain why this is the case?

Can you work out what these two properties are expressing?

Solutions to Exercises

In the book of life, the answers aren’t in the back

- Charlie Brown.

Chapter 1

Exercise 1.1

1,2

(page 20)

, 4,6, 7 and 8 are statements, while 3 and 5 are not.

Note that 7 refers to some unspecified utterance by Felix, upon which

the

truth of this statement depends. Statement 8 however is more compli-

cated: if the sentence it refers to is itself, then there is no consistent way to
determine its truth value: if what it says is true, then it must be false; and
if what it says is false, then it must be true.

Exercise 1.2

1

(page 20)

. This is not a valid deduction. There may be some other reason that
everyone is leaving the building, e.g., it may be closing for the night.

. Ideally this would be true, but it is not a valid deduction. It would
be valid to deduce that everyone must leave the building; however,
saying someone (or something) must behave in a particular fashion
does not make it so; for example, some people may ignore fire alarms,
considering fire alarm testing to be a nuisance.

. This is not a valid deduction. The conclusion is no doubt true, as
there is surely a rule that states that a train must wait at a red signal;
but this rule is not provided in the argument. It might be that the
rules for the railway in question do not state that trains must wait at
a red light.

. This is not a valid deduction. The conclusion is true, but not for the
reasons provided in the two premises.

. This is not a valid deduction. The rook that has already moved might
not be the one involved in the castling.

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4

406 Temporal Properties

6

Exercise 1.3

. A judgement as to the validity of this deduction cannot be made on
purely logical grounds, due to the ambiguity of the language of the
city by-law. Specifically, what is the status of the conjunction “and”
in the by-law? As Charles does not keep any cats, and certainly no
more than three, it could be argued that it is within his rights to keep
five (or even fifty) dogs on his property. Even worse, the “more than”
in “more than three dogs and three cats” might only apply to dogs
and not cats, thereby making the keeping of, say, five dogs and any
number of cats allowed except when there are exactly three cats.

(page 21)
. This is a valid deduction.

. This is a valid deduction. The conclusion that Epimenides is a liar
follows from the premises, as a truth-telling Cretan cannot say that all
Cretans (including himself) are liars.

. This is not a valid deduction. It may be that all Cretans are liars; or
it may be that Epimenides is the only liar. Also, from the previous
deduction we already know that Epimenides is a liar based on the
given premises, so the conclusion — being precisely what Epimenides
claims, must be false.

. This is a valid deduction. We know that the premises imply that
Epimenides is a liar, so his claim that all Cretans are liars must be
false.

. This is not a valid deduction. Aristotle may be a liar.

Exercise 1.4 (page 23)

. “The earth does not revolve around the sun.”
. “I have at least one daughter.”

. 2+42>4.

Exercise 1.5 (page 24)

1.

This is true, as the second disjunct is true (although the first disjunct
is false).

. This is false, as neither disjunct is true.

. This is true, as both disjuncts are true.

Exercise 1.6 (page 24)

1

. Inclusive. This statement implies that Joel could not have come in
last place if he beat both Felix and Oskar, so he must have lost to one

Additional Exercises 407

of them; but he may well have lost to both of them.

2. Exclusive. It is impossible for a light to be both on and off at the same
time.

3. Exclusive. The server no doubt intends to offer the guest only one of
the beverages. However, if the guest is so odd as to ask for a cup of
both (either one cup with a mix of coffee and tea; or two cups, one
with coffee and the other with tea), the server will no doubt reluctantly
oblige.

Exercise 1.7 (page 25)

1. This is false, as only the second conjunct is true (the first conjunct is
false).

2. This is false, as neither conjunct is true.

3. This is true, as both conjuncts are true.

Exercise 1.8 (page 26)

1. AmandaHappy = JoelHappy.
2. JoelHappy = AmandaHappy.
3. AmandaHappy = JoelHappy.

Exercise 1.9 (page 26)

It may well be true that barking dogs don’t bite (i.e., Bark = —Bite), but
this says nothing about the habits of dogs that don’t bark; they may bite,
or they might not.

Exercise 1.10 (page 29)
Lplg = =(pnag).
2.plq = ~(pVva).
3.g<dpi>r = (pAgQ) VvV (CpAT).
Exercise 1.12 (page 31)
1. P= @ ¢ @ = P has the following syntax tree:
/ - \
= =
VRN VRN
P Q Q P
It would be sensible in this example to include redundant parentheses
for readability, and to write the formula as (P = Q) < (Q = P)

408 Temporal Properties

2. This is not a well-formed formula.
3. (PV Q) A P has the following syntax tree:
V
/ \
% Q

VAN
P

Due to the precedence rules, the parentheses are not redundant; P Vv
Q@ A P would be interpreted as PV (Q A P).

4. This is not a well-formed formula.

5. PVQAR & PV QA(PV R) has the following syntax tree:

/
/\

\
/

\
N
R

\
~ \
Q@

/

P

In this case, only one pair of parentheses is redundant; however, it
would be sensible to avoid confusion by including all of the redundant
parentheses.

Exercise 1.14 (page 33)

This example hints at the many complicated ways that English (or any
natural language) can be used to express simple facts. We can draw the
conclusion that Lewis Carroll is after by making clear what each of the
above assumptions is saying.

Firstly, we introduce propositional variables to represent the different
atomic propositions that appear in the argument.

Love: “Amos Judd loves cold mutton.”
Police: “Amos Judd is a policeman on this beat.”
Sup: “Amos Judd sups with our cook.”
Long: “Amos Judd has long hair.”
Poet: “Amos Judd is a poet.”
Prison: “Amos Judd has been to prison.”

Cousin: “Amos Judd is our cook’s cousin.”

Additional Exercises 409

We wish to deduce, formally and logically, the truth of the atomic proposi-
tion Love, which asserts that “Amos Judd loves cold mutton.” Notice that
we modelled the problem by instantiating the properties of all men to apply
only to Amos Judd, as he is the only man in whom we have any interest.

The seven assumptions above then translate into the following proposi-
tional formulae:

1. Police = Sup.
2. Long = Poet.
3. —Prison.

4. Cousin = Love.
5. Poet = Police.
6. Sup = Cousin.

7. —Prison = Long.

You should think carefully about each of these translations, and make sure
that you understand why they are correct. Assumptions 5 and 6 are partic-
ularly tricky. For example, when 5 says that “None but policemen on this
beat are poets,” it is asserting that in order to be a poet you must be a
policeman on this beat. Thus, if Amos Judd is a poet (Poet), then Amos
Judd must be a policeman on this beat (Police): Poet = Police. Also, when
7 says that “Men with short hair have all been in prison,” it is asserting
that anyone who has mot been to prison must have long hair; thus if Amos
Judd has not been to prison (—Prison), then Amos Judd must have long hair
(Long): —Prison = Long.

We can finally work out the logic, step-by-step, behind the claim that
“Amos Judd loves cold mutton” (Love):

=Prison (by 3).
Thus Long (by 7, —Prison = Long).
Thus Poet (by 2, Long = Poet).
Thus Police (by 5, Poet = Police).
Thus Sup (by 1, Police = Sup).
Thus Cousin (by 6, Sup = Cousin).
Thus Love (by 4, Cousin = Love).

The last line is the conclusion that we sought. (Along the way, we also
deduced that Amos Judd has long hair; he is a poet; he is a policeman on
this beat; he sups with our cook; and he is a cousin of the cook.)

410 Temporal Properties

Exercise 1.15 (page 34)

The first clause states that the right to castle with a particular rook (either
the left rook or the right rook) has been lost if either the king or the rook
in question has already moved:
KingMoved V LeftRookMoved
= —RightToCastleLeft.

KingMoved Vv RightRookMoved
= —RightToCastleRight.

The second clause states that the player may not castle with a particular
rook if the right to do so has been lost, or if there is a piece between the
king and the rook in question, or if the square on which the king stands, or
the square which it must cross, or the square which it is to occupy is under

attack:
—RightToCastleLeft —RightToCastleRight
V PieceBetweenLeft V PieceBetweenRight
Vv KingAttack Vv KingAttack
V LeftSquareAttack V RightSquareAttack
V KingMoveleftAttack V KingMoveRightAttack
= —MayCastleLeft = —MayCastleRight

Exercise 1.16 (page 35)

1. We need to express the property that the piece of paper held by each
boy has exactly one of the other’s names on it, and that each name is
written on a piece of paper held by exactly one other boy.

The following proposition p expresses that the piece of paper held by
each boy has exactly one of the other’s names on it:
(FonJ v OonlJ) A (—=FonJ Vv —Oonl)
A (JonF Vv OonF) A (-JonF Vv —OonF)
A (JonO V FonO) A (—JonO Vv =FonO).

p

For succinctness, we could have used the exclusive-or connective:
p = (FonJ @ OonJ) A (JonF & OonF) A (JonO & FonO).

The following proposition g expresses that each name is written on a
piece of paper held by exactly one other bay:

Additional Exercises 411

(JonF Vv JonO) A (—JonF Vv —JonO)
(FonJ v FonO) A (—=FonJ Vv —FonO)
(OonJ v OonF) A (—=OonJ v —OonF).

Q
Il

N
AN
Again this could be expressed more succinctly:

p = (JonF @ JonO) A (FonJ @ FonO) A (OonJ @ OonF).

The formula we seek is then p A q.

2. From OonJ we can deduce —FonJ from p, from which we can deduce
FonO from ¢, from which we can deduce —JonO from p, from which we
can deduce JonF from gq.

In summary, we have “Oskar” on Joel’s piece of paper, “Joel” on Felix’s
piece of paper, and “Felix” on Oskar’s piece of paper.

Exercise 1.19 (page 40)

If you answer this question quickly, you might conclude that I would reject
the white circle. However, this would be wrong if, for example, I had the
white square in mind.

In fact, you cannot conclude that I will reject any particular symbol
(though you can conclude that I will reject one of them, you just cannot
determine which).

Exercise 1.20 (page 40)

Nine.
The point of this old joke is that four and five are nine irrespective of
the premise of the conditional statement.

Exercise 1.21 (page 42)
Define the following atomic propositions.

U = You understand implication.
P = You pass the exam.

The statement translates to U = P which has the following truth table:

412 Temporal Properties

Exercise

Exercise

The only scenario in which the above statement can be considered false is
if U is true and P is false — that is, if you do not pass the exam despite
understanding induction.

1.22 (page 44)

Each new variable doubles the number of combinations of truth values.
Thus, a truth table involving four propositional variables will have 16 rows,
and one involving five variables will have 32 rows. In general, a truth table
involving n propositional variables will have 2" rows.

Truth tables grow very quickly with the number of propositional vari-
ables. Building truth tables for propositions with many variables, such as
in the Amos Judd example (Exercise 1.14), can therefore be frustrating or
even infeasible.

1.23 (page 44)

1.
PQ -~ (P& - Q
FF|T F F TF
FT F FTFT
TF F T T TF
TT T T F FT
2.
PQ (P ANQ VYV (=P A - Q
FF FFF T TFTTF
FT FFTF TFFFT
TF TFF F FTFTF
TT T TTTFTFFT

Additional Exercises 413

P AQ = (- RV 8\

T TFTF
T TFTT

T
T
FFT T TFTF

F
F
F
F

F
F
F
F

F
F
F
F

F TFF

FTTT

FFT T TFTT

FFT T
FFT T

F TFF

F TTT

T T FTF
T TFTT

T
T
T TT T TFTF

F
F
F
F

F
F
F
F

T
T
T
T

F TFF

F TTT

TTT T TFTT

T F FTFF
TTT T

T T

FTTT

P QRS

FFFF

FFFT
FFTEF
FFTT

FTFF

FTFT
FTTEF

FTTT

TFFF

TFFT
TFTEF
TFTT

TTFF

TTFT

TTTF

TTTT

Exercise 1.24 (page 44)

Sl = W =
Nk e w
G TR TR
QUL WL - -

(SRR o TR

QL WL - -

Exercise 1.25 (page 46)

1. pV (—p A q) is neither a tautology nor a contradiction:

2. (pAg)AN—(pV q) is a contradiction:

- (p vV g)

F F T FFF
FFT FF FTT
F FF TTF
TTT FF TTT

F
F

414 Temporal Properties

3. (p = —p) & —p is a tautology:

| (

4. (p = q) = p is neither a tautology nor a contradiction:

-1

- s
mnH
M |
- N
m |
- ns

p gl (@ = qg = 0p
FF| FTF FF
FT| FTT FF
T F T F F T T
T T T T T TT
5. p = (¢ = p) is a tautology:
p g | p = (g = p
FF | FT F TF
FT| FT T FF
T F T T FTT
T T T T T T1TT

Exercise 1.26 (page 47)

The following is a truth table for these three propositions:

ﬁressure Height Land

*

*

4 4mmA4mm
44T AT+
e B B e B By B B TS
o B B B B B B |1
\i-n-l'n-|'n—|-ly

4444 Tm

o

The formula p representing the original program code is not equivalent to
the formula g representing the first optimisation, as there are interpretations
of the atomic propositions which give rise to different truth values for p and
g, highlighted in the third and fifth rows of the above truth table.

However, the formulee p and g are equivalent, as the truth values of
these formula are the same under all interpretations, and hence the second
optimisation is valid.

Additional Exercises 415

Exercise 1.27 (page 50)

1L.pA(pVy)

< (pA—D) V (pAq) (Distributivity)
< false V (pAgq) (Ezcluded Middle)
< (pAg) A false (Commutativity)
& pAg (Tautology)

2. 2(p = q)

& —(-pVg) (Implication)
& ——p A g (De Morgan)

& pA—g (Double Negation)

3.p= (gVvr)
< pV(gVvr) (Implication)
& (-pVv-p) Vv (gvr) (Idempotence)
< (-pVq) V (-pVr) (Associatiity, Commutativity)
< (p=q VvV (p=>1) (Implication)

4. p = (gAr)
< p VvV (gAT) (Implication)
& (-pVvag) A (mpVvrT) (Distributivity)

< (p=9 A=) (Implication)

5. (pAg) = 1
< —(pAg) vV r (Implication)
< ((pv—q) Vr (De Morgan)
& (-pVv-g) V (rvr) (Idempotence)
< (pVvr)V (mgVr) (Associativity, Commutativity)
s (p=>r) Vv (g=r1) (Implication)

6. (pvg) = r
< —(pvg) VvV r (Implication)
< (pA—g) VT (De Morgan)
< (-pVvr) A (-pVvr) (Distributivity)

< (p=r)A(g=r1) (Implication)

416 Temporal Properties

Chapter 2

Exercise 2.1 (page 59)

1. {1,357}
2. {Tuesday, Thursday, Friday, Saturday }.

3. {Catherine of Aragon, Anne Boleyn, Jane Seymour,
Anne of Cleves, Catherine Howard, Catherine Parr }.

4. {Sean Connery, George Lazenby, Roger Moore,
Timothy Dalton, Pierce Brosnan, Daniel Craig }.
Exercise 2.2 (page 60)
1. {2,4,6,8,10}.
2. {1,2}.

Exercise 2.3 (page 60)

1, 3 and 5 are true, while 2 and 4 are false.

Exercise 2.4 (page 60)

A=F and C=D.

Exercise 2.5 (page 62)

1 is true, while 2 and 3 are false.

Exercise 2.7 (page 65)

If R € R, then by definition of R we would have R ¢ R, which cannot be
true. Therefore we must have that R ¢ R.

This is no longer a problem, as R ¢ R now means that either R ¢ A or
R € R; since we know that R ¢ R, this simply means that R ¢ A.

Exercise 2.15 (page 69)

The Venn diagram is depicted in Figure 15.2
.AnC = {5,7,9}.

.(AnB)uC = {3,5,6,7,8,9}.

. An(BuUC) = {3,5,7,9}.
.(AuB)\C = {1,3,4}.
.(AuB)nC = {6, 8}.

oo W N

Additional Exercises 417

4 N
- /
Figure 15.2: Venn diagram for Exercise 2.15.

Exercise 2.16 (page 69)
You can use Venn diagrams to verify these properties.

1.TfAC B, then AUB =B and AN B = A.
2. If AC B, then BC A.

3. A=A

4. 1fCC Aand C C B, then C C AN B.

5.1f AC C and BC C, then AUBC C.

Exercise 2.17 (page 71)
Letting D = Daniel, E = Ella, M = Mia, R = Rhodri and Z = Zoe, we get
P({D, E,M, R, Z})
= {0,
{DhLAE}L M} {R}, {2},
{D, B}, {D, M}, {D, R}, {D, Z},

{8, M}, {B, R}, {B, Z},
{M,R}, {M,Z}, {R, Z},

{D,E,M}, {D,E, R}, {D,E, Z},
{D,M,R}, {D,M,Z} {D,R, Z},
{E,M,R}, {E,M,Z}, {E,R,Z}, {M, R, Z},

{D,E,M,R}, {D,E,M, Z}, {D, E,R, Z},
{D,M,R,Z}, {E, M,R, Z},

{D,E,M,R, Z}}.

More specifically, there are the following subsets:

418 Temporal Properties

e one subset with no elements (the empty set);

e five singleton subsets (one for each element in the set);

o ten subsets with two elements (one for each pair);

e ten subsets with three elements (one for each pair left out);

e five subsets with four elements (one for each element left out); and

e one subset with five elements (the whole set itself).

Exercise 2.18 (page 71)

1. A=P(0) = {0} contains 1 element.
2. B="P(A)={0, {0}} contains 2 elements.
3. C=P(B)={0, {0}, {{0}}, {0, {0}}} contains 4 elements.

Exercise 2.19 (page 71)
P(A)ND = 0 and P(A)N{0} = {0}

Exercise 2.20 (page 73)

N Psa (A) = 0 and UPs, (4) = A.

