


Multiobjective  
Optimisation and  
Control 
 
 

 



 
ENGINEERING SYSTEMS MODELLING AND CONTROL 
SERIES 
 
 
Series Editor: Professor D H Owens 

University of Sheffield, UK 
 
3. Controllability Analysis and Control Structure Selection 
 Y Cao, D Rossiter and D H Owens  * 
4. Multiobjective Optimisation and Control 
 G P Liu, J B Yang and J F Whidborne 
 
 
*  forthcoming 
 



 

Multiobjective  
Optimisation and  
Control 
 

 
 
 
G P Liu, University of Nottingham, UK 
J B Yang, UMIST, UK 
J F Whidborne, King’s College London, UK 
 
 
 

  
  
  
  
  
  
  
  
 
 

 

 

 
 
RESEARCH STUDIES PRESS LTD. 
Baldock, Hertfordshire, England 
 
 



RESEARCH STUDIES PRESS LTD. 

16 Coach House Cloisters, 10 Hitchin Street, Baldock, Hertfordshire, SG7 6AE, England 
www.research-studies-press.co.uk 

and  

Institute of Physics PUBLISHING, Suite 929, The Public Ledger Building, 

150 South Independence Mall West, Philadelphia, PA 19106, USA 
 
Copyright © 2003, by Research Studies Press Ltd. 
Research Studies Press Ltd. is a partner imprint with the Institute of Phys ics PUBLISHING 
 
All rights reserved. 
No part of this book may be reproduced by any means, nor transmitted, nor translated  
into a machine language without the written permission of the publisher. 
 
Marketing: 
Institute of Physics PUBLISHING, Dirac House, Temple Back, Bristol, BS1 6BE, England 
www.bookmarkphysics.iop.org 
 
Distribution: 
NORTH AMERICA 
AIDC, 50 Winter Sport Lane, PO Box 20, Williston, VT 05495-0020, USA  
Tel: 1-800 632 0880 or outside USA 1-802 862 0095, Fax: 802 864 7626, E-mail: orders@aidcvt.com 
 
UK AND THE REST OF WORLD 
Marston Book Services Ltd, P.O. Box 269, Abingdon, Oxfordshire, OX14 4YN, England 
Tel: + 44 (0)1235 465500 Fax: + 44 (0)1235 465555 E-mail: direct.order@marston.co.uk  
 
Library of Congress Cataloguing-in-Publication Data 
 
Liu, G.P.(Guo Ping), 1962 – 
      Multiobjective optimisation and control / G.P. Liu, J.B. Yang, J.F. Whidborne. 
          p. cm. – (Engineering systems modelling and control series ; 4) 
     Includes bibliographical references and index. 
 ISBN: 0-86380-264-8 
   1. Mathematical optimisation. 2. Nonlinear programming. 3. Multiple criteria decision  
 making.  I. Yang, Jian-Bo, 1961 – II Whidborne, J.F. (James Ferris), 1960- III. Title. IV. 
 Series. 
 
QA402.5 .L57 2001 
519.3--dc21      2001019195 
 
British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library. 
 
ISBN 0 86380 264 8 
 
Printed in Great Britain by SRP Ltd., Exeter 



v

Dedication

To Weihong and Louise
(G.P. Liu)

To Dong-Ling and Lin
(J.B. Yang)

To C�ecile
(J.F. Whidborne)



Contents

Preface xiii

Symbols and Abbreviations xv

1 Introduction 1

1.1 Multiobjective Optimisation 1

1.1.1 Constrained Optimisation 1

1.1.2 Conventional Multiobjective Optimisation 2

1.1.3 Method of Inequalities 7

1.1.4 Multiobjective Genetic Algorithms 9

1.2Multiobjective Control 10

1.2.1 Conicts and Trade-o�s in Control Systems 11

1.2.2 Multiobjective Robust Control 14

1.2.3 Multiobjective Critical Control 15

1.2.4 Multiobjective Eigenstructure Assignment 16

1.2.5 Multiobjective PID Control 16

1.2.6 Multiobjective Optimisation of Controller Implementations 17

1.2.7 Multiobjective Nonlinear Identi�cation 18

1.2.8 Multiobjective Fault Detection 19

1.3 Outline of the Book 20

2 Nonlinear Optimisation 23

2.1 One-Dimensional Optimisation 23

2.1.1 The Dichotomy Method with Derivatives 23

2.1.2 The Dichotomy Method without Derivatives 25

2.1.3 The Fibonacci Method 26

2.1.4 The Golden Section Search Method 31

2.2 Optimisation Conditions 32

2.2.1 Necessary Conditions for Local Optimality 32

2.2.2 SuÆcient Conditions for Local Optimality 34

vii



viii CONTENTS

2.3 Unconstrained Optimisation Methods 34

2.3.1 Steepest Decent Method 34

2.3.2 Newton's Method 38

2.3.3 Quasi-Newton's Methods 41

2.4 Summary 44

3 Constrained Optimisation 45

3.1 Introduction 45

3.2 Optimality Conditions 46

3.2.1 Basic Concepts 46

3.2.2 Kuhn-Tucker Necessary Condition 47

3.2.3 Second Order SuÆcient Conditions 48

3.3 Primal Methods 52

3.3.1 Sequential Linear Programming 52

3.3.2 Sequential Quadratic Programming 55

3.4 Dual Methods 60

3.4.1 Lagrangean Methods 61

3.4.2 Method of Exterior Penalties 64

3.4.3 Method of Interior Penalties 68

3.5 Summary 71

4 Multiple Objective Optimisation 73

4.1 Introduction 73

4.2 Basic Concepts and Methods 74

4.2.1 Concepts and De�nitions 74

4.2.2 Method Classi�cation 77

4.2.3 Simple Weighting Method 78

4.3 p-Norm Methods 82

4.3.1 Minimax (Ideal Point) Method 82

4.3.2 Goal Attainment Method 89

4.3.3 Goal Programming 91

4.3.4 The Minimax Reference Point Method 95

4.4 Interactive Methods 103

4.4.1 Geo�rion's Method 103

4.4.2 The STEM Method 108

4.4.3 The ISTM Method 112

4.4.4 The Gradient Projection Method 116

4.5 Summary 123

5 Genetic Algorithms and Optimisation 125

5.1 Introduction 125



CONTENTS ix

5.2What are Genetic Algorithms 125

5.3 Basic Structure of Genetic Algorithms 127

5.4 Population Representation and Initialisation 129

5.4.1 Binary Representation 129

5.4.2 Real-Valued Representation 129

5.4.3 Initialisation 130

5.5 Fitness Functions 130

5.6 Selection 132

5.6.1 Roulette Wheel Selection Methods 133

5.6.2 Stochastic Universal Sampling 134

5.7 Crossover 135

5.7.1 Single-Point Crossover 135

5.7.2 Multi-Point Crossover 135

5.7.3 Uniform Crossover 136

5.7.4 Other Crossover Operators 137

5.7.5 Intermediate Recombination 137

5.7.6 Line Recombination 138

5.8 Mutation 138

5.9 Reinsertion and Termination 140

5.9.1 Reinsertion 140

5.9.2 Termination 141

5.10 Multiobjective Optimisation with GAs 141

5.10.1 Constrained Optimisation 141

5.10.2 Non-Pareto Optimisation 142

5.10.3 Pareto-Based Optimisation 143

5.11 An Example 143

5.12 Summary 146

6 Robust Control System Design by Mixed Optimisation 147

6.1 Introduction 147

6.2 An H1 Loop Shaping Design Procedure 148

6.2.1 Overview 148

6.2.2 Preliminaries 149

6.2.3 Normalised Left Coprime Factorisation 150

6.2.4 Coprime Factor Robust H1 Stability Problem 151

6.2.5 A Loop-Shaping Design Procedure (LSDP) 153

6.2.6 Example { The Inverted Pendulum 156

6.3Mixed-Optimisation for the LSDP 160

6.3.1 MATLAB Implementation - The MODCONS Toolbox 162

6.4 Example { The Distillation Column 163



x CONTENTS

6.5 Example { High Speed EMS Maglev Vehicle 167

6.6 Summary 175

7 Multiobjective Control of Critical Systems 177

7.1 Introduction 177

7.2 Critical Control Systems 178

7.3 Critical System Descriptions 180

7.4 Input Spaces of Systems 183

7.5 Multiobjective Critical Control 184

7.6 Control Design of SISO Critical Systems 186

7.7 Control Design of MIMO Critical Systems 191

7.8 An Example 197

7.9 Summary 198

8 Multiobjective Control Using Eigenstructure Assignment 199

8.1 Introduction 199

8.2What is Eigenstructure Assignment 200

8.3 Allowable Eigenvector Subspaces 203

8.4 Parametric Eigenstructure Assignment 206

8.5 Multiobjective Eigenstructure Assignment 210

8.6 Controller Design Using the Method of Inequalities 214

8.7 Controller Design Using Genetic Algorithms 217

8.8 Summary 221

9 Multiobjective PI Controller Design for a Gasi�er 223

9.1 Introduction 223

9.2 Modelling of the Gasi�er 224

9.3 System Speci�cations of the Gasi�er 226

9.4 Multiobjective PI Control Formulation 228

9.5 Multiobjective Optimal-Tuning PI Control 230

9.6 Simulation Results and Discussions 231

9.7 Summary 238

10 Multiobjective PID Controller Implementation Design 239

10.1 Introduction 239

10.2 FWL Fixed-Point Representation 241

10.2.1 A Linear System Equivalence Completion Problem 242

10.3 MOGA for Optimal FWL Controller Structures 245

10.3.1 Multiobjective Genetic Algorithm 245

10.3.2 Procedure Outline 248

10.3.3 Encoding of Solution Space 249



CONTENTS xi

10.4 Example { Steel Rolling Mill System 249

10.4.1 Performance indices 250

10.4.2 Nominal Plant Model 251

10.4.3 Controller 251

10.4.4 Design Results 252

10.5 Example { IFAC93 Benchmark Design 252

10.5.1 Performance Indices 253

10.5.2 Nominal Plant Model and Controller 253

10.5.3 Design Results 254

10.6 Summary 257

11 Multiobjective Nonlinear Identi�cation 259

11.1 Introduction 259

11.2 Neural Networks 261

11.3 Gaussian Radial Basis Function Networks 263

11.4 Nonlinear Modelling with Neural Networks 264

11.5 Modelling Selection by Genetic Algorithms 265

11.6 Multiobjective Identi�cation Criteria 266

11.7 Multiobjective Identi�cation Algorithm 268

11.8 Examples 271

11.8.1 Example 1 272

11.8.2 Example 2 277

11.9 Summary 279

12 Multiobjective Fault Diagnosis 281

12.1 Introduction 281

12.2 Overview of Robust Fault Diagnosis 282

12.3 Observer Based Fault Diagnosis 284

12.4 Multiple Objectives of Fault Diagnosis 286

12.5 Disturbance Distribution and Fault Isolation 287

12.6 Parameterisation of Fault Diagnosis 288

12.7 Multiobjective Fault Diagnosis 290

12.8 An Example 291

12.9 Summary 295

Bibliography 297

Index 317



Preface

Multiobjective optimisation has been widely applied to control systems to
achieve a number of design objectives that are often conicting. This book
is intended to cover the central concepts of multiobjective optimisation and
control techniques. It is designed for either self-study by professionals or class-
room work at the undergraduate or postgraduate level for students who have
a technical background in control engineering and engineering mathematics.
Like the �eld of optimisation and control, which involves many classical and
advanced disciplines, the book should be useful to control system designers
and researchers and other specialists from the host of disciplines from which
practical optimisation and control applications are drawn.

The prerequisites for convenient use of the book are relatively modest; the
prime requirement being some familiarity with introductory elements of linear
algebra and linear control systems. Certain sections and developments do as-
sume some knowledge of more advanced concepts of control systems, but the
text is structured so that the mainstream of the development can be faithfully
pursued without reliance on this more advanced background material.

Although the book covers primarily material that is now fairly standard,
it is intended to reect theoretical and practical insights of multiobjective
optimisation and control. These provide structure to what might otherwise
be simply a collection of techniques and results, and this is valuable both as
a means for learning existing material and for developing new results. One
major insight of this type is the connection between the purely analytical
character of an optimisation problem and the behaviour of control techniques
used to design a practical system.

Much of the work described in this book is based on a series of publica-
tions by the authors. The following publishers are gratefully acknowledged for
permission to publish aspects of the authors' work appeared in their journals:
The Institution of Electrical Engineers, Taylor and Francis Ltd., The Institute
of Electrical and Electronics Engineers, and The Institute of Mechanical Engi-
neers. The authors would like to thank the following people whom they have
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each collaborated with on some of the material for the book: Professor Steve
Billings, Dr Jie Chen, Dr Steve Daley, Dr Roger Dixon, Dr Dawei Gu, Dr
Visakan Kadirkamanathan, Professor Duan Li, Professor Ron Patton, Profes-
sor Ian Postlethwaite and Dr Vladimir Zakian. Guoping Liu wishes to thank
his wife Weihong and daughter Louise for their constant encouragement, un-
derstanding and tolerance during the preparation of the manuscript. Jian-Bo
Yang wishes to thank his wife Dong-Ling and daughter Lin for their sharing
his interests and providing support in writing the book. James Whidborne
wishes to thank his wife C�ecile and daughters Gwena�elle and Camille for their
support, love and understanding. He would also like to thank Raza Samar,
Aamer Bhatti and the other organisers of the 25th International Nathiagali
Summer College for the opportunity to present some of the material contained
in this book to the college in 2001.
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Symbols and Abbreviations

The symbols and abbreviations listed here are used unless otherwise stated.

C �eld of complex numbers
(�)� complex conjugate
DM decision maker
Æx(t) _x(t) for continuous time and x(t+ 1) for discrete time
EA eigenstructure assignment
FDI fault detection and isolation
FWL �nite word-length
GA genetic algorithm
GAs genetic algorithms
GRBF Gaussian radial basis function
kH kn n-norm of the function H(s)
ISTM interactive step trade-o� method
im imaginary part of a complex number
inff�g in�mum
j imaginary indictor of a complex
K system controller
L left eigenvector matrix
L [:] Laplace transform operation
� eigenvalue
�i i-th eigenvalue
� closed-loop eigenvalue set
LHP left half-plane
LSDP loop-shaping design procedure
LQG linear quadratic Gaussian
MBP moving boundaries process
MIMO multi-input multi-output
MLP multilayer perceptron
MOGA multiobjective genetic algorithm
MoI method of inequalities
Max Maximum
maxf�g maximum
Min Minimum

xv



xvi SYMBOLS AND ABBREVIATIONS

minf�g minimum
j � j modulus
N integer numbers
N+ non-negative integer numbers
! angular frequency
PI proportional-integral
PID proportional-integral-derivative
p design parameter
@
@x partial derivative with respect to x
� performance function
R right eigenvector matrix
RBF radial basis function
R �eld of real numbers (�1;1)
R+ �eld of non-negative real numbers [0;1)
RHP right half-plane
re real part of a complex number
SISO single-input single-output
SLP sequential linear programming
STEM step method
s Laplace operator
s:t: satisfy
��(M) maximum singular value of the matrix M
�(M) minimum singular value of the matrix M
supf�g supremum
T sampling interval in sampled-data systems
t time
u system control input
x system state vector
y system output



Chapter 1

Introduction

In control system design there are often a number of design objectives to
be considered. The objectives are sometimes conicting and no design exists
which can be considered best with respect to all objectives. Hence, there is an
inevitable trade-o� between design objectives, for example, between an output
performance objective and stability robustness. These considerations have led
to the study of multiobjective optimisation methods for control systems.

1.1 Multiobjective Optimisation

The general multiobjective optimisation problem has been studied in great de-
tail, both in the control community (e.g. Zadeh, 1963; Gembicki and Haimes,
1975; Lin, 1976; Giesy, 1978; Tabak et al., 1979; for a review, see Ng, 1989)
and the operational research community (e.g. Cohon, 1978). Constraint satis-
faction and multiobjective optimisation are two aspects of the same problem.
Both of them involve the simultaneous optimisation of many objective func-
tions. Constraints can often be considered as hard objectives, which need
to be satis�ed before the optimisation of the remaining soft objectives takes
place. On the other hand, problems characterised by a number of soft ob-
jectives are often re-formulated as constrained optimisation problems to �nd
their solutions. Both multiobjective and constraint optimisation have a long
research history.

1.1.1 Constrained Optimisation

Practical problems are often constrained by a number of restrictions imposed
on the decision variables. Generally speaking, there are two types of con-
straints. The �rst one is the domain constraints which express the domain of
de�nition of the objective function. In control systems, for example, closed-
loop system stability is a domain constraint, because most control perfor-

1



2 CHAPTER 1. INTRODUCTION

mance measures are not de�ned for unstable systems. The second is the
preference constraints that impose further restrictions on the solution of the
problem according to knowledge at a higher level. For example, a given sta-
bility margin expresses a preference of the designer.

Constraints can usually be described in terms of function inequalities of
the type

�(p) � " (1.1.1)

where �(:) is a generally nonlinear real-valued function of the decision variable
vector p and " is a constant value. The inequalities may also be strict by
< rather than �. Equality constraints can be seen as particular cases of
inequality constraints.

Without loss of generality, the constrained optimisation problem is that of
minimising a scalar function �0 of some decision variable vector p in a universe
U , subject to n conditions involving p. Then, the constrained optimisation
problem can eventually be expressed as the following:

min
p2U

�0(p) (1.1.2)

subject to

�i(p) � "i; for i = 1; 2; :::; n (1.1.3)

where it is assumed that there is at least one point in U which satis�es all
constraints.

In many cases, it is very diÆcult to satisfy all constraints. When con-
straints cannot be all simultaneously satis�ed, the problem is often deemed
to admit that there is no solution. According to the extent to which each con-
straint is violated, the violated constraints then need to be considered in order
to relax the preference constraints. It is clear that the problem of satisfying
a number of violated inequality constraints is the multiobjective problem of
minimising the associated functions until given values (goals) are reached.

1.1.2 Conventional Multiobjective Optimisation

A number of problems are also characterised by several non-commensurable
and often competing measures of performance, or objectives. Without loss of
generality, the multiobjective optimisation problem is the problem of simul-
taneously minimising the n objectives �i(p), k = 1; :::; n of a variable vector
p in a universe U , that is

min
p2U

(�1(p); �2(p); :::; �n(p)) (1.1.4)

In general, the problem has no optimal solution that could optimise all objec-
tives simultaneously. But there exist a set of equally eÆcient, or non-inferior,



1.1. MULTIOBJECTIVE OPTIMISATION 3

alternative solutions, known as the Pareto-optimal set (Ben-Tal, 1980). To
select a suitable compromise solution from all non-inferior alternatives, a de-
cision process is necessary. Depending on how the computation and the de-
cision processes are combined in the search for compromise solutions, there
exist three broad classes of multiobjective optimisation methods (Hwang and
Masud, 1979): a priori articulation of preferences, a posteriori articulation of
preferences, and progressive articulation of preferences.

In a priori articulation of preferences, the decision-maker expresses pref-
erences in terms of an aggregating function, which combines individual ob-
jective values into a single utility value and ultimately makes the problem
single-objective prior to optimisation.

In a posteriori articulation of preferences, the decision-maker is presented
by the optimiser with a set of non-inferior solution candidates before express-
ing any preferences. The trade-o� solution is chosen from that set.

In progressive articulation of preferences, decision making and optimisa-
tion occur at interactive steps. At each step, the decision-maker provides
partial preference information to the optimiser, which in turn generates bet-
ter alternatives according to the information received.

Preference articulation implicitly de�nes a so-called utility function that
discriminates between candidate solutions. Although it can be very diÆcult to
formalise such a utility function in every detail, approaches based on weighting
coeÆcients, priorities and goal values have been widely used.

Weighting coeÆcients are real values that express the relative importance
of the objectives and balance their involvement in the overall utility measure.
For example, the weighted sum approach is based on objective weighting
(Hwang and Masud, 1979).

Priorities are integer values that determine the order of objectives to be
optimised, according to their importance. The lexicographic method (Ben-
Tal, 1980), for example, requires to assign di�erent priorities to all objectives.

Goal values give an indication of desired levels of performance in each
objective dimension. Goals can be interpreted in various ways. They may
represent minimum levels of performance to be attained, utopian performance
levels to be approximated, or ideal performance levels to be matched as closely
as possible. Generally speaking, goals are easier to set than weights and
priorities because they relate more closely to the �nal solution of the problem.

Pareto Optimality

As we have seen, control systems design problems, along with the majority
of engineering design problems are multiobjective, in that there are several
conicting design aims which need to be simultaneously achieved. If these
design aims are expressed quantitatively as a set of n design objective func-
tions f�i(p) : i = 1 : : : ng, where p denotes the design parameters chosen by
the designer, the design problem could be formulated as a multiobjective op-
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timisation problem:
min
p2P

f�i(p); for i = 1 : : : ng (1.1.5)

where P denotes the set of possible design parameters p.
In most cases, the objective functions are in conict, so the reduction of one

objective function leads to the increase in another. Subsequently, the result of
the multiobjective optimisation is known as a Pareto-optimal solution (Pareto,
1906). A Pareto-optimal solution has the property that it is not possible to
reduce any of the objective functions without increasing at least one of the
other objective functions.

A point p� 2 P is de�ned as being Pareto-optimal if and only if there
exists no other point p 2 P such that

a) �i(p) � �i(p
�) for all i = 1; : : : ; n and

b) �j(p) < �j(p
�) for at least one j:

The Pareto-optimal set is illustrated in Figure 1.1 for the case where there
are two objective functions, i.e. n = 2. A point lying in the interior of the
attainable set is sub-optimal, since both �1 and �2 can be both reduced. A
point lying on the boundary of the set, i.e. in the Pareto-optimal set, requires
�1 to be increased if �2 is to be decreased and vice versa. A solution to a
multiobjective optimisation problem must lie on this boundary.

6

-

Attainable set

�1(p)

�
2
(p
)

Pareto
optimal set

6

Figure 1.1: A Pareto-optimal set
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Weighted Sum Method

The weighted sum method converts the multiobjective problem of minimising
the objectives into a scalar one by constructing a weighted sum of all the
objectives, that is,

min
p2U

nX
k=1

wk�k(p) (1.1.6)

where wk is the weighting coeÆcient. This problem can then be solved using
a standard unconstrained optimisation algorithm. The main point in the
problem here is to attach the weighting coeÆcients to each of the objectives.
The weighting coeÆcients do not necessarily represent the relative importance
of the objectives or allow trade-o�s between the objectives to be expressed.
Further, the non-inferior solution boundary may be non-convex so that certain
solutions are not accessible using this method.

"-Constraint Method

"-constraint method is a procedure which overcomes some of the convexity
problems of the weighted sum technique. It involves minimising a primary
objective and expressing the other objectives in the form of inequality con-
straints

min
p2U

�i(p) (1.1.7)

subject to

�k(p) � "k; for k = 1; 2; :::; n; k 6= i (1.1.8)

This method is able to identify many non-inferior solutions on a non-convex
boundary, which are not obtainable using the weighted sum approach. How-
ever, a problem with this approach is a suitable selection of "k to ensure a
feasible solution. A further disadvantage of this method is that the use of hard
constraints is rarely adequate for expressing true design objectives. There are
also some similar methods, such as that of Waltz (1967). They prioritise the
objectives and the optimisation proceeds with reference to these priorities and
allowable bounds. Here, it is diÆcult to express such information at an early
stage of the optimisation cycle.

Goal Attainment Method

The goal attainment method involves expressing a set of design goals, which is
associated with a set of objectives (Gembicki, 1974). The problem formulation
allows the objectives to be under- or over-achieved so that the initial design
goals can be set to be relatively imprecise by the designer. The relative
degree of under- or over-achievement of the goals is controlled by a weighting
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coeÆcient vector. A standard optimisation problem using this method is
formulated as

min
f2R;p2U

f (1.1.9)

�k(p)� wkf � ��k ; k = 1; 2; :::; n (1.1.10)

where �k is the objective, �
�
k the design goal, and wk the weighting coeÆcient.

The goal attainment method provides a convenient intuitive interpretation of
the design problem, which is solvable using standard optimisation procedures.
An advantage of the goal attainment method is that it can be posed as a non-
linear programming problem. Illustrative examples of using goal attainment
method in control system design can be found in Fleming (1986).

Nonlinear Programming

Many approaches based on nonlinear programming to solve variations on the
general problem given by (1.1.5) have been proposed. For example, Kreis-
selmeier and Steinhauser (1983) propose an approach with some similarities
to the Method of Inequalities (see section 1.1.3, Maciejowski, 1989, pp 346-
351). The approaches by Polak, Mayne and co-authors (e.g. Mayne et al.,
1981; Polak and Mayne, 1976; see Polak et al. (1984) for a review) provide
some eÆcient methods for solving many multiobjective problems.

Convex Optimisation

It has been recognised (Boyd and Barratt, 1991; Polak and Salcudean, 1989)
that via a Youla parameterisation, many multiobjective control problems can
be posed as convex optimisation problems. EÆcient methods have been de-
veloped to solve such problems. In addition, a number of problems can be
posed as linear matrix inequalities (Scherer et al., 1997).

Interactive Multiobjective Programming

It has been recognised by many researchers that, generally, the multiobjective
design process is interactive, with the computer providing information to the
designer about conicting design requirements, and the designer adjusting the
problem speci�cation to explore the various possible solutions to the problem.
The design process is thus a two way process, with the computer providing
information to the designer about conicting design requirements, and the
designer making decisions about the `trade-o�s' between design requirements
based on this information as well as on the designer's knowledge, experience
and intuition about the particular problem. The designer can be supported in
this role by various graphical displays (Ng, 1989) which provide information
about the progress of the search algorithm and about the conicting design
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requirements. Some packages have been developed to provide such an en-
vironment, such as DELIGHT (Nye, 1983; Nye and Tits, 1986), ANDECS
(Grubel et al., 1993) and MODCONS (Whidborne et al., 1995, 1996).

1.1.3 Method of Inequalities

The problem with multiobjective optimisation is that there is generally a
very large set of Pareto-optimal solutions. Subsequently there is a diÆculty
in representing the set of Pareto-optimal solutions and in choosing the solution
which is the best design.

To overcome this diÆculty, the design problem can be formulated as the
method of inequalities (MoI) (Zakian and Al-Naib, 1973) (see also, Patel and
Munro, 1982; Maciejowski, 1989; Whidborne and Liu, 1993). In the method
of inequalities, the problem is expressed as a set of algebraic inequalities which
need to be satis�ed for a successful design. The design problem is expressed
as: �nd p such that inequalities

�i(p) � "i; for i = 1; 2; : : : ; n (1.1.11)

are satis�ed, where "i are real numbers, p 2 P is a real vector (p1; p2; : : : ; pq)
chosen from a given set P and �i are real functions of p.

The design goals "i are chosen by the designer and represent the largest
tolerable values of the objective functions �i. The aim of the design is to �nd
a p that simultaneously satis�es the set of inequalities.

For control system design, the functions �i(p) may be functions of the
system step response, for example the rise-time, overshoot or the integral ab-
solute error, or functions of the frequency response, such as the bandwidth.
They can also represent measures of the system stability and robustness, such
as the maximum real part of the closed-loop poles. Additional inequalities
which arise from the physical constraints of the system can also be included,
to restrict for example, the maximum control signal. The design parameter,
p, may parameterise a controller with a particular structure (e.g. Whidborne,
1992 or Whidborne, 1993). For example, p = (p1; p2) could parameterise a PI
controller p1 + p2=s. Alternatively, p, may parameterise the weighting func-
tions required by analytical optimisation methods (Whidborne et al., 1994b,
1995b; Postlethwaite et al., 1994) to provide a mixed optimisation approach.

The actual solution to the set of inequalities (1.1.11) may be obtained by
means of numerical search algorithms. Generally, the design process is interac-
tive, with the computer providing information to the designer about conict-
ing design requirements, and the designer adjusting the inequalities to explore
the various possible solutions to the problem. The progress of the search al-
gorithm should be monitored, and, if a solution is not found, the designer
may either change the starting point, relax some of the desired bounds " or
change the design con�guration. Alternatively, if a solution is found easily, to
improve the quality of the design, the bounds could be tightened or additional
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design objectives could be included in (1.1.11). The design process is thus a
two way process, with the MoI providing information to the designer about
conicting design requirements, and the designer making decisions about the
`trade-o�s' between design requirements based on this information as well as
on the designer's knowledge, experience and intuition about the particular
problem. The designer should be supported in this role by various graphi-
cal displays (Ng, 1989) which provide information about the progress of the
search algorithm and about the conicting design requirements.

The original algorithm for the MoI, proposed by Zakian and Al-Naib
(1973), is known as the moving boundaries process (MBP). This algorithm
uses Rosenbrock's hill-climbing (Rosenbrock, 1960) to perform a local search
to try and improve on at least one of the unsatis�ed performance indices.
This algorithm is simple, robust and e�ective and has worked well over the
years, however, it does rely on a great deal of user-interaction to provide as-
sistance when local minima are approached. The success of the algorithm is
very dependent on being provided with a good starting point. This does have
the advantage of forcing the user to carefully analyse the problem before the
design is completed, and hence guarding against `unreasonable' solutions.

Ng (1989) has proposed another algorithm, which is also based on a
hill-climbing method, namely Nelder and Mead's modi�ed simplex method
(Nelder and Mead, 1965). It provides a dynamic minimax formulation which
makes all indices with unsatis�ed bounds equally active at the start of each
iteration of the Nelder-Mead algorithm, so that at the k-th iteration, one step
of the following minimax problem is solved:

min
p
 (p) (1.1.12)

where

 (p) = max
i

�
��i =

�i(p)� �gi
�bi � �gi

; i = 1; 2; : : : ; n

�
(1.1.13)

�gi =

�
"i if �i(p

k) > "i
�i(p

k)� Æ if �i(p
k) � "i

(1.1.14)

�bi =

�
�i(p

k) if �i(p
k) > "i

"i if �i(p
k) � "i

(1.1.15)

and Æ is set to a small positive number. This algorithm also appears to work
well, but is also very dependent on being provided with a good starting point.

There are a number of other search algorithms for the MoI. An algorithm
based on simulated annealing can be found in Whidborne et al. (1996a)
or Chipper�eld et al. (1999). The goal attainment method (Gembicki and
Haimes, 1975; Fleming and Pashkevich, 1986) can also be used for solving
inequalities and this algorithm has been included in the MATLAB Optimi-
sation Toolbox (Grace, 1994). Other algorithms have been developed for the
solution of functional inequalities (see for example, Becker et al., 1979).
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1.1.4 Multiobjective Genetic Algorithms

Genetic algorithms (GAs) are search procedures based on the evolutionary
process in nature. They di�er from other approaches in that they use proba-
bilistic and not deterministic procedures for progressing the search. The idea
is that the GA operates a population of individuals, each individual represent-
ing a potential solution to the problem, and applies the principle of survival
of the �ttest on the population, so that the individuals evolve towards better
solutions to the problem.

The individuals are given a chromosoidal representation, which corre-
sponds to the genotype of an individual in nature. Three operations can
be performed on individuals in the population, selection, crossover and muta-
tion. These correspond to the selection of individuals in nature for breeding,
where the �tter members of a population breed and so pass-on their genetic
material. The crossover corresponds to the combination of genes by mating,
and mutation to genetic mutation in nature. The selection is weighted so that
the `�ttest' individuals are more likely to be selected for crossover, the �tness
being a function of the function which is being minimised. By means of these
operations, the population will evolve towards a solution.

Most GAs have been used for single objective problems, although several
multiobjective schemes have been proposed (e.g. Scha�er, 1985; Wienke et
al., 1992). In particular, Patton et al. (1994) have used a GA to solve the
MoI by converting the problem to a minimax optimisation problem. Fonseca
and Fleming (1995) have used an approach called the multiobjective genetic
algorithm (MOGA), which is an extension on an idea by Goldberg (1989).
This formulation maintains the genuine multiobjective nature of the problem,
and is essentially the scheme used here. Further details of the MOGA can be
found in Fonseca and Fleming (1993a,b, 1994).

The design philosophy of the MOGA di�ers from the MoI, in that a set
of simultaneous solutions is sought, and the designer then selects the best
solution from the set. The idea behind the MOGA is to develop a population
of Pareto-optimal or near Pareto-optimal solutions. However, to restrict the
size of the near Pareto-optimal set and to give a more practical setting to
the MOGA, the problem has been formulated in a similar way to the MoI in
Fonseca and Fleming (1993a). This formulation maintains the genuine multi-
objective nature of the problem. The aim is to �nd a set of solutions which are
non-dominated and which satisfy a set of inequalities. An individual j with a
set of objective functions �j = (�j1; : : : ; �

j
n) is said to be non-dominated if for a

population ofN individuals, there are no other individuals k = 1; : : : ; N; k 6= j
such that

a) �ki � �ji for all i = 1; : : : ; n and

b) �ki < �ji for at least one i:

The MOGA is set into a multiobjective context by means of the �tness func-
tion. The individuals are ranked on the basis of the number of other individ-
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uals they are dominated by for the unsatis�ed inequalities. Each individual is
then assigned a �tness according to their rank. The mechanism is described in
detail in Fonseca and Fleming (1993a). An alternative, less computationally
demanding, ranking scheme has been proposed by Liu et al. (1994).

To summarise, the problem addressed by the MOGA could be stated as:
�nd a set of M admissible points pj ; j = 1; : : :M such that

�ji � "i; j = 1; : : :M; i = 1; : : : ; n (1.1.16)

and such that �j(j = 1; : : :M) are non-dominated.
Genetic algorithms are naturally parallel and hence lend themselves well to

multiobjective settings. They also work well on non-smooth objective func-
tions. In addition, it is very easy to extend GAs to solve mixed continu-
ous/integer problems. Thus the GA can be used to search over controller
structures as well as over the controller parameters. For more information,
see Dakev et al. (1997), Chipper�eld et al. (1999) and Tang et al. (1996).

1.2 Multiobjective Control

Most control design techniques have only paid attention to optimal solutions
for one special performance index, e.g., H1 norm on a closed-loop system
transfer function, the eigenvalue sensitivity function or the linear quadratic
index. However, many practical control systems are required to have the
ability to �t simultaneously di�erent and often conicting performance objec-
tives as best as possible, for instance, closed-loop stability, low feedback gains
and insensitivity to model parameter variations. A number of traditional ap-
proaches to control system design objectives make use of scalar summation of
all weighted objectives in one cost function. Though this method simpli�es the
approach to optimisation, it is not clear how each objective is a�ected by the
controller. On the other hand, if all of the objectives are considered through
the use of the individual cost functions, then the action of each objective on
the structure of the controller can be determined.

During the last two decades, multiobjective control has been considered
in the design process. The control system objectives are described by a set
of performance indices. This type of control problem appears in ight control
design, in the control of space structures and in industrial process control. The
concept of a generic multiobjective control problem which involves di�erent
types of performance indices is a very interesting idea. For example, the
multiple objectives can be considered as di�erent types of norms on transfer
functions. In this case, one may take H2 norms on some of the closed-loop
transfer functions, H1 norms on others, and L1 norms on some others. Such
a multiple objective problem would naturally arise in considering trade-o�s
between nominal performance and robust stability.

Although there has been considerably more research into multiobjective
decision making in the �eld of systems engineering than into multiobjective
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optimisation design of multivariable control, more and more research in mul-
tiobjective control has been carried out. The main research areas are multiob-
jective robust control (Whidborne et al., 1995a, 1996b), multiobjective crit-
ical control (Liu et al., 1995), multiobjective eigenstructure assignment (Liu
and Patton, 1996a), mulitobjective PID control (Whidborne et al., 1995b;
Liu et al., 1998; Liu and Daley, 2001), multiobjective identi�cation (Liu and
Kadirkamanathan, 1999), multiobjective fault detection (Chen et al., 1996),
and multiobjective linear quadratic Gaussian control (Tabak et al., 1979; Skel-
ton and DeLorenzo, 1985; Koussoulas and Leondes, 1986; Toivonen and Mak-
ila, 1989; Khargonekar and Rotea, 1991).

1.2.1 Conicts and Trade-o�s in Control Systems

In general, engineering design also consists of obtaining the right balance
between conicting cost, design and performance requirements. This idea
also extends to control systems design. That there are trade-o�s in control
systems is well-known and usually taught at an undergraduate level. For
example, consider a simple plant, which could be a model of a servo system

G(s) =
1

s(s+ a)
(1.2.1)

with a proportional controller k with negative feedback. The closed loop
system is

T (s) =
k

s2 + as+ k
(1.2.2)

and the maximum overshoot to a step response is given by

Mp = e�a�=
p
4k�a2 (1.2.3)

and the time-to-peak by

tp =
2�p

4k � a2
(1.2.4)

for k > (a2=4). Assuming that a = 1, Figure 1.2 shows the overshoot and
the time-to-peak plotted against k. Immediately, it can be seen that there is
a trade-o� between Mp and tp. Figure 1.3 shows the overshoot/time-to-peak
trade-o� curve.

Another well-known trade-o� often taught on graduate level courses is
the trade-o� between the sensitivity and complimentary sensitivity functions
(see, for example, Maciejowski, 1989, pp 10-22). Consider the control system
shown in Figure 1.4. In this general standard form, the control problem can
include consideration of the e�ects of reference input, plant disturbances and
measurement noise. The plant is assumed �xed and known, and represented
by the strictly proper transfer function G(s), with a disturbance signal D(s).
The plant has an input, also known as the control, U(s), and an output
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Figure 1.2: Maximum overshootMp (- - -) and time-to-peak tp (|) against k

Y (s). The controller is �xed and known with a proper transfer function K(s).
The output is subjected to measurement errors M(s), and the system has a
reference signal R(s) which is to be followed by the plant output.

From Figure 1.4,

Y (s) = D(s) +G(s)K(s) [R(s)�M(s)� Y (s)] (1.2.5)

[1 +G(s)K(s)]Y (s) = D(s) +G(s)K(s) [R(s)�M(s)] (1.2.6)

The sensitivity function S(s) is de�ned as

S(s) = [1 +G(s)K(s)]
�1

(1.2.7)

and the closed-loop transfer function T (s) is de�ned as

T (s) = S(s)G(s)K(s) (1.2.8)

so
Y (s) = S(s)D(s) + T (s) [R(s)�M(s)] (1.2.9)

The error e(t) is de�ned as

e(t) = r(t)� y(t) (1.2.10)
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R(s) -+

-
K(s)

U(s)
G(s) -+

+

?

D(s)

- Y (s)

?�
+

+
M(s)

6

Figure 1.4: Standard Control System Con�guration

Thus,

E(s) = R(s)� S(s)D(s)� T (s) [R(s)�M(s)]

= [1� T (s)]R(s)� S(s)D(s) + T (s)M(s) (1.2.11)
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but from (1.2.7) and (1.2.8)

T (s) + S(s) = 1 (1.2.12)

so

E(s) = S(s) [R(s)�D(s)] + T (s)M(s) (1.2.13)

Thus, in order to reduce the error, both S(s) and T (s) need to be made
small in some sense. However, from (1.2.12) it can be seen that if S(s) is
made nearly zero, T (s) becomes nearly unity; and conversely, if T (s) is nearly
zero, S(s) is nearly unity. There is thus an unavoidable trade-o� between
attenuating plant disturbances, and �ltering out measurement error. This also
extends to a trade-o� between system performance and stability robustness
to multiplicative plant perturbation (Doyle et al., 1991, pp 46-62).

Other unavoidable trade-o�s can be shown to exist for control systems,
such as the so-called water-bed e�ects resulting from right-half-plane poles
and zeros, whereby sensitivity reduction at some frequencies is traded-o� for
sensitivity increases at other frequencies. See Skogestad and Postlethwaite
(1986, pp 165-170) for further details.

1.2.2 Multiobjective Robust Control

In general, it is almost impossible to get an absolutely accurate model of a
practical system plant. Some assumptions and simpli�cations are made about
the model and few (if any) real systems are linear. During the operation of
a control system, the plant dynamics change with operating conditions over
time, for example, parts wear out, ambient temperature changes, and the
load change. Therefore, to design control systems which can handle this
uncertainty, robust control which can maintain stability and performance in
the face of uncertainty is needed.

Traditionally, designers use design methods based on either analytical op-
timisation or parameter optimisation for robust control system design. Both
methods have advantages and disadvantages. Briey, analytical optimisation
techniques (e.g. H1, LQG) generally are robustly stable, provide a global
optimum, and can deal with relatively large multivariable problems; but they
are single-objective and not very exible, have non-explicit closed-loop per-
formance, provide high-order controllers. On the other hand, parameter op-
timisation based methods (e.g. MoI) generally are often multiobjective and
exible, have explicit closed-loop performance and provide simple controllers;
however, they are often non-convex resulting in local minima, not implicitly
robustly stable, can deal with small problems only, and may have diÆculty
stabilising the system. A combination of analytical optimisation and param-
eter search methods, called multiobjective robust control by mixed optimisa-
tion, has been employed to overcome some of the limitations of using just one
approach (Whidborne, et al., 1995b).
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The multiobjective robust control design by mixed optimisation has been
applied to the loop-shaping design procedure (LSDP), which is based on H1
robust stabilisation combined with classical loop-shaping. The procedure is
essentially a two-stage design process. First, the open-loop plant is augmented
by pre- and post-plant weighting functions to give a desired shape to the sin-
gular values of the open-loop frequency response. Then the resulting shaped
plant is robustly stabilised usingH1 optimisation of a normalised left coprime
factorisation description of the plant. The designer thus chooses the optimi-
sation technique and the structure of the weighting functions. He/she de�nes
suitable performance functions (e.g. rise time, settling time, bandwidth, sys-
tem norms, etc.) along with the design goals, and the multiobjective opti-
misation methods can be used to search for suitable values of the weighting
function parameters such that is satis�ed. Details of the above procedure may
be found in Whidborne et al. (1994a, 1995a) and Chipper�eld et al. (1999).

Details of the mixed-optimisation procedure applied to a 2 degree-of-
freedom LSDP (Hoyle et al., 1991; Limebeer et al., 1993) may be found in
Murad et al. (1993) and Whidborne et al. (1995b) and to a mixed sensi-
tivity H1 approach and an LQG optimisation in Whidborne et al. (1995a).
An alternative 2 degree-of-freedom LSDP approach with a parameterised pre-
compensator is proposed in Whidborne et al. (1994b). Other authors have
suggested using a mixed optimisation approach. The �rst appears to be Baras
et al. (1984), who suggested using nonlinear optimisation for designing the
weights for LQG control design. A similar approach has been independently
suggested by Paddison et al. (1994), Haessig (1995) and Tych (1994). Use of
genetic algorithms to design the weighting functions for the LSDP has also
been suggested by White et al. (1995). Some eÆcient methods for mixed
optimisation with the LSDP have been proposed by Pantas (1998).

1.2.3 Multiobjective Critical Control

A problem that occurs frequently in control engineering is to control outputs
(usually the errors) of a system subjected to random external inputs (reference
inputs and/or disturbances) so that the absolute value of the outputs is within
prescribed bounds. Any violation of the bounds results in unacceptable, per-
haps catastrophic, operation. Such a system is said to be critical (Zakian,
1989; Whidborne and Liu, 1993). Usually, a control system is probably sub-
jected to two kinds of uncertainties. One is the uncertainty in external inputs
which impinge on the system, called the external uncertainty. The other is the
uncertainty in the mathematical models used to represent the process, called
the internal uncertainty. Though the external uncertainty in critical systems
has been considered in many papers, the internal uncertainty in these systems
has been paid little attention. Therefore, the robust control, which refers to
the maintenance of design speci�cation in the presence of uncertainties, of
critical systems with external and internal uncertainties is a very interesting
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and important subject.
The robust control design of multivariable critical systems with external

and internal uncertainties has been considered in Liu et al. (1996). The design
problem formulated as a set of inequalities includes the output performance
criteria in the time domain and the robust performance criterion in the fre-
quency domain. Some relationships between an input space, an unmodelling
error space, a controller, output performance and robust performance are es-
tablished for SISO and MIMO cases so that the design problem is largely
simpli�ed and can be solved in the frequency domain using multiobjective
optimisation techniques.

1.2.4 Multiobjective Eigenstructure Assignment

Eigenstructure assignment is a design technique which may be used to as-
sign the entire eigenstructure (eigenvalues, and right or left eigenvectors) of a
closed-loop linear system via a feedback control law. It has been found that
degrees of freedom are available over and above eigenvalue assignment using
feedback control for linear time-invariant multi-input multi-output (MIMO)
systems. Many methods and algorithms have been developed to exercise those
degrees of freedom to give the systems some good performance characteristics
(Kautsky et al., 1985; Liu and Patton, 1998a).

Most eigenstructure assignment techniques have only paid attention to
optimal solutions for one special performance index, e.g., the eigenvalue sen-
sitivity function or the linear quadratic index. However, a number of practical
control systems are required to have the ability to �t simultaneously di�erent
and often conicting performance objectives as best as possible, for instance,
closed-loop stability, low feedback gains and insensitivity to model parame-
ter variations. A multiobjective control system design using eigenstructure
assignment has been presented in Liu and Patton (1996a). The multiobjec-
tive performance indices include the individual eigenvalue sensitivities, low
feedback gains, and the sensitivity functions in the frequency domain.

In addition, the multi-criteria optimisation design for multivariable con-
trol systems using eigenstructure assignment and the method of inequalities
(Patton et al., 1994) has been studied. This uses a set of performance inequali-
ties to describe the multiple objectives which include closed-loop stability, low
feedback gains and insensitivity to model parameter variations. The controller
designed using eigenstructure assignment and the method of inequalities has
great potential for yielding the best eigenstructure and insensitivity to per-
turbations of the system parameters.

1.2.5 Multiobjective PID Control

It is well known that the PID (proportional integral derivative) controller is
the most popular approach for industrial process control and many design
techniques have been developed (see, for example, Ziegler and Nichols, 1942;
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Astrom and Hagglund, 1984; Hang et al., 1991; Zhuang and Atherton, 1993;
McCormack and Godfrey, 1998; Daley and Liu, 1999). Although many PID
design methods have been developed to give simple tuning rules for the con-
troller parameters using either one or two measurement points of the system
frequency-response, their control performance may not satisfy the desired re-
quirements.

In the frequency domain, there are two quantities used to measure the
stability margin of the system. One is the gain margin, which is the factor by
which the gain is less than the neutral stability value. The other is the phase
margin, which is the amount by which the phase of the system exceeds when
the system gain is unity. The gain and phase margins are also related to the
damping of a system. In addition to the stability of a design, the system is
also expected to meet a speed-of-response speci�cation like bandwidth. The
crossover frequency, which is the frequency at which the gain is unity, would
be a good measurement in the frequency domain for the system's speed of time
response. Also, the larger the value of the magnitude on the low-frequency
asymptote, the lower the steady-state errors will be for the closed-loop sys-
tem. This relationship is very useful in the design of suitable compensation.
After the above considerations, a multiobjective PID control scheme in the
frequency domain has been proposed by Liu and Daley (1999). This scheme
considers four major requirements in the frequency domain, which are: the
gain-margin, the phase-margin, the crossover frequency and the steady-state
error. It was successfully applied to a rotary hydraulic system.

A multi-input multi-output (MIMO) PI (proportional integral) controller
design approach using multiobjective optimisation is proposed. It has been
used for controller design of a gasi�er (Liu et al., 2000). The design aim is to
satisfy a set of speci�cations on the system outputs, inputs and input rates
when a step disturbance is applied to the system. The parameters of the
MIMO PI controller are optimally designed to satisfy a set of multiobjective
performance criteria which are formulated from the system speci�cations.

1.2.6 Multiobjective Optimisation of Controller
Implementations

The process of modern digital controller design is generally presented in the
literature as taking one of two paths. Either the design is performed in the
continuous time domain, and the continuous time controller is subsequently
discretised. Alternatively, the plant is discretised and the design performed
completely in the discrete time domain. Both paths produce a design as some
state-space or transfer function representation of the controller. However, it
is generally not suÆcient to implement the controller as a simple di�erence
equation without a consideration of the relevant arithmetic that will be used
(oating or �xed-point), the wordlength and the controller realisation (di�er-
ence equation, lattice �lter, state-space, Æ-transform etc.). This �nal part of
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the design, the implementation stage, is frequently ignored or considered in a
purely ad hoc manner.

There are a number of critical issues that need to be considered in de-
ciding on the digital controller implementation. Almost all digital controller
implementations will require some rounding of the signals and parameters.
Rounding errors cause noise to be introduced into the system, and �nite pre-
cision representation of the controller parameters causes a reduction in the
relative stability and closed loop performance of the system. These problems
become more marked as (i) the sampling rate increases, and (ii) the controller
complexity/order increases. The question then arises of how to arrange the
controller structure (or parameterisation) so as to minimise the e�ects of the
�nite precision, whilst simultaneously minimising the required word-length,
memory requirements and speed of computation as well as minimising quan-
tisation noise and ensuring that the variables are suitably scaled so as to pre-
vent overow (and underow for oating point arithmetic). Sampling time
and inter-sample e�ect are also important. The implementation stage is of
course extremely important for the successful application of advanced control
designs which are often high order.

Digital control is now the main platform for control implementation in
almost all application areas, and since almost all digital computing devices
have �nite precision due to the �nite word-length, the issue of �nite precision
in the controller implementation is important. Clearly, the precision of the
computing device can be increased by increasing the word-length or amended
by use of logarithmic or exponent scaling schemes typical in oating point
architectures. However, there is a cost involved in the use of more complex
architectures, in terms of increased �nancial cost in hardware and memory, as
well as in terms of chip design, software costs, lower speed, and lower reliabil-
ity. This may be of little disadvantage in slow-dynamic, high capital systems,
such as those typically found in process control applications, but for systems
which are mass-produced, very high speed, safety critical or power critical,
reducing the cost and complexity of the computing device is a critical consid-
eration. Thus the question of how to satisfactorily implement the controller
with minimal cost is a concern, and since there is an obvious cost/performance
trade-o�, this problem can be considered as one of multiobjective optimisa-
tion. For an overview of relevant digital controller implementation issues, see
Istepanian and Whidborne (2001).

1.2.7 Multiobjective Nonlinear Identi�cation

For nonlinear system identi�cation using the approximation approach, two key
questions are important. One is how to judge the accuracy for the nonlinear
function being approximated and other is how to choose nonlinear function
units to guarantee the accuracy. Many of nonlinear system identi�cation ap-
proaches �x the number of nonlinear function units and use only a single
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performance function, e.g., L2-norm of the di�erence between the real non-
linear system and the nonlinear model which results in the well-known least
squares algorithm, to measure and judge the accuracy of the identi�cation
model and to optimise the approximation. The assumption behind choosing
the L2-norm is that the noise in the process and measurements has Gaussian
(normal) distributions.

However, in nonlinear system identi�cation there are often a number of
objectives to be considered. The objectives are often conicting and no iden-
ti�cation which can be considered best with respect to all objectives exists.
Hence, there is an inevitable trade-o� between objectives, for example, the
distance measurement and maximum di�erence measurement between the real
nonlinear system and the nonlinear model. Model comparison methods, such
as Information Criterion (Akaike, 1974), Bayesian model selection (MacKay,
1992) and Minimum Description Length (MDL) (Rissanen, 1989), consider
two such objectives, namely, Euclidean distance (L2-norm) and model com-
plexity. These procedures allow the selection of the best amongst a small
number of candidate models (MacKay, 1992). In addition to the above two
objectives, the L1-norm of the di�erence between the real nonlinear system
and the nonlinear model is considered (Liu and Kadirkamanathan, 1999).
This is because this performance function represents the accuracy bound of
the approximation achieved by the estimated model.

1.2.8 Multiobjective Fault Detection

Fault diagnosis has become an important subject in modern process automa-
tion as it provides the pre-requisites for fault tolerance, reliability or security,
which constitute fundamental design features in any complex engineering sys-
tem. The general procedure of fault diagnosis in dynamical systems with the
aid of analytical redundancy consists of the generation of so-called residuals
and the decision on the occurrence of a fault and isolation of the faulty ele-
ment. In order to make the residual insensitive to modelling uncertainty and
sensitive to sensor faults, a number of performance indices have been de�ned
to achieve good fault diagnosis performance. Some of performance indices
are de�ned in the frequency domain to account for the fact that the e�ects
of modelling uncertainty and faults occupy di�erent frequency ranges. Ro-
bust fault detection in the frequency domain has been attracting enormous
attention.

In order to diagnose incipient faults, the design of optimal residuals based
on multiobjective optimisation is discussed in Chen et al. (1996). The resid-
ual is generated via an observer. To reduce false and missed alarm rates
in fault diagnosis, a number of performance indices are introduced into the
observer design. These performance indices are expressed in the frequency
domain to take account of the frequency distributions of faults, noise and
modelling uncertainties. All objectives then are reformulated into a set of
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inequality constraints on performance indices. A multiobjective fault diagno-
sis algorithm is thus used to search for an optimal solution to satisfy all the
objectives expressed by a set of inequalities. This algorithm is applied to fault
diagnosis of a ight control system example and shows that incipient sensor
faults can be detected reliably in the presence of modelling uncertainty.

1.3 Outline of the Book

This monograph will show fundamental theory, a number of design methods
and algorithms, and some applications in multiobjective optimisation and
control, which cover main recent research work on this subject. Its contents
are arranged as follows.

Chapter 1 gives an overview about multiobjective optimisation and con-
trol, and the outline of the monograph.

Chapter 2 introduces basic concepts and main methods for unconstrained
nonlinear optimisation. Many nonlinear optimisation methods are based on
one-dimensional search. Typical approaches in one-dimensional search will be
introduced in this chapter, including the dichotomy method, the Fibonacci
method and the golden section search method. The necessary and suÆcient
conditions for local optimality will be presented. Several unconstrained opti-
misation methods will be discussed, for example the steepest decent method,
the Newton's method and the quasi-Newton's methods. The purposes of this
chapter is to introduce the main ideas and concepts in nonlinear optimisation
so that the reader is equipped for the following chapters.

Chapter 3 presents the optimality conditions and typical methods for
constrained optimisation. Both necessary and suÆcient conditions will be
discussed, including Kuhn-Tucker necessary conditions and the saddle point
(suÆcient) condition. Two main classes of methods will be introduced, e.g.,
primal methods and dual methods. Among the primal methods are the se-
quential linear programming and sequential quadratic programming. The dual
methods include the exterior penalty method, the interior penalty method and
the Lagrangean method. These methods cover the wide spectrum of nonlinear
optimisation methods and provide a basis for multiobjective optimisation and
control.

Chapter 4 discusses the concepts, the de�nitions and the method classi-
�cation in multiobjective optimisation. Two main classes of multiobjective
methods will be described: methods based on Lp - norm, where p is a positive
integer, and interactive methods. The �rst class includes goal programming,
minimax solution scheme, goal attainment method and the reference point
method. Among the typical methods of the second class are STEM method,
Geo�rion's method, the ISTM method and the gradient projection method.
These di�erent methods provide various ways of acquiring and utilising pref-
erence information from the decision makers (control system designers) for
achieving the most preferred solutions. They provide a powerful means for
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multiobjective optimisation and control system design. Examples will be pro-
vided to demonstrate the solution procedures of these methods.

Chapter 5 introduces genetic algorithms (GAs) for optimisation. The ge-
netic algorithm is a stochastic global search method for optimisation that
mimics the metaphor of natural biological evolution. Applying the princi-
ple of survival of the �ttest to produce better and better approximations to
a solution, GAs operate on a population of potential solutions. A new set
of approximations at each generation is created by the process of selecting
individuals, which actually are chromosomes in GAs, according to their �t-
ness level in the problem domain and breeding them together using operators
borrowed from natural genetics, for example, crossover and mutation. This
process results in the evolution of populations of individuals that are bet-
ter suited to their environment than the individuals that they were created
from, just as in natural adaptation. Application of GAs to multiobjective
optimisation is discussed.

In Chapter 6, speci�cations for control system designs frequently include
stringent closed-loop performance requirements, which are required to be met
in the face of uncertainties. These requirements are usually conicting, the
problem is thus multiobjective as a number of conicting objectives need to be
simultaneously obtained. Such problems can be e�ectively solved by a combi-
nation of analytical optimisation techniques (e.g., such as H1), from which
robustness is obtained, and multiobjective optimisation techniques (e.g., the
method of inequalities), which are designed for explicit closed-loop perfor-
mance. This chapter describes this approach and applies it to the design of
an unknown plant.

Chapter 7 considers robust control design of critical systems with external
and internal uncertainties using multiobjective optimisation methods. The
formulation of the robust control design of these systems is expressed by a
set of performance criteria which includes output performance criteria in the
time domain and robust performance criterion in the frequency domain of the
system. Some relationships between an input space, a modelling error space,
a controller, output performance and robust performance are established for
both single-input single-output and multi-input multi-output critical systems
so that the robust control design problem of these systems is largely simpli�ed.

Chapter 8 discusses multiobjective robust control design for multivariable
systems using eigenstructure assignment. It covers various performance in-
dices (or cost functions) in the objectives, which are individual eigenvalue
sensitivity functions, and the sensitivity and the complementary sensitivity
functions in the frequency domain. Based on these performance indices, the
robustness criteria are expressed by a set of inequalities. It makes full use
of the freedom provided by eigenstructure assignment to �nd a controller to
satisfy the robustness criteria.

Chapter 9 is concerned with PI controller design using multiobjective opti-
misation which addresses the ALSTOM benchmark challenge on gasi�er con-



22 CHAPTER 1. INTRODUCTION

trol. The nonlinear gasi�er has been linearised about three operating points.
The design aim is to satisfy a set of speci�cations on the system outputs,
inputs and input rates when a step disturbance is applied to the system.
The parameters of the multi-input multi-output (MIMO) PI controller are
selected to satisfy a set of multiobjective performance criteria, which are for-
mulated from the system speci�cations. Simulation results demonstrate the
performance of the controller at the three operating points.

Chapter 10 applies a multiobjective genetic algorithm based method to
determine optimal FWL structures for PID digital controllers. The method
is illustrated by practical examples. The method exploits the fact that the
implementation of FWL controllers is by means of binary numbers, as is
the representation in genetic algorithms. The method requires the solution
of a linear system similarity completion problem. A solution to the linear
system similarity completion problem for 2 state SISO systems has been pre-
sented. This solution would need to be extended to general linear systems for
the methodology to be extended to higher order controllers. Otherwise, the
method is entirely generic, and any computable set of stability and perfor-
mance measures could be included.

Chapter 11 presents an approach to model selection and identi�cation of
nonlinear systems via neural networks, based on multiobjective performance
criteria. It considers three performance indices (or cost functions) as the
objectives, which are the Euclidean distance (L2-norm) and maximum dif-
ference (L1-norm) measurements between the real nonlinear system and the
nonlinear model, and the complexity measurement of the nonlinear model.
An algorithm based on the method of inequalities, least squares and genetic
algorithms is developed for optimising over the multiobjective criteria. Ge-
netic algorithms are also used for model selection in which the structure of the
neural networks are determined. The Gaussian radial basis function network
is applied to the identi�cation of a liquid level nonlinear system.

Chapter 12 focuses on design of optimal residuals in order to diagnose
incipient faults using multiobjective optimisation. The residual is generated
via an observer. To reduce false and missed alarm rates in fault diagnosis, a
number of performance indices are introduced into the observer design. Some
performance indices are expressed in the frequency domain to take account of
the frequency distributions of faults, noise and modelling uncertainties. All
objectives are then reformulated into a set of constraints on performance in-
dices. Multiobjective optimisation methods are thus used to search for an
optimal solution to satisfy these constraints. The design approach is applied
to a ight control system which shows that incipient sensor faults can be de-
tected reliably in the presence of modelling uncertainty.

Finally, the contributions and responsibilities of the authors are as follows:
Chapter 1 { G. P. Liu and J. F. Whidborne, Chapters 2, 3 and 4 { J. B. Yang,
Chapters 6 and 10 { J. F. Whidborne, and Chapters 5, 7, 8, 9, 11 and 12 {
G. P. Liu.



Chapter 2

Nonlinear Optimisation

In this chapter, basic concepts and main methods for unconstrained nonlinear
optimisation are discussed. Many nonlinear optimisation methods are based
on one-dimensional search. Typical one-dimensional search methods will be
introduced �rst, including the dichotomy method, the Fibonacci method and
the golden section search method. The necessary and suÆcient conditions
for local optimality will be presented. Several unconstrained optimisation
methods will be discussed, including the steepest decent method, Newton's
method and the quasi-Newton's methods. The purpose of this chapter is not
to discuss a complete range of optimisation methods but to introduce the
main ideas and concepts in unconstrained nonlinear optimisation so that the
reader is well equipped for reading the following chapters.

2.1 One-Dimensional Optimisation

2.1.1 The Dichotomy Method with Derivatives

Suppose f(x) is a continuously di�erentiable function and has a single mini-
mum solution in an interval [xmin; xmax], that is f

0

(xmin) � 0 and f
0

(xmax) �
0. Then, there is one point x� at which the derivative of f(x) vanishes and
f(x) is minimised. It is required to �nd the point x�.

The dichotomy method consists of �nding a �rst interval [xmin, xmax],
where the minimum solution lies, and then of reducing progressively this in-
terval by bisections until we �nd a �nal interval of width < ", for a suÆciently
small ".

More precisely, at a given step we compute f
0

(x1) at the middle point x1
of the interval, or

x1 =
1

2
[xmin + xmax] (2.1.1)

At x1, there are three possible cases: f
0

(x1) > 0, f
0

(x1) < 0 and f
0

(x1) = 0.

23
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The �rst case is shown in Figure 2.1. In this case, the minimum solution must
lie between xmin and x1, and the interval [x1 xmax] can be eliminated.

f (x)

f’(x1) > 0

x
xmin x* x1 xmax

Figure 2.1: f 0(x1) > 0

f (x)

f’(x1) < 0

x
xmin x1 x* xmax

Figure 2.2: f 0(x1) < 0
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The second case is as illustrated in Figure 2.2. In this case, the minimum
solution must lie between x1 and xmax, and the interval [xmin x1] can be
eliminated.

In the third case where f
0

(x1) = 0, x1 is already the minimum solution.
The above process can be summarised as follows.

If f
0

(x1) > 0, then we replace xmax by x1 and repeat the process.
If f

0

(x1) < 0, then we replace xmin by x1 and repeat the process.
Since the length of the interval is halved at each step, the dichotomy

method converges linearly with a rate of convergence equal to 1
2 (Minoux,

1986).

2.1.2 The Dichotomy Method without Derivatives

This method is very similar to the method discussed in section 2.1.1. However,
it does not require information about derivatives.

At each step, this method computes the function f(x) in two new points
in order to halve the length of the interval that contains the optimal solution.
Suppose the initial interval is [ao, bo]. We divide the interval into four equal
sub-intervals by �rst computing the middle point of the interval c0 = (ao +
b0)=2, and then two points do = (ao+ c0)=2 and e0 = (c0 + b0)=2. The length
of the sub-intervals is Æ0 = (b0 � ao)=4.

f (x)

*

*

*
*

*

x
a0 d0 c0 e0 b0

a¹ c¹ b¹

Figure 2.3: Elimination of sub-interval: Case 1

Suppose the function f(x) only has one optimal solution. It can then be
shown that two of the four sub-intervals can always be eliminated because
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the optimum cannot be within them and that the optimum is within two
adjacent sub-intervals.

In Figure 2.3, it is clear that the two sub-intervals [ ao, do] and [do, c0] can
be eliminated and the optimum is within the two adjacent sub-intervals [c0,
e0] and [e0, b0] (Minoux, 1986). Let a1 = c0, b1 = b0 and c1 = e0. We then
obtain the same problem on the interval [a1, b1] of half the length [ao, b0].

In Figure 2.4, one can see that the two sub-intervals [ao, do] and [e0, b0]
can be eliminated and the optimum is within the two adjacent sub-intervals
[do, c0] and [c0, e0] (Minoux, 1986). Let a1 = do, b1 = e0 and c1 = c0. We
then obtain the same problem on the interval [a1, b1] of half the length of [ao,
b0 ].

f (x)

* *

* *

*

x
a0 d0 c0 e0 b0

Figure 2.4: Elimination of sub-interval: Case 2

To further divide the interval [a1, b1], only two further calculations of the
function f(x) are required at d1 = (a1 + c1)=2 and e1 = (c1 + b1)=2. This
will lead to the further reduction of the interval [e0, b0]. The same process
is repeated until the interval is reduced to be small enough. Table 2.1 shows
the rate of reduction of the interval length as a function of calculations of the
function f(x) (Minoux, 1986). Note that 5 calculations are required at the
�rst stage and only 2 calculations are needed at other stages.

2.1.3 The Fibonacci Method

This method makes use of the Fibonacci sequence and is an optimal method
in the sense that for a given number of calculations on a function f(x) it leads
to the smallest possible reduced interval (Minoux, 1986). In other words, the
method can reduce a largest possible sub-interval of the current interval.
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Table 2.1: Rate of convergence

n bn�an
b0�a0 = 1

2(n�3)=2

5 0.5
13 10�1

17 10�2

23 10�3

29 10�4

42 10�6

Suppose the original interval is [a1, b1] and the values of the function f(x) are
known. Suppose there are two intermediate points c1 and d1 in the interval
with b1 > c1 > d1 > a1. If f(x) only has one minimum in the interval, it is
then possible to eliminate a sub-interval, either [c1, b1] as shown in Figure 2.5
or [a1, d1] as shown in Figure 2.6 (Minoux, 1986).

f (x) *

*
*

*
∆

1

∆
2

| x
a1 d1 c1 b1

a2 d2 c2 b2

Figure 2.5: Elimination of sub-interval: Case 3

As shown in Figure 2.5, the length of the original interval is given by �1 =
b1 � a1. Let �2 be the length of a sub-interval that is not eliminated. If
the sub-interval [c1, b1] is eliminated, the length of the remaining sub-interval
is c1 � a1. If the sub-interval [a1, d1] is eliminated, then the length of the
remaining sub-interval is b1�d1. The length �2 of the remaining sub-interval
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f (x)
*

* *

*

x
a1 d1 c1 b1

Figure 2.6: Elimination of sub-interval: Case 4

is required to be independent of the result of the trial, or independent of the
function f(x). Then there must be

c1 � a1 = �2 (2.1.2)

b1 � d1 = �2 (2.1.3)

which means b1 � c1 = d1 � a1. In other words, the two points c1 and d1 are
symmetrical with regard to the centre of the interval [a1, b1].

