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Introduction

Brevity is the soul.
H. M.

First come the disclaimers, then the rules for selecting the papers, the exceptions to
the rules, the justifications of the exceptions, and finally some brief remarks on the
papers. (But before all that, the point of it all. The original papers are studied in
the hope of recovering early ideas lost in later expositions. Proofs are rare, but the
ideas used in proofs are rarer still.) The title of this volume is too broad. Almost
all of the papers belong to the second half of the twentieth century. The last decade
of the twentieth century is lightly represented. Only so much can be forced into one
volume. The first half of the last century is well represented elsewhere; now is too
soon to reach conclusions about its final decade.

I have not read all the logic of the last century — far from it. And only a
fraction of what was read was understood. The choices made were personal in
nature. Who knows what "personal" means? The selection was certainly not based
on an Olympian view of mathematical logic derived from a long and scholarly life
of pondering the subject. Perhaps the choices cohere, if only because it is hard to
see how it could be otherwise.

The selection rules were:

Rl. No papers from before World War II.
R2. No long papers.
R3. At most one paper by any author.
R4. The paper was (and is) intellectually exciting then (and now).

The first three rules are justified above. They proved difficult to follow. Godel's
pre-war National Academy paper on the generalized continuum hypothesis is short,
readable, more illuminating than his subsequent Princeton Mathematics orange
book, and probably closer to his early thinking. His Academy paper, but not his
orange book, mentions Russell's Axiom of Reducibility as a source of inspiration.
The papers by Kleene and Tarski are much too long for this volumn, but Kleene is
the father of recursion theory and Tarski of model theory. Why this particular paper
by Kleene? Two reasons. He lifts the concepts of classical recursion theory to objects
of finite type, and he shows that sets of non-negative integers are hyperarithmetic if
and only if they are recursive in 2E, the type 2 object corresponding to the number
quantifier. The title of Tarski's paper speaks for itself. Rule R4 was not violated,
possibly a necessary fact.

Cohen has two papers intended for this volume, but they are in fact the two
halves of one paper. For this work, he received the Fields Medal, the highest
international award in mathematics.

Godel's paper transformed set theory into a subject that welcomes a wide range
of mathematical ideas. His use of the downward Skolem Lowenheim theorem inside
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L is the beginning of fine structure theory. His paper combined with Cohen's puts
Cantor's continuum problem outside the conventional realms (ZFC) of set theory.

Cohen's paper introduced the method of forcing, an essential technique with ap-
plications throughout logic. Forcing has unconscious precursors in recursion theory,
for example the construction of a minimal Turing degree in Spector's paper.

Silver's paper proved (in ZFC) a new theorem of cardinal arithmetic at a time
when such an outcome was thought unlikely because of the Godel and Cohen results.
He applied some ideas about ultrafilters to show: if the generalized continuum
hypothesis holds below a singular cardinal K of uncountable cofmality, then it holds
at K. This line of thought led to Shelah's pcf theory [II], which yields estimates
on the size of the power set of a singular cardinal of countable confinality. ([Im] is
the mth item in the References at the end of this introduction. All other papers
mentioned are from the Contents list for the volume.)

Choosing a paper by Shelah was a daunting task because of the large number
of his contributions to model theory and set theory and the limit imposed by rule
R2. His 1969 paper on stability can be seen as the beginning of his sweeping
transformation of model theory.

The notion of w-stability originated in Morley's proof that a countable theory
categorical in some uncountable power is categorical in all uncountable powers.
Morley's paper, building on Vaught's earlier paper, was the beginning of modern
model theory. Vaught's paper went beyond immediate applications of compactness
and stressed the notion of element type. For example he showed that the number
of countable models up to isomorphism of a complete countable theory could not
be two.

Jensen's covering theorem, in his paper with Devlin, makes a connection between
sets of ordinals in V and L with the help of fine structure theory and the work of
Silver [12] and Solovay [13] on OK

The choice of Friedberg's paper on recursive enumeration came about as follows.
He in [14] and Mucnik independently solved Post's problem by introducing the
priority method, a technique that dominates classical recursion theory to this day.
By choosing Mucnik's version, I could satisfy rule R3 and still include Friedberg's
construction of a maximal recursively enumerable set, a result that ignited interest
in the lattice of recursively enumerable set under inclusion modulo finite sets. The
lattice was initially studied in Post's paper on recursively enumerable sets and their
decision problems. The lasting influence of Post's paper entitles him to be called
the co-father, if there is such a thing, with Kleene of recursion theory. Soare's paper
showed any two maximal sets are automorphic. His result is the reason that the
lattice continues to be of interest.

Post's paper established the legitimacy of an intuitive approach to recursion
theory: less equations and more words. Friedberg's paper is any early example of
the intuitive style. Spector's paper adheres to Kleene's formal style, only because
it was extracted from Spector's thesis supervised by Kleene.

Lachlan's paper introduced the so-called (but not by him) monstrous injury
method, close to the final stage in the development of the Friedberg-Mucnik priority
method.

Moschovakis's paper found a nearly paradoxical role for divergence in recursion
theory and led to constructions of recursively enumerable sets in higher recursion
theory in which divergence witnesses played as big a part as convergence witnesses.
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Matijasevic's paper on the unsolvability of the Diophantine problem has histor-
ical antecedents as old as any in mathematics.

The underrepresentation of proof theory in this volume indicates nothing more
than my own confusion over the subject. The most striking proof theorist I have
met is Girard. His paper was chosen for its brevity and as an example of his unique
mode of thought. In it he discusses his concept of dilator.

Kreisel, another proof theorist with his own mode of thought, is also included.
His paper is a mixture of recursion theory, model theory, proof theory and other
subjects hard to put a name to. He presents a compactness theorem for w-logic
based on his insight that generalizing the notion of finite is the key to extending
various results in model theory and recursion theory. In this compactness theorem
"hyperarithmetic" is the generalization of "finite".

Robinson's paper on non-standard analysis is a model theorist's way of making
sense out of infinitesimals. Godel thought it was of historic importance.

Wilkie's paper solves a long standing problem of Tarksi on the first order theory
of the reals with the exponential function added.

The work of Zil'ber and Hruschovski bring ideas of geometry and stability to
bear on model theory. Zil'ber's paper was chosen as a brief example of his approach,
and Hruschovski's paper as a prime application of model theory to number theory.

H. Friedman's paper shows that Borel Determinateness (BD) cannot be proved
without invoking objects of arbitrarily high countable rank despite the fact that
BD is about Borel sets of reals, objects of rank 1. Later Martin [15] proved BD by
means of an induction that trades decreases in rank of Borel sets for increases in
rank of objects.

Solovay's paper assumes the consistency of "there exists an inaccessible cardinal"
and then demonstrates the consistency of "every set of reals is Lebesgue measurable
and countable dependent choice". Later Shelah [16] proved the converse.

Scott's paper showed the existence of a measurable cardinal implies the existence
of a non-constructible set. This result, and its proof via ultrapowers, broke open
the study of large cardinals.

Martin's paper used a measurable cardinal to establish the determinacy of an-
alytic games. His argument needed only the sort of indiscernibles provided by O".
Later the converse was shown by Harrington [17]. (Thus Cfi is equivalent to lightface
nj determinacy.) Martin's result eventually led to complex connections between de-
terminateness and large cardinals obtained by Woodin, whose paper in this volume
is a brief example of his unique insight.

Shoenfield's £2 absoluteness result is a personal favorite. It has applications
throughout logic. One example is the Slaman-Woodin proof [18] of the definability
of the double Turing jump.

My thanks to those who suggested papers for this volume. They insist on
remaining anonymous.

Cambridge, Massachusetts
December 21, 2002
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THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS

BY PAUL J. COHEN*

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY

Communicated by Kurt Godel, September 30, 1963

This is the first of two notes in which we outline a proof of the fact that the Con-
tinuum Hypothesis cannot be derived from the other axioms of set theory, including
the Axiom of Choice. Since Godel3 has shown that the Continuum Hypothesis is
consistent with these axioms, the independence of the hypothesis is thus estab-
lished. We shall work with the usual axioms for Zermelo-Fraenkel set theory,2 and
by Z-F we shall denote these axioms without the Axiom of Choice, (but with the
Axiom of Regularity). By a model for Z-F we shall always mean a collection of
actual sets with the usual e-relation satisfying Z-F. We use the standard defini-
tions3 for the set of integers w, ordinal, and cardinal numbers.

THEOREM 1. There are models for Z-F in which the following occur:
(1) There is a set a, a C « such that a is not constructive in the sense of reference

3, yet the Axiom of Choice and the Generalized Continuum Hypothesis both hold.
(2) The continuum (i.e., (P(o;) where (P means power set) has no well-ordering.
(3) The Axiom of Choice holds, but & ^ 2No.
(4) The Axiom of Choice for countable pairs of elements in (P((P(u>)) fails.
Only part 3 will be discussed in this paper. In parts 1 and 3 the universe is well-

ordered by a single definable relation. Note that 1 implies that there is no simple
ordering of (P((P(w)). Since the Axiom of Constructibility implies the Generalized
Continuum Hypothesis,3 and the latter implies the Axiom of Choice,5 Theorem 1
completely settles the question of the relative strength of these axioms.

Before giving details, we sketch the intuitive ideas involved. The starting point
is the realization1' ' that no formula n(.r) can be shown from the axioms of Z-F
to have the property that the collection of all x satisfying it form a model foi Z-F
in which the Axiom of Constructibility (V = L,3) fails. Thus, to find such models,
it seems natural to strengthen Z-F by postulating the existence of a set which is a
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model for Z-F, thus giving us greater flexibility in constructing new models. (In
the next paper we discuss how the question of independence, as distinct from that
of models, can br handled entirely within Z-F.) The Lowenheim-Skolem theorem
yields the existence of a countable model 9TC. Let N1; &>, etc., denote the correspond-
ing cardinals in 971. Since 911 is countable, there exist distinct sets as C u, 0 < 5 <
N2. Put V = \(ai: ay) | 5 < 5'}. We form the model 31 "generated" from 9TC,
o.j, and I7 and hope to prove that in 91 the continuum has cardinality at least X2.
Of course, 91 will contain many new sets and, if the as are chosen indiscriminately,
the set N2 (in 971) may become countable in 91. Rather than determine the as di-
rectly, we first list all the countably many possible propositions concerning them
and decide in advance which are to be true. Only those properties which are true
in a ''uniform" manner for "generic" subsets of o> in 9TC shall be true for the as in
91. For example, each as contains infinitely many primes, has no asymptotic
density, etc. If the as are chosen in such a manner, no new information will be
extracted from them in 91 which was not already contained in 371, so that, e.g., {̂ 2

will remain the second uncountable cardinal. The primitive conditions n e as are
neither generically true nor false, and hence must be treated separately. Only
when given a finite set of such conditions will we be able to speak of properties
possibly being forced to hold for "generic" sets. The precise definition of forcing
will be given in Definition 6.

From now on, let 911 be a fixed countable model for Z-F, satisfying V = L, such
that x e 971 implies x c 3TC. If 9TI' is a countable model without this property, de-
fine ^ by transfinite induction on the rank of x, so that ^(x) = {y J z e 971', z e x,
~&(z) = y); the image 3TI of 9TI' under ^r is isomorphic to 3TC' with respect to e and
satisfies our requirement. Thus, the ordinals in 971 are truly ordinals. Let T > 1
be a fixed ordinal in 3TC, KT the corresponding cardinal in 9TC, and let as, 0 < 5 < b$T

be subsets of w, not necessarily in 971, V = {(as, a,y)\ S < 5'}.
LEMMA 1. There exist unique functions j , K\, Kz, N, from ordinals to ordinals

definable in 971 such that
(1) j(a + 1) > j(a) and for all 0 such that j(a) + K j 3 < j ( a + 1) the map

jS -*- (N(i3), Ki(@), Ki(ff)) is a 1-1 correspondence between all such /?, and the set of all
triples (i, y, 8), 1 < i < 8, y < j(a), S < j(a). Furthermore, this map is order-
preserving if the triples are given the natural ordering S (Ref. 3, p. 36).

(2) j(0) = 3NT + 1, j(a) = sup{j($) \ff < a} if a is a limit ordinal.
(3) N(j(a)) = 0, N(j(a) + 1) = 9, Kt = Ofor these values.
(4) N(a), Kt(a) are zero if a < 3NT.
(5) / / 0 is as above, and N(p) = i, put J(i, Kx(fi), K2Q3), j(a)) = 0. Also put

1(P) = J(«)-
Definition 1: For a an ordinal in STU, define Fa by means of induction as follows:
(1) Fa = a if a < co.
(2) For u < a < 3KT, let Fa successively enumerate ait the unordered pairs

(a5, as<) and the ordered pairs (as, a$>) in any standard manner (e.g., the ordering
R on pairs of ordinals def. 7.813),

(3) For a = 3«T, Fa = V.
(4) For a > 3NT> if £,(«) = ff, K*(a) = y

if N(a) = 0, Fa = {Fa,\a' < a}
if 1 < i *= N(a) <8,Fa = UFB, Fy)
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where 5t are defined as follows (Def. 9.13):

$i(x, y) = {x, y]
ftfo V) = {(s,t)\set, (s,t) ex}
3s(x, y) = x — y
5t(x, V) = [ ( s , t ) \ ( s , t) e x , t e y ]
Ssix, y) = s\s e x , J t ( t , s) e y }
$e(x, y) = (s, t)\ (s, t) e x, (t, s) e y)
5i(x, y) = {{r, s, t)\ {r, s, t) e x, (t, r, s) e y}
$z(x, y) = \{r, s, t)\ (r, s, t) e x, (r, t,s)ey]

if N(a) = 9, Fa = {Fa.\a' < a, N(a') = 9}. We also define Ta = {Fe\p < a}.
We have introduced the case N = 9 for the convenience of later arguments. It

ensures that the ordinals in 3TC are listed among the Fa in a canonical manner. Ob-
serve that since V — L holds in 9TC, it is not difficult to see that this implies 201 Cgr.

Denote by 91, the set of all Fa for a e 3TC. Note that in 91 each Fa is a collection
of preceding F$. We shall often write a in place of Fa if a < a>, and a, in place of
Fs + a + l, etc., if there is no danger of confusion. If N{a) = 9, then the set Fa is
defined independently of as. We shall now examine statements concerning Fa

before the as are actually determined, and thus the Fa for a while shall be con-
sidered as merely formal symbols.

Definition 2: (1) x e y, x e Fa, Fa e x, Fa e Fp are formulas; (2) if <p and \p are
formulas, so are ~\<p and <p & \p; and (3) only (1) and (2) define formulas.

Definition 3: A Limited Statement is a formula a(xi, ..., xn) in which all variables
are bound by a universal quantifier (xt)a or an existential quantifier 3<*£i placed in
front of it, where a is an ordinal in 311. An Unlimited Statement is the same except
that no ordinals are attached to the quantifiers.

Our intention is that the variable x in (x)a or J^x is restricted to range over all
/^ with /3 < a. The symbol = is not used since by means of the Axiom of Exten-
sionality it can be avoided. We only consider statements in prenex form. Since
it is clear how to reduce negations, conjunctions, etc., of such statements to prcncx
form, we shall not do so if there is no risk of confusion.

Definition 4-' The rank of a limited statement a is (a, r) if r is the number of
quantifiers and a is the least ordinal such that for all 0, /? < a if F$ occurs in a, and
/? < a if (x)p or JpX occurs in a. We write (a, r) < (/?, s) if a < P or a = ft and
r < s.

Thus, if rank a = (a, r), a can be formulated in \Fp\fl < a}.
Definition 5: Let P denote a, finite set of conditions of the form n e as or ~~\ n e «„-

such that no condition and its negation are both included.
In the following definition, which is the key point of the paper, we shall define

a certain concept for all limited statements by means of transfinite induction. The
ivell-ordering we use is not, however, precisely the corresponding ordering of the
ranks, but requires a slight modification. We say n is of type (R, if rank a = (a +
1, ?•), (•!')„ + i arid 3« y i1' do not occur in a, and no expression of the form Fae (•)
occurs in a. Wo order the limited statements by saying, if rank a = («, r) and
rank b = (fi, s). n precedes b if and only if rank a < rank b, unless a = fi and one of
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the two statements a, b is of type (R and the other is not of type (R, in which case the
former precedes the latter.

Definition 6: By induction, we define the concept of "P forces a" as follows:
I. If r > 0, P forces n = (x)ab(.x) if for all P' =D P, P' does not force ~\b(Fp)

for 0 < a. P forces 3axb(x) if for some fi < a, P forces b(Fp).
II. If r = 0, and a has prepositional connectives, P forces a if for each compo-

nent Fa t Fp or ~\Fa t Fp appearing in n, these, by case III of this definition, are
forced to be true or their negations are forced to be true so that in the usual sense
of the prepositional calculus a is true.

III. If a is of the form Fa i Fp or ~| Fa t Fp, we define P forces a as follows:
(z) If a, j8 < 3NT, then a must hold as a formal consequence of P, i.e., P forces

n, if n is true whenever as are distinct subsets of «, satisfying P, different from any
integer and o>.

(ii) "1 Fa t Fa is always forced.
(Hi) If a < 0, N(0) = i < 9, (8 > 3Nr, P forces n, where o = Fa t Fp or ~\ Fa t Fp,

if P forces \j/t or "1 \pf, respectively, where \pf is the limited statement expressing the
definition of Fp. That is, if Kj(P) = y, K«(0) = 5:

(0) iAo is vacuous and always forced.
(1) 4>i = Fa = Fy V F a = Fs.
(2) h = Jpx Jpy (Fa = (x, y) & x t y & Fa t Fy).
(3) ^ = Fa(Fy&-]Fai Ft.
(4) h = 1p Jpy (Fa = (x, y)&FatFy&yt F t ) .
(5) +i = Jpx(FaeFy&{x,Fa)(Fs).
(6), (7), (8), similarly.
Here the use of ordered pairs must eventually be replaced by their definition, and

the use of equality in x = y is replaced by (z)p(z e x (=) z ty).
(iv) If a < /3, N(fi) = 9, $ > 3«T, P forces a = Fae Fp if for some 0' < 0, N(fi')

= 9, P forces Fa = F?. P forces 1 Fa « Fp, if for all /?' < /3, iV(/3') = 9 and all
P' z> P, P' does not force Fa = Fp'. Again the symbol = is treated as before.

(v) If a > /8, we reduce the case Fa t Fp to cases (in) and (it;) treated above.
We say P forces F a « F0 if for some 0' < fi, P forces i*> e F s and P forces ^ a =
Fp> (i.e., (x)a(a; e F a (=) x e i^*) which is a statement of type (R and hence precedes
Fa e Fp). We say P forces ~]FatFfi if for all 0' < 0 and P ' 3 P, P ' does not force
both Fp' e Fp and Fp, = ^ a .

The most important part of Definition 6 is I, the other parts are merely obvious
derivatives of it.

Definition 7: If a is an unlimited statement with r quantifiers, we define "P
forces a" by induction on r. If r = 0, then a is a limited statement. If a =
(x) h(x), P forces a, if for all P ' 3 P, and a, P' does not force 1 b(Fa). If a =
Jx b(x), P forces a if for some a, P forces b(Fa).

In the proofs of Lemmas 2, 3, 4, and 5, we keep the same well-ordering on limited
statements as in Definition 6, and proceed by induction.

LEMMA 2. P does not force a and ~~\ a, for any a and P.
Proof: Let a be a limited statement with r quantifiers. If r > 0, and P forces

both JaX b(x) and (x)a ~] b(x), then P must force b ^ ) for /? < a which means P
cannot force (x)a ~\ b(x). Case II of Definition 6 will clearly follow from case III.
Parts (i) and (ii) are trivial. If a is in part (Hi), then P forces a if and only if P
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forces a statement of lower rank and in this case the lemma follows by induction.
In part (iv), if P forces Fa <= Fp, then for some P' < p, N(p') = 9, and P forces Fa =
Ffi> which means P can not force ~\ Fa e Fp. In part (v) if P forces Fa t Fp, for
some 0' < 0, P forces Fp> e Fp and Fa = Fp> which again violates P forcing ~i Fa e Fp.
If a is an unlimited statement, the lemma follows in the same manner by induction
on the number of quantifiers.

LEMMA 3. If P forces a and P' ZD P, then P' forces a.
Proof by induction as in Lemma 2.
LEMMA 4. For any statement a and condition P, there is P' 3 P such that either P'

forces a or P' forces ~~\ a.

Proof: Let a be a limited statement with r quantifiers. If r > 0 and P does not
force a = (x)a b(x), then for some P' Z) P, P' forces ~\ b(Fp), 0 < a, which means
P' forces ~\a. If r — 0, we may restrict ourselves to III, for if we enumerate the
components of a, by defining a finite sequence Pn, PB = P and P , + i D P , we may
successively force each component or its negation so that finally either a or 1 o is
forced. Again, cases (i) and (ii) are trivially disposed of. Case (in) is handled by
induction as before. If a = Fa e Fp is in case (ID) then if P does not force ~\ a, for
some P' => P and 0' < p, N(p') = 9, P' forces Fa = Fe. so P' forces a. If a ==
Fa e Fp is in case (v) if P does not force ~\ a, then for some P' Z) P, /3' < 0, P' forces
Fp e Fp and Ffi- = Fa> hence P' forces a. Unlimited statements are handled as
before.

Definition 8: Enumerate all statements an, both limited and unlimited, and all
ordinals an in 3E. Define Pzn as the first extension of Pin _ \ which forces either an

or ~l an. Define P2n + i as the first extension of Pin which has the property that it
forces Fp t F«n where 0 is the least possible ordinal for which there exists such an
extension of P2re, whereas if no such /3 exists, put P2« + i = Pin-

The sequence Pn is not definable in 3TC. Since all statements of the form n e as

are enumerated, Pn clearly approach in an obvious sense, sets as of integers. With
this choice of ae, let 91 be defined as the set of all Fa defined by Definition 1.

LEMMA 5. All statements in 91 which are forced by some Pn are true in 91 and con-
versely.

Proof: Let a be a limited statement with r quantifiers. If r > 0, then if P,, forces
(x)a b(x), if /3 < a, then some Pm must force b(Fs) since no Pm can force ~| b(Fp).
By induction we have that h{F0) holds, so that (x)a b(x) holds in 31. If Pn forces
Jax b(x), for some /3 < a, Pn forces b(Ffi) so by induction b(F?) holds and hence
laX b(x) holds in 91. Case II will clearly follow from case III and (i) and (ii) arc-
trivial. If a is Fa e Fp or ~1 Fa e FB in case (in) then if Pn forces a, Pn forces pre-
cisely the statement which because of the definition of Fp is equivalent to a. In
case (iv) if Pn forces Fa e Fp, for some /3' < 0, .V(j3') = 9, l\ forces F^' = F«, which
therefore holds by induction in %.. If Pn forces ~| Fa t Fp, then for each p' < Ii,
N(P') = 9, Fa = F3/ is not forced by any Pm so some Pra must force Fa ^ /'V'
which proves ~| Fa t F0 holds in 31. Similarly for case (v) and for unlimited state-
ments. Since every statement or its negation is forced eventually, the converse is
also true.

Lemma 5 is the justification of the definition of forcing since wo can now throw
back questions about ill to questions about forcing which can bo formulated in 0??.
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In the next paper, we shall prove that, ill î  a model for Z-F in which part 3 of
Theorem 1 holds.

* The author is a fellow of the Alfred P. Sloan Foundation.
1 Cohen, P. J., "A minimal model forset theory," Bull. Anier. Math. Soc, 69, 537-540 (1903).
2 Fraenkel, A., and Y. Bar-Hillel, Foundations of Set Theory (1958).
3 Godel, K., The Consistency of the Continuum Hypothesis (Princeton University Press, 1940).
4 Shepherdson, J. C , "Inner models for set theory," J. Symb. Logic, 17, 225-237 (1957).
6 Sierpinski, W., "L'hypothese gcneralisee du continu et l'axiome du ehoix," Fund. Math., 34

1-5(1947)
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THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS, II*

BY PAUL J. COHEN1

DEPARTMENT OP MATHEMATICS, STANFORD UNIVERSITY

Communicated by Kurt Godel, November 27, 1963

This paper is a continuation of reference 1, in which we began a proof of the fact
that the Continuum Hypothesis cannot be derived from the other axioms of set
theory, including the Axiom of Choice. We use the same notation as employed in
reference 1.

THEOREM 2. 91 is a model for Z-F set theory.
The proof will require several lemmas. The first two lemmas express the princi-
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pie that forcing is a notion which is formalizable in the original model 9TC.
LEMMA 6. There is an enumeration aa of all limited statements by means of tlie

ordinal numbers of 3TC, such that the usual formal operations -performed on statements
are expressible by means of definable functions in 3TC of the indices a, for example,
forming negations, conjunctions, replacing variables by partimdar sets, etc. Further-
more, the ordering corresponds to the definition of forcing given by trans/mile induction
in Definition 6.

LEMMA 7. Let o.{x,y) be a fixed unlimited statement containing two unbound vari-
ables x and y. The relation $a(P,«,/3) which says that ]' forces (i(Fa,Fp) and /3 is the
least such ordinal, is definable in 3TC.

This follows from the fact that using Lemma 6 the relation "P forces aa" can be
formalized in Z-F as a statement about P and a. A given unlimited statement can
also be handled since, after a finite number of replacements of variables, it is re-
duced to a limited statement.

Definition 9: For a(x,y) as above, put To(a) = sup[/?|3 P,oti < a, $0(P,ai,/8)}.
LEMMA 8. Let a(x,y) be a fixed unlimited statement, a an ordinal. For each

a' < a either there is no Fp such that a(Fa',F$) or such an F0 exists with /8 < r a (a ) .
Proof: If ,8 is the least ordinal such that a(Fa',Ffi), then a(Fa>,Fp) must be

forced by some Pn which clearly implies (3 < ra(a).
LEMMA 9. Let &(x,y) be an unlimited statement of the form

QiXxQ&i, • • -, Qnxnb(x,y,xh . . . , xn)

where b has no quantifiers and Qt are either existential or universal quantifiers. In 31,
assume <X defines y as a single-valued function of x. Then for each a tlicrc exist ordinals
7o, . . . , 7 r e such that for x e Ta, there exist y t Fyo such (hat a(x,y) and for (x,y) in
Ta X Tyo, the statement a(x,y) holds if and only ifa(x,y) holds where a is the statement
formed by restricting the quantifiers Qt in h to range over Fyi.

Proof: Lemma 8 implies the existence of 70 such that for x t Ta, there is a
y e Fyo such that a(x,y). Define yk by induction as follows: let gk(x,y,xu . . .,
xk-\,z) be the condition

(i) if Qk is universal,

~Qk+ixk+i, • • ., Qnx,,b(x,ij,xi, . . ., xk_hz,xk+i . . . xn) or

(ii) if Qk is existential,

Qk+ixk+x, . . ., Qnxnb(x,y,Xi, . . ., xk_hz,xk^l . . . xn).

Lemma 8 implies t h a t for some yk, for all {x,y,x,, . . ., xk^) e Ta X Fyo X . . . X
Fyk_u either no z exists such t h a t gk{x,y,xu . . ., xk_hz) or there is such a z e Fyt.
This clearly implies the lemma.

LEMMA 10. The Axiom of Replacement holds in 31.
Proof: If a(x,y) defines y as a single-valued function of x in 31, then for any a if

D = {x\jz, z t Fa& a(z,x)} then by Lemma 9, D is denned by a condition in which
all variables are restricted to lie in fixed sets Fyi, which by the definition of the sets
Fa implies that D is a set in 31.

The only other axiom to verify which is nontrivial, is the Axiom of the Power Set.
The proof we give follows closely the method in reference 2 used to prove that V = L
implies the Continuum Hypothesis.
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LEMMA 11. Let W be a set in 3TC, consisting of conditions P, such that if Pi and Pt
belong to W, then P\ U Pi is not an admissible condition {i.e., contains a contradic-
tion). Then iV is a countable set (in 3TC).

Proof: Define sequences nk and Pj as follows. Put n,i = 1 and P\ the first P in
IT. (We assume the P are well-ordered.) If nk and P} for j < nk are defined, put
Rk equal to the sot of till conditions n e as or ~ n e as such that they or their negations
are contained in .some Pitj < nk. Let Pt, nk < i < nk+i, be finitely many P in W,
such that for all I' in W, 3j, nk < j < nk+i and P and P , have precisely the same
intersection with l{,:. This is possible since Rk is a finite set. We claim that W
consists only of the I'). For if P t W, then since P is a finite set of conditions, and
Rk Q /i\+i, tliere exists a k such that P fi Rk = P D fit+i. Let nk < j < nk+i,
such that P, (1 /<!* = P (1 Rk. Then if P is not equal to Ph since P fl fit+1 C P ,
and /J> C /("t+i, / ' U Pj is an admissible condition, which contradicts the hypothe-
sis.

Definition 10: Put C(P,a) = ft if P forces ^ « P« and for P ' 3 P, 7 < 0, P '
docs not force /(1T e P^. If no such /3 exists, put C(P,a) = 0.

The function C is definable in 9TC, by virtue of the general principle contained in
Lemma G.

LEMMA. 12. For any a, there are only couniably many (in 9TC) /? such that for some
I', C(P,a) = p.

Proof: For each such /3, pick one P such that C(P,a) = /3. Then the set of all
such P must be countable by Lemma 10.

LEMMA VS. Let S be an infinite set of ordinals in 31!. There exists a set S' of
onlinalx, S' 3 .S', S' = S such that S' is closed under J(i,a,/3,y), Ki(a), C(P,a), I (a),
far all I' and a, ft, 7 e S. Also a t S' implies a + 1 e S'.

The statement S' = S, above, means that with respect to 3TC, the sets S and S'
arc of the same cardinality.

LEMMA 14. Let S be a set of ordinals closed under the operations in Lemma IS, and
such that if a < 3KT, a e S. Then there is a map g mapping S 1-1 onto an initial
segment of ordinals which preserves J, Kt, I, N, and such that if N(a) = 0 (or 9),
g(a) = ft is the first ordinal such that N(ft) = 0 (or 9) and ft is greater than g(a') for
a' < a. Also, g is the identity for a < S^r.

Proof: S and g in the lemma refer to sets in the model 3K. We define g by
transfinite induction. For a < 3^T, let g be the identity. If g is defined for all ft
in S less than a, UI(a) = a3 (i.e., N(a) = 0), putg(a) = sap{g(ft)\ft < aaud/3 e S].
If / (a) = ft < a, then if N(a) = 9 (i.e., a = ft + 1), put g(a) = g(ft) + 1. If
i = N(u), 1 < i < 8, put g(a) = J(i,g(Ki(a)), g(K*(a)), g(ft)). One can now show
by induction that if a e S, N(a) = 0, g maps the set of all ft < a onto an initial seg-
ment. The lemma then easily follows.

LEMMA 15. If we put G(Fa) = F0(a) for a in S, then G is an isomorphism with
respect to e of Ax = {Fa\a e S] onto A2 = {Fg(a)\a t S].

Proof: This follows by induction on a, in the same way as in 12.6 of reference 2.
Observe that in examining the operations JF4 and EF5 we need the fact that if Fae Ai
and is not empty, then it has a member in Ai preceding it. This is true since S is
closed under C(P,a), and C(P,a) for some P is the smallest ft for which Fpt Fa,
if Fa^ <t>.

LEMMA 16. / / Fp C Fa, then for some y, Fp = Fy, where y < 3 + Xr in 3R.
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Proof: Let S contain all 8 < a, all 8 < 3 ^ r and /3, and be closed under the opera-
tions in Lemma 13. Let g be the corresponding isomorphism. Then clearly
g(S) = 8 if 8 < a. Thus, by Lemma 15, if we put y = g(/3), since Fp CZ Fa! Fy =
F0. Since g maps <S onto an initial segment, "y < S and so the lemma is proved.

LEMMA 17. The Axiom of the Power Set holds in 91.
Proof: Since every subset of Fa is contained in Fp, where /3 is the first ordinal

such that iV(/3) = 0 and ^ > a + XT, it is clear that the power set of Fa occurs in 91.
This completes the proof that 91 is a model, the other axioms being trivially veri-

fied. Since rank Ff< a, 31 contains no new ordinals.
LEMMA 18. / / N(a) = N(0) = 9, and Fa > Fp in 9ft, then Fa > Fp in 91.
Proof: The point of this lemma is that ordinals do not change their relative

cardinality in the model 91. The added complications in the definition of forcing
due to N(a) — 9 are compensated for in the proof of this lemma, in that as a runs
through the ordinals with N(a) = 9, Fa runs through the ordinals of 311 in a manner
independent of the sequence Pn. More exactly, the map a -*• Fa is an order-
preserving map of the ordinals a, N(a) = 9, onto all the ordinals of 311.

Thus assume that some element in 91 defines a relation <p(x,y) on Fp X Fa which
is a single-valued function from Fp onto Fa. For each /3' < ft, N(fi') = 9 consider
the set Hp' of all y, N(y) = 9, such that some P forces both <p(Fp',Fy) and (x) [<p(Fp<,x)
—*• x = Fy]. The set Hp> exists in 911 as does the map fi' —*• Hp> since the notion of
forcing is expressible in 911. We shall now show that each Hp is countable in 9TL
For each element in Hp' choose a corresponding P which forces the above state-
ments. By Lemma 11, it is sufficient to show that these P are mutually incom-
patible. If two such P corresponding to 71 and 72 were compatible, their union
would force both <p(Fp,Fyi) and (x)[<p(Fp',x) -*• x = Fyt]. Now since ~/(T7l =
Fy, is forced, taking into account that r^Fyi = F72 involves only existential quan-
tifiers, it follows that r^J(<p(Fp',Fyi) —*• Fyi = Fy,) is forced, which is a contradic-
tion. Thus the union of all the H^ is of cardinality Fe in 9TC, since we may clearly
restrict ourselves to the case where Fp is infinite. If in 91, <p(Fp',Fy) holds for some
7, N(y) = 9 then since all true statements in 91 are forced by some P, 7 belongs to
Hp'. Thus since <p is onto, the union of Hp' must contain all 7 < a, N(y) = 9 which
is impossible since Fe < Fa in 97Z.

LEMMA 19. There is a statement a.(x,y) built up from the logical symbols and the
set V, which expresses in 91 the condition that x is an ordinal and Fx = y. Thus the
Axiom of Choice holds in 31.

Proof: This is true because our construction differs from that of reference 2,
merely in the introduction of the sets as. If we use the set V, we can of course de-
scribe their ordering and so define the construction. A¥e can thus well-order 91 by
saying Fa precedes F0 if a < /3 and Fp =̂  Fy for 7 < /3.

LEMMA 20. In 91, we have Kr < 2Ko < NT+1.
Proof: By Lemma 18, the sets Nx do not change in 91. One can easily see that

no P forces any two a5 to be equal, hence they are distinct, which implies one half
of the lemma. Our proof of the Power Set Axiom shows that every subset of « is
some Fa with a < N, or a < ^rn- Thus Lemma 19 establishes a map of ^T+1 onto

We have now completed the proof of part 3 of Theorem 1. We now sketch the
proof of one of the finer points involved.
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LEMMA 21. / / in 3TI Nr is not the sum of countably many smaller cardinals, then
2K° = Nr in the model 31. / / it is, then 2No = Nr+I.

Proof: The second part follows from Lemma 20, and the theorem of Koenig
which says that the continuum is not a countable sum of smaller cardinals. Let
Fa C to. To prove the first part, let S be a set of indices containing all /} < to, the
ordinal a, and closed under/, K{, I, + 1, and C as before, and such that S = No-
The set S is definable in 3TC by virtue of the general principle of Lemma 6. For @ in S
define a new collection of sets Gp, defined by induction on /3 as follows. If j8 < 3 Nr,
Gp = Fp. If N(p) = 0, put Gp = {Gf>\pr < /3}, and if N(p) = 9, Ge = j c , , ^ ' <
0 & iVOS') = 9}. If 1 < t = JV08) < 8, KM) = 7i, Kt(p) = 72, put Gf = JF,(GW

G72). Then the correspondence Fp -*• G$ is an isomorphism with respect to «.
Clearly, Fa = Ga. Let p be an isomorphism with respect to « of S onto a countable
ordinal <S'. Let K/ = pKtp~l, and A '̂ = Np~l. Then our argument shows that
Fa depends only upon S', K/, N', p(a), and the set S 0 3 Nr. The number of pos-
sible S' is Xi. For each S', the number of possible Kt' and N' is Ni, since No R° =
Xi in 91X and if/, N' are definable in 9TC. The number of countable subsets of 3 Xr

is of cardinality Nr, as follows easily from our hypothesis on Xr and the fact that the
Generalized Continuum Hypothesis holds in 9TL Thus the number of possible Fa

does not exceed Nr and the lemma is proved.
LEMMA 22. / / in 3E the number of subsets of Nr of cardinality tti is NT) then 2Nl =

Nr in 91.
Proof: This is very similar to Lemma 21. We merely demand that S contain all

(3 < Ni. The condition of the lemma may be rephrased by saying Nr is not cofinal
with No or Ni. In particular, r may be 2.

This settles an old question of Lusin whether one can have 2*° = 2Nl Other
examples of this type presumably can be constructed with our method. In par-
ticular, one can construct models in which the set of constructible reals is countable,
a countable union of countable sets is uncountable, etc.

We now give a short discussion of the question of how the above proof can be
formalized. Let us denote by (Z-F)' the axiom system obtained by adjoining to
Z-F the axiom:

There exists a set 3TC which is a model for Z-F.

Observe that this axiom can be expressed as a single statement about 9H, because
3TC is a set. In the axiom system of Godel-Bernays this would be still simpler, since
only finitely many axioms are employed there. The classic argument of Godel2
shows that from (Z-F)' one can deduce the existence of a set 31 which is a model for
Z-F and V = L. Similarly, the argument of this paper shows that (Z-F)' implies the
existence of a set Tfl, which is a model for Z-F, the Axiom of Choice, and the nega-
tion of the Continuum Hypothesis. Since our additional axiom is quite readily ac-
ceptable to most mathematicians (being merely a formal expression of the Lowen-
heim-Skolem principle, and implied by well-known axioms such as the Axiom of an
Inaccessible Cardinal), one can regard the unprovability of the Continuum Hy-
pothesis as firmly established. However, the consistency of a formal system can
also be regarded as a statement in elementary number theory, and one may ask for a
proof within elementary number theory of various implications. If (Z-F)i denotes
Z-F with the Axiom of Choice and say 2N° = NT, the relevant question is, can we
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prove within number theory or, if need be, a system of higher type, the implication
Con(Z-F) -*• Con(Z-F)i. By using rather standard methods, we shall show how to
prove the above implication purely within elementary number theory.

Let us enumerate the axioms of Z-F, An. For each n, there is in Z-F a proof of
the existence of a countable set 3TC,, which satisfies the axioms Au j < n. Further-
more, the correspondence between n and the string of symbols corresponding to
such a proof is expressible in number theory.

We may also assume by reference 2 that the axiom V = L is valid in 31ln. We
now assert that the proof that 31 is a model for Ahj < p as well as 2No = N, can
be given under the assumption that 9TC is a set satisfying .1^, for/ < n where n is a
suitable number greater than p, but still an arithmetical function of p. To see this,
we observe that the notion of forcing for limited statements can in Z-F be formu-
lated for unlimited statements as well and the basic lemmas may be proved, since
no special properties of 3TC are used except the transitivity of 3TC. To prove that
the axioms of Z-F other than the Replacement Axiom holds in 31, as well as 2H° =
&T requires only finitely many axioms to hold in 911. Each instance of the Replace-
ment Axiom to be proved in 31 requires that a finite number of instances of replace-
ment used in the proof of Lemma 8 hold in 3E. Which instances are sufficient is a
simple function of the number of logical symbols used in the formula a(x,y) dis-
cussed. Since any contradiction in (Z-F)i would involve only finitely many axioms
and since we can prove the existence of a set 31 satisfying these axioms, we would
thus be led to a contradiction in Z-F itself. This mapping from contradictions in
(Z-F)i to contradictions in (Z-F) is expressible in an elementary number-theoretic
manner which is what was to be proved. In general the statement 2**° = Nr, for
T in 3TC, may not be capable of being expressed as a statement in Z-F or may have
different interpretations in different countable models 3TC or 31. If T is a particular
natural number or w2 + 1, etc., then it can readily be expressed in Z-F and the proof
sketched goes through.

The argument given in this paper to establish the independence of the Con-
tinuum Hypothesis will certainly carry over if one adjoins to Z-F the Axiom of an
Inaccessible Cardinal. It. seems probable to the author that the addition of any
axiom of infinity, as the term is presently understood (i.e., of axioms such as those
introduced by I'. Mahlo and Azriel Levy), will not alter the situation.

The author wishes to express his gratitude to Professor Kurt Godel for his many helpful sug-
gestions during the preparation of this manuscript, and for correcting several weak points in the
previous exposition. We also would like to thank Professor Solomon Feferman for pointing out,
after the author had shown 2N° = N5 in 31, that probably 2Nl = N2 would hold as well, thug resolving
Lusin's problem.

* The results of this paper first appeared in April 1963 as a set of notes multilithed at Stanford
University, and were presented at a lecture in Princeton at the Institute for Advanced Study on
May 3, 1963.

f The author is a fellow of the Alfred P. Sloan Foundation.
'Cohen, P. J., "The independence of the continuum hypothesis," these PROCEEDINGS, SO,

1143 (1963).
2 Godel, K., The Consistency of the Continuum Hypothesis (Princeton University Press, 1940).
3 The definition of / in Lemma 1 is to be supplemented by the stipulation:

IUM) = KJM + 1) = i(«).
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MARGINALIA TO A THEOREM OF SILVER

Keith I. Devlin and R. B. Jensen (Bonn)

§ 0 Introduction

The singular cardinals problem, in its simplest form, asks whether the

continuum hypothesis can hold below a singular cardinal g and fail at 6.

A variant of the question is whether we can have 2*» = g and 2 > 6+.

Since forcing is the natural method for producing independence results,

set theorists have concentrated on a more specific form of the problem:

Given a transitive model M of ZP + GCH, can a positive solution be ob-

tained by forcing over M with a set of conditions IP ? This approach sug-

gests a number of related problems: Is there a IP which collapses 8+ to

6? Is there a IP which makes an inaccessible cardinal singular?

Until very recently, there was a widespread assumption among set theo-

rists that such sets of conditions do exist and"merely awaited discovery.

Then Silver challenged this assumption by proving it false. Specifically,

Silver proved - in ZPC - that if the continuum hypothesis holds below a

singular cardinal f$ of uncountable cofinality, then it holds at 6. Thus,

in many important cases, not only the narrower forcing problem but the

general problem itself has a negative solution.

Much of the effort to produce a positive forcing solution centered on

the attempt to exploit the properties of special ground models - either

L or models containing large cardinals. The latter approach met with some

success: Prikry, fr. ins., showed that a measurable cardinal can be

turned into an ID cofinal cardinal. Magidor, starting with an elephantine

cardinal, produced a model in which 2 n < oi for n < ui and 2 w > is +..

Jensen's efforts to produce a positive solution over L led to total



14 .

116 K. Devlin & R. Jensen

failure. Silver's work then led him to consider the problem from a new

perspective. He discovered that the statement " 0 * does not exist" (hence-

forth abbreviated as -i 0* ) implies a negative solution to all cases of

the singular cardinals problem. But then there cannot be a positive forc-

ing solution over L, since every generic extension of L by a set of con-

ditions satisfies -i 0

Throughout this paper we assume ZFC. Our main theorem says, in effect,

that if -i 0 , then the "essential structure" of cardinalities and con-

finalities in L is retained in V.

Theorem 1. Assume -i 0 . Let X be an uncountable set of ordinals. Then

there is a constructible set Y s.t. X <= Y and X = Y.

Remark. By a theorem of Prikry, we cannot replace "uncountable" by

"infinite" in Theorem 1.

Corollary 2. Assume -i 0 . If t k »2 is regular in L, then cf(t) = T.

Remark. By a theorem of Bukovski, we cannot replace &>2 by co. in

Corollary 2.

The following corollary establishes a totally negative solution of the

singular cardinals problem over L.

Corollary 3. Assume -i 0 . Let B be a singular cardinal. Then

(a) B is singular in L

(b) e+ = B + L

(c) If A c g s.t. Hg = Lg[A], then iP(B) c L[A].

(d) cf(B) s Y < B —*• BY = 2Y • B+

(e) Let 0 = 2 ^ . Then

R f e i f \ / Y < 6 2Y = 6

I 6* i f not .
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The proofs of these corollaries are quite straightforward and will be

left to the reader.

The above results are due to Jensen and were originally presented in

three handwritten notes bearing the title of this paper. The proof given

there was developed "pieoewise" and contained many redundancies. The

present streamlined proof is due chiefly to Devlin.

§ 1 The approach

Prom now on assume -1 O ~ .

Def i > « is suitable iff either JT ^— (There is a largest cardinal)

or else there are arbitrarily large y < x s.t. cf(y) > a> and JT [=•= (Y is

regular).

§ 0 Theorem 1 reduces to the statement:

Lemma 1. Let T i u>2 be a suitable cardinal in L. Let X c x be cofinal

in t s.t, I < T. Then there is Y 3 X s.t. Y 6 L and Y < x.

We first show that Lemma 1 implies § 0 Theorem 1. Suppose not. Let X

be an uncountable set of ordinals for which the conclusion of §0 Theorem 1

fails. Choose x = lub(X) minimal for such X. Then X < 7, since otherwise

the conclusion of § 0 Theorem 1 would hold with Y = x. Hence x > (»„.

Now suppose that the conclusion of Lemma 1 held. There would then be

Z € L s.t. X c Z and t < T . Let p = z and let f : p -< *• Z be construc-

tible. Set X' = f~lnX. Then X1 c p < x. By the minimal choice of T there

is Y1 e L s.t. X1 c Y1 and X1 = 7 ' . Hence Y = f"Y' satisfies the conclu-

sion of § 0 Theorem 1. Contradiction! Now suppose the conclusion of

Lemma 1 to fail. Then x is a cardinal in L, since otherwise the conclu-

sion of Lemma 1 would hold with Y = x. But then x is not suitable and,

in particular, not a successor cardinal in L. Hence there are arbitrarily

large y < x s.t. y > Up and y is a successor cardinal in L. But then y
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i s s u i t a b l e and hence cf(y) = y > u, s ince otherwise Lemma 1 would give

Y c y s . t . Y 6 L and Y < y, malting y s i n g u l a r i n L. Hence T i s s u i t a b l e .

Cont rad ic t ion! Q E D.

We now o u t l i n e , very roughly, the method to be used in proving Lemma 1.

Let T i w2 be a s u i t a b l e ca rd ina l i n L and l e t X c x co f ina l ly s . t .

X < 7 . We can e a s i l y cons t ruc t a map TT : J— —>-_ J s . t .
T h J X

(*) 7 < x is suitable

(**) X c rng(ff) (hence rng(Tr) n T is cofinal in T ) .

Suppose that 7 is not a cardinal in L. Then there is a least

F a 7 s.t. T is not a E^ cardinal in J-g (i.e. there is a .!•*• definable

map of some 7 * 7 onto T (allowing parameters)). But then there is a

least n i l s.t. 7 is not a Z cardinal in J-*- (i.e. there is a I (Jw)
n P n p

map from a subset of some y~ < 7 onto T ) . We show that the map ir "extends

to F" - i.e. there is if a it s.t.

~ : JV >v JD for some S i t .

F £n (5

By the choice of F, n, there exist y~ < 7, p 6 Jrr s .t. each x € OV is

£n(JV) in parameters from J- uip}. Let y = TT(Y), P = ~(p). Then y < x,

p 6 J.. Since x is a cardinal in L, there must be w' : J., *•- Jo s.t.
3 B T.n 0

t' 6 L, B1 < 6 and J u (p) c rng(if'). But then rng(iO c rng(ir') since

if"(J— u {p»c: rng(ir'). Hence Lemma 1 holds with Y = rng(ir').

Now let 7 be a cardinal in L. The same proof which showed that IT "extends

to g" will, in this case, show that TT "extends to •»" - i.e. there is

i 3 i s.t. if : L —»-£ L. But that is a contradiction by the following

well known lemma of Kunen:
Lemma 2. Let ir : L — • j . L s.t. IF •)• id \- h. Then 0* exists.

The cases: cf(x) > u, cf(x) = co will be treated separately. The non u

cofinal case is the "natural" one, for we can then show that every

ir : Jj—*-j. JT satisfying (*), (**) has the above extendability
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properties. In the u cofinal case we shall have to resort to more or less

unsavory legerdemain in order to show that ir, 7 with the extendability

properties exist.

In proving the first extendability property, we shall not work directly
_ n-1 _ n-1

with JTT but rather with (J—, A), where p = p— , A = A— .We show that
p P P B

IT extends to 7 => IT s.t. f : <J-, A")—>z <Jp, A> cofinally for some

amenable <J , A). (Where "cofinally" means that TT " up is cofinal in <op.)

We then prove the existence of B s.t. p = p , A = A (the same proof
S P

will show that TF extends to ir* : J »v J o ) . This latter step is the
$ Zn 6

main concern of § 2.

§ 2 Fine structure lemmas

For the basic theory of the fine structure, the reader is referred to

[FS] trough | 1 or [Dev] Ch 7. P^ ' Ao ' pa denofce' as u s u a l> the zn

projectum, the Z standard code and the Zn standard parameter of a. We

recall the following facts:

(1) pn s the largest p s.t. <J , A) is amenable for all

A € En(Ja) n 9(J p).

(2) R c Jpn is Sn(Ja) iff R is Z^J^-1 , A^ ).

(5) A° » P° = 0 .

(4) Let n * 1 and let h be the canonical S^ Skolem function for

<J n-1 , R11'1). Then p n is the least p s.t. J n-1 =
Pa p™
01 n a

h"(w x J x (p}) for some p 6 J n and pa is the <j - least such p.

(5) R c J n is I j W n - i , A^~ ) in the parameter p^ iff R is rud in

a a

<J n , A > (i.e. R is the intersection of J n with a class rudimen-
a a

tary in A o ) '
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(6 ) Let IT : <J— , A) —>•_ < J \ n , A ) ( i 2 0 ) . Then t h e r e i s a u n i q u e
P **.: P a

1 a

o » ^ s , t . (T = p— , A" = A—. Moreover , t h e r e i s a u n i q u e if z> IT

s . t . TT : J - — > z J a and i r (p- ) = p ( j £ n ) .
n+i

All of these facts are established in [Dev] and [PS]. The next result,

though not explicit in our reference articles, does indead follow easily

from the above facts.

Def Let a £ 6, 0 & n s u>: »a is a E cardinal {!„ regular) in Jo iff
1 •'••'• — ri '" •' ™ ' n • ' ™~ — — • p

there is no s n(Jg) function mapping a subset of some y < ua onto (cofinal-

ly into) ma.

a is a cardinal (regular) in Jg iff there is no f 6 Jg mapping a y < wet

onto (cofinally into) ua. If a is a cardinal in Jo and a 6 Ja s.t. a c J .
p p cr

then <Ja, a) is amenable.

Clearly, being a cardinal (regular) in Jg is the same as being a ZQ car-

dinal (regular) in Jg.

Lemma 1. Let n i 1, a s (3.

(i) If iiia is a I . cardinal but not a Z cardinal in Jo, then

n n 1 n
po < a s p_ . Moreover up. is the least y < oa s.t. there is 1 (Jo)
p S B n p

map of a subset of y onto a>a.

(ii) If p. < a s p and a is regular in J.n-1 , then cf(ua) =
P P PQ

P

cf(o)pn"1).

Proof.
Q

(i) Pg = B i a- Using C O , (2) and the fact that for any p there is a

A^(J ) map of up onto J , we get: pg a a for i < n (by induction on i).

Hence Pg 2 <*• Now let p = the least p s.t. there is a sn(Jg) map of a

subset of up onto <oa. Then p < a. p 2 p by (4), (2).
P
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We claim: p = P. Let f £ ^ ( J R ) m aP a subset of up onto JQ. Then f ^ J_

and hence (J , f) is not amenable for a < y s 0. Hence pg s a. Now set:

a = {v € dom(f)| v $ f(v)}. By a diagonal argument, a $ JQ. Hence <J , a)

is not amenable for p < y S. a. Hence pa s: p. QED(i)
P

n-1 n-l n n
(ii) Set: P = Pg , A = Ag , p = pg, y = Pg.

Let h be the canonical Skolem function for <J , A). Define a map f from

a subset of J onto J by:

f(<i,x>) = h(i,x,p) if x 6 J and h(i,x,p) e Ja

f(u) undefined in all other cases.

Then f is ^i(JD> A) in a parameter q. Let

y = f(x) ^ *• Vz P(z,y,x, q)

where P is lQ. Let X = cf(up) and let <5V | v < A) be a monotone se-

quence converging to up. Define f (v < X) by:

y = f (x) -< *• y € S A Vz € S FCz.y.x.p).

Then f € J and f maps a subset of J into J .

Set: av = sup(On n rng(fv>). Then ay < uia since ma is regular in J .

But v s ri —>• av s o , since f c f . Finally, sup a = wo since

U f = f • QED
V

Carrying the proof of Lemma 1 (ii) a step further, we get the following

rather technical lemma which will be of service to us in § 5.

n-l n
Lemma 2. Let pQ a o > p. where a>a is regular in Jo. Let X = cf ( w ) .

Then there is a sequence <fy | v < X) s.t. {fv [ v < X} c Ja and if

IT : J- —*-j. Ja s.t. {fv | v < X} c rng(ir), then:

n
(a) There are unique if => ir, p i a, A c J— s.t. pg £ rng(ir) and
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_ n-1 _ n-1
(b) There is a unique Fs.t, p = p̂ - , A = A^ .

n _
(c) p̂ - < a .

n n n n
(d) If T(P^) = Pg > then ~(p^-) = Pg .

Proof.

We first prove the existence part of (a). Let p, A, p, Y , <?v| v < X.)

h, f, q, <fv| v < X> be as in the proof of Lemma 1 (ii). We note that

f € J , since f € J is bounded in J and a is a cardinal in J .v ot v p a p

Set Y = rng(ir) n J . X = h" (a> x Y x {p}). Then X •<_ <J , A>.
Y ** -i P

It is clear by the definition of f that X n Ja = f"Y. Using this we get:

Claim X n Ja = rng(ir).

Proof.

(c) Let x 6 X n Ja. Then x = f(z) for a z 6 Y. Hence x = f"v(z) for

some v. Hence x € f" Y c rng(ir).

(=>) Let x € rng(Tr). Let z = the <T-least z s.t. x = f(z). Then x = f (z)

for some v. But then z € Y since z = the <j-least z s.t. x = f (z).

QED (Claim)

Now let if : <J—, A) •< ~ > <X, A n X>. Then p' i a and TT ̂  J— = ir by the

claim. This proves the existence part of (a). The uniqueness part of (a)

follows by the fact that if TT z> IT S .t. if : <J-, A> —»>z <J , A) and

p € rngCif), then rng(~) = h"(u x Y x {p}). (b) is immediate by fact (6)
_i _ n _

above. To prove (c), set J— = ir "̂ 'J . Then y < a. But p*- s Y, since,
Y Y p

letting h = h— j be the canonical E1 Skolem function for (J—, A) and

~(p) = P» we have: J— = h"(o) x j - x {p}), since rng(~) = h"(u x Y x {p}) =

~ - - n _

tf"h"((D x J— x {p}). We now prove (d). We have: y = p-g- and TT(Y) = Y.

Set p1 = p—, p1 = iT(p'). Then p1 £j p, since J— = h"(u x j _ x {p}). But

p Sj p', since there is x € J— s.t. p = h(i,x,F'); hence p = h(i,x,p').

where x = n(x) £ J . Hence h"(<o x J x {p<> = J QED
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The main object of this section is to prove a sort of converse of fact

(6) above. First a definition and a preliminary lemma.

Def An imbedding a : <J , A> —*•- (J ', A') of one amenable structure
P L A P

into another is called strong iff whenever R is a well founded relation

on J which is rud in (J.j A) and R' is rud in (J ', A 1 ) by the same rud

definition, then R1 is well founded.

n n
Lemma 3- Let i, n > 0 and suppose a : <J , A^> —*-̂  (J , A) is strong.

Then there are n> B, 3" s.t. cf r> a and:

1 1 n-1 1
(i) P = P n > B , A = A n j B , a(p F > * Pn B .

n-1

(ii) a : <Jpn-l , Ag- > —>-j. < J n ' B ^ is strong-

Proof of Lemma 3-

_ n n _ n-1 _ n-1 _ n-1
Set p = P j , I s Ag-, n = p^ , B = A-| , p = p ^ .
Then J— = h- w "(ID X J _ X {p}). (We shall generally use h „ to denotex\ n ,D p TirJ
the canonical Z. Skolem function of an amenable structure (J ,B>). Define

h by
h«i,x>) - h- ) 5 ( i > X j p ) if x € J-

B"(u) undefined otherwise.

Define relations C, E, I, B1 on J— by:

D = dom(h)

E = {<x,y> 6 D 2| h(x) € h(y)}

I = {(x.y) € D2| h(x) = h(y)}

B' = {x € D | h(x) € B } .

Since B", E, T, B"' are Z^J—,B) in p, they are rud in <J-, X.).

Let D, E, I, B1 have the same rud definitions in <J , A ) . Then E is well

founded, since E is well founded and a is strong. Set:
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M = <D, T, E, B'>, M = (D, I , E, B'>. Let T be the E1 s a t i s f a c t i o n r e -

l a t i o n for the model M. Then f(<(i,<x>) -« >• I—1 4>Ch(x)] , so f i s

<Jn'f>

j;l(J—, B) in p and hence rud in <J-, J.). Let T have the same rud de-

finition in <J , A>.

Pact 1. T is the Z. satisfaction relation for M.

Proof of Pact 1. We must show that:

T([v € wj,<x,y>) •< *• x E y

T([v = w],<x,y>) •< '*• x I y
o

T(A(v), <x>) -< • B' x

T((f> A i(/,<x>) ̂ - »- T(*,<x>) A T(I|I,<X>)

T(-«Mx>) « »" -< T(*,<x>)

T(Vv Hx) t >- Vy € D T(*,<y,x>).

All but the last equivalence are expressible as II- statements in <J , A)

and therefore hold since the corresponding H^ statements in <Jx> A")

hold. To see the last equivalence, note that the relation

S1 _ + _
I— <f>Cy,h(x)3 is E. (J-, B) in p; hence

H W *th(x)] •< *• Vi < a h *[h«i,x>,<x>]
<J?,B> <JW.B->

hence:

T(\4r *,<?>) •* >- Vi < a) T-(4,,«i,x>,<x>>).

But the last equivalence is expressible as a H- statement in <J—, A")

(since Vi < to T"(<|>,<<i,x)j<x)>) is rud in <J-, J.) in the parameter u)

and therefore carries up to <J , A). QED (Fact 1)

Since the satisfaction relations T, T are rud in (J—, A"), <JD> A) resp.

by the same rud definitions and J is J. preserving3 we have:

(a f F) : M —>-j- M. So, in particular, M satisfies the identity axioms

and the extensionality axiom, since M does. We may thus define the factor
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model M* = M/T = <D*, 1*, B*>, M* = M/I = <D*, E*, B*>.

Let k~ : H —*• M , k : M —*• M be the natural projections. E*, E are

both well founded and extensional. Hence we may transitivise the models

M , M by Mostowski isomorphisms T, 1. Clearly, T : M < ~ > (J—,B)

and h = T k. Let 1 : M* <- ~ > <J_,B>. Set h = 1 k. Define o*:I*—*•*. M*

* - _ _ i + 1
by a k = k o. Define o : (J-,B> —>•_. (J ,B) by o h = h u.

n S i + 1 n

Thus:

h—-~-^

M ^ V M* ^ <Jn»B>

'' 4* ^
a| D a 3*

M * V M* i > <J-,B)

h

Fact 2. cf [• J— = a
p

Proof of Fact 2.

By definition, h uniformises the relation

{<y.<i>x>>| x € J- A H _ •i[y.<x,p>]}, where <<b. | i < w) is some
P <Jn»B>

fixed recursive enumeration of the H1 formulae. Let ifi. (y,z) be the
Jo

formula Vq((y,q> = x). Clearly, h(<jo,x>) = x for x 6 J—. Set:

s(x) = (j jX>. Then s is rudimentary, s ^ J maps J into D, since

s I* J— maps J— into D". For x, y € J we have:

s(x) E s(y) -< >- x € y

s(x) I s(y) •< »• x = y
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z E s(y) -<• •*• Vx 6 y z l s ( x ) ,

since the corresponding formulae hold in <J-,A).

Thus k s \- J maps £ f J isomorphically onto an initial segment of E .

But then h s f J = Ik s f1 J maps 6 f J isomorphically onto an initial

segment of € [ J^. Hence h s f J = id f J . Clearly, hs f1 J- = id \- J-.

Hence, for x 6 J—, we have ~(x) = 3" h s(x) = h a s(x) = h s a(x) = a(x).

QED (Fact 2)

Set p = a(p).

Fact 3- <i,x> 6 D -*• h«i,x>) = hn>B(i,<x,p>)

Proof of Pact 3.

Let i()(y,w,u) be the canonical Z1 formula defining the relation

y - hvC((w)o,<(w)1,u>) for any (J^.C). Let q € D be s.t. h(q) = p and

set q = a(q). Then h(q) = p. Then Ay 6 D |= <t>[y,s(y), q ] , so

M
Ay 6 D [= i(iry,s(y),q] , since o N D : H —>-T M. Hence

M 2

Ay € D h <tp[h(y), y, p ] . Hence h « i , x > ) = hri B(i,<x,p>) for <i,x> 6 D

n > QED (Fact 3)

We recall that by definition, if <J ,,C) is amenable and p = p .. p : p . .
V V , K> V,0

then A _ = {<i,x>| x € Jn A (— i(i4[x,p]}, where <((>.> is a fixed

<Jv.c>
recursive enumeration of the Z. formulae.

Fact 1. A = {<i,x>| x 6 Jp A H ^[x.p]}.

Proof of Fact 1.

A = A- g ; hence: Ai x(I(i,x) •< >- |— *i[s(x), q]).

' M
Since a : <J—, A) —»-j. <JD, A ) , we conclude:

Ai x(A(i,x) •»• •» H •^^[sCx)^]). Hence A(i,x) ̂  >- f- *,-[x,p].
M <Jn»B) 1

QED (Fact k)
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1

! _ _ _ P = PnjB •

Proof of Fact 5.

h is a lAJ ,B) map of D onto J by Fact 3; but D c J , hence p B s p.

On the other hand, (J , A> is amenable and every ^(J-, B) subset P of

J is I. in parameters from J U (p) (by Fact 3), hence rud in <J , A>

in parameters from J (by Fact k). But then <J , P> is amenable for all

such P. Hence p s: p ^ . ^ ( P a o t 5 )

1
F_____ p = p n > B

Proof.
l 1

p n s; T p by Facts 3 and 5. Now let p „ < , p. Then

VI Vq < j p Vx € Jp hnjB(i,<x,q>) = p; hence

ViVq"< T p Vi 6 J- h- s-(i><x>5>) = P by the fact that a is Z. pre-

serving and rng(3') n J = rng(c). Hence p— ̂  < p . Contradiction!

QED (Fact 6)

Facts it, 5, 6 immediately give:

Fact 7. A = An R

All that remains to be proved is

Fact 8. <? is strong.

Proof of Fact 8.

Let R be well founded and rud in <J-, B ) . Let R have the same rud de-

finition over <J , B>. Set:

£' = {<x,y} 6 D2 | h(x) R h(y)}

R1 = (<x,y> € D2 | h(x) R h(y)}.

Then R1 is Z (Jr-, B) in p" and R1 is E^J , B) in p by the same de-

finition. Hence R1 is rud in <J—, A") and R1 is rud in <J , A> by the

same definition. But a is strong; hence R1 is well founded. But then R
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is well founded. QED

By finitely many iterations of Lemma 3 we get:

Lemma *). Let n > 0 and suppose a : <J n, A*-) — ^ <J , A) is strong,

n
where <J , A) is amenable. Then there is an ordinal B s.t. p = pD ,

P p

A = An.

Lemma 't is the "converse" of Fact (6) announced earlier.

Remark. Though we shall not make use of the fact, notice that B above

must be unique and that a extends to a unique ~ : J-g- —•_ J. which
B En+1 e

preserves the first n standard parameters.

§ 3 The non ai cofinal case

Set J,, = U J = L.
v«*>

Lemma 1. Let T be suitable s.t. cfCx) > 10. Let it : J— —>•_ J cofinally
T i1 T

(i.e. (ox = sup (On n rng (if))). Let T" S F S » where F is a limit ordinal

and T is a cardinal in J-g-. Then there are 6 & T, I S IT s.t. TF : Jj —>-j. Jg

cofinally.

The proof stretches over several sublemmas. Assume for the moment that

1 < T £ 0 s •», where 8 is a limit ordinal.

Def T = T T > e = the collection of triples t = <«t,iit,u.) s.t. «t < x,

"t < B ) ut c Ju ' "tK "•

t

Define a partial ordering on T by t s t' •< >• S, £ 6fc, A vt s \i. ,

A ut c ut,. For t e T set:
X. = the smallest x <_ J s.t. J. u u. c X :t E yfc 6t t

hence X. = h "(u * J. x {u.}), where h is the canonical Skolem
z vt t u

function for J . Clearly, t s t1 >• X. < v X... Set:
Vi t LQ c

°t : J Y t « ^ X t J Ctf = at- at (t * * ' ) •
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°tt' a t'
Then J • Jv • Ja (t s t1) and <J ), (a^...) is a directed

Yt lQ Yt' ZQ B Yt "

system whose limit is Ja, (a,.). We note that a. t J., since a. is the
PL • V p U

set of pairs <h (i,z,u. ), h (i,z, a. (u.))> s.t. z 6 J. and
vt t Yt * t &t

<i,2,u.) € dom(h, ). If y. < x, the same argument shows: a. 6 J . But

then att, € JT if Yfci < T, since afct, = ag, where s = <«t,y,afc,(ufc)>

and y = at, "(Xt, n u t ) .

We also note that a^ is describable as the unique a : J *• L s.t.
-a Yt o

a [• J& = id f J6 and o(a^ (ut>) = ufc. To see this, note that
t t

(*) J h" * ( x ) — * " L H *(oCx)) for all x e J and E. formulae *.
't Yt -1

Now let h = h be the canonical E. Skolem function for L. Let x € J
_! X Yt

Then x = h (i,z, O(. (u,.) ) for some i < m, z € J, .By (*) we have:
Y f * t 6t

o(h (i,z, a, (u. ))) = h(i, z, u,.). Hence o is unique.Yt t t t

Lemma 1.1. IOT is a cardinal in Jo iff At £ T y. < T.

Proof.

(-< ) Suppose UT is not a cardinal in J. . Then there are y < 6, f € J

s.t. f maps a 6 < T onto J . Hence J c X., ,.u and y., ,.,> i T.

QED (« )

( —*•) We may assume X. = J , since otherwise this holds with t re-
t Yt

placed by t1 = <«t, Yt» o ^ C ^ ) ) . But then h € Jg and J =
t t

h "(a) * J, x {u.}). It follows that an f € Jo maps 6. onto my,.. Hence
y . o . \f ts t u

y. < T, since UT is a cardinal in Jg. QED

— 7 IT
Now let ait be a cardinal in J^ , ir : J >-_ J cofinally, T = T >p.

P T L ̂  T

For t, t1 € T, t « t1 set: 5* = 6*(lr) = it(6fc)

Yt - y*tM - *<Yt>
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Then o*t , : Jy* — ^ J ^ , o*t , f> J s* * id |W6* and <JY*>, <a*t,>

is a directed system. Define M = M^>7r, a* = a*^>ir ) (t € T) by:

M,<o.) = the direct limit of <J * ) , <a.. ,>. We assume w. 1. o. g.
t Y^ tt

that a. N Jx* = id f- J,* (hence J c M since T = sup &.).
t 5t 6t T t t

Define IT = irVP; : JT —>-_ M by:
B ^

J * L—»- M

t t
J • JF -

* at

Then i 3 u, since for x € J— , there is t t T s.t. j £ J, and hence
t

ir(x) = <rt TT a^ (x) = IT(X). We note that ir"uF lies cofinally in

{x | M (= x e On}, since if x € On in M, x = a. (n), then a*(ir a" (p )) >

x in M, where s = <6, , u+. + 1> u, U (y^)). We also note that M satisfies

the H9 statement "lama J ", since M,(c ) is the limit of (J * ) , <a..,)
<L 01 Xi Y , 1 1

and each J * satisfies it. Hence if M were transitive we could conclude:
Yt

\fc s » M = Jg.

Lemma 1.2. {y | M [— y e x} is a set for x € M.

Proof.

We assume F = °», since otherwise M is a set and there is nothing to

prove. We first note:

(1) If t € T, then a* = afc, where a"t = {<y,x>| M H y = w(at)(x)}.

Proof of (1).

Since M satisfies "I am a J ", we can define its canonical Z. Skolem

function h. Then h, h * have the same E. definition. But J * =
Yt a Yt
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h * "(ij> x j . * x {a. (u. )}), where u. = ~(u.), since w(h ) = h * and
*t t C * t t Yt Yt

By our previous argument, we conclude that a^ - ~t = the unique

o : J • —>•_ M s.t. a(o*"1(u*)) = u* QED (1)
Yt lQ t t t

Now set: JK = {y | M |— y e J^(K\}- Ifc suffices to show that JK is a

set for arbitrarily large K. We show."

(2) If K > T is regular, then J c I) rng(a*)

K teTnJK c

Proof of (2).

Let t 6 T. We shall construct t1 { I (l J, s.t. rng(a, ) n J_ c rng(a,_,).

Since K is regular, there is n < K s.t. rng(ff.) n J c J . Set:
v K M

Y = hu "(w x Jn x {ut>); a : Jyl «-=-* Y; a(u') = ufc ; t' = <6fc) u', u>.

Then t1 € Tfi J,, and mg(a. ) n J c rng(a, t ) . Hence rng(a-) fl J c

rng(~t,) and the conclusion follows by (1). QED

By Lemma 1.2. we may assume w. 1. o. g. that the well founded core of M

is transitive. Thus M is a transitive class if M is well founded and,

in fact, M5 S «• M = Jg, since M satisfies "I am a J ". We complete the

proof of Lemma 1 by showing:

Lemma 1.3. If 7 is suitable and cf(T) > u, then Vg s » M = Jg.

Proof of Lemma 1.3.

As remarked, we need only show that M is well founded. Suppose not.

Then there are x^ 6 M s.t. x Q 2 Xj 3 ... .We may suppose that x^ 6

rng(<Ji. ), where t. s t...,, v. < 5. and t. 6 u. . Then the system
t± i l+l t± t i + 1 l t i + 1

<J«* >» (of <- > has a limit which is not well founded. On the other
1t± titj

hand, <J >, <a. ,. > has a well founded limit, since a. a. . = <K
Yfc tjtj t. tjtj tj

and a. : J •_ J^ , where Jo is well founded. Let N, (a.) = the

H T t i Eo B B 1

limit of <J >, (â . + ) . Since N is well founded, we may assume it to
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be transitive. Hence N = J for some y.

Claim J , a. £ J—.

~^~"~~ y x T

Proof.

We first note:

(1) a^ e J^, since o i = ct, where t' = ai + 1 CTfc_ (.t^).
Since cf(x) > ai, we have:

(2) sup 6. < 7.
i fci

Let S - sup fij. . Pick p > £ a.t. p s 7, p i s regular in J— (hence in J-g-)
i fci T g

and cf(p) > IO (such p exists by our assumptions on 7 ) . It is clear that

Y s sup p. s 0; hence a. € JT by (1). But dom(a.) = J and J = X.
i fci ! 6 fci fci *

in J^; hence

(3) rng(a^) n P is bounded in p, since 6^ < p and p is regular in J-̂-.

Set: n = ÎJ rng(a^) n P = J (1 P- Then n < P since cf(p) > ia.

Hence y = n < p and J € J—. Hence a. 6 J— by (1).

QED (Claim)

Now set: c. = ir(cr. ), y = IT(Y). Then af : J^* >-v J * and a- a* . = af.

1 1 l Yt^ E o Y J citj 1

Hence (J *>, <a. . > has a well founded limit. Contradiction! QED
Yt titj

This proves Lemma 1. As an immediate corollary we have:

Corollary 2. Let 7 be suitable s.t. cf(7) > ID. Let IT : J •_ J
^ x h1 T

s.t. ir 4" id |̂  J-̂  • Then T is not a cardinal in L.

Proof.

Suppose not. Then ir extends to ir : L —»-_ L. Hence ir j- id [• L and 0

exists by Kunen's lemma. Contradiction! QED

Note. Corollary 2 could also have been proven by an ultrapower con-

struction. (In Ch. 17 of [Dev] the existence of 0 is derived from a

slightly stronger assumption. That proof can be adapted virtually without

change; only the proof that the ultrapower is well founded (p.200) needs
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amendment.)

Lemma 3. Let T a ai2 be a s u i t a b l e ca rd ina l in L s . t . c f ( t ) > <u.

Then the conclusion of § 1 Lemma 1 ho ld s .

Proof.

Let X c x cofinally s.t. X < 7. We wish to construct Y € L s.t. X c Y

and Y < T. Since x is suitable, we may assume w. 1. o. g. That either

T is a successor cardinal in L or there are arbitrarily large y 6 X

s.t. y is regular in L and cf(y) > ID. Define sets Z^ •< JT(i s (»1) by:

ZQ = the smallest Z •< J s.t. X c Z

Z.+1 = the smallest Z •< JT s.t. Z^ U Z* c z

where'Z^ = the set of limit points < T of T n Z^.

zi = U Z. for limit X.
A i<A 1

Set Z = Z . Then

(a) Z < JT

(b) f = uij • X < 7

(e) If y 6 Z is a regular cardinal in L, then either Z n Y is cofinal

in Y or else cf(| Z n Y |) - ^^

Let w : J— ^ ~ *• Z. By (b) we have 7 < 7. By (c) and the above assump-

tions on X we have: 7 is suitable. Since IT is cofinal in T and cf(t), > a,

we have: cf(7) > w. By Lemma 2 it follows that 7 is not a cardinal in L.

Let E" be the least F i 7 s.t. 7 is not a E^ cardinal in JV. Let n be

n — n—1
the least n i 1 s.t. T I S not a Z cardinal in JV. Then Pg- < x « py

Set: p" = p£ > A = A ? ~ 7 = P^ > P = Pjp By § 2 Lemma 1 , we have

cfCp) > (i), since Y" < n s p" for some TI s 7 s.t. n is regular in Jg and

cf(n) > w. Hence p is a limit ordinal and Lemma 1 gives us p i T, I = I

s.t. IT : J-—>• J cofinally. Set: A = U_ ir(I n v). Then <J , A> is
p 1 p v<p

amenable and ~ : <J-, I> — > z <J , A> cofinally.

Claim V6 (P = Pg"1 A A = A ^ " 1 ) .
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If n = 1, then A = tf'= A° and p = p°. Now let n > 1. By § 2 Lemma H i t

suffices to show that 7 is strong. Suppose not. Then there are R, R

s.t.
_ 2 2

(a) R c J— is rud in <J'Q, ̂ ) and R c J is rud in <J , A) by the same

rud definition.

(b) R is well founded but R is not.

Then there are x^ € J s.t. *i+1 R x^(i<«i). Since cfCp") > u> and ~ is

cofinal in p, there is n = irCrT) s.t. {x^ | i < oi} c J . Then R n J is

not well founded. But R n J— is well founded and p' is admissible.

Hence there is 7 € J— s.t. f" : J- —»• p" and xR"y —>• f"(x) < f"(y).

Let f = 7(7). Then f : J >• p and xRy — • f(x) < f(y). Hence R n J

is well founded. Contradiction ! QED (Claim)

Set: y = IT(Y)I P = ~(p) • Let h, h be the canonical 1^ Skolem functions

for <J . A>, <J-, I> resp. Set Y = h"(u x j x {p}). Then Y € L. Since

Y < x and T is a cardinal in L, we have: Y < T. By the definition of

Y, P we have: J- = h"(u x j _ x {p}). But TT"J- C J ; hence

X c Tr»Jp = h"((i) x (TT"J-) x {p}) c Y. QED

§ 4 Vicious sequences

Troughout this section we assume that v < x and ir : J —>-y J cofinally.
V i« J T

ft IT

We wish to examine more closely the circumstances under which M can

fail to be well founded. To this end we define:

Def 6 = 9(ir)— the least limit ordinal 0 i v s.t. v is a cardinal in J.

and M01t is not well founded.

§ 3 Lemma 1 says that 0 does not exist if v is suitable and cf(v) > in.

It is clear that, if 9 does exist, then 0 > v. Moreover 9 < ~, since

otherwise MKir would be well founded, where K is the first regular car-
(K)

dinal > v. But then MK1T = J^* for some K and there i s ~ ^ ~ 3 ir s.t.

ir : J >• J * cofinally, contradicting § 3 Corollary 2.
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Now suppose that 0 ex is t s . Let T = T v ' 0 , M = M 0 ) \ a* = a*( 0 > ' r ) ,

tJ t t i = a t t , , ~ = TT ' . There must be a sequence <t^, x^>(i < to) s . t .

(a) t. € T, t. s t, , t. € u. , Y < 6
l l i + l i t i + 1 ti t i + 1

(b) If J \— (ct is the largest cardinal then 6t > a
o

(c) xi e J * s.t. x. € a* (x.), (hence a* (x. ) e a* (x.)
l Y t i i+l ti^i+i i ti+i 1 + 1 ti i

(i < u)).

We refer to any sequence satisfying (a) - (c) as a vicious sequence

for w. Note that sup y. is a limit ordinal if (t., x.) is vicious,
i ti x 1

since p. > p. . If 0 * v is any limit ordinal s.t. S i sup u. and
fci + l fci i fci

v is a cardinal in B, then M is not well founded. But then sup p. > v,
i i

since otherwise J = Mvlr would not be well founded. Hence 0 = sup u,.
T i t±

for any vicious <t^, x.).

We define a canonical vicious sequence (t., x.) = <t?, xT)(i < u) as

follows:

t± - the <j-least t € T s.t.

there is a vicious sequence <t£ , x̂ .) (k < to) with

<tj, xj> = <tj, x.) for j < i and t[ = t.

Xĵ  = the <j-least x^ 6 J * s.t.

there is a vicious sequence <tA., x^> (k < u) with

<tj, xj> = (ty Xj.> for j s i.

Lemma 1. (J rng(at ) = J_
i«u i

Proof.

Set X = (J X+ . Since X+ -<T J,, and sup p,. = 6, we have X -:r Jo.
iVu *i tx ll vt± i ti 1 9

Let a : J^ •* ~ > X. Then X « 6. We know that t^ € X, since

t• € ut e x .
1 tUl fci+l
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C l a i m a " 1 ( t i ) = t i >

P r o o f .

L e t t j = a " 1 ( t i ) . T h e n X t , = h^ ( n ( w x j f i x { a ~ a ( u t ) } ) = a " 1 " X t .

Hence Y<-i = Y*. & n d ° * n - i = °t- t- ( i s j ) « But t h e n y . , = y. ,
fci * i t i t j t i t j ti *i

o f u i = <J* 4. and i t f o l l o w s e a s i l y t h a t ( t ! , x . ) ( i < ui) i s v i c i o u s .
ti tj Vj x x

But t ! « T t . . Hence t ! = t . b y t h e m i n i m a l c h o i c e o f t . .
X «J X X 1 X

QED (Claim)

But then X = sup u*. = 9 and X. = h. " (u x J x {u. }) = o"1"X<. .
i *i ti fci <Sti ti fci

Hence JQ = J^ = a"lnX = (j (J"1"Xt- = U x t . = x# Q E D

Corollary 2. If v is suitable, then sup 6. = v.± t±

Proof.

v is either a successor cardinal or a limit cardinal in JQ. In the

first case, S. > a by definition, where v succeeds a in JA. But thenti 0

n• = X, n v is transitive, n. < v, since v is regular in J_. Clearlyx u • x y

sup T). = v, since I) X,. = JQ. But 6. s r\. s 7. < 6...; hence sup S. = v.
• X * l/« W X I X X + X . X

Now let v be a limit cardinal in JQ. Let S = sup 6. < \>. By suitability,
0 i ti

there is y > <S s.t. y is regular in JQ, y < v and cf(y) > u. Set

ru = sup(y fl L )• Then n- < Y by the regularity of y. But then n < Y>
X Xr • X

where n = sup n-, since cf(y) > m. Hence n t (J X. = Ĵ ..
i 1 i ti &

Contradiction! QED

Remark Using Corollary 2, it would be easy to show that M~>ir = (J rng

(ofc ) if v is suitable, but we shall not need this.

Def v± = v? ? <5t , yt.» <>t*(ut.)> ̂  < w>-

Then v^ € Jv (i < u). The sequence <v^> gives "complete information"

about JQ, since JQ, <a. > = the limit of <J >, <o\ ^ > and the maps
6 9 ti Y t i V j
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a. .. are recoverable from the v. by: a. . = a where
Vj 1 V j S

s = o^it^ € o^CUj) (i < J)-

We use this to prove:

Lemma 3. Let v be suitable. Let ¥ : J— — • J s.t.

{vi | i < w} c rng(7). Then 8(ir?) exists (hence <t™, x?"> exists) and

xF= X i (i < a)).

Proof.

5. ,. € rng(ir) since a,. . is canonically recoverable from the v. . Set:
titj titj 1

hi - ^ V j 5 ' ? i = r l ( V * J-'- ?"1(6ti)-

Then F. . : J— —>•_ J— (i s j < u) is a directed system s.t. o". N JT =
ij Yi £0 Yj lj S±

id hJ-j-_- Let U, <oi> be the limit of <J- >, (o'y). We may assume

w. 1. o. g. that a. f J,- = id f J T . But sup J. = 7, since sup 6. = v
1 *i i i ^̂  i li

and hence J— c U. Define IT : U — > ^ JQ by:
o

- ^ 4
°i at
l ti

It is easily seen that IT z> ¥. U is well founded, since n imbeds it into

J., and satisfies "I am a Ja". Hence we may assume U = J^ for some "Q.

Set t". = ir"1(t.) = o. .- 7"1 a"1 (t. )• Since sup y,_ = 0 and y. =
l i i+l t i + 1 l i ti ti

if(u-r ), it follows that if«̂  is cofinal in 0. Hence ir : J^ —*-j. J0

cofinally. Clearly, 'Q = sup \xT .
i zi

(1) If t 6 T = T5 v, then ^(o^ = o-9(t) (hence *(Yt) = YJ( t ) and

*(ott.) = ^(t)^(t') f o r t, f € T, t * f ) .
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Proof of ( 1 ) .

a = at, u = a (iij.), Y = Yt a r e uniquely characterized by:

(a) Jy = hY"(u) x J6 x {u})

(c) a f Jj = id |̂  J6 , a(u) = ut< QED (1)
t t

(2) ?! = YF., Oi = °~. (hence c.j = a ^ ) .

Proof of (2)

IT(YF ) = Y*- = »(YJ) by (1); hence yT = 7,-• Set: u = w"1 a^Cu,. ).t± t± l t£ l t± t£

Then TT CJ. (U) = a,. ir(u) = u. and ir a-r (u) = if(arr )TT(U) = a. w(u) = u,.i ti t± tt ti t± t±

hy (1). Hence F. (u) = a-r (u) = u-r . But then a\ = or- = the uniquei tt tt l t±

a : J— —>-T L s.t. a f1 JT = id f JT and a(u) = u-z- . QED (2)
Yi Lo *i fti ri

(3) § = e(ir¥).

Proof.

Let ip = 9(ir¥).

(0 i p̂ ) a^jr'"' = ir¥(aT f ) = i(o,. ,. ) = a* t by (2). But thentitj titj. tjtj tjtj

a* (X. A 1 ) € o* (x.) in M®'1'7, where c* c a*(^.«') and M®'" is not
t i + 1 t± t± t±

well founded.

Cp i "§) suppose not. Let <?^, y^> be vicious for ir¥ and set p = itCp),

s. = ir(¥. )• By the above argument, <s., y.) is vicious for ir.

Hence S(ir) = sup y £ p < 6. Contradiction ! QED (3)
i si

(«) < V x±> = <tf, xf).
Proof.

(t^, x^) is vicious for w¥ by the above argument. But (1), (2) and the
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minimal choice of < t i , x i > , (t^, x ^ must be chosen minimally.

QED

Note We could have carried the proof of Lemma 2 a bit further to show:

(a) Me ' ¥ = J 0 and 7 ( e ) = ?

(b) There i s i : M 5 ' " «-=-> M0'* s . t . ^ ) -- i W.

Thus: _

"irlr .—•—̂  i

J S — = » J9" M ^ > ¥ 7 * M9>1T

J '" I ]
j _ * J v v J T

§ 5 The hi cofinal case

Let x 2 u2 be an u cofinal suitable cardinal in L. Let X c T be cofinal

in x s.t. X < 7. As before, we suppose w. 1. o. g. that, if T is not

a successor cardinal in L, there are arbitrarily large y € X s.t. y is

regular in L and cf(y) > w. We wish to show that there is Y € L s.t.

X c Y and f < t. Obviously, it suffices to prove this in a generic

extension of the universe. Since X < 7, T * oa2 and T is singular (in V ) ,

there is a regular K i a>2 s.t. X < K < T. But we may then assume that

7 = K, since if this is not true already, we can make it true by gener-

ically collapsing T to K. NOW let k map K onto JT< For y < K set: Y =

the smallest Y -<_ JT s.t. X U Y U k" y c Y.
ID
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Set: r = {a < K | o = Y o n ic). Then r is cub in K. For a, B € I", a s 6

set: » : JT •*-=-»• Y_; » a B = IT"1 ir_. Then JT -SB* JT -§-». j and JT,

<•*_> is the limit of the directed system <JT >, <*„«>• Clearly,

ir_ \- J_ = id f Ja and ir_(a) = K. Also, 7_ < K for o € r and K is regular.

Hence for each o € r there is B 6 r s.t. x < B and Y c Y o , where Y is

the set of limit points < T of T n Ya. Let rQ be the set of a € r s.t.

cf(a) > ID, a is a limit point of r, and T . < a, Y* c Y for all B € rn a.
P P 01

Then rQ is stationary in K. It follows by the argument of § 3 Lemma 3

that T O is suitable for o € rQ. Clearly cf(ta) = ai, since i n !_ is

cofinal in x.

Lemma 1. {a € r | 6(u ) exists} is not stationary in K.

Proof.

Suppose not. For a € rQ s.t. 9(fa) exists set: eo = 9(ira), <t?, x™> =

if ir ir
<t_ , xi°>, v? = v ^ . Since cf(a) > ui, there is B € r n a s.t.

{v? | i < u} c rng(TTga). Let f(a) be the least such B. Then f is re-

gressive and hence there is BQ s.t. A = {a | f(a)= BQ) is stationary.

But then. {u!_ | i < u} c rng(ira) for a, B € A, a s B and hence x? = x?

by § 4 Lemma 3. Set x^ = x? (o € A). Since cf(<) > to and JT = U rng(ir ),
a€A

there is a € A s.t. {x_ | i < u} c rng(ira). Then ata '"a (xi+l^eat? "o^i^

(i < a) and JQ is not well founded. Contradiction ! QED
a

Lemma 2. If T is a limit cardinal in L, then the conclusion of § 1

Lemma 1 holds.

Proof.

Pick a 6 rQ s.t. ©(fa) does not exist. Set 7 = Ta, ir = ira .

Then T is not a cardinal in L, since otherwise MK>ir would be well

founded. But then M K > T = J * for some ic and iF : J —*-r J * eofinally,
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where IT = ir r> IT, violating § 3 Lemma 2. As in § 3 Lemma 3 se t :

F = the least F > 7 s . t . 7 i s not a t , cardinal in J-*-; n = the least
U) p

n a 1 s.t. T is not a £ n cardinal in J-g-, p" = p-g-" , A = A^~ , 7 - P-&.

Then p j t > y, By suitability, there must then b e n s.t. ~p > n > T»

n is regular in J— and cf(n) > «. Hence cf(p~) > w. We can then finish

the proof exactly as in § 3 Lemma 3. QED

Lemma 3. If T is a successor cardinal in L, then the conclusion of § 1

Lemma 1 holds.

Proof.

Set: ri = {a € TQ | O(ira) does not exist}. Then T^ is stationary.

As above, xa is not a cardinal in L for a £ T ̂ . Set: Ba = the least

B i ta s.t. Ta is not a E^ cardinal in Jg; n = na = the least n a 1

s.t. Ta is not a Zn cardinal in Jg; pa = p""1 , Aa = A?"1, pa= Pg

a a a
ya - pn . Then Pa * T a > Ya and T a is a successor cardinal, hence

a

regular, in J . Hence of(oip ) = cf(x ) = (o.

Let f" (i < u) be as in § 2 Lemma 2. Since cf(o) > oi for a € I"a, there

is 6 6 r n a s.t. iya} U (f™ I i < u) c rng(itea). Set g = <0.TgQ (YO)>

where g is the least such ordinal. Then g is regressive. Hence there are

p1, Y' s.t. 4 = {a t Tj | g(a) = <Bf,Y'>) is stationary. But for a,6 6 A,

a *. 3 we then have no = ng, ir(Ya) = Yg and there is a unique ~ a g = irag

s-fc- 7aB = < J P a ' Aa > """^i^Pg' A S > a n d ~<xB(pa) = PB'

By the uniqueness of the J? . it follows that if o, t, y £ 4, a s M r,

then TFH 7 . = 7 . Let M, <? I a € A> be the direct limit of
PT dp Cty a

«Jp ,AO>| a € A>, <»aS | o, B e A and a * B>.

M is well founded, since if x.+1 € x. in M (i < ID) , there must be a 6 A

s.t. {x± | i < w} c rng(TTa). But then ~ a (xi+1) e Jra (xjHi < » ) .