Note that the union of infinitely-many finite sets may well be infinite,
although the union of finitely-many finite sets will of course be finite.
Exercise 2.23 (page 75)

(p,q) + (r,8) = (ps+gr,qs) and (p,q) x (r,8) = (pr,qs).

Exercise 2.24 (page 76)

Consider the following sets of people:
Love = the set of people who love cold mutton.
Police = the set of policemen on this beat.

the set of people who sup with our cook.

Sup
Long = the set of long-haired people.
Poet = the set of poets.

NoPrison = the set of people who have never been to prison.

Cousin = the set of cousins of our cook.

The above seven assumptions then translate to the following set inclusions:

1. Police C Sup.

Additional Exercises 419

. Long C Poet.

. Amos € NoPrison.

2
3
4. Cousin C Love.
5. Poet C Police.
6. Sup C Cousin.
7

. NoPrison C Long.

We can then conclude that Amos € LoOvVE, that is, that Amos Judd loves
cold mutton, as follows:

Amos € NoPrison (by 3).
by 7, NoPrison C Long).
by 2, Long C Poet).

(
Thus Amos € Long (
(

Thus Amos € Police (by 5, Poet C Police).
(
(
(

Thus Amos € Poet

by 1, Police C Sup).
by 6, Sup C Cousin).
by 4, Cousin C Love).

Thus Amos € Sup
Thus Amos € Cousin
Thus Amos € Love

The last line is the conclusion that we sought. (Again, along the way, we
also deduced that Amos Judd has long hair; he is a poet; he is a policeman
on this beat; he sups with our cook; and he is a cousin of the cook.)

Exercise 2.25 (page 77)

Let B stand for the set of all babies, I for the set of all illogical persons, D
for the set of despised persons and C for the set of those persons who can
manage a crocodile. Then the premises become :

BCI, CnD=0, and ICD

which are reflected in the following Venn diagram:

[@e

It is clear from this that no baby can manage a crocodile, as a baby would
be illogical (B C I) and hence despised (I C D); and no despised person,
such as this baby, could manage a crocodile.

420 Temporal Properties

AU(BNnC) = (AUB)N(AuC) An(BuC) = (AnB)U(ANCQ)

Figure 15.3: Venn diagram for Exercise 2.27.

Exercise 2.26 (page 77)

Consider the following Venn diagram:

U

7 P F' = things full of water
.’ O = oceans
P = ponds

The first premise in the argument says that O C F'; and the second premise
in the argument says that PN O = 0. These premises are satisfied by the
above Venn diagram. However, the conclusion of the argument says that
PN F =0, which is not (necessarily) satisfied by the above Venn diagram.

The argument is thus not valid, as the above Venn diagram suggests a
counter-example to the argument: there may well be ponds which are not
oceans yet are nonetheless full of water.

Exercise 2.27 (page 80)

The two Venn diagrams are depicted in Figure 15.3.

Exercise 2.28 (page 80)

AN (AuB) = (AnA) U (AN B) (Distributive Law)
= QU (AnB) (Complement Law)
= (AnB)Nn D (Commutative Law)

ANB (Empty Set Law)

Additional Exercises 421

Exercise

Exercise

Exercise

Exercise

2.29 (page 81)

e By Associativity, Commutativity and Idempotence, (AN B)N A =
ANB.

e Letting X = AN B and Y = A, this says that X NY = X.
e This means that X C Y’; that is, that An B C A.

2.30 (page 83)

1. AC B if, and only if, B C A.
2. A= B if, and only if, (AC B) A (B C A).

2.31 (page 83)
We might naively translate the law
(P=Q) & PA-Q

into A Z B if, and only if, AN B = U. This law for sets is blatantly false:
AN B =U can only be true if A = and B = (; and this is certainly not
the only situation in which we can have A ¢ B.

The problem arises from attempting to translate the negation of an im-
plication. To get a correct law for sets corresponding to the given law for
propositions, we first simplify the law by negating both sides:

P=Q & —(PAQ)

Translating P = Q into A C B, and expressing -(PA—=Q) as PA—-Q < F
gives rise to the following valid law for sets:

A C B if, and only if, AN B = 0.

Chapter 3

3.3 (page 89)

It is straightforward, if a bit tedious, verifying that each of these laws holds
for every combination of values of z, y and z. For example, to verify that
the first Distributivity Law

4 (yxz) = (a+y) x (z+2)

is true, we need only use the tables defining + and X to check the following
eight equations are true (one for each of the eight combinations of values for
z, y and 2):

422 Temporal Properties

0+ (0x0) = (0+0) x (0+0) 14 (0x0) = (1+0) x (140)
0+ (0x1) = (0+0) x (0+1) 1+ (0x1) = (140) x (1+1)
0+ (1x0) = (0+1) x (0+0) 1+ (1x0) = (141) x (1+0)
0+ (1x1) = (0+1) x (0+1) 14 (1x1) = (1+41) x (141)

The details are omitted.

Exercise 3.9 (page 92)

Since 04+1 = 1 (by Identl) and 0x1 = 0 (by Ident2), the Uniqueness of
Complement Theorem 3.8 says that 0' = 1.

But then 1’ = (0')' = 0 by the Involution Law (Theorem 3.9).

An alternative proof which avoid the use of the Uniqueness of Comple-
ment Theorem is as follows:

0 = 0'+0 (Ident1) 1 =1-1 (Ident2)
=0+0 (Comm1) =1-1 (Commz2)
=1 (Compl1) =0 (Compl2)

Exercise 3.10 (page 93)

1. (zy+2'y) = (@ +y)(z+y) (De Morgan, Involution)

zz' +zy' + 'y + yy' (Distr, Comm, Assoc)

zy' +z'y (Compl, Ident,
Comm, Assoc)

2. Assume that z+y =z +2 and z'+y=2'+ 2. Then
zy = zz' + 1Yy (Compl2, Ident1, Comm1)

z(z' +y) (Dzistr2)

z(z' + z) (Assumption 2)

zz' + z2 (Dzistr2)
= 2z (Compl2, Ident1, Comm1)
Thus, with Assumption 1, we have from Theorem 3.7 that y = z.
3.Ifz+y=0thenz'=z+y+2' =(z+z)+y=1+y=1,s0z=0.
By similar reasoning, if £ + y = 0 then y = 0.
4. If z = 0 then 2’ = 1 and thus y = 0y’ + 1y = zy' + z'y.

Conversely, if y = zy' + z'y for all y, then taking y = 0, and thus
Yy =1 wegetthat 0 =zy'+2'y=21+20=1z.

Additional Exercises

423

Exercise 3.11 (page 94)

S oW

Exercise 3.14 (page 99)

We start by expressing = @ y in terms of the three basic operations:
TOY

The circuit for this is then as follows:

= (z+y)(zy)

Exercise 3.15 (page 99)

T —a

Y —a

If zy=1 then z=y=1.

(@) (E+y) = (@) (@ +y).

2. If zy = zz and 7'y = 2’z then y = 2.

.z =1 if and only if, y = (z+y')(z'+y) for all y.

2=y

We start by annotating the diagram with variables for all of the intermediate

values which are computed:

We can then calculate the intermediate and final values by considering their
Boolean expressions:

TN 8 g oeg

bl

a+ u
b+ v

az
y+ 2

a b c u v w z Yy z T
000 11 11 00 0
001 10 1 0 10 1
010 01 01 00 0
011 00 01 00 0
1 00 11 1 1 01 1
101 10 10 10 1
110 01 11 01 1
111 00 11 11 1

424 Temporal Properties

Exercise 3.16 (page 99)

The output R to be computed is given by the formula R = M(B' + C"),
which by De Morgan’s Law can be rewritten as R = M(BC)'. Thus either
of the following two Boolean circuits will give a valid implementation.

%DED

M(B' +C") R = M(BC)

Exercise 3.17 (page 102)

29 4+ 22 = b1.

Chapter 4

Exercise 4.2 (page 111)

1. {z : Even(z)} = {z€Z : = is even}
= {...,—6,-4 -20,24,6, ...}

2. {z : EvenPrime(z)} = {2}.

3. {z : DeadlySin(z)} = {lust, gluttony, greed,
sloth, wrath, envy, pride}.

4. {z : Sum(z,y,2)} = {(z,9,2)€Z :z+y=2z2}

5. {z : Sum(u,5,v)} = {(w,v)€Z2: u+5=v}

={.(-32),(-23), (-1,4),
(0,5), (1,6), (2,7), (3,8), ... }.
Exercise 4.5 (page 115)
1. Vavy (B(z) A F(y) = L(z,v)).
2. VzVy (B(z) A L(z,y) = F(y)).
3. vzvy (F(y) A L(z,y) = B(z)).

Exercise 4.7 (page 117)
1. Vz (Male(m) ® Female(z)).

2. V;E(Hy Mother(z,y) = Parent(z,y) A Female(:c)).

Additional Exercises 425

3. VzIm3fVy ((Mother(y,a:) < y=m) A (Father(y,z) & y:f)).
4. VzVy (Sibling(a:, y) = Vz(Parent(z,z) & Parent(z,y)))

5. Vz Vy (Cousin(z,y) =
Ju Jv (Parent(u,z) A Parent(v,y) A Sibling(u, v))).

Exercise 4.8 (page 117)
The premise of the argument translates into
Vh(Horse(h) = Animal(h))

which says that any thing A which is a horse is an animal.

The conclusion of the argument translates into

Va:(ﬂh(Horse(h) A Head(z,h)) =
Ja(Animal(a) A Head(z, a)))

which says that any thing z which is the head of some horse A is the head
of some animal a.

This argument is valid: for suppose z is the head of some horse A (Black
Beauty, say). Since the premise says that all horses are animals, this par-

ticular horse h (Black Beauty) is an animal; and hence this thing z is the
head of some animal a, namely h (Black Beauty).

Exercise 4.9 (page 120)

1. e (T(Alice,c) N T(Bob,c))
2. dg (T(Alice, ¢1) A T(Bob,c)
A ey (T(Alice,c2) N T(Bob,cz) A c1 # cz))

Exercise 4.10 (page 121)
1. Jdz LikesMaths(z), where LikesMaths(z) = “z likes maths”.
Its negation is (b).

(a) 3z ~LikesMaths(z).
(b) Vz —LikesMaths(z).
(c) Vz LikesMaths(z).

2. Vo (Fur(z) A Tail(z)), where Fur(z) = “z has fur” and Tail(z) =
“z has a tail”.

Its negation is (c).

(a) =3z (Fur(z) A Tail(z)).

426 Temporal Properties

(b) Jz (=Fur(z) A = Tail(z)).
(c) 3z (—~Fur(z) Vv —Tail(z)).

3. Vz (—Vaccinated(z) = Sick(z)), where Vaccinated(z) = “z has
been vaccinated” and Sick(z) = “z got Sick”.

Its negation is (c).

(a) Vz (Vaccinated(z) = —Sick(z)).
(b) 3z (Vaccinated(z) A Sick(z)).
(c) 3z (—Vaccinated(z) A —Sick(z)).

Exercise 4.12 (page 125)

Let Loves(z,y) = “z loves y”, where the universe of discourse is the set of
people.

1. Everybody loves somebody: Vz 3y Loves(z,y).
Somebody is loved by everybody: 3JzVy Loves(y,).

These English statements are ambiguous, as each may be interpreted
as saying precisely what the other is saying. However, the likely inter-
pretation for each is as formalised in predicate logic above.

This argument is mot valid. For example, perhaps Alice only loves
herself, but everyone else loves Bob (including Bob himself); in this
scenario, the premise is true, but the conclusion is false.

2. Somebody loves everybody: Iz Vy Loves(z,y).
Everybody is loved by somebody: Vz Iy Loves(y,).

This argument is valid. The premise of the argument says that there
is some person — Theresa say — who loves everybody. This means that
the conclusion of the argument must be true as well: everybody is
loved by someone, in particular by Theresa.

Exercise 4.13 (page 127)

2/9 8|1 3 5|4 67
4/1 718 9 6|2 3|5
36 5|2 7 4]9 81
7 4915 2 3|6 1|8
82 3|9 6 1|7 5 4
6 5 1|7 4 8|3 9|2
1 3416 8 7|5 2|9
5/7 2|3 1 9|84 6
9/8 6]4 5 2|1/ 7 3

Additional Exercises 427

Chapter 5

Exercise 5.2 (page 134)

Fact 15.14

AUBCC = ACC A BCC.

Proof: Assume that AU B C C; we must show that AC C A B CC.
This means that we must show both A C C and B C C.

We consider A C C first. By the definition of the set inclusion A C C,
we choose an arbitrary element z € A and we show that z € C. Since z € A,
it is thus also the case that € A U B. Hence, by our assumption, z € C.
We have thus shown that A C C.

The proof that B C C is very similar. O

Exercise 5.3 (page 136)

Fact: If a and b are both odd integers, then ab is an odd integer.
Proof: Assume that a and b are odd integers.
An odd integer is one more than twice an integer.
Thus a = 2p+1 and b = 2¢+1 for some integers p and gq.
Hence ab = (2p+1)(2¢+1) = 4pg+2p+2g+1
202pg+p+q)+1
= 2k+1 for the integer k = 2pg + p + gq.

Therefore, ab is an odd integer. O

Exercise 5.5 (page 138)

If the sum of the digits of a number is divisible by 3, then that number itself
is divisible by 3.

e The sum of the digits of 45 is 4+5 = 9, which is divisible by 3; so by
modus ponens, 45 itself is divisible by 3.

e The sum of the digits of 9839 853 is 9+8+3+9+8+5+3 = 45, which is
divisible by 3; so by modus ponens, 9839 853 itself is divisible by 3.

Exercise 5.9 (page 141)

Fact: There is no smallest positive rational number.

428 Temporal Properties

Proof: Assume to the contrary that a > 0 is the smallest rational number.

Then b = a/2 is a positive rational number which is smaller than a,
contradicting our assumption that a is the smallest such number.

Hence there cannot be a smallest positive rational number. a

Exercise 5.10 (page 142)

Fact: Every integer greater than 1 can be written as a product of prime
numbers.

Proof: Assume to the contrary that not all integers greater than 1 can be
written as a product of prime numbers,

Let n be the smallest such integer; thus, every smaller integer greater
than 1 can be written as a product of primes.

By assumption, n cannot be prime, so n = pq where p and ¢ are two
smaller integers greater than 1.

Since p and ¢ are smaller than n, they must themselves each be a
product of primes.

But then n must be a product of primes as well. namely the product
of those primes making up p and g, contradicting the definition of n.

Hence every integer greater than 1 can be written as a product of prime
numbers. O

Exercise 5.13 (page 145)

Fact: If a and b are integers and ab is even, then either a is even or b is even.

Proof: Assume that a and b are integers and that ab is even. That is,
ab = 2p for some integer p.

Suppose that a is odd; that is, suppose that a = 2¢+1 for some integer gq.

Then ab = (2¢+1)b = 2¢b + b; and since ab = 2p, this means that
2p = 2¢b+ b, and thus that b = 2p — 2gb = 2(p — ¢b).

Since p — ¢b is an integer, this means that b must be even.

Thus, if a is not even, then b must be even; that is, either a or b is even.

Additional Exercises 429

Exercise 5.14 (page 146)

Fact: If A C B then eitherz ¢ Aorz € B.

Proof: Assume that A C B.

Suppose that z € A; that is, that it is not the case that z ¢ A.
Then since A C B, we must have that z € B.

Thus, either z ¢ A, or z € B.

Exercise 5.15 (page 147)

Fact: For real numbers a and b, |a +b] < |a| + [b].

Proof: Since |a+b| = |b+al, we can assume without any loss of generality
that |a| > |b|.
e Hither a and b have the same sign — that is, they are both nonnegative
(i.e., greater than or equal to 0) or they are both negative;

e or a and b have opposite signs — that is, one is nonnegative and the
other is negative.

We shall consider these two cases in turn.

e If o and b have the same sign, then |a +b] = |a| + [b] < |a|+ |b].
e If o and b have opposite signs, then |a +b| = |a| — |b] < |a| + |b]-
In either case, the result is true. O

Exercise 5.16 (page 147)

Fact: If n is an integer, then the final digit of n2is 0, 1, 4, 5, 6 or 9.

Proof: We can prove this by breaking down the problem into cases de-
pending on the final digit of n:

o If the final digit of n is 0, then the final digit of n? will be 0.
e If the final digit of m is 1 or 9, then the final digit of n? will be 1.
If the final digit of n is 2 or 8, then the final digit of n? will be 4.
e If the final digit of m is 3 or 7, then the final digit of n? will be 9.
If the final digit of n is 4 or 6, then the final digit of n? will be 6.
o If the final digit of n is 5, then the final digit of n? will be 5.

This exhausts all possibilities for the final digit of n, and hence the result
must be true. |

430 Temporal Properties

Exercise 5.17 (page 147)

Saying that it is not the case that £ # 7 and y # 8 means that either z =7
or y = 8, not that both of these equalities holds.

Exercise 5.18 (page 149)

Fact: If A and B\ C are disjoint then AN B C C.

Proof: Assume that A and B\ C are disjoint. From this assumption, we
need to prove that AN B C C; that is, that for any z, if z € AN B then
zeC:

Vz(z € ANB = z€C).
To this end, let a be an arbitrary value.

To show that a € AN B = a € C, we assume that a € AN B and
prove from this assumption that a € C.
Assume then that a € AN B; that is, that a € A and a € B.

Since A and B\ C are disjoint (from a premise of the proposition) and
a € A, we must have that a ¢ B\ C.

But since a € B, a ¢ B\ C means we must have that a € C. O

Exercise 5.19 (page 151)

Fact: Vz>03y(y(y+1) =z).
Proof: Let £ > 0 be arbitrary, and let y = %(-1+ «/1+4m).