Let's consider the case where the sub-interval [c1, b1] is eliminated, as
shown in Figure 2.5. Suppose �3 = d1 � a1. From the above analysis and
Figure 2.5, one can see that

b1 � a1 = (c1 � a1) + (b1 � c1) = (c1 � a1) + (d1 � a1) (2.1.4)

Therefore

�1 = �2 +�3 (2.1.5)

More generally, we can have

�k = �k+1 +�k+2 (2.1.6)

Let N denote the number of calculations required and �N�1 be the length of
the interval obtained after N calculations of the function f(x). De�ne FN�k
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as a reduction factor by which the interval �k is reduced to �N�1 after N�k
calculations, that is

�k = FN�k�N�1 (2.1.7)

Note that since �N�1 = F1�
N�1 we have F1 = 1.

Dividing the both sides of (2.1.6) by �N�1, we get

�k

�N�1 =
�k+1

�N�1 +
�k+2

�N�1 (2.1.8)

From de�nition (2.1.7), we then have

FN�k = FN�k�1 + FN�k�2; F1 = 1; (k = N � 3; N � 4; :::; 2; 1) (2.1.9)

Let n = N � k. Then (2.1.9) becomes

Fn = Fn�1 + Fn�2; F1 = 1; (k = 3; 4; :::; N � 1) (2.1.10)

It is clear from (2.1.10) that since F1 is �xed the whole sequence will be
determined if F2 can be determined. Assuming k = 1 in (2.1.7) leads to the
following

�N�1 =
�1

FN�1
(2.1.11)

which shows that to have a smallest �nal interval after N calculations we
should have a reduction factor FN�1 as large as possible. Therefore, F2 should
be made as large as possible. If we set k = N � 2 in (2.1.7), we can estimate
F2 as follows

F2 =
�N�2

�N�1 (2.1.12)

From Figure 2.5, we must have �n=�n�1 � 0:5 for all n = 3; 4; :::; N � 1. It
follows that there must be �N�2=�N�1 � 2, which means that the largest
possible F2 is 2.

The sequence generated from (2.1.9) with F1 = 1 and F2 = 2 is called
Fibonacci sequence. Table 2.2 shows the �rst 16 numbers of the sequence
and its limit. The last column of Table 2.2 means that there is the following
relationship (Cai, 1982).

lim
n!1

Fn�1
Fn

= lim
n!1

Fn�2
Fn�1

= 0:618 (2.1.13)

In fact, from (2.1.10) we have

Fn
Fn�1

= 1 +
Fn�2
Fn�1

(2.1.14)
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Table 2.2: Fibonacci sequence

n F1
Fn�1

Fn

1 1 1
2 2 0.5
3 3 0.66667
4 5 0.6
5 8 0.625
6 13 0.61538
7 21 0.61905
8 34 0.61765
9 55 0.61818
10 89 0.61798
11 144 0.61806
12 233 0.618026
13 377 0.618037
14 610 0.618033
15 987 0.618034
16 1597 0.6180338
...

...
...

1 0.618034

Let

lim
n!1

Fn�1
Fn

= lim
n!1

Fn�2
Fn�1

= r (2.1.15)

Then

1

r
= 1 + r or r2 + r � 1 = 0 (2.1.16)

Solving the above equation leads to r � 0:618.
To use this method, the length of the �nal interval �N�1 must be given.

For a given initial interval �1, we can then use (2.1.7) to �nd the largest
number N and the corresponding factor FN�1 from Table 2.2. For instance,
if the initial interval has length �1 = 1 and the required precision is �N�1 =
10�3, then we can determine N from Table 2.2 so that

�N�1

�1
=

1

FN�1
= 10�3 (2.1.17)

which gives N = 16.
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2.1.4 The Golden Section Search Method

In the Fibonacci method, it was shown that when k ! 1 the ratio of two
successive intervals of the Fibonacci sequence approaches 0.618, or

Fn�1
Fn

! 0:618 (2.1.18)

If this ratio remains the same at every iteration, then the resultant search
method is called 0.618 method or the golden section search method. This
method can be used when the number of calculations is not known in ad-
vance. The ratio can be generated following the same principle used to de-
duce (2.1.16). In fact, this method consists of taking the lengths of successive
intervals to have a �xed ratio , or

�1

�2
=

�2

�3
= : : : =  (2.1.19)

so that at iteration k + 1 the relative disposition of the points could be the
same as that at iteration k (Cai, 1982; Minoux, 1986).

Since we have as in (2.1.6)

�k = �k+1 +�k+2 (2.1.20)

and if we impose

�k

�k+1
=

�k+1

�k+2
=  (2.1.21)

it follows that

�k

�k+1
= 1 +

�k+2

�k+1
(2.1.22)

Combining (2.1.22) with (2.1.21) leads to

 = 1+
1


(2.1.23)

or

2 �  � 1 = 0 (2.1.24)

The positive root of (2.1.24) is the golden section number

 =

p
5 + 1

2
� 1:618 (2.1.25)

Note that the reciprocal of 1.618 is exactly 0.618. It follows that the rate of
convergence of the golden section search method is linear with rate 0.618.
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Since the golden section search method reduces the lengths of intervals
at the �xed ratio 0.628, it is not optimal and di�erent from the Fibonacci
method. Suppose the length of the original interval is L0. After k iterations,
the length of the interval generated using the Fibonacci method will be

Lk =
L0
Fk+1

(2.1.26)

and the length of the interval generated using the golden section search
method will be

Lk = (0:618)kL0 (2.1.27)

The ratios of the lengths of the intervals (Lk=L0) generated using the two
methods are shown in Table 2.3 (Cai, 1982).

Table 2.3: Reduction of the ratio Lk=L0

k Fibonacci Golden Section
1 0.5 0.618
2 0.33 0.382
3 0.2 0.23
4 0.125 0.146
5 0.0777 0.083
6 0.048 0.054
7 0.029 0.034
8 0.018 0.0213
9 0.01 0.013
10 0.00694 0.00813

It is clear from Table 2.3 that for a suÆciently large number of calculations,
the golden section search method leads asymptotically to the same disposition
of points as in the Fibonacci method.

2.2 Optimisation Conditions

2.2.1 Necessary Conditions for Local Optimality

In the last section, we tried to �nd an optimum of a function of only one
variable. The problem to be discussed in this section is to search for an
optimum of a function of n variables x1; : : : ; xn, each of which can take any
real numbers.

Let x = (x1; : : : ; xn)
T . Suppose f(x) is a continuously di�erentiable func-

tion and has a minimum solution x�. x� is called a global minimum if for all
x 2 Rn, f(x�) is a minimum, or

8x 2 Rn : f(x�) � f(x) (2.2.1)
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In Figure 2.7, the point x� is a global minimum. If (2.2.1) holds only in a
neighbourhood of x�, then x� is called a local minimum. In Figure 2.7, the
point x1 is a local minimum only.

f (x)

x
x* x1

Figure 2.7: Local and global minima

Suppose f(x) has continuous partial derivatives (@f(x)=@xi) and second deriva-
tives (@2f(x) =@xi@xj) for all x 2 Rn. Then, the necessary conditions for x�

to be a local or global minimum of f can be expressed as
a) rf(x�) = @f(x�)=@x = 0 and
b) The Hessian matrix

r2f(x�) =
@2f(x�)
@xi@xj

=

2
6666664

@2f(x�)
@x1@x1

@2f(x�)
@x1@x2

� � � @2f(x�)
@x1@xn

@2f(x�)
@x2@x1

@2f(x�)
@x2@x2

� � � @2f(x�)
@x2@xn

...
...

...
...

@2f(x�)
@xn@x1

@2f(x�)
@xn@x2

� � � @2f(x�)
@xn@xn

3
7777775

(2.2.2)

must be a positive semi-de�nite matrix. Note that the condition of positive
semi-de�niteness is stated by 8y 2 Rn, yTr2f(x�)y � 0.

In Figure 2.7, the necessary condition is satis�ed at both points x� and
x1. If a point x� satis�es condition (a), it is called a stationary point. A
stationary point is not guaranteed to be a local minimum because it could be
a point of inexion. In Figure 2.8, the point x� is an inexion point.
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f (x)

x
x*

Figure 2.8: A point of inexion

2.2.2 SuÆcient Conditions for Local Optimality

To guarantee that x� is a local minimum of f , x� must satisfy the following
suÆcient conditions:

a) rf(x�) = 0 and

b) The Hessian matrix r2f(x�) must be a positive de�nite matrix, which
means that 8y 2 Rn, yTr2f(x�)y > 0.

The di�erence between suÆcient condition b) and necessary condition b) is
that the former means that f is strictly convex in a neighbourhood of x�. In
Figure 2.8, condition b) is not satis�ed.

2.3 Unconstrained Optimisation Methods

2.3.1 Steepest Decent Method

The steepest decent method always uses negative gradient directions as search
directions. At each iteration, it takes an optimal step size along a negative
gradient direction to give the largest decrease of f and is therefore referred to
as the optimal gradient method. One of its advantages is that the function f
may decrease quickly in initial iterations. Since it only uses �rst-order deriva-
tives to determine search directions, its overall convergence to an optimum
may be very slow. This is often the case around an optimum point.

Before we introduce the method, the concept of gradient is discussed �rst.
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The gradient of a nonlinear function f is de�ned as follows

rf(x�) = @f

@x
=

�
@f

x1
;

@f

x2
; : : : ;

@f

xn

�T
(2.3.1)

which is a n-dimensional vector.
The steepest decent method uses a negative gradient direction as a search

direction. Let P = rf(x) be a gradient vector. Then, the unit vector of a
gradient direction is given by

S =
rf(x)
krf(x) k =

P

krf(x) k (2.3.2)

The gradient direction S is proportional to the normal vector of the function
f . A negative gradient direction is given by �S. krf(x) k is the 2-norm of
the gradient rf(x), de�ned by

krf(x) k =
s�

@f

@x1

�2
+

�
@f

@x2

�2
+ : : :+

�
@f

@xn

�2
(2.3.3)

Example 2.1 Calculate the gradient of the following function at the point
x0 = (2; 1)

f(x) = x21 + 2x1x2 + 3x22

Solution: The gradient of the above function and its 2-norm at x0 = (2; 1)
are given by

rf(x0) =
�
2x1 + 2x2
2x1 + 6x2

�
x=x0

=

�
6
10

�
rf(x0)  = p

136

The unit vector of the gradient direction is thus given by

S =
rf(x0)
krf(x0) k =

1p
136

�
6
10

�

The above example shows that for a nonlinear function gradient directions
are di�erent at di�erent points.

The simplest gradient method is the one with predetermined steps. Start from
an initial point x0 and compute the gradientrf(x0) at x0. Sincerf(x0) gives
the direction of the largest increase of f , make a step size �0 in the direction
opposite to the gradient, and �nd the next point

x1 = x0 � �0
rf(x0)
krf(x0) k (2.3.4)
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The procedure is repeated and a sequence of points x0; x1; : : : ; xk is generated
using the following update equation

xk+1 = xk � �k
rf(xk)
krf(xk) k ; 8k; �k > 0 (2.3.5)

In the gradient method with predetermined steps, we choose the step sizes
�k in advance. This makes the method very simple to implement. The main
drawback of this method is that the convergence may be very slow.

The steepest decent method is a gradient method with optimal step sizes.
In this frequently used method, �k is determined so as to minimise the function
f in terms of �

g(�) = f [xk � �rf(xk)] (2.3.6)

for all � � 0 using one-dimensional optimisation methods.
The steepest decent method can be summarised as follows:

a) Choose a starting point x0 and let k = 0.

b) At step k, determine the search direction by calculating the unit negative
gradient dk = �rf(xk)=rf(xk) .

c) Find the optimal step size �k such that

f(xk + �kdk) = min
��0

(xk + �dk) (2.3.7)

d) Calculate a new point xk+1 = xk + �kdk.

e) Conduct a stopping test. If satis�ed, stop the procedure. Otherwise let
k = k + 1 and return to b).

Since the convergence is generally not �nite, a stopping test must be con-
ducted. Some of the most frequently used criteria are given as follows:

Criterion 1: max
i=1;:::;n

j @f
@xi

j < " (" > 0)

Criterion 2: krf(x) k2 =
nX
i=1

�
@f

@xi

�2
(" > 0)

Criterion 3: jf(xk+1)� f(xk)j < " (" > 0)
Regarding the convergence of the steepest decent method, there is the fol-
lowing conclusion. If the function f is continuously di�erentiable with the
property f(x)!1 for kx k ! 1, then with any starting point the steepest
decent method with one-dimensional optimisation converges to a stationary
point of f .

Example 2.2 Use the steepest decent method to �nd the minimum of the
following function (Cai, 1982),

f(x) = x21 + 25x22
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Solution: Given a starting point x0 = [2; 2; ]T , we can calculate the value of
the function, the gradient and the 2-norm as follows

f(x0) = 104

rf(x0) =
�
2x1
50x2

�
=

�
4
100

�
rf(x0)  =p42 + 1002 =

p
10016

Then the search direction at x0 is given by

d0 =
rf(x0)
krf(x0) k =

[4; 100]Tp
10016

� [0:04; 1]T

The next point is calculated by

x1 = x0 + �d0 = [2 + 0:04�; 2 + �]T

where � is the step size at x0. The function f can be expressed as a function
of � as follows.

f(�) = (2 + 0:04�)2 + 25(2 + �)2

This function only has a single variable. We can �nd the optimal value for �
using the optimality (stationarity) condition. Let

df(�)

d�
= 2(2 + 0:04�)0:04+ 50(2 + �) = 0

We obtain the optimal step size �0 = �2:003. The new point is then given by

x1 = [2 + 0:04�; 2 + �]T = [1:92; �0:003]T

The value of the function at x1 is 3.69, or f(x1) = 3:69. The decrease of the
function along the negative gradient is quite large after just one step. Table
2.4 summarises the results for the �rst three iterations.

Table 2.4: Results for the steepest decent method

x1 x2 f(x)
start 2 2 104

�0=2.003 1.92 -0.003 3.69
�1=1.85 0.07 0.07 0.13
�2=0.07 0.07 0 0.0049

Table 2.5 shows the results generated using the gradient method with the
predetermined step size � = 1.
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Table 2.5: Results for the gradient

k x1 x2 rf(xk)T f(xk)
0 2 2 [4, 100] 104
1 1.96 1 [3.92, 50] 28.8416
2 1.88 0 [3.76, 0] 3.5344
3 0.88 0 [1.76, 0] 0.7744
4 -0.12 0 [-0.24, 0] 0.0144
5 0.88 0 [1.76, 0] 0.7744

It is clear from Table 2.5 that for a �xed step size the convergence is slow
if the step size is chosen to be small. For a large �xed step size, oscillation
happens around the optimum point. In comparison, the convergence of the
steepest decent method is much faster.

For any function f(x), an optimal step size can be determined using the second
order Taylor series

f(xk+1) = f(xk) +rf(xk)�x+ 1

2
�xTA�x (2.3.8)

�x = xk+1 � xk (2.3.9)

where A = r2f(xk) is the Hessian matrix.
Let xk+1 = xk + �dk and �x = �dk with dk being a unit vector. Then

(2.3.8) becomes

f(xk + �dk) = f(xk) +rf(xk)�dk + 1

2
(�dk)

TA�dk (2.3.10)

In the above function, taking the �rst-order derivative leads to

df(xk + �dk)

d�
= 0 (2.3.11)

or

rf(xk)dk + (dk)
TAdk� = 0 (2.3.12)

An optimal step size is then given by

�� = �rf(x
k)dk

(dk)TAdk
(2.3.13)

2.3.2 Newton's Method

Newton's method is one of several traditional methods used to solve a set of
nonlinear equations. As we discussed in section 2.1, at a local minimum a
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continuously di�erential function f(x) satis�es the following necessary (sta-
tionary) condition

rf(x�) = 0 (2.3.14)

This is a set of n nonlinear equations. Solving this set of equations results
in x�. Newton's method can be used for this purpose. Let's assume that the
function f is twice continuously di�erentiable and that all second derivatives
can be calculated.

Suppose the k-th iteration results in a solution xk . The basic idea in
Newton's method consists of replacing the function f by its quadratic ap-
proximation in the neighbourhood of the point xk

q(x) = f(xk) +rf(xk)(x� xk) +
1

2
(x� xk)rf2(xk)(x � xk) (2.3.15)

Then a new point xk+1 is taken as the minimum of q(x). This requires that
rf2(xk) be a positive de�nite matrix or the function q(x) strictly convex. If
this is the case, then xk+1 is a unique minimum of q(x), at which we have

rq(xk+1) = 0 (2.3.16)

The �rst order derivative of q(x) is given by

rq(x) = dq(x)

dx
= rf(xk) +rf2(xk)(x � xk) (2.3.17)

Combining (2.3.16) with (2.3.17) leads to the linear equations

�rf(xk) = rf2(xk)(xk+1 � xk) (2.3.18)

which can be rearranged as the following recurrence equation

xk+1 = xk � [rf2(xk)]�1rf(xk) (2.3.19)

which is nothing other than Newton's method (Minoux, 1986).
In (2.3.19), the search direction and the step size are generated as �[rf2

(xk)]�1 rf(xk) . If f is a strictly convex quadratic function, we have f = q(x)
and xk+1 as generated in (2.3.19) is the unique minimum solution of f . In
this case, the method converges in a single step.

For an arbitrary function, xk+1 generated in (2.3.19) may not lead to the
decrease of the function, to say nothing of reaching the minimum of f in one
step. In these circumstances, (2.3.19) needs to be revised to guarantee that
xk+1 always leads to the decrease of f compared with xk. First of all, since
the approximation of f(x) by q(x) is only valid in the neighbourhood of xk,
the step size needs to be controlled in the recurrence equation. For instance,
(2.3.19) may be re-written as follows

xk+1 = xk � �k[rf2(xk)]�1rf(xk) (2.3.20)
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Equation (2.3.20) will be identical to (2.3.19) if we set �k = 1.
�k should be properly chosen so that f(x) can be minimised as far as

possible using (2.3.20). For example, we can use a one-dimensional search
method to �nd �k that minimises f(x

k+�kdk) where dk is the search direction

dk = �[rf2(xk)]�1rf(xk) (2.3.21)

Another simple way of choosing the step size is to set �k = 1 initially. If it is
true that f(xk+dk) < f(xk), then xk+1 is a desirable new solution. Otherwise,
the optimal step size �k that minimise f(xk + �kdk) must lie between 0 and
1. We could try to use another step size in this range, for example the middle
point between 0 and 1, that is �k = 0:5. If f(xk + 0:5dk) < f(xk), we set
xk+1 = xk + 0:5dk. Otherwise, we repeat the procedure until a suÆciently
small step size is found so that f(xk + �kdk) < f(xk).

To guarantee that xk+1 obtained using (2.3.20) provides a better solution
than xk, the Hessian matrix rf2(xk) needs to be positive de�nite. How-
ever, this may not always be the case. In this situation, the search direction
�rf2(xk)rf(xk) may not be a decent direction of f . Consequently, the
convergence of the method to an optimal solution is not guaranteed.

If it happens that the Hessian matrix rf2(xk) is not positive de�nite, the
matrix may be slightly perturbed so that a positive de�nite matrix Mk is
generated. Equation (2.3.20) can then be modi�ed as follows

xk+1 = xk � �k [Mk]
�1rf(xk) (2.3.22)

where �k can be determined using one of the techniques discussed above.
Note that the positive de�niteness of Mk ensures that the search direction
dk = �[Mk]

�1rf(xk) is a decent direction of f . In fact, we have

rf(xk)dk = �rfT (xk)[Mk]
�1rfT (xk) < 0 (2.3.23)

Mk can be generated from rf2(xk) to improve the convergence (Minoux,
1986). For instance, the following perturbation can be used to construct Mk

Mk = �kI +rf2(xk) (2.3.24)

where �k > 0 is a real number that is chosen to be suÆciently small, sub-
ject to the constraint that all eigenvalues of Mk be larger than or equal to a
given positive constant. The overall convergence of the method can be proved.

Example 2.3 Use Newton's method to �nd the minimum of the following
function (Cai, 1982).

f(x) =
3

2
x21 +

1

2
x22 � x1x2 � 2x1

Solution: It can be shown using the necessary optimality condition that the
minimum point is

x� =
�
1
1

�
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Rewrite the above function as

f(x) = CTx+
1

2
xTQx

where

CT = [�2 0]

Q =

�
3 �1
�1 1

�

Select a starting point arbitrarily as follows

x0 =

��2
4

�

We then have

rf(x0) =
��12

6

�
; Q�1 =

�
1=2 1=2
1=2 3=2

�

Using (2.3.19), we get

x1 = x0 �Q�1rf(x0) =
��2
4

�
�
�
1=2 1=2
1=2 3=2

� ��12
6

�
=

�
1
1

�

which is the minimum point. For this quadratic function, Newton's method
indeed converges to the minimum point in one step.

2.3.3 Quasi-Newton's Methods

These methods are based on a generalisation of the recurrence equation of
Newton's method (2.3.20) (Minoux, 1986):

xk+1 = xk � �k[rf2(xk)]�1rf(xk) (2.3.25)

One of the drawbacks of Newton's method is the requirement that rf2(xk) be
positive de�nite. It is also time consuming to calculate the inverse of rf2(xk)
for determining the search direction. A natural extension of Newton's method
is to replace [rf2(xk)]�1 by a positive de�nite matrix Hk that is used to
calculate the search direction from the gradient rf(xk). Equation (2.3.25)
can then be modi�ed as follows

xk+1 = xk � �kHkrf(xk) (2.3.26)

�k could be determined so that f(xk + �kdk) is minimised in the direction
dk = �Hkrf(xk), or at least f(xk + �kdk) < f(xk).
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The matrix Hk needs to be revised at every iteration. It is desirable that
for a quadratic function

f(x) =
1

2
xTAx + bTx+ c (2.3.27)

Hk converges to the inverse A
�1 of the Hessian matrix A of f . At the end of

the convergence, (2.3.26) is consistent with (2.3.25). For an arbitrary function
f , Hk should be constructed as an approximation to the inverse of the Hessian
matrix of f .

We know that the di�erence of a function at two successive points contains
information about the �rst order derivative of the function between the two
points, for example

@f(x)

@x
jxk �

f(xk +�xk)� f(xk)

�xk
(2.3.28)

where

�xk = xk+1 � xk (2.3.29)

Similarly, the di�erence of the gradients of a function at two successive points
contains information about the second order derivative of the function between
the two points. On the basis of this recognition, the following condition can
be imposed

Hk+1[rf(xk+1)�rf(xk)] = xk+1 � xk (2.3.30)

Given Hk, then Hk+1 can be obtained using a correction formula and the new
information generated at the kth step of the algorithm, including the gradient
rf(xk+1). Various correction formulae have been developed, most of which
are of the type

Hk+1 = Hk +�k (2.3.31)

�k could be of rank 1 or rank 2.
A simple correction formula used to construct an approximation to the

inverse of the Hessian matrix is to choose a matrix of rank 1 and the form

�k = �kuku
T
k (2.3.32)

uk and �k are a vector and a scalar, respectively, and are chosen so that
(2.3.30) is satis�ed.

One of the features of the above correction is that it preserves the sym-
metry of the matrices Hk if the initial matrix H0 is symmetric. Using this
feature, we can obtain a correction formula of rank 1 as follows. First, let

Æk = xk+1 � xk (2.3.33)

k = rf(xk+1)�rf(xk) (2.3.34)
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Then, uk and �k can be represented in terms of Æk and k.
From (2.3.30), (2.3.33) and (2.3.34), we have

Hk+1k = Æk (2.3.35)

Combining (2.3.35) with (2.3.31) and (2.3.32) leads to

[Hk + �kuku
T
k ]k = Æk (2.3.36)

By multiplying both sides by Tk , we have

Tk Hkk + �k(
T
k uk)(u

T
k k) = Tk Æk (2.3.37)

or

�k(u
T
k k)

2 = Tk (Æk �Hkk) (2.3.38)

Note that there is the identity

�k(uku
T
k ) =

(�kuku
T
k k)(�kuku

T
k k)

T

�k(uTk k)
2

(2.3.39)

From (2.3.36), we have

�kuku
T
k k = Æk �Hkk (2.3.40)

Substituting (2.3.38) and (2.3.40) into (2.3.39) results in the following correc-
tion formula of rank 1

Hk+1 �Hk = �k(uku
T
k ) =

(Æk �Hkk)(Æk �Hkk)
T

Tk (Æk �Hkk)
(2.3.41)

or

Hk+1 = Hk +
(Æk �Hkk)(Æk �Hkk)

T

Tk (Æk �Hkk)
(2.3.42)

It can be proven that for a quadratic function f as shown in (2.3.27), the
sequence of matrices Hk generated using (2.3.42) converges to the inverse of
the Hessian matrix of f .

To calculate Hk+1 using (2.3.42), one does not have to choose the point
xk+1 as the minimum of f in the direction dk = �Hkrf(xk) starting from
the point xk . This is one of the advantages of the correction formula (2.3.42)
and the reason why this formula has been widely used for the development of
quasi-Newton's methods that do not require one-dimensional search.

The correction formula ( (2.3.42)) has the disadvantage that even for a
quadratic function f with H0 and the Hessian matrix of f positive de�nite the
matricesHk+1 obtained are not necessarily positive de�nite. Furthermore, the
correction formula may not be used at all if the denominator Tk (Æk�Hkk) is
zero or very small. In such circumstances, other correction formulae of rank 2
need to be used, which do not have this drawback. However, they require the
use of one-dimensional search to �nd xk+1. For more detail about correction
formulae of rank 2, the reader can refer to Minoux (1986).
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2.4 Summary

In this chapter, we discussed three one-dimensional search methods and three
unconstrained optimisation methods. The dichotomymethod is easy to under-
stand and simple to implement. However, it is not as eÆcient as the Fibonacci
method that leads to the smallest possible reduced interval for a given number
of calculations. The drawback of the Fibonacci method is that the number
of calculations needs to be identi�ed in advance. The golden section search
method does not su�er from this drawback and provides an eÆcient search
procedure, though it is not an optimal method as the Fibonacci method.

Three typical unconstrained optimisation methods were introduced. They
are: the steepest decent method, Newton's method and quasi-Newton meth-
ods. The steepest decent method converges quite fast in initial iterations but
may be very slow approaching an optimal solution. Newton's method can
�nd the optimal solution of a quadratic problem at one step. For a general
nonlinear problem whose Hessian matrix is not positive de�nite, perturba-
tion methods could be used to improve the convergence. There is a family
of quasi-Newton methods. In this chapter, a method with a correction for-
mula of rank 1 was discussed, which does not guarantee to produce a positive
de�nite correction matrix. More methods can be found in the references.



Chapter 3

Constrained Optimisation

3.1 Introduction

In the previous chapter, we discussed typical methods for optimisation without
any constraints. In most real life optimisation problems, variables can only
take certain values that are restricted by constrains. Constrained optimisation
is also called mathematical programming and in general can be represented
as follows

Min f(x) (3.1.1)

s:t: hi(x) = 0 i = 1; 2; :::;m (3.1.2)

gj(x) � 0 j = 1; 2; :::; l (3.1.3)

The above problem is called linear programming if all functions in (3.1.1),
(3.1.2) and (3.1.3) are linear functions of x. Otherwise, it is called nonlinear
programming. If a mathematical programming problem has equality con-
straints only ( (3.1.2), it can be solved by transforming it to an unconstrained
problem.

It is more complicated to solve a mathematical programming problem
with both equality and inequality constraints. This is due to the fact that
a solution procedure must guarantee not only the reduction of the objective
function but also the feasibility of solutions generated. Such requirements
pose challenges for �nding optimal solutions. To simplify an optimisation
procedure, it is common to transform an inequality constrained problem to
an equality constrained problem, a constrained problem to an unconstrained
problem, and a nonlinear programming problem to a linear programming
problem. In other words, a nonlinear programming problem could be solved
using a sequence of linear approximations. In this chapter, we will describe
several nonlinear programming methods that employ the above ideas.

45
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3.2 Optimality Conditions

3.2.1 Basic Concepts

In (3.1.1), (3.1.2) and (3.1.3), suppose f(x), hi(x) and gj(x) (i = 1; 2; :::;m,
j = 1; 2; :::; l) are all continuously di�erentiable. We use R to denote the
feasible space enclosed by (3.1.2) and (3.1.3).

We �rst introduce the concepts of feasible directions and saturated con-
straints. Suppose x0 is a feasible solution, or x0 2 R. For a search direction
d, if there exists �0 > 0 so that for any � (0 � � � �0) the following is true

x0 + �d 2 R (3.2.1)

then d is called a feasible direction at the point x0.
If x0 is not an optimal solution, the next step is to look for a direction

along which the objective function f(x) will decrease. Such a direction is
called the feasible decent direction of f(x) at x0. Using the �rst order Taylor
series to expand f(x) at x0, we know that d must be a feasible decent direction
if it satis�es the following condition

rf(x0)T d < 0 (3.2.2)

For a nonlinear programming problem (3.1.1), (3.1.2) and (3.1.3), (3.1.2) is
satis�ed at a feasible point x0. For inequality constrain (3.1.3), however,
there are two possible cases at x0: (a) gj(x

0) > 0 and (b) gj(x
0) = 0. In the

�rst case, x0 is inside the feasible space formed by the constraint gj(x
0) � 0

This means that gj(x
0) � 0 does not pose any restriction on the solution

x0. In other words, gj(x
0) � 0 is not saturated (or unbinding) at x0. In the

second case, x0 is on the boundary of the feasible space formed by gj(x
0) � 0.

So this constraint poses a restriction on the solution x0 and it is therefore
called saturated (binding) constraint. Obviously, all equality constraints are
saturated constraints.

Any direction from an interior point of the feasible space is a feasible one.
If a point is on the boundary of the feasible space, however, a feasible direction
from the point is restricted by the constraint that is saturated at this point.

Suppose the constraint gj(x) � 0 is saturated at x0. Its gradient rgj(x0)
points to the normal direction of gj(x) = 0 at x0, which is orthogonal to the
tangent plane of gj(x) = 0 at x0 and along which the function gj(x) increases
the fastest. If the solution x0 is not an optimum, then the search process
should continue. Suppose d is a search direction. If the angle between d and
rgj(x0) is less than 900, or

rgj(x0)T d > 0 (3.2.3)

then d is a feasible direction. On the other hand, a search direction should
also be a direction along which the objective function decreases, or (3.2.2)
should be met.
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In summary, if x0 is a feasible solution of a nonlinear programming problem
(3.1.1), (3.1.2) and (3.1.3) but not an optimum, then further search is required
and a search direction d should satisfy both (3.2.2) and (3.2.3). In other words,
the angle between a search direction and the negative gradient direction of the
objective function or the gradient direction of a saturated constraint should
both be an acute angle.

3.2.2 Kuhn-Tucker Necessary Condition

The Kuhn-Tucker condition provides a necessary condition that an optimal
solution must satisfy. It can be used for mathematical programming problems
with both equality and inequality constraints. However, it is generally not a
suÆcient condition, which means that a solution stratifying the Kuhn-Tucker
condition is not guaranteed to be an optimal solution. For a convex mathe-
matical programming problem, however, it is not only a necessary but also a
suÆcient condition for local optimality.

To describe the Kuhn-Tucker condition, we �rst de�ne a regular point as
follows. Suppose x� is a point that satis�es (3.1.2) and (3.1.3). Let J be the
set of the subscripts of inequality constraints such that gj(x

�) = 0. If gradient
vectors rhi(x�) and rgj(x�) (1 � i � m; j 2 J) are linearly independent,
then x� is called a regular point of the constraints (3.1.2) and (3.1.3). In
other words, if the gradients of the saturated constraints at x� are linearly
independent, then x� is a regular point, or x� is regular to the set of the
saturated constraints.

The Kuhn-Tucker condition is stated as follows.
Suppose f(x), hi(x) and gj(x) are continuously di�erentiable, x

� is a local
minimum of a nonlinear programming problem (3.1.1), (3.1.2) and (3.1.3),
and x� is a regular point of the problem. Then, there exists vectors � =
[��1; �

�
2; :::; �

�
m]

T and � = [��1; �
�
2; :::; �

�
l ]
T so that

rf(x�)�
mX
i=1

��irhi(x�)�
lX

j=1

��jrgj(x�) = 0 (3.2.4)

��jgj(x
�) = 0; j = 1; 2; :::; l (3.2.5)

��j � 0; j = 1; 2; :::; l (3.2.6)

It is clear from (3.2.5) that ��j is positive only when the corresponding con-
straint is saturated, or gj(x

�) = 0. Otherwise, there must be ��j = 0.
The following example can be used to interpret the geographic meaning

of the Kuhn-Tucker condition (Li and Qian, 1982).

Min f(x) = (x1 � 2)2 + (x2 � 1)2 (3.2.7)

s:t: g1(x) = x2 � x21 � 0 (3.2.8)

g2(x) = 2� x1 � x2 � 0 (3.2.9)
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x2

∆ g1 (x)

∆ f (x) (1,1)

∆ g2 (x)

x1

Figure 3.1: Feasible space of Example 3.1

Figure 3.1 shows the feasible region of the above problem and the contour of
the objective function. Since the objective requires that an optimal solution
be the one that is the closest to the point (2; 1), it is clear that the point (1; 1)
is the minimum. As afore-stated, the negative gradient direction �rf(x) of
the objective function points to the steepest decent direction of the function.
If the angle between a search direction and �rf(x) is less than 90o, then
f(x) can be reduced further.

The gradient direction rgj(x) of a constraint function gj(x) is the fastest
ascent direction of the function. At the point (1; 1), the vector �rf(x) is
between �rg1(x) and �rg2(x), which means that one cannot �nd a feasible
direction along which f(x) can be reduced further. Therefore, the point (1; 1)
is the optimal solution. On the other hand, if �rf(x) is outside the angle
between �rg1(x) and�rg2(x), then there exist other solutions in the feasible
space, at which the objective function can be improved.

The above analysis shows that if x� is a minimum, �rf(x�) can be repre-
sented using a non-negative linear combination of �rg1(x�) and �rg2(x�).
This is actually what the Kuhn-Tucker condition means.

3.2.3 Second Order SuÆcient Conditions

The second order suÆcient condition for an optimal solution of the nonlinear
programming problem (3.1.1), (3.1.2) and (3.1.3) can be stated as follows.

Suppose x� is feasible for the constraints (3.1.1) and (3.1.2). If there exist
vectors � = [��1; �

�
2; :::; �

�
m]

T and � = [��1; �
�
2; :::; �

�
l ]
T so that the Kuhn-Tucker
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condition (3.2.4), (3.2.5) and (3.2.6) are met and for any non-zero vector z
satisfying the following condition

zTrgj(x�) = 0 j 2 J and ��j > 0 (3.2.10)

zTrgj(x�) � 0 j 62 J and ��j = 0 (3.2.11)

zTrhi(x�) = 0 j 62 J for all equality constraint hi(x) = 0 (3.2.12)

the following is true

zT [r2f(x�)�
mX
i=1

��ir2hi(x
�)�

lX
j=1

��jr2gj(x
�)]z > 0 (3.2.13)

then x� is a local minimum of the nonlinear programming (3.1.1), (3.1.2) and
(3.1.3).

In (3.2.10), (3.2.11) and (3.2.12), r2f(x�), r2hi(x
�) and r2gj(x

�) are the
Hessian matrices of f(x), hj(x) and gj(x) respectively, or

r2f(x�) =

2
66666664

@2f(x�)
@x21

@2f(x�)
@x1@x2

� � � @2f(x�)
@x1@xn

@2f(x�)
@x2@x1

@2f(x�)
@x22

� � � @2f(x�)
@x2@xn

...
...

. . .
...

@2f(x�)
@xn@x1

@2f(x�)
@xn@x2

� � � @2f(x�)
@x2n

3
77777775

(3.2.14)

r2hi(x
�) =

2
66666664

@2hi(x
�)

@x21

@2hi(x
�)

@x1@x2
� � � @2hi(x

�)
@x1@xn

@2hi(x
�)

@x2@x1

@2hi(x
�)

@x22
� � � @2hi(x

�)
@x2@xn

...
...

. . .
...

@2hi(x
�)

@xn@x1

@2hi(x
�)

@xn@x2
� � � @2hi(x

�)
@x2n

3
77777775

(3.2.15)

r2gj(x
�) =

2
66666664

@2gj(x
�)

@x21

@2gj(x
�)

@x1@x2
� � � @2gj (x

�)
@x1@xn

@2gj(x
�)

@x2@x1

@2gj(x
�)

@x22
� � � @2gj (x

�)
@x2@xn

...
...

. . .
...

@2gj(x
�)

@xn@x1

@2gj(x
�)

@xn@x2
� � � @2gj (x

�)
@x2n

3
77777775

(3.2.16)

In the above suÆcient condition, it is required that f(x), hi(x) and gj(x) be
second order continuously di�erentiable. A more general suÆcient condition
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for local optimality is based on saddle points and Lagrange function. For
simplicity of description, let's consider nonlinear programming problems of
the following type

Min f(x) (3.2.17)

s:t: gj(x) � 0; j = 1; 2; :::; l (3.2.18)

x 2 S � Rn (3.2.19)

where S could be a set of real or integer numbers.
Suppose a constraint gj(x) � 0 is associated with a real number �j � 0,

or Lagrange multiplier. The Lagrange function associated with the problem
de�ned by (3.2.17), (3.2.18) and (3.2.19) is given as follows

L(x; �) = f(x) +

lX
j=1

�jgj(x) (3.2.20)

De�ne a saddle point as follows. Let �x 2 S and �� � 0. Then, the point (�x; ��)
is said to be a saddle point of L(x; �) if the following is true

L(�x; ��) � L(x; ��) 8x 2 S (3.2.21)

L(�x; �) � L(�x; ��) 8� � 0 (3.2.22)

A saddle point (�x; ��) can be generated using the following conditions (Minoux,
1986):

a) L(�x; ��) = min
x2S

L(x; ��)

b) gj(�x) � 0 j = 1; 2; :::; l
c) ��jgj(�x) = 0 j = 1; 2; :::; l

Furthermore, if (�x; ��) is a saddle point of L(x; �), then the solution �x is a
global minimum of the problem given by (3.2.17), (3.2.18) and (3.2.19). This
conclusion is general and applies to any mathematical programme, whether
it is convex or non-convex, or f(x) and gj(x) are di�erentiable or not, or S is
a continuous, discrete or �nite set (Minoux, 1986). However, a saddle point
may not exist for some problems and this is in general the case for non-convex
problems.

Example 3.1 Check if the point x� = (�2:37;�1:84) is the minimum of the
following problem (Li and Qian, 1982):

Min f(x) = x21 + x2

s:t: h(x) = x21 + x22 � 9

g1(x) = �(x1 + x22) + 1 � 0

g2(x) = �(x1 + x2) + 1 � 0

Solution: It is easy to show that at x = x�, h(x) = 0 and g1(x) = 0. Ac-
cording to the Kuhn-Tucker condition, we �rst examine if the gradients of the
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saturated constraints are linearly independent. Let

c1rh(x�) + c2rg1(x�) = 0

or

c1

�
2x�1
2x�2

�
+ c2

� �1
�2x�2

�
=

�
0
0

�
The above will be true only if c1 and c2 are both zero. Therefore, the gradients
are indeed linearly independent.

The Kuhn-Tucker condition is shown as follows. First, we check if all the
constraints are satis�ed.

h(x�) = (x�1)
2 + (x�2)

2 � 9 = (�2:37)2 + (�1:84)2 � 9 = 0

g1(x
�) = �[x�1 + (x�2)

2] + 1 = �[(�2:37) + (�1:84)2] + 1 = 0

g2(x
�) = �[x�1 + x�2] + 1 = �[(�2:37)� 1:84] + 1 = 5:21 > 0

Now, we check the other part of the Kuhn-Tucker condition.

rf(x�)� ��rh(x�)�
2X

j=1

��jrgj(x�) = 0

�
2x�1
1

�
� ��

�
2x�1
2x�2

�
� ��1

� �1
�2x�2

�
� ��2

� �1
�1

�
=

�
0
0

�
��1(1� x�1 � (x�2)

2) = 0

��2(1� x�1 � x�2) = 0

��1 � 0 and ��2 � 0

Solving the above equations results in

��1 = 1:05; ��2 = 0; �� = 0:778

which shows that the Kuhn-Tucker condition is met.
Finally, the second order suÆcient condition is given as follows. Since

r2f(x�) =
�

2 0
0 0

�
; r2h(x�) =

�
2 0
0 2

�

r2g1(x
�) =

�
0 0
0 �2

�
; r2g2(x

�) =
�

0 0
0 0

�
we have

(z1 z2)

��
2 0
0 0

�
� ��

�
2 0
0 2

�
� ��1

�
0 0
0 �2

���
z1
z2

�

= (z1 z2)

��
2 0
0 0

�
� 0:778

�
2 0
0 2

�
� 1:05

�
0 0
0 �2

���
z1
z2

�

= (z1 z2)

�
0:444 0
0 0:544

��
z1
z2

�
= 0:444z21 + 0:544z22
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It is clear that for any z = (z1; z2) 6= 0 the value of the above equation is
always larger than zero. Therefore, x� = (�2:37;�1:84) is a minimum.

Most of the constrained nonlinear programming methods can be divided into
two families: primal methods and dual methods. The former methods op-
erate directly with the given problem (or primal problem) and generate a
sequence of solutions that satisfy the constraints and ensure the decrease of
the objective function. Their advantages include that if the iterative process
is not interrupted, then they can generate a feasible solution. However, they
are generally diÆcult to implement and their convergence is not guaranteed.
In the next section, we introduce two primal methods: sequential linear pro-
gramming and sequential quadratic programming, which are implemented in
some computer software packages.

The dual methods are easier to implement and more robust. Their con-
vergence can be more easily obtained. However, they only produce a feasible
solution at the end of the iterative process. In the last section of this chapter,
we discuss three widely used dual methods: exterior penalty method, interior
penalty method and Lagrangean method.

3.3 Primal Methods

3.3.1 Sequential Linear Programming

Sequential linear programming (SLP) is developed due to the success of the
Simplex method for solving linear programming. Its general principle consists
of approximating a nonlinear programme by a sequence of linear programmes
using the �rst order Taylor expansion of each nonlinear constraint (or objec-
tive) function (Sen and Yang, 1998).

To solve a nonlinear optimisation problem, SLP consists of linearising its
nonlinear objective function and nonlinear constraint functions at a given
solution. Around this solution, a search space is established using the given
step sizes of variables. If the intersection of the linearised feasible space and
the established search space is empty, the search space will be expanded by
increasing the step sizes. If the intersection is not empty, SLP will search
for a solution that optimises the linearised objective function within a new
feasible space de�ned by the intersection. The obtained optimal solution is
then used to re-linearise the original problem. The process is repeated until
the optimum (or its approximation) of the original nonlinear problem is found.

Generally, this method does not converge without online regulation of the
step sizes of variables. Figure 3.2 (Minoux, 1986) shows why this may happen.
The feasible space of the example shown in Figure 3.2 is a convex polyhedron
and the lines of constant objective values are concentric circles. �f(x) is the
tangent line of f(x) at the point x. Suppose x0 is the starting solution and we
obtain x1 and x2 successively. Then, the solution process inde�nitely oscillates
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at these last two points (x1 and x2). The process does not converge due to
the oscillation.

x2

f (x1)

x1

f(x2)

x2

Ω

x0

f(x0)

x1

Figure 3.2: Oscillation in SLP

One of the techniques for solving the oscillation problem is to reduce the step
sizes of variables once oscillation is detected. In Figure 3.3, for instance, a
nonlinear function y is linearised at an initial solution x0. A search space
(a line segment in this case) around x0 is established using the initial step
size t0. The maximum of the linearised function (the tangent line at x0) is
sought within the established line segment, which is x1. Repeating the same
process with the �xed step size t0, we can generate x2, x3 and x4 successively.
Since x4 = x2, the �rst oscillation occurs. If the step size is reduced so that
t1 = t0=2, for example, then we can �nd x5 and x6 successively. As x6 = x4,
the step size need to be further reduced with for example t2 = t1=2. We then
get x7 which is quite close to the maximum of y(x).

It should be noted that for multivariable problems oscillation may occur
between the current solution and a solution of a previously linearised problem
(not the most recent one). It is therefore necessary to record previously gen-
erated solutions for checking such oscillation. How many previous solutions
should be recorded depends on the complexity of a problem in question.

The computational steps of SLP may be summarised below.

S1 De�ne a nonlinear single-objective optimisation problem as follows

Min f(x) (3.3.1)
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s:t: x 2 
 (3.3.2)

where


 =

�
x

���� hi(x) = 0; i = 1; 2; :::;m
gj(x) � 0; j = 1; 2; :::; l

�
(3.3.3)

S2 Select an initial solution x0 that may be feasible or unfeasible. Initialise
the step sizes of variables denoted as �x0i (i = 1; 2; :::; n). Let t = 0.

S3 Calculate the �rst order Taylor expansion of the objective function at
the current solution xt

�f(x) = f(xt) +rf(xt)(x � xt) (3.3.4)

Linearise the nonlinear constraint functions hi(x) (i = 1; 2; :::;m) and
gj(x) (j = 1; 2; :::; l) at xt using their �rst order Taylor expansions

�hi(x) = hi(x
t) +rhi(xt)(x � xt) (3.3.5)

�gj(x) = gj(x
t) +rgj(xt)(x� xt) (3.3.6)

y

x7 t1 = t0 / 2
t2 = t1/ 2

t2

t1

t0

x- x0 x1 x2 x3 x* x
x4 x5

x6

x7

Figure 3.3: SLP searching process
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S4 In a neighbourhood of xt, de�ne a search space St using the step sizes
of all variables as follows

St =

�
x

���� xti ��xti � xi � xti +�xti ; i = 1; 2; :::; n
x = [x1; x2; :::; xn]

T

�
(3.3.7)

S5 Formulate the following linear programming problem

Min �f(x) (3.3.8)

s:t: St \ 
t (3.3.9)

where


t =

�
x

���� �hi(x) = 0; i = 1; 2; :::;m
�gj(x) � 0; j = 1; 2; :::; l

�
(3.3.10)

S6 If 
t is empty, we must select a new solution and go to S3 to repeat the
process. It is easy to show that 
t will not be empty if xt is feasible.

S7 If St \ 
t is empty, we need to increase the step sizes �xti to expand
the search space St until St \ 
t becomes not empty.

S8 Find the optimal solution xt+1 of the constructed linear programme
(3.3.9) using, for example, the Simplex method.

S9 If xt+1 is unfeasible with regard to the original nonlinear problem, let
t = t+1 and go to S3 to construct a new linear programming problem in
a neighbourhood of xt+1. If xt+1 is the same as one that was generated
before, then, reduce the step sizes of variables and go to S3.

S10 If xt+1 is also feasible with regard to the original nonlinear problem, then
xt+1 will be taken as the approximate optimal solution of the original
problem and the iteration process will be ended if:
a) the step sizes of all variables have been reduced to be signi�cantly
small, and
b) the values of both the variables and the objective function are not
signi�cantly di�erent in two successive iterations.
Otherwise, let t = t+1 and go to S3 to construct a new linear problem
in a neighbourhood of xt+1.

Note that the above algorithm does not guarantee to generate a feasible or
an optimal solution for a strongly nonlinear problem. It can provide an ap-
proximate solution for a nonlinear programming problem with a nonlinear
objective function and linear (or mainly linear) constraints.

3.3.2 Sequential Quadratic Programming

This method is based on quadratic programming. A nonlinear programme is
called a quadratic programme if its objective function is a quadratic function
of variables and all the constraint functions are linear functions of variables.
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Sequential quadratic programming consists of replacing the solution of a non-
linear programme by the solution of a sequence of quadratic programmes that
approximate the given problem in a sense that the objective function is ap-
proximated by its second order Taylor expansion and each nonlinear constraint
function is approximated by its �rst order Taylor expansion.

Before introducing sequential quadratic programming, we �rst discuss
quadratic programming. In general, the mathematical model of a quadratic
programme can be represented as follows.

Min f(x) =
nX
j=1

cjxj +
1

2

nX
j=1

nX
k=1

cjkxjxk

cjk = ckj ; k = 1; 2; :::; n (3.3.11)

s:t:
nX
j=1

aijxj + bi � 0; i = 12; :::;m (3.3.12)

xj � 0; j = 1; 2; :::; n (3.3.13)

where the second term of the objective function is quadratic.
If the quadratic objective function is positive de�nite (or semi-positive

de�nite), then the function is strictly convex. Since the feasible solution
space of a quadratic problem is a convex set, a quadratic programme is a
convex programme. For this type of problems, a local optimum is also a
global optimum and the Kuhn-Tucker condition is not only necessary but
also suÆcient.

Applying the Kuhn-Tucker conditions (3.2.4) to (3.2.6) to the quadratic
programme (3.3.11) to (3.3.13) and replacing � by y, we have

�
nX

k=1

cjkxk +

mX
i=1

aijyn+i + yj = cj ; j = 1; 2; :::; n (3.3.14)

0
@ nX
j=1

aijxj + bi

1
A yn+i = 0; i = 1; 2; :::;m (3.3.15)

xjyj = 0; j = 1; 2; :::; n (3.3.16)

Adding surplus variables in (3.3.12) leads to

nX
j=1

aijxj � xn+i + bi = 0; i = 1; 2; :::;m (3.3.17)

Multiplying (3.3.17) by yn+i and considering (3.3.15) and (3.3.16) results in

xjyj = 0; j = 1; 2; :::; n+m (3.3.18)

Note that

xj � 0; yj � 0; j = 1; 2; :::; n+m (3.3.19)
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If a solution of (3.3.14) and (3.3.17) also satis�es (3.3.18) and (3.3.19), it is
the solution of the original quadratic programme. In (3.3.14), the parameter
cj could be positive or negative. Introduce an arti�cial variable zj(zj � 0) so
that (3.3.14) can be re-written as follows.

�
nX

k=1

cjkxk +

mX
i=1

aijyn+i + yj + sgn(cj)zj = cj ; j = 1; 2; :::; n (3.3.20)

where sgn(cj) = 1 for cj � 0 and sgn(cj) = �1 for cj < 0.
From the above discussion, we can �nd the following basic solution

zj = sgn(cj)cj ; j = 1; 2; :::; n (3.3.21)

xn+i = bi; i = 1; 2; :::;m (3.3.22)

xj = 0; j = 1; 2; :::; n (3.3.23)

yj = 0; j = 1; 2; :::; n+m (3.3.24)

The above solution is not an optimum of the original quadratic unless zj = 0.
We therefore formulate the following linear programming problem

Min '(z) =

nX
j=1

zj (3.3.25)

s:t: �
nX

k=1

cjkxk +
mX
i=1

aijyn+i + yj + sgn(cj)zj = cj ;

j = 1; 2; :::; n (3.3.26)
nX
j=1

aijxj � xn+i + bi = 0; i = 1; 2; :::;m (3.3.27)

xj � 0; j = 1; 2; :::; n+m (3.3.28)

yj � 0; j = 1; 2; :::; n+m (3.3.29)

zj � 0; j = 1; 2; :::; n (3.3.30)

The solution of the above linear programme should also satisfy (3.3.18). This
means that for each j, xj and yj must not be basic variables simultaneously. If
the optimal solution of problem (3.3.25) is (x�1; x

�
2; :::; x

�
n+m; y

�
1 ; y

�
2 ; :::; y

�
n+m;

z�1 = 0; z�2 = 0; :::; z�n = 0), then (x�1; x
�
2; :::; x

�
n) is the optimal solution of the

original quadratic problem.

Example 3.2 Solve the following quadratic programme (Li and Qian, 1982)

Min f(x) = 8x1 + 10x2 � x21 � x22

s:t: 3x1 + 2x2 � 6

x1; x2 � 0
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Solution: The above quadratic programme is equivalent to the following prob-
lem

Min �f(x) = �8x1 � 10x2 +
1

2
(2x21 + 2x22)

s:t: 6� 3x1 � 2x2 � 0

x1; x2 � 0

In comparison with (3.3.11) to (3.3.13), we have

c1 = �8; c2 = �10; c11 = 2; c22 = 2

c12 = C21 = 0; b1 = 6; a11 = �3; a12 = �2

Since c1 and c2 are negative, we set sgn(c1) = �1 and sgn(c2) = �1. Following
(3.3.25), we get the following linear programme

Min '(z) = z1 + z2

s:t: �3y3 + y1 � 2x1 � z1 = �8
�2y3 + y2 � 2x2 � z2 = �10
�3x1 � 2x2 � x3 + 6 = 0

x1; x2; x3; y1; y2; y3; z1; z2 � 0

or

Min '(z) = z1 + z2

s:t: 2x1 + 3y3 � y1 + z1 = 8

2x2 + 2y3 � y2 + z2 = 10

3x1 + 2x2 + x3 = 6

x1; x2; x3; y1; y2; y3; z1; z2 � 0

In addition, the following equation should be satis�ed

xiyi = 0; j = 1; 2; 3

Using the simplex method to solve the above problem results in the following
solution

x1 =
4

13
; x2 =

33

13
; x3 = 0; y1 = 0

y2 = 0; y3 =
32

13
; z1 = 0; z2 = 0

This means that the optimal solution of the original problem is given by

x�1 =
4

13
; x�2 =

33

13
; f(x) = 21:3

Administrator
ferret
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It can be shown that the Kuhn-Tucker condition is satis�ed at the above so-
lution.

To solve a general nonlinear programme as de�ned in (3.1.1) to (3.1.3), sequen-
tial quadratic programming consists of approximating the original problem in
a neighbourhood of a given solution using the second order Taylor series of its
objective function and the �rst order Taylor series of its nonlinear constraint
functions. This will generate a quadratic programming problem, which can
be solved using the technique as discussed above. If the optimal solution of
the quadratic problem is not a minimum of the original problem, we can con-
struct a new quadratic problem by approximating the original problem in a
neighbourhood of the current solution. This will result in a new solution. The
process is repeated until the minimum of the original problem is found.

The computational steps of sequential quadratic programming are sum-
marised as follows:

S1 De�ne a nonlinear single-objective optimisation problem using the fol-
lowing format

Min f(x) (3.3.31)

s:t: x 2 
 (3.3.32)

where


 =

�
x

���� hi(x) = 0; i = 1; 2; :::;m
gj(x) � 0; j = 1; 2; :::; l

�
(3.3.33)

S2 Select an initial solution x0 that may be feasible or unfeasible. Initialise
the step sizes of variables denoted as �x0i (i = 1; :::; n). Let t = 0.

S3 Calculate the second order Taylor expansion of the objective function
at the solution

�f(x) = f(xt) +rf(xt)(x� xt) + (x� xt)Tr2f(xt)(x � xt) (3.3.34)

Linearise the nonlinear constraint functions hi(x) (i = 1; 2; :::;m) and
gj(x) (j = 1; 2; :::; l) at the solution xt using their �rst order Taylor
expansions

�hi(x) = hi(x
t) +rhi(xt)(x � xt) (3.3.35)

�gj(x) = gj(x
t) +rgj(xt)(x� xt) (3.3.36)

S4 In a neighbourhood of the current solution xt, use the given step sizes
to de�ne a search space St

St =

�
x

���� xti ��xti � xi � xti +�xti ; i = 1; 2; :::; n
x = [x1; x2; :::; xn]

T

�
(3.3.37)
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S5 Formulate the following quadratic problem

Min �f(x) (3.3.38)

s:t: St \ 
t (3.3.39)

where


t =

�
x

���� �hi(x) = 0; i = 1; 2; :::;m
�gj(x) � 0; j = 1; 2; :::; l

�
(3.3.40)

S6 If 
t is empty, we must select a new solution and go to S3 to repeat the
process. One can see that 
t will not be empty if xt is feasible.

S7 If St \ 
t is empty, we need to increase the step sizes �xti to expand
the search space St until St \ 
t becomes not empty.

S8 Find the optimal solution xt+1 of quadratic programme (3.3.39) using,
for example, the technique described earlier in this section.

S9 If xt+1 is unfeasible with regard to the original nonlinear problem, let
t = t + 1 and go to S3 to construct a new quadratic problem in a
neighbourhood of xt+1.

S10 If xt+1 is also feasible with regard to the original nonlinear problem, then
xt+1 will be taken as the approximate optimal solution of the original
problem and the iteration process will be ended if either:
a) the step sizes of all variables have been reduced to be signi�cantly
small, or
b) both the values of the variables and the objective function are not
signi�cantly di�erent in two successive iterations.
Otherwise, let t = t + 1 and go to S3 to construct a new quadratic
problem in a neighbourhood of xt+1.

The algorithm provides an alternative way of solving nonlinear programming
problems, which have nonlinear objective functions and linear (or mostly lin-
ear) constraint functions. However, one should note that it does not guarantee
to generate a feasible or an optimal solution for a strongly nonlinear problem.

3.4 Dual Methods

Sequential linear or quadratic programming is based on the approximation
of a nonlinear programming problem by a sequence of linear or quadratic
programming problems, which can be solved using, for example, the Simplex
method. In this section, we discuss three dual methods that di�er signi�cantly
from primal methods. The common principle of these dual methods is to
reduce the original problem to the solution of a sequence of unconstrained
optimisation problems.
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3.4.1 Lagrangean Methods

Lagrangean methods are developed on the basis of duality theory. Consider
a mathematical programming problem as shown by (3.2.17) to (3.2.19). The
Lagrange function of the problem is given by

L(x; �) = f(x) +

lX
j=1

�jgj(x) (3.4.1)

In section 3.2.3 of this chapter, we mentioned that the problem ( (3.2.17) to
(3.2.19)) can be solved if we can �nd a saddle point of the Lagrange function,
which is a pair (�x; ��) satisfying the following conditions

L(�x; ��) = min
x2S

L(x; ��) (3.4.2)

g(�x) � 0 (3.4.3)
��igi(�x) = 0 (3.4.4)

A saddle point can be found by solving a dual problem. First, we de�ne a
dual function for � � 0, as follows

w(�) = L(�x; �) = min
x2S

L(x; �) (3.4.5)

In other words, at any � � 0 the dual function w(�) takes the minimum value
of the Lagrange function in the feasible decision space. The dual problem
of the original (or primal) problem as de�ned in (3.2.17) to (3.2.19) can be
de�ned as follows

max
�

w(�) = max
�
fmin
x2S

L(x; �)g; for � � 0 (3.4.6)

The dual problem has several important properties. First, for all � � 0 the
value of the dual function w(�) is a lower bound of the optimal objective value
f(��) of the primal problem. In other words, if w(��) is the optimal value of
the dual problem, then we have

w(�) � w(��) � f(��); 8� � 0 (3.4.7)

Another property of the dual problem is that the dual function w(�) is a
concave function of �. This is a very general property and does not require
any assumption about convexity of the objective function f or the constraint
functions gi(x), or about convexity of the decision space S. Even in situations
where the dual function w(�) is not di�erentiable at every point (for example
S is a discrete set), the concavity of w(�) ensures that a local optimum �0 is
also a global optimum. Therefore, in general the dual problem can be more
easily solved than the primal problem.
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The duality theory states that the optimal value of the primal problem is
equal to the optimal value of the dual problem if the primal problem has a
saddle point (�x; ��), or

w(��) = f(�x) (3.4.8)

In other words, if a saddle point exists, the solution of the dual problem will
lead to the generation of an optimal solution of the primal problem.

Example 3.3 Find the saddle point of the following problem.

Min x21 + 2x22

s:t: x1 + 3x2 + 11 � 0

Solution: The objective function f(x) and the constrained function g(x) are
written by

f(x) = x21 + 2x22

g(x) = x1 + 3x2 + 11

So, f(x) and g(x) are both convex, which means that the problem has a saddle
point. The Lagrange function of the problem is given by

L(x; �) = x21 + 2x22 + �x1 + 3�x2 + 11�

The minimum of L(x; �) in x can be found by formulating the following nec-
essary conditions

@L(x; �)

@x1
= 2x1 + � = 0

@L(x; �)

@x2
= 4x2 + 3� = 0

From the above conditions, we have

x1 = ��
2

and x2 = �3�

4

The dual function is therefore given by

w(�) = L(�x; �) = �11

8
�2 + 11�

The application of the necessary condition for maximising w(�) leads to the
following equation

@w(�)

@�
= �11

4
�+ 11 = 0
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So

�� = 4; �x1 = �2 and �x2 = �3

Note that

f(�x) = �x21 + 2�x22 = (�2)2 + 2(�3)2 = 22

w(��) = �11

8
� 42 + 11� 4 = 22

So f(�x) = w(��), as expected.

In the above example, the minimum of the Lagrange function in x was ob-
tained as an explicit function of �. This is in general diÆcult to achieve. In
the dual problem, if �� is known, which maximises the dual function, then we
can obtain �x by minimising L(x; �) by means of unconstrained optimisation.
Since �� is in general not known in advance, it is often generated using iterative
methods. The principle of such methods is to produce a sequence of �k with
�k ! ��. For each �k generated, a corresponding solution xk will be generated
by minimising L(x; �k) using an unconstrained optimisation method. The it-
erative methods operate in such a way that the sequence of the corresponding
solutions xk will converge to �x. This way the solution of the original con-
strained problem is replaced by the solution of a sequence of unconstrained
optimisation problems.

One of the main iterative methods, called the method of Uzawa (Minoux,
1986), is to use a classical gradient method to solve the dual problem. This
method consists of a two-stage process. At the �rst stage, the Lagrange
multiplier vector �k is updated using the gradient of the Lagrange function.
At the second stage, the Lagrange function is minimised for an updated �k.
The method can be summarised by the following steps:

S1 Select a starting Lagrange multiplier �0 � 0 and let k = 0.

S2 At iteration k, the Lagrange multiplier �k is given. Compute the value
of the dual function at �k by minimising the Lagrange function over the
decision space, or

w(�k) = min
x2S

ff(x) + �kg(x)g
= f(xk) + �kg(xk) (3.4.9)

S3 g(xk) is the gradient of w(�k) at �k. Update � as follows

�k+1 = maxf0; �k + �kg(x
k)g (3.4.10)

where �k � 0 is the step size at iteration k, which needs to be adjusted
to ensure that w(�k+1) � w(�k).
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S4 Check if the stopping criterion is satis�ed, which could be��w(�k+1)� w(�k)
�� � Æ (3.4.11)

where Æ is a very small positive real number. If this is the case, terminate
the iteration. Otherwise, let k = k + 1 and go to S2.

In the above method, the step sizes can be chosen in advance, leading to a
gradient method with �xed steps. The steps can also be determined using
one-dimensional search by minimising w(�k) along the direction �k , leading
to the steepest descent method.

It is clear from (3.4.10) that if a constraint gj(x) is not satis�ed at xk, or
gj(x

k) > 0, then the corresponding Lagrange multiplier �j will increase. This
will increase the penalty on the violated constraint as shown in the second
term in (3.4.9). On the other hand, if gj(x) is satis�ed at xk , or gj(x

k) � 0,
then the corresponding Lagrange multiplier �j will decrease towards the lower
bound of zero.

3.4.2 Method of Exterior Penalties

Similar to Lagrangean methods, the principle of penalty methods is to replace
an original constrained minimisation problem by a sequence of unconstrained
problems. They are therefore referred to as sequential unconstrained min-
imisation techniques (or SUMT). The exterior penalty method consists of
constructing a penalty function and searching for a sequence of solutions that
approach an optimum outside of the feasible space.

De�ne an optimisation problem as shown in (3.2.17) to (3.2.19). Construct
the following penalty function

P (x; �k) = f(x) + �k

lX
j=1

[gj(x)]
2uj(gj) (3.4.12)

where �k is called the penalty coeÆcient at the kth iteration and �k+1 > �k.
�j(gj) is the following function.

uj(gj) =

�
0 if gj(x) � 0
1 if gj(x) > 0

(3.4.13)

Equation (3.4.12) can also be represented using the following equivalent form

P (x; �k) = f(x) + �k

lX
j=1

fmax[gj(x); 0]g2 (3.4.14)

where

max[gj(x); 0] =

�
0 if gj(x) � 0
gj(x) if gj(x) > 0

(3.4.15)
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For any �k > 0, a minimum of the penalty function P (x; �k) is denoted by
�x(�k). The penalty coeÆcient �k should be properly chosen. On the one
hand, it has to be large enough for �x(�k) to be feasible or close to the feasible
solution space. On the other hand, if �k is too large, the penalty function
could be ill-conditioned, leading to numerical diÆculties in the search for the
optimum of the penalty function.

The above analysis explains why the exterior penalty method is nor-
mally implemented in an iterative manner. Initially, choose a relatively small
penalty coeÆcient �1, and then solve the unconstrained problem

min
x
P (x; �1) = f(x) + �1

lX
j=1

fmax[gj(x); 0]g2 (3.4.16)

Suppose �x(�1) is the optimum of problem (3.4.16). If the second term of
the problem is suÆciently small, then �x(�1) is a good approximation of the
optimum of the original problem. Otherwise, choose a new penalty coeÆcient
�2 > �1 and solve the following new unconstrained problem

min
x
P (x; �2) = f(x) + �2

lX
j=1

fmax[gj(x); 0]g2 (3.4.17)

We then obtain a new solution �x(�1). The exterior penalty method converges
to an optimal solution of the original problem when the penalty coeÆcient �k
tends to 1. The computational steps of the exterior penalty method can be
summarised as follows:

S1 Select an initial solution �x0 and set the �rst penalty coeÆcient �1. Let
k = 1 and �k+1=�k = c with c > 1.