Contradiction ! M satisfies "I am a Ja" and hence we may assume:

M = <J , A> for some p. Then p a x and <Jpl A> is amenable. Fix a 6 A
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and set: 7 = T a , ff = B a , ? = Pa, "R = A a, 7 = Y a , IT = ira, ~ = ~a. It is

enough to show that p = Pg" , A = Ag f o r some 6, for we can then

finish the proof exactly as in § 3 Lemma 3. But for this, it suffices

to show that the map if is strong, if will be strong, however, if a is

a chosen sufficiently large. To see this, let R_(n < <o) enumerate the

relations rud in <J , A> which are not well founded. Let Tl have the

same rud definition in (Jj, A"). For n < oi choose <x* | i < u>) s.t.

x^ + 1 Rn x^ (i < ID). Set Y = {x^ | i, n < <o}. Then Y c rng(ir) for suffi-

ciently large a. But then ir~ (xj| ) Rn ir~ (x^) and Rn is not well found-

ed. Now let R be well founded and rud in <Jjr» J)> Let R be rud in

<J , A> by the same rud definition. Then R $ R"n and hence R £ R n (n<oi).

Hence R is well founded. QED
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THREE THEOREMS ON RECURSIVE ENUMERATION.
I. DECOMPOSITION. II. MAXIMAL SET. III. ENUMERATION

WITHOUT DUPLICATION

RICHARD M. FRIEDBERG

In this paper we shall prove three theorems about recursively enumerable
sets. The first two answer questions posed by Myhill [1].

The three proofs are independent and can be presented in any order.
Certain notations will be common to all three. We shall denote by "Re"
the set enumerated by the procedure of which e is the Godel number. In
describing the construction for each proof, we shall suppose that a clerk
is carrying out the simultaneous enumeration of Ro, Rv Rit . . . . in such
a way that at each step only a finite number of sets have begun to be
enumerated and only a finite number of the members of any set have been
listed. (One plan the clerk can follow is to turn his attention at Step a to the
enumeration of Rt where e-\-\ is the number of prime factors of a. Then
each Re receives his attention infinitely often.) We shall denote by "Rea"
the set of numbers which, at or before Step a, the clerk has listed as mem-
bers of Re. Obviously, all the Rea are finite sets, recursive uniformly in
e and a. For any a we can determine effectively the highest e for which
R,a is not empty, and for any a, e we can effectively find the highest mem-
ber of Rea, just by scanning what the clerk has done by Step a. Additional
notations will be introduced in the proofs to which they pertain.

THEOREM 1. Every nonrecursive recursively enumerable set is the union
of two disjoint nonrecursive recursively enumerable sets.

PROOF. Let us be given the Godel number u of a recursively enumerable
set Ru. We shall show how to enumerate two disjoint sets P and Q whose
union is Ru. Then we shall prove that neither P nor Q is recursive if Ru

is not recursive.
The enumeration of P and Q will be carried out pari passu with the

clerk's enumeration of the Re's. "Pa" or "Qa" will denote the set of numbers
which, at or before Step a, have been made members of P or Q, respectively.
A number e will be called satisfied at Step a if Rea intersects both Pa and
Qa. (lie ever is satisfied, Re cannot be the complement of either P or Q.)

Every time the clerk lists a new member of Ru, we shall put that number
either into P or into Q. Suppose the number is n, and it is listed at Step a;
that is, n e Rj'—R^-1. If every e such that n c Rea is already satisfied,
then we put n into P. Otherwise, we attack the lowest unsatisfied e such that
n e Rta. If Re", for the e under attack, intersects neither P"-1 nor Qa~x,

Received June 6, 1958.
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then we put n into P, so that Rea intersects P". Otherwise we put n into
P or Q according as R/riP"-1 or RfnQ"-1 is empty, so that e now becomes
satisfied.

Now, neither P nor Q is recursive if Ru is not recursive. For if either one
of P or Q is recursive, its complement is some recursively enumerable set Rc.
This implies that

(1) Re includes the complement of Ru, and

(2) c never becomes satisfied.

Note that no number is attacked more than twice, for after two attacks it
is satisfied, and only unsatisfied numbers are attacked. Therefore there is a
step a0 in our construction after which no number ^ c is ever attacked.
Then after Step a0, the clerk never lists a member of Ru that has previously
been listed as a member of Re. For if he did, c being unsatisfied by (2), we
should attack either c or some e < c.

This argument gives us a way of enumerating the complement of Ru.
Simply write down every number that the clerk lists as a member of Rei

provided that it was not previously listed as a member of Ru and that it
still has not been listed as a member of Ru by Step a0. The resulting set
contains all the non-members of Ru, by (1); and it contains no members
of Ru, by the argument of the preceding paragraph. Since its complement
is recursively enumerable, Ru is recursive. This proves the theorem.

THEOREM 2. There exists a recursively enumerable set M (a "maximal"
set) such that

(3) M is infinite, and

(4) there is no recursively enumerable set R such that RnM and Rc\M
are both infinite.

PROOF. AS we construct M, we shall use the notation "Ma", to denote
the set of numbers which we have put into M at or before Step a. At Step a,
for any particular e, n, we say that n inhabits the »-th e-state if n j. M"
and i' = 2 n t R # / , e ' S e 2'~e' where the summation is made over all « ' | e
such that n e Re>". The i-th e-state is lower than the ;-th if * < /. It is evi-
dent that at the beginning of the construction every number inhabits the
0-th e-state. As the construction proceeds, a number n may sometimes
move from a lower to a higher, but never from a higher to a lower e-state.
If n is eventually put into M, n ceases then to inhabit any e-state. If
n e M, n will always inhabit some e-state, and since there are only 2e+1

c-states, n must eventually inhabit some e-state which it continues to
inhabit forever, n is then called a resident of that e-state. An e-state is
well-resided if it has an infinite number of residents. An e-state is well-
habited if each of an infinite set of numbers inhabits it at one step or another.
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M is constructed as follows. When, at Step a, the clerk lists any number n,
not in M"-1, as a new member of any set Re<i, we examine every e ^ e0

such that n e Re". There are only finitely many such e. For each e examined,
if more than e numbers < n inhabit the e-state which is one lower than
that of n, we put all but the e lowest of those numbers into M.

An example may prevent misunderstanding. Suppose the clerk lists 21
as a new member of R2- Suppose that 21 has previously been listed as a
member of Ro, of R3, and of R6, but not of M, nor of any other Re. Then
21 is now in the 1-st O-state, in the 2-nd 1-state, in the 5-th 2-state, in the
11-th 3-state, in the 22-nd 4-state, and in the 45-th 5-state. The values
of e to be examined are 2, 3, and 5. Suppose that, of the numbers less than
21, only 6 is in the 4-th 2-state; 1,9, 11, and 13 are in the 10-th 3-state;
and 4, 8, 10, 16, 18, 19, and 20 are in the 44-th 5-state. Then 13, 19, and 20
are the numbers we must put into M.

M shall contain only those numbers which are put into it according to
the foregoing prescription. To show that M is maximal, we prove two
lemmas.

LEMMA 1. For each c, the highest well-habited estate has at least c resi-
dents.

PROOF. The 0-th c-state is well-habited. Hence there exists a highest
well-habited c-state, say the im-th. Then only finitely many numbers are
fated ever to inhabit a c-state higher than the im-th. Let a0 be a step in the
construction at which each of these numbers has either entered the c-state
in which it is to reside or been put into M, so that after Step a0 no number
enters a c-state higher than the im-th. Since the im-th. c-state is well-habited
and only a finite number of its inhabitants can have been put into M by
Step a0, there are infinitely many numbers which, at some step subsequent
to a0, will be found inhabiting the im-th c-state. Let n0 be one of the c lowest
of these numbers. By hypothesis, n0 will never leave the im-th c-state for
a higher one. Therefore n0 is a resident of the im-th c-state, unless n0 e M.
But the act of putting n0 into M requires that, at some step a > a0, a number
n > n0 is listed as a member of some Reo, and for some e 2; e0 there are at
least e numbers < n0 in the same e-state as n0, and n is then in the next
higher e-state. This is impossible. For if e 2> c, all numbers in the same
e-state as n0 are also in the same c-state, and not more than c— 1 of these
are less than nQ. And if e < c, then e0 < c, so that n, by being newly listed
in R^, has entered a new c-state, and this must be higher than the im-th
c-state if n is in a higher e-state than n0. This, by hypothesis, cannot occur
after Step a0. Therefore n0 cannot be put into M and must be a resident
of the im-th c-state. Since n0 could have been any of c numbers, the im-th
c-state has at least c residents.

LEMMA 2. For any c, not more than one c-state is well-resided.
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PROOF. Let the highest well-habited c-state be the tm-th. Then higher
c-states, not being well-habited, cannot be well-resided. On the other hand,
if i < im, the t'-th c-state has no more than c residents. For supposing it
has more, let n0 be the (c+l)-th lowest resident of the i-th c-state. Let
Step a0 be a step at which this c-state is already inhabited by its c-f 1
lowest residents. Only finitely many numbers, at Step a0, are in c-states
higher than the i-th. But infinitely many numbers are fated eventually
to inhabit the im-th c-state. Therefore infinitely many numbers must,
after Step a0, pass from a c-state g the *-th to one > the i-th. Let the first
number > «0 that does so be called n. n can make this transition only by
being listed, at some step a, as a new member of some Reo with e0 ^ c.
n is not in M"-1, or it could not be in any c-state. Consider the lowest
e such that Rea contains n but not nQ. This e must exist and be <; c, since
n is now in a higher c-state than n0. For the same reason, no Re'a, where
e' < e, contains n0 but not n. Therefore the e-state of n0 is one lower than
that of n. Moreover, since by hypothesis n was not in a c-state higher than
that of n0 before n was listed as a member of R^, e0 must be ^ e. Finally,
the c lowest residents of the i-th c-state are all lower than n0 and are all
in the same c-state as n0, since e 5g c. Therefore all the conditions are satis-
fied for putting n0 into M. This contradicts the hypothesis that n0 is a
resident of the i-th c-state. Therefore the i-th c-state does not, in fact,
have more than c residents and is consequently not well-resided. This
proves the lemma.

Since every resident is a member of M, Lemma 1 implies that M has at
least c members, for arbitrary c. Hence M is infinite and (3) is satisfied.
For any Re, all the members of RenM are residents of odd-numbered e-
states, and all the members of ReC\M are residents of even-numbered in-
states. Therefore Lemma 2 implies (4). The theorem is proved.1

THEOREM 3. There exists a sequence of So, Sv S2, . . . of uniformly re-
cursively enumerable sets in which every recursively enumerable set occurs
once and, only once.

PROOF. We shall give a procedure for listing simultaneously the mem-
bers of So, Slt S2, . . . just as the clerk is listing the members of Ro, i?1(

R2, • • •, Sxa shall be the set of numbers listed in Sx at or before Step a.
During the construction we shall establish certain conceptual relationships

between values of e and values of x. Under certain circumstances we shall

1 It can easily be proved that any maximal set is hyper-hyper-simple. Hence our
construction of M answers Post's question ([2], p. 313) as to the existence of such
sets. Namely, assume that M is not hyper-hyper-simple. Then, by definition, there
exists an infinite recursively enumerable set {ax, a2, . . .} such that the sets Ra ,
ROt, . . . are all finite and mutually exclusive, and such that each contains some
member of M. Let S = Ra\jRaURay.... Then SUM and SUM are both infinite,
which is impossible. Q.E.D.
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call a certain * the follower of a certain e. This means that we intend, if
convenient, to make S3 identical to Re. At times we shall release an x;
that is, we shall make it cease to be the follower of some e. This x will there-
after be free, and it will never again be the follower of any e. However, e,
having lost its follower, may acquire a new one later. If some x, having
been made a follower of some e, remains its follower forever, never being
freed, then x will be called a loyal follower of e. If x is eventually freed,
it will be called a disloyal follower. At any step the values of x which have
not yet been followers of any e will be called unused. 0 shall always be un-
used, and So shall be the empty set.

Each step a shall be dedicated to the pursuit of a certain e, according to
some plan which causes every e to be pursued an infinite number of times
during the construction. (For example, we may use the plan suggested above
for the clerk, in which e is chosen so that e+1 is the number of prime
factors of a.)

At any step a, let ea be the value of e which is being pursued. One of
three cases arises.

CASE 1: ea has a follower, x, and there is some e < ea such that
ReT\L(x) is identical to ReJT\L(x), where L(x) is the set of all integers
less than x.

Then we release x.
CASE 2: Case 1 does not hold, and there exists an x such that Re^a is

identical to S,,0"1. Furthermore, either this x is the follower of some e ^ ea,
or x = 0, or else x is free; if x is free, either x ^ ea or x has previously
been displaced by ea. (See Case 3, Act C.)

Then we do nothing.
CASE 3: neither Case 1 nor Case 2 holds.
Then we perform four acts, some of which may be vacuous.
A. If ea has no follower, we make the lowest unused x, other than 0,

the follower of ea.
B. We put into Sx, where x is the follower of ea, all the members of

Re,a. (This makes Sxa identical to Reaa, for there is no way in which Sx

could previously have acquired any members that were not yet in Rtm,
either while x was unused or while x was the follower of ea.)

C. If, for some x' ^ x, S^"1 is identical to Re,a, then we put into Sx-
the lowest number not yet listed as a member of any R or S. This makes
Sx'a different from Sx" and from all the other 5's. When we perform this
act, we say that x' is being displaced by ea.

D. If the x' of Act C is the follower of some e', we release it.

LEMMA 3. Let e be the smallest Godel number of R-; i.e., let R- differ
from Re for every e < e. Then there exists an x such that Sx is identical to R-.

PROOF, e cannot have an infinite number of disloyal followers. For
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eventually, for each e < e, one of the two sets Rt and i?j must acquire a
member n never to be acquired by the other. Thereafter, Rea and i?-a can
never be identical, and Rear\L(x) cannot be identical to R?r\L{x) for
any x > n. When such an n has appeared for every e < e, e can no longer
lose any follower through Act D with ea < e, and if Case 1 continues to
occur with ea = e, e must eventually be found with a follower x greater
than all the n's, so that Case 1 is impossible. Subsequently, any follower
that e has will be loyal.

Let a0 be a step after which e is destined never to lose a follower. Suppose
Case 3 occurs infinitely often with ea = e. Then the first time it occurs
after Step a0, e acquires a follower through Act A, or else it already has one.
In either case, this follower will be loyal. Call it x. Sx will be identical to
R-t, for no number will be made a member of Sx unless the clerk has already
listed it in /?-, and every number that the clerk lists in R- will be put into
S3 at the next occurrence of Case 3 with ea = e.

Suppose, on the other hand, that Case 3 occurs only finitely often with
ea = e. Since Case 1 does not arise after Step a0, Case 2 must occur infinitely
often with ea = e. Each time Case 2 occurs, there must be an x such that
S^-1 is identical to R-a. This x must either be a follower of some e <• e,
or be itself <; e, or have been displaced by e at a previous step. We shall
show that x can take only a finite number of different values in occurrences
of Case 2 with ea = e.

If e < e, eventually either R-e has acquired a member that will never be
acquired by Re, or Re has acquired a member that will never be
acquired by 2?-. In the first case, Sxa~x can never subsequently be identical
to R-a when x is a follower of e, for S^1 will have no members not in
R,"*1. In the second case, if e subsequently acquires a new follower x, Sx

will immediately acquire all the members listed already in Re, and S^*1

cannot thereafter be identical to R-a. In either case, only a finite number
of different followers of e can serve as the x in Case 2 with ea = e.

If e = e, e has only a finite number of different followers during the con-
struction, as we have already shown.

Only a finite number of values of % are ^ e.
Since, by hypothesis, Case 3 arises only finitely often with ea = e, only

a finite number of x's are ever displaced by e.
Therefore only a finite number of different numbers can serve as the x

in Case 2 with ea = e. But Case 2 arises infinitely often. Therefore there is a
single x such that Sxa~l is identical to Rea on an infinite number of occasions.
Then Sx must be identical to i?-, for otherwise one of the two sets would
eventually acquire a member never to be acquired by the other, and then
Sx"~1 could never again be identical to R-a. This proves Lemma 3.

COROLLARY TO LEMMA 3. 0 is the only value of x that remains forever
unused.
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For whenever a new x becomes used, the lowest unused x > 0 is selected.
Therefore, if any x0 > 0 were forever unused, then all x ^ x0 would remain
forever unused. But if x is forever unused, then Sx is empty. Thus any Re

that differed from Sx for all x < xQ would differ from all Sx, contrary to
Lemma 3.

LEMMA 4. If x ^ x', then Sx and Sx' are not the same finite set.

PROOF. If 5,. is finite, then Sx" is identical to Sx for sufficiently high a.
Similarly for Sx', Sx'a. But Sxa is never identical to Sx-a if x ^ x', except
while both x and x' are unused. The reader may verify this by examining
Case 3; it is contrived so that all the Sxa for different used x's are different,
provided that this was true of a—I. By the corollary to Lemma 3, x and
x' cannot both remain unused indefinitely. Therefore, for all sufficiently
high a, Sxa differs from Sx'a, and hence 5X differs from Sx'.

LEMMA 5. If x ^ x', then Sx and Sx' are not the same infinite set.

PROOF. If x = 0, Sx is empty, not infinite. If x > 0, then x is eventually
a follower of some e, by the corollary to Lemma 3. If x is disloyal, then after
x is released Sx can acquire a new member only when x is displaced, x can
be displaced only once by each e < x and never by any e 2? x. Therefore
Sx is finite if x is disloyal. Hence, if Sa is infinite, x must be a loyal follower
of some e. Similarly, if Sx> is infinite, x' is a loyal follower of some e'. A
single e cannot have more than one loyal follower, since it cannot have
more than one follower at a time. Hence, if x ^ x', then e ^ e'. We may
suppose arbitrarily that e < e'. Case 3 must arise infinitely often with
ea = e\ otherwise Sx could not be infinite. Therefore every number listed
in Re is subsequently listed in Sx, and so Sx is identical to Re. Similarly,
Sx- is identical to Re-. Therefore, if Sx and Sx' are identical, Re and Re>
must be identical. But then ReanL(x') must be identical to Re-aC\L{x') for
all sufficiently high a. Once this is true, Case 1 will arise the next time
that ea = e', and x' will be released. This contradicts the assumption that
x' is a loyal follower of e'. Therefore Sx and Sx- cannot be the same infinite
set.

Every recursively enumerable set R occurs in the sequence So, Sv 52, . . . .
Simply let e be the lowest e for which Re is identical to R, and apply Lemma 3.
But no set occurs more than once in the sequence So, Sj, . . ., by Lemmas
4 and 5. The theorem is proved.

COROLLARY TO THEOREM 3. There exists a sequence of uniformly partial
recursive functions which contains every partial recursive function once and
only once.

PROOF. Instead of letting the R's be all recursively enumerable sets,
let them be all partial recursive functions, expressed as sets of ordered
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pairs. Construct the 5's as in Theorem 3, except that in Act C of Case 3
the new member of Sx' must be an ordered pair which differs in its argu-
ment member from any ordered pair previously listed in any R or S. The S's
will be the desired sequence of partial recursive functions expressed as sets
of ordered pairs.
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Introduction

When we examine the classical set-theoretic foundations of mathe-
matics, we see that the only sets that play a role are sets of restricted
type; at the risk of understatement, only sets of rank < co + co. Further
examination reveals four fundamental principles about sets used: the
existence of an infinite set; the existence of the power set of any set;
every property determines a subset of any set; and the axiom of choice.
The theory based on these four principles is known as Zermelo set
theory together with the axiom of choice, and is written Z in this paper.
Then Z adequately formalizes mathematical practice (excluding modern
set theory) in an elegant and straightforward way.

In modern set theory, however, the object of study is the notion (or
notions) of set of transfinite rank. Whether or not there is a single
meaningful notion of set of transfinite type, rather than, instead only a
multitute of notions of set obtained by prescribing a definite "number"
of iterations of the power set operation, remains a controversial issue.
In any case, what is completely clear is that no notion of: set of arbi-
trary transfinite type, or even notions of set obtained by some definite
iteration (beyond a> + to) of the power set operation, is relevant, as of
now, to mathematical practice, or even understood by mathematicians.
We refer to this characteristic aspect of modern set theory, the consider-
ation of sets of transfinite rank, or of sets obtained by more than finite-

* This research was partially supported by NSF GP 13335.
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ly many iterations of the power set operation applied to the hereditarily
finite sets, as higher set theory.

What is the significance of this sociology for us? It suggests to us con-
sideration of the following conjecture:

*) every sentence of mathematical discourse (excluding, of course,
higher set theory) which can be decided using fundamental princi-
ples about sets of transfinite rank (like: Z consists of fundamental
principles about sets of rank < CJ + co ), can already be decided in
mathematical practice.

It is beyond the scope of this paper to thoroughly discuss whether
certain formal systems do or do not codify fundamental principles
about sets of transfinite rank, but certain cases are clear cut. (It is, of
course, the case that no one today knows how to provide a theoretical
description of what is a fundamental principle and what is not; a gen-
eral theory of notions and principles is nowhere in sight). That Z codi-
fies fundamental principles about sets of transfinite rank is clear, even
though it was intended to codify only fundamental principles about
sets of rank < co + w. That the theory Z(J2) = Z together with "there is
a rank function defined on every countable well-ordering" does, is
fairly clear cut. That, say, Zermelo-Fraenkel set theory together with
the existence of a measurable cardinal, or, say, Zermelo-Fraenkel to-
gether with the existence of nonconstructible sets of natural numbers
does not is also fairly clear cut. There is nothing in the phrase "set of
transfinite rank" which even remotely suggests that all sets are con-
structible or that all cardinals are nonmeasurable.

With these rough guidelines in mind, the reader can appreciate the
following important open question, which has turned out to be con-
nected with attempts at settling *):

**) are there fundamental principles about sets of transfinite rank
which refute or prove the axiom of constructibility?

No answer to **) is in sight.

Perhaps some more rough guidelines may be useful in helping the
reader appreciate *). Clearly Con(Z) can be proved in Z(J2) but not in
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Z itself. Does this constitute a refutation of *)? No, because Con(Z) is
really about (formal systems of) set theory of rank < a> + co, and to
understand what a set of rank < u> + co is, one has to go beyond use of
sets of rank < co + co , and so, go beyond (our model of) mathematical
practice. Thus Con(Z) is considered outisde of mathematical discourse.

The main obstacle in obtaining a genuine negative solution to *) is
that the only sentences of mathematical discouse which are known to
be independent of Z at the same time which have proofs in higher set
theory (even using, say, the existence of a measurable cardinal) are also
known to imply, within Z, the existence of nonconstructible sets; so, if
one wishes to solve *) using such sentences, then one will also have to
solve **).

Our approach avoids this nonconstructible trouble by producing a
sentence of mathematical discouse about Borel sets which is Fig (hence
provably relativizes to constructible sets) and giving a proof of indepen-
dence of this II3 sentence from Z and conjecturing that this II3 sentence
is provable within Z(S2). That the II3 sentence is provable within Z(£2)
seems like a reasonable conjecture because of
1) examination of the proofs of independence given here;
2) the II3 sentence is known to be provable using the existence of Ram-

sey cardinals (D.Martin [4]);
3) this proof of Martin uses partition properties of cardinals directly,

and the cardinal of V(Q,) is the first cardinal satisfying certain im-
portant weaker partition properties.

The n^ sentence under investigation here is Borel determinateness,
written here as (Va)(Z)(a)), (see Definitions 1.4 and 1.5). Our indepen-
dence result from Z is given in the Corollary to Theorem 1.6. Actually,
the independence proofs work equally well for the following conse-
quence of Borel determinateness, which reads like (but by our indepen-
dence proof is not) a standard Theorem in the classical theory of the
Borel hierarchy: to every Borel set Y C 2W X 2" there is a continuous
function F which either uniformizes Y or uniformizes [ (/, g):
(g,f)<£ Y] ; see Section 4 for elaboration.

The paper is organized as follows. In Section 1 we proceed directly
to the many independence result which is Theorem 1.6 (and Corollary),
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making use of detailed information about the model, Lw+W, (see Defi-
nition 1.16) of Z used in the independence proof. Section 2 is entirely
devoted to an outline of a proof of this detailed information. Thus Sec-
tion 1 comprises the body of the independence proof, and Section 2
comprises the routine detailed machinery needed. Section 3 considers
various refinements, including the independence from 2nd-order
arithmetic of determinateness for Gho Sa sets; this is to be compared
with M.Davis [2], which gives a mathematical practice type proof of
determinateness for GSa sets (easily formalizable in 2nd-order arith-
metic). Neither our independence methods nor the methods of [2] (or
any other mathematical practice methods) seem to apply to GSa6.

Apparently, determinateness was first introduced by Gale and
Stewart in [3]. Determinateness hi various forms (for analytic sets,
projective sets, ordinal definable sets, all sets, to mention some divi-
sions) have been under intensive investigation in recent years. For a
recent survey, see A.Mathias [5].
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Section 1

The purpose of this Section is to prove Theorem 1.6 and its Corol-
lary.

We let w be [ 0, 1, 2,. . . ] , 2^ be the set of all functions from w into
[0, 1 ] , and 12 be the first uncountable ordinal.

The Borel subsets of 2 " are the least a-algebra containing all open
and closed subsets of 2 " . It is well known that the Borel subsets of 2 "
are just those subsets which lie in some Ba, a < £2, as defined below.
But first we define the open subsets of 2 " .

Definition 1.1. We say Y c 2W is open if and only if (VJC)(JC e y - >
-* (3n<Zoj)(\/ye 2a))((Vm< n){y(jri) = x(m)) -> y e Y)). We say
Y c 2" is closed if and only if 2W - Y is open.

Definition 1.2. Define Bx = [ Y c 2W : Y is open or Y is closed ] ,
Ba+i = [Y c 2U : Y is the intersection of some countable (or finite)
subset of Ba or Y is the union of some countable subset of Ba ],
Bx= U Ba, where a, X < S2, X is a limit ordinal.

We can associate in informal terms, to each 7 c 2 " , a discrete two-
person game of infinite duration. The players are designated I, II. The
players alternately produce (or play) either 0 or 1, starting with I. If
the resulting element of 2 " is in Y then I is considered the winner; if
not, then II is. The question arises as to whether there is a perfect
strategy for winning available to one of the two players.

We now wish to give the well known formal analysis of the above.

Definition 1.3. A 0, \-sequence is a function s whose domain is an
initial segment (possibly empty) of a> and whose range is a subset of
[ 0, 1 ] . We write In (s) to be such that Dom (s) = [ i: i < In (s) ] . If s, t
are 0, 1-sequences then we say t extends 5 if and only if In(5) < \n{t)
and ( V / < ln(,s))(s(0 = t(i)). If s is a 0, l-sequence a n d / e 2 " t hen /
extends s means that (V 00' < lnO?) -• s(i) = /(/))•

Definition 1.4. Let Y C 2W. We write S(Y, I , / ) if and only if
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1) / i s a function from the 0,1-sequences into [0, 1 ] ,
2) (Vge2u)(Xnfe((n - l)/2) if n is odd;/fe r [/: r < «/2] ) if /i is

even) e 7).
We write S{Y, II, g) if and only if
1) g is a function from the 0,1-sequences into [ 0,1 ]
2) (V/G 2w)(X«(/(rc/2) if n is even; g(/ r [i: i < (n + l)/2]) if n is

o d d ) e 2 u ; - r ) .
We write D(Y) if and only if (3 f)(S(Y, I, / ) v S(Y, II, /)).

Thus S(Y, I,/) expresses that/is a winning strategy for I in the game
associated with Y; S(Y, 11,/) for II. And D{Y) expresses that either I or
II has a winning strategy.

In this paper we are only concerned with D(Y) for Borel Y.

Definition 1.5. Let 1 < a < £2. Then D(a) means (V Y e Ba)(D(Y)).

We use some notions from ordinary recursion theory.

Definition 1.6. F o r / e 2" we write yf£ for the eth partial function of
one argument on co that is partial recursive in / , according to some cus-
tomary enumeration. We write g<Tf for (3 e)(g = <pf). We write g =Tf
f o r g < r / & f <Tg, and we write f<Tg for fi=Tg & f<Tg.

Thusg <T/is read "g is partial recursive in/". The T stands for
Turing.

Definition 1.7. We write/(/) for the Turing jump o f / e 2" . Define
/«+!(/) = /(/«(/)), 0< n. Define/"(/) = Xm{(Ja(J))(b) if 0 < a,
0 < 6 and m = 2"3b; 0 otherwise).

Definition 1.8. A Turing set is a y C 2W such that (V/)(Vg)((/£ 7 &
/ = r f) -*• S G y). A Turing cone is a Y C 2W such that ( 3 / G 2W)( Vf)
( * e y = / < r * ) .

Unless we specify otherwise, whenever we quantify over functions we
are quantifying only over 2".
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We now present a theorem of D.Martin modified and specialized to
suit our purposes.

Theorem 1.1. Suppose (Va)(Z)(a)). Then for all a, every Turing set
Y e Ba either contains or is disjoint from a Turing cone.

Proof. TakeXas [/: X«(/(2«))e Y & Xn(/(2« + l ) ) < r X/I(/(2/I))] -
If S(X, I, g), then [ a e 2" : h <T a) c Y. If S(X, II, g), then [ « e 2 u :
/*< r a] n F = 0.

Definition 1.9. LST is the language of set theory; i.e. the predicate cal-
culus with equality (=) and membership (e).

Definition 1.10. Z is Zermelo set theory, a theory in LST, whose non-
logical axioms are

1) (3y)(Vz)(zey = zCx)

2) (3z)(Vw)(wez= (tv = xvw=y))

3) x = y = (Vz)(ze^ = z e y )

4) (3 x)( Vy)O e x = ( y e a & F)), where F is a formula in LST which
does not mention x free

5) Oj>)(Vz)(zey= (3w)(ze w&wex))

6) (3x)(0 e x &(Vy)Oex->- (3z)(zex & ( V W ) ( W G Z S ( w e j v
w = y))))). Here z c y is an abbreviation for (Vx)(x e z ->• x e j ) ,
and 0 e x is an abbreviation for (3^)(Vz)(z ^ y &y € x)

7) x* 0 -> O y ) ^ e x &(Vy)(z e x ^ ^ y ) )

8) the Axiom of Choice.

We now describe the model of Z we will use in this Section, and
which we analyze in Section 2.

Definition 1.11. If x is a set then ex is the binary relation on x given
by ex(a, b) = (a e x & b Gx & aeb).
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Definition 1.12. Define F(0) = <j>, V(a + 1) = P(K(o)), F(X) = U F(a),

where P(x) is [ y: y c x ] and X is a limit ordinal.

Definition 1.13. A structure is a system (A, R), where A is a nonempty
set, R is a binary relation onyl. An assignment in (A,R) is a function
/ : co -»• .4 with finite range. We write Sat (04, i?), F,f) to express that
the formula F of LST holds in the structure (A,R) when e is inter-
preted as R, = as equality, and each free variable vt in F is interpreted as
/(/). If F has no free variables then we may write Sat(04, R), F).

Definition 1.14. For structures (A, R), (B, S) we write Inj(/, (A,R),
{B, S)) to express that/ : A •* B,f 1-1, and (Vx, y <EA)(R(X, y) =
S(f(x),f(y))). We write Iso(/, {A,R), (B,S)) if the above holds and/is
onto. We write (A, R) « (B, S) for (3/)(Iso(/, (A,R), (B, S))).

Definition 1.15. For structures {A, R) we take FODO ((A, R)) =
[x c yl: for some formula F and assignment/we have x =
[y: Szt((A,R),F,fp] ] , where / J ( 0 = / ( 0 if i* 0;yiU = 0.

FODO stands for "first order definable over".
Often we abbreviate (x, ex) by (x, e).

Definition 1.16. Define 1,(0) = V(u), L(a + 1) = FODO((Z,(a), eI ( a ))) ,
L (X) = u L (a), where X is a limit ordinal. Define Z w+w (0) = 0,

a<x
L"+"(a + 1) = FODO(0,"+" (a), e)) n K(co + w), Z"+"(X) =

u I " + " (a), where X is a limit ordinal. Define Lw+u> =
a<x
[x:(3a)(xeZ,"+*(a))] .

Thus our Z, is the usual constructive hierarchy.

Lemma 1.2.1. Each LOJ+ol(a) is transitive. In addition, Lw+W is transi-
tive.

Lemma 1.2.2. For all transitive sets x and allf: co ->• x with finite range
we/wv<?Sat((x,e),uocWl,/)s/(O)c/(l).
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Lemma 1.2.3. F(GJ + a?) is closed under subset and power set and
union.

Theorem 1.2. L"+w satisfies Z.

Proof. There is an a such that Zw+UJ(a) = Lw+W(a + 1). Choose a least
with this property. 3), 5), and 6) follow from the lemmas; to check 1),
2), and 4), note first that I " + " ( a ) = L " + " . For 1), note that
[x G Lu+U(a): x c y ] G Z,w+<"(a + 1) for any j / e £" + t J (a ) . For 2),
note that [x G L"+W(oi): x = yvx =y] eL"+U3(a + 1) for any y,
z G Z,"+W(a). For 4), note that [ye a: Sat((L"+"(a), e), F , / J ) ] G
L" + " (a + 1) for all a G Z,w+"(a), all assignments/, all formulae F in
LST.

Definition 1.17. We assume a fixed primitive recursive total one-one
onto Godel numbering of the formulae in LST. We let V' be the Godel
number of ip. Let (A, R) be a structure. We write Def(G4, R), n, x) if
and only if n is the Godel number of the formula F(v0) with only the
free variables shown and JC is the unique element of A with Sat((A,R),
F(v0), Xn(x)), and furthermore n is the least integer with this property
that x is the unique element of A with Sat((A,R), F(v0), \n(x)).

Definition 1.18. Let (A, R) be a structure. Then we let Th(C4, R)) be
[ n: n is the Godel number of the sentence F and Sat (G4, R), F) ] .

Definition 1.19. If x C co then we write Ch(x) for Xn(l if n € x; 0 if
«<£x).

We need to draw on one fact about the construction of Lo}+Ui; Sec-
tion 2 is devoted to a detailed outline of a proof of the following.

Theorem 2. There are formulae ipi(v0, i^), ^ ( " o * "i)> 0"^ V3(uo> VO
in LST vWtfz o«/y the free variables shown such that for each x c u ,
x G Lw+0>, there is a limit ordinal \ such that

1) xGLw+U3(X)

2) (Vjye l" + " (X)) (an) (Def( (L" + "(a) , e)«,y))
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3) Th((Zw+wOO, e)) G L"+" (X + 2)

4) Sat«Z"+"(X), e), ̂ (u,,, U l ) , / ) if and only if(vp)(f(O) G L"+"(/5))
< ( n ( ! ) ( / ( l ) 6 i ^ ( ( ! ) )

5) Sat((L«+« (X), e), ̂ 2(u0, U l ) , / ) if and only //(#x/5)(/(0) e Z"+"(j3))

= (/xU)(/(l)eiw+"0J))

6) Sat(O>+"(X), e), *3(u0, u^ , / ) i/am* onfy z//(l) = (M« e w)(/(0)
G F(w + «)).

We make the following Definition 1.21 modelled after Theorem 2,
using the <py,\p2, and ^3 of the statement of that Theorem.

Definition 1.20. We fix a structure (A0, R°) such that 4 ° = [ i: i is
odd] , R° is a recursive relation, and (A0, R°) is isomorphic to
(F(co), e). By n we mean that element of A° which is satisfied, in
(A°,R°), to ben.

Definition 1.21. A towered structure is a structure (A, R) such that

1) A c co and the relation x ~ y = Sat(C4, R), <p2(uo > ui )> ^ n ( x if « = 0;
y xin^ 0)) is an equivalence relation on 4̂

2) the relation x < y = Sz\({.A,R),vl(vQ,vl),\n(x\fn = Q;yifn* 0))
has that (Vx, y e ^)((JC <;;&~7<;c)v(.>> < * & - * < y)v
(x~y&~x<y &~^<x))and(Vx,^,zGv4)(((x~z &x< j )
-> z < >>) & ((x ~z&7<x)->>"< z)), and < has no maximal ele-
ment

3) A°= [i: iGA &(V/)(~ / < Q] ,R° = R t A0

4) we have (Vx 6 ^) (3 ! y)(Sat((A,R), <p3(v0, vj), Xn(x if n = 0;
y\in* 0)), and so we let F be given by (Vx G ,4)(Sat(C4, R),
>p3 (v0, uj), \n(x if n- 0;F(x) if n ^ 0)). Then we want
(Vx G A)(3ri)(F(x) = n), and (Vx e A°)(F(x) = 0)

5) (V x G /I — J4°)(.F(X) = M where n is the least integer greater than
every i such that ( 3 y)(R(y, x) & F{y) = F))
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6 ) s u p p o s e x e A . T h e n F O D O ( ( [ i : / < x ] , / ? C [ f : / < * ] ) ) =
[ z c [ i : i < x ] : ( 3 j ) « j < x v j ~ x ) & z = [ k : R ( k , j ) ] ) ]

7 ) (Vx,yeA)(R(x,y)^x<y)

8) (A, R) satisfies the axiom of extensionality

9) (Vi 6 A-A°K3j)(J)ef{(A,R),j, 2/) & i = 2/)

10) [i: i<= Th((A,R))) e FODO(FODO(04,i?))3 e)

11) for all nonempty xcA with Ch(x) < r / ( / " (Ch(Th(04, R)))))
there exists a j e x such that for all z e x we have ~ z < y.

We presume knowledge of the effective Borel hierarchy. In particular,
we will make use of the notion of: being in £ u + w with recursive code.

Lemma 1.3.1. [ / £ 2°°: /codes Th(04, R)) for some towered structure
(A, R)] is in BOJ+U with recursive code. In other words, 6 = [/G 2W :
/ = Ch(Th(04, R))) for some towered structure 04, R)] is in £ u + w with
recursive code.

Proof. A more detailed proof of a more delicate version of this is given
as Lemma 3.2.2; we will only mention some basic points for this present
version. To "test" whether / e c5 first construct the relational structure
04, R) given by A0 c A, R° = R I" A0, A - A° = [ 2i: i is the G6del num-
ber of some formula F(u0) such that ' (3 '• vQ)(F{v0)y e [ k: f(k) = 1 ]
and (V/ < i) (if; is the Godel number of some formula G(v0) then
'(3 ! wo)(G(uo)) & (3 DO)(G(UO) &F(vo)Y e[k: f{k) = 0] ],R(2i, 2/),
for 2i, 2} e A, holds if and only if for the corresponding F, G we have
•(3 v0KF(v0) & ( 3 OiHGtvO &voe Ol)Y € [k:f{k) = 1 ] , R(2i, 2 / + 1)
is always false, R(2i + 1, 2/) holds if and only i f ' (3 vo)(P(vo) &
(auiXGCuj) & u0 e i)j))'G [k: f(k)= 1 ] , where P is the canonical
definition of 2/ + 1 in U ° , i?°). Then check whether clauses 1) - 11)
hold for this (A,R). It is clear that if there is any (A.R) with
Th(04, /?))=[k: f(k) = 1 ] it must be this (A,R) above.

Lemma 1.3.2. IfYc2w is in £ u + u with recursive code then Y n Lw+W

mws? be in Lw+W a«c? I"+UJ must satisfy that Y n L"+" is in 5W+CO wiYA
recursive code.
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Proof. This is a well known absoluteness property of the effective Borel
hierarchy.

Theorem 1.3. 6 n £<*>+" e i w + u and is satisfied in Z" + " to be an ele-
ment ofBw+LJ with recursive code.

Theorem 1.4. For allfe 2" n Z,""1"" there is a g e 6 n Lw+" such
thatf<Tg.

Proof. Take this/ Let x = [ k: f{k) = 1 ] . Choose X according to Theo-
rem 2. We must choose the appropriate towered structure (A,R)*>
(L"+"(a), e). We will define ag such that Iso(g, (Z"+"(X), e), (A,R)).
Takeg \ F(co) to be the isomorphism from (V(CJ), e) onto 04°, R°). For
y e Z,W+W(X) - F(co) take g(y) to be In where Def((Z,w+U)(X), e), n, y).
Take i? to be the relation on Rng(g) induced by g. Conditions 1) — 10)
in the definition of towered structure are easily verified. Condition 11)
also is satisfied since < will be a well-founded relation.

Definition 1.22. Let / , g e 2". The join of/, g, written (/, g), is
\n(f(n/2) if n is even; g((« - l)/2) if n is odd).

Lemma 1.5.1. Suppose (A, R), (B, S) are towered structures such that
Ch(Th(04, R))) <T /(Ch(Th(CB, S)))) and Ch(Th((£, S))) <T

/(Ch(Th(C4, R)))). Then either (3/)(Iso(/, (A, R), (B, S))) or
(3/)(Inj(/ (A, R), (B, S)) and (3x G 5)(Rng(/) =[yGB:y<x],
where < is as in (B, S) as in Definition 1.21)), or (3/)(Inj(/, (B, S),
{A,R)) and (3xe 4)(Rng(/) = [ y e A: y < x ] , where < is as in
(A,R)as in Definition 1.21)).

Proof. Let Tx = Th(G4,R)), T2 = Th((B,5)). Let ~l,<l,Fx be as in
Definition 1.21 for (A,R);~2, <2,F2 be as in Definition 1.21 for
(B,S).

Define the predicate P(n, i, /) by recursion on n. P(0, i, j) = i e A0 &
/ = /. P(n+l,i,j) = F1(i) = F2(j) = h~:ri&(\/aKR(a>i)^
(3 b)(3k)(S(b,j) & P(k, a, b) & F^a) = F2(b) = kj) & (Va)(5(a,/) •+
(3 b)(3 k)(R(b, i) & P(k, b, a) & F2(a) = F^b) = k)). It is easily seen
that, uniformly, for each k, the relation P(k, a, b) is recursive in
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Jk((Ch(T1), Ch(T2))). Hence, uniformly, for each k, the relation
P(k, a, b) is recursive in both Jk+1(Ch(Tl)) and /^+1(Ch(r2)).

We now wish to prove by induction on n that for each i there is at
most one / such that P{n, i, /). The case n = 0 is trivial. Suppose true for
3.11 k<n and let P(n + 1, /, /), P(n+\, i, a). Let Six, /). Then F2(x) = k
for some k < n. Then for some x0 e A we haveP(k, x0, x) and R(x0, i).
Hence by Pin + \,i, a) we must have for some y e B, P{k, x0, y) and
S(y, a). But since k< tf we must have x = y. So 5(JC, a). Hence
(\/x)(S(x,j)-+ S(x,a)). Symmetrically, (Vx)(S(x,a)-» S(xJ)). So
a = ;, and we are done.

Symmetrically, for each/ there is at most one i such that P(n, i,/).
Clearly (P(n, i, j) & R{a, /)) -> (3 6)(3 k){P{k, a, b) & S(bJ)); the

only nontrivial case is when / e A°, in which case a e A° by clause 7)
of Definition 1.21. Also (P(n, i, /) & S(a,/)) -• (3 b)(3 ^(^(A:, 6, a) &
-R(6, 0).

Thus roughly speaking, P defines a partial isomorphism between
04,.R)and(B,S).

Consider^= [ieA: (V/)(/~j /-* (3n)(3m)(3a)(3 6)(i'(n, i,a)
&P(m,j,b)&a~2 fo&(Vc)(c~2 6 •• (3cO(3r)(d~i 1 & P(r, d, c)))
& (V c)(c <2 6 -»• (3 c?)(3 r)(d <x / & P(r, d, c))))]. Then clearly
Ch(A - K) <T JiJ^iChiT]))). We now break into cases.

Case 1. yl- / i : = 0,(V/eJB)(an)(3O(/'(«,J,7)).ThenobviouslyU,i?)
«= (5, S), given by P.

Case 2. 4 - .£ = <j>, ( 3 ; e i^)(Vn)(V0(~ /*(«, 1,/))• Note that then
Ch([; G B: (V/t)(V/)(~ ^(«, 1, /))] ) < r /aw(Ch(r2))) and is non-
empty. Choose xeB with (Vn)(V 0(~ -P(«, f, /)) &
(V.y < x)(3«)(3/)(P(n, /,;))• Then since K = A we must have that
(V/)[(3«)(3 /)(^(«, /»/)) -̂  7 <2 ^1 • Hence set/(i) to be the unique/
such that C3n)(P(n, i,/)). Then Inj(/, (A, R), (B, S)) & Rng(/) =
[ / : / < * ] .

Case 3. A -K* <j>, and (3x)(x eA -K& (Vy)(y <x x-+y <z K) &
x£A°). Fix this x. Note Ch([/G 5: (Vn)(Vz)0<i x ^
~ /»(», / , /))]) <T /w(Ch(72)). If (V; G 5)(3«)(3 00" <i x &
P(«, /,/)) then take/(/) to be the unique / such that (3«)(P(«, /,/)).
T h e n I n j ( / , (B, S ) , ( A , R ) ) & R n g ( / ) = [ y : y < l x ] . l f
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( 3 / e B){ Vn)(V 0 0 < i ^ ~ P{n, i /)), then choose y<EB such that
(V«)(V/)0<1 x-*~/ > (« , / ,^) )and(V/< 2 ^)(3«)(3 .00<i *&
P(«,/,/)). Now note that ( [ / : / < ! x ] , i ? t [z: i<l x ] ) «
([ /: / <2 ^ 1 > -S" •" [ 7: i' <2 y ] ) and let / be the isomorphism given by
f(i) = the unique/ such that (3n)(P(n, /,/)). We obtain a contradiction
by showing that x e K. It suffices to show that (Va)(a~! x -*
(3n)(36)(P(/i, a,b)&b ~2 y)) & (Va)(a ~2y^ (3n)(3b)(P(n, b, a)
& b ~i x)). By symmetry it suffices to obtain the first conjunct. Let
a ~ ! x . T h e n [ i : R ( i , a ) ] e F O D O ( [ i : i < t x ] , R t [ i : i < ± x ] ) . l n
particular let G be a formula and g an assignment such that
[ i : R ( i , a ) ] = [ / : S a t ( ( [ / : i < 1 x ] , R A _ [ i - i < i x ] ) , G , g 9 ] . N o w
there must be a A: such that ^ ( a ) = k + 1. Choose the unique a* & B
such that [j:S(j,x*)] = [;: Sat(([/: ; < 2 ^ ] , 5 [• [ / : /< 2 y ] ) , G,
if ° g)f) ] • Then since / is an isomorphism we must have a* ^ [ / :
j<2y] since a $ [i: i ^ x].Buta*e F O D O ( [ / : j <2 y] , S r [/:
/ <2 JV1 )> a n d so we have a* ~ 2 3 .̂ Also s i nce / i s an isomorphism, we
have that R n g ( / \ [i: R(i,a)])= [j: S(j,a*)], and hence by the way /
is defined, we have P(k + 1, a, a*).

Case 4. A — K ^ <t>, and (A — K)n AQ 1= <t>. But this is obviously impos-

sible since A0 C K.

Lemma 1.5.2. Let {A, R), (B, S) be towered structures, Inj(/, (A,R),
(B, S)), x e B, Rng(/) =[i:i<2x]; where <2 refers to (B, S). Then
/(Ch(Th(04,/?))))<T Ch(Th((B,S))).

Proof. We use the notation of the proof of Lemma 1.5.1. Fix /, x. Note
that <2 has no maximum element. Let x±= any <2-least element of
[ /: x <2 i] . Let x2 - any <2-least element of [ i: x <2 i]. Then [ i:
/ G Th(C4, R))] e FQDO(FODO(U, i?)), e) as in 10) of Definition
1.21. Hence there is a y ~2 x2 with S(z, y) = 2 is some f with
/ e Th((A,R)). Next it is easy to find a formulaP(v0, ux) such that
Sat((5, S), P(vo,Vl), Z1) s /(0) is some/ with/2(Ch(Th04,£)))(/) = 1.
Hence clearly /2(Ch(Th(G4, R)))) <T Ch(Th(5, S)), since
(3,«)Def((B, S), n,y). Since J(Ch(Th((A,R))))<T /2(Ch(ThG4,/?)))),
we must have /(Ch(Th(G4,/?)))) < r Ch(Th((5, S))).
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Lemma 1.5.3. Suppose (A,R), (B, S) are towered structures such that
Ch(Th(W, R))) <T /(Ch(Th(CB,5)))) and Ch(Th((5, S))) <T

/(Ch(Th (04, /?)))). Then (A R)•= (B, S).

Proof. Assume hypotheses. Then either (3/)(Iso(/, (A,R), (B, S))) or
(3/)(Inj(/, (A,R), (B, S)) and ( 3 x e 5)(Rng(/) = [>> S 5 : y <2 x ])),
or vice versa. The latter two cases contradict our hypothesis by Lemma
1.5.2. Hence Iso(/, {A,R), {B, S)) for some/. Hence Th(G4, R) =
Th((J?, 5)), and so obviously for all i, Def(G4, K) i, x) = Def((5, S), i,
/(*)). Hence by clause 9) of Definition 1.21, /must be the identity.
Hence (A,R) = (B, S), and we are done.

Theorem 1.5. For all fe 2" n Lv+" there is a g such that f<Tg and
( V « e 2 w ) ( g = r a - > a e ( 2 u - d ) n L"+0J).

Proof. F i x / e 2W n Lu+U>. By Theorem 1.4, choose /z e d n Z,"+"
w i t h / < r h, and let [ /: h(i) = 1 ] = Th((/1, i?)), where (4, /?) is a tow-
ered structure. Then J(h) e i " + w and so (Va)(a =r /(A) -> a € Zw +").
Clearly / < r /(^). Now J(h) <T JQi) and h <T J(J(h)), and so by
Lemma 1.5.3 there must not be a towered (B, S) with J(h) =T

Th((B, S)). In other words, (V a)(g = r a - > a e 2 u - d ) .

Theorem 1.6. Lw+U> satisfies that there exists an element ofBu+CJ with
recursive code which is a Turing set but does not contain nor is disjoint
from a Turing cone. In particular, Lw+" satisfies ~ D(o + u>) by Theo-
rem 1.1.

Proof. Take the Turing set X to be [fe 2" : (3 g e 6 ) ( / = r g)]. Then
using Theorem 1.3 it is easily seen that X n Z,w+" e Lu + U and is satis-
fied to be an element of ^u ) + u ; with recursive code and to be a Turing
set. From Theorem 1.4 one has that X is satisfied to intersect every
Turing cone, because of the absoluteness of Turing reducibility. By
Theorem 1.5, X is satisfied to not contain any Turing cone.

Corollary. By Theorem 1.2, D(oo + w) is not provable in Z.
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Section 2

We have defined Z in Definition 1.10, and Lw+W(a), L " + " in Defini-
tion 1.6, and have remarked that each I u + U ( a ) is transitive and that
Sat((Lw+w, e), F, f) for all F G Z and assignments / (see Definition
1.13). Furthermore, we have the special structure (A°,R°) of Defini-
tion 1.20.

The purpose of this Section is to give a detailed outline of a proof of
the fact about the Lu>+W(a) needed in Section 1; namely, Theorem 2.

Definition 2.1. We let <x, y) = [ x, [ x, y ] ] . We write Fcn(x) for
(Vyex)(3a)(3b)(y = <a,b))& (Va)(V b)(Vc)(({a, b) e x &
{a, c) G x) -> b = c). We write Dom(x) for [ a: (3 b)«a, b) G x)),
Rng(x) for [ a: (E6)«6 , a) G x ) ] . We let ( ) = 0, (x) = [<0, x> ] ,
(x0, . . . , xk) = [<i, *,->: 0 < / < k]. We write ln((x0,.. . , A ^ . J ) ) = A;,
(x0, . . . , xjfc_1)(0 = x,-, / < k. We take Seq(x) =[y: Fcn(y) &
(3keu)(k*ct> & DomO) = A:)& Rng(^ )Cx] .We take a0 * ax * ...
* ak, for a,- G Seq(x), to be the result of concatenation.

Definition 2.2. We assume a one-one Godel numbering from formulae
onto w. A formula is a formula using V, 3 , &, v, ~, G, =, u0, vx,... .
For formulae F we let 'F' be the Godel number of F. For » 6 u w e let
In I be that formula with Godel number n.

Definition 2.3. We write LO(x), (x is a linear ordering) for x = (A, R)
and A + tf> and Re [(a,b): ae A & b eA] and A n F(co) = 0 and
(A, R) constitutes a linear ordering on all of A. We writer! = Field (x),
i? = Rel1(x).

Definition 2.4. If L0(x) we take O(x, y) = y G A & (Vz)«z, y) £
Rel^x)), Suc(x ,^ ,z)= <z,y>Gi?1 & ~ (3 a)«z, «>€/?! &
(a, j» G Rx), Um(x,y) = y<EA& (Vz)«z,y) G Rr -*• ( 3a )«z , a) G i?x

&<a,7>Gi?1)).

Definition 2.5. We write CS(x), (x is a coded structure), for x = (A, R >
and A # 0 and i? c [{a, b):aeA & b eA ]. We wri ter = Field (x),
and whenever we write CS(x), we write Rel2 for/?.
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Definition 2.6. We write SLO(x), (x is a structured linear ordering), for
x = (F, (A,Rt\ <A,R2» and LO«A,R_)) and CS(C4, R2)), and
F: A -*• co. We write FieldOc) =A, Relj (x) = R_, Rel2(x) = R2,
Fn(x) = F.

Definition 2.7. We write Sati(x, n, y) for CS(x) &n<Eu &ye SeqOc)
& y = (aQ,..., ak),0<k,&x = (A,R) & Sat((A,R), \n\,f), where
f(i)=y(i) for i < ln(y); y(\n(y) - 1) for i > ln(j).

Definition 2.8. Let K be the least class satisfying

1) A° c K. See Definition 1.20

2) whenever a0,..., â . 6 K, 0 < &, n e w, x ^ F(co) we have (JC, «,
OQ, ...,ak)e. K. Let Fo be the function on K given by F0(n) = n if
n e A°;F0((x, n, a0,.... afc)) = ([ 1 ] , x, n) * F0(a0) * ... * F0(ak) *
*( [2 ] ) .

Lemma 2.1. FQ is a one-one function on K.

Proof. We prove by induction on In(s) that if Fo(y_) = s, F0(y2) = s,
theny^ ~y2- AssumeFQ^I) = *> ^0(^2) = s- Then its is not a se-
quence then s = n for some n e ^4°, in which case j ^ = >>2 = n. So 5 is a
sequence. Clearly s must be of the form ([ 1 ] , x, n) * F0(a0) * ... *
F0(ak) * ([2] ). Now we must show that thea0,..., ak,x, n above are
unique. Let s = ([ 1 ], y, m) * F0(bQ) * ... * F0(br) * ([ 2 ]). Obviously
x=y, n = m. lfFQ(a0)eA° then obviously F0(b0)eA° ar\dF0(aQ) =
F0(b0). lfF0(a0) $. AQ then F0(a0) starts with [ 1 ] and ends with [ 2 ] ,
and no [ 1 ] or [ 2 ] occurs in between. Therefore JF0 (a0 ) = F o (b0), and
so on. So we obtain that k = r and each F0(a,-) = Fo (&,-). Since each
F(at) has shorter length than s, we are done by induction hypothesis.

Definition 2.9. We write < (JC, a, fc) for LO(x) &a,be Seq(FieldOc))
& a comes before b in the lexicographic ordering on Seq (Field (x)) in-
duced by x.

Definition 2.10. We write Defn(jc, a, k) for SLO(x) and a = (n,b0,
.., bm ), 0 < m, and each bt e Field(x) and y = [ fe: Sati«Field(x),
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Rel2(x)>, n, {b, b0,..., bm))] satisfies the following conditions:

a) the range of Fn(x) I Y contains k — 1 as an element and is a subset
of k and k e co - [ 0 ] ,

b) Y # [ b: <b, c) e Rel2 (x) ] for all c e Field(x),

c) Y* [b: Sati« Field (x), Rel2(x)>,r, (b,b0,..., bm))] f o r a l l r < n ,

d) Y* [b: Sati«Field(x), Rel2(x)>, n, (b, c0,..., cr))] whenever
< (x, (c0 , . . . , cr), (60 , . . . , bm)).

Definition 2.11. We write CHY (x, / ) for

1) LO(x)

2) Fen(/) & Dom(/) = Field(x) & (\fy)(y e Field(x) -> (SLO(/(y))
& Field(/(>>)) C i « U Seq(F(w) U x)))

3) 0(x,y)^f(y}=(F, (A, Rx),(A, R2)), where A =A°,R2 =R°,
Rt = e\ A0, F(a) = 0 for all a e-A

4) Suc(x, a, b) -* f{a) = (F, {A, R{>, (A,R2», where A = Field(/(&)) u
[([ 1 ] , b, n) * b0 * ... * bm * ( [2 ] ) : Defn(/(&), («, 60 , . . . , bm), k)
for some k],Rl = Relx ( /( i)) u [ { a , s ) : a e Field (/(&)) &
s e A-Field(fib))] u [ (a, s): a, s e ^-Field(/(&)) & a = ([ 1 ] , 6, n)
*Z>0 *... *&m * ( [ 2 ] ) & 5 = ( [ l ] , i , m ) * c 0 *.. . * c r ( [ 2 ] ) &
(/i < m v < ((Field(/(6)), Re^CTCfr))), (60, .... bm), (c0, ..., c r ) ) ) ] ,
i?2 = Rel2(/(6)) u[(a,s):aG Field(/(&)) & 5 e ^4-Field(/(&)) &
5 = ( [ 1 ] , & , « ) * &o * - * & m *([2] )&Sat i«Fie ld( / (&)) ,
Rel2 (/(&))>, «. (a. 6o> •••» 6 m»]» F ( f l ) = Fn(/(&))(a) if a e
Field(/(fc)); if a e A -Field (/(*)), a = ([ 1 ] , 6, n) * b0 * ... * bm *
([ 2 ] ) , then F(a) = k where Defn(/(&), (n, 60 , . . . , 6m), A;)

5) Lim(x,a) ^ /(a) = (F, M,i?!>, U , / J 2 »» w h e r e F , ^ , / ? ! , ^ are the
unions, over those 6 with (b, a) E Re^ (x), of Fn(/(&)), Field(/(ft)),
Reli (/(&)), Rel2(/(*)), respectively. CHY(x,/) reads " / i s a coded
hierarchy onx" .

Definition 2.11. A limit ordinal X is an ordinal > 0 with no immediate
predecessor. Whenever we write X we mean a limit ordinal.
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Lemma 2.2. There is a formula P1(v0,v1,v2) and a sentence Qx such
that for all X we have Sat((Z,"+0J(X), e), Q^, and for all transitive sets A
such that Sat (04, e), Qx) we have : Sat (04, e), Pltf) = Sati(/(O),/(1),
/"(2)), for all assignments fin A, and Sat (04, e), (Vvo)(3x)(\/y)(y ex
= (y=(.V1,V2)& P1 (UO, Oj , U2 ) ) ) ) .

Lemma 2.3. 77zere is a formula P2(v0,vl,v2) and a sentence Q2 such
that for all X we have Sat((Z,w+"(X), e), Q2), and for all transitive sets
A such that Sat(04, e), Q2) we have Sat(04, e),P2,f) = < (/(0),/(l),
/(2)), /or a// assignments fin A, and have also Sat (04, e),
( Vuo)(3x)( Vy)(j e x = (j/ = <ulf w2) & i»2(i;0, U l , u2)))).

Lemma 2.4. T/zere w a formula P$ (u0, uj, v2) and a sentence Q3 such
that for all \ we have Sat((Lw+w(X), e), Q3), and for all transitive sets A
with Sat(04, e), Q3) we have: Sat(U, e), P3,f)= Defn(/(0),/(1),
/(2)), for all assignments fin A, and Sat (04, e), (Vu0)(ax)(V;y)O> e x

- < y - <«1 > «2> & P 2 ( u 0 ' u l . U 2 > ) ) ) -

Lemma 2.5. There is a formula P4 (u0, ux) a«d a sentence Q4 such that
for all X we fcave Sat((Z-0J+UJ(X), e), Q4) and for all transitive sets A with
Sat(04, e), <24) we fcave Sat(04, e),/>4,/) = CHY(f(0),f(l)),for all
assignmen ts fin A.

Definition 2.12. We write WO(JC) for LO(x) & (V^ c Field{x))(y * <t>
-* (3a e y)<yb& y)«b, a) 4 Relt (x))). We write (A,R)*> (B, S) for
(3/)(Iso(/, (A,R), (B, S)). If LO(x) and a e Field(x), then we write
x a for [b:<b,a)&Re\1(x)].

Lemma 2.6. For a// x e F(co + w) with WO(x) there is a unique f such
that CHY(x, / ) & / e F(w + co). Furthermore,

1) for all a e. Field(x) we /zave f/jaf (3 \ga){\so{ga, (Field(/(a)),
Rel2(/(fl))), (IW+W(P), e))), w/zere (xfl) Re^ f xa) « (U, e)

2) /or a// a e Field (x) and for all b e Field(/(a)) we have that
Fn(/(a))(6) = nn{ga{b) e F(co + «))

3) for all a e Field(x) we have WO((Field(/(a)), Re^ (/(a))».



68

3 44 H.M.Friedman, Higher set theory and mathematical practice

Lemma 2.7. Let LO(x), (Field (x), Relj (x)) « (a, e), JC 6 Z,"+u(0).
Then (3/)(CHY(x,/) & fe L"+"(0 + a + «)). Furthermore for each
a e Field(x) and A; tfzere is a gka e Lw+a;(0 + a + w) swc/? that Iso(g*,
(Field (/(a)) n [6 : Fn(/(a))(6) < fc], Rel2(/(a)) r Field (/(a)) n
[b: F n ( / ( a ) ) ( 6 ) < M ) , a ^ + - ( T ) n F(« + *), e)), and L"+" (7) n
F(co + fc) e Lw+W (|5 + a + co), where (7, e) « (xfl, Relj (x) r xfl) .

Proof. Fix p. Then argue by induction on a. The basis case is trivial.
Argue the limit case through use of Lemma 2.6, which gives unicity
below the limit and which assures that the types needed are bounded
below by F(co + n0), and by Lemma 2.5, which gives a first-order de-
scription below the limit. Argue the successor case by Lemma 2.4.

The gk are developed by induction on k.

Definition 2.13. We say LOJ+O}(a) is pure just in case GJ < a and for all
0 < a there is anx e L" + " (a ) with LO(x) and (0, e) « (Field(x),
Rel^x)), and for all 0 < a we have Z"+CJ(|3) ¥= Z"+"(/3 + 1).

Lemma 2.8. Let L"+U}(a) be pure, (V/3 < a)(0 + 0 < a), Sat((Z,w+"(a),
e), WO(u0), XJk(x)). 77ien ettfcer WO(x) or /or a// 0 < a tfzere w an
a e Field(x) with ( |J,e)« ( [ 6 : <Z?,a)G R e l ^ x ) ] , Rel^x) r [fe:
(b,a)£ Re l^x) ] ) .

Proof. Let x e I " + " ( a ) , Sat((Lw+w(a), e), WO(u0), \k(x)), and assume
0 < a, ~ WO(x), and 0 is the order type of the maximal well-ordered
initial segment of (Field (x), Relj (x)). We wish to obtain a contradic-
tion. By purity, lety e I,(a) have LO(y) & (0, e) « (Field(y), Rel^^)),
and choose 7 < a withx,>» G Lw+"(y). Then a straightforward induc-
tive argument will reveal the existence of an isomorphism from the
ordering defined by y onto the maximal well-ordered initial segment of
the ordering defined by x, which lies in Lw+W (7 + 0 + o>). But then
Sat((Z,"+"(7 + 0 + co), e), ~ WO(u0), Xk(x)), and hence Sat((Z"+"(a),
e), ~ WO(UQ), \k(x)), which is a contradiction.

Lemma 2.9. Let Xw+OJ(a) be pure, Z,w+aj(a) ¥= Lw+<J(a + 1),
(V0 < a)(0 + 0 < a), and Sat((L"+w(a), e), WO(u0), Xn(x)). Then
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(3 /e L"+"(a))(CHY(x,/)) if and only z/(3 0 < a) ((Field (x),
Re l^x) )*^) ) .

Proof. Suppose ~ WO(x). Then by Lemma 2.8 the maximal well-
ordered initial segment of x must be at least a. Note that we can define
gk 6 £<j+w(a) a s m Lemma 2.7, for each a e Field(x), even though
~ WO(x). In fact, let x e LW+UJ(0). Then the ** are in Iw+W(p + «).
Consider^ [aeField(x): (3fc)(36e Rng(g*))(Vc)«c,a>e
Re^ (x) -»• (Vp)(Z» <£ Rng(g^)))]. Then clearly S contains the initial
segment of x of type a. Now, S is in Z,"+aj(j3 + a> + co). If a is the type
of the maximal well-ordered initial segment of x then, since WO(x)
holds in Lu+"(a), we must have ( 3 a e S) (a is beyond the maximal
well-ordered initial segment of x). If there is a well-ordered initial seg-
ment of x of type a+ \ then since Lw+tJ(a) =t Z,c0+"(a + 1), we must
again have ( 3 a e S) (a is beyond the maximal well-ordered initial seg-
ment of x). Fixing this a, form g% G L"+<J(0 + CJ). Then by definition
of S, we will have ay e Lw+W(j3 + w) which does not lie in Lw+W(a),
which is a contradiction. The converse is by Lemma 2.7.

Lemma 2.10. There is a sentence Q5 such that

1) for all pure Lw+" (a) with (V p < a)(0 + 0 < a) and L"+" (a) *
£a;+u>(a + i) w e /wye Sat((Z,u+w(a), e), Q5)

2) i/^4 is transitive and Sat (04, e), Q5 ) a«d for all assignments fin A,
Sat((4, e), (3 «1)(P4(oo» »i))»/) •* WO(/(0)), then
(3.18)04 = iw + w(p) & (Vr)(7 < 0 •* 7 + 7 < P)).

Lemma 2.11. There is a formula P5(v0,vl) such that for all pure
£"+u>(a) witn (V/3 < a)(p + (J < a) and L»+U(a) =t Zw+UJ(a + 1) we have
WO((A,R)),whereA=L"+"(a)andR = [<a,b>: Sat((Z"+"(a), e ) , ^ ,
Xn(aifn = 0; bifn¥=Q))].

Proof. We will just define the R. Take £ = [ <**(a), gP (fc)>:
(3x)(3y)(3/)(WO(x) &/G Z^+"(a) & CHY(x,/) & y 6 Field(JC) &
a , i e FieldC/O) & <a, 6> e Re^C/Cy)) & Fn(/(>^)(a) = k &
Fn(/(y))(6) = p ) ] . Of course, g*,gP depend on x , /as in Lemma 2.7.
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Lemma 2.12. Let L"+"(a) be pure, (V0< a)(0 + 0< a),Z,w+"(a)^
Z, "+"(<*+ l ) , x e i w + u ( a + l),wherex = [a: Sat ((/,"+" (a), e),F,
\n(a))] . Then there is a transitive set A C Lw+U>(a) such that

1) Sat(04, e) ,G4&Qs)

2) TC(x) C ,4 & x e i4 a«<2 (Va e x)(Sat((Z,"+"(a), e), F, X/i(a)) =
Sat(04,e),F,Xn(a)))

3) Sat (04, e), (Vuo)(3 u^^v^Vj)) •+ WO(u0)))

4) for ally e A we have ['Sat(04, e), WO(»0), \n(y))= Sat((Z,w+"(a),
e), WO(«0), XHOO)] & [Sat(04, e), O / ) ^ ^ , / ) ) , \n(y)) s
Sat(a«+"(a), e), (3/)(P4(y,/)), X»O/))]

5) r/iere w a partial function G which is from the cartesian product of
co with TC(x) onto A and a formula P6(vQ, v1,v2, v$) such that
G(a, b) = c if and only * / S a t ( ( L " + " ( a ) , e ) , P 6 ( u 0 , vlt v2, v3),
\n{a if n = 0;b if n= \;c if n = 2 ; x if n > 2)).

Proof. Using Lemma 2.11, employ a standard closure of TC(x) U [x ]
under the Skolem functions for the finite number of formulae needed.
This can be described in Lw+W(a) because of the bound in complexity
of the formulae. Then perform the isomorphy onto the transitive set A.
This isomorphism can also be described in L"+"(a) , and will result in a
subset of LUJ+CJ(a). This isomorphism will carry well-orderings into well-
orderings.

Lemma 2.13. Let Lw+W(a) be pure, (V/3 < <x)(0 + 0 < a). Furthermore,
suppose Lu>+W(a + 1) — Lto+UJ(a) ¥= <t>. Then there is a partial function G,
andP6 such that 5) in Lemma 2.12 holds and A = Z,"+W(a).

Proof. Choose A as in Lemma 2.12, using any x e L w + w ( a + l ) —
L"+"(a) of the form [a: Sat((Z,w+"(a), e), F, \n(a))]. Such an x can
be found by Lemma 2.11. It suffices to prove that A = Zu>+W(a). Note
that by Lemma 2.10 we have .4 = Lw+W(0) for some 0. Note by 2) of
Lemma 2.12 that x e LW+CJ(0 + 1). Hence a = 0.

Lemma 2.14. Let Z,"+"(a) be pure, (V0 < a)(0 + 0 < a), Lw +"(a) ±
Z,"+W(a + 1). Then Lw+W(a.+ 1) is pure.
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Proof. We use the G, P6 of Lemma 2.13, for some x e Lw+"(a + 1) -
L"+U>(a), andP5 of Lemma 2.11. It suffices to produce a linear order-
ing y e I " + " ( a + 1) with (a, e) « (Field(^), Relj (y)). Take y = (A,R),
where A = Dom(G), R = [<(x1,y1),(x2,y2)>- (xltyl),(x2,y2)eA &
Sat((L"+"(a), e),P5(u0, i>i), \n{G{Xl,yi) if n = 0; G(x2,y2) if
« > 0)) ] . If this 04, i?> is longer than (a, e) then take the appropriate
initial segment; this {A, R) must be a well-ordering.

Lemma 2.15. 7/Z"+w(a) ¥= Lw+"(a + 1) and oi < a then Zw+to (a + 1)
and L"+w (a) are pure.

Proof. Straightforward from Lemma 2.14 by transfinite induction.

Lemma 2.16. Suppose L"+"(a)¥= Lw+W(a + 1). Then Lw+W(a X w)=£
I u + u ( ( a X u ) + l ) .

Proof. Suppose Z,w+"(a X co) = jLw+"((a X w) + 1). By Lemma 2.15,
there is a well-ordering in Lw+U)(a + 1) of type a. Hence there is a well-
ordering y G Z,"+"(a X w) of type (a X a>) + 1. Since (Lw+"(a + <o>, e)
satisfies Z, there must be a n / e Lw+W(a X CJ) with CHY(y, / ) . Hence
TC(/) e X"+"(a X w) since (L"+"(a X co), e) satisfies Z. In addition
(LUJ+UJ(a X co), e) must satisfy that every set has smaller cardinality than
TC(/). But (L"+U)(a X co), e) satisfies the power set axiom and Cantor's
Theorem, and so we have a contradiction.

Lemma 2.17. Let y c co, y G L u + U . Then there is a X such that
Lw+co(A)*Z-"+"(X+ j) md y e £w+w(x) and a formula P1(v0,vl,v2)
such that Sat((L"+aj(X), (Vu^C3! vo)(vo e co & P7(u0, ux, u2)),
X«( z)), /or some z e Z,w+W (X).

Proof. Choose a least such that y e Z,w+" (a), co < a. Then a = 0 + 1.
Set X = 0 X co. Note that by Lemma 2.16, L"+U!(X) satisfies the hypoth-
eses of Lemma 2.12, using y forx. Using Lemma 2.10, the resulting ,4
must be Zw+u;(X). Using the P6 of Lemma 2.12 one easily constructs
the desired P7 since TCO) = co, or y is finite.

Lemma 2.18. Let y G co, y € £ w + w . 7%e« tfzere w a X JMC/Z ?/ja/
Z-"+tJ(X)^Z'<;+w(X+ l)anc?>'GltJ+w(X)a«cia/ormw/aP8(uo)i'i)
such that Sat((Lw+w(X), (Vu^CB ! vo)(vo e co & P8(u0, Ul))).
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Proof. Take X, P, as in Lemma 2.17. Note that Z,W+W(X) satisfies the
hypotheses of Lemma 2.11. Using the P5 of Lemma 2.11, take
P8(u0,u1)tobe(3U 2)((Vu1)(3 \vo)(vo e « & P1(v0,vl,v2)) &
(Vu4)(i'5(u4,u1)->~ (Vu_)(3 !u0)(o0 G « &i>7(«o,u1,«4)))&
P7(u0,u1,u2)).

Lemma 2.19. SupposeP9(vQ,v{)isa formula such that Sat((ZW+UJ(X),
e), (Vu_)(3 ! uo)(wo e co & P9(u0, »_))). Then Th((l"+«(X), e)) €
_"+"(X + 2).

Proof. Note that there must be an (w, i?) «* (Zw+tJ(X), e) such that
i? e Z,w+to(X + 1). In addition, every set of natural numbers arithmetical
in R will be in LtJ+"(X + 1). Hence straightforwardly, Th((Z,w+w(X), e))
e L " + w ( X + 2).

Combining Lemmas 2.17 and 2.18, we immediately have:

Theorem 2. There are formulae Vi(v0, uj), ip2("o> vt),and v'3(fo> u i ) *'n
LST wzf/i o«/y ^ e free variables shown such that for each x c a>,
x e Lw+W there is a limit ordinal X such that

1) xeZ,"+"(X)

2) (Vy e I"+^(X))(3»)(Def(a"+"(a), e), n,y))

3) Th((Lw+w(X), e ) )GL u + t J (H2)

4) Sat((I"+"(X), el^ivo.vj.nifand only z/(M|3)(/(0)G _"+"(/3))
<W(/(1)6I^(«)

5) Sat((_"+"(X),e), <p2(v0,vl),f)ifandonlyif(n(S)(f(0)eL»+"((}))
= (^)(/(l)SL^()J))

6) Sat((L*+"(X), e ) , v3(u0, «_),/) i/a«d only / / / (I) = (/m e co)(/(0)
G F(co + «)).
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Section 3

In this Section we discuss various refinements of Theorem 1.6 and
its Corollary.

We assume familiarity with the hierarchy of numerical formulae with
one function parameter ranging over a;10.

Definition 3.1. A towered * structure is a structure (A, R) such that
clauses 1)— 10) of Definition 1.21 hold and in addition, for each 11°
predicate QinJ) we have (3n)(« e A & ~ Q(n, / « (Ch(Th&4, R)))))) •*
(3«)(« € A & ~ Q(n, J" (Ch(Th(i4, /?))))) & (\fm)(m < n ->
e(m,/"(Ch(Th(U,i?))))))). Define c5* = [Ch(Th(04,/O)) : (A,R)is
a towered * structure ] .

Lemma 3.1.1. Z,"+" satisfies that 6 * n Z,w+" isa« element ofB^z

with recursive code.

Proof. Routine counting of quantifiers and comparison with the Borel
hierarchy.

Lemma 3.1.2. Suppose (A,R), (B, S) are towered* structures such that
Ch(Th«A,R))) <T J(Ch(Th((B, S)))) and Ch(Th((B, S))) <T

7(Ch(Th(04, R)))). Then either (3/)(Iso(/, (A,R), (B, S))) or
(3/)(Inj(/, (A,R){B, S)) and(3x£ £)(Rng(/) = [y e B : y < x ] ,
where < is as in (B, S) as in Definition 3.1 (which refers back to Defini-
tion 1.21))), or (3/)(Inj(/, (B, S), (A,R)) and (3x e A)(Rng(f) =
[ y e A: y < x ] , where < is as in (A,R) in Definition 1.21)).

Proof. This is the analogue to Lemma 1.5.1, and is proved exactly the
same way, moticing that, for instance, the K of that proof is defined by
a n ° predicate Q(n,J«>(Ch((A,R)))).

Arguing as in Section 1, we have

Theorem 3.1. Xw+U> satisfies "there exists an element Y e 5 w + 3 , with
recursive code, such that ~ D(Y)". Hence the assertion in quotes is con-
sistent with Z.
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Proof. Consider the game given by Y c 2W, where y = [ / e 2 u :
\n{f{2n)) G 6 & \n(f{2n + 1)) < r Xn(/(2«))] .

Definition 3.2. Define La(0) = K(co), L«(0 + 1) = FODO((La(|3), e)) n
F(a), Z-a(X) = U La((3), where X is a limit ordinal. Define La = [x :

(3U)(xG £«(«)].

For the moment, let us concentrate on the case a = co + 1.

Now we cannot directly speak of Borel subsets of 2" and determin-
ateness within Z,w+1. What we do is to consider formulae P(v0) and
associate the sentence P* which naturally formalizes the assertion that
D([f:f^2u> & P(f)] ). In particular we shall construct a numerical
formula P(f) which is in prenex form and has 5 quantifiers (numerical,
of course) such that the corresponding sentence P* fails in (L"+1, e).
Thus we can say that, in the appropriate sense, L"+1 satisfies that
"there is a Y G B5 with recursive code such that ~ D(Y)". However,
with La, where oo + 1 < a, no such devices of expression are needed.

Lemma 3.2.1. There are formulae i// i(v0, Uj), and i//2(u0' v0 l'w LST
with only the free variables shown such that for each x C u , x £ Z , w + 1 ,
there is a limit ordinal X such that

1) xeMOi)

2) (VjVGZ«+i(A))(3«)(Def(a"+1(a),e),H,>0)

3) Th((L"+l(X), e))eL"+1(X + 2)

4) Sat((L"+1QO, e), n(v0, vx),f) if and only if{nP)(f{Q)e
L"+1(«X(Ml3)(/(l)eL"+i(p))

5) Sat((L"+i(X), e), V2((u0, vy),f) if and only if{^){f{Q) e
Iw+1(«)=(/iP)(/(l)e^w+1(/J))

6) (VJC e L"+1(X))(x c F(co)).

Proof. The proof is like the proof of Theorem 2. One uses standard
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pairing and inverse pairing functions on V(u>) to code everything as a
subset of F(OJ).

In the following, we use ^p1, and ip2 as in the statement of Theorem
3.2.1.

Definition 3.3. A towered" structure is a structure 04, i?) such that

1) A c u> and the relation* ~ y = Sat (04, .R), ^ ("O ' VO> ^n(x if « = 0;
>> if n =£ 0)) is an equivalence relation on A

2) the relation x < y = Sat(.(A,R), y1(v0,v.l), Xn(x if n = 0; y if n * 0))
has that (Vx, y £A)((x <y & ~ y < x)v {y < x & ~ x < y) v
(x~y&~x<y& ~ y < x)) and (V x,y, z <E A)(((x ~ z &x<y)
-> z < y) & ((x ~ z & y < x)->- y < z)), and < has no maximal ele-
ment

3) A° = [i: ieA & (V/)(~;<z)],/20 = ^ M °

4) wehave(Vxe^)(Vy)(i?(7,x)->ye^0)

5) supposes G.A. Then FODO(([/: /< x] , i? r [ z": z < x] )) =
[ z c [i:i<x] :(3j)U<x\/f~x)&z = [k:R(k,j)])]

6) (/I, R) satisfies the axiom of extensionality

7) ( V i e ^ - ^ 0 ) ( D e f ( U , / ? ) , / , 2/))

8) for some fc we have that for all x e 4̂ there exists a prenex formula
V with only free variable v0 and with only fc alterations of quanti-
fiers such that Sat(04, R), (3 ! uo)(«^) & <̂ , X«(x))

9) for each n° predicate Q(«,/) we have (3n)(neA &
~ Q(n, Ch(Th((i4, /?)))) -> (3n)(» e yl & ~ Q(n, Ch(Th(W, /?))))
& (Vm)(m < n -• Q(m, Ch(Th(04,/?)))))). Define d~ =
[ Ch(Th(U, R) is a towered" structure ] .

Lemma 3.2.2. [fe 2" : /codes Th(04, R)) for some towered" struc-
ture (A,R)] is in Bs with recursive code. In other words 6 ~ =
[ /€ 2" : / = Ch(Th((A,R))) for some towered' structure (A,R)] is
in B5 with recursive code.
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Proof. We define/e 6 = Px (/) & P2(/) & P3(/) & P4 (/) & Ps(/) &
P6 (/) & P7 (/) & P8(/) & P9(/), where Px (/) is '(Mx)^2 (x, x)) &
( V X ) ( V ^ ) ( ^ 2 ( X , 7 ) = ^ 2 ( J , X ) ) & ( V A : ) ( V Z ) ( ( ^ 2 ( X ! ^ ) & ^ 2 ( > ; , Z ) ) ^

*>2(x,z))' G [i : /( /)= 1 ] ; P2W)isi(Vx)(Vy)((<pl(x,y)&
~ <Pi(y,x))v (vi(y,x)& ~ V51(^,y))v(^2(x,>')& ~ $1(x,y)&
~^( j , x )&(Vx) (Vj ) (Vz) ( f e 2 (x , z )&^(x ,y ) ) ->^ (z ! y ) )&
((V 2(x,z)&(y,z)&Cv,x)->^1(y,z)))&~(3x)(Vy)(^1O',x)v
^(x.J ')) ' e [ i : / ( i ) = H ; P3(/)is'(Vx)(xG F(co)=(Vj)(9 l(x,j)v
*2(*,3O)) & (3 x)(x = F(w))' e [ /:/(/) = 1 ] ; P4(f) is
\VxKVy)(y e ^ y e V(u>))' e [ i: /(*) = 1 ] ; P6(/) is
'(Vx)(Vy)(Vz)(z 6 x = z 6 j ) ^ = j ) ' e [ i: /(/) = 1 ] ; P7(/) is
"for each sentence 3uo(v) such that/('(3 ! fo)(ip)') = 1 we have that
for some formula \j> with only the free variable v0,' 3 u0 (̂  & \p) &
( 3 ! uo)(^)' 6 [ /: / (0 = 1 ] " & [ F: 'F ' e [ i:f(i) = 1 ] is a consistent
set of sentences in LST"; JP5 (/) is "for each formula <p with only the
free variable Uj such that/('(3 }-v1)(\pY)= 1 we have that
'(3uo)(3u1)(lp(uo)&i//(u1)& (ipl(vl,vo)v<p2(v1,vo))ye
[ i: /(/) = 1 ] if and only if there exists a formula \p x with free variables
u2,..., ufc, u^+j such that ' (3uo)(3u1)(3u2). . . (3vk)(\/vk+l)(ip(v0) &
<//(«!)& V J 1 (U 2 ,U 0 )&. . . &^1(uA.,u0)&(ufc+1€u1 s ((p1(ujt+1,u0)&
i// *)))' G [ /: /(?) = 1 ] , where V * is the result of relativizing the quantiL
fiers in \p to those y with ^j (y, u0)"; PgC/) is "for some k we have that
for all formulae P with only the free variable u0 such that
/( '(3|! i>o )(̂ *)') = 1 there is a formula <// with free variable only u0 and
which is prenex and only has k alterations of quantifiers such that
/ ( ' (3u o ) (P&*) ' )= l ; P9if)is(Vfc)[(3«)U(«)&~Q(fc,«,/))->
(3n)04(n) & ~ Q(fc, «,/) & (Vm)(B(/n, /i)-^ fi(*, m,/)))], where G is
a complete n^ predicate, A(n) is "n is odd or {n is even & |n/2| isP with
only free variable v0 and/('( 3 ! uo)(P)') = 1 & (Vm < n/2) (~(|m| has
only free variable u0 and is, say, Q(vQ), and/('(V vo)(Q(vo) = P(v0)) &
O ! vo)(QY) = 1)))", Bim, n) is "AQn) & ̂ («) & |m/2| isP & |«/2| is
<2 & '(3uo)(3 Vl)(Piv0) & fi(ui) & ̂ i(uo> »i))' e I *: /(*) = 1 1 " .

To show that this is the desired conjunction, we must show that, for
the corresponding (A, R) to / , as in the proof of Lemma 1.3.1, that
(A, R) is a towered" structure. To do this, one proves by induction on
the complexity of a formula F that for all assignments g in (A, R), we
have Sat(04, R), F,g)= '(3 ^) (3u, 2 ) . . . (3 Vi.)(Gh(vh) & ... &
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Gujipij) & F) ' e [ 1: f(i) = 1 ], where G/Jfc(uo) is Ig(ẑ ) if u0 is even; G^(i;0)
is the canonical definition of g(ik) in (A<>, R®) if g(ik) is odd; and
u,-j,..., u,-. is a complete list of the free variables in F.

Theorem 3.2. Lw+1 satisfies "there exists an element Y e B5, with
recursive code, such that ~ D(Y)".

Proof. Proceed as in Section 1. The predicate defining the set K of the
proof of Lemma 1.5.1 is replaced by aII3 predicate since one needs to
consider P(n, i, /) only for n = 0, 1.

We can state an independence result corresponding to Theorem 3.2.

Definition 3.3. WeletZ(2)be

1) (3*)(x=K(«))

2) (VJOCV C K(CO))

3) (Vz)(zGx = zey)-+x=y

4) x =£<£->• (3y)(y&x & ( V z ) ( z e ^ z ^ ) )

5) (3j0(Vz)(zej>3(3H>)(zew&wejf))

6) (Vx)(3>0(Vz)(z 6 y = ( F & z e x)), where F is a formula not con-
taining^ free

7) (Vx)(3y)(P(x,^))-*(Vx)(3/)([«:(3fc)(/(0,fc) = /i)] =x&
(Vm)(P([ n: (3fc)(/(/», fc) = « ) ] , [ « : (3 fc)(/(m + 1, fc) = «)]))),
where P is a formula which does not mention / free.

It is well known that Lw+1 satisfies Z(2). The dependent choices
principle 7) can be seen to hold using the definable well-ordering of
Lw+1. For a discussion of the ramified analytical hierarchy, Zw + 1, see
Boyd, Hensel, and Putnam [ 1 ] .

Theorem 3.3. Z(2) is consistent with "there exists an element Y £ B5,
with recursive code, such that ~ D(Y)".
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Extensions of these independence results can be obtained for certain
stronger theories than Z. Rather than give a systematic formulation, we
given an example of what can be done.

Definition 3.4. We let Z(L) be Z together with (3 x)(3 a)(a = Q£ &
x = V(a), where SlL is the first constructible uncountable ordinal).
Naturally, we assume some standard formulation of the constructible
hierarchy appropriate to Z.

Theorem 3.4. Z(L) is consistent with "(3 <*)(~ £(<*))"•

Proof. Using the Skolem-Lowenheim theorem, choose 0 countable such
that L& possesses a well-ordering of type 0 and no well-ordering of u> of
type |3 and a well-ordering on w of type any a < (3. That is, 0 is count-
able and is £2 in Z,*3. It is not known whether (3 a)(~ D(a)) holds in ZA
But instead pass to the generic extension of L? obtained by adjoining a
generic well-ordering y of w of type j3. In this extension we have Z(Z,).
In addition, we can carry out the independence techniques of this paper
using LP(y) instead of L*3, where L?(y) is the same as L$ except that
Z,P(O) = F(co) u [ y ] . The resulting Borel set will have code recursive in

y-

We can turn Theorems 3.1 — 3.4 into proofs of consistency from de-
teminateness. We make use of the usual way of formalizing the con-
structible hierarchy within set theories, such as the ones being consid-
ered, based on sets of restricted type. This formalization is done by
means of the predicate CHY+(.*,/), which is the same as the CHYOc,/)
of Section 2 except that no type restrictions are placed in the successor
case. In addition we shall use CODE(/, y), CODE+(/, y) to mean, re-
spectively, that (3x)(CHY(x,/) &y is coded by/) , (3x)(CHY+(x,/)
&y is coded by/). Thus, Z" + " was [y: (3/)(CODE(f,y))], and
£ = [>•: O/)(CODE+(/,;;))].

Lemma 3.5.1. The following can be proved respectively, in Z(2) and in
Z without the power set axiom: (CHY(x,/) & CODE(/, y)) ->
(3£)(CHY+0c,lf) & CODE+(g,y)), (CHY(x,/) & CODE(/,j) &
fe F(co + co))+ (3 g)(CHY+(x,g)&CODE+(g,>>))).
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Lemma 3.5.2. Shoenfield's absoluteness theorem, (see Shoenfield [7])
is provable in Z without the power set axiom.

Theorem 3.5. Z without the power set axiom + D(co + 3) proves the
consistency ofZ.

Proof. The assertion that D(Y) holds for all Y e 5 u + 3 with recursive
code is 2 2 in the analytical hierarchy, and is therefore subject to Shoen-
field's theorem. Hence in Z without power set +D(co + 3) we can prove
that every Y e 5 u + 3 with recursive code has a constructible winning
strategy. Now we can formalize the proof of Theorem 3.1, so that we
obtain within Z without power set, that (3;c)(3/)(3.>>)(CHY+(x,/) &
CODE+(/, y) & (Vg)(~ CODEO, y))). Fix such a well-ordering x.
Then, arguing in Z without power set, we have that all of Z,W+CJ is coded
in the/with CHY+(x,/). Using this/, we can straightforwardly give a
model of Z and hence derive the consistency of Z.

We may similarly obtain

Theorem 3.6. Z(2) + D(S) proves the consistency o/Z(2).

The level of the Borel hierarchy jumps up by one if we want to con-
sider sets of Turing degree.

Theorem 3.7. Z without the power set axiom + "every Turing set
F e i ^ either contains or is disjoint from a Turing cone" proves the
consistency ofZ. Z(2) + "every Turing set Y e B6 contains or is dis-
joint from a Turing cone" proves the consistency of Z(2).

In fact Theorems 3.5, 3.6, and 3.7 can be sharpened in the following
way: our proofs actually produce specific subsets Y of 2W, and so the
respective hypotheses may be weakened in the respective theorems by
using the respective Y instead of using all Y at the respective level of
the Borel hierarchy.
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Section 4

Here we wish to mention some possibilities for future research.
What is the formal relation between the questions about the Borel

hierarchy studied here and the commonly considered axioms and
hypotheses in set theory? At one extreme, as far as we know, even
D(5) may not be derivable from Morse-Kelley set theory together with
the 2nd-order reflection principle *. At another extreme, it may be
that Z together with (VJC) (if x is a well-ordering on a> then the cumu-
lative hierarchy exists up through x) is sufficient to derive (V a)(D(a)).