Theny(y+1) = 3(—1++v1+4z) (3(-1+ Vi+4z) +1)
- v) (Vi +)
= H(+42)-1) = j(4z) = 3 O

Where did this value of y come from? Given z>0, we want a value y
satisfying y(y+1) = z, or in other words, by expanding and rewriting this
equation, a solution y to the quadratic equation

v*+y—z = 0.

The quadratic formula tells us that the two values for y which solve this
equation are

-1 + /1+4z
—

Additional Exercises 431

Only one of these two solutions is positive as required, namely

y = 3(-1+V1+4z).

Exercise 5.20 (page 152)
Fact: dz (P(z) \Y Q(:E)) & Jz P(z) v 3z Q(z).
Proof: (=) Suppose Iz (P(:c) \Y Q(a:)).
Then P(a) Vv Q(a) holds for some a.
For this value a, either P(a) holds or Q(a) holds.

— If P(a) holds, then 3z P(z), and thus 3z P(z) Vv JzQ(z).
— If Q(a) holds, then 3z Q(z), and thus Iz P(z) Vv Iz Q(z).
In either case, 3z P(z) VvV Iz Q(z).
(<) Suppose 3z P(z) Vv Jz Q(z).
Then either 3z P(z) holds, or 3z @Q(z) holds.
— If 3z P(z) holds, then P(a) holds for some value a.
For this a, P(a) vV Q(a) holds, and so 3z (P(z) \Y Q(m))
— If 3z Q(z) holds, then Q(a) holds for some value a.
For this a, P(a) vV Q(a) holds, and so 3z (P(:z:) \Y% Q(z)).

Thus, in either case, 3z (P(m) \Y Q(a:)) O

Exercise 5.22 (page 153)

Fact: There is a unique set A such that, for every set B, AU B = B.

Proof: To show existence of such a set, we simply note that the empty set
0 clearly has the desired property, as § U B = B for every set B.

To show that @ is the only set with this property, assume that some
set A satisfies this property; in particular, taking B = @, this means that
AUD=0. But then A= AU0 =0. O

Chapter 6

Exercise 6.2 (page 158)

1. range(score) = {486, 54, 59, 64, 68, 75, 78, 88, 92, 100 }.
2. score”}({n € N : n >70}).

432 Temporal Properties

Exercise 6.3 (page 158)

1.

Mother is a function as every person has one and exactly one (biolog-
ical) mother.

. Parent is not a function as people have two parents not one.
. Child is not a function as a person may have any number of children.

. FurstBornChild is not a function as a person may have no children.

Exercise 6.4 (page 160)

graph(f) = {(176): (270‘)! (37C) }

Exercise 6.5 (page 161)

1.

The function score is not one-to-one as, for example, score(Collins) =
score(Parker). Also, score(Evans) = score(Williams).

. The function f : R — R defined by f(z) = 22 is not one-to-one as, for

example, f(—1) = f(1). (In fact, f(z) = f(—z) for any value z € R.)

. The function f: N — N defined by f(z) = z? is one-to-one.

Exercise 6.6 (page 161)

. The function score is not onto as, for example, no one has scored 0.

. The function f: R — R defined by f(z) = z? is not onto as f(z) >0

for all z € R so, for example, for no z € R do we have 2 = —1.

. The function f : N — N defined by f(z) = z? is not onto as, for

example, for no z € N do we have z2 = 3.

Exercise 6.7 (page 161)

f1 is one-to-one but not onto, as there is an element of the codomain
(the third element from the top) which is not in the range of the
function.

f2 is onto but not one-to-one, as f» maps two elements of the domain
(the top and bottom elements) to the same element of the codomain
(the middle of the three elements).

f3 is not one-to-one, as it maps two elements of the domain (the first
two elements) to the same element of the codomain (the third element
from the top); nor is f; onto, as there is an element of the codomain
(the second element from the top) which is not in the range of the
function.

fa is both one-to-one and onto,

Additional Exercises 433

Exercise 6.8 (page 163)

a b ¢ d e f 9 n i J k I m
r 717 v 17 v+7 17117717 °7v 7171
T 7 e p d t o v V4 S b m]
n o] D q T S t u v w T Yy z
T 17T 717 7V 70T 0T TT
w r ¢ n u f ¢ h I 9 Y a k
Exercise 6.9 (page 164)
gof

Exercise 6.10 (page 165)

If f: A— Bandg: B — C are both bijections, then they are both one-to-
one and onto. Therefore, go f : A — C is both one-to-one (by Theorem 6.9)
and onto (by Theorem 6.10), and thus it is a bijection.

Exercise 6.11 (page 165)

Let a € A be arbitrary. By the definition of the inverse of a bijection,
Definition 6.7 (page 162), if f7*(f(a)) = z then f(z) = f(a). Since f is
one-to-one, this means that z = a. Hence f~!(f(a)) = a for any a € 4; that
is, f1o f = ida.

Let b € B be arbitrary. Again by Definition 6.7, if f(f (b)) = y then
y = b. Hence f(f1(b)) = b for any b € B; that is, fo f~! = idp.

Exercise 6.12 (page 166)
(ho(go f))(@) =h((go) = h(g(f(z)))
= (hog)(f(z)) = ((hog)o f)(a).

Exercise 6.14 (page 170)

. 2n—1, if n > 0;
fin) = .
—2n, if n<0

434 Temporal Properties

Exercise 6.15 (page 170)

Take h = go f~! which, by Exercise 6.10, is guaranteed to be a bijection.

Exercise 6.16 (page 172)

Given the bijection f : N — Q* from Example 6.15, the function ¢ : N — Q
defined by

0, if n=0,

n—1 : ;
5=, if n>0isodd,
g(n) = f(2)

—f (%), if m > 0is even,
is a bijection.

Exercise 6.17 (page 173)

Consider any element a € A.

e If a € B then by definition of B, a ¢ f(a), so B # f(a).

e If a ¢ B then by definition of B, a € f(a), so again B # f(a).
We thus have that B # f(a) for every a € A, that is, f cannot be onto.

Exercise 6.18 (page 174)
Let S={1,2}, and let f: P(S) — P (S) be defined by:

f0) = f{1}) = {1} and f({2}) = f(S) = {2}
The subsets {1} and {2} are clearly fixed points of f, and are the only fixed
points of f. As {1} ¢ {2} and {2} Z {1}, these are neither greatest nor
least fixed points.

Exercise 6.20 (page 176)
1. If SC T, then

F(S)={0}u{n+2 : ne S}
C{0}u{n+2 :neT} = f(T).

2. f(@)=A0} FN) =N\{1}
fA0)={0,2} fA(N)=N\{1,3}
fs(m):{01214} fS(N):N\{113:5}

0 =40,2,...,2n—2} f*(N)=N\{1,3,...,2n—1}

Additional Exercises 435

3.L =G ={0,2,4,6,... }.

Chapter 7

Exercise 7.1 (page 180)

1. Q = {r € BondFilms : r was directed by Lewis Gilbert }
= {r03, r06, r07 }.
2. Q = {r € BondFilms : r was released in the 1970s }

{r05, r06, r07 }.

Exercise 7.3 (page 183)

StarsIn = {(Sean Connery, Dr. No),
(Sean Connery, Thunderball),
(Sean Connery, You Only Live Twice),
(George Lazenby, On Her Majesty’s Secret Service),
(Sean Connery, Diamonds Are Forever),
(Roger Moore, The Spy Who Loved Me),
(Roger Moore, Moonraker),
(Roger Moore, For Your Eyes Only),
(Sean Connery, Never Say Never Again),
(Roger Moore, Octopussy),
(Roger Moore, A View to a Kill),
(Timothy Dalton, The Living Daylights),
(Timothy Dalton, Licence to Kill),
(Pierce Brosnan, Golden Eye),
(Pierce Brosnan, Tomorrow Never Dies),
(Pierce Brosnan, The World Is Not Enough),
(Pierce Brosnan, Die Another Day),
(Daniel Craig, Casino Royale),
(Daniel Craig, Quantum of Solace),
(Daniel Craig, Skyfall) }.

Exercise 7.5 (page 184)

Letting SC, GL, TD, PB, and DC stand for Sean Connery, George Lazenby,
Roger Moore, Timothy Dalton, Pierce Brosnan and Daniel Craig, respec-
tively, the binary relation Before consists of the following pairs:

Before = { (SC,SC), (SC,GL), (SC, RM), (SC, TD),

436 Temporal Properties

(sC, PB), (SC,DC), (GL,SC), (GL, RM),
(GL, TD), (GL, PB), (GL, DC), (RM, SC),
(RM, RM), (RM, TD), (RM, PB), (RM, DC),
(TD, TD), (TD, PB), (TD, DC), (PB, PB),
(PB, DC), (DC, DC) }.

This binary relation can be visualised as follows:

(3

RM

TD—>PB

The binary relation FirstBefore consists of the following pairs:

FirstBefore = { (SC, GL), (SC, RM), (SC, TD),
(SC, PB), (SC, DC), (GL, RM),
(GL, TD), (GL, PB), (GL, DC),
(RM, TD), (RM, PB), (RM, DC),
(TD, PB), (TD, DC), (PB, DC) }.

This binary relation can be visualised as follows:

e —

Exercise 7.6 (page 185)

Child = {(Donald, Quackmore), (Donald, Hortense),
(Della, Quackmore), (Della, Hortense),
(Huey, Della), (Louis, Della), (Dewey, Della) }

Additional Exercises 437

Brother = {(Scrooge, Hortense), (Donald, Della),
(Huey, Louis), (Huey, Dewey), (Louis, Huey),
(Louis, Dewey), (Dewey, Huey), (Dewey, Louis) }
Sister = {(Hortense, Scrooge), (Della, Donald) }
Sibling = {(Scrooge, Hortense), (Hortense, Scrooge),
(Donald, Della), (Della, Donald),
(Huey, Louis), (Louis, Huey),
(Huey, Dewey), (Dewey, Huey),
(Louis, Dewey), (Dewey, Louis) }

The Chald relation can be visualised as follows.

Quackmore Hortense Scrooge
Donal>< Della
Huey Louis Dewey

Exercise 7.7 (page 187)

1. R1 @] Rg == R3.
2. R3 n E = R1 .
3. R3 \ Rl == Rg.

Exercise 7.8 (page 188)

Sibling™! = Sibling.

Exercise 7.9 (page 189)

e Uncle = Parento Brother (an uncle is a brother of a parent).
In the case of the Duck family, we have:

Uncle = { (Scrooge, Donald), (Scrooge, Della),
(Donald, Huey), (Donald, Louis), (Donald, Dewey) }.

The first two pairs arise from the fact that Scrooge is a brother of
Hortense, who is a parent of Donald and Della.

The final three pairs arise from the fact that Donald is a brother of
Della, who is a parent of Huey, Louis and Dewey.

438 Temporal Properties

Exercise

Exercise

Exercise

Exercise

e Nephew = Sibling o Son (a nephew is a son of a sibling).

In the case of the Duck family, we have:

Nephew = { (Donald, Scrooge), (Huey, Donald),
(Louis, Donald), (Dewey, Donald) }.

The first pair arises from the fact that Donald is a son of Hortense,
who is a sibling of Scrooge.

The final three pairs arise from the fact that Huey, Louis and Dewey
are sons of Della, who is a sibling of Donald.

7.10 (page 190)

This follows easily from property (%) of Theorem 7.6.

7.11 (page 191)

The relation Before is not reflexive, as George Lazenby is not related to
himself by this relation. (Having starred in only one film, he could not have
appeared in one film before starring in another film.)

The relation Before is also not irreflexive, as all of the other actors who
have played James Bond have done so on more than one occasion, so each
of them is related to himself by the Before relation.

The relation FirstBefore is irreflexive (and thus it is not reflexive), as an
actor could not have starred as James Bond before starring as James Bond.

7.12 (page 191)

The relation Before is not symmetric; for example, it contains the pair
(SC,TD) but not the pair (TD,SC). Nor is it antisymmetric; for example, it
contains the pairs (SC,GL) and (GL,SC), and SC#GL.

The relation FirstBefore is not symmetric; for example, it contains the
pair (SC,GL) but not the pair (GL,SC). However, it is antisymmetric: given
two James Bond actors, one of the two will not have starred as James Bond
before the other.

7.13 (page 192)

The relation Before is not transitive; for example, it contains the pairs
(RM,SC) and (SC,GL), but not the pair (RM,GL).

The relation FirstBefore is transitive: if one actor starred as James Bond
before a second actor, who in turned starred as James Bond before a third
actor, then the first actor will naturally have starred as James Bond before
the third actor.

Additional Exercises 439

Exercise 7.14 (page 192)
The is-an-ancestor-of relation is
e not reflexive, but in fact irreflexive, as a person cannot be their own
ancestor;

e not symmetric, but in fact antisymmetric, as a person cannot be an
ancestor of their own ancestor; and

e transitive, as an ancestor of an ancestor is again an ancestor.
The 2s-married-to relation is

e not reflexive, but in fact irreflexive, as a person cannot be married to
themselves;

e symmetric, and not antisymmetric, as the person you are married to
is of course married to you; and

e not transitive, as otherwise a married person, by symmetry, would
then have to be married to themselves.

Exercise 7.18 (page 194)

1. This is a partial order but not a total order; and it is an equivalence
relation.

2. This is not a partial order (it is not antisymmetric), and hence not a
total order; but it is an equivalence relation.

3. This is not a partial order (it is not antisymmetric), and hence not a
total order; but it is an equivalence relation.

Exercise 7.19 (page 194)

R, is an equivalence relation, as it is clearly reflexive (a student takes all
the same courses as themselves), symmetric (if z takes all the same courses
as y then y takes all the same courses as z) and transitive (if z takes all the
same courses as y and y takes all the same courses as z then z takes all the
same courses as z).

R, is not an equivalence relation, as it is not transitive (though it is
reflexive and symmetric). For example, Alice and Bob might take the same
Mathematics course, and Bob and Carol might take the same Computing
course, while Alice and Carol do not take any of the same courses.

Exercise 7.21 (page 195)

The finest partition of a set A consists of singletons: {{a} : a € A}.

The coarsest partition of a set A consists of one set: { A}.

440 Temporal Properties

Exercise 7.23 (page 196)

The equivalence relation defined by the finest partition of a set A is the
identity relation: I, = {(a,a) : a€ A}.

The equivalence relation defined by the coarsest partition of a set A is the
universal relation: Uy = {(a,b) : a,b€e A}

Exercise 7.24 (page 196)

The relation R partitions the set A into the following 18 equivalence classes:

[1]={1} 2] ={2 4,8, 16} 3] ={3,09,27}

5] = {5, 25} 6]={6,12,18,24} [7]={7}

[10]={10,20} [11]={11} [13] = {13}

[14] = {14,28} [15]={15} 17 = {17}

[19] = {19} [21] = {21} [22] = {22}

23] = {23} [26] = {26} [29] = {29}
Chapter 8

Exercise 8.1 (page 203)

4 € N: By clause (1), 0 € N, so by clause (2), 1 € N; so by clause (2), 2 € N;
so by clause (2), 3 € N; and so finally by clause (2), 4 € N.

4.5 ¢ N: Since 4.5 # 0, clause 1 does not apply, so we could only infer that
4.5 € N from clause (2), and thus from first inferring that 3.5 € N;
but by a similar reasoning we could only infer this by first inferring
that 2.5 € N; which we could only infer by first inferring that 1.5 € N;
which we could only infer by first inferring that 0.5 € N; which we
could only infer by first inferring that —0.5 € N; which we could only
infer by first inferring that —1.5 € N; et cetera ad infinitum. This
process would never “bottom out”, so we could never infer that any
of these were in N.

Alternatively, we can easily see that the set {0, 1, 2, 3, 4, ...} satisfies
clauses (1) and (2) of the definition; and since N is being defined to be
the smallest set satisfying these clauses, N must be a subset of this;
since this set does not contain 4.5, 4.5 ¢ N.

Additional Exercises 441

Exercise

Exercise

Exercise

Exercise

Exercise

Exercise

8.2 (page 204)

ODD is defined to be the smallest set satisfying the two clauses. The fact
that N satisfies these two clauses only implies that Opp C N; that is, N is
not necessarily (and in fact is not) the smallest such set.

8.3 (page 204)

POWERS-OF-2 is the smallest set satisfying the following:

1. 1 € POWERS-OF-2.

2. If n € POWERS-OF-2 then 2n € POWERS-OF-2.

8.4 (page 205)
Given a set A, the smallest set P(A) satisfying:

1. 0 € P(A); and
2. if X € P and a € A then X U {a} € P(A)

is the set of all finite subsets of A. This is the same as the powerset P(A)
of A only in the case when A is a finite set.
8.5 (page 207)

PosDecCIMALNUMBERS is inductively defined as the smallest set satisfying
the following:

1. 1,2,3,4,5,6,7,8,9 € PosDECIMALN UMBERS;

2. If w € PosDECIMALNUMBERS and z € DECIMALDIGITS

then wz € POosDECIMALNUMBERS.
8.6 (page 208)
The following is a BNF equation for formulz of predicate logic.

D,q = true|false | P(zi,...,2,)

|-p | pVa | pAg | p=>q | psq | Vzp | zp

Here, P(z1,...,2,) is taken to range over the set of predicates with free
variables taken from z,,...,z, and z is taken to range over all variables.
8.7 (page 212)

The dictionary data structure can be defined using the following BNF equa-
tion:

442 Temporal Properties

d = % ‘ N(’w,dl,dg)

where w ranges over words (representing names). That is, a dictionary is
either a leaf (if it is empty), or it consists of a name along with two sub-
dictionaries d; and d,. (Note that the semantic understanding of a dictio-
nary, i.e., the property that the stored names are ordered lexicographically
throughout the dictionary, is not reflected in this data structure definition,
only its syntactic structure.)