S2 Use �xk�1 as the starting point to solve the unconstrained problem
(3.4.14), resulting in a new solution �xk.

S3 If all constraints are satis�ed at �xk, then �xk is a feasible solution and it is
also optimal for the original problem. The iteration process terminates.
Otherwise, go to the next step.

S4 Update the penalty coeÆcient, for example �k+1 = 10�k , and go to S2.

Example 3.4 Solve the following programming problem (Cai, 1982)

Min f(x) = x21 + x22

s:t: 3x1 + 2x2 � 6 � 0

x1 � 0; x2 � 0

Solution: Re-write the problem as follows

Min f(x) = x21 + x22
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s:t: g1(x) = �3x1 � 2x2 + 6 � 0

g2(x) = �x1 � 0

g3(x) = �x2 � 0

First, we use the Kuhn-Tucker conditions to solve the problem. The Lagrange
function of the above problem is given as follows.

L(x; �) = x21 + x22 + �1(�3x1 � 2x2 + 6) + �2(�x1) + �3(�x2)
The Kuhn-Tucker conditions of the Lagrange function read

@L(x; �)

@x1
= 2x1 � 3�1 � �2 = 0

@L(x; �)

@x2
= 2x2 � 2�1 � �3 = 0

@L(x; �)

@�1
= �3x1 � 2x2 + 6 � 0

@L(x; �)

@�2
= x1 � 0

@L(x; �)

@�3
= x2 � 0

�1(�3x1 � 2x2 + 6) = 0

�2(�x1) = 0

�3(�x2) = 0

Solving the above equations, we get

�
�x1
�x2

�
=

�
18=13
12=13

�
;

2
4 ��1

��2
��3

3
5 =

2
4 12=13

0
0

3
5

Now, we use the exterior penalty method to solve the problem. First, con-
struct the following penalty function

P (x; �k) = x21 + x22 + �k1(�3x1 � 2x2 + 6)2u1(g1)

+�k2(�x1)2u2(g2) + �kk3(�x2)2u3(g3)
Suppose x is within the �rst quadrant. Then, the constraints x1 � 0 and
x2 � 0 can be satis�ed, resulting in u2(g2) = 0 and u3(g3) = 0. Since the
constraint g1 � 0 is not satis�ed, we set u1(g1) = 1. Let �k = �k1.

Use the necessary conditions to �nd the optimal solution of the penalty
function.

@P

@x1
= 2x1 � 6�k(�3x1 � 2x2 + 6) = 0

@P

@x2
= 2x2 � 4�k(�3x1 � 2x2 + 6) = 0
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Solving the above equations leads to

�x1(�k) =
36�k

2 + 26�k
; �x2(�k) =

24�k
2 + 26�k

For �k !1, we have

�x1 =
18

13
; �x2 =

12

13

This is the same solution as we obtained using the Kuhn-Tucker conditions.

Example 3.5 Use the exterior penalty method to solve the following problem
(Cai, 1982).

Min f(x) =
1

3
(x1 + 1)3 + x2

s:t: g1(x) = 1� x1 � 0

g2(x) = �x2 � 0

Solution: The penalty function of the above problem is given by

P (x; �k) =
1

3
(x1 + 1)3 + x2 + �kfmax[0; 1� x1]g2

+�kfmax[0; � x2]g2

To explain the principle of the exterior penalty method, we use a traditional
method to solve the unconstrained optimisation problem. The necessary con-
ditions for minimising the above penalty function are given by

@P

@x1
= (x1 + 1)2 � 2�kfmax[0; 1� x1]g = 0

@P

@x2
= 1� 2�kfmax[0; � x2]g = 0

Assume that the constraint g1(x) = 1�x1 � 0 is satis�ed, or max[0; 1�x1] =
0, which means that x1 � 1. From the above �rst order necessary condition,
we must have (x1 + 1)2 = 0, or x1 = �1, which is in contradiction with
the assumption. We therefore have to assume that 1 � x1 > 0, or the �rst
constraint is not met, leading to max[0; 1�x1] = 1�x1. From the �rst order
necessary condition, we then have

(x1 + 1)2 � 2�k(1� x1) = 0

or

x1 = �1� �k +
q
�2k + 4�k
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Similarly, only when 1 + 2�kx2 = 0, the second necessary condition can be
satis�ed. We then have

x2 = � 1

2�k

For �k !1, we get the following optimal solution

x1 = 1; x2 = 0

Using the iterative method, we could set the initial value of the penalty coef-
�cient to be 0:001, for example, and �k+1 = 10�k. The sequence of solutions
generated is as shown in Table 3.1.

Table 3.1: Iterative optimisation process of the exterior method

�k xk1 xk2 P k(�k) fk(�k)
0.001 -0.93775 -500.00000 -249.9962 -500.0000
0.010 -0.80975 -50.00000 -24.965 -49.9977
0.100 -0.45969 -5.00000 -2.2344 -4.9474
1.000 0.23607 -0.50000 0.9631 0.1295
10.000 0.83216 -0.05000 2.3068 2.0001
100.000 0.98039 -0.00500 2.6249 2.5840
1000.000 0.99800 -0.00050 2.6624 2.6582
10000.000 0.99963 -0.00005 2.6655 2.6652

1 1 0 8/3 8/3

3.4.3 Method of Interior Penalties

The interior penalty method consists of constructing a penalty function and
searching for a sequence of solutions that approach an optimum inside the fea-
sible space. The penalty function of the interior method is therefore di�erent
from that of the exterior method.

For the optimisation problem de�ned by (3.2.17) to (3.2.19), construct the
following penalty function

P (x; �k) = f(x) + �k

lX
j=1

� 1

gj(x)
(3.4.18)

where �k is the penalty coeÆcient at the k-th iteration with �k > 0 and
�k+1 < �k.

For a given �k, we use the unconstrained optimisation method to solve
problem (3.4.18), resulting in a solution �x(�k). When �k ! 0, �x(�k) ap-
proaches the optimal solution �x of the original problem, or �x(�k)! �x.
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If x is within the feasible space and far away from the boundary, then
gj(x) < 0, the penalty term is small and P (x; �k) � f(x). When x moves
towards the boundary of the feasible space and some constraint tends to be
binding, or gj(x) ! 0, then the penalty function will become very large,
preventing x from moving out of the feasible space.

The computational steps of the interior penalty method can be summarised
as follows:

S1 Select a feasible solution �x0 that satis�es all constraints, or gj(�x
0) � 0

for all j = 1; 2; :::; l. Choose an initial value �1 of the penalty coeÆcient
and let k = 1.

S2 Taking �xk�1 as a starting point, use an unconstrained optimisation
method to �nd the optimum of the penalty function, denoted by �xk.

S3 Check if the solution �xk is the optimum solution of the original problem.
If yes, stop the process. Otherwise, go to the next step. The termination
criterion can be one of the following forms:
a) The relative di�erence between the objective values of two successive
iterations is suÆciently small, or���f(xk+1)�f(xk)

f(xk+1)

��� � "1 with "1 being a very small real number,

b) The variables do not have signi�cant changes in two successive iter-
ations��xk+1 � xk

�� � "2 with "2 being a very small real number.

S4 Set �k+1 = c�k with c < 1, for example c = 0:1. Let k = k + 1 and go
to S2.

Example 3.6 Use the interior penalty method to solve the optimisation prob-
lem as given in Example 3.5.

Solution: The interior penalty function is given by

P (x; �k) =
1

3
(x1 + 1)3 + x2 � �k

1� x1
� �k
� x2

Applying the necessary condition to the penalty function results in

@P

@x1
= (x1 + 1)2 � �k

(1� x1)2
= 0

@P

@x2
= 1� �k

x22
= 0

Solving the above equations, we have

�xk1(�k) =
q
1 +

p
�k

�xk2(�k) =
p
�k
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The optimum solution is obtained for �k ! 0, or

�x = lim
�k!0

�
�xk1(�k)
�xk2(�k)

�
= lim

�k!0

� p
1 +

p
�kp

�k

�
=

�
1
0

�

which is the same as we obtained using the exterior penalty method.
Using the iterative method, we could set the initial value of the penalty co-

eÆcient to be 1000, for example, and �k+1 = 0:1�k. The sequence of solutions
generated is as shown in Table 3.2.

Table 3.2: Iterative optimisation process of the interior method

�k xk1 xk2 P k(�k) fk(�k)
1000.000000 5.71164 31.62278 376.2636 132.4003
100.000000 3.31662 10.00000 89.9772 36.8109
10.000000 2.04017 3.16228 25.3048 12.5286
1.000000 1.41421 1.00000 9.1046 5.6904
0.100000 1.14727 0.31623 4.6117 3.6164
0.010000 1.04881 0.10000 3.2716 2.9667
0.001000 1.01569 0.03162 2.8569 2.7615
0.000100 1.00499 0.01000 2.7267 2.6967
0.000010 1.00158 0.00316 2.6856 2.6762
0.000001 1.00050 0.00100 2.6727 2.6697

0 1 0 8/3 8/3

In the interior penalty method, the penalty term can also be taken as the
logarithm of the constraint functions. Such a method is called the logarithmic
interior penalty method. If the original optimisation problem is de�ned by
(3.2.17) to (3.2.19), then the logarithmic interior penalty function is given by

P (x; �k) = f(x)� �k

lX
j=1

ln(�gj(x)) (3.4.19)

Example 3.7 Use the logarithmic interior penalty method to solve the fol-
lowing problem (Cai, 1982).

Min f(x) = x1 + 2x2

s:t: g1(x) = x21 � x2 � 0

g2(x) = �x1 � 0

Solution: The penalty function of the problem is given by

P (x; �k) = x1 + 2x2 � �k ln(�x21 + x2)� �k lnx1
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The necessary optimisation conditions read

@P

@x1
= 1 +

2�kx1
�x21 + x2

� �k
x1

= 0

@P

@x2
= 2� �k

�x21 + x2
= 0

Solving the above equations, we have

xk1(�k) =
1

8

��1 +p1 + 16�k
�

xk2(�k) =
1

64

��1 +p1 + 16�k
�2
+
1

2
�k

For � ! 0, we get the following optimal solution

xk1(�k = 0) = 0; xk2(�k = 0) = 0

The above solution can also be obtained using the iterative method. Set the
initial value of the penalty coeÆcient �k = 4, for example, and let �k+1=�k =
c = 0:5. Then, we can generate the results as shown in Table 3.3.

Table 3.3: Iterative optimisation process of the interior method

k �k xk1(�k) xk2(�k) fk[xk(�k)]
1 4 0.885 2.781 6.447
2 2 0.593 1.350 3.293
3 1 0.391 0.653 1.697
4 0.5 0.375 0.390 1.155
5 0.25 0.155 0.149 0.453
6 0.125 0.090 0.071 0.232
7 0.630 0.057 0.035 0.127
8 0.032 0.029 0.017 0.063
9 0.016 0.016 0.008 0.032
10 0.008 0.008 0.004 0.016
11 0.004 0.003 0.002 0.007
1 0 0 0 0

3.5 Summary

In this chapter, we discussed basic concepts and typical methods in con-
strained optimisation. Both the Kuhn-Tucker necessary conditions and the
suÆcient conditions for optimisation were introduced. It should be noted
that the Kuhn-Tucker conditions are both necessary and suÆcient for con-
vex optimisation problems. Two types of suÆcient conditions are discussed,
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one based on second order derivatives (Hessian matrices) and the other on
saddle points. Note that the saddle point based suÆcient condition is very
general and does not require assumptions about convexity, di�erentiability or
continuity of mathematical problems in question.

Two types of constrained optimisation methods, namely primal and dual
methods, were introduced. Sequential linear programming and sequential
quadratic programming are two primal methods that have been implemented
in some optimisation software packages. Lagrangeanmethods, exterior penalty
method and interior penalty method are widely used dual methods. They have
been implemented in many standard optimisation tools. They have also been
used in genetic algorithm based optimisation procedures to solve complex op-
timisation problems that have many local optima and are non-di�erentiable
at points or strongly nonlinear.



Chapter 4

Multiple Objective

Optimisation

4.1 Introduction

In the previous chapters, we discussed typical methods for optimisation with
one objective function. In many real-life optimisation problems, multiple ob-
jectives have to be taken into account, which may be related to the economical,
technical, social and environmental aspects of optimisation problems. In this
chapter, we �rst discuss the basic concepts and principles of multiple objective
optimisation and then introduce several typical multiple objective methods.

In general, a multiple objective optimisation problem can be represented
as the following vector mathematical programme

optimise F (x) = ff1(x) � � � fl(x) � � � fk(x)g (4.1.1)

s:t: x 2 
 (4.1.2)


 =

8<
: x

������
gi(x) � 0 i = 1; :::;m1

hj(x) = 0 j = 1; :::;m2

x = [x1 � � �xn]T

9=
; (4.1.3)

where xi is a decision variable, x denotes a solution, fl(x) is a nonlinear
objective function, and gi(x) and hj(x) are nonlinear inequality and equal-
ity constraint functions respectively. These multiple objectives are usually
incommensurate and in conict with one another. This means that, in gen-
eral, a multiple objective optimisation problem does not have a single solution
that could optimise all objectives simultaneously. Otherwise, there is no need
to consider multiple objectives. Because of this, multiple objective optimi-
sation is not to search for optimal solutions but for eÆcient (non-inferior,
non-dominated or Pareto-optimal) solutions that can best attain the priori-
tised multiple objectives as greatly as possible. Such solutions are referred to
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as the best compromise solutions.

4.2 Basic Concepts and Methods

In this section, we �rst introduce the concepts of non-dominance (eÆciency),
non-dominated (eÆcient) solutions and trade-o�s; then, the Kuhn-Tucker con-
ditions for Pareto optimality will be stated; �nally, one of the simplest multiple
objective optimisation method, the simple additive weighting method, will be
discussed in some detail.

4.2.1 Concepts and De�nitions

In a single objective optimisation problem de�ned in (3.1.1) to (3.1.3), any
two solutions x1 and x2 can be compared completely, that is:

either x1 � x2 if and only if f(x1) < f(x2)
or x1 � x2 if and only if f(x1) > f(x2)
or x1 ~ x

2 if and only if f(x1) = f(x2)
where � reads `is preferred to' and ~ `is indi�erent to'. For instance, x

1 � x2

means that the solution x1 is preferred to x2 and x1~x
2 reads x1 is indi�erent to

x2. Therefore, for a single objective problem we can �nd an optimal solution
x�, at which the objective function is minimised.

In a multiple objective optimisation problem as de�ned in (4.1.1) to (4.1.3),
however, not all solutions could be compared completely, that is:

either x1 � x2 if and only if F (x1) � F (x2) (Strict inequality for at least
one objective)

or x1 � x2 if and only if F (x1) � F (x2) (Strict inequality for at least one
objective)

or x1 ~ x
2 if and only if F (x1) = F (x2)

or x1 �� x2 if and only if F (x1) <> F (x2).
Here x1 � x2 means that x1 dominates x2 as the former is better than the

latter on all objectives. x1 �� x2 means that the two solutions x1 and x2 are
not dominating each other if x1 performs better than x2 on some objectives
but worse on other objectives.

In general, we are not interested in solutions dominated by other solutions.
It is also the case that no feasible solution could dominate all other feasible
solutions; otherwise there would be no need to conduct multiple objective
optimisation. Therefore, we need to �nd solutions that are not dominated by
any other solutions. Such solutions are called non-dominated, non-inferior,
eÆcient or Pareto-optimal solutions. Non-dominance results from the con-
icts among objectives, which are inherent in multiple objective optimisation.
Non-dominance means that the improvement of some objective could only be
achieved at the expense of other objectives. We use the following example to
illustrate the concept of non-dominance.
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Example 4.1 In Table 4.1, the two objectives f1(x) and f2(x) are for minimi-
sation. Identify whether the four solutions are dominated or non-dominated
solutions.

Table 4.1: Non-dominance

Solution Objective function
f1(x) f2(x)

x1 -10 -21
x2 -14 -18
x3 -12 -16
x4 -8 -20

Solution: Since

�
f1(x

1)
f2(x

1)

�
=

� �10
�21

�
<

� �8
�20

�
=

�
f1(x

4)
f2(x

4)

�
, from the

de�nition of dominance we can see that x1 dominates x4, or x1 � x4. Sim-
ilarly, we can �nd that x2 � x3, x1 �� x2, x1 �� x3, and x2 �� x4.
Therefore, among the four solutions x1 and x2 are non-dominated (eÆcient)
solutions and x3 and x4 are dominated solutions.

Non-dominance or eÆciency can be formally de�ned as follows:

De�nition 4.1 xt is called an eÆcient (non-inferior, non-dominated or Pareto-
optimal) solution of problem (4.1.1) if there does not exist any x 2 
 (x 6= xt),
so that F (x) � F (xt) and F (x) 6= F (xt), where fi (i = 1; 2; :::; k) are assumed
for minimisation.

The condition of eÆciency is rather strict and many multiple optimisation
algorithms cannot guarantee to generate eÆcient solutions but only weakly
eÆcient solutions. Weak eÆciency is de�ned as follows:

De�nition 4.2 xt is called a weakly eÆcient (non-inferior, non-dominated
or Pareto-optimal) solution of problem (4.1.1) if there does not exist any x 2 

(x 6= xt), so that F (x) < F (xt), where fi (i = 1; 2; :::; k) are assumed for
minimisation.

The condition of weak eÆciency is easier to satisfy than dominance. In other
words, an eÆcient solution must be a weakly eÆcient solution but the opposite
may not be true. For a two objective problem, the geometric interpretation
of eÆcient or weakly eÆcient solutions can be shown as in Figure 4.1 for a
discrete decision space, where there are 9 solutions. The weakly eÆcient so-
lutions include x1, x2, x3, x5, x7, x8 and x9, among which x2 and x8 are
not eÆcient solutions and they are weakly dominated by x1 and x9, respec-
tively. Solutions x4 and x6 are ineÆcient as they are dominated by x5 and
x7, respectively.
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f2 (x)

x1 x2

● ●

x3
●

○ x4

● x5

○ x6

● x7

● x8

● x9

f1 (x)

Figure 4.1: EÆcient and weakly eÆcient solutions

f2(x)

A

F(Ω)
C

B
f1(x)

Figure 4.2: EÆcient solution frontier

For a continuous decision space, Figure 4.2 illustrates eÆcient solutions, weakly
eÆcient solutions and an eÆcient solution frontier, where f1(x) and f2(x) are
assumed for minimisation. Note that all points on the line segment between
points A and C are weakly eÆcient solutions with only point C being strictly
eÆcient. All points on the curve between point C and point B are eÆcient
solutions. In Figure 4.2, the line segment �A �C and the curve ~C ~B constitute
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the eÆcient solution frontier of the example. In general, an eÆcient solution
frontier can be de�ned as follows:

De�nition 4.3 The collection of all eÆcient solutions of problem (4.1.1) is
called the eÆcient set. The image of the eÆcient set by F is referred to as
the eÆcient solution frontier or trade-o� surface.

From Figure 4.2, one can �nd that in a multiobjective optimisation problem
there is normally in�nite number of eÆcient solutions due to the conicts
between objectives. Therefore, multiple objective decision making usually
comprises two main steps: generation of eÆcient solutions and identi�cation
of the best compromise solution which should be an eÆcient solution.

4.2.2 Method Classi�cation

The best compromise solution should be a solution that can best satisfy the
DM's preferences. If the DM's preferences can be modelled by a utility func-
tion aggregating all objective functions into one criterion, denoted by

u(F (x)) = u(f1(x) � � � fl(x) � � � fk(x)) (4.2.1)

then the best compromise solution may be de�ned as a solution that maximises
the utility function u(F (x)) for all x 2 
.

If an explicit utility function can be constructed, then a multiple objec-
tive optimisation problem reduces to a single objective problem and can be
solved using various methods such as those discussed in the previous chapter.
In many decision situations, however, it is very diÆcult or impossible to ex-
tract global preference information from the decision maker to construct such
an explicit utility function. In such circumstances, other methods must be
employed that only use local preference information.

In the past two and a half decades or so, a large number of multiple op-
timisation methods have been developed. Most methods are based on the
principle of solving one or a sequence of single objective optimisation prob-
lems to generate eÆcient solutions or the best compromise solutions. Based
on the ways of extracting the decision maker's preference information and us-
ing it in decision analysis processes, multiple objective optimisation methods
can be divided into three main classes: 1) eÆcient solution generation meth-
ods with preferences provided after optimisation; 2) methods for generating
the best compromise solutions based on preferences provided a priori; and
3) interactive methods with preferences extracted progressively in decision
analysis processes (Yang, 1996).

In the �rst class of methods, a set of desirable eÆcient solutions is gener-
ated. The values of these solutions and the objective functions are presented
to the decision maker, who is expected to choose the best compromise solu-
tions from these solutions on the basis of his preferences. This type of methods
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is sometimes referred to as posterior methods. One of the advantages of this
type of methods is that there is no need to construct an explicit utility func-
tion or to involve the decision maker in the generation of eÆcient solutions.
However, the algorithms of these methods are usually complicated and require
a large number of calculations. Another drawback is that if many eÆcient so-
lutions are generated, then it will be diÆcult for the decision maker to decide
which one is the best compromise solution. In this chapter, we only discuss
the simple weighting method to introduce the ideas of generating eÆcient
solutions.

The second type of methods requires the decision maker to provide global
preference information in advance. Using the preferences, a multiple objective
problem is then transformed to a single objective problem, the solution of
which leads to the best compromise solution of the original problem. This
type of methods is sometimes referred to as a priori methods. One of the
advantages of these methods is that optimisation only needs to be conducted
once and therefore the number of calculations is relatively small. However,
it is diÆcult for the decision maker to provide global preference information.
This is particularly the case for a new multiple objective problem where little
or no a priori knowledge about the trade-o�s among objectives is available.

The third type of methods requires the decision maker to provide appro-
priate local preference information progressively in an interactive optimisation
and decision analysis process. Using the preference information, a sequence
of single objective optimisation problems are constructed, which are related
to the original problem in a certain way and the solutions of which will then
approach the best compromise solution of the original problem. As the above
feature stands, this type of methods is referred to as interactive methods.
Many interactive methods have been developed and their main di�erences
result from the ways of eliciting local preferences and constructing single ob-
jective optimisation problems. Since local preference information is relatively
easy to provide, interactive methods are of wide application.

Following the brief introduction of the simple weighting method, the rest
of the chapter is devoted to discussing the second and the third types of
methods.

4.2.3 Simple Weighting Method

The weighting method is the simplest multiple objective optimisation method
and has been widely applied, though not always adequately. In this section,
we use a simple example and several diagrams to discuss the process and
features of using the weighting method to generate eÆcient solutions.

Two objection optimisation problems are widespread; for example, max-
imising pro�t with the desire of minimising energy consumption, minimising
cost with the requirement of maximising safety, etc. The main features of
these problems include di�erent units used to measure two objectives and
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conicting interests between two objectives, as common to most multiple
objective optimisation problems. In general, a two objective optimisation
problem can be represented as follows:

Max f1(x) (4.2.2)

Mim f2(x) (4.2.3)

s:t: x 2 
 (4.2.4)

where 
 is as de�ned in (4.1.3). Note that maximisation of f1(x) is equivalent
to minimisation of �f1(x).

To simplify the discussion, we assume that the two objective functions of
the above problem are measured using the same scale; otherwise, they need
to be normalised to the same scale. Suppose the projection of the feasible
decision space to the objective space is denoted by f(
). If the objective space
f(
) is convex and compensation between the two objectives is allowed, then
we can use the weighting method to generate eÆcient solutions. The weighing
method operates based on the following single objective optimisation problem

Min f(x) = !1f1(x) + !2f2(x) (4.2.5)

s:t: x 2 
 (4.2.6)

where !1 � 0 and !2 � 0 are weighting factors.
In a single objective mathematical programme, dividing the objective by

a positive real number does not change its optimum. Suppose !1 > 0. Then,
dividing the objective of problem (4.2.5) by !1 and setting ! = !1=!2 lead
to the following equivalent problem

Min f(x; !) = f1(x) + !f2(x) (4.2.7)

s:t: x 2 
 (4.2.8)

Since 
 is assumed to be convex. For a given !, the optimal solution of
problem (4.2.7) is an eÆcient solution of problem (4.2.2) - (4.2.4). Given
di�erent values for !, many eÆcient solutions can be generated. Here, we
treat ! as a weighting parameter or a variable but not as the representation
of the decision maker's preferences. We use a diagram (Figure 4.3) to explain
how the weighting method works to generate eÆcient solutions.

The contour of the objective function is a line in the objective space,
de�ned as follows

f1 + !f2 = a (4.2.9)

where a is a constant. Equation (4.2.9) can be written as the following equiv-
alent form

f2 = � 1

!
f1 +

a

!
(4.2.10)
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f2(x)

● B F(Ω)

● A ● C

f1 + wf2 = a f1 + wf2 = b
f1(x)

w

1

1

Figure 4.3: Simple weighting method

So the slope of the line is �1=! and its y-intercept is a=!.
On the line represented by (4.2.9) or (4.2.10), all points within the feasible

objective space have the same weighted objective value and therefore the line is
referred to as the linear indi�erence curve. For example, point B and point C
in Figure 4.3 represent two solutions, at which the weighted objective function
has the same value, or f1(B)+!f2(B) = f1(C)+!f2(C) = b. In other words,
the two solutions represented by point B and point C are indi�erent to the
decision maker.

The solution of problem (4.2.7) is to move the objective line southwest-
wards in parallel as far as possible until it becomes tangent to the feasible
objective space, as at point A in Figure 4.3. One can see that point A is
an eÆcient solution. If ! represents the decision maker's preferences and the
assumption of a linear utility function is acceptable, then point A would be
his best compromise solution.

Changing ! is equivalent to rotating the objective line or changing the
decision maker's preferences. In summary, there are the following cases.

a) Suppose the new weight is !1 with 1 > !1 > !. Then the best com-
promise solution will be changed to point D as shown in Figure 4.4.
Increasing ! to !1 means that the weight of f2 is increased. In other
words, the decision maker prefers to further improve (reduce) f2. How-
ever, this can only be done at the expense of f1.

b) Suppose the new weight is !2 with ! > !2 > 0. Then the best com-
promise solution will be changed to point E as shown in Figure 4.4.
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Decreasing ! to !2 means that the weight of f2 is reduced. In other
words, the decision maker prefers to further improve (reduce) f1. How-
ever, this can only be done at the expense of f2.

f1 + w2 f2 = e
f2(x)

1

F(Ω)

● E

1 ● A
●

D
f1 + w1f2 = d

f1(x)

1

1

w

2

1

w

Figure 4.4: Change weight

c) If ! = 0, then the best compromise solution will be changed to point G
as shown in Figure 4.5. This is equivalent to say that f2 is no longer
considered and the decision maker only wishes to minimise f1. Note
that although point G in Figure 4.5 is an eÆcient solution, in general
cases it may only be weakly eÆcient.

d) If ! = 1, then the best compromise solution will be changed to point
H as shown in Figure 4.5. This is equivalent to say that f1 is no longer
considered and the decision maker only wishes to minimise f2. Note
that although point H in Figure 4.5 is an eÆcient solution, in general
cases it may only be weakly eÆcient as well.

For three and more objective optimisation problems, the weighting method
can be applied in the same way as for two objective problems. If the objective
space f(
) of problem (4.1.1) - (4.1.3) is convex, then we could construct the
following problem to generate eÆcient solutions.

Min F (x) =

kX
l=1

!lfl(x) (4.2.11)

s:t: x 2 
 (4.2.12)

It must be made clear, however, that if the objective space of the original
problem is non-convex, then the weighting method may not be capable of



82 CHAPTER 4. MULTIPLE OBJECTIVE OPTIMISATION

f2 (x)
f1 + w4f2 = g

● G F(Ω)

● A
H
●

f1 + w3f2 = h

f1(x)

Figure 4.5: Change weight

generating the eÆcient solutions on the non-convex part of the eÆcient fron-
tier. It must also be noted that the optimal solution of a weighting problem
should not be used as the best compromise solution if the weights do not re-
ect the decision maker's preferences or if the decision maker does not accept
the assumption of a linear utility function.

4.3 p-Norm Methods

In this section, we discuss a family of multiple objective optimisation methods,
which are based on p-norm to search for the best compromise solutions. Most
of these methods require global preference information. Some of them could
be used in an interactive fashion. Four methods will be discussed in this
section: the minimax (ideal point) method, the goal attainment method, goal
programming, and the preference point method.

4.3.1 Minimax (Ideal Point) Method

In problem (4.1.1)-(4.1.3), we can optimise each of the objectives by solving
the following problems

Min fl(x); l = 1; 2; :::; k (4.3.1)

s:t: x 2 
 (4.3.2)
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Suppose the optimal solution of the above problem is �xl. Then, the optimal
value of objective l is given by f�l = fl(�x

l).
De�ne an ideal point in the objective space as follows

F � = [f�1 � � � f�l � � � f�k ] (4.3.3)

In general, an ideal point is not a feasible solution. Otherwise, the objective
would not be in conict with one another. For a two objective problem, an
ideal point can be illustrated as in Figure 4.6, where the two objectives are
for minimisation.

f2 (x)

●

F (Ω)

● ●

F* = [f1*, f2*]

f1(x)

Figure 4.6: Ideal point de�nition

The decision rule of the ideal point method is that given a set of weights
for objectives one should select a feasible solution such that the combined
deviation between the feasible solution and the ideal solution is minimised.
This rule means that the best compromise solution is the one that is the
closest to the ideal point in the objective space.

Based on the above decision rule of the ideal point method, we can con-
struct the following weighted p-norm problem (Yang, 1996)

Min dp =

8<
:

kX
j=1

�
!j
��f�j � fj(x)

���p
9=
;

1=p

(4.3.4)

s:t: x 2 
 (4.3.5)

It can be proven that for 1 � p � 1 if the optimal solution of the above
problem is unique then it is also an eÆcient solution of problem (4.1.1)-(4.1.3).
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Note that the weighted norm dp is not unique. The value of dp depends on
the selection of p. It is of interest to investigate the features of dp in relation
to p. Suppose there are two points in the objective space: F 1 = [f11 � � � f1k ]
and F 2 = [f21 � � � f2k ]. Suppose the objectives are of equal importance. Then,
the p-norm between the two points is given by

dp =

8<
:

kX
j=1

��f1j � f2j
��p
9=
;

1=p

(4.3.6)

For p = 2, d2 is the Euclidian (or geometric) distance between the two point
F 1 and F 2. For 1 � p � 1, the norms d1 and d1 provide the upper and
lower bounds of the norm dp, or

d1 � dp � d1; for any 1 � p � 1 (4.3.7)

Consider two cases: p = 1 and p =1. For p = 1, problem (4.3.4) becomes

Min dp =

kX
j=1

!j
��f�j � fj(x)

�� (4.3.8)

s:t: x 2 
 (4.3.9)

Problem (4.3.8) is a non-smooth optimisation problem. Since fj(x) � f�j , for
all j = 1; 2; :::; k, however, problem (4.3.8) can be re-written as follows

Min dp =
kX

j=1

!j(fj(x)� f�j ) (4.3.10)

s:t: x 2 
 (4.3.11)

Note that !j and f�j are both constant. Their product can be eliminated
from the objective function of problem (4.3.10) without changing its optimal
solution. Therefore, problem (4.3.10) is equivalent to the following problem

Min dp =
kX

j=1

!jfj(x) (4.3.12)

s:t: x 2 
 (4.3.13)

Problem (4.3.12) is the weighting problem. This shows that the 1-norm ideal
point method is equivalent to the weighting method.

For p =1, let

dmax = max
1�j�k

�
!j
��f�j � fj(x)

��	 (4.3.14)
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We then have

d1 =

8<
:

kX
j=1

�
!j
��f�j � fj(x)

���1
9=
;

1=1

= dmax

8<
:

kX
j=1

"
!j
��f�j � fj(x)

��
dmax

#19=
;
1=1

(4.3.15)

Since

0 � !j
��f�j � fj(x)

��
dmax

� 1 (4.3.16)

we have

d1 = dmax = max
1�j�k

�
!j
��f�j � fj(x)

��	 (4.3.17)

Therefore, problem (4.3.4) becomes

Min d1 = max
1�j�k

�
!j
��f�j � fj(x)

��	 (4.3.18)

s:t: x 2 
 (4.3.19)

Problem (4.3.18) is a non-smooth optimisation problem. Since fj(x) � f�j for
all j = 1; 2; :::; k, problem (4.3.18) can be re-written as follows

Min d1 = max
1�j�k

�
!j
�
fj(x) � f�j

�	
(4.3.20)

s:t: x 2 
 (4.3.21)

which is still non-smooth. However, problem (4.3.20) is equivalent to the
following problem

Min d1 (4.3.22)

s:t: !j
�
fj(x) � f�j

� � d1; j = 1; 2; :::; k (4.3.23)

x 2 
 (4.3.24)

where d1 is treated as an auxiliary variable and (4.3.23) denotes objective
constraints. It can be proven that if !j > 0 for all j = 1; :::; k or the optimal
solution of problem (4.3.22)-(4.3.24) is unique, then the optimal solution is
an eÆcient solution of the original multiple objective problem (4.1.1)-(4.1.3).

The geometrical signi�cance of the minimax method is as illustrated by
Figures 4.7. The contour of the 1-norm in the objective space is a set of
hyper-rectangles with F � as the geometrical centre. Solving problem (4.3.22)-
(4.3.24) is to �nd the smallest hyper-rectangle that just touches the feasible
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objective space F (
). If F (
) is convex, it is always a vertex of the smallest
hyper-rectangle that just touches F (
) as shown by point F 1 = [f11 ; f

1
2 ] in

Figure 4.7. In this case, the following equations hold in general

!1(f
1
1 � f�1 ) = !2(f

1
2 � f�2 ) = � � � = !k(f

1
k � f�k ) (4.3.25)

In Figure 4.7, equation (4.3.25) is a line denoted by !1(f
1
1�f�1 ) = !2(f

1
2 �f�2 ),

which passes the two points F 1 and F �. If F (
) is non-convex, it is possible
that an edge instead of a vertex of the smallest hyper-rectangle may just touch
F (
). In such cases, not all of equations (4.3.25) hold.

f2 (x)

●

F(Ω)

●

f2* ●

F*

f1 (x)
f1*

],[ 1
2

1
1

1 ffF =

Figure 4.7: The minimax method

The computational steps of the minimax (ideal point) method are sum-
marised as follows.

S1 De�ne the following multiple objective optimisation problem

Min F (x) = ff1(x) � � � fl(x) � � � fk(x)g (4.3.26)

s:t: x 2 
 (4.3.27)

Note that maximisation of fj(x) is equivalent to minimisation of �fj(x).
S2 Solve the following single objective problems

Min f1(x); l = 1; 2; :::; k (4.3.28)

s:t: x 2 
 (4.3.29)
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Suppose the optimal solution of (4.3.28) is �xl and the value of the objec-
tive fj(x) at �x

l is f�j = fj(�x
l) (j = 1; :::; k). Then construct the pay-o�

table as follows.

S3 De�ne the ideal point in the objective space and the weighting factors
as follows

F � = [f1(�x
1); f2(�x

2); � � � ;fk(�xk)] (4.3.30)

�!j =
!j

f�j � fj(�xj)
(4.3.31)

where ! is the relative weight of fj(x) and f
�
j is the worst value of fj(x)

in the pay-o� table, or

f�j = max
1�l�k

�
fj(�x

l)
	

(4.3.32)

S4 Formulate and solve the following problem to �nd an eÆcient solution,
where � is an auxiliary variable

Min � (4.3.33)

s:t: �!j
�
fj(x)� fj(�x

j)
� � �; l = 1; 2; :::; k (4.3.34)

x 2 
 (4.3.35)

S5 Suppose the optimal solution of problem (4.3.33)-(4.3.34) is xt. If !j
(j = 1; 2; :::; k) represent the decision maker's overall preferences, xt

could be regarded as the best compromise solution. Otherwise, a new set
of weights need be provided. This leads to di�erent interactive minimax
procedures.

Table 4.2: Pay-o� table

f1(x) f2(x) . . . fk(x)
�x1 f1(�x

1) f2(�x
1) : : : fk(�x

1)
�x2 f1(�x

2) f2(�x
2) : : : fk(�x

2)
...

...
...

. . .
...

�xk f1(�x
k) f2(�x

k) : : : fk(�x
k)

The minimax method is capable of discovering all eÆcient solutions of a mul-
tiple objective problem whether the problem is convex or non-convex (Yang,
1996; Lin and Yang, 1999). Given the relative weights of objectives, the
minimax method provides a compromise solution that is nearest to the ideal
solution in the sense of1-norm. Obviously, the quality of the compromise so-
lution obtained in this way depends on the accuracy of the weights provided.
Based on such a solution, however, interactive procedures would be designed
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to conduct sensitivity analysis. This idea is adopted in the STEM method
and the ISTM method as described in the next section.

Example 4.2 A two objective linear optimisation problem is given as follows

Max F = [f1(x); f2(x)] = [5x1 � 2x2; � x1 + 4x2]

s:t: x 2 


where


 =

�
x

���� �x1 + x2 � 3;x1 + x2 � 8
x1 � 6;x2 � 4;x1; x2 � 0

�

Use the weighting method and the minimax method to �nd the best compro-
mise solution. Suppose the two objectives are of equal importance.

Solution: First, we optimise the two objectives individually. Maximising the
�rst objective in 
 leads to �x1 = [6; 0] and f1(�x

1) = 30; maximising the second
objective in 
 leads to �x2 = [1; 4] and f2(�x

2) = 15.
Using the weighting method, we can formulate the following problem

Max d1 = f1(x) + f2(x) = 4x1 + 2x2

s:t: x 2 


The optimal solution of the above problem is given by

�x3 = [�x31; �x
3
2] = [6; 2]

f1(�x
3) = 26 and f2(�x

3) = 2

which is an eÆcient solution of the original problem.
Using the minimax method, we construct the following problem

Min d1
s:t: 30� 5x1 + 2x2 � d1

15 + x1 � 4x2 � d1
x 2 


where d1, x1 and x2 are variables. The optimal solution of the above problem
is given by

�x4 = [�x41; �x
4
2] = [2:25; 2:75]

f1(�x
4) = 20:75 and f2(�x

4) = 5:75

which is also an eÆcient solution of the original problem.
Using the 1-norm (the weighting) method and the1-norm (the minimax)

method, we generated two di�erent solutions �x3 and �x4. It can be shown that
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for 1 < p <1 and the same set of weights any eÆcient solution �xp generated
using a p-norm method is between the two solutions �x3 and �x4, or

f1(�x
4) � f1(x

p) � f1(�x
3)

f2(�x
3) � f2(x

p) � f2(�x
4)

For example, for p = 2 we can have f1(x
2) = 22:5 and f2(x

2) = 5:5.

4.3.2 Goal Attainment Method

In problem (4.3.22)-(4.3.23), we assume that the best compromise solution is
the one that is the closest to the ideal point. In many decision situations,
the decision maker may wish to specify a desired solution (goal) and �nd a
feasible solution that is as close to the goal as possible. Such preferences
could be accommodated using di�erent ways. First of all, so-called canonical
weights can be used for this purpose (Lightner and Director, 1981; Yang,
1999).

Suppose xt is an eÆcient solution and F � = [f�1 � � � f�j � � � f�k ] is the ideal
point. De�ne canonical weights as follows

!tj =
1

f tj � f�j
; j = 1; 2; :::; k (4.3.36)

where f tj = fj(x
t) (j = 1; :::; k) and F t = [f t1 � � � f tj � � � f tk]. It can then be

proven (Yang, 1999) that xt is the optimal solution of the following minimax
problem

Min d1 (4.3.37)

s:t: !tj
�
fj(x) � f�j

� � d1; j = 1; 2; :::; k (4.3.38)

x 2 
 (4.3.39)

Note that !t1 (f1(x) � f�1 ) = � � � = !tj
�
fj(x)� f�j

�
= � � � = !tk (fk(x) � f�k ) is

a line in the objective space, which passes the two points F � and F t.
Following the above principle, we could ask the decision maker to provide

a desired solution, say xd. Let F d = [fd1 � � � fdj � � � fdk ] and fdj = fj(x
d). We

could then de�ne the following canonical weights

!tj =
1

fdj � f�j
; j = 1; 2; :::; k (4.3.40)

and solve problem (4.3.37)-(4.3.38), leading to an eÆcient solution xt+1. If all
objective constraints (4.3.38) are binding, then F (xt+1) must be on the line
passing the two points F � and F d.

The goal attainment method (Gembicki, 1974; Haimes et al., 1975) can
also be related to the minimax method. This method requires the decision
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maker to provide a desired solution (goal), say xd, and a set of weights ! =
[!1 � � �!j � � �!k]. The goal attainment problem can be formulated as follows:

Min � (4.3.41)

s:t: fj(x) � !j� � fdj ; j = 1; 2; :::; k (4.3.42)

x 2 
 (4.3.43)

where � is an auxiliary variable unrestricted in sign and ! is normalised so
that

Pk
j=1 !j = 1. If an objective is expected to be under-attained against

the desired value, a smaller weight is assigned to it. If it is required to be
over-attained, then a larger weight should be assigned to it.

The goal attainment method for two objectives is illustrated in Figure 4.8.
The direction of the preferred solution vector, F d + !�, is �xed by the goal
vector F d and the weight vector !. The minimum value of � occurs where
F d + !� vector intersects the lower boundary of the objective space F (
).
The best compromise solution generated using the goal attainment method is
sensitive to the goal and the weight. However, the meaning of � in problem
(4.3.37)-(4.3.38) is di�erent from d1 of problem (4.3.22)-(4.3.23). � is merely
an auxiliary variable while d1 is 1-norm.

f2(x)

F (Ω)

● wλ
Fd

f1(x)

Figure 4.8: The goal attainment method

The goal attainment method may be extended. For example, a pay-o�
table may be constructed and the information is provided to the decision
maker to help him choose the goal. The main steps of the goal attainment
method can be summarised as follows:

S1 De�ne a multiple objective optimisation problem as in problem (4.3.26).
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S2 Conduct a single objective optimisation problem and construct the pay-
o� table as shown in Table 4.2.

S3 Provide a goal value and a weight for each objective. Then construct
either a minimax problem (problem (4.3.37)-(4.3.38)) with the canon-
ical weights (4.3.40) or a goal attainment problem (problem (4.3.41)-
(4.3.42)).

S4 Solve the constructed minimax or goal attainment problem, resulting in
the best compromise solution.

Note that the goal and weights in the goal attainment formulation can be
changed to develop interactive decision making processes. This will be dis-
cussed in the next section.

Example 4.3 Consider the following production scheduling problem

Max f1(x) = 0:4x1 + 0:3x2

Max f2(x) = x1

s:t: g1(x) = x1 + x2 � 400

g2(x) = 2x1 + x2 � 500

x1; x2 � 0

Solution: the goal attainment method requires that the decision maker pro-
vides a goal and weights. Suppose F d = [180; 200], and the weights of the
two objective are ! = [!1; !2] = [0:67; 0:33]. Note that maximisation of fj(x)
is equivalent to minimisation of �fj(x). The goal attainment formulation of
the problem is then given by

Min �

s:t: g1(x) = x1 + x2 � 400

g2(x) = 2x1 + x2 � 500

�(0:4x1 + 0:3x2)� 0:67� � �180
�x1 � 0:33� � �200
x1; x2 � 0

The solution of the above problem is given by

� = 95:4

[�x1; �x2] = [168:2; 163:6]

[f1(�x); f2(�x)] = [116:4; 168:2]

4.3.3 Goal Programming

Goal programming (Charnes and Cooper, 1977) requires that preference in-
formation be provided before any eÆcient solutions are generated. In fact,
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the method requires the decision maker to set goals for all objectives that he
wishes to achieve. It adopts the decision rule that the best compromise design
should be the one that minimises the deviations from the set goals. It allows
the decision maker to assign pre-emptive weights to objectives and to de�ne
di�erent achievement levels of the goals.

Goal programming is based on p-norm formulations. Suppose a goal vector
is provided as F̂ = [f̂1 � � � f̂j � � � f̂k]. If in problem (4.3.4) the ideal point is
replaced by the goal, we then have

Min dp =

8<
:

kX
j=1

h
!j

���f̂j � fj(x)
���ip
9=
;

1=p

(4.3.44)

s:t: x 2 
 (4.3.45)

For linear goal programming, we set p = 1. Problem (4.3.44) then becomes

Min d1 =
kX

j=1

!j

���f̂j � fj(x)
��� (4.3.46)

s:t: x 2 
 (4.3.47)

which is a non-smooth optimisation problem.
To solve problem (4.3.46) using conventional optimisation algorithms, we

introduce deviation variables d+j and d�j

d+j =
1

2

n���f̂j � fj(x)
���� hf̂j � fj(x)

io
(4.3.48)

d�j =
1

2

n���f̂j � fj(x)
���+ hf̂j � fj(x)

io
(4.3.49)

Note that

d+j + d�j =
���f̂j � fj(x)

��� (4.3.50)

d+j � d�j = fj(x) � f̂j (4.3.51)

d+j � d�j = 0; d+j ; d
�
j � 0 (4.3.52)

We then have following goal programming formulation

Min

kX
j=1

!j(d
+
j + d�j ) (4.3.53)

s:t: fj(x)� d+j + d�j = f̂j ; j = 1; 2; :::; k (4.3.54)

d+j � d�j = 0; d+j ; d
�
j � 0; j = 1; 2; :::; k (4.3.55)

x 2 
 (4.3.56)
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If the decision maker can provide goals for all objectives and accepts its de-
cision rule, then goal programming may be one of the best methods that can
be used to search for the best compromise solution. The computational steps
of goal programming are listed below.

S1 De�ne a multiple objective optimisation problem as in (4.3.26).

S2 Set goal values f̂j for all objectives fj(x), j = 1; :::; k.

S3 Assign a pre-emptive weight pl to an objective where pl >> pl+1.
This means that no number !, however large it may be, could make
!pl+1 > pl. In other words, fj(x) will be regarded to be absolutely
more important than fk(x) if fj(x) and fk(x) have pre-emptive weights
pl and pl+1, respectively.

S4 Assign relative weights to objectives that have the same pre-emptive
weight.

S5 Indicate whether each objective should be attained as closely to or as
above or as below its goal value as possible.

S6 Use the above preference information to construct the goal programming
problem as follows

Min

LX
l=1

pl

2
4 jlX
j=j1

�
!+j d

+
j + !�j d

�
j

�35 (4.3.57)

s:t: Xb 2 
b (4.3.58)


b =

8<
:Xb

������
fj(x) � d+j + d�j = f̂j ; j = 1; � � � ; k
d+j � d�j = 0; d+j ; d

�
j � 0

Xb = [xT d+1 d
�
1 � � � d+k d�k ]T ; x 2 


9=
;(4.3.59)

where d+j and d�j represent over-attainment and under-attainment of
the goal fj(x). L is the total number of priority levels and jl is the
number of the objectives at a single priority level with the pre-emptive
weight pl.

S7 Problem (4.3.57) may be solved using the following sequential goal pro-
gramming approach. Suppose al(D

+; D�) is the sum of deviations of
the objectives at the lth priority level, de�ned by

al(D
+; D�) =

jlX
j=j1

�
!+j d

+
j + !�j d

�
j

�
(4.3.60)

where D+ = [d+1 � � � d+k ]T and D� = [d�1 � � � d�k ]T . Let a�1 be the optimal
value of a1(D

+; D�) obtained by solving the following problem

Min a1(D
+; D�) (4.3.61)

s:t: Xb 2 
b (4.3.62)
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Then, solve the following (L-1) problems sequentially

Min al(D
+; D�); l = 2; 3; :::; L (4.3.63)

s:t: Xb 2 
l (4.3.64)


l =

�
Xb

���� Xb 2 
b
ai(D

+; D�) � a�i ; i = 1; � � � ; l � 1

�
(4.3.65)

If �Xb =
�
�xT �d+1

�d�1 � � � �d+k �d�k
�T

is the optimal solution of problem (4.3.63)
for l = L, then �x is the best compromise solution of the original problem.

Example 4.4 A multiple objective optimisation problem has the following
four objectives: f1(x) = x1, f2(x) = x2, f3(x) = 8x1+12x2, f4(x) = x1+2x2.
The constraints on the decision variables are x1 � 0 and x2 � 0. Suppose
the goal values of the four objectives are [f̂1; f̂2; f̂3; f̂4] = [30; 15; 1000; 40].
It is hoped that all objectives are attained as closely to their goal values as
possible but objectives 1, 2, and 4 are not above their goal levels and objec-
tive 3 is not below its goal level, or f1(x) � f̂1, f2(x) � f̂2, f3(x) � f̂3 and

f4(x) � f̂4. Suppose objectives 1 and 2 have the �rst priority, objective 3 has
the second priority and objective 4 has the third priority. Suppose objective
1 and objective 2 are equally important. Use goal programming to �nd the
best compromise solution of the problem.

Solution: The standard goal programming formulation of the problem is

Min f = p1(d
+
1 + d+2 ) + p2d

�
3 + p3d

+
4

s:t: x1 + d�1 � d+1 = 30

x2 + d�2 � d+2 = 15

8x1 + 12x2 + d�3 � d+3 = 1000

x1 + 2x2 + d�4 � d+4 = 40

x1; x2; d
�
i ; d

+
i � 0; i = 1; 2; 3; 4

First of all, we construct a single objective optimisation model to deal with
the objectives with the �rst priority, or f1(x) and f2(x).

Min f = d+1 + d+2
s:t: x1 + d�1 � d+1 = 30

x2 + d�2 � d+2 = 15

x1; x2; d
�
i ; d

+
i � 0; i = 1; 2

The optimal solution of the above problem is given by

�d�1 = 30; �d�2 = 15; �x1 = �x2 = �d+1 = �d+2 = 0
�f1 = �f2 = 0
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So, the goals of the two objectives f1(x) and f2(x) are fully attained.
We now construct a single optimisation model to deal with the objective

f3(x) that has the second priority, while the full attainment of the �rst priority
objectives must be maintained.

Min f = d�3
s:t: x1 + d�1 � d+1 = 30

x2 + d�2 � d+2 = 15

8x1 + 12x2 + d�3 � d+3 = 1000

d+1 + d+2 = 0

x1; x2; d
�
i ; d

+
i � 0; i = 1; 2; 3

The optimal solution of the problem is given by

�x1 = 30; �x2 = 15; �d�1 = �d+1 = �d�2 = �d+2 = �d+3 = 0
�d�3 = 580; �f1 = 30; �f2 = 15; �f3 = 420

So the goal of the third objective f3(x) is under attained ( �d�3 = 580).
Finally, we consider the third priority objective f4(x). Construct the fol-

lowing single objective optimisation problem.

Min f = d+4
s:t: x1 + d�1 � d+1 = 30

x2 + d�2 � d+2 = 15

8x1 + 12x2 + d�3 � d+3 = 1000

x1 + 2x2 + d�4 � d+4 = 40

d+1 + d+2 = 0

d�3 = 580

x1; x2; d
�
i ; d

+
i � 0; i = 1; 2; 3; 4

The optimal solution of the above problem is given by

�x1 = 30; �x2 = 15; �d�1 = �d+1 = �d�2 = �d+2 = �d+3 = �d�4 = 0
�d�3 = 580; �d+4 = 20; �f1 = 30; �f2 = 15; �f3 = 420; �f4 = 60

So the goal of the fourth objective f4(x) is over attained.
In summary, the goals of the �rst two objectives f1(x) and f2(x) are fully

attained whilst the goals of the third and the fourth objectives f3(x) and
f4(x) are not fully attained.

4.3.4 The Minimax Reference Point Method

In the goal programming method described in the previous section, the de-
cision maker's preferences are described using desired values (goals) as well



96 CHAPTER 4. MULTIPLE OBJECTIVE OPTIMISATION

as relative weights and priority levels for attaining the goals. However, the
goal programming method is applicable to linear and convex problems only.
For non-convex problems, it will fail to identify eÆcient solutions on the non-
convex eÆcient solution frontier. In this section, a minimax reference point
approach (Yang, 2000) is discussed which is capable of handling the above
preferences in non-convex cases as the goal programming method does in
convex cases. The approach is based on 1-norm formulation and can accom-
modate both pre-emptive and non-pre-emptive goal programming

Suppose a desired value (targeted value or goal) for an objective fi(x) is
provided, denoted by fi. A reference point is then represented by

f̂ = [f̂1; f̂2; :::; f̂k]
T (4.3.66)

In this section, it is assumed that the best compromise solution is the one
that is the closest to the reference point. This decision rule is similar to the
rule used in goal programming. However, the distance measure used in the
minimax reference point method is based on 1-norm.

Using the decision rule and the 1-norm to measure distance, it can be
shown in the same way as in section 4.2.1 of this chapter that the best com-
promise solution can be generated by solving the following minimax problem

Min d1 (4.3.67)

s:t: !i

���f̂i � fi(x)
��� � d1; i = 1; :::; k (4.3.68)

x 2 
 (4.3.69)

where !i(� 0) is de�ned as !̂i=�!i with �!i being a normalising factor and !̂i
a relative weight for an objective fi(x). If the reference point is given as the
ideal point taking the best values of all objectives, then the absolute value
sign in the objective constraints of problem (4.3.68) is not needed and the
problem degenerates to a minimax problem as discussed in section 4.2.1.

Formulation (4.3.68) is a non-smooth optimisation problem. To facilitate
the solution of the problem using existing mathematical programming algo-
rithms, we transform the non-smooth problem to two new formulations, each
of which has its own features and drawbacks.

In formulation (4.3.68), a non-smooth objective constraint !i

���f̂i � fi(x)
��� �

d1 can be simply replaced by the following two equivalent smooth constraints

!i(f̂i � fi(x)) � d1 (4.3.70)

�!i(f̂i � fi(x)) � d1 (4.3.71)

A new formulation equivalent to formulation (4.3.68) can then be constructed
directly using (4.3.70) and (4.3.71) as follows

Min d1 (4.3.72)
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s:t: !i(f̂i � fi(x)) � d1 (4.3.73)

�!i(f̂i � fi(x)) � d1; i = 1; 2; :::; k (4.3.74)

x 2 
 (4.3.75)

which is a smooth mathematical programming problem and can be readily
solved using existing optimisation software packages.

It should be noted that the underlining preference assumption we made in
formulation (4.3.72)-(4.3.74) is that the best compromise solution is the one in
the feasible decision space that is the closest to the designated reference point
in the sense of 1-norm. In many decision situations, however, the decision
maker may wish to express his preferences in more exible ways as discussed
in section 4.2.3 of this chapter. To accommodate wider range of preferences,
we introduce deviation variables to transform formulation (4.3.68) to another
formulation di�erent from formulation (4.3.72)-(4.3.74). Similar to what we
did in section 2.3, introduce the following deviation variables

d+i =
1

2

n���f̂i � fi(x)
���� �f̂i � fi(x)

�o
(4.3.76)

d�i =
1

2

n���f̂i � fi(x)
���+ �f̂i � fi(x)

�o
(4.3.77)

where d+i is a deviation variable, representing the degree to which fi(x) over

attains f̂i, and d
�
i denotes the degree that fi(x) under attains f̂i. Obviously

the following conclusions are true

d+i > 0 and d�i = 0 if fi(x) > f̂i (4.3.78)

d+i = 0 and d�i > 0 if fi(x) < f̂i (4.3.79)

d+i = 0 and d�i = 0 if fi(x) = f̂i (4.3.80)

Equations (4.3.78) to (4.3.80) can be transformed to the following equivalent

d+i + d�i =
���f̂i � fi(x)

��� (4.3.81)

d+i � d�i = fi(x) � f̂i (4.3.82)

d+i � d�i = 0 (4.3.83)

d+i ; d
�
i � 0 (4.3.84)

Combining problem (4.3.68) with (4.3.81) to (4.3.84), we obtain the following
smooth minimax reference point formulation based on the introduction of
deviation variables.

Min d1 (4.3.85)

s:t: !i(d
+
i + d�i ) � d1; i = 1; :::; k (4.3.86)

d+i � d�i = fi(x)� f̂i; i = 1; :::; k (4.3.87)
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d+i � d�i = 0; i = 1; :::; k (4.3.88)

d+i ; d
�
i � 0; i = 1; :::; k (4.3.89)

x 2 
 (4.3.90)

In problem (4.3.87)-(4.3.90), there are 3k additional constraints added to the
original constraint set 
. Formulation (4.3.87)-(4.3.90) is more exible to
represent preferences than formulation (4.3.72)-(4.3.75). However, the for-
mer requires the nonlinear complementarity condition (4.3.88). If the original
problem is linear, then problem (4.3.72)-(4.3.75) is linear, and so is prob-
lem (4.3.87)-(4.3.90) except that (4.3.88) is nonlinear. Fortunately, problem
(4.3.87)-(4.3.90) can be solved using a modi�ed simplex method with d+i and
d�i not selected as basic variables simultaneously. If the original problem is
nonlinear, then both formulations (4.3.71)-(4.3.75) and (4.3.87)-(4.3.90) are
ordinary nonlinear programming problems and may be solved using for ex-
ample sequential linear or quadratic programming techniques.

It is easy to show that the minimax (ideal point) formulation is a special

case of formulation (4.3.72)-(4.3.75) or (4.3.87)-(4.3.90). In fact, if point f̂ =

[f̂1; f̂2; :::; f̂k]
T are assigned to the best values of the corresponding objectives,

we always have fi(x) � f̂i for any x 2 
. Therefore, constraint (4.3.72)

becomes redundant, d�i � 0 and d+i = f̂i � fi(x) in formulation (4.3.87).
Formulations (4.3.72)-(4.3.75) and (4.3.87)-(4.3.90) are then equivalent to the
following ideal point formulation

Min d1 (4.3.91)

s:t: !i(fi(x) � f̂i) � d1; i = 1; :::; k (4.3.92)

x 2 
 (4.3.93)

Note that an optimal solution of problem (4.3.91)-(4.3.93) is an eÆcient solu-
tion of problem (4.1.1)-(4.1.3) if all !i are positive or if the optimal solution is
unique (Steuer and Choo, 1983). However, an optimal solution x� of problem
(4.3.72)-(4.3.75) or (4.3.87)-(4.3.90) is not guaranteed to be eÆcient. For ex-
ample, the optimal solution will be an inferior solution if the reference point
f̂ = [f̂1; f̂2; :::; f̂k]

T happens to be an interior point of the original problem.
In general, x� may be an inferior solution if all deviation variables d+i and
d�i (i = 1; :::; k) are zero at x�. If a reference point is assigned southwest of
the eÆcient frontier of the original problem, it can be shown that an opti-
mal solution of problem (4.3.86)-(4.3.90) is an eÆcient solution of the original
problem.

Instead of proving the above conclusion and developing rules for guiding
the assignment of reference points, an auxiliary problem as de�ned below is
designed to check whether an optimal solution of problem (4.3.72)-(4.3.75)
or (4.3.87)-(4.3.90) is eÆcient. If not, an eÆcient solution will result from
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solving the following problem

Min
kX
i=1

!iyi (4.3.94)

s:t: fi(x) � fi(x
�) � yi; i = 1; :::; k (4.3.95)

x 2 
; yi � 0; i = 1; :::; k (4.3.96)

where x� is an optimal solution of problem (4.3.87)-(4.3.90) and yi an auxiliary
variable to be maximised. Let [�xT ; �y1; :::; �yk]

T be the optimal solution of
problem (4.3.94)-(4.3.96). If !i > 0 and all �yi are zero, then x

� is eÆcient.
Otherwise, x� is not an eÆcient solution. However, the resultant optimal
solution �x of problem (4.3.94)-(4.3.96) is an eÆcient solution dominating x�

(Yang et al., 1988; Yang et al., 1990).
In Figure 4.9, a two-objective maximisation problem is illustrated and the

shaded area is the feasible objective space as denoted by f(
). Suppose the
two objectives are for minimisation. The curve ~C ~D (the northeast boundary
of f(
)) constitutes the eÆcient frontier that is non-convex. The eÆcient
solutions on the curve ~A ~B form the non-convex part of the frontier. Such so-
lutions can never be identi�ed using the simple weighting method. A reference
point is de�ned by f̂ = [f̂1; f̂2].

1f

2f

1f

2f

f̂

1=p

∞=p

)(Ωf

A

B

*
2f

*
1f

A’

B’

1f̂

2f̂

C

D

Figure 4.9: Interpretation of weighted 1-norm and 1-norm methods

In Figure 4.9, the contour of a goal programming problem is as shown by a
diamond with f̂ as its centre. Solving the problem is equivalent to expanding
the diamond around the reference point f̂ until it just touches the feasible
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objective space f(
). It is clear from Figure 4.9 that if the reference point is

located northeast of the eÆcient frontier and f̂1 � �f1, f̂2 � �f2, then solving
the traditional goal programming problem can only identify either solution A0

or B0 whatever weights !̂i � 0 (i = 1; 2) may be assigned.

Similarly, the contour of 1-norm is as shown by a rectangle with f̂ as
its centre. Solving problem (4.3.68) ((4.3.72)-(4.3.75) or (4.3.87)-(4.3.90)) is

equivalent to expanding the rectangle around the reference point f̂ until it
just touches the feasible objective space. It is clear from Figure 4.9 that
any eÆcient solution on the curve ~A

0 ~B
0

can be identi�ed by solving problem
(4.3.68) with regulating !i (i = 1; 2). From Figure 4.9, it is also clear that if

the reference point is assigned to satisfy f̂1 � f�1 ;f̂2 � f�2 , then formulation
(4.3.68) will be equivalent to the ideal point formulation.

The computational steps of the reference point methods are listed below.

S1 De�ne a multiple objective optimisation problem as in (4.3.26).

S2 Set reference values f̂j for all objectives fj(x), j = 1; :::; k.

S3 Assign a pre-emptive weight pl to an objective, where pl >> pl+1, and
relative weights to objectives that have the same pre-emptive weight.

S4 Indicate whether each objective should be attained as closely to or as
above or as below its goal value as possible.

S5 Use the above preference information to construct a reference point
problem as de�ned in formulation (4.3.72)-(4.3.75) or (4.3.87)-(4.3.90)

S6 Solve the reference point problem using a constrained optimisation method
such as sequential linear programming or penalty methods.

Note that the decision maker can change the settings of reference points, pre-
emptive weights and relative weights. This will lead to an interactive decision
making process.

Example 4.5 A three-objective design problem (Yang, 2000) is given by

Min f1(x) =
0:26(x) + 400000:37 (x) + 9(x)11(x)

10(x)11(x)

Min f2(x) = (3(x) + 4(x) + 5(x))=10; 000

Max f3(x) = 10(x)11(x)=1; 000; 000

s:t: �x1 + 6x5 � 0

x1 � 15x3 � 0

x1 � 19x2 � 0

x2 � 0:450:317 (x) � 0

x2 � 0:7x3 � 0:7 � 0

3; 000 � 0:317 (x) � 500; 000

0:63 � x4 � 0:75
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14 � x6 � 18

x6 � 0:32(9:8065x1)
0:5 � 0

�0:53x2 + 0:52x3 + 0:07x5

� (0:085x4 � 0:002)x25
x2x4

+ 1 � 0

x1; x2; x3; x4; x5; x6 � 0

where xi (i = 1; :::; 6) are independent decision variables and j (j = 1; :::; 6)
are dependent intermediate variables. Let x = [x1; x2; x3; x4; x5; x6]

T . Then
j (j = 1; :::; 6) are functions of x de�ned as follows:

1(x) = 1:025x1x2x4x5

2(x) = 
2=3
1 (x)x36

(9:8065x1)
0:5

b(x4)x6 + a(x4)(9:8065x1)0:5

where b(x4) and a(x4) are auxiliary functions obtained as the quadratic func-
tions of the decision variable x4 as follows (Yang, 2000).

b(x4) = �10847:2x24 + 12817x4 � 6960:32

a(x4) = 4977:06x24 � 8105:61x4 + 4456:51

Other intermediate variables are given by

3(x) = 0:170:92 (x)

4(x) = 1:0x0:81 x0:33 x0:14 x0:65

5(x) = 0:034x1:71 x0:43 x0:54 x0:75

6(x) = 1:3(20000:855 (x) + 35004(x) + 24000:82 (x)

7(x) = 1(x) � 3(x)� 4(x)� 5(x)

8(x) = 0:004562(x) + 0:2

9(x) = 21875
8(x)

x6
+ 6:30:87 (x)

10(x) = 7(x) � 20:57 (x) � 8(x)

�
208:33

x6
+ 5

�

11(x) =
1; 400; 000x6

833333:33+ (10(x) + 4000)x6

Suppose the three objectives are of equal importance and their goals are set
to be f̂1 = 10, f̂2 = 2 and f̂3 = 1. Use the reference point method to �nd the
best compromise solution.

Solution: De�ne the decision space 
 and a reference point F̂ as follows.