What is the relation between Borel determinateness, (written
(Va)(Z)(a)))) and "every Borel set of Turing degrees contains or is dis-
joint from a Turing cone?"

It is easily seen that the following can be derived from Borel deter-
minateness: for every Borel Y c 2W X 2" either Y can be uniformized
by a Borel function or [ (/, g): (g,f)£ Y] can be uniformized by a
Borel function. A Borel function is just a subset, X, of 2" X 2W such
that ( V / e 2W)(3 \g e 2W)((/, g) e X). A Borel function X uniformizes
Yjust in case ( V / 6 2 w ) ( 3 ! g ) ( ( / , g ) e I & (/ ,g)e Y). In fact, a Y can
be found which is continuous. So we have

I. to every Borel set Y c 2" X 2" there is a Borel function F which
either uniformizes Y or uniformizes [ (/, g): (g, f)£ Y]

II. there is an ordinal a < £2 such that to every Borel set Y c 2" X 2W

there is a Borel function F &Ba which either uniformizes Y or uni-
formizes [</,g):(*, /)£ r ]

III. to every Borel set Y c 2" X 2W there is a continuous function F
which either uniformizes Y or uniformizes [ (/, g): (g, / ) ^ Y ]

IV. Borel determinateness.

What is the relation between I-IV? Of course we have IV -> III ->•

* D.A.Martin has recently derived D(4) from MK + 2nd-order reflector principle (unpublished).
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II -> I. It seems reasonable to hope for a mathematician's proof of I, but
beware of II! Our results can be seen to carry over to obtain the inde-
pendence of II from Z(L) using a-degrees, a < Q,.
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JEAN-YVES GIRARD

INTRODUCTION TO FH-LOGIC

The increasing success of set-theory as a framework for mathematics
has been responsible for the fact that a certain number of simple
finitistic facts about the mathematical universe have been neglected.
Worse, the set-theoretic conception of mathematics has pervaded
proof-theory: but if set-theory is a very successful technical tool, it is
simply of no interest from the viewpoint of foundations, since it takes as
primitive what one wants to analyze: the infinite, and especially the
most mysterious of all infinite sets, namely the set N of integers. Hence,
it is more reasonable to take our intuition from traditional proof-theory,
and of course to use set-theoretic techniques, when necessary.

Ill-logic starts with a conception of mathematics which belongs to
the family styled as "potential infinity standpoint". When doing JW-
logic, we always deal with ideal limits of some work in progress: this is
more precisely expressed by preservation of direct limits. In other
terms, nj-logic is mostly algebraic. Here lies the subtlety of the theory.

The viewpoint of potential infinity has not been taken very seriously
outside some philosophical circles; this is because the principles con-
sidered are always so terribly weak that one cannot use the correspond-
ing systems. The other feature of ni-logic is strength, which comes
from its logical complexity, which is greater than the complexities of the
existing logics, namely £? ar>d 111- F° r instance, the principle of
induction on dilators states something stronger than usual transfinite
induction, but the "finitary control" is not lost

The general aim of fll-logic is to rebuild some parts of mathematics
(at least in mathematical logic) by making more explicit the finitary
contents of such and such construction of the actual infinite kind. The
general possibility of such a study is due to the strength of the concepts.
The philosophical interest is not dubious. The mathematical interest
could simply lie in the conceptual simplification, giving thus a new
approach to old things . . . .

Synthese 62 (1985) 191-216. 0039-7857/85.10
© 1985 by D. Reidel Publishing Company
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1. SYSTEMS OF DENOTATIONS

Systems of ordinal notations are familiar from proof-theoretical prac-
tice; the idea is to represent a given ordinal by means of well-formed
expressions of a recursive language. The study of general systems of
notations (i.e., not the construction of specific ones, connected with
particular applications) is not very interesting; in fact a system of
ordinal notations is nothing but a recursive well-order, and the theory
of these objects is well-known. This shows that the idea of ordinal
notation does not lead to any original concept.

But let's turn our attention towards practice: when we construct
systems of ordinal notations, we usually use normal form theorems. This
enables us to represent ordinals by means of smaller ones: in order to
find a notation for x, we use the normal form theorem, and in case the
parameters of this normal form are all < x, we can replace them by their
already constructed notations, and so we get a notation for x ....

Many normal form theorems are known; let us mention
(i) if z < x2, then z can be uniquely written as X.XQ + X^, with

Xo, X\ < X

(ii) any ordinal z < 10* can be uniquely written as

10x».a0+--- + 10x- ' .an-1

with xn_i <• • • <xo<x and 1 < ao , . . . , an_i < 10. This is the famous
Cantor Normal Form Theorem, in base 10.

We select as object of study the normal form theorems. We say that
the expressions occurring as normal forms are denotations, and normal
form theorems will therefore be identified with systems of denotations;
we only have to find out which specific properties of such systems are of
interest for a general theory.

A basic distinction is the distinction skeleton I parameters, i.e., be-
tween the static and dynamic parts of a denotation. The skeleton is a
fixed configuration, in which we have places for ordinal parameters, for
instance 10*.7 + 10*.4 + 10*.9; the ordinal parameters are supposed to
take rather "arbitrary" values. What is the exact amount of freedom the
parameters have? Let's go back to our examples:

(i) Here we must distinguish between two kinds of parameters, on
one hand x and on the other hand xih xj; x is needed to determine with
respect to which x2, z is analyzed, and JC0, XX are uniquely determined
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once z and x are fixed. x0, xu x can take arbitrary values provided
X0, *1 < X.

(ii) Here the denotation does not depend on the choice of an x such
that z < 10*; the parameters x0,..., xn-i are arbitrary, but must form a
strictly decreasing sequence.

We can without loss of generality, assume that our skeleton is of the
form (C; * , . . . , * ; * ) : C followed by n + 1 places; the ultimate place
(after ";") is to be filled with an x corresponding to the bound x2 in
example (i) and 10* in example (ii): in this last example, we are
therefore adding this x which was not actually needed. The other places
must be filled by ordinals < x, and by looking at example (ii) we see that
the only reasonable requirement is the following:

If (C; x0,..., xn-u x) is a denotation, and the sequence
yo, • • •, yn-i, y is isomorphic to xQ,..., xn-u x then (C; y 0 , . . . , yn-i; y)
is a denotation. From this we see that we can, without loss of generality,
assume that the order type of the sequence of parameters is always the
same (otherwise, divide your given denotation into as many "sub-
denotations" as we have possible order types for the parameters).
Finally, once the order type is fixed, there is no need for having the
same parameters occurring twice, and so we can assume that the
parameters are all distinct, and arranged in increasing order, for
instance:

(i) The denotation z = x.xo + xi corresponds in fact to three sub-
denotations:

(1) whenjco<xi z = ( d ; x0, xt; x)
(2) when x0 = *i z = (C2; x0; x)
(3) whenxo>x1 z = (C3; xu x0; x).

In the three cases, the parameters must form a strictly increasing
sequence.

(ii) The denotation 10x».Oo + • • • + lOx»-<.an-i can be rewritten as

(Ca ( l i . . . ) f l n _p Xn-i, . . . , XQ', X).

In the two cases we use symbols Q , C2, C3, Ca, ,„„_, for
skeletons; it is immediate that the choice of these symbols is irrelevant,
the only principle being that we distinguish different kinds of deno-
tations by different pairs (C;n+1) , n + 1 being the number of
parameters; in particular, if we want to render unique the part C of a
denotation, we can decide to systematically use, instead of the rather
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arbitrary symbol C in (C; x 0 , . . . , xn-i; x), the ordinal z0 denned by
2o = (C; 0 , . . . , n — 1; n):(zo; x 0 , . . . , xn_r, x). For instance, this would
lead to the following choices:

(i) C , = ( d ; 0 ,1; 2) = 2.0+1 = 1
C2 = (C2; 0;l) = 1.0 + 0 = 0
C3 = (C3; 0, l ;2) = 2.1 + 0 = 2

(ii) C , V l =(Ca <,„_,; 0 , . . . , n - 1 ; n)
= 10"-'.an_1 + --- + 10o.ao,

i.e., the integer written an_i • • • a0 in number base 10.
The system of denotations will be well-determined when we know the

set of all possible denotations, and when we know how to compare any
two such denotations. Let's go back once more to our examples: when
we want to compare x.xo + Xi and x.xo + x'i (the same x!), then it is
sufficient to compare x0 and x'o, then X! and x'i. The same type of
process is used to compare Cantor Normal Forms: they are compared
by means of the comparison of the coefficients. Hence we see that the
relative order of two denotations (with the same x) only depends on the
relative order of their coefficients (and not on the actual values of these
coefficients).

Our discussion has been sufficiently complete so that we can now give
a general definition of a denotation system:

1.1. DEFINITION. A denotation system D consists in:
(i) For all x an ordinal D(x)
(ii) For all x and z < D(x) an expression of z of the form

z = (C;x0, . . . ,xn_i ;x)

with Xo < • • • < xn-i < x.
Such an expression is called a denotation; if z = (C; x0, - . . , xn_r, x), we
say that (C; x 0 , . . . , xn_i; x) denotes z.

The properties of denotation systems are the following:

(DS1) Distinct ordinals are denoted by distinct denotations.
(DS2) If (C; x 0 , . . . , xn_i; x) is a denotation and yo< • • -yn-i < v '

then (C; yo, . . . , yn-i', y) is a denotation as well.
(DS3) Assume that z = (C; x 0 , . . . , xn_r, x), w = {C';yQ,...,

ym-i;x), z' = (C;x0, . . . ,x 'n_i;* ') and w' = ( C ; y0,. • •,
y'm_t; x'); assume that the following hold:
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(i) For all j < n, j < m, xt < y, ->x't< y).
(ii) For all i<n, j < m, xt = y, -*• x\ = y).
(iii) For all i<n, j<m, xt > y,- -> x\ > y).

Then z<w^z'<w'.
We usually identify two denotation systems when they only differ by

the choice of the parts C of the denotations; anyway, recall that one can
always assume that C = (C; 0 , . . . , n — 1; n).

2. DILATORS

In the sequel we shall use the category ON of ordinals, where the
morphisms are given by the sets I(x, y) of strictly increasing functions
from x to y.

2.1. DEFINITION. A dilator is a functor Ffrom ON to ON preserv-
ing direct limits and pull-backs.

In order to understand this definition, a certain familiarity with
category theory is perhaps necessary; let us explain what the definition
concretely means:

(i) To say that F is a functor from ON to ON means that we are
given

-for any ordinal x, an ordinal F(x)
-for all ordinals x, y and any / e I(x, y), a function F(f) e

I(F(x), F(y))

and that: F(fg) = F(/)F(g), F(EX) = EFM. (fg denotes the composition
of / with g, Ex is the identity of x, i.e., the identity map of x.)

(ii) To say that F preserves direct limits means that, given z < F(x),
it is possible to find an integer n, together with fel(n,x), such that
z e rg(F(/)).

(iii) To say that F preserves pull-backs means that, for all fu f2, /3,
morphisms in ON with the same target y, we have

rgfo) = rg(fr) H fg(/2)-> rg(F(/3)) = rgiFifJ) n rg(F(f2)).

Examples of dilators are manifold; let us give two examples, which
are closely related to the denotation systems considered in section 1:

(i) The dilator Id2 is denned by:
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Id2{x) = x2

M2(/)(x.x0+ x,) = y./(x0) +/(JC,) when / e 7(x, y).

(ii) The dilator 10H is defined by:

10H(x) = 10x

10u(f)(10x».ao + --- + 10x->.an-l)

It is easily checked that these two definitions are definitions of
dilators; moreover, we see that the definition of F(f) essentially
depends on the denotations of ordinals <F(x)l This indeed is a general
situation:

2.2. THEOREM. Assume that D is a denotation system, and define F
as follows:

- F(x) = D(x)
- F(f)((C; xo, . . . , *„-,; x)) = (C; / (x 0 ) , . . . , /(xn_t); y)

when / G I(X, y).

Then F is a dilator.
Proo/. It is easy to see that F is a functor from ON to ON; if

z < F(x) = D(x), write z =.(C; x 0 , . . . , xn_i; x), and define / e I(n, x)
by rg(f) = {xo,...,xn-1}; then z = F(f)((C; 0 , . . . , n - 1; «)): this
establishes preservation of direct limits; finally observe that, when
fe I(x, y), a point z < F(x) = D(x) is in the range of F(/) iff all the
coefficients x 0 , . . . , xn_i of its denotation z = (C; x 0 , . . . , xn_r, x)
belong to rg(/): from this we easily obtain preservation of pull-backs.

Hence, to each denotation system, we can attach a dilator; but the
converse is also true: every dilator induces a denotation system. This
rests upon the following result:

2.3. THEOREM. Assume that F is a dilator, and that x is an ordinal
and z < F(x); then z can be written as:

(1) z = (zo;xo, • • . , xn-ux).

This means that, if we define / e I(n, x) by rg(f) = {x0, . . . , xn_i}, then
z = F(/)(z0) (hence zo<F(n)).

Furthermore, if among all solutions of (i) n is chosen minimum, then
this representation is unique.

Proof. The existence of solutions to (1) is due to preservation of
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direct limits; the unicity comes from the fact that if fu f2 are two
functions such that z e rg(F(/;)) (i = 1,2), then we have z e rg(F{fi)),
where /3 is defined by rg(/3) = rg{fx) n rg(/2), by preservation of pull-
backs: hence if the cardinal of rg(f) is minimum, / is uniquely
determined, and since F(f) is injective, Zo is unique as well.

This normal form theorem obviously enables us to associate to F a
denotation system D (easy verification); furthermore

2.4. THEOREM. The processes of sections 2.2 and 2.3 are reciprocal.
In other terms, dilators and denotation systems can be identified.

3. THE ALGEBRAIC THEORY OF DILATORS

Dilators (equivalently denotation systems) are very interesting because
of their important algebraic features. By algebraic, I essentially mean
the aspects of the theory which are not essentially connected to
well-foundedness.

A typical remark is that, once we know the values of a dilator
F(n), F(f) (/e I(n, m)) on the integers and morphisms of integers, then
we know it everywhere. This is clear from the viewpoint of denotations:
F{x) is the set of all formal expressions (z0; x0,..., jcn-i; x), where
neN, xo< • • • < JCn-i < x, and zo<F(n) is such that z0 cannot be
written as F(f)(zi), for some f^En. In order to compare
(z0; xo, • • •, xB_i; x) with {zx; y0,..., ym-i; x), all we have to do is to
find integers p0,..., pn-i, and q0,..., qm-\ such that the sequences
x0,..., Xn-i, y0,---, y m - i , x and p0,..., p n _ 1 , q0,..., qm_u n + m
have the same order type, and to compare (z0; po, • • •, pn-i; n + m) with
(zu q0,..., qm_1; n + m)

A particularly important case is when the restriction of our dilator to
integers and morphisms of integers take values which are integers and
morphisms of integers (weakly finite dilators); such dilators can be
encoded by functions from N to N, and when the encoding function is
recursive, so is by definition the dilator. We therefore see that a
recursive dilator enables us to compute F(x) "recursively", effectively
in the datum x. In particular dilators, as functions from On to On, are a
typical example of the viewpoint of potential infinity, applied to
ordinals: if we consider our datum (the ordinal x) as the (ideal) direct
limit of integers, then the value F(x) is the (ideal) direct limit of the
values of F on these integers.
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The algebraic viewpoint is the part of the theory which does not
bother too much about well-foundedness, or if one prefers the theory of
predilators. Predilators are functors from the category OL of linear
orders (morphisms: J(x, y) as in ON) to itself, preserving direct limits
and pull-backs, and the order relation between morphisms: if /, g 6

I(x, y) are such that / < g (i.e., f(z) < g(z) for all z < x), then F(f) s
F{g). It is clear that the same process used above to reconstruct a
dilator from its restriction to integers could be used to define it on linear
orders! The property / < g-» F ( / ) s F(g) is just the fact that deno-
tations are increasing in the coefficients, i.e., x o £ y 0 , . . . , xn_i < yn_,
implies (z0; x0,. • •, xK_,; x) < (z<>; y() , yn_j; x). Hence dilators can
be considered as predilators. We now consider the question of deter-
mining all predilators.

3.1. DEFINITION. Let F be a dilator (or a predilator); then the trace
of F is the set Tr(F) of all pairs (z0; n) such that z =
(z0; 0 , . . . , n — 1; ri). (If we define, in the obvious way, the notion of
subdilator, then the subdilators of F are in 1-1 correspondence with the
subsets of Tr(F).) The dimension of F is by definition the cardinal of
Tr(F).

One can easily show, that, up to isomorphism, the notions of dilator
and predilator coincide in finite dimension.

The first obvious question is to determine all dilators of dimension 1;
an equivalent formulation is the following:

How do we compare two denotations

(z0; xo,. • •, *„_,) and (z0; xo , . . . , x'n-i; x)?

The answer is simple.

3.2. THEOREM. There is a permutation a of the integers {0,.. . n -
1} such that, if xam = x'^o),..., X ^ - D = x'^p-u and x^p) < x'^p), then

(zo;xo, • •. ,xB_i;x)<(z0;xo,. . .,x'n_i;x).

Conversely, if a is a permutation of {0,. . . n — 1} one can find a dilator
of dimension 1 such that the comparison of denotation w.r.t. this dilator
is done as just explained.

The next step is the characterization of all dilators of dimension 2;
since a dilator of dimension 2, say F, contains exactly two (maybe
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isomorphic) subdilators of dimension 1, the main problem is to deter-
mine the way these two subdilators must be "bridged" together to form
a dilator of dimension 2. An equivalent problem is the following: How
do we compare denotations

(z0; Xo,..., xn_r, x) and (z'o; x'o,..., x'm^; x), when
(z0; n) j= (z0; m)?

3.3. THEOREM. Let a and r be the permutations governing the
(z0; n) and the (z'o; m)-denotations by means of section 3.2, then it is
possible to find an integer p, and a number e taking one of the values
+ 1 , -1 , such that:

(i) For all i, j < p, <r(i) < a(j) <H» T(i) < T(».
(ii) In order to compare t = (z0; x 0 , . . . , xn_i; x) with t' =

(z'o,..., z'm_!; x) two possibilities may occur:

- if for some i < p, X^D =fc x'rW, choose j 0 minimum with this
property;

then if x^,,,, < x'T(j()), t < t', and if x'T(i()) < x^^, t' < t.

-otherwise, t<t' if e = + l , t'<tii e = - l .

Conversely, given a, T, e and p such that (i) holds, then one can find
a two-dimensional dilator F such that the comparison of denotations
w.r.t. F is governed by the principle just given.

The permutation governing the (z0; n)-denotations is denoted o-Z()>n

and the pair (p; e) governing the comparison between (z0; ^-deno-
tations and (z'Q; m)-denotations is denoted §(zo", n, z0; m).

The last step is the determination of all three-dimensional dilators, if
Tr(F) = {a, b, c} has three elements, then we can consider the three
subsets of cardinal 2 of Tr(F), and each of these subsets determines a
two-dimensional subdilator of F; the problem is to determine the way
three subdilators are bridged together. The answer is simple:

3.4. THEOREM. If §(a, b) = (p; +1), §(*>, c) = (q, +1), then §(a, c) =
(inf(p, <j), +1). Conversely, given permutations aa, <rb, ac, and values
lor §(a, b), §(b, c), §(a, c) just as above, then, if these data are enough
to define the two-dimensional dilators corresponding to {a, b} and
{b, c}, then there is a (unique) dilator of dimension 3 corresponding to
these data.
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We claim that we have completely determined all predilators; more
precisely

(i) a predilator is completely determined when we know its trace the
permutations <r2()>n and the data §(z0; n, z'o; m). Here remark the rather
surprising result that in order to compare denotations the parameters
must be compared according to a certain order of importance (given by
the permutations). Of course for Cantor Normal Forms, this is known to
be like that, but nothing in the general definition of denotation systems
could let us imagine that there was such a simple universal solution for
the comparison of denotations!

(ii) conversely, given any set (supposed to be isomorphic with the
trace of F) X, together with permutations <rx for x e X and data §(x, JC')
for x, x e X, xi= x', then, provided these data verify the general
compatibility conditions obtained in sections 3.3 and 3.4, then there
exists a (unique up to isomorphism) predilator F which has precisely
these data. The reason is quite simple: from that, we can define a set of
denotations F(x) for any linear order x, together with functions
F(f) e I(F(x), F(y)) when fe I(x, y); we also define relations Rx on
F(x), and the nontrivial part of the proof essentially amounts to prove
that Rx is a linear order; but the axioms for linear orders involve at most
three different elements at a time (in the case of transitivity), and the
property follows from the similar property of a <3-dimensional sub-
dilator corresponding to the points of the trace involved in these at
most three points!

The algebraic aspect of the theory enables us to represent dilators (or
denotation systems) by means of certain trees with ordinal branchings;
such tress are called dendroids, and may be very useful in giving a more
explicit description of the data implicit in the dilators.

4. DILATORS AS WELL-ORDERED CLASSES

It is clear from the algebraic analysis of predilators that this concept has
no logical complexity (for instance, to be a recursive predilator is a f]i
formula); but it is easily checked that the concept of dilator has the
logical complexity \[\. This complexity cannot be significantly lowered,
because of the

4.1. THEOREM. The set of (indices of) recursive dilators is Ilz-
complete; more precisely, if A is a \[\ formula, one can build, primitive
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recursively in A, a predilator FA such that

A «-» "FA is a dilator".

In particular, the problem for a given predilator, to be (isomorphic
to) a dilator, cannot by any means be solved by "algebraic" methods,
since the logical complexity of this question is terrible!

Important properties of the dilator F are connected to its value
F{On) on the ordinal-class On: when F is a dilator, F(On) can be
defined as a linear order on a proper class (take for instance the class of
all formal denotations (z0; x0,..., xn-x; On), where x0,..., xn-x is a
strictly increasing sequence of ordinals, and (z0; n) e Tr(F)), and this
linear order is easily shown to be well-founded, so we speak of an
ordinal class. In fact F(On) will be a proper class exactly when F is
nonconstant.

The main idea is to use the algebraic features developed in section 3
in order to introduce a strong principle, the principle of induction up to
F(On), which will be called induction on dilators. Of course, one could
write a principle of induction on the class of all formal denotations
(z0; JCO, . . . , xn~\\ On), but this is not so interesting: we would like to
associate an unique dilator (called a predecessor of F) at each point of
F(On). The situation is similar to what is currently done with well-
founded trees, where we associate a subtree to each node . . . .

Our first tool will be the classification of dilators; for this we define the
concept of a sum £j < x Ff of dilators, and we prove:

4.1. THEOREM. Any dilator can uniquely be written as a sum
F = Y.i<x Ft of connected dilators (i.e., dilators which are ^ 0, and not
themselves sums).

4.2. DEFINITION. Let F be a dilator, and let F = £ i < x Ff its decom-
position in section 4.1:

(i) if x — 0 (hence F is the null dilator 0), F is said to be of kind
0

(ii) if x is limit (not necessarily denumerable), F is of kind CJ
(iii) if x - x' + 1, and Fx> is the constant 1, F is of kind 1
(iv) if x = x' + 1 and Fx- is not 1, F is of kind (I.

The first three kinds correspond to the familiar decomposition of
ordinals into 0, limits and successors; kind O is a new thing, with no
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analogue in the case of ordinals. The classification is simply related to
the values F(On) by means of the

4.3. PROPOSITION. If F is a dilator, then

(i) F is of kind 0 iff F(On) = 0
(ii) F is of kind w iff F(On) is limit of cofinality <On

(iii) F is of kind 1 iff F(On) is successor
(iv) F is of kind fl iff F(On) is limit of cofinality On.

But of course our definition of kind does not refer at all to On] Let's
go back to our original motivation, and recall that we want to define, for
all z e F(On), a unique dilator F2, which will be called a predecessor
of F. In order to do this, it will be enough to define the predecessors Fz

when z varies through a cofinal subset of F(On); if the definition is such
that z < z' —» Fz predecessor of F2-, then it will be possible, to define the
predecessors of F by a transitivity argument.

The kinds 0, w and 1 are not problematic: in all three cases, the
problem is answered by the requirement

(1) F is a predecessor of F + F' when F' j= 0.

But in the case F is of kind O, (1) does not give us enough
predecessors; here we must use a subtler form of decomposition, based
on the idea of separation of variables: let us say that F is a bilator when
F is a functor from ON2 to ON such that:

(i) F is nonconstant in the second argument
(ii) F preserves direct limits and pull-backs

(iii) if we denote, when y £ y'; by Eyy the canonical embedding
from y to y'; then FiE^, Eyy) = EF(x,y)FU,y).

4.4. THEOREM. There exist isomorphisms SEP (separation) and UN
(unification) which are reciprocal, and which identify the category
ODIL of dilators of kind £~l and the category BIL of dilators.

Proof. The construction of SEP and UN is not so simple; it essen-
tially makes use of the algebraic analysis of section 3, in particular the
properties of the coefficient x^o) is a denotation.

We can now complete our solution: for this observe that, when F is of
kind ft, then we have F(On) = SEP(F)(On, On), so the values
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SEP(F)(On, x) (xe On) form a closed confinal subset of F(On), and
we thus say that:

(2) SEP(F)(., x) is a predecessor of F, for all x e On.

All predecessors of F are obtained by means of transitivity:

(3) If H is a predecessor of G, if G is a predecessor of F, then H
is a predecessor of F.

The relation "is a predecessor of" is not a linear order; but for a
given F, the class of predecessors of F is a well-ordered (so is linearly
ordered) class of order type F(On).

The principle of induction on dilators states that the predecessor
relation is well-founded:

4.5. THEOREM. Assume that ^ is a property of dilators, and that:

(0 X[O]
(ii) * [ F ] - * x [ F + i ]
(iii) for x limit, if xE.<*' F,] for all x' < x, then xEi<x Fi\
(iv) for F of kind ft, if for all x e On, #[SEP(., x)] then *[F] then

X[F] holds for all F.

A typical application is the construction of the functor A, which maps
the category DIL of dilators into itself. In fact A is a main theme, on
which many variations can be done, the essential idea being the use of
primitive recursion on dilators, which has the same relation to induction
on dilators as primitive recursion has to usual induction.

Among all possible variants, let us select one: fix a flower Fo (i.e., a
dilator enjoying FoiE^) = EFOU)F()(X')), and define, when F is a dilator, a
flower AF, by induction on F:

A.0 — Id (the identity functor)
AF = AF'° Fo when F = F ' + 1 is of kind 1
AF = rii<xAFi when F = Y1i<xFi is of kind o». (II is an
infinite composition.)
AF(x) = (ASEP(F)C, x))(0) when F is of kind ft.

(In fact, our definition has been slightly cheated, and we have omitted
some parts of it, for instance the value of AF(/) when F is of kind O,;
but this rough description is essentially correct!)

In fact, it seems that A is a very important object in proof-theory; in
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particular, many existing works in proof-theory using traditional
methods can be restated in a more satisfactory way, by means of the
functor A.

5. A AND TRADITIONAL PROOF-THEORY

A very important, although cryptic, work in proof-theory is the
well-known interpretation of analysis, due to Spector. The main idea of
this work is the interpretation of comprehension axioms by means of
principles of Bar-recursion: these principles enable us to construct
functional by recursion over well-founded trees, but the structure of
the branchings may be of a rather uneven kind. Let us concentrate upon
the most interesting case: so called Bar-recursion of type 2 (Bar-
recursion of type n would be analyzed by means of ]~In-logic!). Here the
well-founded trees are continuity trees associated with functionals of
type 3, and this means that the trees are made of finite sequences of
functionals of type 2. Spector's result enables us to analyze [}!-
comprehension by means of Bar-recursion of type 2. But, if Spector's
interpretation is a very often quoted result, it is never used: this is due to

(i) the use of functional interpretation, which is a very boring
technique

(ii) the use of intuitionistic framework, which is typical of a certain
ideological approach to the subject, but has nothing to do with the heart
of the matter

(iii) the fact that Bar-recursion in itself is very hard to use: in spite of
its theoretic strength, the only existing works on Bar-recursion are
works giving models for it, and by no means applications of what could
have been one of the main tools in logic!

Now observe that A is indeed a particular case of Bar-recursion of
type 2; the reason is quite simple:
- A is defined by induction on dilators, i.e., by an induction up to the
"ordinal" F(On)
- the ordinal class F(On) can be represented (using the technique of
dendroids) as a tree with ordinal branchings: the branchings may be full
branchings!
- now, traditional methods of logic enable us to replace ordinals by type
2 functionals, and so we can replace our tree by a well-founded tree
with type 2 branchings,...

But recursion (more generally induction) on dilators is significantly
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simpler than the corresponding principles on trees with type 2 branch-
ings: Bar-recursion of type 2 (more generally so called Bar-induction of
type 2). This is due to the rather simple algebraic features of dilators:
for instance the ordinal branchings in the tree associated with F(On)
are of a very simple nature, whereas we don't know enough from the
rough continuity properties in the general case of Bar-recursion of type
2. Now it seems reasonable that the principle of induction on dilators is
of the same "strength" as the principle of Bar-induction, and that A can
replace Bar-recursion (of type 2). There are many evidences for that,
but a precise proof has never been given. If this is true (and this can
hardly be false), we can claim that

"A is a civilized version of Bar-recursion of type 2".

Another traditional technique of proof-theory is the use of Bach-
mann collections, which are ordinals (the height of the collection)
equipped with fundamental sequences whose length is less than the type
of the collection. When x is a cardinal (or better: the recursive analogue
of a cardinal), and B is a Bachmann collection of type x, then one
defines a normal function (t>B, from x to x, as follows:

<f>B(z) = z when B = 0

<£B+I(Z) = </>B(/O(Z)) (/O is a fixed normal function from x to
x)
</>B(Z) enumerates the points which are in all sets rg(<f>B.),
when B is a supremum of a family (Bi)i<x<x

4>B{z) = </>B2(0) when the height of B is of cofinality x, and Bz

is obtained by restricting B to [|B|]z. (|JB| denotes as usual
the height of B.)

The technical development of Bachmann collections is limited by the
fact that the construction of such collections is very painful. For
instance the ordinal 4>B{z) c a n in turn be equipped (when z is a
cardinal) with a structure of Bachmann collection of type z, but this is
more simple to state than to do! The literature on the subject has
suffered from the fact that too many verifications of boring properties
were needed.

Dilators give us a new approach to these topics, using the slogan:

a dilator = a Bachmann collection in each type.

Concretely this means that if D is a dilator and x is a cardinal, then
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the techniques of section 4 enable us to equip D(x) with a structure of
Bachmann collection of type x. The most remarkable achievement here
is that of course everything is already encoded by the restriction of D to
integers! For instance, if D is of kind il, then D(x) is of cofinality x, and
we can define the fundamental sequence [D(x)]z = SEP(D)(JC, z)....

Now, if we compute the values AD(z) and 4>D(x)(z), for some
"cardinal" x > z, then we get (provided FQ{t) = fo{t) for all t<x)

(1) AD(z) = <*>D(x)(z).

In particular, one can say that A gives a more interesting framework
for Bachmann collections and hierarchies.

A typical application of the equation (1) is the comparison of
hierarchies: one can consider the following two hierarchies of recursive
functions indexed by elements of Kleene's O, i.e., by Bachmann
collections of type o>:

\0(n) = n yo(n) = 0
K+i(n) = K(n + 1) 7x+i(n)= 7*(n)+l

x limit-* Xx(n) = AWn(n) yx(n) = otxjn(n).

Traditional proof-theory has much to do with A: for instance every
provably total recursive function of PA (Peano arithmetic) is bounded
by a function Ax, for some x < e0, equipped with the familiar fun-
damental sequences.

This fact (together with related facts coming essentially from the
work of Gentzen) was responsible for the common belief that

e0 is the ordinal of arithmetic.

But how many steps are needed in order to exhaust all provably total
functions of AP by means of -y? Surely more than e0! In fact by using
the equation (1) and the obvious relations between A and (a variant of)
<f>, then it is possible to give a precise relation between A and y:

(2) Ao(o>)= YAD(O.)-

In particular, applying this to dilators D such that D(a>) < e0, it follows
that the ordinal of AP, computed in terms of 7, is the Howard ordinal
170, which is traditionally associated with ID^; similar results can be
obtained for current theories, by means of the equation (2). (In fact the
situation is a bit more complicated, because we must use here variants
of the concept of dilators, e.g., the notion of ladder, and also that we are
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using a variant of A adapted to ladders; but this is only a technical
remark of no deep meaning.)

This estimation for the " y-ordinal" of arithmetic renders suspect the
claim that e0 is "the" ordinal of arithmetic; e0 is surely one of the main
ordinals connected with arithmetic, but 170 is another one! In fact, for
practical purposes, e0 is the best ordinal, since one can very easily
handle the hierarchy A (using the functional equation \x ° Ay = \x+y)
and if for instance we want to compute explicit bounds, etc . . . A will be
the best choice; but for theoretical purposes, y is a nicer hierarchy,
which takes into account every single step in the computation, and with
this hierarchy, we certainly reach the ultimate step-by-step construction
of recursive functions. The distinction is akin to the distinction between
usual proofs (nicer in practice) and cut-free proofs (the best in theory),
and in fact, y is connected to a cut-elimination theorem for arithmetic
assigning TJ0 as a bound for the cut-free proofs obtained!

6. P - P R O O F S

If we keep in mind the obvious analogy with w-logic, we have so far
developed the concepts which correspond to the notions of well-
founded tree (and its variants: recursive well-orders, Kleene's O . . . . ) ;
but w-logic also contains an original notion of proof, known as the
w-rule. It turns out that fli-logic also has its own notion of proof, the
p-rule.

6.1. DEFINITION. A p-model (of a theory T in a language L
containing a type o for the ordinals, together with a predicate < taking
two type o arguments, and with no function letters: we speak of
^-language, jB-theory) of a j8-theory T is a model M of T such that:

(i) the interpretation M(o) of the type o is an ordinal x = |M|;
contrarily to the tradition, | M | = 0 is allowed.

(ii) the interpretation M(<) of the symbol < is just the usual order of
|M|.

It is easily checked that the set of all (indices of) formulas which are
valid in all /3-models of T is n \ in a code of T; moreover it is possible
to choose T finite such that this set is fli-complete. Hence the question
of validity in all /3-models of a given /3-theory is therefore a very
natural one. But this question, raised by Mostowski, was unanswered for
a long time: how to characterize syntactically the set of formulas valid
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in all /3-models of T? There was even a "proof" that no such
characterization is possible!

In order to find the solution, the best thing is first to use a very trivial
answer to the question: to say that A is valid in all /3-models of T means
that for all x e On, A is valid in all j3-models M of T, with | Ml | = x. Now
we can (at least when x is denumerable, in fact for all x) apply an
analogue of the ^-completeness theorem for such an x: this shows that
A is provable by means of the x-rule:

• • • A[y] • • • all y < x
Va°A[a]

and the axioms y < f and ~(y' < y) of the atomic diagram of x.
If we call such a proof a x-proof, then A is valid in all /3-models of the

theory T iff for all x, A has an x-proof. Hence our first and trivial
answer to the question of Mostowski is:

A is valid in all /3-models of T iff there is a family (Px)X£on such that
for all x, Px is a x-proof of A.

But such a family (Px) can by no means be considered as an
acceptable syntactic object! Unless we find a way to make effective
such families. Now, observe that, if / e I(x, y) and P is a y-proof, we
can (in certain cases) define a x-proof f~l{P). f~\P) is obtained by
means of the mutilation process:

(i) In P remove all premises of y-rules whose index is not in rg{f) and
the subproofs above such premises.

(ii) If then all ordinal parameters which remain are in rg(f), then
replace systematically f(t) by i: the result is the x-proof f~i(P).

This definition can be used to define a category PFT, where the
objects are pairs (x, P), with P a x-proof in T, and the morphisms from
(x, P) to (y, O) are all / e I(x, y) such that f~l(Q) = P.

Going back to our problem, we require that the family (Px)xeon ' s
functorial in the following sense: P(x) = Px, P(f) = / defines a functor
from ON to PFT. Such a functor is called a ft-proof of A. Equivalently
when fe I(x, y), /"'(Py) = JPx- It is easily checked that, as a functor,
j8-proofs preserve direct limits and pull-backs, and in particular, a
/3-proof is uniquely determined by its restriction (Pn)n<o> or by Po>
alone! So it will make sense to speak of a recursive, prim. rec.
/3-proof... and this means that the concept of j3-proof is a perfectly
acceptable notion of proof as a syntactic object! In fact a /3-proof is as
"syntactic" as an co-proof, and it is not exaggerated to say that the
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/3-proofs are more "finitary" than co-proofs.... Of course, one can
show that:

6.2. THEOREM. A closed formula A is valid in all /3-models of a
recursive theory T iff there is a recursive /3-proof of A in T.

Proof. We introduce PF'r as PFT, but here the objects are preproofs,
i.e., the proofs are not necessarily well-founded; we produce a pre/3-
proof of A in T, (Px), with the property that Px is well-founded iff A is
valid in all /3-models M of T, with | M | < x

The mathematical structure of /3-proofs is very close to the structure
of dilators (more precisely: dendroids).

A priori the existence of the /3-rule is promising w.r.t. the question of
cut-elimination, with its corollary, the subformula property: take for
instance Peano arithmetic; by co-completeness, every true formula of
PA has a recursive co-proof: simply because such formulas are fll- I"
particular, this fact will still hold in any extension of PA, and this is the
essential reason why we obtain a principle of purity of methods for
co-proofs of arithmetic formulas in any co-consistent extension of PA.
But if we turn our attention towards formulas which are not ]\\,
typically formulas involving a negative occurrence of some inductive
definition, then co-logic cannot be used to obtain a proof of such
formulas, when true: this means that we will obtain more formulas of
that kind by adding new axioms, and so purity of methods cannot be
expected in that case! But if we change the logical framework and
replace the co-rule by the /3-rule, then since such formulas are fll, then
by an argument analogue to what we said for PA, purity of methods can
be expected! Now, for the proof-theorist, purity of methods is called the
subformula property, and usually follows from a cut-elimination
theorem. In particular, it will be possible to prove a cut-elimination
result for theories of inductive definitions.

7. INDUCTIVE LOGIC

As just explained, the methods of usual logic as well as the methods of
co-logic, are not enough to obtain cut-elimination for inductive
definitions; in fact Martin-L6f, who used usual logic was only able to
eliminate cuts from proofs of X? sequents, whereas the German school
(Pohlers, Buchholz, Sieg .. .) working within the framework of co-logic,
was only able to eliminate cuts from proofs of f}i sequents, i.e., when
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the inductively defined predicate only occurs positively in the con-
clusion.

Our notations will be as follows: <5 is a positive operator 3>[X, x] in
the language L; 7<1>Z stands for the zth iterate of <&, whereas D<$> stands
for the iteration of <t> up to the closure ordinal of the inductive
definition. (In other terms, J<f>z stands for W z < z <&[/<I>z',.], and D<J>
stands for /O°n.)

In any language where ordinals < z are available, then the symmetric
rules:

r |-> <i>[J<i>z', t], A some z' < z
( 1 ) r | ->fe/<Dz,A

r,<fr[I<J>z,t]|^A all z ' < z
( ' r,teI$zl-^A

exactly express the construction of the 7<l>z's; if x and y are ordinals and
x < y, then the asymmetric rules:

H-» ffif^', t], A some z' < y
( ) r|̂ teD4>,A

r, <i{I<t>z\ ( ] ^ A all z' < x

express the construction of D<&; the rule (3) says that I<&y <= DQ,
whereas the rule (4) expresses that D<J> <= 74>x. By transitivity of
inclusion (i.e., by the cut-rule!) we obtain 74>y <= /<&*, and since x < y,
the ordinal x must be > the closure ordinal of <lJ. Of course, for most of
the choices of ordinals x and y, the system just written, say T[x, y], is
simply inconsistent!

The systems T[x, y] are bridged together by means of the /3-rule; if
D is a dilator of the form Id + 1 + D', we can restrict our attention to so
called D-proofs, which are families (Px) such that for all x, Px is a proof
in the system T[x, D(x)], with obvious mutilation conditions . . . .

7.1. THEOREM. Assume that F|-»A is a sequent which is true in all
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models where D<I> is interpreted in the standard way: then there exists a
recursive Id+ /-proof of F|—» A.

Proof. The result combines the interpretation of the rules (l)-(4)
with the /3-completeness theorem . . . .

Now the calculus just sketched enjoys cut-elimination; but observe
that such a result cannot be proved by too simple ways. For instance,
one cannot prove cut-elimination in the theories T[x, y], simply
because for many values of x and y, these theories are inconsistent, and
inconsistency is incompatible with cut-elimination. The only possibility
is to use the given D-proof as a whole. The crucial case in the
cut-elimination theorem is the reduction of a cut whose main formula is
of the form t e D3>; the question is nontrivial, since the rules (3) and (4)
are not symmetric; in particular, (4) has not enough premises compared
to (3). In order to have enough premises in (4), one uses the fact that the
data are in fact functorially dependant on x, and that x can therefore be
replaced by any expression D(x), by means of a composition with D.
This is a way to restore the symmetry between the rule, and the iteration
of this process finally yields full cut-elimination. But the way the result
has been proved has made D change: we start with a D-proof and
finally get a D-proof.

7.2. THEOREM. Assume that P is a D-proof of a sequent which does
not contain /<!>*; then one can construct effectively in the data a dilator
Dj and a Di-proof of the same sequent, which is cut-free.

The cut-elimination theorem for inductive definitions is deeply
related to A; in fact one would show that bounds on the cut-free proof
of section 7.2 can be obtained by means of A. Following the same line of
thought, it would be possible to show that Jl i~ CA is formally equivalent
(over a system of analysis only containing [li-CA) to the fact that the
functor A (viewed as a recursive functor from predilators to predilators)
sends dilators on dilators, and also to the cut-elimination Theorem 7.2.

8. APPLICATIONS TO GENERALIZED RECURSION

The results just obtained can be applied to generalized recursion: for
instance if / is a function from <o pK to itself which is Yf over L^K , then /
can be expressed as the Skolem function of a true formula B:

Vx e D<E> 3y e D4> A[x, y]
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where the formula A is arithmetical, and for a well-chosen $.
Now, if we apply sections 7.1 and 7.2, we find a recursive dilator D

and a recursive D-proof of B. Now it is easy to see, by replacing in this
cut-free proof all positive occurrences of D<J> by J<J>D(z) and all negative
occurrences of D<I> by /<i>2, that, for all z e On, the formula

Vxe/<l>z 3ye/<l>D(z) A[x, y]

is valid. This forces / (z)<D(z + l) for all z<wf K (for technical
reasons the majoration is only effective for z infinite). Hence, any
a)pK-recursive function is bounded, for all values >w, by a recursive
dilator.

The importance of this result is that generalized recursion makes use
of many noneffective schemes, for instance infinite ^.-operators . . . but
the computation of D(z) is perfectly effective in the data D and z: the
result is therefore a reduction of the class of algorithms that may be
used to define wfK-recursion in the total case. In fact, if we are only
concerned with the rate of growth of the generalized functions (and in
generalized recursion, this is the crucial thing), then we can simply take
recursive dilators, which are truly recursive. We therefore succeed in
eliminating the actual infinite from wfK-recursion!

The result just given generalizes: there is an ordinal s0 such that, for
all x < s0, the following holds:

8.1. THEOREM. All total £ l functions from x+ to x+ (the next
admissible) are bounded, for all arguments >x, by a recursive dilator

V z ( x < z < x + ^ / ( z ) < F ( z ) ) .

In fact, the result of section 8.1 is true for a cofinal subset of the first
stable <T0. Observe that the result implies the equality

x+ = Hi(x)

where Hi is the sum of all recursive dilators.
The question of the generalization of such results to other kinds of

admissibles (not only successors) has led to a certain number of
developments. For instance, let G be the dilator (flower) obtained by
iterating Hi, i.e., G(x + 1) = G(x) + Hi(G(x)), etc.. .; for all x < s0, we
have G(x) = wfK; consider the functor A, with AJ = G; then

8.2. THEOREM. Assume that / is a total £ ' function from ioK to
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itself (the first recursively inaccessible); then there exists a recursive
dilator D such that /(z) < D{z) for all z < ifiK.

Many other results following these lines have been found: this is one
of the most active directions of Ylk logic!

9. DESCRIPTIVE SET-THEORY

Here not so many things have been accumulated, but the results already
obtained are rather encouraging.

Basis and uniformization theorems play an important role in descrip-
tive set-theory; but, as soon as the logical complexity of the sets
involved becomes not too small, special axioms are needed (e.g.,
determinacy assumptions). There is a reasonable ground to think that
ni-logic a nd its generalizations (dilators of finite type, or ptykes) can be
of some use to clarify some of these questions.

The Novikoff-Kondo-Addison theorem enables one to uniformize a
£2 graph by a £2 function. We can translate this question in terms of
dilators: if we want to select a point in a nonvoid £2 set of reals, this
essentially amounts, given a predilator P, which is not a dilator, to
select an ordinal x, together with a s.d.s. in P(x), in such a way that the
selected data are (encoded by) a TJi singleton. In fact, such a selection is
very easy and natural, and the crucial point is that ordinals are linearly
ordered (in the selection of x).

Now, if we turn our attention towards uniformization of a £3 graph,
then, in analogy to the Yh case, it is natural to consider the question of
selecting, given a preptyx P of type (o—> o)—» o (i.e., a functor from
DIL to OL preserving direct limits and pull-backs) which is not a ptyx, a
dilator D together with a s.d.s. in P{D). In fact the main part of the
argument used in the £ 2 case is still valid, the only problem being that
dilators are not linearily ordered (problem of the selection of D).

Here come the sharps: the real o* can be used to define a dilator, that
we shall note by o*\ now one easily proves the following result:

9.1. THEOREM. Assume that D and D' are recursive dilators; then

(i) D(o*(0)) = D'(o*(0)) -*D°o* = D'°o*
(ii) D(o*(0)) < D'(o*(0))-» 3E(D° o* + E = D'°o*).

In other terms, recursive dilators, when composed with o*, form a
linearity ordered set, with respect to the relation of subsum.
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Of course, the argument relativizes to an arbitrary real a: in Theorem
9.1, D and D' are now recursive in a, and o* is replaced by a*.

Now, all the a*, when a e R, can be arranged into a direct system,
and one easily shows that the direct limit tl of this system is a dilator.
Now, one proves, using the relativization of Theorem 9.1:

9.2. THEOREM. Dilators with a denumerable trace, when composed
with O, are linearly ordered by the subsum relation.

This result is enough to obtain uniformization: we can select a unique
dilator of the form D ° O, and when we encode the solution, we finally
uniformize by means of a £4 function. The result is of course not new,
but the method of proof makes use of [11 logic.

Now the question is to find similar linearization principles for higher
type ptykes; such results could lead to objects which would be
analogues of sharps "of higher types", objects that set-theorists are
seeking, but have not yet been able to produce. We hope that the
conceptual clarification that seems to arise from the use of TJ2 logic in
this matter could be of essential interest here.
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CONSISTENCY-PROOF FOR THE GENERALIZED
CONTINUUM-HYPOTHESIS1

B Y KURT GODEL

THE INSTITUTE FOR ADVANCED STUDY

Communicated February 14, 1939

If M is an arbitrary domain of things in which a binary relation «is de-
fined, call "propositional function over M" any expression <p containing (be-
sides brackets) only the following symbols: 1. Variables x, y whose
range is M. 2. Symbols <Zi . . . an denoting2 individual elements of M (re-
ferred to in the sequel as "the constants of p"). 3. «. 4. ~ (not), v (or).
5. Quantifiers for the above variables x, y . . . * Denote by M' the set of
all subsets of M defined by prop, funct. tpix) over M. Call a function /
with 5 variables a "function in M" if for any elements X\ . . . xs of M
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f(xi ... xs) is defined and is an element of M. If <p(x) is a prop, funct. over
M with the following normal form:

(* i . . . x n ) (3;yi ... ym) fa ... zk) ( 3 M I ... UC)

L(XX1 . . . Xnyi . . . ymZi . . . ZkUi . . . Ue . . . . )

(L containing no more quantifiers) and if a t M, then call "Skolem-functions
for <p and a" a n y f u n c t i o n s / i ... fm gi ... ge ... in M w i t h r e s p . n ... n,
n + k...n + k... variables such that for any elements Xi ... xnzi ...
Zk • • • of M the following is true:

L(aXi . . . Xnfi(xi . . . Xn) . . . fm(X\ . . . Xn) Z\ . . . Zk

gi(xt . . . xnzi . . . zk) . . . gt(xi . . . xnzi . . . zk) )

The proposition <p(a) is then equivalent with the existence of Skolem- fnct. for
<p and a.

Now define: Mo = |A}, Ma+1 = MJ, M? — S Ma for limit numbers
a</3

p. Call a seta; " constructive," if there exists an ordinal a such that x t Ma

and "constructible of order a." if x e Ma+i — Ma. It follows immediately
that: Mtt C Mp and Ma e Mpfor a < /3 and that:

T H . 1. x e y implies that the order of x is smaller than the order of y for any
constr. sets x, y.

It is easy to define a well-ordering of all constr. sets and to associate with
each constr. set (of an arbitrary order a) a uniquely determined prop. fnct.
<pa(x) over Ma as its "definition" and furthermore to associate with each
pair <pa, a (consisting of a prop. fnct. <pa over Ma and an element a of Ma

for which <pa(a) is true) uniquely determined "designated Skolem-fnct. for
<Pa, a"3

T H . 2. Any constr. subset m of Mua has an order < coa+1 (i.e., a constr.
set, all of whose elements have orders < &a has an order < ua+1).

PROOF : Define a set K of constr. sets, a set 0 of ordinals and a set F of
Skolem-fnct. by the following postulates I-VII:

I. MuacK and me K.
II. If x € K, the order of x belongs to 0.
III. If x e K, all constants occurring in the definition of x belong to K.
IV. If a e 0 and ipa(x) is a prop. fnct. over Ma all of whose constants

belong to K then:
1. The subset of Ma defined by <pa belongs to K.
2. For any y e K • Ma the design . Skolem-fnct. for ipa and y or ~ tpa and

y (according as <pa(y) or ~ <pa(y)) belong to F.
V. If / e F, X\... Xn e K and (%i . . . Xn) belongs to the domain of definition

off, then/Ox^ . .. xn) e K.
VI. If x, y e K and x — y =t= A the first4 element of x — y belongs to K.
VII. No proper subsets of K, 0, F satisfy I-VI.
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T H . 3. Ifx^py and x, y tK • Ma+l, then there exists aztK- Ma such thai
ztx — y or zty — x.u
(follows from VI and Th. 1.)

TH^JL6 K + 0 + F = Na

since M*a = Ka and K + 0 -f F is obtained from Maa -j- {m) by forming
the closure with respect to the operations expressed by I I -VI .

Now denote by r? the order type of 0 and by a the ordinal corresponding
to a in the similar mapping of 0 on the set of ordinals < rj. Then we have:

T H . 5. There exists a one to one mapping x' of K on Mn such thatxty^=
x' ty' for x, y tKandx' = xforx e M»o.

PROOF: The mapping x' (which will carry over the elements of order a
of K exactly into all constr. sets of order 5 for any a t 0) is defined by trans-
finite induction on the order, i.e., we assume that for some a e 0 an isomor-
phic6 mapping/ of K-Ma on M-7 has been defined and prove that it can
be extended to an isomorphic mapping g of K-Ma+1 on .M5 + 1 8 in the fol-
lowing way: At first those prop. fnct. over Ma whose constants belong to K
(hence to K-Ma) can be mapped in a one to one manner on all prop. fnct.
over M% by associating with a prop. fnct. ipa over Ma having the constants
fli . . . an the prop. fnct. <p5 over M- obtained from <pa by replacing a,- by a;1

and the quantifiers with the range Ma by quantifiers with the range M5.
Then we have:

T H . 6. <pa(x) cpzix1) for any xeK- Ma.

PROOF: If <pa(x) is true, the design . Skolem-fnct. for <pa and x exist,
belong to F (by IV, 2) and are functions in K-Ma (by V). Hence they are
carried over by the mapping / into functions in M 5 which are Skolem-
functions for p5, x1, because the mapping / is isomorphic with respect to e.
Hence <pa(x) ^^(x1).

/^(Pa(x) ^ ^Paix1) is proved in the same way.
Now any <pa over Ma whose constants belong to K, defines an element of

K-Ma+1 by IV, 1 and any element b of K-M.a+1 can be defined by such a
<pa (if b « Ma+1 — Ma this follows by III , if be Ma then "xtb" is such a <pa).
Hence the above mapping of the ipa on the <p5 gives a mapping g of all
elements of K • Ma+ x on all elements of M%+1 with the following properties:

A. g is singlevalued, because if <pa, fa define the same set, we have
Va(x) = ipa(x) for x e Ma-K, hence ^(x1) = ^(x1) by Th. 6, i.e., <p5 and
^5 also define the same set.

B. x ey ^xltg(y)forxeK-Ma,y tK-Ma*i.
(by Th. 6)

C. g is one to one, because if x, y e K- Ma+1, x 4= y then by Th. 3 there is
a z « (x — y) + (y — x), z e K-Ma, hence z1 « [g{x) — g(y)] + [g(y) —
g(x)] by B. Hence g{x) =t= g(y).

D. gis an extension ofthe mapping f, i.e., g(x) = x1forxtK-Ma.
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PROOF: For any b «K-Ma a corresponding <f>a which defines it is x t b,
hence <p« is x « b1 hence g (b) = b1.

E. £ WKJ/V K- Ma exactly on M^ (by Z>)9 and therefore, K(Ma+1 — Ma)
on Mz+1 — Ma by C.

F. gisisotnorphicfor e, i.e.,g(x) eg(y) =xeyforanyx,y eK-Ma+1.
PROOF: If x e K-Ma, this follows from B and D, if x e Z-(Jkfa+1 —

.Ma) then g(x) e Afs+i — Ms by £, hence both sides of the equivalence are
false by Th. 1.

By D and F, g is the desired extension of/ and hence the existence of an
isomorphic mapping x' of K on Mn follows by complete induction. Further-
more since all ordinals < o>a belong to 0 (by I, II) we have f} — j3 for j3 < wa

from which it follows easily that x = x' for x e Maa. This finishes the
proof of Th. 5.

Now in order to prove Th. 2 consider the set m' corresponding to m in the
isomorphic mapping of K on Mr Its order is < 77 < ooa+1, because m' e
Mn and 7; = 0 ^ Na by Th. 4. Since * e m == *' e m' for a; e iiT, we have
x em = x em' for # e Maa by Th. 5. Since furthermore m C Mua it fol-
lows that m = m'-Maa, i.e., m is an intersection of two sets of order
< <oa+1, which implies trivially that it has an order < wa+1.

T H . 7. -MM<a considered as a model for set-theory satisfies all axioms of
Zermelo10 except perhaps the axiom of choice and Ma (Q being the first inac-
cessible number) satisfies in addition the axiom of substitution, if in both cases
"definite Eigenschaft" resp. "definite Relation" is identified with "prop. fnct.
over the class of all sets" (with one resp. two free variables).

Sketch of proof for ¥»„: ax. I, II are trivial, ax. VII is satisfied by Z =
Mu, ax. III-V have the form Qx)(u) [u e x = <p(u)], where the <p are certain
prop. fnct. over M»a. Hence, by def. of Ma+i there exist sets x in Ma>a+i
satisfying the axioms. But from Th. 1 and Th. 2 it follows easily, that the
order of x is smaller than cou for the particular <p under consideration, so that
there exist sets x in the model satisfying the axioms.

For Ma ax. I-V and VII are proved in exactly the same way and the
axiom of subst. is proved by the same method as ax. III-V. Now denote by
"A" the proposition "There exist no non-constructible sets"11 by "R" the
axiom of choice and by "C" the proposition "2Ha = Ha+i for any ordinal
a." Then we have:

TH. 8. A ID Rand A 3 C.
A ID R follows because for the constr. sets a well-ordering can be defined

and A Z3 C holds by Th.2, because Kf»a = Na.
Now the notion of ' 'constr. set" can be defined and its theory developed

in the formal systems of set theory themselves. In particular Th. 2 and,
therefore, Th. 8 can be proved from the axioms of set theory. Denote the
notion of "constr. set" relativized for a model M of set theory (i.e., defined
in terms of the e-relation of the model) by constr.M, then we have:
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TH. 9. Any element of M^ (resp. Ma) is constr. M^ {resp. constr.^^)',
in other words: A is true in the models Mu^ and Ma.

The proof is based on the following two facts: 1. The operation M'
(defined on p. 220) is absolute in the sense that the operation relativized for
the Model Mau, applied to an x t Mau gives the same result as the original
operation (similarly for Ma). 2. The set Na which has as elements all
the Mp (for /? < a) is constr.M^ for a < uu and constr.^n for a < 0, as is
easily seen by an induction on a. From Th. 9 and the provability (from
the axioms of set theory) of Th. 8 it follows:

TH. 10. R and Care true for the models I » , and Ma.
The construction of Mua and Ma and the proof for Th. 7 and Th. 9 (there-

fore also for Th. 10) can (after certain slight modifications)12 be accomplished
in the resp. formal systems of set theory (without the axiom of choice), so
that a contradiction derived from C, R, A and the other axioms would lead
to a contradiction in set theory without C, R, A.

1 This paper gives a sketch of the consistency proof for propositions 1, 2 of Proc.
Nat. Acad. Sci., 24, 556 (1938), if T is Zermelo's system of axioms for set theory (Math.
Ann., 65, 261) with or without axiom of substitution and if Zermelo's notion of "Definite
Eigenschaft" is identified with "propositional function over the system of all sets." Cf.
the first definition of this paper.

2 It is assumed that for any element of M a symbol denoting it can be introduced.
3 At first with each <pa an equivalent normal form of the above type has to be associ-

ated, which can easily be done.
4 In the well-ordering of the constr. sets.
6 m means "power of m."
* I.e., x e y = f(x) ef(y). In the following proof/(x) is abbreviated by x1.
7 I.e., of the elements of order < a of K on the elements of order <<J of Mn.
8 I.e., of the elements of order ^ a of K on the elements of order ^a of Mn.
9 Because/ maps K-Ma on Ma by induct, assumpt.

10 Cf. Math. Ann., 65, 261 (1908).
11 In order to give A an intuitive meaning, one has to understand by "sets" all objects

obtained by building up the simplified hierarchy of types on an empty set of individuals
(including types of arbitrary transfinite orders).

12 In particular for the system without the axiom of substitution we have to consider
instead of Mua an isomorphic image of it (with some other relation R instead of the e-
relation), because Muu contains sets of infinite type, whose existence cannot be proved
without the axiom of subst. The same device is needed for proving the consistency of
prop. 3, 4 of the paper quoted in footnote 1.

13 Th. 3, 4, 5, are lemmas for the proof of Th. 2.
* Unless explicitly stated otherwise "prop, fnct." always means "propositional func-

tion with one free variable."
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THE MORDELL-LANG CONJECTURE
FOR FUNCTION FIELDS

EHUD HRUSHOVSKI

1. INTRODUCTION

In [La65], Lang formulated a hypothesis including as special cases the Mordell
conjecture concerning rational points on curves, and the Manin-Mumford conjec-
ture on torsion points of Abelian varieties. Sometimes generalized to semi-Abelian
varieties, and to positive characteristic, this has been called the Mordell-Lang con-
jecture; see [AV91] and [La91]. It is essentially a finiteness statement on the inter-
section of a subvariety of a semi-Abelian variety with a subgroup of finite rank. We
prove here the function-field version of the conjecture, in any characteristic.

In characteristic 0, the Mordell-Lang conjecture was proved in a sequence of
papers by Raynaud, Faltings and Vojta, at least in the case of Abelian varieties or
finitely generated groups. The full result was proved over number fields, and these
cases were inferred for function fields using a specialization argument; see [La91] for
a description. For Abelian varieties in characteristic 0, a quite different argument
was found by Buium; this inspired our approach. In positive characteristic, many
cases were proved in [AV91]. This paper presents a uniform proof incorporating
all cases, using model theoretic ideals. We describe the strategy following the
statement of the result (equivalent to the statement in [AV91]).

In this statement, and in the entire paper, we use the language of varieties rather
than schemes. We refer to the absolute Zariski topology unless otherwise stated,
and generally use terms in their geometric sense (over an algebraically closed field).

Let K/k be a field extension, & algebraically closed. Call a group F p'-finitely
generated if Qp ® F is finitely generated as a Qp-module, where Qp = Q if p = 0,
and Qp — {m/n € Q : n prime to p] if p > 0. This condition is of course valid for
finitely generated Abelian groups, and for prime-to-p-torsion groups. Recall that a
semi-Abelian variety is an extension of an Abelian variety by an algebraic torus.

Theorem 1.1. Let S be a semi-Abelian variety defined over K, and X a subvariety
of S. Let F be a p'-finitely generated subgroup of S. Suppose XClT is Zariski dense
in X. Then there exists a semi-Abelian variety So defined over k, a subvariety Xo
of So defined over k, and a rational homomorphism h from a group subvariety of S
into So, such that X is a translate of h~1(Xo).

Call a subvariety of S satisfying the conclusion special. The theorem then states
that for any subvariety Z of 5, Z D F is contained in a finite union of special
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subvarieties of Z. (To see this, apply the theorem to the irreducible components X
of the Zariski closure of Z n F.) If S is an Abelian variety with K/k trace 0, the
special subvarieties are just the cosets of Abelian subvarieties of S. In this case the
theorem reads as follows.

Corollary 1.2. Let k be an algebraically closed field, A an Abelian variety with
no nonzero homomorphic images defined over k, 2L a subvariety of A, and T a
p'-finitely generated subgroup of A. Then 2L(K) l~l F = Y_(K) !~l T, where Y_ is a (re-
ducible) subvariety of X_, equal to a finite union of translates of Abelian subvarieties
of A.

See also §6 for some quantitative statements, one in the presence of a discrete
valuation of K/k and hence a distance function, another giving an exponential
bound on the number of translates in 1.2 in terms of the rank of F (the other data
being fixed), in fixed positive characteristic.

We remark here that the characteristic zero geometric Mordell-Lang conjecture
can be deduced by specialization arguments from the positive characteristic case.
This was suggested in [La91], following the description of Voloch's theorem; Lang
says one would need to know something on existence of ordinary specializations, but
that's because of the ordinariness hypothesis in Voloch's result, no longer present.
(Some other issues arising from the higher dimension and non-finite-generation
need to be addressed, but this can be done using methods of Neron and Raynaud.)
However we will not take this route, and will give a direct proof in characteristic
zero. The exponential growth with rk(F) alluded to above does not appear to
ascend to characteristic zero by this method.

Our opening move is taken from Buium ([Bu92]), who proved certain cases of
the theorem, including Corollary 1.2 in characteristic 0, using differential algebra.
A differential field should be regarded as an infinite-dimensional object, and in
particular an Abelian variety can no longer be viewed as finite-dimensional in an
absolute sense. However, using a homomorphism introduced by Manin ([Ma58],
[Ma63]), Buium points out that F is contained in a certain finite-dimensional group.
At this point he proceeds to use some of his theory of finite-dimensional Kolchin
closed groups (but also some analysis). Our proof uses instead the model theory of
abstract finite-dimensional groups ("groups of finite Morley rank").

An algebraic structure (e.g. a group with a distinguished subset) is said to have
finite Morley dimension if one can assign an integer dimension to the "definable
subsets" so that certain natural conditions are satisfied. Such structures have been
analyzed, in the abstract, by model theorists, motivated initially by categoricity
questions. Examples are provided by algebraic varieties over an algebraically closed
field, with the usual dimension theory. However we apply the theory to the kernel of
the Manin homomorphism and certain related groups, that do not a priori carry the
structure of an algebraic variety. Following some reductions, we apply a general
dichotomy theorem of B. Zilber and the author. This theorem implies that an
enriched group satisfying the appropriate dimension-theoretic axioms is either a
module over a certain local ring, with no additional structure, or it carries the
structure of an algebraic group over an algebraically closed field. This dichotomy
leads to the two kinds of subvarieties mentioned implicitly in the theorem: group
subvarieties, and ones arising from varieties defined over the (algebraically closed)
constant field.
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In positive characteristic, we do not explicitly use differential algebra. We work
instead with fields K of some fixed finite dimension over Kp, endowed with a
distinguished basis for K/Kp. The role of the kernel of the Manin homomorphism
is played by the group pc°A(F) of infinitely p-divisible points; F is a large field
that will be described below. It can be shown that for each n, there is a map
from A(F) into a vector group over the truncated Witt vector ring Wn(F) whose
kernel is pnA(F) (up to finite index). We note that Manin asks in [Ma58] for a
positive characteristic analog of the Manin homomorphism. We are not certain if
we have found the "correct" analog. For us only the kernel p00 A(F) plays a role;
we show in §2 that it has finite Morley dimension, and enjoys a dimension theory
as in the characteristic 0 case. Beyond this point, the proof is uniform in the
different characteristics. (Indeed it appears that the divergence in the proofs in the
different characteristics is due merely to an accident of the historical development
of model theory. Distinguishing a basis for K/Kp has the effect of fixing also a
stack of Hasse derivations. One expects that quantifier elimination and elimination
of imaginaries hold already in the differential language, without the distinguished
basis, and in this language the proof should become entirely uniform with respect
to the characteristic.)

We refer the reader to the short expository paper [NeP89] for basic model-
theoretic notions, and to [Sa72] for proofs. The paper [HZ] also contains a short
section summarizing some of the relevant definitions.

We proceed to describe sequentially the organization of the paper. We work
throughout in a universal domain F. If the characteristic is 0, F is a field with a
distinguished derivation. If it is p, F is a field with a distinguished p-basis (i.e. a
distinguished basis of F over Fp); the basis is assumed finite, with p" elements. In
either case we make the following assumption:

(*) Let FQ be a countable differential field (respectively, a countable field of
characteristic p with distinguished p-basis of size pu). Then Fo embeds into F
(preserving the derivation, or the p-basis). Moreover, any such embedding is unique,
up to an automorphism of F.

Such structures are called A-saturated (A > w). They can be shown to exist by
standard model theoretic methods; see [Sa72] (§16, §40) and [Del88], or [RR75].
(They also enjoy strong uniqueness properties, whose discussion however would be
irrelevant here.) One immediate example of their usefulness for us is furnished by
the following observation. Whereas in general the group of infinitely-p-divisible
points of an Abelian variety over a separably closed field may be trivial, in the
saturated model the group is large, and reflects to a certain extent the properties
of the ambient Abelian variety.

In §2 we discuss the appropriate dimension theory, and describe a context in
which it applies, over separably closed fields. In particular we deduce that the
group of infinitely-p-divisible points mentioned above falls into this framework
(Lemma 2.15).

In §3 we state the main theorem in the language of differentially closed fields (fol-
lowing Buium's lead), or in the language of separably closed fields (in characteristic
p > 0). We show that it implies Theorem 1.1 as stated.

In §4 we develop the required theory of Abelian groups of finite Morley dimen-
sion. The results of this section apply of course to commutative algebraic groups,
but the main issues dealt with here do not exist in that context. Better examples
may be found in the domain of complex tori; these can have some subquotients
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that are Abelian varieties and others that are not; the interaction between them,
in the general context, forms the subject of study of the section.

In §5 we prove the main theorem. It is here that we use the powerful results
from [HZ]. These results apply at or near dimension one, and it is the theory of §4
that permits the reduction to that level.

In §6 we give a quantitative variant of the result, conjectured by Voloch, in
the presence of a valuation and a corresponding local proximity function. In the
situation of Corollary 1.2, we show that the distance from a point of F to X can
be bounded in terms of its distance to Y.

I would like to thank Zoe Chatzidakis, Elisabeth Bouscaren, Anand Pillay, and
Carol Wood for their reading of this paper.

2. THIN TYPES AND ZARISKI GEOMETRIES

The goal of this section is to introduce the various notions of finite dimension,
and to show that the types inside the kernel group admit a dimension theory of
the required type. The facts in characteristic 0 are largely classical model theory,
see e.g. [Sa72]. The fact that minimal types are Zariski in the sense below (after
removing a finite number of singularities) is shown in [HS]. Following the initial
definitions, we will therefore concentrate on characteristic p > 0.

We work in a universal domain U. acl denotes algebraic closure in the model
theoretic sense; so for countable X, acl(X) is the set of elements of U whose orbit
under Aut(f//X) is finite. dcl(X) is the set of elements definable over X, or the set
of elements of U fixed by Aut(U/X). If U is an algebraically closed field and (X)
is the subfield generated by a subset X of U, then ad(X) is the algebraic closure
of (X) in U, and dcl(X) is the perfect closure of (X).

We need to lightly modify standard model theoretic usage in order to make the
language of Morley dimension apply in our context.

Definition 2.1. Let P be the solution set to a set of formulas of size < X, in a
A+-saturated model. A definable subset of P is a set of the form Df]P, where D is a
definable set (perhaps with parameters outside P). P is minimal if every definable
subset of P is finite or cofinite. Let B be any set over which P is defined; the
following notions are relative to B. If A is a small set of elements of P, let the rank
rkp(A) be the size of any maximal algebraically independent subset of A. In general,
let rkp(^) = rkP(acl(^) n P). Hq = tp(a i , . . . , am), let vkp(q) = ik({au..., am}).
If D is a definable or co-definable subset of P n , define rkp(D) = max{rk(g) : q a
type in D}; an element of maximal rank of D is called generic. We omit P if its
identity is clear.

P is called pluriminimal if it is a finite union of minimal types. It is called semi-
minimal if there exists a minimal type Q and a finite set F such that P C acl(.F, Q).
Similarly define semi-pluriminimal.

Morley dimension is defined recursively as follows. P is said to have dimension
— 1 iff it is empty. P has dimension k if for some integer m, P cannot be split into
m + 1 definable subsets none of which have dimension < (k — 1). The smallest such
m is called the Morley degree, or multiplicity, of P. (If U is an algebraically closed
field, this agrees with Zariski dimension.)

Lemma 2.2 ("internal Morley dimension"). Let P be minimal, and let D be a de-
finable subset of Pn of rank k. There exists an integer m = Mult(D) such that D
cannot be split into m + 1 pairwise disjoint definable subsets of rank k.
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Proof. It suffices to show that there are only finitely many types q in D with
rk(<7) = k. Let p^ be the type of a generic Ar-tuple from P. For each subset s
of { 1 , . . . , n} of size k, consider the partial type qs{x\,..., xn) asserting that ptfcl
holds of (x{ : i € s), (xi,..., xn) E D, and each a;,- G P. Let as- (i G s) realize pM.
Then there are only finitely many choices of a; (i ^ s) such that (a,- : i = 1 , . . . , n)
realizes qs. For otherwise there would be such a choice (« i , . . . , an) with some ay
U & s) nonalgebraic over (aj : * £ s), so rk(ai , . . . ,an) > k + 1, contradicting
rk(D) = k. Thus each ^s has only finitely many complete extensions. Since every
rank-fc extension of D extends some qs, there are only finitely many of these.

The lemma shows that for definable subsets of Pn, dimension equals rank. (If
P is minimal.) •

Definition 2.3. Let T be a theory with quantifier elimination and P a minimal
type. P is called Zariski if (i)-(iii) hold, (iii) is referred to as the "dimension
theorem".

Call a subset of P" closed if it is defined by a positive, quantifier-free formula.
Call it irreducible if it is not the union of two proper closed subsets.

(i) Every closed set in Pn is the union of finitely many closed, irreducible sets.
(ii) If X is a proper subset of Y, both closed subsets of Pn, and Y is irreducible,

then xk{X) < rk(Y).
(iii) If X is a closed, irreducible subset of Pn, rk(X) = m, and Y is a diagonal

X{ — Xj, then X O Y is the union of closed irreducible sets of dimension at least
m - 1 .

Remark 2.4. Under these conditions, the collection of closed sets of Pn defines a
Noetherian topology, and the dimension of a closed set with respect to this topology
equals its rank. For every definable set Y there exists a proper closed subset F of
cl(Y) such that Y-F = cl(Y) - F.

Proof. The first statement is clear: given an infinite descending chain of closed sets,
the first can be assumed irreducible, hence the second has smaller rank, beginning
an infinite descent of ranks. If X is irreducible, of rank k, one shows dim(X) > k
by induction on k: X has a subset of rank k — 1; this subset can be chosen closed,
irreducible, hence by induction has dimension k — 1, so X has dimension > k. The
other inequality is immediate from (ii). For the final statement, note that Y is a
finite union of sets Yi = Hi — Fi, with Hi closed irreducible and F{ a proper closed
subset. We may assume Y is not the union of fewer of these. Let H — \Jt Hi,
F = (Jj Fi. Then cl(F) — H; and some Hi is not contained in any other Hj, hence
not in Fi, and being irreducible, not in F. Thus F is a proper subset of H, and
H-FCY. D

Lemma 2.5. Let T be a stable theory with a minimal type P. Assume P is Zariski
and not locally modular. Then T interprets a field F, with definable sub fields Fa,
such that f)a Fa is minimal, and nonorthogonal to P.

Proof. This is proved in [HZ] when P is strongly minimal (i.e. it is the solution set
of a single formula), but the proof goes through, and gives a type-definable field
F*, minimal and nonorthogonal to P . By [Hr90], there exists a definable field F
and definable subfields Fa, such that (~)a Fa = F*.

We require here only the results of §6 of [HZ]. This section is written largely
axiomatically, the axioms having been proved in §4 and §5. At the end of this
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section (2.20), we will indicate how one can shortcut this and directly prove the
axioms in the present contex. •

2.6 Conventions on separably closed fields. Let T(p, v) be the theory of sep-
arably closed fields F of charp > 0, of finite dimension pv over Fp. (v is the Ersov
invariant.) We endow F with a basis e i , . . . , ep* of F over Fp. The language is the
language of rings with p" distinguished constants, for the e*, as well as function
symbols for certain definable functions An, described in 2.7(a) below. We work in
a universal domain U = F for this theory (a countably saturated model). The
notions of substructure and algebraic closure will be relative to F, in this language.

Usually we will denote algebraic varieties denned over F by an underlined capital
letter, such as V_, and the group of .F-points of V_ by V. We often implicitly assume
that V_ is given with an affine chart, and so we discuss coordinates of elements of
Vj, in particular the set of F-points makes sense. We can also apply the Frobenius
to V_. The variety obtained in this way will be denoted Fr V. If V is a definable
group, the set of p-th powers of elements of V will be denoted Vp. [V]p denotes
the set of p-tuples from V. When there is no danger of confusion with the previous
two meanings, we revert to the notation V. T{p,v) admits quantifier elimination
and elimination of imaginaries (see [Del88]).

Fact 2.7 ([Del88]). In T(p, v) there exist (basic) definable functions An : F -» Fp"n

with the following properties:
(a) An is the inverse of the bijective morphism r(xi,..., xpvn) = J^ xP en,- for

some designated basis {en,} of F over Fpn. In particular, \n = rn o \n+i for a

certain polynomial function rn : [F]p" " -> [ir]p"".
(b) Any atomically definable subset of [F]k is, for some n, the pullback by A"1

of some (possibly reducible) subvariety U of \Fp"n~\k. Let dcly(X) denote the field
generated by X U {ei,.. .,epv}, and acl^(X) the relative field-theoretic algebraic
closure of dc\f(X) in the field F.

(c) If a £ acl(6i,.. .,bd), then a £ acl^({An6; : i < d,n< oo}).
(d) If a E d c l ( b u . . . , b d ) , t h e n a £ d c l / ( { A n 6 ! - : i < d , n < o o } ) .

Proof, (c) acl/({An6,- : i < d, n < oo}) is an elementary substructure of F, so it is
(model-theoretically) algebraically closed.

(d) Suppose a 6 dcl(6i,.. .,bd). Let k = dcly({An6,- : i < d,n < oo}). Note that
k is a perfect field. The separable closure ks of k is an elementary submodel of F,
so a G fc8, and every automorphism of ks fixing k also fixes a. Hence a £ k. •

Definition 2.8. tp(c/B) is (k-)thin if dcl(c, B) is a field extension of dcl(B) of
finite transcendence degree (at most k).

Lemma 2.9. Let K be a countable subfield of F,K = dcl(A'). tp(a/7-i') is k-thin
iff the following condition holds:

(*) for all powers q of p = char(F) there exists a subfield L of F containing K
and of transcendence degree < k over K, such that a 6 KLq.

Proof. If tp(a/A') is fc-thin, given q = p", let L = K(Xn(a)). Then since each basis
element of F/Fq lies in K, a £ KLq. For the converse, we require a claim.

Claim. If a £ KLq and q = pn+m, then each coordinate of Xn(a) is in KLpm.
Proof. We have a = f(b)/g(b), where / , g £ A'f-X], a polynomial ring, and 6 is

from Lq. Let c £ U>m be such that cp" = b. We can write a = /(6)ff(fc)p""1/ff(6)p".
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so we may assume g £ A[X]P . Let {e,} be the chosen basis for F/F1'", and write
f = J2 eiffn], where /; £ F[X] and /f"1 is the result of taking the p"-th power of
each coefficient. Since K = dcl(A"), /,- £ A'pf] for each i. Clearly

An(a) = Xn(f(b))/g(b) = \n ( £ > / ? " * V " ) ) /g(b)

= An ( $ 3 ei /^cy") /g(b) = (Mc)/g(b),..., fP"~(c)/g(b)).

Evidently all the coordinates are in KIP .
Now if (*) holds, let Ln witness (*) for q = pn. Then tr deg(dcl(a)/A") =

sup tr deg A'(An(a))/A' < tr deg Ln/K <k. D

Lemma 2.10. (i) / / tp(a/A) is k-thm, K C K', then tp(a/A'') is k-thin.
(ii) If tp(aj/A') is ki-thin, a £ acl^(oi,..., am), k = Yl^it then tp(a/A') is

k-thm.
(iii) //tp(a/A') is k-thin, then so is tp(Ana/A').
(iv) // tp(<ij/A') is ki-thin, a £ acl(ai,. . . , am), k = Ẑ̂ «> ^hen tp(a/A') is

k-thin.

Proof, (i), (ii), (iii) are clear, (iv) follows from (ii), (iii), and (c) of Fact 2.7. •

Recall the definition of U(a/B) ([Las]). We say that U(a/B) = 0 if a £ acl(fl);
U(a/B) < n + 1 if for all B' containing B such that a forks with B' over B,
U(a/B') < n; U(a/B) = n if it is < n but not < (n — 1). In the present context,
"a forks with B' over 5 " means that dcl(a, B) is noi free from dcl(5') over dcl(5);
see [Del88]. Note that U(a/B) - 1 iff tp(a/acl(J3)) is minimal.

Lemma 2.11. Iftp(a/B) is k-thm, then U(a/B) < k.

Proof. By induction on k, this is immediate from the above definitions. •

Proposition 2.12. A thin minimal type in T(p,v) is Zariski.

Proof. The assumption here is that the type is complete over some base substruc-
ture K.

The first claim takes place over an algebraically closed field.

Claim 2.12.1. Let U, V be irreducible smooth varieties of the same dimension, and
/ : U —> V a finite rational map (defined everywhere on U). Let C be a closed
irreducible subset of Vn. Then all components of /~ 1 C have the same dimension
(equal to dim(C)).

Proof. The induced map / : Un —> V" satisfies the same assumptions as / , so we
may assume n = 1. Note that the graph F of / is a closed irreducible subset of
U x V (because we have a surjective rational map from U to F). f~xC is isomorphic
to F fl (U x C). Let X be a component of F O (U x C). By the dimension theorem
on U x V,

dimZ > dimF + dim(*7 x C) - dim(U x V)

= dim{U) + dim(U) + dim(C) - 2 dim(!7) = dim(C).

On the other hand the projection is a finite map from X to C, so dimX < dimC.

•
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We now work in a universal domain for T(p, v). Using elimination of imaginaries
and the existence of a definable pairing function, it suffices to consider 1-types. Let
P be a 1-type over K, K an algebraically closed, countable substructure of the
universal domain.

Let Pn be the Zariski closure of XnP, a subvariety of [F]p . rn maps Pn+i to
Pn. Since P is thin, for large enough n, say n > N#, rn is finite-to-one above
some Zariski open subset P£ of Pn. We may choose P* smooth; and by defining
P* inductively, we can arrange that rn carries -P^+1 into P*. Let e = dimPn for
large n. If U C P*, write X*nU for {x e Pk : Xnx £ U], where Xn{xl,... ,xk) =
(Anxi,..., \nXh).

Let X be a closed subset of Pk. We will show that (i) of the definition of Zariski
geometry holds by induction on rk(X). Let Xn be the Zariski closure in [Pn]k of
\nX. Then for all large enough n, X = X*nXn.

Claim 2.12.2. dim(Xn) = e -rk(X) for large n. (More specifically, for any n > N #
such that X = X*nXn.)

Proof. Let (ai , . . . ,a^) be a point of X, of rankd = rk(X). Say a\,...,ad are
algebraically independent, so a £ acl(ai, . . . , a^). By (c), for all k and j , XkOj €
acl/({Ana,- : i < d, n < oo}). But since P is thin, for some AT#, acl/({Ana,- :
n < oo}) = acl/(/\Ar#ai). Thus for n > N#, Xnai G acl/(Anai,. . . , Xna,d)- Since
this holds for any (ai,...,a/j) £ X, by compactness it holds in one of a finite
number of ways, and so persists to the Zariski closure: yi £ acly (yi, . . ., yd) for any
[Vii • • • i Vk) in the Zariski closure Xn of XnX, after some permutation of indices.
Thus dimXn < d • dim(Pn). On the other hand for i < d, the algebraic locus of
Ana; over {Xnai,... ,Xno,i-i} contains Xnb for all but finitely many 6 £ P; hence it
equals Pn. Thus

dimXn =rf-dim(Pn) = rfe = e • rk(X). D

We consider only n > N#. Write Xn = Xn(l) U • • • U Xn(mn) U Yn, where
Xn(i) are the distinct components of Xn of dimension de. Let X(n;i) = X^Xn(i).
Then Xn(i) is the Zariski closure of XnX(n;i). By 2.12.2 applied to X(n;i), we
have rk X(n;i) = dimXn(i)/e = rk(X). Similarly the intersection of X(n;i) with
X(n; i') (i ^ i') has smaller rank. By Lemma 2.2, the number mn is bounded
independently of n. By Claim 1, r^1Xn(i) is a union of some of the components
Xn+i(j)- So mn is nondecreasing with n; so for n above some N* (> 7V#) it
reaches a constant maximum m*. It follows that for n > N*, r~1Xn(i) equals some
Xn +i(j); we recursively renumber so that r~xXn(i) = Xn+i(i). So X(AT*;i) =

X(N* +l;i) = •••d= X(i). Let F = X*N,YN.. Then X = I ( l )U-- -UA r (m t )UY,
y is closed of rank smaller than rk(X), and X(i) is closed of rank equal to rk(X).
It remains only to show that X(i) is irreducible. Suppose X(i) — UUV, with U, V
closed. Pick n > N* such that U = X*nUn, V = X*nVn, with Un,Vn the Zariski
closures in P*k of XnU, XnV respectively. Then Xn(i) = Un U Vn. Since Xn(i) is
irreducible, it equals one of them; say Xn(i) = Un. Then in [P]k,

x i = A;xn(i) = A; £/„ = [/.

We have shown that any closed set X is a finite union of irreducible components.
Further the proof showed that if X is irreducible, then X = X*nXn for large n, where
Xn is Zariski closed and irreducible of dimension e • rk(X). So if Y is irreducible,
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and X is a proper subset of Y, then (with the parallel notation) Xn must be a
proper subset of Yn, so e • rk(X) < e • rk(Y), and rk(X) < rk(y).

It remains to prove the "dimension theorem" 2.3(iii). Let X, X' be closed irre-
ducible subsets of Pk, rkX = d, rkX' = d', and let Y be a component of X C] X'.
We must show: ikY > d+ d' — k. Let the notation Xn,X'n, etc. be as above, and
let n be large. Let Yn# be the component of Xn C\ X'n containing \nY. We have
dim(Xn) = de, dim(X^) = d'e. By the dimension theorem for the fce-dimensional
smooth algebraic variety P^k,

d imy n # > de + d'e - ke = e(d + d' - k).

Evidently r~ 1 y n # = Yn + i# . Hence dimyra# is nondecreasing with n, so we choose
n large enough that dim Yn# = dimY7v# for N > n. However, we do not yet know
that \nY is Zariski dense in Yn#. (And this would not be true without thinness.)
The problem may arise that for generic c in Yn#, for some q — pl and some
polynomials /,• over K, J2 fi(c)qei:i = 0; in this case, every F-point c' of Yn# must
also satisfy fi(c') = 0 for each i, and this may force c' to lie on a proper subvariety
of Cn. To rule out this scenario we apply Claim 2 again.

Let X be a set of variables appropriate for describing elements of Pk; X =
(Xi , . . . , Xk) where each X; = X M , . . . , XiiP». Let / # , I, I' denote the ideals of
K[X] vanishing on Yn#,Xn,X'n respectively.

Claim 2.12.3. If £/?e,,,- 6 /(Yn#), then f{ e /(Yn#) for each i.

Proof. / # is one of the prime components of y/(I +1'), so there exists h £ IQ and
an integer s such that (h(%2 ffei,i)Y € / + / ' • By enlarging s, we may assume it
is a power of p. Replacing q by qs, h by hs, and / by /' (where pl = qs), we may
assume s = 1 (note that e^ are some of the ec^). Multiplying by hq~x we have

hg(J2fiet,i) € / + / ' , so it(fih)qei,i G / + / ' . Now if we show that f(h G / # for
each i, then also /,• £ / # , as / # is a prime ideal. Thus we may take h = 1. So
E / ' e / , i € / + / ' . Say

( i ) E / ? e M = f l + ff',ffe/,ff'ei'.
At this point we make a change of variables. Let N = n + I, and let r =

rnrn+i • • 'fAr-i, so that An = r\tf. Let Y = (Yi,. . . , Ypn) be a set of variables
appropriate for elements of P^. Let r* : K[X] —>• K[Y] be dual to r; it carries
K[X] into A'[Y?]. Since r takes Xjv into Xn,r* takes 7 into 7(XJV), and similarly
7' into I(X'N). Thus r*(p) G 7(XA,), r*(g') G 7(X^). We have:

(n)J2r*(fiyelii=r*(g) + r*(g').
Now we can decompose r*(g) = J2ei,>H>> w ^h J/,- G A'9[Y]. Since r*(p) is in

/i'[Y?], so is each 77,-; so we may write r*(g) = Ylei,i^h w ^ n »̂ ^ •^M- Similarly
r*(p') = X^eM^;?- Since r*(̂ r) G 7(XAT), and A^r(X) is Zariski dense in Xn, we
have ft; £ 7(XJV) for each i (as was argued above). Similarly r*(g') = 5Zei,«'l<9>
with AJ G 7(XJv). Now

(iii)E»''(/*)«cj1,- = E(* i + Ai)'eM.
Comparing coefficients of each monomial and using the fact that the e;j are

linearly independent over Kq, this equality of polynomials implies that r*(/;) —
hi + h{ for each i. Thus r*(/;) G J(X^) + 7(X^) C / (YJV#) . But dim(YAr#) =
dim(Yn#), and r is generically finite-to-one, so rYjv# is Zariski dense in Yn#. Thus
r* induces a 1-1 map from K[X]/I(Yn#) to A'[Y]/7(YN#), so r*(/,-) G 7(YAr#)
implies /,• G 7(Yn)# = 7#. This finishes the proof of the claim. •
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It follows from the claim that An(Y) is Zariski dense in Yn#, so Yn# = Yn, and
rk(Y) • e = dim(Yn) = dim(Yn#) > e(d+ d1 - k), so rk(Y) >d+d'-k,as required
by the dimension theorem. •

Corollary 2.13. LetT(p, v) be the theory of separably closed fields F o/charp > 0,
Ersov invariant v < oo. Let P be a minimal thin type in T(p, v). IfP is not locally
modular, then P is nonorthogonal to Fp°° = f]{Fg: q a power of p}.

Proof. By [Wood79] T(p, v) is stable. By Lemma 2.5 we may assume P = f]n Pn,
where Pn is a subfield of some definable field K. By [Mes], 3.6, K is definably
isomorphic to a finite extension of F, hence is a subfield of F1''1 for some q. So we
may assume A' is a subfield of F. By [Mes], 3.1, each Pn contains some Fq. Hence
P contains Fp°°. Since P is minimal, P = Fp°°. •

By an oo-definable subgroup of a group G we will mean the intersection of
countably many definable subgroups. A result from [Hr90] (mentioned above for
fields) states that an oo-definable subset, which is also a subgroup, is an oo-definable
subgroup in this sense.

Remark 2.14. The following will emerge in §5: Let F be a saturated model of
T(p,v). Let G be a connected algebraic group defined over F, G = G_(F), and
A an oo-definable subgroup of G. Assume A has no proper nontrivial definable
subgroups, and has thin generic type. Then either A is minimal and locally modular,
or G_ is isogenous (as an algebraic group) to a group H_ defined over Fp°°, by an
isomorphism carrying A to H{F<P°°).

Let F be a saturated separably closed field. The following lemma shows (us-
ing 2.12) that the group of infinitely-divisible points of a commutative algebraic
group over F has finite Morley dimension.

Lemma 2.15. Let G_ be a k-dimensional commutative algebraic group defined over
F, G = G(F). Let A = p°°G = f]np"G. Then any generic type of A is k-thm.

Proof. Say A is defined over K = dcl(A'). Let a £ A. Given q = pn, let a = qb
with b g G. By Weil's theorem on symmetric functions, a € A'(69) (this is in fact
just the content of Lemma 4 in Chapter 1 of [Weil48]). This proves the criterion of
Lemma 2.9. •

The following lemmas will inform the ensuing discussion but will not be explicitly
used; they are included here in order to clarify the picture.

Lemma 2.16. Let G_be a simple Abelian variety defined over F, but not isomorphic
to one defined over F^. Let G = G(F) and A = p^G. Then A has no proper
infinite definable subgroups.