Exercise 8.8 (page 213)

es1 — s+ 21 - 1=042-1=1
o5y =5 +22 - 1=1+4-1=14
o553 =5 +23 -1=44+6-1=09
o5, =53 +24—-1=09+8—-1=16
e ss = Sg+ 25— 1=164+10—-1 = 25
5 =5 + 26 - 1=25+12-1 = 36

It would appear (though it is as yet uncertain) that s, = n?.

Exercise 8.9 (page 213)

We could readily compute
H = 1+3+1+1+1+% =2 = 245
However, by the inductive definition we would proceed as follows:
o H = H+}=0+1=1
oH, = H+5=1+3=3 =15
o Hy=Hy+3 =3+3 =13 ~ 183

2735 %
e Hy = Hi+ % = M1 - 2% ~ 2083
e Hy — H+} = 541 - 137 + 503

o Hy = Hs+ g = 8111 =43 — 245

Exercise 8.10 (page 214)

At the start of month n you will have f, pairs of rabbits, where f, is the
nth Fibonacci number.

e For a start, at the start of month 1 you have 1 pair, and at the start
of month 2 you still have just the 1 pair. At the start of month 3,
though, you will have 2 pairs, and at the start of month 4 you will
have 3 pairs.

Additional Exercises 443

e In general, at the start of month n you will have f, = fn_1+ fa1
pairs of rabbits, as you will have as many pairs as you had at the start
of month n—1, namely f,_1, plus a new pair for each pair you had at
the start of month n—2, namely f,_».

Exercise 8.11 (page 215)
mult(m,0) =0; and

mult(m, s(n)) = add(mult(m, n), m).

Exercise 8.12 (page 215)

sum([]) = 0
sum(n: L) = n+ sum(L)
Thus for example,
sum([6,2,5]) = 6+ sum([2,5])
= 6+ 2+ sum([5])

= 6+2+5+ sum([])

=6+2+54+0
= 13.
Exercise 8.13 (page 215)
H-H—Lz = Lo

(h:L)+ Ly = h:(L+ Ly).

Exercise 8.14 (page 216)
fu(true) = fu(false) = 0
fu(P(z1,...,2,)) = {Z1,..,Zn }
fu(=p) = fu(p)
fulpva) = fulpng) = fulp=14q) = fulp) = fu(p) U fu(q)
fu(Vzp) = fu(3zp) = fu(p)\{z}

Exercise 8.15 (page 216)

By definition, f(n) = n—10 for each n > 100. Thus we need only consider
the value of f(n) for each n from 0 to 100 and verify that f(n) = 91 in each
case. We can do this starting from n = 100 and working down, using the
values we calculate along the way.

444 Temporal Properties

e f(100) = f(f(111)) = f(101) = 9L

o 7(99) = f(f(110)) = f(100) = o1.
o 7(98) = F(£(109)) = f(99) = O1.
o 7(91) = f(F(102)) = f(92) = O1.
o 7(90) = f(£(101)) = f(91) = o1.
. 7(89) = F(f(100)) = f(91) = o1.
. 7(88) = F(£(99)) = f(91) = o1.
. 71) = f(7(12)) = f(o1) = o1.

e f(0) = f(F(11)) = f(91) = 91.

Exercise 8.16 (page 218)
(inserta) [] = [a]

(inserta) (b: L) = ifa<b thena:(b:L) else b: ((inserta) L)

Exercise 8.17 (page 220)
Moving a pyramid of n discs can be done as follows.
1. If n=1 then simply move the single disc to the new peg. Otherwise do
the following.

2. Move the pyramid of n—1 discs sitting on top of the largest disc to a
different peg.

3. Move the largest disc to the other empty peg.
4. Move the pyramid of n—1 discs onto the disc holding the largest disc.
Note the two recursive calls in steps 2 and 4.

Carried out on a tower of five discs, this would require 31 individual
moves.

Chapter 9

Exercise 9.1 (page 226)

It would appear that the number of regions doubles every time a new spot is
added, so it is tempting to guess that 32 regions will be created by connecting
6 spots. In general, our intuition is suggesting that 2"~! regions are created
by connecting n spots, based on the evidence with n =1, 2, 3, 4 and 5.

Additional Exercises 445

Exercise

Exercise

Unfortunately for our intuition, this guess is wrong: no matter how hard
you try, you can only create 31 regions by connecting 6 spots.

In fact, the formula for the number of regions created by connecting n
spots is not 2", but the following rather astonishing formula:

n* —6n®+ 2:%22 —18n 424

Where does this formula come from? Starting with no lines, the circle
has just one region. Each time you draw a new line across the circle, you
increase the number of regions by 1 more than the number of existing lines
which this new line crosses. Thus the number of regions is one more than
the total number of lines added to the total number of intersections.

The number of lines you can draw using n spots is n(n—1)/2, which is
just the number of pairs of endpoints you can choose for the line; and the
number of intersections is n(n—1)(n—2)(n—3)/24, which is the number of
pairs of endpoints of two intersecting lines you could choose. The number
of regions created is thus

14 n(n;l) " n(n—l)(g;2)(n—3)

which simplifies to the formula given above.

9.2 (page 228)

She would assume that the 26th child would confirm that the first 26 num-

bers add up to 26%27, and from this show that the first 27 numbers add

27x28
2

up to as follows:

142434 --+27 = 14243+ -+ 26+ 27

27><(22—6 +1)

7 (%)
— 27x28
2

9.3 (page 228)

Young Gauss is reputed to have carried out the following calculation, all in

his head:
X 1+ 24+ 3+ -+~ + 48 + 49 + 50

+ 100 + 99 + 98 + --- + 53 + 52 + 51

101 + 101 + 101 + --- + 101 + 101 + 101

50 x 101 = 5050

446 Temporal Properties

That is, he had noted that the sum consists of 50 pairs of numbers, where
each pair sums to 101.

There are many stories about the prodigious Young Gauss; however —
without taking away from his greatness as a mathematician — his biographers
do note that these stories are mostly attributed to Old Gauss.

Exercise 9.4 (page 231)

1. For all n > 0,

Base Case:

Induction Step:

5 5 5 2 _ n(n+l)(2n+1)
1P+ 22 + 3 + -+ n? = Tt
Proof: By induction on n.
We note that
12 £ 22 432 4+ ... 402 = 0 w
We assume that, for some k,
2 2 2 2 k(k+1)(2k+1)
12 + 2243 + -+ k T

2. For all n > 0,

and from this inductive hypothesis we prove that

12+ 224 32 + - 4 K + (k+1)2

(k+1)(k-ié2)(2k+3)

That is, we demonstrate that if the statement of the theorem is
true when n = k, then it must also be true when n = k+1.

12 4+ 22 + 3% + ...

+ K+ (k+1)°

k(k+1)(2k+1) gy

(k+1

N—

.
(k 2k+1) + 6 k+1))
57

2k + Tk + 6))

-|—c'>

k

1) ((k+2)(2k+3)>
(k+1)(k-|(—32)(2lc+3)

1+4+3+5+ -+ (2n-1)

Proof: By induction on n.

Base Case:

Induction Step: We assume that, for some k,

We note that
14+3+5+ -+ (2(0)-1)

1+3+5+ -+ (2-1)

(by the inductive hypothesis)

n2.

Additional Exercises 447

and from this inductive hypothesis we prove that
1+3+5+4+---+ (2(k+1)—1) = (k+1)%

That is, we demonstrate that if the statement of the theorem is
true when n = k, then it must also be true when n = k+1.

14+3+5+ -+ (2%k-1) + (2(k+1)—1>

kK? + (2(k+1) — 1) (by the inductive hypothests)
=k +2 +1

(k+1)? O

3. Forallm >0,

12 4 23 + 34 + - + n(ns1) = MOEOE)

Proof: By induction on n.

Base Case: We note that

12 4 23 + 34 + - + 004+1) = o = ACH)(OF2)
Induction Step: We assume that, for some k,

12 4 23 + 34 + o+ k(k+1) = FEE)(ESD)

and from this inductive hypothesis we prove that

124234 34+ o+ (k1) (ks2) = FFDEIDEES)

That is, we demonstrate that if the statement of the theorem is
true when n = k, then it must also be true when n = k+1.

12 + 23 + 34 + - + k(k+1) + (k+1)(k+2)

— w + (k+1)(k+2) (by the inductive
hypothesis)

= ({42 g)

_ Mgz)(m) m

Exercise 9.5 (page 232)

Foralln >0, Fyx Fy x ---x F, = F,,; —2, where F, = 22" + 1.

Proof: By induction on n.
Base Case: For the base case (n=0), we note that

Fo =3=5—-2= F1*2.

448 Temporal Properties

Induction Step: For the induction step, we assume that, for some k,
FoxFyx - X Fy = Fry1—2
and from this assumption (the “inductive hypothesis”) we prove that
Fox Fy X -+ X Fypp = Fpio— 2.

That is, we demonstrate that if the statement of the theorem is true
when n = k, then it must also be true when n = k+1.

Fo x Fy X Fy X -+« X Fyy X Fiyq

I

(Fry1 — 2) X Fr (by the inductive hypothesis)
= (22" — 1) x (22" +1)

=2 _1 = F,-2 O

Exercise 9.6 (page 232)

For any real number r # 1,

1— ,r.n+1

2 3 n o _
I1+r+r+r 4+ +r = 29

for all n > 0.

Proof: By induction on n.

Base Case: For the base case (n=0), we note that

117!

ltr+r? 4+ 4+ =1 = 30

Induction Step: For the induction step, we assume that, for some k,

1— ,r.k+1

2 3 B
1+r+7r+7r + +rt = g

and from this assumption (the “inductive hypothesis”) we prove that

1 pkt?

Ltr+r? 4% 4t = 2T

That is, we demonstrate that if the statement of the theorem is true
when n = k, then it must also be true when n = k+1.

By the inductive hypothesis we can rewrite the left-hand side of this
equation that we want to prove true as

1— ,rkH»l

k+1
1—7r +r

which we can successively rewrite as

Additional Exercises 449

Exercise

Exercise

1 — pktl (1 _ T)Tk+1 I B - I
1—r + 1—r1r - 1—r - 1-r
which is the result we seek. O

9.7 (page 233)

Drawing n>1 circles so that any two intersect at two points but no three
intersect at any point divides the plane into n? — n + 2 regions.

Proof: By induction on n.
Base Case: One circle divides the plane into 12—1+4-2 = 2 regions.

Induction Step: For the induction step, we assume that & circles divides
the plane into k2 — k + 2 regions, and show that adding a (k+1)st circle
results in (k+1)? — (k+1) + 2 regions.

The (k+1)st circle must intersect the other k circles at 2k points,
meaning that 2k regions are divided into two. Thus, 2k new regions
are created, giving a total of ¥k — k + 2+ 2k = (k+1)® — (k+1) + 2
regions, which is as we needed to demonstrate. |

A Venn diagram depicting 4 sets would have to divide the plane into 16
regions. Therefore, it could not be drawn using circles, as by the above
result 4 circles would only divide the plane into 42—4+2 = 14 regions.

9.8 (page 234)

0, if n=0

f(n) = n? for all n > 0, where f(n) = { fln—1)+2n—1, if n>0.

Proof: By induction on n.
Base Case: For the base case (n=0), we simply note that f(0) = 0= 02
Induction Step: For the induction step, we assume that, for some k,
fle=1) = (k1)
and from this assumption (the “inductive hypothesis”) we prove that
k) = ¥

That is, we demonstrate that if the statement of the theorem is true
when n = k—1, then it must also be true when n = k.

450 Temporal Properties

Exercise

Exercise

f(k) = f(k—1) + 2k — 1 (by definition)

(k—1)2 + 2k — 1 (by the inductive hypothesis)

k2. O

9.9 (page 235)

Every n > 1 is either prime or a product of primes.

Proof: By strong induction on n. Suppose that n>1, and that for every
integer k£ with 1<k<mn, k is either prime or the product of primes. If n itself
is prime then we have nothing to prove, so suppose that n = ab with 1<a<n
and 1<b<n. By the inductive hypothesis, each of a and b is either prime or
a product of primes; but then since n = ab, n itself is a product of primes.

9.10 (page 236)

Forallm >1landalln>m, H,-H, > 22T

Proof: We assume that m > 1 is fixed, and we prove the result by induction
on n.

3o

Base Case (n=m): H,—H, = 0>

Induction Step: (n > m):
Hy—~ Hp = Hy1~ Hot g

> (n;fl# + % (by inductive hypothesis)
~ (n=)n—-mn+ (n-1)

- (n—-1)n

> (nfl)(v;,l:{)nnn +m (since n—1>m)
_n—m O

n

Exercise 9.11 (page 236)

Fact: (fo)’ +(£1)*+ (f2)* +--(fa)’ = fafasforalln>0.

Proof: By induction on n.

Base Case (n = 0):
(fo? + (AP + ()2 + -+ (fo)? = (o)) = 0 = 0x1 = fofi.

Additional Exercises 451

Induction Step (n > 0):
(fo? + (1) + (f2)* + -+ + (F2)* + (Fnrr)?
= fafnsr + (fas1)? (by the inductive hypothesis)
:fn+1(fn+fn+1) = fn+1fn+2 O

Exercise 9.12 (page 238)

Fact: The quadratic equation y> — zy — z°> = +1 is satisfied by the pair
(2,9) = (fa, fay1) for any n > 0.

Proof: By induction on n.

Base Case (n

0): With (z,y) = (fo, f1) = (0, 1) we have
Y —zy—2> = 12-0-1-1° = 1.

Induction Step (n > 0): Assuming that (z,y) = (a,b) solves this equa-
tion, that is,
B> —ab—a? = +1
it suffices to show that (z,y) = (a+b, b) also solves this equation; this

is because if (a,b) = (fn, far1) then (fri1, fai2) = (a+b,b).
(a+b)? — (a+b)b — ¥ = a®>+2ab+ b — ab—b? — b2

a®+ab - b?
= —(*-ab-a?) = Fl. O

Exercise 9.13 (page 238)

Fact: The positive integer solutions (z,y) to
y?—zy 2% = 41

are of the form (fn, fnt1) for some n > 0.

Proof: By induction on z+y. We first note that since z and y are positive,
we must have that z < y. If £ = y then we would have that —z% = +1, in
which case we must have that z=y=1, so (z,y) = (f1, f2)-

We now assume that 1 < z < y and that > — zy — 22 = +1, and note
that the pair (a,b) = (y—z, z) also satisfies the equation:

> — ab — o = 22 — (y—z)z — (y—2)°
= z? —zy+z? - y* + 22y — 2°
— @ ey - 7L

By induction, (a,b) = (fn, fnt1) for some n, from which we get

452 Temporal Properties

z =b = fo1 and
Y =0+2 = fot far1 = foio

50 (z:y) = (fn+1x fn+2)~ O

Exercise 9.14 (page 239)

n

Fact: f2,, — fafnte = (—1)® forallm > 0.
Proof: By induction on n.
Base Case (n =0): fZ— fofe = 12-0-1 = 1 = (-1)°%

Induction Step (n > 0):
f721+1 - fnfn+2 fn+1(fn + fn 1) - fn(fn+1 + fn) (by deﬁnition)

- fn+1fn + fn+1fn71 - fnfn+1 - f721
= _(fyzz_fn—lfnJrl)

= —(~1)"' (by the inductive hypothesis)

— (-1)r =

Exercise 9.15 (page 239)

The edges that supposedly make up the diagonal of the rectangle do not in
fact line up. Drawn more carefully, a gap (or overlap) is discovered in the
middle with an area of one unit.

/
/
/Il
/.

Exercise 9.17 (page 243)

The induction argument cannot be applied when n=2: if S’ and S" are
overlapping sets which together make up S, then either S’ = S or S = S,

Additional Exercises 453

in which case you cannot apply induction to this set, as you can only apply
induction to sets smaller than S.

Exercise 9.20 (page 246)

Fact: length(Li;+Ls) = length(Ly) + length(L,) for all lists Ly and L.

Proof: By induction on the structure of L;.

Base Case (L; = []):
length(] |-++Ly) = length(Ly) = length([]) + length(Ls).

Induction Step (L; = h: L):
length ((h : L)+Ly)

= length (h: (LHLs)) (by definition)

1 + length(L++Ly)

= 1 + length(L) + length(Ly) (by the inductive hypothesis)

length(h : L) + length(Ls). O

Chapter 10

Exercise 10.1 (page 257)

1. By brute force reasoning, we get the following table:

n 1]2[3]4 5/6[7[8][9]10
fry 1]2]3[L 1 2[3[L[1 2

f(n) represents the number of coins the first player should take when
there are n coins in the pile; we write f(n) = L (meaning f(n) is
undefined) in the cases in which the second player has the winning
strategy.

2. If the first player takes z coins, the second player can respond by
taking (4—z) coins, leaving the first player a pile of (n—4) coins when
starting from a pile of n coins. This gives a winning strategy for the
second player in a game starting with n=4k coins, that is, a number
of coins divisible by 4.

In all other cases, starting with n = 4k+2 coins (where z is 1, 2, or 3),
the first player puts the second player in a losing position by taking z
coins and leaving 4k coins.

454 Temporal Properties

3. The first player is in a losing position if the number of coins n is
divisible by (k+1); the second player wins by responding to every move
of the first player by taking (k+1)—z coins, where z is the number of
coins that the first player takes.

If the number of coins n is not divisible by (k+1), then the first player
wins by taking n mod (k+1) coins, leaving the second player in a losing
position.

4. The goal in the Misére game is to leave your opponent with one coin.
Thus, the second player has a winning strategy when there are 4k+1
coins, using the same strategy as the normal game.

Exercise 10.2 (page 258)

1. The second player can always place the first two noughts on adjacent
sides. (The first nought can be placed on a side which has both ad-
jacent sides empty, and one of these will still be empty after the first
player places the second cross.)