 =

�
x

���� any x = [x1 x2 x3 x4 x5 x6]
T

that satis�es constraints of the problem

�

F̂ = [f̂1; f̂2; f̂3] = [10; 2; 1]
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The above optimisation problem is strongly nonlinear. The reference point
method is ideally �tted to dealing with such problems. Suppose the prefer-
ences are to �nd a solution that is the closest to the reference point provided.
Then, a reference point model can be constructed as follows:

Min d1
s:t: 0:1269!̂1(d

+
1 + d�1 ) � d1

0:1124!̂2(d
+
2 + d�2 ) � d1

1:1132!̂3(d
+
3 + d�3 ) � d1

d+1 � d�1 = �f1(x) + 10

d+2 � d�2 = �f2(x) + 2

d+3 � d�3 = f3(x) � 1

d+1 � d�1 = 0; d+2 � d�2 = 0; d+3 � d�3 = 0

d+1 ; d
�
1 ; d

+
2 ; d

�
2 ; d

+
3 ; d

�
3 � 0

x 2 


Solving the above problem leads to the following best compromise solution

x̂1 = [275:43; 17:63; 24:19; 0:71; 45:91; 14]T

f1(x̂
1) = 10:43; f2(x̂

1) = 2:485; f3(x̂
1) = 0:951

At x̂1 all the three objectives have been catered for to some extent but none of
them fully achieves its targeted value. It is therefore of interest to investigate
how the targeted objective values could be attained if the objectives are given
di�erent relative weights or priorities.

Suppose the targeted value of the �rst objective receives �rst-priority at-
tention and the other two objectives are of equal priority and importance.
Then the following two minimax problems can be constructed sequentially:

Min d1 (4.3.97)

s:t: 0:1269(d+1 + d�1 ) � d1 (4.3.98)

d+1 � d�1 = �f1(x) + 10 (4.3.99)

d+1 � d�1 = 0 (4.3.100)

d+1 ; d
�
1 � 0 (4.3.101)

x 2 
 (4.3.102)

Min d1 (4.3.103)

s:t: 0:1124(d+2 + d�2 ) � d1 (4.3.104)

1:1132(d+3 + d�3 ) � d1 (4.3.105)

d+2 � d�2 = �f2(x) + 2 (4.3.106)
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d+3 � d�3 = f3(x)� 1 (4.3.107)

d+2 � d�2 = 0; d+3 � d�3 = 0 (4.3.108)

d+2 ; d
�
2 ; d

+
3 ; d

�
3 � 0 (4.3.109)

x 2 
 (4.3.110)

f1(x) = 10� ~d+1 + ~d�1 (4.3.111)

In (4.3.111) ~d+1 and ~d�1 are obtained by solving problem (4.3.97)-(4.3.102).
Solving problem (4.3.97)-(4.3.102) �rst and then problem (4.3.103)-(4.3.111)

results in the following eÆcient design x̂2

x̂2 = [ 280:85 17:56 24:09 0:68 46:81 14 ]T

f1(x̂
2) = 10:0; f2(x̂

2) = 2:514; f3(x̂
2) = 0:9481

At x̂2, the �rst objective is fully achieved but the other two objectives are both
under-achieved. We could change the priority of the objectives or the refer-
ence values to generate other eÆcient solutions. This leads to an interactive
decision making process as discussed in the next section.

4.4 Interactive Methods

In the previous section, we mentioned that several methods could be imple-
mented in an interactive fashion. In general, interactive methods are desirable
in decision situations where a priori knowledge about decision problems in
hand is not available. In this section, we introduce four interactive methods:
Geo�rion's method, the STEM method, the ISTM method and the interactive
gradient projection method.

4.4.1 Geo�rion's Method

Geo�rion's method (Geo�rion et al., 1972) is among the earliest interactive
methods. It is applicable to problems with convex decision spaces. It also
assumes that a di�erentiable and concave utility function u(f1(x) � � � fk(x))
exists. This method is an adoption of the Frank-Wolfe algorithm to multiob-
jective cases. It only requires local information in search for the best compro-
mise solutions. The computational steps of the method may be summarised
as follows:

S1 De�ne a multiple objective optimisation problem as in (4.3.26).

S2 Choose an initial solution x0 arbitrarily. Let F 0 = [f01 � � � f0j � � � f0k ]
where f0j = fj(x

0) (i = 1; :::; k). Select an objective as the reference
function denoted by fr(x). Let t = 0.

S3 Estimate the marginal rates of substitution (or indi�erent trade-o�s)
!tlr between an objective fl(x) and the reference objective fr(x) at the
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solution xt. !tlr is de�ned by

!tlr =
@u(f(xt))

@fl(x)

�
@u(f(xt))

@fr(x)
(4.4.1)

The following procedure may be used to approximate !tlr through indif-
ference trade-o� analysis. The decision maker is asked to compare the
following two solutions

F t = [f t1 � � � f tr � � � f tl � � � f tk]T (4.4.2)

F̂ t = [f t1 � � � f tr +�t
r � � � f tl ��t

l � � � f tk]T (4.4.3)

where �t
r and �t

l are small perturbations for fr(x) and fl(x). If the

decision maker prefers F t to F̂ t (or F̂ t to F t), then �t
r or �

t
l is regu-

lated until indi�erence between the two solutions is reached. When this
happens, !tlr is given by �t

r=�
t
l .

S4 Search for a direction along which the utility function umay be improved
from xt. First construct the following direction problem:

Max

kX
j=1

!tjrrfj(xt)x (4.4.4)

s:t: x 2 
 (4.4.5)

Suppose �xt is the optimal solution of (4.4.4)-(4.4.5). Then dt = �xt � xt

is a direction along which the utility function can be improved.

S5 Formulate the following problem to �nd the optimal step-size

Max u[f1(x
t + tdt); :::; fk(x

t + tdt)] (4.4.6)

s:t: 0 � t � 1 (4.4.7)

Since u is not known explicitly, however, the solution of (4.4.6)-(4.4.7)
can only be solved using the decision maker's judgements. One way
to do this is to construct a table such as Table 4.3. Then the decision
maker is required to select a tq from the table at which the values of all
the objectives are most preferred.
Suppose t� is the chosen step size. Then [f1(xt+t�dt) � � � fk(xt+t�dt)] is
the vector of the objective values at the best solution as listed in Table
4.3.

S6 If xt+1 = xt or F (xt+1) = F (xt), the iteration is stopped. However,
such a theoretical convergence criterion is not easy to satisfy. So the
following approximate criterion may be used instead

�t

�0
=

��(!t)T [F (xt+1)� F (xt)]
��

j(!0)T [F (x1)� F (x0)]j � � (4.4.8)
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where � is a small real number. In (4.4.8), �t=�0 represents the ratio
of the improvement of the utility function obtained at interaction t+ 1
to that at interaction 1. If (4.4.8) is satis�ed, the interaction is stopped.
Otherwise, let t = t+ 1 and go to Step 3.

As a searching-oriented method, Geo�rion's method is based on the strict
assumption that the preferences provided by the decision maker must be not
only consistent but also monotonic with respect to an implicit utility function
u. This assumption is diÆcult to satisfy. For instance, the determination
of t� becomes diÆcult when k > 3. In addition, the solution selected from
Table 4.3, or xt+1 = xt + t�dt, may not be an eÆcient solution. Finally, the
termination condition (4.4.8) is not a theoretical optimality condition. It may
cause premature termination of an interactive decision making process.

Table 4.3: Sampling of objectives

tq 0 0:1 0:2 : : : 0:9 1
f1(x

t + tqdt) f01 f0:11 f0:21 : : : f0:91 f11
f2(x

t + tqdt) f02 f0:12 f0:22 : : : f0:92 f12
...

...
...

...
. . .

...
...

fk(x
t + tqdt) f0k f0:1k f0:2k : : : f0:9k f1k

Example 4.6 Use Geo�rion's method to identify a best compromise solu-
tion of the problem given in Example 4.2. For the purpose of illustrating
the method, suppose the underlying utility function is given by u(f1; f2) =
cf1(x)f2(x).

Solution: The original problem is given by

Max F = [f1(x); f2(x)] = [5x1 � 2x2; � x1 + 4x2]

s:t: x 2 


where


 =

�
x

���� �x1 + x2 � 3;x1 + x2 � 8
x1 � 6;x2 � 4;x1; x2 � 0

�
First of all, we generate an eÆcient solution using the weighting method,
assuming that the two objectives are of equal importance. The weighting
problem is

Max f1(x) + f2(x) = 4x1 + 2x2

s:t: x 2 


The optimal solution of the weighting problem is

x0 = (x01; x
0
2) = (6; 2)

F (x0) = (f1(x
0);f2(x

0)) = (26; 2)
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In the �rst interaction, construct an optimisation problem to �nd the search
direction using the decision maker's marginal rates of substitution. Using the
underlying utility function, we get

m0
21 =

@u=@f2
@u=@f1

=
f1(x

0)

f2(x0)
=

26

2
= 13

Note that

m11 = m22 = 1

Since the objectives are linear functions of the decision variables, the objective
gradients are given by

rf1(x) = [5; � 2] and rf2(x) = [�1; 4]

The direction problem is then given by

Max

�
1� [5; � 2]

�
x1
x2

�
+ 13� [�1; 4]

�
x1
x2

��
s:t: x 2 


or

Max �8x1 + 50x2

s:t: x 2 


The optimal solution of the above problem is �x0 = [1; 4]. Therefore, the ascent
direction of the utility function at x0 is given by

d0 = �x0 � x0 = [�5; 2]

To complete the �rst interaction, we now construct an optimisation problem
for identifying the step size. If the utility function is not known, then one
needs to construct Table 4.3 to identify the step size using the decision maker's
judgements. Since the underlying utility function is provided in this example,
we can �nd the best step size using the following one-dimensional search

Max u(f1(x
0 + �d0); f1(x

0 + �d0)) (4.4.9)

s:t: 0 � � � 1

In u, let c = 1. Then, the problem is equivalent to the following

Max �0:277�2 + 280�+ 52

s:t: 0 � � � 1
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The optimal solution of the above problem is �� = 0:37. Therefore, the new
solution is given by

x1 = x0 + ��d0 = (4:2; 2:7)

F (x1) = (f1(x
1);f2(x

1)) = (15:6; 6:6)

In the second interaction, we use x1 as a new starting point to construct a
direction problem. Using the de�ned utility function, the marginal rate of
substitution at x1 is given by

m1
21 =

f1(x
1)

f2(x1)
=

15:6

6:6
= 2:4

The new direction problem is then given by

Max 2:6x1 + 7:6x2

s:t: x 2 


The optimal solution of the problem and the new search direction are

�x1 = [4; 4]

d1 = �x1 � x1 = [�0:2; 1:3]
The new step size problem is given by

Max �19:4�2 + 60:5�+ 103

s:t: 0 � � � 1

Its optimal solution is �� = 1. Therefore, the new solution is given by

x2 = x1 + ��d1 = (4; 4)

F (x2) = (12; 12)

Since x2 6= x1, the interactive process should continue. In the third interac-
tion, the marginal rate of substitution at x2 is given by

m2
21 =

f1(x
2)

f2(x2)
=

12

12
= 1

The new direction problem is then given by

Max 4x1 + 2x2

s:t: x 2 


The optimal solution of the problem and the new search direction are

�x2 = [6; 2]

d2 = �x2 � x2 = [2; � 2]
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The new step size problem is given by

Max �14�2 + 48�+ 144

s:t: 0 � � � 1

Its optimal solution is �� = 0:17. Therefore, the new solution is given by

x3 = x2 + ��d2 = (4:3; 3:7)

F (x3) = (14:4; 10:3)

Since x3 6= x2, the interactive process should not be terminated. In the fourth
interaction, the marginal rate of substitution at x3 is given by

m3
21 =

f1(x
3)

f2(x3)
=

14:4

10:3
= 1:4

The new direction problem is then given by

Max 3:6x1 + 3:6x2

s:t: x 2 


The optimal solution of the problem is �x3 = [4:3; 3:7] = x3. So d3 = �x3�x3 =
[0; 0]. Therefore, x4 = x3 and the interactive process is terminated. The
best compromise solution generated and the corresponding objective values
are given by

x4 = x3 = (4:3; 3:7)

F (x4) = (14:4; 10:3)

4.4.2 The STEM Method

The STEM method is a search-oriented interactive method. It allows the
decision maker to search for desirable solutions. The method is based on
1-norm and provides a procedure to reduce the search space progressively.

The STEM method uses the following basic minimax model to search for
eÆcient solutions

Max d1 (4.4.10)

s:t: !j
�
fj(x)� f�j

� � d1; j = 1; :::; k (4.4.11)

x 2 
0 = 
 (4.4.12)

When the STEM method is used to deal with linear problems, the weighting
factors in (4.4.11) can be calculated as follows. For a linear problem, its
objectives and decision space can be represented as follows

fj(x) =

nX
j=1

cjixj ; j = 1; :::; k (4.4.13)


 = fx jAx = b; x � 0g (4.4.14)
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where A = (aij)m�n is m � n matrix and b = (bi)m�1 is a vector. First,
construct a payo� table as shown in Table 4.2, where �xj is the optimal solution
obtained by minimising the objective fj(x) and fj(�x

j) is the minimal value
of fj(x). Suppose f

max
j is the maximum (worst) value of fj(x) in the payo�

table. Then, the weighting factors can be calculated as follows

!j =
�j
kP
i=1

�i

(4.4.15)

where

�j =

�����f
max
j � fj(�x

j)

fmaxj

�����
 

nX
i=1

c2ji

!�1=2
(4.4.16)

The weighting factors de�ned as above are normalised, that is they satisfy the
following conditions

0 � !j � 1 (j = 1; :::; n) and

kX
j=1

!j = 1 (4.4.17)

The weights de�ned above reect the impact of the di�erences of objective
values on decision analysis. If the value

��(fmaxj � fj(�x
j))
Æ
fmaxj

�� is relatively
small, then the objective fj(x) will be relatively insensitive to the changes of
solutions x. In other word, fj(x) will not play an important role in determin-
ing the best compromise solution.

For the weights given by (4.4.15), solve the minimax problem (4.4.10)-
(4.4.11). If the decision maker is satis�ed with the optimal solution, it can be
used as the best compromise solution. Otherwise, the decision maker needs
to assess the results, conduct trade-o� analysis among the objectives and
determine the search direction.

Improving an objective from an eÆcient solution can only be achieved at
the expense of other objectives. This means that the decision maker must
sacri�ce at least one objective in order to improve another objective. In the
STEM method, the decision maker is also expected to estimate the extent to
which an objective can be sacri�ced.

The interactive process includes two main stages: elicitation of preference
information and generation of eÆcient solutions. Based on the current values
of objectives and decision variables, the decision maker has to decide which
objective could be sacri�ced and to what degree it could be sacri�ced. Then,
a new constraint will be created to take into account the trade-o� analysis.
The constraint is then added to the original decision space of problem (4.4.10)-
(4.4.12). Solving the updated problem will lead to a new eÆcient solution.

Suppose the objective fl(x) could be sacri�ced from its current value fl(x
i)

by as much as �fl(x
i), while all other objectives should be kept at least at
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their current levels. Then, a new single optimisation problem can be formu-
lated as follows

Min d1 (4.4.18)

s:t: !j
�
fj(x)� f�j

� � d1; j = 1; :::; k; j 6= l (4.4.19)

x 2 
i+1 (4.4.20)

where


i+1 =

�
x

���� fj(x) � fj(x
i); j = 1; :::; k; j 6= l

fl(x) � fl(x
i) + �fl(x

i);x 2 
t

�
(4.4.21)

Solving problem (4.4.18) will result in a new eÆcient solution xi+1. If the
preference information provided by the decision maker is consistent, there
should be xi+1 � xi.

The computational steps of the STEM method are summarised as follows.

S1 Optimise individual objectives to construct a payo� table. Identify the
best and the worst values in the table for each objective.

S2 For a linear problem, use (4.4.15)-(4.4.16) to calculate the coeÆcients
�j and the weighting factors !j (j = 1; :::; k). Let i = 1.

S3 Solve problem (4.4.10)-(4.4.12), the optimal solution of which is denoted
by xi.

S4 Show the results fj(x
i) (j = 1; :::; k) to the decision maker, who will

provide his judgements about the results. There may be three possible
cases.
a) The decision maker is satis�ed with all fj(x

i) (j = 1; :::; k). Then the
interactive process is terminated and xt is the best compromise solution.
b) The decision maker may not be satis�ed with some objectives. If
i < k � 1, go to S5.
c) The decision maker may not be satis�ed with some objectives. If
i = k� 1, then terminate the interactive process and use other methods
to search for the best compromise solutions.

S5 The decision maker decides which objective could be sacri�ced and by
how much, that is he has to select fl(x) and determine �fl(x

i). If the
decision maker cannot �nd an objective to sacri�ce, then the interac-
tive process will be terminated and other methods have to be used for
identifying the best compromise solution. Otherwise, go to S6.

S6 De�ne a new search space as shown in (4.4.21), let i = i+ 1 and go to
S3.

In S4 and S5, the STEM method may fail to identify the best compromise
solution. This does not necessarily mean that the original problem does not
have such a solution. The interactive process provided in the STEM method
only allows the decision maker to search the eÆcient frontier in a restricted
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and irreversible manner, determining which objective could be sacri�ced at
an interaction whilst no guideline is provided as to what bene�t could be
expected following the trade-o�. The methods discussed in the rest of the
chapter will address these issues.

Example 4.7 Use the STEM method to solve Example 4.2.

Solution: The original problem is given by

Min F = [f1(x); f2(x)] = [�5x1 + 2x2; x1 � 4x2]

s:t: x 2 


where


 =

�
x

���� �x1 + x2 � 3;x1 + x2 � 8
x1 � 6;x2 � 4;x1; x2 � 0

�

The pay-o� table of the problem is as shown in Table 4.4.

Table 4.4: Pay-o� table of Example 4.7

f1(x
j) f2(x

j)
x1 = (6; 0) -30 +6
x2 = (1; 4) 3 -15

Since f1(x
1) = �30, fmax

1 = 3, c11 = �5 and c12 = 2, from (4.4.16) we have

�1 =

����3� (�30)
�30

����
��

(�5)2 + 22
�1=2

= 0:2

Similarly, we can get �2 = 0:34. From (4.4.15), there are

!1 =
0:2

0:54
= 0:37 and !2 =

0:34

0:54
= 0:63

Now, we can start the interactive process. Let i = 0 and solve the following
problem:

Min d1
s:t: 0:37(30� 5x1 + 2x2)� d1 � 0

0:63(15 + x1 � 4x2)� d1 � 0

x 2 
0 = 
; d1 � 0

The optimal solution of the problem is

x0 = [x01; x
0
2] = [4:83; 3:17]

f(x0) = [f1(x
0); f2(x

0)] = [�17:9; � 1:9]
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The results x0 and f(x0) are shown to the decision maker. Suppose the
solution is not satis�ed as f2(x

0) = �1:9 is too large. Suppose f1(x) can be
sacri�ced by 3 units, or �f1 = 3. Then, the new search space is given by


1 =

�
x

���� f1(x) = �5x1 + 2x2 � �17:9 + 3 = �14:9
f2(x) = x1 � 4x2 � �1:9;x 2 


�

and the new single objective optimisation problem is

Min d1
s:t: 15 + x1 � 4x2 � d1 � 0

x 2 
1; d1 � 0

The above problem is equivalent to the following problem

Max f2(x) = �x1 + 4x2

s:t: x 2 
1

Its optimal solution is given by

x1 = [x11; x
1
2] = [4:41; 3:59]

f(x1) = [f1(x
1); f2(x

1)] = [�14:9; � 10]

According to the behavioural assumptions of the STEM method, the decision
maker should be satis�ed with the solution x1; otherwise, there would be no
best compromise solution. For this two-objective problem, this conclusion
may be acceptable as f1(x) can be sacri�ced by as much as 3 units from
f1(x

0) and this sacri�ce has been fully used to bene�t the objective f2(x). In
general, such conclusion may not be rational for problems having more than
two objectives. In such circumstances, whether the decision maker is satis�ed
with a solution depends on the range of solutions he has investigated. Also,
the sacri�ces of multiple objectives should also be investigated in addition to
the sacri�ce of a single objective at each interaction.

4.4.3 The ISTM Method

The Interactive Step Trade-o� Method (ISTM) (Yang et al., 1990; Yang and
Sen, 1996a,b) provides a learning-oriented interactive procedure where the
decision maker can investigate the eÆcient frontier of a multiple objective
optimisation problem by means of implicit trade-o� analysis. In ISTM, the
decision maker must decide whether an objective needs to be improved, or
should be kept at least at the current level, or may be sacri�ced by a certain
amount. Based on such a trade-o� analysis, ISTM will search for a new
eÆcient solution that can satisfy the decision maker's preferences.

The computational steps of the ISTM method can be summarised as fol-
lows:
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S1 De�ne a multiple objective optimisation problem as in (4.1.1)-(4.1.3)
with \optimisation" replaced by \maximisation".

S2 Use the minimax method to generate an eÆcient solution x0 for given
values of !j (j = 1; :::; k). Let t = 1.

S3 Classify the objective functions into the following three subsets:
W - the index subset of objective functions that need to be improved
from the current level fi(x

t�1),
R - the index subset of objective functions that should be kept at least
at the current level fj(x

t�1) and
Z - the index subset of objective functions that may be sacri�ced from
the current level fl(x

t�1).
Let 8<

:
W = fiji = i1; i2; :::; iwg
R = fjjj = j1; j2; :::; jrg
Z = fljl = l1; l2; :::; lzg

(4.4.22)

where W [R[Z = f1; 2; � � � ; kg and W \R\Z = ;. Suppose dfl(xt�1)
is the current maximum decrement of fl(x) (l 2 Z), and dfl(xt�1) � 0.

S4 Suppose ui (i 2 W ) is an auxiliary variable, then an auxiliary problem
can be de�ned as follows

Max u =
X
i2W

�iui (4.4.23)

s:t: xa 2 
a (4.4.24)


a =

8>><
>>:xa

��������
fi(x)� hiui � fi(x

t�1); ui � 0; i 2 W
fj(x) � fj(x

t�1); j 2 R
fl(x) � fl(x

t�1)� dfl(x
t�1); l 2 Z

xa = [xTui1 � � �uiw ]T

9>>=
>>;(4.4.25)

where ui is maximised to improve fi(x) as greatly as possible, u the
auxiliary objective function, and �i a positive weighting factor which is
determined according to the relative importance of the objective func-
tions in the subset W . Normally, we let �i = 1 (i 2 W ). hi is a
normalising factor that can be given by

hi =
��f�i � f�i

�� (4.4.26)

where f�i and f�i are the best and worst values of fi(x) in the pay-o�
table.

S5 Solve the auxiliary problem (4.4.23). The optimal solution is denoted
by xt, which is guaranteed to be a new (weakly) eÆcient solution of the
original problem.

S6 If the decision maker is not satis�ed with xt, let t = t + 1 and go to
S3. The interactive process is terminated if a) no objective is required
to improve, or b) no objective is allowed to be sacri�ced.
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Figure 4.10 illustrates how the ISTM method works and the interpretation
of the trade-o�s. In Figure 4.10, the feasible objective space of a problem
with two objectives is denoted by F (
). The search space 
a of the auxil-
iary problem (4.4.23) de�ned at xt�1 (point A) is the shaded area within the
original feasible objective space. If objective l needs to be improved from its
value at point A, this can only be done at the expense of objective k. If S
is the limiting value of sacri�ce for objective k, the new solution is B. This
trade-o� also implies a change in relative importance of the two objectives de-
noted by a shift from the tangent line at point A to the tangent line at point B.

fk(x)

fk
t-1

● A

S

fk
t

● B

F(Ω)

fi
t-1 fi

t fi(x)

Figure 4.10: Trade-o� analysis of ISTM

Example 4.8 Use the ISTM method to solve the following three-objective
optimisation problem:

Max F (x) =

8<
:

f1(x) = x1 � x2 + x3
f2(x) = �x1 + 2x2 + 3x3
f3(x) = x1 + 4x2 � x3

s:t: x 2 



 =

8<
:x

������
2x1 + x2 + x3 � 1
x1 + 3x2 + x3 � 1
x1 + x2 + 4x3 � 1

; x1; x2; x3 � 0

9=
;
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Solution: First, optimise each of the three objectives to generate the pay-o�
table as shown in Table 4.5.

Table 4.5: Pay-o� table of Example 4.8

f1(�x
i) f2(�x

i) f3(�x
i)

�x1 0.5714 0.0 0.2857
�x2 -0.0909 1.0909 0.909
�x3 -0.3333 0.6666 1.3332

Then, the normalising factors hi are given by

[h1; h2; h3] = [0:9047; 1:0909; 1:0476]

Suppose the relative weights of the three objectives are

[!1; !2; !3] = [0:3316; 0:3667; 0:2804]

Now, we can use the minimax method to �nd an initial eÆcient solution. The
minimax problem (see (4.3.22)-(4.3.23)) can be written as follows

Min d1
s:t: xw 2 
w


w =

8>><
>>:xw

��������
x1 � x2 + x3 + 3:0157d1 � 0:5714
�x1 + 2x2 + 3x3 + 2:727d1 � 1:099
x1 + 4x2 � x3 + 3:496d1 � 1:333
x 2 
; d1 � 0

9>>=
>>;

Solving the problem results in the following initial eÆcient solution

x0 = [0:1761; 0:2008; 0:1558]

d1 = 0:146; F (x0) = [0:1311; 0:6929; 0:8235]

To conduct the �rst interaction, construct the �rst interaction table (Table
4.6).

Table 4.6: First interaction

f1(�x
0) f2(�x

0) f3(�x
0)

0.1311 0.6923 0.8235
W Z Z

df2(�x
0) = 0:1 df2(�x

0) = 0:1

The trade-o�s as shown in Table 4.6 mean that the decision maker wishes to
improve f1(x) at the expense of f2(x) and f3(x), and both f2(x) and f3(x)
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could be reduced by 0.1 units. The �rst auxiliary problem is constructed as
follows

Max u1

s:t: xa 2 
0


0 =

8>><
>>:xa

��������
x1 � x2 + x3 � 0:9047u1 � 0:1311
�x1 + 2x2 + 3x3 � 0:5929
x1 + 4x2 � x3 � 0:7235
xa = [xT ; u1]

T ; x 2 
; u1 � 0

9>>=
>>;

Solving the problem leads to the following new eÆcient solution

x1 = [0:2094; 0:1675; 0:1558]

u1 = 0:07362; F (x1) = [0:1977; 0:5929; 0:7235]

Suppose the decision maker is not happy with f1(x) and f2(x) and f3(x) can
be reduced further. Then, construct the second interaction table (Table 4.7)

Table 4.7: First interaction

f1(�x
1) f2(�x

2) f3(�x
3)

0.1977 0.5929 0.7235
W Z Z

df2(�x
1) = 0:2 df2(�x

1) = 0:1

The second auxiliary problem is then constructed as follows

Min u1

s:t: xa 2 
1


1 =

8>><
>>:xa

��������
x1 � x2 + x3 � 0:9047u1 � 0:1977
�x1 + 2x2 + 3x3 � 0:3929
x1 + 4x2 � x3 � 0:6235
xa = [xT ; u1]

T ; x 2 
; u1 � 0

9>>=
>>;

The optimal solution of the problem is given by

x2 = [0:29; 0:1202; 0:1457]

u1 = 0:132; F (x2) = [0:3173; 0:3929; 0:6236]

Suppose the decision maker is satis�ed with F (x2). Then, x2 is the best
compromise solution.

4.4.4 The Gradient Projection Method

The lack of a rigorous termination criterion is a common problem associated
with most interactive methods. The gradient projection method (Yang, 1999)
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was proposed to address the problem. Similar to Geo�rion's method, the gra-
dient projection method uses marginal rates of substitution (utility gradient)
to represent the decision maker's preferences. However, the method uses the
projection of the gradient onto the tangent plane of the eÆcient frontier to
identify the trade-o� direction (Li and Yang, 1996; Yang, 1999; Li et al., 1999).
The interaction process is terminated when the projection is zero, indicating
that the local minimum of the underlying utility function is reached.

The calculation steps of the gradient projection method can be summarised
as follows:

S1 De�ne a multiple objective optimisation problem as shown in (4.1.1)-
(4.1.3) and assign the best and worst values for each objective by con-
structing for example the pay-o� table.

S2 Generate an initial eÆcient solution x0. For instance, use the mini-
max method to generate an initial eÆcient solution, assuming that all
objectives are of equal importance. Let t = 1.

S3 At xt�1, calculate the normal vector N t�1 as follows. Let

!t�1i =
1

jf�i � fi(xt�1)j (i = 1; :::; k) (4.4.27)

Then, the normal vector of the eÆcient frontier in the objective space
at the point F (xt�1) is give by

N t�1 = [!t�11 �t�11 � � �!t�1i �t�1i � � �!t�1k �t�1k ]T (4.4.28)

where �t�1 is the solution of the following linear equations

kX
i=1

�i = 1 (4.4.29)

�
kX
i=1

!t�1i

@fi(x
t�1)

@xl
�i +

X
j2Jg

@gj(x
t�1)

@xl
�j

+

m2X
p=1

@hp(x
t�1)

@xl
p = 0; l = 1; :::; n (4.4.30)

with �i; �j ; p � 0, i = 1; :::; k, j = 1; :::;m1, p = 1; :::;m2 and �j = 0
for j 62 Jg , where Jg = fjjgj(xt�1) = 0; j 2 f1; :::;m1gg.

S4 Articulate the decision maker's indi�erence trade-o�s �t�1i for i = 1; :::; k
using the following approximation

�t�1l = 1; �t�1i � ��f t�1l

�f t�1i

; i = 1; :::; k; i 6= l (4.4.31)

where �fl is a small change in fl that can be exactly o�set by a change
�fi in fi (i.e. the utility function is kept constant) while all other ob-
jectives remain unchanged. The best compromise solution maximising
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an underlying utility function is reached if the following conditions are
met

�f t�1i = ��f t�1l

N t�1
l

N t�1
i

; i = 1; :::; k; i 6= l (4.4.32)

Given a unit change in fl, or
���f t�1l

�� = 1, �f t�1i de�ned by (4.4.32)
is referred to as an optimal indi�erence trade-o� between fi and fl.
(4.4.32) can be used to guide the decision maker to provide his indi�er-
ence trade-o�s.

S5 Calculate the projection d �F t�1 of �t�1 as follows

d �F t�1 = [d �f t�11 � � � d �f t�1k ] = �t�1 �
�
(�t�1)TN t�1�
[(N t�1)TN t�1]

N t�1 (4.4.33)

If d �F t�1 = 0, condition (4.4.32) is met, the best compromise solution is
obtained and stop the interactive process. Otherwise, go to S6.

S6 Assign the step size �̂t�1l using the following equations and table. Ini-
tially let �2 = 1.

��t�1max = min
i2�I2

�
��t�1i

	
; ��t�1i =

f t�1i � f�i��d �f t�1i

�� ; i 2 �I2 (4.4.34)

Table 4.8: Trade-o� table for assignment of step size ��t�1

fj(j 2 �I2) fi(i 2 �I1)
�̂t�1l . . . f t�1j � �t�1l jd �f t�1j j . . . . . . f t�1i + �t�1l jd �f t�1i j . . .

�̂t�10 . . . fj(�̂
t�1
0 ) . . . . . . fi(�̂

t�1
0 ) . . .

�̂t�11 . . . fj(�̂
t�1
1 ) . . . . . . fi(�̂

t�1
1 ) . . .

...
...

...
...

...
...

...
�̂t�1C�

. . . fj(�̂
t�1
C�

) . . . . . . fi(�̂
t�1
C�

) . . .

where �I1 = fijd �f t�1i � 0 i 2 f1; � � � ; kgg, (

I 2 = fijd �f t�1i < 0; i 2
f1; :::; kgg, C� is an integer and f�i is the worst permissible value of
objective i. The step size �̂t�1l may thus be taken as a value of the
interval [0; ��t�1max] by the decision maker from the above table.

S7 Let ��t�1 = �2�̂
t�1
l and de�ne a local region by


a =

�
xa

���� fi(x) � fi(x
t�1)��f t�1i + yi

yi � 0; i = 1; :::; k;x 2 


�
(4.4.35)

�f t�1i =
��t�1

2

���d �f t�1i

��� d �f t�1i

�
i = 1; :::; k (4.4.36)
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Then, construct and solve the following auxiliary problem, yielding a
new eÆcient solution xt.

Max

kX
i=1

�t�1i yi (4.4.37)

s:t: xa 2 
a xa = [xT ; y1; :::; yk]
T (4.4.38)

S8 If xt is preferred to xt�1 (thus u(xt) � u(xt�1)), let t = t+1 and go to
S3. Otherwise, let �2 = �2=2 and go to S7.

Note that the above interactive process is not necessarily irreversible as the
optimality condition could be tested separately at each generated eÆcient so-
lution, independent of other solutions generated before. In other words, the
process does not necessarily require that the utility function always increase as
the process proceeds. Rather, the process can be terminated at any individual
point by assessing the optimal indi�erence trade-o�s de�ned by (4.4.32). Such
exibility preserves the favourable features of the ISTM method and leads to
a progressive and explicit articulation of the decision maker's priorities. How-
ever, the assumption that the utility function increases monotonically in the
interactive process guarantees the convergence of the process.

Example 4.9 Use the gradient projection method to solve Example 4.2 de-
�ned as follows

Max F (x) =

�
f1(x) = 5x1 � 2x2
f2(x) = �x1 + 4x2

�
s:t: x 2 
 x = [x1; x2]

T


 =

�
x

���� �x1 + x2 � 3;x1 + x2 � 8
x1 � 6;x2 � 4;x1; x2 � 0

�

Solution: An initial eÆcient solution can be generated using, for example, the
minimax method. Suppose the starting point is given by x0 = [2; 4]T . Then,
we can have

F 0 = [2; 14]T ; N0 =
1

33
[1; 15]T

Suppose f2(x) is treated as the reference objective. If the following indi�erence
trade-o� is provided:\A unit change in f2(x) is exactly o�set by a change of
1/20 units in f1 at x

0", or

[2; 14]T , [2� 1

20
; 14 + 1]T

(\," reads\is indi�erent to"), then the normalised gradient of the utility
function at x0 can be estimated by

�0 = [�01 ; �
0
2 ]
T � [� 1

�1=20 ; 1]
T = [20; 1]T
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The projection of �0 onto the tangent plane at F (x0) is then given by

d �F 0 = �0 �
�
(�0)TN0

�
[(N0)TN0]

N0 = [19:038; � 3:808]T

Thus, the utility function could be improved from u(x0) by increasing f1 at
the expense of f2, or �I1 = f1g and �I2 = f2g. The amount in which f2 could
be sacri�ced is determined as follows. The maximum permissible amount of
sacri�ce in f2 and the maximum step size are given by

�f02 = f02 � f�2 = 14� (�6) = 20

��0max =
�f02��d �f02 �� =

20

3:808
= 5:252

Table 4.9: Assignment of step size �0 given C� = 10

f2 f1
l �̂t�1l f t�1j � �t�1l jd �f t�1j j f t�1i + �t�1l jd �f t�1i j
0 0 14 2
1 0.5252 12 12
2 1.0504 10 22
3 1.5756 8 32
4 2.1008 6 42
5 2.6260 4 52
6 3.1512 2 62
7 3.6764 0 72
8 4.2016 -2 82
9 4.7268 -4 92
10 5.2520 -6 102

Let C� = 10. ��0 can then be assigned using Table 4.9. In Table 4.9, one
can �nd that the increase of f1 along the tangent plane at F (x0) is much
faster than along the eÆcient frontier. This is because the maximum feasible
value of f1 (i.e. 30) has already been exceeded at l = 3 for C� = 10 while
f2 is only reduced to 8. In this case, �̂02 = 1:0504 may be used as the step
size. If the decision maker wishes to �nd a step size such that f1 is nearer its
maximum feasible value 30, C� could be increased to 100 and Table 4.10 is
thus constructed. In Table 4.10, ��0 = �̂028 = 1:47056 is taken as the current
step size.
Given ��0 = �̂028, an auxiliary problem can be constructed as follows

Max
�
�01y1 + �02y2

�
s:t xa 2 
a
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Table 4.10: Assignment of step size �0 given C� = 100

f2 f1
l �̂t�1l f t�1j � �t�1l jd �f t�1j j f t�1i + �t�1l jd �f t�1i j
20 1.05040 10 22
21 1.10292 9.8 23
22 1.15544 9.6 24
23 1.20796 9.4 25
24 1.26048 9.2 26
25 1.31300 9.0 27
26 1.36552 8.8 28
27 1.41804 8.6 29
28 1.47056 8:4 30
29 1.52308 8.2 31
30 1.57560 8.0 32


a =

8<
:xa

������
f1(x) � f01 + y1
f2(x) � f02 � �2�̂

0
28

��d �f02 ��+ y2
x 2 
; y1;y2 � 0

9=
;

Let �2 = 1. Then, we have

Max (20y1 + y2)

s:t xa 2 
a


a =

8<
:xa

������
f1(x) � 2 + y1
f2(x) � 8:4 + y2
x 2 
; y1;y2 � 0

9=
;

The optimal solution of the above problem is given by

x1 = [x11; x
1
2]
T = [4:72; 3:28]T ; F 1 = [f11 ; f

1
2 ]
T = [17:04; 8:4]T

which is an eÆcient solution of the original problem. Suppose the decision
maker still prefers x1 to x0 (thus u(x1) � u(x0)) although f11 is smaller than
expected. In this case, �2 need not be reduced. If this were not the case, �2
would need to be reduced and the process would then be repeated, resulting
in another eÆcient solution. This completes the �rst interaction.

In the second interaction, the normal vector at F 1 can be obtained by
N1 = 0:063[1=1:4; 1]T . Suppose the decision maker provides the following
indi�erence trade-o� at F 1

[17:04; 8:4]T , [17:04� 1; 8:4 + 1]T

Then, it is easy to show that the optimal condition is not satis�ed. In fact,

�1 = [�11 ; �
1
2 ]
T = [1; 1]T ; d �F 1 = 0:135[1:4; � 1]T
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Hence, the utility function can still be improved from u(x1) by increasing f1 at
the expense of f2, or �I1 = f1g and �I2 = f2g. The new maximum permissible
amount of sacri�ce in f2 and the new maximum step size are given by

�f12 = 14; ��1max = 106:667

Table 4.11: Assignment of step size �0 given C� = 10

f2 f1
l �̂t�1l f t�1j � �t�1l jd �f t�1j j f t�1i + �t�1l jd �f t�1i j
0 0 8.40 17.040
1 10.6667 6.96 19.056
2 21.3334 5.52 21.072
3 32.0001 4.08 23.088
4 42.6668 2.64 25.104
5 53.3335 1.20 27.120
6 64.0002 -0.24 29.136
7 74.6669 -1.68 31.152
8 85.3336 -3.12 33.168
9 96.0003 -4.56 35.184
10 106.667 -6.00 37.200

The step size may then be determined using Table 4.11 and Table 4.12. Table
4.12 is constructed because the decrease of f2 will no longer be o�set by the
increase of f1 when l � 3 for C� = 10 but f2 can still be decreased from the
value of 5.52. �127 = 28:8 is taken as the current step size as 4.5 is regarded
as the acceptable lower bound of f2.
Then, an auxiliary problem can be constructed as follows, given �2 = 1

Max (y1 + y2)

s:t xa 2 
a


a =

8<
:xa

������
f1(x) � 17:04 + y1
f2(x) � 4:512 + y2
x 2 
; y1;y2 � 0

9=
;

The optimal solution of the above problem is given by

x2 = [x21; x
2
2]
T = [5:498; 2:502]T

F 2 = [f21 ; f
2
2 ]
T = [22:283; 4:512]T

By examining F 2, it is clear that the actual achievement levels of f1 and f2
are both the same as expected in Table 4.12. This is because d �F 1 is on the
eÆcient frontier. Thus, �2 need not be reduced.
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Table 4.12: Assignment of step size �0 given C� = 100

f2 f1
l �̂t�1l f t�1j � �t�1l jd �f t�1j j f t�1i + �t�1l jd �f t�1i j
20 21.33340 5.520 21.072
21 22.40007 5.376 21.274
22 23.46674 5.232 21.475
23 24.53341 5.088 21.677
24 25.60008 4.944 21.878
25 26.66675 4.800 22.107
26 27.73342 4.656 22.282
27 28.80009 4.512 22.483
28 29.86667 4.368 22.685
29 30.93343 4.224 22.886
30 32.00010 4.080 23.088

In the third interaction, the normal vector at F 2 is given by

N2 = 0:063[1=1:4; 1]T

The decision maker is expected to provide the following optimal indi�erence
trade-o� at F 2

[22:483; 4:512]T , [22:483� 1:4; 4:512+ 1]T

If the decision maker accepts this trade-o�, then the optimal condition is
satis�ed. This is because

�2 = [�21 ; �
2
2 ]
T = [� 1

�1:4 ; 1]
T =

1

0:063
N2

Otherwise, he should provide another indi�erent trade-o� and the interactive
process will then continue until the optimality condition is satis�ed.

4.5 Summary

In this chapter, we �rst discussed the basic concepts and methods in multi-
ple objective optimisation. Common to any multiple objective optimisation
problems are their non-commensurability and conict among objectives. Con-
sequently, in such problems there is no single solution that could optimise all
objectives simultaneously. What can be found are non-dominated (eÆcient,
non-inferior or Pareto-optimal) solutions, among which the best compromise
solutions should be sought. Three types of methods were discussed in this
chapter. The simple weighting method, although widely used, is only ap-
plicable to convex problems with smooth eÆcient frontiers. In this chapter,
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this method was described for generating eÆcient solutions for illustration
purposes.

Four multiple objective optimisation methods based on p-norm were dis-
cussed by assuming the availability of global preference information. The
minimax (ideal point) method is a widely used approach and forms a basis for
several other multiple objective optimisation methods. The goal attainment
method is one of the variants of the minimax method, where the canonical
weights are used to represent decision maker's preferences. Goal programming
provides more exible ways for accommodating di�erent types of preference
information, though it is only applicable to convex problems. The minimax
reference point method facilitates goal programming in non-convex cases and
also provides a basis for generating eÆcient solutions on both convex and
non-convex eÆcient frontiers.

Interactive methods are desirable in decision situations where there is lit-
tle a priori knowledge about optimisation problems in hand, for example
problems of designing new systems or products. Among the four interactive
methods, Geo�rion's method is the earliest, which is applicable to convex
problems. The STEM method is based on the formulation of the minimax
method and provides a systematic procedure to converge to the best com-
promise solutions. However, it does not guarantee to produce the best com-
promise solutions. The ISTM method provides a exible way for implicit
trade-o� analysis and allows the decision maker to explore the eÆcient fron-
tier in a natural manner, though it does not provide a theoretical criterion for
terminating the interactive process. The gradient projection method provides
a rigorous termination criterion whilst also preserving the favourable features
of the ISTM method and Geo�rion's method. However, it does require extra
e�ort to identify normal vectors for calculating utility gradient projections.



Chapter 5

Genetic Algorithms and

Optimisation

5.1 Introduction

Many di�erent techniques are used today for optimising the design space as-
sociated with various control systems. Most of these techniques can broadly
be classi�ed under either calculus-based techniques or direct-search methods.
However, the calculus-based methods lack robustness over the broad spec-
trum of optimisation functions that arise in engineering optimisation. In re-
cent years, the direct-search techniques, which are problem-independent, have
been proposed as a panacea for the diÆculties associated with the traditional
techniques. One of these techniques is genetic algorithms (GAs) (Goldberg,
1989; Davis, 1991).

The genetic algorithm �led has three major thrusts: research into the basic
genetic algorithm, optimisation using genetic algorithm, and machine learning
with classi�er systems. The research thrust is well described in Goldberg
(1989). The classi�er system work is also described in Goldberg's text. This
chapter does not deal with those two areas. Instead, it is directed to the
optimisation �eld, and its goal is to introduce some concepts about genetic
algorithms and show how to apply them e�ectively to optimisation problems.

5.2 What are Genetic Algorithms

Genetic algorithms are invented by simulating some of the processes observed
in natural evolution. Biologists have been intrigued with the mechanism of
evolution since the evolutionary theory of biological change was accepted.
Many people are astonished that life at the level of complexity could have
evolved in the relatively short time suggested by the fossil record. The mech-
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anisms that drive this evolution are not fully understood, but some of its
features are known. Evolution takes place on chromosomes, which are or-
ganic devices for encoding the structure of living beings. A living being is
partly created through a process of decoding chromosomes.

Although the speci�cities of chromosomal encoding and decoding processes
are not fully known, the following general features of the evolution theory are
widely accepted: a) Evolution process operates on chromosomes rather than
on the living beings which they encode. b) Natural selection process causes
the chromosomes that encode successful structures to reproduce more often
than ones that do not. c) Reproduction process is the point at which evolution
takes place. Recombination process may create quite di�erent chromosomes
in the children by combining material from the chromosomes of two parents.
Mutations may result in the chromosomes of biological children to be di�erent
from those of their biological parents, d) Biological evolution has no memory.
Whatever it knows about producing individuals that will function well in their
environment is contained in the gene pool, which is the set of chromosomes
carried by the current individuals, and in the structure of the chromosome
decoders.

In the early 1970s, the above features of natural evolution intrigued the
scientist John Holland (1975). He believed that it might yield a technique
for solving diÆcult problems to appropriately incorporating these features in
a computer algorithm in the way that nature has done through evolution.
So, he began the research on algorithms that manipulated strings of binary
digits (1s and 0s) that represent chromosomes. Holland's algorithms carried
out simulated evolution on populations of such chromosomes. Using simple
encodings and reproduction mechanisms, his algorithms displayed compli-
cated behaviour and solved some extremely diÆcult problems. Like nature,
they knew nothing about the type of problems they were solving. They were
simple manipulators of simple chromosomes. When the descendants of those
algorithms are used today, it is found that they can evolve better designs, �nd
better schedules and produce better solutions to a variety of other important
problems that we cannot solve using other techniques.

When Holland �rst began to study these algorithms, they did not have a
name. As these algorithms began to demonstrate their potential, however, it
was necessary to give them a name. In reference to their origins in the study
of genetics, Holland named them genetic algorithms. After a great amount of
research work in this �eld was carried out, the genetic algorithms have been
developed. Now, the genetic algorithm is a stochastic global search method
that mimics the metaphor of natural biological evolution. Applying the prin-
ciple of survival of the �ttest to produce better and better approximations to
a solution, genetic algorithms operate on a population of potential solutions.
A new set of approximations at each generation is created by the process of
selecting individuals, which actually are chromosomes in GAs, according to
their �tness level in the problem domain and breeding them together using
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operators borrowed from natural genetics, for example, crossover and muta-
tion. This process results in the evolution of populations of individuals that
are better suited to their environment than the individuals that they were
created from, just as in natural adaptation.

5.3 Basic Structure of Genetic Algorithms

It is well known that natural phenomena can be abstracted into an algorithm
in many ways. Similarly, there are a number of ways to embody the pre-
ceding features of the theory of natural evolution in genetic algorithms. To
begin with, let us consider two mechanisms that link a genetic algorithm to
the problem it is solving. One is the way of encoding solutions to the prob-
lem on chromosomes and the other is the evaluation function that returns a
measurement of the worth of any chromosome in the context of the problem.

The way of encoding solutions plays an important role in genetic algo-
rithms. The technique for encoding solutions may vary from problem to
problem and from genetic algorithm to genetic algorithm. In early genetic
algorithms, encoding is carried out using bit strings. Later, genetic algorithm
researchers have developed many other types of encoding techniques. Proba-
bly no one technique works best for all problems, and a certain amount of skill
is involved in selecting a good decoding technique when a problem is being
studied. Thus, when selecting a representation technique in the context of a
real-world problem, several factors should be considered.

The evaluation function is the link between the genetic algorithm and the
problem to be solved. An evaluation function takes a chromosome as input
and returns a number or list of numbers that is a measure of the chromosome's
performance. Evaluation functions play the same role in genetic algorithms as
the environment plays in natural evolution. The interaction of an individual
with its environment gives a measure of its �tness, and the interaction of a
chromosome with an evaluation function provides a measure of �tness that
the genetic algorithm uses when carrying out reproduction.

It is assumed that the following initial components are given: a problem, a
way of encoding solutions to it, and a function that returns a measure of how
good any encoding is. We can use a genetic algorithm to carry out simulated
evolution on a population of solutions. Here is the basic structure of genetic
algorithms that uses these components to simulate evolution:

a) Initialise a population of chromosomes.

b) Evaluate each chromosome in the population.

c) Create new chromosomes by mating current chromosomes.

d) Remove some members of the population to make room for the new
chromosomes.

e) Insert the new chromosomes into the population.

f) Stop and return the best chromosome if time is up, otherwise, go to c).
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Following the above structure, a pseudo-code outline of genetic algorithms is
shown below. The population of chromosomes at time t is represented by the
time-dependent variable P (t), with the initial population of random estimates
P (0).

procedure GA

begin

t=0;

initialise P (t) = P (0);

evaluate P (t);

while not �nished do

begin

t=t+1;

select P (t) from P (t� 1);

reproduce pairs in P (t) by

begin

crossover;

mutation;

reinsertion;

end

evaluate P (t);

end

end

If all goes well through this process of simulated evolution, an initial pop-
ulation of unexceptional chromosomes will improve as the chromosomes are
replaced by better and better ones. The best individual in the �nal population
produced can be a highly evolved solution to the problem.

The genetic algorithm di�ers substantially from more traditional search
and optimisation methods, for example, gradient-based optimisation. The
most signi�cant di�erences are the following.

a) GAs search a population of points in parallel rather than a single point.

b) GAs do not require derivative information on an objective function or
other auxiliary knowledge. Only the objective function and correspond-
ing �tness levels inuence the directions of search.

c) GAs use probabilistic transition rules, not deterministic ones.

d) GAs can work on di�erent encodings of the parameter set rather than
the parameter set itself.
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It is important to note that the GA provides many potential solutions to a
given problem and the choice of the �nal solution is left to the designer. In
cases where a particular optimisation problem does not have one individual
solution, then the GA is potentially useful for identifying these alternative
solution simultaneously.

5.4 Population Representation and

Initialisation

Genetic algorithms operate on a number of potential solutions, called a pop-
ulation, which consists of some encoding of the parameter set simultaneously.
Generally speaking, a population is composed of 21 individuals or slightly
more. Sometimes a variant called `the micro GA' uses very small populations
(less than 10 individuals) with a restrictive reproduction and replacement
strategy in an attempt to reach real-time execution (Karr, 1991). There are
various types of chromosome representations in GAs. Two representations are
introduced here: the binary representation and the real-valued representation.

5.4.1 Binary Representation

The most commonly used representation of chromosomes is that of the single-
level binary string. In this representation, each chromosome is encoded as a
binary string, for example,

1 0 1 1 0 1 1 0

The use of Gray coding has been advocated as a method that can overcome
the hidden representational bias in conventional binary representation as the
Hamming distance between adjacent values is constant (Holstien, 1971). Em-
pirical evidence of Caruana and Scha�er (1988) points out that large Hamming
distances in the representational mapping between adjacent values can result
in the search process being deceived or unable to eÆciently locate the global
minimum, which is the case in the standard binary representation. A further
approach is the use of logarithmic scaling in the conversion of binary-coded
chromosomes to their real phenotypic values (Schmitendorgf et al., 1992). The
precision of the parameter values is possibly less consistent over the desired
range in problems, where the spread of feasible parameters is unknown. But, a
larger search space may be covered with the same number of bits than a linear
mapping scheme, allowing the computational burden of exploring unknown
search spaces to be reduced to a more manageable level.

5.4.2 Real-Valued Representation

Although binary-coded GAs are most commonly used, there is an increas-
ing interest in alternative encoding strategies, such as integer and real-valued
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representations. For some problem domains, it is argued that the binary rep-
resentation is in fact deceptive in that it obscures the nature of the search
(Bramlette, 1991). For example, in the subset selection problem (Lucasius
and Kateman, 1992), the use of an integer representation and look-up ta-
bles provides a convenient and natural way of expressing the mapping from
representation to problem domain. Real-valued representation is claimed by
Wright (1991) to o�er many advantages in numerical function optimisation
over binary encodings. It increases eÆciency of the GA as there is no need
to convert chromosomes to phenotypes before each function evaluation and
requires less memory; as eÆcient oating-point internal computer representa-
tions can be used directly. There is no loss in precision by discretisation to
binary or other values and there is greater freedom to use di�erent genetic
operators. The use of real-valued encodings is detailed by Michalewicz (1992)
and in the literature on Evolution Strategies (see, for example, Back et al.,
1991).

5.4.3 Initialisation

When the representation of the GA chromosomes has been decided, the �rst
step in the GAs is to create an initial population. The initialisation of the
population is usually achieved by generating the required number of individ-
uals using a random number generator that uniformly distributes numbers in
the desired range. For example, a binary population of N individuals whose
chromosomes areM bits long would be initialised by N�M random numbers
uniformly distributed from the set f0; 1g. Some other initialisation procedures
are also available. In the extended random initialisation procedure of Bram-
lette (1991), many random initialisations are tried for each individual and the
one with the best performance is chosen for the initial population. Another
initialisation approach seeds the initial population with some individuals that
are known to be in the vicinity of the global minimum (see, for example,
Grefenstette, 1987; Whitley et al., 1991). Of course, this approach is only
applicable if the nature of the problem is well understood beforehand or if the
GA is used in conjunction with a knowledge based system.

5.5 Fitness Functions

The objective function is a measure of how individuals have performed in
the problem domain. For a minimisation problem, the most �t individuals
will have the smallest numerical value of the associated objective function.
This measure is usually only used as an intermediate stage in determining
the relative performance of individuals in a GA. Another function, called the
�tness function, is normally used to transform the objective function value
into a measure of relative �tness (De Jong, 1975), thus:

F (c) = f(�(c)) (5.5.1)
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where �(:) is the objective function, f(:) converts the value of the objective
function to a non-negative number and F (:) is the resulting relative �tness.
For the problem with the objective function to be minimised, this mapping is
always necessary as the smaller objective function values correspond to �tter
individuals. In a number of cases, the �tness function value corresponds to
the number of o�spring that an individual can expect to produce in the next
generation. The proportional �tness assignment (see, for example, Goldberg,
1989) is a widely used transformation. The individual �tness F (ci) of each
individual is computed as the individual's raw performance F (ci) relative to
the whole population, that is,

F (ci) =
�(ci)
NP
i=1

�(ci)

(5.5.2)

where N is the population size and ci is the phenotypic value of individual i.
Although this �tness assignment ensures that each individual has a probability
of reproducing according to its relative �tness, it fails to account for negative
objective function values.

The following linear transformation, which o�sets the objective function
(Goldberg, 1989), is commonly used prior to �tness assignment:

F (c) = ��(c) + � (5.5.3)

where � is a positive scaling factor if the optimisation is maximising and
negative if we are minimising, and the o�set � is used to ensure that the
resulting �tness values are non-negative.

However, the above linear scaling and o�setting are susceptible to rapid
convergence. For most selection algorithms, they select individuals for repro-
duction on the basis of their relative �tness. Using the linear scaling, the
expected number of o�spring is approximately proportional to that individ-
ual's performance. Since there is no constraint on an individual's performance
in a given generation, highly �t individuals in early generations can dominate
the reproduction which may cause rapid convergence to possibly sub-optimal
solutions. Similarly, if there is little deviation in the population, then the
linear scaling provides only a small bias towards the most �t individuals.

It is suggested by Baker (1985) that the premature convergence may be
prevented by limiting the reproductive range so that no individuals generate
an excessive number of o�spring. Here, individuals are assigned a �tness
according to their rank in the population instead of their raw performance.
One variable Bias, is used to determine the bias, or selective pressure, towards
the most �t individuals and the �tness of the others is determined by the
following rules:

Lb = 2�Bias

Dif = 2(Bisa � 1)=N

Ntrail = Dif=2
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where Lb is the lower bound, Bias is typically chosen in the interval [1.1,
2.0], Dif is the di�erence between the �tness of adjacent individuals, N is
the population size and Ntrial is the expected number of trials (number of
times selected) of the least �t individual. For example, for a population size
of N = 40 and Bias = 1:1, we obtain Lb = 0:9, Dif = 0:05 and Ntrial = 0:025.

The �tness of individuals in the population may also be calculated directly
as,

F (ci) = 2�Bias + 2(Bias � 1)
ci � 1

N � 1
(5.5.4)

where ci is the position in the ordered population of the i-th individual.

5.6 Selection

Selection is the process of determining: the number of times (or trials), a
particular individual chosen for reproduction and the number of o�spring
that an individual will produce. The selection of individuals can be viewed
as two following separate processes:

a) determine the number of trials that an individual can expect to receive;
b) convert the expected number of trials into a discrete number of o�spring.

The �rst process takes account of the transformation of raw �tness values
into a real-valued expectation of an individual's probability to reproduce and
is dealt with in the previous subsection as �tness assignment. The second
process is concerned with the probabilistic selection of individuals for repro-
duction based on the �tness of individuals relative to one another and is
sometimes known as sampling.

Three measures of performance for selection algorithms: bias, spread and
eÆciency, have been presented by Baker (1987). Bias is the absolute di�erence
between an individual's actual and expected selection probability. Optimal
zero bias is thus achieved when an individual's selection probability equals its
expected number of trials.

Spread is de�ned as the range in the possible number of trials that an
individual may achieve. If f(i) is the actual number of trials that the i-th
individual receives, then the \minimum spread" is the smallest spread that
theoretically permits zero bias, that is,

f(i) 2 fent(i); �ent(i)g (5.6.1)

where ent(i) is the expected number of trials of the i-th individual, ent(i) is
the oor of ent(i) and �ent(i) is the cell. Thus, the bias is an indication of
accuracy and the spread of a selection method measures its consistency.

EÆcient selection methods are motivated by the need to maintain a GA
overall time complexity. It has been shown in the literature that the other
phases of a GA (excluding the actual objective function evaluations) have bet-
ter time complexity. A good selection algorithm should thus achieve zero bias
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whilst maintaining a minimum spread and not contributing to an increased
time complexity of the GA.

In this section, two commonly used selection methods will be reviewed:
Roulette wheel selection methods and stochastic universal sampling.

5.6.1 Roulette Wheel Selection Methods

The roulette wheel selection method is one of the most commonly used se-
lection methods. Many selection techniques in genetic algorithms employ a
\roulette wheel" mechanism to probabilistically select individuals based on
some measure of their performance. The basic principle of the roulette wheel
mechanism is the following.

A real-valued interval Sum is de�ned as either the sum of the individuals'
expected selection probabilities or the sum of the raw �tness values over all the
individuals in the current population. The individuals are then transformed
into contiguous intervals in the range [0; Sum] in a one-to-one mapping. The
size of each individual interval represents the �tness value of the associated
individual. For example, the circumference of the roulette wheel in Figure 5.2
is the sum of all seven individual's �tness values. Individual 6 is the �ttest
individual and occupies the largest interval, whereas individual 3 is the weak-
est one and has a correspondingly smaller interval within the roulette wheel.
To select an individual, a random number is �rstly generated in the interval
[0; Sum] and then the individual whose segment spans the random number is
selected. This process is repeated until a desired number of individuals have
been selected.

1

2

3
4

5

6

7

Figure 5.1: Roulette wheel

The basic roulette wheel selection method uses stochastic sampling with re-
placement (SSR). Here, the segment size and selection probability remain the
same throughout the selection phase and individuals are selected using the



134 CHAPTER 5. GENETIC ALGORITHMS AND OPTIMISATION

procedure outlined above. SSR yields zero bias but a potentially unlimited
spread. Any individual with a positive segment size could entirely �ll the next
population.

The stochastic sampling with partial replacement (SSPR) extends upon
the stochastic sampling with replacement by resizing an individual's segment
if it is selected. At each time when an individual is selected, the size of its
segment is reduced by 1.0. If the segment size becomes negative, then it is
set to be 0.0 and there is no more size reduction. Although this provides an
upper bound on the spread of �ent(i), the lower bound is zero and the bias is
higher than that of SSR.

Remainder sampling methods have two distinct phases: the integral phase
and the fractional phase. In the integral phase, individuals are selected de-
terministically according to the integer part of their expected trials. The
remaining individuals are then selected probabilistically from the fractional
part of the individuals expected values, which is the fractional phase.

Remainder stochastic sampling with replacement (RSSR) employs roulette
wheel selection to sample the individual not assigned deterministically. Dur-
ing the roulette wheel selection phase, individual's fractional parts keep un-
changed and, thus, compete for selection between \spins". RSSR yields zero
bias and the spread is lower bounded. The upper bound is determined only
by the number of fractionally assigned samples and the size of the integral
part of an individual. For example, any individual with a positive fractional
part could win all the samples in the fractional phase. Remainder stochastic
sampling without replacement (RSSWR) forces the fractional part of an indi-
vidual's expected values to zero if it is sampled during the fractional phase. As
a result, this gives RSSWR minimum spread, although this selection method
is biased in favour of smaller fractions.

5.6.2 Stochastic Universal Sampling

Stochastic universal sampling (SUS) is a single-phase sampling algorithm that
has minimum spread and zero bias. It uses N equally spaced pointers rather
than the single selection pointer employed in roulette wheel methods, where
N is the number of selections required. The population is shu�ed randomly
and a single random number Srn in the range [0; Sum=N ] is generated. The
N individuals are then chosen by generating the N pointers spaced by 1,
[Srn; Srn + 1; :::; Srn + N � 1], and selecting the individuals whose �tnesses
span the positions of the pointers. An individual is thus guaranteed to be
selected for a minimum of ent(i) times and no more than �ent(i). So, its
minimum spread is achieved. In addition, since the individuals are selected
entirely on their position in the population, SUS has zero bias.
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5.7 Crossover

Crossover is the basic operator for generating new chromosomes in GAs.
Like its counterpart in nature, crossover produces new individuals with some
parts of both parent's genetic material. In this section, several variations on
crossover are described and discussed and the relative merits of each will be
reviewed.

5.7.1 Single-Point Crossover

Single-point crossover is the simplest form of crossover. The single-point
crossover creates two children by swapping parts of two parent chromosomes
at a randomly selected point. Two examples of the application of single-point
crossover during a run of a genetic algorithm are shown below.

Parent1 : 0 1 1 1 0 j 1 1 0
Parent2 : 1 1 0 1 1 j 1 0 1

+
Child1 : 0 1 1 1 0 j 1 0 1
Child2 : 1 1 0 1 1 j 1 1 0

Parent1 : 0 1 1 1 j 0 1 1 0
Parent2 : 1 1 0 1 j 1 1 1 1

+
Child1 : 0 1 1 1 j 1 1 1 1
Child2 : 1 1 0 1 j 0 1 1 0

where the children are made by cutting each parent into two parts at the point
denoted by the vertical line and exchanging the second parts of each parent.

One important feature of single-point crossover is that it can produce
children that are radically di�erent from their parents. The �rst example
above is an instance of this. Another important feature is that single-point
crossover will not introduce di�erences for a bit in a position where both
parents have the same value. Thus, in the second example, both parents
and both children in bit positions 2 and 3 have the same value, even though
crossover has occurred. In an extreme case where both parents are identical,
the single-point crossover can introduce no diversity in the children.

5.7.2 Multi-Point Crossover

For multi-point crossover, m crossover positions are chosen at random with
no duplicates and sorted into ascending order. The bits between successive
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crossover points are then exchanged between the two parents to produce two
new o�spring. But, the section between the �rst allele position and the �rst
crossover point is not exchanged between individuals. This process is illus-
trated as follows:

Parent1 : 0 1 j 1 1 0 j 1 1 0
Parent2 : 1 1 j 0 1 1 j 1 0 1

+
Child1 : 1 1 j 1 1 0 j 1 0 1
Child2 : 0 1 j 0 1 1 j 1 1 0

There are many variations on the crossover operator. But, the basic idea be-
hind multi-point is that the parts of the chromosome representation contribut-
ing the most to the performance of a particular individual may not necessarily
be contained in adjacent substrings (Booker, 1987). Further, the disruptive
nature of multi-point crossover appears to encourage the exploration of the
search space, instead of favouring the convergence to highly �t individuals
early in the search. Thus, this makes the search more robust (Spears and De
Jong, 1991a).

5.7.3 Uniform Crossover

It has been shown that both single- and multi-point crossovers de�ne cross
points as places between loci where a chromosome can be split. Uniform
crossover (Syswerda, 1989) generalises this scheme so that every locus can be
a potential crossover point. A crossover mask with the same length as the
chromosome structures is created at random. The parity of the bits in the
crossover mask indicates which parent will supply the o�spring with which
bits. Consider the following two parents and crossover mask:

Parent1 = 0 1 0 1 0 1 1 0

Parent2 = 1 1 1 0 1 0 0 1

Mask = 1 1 0 0 1 0 0 1

which results in the o�spring below:

Child1 = 0 1 1 0 0 0 0 0

Child2 = 1 1 0 1 1 1 1 1

Here, the �rst o�spring Child1 is created by taking the bit from the parent
Parent1 if the corresponding mask bit is 1 or the bit from the parent Parent2
if the corresponding mask bit is 0. The second o�spring Child2 is created
using the inverse of the mask or, equivalently, swapping Parent1 and Parent2.
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Like multi-point crossover, uniform crossover has been claimed to reduce
the bias associated with the length of the binary representation and the par-
ticular coding for a given parameter set. This makes it possible to overcome
the bias in single-point crossover towards short substrings without requiring
precise understanding of the signi�cance of individual bits in the chromosome
representation. The research work done by Spears and De Jong (1991b) has
demonstrated how uniform crossover may be parameterised by applying a
probability to the swapping of bits. This extra parameter helps to control
the amount of disruption during recombination without introducing a bias
towards the length of the representation used. When uniform crossover is
employed with real-valued alleles, it is usually referred to as discrete recom-
bination.

5.7.4 Other Crossover Operators

A related crossover operator is that of shu�e (Caruana et al., 1989). This
operator works in this way. When a single cross-point is selected, the bits are
randomly shu�ed in both parents before they are exchanged. After recombi-
nation, the bits in the o�spring are unshuÆed. This also removes positional
bias as the bits are randomly reassigned each time crossover is performed.