Proof. We work over a relatively algebraically closed substructure, over which G_ is
defined. Let e = dim(G). It suffices to show that A is contained in every infinite
definable subgroup of G. Let H be such a definable subgroup. Let Gn = \nG, and
let H_n be the Zariski closure oiXnH. Then for large enough n, H = GnX^a^F).
We will say something about F, G, A, and H in turn.

Let K = FP'". Then K = F[e{n,... ,efn}. Let F be the algebraic closure
of F, and let R be the ring F\e\ , . . . , e£ "] . Then R can be viewed as an affine
algebraic ring, and K as the set of F-rational points of R. Note that R is isomorphic,
over F_, to F_[ui,..., uv\, where the «,- are commuting infinitesimals: uP = 0 .
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By taking pn-th roots of points of AnG, we identify XnG with the set of K-
points of C?! = Fr~"(G). Viewing K as R{F) as above, we see that \nG can be
identified with Q^R^F)). Now the "composition" G2 = G-̂ -R) is another group
scheme, and since R(E_) is isomorphic to F_[ui,..., uu\, G_2 is an extension of Gx

by a commutative unipotent group G_u. Let G3 be the closed subgroup of p°°G2.
Then G3 meets Gu in a finite group. Hence G3 is isogenous to Gj (over F). So G3
is a simple Abelian variety of dimension e.

Let An be the Zariski closure of \n(A). Then \n(A) C pAn> so pAn = j4n, and
hence An C p°°G2(£) = Gg(£). Since G3 is simple, 4 n = Gg.

It follows that H_n n ^n is finite, or else H_n contains An. In the first case, H
contains only finitely many pn-th powers. In particular Hp is finite. Since the
pn-torsion points of G are finite in number, H is finite; a contradiction. So Hn

contains An, hence H = G H X~1H_n(F) contains A. D

Notation. G[?] = {x £ G : qx = 0}.

Lemma 2.17. Let G_ be a commutative algebraic group, and A an oo-definable sub-
group of G = G_(F) of finite Morley dimension, or just: with no properly descending
sequence of definable subgroups. Then A C p°°G + G\p^ for some n.

Proof. The chain of subgroups A n p"G must stabilize. So A n p"G = A n p°°G
for some n. Hence if a 6 .A, then pna £ p°°G. Using saturation of F, p°°G is
p-divisible; so pna = pnb for some b £ p°°G. Thus pn(a - b) = 0, so a - b £ G[p»],
and a = 6 + (a - 6). •

Lemma 2.18. Let G be a connected algebraic group defined over F, G — G_(F).
Then G is connected.

Proof. Let ffbea definable subgroup of G of finite index. Let Gn = AnG; then Gn

can be endowed with a group structure in such a way that Xn is an isomorphism; and
Gn = G_n(F), where Gn is an algebraic group, isomorphic over Fa to a power of G.
Let H_n be the Zariski closure of XnH. Then for large enough n,H = GnX^K^F).
XnH has finite index in XnG, hence H_n has finite index in G_n. But G_n is connected;
so H_n = Gn, and H = G. D

Remark 2.19. Let G be a simple Abelian variety, defined over F, not isomorphic
to one defined over Fp°°, G = G(F). Let A - p°°G. In 2.15 we showed that A has
finite Morley dimension, and in 2.16 that A is minimal as a group. This suggests
that dim(yl) = 1. This will indeed be shown in §5 as a consequence of modularity;
we do not know a direct proof.

2.20 Guide to §6 of [HZ]. This is intended for the reader who wishes to obtain 2.5
as efficiently as possible, reading only §6 of [HZ] and one preceding page. §6.1 is
motivation and includes no results. §6.2 is written for minimal types of stable
theories, and can be read directly. In §6.3 one assumes in addition a notion of
specialization and of a regular specialization between tuples of elements of the
minimal type, satisfying certain axioms. We will immediately give a definition of
these that may be used when D is a thin type in a separably closed field. In Lemmas
6.8 and 6.10, using §6.2, one obtains an Abelian group of dimension one. Then 6.9
and 6.11 work with the group elements and provide the required field.

The group obtained is again a thin type of [/-rank one in a separably closed
field, and so the same definitions and axioms of specialization may be used. The
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dimension theorem 2.3(iii) has been proved only for complete types P. However,
if D is an co-definable group of dimension one, one may choose a complete type P
contained in D, and a generic element a of P; then D is covered by P and (P + a),
translation by a gives a homeomorphism in every dimension, and the dimension
theorem thus holds in P and P + a and hence in D.

It remains to define the notion of specialization and regular specialization, and
prove the axioms used in §6.3 of [HZ]. Let D be a, thin type in a separably closed
field; we suppose D is either a complete type over some base set, or else an oo-
definable group of dimension one. The notion of closed set used in this section
gives rise to one specialization: a —> b if 6 lies in every O-definable closed set in
which a lies. We can also describe this directly. Given an element a of Dn, write
Xa for the sequence (a, Aia, \2a,...). We write a —> b if Xa specializes to A6 in
the ordinary field-theoretic sense. In other words, any polynomial with coefficients
in the base field vanishing on any Xna, also vanishes on Xnb; or again, Xnb is an
element of the locus of Xna. We say that the specialization is regular if for each
n,\nb is a nonsingular point on the locus of Xna.

We now indicate the proof of the axioms 6.6 of [HZ].
(1) is trivial.
(2) follows from the same fact in algebraically closed fields, applied to Xa, Xb.
(3) This follows from 2.3(iii): a' is any generic point of the component of the

intersection of locus(a) with the diagonal x(l) = x(2) containing the locus of a".
(4) and (5) require reading the page preceding §6, starting with the definition

of "good" specialization. The amalgamation Lemma 5.14 in [HZ] for regular spe-
cializations follows from the same lemma in the case of algebraically closed fields,
applied to Xa, Xb, etc. Observe that amalgamating two fields over a (A-closed) sub-
structure of a separably closed field can never create inseparability. Now follow the
proof of 5.14 for good specializations, and of 5.15 in [HZ]

(6) This states that the graph of addition is closed; indeed by results from [Hr90]
or [Mes], addition can be taken to be given locally by rational functions.

(7) The first statement follows from the fact that a product of smooth varieties
is smooth. For the second let a be a generic point of D and a' any point of D;
we need to know that Xna' is a nonsingular point of the locus of a. In case D is a
complete type, a' must also be generic, so this is trivial. In case D carries a group
structure, all points on the locus are smooth.

3. MANIN'S HOMOMORPHISM AND BUIUM'S REDUCTION

In this section we show that the main Theorem follows from a slightly different
version, in which T is replaced by a certain definable subgroup. For Abelian varieties
in characteristic 0, this was observed by Buium, and forms the basis of his approach
in [Bu92], [Bu93].

We work in a universal domain F for differential fields of characteristic 0, or for
fields with a distinguished p-basis {e,-},-=ii...iP.'. Definable or oo-definable sets are
understood in the sense of F, as is Morley dimension, etc.

We will eventually prove:

Theorem 5.9. Let K be either a separably closed field of characteristic p > 0, with
a finite p-basis fixed, or a differentially closed field of charO. Let k = p|n Kp" if
p > 0, k = {x : Dx = 0} if the characteristic is 0. Let S_ be a semi-Abelian variety
defined over K, X. a subvanety, S = S_{K), X = X_{K), and let Yn (n = 1, 2, . . .)
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be a descending sequence of definable subgroups of S, such that f]n Tn(F) has finite
dimension. Assume that for each n, for some coset Cn ofTn, X fl Cn is Zariski
dense in X_. Then there exists a semi-Abelian variety 5 0 defined over k, a subvariety
Xo of 50 defined over k, and a rational homomorphism h from a group subvariety
o/S into S_o, such that X_ = h~l(X_0) + c for some c.

We now argue that this is sufficient. Let S, X, k,T be as in 1.1. We choose a
finitely generated field extension L of k, such that S, X and some p'-generators of F
are defined over L. In characteristic p, [L : LP] is finite, and f]n Lp" = k. The same
remains true for the separable closure K of L. In characteristic 0, we endow L with
a differential structure over k such that k is the field of constants, and we let K
be a differential closure. It remains only to replace F by an appropriate definable
subgroup.

In characteristic 0 we use:

Lemma 3.1. Let S be a semi-Abelian variety defined over F. Let T be a p'-finitely-
generated subgroup of S. Then there exists a subgroup of S of finite dimension
containing F.

Proof. This is proved in [Bu93] for Abelian varieties; the proof goes through in the
semi-Abelian case. •

In characteristic p, we let Fn = pnS(K). The fact that the intersection of the
groups Fn has finite dimension was shown in the previous section. If F is a p'-
finitely generated subgroup of S(K), then (F/pnr) is finite, so F meets only finitely
many cosets of Fn . Hence some coset of Fn meets X in a Zariski dense set.

In either case, 1.1 follows from 5.9.

4. ABELIAN GROUPS OF FINITE MORLEY DIMENSION

We work in this section with the category of oo-definable groups and morphisms
within some saturated stable structure C All groups are assumed to have finite
Morley dimension.

A group G of finite Morley dimension always has a maximal connected semi-pluri-
minimal subgroup S\(G). For algebraic groups, we always have S\(G) = G° (the
connected component). In general this fails however. In Proposition 4.3 we show
how to reduce certain questions about definable subsets of G to similar questions in
5i (G) and in proper quotients of G; for example, a definable subset of G containing
no cosets of infinite subgroups of G is contained in finitely many cosets of S\(G).
We then proceed to analyze semi-pluriminimal groups; they are an "almost" direct
sum of pairwise orthogonal definable subgroups, each of which is semi-minimal.

Certain basic notions of algebraic groups generalize to the present context; one
must give definitions that do not rely on the Zariski topology, but only on dimension
theory for constructible sets. The definitions and facts in 4.0 are due to Zilber and
Poizat; see [NeP89].

Definition 4.0. (a) An oo-definable group G is connected if it has no definable
subgroups of finite index.

(b) Let G be an oo-definable group, and X a definable subset of G. The stabilizer
Stab(X) is

{gEG: dim((X - gX) U (gX - X)) < dim(X)}.

It is a definable subset of G.
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(c) An oo-definable subset X of G is indecomposable if whenever X is contained
in a finite union of cosets of a definable subgroup H of G, it is contained in a single
coset. If X is a complete type of degree 1, then it is indecomposable. If X is
indecomposable, then the coset generated by it is generated in finitely many steps.

Definition 4.1. Let G be an Abelian group, oo-definable over a base set B, and
X a definable set over B. G is X-rigid if every connected definable subgroup of
G can be defined over a set C independent from X(C) over B. G is rigid if every
connected definable subgroup is defined over acl(B). Equivalently, every connected
definable subgroup is defined over some fixed countable set. G is strongly rigid if
the same holds for arbitrary (not necessarily connected) subgroups.

Definition 4.2 (of "full" orthogonality of two oo-definable sets X, Y). X, Y are
orthogonal if for any algebraically closed B C Ceq with X,Y defined over B, any
b e X and any ceY, tp(6/B) U tp(c/5) implies tp(bc/B).

In our applications of 4.3 below, A will be the maximal connected semi-pluri-
strongly minimal subgroup of G, and will be strongly rigid.

Proposition 4.3. Let G be an Abelian group of finite Morley dimension, A a non-
trivial connected definable subgroup, and X an (oo-) definable subset of G of mul-
tiplicity 1. Assume:

(i) -A is G/A-rigid.
(ii) There is no definable group A' D A with A'/A infinite and A' C acl(Y, A, C)

for some minimal Y and finite C.
(iii) Stab(X) n A is finite.

Then X is contained in a single coset of A, up to a set of smaller dimension.

Proof. We may assume G, A, X are 0-definable. It is convenient to replace X by
the corresponding complete type, i.e. to remove from X all 0-definable subsets of
X of smaller rank. So we must now show that X is contained in a single coset of
A. Let 0 : G —> G/A be the canonical homomorphism, and let X/A — 9(X). For
b € (X/A), let A{b) = r 1 ^ ) , a coset of A.

Let 6 be an element of X/A. Then XC\A(b) ^ 0. Let U be a nonempty subset of
A(b), defined over {b} UA, of least possible dimension and multiplicity. For c £ A,
we can consider the translate U + c of U within ^4(6). Then (U + c) n U is defined
over {6} U A. Necessarily either U l~l (U + c) or U — (U + c) has smaller dimension or
multiplicity than U; so one of them is empty. It follows that U is a coset of some
subgroup K of A (namely K = {c £ A : U = U + c}). By considering intersections
of U with A-translates of X, we see that every A-translate of U meets X trivially
or is contained in X; so X C\ A(b) is A'-invariant.

By the rigidity assumption, K° is defined over a set Fg orthogonal to G/A; so
b remains a generic element of X/A over FQ. Thus X (1 A(b') is invariant under
translation by K°, for generic b' G (X/A). So K° C Stab(X). By (iii), K is finite.

Since U is a coset of K, it is also finite. Recalling that U is defined over {6}UJ4,

we have U C acl(6, A). Every element of ^4(6) has the form a + x for some a € A,
xeU,soA(b)Ca,d(b,A).

If rk(6/Fo) = 0, then X/A is finite, and having multiplicity 1, it consists of a
single element; in other words X is contained in a single coset. Otherwise, we will
get a contradiction. Increase Fo to F\ so that xk(b/F%) — 1, and let Y be the
locus of 6 over Fu and X' = {x G X : x + A £ Y}. Then A(b) C a,d(b,A) for
b G Y, so X' C acl(Y U A). By the indecomposability theorem, for some finite
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m , {52niVi • (yi,---,ym) €Ym, (nlt.. .,nm) £ Z m , JZ< "• = 0 } i s a s u b g r o u p of
G/A. So {a+ ^mbi :a£A,(bl,...,bm)£X'™, (nu.. .,nm) £ Z m , £ , . n j = 0 }
is a subgroup of G, and evidently it contains A and is contained in dcl(j4 U X') C
acl(y U A). This contradicts assumption (ii). •

Various formulations of this proposition lift easily to the superstable context.
We include a variation using full orthogonality, though it will not be used for the
proof of the main theorem.

Proposition 4.4. Let G be an Abelian group of finite Morley dimension, X a de-
finable subset of G, and A a connected definable subgroup. Assume A is orthogonal
to G/A. Then X is a finite union of definable subsets X, with the following prop-
erty: For some definable subgroup Hj of G, X, is a union of cosets of (Hi C\A)°,
and is contained in a single coset of Hi + A.

Proof. Let G* = G/A. Each element b £ G* can be thought of as a coset of
A in G, which we denote as A(b). There is no loss of generality in assuming
acleq(0) = dcleq(0), i.e. all types over 0 are stationary. Let X# C G* be the
solution set of a complete type over acleq(0). We will find a O-definable subgroup
H of G such that {x £ X : x + A £ X # } is contained in a coset of H + A, and is
a union of cosets of (H (1 A)0. By compactness, there exists a O-definable set X*
containing X # such that {x £ X : x + A £ X*} is contained in a coset of H + A
(and of course this set is still closed under translation by elements of (H D A)°).
Thus G* can be covered with O-definable sets with this property. The statement of
the proposition follows by another application of compactness.

Pick 6 £ X # , and also g £ A(b). Let 5 = {c 6 A : g + c £ X}. By stable
definability, S is definable with parameters C from A. We have

(*) For some g £ A(b), A(b) D X = S + g.
By the orthogonality assumption, tp(fc'/C) does not depend on b' £ X # . Thus (*)
holds for any b £ X#. Let K = {c £ A : c + S = S}. A' is a definable subgroup
of A. Now if 5 + g — S + g', then g — g' £ K. Thus we have a definable map
/ : X # -> G/K (given by: /(&) = g + K iff A(b) nX = S + g). f is a section of
the natural projection ir : (G/K) —>• (G/A).

Claim. Let C* be the coset generated by X# in G*. Then / extends to an affine
homomorphism from C* to G.

Proof. For large enough odd n, and (a\, . . .,an) £ X # n generic, X^(—l)*a; is
a generic element of the connected, definable coset C* ("indecomposability theo-
rem"). It suffices to show that for all n there exists a constant Xn such that for
all generic (ai, ...,an) £ X # " , /(£'<*,•) - S ' / ( a i ) = Xn, where £ ' denotes the
alternating sum. Let h(a\,..., an) = f(Yl a') ~ Yl f(ai)- Then since / is a section
of 7r, h(ai, ...,an) = 0 (mod A/K), i.e. h(ai, ...,an) £ A/K. T h u s h is a m a p
from X # n into A/K; since they are orthogonal, h is generically constant.

Thus there exists a connected definable subgroup H* of G* and a nontrivial
definable group homomorphism h : H* —>• G/K. Let if be a subgroup of G
containing K, such that H/K = hH*. Note that (H + A)/A = H*.

Claim. (Hf\A)° C K.
Proof. Clearly H n A D K. We must show that (H 0 A)/K is finite.

The homomorphism h induces an isomorphism between (H D A)/K and
h~l((H n A)/K)/Kei(h), a quotient of two definable subgroups of G*. By the
orthogonality assumption, both sides must be finite.

This finishes the proof. •
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Definition 4.5. If A is a definable group and X a minimal set, then there exists
a unique maximal connected subgroup C of A such that C C acl(X, F) for some
finite F. We denote this group by A(X).

Lemma 4.6. Suppose A is connected, and A C acl(y) for some pluriminimal Y.
Then A is isogenous to a direct sum of pairwise orthogonal semi-minimal groups
(namely to the direct sum of the various nontrivial subgroups A(X), X minimal).

Proof. Clearly if X is orthogonal to Xi U • • • U Xk, then

A{X)n(A(Xl) + --- + A(Xk})

is finite. If Xi,Xj are nonorthogonal, then A(Xi) = A(Xj). Thus the group B
generated by all A{X) (X minimal) is a finite orthogonal sum. We must show B =
A. Let c be a generic element of A, b — c + B 6 A/B. We have c € acl(j/i,..., yk)
for some j/,- from Y, hence c £ acl(6, y\,..., yk). Otherwise, minimizing k, we may
assume yj fi acl(6, j / i , . . . , i/;-i) for each j . So {6, j / i , . . . , j/fe} is an independent set.
In particular, c £ acl(j/i ,...,yk).

Let if be the locus of c over {j/i,. . . , yk}. Then Z is infinite, but any element c
of Z is algebraic over c+ B. Replace Z by a minimal oo-definable subset Z'; it has
the same property. A(Z') is nontrivial, so it is contained in B. But Z'/A(Z') must
be finite, while Z'/B is infinite, a contradiction. •

Lemma 4.7. Suppose A is connected, semi-minimal, and locally modular. Then
A is isogenous to a direct sum of minimal subgroups.

Proof. Let {Ai\ be a maximal set of minimal subgroups of A, such that the map
from 0 i Ai to A has finite kernel. Let B be the image of this map, and suppose
for contradiction that B ^ A. As in 4.6 one finds a minimal Z C A such that
ZjB is infinite. But by [HP86] Z is a coset of a definable subgroup C of A (up
to a finite number of points). C must be minimal, and (C + B)/B is infinite, a
contradiction. •

The following lemma is a special case of results from [Hr90]; we include a proof
for the reader's convenience.

Lemma 4.8. Let A be a semi-minimal group. Suppose A is nonorthogonal to an
oo-definable set D. Then there exists a group B with B C dcl(D) and a definable
surjective homomorphism h : A —>• B, with finite kernel.

Proof. We have A C acl(Y) for some minimal Y; Y is necessarily nonorthogonal
to D, so Y C acl(F, D) for some finite F, and hence A C a,d(F, D). Let a be a
generic point of A over F, and let (t>(x,y) be a formula over F such that <j>(a,d)
holds for some d £ Dn, and for any d', ^(z, d') has only finitely many solutions. Let
C(a) = {d £ £)n : </>(a, d)}. By stability, C(a) can be defined with parameters from
D; let 6 be a canonical parameter for C(a). Then 6 = g(a) for some F-definable
function g. We may assume g[x) £ dcl(D) for all x.

Let K = {x £ A: for generic a £ A, g(a + x) = <?(a)}. Let ao,...,<Z2r be
mutually independent generic elements of A, r — rk(A). If x — y £ K, then since
some a, is generic over x,y,g(x + a,-) ^ p(j/ + a;). Thus the function f(x) =
((/(z + ao) , . . . , g(x + a2r)) is 1-1 modulo K. The image B of A by f is contained in
dcl(yl), and may be endowed with a group structure so that / is an isomorphism.
By stability (cf. [NeP89]), B and its group structure are definable with parameters
from D. •



129

THE MORDELL-LANG CONJECTURE 683

Lemma 4.9. Assume: Whenever Hi C H2 are definable subgroups of G, there
exists a nonzero element of H2/H\ algebraic over any base of definition for H\.
Then G is strongly rigid.

Proof. We assume G is defined over acl(0), and show every definable subgroup of
G is defined over acl(0). Let H(a) be an a-definable subgroup. Let H\ be the
intersection of H(a') over all a' realizing tp(a/acl(0)). If H\ = H(a) we are done.
Otherwise there exists a nonzero b £ H(a)/Hi with b algebraic over 0. Necessarily
b £ H(a') for all a', a contradiction. •

The following lemma is well known.

Lemma 4.10. Let k be an algebraically closed field and G a semi-Abelian variety
defined over k. Then G(k) is strongly rigid.

Proof. All torsion points are algebraic, and 4.9 applies. •

Lemma 4.11. Let A be a locally modular group. Then A is rigid.

Proof. [HP86], •

Lemma 4.12. Let A, B be orthogonal subgroups of a group G, and let X C (A+B)
be the solution set of a complete type over acl(0). Then X has the form U + V,
U C A, V C B.

Proof. Let (a,b) be a point of X. Let U be the locus of a and V the locus of 6.
Then by definition of orthogonality, for any a' £ U and 6' £ V, (a1, b') has the same
type as (a, 6); so U + V C X. D

Lemma 4.13. Suppose A, B are orthogonal (strongly) rigid groups. Then their
product is (strongly) rigid.

Proof. Applying 4.12 to the generic type, a connected definable subgroup of A x B
is a product of definable subgroups of A and of B. Thus an arbitrary definable
subgroup of A x B lies between two definable subgroups C C D with [D : C] finite,
and C, D each a product of subgroups of A and of B. •

Lemma 4.14. Suppose F is a finite subgroup of A, and A/F is (strongly) rigid.
Then A is (strongly) rigid.

Proof. Let H(a) be a definable subgroup of A. Then J — H(a) + F does not
depend on a (if tp(a/ acl(0)) is given). Hence H(a) is a subgroup of J containing
the connected component H of J. But H has finite index in J, so there are only
finitely many intermediate subgroups. •

Lemma 4.15. Let A = A\ + A2, where Ai,A2 are orthogonal semi-minimal sub-
groups, and Ai is of linear type. Let X C A be the solution set of a complete type
over acl(0). Assume Stab(X) is finite. Then X is contained in a coset of Ai-

Proof. By 4.12 we have X = U\ + U2, with U{ C Ai. So S t a b A ^ i ) C Stab(A").
Since A\ is locally modular, XJ\ is contained in a coset of Stab(fJi); so U\ is finite,
and being the solution set of a complete type, it has one point. Thus X is a translate
oiU2. D
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5. T H E MAIN T H E O R E M

K is either a separably closed field of characteristic p > 0, with a finite p-
basis fixed, or a differentially closed field of charO. In either case K is assumed
saturated (i.e. we work in the universal domain). Let k = f]n A'p" if p > 0, and
k = {x : Dx = 0} if the characteristic is 0. In either case k is an algebraically closed
field. We will say that a type has finite dimension if it has finite Morley dimension
and, when p > 0, is thin.

Our goal is the following version of the main theorem.

T h e o r e m 5 . 1 . Assume K is saturated. Let S be a semi-Abelian variety defined
over K, and X a subvariety of S. Let T be an oo-definable subgroup of S, of finite
dimension. Assume X C\T is Zariski dense in X. Then there exists a semi-Abelian
variety So defined over k, a subvariety Xo of So defined over k, and a rational
homomorphism h from a group subvariety of S into So, such that X — h~1(Xo) + c
for some c.

Definition. We call a function h p-rational if p = 0 and it is rational, or when
p > 0 if it is the composition of a rational function with some negative power of
Frobenius.

Fact 5.2. If 5 C kn is a (relatively) definable subset, then 5 is constructible (i.e.
definable in the field structure (&,+, •) with parameters). If h is a definable map
on S, then S may be split into finitely many constructible sets, on each of which h
is a p-rational function.

Proof. This follows from quantifier elimination, and the fact that every automor-
phism of a (differential) field extends to its separable (resp. differential) closure. •

Fact 5.3. Let L be an oo-definable field with minimal generic type. Then L is
definably isomorphic to k.

Proof. This is part of the theses of Sokolovic [So92] when p — 0, and of Messmer
[Mes] when p > 0. •

Lemma 5.4. Let X be a Zariski minimal type. Then either X is locally modular,
or X is nonorthogonal to k.

Proof. When X is strongly minimal, i.e. it is the solution set of a single formula,
it is proved in [HZ] that there exists a field L satisfying the hypotheses of 5.3, and
nonorthogonal to X. The proof goes through in the general case. By 5.3, we may
take L = k. •

Lemma 5.5. Let A be a semi-minimal group. Then either A is locally modular,
or there exists an algebraic group H_ defined over k and a definable surjective group
homomorphism h : A —>• H_(k), with finite kernel.

Proof. By 5.4, if A is not locally modular, it is nonorthogonal to k. By 4.8, there
exists a definable surjective group homomorphism h with finite kernel, such that
B = hA C dcl(fc). By Fact 5.2, B is definable in the structure (k, +, •). By [NeP89]
(see chapter on Weil's theorem), there exists an algebraic group H_ defined over k
such that B is definably isomorphic to H_(k). •

Proposition 5.6. Let G_ be a semi-Abelian variety defined over K. Let G = G(A').
Let A be a semi-minimal definable subgroup of G, Zariski dense in G_. Then either
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A is locally modular, or there exists an algebraic group H_ defined over k and a
bijective rational homomorphism h:G_->H_, with h(A) = H_(k).

Proof. Suppose A is not locally modular. Then by 5.5 there exists an algebraic
group H_ defined over k and a definable surjective group homomorphism h : A —>
H_(k), with finite kernel of size n, say. Consider R = {(nx,y) : h(x) = y}. If
(u, 0) g R, then u = nx, h(x) = 0, so x is in the kernel and u = 0. Thus R defines a
homomorphism g from h(A) to G. If (0, y) £ R, then y is the image of an ra-torsion
point of A; so g has finite kernel, and is surjective.

By 5.2, g is given by a p-rational map g. Since h(A) is Zariski dense in H_, g
defines a homomorphism g on H_ into G_. Let R be the smallest closed subgroup
of H with H/R semi-Abelian; then R is defined over k; H/R is strongly rigid
by 4.10, so Ker(g)/R is defined over k; hence Ker(p) is defined over k. Since k
is algebraically closed, there exists an algebraic group H* defined over k and a
surjective p-rational map / : H_—¥ H* whose kernel is Ker(<?). We get an induced
p-rational map g_* : H_* -» G with g - g* f. Further / carries~ff(fc) to H_*(k). Thus
we may assume Ker(<?) is trivial.

The image g(H_) contains A, which is Zariski dense in G, so it equals G. Let h be
the inverse map to g. Then h is p-rational. Composing with a power of Frobenius
(and changing H_ appropriately), we may assume h is rational. •

Lemma 5.7. Let G_ be a semi-Abelian variety defined over K,G = G_(K). Let A
be a semi-pluriminimal definable subgroup of G. Then A is (strongly) rigid.

Proof. By 4.6, 4.13, we may assume A is semi-minimal. Further we may assume A
is Zariski dense in G_. If A is locally modular, we are done by 4.11. Otherwise by 5.6
there exist an algebraic group 7J defined over k, isogenous to G, and a surjective
map h : A —> H_{k) with finite kernel. H_ is also a semi-Abelian variety, so H_(k) is
(strongly) rigid. By 4.14, A is (strongly) rigid. •

Proof of 5.1. The proof is now a sequence of reductions, leading to 5.6.
We may assume X has finite stabilizer; otherwise we may quotient out the con-

nected component of the stabilizer. Let A be the maximal semi-pluriminimal con-
nected subgroup off. Then 4.3 (ii) holds. By 5.7, 4.3 (i) holds also. By assumption
X H T is Zariski dense in X. Choose a definable Y C I n T , such that Y is Zariski
dense in X, and of least possible dimension and multiplicity. Since X is irreducible,
whenever Y is written as a finite union \}i Yi, one of the sets Yi must be Zariski
dense in X. Hence Y has multiplicity one. Moreover if Y' is a subset of Y of the
same dimension, then Y1 is Zariski dense in X, since the complement cannot be.

Observe that if translation by an element a stabilizes Y in the sense that
dim(Yn(y+a)) = dim(Y), then the Zariski closure of Yn(Y+a) must be X, so (as
XH(X + a) is Zariski closed and contains Fn (Y + a)) the element a stabilizes X as
a set. Thus the dimension-theoretic stabilizer of Y is contained in the set-stabilizer
of X; so it is finite.

Thus 4.3 (iii) is also true of Y. So by 4.3, a subset Y' of Y of the same dimension
is contained in a single coset c + A of A. In particular (c-\-A)C\X is Zariski dense in
X. Replacing X by X — c, and T by A, we may assume T = A is semi-pluriminimal.

Write A as a sum of orthogonal subgroups Aj, with At semi-minimal. Let B be
the sum of all nonlocally modular At, and C the sum of the rest. By 5.4, if Ai,Aj
are nonlocally modular, then they are nonorthogonal to k, and hence to each other,
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so i = j . Thus B is semi-minimal. By 4.15, Y is contained in a single coset of B.
Translating, we may assume Y is contained in B.

Let G be the Zariski closure of B. Then G is a group subvariety of 5, containing
X (the Zariski closure of Y C B). By 5.6, there exist an algebraic group S_Q defined
over k and a bijective rational homomorphism fi : G —¥ 50 defined over A'; and
ft(S) = 5.o(&)- So So is semi-Abelian. Let X$ be the Zariski closure of h{Y). Since
h(Y) C h(B) C &o(k), Xo is defined over k. Clearly /T^Xo) contains X. Since A
is bijective, h~1(Xo) — X.

Remark 5.8. We observe that Theorem 5.1 for saturated K implies the same state-
ment for arbitrary models K. The assumptions that T is of finite dimension and
that FnX is Zariski dense in X should both be understood in the universal domain
however. There are two points to observe here.

(i) Suppose S is defined over L. The domain and kernel of h, being algebraic
subgroups of 5, are defined over a separable extension of L (= Ls). Hence up to
a p-rational isomorphism, So is defined over L. Let L* be a saturated elementary
extension of L, and let k* = |~|n i*p" (in characteristic p > 0) or £*=constants
of L* (in the differential case). In either case k*, L are linearly disjoint over k.
(In charp > 0, it is because L*p is linearly disjoint from L over Lp" for each
n.) Theorem 5.1 states that So is defined over k*. It follows that a p-birational
copy of So exists over the algebraically closed field k. More precisely, there exist S'o
defined over k, a surjective map h' : dom(h) —>• S'o defined over L, and a p-birational
map h" : S'o -> So defined over k*, such that h = h"h!. It follows similarly that
h"-lX0 - h(X +1) is defined over k* f) L = k. (The t in 5 such that h(X +1) is
defined over k* may be chosen in L.)

(ii) Note that if F = f]n Tn, where Tn is a definable group, then T CiX is Zariski
dense in X iff, for each n, Tn l~l X is Zariski dense in X. This is because T (~l X is
Zariski dense in X if and only if, for each m, there exist <n,..., am in T PI X such
that (oi,. . ., am) is a generic point of Xm in the sense of algebraically closed fields.
(And the compactness theorem of model theory applies.) Similarly one can deal
with the case where for each n, Cn Pi X is Zariski dense in X, where Cn is some
coset of Fn. In this case in the saturated extension there will be a coset of f]n Tn

meeting X in a Zariski dense set.

Thus we have proved the following restatement of Theorem 5.1.

Theorem 5.9. Let K be either a separably closed field of characteristic p > 0,
with a finite p-basis fixed, or a differentially closed field o/charO. Let k — f)n A'p"
if p > 0, and k = {x : Dx = 0} if the characteristic is 0. Let S be a semi-
Abelian variety defined over K. Let Vn (n — 1,2,...) be a descending sequence of
definable subgroups of S, such that p|n Tn has finite dimension. Assume that for
each n, for some coset Cn of Tn, X C\ Cn is Zariski dense in X. Then there exist
a semi-Abelian variety So defined over k, a subvariety XQ of So defined over k,
and a rational homomorphism h from a group subvariety of S into So, such that
X — h~1(Xo) + c for some c.

6. A QUESTION OF VOLOCH'S

We prove here a refinement of Theorem 1.1, conjectured by Voloch (Theo-
rem 6.4). In characteristic 0, a somewhat weaker version was proved in [BV93].
It is related to a conjecture of Lang concerning integral points on an open affine
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subset of an Abelian variety (see [BV93] and [La91]). We also observe some unifor-
mities that arise from our method of proof. In this section we use only basic model
theory, really only the compactness theorem, in the style of A. Robinson.

For simplicity, as in 1.2, we will assume away the homomorphisms that occur
in the conclusion of 1.1. Thus throughout this section, let k be an algebraically
closed field, K an extension field, A an Abelian variety defined over K with no
nonzero homomorphic images defined over k, X_ a subvariety of A, and T a p'-
finitely generated subgroup of A. (There is no difficulty in working with semi-
Abelian varieties and special subvarieties as in 1.1; we restrict to the Abelian case
for simplicity only.)

Recall:

Corollary 1.2. X{K) n T = Y(A') D V, where Y_ is a {reducible) subvariety of X_,
equal to a finite union of translates of Abelian subvarieties of A.

We wish to exploit the method of proof to observe a uniformity in the finite
number involved.

Theorem 6.1. Let k,K,A,)(_ be as above. There exists a finite number of Abelian
subvarieties B_x,..., B_m with the following property. For any extension field K' of
K and any p'' -finitely-generated subgroup T of A(K') of rank g, there exists a union
YLofa finite number I of cosets of the £, , such that X_(K') l~l T = Y_{K') C\ V.

Moreover, I depends only on A,X_, and g but not on the actual choice ofT. In
characteristic p, we have: I < mpr3 for a certain fixed r depending on A, X_ alone.

Proof. We give the proof in characteristic p, the characteristic 0 case being analo-
gous, using a derivation on K over k. In 6.1 we may first replace K by a finitely
generated field, and then by the separable closure of that field. Then k = (~]n Kp .
We now have the following lemma:

Lemma 6.2. Let K be a separably closed field, and let A be an Abelian variety
defined over K, with no nonzero homomorphic images defined over k = f| Kp .
Then there exist integers r, m, and Abelian subvarieties B_t of A (at most m of them)
with the following property: For any coset C ofprA(K), there exists a subvariety
Y_ of X_ with C n X_{K) = C n Y_(K); and Y_ is the union of at most m cosets of
some of the B^.

Proof. Note that for a given choice of r, m and B* = {Bi}j—it.,,<m, there exists afirst
order formula ip(y) = ip(r, m, B*)(y) such that: tp(c) holds in K iff for every union Y_
of at most m cosets of some of the Bj, (c+pr A(K))OX{K) ^ (c+prA(K))nY_(K).
(The formula quantifies universally over the possible cosets of the J3,-.)

Note that as r and m grow bigger, the formula ift(c) grows stronger. Suppose
for contradiction that there are no r, m and Abelian subvarieties i?,- as asserted in
the theorem. For any choice of r, m, B* there exists c with if>(r,m, B*)(y). Hence
by compactness, there exists an element c in some elementary extension K* of K
such that all the formulas i/>(r, m, B*) hold of c. K* may be chosen countably
saturated. Let C = c + p^A. Then by Corollary 1.2, CC\X_{K*) = C C\Y_(K*)
for some finite union Y_ of cosets of m Abelian subvarieties B^ of A. In particular
C f l l ( F ) C Y_(K*). By compactness, for some r, (c + pr A) D X_{K*) C y . So
(c+prA)r\X_(K ) = (c+Pr A)C\Y_(K*). Thus->V(c) holds with V = i>{r, m, {BJO.
a contradiction. D
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We now finish the proof of 6.1. We simply observe that as F is p'-generated by
g elements, so is (T + prA(K))/prA(K), hence it has size at most prg. So V is
contained in prg cosets of prA(K), and the theorem follows. •

Remark 6.3. Assume the situation of 6.1, but let A, X_ vary within an algebraic
family of Abelian varieties and subvarieties. Then the same proof shows that k,m
do not depend on the actual choice of A, X, and that the B^ also vary within an
algebraic family.

We now assume given a discrete valuation v of K/k. (In characteristic 0 the
assumption of discreteness of v is not needed; it can probably be eliminated in
characteristic p too.) Then one can define a D-adic distance dv(a,X) between a
point a of A and a subvariety X_ o{ A. We will define below a quantity Xx_(a),
which should be considered as — logdv(a, X). Thus 6.1 states that for a £ T, if
dv(a,2Q = 0 then also dv(a,Y_) — 0, or equivalently that if A^(a) is infinite then
Aĵ (a) is infinite. We prove a continuous version of this, conjectured by Voloch.

Theorem 6.4. With the assumptions above, there exist a finite union Y_ of trans-
lates of Abelian subvarieties of A, and a constant c, such that: for all a £ T,
\x_(a)<c-\Y_(a).

Remark 6.5. This statement naturally carries over to points of the ii-adic closure
of F in A(KV), where Kv is the u-adic completion of K.

Definition. To define A, we consider A as embedded in projective space P m . Let
R — {t £ K : v(t) > 0} be the valuation ring of v. Any point x of Pm(A') can
be written in projective coordinates as x — (xo : ••• : xm), with v(xi) > 0 and
v(xi) — 0 for some i. We let

^'xi.x) = inf{v(/(a;o : • • • : xm)) : f a homogeneous polynomial in

R[X] vanishing on X}.

Note that if {fj} are homogeneous polynomials generating the ideal of X_ m R[X],
then A^(a;) = min{v(fj(xo : • • • : xm)) : j}. We are interested in small distances
from X_, hence large values of A', so for convenience we let \x_{x) = max(l, X'x(x)).

Lemma 6.6. Let K have characteristic p > 0, A a group variety over K. Let X_, Y_
be subvarieties of A defined over K. Suppose X_(Ks)C\pr A{K_S) = YXK")nprA(Ks).
Then for some integer c and for all a E pr A(K), \x_(a) < c • Ay (̂a).

Proof. Every separable extension of K embeds over K into some elementary exten-
sion of K'. Hence the hypothesis implies that X(A'')DpM(A'') = Y_{K')C[prA{K')
for all separable extensions K' of K.

Suppose for contradiction that there is no integer c as required. Consider the
language describing an extension field K* of K, a valuation v* of K* extending v
on K, with value group Z* (extending the value group Z of v), and an element a*
of ^(A'*). We define A* from v* as A is defined from v. The following statements
are first-order:

(i) a* is in prA(K*).
(ii) v* extends v (v*(a) = v(a) for a £ A). Z* is an ordered group with a least

positive element (hence containing the integers Z as a convex subgroup).
(i i i)A^(a*)>cAJ-(a*)(c=l,2, . . . ) .
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By assumption any finite number of the above axioms can be satisfied (with K* =
K,v* = v). Hence by compactness there exist K*,v*,a* with these properties. Let
R* be the valuation ring of v*, and let

M' = {xeR* : v*(x) > nX^_(a*), all n}.

This is a prime ideal of R*. v*(x) = v(x) G Z for x in R* n K, so M' meets R* n K
trivially; thus K embeds into K' = R*/M'.

K' is a separable extension of K. For suppose it is not. Let t (E K, v(t) — 1.
Then (since K/k has transcendence degree 1) there is a p-th root of t in K1; i.e.
there is s in R* with sp — i in M', i.e. v*(sp — t) large. But either v*(s) = 0 and
v*(sp — t) = 0, or i>*(s) > 1 so t>*(sp) > p and i>*(sp — t) = 1; a contradiction.

Let a' be the image of a* in A''. By (iii) we have that Ax(a*) is in M', so a'
is in X(K'). Since a* — prb* for some 6*, and b* may be written with projective
coordinates from R*, we see that a' = prb' for some ¥ in A(K'). Thus by the first
paragraph, a' is in Y_(K')- But -V(a*) is not in M', so a' is not in Y_(K'). This
contradiction proves the lemma. •

Lemma 6.7. Let there be given a derivation D of K over k compatible with the
valuation v, in the sense that for some constant b in the value field, if v(x) > b,
then v(Dx) > v(x) — b. (We can take b = 1.) Let A be a group variety over K,
X_,Y_ be subvarieties of A defined over K, and B be a subgroup of A(K) defined by
a differential equation. Suppose X_(Kd)C\B = Y_(Kd)f\B holds in some differential
closure Kd of K. Then for some integer c and for all a £ B(K), \x\a) < c-\y_(a).

Proof. Entirely analogous to 6.6 (and indeed we could have used 6.7 to prove 6.6).
We need only note that in an elementary extension (K*,D* ,v*) of (K,D,v), the
derivation D* continues to satisfy that v*(x) > b implies v*(D*x) > v*(x) — b, hence
is continuous, and hence induces a derivation of R* jM' of the proof of 6.6. •

Proof of 6.4- Again we limit ourselves to giving the proof in characteristic p > 0.
We have T C H + prA(K) for some finite set H. By 6.2, for some finite union Y_ of
translates of Abelian subvarieties of A,

x n (E + PrA(Ks)) = y n (s + prA(Ks)).

Thus by 6.6, for some c and all a e (2 + prA(Ks)), Ax(a) < c • Xy_(a). (Actually
we require here a version of 6.4 valid for (H + prA(Ks)) in place of prA(Ks)\ this
can be proved in the same way.) •
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MODEL-THEORETIC INVARIANTS: APPLICATIONS TO
RECURSIVE AND HYPERARITHMETIC OPERATIONS

G. KRETSEL
Stanford University, Stanford, California, U.S.A.

Institute for Advanced Study, Princeton, New Jersey, U.S.A.

Introduction. Both in informal mathematical reasoning and in foun-
dations one sometimes identifies objects a and a' in two structures 2t, W
(of the same similarity type) whatever the 'nature' of the a, a' themselves
may be. Thus, a mathematician does not distinguish between the rationals
in one commutative field of characteristic 0 and any other. Or, if 0 is
an axiom system of arithmetic with the individual constant 0 and the
function constant S, and 0 f- Vy{Sy 4= 0) A Yx\/y(Sx = Sy—>x = y), then
SB0, also denoted by n, is taken to denote the same object in each model
%=(A, 0, S} of 0. In contrast, the term ix[(x = 0 A tx) v (a; = SO A —i «)]
would not if a is a formally undecided sentence since it denotes 0 in 91
if |=st a and SO if |=S(—\<x (and SO4= 0). In terms of the notion: a in A
and a' in A' correspond, one defines in an obvious way which elements
are common to all structures in a class ssf.

Our main interest is to see what ideas are implicit in this informal
notion of correspondence. In Section 1 we give two analyses in model-
theoretic terms, applicable to wide classes of structures, and coinciding
with the informal notion in familiar cases. The principal general result
establishes (for the case of general models) sharp explicit definability
for each element of the common part. Since one of the main properties
brought out in our analyses is that the common part of sd does not
admit automorphisms, we call it the hard core of stf.

The most interesting applications come about through the following
link with recursion theory. The class of recursive sets of natural numbers
made its first appearance in the literature in Godel [31], not in connection
•with Church's problematic thesis, but under the name of 'entscheidungs-
definite Eigenschaften'. In the spirit of the times this notion was formu-
lated proof-theoretically, but it has a clear model-theoretic content. One
considers 0 (containing 0, T, ...) and calls tx(x) entscheidungsdefinit pro-
vided, for all n, 0\- «(n) or 0 | , «(n). Thus, granted that n denotes

190
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the same object in each model 21 of 0 so that TI is the hard core of
{31: (= 5j 0}, the set Tl n {x: |= ̂  <x(x)} is independent of 91, and <% is a uniform
invariant definition of it; more precisely, invariant on Ti, since for
(absolute) invariance, {X:\=^K(X)} itself would have to be independent
of 9t. (It turns out that the latter sets are finite sets of natural numbers.)

If Cj is the hard core of a class s& of structures there is then an un-
ambiguous extension of the notions of invariance, of invariance on Q,
and of several related notions set out in Section 2. The extensions are
meaningful for arbitrary classes of structures, but, of course, dependent
on the language used in the definitions, e.g., whether finite or infinite
formulae a. are considered.

The principle involved in the applications is simply that familiar from
ordinary mathematical analyses of concrete situations in abstract terms.
Thus, we have

(a) Generalization of known results about some familiar cases; given
results about general models (e.g., the finiteness theorem), or about
recursive and recursively enumerable sets of natural numbers (e.g.,
maximal simple sets of Friedberg [58]), one reformulates them by
replacing some or all occurrences of 'finite' by 'invariantly definable in
stf', and 'recursive' by 'invariantly definable on d in J / ' , and tries to
prove the results for unfamiliar ,*/.

(b) Analyses of the familiar results. Since in any particular application
distinct general notions may coincide, one has to analyse which general
notions are involved in a special case. [Thus, for systems of arithmetic,
Cl = Ti and the collection of finite subsets of Q has the following properties:
it has cardinal Xo (= <Q); it can be mapped into (and onto) Q by a function
invariantly definable on Q; each element of the collection has cardinal
<Xo (and so<Q), is invariantly definable, bounded, i.e., included in an
invariantly definable set, and conversely.] In particular, different proofs
of the same theorem in the familiar case may generalize to proofs of
different theorems. This is beautifully illustrated in the case of various
maximal simple set constructions; cf. Kreisel-Saeks [a].

Our principal illustrations concern co-models of countable sets of
axioms, i.e., typically, models satisfying the infinite formula
(V£6U>) (x = 0va; = Tv ...), and recursion theory on the recursive ordi-
nals, though extensions to other segments of the ordinals are unambiguous.
Not unexpectedly, the theory becomes particularly neat if one uses
languages with suitable infinitely long expressions, provided one restricts
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the syntax not by simple-minded purely external conditions (e.g., cardinality
of the expressions), bid by conditions on the satisfaction relation \=<n<x
between the pair of objects 21 and <x (cf. Discussion, Section 2.2).

While this general model-theoretic approach is implicit in Godel [31],
the discovery of close relations between co-models and the concept of
hyperarithmeticity is due to Mostowski, cf. Grzegorczyk-Mostowski-
Ryll-Nardzewski [58] and the polished exposition of Mostowski [62].
Our basic new point is that in the earlier theory one did not analyze
just why the numerals played a special role in general models for formal
systems of arithmetic, and simply compared subsets of XI which are
invariantly definable on TL in general and co-models, respectively. In
terms of the present terminology, this neglects the fact that tl itself is
(absolutely) invariantly definable in co-models. but not in general models;
so, sets definable on tl in co-models are automatically (absolutely) in-
variantly definable, but not in general models. In short, in the old theory
the notions of hard core and absolute invariance were neglected. Some
modifications needed for a smooth theory were first introduced in
Kreisel [61]. (The partial success of the old theory is explained in 2.1,
Lemma 2, below: some elementary results hold for sets definable on an
arbitrary part of the hard core.)

In connection with relative recursiveness and invariant definability
from the diagram of Y, YCQ (relative representability in a class of
models of <P, of Mostowski [62]) there is an important distinction between
two types of models of 0 which collapses for general models but not
for co-models (Definition 2(c), Lemma 2, Proposition C below). This
point enters into our revision of Spector's generalization [55] of Post's
problem; cf. Section 3.2.

1. Basic Notions. In 1.1 the notion of common part is formulated
abstractly and applied in 1.2 to a series of important classes s/. For
these also a simpler formulation of the informal notion is meaningful.
Suppose we have some kind of 'standard' maximum (concrete) structure
2to and consider substructures %ejrf (% need not e s/). Then the
common part may literally be defined to be the set-theoretic intersection
of all the universes of those 91. This simpler idea is sufficient for many
applications, where it coincides with the general notion.

1.1. Let sf be a class of structures satisfying 0, possibly containing
individual constants (which the structure must specify).

Defini t ion. %., of the similarity type of 2f, is rigidly contained in
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91, iff there is a unique function F from A\ into A, such that the restriction
of 91 to the range A of F is isomorphic to 9Ii. (We continue to use A in
this sense below; A is closed under the operations of 91 and contains the
objects of A denoted by the constants of 0.)

Corol la ry . Let Q denote the set of constants of 0 and let Qx be an
arbitrary labeling of A\—Q. Then 9Ii is rigidly contained in all %es/
if and only if (i) in each 91 the diagram Ax of %yis satisfiable, (ii) if Qx'
is a congruent labeling to Qx, i.e., obtained from Qx by replacing ceCli
by c* e Qi' (* not in the language of 0) Ax, Ax* |=S[c = c*.

(i) expresses that 9Ti is contained in 91; (ii) expresses rigidity.

Theo rem. Let sd be the class of general models of 0. If 9ti is rigidly
contained in s/, let c% be the element of 91 corresponding to c in Ax. Then,

for each c e Ax, there is a quantifier-free formula Ac(x, y) (y standing for

a finite sequence), such that (i) c% is the only object \=^lyAe(x,y), i.e.,

uniformity, (ii) j=M (Vx)[(3y)Ac(x, y) -o- (3y e lm)Ac(x, y)] (i.e., A is a
basis for the existential formula), (iii) Further, all basic operations and
relations are decided by 0 for these explicit definitions as arguments.

Proof by compactness, using rigidity; decidability follows because the
full diagram is satisfied in each 91.

Defini t ion. s4 possesses a hard core iff there is a maximal structure
rigidly contained in each 91 £ jtf'.

1.2. To analyse the informal notion of common part (c.p.) of s# we
use the following evident properties:

Al. The hard core of J / is (isomorphic to) a substructure of c.p.,
A2. C.p. is a substructure of each %e s/ (though not necessarily

rigidly contained),
A3. C.p. is a monotone decreasing function of si'.

By (A3), c.p. is a substructure of each 91: 9£ C 9Io A 9t e sd, i.e. of the
set theoretic intersection considered in 1 above. Below are some examples
of intrinsic interest, for which hard cores and intersections are determined
for suitable 9Io- In this way it is decided whether A1-A3 determine c.p.

(a) The concrete structure ('general directed magnitude'): the set of
complex numbers with addition and multiplication, (i) Commutative fields
of characteristic 0; intersection: real rationals. (ii) Real closed fields;
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intersection: real algebraic numbers, (iii) Algebraically closed fields of
transcendence degree > 1; intersection: algebraic complex numbers. Note
that in (i), (ii) the intersections satisfy the axioms mentioned, and are
isomorphic to the hard cores of (the general models of) (i), (ii) resp.,
but not in (iii).

Going over to arbitrary models, the common parts of (i), (ii) are
determined by (Al-3) to be isomorphic to the respective hard cores,
but not in (iii). Intuitively in the case of two algebraically closed fields,
one would not identify |/2 + i in 91 and }/2 + i in %' since there is nothing
to distinguish |/2-f-1 and ± |/2 ± i: only sets of solutions of an irreducible
equation are identified. Evidently automorphisms are to be avoided.
The hard core of (iii) consists of the real rational numbers and thus
agrees with the informal notion of common part.

(b) The concrete structure [set in the sense of the cumulative theory
of types built up from the empty set: a model is standard if it consists
of (well-founded) sets and is transitive]: sets with the e relation, 0, and
the operations avb and {a}. The following axioms are specially suited
to the present problems, (i) Extensionality, the usual 'definitions' of
the constants, the (predicatively) restricted replacement axiom, i.e.,

(ya)[(\/x ea)3lyoc(x, y) -> (3z)(yy)[y e z o jx{x e a A oc(x, J/))]],

where <x may contain parameters, but any quantifiers in oc{x, y) are
restricted to be elements of o, x, y or the parameters, (ii) In addition
to (i), the axiom of union, and of infinity (asserting the existence of the
set of all finite von Neumann ordinals): let n(b) express closure of b
under predecessor, i.e., yx(x u [x] e b ->• x e b), then:

(3<JJ)(0 e a) A v«[« e o» -o- (yb){[7i(b) A a e 6] -v 0 e b}]).

The intersection of (i) consists of just the hereditarily finite sets (also
for the full replacement axiom); if the structure only contained e
(0, {}, VJ defined) the intersection would be empty because the hereditarily
finite sets built up from any set would also be a model. The intersection
of (ii) consists of the hereditarily hyperarithmetic sets of rank <o>i
(the first non-recursive ordinal). (Essentially Theorem 2 (i) of GKT 1

and Kreisel [61], but proved more simply by the methods of GMR l

or Section 2 below.)
Going over to general models, by extensionality, each model is iso-

i GKT=Gandy-Kreisel-Tait [60]; GMR=Grzegorczyk-Mostowski-Ryll-Nard-
zewski [61].
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morphic to a structure of (not necessarily well-founded) sets where
e, 0, U, {} have standard meaning. Considering only those sets that
are well-founded, even (ii) has as intersection only the hereditarily finite
sets. But without this condition, each general model of (ii) contains a
subset which is isomorphic to the union of co, the set QI of all recursive
subsets of co, the set QZ of all subsets of Q\ with partial recursive characteristic
function, etc., and closed under union 2. For X e gi, if <x is any invariant
definition of X on co, Vy[y e x •*> y e co A oc(y)] is an explicit definition
of an element X% of 91 corresponding to X. Note: X% contains in general
'non-standard' elements of co^: co O X% = X, but X5( 4= X; also, for
given X and 91, Xn is not uniquely determined by X; finally, the defi-
nition is not uniform because for given oc, Xn #= Xw. Thus the hard core
is a proper part of this common substructure [cf. the notion of prime
model; but the structure described is not a model of (ii)].

Dana Scott has shown (by use of Theorem 1.1) for arbitrary consistent
extensions of (i): if the extension is consistent with Zermelo-Fraenkel's
axioms plus regularity the hard core consists precisely of the hereditarily
finite sets, but not, e.g., if 3\x(x = {x}) is a theorem of the extension.

An co-model of (ii) [or (i)] is, by definition, a model in which the
denotation of u> consists precisely of the hereditarily finite sets built
up from the empty set 3. Now the hard core of all co-models of (ii) consists
precisely of the hereditarily hyperarithmetic sets of rank <coi, and the
same remains true if one adds to (ii) any /Ti1 set of axioms in the notation
(which have an o>-model at all), by Theorem 2 (ii) of GKT, for those elements
of the hard core which are of rank < co\. Furthermore any such element
is explicitly definable uniformly for all co-models.

(c) The concrete structure: the ordinals, with the.ordering relation <,
and binary relations Pn (defined by transfinite induction), 0 and successor

2 Compare the notion of GKT: the set X^ represents in St the subset X2 of
tp(co) (and for higher types). Here strong uniqueness conditions are required.
To each X' Q a> there corresponds in % the (unique) class {X: X e % A X O io=X'};
for representable X', and all 91 e j / , this is not empty. Then, for representable
X', either X^ contains the whole class or is disjoint from it. These conditions
imply continuity of the characteristic functions' of representable sets, and thus,
e.g., (non-empty) finite sets of finite subsets of co are not representablo; cf. Fefer-
man's review of GKT in J. Symb. Logic.

3 This does not mean that all sets in an co-model of (ii) are well-founded though,
of course, to is. Models satisfying this stronger condition are called /S-modols ('/?'
for bon-ordre) by Mostowski. The Shepherdson-Cohen minimal models make up
the hard core of the /J-models for ordinary set theory.
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8; a model is standard if it is an initial segment of the ordinals. The
following axioms are useful, (i) Total order, successor axioms, schema of
proof by transfinite induction for arbitrary a: \/x[(Vy<x)oc(y)- ->a(x)] -»•
-*\/xx(x); definition by transfinite recursion: suppose all quantifiers in
<xn are bounded by x or y, and ocn does not contain Pn; then
\/x\/y[Pn(x, y) -o- <x!*\Pn, x, y)] is an axiom where ajf] is obtained from
<xn by replacing P(t, z) by x<tv P(t, z), i.e., AyPn(x, y) is defined from
1z < xXyPn(z, y); the supremum: if all quantifiers in oc(x, y) are bounded,
(ya)[(\/x<a)3yx(%, y)- -* lz(yx<a)(:3y<z)(x(x, y)]. (ii) In addition to (i)
the axiom of infinity (3a)){Vx<a>){Sx 4= a> A [x = 0 v (3y<x)(Sy = x)]}.

The intersection of (i) consists of the finite ordinals, and that of (ii)
the recursive ordinals.

Going over to general models, every model is isomorphic to one in
which each element whose set of predecessors has ordinal a, is the
(abstract) ordinal a. (Other elements can in general not be replaced by
the abstract order type of their predecessors because a non-well-ordering
may permit automorphisms and so different elements may define the
same order type.) Considering only the ordinals, the intersection of (ii)
is still only a> because we can consistently add the set of axioms
ai<oi,a2<a1, ...,an+i<an, . . . .

The hard core of all consistent recursively enumerable extensions of
(i) is also ct», by use of provably disjoint recursively enumerable sets
which are not recursively separable, and decidability of the Pn on the
hard core.

An co-model of (ii) is one in which u> is a>. The hard core of all co-
models consists of the recursive ordinals, with Pn determined uniquely.
The same remains true on addition of an arbitrary III1 set of axioms
(in the present notation) provided they have an co-model. Each recursive
ordinal « can be explicitly defined, e.g., by defining first an ordering of
the finite ordinals with initial segment of type coi, as in Gandy [60],
and then a functional relation Pn(x, y) hy<w, \/x^\yPn(x,y), mapping
the ordinals <«<coi into the segment and preserving order4.

2. Invariants. The theorem of 1.1 gives results on uniform definability
of singletons. Now we are concerned with subsets of the hard core which
can be defined (in one sense or another) in each structure 21 e si. Let Q

4 To study the hard core of a (transfinite) type theory in which variables are
explicitly supplied with (ordinal) types, one has to combine the considerations
of (b) and (c).
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be a set of constants intended to define elements of the hard core; but
the results obtained will use only the weaker condition: for distinct
c, c' e Q, 01= c 4= c'. One may therefore suppose that the symbols c
denote themselves, and so the letters C and C| may be interchanged.

Throughout, X C Q, d C Q, O2 Q Q and c denotes an element of Q,
(p a formula with one free variable. (The extension to XCQn is immediate,

by use of formulae <p with n free variables. If needed, c denotes an
element of Gn.)

Defini t ions . X is invariantly or uniformly (a) defined, (b) defined
on C\, by cp.in stf iff:

(a) (v«e.flO[X = {a:a|=«?>}]. <b) (V«e^)[Z=C7i O {o: o|=w?»}].
X is (a') definable, (b') definable on C±, in s/ iff:

(a') (V%ej*)3<p[X = {a:a\=K<p}lQ}')(v9teji/){3q>)[X = C1n{a:a\=tffi},
where, as usual, <p may contain constants for arbitrary elements of A.

For Y C C2, X is invariantly defined from Y on Ci by cp, containing a
predicate letter Y not in the language of 0, iff:

(c) ( v 5 r e j / ) ( V l r ' C ^ ) [ r ' n C 2 = 7 - > X = C ' i n { a : a ) Y'\=n<p}].

(Evidently, there are notions corresponding to, e.g., (b'), non-uniform
definability, etc.)

Remark . If 0 is a set theory, it is not assumed that Y' or Y is
necessarily an object in the universe of St. Thus, if 0 contains the
comprehension axiom, the letter Y does not appear in it. In short, Y is
regarded as a property, not a set. More formally: a, Y' 1=^ <p should be
written: a, Y' |= ̂ , q> where W is the structure obtained from 31 by adding
an additional relation type.

Correspondingly, in 1.2 (b) and (c): if Y is regarded as a set, Y may
appear in a in the replacement and supremum axioms resp., but not
if Y is regarded as a property. Note that in the former case the hard
core may be altered, but not in the latter.

Some notions of implicit definability corresponding to the above
explicit ones are these:

(ai) Let the set W contain the predicate symbol X, and possibly others
Y, not contained in 0. W is a uniform implicit definition of I in rf if
and only if:

(V%es/)(\/X'CA)lX=X'<+(3Y)(X',Y\=vy)l
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(a'i) X is implicitly definable in (each structure of) J / iff:

(V9T es/)(ly>)(vX' QA)[X = X' *+3Y(X', ?(=« V»)]

where tp is a single formula.

(bi) yi is a uniform implicit definition of X on Ci iff:

(v9t e O O A " , r ) (A\ y}=8fy.)AVAr'[(3y')(Ar\ y h ? I v ) - - » ^ = x ' n d ] .

Note that in contrast to (ai). A" itself need not satisfy (lY)(X, Y\=%ip).

Terminology. For C - o>, (b) is usually called: reckonable, strongly
representable, (strongly) definable, or binumerable. (a) is not generally
considered, (bi) is (a slight generalization of) Fraisse's [61a] relative
recursiveness when 0 is the diagram of the basic relations (his: Ri, ..., Rv

on p. 320) on Q (his: E). In his Section 5, Fraisse's intended meaning
is almost certainly better expressed in terms of models whose universe
is E itself (p. 323, 1. 5), than by his formal definition.

2.1. Technical lemmas on general models. Most of the results below
are easy, known, and/or given in Kreisel-Krivine [a], Chapter V. 0 is
an arbitrary (possibly uncountable) consistent set of sentences in ordinary
first-order language, and s/ its class of general models.

Lemma 1. If X in definable in s4', uniformly or not, explicitly or
implicitly, X is a finite subset of C-

Lemma 2. For Ci CQ, if X is definable on Ci in si', there is a <p
and a set O\, of cardinality <Ko-r^*, such that for all c (of course: not
all a) and 91 e s/,

c e X ^> [0, 0i f- <p(c)] and c $ X «-> [0, 0i \ , <p(c)].

Thus, (i) for countable 0, 0\ is finite, (ii) If (the set of Godel numbers
of) 0 is recursively enumerable in some set Ho (C Tl), X is recursive in
"Do on Qi, say C XI; here as usual, X is called: recursive on Qi, if there
are two recursively enumerable sets Y\, Y<i which are not necessarily
complementary on tl itself, such that Qi n Yi = Qi nCYz = X. (iii) An
example of Keisler shows that, in general, <Z>i cannot be dropped even
for countable 0, and one of Dana Scott that 0 may have to be infinite
for uncountable 0; but in these examples the hard core is empty. Lemma 2
shows that a definable set is almost invariantly definable, and an analo-
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gous argument establishes the analogous result for implicit definability,
(iv) If 0 is a Rosser theory, in the sense of Smullyan [61], p. 135, extended
to 0 that are not recursively enumerable, a definable set is invariantly
definable.

(ii) extends immediately to relative invariant definability from Y.
The collapse of the distinction made after Definition 2(c), for the case
of general models, follows from:

L e m m a 3. Let 0 contain at least second-order type theory in which
every finite subset of Gexists, i.e., 0^=9JL (jS)Vx[S(x) -o-(x = cn i v.. .vx = cHp)].
Suppose Y does not occur in0, Y QC and W= (Y(c): c e 7} U {—,Y(c): c <£ Y).
Then the addition of y: 3Syx[S(x) -<H»Y(X)] to 0 KJ *P is conservative.

If 0, W, y \- « then also 0, Wi, y \- oc for some finite subset Wi of W.
Replace Y(t) throughout by the disjunction of t = c, Y(c) e Wi to form
ipi, y'. Then 0|— y>i' A y', and hence, if a does not contain Y, 0 \— <x.

2.2. Technical lemmas on co-models. We consider co-models only for
systems of set theory and of ordinals (cf. Section 1.2) and only countable
0, the latter because the co-rule is not complete for uncountable 0. For
more general definitions and counterexamples, cf. Kreisel-Krivine [a].

We first consider sets of finite formulae and then examine for what
infinite formulae the arguments are valid. Since finite ordinals are used
in the arithmetization of the syntax of finitary language, we are first
concerned with sets of integers: for X Qa>, X is (uniformly) definable
on a> if and only if X is (uniformly) definable, since, if <x(x) defines X on
a>, OC(X)AXEW, resp. oc(x) A x<w defines X in all co-models considered.

Lemma 2 of 2.1 holds for co-models of countable 0 by GMR. Conse-
quently, either directly by Kreisel [61], p. 113, or by the completeness
of the co-rule:

If 0 is IIi1 in ( = inductively defined from) a set Xo Q to, and X C w
is definable in all co-models of 0, then X is hyperarithmetic in Xo.

The following propositions show that, in contrast to general models,
the class of invariantly definable sets (of integers) depends on 0, and
similarly for related notions.

Proposi t ion A. (i) / / 0 e IJi1, the invariantly definable sets are
hyperarithmetic, but (ii) there are 0 e E^ such that all IJi1 subsets of co
are invariantly definable (in contrast to Lemma 1).

P r o o f : (i) by GMR, (ii), e.g., by Kreisel [61], p . 119 (a).
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Propos i t ion B. Let 0 be ordinary axiomatic second-order arithmetic
not containing the letters X, X' and let X be non-hyper arithmetic, 0\ the
diagram of X for X, 0\ its diagram for X'. Then (i) 0 U 0i u 0i u
yjfy83x[8(x) -«- —, X(x)]} has an co-model, (ii) its extension by (3S)\/x
[S(x) -e- X'(x)] does not.

Proof: (i) by the basis lemma of GKT, (ii) obvious.

This contrasts with Lemma 3; but though of course (i) assures the
existence of all finite or even hyperarithmetic subsets of co (the compre-
hension axiom is provable for them), it does not assure the existence of
all sets C co which are invariantly definable in (i). A simple computation
shows this about invariant definability from X: let X be O (the set of
ordinal notations), and 0 as in Proposition B; then the class of sets
invariantly definable in 0 U 0y from (the property) 0 can be enumerated
by a function hyperarithmetic in 0, but all functions hyperarithmetic in
0 are invariantly definable in 0 u 0y U {38Vx[8(x) <+ X(x)]} from (the
set) O by Mostowski [62; II , 5, 6]. Thus for co-models, the distinction
(cf. the remark in the first part of Section 2) between definability from
properties and sets is real.

Propos i t ion C. If 0 is Hi1 in Xo (Xo C co) then the co-rule applied
to 0 closes off after < cof" steps, where cof° is the least ordinal not invariantly
definable from Xo (in all co-models.)

Proof as in Theorem 3 of Spector [61], where it is stated for absolutely
III1 sets 0. It is nearly stated in Mostowski [62], p. 41, II. 5.3 with
(o^ (\0\ the characteristic function of 0) instead of the generally smaller
cof0. The improvement expresses that a rule uses only the occurrence
of a formula in a set of axioms, not its absence.

Recall that the ordinary logical rules (for the consequence relation
of general models) close off after co steps, and note that, in the case of
general models, for all Xo, co is the least ordinal not invariantly definable
from Xo.

Discussion. To extend, e.g., Lemma 1, whose proof depends on
the finiteness theorem for general models, it is necessary to extend the
latter to co-models. Propositions A-C (are set out to) suggest that the
relevant property of finiteness is invariant definability in general models
and this turns out to be true (cf. next section). Part of Lemma 1 concerns
the step from (invariant, possibly implicit) definability to uniform
explicit definability, and therefore involves essentially a choice of
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language. Inspection of, e.g., the proof of Proposition A in Kreisel [61],
shows: all that is needed of the formulae 0 is that the satisfaction relation
('the structure described by F satisfies 9?') be Z11 in F and (the Godel
number of) <p and XQ. By use of countable models, F may be taken to
be number-theoretic functions. This is satisfied not only by finite formulae,
but also infinite formulae <p, e.g., infinite disjunctions and finite strings
of quantifiers, provided, regarded as syntactic objects, they are hyper-
arithmetic in Xo; the collection of such 99 is countable, and thus the q>
may be given finite Godel numbers. (NB: One cannot rely on simple-
minded syntactic conditions, e.g., \/x\.. .\/xn... [—, R(xi,X2) v —, R(%2,X3) v...]
expresses that R is well-founded, hence the satisfaction relation is lit1,
but the syntactic object is a simple co + co sequence. Dana Scott [*],
in a related context, introduced the restriction to finite sequences of
quantifiers for purely pragmatic reasons; but there too the analysis in
terms of the satisfaction relation seems to be the correct theoretical
foundation.) Going back to (countable) general models of first-order
formulae 0, a model F (on co) may be taken as given by a set F of
number-theoretic functions, namely the characteristic functions of the
relations in 0, and of the Skolem functions of 0; then the relation
'F satisfies $ ' (-t> F satisfies a certain infinite set of propositional formu-
lae) is II10 in F and 0. From this point of view, Mostowski's proof of
the finiteness theorem in [61] generalizes naturally to co-models (though
in 3.1 we use a different method); only the final step of his proof needs
elaboration because, in the case of general models, one can, and he does,
take advantage of special compactness properties of continuous mappings
from 2™ into a discrete space.

3. Applications. Only some points of principle are considered.
3.1. Theory of ay-models. Theorem. Suppose 0 is ZZi1 in Xo and

every 0i C 0, which is hyperarithmetic in Xo, has an co-model. Then 0
itself has an co-model.

Corollary. / / 0\-aq>, then there is a 0iQ0; 0x hyperarithmetic in
Xo, such that 0\ |— m cp.

(It seems to be open whether relative hyperarithmeticity, i.e. de-
finability from the set Xo, can be replaced by definability from the
property Xo.)

Proof. Since 0 is Fix1 in Xo there is an arithmetic functional K from
$(co) to «p(fl,), \/X[K(X)DX] and 0 is the least class DZ 0 : K{0) = 0.
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If, for all ordinals «, X° = X0, a * 0: Xa = \J K(XP), X" = & for «>cof

by Spector's [61] Theorem 3. Now let Q be the (arithmetic) functional
mapping sets X of formulae into the set of all logical consequences of X
together with a single application of the w-rule. Again Q(X) D X; let the
closure be Cnm(X). Consider the sequence of pairs of sets of formulae:

<<Z*>, Z°> = <Xo, Xo); for « * 0, <0", A'a> = <X" u (J Q{<^), U K(XP)).
/3<« fl«x

The closure rule is still arithmetic; by above, for <x><uf°, Xx = 0 and
so <P*D0. By completeness of the ai-rulc, 0xDCnai(&), for all <%>cof°.
So. if cp j— ŷ-, <f e 0* for some «<cof°. Since, for a<ojf°, 0" C Gnm{Xx),
and 0" is hyperarithmetic in Xo, the theorem is proved.

In view of this generalization we prefer to speak of the finiteness
theorem for general models, and not of: compactness theorem. For,
though compactness is used in most proofs (and shortens them), a
generalization to non-compact cases is possible, as above.

The use of the theorem simplifies and improves a good deal of GKT.
Also it brings out more clearly the relation between (i) my construction,
in Kreisel [61], p. 120, (ii), of a TTi1 set 0 (extension of ordinary second-
order arithmetic) which is not co-equivalent to any IJi1 n Xi1 (sub)set
and (ii) non-finite axiomatizability of ordinary arithmetic. (Of course,
if no special conditions are imposed on 0, one can take any non-
hyperarithmetic I7il set X and put 0 = {P(n):neX} imitating the
construction of infinite sets not equivalent to finite ones for general
models.)

3.2. Recursion theory on the recursive ordinals. The following two
languages are suitable for isolating important areas of classical recursion
theory.

(a) Elementary theory of recursively enumerable sets. The only constants
are 0, = , C and one kind of variable. In the interpretations, 0, =, C
have the usual meaning. We consider three interpretations (for the
range of the variables):

(i) Recursively enumerable subsets of co. For this interpretation,
JRo(x) = (3y)(x=Cy) defines the recursive sets, and (Lacombe):
Fin(x) = (\/y)[y C x-^ Bo(y)] the finite ones. Non-trivial parts of re-
cursion theory can be formulated in this language such as decomposition
of recursively enumerable sets or existence of a maximal simple set,
Friedberg [58], but cf. (b) below.
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In terms of model-theoretic invariants (for general models of the
theory of ordinals), recursive functions are those invariantly definable
on co; a recursively enumerable set is defined as the range of such a
function. We consider ranges included (ii) in the hard core (= a> for
general models), (hi) in co, and go over to w-models (of 7711 sets of axioms).

(ii) IIi1 subsets of a>i 5. Now MQ(X) defines the sets hyperarithmetic
on coi, and Fin(:r) the finite ones.

(iii) IIi1 subsets of co. Now, RQ(X) defines the hyperarithmctic subsets
of co, and Fin(x) the finite ones. This coincides with Mostowski [62].

It is not impossible that all three interpretations are equivalent for
this language. H. Rogers suggested during the symposium that the three
classes of sets may be isomorphic with respect to inclusion, and R. L.
Vaught that the theory might be decidable.

(b) Elementary theory of monadic recursive functions. The language
contains two kinds of variables (x, y, ... for individuals and /, g, ... for
monadic functions), constants 0, = and application [f(x)].

(i) Universe of individuals = co, of functions: number-theoretic re-
cursive functions, (a) (i) above can be interpreted here by denning
/ C g: Vx3y[f(x)=g(y)], and so the definitions of i?o and Fin carry over.
Alternative definitions here are: -Ko+(/)gfj(3gr)(Vx){g(x) =0o(3y)[/(?/) = x]},
F(f)^f(\/g) [the range of the function g restricted to the range of / is Bo+].
B(f)=lg[f CgA F(g)] here also defines the finite (=bounded recursively
enumerable) sets.

By use of inverse pairing functions the theory of ?i-ary recursive
functions can be interpreted in the present language.

Model-theoretically, we again regard the universe of individuals as
(ii) the hard core, (iii) co, the functions as those (ii) invariantly definable
on the hard core, (iii) on co, and go over to co-models (of IIi1 sets of
axioms).

(ii) Universe of individuals = coi, of functions: those invariantly de-
finable ore coi-\/f[Ii0+(f)<+Ito(f)], but —, Vf[F(f) ^> Fin(/)] since F(f)
defines the absolutely hyperarithmetic subsets of coi, and —i\/f[B(f}̂ F(f)].

5 What is meant is: subsets of cui, which are the range of some function which
is invariantly definable on cui, in the sense of the present paper. The notation is
chosen because any such set X can also be defined as follows: If W is the initial
segment of a recursive ordering of w of type cui, e.g., as in Gandy [CO], and \n\
the ordinal of the initial segment determined by n (in the field of W), then
X = {|n|: n <x X'} where X' is a TTi1 subset of co.
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Thus by using F, Fin, B, respectively, in the three places where 'finite'
occurs in the maximal simple set theorem, one gets 27 formally distinct
generalizations! For details, cf. Kreisel-Sacks [a].

(iii) Universe of individuals = co, of functions: those (whose graph is)
invariantly definable on co, i.e., the (absolutely) hyperarithmetic number-
theoretic functions. The range of every such function is hyperarithmetic
and thus \/fF(f) (and not all ZZi1 subsets of co can be enumerated). So
the theory of /Zi1 sets cannot be interpreted here by the definition
a(iii) above.

Relative Recursiveness (between recursively enumerable sets X and Y).
For general models of recursively enumerable axiom systems 0, containing
a minimum &o of arithmetic, the following relations are equivalent:
(1) X is invariantly definable from Y on the common part of all models
of <P, Y being regarded as a set, (2) with Y being regarded as a property,
(3) if German lower case letters denote invariantly definable subsets of
of the common part [i.e. enumerated by / : F(f)], there is g: Ro(g),
neX*>(3aC Y)Qa' C CY)[g{n, a, a') = 1], n$X^(3aC Y)(3a' C C7)
[g{n, a, a') = 2], (4) as (3) with neX replaced by n C X, n $ X by n C CX,
g(n, a, a') by g(n, o, a').

Note that for recursively enumerable sets X, Y the relations (3), (4)
can be expressed in the language (b) above for the interpretations b(i),
b(iii). —The existence of &o shows that the relations (1) and (2) are in-
variant invariants! i.e., the same relation is defined for each $ D $ o
considered. — The common part of all models of 0 together with the
diagram of Y (on w) is still w, even if Y is considered as a set.

For (y-models and III1 sets 0. By Mostowski [62], (1) is an invariant
invariant, but the argument does not apply to (2) for all Y (on w\).
Also, the use of infinite formulae does not alter (1), but, in general, increases
(2). By definition the common part of all co-models of 0 is not altered
if Y is regarded as a property, but in general is increased if Y is regarded
as a set. — Trivially (1) D (2) D (3) D (4); the inclusions are proper. (1) D (2)
by p. 187, (2) D (3) by recent work of Driscoll since (2) is transitive and
(3) is not, (3) D (4) because a simple computation shows that (4) is
transitive.

For each of the relations (l)-(4) Post's problem generalizes to this
[for the interpretation b(ii)]. To find I7il sets of recursive ordinals X, Y
which are incomparable for the relation considered. — Friedberg's proof
[58] generalises directly for (3) and hence for (4), Kreisel-Sacks [a]. It
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is open for (2). A satisfactory solution for (1) requires X, Y with the
property that the common part of all co-models of &o together with the
diagrams on coi of X, Y resp., be still coi. (Cf. generic sets of Cohen [63, 64].)
(Added in proof. The existence of such X and Y has been established
by Sacks, in his Metarecursively enumerable sets and admissible ordinals,
forthcoming in Bull. Amer. Math. Soc.)

The generalization above conflicts with Spector's [55] on two counts.
First he uses ITi1 subsets of co, instead of eoi, second the relation (1),
which is equivalent to relative hyperarithmeticity for all III1 systems
0 containing <Z>o-
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RECURSIVE FUNCTIONALS AND QUANTIFIERS OF
FINITE TYPES I

BY

S. C. KLEENE

This is the third of a series of papers in these Transactions on hierarchies
obtained by quantifying variables of recursive predicates. In Recursive predi-
cates and quantifiers [10] variables for natural numbers (type 0) were quanti-
fied, and in Arithmetical predicates and function quantifiers [14] also variables
for one-place number-theoretic functions (type 1). In the present paper we
shall quantifyalso variables for functions (i.e. functional) of higher finite types
(types 2, 3, 4, • • • ). A theory of recursive functions and predicates of vari-
ables of these types has not previously been developed. For the hierarchy
results in the form that new predicates are definable by increasing the highest
type of variable quantified^), or the number of alternations of the quantifiers
of the highest type, it would suffice to extend the notion of primitive recur-
siveness to the higher types of variables. This is how we began the investiga-
tion in 1952(2). However there are situations where the question "What be-
comes of this theory for higher types?" calls for an extension of general and
partial recursiveness. For example, before we can extend Post's notion of
degree of unsolvabitity [25; 19], which proved fruitful in the study of hier-
archies of number-theoretic predicates [5; 14; 16; 26], to predicates with
type-1 variables, we must have a notion of relative general recursiveness for
such predicates, which when uniform amounts to having general recursiveness
for functions with type-2 variables. Accordingly we now give an extension
of general and partial recursiveness. The treatment entails incidentally a
somewhat new treatment of general and partial recursive functions of vari-
ables of types 0, 1. As will appear, many of the known results for types 0, 1
extend to the higher types, but not all. In this Part I we leave undiscussed
various aspects of the subject on which work is in progress or completed which
we hope to report in a Part II.

Presented to the Society August 30, 1957; received by the editors June 13, 1957.
(') This result was obtained by Tarski [28], using set variables. Also cf. [29].
(*) Cf. XXXIX below. This paper incorporates (with a new method of proof) the results

alluded to in the last sentence of the abstract of [14] as presented to the Association for Sym-
bolic Logic on December 29, 1952 (J. Symb. Logic vol. 18 (1953) p. 190), and is the paper
referred to in [14, p. 312] and [16, p. 212] as to be written under the title Analytic predicates
and function quantifiers of higher finite types. The term "analytic" was applied in [14] to the
predicates obtained by quantifying variables of types ^ 1 , and we have meanwhile decided
that it would invite confusion to extend the use of "analytic" to include quantification of higher-
type variables; hence the present change of title.

1
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1. Primitive recursive functions. 1.1. We shall cite our Introduction to
metamathematics [13] simply as IM, and follow it in terminology and nota-
tion (cf. bottom p. 538) except as otherwise specified(3).

1.2. The objects of type 0 are the natural numbers 0, 1, 2, • • • . As type-0
variables, i.e. variables ranging over the natural numbers, we use a, b, c, • • • ,
o i , a2, • • • o r a0, /3°, y°, • • • , a°, a%, • • • , e t c .

For each j > 0, the objects of type j are the one-place functions from
type-j — 1 objects to natural numbcrs(4). As type-j variables, i.e. variables
ranging over the type-j objects, we use a', j3', 7' , • • • , a{, a'2, • • • , etc. (For
j > 1, they are "functional" variables.)

In illustrations, we may use simply a, j3, y, • • • , cci, a*, • • • for type-1
variables (as in [12; 14; 16]); and F, G, H, • • • for type-2 variables.

Sometimes we omit the type index on the letters a', @', y'\ • • • used as
type-j variables in contexts where the type should be clear (e.g. a6(/34) can
be written a6(/3) or a(/34) without ambiguity). One must then not confuse
a, /?, y, • - • for variables of types shown by the context with a, j3, y, • • •
for type-1 variables.

Letters like <j>, yp, x< • • • W'M be used (as in [12; 14] with types 0, 1) for
functions of a given finite number of variables, each variable being of a speci-
fied one of our types, taking a natural number as value. (These functions are
"functionals," when any of their variables are of type > 0.)

1.3. In the theory of general and partial recursive functions of variables
of types 0, 1 a useful role was played from the beginning by the primitive
recursive functions (cf. e.g. [8], IM). They constitute a subclass of the gen-
eral recursive functions, each function of which subclass can be calculated
for given arguments by steps which can be proved by known reasoning to
terminate; and they can be enumerated effectively. Subsequent research
showed that smaller classes of functions can play the same role, e.g. the ele-
mentary functions of Csillag and Kalmar (cf. IM, p. 285). Such results are
of interest, e.g. for type 0 as a possible line of approach toward a negative
solution of Hilbert's tenth problem (1900). However for our purposes the
largeness of the class of primitive recursive functions has seemed rather con-
venient. Accordingly we shall begin the theory of recursive functions of
variables of types 0, 1, 2, • • • with them(5), leaving open the question what
smaller classes of functions could play the same role.

(3) Several notations from papers subsequent to IM are: &{x) for IX«<» pf"'+I (cf. [12; 14,
Footnote 2]), Seq(w) for «>^0 & (t),-<ibc)[(w)<^0] (cf. [lS, p. 416]), Ext(w, u) for Seq(w)
& (£r)iaih(«)[« = IL<* # ) v ] (cf- Spector [27, p. 588]).

(*) I.e., arbitrary such functions, not merely recursive ones. For the type-1 case, cf. [12,
p. 683],

(6) Our extension of primitive recursiveness to allow higher types of variables does not
alter the notion for functions of variables of types 0, 1 (by VIII below). What Peter calls a
"primitive recursion on the second level (Il-te Stufe)" XXIV below can be used to define num-
ber-theoretic functions that are not primitive recursive (cf. [24, pp. 247-248, 252, 256] and [23.
pp. 68, 97-99]).
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For each application of the following schemata S1-S8, b is any list (pos-
sibly empty) of variables, distinct from one another and from the other vari-
ables of the schema, and each of a specified one of our types. Fur thermore, a
is a number variable, a is a function variable of type 1, q is a given natural
number, \f/ and x are given functions of the indicated variables, and <f> is the
function being defined. For S6, ai is a list of distinct variables, containing a t
least k-\-l oi type j , from which a results by moving the (& + l )s t type-j varia-
able to the front of the list. The expressions shown a t the right will be ex-
plained in §3.

51 4>{a, b) = a' = a + 1 (1, (no, • • • , nr)).

52 <fr{b) = q (2 , (n0, • • • , nr), q).

53 4>{a, b) = a ( 3 , (no, • • • , « , ) ) .

54 0(6) = *(*(&), b) (4, (n0, • • • , nr), g, h).

14>(o, b) = m, . . . . . .
55 < , (5, (n0, • • • , nT),g,h).

<- 4>(a', b) = X(a, t(a, b) , b)

56 <j>(a) = i£(ai) (6, («o, • • • , » , ) , ; , *, g).

57 4>(a, a, b) = a(a) (7, (no, • • • , wr)).

58 4>W, b) = a'Wat-* X(a'\ a'~\ b)) (8, <»„, • • • , nr), j , h).

S6, S7, S8 may also be designated as S6j (J ^ 0), S7.1, S8.j (j ^ 2).
The schemata will be used under the convention that only the order of

listing the variables within each type is material. For example, <j>(a, b, a)
= a + 1, 4>(a, a, b) = a + 1, <f>(a, a, b) = a + 1 are all admissible as applica-
tions of SI, but not (j>(b, a, a) = a + 1 (though this function can be introduced
by an application of SI followed by one of S6).

A function <f>(a) is primitive recursive, if there is a primitive recursive de-
scription (analogous to IM, p. 220) of it in terms of SI—S8 used under the
stated convention.

1.4. We call a primitive recursive description irredundant, if in it each
function except the last is used as the $ or x of a later schema application.
By the maximum type of a we mean the greatest of the types of the variables
a if a is nonempty (0 if a is empty).

I. In an irredundant primitive recursive description of a function <p(a) with
r the maximum type of a, each function has the same maximum type r of its
variables and for r S: 2 (r = 1) the same variables of types r, r — 1 (type r),
and hence S6.j, S7.j, S8.j can be used only for j :£ r.

Proof. In an application of S4, S5, S6 or S8, the <f> has no variables of
types >0 which are not variables of the yf> and x. and lacks no such variables
of the ^ o r x other than the variable a]~2 of the x in S8.

II. If </>(<*) is primitive recursive (with a given description), and a.' comes
front a by a permutation (without repetitions or omissions), then 4>'(a') = 4>(&)
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is also primitive recursive (with a description obtainable from the given one by
suffixing applications of S6).

Proof. Inversely to S6, k successive applications of S6 move a variable
from the first to the (k-\-l)st position among the type-j variables. By S6 with
this inverse (for different k's), any two type-j variables can be interchanged.

III. If <p(a) is primitive recursive (with a given description), then <j)(a, c)
= 4>(a), where a, c are distinct variables, is primitive recursive (with a descrip-
tion consisting of applications of the same respective schemata as the given one).

Proof. In the given description of <j>(a) any variables not in a but in C can
be changed to new distinct variables. Then the variables c can be introduced
at each application of S1-S3, S7 and can be carried through each application
of S4-S6, S8.

1.5. Although our schemata as stated introduce functions <£(a) with
values of type 0, we can get functions with values of any higher type j by
introducing <j>(a, a'"1) and considering \a'~l <j>(a, a'~l) as a function of o. The
latter we call primitive recursive when <j>(a, «'~') is(6).

IV. For each n =i 1, if <f>(a, an, b) and 6(a, b, T"~1) are primitive recursive,
so is <f>(a, b) = 4>(a, Xr"-10(ci, 6, r""1), b).

Proof. First replace in IV 0(a, b, T"->), <f>(a, b) by 6(a, b, c, r""1), <j>(a, b, c).
The resulting proposition (of which IV is the case for c empty) we prove by
induction on n, and, within that, induction on the length I of a given primi-
tive recursive description of </>(a, <rn, b). Cases are numbered according to the
schema last applied in that description. We treat in detail the two cases re-
quiring the most care, and summarize the others.

CASE 5. <£(ct, er, b) is introduced by S5 thus, writing a = (a, b),

( 4>(0, b, T , b) = vHb, <r, b),

I <f>(a', b, <r, b) = X(a, 4>(a, b, <r, b) , b, <r, b),

where \}/, x are previously introduced primitive recursive functions. We need
to show that 4>(a, b, b, c) = <£(a, b, Xr d(a, b, b, c, r ) , b), where d(a, b, b, c, r) is
primitive recursive, is primitive recursive. Using II and III , so are

ffi(b, b, c, «, r) = 6(u, b, b, c, r) ,

6(a, b, b, b, C, U,T) = d(u, b, b, C, r ) .

By the hypothesis of the induction on /,

*(b, b, c, «) = ^(b, Xr fl,(b, b, C, «, r) , b),

X(a, b, b, b, C, w) = X(a, b, b, Xr 6(a, b, b, 6, c, «, r ) , 6)

are pr imit ive recursive. As a new appl icat ion of S5, let

(') More generally, a function of an arbitrary one of the "finite types" considered in
[18, §5] shall be primitive recursive, if the function of "special type" correlated to it there is
primitive recursive under 1.3 here.
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( «(0, b, b, c, u) = *(b, b, c, «),

U(o' , b, b, c, M) = x(a, 4>(a, b, 6, c, «), b, b, c, «).

Using S6, S3, S4, let

0I(M, a, b, 6, c) = 0(o, b, b, c, «),

jj(a, b, b, c) = a,

0(a, b, b, c) = 4>i{r,{a, b, b, c), a, b, b, c) = <j>{a, b, b, C, a).

To see that then <j>{a, b, b, c) = #(a, b, \T d(a, b, b, c, r) , b) as required, we
prove by induction on a that, for any fixed b, b, c, w,

(1) 4>(a, b, i, C, «) = 0(a, b, Xr 0(w, b, b, C, r), b).

BASIS. 0(0, b, b, c, u) = ^(b, b, c, u) = ^(b, Xr 0,(b, b, c, w, r) , b)

= yft(jb, Xr 0(u, b, b, c, r) , b) = <K0, b, Xr 0(«, b, 6, C, r) , b).
IND. STEP. <f>(a', b, b, c, u) = x K <£(«. b, b, c, w), b, b, c, M)

= x(«i 0(a> b, Xr #(«, b, b, c, r) , b), b, b, c, «) (by hyp. ind. on a)
= x(o. <£(<*, b, Xr 0{u, b, b, c, r) , b), b, Xr 9(u, b, b, c, r) , b)
= *(o'f b, Xr0(M) b, b, c , r ) , b).

CASE 8. SUBCASE 1. <r is a'. Then re = j . We have

*(<r, b) = ^(Xa'-2 x ( ' , a'"2, &))

with x primitive recursive, and need to obtain primitive recursively

*(b, C) = {Xr 6(b, C, T)} (Xa'-2 x(Xr 8(b, C, r), « ^ , b))

= 0(b, C, Xa'-2 x(Xr 8(b, C, r), a'""2, b)).