The third nought can then always be placed so that it is aligned with
at most one of the first two noughts (i.e., not in the centre square nor
in the corner between the two noughts). This is true because there are
five such squares, and only three of them can be occupied by crosses.

The fourth and final nought can then be placed safely, as there can
only be at most one square which could create a line of three noughts,
yet there will be two empty squares available to chose from.

2. Suppose the first player places the first cross in the centre and then
places all subsequent crosses directly opposite the squares on which the
second player places noughts. If a line of three crosses should arise, it
clearly could not include the centre square, and in fact would imply
that there is a line of three noughts already in place directly opposite
the line of three crosses.

Exercise 10.3 (page 258)
Following on from the reasoning started in the question:

e 9 o’clock is a winning position (by moving 3 hours ahead to 12 o’clock),
and
10 o’clock is a winning position (by moving 2 hours ahead to 12 o’clock);

e 7 o'clock is a losing position (as you can only move to a winning posi-
tion: either 2 hours ahead to 9 o’clock or 3 hours ahead to 10 o’clock);

e 4 o’clock is a winning position (by moving 3 hours ahead to 7 o’clock),

and
5 o’clock is a winning position (by moving 2 hours ahead to 7 o’clock);

Additional Exercises 455

e 2 o’clock is a losing position (as you can only move to a winning posi-
tion: either 2 hours ahead to 4 o’clock or 3 hours ahead to 5 o’clock);

e 11 o’clock is a winning position (by moving 3 hours ahead to 2 o’clock),
and
12 o’clock is a winning position (by moving 2 hours ahead to 2 o’clock);

e 8 o’clock is a losing position (as you can only move to a winning posi-
tion: either 2 hours ahead to 10 o’clock or 3 hours ahead to 11 o’clock);

e 6 o’clock is a winning position (by moving 2 hours ahead to 8 o’clock);
and

e 3 o'clock is a losing position (as you can only move to a winning posi-

tion: either 2 hours ahead to 5 o’clock or 3 hours ahead to 6 o’clock).

This is summarised as follows, where the hours on the clock are annotated
with the winning move if one is available.

The symbol X indicates that the position is a losing position; and a prime
means that the token will pass through the 12 o’clock position once before
landing on it the second time around (assuming the losing player uses a
particular strategy).

To see that this annotation is correct, it suffices to note that

e every valid move from an hour labelled X (i.e., forward by either two
or three hours) leads to a position labelled 2 or 3, neither with a prime,
without passing through 12 o’clock;

e every valid move from an hour labelled X' leads to a position labelled
2 or 3, (at least) one of which is primed, without passing through
12 o’clock;

e an hour labelled 2 (respectively 3) — by moving forward by 2 (respec-
tively 3) hours — leads either to 12 o’clock, or without passing through
12 o’clock to an hour labelled by X;

456 Temporal Properties

Exercise

Exercise

Exercise

e an hour labelled 2’ (respectively 3') — by moving forward by 2 (respec-
tively 3) hours — leads either to an hour labelled by X' without passing
through 12 o’clock, or by first passing through 12 o’clock to an hour
labelled by X.

10.4 (page 259)
In this game:

e 9 is a losing position, as the other player will have won by having
moved the counter there.

e 8 is a winning position, as a move of 1 takes the counter to the losing
position 9.

e 7 is not a legal position, as it is at the head of a snake.

e 6 is a losing position, as moves of 1 and 2 take the counter to the
winning positions 4 and 8, respectively.

e 5 is not a legal position, as it is at the foot of a ladder.

e 4 is a winning position, as a move of 1 takes the counter to the losing
position 9.

e 3 is not a legal position, as it is at the foot of a ladder.

e 2 is a winning position, as a move of 1 takes the counter to the losing
position 6.

e 1is a winning position, as a move of 2 takes the counter to the losing
position 6.

10.5 (page 262)

If we ignore one of the piles and consider the column parity of the remaining
n—1 piles, this indicates what size the final pile would have to be in order to
balance the position. (For example, if the n—1 piles are balanced, then the
final pile would have to be empty; and if all n piles are balanced, then the
column parity of any n—1 piles would equal the size of the omitted pile.)

Thus, for each pile, there is at most one winning move involving that pile,
which consists of leaving the number of coins equal to the column parity of
the remaining n—1 piles.

Therefore, there are at most n different winning moves possible from a
N1iM position with n piles.

10.6 (page 262)

If the position is initially unbalanced, then the first player need not use this
new move in order to win; the first player already has the winning strategy
in the original game.

Additional Exercises 457

If, on the other hand, the position is initially balanced, then this new
move will still not help, as it will produce an unbalanced position, as does
any normal move.

Hence this new rule gives the first player no new advantage.

There is another way to see that this new move is obviously of no help to
the first player: the second player can respond to this new move by removing
all of the coins in the new pile, thus putting the first player back into the
same position as before the new move was made.

Exercise 10.7 (page 264)

Forn = fo,+ feo, + - -+ fr. > 0 with 0k koK -+ - - KK,y let pu(n) = fi,; that

is, u(n) is the smallest Fibonacci number appearing in the representation of

n in the Fibonacci number system. Also, for convenience, define u(0) = oo.
Consider the following two lemmas.

Lemma 1. If n>0 then p(n—pu(n)) > 2u(n).

This says that if you take p(n) coins on your turn from a pile of n coins
— which, in particular, the first person may do on their first move if,
and only if, n is not a Fibonacci number, that is, u(n) # n — then
your opponent will be unable to do this in response; that is, they will
be faced with some number m = n—u(n) of coins and the most coins
they can take, namely 2u(n), will be less than u(m) = pu(n—wu(n)).

Lemma 2. If 0 <m < u(n) then u(n—m) <2m.

This says that if you take fewer than p(n) coins on your turn from
a pile of n coins — which, in particular, the first person must do on
their first move if, and only if, n ¢s a Fibonacci number — then your
opponent will be able to take u(n—m) coins from the pile of n—m
coins they are faced with, as u(n—m) will be no more than than twice
the number m of coins that you have taken.

Theorem 10.7 follows directly from these two lemmas. Given a pile of ny
coins, if you take u(n;) coins then either you will have taken all coins and
won the game, or you will leave some number n, of coins from which, by
Lemma 1, your opponent cannot take u(n,) coins, and in particular cannot
take all of the remaining coins; and by Lemma 2 your opponent will be
forced to leave you with some number n; of coins from which you can once
again use the strategy of taking u(ns) coins; the play will continue in this
fashion until you succeed in taking all remaining coins.
It remains only to prove these two lemmas.

Proof of Lemma 1. Let n = fi, + fx, + - -+ fr, be the Fibonacci number
system representation of n.

458 Temporal Properties

The result is immediate if n is a Fibonacci number (that is, if r=1),
as then n = p(n), so u(n—u(n)) = u(0) = 00 > n = u(n).

Assume, then, that n is not a Fibonacci number (that is, 7>2). Then

i (as n—p(n) = fo, + -+ fi,)

Frra2 (as k1<ks)

fro + fran

fio + fu

2fi

2u(n). 0

p(n—p(n))

v 1 v

Proof of Lemma 2. Assume that 0 < m < u(n). Let the Fibonacci num-
ber system representations of n and m be
n = fr, + fx, + - + fr, and
m = fo + fo+ -+ fo.

By assumption, m < u(n) = fi,, 80 fi,—m > 0. Let the Fibonacci
number system representations of fi, —m be

flc17m = fm + fug + -+ fut'

In particular, f,,<fx,, so u:<k;<ks, and hence u;<k,.
Then
n—-m = (fi,—m) + fr, + fos + -+ + fr,
= fur + fus + 0+ fu + fro + S o+ S

and since u; KUK -+ KU Lk L k3L - - - Lk,, this is the Fibonacci
number system representation of n—m.

Thus u(n—m) = fu,-
Note that

fki

m+fu1 +fu2 + e fu:
= fl1 + fl: + -+ fls + ful + fu2 + -+ fut'

Therefore we must have that £, &« u,, that is, u; < £;+1, as otherwise
we would have two different Fibonacci number system representations
for fi,. Thus f,, < fs,+1, and hence

w(n—m) = fu, < fr.q1 = foo1 + fo. <2fe, <2m. |

Additional Exercises 459

Exercise

Exercise

10.12 (page 270)

Assume to the contrary that the second player has successfully created a
path connecting the top border to the bottom border. At some point this
path must cross the main diagonal, either horizontally or vertically.

As this path approaches the main diagonal from above, a downwards
move cannot turn towards the left border, and a rightwards move cannot
turn upwards. Hence this path must continuously travel downwards and to
the right. Therefore, it must reach the main diagonally vertically and thus
cross it horizontally; it cannot cross the diagonal vertically.

On the other hand, as this path approaches the main diagonal from be-
low, an upwards move cannot turn towards the right border, and a leftwards
move cannot turn downwards. Hence this path must continuously travel up-
wards and to the left. Therefore, it must reach the main diagonally vertically
and thus cross it vertically; that is, it cannot cross it horizontally.

Chapter 11

11.3 (page 286)

At any given moment, there must be some number 2 of missionaries and some
number j of cannibals on the left bank of the river, and 3—: missionaries
and 3—7 cannibals on the right bank. If 7 then the cannibals outnumber
the missionaries on one of the banks; this would only be safe if the number
of missionaries on that bank is in fact zero. Hence the only safe states
are those in which =3 (all missionaries together on the left bank) or ¢=0
(all missionaries together on the right bank) or i=j (an equal number of
missionaries and cannibals on both banks). There are 10 such pairs of
numbers (%, 7).

Apart from this, the only information needed to completely describe the
state of the system is where the boat is; it may be on the left bank or the
right bank. Combined with the 10 possible placements of the missionar-
ies and cannibals, this gives the system a total of 20 possible safe states.
However, four of these are not feasible. For a start, we clearly cannot have
all the people on one bank (:=35=3 or :=5=0) and the boat on the other.
Furthermore, if the missionaries are all on one bank and the cannibals are
all on the other ({7,j} = {0, 3}) then the boat must be with the cannibals;
if it were with the missionaries, then one or two of them must have just
ferried it across the river from the bank on which all three cannibals are,
which would have been an unsafe position.

The remaining 16 states are depicted in Figure 15.4, along with the possi-
ble transitions between states drawn in. (To avoid clutter, the transitions are
drawn bi-directionally, as they all represent reversible actions.) The groups

460 Temporal Properties

ST e
L)

Figure 15.4: The LTS of the Missionaries and Cannibals Riddle.

on the two banks are depicted side-by-side divided by wiggly lines repre-
senting the river, with the group holding the boat enclosed in parentheses.
There are five possible actions: m (a missionary crosses alone); mm (two
missionaries cross together); ¢ (a cannibal crosses alone); cc (two cannibals
cross together); and mc (a missionary and a cannibal cross together). Notice
that all of the transitions are drawn bi-directionally, as every transition can
clearly be reversed.

The group start in the top-left state in which the whole group is on the
left bank, and they wish to get to the bottom-right state in which they are

Additional Exercises 461

all on the right bank. It is not hard to find a such path through the LTS
which involves 11 crossings.

Exercise 11.4 (page 287)

A state of the system underlying this riddle consists of a pair of integers
(3,7) with 0<i<5 and 0<j<3, representing the volume of water in the 5-
gallon and 3-gallon jugs A and B, respectively. The initial state is (0, 0) and
the final state you wish to reach is (4,0).

There are six types of moves possible from any given state (¢, 7):

G) ™5 (5.9) (if i=0)

a) ™8 3 (if 5=0)

G Y (0,9) (if i0)

i) TEHE (3,0 (if 7>0)

(i) AP (max(0,i+j-3), min(3,i+7)) (if i>0 and j<3)
BtoA

(i,j) — (min(5,i+7), max(0,3+7-5)) (if i<5 and j>0)

Drawing out the LTS, we identify the following 7-step solution:

(0,0) T4 (5, 0) 4208 (o, 5) TTRWE o gy At0B (g o

fillA

FlL (5,2) A1 (4, 3) OP

B 4,0).

Exercise 11.5 (page 287)

The beer mats must start in one of the following three non-winning config-
urations:

X: 3 one way, the 4th the other way.
Y: 2 face-up and 2 face-down, with diagonally-opposite corners different.

Z: 2 face-up and 2 face-down, with diagonally-opposite corners the same.

Furthermore, there are only three different moves which you may apply to
the beer mats:

a: flip one beer mat.
b: flip two adjacent beer mats.
c¢: flip two diagonally-opposite beer mats.
(Flipping 3 beer mats has the same effect on the possible configurations as

flipping 1 beer mat; and flipping all four beer mats has no effect whatsoever
on the configuration.)

462 Temporal Properties

In the following table, we indicate which non-winning configurations we
may go to from each non-winning configuration.

| o [b | e |
x|lviz] x | X
Y| x | z | v
z| x | v | -

For example, from an X-configuration, an a-move (flipping one beer mat)
could lead to a winning configuration, or to either a Y-configuration or a
Z-configuration; and from a Z-configuration, a c-move (flipping diagonally-
opposite beer mats) is guaranteed to lead to a winning configuration.

We can use a labelled transition system to keep track of which configura-
tions we may be in at any given time assuming that we have never passed
through a winning configuration. The LTS looks as follows.

Here, we start in the state labelled “XY Z” signifying that we don’t know
which state X, Y or Z we are in. If we do an a move or a b move, then we
may still be in any of these states; however, if we do a ¢ move, then we will
know that we cannot be in a Z state.

From this we can see that the shortest sequence of moves which guaran-
tees a win is the sequence “cbcacbc” of seven moves.

Exercise 11.6 (page 288)

1. There are six states. In the graphical presentation of the transition
system, these are represented by the following (z, y)-valued pairs:

T = 246 T="T2 =12
y=174 y =30 y==6
T="T2 T =12 z=0
y=174 y =30 y==6

(Of course, how the states are labelled is irrelevant.)

Additional Exercises 463

2. There are two actions, namely “x:=xmody” and “y:=ymodx”.

3. There are five transitions. Labelling the states as above, these transi-
tions are:

T =172 x:=xmody =12
—

y =30 y =30
= = d =
T =12 y:=ymodx =12
y =30 y==6
=12 x:=xmody z=0
—
y==6 y==6

Exercise 11.7 (page 289)

pull
pull I
Oon

break

replace blow

pull

pull

reset

Exercise 11.8 (page 290)

tick

tick

The above process has two states: C1, and Clg; one action: tick; and two

. k ick
transitions: C1, =¥ ¢1, and €1, =¥ (1,

Exercise 11.9 (page 291)

As described, a state is a triple (f,d, S) where

464 Temporal Properties

fedy 2231, 2%,2 ,3 1}
d € { open, closed}; and
S C {1,223}
There are 11 actions that the system can possibly do. Firstly, any of the
call buttons can be pressed on any of the floors:
p1: (up) button on floor 1 is pressed;
Dot Uup button on floor 2 is pressed;
Dot : down button on floor 2 is pressed;

p3: (down) button on floor 3 is pressed.

Next, any of the floor buttons can be pressed in the elevator:
e;: floor 1 button is pressed in the elevator;
e,: floor 2 button is pressed in the elevator;

e3: floor 3 button is pressed in the elevator.

Next, the elevator door can open or close:
op: the elevator door opens;

cl: the elevator door closes.

Finally, the elevator can move:
up: the elevator moves up;

dn: the elevator moves down.

Exactly when each of these actions can occur, and their effect on the state
of the system, is detailed as follows.

Firstly, any button can be pressed on any of the floors at any time. If
the elevator is at that floor with its door open and travelling in the right
direction, then the button press will have no effect on the state; otherwise,
the floor, tagged by the requested direction, will be added to the destination
list:

S, if f=b and d=open

gl ' '

(f,d,5) = (f,d, 5, where 5’ = S U {b}, otherwise

Next, any button can be pressed in the elevator at any time. If the elevator
is at the floor being requested with its door open, then the button press will
have no effect on the state; otherwise, the floor being requested, tagged by
the direction to get to the requested floor (or the current direction being
travelled if the elevator is at that floor), will be added to the destination
list:

el

(f,d,S) — (f,d, S"), where

Additional Exercises 465

S, if f=1 and d=open

SU{1}, otherwise
(f,d, 8y =% (f,d, S'), where
S, if f € {27,2'} and d=open
Su{a2™}, if fe{1,17,27}
S — or f=2" and d=closed
Su{2}, if fe{3,37,2%}
or f=2' and d=closed

(£,d,5) = (f,d, "), where
S, if f=3 and d=open

S U{3}, otherwise

Next, the door can either open or close at appropriate times:

(f, open, S) — (f, closed, S);

(f, closed, S) N (f, open, S\ {f}), iffeS;

(2", closed, S) —2+ (2}, open, S\ {2'}), if2' € Sand2',3¢ S;
(24, closed, S) —25 (21, open, S\ {2'}), if2' € Sand 2',1¢ S.

Finally, the elevator can move as and when appropriate:

(1, closed, S) — (1+ closed, Sy, if1¢ S and S # 0;
(21, closed, {3}) —2» (2%, closed, {3});

(24, closed, {3}) 25 (2, closed, {3});

(17, closed, S 1%, closed, S);
(
(
(2*

> k!
1%, closed, S) —= (21, closed, S);
2%, closed, S) —%» (2%, closed, S);
, closed, S) —= (3, closed, S);

3, closed, S) — (37, closed, S), if3¢ S and S # 0;
24, closed, {1}) RN (2 , closed, {1});

(3,
(
@' losed {11) = (27 closed 13
(37, closed, S) — (3™, closed, S);
(3

, closed, 8) —= (2}, closed, S);

466 Temporal Properties

dn

(27, closed, S) — (27, closed, S);

dn

(27, closed, S) — (1, closed, S);

Exercise 11.10 (page 291)

The two models for flipping coins are as follows:

heads

tails

As required, the outcome is determined in the first model already when the
coin is tossed: the system will either be in a state in which it can do a heads
action and not a tails action, or it will be in a state in which it can do a
tails action and not a heads action. In contrast to this, when the coin is
tossed in the second model, the system will be in a state in which it can do
either a heads action or a tazls action.