The reduced surrogate operator (Booker, 1987) constrains crossover so
that it always produce new individuals wherever possible. This is often im-
plemented by restricting the location of crossover points such that crossover
points only occur where gene values di�er.

For real-valued encodings, it is possible to use a crossover operator that
incorporates a numerical avour. For example, an average crossover is in-
troduced. This crossover operator takes two parents and produces one child
that is the result of averaging the corresponding �elds of two parents (Davis,
1989).

5.7.5 Intermediate Recombination

Intermediate recombination is a method of producing new phenotypes around
and between the values of the parents phenotypes for a real-valued encoding
of the chromosome structure (Muhlenbein and Schlierkamp-Voosen, 1993).
O�spring O1 is produced according to the rule below,

O1 = P1 � (P2 � P1) (5.7.1)

where  is a scaling factor chosen uniformly at random over some interval,
typically [�0:25; 1:25] and P1 and P2 are the parent chromosomes (see, e.g.
Muhlenbein and Schlierkamp-Voosen, 1993). According to the above expres-
sion, for each pair of parent genes, each variable in the o�spring is the result
of combining the variables in the parents. In geometric terms, intermediate
recombination is able to produce new variables within a slightly larger hyper-
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cube than that de�ned by the parents but constrained by the range of , as
shown in Figure 5.2.

Area of
possible
offspring

Parents Potential offspring

Figure 5.2: E�ect of intermediate recombination

5.7.6 Line Recombination

Line recombination (Muhlenbein and Schlierkamp-Voosen, 1993) is a special
case of intermediate recombination. For the line recombination, only one
value of  is used in the recombination. It is shown in Figure 5.3 how line
recombination can generate any point on the line de�ned by the parents within
the limits of the perturbation, , for a recombination in two variables.

To some extent, the binary operators discussed in this section have used
a disruption in the representation to help improve exploration during recom-
bination. Whilst these operators may be applied to real-valued populations,
the resulting changes in the genetic material after recombination would not
extend to the actual values of the decision variables, although o�spring may,
of course, contain genes from either parent. This limitation by acting on the
decision variables themselves is overcome by the intermediate and line recom-
bination operators. Similar to uniform crossover, the real-valued operators
may also be parameterised to provide a control over the level of disruption
introduced into the o�spring. For discrete-valued representations, variations
on the recombination operators may be employed to ensure that only valid
values are produced as a result of crossover (Furuya and Haftka, 1993).

5.8 Mutation

Mutation is a random process in natural evolution where one allele of a gene
is replaced by another to produce a new genetic structure. In GAs, mutation
is randomly applied to modify some elements in the chromosomes with low
probability, particularly in the range 0.001 and 0.01. Usually it is considered
as a background operator. The role of mutation is often regarded as providing
a guarantee that the probability of searching any given string will never be



5.8. MUTATION 139
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offspring
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Figure 5.3: E�ect of line recombination

zero and acting as a safety net to recover good genetic material that may be
lost through the action of selection and crossover (Goldberg, 1989).

The e�ect of mutation on a binary string is illustrated as the following:

Original string : 0 1 1 1 0 1 1 0
Mutated string : 0 1 1 1 1 1 1 0

where a 8-bit chromosome represents a real value decoded over the interval
[0; 8] using both standard and Gray coding. A mutation point is the 4th
position in the binary string from the right. Clearly, binary mutation ips
the value of the bit at the loci selected to be the mutation point. Generally,
given that mutation is generally applied uniformly to an entire population of
strings, it is possible that a given binary string may be mutated at more than
one point.

For non-binary representations, mutation may be achieved by either per-
turbing the gene values or random selection of new values within the allowed
range. It is demonstrated by Wright (1991) and Janikow and Michalewicz
(1991) how real-coded GAs may take advantage of higher mutation rates
than binary-coded GAs, increasing the level of possible exploration of the
search space without adversely a�ecting the convergence characteristics. In
addition, Tate and Smith (1993) argued that for more complex codings than
binary ones, high mutation rates can be both desirable and necessary. They
also showed how, for a complex combinatorial optimisation problem, high mu-
tation rates and non-binary coding yielded signi�cantly better solutions than
the normal approach.

A number of variations on the mutation operator have been presented. For
example, biasing the mutation towards individuals with lower �tness values
is used to increase the exploration in the search without losing information
from the �tter individuals (Davis, 1989). Parameterising the mutation can
result in that the mutation rate decreases with the population convergence
(Fogarty, 1989a). A mutation operator for the real-coded GA introduced
by Muhlenbein and Schlierkamp-Voosen (1993) uses a nonlinear term for the
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distribution of the range of mutation applied to gene values. It is claimed
that mutation can be used in conjunction with recombination as a foreground
search process by biasing mutation towards smaller changes in gene values.
Trade mutation (Lucasius and Kateman, 1992) states that the contribution of
individual genes in a chromosome is used to direct mutation towards weaker
terms. Reorder mutation (Lucasius and Kateman, 1992) swaps the positions
of bits or genes to increase diversity in the decision variable space.

5.9 Reinsertion and Termination

5.9.1 Reinsertion

After the selection and recombination operations on individuals in the old
population, a new population is produced and the �tness of its individuals
may also be determined. In the case where fewer individuals are produced by
recombination than the size of the original population, the fractional di�erence
between the new and old population sizes is then termed as a generation gap
(De Jong and Sarma, 1993). If the number of new individuals produced at
each generation is one or two, the GA is said to be steady-state (Whitley,
1989) or incremental (Huang and Fogarty, 1991). Further, the GA is said to
use an elitist strategy if the �ttest individual is deterministically allowed to
propagate through successive generations.

To keep the size of the original population, the new individuals may need to
be re-inserted into the new population. Similarly, if not all the new individuals
are used at each generation or if more o�spring are generated than the size of
the old population, then a re-insertion scheme must be applied to determine
which individuals are to exist in the new population. An important feature of
not creating more o�spring than the current population size at each generation
is that its computational time is reduced. The time reduction will be dramatic
in the case of the steady-state GA and the computer memory requirements
are smaller as fewer new individuals need to be stored while o�spring are
produced.

To select which members of the old population should be replaced, the
most apparent strategy is to replace the least �t members deterministically.
On the other hand, in studies, Fogarty (1989b) has shown that whether the
individuals selected for replacement were chosen with inverse proportional
selection or deterministically as the least �t, no signi�cant di�erence in con-
vergence characteristics was found. He further asserts that replacing the least
�t members e�ectively implements an elitist strategy because the �ttest one
will probabilistically survive through successive generations. Indeed, one of
the most successful replacement schemes is to select the oldest members of
a population for replacement. Therefore, for an individual to survive succes-
sively, it must be suÆciently �t to ensure propagation into future generations.
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5.9.2 Termination

Since the GA is a stochastic search method, it is hard to formally specify
convergence criteria. In many cases, the �tness of a population may remain
static for a number of generations before a superior individual is found. Then,
the application of conventional termination criteria becomes problematic. A
common practice is to terminate the GA after a prespeci�ed number of gen-
erations are carried out and then test the quality of the best members of the
population against the problem de�nition. If the solutions are not acceptable,
the GA may be restarted or a fresh search initiated.

5.10 Multiobjective Optimisation with GAs

The multiple performance measures of multiobjective problems must be con-
verted into a scalar �tness measure before GAs can be applied. In problems
where there is no global criterion that directly emerges from the original mul-
tiobjective formulation, objectives are often arti�cially combined by means of
an aggregating function. A number of such approaches can also be used with
GAs although they are initially developed with other optimisers. Optimising a
combination of the objectives has the advantage of producing a single compro-
mise solution because it does not require further interaction with the decision
maker. However, if the solution cannot be accepted as a good compromise,
the aggregating function may be required to be tuned. New runs of the op-
timiser will follow until a suitable solution is found. As the many candidate
solutions are evaluated in a single run of the GA, those non-dominated solu-
tions may provide valuable alternatives (Wilson and Macleod, 1993; Fonseca
et al., 1993). However, such alternatives cannot be expected to be optimal
in any sense since the algorithm sees them as sub-optimal. Aggregating func-
tions have been widely used with GAs in multiobjective optimisation, from
the simple weighted sum approach (e.g., Jakob et al., 1992) to target vector
optimisation (Wienke et al., 1992). Among other methods, an implementation
of goal attainment has been used by Wilson and Macleod (1993).

5.10.1 Constrained Optimisation

The simplest approach to handling constraints in GAs has been to assign an
arbitrarily low �tness to inferior individuals (Goldberg, 1989). This enables
GAs to cope with discontinuities, arising on the constraint boundaries. In this
approach, if feasible solutions can be easily found, any inferior individuals are
selected out and the search is not a�ected much.

Certain types of constraints, such as bounds on the decision variables and
other linear constraints, can be handled by mapping the search space so as
to minimise the number of unfeasible solutions it contains. They can also be
handled by designing the mutation and recombination operators carefully in
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order to minimise the production of inferior o�spring from feasible parents
(Michalewicz and Janikow, 1991). The above approaches are complementary
and often used in combination with each other.

In the case where feasible individuals are unknown and cannot easily be
found, it will make the initial stages of evolution degenerate into a random
walk by simply assigning low-�tness to inferior individuals. To overcome
this problem, the penalty imposed onto inferior individuals can be made to
depend on the extent to which they violate the constraints. Such penalty
is typically added to the (unconstrained) performance value before �tness is
computed (Goldberg, 1989). Although penalty functions give a way of guiding
the search towards feasible solutions when these are not known, they are very
much problem dependent. In spite of the penalty, some unfeasible solutions
can be seen as better than some other feasible ones, which can make the
population evolve towards a false optimum. In response to these diÆculties,
guidelines on the use of penalty functions have been detailed in Richardson
et al. (1989).

One of the most recent approaches to constraint handling has been pro-
posed by Powell and Skolnick (1993). This approach consists of rescaling the
original objective function to assume that its values are less than unity in
the feasible region, whilst assigning inferior individuals penalty values greater
than one. Subsequent ranking of the population correctly assigns higher �t-
ness to all feasible points than to those unfeasible ones.

5.10.2 Non-Pareto Optimisation

An approach treating objectives separately, known as the Vector Evaluated
Genetic Algorithm (VEGA), is proposed by Scha�er (1985), as a move towards
�nding multiple non-dominated solutions with a single algorithm run. In this
approach, appropriate fractions of the next generation or sub-populations are
selected in terms of each of the objectives, separately. As usual, crossover
and mutation are applied after shu�ing all the sub-populations together.
Non-dominated individuals are identi�ed by monitoring the population as
it evolves. In an application oriented paper, Fourman (1985) also chooses not
to combine the di�erent objectives. Selection is performed by comparing pairs
of individuals and each pair is compared according to one objective selected
at random. Fourman �rst experimented with assigning di�erent priorities to
the objectives and comparing individuals lexically. But it was found that
selecting objectives randomly work surprisingly well.

However, shu�ing sub-populations together, or having di�erent objectives
a�ecting di�erent tournaments, corresponds to averaging the �tness compo-
nents associated with each of the objectives. Proportional �tness assignment
used in Scha�er(1985) expects that �tness corresponds to a linear combina-
tion of the objectives with variable weights, as noted in Richardson et al.
(1989). On the other hand, the approach in Fourman (1985) corresponds
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to an averaging of rank, not objective, values. In both cases, di�erent non-
dominated individuals are generally assigned di�erent �tness values. But the
performance of the algorithms on problems with concave trade-o� surfaces
can be qualitatively di�erent. Another approach to selection based on the
use of single objectives in alternation has been proposed in Kursawe (1991).
Hajela and Lin (1992) elaborate on the VEGA by explicitly including sets of
weights in the chromosome.

5.10.3 Pareto-Based Optimisation

Another class of GA optimisation approaches, based on ranking according
to the actual concept of Pareto optimality, was proposed later by Goldberg
(1989, pp. 201), which guarantees equal probability of reproduction to all
non-dominated individuals. Problems with non-convex trade-o� surfaces, pre-
senting diÆculties to pure weighted sum approaches, do not raise any special
issues in Pareto optimisation.

Pareto-based ranking combines dominance with preference information to
produce a suitable �tness assignment strategy. The GA optimisation process
is seen as the result of the interaction between an arti�cial selector, here
referred to as the decision maker (DM), and a GA search process. The search
process creates a new set of candidate solutions in the term of the utility
assigned by the DM to the current set of candidates.

The DM can represent any utility assignment strategy, which may range
from an intelligent decision maker to a simple weighted sum approach. When
the action of the DM inuences the production of new individuals, these, as
they are evaluated, provide new trade-o� information which the DM can use
to re�ne its current preferences. The GA sees the e�ect of any changes in the
decision process, which may or may not result from taking recently acquired
information into account, as an environmental change.

The GA is concerned with a di�erent search process, but complementary
aspect of the optimisation. In the �rst instance, genetic algorithms make very
few assumptions about the �tness landscape they work on, which justi�es and
permits a primary concern with �tness assignment. However, GAs are not ca-
pable of optimising arbitrary functions (Hart and Belew, 1991). Therefore,
some forms of characterisation of the multiobjective �tness landscapes asso-
ciated with the decision making strategy is important and the design of the
GA should take that information into account.

5.11 An Example

To illustrate genetic algorithms, let us use them to �nd out the minimum of
the following function:

f(x1; x2) = x21 + 2x22 (5.11.1)
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Each solution in the population is represented as a real number string. Then,
the chromosomal representation is expressed as

S = (x1; x2) (5.11.2)

Five random initial solution sets are chosen as follows:

Chromosome Si (x1; x2)
S1 (1, 2)
S2 (-3, 4)
S3 (2, 3)
S4 (4, -2)
S5 (3, 1)

To calculate the �tness values, plug each solution set into the expression
x21 + 2x22. The �tness values of the above �ve solution sets are the following:

Chromosome Si x21 + 2x22
S1 9
S2 41
S3 22
S4 24
S5 11

Since the �tness values that are lower are closer to the minimum, these
values are more desirable. In this case, higher �tness values are not desirable,
while lower ones are. In order to create a system where chromosomes with
more desirable �tness values are more likely to be chosen as parents, the
percentages that each chromosome has of being picked must �rst be calculated.
One solution is to take the sum of the multiplicative inverses of the �tness
values

1=9 + 1=41+ 1=22 + 1=24+ 1=11 = 0:3135 (5.11.3)

and then calculate the percentages from there.

Chromosome Si Likelihood
S1 1/9/0.3135=35.43%
S2 1/41/0.3135=7.78%
S3 1/22/0.3135=14.50%
S4 1/24/0.3135=13.29%
S5 1/11/0.3135=29.00%
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In order to select �ve pairs of parents (each of which will have one child,
and thus �ve new solutions sets total), we assume that there is a 10000 sided
die, and on 3543 of those sides, chromosome S1 is labeled, and on 778 of those
sides, chromosome S2 is labeled, and on 1450 of those sides, chromosome S3
is labeled, and on 1329 of those sides, chromosome S4 is labeled, and on 2900
of those sides, chromosome S5 is labeled. To choose our �rst pair the die is
rolled twice, and those chromosomes are taken to be the �rst two parents.
Continuing in this fashion gives the following parents:

Parent 1 Parent 2
S1 S5
S5 S4
S4 S1
S1 S3
S3 S5

The child of each of these parents contains the genetic information of both
parents 1 and 2. How this can be determined is very arbitrary. For this case,
an average crossover function is employed to produce the child, which is the
result of averaging the corresponding �elds of two parents. Thus, �ve new
solution sets are below.

Child Chromosome Si (x1; x2)
S1 (2, 1.5)
S2 (3.5, -0.5)
S3 (2.5, 0)
S4 (1.5, 2.5)
S5 (2.5, 2)

Now the �tness values for the new generation of o�spring are calculated.

Chromosome Si x21 + 2x22
S1 8.50
S2 12.75
S3 6.25
S4 14.75
S5 14.25

The average �tness value for the child chromosomes is 11.3, while the
average �tness value for the parent chromosomes is 21.4. The next generation
(the o�spring) are supposed to mutate, that is, for example, some values of
each chromosome are disturbed by a small random value, e.g., a value between
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0.1 and -0.1. Progressing at this rate, one chromosome should eventually reach
a �tness level of 0 eventually, that is when a solution is found.

5.12 Summary

The principal points addressed in this chapter were the following: Genetic
algorithms were invented to mimic some features of natural evolution for
optimisation. Evaluation functions link genetic algorithms with the problems
to be solved. Genetic algorithms use mutation and crossover to create new
generations that di�ers from old generations. Genetic algorithms use selection
techniques, which simulate the process of natural selection, so that the �ttest
individuals tend to reproduce most often. Genetic algorithms manipulate
schemata, which builds blocks of good solutions that are combined through
crossover and that spread in the population in proportion to the relative �tness
of the chromosomes that contain them. The inversion operator is inspired by
natural processes that have not yet been widely used.



Chapter 6

Robust Control System

Design by Mixed

Optimisation

6.1 Introduction

Traditionally, control system designers use design methods based on either
analytical optimisation or parameter optimisation. Both methods have ad-
vantages and disadvantages; briey, analytical optimisation techniques (e.g.
H1, LQG) generally:

a) have non-explicit closed-loop performance,

b) are single-objective,

c) are robustly stable,

d) provide high-order controllers,

e) are not very exible,

f) provide a global optimum,

g) can deal with relatively large multivariable problems;

whereas parameter optimisation based methods (e.g. MoI) generally:

a) have explicit closed-loop performance,

b) are often multiobjective,

c) are not implicitly robustly stable,

d) provide simple controllers,

e) are exible,

f) are often non-convex resulting in local minima,

g) can deal with small problems only,

h) may have diÆculty stabilising the system.

147
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A combination of analytical optimisation and parameter search methods may
be able to overcome some of the limitations of using just one approach.

The MoI can be combined with analytical optimisation techniques by us-
ing the parameters of the weighting functions generally required by such tech-
niques as the design parameters. Thus, for a nominal plantG(s) augmented by
a set of nw weighting functions W (s) = (W1(s);W2(s) : : :Wnw ), a controller
Kmin(s;G;W ), which is optimal in some sense, can generally be synthesised,
and a set of closed-loop performance functions � of the optimal control sys-
tem can be calculated. If the weighting functions are simply parameterised
by the design vector p, the problem can be formulated as for (1.1.11), and
the MoI used to design the weights for the analytical optimisation problem.
The designer thus chooses the optimisation technique and the structure of the
weighting functions W (s; p). He/she de�nes suitable performance functions
(e.g. rise time, settling time, bandwidth, system norms, etc.) along with the
design goals "i, and the MoI can be used to search for suitable values of the
weighting function parameters p such that (1.1.11) is satis�ed.

Details of the above procedure applied to McFarlane and Glover's LSDP
are given in the next section. Further details may be found in Whidborne et
al. (1994), Whidborne et al. (1995a,b) and Chipper�eld et al. (1999). Details
of the mixed-optimisation procedure applied to a 2 degree-of-freedom LSDP
(Hoyle et al., 1991; Limebeer et al., 1993) may be found in Murad et al. (1993)
and Whidborne et al. (1995a) and to a mixed sensitivity H1 approach and an
LQG optimisation in Whidborne et al. (1995b). An alternative 2 degree-of-
freedom LSDP approach with a parameterised pre-compensator is proposed
in Whidborne et al. (1994b).

Other authors have suggested using a mixed optimisation approach. The
�rst appears to be Baras et al. (1984), who suggested using nonlinear optimi-
sation for designing the weights for LQG control design. A similar approach
has been independently suggested by Paddison et al. (1994), Haessig (1995)
and Tych (1994). Use of genetic algorithms to design the weighting functions
for the LSDP has also been suggested by White et al. (1995). Some eÆcient
methods for mixed optimisation with the LSDP have been proposed by Pantas
(1998).

6.2 An H1 Loop Shaping Design Procedure

6.2.1 Overview

In general, we are not able to get an absolutely accurate model of the system
plant. There are assumptions made about the model, simpli�cations, and
few (if any) real systems are linear. In addition, during the operation of a
control system, the plant dynamics change over time, parts wear out, ambient
temperature changes, and the operating conditions, such as the load, change.
We therefore need to be able to design control systems which can handle this
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uncertainty. A control system which can maintain stability and performance
in the face of uncertainty is described as robust.

The loop-shaping design procedure (LSDP) described in this section is a
robust control system design method. It is based on H1 robust stabilisation
combined with classical loop-shaping. The method was developed by Mc-
Farlane and Glover (1992) and is hence sometimes known as McFarlane and
Glover's LSDP. Further details of the approach can be found in McFarlane
and Glover (1990), Zhou et al. (1996), Skogestad and Postlethwaite (1996),
Green and Limebeer (1995) and Hyde (1995).

The procedure is essentially a two stage design process. First, the open-
loop plant is augmented by pre- and post-plant weighting functions to give
a desired shape to the singular values of the open-loop frequency response.
Then the resulting shaped plant is robustly stabilised using H1 optimisation
of a normalised left coprime factorisation description of the plant.

This LSDP is available with the MATLAB Toolbox �-tools (Balas et al.,
1991). A graphical interface for the LSDP, which can also be used with the
Robust Control Toolbox (Chiang and Safonov, 1992), is available on the World
Wide Web at: http://www.eee.kcl.ac.uk/mecheng/jfw/lsdptool.html

6.2.2 Preliminaries

The H1-Norm

For a system G(s), the H1-norm is de�ned as

kG k1 = sup
!
f�� (G(j!))g (6.2.1)

where �� (�) denotes the maximum singular value. The H1-norm of a system
gives the worst case steady-state gain for sinusoidal inputs of any frequency.
It is also equal to the worst case energy gain of the system. For further details,
see Skogestad and Postlethwaite (1996, pp. 153).

The Small Gain Theorem

The robust stability of a system can be analysed by means of the well-known
small gain theorem.

Theorem 6.1 The system shown in Figure 6.1 is stable if and only if
a) kM k1 <  and for all � such that k� k1 � 1

 ,

b) kM k1 �  and for all � such that k� k1 < 1
 .

This theorem applies for multi-input multi-output systems. Thus H1 the-
ory is used for robust multivariable control system design. From the small
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gain theorem, stability conditions for a variety of models of system uncer-
tainty can be obtained. For further details, see, for example, Skogestad and
Postlethwaite (1996, pp. 291-309).

�

M

-

�

Figure 6.1: General system for the small gain theorem

6.2.3 Normalised Left Coprime Factorisation

A plant model G can be factorised into two stable transfer function matrices
(M;N) so that

G =M�1N (6.2.2)

Such a factorisation is called a left coprime factorisation of G if there exists
stable transfer function matrices (V; U) such that

MV +NU = I (6.2.3)

A left coprime factorisation of a plant model G is normalised if and only if

NN� +MM� = I; 8 s (6.2.4)

where N�(s) = NT (�s) and M�(s) =MT (�s).
Let

G(s) = D + C(sI �A)�1B s
=

�
A B
C D

�
(6.2.5)

then

[N M ]
s
=

�
A+HC B +HD H

R�1=2C R�1=2D R�1=2

�
(6.2.6)

is a normalised coprime factorisation of G where H = �(BDT + ZCT )R�1,
R = I +DDT , and the matrix Z � 0 is the unique stabilising solution to the
algebraic Riccati equation (ARE)

(A�BS�1DTC)Z + Z(A�BS�1DTC)T � ZCTR�1CZ +BS�1BT = 0
(6.2.7)

where S = I +DTD.
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6.2.4 Coprime Factor Robust H1 Stability Problem

The plant uncertainty is represented by stable additive perturbations on each
of the factors in a coprime factorisation of the plant. This uncertainty de-
scription is diÆcult to conceptualise and is not as intuitive as, for example,
plant multiplicative or plant additive uncertainty. However, it is quite gen-
eral, and it leads to a very useful H1 robust stabilisation problem (Skogestad
and Postlethwaite, 1996, pp. 376-377).

�N �M

N M�1

K

-

- - �

- ? -

�

-

�

y+

+

�
+

u

�

Figure 6.2: Coprime factor robust H1 stability problem

The perturbed plant model Gp is

Gp = (M +�M )�1(N +�N ) (6.2.8)

where �M , �N are stable unknown transfer functions which represent the
uncertainty in the nominal plant model G. The objective of robust stabilisa-
tion it to stabilise not only the nominal model G, but also the set of plants
de�ned by

G =
�
(M +�M )�1(N +�N ) : k [ �N �M ] k1 < �

	
(6.2.9)

where � > 0 is then the stability margin. To maximise this stability mar-
gin is the problem of robust stabilisation of normalised coprime factor plant
descriptions (Glover and McFarlane, 1989).

From the small gain theorem (Theorem 6.1), the perturbed feedback sys-
tem shown in Figure 6.2 is robustly stable for the family of plants G de�ned
by (6.2.9), if and only if

 :=


�
K
I

�
(I �GK)�1M�1


1
� 1

�
(6.2.10)

Notice that  is theH1-norm from � to

�
u
y

�
and (I�GK)�1 is the sensitivity

function for this positive feedback arrangement.
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If X � 0 is the unique solution of the algebraic Riccati equation

(A�BS�1DTC)TX +X(A�BS�1DTC)�XBS�1BTX + CTR�1C = 0
(6.2.11)

and Z is the solution to (6.2.7), then the lowest achievable value of  is given
by

0 = (1 + �(XZ))1=2 (6.2.12)

where � denotes the spectral radius (maximum eigenvalue magnitude). Note
that for a strictly proper plant, i.e. when D = 0, the formulae simplify con-
siderably.

A controller which guarantees that
�
K
I

�
(I �GK)�1M�1


1
�  (6.2.13)

for a speci�ed  > 0, is given by

K
s
=

�
A+BF + 2(LT )�1ZCT (C +DF ) 2(LT )�1ZCT

BTX �DT

�
(6.2.14)

where F = �S�1(DTC + BTX), and L = (1 � 2)I + XZ. However, if
 = 0, then L = XZ � �max(XZ)I which is singular, and thus (6.2.14)
cannot be implemented. This problem can be resolved using the descriptor
system (Safonov et al., 1987).

A descriptor system Ĝ(s) has equations

Ê _x = Âx+ B̂u (6.2.15)

y = Ĉx+ D̂u (6.2.16)

which can be written as

Ĝ(s) = D̂ + Ĉ(sÊ � Â)�1B̂ s
=

� �Ês+ Â B̂

Ĉ D̂

�
(6.2.17)

The descriptor system allows Ê to be singular, and can be converted to the
usual state-space system via the singular value decomposition of Ê (see Chi-
ang and Safonov (1992)). A controller which achieves a  � 0 is given in
descriptor form by

K
s
=

� �LT s+ LT (A+BF ) + 2ZCT (C +DF ) 2ZCT

BTX �DT

�
(6.2.18)

Note that because 0 can be computed from (6.2.12), an explicit solution to
the problem can be obtained by solving just two Riccati equations and so
avoiding the -iteration needed to solve general H1 problems.



6.2. AN H1 LOOP SHAPING DESIGN PROCEDURE 153

6.2.5 A Loop-Shaping Design Procedure (LSDP)

For practical control system design, performance is required as well as robust
stability. To do this, McFarlane and Glover (1992) have suggested weighting
the open-loop nominal plant to shape the open-loop singular values prior to
robust stabilisation of the \shaped" plant. By means of appropriate choice of
weighting function, robust performance and stability trade-o� can be made.

If W1 andW2 are the pre- and post-plant weighting functions respectively,
then the shaped plant Gs is given by

Gs =W2GW1 (6.2.19)

as shown in Figure 6.3.

W1(s) G(s) W2(s) --

Figure 6.3: Shaped plant

Gs

Ks(s)

W1(s) G(s) W2(s)-

Figure 6.4: Optimal controller

K

Ks(s)W1(s)

G(s)

W2(s)

-

Figure 6.5: Final controller

The controller Ks is synthesised by means of (6.2.14) for the shaped plant
Gs with a normalised left coprime factorisation Gs = M�1

s Ns as shown on
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Figure 6.4. The feedback controller for the plant G is then

K =W1KsW2 (6.2.20)

as shown in Figure 6.5. Skill is required in the selection of the weights W1

andW2, but experience on real applications has shown that robust controllers
can be fairly easily designed by following some simple rules (Skogestad and
Postlethwaite, 1996, pp. 382).

The following systematic procedure for using H1 loop-shaping design is
drawn from that recommended by Skogestad and Postlethwaite (1996, pp.
382-385):

a) Scale the plant outputs and inputs. This is very important for most de-
sign procedures and is sometimes forgotten. In general, scaling improves
the conditioning of the design problem, it enables meaningful analysis
to be made of the robustness properties of the feedback system in the
frequency domain, and for loop-shaping it can simplify the selection of
weights. There are a variety of methods available including normalisa-
tion with respect to the magnitude of the maximum or average value of
the signal in question. However, if one is to go straight to a design the
following variation has proved useful in practice:

i) The outputs are scaled such that equal magnitudes of cross-coupling
into each of the outputs is equally undesirable.

ii) Each input is scaled by a given percentage (say 10%) of its expected
range of operation. That is, the inputs are scaled to reect the
relative actuator capabilities.

b) Make the plant as diagonal as possible by ordering the inputs and out-
puts. The purpose of this pseudo-diagonalisation is to ease the design
of the pre- and post-plant weighting functions which, for simplicity, are
generally chosen to be diagonal.

c) Select the elements of diagonal pre- and post-plant weighting functions
W1 and W2 so that the singular values of W2GW1 are a desirable shape
as shown in Figure 6.6. This would normally mean high gain at low
frequencies, roll-o� rates of approximately 20 dB/decade at the desired
bandwidth(s), with higher rates at high frequencies. The post-plant
weighting function, W2, is usually chosen as a constant, reecting the
relative importance of the outputs to be controlled and the other mea-
surements being fed back to the controller. For example, if there are
feedback measurements of two outputs to be controlled and a velocity
signal, then W2 might be chosen to be diag [1, 1, 0.1], where 0:1 is in
the velocity signal channel. The pre-plant weighting function, W1, con-
tains the dynamic shaping. This should usually include integral action,
for low frequency performance; phase-advance for reducing the roll-o�
rates at crossover; and phase-lag to increase the roll-o� rates at high
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frequencies should all be placed in W1 if desired. The weights should be
chosen so that no unstable hidden modes are created in Gs.

6�(Gs)
dB

-

high gain
at low

frequency

low gain
at high
frequency

�� (Gs)

�
�
(Gs)

	

� >

roll-o�
20 dB/decade

singular
values close
at cross-over

Figure 6.6: Desired shaped plant

d) Robustly stabilise the shaped plant Gs =W2GW1, using the formulae of
the previous section. First, calculate the maximum permissible uncer-
tainty 0. If this is too large (0 > 5) then go back to step c) and modify
the weights. Otherwise synthesise an optimal or sub-optimal controller
using (6.2.14) or (6.2.18). There is generally not a great advantage to be
gained by using the optimal controller, so select  � 0, by up to about
10%. When 0 < 5, the design is usually successful. In this case, at
least 20% coprime uncertainty is allowed, and it is also found that the
shape of the open-loop singular values do not change much after robust
stabilisation. A large value of 0 indicates that the chosen singular value
loop-shapes are incompatible with robust stability requirements.

e) Analyse the design and if all the speci�cations are not met make further
modi�cations to the weights.

f) Implement the controller.
For a tracking problem, the reference signal is generally fed between K
and Ŵ1 as shown in Figure 6.7, so that the closed loop transfer function
between the reference r and the plant output y becomes

Y (s) = (I �G(s)K(s))�1G(s)W1(s)Ks(0)W2(0)R(s) (6.2.21)
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where the reference R(s) is connected through a gain Ks(0)W2(0) where

Ks(0)W2(0) = lim
s!0

Ks(s)W2(s) (6.2.22)

to ensure unity steady-state gain. This is because the references do not
directly excite the dynamics of Ks, which can result in large amounts
of overshoot (classical derivative kick). The constant pre-compensator
ensures a steady-state gain of unity between R and Y , assuming integral
action in W1 or G.

-Ks(0)W2(0) W1(s) G(s)

Ks(s) W2(s)

--

6

-

�

-

�

yr u+

+

Figure 6.7: A practical implementation of the loop-shaping controller

6.2.6 Example { The Inverted Pendulum

The LSDP is applied to the traditional laboratory control problem of the
inverted pendulum, as shown in Figure 6.8. The pendulum is connected to
a carriage by a simple pivot. A potentiometer is connected to the pivot so
that the angle of the pendulum � can be measured. The carriage can run
along a length of track. The carriage is connected via a drive belt to a motor.
The position of the carriage x can be measured via a potentiometer located
in one of the pulleys. The position of the top of the pendulum yc cannot be
measured directly, but can be estimated from the formula yc = xc + `p sin �,
where `p is the pendulum length.

Mathematical Model of System

The basic circuit for a DC motor is shown in Figure 6.9. The torque is
expressed by

T = Kti (6.2.23)

and the back emf is
e = Ke

_�m (6.2.24)

The electrical circuit current/voltage relationship is

La
di

dt
+Rai = v �Ke

_�m (6.2.25)
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carriage
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-�

servo motor

drive belt

mass

yc

xc

�

Figure 6.8: Schematic of the inverted pendulum

+

�
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+

�
e = Ke

_�m

	
T

Figure 6.9: Electric circuit of DC motor

From Newton's law F = ma, the carriage dynamics are

mt�xc + b _xc = u�N (6.2.26)

where mt is the mass of the carriage, b is the coeÆcient of friction constant,
u is the force applied by the belt and N is the horizontal reaction force of the
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pendulum. Now assuming that the belt has no slip or elasticity, there is no
friction in the pulleys and ignoring the inertia of the pulleys and rotor, then

u =
T

`m
(6.2.27)

where `m is the radius of the motor wheel, and

_�m =
_xc
`m

(6.2.28)

6

-

?

�
j
-

N

P

�

�xc
`p��

mpg

`p _�
2

Figure 6.10: Pendulum free body

The dynamics of the pendulum arm free body, shown in Figure 6.10 can be
described by resolving the horizontal forces

N = mp�xc +mp`p�� cos � �mp`p _�
2 sin � (6.2.29)

where mp is the mass of the pendulum and `p is the length of the pendulum
arm. Taking moments about the pivot point gives

mpg`p sin � = mp`
2
p
�� +mp`p�xc cos � (6.2.30)

which simpli�es to
g sin � = `p�� + �xc cos � (6.2.31)

Substituting (6.2.29) into (6.2.26) to eliminate N gives

u = (mt +mp)�xc + b _xc +mp(`p�� cos � � `p _�
2 sin �) (6.2.32)

Substituting for �� from (6.2.31) gives

u = (mt +mp)�xc + b _xc +mp(g sin � cos � � �xc cos
2 � � `p _�

2 sin �) (6.2.33)
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which simpli�es to

u = (mt +mp sin
2 �)�xc + b _xc +mp(g sin � cos � � `p _�

2 sin �) (6.2.34)

Finally, (6.2.34) is rearranged with (6.2.27) and (6.2.23) to give

�xc =
1

mt +mp sin
2 �

�
Kt

`m
i� b _xc +mp sin �(g cos � � `p _�

2)

�
(6.2.35)

The system is simulated in SIMULINK with the following constants :

mt = 0:2 Kg (6.2.36)

`m = 0:015 m (6.2.37)

b = 0:1 N/m/s (6.2.38)

Kt = 0:0984 Nm/A (6.2.39)

Ke = Kt v/rad/s (6.2.40)

Ra = 15 
 (6.2.41)

La = 0:005 H (6.2.42)

`p = 0:25 m (6.2.43)

g = 9:81m/s/s (6.2.44)

Controller Design

A linear state-space representation

_x(t) = Ax(t) +Bu(t) (6.2.45)

y(t) = Cx(t) +Du(t) (6.2.46)

is required. De�ne state variables x = [ _xc xc i _yc � ]
T
. Then

A =

2
66664
� b
mt

0 Kt

`mmt
0 0

1 0 0 0 0
� Ke

La`m
0 �Ra

La
0 0

0 0 0 0 g
� 1
`p

0 0 1
`p

0

3
77775 ; and B =

2
6664

0
0
1
La
0
0

3
7775 (6.2.47)

We have measurements of the position xc, the velocity _xc and the angle � , so

C =

2
4 0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

3
5 (6.2.48)

Using the LSDP Toolbox, the following weighting functions are designed

W1(s) = 20:915
(s+ 0:1421)

s
(6.2.49)
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W2(s) = diag (1:29; 0:5; 1:561) (6.2.50)

This results in a value of 0 = 4:852. The plant and shaped plant singular
values are shown in Figure 6.11. The resulting optimal controller is tested in
simulation using the SIMULINK model. For a reference step of 0:1 m, the
resulting responses of xc, yc, � and control v are shown in Figures 6.12 and
6.13 respectively.
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Figure 6.11: Plant singular values (- - -) shaped plant singular values (|{)

6.3 Mixed-Optimisation for the LSDP

Essentially, with the LSDP, the weighting functionsW1 andW2 are the design
parameters which are chosen both to give the augmented plant a `good' open-
loop shape and to ensure that 0 is not too large. 0 is a design indicator of
the success of the loop-shaping as well as a measure of the robustness of the
system.

The mixed-optimisation problem can thus be expressed as:

Problem 6.1 For the system of Figure 6.7, �nd p and hence (W1;W2) such
that

0(W1;W2) � � (6.3.1)

and
�i(W1;W2) � "i for i = 1 : : : n (6.3.2)

where

0(W1;W2) = inf
K stabilising


�
W�1

1 K
W2

�
(I �GK)�1 [W�1

2 G ]


1

(6.3.3)
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Figure 6.12: Responses of xc and yc to a reference step of 0:1 m
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Figure 6.13: Responses of � and control v to a reference step of 0:1 m

and �i(W1;W2) are functionals of the closed-loop system, �, "i are real num-
bers representing desired bounds on 0 and �i respectively, (W1;W2) is a pair
of �xed order weighting functions with real parameters p = (p1; p2; : : : ; pq).
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Design Procedure

A design procedure to solve the above problem is:

S1 De�ne the plant G, and de�ne the objective functions �i.

S2 De�ne the values of " and "i.

S3 De�ne the form and order of the weighting functionsW1 andW2. Bounds
should be placed on the values of pi to ensure that W1 and W2 are sta-
ble and minimum phase to prevent undesirable pole/zero cancellations.
The order of the weighting functions, and hence the value of q, should
initially be small.

S4 De�ne initial values of pi based on the open-loop frequency response of
the plant.

S5 Implement a search algorithm in conjunction with (6.2.14) and (6.3.3)
to �nd a W which satis�es inequalities (6.3.1) and (6.3.2), i.e. locate
an admissible point. If a solution is found, the design is satisfactory. If
no solution is found, change the initial values of p by returning to S4;
change the structure of the controller by returning to S3, or relax one
or more of the design goals " and "i by returning to S2.

S6 With satisfactory weighting functions W1 and W2, a satisfactory con-
troller is obtained from (6.2.20).

6.3.1 MATLAB Implementation - The MODCONS
Toolbox

A number of MATLAB routines which implement the mixed-optimisation ap-
proach have been collected together into the MODCONS Toolbox (Whidborne
et al., 1994a). This software is available on the World Wide Web at:

http://www.eee.kcl.ac.uk/mecheng/jfw/modcons.html

There are three main components at the core of the toolbox, they are:

a) the search algorithm,

b) the user-interface and

c) the objective functions calculator.

The relationship between these three components and the user is shown in
Figure 6.14. The search algorithms comprise the core of the design package.
These are generic to most design situations, not just for CACSD, and are the
main design machine within the process. The user-interface is a very impor-
tant component of the process, and this provides the interface between the
search algorithms and the designer/user, and enables the designer to make
intelligent decisions about the design process. The �nal component is the
objective functions calculator. This is speci�c to CACSD, in fact, some func-
tions are speci�c to the particular class of control system (�xed controller,
mixed-optimisation, etc.).



6.4. EXAMPLE { THE DISTILLATION COLUMN 163
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Figure 6.14: Main component relationship

6.4 Example { The Distillation Column

The mixed optimisation design method is used to design a control system for
the high purity distillation column described in Limebeer (1991). The column
is considered in just one of its con�gurations, the so-called LV con�guration,
for which the following model is relevant

GD(s; k1; k2; �1; �2) =
1

75s+ 1

�
0:878 �0:864
1:082 �1:096

��
k1e

��1s 0
0 k2e

��2s

�
(6.4.1)

where 0:8 � k1; k2 � 1:2 and 0 � �1; �2 � 1, and all time units are in minutes.
The time delay and actuator gain values used in the nominal model G are
k1 = k2 = 1:0 and �1 = �2 = 0:5. The time delay element is approximated by
a �rst-order Pad�e approximation.

The design speci�cations are to design a controller which guarantees for
all 0:8 � k1; k2 � 1:2 and 0 � �1; �2 � 1:

a) Closed-loop stability.

b) The output response to a step demand h(t)
�
1
0

�
satis�es y1(t) � 1:1 for

all t, y1(t) � 0:9 for all t > 30 and y2(t) � 0:5 for all t.

c) The output response to a step demand h(t)
�
0:4
0:6

�
satis�es y1(t) � 0:5 for

all t, y1(t) � 0:35 for all t > 30, y2(t) � 0:7 for all t and y2(t) � 0:55 for
all t > 30.

d) The output response to a step demand h(t)
�
0
1

�
satis�es y1(t) � 0:5 for

all t, y2(t) � 1:1 for all t and y2(t) � 0:9 for all t > 30.

e) Zero steady-state error.

f) The frequency response of the closed-loop transfer function between
demand input and plant input is gain limited to 50 dB and the unity
gain cross over frequency of its largest singular value should be less than
150 rad/min.

A set of closed-loop performance functionals f�i(GD;W;Kp), i = 1; 2; : : : ; 16g,
based on these speci�cations are de�ned. Functionals �1 to �10 are measures
of the step response speci�cations. Functionals �1, �4, �6 and �9 are measures
of the overshoot; �2, �5, �7 and �10 are measures of the rise-time, and �3 and
�8 are measures of the cross-coupling. Denoting the output response of the
closed-loop system with a plant GD at a time t to a reference step demand
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h(t)
�
h1
h2

�
by yi([h1 h2]

T ; t); i = 1; 2, the step response functionals are

�1 = max
t
y1([1 0]

T ; t) (6.4.2)

�2 = �min
t>30

y1([1 0]
T ; t) (6.4.3)

�3 = max
t
y2([1 0]

T ; t) (6.4.4)

�4 = max
t
y1([0:4 0:6]

T ; t) (6.4.5)

�5 = �min
t>30

y1([0:4 0:6]
T ; t) (6.4.6)

�6 = max
t
y2([0:4 0:6]

T ; t) (6.4.7)

�7 = �min
t>30

y2([0:4 0:6]
T ; t) (6.4.8)

�8 = max
t
y1([0 1]

T ; t) (6.4.9)

�9 = max
t
y2([0 1]

T ; t) (6.4.10)

�10 = �min
t>30

y2([0 1]
T ; t) (6.4.11)

The steady-state speci�cations are satis�ed automatically by the use of inte-
gral action.

From the gain requirement in the design speci�cations, �11 is the H1-
norm (in dB) of the closed-loop transfer function between the reference and
the plant input,

�11 = sup
!

��
�
(I �K(j!)GD(j!))

�1W1(j!)Kp(j!)
�

(6.4.12)

From the bandwidth requirement in the design speci�cations, �12 is de�ned
(in rad/min) as

�12 = max f!g such that ��
�
(I �K(j!)GD(j!))

�1W1(j!)Kp(j!)
� � 1
(6.4.13)

The �rst design attempt was to use the MoI to satisfy the performance design
speci�cations for the nominal plant G using the con�guration of Figure 6.7.
The design criteria were, from (6.3.1) and (6.3.2),

0(W ) � " (6.4.14)

�i(G;W;Kp) � "i; for i = 1; 2; : : : ; 12 (6.4.15)

where the prescribed bound for 0 is not �xed, but for stability robustness, it
should not be too large (McFarlane and Glover, 1990), and is here taken as

" = 5:0 (6.4.16)

The respective prescribed bounds are decided from the design speci�cations
and are shown in Table 6.2 (note that "15 is in dB and "16 is in rad/s).
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An integrator term was included in W1, which ensures that the �nal con-
troller has integral action and the steady-state speci�cations are satis�ed. To
ensure the steady-state error speci�cations are met, the pre-compensator is
set to be the gain matrix Kp = Ks(0)W2(0) where

Ks(0)W2(0) = lim
s!0

Ks(s)W2(s) (6.4.17)

With weighting functions W1 = w1(s + w2)=(s(s + w3))I2, and W2 = I2;
the design procedure described in section 6.3 was implemented in MATLAB
using the MBP, and a design that successfully satis�ed inequalities (6.4.14)
and (6.4.15) obtained easily. The performance was then tested with various
values of �1, �2, k1 and k2, and the design was found to be not very robust.

To obtain robust performance, the next attempt was to satisfy the per-
formance design speci�cations for several plant models each at an extreme of
the parameter range. The design criteria were hence amended to

0(W ) � " (6.4.18)

�i(Gj ;W;Kp) � "i; for j = 1; 2; 3; 4; i = 1; 2; : : : ; 12 (6.4.19)

where plants Gj , j = 1; 2; 3; 4 have actuator time delays and gains shown in
Table 6.1. These extreme plant models were chosen because they were judged
to be the most diÆcult to simultaneously obtain good performance.

Table 6.1: Extreme plants Gj , j = 1; 2; 3; 4

�1 �2 k1 k2
G1 0 0 0:8 0:8
G2 1 1 0:8 1:2
G3 1 1 1:2 0:8
G4 1 1 1:2 1:2

With weighting functions as above, a satisfactory design was not achieved, so
the order of the weighting functions W1 and W2 was increased to give

W1 =
s2 + w1s+ w2
s(s2 + w3s+ w4)

�
w5 0
0 w6

�
(6.4.20)

and

W2 = w7
s+ w8
s+ w9

I2 (6.4.21)

To ensure that the weighting functions are stable and minimum phase, the
following inequalities were included in the inequality set (6.4.19):

Re

�
�w1 +

q
w2
1 � 4w2

�
< 0 (6.4.22)
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Re

�
�w3 +

q
w2
3 � 4w4

�
< 0 (6.4.23)

�w8 < 0 (6.4.24)

�w9 < 0 (6.4.25)

To attempt to satisfy all the performance speci�cations, a 2nd degree-of-
freedom is introduced by settingKp to be a four state dynamic pre-compensator.
Kp has a steady-state gain ofKs(0)W2(0) to ensure that the steady-state error
speci�cations are met. After implementing the MBP, a design that success-
fully satis�ed inequalities (6.4.18) and (6.4.19) was easily obtained. However,
inspection of the closed-loop step responses showed a very large amount of un-
dershoot, so four additional inequalities to restrict the minimum undershoot
to �0:1 were included. The undershoot functionals are de�ned as:

�13 = �min
t
y1([1 0]

T ; t) (6.4.26)

�14 = �min
t
y2([1 0]

T ; t) (6.4.27)

�15 = �min
t
y1([0 1]

T ; t) (6.4.28)

�16 = �min
t
y2([0 1]

T ; t) (6.4.29)

The prescribed bounds for the undershoot functionals are "i = 0:1 for i =
13; : : : ; 16. The design criteria were hence amended to

0(W ) � " (6.4.30)

�i(Gj ;W;Kp) � "i; for j = 1; 2; 3; 4; i = 1; 2; : : : ; 16 (6.4.31)

Using the MBP, the performance shown in Table 6.2 was obtained with the
weights

W1 =
(s+ 0:311� 0:733j)

s(s+ 0:922� 0:714j)

�
114:2 0
0 103:9

�
(6.4.32)

and

W2(s) = 2:737
(s+ 0:532)

(s+ 1:617)
I2 (6.4.33)

and pre-compensator

Kp
s
= Ks(0)W2(0)�2
6666664

�0:4169 0 0 0 �0:2374 �0:05372
0 �4:153 0 0 �2:189 �4:586
0 0 �0:8368 0 0:0293 �2:038
0 0 0 �2:359 0:0269 0:0515

0:2222 3:609 �1:199 �1:073 3:083 1:119
�1:792 �0:838 0:3027 4:9136 �1:529 0:4734

3
7777775
(6.4.34)

The resulting optimal compensator Ks had 13 states. The value of the ro-
bustness index was 0 = 2:739.
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Table 6.2: Performance requirements and �nal performance

i "i �i(G1) �i(G2) �i(G3) �i(G4)
1 1:1 1:036 1:036 1:017 0:998
2 �0:9 �0:841 �0:925 �0:853 �0:930
3 0:5 0:372 0:279 0:465 0:343
4 0:5 0:433 0:427 0:425 0:422
5 �0:35 �0:397 �0:398 �0:399 �0:400
6 0:7 0:602 0:601 0:603 0:600
7 �0:55 �0:591 �0:591 �0:597 �0:596
8 0:5 0:394 0:445 0:324 0:364
9 1:1 1:023 1:007 1:032 0:998
10 �0:9 �0:900 �0:899 �0:958 �0:956
11 50:0 50:53 50:60 50:43 49:59
12 150:0 147:3 147:3 147:3 147:3
13 0:1 0:00 0:056 0:032 0:017
14 0:1 0:029 0:085 0:040 0:020
15 0:1 0:029 0:028 0:075 0:016
16 0:1 0:00 0:027 0:081 0:021

All the step response criteria were satis�ed except for �2(G1) and �2(G3). The
50 dB gain limit was marginally exceeded by �11(G1), �11(G2) and �11(G3).
The step responses of the 16 possible extreme plants, using 5th order Pad�e
approximants for the time delays, are shown in Figure 6.15 along with the
maximum singular values of (I � KG)�1W1Kp, the demand to plant input
transfer function. The prescribed bounds on the responses are also shown
in the plots. Over all the extreme plants, the overshoot, rise-time and cross-
coupling in the simulations are no worse than for the four extreme plants used
for the design, however, this is not the case for the undershoot. To reduce
the undershoot, more extreme plants could have been included in the MoI,
but this would be at the expense of additional computational e�ort. The
results compare favourably with other designs for the same problem (Hoyle
et al., 1991; Yaniv and Horowitz, 1991). It was found that the prescribed
gain and bandwidth bounds, "11 and "12, were the most signi�cant factors
in restricting the performance, if these bounds were suÆciently increased, all
the performance speci�cations could be met.

6.5 Example { High Speed EMS Maglev

Vehicle

Magnetically levitated (maglev) vehicles have become a practical proposition
through recent technological advances. The two most e�ective suspension
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Figure 6.15: Responses of nominal y1 (|{) and y2 (- - -) envelopes of all
extreme plants to (a) input h(t)
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(d) maximum singular value of nominal and envelopes of all extreme plants
for (I �KG)�1W1Kp.

methods are electrodynamic suspension (EDS) and electromagnetic suspen-
sion (EMS). EDS requires super-conducting materials in order to produce
suÆcient repulsive force to propel a vehicle over a conducting sheet. On the
other hand, EMS employs the attractive forces of sets of electromagnets acting
upwards to levitate the vehicle towards steel tracks. Whilst EDS systems can
expect to bene�t from technological advancements in super-conducting ma-
terials, EMS systems are presently the more successful option. For example,
a commercial EMS passenger transport system linking Shanghai city centre
with Pudong International Airport is planned.

EMS vehicles are inherently unstable and thus require active control.
Moreover, it is necessary to maintain an airgap between the vehicle and sup-
porting guideway in order to avoid undesirable contact between them. Thus
the mixed optimisation approach is applied to the problem of designing the
suspension controller for a 140 m/s maglev vehicle consisting of a chassis sup-
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porting a passenger cabin by means of a secondary suspension of airsprings
and hydraulic shock absorbers. The vehicle is shown in cross-section in Figure
6.16. The chassis is levitated by means of DC electro-magnets under active
control providing an attractive force to the guideway. The aim of the con-
trol is to provide stability to an inherently unstable system, to maintain the
airgap, and to ensure the quality of the ride for the passengers.

passenger cabin

chassis

levitation
magnet

guidance
magnet

guideway

secondary
suspension

Figure 6.16: Cross-section of maglev vehicle

The design model (Kortum and Utzt, 1984; Sinha, 1987) is for a single electro-
magnet considering the vertical movement of the chassis and passenger cabin.
The secondary suspension is modelled as a linear spring damper system, and
the primary electro-magnetic suspension is described by a nonlinear �rst order
di�erential equation for the vertical force being derived from the magnet force
law and the current/voltage relation. The model con�guration is shown in
Figure 6.17.

The force, F , exerted by the magnet is

F (i; z; t) =
Km

2

�
i(t)

z(t)

�2
(6.5.1)

where, from steady-state considerations, Km = 2mg(z0=i0)
2; and where i is

the current (nominal value i0), z is the gap between magnet and guideway
(nominal value z0), m is the total mass of the vehicle and g is the gravitational
constant. If R is the total resistance of the circuit (including the ampli�er
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output resistance and the magnet winding resistance), then for an instanta-
neous voltage v(t) across the magnet winding, the excitation current i(t) is
controlled by

v(t) = Ri(t) +Km
d

dt

�
i(t)

z(t)

�
(6.5.2)

The chassis has massm1 and the passenger cabin has massm2. The secondary
suspension has a spring constant k and damping constant c. The relationship
between the two is assumed linear and satis�es Newton's law:

m1�x1 + c( _x1 � _x2) + k(x1 � x2) = mg � F (6.5.3)

m2�x2 + c( _x2 � _x1) + k(x2 � x1) = 0 (6.5.4)

where x1 is the absolute position of the chassis, and x2 is the absolute position
of the passenger cabin.

m2

m1

?

6
?

?

?

?

x2

h

x1

F
z

c k
guideway

passenger
cabin

chassis

mg

Figure 6.17: Maglev vehicle model

The air gap is related to the absolute chassis position by

z(t) = x1(t)� hg(t) (6.5.5)

where hg(t) is the disturbance resulting from variations in the guideway pro-
�le.

Typical values of the parameters are (Kortum and Utzt, 1984)

R = 1:8 Ohms
i0 = 50 A
z0 = 12 mm
m = 5333 Kg
m1 = 1767 Kg
m2 = 3550 Kg

g = 9:807 m/s2

(6.5.6)
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The secondary suspension parameters, d and k, are design variables. A lin-
earised State-space nominal model G(s) is given by2
6664

_F
_x1
_x2
�x1
�x2

3
7775 =

2
66664
�( i0z0 )2R �R

L 0 0 0
0 0 0 1 0
0 0 0 0 1
�1
m1

�k
m1

k
m1

�c
m1

c
m1

0 k
m2

�k
m2

c
m2

�c
m2

3
77775

2
6664
F
x1
x2
_x1
_x2

3
7775+

2
6664

i0
z0

( i0z0 )
2R

0 0
0 0
0 0
0 0

3
7775
�
v
h

�

(6.5.7)
where L = K=z0 is the nominal inductance.

The maglev vehicle is inherently unstable and thus the primary goal of
the controller is to provide stability. An electro-magnet excited by a constant
voltage will either clamp to the rail or fall as the attractive forces decrease
with an increasing airgap. However, as well as ensuring the stability of the
system, there are three other important considerations that are required when
assessing the e�ectiveness of a control scheme:

a) In order to avoid undesirable contact between the guideway and skids,
the allowed air gap should be maintained between 7 and 17 mm with a
nominal value of 12 mm. Contact leads to vibration, noise, friction and
possible damage to the vehicle and/or guideway and thus the control, or
value of this output, is critical as the air gap has a de�nite bound. The
nominal air gap should not be large as the lifting capacity decreases with
a growing air gap and feasible power consumption and magnet weights
would be unrealisable if the gap were too large. The minimum air gap
of 7 mm assures a suÆcient safety margin to accommodate the failure of
a single magnet (Kortum and Utzt, 1984) and therefore the maximum
error between the actual air gap and nominal air gap is 5 mm.

b) Vertical acceleration experienced by passengers may be used as a mea-
sure of ride comfort. Typically, this should not exceed 0.5 m/s2 in
either direction (Kortum and Utzt, 1984). However, this is not a rigid
requirement and it may be allowed to increase to as much as 1.0 m/s2.

c) Additionally, the control e�ort required should be within feasible limits
of the electro-magnets. Thus, the required control voltage should be
within � 600V (Kortum and Utzt, 1984).

The performance measures used must reect the objective of the control,
namely the maximum airgap and the quality of the ride. In addition, there
is a constraint on the amount of control voltage that can be applied. Hence,
performance indices based on the maximum variation in the airgap, z, the
maximum variation in control voltage v and the maximum acceleration expe-
rienced by the passengers �x2 are proposed.

The major disturbance to the system is from variations in the guideway
height, and the following bound on the guideway variations has been suggested
for a 140 m/s vehicle by Muller (1977):

D = sup
n��� _hg(t)��� : t � 0

o
= 30 mm/s (6.5.8)
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Now, from Zakian (1986) and Whidborne and Liu (1993), for all possible hg(t)

such that sup
n��� _hg(t)��� : t � 0

o
� D,

sup fjyi(t; hg)j : t � 0g = D

Z 1

0

jyi(�; 1)j d� (6.5.9)

where yi(�; 1) is the unit step response of the ith output of the linear closed-
loop system. Thus, using (6.5.8) and (6.5.9), nominal performance functions
for the linear closed-loop system can be de�ned on the airgap, passenger
acceleration and control voltage.

To measure the performance of the closed-loop nonlinear system, the re-
sponses of the nonlinear system outputs y0i(t; htest) to a test input, htest(t), can
be calculated, and the maximum values evaluated. The test input, htest(t),
(shown at the top of Figure 6.18) was chosen to correspond to a severe guide-
way disturbance [Equation (6.5.8)] and represents a level guideway encoun-
tering a constant gradient of 30 mm/s immediately followed by a negative
gradient of 30 mm/s.

A maximum power spectral density (PSD) �max(!) of the passenger cabin
acceleration has been recommended by the US Department of Transportation
as a minimum ride quality standard (Sinha, 1987). A performance functional
can be de�ned based on this recommendation. The PSD of the track variations
can be modelled as �hghg (!) = Av=!2, where A depends on the track quality
and v is the speed. The p.s.d. of the passenger cabin is thus

��x2�x2(!) =
��T�x2hg (!)��2 Av!2 (6.5.10)

where T�x2hg represents the transfer function between hg and �x2.
For the design of the maglev EMS control system, the objective functions

are de�ned as

�1 = D

Z 1

0

jz(�; 1)j d�

�2 = D

Z 1

0

j�x2(�; 1)j d�

�3 = D

Z 1

0

jv(�; 1)j d�
�4 = max

t
fjz0(t; htest)jg

�5 = max
t
fj�x02(t; htest)jg

�6 = max
t
fjv0(t; htest)jg

�7 = max
!
f��x2�x2(!)� �max(!)g

From Whidborne (1993), suitable goals for the objective functions are " = 5,
"1; "4 = 5mm, "2; "5 = 500mm/s, "3; "6 = 600 V and "7 = 0. The goal " is
set to 5:0.
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Figure 6.18: Nonlinear system responses to test input htest
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Measurements of the air gap, z, and the passenger cabin acceleration, �x2,
are used for feedback. The weighting function con�gurations are

W1 = p1
(s2 + p2s+ p3)

(s2 + p4s+ p5)
; W2 = diag

�
p6
(s+ p7)

(s+ p8)
; p9

�
(6.5.11)

The secondary suspension sti�ness and damping factors c and k are included
as design parameters p10 and p11.
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Figure 6.19: Passenger cabin PSD (|{) and ride quality standard PSD (- - -)

The multiobjective simulated annealing algorithm (Whidborne et al., 1996a;
Chipper�eld et al., 1999) was run with the LSDP and a solution found which
met all the design goals except the performance functional based on the power
spectral density speci�cation, which was only marginally exceeded. The per-
formance objective functions of the design are

0 = 2:64

�1 = 5:06 mm

�2 = 391:4 mm/s
2

�3 = 201:9 V

�4 = 4:38 mm

�5 = 291:1 mm/s
2

�6 = 33:6 V

�7 = 0:075
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The designed weighting functions are

W1 = 903:2
(s2 + 169:6s+ 485:4)

(s2 + 69:5s+ 488:3)
(6.5.12)

W2 = diag

�
426:9

(s+ 256:2)

(s+ 379:2)
; 3:23

�
(6.5.13)

and the designed secondary suspension sti�ness and damping factors are c =
90:3 and d = 20:0. The nonlinear simulation response and power spectral
density of the �nal design are shown in Figures 6.18 and 6.19 respectively.

6.6 Summary

The mixed-optimisation approach to multiobjective robust control system de-
sign combines the exibility of numerical optimisation-type techniques with
analytical optimisation in an e�ective and practical manner. The MoI is in-
teractive, thus providing exibility to the designer in formulating a realistic
problem and in determining design trade-o�s. Unlike the LSDP, closed-loop
performance is explicitly considered in the formulation of the design prob-
lem, and can include both time and frequency domain performance indices.
However, it was found in practice that the initial choice of weighting func-
tion parameters is very important in the subsequent progress of the numerical
search, and the conventional LSDP approach was seen as useful in choosing
the initial parameters and the weighting function structures.

The approach suggested here has some advantages over the usual imple-
mentation of the MoI. In the usual implementation, a search is conducted in a
set of �xed order controllers to try and �nd a feasible point. In the approach
here, the search is restricted to controllers which are already robustly stable,
thus the problem of �nding a stability region does not exist. The mixed-
optimisation approach is particularly suited to the normalised coprime factor
stabilisation problem approach because no -iteration is required. The MoI
can be combined with H1 optimisation methods which require -iteration
(Whidborne et al., 1995a), but the process is considerably slower.



Chapter 7

Multiobjective Control of

Critical Systems

7.1 Introduction

A problem that occurs frequently in control engineering is to control outputs
(usually the errors) of a system subjected to random external inputs (refer-
ence inputs and/or disturbances) so that the absolute value of the outputs is
within prescribed bounds. Any violation of the bounds results in unaccept-
able, perhaps catastrophic, operation. For example, the electro-magnetic sus-
pension control system for a magnetically levitated (maglev) vehicle (Whid-
borne, 1993). It is necessary that the airgap between the guideway and the
levitating magnets is maintained for the e�ective operation of the system in
spite of disturbance resulting from variations in the guideway pro�le. Such a
system is said to be critical (Zakian, 1989; Whidborne and Liu, 1993). As yet,
the design of critical systems has been studied in the continuous-time domain
(Zakian, 1986, 1987, 1989; Rutland, 1992), the discrete-time domain (Liu,
1992a,b,c,d; Whidborne, 1992) and the frequency domain (Liu, 1990, 1992a,
1993; Liu et al., 1995). Many important and useful results are presented.

Usually, a control system is probably subjected to two kinds of uncertain-
ties. One is the uncertainty in external inputs which impinge on the system,
called the external uncertainty. The other is the uncertainty in the mathe-
matical models used to represent the process, called the internal uncertainty.
Though the external uncertainty in critical systems has been considered in
many papers, the internal uncertainty in these systems has been paid little
attention. Therefore, the robust control, which refers to the maintenance of
design speci�cation in the presence of uncertainties, of MIMO critical systems
with external and internal uncertainties is a very interesting and important
subject.

The robust control design of multivariable critical systems with external

177
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and internal uncertainties is considered in this chapter. The design problem
formulated as a set of objectives includes the output performance criteria in
the time domain and the robust performance criterion in the frequency do-
main. Some relationships between an input space, an unmodelling error space,
a controller, output performance and robust performance are established for
SISO and MIMO cases so that the design problem is largely simpli�ed and can
be solved in the frequency domain using multiobjective optimisation methods
and H1 optimisation techniques.

7.2 Critical Control Systems

A critical system in control engineering is to control an output v (usually the
error) of a system subjected to random external inputs w (reference inputs
and/or disturbances) so that the absolute value of the output is within a
prescribed bound ", that is,

jv(t; w)j � "; 8t 2 R (7.2.1)

Any violation of the bound results in unacceptable, and perhaps catastrophic,
operation. There is a wide variety of critical systems; a small selection is listed
here:

a) Motor vehicles are required to travel within their prescribed lanes and
any departure from those can have serious consequences.

b) The force on yarns of a loom in textile mills (Kipp, 1989) is required to
remain within speci�ed narrow bounds so that the yarn is not broken,
despite disturbances such as quality changes of the yarns at random
times. Violation of this requirement results in the loom stopping.

c) Air traÆc controllers require aircraft to remain within a speci�ed narrow
altitude bound (Franklin et al., 1986). This is often achieved by means
of an altitude-hold autopilot.

d) The catalytic converter, which is a legal requirement on motor cars
to reduce pollution, only works if the engine's air/fuel ratio is within
certain narrow bounds (Franklin et al., 1986).

e) To ensure uninterrupted communication, an antenna dish tracking a
communications satellite must at all times point accurately at the satel-
lite to within a small tolerance (Franklin and Powell, 1980).

Zakian and Al-Naib (1973) suggested that many feedback control design prob-
lems should be posed as the satisfaction of a set of inequalities, rather than
the minimisation of some objective functions with inequalities acting as side-
constraints, and proposed the method of inequalities (MoI), which makes use
of numerical methods.

In essence, the MoI involves expressing the design problem by means of
an appropriate set of inequalities and then �nding a solution of the inequal-
ities by numerical methods. The design objectives are formulated in a set of
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inequalities of the form

�i(p) � "i; for i = 1; 2; :::; n (7.2.2)

�i(p) is a real scalar and represents an aspect of the dynamic behaviour of the
system under design: these aspects include, for example, steady-state error,
the rise time, the overshoot, the setting time, the undershoot, the maximal
and minimal controller output and so on. p is a real vector representing the
parameters of the controller which is being designed. The �nite positive real
number "i represents the numerical bound on the particular aspect of dynamic
behaviour described by �i(p).