By III and S6, we can express 0(b, c, r) as 9(a>~2, b, c, r) . By the hyp. ind.
on /, xia*-*, t, c) = x(Xr0(«'"2, b, c, r) , «'-», b) = x(Xr6»(b, c, r) , a'-2, b)
is primitive recursive, and thence using II, so is Xi(b, c, a'~2) = x(a'~"2. b, c).
Finally, by the hyp. ind. on n,

0(b, C, Xa>~2 Xi(b, C, a'"2)) = 0(b, C, \a>-2X(ot>-\ b, c))

= 0(b, C, Xa'-2 x(Xr 0(b, C, r), a'"2, &)) = </.(b, c)

is primitive recursive. SUBCASE 2. <r is not a'". Writing a = (a', b), we express
^(a', b, b, c, r) as 0(a', a'~2, b, b, c, r) , apply the hyp. ind. on / to introduce
x(a', a'~2, b, b, c), and make a new application of S8 to introduce <j>(a'\ b, b, c).

CASE 7. SUBCASE 1. a is a. Writing b = (a, b), we need to get primitive
recursively <f>(a, b, c) = {Xr0(a, b, c, r )} (a) = 9(a, b, c, a). But from 8(a, b, c, r) ,
since r is of type 0, we can obtain 8(a, b, c, a) by S6, S3, S4 (cf. Case 5).

CASES 1, 2, 3 and CASE 7 SUBCASE 2. Simply use a new application of the
same schema omitting <r and adding c as variables b.

CASE 6. SUBCASE 1. a is the (£ + l)st type-j variable for \p. Then <f>(a, b)
= yf/(bu <r, b2) where b = (bi, b2). By hyp. ind. onl,$(b, c) = ^(bl,Xr0(b, c, r),b2)
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is primitive recursive, and this is (f>(b, c). SUBCASE 2. otherwise. Then <£(a, a, 6)
= \p(au a, bi) where (a,, b,) is a permutation of (a, b). By II, d(a, b, c, r) can
be expressed as 0i(cti, blt c, T). Apply the hyp. ind. on / to \p, and use S6.

CASE 4. Express 0(a, b, c, r) as 6(b, n, b, c, r) , apply the hyp. ind. on / to

\p and x. an<J use S4.
1.6. By a full substitution we mean one in which, for each one 13' of the m

variables of a function xp(b), there is substituted a function of the same list a
of variables (formed when j > 0 by use of the X-operator). For example, a
full substitution into \p{a, a, F) gives </>(n) = ^(xi(<0. ^ Xa(n. 0- Acr X8(a> °0)-

V. 77?e ctei'j o/ primitive recursive functions is closed under full substitu-
tion.

Proof. If b includes variables from the list n, first change them to new
variables throughout a given primitive recursive description of ^. Now we
illustrate using the above example (supposing a, b distinct). Using III and II,
we can express \{/(a, a, F), Xi(a). Xi(a> t) a s 1A(a' a> F, n), Xi(«. F". n). X2(F, a, t).
Now, by one application of S4 and two of IV, we obtain successively

^,(a, F, a) = f(xi(a, F, a), a, F, a) = lKxi(a), «, H ,
^2(F, a) = Mxt X2(F, a, /), F, a) = ^(Xi(a), X/ Xl(a, /), F),

<̂ >(a) = 2̂(X<7 X3(a, <r), a) = ^(Xi(a), X/ X2(a, /), X<r X3(a, a)).

VI. For each j ^ 1, the function <f>(a', a'~l, b) — a'(a'~l) is primitive re-
cursive.

Proof, by induction on j . BASIS (j = 1). Use S7. IND STEP. By hyp. ind.,
Ill and II, 4>(a'+l, a'~i, a\ b) = a'^a'""1) is primitive recursive. Using S8j + 1,
so is <f>(a'+1, a', b) = a>+l(\a'-1 4>{a'+l, a>~1, a', b)) = ai+1(ka>-1 a'(a'-1))
= a'+1(a')-

REMARK 1. Consider the following schemata, for j ^ 1:

S4.J <t>{b) = ^(Xa'"1 X(b, a'"1), b). S7.j <t>(a>\ a'"1, b) = a'Xa^1).

(S4 = S4.0, S7 = S7.1.) Using IV and VI, (S1-S7, S8.2-S8.r) = (S1-S7,
S4.1-S4.r — 1, S7.2-S7.r), and S4.r is derivable from either list.

VII. The class of primitive recursive functions is closed under explicit defini-
tion, using {besides given functions, constant natural numbers, and variables) the
\-operator to form terms for substitution for function variables.

Proof. We have full substitution by V. Also we have all constant and
identity functions, using (besides II) S2, S3 and VI. The lemma follows as in
IM, p. 221.

1.7. We now reconcile the present notion of primitive recursiveness with
the notions in the literature. For functions <£(a) of number variables a only,
cf. e.g. IM, p. 220 (and for a empty, Remark 1, p. 223). In e.g. [14, p. 313],
we further called a function <£(a) with a of types 0, 1 "primitive recursive,"
if as a function of its type-0 variables it is primitive recursive uniformly in its
type-1 variables (IM, p. 234 and Remark 1, p. 238).
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VIII. A function <f>(a) of variables a of types <2 is primitive recursive in
the present sense, if and only if it is primitive recursive in the former sense.

Proof. For "if," use VII. For "only if," use I and IM, pp. 220-221.
1.8. Primitive recursiveness can be relativized to assumed functions

^i. ' " ' . i'l (briefly, >£) by using primitive recursive derivations from ^l (analo-
gous to IM, p. 224) instead of primitive recursive descriptions. In a primitive
recursive derivation from ty, besides using S1-S8, we may introduce any one
^i(c) of ^ by the schema for a full substitution (cf. 1.6), for only its function
variables, of functions of variables b distinct from its number variables; e.g.,
if i/'i is ̂ .(c, 72.7s):

SO.t <£(c, b) = 4>i(c, \l Xiih b), Xo- x3(<r, &)) (0, (no, • • • , nr), i, h2, h3).

When c is number variables only, SO.i is (/>(c, 6) = ^.(c). (Alternatively, if
S8.j (j ^ 2) is replaced by S4 j (J ^ 1), S7J (j ^ 2) of Remark 1, each </<,•
can be introduced simply by <£(c, b) = iAi(c).)

Now relativized versions I*—VIII* of I—VIII can be proved for functions
primitive recursive on *&. As I*, in an irredundant primitive recursive deriva-
tion of a function 4>(a) with a of types g r from functions ^ of variables of
types 5= 5 (introduced by SO.i (1 S i ^ /)), each function has all the vari-
ables in a of types > 0 and only variables of types ^ max(r, 5 —1). As
VIII*, when ty are number-theoretic functions, and <j> a function of variables
of types ^ 1, the present notion of relative primitive recursiveness coincides
with the former one (IM, p. 224, [14, p. 313]).

1.9. When S? vary and 0 are fixed, <f> is primitive recursive in >5r, 0, uni-
formly in ty, if there is a primitive recursive derivation of 0 from ty, 0 with a
fixed analysis (analogous to IM, p. 234). Then when ^ are one-place func-
tions, <fi(a) is primitive recursive in ty, Q uniformly in ^ , exactly if <f> regarded
as a function <j>(a, &) is primitive recursive in 0. For on reconstruing SP" as
variables for the function <f>, the applications of SO.i to introduce \pi become
applications of S7.1 or S8j (with applications of S6); and inversely. It fol-
lows that, for fixed one-place functions ^o, we can consider any function <j>(a)
primitive recursive in ^0, 0 as the value for the fixed SE'o of a function <f>(a, \Er)
primitive recursive in 0.

1.10. As usual, the notions of primitive recursiveness, absolute and rela-
tive, extend via representing functions (IM, p. 227) to cases when some or
all of <j>, ty, 0 are replaced by predicates.

2. Alterations of quantifiers. 2.1. Let (a0, • • • , an) = po) Pln ( = 1 m

the case n = —1, i.e. ( ) = 1). For each j 2j 1 (7), let (ai, • • • , ai)
= XT'-I <a^(r>-1), • • • , oLiri-1)) and M * = Xr'~l (^(T '" 1 ) )* . Then, for each

(') This makes {a'a, • • • , «'„> = Xr'-» 1 for n = - 1 &j > 0 ( = 1 for n = - 1 &j - 0).
We can write "(af0, • • • , a'n}" (with "j" shown) without ambiguity even when —1 is a possible
value of n. But " ( )" shall mean 1, unless we show the type./ as by "a ' = ( >"o r " ( >•'".
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(2) (U, ••• , at)),- = a\ (0£i£n).

Now we have, generalizing IM, p. 285 (17) and [14, p. 315, (1) and (5)]
to any j Si 0,

(3) (Ea0) • • • (Ea[)A(ai • • • , « ' . ) = (Ea')A((a')„, • • • , («'),),

(4) («') ( V + 1 ) A (J, 0i+) = (E/3/+1) («y) /I («\ Ac/ ^ + I « « y , </»),

and their duals (3), (4).
Proofs. (3) Given ai, • • • , a'n for the left, a' = (a£, • • • , a») is an a' for

the right, by (2). The converse implication is immediate. (4) (ai){E(i'+l-)A(ai,
0»-+i) = (Ej3)(a')A(a', Xa' 0(a>\ <r>)) = {E^+i){a')A{a', \<r' /3'+1((«', o"'»),
since by (2), given any two-place /3 (not an object of one of our types 1.2)
for the middle expression, /3)+1 = Xr)'j8((r')o. (T')I) ' S o n e f°r the right.

2.2. Using induction on j , we define two primitive recursive functions
mpy and pro,-, for each j St 1, as follows:

mpiG*1, j8l) = a»OS»(0)),

pmi(a2, /?•) = a\\x /S»),

mpJ+1(a'+1, j8'+1) = a'+KAo-'-1 pm;(/3'+1, ^ » ) ) ,

pmi+i(a'+2, 00 = a'+2(Xo-' mpyG8'', <rO).

For j Si 1, let mp,-(aO = X/3' mp,-(a', 00 and pmy(a'+1) = X0'"1 pm,(a'+1, jS'"1);
and let mpo(a°) = \x a0 and pmo(a1) = a'(0). The objects a' of type j are
mapped into objects a'+1 = mp,(aO of type j + 1, and a' = pmy(a'H) is the
inverse mapping, as the following proposition states.

IX. For each j ^ 0,

(5) pmj(mpy(a0) = «'.

The proof, using for j Si 1 induction on j , is straightforward.
Now we have, generalizing [14, (3)] to any i Si 0,

(6) (Ea*)A(af) = (Ea'+l)A(pmJ{ai+1)),

and its dual (6). For given an a' for the left, mp/(a0 is an a'+l for the right,
by (5).

2.3. It will be useful to have formulas for raising the type j by any number
tn—j Si 0. Using induction on m for m Si j Si 1, let

mp'V, t1) = ait),
tn-f-1 / m m— 1 m , i w*— 1 "*

mpy (a , 0 ) = mpm(X0 mpy (a , 0 ), 0 ),

pmV, 0'"1) = a ^ 1 ) ,
m+l m+1 y-1 m m-1 m+1 m-1 / - I

pmy (a ,0 )=pm ; (X0 pmm(« , 0 ), 0 ).
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Also let
0 0 0 m 0 m - 1 0

mpo(o: ) — a , mpo(a , j8 ) = a (m ^ 1),

pmo(a ) = a , pm o (a ) = a (0), pm0 (a ) = a (X0 0) (m ^ 2).

Finally, f p r m ^ i ^ l o r « > j = Q, let mp"(aO = X/3""-1 mp" (a ' , jS™-1);
and for m ^ j g 1, let pm™(a") = X/3'-1 p m ^ a " , p'1).

X. For eac/i m ^ j ^ 0,

(7) pm7(mp7(aJ)) = «',

(8) (Ea')A(a) = (Eam)A(pm™(am)) (m ^ j ^ 0).

2.4. When j 0 ^ j l ^ • • • g i , g m, let <aj, • • • , â ")"1 = <mpjS(af),
• • • , mp7(ai")); and for j ^ w, let (am){ = pm7((am),). Then using (2) and

(7),

(9) ««o°, • • • , «»">")': = a!' (0 £ i ^ n).

Consistently with 2.1, we may write {a1^, • • • , ai*)"1 as simply {aft, • • • , ofc)
when m = j n , and (a"1)7? as (am)f. Finally, by (a) let us mean (a$, • • • , a£*)
where ao", • • • , ajj1 is the result of arranging a in order of nondecreasing type
preserving the given order within each type(7).

2.5. A consecutive set of » + l quantifiers of like kind and assorted types
5= m can be contracted into one type-rw quantifier of the same kind, by using
first (8) and then (3) (or (8), (3)). The operation can be performed in one
step using (9). For example, when p^m,

{a){ai){ai)A{a, af, on) = (a )A((a )0, (a )i, (a )i).

The prefix (a')(EPk) for any j ^ m and k ^ tn + 1 can be changed to
(EP">+i)(am) (or dually) by use oj (8), (8) and then (4) (or (4)). It is more
expeditious, except when (4) or (4) is immediately applicable, to proceed in
the manner used in proving (4), using (9) to effect the contraction required
when k > 0. For example,

(a*)(Ex)A(a\ x) = (Ea*)(«*)A(a>, «3(«2)),

(a*)(E0*)A(a\l3*) s (£/?)(a4)A(a\ \<r' /J(««, O )

The same technique can be used in advancing and contracting several quanti-
fiers simultaneously (cf. [14, Footnote 10]); e.g.

(*)(£«») 03*) (JVM(*. «3, ^3, 71) =
(Ea)(E7)(x)(jl*)A(x, X<r2 afe v% fi\ U y(x, /S», /)) =

(.E««)(£r4)W(^3)^(*, X<r2 «»«*, <r2)), ;83, X/ >«((*, ^8', /))) s

(£«4)(/3V(083)o, X<r2 {(a4)o}«033)oV», 09*)i, W {(«4)i}((^)2, 033)i,/»).
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2.6. These alterations of quantifiers are effected by substitutions of primi-
tive recursive functions in the scope. As another application of the contrac-
tion formulas:

XI. Given any function \p{a) of variables a of types ^ m, there is a function
ip'(am) such that each of \p(a) and \j/'{am) comes from the other by substitution of
primitive recursive functions.

Proof. For example, given \f/(a, a\, a") (p ^ m), take \p'{am) = \p((a"')l,
(a"1)?, (or)2). Then *(a, a?, a?) = * '«a, ctf, a?» .

2.7. We can use XI in connection with 1.9 when ^ include more-than-
one-place functions. For example (with p 55 m), if 4>(a) is primitive recursive
in if/(a, of, a"), 0, then using ^(a, a"u a") = i£'((a, af, a™)) we have 0(a)
primitive recursive in I^', 0 for \p' = X«'" ^((a"1)", (a"1)?, («"*)•>)• Thence by
1.9 we obtain a function <j>(a, am+1) primitive recursive in 0 such that </>(a)
= </>(a, if,') = 0(n, Xa» Ma")?, (a-)f, (am)2).

3. Partial and general recursive functions. 3.1. By Church's thesis for
number-theoretic functions [4] and our extension of it to functions with vari-
ables of type 1 as well [12] and their converses, the general recursive func-
tions of variables of types 0, 1 comprise exactly the functions of such variables
which are "effectively calculable" (cf. IM, §62 and end §61). The effective
calculability is relative when there are type-1 variables. Thus, for a function
4>(a) of a type-1 variable a, we imagine after Turing [30, pp. 172-173, 200]
an "oracle" for a who at any step in the computation can be called upon to
supply the value of a{y) for a computed y (s). The use of the word "oracle"
emphasizes that in the steps from a y to the value of a(y) the otherwise
mechanical character of the computation is transcended. The computation
is carried out by a preassigned procedure, using steps all of them mechanical
except those from y to a(y), which we "assume" provided upon demand.

For a function <£(F) of a type-2 variable F, it seems natural to image
similarly an "oracle" for F who at any step in the computation can be called
upon to supply the value of F(j3) when a procedure for computing /3(y) for
any y has arisen. Quite as before, we mean by this that </>(F) can be computed
by a preassigned procedure, using steps all of them mechanical except for
steps from a (3 to the value of F(j3). Such steps we "assume" provided upon
demand, under circumstances in which we could in the same sense, i.e. with
the help of the oracle for F, compute j3(;y) for any y (y = 0, 1, 2, • • • ) .
When the oracle for F is used, if the computations of @(y) for each y = 0, 1,
2, • • • are considered to be parts of the computation of <£(F), that computa-
tion for the given F will not be a finite object, unlike the computation of
4>(<x) for a given a. It cannot be otherwise when F(/8) depends on all the values
of j3.

(8) Turing had in mind only particular as (primarily, in our terms, the representing func-
tion of (x)Ti(y, y, x)), while here (as in [12] and IM) we are adding the idea of uniformity in a
(the procedure for computing not varying with a, but only the answers the oracle gives) to
obtain the effective calculability of a function of a.
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So, it seems, this is the direction the generalization of effective calcula-
bility to type 2 must take, if we are to allow arbitrary type-2 objects F as
arguments. The resulting notion, though it employs a very potent oracle, is
still an immense restriction on the notion of an arbitrary function <£(F), and
should be of mathematical interest. That the computation of <£(F) is not in
general a finite object is already illustrated by the primitive recursive func-
tions (£(F). Our objective now is to characterize what, we believe, is the class
of all functions $(F) which are effectively calculable (and more generally, of
all such functions <f>(a) for a of assorted types).

Besides developing the theory for arbitrary F's as we are proposing here,
we can consider specializations and alternatives under restrictions on the F's.
Our basic idea of the effective calculability of a function <b admitting non-
constructive objects as arguments is that the calculation should be perform-
able by preassigned rules, constructively except for the use of the oracles
necessary to put in those nonconstructive objects. Basically, each of those
nonconstructive objects can be a function (so 0 is a functional), and the role
of the oracle for it is to give its value when supplied its argument(s). Different
notions of "effectively calculable" or "constructive" functional may be re-
lated on this basis (9).

3.2. For functions of variables of types 0, 1, there are a number of ways
of describing the class of the general recursive functions, or in other words
there are a number of notions equivalent to general recursiveness as usually
formulated (cf. IM, §62). In setting out to give an extension to higher types
of variables that shall preserve Church's thesis, one should not assume a

(s) For example, in [18] we confine F to functions (called countable functionals of type 2)
each of whose values F(/3) is determined by finitely many values of P(y). Then we employ an
oracle to which we give a different role in relation to F than above. We may ask this oracle a
question of the form, "Does F(/3) have the same value for all /3's such that 0(0) = bo, • • • ,
(i(x — 1) = 6j_i, and if so what is that value?" (The question can be asked by supplying to the
oracle a value of fi(x) (3).) The oracle may reply either "No comment" or "Yes, and that value
is —"; but, for a given /3, there must be some x for which he gives the second kind of answer.
In [18, §l] we note that this amounts to having an oracle in the basic sense for a certain kind
of type-1 function F ( ' (or a(l) if F = a2) called an associate of F. Under the thesis that the effec-
tively calculable functions on a given domain are those which are general recursive on that
domain (indeed, the case of it for a type-1 variable already entertained in [12] and IM end
§61), the functions <j>(F) "effectively calculable" with this new kind of oracle are those with <fn
partial recursive, where tf>i(F( >) = <£(F) for every associate F ( ' of F; these <£(F) we call recur-
sively countable (cf. [18, Theorem 2]). All functions <KF) general recursive (as denned below)
for F countable are recursively countable [18, Theorem 4]. Whether the converse is true is an
open problem. This does not mean that the class of the general recursive functions tf>(F) may
be too narrow to represent effective calculability when F is restricted to be countable (i.e. that
our thesis may fail for such F). It only means (under the thesis) that there may be functions
<£(F) for which tf>i(F(') is effectively calculable, though <j>(F) itself is not, in the basic sense.
That is, the new oracle may be more potent. (We failed in an attempt to determine whether
there is an effective way to perform the job the new oracle does by using the basic oracle for F.)
There are purposes for which one may be more interested in using the new oracle (i.e. in having
merely <j>\ rather than <j> effectively calculable in the basic sense).
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priori that it is immaterial which of the existing notions for types 0, 1 he ex-
tends. We shall in fact start with a new formulation, which provides the es-
sentials for Church's thesis quite directly, and later (in §8 and Part II) we
shall examine extensions of the several existing notions.

3.3. One essential for Church's thesis to hold is that there be available
a modicum of elementary operations of computation. This is provided by the
schemata for primitive recursive functions.

3.4. The second essential is that there be the means for reflecting upon
computation procedures already set up as objects and computing further
computation procedures from them.

This second essential entails that there should be no means for deciding
in general whether a computation procedure terminates. For otherwise by
diagonalization we could effectively get outside our class of computation
procedures, so Church's thesis could not apply.

A function <f>, taking a natural number as value, which is denned over
some subset proper or improper of a set D we call a partial function over D;
we then sometimes think of <t> as a function from D to JO, 1, 2, • • • ; u}
where u stands for "undefined" (cf. IM, pp. 325-326). In the following, we
deal with partial functions </>(a) for a a given list of variables of the types
introduced in 1.2, so D is the set of all w-tuples of objects of the respective
types of a.

When (j>(a) and ^(a) are partial functions, we write <j>(a) c^ \p(a) to express
that both 4>(a) and * (̂a) are defined with the same value or both are unde-
fined (IM, p. 327).

3.5. In order to allow computation procedures, or what comes to the
same thing recursive (or "computable") functions, to be treated as objects in
computing further computation procedures, we shall assign numbers called
"indices" to the recursive functions. (The indices take over the role of the
Godel numbers in our previous theory of general and partial recursive func-
tions; cf. IM, pp. 292, 330, 340 ff., and [17, §3].)

We begin with an assignment of indices to the primitive recursive func-
tions. Consider such a function 4>(a). Let r be the maximum type of a (1.4),
and let no, • • • , nT be the numbers of variables in a of types 0, • • • , r, re-
spectively (thus wr>0, except for a empty). We assign to <£(a) an index deter-
mined by a given primitive recursive description of 0(a). For <f>(a) introduced
by a given one of the schemata SI—S8, the index is the number shown at the
right opposite the schema (cf. 1.3, 2.1), where (in the cases of S4, S5, S6 and
S8) g and h are the indices already determined for the ^ and x by the descrip-
tions of them as part of the given description of <f>.

Under this method of indexing, inversely an index of <f>(a) determines an
irredundant description of <j>(a), say that one in which at each application of
S4 or S5 the entire descriptions of the \p and the x. and nothing else, each ap-
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pear separately and successively preceding the application of S4 or S5, and
similarly a t each application of S6 or S8.

3.6. Now for example we can define a function #(a) whose value for argu-
ments a is <£«(a) where, for each b, <j>b(a) is the function with index x(&)- If
{z}(a) is the function of a with index z, the function 0(a) can be writ ten

<Ka) = {x(tt)}(o)- To introduce this <f>(a) it would suffice to use S4 with
x(ct) and the function \j/(a, b) = {a) (6) as given functions. This suggests the
definition of "partial recursive function" we now adopt .

3.7. To obtain the partial recursive functions, we use the schemata S1-S8,
now with ~ instead of = and interpreting a'XXa'-* x(.a'> a'~2, b)) for S8 to
be undefined when \a'~2 x(a'\ ot'~2, b) is incompletely defined(10), and one
further schema

S9 </>(<*, b, c) =x {a} (b) (9, (no, • • • , «,), (w0> • • • , » . » ,

where s is the maximum type of 6, and mo, • • • , m, are the numbers of vari-
ables in b of types 0, • • • , s, respectively. A function <f>(a) is partial recursive,
if there is a partial recursive description of it in terms of these schemata. Each
partial recursive description of <f>(a) determines an index and inversely, in
the same manner as before (3.5). Finally, for each z which is an index of a
partial recursive function <j)(a) and each a, (z}(a) is the value if defined of
4>(o); otherwise fz}(a) is undefined. (For number variables a, {z}(a) is not
the function so wri t ten in I M , p . 340, bu t the analog of it here.)

A partial recursive function 4>(a) which is defined for all a is general recur-
sive. A predicate is partial (general) recursive, if its representing function is
partial (general) recursive.

3.8. T h e definition of {z} (a) via an interaction of schemata and indexing
can be elaborated as follows. First, \z\ (a) is defined only when z is an index
of a function <£(a). Second, the schemata SI—S9 can be writ ten as equat ions
to be satisfied by {z}(a) as a partial function of z and a varying list a of
variables; e.g.:

SI {<l,<»o, • • • , « , » } ( a > b ) ^ a ' .

S5a {{5, (n0, • • • , nr), g, h)) (0, b) =s {_-} (b).

S5b j (5 , (no, • • • , nr), g, *>}(„', b) ex \h\(a, {(5, <«„, • • • , «,>, g, *>}(<», b), b).

58 { (8, (no, • • • ,nr), j , h)} (« ' , 6) ex a ' (Xa'-2 {h} (a', a'~', b)).

59 {(9, (n0, • • • , nr), (m0, • • • , » . » } (a, b, c) ex {a} (b).

Third, these equations can be construed as the direct clauses of a trans-
finite inductive definition (cf. [ l l , §7], IM §53) of the predicate [z] (a) ~w
(each applicable however only for 2 an index of a function of a). Thus Si is a
basic clause, and S5a, S5b, S8, S9 can be read as inductive clauses; e.g.:

(l°) Likewise *(x(6), 6) f o r S4 (x(«. *(«. 6). b) f ° r s s ) s h a 1 1 be undefined when x(6) (*(o, b))
is undefined, i.e. it shall have the "weak sense" IM, p. 327.
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S5b If {(5, (n0, • • • , nr), g, h)\ (a, h) ~ « and {h\ (a, u, 6) ~ w,

then { (5, («o, • • • , nr), g, h\ )(«', b) ~ a».

58 If for each a'"2, {h\ (a>, a'~2, b) ~ y'~l(a>'2),

then {(8, <»0> • • • , nr),j, h)}(a', b) ~ a'Xr1'"1)-

59 If {a}(6) ~ w, then {(9, («„, • • • , nr), (m0, • • • , ws»} (a, 6, c) ~ w.

As the extremal clause of the inductive definition, {z} (a) ^ w is to hold only
as required by the direct clauses.

Now we can prove by mathematical induction, in the form corresponding
to this inductive definition, that, for given values of 2 and a, the proposition
|z}(a) ~ w holds for at most one natural number w. The proof is afforded
by the fact that, for given z and a, at most one of the equations has {2} (a)
as left member.

Thereby {2} (a) is defined as the partial function whose value, for given z
and a, is the unique w (if any) such that {z} (a) ~ w holds by the inductive
definition.

Mathematical induction in the aforesaid form can be used to establish
properties of (z}(a) when defined. We shall refer to such an induction as
induction on {z} ( — ).

3.9. We consider an example to illustrate how the inductive definition of
{2} (a) az w provides a computation process for {z}(cr) (but one which in
general makes the computation an infinite object, cf. 3.1).

Given z, F, where z is an index of a function of F, how do we compute
2} (F)? Say e.g. z = (4, (0, 0, 1), g, h). Then the value of {z} (F) is that of
gj({/i}(F), F), if the latter is defined. Consider first {h\(F). Say e.g.

h = (8, (0, 0, 1), 2, k). Then the value of {/f}(F) is that of F(/8) as supplied
by the "oracle" for F, provided that, for each y, {k}(F, y) is defined with
value fi{y). That is, if, for each y, by proceeding similarly to compute {k} (F, y)
a value would be obtained, call it P(y), a value of (&}(F) results, call it
u (M = F(j8)). Say g = (9, <1, 0, 1), (0, 0, 1)). Then the value of {g)(u, F)
is that of («}(F) if defined. Say u = (2, (0, 0, 1), 5). Then the value of
| M } ( F ) is 5; this is the value of \g)(u, F), of {g\{{h}(¥), F), and of {z}(F),
which we sought.

3.10. By our definition, the class of the partial recursive functions is
closed under applications of the primitive recursive schemata S1-S8 ( l l ) . In
particular, primitive recursive functions are partial recursive; and the class
of partial recursive functions is closed under primitive recursion, and under

(") In the presence of S9, primitive recursion S5 can clearly be replaced by some selection
of initial functions, as was the case for types g 1 in the presence of the author's M-schema (cf.
[9] and Grzegorczyk [6]). However it adds little to the work below to keep S5, and we prefer
doing so to being drawn here into the investigation of what initial functions constitute a good
choice for this purpose. Besides, some of the theory for partial recursive functions includes
conveniently theory for primitive recursive functions by SS being kept.
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substi tution so long a t least as substi tution for a function variable takes place
only directly for the argument of a function variable (for while we have S8,
we do not immediately have IV). Clearly I, II , I I I , VI extend to partial re-
cursive functions.

As to IV, the former proof gives it to us for the case <j>(a, <r", 6) is primitive
recursive, 0(ct, b, r*"1) is general recursive, and n = 1 (so tha t Case 8 Subcase 1
of the proof will not arise). The extension of IV more generally (and thence
of V, VII) will be dealt with in §4 and in Par t II .

The extension of VIII will be given by XVrII and X X X I below.
3.11. X I I . {2} (a) is a partial recursive function of 2, a such that {o}(a),

{1} (a), { 2 I (a), • • • is an enumeration with repetitions of the partial recursive
functions of a. (Enumeration theorem for partial recursive functions.)

Proof. {2} (a) is partial recursive, because it is introduced by S9 with c
empty. Thence, for each fixed 2, using S4 to substitute for 2 the constant func-
tion x(a) ~ z given by S2 with 2 as the q, {2 \ (a) is a partial recursive function
of a. Any partial recursive function <£(a) has an index 2 by 3.7, and <j>(a)
=* {z\(fl).

RKMARK 2. XII is the analog of IM, Theorem XXII , p. 341, but our use of
indices gives it to us at the very beginning of the theory. By XII , we get all
partial recursive functions using only S9 with c empty and substitution of
constants 2, but of course S1-S8 enter into our definition of the function
{0} (b) introduced by S9.

3.12. XII I . For each m ^ 1: There is a primitive recursive function
Sm(z, yi, • • • , ym) such that, if <j>(yi, • • • , ym, b) is a partial recursive function
of the variables yi, • • • , ym, b with index 2, then for each fixed yi, • • • , ym,
Sm(z, yi, • • • , ym) is an index of <t>(yi, • • • , ym, b) as a function of b (analo-
gously to IM, Theorem XXII I , p. 342).

Proof, by induction on m. BASIS (m = 1). We have 4>y(b) c^.cj>(y, b)
=^<£(x(b), b) by S4 where x(b) = y by S2. So take 5l(2, y) = (4, [(z)i/2], z,
(2, [(2)1/2], y)), noting that, if (z), = (n0, nu • • • , nr) with n0 > 0, [(z)i/2]
= («o — 1, «i, • • • > Mr)- IND. STEP. Take Sm+l(z, yu • • • , ym, ym+l)
= SKS"(z, yu • • • , ym), ym+l).

XIV. Given any partial recursive function \p(z, b), an index e of\j/(e, b) can
be found; thus we can solve for z the equation

{z}(6)~^,b).

(The recursion theorem, analogous to IM, Theorem XXVII, pp. 352—353.)
Proof. By the same method as before; i.e. l e t / b e an index of ip{Sl(y, y), b)

as a function of y, b, and take e = Sl(J,f).
3.13. XV. If\f/o(a), ^i(a) are partial recursive functions, and Q(a) is a par-

tial recursive predicate, the function

(Uo) if Q(a),
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{undefined exactly if Q{a) is undefined, or Q{a) is true and ^o(a) is undefined, or
Q{a) is false and\pi{a) is undefined) is partial recursive.

Proof. Let x(«) be the representing function of Q{a), and let e{ be an index
of i/\(a) (i = 0, 1). Define a primitive recursive function TT by

let, if i = 0,

Ui if * ^ 0.
Then0(a)~{7r(x(a))}(a) .

XVI. J/x(6. >') « partial recursive, so is ny[x(b, y) =0] . (Cf. IM, pp. 279,
329-330.)

Proof. We have jtry[x(6. y) =0] ^<£(b, 0) where

| 0 if x(6, y) = 0,
<£(6, -y) ~ <

U(6, / ) ' if x(&, V) * 0.
Note that this does make <]>(b, 0) undefined not only when, as y increases, a y
for which x(&> ?) is undefined occurs before one for which x(&, y) — 0, but
also (as then <j>(b, 0) ~ 1 +<f>(b, 1) ~ 2+<£(b, 2) ~ • • • ) when all x(b, y) are
false. To get ^(6, y) as a partial recursive function, let

/0 if x(b, y) = 0 ,

YK> ' " \{Z}(b,y'Y i £ x ( b , y ) ^ 0

(using XV), and set <j>{b, y) ca \[/(e, b, y) where e is index of \f/(e, b, y) given by
XIV.

XVII. Each function <j>(a) of variables a of type ^ 1 partial {general) re-
cursive in the former sense (e.g. IM, Chapters XI, XII) is partial {general)
recursive in the present sense.

Proof. By the former normal form theorem (IM, Theorem XIX, p. 330)
with XVI and VIII. (We are not yet considering here any but completely
defined functions as values of our type-1 variables, so IM, Theorem XIX is
available to us. The situation when incompletely denned functions are al-
lowed as type-1 arguments will be considered in Part II.)

XVIII. //^o(a), • • • , fm{a), Qo{a), • • • , Qm{a) are partial recursive, so is
the function

Mo) if Qo{a),
otherwise ^i(a) if Qi{a),

<p{a) ~

otherwise ^m(a) if Qm{a)

{undefined exactly if there is no i (0 ^ i ^ m) such that @o(a)> ' " " > (?i-i(<*)
are false, Qt{a) is true and ^,(a) is defined). (Definition by cases.)

Proof. Let e0, • • • , em {q0, • • • , qm) be indices of ^o(<Oi • ' • • ^m(a) (of the
representing functions of Qo (a), • • • , Qm{a)), and let
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«o if t = 0,

P(i) =

em_i if i = m — 1,

e™ if i^tn,

qo if i = 0,

qm-i if i = m— 1,

gm if i^m.

Then using XVI, let

*(a)^{pG*t[{«r(0}(a) = O])}(a).

We shall compare XVIII with the previous result for types 0, 1 (IM,
Theorem XX(c), p. 337) in Part II.

3.14. Relative partial and general recursiveness are obtained by allowing
assumed functions fa, • • • , fa- (briefly, ^ ) , introduced by applications of
SO.i (1.8, excluding the alternative there). Indices become indices from
ty; {z}(a) becomes {z}*(a). For uniformity, cf. 1.9; for predicates, cf. 1.10.

In an application of SO.i it may now happen that some Xa'~2 x*(«'~2> b) is
an incompletely defined function and thus not an object from the range of
ji"1 as established in 1.2. Here we shall take the result of the substitution into
fa- to be undefined in this case, just as in 3.7 for S8.j we took a'(Aa'~* x(a'\ «'~\
b)) to be undefined when Xa'~2 x(a'> «'~2i &) is incompletely defined.

On the other hand, there is no reason here for not allowing fa, • • • , fa to
be partial functions.

3.15. When fa, • • • , \f/i are completely defined functions, the transforma-
tions of 1.9 (extended to include S9) and 2.7 provide an alternative (for most
purposes) to developing the theory in relativized form.

4. Construction of indices. 4.1. We now write Ix(z) (PRI(z)), and say z is
an index (primitive recursive index), when z is an index of a partial (primitive)
recursive function <j>(a) as assigned in 3.7 (in 3.5)(12). In this case we also say
z is an index for a. Then if a is a list of variables with r and nB, • • • , nT as in
3.5, (no, • • • , nr) = (z)i and r = tp(z) where tp is the primitive recursive
function denned thus:

tp(z) = nii<z(j)«j<zpj\ (z)i.

XIX. The predicates Ix(z) and PRI(z) are primitive recursive.
Proof for Ix(z). Ix(z) satisfies the course-of-values recursion

(") It is a trifling departure from the analogy to Godel numbers (IM, pp. 292, 330, 340)
that we do not call any z such that (a)[tf(a)^ (*}(a)] an "index" of #(a). By 3.7, such a s
can fail to be an index only when ^(o) is the completely undefined function of a.
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ix(z) =. r (Wo=i v (2)0=3) & z = n ^ ) i & ( 2 ) i . o > o 1
L ,<2 J

v[(z)o=2&Z= Up!"'* W1>0|
L i<3 -I

V f(Z)0 = 4 & z = I I />!*'*'&Ix((z)2) &(z)2,l = 2-(z)l&Ix((z),)&(z)3.i==(2;)i
L i<4 J

V [(z)o = 5 & z = I I /> i ' ) i &Ix( (z ) 2 )&2(z) 2 . l = (z ) i&Ix( (2 ; )3)&(z)3 . i = 2-(2)i

V|"(Z)O = 6 & Z = I I P-ZU &(Z) ,<(S) M , , ,&IX((Z)4) &(«)4 .1=(«) l l
L i<6 J

V [ (2 )0=7 & 2= I I P*^ & (z)l .0>0 & ( 8 ) t . l > 0 l
L i<2 J

V [(2)0 = 8 & z= I I /'^>1 & G0*> 1 & (*)i.(.),>0 & Ix((a),)
L .<4

& (2)3,l=/»(«)2-2-(z)l

V [(2)o = 9 & 3 = I I ^ > I ' & (z)i,o>(z)2,o & (i)o<,Sz((z)i,,^(z)2.,-)l .
L i<3 J

4.2. XX. There is a primitive recursive function TT(J, k, g) such that, for a,
ai as in Schema S6, if g is an index of\p{a), then w(j, k, g) is one of<j>(di).

Proof. Let *•(/, *, g, 0) = g, ir(j, k, g, l+l) = (6, (g)u j , k, ir(j, k, g, /)>,
"•(ji >̂ f) = ""O- »̂ S- ^) (°f- the proof of II) .

XXI. There is a primitive recursive function i(z, m) such that, if z is an
index of<j>(a), and c are variables distinct from a and consisting of mo, • • • , m,
of types 0, • • • , s, then i(z, (ma, • • • , m,)) is an index of 4>{a, c) = <f>(a) with
X(i(z, (mo, • • • , m.») = X(z) (cf. III) .

Proof. We define i(z, m) by the course-of-values recursion

((z)0,m-(z)l,(z)2) if (z)0=2 V (z)o = 9,

((Z)O,J»-(Z)I,I((Z)J,OT),I((Z)»,»»)> if (z)o = 4 V (z)o=S,

i(z, m) = • (6,m-(z)i, (z)2, (z)s, i((z)«,m)) if (2)0=6,

<8>«-(z)i>(z)2|i((s)I>«)> if (z)o=8,

((z)o,m-{z)x) otherwise.

XXII . For each » = 1, there is a primitive recursive function yn{z, w, p)
with the following property. Suppose a contains exactly p type-n variables; and
let z, w be indices of <t>(a, er", b), 8(a, b, c, T"" 1 ) . respectively. Then, for values of
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o, b, c such that Xr""1 9(a, 6, c, T"~1) is completely defined and <j>{a, an, b) is de-

fined when an = X T " " 1 d(a, b, c, T"~1),

(10) *(a, Xr"-1 d(a, b, c, r - 1 ) , b) = [yn(z, w, p)}(a, b, c).

Proof, by induction on n. Take any » j> 1. We shall take yn(z, w, p) = 0,
except for Ix(z) & (z)i,»>/> & lx(w) & pn-\- (z)i| pn- (w)i, when the appropri-
ate following case shall apply. The first eight cases correspond to those in the
proof of IV. We use induction on |z}( —) (cf. end 3.8) in proving (10) from
the specifications for yn{z, w, p) worked out in the cases. In conclusion we
shall show that a primitive recursive yn exists that meets all the specifications.

CASE 5. (z)0 = 5. First, starting from z, w as indices of <j>(a, b, a, b),
6(a, b, 6, c, r), we construct indices (right column) for the functions (left
column) used in the treatment of Case 5 for IV.

0i(b, b, C, u, T): A = TT(O, Hi,o^-(l + (2^-«)),w).

6(a, b, b, b, c, u, T) : B = (6, 4- (a;),, 0, (w)i.o+l, (6, 4- (w)i, 0, (w)1|0+l, i(A,4)».

*(b,b,c,«): C = 7.(W.,A,/>).

x(a,b,b,b,c,u): D = yn((z)t, B, p).

« ( a , b , b , c , M ) : E = ( S > 2 - ( C ) l , C , D > .

^(u, a, b, b, c): F = (6, (E)!, 0, ( E ) l i 0 - 1 , E>.

V(a,b,b,c): G = ( 3 , ( C ) l ) .

*(«,b,6,c): H = (4,(C)i ,F,G).

Let 7n(z, w, p) = H. Consider any particular (a0, b0, bOl Co) such that Xr
0(ao, b0, b0, Co, r) is completely defined and $(a0, bo, <r0, b0) is defined for <r0

= Xr 0(ao, b0, b0, Co, T). Then ^(b0, <r0, bo) is defined and x(o, b, b0, <r0, b0) is de-
fined for (a, b) = (0, 0(0, b0, <r0, b0)), • • • , (a0 — 1, <l>(a0 — 1, bo, <r0, b0)). This
information suffices for the applications of the hypothesis of the induction on
{z}( —) to conclude, by the method of proof under IV (taking (b, b, c, u)
= (bo, bo, Co, do), and considering only a ^ do for the induction on a at the
end), that taking <j)(a, b, b, c) ~ {H}(a, b, b, c) will make <£(a0, b0, b0, c0)
= <j>(a0, b0, Xr 0(ao, bo, b0, Co, r) , b0).

CASE 8. (z)0 = 8. SUBCASE 1. » = (z)2 & p = 0 (only for n > 1).

0(a'-2, b, C, r ) : A - (6, p*-,-(w)u n-2, (»),,„.,, i(t», £»_,)).

x ( « ' - 2 , M ) : B = 7»((8),,A,0).

X . ( M , a H ) : C = ^ ( « - 2 , ( B ) 1 . n _ 2 - l , B ) .

*(b, c): D = 7n-i(w, C, ( w ) ! . ^ - 1 ) .

Let yn(z, w, p) — D. Consider any b0) Co such that Xr 0(bo, c0, r) is completely
defined and #(<r0, b0) is defined for <r0 = XT 0(bOl c0, r ) . Then x(<7o, a'~2, b0) is
defined for each a'~2, and so, by hyp. ind. on {z}(—), letting x(a'~2, b, c)
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~ | B } ( a ' - 2 , b, c) does make x(a'~2, b0, Co) = xfao, a'"2, &o). But putt ing
oi~l = \a>'-2 x(<rOl a'~2, b0), <K<r0, 6°) = fl(6°> Co' "o ' 1 ) ' s o b y " ^ P " i n d - o n n l e t*
ting <£(b, c) ~ {D} (b, c) does make <j>{ba, c0) = ^(fo, bo).

SUBCASE 2. « ^ ( z ) 2 V p 9^0.

6(a>, a'^-, b, b, c, T) : A = (6, ̂ t ) ! , 2 - W , (2)2-2, (w)i,(,,]-2, i(w, ^(z)2-2)).

*(«', a'"2, b, b, c): B = 7n((z)3, A, ̂ + i g I n - ( ( * ) , - 2 ) | ).

*(a' , b, b, c): C = <8, [ (Bji / fw^,] , (3)2, B).

CASE 9. (z)0 = 9. SUBCASE 1. p ^ (z)2,» (so <rn is one of the variables c
for the schema S9). Let ya(z, w, p) = (9, [(w)i/P»-iL (2)2)-

SUBCASE 2. p < (z)2,». Write a = (0, b), b = (e, f) with (b, a, e) the b, and
f the c, for the schema. Now <j)(a, b, a, b) ^ {a}(b, a, e) and 6(a, b, b, c, r)
~ {Sl(w, a)}(b, b, c, r) by XIII. So for values of a, b, b, c which make
(To = XT 0(a, b, b, c, T) completely denned and {a} (b, (r0) e) denned, the hyp.
ind. on {z}( —) gives that cj>(a, b, XT 9(a, b, b, c, r), b) = [y*(a, Sl(w, a),p)\
(b, b, c). So using XIII it will suffice to take yn(z, w, p) = S3(D, gn, w, p)
where D is an index of \gwpabbc { {g}(a, Sl(w, a), p)} (b, b, c) constructed as
follows and gn is an index of yn. Let e be an index of \gwpa [g \ (a, Sl(w,a), p).
We construct further indices.

Xgwpabbc {g}(a,Sl(w, a),p): A = t(e, [(w)J2pn^\).

Xbbbcgwpa {b} (b, b, c): Bo = (9, 2*-[(w)1/pn-1], [(w)i/2f_i]>.

B,+i = (6 , (Bo) i ,0 , (B 0 ) i ,o- 1,B,).

Ugwpabbc {b] (b, b, c): C = (6, (B0)i, 0,4, B4>.

Xgwpabbc {{gK^S^w, a), p}(b,b,c): D = (4, (A)i, C, A).

CONCLUSION. Bringing together the definitions of yn(z, w, p) proposed in
the cases, we can by the recursion theorem XIV pick an index gn of yn (which
gn is called for in Case 9) so that the resulting recursion is satisfied. But
with this gn fixed, we can see as follows from the form of the recursion for
yn(z, w, p) that yn is primitive recursive, using for » > 1 the hyp. ind. on n
by which 7»_i (which occurs in Case 8, Subcase 1) is primitive recursive. The
right side is built up primitive recursively from z, w, p and parts 7»(Z, W, P)
with Z < z (under the hypothesis of the case in which the part occurs) and
Z, W, P primitive recursive functions of z, w, p. Thus the recursion is a course-
of-values recursion on z with "nesting" or "substitution for the parameters"
w, p, and hence by Pe"ter [22, §§1, 2, especially Nr. 20, p. 632] or [23, §§3, 5]
defines a primitive recursive function yn.

4.3. Now we recapitulate XXII, taking c empty and putting <j>(a, b)
~ [yn(z, w, p) \ (a, b). This gives us a version of IV extended to partial and
general recursive functions.
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X X I I I . For n ^ 1: If<f>(a, a", b) and d(a, b, r"~l) are partial recursive, there
is a partial recursive function <f>(a, b) such that

(11) <t>(a, 6) = *(a, Xr- 1 6{a, b, r - » ) , &)

/or values of a, bfor which Xr""1 0(a, b, T"" 1 ) W completely defined and <j>(a, Xr""1

0(a, 6, T"-1), b) w defined. T h u s : If <t>(a, <rn, b) arad 0(a, b, T"^1) are general re-
cursive, so is <t>(a, b) = (j>(fi, XT"- 1 0(a, b, r""1). &)•

4.4. Using partial or general recursiveness in functions &, and indices
from * (3.14), we obtain a relativized version XXIII* of XXIII.

4.5. XXIV. For any j ^ 0: If ^(a't b) and x(a, a', a'+l, b) are general
recursive, so is the function <t>(a, a', b) defined by

/*(0, a', b) = ^(a', b),

\(j)(a', a', b) = x(fl, a'', Xay «(«, a'', b), b).

(Functional recursion; for j = 0, Peter's "primitive Rekursion der II-ten
Stufe"(6).)

Proof. Let x(z. a, «', b) be the partial recursive function given by XXIII
such that

(12) x(z, a, a'\ b) = x(a-»-l, a', \a' {z\ ( a - 1 , a', b), b)

for values of z, a, b which make \a' {2} (a — 1, a', b) completely denned. Using
XV, let

^ ( a ' , b ) if a = 0,

lx(z, a, a', b) if a^O.

Using the recursion theorem XIV, pick an index e of ^/(e, a, a'\ b), and let
<j>(a, a', b) ^1 {e} (a, a', b) c^ \[/(e, a, a', b). Now, for any given b, we prove by
induction on a that #(a, a', b) is denned for every a' and satisfies the recursion
in XXIV. BASIS. <£(0, a', b) ~ : ^(e, 0, a', b) c~ \}/{OL>, b), which is defined since
^ is general recursive. IND. STEP. 4>(a', a', b) ~ \}/{e, a', a', b) c^ x(e, d% «'• b)
— xfa' — lt «'i ^«J {«}(a' —1, ay, b), b) (by (12), since by hyp. ind. Xa'
{e}(a' — 1, a', b) = Xa' 0(a, a', b) is completely defined) ~ x(a. «'. Xa1'
0(a, a', b), b).

4.6. XXV. There are primitive recursive functions vo, vi, V2, • • • such that
j'o(w) (vj(n) for aj>0) is a primitive recursive index of \ai • • • an (oi, • • • , an)
(of\ai • • • aLr'-i (<4(Ti-i), . . . t afct-i))).

Proof for j > 0, using induction on n. BASIS. Let py(0) = (2, £y_i, 1).
IND. STEP. Assume j-y(») is an index of Xa{ • • • O£T'~1 (a((T>-1), • • • , O^{TJ~1)).

Let h be an index of \nba'^ l) b-p^ X). We construct further indices.

\bai • • • ana T bpn : A = ir(j, n, i(5 (h, n), pj)).
i i i y - i . j . y - i y y - i . . . . . .

X a i • • • a n a T ( a i ( r ) , • • • , an(r )}: B = t ( ^ ( « ) , pj).

Xal • • • flinT*"1 (aV" 1 ) , • • • , al+i^'"1)): ^(n+1) = (4, (B),f A, B).
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5. Reduction of the inductive definition of {z} (a)~w to an explicit defini-
tion. S.I. In computing {3}(a) the numbers n0, • • • , nr in genera! vary, but
r does not increase (for by I with 3.10 r remains fixed throughout the partial
recursive description determined by 2, while applications of S9 start new par-
tial recursive descriptions determined by the a with the same or smaller r,
etc.)- In analyzing the inductive definition of {2} (a) c^ w it will help to con-
tract all the variables of each type j ^ r into one.

So for each r 2; 0 we define (writing nj = (2)1,,•; cf. 2.1, 4.1)

{z}[a, a\ • • • , a r ]

~ {z}((a)0, • • • , (a)no_i, (a')o, • • • , (« l ) n , - i , • • • , (ar)o, " • • , («r)*r-i)

if Ix(s) and tp(2) ^ r; otherwise {2} [a, a1, • • • , ar] shall be undefined.
T h e n b y (2 ) , w h e n z is a n i n d e x for « i , • • • ,ana,a\, • • • ,alni, • • • , a\, • • • ,anr,

( 1 / l x r r \
\ z \ {ay, • • • , a n t , otu • • • , a , , , • • • , a u • • • , a n r )

^ {z\[{au • • • , o B 0 ) , ( a i , • • • , a B l ) , • • • , ( a , , • • • , a , , r > ] .

5.2. X X V I . For each r^.2, there are primitive recursive predicates I and J
such that, when \z] [a, a1, • • • , aT] is defined,

(14) {z}[a,a\ • • - , « ' ] = « ; s (fi^){E^)I{z, a, a\ • • • , a', w, ̂ \ £-«),

(15) {z)[a,a\ • • - , a ' ]= W S E (£/3-»)(^)/(Z, a, a \ • • • , a', », r 1 , t 2 ) .

The proof occupies 5.3-5.9. We assume r ^ 2, though afterwards (in
5.21-5.22) we shall use parts of the material for r = 0, 1. For 5.3-5.6, though
of course z can take any value in the recursions, we assume for the discussion
that Ix(z) & tp(z) ̂ r .

5.3. The "stages" in the computation of {2} (F) in the example of 3.9 can
be arranged in a "tree," thus:

AlH'.F) I«)(F) 3

^{*}(F)^^-{*}(F,1)"--

Similarly (assuming Ix(z) & t p ( a ) ^ r ) we can consider the stages in the
computation of \z] [a, ax, • • • , aT] arranged in a tree. However to avoid
syntactical considerations here, we consider the "positions" in the tree as
being occupied, not by the expressions beginning with " {z\ [a, ax, • • • , ar\"
at the 0- (or leftmost) position, but instead by the r + 2-tuples of objects
which occur successively as arguments of \zaal • • -a' \z\\a, a}, • • • , a'\
in carrying out the computation. Thus let (zo, 0,0, «o> " " ' > ao)

(13)
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= (z, a, a1, • • • , ar); this is the r + 2-tuple a t the 0-position. Say a branch
has been genera ted as far as the r + 2-tuple (zn, an, a&, • • • , arn) a t its n-
position. T h e n there are one, two or infinitely m a n y choices of the r + 2-tuple
(zn+i, an+u o£+ 1, • • • , aTn+l) a t the w + 1-position.

Here we exclude the possibility of zero choices, so each branch of the tree
extends ad infinitum, by let t ing

/ l r \ i l r \
(.Zn+i, «n+i, Qf/i+i, • • • , an+i) = [zn, an, a n , • • • , an)

in the cases (S1-S3, S7) when the computation terminates by the schema
giving the value of \zn\ [an, «i, • • • , oQ outright. (We should accordingly
redraw the tree shown above to replace the "— 5" by "— (M}(F)
— u}(F) • • • ".) Likewise, in the case for S9, which says [z}(a, b, c)
~ a}(b), when the a is not an index for the b, we shall not go on from the
r + 2-tuple for {z}(<x, 6, c) to that for (a}(b), but repeat the former ad in-
finitum. It is a consequence of Ix(z) &tp(z):gr and these provisions, by in-
duction on n, that along every branch for every n, Ix(zn) & tp(zn) ^r.

Which r + 2-tuple we choose in passing from an re-position already reached
to an w + 1-position we describe by a choice of the (w + l)st value Xrr~3

p(n, TT~3) of a function \n\rr~3 p(n, rr~3), where in case r = 2 the rr~3 is to
be omitted so it is the (re + l)st value p(n) of Xwp(w) that is chosen. In the
case of a branching at an application of S4, the choice of the lower r + 2-tuple
(which starts the computation of the x(&)) is described by taking Xr p{n, r)
= XT 0, and of the upper r + 2-tuple (for the ^(x(&)i &)) by taking Xrp(w, r)
= XT 1. Similarly at an application of the second equation for S5, the choice
of the lower r + 2-tuple (for the <f>(a, b)) is described by Xr pin, T) = Xr 0 and
of the upper (for the x(a< </>(a> &)• &)) by \T p(n, r) = Xr 1. At an application
of S8.2, the choice of the r + 2-tuple which starts the computation of the
X(a2, x, b) for a given x is described by taking Xr p{n,r) =\TX =\T mpo~2(;t, r)
(cf. 2.3); and more generally, at an application of S8.J (2 ^ j g r), the choice
of the r + 2-tuple which starts the computation of the x(«'. a'~2> 6) for a given
a'~2 is described by Xr p(n, r) = Xr mpjl!(a'~a, r). In all other cases, Xr p{n, r)
= XrO.

An n-position in the tree is described by the first n choices, which are given
by Xr p(re; r) where p(re; r) = XTi<n £>£('lT>+1. A branch in its entirety is de-
scribed by the function \n Xr p(n, T) or simply p.

We would like to express (zn, an, a&, • • • , a£) for the given z, a, a1, • • • , ar

as a function of the position yr~2 = \r p{n; r) by primitive recursion on n.
However we cannot do just this. For, at a branching corresponding to an
application of S4, the an+i for the upper w + 1-position is not immediately
forthcoming from the w + 1-position yr~2 = Xr p(ra + l; r) and the r + 2-tuple
(zn, aB, ai, • • • , cQ at the w-position, but depends (through the x(b) of
'KxW. 6) which is contracted into that a»+i) on the outcome of the entire
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computation (of x(&)) which starts with the lower re+ 1-position; and sim-
ilarly at a branching corresponding to an application of the second equation
of S5. The re-position from which two re + 1-positions thus issue (via S4 or
S5b) we call a node.

To get around this difficulty, we now alter the above definition of the
r + 2-tuples (zn, an, a£, • • • , ara) throughout the tree, by assuming a function
yr~l(jr~2) of position yr~2 in the tree, and expressing (zn, an, aln, • • • , aH) for
the given z, a, a1, • • • , ar as a function of the position y = Xr p(re; r) and this
7] by primitive recursion on n, in the manner that would be correct as de-
scribed above if at each position y in the tree 77(7) were the value of the
{zn} [an, ai, • • • , c£] there. The use of this 77 is the key to XXVI-XXVIII
in the present treatment.

5.4. We begin with the recursion for zn and an. As basis,

(16) z0 = z, a0 — a.

The definitions of zn+\ and an+l from zn, an are given by the following table,
where x = pmjf2(Kr p(n, r)) (cf. X), u = T)(\T p{n; r)*2), and in Case 6
k = (zn)3. For the computation of {zn\ [an, o&, • • • , o^], the nonvanishing
exponents of an after the ((zn)i,0)th exponent (if any) are immaterial, but it
is simplest to keep them in denning on+i.

Case Case hypothesis zn+i an+1

1 (*.), = 4 & * = 0 («.), an

2 («.)o = 4&*=l («.)! 2"- I I ^ i ' '

3 (2tt)o = 5&(aB)o = O (zn)2 n / - . ( a " n + '
«•<<•„

4 (2n)o = 5&(an)o>O&a;=O zn [ajl]

5 (2n)o = 5&(a n ) o >O&s=l (zn), 2("")QJ-1-3". n ^ > < + 1
i<an

6 (Zn)0 = 6&( Z n ) 2 = 0 (g.)4 2<Oi- II ptt- TL P^'

7 (zn)o = 6&(zn)2>O (*.)« an

8 (zn)o = 8&( 2 n ) 2 = 2 (zn), 2"-n^i><

9 (zn)0 = 8 & ( s n ) 2 > 2 -(zB)j an

10 (Zn)o = 9&Ix((an)o) « ) „ n^*" ) < + 1

&(On)o.l=(z»)2

11 otherwise 2n On
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T o analyze this recursion, we have, fo rm > n, Xrp(w, r ) = Xcr (p(m;a))n— 1
and XT p(n; r )*2 =Xcr ( I L < » pfm'-a))i) • pn, where p(m; <r) = {Xr p(m; r ) } (<r). For
each n, let £>„ = (zn, an), so t h a t

(17) zB = (&„)<,, aB = (6B)i.

Using these relations, the s imul taneous recursion for zn and an gives

bo — (z, a),
(18)

6n+i = x(», &»i XT p(w; T) , 77) (w > n)

with a primitive recursive x- Now define /3 by the primitive recursion

( 0(0, 2, a, y'~\ v) = (z, a),

l/3(W+l,z, a, y-*,i) = x(«,/8(», «, a, 7r-2, ijJ.T1"*, «»)•

Then, by induction on w,

(19) 6n = )3(w, 2, o, XTP(W;T) , TJ) (m^n).

Taking w = n = lh({Xr p(»; r)} (\ar~* 0)) (omit 0--4 if r ^ 3),

(20) bK = p(z,a,\Tjf(n;r),r,)
with a new primitive recursive j3. This with (17) gives zn, an by primitive
recursive functions of z, a, rj and the position 7 = Xr p(w; T) ; and more gen-
erally, (19) with (17) gives zn, an by primitive recursive functions of z, o, 77, w
and any position S = Xr p(m; r) as far or further out on any branch through
the position 7 in question.

It remains to deal similarly with a£ for j = 1, • • • , r. First aj^u'"1)
= a'^u'""1). Furthermore o£+l(u) = a£(u), except in the case (zn)o = 6 & (zn)2

=_7, when (writing fe = (zn)3)

a»+i(u) = 2 - 1 1 /.,+ 1 • 11 pi ,

and in the case (2n)0 = 8 & (zn)2=j+2, when

«»+i(i)) = 2 - 1 1 i>»+i

where <r*(v) = pm7r-2(Xr p(«, r) , u) (cf. X). Using (17) and (19), thus

(21) " " ^ = " ^ '
«^+1(u) = xy(w, 2, a, al(u), Xr p(w; r), 77, u) (w > n)

with a primitive recursive Xi- Continuing from (21) as before from (18), we
obtain primitive recursive /3/s such that
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(22) an(v) = j9y(», z, a, a(v), Xr p{m; r ) , T?, v) (m ^ n),

(23) an{v) = j3j(z, a, a'(v), Xr p(«; r), 77, U).

5.5. A type-r — 2 object 5r~2 will describe a position in the tree under 5.3
exactly if (a) 5r~2 is of the form Xr p(rn\ r) for some number m and function p
and (b) the value of Xr p(n, r) obeys certain restrictions for n = 0, • • • , m — 1.
Now (a) is expressed by(3)

(r) [Seq(<5-2(r)) & lh(5-2(r)) = lh(5-2(Xcr^ ())) ] (r > 2),
(24)

Seq(5) (r = 2).

As to (b), suppose (a) is satisfied and the restrictions are obeyed for 0, • • • ,
» — 1 where n < m. Then 7r~2 = Xr p(w; r) is a position, at which the zn and
an are given by (19) with (17) from z, a, rj, n and 5r-2 = Xr p(m; T). The re-
strictions for n are expressed by

(r)[p(«,r)=0] V { [ W . = 4 V ( W o = 5&Wi>O)]&(r)[p(«,r) = l ] |

V {(zn)o=8 & («»)* = 2 & (T)[P(», r) = pmo~"2(Xr p(», T))J}

V (£i)«<ySr{ («»)o= 8 &(«.) ,=/

& {r)[p{n, T) = mpy_2(Xu pmy_2(Xr p(«, T), uJ ), r)]} (r > 2),

P(») = 0 V {[(3n)o = 4 V ( W , = 5 4 W . > 0 ) ] & P ( » ) = 1}

V {(*.)o = 8&(zn)2 = 2} ( r = 2 ) .

A formula expressing (b) is obtained by prefixing (n)n<m to (25), and replacing
m by lh(5r-2(Xa"-40)), p(n, T) by (5r-2(r))n^-l , z» by Q3(«, 2, a, 5r-2, 17))0 and
an by (/3(re, z, a, 5r~2, 17))̂  Forming the conjunction of this with (24), and for
r > 2 advancing the quantifiers (rr~3) by predicate calculus and contracting
them by (3), we obtain a primitive recursive predicate P such that (omitting
r - 3 for r = 2)

(26) {51-2 is a position} = {T^*)P(Z, a, 6r"2, vr~\ T'~3).

5.6. The tree described in 5.3 for given (z, a, a1, • • • , aT) and rj does cor-
respond to the computation of {z} [a, a1, • • • , ar\, if 77(7) at each position
y i s t h e v a l u e o f {zn} [ a n , 0^, • • • , arn] t h e r e . ( O n l y if [z\ [ a , ax, • • • , ar] i s
defined are there such 77's.) However we must study the tree for ??'s in general.

For any 77, let us say t] is locally correct at a given position 7, if 77(7) has
the right value in case 7 corresponds to a schema application (of SI—S3, S7)
that gives a value outright, and otherwise if 17(7) and the numbers 17(5) for
each of the one or more w + 1-positions issuing from the w-position 7 have the
relationship required by the schema application to which 7 corresponds.

We analyze this notion, assuming 7 is a position. In the case of a node,
only the relationship of 77(7) to the 77(6) at the upper « + l-position is in ques-
tion, since the relationship to the rj(5) at the lower re + 1-position has already
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been taken care of in the tree construct ion by incorporat ing t h a t rj(8) into
t h e a n + i a t the upper n + 1-position. T h e local correctness of 77 a t 7 is expressed
by

{(Z n)o=l&7?(7) = (a n )o+l} V [(zm)a=2&r,(y) = (zH)t\ V{(zn)o = 3&7,(7) = ( O o }

V ! [ W . = 4 V ((Zn)o=5 & ( a n ) 0 > 0 ) ] & 7 , ( 7 ) = T , ( X T 7 ( T ) * 22)}

V { [((s.)o = 5 & (a . ) 0 = 0) V W o = 6 V («.)o = 9] & , ( 7 ) = , ( X r T ( r ) *2)}

V { W o = 7 & i j ( 7 ) = (ai((a,)o))o} V (£/)«sy*r{ (z»)a = 8 & («»)*=J &

i?(7) = («n(X<rJ T/(XT 7 ( T ) * [2 exp l + mpjr_2((rJ , r ) ] ) ) ) 0 } .

El iminat ing zn, aa, c&, • • • , arnby (17), (20) and (23) with 7 = XT p(w; r ) , we
obtain a pr imit ive recursive predicate C such tha t , for 7 a position,

(27) {ij1-1 is locally correct at 7 r ~ 2 } = C(z, a, a1, • • • , ar, y'~2, r)r~x).

5.7. Consider, as we have been doing, the tree for (z, a, a1, • • • , a r ) based
on a given 77, and a t a n y position 7 let (zn, aB, a j , • • • , oQ be the r + 2-tuple
which occupies it. If \z\ [a, a1, • • • , a r ] is defined, and 77 is locally correct
at every position 7, then at every position 7 {z»} [an, «i, • • • , «^] is defined and
= 77(7), i.e. 77 gives the correct values.

Proof. Assume \z\ [a, a1, • • • , ar] is defined. Then Ix(z) & tp(z) ^r by
5.1, and we can use induction on {z}( —) (end 3.8). Assume 77 is locally cor-
rect. We give two of the cases for the induction.

CASE 1. (z)o = 1, i.e. z is an index (1, (no, • • • , nT)) for an application of
SI. So [z\ [a, a1, • • • , ar\ = (o)0 + l. By 5.3, the tree is unbranched with
(zn, an, aln, • • • , oQ = (z, a, a1, • • • , <xr) for every n. So at every position 7,
{zn} [an, a\, • • • , aTn] = ( a ) 0 + l = v(j), since 77 is locally correct at 7.

CASE 4. (z)0 = 4, i.e. z is an index (4, (w0, • • • , nT), g, h) for an application
ofS4.So [z}[a,a\ • • • , « ' ] = |z}(6) = [g){{h] (6), 6), j * } [ a , a l , • • - , « ' ]
= {*}(b) and {g}[au <x\ - • • , a ' ] = {«}({/*}(&), 6), where g = («),,
h = (z)3) oi =2'*^fl'- J3,<o P<+i- Each of these three expressions is defined,
since the first is(10). In the tree for (z, a, a1, • • • , a') (at the 0-position) and
the given 77, the next r + 2-tuples are (h, a, a1, • • • , ar) at the lower 1-posi-
tion, and at the upper 1-position (g, a*, a1, • • • , aT) where a* = 2'(T)

• Y\.i<» PH\ f° r y = Xr 2. In the construction of any tree, for any r + 2-tuple
(zn, an, aln, • • • , arn), the set of the next r + 2-tuples (i.e. how many and what
they are) is completely determined by (zn, an, axn, • • • , a£), except in the
case of a node when for the upper next r + 2-tupIe the value of 77 at the position
7 of the lower next r + 2-tuple is also used. It follows that the trees for
(h, a, a1, • • • , <xr) and (g, a*, a1, • • • , a r) are exactly the lower and upper
subtrees which remain from the tree for (z, a, a1, • • • , ar) upon omitting
the initial r+2-tuple of that, when the functions rjo and T?I used for the sub-
trees are respectively the functions which correlate to each position the
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number correlated to the corresponding position of the whole tree, i.e. 770(7)
= rj(Kr 2*y(r)) and 771(7) = TJ(XT 22*y{r)). So the local correctness of 77
throughout the whole tree implies that of 770 and rji throughout the respective
subtrees. Applying the hypothesis of the induction to the lower subtree, at
each 7 \zn) [an, o£, • • • , a£] is defined and = 770(7), i.e. 770 gives the correct
values throughout the lower subtree. Hence in particular, 7jo(Xr 1) = {/&}(&)
= ?j(Xr 2); so a* = Ci. So {g} \a*, a1, • • • , aT\ is defined, since it is
\g\ [oi, a1, • • • , ar]; and by applying the hyp. ind. to the upper subtree, we
can conclude that at each position 7 \zn] [a», a1, • • • , ar] is defined and
= 171(7), i.e. 771 gives correct values throughout that. These correct values
under T/0 and 771 in the two subtrees become correct values under 77 at the cor-
responding positions of the whole tree. Finally, by the local correctness of 77
at the 0-position Xr 1 of the whole tree, the value under 17 is correct also
there.

5.8. / / [z] [a, a1, • • • , ar] is defined, then there is a function 77 such that,
in the tree for (z, a, a1, • • • , a.') based on 77, the function 77 is locally correct at
every position 7.

The proof is similar to that in 5.7, using the result of 5.7 to identify a*
and ai in Case 4 (and similarly in Case 5 for (a)0 > 0).

5.9. To complete the proof of XXVI, assume that \z) [a, a1, • • • , a r ] is
defined. Then by 5.8 there is an 77 which is locally correct throughout the tree
for (z, a, a1, • • • , ar) based on that 77. By 5.7, for each such 77, the values are
defined and given correctly throughout the tree, in particular a t the 0-position,
so ?7(Xr 1) = \z\ [a, a1, • • • , aT\. Thus

{z}[a, a1, • • • ,ar] = w

(28) = (77) {(y)[(7 is a position) —> (77 is locally correct at 7)] —»i?(Xr 1) = w\

= (Erj) {(7)[(7 is a position) —> (tj is locally correct at 7)] &r;(\r l) = w}.

Using (26) and (27) in the two expressions at the right (omitting rr~3 for
r = 2), advancing the quantifiers, and for r > 2 simplifying the resulting
prefixes (vr-l)(Eyr-*)(T<s) and (£r;'-1)(7r-J)(£r'~-3) by use of (8), (I), (3)
and (8), (4), (3), we obtain the forms in (14) and (15).

5.10. XXVII . For each r 2: 2 there is a primitive recursive predicate K, and
for each r > 2 a primitive recursive predicate L, such that

. . ({z} k «S • • • , «r] is defined)
a W^)(E^)K(z, a, a\ • • • , a', j8->, ^) (r ^ 2),

(30) ^Z^ ^' al> ' ^ iS d e f i n e d )
= (£0-^)Ur2)£(z, a, a\ • • • , a', /J-», £-') (r > 2).

The proof, continuing from 5.3-5.8, occupies 5.11-5.18. We assume rSi2,
and for the discussion in 5.11-5.12 Ix(z) & tp(z) gr . (Cf. LI below.)
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5.11. Let us say yr~2 is below a position 5r"2, if §r~2 is the upper w + 1-
position issuing from a node (the node being an w-position), and y'~* is an
w-position with m ^ « + l on a branch through the lower w + 1-position issu-
ing from the node.

We analyze this notion, assuming 5 a position. First, for y to be below 5,
the position 5 must be an w-f-1-position, i.e.

(31) lh(5(X<rr-4 0)) > 0.

In this case, n = lh(5(Xerr~4 0)) — 1, and the zn, an at the w-position are given
from 5 = Xr p(ra + l; r) by (17) and (19) with m = n + 1. Next, this w-position
must be a node with 5 the upper »-f-l-position, i.e.

(32) [(zn)o = 4 V((zn)o = 5&(an)o>0)]&pm0r~V(5W)»--l) = l.

In this case the lower M + 1-position isXr [6(r)/pn]- Finally, y must be a posi-
tion at least as far out as Xr [5(r)//>n] on a branch through the latter, i.e.
(using (26))(»)

(33) (r)P(z, a, y, , , r) & (r)Ext(7(r), [i(r)/pn]).

Forming the conjunction of (31)-(33), eliminating zn, an and n as indicated,
and for r > 2 advancing and contracting the quantifiers, we obtain a primi-
tive recursive predicate B such that, for 5 a position (and omitting rr~3 for
r = 2),

(34) [y'-* is below S-2} = (T^)B(Z, a, Y'\ ^ \ v"1, T1^3).

We say y is below a branch of the tree, if y is below some position on the
branch.

5.12. The computation terminates at a given position y = Xr p(n; r) if
S1-S3 or S7 applies there, i.e. if (zB)0 = l V W o = 2 V (zn)o = 3 V (z*)o = 7.
Using (20) with (17), we obtain a primitive recursive T such that, for p a
branch,

(35) {the computation terminates at the «-position on p\ = T(z, a, n, p, r/^1).

5.13. Let D(z, a, a1, • • • , ar) = (lx(z) &tp(z)^r, and for every r;, in
the tree constructed for (z, a, a1, • • • , ar) on the basis of i\, the computation
terminates along each branch p below which rj is locally correct}.

To analyze this, note that "p is a branch" is expressed using (26) by
(n)(Tr-3)P{z, a, Xr p(n; r), VT~\ r"3). Using also (34), (27) and (35),

D{z, a, a1, • • • , ar) = Ix(z) & tp(z) g f &

(V-1)(p) { (n) (r-3)P(«, o, Xr p(«; r), , - \ T-»)

& ( ^ ( T ^ t C r - 3 ) ^ ^ a, T ^ 2 , Xr p(M; r), ^ . r ^ 3 )

-» C(«, o, a1, • • • , ar, 7"-2, i?^1)] -> (£»)r(«, «, n, p, ^ l ) } .
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For r > 2, and any two-place function \nTr~l p(n, rr~3), let pr~2((Tr~3)
= P((<rr-3)l (<rT~3)d (cf. 2.4); then by (9), p(n, T'~3) = p ' - 2 ««, r - 3 ) ) . Using
this for r > 2 to replace the quantification of the two-place p by quantifica-
tion of pr~2 (for r = 2, p is a one-place function p1), then advancing and con-
tracting quantifiers on the right (cf. 2.5), we obtain a primitive recursive
predicate K such that

(37) D(z, a,a\- • • , a') = {^){E^)K{z, a, a\ • • • , «', 0--», f-»).

5.14. / / [z] [a, a1, • • • . ar] is defined, then D(z, a, a1, • • • , a').
Proof. Assume [z] [a, a1, • • • , ar] is denned. Then Ix(z) & tp(z) gjr, and

we use induction on {2} ( —) to show tha t the other conjunctive member of
D(z, a, a1, • • • , ar) holds.

CASE 1. (2)0 = 1. Then (20)0 = 1, which gives T(z, a, 0, p, 77) and thence
(En)T(z, a, n, p, 77), for any r; and the only branch p.

CASE 4. (z)0 = 4. Then the tree for (z, a, a1, • • • , ar) based on any given
77 begins with a node, with (h, a, ax, • • • , ar) at the lower 1-position and
(g, a*, a1, • • • , ar) at the upper (cf. Case 4 in 5.7). Consider any given branch
p below which the rj is locally correct.

SUBCASE 0. The 1-position on p is the lower 1-position issuing from the
node, i.e. is occupied by (h, a, a1, • • • , <xr). Then the branch p minus its
0-position corresponds to a branch po in the lower subtree, i.e. in tree for
(h, a, a1, • • • , ar) based on 770, below which 770 is locally correct. So, since
\h] [a, a1, • • • , ar] is defined, by the hyp. ind. the computation terminates
along po in the lower subtree, i.e. (En)T(h, a, n, p0, ^o), and hence along p in
the whole tree (with n one greater), i.e. (En)T(z, a, n, p, 77).

SUBCASE 1. The 1-position on p is the upper one, i.e. is occupied by
(g, a*, a1, • • • , ar). Then the local correctness of 77 below p in the whole tree
entails the local correctness of 770 in the lower subtree. Hence by 5.7 770 gives
the correct values in the lower subtree, so a* = at. So {g} [af, a1, • • • , ar]
is defined, and we can apply the hyp. ind. to {g} [a*, a1, • • • , ar] (in the
same manner as to {&}(a, a1, • • • , a') in Subcase 0) to conclude that
(En)T(g, af, n, pu 77O and hence (En)T(z, a, n, p, 77).

5.15. If D(z, a, a1, • • • , a'), then {2} [a, a1, • • • , ar] is defined.
Proof. Assume {2} [a, a1, • • • , a r ] is undefined. To conclude that then

5(2, a, a1, • • • , aT), assume further that Ix(z) & tp(z) ^ r. We shall "con-
struct" a function 77, and a branch p of the tree for (2, a, a1, • • • , ar) based
on 77, such that at each M-position along p [zn\ \an, a£, • • • , arn] is undefined,
and 77 is locally correct below p. This will contradict the second conjunctive
member of D(z, a, a1, • • • , ar); for wherever \zn] [an, a£, • • • , aj,] is un-
defined, the computation is unterminated.

The construction will proceed by stages for n = 0, 1, 2, • • • . At Stage n,
the first M + 1 r + 2-tuples (z0, a0, al0, • • • , ar0), • • • , {zn, an, «i, • • • , oQ
along p will have been picked, for each of these the function value {3,}
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[a,-, a } , - - * , aj] will be undefined, 77(6) will have been picked a t all positions
5 below the positions of the » + l r + 2-tuples already picked, 77 will be locally
correct a t each 5 for which rj(5) has thus been picked, and the further r + 2-
tuples along p and values of r\ will not yet have been picked.

A t Stage 0 we necessarily have (z0, ao, ot\, • • • , arQ) = (z, a, a1, • • • , ar),

the function value {zoj [00, «J, • • • , aj,] is undefined by our assumpt ion t h a t
{z\ [a, a1, • • • , a'\ is undefined, and no values of 77 have been picked.

Now we give some cases for the s tep from Stage n to Stage w + 1.

C A S E 1. (zn)o = 1. Th i s case can be excluded, since under it {zn}
[an, G£, • • • , «n] would be defined (with value (an)o + l ) -

C A S E 4. (*„), = 4. T h e n {«.}[o», a j , • • • , an] ~ U}({*}(&) , 6) (cf.
Case 4 in 5.7).

S U B C A S E 0. {&}(&) is undefined. Then we take its r-j-2-tuple
(h, on , o j , • • • , an) as (zn + l , a n + i , c^+i, • • • , a£+ I ) and pick no further values
of 77. Clearly the requi rements a re met .

S U B C A S E 1. {/*}(b) is defined. By 5.8, there is a function 770 such t h a t
th roughou t the tree for (h, o n , a j , • • • , a») based on rj0 the function r]Q is
locally correct . By 5.7, t he values which this rj0 gives are correct ; in part icular ,
ojo(Xr 1) = |A}(b) . So if as our {zn+\, <Wi, o£+i» • • • , a£+ 1) we take
(g, On.i, a i , • • • , «n) where an.i = 2lA|(b) • I I . ^ o , P m . and if a t the same
t ime we extend the selection of values of rj by employing a t positions below
the »- | - l -posi t ion jus t filled the values given by r]a a t the corresponding posi-
t ions of the tree for (h, on, a£, • • • , oQ based on 770, then (zn+i, an+1, a^+1, • • • ,
«n+i) w u l meet the condi t ion for occupying an n + 1-position based on 77.
N o w { z n + i } [ a n + i , o & + 1 , • • • , a » + i ] ^ { g } ( { h } ( b ) , b) ~ { z n } [«„ , o j , • • •, <&},
which is undefined; and 77 is locally correct at all points below the segment of
p thus far chosen.

CASE 8.j. (zn)0 = 8 & (zn)2=j. Then {zB} [o»,oi, • • • X ] ~ {a,}((oi)0, 6),
~(c^(X^-2x((^)o, ^'-2, b))o. Since {^Jfo,,, oi, • • • , oi] is undefined,
x((«n)o, ff'"2, b) is undefined for some a'"2. Choosing such a cr'~2, we take as
our (zn+i, an+1, On+1, • • • , c^+1) the r + 2-tuple for x((a£)o, o-'"2, b), i.e. we
make the choice described by Xr p(«, r) = Xr mpyZ^C0''"2. ̂ )i a °d do not choose
further values of 77.

When (zn, an, a&, • • • , a^) has been thus picked for every n, the branch
p will have been constructed, and the value of 77(5) will have been picked and
will be locally correct, at exactly each position 5 below p. We complete the
construction of 77 by taking r\(S) = 0 for all other 5.

5.1G. Let E(z, a, a1, • • • , ar) = {Ix(s) & tp(z) ^ r, and there is an 77 such
that) in the tree constructed for (z, a, a\ • • • , aT) on the basis of 77, the func-
tion 77 is locally correct at every position, and the computation terminates
along every branch}.

Using (26), (27) and (35) (omitting Tr~3 for r = 2),
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E(z, a, a\ • • • , ar) ss lx(z) & tp(z)^r

& ( £ , - ' ) { (7-2) [(r-')/>(s, a, f-\ r,-\ T'~*)

-*C(z,a,a\ ••- ,<*' , 7 r - 2 ,^- ' ) ]

& (p)[(W)(r-3)P(z, a, Xr p(n; r), v - \ r - 3 ) -> (En)T(z, a, n, p, r~l)}\ •

For r > 2, proceeding as in 5.13 we obtain a primitive recursive L such that
E(z, a, a1, • • • , ar)

(39)
- (E0'-)ttr-1)£(z, a, « > , • • • , a', /3-1 , {-») (r > 2)

For r = 2, the quantifier (p) is of type 1 = r — 1 instead of (after contraction)
r —2, so (yT~2)(p) can only be contracted into a ($r~1)- A counterexample to
(39), (30) and (41) for r = 2 will be given in 8.9 below.

5.17. / / \z] [a, a}, • • • , ctr] is defined, then E{z, a, a1, • • • , ar). For as-
sume [z\ [a, a1, • • • , ar] is denned. Then by 5.8 there exists an r\ which is
locally correct throughout the tree for (z, a, a1, • • • , <xT) based on 77. Also by
5.14, for any rj, the computation terminates along every branch below which
r\ is locally correct; and so, with this rj, along every branch.

5.18. / / E ( z , a, a1, • • • , a r ) , t h e n [z] [a, a1, • • • , <xr] i s defined. F o r a s -
sume E(z, a, a1, • • • , aT), and pick such an r/ (cf. 5.16). Then, assuming
{z\[a, a1, • • • , ar] is undefined, we reach a contradiction by constructing
a branch p along which the computation does not terminate, as in 5.15 but
using the t) already picked here (everywhere locally correct) instead of con-
structing one by stages as there.

5.19. XXVIII. For each r ^ 2 there is a primitive recursive predicate M,
and for each r > 2 a primitive recursive predicate N, such that

( 4 0 ) ^ ^ a > a l > • • • >a']—w

s G 8 - ' ) ( £ F - W « , «, a1, • • • , «r, », P-1, £r"2) (' £ 2),

. {2} [a, a1, • • • , ar]~w

= (Ef}r-W-*)N(z, a, a1, • • • , a', w, /J->, ^-) (r > 2).

Proof of (40). Using (29) and (14),

{z}[a,a\- • • ,a']~w=(j}^)(E^)K(z,a,a\ • • • , a', 0-1, {-*)
(42)

& (fi^)(E^)I(z, a, a\ • • • , a', w, 0-\ £->).

5.20. To get results for r = 0, 1 similar to those above for r ^ 2, and
analogous to known theorems in the former theory of partial and general
recursive functions for r — 0, 1, various known techniques are available (e.g.
IM, p. 322 (Dl) or (D2), or [11, §8] with [15, §18 and p. 424]). We elect
here to adapt the foregoing treatment.

5.21. XXIX. There are primitive recursive predicates T(s, z, a) and
T'(z, a, y) such that
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(43) ({*}[«,«] is defined) = (Ey)T(a(y), z, a) (r = 1 case),

(44) ({z} [a] is defined) = (Ey)T'(z, a, y) (r = 0 case).

Proof, for r = 1. Assume {z} [a, a] defined. Then by 5.17, Eiz, a, a)
(cf. 5.16). Since tp(z) g r < 2, S8 canno t be used (cf. I, 3.10); so in the
tree for an rj given by E(z, a, a) the only branching will be a t appl icat ions of
S4 or the second equat ion of S5 (i.e. a t nodes) wi th two «-f-l-positions issuing
from the w-position. Hence by Brouwer 's fan theorem ( [ l , Theorem 2; 2,
Theorem 2; 3 ] , Konig [20]), there is an m > 0 such t h a t along each branch
the computa t ion te rmina tes a t an ra-posttion with n < m. Now we confine
our a t t en t ion to w h a t remains from the tree when all its branches are pruned
off beginning wi th their rrc-positions; call it the w-tree. In the ra-tree, the
positions are described by numbers g = p(«) < JX.xm p\- Let y = T)(U)
with u chosen so t h a t u — \\\{y) §; J l , < m p\ ( then y > u > m). For opera-
tions t h a t involve only values of JJ only a t positions in the m-tree, rj is re-
placeable by \t (y)t — l.

In par t icular , adap t ing 5.5 (with 5.4), we have

Id is a position in the w-tree! = Seq(d) & lh(d) <m
(45)

& W K n W , [ ( ( i ) . = l V {[(2«)O = 4 V ( W . = 5 & ( a n ) 0 >0 ) ] & (<*)„= 2}]

where zn = (|8(«, z, a, d, \t (y) (—l))o. o,n = ()3(w, z, a, d, \t (y)« — l ) ) i , which
is of the form P(z, a, d, m, y) with a primit ive recursive P.

T o a d a p t 5.6 (with 5.4), let us further assume for the choice of u t h a t
y = TJ(W) > an a t each position g in the m-tree (n = lh(g)). This condit ion is
expressed, wri t ing M = ]X-<OT Pt> by

(46) (g)Q<M[P(z, a, g, m, y) -> y>(0(s, a, g, \t ( y ) i - l ) ) i ] ,

which is of the form G(z, a, m, y) with a primit ive recursive G. Also an(v)
= ]3i(z, a, (a (y) ) 0 — 1, g, \t (y)i — 1 , v) for v < y. Now for g a position in the
m-tree,

(47) {rj is locally correct a t g, or g is an m — 1-position a t which the computa -
tion is un t e rmina t ed} = C(z, a, a(y), g, y)

with a pr imit ive recursive C.
T h e pa r t of a b ranch p of the whole tree t h a t belongs to the wi-tree can be

represented by its m — 1-position d. T h u s branches of the m-tree are repre-
sented by the numbers d such t ha t P(z, a, d, m, y) & \h{d) = m — 1 . Adapt ing
5.12, for such d, and n < m,

(48) {the computa t ion te rminates a t the w-position on d\ = T(s, a, n, d, y)

with a pr imit ive recursive T.
Combining these remarks ,
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({z} [a, a] is defined) -> (£y){lx(z) & tp(z)^l & (Em)o<m<y{Seq(y)

& lh(y) £ ]I.<n. /-! & C(a, a, «, y) & (g)0<B[i>(z, a, g, m, y)

->C(z, a, s(y), g, y)]

& (d)d<y[P{z, a, d, m , y) & lh(d)=tn->-l-+ (En),l<mT(z, a, n , d, y ) } } \ .

Upon replacing 3/ except in a(y) by lh(a(y)), the scope of (Ey) in (49) as-
sumes the form T(a(y), z, a) with a primitive recursive T. Thus

(50) ({2} [a, a] is defined) -> (£y)7\a(y), z, a).

Conversely, assume (Ey)T(a(y), z, a), and pick such a y. Then y is of the
form 7j(«) for some function 7/, with u = lh(y) ^ II«m Pt for some
m > 0, and G(z, a, m, y). The rest of T(a(y), z, a) then gives everything
stated in E(z, a, a) for the tree based on this TJ, except the local correctness
at w-positions for n 3: m, since the computation terminates along every
branch at an w-position with n < m. We can by altering values of TJ at most
at re-positions with n ^ m obtain the local correctness there also (without
spoiling it for re < m, or altering the w-tree or the termination). Then 5.18
applies. Thus

(51) (Ey)T(a(y), z, a) -> ({z} [a, a] is defined).

5.22. XXX. There is a primitive recursive function U(y) such that

(52) {z\[o,a]^UQiyT(!k(y),z,a)),

(53) T(a(y), z, a) - » U(y) = {z\ [a, a ] (r = 1 case),

(54) {z)[a\~U{nyT'{z,a,y)),

(55) T'(z, a, y) - tf(y) = {2} [a] (r = 0 case).

Proof, for r = 1. By (43) it will suffice for (52) to pick U to satisfy (53).
So assume T(a(y), z, a) (then \z\ [a, a] is defined). By the proof of (51),
y = jj(tt) for some 77, u and m with w > m > 0; and, by altering values of
?7 at most for some arguments p(w) with n ~^m, t\ becomes locally correct
everywhere in the tree for (z, a, a) based on it. So by 5.7, \z\ [a, a] =1/(1)
= ( i («)) i~l = (y)i~l (since 7/(1) is unaltered). So take U(y) = (y)i —1.

5.23. XXXI. Each function <t>(a) of variables a of types ^ 1 partial (general)
recursive in the present sense is partial (general) recursive in the former sense
(e.g. IM, Chapters XI, XII).

Proof. By (52) or (54) with (13) and IM, Theorem XVIII, p. 330.
5.24. For each n ^ 1, putting a = (01, • • • , a,),

(56) a(x) = I I Pi exp l + ibx^x))^!, • • • , (*„(*)),-=-1>.
«lh(5!(i))

This enables us by substitution into XXX to obtain the usual forms of the
normal form theorem (IM, p. 292, [14, Footnote 2]) but now with indices.

(49)
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For example, iet

Tl'\u,v,z,a,b) = T ( I I f , -expl + <(u) i - ' - l>( i0,-- l>,2 )<aI6>y
\ «lh(u) /

XXXII. If <f>(a, b, a, j3) is partial recursive with index z,

(57) 4>{a, b, a, /?) ~ U{pyT\\a(y), fl(y), z, a, b)),

(58) rl'\a(y), 0(y), z, a, b) — U{y) = <t>(a, b, a, 0).

5.25. To get the enumeration theorem under type-0 quantification (IM,
Theorems IV, IV*, pp. 281, 292) but now with indices, take e.g. a general re-
cursive predicate R(a, b, a, /3, y); let its representing function be x with index
h, so

R(a, b, a, p, y) = x(a, b, a, ft y) = 0 = \h) {a, b, a, ft y) = 0.

By S9 and XVI, \zabctP ny [{z} (a, b, a, (3, y) =0] is a partial recursive func-
tion, say with index e. By XIII, the partial recursive function Xa6a/3
ny[{h}(a, b,a,&,y) =0], i.e. Aa&a/?ixyR{a, b, a,p,y), has the index/ = Sl(e, h).
In the following equivalence (59), the left side expresses the condition of
definition of this function for particular a, b, a, j3 as given directly by its
definition by the ^-operator, and the right the condition as given by (57) (or
(43) via (13) and (56)) from/being an index of it.

XXXIII. To each general recursive predicate R{a, b, a, fi, y), there are
numbers / , g such thai

(59) (Ey)R(a, b, a, 0, y) = (Ey) rl'l(ffi(y), fly), / , a, b),

(60) (y)R(a, b, a, ft y) = (y)T\'\a(y), 0(y), g, a, b).