Which model is more realistic? We might introduce quantum mechanics
and allude to the fate of Schrodinger’s cat placed in a sealed box with a
flask of poison, a radioactive source, and a mechanism which will shatter the
flask — releasing the poison and killing the cat — if a Geiger counter detects
a radioactive particle; according to quantum mechanics, after a while the
cat will be simultaneously dead and alive until we open the box; only by
observing the cat will its fate be sealed. With this in mind, we might choose
the second model to be more realistic.

Barring the complexities of Schrodinger’s cat, the first model is more
realistic, in that it enforces the principle that the toss itself decides the fate
of the coin; having tossed the coin, and with it resting on the back of one
hand shielded from view by the palm of the other, no further forces can
influence the outcome of the coin flip. The coin is decidedly showing heads
or tails.

We can contrast this situation with the model of the simple vending
machine from page 282 which accepts a 50p coin and allows the user to
decide whether to press a coffee button or a tea button. Having inserted the
50p coin, the user is completely free to choose which button to press, and
thus the model for the vending machine closely resembles the second coin-
flipping model above. Such a free choice is of course undesirable in a coin
flip. (It would be equally undesirable for the vending machine to eliminate

Additional Exercises 467

the user’s free choice of drinks when the 50p coin is inserted, as with the
first coin-flipping model above.)

Exercise 11.11 (page 296)
By the rule for action prefix,

pull
pull. BROKEN — BROKEN and

reset
reset. OFF — OFF.

Hence, by the rule for choice,

ull
pull. BROKEN + reset.OFF p—) BROKEN and
pull. BROKEN + reset.OFF %t OFF.

As BrRokeN & pull. BROKEN + reset.OFF, the rule for Process Variables
gives us to infer our result:

pull
BROKEN — BROKEN and

BROKEN %t OFF.

Exercise 11.12 (page 297)

cl, ¥ tick.Cl, + tick.Clo.

Exercise 11.13 (page 298)

1.
25.C5 + 110.Cyq + 220.Cy, if n=0;
c def dl.Cg, if n= 1;
di.C,_ 1 + d2.C,_», if 2<n <4

d1.Cp 1 + d2.Co o + ds.C, s, if 5<m <20

2. The transition diagram is depicted in Figure 15.5.

Exercise 11.14 (page 300)

The five states of the second vending machine are:
Va
10p.coffee.collect.V, + 10p.tea.collect.V;
coffee.collect.V;
tea.collect.V,
collect.V,

468 Temporal Properties

Figure 15.5: The LTS of the change-making machine.

The six states of the third vending machine are:

Vs
10p.coffee.collect.V;
10p.tea.collect.V3
coffee.collect.V3
tea.collect.V;
collect.V;

Exercise 11.15 (page 301)

No matter how we do a 10p action,
we must end up in a state in which
we may do a 10p action
and end up in a state in which

we may do a tea action.

Additional Exercises 469

Figure 15.6: The LTS for Exercise 11.16.

Exercise 11.16 (page 301)

1. The transition system is depicted in Figure 15.6.

2. From state C you may do an a action and be in a state in which, no
matter how you do a b action you will either not be able to do a ¢
action or you will not be able to do a d action.

On the other hand, from state D no matter how you do an a action,
you will be able to do a b action and end up in a state in which you
can both do a ¢ action as well as a d action.
Exercise 11.17 (page 302)
The given definition of equality is:
reflexive: Clearly E = G if, and only if, B > G, so E = E.

symmetric: Suppose that £ = F. To show that ¥ = E we need to
demonstrate that # = G if, and only if, E -3 G. However, this
must be true, as this is exactly the same criterion that makes £ = F,
namely that E -5 G if, and only if, F = G.

transitive: Suppose that £ = F and F = G. To show that £ = G we
need to demonstrate that £ - H if, and only if, G - H. However,

E - H if,and only if, F 5 H (since E = F)
if, and only if, G = H (since F = Q).
Exercise 11.18 (page 303)

The only way to infer that A = Ay would be to first show that a.4A = a.4,,
which would require us to show that A = A;.

470 Temporal Properties

Exercise

However, the only way to infer that A = A; would be to first show that
a.A = a.A,, which would require us to show that A = A,.

Likewise, the only way to infer that A = A, would be to first show that
a.A = a.Az, which would require us to show that A = As.

Continuing in this fashion, we would never finish, and so we could never
reach our goal of inferring that A = A,.

Chapter 12

12.2 (page 312)

Fact: For any games G,(E, F'), either the first player has a winning strat-
egy, or the second player has a winning strategy.

Proof: By induction on n.

For the base case, the second player clearly has a winning strategy for
any game Go(E, F') of length n=0.

For the inductive case, assume that for any game G,(E', F') of length n,
either the first player has a winning strategy, or the second player has a
winning strategy. Suppose then that the following two properties hold:

e for all actions a and all states B, if E - E' then F = F' for
some state F” such that the second player has a winning strategy for
the game G, (F', F'); and

e for all actions a and all states F’, if F -3 F' then E - E' for
some state E' such that the second player has a winning strategy for
the game G,(E', F').

That is, suppose that no matter what the first player does as her first move
in the game G,.,(E, F) - either a move E — E' or a move F = F' -
the second player can respond in such a way that he gets into a position
in which he has a winning strategy in the game of length n. This clearly
defines a winning strategy for the second player in the game G, 1(E, F).

Hence, if the second player does mot have a winning strategy in the
game G,.1(F, F), then one of the above two properties fails to hold. That
is, either

e E % FE' in such a way that whenever F = F' the second player
does not have a winning strategy in the game G,(E’, F'); but then
by the inductive hypothesis, this implies that the first player has a
winning strategy in the game G, (E’, F'), which means she can use the
E % E' transition as the first move in a winning strategy for the game
Gni1(E, F); or

Additional Exercises 471

Exercise

Exercise

e F % F' in such a way that whenever B — E' the second player
does not have a winning strategy in the game G,(E’, F'); but then
by the inductive hypothesis, this implies that the first player has a
winning strategy in the game G, (E’, F'), which means she can use the
F % F' transition as the first move in a winning strategy for the game
Gpii(E, F). O

12.3 (page 313)

C ~y D (and hence C ~y D and C ~; D) since from either C or D you
can do an a action and nothing else, and regardless of where that takes
you, you will be able to do a b action and nothing else. Therefore the sec-
ond player can obviously copy whatever two moves the first player makes
in the Bisimulation Game when the tokens start on the pair of states (C, D).

C +#3 D (and hence C £, D for all n>3) since the first player has a
strategy which will win her the game within three moves starting from the
pair of states (C, D):

e For her first move she can do C -3 A, to which the second player
would have to respond with D % B; the two tokens will then be on
the pair of states (A4, B).

e For her second move she could then do B — c.0 + d.0, to which
the second player would have to respond with either with A 2 co
or with 4 d.0; the two tokens will then be on the pair of states
(c.0,¢.0 + d.0) or the pair of states (d.0,c.0 + d.0).

e For her third move, if the tokens are on the pair of states (c.0, c.0+d.0)
then she should do c.0 +d.0 N 0, and if the tokens are on the pair of
state (d.0, c.0 4 d.0) then she should do c.0 + d.0 - 0; in either case
the second player will not be able to respond.

12.4 (page 315)

Fact: For all n € N, and for all states F, F',and G, if E ~, Fand F ~, G
then F ~, G.

Proof: By induction on n € N.

For the base case n=0, Theorem 12.3(1) gives us that £ ~¢ G.

For the induction step, we assume that £ ~, 1 F and F' ~,;1 G. Re-
ferring to the pictorial representations of Theorem 12.3 (page 313), for the
induction step the argument will be based on the following picture:

472 Temporal Properties

Exercise

~ntl
~n+1 ~nt1 .
B --1 il g
~ /’
F
a a
a
~n ~n

Suppose that the first player makes a transition E — E'. By Theo-
rem 12.3(2), since E ~,,; F' we have that F 2 F' for some F’ such that
E' ~, F'; and hence again by Theorem 12.3(2) since F' ~,,; G we have that
G % @ for some G' such that F' ~, G'. Thus, by induction E' ~, G'. In
summary,

o If E -5 F' then G > G' for some G such that E' ~,, G'.

Suppose instead that the first player makes a transition G — G'. By The-
orem 12.3(2), since F' ~,.1 G we have that F 2 F' for some F' such that
F' ~, G'; and hence again by Theorem 12.3(2) since E ~,,; F we have that
E % E' for some E' such that E' ~, F'. Thus, by induction E' ~, G'. In
summary,

e If G2 G then E = E' for some E' such that E' ~, G’

These two bullet points, by Theorem 12.3(2), gives us that F ~,1 G. O

12.5 (page 315)

Fact: For alln € N, C1, ~, C1, while C1, %, Cl.

Proof: We can show the equivalence by induction on 7.
Base Case: Clp ~q C1, by Theorem 12.3(1).

Induction Step: Assuming, for some n, that C1, ~, C1l, we can conclude
from Theorem 12.3(2) that Cl,41 ~pi1 C1

The inequivalence follows from noting that in the bisimulation game played
with the tokens on C1, and C1, after an exchange of n moves the tokens will
necessarily be on Cly and C1, and the first person will be able to make the

move C1 ~% €1 which the second person cannot match. O

Fact: For all n € N, Clock ~, Clock,, while Clock % Clock,.

Additional Exercises 473

Proof: We can firstly note that if the first player is to have any chance
of winning the bisimulation game with the tokens on the states Clock and
Clock,, then he must start with the move Clock, ek C1; the second player
could respond to any other opening move in such a way as to leave the two
tokens on the same state, leaving him with the obvious copycat strategy to
win. _

In response to this opening move Clock, Licky Cl, the second player
can move Clock —= Cl,; and since (from above) Cl, ~, C1 for all n, by
Theorem 12.3(2) we can deduce that Clock ~, Clock, for all n.

The inequivalence follows from the fact (from above) that Cl, #,; C1.

O

Exercise 12.6 (page 317)

To prove that R is a bisimulation relation, we need to demonstrate that the
bisimulation property from Definition 12.5 holds of each of the five pairs of
states related by R.

o (P,Q1) €ER:
- P, % P, is matched by Q; - Q,, and vice versa, as (P, @2) € R.
- P, % P; is matched by Q; — Qs, and vice versa, as (P, Q3) € R.
o (P,Q2) €ER:
- P N P; is matched by Q» N Q3, and vice versa, as (Ps, Q3) € R.
(P2,Q4) € R:
- P, % P, is matched by Q. N Qs, and vice versa, as (P, Qs) € R.
o (P,Q3) €ER:
- P LN P, is matched by Qs LN @1, and vice versa, as (P, Q1) € R.

- P LN P, is matched by Q3 N Qa, and vice versa, as (P, Q4) € R.
(P, @s) € R:
- P 2 P, is matched by Qs N Q1, and vice versa, as (P, Q1) € R.

- P LN P, is matched by Qs LN Q-2, and vice versa, as (P, Q») € R.

Exercise 12.7 (page 317)

Assume that R and S are bisimulation relations over the states of a labelled
transition system, and that (E,G) € R o S. This means that ESF and
FRG for some state F.

e If E > E, then from ESF we get that F % F' for some F’ such that

474 Temporal Properties

E'SF': and thus from FRG we get that G = G’ for some G’ such
that 7RG’ and hence such that (E',G') € Ro S.

e If G % @&, then from FRG we get that F - F' for some F' such
that F'RG’; and thus from ERF we get that B = E' for some B’
such that E'RF' and hence such that (E',G') € Ro S.

Thus R o S is a bisimulation relation.

Exercise 12.8 (page 318)

Let E <, F' (where n may be o) mean that the second player has a winning
strategy in the n-round game in which the first player must always move
the token which starts on state E. Then clearly <, = <, N <,

(a) =, is an equivalence relation, as it is:

reflexive: If both tokens are on the same node, then the second
player has the obvious winning strategy of following the lead of the
first player, copying each move.

symmetric: This follows from the fact that <, = <, N <1

transitive: We first show, by induction on n, that £ <, G whenever
E <, F and F <, G. If n = 0 then we immediately have that
E <, G, so suppose n = k+1, and suppose that the first player makes
a transition E = E'; then we must have that F = F' with B’ <, F",
and thus we have that G - G’ with F’ <,, G'; hence by induction
E <11 G.

To demonstrate that <., is transitive, we modify Definition 12.5 (page
316) to define a simulation relation to be a binary relation R over
states which satisfies the following property: if ERF then

— if E-% E' then F -5 F' for some F' such that B'RF".
We then rephrase Theorem 12.6 (page 316) as

The second player has a winning strategy in an infinite simulation
game with the tokens starting on states £ and F' if, and only
if, ERF for some simulation relation R. Hence in particular,
R C < for any simulation relation R.

The proof of this result is completely analogous to that for Theo-
rem 12.6. Our result then follows by showing that RoS is a simulation
relation whenever R and S are: this is shown as for the solution to
Exercise 12.7.

Assume then that R and S are simulation relations, and that (F,G) €
R oS. This means that ESF and FRG for some state F.

Additional Exercises 475

If E % E', then from ESF we get that F — F' for some F' such that
E'SF’; and thus from FRG we get that G - G’ for some &' such
that F'RG' and hence such that (E',G') € Ro S.

Thus R o S is a simulation relation.

(b) If the second player has a winning strategy in the bisimulation game,
then he can use this same strategy to win the new game. The new
game only restricts the possible moves of the first player

(c) It is easily verified that a.b.0 %5 a.b.0+ a.0, while a.b.0 <5 a.b.0+a.0.

Exercise 12.9 (page 321)

Suppose, by way of contradiction, that the first transition system of Fig-
ure 12.1 is coloured with a bisimulation colouring which assigns the same
colour to the two states X and U. Since U - V, there must be an a-labelled
transition out of X leading to a state with the same colour as V. This state
must be Y, and hence V' and Y must have the same colour in this supposed
bisimulation colouring. But then since Y 3 Z, there must be a c-labelled
transition out of V' leading to a state with the same colour as Z. However,
there is no such state, of any colour, which provides us with our desired
contradiction.

Exercise 12.10 (page 322)

Consider the first transition system of Figure 12.1.

The initial all-white colouring is not a bisimulation colouring, as the white
states V' and Y have b-transition to white states, whereas the other white
states U, W, X and Z do not have b-transitions to white states. Hence, by
the invariant, states V' and Y cannot be equivalent to the other white states;
in any bisimulation colouring, states V and Y must each have a different
colour from states U, W, X and Z. Hence we may safely refine our colouring
by making states V and Y a different colour (gray, say).

476 Temporal Properties

This is still not a bisimulation colouring, as the gray states Y has a c-
transitions to a white, whereas the other white state V' does not. Hence, by
the invariant, states V and Y cannot be equivalent, and so we may safely
refine our colouring by making Y a different colour, say gray-on-black. At
the same time we can note that the white state W has a c-transitions to a
white, whereas the other white states U, X and Z do not, and so we can
safely make W a different colour, say gray-on white.

Again this is still not a bisimulation colouring, as the white states U has
an a-transitions to a gray state, whereas the other white states X and Z
do not; and the white state X has an a-transition to a gray-on-black state,
whereas the other white states U and Z do not. Hence, we may safely refine
our colouring by making X a different colour, say black, and Z a different
colour, say black-on-gray.

This colouring zs a bisimulation colouring, which by construction satisfies
our invariant. That it is a bisimulation colouring is clear, since there are no
two states with the same colour.

Additional Exercises 477

Exercise 12.11 (page 326)

Take:

By ® clock Fy % clock,

Bniy & tick.E, Fou1 ™ tick.F,

By a straightforward induction argument we can show that, for each n € N,
E, ~Nwtn F, but E, ’76u+n+1 E,.

Chapter 13

Exercise 13.1 (page 336)

1.

(coffee)true says:
we may do a ‘coffee’ action and end up in a state in which
true s true.

This property will be true if it is possible to do a ‘coffee’ action.

. (coffee)false says:

we may do a ‘coffee’ action and end up in a state in which
false is true.
Such a ‘coffee’ action cannot therefore be possible, as false could not
possibly be true in any subsequent state. Therefore this property can
never be satisfied; it is equivalent to the property false.

. [coffee]true says:

no matter how we do a ‘coffee’ action, we must end up in a
state in which true is true.
This property will always be true — regardless of whether or not we can
do a ‘coffee’ action — as true will of course be true in any subsequent
state. This property is therefore equivalent to the property true.

. [coffee]false says:

no matter how we do a ‘coffee’ action, we must end up in a
state in which false is true.
A ‘coffee’ action must therefore not be possible, since false can never
be true in any subsequent state. This formula thus says the same thing
as —(coffee)true.

Exercise 13.2 (page 336)

—(a){a)true.

In words, this says that it is not the case that I can do an ‘a’ action and get
into a state in which I can do another ‘a’ action.

478 Temporal Properties

Exercise 13.3 (page 336)

[tick]({tick)true.

In words, this says that no matter how I do a ‘tick’ action, I must end up
in a state in which I can do another ‘tick’ action. This is true of the clock
C1 but not of the clock C1,, as the latter clock may stop after just one tick.

Exercise 13.4 (page 340)

1, 4,5, 6, 7 and 10 are valid, whereas 2, 3, 8, 9, 11 and 12 are not valid.