Since the MoI gives a more accurate formal representation of many design
problems, it caused considerable attention in the design of control systems and
was developed along several closely related complementary directions (Becker
et al., 1979; Polak, 1979; Zakian, 1979; Mayne et al., 1981). Its usefulness has
been shown by a number of comparative studies (e.g. Taiwo, 1978; Dahshan,
1981) and applications (e.g. Bollinger et al., 1979; Coelho, 1979; Crossley
and Dahshan, 1982; Taiwo, 1979, 1980; Inooka, 1982). Some aspects of the
method of inequalities are explained in Patel and Munro (1982), Maciejowski
(1989) and Ng (1989).

However, it soon became clear that the development of control system de-
sign was no longer hampered by the lack of eÆcient mathematical program-
ming methods but by the inadequacy of design criteria for expressing the real
aims of control. The research work in critical control systems (Zakian, 1979,
1983) led to a design framework, called the critical control framework (Zakian,
1986, 1987, 1989, 1991). Based on an explicit de�nition of control, the critical
control framework provides control system designers with a set of appropriate
design criteria.

It is well known that a system can be described in many ways. There
are two main descriptions. One is a larger description, in which a concrete
situation can be represented or modelled by an input function space describing
the external environment to which the system is subjected and an input-
output rule mapping the input space into an output function space. The
other is a more conventional and also more restricted description which does
not take into account the input space and which considers the system to be
simply that part of the concrete situation which is represented by the input-
output rule with which, given a suitable input, the corresponding output can
be obtained.

Much of control theory is based on the restricted description of a system.
Consequently, the concepts of performance (for example, IAE concept, i.e.
integral of absolute error), of controllability (see, for example, Rosenbrock,
1970) and of stability (see, for example, Willems, 1970) do not involve an
input space. In contrast, the critical control framework is based on the larger
description. By providing means of accommodating a model of system's en-
vironment or inputs which can be transient and/or persistent, and facilities
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for explicit statement of the control objectives, it overcomes the two impor-
tant disadvantages of conventional control approaches. One is that most of
the criteria in conventional control approaches specify performance measures
with respect to certain test-input functions, e.g. a step, a sinusoid, white
noise, which are often not a realistic representation of the environment of the
system. The other is that the design objectives are often not stated or formu-
lated explicitly. Since the critical control framework involves an input space,
the ensuing concepts of performance, controllability and stability are related
to the input space (Zakian, 1986). Further, by laying down a clear relation
between the input space, the input-output mapping and the output perfor-
mance, the critical control framework provides a sound theoretical framework
for assessing the appropriateness and relative merits of any design criterion
(Zakian, 1986, 1987).

The critical control framework has been applied to the design of many
practical systems, e.g. the brake control of heavy duty trucks (Bada, 1987a), a
maglev vehicle suspension control system (Whidborne, 1993), a hydraulic tur-
bine control system (Liu et al., 1990), the control of motor vehicles (Rutland,
1992). In addition, it has been extended to multivariable systems (Zakian,
1987, 1989).

7.3 Critical System Descriptions

First, several de�nitions are introduced, which are used in this chapter.
Hardy space Hp (p 2 [1;1]) consists of all complex-valued functions H(s)

of a complex variable s which are analytic in the open right half-plane (RHP),
Re s > 0 and satisfy the condition

kH kp := sup

(�
1

2�

Z +1

�1
jH(� + j!)jpd!

�1=p
: � > 0

)
<1;

p 2 [1;1) (7.3.1)

kH k1 := supfjH(s)j : Re s > 0g <1 (7.3.2)

In the time domain, de�ne

kh km =

�Z +1

0

jh(t)jmdt
�1=m

; 1 � m <1 (7.3.3)

kh k1 = supfjh(t)j : t � 0g (7.3.4)

where h(t) is a piecewise-continuous function h : [0;1)! R.
Note that upper-case letters are used to represent the complex-valued func-

tions and lower-case letters represent the real-valued functions in this chapter.
In addition, there exist the following relations between the complex-valued and
real-valued functions: H = L [h] and h = L�1 [H ], where L [�] is the Laplace
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transform and L�1 [�] is the inverse Laplace transform. The same norm sym-
bol k � k in the frequency and time domains are used. Context determines
which is intended.

In the frequency domain, the standard feedback continuous system (G;K)
is shown in Figure 7.1, where G is a plant, K is a controller, R;F;E; U
and Y are the reference input, the disturbance, the error, the control and the
output of the system, respectively. LetW denote the externally applied input
which is either the reference input R or the disturbance F and let V denote
the generalised output which is either the output Y or the error E.

Note that if there is not a reference input, then the design of the systems
(G;K) is a regulation problem, otherwise the design of the system (G;K) is
a control problem. In fact, the regulation problem is the special case of the
control problem. A useful preliminary concept is that of well posedness.

De�nition 7.1 The system (G;K) is well posed if the transfer functions from
the external inputs to the generalised outputs exist and are proper.

K G
N N- - - - -

6

?R E U Y

F

+

-

+ +

Figure 7.1: Standard feedback system (G;K)

It is assumed from now on that the systems (G;K) are well posed. A control
system can be represented by a pair (S; E), where E is an external input
function space and S is an input-output rule that maps the external input
function space E into an output function space.

In the time domain the input-output rule S is expressed by

S : w 7! v(w;K) (7.3.5)

where w; v and K are the external input, the generalised output and the
controller, respectively. The external input function:

w : t 7! w(t) (7.3.6)

maps R into R in the continuous-time domain. The generalised output func-
tion:

v(w;K) : t 7! v(t; w;K) (7.3.7)
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maps R into R in the continuous-time domain and depends on the external
input w and the controller K. Let v(t; Æ;K) denote the impulse response of
the system. The input-output relation in the continuous-time domain is

v(t; w;K) =

Z t

0

v(t� �; Æ;K)w(�)d�; t 2 R+ (7.3.8)

In the frequency domain, the input-output rule S is expressed by

S :W 7! V (W;K) (7.3.9)

where W and V are the Laplace transforms of the external input w and the
generalised output v, respectively. The input-output relation is de�ned by

V (s;W;K) = V (s; Æ;K)W (s) (7.3.10)

where V (s;W;K), V (s; Æ;K) and W (s) are the Laplace transforms of v(t;W;
K), v(t; Æ;K) and w(t).

It is well known that the measure of performance in control system design
is quite important. Some performance functions for critical systems are thus
de�ned, based on their corresponding input spaces. A critical control system is
said to be well behaved if it ensures that during all time and all external inputs,
the generalised output remains tolerably small. Therefore, the performance
measure for critical, continuous-time systems is de�ned as

�(K) = sup
�jv(t; w;K)j : t 2 R+; w 2 F	 (7.3.11)

where the output v(t; w; p) is the generalised output, usually the error, but
it may be the control e�ort or other outputs, t is time, w 2 F is the system
inputs, which belong to the known function space F of inputs, and K is the
controller. � is the greatest output as time ranges over the half line [0;1)
and the input ranges over the input space F . The reasons for its preference
are:

a) it is a natural measure of performance and it has an obvious physical
meaning;

b) the system inputs are explicitly considered;

c) it is the ideal performance index for critical systems.

In critical control systems, the main objective is to ensure that during all
time t, the generalised output remains tolerably small. A control system
is said to be well behaved if it satis�es a set of performance criteria that
include, among other conditions, mathematical statement of how small the
performance function has to be. An appropriate mathematical statement
for critical continuous time systems is expressed in the form of the following
criterion:

�(K) � " (7.3.12)

where " is a �nite positive number and the largest tolerable value of �(K),
and the design parameter is the controller K.
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7.4 Input Spaces of Systems

The de�nition of input space plays an important role in critical control sys-
tems since it forms an integral part of the control system representation. The
choice of input space is crucial to the de�nition of performance and directly
a�ects the design method of a system. In the literature, the following kinds
of external input models have been investigated. First, the external inputs
are assumed to be some known standard functions, e.g. a unit step, a pulse,
sine, etc., which are considered in much of classical control theory (see, for
example, Ogata, 1975). Second, it is assumed that the external inputs are
a white Gaussian process with zero mean and covariance not greater than
unity, which are considered in the well-known LQG optimisation problem
(Anderson and Moore, 1971), H2-optimisation problem (see, e.g. Youla et
al., 1976) and much of stochastic control theory (Astrom, 1970; Goodwin
and Sin, 1984; Clarke et al., 1987). Third, it is assumed that the external
inputs are a square-integrable signal of unity energy, which are considered
in H1-optimisation problem (see, Zames, 1981; Francis and Zames, 1984;
Vidyasagar, 1985; Francis, 1987; Doyle et al., 1989). Finally, it is assumed
that the external inputs are a persistent bounded casual signal, which is con-
sidered in the set theoretic approach (Glover and Schweppe, 1971; Parlos
et al., 1988) and in l1=L1-optimisation problems (Vidyasagar, 1986, 1991;
Dahleh and Pearson, 1987a,b).

In order to design continuous systems, here we introduce an input space
in the frequency domain (Liu, 1993).

De�nition 7.2 Suppose that F1 2 H2(�) and F2 2 H2(1), then F = F1F2
is said to be an input in the frequency domain. The set of all functions F is
known as an input space denoted by F(�), i.e.

F(�) = fF1F2 : F1 2 H2(�); F2 2 H2(1)g (7.4.1)

where the space H2(�i) (�i = 1; �) is the set of H2 Hardy space (Francis,
1987) consisting of functions H(s) satisfying that H 2 H2 and kH k2 � �i,
for �i � 0.

Here one can think of the input W as being generated by the given input
F1 through the transfer function F2. Similarly, one can think of the input
space F(�) as being generated by a set of given inputs F1 with H

2-norm no
larger than � through a class of variable transfer functions F2 with H

2-norm
no larger than 1. Thus, the input space F(�) can be shown as Figure 7.2.

From a practical viewpoint, one can also think of F1 as a set of signals
with �nite power and F2 as the transfer function of a subsystem which might
be uncertain but is characterised by kF2 k2 � 1. For example, assume that
a set of given signals is f1 = exp(�at), for a 2 [0:32;1) and t 2 R+, and
a transfer function of the subsystem with uncertainty is F2 = 1=(s + b), for
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F2
- -F1 W

H2(�)

H2(1)

F(�)

Figure 7.2: Input space F(�)

b 2 [0:5;1). Then, obviously,

kF1 k2 =
1p
2a

� 1:25 (7.4.2)

kF2 k2 =
1p
2b
� 1 (7.4.3)

Thus, in this case, the output of the subsystem F1 can be modelled by the
space F(1:25).

Notice that the inputs w in examples above are transient and it is conjec-
tured that the input space F(�) consists of transients. The external inputs
which the space F(�) covers are �nite-energy signals. It can be used to model
the uncertainty of the reference input R and the disturbance F .

For the sake of simplicity, we assume that the reference input R is set
to zero and the disturbance F is modelled by the space F(�). Of course, if
we assume that the reference input R is also modelled by the space F(�),
then the results for this case are also similar to the results to be given in this
chapter but the output Y (or y) should be replaced by the error E (or e) in
the following discussion.

7.5 Multiobjective Critical Control

In the robust control design of critical systems, one should consider four as-
pects of: external input space (or external uncertainty), internal uncertainty
(e.g., modelling error), output performance and robust stability.

a) External input space: This is concerned with environmental conditions
which the system is subjected to, including reference inputs and distur-
bances.

b) Internal uncertainty: This is concerned with modelling errors of the
plant, including parameter variations and unmodelled dynamics.

c) Output performance: This is concerned with the ability of the system
to reach satisfactory outputs.
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d) Robust stability: This is concerned with stability of the system in the
case of internal uncertainty.

Based on the de�nition of the critical systems and the four aspects above, a
possible de�nition of output performance criteria for robust control of MIMO
critical systems may be formulated in a set of inequalities of the form:

�i(K) � "i; for i = 1; 2; :::; n (7.5.1)

where �i(K) is a real scalar and represents the supremum of the absolute
value of the i-th output for all time, and for all external inputs and all inter-
nal uncertainties to which the system is subjected. It also maybe represents
some physical constraints, such as actuator or sensor saturation. K is a sta-
bilising controller which is being designed. The �nite positive real number "i
represents the numerical bound on the aspect of dynamic behaviour described
by �i(K).

K G+�
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Figure 7.3: Feedback system with uncertainties

Several robust control methods for MIMO systems are studied on the basis
of the use of singular values (Lehtomaki, 1981; Francis, 1987; Doyle et al.,
1989). It was recognised that singular values are good indicators of matrix
size. Using the Small Gain Theorem (Zames, 1966), conditions for guaranteed
stability can be obtained in terms of the maximum singular values of perturb-
ing transfer functions. Now, we consider the feedback system shown in Figure
7.1, where K(s) is the controller transfer function and G(s) +�(s) the plant
transfer function. G(s) is a known nominal model and �(s) an unknown per-
turbation representing parameter variations and unmodelled dynamics. Thus,
the following bound may be established for the maximum singular value of
the perturbation of the system in order to guarantee robust stability:

k� k1 <
K(I +GK)�1

�1
1 (7.5.2)

where k : k1 is the H1-norm of a matrix, i.e. the maximal singular value of
a matrix.

It is well-known that the robust stability of MIMO systems with internal
uncertainty can be guaranteed by (7.5.2). Let us de�ne a dynamical modelling
error space which models the internal uncertainty in the frequency domain
(Liu et al., 1995).
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De�nition 7.3 The modelling error space D(Æ) is a set of functions �(s)
satisfying that

k� k1 < 1=Æ; for Æ > 0 (7.5.3)

Then from the stability formula (7.5.2) the robust performance criterion of
MIMO systems can be formulated as

 (K) � Æ (7.5.4)

where

 (K) =
K(I +GK)�1


1 (7.5.5)

Therefore, after combining the output performance criteria (7.5.1) and the
robust performance criterion (7.5.4), a formulation of the robust control design
of MIMO critical systems will be expressed by the following form:

(
 (K) � Æ

�i(K) � "i; for i = 1; 2; :::; n
(7.5.6)

Obviously, the design problem is to �nd a controller such that (7.5.6) is
satis�ed. For this design problem, �rstly, simplify the output performance
functions �i(K) by some analytical methods; secondly, �nd a controller K
satisfying (7.5.6) employing some numerical optimisation methods.

Sometimes, there does not exist a solution to the stabilising controller
such that (7.5.6) is satis�ed. Therefore, in this case, the design problem is
not realistically formulated and must be reformulated. This means that Æ
and/or "i (i = 1; 2; :::; n) in (7.5.6) must be readjusted.

7.6 Control Design of SISO Critical Systems

In this section we consider the robust control design of SISO continuous critical
systems in the frequency domain.

It assumes that the disturbance F 2 F(�) and the modelling error � 2
D(Æ) and the reference input R = 0 in Figure 7.1. Then, from section 7.3, it
is readily appreciated that a measure of output performance of the system in
Figure 7.1 can be de�ned by

�(K) = supfjy(t; F;�;K)j : t 2 R; F 2 F(�);� 2 D(Æ)g (7.6.1)

where y(t; F;�;K) is the output of the system and is the function of the
disturbance F , the modelling error � and the controller K.
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Roughly speaking, the output performance function �(K) is the least up-
per bound of the absolute output that occurs over all time t 2 R, all distur-
bances F 2 F(�) and all dynamical modelling errors � 2 D(Æ). Thus, from
(7.6.1), the output performance criterion is given by

�(K) � " (7.6.2)

where " is a real positive number.
Let ��(K) denote the output performance function of the system without

internal uncertainty (� = 0), that is,

��(K) = supfjy�(t; F;K)j : t 2 R; F 2 F(�)g (7.6.3)

where y�(t; F;K) is the output of the system without internal uncertainty.
In addition, here let

 (K) =
K(1 +GK)�1


1 (7.6.4)

The robust performance criterion is still given by (7.5.4), i.e.

 (K) � Æ (7.6.5)

where Æ is the positive number given by the modelling error space D(Æ).
Now, we consider the evaluation of output performance for the system

(G;K) with only disturbances in the input space F(�). Before a main result
for this case is given , we need the following lemmas.

Lemma 7.1 If Q 2 H2, then kQ k2 = k q k2, i.e.�
1

2�

Z +1

�1
jQ(j!)j2d!

�1=2
=

�Z +1

0

q2(t)dt

�1=2
(7.6.6)

Proof: Refer to Plancherel's theorem (Francis, 1987).

Lemma 7.2 If P 2 H1, then

kP k1 = supfkPQ k2 : Q 2 H2(Æ)g=Æ (7.6.7)

Proof: If P 2 H1, then (Francis, 1987)

kP k1 = supfkPX k2 : X 2 H2; kX k2 � 1g (7.6.8)

Since Q 2 H2(Æ); kQ=Æ k2 � 1. Hence,

kP k1 = supfkPQ=Æ k2 : Q=Æ 2 H2; kQ=Æ k2 � 1g

= supfkPQ k2=Æ : Q 2 H2(Æ)g

= supfkPQ k2 : Q 2 H2(Æ)g=Æ (7.6.9)
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A relation between the input space F(�), the controller K and the output
performance �(K) is given by the following theorem (Liu, 1993).

Theorem 7.1 Assume that (1 +GK)�1 2 RH1 and F 2 F(�), then

��(K) =
 (1 +GK)�1


1� (7.6.10)

Proof: By De�nition 7.2, F = F1F2, for F1 2 H2(�) and F2 2 H2(1). Let
H = (1 +GK)�1F1: By Lemma 7.1, then H 2 H2. By the convolution, then
the output of the system is

y(t; R;K) =

Z t

0

h(t� �)f2(�)d� (7.6.11)

Using the Cauchy-Schwarz's inequality (Luenberger, 1969) gives

jy(t; R;K)j �
�Z t

0

h2(�)d�

�1=2 �Z t

0

f22 (�)d�

�1=2

�
�Z 1

0

h2(�)d�

�1=2 �Z 1

0

f22 (�)d�

�1=2

= kh k2k f2 k2 (7.6.12)

By Lemma 7.1, then

jy(t; R;K)j �  (1 +GK)�1F1

2
kF2 k2 (7.6.13)

Since F 2 F(�),
jy(t; R;K)j �  (1 +GK)�1F1


2

(7.6.14)

According to the de�nition of the performance function �(K), it can be de-
duced from (7.6.1) and (7.6.14) that

�(K) �  (7.6.15)

where

 = supf (1 +GK)�1F1

2
: F1 2 H2(�)g (7.6.16)

For � 2 (0; ) and � > 1, let

H+
n = (1 +GK)�1F+

1n; n 2 IN+ (7.6.17)

where F+
1n 2 H2(�) and makes H+

n satisfyH+
n


2
=  � ���n (7.6.18)
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Since  is the supremum of kH k2 for F1 2 H2(�), according to the de�nition
of the supremum there certainly exists a sequence F+

1n 2 H2(�) (n 2 N+)
which makes (7.6.18) hold. Choose a particular input sequence F �n = F �1nF

�
2n

(n 2 N+) de�ned by F �1n = F+
1n and F �2n = L �f+2n�, where

f+2n(�) =

(
h+n (t� �)kH+

n k�12 for 0 � � � t

0 for � > t and � < 0
(7.6.19)

and h+n = L�1 [H+
n ]. It is obvious that F+

2n 2 H2(1). So, F �n 2 F(�) for
n 2 N+.

Substituting (7.6.19) into (7.6.11) gives

y(t; R�n;K) =

Z t

0

Æ2(h
+
n (�))

2
H+

n

�1
2
d� (7.6.20)

As t!1, then

y(1; R�n;K) =

Z 1

0

(h+n (�))
2
H+

n

�1
2
d�

=
h+n 22H+

n

�1
2

(7.6.21)

By Lemma 7.1, then

y(1; R�n;K) =
H+

n


2

= ( � ���n) (7.6.22)

As n!1, then
y(1; R�1;K) =  (7.6.23)

With (7.6.1), it follows from the above that

��(K) � � (7.6.24)

From (7.6.15) and (7.6.23), it can be concluded that

��(K) = supf (1 +GK)�1F1

2
: F1 2 H2(�)g (7.6.25)

Using Lemma 7.2 gives

��(K) =
 (1 +GK)�1


1� (7.6.26)

Therefore, the theorem is established.

Theorem 7.1 shows that the design of the controller K that minimises �(K)
for the system (G;K), subjected to the input space F(�), is converted to the
problem of minimising

 (1 +GK)�1

1.
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Theorem 7.2 If all F 2 F(�), all � 2 D(Æ) and  (K) � Æ, then

Æ

Æ +  (K)
��(K) � �(K) � Æ

Æ �  (K)
��(K) (7.6.27)

where �(K), ��(K) and  (K) are given by (7.6.1), (7.6.3) and (7.6.4), re-
spectively.

Proof: Since F 2 F(�), it is known from Theorem 7.1 that the output perfor-
mance functions �(K) and ��(K) de�ned in the time domain can be calculated
in the frequency domain by, respectively,

�(K) =
 (1 + (G+�)K)�1


1� (7.6.28)

��(K) =
 (1 +GK)�1


1� (7.6.29)

Since

(1 + (G+�)K)�1 = (1 +GK)�1
�
1 +

�K

1 +GK

��1
(7.6.30)

it is from (7.6.28) that

�(K) =

 (1 +GK)�1
�
1 +

�K

1 +GK

��1 
1
�

�

�
1 +

�K

1 +GK

��1 
1

 (1 +GK)�1

1� (7.6.31)

It is well known that if kA k1 < 1, for A 2 kA k1, then (I +A)�1

1 � (1� kA k1)�1 (7.6.32)

Thus, using the above, � 2 D(Æ) and  (K) � Æ gives

�(K) �
�
1�

 �K

1 +GK


1

��1
��(K)

� [1� k�K k1 (K)]�1��(K)

� Æ

Æ �  (K)
��(K) (7.6.33)

On the other hand, since

(1 +GK)�1 = (1 + (G+�)K)�1
�
1 +

�K

1 +GK

�
(7.6.34)
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it is from (7.6.29) that

��(K) =

 (1 + (G+�)K)�1
�
1 +

�K

1 +GK

� 
1
�

�
 1 + �K

1 +GK


1

 (1 + (G+�)K)�1

1�

� Æ +  (K)

Æ
�(K) (7.6.35)

which gives

�(K) � Æ

Æ +  (K)
��(K) (7.6.36)

Therefore, the theorem follows from (7.6.33) and (7.6.35).

Theorem 7.2 shows a relationship between the output performance functions
of the system with and without internal uncertainty �. According to the
result of Theorem 7.2, the robust control design problem (7.5.6) for SISO
critical systems can be simpli�ed as(

 (K) � Æ

��(K) � "�
(7.6.37)

where

 (K) =
K(1 +GK)�1


1 (7.6.38)

��(K) =
 (1 +GK)�1


1� (7.6.39)

"� =
Æ �  (K)

Æ
" (7.6.40)

Obviously, it overcomes the diÆculty of calculating the output performance
function expressed by (7.6.1) in the time domain or (7.6.28) in the frequency
domain. And it means that the robust control design of critical systems
can be solved by the combination of multiobjective optimisation methods
and the H1-optimisation method (Zames, 1981; Francis, 1987; Doyle et al.,
1989). It is also clear that the controller satisfying (7.6.37) can guarantee that
the system satis�es the output performance criterion (7.6.2) and the robust
performance criterion (7.6.5).

7.7 Control Design of MIMO Critical Systems

Now, we consider multivariable systems with disturbance

F = [F1; F2; :::; Fn]
T (7.7.1)
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and the output
Y = [Y1; Y2; :::; Yn]

T (7.7.2)

Let each disturbance Fi belong to a corresponding space F(�i), and the mod-
elling error � 2 D(Æ). Also, let us de�ne the following Cartesian spaces:

F(�) = F(�1)�F(�2)� :::�F(�n) (7.7.3)

where � = [�1; �2; :::; �n].
Following the scalar case, the output performance of the system is de�ned

by

�i(K) = supfjyi(t; F;�;K)j : t 2 R; F 2 F(�);� 2 D(Æ)g;

for i = 1; 2; :::; n (7.7.4)

where yi(t; F;�;K) is the ith output of the system and the function of the
disturbance F , the modelling error � and the controller K. Thus the output
performance criteria are de�ned by

�i(K) � "i; for i = 1; 2; :::; n (7.7.5)

where "i is a real positive number.
The robust performance criterion is still de�ned by

 (K) � Æ (7.7.6)

where
 (K) =

K(I +GK)�1

1 (7.7.7)

and Æ is given by the external uncertainty space D(Æ).

A relationship between the input space F(�) and the controller K in the
frequency domain, and the output performance in the time domain is given
by the following theorem (Liu et al., 1995).

Theorem 7.3 Assume that (I + (G+�)K)�1 2 H1 and F 2 F(�), then

�i(K) =

nX
j=1

 eTi (I + (G+�)K)�1ej

1�j (7.7.8)

where ei 2 Rn�1 is an identity vector, e.g. e2 = [0; 1; 0; :::; 0]T .

Proof: From Figure 7.3, the relation between the output and the disturbance
is

Y = (I + (G+�)K)�1F (7.7.9)
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It is known from the above that for i = 1; 2; :::; n;

Yi =

nX
j=1

eTi (I + (G+�)K)�1ejFj (7.7.10)

where Fj = Fj1Fj2. Let Hij = eTi (1 + (G + �)K)�1ejFj1 . Since eTi (I +
(G+�)K)�1ej 2 H1 and Fj1 2 H2, by the de�nition of H2, it is clear that
Hij 2 H2. In terms of the convolution, then the output of the system is

yi(t; F;�;K) =

nX
j=1

Z t

0

hij(t� �)fj2(�)d� (7.7.11)

Using the Cauchy-Schwarz inequality (Luenberger, 1969) gives

jyi(t; F;�;K)j �
nX
j=1

�Z t

0

h2ij(�)d�

� 1
2
�Z t

0

f2j2(�)d�

� 1
2

�
nX
j=1

�Z 1

0

h2ij(�)d�

� 1
2
�Z 1

0

f2j2(�)d�

� 1
2

=

nX
j=1

khij k2k fj2 k2 (7.7.12)

Using Lemma 7.1, then, khij k2 = kHij k2 and k fj2 k2 = kFj2 k2. Thus, the
above leads to

jyi(t; F;�;K)j �
nX
j=1

 eTi (1 + (G+�)K)�1ejFj1

2
kFj2 k2 (7.7.13)

Since Fj2 2 H2(1), for j = 1; 2; :::; n;

jyi(t; F;�;K)j �
nX
j=1

 eTi (1 + (G+�)K)�1ejFj1

2

(7.7.14)

From the above it can be seen that the item on the right hand side is not the
function of the time t. According to the de�nition of the output performance
�i(K), it can be deduced that

�i(K) �
nX
j=1

ij (7.7.15)

where

ij = supf eTi (1 + (G+�)K)�1ejFj1

2
: Fj1 2 H2(�j)g (7.7.16)
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For Æij 2 (0; ij) and �ij > 1, let

H+
ij;m = eTi (1 + (G+�)K)�1ejF+

j1;m; m 2 N+ = f0; 1; 2; :::g (7.7.17)

where F+
j1;m 2 H2(�j) and makes H+

ij;m satisfyH+
ij;m


2
= ij � Æij�

�m
ij (7.7.18)

According to the de�nition of the supremum there certainly exists a sequence
F+
j1;m 2 H2(�j) (m 2 N+) that makes (7.7.18) hold. Choose a particular

input sequence F �m = [F �1;m; F
�
2;m; :::; F

�
n;m] which is de�ned as follows: for

j = 1; 2; :::; n, F �j;m = F �j1;mF
�
j2;m, F

�
j1;m = F+

j1;m and F �j2;m = L �f+j2;m�,
where

f+j2;m(�) =

(
h+ij;m(t� �)

H+
ij;m

�1
2

for 0 � � � t

0 otherwise
(7.7.19)

and h+ij;m = L�1 �H+
ij;m

�
. It is obvious that F �j2;m 2 H2(1). So, F �j;m 2 F(�j).

Substituting (7.7.19) into (7.7.11) gives

yi(t; F
�
m;�;K) =

nX
j=1

Z t

0

(h+ij;m(�))
2
H+

ij;m

�1
2
d� (7.7.20)

As t!1, then

yi(1; F �m;�;K) =

nX
j=1

Z 1

0

(h+ij;m(�))
2
H+

ij;m

�1
2
d�

=

nX
j=1

h+ij;m 22H+
ij;m

�1
2

(7.7.21)

Using Plancherel's theorem gives

yi(1; F �m;�;K) =

nX
j=1

H+
ij;m


2
=

nX
j=1

(ij � Æij�
�m
ij ) (7.7.22)

As m!1, then ��mij ! 0. Thus

yi(1; F �1;�;K) =
nX
j=1

ij (7.7.23)

From the de�nition of the output performance �i(K) and the result above, it
is easy to know that �i(K) � yi(1; F �1;�;K), that is

�i(K) �
nX
j=1

ij (7.7.24)
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From (7.7.15) and (7.7.24), it can be concluded that

�i(K) =
nX
j=1

supf eTi (1 + (G+�)K)�1ejFj1

2
: Fj1 2 H2(�j)g (7.7.25)

It is well known that (Francis, 1987)

supf eTi (1 + (G+�)K)�1ejFj1

2
: Fj1 2 H2(�j)g

=
 eTi (1 + (G+�)K)�1ej


1�j (7.7.26)

Thus,

�i(K) =

nX
j=1

 eTi (1 + (G+�)K)�1ej

1�j (7.7.27)

Therefore, the theorem is proved.

If there is not internal uncertainty, i.e. � = 0, it can be known from Theorem
7.3 that the relationship between the input space F(�), the controller K and
the output performance �i(K) is

��i (K) =

nX
j=1

 eTi (1 +GK)�1ej

1�j (7.7.28)

for i = 1; 2; :::; n, where ��i (K) is the i-th output performance function of the
system without internal uncertainty. For the multivariable case, the following
theorem is obtained.

Theorem 7.4 If all F 2 F(�), all � 2 D(Æ) and  (K) � Æ, then for i =
1; 2; :::; n

�i(K) � Æ

Æ �  (K)
�+(K) (7.7.29)

where

 =

nX
j=1

�j (7.7.30)

�+(K) =
 (I +GK)�1


1 (7.7.31)

and �i(K) is de�ned in (7.7.4).

Proof: As a result of Theorem 7.3, it is known that

�i(K) =

nX
j=1

 eTi (I + (G+�)K)�1ej

1�j
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�
nX
j=1

 (I + (G+�)K)�1

1�j

�  (I + (G+�)K)�1

1 (7.7.32)

Since

(I + (G+�)K)�1 = (I +GK)�1[I +�K(I +GK)�1]�1 (7.7.33)

from (7.7.32), we have

�i(K) �  (I +GK)�1[I +�K(I +GK)�1]�1

1

�  [I +�K(I +GK)�1]�1

1
 (I +GK)�1


1 (7.7.34)

It is shown from the robust stability condition that
�K(I +GK)�1


1 < 1.

Thus, using (7.6.32) and  (K) � Æ gives

�i(K) � �
1� �K(I +GK)�1


1
��1

�+(K)

� Æ

Æ �  (K)
�+(K) (7.7.35)

which, therefore, proves the theorem.

Theorem 7.4 shows that the robust control design problem of MIMO critical
systems can be simpli�ed as

�
 (K) � Æ
�+(K) � "+

(7.7.36)

where

 (K) =
K(I +GK)�1


1 (7.7.37)

�+(K) =
 (I +GK)�1


1 (7.7.38)

"+ =
Æ �  (K)

Æ
max

i=1;2;:::;n
f"ig (7.7.39)

Similar to the scalar case, (7.7.36) can be solved using multiobjective optimi-
sation methods and H1 optimisation method. It is also clear that the output
performance criteria (7.7.5) and the robust performance criterion (7.7.6) can
be satis�ed by the solution of the inequalities (7.7.36). Therefore, the robust
control design of critical systems is largely simpli�ed.
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7.8 An Example

The following example illustrates the robust control design of multivariable
critical systems. Here we consider a two-input two-output plant given by

G(s) =

2
664
�45s+ 1

s2 + 5s+ 6

24s

s2 + 5s+ 6

�35s
s2 + 5s+ 6

58s+ 1

s2 + 5s+ 6

3
775 (7.8.1)

The external uncertainty (the disturbance) F and the internal uncertainty
(the modelling error) � which the system is subjected to are assumed to be

F 2 F(�); � = [ 0:01 0:01 ]

� 2 D(2:5)
The output performance functions �1(K) and �2(K) in time domain are re-
quired to satisfy

�1(K) � 0:13

�2(K) � 0:13

It is easy to know that  =

2X
i=1

�i = 0:02, Æ = 2:5 and max
i=1;2

f"ig = 0:13. Ac-

cording to the result (7.7.36) of Section 7.7, the robust control design problem
of the system (7.8.1) can be simpli�ed to �nd a stabilising controller such that

 (K) =
K(I +GK)�1


1 � 2:5 (7.8.2)

�+(K) =
 (I +GK)�1


1 � "+ =

0:13(2:5�  (K))

0:05
(7.8.3)

are satis�ed. Combining the method of inequalities (Whidborne and Liu,
1993) and the H1 optimisation techniques (Chiang and Safonov, 1988), a
stabilising controller that satis�es both the output and the robust performance
requirements (7.8.2) and (7.8.3) is found to be

K(s) =2
6664

�0:0386s2� 0:0056s� 0:0001

s3 + 0:1918s2 + 0:0104s+ 0:0002

�0:0108s2 + 0:0022s+ 0:0001

s3 + 0:1918s2 + 0:0104s+ 0:0002

�0:0182s2� 0:0012s+ 0:0001

s3 + 0:1918s2 + 0:0104s+ 0:0002

�0:0179s2 + 0:0107s+ 0:0005

s3 + 0:1918s2 + 0:0104s+ 0:0002

3
7775
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which gives the following values of the output and robust performance func-
tions

 (K) = 1:9574 (7.8.4)

�+(K) = 1:3309 (7.8.5)

It is easily obtained from (7.8.3) and (7.8.4) that "+ = 1:4108 which is
greater than 1:3309. From (7.7.29), we can calculate that �1(K) � 0:1226
and �2(K) � 0:1226, which are less than 0:13. Therefore, both the output
and the robust performance requirements are satis�ed.

7.9 Summary

This chapter has given an introduction to critical control systems and dis-
cussed the robust control design of critical systems with external and internal
uncertainties. The formulation of the robust control design of these systems
is expressed by a set of inequalities which includes output performance cri-
teria in the time domain and robust performance criterion in the frequency
domain of the system. Several relationships between an input space, a mod-
elling error space, a controller, output performance and robust performance
are established for SISO and MIMO critical systems so that the robust control
design problem of these systems is largely simpli�ed.



Chapter 8

Multiobjective Control

Using Eigenstructure

Assignment

8.1 Introduction

In the 1960s Wonham presented the fundamental result on eigenvalue assign-
ment in linear time-invariant multivariable controllable systems (Wonham,
1967). This states that the closed-loop eigenvalues of any controllable system
may be arbitrarily assigned by state feedback control. Later, Moore found
that degrees of freedom are available over and above eigenvalue assignment
using state feedback control for linear time-invariant multi-input multi-output
(MIMO) systems (Moore, 1976). Since then, numerous methods and algo-
rithms involving both state and output feedback control have been developed
to exercise those degrees of freedom to give the systems some good perfor-
mance characteristics (Kautsky et al., 1985; Liu and Patton, 1995, 1996b,
1998a,d,e; Liu and Daley, 1998).

A number of traditional approaches to control system design objectives
make use of scalar summation of all weighted objectives in one cost function.
Though this method simpli�es the approach to optimisation, it is not clear
how each objective is a�ected by the controller. On the other hand, if all of
the objectives are considered through the use of the individual cost functions,
then the action of each objective on the structure of the controller can be
determined.

Most eigenstructure assignment techniques have only paid attention to
optimal solutions for one special performance index, e.g., the eigenvalue sen-
sitivity function or the linear quadratic index. However, many practical con-
trol systems are required to have the ability to �t simultaneously di�erent

199
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and often conicting performance objectives as best as possible, for instance,
closed-loop stability, low feedback gains and insensitivity to model parameter
variations.

This chapter is concerned with multiobjective control system design using
eigenstructure assignment. The multiobjective performance indices include
the individual eigenvalue sensitivities, low feedback gains, and the sensitivity
functions in the frequency domain. The robust performance criteria are ex-
pressed by a set of inequalities on the basis of the multiobjective performance
indices. In order to obtain an approximate global optimisation for the multi-
objective control system design, some numerical algorithms are outlined using
eigenstructure assignment, the method of inequalities and genetic algorithms.

8.2 What is Eigenstructure Assignment

Eigenstructure assignment is a design technique which may be used to as-
sign the entire eigenstructure (eigenvalues, and right or left eigenvectors) of
a closed-loop linear system via a constant gain full state or output feedback
control law. It consists, essentially, of the following steps:

a) Choose a set (or sets) of possible closed-loop eigenvalues (or poles).

b) Compute the associated so-called allowable eigenvector subspaces, which
describe the freedom available for closed-loop eigenvector assignment.

c) Select speci�c eigenvectors from the allowable eigenvector subspaces ac-
cording to some design strategies.

d) Calculate a control law, appropriate to the chosen eigenstructure.

Consider the following linear time-invariant system

Æx = Ax+Bu (8.2.1)

y = Cx (8.2.2)

where x 2 Rn�1 is the state vector, Æx represents _x(t) for continuous systems
and x(t + 1) for discrete systems, u 2 Rr�1 is the control input vector, y 2
Rm�1 is the output vector, A 2 Rn�n, B 2 Rn�r and C 2 Rm�n.

A linear output feedback control law applied to the system above is

u = Ky (8.2.3)

where the matrix K 2 Rr�m is the output feedback controller gain. The
output feedback system is shown in Figure 8.1.

It is well known that maxfr;mg eigenvalues are assignable arbitrarily by
output feedback. This restricts the choice of eigenvalue and eigenvector pairs.
However, if m + r > n, the whole spectrum can be assigned, with some
restrictions on the eigenvector selection (Kimura, 1975). This also implies
that an eigenvector associated with an eigenvalue can be assigned in either
the right eigenvector set or the left eigenvector set but not both. In addition,



8.2. WHAT IS EIGENSTRUCTURE ASSIGNMENT 201

u x y

A

CBK ∫ −/ z 1

Figure 8.1: Output feedback control system

whatever the selection of eigenvectors is, it may be very diÆcult to assign some
spectrum if the system to be designed su�ers from pathological structures. For
this case or m+ r � n, the following dynamical compensator will be helpful
(Han, 1989; Duan, 1993):

Æz = Adz +Bdy (8.2.4)

u = Cdz +Ddy (8.2.5)

where z 2 Rp�1 is the state vector of the controller, and Ad; Bd; Cd andDd are
matrices. Combining (8.2.1), (8.2.2), (8.2.4) and (8.2.5) yields the following
equivalent system:

Æ

�
x
z

�
=

�
A 0
0 0

��
x
z

�
+

�
B 0
0 I

�
�u (8.2.6)

�y =

�
C 0
0 I

� �
x
z

�
(8.2.7)

�u =

�
Dd Cd
Bd Ad

�
�y (8.2.8)

This clearly shows that the dynamical compensator can be designed as a
standard output feedback controller. The number of closed-loop eigenvalues
is equal to the sum of the orders of the system (A;B) and the dynamical
controller (Ad; Bd; Cd; Dd), i.e., n + p. It is clear that the system matrices
change and the number of the system states will be less than the sum of the
plant inputs and outputs by appropriate choice of the order of the dynamical
compensator. But, for this augmented system, it may be inconvenient to
choose separated spectra: one for the plant and the other for the controller.

Thus, without loss of generality, the following assumptions are made for
the system (8.2.1) and (8.2.2): rank (B) = r, rank(C) = m and m + r > n.
Then the closed-loop system representation is given by

Æx = (A+BKC)x (8.2.9)

Now, let us de�ne a closed-loop self-conjugate eigenvalue set � = f�i : �i 2
C; i = 1; 2; :::; ~ng, i.e., the set of the eigenvalues of the closed-loop matrix
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A + BKC, where ~n is the number of distinct eigenvalues. For an uncontrol-
lable and/or unobservable system, the uncontrollable and/or unobservable
open-loop eigenvalues should be included in the closed-loop self-conjugate
eigenvalue set �. Though output feedback eigenstructure assignment can not
change those eigenvalues, their corresponding eigenvectors may properly be
chosen to improve the insensitivity of the closed-loop matrix and the robust-
ness of the closed-loop system.

Denote the algebraic and geometric multiplicity of the i-th eigenvalue �i
by qi and ri, respectively, then, in the Jordan canonical form of the matrix
A+BKC, there are ri Jordan blocks, associated with the i-th eigenvalue �i,
of orders pij , j = 1; 2; :::; ri, and the following relations:

riX
j=1

pij = qi;

~nX
i=1

qi = n (8.2.10)

In the case of pij = 1, j = 1; 2; :::; ri, i = 1; 2; :::; ~n, the Jordan canonical
form of the matrix A + BKC is diagonal. Now, let the right eigenvectors
and generalised eigenvectors of the matrix A + BKC corresponding to the
eigenvalue �i be Rij;k 2 Cn�1, k = 1; 2; :::; pij , j = 1; 2; :::; ri. According
to the de�nition of the right eigenvector and generalised eigenvector for a
multiple eigenvalue, then we have

(�iI �A�BKC)Rij;k = �Rij;k�1; Rij;0 = 0 (8.2.11)

for k = 1; 2; :::; pij , j = 1; 2; :::; ri and i = 1; 2; :::; ~n. Thus, the right eigenvec-
tor and generalised eigenvector matrix is given by

R = [R1; R2; :::; R~n] 2 Cn�n (8.2.12)

Ri = [Ri1; Ri2; :::; Riri ] 2 Cn�qi (8.2.13)

Rij = [Rij;1; Rij;2; :::; Rij;pij ] 2 Cn�pij (8.2.14)

for j = 1; 2; :::; ri, i = 1; 2; :::; ~n; where, in fact, Ri contains all right eigenvec-
tors and generalised eigenvectors associated with the eigenvalue �i.

Similarly, the left eigenvectors and generalised eigenvectors for multiple
eigenvalues are de�ned by

LTij;k(�iI �A�BKC) = �LTij;k�1; Lij;0 = 0 (8.2.15)

for k = 1; 2; :::; pij , j = 1; 2; :::; ri and i = 1; 2; :::; ~n. Then, the left eigenvector
and generalised eigenvector matrix is given by

L = [L1; L2; :::; L~n] 2 Cn�n (8.2.16)

Li = [Li1; Li2; :::; Liri ] 2 Cn�qi (8.2.17)

Lij = [Lij;1; Lij;2; :::; Lij;pij ] 2 Cn�pij (8.2.18)
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for j = 1; 2; :::; ri, i = 1; 2; :::; ~n; where the matrix Li consists of all left
eigenvectors and generalised eigenvectors associated with the eigenvalue �i.

Therefore, the problem of eigenstructure assignment via output feedback
for the system (8.2.1)-(8.2.3) can be stated as follows: Given the closed-loop
self-conjugate eigenvalue set �, and the integers ri; pij ; qi, for j = 1; 2; :::; ri,
i = 1; 2; :::; ~n satisfying (8.2.10), �nd a real controller K such that the eigen-
values of the matrix A + BKC are in the set � by choosing both the right
and left eigenvector and generalised eigenvector matrices V and F properly.

8.3 Allowable Eigenvector Subspaces

The allowable eigenvector subspace is, in general, contained (in the context of
set theory) in the full state-space (Rn). This subspace consists of a function
of the system input, output and state matrices and the choice of closed-
loop eigenvalues. Two cases for calculation of these allowable eigenvector
subspaces will be outlined in this section. One is that the sets of open- and
closed-loop eigenvalues have no elements in common, i.e., j�iI � Aj 6= 0, for
i = 1; 2; :::; n. The other is that the sets of open- and closed-loop eigenvalues
intersect, i.e., j�iI � Aj = 0, for some i. For example, the uncontrollable
open-loop eigenvalues must be in the closed-loop eigenvalue set.

In the case of complex eigenvector assignment each of these methods may
be modi�ed so that a real representation of the allowable eigenvector subspace
can be computed using real arithmetic only. This real representation is useful
when it comes to assigning only the real (or complex) part of a speci�c element
of a desired eigenvector. It is not clear how this may be performed using the
complex representation of the allowable subspace.

For the sake of simplicity, it is assumed that all eigenvalues are real and
distinct. Denote the i-th eigenvalue and corresponding right and left eigen-
vectors of the system described by �i, Ri and Li, respectively. The spectral
and modal matrices can then be de�ned as

R = [R1 R2 ::: Rn ] 2 Rn�n (8.3.1)

L = [L1 L2 ::: Ln ] 2 Rn�n (8.3.2)

and

D� = diag[�1; �2; :::; �n] 2 Rn�n (8.3.3)

For the general case where the modal matrix D� is of a Jordan form, the
following results are also similar.

Case 1: j�iI �Aj 6= 0

Consider the eigenstructure of the closed-loop system corresponding to real
eigenvalues described by (8.3.1)-(8.3.3). By de�nition, we may write

(A+BKC)Ri = �iRi (8.3.4)
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LTi (A+BKC) = �iL
T
i (8.3.5)

Since it is assumed that j�iI �Aj 6= 0, rearranging these equations results in

Ri = (�iI �A)�1BWi (8.3.6)

Li = (�iI �AT )�1CTVi (8.3.7)

where

Wi = KCRi (8.3.8)

Vi = KTBTLi (8.3.9)

are called the right and left parameter vectors, respectively. It is clear from
(8.3.6) and (8.3.7) that the i-th allowable right eigenvector may be chosen
from a linear combination of the columns of

PR;i = (�iI �A)�1B (8.3.10)

and the i-th allowable left eigenvector may be chosen as a linear combination
of the columns of

PL;i = (�iI �AT )�1CT (8.3.11)

The dimension of each subspace is given by

dim(PR;i) = m (8.3.12)

dim(PL;i) = r (8.3.13)

The latter two equations show that an allowable i-th right (left) closed-loop
eigenvector may be chosen withm (r) degrees of freedom, i.e., that the number
of entries of a right (left) eigenvector that may be exactly assigned is m (r).

The above analysis may also be applied to the calculation of allowable
eigenvector subspaces corresponding to complex eigenvalues. However, a real
representation of this subspace facilitates the assignment of a desired eigen-
vector, in the case where only the real or imaginary part of an element of
a desired eigenvector is speci�ed (the other element is left unconstrained).
The calculation of the allowable right eigenvector subspaces corresponding to
complex eigenvalues, using real arithmetic only, is performed next. A similar
analysis is applied to the calculation of allowable left eigenvector subspaces.
De�ne

�i = �rei + j�imi (8.3.14)

Ri = Rre
i + jRim

i (8.3.15)

where, from now on, re and im denote the real and the imaginary parts,
respectively, and j indicates the imaginary part of a complex number. Hence,
continuing from (8.3.4) gives

(A+BKC)(Rre
i + jRim

i ) = (Rre
i + jRim

i )(�rei + j�imi ) (8.3.16)
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Equating real and imaginary parts yields

�
Rre
i

Rim
i

�
=

�
�rei I �A ��imi I
�imi I �rei I �A

��1 �
B 0
0 B

��
W re

i

W im
i

�
(8.3.17)

where

W re
i = KCRre

i (8.3.18)

W im
i = KCRim

i (8.3.19)

Wi =W re
i + jW im

i is the right parameter vector. Let

~A =

�
�rei I �A ��imi I
�imi I �rei I �A

�
(8.3.20)

~B =

�
B 0
0 B

�
(8.3.21)

Since j�iI � Aj 6= 0, the matrix ~A is nonsingular as well. Thus, the real and
imaginary parts of the allowable right eigenvector corresponding to the i-th
complex eigenvalue may be chosen from a linear combination of the columns
of

P c
R;i =

~A�1 ~B (8.3.22)

The above technique of expressing the allowable eigenvector subspace is useful
for the analytically-derived partial derivatives of the allowable eigenvector
subspaces with respect to some parameters of interest. This is important when
considering eigenstructure control laws which have optimal low sensitivity
performance and stability robustness (Patton and Liu, 1994; Liu and Patton,
1998b).

Case 2: j�iI �Aj = 0

For the case of j�iI � Aj = 0, the calculation of allowable right eigenvector
subspaces is now given. The left eigenvector subspaces may be found using a
similar analysis. Starting with (8.3.6), and considering �rst only the assign-
ment of real eigenvalues, an alternative rearrangement to that performed in
the above analysis produces

[A� �iI B ]

�
Ri

Wi

�
= 0 (8.3.23)

which is equivalent to�
Ri

Wi

�
2 fSi : [A� �iI B ]Si = 0g (8.3.24)
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Equation (8.3.24) is interpreted as meaning that the vector [RT
i ;W

T
i ]

T belongs
to the null space Si (or kernel) of the n� (n+m) matrix [A� �iI B ].

If complex eigenvalues are to be assigned then, in order to avoid the use
of complex arithmetic, proceed as follows. Equation (8.3.16) is rewritten as
one equation:

�
�rei I �A ��imi I B 0
�imi I �rei I �A 0 B

�264
Rre
i

Rim
i

W re
i

W im
i

3
75 = 0 (8.3.25)

Equation (8.3.25) describes another null space problem.
Roughly speaking, the null space Si forms an allowable eigenvector sub-

space. This space may be calculated by performing the singular value decom-
position or orthogonal triangular decomposition method.

8.4 Parametric Eigenstructure Assignment

In this section, the (ij)-th Jordan block is taken to show how to obtain the
parametric expression of the eigenvector and generalised eigenvectors. The
other Jordan blocks can also follow the same procedure developed below.

From (8.2.11) and (8.2.15), the right and left eigenvectors and generalised
eigenvectors corresponding to the real eigenvalue �i in the (ij)-th Jordan block
can also be written as

(�iI �A)Rij;k = BKCRij;k �Rij;k�1 (8.4.1)

LTij;k(�iI �A) = LTij;kBKC � LTij;k�1 (8.4.2)

Rij;0 = 0; Lij;0 = 0; for k = 1; 2; :::; pij . Here introduce the right and left
auxiliary vectors de�ned by, respectively

Wij;k = KCRij;k 2 Rr�1 (8.4.3)

V T
ij;k = LTij;kBK 2 R1�m (8.4.4)

for k = 1; 2; :::; pij . Substituting the right and left auxiliary vectors into
equations (8.4.1) and (8.4.2), respectively gives

(�iI �A)Rij;k +Rij;k�1 = BWij;k (8.4.5)

LTij;k(�iI �A) + LTij;k�1 = V T
ij;kC (8.4.6)

for k = 1; 2; :::; pij . The relationship between the right eigenvector and gen-
eralised eigenvectors and the right auxiliary vectors can also compactly be
written in the following matrix form:

ARj (�i) �Rij = Bij
�Wij (8.4.7)
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where

ARj (�i) =

2
664
�iI �A

I �iI �A
. . .

. . .

I �iI �A

3
775 (8.4.8)

Bij =

2
664
B

B
. . .

B

3
775 (8.4.9)

�Rij =

2
664
Rij;1

Rij;2

...
Rij;pij

3
775 (8.4.10)

�Wij =

2
664
Wij;1

Wij;2

...
Wij;pij

3
775 (8.4.11)

Equation (8.4.7) provides a good formulation for the parametric expression
of the eigenvector and generalised eigenvectors. Similarly, the relationship
between the left eigenvector and generalised eigenvectors and the left auxiliary
vectors is of the following compact matrix form:

ALj (�i)�Lij = Cij �Vij (8.4.12)

where

ALj (�i) =

2
664
�iI �AT

I �iI �AT

. . .
. . .

I �iI �AT

3
775 (8.4.13)

Cij =

2
664
CT

CT

. . .

CT

3
775 (8.4.14)

�Lij =

2
664
Lij;1
Lij;2
...

Lij;pij

3
775 (8.4.15)
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�Vij =

2
664
Vij;1
Vij;2
...

Vij;pij

3
775 (8.4.16)

The matrices ARj (�i) and ALj (�i) are singular if the closed- and open-loop

eigenvalue sets intersect. Thus, given the vectors �Wij and �Vij , the vectors
�Rij and �Lij cannot simply be calculated by premultiplying the matrices
(ARj (�i))

�1 in (8.4.7) and (ALj (�i))
�1 in (8.4.12), respectively. In order to

develop a generic parametric expression, we �rstly rewrite equations (8.4.7)
and (8.4.12) as

[ARj (�i) �Bij ]

�
�Rij
�Wij

�
= 0 (8.4.17)

[ALj (�i) �Cij ]
�
�Lij
�Vij

�
= 0 (8.4.18)

To �nd a solution, de�ne

�ij = [ARj (�i) �Bij ] (8.4.19)

	ij = [ALj (�i) �Cij ] (8.4.20)

and two compatibly-dimensioned matrices

Pij =

�
Pij;1
Pij;2

�
(8.4.21)

Qij =

�
Qij;1

Qij;2

�
(8.4.22)

so that the columns of the matrix Pij form the basis for the nullspace of �ij
and the columns of the matrix Qij form the basis for the nullspace of 	ij .
Thus

[ARj (�i) �Bij ]

�
Pij;1
Pij;2

�
Dij = 0 (8.4.23)

[ALj (�i) �Cij ]
�
Qij;1

Qij;2

�
Eij = 0 (8.4.24)

whereDij and Eij are called the right and left parameter vectors, respectively.
Comparing (8.4.17) and (8.4.23) gives

�Rij = Pij;1Dij (8.4.25)
�Wij = Pij;2Dij (8.4.26)

The parametric expressions of the eigenvector and generalised eigenvectors
and the right auxiliary vectors can be given by, respectively,

Rij;k = P
(k)
ij;1Dij (8.4.27)

Wij;k = P
(k)
ij;2Dij (8.4.28)
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where 2
66664
P
(1)
ij;1

P
(2)
ij;1

...
P
(pij)
ij;1

3
77775 = Pij;1;

2
66664
P
(1)
ij;2

P
(2)
ij;2

...
P
(pij)
ij;2

3
77775 = Pij;2 (8.4.29)

Clearly, Rij;k and Wij;k are the linear functions of the right parameter vector
Dij . Hence the right eigenvector and generalised eigenvector matrix and the
right auxiliary-vector matrix for (ij)-th Jordan block are

Rij =
�
P
(1)
ij;1Dij P

(2)
ij;1Dij ::: P

(pij)
ij;1 Dij

�
(8.4.30)

Wij =
�
P
(1)
ij;2Dij P

(2)
ij;2Dij ::: P

(pij)
ij;2 Dij

�
(8.4.31)

As can be seen from the above, the matrices Rij and Wij are determined by
the right parameter vector Dij which can arbitrarily be chosen to ensure the
vectors Rij;k are independent.

Next, let us consider the parametric expression of the left eigenvectors and
generalised eigenvectors. Similarly, comparing (8.4.18) and (8.4.24) gives

�Lij = Qij;1Eij (8.4.32)

�Vij = Qij;2Eij (8.4.33)

The left eigenvector and generalised eigenvectors and the left auxiliary vectors
can be given by, respectively,

Lij;k = Q
(k)
ij;1Eij (8.4.34)

Vij;k = Q
(k)
ij;2Eij (8.4.35)

where 2
66664
Q
(1)
ij;1

Q
(2)
ij;1

...
Q
(pij)
ij;1

3
77775 = Qij;1;

2
66664
Q
(1)
ij;2

Q
(2)
ij;2

...
Q
(pij)
ij;2

3
77775 = Qij;2 (8.4.36)

It is clear that Lij;k and Vij;k are the linear functions of the left parameter
vector Eij . So, the left eigenvector and generalised eigenvector matrix and
the left auxiliary-vector matrix for (ij)-th Jordan block are

Lij =
�
Q
(1)
ij;1Eij Q

(2)
ij;1Eij ::: Q

(pij)
ij;1 Eij

�
(8.4.37)

Vij =
�
Q
(1)
ij;2Eij Q

(2)
ij;2Eij ::: Q

(pij)
ij;2 Eij

�
(8.4.38)

The above shows that the matrices Lij and Vij are determined by the left
parameter vector Eij which can arbitrarily be chosen to ensure the vectors
Lij;k are independent.
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It is known that there exists a real matrix K such that all closed-loop
eigenvalues are in the set � if and only if the right and left eigenvectors and
generalised eigenvectors satisfy the following constraints: a) Rij;k = R�lj;k,
Lij;k = L�lj;k, for �i = ��l , j = 1; 2; :::; ri, k = 1; 2; :::; pij , b) L

TR = I . The
constraint a) guarantees the controller K is a real matrix. If constraints a)
and b) are satis�ed, the controller K is given by either (Kwon and Youn,
1987; Liu and Patton, 1998a)

K =W (CR)T (CR(CR)T )�1 (8.4.39)

or

KT = V (BTL)T (BTL(BTL)T )�1 (8.4.40)

It has been shown that the right and left eigenvectors and generalised eigen-
vectors are determined by the non-null right and left parameter vectors Dij

and Eij , for j = 1; 2; :::; ri and i = 1; 2; :::; ~n. Thus, using equations (8.4.30)
and (8.4.37), the constraint b) can be written by

ET
xy(Q

(z)
xy;1)

TP
(k)
ij;1Dij =

�
1; if (x; y; z) = (i; j; k)
0; otherwise

(8.4.41)

for k = 1; 2; :::; pij , j = 1; 2; :::; ri, z = 1; 2; :::; pxy, y = 1; 2; :::; rx, i; x =
1; 2; :::; ~n.

Since the output feedback eigenstructure assignment usually provides some
freedom beyond satisfying (8.4.41), next we discuss how to make full use of
the freedom to obtain an optimal solution. Some performance functions which
measure sensitivity of the closed-loop matrix and robustness performance of
the closed-loop systems are introduced.

8.5 Multiobjective Eigenstructure Assignment

In most parameter insensitive design methods using eigenstructure assignment
the performance indices are given on the basis of the right eigenvector ma-
trix. For example, a very common performance index is the overall eigenvalue
sensitivity:

�(R) = kR k2kL k2 (8.5.1)

which gives an overall measure of conditioning of the eigenproblem.
It has been shown that the individual eigenvalue sensitivity �i of a matrix

A+BK to perturbations for the i-th eigenvalues �i is

�i(R;L) =
kLi k2kRi k2
jLTi Rij (8.5.2)

where Li and Ri are the i-th left and right eigenvectors of A+BKC.
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Though it has been shown that a minimisation of �(R) reduces a bound
on the individual eigenvalue sensitivities and the actual values of �i(R;L)
themselves will become small so that the conditioning of the eigenproblem is
improved, it is often conservative because the �(R) measures the upper bound
of all individual eigenvalue sensitivities, i.e.,

�(R) � max
i=1;2;:::;n

�i(R;L) (8.5.3)

Hence, in order to reduce the conservatism we consider the following formu-
lation:

�i(R) � "i; for i = 1; 2; : : : ; n (8.5.4)

where "i is a real positive number. It is clear that if we appropriately choose

"i 2 [min
R;L

�i(R;L);min
R
�(R)]; for i = 1; 2; : : : ; n (8.5.5)

then the conservatism can be signi�cantly reduced.
There are also a number of robust performance indices which are consid-

ered in optimisation design of control systems in the frequency domain. First,
let us de�ne the following norms:

kH k1 = supfjH(j!)j : ! 2 Rg (8.5.6)

kH k1;F = supfjH(j!)j : ! 2 Fg (8.5.7)

where H is a transfer function and F denotes a frequency range.

u x y

A

CBK ∫ −/ z 1

Figure 8.2: State feedback control system

In robust control using H1 for state feedback systems, as shown in Figure 8.2,
the objectives are expressed in terms of the H1-norm of transfer functions.
One of the objectives of the system with C = I is the following:

min
K

 S
CS


1

(8.5.8)

where

S = (I � (sI �A)�1BK)�1 (8.5.9)

CS = K((sI �A)�1BK � I)�1 (8.5.10)
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S is the sensitivity function, CS is the complementary sensitivity function,
and the minimisation is over the whole set of stabilising controllers K.

As the singular value techniques are used to evaluate control system sta-
bility and robustness characteristics it becomes apparent that a singular value
matrix norm is often conservative in its ability to predict near instability (Sa-
fonov et al., 1981). Though the robust performance formulation (8.5.8) is
widely used in H1 control, it is often conservative because of the following
relations:

maxfkS k1; kCS k1g �
 S
CS


1

(8.5.11)

This means that the maximum singular value of the matrix [ST ; (CS)
T ]T

gives a measurement of the upper bound of the maximum singular values of
the sensitivity function S and the function CS . Thus, in order to reduce the
conservatism above, let us consider the following robust control formulation:

kS k1 � "1 (8.5.12)

kCS k1 � "2 (8.5.13)

where "i is a positive real number. If we let

"i = min
K

 S
CS


1

(8.5.14)

for i = 1; 2, the robust control problem above covers a common H1 control
problem described by (8.5.8). i.e., the H1-norm of the transfer function S
CS


1

is minimised by choosing an appropriate stabilising controller K. If

we let

"1 2
�
min
K
kS k1;minK

 S
CS


1

�
(8.5.15)

"2 2
�
min
K
kCS k1;minK

 S
CS


1

�
(8.5.16)

it is clear that the robust control problem described by (8.5.15) and (8.5.16)
is less conservative than that described by (8.5.8). According to practical
requirements "i can be appropriately adjusted so that the conservatism of
(8.5.8) is probably reduced (Liu and Patton, 1996a).

Nowadays, weighting matrices ~W0, ~W1 and ~W2 are introduced to give

min
K

 ~W1S ~W0
~W2CS ~W0


1

(8.5.17)

The weights are selected so that ~W1S ~W0 dominates the cost at low frequen-
cies, and ~W2CS ~W0 dominates the cost at high frequencies. The aims of the
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optimisation can be interpreted as improvement in performance, i.e., distur-
bance rejection at low frequencies and enhancement in robust stabilities to
safeguard against modelling errors at high frequencies.

If the low frequency range and the high frequency range are denoted by
FL and FH , respectively, we similarly have the following robust control for-
mulation:

kS k1;FL � "1 (8.5.18)

kCS k1;FH � "2 (8.5.19)

Thus, the multiobjective performance functions for multivariable control sys-
tems may be

�i(K) = �i(R;L); for i = 1; 2; : : : ; n (8.5.20)

�n+1(K) = kS k1;FL (8.5.21)

�n+2(K) = kCS k1;FH (8.5.22)

Furthermore, we often need to consider some constraints on the controller
gain matrix K. A scalar measure which quanti�es a structurally constrained
gain matrix may be de�ned as follows:

�n+3(K) =

0
@ mX

i=1

nX
j=1

�ijK
2
ij

1
A
1=2

(8.5.23)

whereKij is the (ij)th element of the full state gain matrixK and �ij is a pos-
itive weighting factor which may be used to force certain elements of the gain
matrix to become small. For the output feedback case, some elements of the
gain matrix K are zero-valued and the corresponding weighting parameters
�ij can be selected to have large values to force this structure (Burrows and
Patton, 1991). There is then no loss of generality in using this formulation
for either state or output feedback control problems.

In practice, it is usually intended to locate the eigenvalue vector � in
a well-de�ned set to meet the requirements of the practical control system
(e.g., stability, speed of response, etc.). This leads to eigenvalue constraints,
for example of the form �i � �i � ��i, where �i 2 R and ��i 2 R are the
lower and the upper bound vectors, respectively. These constraints may be
removed by considering the change of variables given by

�i(zi) = �i + (��i � �i) sin
2(zi) (8.5.24)

with zi 2 R.
Since it has been shown that the right and left eigenvector matrices are

determined by closed-loop eigenvalues and two parameter matrices (D;E),
clearly the controller matrix K is a function of Z = [z1; z2; :::; zn], D and E.
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Thus, the performance functions �i(K) (i = 1; 2; :::; n + 3) can be described
by �i(Z;D;E).

If one of the performance functions �i(Z;D;E) (i = 1; 2; :::; n + 3) is
minimised individually (single-objective approach), then unacceptably large
values may result for other performance functions �j(Z;D;E) (j 6= i; j =
1; 2; :::; n+3). The single (or mixed) objective approach has been considered
in Roppenecker (1983) and Burrows and Patton (1991). Generally, there
does not exist a solution for all performance functions �i(Z;D;E), for i =
1; 2; :::; n+ 3 to be minimised by the same controller K.

We can therefore reformulate the optimisation into a multiobjective prob-
lem as 8><

>:
min
Z;D;E

n+3X
i=1

�i(Z;D;E)="i

�i(Z;D;E) � "i; for i = 1; 2; : : : ; n+ 3

(8.5.25)

where the positive real number "i represents the numerical bound on the
performance function �i(Z;D;E) and is determined by the designer.

8.6 Controller Design Using the Method of

Inequalities

In order that the closed-loop system satisfy a set of required performance
criteria with less conservatism, eigenstructure assignment techniques and the
method of inequalities are applied to the multiobjective optimisation control
problem (8.5.25).

Following the method of inequalities (Zakian and Al-Naib, 1973; Ma-
ciejowski, 1989; Whidborne and Liu, 1993), a numerical solution to the mul-
tiobjective optimisation control problem (8.5.25) is discussed below.