5.26. Other results for the present T predicates with indices follow from
the foregoing in the same manner as in IM for the T predicates with Godel
numbers.

6. Reduction in type of a quantifier. 6.1. The following theorem and its
dual correspond for r ^ 2 to [14, (7) and (8), p. 316] for r = 1. (Cf. XLII and
XLIII below.)

XXXIV. Suppose r 5: 2. Let a' be variables of types ^ r, br~2 variables of
types ^ r —2, (@br~2) quantifiers on the variables br~2, and P(ar, <rr., br~2) a
general recursive predicate. Then there is a primitive recursive predicate
R(ar, n'~\ £r~2) such that

(61) (E<r')(Qb^)P(ar, <r', b - 2 ) = (£„ -» ) t t -* )K(a r , , - » , £ - 2 ) .

Similarly if P is merely partial recursive, with (61) holding for those values of
ctr such that P(ar, <rr, br~2) is defined for all trr, br~2.

The proof occupies 6.2-6.9.
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6.2. Assume for P merely partial recursive that the values of ar under
consideration make Xcrrbr~2 P(ar, <rr, br~2) completely defined. Say zo is an
index of the representing function of P. Then P(ar, <rr, br~-) = {z0} (ar, ar, br~2)
= 0. Using this in the left side of (61), applying (13) and (15), advancing the
quantifier (Ef3r~l) and contracting adjacent quantifiers of like kind by (4),
(3), (3) with (8), (8), writing cT = (C"-2, a'C\ • • • , o £ l f a[, • • • , <£,_,)
where cr~2 are of types ^ r — 2, ar0~l = (a[~l, • • • , o ^ , ) a n c* ao
= (a[, • • • , <xTmr-\), and using (2), we obtain

(62) (Ea')(Qb-*)P(a', <r', b^) s (E/KC*)P(c~\ «<T' a[, </, {'*)

with a primitive recursive P on the right. Thus the general case of XXXIV is
reduced to the case of it for a primitive recursive predicate P(cr~2, a'~l, ar, <rr,
£r~2) of variables of the types shown.

6.3. Let Z\ be a primitive recursive index (cf. 4.1) of the representing
function of such a P(cr~2, a'"1, ar, txr, £r~2). Then

(63) P{l-\ a-\ a', V, £-2) ^ {2l} (C-2, r~2, a^1, «', O = 0.

By I, in computing {zi}(cr~2, ^r~2, ctr~l, aT, <rr), applications of SS.r with <rr
as the a' of S8.r will always be to introduce o-r(Xrr~2 {h} (rr~2, br~2, a'~l, <rr,aT))
with br~2 of types ^ r — 2; i.e. the a'(ka'~- x(«'i «'~2> b)) will always be of
this form with only (h, br~2) varying from one application to the next. The
idea of the proof of XXXIV is that hence we can in the computation replace
the type-r function aT by a type-r —1 function r]r~l chosen so that (cf. 2.4)
J?r-l(v%. e» = crr(XT"-2 {h\(Tr-2, b, a'~\ crr, ar)) when e = (e°, • • • , e'-2) and
b = tw =_((«»)„, • • • , (€->)„„_!, • • • , (e'-2)0, • • • , (€'-')„_,_!) for nj
= ( * ) u - ! - 8 g ( r - 2 - i ) . In particular, if b = (5?, • • • , 5 ,̂, • • • , 8[~2, • • • ,
K'Z?) for such nh then b* = (5°, • • • , 8'"2) for 5' = <5(, • • • , 8}n.) is such
an e, i.e. b*(A) = b.

6.4. To carry out this idea, we introduce two primitive recursive func-
tions fo(z) and fi(z) which wiH give indices of (z}(b, a '" ' , a.', <xT) and
\z\ (b, aT~l, ffr, ar), respectively, as functions of b, a'~l, r)r~x, ar (cf. 6.5).

The definitions of fo and fi are by simultaneous course-of-values recur-
sion. Let {\-(z) = 0 (i = 0, 1), except for PRI(z) & tp(z) = r & (z)i.r_i
= 1 & (z)i,r = 2, when the appropriate following case shall apply.

CASE 1. (z)0 = 1. Let f,-(z) = (1, p r- i- [(z)i/pr]>, so e.g., when z is an
index by SI of \abi<xr~laT(rr tf + 1, then fo(z) is one of \abiar~lrir~lar a + 1.

CASE 4. (*)„ = 4. Let r.-(«) = (4, pT-i- [(«).//>,], r.'CWO, r.•((*)»)>•
CASE 6.r. (z)0 = 6 & (z)2 = r. Let fo(«) = fi((*)0 and f,(z) = f,((a)«), if

(z)s = 1; otherwise, f,-(z) = f,((z)4).
CASE 8.r. (z)0 = 8 & (z)2 = r. Let fo(») = <8, pr_,- [(z),/pr], r, ro((*)i)>. We

want fi(z) to be a primitive recursive index6{z) of Xbar~ V ~ l a r ^ ^ ' ( ( ( ^ s ^ * ) ) .
where b is a list of variables such that z is an index for b, ar~l, ar, ar, and 6 is
primitive recursive. To construct this index, let e be a primitive recursive
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index of Xce° • • • e ' - W - V 1 " 1 " 77"-'((c, e°, • • • , er~2)). Suppose e.g. r > 2,
and wri te My = (z)i,y. We cons t ruc t further indices as follows, using X I I I ,
XXI, XXV, XXII.

0 r - 2 >•-!> r-2 r-1 r-1 r r-1 0 r-2
Xe • • • <• 5! • • • 5nr_2a 77 a ?/ ( ( (z ) 3 , e , • • • , c } ) :

A = .(S'fo (*),), p7J).
0 r - 3 r - 2 r - 2 r - 1 r - 1 r r - 3 r - 2 r - 3 r - 2 r - 3

Xe • • • e Si • • • 5 n r _ 2 a 17 a r (61 (r ) , • • • , 5 B r _ 2 ( r ) ) :

C = <6, (B)1( r-3, 1, B) where B = i(»r_2(«r_2), />0 pr-zp\-v pr).
0 r_3 r—2 r—2 r—1 r—I r r— 1 0 r—3 r—2

X « • • • t 5 i • • • 5 n r _ 2 a 7j a 7j « ( z ) 3 , « , - • - , « , 5 ) ) :

D = Tr-2(A, C, 0).

Here 5r~2 = (S[~2, • • • , 5£^) (end 6.3). Continuing in this manner to sub-
stitute successively 5r~s, • • • , 81 for er~3, • • • , e1, and, using S4, 5° for £°, we
obtain an index 6(z) of Xbar~17)r~1ar 77r~1(((z)3, b*)) with ^ primitive recursive.
But 0(z) is a primitive recursive index, since e, pr-2(»r-2) are primitive recur-
sive indices, and the operations used produce primitive recursive indices
when applied to primitive recursive indices.

6.5. Choose any a r - 1 , a', ar, and let r)T~l be defined thence by

o-r(Xr {h\ (r, e(w, ar~\ <rr, aT)) if yr~'i = (h, e) with

(A) vr~l(yT~r) = ha primitive recursive index for (T, e(W, a^1, <rr, ar),

0 otherwise.

If PRI(z) & tp(z)=r & (z)i,r_i = l & (z)i,r = 2, tAen

(64) {fo(*)} (b, a- 1 , T,-1, a') = {z} (b, a-1 , a', <r'),

(65) {f x(z)} (b, a-1 , 7,-1, a') = {z) (b, a-\ <r\ ar)

w/ien b are variables such that z is an index for (b, a r~\ <rr, aT).
Proof, by induction on z.
CASE 6.r for fo(z) with (z)3 = 1. By the theorem and case hypotheses,

{z}(b, a - 1 , a', a') = {(«)«}(b, a - 1 , <r', a') where PRI((*)4) & tp((«)«)
= r & ((z)4)i,r_i=l & ((«)«)i., = 2. By hyp. ind., {fi((*))4}(b, a'"1, ij—1. a')
= { (z)i| (b, a'"1, <rr,ar)- Thence (64) follows by the definition f0(2) = fi((z)4).

CASE 8.r for ^(z). We have |z}(b, ar~\ <rr, ar) = ar(\r }(z),} (r, b, ar-1,
<rr, ar)) with (z)3 a primitive recursive index for (r, b, ar~l, crr, ar). So by (A),
y'-\((z)h b*» = {z}(b, a'"1, ff'.a'); and by definition, {fi(«)}(b, a'~l, i?'"1,
«r)=r;r-l(((2)3,b*)).

6.6. Now we formulate a property 77(ar~l, 7jr~l, ar) of a type-r — 1 variable
77r"~l which, when (A) holds (cf. 6.7), expresses that 771""1 takes the same value
for any two arguments 7J~Z = (h0, Co) and y[~2 = (fa, ti) which represent the
same function of r, i.e. such that Xr {&O}(T, (Q°\ ar~l, <rr, ar) = Xr {fa}
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(r, e{*\ a'-1, ar, ar). However we use (65) to state it. without using ar. Thus
let

F(a*-\ , - » , «') = (Ao)(eo)(Ai)(eO{(0.-<i[PRI(*i) &tp(A<) = r

& (A,-)i.r-»>0 & (h<)i.r-i=l & (A,)i.,= 2]

& (rr~2)(£w)(i),<2[{f1(A,)}(rr""2, e!*''\ a'"', i?'"', « ' )=»]

^ r ' ( ( * . , e . ) ) = 'J^1«*i.e.»}.

But (omitting <rr-3 if r = 2) for A,- an index for (r, e(*rt, a'"1, <rr, ar).

{f^)}(/"2, «!*", «r\ r1, «r) = {f^,)}[e!, • • •. r ,
(66) r _ 3 Tr-2 („!•-») , r - 2 / r -3sx / r - l ' - ^ , ' , 1

Ao- 2 - 1 1 />«+i e x p (€,• (o- ) ) „ ( a ,»7 ) , {a ) J .
»<"r-J.i

Using (66) and (14) in the expression for F(aT~\ r)T~l, a'), and advancing and
contracting quantifiers, we obtain a primitive recursive G such that

(67) F(a-\ „'-!, «') = (Ef}-W-*)G(a'-\ v*-1, <*', fi-\ H-*).

6.7. For any given <xr~l, ar, aT, ifrjr~l is defined by (A), then F(ar~l, tjr~l, ar).
For suppose the antecedent of the implication in F(aT~l, »jr~l, aT) is satisfied
by given h0, e0, hi, et. By the first part of this antecedent with (65), then
{{i(hi)}(r, e[hi), ar~\ V'~\ ar) = {A,}(r, ef'0, a'-1, ar, of). This with the
second part gives Xr {A0}(r, ej?0*, ar~\ <rr, aT) = XT {h}{r, tfl), a"1, err, a').
Hence by (A), ^"'((Ao, eo» = n^KiK «i»-

6.8. Choose any ar~l, r/r~1, aT such that F(ar~l, r]r~l, ar), and let ar be de-
fined thence by

r,-l{{K b*» ify^1 = Xr {MA)} (r, b, a'~\ , -> , «') with

(B) o'r(7r~1) = • A o primitive recursive index for (r, b, a1""1, <rr, ar)»

0 otherwise.

If PRI(z) & tp(z)=r & (z)i.r_i = l & (z)i,r = 2, <Ae« (64) a«d (65) hold for
variables b swc/i- /Aa/ z w a« index for (b, a'~', <rr, ar) . (By F(ar~l, r)r~l, <xr), the
value of <rr(y'~l) in the first case under (B) is independent of the choice of
the h, b.)

Proof. As before (6.5), except for one case.
CASE 8.r for ^(z). We have {z}(b, ar~\ <rr, ar) = <rr(kr {(z)3}(r, b, a'"1,

ffT, ar)) with (z)3 a primitive recursive index for (r, b, a r~\ <rr, ar)- By hyp.
ind., (r) [ { ^((s),)} (r, b, a^1, Vr~l, «r) = { (*)i} (T, b, a - 1 , <T, a')]. So by (B),
o-r(Xr {(z)3}(r, b, a*-1, ar, ar)) = r]r-l({(z)s, b*)); and by definition (6.4),
{ri(«))(b, a - 1 , r,"\ «r) = r ' ( ( W i . b*».

6.9. Combining 6.7 and 6.5,

(68) (ar~1)(<7rKar)(£'?r~1){F(a^1> "r~1> «r) & (Z)(P R I(Z) & tp(«) = r &

(Z)1 , r_ l=l&(Z)1 . r=2^(b)[{foW}(b)a-1^ r - 1 Ia0 = {z}(b)a-1,arI<70]}}
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where, for each such z, the b are variables such t h a t z is an index for (b, ar~l,

ar, <xr). By 6.8,

) ( Z ) 1 , r _ 1 = l & ( Z ) 1 , r = 2 ^ ( b ) [ { r o ( Z ) } ( b , a — , , - ' , « ' ) = {«}(b, a - 1 , « > ' ) ] • } } •

Applying (68) and (69) (cf. 6.3),

s (£„-') { f («- , , - ' , «') & (r-2)[{fo(zi)j(C-2, £-*, «->,,-',«') = 0]}.

Thence, using (63) and (67), and advancing and contracting quantifiers,

{E<j'){Z-*)P{l'-\ a'~\ a.', *', e~2)

- (£^- ')(r-2)i?(c-2, a-\ a', „-», S-2)

with a primitive recursive i?.
7. Predicates of order r. 7.1. Consider a predicate P(a), where a is a

list of variables of our types 0, 1, 2, • • • (1.2). We call P(u) r-expressible in
certain predicates and functions (the primitives), if there is a syntactically-
constructed expression (an r-expression) for P(a) in terms of variables of our
types, the primitives (only applied to arguments), and the symbols of the
predicate calculus with quantification only of variables of types < r. If P
is r-expressible in predicates general recursive in (completely defined) func-
tions ¥ , we say P is of order r in ^ . The notion extends to the case P is re-
placed by a function <f> via the representing predicate of <j> (IM, p. 199), and
to the case any of ^ are replaced by predicates via their representing func-
tions (IM, p. 227), and for ty varying is uniform if the same r-expression can
serve for all values of ^ and the recursiveness in ^ of its primitives is uniform.

7.2. As in [14, 2.2], the class of the primitives for predicates of order r
in S& can be enlarged to include the functions general recursive in SP'.

7.3. Clearly, P is general recursive in ^ exactly if P is of order 0 in >?.
We say P is arithmetical (analytic) in * , if P is of order 1 (2) in ^ . By XVII
and XXXI (and, for ^ nonempty, 3.15), this agrees with previous usage in
the case then considered that the variables of P are of types ^ 1 and of ^
of type 0 (cf. IM, pp. 239, 284-285, 291-292, [14, pp. 313-314]).

In that case, a smaller class of primitives than the predicates and func-
tions general recursive in ^ suffices. Indeed, for predicates arithmetical in
* , by IM, Theorem VII* (b), pp. 285, 292 the primitives =, + , -, * suf-
fice^3). For predicates analytic in <b, by [14, 2.3 and Footnote 6] the primi-
tives = , + 1 , ^ suffice; this result is included in the r — 1 case of XXXVI
below.

(1!) The constant natural numbers are expressible in 0, 1, + (or 0, +1); then 0, 1 are re-
placeable using number quantification by w = Q, m = 1 (e.g. IM, p. 411 with n=0); and the latter
are 1-expressible in =, + (or +1), •, thus: w=Q = (z)[x+w=x] = {x)[x + l^w], w = l
s (x)[x-w = x].
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7.4. XXXV. For each r ^ 1: If a function <j>(a) of variables a of types
^ r + 1 is general recursive in functions ^ of variables of types 5j r, then
<t>(a) =w is r + i-expressible in = , + , •, &, with a prencx r-\-\-expression in
which all the type-r quantifiers are universal, and also one in which all are ex-
istential.

Proof. PART (a). <j>(a) is primitive recursive in ty. We use induction on the
length of a primitive recursive derivation of </>(a) from ^ by our schemata, as
for IM, Theorem I, I*, pp. 241, 292(u). Cases 1-7 are essentially as before,
using in Case 5 ideas of Dedekind and Godel, and introducing only number
quantifiers (type 0). Using in the applications of the hyp. ind. prenex forms
with their type-r quantifiers only universal (existential), the resulting prenex
forms have the same property.

CASE 8. <t>(a>, b) = a'(Ka'~2 x(«' . a'~2. &)) where x comes earlier in the
derivation. Now

<t>(a'\b)=w = (7'- l){(«'-2)[x(«', a'"*, b) =y>-l(*'-2)} -> a>\y-l)=w]

s (£T''~l){ (a*-f)[x(«y, a1'"*, &) = Y ' - V - * ) ] & a'(y>-l)=w}-
The quantifier (7'""1) or (Ey''~l) is of type 5£ r, since j g r + 1. By hyp. ind.,
x(«', a'"2, b)=w, and thence by substitution x(«y. «' 2, b) =7'~1(a'~2), is
r + 1-expressible in = , + , •, * . For j — l = r, use of a prenex form for
x(a', a'~2, b) = w with its type-r quantifiers only existential leads from the
two forms of (72) to prenex forms of 4>(a'\ b) =w with their type-r quantifiers
all universal and all existential, respectively. CASE 0 (cf. 1.8) is similar, since
each variable y'~l of each of ^ is of type g r.

PART (b). Otherwise. For M<r nonempty, <t>(a)—w can be transformed by
3.15, 2.7, 1.9 into 4>{a, SE'') =w, where <f>{a, b) is partial recursive absolutely,
and ^ ' are functions primitive recursive in ^ . Using (13) to express #(a, b) ~ w
in the form \z\ [a, a1, • • • , ar+l] c±± w, applying XXVI to obtain expressions
equivalent to the latter when (f>(a, b) is defined, and substituting ^r' for b by
IV* (1.8, 1.5), we obtain </>(a)=w a ((J')(E£'-l)R(a, w, 0', f - 1 ) s (fijS')
(^r~l)5(a, w, j8r, ^r~l) with i?, 5 primitive recursive in ^ . The conclusion
follows by applying the result of Part (a) to the representing functions of
R, S as its <j>.

7.5. XXXVI. For each r ^ 1: / / a predicate P of variables of types ^ r + 1
is of order r + 1 in functions ty of variables of types :£ r, then P is r + l-expres-
sible in - , + 1 , ^ .

Proof. In an r + 1-expression for P(a) under 7.1, consider each prime part
Q(b) where Q is general recursive in Ŝ . We can write Q(b) = <j>(b) —0 where
<f> is the representing function of Q, and apply XXXV. Finally, + and • can
be replaced by their representing predicates (e.g. by IM, p. 411), which by
Dedekind's method (cf. IM, p. 242) can be 2-expressed in = , 0 , +1(13).

7.6. REMARK 3. In XXXV, XXXVI, by = we mean of course the predi-
cate ao=j3°. For r > 0, a r = / 3 ' = (T'-1)[ar(r1-1) =j3r(T'-1)]. Thus the predi-
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cate a r = | 8 r is of o rde r r (but not less, as will be shown in Remark 7 end 7.11).
R E M A R K 4. Although in 7.1 we did not list the X-operator in the vocabu-

lary for r-expressions, for expressing predicates of order r under 7.1 and 7.2
we can use it via IV, IV*, X X I I I or X X I I I * (4.4).

R E M A R K 5. The restriction on the types of the variables in X X X V and
X X X V I is necessary in general. For example, ar+2(X/3r xO3r)) =w with a
primitive recursive x is not r + 1-expressible in = , + , as there would be no
way the ar+2 could be used; and likewise </'(X/3r x(a, 0r))—w is not r + 1-
expressible in = , + , •, \p (unless ^(X/3r x(a> ftr)) is constant) .

7.7. In an r-j-1-expression, (a) any function \p(h) can be replaced as
primitive by its representing predicate \J/(b)~w (e.g. as in IM, p. 411), and
(b) any function ^(b) which is the representing function of a predicate can be
replaced as primitive by tha t prediate Q(b) (from (a) similarly to [14, 2.5]).
Only type-0 quantifiers are introduced by these replacements.

7.8. Applying X X X V I with 7.7, similarly to [14, 2.6], if a predicate P
of variables of types ^ r-\-\ is of order r-f-1 in predicates and functions ^ of
variables of types ^ r of order r + 1 in 0 , then P is oi order r-f-1 in ©.

7.9. We turn now to reductions which minimize the use of quantifiers
rather than of primitives. For brevity we state the theorems for ^ empty,
bu t via 3.15 as in the proof of X X X V Par t (b) they have relativized forms.
The r = 1 case of X X X V I I for a of types g 1 is [14, Theorem 1].

XXXVIla. For each r ^ 1: Each predicate P(a) of order r-\-l is expressible
in one of the following forms where B(a) is of order r and each R is general recur-
sive:

(«')(E^)R(a, a', r~l) (Ea')(0r)(W^l)R(.a,a',IJ',Sr-1) • • •

(Cl ) W (Ea'XZ-Wa, a% f-1) (*')(E0')(^)R(a, a', p, $-»)

Proof, for variables a of types ^ r. Essentially as before ([14, 3.6]). In
detail: Consider some r + 1 -expression for P(ct) in general recursive predicates
(7.1). If this r + 1-expression contains no quantifiers of type r, it is of the first
form B(a). Otherwise bring it to prenex form. Now apply the following steps
in order.

STEP 1. Contract each sequence of several adjacent quantifiers of like
kind to one quantifier of the same kind and the maximum m of their types,
by 2.5. (The scope remains general recursive, using for m > 0 XXIII.)

STEP 2. If the rightmost quantifier of type r has no type-r —1 quantifier
to the right of it, reduce it to type r —1 by XXXIV (61) or its dual (6T)
if r ^ 2 (by [14, (7) or (8)] if r = 1). If then no type-r quantifier remains,
we have the first form B(a).

STEP 3. If more than one quantifier of types < r stand to the right of
the rightmost type-r quantifier, remove all but one of them, by advancing
(he rightmost of them and performing contractions (or using the technique
illustrated end 2.5).
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STEP 4. Remove each group of quantifiers of types < r included between
two type-r quantifiers, or to the left of the leftmost type-r quantifier, by
advancing the type-r quantifier immediately to their right and performing
contractions, and if type-r quantifiers of the same kind are thereby brought
together contract them.

REMARK 6. As before [14, Remark p. 317], the described precedure is
best in the sense formulated in XLI below.

Proof, without restriction on a. In this case we cannot use Step 2 in gen-
eral. In lieu of it we may be obliged to introduce a redundant (££r~!) or
(£r~1) at the right (whereupon XLI will no longer apply).

XXXVI Ib. Equivalently the forms can be written as follows where the B for
each is of order r {i.e. the same predicates are expressible in a given form of (cO
as in the respective form of (c->)):

(a')B(a, a') {Ea')(p')B(a, a', /?')
(c2) B(a)

(Ea*)B(fi,a') (a')(Ep')B(a,a',(i') •••.

A third part of this theorem, using set variables (cf. [14, p. 317]), is in-
tended for Part II of the paper.

7.10. XXXVII I . For each r^l-.To each of the forms (c) of XXXVII after
the first, when a are variables of types ^ r + 1, there is an enumerating predicate
of that form with primitive recursive scope for the predicates of that form. For
example, to each fixed list a of such variables, there is a primitive recursive
predicate T(z, a, ar, £r~l) such that, to any general recursive predicate R(a, aT,

(73) (a')(E^)R(a, a', {-») ES (a')(E^)T(f, a, a', ^ 1 ) ,

(74) ( E a ' X r - W , «', r-1) = (Ear)Qrl)T{g, a, «', $-i)

whenf, g are indices of R(a, a', £r-1), ]R(a, ar , £r-1), respectively^*).
Proof. Say e.g. a consists of exactly one variable y' of each type ^ r + 1.

By (14), when z is an index of a general recursive function of (a, ar , ?r~I).

(a')(EZ-l){z}[(Y>), • • • , <7-*>, < 7 - i , £-i>, <7r, a ') , <Yr+1>] = 0

= (at')(E?~-*)(0')(Er,'-l)I(z, <7°>, • • • ,

<r^2>, <T- 1 , ?r-1), <7P, «->, (r+l), o, r , v-1),
I being primitive recursive. The expression on the right comes to the form

(") The T's here are different from those of 5.21-5.26. For r = 1 with a of types g 1,
there are also enumerating predicates using those; e.g. for a = (a, 6, a), quantifying 0 in
XXXIII and writing T?-e(z, a, b, y) = T\\a{y), 5(y), z, a, b): {1ia.)_ (/3)(£y)i?(o, b, a, 0, y)
= (P)(Ey)T?^(f, a, b, y), (74a) (E0)(y)R(a, b,_a, 0, y) = {E0){y)T^-e{g, a, b, y) when/, g
are indices of Xafta/3 nyR(a, b, a, 0, y), \abaP nyR(a, b, a, 0, y), respectively.—Cf. XXXVIII
with L below.
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(<xr)(£^r~1)T(z, a, 0 r , £r~1) with primitive recursive T by Step 4. F o r / , g as
stated, (73) and (74) follow by using (13).

X X X I X . For each r ^ 1: The class of the predicates expressible in a gi%en
one of the forms ( Q ) after the first, when a are variables of types :S r-\-\, is the
same whether a general recursive or only a primitive recursive R be allowed.

7.11. XL. For each r 2: I: To each of the forms (c) after the first, when a is
a nonempty list of variables of types ^ r + 1 , there is a predicate expressible in
that form but not in the dual form (a fortiori, not in any of the forms with fewer
type-r quantifiers).

Proof. Say a = (7™, b). Consider e.g. the first upper form, and the predi-
cate (ar)CE£r~"1)7X(7m)o. 7m. &. «r. £r~L) °f the form (cf. 2.4). For any general
recursive R, using (74) and (9), (Ear)(£r~l)#(7m, b, ar, £'~l) = (£ar)(ir~l)
r(«g>")S, 7ra, &, «r- £—) jk (a')(££'-'m«g>m)S, 7m> b, a', £'~l) for a certain
number g. This shows that (g)m is a value of ym for which (£ar)(£r~1)
R(ym, b, ar, £r-1) is inequivalent to our predicate.

Second proof for m = 0. Similarly using (aT)(E^r~l)T(a, a, b, ar, Zr~l).
XLI. To any prenex form with quantifiers of types ^ r and recursive scope

and a nonempty list a of free variables of types ^ r, there is a predicate of that
form which is expressible in no others of the forms (ci) than the one to which
Steps 1-4 reduce it except forms with more quantifiers.

Proofs. As before [14, Corollary Theorem 3, p. 319].
XLI I. When a includes variables of type > 1, there is a predicate (a)R(a, a)

with R recursive which is not expressible in the form (x)R(a, x) with R recursive,
and dually (in contrast to [14, (7) and (8), p. 316], which can be stated for
any list a of free variables of types ^ 1).

Proof. For example, with (a, a) = (a, a2, £'). were (^)r(a , a, a2, £l)
= (x)R(a, a2, x) with a recursive R, then XXXIV would bring (£«2)(^1)
T(a, a, a2, £L) to the form (Er]l)(x)R(a, i)1, x) with a recursive R, contradict-
ing XL.

XLIII. The conclusion of XXXIV does not hold in general when the free
variables a include ones of type > r.

Proof. Were (E?) T(a, a, a'+l, £r) = (£j?--1)(£'-2)i?(a, a'+\ v~l, S1"2) with a
recursive R, then by a (correct) application of XXXIV we would have
(ar+l)(EZr)T(a, a, ar+1, £r) = (ar)(E^~l)R(a, ar, £r~l) with a recursive R,
contradicting XL.

REMARK 7. For r ^ 1, were ar+1 =/3r+1 (cf. Remark 3) of order r, we would
have

(a) «'+1=/?'+1 - (Qh'-r)R(ar+\ fr+\ b^1)

with R general recursive and (Qbr~l) quantifiers on variables of types ^ r — 1.
Letting \p(a, <xr) be the representing function of (E^r~1)T(a, a, a.', £r~l). we
would then have

(b) (a')(Et-i)T(a, a, a', J-1) - (Qb-l)R{\a' *(«, «'), \a' 0, b-1).
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Since by XXIII* R(\arip(a, ar), \ar 0, br~l) is general recursive in \p, by
XXXV (applied to its representing function) it is r + 1-expressible in =, + , -,
yp, with a prenex r+1-expression in which all the type-r quantifiers are ex-
istential; in this expression,^(a, ar) can be replaced (IM, p. 411) by the repre-
sented predicate {E£r~l)T(a, a, a", £r~l). Using the result in the right member
of (b), and advancing and contracting quantifiers, we would obtain for
(a')(E^-l)T(a, a, ar, £r~l) an expression of the form (£ar)(£r~l)#(a, ar, £r~l)
with R recursive, contradicting XL. Similarly, were a1 = j3 l of order 0, we
would have (x)Ti(a, a, x) recursive, contradicting IM, Theorem V Part I,
p. 283.

7.12. XLIV. For each r ^ 1 and m :£ r + 1: To each of the forms (c) after
the first, there is a predicate C(ym) of the form such that any predicate of the
form with its free variables a of types ^ m is expressible by substitution of a
primitive recursive function of a. for ym in C(ym).

Proof. The case of a general a is reduced to a = ym by XI. We use the
same predicate as for XL. By XXIII and (73), for any general recursive R,
(ar)(E^-l)R((ym)ltar,Zr-1) H= (ar)(E^-l)T(f, ym, ar, £r"L) for a suitable num-
ber / . Now (a')(E^)R(y», c\ e~l) - (a')(E^)R(((f, 7m»., «r, ^l)
= (a')(E^)T(({f, 7-))°, (f, 7->, a', ^ ) .

Second proof for m = 0. Again we use the same predicate. Let e be an index
of Xaba^--1 R(a, ar, ^ - ' ) . Then by XIII, Sl(e, a) is one of \6af~1 R(a, ar,
^ - ' ) . So by (73) (substituting Sl(e, a) for b), (ar)(E^-l)R(a, a.', £r~l)
= (a')(E?-i)T(Sl(e, a), Sl(e, a), a\ ?-*•).

7.13. XLV. For each r ^ 1 and fcSO: Let P be a predicate of variables of
types g r + 1, and ^ predicates of variables of types ^ r. If P is of order r in ^,
and ^ are expressible in both the k + l-(type-r)-quantifier forms of (c), then P is
expressible in both the k-\-\-{type-r)-quantifier forms of (c).

Proof. Consider, in a given r-expression for P under 7.1, each prime oc-
currence R(tt) ( = <f>(a)—O) of a predicate general recursive in xIr. According
as this occurrence is positive or negative (cf. [14, p. 321 ]), apply XXXV with
7.7 (b) to replace it by a prenex r + 1-expression with the type-r quantifiers
only universal or only existential and with = , + , •, >? as the primitives. Now
consider in this prenex form of each R(a) each prime part Q(b) with one of ^
as its predicate symbol Q. According as this part is a positive or negative oc-
currence in the expression for P, replace it by the fe + 1-quantifier form for Q
with (ar) first or (Ear) first. Now the quantifiers can be advanced and con-
tracted so that a £ + l-quantifier expression for P with (ar) first is obtained
(cf. [14, pp. 321—322]). Reversing the above choices, a /fe + 1-quantifier ex-
pression for P with (Ear) first is obtained similarly.

8. /x-recursiveness versus general recursiveness. 8.1. We say a function
<j> is partial ^-recursive, if it is describable by a succession of applications of
the primitive recursive schemata S1-S8 (written with ~ instead of = , and
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tak ing a'(\a'~2 x(a>> &'~2, &)) to be undefined when Xa'~2 x(a'\ a'~2, 6) is in-
completely defined(10)) and one further schema

S10 *(b)=*w[x(b ,y) = 0].

A function is ^-recursive, if it is partial ju-recursive and completely defined.
Also cf. 3.14, 1.8-1.10, 2.7, 3.15.

By XVI the /^-recursive (partial /^-recursive) functions constitute a subset
of the general (partial) recursive functions, which by the normal form
theorem XXX, XXXII (or [8], IM) is the whole set in the case of functions
of variables of types ^ 1.

8.2. In comparing ju- and general recursiveness for functions of variables
of types > 1, we employ the particular type-2 object E defined thus:

(0 if (£0[«W=0],
(.1 otherwise.

This is a simple example of a functional depending on infinitely many values
of its function arguments. (Another is the representing function \f/{al, §l) of
ax=i3l;cf. Remark 3 in 7.6. Note that \p(a, &) = sg(E(X< sg|a(<) -|8(<)|)) and
E(«) =sgOKX<sg(a(0),XU)).)

8.3. In the description of a partial ^-recursive function <f>(F, ax, • • • , an, /?)
with a single type-1 variable /3 and a single type-2 variable F, only Si—S5,
S6.0, S7, S8.2, S10 can be used (if we exclude identical uses of S6.1 and S6.2).

By the F-height of such a description we shall mean the greatest number of
applications of S8.2 in any branch when the description is written in tree
form (cf. IM, pp. 106—107, taking into account the analogy between descrip-
tions and proofs, derivations and deductions, pp. 220, 224). Thus the F-height
after an application of S4 is the maximum of the F-heights for the \p and the x;
after an application of S8.2, the F-height for the x increased by one.

A partial function <f>i(a) is an extension of a partial function 0(a), if <£i(tt)
is defined and = <f>(a) for each a for which <t>(a) is defined.

XLVI. If 4>(F, ai, • • • , an, j8) is partial n-recursive with a description of
F-height h, then there is a function <£?(ai, • • • , an) partial recursive in L?h uni-
formly in j3 such that, for each /? {and the fixed E of 8.2), #?(ai, • • • , an) is an
extension of 4>(E, alt • • • , fln, (3). Similarly without the (5, i.e. for a <p{F,ai, • • •,
an) using Lh simply(n).

Proof with the /?, by induction on the length of a description of <£ by
S1-S8, S10.

(15) Forif.cf. [19, p. 400] taking A(a) s /3((o)o)=(a)i, or [l6,p. 198] with Q(a) = 0((a)o)
= (a)i. For this §8, it is immaterial whether we rework the definitions and theory of if, Lh, and
Hy ([l*. §6 ff-] ° r [16> P- 2 0°]) t o u s e t h e ^T bases on indices as in S.21-S.26 above (which re-
working does not alter the degrees), or agree that in this section the T\ is to be the one based on
Godel numbers (as in IM, [19; 14; 16]).
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CASES 1, 2, 3, 7. <£(F, ai, • • • , an, /3) is introduced by one of S1-S3, S7.
Then the F-height is 0, and $f(ai, • • • ,an) — #(E, Gi> • • • . ̂ «. 0) is primitive
recursive uniformly in j3, and hence general recursive in L% uniformly in /3.

CASE 4. <£(F, au • • • , an, j3) = ^ (F , x(F, au • • • , an, {}), Oi, • • • , an, 0) by

S4. Let the F-heights of \{/, x be hu hi (so h — max(/si, ft2)). By hyp. ind. there
are î ?, x?. partial recursive in Lf_, L^ uniformly in /3, hence (since Lfft(a)
= £*+i(0(°)) with a primitive recursive 6, by IM, p. 343 or [14, Lemma 1,
p. 325]) in L\ uniformly in /3, such that ^{{b, <*i, • • • , an), X?(ai, • • - , « » ) are
extensions of ^(E, b, ait • • • , an, /3), x(E, at, • • • , an, /3), respectively. Then
4>i(fli, • • • . an) — ̂ f(xi(fli, • • • . «»)» Oi, • • • . On) is an extension of
0(E, ai, • • • , fflB, |8).

CASE 8. </>(F, a,, • • • , an, j8) = F(Xx xC7, x, al? • • • , an, /3)) by S8.2. The
F-height of x is A — 1 , and by hyp. ind. there is a function x? partial recursive
in ££_! uniformly in /3 such that Xi(x< a i - " ' ' > a») ' s a n extension of
x(E, x, oi, • • • , an, j8). Then the function $o denned by

4>o(oi, • • • , an) = E(Xx xi(x, au • • • , an))

(76) = 10 if (E*)[x?(*. a., • • • , a,) = 0],

\ l otherwise,

for the fixed E and any /3, is an extension of $(E, ai, • • • , an, j3); here, to
correspond to our interpretation of S8 for x a partial function, 4>o(au • - - . o»)
is to be undefined for given jS, oi, • • • , ffln when Xx xf(^i «ii " " " . ««) is in-
completely defined. But since x? is partial recursive in L»_i uniformly in /3,
there is by [14, Lemma l] a primitive recursive 6 such that

(Ex)[Xi(x, oi, • • • , an)=0]

(77) Lf_, t
= (Ex)Ti (d(alt • • • ,an), 8(au • • • ,an),x) = Lh(6(au • • • , an))

for values of j8, Ci, • • • , on which make Ax xfC î a i . • ' • i *») completely de-
fined, i.e. which make 0<j(ai, • • • , an) defined. So by replacing (Ex) [x1(x, o,\,
• • • , an) =0] by L%(d(ait • • • , an)) in (76), we obtain a function

A /0 if Lf(ff(«i, • • • , a.)),
(78) <^>i(ai, • • • , an) = <

U otherwise,

which is an extension of <£o and thence of <£(E, ait • • • , an, /3), and is clearly
partial (indeed, primitive) recursive in L% uniformly in j3.

8.4. Now we give an argument by which any person who accepts the
primitive recursive functions as effectively calculable, and who allows such a
type-2 object as E, must admit that the /t-recursive functions are not all the
effectively calculable functions.

Since T?(a, a, t) is primitive recursive as a predicate of a, a, t (IM, p. 292,
or §5 above), the function
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(0 if T"(a, a, I),
r( / , a,a)=<

\l otherwise

is p r i m i t i v e r e c u r s i v e . H e n c e u s i n g I I I a n d S 8 , so is

T(F, a, a) = F(\t r(t, a, a)).

Using induction on k (and in the induction step, III and IV), we define a
succession of primitive recursive functions Xit(F, a, (3) (k = 0, 1, 2, • • • ):

Xo(F,o,|8) = sg|/3((a)») - («)i| ,

Xt+1(F,a,/3) = T(F,X/X*(F,/>|8)>a).

Upon giving F the fixed value E, we have

(0 if {El)[r(l, a, o)=0h (0 if (£/)rr(a, a, /),
(79) T(E, a, a) = < . > = <

(.1 otherwise ; \1 otherwise,

and thence by induction on k, for each 0,

(80) X*(E, a, /8) = {the representing function of Lk(a)\.

Similarly, omitting the /3 and taking X0(F, a) = 0, we obtain for k
= 0, 1, 2, • • • a primitive recursive function Xfc(F, a) such that

(81) Xjt(E, a) = {the representing function of Lk{a)\.

Now consider the function

X(*. F, a) = X*(F, a).

This must be accepted as being effectively calculable (accepting that the
primitive recursive functions of variables of types 0, 1, 2 are). For, given k,
F, a, we can via the induction on k find effectively a primitive recursive de-
scription of Xjt, and then "compute" X*(F, a).

But\(£, F, a) is not ju-recursive. For by (81) and the definition of \(&, F, a),
X(&, E, a) is the representing function of L(k, a) = Lk(a), which is of degree
of recursive unsolvability O^' [19, p. 401; 16, p. 198]). But by XLVI, were
X(&, F, a) /^-recursive, then, for some h, \(k, E, a) would be recursive in Lh,
and thus would be of degree ^ 0(W < 0(">(16).

(") As M-recursiveness is one of the simplest of the equivalent notions of "effective cal-
culability" or "computability" for functions of variables of types 0, 1 (cf. 3.2), we considered
it as a possible definition for the higher types at the beginning of our study of the subject in
19S2, but rejected it for the reason given now. In a 1955 paper Grzegorczyk [7, p. 170] seems
to be proposing this definition; his formulation is equivalent to ^-recursiveness as defined here,
when our schema SS.j for j S 2 (or SA.j— 1 and S7.j of 1.6, Remark 1) is added to the schemata
he explicitly mentions (and indeed without some such addition the higher-type arguments of
the functions could not be utilized) and the (maybe inessential) restriction is imposed on our
/u-schema S10 that at each application the <£(b) be completely defined.
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8.5. The function X(&, F, a) is general recursive, as we see by writing the
equations for X*(F, a) with k as argument, and applying XXIV (or by show-
ing with the help of XXI and XXII that X*(F, a) has a primitive recursive
index £(&) with £ primitive recursive, and putting X(&, F, a) = f £(&)} (F, a)).

We can go much further. Let ub ~ U{nvTi{u, b0, v)) where 0o = 1,
(b + l)0 = 2bo (cf. [14, p. 325] or [16, pp. 199-200]). Consider the recursion

(0 if y = l ,

(82) {z) (y, F, a) ~ \x(z, y, F, a) if y = 2<»>»* 1,

[{*}([(?)»]<.)„ F,(«)o) if y = 3-5^»,

where x >s a partial recursive function given by XXII I such that

(83) x(«, y, F, a) = r(F, Xt {«}((?)., F, /), a)

whenever \t {z\((y)o, F, £) is completely denned. By XVIII , the right side
of (82) is of the form rf/(z, y, F, a) with \f> partial recursive; so by the recursion
theorem XIV, we can find a solution eof (82) forz. Let «(y, F, a) ~ {e} (y, F, a).
Now by induction on y over the class 0 of ordinal notations (loc. cit.),

(84) ;y£O —> {/c(y, E, a) is the representing function of /7K(a)}.

8.6. We collect these results in a pair of contrasting theorems. Instead of
speakingof completely defined functions #(E,ai , • • • ,an) ((f>(E,a,i, • • • ,an,@))
for <j)(F, fli, • • • , an) (<£(F, Gi, • • • , fln, (3)) partial /u-, or partial, recursive,
we can equivalently (by 1.9 extended to include S10 or S9) speak of functions
#(oi, • • • ,an) (0(ffli, • • • , an, |3)) M-. or general, recursive in E. For the notion
"arithmetical," cf. 7.3, IM, pp. 239, 284-285, 291-292, [14, 2.1]. For "hyper-
arithmetical," cf. [16, p. 210]; a function is hyperarithmetical if its represent-
ing predicate is such.

XLVII. The functions <t>(alt • • • , an) (4>(ai, • • • , an, P)) ^-recursive in E
are exactly the arithmetical functions.

Proof, with /3 present. By XLVI, for each <f>(au • • • , c», j8) /x-recursive in
E, Xai • • • an<j>{ai, • • • , an, /5) is general recursive, a fortiori arithmetical, in
L^ for some h uniformly in |3, and hence is arithmetical uniformly in j3 (using
7.8 or [14, 2.6 with uniformity], and induction on h), i.e. 4>{a\, • • • , a», j9) is
arithmetical. Conversely, for any arithmetical function 4>{au • • - , « „ , /3),
Xai • • • an <f>(ai, • • • , an, P) is p-recursive in Li for some k uniformly in j3
(using 0(oi, • • • , o., /S) = /iw[*(ai, • • • , a., 0) = w ] , [16, IV*, VII*, p. 197
with uniformity], and [14, 9.8 (31) and (32), and Lemma 16* 9.7]). But by
(80), L{{a) = X*(E, a, |8) = 0 ; and X*(F, a, /?) is primitive, a fortiori /x-, recur-
sive.

XLVIII . The functions ^(ai, • • • , on) general recursive in E are exactly
the hyperarithmetical functions.

Proof. Suppose #(ai, • • • , an) is general recursive in E. Equivalently,
<f>(ai, • • • , oB) is completely denned and = <£(E, Oi, • • • , on) where
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<f>(F, Ci, • • • , an) is partial recursive, say with index z. Using X X V I with
(13), <f>(E, di, • • • , an)=w is expressible in both the forms (fi)(Ex)R(E,
oi, • • • , an, w, /3, x) and (E(i)(x)S(E, au • • • , an, w, j3, x) with R and 5
primitive recursive. But by X L V I I , R(E, alt • • • , on, a;, /3, #) and S(E,
ai, • • • , an, w, P, x) are ari thmetical , hence (XLV or [14, Corollary p. 322
with a free function variable j3]) expressible in both 1-function-quantifier
forms; and hence so is </>(E, ait • • • , an) = w, i.e. <f>(E, au • • • , an) =w is
hyperarithmetical (by the second definition [16, p. 210]).

Conversely, suppose </>(fli, • • • , an) is hyperari thmetical , i.e. <f>(ai, • • • ,an)
= w is hyperari thmetical . Then by [16, X X I V , p. 204, or the first definition
p. 210], for some y £ O , (f>(ai, • • • , an)=w and hence <p(ai, • • • , an)
( = /j,w[<l>(ai, • • • , an)-w]), is general recursive in Hy(a). But by (84),
Hv(a) s n(y, E, a) = 0 ; and K(y, F , a) is part ial recursive.

8.7. XLIX. (a) A predicate P(a) expressible in both the forms (Ex)R(a, x)
and (x)S(a, x) with R, S general recursive is general recursive. (Converse holds
trivially.) (b) When a includes variables of types > 1, a general recursive predi-
cate P(a) may fail to be expressible by any (finite) number of number-quantifiers
prefixed to a fi- (or primitive) recursive scope (in contrast to IM, Theorem VI*
(a), pp. 284, 292, and Corollary Theorem IV*, pp. 282, 292, for types 0, 1).

Proof, (a) By the former proof, IM, Theorem VI (b), p. 284. (b) By 8.5,
\(k, F, a)=0 is general recursive. But it is not expressible e.g. in the form
(Ex)(y)R(k, F, a, x, y) with a ^-recursive R. For by 8.4, X(&, E, a)=0
= L(k, a), which is not arithmetical; but using XLVII, for a given /z-recur-
sive R, (Ex)(y)R(k, E, a, x, y) is arithmetical.

8.8. L. With variables of types > 1, there is no enumeration theorem for the
predicates definable by a given succession of number quantifiers applied to a
general (ji-, or primitive) recursive scope. For example, there is no general recur-
sive predicate S(z, F, a, x) with the property that, to each general recursive
R(F, a, x), there is a number e such that (Ex)R(F, a, x) = (Ex)S(e, F, a, x)
(in contrast to XXXIII or IM, Theorem IV*, pp. 281, 292 for types 0, 1).

Proof. (We can use XLVIII, but the following is basically simpler.) Take
any fixed general recursive S(z, F, a, x). We construct as follows a general
recursive i?(F, a, x) such that (Ex)R(F, a, x) = (Ex)S(e, F, a, x) for no e.
Let a be the representing function of S. Using 8.4 and IV via 3.10, define
p(F, a, x) = T(X, Xyr(F, \ta((t)a, F, (t)u (t)t), y), a), and take R(F, a, x)
= p(F, a, x) =0. Let s be the degree of S(z, E, a, x) (— the degree of S((t)0,
E, (0i. (t)*))- Then (Ex)S(z, E, a, x) is of degree g s', while (Ex)R(E, a, x)
is of degree s" > s' (cf. [19, 1.4]).

8.9. LI. The condition of definition of a partial recursive function <j>(a) of
variables of types ^ 2 is not in general expressible in the form (Efi)(x)R(a, /3, x)
with recursive R (dual to XXVII (29)), a fortiori not in the form (Ex)R(a, x)
with recursive R (in contrast to XXIX or IM, Theorem XIX, p. 330 for types
0, 1). Thus (30), (39) and (41) do not hold for r = 2.
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Proof. Suppose (cf. 8.5)

(a) {K(y, F, a) is defined} a (£J8)(»)R(y, F, a, 0, x)

with a primitive recursive R (cf. XXXIX). Using (29) and (13), for s an
index of K,

(85) [K(y, F, a) is defined} = (0)(Ex)K(z, (y, a), ( >', (F), ft *).

But then, using XLVII etc. as in the first part of the proof of XLVIII,
\K.(y, E, a) is defined} would be hyperarithmctical; so by the converse part
of XLVIII, there would be a partial recursive R(y, F, a) such that

(b) {K(y, E, a) is defined} = R(y, E, a).

Using XV, we could define a partial recursive ic'(y, F, a) by

„ c , /«(?, F, a) if R(y, F, a),
« (y, F, «) = Sn , .

1.0 otherwise.
Then K'(y, E, a) would be a completion of /c(y, E, a). This is absurd. For by
XLVIII and [16, XXIV or p. 210], /c'(y, E, a) would be recursive in Hu for
some « G O , i.e. of degree g0 ( | u | ) ; but any completion of n(y, E, a) must be
of degree ^ 0<l-l+l> > 0<lu», since by (84) Hf(a) = K(2", E, a) =0.

8.10. LII. There is a primitive recursive R(a2, |3l) such that (a2)(£/31)
R(a2, (31) w true, but (a^R^a^, \x x(«2> x)) is false for every general recursive
X(a2, x) (in contrast to XVI or IM, Theorem III, p. 279 for R(a, |80))(17).

Proof. By [16, XXVI, p. 208] there is a primitive recursive R(fil, x) such
that

(86a) (E0l)(x)R(0\ x), (86b) (Whl hyP{x)R(fi\ x)

where (E/31)^1 hyp is an existential quantifier over the 1-place hyperarithmetical
functions. Advancing the x in (86a) (cf. 2.5) and bringing (86b) to prenex
form,

(87a) (a2)(£^1)i?031,«2G81)), (87b) (0%l kyP(Ex)R{pl, *)•

Taking R(a\ /31) s R@\ a2(fi1)), (87a) gives one part of LII. Let

, , UxR&\ x) if (Ex)R((3\ x),
«o03)= <n .

(.0 otherwise,
so b y (87b)

(") In March 1957, Kreisel raised the questions (a) whether there is any such .R(aJ, /3l)
and (b̂ ) whether the R(.o?, pl) obtained by advancing quantifiers in (x){(Ez)Ti(x, x, z)
V (z)Ti(x, x, z)} (cf. [10, p. 7l]) is such, and we answered (a) as here. Subsequently Kreisel
found two simple examples of the like with -R(a*, /31) instead of R(.a*, /31) (cf. [21 ], and also
[18, Theorem 3 ]). Finally in June 1957, Kreisel gave an argument which, supported by a lemma
we provided, answers (b) affirmatively; this will appear in Part II.
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(88) OiWpSGsUto1))-
But (Ex)R(p\ x) = L/(g) for some number g (by [16, VII*, p. 197 with
uniformity and a = 0] or [14, Lemma 1, p. 325 with n = 0]). Using XV,
XVI and 8.4,

(nxR(0\x) if Xi(F,g>/5»)=0,
aoCF.jS1) = < .

(.0 otherwise

is a general recursive function such that, by (80),

(89) altf) = «o(E,|3l).
Now suppose there were a general recursive x(a2< x) such that (a2)i?(a2, \x
X(a\ x)), i.e. (a*)i?(Xx x(«2, *), a2(Xx x(a2, *))), whence i?(Xx x(a<S, *), «o(Xx
x(ao, *))). This would contradict (88), since by (89), XXIII and XLVIII,
\x x(«o» x) = Xx x(X/3l «o(E, (3l). *0 would be hyperarithmetical.
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0. Introduction

Two of the early theorems about recursively enumerable (r.e.) degrees
were the "splitting theorem"

AaVfc0Vft1(0<a->. a = bQ U bx A V V

and the "density theorem"

Aa/\cVb(c <a^-c<b<a).

The first says that any nonzero r.e. degree can be written as the join of
two incomparable r.e. degrees. Let {c, a) be any interval of r.e. degrees
where the notation is to always imply that c, a are r.e. degrees and c < a.
The second theorem says that (c, a) ¥= 0. Both were proved by Sacks,
the former in [4, p. 217, Corollary 1 ] and the latter in [5]. It was
tempting to conjecture that a common generalization of these two theo-
rems might be true:

(*) AaAcV60V61(c<a^. a = b0 u by A C <b0 A C< bt Afy,!^).

That is, for every interval (t, a) it might be possible to write a as the
join of two members of (c, a). This questions was specifically raised by
Robinson in [ 1, p. 313] where some generalizations of the density theo-
rem may be found. The purpose of this paper is to show that (*) is not
true.

The only progress that has been made in the other direction, i.e., to-
wards determining when one r.e. degree will split over another, is the

307
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following unpublished theorem of Robinson:

A a A c V 6 0 V b l { c < a A C = 0 ' .->. a = bQ u b l ^ c < b Q ^ c < b l A b 0 \ b ] ) .

The plan of the paper is as follows. In § 1 we formulate the problem
in a way appropriate to our solution. In § 2 we present the construction
of a counterexample to (*) and discuss the intuition behind the con-
struction. In § 3 we list some properties of the construction and prove
the two main propositions while assuming the rest. In §4 we discuss the
verification of the properties of the construction taken for granted in §3.
This last section presents peculiar difficulties in that we have not yet
found any reasonable way to carry out the verification. The proofs in
this part of the paper do not provide new insight. They merely serve to
demonstrate that the construction, which is intuitively plausible, really
does serve the purpose for which it is intended.

For general information on the theory of recursive functions the
reader should consult [3]. A good introduction to degree theory is [7].

1. Formulation of the problem

For A, C C co let ,4 + C denote {2x : x £ A} U {2x + 1 : x E C} so that
degG4 + C) = deg(4) u deg(C). We shall construct r.e. sets ,4 and C such
that degC4) «£ deg(C), and for any r.e. sets B°, B1

degO4 + O = deg(5° + Q u degCfl1 + Q =* degG4)

< deg(5° + C) v degC4) < degC^1 + C) .

This is clearly sufficient to refute (*), because we can take a = degC4 + C)
and c = deg(C). The sets A and C will be enumerated in an infinite number
of stages numbered 0, 1, 2, ... at most one number being enumerated in
A u C at any given stage.

It is customary in recursion theory to consider partial functions whose
arguments and values range through co. Here we find it convenient to
turn partial functions into total ones by introducing w as a new element
of the codomain. Thus instead of a partial function ^ in u {OJA : A c OJ}
we shall consider <p' E (co u {OJ})", where <f>'(x) = <p{x) if ip(jt) is defined
and <p'(x) = co otherwise. For the enumeration, of A and C we suppose
given binary functions £,-, £,-, d(, dt, ^ , \]/f,<ir}, ty) and finite sets of na-
tural numbers Bf(s), B}{s) for each / and s < co. More precisely Xx S,(x, s),
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\x £{(x, s), Xx 0,(x, s), \x et(x, s), Xx Vf(x, s), Xx \pf(x, s), Xx *}(x, s),
Xx \j/}(x, s), B®(s), and 5/(5) are assumed to be given immediately after
stage s. For the reader unfamiliar with Church's X-notation we recall that
\x T(X, S) denotes the unary function/such that /(x) = T(X, S) for each x.
The sequences < Bf (s) : s < co> and <,Bj(s) : s < co> are to be increasing
with respect to C but not necessarily strictly increasing. We say that n is
enumerated in Bf at stage s if either s = 0 and n e Bf(0), or s > 0 and
n e Bf(s) - B?(s - 1). Similarly for 5/ . We shall suppose further that for
all /, 5 and t the following seven conditions are satisfied, for convenience
we drop the subscript i:

(\)x<%(x,s)< £ 0 + 1,5), and similarly for 6, \!/° and i//1;
(2) if £(*, s), £(x, t) < co and s < t then £(x, s) < £(x, t), and similarly

for^, \l/°, and i^1;
(3) S(x, s) = to if and only if %(x, s) = co, and similarly for < 0 , 6),

W°, \IJ°), and<^1,i//1>;
(4) if S(x, 5 + 1) ¥= S(x, s) < co or £(x, s) < %{x, 5 + 1 ) then some num-

ber < ^(x, s) is enumerated in C at stage s + 1;
(5) if 0(x, s + 1) * @(x, s)< co or 0(x, s) <6(x,s + l) then some

number < 6{x, s) is enumerated by fi° u B1 u C at stage s + 1;
(6) if *°(x, 5 + 1) * tfO(x> 5 ) < co or ̂ °(x, 5) < ^°(x, 5 + 1) then

some number < \//°(x, s) is enumerated in ,4 u C at stage 5 + 1, and
similarly for < ^ \ i//1);

(7) if x is enumerated in B° at stage s + 1 then ^°(x, s) - 1, and simi-
larly for (B1, &1 >.

For / < co and / < 2 let fft denote U {B{(s) : s < co}. For a sequence
V? in (co u {co})w let limx(£(s) be n if ̂ p(s) = n for all sufficiently large s,
and be co otherwise. Let £,- denote the unary function defined by
^,(x) = lims£,-(x, s). Let 6,-, ^P, and ty} be defined similarly. Let S/ be
the unary function defined by £,-(*) = limsS;(x, 5) if £,-(x) < co, and
S,(x) = co otherwise. Let 8,-, i|i9, and \)// be defined similarly. In the
latter sections of the paper we shall show how effectively to enumerate
A and C, from the given functions and sets, so that, for all i.

(9)A= Q{AB?= *?AB}= *}.-+. A <TB? + CVA<TB} +C.
This program is sufficient for ous needs provided that for all i, 5° Bj,
£,-, £,•, etc. can be effectively generated in such a way that for every r.e.
set D recursive in C there exists / such that H,- = D, and for every pair of
r.e. sets (D°, Dl > which satisfies

(10)D°<r,4 +C AD1 <TA +C AA<TD° +Dl + C,
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there exists an i such that
(U)A= e;- AD°=B?= v|/;° A D 1 =B) = +}.
To complete this section we indicate briefly how effectively to gener-

ate the given functions 2,-, £,-, etc., and Bf, Bj in a suitable way. Let

«'Sf, '9 I . ,>?,>?, '5| ) , '^>: i<co>,

be an effective enumeration of all sextuples < 'E , '0 , ' »|/0, '^l*1, 'B°, 'B1)
such that 'B°, 'i?1 are recursively enumerable subsets of CJ, and "a, '0,
' * ° , ly&1 are partial recursive functional mapping 2 " , 2W X 2 " X 2W,
2W X 2 " and 2 " X 2 " , respectively, into (2 U {to})". Let ,40) and
C(s) denote the finite sets of numbers which have been enumerated in A
and C respectively by the end of stage s. If x, i < s and 'Sj(C(s))(x) is
computed in <s steps, let '£,•(*, 5) be the number of steps in its computa-
tion. Otherwise let '£,•(*, 5) be co. Define

tyx, s) = sup({'£.(*, 5)}u {£.(>/, s ) : y < x}

u {£,.(*, 0 :£,•(*. 0 < W A K S } ) .

Let Sr(x, 5) = '2,-(C(s))(x) if ^(x, s) < OJ, and let S,(x, s) = 00 otherwise.
The pair <€>,-, #,) is defined similarly except that the function arguments
are now B®(s), Bj(s), C(s). Similarly for the definition of each of the
pairs < tyf, \pf) and <^/, \pj) the function arguments are A(s), C(s). For
/ < 2 let'B'jis) be the finite set of numbers enumerated in 'B\ by the end
of stage s. For; < 2 let B{(s) be 0 if 5 < i, and be

B{(s - 1) U {x : x < s A x € '5/(5) A *{(*, 5) = 1}

otherwise. It is easy to check that the conditions (1) —(7) are all satis-
fied and that if (Z), D®,Dl) is any triple of r.e. sets satisfying D <T C
and (10), then there exists i such that S,- = D and (11).

2. The priority tree and the construction

In this section we shall state a method of effectively enumerating A
and C so that the requisite conditions

G,. A = Bt A Bf = ^ A Bj = *} . - . ^ < r 5° + C v A <T BJ + C

and S[- : S,- + A, are satisfied for all /. As is often the case in the con-
struction of r.e. sets we shall have to weave together many different



209

A.H. Lachlan j A recursively enumerable degree not splitting over lesser ones 311

strategies to allow for all possible contingencies. We first define a tree
structure which will provide us with a way of classifying the atomic parts
into which our construction naturally falls. Let a0, ar, a2, w, d0, dx and
/be primitive objects. A finite sequence a = (a0,..., a{) is a characteristic
sequence or characteristic for short if either a = 0, or

ale {flo- ava2> w> d0' d ^ u ( t / } x °°) '

M < I (a. e {w, d0, dx] u ({ /} X w)) .

Let the set of characteristics a such that at <fc {a0, av a2} be denoted by
G, and let the set of all characteristics be denoted by G*. By a n a0 we
mean (aQ, ..., at, aQ), by a n ( / /) we mean <<JT0 , ..., ah (/, /)),and so on.
The order of a denoted O(a) is defined inductively for all a e G by
0(0) = 0, O(6 n d0) = 0(6), O(& n w) = 0(6 n ^ ) = 0(6) + 1, and
0(6 n (/ ,«)) = n + 1. Let <* be the unique strict linear ordering of
[ao,av a2, w, d0, c?j}u ({/}X co) such that

w <* a2 <* (/, i) <* if, j) <* ax <* dx <* a0 <* dQ

for all /, j G co such that / < /. For characteristic sequences a and 6 we
define a < b to hold if there exists z such that at and 6,- are both defined
and different, and at <* b{ for the least such /.

For each a G G, where a = < a0,..., a,) we define

Z)0(a) = {/ : V/( / < / A af = rfQ A 0(O r /) = /)} ,

F(a) = {i : V/(y < / A fl/ = (/, /) A A k(j < k < / -> ak 4

^{(/ . 0),(/, 1), . . . , ( / . / - 1)}))}.

Certain aGG* will have no significance for us. The reader will easily
verify after the statement of the construction that if a is the characteris-
tic of one of the stages, then:

LI. 0 (6) = n G D0(b) /\bca.^.bn dQ(j:a A 6 n aQ* a ,

L2. O(6) = n A 6 n (/, /) c a .->. / ^ F{b) U D0(ft) A / < « .

Call a& G* legitimate it is satisfies LI and L2.

77z<? construction. As well as enumerating ,4 and C we simultaneously
construct auxiliary functions: *p with domain GX w X u , and e, p , i>,
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and a all with domain G X co. The codomain of a is G U {co}; the others
have codomain co u {co}. In stage s we shall specify <p(b, n, s), e(b, s),
ix{b, s), v{b, s), and a(b, s) for all b e G and « e co. To prevent unwanted
clashes between the values of the auxiliary functions we choose a recur-
sive partition of co into infinite sets, one member of the partition being
associated in an effective manner with each member of the set

{c : c G G] u {(c, n) : c e G A n e to} .

The numbers in the member of the partition associated with c are called
c-numbers, those in the member associated with (c, n) are called (c, n)-
numbers. If e(b, s) =£ co then e(b, s) will be a 6-number, and if tp(b, n,s)i= to
it will be a (6, «)-number.

The characteristic functions of A (s) and Bj(s) will be denoted by
\x A(x, s) and XxBfa, s). In stage 0 we let </>(&, n, 0) = e(6, 0) = n(b, 0)
= K&, 0) = a(b, 0) = co for all 6 e G and n e to. Each stage 5 has a charac-
teristic associated with it which we denote by a(s). We let a(0) = (ao>.
Stages + 1 will consist of substages numbered (s + l,0),(s + 1, 1),... and
so on. Before stage (5+1 , i) we shall have defined a(s + 1);- for each/' < i.
We shall also have specified a certain interval /(/, s) of co, where I(i, 0) = co.
Let b denote (a(s + l)0 , . . . , a(s + l),_i> and O(b) = n. The various cases
that can arise in Stage (s + 1, i) are as follows. In each one we are tacitly
assuming that no earlier case holds.

CO. /(/, s) - 0. Let a(s + 1) = b n a0 and stop the whole construction. (It
will be shown that CO never occurs.)

Cl. There exists a c such that b c a(c, s), e(c, s) < co, e(c, s) e A(s), and
v{c, s) - n $ D0(b). Choose such a c minimal with respect to < and then
minimal with respect to c . Act according to the first of the following
subcases which holds. Stage (s + 1, /) is said to pertain to e(c, s).

CIA. n ^ F(a(c, s)). Enumerate <p(a(c, s), n, s) in C. Let a(c, s + 1)
= v(c, s + 1) = co. Let a(s + 1),- be a0.

Cl .2. n e F(a(c, s)) and some number < dn(e(c, s), t) has been enumer-
ated in B® since stage t where stage t + 1 was the one in which e(c, s) was
enumerated in A. Let d be the greatest initial segment of a(c, s) such that
d n ( / n) c a(c, s). If there exists m,n<m< O(d) and m <$ D0(d), let
a(c, s + 1) = d and v{c, s + 1) be the least such m. Otherwise let a(c, 5 + 1)
= v(c, s + 1) = co. Let î (rf, n, s + 1) = co and a(s + 1);- bea0. We say y{d, n,s)
is destroyed through C1.2 if <p(d, n, s) < co.
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C1.3. n e F(a(c, s)) and some number < On(e(c, s), t) has been enumer-
ated i n ^ since stage t where stage t + 1 was the one in which e(c, s) was
enumerated in A. Let d be defined as in C1.2. Enumerate v(d, n, s) in C
if <p(d, n, s) < co. If there exists a n m , n < m < O(a(c, s)) and m j= DQ(a(c, s)),
let a(c, s + 1) = a(c, s) and v{c, s + 1) be the least such m. Otherwise let
a{c, s + 1) = v{c, s + 1) = co. Let y{a{c, s), n, s + 1) = to and a(s + 1); = a0.
We say that ^(a(c, s), «, 5) is destroyed through C1.3. If one of C1.1, 2, 3
occurs, we say stage s + 1 pertains to e(c, s).

C1.4. Otherwise. Let a(s + 1),= d0. Let /(/ + 1, s) be obtained by sub-
tracting from /(/, s) each interval [0, /x(rf, s)] such that dn ao<b n dQ

and e(rf, s) < co.

C2. There exists cDA such that e(c, s)< co, n $ D0(c), F(c) - F(b) con-
tains no number <n and ip{c, n, s) = co. Choose such c minimal with
respect to < and then maximal with respect to c . We say that stage
{s + 1, /) is associated with c. There are two subcases.

C2.1. There exists a (c, n)-number p in /(/, s) such that: p >ju(c, s);
p > \p(c, n, t) for each t < s such that ip(c, n, t) < co; p > n(d, s) for each
d such that e(d, s) < co, and either c n (f,n)cdord<cn (/ «);

/4(x, s) = ©„(*, s) for all x < n{c, s),

B'n(x, s) = Vn(x, s) for all x < 0^(ju(c, 5), 5) f < 1 ,

sup({0n(M(c, s), 5)} u {^(x, 5) : x < 0n(ju(c, s), 5), / < l})< p .

Let (/?(c, «, 5 + 1) be the least such (c, «)-number. Let ju(c, 5 + 1) ~^p(c, n, s+1)
and a(s + 1),- = a0. In this case we say that stage s + I is associated with c.

C2.2. Otherwise. Let aO + 1),- = dQ. Let /(/ + 1, s) be obtained by sub-
tracting from I{i, s) each interval [0, /x(rf, s)] such that dn ao< b n d0

and e(rf, 5) < co. Go to stage (s + 1, i + 1).

C3. e{b, s) = co. Enumerate sup /(/, 5) in C if sup /(i, s) < co. Let e(6, s + 1)
and (i(b, s + 1) be the least 6-number which is > every number used at a
stage < s. Let a(s + 1 ),• = a t .

C4. ^(e(6, s), 5) > sup /(z, 5). Let a(s + 1 ),• = dx. Let /(z + 1, s) be ob-
tained by subtracting from /(/, s) each interval [0, n(d, s)] such that
d n ax < b n dx and e(rf, s) < co. Go to stage {s + 1, i + 1).
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C5. %n(e(b, s), s) < ip(b, j , s) for each/ < n such that / ^ F(b). There are
three subcases:

C5.1.ju(6, s)< in{e(b, s),s). Leta(s+ l), = fl2 a n d

M(6, S + \) = sup{ju(6, 5), Zn(e(b, s), s)} .

C5.2. S,n (e(b, s),s)= \ -A (e(b, s), s). Let a(s + 1), = w, and /(/ + 1, s)
be obtained by subtracting from I(i, s) each interval [0, n(d, s)] such that
d< b and e(rf, s) < co. GO to stage (s + 1, / + 1).

C5.3. Otherwise. Enumerate e(b, s) in A provided thaty4(e(6, s), s) = 0.
Let a(s + \\ = a2. If there exists m< n, m$ D0(b), let a(b, s + 1) = b, and
v(b, s + 1) be the least such m. Otherwise let a(b, s + 1) = v{b, s + 1) = co.

C6. There exists/ < n, j £ F(b), such that <p(b, j , s) < %n(e(b, s), s). Choose
the greatest such/. Let a{i, s + 1) = (/, /), and let /(r + 1, s) be obtained
by subtracting from /(/, s) each interval [0, n(d, s)] such that d < b n (/, f)
and e{d, s) < co, and by deleting from /(/, s) all numbers which are either
not greater than

sup({e(6, s)} u {</?(&, k,s):k<j and v?(fe, k, s) < co})

or ><p(6, /, 5). Let p(6, s + 1) = sup{ju(6, s), |n(e(6, s), 5)}. Go to stage
(s+ 1,/+ 1).

This completes the list of cases. Unless stage (s + 1, i + 1) is specified,
stage (s + 1, 0 is the last substage of stage 5 + 1. Only some values of the
auxiliary functions for argument s + 1 have been given explicitly by the
statement above. The remaining values are specified as follows. If
a(s + 1) < d or some number < e(d, s) is enumerated in C at stage 5 + 1
then e(d, s + 1) = co. Otherwise e(d, s + 1) = e(d, s). In like manner
ip(d, n, s + 1) is defined from ip(d, n, s). If e(d, s + 1) = co then n(d, s + 1)
= a(d, s + 1) = v(d, s + 1) = co; otherwise n(d, s + 1) = /u(rf, s), aid, s + 1)
= a(rf, 5), and Krf, s+ 1) = K<*. *)• We say that e(d, s) is assigned at stage
t + 1 if e(rf, s ) < co and t is the least number such that e(d, t + l) = e(d, s).
Similarly for the other auxiliary functions. We say that e(d, s) is destroyed
at stage t + 1 if s < t and e(d, s) = e(d, t)< co = e(d, t + 1). Similarly for
the other auxiliary functions; *p(d, n, s) is destroyed through Cl if it is
destroyed either through Cl .2 or through C1.3.

We now state some trivial properties of the auxiliary functions in the
construction, properties which may be verified by straightforward induc-
tion. These properties should be borne in mind for when we have to
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establish the chain of propositions which witnesses the validity of the
construction.

tl. e(c, s) < co if and only if n(c, s) < co, and e(c, s) < n(c, s).

t2. If i/?(c, n, s) < co, then n < O(c), n £ D0(c), and

e(c, s) < v(c, n, s) < ju(c, s) < co .

t3. a(c, s) = co if and only if v(c, s) = co.

t4. If a{c, s) i= co, then e(c, s) < co, e(c, s) is enumerated in A at a stage
<s, a(c, s) C c, v(c, s) < O(a(c, s)), and J'Cc, 5) ^DQ{a{c, s)).

t5. If 5 < t and a(c, u) #= co for all u in 5 < u < f, then a(c, t) c a(c, 5)
and v{c, t) > v(c, s). Further, if a(c, t) ± a(c, s) then v(c, t) + v(c, s).

t6. If a(c, s) i= co and a(e, s)¥= c then for some m < v{c, s), a(c, s) n(f,m)c c.

t7. If e(c, t) < e(b, t) < co and c < b or c c b, and e(c, 0 is destroyed at
stage 5 + 1 then e(b, t) is destroyed at a stage < s + 1. Similarly with
ip{6, «, 0 in place of e(6, 0-

t8. If 5 < f and e(6, s), e{b, t) are both < co then e{b, s) < e(6, 0- Simi-
larly for (Kb, si n(b, t)) and (0(6, n, s), cj>(b, n, t)).

t9. If 1 < / and there is a stage (s + 1, /') then /(/, s) C /(/, s).

Motivation of the construction. With each d & G will be associated a fi-
nite number of strategies. If d < e E G then the strategies associated with
d will have priority over those associated with e. Let de G and O(rf) = m.
We can think of d as representing the hypothesis H{d): "there are infi-
nitely many s such that a(s) D d, and there are at most a finite number of
s such that a(s) < d". A stage (5 + 1, z) such that a(s + 1) t i D d is based
on the hypothesis H{d). With d is associated a strategy 5(rf) whose aim
is the satisfaction of 6 'm; S{d) is pursued in each stage (s + 1, /) such that
a(s+ 1) N = rf.

Of course S(d) must respect the need to satisfy (J,- for i < m. If i e F(rf)
then under H(d) the strategy for satisfying S,- is associated with the
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greatest e c d such that e n (/, i) C d. (Such e exists from the definition
of F(d).) If i G D0(d) then under H{d)

A = 6;. A 5° = *p A tf,1 = +/
is false, and so no action need be taken to satisfy £,-. Finally if / < m and
i <£ F(d) u D0(d) then the strategy for 6;- is associated with the greatest
e c d such that O(e) = i.

Let a{s + 1) \ i = d then in stage (5+1 , /), I{i, s) is the "universe" in which
S(d) must be pursued. We digress for a moment to compute the endpoints
of the interval /(/, s). The right-hand endpoint of /(/, s) if any is just the
least number of the form <p(b, /, s) such that b n (f, j) c d. This follows,
because from the statement of the construction sup /(/ + 1, s) = sup /(/, s)
except in C6, and in C6 sup I(i + 1, s) = inf {sup /(/, s), <p(b, j , s)}. The
left-hand endpoint of /(/, s) is the least number exceeding all those of the
forms:

(i) e(b, s) where b n (/, /) c d for some/,
(ii) <p(b, k, s) where <p(b, K s) < to and b n (/, /) C rf for some / > fc,

(iii) M(C S) where M(C, 5) < OJ and either c < d or c n doc d or
cndlcdorcnwcd.
This can be checked by looking through those cases of stage (s + 1, 0
which do not terminate stage 5 + 1 , namely C1.4, C2.2, C4, C5.2, and C6.
In looking through these cases one should bear in mind the following
points. Firstly for all c, e(c, s) < CJ if and only if n(c, s) < co. (This can
easily be verified by induction on s.) Secondly e n a0 < c n d0 if and
only if either e < c n d0 or e - c. Similarly for C4, e n a^ < c n d1 if and
only if e < c ° dj or e = c. One of the facts we shall prove later is that CO
never occurs, i.e. I{i, s) is never 0.

We now return to the discussion of S(d). Let H(d) be true, and
{Sj: / < OJ} be a strictly increasing sequence such that a(s;- +1) t i = d.
Suppose further that no stage >s0 has characteristic < d. In the limit
/(/, Sj) is a final segement of CJ, i.e. for some p in a;

lim I(i, s.) = {x : x G OJ A x >p} .

In pursuing S(d) we first give e(d, s) a value < co larger than any other
number yet used. This is the purpose of C3 in the construction. In C3 we
enumerate sup /(/, s) in C because by the rules for determining $(e, j , 5+1)
all the values of \x \y <p{x, y, s) which bound I(i, s) on the right will
thereby be destroyed. Suppose e(d, s) = co >e(d, s + I), s' >s, and
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a(s + 1) r / = d, then e(d, s') will be e(d, s + 1) provided there is no stage
>.? and <.?' with characteristic <d. Further e(d, s') will be in /(?, s'). Re-
call that O(d) = m. Our intention in S(d) is to make Sm and A differ at
argument e(d, s). Associated with e(d, s) when s in one of the numbers
sh we shall have a number ip(d, ;, s) e /(j, s) for each; < m, j £ DQ(d).
Also in a stage («/, + 1, i) one of our aims, after having made e(d, s) < co,
is to make \p(d, m, s) < to if m <£ Z)0(rf). For ; < m and / <£ D0(rf) the num-
bers <p(d, j , s) will be increasing with/, and if ^ >/, <p(d, k, s) will be
chosen after <p(d, /, s). When ip{d, j , s) is chosen, i.e. given a value < OJ, the
choice is based on the assumption that

,4 = 9y A * ° = +0 A 5/ = + / .

Given this assumption we can choose <p(d,}, s) such that for all p < n(d, s)
ifp is subsequently enumerated in A then some number <<p(d, j , s) will
be forced into 2?9 or Bj. For if we change a value of A and restrain num-
bers from C, the only way 0.- can change to restore the equality of A and
0;- is through a sufficiently small number being enumerated in Bf OTBJ.

The number n(d, s) bounds all the numbers associated with e(d, s) at the
end of stage s.

Now we come to the heart of the strategy S(d). If

e(d, s) < co,

Zm(e(d,s),s) = A(e(d,s),s) = 0,

we wish to enumerate e(d, s) in A and henceforth restrain numbers
<£m(e(d, s), s) from C, so as to force the inequality Sm ¥= A, thus satis-
fying Sjn . (This is what happens if C5.3 occurs in a stage (s + 1, i) with
a(5 + 1) r / = d.) However, for each / < m,j £ DQ(d) u F(rf), we are im-
plicitly constructing an effective reduction of A to Bj + C. These reduc-
tions have higher priority than the satisfaction of Q.'m. For this reason
we are only free to enumerate e(d, s) in A if %m(e(d, s), s) < ip(d, j , s) for
each; < m, j' <£ D0(d) U F(d). (We can delete DQ(d) if we like because for
/ £ DQ(d), ip(d,;, s) = co.) The intuition here is as follows. If £m (e(d, s), s) <
< <p(d, j , s) and e(d, s) is enumerated in A, we can correct the reduction
of A to Bf + C by enumerating <p{d, j , s) in C while at the same time re-
straining numbers <£m(e(rf, s), s) from C. If there exists an s such that
a(s + 1) t i = d, e(d, s) < u>, and the conditions for enumerating e(//, 5)
in A are satisfied, then by C5.3 e(d, s) will be enumerated in A if and
only if Em(e(rf, s), s) = A{e(d, s), s) = 0. Subsequently, provided no stage
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of characteristic <d intervenes, if a(s + 1) \ i = d and none of CO, Cl
and C2 occurs at stage (s + 1, i), we shall have a(s + 1) t (/ + 1) = rf n w

Here w signifies that SXrf) has been satisfactorily completed. As men-
tioned above CO will actually never occur, and the roles of Cl and C2
will be explained later.

If a(s + 1) f i = d and e(d, s) < to then ignoring Cl and C2 for the
moment, a(s + 1) D d n dj if and only if £m(e(d, s), s) > sup /(/, s). In-
tuitively rfj signifies that we are waiting for %m(e(d, s), s) to be within
the universe /(/, s) in which S(d) must be pursued. This is the content
of C4. If there are infinitely many such 5, thenHm(e(</)) = CJ because
sup /(/, s) takes arbitrarily large values. Thus the aim of S(d) is satisfied
in this case.

Now we consider the eventuality that, for infinitely many 5 such that
a(s + 1) r i = d, neither Cl nor C2 occurs at stage (s + 1, i), that e(d, s)< CJ,
whence C3 does not occur, that £m (e(d, s), s) < sup /(/, s) whence C4
does not occur, and that S(d) neither has been nor can be completed by
C5. There will be a least; such that, for infinitely many such s, j is the
greatest number for which/ < m, j! fi F(d), and *p(d, j , s) < %m(e(d, s),s)< w.
For each such s we shall have a(s + 1) t (i + 1) = d n (/, /) and there will
be only a finite number of stages with characteristic <d n (/, /). Now we
pursue all strategies associated with characteristics e D d n (/, /) to the
left of <p(d, j , s), and to the right of

sup ({e(d, s)} u {ip(d, k, s): k<j and <p(d, k. s) < co}).

This is part of the definition of /(/ + 1, 5) in C6.
We now associate with d a reduction of A to Bj + C generated in the

following way. A number p in /(/ + 1,5) will only be enumerated in A
when we are sure that putting p'mA will force a number q < tp(d, j , s)
into either Bf or Bj. (We are assuming here that A = 8y- A Bj = ^ A Bj = «|»/
and that numbers < <p(d, j , s) are restrained from C while we wait for q to
be enumerated in e i t h e r ^ or Bj.) The method of reducing^! toBj + C
is based on q always being enumerated in Bj rather than Bj. If it happens
that in response to the enumeration of p in A we have q < $(d, j , s)
enumerated in Bf rather than Bj then we may change the value of
ip(d, j , s) without putting a number <^(</, /, s) in C. This is because in the
strategy for reducing A to Bf + C, which is associated with the greatest
e c d for which O(e) = j , for each p in !(i + 1, s) we relate A(p) to the
values of Bf and C for arguments < <p(d, j , s). When Bf(q) changes for
some q < <p(d, j , s) we may give \p{d, j , s) a new value >£,(e(rf, s), s). Now
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we consider the next stage s at which a(s + 1) T (/ + 1) = d n (/, /) . If
<p(d, j , s) > fy(e(d, s), s) is still true we have a contradiction, thus some
stage of characteristic <d n ( / /) must intervene. Since; was chosen as
small as possible there can only be a finite number of stage of character-
istic < d n (f, / ) , and hence only a finite number of occasions on which
q is enumerated in Bf rather than Bj. Thus the reduction of A to Bj + C
will be sound.

If there are infinitely many s with a(s + 1) T (/ + 1) = d n (/, /) then in
the course of the construction ^p(d, j , s) takes arbitrarily large finite values
and is non-decreasing if we ignore those s such that \p(d, j , s) = co. Since
<p(d, j , s) < %m{e{d, s), s), %m z(d) = co where t(d) is limxe(rf, s). Thus the
aim of S(d) is also satisfied in this case.

As has been indicated in the discussion above the requirement S;- is
satisfied by first attempting to construct a reduction of A to Bf + C,
and then constructing a reduction of A to Bj +C if necessary. This is an
oversimplification in the following sense. In the strategies corresponding
to members e of G where e c d n (f, n) we have to begin again attacking
the conditions S,- for/ >n. This is the reason why O(d n (f, «)) = n + 1.
The reductions of the second kind bring considerable complexity to the
construction, because "waiting" is involved. Thus when e(d, s) is enumer-
ated in A we must initially let aid, s) = d and v(d, s) be the least k < m,
k 4- DQ(4). Intuitively v{d, s) is the least/ such that

A= QfABf = *f ABJ=*}

is part of the hypothesis H{d).
At an arbitrary stage after e(d, s) has been enumerated in A, if aid, s)

and u(d, s) are still both =£ o>, it means that instead of the original hypo-
thesis only the weaker hypothesis H{a(d, s)) remains, and we are current-
ly repairing the injury to the strategies concerned with satisfying ^lv^,s)-
If v(d, s) $ F(a{d, s)) then we repair the injury to the reduction of A to
B®,d . + C, caused by enumerating e(d, s) in A, by enumerating tp(a(d, s),
v(d, s), s) in C. This is what happens in C1.1. In this case the number
enumerated in C is small enough that not only is the injury to the satis-
faction of S v(d S) repaired but also the injury to each (L, v(d, s) < / < m.
For this reason, in Cl. 1 a(d, s + 1) = v{d, s + 1) = co.

If v(d, s) e F(a(d, s)) then we must wait for some number <Qn(e(d, s), t)
to be enumerated in either B®(d s) orB^d s) in response to the enumera-
tion of e(d, s) in A at stage t + 1. This gives rise to the cases C1.2, C1.3,
and CIA. In C1.2 where there is a response inB^d 5), we make
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Kp{e, v(d, s), s + 1) = OJ where e is the greatest initial segment of a(d, s)
such that e n (/, v{d, s) C a(d, s). Our goal here is to bring about a stage
of characteristic <e n (/, v{d, s). Intuitively at this point the hypothesis
H(d) under which e(d, s) was enumerated in A has been discredited to
the extent that only H(e) remains. This is why we define a(d, s + 1) = e
provided there exists/ with/ $ O(e) and v{d, s) < j < O(e), and why
a(d, s + 1) = co otherwise.

If a number < 6n(e(d, s), t) is enumerated in Bl,d . before B®. we
have C1.3. This is the case we expect under H{a(d, s)). Thus here
a(d, s + 1) = a(d, s) provided there exists a/ with/ $. O(a(d, s)) and
v(d, s)<j < O(a(rf, s)). Otherwise a(d, 5 + 1) -v(d, s + 1) = co. We enu-
merate <£>(e, i>(rf, s), 5) in C in order to repair the reduction of A to
B®(d s) + C which is associated with the greatest e <z e satisfying
O(e') = v{d, s). We make ip(a(d, s), v{d, s), s + 1) = co in order to repair
the reduction of A to 2?1,, , + C associated with e.

v(u,S) n 1

Finally while we are waiting for a response in B^d S) u B^d s^ to the
enumeration of e(d, s) in A, in a stage (s + 1, z) where we should be con-
tinuing to repair the harm done by e(d, s) we let a(s + 1),= d0 by C1.4.
This signifies the apparent falsity of A = 8y A B® - tyf A Bj - tyj for
/ = v{d, s). For such a stage (s + 1, 0 we shall have a(s + 1) I i = b where
6 is the least initial segment of d such that 0(6) = v(d, s).

We can sum up the role of C1 as follows. When a number is enumer-
ated in/i to attack d'm, the attacks on Go, S j , ..., S w are injured. The
role of Cl is to permit the attack on So to be repaired, then the attack
on Sj to be repaired, and so on. At a particular stage after e(d, s) has
been put into A, &v,d S) is the condition we are currently repairing and
H(a(d, s)) is that part of the hypothesis H(d) which is still good.

The only part of the construction not yet touched on is C2. This is
concerned with giving <p(d, j , s) a suitable value <co once e(d, s) has been
given a value < co, where/ runs through all numbers < O(d) which are not
in D0(d). The selection ofip(d, j , s) is associated with e where e is the
greatest initial segment of d such that O(e) =/. The purpose of y{d, j , s)
is to bound the computations of 8y, tyf, and tyj on sufficiently large
initial segments of co. We want the computations to be good ones in the
sense that 9 ; -A, tyf =Bj, and tyj = Bj all appear true at the particular
stage and for the particular initial segments. The choice of ip(d, j , s) is as-
sociated with e because the attempt to reduce A to Bf + C, which is rele-
vant to e(d, s), is associated with e. In C2.1 it may seem odd that we
choose d, for which we wish to make ip(d, j , s) < co, minimal with respect
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to < and then maximal with respect to C. The reason for this is as fol-
lows. Suppose that in a certain substage (s + 1, i) we have d0 J dx,
<0Q, h s) = V(dv j , s) = OJ, e(dQ, s) and e(dx, s) < CJ, a{s + 1) f / = e, and
for k G {0, 1}, e is the greatest initial segment of dk such that O(e) = /.
Suppose further that Cl does not occur at stage (s + 1, i) then we shall
have C2. In this situation it turns out that rf0 n ( / /) c dl. We want
y(di, /', s') < (̂rf0- /> •*') < w f ° r some s' >s so that */?(̂ i> /. •$•') will be in
the "universe" of S(d0 n ( / /)). By making ^(rf1( /, s') < oo first, and
then making <pid0, j , s) < to at a later stage it is easy to obtain the de-
sired inequality. If in stage s + 1 we are trying to make <p(d, j , s + 1) < a>,
and if the computations related to (L we wish to bound cannot be
bounded in I(i, s), then we have a(s + 1) f (i + 1) = e n d0. This is C2.2.
Just as in Cl .4 d0, signifies that seemingly A = 6;- A B? = \J>? A 5? = »|* ?
is not true.

In the next section we shall show that there is a sequence (bj: i < co)
in G such that, for every i, bt has length z, 6f- c a(s + 1) for infinitely many
s, and a(s + 1) < bj for at most a finite number of s. The members of
(b{: i < co> are called preferred. The strategies corresponding to these
characteristics are the ones which make the construction succeed because
for each such strategy only a finite number of stages have higher priority.

As we have mentioned above if 0(6,) = m, f < m, and / £ F(bj), then
there is a strategy for reducing .4 to Bj + C associated with bt. Since this
strategy is only pursued when a(s + 1) D &,- n (/, ;") it is only important
if 6I+1 = bjn (/, /). This completes our discussion of some of the intuitive
ideas behind the construction.

3. Properties of the construction

In this section we shall list all the properties of the construction that
we need. We prove the two most important propositions while assuming
the rest. The proofs of the other propositions are deferred until § 4. The
propositions will be numbered PI —PI2. The principal propositions are
PI 1 and PI 2; from them we shall deduce that all the requirements Sm

and 6 ^ are satisfied.

Pi. Let s >t + 1 and e(c, s) = e(c, t) be enumerated in A at stage t + 1.
Let a(c, s) be defined and v(c, s) = n < 0(a(c, s)). Let e be the least initial
segment ofa(c, s) such that O(e) = n. Then
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(\)ifa stage >t + 1 and <s has characteristic D e it has characteristic
D e n d0

(2) ifa(s + \)D e, then either a(s + 1) = e n a0 or a(s + 1) D e n d0.
(Notice that ife¥^ a(c, s), then a(c, s) < e n a0. 77iw w because
n $D0(a(c, s)) by the way in which v(c, s) is defined, whence e n dQ <£c.)

P2. (l)lfe(b, s), e(c, s) < co, and either c < b or c n doc b or c n dYcb
or c n w c. b, then n(c, s) < e(b, s).

( 2 ) / / c n (f,j)cb,e(b, s)ande(c, s)are both <cj,a(s + \)D c, and
a(s + l)<cn a0, then

e(c, s) < e(b, s) < n(b, s) < ip(c, j , s) .

Further ifip(c> k, s) < co and k < j , then

e(c, s) < ip(c, k, s) < e(b, s) < n(b, s) < ^(c, /, 5) .

P.3. (1) With the notation of the statement of the construction, if
e(b, s) < co, then e(b, s) > inf /(/, s) and n(b, s) < sup /(/, s).

(2) //there is a stage (s + l,i+\), then I(i + 1, A') =£ 0, i.e. CO never
occurs.

P4. Let b be a characteristic sequence of length i such that O(b) = n. Let
bca(s + l),a(s+l)<bn aQ, and e(b, s) < co. Then

(\)forj< n, <p(b, j , s) < co if and only ifj ^ D0(b),
(2)forjl <j2 < nand {71,72} n D0(b) = 0, we have e(b, s)< ^(bJi,s)

< ip(b, j 2 , s) and p(b, j x , s) is assigned before <p(b, j 2 , s).
(3) lfip(b, j , s) < co and is assigned at stage v + 1 then no number

<ip(b, j , s) is enumerated in A u Cat a stage >v and <s.