Exercise 13.5 (page 341)

1. (pull)(pull)(break)true.
This is true only of the state ON.
2. (pull)(pull)(reset)true.
This is true only of the state BROKEN.
3. —(pull)true.
This is not true of any state; you can do a ‘pull’ action from any state.
4. (pullytrue A —(break)true A —(reset)true.
This is true only of the state OFF.

Note that this assumes that the only actions available of the process
are ‘pull’, ‘break’ and ‘reset’. We need to include a conjunct —{a)true
for every action a # pull to explicitly disallow the possibility of such
an action ‘a’ being possible.

Exercise 13.6 (page 342)

Fact: —[a]P & (a)-P

Proof: E | —[a]P E |~ [a]P

-VF(E5F = FEP)
IF-(ESF = FEP)
JF(E-3F N FIEP)
JF(E>3F A Fl=-P)
E = (a)-P |

KR S R R R

Exercise 13.7 (page 343)

Theorem 13.6: For any process £ and any property P of HML:

Additional Exercises 479

1. E | pos(P) if, and only if, F = P; and
2. E = neg(P) if, and only if, B P.
Proof: By induction on the structure of P. That is, we demonstrate that
1. E | pos(P) if, and only if, F = P; and
2. E |= neg(P) if, and only if, B P

under the assumption that, for any process F' and any property @ smaller
than P,

1. F | pos(Q) if, and only if, F = Q; and
2. F = neg(Q) if, and only if, F £ Q.

We thus argue by cases on the structure of P:

P = true:
1. E | pos(true)
< FE E true [by definition of pos(true))
2. E = neg(true)
& FE |=false [by definition of neg(true)]

< E E£ true [by semantic definition for true and false

P = false:
1. E | pos(false)
& E k= false [by definition of pos(false)]
2. E E neg(false)
& E =true [by definition of neg(false)]

& E H£ false [by semantic definition for true and false]

P =~

L B pos(-Q)
& FE|=neg(Q) [by definition of pos(—Q)]
< BEHQ [by induction hypothesis 2]
< EE-Q [by semantic definition for —]

2. E = neg(~Q)
< FE Epos(Q) [by definition of neg(—Q)]
< BEEQ [by induction hypothesis 1]
< B -Q [by semantic definition for —|

480 Temporal Properties

P=Q:1NQa:

1 B |- pos(@: A Q2)
& E = pos(Q1) A pos(Q2)
< E E=pos(Q:) and E = pos(Qs2)
< EFEQ: and E = Q-
& EEFEQAQ:

by definition of pos(Q1 A Q2)]
by semantic definition for A]

[
[
[by induction hypothesis 1]
[

by semantic definition for A]

2. B = neg(Q: A Qs)

< E = neg(Q1) V neg(Q2) [by definition of neg(Q1 A Q2)]

& E Eneg(Q1) or B = neg(Q») [by semantic definition for V]

& B Q) or EH Q, [by induction hypothesis 2]

& ~(BEEQ: and E = Qo)) [by De Morgan’s Law|

< EEQINQ: [by semantic definition for A
P=Q,v

1. B | pos(Q1 V Q)
& B = pos(Q1) V pos(Q2)
& E = pos(Q1) or E = pos(Qs2)
& EFQ o EEQ,
& BEEQVQ

by definition of pos(Q1 V @2)]
by semantic definition for V|

[
[
[by induction hypothesis 1]
[

by semantic definition for V|

2. E = neg(Q: V Qs)

& E = neg(Q1) A neg(Q2) [by definition of neg(Q1V Q2)]
< E =neg(Q1) and E = neg(Qs) [by semantic definition for A
< EF Qi and EH Q, [by induction hypothesis 2|
o (BEEQ or E=Qs) [by De Morgan’s Law)

< EHQ1VQ: [by semantic definition for V]

P={(a

1. B | pos((a)Q)

Additional Exercises 481

& B (a)pos(Q) [by definition of pos((a)Q)]
& F = pos(Q) for some F such that B = F
[by semantic definition for (a)]
& F | Q for some F such that B = F
[by induction hypothesis 1]
& EE{(a)Q [by semantic definition for (a)]

2. B |- neg((a)Q)
& B = [alneg(Q) [by definition of neg((a)Q)]
& F = neg(Q) for all F such that B = F
[by semantic definition for [a]
& FHQ for all F such that B — F
[by induction hypothesis 2]
o Bl (a)Q [by semantic definition for (a)]

P=1la

L. B pos((a)Q)
& B = [alpos(Q) [by definition of pos([a]Q)]
& F = pos(Q) for all F such that B % F
[by semantic definition for [a]]
& F | Q for all F such that £ = F
[by induction hypothesis 1]
& E=[al@ [by semantic definition for [al]

2. B |= neg([a]Q)
& B = (ajneg(Q) [by definition of neg([a]Q)]
& F |=neg(Q) for some F such that E - F
[by semantic definition for {(a)]
& FH Q for some F such that B = F
[by induction hypothesis 2]
& EH 0@ [by semantic definition for [a]]

482 Temporal Properties

Exercise 13.8 (page 343)

Fact: For all modal properties P, neg(neg(P)) = P.

Proof: By induction on the structure of P, arguing by cases on the struc-
ture of P.

P = true: neg(neg(true)) = neg(false) = true.

P = false: neg(neg(false)) = neg(true) = false.

P = Q: A Q>: By the inductive hypothesis we assume that neg(neg(Q,)) =
@ and neg(neg(Q2)) = Q2.

Then neg(neg(@: A Qs)) = neg(neg(@:)Vneg(Q2)) = neg(neg(Q1)) A
neg(neg(Q:)) = Q1A Q

P = Q1 V Q>: By the inductive hypothesis we assume that neg(neg(Q1)) =
Q1 and neg(neg(Q2)) = Q2.

Then neg(neg(Q:V Q2)) = neg(neg(@1) Aneg(Q2)) = neg(neg(Q1))V
neg(neg(Q2)) = Q1 V Q2

P = (a)Q: By the inductive hypothesis we assume that neg(neg(Q)) = Q.
Then neg(neg({a)Q)) = neg([alneg(Q)) = (a)neg(neg(Q)) = (a)Q

P = [a]Q: By the inductive hypothesis we assume that neg(neg(Q)) = Q.

Then neg(neg([a]Q)) = neg({a)neg(Q)) = lajneg(neg(Q)) = [alQ
O

Exercise 13.9 (page 345)

The properties distinguishing between C and D were presented informally in
the solution to Exercise 11.16(b). We need simply express these properties
in the language of HML.

e From state C' you may do an ‘a’ action and be in a state in which, no
matter how you do a ‘b’ action you will either not be able to do a ‘¢’
action or you will not be able to do a ‘d’ action. Formally:

C E (a)[b]([c|false V [d]false)

Additional Exercises 483

e On the other hand, from state D no matter how you do an ‘a’ action,
you will be able to do a ‘b’ action and end up in a state in which you
can both do a ‘¢’ action as well as a ‘d’ action. Formally:

D = [a](b)({c)true A (d)true)

Note that these properties are, naturally, the negations of each other:
D = neg(C) and C = neg(D).

Exercise 13.11 (page 350)
1. Consider the formula
(a)true A [—alfalse A [—][—]false.
Clearly this characterises the process a.0:

e The first conjunct says that it is possible to do an a transition;

e The second conjunction says that it is not possible to do anything
other than an a transition.

e The final conjunct says that it is not possible to do two transi-
tions.

2. The characteristic formula for a.(b.0 + c.0) is

(a)true A [—alfalse A [a]((B)true A (c)true A [—][]false).

Exercise 13.12 (page 353)

1. |[{a)true|| = {E, Ei, F}

2. [[{)true|| = { B, By}

3. |[{a)(a)true|| = {E, B4}

4. ||{b)(b)true|| = 0

5. |[{a)[a]false|]| = {F}

6. |[b](a)true|| = {E, Ey, B>, F}

Chapter 14

Exercise 14.2 (page 360)

Let A% 0 with Sort(4) = 0, and B %' 0 with Sort(B) = {a}.

Then clearly A ~ B although Sort(A) # Sort(B).
If we let X ° 0.0 with Sort(X) = 0, then A || X ~ a.0, but B || X ~ 0.

Thus, A ~ B whereas A || X # B || X.

484 Temporal Properties

Exercise 14.3 (page 362)

The relevant bisimulation relation is
{(C2,C | C), (C}, dec.C | C), (C},C|l dec.C), (C4, dec.C || dec.C) }.

Exercise 14.4 (page 365)

The safety property holds: a car may cross only if the barrier is up, and a
train may cross only if the signal is green; and the controller ensures that
the barrier is never up at the same time that the signal is green by raising
the barrier only when the signal is red and turning the signal green only
when the barrier is down.

The liveness properties, however, fail to hold as given. When a car
arrives, it is not necessarily the case that the barrier will eventually go up.
It may be the case that an endless stream of trains arrive, and that the
controller repeatedly turns the signal green to allow each of these trains to
cross the intersection without ever raising the barrier to allow the waiting
car to pass. Equally, the controller may allow an endless stream of cars to
pass, never changing the signal to green to allow a waiting train to pass.

These liveness properties can be weakened to read:

e If a car arrives, eventually the barrier may go up.

e If a train arrives, eventually the signal may turn green.

These weakened properties do hold of the system.

In reality, a barrier typically remains up, to allow cars to cross the inter-
section freely, until a train arrives; the arrival of a train signals the controller,
which then lowers the barrier, then turns the signal to green, then turns the
signal to red again, and finally raises the barrier once again. If the compo-
nents are built correctly following this protocol, then the original liveness
properties will hold, along with the safety properties.

Exercise 14.5 (page 368)

The only way that the system can deadlock is if every philosopher is wanting
to pick up a fork which is not available. (No philosopher would ever be
hindered from eating nor from setting a fork down on the table.) No two
philosophers can be wanting to pick up the same fork, as each one of them
must be prevented from picking it up by the other already holding it. Since
each philosopher is stopped by the absence of a different fork, every fork
must be in the hand of some philosopher, and thus each philosopher must
be in the state of having just picked up their first fork. But that would mean
that philosophers 1 and 2 are both holding fork 2, which is impossible.

Additional Exercises 485

Exercise 14.6 (page 371)

Exercise

We argue that if the first process reaches the state where it is ready to
enter the critical section, then the second process will not be able to reach
the analogous state until the first process enters and then exist the critical
section. A symmetric argument shows that the second process being in the
critical section prevents the first from also being so.

e When the first process becomes ready to enter the critical section (ie,
enters state R;), then the bl process must be in the state B;t, and
either the b2 process is in the state B,f or the k processor is in the
state K;.

e Before the first process enters and exists the critical section, if the
second process is waiting to be allowed to enter the critical section (ie,
is in state W), then the b2 process must be in state Bot. Hence (from
above) the k processor is in the state K;. Thus this process will not
be able to move to state R, and enter the critical section.

14.7 (page 373)

The enhanced message-passing protocol requires no change to the SENDER,
only to the RECEIVER and the MEDIUM. The acknowledgement that the
SENDER is awaiting will come from the MEDIUM rather than directly from
the RECEIVER, but this difference is not noticeable from the point of view
of the SENDER. Thus its definition remains unchanged:

Sender def in.snd.S S def ack.Sender + err.snd.S

Sort(Sender) = {snd, ack, err}

Again, its transition system is depicted thus:

in

The enhanced RECEIVER must cater for the possibility of its acknowl-
edgement being lost. After receiving a message (via the “rcv” action) and
forwarding it on (via the “out” action), it will issue an auxiliary acknowl-
edgement to the MEDIUM (via a “rack” action). At this point it will be ready
to receive a new message. However, it may instead receive an auxiliary er-
ror message from the MEDpiuM (modelled by a “rerr” action), indicating

486 Temporal Properties

that the acknowledgement was lost, in which case it will retransmit this
acknowledgement. The new definition is as follows:

. def . .
Receiver = rcv.out.rack.Receiver + rerr.rack.Receiver

Sort(Receiver) = {rcv,rack,rerr}

Its transition system is depicted thus:

Receiver

rack

Ircv

rack.Receiver

The behaviour of the MEDIUM must now interact with the RECEIVER
in delivering the acknowledgement from the RECEIVER to the SENDER of
the safe arrival of the message being delivered. After passing the message
to the RECEIVER (via the “rcv” action), the Medium awaits the auxiliary
acknowledgement from the RECEIVER (modelled by the “rack” action). It
then either passes the acknowledgement along to the SENDER (via the “ack”
action); or it may lose the acknowledgement (modelled by a “rerr” action),
and await a new acknowledgement from the RECEIVER. The new definition
is as follows:

out

Medium % snd.(rcv.rack.M + err.Medium)

M def ack.Medium + rerr.rack.M

Sort(Medium) = {snd,rcv,err}

Its transition system is depicted thus:

snd

rcv.rack.M

+
err.Medium

Additional Exercises 487

in

snd.S
|| Medium
|| Receiver

Sender
|| Medium
|| Receiver

S
|| (rcv.rack.M +
err.Medium)

|| Receiver

S
| M
|| Receiver

S
|| rack.M
|| out.rack.Receiver

S
|| rack.M
|| rack.Receiver

out

Figure 15.7: The enhanced message-passing system.

The symmetry reflected in the transition diagram makes clear the similarity
in the manner that the MEDIUM treats the SENDER and RECEIVER.

The complete system is again defined to be the composition of these
three components:

System % Sender | Medium | Receiver

but now the following configuration:

snd rcv 3

. ! ack rack |

in —— SENDER MEDIUM RECEIVER——out
! err rerr !
| |

The behaviour of the complete enhanced system is thus depicted by the tran-
sition system depicted in Figure 15.7. The symmetry between the SENDER
and the RECEIVER is immediately noticeable in this transition system.

488 Temporal Properties

Exercise 14.8 (page 377)

From the state S; || M || R; (the initial state being Sy || M || Ry) the
system can do an in action and nothing else, leaving the system in the
state S! || M || R;.

From here, the system will not be able to do a further in action until
the Sender process reaches the state S; ;.

This can only happen after the Sender action synchronises with the
Medium on an ack; action, leaving the Sender in the state S;_; and the
Medium in the state M.

Until this ack; synchronisation occurs, the Sender can repeatedly al-
ternate between the actions s; and ¢, so the system will not deadlock.

The Medium can only do this ack; action after it synchronises with the
Receiver on a rack; action.

The Receiver in turn can only do this rack; action after doing an out
action, and then leaves the Receiver in the state R;_;.

The system will then be in the state S;_; || M || Ri_;, from which the
above argument applies.

Chapter 15

Exercise 15.2 (page 384)

Deadlock-free = [I{—)true (by definition)
= =0—(—)true (since OP = —=0-P)
= 0[—]false (since =(—=)P = [-]-P)

= -Deadlockable (by definition)

Exercise 15.3 (page 385)

Ev P asserts that P must eventually become true.

This is almost the same as @ U P which also asserts that P must even-
tually become true; the only difference is the added requirement that until
P becomes true, @ must remain true.

However, this added requirement is vacuous if we take the property @

to be true, as of course true is always true anyways.
Hence, EvP = trueU P.

Additional Exercises 489

Exercise 15.4 (page 386)

Fact: E }=y P if, and only if, E € | P||,.

Proof: By induction on the structure of P, arguing by cases on the struc-
ture of P.

P=true: E=ytrue & E€States & E € |[[truellyx g
P=false: Eyfalse & E€l & EEe€|false|yy,g
P=X: EEvX & EeV(X) & Ee€|X|yx.s

P=-P: E=y-P & ERyP

& B¢ |[Plyx.s
& B ellPllyx,s © Eel-Pllyx.s

P=QiAQx ElFyQi1NQ: E=yQ: and E =y Q2
B € |@illyx.s and B € [|Qllyix. s
E € [Qillvixs N1Q2llvixiss

B e [|QnQallyixos

R DR

P=0Q:vQy EFyQ:1VQ: E=yQ or By Q@
B € |@illyxos or B €| Qallyixos
B € [|@illvixos Y 1Q2llvixe s

B e[QVQallyxos

¢t o0

P={(a)Q: El=y (a)Q < E - E'suchthat EB' =, Q
& E = ' such that B’ € [|Q|lyx_g

& Ee |(a)Qllvix.s

P=[aQ: E=y[a]Q & E-> E implies E' =y Q

& E = B implies B' € | Qllyx,.s

& Be@Qlxs o

Exercise 15.5 (page 388)

(@)X lyix..q = {E € States : E = B’ for some B' €0} = 0.

490 Temporal Properties

Exercise

Exercise

15.6 (page 389)

By Exercise 15.5, the empty set S = 0 satisfles S = [|(a) X |y (x.. 5 and hence
must be the least fixed point of the function f(S) = ||(a)XHV[XHS].

Let A= {E € States : E 5 - -5 . 5} be the set of states
which we intended to capture in Example 15.4 with the recursive property
X = (a)X. As demonstrated in Example 15.4, this set is a fixed point; we
shall demonstrate that A must in fact be the greatest fixed point.

To this end, suppose that S is any fixed point:

S = f(S)= H<a>XHV[X>—)S]
= {E € States : E - E' for some E' € S}

and suppose further that £ € S. We need to show that £ € A.

e Since E € S, E = E' for some E' € S.

a

e Since B' € S, E' — E" for some E" € S.

e Since E" € S, E" % E" for some E" € S.

Continuing in this fashion, it becomes clear that F € S.

As for a fixed point of the function f(S) = [[(a)X|ly(x, s Which is neither
the least nor greatest fixed point, consider the process with two states A and
B and two transitions A — A and B — A. Then 0, {A} and { 4, B} are
all fixed points of this function.

15.7 (page 392)

We prove this by induction — and arguing by cases — on the structure of P.
However, we only present the three cases which don’t appear in the proof
of the analogous result for HML (Theorem 13.6, page 343).