Let �i be the set of parameters (Z;D;E) for which the ith performance
criterion is satis�ed:

�i = f(Z;D;E) : �i(Z;D;E) � "ig (8.6.1)

Then the admissible or feasible set of parameters for which all the perfor-
mance criteria hold is the intersection

� =
n+3\
i=1

�i (8.6.2)

Clearly, (Z;D;E) are admissible parameters if and only if

max
i=1;2;:::;n+3

f�i(Z;D;E)="ig � 1 (8.6.3)
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which shows that the search for an admissible pair (Z;D;E) can be pursued
by optimisation, in particular by solving

min
Z;D;E

f max
i=1;2;:::;n+3

f�i(Z;D;E)="igg � 1 (8.6.4)

Now, let (Zk; Dk; Ek) be the values of the parameters at the kth step, and
de�ne

�k
i = f(Z;D;E) : �i(Z;D;E)="i � �kg; for i = 1; 2; : : : ; n+ 3 (8.6.5)

where

�k = max
1;2;:::;n+3

f�i(Zk; Dk; Ek)="ig (8.6.6)

and also de�ne

�k =

n+3\
i=1

�k
i (8.6.7)

�k =

n+3X
i=1

�i(Z
k; Dk; Ek)="i (8.6.8)

�k is the kth set of parameters for which all performance functions satisfy

�i(Z;D;E)="i � �k; for i = 1; 2; : : : ; n+ 3 (8.6.9)

It is clear that �k contains both (Zk; Dk; Ek) and the admissible set �. �k

is a combined measurement of all performance functions. If we �nd new
parameters ( �Zk; �Dk; �Ek), such that

��k < �k (8.6.10)

or

��k = �k and ��k < �k (8.6.11)

where ��k and ��k are de�ned similarly to �k and �k, then we accept ( �Zk; �Dk;
�Ek) as the next value of the parameters. One of the methods to �nd ( �Zk; �Dk;
�Ek) is the moving boundary process (MBP) (Zakian and Al-Naib, 1973),
which uses an optimisation algorithm introduced in Rosenbrock (1960). Then,
we set (Zk+1; Dk+1; Ek+1) = ( �Zk; �Dk; �Ek). We have

�i(Z
k+1; Dk+1; Ek+1) � �i( �Z

k; �Dk; �Ek); for i = 1; 2; : : : ; n+ 3 (8.6.12)

and

� � �k+1 � �k (8.6.13)



216 CHAPTER 8. MULTIOBJECTIVE CONTROL USING EA

So, the boundary of the set in which the parameters are located has been
moved towards the admissible set, or, rarely, has remained unaltered. The
process of �nding the optimisation solution is terminated when both �k and
�k cannot be reduced any further. But the process of �nding an admissible
parameter pair (Z;D;E) is terminated when

�k � 1 (8.6.14)

i.e., when the boundaries of �k have converged to the boundaries of �. If the
�k persists in being larger than 1, this may be taken as an indication that the
performance criteria may be inconsistent, whilst their magnitude gives some
measure of how closely it is possible to approach the objectives. In this case,
some of the performance criteria should be relaxed until they are satis�ed.
From a practical viewpoint, the approximate optimal solution is also useful if
the optimal solution is not achievable.

Example 8.1 Consider the linear equation of motion of lateral dynamics of
the L-1011 aircraft corresponding to a certain cruise ight condition (Andry
et al., 1983). The control system for this example is described by

_x = Ax+Bu

u = Kx

where

A =

2
664

0 1:0000 0 0
0 �1:8900 0:3900 �5:5550
0 �0:0340 �2:9800 2:4300

0:0350 �0:0011 �0:9900 �0:2100

3
775

B =

2
664

0 0
0:760 �1:600

�0:950 �0:032
0:030 0

3
775

The closed-loop eigenvalues are required to lie in ranges given by

�1 2 [�1:5;�0:5]
�2 2 [�2:5;�1:5]
�3 2 [�3:5;�2:5]
�4 2 [�4:5;�3:5]

A state feedback controllerK is required to assign the eigenvalues in the above
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ranges to satisfy the following performance criteria:2
6664
�1(Z;D;E)
�2(Z;D;E)
�3(Z;D;E)
�4(Z;D;E)
�5(Z;D;E)

3
7775 �

2
6664
2:3
4:1
2:3
4:1
9:0

3
7775

The performance function �i is the sensitivity of each eigenvalue �i, for
i = 1; 2; 3; 4, respectively. The performance function �5 is the gain matrix
measure, which is de�ned as (8.5.23) with �ij = 1, for i = 1; 2; 3; 4 and
j = 1; 2: Using the method considered in this section, this has led to the
following controller gain matrix, closed-loop eigenvalue set and the control
performance:

K =

�
1:6569 0:6663 2:4237 �3:5491
3:2205 1:8746 1:8304 �6:1889

�

� = [�1:0184 �2:0165 �3:0148 �3:9908 ]
2
6664
�1(Z;D;E)
�2(Z;D;E)
�3(Z;D;E)
�4(Z;D;E)
�5(Z;D;E)

3
7775 =

2
6664
2:2378
4:0807
2:2326
4:0893
8:7863

3
7775

It has been found that the overall eigenvalue sensitivity �(R) = 8:0840.
Clearly, it is much larger than the maximum (4.0893) of the individual eigen-
value sensitivities �i(Z;D;E) (i = 1; 2; 3; 4) which have met the design re-
quirements. This indicates that the individual eigenvalue sensitivity functions
are more accurate and better to describe the system insensitivity property to
perturbations than the performance function �(R). If the gain matrix ele-
ments were considered to be too large, a further reduction would be possible
by sacri�cing parameter insensitivity (and vice versa), i.e., the current level
of one or more individual eigenvalue sensitivities, by appropriate adjustments
to "i (i = 1; 2; 3; 4): In this way, we can design the controller to meet the
speci�c needs.

8.7 Controller Design Using Genetic

Algorithms

As we are concerned with several types of objectives (or cost functions) for
control systems, this section introduces another numerical algorithm for the
multiobjective optimisation control problem (8.5.25) using genetic algorithms
(Liu and Patton, 1996a), based on the formulation in the previous section.
The steps to be executed for the GA implementation are as follows:
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S1 Each solution in the population is represented as a real number string.
As the eigenvalues Z 2 R1�n, the right and left parameter matrices
D = [D1; D2; :::; Dn] and E = [E1; E2; :::; En] then the chromosomal
representation may be expressed as an array

P = [Z;DT
1 ; D

T
2 ; :::; D

T
n ; E

T
1 ; E

T
2 ; :::; E

T
n ] (8.7.1)

S2 The N (an odd number) sets of parameter strings P for the initial
population are randomly generated.

S3 Evaluate the performance functions �i(Pj) (i = 1; 2; :::; n+ 3) for all N
sets of the parameters Pj and

�j = max
i=1;2;:::;n+3

�i(Pj)="i (8.7.2)

�j =

n+3X
i=1

�i(Pj) (8.7.3)

for j = 1; 2; : : : ; N .

S4 According to the �tness of the performance functions for each set of
parameters, remove the (N � 1)=2 weaker members of the population
and reorder the sets of parameters. The �tness of the performance
functions is measured by

Fj = ��1j ; for j = 1; 2; : : : ; N (8.7.4)

S5 Perform the crossover using an average crossover function to produce the
(N � 1)=2 o�spring. The average crossover operator takes two parents
which are selected in S4 and produces one child that is the result of
averaging the corresponding �elds of two parents. Thus, the average
crossover function is given by

PCj = (Pj+1 + Pj)=2; for j = 1; 2; : : : ; (N � 1)=2 (8.7.5)

S6 A real number mutation operator is used. The maximum amount that
this operator can alter the value of a �eld is a parameter of the operator.
The mutation operation is de�ned as

PMj = PCj + dm�j ; for j = 1; 2; : : : ; (N � 1)=2 (8.7.6)

where dm is the maximum to be altered and �j 2 [�1; 1] is a random
variable with zero mean.

S7 To prevent the best parameter set from loss in the succeeding parameter
sets, the elitist strategy is used to copy the best parameter set into the
succeeding parameter sets. The best parameter set Pb is de�ned as one
satisfying

�b = min
l
f�l : �l � �m � �(�l ��m) and �l � �m + Æg (8.7.7)
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where

�m = min
j=1;2;:::;n+3

f�jg (8.7.8)

Em and El correspond to �m and �l, � > 1 and Æ is a positive number,
which are given by the designer (e.g., � = 1:1 and Æ = 0:1).

S8 Insert the (N�1)=2 new o�spring to the population which are generated
in a random fashion. Actually, the new o�spring are formed by mutating
the best parameter set Pb with a probability, i.e.,

PNj = Pb + dn�j ; for j = 1; 2; : : : ; (N � 1)=2 (8.7.9)

where dn is the maximum to be altered and �j 2 [�1; 1] is a random
variable with zero mean. Thus, the next population is formed by the
parameter sets PMj (j = 1; 2; : : : ; (N � 1)=2), PNj (j = 1; 2; : : : ; (N �
1)=2) and Pb.

S9 Continue the cycle initiated in S3 until convergence is achieved. The
population is considered to have converged when �b cannot be reduced
any further, subject to

�j ��b � "; for j = 1; 2; : : : ; N (8.7.10)

where " is a positive number.

Take the best solution in the converged generation and place it in a second
`initial generation'. Generate the other N � 1 parameter sets in this second
initial generation at random and begin the cycle again until a satisfactory
solution is obtained or �b and �b cannot be improved any further.

Example 8.2 Consider a linear representation of a distillation column (Kaut-
sky et al., 1985) with a state feedback controller, which is of the form:

_x = Ax+Bu

u = Kx

where

A =

2
66664
�0:1094 0:0628 0 0 0
1:3060 �2:1320 0:9807 0 0

0 1:5950 �3:1490 1:5470 0
0 0:0355 2:6320 �4:2570 1:8550
0 0:0023 0 0:1636 �0:1625

3
77775

B =

�
0 0:0638 0:0838 0:1004 0:0063
0 0 �0:1396 �0:2060 �0:0128

�T
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The closed-loop eigenvalues are chosen such that

�10 � �1 � �0:01
�10 � �2;re � �0:01
�10 � �2;im � �0:01
�10 � �i � �0:01 (i = 4; 5)

Note that �3 = ��2. A state feedback controller is required to assign the
eigenvalues in the above regions to satisfy the following performance criteria:

�i(Z;D;E) � 3:0; for i = 1; 2; 3; 4; 5

�6(Z;D;E) � 8:5

�7(Z;D;E) � 20:0

The performance functions �i (i = 1, 2, ..., 5) are the individual eigenvalue
sensitivity functions. The performance functions �6 and �7 are the sensitivity
function S and the function CS of the closed-loop system in the frequency
domain. The parameters for the numerical algorithm are

parameter length 15
population size N 21
dm (mutation) 0:1
dn (new population) 0:2
� (elitism) 1:1
Æ (elitism) 0:1
frequency range F [0:01; 100]

Using the eigenstructure assignment toolbox (Liu and Patton, 1999), after
150 generations the optimal results have been found approximately by the
numerical algorithm. The performance functions are

�1(Z;D;E) = 1:4968

�2(Z;D;E) = 1:1875

�3(Z;D;E) = 1:1875

�4(Z;D;E) = 1:5144

�5(Z;D;E) = 1:0757

�6(Z;D;E) = 1:3056

�7(Z;D;E) = 12:7281

and the eigenvalue set � of the closed-loop system is

� = [�0:1676 �2:6299� 0:9682j �2:6299+ 0:9682j �0:0950 �5:9625 ]
The optimal state feedback controller is

K =

� �6:7708 �4:7671 1:2392 2:1961 2:8328
�2:8498 8:6277 7:2037 3:1976 3:8011

�
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8.8 Summary

The robust control design using eigenstructure assignment and multiobjective
optimisation has been presented for multivariable systems. The individual
eigenvalue sensitivities, and the sensitivity functions of the closed-loop sys-
tem in the frequency domain, and controller gain constraint have all been
considered as the multiobjective performance functions for the robust control
design. The multiobjective performance criteria are expressed by a set of in-
equalities. The criteria describe the practical control problem more accurately
and less conservatively than would be possible using scalar performance cri-
terion approaches. The multiobjective optimisation problem was also solved
numerically using the method of inequalities and genetic algorithms.



Chapter 9

Multiobjective PI

Controller Design for a

Gasi�er

9.1 Introduction

To provide environmentally clean and eÆcient power generation from coal,
a gasi�er plays an important role in integrated gasi�cation combined cycle
(IGCC) power plants. The gasi�er is based on the spouted uidised bed gasi-
�cation concept (originally developed by the Coal Technology Development
Division (CTDD) of the British Coal Corporation) and can be considered as a
reactor where coal is gasi�ed with air and steam. In the ALSTOM benchmark
challenge on gasi�er control (Dixon et al., 2001), the gasi�er is a nonlinear,
multivariable system, having �ve inputs (coal, limestone, air, steam and char
extraction) and four outputs (pressure, temperature, bed mass and gas qual-
ity) with a high degree of cross coupling between them (Donne et al., 1998).
The aim of the benchmark challenge is to design a controller to satisfy a set of
speci�cations on the system outputs, inputs and input rates when a step pres-
sure disturbance is applied to the system, based on a linearised model of the
gasi�er at the 100% load operating point. In addition, the challenge requires
that the controller also be evaluated on models representing the gasi�er at
50% and 0% load operating points and on rejection to a sine- and step-wave
pressure disturbances applied to the gasi�er at the three operating points.

There are a wide variety of control techniques which can be used to de-
sign a controller for the gasi�er. It is well known that the PID controller is
the most popular approach for industrial process control and many design
techniques have been developed (see, for example, Ziegler and Nichols, 1942;
Astrom and Hagglund, 1984; Hang et al. 1991; Zhuang and Atherton, 1993;

223
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McCormack and Godfrey, 1998; Liu and Daley, 1999, 2000, 2001; Daley and
Liu, 1999). This chapter introduces a PI controller design approach using
multiobjective optimisation which addresses the ALSTOM benchmark chal-
lenge on gasi�er control. The nonlinear gasi�er has been linearised about
three operating points. The design aim is to satisfy a set of speci�cations on
the system outputs, inputs and input rates when a step disturbance is applied
to the system. The parameters of the multi-input multi-output (MIMO) PI
controller are selected to satisfy a set of multiobjective performance criteria
which are formulated from the system speci�cations. Simulation results are
presented which demonstrate the performance of the controller at the three
operating points.

9.2 Modelling of the Gasi�er

Integrated gasi�cation combined cycle power plants are being developed around
the world to provide environmentally clean and eÆcient power generation
from coal. A detailed feasibility study on the development of a small scale
Prototype Integrated Plant (PIP) has undertaken, based on the Air Blown
Gasi�cation Cycle (ABGC). In pursuit of this goal, a comprehensive dynamic
model and control philosophy for the PIP has produced (Donne et al., 1998).
The gasi�er is one component of the model which, being a highly coupled
multivariable system with �ve inputs (coal, limestone, air, steam and char
extraction) and four outputs (pressure, temperature, bed mass and gas qual-
ity), has been found to be particularly diÆcult to control. For this reason the
gasi�er together with its associated control speci�cation, constraints, non-
linearity (with operating point) and various disturbance characteristics, has
been selected for control system design. The motivation for gasi�er control
is that the gasi�er is a real industrial problem facing the providers of power
plant and poses a serious challenge even for advanced control techniques.

The programme undertaken by the UK's Clean Coal Power Generation
Group (CCPGG) addressed development of the key components of an 87
MW Prototype Integrated Plant (PIP) based upon the ABGC shown in Fig-
ure 9.1. This programme also involved undertaking technical and economic
assessments as required prior to the detailed design and speci�cation of a fully
integrated commercial-scale plant.

One aspect in the CCPGG programme was the development of a dynamic
simulation model and a control philosophy for the PIP, more details of which
may be found in Donne et al. (1998). In ful�lling this, the design and dy-
namic modelling requirements of speci�c components of the system, such as
the gasi�er, boost compressor, steam turbine and gas turbine were analysed.
Furthermore, physical based models of all the gas and steam cycle components
which compose the plant were developed, tested and validated as appropri-
ate. These models were then integrated, together with the relevant control
systems, to form the overall model of the PIP.
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One of the reasons for modelling the PIP was to aid the development of
a suitable control philosophy. Here, emphasis was placed on those aspects
of the PIP that are not normally encountered in conventional power plants.
The key components from this point of view are the gasi�er, the gas turbine
(running on low and variable calori�c fuel-gas), the Circulating Fluidised Bed
Combustor (CFBC) and the global plant control itself. There were two ob-
jectives for the control system analysis: primarily, to verify that the plant can
be safely and adequately controlled; and secondly, to examine some of the
more complex components of the PIP with a view to proposing safer, more
economical, higher performance controllers using control techniques.

The control scheme developed was shown to be capable of controlling the
complete plant even in the event of a full-load rejection, which represents
the most severe \trip" (or fault) condition likely to be encountered. Also
adequate control of load acceptance and load reduction was demonstrated
with the demanded power being followed accurately in both cases.

The gasi�cation plant for the PIP is based on the British Coal experimental
gasi�er, making use of the spouted uidised bed gasi�cation concept, and can
be considered as a reactor where coal is gasi�ed with air and steam. In simple
terms the gasi�cation process works as described below.

Pulverised coal mixed with limestone, which captures sulphur originating
in the coal, is conveyed by pressurised air into the gasi�er. The air and
injected steam not only uidise the solids in the gasi�er, but also react with
the carbon and volatiles from the coal, producing a low calori�c value fuel gas
(approximately 4.5 MJ/kg or 12% that of natural gas). The remaining char
(ash from coal, limestone and unreacted carbon) is removed as bed material
from the base of the gasi�er or carried out of the top of the gasi�er as �nes
with the product gas. Under certain circumstances, this elutriation can be as
much as 70% of the total char o�-take.

The gasi�er model has been developed using the Advanced Continuous
Simulation Language (ACSL), and is compatible with Framatome's Modular
Modelling System (MMS). The di�erent processes in the model include:

a) Drying process: the moisture in the coal and limestone is removed and
added to the steam ow, dry limestone and ash are separated from the
coal and fed to the desulphurisation process. The resulting dry ash-free
coal is an input to the pyrolysis process.

b) Desulphurisation process: the sulphur in the ash is captured by the dry
limestone resulting in a ow of inerts which is added to the bed mass.

c) Pyrolysis process: dry ash-free coal is devolatilised; the gases evolved
and the resulting �xed carbon are available to the gasi�cation process.

d) Gasi�cation process: the chemical reactions modelled here are two exother-
mic combustion reactions and two endothermic gasi�cation reactions,
each with its own reaction rate. The unreacted carbon is added to the
bed mass.

e) Mass Balance: a separate mass balance on the inerts and carbon to
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obtain solids composition and hence the total mass of solids. The mass
ow rate of elutriated char is calculated and added to the fuel gas.

At the global level, there is an overall heat balance for gases and solids to
obtain the speci�c enthalpy of the gas and the total enthalpy of the solids. This
model has been validated using measured time histories from the British Coal
CTDD experimental test facility and it was shown that the model predicts
the main trends in fuel gas quality.

9.3 System Speci�cations of the Gasi�er

This section describes the control system requirements for the gasi�er. A
functional layout of the gasi�er is shown in Figure 9.1. It is a nonlinear,
multivariable component, having �ve inputs (coal, limestone, air, steam and
char extraction) and four outputs (pressure, temperature, bed mass and gas
quality) with a high degree of cross coupling between them. In addition, there
is a disturbance input (PSINK) representing pressure disturbances induced as
the gas turbine fuel inlet valve is opened and closed.

Pressure

Gasifier System

Steam inlet flow

Coal & sorbent flow
Mass

To Gas Turbine
fuel inlet

Char
off-take

From Gas Turbine
compressor bleed

Calorific value

Boost compressor
atmospheric inlet

Air inlet flow

Pressure disturbance
(PSINK)

Temperature

Figure 9.1: Gasi�er plant functional diagram

The controllable inputs are:

a) Char extraction ow - WCHR (kg/s)

b) Air mass ow - WAIR (kg/s)

c) Coal ow - WCOL (kg/s)

d) Steam mass ow - WSTM (kg/s)
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e) Limestone mass ow - WLS (kg/s-1)

The disturbance input is:

a) Sink pressure - PSINK (N/m2)

The outputs are:

a) fuel gas calori�c value - CVGAS (J/kg)

b) bed mass - MASS (kg)

c) fuel gas pressure - PGAS (N/m2)

d) fuel gas temperature - TGAS (K)

Note that: Limestone absorbs sulphur in the coal so WLS should be set to a
�xed ratio of WCOL, nominally 1:10 limestone to coal. This leaves e�ectively
4 degrees of freedom for the control design.

Three continuous time, state-space, linear models have been obtained from
the nonlinear ACSL model at operating points of 100%, 50% and 0% load.
These models were validated against the nonlinear model for a series of (10%
of nominal) step inputs. For the validation, a PI controller manipulates the
char o�-take in order to maintain the bed mass - this is required because
the bed mass level is marginally stable and over the run time (7200s or 2h)
the nonlinear plant would have moved far from the operating point of the
linearisation.

The controller should regulate the outputs, bearing in mind that there are
the following input limits:

a) the input ow limits must not be exceeded;

b) the input rate of change limits must not be exceeded.

Table 9.1: Input limits

Input Name max (kg/s) min (kg/s) rate (kg/s2)
Coal Inlet Flow WCOL 10 0 0.2
Air Inlet ow WAIR 20 0 1.0
Steam Inlet Flow WSTM 6.0 0 1.0
Char Extraction WCHR 3.5 0 0.2

The input limits are shown in Table 9.1. Note that the above input limits are
absolute; e.g., at 100% load the maximum increase in coal ow is 10� 8:55 =
1:45 kg/s.

There are also the following output limits:

a) the calori�c value (CV) uctuation should be minimised, but must al-
ways within 10KJ/kg.

b) the pressure uctuation should be minimised, but must always be within
0.1bar.

c) bed mass should uctuate by less than 5% of the nominal.
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d) temperature uctuation should be kept to a minimum, but always within
1oC.

Note: the input and output limits are the best estimates of those which will
prevail on the actual system. It is not certain that these limits are physically
attainable.

The primary design is undertaken for the 100% load operating point. The
controller is then evaluated on the other models in order to obtain an indica-
tion of robustness.

The following tests are then undertaken:

a) Apply a pressure step disturbance of -0.2bar to the system (at t = 30
seconds). The above constraint criteria must not be violated. Run the
simulation for 5minutes ( t = 300 seconds) and calculate the integral of
absolute error for the CV and pressure outputs over the run.

b) Apply a sine wave pressure disturbance of amplitude 0.2bar and fre-
quency of 0.04Hz. Over a 300 second run calculate the integral of abso-
lute error (IAE) as above.

c) Repeat tests a) and b) at the 50% and 0% load operating points, again
calculating the integral of absolute error performance criterion.

9.4 Multiobjective PI Control Formulation

The gasi�er (or gasi�cation plant) is a nonlinear system. In the ALSTOM
benchmark challenge, the gasi�er is linearised about the three operating points:
100%, 50% and 0% loads. For the three cases, the gasi�er is assumed to be
of the following continuous state-space form:

_x = Ax +Bu+Ed (9.4.1)

y = Cx+Du (9.4.2)

where x 2 Rn is the state vector, u 2 Rm the input vector, y 2 Rr the
output vector, d 2 R1 the disturbance and the system matrices are A 2 Rn�n,
B 2 Rn�m, C 2 Rr�n, D 2 Rr�m and E 2 Rn�1.

~u
~y

d

Gasifier

PI Controller

Figure 9.2: Gasi�er control with PI controller
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A MIMO PI controller is to be applied to the gasi�er. The closed-loop control
structure with the MIMO PI controller is shown in Figure 9.2. Here, the
MIMO PI controller is of the following state-space form:

_z = Acz +Bc~y (9.4.3)

y = KIx+KP ~u (9.4.4)

where z 2 Rr represents the controller state vector, ~u 2 Rm and ~y 2 Rr rep-
resent the input and output uctuation from steady-state values, respectively,
and the matrices Ac 2 Rr�r, Bc 2 Rr�r, KI 2 Rm�r, KP 2 Rm�r have the
following form (Liu et al., 1998, 2001):

Ac =

2
6664
��

��
. . .

��

3
7775 (9.4.5)

Bc =

2
6664

1
1

. . .

1

3
7775 (9.4.6)

KI =

2
6664

KI
11 KI

12 : : : KI
1r

KI
21 KI

22 : : : KI
2r

...
...

. . .
...

KI
m1 KI

m2 : : : KI
mr

3
7775 (9.4.7)

KI =

2
6664

KI
11 KI

12 : : : KI
1r

KI
21 KI

22 : : : KI
2r

...
...

. . .
...

KI
m1 KI

m2 : : : KI
mr

3
7775 (9.4.8)

It is clear that KI and KP are the integral and proportional matrices of the
MIMO PI controller. � in the matrix Ac must not be less than zero. If � = 0,
the controller has a pure integral part. In practice, � is always chosen to be
a small positive number to ensure the PI controller itself is stable. Since the
gasi�er outputs, inputs and input rates are constrained, a set of performance
functions should be considered during the design of the controller. For this
purpose, the following performance functions are introduced:

�i(K) =
j~yij
ydi
; for i = 1; 2; :::; r (9.4.9)

�r+j(K) =
j~uj j
udj

; for j = 1; 2; :::;m (9.4.10)

�r+m+k(K) =
j _ukj
Æudk

; for k = 1; 2; :::;m (9.4.11)



230 CHAPTER 9. MULTIOBJECTIVE PI CONTROLLER DESIGN

�r+2m+1(K) = 1 + max
j=1;2;:::;n

fRe(�j)g+ " (9.4.12)

where ~yi is the i-th output uctuation and ~ui the j-th input uctuation, K the
parameter vector denotes the elements of the matrices KI and KP of the PI
controller, �j is the j-th pole of the closed-loop system, Re(:) denotes the real
part of a number, " represents the requirements on the closed-loop poles, ydi ,
udj and Æu

d
k are the upper bounds on the output uctuation, input uctuation

and input rates, respectively.
The evaluation of the above performance functions for each PI controller

is carried out in the o�ine closed-loop system, which consists of the gasi�er
linearised model and the MIMO PI controller. In practice, when the gasi�er
changes the operating point, its model should be updated using an estimation
algorithm, e.g., the recursive least squares algorithm. Then, based on the
updated model, the performance functions can be re-evaluated. In (9.4.12), "
should be chosen to be a number so that the closed-loop system is stable. The
larger the ", the more stable the system. For this benchmark problem, there
is not any speci�c requirement on the closed-loop system. Thus, during the
design of the PI controller, " can simply be chosen to be a positive number,
i.e., " > 0.

According to the requirements on the gasi�er, the following multiobjective
performance criteria should be satis�ed:

�i(K) � 1; for i = 1; 2; :::; r + 2m+ 1 (9.4.13)

If the above inequalities are satis�ed, then the problem is solved. Thus, the
design problem is to �nd a PI controller to make (9.4.13) hold.

9.5 Multiobjective Optimal-Tuning PI

Control

There are a number of methods to solve the multiobjective performance cri-
teria problem (9.4.13). Here, two methods are briey introduced. One is
the minimax optimisation method and the other is the method of inequali-
ties. Using the minimax optimisation method (Gill, 1981), the multiobjective
performance criteria can be satis�ed if

min
K

max
i=1;2;:::;r+2m+1

f�i(K)g � 1 (9.5.1)

Clearly, the above minimises the worst case values of the performance func-
tions. The method of inequalities (Zakian and Al-Naib, 1973; Whidborne and
Liu, 1993) uses optimisation algorithms (e.g., moving boundaries algorithm)
to �nd the admissible or feasible set of parameter vectors, for which all the
performance inequalities hold. The admissible set is de�ned as


 =
\

i=1;2;:::;r+2m+1


i (9.5.2)
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where 
i is the set of parameter vectors for which the i-th functional inequality
is satis�ed, that is


i = fK;�i(K) � 1g (9.5.3)

Similar algorithms for solving the problem de�ned in (9.4.13) now exist in
standard libraries of optimisation software, e.g. the optimisation toolbox for
use with MATLAB (Grace, 1994).

~u
~y

d

Gasifier

Multiobjective
Optimal-Tuning
Mechanism

Desired System
Specifications

PI Controller

Figure 9.3: Multiobjective optimal-tuning PI control

If a system has di�erent operating points with widely di�ering dynamic prop-
erties, it is not always possible to control with a �xed parameter controller,
even if this is a highly robust controller. For this case, the multiobjective
optimal-tuning PI control is proposed as shown in Figure 9.3 (Liu et al.,
1998; Liu and Daley, 2001). When the system changes its operating point,
the multiobjective optimal-tuning mechanism will be switched on to �nd the
optimal parameters for the PI controller to satisfy the multiobjective perfor-
mance criteria. In this way, the PI controller may cope with all operating
points of the gasi�er and the closed-loop system will have optimal control
performance. But, compared with �xed parameter control, the disadvantage
of this strategy is that it needs more computation time to search for the opti-
mal parameters. In addition, there may be some undesired transient response
when the new parameters are applied.

In the ALSTOM gasi�er benchmark challenge problem, the gasi�er has
three operating points: 100%, 50% and 0% loads. To have a consistent control
performance for all three di�erent loads, the multiobjective optimal-tuning PI
control was applied and the expected results were obtained.

9.6 Simulation Results and Discussions

The design was undertaken using the linearised model of the gasi�er at the
100% load operating point. The four control inputs and the four outputs of
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the gasi�er are

u =

2
664
WCHR (Char extraction ow)
WAIR (air mass ow)
WCOL (coal ow)
WSTM (steam mass ow)

3
775 (9.6.1)

y =

2
664
CV GAS (fuel gas calori�c value)
MASS (bed mass)
PGAS (fuel gas pressure)
TGAS (fuel gas temperature)

3
775 (9.6.2)

There are twenty-�ve state variables, i.e. n = 25. The disturbance on the
gasi�er is the sink pressure which represents the pressure upstream of the gas
turbine. Thus, the MIMO PI controller is a 4-by-4 PI controller, which con-
sists of 16 P-parameters and 16 I-parameters. Also, there are 13 performance
function criteria which need to be met during the controller design. Based
on the linearised model of the gasi�er at the 100% load operating points
with a step pressure disturbance, all 13 performance function criteria were
successfully satis�ed by the 4-by-4 PI controller (denoted by Kop) using the
multiobjective optimisation algorithms provided by the optimisation toolbox
for use with MATLAB (Grace, 1994). Three simulations were carried out for
the optimal PI controller, which are given below.

Table 9.2: 100% load operating point case

Max & Min Absolute Values Peak Rate IAE
Input/Output Step Sine Step Sine

Max Min Max Min
WCHR (kg/s) 1.00 0.28 1.05 0.75 0.02 0.02
WAIR (kg/s) 18.49 17.26 18.15 16.65 0.31 0.18
WCOL (kg/s) 9.18 8.55 8.73 8.18 0.14 0.08
WSTM (kg/s) 3.47 2.70 3.52 1.89 0.63 0.21

CVGAS (J/kg) 4.36e6 4.35e6 4.37e6 4.36e6 178.8 108.8 2.06e6 4.95e5
MASS (kg) 1.00e4 9.97e3 1.00e4 1.00e3 0.05 0.04
PGAS (N/m2) 2.00e6 1.99e6 2.01e6 1.99e6 726.2 208.4 2.00e5 1.73e6
TGAS (K) 1224 1223 1224 1223 0.04 0.01

Firstly, the controller Kop was used in the closed-loop gasi�er simulation
system with the model obtained at the 100% load. The simulation results for
the 100% load case are briey given in Table 9.2. The output and control
input responses of the closed-loop systems to the step pressure disturbances
are shown in Figures 9.4 and 9.5. The results for the sine-wave pressure
disturbance responses are given in Figures 9.6 and 9.7. Figure 9.4 shows that
in the �rst 300s the CVGAS variable converges to its steady state very slowly
and the MASS variable is slowly drifting from the reference, which causes
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poor IAE performance. But, these two variables eventually converge to the
desired references, which was observed over a longer time-scale and was also
guaranteed by the stability performance function (9.4.12).

Secondly, the same controller Kop was applied to the closed-loop gasi�er
simulation system with the linearised models at the 50% operating point.
The simulation results are summarised in Table 9.3 . Table 9.3 shows that all
performance requirements of the gasi�er at 50% load are satis�ed. But, the
values of all performance functions are slightly worse than those for the 100%
load. This is because the controller was designed at the 100% load operating
point rather than at the 50% load.

Thirdly, the same controller Kop was also employed in the closed-loop
gasi�er simulation system with the linearised models at the 0% load operating
point. The simulation results are listed in Table 9.4. It shows that some
performance requirements at 0% load are violated. For example, the outputs
CVGAS and PGAS, and the rates of the control inputs WCOL andWSTM are
slightly beyond the desired bounds. The output and control input responses
to the step and sine-wave disturbances for 0% load are shown in Figures 9.8-
9.11. Though the CVGAS and MASS variables in Figure 9.8 are not settled
down in the �rst 300s, they �nally enter into the stable steady state in a
longer time-scale.

Table 9.3: 50% load operating point case

Max & Min Absolute Values Peak Rate IAE
Input/Output Step Sine Step Sine

Max Min Max Min
WCHR (kg/s) 1.05 0.46 1.03 0.76 0.02 0.02
WAIR (kg/s) 12.23 10.70 11.68 10.03 0.38 0.20
WCOL (kg/s) 6.12 5.34 5.62 4.84 0.20 0.12
WSTM (kg/s) 2.61 1.69 2.63 0.75 0.76 0.24

CVGAS (J/kg) 4.49e6 4.48e6 4.50e6 4.49e6 263.6 158.8 2.51e6 7.84e5
MASS (kg) 1.00e4 9.96e3 1.00e4 10.0e3 0.05 0.03
PGAS (N/m2) 1.55e6 1.54e6 1.56e6 1.54e6 881.7 226.0 2.58e5 1.88e6
TGAS (K) 1181 1181 1181 1181 0.05 0.01

Table 9.4: 0% load operating point case

Max & Min Absolute Values Peak Rate IAE
Input/Output Step Sine Step Sine

Max Min Max Min
WCHR (kg/s) 0.89 0.00 0.71 0.30 0.03 0.03
WAIR (kg/s) 6.87 4.06 5.31 3.13 0.66 0.26
WCOL (kg/s) 3.37 2.14 2.74 1.21 0.39 0.26
WSTM (kg/s) 2.07 0.68 12.0 0.00 1.33 0.34

CVGAS (J/kg) 4.71e6 4.69e6 4.72e6 4.70e6 518.6 350.0 4.07e6 1.65e6
MASS (kg) 1.00e4 9.95e3 1.00e4 10.0e3 0.06 0.06
PGAS (N/m2) 1.12e6 1.11e6 1.13e6 1.11e6 1.5e3 290.5 4.97e5 2.34e6
TGAS (K) 1116 1115 1116 1115 0.10 0.01
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Figure 9.4: Output response to step disturbance for 100% load
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Figure 9.5: Control input response to step disturbance for 100% load
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Figure 9.6: Output response to sine wave disturbance for 100% load
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Figure 9.7: Control input response to sine wave disturbance for 100% load



236 CHAPTER 9. MULTIOBJECTIVE PI CONTROLLER DESIGN

0 100 200 300
4.69

4.7

4.71

4.72

4.73
x 10

6

time (sec.)

C
V

G
A

S
 (

J/
kg

)

0 100 200 300
0.9

0.95

1

1.05

1.1
x 10

4

time (sec.)

M
A

S
S

 (
kg

)

0 100 200 300
1.1

1.11

1.12

1.13

1.14

1.15
x 10

6

time (sec.)

P
G

A
S

 (
N

/m
2 )

0 100 200 300
1113

1114

1115

1116

1117

time (sec.)

T
G

A
S

 (
K

)

Figure 9.8: Output response to step disturbance for 0% load
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Figure 9.9: Control input response to step disturbance for 0% load
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Figure 9.10: Output response to sine wave disturbance for 0% load
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Figure 9.11: Control input response to sine wave disturbance for 0% load



238 CHAPTER 9. MULTIOBJECTIVE PI CONTROLLER DESIGN

It has been shown from the above that when the PI controller parameters
designed for the 100% load case were applied to the 0% load case, the control
requirements of the benchmark challenge were not satis�ed. Thus, to cope
with the 0% load case, the multiobjective optimal-tuning mechanism was
switched on again to adapt to the change in operating point of the gasi�er.
Similar control performance results to the 100% load case were then obtained.
Though this is not required by the benchmark challenge, it shows that the
multiobjective optimal-tuning control is able to cope with a wide range of
gasi�er operating points.

9.7 Summary

A PI controller optimised using multiobjective methods has been designed for
the ALSTOM benchmark challenge on gasi�er control. The speci�cations on
the outputs, inputs and input rates of the gasi�er were formulated as multiob-
jective performance function criteria that are expressed by a set of inequalities.
For the 100% load operating point, the MIMO PI controller has been success-
fully designed using multiobjective control techniques to satisfy all speci�ca-
tions when the step pressure disturbance was applied to the gasi�er. The same
controller also met all performance requirements of the gasi�er at 50% load.
Although some speci�cations at 0% load were not satis�ed by this controller,
this is not thought to be a major problem since they were satis�ed when the
multiobjective optimal-tuning mechanism was switched on again. Compared
with �xed parameter controllers, the multiobjective optimal-tuning PI con-
trol needs more computation to re-tune the controller parameters for the case
where the system operating point or dynamics changes. This may cause a
problem in the implementation of this control strategy for fast response con-
trol systems. But it provides much better control performance than the �xed
parameter controllers. Since the PI controller presented in this chapter is
stable, has a simple structure and provides good control performance, it will
be a very suitable controller for industrial gasi�ers.



Chapter 10

Multiobjective PID

Controller Implementation

Design

10.1 Introduction

It is well known that controller implementations with �xed-point arithmetic
o�er a number of advantages over oating-point implementations (Clarke,
1997; Masten and Panahi, 1997). Fixed-point processors contribute to lower
overall system costs and require less on-chip hardware. They have a smaller
package size, less weight, consume less power and are often faster than oating-
point processors. In addition, the simplicity of the architecture contributes
to safer implementations. Thus for high-volume, price-sensitive applications,
safety critical applications and hand-held and aerospace applications where
power consumption and weight are important considerations, �xed-point pro-
cessors with a low word-length are preferred over low word-length, oating-
point processors. However, a closed-loop control system will su�er a perfor-
mance degradation and may even become unstable when the designed in�nite-
precision controller is implemented with a �xed-point digital processor due to
the �nite precision of the parameter representation resulting from the Finite
Word-Length (FWL). This so-called FWL e�ect is in fact strongly dependent
upon the parameterisation of the controller. Thus, over the years, many re-
sults have been reported in the literature dealing with FWL implementation
and their relevant parameterisation issues, for example, Knowles and Edwards
(1965), Morony (1983), Williamson (1991), Gevers and Li (1993), Istepanian
et al. (1998b), Istepanian and Whidborne (2001).

Consider the discrete time system shown in Figure 10.1 with the plant
G(z). Let (Ak; Bk; Ck; Dk) be a state-space description of the state-space

239
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G(z)

K(z)

-

�

Figure 10.1: Discrete time feedback system

controller,

K(z) := Ck(zI �Ak)
�1Bk +Dk (10.1.1)

In this chapter, (Ak; Bk; Ck; Dk) is also called a realisation of K(z). The
realisations of K(z) are not unique, if (A0

k; B
0
k; C

0
k ; D

0
k) is a realisation of

K(z), then (T�1A0
kT; T

�1B0
k ; C

0
kT;D

0
k) is an equivalent realisation for any

non-singular similarity transformation T . A common approach, for example
Gevers and Li (1993), Istepanian et al. (1998b), Whidborne et al. (2000), to
the FWL problem for state-space controllers is to to �nd equivalent controller
realisations (or similarity transformations T ) such that the closed-loop system
is in some way insensitive to perturbations in the controller parameters.

A more direct Genetic Algorithm (GA) based approach has been devel-
oped (Whidborne and Istepanian, 2001a) and is presented in this chapter.
Basically, the approach is to �nd an FWL controller that is near to the origi-
nally designed controller such that the closed-loop performance and robustness
degradation and the FWL implementation cost are simultaneously minimised.
The approach is based on the generation of near-equivalent �nite word-length
controller representations by means of the solution to a linear system equiva-
lence completion problem followed by a rounding operation. A Multiobjective
Genetic Algorithm (MOGA) (Fonseca and Fleming, 1993a,b, 1995), is then
used to �nd sets of Pareto-optimal near-equivalent FWL controllers. This
allows the designer to trade-o� FWL implementation performance and ro-
bustness against the cost and other requirements of the implementation by
enabling the designer to simply choose the most appropriate design from the
set.

Two features of GAs make them very attractive for solving this problem.
Firstly, GAs require the solution space to be encoded in binary strings, and
since controllers implemented with FWL are also coded in binary, a one-to-
one relationship between the genotype and the phenotype within the GA can
be de�ned. Secondly, GAs allow the optimal structure of the solution to be
found (Man et al., 1997; Tang et al., 1996; Dakev et al., 1997). This means
that the implementation word-length does not need to be de�ned a priori, but
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the GA will select the best from a prede�ned set, and so the implementation
cost in the form of the memory requirement can also be minimised.

The developed approach is applied to two problems. The �rst is the
implementation of a PID controller for a steel rolling mill problem (Hori,
1996) which was also solved using a hill-climbing approach by Istepanian et
al.(1998b). The second problem is the implementation of a PID controller de-
signed for the IFAC93 benchmark problem (Graebe, 1994) by Whidborne et
al. (1995a). The method is entirely generic with respect to the objective cost
functions, so any set of stability/performance and implementation measures
could be used. In this chapter, for the �rst problem, the performance and sta-
bility are assessed simply by the maximal change in closed-loop poles, and for
the second, by the H1-norm of the di�erence between the FWL closed-loop
transfer function and the original closed-loop transfer function. The imple-
mentation cost for both examples is taken as the parameter memory storage
requirement.

10.2 FWL Fixed-Point Representation

A typical 2s complement FWL �xed-point representation of a number q(x)
is shown in Figure 10.2. The number q(x) is represented by an m + n + 1
binary string x where x = [x0; x1 : : : ; xm; xm+1; : : : ; xm+n], xi 2 f0; 1g, m 2
f0; 1; 2; : : :g, n 2 f0; 1; 2; : : :g. The value q(x) is given by

q(x) = �x02m +

mX
i=1

xi2
i�1 +

m+nX
i=m+1

xi2
m�i (10.2.1)

The set of possible values which can be taken by an FWL variable represented
by a m + n+ 1 binary string x is de�ned as Qn;m given by Qn;m = fq : q =
q(x); xi 2 f0; 1g; i = 0; : : : ; n +mg. The set of p � r matrices with elements
from Qn;m is denoted by Qp�r

n;m.

x0 x1 � � � xn xn+1 � � � xm

Figure 10.2: FWL �xed-point representation
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10.2.1 A Linear System Equivalence Completion
Problem

In the proposed method, near-equivalent �nite word-length controller repre-
sentations are generated by means of the solution to a linear system equiv-
alence completion problem; some preliminary results are �rst required. The
de�nition below is from Hernstein and Winter (1988, pp. 154).

De�nition 10.1 A matrix A is similar to a matrix ~A if and only if there
exists a non-singular matrix T such that ~A = T�1AT .

Lemma 10.1 Given a matrix A 2 R2�2 such that A 6= �I 8 � 2 R, where

A =

�
a11 a12
a21 a22

�
(10.2.2)

and given the real pair (~a11; ~a12 6= 0), then A is similar to ~A where

~A =

�
~a11 ~a12
~a21 ~a22

�
(10.2.3)

and where ~a22 = a11 + a22 � ~a11 and ~a21 = (~a11~a22 � detA)=~a12.

Proof: To prove this lemma, we use the property that if A and ~A have the
same minimal polynomial and the same characteristic polynomial, and their
minimal polynomial is the same as their characteristic polynomial, then A and
~A are similar (Horn and Johnson, 1985, pp. 150). The characteristic equations
of A and ~A are pA(t) = det(tI�A) = t2� (a11+a22)t+(a11a22�a21a12) and
p ~A(t) = det(tI � ~A) = t2 � (~a11 + ~a22)t + (~a11~a22 � ~a21~a12) respectively. By
equating coeÆcients we obtain the expressions for ~a21 and ~a22. It remains to
be shown that the minimal polynomial of A is the same as the characteristic
polynomial. For the case where the eigenvalues of A are unique, then it is clear
that the minimal polynomial is the same as the characteristic polynomial. For
the case where the eigenvalues of A are repeated and A is non-derogatory, then
the Jordan canonical form of A is

JA =

�
� 1
0 �

�
(10.2.4)

where � is the repeated eigenvalue and the minimal polynomial is the same
as the characteristic polynomial (Barnett, 1971, pp. 6). However, if A is
diagonal with repeated eigenvalues, that is A = �I , then A = T�1AT for all
non-singular T . Thus the Jordan canonical form equals A and A is deroga-
tory and so the minimal polynomial is of lower order than the characteristic
polynomial. This form is explicitly excluded.

The derogatory case excluded in the above lemma is shown to be impractical
for controller implementation by the following lemma.
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Lemma 10.2 For a two state SISO LTI system F (z), where

F
s
=

�
A B
C D

�
(10.2.5)

s
=

2
4 a11 a12 b1
a21 a22 b2
c1 c2 d

3
5 (10.2.6)

then the system is unobservable if A = �I; 8 � 2 R.
Proof: If A = �I , the observability matrix

O =

�
C
CA

�
(10.2.7)

is given by

O =

�
c1 c2
�c1 �c2

�
(10.2.8)

which is rank de�cient, hence the system is unobservable.

The main theorem in which a linear system equivalence completion prob-
lem is solved can now be stated.

Theorem 10.1 Given an observable two state SISO LTI system F (z), where

F
s
=

�
A B
C D

�
(10.2.9)

s
=

2
4 a11 a12 b1
a21 a22 b2
c1 c2 d

3
5 (10.2.10)

then given (~a11; ~a12 6= 0; ~c1; ~c2) there exists an equivalent state-space represen-
tation ~F where

~F
s
=

�
~A ~B
~C ~D

�
(10.2.11)

s
=

2
4 ~a11 ~a12 ~b1

~a21 ~a22 ~b2
~c1 ~c2 ~d

3
5 (10.2.12)

such that ~F (z) = F (z) where

F (z) = C [zI �A]�1B +D (10.2.13)

and
~F (z) = CT

�
zI � T�1AT

��1
T�1B +D (10.2.14)



244 CHAPTER 10. PID CONTROLLER IMPLEMENTATION DESIGN

where

T =

�
t11 t12
t21 t22

�
(10.2.15)

is non-singular if ( ~A; ~C) is observable.

Proof: The proof is by construction. From (10.2.14),

~A = T�1AT (10.2.16)

From de�nition 10.1, and from lemma 10.2, since the system is observable,
the case A = �I 8 � 2 R can be excluded. Hence from lemma 10.1, ~a22 is
given by ~a22 = a11+a22� ~a11 and ~a21 is given by ~a21 = (~a11~a22�detA)=~a12.
From (10.2.16), AT �T ~A = 0, which gives (Horn and Johnson, 1991, pp. 255)

[ I 
A� ~AT 
 I ] t = 0 (10.2.17)

where t = [t11; t21; t12; t22]
T and [I 
 A � ~AT 
 I ] is rank 2. Now, from

(10.2.14), CT = ~C. Hence, given ~c1; ~c2,�
c1 c2 0 0
0 0 c1 c2

�
t =

�
~c1
~c2

�
(10.2.18)

A Y 2 R4�4 can be constructed from (10.2.17) and (10.2.18) where Y t = z,
where Y is non-singular rank 4 and where z 2 R4 is a column vector with
2 elements of ~C and two zero elements. Hence t can be calculated and T
obtained. Since F is observable, then the observability matrix

O =

�
C
CA

�
(10.2.19)

is rank 2. Since the pair ( ~A; ~C) is required to be observable, the observability
matrix

~O =

�
~C
~C ~A

�
(10.2.20)

is rank 2 and since �
~C
~C ~A

�
=

�
CT
CAT

�
(10.2.21)

then clearly T must be non singular. Thus ~B can be calculated. From
(10.2.14), ~d = d.

Note that by rede�ning the transformation matrix as T�1, the problem
given ~B instead of ~C can be solved (Whidborne and Istepanian, 2001b). Note
also that the only restrictions on the problem are that the original system and
the equivalent system are observable, and that certain canonical realisations
(i.e. diagonal and lower triangular) are excluded by the constraint that a12 is
not zero. These realisations can be separately programmed into the method
if necessary.
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10.3 MOGA for Optimal FWL Controller

Structures

10.3.1 Multiobjective Genetic Algorithm

Most GAs have been used for single objective problems, although several mul-
tiobjective schemes have been proposed (e.g. Scha�er, 1985; Wienke et al.,
1992). Fonseca and Fleming (1993a,b, 1994) have used an approach called
the multiobjective genetic algorithm (MOGA), which is an extension on an
idea by Goldberg (1989). This formulation maintains the genuine multiob-
jective nature of the problem, and is essentially the scheme used here. The
idea behind the MOGA is to develop a population of Pareto-optimal or near
Pareto-optimal solutions. To restrict the size of the near Pareto-optimal set
and to give a more practical setting to the MOGA, Fonseca and Fleming have
formulated the problem in a similar way to the MoI. The aim is to �nd a set
of solutions which are non-dominated and which satisfy a set of inequalities.
An individual j with a set of objective functions �j = (�j1; : : : ; �

j
n) is said

to be non-dominated if for a population of N individuals, there are no other
individuals k = 1; : : : ; N; k 6= j such that

a) �ki � �ji for all i = 1; : : : ; n and

b) �ki < �ji for at least one i:

The MOGA is set into a multiobjective context by means of the �tness func-
tion. The mechanism is described later.

The problem which is solved by the MOGA can be expressed as

Problem 10.1 Find a set of M admissible points pj ; j = 1; : : :M such that
�ji � "i (j = 1; : : :M; i = 1; : : : ; n) and such that �j(j = 1; : : :M) are non-
dominated.

Algorithm

The algorithm used in this study is:

S1 Create a chromosome population of N individuals

S2 Decode chromosomes to obtain phenotypes pj 2 P(j = 1; : : : ; N)

S3 Calculate index vectors �j(j = 1; : : : ; N).

S4 Rank individuals and calculate �tness functions fj(j = 1; : : : ; N)

S5 Make selection of N individuals based on �tness

S6 Perform cross-over on selected individuals

S7 Perform mutation on some individuals

S8 With new chromosome population, return to S2

The algorithm is terminated whenM admissible points have been found. The
MATLAB Genetic Algorithms Toolbox (Chipper�eld et al., 1994) has been
used to implement the GA.
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Many variations of the GA have been suggested, with di�erent schemes for
chromosoid representation, ranking and �tness calculation, selection, crossover
and mutation. Usually, the MOGA will use schemes for selection, crossover
and mutation which are typical for standard genetic algorithms, as described
in Chapter 5. It is in the scheme for the ranking and �tness where the multi-
objective nature of the MOGA is characterised. In addition, the MOGA also
requires an additional mechanism in assessing the �tness, known as `�tness
sharing'. In general, the scheme for encoding the chromosoid representation
of the population for a MOGA will also be as for standard genetic algorithms
(see section 5.4). However, for the FWL controller structure application de-
scribed in this chapter, a particular representation is required, the encoding
of which is described in section 10.3.3.

Ranking and Fitness

Fonseca and Fleming (1993a) have proposed a �tness scheme for MOGA to
solve the MoI which maintains the genuine multiobjective nature of the prob-
lem. The scheme needs the concept of one individual being preferable to
another.

De�nition 10.2 Consider two individuals a and b with objective function
sets �a and �b respectively, and with a set of design goals " = ("1; : : : ; "n).
Three possible cases can occur with respect to individual a:

a) Individual a satis�es none of the inequalities
That is, if �ai > "i 8 i = 1; : : : ; n, then individual a is preferable to
individual b if and only if

�ai � �bi ; 8 i = 1; : : : ; n (10.3.1)

and there exists at least one �ai such that �ai < �bi .

b) Individual a satis�es some of the inequalities

That is, if there exists at least one �ai such that �ai � "i and there exists
at least one �ai such that �ai > "i, then individual a is preferable to
individual b if

�ai � �bI ; 8 i such that �ai > "i (10.3.2)

and there exists at least one �ai > "i such that �ai < �bi ;
or if

�ai = �bi 8 i such that �ai > "i (10.3.3)

then individual a is preferable to individual b if

�ai � �bi ; 8 i such that �ai � "i (10.3.4)

and there exists at least one �ai � "i such that �ai < �bi ,
or if there exists a

�bi > "i for some i such that �ai � "i (10.3.5)
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c) Individual a satis�es all the inequalities
That is, if �ai � "i 8 i = 1; : : : ; n, then individual a is preferable to
individual b if

�ai � �bi ; 8 i = 1; : : : ; n (10.3.6)

and there exists at least one �ai such that �ai < �bi ;
or if there exists a �bi > "i.

All the individuals are assigned a rank according to how many individuals
which are preferable to an individual. Thus, the rank of an individual j
is given by rj and the number of individuals in that generation that are
preferable to j are kj , then rj = 1 + kj .

To calculate the �tness, the population is sorted according to rank. A
�tness value f j(j = 1; : : : ; N), 0 � f j � 2, is assigned to each individual
by a linear interpolation from the best individual (f best = 2) to the worst
individual (fworst = 0). The �tness of all individuals with the same rank is
then averaged, so that they are sampled at the same rate. Thus, if ngt is
the number of individuals with a rank r > rj , and if neq is the number of
individuals with a rank r = rj , then

fj =
2ngt + neq
N � 1

(10.3.7)

Figure 10.3 shows an example for 10 individuals where � = (�1; �2). The
goals "1; "2 are also shown. The preference relationship between each pair of
individuals and their subsequent rank and �tness is shown in Table 10.1.

Clearly, this scheme could be adapted, if desired, to provide some order-
ing to the importance of the indices and the inequalities, e.g. if some of the
inequalities could be described as `hard' constraints and others as `soft'.

An alternative, less computationally demanding, ranking scheme has been
proposed by Liu et al. (1994).

Table 10.1: Preference relationship for ranking example

a b c d e f g h i j
a is preferable to � � � � � � � � � �
b is preferable to

p � � � � � � � � �
c is preferable to

p � � � � � � � � �
d is preferable to � � � � � � � � � �
e is preferable to � � � p � � � � � p
f is preferable to

p p p p p � � � p p
g is preferable to

p p p p p p � � p p
h is preferable to

p p p p p � � � p p
i is preferable to � � � p p � � � � p
j is preferable to � � � � � � � � � �
rank 6 4 4 6 5 2 1 1 4 6
�tness f 0.22 1.11 1.11 0.22 0.67 1.56 1.89 1.89 1.11 0.22
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Figure 10.3: Example of multiobjective ranking

Fitness Sharing

In addition to �nding a set of near Pareto-optimal individuals, it is desirable
that the sample of the whole Pareto-optimal set given by the set of non-
dominated individuals is fairly uniform. A common mechanism to ensure this
is �tness sharing (Fonseca and Fleming, 1995), which works by reducing the
�tness of individuals that are genetically close to each other. However, as will
be seen in section 10.3.3, not all the bits within a candidate solution bit string
are necessarily active. Thus, two individuals may have the same genotype,
but di�erent gene strings. Thus it becomes diÆcult to measure the di�erence
between two genotypes in order to implement �tness sharing; so, for the sake
of simplicity in this study, multiple copies of genotypes are simply removed
from the population.

10.3.2 Procedure Outline

The proposed approach is to use the MOGA to evolve a set of near Pareto-
optimal solutions to the following problem.

Problem 10.2 Given a discrete time nominal plant G(z) and designed PID
(or other second order) controller K(z), �nd an FWL controller Kq(z) and
state-space parameterisation such that the di�erence (in some sense) between
the closed-loop system and the original closed-loop system and the implemen-
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tation costs are simultaneously minimised.

For each individual in the population, the following procedure is used to
generate a possible solution candidate.

S1 Generate a partially �lled random FWL parameterisations of the two
state controller i.e.

~K
s
=

2
4 q1 q2 ?

? ? ?
q3 q4 DK

3
5 (10.3.8)

where qj 2 Qn;m; j = 1; : : : ; 4, i.e. each qj is FWL.

S2 By Theorem 10.1, solve a linear system equivalence completion problem
such that ~K(z) = K(z).

S3 Obtain Kq � ~K by rounding the non-FWL parameters in ~K so that
they are FWL, i.e.

Kq
s
=

2
4 q1 q2 q7
q5 q6 q8
q3 q4 q9

3
5 (10.3.9)

where qj 2 Qn;m; j = 1; : : : ; 9.

S4 Calculate a set of robust stability/performance degradation indices and
implementation cost indices, f�i : i = 1; : : : ; ng for Kq.

10.3.3 Encoding of Solution Space

The encoding of the solution space is described in this section. Here, it is
assumed there is a maximum possible word-length of 16-bits, however, it is a
trivial matter to change this to use an 8, 32 or 64-bit maximum word-length.

In order to generate the partially �lled parameterisations of K given by
(10.3.8), the genotype of each individual consists of a 71-bit binary string
[x1; : : : ; x71]; xi 2 f0; 1g. The bit length of the integer part of the parameters'
representation m 2 0; : : : ; 7 is represented by [x1; x2; x3], and is given by

m =
P3

i=1 xi2
i�1. The bit length of the fractional part of the parameters'

representation n 2 0; : : : ; 15 is represented by [x4; : : : ; x7], and is given by

n = min(
P7

i=4 xi2
i�4; 15�m). The four m + n + 1 word-length parameters

qj 2 Qn;m; j = 1; : : : ; 4, where (q1; q2; q3; q4) = (~a11; ~a12; ~c1; ~c2) respectively,
are represented by [x8+16(j�1); x9+16(j�1); : : : ; x8+m+n+16(j�1)]. Thus not all
the bits in x are necessarily active. The values of qj are calculated by (10.2.1).

10.4 Example { Steel Rolling Mill System

The proposed approach is applied to a PID controller of a steel rolling mill
(Hori, 1996). Note that data given in this section are shown to only 4 decimal
places.
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10.4.1 Performance indices

For this example, the measure of the di�erence between the FWL imple-
mented closed-loop system and the original closed-loop system is based on
the di�erence between the closed-loop pole positions of the systems.

Consider the discrete time system shown in Figure 10.1. Let (Ag ; Bg; Cg ;
Dg) be a state-space description of the SISO plant G(z) = Cg(zI�Ag)�1Bg+
Dg, where Ag 2 Rng�ng , Bg 2 Rng�1, Cg 2 R1�ng and Dg 2 R. Let
(Ak; Bk; Ck; Dk) be a state-space description of the two state controller,K(z) =
Ck(zI � Ak)

�1Bk + Dk, where Ak 2 R2�2, Bk 2 R2�1, Ck 2 R1�2 and
Dk 2 R. The transition matrix of the closed-loop system is

�A =

�
Ag +BgDk(I �DgDk)

�1Cg Bg(I �DkDg)
�1Ck

Bk(I �DgDk)
�1Cg Ak +Bk(I �DkDg)

�1DgCk

�
(10.4.1)

When (Ak; Bk; Ck; Dk) is implemented with a �nite word-length device, the
elements are rounded to the realisation Kq = (Aq ; Bq ; Cq ; Dq), that is K(z)
is perturbed to Kq(z), where Kq(z) = Cq(zI � Aq)

�1Bq + Dq and where
Aq 2 Q2�2

n;m, Bq 2 Q2�1
n;m, Cq 2 Q1�2

n;m and Dq 2 Qn;m. The transition matrix
of the FWL implemented closed-loop system is thus

�Aq =

�
Ag +BgDq(I �DgDq)

�1Cg Bg(I �DqDg)
�1Cq

Bq(I �DgDq)
�1Cg Aq +Bq(I �DqDg)

�1DgCq

�
(10.4.2)

A closed-loop measure, �, of the accuracy of the FWL implementation is taken
as

�(Kq)
4
= max

i2f1;:::;ng+2g

����i � �Qi

��� (10.4.3)

where f�i : i = 1; : : : ;m + 2g represents the set of all eigenvalues of �A and

f�Qi : i = 1; : : : ; ng + 2g the corresponding set of all eigenvalues of �Aq.
Two objective functions, �1(x); �2(2) are de�ned. A measure of imple-

mentation accuracy is de�ned as

�1 =

8>>>>>>>>><
>>>>>>>>>:

�(Kq) if
���Ki �� � 18i

and
����Qi ��� < 18i

maxi
���Ki �� if

���Ki �� > 19i

maxi

����Qi ��� if
���Ki �� � 18i

and
����Qi ��� � 19i

(10.4.4)

where f�Ki : i = 1; 2g represents the pair of eigenvalues of Aq .
An implementation memory function, �2, is de�ned as the total number

of bits used to implement Kq. This function is calculated bearing in mind
that parameters of Kq that are 1; 0;�1 or that are a power of 2 require less
memory requirement than the m+ n+ 1 bits from (10.2.1).
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10.4.2 Nominal Plant Model

The continuous time linearised ideal two-mass inertia model of the system
plant, G(s) = C(zI �A)�1B, is given as

A =

2
4 0 �9763:7203 0
1 0 �1
0 13424:9859 0

3
5 (10.4.5)

B =

2
4 249:030

0

3
5 ; C = [ 1 0 0 ] (10.4.6)

The plant, G(s), is discretised with sampling period of 0:001 seconds to give
G(z) = Cg(zI �Ag)

�1Bg as

Ag =

2
4 0:9951 �9:7260 0:0049
0:0010 0:9884 �0:0010
0:0067 13:3732 0:9933

3
5 (10.4.7)

Bg =

2
4 0:24860:0001
0:0006

3
5 ; Cg = [ 1 0 0 ] (10.4.8)

10.4.3 Controller

A PID vibration suppression and disturbance rejection controller is designed
as

K(s) =
0:00269s

0:001s+ 1
� 0:435� 14:26

s
(10.4.9)

The bilinear transform,

s =
2

h

1� z�1

1 + z�1
(10.4.10)

gives the digital PID controller as

K(z) = �0:01426

z � 1
� 1:1956

z � 0:3333
+ 1:3512 (10.4.11)

The initial realisation K0 is set to

A0
k =

�
1 0
0 0:3333

�
; B0

k =

��1
�1
�

(10.4.12)

C0
k = [ 0:01426 1:1956 ] ; D0

k = 1:3512 (10.4.13)
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10.4.4 Design Results

The MOGA is implemented in MATLAB using the GA Toolbox (Chipper-
�eld et al., 1994). An elitism strategy is used whereby all non-dominated
individuals propagate through to the next population. Selection is performed
using stochastic universal sampling with a �tness determined by the number
of dominating individuals. Single point crossover is used with a probability
of 0:7. Each bit has a probability of mutation of 0:00933.
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Figure 10.4: Solution set showing trade-o� with MOGA non-dominated set
(�) and MOGA dominated set (�)

The MOGA is run with a population of 120. After 400 generations (which
takes approximately 1 hour on a 450 MHz Pentium II), a set of non-dominated
solutions is obtained. This set is shown in Figure 10.4. Note that the axis
for �1 is shown to log scale for clarity. The �gure clearly shows the trade-o�
between the memory requirements and the stability degradation.

10.5 Example { IFAC93 Benchmark Design

The proposed approach is illustrated by application to the \stress level 2"
PID controller (Whidborne et al., 1995a) designed for the IFAC93 benchmark
problem (Graebe, 1994). In this problem, the nominal plant is provided along
with perturbation ranges for 5 of the plant parameters. The PID controller
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has been optimally tuned for a set of robust performance criteria. For further
details, see Whidborne et al. (1995a).

10.5.1 Performance Indices

To obtain the optimal digital controller structure for this example, two indices
are de�ned for the MOGA. The �rst index, �1, is the closed-loop measure of
the implementation accuracy of the FWL controller compared to the original
controller and is taken as the H1-norm of the di�erence between the closed-
loop pole transfer functions of the systems. If both the implemented controller
and closed-loop system are stable, �1 is de�ned as

�1 := kR�Rq k1 (10.5.1)

where

R =
GK

1 +GK
(10.5.2)

and

Rq =
GKq

1 +GKq
(10.5.3)

This is also a measure of the robust stability/performance degradation.
An implementation memory function, �2, is de�ned as the total number

of bits used to implement Kq. This function is calculated bearing in mind
that parameters of Kq that are 1; 0;�1 or that are a power of 2 require less
memory requirement than the m+ n+ 1 bits from (10.2.1).

10.5.2 Nominal Plant Model and Controller

The continuous time nominal plant, G(s), is given as

G(s) =
25(1� 0:4s)

(s2 + 3s+ 25)(5s+ 1)
(10.5.4)

The plant, G(s), is discretised with sampling period of ts = 0:05 seconds. A
PID controller is designed as in Whidborne et al. (1995a):

K(s) = 1:311 + 0:431=s+ 1:048s=(s+ 12:92) (10.5.5)

and discretised using the bilinear transform. The initial realisation K0 is set
to

Kq
s
=

2
4 0 �0:51172 1

1 1:5117 0
�0:36524 �0:17638 2:1139

3
5 (10.5.6)
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10.5.3 Design Results

The MOGA is implemented in MATLAB using the GA Toolbox (Chipper-
�eld et al., 1994). An elitism strategy is used whereby all non-dominated
individuals propagate through to the next population. Selection is performed
using stochastic universal sampling with a �tness determined by the number
of dominating individuals. Single point crossover is used with a probability
of 0:7. Each bit has a probability of mutation of 0:00933.