P5. Let e(c, t) be enumerated in A at stage t + 1. Let u be the least num-
ber > t such that a(c, u+ 1) = co. If stage u + 1 pertains to e(c, t) and C1.2
occurs let d be the greatest initial segment of a(c, u) such that
d n (/, v(c, «)) c a(c, u). If u = t let d = c. Otherwise, let d = a(c, u).
Let s be the least number >u such that a(s + 1 ) 3 d and a(s + 1) < d n a0,
and suppose that no stage >u and <s has characteristic <d Ud- c, then
cn we a(s + 1). Ifd^c, thendn (f m)C c for some m and
a(s + \)<dn {f m).

Remark. From Pl( l ) , 5 + 1 is the least number >t + 1 such that
a(s + 1) D d and a(s + 1)< d n aQ. Also no stage >t and <s + 1 has char-



22J_

A.H. iMchlan / A recursively enumerable degree not splitting over lesser ones 323

acteristic < d: by hypothesis for stages >u, and otherwise by the exis-
tence of a(c, u).)

P6. (1) Let bn doca(t+\), e{b, t) < u, t < s, and a{u) <tbn d0 for
alluin t<u<s + l. Then e(b, s + l) = e(b, t), fx(b, s + l) = yt(b, t), and
no number < n(b, t) is enumerated in A u C at a stage >t and < s + 1.
Similarly for dy in place ofd0.

(2)Letb n a1 =a(t + \), t < s, and a{u) j . b for all u in t<u<s + l.
Then e(b, s + 1) = e(6, t + \).

{3)Letb n we a(t + l), t <s, anda{u)-£ b for all u in t < u < s + 1.
Then e(b, s + 1) = e(b, t), n(b, s + 1) = n(b, t), and no number <n(b, t)
is enumerated in A U Cat a stage >t and <s + 1. Further, ifa(s + l)Db
anda(s + l)<bn a0 then a(s + 1) D b n w.

{A)Letb n a2=a(t + l), t<s, a{u) i. 6 n a2 for all u in t<u<s + l,
and e(b, t) not be enumerated in A at a stage >t. Then

e(b, s + \) = e(b, t), ^{b, s + 1) = n{b, t + \),

no number <M(&, t + 1) is enumerated in A u Cat a stage >t and <s + 1,
and a(s + \) =t b n a2.

(5) Ler 6 n (/, /) ca(t + l),t<s, and a{u) <£bn (/, /)/or. a// u in
/ < « < * + 1. T^ew e(6, s + 1) = e(6, 0 a«c? <p(6, fc, 5 + 1) = ^>{b, k, t)for
all k<j such that k $ D0(b). Further no number <e(Jb, t), or <<p(b, k, t)
for some k<j and k $ D0(b), is enumerated in A u Cat a stage >t and
<s + l.

(6) Let b n a0 = a(t + 1), b c c, b n do$c, t < s, e(c, s) < a>, and
a(u) <(.b n a0 /or all u in t <u<s + \. Suppose there is no stage u + 1 >t
at which Cl occurs and which pertains to e(d, u) where deb or
d< b n a0. Then at stage s + 1 no number <n(c, s) is enumerated in C.

P7. Let b n ( / /) C a(s + l ) /or infinitely many s, anda(s + \)<bn (/, /)
for at most a finite number ofs. There exists s such that b n (/, /) c a(s +1)
and <p(b, j , s) is arbitrarily large and < a>.

P8. Let e(c, t) be enumerated in A at stage t + 1, s >t, e(c, s) = e{c, t),
0(b) =n, b c c, b have length i, a(s + 1) D b, Cl .4 occur at stage (s + 1, i),
stage (s + 1, 0 pertain to e(c, t), and d be the greatest initial segment of
a(c, s) such that dn (f,n)c a(c, s). Then <p(d, n, s) = <p(d, n, t).
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P9. {\)Let b, c, and t satisfy: 0(6) = n <$ D0(b), b c c, e(c, t) is enumer-
ated in A at stage t + \,b has length i, and, for infinitely many s, stage
(s + 1, 0 pertains to e(c, t). Then A =£ 0 „.

(2) Let 0(6) = n, b have length i, and let there be at most a finite num-
ber of stages with characteristic <b n d0. Let c be such that, for infinitely
many s, a(s + 1) D b n d0 and stage (s + 1, 0 is associated with c. Then
either A =£ 9 n,or B°n * \|»°, or Bxn * \|/*.

PI 0. Let e(c, t) be enumerated in A at stage t + 1. Let n $ D0(b) and
n < 0(6). Let bn (fm)Cc where m<n,orb = c. Then en(e{c, t), t)
< ip(b, n, t) < to.

The ten propositions we have listed above are the main-links in the
chain of reasoning which shows the success of the construction. Before
we go any further we must single out those characteristic sequences
which play a vital role in the enumeration of A and C. First define z(d)
to be e(d, s0) if e(d, s) - e(d, s0) for all s > s0, and to be co otherwise.
Let \i(d) and <p(J, /) be defined similarly. A characteristic sequence b is
called preferred provided that the following conditions pi - p 8 are satis-
fied.

pl.bGG.

p2. b c a(s + \) for infinitely many s and a(s + 1) <fc b for all sufficiently
large s.

p3. e(c) < co for each c c b such that c ¥= b and c n d0 £ b.

p4. If b = c ° w, where 0(c) = m, then n(c) < co, %mz(c) < co, %mz{c)< p(c),
and S m E(C) =̂  ^ E(C). Further for all but a finite number of s, c c a(s + 1)
and a(s + 1) < c n a0 imply b C a(s + \).

p5. If 6 = c n <i0 where 0(<?) = m, then either ^(c) < co or (i(c, s) = co for
all sufficiently large s. Further, either 8 m ^ 4̂ or v|/^ ^ 5 ^ or \|/^ + Blm-

p6. If 6 = c n dj , then n (c) < co. Further, if 0(c) = m, then \m t(c) = co.

p7. If b = c n (/, /) , then / ^ D0(c) U F(c), <p (c, k)< co exists for each
fc < / such that A: ^ DQ(c). Further, if 0(c) = m, then tim z (c) = co. Also
(£>(c, /, s) takes arbitrarily large values.
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p8. Each proper initial segment of b is preferred.

Because of p8 the above definition is to be regarded as being by induc-
tion on the length of b. The empty sequence 0 is trivially a preferred se-
quence. We now state and prove the two main propositions.

fl 1. Let b be a preferred sequence. Then some proper extension of b is
preferred.

PI 2. For each m<w, either A<T C + B^ or A <T C + Bxm or §mi= A

A proof of the theorem from PI 1 and PI 2 will be found at the end of
this section.

Proof of PI 1. Let b be a preferred sequence and O(b) = n. Let s0 be the
least number such that a(s) <jt b for all s > s0. Suppose that b n w C a(s + \)
for infinitely many s, and let sx be the least number >s0 such that
b n w c a(s1 + 1). From P6 (3), for all s > s1, we have e(b, s) = e(b, st),
H(b, s) = n(b, Sj), and no number </x(6, s1) is enumerated in A U C at
stages + 1. From the hypothesis of C5.2 we see that Sn(e(6, s^ Sj)
= 1 - A(e(b, sx), s^ and £n(e(b, sr), s^,^ fi(b, s^. It follows that
t{b) = e{b, sx), ti(b) = M(6, s{), i,nt{b) = £n(e(6, s{),sx)< n(6), and
SnE(6)= 1 -At(b). Further, if s >sx,bc a(s + 1), anda(s + 1) < b n a0,
then again by P6(3) we have a(s + 1) D b n w. Thus b n w is preferred.

For the rest suppose that b n w $ a(s + 1) for all 5 > 50. Let t > s0

and a(f + 1) = 6 n a2 and e(b, t) be enumerated in A at stage f + 1. Let
d be defined as in the statement of P5 but from b instead of c. lid does
not exist then a(b, u + 1) =£ w for all u > t. From PI it follows easily that
for all u > t, if a(u + 1 )3 6, then either «(« + l ) 3 f t n dQ or a(u + 1)
= b ^ aQ. For this application of PI we let c = b. Let e be defined as in
the statement of PI, then e <zb and if e ¥= b then b < e n a0 from the
way a{b, s) and v(b, s) are defined. If d does exist, consider the least
s > t if any such that a(s + 1) D d and «(.? + 1 ) < d n a0. If s exists then
from the conclusion of P5 either a{s + 1) < rf n ( / , m ) c 6 o r a ( j + l ) 3 f t n w

This is impossible, hence s does not exist. Also from the definition of d,
deb and d n dofcb. Thus since b c a(s + I) for infinitely many s, we
have rf = b and a(s + 1) <£ 6 <"> a0 for all s > t. Let us now consider t > s0

such that a{t + 1) = b n a2 and e (6, 0 is not enumerated in ,4 at any
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stage >t. From P6(4) if s > t and a(s + 1) < b n a2, then a{u) < b ^ a2

for some u in t < u < s which is impossible. Thus in all these cases for
all sufficiently large s, say s > s1, a(s + 1) ^ b n a2.

Let / be the least number, if any, such that b n (/, /) c a{s + 1) for
infinitely many s. Choose sl such that b n (/, /) c a(sl + 1) and
a{u)i.b n (/;/) for all u >5 j . From P6(5) z{b) = e(6, s ^ and»j>(&, it)
= 0(6, /t, sx) for each A: < / such that k $ Z)o(6). From P7, 0(6, /, 5) takes
arbitrarily large values. For each s > sl such that b n (/, /) c a{s + 1),
from C6 at stage (s + 1, lh(6)) we have 7 £ Z)0(6) U F(6) and 0(6, /, s) <
< £n(c(6),s). It follows that £„£(&) = w. Thus 6 n (/, 7) is preferred.

For the rest suppose that a(s + 1) < 6 n at for at most a finite number
of s. Choose s{ such that a(s + 1) 4- b n aj for all 5 > sx anda(5j +\) = b ^ a{

if possible. From P6(2) E(6) = e(6, 5j) whence fl(s + 1) =£ 6 n aj for all
5 >5j . Suppose b n dt c a(s + \) for infinitely many s and in particular
for s = 52 > 5 i - Then e(6, s2) < w- From P6(l) withrfj in place of d0,
e(6) = e(6, 52) and ju(6) = n(b, s2). Further for each s > s2 such that
a(s + 1) D 6 n rfj, C4 occurs at stage (s + 1, lh(6)) whence ^ ( E (6), s)
< sup /(/, s). Recall that sup /(/, s) is either co or the least of the numbers
0(c, 7, s) such that c n (f, 7) c 6. From P7 for each such c, 0(c, 7, s) takes
arbitrarily large values. Also 0(c, 7, 5) is increasing with s if we ignore s
such that 0(c, 7, 5) = CJ. Hence there exists an s such that a(s + 1) D 6 n cfj
and sup /(/, 5) is arbitrarily large. Thus %nt.{b) = co and hence in this case
6 n dx is preferred.

For the rest suppose a(s + 1) < 6 ° a0 for at most a finite number of s.
There can be at most a finite number of pairs (d, u) such that either
d c b or d < b n d0, and e(d, n) is enumerated in A at stage w + 1. Other-
wise for some d C b we should have a(w + 1) = d n a2 for infinitely many
u which is incompatible with our case hypothesis ifd = b, and with 6
being preferred if rf =£ 6. For each such pair < d, u) at most a finite num-
ber of stages pertain to e(d, u). Choose Sj greater than all these stages
such that a(s + 1)<£ b n a0 for all 5 > sx, a n d a ^ + 1) = 6 n a0 if possible.
From P6.6 we see that if s > sl} 6 c c, and 6 n d0 <t c, then <p(c, n, s)
will not be destroyed at stage s + 1 through some number < 0(c, n, s)
being enumerated in c. By choice of sy, for such s and c, 0(c, n, s) will be
destroyed at stage s + 1 neither through a(s + 1) being < c, nor through
Cl. Thus 0(c, «, 5) will not be destroyed at all. We now claim that, al-
though a(s + 1) = 6 n a0 can occur for 5 > sx through C2.1 at stage s + 1,
there can be at most a finite number of s > st such that a(s + 1) = 6 n a0.
For any such 5 there exists cob such that c z\> b n d0> e(c, s) < co, and
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tj>(c, n, s + 1) < 0(c, n, s) = to. Further e(c, s) must have been assigned at
a stage < Sj, whence c can take only a finite number of values. This justi-
fies the claim.

Thus for all sufficiently large s > s2, a(s + 1) D b impliesa(s + \) D b <^ d0.
Choose the least t > s2, if any, such that e(b, t) < to and a(t + I) D b n d0.
Then from P6(l), e(b) = e{b, t) and ii{b) = n(b, t) < to. Also, if t does not
exist, e(b, s) and n(b, s) are both to for all sufficiently large s, because
there are only a finite number of s such that a(s + 1) = b n a^, i.e. there
are only a finite number of s such that e(b, s + 1) < e(b, s) = to. Suppose
that there are infinitely many s such that «(i + l ) 3 i n d 0 and Cl .4 oc-
curs at stage (s + 1, lh(6)). For each such s, stage (s + 1, lh(6)) pertains
to some e(c, s) where c D b, c J> b n dQ, and there exists a t < s such that
e(c, 0 = e{c, s) was enumerated in A at stage r + 1. Since a(t + \) < b n d0

there are only a finite number of possibilities for the pair < c, t). Thus for
infinitely many s,a(s + l)D b n d0 and stage (s + 1, lh(6)) pertains to
the same e(c, 0- It now follows immediately from P9(l) that A =£ 8n.

There remains the case in which, for infinitely many s, a(s + 1) D b ^ d0

and C2.2 occurs at stage (s + 1, z"). From the hypothesis of C2 for each
such 5, stage (5 + 1, i) is associated with some CD b such that e(c, s) < co,
c^ b n d0, 4>(c, n, s) = to, and F(c) — F(6) contains no number < «.
Since c = b or c < b n d$ there are only a finite number of possibilities
fore. From P9(2) it follows that either A *dn,orB% = \|/°, or Bj, * ty\.
This completes the proof that some proper extension of b is preferred.

P12. For each m < co, either A < TC + BQm or A < r C + 5 ^ or 9m i- A
or^^Bior^l^Bi.

Proof. Suppose that 0m =A,ty% =B°m, and tylm =B1m- A number can
only be enumerated in A at stage s + 1 if it has the form e(b, s). If e(b, s)
is assigned at stage t then e(Z>, s) > e(b', s') for all b' and all 5' < t such
that e(6', s) < to. This follows immediately from the provisions of C3.
Thus to compute A it is sufficient to have an algorithm for telling, given
b and t such that e(b, t) < to, whether e(b, t) is in A or not. Let a be the
longest preferred sequence such that O(a) = m + 1. We shall confine our
attention to stages sufficiently large that all subsequent stages have char-
acteristics either Da or >a. We shall consider only numbers e(b, t) such
that ftDj, because for b neither D a nor >a there can be at most a finite
number of values of e(b, t), and if b > a then e(b, t) will eventually be
0 :stroyed. If m e D0(a) then c n d0Cafor some c such that O(c) = m.
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Being an initial segment of a, c n d0 is preferred which by p5 contradicts
our supposition that 6m = A, \|/ JJ, = Bni, and \|/ ^ = Bxm. Thus w $ D0(a).

Suppose that (/, m) is the last member of a. We shall show that with
the aid of oracles for C and Bxm we can effectively tell whether e(b, t) is
in A or not. Let bm be the least initial segment of b such that a c bm

and either bm -b ox bm n (f, n) c b where rc < m. If e(6, 5) < co then
e(6m, 5) < e(b, s) < co also. This is obvious when b = bm and can easily
be proved by induction on s when b ¥= bm.lfe(bm, s) < co and a c a(s + 1)
then 0(6m, m, s) < co. Otherwise we should have a < a(s + 1) through C2.
Let b*m be the unique preferred sequence which has the same length as bm.
If b*m < bm then e(b, t) will eventually be destroyed.

If b*m -bm then one of bm n do,bm n dl,andbm n w is preferred,
or bm n (/, «') is preferred for some ri >m. Otherwise the choice of a
would be refuted. From p 4 - p 7 if e(b, t) is never destroyed then \i(bm)< w
for <t>(6m, m) < w- Thus in any case <b(bm, m) < co. Note that m $ DQ(bm)
because m ^ D0(a) and O(c) > m for each c such that a c c c bm.

Now let bm <b*m. Either t(b*n)< co or E(6*W n do)< co, because
E(C) < co whenever c is preferred and c n dQ is not. From P2.1 for all
sufficiently large s such that <p{bm, m, s) < co we have

<j>(bm, m, s) < n(bm, s) < min{t(b*m),t(b*m n c?0)} < co .

From above if e(b, t) is never destroyed then there are infinitely jnany s
such that <p(bm, m, s) < co. Hence if e(b, t) is never destroyed then
«K6m, w ) < to.

Suppose 0(6m, w, 5) is destroyed at stage 5 + 1 and that e(b, s) < co is
not destroyed at stage s + 1. Then either some number < <P(bm, m, s) is
enumerated in Cor <t>(bm, m, s) is destroyed through C1.2 or C1.3 at
stage 5 + 1. If <p{bm, m, s) is destroyed through C1.2 at stage s + 1 and
stage s + 1 pertains to e(c, s), then bm n (/, m) c c. But 6m n (/, m) is
not legitimate, thus C 1.2 is impossible. If <P(bm, m, s) is destroyed through
Cl .3 at stage s + 1, let stage s + 1 pertain to e{c, s) where e(c, s) was
enumerated in A at stage M + 1. Then a(c, s) = bm and v{c, s) = m. Since
C1.3 occurs some number < 8m (e(c, s), u) is enumerated in Bxm at a stage
>u and <5. From P10 6m(e(c, s), u) < 0(&m, m, u). From PI no stage
>u + 1 and < s + 1 has characteristic Da, because a c bm = a(c, s) and
O(a) > m = Kc, s). Thus if </>(6OT, m, 5) is destroyed at stage s + 1, e(6, 5)
= e(b, s + 1) < co, and 5' is the greatest number < 5 such that a(s' + 1) 3 «,
then some number < <t>{bm, m, s') is enumerated inCu B^ at a stage >s'
and < s + 1.
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Suppose that e{b, t) is enumerated in A at stage t + 1 and that no num-
ber < e{b, t) is enumerated in C at a stage >t. Let v be the least number
>t such that stage v + 1 pertains to e(b, t) = e(b, v) and one of the fol-
lowing five possibilities holds:

(i) Cl.l occurs and bm c a{b, v),
(ii) C1.2 occurs and there exists d%a such that d is the greatest initial

segment of a(b, v) for which d n (/, v{b, v)) C a(b, v),
(iii) C1.3 occurs and there exists do a such that d is the greatest initial

segment of a(b, v) for which d n (f, v{b, v)) C a(b, v),
(iv) a(b, v) = bm and v(b, v) = m,
(v)v(b,v+ 1) >m.

Note that v(b, t + 1) < m because some number < m is in F(b) — D0(b)
namely the least number k such that for some c, c n (/, k) C b. Note also
from PI that if u > t, v(b, u) < m, and a(u + 1) < b, then a(u + 1) < a.
If v does not exist then either e(b, t) is destroyed at some stage with char-
acteristic <a, or e(b, t) is never destroyed and v(b, v)< m for all v > t,
which yields a <t a(v) for all v > t. But the only stages considered have
characteristics Da or >c, and infinitely many have characteristics Da.
Thus v exists.

By induction on z, if t < z < v then bm c a{b, z) and v(b, z) < m. Let
ri <m and aC b' n (f, ri) c 6. Again by induction on z, if t < z < v
and 6' n (/, ri) C o(6, z) then v{b, z) < «'. These two inductions are
similar. We treat the first one in detail. Suppose z = t + 1 < v then
a(b, z)-b D b through C5.2 and v(b, z) < m since t < v. Now for induc-
tion let t + 1 < z < u, a(6, z - \)D bm, and v(6, z - 1) < m. Clearly
v{b, z) < m, otherwise z = v + 1. If a(b, z) ¥= a(6, z — 1) then stage z per-
tains to e(6, t) and C1.2 occurs since v{b, z) ¥= OJ. Let rf be the greatest
initial segment of a(b, z - 1) such that d n (/, K&. z - 1)) c a(6, z - 1).
Suppose C1.2 occurs at stage z. Then d D a, otherwise z = v + 1 through
(ii). Hence v(b, z — 1) < m, and bm C d by definition of bm because
d n (/, v(b, z - 1)) c a(6, z - 1) c b. Also a(6, z) D bm since a(6, z) = d.
This completes the induction step. We now return to the main thread of
our argument in which we aim to show that, if e(b, t) is enumerated in A
at stage t + 1 and no number < e(b, t) is enumerated in C at a stage >t,
then there exists s>t such that e(b, s + 1) = e(b, t), <p(bm, m, s) = 4>{bm, m, t),

and <p(bm, m, s + l) = OJ.

If a(b, v) = bm and v(b, v)< m then either (i) or (ii) obtains. Other-
wise C1.3 occurs at stage v + 1, and (iii) is ruled out by the nonexistence
of suitable d while (v) is ruled out by the eligibility of m as a value of
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u(b, v + 1). Now consider the case in which a(b, v) =t bm. Let bm = b then
a(b, t + 1) = bm. Further, let z be the least number >t such that
a(b, z + 1) =£ bm, then z < v and u(b, z) < m. Since a(b, z + 1) =£ a(b, z),
Cl .2 occurs at stage z + 1 and

a(b, z + 1) n ( / , v{b, z))cbm=b .

Now a(b, z + 1) is a proper initial segment of a by definition of bm. Hence
v = z contradiction. Thus bm ¥= b which means that bm n (/, n) c b for
some n < m. From the inductive result about ri and b' stated above we
get a(b, v) D bm n (f, n) and v{b, v) < n by taking ri and 6' to be n and
6m respectively. Let n0 be the least number > K&, u) such that for some
b0 D a we have 60 n (/, n0) C a(6, u). If K6, u) < «0 either (i) or (ii)
holds, because if C 1.3 occurs no d appropriate to (iii) exists and n0 < n
is eligible as a value of v(b, v + 1). If n0 $ F(a(b, v)) then there exist
«! < «0 and bl such that bQCblc^ (f, n{) C fl(Z>, y). Using the same in-
ductive result as before, v{b, v) < n1 which contradicts the choice of «0.
Thus n0 e F{a{b, v)). Hence if v(b, v) = n0 C1.3 occurs at stage v + 1,
whence (iii) is satisfied because b0 D a. We conclude that whether
a{b, v) = bm or not, (v) may be ignored.

If (ii) holds then by P5 some stage >u + 1 has characteristic <c . The
point to notice here is that d in the statement of P5 is a proper initial
segment of a. Thus (ii) may also be ignored.

We now show that if (i), (iii), or (iv) holds then 4>(bm, m, t) is de-
stroyed at some stage >t + 1 and < v + 1. If (i) holds then (p(a(b, v),
v(b, v), v) is enumerated in C at stage v + 1. If bm n (/, n) C a(b, v)
then from P2.2 and P4.2.

<j)(a(b, v), v(b, v), t) < 4>(bm, n, t) < 0(bm, m, t).

lfbm n {f, n)<t a(b, v) then bm = a(b, v) because we are assuming (i).
Since m e F(bm), in this case v(b, v) < m whence by P4.2

(P(a(b,v),i>(b,v),t)<<t>(bm,m,t).

Note that the values of 0 appearing in these last two inequalities are < o>
by P4.1. It is now clear that if (i) holds, <j>{bm, m, t) will certainly be de-
stroyed at a stage >t + 1 and < v + 1 unless 0(a(6, v), v(b, v), t) is de-
stroyed through Cl at a stage z + 1, / < z < v. Note that </>(a(b, v), v{b, v), t)
is not destroyed through a(z + 1)< a(b, v), because this would mean
that e(b, t) was destroyed at stage z + 1 contrary to the choice of v.

For proof by contradiction suppose that 4>(a(b, v), v{b, v), t) is de-
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stroyed through Cl at stage z + 1. Let stage z + 1 pertain to e(b', v)
where e(b', v) = e{b', t') was enumerated in A at stage t' + 1. Then
a(b, u) c b' and v(b, v) = v{b', z) ± v(b', z + 1). Thus b' ± b. If t' < t, let
b'o be the least initial segment of b' such that O(b'0) = v{b', t) < v(b', z),
then b'o c a(b, v) c b. Now fl(f+l) = J n a 2 , but since a{t + 1) 3 6Q w e

have a ( f + l ) D / » ; n d0 through Cl and e(ft\ / ' ) . Thus b'o n d0 C b. But
b'o n do<tb' since t>(6', 0 $ D0(a(6', /)), and a(6, u) n rf0 <£ 6 by defini-
tion of a(b, v). It follows that b'o is a proper initial segment of a(b, v),
whence b'o n dQ c a(6, y) since «(6, u) C 6. Since a{b, v) C 6', b'o n doc b'
which contradicts our finding above.

Now consider the case in which t < t', let b0 be the least initial seg-
ment of b such that O(b0) - v(b, t') < v{b, v). Since <t>(a(b, v), v(b, v), t)
is destroyed through C1.2 or C1.3 at stage z + 1 pertaining to e(b', t'),
a(b, v) c b' and a(b, v) n dQ 4- b'. Since u(b, v) > O(60), we have
bo C a(b, v) c b'. Considering stage (f' + I, lh(60)) we see from PI that
b'Dbon d0 because a(t' + 1) = b' n a2. Hence 60 n a0 C a(6, u) c a(Jb, t'\
and K^. ' ' ) G Do(fl^> ' ')) which is a contradiction of the way v{b, t) is
defined. This completes the proof that if (i) holds then <l>(bm, m, t) will
be destroyed at a stage >t + 1 and < v + 1.

We now consider the case in which (iii) holds. Here (p(d, v(b, v), v) is
enumerated in C at stage v + 1. Notice that bm c d because a c d,
d n (/, v(b, v)) c b, me F(a), and v{b, v) < w. From P2.2 and P4.2 we
get (j>(d, v(b, v), t) < <l>{bm, m, t) either because d = bm and v(b, v) = n<m,
or because bm n (/, n) c d and n < m. Thus 0(6m, m, ?) is certainly de-
stroyed at some stage >t + 1 and < v + 1 unless <p(d, v{b, v), t) is de-
stroyed through Cl at a stage z + 1, t < z < v. But such destruction of
0(rf, v{b, v), t) through Cl can be ruled out in the same way as for
0(a(6, v), v{b, v), t) in the treatment of (i). This completes our consider-
ation of (iii).

Finally suppose that (iv) holds. Then C1.3 occurs at stage v + 1, be-
cause if C 1.2 occurs from P5 there will be a stage >v + 1 with charac-
teristic < a. In this case 0(6W, m, t) is destroyed at stage v + 1 if not be-
fore.

We can summarize our findings as follows. If e(b, s) < co and a c a(s + 1)
then (t>(bm, m, s) < co. If e(b) < co then ${bm, m) < co. Let <$>{bm, m, s)
be destroyed at stage s + 1, e(b, s) - e(b, s + 1) < u>, and s' be the greatest
number < s such that a(s' + 1) D a, then some number < <t>(bm, m, s') is
enumerated in C u Bm at a stage >s' and < s + 1. If e{b, t) is enumer-
ated in A at stage t + 1 and no number < e(b, t) is enumerated in C at a
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stage >t then 4>(bm, m, t) is eventually destroyed before e(b, t) is de-
stroyed. Thus, if e(b, s) < OJ, e(b, s) ^ A if and only if either e(b, s) is
destroyed before being enumerated in A or there exists v such that
A(e(b, s ) , v) = 0 , e(b, v) = e{b, s ) , a c a(v + 1), <p(bm, m,v)< w , and no
number < <fi(bm, m, v) is enumerated in Blm u C at a stage >u. This
shows that A is recursive in C + B^ if a has last member (/, m).

Now suppose that (/, m) is not the last member of a. We shall show
that with the aid of oracles for C and B^ we can effectively tell whether
e(b, t) e A or not. The argument is very like the one we have given above.
Let bm be the least initial segment of b such that a c bm and either
bm = b or bm n (/, n) c b where n < m. If e(b, s) < OJ and flC«(j+l)
then (p(bm, m, s) < co. Otherwise we should have a < a(s + 1) by C2.
Just as before we can argue that if z(b) < co then <J>(6m, m) < OJ. If
4>{bm, m, s) is d e s t r o y e d at s tage s + 1 a n d e(b, s) - e(b, s + \)< u> then
either some number < <K6m, m, s) is enumerated in C at stage s + 1, or
there exists t < s such that no stage >t + 1 and < s + 1 has characteristic
3 a and some number < <t>(bm, m, t) is enumerated inB®n at a stage >t
and < 5. The difference from the case in which (/, m) is the last member
of a is that now m $ F{bm). Thus if 0(6m, m, 5) is destroyed through Cl,
it must now be through Cl .2. To complete the proof it has to be shown
that if e(b, t) is enumerated in A at stage t + 1 and no number < e(b, t)
is enumerated in C at a stage >t, then <p(bn, m, t) is destroyed before
e(b, t). We define v as before except that (iv) now becomes:

(iv) bm n (/, m) c a(b, v) and v{b, v) = m .

As before the possibilities (ii) and (v) may be ignored. For (i), (iii), and
(iv) we follow the same line of argument as before with some minor
changes. We conclude that in each case (p(bm, m, t) is destroyed at a stage
< v + 1 and e(b, u + 1) < to. It follows easily that A is recursive in
C + B°m.

We conclude this part by showing that Propositions 11 and 12 ensure
the success of the construction. For each m there exists a preferred char-
acteristic sequence c such that O(c) - m and c n d0 is not preferred. To
see this consider arbitrary legitimate b e G. By induction on / it follows
from L2 that (/, /) occurs at most 2' times in b. Therefore if b is long
enough either ( / z) occurs in b for some i > n or there exists a consecu-
tive part of b of length In having no member of the form (/, /)• From
LI two consecutive members of b cannot both be d0. Further, if
b0 cbl c b and lh(&j) = lh(60 + 1), then O(bl)< O(60) + 1, and
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0(6!) = O(60) + 1 unless either bx = 60 n (/, i) for some i or b1 = b0 n d0.
If bx = b0 n d0, then 0(6j) = O(60). It follows that if 6 is long enough
then O(60) = n for some b0 c b such that b0 n d0 <f. b. From PI 1 there
exist preferred characteristic sequences of arbotrary length, whence the
desired c exists. Since either c n dx, or c n w, or c n (/, z) is preferred
for some /, Em =£ A by p6, p4, or p7 respectively. Thus the construction
certainly satisfies &'m. From PI2 the construction also satisfies S m .

4. Verification of Propositions 1 to 10

This part of the paper is very complex. The complexity stems from
the way in which the construction was discovered. From very crude be-
ginnings the final format of the constructidn was achieved only after a
series of modifications each designed to eliminate a flaw found in the
previous attempt. This process of evolution yielded only a cloudy intui-
tion as to why the construction should work.

Proposition PI will be proved outright. Propositions P2—6 are proved
by simultaneous course-of-values induction. Each part of each of these
propositions is an assertion about the first s + 1 stages of the construction.
In each case there is the tacit assumption that there are s + 1 stages.
Further in the induction step the various parts of P2—6 are to be re-
garded as being proved in the order:

P2(l), P4(l), P5, P2(2), P3(l), P4(2), P4(3), P6(3), P3(2).

The remaining parts of P6 are to be placed after P3(2). Each of P7-10
is proved in the normal way assuming only the truth of earlier proposi-
tions.

Proof of PI. Suppose the hypothesis is true. To prove P l ( l ) consider v
such t h a t t + 1 < v + 1 < 5 a n d a(v+ l)D e. T h e n v{c, v) < v(c, s) = n.
If v{c, v) < n let q be the least initial segment of a(c, v) such that
O(<?) = v{c, v). Then q £ e c a(c, s) c c. From the definition of v,
He, v) ^ DQ (a(c, v)) whence v{c, v) 4 D0(a(c, s)) because a(c, s) c a(c, v).
Hence q n d0 <f. e. Therefore e <£ a(v +1) because otherwise through Cl
e(c, v) will ensure a(v + 1) D q n d0 or o(u + 1) = q n a0 if a(v + 1) 3 q.
Thus v{c, v) = n and a(c, v) - a(c, s). Reasoning as above we see that
a(v+ 1) De n d0 ora(v+ l) = e n aQ. If a(v + \) = en a0 then
He, v + 1) = v(c, v), whence stage v + 1 pertains to e(c', v) where e c c',
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c + c, v(c', v) = n, and e(c', v) is enumerated in A at stage f' + 1 < o + i.
Now e n d0 $. a(c, v) since n $ D0(a(c, v)). Also a(c, v) n dQ <f. c by the
definition of a{c, v). Thus e n d0 <£ c. Similarly e n d0 </ c'. By induc-
tion on y it is legitimate to use P l ( l ) to draw conclusions about stages
< u . T h u s t < t' < v m a k e s a(t' + 1) = e n a0 o x a { t ' + \ ) D en d0 s i n c e
a(t' + 1 ) D e. S i m i l a r l y t' < t < v m a k e s a{t + l ) D en d0 o r a(t + \ ) = en a0

since « ( f + l ) D e . Thus t < t' and '̂ < t both lead to contradiction
which completes the proof. PI(2) is also evident from the above proof.

Proof of P2(l). Let e(b, s), e(c, s) < co, and either c<borcnd0cb
or c n c?j c f i o r c n w c b. Let e(6, 5) be assigned at stage t + 1. If
c < b or c n d0 c b, e(c, s) cannot be assigned at a stage >t + 1 because
c n aj < b. However, if c C b and c n d0 <£ b, then e(c, /) < o>, for
otherwise a(t + 1) could not be b n a j . Thus in any case e(c, r) < co. Let
c0 be the greatest common initial segment of c and b and let c0 have
length /0. Then by inspection of C 1.4, C2.2, C4, C5.1 and C6 n(c, t)
< inf/(/0 + 1,0- Since /(lh(&), 0 c /(/0 + 1,0, it follows that

e(c, 0 = e(c, t + 1 ) < ju(c, 0 < e(6, t + 1) = e(6, 5)

and that the number enumerated in C at stage t + 1 is >ju(c, t). We can
now observe that e(c, f) = e(c, 5) because if the value e(c, t) is destroyed
at a stage < s, e(b, t + 1) will also be destroyed.

For proof by contradiction let u be the least number, t < u < S, such
that /x(c, u + 1) =£ p(c, M). There are three possibilities for the case which
produces this inequality at stage u + 1 : C2.1, C5.1 or C6. If C5 or C6
occurs then c n w C b otherwise stage u + \ would have characteristic
<b. From stage t + 1 we have n(c, t) > £;(e(c, 0 . 0 where / = O(c). Since
ju(c, « + 1) =£ ju(c, M), |;(e(c, M), U) > ^i(e(c, t), t). Thus some number
< ^/(e(c, t), t) must be enumerated in C at a stage >t + 1 and < u. This
is impossible because it would destroy e(b, t + 1). We now turn to the
other case in which C2.1 occurs at stage u + 1. Here there must exist m
such that 0(c, m, M + 1)< co = 0(c, m, w). Then a(u + 1) = cl n a0 where
Cj is the greatest initial segment of c with O(cj) = m. By choice of r,
Cj c b, whence 0(c, m, t) < co. For 0(c, m, f) = CJ implies c t n d0 c a(f+ 1)
= 6 n flj which implies a(« + 1) < 6, contradiction. Let u be the least
number > t such that 0(c, m, v + 1) = co, then t < v < u. Since e(b, v + 1)< w»
0(c, w, u) is destroyed through C1 at stage v + 1. Let stage u + 1 pertain
to e(d, v). Then c c a(c, v) c d, v{d, v) = m& F(a{d, v)), and either
c = a(d, v) or c is the greatest initial segment of a{d, v) such that
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c n (/, m) c a(c, v). If c =f= d then c n (f, k) c d for some k<m. There-
fore unless c n w c b the stage z + 1 at which e(d, v) is enumerated in A
has characteristic d n a2 < b,in which case z < A If c n i v c i and z >t,
then by P6(3), a ( z + l ) D c n w, contradiction. Thus z < t in every case.
Now let c2 be the least initial segment of c such that O(c2) = m, then
c2 c Cj c 6. Hencea(f + 1) D c2. By Pl ( l ) applied to e{d, v) we get
b n ax = a(t + I) D c2 n d0 whence b D c2 n d0. Also c2 c cx, and
c2n do<t cx since w = Kc, u) ^ D0(a(d, v)). Therefore a{u + 1)
= Cj n a0 < c2 n rf0, whence a(u + 1) < b contrary to the choice of t.
Since u does not exist the proposition is proved.

Proof of P2(2). Let c n (f, j) c b, e{b, s) and e(c, s) both be < CJ,
a(s + 1) D c, and a(s + 1) < c n a0. We have to show that

(*) e(c, 5) < e(6, s) < n(b, s) < <j>(c, j , s).

Consider the greatest t <s such that e(b, t) = OJ then e(6, t + 1) is de-
fined through C3. Let c have length / then in stage (t + 1, /) C6 occurs
whence /(/ + 1, t) is a subinterval of (e(c, 0 , <Xe, /, t)). Thus we get

e(c, ? + 1) = e(c, 0 < e(b, t+ l) = fx(b, t + 1)< 0(c,/, r + 1) = w .

Without loss of generality suppose 0(c, /, s) < co. Consider the greatest
u < s such that 0(c, /', «) = co. Then u > t, and </»(c, /, u + 1) < co through
C2.1, whence

e(6, M + 1) < //(&, w + 1) < 0(c, /, M + 1) = 0(c, /, 5) .

We have e(c, 5) = e(c, 0 because if e(c, t) is destroyed before stage s + 1
so willbee(ft, t + 1).

Let u be the least number if any such that u < v< s and 0(c, /, s) <
< H(b, v + 1). To complete the proof of (*) it is sufficient to show that
v does not exist. Now the inequality /x(6, u) < nib, v + 1) must arise from
C2.1, C5 or C6 at stage v + 1. Suppose C5 or C6 occurs then n(b, v + 1)
= sup{|u(Z>, u), £n(e(6, u), v)}. Since C4 does not occur at stage
(u + 1, lh(6)) we have

€„(€(&, u), u) < sup /(lh(*), u) < 0(c, 7, u)

which contradicts the choice of v.
Thus n(b, v) < nib, v + 1) arises from C2.1, and 0(6, m, v +1)< 0(6, w, u)

= co for some m. If m > the least member of F(6) — F(c) then
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a ( u + I ) D c n (/, /) whence

e(6, v + 1) < M(6, u + 1) < <t>(c, j , v)

which contradicts the choice of v. Thus m < the least member of
F(b) — F(c) and in particular m < j . Let d be the greatest initial segment
ofc with O(d) = m. Then stage v + 1 has characteristic d n a0. Now
0(6, m, M) = 0(6, m, u + 1) < GJ either because m < j or because m =/
and c c b. Hence there exists a least z, u < z < v, such that 0(6, m, z + l) = co.
By choice of u and ,̂ a(z + I) <£. b and no number < 0(6, m, z) = 0(6, m, u)
is enumerated in C at stage z + 1. Thus 0(6, m, z) is destroyed through
Cl at stage z + 1. Let stage z + 1 pertain to e(e, z) where e(e, z) is enumer-
ated in A at stage x + 1 < z + 1. Then 6 c e, i>(e, z) = m, and a(e, z + 1)
is either 6 or to. Note that 0(c, /, x) < GO from P4(l) and e(e, x) < 0(c,/, x)
from P2.2 at stage x + 1. Since 0(c, /, x) < 0(c, /, M + 1) at no stage >u
and <5 is a number < e(e, x) enumerated in C. Let z < y < s, a(e, y) =# OJ,
and e(e, x) be destroyed at stagey + 1. Then z < y and a(y + 1) < e.
Further a{ y + 1) < g where g is the least initial segment of e such that
O{g) = Ke. >")• Otherwise through Cl we have either a{y + 1) >g ,
<ar(y + 1) = g n a0, or a(y + 1) 3 ^ n c/0. Each of these possibilities is in-
compatible v/ith a(y + 1) < e. Since a(e, y) c a(e, z + 1) = 6 we have
g C i whence e{b, y + 1) = oo, contradiction. Thus if z < _y < s,
e(e, x) = e(e, >»), a(e, y) ¥= co, and a(e, y + 1) = OJ, then stagey + 1 per-
tains to e(e, y).

If/ = m then/ is the last member of F(b) — F(c) whence 6 n (/, m)
is illegitimate. In this case a(e, z) = 6, Cl.3 occurs at stage z + 1 and
4>(c, j , z) is enumerated in C at stage z + 1. This contradicts the choice
of u since w < z < s. Hence m < /.

The key to the remainder of the proof that v does not exist is the
following claim.

There exists y such that z < y < s, stage y + 1 pertains to e(e, z) and
either fc c and C1.2 occurs at stage y + 1 or c c f and Cl. l or C1.3
occurs at stage y + 1 where f is the greatest initial segment of a{e, y)
such thatfn (f, v(e, y)) c a(e, y) if v{e, y) e F(a(e, y)) andf= a(e, y)
otherwise. For proof by contradiction suppose no such y exists. Let ; 0

be the least number < / such that for some c0 (to be chosen of greatest
possible length once/0 is found) c c c0 n (/, /„) c 6 and there exists no
y0 standing in the same relation to c0 as the proposed y to c. It is clear
that/0 exists because c n (/, /) c 6 whence/ has the properties required
of ; 0 . Let z0 be the least number > z such that stage z0 + 1 pertains to
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e(e, z) and v{e, z0 + 1) > /0 , then z0 < s. Otherwise by Pl(2) either
a(s + 1) ^ c or a{s + 1) <f. c n aQ. From the choice of c0 there is no yQ,
z<y0 < s, such tha t / 0 c c0, stage y 0 + 1 pertains to e(e, z) and C1.2
occurs, where/0 is the greatest initial segment of a(e, y0) such that

/0 n (/, v{e, ̂ o» c fl(*. ^o)- H e n c e Co n (/' /o) c a ( e- zo)> because
d(e, y0 + 1) ^ <*(e, y$) only through C1.2 and thena(e, y0 + 1) i s / 0 . Let
K«?, z o ) = / i then/! < / 0 .

Let Cl . l occur at stage z0 + 1 then z0 serves for y0; contradiction.
Let C1.2 occur at stage z0 + 1 then there exists a greatest c± such that
c 0 C c j n (/, /j) c a(e, z0). We claim that a{e, z0 + 1) = c1 and
v(̂ , z0 + 1) =/0 . If not, there exists ;"2 and c2 such that c0 n (/, ; 0 )
C c 2 n (/. 7*2) c Cj. It can now be seen that/2 has the defining property
of/0 with c2 playing the role of c0. But/2 < ]'Q, contradicting the choice
of/0. Let C1.3 occur at stage z0 + 1 and c1 = a(e, z0). By the same argu-
ment as for C1.2 a(e, z0 + 1) = Cy and v(e, z0 + 1) =/0 . Above we re-
marked that ZQ < s. By the same token there exists a least zx, z0 < zl < s,
such that stage zx + 1 pertains to e(e, z). Now c0 is the greatest initial
segment of ct such that c0 n (/, / 0 ) c cl. Otherwise there exist c2 and
/2 such that c0 n (/, /0) c c2 n (/, /2) c Ci and/2 < /0 which would
contradict the choice of ; 0 as above. Clearly a(e, z{)- cx and v{e, z{) - j 0 .
At stage z-y + 1 the defining property of cQ is contradicted. This com-
pletes the proof that y exists.

As above let / b e the greatest initial segment of a(e, y) such that
/ n (/, v{fi, y)) c a(e, y) if v{e, y) e F(a(e, y)), and let/be a(e, y) other-
wise. Recall that u is the greatest number < s such that (j)(c, j , u) = co and
that u < z < s. We now consider the various possibilities for/. If / = c
and C1.2 or C1.3 occurs at stage y + 1 then 0(c, /, y) is destroyed at stage
y + 1 contrary to the definition of u. I f / = c and Cl.l occurs at stage
y + 1 then y can be replaced by a lesser number such that C1.2 occurs.
If / is a proper initial segment of c then by P5 some stage >y and <s has
characteristic <c, contradiction. Here one should note t h a t / ^ c , whence
Cl .2 occurs at stage y + 1, whence a(e, y + 1) = / or a(e, y + 1) = co; thus
the "rf" of P5 for e(e, z) is a proper initial segment of c.

The case which remains is that in which/D c n (f, j) and either Cl. l
or C 1.3 occurs at stage y + 1. Let v(e, y) = p; then 0 ( / p, y) is enumer-
ated in C at stage y + 1 and p 4 DQ(f). Recall that e(e, z) is enumerated
in A at stage x + 1, i>(e, z) = m < 7. Let rf0 be the greatest initial segment
of c such that O(d0) =/; thena(w + 1) = rf0 ° a0 by choice of u. By choice
of z, u < z. Thus if x < u, then v(e, u)< m and PI.2 applied to e(e, x)
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and stage u + 1 yields: a(u + I) J> d0. From this contradiction we infer
that u < x. Applying P2(2) and P4(l) to stage* + 1, <H/ p, x) < 0(c,/,x).
Also <j>(c, j , x) = <j>(c, j , y) since both x and y are >u and <s. Thus if
<£(/, p, x) = (p(f, p, y), 4>{c, j , y) is destroyed at stage y + 1 contradicting
the choice of u. Hence there exists a least z , x < z < y, such that
<P(f, p, z' + 1) = oi. Now <p(f, p, z") cannot be destroyed either by stage
z + 1 having characteristic </which would destroy e(b, z') also, or by
the enumeration in C of some number <</>(/> p, z') which would destroy
<Kc, /, z"), contradicting the choice of u. Thus C1.2 or C1.3 occurs at
stage z + 1 with respect to some e(e', z') such t h a t / c e and v(e', z) = p.

Let e{e , z') be enumerated in A at stage x + 1 < z' + 1. Suppose
x < x , then x < x < y. Let / ' be the least, initial segment of e such that
O(/ ' ) = v(e, y) then/ ' c /because O(/) > v(e, y). Further, applying
Pl( l ) to e(e, x) = e(e, y) we have a(x' + 1) 3 / ' n d0 since by choice of
x we have a(x' + 1) = e n a2 o / D / ' . But / ' n d0 <t f since / c a(e, y)
and v{e, y) ^ D0(a(e, y)), a n d / n d0 <t e because 4>(f, p, z) is destroyed
through Cl at a stage pertaining to e(e', z). This is a contradiction. Simi-
larly x < x leads to a contradiction, because x < x < z', e D f, and
O( / ) > v(e', z') = p. If x = x then e = e and so v{e, z) = v(e, y). But
either Cl.2 of C1.3 occurs at stage z + 1 whence v(e , z) < v{e , z + 1).
Since z < y we have a contradiction in this case also. This completes the
proof that v does not exist and of the first part of P2(2).

Now suppose that k < j and k $ D0(c). As before let t be the greatest
number-O such that e(b, t) - GO, and let lh(c) = /. From stage (t + \,T)
/(/ + 1, 0 has least member >0(c, k, t) since 0(c, k, t) < 0(c, /, r) by P4(2).
Thus we have from C3 at stage / + 1

0(c. k, t) = 0(c, fc, f + 1) < e(6, f + 1) = e(b, s) .

Let u be the greatest number, if any, such that t < u < s and <p(c, k, u + l) = w.
To complete the proof it is enough to show that u does not exist. If
a(u + 1) < c or some number < 0(c, fc, M) is enumerated in C at stage
u + 1 then e(6, u + 1) = co which is a contradiction. Thus 0(c, fc. «) Js ^e'
stroyed through Cl at stage u + 1. Let stage u + 1 pertain to e(d, u)
where e(rf, u) - e(d, v) was enumerated in A at stage v + 1 < u + 1. Then
Krf, u) = fc Since there existsq $Z)0(c), k< q < O(c),/ for instance, we
have a(d, u + 1) = c. There are two possibilities: d = c or d D c ° (/, w)
for some m < A:. In either of these cases u > / yields e(/>, u + 1) = w, a
contradiction. If u < t, then v< t <u. Also K >̂ ") = ^- Now«(f + 1)Db^g
where g is the least initial segment of d such that O(g) = fc. Hence by PKD
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a(t + 1) D 8 n do- But g £ c since k < j , and g n rf0 # c since *>(# w) = A:.
ThusaU + \) = b n a^ D g n d0 is a. contradiction. Hence u does not
exist and 0(c, fc, t) = <p(c, k, s), which completes the proof of P2(2).

Proof of P3(l). By examining the cases in the construction which lead to
another substage, namely C1.4, C2.2, C4, C5.2 and C6, we can easily see
that /(/, 5) is the intersection of all the intervals of the following three
kinds:

(i) (ju(c, s), to) where e(c, s) < co and either c < b, or c n d0 <b,or
cn dxcb,orcn w e b,

(ii) (e(c, s), 0(c, /, 5)) where e{c, s) < co and c n (/, /) C 6,
(iii) (0(c, fc, 5), 0(c, /, s)) where e(c, 5) < co, c n (/, 7) c b, k < } , and

0(c, k, s) < co.
With the notation of the statement of the construction suppose e(b, s) < co.
From P2(l) and (2) it is immediate that e(b, s) > inf/(/, s) and
H(b, s) < sup /(/, 5). This completes the proof of P3(l).

Proof of P3(2). Suppose stage (s + 1, i + 1) exists, we must show that
I(i + l,s)¥= 0. We continue the line of argument begun in the proof of
P3(l). There are several cases according as to which of C 1.4, C2.2, C4,
C5.2 and C6 occurs in stage (5 + 1, /). Suppose C1.4 occurs then I(i + 1, s)
is formed from I(i, s) by subtracting each interval [0, n(d, s)] such that
d n a0 < b n d0 and e(d, s) < co. Consider particular such d.\id<b
we have already seen that ju(rf, s) < inf /(/, s). Otherwise bed. For any
c with e(c, s) < co and c n (/, 7) c b we have 0(c, 7, 5) > ju(rf, 5) by P2(2).
Thus sup /(/, s) G /(i + 1, s) which completes this case. All the other
cases except C6 may be treated similarly. Let C6 occur in stage (s + 1, /).
As a preliminary for this case we show that if c D b n w, then e(c, s) = co.
For proof by contradiction suppose c D b n w and e(c, s) < co. Let
e(c, s) be assigned at stage t + 1 then a(t + \) D b n w. Now a(u) <f.b n w
for all u in f < u < s, otherwise e(c, t + 1) would be destroyed. By P6(3)
» ( s + l ) 3 f t n w contrary to the hypothesis that C6 occurs at stage
(s + 1, z). It follows that /(/ + 1, s) may be formed from Hi, s) by sub-
tracting [0, e(b, s)], (<p(b, j , s), co), [0, <t>(b, k, s)] for each k < 7 such that
<t>(b, k, s) < co, and each interval [0, n(d, s)] such that e{d, s) < co,
dD b,dj>bn w, and d < b n (/, 7"). (Recall that ford<b we already
have n(d, s) < inf /(/, 5).) Consider such d then since d must be legitimate
we have d D b n (/, k) where k $ D0(b) u F{b) and fc < 7. By P4.1 and
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P4.2

e(6, s) < 0(6, k, s) < 0(6, /, s) < to .

Also n(d, s) < 0(6, k, s) from P2(2). Now e(b. s) < <p(b, j , s) < n(b. s)
whence 0(6, /, s) e /(/, s) from P3(l). It follows that 0(6, j , s) e I(i + 1, s)
which completes the proof.

Proof of P4. Recall the hypothesis: lh(6) = /, O(b) = n, b c a{s + 1),
fl(s + 1)< 6 n fl0, and e(b, s) < co. For P4(l) note that C2.1 cannot oc-
cur unless n $ D0(c). Thus 0(6, j , s) < co certainly implies/ $ £>0(6). For
the rest of P4(l) suppose for proof by contradiction that/ < n, / $D0(b),
and 4>(b, j , s) = co. Let c be the greatest initial segment of b such that
O(c) = /. By C2 either a ( s + l ) 3 c n d0 or a(s + 1) = c ° a0. In the
former case/ 6 D0(b) and in the latter c = 6 and a(s + 1) = 6 n a0. In
either event we have the desired contradiction. This completes P4(l).

For P4(2) let ]\ < j2 < n and neither j \ nor /2 be in DQ(b). We must
show that e(6, s) < 0(6, /lf 5) < <p(b, j 2 , s) and that 4>(b, j 1 , s) is assigned
before <j>(b, j 2 , s). For / = 1, 2, let c,- be the greatest initial segment of b
such that 0(6) =/,-. Then c%cx since/j < / 7 . By C2.1 0(6, /2, s) is as-
signed at a stage f + 1 with characteristic c2 n a0. If 0(6, j \ , t) - co, then
by C2 stage / + 1 would have characteristic either c1 n d0 or c{ n a0.
Since / t <$ D0(b), 0(6, /„, 0 < oo. Also by C2.1 at stage t + 1, ;u(6, 0
< 0(6, j2, t + 1) whence 0(6, /^ f) < 0(6, j 2 , t + 1). Choose the least u
if any such that t < v < s and 0(6, j x , v + 1) = co. If 0(6, j l , v) is de-
stroyed other than Cl, 0(6, j 2 , t + 1) is also destroyed at stage v + 1
which is impossible. Thus stage v + 1 pertains to some e(c, v) such that
v(c, u) =/j and a(c, v + 1) = 6. Note that a(c, v + 1) =£ co since
/j < /2 ^ Z>0(*) a n d /2 < 0(6). To complete the proof of the proposition
it is clearly sufficient to show that v does not exist.

Suppose a(c, u) =£ CJ for all w in u < w < s. Then fl(c, 5) c a(c, v + l) = b
and Kc 5) < 0(a(c, s)). Let e be the least initial segment of a(c, s) with
O(e) = v{c, s) then from Pl(2) a(s + I) = e n a0 or a(s + I) D e n d0

since a(s + 1) D 6. This contradicts a(5 + 1) < 6 n a0 since e c 6 and
e n d0 <t b. Thus there exists a least number w such that v < u < s and
a{c, u + 1) = co. Let a(u + 1)< c then a(u + 1) D 6 D a(c, w). Otherwise
0(6, /2, «) is destroyed at stage u + 1. Let e now be the least initial seg-
ment of a(c, u) with O(e) = v(c, u). From PI(2) a(u + 1) = e n aQ or
a(u + 1) D e n c?0, which contradicts a(w + 1)< c. Hence a(« + 1)-^ c.

For proof by contradiction assume that some number < e(c, u) is
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enumerated in C at stage u + 1. Since a(c, v+ 1) = 6 and v{c, v) = jx

notice that either c = b or c D b n (/, /) for some / < / j . Let e(c, u) be
enumerated in 4 at stage z + 1. From P2(2) e(c, z) < 0(6, /, z) if
c D 6 n ( / /'). From P4(l) and (2), 0(6, /, z) < 0(6, ;2, z) < w. Thus in
any case, i.e. even if c = 6, we have e(c, z) < 0(6, /2, z) < co. Also
0(6, j 2 , 2) < 0(6, /2, u) and so e(c, w) < 0(6, j 2 , u). Hence 0(6, j 2 , u) is
destroyed at stage u + 1, contradiction. Thus no number < e(c, u) is
enumerated in C at stage u + 1, whence stage u + 1 pertains to e(c, w).

Let d be defined as in P5. If d is a proper initial segment of 6 then by
P5 some stage >u and < s + 1 has characteristic <6 contradicting either
the choice of t or a{s + 1) D 6. Hence </ = 6, a(c, u) = b, and either Cl. l
or C1.3 occurs at stage M + 1. If Kc, M) > /2, then, since v(c, v) = j \ , for
some x we have v < x < u, v(c, x) = /2, and 0(6, j 2 , x + 1) = to, contra-
dicting the choice of t. Therefore v{c, u) = y < j2 and Cl.l occurs at stage
u + 1. (If C1.3 occurred, a(c, u + 1) would be =£co since ; 2 ^Z)0(6).) In
this case 0(6, .y, M) is enumerated in C at stage u + 1. From P4(l) and (2),
0(6, >•, z) < 0(6, /2, z) < CJ. Suppose z < t then z <t <u. Let c3 be the
least initial segment of c such that O(c3) =y = v{c, u). Then c3 n d0 <t c2

since >> $ D0(b), and yet c3 c c2 because y < j2- By choice of f, a(f + 1)
= c2 n a0 D c3. But from P l ( l ) applied to e(c, z), we now get
j ( f + l ) 3 c 3 n c?0; contradiction. Thus t < z whence 0(6,}2, u) = 0(6, j.2, z).
Since 0(6, j 2 , z) is not destroyed at stage u + 1, 0(6, y, z) is destroyed at
some stage w + 1 < u. Now 0(6, y, z) must be destroyed through Cl at
stage w + 1, otherwise 0(6, /2, f + 1) would also be destroyed. Let stage
w + 1 pertain to e{e, w) where e(e, w) was enumerated in A at stage
/• + 1 < w + 1. Suppose r < z then r < z < w. Now e D b and v{e, w) = y,
whence a(z + 1) D c3 n rf0 by applying P l ( l ) to e(e, /•). This contradicts
a(z + 1) = c n a2 which follows from the choice of z. Similarly if z < r,
then z < r < u. Applying P l ( l ) to e(c, z) we get a(r + l ) 3 c 3 n d 0 , which
contradicts a(r + 1) = e n a2. Thus z = /• and c = e. But now
Kc w + 1) > Ke, z)-y which contradicts v{c, u) - y. This contradic-
tion completes the proof that v cannot exist and hence the proof of
P4(2).

For P4(3) suppose 0(6, /, s) < CJ and that 0(6, /, s) is assigned at stage
v + 1. We must show that no number < 0(6, /, s) is enumerated in A u C
at a stage >u and < s. If a number < 0(6, /', 5) is enumerated in C at a
stage >v and < s , then 0(6, /, v + 1) would be destroyed too early. For
the rest, assume for proof by contradiction that e(c, u) is enumerated in
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A at stage u + 1, v < u < s and that e(c, u) < 4>{b, j , u). Then b <jt c and
none of b n dQ, b n d± and b n w are initial segments of c by P2(l) ap-
plied to stage u + 1. Also c n a2 4-b, otherwise <p(b, j , u) would be de-
stroyed at stage u + 1. There are now three possibilities:

(i) c n web,
(ii) c = b,

(iii) b n (/, k) C c for some k.
Let e(6, s) be assigned at stage t + 1 < v + 1 and O(c) = /.

Suppose (i) holds. Then c n w c a(/ + 1), t < w and a{r) <jt c for all r
in / < r < u + 1. By P6(3) a(« + 1) 3 c n w since a(u + 1) D c and
«(M + 1) = c n a2 < c n a0. This is a contradiction.

Suppose (ii) holds. Let w be the least number > u such that a(c, w + 1) = w.
Applying Pl ( l ) to e(c, w) we can see that w exists and w < s, because
a(s + 1) D b = c and a(s + 1) < b n a0. Also by Pl(2), w =̂ s whence
w < s. Let </ be defined from c and w, as d is defined from c and fin P5.
Let x be the least number > w such that a(x + 1) D d and a{x + 1) < rf n a0,
then x < s because either d = c or d n (/, m) <z c for some m. By P5, if
d¥= c, some stage >w and < s + 1 has characteristic<c = b, contradictioa
Hence d = c - b. If Kc, w) > / then there exists >̂ , w < j^ < w, such that
y(c, y) = / and stage y + 1 pertains to e(c, w). This is because a(c, k) = c
for all k in w + 1 < k < w and / ^ Z)o(^) = ^ o ^ ) - But from stage 7 + 1,
<t>(c, j , y + 1) = co. This contradicts v < y < s, whence v(c, w) = m for
some m < j . Since a(c, w + 1) = to Cl. 1 occurs at stage w + 1. (Note that
either C1.1 or C1.3 occurs because d = a(c, w) and that if C1.3 occurs
then/ is eligible as a value of v(c, w + 1).) Thus 4>(c, m, w) is enumerated
in C at stage w + 1. Applying P4(2) to stage « + 1 we have 0(c, m, u)
< 0(c, /, w) = 0(c, 7, s) < co whence 0(c, m, y + 1) = co for some
y, u <y < w. Otherwise <p(b, j , v + 1) would be destroyed at stage w + 1 •
Consider the least suchy: then (j>(c, m, y) is destroyed through Cl at
stage y + 1. Let stage y + 1 pertain to e(e, y) and z + 1 < y + 1 be the
stage at which e{e, y) is enumerated in A. Then e 3 c and K^. y)
= m ¥= v(e, y + 1). Since y < w and KA W>) = m we have e # c and thus
« # z. Suppose u < z; then w < z < w, Kc, w) = m < 7 and a(z + l ) D c
Applying Pl ( l ) to e(c, w) we get a contradiction. Similarly if z < w,
then z < u < y, v(e, y) = m < j and a(u + 1) D c. Applying P l ( l ) to
e(e, z) we get a contradiction. This means that (ii) cannot hold.

Thus (iii) holds, i.e. c D b n (/, k) for some fc. Since a(u + 1) = c n «2
from P2(2) we have 0(6, 7, w) < e(c, u) if/ < fc Hence/ > fc. From P4(2)
4>{b, j , u) > (j)(b, k, u). Let w be the least number if any such that w > u,
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stage w + 1 pertains to e(c, w) and either

d % b and C1.2 occurs at stage w + 1
or

d D b and either Cl. l or C1.3 occurs ,

where d is the greatest initial segment of a{c, w) such that d n (/, v(c, w))
c a{c, w) if v{c, w) G F(a(c, w)) and where d is a(c, w) otherwise. Let
v{c, w) = I. Suppose that w> s or does not exist and that a(c, q) =£ co for
all q, u < q < 5. Then b c a(c, s), otherwise the least y such that
b 4- a(c, y + 1) would be a candidate for w.

Let m be the least number if any such that m < v(c, s) and for some
eD b,e n {f, m) c c and a(c, s) <$ e. Let z be the least number > u such
that v{c, z + \)> m. Then z < s and e n (/, m) C a(c, z + 1) because
«(c, 5) c a(c, z + 1) c c. Note that e is the greatest initial segment of
a(c, z + 1) such that e n (f, rn) c a(c, z + 1). Otherwise there exist e' and
m' < m such that e' n (/, m') c a(c, z + 1) and e' D 6, which contradicts
the choice of m. Suppose v{c, z + 1) = m, then because m < v{c, s) there
exists a least r, z <r < s, such that stage r + 1 pertains to e(c, z). Either
Cl.l or C 1.3 occurs at stage r + 1, or a(c, r + 1) = e. In the former case,
since a(c, r) D a(c, s)D b, r is eligible as w contradicting w > s; and in
the latter the choice of e is contradicted since a(c, s) C a(c, r + 1). Thus
y(c, z + 1) > m, whence m e D0(a(c, z + 1)), which means that for some
m < m and e ' D e w e have a{c, z + l ) D e ' n (/, m'). It is easy to see
that a(c, s) <£ e', whence m has the defining properties of m and the
minimality of m is contradicted. We conclude that m does not exist
whence a(c, s) = b or Kc s) < k < O(b). Applying PI(2) to e(c, u) we
get a contradiction of the hypotheses that a(s + 1 ) 3 6 and a(s + 1) < b n a0.
It follows that either w < s or a(c, q) = to for some <? in w < q < s.

Suppose w does not exist or w > s. Consider the least x such that
u < x < s and a(c, x + 1) = co. Note that a(c, u + 1) =#= co because
^ n (/. &) c c- Stage x + 1 pertains to e(c, u) otherwise <j)(b, j , v + 1)
would be destroyed at stage x + 1. We can now repeat the argument
made above about m but reading x for s. We can conclude that either
a(c, x) = b or a{c, x) D b n (/, k) and F(a(c, x)) — F(b) has no member
< v{c, x). We now argue by cases to show that in fact x is a candidate
for w. Let v(c, x) = /' e F(a(c, x)) and let d' be the greatest initial seg-
ment of a{c, x) such that d' n (/, /') c a(c, x). U I' < k then rf' D b im-
plies that either Cl .3 occurs at stage x + 1 or Cl .2 occurs and
a(c, x + 1) = d' because some number < k and >/' is in F{d') and hence
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<$D0(d'). If/' < kandd' £ b, then either C 1.2 occurs at stage x + 1 or
Cl .3 occurs and a(c, x + 1) = a{c, x) because some number >/' and < k
is in F(a{c, x)). If /' = k then d' = b and either C1.3 occurs or C1.2 oc-
curs at stage x + 1 and a(c, x + 1) = b because some number >k and
< 0(6), / for instance, is not in D0(b). If /' > k then a(c, x) - b, otherwise
F(a(c, x)) — F{b) contains a number < /' = v(c, x). Either C1.2 occurs at
stage x + lor Cl .3 occurs and v{c, x) > j since a{c, x + 1) = GO. The latter
is impossible because it implies that for some y, u < y < x, a(c, y) = b,
u(c, y) = j and <t>(b, j , y + 1) = a>. This completes every case except that
in which u(c, x) $ F(a(c, x)), but then Cl. 1 occurs at stage x + 1 and
d - a(c, x) D b. We have finally shown that w exists and w < s.

We complete the proof by obtaining a contradiction. If d ^ b then
C1.2 occurs at stage w + 1 and by P5 some stage >vv and < s + 1 has
characteristic < b, contradiction. Suppose b = d and Cl.l occurs at stage
w + 1 and / = v(c, w) > j . Then a(c, w)-b and <p(b, j , y + 1) = co for
some y in u < y < w, contradicting the choice of v. Notice that if d = b
and Cl .3 occurs at stage w + 1 then 1= k. Thus bed, 4>(d, I, w) is
enumerated in C at stage w + 1 through Cl.l or C1.3 and if d = b then
/ < /. If d D b n (/, /t) we get 0(rf, £ ") < M<# «) < 0(6, ^ u) from P2(2)
and 0(6, k, u) < 0(6, /, u) from P4(2). If d = 6, then 0(rf, /, M) < 0(6,/, «)
from P4(2). Thus in any case 4>(d, I, u) < 0(6, /, u) - 0(6, /, w). Hence
there is a least >» such that u < y < w and <f>(d, I, y + 1) = co; otherwise
0(6, /, w) would be destroyed at stage w + 1. Further, 0(rf, /, >>) must be
destroyed through Cl; otherwise either e(c, y + 1) = OJ or 0(6, /, r + 1) = CJ
both of which are impossible. Let stage y + 1 pertain to e(e, y) where
e(e, y) was enumerated in A at stage z + 1 < y + 1, then b c d c e,
d n d0 <£ e and Ke, JO = /• If z < M, then z < u < y. In this case applying
PI. 1 to e(e, z) we can refute a(u + 1) = c n a2- By repeating the argument
that m cannot exist, with w playing the role of 5, we see that either
a(c, w) = b or u(c, w) < k. If w < z then u < z < w. In this case applying
PI(1) to e(c, u) we can refute a(z + 1) = e n a2- Finally, if w = z then
e = c and Kc, y) = I = v(c, w). This is impossible because Cl pertains to
e(c, J ) = e(c, w) at stagey + 1, whence v{c, y) < v{c, y + 1) < v(c, w).
This last contradiction shows that (iii) cannot hold and completes the
proof of P4(3).

Proof of P5. We recall the hypotheses: e(c, t) is enumerated in ,4 at stage
t + 1, u is the least number > t such that a(c, u+ 1) = to, s is the least
number >u such that a(s + I) D d and a(s + 1) < rf n a0 and no stage
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>w and < s has characteristic < d. If stage u + 1 pertains to e(c, t) and
C1.2 occurs, d is the greatest initial segment of a{c, u) such that
d n (/, v(c, u)) c a(c, u). If u = t, d = c. Otherwise d - a(c, u). We have
to show that if d = c then c n w C a(s + 1) and that if d =£ c then
</n (f, m)c c for some m and a(s + 1) < d n (/, m).

Let O(d) = /. From the definition of a(c, s + 1) in Cl and C5.2 we see
that either d = c or rf n (f,m)Cc for some m. It follows that e(d, 0 < to
and that ^(e(d, t), t) < [i(d, t + 1) < CJ. We claim that no number
< £;(e(d, 0> 0 is enumerated in C at a stage >t and < s. For proof by
contradiction let v be the least number, t < v < s, such that some num-
ber < ?/(e(rf, t), t) is enumerated in C at stage v + 1. Then a(u + 1) <jt rf
because either u < « and a(c, u + 1) is defined, or u < v + 1 < s.

Suppose that C3 occurs at stage v + 1 and that a(v + 1) = e n ax. Then
c n aj <£ rf. Let e^ d. Since e n rf0 c rf implies a(u + 1) < rf, we have
<• n <i0 c/ d and hence e(e, 0 < OJ. By P2(l) or P2(2) as appropriate
e(e, t) < e{d, t). If e{e, t) is destroyed at stage w + 1, t < w < v, then
either a(w + 1) < e or some number < e(e, 0 is enumerated in C at stage
w + 1. Now a(w + 1) <f. e since by hypothesis a(w + \)<f. d and if a num-
ber < e(e, t) is enumerated in C at stage w + 1 the choice of v is refuted.
Remember that e(d, t) < ^(e(rf, 0 , 0 from § 1. Hence e is not a proper
initial segment of d.

Ud C e then d n d0 c e. Otherwise we should have either a contra-
diction by PI(1) if v < u or a contradiction of a(v + 1) <£ rf n a0 if
« < y < s. Thus either rf<eor</n c?0 c e . Let rf0 be the greatest com-
mon initial segment of d and e and let d0 have length /0. From stage
(u + 1, /0) the least member of /(70 + 1, v) is >n(d, v). But n(d, v)
> n(d, t + 1) > %i(e(d, t), t) and so the choice of u is refuted, because in
stage v + 1 the number enumerated in C is sup /(lh(e), v) > inf I(l0 + 1, v).

It follows that one of Cl. 1 and Cl .3 occurs at stage v + 1. Let stage
u + 1 pertain to e(e, v) where e(e, v) = e(e, w) is enumerated in A at stage
w + 1 < v + 1 and where t>0, v) = k- Let f=a(e, v) if Cl.l occurs at
stage v + 1 and otherwise l e t / be the greatest initial segment of a(e, v)
such that / n (/, k) C a(e, v). Then 0(/, fc, v) is enumerated in C at stage
v+ 1.

Suppose e < d then w < t because no stage >t and < 5 has characteris-
tic >d. Let e0 be the least initial segment of e such that O(e0) = v{e, t).
Let t0 be the least stage >^ pertaining to e(e, w) then t0 < v + 1 and
eo n ao = a(fo)- F r o m stage t + 1 either e0 < d or e0 n d0 c c which
makes a(t0) < rf, contradiction. The same argument shows that if w < t,
then e 4- d.
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Suppose e c d and t < w; then a(w + 1) = e ° a2 4- d. In this case
e n w c d, because e = d would contradict the choice of s. From P6(3),
since a(t + \) D e n w and a(z) <f. e for all z in t < z < w + 1, we have
a(w + l ) D e n w; contradiction. Suppose d c e and ? < w; then
d n d0 C e. Otherwise a(w + I) D d and a{w + 1) < d n aQ contradicting
the choice of s. If d c e and w < t, let rfj be the least initial segment of e
such that O(d{) = v(e, t); then dl 4- d. Otherwise by PI(2) a{t + 1) D dl n d0

ora(? + 1) = rfj n a0, contradiction. Further d n dQ <tdl} because other-
wise a(t + 1) < e and e(e, w) would be destroyed at stage t + 1. Hence
d c e and w < f imply a(v + 1) D dx % d and a(v + 1) < d n a0, which
contradicts the choice of s. Notice also that if d < e, then certainly t < w,
otherwise e(e, w) is destroyed at stage t + 1 making it impossible for stage
v + 1 to pertain to e(e, w).

There now remain only two possibilities regarding d, t, e and w:
(i) t < w and d < e or d n d0 c e;

(ii) t = w and c - e.
From the definition o f /we know that either/= e o r / n (/, £0) c e for
some fc0 < k. Let (i) hold; then either d n d0 c ford < for fn (f,kQ)ce
a n d / n ( / &!> c rf for some ^ < ^0 o r / n w c d. Suppose/" w c d;
then a(r + 1) D / n w. Applying P6(3) we have a(w + 1) D f n w, because
w >r, a ( « H / f o r a l l « in r < u < w, a{w + l ) D / a n d a ( w + l ) < / n a0.
This contradicts a(w + 1) = e n a2- T n u s either rf n c?0 C / or d < f or
/ n (/. &i) c rf where fcj < A:. In each of these cases it is easy to see using
P2 and P4 that n(d, w) < 0 ( / k, w) < co, because a{w + 1) D / and
a(w + 1) < / n a0. Note that e(rf, w) # co for the following reasons:
e(d, t) < |/(e(rf, r), /) < cu and if a number < e{d, t) is enumerated in C
at a stage > / and < w then the choice of v is contradicted and no stage
>t and <w has characteristic < d by hypothesis. Since w < u, 0(/, fc, w)
< 0(/, ^, u) and so the number 0(/, k, v) enumerated in C at stage v + 1
is >ju(rf, f + 1) and hence ^ £/(e(rf, 0 , t). This contradicts the choice ofu

Now let (ii) hold and suppose firstly that Cl. 1 occurs at stage v + 1,
then / = d because a(e, v + 1) = a(c, v+ 1) = co in this case. lff=d = c
then from the occurrence of C5 at stage t + \, ^(e(d, t), t) < <p(f, k, t)
because k$F(f). Uf=d* c, then c D f ° (/, k0) for some k0 < k and
$,(£(</. f), t) < <p(f, k, t) since a{t + 1) D / n (/, fc0) and A: ^ F(f). Sec-
only suppose Cl.3 occurs at stage v + 1; t h e n / n (/, A:) c a{c, v) c c.
By induction on z, a(c, z)D fn (/, A:) for all z in u < z < u, whence
/ n (/, A:) c d. Now since C5 or C6 occurs at stage (r + 1, lh(rf)) rather
than C4 we have £,(e(d, t), t) < sup /(lh(d), 0- But sup /(lh(rf), t)< <t>(f, k,i)
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because/0 ( / k) c d. Thus again £,(e(tf, t), t) < 0(/, k, t). Now in
every case <p(f, k, t)< CJ from P4(l), whence ^(e(rf, t), t) < <p(f, k, v)
because 0 ( / k, t) < 0(/, A:, u). This contradicts the choice of v and
completes the proof of the claim that no number < ^(.e(d, t), t) is
enumerated in C at a stage >t and < s.

The remainder of the proof of P5 is straightforward. Suppose d =£ c
then d n (/, m) c c for some m. Let w0 be the least number >t such that
either a(c, u0 + 1) = d or u0 = u. Stage w0 + 1 pertains to e(c, t) and
C1.2 occurs, whence <}>(d, m, u0 + 1) = co. Hence 0(rf, m, 5) is assigned at
some stage MX + 1 < 5 where Mj > u0. Now e(rf, 0 = e(d, s) whence

€,(e(rf, f), 0 < 0(rf, f + 1) < n(d, Mj) < 0(rf, wi, 5) .

For any m0 such that w < m0 < / and m0 ^ 50(rf) uF(d) we have
^(e(rf, 0 , 0 < <t>{d, m0, t)<u since a{t + 1) D d n (/, w). (Of course,
for m0 > / o r m 0 e D0(rf), <t>(.d, m0, s) = co.) Let p be the length of d. We
have shown above that £/(e(</, 5), 5) = £/(e(d, r), ^), whence C4 does not
occur in stage (5 + 1, p) because sup I(p, t) < sup I(p, s). This last in-
equality is east to verify when one notices from the description of stage
(s + 1, 0 that if C6 occurs in stage (5 + 1, z) then sup /(/ + 1, s)
= inf {sup /(/, 5), <p{b, j , s)}, and that otherwise sup /(/ + \,s) = sup /(/, 5).
From the hypotheses of P5 neither Cl nor C2 occurs at stage (s + \,p).
Further since e(d, s) < to, nor does C3 occur. Thus either a(s + 1) D d n w
or a(s + 1) = d n a2 or a(s + 1) D d n (/, m') where m is the greatest
/ < / such that/ ^ F(rf) and 0(rf, /, 5) < ^(e(d, s), s). But above we have
s h o w n t h a t £/(e(</, s ) , s) = ^/(e(rf, t ) , t) < 4>{d, m0, t)< 4>(d, m0, s) fo r all
m0, m < m0 < /. Hence m < m. This completes the proof of P5 when
d¥= c.lfd = c then from the occurrence of C5.3 at stage (t + 1, p) we
have

A,(e(c, t), t + \) = l-A(e(c, t), t + I) .

It follows easily that a(s + 1) D d n w using the same kind of argument
as for the case in which d # c.

Proof of P6(l). Let b n d0 c a(t + 1), e{b, t) < u>, t < s and a(u) <£b n d0

for all u in f < M < s + 1. For proof by contradiction fix t and choose the
least s > t such that either e(b, s + 1) =£ e(6, r) or JI(&, 5 + 1) ^ M(&, )̂ or
some number < n(b, t) is enumerated in A u C at a stage >? and < s + 1.
If e(b, s + 1) =£ e(6, 5) then some number < e(6, 5) and hence < n{b, s) is
enumerated in C at stage s + 1, since a(s + 1) •£ 6 by hypothesis. If
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H{b, s + 1) =£ n(b, t) then either some number < e(b, s) is enumerated in C
at stage s + 1 or n(b, s) < n(b, s + 1) < co through the occurrence of C2.1
C5.1 orC6 at stage s+ 1. If C5.1 or C6 occurs then a(s + 1)< b n d0

contrary to hypothesis.
Let C2.1 occur at stage s + 1 then for some n $D0(b), 0(6, n, s + 1)

< 0(6, n, s) = co. Let c be the greatest initial segment of b for which
O(c) = n. Then a(s + 1) = c n a0 whence cn d0 <^bn dQ. Thus c is a
proper initial segment of b. Also 0(6, n, t) < co; otherwise a(/ + 1) would
be either D c n d0 or = c n a0. (When dQ is replaced by dl we may have
c - b in which case 0(6, n, r) < o> because 6 n dx c a(r + 1).) Since
0(6, n, 5) = co either some number < <f>(b, n, t) is enumerated in C at a
stage > t + 1 and < s or we have <p(b, n, u + 1) = co through C1 for some
u, t < u < s. In the former case recall that 0(6, «, f) < fi(b, t). In the
latter case let stage u + 1 pertain to e(d, u) then 6 c a(cf, u) c d and
K^, u) = n. Further, either 6 = rf or 6 n (f, m) C d for some m.

Thus e(rf, w) cannot be enumerated in 4̂ at a stage > t + 1 whence
e(rf, 0 = e(rf, u) and both y(^. ?) and aid, t) are =£ to. From the way in
w h i c h a(d, t) and v(d, t) are def ined , v(d, t) = n'<n and a(d, u) C a(rf, t)
where «' $D0(a(d, t)). Let c' be the least initial segment of b such that
O(c') = «' then c C c. Since n' 4 D0(a(d, t) we have c n c?0 (/ 6. Also c'
is a proper initial segment of 6 because c is. Since a(f + 1) D c' we should
h a v e a ( / + l ) D c ' n J o or a(? + 1) = c n a0 through Cl and e(d, t). This
contradicts a(t + 1) D 6. (When cf0 is replaced by J j we may have
c' = c = 6. We still have a contradiction because a(f + 1) D b n dx.)

At this point we can infer that some number < fi(b, s) = ju(6, t) is
enumerated in>l U C at stages + 1. Suppose e(c, s) is enumerated in A;
then 6 < c by P2(l). Also a(s + 1) = c n a2 •< 6 n d0 by hypothesis. Thus
either c n w c 6 or 6 n C/Q C C is also ruled out by P2(l) we have
c n w e b . S i n c e c n w c a(t + l ) , a ( s + \ ) D c a n d a ( s + 1 ) < c n a 0 , w e
have a(s + \) D c n w by P6(3). This contradictsa(5 + 1) = c n a2.

There remains the case in which some number < n(b, t) = fi(b, s) is
enumerated in C at stage s + 1. Then one of the three cases C1.1, C1.3 or
C3 occurs at stage s + 1. If C3 occurs, then sup /(/, s) is enumerated in C
and from the way in which /(/, s) is defined sup /(/, s) has the form
0(c, /, s), where c n (/, /) c a(5 + 1). If c c 6, then either c n w c 6 or
c n (f, k) C b, where fc < 7. In the former case we have « ( s + l ) 3 c n w
by P6(3) as above, which contradicts a(s + 1) D c n (/, 7). In the latter
case n(b, s) < 0(c, 7, 5) by P2(2) and P4(2) which is contrary to assump-
tion. Since c <f. b either 6 n d0 c c or 6 < c. (When d0 is replaced by ^ 1
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we have the additional possibility that b n dx c c.) By P2(l) (i(b, s)<e(c, s)
which again contradicts the assumption that 0(c, /, s) < n(b, s).

Thus either C1.1 of C1.3 occurs at stage 5 + 1. Again the number
enumerated in C has the form <p(c, j , s). Also a(s + 1) = c0 n a0 where c0

is the least initial segment of c such that O(c0 ) = /. If b n d0 c c0 or
ft < c0, then ju(6, 5) < e(c, 5) by P2(l), contrary to 4>(c, j , s) < fx(b, s). (If
d0 is replaced by d1, again there is the case in which b n dx c c.) Thus
c0 C b. Let stage s + 1 pertain to e(d, s) = 7. Also c = aid, s) if C1.1 oc-
curs while c is the greatest initial segment of a(d, s) such that c n (/, 7)
C a{d, s) if C1.3 occurs. Let e(rf, s) be enumerated in 4 at a stage < t;
then a(cf, s) C a(d, r) and v(d, t) < K^. *)• Let cx be the least initial seg-
ment of b such that O(cx) = K<£ 0- Then Cj C c 0 . Since Cj c 6 and
ft n d0 c a{t + 1) we have cx n c?0 C a(t + 1) through C 1.4 at stage
(f + 1, \Wc\)). Thus there exists a « , K w < s , such that cln ao= a(u +1),
which contradicts the assumption that a{u + 1) •<£. b n c?0. (When rf0 is
replaced by dx we have a(t+l)Dbn d1 whence cl n d0 c 6.) There
remains the case in which e(d, s) is enumerated in A at a stage w + 1 > t.
Since a(rf, 5) = c when Cl. 1 occurs at stage s + I and since v(d, s) =/,
either c = rf or c n (/, 1) c </ where z < 7. If b < c, then /n(6,5) < e(c, 5)
by P2(l) which contradicts <f>(c, j , s) < ju(6, 5). If b c c, then b n dQc c
since otherwise we should have a(u + 1) < 6 n rf0. Again P2(l) yields a
contradiction. If c < b, then a(w + 1) < b contrary to hypothesis. Thus
c ^ b. If c n w c 6, then since a(w + 1) D c and a(/ + l ) D c n w, it is
easy to show by P6(3) that o ( « + l ) D c n w. But a(u + 1) D c n w con-
tradicts a(u + 1) = d n a2. Since c n w <$b we have c¥= d; otherwise
fl(w + 1) = c n a2 < 6. As noted above c n (/, 0 c d for some i < 7. Since
a(u + 1) = rf n a2 <f: b, c n (f,k)cb for some it < z. From P2(2),
M(6, t) < 0(c, £, r). Since K / w e have 0(c, fc, t) < <p(c, j , t) < co by
P4(l) and (2). It follows that n(b, s) = n(b, t) < 0(c, 7, 5), contradiction.
This completes the proof of P6( 1).

Proof of P6(2). Let b n ax = a{t + 1), t < s and a(u) < 6 n al for all u in
t < u < s + 1. For proof by contradiction fix t and choose the least s > t
such that e(b, s + 1) # e(6, f + 1). Then some number < e(b, t + 1) is
enumerated in C at stage s + 1 since a(s + 1) <£ 6 by hypothesis. One of
three cases Cl. 1, Cl.3 and C3 occurs at stage s + I.

If C3 occurs, then sup I(i, s) is enumerated in C. From the definition
of /(/, 5), sup /(/, s) has the form 0(c, 7, s), where c n (/, 7) C a(s + 1). If
cc b, then either r n w c i o r c n (f,k)cb where ^ < 7. In the former
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case we easily obtain a contradiction via P6(3). In the latter n(b,s)< (j>(c,j,s)
by P2(2) and P4(2), contradicting <j>(c, j , s) < e(b, t + 1) = e(b, s). If c c£ fe
then either b < c or b n d0 c c or 6 n c/j c c. In each of these cases
fi(b, s) < e(c, s) by P2( 1), yielding the same contradiction.

Therefore either Cl. l or C 1.3 occurs at stage 5 + 1 . Again the number
enumerated in C has the form cj>(c, j , s). Also a(s + 1) = c0 n a0 where
c0 is the least initial segment of c such that O(c0) =/. If b n dQ C c0,
6 n dj c c0 or b < cQ, then M(6, s) < e(c, s) by P2(l); contradiction.
Thus c0 C b. Let stage 5 + 1 pertain to e(d, s). Then v{d, s)=j. Further
c - a(d, s) if Cl. 1 occurs, while c is the greatest initial segment of aid, s)
such that c n (/, /) c a(d, s) if C1.3 occurs. If e{d, s) is enumerated in .4
at a stage < t, then a(d, t) and v{d, t) are both =£ GO, a(d, s) c a(d, t) and
v{d, t) < Krf. s). Let Cj be the least initial segment of b such that
O(cx) = K<*, 0- Then cl c c0. Since Cj c f i and «(/" + 1) = b n a j , we have
cx n d0 c a(t + 1) through C 1.4 at stage (/ + 1, lhCcj)). Thus there exists
u, t < u< s, such that Cy n a0 = a(u + 1). This contradicts the hypothesis
that a(u + 1) <£ b n a1. There remains the case in which e(d, s) is enumer-
ated in A at a stage M + 1 > t. Notice that either c = d or c n (f,i)cd
where / < /', because P ( # J ) =/ and either c{a{d, s) or c n (/, /) c a(rf, s).
\ib < c, then /x(6, s) < e(c, 5) by P2( 1) which contradicts 4>(c, j , s)
< e{b, t+\) = e(b, s). If b c c then either b n d0 c c or 6 n cfj c c since
otherwise we should have a(« + 1) < b n a j . Again P2( 1) yields a contra-
diction. If c < b we have a(« + 1) < b, again contrary to assumption/ Thus
c%b. If c n w e d then by P6(3) we get c n w e a(w + 1), since a(u +1) 3 c
anda(« + 1)< c n a0. This contradicts a(w + l) = rfn a2. Since c n w<£b
we have c =£ d; otherwise a(u + l) = c n a2 < b. As noted above
c n (/, /) c rf for some / < 7. Since a(u + l) = d n a2 <£b, c n (f, k) c b
for some fc < i. Through C3 at stage t + 1 some number < <j)(c, k, t) is
enumerated in C at stage t + 1. By P4(2), <$>(c, k, t) < 0(c, 7, 0- Hence
0(c, j , t + 1) = OJ, and, assuming without loss of generality that
0(c, 7, s) < co, let i) be the greatest number < s such that <j>(c, j , v) = 00.
Clearly u > t and 0(c, 7, s) is assigned through C2.1 at stage v + 1 whence
e(b, t + 1) = e(6, y) < </>(c, j , v + 1) = 0(c, /, *)• This contradiction com-
pletes the proof of P6(2).

Proof of P6(3). Let b n w c a(t + 1), t < 5 and a(«) < 6 for all u in
r < u < 5 + 1. For proof by contradiction fix t and choose the least s > t
such that either e(b, s + 1) =£ e(6, r), or p(6, s + 1) =£ ;u(6, t), or some
number < n(b, t) is enumerated in A u C at stage s + 1, or a(s + 1) 3 b
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and a(s + 1)< 6 n a0 and a(s + 1) J>b n w. We may suppose that P6(3)
holds for c instead of b at stages < s + 1 when c is a proper initial segment
of b.

Suppose that fi(b, s) < fi(b, s + 1) < OJ through the occurrence of C2.1
at stage s + 1; then 0(6, j , s + 1) < co = <j>(b, j , s) for some; $ D0(b). By
P4(l), 0(6, j , t) < OJ. Hence there exists u, t < u < s, such that 0(6, /, 0
is destroyed at stage u + 1. By hypothesis a(« + 1) <£. b. If some number
< 0(6, /, 0 is enumerated in C at stage u + 1, the choice of 5 is contradicted.
Thus 0(6, j , t) is destroyed by Cl. Let stage u + 1 pertain to e{c, u); then
v(c, u) - j . If C 1.2 occurs then b is the greatest initial segment of a{c, u)
such that b n (f, /) c a(c, u), and if Cl .3 occurs then b is a{c, u). Thus
either b n (f, k)C c for some A: or 6 = c. Let e(c, w) be enumerated in A
at stage u + 1. If v < t let e be the least initial segment of b such that
O(e) = v{c, t). Note that e exists because v(c, t) < v(c, u) < O(b). Ap-
plying PI(2) to e(c, u), we have a(t + 1) = e n a0 or a(t + 1) D e n d0 be-
cause « ( / + l ) D j 3 e . But e n d0 (£b and so we have a contradiction.
Thus u > t. Since a(u + 1) < b n a0, by choice of s we have a(v + 1) 3 b n w.
But a(u + l) = c n a2 whence c D b n w which contradicts our findings
above. Thus n(b, s) < ju(6, s + 1) < OJ cannot occur through C2.1.

Suppose that JU(6, s) < fx(b, s + 1)< co through C5.1 or C6.,Then
a(s+ l) = 6 n a2 ora(s+ l)z> b n (/, A:) for some k. But a(s + 1 )3 b and
«(s + 1) < b n a0 imply a(s + 1) D 6 n w. This can be seen as follows. We
have n{b, s) = n(b, t), and no number < n(b, t) is enumerated in C at a
stage >t and < s. Let 0(6) = n. From stage (f + 1, lh(6)), £n(e(6, 0 , 0 <
< ju(6, /) because we have C5.2 rather than C5.1. It follows easily that
%n{e{b, s), s) = £n(e(6, t), t). Also from the last paragraph it is clear that
0(6, /, s) = 0(6, /, t) for all/ < n. Let lh(6) = / as in the statement of the
construction then sup /(/, s) > sup I{i, t) because the left hand side is in
the inf of certain values 0(c, /, s) and the right hand side is the inf of the
corresponding numbers 0(c, /, /). (By P4( 1) the values concerned are < co
whence 0(c, /, s) > 0(c, /, t).) It is now clear that a(s + 1) D 6 n w be-
cause a(s + 1 ) 3 6 and because the inequalities making a(t + 1) 3 6 n w
are still true at stage s + 1. This is a contradiction whence neither C5.1
nor C6 obtains at stage s + 1.