P=X:
Elgneg(X) & EyX & EcV(X) & E¢V(X) & Efv X

P=uXQ:
By neg(pX.Q) & B =yvX.neg(Q)
& IS CStates: BE€ Sand VF € S: F [=ypx,g neg(Q)
& S CStates: E¢ Sand VF ¢ S: F Eyzg neg(Q)
< IS CStates: E¢ SandVF ¢ S: F}#V[XHS] Q

& By uX.Q

P=vX.

Additional Exercises 491

EEyneg(vX.Q) & E =y upX.neg(Q)
& VS C States: if B ¢ S then 3F ¢ S such that F =y, 5 neg(Q)
& VS C States : if B € S then 3F € S such that F =yz-g neg(Q)
& VS C States : if E € S then 3F € S such that F FEyix..g @
& By vX.Q O

Exercise 15.12 (page 399)

1. With a least fixed point, we cannot be allowed to unroll the recursive
equation infinitely often in verifying that the property P is true in
every state.

At every state we reach, the property P must hold. But we must
eventually have nowhere to go; that it, the process must eventually
deadlock.

Thus this property is true as long as P is true in every state of the
process and every run of the process deadlocks.

2. With a greatest fixed point, we are allowed to unroll the recursive
property infinitely often in our search for a state in which P is true.

At each state, either the property P must hold, or it must be possible
to make a transition and continue the search for a state in which P
holds; however, we need never complete this search.

Thus this property is true if P is true in some state, or if there is an
infinite path through the process.

3. With a greatest fixed point, we are allowed to unroll the recursive
property infinitely often in our search for a state in which @ is true.

Thus the property is true if P is true for as long as @ is not true, but
until @ becomes true — if ever — it must be possible to do something.

Exercise 15.13 (page 401)

1. P almost always holds along some a“ path.

In order for this property to hold, there must be a state reachable by
a sequence of a transitions from which an a“ path exists along which
P is always true.

We have already seen how to express the property that P always holds
along some a“ path:

® = vX.P A (a)X.

We need only find a state satisfying this property which can be reached
by a sequence of a-transitions:

492 Temporal Properties

uX.® v (a)X.

Writing this out in full by substituting in the formula for & — whilst
at the same time changing one of the variables to avoid confusion — we
get the following:

,uZ.(uX.P A (a)X) Vv {(a)Z.

2. P holds infinitely often along some a” path.

In order for this property to be true, we must be able to reach a state
by doing a sequence of a transitions in which P holds, and then to
repeat this forever.

We will, therefore, have a least fixed point construction — to allow us
to look for the state in which P holds — embedded within a greatest
fixed point construction — to allow us to repeat this search over and
over again forever.

vZ.uX.(P A (a)Z) V (a)X.

Index

1, 212 s, 155

=/, 331 (—=K)P, 338
=,, 330 (—a)P, 338
A*, 206 (=)P, 338
A+, 206 (K)P, 338
OP, 382, 398 (a)P, 335, 337
B, 89 =, 337

X, 158 u"X.P, 394
Ev P, 385 [~K]P, 339
F, 40 [—a]P, 339
Z, 59 [P, 338
N, 59, 203 [K|P, 338
OP, 383, 398 [a] P, 335, 337
Q, 59 |, 29, 106
R, 59 -, 22

T, 40 0, 292, 296
U, 384, 398 1, 29

W, 401 7, 61

n, 66 V" X.P, 394
|, 57, 158 w, 323

o, 164 @, 84

-, 68 0, 323

S >+, 29 P, 69

~ 167 P (), 69

U, 65 <, 167

&, 27 -, 155

€, 205 \, 67

0, 59 ~x, 326

31, 118 ~ony 312

3, 115 ~eo, 312
Paa, 69, 158 C, 61

v, 113 C, 61

gfp, 174 >, 167

id, 158 D, 61

=, 25 v, 23

€, 59, 60 V[X — 8], 387
Ifp, 174 A, 25

F. Moller, G. Struth, Modelling Computing Systems,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84800-322-4, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-84800-322-4

494 INDEX

®, 24, 29, 44, 99 binary tree, 211

{3 57 bisimulation colouring, 319

|, 360 bisimulation game, 309

[], 211 bisimulation relation, 315, 316
bits, 59, 95

A to Z street atlas, 12 Bleak House, 179

Abbot Albert, 304 block of a partition, 195

absorption laws, 48, 80, 82, 91 block signalling, 3

abstract data type, 74 BNF, 207

abstraction, 11 Boolean algebra

Ackermann’s Function, 221 of propositions, 89

action prefix, 293 of sets, 88

actions, 292 two-valued Boolean algebra, 89

actions of a system, 282 Boolean algebras, 87

Alcuin of York, 283 bound variable, 111, 113

algebraic laws, 47 bounded quantification, 118

ALGOL, 208 box, 335, 337

Alice in Wonderland, 33 BriDG-IT, 269-270

almost always, 401 BRIDGE, 251

alphabet, 205 Brown, 3

alternating bit protocol, 373 Brown, Charlie, 405

AND gate, 96

antisymmetric relation, 191 CAD, 5

antisymmetry, 62 Cajori, Florian, 12

append, 215 CARD-CUTTING, 251

argument of a function, 157 cardinality, 57, 158, 166, 170

Ariane 5, 7 Carroll, Lewis, 33, 129, 239

arity of a function, 157 Cartesian product, 73

associativity, 48, 72, 79, 81, 87 Carver, Zeus, 287

atomic formula, 27 Cassini’s Identity, 239

atomic proposition, 19 castling, 19

attacker-defender games, 252 characteristic formula, 350
characteristic function, 158

BAckcaMMON, 251 CHEss, 251, 252, 259

Backus, John, 208 choice, 295

Backus-Naur Form, 207 CHOMP, 264-266

balanced Nim position, 261 Clayton tunnel, 2

Beck, Harry, 12 CLock-1-3, 273

beer mats, 287 CLock-1-4, 273

bijection, 161 codomain of a function, 157

binary digits, 59, 95 CoIN-FLIPPING, 251

binary function, 157 Collatz conjecture, 217

binary numbers, 100 Collatz’s conjecture, 226

binary relation, 181 communication protocol, 373

INDEX 495

commutativity, 48, 72, 79, 81, 87
complement

uniqueness, 92
complement laws, 80, 82, 87
complement of a set, 68
complementation, 87
composition of functions, 164
composition of processes, 357
composition of relations, 188
compound formula, 27
computational process, 279
Computer Aided Dispatch, 5
conclusion of an argument, 18
conclusion of an implication, 26
concurrent processes, 357
conditional connective, 29
conjunction, 25
conjuncts, 25
contradiction, 45
contradiction laws, 48, 82
contrapositive law, 49, 83
countable set, 170
countably infinite set, 170
counters, 360
critical section, 365

Day, Doris, 129

DAys-oF-THE- CENTURY, 273
DAYS-OF-THE-YEAR, 273

De Morgan laws, 92

De Morgan, Augustus, 109, 201
deadlock, 292, 333, 381
deadlock freedom, 367
deduction, 18

Deep Blue, 259

defining equations, 294
definitions, 294

Dekker’s Algorithm, 378
Deming, W. Edwards, 279

De Morgan's Laws, 48, 79, 82
diamond, 335, 337

Dickens, Charles, 179
dictionary, 211

Die Hard: With a Vengence, 287

difference of two sets, 67
digital circuits, 95

Dijkstra, Edsger W., 279, 365
dining philosophers, 365
disjoint sets, 67

disjunction, 23

disjuncts, 23

distributivity, 48, 79, 82, 87, 90
Dodgson, Charles Lutwidge, 33
domain of a function, 157
domain of a relation, 189
domination laws, 90

double complement law, 79, 82
double negation law, 48, 82
Dowell, John, 6

drawing strategy, 253

duality principle, 93

Einstein’s Riddle, 54
Einstein, Albert, 54, 251
elevator, 290

elimination strategies, 134
empty set, 59

empty set laws, 80, 82
empty word, 205
Epimenides the Cretan, 21
equality of sets, 60
equivalence, 27, 45
equivalence classes, 196
equivalence law, 49, 83
equivalence relation, 194
Erdés, Paul, 131

BEuclid, 139, 287

Euler, Leonhard, 225

events, 292

events of a system, 282
excluded middle laws, 48, 82
exclusive or, 24, 29, 44
exclusive OR gate, 99
existential quantification, 115
extended transition relation, 282

factorial function, 212
failure, 331

failures equivalence, 331

Fermat numbers, 224, 232

Fermat’s Last Theorem, 224

Fermat, Pierre de, 224

Fibonacci, 214

Fisonacct NiwM, 262-264

Fibonacci number system, 264

Fibonacci numbers, 213

Fibonacci test, 238

FIDE, 19

finite games, 252

finite set, 169

Finkelstein, Anthony, 6

fixed point, 173, 388

formula, 21

free variable, 110

full adder, 104

function, 155

Fundamental Theorem of Arithmetic,
235

game equivalence, 312, 326
game tree, 256

games, 251
Games-of-chance, 251
Games-of-no-chance, 251
Gauss, Carl Friedrich, 228
GCD, 287

Go, 251

Goldbach’s conjecture, 225
Goldwyn, Samuel, 129
googol, 323

Gower, 12

Gower Peninsula, 58
graph, 159

Great Western Railway, 3
greatest common divisor, 287
greatest fixed point, 174

half adder, 103

half adder circuit, 95
Halfhill, Tom, 7
harmonic numbers, 213
Harris, Sidney, 131

Haselgrove, C. Brian, 225

heap paradox, 242

Hennessy, Matthew, 337

Hennessy-Milner Logic, 337

heterogeneous relation, 182

HEex, 266-268

Heywood, John, 357

HML, 337

Holy Grail of Software Engineering,
13

homogeneous relation, 182

idempotence laws, 48, 79, 81, 90
identity function, 158
identity laws, 87
image of a function, 157
image-finite, 317
IMDb, 180
implementation, xiv, 13
implication, 25
implication law, 48, 83
inclusion-exclusion principle, 67, 85
induction, 223
mathematical induction, 228
strong induction, 234
structural induction, 245
inductive definition, 201
of N, 203
of a data types, 210
of a function, 212
of a list, 211
of a set, 202
of length, 215
inference, 18
infinitely often, 401
infix form, 157
infix notation, 110
infix style, 182
injective function, 160
insertion sort, 218
Integers, 59
Intel Pentium, 6
Internet Movie Database, 180
intersection of two sets, 66

INDEX 497

introduction strategies, 133
inverse function, 162
inverse relation, 187
involution law, 92
irreflexive relation, 190

Jackson, Samuel L., 287
James Bond, 180
Judd, Amos, 33, 76

Kasparov, Garry, 260
Kay, Alan, xi
key-value pair, 74
Killick, Henry, 3

Knaster-Tarski Theorem, 173, 174, 388,

390

labelled transition system, 281, 282
Larson, Doug, 155

LASCAD, 5

Law of Double Negation, 23
Law of the Excluded Middle, 24
laws of Boolean algebra, 87
least fixed point, 174

Legg, Charles, 3

length, 205

Leonardo of Pisa, 214

Leveson, Nancy, 5

Liber Abaci, 214

Lightyear, Buzz, 323

limit ordinal, 324

liveness properties, 381, 398
liveness property, 395

logic gates, 87, 95

logical equivalence, 45, 348
London Ambulance Service, 5
London Underground train map, 12
losing position, 253

Lowe, Gavin, 9

majority function, 99
man-in-the-middle attack, 8
Man-Wolf-Goat Riddle, 283
Marx, Groucho, 17, 57
mathematical induction, 228

McCarthy’s 91-function, 216
McClane, John, 287
merge sort, 219
Mersenne, Marin, 224
metalanguage, 21
metavariable, 27
Milner, Robin, 337
MisERE Nim, 274
MisERE NOUGHTS AND CROSSES, 258,
273

MISERE TAKE-3, 258
missionaries and cannibals, 286
mod, 287
modal depth, 346
modal helping verbs, 334
Modal Logic, 336
modal logic, 333

and bisimulation, 346
modal mu-calculus, 390
model, 10
modus ponens, 137
modus tollens, 137
MonorpoLy, 251
monotonic function, 173
Mount Kailash, 58
mu-approximant, 393
multiplexer, 107
mutual exclusion, 365, 402
mutual exclusion algorithms, 4

n!, 212

Nabokov, Vladimir, 309
Naismith’s Rule, 12

NAND, 29, 53

NAND gate, 106

Natural numbers, 59

Naur, Peter, 208
Needham-Schroeder Protocol, 7
negation, 22

Nelson, Ted, xi

Neumann, Peter, 4
Nicomachus’s Theorem, 247
nil process, 292, 296

N1M, 260-262, 274

Nim-k, 274
NOR, 29, 53
NOR gate, 106
NOT gate, 96
notation, 12

NoucHTs AND CROSSES, 251, 253

nu-approximant, 393
nuclear submarine, 4

object language, 21
one-to-one (1-1) function, 160
onto function, 161

OR gate, 96

ordered pair, 73

ordinal numbers, 323
Ordnance Survey, 12

OS maps, 12

PAPER-ScissOrRs-Rock, 252
parallel composition, 357
parentheses in formulae, 28
partial order, 193

partition, 195

partition refinement, 195

partition refinement algorithm, 320

Pearsall, Phyllis, 12

perfect information games, 252
Perriswood, 12

Peterson’s Algorithm, 368
Peterson, Gary L., 368

pixel, 75

POKER, 251

Poélya, George, 225

Pélya’s Conjecture, 225
powerset, 69

precedence of connectives, 28, 114

predecessor ordinal, 323
predicate, 109

predicate logic, 109

prefix notation, 110
preimage of a function, 157
premise of an argument, 19
premise of an implication, 26
prime number, 58

Proc, 292
process, 279
0, 292, 296
action prefix, 293
actions, 292
choice, 295
defining equations, 294
definitions, 294
events, 292
nil, 292, 296
variables, 292
product, 87
proof, 131
proof by contradiction, 139
proof by contraposition, 136
proof strategies, 132
proposition, 18
propositional connective, 19, 22
conjunction, 25
disjunction, 23
equivalence, 27
implication, 25
negation, 22
propositional formula, 27
propositional logic, 17, 21, 27
formula, 21
symbol, 21
syntax, 21, 27
propositional variable, 22
protocol, 3, 373
public-key cryptography, 8
Pythagoras, 139

quadratic formula, 238
quantification, 113
quantifiers, 111

radiotherapy machine, 4
railway level crossing, 362
range of a function, 157
range of a relation, 189
Rational numbers, 59
Real numbers, 59
Recorde, Robert, 13

INDEX 499

recursion, 201

recursive function, 216
recursive functions, 216
recursive procedures, 218
recursive properties, 385
reductio ad absurdum, 139
reflexive closure, 198
reflexive relation, 190
reflexivity, 62, 314
refusal set, 331

relation, 179
Reynoldston, 12

RGB model, 75

Rolt, Tom, 4

Rudner, Rita, 381
RusseLL, 275

Russell’s Paradox, 64-65
Russell, Bertrand, 65

Sachs, Andrew, 109
safety properties, 381, 398
safety property, 394
satisfiable property, 337
satisfiable proposition, 45
satisfies, 337
Schroder-Bernstein Theorem, 168
Schrodinger’s cat, 466
semantics

of HML, 337

of propositional logic, 19, 40
set, 57

element, 57

identities, 79

member, 57

membership, 59
set-builder notation, 58, 63
Simpson, Homer, 283
The Stmpsons, 283
simulation relation, 474
SNAKES AND LADDERS, 259, 274
Software’s Chronic Crisis, xii, 14
sorites paradox, 242
Sort(E), 359
source of a relation, 182

specification, xiv, 13
statement, 18
states of a system, 282
strategy, 251, 252
string, 205
strong induction, 234
Strong Opinions, 309
structural induction, 245
subset, 61
successor function, 207
successor ordinal, 323
sum, 87
Superman, 53
superset, 61
surjective function, 161
symbol, 21
symmetric closure, 198
symmetric difference, 84
symmetric relation, 191
symmetry, 314
synchronisation merge, 357, 360
synchronisation sort, 359
syntax
of HML, 337
of propositional formula, 27
of propositional logic, 19, 21
syntax tree, 30
synthesis, xiv
system, 10

TAKE-3, 257

TAKE-K, 257

target of a relation, 182
Tartaglia, Niccolo, 303

Tartaglian water measuring problems,

303
tautology, 45
tautology laws, 48, 82
temporal logic, 381
temporal properties, 381
testing, xiii
The Book, 131
theorem, 131
Therac 25, 4

500 INDEX

Thoreau, David Henry, 1 winning position, 253
Tic-Tac-Tog, 251 winning strategy, 253

total order, 193 word, 205

Towers of Hanoi, 220

trace bisimulation relation, 330 XOR gate, 99

trace equivalence, 330 Zeckendorf’s Theorem, 240, 264
trace set, 330 zero, 87

transfinite induction, 324 Zwicker, William, 275

transistors, 95

transition relation, 282
transitions of a system, 282
transitive closure, 198
transitive relation, 191
transitivity, 62, 314
triangle inequality, 147
truth set, 110, 179

truth tables, 40

Turner, Clark, 5

unbalanced Nim position, 261
uncountable set, 170

union of two sets, 65

unit, 87

universal quantification, 113
universe laws, 80, 82
universe of discourse, 61

USS Scorpion, 4

valid property, 337
valid proposition, 45
valuation function, 385
value of a function, 157
variables, 292

Venn diagram, 61
verification, xiv, 13

Wason Selection Test, 52
Wason, Peter, 52

water jugs, 287

well-formed formula, 27

wif, 27

Whitehead, Alfred North, 13
Wilde, Oscar, 333

Wiles, Andrew, 224

Willis, Bruce, 287