The MOGA is run with a population of 120. After 800 generations (which
takes about 3 hours on a 450 MHz Pentium II), a set of non-dominated solu-
tions is obtained. This set is shown in Figure 10.5. The �gure also shows the
stable dominated solutions along with FWL implementations of the initial re-
alisation, K0

q , for various word-lengths. In addition, the equivalent balanced
realisation (Zhou et al., 1996, pp. 72-78) of K(z) is calculated and FWL
implementations of the realisation for various word-lengths are shown. Note
that the axis for �2 = kR�Rq k1 is shown to log scale for clarity. The �gure
clearly shows that improved FWL state-space realisations for the controller
can be obtained using the approach.

The 32-bit solution labelled (1) in Figure 10.5 is selected and is the con-
troller

K(1)
q

s
=

2
4 2�1 �2�1 2�4

0 1 0:34375
�1 �0:9375 2:125

3
5 (10.5.7)

which requiresm = 2 and n = 5 for the FWL representation given by (10.2.1).
In addition, one of the parameters is zero, two are �1, and three others are
powers of 2, and can hence be implemented by register shifts. Figure 10.6
shows the frequency response of the original closed-loop transfer function��R(ej!ts)�� and the di�erence between the systems

���R(ej!ts)�R
(1)
q (ej!ts)

���.
Figure 10.7 shows the step response of the system with the original controller
design, K(s), and the digital controller, Kq for the nominal plant and the
envelope provided by the 32 plants with the parameters at their extreme
values. There is very little di�erence between the two sets of responses.

For comparison, the 43 bit balanced FWL controller parameterisation la-
belled (2) in Figure 10.5 is selected and is the controller

K(2)
q

s
=

2
4 1 0 �0:15625

0 2�1 �0:625
�0:15625 0:625 2:125

3
5 (10.5.8)

which also requires m = 2 and n = 5 for the FWL representation given by
(10.2.1). Figure 10.8 shows the step response of the system with the original

controller design, K(s), and the digital controller, K
(2)
q for the nominal plant

and the envelope provided by the 32 plants with the parameters at their ex-
treme values. The deterioration in the step response here is marked.
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Figure 10.5: Solution set showing trade-o� with MOGA non-dominated set
(�), MOGA dominated set (�), K0

q realisations (�) and equivalent balanced
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10.6 Summary

A multiobjective genetic algorithm based method to determine optimal FWL
structures for PID digital controllers has been developed. The method is
illustrated by practical examples. The method exploits the fact that the
implementation of FWL controllers is by means of binary numbers, as is the
representation in genetic algorithms.

The method requires the solution of a linear system similarity completion
problem. A solution to the linear system similarity completion problem for
two state SISO systems has been presented. This solution would need to be
extended to general linear systems for the methodology to be extended to
higher order controllers. Otherwise, the method is entirely generic, and any
computable set of stability and performance measures could be included. In
addition, other implementation measures could be included, such as computa-
tion time, as well as measures of other important quantisation e�ects, namely
quantisation noise and scaling requirements. The method is also suitable for
controllers implemented using Æ operators, which are well-known to have good
properties at high sampling rates (Goodwin and Middleton, 1980).



Chapter 11

Multiobjective Nonlinear

Identi�cation

11.1 Introduction

Nonlinear system identi�cation can be posed as a nonlinear functional ap-
proximation problem. From the Weierstrass Theorem (Powell, 1981) and the
Kolmogorov theorem (Sprecher, 1965) in approximation theory, it is known
that the polynomial and many other approximation schemes can approxi-
mate a continuous function arbitrarily well. In recent years, many nonlinear
system identi�cation approaches, particularly identi�cation using neural net-
works (Chen et al., 1990; Narendra and Parthasarathy, 1990; Billings and
Chen, 1992; Qin et al., 1992; Willis et al., 1992; Kadirkamanathan and Ni-
ranjan, 1993; Kuschewski et al., 1993; Liu et al., 1996, 1998, 1999), based on
the universal approximation theorem (Cybenko, 1989), are applications of a
similar mathematical approach.

For nonlinear system identi�cation using the approximation approach, two
key questions are important: how to judge the accuracy for the nonlinear
function being approximated and how to choose nonlinear function units to
guarantee the accuracy. Many nonlinear system identi�cation approaches
�x the number of nonlinear function units and use only a single performance
function, e.g., L2-norm of the di�erence between the real nonlinear system and
the nonlinear model which results in the well-known least squares algorithm,
to measure and judge the accuracy of the identi�cation model and to optimise
the approximation. The assumption behind choosing the L2-norm is that the
noise in the process and measurements has Gaussian (normal) distributions.

However, in nonlinear system identi�cation there are often a number of
objectives to be considered. The objectives are often conicting and no iden-
ti�cation which can be considered best with respect to all objectives exists.
Hence, there is an inevitable trade-o� between objectives, for example, the
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distance measurement and maximum di�erence measurement between the real
nonlinear system and the nonlinear model. Model comparison methods, such
as Information Criterion (Akaike, 1974), Bayesian model selection (MacKay,
1992) and Minimum Description Length (MDL) (Rissanen, 1989), consider
two such objectives, namely, Euclidean distance (L2-norm) and model com-
plexity. These procedures allow the selection of the best amongst a small
number of candidate models (MacKay, 1992). We consider in addition to the
above two objectives, the L1-norm of the di�erence between the real nonlin-
ear system and the nonlinear model because it represents the accuracy bound
of the approximation achieved by the estimated model. These considerations
lead to the study of multiobjective nonlinear system identi�cation.

Recently, arti�cial neural networks (or simply neural networks, also re-
ferred to as connectionist models) have become popular in engineering areas.
The interest mainly stems from two aspects: one is to understand and model
biological intelligent systems and the other is to devise machines that mimic
human behaviour especially in recognising speech and image patterns. The
former attempts to model the brain at the microscopic level of neurons and
synapses, while the latter tries to �nd a macroscopic model that is function-
ally similar to the performance of the human brain. A neural network is
modelled by an associative memory which retrieves an appropriate output
when presented with an input. The associative memory performs a mapping
between the input and the output and is built by learning from examples
that are provided in the form of input-output pairs. Neural network learning
is thus the identi�cation of an input-output mapping from given examples,
which is equivalent to approximating a function based on the information
at a set of discrete points. Neural networks are being successfully used as
learning machines in applications related to pattern classi�cation and system
identi�cation. The success of neural networks has often been attributed to
their analogy with their biological counter-part, the human brain. These net-
works are however far from anything like the human brain and their learning
mechanism is even less comparable. The theoretical approaches to under-
stand neural networks have resulted in the use of neural networks to function
approximation and nonlinear system modelling.

In this chapter, three multiobjective performance functions are introduced
to measure the approximation accuracy and the complexity of the nonlinear
model for noise with mixed distribution. Those functions are the L2- and
L1-norms of the di�erence measurements between the real nonlinear system
and the nonlinear model, and the number of nonlinear units in the nonlin-
ear model. Genetic algorithms are used to search for a sub-optimal set of
nonlinear basis functions of the model to simplify model estimation. A neu-
ral network is applied for the model representation of the nonlinear systems,
which is the Gaussian radial basis function (GRBF) network. A numerical al-
gorithm for multiobjective nonlinear model selection and identi�cation using
neural networks and genetic algorithms is also detailed. Two applications in
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identi�cation of a nonlinear system and approximation of a nonlinear func-
tion with a mixed noise demonstrate the operation of multiobjective nonlinear
identi�cation.

11.2 Neural Networks

The �eld of neural networks has its roots in neurobiology. The structure
and functionality of neural networks has been motivated by the architecture
of the human brain. Following the complex neural architecture, a neural
network consists of layers of simple processing units coupled by weighted
inter-connections. A number of neural networks have been proposed in recent
years.

The multilayer Perceptron (MLP)(Rumelhart al., 1986a,b) is a network
that is built upon the McGulloch and Pitts' model of neurons (McCulloch
and Pitts, 1943) and the Perceptron (Rosenblatt, 1958). The Perceptron maps
the input, generally binary, onto a binary valued output. The MLP uses this
mapping to real valued outputs for binary or real valued inputs. The decision
regions that could be formed by this network extend beyond the linear sep-
arable regions that are formed by the Perceptron. The nonlinearity inherent
in the network enables it to perform better than the traditional linear meth-
ods (Lapedes and Farber, 1987). It has been observed that this input-output
network mapping can be viewed as a hypersurface constructed in the input
space (Lapedes and Farber, 1988). A surface interpolation method, called the
radial basis functions, has been cast into a network whose architecture is simi-
lar to that of MLP (Broomhead and Lowe, 1988). Other surface interpolation
methods, for example, the multivariate adaptive regression splines (MARS)
(Friedman, 1991) and B-Splines (Lane al., 1989), have also found their way
into new forms of networks. Another view presented in Lippmann (1987) and
Lapedes and Farber (1988) is that the network provides an approximation to
an underlying function. This has resulted in applying polynomial approxima-
tion methods to neural networks, such as the Sigma - Pi units (Rumelhart
al., 1986a,b), the Volterra polynomial network (Rayner and Lynch, 1989) and
the orthogonal network (Qian al., 1990). Recently the application of wavelet
transforms to neural networks (Pati and Krishnaprasad, 1990) has also de-
rived its inspiration from function approximation.

While these networks may have little relationship to the biological neural
networks, it has become common in the neural network area to refer to them
as neural networks. These networks share one important characteristic; they
are able to approximate any continuous mapping to a suÆcient accuracy if
they have resources to do so (Friedman, 1991; Stinchcombe and White, 1989).

As its name implies, a neural network is a network of simple processing
elements called neurons connected to each other via links. The architecture
of the network and the functionality of the neurons determine the response
of the network to an input pattern. The network does no more than provide
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an input-output mapping. Thus, a simple mathematical model can represent
these networks. Now, let us investigate the neural network architectures and
their functional representation by considering the multilayer network, which
laid the foundation for the development of many other classes of feed-forward
networks.

A neuron is an information-processing unit that is fundamental to the
operation of a neural network. The model of a neuron is illustrated in Figure
11.1 (Haykin, 1994). There are three basic elements in the neuron model:
connecting links, an adder and an activation function. Each of the connecting
links is characterised by a weight or strength of its own. The adder sums
the input signals weighted by the respective connecting link of the neuron.
The activation function limits the amplitude of the output of a neuron, which
is also referred to in the literature as a squashing function, in that it limits
the permissible amplitude range of the output signal to some �nite value.
In mathematical terms, a neuron may be described by the following pair of
equations:

v =

nX
k=1

wkuk; y = '(v) (11.2.1)

where uk is the input signal, wk the weight of the neuron, v the linear combiner
link, '(:) the activation function and y the output signal of the neuron.
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u2
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Figure 11.1: Model of a neuron

The multilayer network has a input layer, one or several hidden layers and
an output layer. Each layer consists of neurons with each neuron in a layer
connected to neurons in the layer below. This network has a feed-forward
architecture which is shown in the Figure 11.2. The number of input neurons
de�nes the dimensionality of the input space being mapped by the network
and the number of output neurons as well as the dimensionality of the output
space into which the input is mapped. Let the input to the network be denoted
by u and the output by y. The neural network maps an input pattern to an
output pattern, described by

f : u! y (11.2.2)
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Input layer Hidden layer Output layer

Figure 11.2: Architecture of a multilayer network

In a feedforward neural network, the overall mapping is achieved via inter-
mediate mappings from one layer to another. These intermediate mappings
depend on two factors. The �rst is the connection mapping that transforms
the output of the lower layer neurons to an input to the neuron of interest
and the second is the activation function of the neuron itself.

11.3 Gaussian Radial Basis Function Networks

Radial basis functions (RBF) have been introduced as a technique for mul-
tivariable interpolation (Powell, 1987). Broomhead and Lowe demonstrated
that these functions can be cast into an architecture similar to that of the
multilayer network, and hence named as the RBF network (Broomhead and
Lowe, 1988).

In the RBF network that is a single hidden layer network, its input to the
hidden layer connection transforms the input into a distance from a point in
the input space, unlike in the MLP, where it is transformed into a distance
from a hyperplane in the input space. However, it has been seen from multi-
layer networks that the hidden neurons can be viewed as constructing basis
functions which are then combined to form the overall mapping. For the RBF
network, the basis function constructed at the k-th hidden neuron is given by

'k(u) = g(ku� dk k) (11.3.1)

where k : k is a distance measure, u the input vector, dk the unit centre in the
input space and g(:) a nonlinear function. The basis functions are radially
symmetric with the centre on dk in the input space, hence they are named as
radial basis functions. Some examples of nonlinear functions used as a radial
basis function g(:) are the following

g(r) =
p
r2 + c2 (multi� quadratic) (11.3.2)
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g(r) = r2 ln(r) (thin plate splines) (11.3.3)

g(r) = exp

�
r2

�2

�
(Gaussian) (11.3.4)

The radial basis function network with Gaussian hidden neurons is named
as the Gaussian RBF network, also referred to as the network of localised
receptive �elds by Moody and Darken, who were inspired by the biological
neurons in the visual cortex (Moody and Darken, 1989). The Gaussian RBF
network is related to a variety of di�erent methods (Niranjan and Fallside,
1988), particularly, Parzen window density estimation which is the same as
kernel density estimation with a Gaussian kernel, potential functions method
for pattern classi�cation, and maximum likelihood Gaussian classi�ers, which
all can be described by a Gaussian RBF network formalism.

Following (11.3.1) and (11.3.4), the Gaussian RBF network can be de-
scribed in a more general form. Instead of using the simple Euclidean dis-
tance between an input and a unit centre as in the usual formalism, a weighted
distance scheme is used as the following:

ku� dk k = (u� dk)
TCk(u� dk) (11.3.5)

where Ck is a weighting matrix of the k-th basis function whose centre is dk.
The e�ect of the weighting matrix is to transform the equidistant lines from
being hyperspherical to hyperellipsoidal. Thus, a Gaussian RBF is given by

gk(u; d; C) = expf(u� dk)
TCk(u� dk)g (11.3.6)

where d and C represent the centres and the weighting matrices. The Gaussian
RBF network mapping is given by

f(u; p) =

nX
k=1

wkgk(u; d; C) (11.3.7)

where p = fw; d; Cg. Clearly, the Gaussian RBF network is determined by
the set of parameters fwk; dk; Ckg. To produce a mapping using this network,
one can estimate all of these parameters or alternatively, provide a scheme
to choose the widths Ck and the centres dk of the Gaussian and adapt only
the weights wk . Adapting only the weights is much easier and more popular,
since the problem of estimation is then linear.

11.4 Nonlinear Modelling with Neural

Networks

The modelling of nonlinear systems has been posed as the problem of selecting
an approximate nonlinear function between the inputs and the outputs of the
systems. For a single-input single-output system, it can be expressed by
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the NARMAX model (nonlinear auto-regressive moving average model with
exogenous input, Leontaritis and Billings, 1985), that is

y(t) = f(y(t� 1); :::; y(t� ny); u(t� 1); :::; u(t� nu) + e(t) (11.4.1)

where f(:) is an unknown nonlinear function, y is the output, u is the control
input and e is the noise, respectively, ny; nu; ne are the corresponding maxi-
mum delays. It is assumed that the noise e(t) is a white noise. For the colour
noise case, the modelling of the system using neural networks below needs
some slight modi�cations, as suggested in Nerrand et al. (1994).

The nonlinear function f(:) in the above NARMAX model can be approx-
imated by a single-layer neural network, i.e., a linear combination of a set of
basis functions (Billings and Chen, 1992; Liu et al., 1998)

f�(x; p) =
NX
k=1

wkfk(x; dk) (11.4.2)

where

x = [y(t� 1); :::; y(t� ny); u(t� 1); :::; u(t� nu)] (11.4.3)

fk(x; dk) (k = 1; 2; :::; N) is the basis function and p is the parameter vector
containing the weights wk and the basis function parameter vectors dk . If the
basis functions fk(x; dk) do not have the parameters dk, then it is denoted by
fk(x).

Radial basis functions were introduced as a technique for multivariable
interpolation (Powell, 1987), which can be cast into an architecture simi-
lar to that of the multilayer Perceptron (Broomhead and Lowe, 1988). Ra-
dial basis function networks provide an alternative to the traditional neural
network architectures and have good approximation properties. One of the
commonly used radial basis function networks is the Gaussian radial basis
function (GRBF) neural network, also called the localised receptive �eld net-
work (Moody and Darken, 1989). The nonlinear function approximated by
the GRBF network is expressed by

f�(x; p) =
NX
k=1

wk exp(�(x� dk)
TCk(x� dk)) (11.4.4)

where Ck is the weighting matrix of the kth basis function, and p is the
parameter vector containing the weights wk , the centres dk and the weighting
matrix Ck (k = 1; 2; :::; N).

11.5 Modelling Selection by Genetic

Algorithms

Many di�erent techniques are available for optimising the design space as-
sociated with various systems. In recent years, the direct-search techniques,
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which are problem-independent, have been proposed as a possible solution
for the diÆculties associated with the traditional techniques. One direct-
search method is the genetic algorithm (Goldberg, 1989). Genetic algorithms
are search procedures which emulate the natural genetics. They are di�er-
ent from traditional search methods encountered in engineering optimisation.
Recently, genetic algorithms have been applied to control system design (see,
e.g., Davis, 1991; Patton and Liu, 1994). GAs have also been successfully
used with neural networks to determine the network parameters (Scha�er et
al., 1990; Whitehead and Choate, 1994) and with NARMAX models (Fonseca
et al., 1993). Here, the GA approach is applied to the model selection and
identi�cation of nonlinear systems using multiobjective criteria as the basis
for selection.

The model selection can be seen as a subset selection problem. For the
model represented by the GRBF network, the maximum number of the model
terms is given by N , the number of the Gaussian functions, and there are 2N

possible models for selection and also N possible radial basis functions with
their centres dk. For the sake of simplicity, it assumes that Ck = I . Thus a
chromosome representation in genetic algorithms consists of an N -bit binary
model code c and N real number basis function centres dk (k = 1; 2; :::; N),
i.e.,

[c; dT1 ; d
T
2 ; : : : ; d

T
N ] (11.5.1)

For example, if N = 5, x 2 R2 and the chromosome

[ [0 1 0 0 1] ; [d11; d12]; : : : ; [d51; d52]] (11.5.2)

then the model is given by

f�(x; p) = w2 exp(�
2X

j=1

(xj � d2j)
2) + w5 exp(�

2X
j=1

(xj � d5j)
2) (11.5.3)

It is evident from the above that only the basis functions corresponding to the
non-zero bits of the binary model code c are included in the selected model.
Given a parent set of binary model codes and basis function parameter vectors,
a model satisfying a set of performance criteria is sought by the numerical
algorithm given later.

11.6 Multiobjective Identi�cation Criteria

This section presents multiobjective performance criteria for nonlinear model
selection and identi�cation. Let us de�ne the following performance functions:

�1(p) = kf(x)� f�(x; p)k2 (11.6.1)

�2(p) = kf(x)� f�(x; p)k1 (11.6.2)

�3(p) = �(c) (11.6.3)
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where k:k2 and k:k1 are the L2- and L1-norms of the function (:), �(c) is
the number of the non-zero elements in the binary model code c.

For model selection and identi�cation of nonlinear systems, there are good
reasons for giving attention to the performance functions �i(p) (i = 1; 2; 3).
The practical reasons for considering the performance function �1(p) is even
stronger than the other performance functions �2(p) and �3(p). Statistical
considerations show that it is the most appropriate choice for data �tting when
errors in the data have a normal distribution. Often the performance function
�1(p) is preferred because it is known that the best approximation calculation
is straightforward to solve. The performance function �2(p) provides the
foundation of much of approximation theory. It shows that when this is small,
the performance function �1(p) is small also. But the converse statement
may not be true. A practical reason for using the performance function �2(p)
is based on the following. In practice, an unknown complicated nonlinear
function is often estimated by one that is easy to calculate. Then it is usually
necessary to ensure that the greatest value of the error function is less than a
�xed amount, which is just the required accuracy of the approximation. The
performance function �3(p) is used as a measure of the model complexity. A
smaller performance function �3(p) indicates a simpler model in terms of the
number of unknown parameters used. Under similar performances in �1(p)
and �2(p) by two models, the simpler model is statistically likely to be a
better model (Geman et al., 1992).

In order to give a feel for the usefulness of the multiobjective approach as
opposed to single-objective design techniques, let us consider the minimisation
of the cost functions �i(p) (i = 1; 2; 3). Let the minimum value of �i be
given by �?i , for i = 1; 2; 3; respectively. For these optimal values �?i there
exist corresponding values given by �j [�

?
i ] (j 6= i; j = 1; 2; 3), for i = 1; 2; 3,

respectively, and the following relations hold:

minf�1[�?2]; �1[�?3]g � �?1 (11.6.4)

minf�2[�?1]; �2[�?3]g � �?2 (11.6.5)

minf�3[�?1]; �3[�?2]g � �?3 (11.6.6)

If one of the performance functions �i (i = 1; 2; 3) is minimised individually
(single-objective approach), then unacceptably large values may result for
other performance functions �j (j 6= i; j = 1; 2; 3). Generally, there does
not exist a solution for all performance functions �i(p) for i = 1; 2; 3 to be
minimised by the same parameter vector p.

Following the method of inequalities (Zakian and Al-Naib, 1973), we refor-
mulate the optimisation into a multiobjective problem as (Liu and Kadirka-
manathan, 1999)

�i(p) � "i; for i = 1; 2; 3 (11.6.7)

where the positive real number "i represents the numerical bound on the
performance function �i(p) and is determined by the designer. Generally
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speaking, the number "i is chosen to be a reasonable value corresponding to
the performance function �i according to the requirements of the practical
system. For example, "1 should be chosen between the minimum of �1 and
the practical tolerable value on �1. The minimum of �1 can be determined
by the least squares algorithm. The practical tolerable value means if �1 is
greater than it, the modelling result cannot be accepted.

11.7 Multiobjective Identi�cation Algorithm

With three objectives (or cost functions) for model selection and identi�cation,
the numerical algorithm is not a straightforward optimisation algorithm, such
as for the least squares algorithm. This section introduces a numerical algo-
rithm which uses genetic algorithm approaches and the method of inequalities
to obtain a numerical solution satisfying the performance criteria.

Now, let us normalise the multiobjective performance functions as the
following

 i(p) =
�i(p)

"i
(11.7.1)

Let �i be the set of parameter vectors p for which the i-th performance crite-
rion is satis�ed:

�i = fp :  i(p) � 1g (11.7.2)

Then the admissible or feasible set of parameter vectors for which all the
performance criteria hold is the intersection

� = �1 \ �2 \ �3 (11.7.3)

Clearly, p is an admissible parameter vector if and only if

maxf 1(p);  2(p);  3(p)g � 1 (11.7.4)

which shows that the search for an admissible p can be pursued by optimisa-
tion, in particular by solving

min
p
fmaxf 1(p);  2(p);  3(p)gg (11.7.5)

subject to (11.7.4).
Following the boundary moving method (Zakian and Al-Naib, 1973), the

optimisation is carried out using iterative schemes. Now, let pq be the value
of the parameter vector at the q-th iteration step in optimisation, and de�ne

�qi = fp :  i(p) � �qg; for i = 1; 2; 3 (11.7.6)

where
�q = maxf i(pq)g (11.7.7)
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and also de�ne

�q = �q1 \ �q2 \ �q3 (11.7.8)

�q is the qth set of parameter vectors for which all performance functions
satisfy

 i(p) � �q ; for i = 1; 2; 3 (11.7.9)

It is clear that �q contains both pq and the admissible set �. If we �nd a new
parameter vector �pq , such that

��q < �q (11.7.10)

where ��q is de�ned similarly to �q , then we accept �pq as the next value of
the parameter vector. Then, we set pq+1 = �pq. We then have

 i(p
q+1) �  i(p

q); for i = 1; 2; 3 (11.7.11)

and

� � �q+1 � �q (11.7.12)

so that the boundary of the set in which the parameters are located has been
moved towards the admissible set. The process of �nding the optimisation
solution is terminated when �q cannot be reduced any further. But the
process of �nding an admissible parameter vector p stops when

�q � 1 (11.7.13)

i.e., when the boundaries of �q have converged to the boundaries of �. Equa-
tion (11.7.13) is always achievable if "i is properly set, for i = 1; 2; 3: On
the other hand, if the �q persists in being larger than 1, this may be taken
as an indication that the performance criteria may be inconsistent, whilst
their magnitude gives some measure of how closely it is possible to approach
the objectives. In this case, some of the parameters "i need to be increased.
Generally speaking, the parameter "i corresponding to the largest normalised
performance function  i(p

q) should be considered to increase �rst and then
that corresponding to the second largest one and so on. This means that some
of the performance criteria should be relaxed until they are satis�ed. From
a practical viewpoint, the approximate optimal solution is also useful if the
optimal solution is not achievable. Genetic algorithms have been used in mul-
tiobjective optimisation and have provided better results over conventional
search methods (Davis, 1991; Hajela and Lin, 1992; Scha�er, 1985). Here, we
combine genetic algorithms with that of least squares in deriving the estima-
tion algorithm. The steps of the identi�cation algorithm to be executed for
the GA implementation are as follows:
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Algorithm 11.1

S1 Each chromosome in the population consists of an N -bit binary model
code c and a real number basis function parameter vector D, where N is
the number of the basis functions for the nonlinear model selection. So,
for the GRBF network the vector D contains all basis function centres
dk (k = 1; 2; :::; N), i.e., D = [dT1 ; d

T
2 ; :::; d

T
N ]

S2 The M chromosomes [c;D] for the initial population are randomly gen-
erated, whereM is the population size and is often chosen to be an odd
number.

S3 Given the j-th binary model code cj and basis function parameter vector
Dj , then the structure of the j-th nonlinear model is known. Using the
least squares algorithm, the j-th weight vector wj can be computed
easily, based on the data of the vector x, the binary model code cj and
the basis function parameter vector Dj . Then evaluate the normalised
performance functions  i(sj) (i = 1; 2; 3), where sj = [wj ; cj ; Dj ], and

�j = max
i=1;2;3

 i(sj) (11.7.14)

These above computations are completed for allM sets of chromosomes,
i.e. j = 1; 2; :::;M .

S4 According to the �tness of the performance functions for each chro-
mosome, delete the (M � 1)=2 weaker members of the population and
reorder the chromosomes. The �tness of the performance functions is
measured by

Fj =
1

�j
; for j = 1; 2; : : : ;M (11.7.15)

S5 O�spring binary model codes are produced from two parent binary
model codes so that their �rst half elements are preserved. The sec-
ond half elements in each parent are exchanged. The average crossover
operator is used to produce o�spring basis function parameter vectors.
The average crossover function is de�ned as

Dj+1 +Dj

2
; for j = 1; 2; : : : ;

M � 1

2
(11.7.16)

Then the (M � 1)=2 o�springs are produced.

S6 A mutation operator, called creep (Davis, 1991), is used. For the binary
model codes, it randomly replaces one bit in each o�spring binary model
code with a random number 1 or 0. For the o�spring of the basis function
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parameter vectors, the mutation operation is de�ned as

Dj + ��j ; for j = 1; 2; : : : ;
M � 1

2
(11.7.17)

where � is the maximum to be altered and �j 2 [�1; 1] is a random
variable with zero mean.

S7 The elitist strategy copies the best chromosome into the succeeding
generation. It prevents the best chromosome from being lost in the next
generation. It may increase the speed of domination of a population by a
super individual, but on balance it appears to improve genetic algorithm
performance. The best chromosome is de�ned as one satisfying

�b = min
j=1;2;:::;M

f�jg; (11.7.18)

Thus, the best chromosome is one that has the smallest �j , for j =
1; 2; :::;M .

S8 Add the (M � 1)=2 new o�springs to the population which are gener-
ated in a random fashion. Actually, the new o�springs are formed by
replacing randomly some elements of the best binary model code and
mutating the best basis function parameter vector with a certain prob-
ability.

S9 Continue the cycle initiated in Step 3 until local convergence of the al-
gorithm is achieved. This local convergence is de�ned as the population
satisfying

�j ��b � " for j = 1; 2; : : : ; (M � 1)=2 (11.7.19)

where " is a positive number. This implies that the di�erence between
the chromosomes in the �rst half population and the best chromosome
is small in the sense of their performance measurement �j .

Take the best solution in the converged generation and place it in a second
\initial generation". Generate the other M � 1 chromosomes in this second
initial generation at random and begin the cycle again until a satisfactory
solution is obtained or �b cannot be reduced any further. In addition, for
mixed noise distribution, the least squares algorithm in Step 3 should be
replaced by a more robust modi�ed least squares algorithm as suggested in
Chen and Jain (1994).

11.8 Examples

This section introduces two examples. The �rst one considers identi�cation
of a real system. The second one demonstrates approximation of a nonlinear
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function with a mixed noise with di�erent variance.

11.8.1 Example 1

We use the data generated by a large pilot scale liquid level nonlinear system
with zero mean Gaussian input signal (Fonseca et al., 1993). 1000 pairs of
input-output data were collected. The �rst 500 pairs were used in the model
selection and identi�cation of the system, while the remaining 500 pairs for
validation tests. The Gaussian radial basis function network were applied
to select and identify the model of the system by the numerical algorithm
developed in section 11.7.

The time lags ny and nu were obtained by a trial and error process based
on estimation of several models. During the simulation, it was found that
for the GRBF network, if ny and nu were greater than 2 the performance
functions did not reduce signi�cantly. The parameters for the algorithm are
given in Table 11.1.

Table 11.1: Parameters

Parameter Name GRBF Network
model term number N 10
chromosome length 50

variable vector x

2
64
y(t� 1)
y(t� 2)
u(t� 1)
u(t� 2)

3
75

"1 1.5
"2 0.3
"3 7

Although the maximum number of the model terms is only 10 (i.e., 1024
possible models for selection), the search dimension of the basis function centre
parameters is 40 in real number space (i.e., in�nite possibilities for selection).
After 700 generations the performance criteria are almost satis�ed. At this
stage, �1(p) = 1:5643; �2(p) = 0:2511; �3(p) = 5: In order to obtain
the better performance, the basis function parameter vector was searched
for another 100 generations using the algorithm with the �xed number of
the model terms, i.e., let �3(p) = 5 for this case. Finally, the performance
functions are

�1(p) = 1:2957; �2(p) = 0:1724; �3(p) = 5

The model represented by the GRBF network is

y(t) =

5X
i=1

wi exp(�
2X

j=1

(y(t� j)� dij)
2 �

2X
j=1

(u(t� j)� dij)
2)
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where

2
6664
w1
w2
w3
w4
w5

3
7775 =

2
6664
�2:6363
�1:2470
�1:7695
0:9437
�0:5341

3
7775

fdijg =

2
6664
�2:1577 �1:8855 �0:8975 �0:2841
�1:2717 �2:2730 0:3445 0:3315
�0:6345 �1:1223 �1:1615 �0:3666
0:7344 1:0223 0:5469 0:1989
�1:2336 �0:5928 0:3212 0:5754

3
7775

The performance of the GRBF network is shown in Figures 11.3 { 11.5. Fig-
ure 11.3 shows the convergence of the performance functions with respect to
generations. The measured and estimated outputs, and residual error of the
system for the training data for the model identi�ed via the GRBF network is
shown in Figure 11.4. The measured and estimated outputs, and estimation
error of the system for the validation test data for the model identi�ed via
the GRBF network is shown in Figure 11.5.
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Figure 11.3: Convergence of the performance functions using GRBF network
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Figure 11.4: The training data results for the system using GRBF network.

In order to see the importance of the L1-norm measure of the accuracy
bound of the approximation, the performance function �2(p) is not used in
the next simulation. So, only two performance functions �1(p) and �3(p) are
considered. Their required upper bounds "1 and "3 are still set to be 1:5 and
7. The simulation procedure is exactly the same as the above. The following
performance is obtained:

�1(p) = 1:2900; �3(p) = 4

The weight vector and centres of the network are2
64
w1
w2
w3
w4

3
75 =

2
64

1:2394
�2:4092
�2:8293
�2:5141

3
75

fdijg =

2
64

1:3219 0:4971 0:4451 0:0935
�0:5826 �2:1796 0:2636 0:5724
�1:6041 �0:0912 �0:7477 �0:0275
�2:1362 �1:9554 �0:7189 �0:2974

3
75
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Figure 11.5: Validation results for the system using GRBF network

The simulation results are shown in Figures 11.6-11.8. It is clear from the
results that although the performance functions �1(p) and �3(p) are reduced,
the maximum di�erence �2(p) of the approximation for identi�cation and va-
lidity test is much greater than the previous case. So, it shows that if the
performance functions �1(p) and �3(p) are sacri�ced somewhat, the perfor-
mance function �2(p) is improved signi�cantly.
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Figure 11.6: Convergence of the performance functions using GRBF network
without �2
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Figure 11.7: Training results for the GRBF network without �2
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Figure 11.8: Validation results for the GRBF network without �2
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11.8.2 Example 2

Consider the following underlying nonlinear function to be approximated.

f�(x) = 1:1(1� x+ x2) exp(�0:5x2)

where x is a variable. A random sampling of the interval [�4; 4] is used in
obtaining the 40 input-output data for approximation.

In order to see the e�ect of noise, the output of the function f to a given
input x is given by

f(x) = f�(x) + e

where e is a mixed noise. The noise consists of uniformly and normally dis-
tributed noises, i.e.,

e =
1p
2
(eU [0;�] + eD[0;�])

where eU [0;�] is a zero mean uniform noise with �nite variance � and eD[0;�]

is a zero mean normal noise with �nite variance �. It is assumed that the
uniform noise eU [0;�] and the normal noise eD[0;�] are uncorrelated. Thus, the
mean and variance of the mixed noise e are zero and �, respectively.
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Figure 11.9: Performance function �1(p) against the noise variance �
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Figure 11.10: Performance function �2(p) against the noise variance �
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11.9. SUMMARY 279

Here, the Gaussian radial basis function network was used to approxi-
mate the nonlinear function by the numerical algorithm developed in section
11.7. Three cases were considered in this simulation. The �rst used three
performance functions [�1(p), �2(p), �3(p)] during approximation. The sec-
ond considered two performance functions [�1(p), �3(p)]. The third used only
one performance function �1(p). The e�ects of the mixed noise with di�erent
variance on the performance functions �1(p), �2(p) and �3(p) for the above
three cases are illustrated in Figures 11.9-11.11, respectively. It can be seen
from the simulation results that the performance of the approximation of the
nonlinear function changes little at low level variance of noise and the mul-
tiobjective case using three performance criteria gives a good approximation
even though three performance functions conict each other.

11.9 Summary

This chapter has addressed the problems of model selection and identi�cation
of nonlinear systems using neural networks, genetic algorithms and multiob-
jective optimisation techniques. A set of performance functions that measure
approximation accuracy and a model complexity measure are used as the mul-
tiobjective criteria in the identi�cation task. The optimisation is carried out
using genetic algorithms which select the nonlinear function units to arrive
at the simplest model necessary for approximation, along with optimising
the multiobjective criteria. The Gaussian radial basis function (GRBF) is
subjected to the algorithm in the task of a liquid level nonlinear system iden-
ti�cation. The model selection procedure results in the selection of the basis
function centres for the GRBF model. The experimental results demonstrate
the convergence of the developed algorithm and its ability to arrive at a simple
model which approximates the nonlinear system well. The approach discussed
in this chapter can also be extended in many ways, for example, to adaptively
modify the numerical bounds on the performance functions. Furthermore,
cross-validation techniques can be used to guide the optimisation and also in
the adaptation of the bounds on the performance functions.



Chapter 12

Multiobjective Fault

Diagnosis

12.1 Introduction

Fault diagnosis has become an important subject in modern process automa-
tion as it provides pre-requisites for fault tolerance, reliability or security,
which constitute fundamental design features in complex engineering systems.
The general procedure of fault diagnosis in dynamic systems, with the aid of
analytical redundancy, consists of the following two steps: a) Generation of
so-called residuals, i.e., functions that carry information about faults. b) De-
cision on the occurrence of a fault and isolation of the faulty element, i.e.,
localisation of the fault. In order to make the residual insensitive to mod-
elling uncertainty and sensitive to sensor faults, a number of performance
indices have been de�ned to achieve good fault diagnosis performance. Some
of the performance indices are de�ned in the frequency domain to account for
the fact that the e�ects of modelling uncertainty and faults occupy di�erent
frequency ranges. Robust fault diagnosis in the frequency domain has been
attracting enormous attention.

This chapter considers the design of optimal residuals in order to diag-
nose incipient faults based on multiobjective optimisation. The residual is
generated via an observer. To reduce false and missed alarm rates in fault
diagnosis, a number of performance indices are introduced into the observer
design. These performance indices are expressed in the frequency domain
to take account of the frequency distributions of faults, noise and modelling
uncertainty. All objectives then are reformulated into a set of inequality con-
straints on performance indices. A multiobjective fault diagnosis algorithm
is thus used to search for an optimal solution to satisfy all the objectives ex-
pressed by a set of criteria. This algorithm is applied to fault diagnosis of a
ight control system. The example and simulation results show that incipient

281
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sensor faults can be detected reliably in the presence of modelling uncertainty.

12.2 Overview of Robust Fault Diagnosis

In order to ensure reliable operation of control systems, a fault diagnosis sys-
tem is needed, including fault detection and isolation (FDI). Model-based FDI
approaches have been of interest in aerospace and various other �elds for many
years, and have been demonstrated to be capable of detecting and isolating
abrupt and hard faults very quickly and reliably. However, the detection of
soft, slowly developing (or incipient) faults is not very straightforward with-
out any consideration of robustness of FDI algorithms (Patton et al., 1989;
Frank, 1990; Gertler, 1991). In safety-critical systems such as aircraft, hard
faults in some system components may not be tolerable and such faults must
be detected before they actually occur. Hopefully, faults are detected during
the maintenance stage; but, the situation is di�erent for soft and/or incipient
faults. Their e�ects on the system are very small and almost unnoticeable
during their incipient stages. They may develop slowly to cause very seri-
ous e�ects on the system, although these incipient faults may be tolerable
when they �rst appear. Hence, the most important issue of a reliable sys-
tem operation is to detect and isolate incipient faults as early as possible.
Early indication of incipient faults can give the operator enough information
and time to take proper measures to prevent any serious consequence on the
system.

Due to the inseparable mixture of fault e�ects and modelling uncertainty,
the detection of incipient faults presents a challenge to model-based FDI tech-
niques. All model-based methods use the model of the monitored system
to produce residuals for FDI. If the system is described accurately by the
mathematical model, FDI is very straightforward. In real complex systems,
however, the modelling uncertainty that arises, for example, from process
to noise, turbulence, parameter variations and modelling errors, is inevitable.
This presents a challenge for the FDI algorithm design. Hard or sudden faults
normally have a larger e�ect on diagnostic residuals than a modelling uncer-
tainty e�ect. Thus, such faults can be detected by placing an appropriate
threshold on the residual. On the other hand, an incipient fault has a lower
e�ect, which sometimes is even lower than the response due to modelling un-
certainty, so that thresholding cannot be directly used to detect and isolate
incipient faults reliably. In order to solve this problem, robust approaches to
FDI have been attracting research interest for many years (Patton et al., 1989;
Frank, 1990; Patton and Chen, 1992;). The principle of the robust approaches
is to make the FDI algorithm sensitive to incipient faults and insensitive to
modelling uncertainty. If an FDI scheme has this robust-sensitivity property,
it will be called a robust FDI scheme. There is a trade-o� between sensitivity
and robustness, and hence this is an issue of prime concern.

A number of methods have been developed to design robust FDI systems.
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The most commonly-used approach uses the disturbance de-coupling concept
(Patton et al., 1987; Frank and Wunnenberg, 1989; Gertler and Kunwer,
1993), i.e., to de-couple the e�ect of exogenous disturbances on the residual.
The main disadvantage is that the distribution of disturbances is required to
facilitate de-coupling designs, although the disturbance itself does not need to
be known. For most uncertain systems, the modelling uncertainty is expressed
in terms of modelling errors. Hence, the disturbance de-coupling approach
cannot be applied directly. There have been some studies on representing
modelling errors as unknown disturbances with an approximate distribution
matrix (Chen, 1995; Patton and Chen, 1993a). In this way, robust FDI is
partially achievable, as has been illustrated by some successful applications.
But, the robust solution is still not very satisfactory. The main idea of the
disturbance de-coupling approach is to completely eliminate the disturbance
e�ect from the residual. Generally, complete elimination of disturbance ef-
fects may not be possible, owing to the lack of design freedom and unavailable
disturbance distribution matrices. The fault e�ect may also be undesirably
decreased. So, an appropriate criterion for robust residual design should take
account of both modelling errors and faults. There is also a trade-o� between
sensitivity to faults and robustness to modelling uncertainty. In fact, robust
residual generation can be considered as a multiobjective optimisation prob-
lem, i.e. the maximisation of fault e�ects and the minimisation of uncertainty
e�ects. This problem is tackled by minimising a ratio between disturbance
e�ects and fault e�ects when the disturbance distribution matrix is known
(Ding and Frank, 1989).

Although robust control design in the frequency domain has been attract-
ing enormous attention, little research exists on the use of frequency domain
techniques for robust FDI. Patton et al. (1987) discussed the possibility of
using frequency distribution information to design fault diagnosis algorithms;
but, they did not give further guidance as to how this could be achieved. Ding
and Frank (1989) proposed an optimal observer design method for FDI in
the frequency domain by assuming known disturbance distribution matrices.
Viswanadham et al. (1987) and Ding and Frank (1990) studied the frequency
domain residual generation method via factorisation of the system transfer
matrix; however, the robustness issue is not their primary concern in the de-
sign. Recently, Frank and Ding (1993) and Qiu and Gertler (1993) made some
important contributions in robust FDI design by usingH1-optimisation. But,
they only consider cases when the disturbance distribution matrix is known a
priori, and this is the main drawback of their studies. Mangoubi et al. (1992)
also applied the Hp technique to the design of a robust FDI algorithm; how-
ever, the fault e�ect has not been considered in their performance criterion.

More recently, a novel approach to designing optimal residuals for robust
fault diagnosis has been proposed (Chen et al., 1996). In this approach an ob-
server is used to generate residuals. In order to make the residual insensitive
to modelling uncertainty and sensitive to sensor faults, a number of perfor-
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mance indices have been de�ned to achieve good fault diagnosis performance.
Some performance indices are de�ned in the frequency domain to account for
the fact that the e�ects of modelling uncertainty and faults occupy di�erent
frequency ranges. The disturbance distribution matrix is not required, al-
though it can be included in the design, if it is available. Hence, this method
can be applied to a wide range of problems. Instead of a single (or a mixed)
performance index, multiple performance indices are introduced to achieve
a good diagnosis. A numerical optimisation technique (easily implemented
with a computer) is used for the robust residual design which avoids the use
of complicated theoretical analysis. The multiobjective optimisation problem
is solved by the method of inequalities. Hence, di�erent diagnosis preferences
(low missed alarm or low false alarm) can be achieved by adjusting inequal-
ity constraints. The numerical search is performed via a genetic algorithm,
thus obviating the requirement for the calculation of cost function gradients
and hence increasing the possibility of �nding the global optimum. In this
approach, frequency-dependent weighting factors are introduced in the per-
formance indices (cost function) based on knowledge of the frequency band of
the modelling uncertainty and faults. The approach has been applied to the
detection of incipient sensor faults in a ight control system, which shows that
the fault detection algorithm designed by the approach has detected incipient
sensor faults very e�ectively.

12.3 Observer Based Fault Diagnosis

Consider the following continuous monitored system which is disturbed by an
additive unknown input term:

_x(t) = Ax(t) +Bu(t) +R1f(t) +Ed(t) (12.3.1)

y(t) = Cx(t) +Du(t) + R2f(t) (12.3.2)

where x(t) 2 Rn is the state vector, y(t) 2 Rr is the output vector, u(t) 2 Rm

is the known input vector and d(t) 2 Rq is the unknown input (or disturbance)
vector, f(t) 2 Rg represents the fault vector which is considered as an un-
known time function. A, B, C, D and E are known matrices with appropriate
dimensions. The matrices R1 and R2 are fault distribution matrices which
are known when the designer has been told where in the system faults are
to be detected and isolated. In addition, the matrix E is assumed to be full
column rank.

The vector d(t) is the disturbance vector which can also be used to repre-
sent modelling errors such as

d(t) = �Ax(t) + �Bu(t) (12.3.3)

Note that this form of uncertainty representation is very general, as the distri-
bution matrix is not required. The matrices R1 and R2 are fault distribution
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matrices that represent the inuence of faults on the system. They can be
determined if one has de�ned which faults are to be diagnosed. For the two
most common cases (sensor and actuator faults), these matrices are

R1 =

�
0 sensor faults
B actuator faults

(12.3.4)

R2 =

�
Im sensor faults
D actuator faults

(12.3.5)

The residual generator used here is based on a full-order observer. The basic
idea is to estimate the system output from the measurements using an ob-
server. The weighted output estimation error is then used as a residual. The
exibility in selecting the observer gain and the weighting matrix provides
freedom to achieve good diagnosis performance. The residual generator is
thus described as

_̂x(t) = (A�KC)x̂(t) + (B �KD)u(t) +Ky(t) (12.3.6)

ŷ(t) = Cx̂(t) +Du(t) (12.3.7)

r(t) = Q(y(t)� ŷ(t)) (12.3.8)

where r 2 Rp is the residual vector, and x̂ and ŷ are the state and output
estimations. The matrix Q 2 Rp�m is the residual weighting factor which
is static for most cases but can also be dynamic. Note that the residual is
a linear transformation of the output estimation error. Hence, the residual
dimension p cannot be larger than the output dimension m. This is because
the linearly dependent extra residual components do not provide additional
useful information in FDI.

When the residual generator represented by (12.3.8) is applied to the sys-
tem described by (12.3.1), the state estimation error e(t) = x(t) � x̂(t) and
the residual are governed by the following equations:

_e(t) = (A�KC)e(t) +Ed(t) +R1f(t)�KR2f(t) (12.3.9)

r(t) = QCe(t) +QR2f(t) (12.3.10)

The Laplace-transformed residual response to faults and disturbances is thus

r(s) = QR2f(s) +QC(sI �A+KC)�1(R1 �KR2)f(s)

+QC(sI �A+KC)�1E(d(s) + e(0)) (12.3.11)

where e(0) is the initial value of the state estimation error.
One can see that the residual r(t) and the state estimation error are not

zero, even if no faults occur in the system. Indeed, it can be diÆcult to
distinguish the e�ects of faults from the e�ects of disturbances acting on the
system. The e�ects of disturbances obscure the performance of FDI and act
as a source of false and missed alarms. Therefore, in order to minimise the
false and missed alarm rates, one should design the residual generator such
that the residual itself becomes de-coupled with respect to disturbances.
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12.4 Multiple Objectives of Fault Diagnosis

Both faults and disturbances a�ect the residual, and discrimination between
these two e�ects is diÆcult. To reduce false and missed alarm rates, the e�ect
of faults on the residual should be maximised and the e�ect of disturbances on
the residual should be minimised. One can maximise the e�ect of the faults by
maximising the following performance index, in the required frequency range
[!1; !2]:

inf
!2[!1;!2]

�fQR2 +QC(j!I �A+KC)�1(R1 �KR2)g (12.4.1)

This is equivalent to the minimisation of the performance index below.

�1(K;Q) = sup
!2[!1;!2]

��f[QR2 +QC(j!I �A+KC)�1(R1 �KR2)]
�1g

(12.4.2)

where �f:g and ��f:g denote the minimal and maximal singular values of a
matrix, respectively.

Similarly, one can minimise the e�ects of both disturbance and initial
condition by minimising the following performance index:

�2(K;Q) = sup
!2[!1;!2]

��fQC(j!I �A+KC)�1g (12.4.3)

Besides faults and disturbances, noise in the system can also a�ect the resid-
ual. To illustrate this, assume that �(t) and �(r) are input and sensor noise
signals; the system equations in this case are

_x(t) = Ax(t) +Bu(t) +R1f(t) + �(t) (12.4.4)

y(t) = Cx(t) +Du(t) +R2f(t) + �(t) (12.4.5)

It can be seen that the sensor noise, as well as faults acting through R2f(t),
a�ects the system at the same excitation point and hence a�ect the residual
in the same way. To reduce the noise e�ect on the residual, the normQ�QC(j!I �A+KC)�1K


1 (12.4.6)

should be minimised. This contradicts the requirement to maximise the e�ects
of faults on the residual. Fortunately, the frequency ranges of the faults and
noise are normally di�erent. For an incipient fault signal, the fault information
is contained within a low-frequency band as the fault develops slowly for
incipient cases. However, the noise comprises mainly high-frequency signals.
Based on these observations, the e�ects of noise and faults can be separated
by using di�erent frequency-dependent weighting penalties. In this case, the
performance index �1(K;Q) is

�1(K;Q) = sup
!2[!1;!2]

��fW1(j!)[QR2 +QC(j!I �A+KC)�1 �

(R1 �KR2)]
�1g (12.4.7)
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To minimise the e�ect of noise on the residual, a new performance index is
introduced as

�3(K;Q) = sup
!2[!1;!2]

��fW3(j!)Q(I � C(j!I �A+KC)�1K)g (12.4.8)

In order to maximise the e�ects of faults at low frequencies and minimise
the noise e�ect at high frequencies, the frequency-dependent weighting factor
W1(j!) should have a large magnitude in the low-frequency range and a small
magnitude at high frequencies. The frequency e�ect of W3(j!) should be
opposite to that of W1(j!) and can be chosen as W3(j!) = W�1

1 (j!). The
disturbance (or modelling error) and input noise a�ect the residual in the same
way. As both e�ects should be minimised, the performance index �2(K;Q)
does not necessarily need to be weighted. However, modelling uncertainty and
input noise e�ects may be more serious in one or more frequency bands. The
performance index should reect this fact, and hence a frequency-dependent
weighting factor must also be placed on �2(K;Q), in some situations, that is

�2(K;Q) = sup
!2[!1;!2]

��fW2(j!)QC(j!I �A+KC)�1g (12.4.9)

Now, consider the steady-state value of the residual

r(1) = QR2f(1) +QC(A�KC)�1(KR2 �R1)f(1)

�(A�KC)�1d(1) (12.4.10)

After the transient period, the residual steady-state value plays an important
role in FDI. Ideally, it should reconstruct the fault signal. The disturbance
e�ects on residual can be minimised by minimising the following performance
index:

�4(K) =
 (A�KC)�1


1 (12.4.11)

When �4(K) has been minimised, the matrix K is very large and the norm (A�KC)�1K

1 approaches a constant value. This means that the fault

e�ect on the residual has not been changed by reducing the disturbance e�ect.
This is what is required for good FDI performance.

12.5 Disturbance Distribution and Fault

Isolation

In this section, the disturbance distribution is considered. The information
on the disturbance distribution can also be incorporated into performance
indices, if it is available. Assume the disturbance distribution matrix is known,
i.e.

d(t) = Ed0(t) (12.5.1)
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where E is a known matrix and d0(t) is an unknown vector. In this case, the
performance index �2(K;Q) can be modi�ed as

�2(K;Q) = sup
!2[!1;!2]

��fW2(j!)QC(j!I �A+KC)�1Eg (12.5.2)

To isolate faults, a structured residual set should be generated (Chen, 1995;
Gertler, 1991; Patton and Chen 1993b). The word `structured' here signi-
�es the sensitivity and insensitivity relations that any residual will have, i.e.
whether it is designed to be sensitive to a group of faults while insensitive to
another group of faults. The faults contained in the vector f(t) can be divided
into two groups, f1(t) and f2(t), and the system equation in this case is

_x(t) = Ax(t) +Bu(t) +R1
1f

1(t) +R2
1f

2(t) + d(t) (12.5.3)

y(t) = Cx(t) +Du(t) +R1
2f

1(t) + R2
2f

2(t) (12.5.4)

If the residual is to be designed to be sensitive to f1(t) and insensitive to
f2(t), the performance index �1(K;Q) should be modi�ed as

�1(K;Q) = sup
!2[!1;!2]

��fW1(j!)[QR
1
2 +QC(j!I �A+KC)�1 �

(R1
1 �KR1

2)]
�1g (12.5.5)

In addition to the four performance indices de�ned, a new performance index
�5(K;Q) which is to be minimised should be introduced to make the residual
insensitive to f2(t).

�5(K;Q) = sup
!2[!1;!2]

��fW5(j!)[QR
2
2 +QC(j!I �A+KC)�1 �

(R2
1 �KR2

2)]
�1g (12.5.6)

For the case where only sensor faults are to be isolated, the design problem
is easier to solve. This is because, if the residual is to be sensitive to a group
of sensor faults, only the measurements from this set of sensors will be used
in the residual generation (Chen, 1995).

12.6 Parameterisation of Fault Diagnosis

Five performance indices �i(K;Q), for i = 1; 2; :::; 5 have been de�ned. To
achieve robust fault detection (in terms of minimising false and missed alarm
rates), one needs to solve a multiobjective optimisation problem. One of
the parameter sets to be designed is the observer gain matrix K which must
guarantee stability of the observer. This leads to a constrained optimisation
problem which is diÆcult to solve.

Within the context of control system design, the stability constraint is
normally changed to the assignment of eigenvalues in the left-hand side of the
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complex plane. The observer design is a dual problem of the controller design
and all techniques in control design can be applied. Here an eigenstructure
assignment method is chosen to give the parameterisation of the gain matrixK
(Liu and Patton, 1998c). It assumes that the eigenvalues of the matrix (AT �
CTKT ) are distinct and are not the same as ones of the matrix A. According
to the de�nition of eigenvectors and eigenvalues, there is the following relation:

(AT � CTKT )Ri = �iRi (12.6.1)

where Ri is the i-th right eigenvector corresponding to the i-th eigenvalue �i
of the matrix (AT � CTKT ). Let the parameter vector be de�ned as

Wi = KTRi (12.6.2)

Then

Ri = (AT � �iI)
�1CTWi (12.6.3)

The gain matrix can then be calculated by

KT = W [(AT � �1I)
�1CTW1; (A

T � �2I)
�1CTW2; :::

::: (AT � �nI)
�1CTWn] (12.6.4)

where W = [W1;W2; :::;Wn] 2 Rm�n and the vector Wi 2 Rm, for i =
1; 2; :::; n can be chosen freely, the eigenvalues �i, for i = 1; 2; :::; n may need
to be given by the designer before the design procedure.

In practice, the eigenvalues do not need to be assigned to a speci�c point
in the complex plane. However, we do need to assign eigenvalues in prede-
�ned regions to meet stability and response requirements, i.e. �i 2 [Li; Ui].
This increases the design freedom, but results in eigenvalue constraints. To
remove these constraints, we introduce a simple transformation (Liu and Pat-
ton, 1998):

�i = Li + (Ui � Li) sin
2(zi) (12.6.5)

where zi 2 R can be freely chosen. Although the use of only real eigenvalues
is discussed here, the method can also be extended to the complex eigenvalue
case. The parameterisation of K for complex conjugate eigenvalues can be
found in Liu and Patton (1998a).

Now constrained performance indices �i(K;Q), for i = 1; 2; :::; 5 have
been transformed into unconstrained performance indices �i(Z;W;Q), for
i = 1; 2; :::; 5, where W , Q and Z = [z1; z2; :::; zn] can be chosen freely. Thus,
the design of the observer based fault diagnosis becomes the determination of
the parameter matrices W and Q and vector Z.
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12.7 Multiobjective Fault Diagnosis

The use of multiobjective optimisation is very common in engineering de-
sign problems. Generally, there does not exist a solution which minimises all
performance indices. A parameter which minimises a particular performance
index may let other performance indices become very large and unaccept-
able. Hence, some compromises must be made in the design (Vincent and
Grantham, 1981). An approach to solving the multiobjective optimisation
problem in control system design is the method of inequalities, proposed by
Zakian and Al-Naib (1973) and later combined with the genetic algorithm
by Patton and Liu (1994). The main philosophy behind this approach is to
replace the minimisation of performance indices by inequality constraints on
performance indices. The simultaneous minimisation of all performance in-
dices is normally impossible. However, in engineering design problems, what
one requires is to retain performance indices in given regions. To be more spe-
ci�c, the multiobjective optimisation is being reformulated into the problem
of searching for a parameter set Z;W;Q to satisfy the following inequalities:

�i(Z;W;Q) � "i; for i = 1; 2; :::; 5 (12.7.1)

where the real number "i represents the numerical bound on the performance
index �i(Z;W;Q) required by the designer. If the minimal value of �i(Z;W;Q)
achieved by minimising �i(Z;W; Q) itself is �

�
i , the objective bound must be

set as

"i � ��i (12.7.2)

which is based on the fact that a parameter set which minimises a partic-
ular performance index can make other performance indices very large. If
��i (Z

�;W �; Q�) is the minimal value of �i(Z;W;Q) achieved at the parame-
ter set fZ�i ;W �

i ; Q
�
i g, the following inequalities hold true:

�i(Z
�
j ;W

�
j ; Q

�
j ) � ��i (Z

�
i ;W

�
i ; Q

�
i ) (12.7.3)

where i 6= j, for i; j 2 f1; 2; 3; 4; 5g. As a general rule, the performance
boundaries "i should be set as

��i (Z
�
i ;W

�
i ; Q

�
i ) � "i � max

j;i2f1;2;3;4;5g;j 6=i
f�i(Z�j ;W �

j ; Q
�
j )g (12.7.4)

for i = 1; 2; :::; 5. The problem of multiobjective optimisation is to �nd a
parameter set to place all performance indices in an acceptable region. By
adjusting the bound "i, we can put a di�erent emphasis on each of the objec-
tives. If the performance index �j is important for the problem, one can let
"j be close to �

�
j . If the performance index �k is less important, one can let

"k be far away from ��k.
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Let �i be the set of parameters (Z;W;Q) for which the i-th objective is
satis�ed:

�i = f(Z;W;Q) : �i(Z;W;Q) � "ig (12.7.5)

Then, the admissible or feasible set of parameters for which all objectives hold
is

� = f(Z;W;Q) : �i(Z;W;Q) � "i; for i = 1; 2; :::; 5g (12.7.6)

The above admissible set can be solved by the method of inequalities. But, the
diÆcult part of the method is the generation of a trial parameter set. Many
methods have been proposed since Zakian introduced the method of inequali-
ties, and a short review was given by Maciejowski (1989). It is suggested that
relatively crude direct search methods, such as the simplex method, can be
used to solve this problem. Here, we suggest a method to generate the trial
parameter set via an genetic algorithm. This is inspired by Patton and Liu
(1994) for their work in the design of robust controllers. The use of the genetic
algorithm (GA) (Goldberg, 1989) obviates the requirement for the calculation
of cost function gradients. GAs constitute a parallel search of the solution
space, as opposed to a point-by- point search in gradient-descent methods.
By using a population of trial solutions, the genetic algorithm can e�ectively
explore many regions of the search space simultaneously, rather than a single
region. This is one of the reasons why GAs are less sensitive to local min-
ima. This is especially important when the cost function is not smooth, for
example the maximal singular value functions used in this chapter. Finally,
GAs manipulate representations of potential solutions, rather than the solu-
tions themselves, and consequently do not require a complete understanding
or model of the problem. The only problem-speci�c requirement is the ability
to evaluate the trial solutions for relative �tness. Thus, a GA can be employed
to search for the optimal solutions for multiobjective fault diagnosis.

12.8 An Example

The ight control system example we considered here is the lateral control sys-
tem of a remotely piloted aircraft (Mudge and Patton, 1988). The linearised
lateral dynamics are given by the state-space model matrices

A =

2
66664

�0277 0 �32:9 9:81 0
�0:1033 �8:525 3:75 0 0
0:3649 0 �0:639 0 0

0 1 0 0 0
0 0 1 0 0

3
77775
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B =

2
66664
�5:432 0

0 �28:64
�9:49 0

0 0
0 0

3
77775

C =

2
4 0 1 0 0 0

0 0 0 1 0
0 0 0 0 1

3
5

D = 03�2

where the state vector and control input are

2
6664
�
p

�
 

3
7775 =

2
6664

sideslip
roll rate
yaw rate
bank angle
yaw angle

3
7775

�
�
�

�
=

�
rudder
aileron

�

The observer used in residual generation must be stable. To generate the
required residual response, we consider the observer eigenvalues to be con-
strained within the following regions:

�5 � �1 � �0:2
�15 � �2 � �3
�10 � �3;re � �2
0:2 � �3;im � 4

�30 � �5 � �8

Note that the eigenvalue �4 is the conjugate of the eigenvalue, �3, i.e. �4 = ��3.
The weighting penalty factors for the performance functions �1(Z;W;Q) and
�3(Z;W;Q) are chosen as

W1(s) =
500

(s+ 10)(s+ 50)

W3(s) =W�1
1 (s)

which places emphasis on �1(Z;W;Q) at low frequencies and �3(Z;W;Q) at
high frequencies. By minimising �1(Z;W;Q) and �3(Z;W;Q), the fault ef-
fect can be maximised and the noise e�ect can be minimised. To simplify
the optimisation procedure, the residual weighting matrix Q here is set as
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a 3 � 3 identity matrix. Table 12.1 lists the performance indices for di�er-
ent observer gains. In this table K�

i , for i = 1; 2; 3; 4 is the observer gain
matrix which minimises �i(Z;W;Q), for i = 1; 2; 3; 4. It can be seen that a
design which minimises a particular performance function makes all other per-
formance functions unacceptably large. Hence, multiobjective optimisation
must be used to reach a reasonable compromise. In order to use the method
of inequalities to solve this problem, a set of performance index bounds "i,
i = 1; 2; 3; 4 are chosen as

"1 = 2000

"2 = 0:16

"3 = 22:5

"4 = 0:006

Table 12.1: Performance indices for di�erent designs

�1 �2 �3 �4
K�
1 189.58 2.5949 24.8288 0.00935

K�
2 3865.26 0.07576 23.415 0.00798

K�
3 3274.55 0.11232 22.40 0.00798

K�
4 3.9e6 10700 34600 2e-7

Koptimal 1950.7 0.1492 22.42 0.00512
Kplace 2800.39 0.1784 22.668 0.00965

The method of inequalities with genetic algorithms was used to search for so-
lutions which satisfy all performance index boundaries. The optimal observer
gain matrix found is

Koptimal =

2
66664
�189:1419 0:8083 18:8392

17:9317 �0:7936 �0:7943
15:4684 2:8543 7:6140
�0:7606 6:9329 0� 1537
�1:2303 0:2329 9:8678

3
77775

with corresponding eigenvalues

f�1:5371 �4:7045 �3:4973+ 2:1194j �3:4973� 2:1194j �19:9994g
The performance indices under this gain are shown in Table 12.1. It provides
an acceptable compromise. To demonstrate the e�ectiveness of the developed
method, we also designed an observer gain matrix Kplace using the MATLAB
routine 'place' by assigning eigenvalues at f�0:5;�14;�4:8 + 1:6j;�4:8 �
1:6j;�20g. The performance indices for this design are also shown in Table
12.1.
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A simulation is used to assess the performance of the observer-based resid-
ual generation in the detection of incipient faults. The system is unstable and
needs to be stabilised. Since the purpose of the example is to illustrate the
fault detection capability, we simply stabilise the system using a state feed-
back controller which is provided by Liu and Patton (1998a). The control
commands in both control inputs are set as unit sinusoid functions. The sen-
sor noise comprises a random summation of multi-frequency signals with all
frequencies larger than 20 rad/s. In the simulation, all aerodynamic coeÆ-
cients have been perturbed by �10%.
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Figure 12.1: Fault signal shape
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Figure 12.2: Faulty and normal measurements for roll rate p

The fault is a slowly developing signal whose shape is shown in Figure 12.1.
To illustrate the small nature of the incipient fault, Figure 12.2 shows the plot
of both normal and faulty measurements of the roll rate sensor when a fault
occurs in the roll rate sensor. It can be seen that the fault is hardly noticeable
in the measurement and cannot be detected easily, without the assistance of
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the residuals.
Figure 12.3 shows the residual response for the case when a fault occurs in

the roll rate sensor. The residual responses for other faulty cases are similar to
the response shown in Figure 12.3. The residual response demonstrates that
the residual changes very signi�cantly after a fault occurs in one of sensors.
Hence, the residual can be used to detect incipient sensor faults reliably even
in the presence of modelling errors and noise. To reduce the e�ect of noise
further, the residual signal has been �ltered by a low-pass �lter. Note that this
chapter only has addressed the robust residual generation for fault detection,
as it is believed that the design of an optimal residual is the most important
task to be considered. Fault isolation can be achieved by designing structured
residual sets. For the system considered in this chapter, we can design four
di�erent observer-based residual generators to generate four residual vectors.
The four observers are driven by di�erent subsets of measurements, namely
fp; �;  g, fp; ;  g, fp; �; g and fr; �;  g. This chapter has only discussed
the design of one of these observers, although the principle is valid for the
design of the other observers.
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Figure 12.3: Residual norm when a fault occurs in the roll rate sensor

12.9 Summary

A systematic approach to the design of optimal residuals which satisfy a set
of objectives has been described. These objectives are essential to achieve
robust diagnosis of incipient faults. Five performance indices are expressed in
the frequency domain which can take account of the frequency distribution
of di�erent factors which a�ect the residuals. It has been shown that the
frequency-dependent weighting factors incorporated into performance indices
play an important role in the optimal design. They are problem-dependent
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and must be chosen very carefully. The multiobjective optimisation problem
was reformulated into one of satisfying a set of inequalities on the performance
indices. The genetic algorithm was used to search the optimal solution to
satisfy these inequalities on the performance indices. The method has been
applied to the design of an observer-based residual generator for detecting
incipient sensor faults in a ight control system, and the simulation results
show the e�ectiveness of the method. Considering the extreme diÆculty of
enhancing the fault diagnosis performance under modelling uncertainty and
noise, any improvement in the robustness of residual design is very useful.
The scope of application of this method can be extended to all systems with
possible incipient faults.
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