Since a(s + 1) << 6, if e(6, 5 + 1) *= e(6, 0 or /x(6, 5 + 1) =£ M(6, 0 , then
some number < n(b, t) is enumerated in C at stage s + 1. It only remains
to consider the cases in which some number < /x(6, 0 is enumerated in
A U C at stage s + 1.

Suppose that e(c, s1) < ^(6, J1) = /i(6, 0 is enumerated in A at stage s + 1.
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By P2(l) if b < c, b n d0 C c or b n w c c, then fi(b, s) < e(c, s) which
contradicts the choice of s. Also as shown above, if a(s + 1) D b and
a(s + \)< b n a0, then d ( s + l ) D i n w. Hence c J b. If c^b, then
c n w e f t , otherwise a(s + 1) would be <b. But now «Cs + 1) D c n vu
because a(s + 1) D c and «(s + 1) < c n a0. This contradicts a(s + l) = cn a
whence c <t b. The only remaining possibility is c < b which also contra-
dicts the hypothesis.

Finally suppose that some number < nib, s) = ix{b, t) is enumerated in
C at stage s + 1. Let C3 occur at stage s + 1, then sup I(i, s) is enumerated
in C at stage s + 1 for some i. From the way /(/, s) is defined sup /(/', s)
has the form <p(c, u, s) and a(s + 1) D c n (/, /). Reasoning just as in the
last paragraph we can rule out the possibilities b < c, c < b and b c c.
Thus c^ b. If c n w e l l , then a(s + \) D c n w, because a(s + 1) D c and
fl(s + 1) < c n a0. This contradicts a(s + 1) D c n ( / /). Since a(s + \){b
we have c n (f, k) <z b for some fc < /. From P2(2) and P4(2) we have

Hib, s) < <p(c, k, s) < 4>(c, j , s)

which contradicts the hypothesis. Thus C3 does not occur at stage s + 1.
Suppose that Cl. l or C 1.3 occurs at stages + 1 and that stages + 1

pertains to e(c, s). Then 4>(d, j , s) is enumerated in C at stage s + 1 where
/ = v{c, s). If Cl.l occurs then d = a(c, s) and if C 1.3 occurs then d is the
greatest initial segment of a(c, s) such that d n (/, /) c a(c, s). By P2(l)
we cannot have b < d or b n d0 erf or b n w c d. Let e(c, s) be enu-
merated in A at stage u + 1. Suppose u < t and let v{d, t) - f < /. Let e
be the least initial segment of c such that O(e) - f; then e C d. Applying
PI(2) to e(c, u) at stage t + 1 we see that e <t b unless en d0 c b, be-
cause a(7 + 1) D b n w. Now 6 -̂  e otherwise e(c, u) would be destroyed
at stage t + 1, contradiction. If either e < b or e n c?0 C 6 let v be the
least number >t and < 5 such that stage v + 1 pertains to e(c, M). Then
a(v + 1) < b contradiction. Thus b ^ e, whence Z> n w c e since otherwise
e(c, u) would be destroyed at stage t + 1. But above we showed
b n w 4- d and e c j , contradiction.

Since M < ? leads to a contradiction, u > t. If a(u + I) D b and
a(u + I) < b n d0, then as before a(« + l ) D i n w. (Note that by choice
of u, a(u + 1) i= b n fl0.) Hence if rf D 6 then either d 3 6 n d0 or
dD b n w, because a(« + 1) = c n a2, c D d and rf n c?0 <t c. But above
we showed that b 4. d, b ° d0 <t d and b n w (̂  rf. Thus djb and bid.
Since a(w + \)<jib by hypothesis, rf <jt b. It follows that J $ b. If C1.3
occurs at stage s + 1 then d n (/, /) C c. If Cl. 1 occurs then either
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d n (/. k) c c f° r some k < j or d = c. If d = c then a(u + 1) = d n a2 and
so d n w e f t since a(w + 1) <£ 6 by hypothesis. Since a{t + 1) D d n w,
fl(w + 1) D rf and a(u + I) < d n a0, applying the proposition to d we get
a(u + I) D d n w, contradicting a(u + 1) = c n a2- Thus di= c, and the
argument also shows that d n w </: 6. In this case d n (/, fc) c c for some
jt < /. Since a{u + 1) = c n a2 4- 6, d ° (/, m) c 6 for some m< k. From
P2(2) and P4, /x(6, u) < <t>(d, j , u) < 0(rf, /, u) < w. Hence M(&, 0<<t>(d,j, s).
But 0(rf, /, s) is meant to be the number < /x(6, t) enumerated in C at
stage s + 1. This contradiction completes the proof.

Proof of P6(4). Let b n a2 = a(t + I), t < s, a(u) <£ b n a2 for all u in
t< u < 5 + 1 and e(6, ?) not be enumerated in ,4 at a stage >t. For proof
by contradiction choose the least $ >t such that e(b, s + 1) =£ e(6, 0 ,
or /i(6, s + 1) ̂  /n(6, f + 1), or some number < n(b, t + 1) is enumerated
in A u C at a stage > t and < 5 + 1, or a(s + 1) = b n a2-

Let 0(6) = n. Observe that

eib, s) = e(b, t), n(b, s) = n{b, t + 1), n(b, t+l)> in(e{b, f), t).

Now %n(e(b, s), s) = %n(e(b, t), t) < co because no number < /x(6, t + 1) is
enumerated in C at a stage >t and < s . Thus 2n(e(6, 5), s) = Sn(e(6, f), t).
Since e(ft, /) is not enumerated in A at a stage >t, we also have
A{e(b,s),s) = A(e{b,t),t).

Now suppose that a ( s + l ) 3 i and a(s + 1) < b n a0. From P4(l)
0(6, /, s) < a? if and only if 0(6, /, ?) < CJ. Further, if 0(6, 7, s) =£ 0(6,7, /)
for some 7, then 0(6,7, 5) is assigned at some stage > t + 1, whence
n(6, s) # jn(6, r + 1), contradiction. Let lh(6) = / as in the statement of
the construction then sup I(i, s) > sup J{i, t) because the left hand side
is the inf of the members 0(c, 7, t) such that c n (/, 7) C 6, while the right
hand side is the inf of the corresponding numbers 0(c, j , s). By P4(l) the
values concerned are < CJ whence 0(c, 7, s) > 0(c, 7, ?). Now C5 will occur
at stage is + 1, i) because C5 occurs at stage it + 1, /).

Suppose there is a stage u + 1 < t at which e(6, 0 is enumerated in A
then by P5 there exists a v, u < v < t, such that a(y + 1) D b n w. The
alternative, namely thata(v + 1)< 6, would destroy e(6, 0 before stage
t + 1, contradiction. From P6(3) we get a(? + 1) D 6 n w, contradiction.
Thus A(e(b, t), t) = 0. It follows that C5.1 occurs at stage (t + 1, /) since
a{t + 1) = b n a2 and e(6, 0 is not enumerated in A at stage ? + 1. From
above ju(6, 5) > £n(e(6, 5), s) whence C5.1 cannot occur at stage (s + 1, i)
if a(s + 1) D 6. Since /4(e(6, s), s) = 0 and e(6, s) is not enumerated in A
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at any stage >t, neither can C5.3 occur at stage (s + 1, /). Thus
a(s + 1) ¥= b n a2. Indeed we have the stronger result that if a(s + 1) D b,
then a(s + 1) = b n a0 or a(s + 1) D b n d0. For the rest of the proof we
can follow the same line as for P6(3).

Proof of P6(5). Let b n (/, /) c a(t + 1), t < s and a(u) { b n (/, /) for
all u in t < u < s + 1. For proof by contradiction fix t and choose the
leasts> t such that the conclusion fails.

Suppose that 0(6, k, s + 1) ¥= 0(6, k, t) for some k<j, k<$ D0(b). Then
0(6, k, s + 1) = co. Suppose that <p(b, k, t) is destroyed by Cl at stage s+ 1.
Let stage s + 1 pertain to e(c, s); then v(c, s) = k. If C 1.2 occurs, b is the
greatest initial segment of a{c, s) such that b n (/, k) c a(c, 5) and if C 1.3
occurs, then b is a(c, s). Thus either b n (/, m) c c for some m < & or
6 = c. Let e(c, s) be enumerated in A at stage v + 1. If v < t, then by PI
a(t + l ) ^ 6 n ( / , / ) , contradiction. Thus u > f which means that either
a(v+\)D bn (f, m)<b" (/, /) or a(u + 1) = b n a2 < b n (/, /), again
a contradiction. Thus rather than 4>(b, k, t) being destroyed by Cl at
stage s + 1 some number < 4>{b, k, t) is enumerated in C at stage s + 1.

Suppose that e(c, s) is enumerated in A at stage 5 + 1 and that
e(c, 5) < 4>{b, k, t) where k < j and k $ D0(b). By P2(l) if b < c, b n d0 c c,
or 6 n <ij C c, then n(b, s) < e(c, s) which contradicts e(c, s) < <j)(b, k, t).
Thus if b c c then b ° (/, /) c c for some / > / because a(s + 1) = c n a2

<£b n (f, j). Now 0(6, A:, 5) < e(c, 5) from P2(2) since k < I, again a con-
tradiction. Therefore 6 (f. c. If c £ b, then c ° w c j , otherwise a(s + 1) < ft.
By P6(3) a(s + 1) D c n w because o ( s + l ) D c and a(s + 1)< c n a0.
This contradicts a(s + 1) = c n a2 whence c <£ b. The only remaining
possibility is c < b which also contradicts the hypothesis. We conclude
that in every case some number is enumerated in Cat stage s + \, that
number being either < e(6, t) or < 0(6, k, t) for some k < j and k <$ D0(b).

Let C3 occur at stage s + 1. Then sup /(?', 5) is enumerated in C at stage
5 + 1 for some i. From the way /(/, s) is defined sup I{i, s) has the form
0(c, m, 5) and « ( j + l ) D c n (/, m). As in the last paragraph we get
6 <£ c, 6 4-C and c n w </6. Since c n (/, m) C aCs + 1) <jt 6 we have
c n ( / /) c 6 for some / < m. Now from P2(2) and P4(2) we have
nib, s) < 0(c, /, s) < 0(c, m, s) which contradicts the choice of s. Thus
C3 is impossible.

Suppose that Cl. 1 or Cl.3 occurs at stage s + 1 and that stage s + 1
pertains to e(c, s). Then 4>(d, m, s) is enumerated in C at stage s + 1 where
m = KA 5). If Cl. 1 occurs, then d = a(c, s) and if Cl .3 occurs, then d is



253

A.H. Lachlan / A recursively enumerable degree not splitting over lesser ones 355

the greatest initial segment of a(c, s) such that d n (/, m)c a(c, s). From
P2(l), each of

b<d, b n docd,bn dycd, bn wed ,

leads to a contradiction. Let e(c, s) be enumerated in A at stage u + 1.
Suppose u < t and let v{c, t) = rri < m. Let e be the least initial segment
of c such that O(e) = m' then e c d. From PI (2) applied to stage t + 1 if
ft D e then b D e n d0. Since 6 <£ rf from above, b <fi e. Also the first stage
v + 1 > t which pertains to e(c, u) is < s + 1 and a(u + 1) = e n a0. Hence
e < b and e n <i0 c b are both impossible. Thus b% e. Since b n doc e,
bn dx C e and 6 n w c e are all ruled out above, we have b n (f,l)ce
for some /. If / < / then a(u + 1 )< 6 n (/, /), contradiction. If / > / then
e(c, u) is destroyed at stage t + 1, contradiction.

Now 6 n (/, /) c d is impossible because by P2(2) it would follow that

e(b, t) < 0(6, k, t) < e(d, t) < <$>{d, m, s)

for each k<j, k<$ D0{b). (It does not matter if there is no such k.) Hence
u < t is impossible.

Suppose u > t. If Cl .3 occurs at stage s + 1 then d n (/, m) c c. If
Cl. 1 occurs then either d n (f, l)c c for some l< m or d = c.U d = b,
then/ < m, otherwise a(« + 1) < b n (f, / ) . In this case from P4(2)

e(b, t) < <j>(b, k, t) < 4>{b, m, t) < <£(</, m, s)

for each k < j , k$D0(b). This contradicts the choice of s, whence d+b.
If d ^ b, then dD bn (/, /) for some /, since b n d0 c rf, b n rfj C rf and
6 n w c rf are all ruled out above. Now; < / since a{u + 1) <£. b n (/, ;').
From P2(2)

e(b, u) < 4>(b, k, u) < e(d, u) < <j>(d, m, s)

for each k < j , k$ D0(b). Again this is a contradiction whence d ^ b.
From above b <£. d and d<£ b since a(u+\)-£b. Hence d^b.lfd = c,
then C(M + 1) = d n a2 and so d ° w e f t since a(u + 1) << 6 by hypothesis.
Now a(u + 1) D rf n w by P6(3) since a(t + 1) D d n w; contradiction.
Thus rf^c and d n w (̂  6. Since a(« + 1) < 6, the only remaining possi-
bility is that d n (/, fc) C b for some A: < m. From P2(2) and P4

/x(6, M) < <̂ (rf, k, u) < 0(rf, m, u)< co .

This contradicts the choice of s and completes the proof of P6(5).
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P r o o f o f P 6 ( 6 ) . L e t b n a 0 = a(t + 1 ) , b c c , b n d0 < t c , t < s , e(c, s ) < w

and a{u) <£b n a0 for all u in t < u < 5 + 1. Suppose there is no stage
« + 1 > t at which Cl occurs and which pertains to e(d, u) where d C b
or d < b n a0. We have to show that at stage s + 1 no number < fi(c, s) is
enumerated in C. For proof by contradiction suppose that some number
< fi(c, s) is enumerated in C at stage s + 1, and that stage s + 1 is the first
at which P6(6) if false.

Suppose C3 occurs at stage s + 1. Then some number 4>{d, j , s) is
enumerated in C at stage s + 1 where d n (/, /) C a(s + 1). Since
a(s + 1) <t b n a0, rf <£ b and also rf D b implies dD b n d0. If 6 < rf then
c < d, whence M(C *) < e(d, s) < (p(d, j , s), contradiction. Thus either
d n w c b, dn (/, /) c b for some z < / or b n d0 c rf. Suppose dn web
then from P6(3) a(s + 1) D rf n w, because a(r + 1) D d n w, a(5 + 1) 3 rf
and a(5 + 1) < d n a0. Thus rf n w <f b. Suppose rf n (/, i) c 6 where
/ < /, then ti(c, s) < <p(d, i, s) by P2(2) and <t>(d, i, s) < <p(d, j , s) by P4(2).
Thus /x(c, 5) < 0(rf, /, 5) which is also a contradiction. Also b n c?o c d is
impossible, because by P2(l) M(C *) < e(rf, s). Thus either Cl. l or C1.3
occurs at stage 5 + 1.

Let stage s + 1 pertain to e(d, s); then by hypothesis either b < d or
b n d0 c d. The number enumerated in C at stage s + 1 has the form
<p(e, j , s) where either e - d or e n (f,i)cd for some / < /. Let w + 1 be
the stage < s where e(rf, w) = e(d, s) is enumerated in A. Now u > t, other-
wise e(rf, w) would be destroyed at stage f + 1. If e n w c b then
e n w c « ( « + ] )by P6(3). This contradictsa(u + 1) = d n a2 since either
e = rf or e n (f,i)cd. Hence e n w </ 6. If b < e or 6 n d0 c e, then
ju(c, 5) < e(e, s) by P2(l), whence n(c, s) < (j>(e, j , s). Since d n a2

= a{u + 1) <£ 6 n a0, the only other possibility is that e n (f,i)cb
where / < /. In this case JU(C, u) < <j>(e, i, u) < <p{e, j , u) by P2(2) and P4(2).
Thus again n(c, s) < 0(e, /, s) unless ju(c, w) < n(c, s).

Let u be the least number if any such that u < v < s and n(c, v) < ju(c, v + 0-
Since b c c, b n d0 (£c and a(u + 1) «?£ 6 n a0, C2.1 occurs at stage v + 1.
Thus a(u + 1) = c0 n a0 for some c0 C b. Let Cj be the least initial seg-
ment of d such that O(cj) = /. Since <j>(e, j , s) is enumerated in C at stage
s+ 1, K<*. s) =/. Also c1 c ec b since O(e) > /. From Pl ( l ) if
a(u + 1) D c1, then fl(u + 1) D cx n d0. Now c0 and cx are comparable
since both are c b. If cx % e, then cx n dQ <£ e since K^, s) = j<$ D0(a(d, s)).
Also f rom a b o v e e n d0 (f.b. S ince q c e c 6 it fo l lows t h a t c{n do<t b.
B u t if Cj c c 0 t h e n a ( u + l ) = c o n a 0 D q w h e n c e b D C0 D CJ n d0;
c o n t r a d i c t i o n . T h u s c 0 % cx.
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Let O(c0) =/ 0 ; then 4>(c, /0 , v) = co. But c0 n dQ <t b, whence
CQn do<£ d, whence <t>(c, j 0 , u) < co. Let w be the least number such
that u < w < v and <j>(c, /0, w + 1) = co. Such w exists because stage v + 1
must be concerned with assigning a value < co to <t>(c, / 0 , v + 1), whence
0(c. 7o> u) = ^ Since 0(c, /0, w + 1) = co either 0(c, ;0, w) is destroyed
through Cl or some number < <j>(c, j 0 , w) is enumerated in C at stage
w + 1. The former contradicts the hypothesis of the proposition, the
latter contradicts the choice of s. Therefore w does not exist, whence v
does not exist.

It follows that if Cl holds at stage 5 + 1 then ju(c, 5) < <fr(e, j , s). But
some number < n(c, s) is supposed to be enumerated in C at stage s + 1
whence 0(e, /, s) < n(c, s). This concludes the proof.

Proof of P7. Let b n (/, 7) Ca(s + 1) for infinitely many s and a(s + 1)
<b n (f, /) for at most a finite number of s. We must show that there
exists s such that b n (/, /) C a{s + 1) and #(&, A s) is arbitrarily large.
Let 5 = {s: a(s + I) D b n (f, /)}. For proof by contradiction assume
that <t>(b, j , s) is bounded for $ e S . There exist at most finitely many
s G S such that C3 occurs at stage s + .1, because at each such stage
0(6, j , s) is destroyed and its next finite value is strictly greater. It fol-
lows that the set

E = {(c, t):cDbn (/, /) , e{c, t) < co, and e(e, t - 1) = co}

is finite. Cl occurs at stage s + 1 for at most finitely many s, because
for each such s there exists < c, t) e © such that stage s + 1 pertains to
e(c, t) and at most a finite number of stages pertain to each e(c, r). There
are at most a finite number of s € S such that C2 occurs at stage s + 1.
For each such s there exists < c, O e g and n such that e(c, 5) = e(c, 0,
n < O(e), and

sup {0(c, «, u): 0(c, n, u) < co, u < s} < <p(c, n,s + \)< <j>(b, j , s) .

Since 4>(b, j , s) is bounded as 5 runs through S at most a finite number of
S G S pertain to each pair <c, t). If C5.1 occurs at stage s + l,s e S, then
for some < c, t)e&, e(c, s) = eCc, t) and /z(c, 5) < n(c, s + 1) < 0(6, /, 5).
If C5.2 occurs at stage s + 1, s E S, then for some < c, f > e E , e(c, 0 is
enumerated in A at stage s + 1. Thus there are at most a finite number of
ses such that C5 occurs at stage s + 1. Since one of Cl, C2, C3 and C5
occurs at every stage, and S is infinite, we have the desired contradiction.
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Proof of P8. Let e(c, t) be enumerated in A at stage t + 1, s > t, e(c, s)
= e{c, t), 0(6) = n,bcc, lh(Z>) = /, a(s + 1) D b, C1.4 occur at stage
(s + 1, 0, stage (s + 1, i) pertain to e(c, t), and d be the greatest initial
segment of a(c, s) such that d n ( / n) c a(c, s). We must show that
(p(d, n, s) = <p(d, n, t). For proof by contradiction suppose that
cp(d, n, s) =£ <p(d, n, t). Let u be the least number > t such that <p(d, n, u + 1)
¥= <f>(d, n, f); then u + 1 < s and 0(rf, «, /) is destroyed at stage u + 1.
Since stage (̂  + 1, /) pertains to e(c, 0 we have b c d <z c. Since
e(c, M + 1) = e(c, t), a(u + 1) <jt d. Therefore either <p(d, n, t) is destroyed
through Cl or some number < <p(d, n, t) is enumerated in C at stage u + 1.

Suppose that 0(d, «, t) is destroyed through Cl. Let stage u + 1 pertain
to e(c', u) where e(c', u) was enumerated in A at stage t' + 1. Then
i>(c', u) - n, c' D d D b and a(w + 1) = 6 n a0. From the hypothesis it is
clear that v{c, s) - n, whence c =£ c and ?' # t because v{c', u + I) >n.
Suppose t' < t; then a(t + 1) D b n d0 by applying P l ( l ) to e(c', M). This
contradicts a(f + l) = c n a2 because n ^ D0(c). A similar contradiction
arises from supposing t < t'. Thus some number < 0(rf, «, 0 is enumer-
ated in C at stage u + 1.

Suppose that C3 occurs at stage u + 1 then the number enumerated in
C at stage u + 1 has the form <p(e, j , u) where e n (/, /) c a(u + 1). Now
e ° (/, /) < b since e(c, t) = e(c, u + 1). By Pl ( l ) if b c e, Xhenb n d0 Cc.
If e n w c b, then <? ° w c a{u + 1) by P6(3); contradiction. If
e n (f, k)c b for some £ < /. then M(^, 0 < <t>(e, k, t) < 0(e, /, t)<uby
P2(2) and P4, whence <p(e, j , u) 4 <t>{d, n, t). If b n d0 c e or b < e, then
M(rf, u) < e(e, u) by P2(l), whence again 0(e, /, u) ^ 0(rf, «, r). Since this
exhausts all possible relationships between e and b, C3 does not occur at
stage u + 1.

It is clear that either Cl.l or C 1.3 occurs at stage u + 1. Let
a(u + 1) = b' n a0 and stage w + 1 pertain to e(c', u) where e(c', u) = e(c', t')
was enumerated in A at stage t' + 1. Let i>(c', w) = «' and if n' £F(a(c', «)),
let rf' be the greatest initial segment of a(c', u) such that d' n (/, n) c
c a(c', M). Clearly 6' c d'.

Suppose Cl.l occurs at stage u + 1; then the number enumerated in
C is 0(a(c', «), «', u). Let '̂ = ;̂ then c = c whence a(c, u + 1) = u. Thus
stage (s + 1, 0 cannot pertain to e(c, t), contradiction. Let t' < t then
c 4. b' since e{c , t + 1) = e(c', t), and if c D 6', then c D b' n d0 by PUD'
Now cD b' n d0 is impossible because it implies a(w + 1) < c and hence
e(c, « + 1) ¥= e(c, u). Similarly b' <fc c. Thus c c b' and c # 6'. Since
e(c', t+ 1)< to wehavea(/+ \)<f:b', whence c n i v C d ' c a(Y + 1). By
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P6(3) we get c n w e a{t + 1), contradiction. Let t' > t, then b' <£ b
since e(b, t' + 1) < co and c D b implies c D b n dQ by Pl ( l ) . Thus
b' D b implies b' D b n d0, because either b' = c', or b' c c and
b'n do(t c. If b < b' or b n d0 C b', then either d < a(c', u) or
dn d0 c a(c', u), since d D b, a(c, u) D b' and b n d0 (fd.In this case,
byP2(l)andP4(l)

0(rf, n, 0 = 4>(d, n, t') < <t>{a{c', «), ri, t')<co.

It follows that <j)(d, n, t) < 4>(a(c', u), ri, u).
There remains the case in which b' %. b. Recall that either b = d c c

orb C d C c and d < b n d0. Notice also that if b and a(c', u) are incom-
parable with respect to c , then a(c', u) > b. Otherwise a(t' + \) = c n a2<c
and e(c, t) is destroyed at stage t' + 1, contradiction. Recall that if c D b,
then c' D bn d0. Thus either a{c, u)c b or a(c', w) 3 b n d0 or
a(c', u) > b, whence either a(c', u) C b or a{c', u)D d n c?0 ora(c', w) >rf.
In the second and third cases <f>(d, n, t) < <f>(a(c', u), ri, u) as above. Thus
suppose a(c', u) c b. If a(c', u) = c c 6, then c' ^ b from above, and
c' n w c 6 since c' n a2 = a(t' + 1) <£ b. By P6(3) c ' n w C f t implies
c n w c a(t' + 1), impossible. Therefore a{c', u) n (/, / ') c c' for some
/' < «'. If a(c', M) = b, then a(>' + 1) D 6 and a(^' + 1) ̂  6 n d0, contrary
to Pl ( l ) . Also a{c', u) n w c 6 can be ruled out just as c n w C i was
ruled out above. Since a(c', u)n (/ , / ' ) c c < b it must be the case that
a(c', u) n (/, /) C b for some/ < /'. From P2(2) and P4 we have
<t>(d, n, t') < <p(a(c', u), ri, t') < w, whence <p{d, n, t) = 4>(d, n, t') <
< <j>(a{c', u), ri, u). Again this is a contradiction.

Thus C1.3 must occur at stage u + 1. Let t' = t; thene' = c, v(c, u) = ri <n
and b C a(c, s) C a(c, u) by comparing stages u + 1 and s + 1. From Cl .3
a(c, u + 1) = a(c, u) and ri < v{c, u + 1) < n. By induction on v, if u < u
and a(c, w) ¥= co for all w in M < w < v, then rf' c a(c, v). Hence
d' C a(c, s). Since C1.4 occurs at stage (5 + 1, i), n e F{a{c, s)) and so
d' C d, Since ri < n, d' n {f, ri) c d. From P2(2) and P4(l) we have
<j>(d, n, t) < 0(rf', ri, t) < co. Thus the number 4>{d', ri, u) enumerated in
C at stage u + 1 is ><f>(d, n, t), contradiction. The cases in which t' < t
and t' > t are treated in the same way as when Cl. 1 occurs at stage u + 1
except that when t' > t, d' and ri now play the roles which a{c', u) and
/' played before.

Proof of P9(l). Let b, c and t satisfy: 0(6) = n $ D0(b), b c c, e(c, t) is
t numerated in A at stage t + 1, lh(6) = i, and for infinitely many s stage
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{s + 1, /) pertains to e(c, t). We must show that X # 8 n . Let S denote the
set of all s such that Cl .4 occurs at stage (s + 1, i) and stage (s + 1, /)
pertains to e(c, t). Since S is infinite E(C) = e(c, t). For all s G S, v{c, s) = n
and a(c, s) takes a fixed value which will be denoted by e. From the
hypotheses o f C l , K e C c and n e F(e). Let d be the greatest initial
segment of e such that d n (/, n) c e, then dob. Recall from the defi-
nition of a(c, s) that either e = c or e n (/, m) c c for some m < n.
From P4(l) <£(e, «, 0 < w, because n e F(e) whence n 4- D0(e). Let
0(e, m t) be assigned at stage u + 1. Now e(c) < 0(e, «, t) immediately
when e = c, and from P2(2) and P4 otherwise. It follows that e(c, W) = E(C),
because when e(c, u) is assigned it is larger than any number yet used.

Suppose for the moment that e n (f, m) C c where m < n. Let bm ,bn,
be the greatest initial segments of e such that O(bm) = m, O(b") = n
respectively. Then bm ^ bn since m < n and n < O(e). Also bm n c/0 <£ 6"
since m $ Z?0O). Nowa(u + I) = b" n a0 whence <j)(e, m, u) < OJ. Further
0(e, m, u) must have been assigned after E(C) since otherwise <j)(e, m, u)
would have been destroyed when E (C) was assigned. Thus E (C) < <p(e, m, u).
We conclude that, whether e n (f,m)Cc or not, £ (c) = e(c, w) < ju(e, u).

It follows from the occurrence of C2.1 at stage u + 1 that

A(t(c),u) = en(t(c),u)

Bn{x, u) = ^ ( x , w) for all x < 6n(e(c), u), i < 1

(p(e,n, u+l)>sup({dn(e(c),u)}u Wn(x, u): x < en(e(c),u),i> 1}).

From P4(3), no number < 0(e, n, u + 1) is enumerated in .4 U C at a
stage >w and < t. It follows that no number < 6n(e(c), u) is enumerated
i n f i J u f i J u C a t a stage >u and < r and hence that (9M(E(C), M) =
= dn(z(c), t) and efl(E(c), u) = 8n(t(c), t). Now

0(e, n, 0 < 0(rf, n, t) < oo

from P2(2) and P4 since eD dn (/, n). From P8,<t>(rf, «) = 4>{d, n, t)
whence no number < 4>(d, n, t) is enumerated in C after stage t. Since
C1.4 occurs at stage (s + 1, /') for infinitely many s in S, no number
< Qn(£(c), 0 is enumerated inB® U B\ after stage /. It follows that
8n£(c) = dn(e(c), t) and Qnt(c) = 6n{t{c), t). But since t(c) is enumerated
in A at stage f + 1 , ^ E ( C ) = 1 and ^ ( E ( C ) , 0 = 0. Thus Az{c) ¥= Qne(c)
which completes the proof.
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Proof of P9(2). Let 0(6) = n, lh(b) = i, and let there be at most a finite
number of stages with characteristic < b n d0. Let c be such that, for in-
finitely many s, a(s + I) D b n d0 and stage (s + 1, /) is associated with c.
We must show that either ,4 ¥= Qn, or B® + »|/°, or B\± \|/\. We have
E(C) < co and (p(c, n, s) = co for all sufficiently large s, because otherwise
<j>(c, n, s + 1) < co = cj)(c, n, s) for infinitely many s which would make
a(s +"X) = b n a0 < b n d0 for infinitely many s. We claim that if
d< b n c?0 or d = b, then either /x(d) < GO or ju(rf, s) = co for all suffi-
ciently large s. For proof by contradiction fix d which refutes the claim.
Since at most a finite number of stage have characteristic < b n d0,
e(d, s) and n(d, s) are < 00 for all sufficiently large s. For the same reason
there are at most a finite number of 5 such that Cl occurs at stage s + 1
and stage s + 1 pertains to e(e, s) where e n a2 < b n c?0- Remember that
to each number e(e, t) at most a finite number of stages pertain. Further
using P6(3) if e n w c b then a(s + 1) = e n a2 f° r a t most a finite num-
ber of s. Thus at most a finite number of stages s + \ pertain to e(e, s)
where e < b n rf0 or e c b.

If possible fix m such that 0(d, m, 5 + 1) = co > <j>(d, m, s) for infinitely
many s. Let 5 consist of all s such that <p(d, m, s + 1) = co > 0(rf, m, 5),
a(5 + 1) •£ b n rf0, and if stage s + 1 pertains to e(e, s), then e <fib n d0

and e (fib. From our remarks above S is infinite. Consider s e S. If
0(rf, m, 5) were destroyed through Cl then stage s + 1 would pertain to
e(e, s) such that e = d or d n ( / /) c e. But d = b or rf < b n rf0, whence
e = bore<bri d0, contradiction. Thus (t>(d, m, s) must be destroyed
by a number < <j>(d, m, s) being enumerated in C at stage 5 + 1.

Suppose C3 occurs at stage 5 + 1 then <t>(e, j , s) is enumerated in C
where e n (/, 7) c a(s + 1). If e(d, s) was assigned at stage u + 1 then no
stage >u and < s + 1 has characteristic < d. Thus by P6(3) if e n w c d
thena(s + 1) D e n w; contradiction. Recall that e i t h e r d - b ord<bn dQ

and a(s + 1) <£ b n c?0. Examining cases we find that either d < e, or
rf n rf0 c e, or e n (f,k)cd for some k < /. From P2 and P4 we now
have ii{d, s) < <p{e, j , s), contradiction.

Suppose Cl. 1 or C 1.3 occurs at stage 5 + 1 and that stage s + 1 pertains
to e, then <j>(f, j , s) is enumerated in C at stage s + 1 for some / such that
either/= e or e D f n (/, k) for some k < j . By definition of S, e <£ b n rf0

and e <£ 6. Since either d = b or d<bn do,v/e have either d < e o r
dn d0Ce.By P2(l) /i(d, s) < e(e, s). If/= e we have e(e, s) < 4>{f, j , s)
immediately. If/ n (/, k)c e for some k < 7, let e(e, s) be enumerated
in A at stage t + 1. Then from P2 and P4
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e{e, s) = e(e, t) < 0(/, k, t) < 0(/, /, t)< u .

Thus in this case we also have e(e, s) < 0(/, /, s). If follows that

<p(d, m, s) < n(d, s) < e(e, s) < 0(/, /', s) .

This is a contradiction since the number enumerated in C at stage s + 1
should be < 0(rf, m, s). Therefore m does not exist.

It follows that for all sufficiently large s, ju(rf, s) < n(d, s + 1 ) < co
cannot arise through C2.1. The only other way n(d, s) < n{d, s + 1 ) < co
can arise is through C5.1 or C6 which require a(s + 1) < b n d0. Again
this is impossible for all sufficiently large s. This completes the proof of
the claim.

Let 5' consist of all s such that a(s + 1) 3 b n d0, stage (s + 1, i) is
associated with c, no stage >s has characteristic < b n c?0, and for all rf
and /

(d = b or d<bn dQ ./\.t>s)^ n(d, t) = fi(rf) .

From the claim and the hypothesis of the proposition, 5" is infinite.
We next claim that for s0 and s{ inS', inf f(i, s0) = inf /(/, 5X). Recall
from the construction that inf /(/, s) is the least number exceeding cer-
tain numbers p which arise in the stages (5 + 1, /'), / < i. When a(s + l)D b
some of the numbers p have the form n(d, s),d < b, which are the same
for s = s0 as for s = Sj by choice of 5'. The other numbers p derive from
the proper initial segments of b and are the same for s = s0 as for s = st

by P6. For example suppose d n (/, /) c b then by C6 inf /(/, s) must
exceed e{d, s) and also 0(rf, k, s) for each k < j such that 4>(d, k, s) < ca.
By P6.5, e(d, s0) = e(d, s^ and 4>{d, k, s0) = <p(d, k, s{) for each k < j ,
k $ D0(d). This establishes the claim.

On the other hand from P7 it follows that sup 1(i, s) is unbounded for
5 G S". Now recall the conditions that p must satisfy from C2.1. Note
from the first claim that n(c, s) = n(c) < co for all sufficiently large s.
Note, also from our first claim, that

sup {n(d,s): e(d,s)< co .A. cn (/, ri) c d or d < c n (/, «)}

is fixed for all sufficiently large s. Since 0(c, n, s + 1) = GO for each s £ S,
either,4(x) # 6w(x) for some* < n(c), or enn(c) = co, o r^Cx) # «|»{,(x)
for somex < 6Mn(c) and some z < 1, or <|/J,(x) = OJ for somex < Qnp(c)
and some / < 1. In each of these cases either A ¥= 9n, or B® # ty®, or
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Proof of P10. Let e(c, t) be enumerated in A at stage t + 1. Let n < 0(6)
and n e D0(b). Let 6 n {f, m)C c where m<n, or 6 = c. We have to
show that 0n(e(e, 0 , 0 < 4>{b, n, t) < co. Suppose 6 n (/, n) c c. Then
from P4( 1) and P2(2) either n < 0(c), n $D0(c) and 0(c, n, t)< 0(6, n,f)<u>,
or there exist 6' and ri <n such that «' < 0(6'), ri ^ DQ(b') and
f, n (f,n) cb' n if, «') c c. From P4(l) and P2(2), 0(6', «', r)< 0(6, n, t)
< cj. Thus we can ignore the case in which 6 n (/, n) C c. We treat the
case in which 6 n (/, m) c c where m < n, and indicate in parentheses
the changes necessary for the case in which b = c. From P4(l)
0(6, n, t) < co. Let 0(6, n, t) be assigned at stage u + 1. Then e(c, 0 = e(c, u),
otherwise 0(6, n, u + 1) would be destroyed at the stage where e(c, t) is
assigned (where e(c, u) is destroyed). Note that 0(6, m, u)< OJ because
the definition of 0(6, m, u + 1) has priority over that of 0(6, n, u + 1).
Also e(c, t) = e(c, «) < 0(6, m, u) < ju(&, u) because 0(6, m, u) must have
been assigned after e(c, u). From the application of C2.1 at stage u + 1
we see that 6n (e(c, «), M) < 0(6, n, t) and for each z < 0,,(e(c, u), u)

B'n(z, u) = ¥n(z, u), %(z,u)<d>(b,n,u + l) = <l>(b,n,t) for/ = 0 ,1 .

The desired conclusion follows provided that no number < 0(6, n, t) is
enumerated in A u C at a stage > u and < t.

Suppose for proof by contradiction that some number < 0(6, n, t) is
enumerated in A u C at stage v + 1, u < v < t, then the number must be
enumerated \nA. Otherwise 0(6, n, u + 1) would be destroyed at stage
v + 1 contrary to the choice of u. Let e(rf, v) be enumerated in A at stage
v+l. Since e{d, v) < 0(6, n, v), from P2 6 n (/, n) <£ d. From P6(3) if
b n wed, then 6 n w c a(r + 1), whence 6 n w <t d. Also </ «£ 6 since
e(c, u + 1) < co. For the same reason, if d c 6 then rf n w c c. (If 6 = c,
d = 6 is impossible because e(rf, u) cannot be enumerated in A twice.)
But if d n w c c, comparing the stage where e(c, v) is assigned with stage
v + 1, from P6(3) we deduce that rf n w C a(u + 1), contradiction. The
only remaining possibility is that 6 n (/, /) c d for some / < «. Let x be
the least number >v such that aid, x + 1) = co. Let /and j> be defined
from d, v and x as d and J are defined from c, t and u in the statement
of P5. If f% b then y < t. Further no stage s + 1, x < s < y, has charac-
teristic </s ince e(c, j ) = e(c, M). NOW from P5 a(y + 1) < 6 whence
e(c, M) is destroyed before stage t + 1, contradiction. Thus 6 c / .

We claim that there exists z, v < z < x, such that stage z + 1 pertains
to e(d, v) and one of the following possibilities holds

(i) Cl. l occurs, 6 n (/, /) c aid, z) and vid, z)< I,
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(ii) C1.3 occurs and there exists b' such that b ^ b' n if, u(d, z)) c
c aid, z) and u(d, z) < /,

(iii) C1.2 occurs, I = n = v(d, z) and b is the greatest b' c a(d, z) such
that b' n (/, /) c a{d, z),

(iv) Cl. l occurs, aid, z)-b and *>(# z) < «.
To prove the claim choose b' and /' < / if possible such that b <z b' and
6' n (/, /') c a{d, x). Minimize /' and then maximize the length of b'.
Let z0 be the least number >v such that v(d, zo + 1) > /'.

Suppose v(d, zo)<l' and K >̂ z0 + 1)< co; then either /' G D0(a(d, zo+\))
or /' ^ O(a(rf, z0 + 1)) since b' n (/, /') c aid, zo+ I). In either case there
exists/" < /' and b" such that b" n (/, /") c a(rf, x). But this contradicts
the choice of /', whence v(d, z0) < /' implies v{d, z0 + 1) = co and z0 = .x.
If v{d, z0) < /' and Cl. l occurs at stage z0 + 1, then we can take z = x
and (i) holds. If v{d, z0) < /' and either C1.2 or C1.3 occurs at stage
z0 + 1, then v[d, z0) has the defining properties of/', contradiction. (In
the case of C1.2 recall t h a t / 3 b whence b £ / n (/, K<*> z0)) c aid, z0).)

Now suppose Krf, ^o) = ' • RecaH that

b^b' " if,r)caid,x)caid,zo).

If C1.3 occurs at stage z0 + 1, (ii) holds with z = z0. If C1.1 occurs at
stage z0 + 1, (i) holds with z = z0. Now let C1.2 occur at stage z0 + 1 and
consider cases as follows. If/' < / and z0 < x then b' n (/, /') % aid, z0 + l)n

n (/, / '). This implies that b' % b" n (/, /") C aid, z0 + 1) for some /" < /'
and some b", contradiction. If /' < / and z0 = x, then f=b' and b n (/, /)
C / n if,l')c aid, x). Since aid, x + 1) = co

X>1'AX< Oif) .-. x G D o ( / ) .

Again the choice of /' is contradicted. If /' = / and b ^ b', then the choice
of /' can be refuted as before. If /' = /, b = b' and / < n, then z0 = x since
otherwise aid, z§ + 1) = b'. We have a contradiction because n is eligible
as a value for v{d, z0 + 1). Finally, if /' = /, b = b' and I = n, then we can
take z = x and (iii) holds.

We conclude that if b' and /' exist then z exists. Suppose now that
there are no such b' and /' then clearly aid, x) = b and so / = b also.
Stage JC + 1 pertains to eid, v), otherwise <pib, n, v) would be destroyed
at stage x + 1 through a(x + 1) being < b or some number < eid, v)
being enumerated in C. Since aid, x) =/ei ther Cl . l or C 1.3 occurs at
stage x + 1. Since aid, x + 1) = CJ either Cl.l occurs or vid, x) > n. Now
consider cases. Let / = n then <j>ib, n, u + 1) is destroyed at stage x' + 1
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through C1.2 where x' is the least number >u such that aid, x + 1) = b.
Since v(d, x') = K 0(6) we have x' < t which contradicts 0(6, n, u + 1)
= <j>(b, n, t). Thus / < n. Suppose v{d, x)<n and Cl.l occurs at stage
x + 1 then (iv) holds withz =x. Ha(d, x)>n then for some x",x' <x" <x,
v(d, x") = n and 0(6, n, u + 1) is destroyed through Cl .3 at stage
x" + 1 < /, contradiction. We have shown that z exists whether b' and /'
exist or not.

Now z < t because v(d, z) < 0(6). If (iii) holds then 0(6, n, u + 1) is
destroyed at stage z + I < t, contradiction. In each of the other cases
there exists e and / = v{d, z) < n such that / < 0(e), j 4- DQ(e), <j>(e, j , z) is
enumerated in C at stage z + 1 and either e - b or e D b n (/,/). From
P4 and P2(2)

4>(e, j , v) < 0(6, n, v) = 4>(b, n, u + 1 ) .

Since <j>(b, n, t) = <p(b, n, u + 1) and z < t, 0(e, /, z) ¥= (j>(e, j , v). Let z be
the least number >u such that <p(e, j , z + 1) = co. Now <j>(e, j , v) is de-
stroyed through Cl at stage z + 1. Otherwise <p(b, n, u + 1) would also
be destroyed at stage z' + 1. Let stage z + 1 pertain to e(d', z'); then
v{d, z)=j = v{d', z) and z < z. Therefore d * d'. Since d' 3 b and
d' $ b n Jo, e(d', z') cannot be enumerated in A after stage v + 1. Also
e(<f, z') cannot be enumerated in A before stage v + 1, because this
would be inconsistent witha(y + 1) D b n (/,/). This contradiction com-
pletes the proof of P10.
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Introduction. A subset P of ci)m is determinate if. in the sense
of [5] the game Ga(P) is determined. The assumption that every protective
set is determinate implies that every projective set is Lebesgue measurable
(see [6]) and leads to a complete solution to the problem of reduction
and separation principles in the classical and effective projective hi-
erarchies p.], [4]. Because if these and other consequences it would be
pleasant to have a proof that every projective set is determinate. The
best available result is that every Fad is determinate [2]. It is not provable
in Zermelo-Praenkel set theory that every analytic (s]) set is determi-
nate [5]. O

We assume the existence of a measurable cardinal and prove that
every analytic set is determinate. Our proof is fairly simple and makes
a very direct use of the large cardinal assumption (we present it in terms
of a Eamsey cardinal) and the fact that open games are determined.
We believe that larger cardinals will yield a generalization of our proof
to all projective sets. The assumption that measurable cardinals exist
is known not to imply even that all A\ sets are determinate. (This follows
from [1], [4] and work of Silver.)

§ 1. Definitions. (For more information on the analytical hierarchy
see [7], [8J; on infinite games see [5]; on large cardinals see [10], [11].)

Let co be the set of all natural numbers. If /: a> -+A, the function / is
defined by setting ~f(n) equal to the sequence </(0),/(I), ...,f{n—1)>
of the first n values of/. Let Seq be the set of all finite sequences of natural
numbers. Let n-+Jcn be some enumeration of Seq with the property that lcn

has length -< n. The Kleene-Bronicer ordering of Seq is defined by

j(m) is a proper extension of g(n) ,
'j(m) < <7(w)«--> or at the least p for which f(p) ^ (j(p) ,

f(v) < <J(P) •

(') Harvey Krwdmaii (unpublished) lias shown that the cleteriuinavoiicss of Borel sets
cannot bo proved in Zennelo set theory. Whether it can be proved in Zennelo-Fracnkel
Ret theory remains open.
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Let R(i,j, k) be a relation in Seq3 and let / and g map <» into o>.
A sequence k(n) is secured with respect to / , </, and R if

(3m < n)li[j(m), g(m), k(m)) .

A fundamental fact is that {h)(H.n)R(](n), g(n), h(n)) holds if and only
if the Kleene-Brouwer ordering of the sequences unsecured with respect
to / , g, and B is a well-ordering.

Let x be an uncountable cardinal number. Let xln] be the set of all
subsets of x of cardinality n. Let J be a set such that, if F e 3r, there
is an n< a> such that F: x[n]-xo. XCx is a homogeneous set for & if,
for each F e $ with F: x[n]-><o and elements a and b of «tnl which are
subsets of X, F(a) = F(b). If a is an ordinal number, x-+(a)<a means
that, for every countable 3r, there is a homogeneous set for J" of order
type a. K is a Ramsey cardinal if x-»-(x)<<D. Every measurable cardinal
is Ramsey.

Let A and 5 be sets and let C C Am x #". The (Gale-Stewart) infinite
game defined by A, B, and 0 is given as follows: Players I and I I move
alternately, choosing elements of A and B respectively at each turn.
In this way functions / : a>-+A and g: co->B are produced. I wins if
</, g} e C. I has a winning strategy if there is a function which, given
the first n plays of II , gives an ( » + l ) s t play for I in such a manner that I
wins whatever I I plays. A game is determined if either I or I I has a winning
strategy. Let A = B = co. The game defined by A, B, and C is analytic
(S\) if there is a relation R(i, j , k) in Seq3 such that

G ={</,?>: (Wi)(n)R(f(n),g(n),h(n))}

(i.e., if G is the projection of a closed set in (comf under the product
topology.) The game is Borel if some R satisfies the condition above and
furthermore there is a countable ordinal a such that for no / and g is the
Kleene-Brouwer ordering of sequences unsecured with respect to / , g,
and Seq3—R a well-ordering of order type > «.

§ 2. The detertniaateness of analytic sets.
THTCOKEM. (a) If (ft^)[«->(ctj1)<<°] every analytic game is determined.

(b) If ( ax ) ( a< «>i)[^->(ra)<°>] every Borel game is determined.
Proof. Only (a) will be proved, as the prove of (b) is similar. Lefc

^->(ftj1)<a>. Let R C Seq3. I and I I , moving alternately, produce functions
f: o>^-o> and (/: «->o>. II wins if

(h){rAn)R{f(n), g(n),h{n)) .

(Jail this Game 1. We consider a second game (Game 2). I picks / : w ~>a>
and I I picks not only </: (o-*-a> but also G: a>~>y.. (At stage n, I I selects
frhe ordered pair <</(•»), (1(n)y.) Via the enumeration kn, G induces a map
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<?*: Seq->x. I I wins Game 2 if G*(~k) = 0 for all fr secured with respect
to / , g, and B and G* preserves the Kleene-Brouwer ordering on the
unsecured sequences.

LEMMA 1. Game 2 is determined.

Proof. This is the Gale-Stewart result for open games [3]. If I has
no winning strategy, I I makes the least plays at each move such that I
still has no winning strategy. Since I I wins provided that he has not lost
by some finite stage, this strategy wins for I I . (There is a concealed use
of the Axiom of Choice in this proof which can be eliminated.)

LEMMA 2. If I I has a winning strategy for Game 2, I I has a winning
strategy for Game 1.

Proof. If I I wins Game 2, the Kleene-Brouwer ordering on the
unsecured sequences is a well-ordering. (The converse of Lemma 2 can be
proved without assuming JC->((W1)<°> but only that x, is uncountable.)

LEMMA 3. 1/ I has a winning strategy for Game 2, I has a winning
strategy for Game 1.

Proof. Let f(n) = f**{g{n), G(n)) be a winning strategy for I for
Game 2. Let f(n) and g(n) be any finite sequences. Let ktl, ..., Tam for
ij < n be the sequences unsecured with respect to / ' , g', and R for any
f',g' agreeing with }(n), g(n) respectively. (Since kt has length < j , its
being secured depends only on f(j) and g(j).) Let Q c xlm]. There is a unique
sequence G(n) such that G(p) = 0 if kp is secured and 0* maps {&*,, ..., Tcim}
into Q so as to preserve the Kleene-Brouwer ordering. We define

*><»>.*»>: *™^m ^ Ffin),ain)(Q)=r*{9(n), G(n))

where G(n) is the sequence defined above.
Let W = {Fj(n)^n): /(»), g(n) e Seq}. Let X be a homogeneous set

for fF order type a>,. We define a strategy/* for I for Game 1 inductively by

r{9(n)) = *V<«>W<2>
where f(n) is the result of applying/* to the first n plays g(p) and Q e x^mi

is any subset of X. If /* is not a winning strategy, there is a play g such
that, for the play / given by /*, the Kleene-Brouwer ordering of the
sequences unsecured with respect to / , g, and B is a well-ordering. Let G
be such that G(n) = 0 for hn secured and G* maps the unsecured sequences
in an order preserving manner into X. f is then the play according to /**
against g and G, and so we have a contradiction.

§ 3. Further results. Combining our argument with the methods
of [11], we can prove that, if (3[«)[J<->(W1)<<U], then every E\ game lias
a A\ winning strategy. (We owe this observation to Solovay.)
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For sets A and B, give Am x B" x aT the product topology, where
A, -B, and co are given the discrete topology. Let G CA^xB" be the
projection of a closed set in AmxBmx of. Our argument can be used
to show that the game defined by A, B, and G is determined, on the
assumption that a Ramsey cardinal larger than the cardinals of A and
B exists.

In [5], using a theorem of Davis [2], Mycielski shows that, if every
analytic game is determined, then every uncountable CA(It\) set has
a perfect subset. Our theorem thus gives a new and very different proof
of a result of Solovay [12] and Mansfield: If (ax)[«->(co1)<a>] then every
uncountable CA set has a perfect subset.

By a theorem of Shoenfield [8], the assertion that all Borel games
are determined relativizes to L, the universe of constructible sets. Hence
we have that, if (&a:)(a< coi)l>->{a)<<"'], then "all Borel games are de-
termined'' holds in L. We should note that Silver has shown that
(Kx)(a< (ol){x-^{a)<°"[ relativizes to L.

§ 4. What games are determined? We believe that the best
way of approaching this problem is to see what games one can prove
to be determined using plausible large cardinal assumptions. Nevertheless,
some guesses may prove useful.

Addison and Moschovakis [1] suggest that definability may be the
crucial property which guarantees determinateness. Their "Axiom of
Definable Determinateness" asserts that, if A = B = co and G is ordinal
definable from a member of com, then the game defined by A, B, and G
is determined. A problem with this axiom is that there is little hope at
present of proving it from large cardinal assumptions or of using anything
like its full strength in deducing consequences (in both cases, because
of the unmanageable "ordinal definable"). A weaker proposition suggested
by Takeuti and by Solovay, which may not have these defects, is that
the Axiom of Determinateness holds in the smallest transitive class
containing all ordinals and all subsets of co and satisfying the axioms of
set theory.

Another approach is to consider games of arbitrary length. For any
ordinal a, sets A, B, and CCl°XjBa define a game of length 2a in the
obvious way. (See § 7 of [5].) The proposition that all games of length 2
are determined is equivalent to the Axiom of Choice [5]. Give A and B
the discrete topology and A" x Ba the product topology. If G is open,
the game determined by A, B, and G is an open game of length 2a. The
proposition that all open games of every length are determined is in-
consistent. Even if A = B = co, the Axiom of Choice can be used to con-
struct an undetermined open game of length co1. However, it apparently
is possible that every open game of length < wx with A = B = to is de-
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termined. Let Pn be the proposition that all open games of length oo-n
where A = B = to are determined. It is easy to show that, for n < a>,
Pn+i is equivalent to the assertion that all E\ sets are determinate. This
suggests that length may well be a sufficient compensation for what we
lose when we restrict ourselves to open games.
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ENUMERABLE SETS ARE DIOPHANTINE
UDC 51.01:518.5+511.5

Ju. V. MATIJASEVIC

Hilbert's tenth problem has the following formulation (cf. [l]):

Specify a procedure which in a finite number of steps enables one to determine whether or not a

given diophantine equation with an arbitrary number of indeterminates and with rational integer coeffi-

cients has a solution in rational integers.

When this problem was formulated, one could only speak of a positive solution to the problem

since a precise concept of algorithm had not yet been developed. The appearance of this concept has

made algorithmic undecidability proofs possible.

Undecidable problems were first found in mathematical logic, then in algebra and number theory.

In particular, M. Davis, H. Putnam, and Julia Robinson [2] proved that there is no algorithm which

allows one to determine the existence of integer solutions to so-called exponential diophantine equa-

tions, i. e. equations which can be constructed from natural numbers and variables by means of addi-

tion, multiplication, and exponentiation. Using this result and the work of Robinson [3], we will show

that Hilbert's tenth problem is also algorithmically undecidable.

1. Lower-case Latin letters except for i and / will be used throughout as variables ranging over

positive integers; i and / will vary over the nonnegative integers.

We will say that a predicate** fP(u, v) has exponential growth if 9{u. v) implies the inequality

v < u" and for each k there exist u, v such that IP(u, v) and u < v.

A predicate § ( * , • • • , x ) is called diophantine if one can find a polynomial*** U such that

§ (* , , • • • , x ) holds if, and only if there exist integers y .,•••. y. such that M(x ,••• ,x , y . • • •, y.) = 0.

From the work of Davis. Putnam, and Robinson cited above, it follows that if even one diophan-

tine predicate had exponential growth, then every enumerable **** predicate would be diophantine.

The predicate ".v is the 2uth Fibonacci number" has exponential growth. We will show that it is

diophantine. This will prove the following assertion:

Every enumerable predicate is diophantine.

Moreover, for each n one can find an (n + \)-place diophantine predicate U (x , • • •, x , s),

such that any enumerable n-place predicate can be obtained from u by fixing a value for s.

Since there exist enumerable but algorithmically undecidable predicates (cf. [4.5]),. the following
assertion holds:

* Editor's note. The present translation incorporates suggestions made by the author.
**We consider predicates to be properties or relations which are representable by formulas in the language

of formal arithmetic.
*** Without loss of generality we may assume that the degree of the polynomial M is not greater than 4.
**** A predicate is enumerable if one can specify an effectively computable sequence of n-tuples of num-

bers containing all and only those n-tuples for which the predicate holds.

354
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There is no algorithm which enables one to determine whether or not an arbitrary diophanline equa-

tion has a solution.

Combining our result with the results of [6] we obtain the following corollaries:

1) One can specify a fifth-degree polynomial Q(yv ••• , yk, z) with integer coefficients such

that any enumerable set 3li of natural numbers (for example, the set of prime numbers) coincides with

the set of natural values of the polynomial Q(y , • • • , y k, "^X where aM is a certain number effec-

tively constructed for the set 5H.

2) One can specify polynomials R (y;, • • • , yk, z) and S(y v • • • , yk, z) with integer coeffi-

cients such that any enumerable set 5li of integers coincides with the set of integral values of the ratio

S{Vi Vk, aM)

-R (yi vk. «M) '

where aM is a certain number effectively constructed for the set %.

3) One can specify a fifth-degree polynomial Diy^ • • • , y k) with integer coefficients such that

there is no algorithm which enables one to determine for a given number n whether or not the equation

D(y., • • •. yk) = n has a solution.

2. Definition 1. 4>. = 0, <f> = 1, <f> + = <jj + tf} . <j>• ls called the jth Fibonacci number.

Lemma 1. < £ 2 ( n + 1 ) = 3<£2fl - 0 2 ( n _ n -

Corollary. <f>2(n_u = 3<f>2n - <^2 ( n + 1)-

Lemma 2. </5>2(fc+y) s -<t>2(k+i-i) ^mod ^2k + 't'lk+i^' " < ; < A + 1 (induction on /; induction
step by Lemma 1 and its corollary).

Lemma 3- <^12(2)t+l+1 ^ ^ 2 ' ^mo{^ ^2 t + ^2*+2^ (induction on ;'; basis by Lemmas 2 and 1, in-
duction step by Lemma 1).

Lemma 4. 02((24 +l)i + ' ^ ^ 2 ("""^ $2k + (^2*+2^ ( i n ^ u c t ' o n o n *> induction step by Lemma 3).

Corollary to Lemmas 4 and 2.

_ J<P2j f°r 0 < 7 ^ A:,
(Paaah+Di+j) = {V2h + V2h+2_q,^^.,,,., for k + i^j*c2k

m o d ( 0 2 t + 9 i 2 ) f c + 2 ) .

D e f i n i t i o n 2 . F o r e a c h m> 2 , 1// „ = 0 , i/r = l . i A = m i A - iA
— r m , 0 ^ m , l " m , n + l ^ m , n ^ m , n — 1 '

Lemma 5- / / m > 2, d| (m - 3), tAen i/fm = 0 2 . (mod d) (induction on /; induction step by
Lemma 1).

Lemma 6. If the numbers k, m, n, v are such that m > 2, » < 0 2 i + I i (<̂ >2fc + 0 2 4 + 2 ) I (»« ~ 3).
^m.n s u ( m o d <t>2k + "^2/1+2^ ' ^ e n ^ e r e e ; " s ' numbers i, j such that v = <f, , n = (2t + l) i + /
(by Lemma 5 and the cotollary to Lemmas 4 and 2).

Lemma 7. If m>2, 11 (m - 2), tAen ^ m . = / (mod / ) (induction on / ) .

Lemma 8. cf>f+1 - <t>i^in - <t>] = ( - l ) ' (induction on i).

Lemma 9- If the numbers j , k are such that (k2 - jk - y 2 ) 2 = 1, then there exists a number i

such that j = cj>., k = <£. + ] (complete induction on j + k: if /'> 0, then j < k; set / = k - j , k = / ,
t h e n a 2 - / ^ , - / 2 ) ^ ! , ; 1 + 4 1 < / + A ) .

It does not matter here whether we ask for integer, positive integer, or nonnegative integer solutions since
it is known that these three decision problems are equivalent (cf. f4-']).
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Lemma 10. For each m>2,xii2 ...-nub .\b .., + \ii2 . = 1 (induction on i).

Lemma 11. / / the numbers j , k, m are such chat m>2, j <k, k2 - mjk + j 2 = 1, then there exists

a number i such that j = \b ., k = r̂ . + (analogous to Lemma 9).

Lemma 12. gcd(<£., <f>.) = <£ s c d ( J i / ) (proved in [7]).

Corollary. (^n|^>.n.

Lemma 13. / / p on<i 9 are prime numbers, p j 0 , q ^ p, jAen p<£n 1 <̂> . If p is a prime,

p ^ 2 , p | ^ , then P(f>a\c/>pri, but p2<f>nf <j>pn.

If p is a prime, p ± 2, p | 0 n , then p<j>J <f>pn, but p2<t>n^ <t>pn-

If2\4,n, 4<t4,n, tke»4tn\+2n, but W ^ 4>2n.

/Ml*. . '^re 20J^21I, i ^ 4 0 n + 0 2 n .
The lemma is proved in [7],

Lemma 14. If p is a prime, p\<f> , p -\ r, then p<j> -\~ <j> (induction on the number of prime

factors in the number r, induction step by the corollary to Lemma 12 and by Lemma 13).

Lemma 15. If p is prime, p ^ 2, p\<f>n, then p'c/>n\cf> . , but p'+1<£n \ <f> . (induction on i;

induction step by the corollary to Lemma 12 and by Lemma 13).

Lemma 16. If A\cf>n, then 2'</>n\<f> i , but 2 ' + 1 0 n - f c/S . (analogous to Lemma 15).

Lemma 17. <f>2\<f> if and only if <f> \r (follows from Lemmas 13—16).

Corollary to Lemmas 12 and 17. / / <j>2 | <f>(, then <j>s \ t.

Lemma 18. 2 0 2 n < <£ + < 3<£2n (follows from Lemma 1).

Lemma 19. n < 2n~l < 0 < i" (induction on n; induction step by Lemma 18).

3- Theorem. In order for v to be the luth Fibonacci number, it is necessary and sufficient that

there exist numbers g, h, I, m, x, y, z such that:

P — Iz — # = 1, (2)
p-gh-h*=\, (3)

P\g, (4)
l\m — 2, (5)

(2h + g)\(m — 3), (6)

x2 - mxy + y2=i, (7)

l\(x-u), (8)

(2h + g)\(x-v). (9)

Sufficiency. Suppose that the numbers u, v, g, h, I, m, x, y, z satisfy conditions (1)—(9)- By
Lemma 9 and (2) it follows that there is a number s such that

l = 4>s. (io)

By Lemmas 9 and 8 it follows from (3) that there exists a number k such that

^<t>2k- « = * 2 * + i - ( U )

From this we have

2A + « ~ 0 2 f c + * 2 i + 2 - ( 1 2 )

The corollary to Lemmas 12 and 17 together with (10)—(11), (4) imply

356
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l\(2k + l ) . (13)

By (1), (4), (11), (5) it follows that

2 < / < 0 2 t + 1 , m>2. (14)

By Lemma 11, it follows from (14), (7) that there exists a number n such that

By Lemma 6, it follows from (14), (1), (12), (6), (9) that there are numbers i, j such that

v = <f, , n = ( 2 4 + l ) i + j . (16)

By Lemma 7, it follows from (14), (5), (15) that x s n (modi). From this and from (8), (16), (13)

it follows that
u=/ (modZ) . (17)

By Lemma 19, it follows from (16) that / < v. This together with (1), (17) implies that u = j and,

by (16), v = <f> . Thus, sufficiency is established.

Necessity. Suppose that v = <f> . By Lemma 19 the first inequality in (1) is fulfilled. Set

I = </> + 1 , z = </>. , where s is large enough so that the second inequality in (1) is also satisfied.

By Lemma 8, condition (2) holds. Put S = 0 j / 6 J + 1 ) > * = <^(( 6 s+i )_1 • By Lemma 17, condition (4) is

satisfied. By Lemma 12, I is odd since 2 = <£ . Therefore, by Lemma 8, condition (3) is also satis-

fied. By Lemma 12, gcd(A, g) = 1 and, since I is odd and divides g, we have gcd(2A + g, I) = 1.

Therefore, by the Chinese Remainder Theorem, we can find a number m such that conditions (5)—(6)

are fulfilled. Set x = IA , y = t/r . , . By Lemma 10, condition (7) is satisfied; by Lemma 7, con-

dition (8) holds; by Lemma 5, condition (9) is satisfied. This proves necessity.

Conditions (1)—(9) can easily be replaced by a single diophantine predicate (cf. [4>5]). Thus,

the predicate "v is the 2uth Fibonacci number" is diophantine. Lemma 19 implies that it has expo-

nential growth.

4. Certain constructions in this paper use the methods of Julia Robinson presented in [8],

Siberian Branch, Steklov Institute of Mathematics , ,___ ,_„
Received 5/FEB/70

Academy of Sciences of the USSR

ADDENDUM *

Lemma 17 has a simpler proof.

Lemma A. ^>. + . = tf>. <j>. + ^>.<£. (induction on j; also proved in [7]).

Lemma B. <f>. = <£' (mod0 ) (induction on i; inductive transition by Lemma A).

Lemma C. d> s md> d>mZl (mod<A2) (induction on m: inductive transition by Lemmas A and B).

Lemma 17 is an immediate consequence of Lemmas 12 and C.

* Added in translation.
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CATEGORICITY IN POWER(')
BY

MICHAEL MORLEY

Introduction. A theory, 2, (formalized in the first order predicate cal-
culus) is categorical in power K if it has exactly one isomorphism type of
models of power K. This notion was introduced by JJOS [9] and Vaught [ 16]
in 1954. At that time they pointed out that a theory (e.g., the theory of
dense linearly ordered sets without end points) may be categorical in power
Xo and fail to be categorical in any higher power. Conversely, a theory may
be categorical in every uncountable power and fail to be categorical in
power Ko (e.g., the theory of algebraically closed fields of characteristic
0). Jl/os then raised the following question.

Is a theory categorical in one uncountable power necessarily categorical in
every uncountable power?

The principal result of this paper is an affirmative answer to that question.
We actually prove a stronger result, namely: If a theory is categorical in
some uncountable power then every uncountable model of that theory is
saturated. (Terminology used in the Introduction will be defined in the
body of the paper; roughly speaking, a model is saturated, or universal-
homogeneous, if it contains an element of every possible elementary type
relative to its subsystems of strictly smaller power.) It is known(2) that a
theory can have (up to isomorphism) at most one saturated model in each
power. It is interesting to note that our results depend essentially on an
analogue of the usual analysis of topological spaces in terms of their derived
spaces and the Cantor-Bendixson theorem.

The paper is divided into five sections.
In §1 terminology and some meta-mathematical results are summarized.

In particular, for each theory, 2, there is described a theory, 2*, which
has essentially the same models as 2 but is "neater" to work with.

In §2 is defined a topological space, S(A), corresponding to each sub-
system, A, of a model of a theory, 2; the points of S(A) being the "isomor-
phism types" of elements with respect to A. With each monomorphism
(=isomorphic imbedding), f:A—>B, is associated a "dual" continuous
map, f*:S(B)~>S(A). Then there is defined for each S(A) a decreasing
sequence |Sa(A)} of subspaces which is analogous to (but different from)

Presented to the Society, March 28, 1962; received by the August 5, 1963.
( ) Except for minor emendations this paper is identical with the author's doctoral dis-

sertation submitted to the University of Chicago in August 1962.
( ) Cf. [ 10] where the result was shown to follow from the more general result of [ 5].
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the usual sequence of derived spaces in a topological space(3). The basic
difference is that for us the definition of "derived space" will involve not
only S(A) but all of its inverse images under maps of the type, /*: S(B)
—>S(A); that is, not only A but every system A can be imbedded into.
It is well known that those topological spaces whose ath derived space
vanishes at some ordinal a have particularly simple properties. Similarly,
those theories, 2, such that for some ordinal a, Sa(A) vanishes for every
A which is a subsystem of a model of 2 have particularly simple properties.
We have chosen to call such theories totally transcendental. Theorem 2.8,
which is an analogue of the Cantor-Bendixson theorem, states that totally
transcendental theories are characterized by a certain countability condition.

§3 gathers together some results depending on Ramsey's theorem. In
particular, Theorem 3.8 states that any theory categorical in an uncount-
able power is totally transcendental. Much of §3 is related to the results
of Ehrenfeucht and Mostowski [3] and Ehrenfeucht [ l ] and [2].

Some properties of models of totally transcendental theories are estab-
lished in §4. These have to do with the existence of prime models and the
existence of sets of indiscernible elements.

Finally §5 applies the results of the preceding sections to solve the pro-
blem of JLos.

This paper was written while the author was at the University of Cali-
fornia at Berkeley. It is a pleasant duty to acknowledge the more than
usual debt he owes for the advice and encouragement of Professor S.
MacLane of the University of Chicago and Professor R. L. Vaught of the
University of California.

1. Preliminaries. Ordinals are defined so that each ordinal is equal to the
set of smaller ordinals. Cardinals are those ordinals not set-theoretically
equivalent to any preceding ordinal. We use the Greek letters a,/3,y, •••
to denote ordinals, reserving 5 for limit ordinals; X and K will always denote
cardinals and m and n non-negative integers. «+ denotes the least cardinal
> K. The cardinality of a set X is denoted by *(X). An infinite cardinal «
is regular if for every /? < K and every well-ordered set [ K; a < p\ of cardi-
nals with each \a < *,^a<tK < «•• In much that follows finite cardinals
will present anomalous cases; therefore, we shall use the notation K = K'
(modulo Ko) to mean « 4- Xo = / 4- Ko.

A relational system, A = <| A\, Rf)iei is a set |A| together with an
indexed set \R?\iet of finitary relations on |A| . Then |A| is the universe
of A,K(A) = K ( | A | ) , the power of A,R? the ith relation of A, and / the
index set of A. If T £ U / and each Rf is a r(i)-ary relation, then r is the
similarity type of A. Suppose A and B are systems of similarity type r.
Then a map/ : j .4 | ->\B\ is a monomorphism if/ is one-one, and, for each

(') As defined, for example, in [7 , pp. 126-1341.
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j £ i and a,, • • • ,aHil £ A, R?au • • • ,a,(i) if and only if Rff(at), • • • , / ( a J .
If a monomorphism maps A onto B it is an isomorphism and A is isomor-
phic to B(A s? B) If \A\ Q\B\ and the identity map is a monomorphism
of A into B then A is a subsystem of £(A CB) . Corresponding to each
XQ\A\, there is a unique subsystem of A with universe X, denoted
byA\X.

In certain auxiliary constructions it is convenient to consider generalized
relation systems which have in addition to finitary relations, a set of dis-
tinguished elements and a set of finitary operations. The preceding concepts
may be extended to generalized relation systems in an obvious fashion.
In particular, a subsystem will always contain all the distinguished ele-
ments and be closed under all the operations.

Corresponding to each similarity type T is a first order (with identity)
language, L,. The symbols of L, are the usual logical connectives: ~ ,
V, A,—>,«-*; quantifiers: 3, V; an equality sign: = ; a denumerable set of
variables: vo,vu---; and a T (i)-ary relation symbol, J?,, for each i £ /.
(Corresponding to generalized relation systems we have generalized lan-
guages which have, in addition to the preceding symbols, individual con-
stants and operation symbols.) The language, LT is countable if it has only
a countable number of symbols. The reader is assumed familiar with the
notion of term and formula in such a language. An open formula is a formula
containing no quantifiers. A sentence is a formula with no free variables.
A universal sentence is a sentence in prenex form containing no existential
quantifiers. If ^ is a formula of L, with no free variables other than v0,
• ••,BB_I, A is a system of type T, ando0,---,on_iGA; then \-AHa0, • • -,an-i)
means that a0, • ••,an^1 satisfies ^ in A (in the usual sense) when vm denotes
am. If t(vu •••,vn) is a term of LT and hAa0= t{au • ••,<!„), then we say a0

is the value of the term t when vm denotes ajjn ^ n) and write a0 =
i^(oi, ••-,an). A consistent set, 2, of sentences of L is a theory of LT. A
system, A (of similarity type T), is a model of 2 if for every <r£ 2, \-Aa. If

1 is a sentence of L,, \-^ means that for every model A of 2, yA\j/. The
theory 2 is complete if for every sentence $ of L, either (-^ or hz ~ i- If
2 is a theory having an infinite model and * is an infinite cardinal then 2
is categorical in power K (/c-categorical) if all models of 2 of power K are
isomorphic. By a result of Vaught [16] and £os [9], if 2 is x-categorical
and has no finite models then 2 is complete.

If A is a system of type r and X C j A \ we may form a new system
(A,a)aex by taking each element of X as a distinguished element. We
denote by L(A) the language corresponding to the similarity type of
(A,a)ae^. (The symbols of L(A) are the symbols of L together with a new
individual constant a" for each a£A(4) . ) The diagram of A,Q){A), is the

( ) To avoid all ambiguities one should write a rather than a; however, in our uses the A
will always be clear from context.



277

1965] CATEGORICITY IN POWER 517

set of all open sentences (i.e., formulas without variables) of L(A) which
are valid in (A,a)a€W. If A and B are systems of type r then A is elementary
equivalent to B if A and B are models of the same complete theory of L,
(A = B). If X C | A | and / is a mapping of X into | B| then / is an elementary
monomorphism ((A,x)xex= (B,f(x))xex) if for every x0, •• • , *„£ X and
every formula, ^, of LT, hiiMx0) ••-,*,.) implies \-Bt(f(x0), •• •,/(*„)).

Suppose A = (A, R?)i<=i is a relation system of type T. For each formula \f/
of Lr, if m is the smallest number such that the free variables of \p are among
v0, • •-,vm-U then we denote by \//A the m-ary relation on | A| such that
fAa0, •••,am_1 if and only if h^ teo , • • -,am-d- Then define

A * = (A, $A) ^e formulas of LT.

Let T* be similarity type of A*. If 2 is a theory in LT define 2* as those
sentences $ of Lp. such that \-A'f for every model A of 2. The next lemma
follows easily from these definitions.

LEMMA 1.1. (a) A' is a model of 2* if and only if there is a model A of 2
such that A* — A'.

(b) A ss B if and only if A* s B*.
(c) / / A and B are models of 2, X C | A |, and f a map of X into B, then

(A,x)XIEx= (B,f(x))x&xif and only if the map f:A*\X-+B* is a monomor-
phism.

(d) 2 is K-categorical if and only if 2* is K-categorical.
(e) / / 2 is a theory in L, and ^ is a formula in Lr- having no free variables

other than v0, • •• fun_i , then there is a relation symbol R of degree n in LT-
such that \-z>4>(v0, • • •, vn_t) <-• R(v0, • ••,«„_!).

For the case that 2 is a complete theory the following results were
established in [ 10].

LEMMA 1.2. Suppose 2 is a complete theory in LT. Denote by -^(2*) the
class of subsystems of models of 2*.

(a) 2* is a complete theory in L,*.
(b) / / {Ao;a<6( is an increasing chain of members of -^(J,*) then

U<,<jAoG-^(2*). If each Aa is a model of 2* then the union is a model
of?,*.

(c) If Au A2E-^(2*) then there is an A 3 E ^1(2*) and monomorphisms
A : Ai—>A3 and f2: A2—>A3.

(d) / / Ao^uAiE-^i?*) and g^.Ao—'A,. and g2:Au~+A2are monomor-
phisms, then there is an A 3 G ^ ( 2 * ) and monomorphisms fi-.Ai—*A3 and
/ 2 : A 2 - » A 3 such that f{g: = A_£2(5)-

C) In [5] Jonsson considered classes of relation systems satisfying certain condition which
he numbered I-VI. In order to apply Jonsson's result to an arbitrary complete theory, [ 10J
devised the 2* theory and showed that vf(r*) satisfied Josson's conditions. In Theorem 1.2,
(b). (c) and (d) assert respectively that •*(?*) satisfies Jonsson's conditions V, III, and IV.
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A notion that we shall find convenient is that of a category oi maps.

If .y is a class of mathematical objects(6) then a category which object

class _y is a class, $£, oi triples called maps (denoted by f:A --B) where

A,B(E y , / is a function of \A\ into \B\, and such that (i) (identity:

A — A) G % for each A G Sf and (ii) if (/: A — JB) and fe:J3^C)el

then (g/: i4 —> Q G ^ . A is the domain and fi the co-domain of f: A —>B(7).

2. Transcendence in rank. We shall be interested in elementary mono-

morphisms among subsystems of a complete theory 2. By l.l(c) it is there-

fore convenient to consider 2* instead of 2. Throughout the rest of this

paper we shall adopt the following convention: T will always denote a com-

plete theory in a countable language, L, T has an infinite model, and there

is a theory 2 such that T= 2*. We will denote the class of subsystems

of models of Tby^{T).

If A£yf(T) it follows from l.l(e) that T(A) = T\J 3>(A) is a com-

plete theory in L(A)(8). We denote by F(A) the set of formulas of L{A)

which have no free variable other than v0. If the formulas of F(A) which

are equivalent in the theory T(A) are identified (i.e., ^ is identified with

\p' if I- T{A)( Vto^^^'M9) then F(A) may be considered as a Boolean algebra

with A, V, and ~ as D, U, and complementation respectively (1U). A maxi-

mally consistent set of formulas in F(A) will be a dual prime ideal (ultra-

filter) in F(A) considered as a Boolean algebra. The set of such dual

prime ideals is the Stone space of F(A) and will be denoted by S(A).

S(A) is a Boolean space with a basis consisting of the sets.

Ut={peS(A); + Ep} (+eF(A)).

It follows that S(A) has a basis of power = K(A) (modulo Ko).

The space S(A) may be thought of as the ways of extending T(A) to a

complete theory in a language having one more individual constant than

L(A) has. Suppose A,BG-J^{T),B^ A,bE B, and b is the constant in

the L(B) corresponding to b. We denote by pb,B the unique p £S(B) con-

O A "mathematical object," A, is a set |vl| with some associated structure. In every case
in this paper an object is either a relational system or a topological space.

( ) It is more usual to abstract the composition properties of the maps and define a category
as a class of elements with a binary operation denned for some pairs of elements and which
satisfies certain axioms. Since we are interested not in categories, per se, but in certain in-
stances of them, the definition we have given is more convenient.

( ) We could have chosen to present this entire section "syntactically" by considering,
instead of the class ̂ HT), the class of all complete extensions of T in languages which are
extensions of L by the addition of new individual constants.

O It follows from l.l(e) that we would get the same Boolean algebra if we assumed that
F(A) contained only open formulas. Notice that for open formulas |-,4 is equivalent to \-T(A),
but for formulas in general the two are not equivalent unless A is a model of T.

( ) The close relationship between the properties of the various Boolean algebras of formulas
of the language L and the model-theoretic properties of T has been observed by several authors.
See especially [13] and [18].
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taining the formula: v0 = b. Let Pb.B.A = Pi.sH F(A). If qES(A) we say
b realizes q in B if q — Pt,B.A- Clearly, every bE B realizes some point of
S(A). By the Completeness Theorem every p £ S ( i ) is realized in some
extension of A. Suppose BltB2E JY(T),ByB2^ A and bt £ Bly b2 £ B2;
then the map: A U {by) —* A U {b2} which is the identity on A and maps
bi to b2 is a monomorphism if and only if 6i and 62 realize the same point
in S(A). Thus, S(A) is the set of "isomorphism types of elements with
respect to A."

LEMMA 2.1. If AE yf(T) then there is a model of T,B,B^>A such that
each p E S(A) is realized in B.

Proof. Let {pa;a < 7} be a well-ordered list of the points of S(A). We
assert there exists an increasing chain {Ba; a < 7 j of models of T such that
each Ba^A and each pfi with /9 < a is realized in Ba. The proof is by
induction on a. Assume the sequence exists for all fi < a. If a is a limit
ordinal let Bo = U 0<aBf and the result follows from 1.2(b). Suppose
a = /S + 1. By the Completeness Theorem there is a model of T,C,C^> A
such that pg is realized in C. By 1.2(d) there is a model of T, D, and mono-
morphisms fx: C—*D and f2'-Bti^>D such that fy = f2 on A. If we identify
Be with* f2(BB) then D may be taken as Ba. By is the B satisfying the
theorem.

Suppose that A,B^J^{T) and f:A—>B is a monomorphism. Then /
induces a monomorphism f:F(A)-+F(B) denned by: f($) is the formula
obtained by substituting (for each a£A) f(a) for each occurrence of a
in f. In turn, /"induces a map f* :S(B)-*S(A) defined by f*(p) = 7~\p).
The map /* is continuous (cf. [14]), indeed f*~l(Ut) = Uf^; the map /*
is onto S(A), for if qES(A) there is some p E S(B) with p^f(q). If, in
particular, B^>A and iAB:A—»B is the identity map(u) and pES(B)
then ih(p) ^pHF(A).

Let 9{T) = {S(A); A <= -*(T)\ and ^(T) = j (/* : S(B) ^S(A)); A. B
E ^(T) and f:A—>B a monomorphism j . Then ^ (T) is a category of
continuous onto maps with object class f/(T). It is "dual" to the cate-
gory of monomorphisms between members of < (̂T). Therefore, corre-
sponding to each of 1.2(b), (c) and (d) there is a dual statement which
holds in the category $£(T). It should be especially noted that since a
formula, i, involves only a finite number of individual constants, for each
U4 in the basis of S(A) there is some finite B C A such that U^ is the
inverse image under i%A of a member of the basis of S(B).

The next definition is a generalization of the usual definition of derived
spaces to a definition involving a class of spaces and a category of maps
between them. Though we shall deal explicitly only with the category

( ) Hencefor th , whenever A<ZB the ident i ty m a p of .4 into B will be denoted by j . t / ( .
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te(T), it will be obvious that Definition 2.2 and many of the following
results and proofs remain valid in many other categories of continuous
onto maps betweem compact spaces.

DEFINITION 2.2. For each ordinal a and each S(A) E Sf(T), subspaces
S"(A) and Tr"(A) are denned inductively by:

(1) S°(A) = S(A) - U 0<aTi*(A)
(2) p G TT°(A) if (i) p E S"(A) and (ii) for every map (/* : S(B)—S(A))

E^(T),f*~'{p) nS°(B) is a set of isolated points in S°(B).
pES(A) is algebraic if p £ Tru(j4); p is transcendental in rank a if

PETr°(A)(i2).

THEOREM 2.3. (a) S"(A) is a closed and hence compact subspace of S(A).
(b) / / (f* : S(B) ^ S(A)) E 5£(T) then (i) /*(S"(5» = S"(A), and (ii)

if pES°(A) then p£Tr°(A) i/ and on/y i/ /*~](p) DS°(B) C Tr°(B).

Proof, (a) The proof is by induction on a. Suppose a = f)-\- 1. Then
S°U) = Stf(A) - Tr"U). TAA) is a set of isolated points in S*(A) and
is therefore open in S"(^4). So S"(A) is closed.

Suppose a = &. Then Sl(A) = \\ n^S^iA) and is closed since it is the
intersection of closed sets.

(b) Notice first that, since Tr°(A) = S°(A) - Sa+l(A), (b)(ii) will follow
immediately from (b)(i). We shall use the following topological result.

PROPOSITION. Suppose G is a compact space, H a Hausdorff space, f:
G—>H a continuous onto map, and p(£H, a limit point of H; then f~l(p)
contains a limit point of G.

Proof of proposition. If f~1(p) contained only isolated points then G
— f~1(p) would be closed and hence compact. Then f(G — /-1(p)) = H
— \p\ would be compact and hence closed, so p would not be a limit
point of H.

The proof of (b)(i) is by induction on a. Assume result for all 0 < a.
We first show that f*(Sa(B)) CS"(A); that is, we show for each 0 < a that
if qES°(B) then f*(q) = p £Tr"G4). Since q^Tie(B) there is some
(5*:S(O->S(B))e5f(T) such that g'-'t?) fl S'(Q contains a limit
point, say r. Then (f*g* : S(Q -^S(A)) <E$? (T) and re(f*g*)~l(p) so
P$TT'(A).

Finally, to prove that f*(S°(J3)) 3 Sa(A) we must show for each p E S°(A)
that f*-\p)r\S"(B)9*$. Suppose the contrary for some pES"(A).
Since /* is onto, f*~1(p) is closed and compact and therefore there is a
largest 0 (necessarily < a) such that /*~'(p) C\SB(B) ^ 0. Then / ^ ( p )

i12) The terminology algebraic and transcendental are suggested by the theory of algebraically
closed fields of characteristic 0, see Example I below. Our notion of algebraic is also related to a
generalized notion of algebraic extension considered by Jonsson [ 6 ] .
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nS*CB) CTr"(£). Since p $ T/(A) there is some (g*:S(Q-.S(A))
G ^ ( T ) such that g*"1(p) PlS*(C) contains a limit point of S"(C), say r.
By 1.2(d) there is a DEsf(T) and monomorphisms hY:B —>D and A2:
C^>D such that /ii/= /»2#. By the induction assumption, /i^ maps S"(D)
onto S0(Q. By the proposition above, h*'1^) contains a limit point of
S"(D) say s. Then /if(s) GS"(B) nf*'\p) but Ms) $Tr"(B) from 2.2.
This contradicts f*~l(p) C\SB(B) CTr"(B) and the result is established.

COROLLARY 2.4. / / p£Tr" (A) <Aen there is a finite FQA such that
ih(p)ET?(F).

Proof. S{A) has a neighborhood £/ such that S°{A)DU=[p}. As
remarked earlier, since U is determined by some formula there is some
finite FQ A such that S(F) has a neighborhood V with C/= i&fHV). By
2.3 (b)(i), ifA(p) = ^ ( C / n S ' W ) ) = V n S " ( ^ . Therefore, ih(p) ETY(F).

THEOREM 2.5. (a) If p €z Tr°(A) there is an integer n such that for every
(f*:S(B)^S(A))e&(T) the set f*~l(p) Pi S"(B) has power ^n. The
least such integer will be called the degree of p(13)

(b) If p E Tr"(A) and (f*:S(B) -» S(A)) E %(T) then degree p =
£ , degree q(qEf*~l(p) nTr ' (B) ) .

Proof, (a) Suppose the opposite for some pETr°(A). Then there would
be, for each n £ w, a Bn E-^(T) and monomorphisms /„: A —»Bn such that
fn'lip) nS°(Bn) has power > n. By iterative applications of 1.2(d) to these
Bn's there is a sequence A C A i C A j - - - such that ^ . ( p ) O S"(An) has
power greater than n. Let A' = U n e u A n . Then ^ ' ( p ) nS°{A') is in-
finite and since it is compact, has a limit point. So p $ Tr°(A) contradict-
ing the assumption.

(b) For each q<ETr"(B) C\f*~\p) there is some CqE-*'{T) and a
monomorphism gq: B —> C, such that g?~l(q) C\S"(Cq) has power degree q.
Similarly there is some CPEL-^(T) and a monomorphism gp: A — Cp such
that gp*~l(p) nSa(Cp) has power degree p. By repeated applications of
1.2(d) there is a CE-dfiT) and a monomorphism g:B—>C such that
5*"1(9)nS"(O has power degree q (for each q <Ef*-l(p) nS"(B)) and
(fg*)"1^) n S " ( O has power degree p. But

(/V)"I(p)nS"(o = Ur"l(<7)ns°(C) toe/-l(p)ns"(fl))

and the result follows.

Lemma 2.6. (a) There is an ordinal ar < (2K") + which is the least ordinal

( ) It is possible to combine the rank and degree into a single new rank by varying the
Definition 2.2 slightly. To do »o replace in 2.2(2) the words "set of isolated points" by "a
single point."
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such that for all AE.t(T) and all 0 > aT, S°r(A) = S'y(A).
(b) If S"T(A) = 0 for some A £ ^(T), then aT is not a limit ordinal and

for every BiE A(T), S"T(B) = 0 and S"(B) = 0 for any 0 < ar.

Proof, (a) From 2.4 it follows that Tr°(^) is empty for every A £ -^ (7 )
if it is empty for every finite AE-^iT). There are at most 2Ku isomor-
phism types of finite systems E-^(T) and for each such finite system
4S(A)) :g 2*°.

(b) Suppose A,BES(T) and S"(A) = 0 Then by 1.2(c) and 2.3(b)
S"(B) = 0. That the least ordinal at which this occurs cannot be a limit
ordinal follows from 2.3(a) and the compactness of S(A).

We say T is totally transcendental if S"T(A) = 0 for some (and hence
every) AE-^(T).

THEOREM 2.7. / / T is totally transcendental then K(S(A)) = K(A)
(modulo No) for every A^SY(T).

Proof. For every p £ Tf(A) we may choose a member U(p) of the basis
of S(A) such that U(p) nSa(A) = \p\. Clearly if p^p' then U(p)
9^ U(p'). Since T is totally transcendental, every p(ES(A) is transcen-
dental in some rank. Thus the correspondence of p to U(p) is a one-one
correspondence between S(A) and a subset of the basis of S(A). So K(S(A))

2i K(A) + Ko. On the other hand, the formula: vQ =a, determines for each
a £ A a unique element of S(./l); so K(S(A)) ^ K(A).

The next theorem is an analogue of the Cantor-Bendixson theorem and
the proof is similar to proofs of that theorem.

THEOREM 2.8. T is totally transcendental if and only if S(A) is countable
for every countable A £ -^(T).

Proof. If T is totally transcendental then S(A) is countable for countable
A by Theorem 2.7.

Conversely, suppose T is not totally transcendental. Then for every A
G^(T),S°T(A)^0. There is some AE^iT) such that S°T(A) has
more than one point; for otherwise, every p £ S"T(A) would be transcen-
dental in rank aT, and by definition, there are no points transcendental in
rank aT. Thus, there is some Al £ ^(T) such that S"T(AJ may be divided
into two disjoint nonempty components (closed-open sets), say Uo and Ui.
As remarked earlier, Uo and Ui are determined by finite subsets of At.
Hence, without loss of generality we take Ai to be finite. There must be
some BE^(T),B^AU such that i^iUo) DS"T(B) has more than one
point; for otherwise, each p £ Uo would be transcendental in rank aT

Similarly for f/i. By 1.2(d) we may find an A2^Al such that ijf^fl/o)
nS°T{AJ and ^ ( f / J f l S ' l A j ) both have more than one point. Thus
we may decompose S"T(A^ into four disjoint nonempty components, C/oo,
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£/oi, Uw. Un such that i^iUj) nS"T(AJ = UfiU Ufl 0 = 0,1)- As be-
fore we may take A2 to be finite. We proceed inductively to find an in-
creasing chain of systems [An;n <<o} such that each A n £ - ^ ( T ) , is finite,
each S"T(An) may be decomposed into 2" disjoint nonempty components
tfjb-M-iO* = 0,l) and

LetA = UnAB. For each t<E2w, Let V, = n»t5l^(t/w,...«to-l)) n ^ < A ) .
Then V, ?± 0 since it is the intersection of closed nonempty sets. Obviously,
*! ^ *2 implies Vtl 0 ^ = 0 . Thus Sar(A) has power 2**° though A is
countable.

We shall conclude this section with three examples. In each case we
shall describe the theory 2 such that T = 2*. We shall then describe S(A)
for each AS^(T). To do this it is convenient to know when a con-
sistent set of formulas of F(A) is contained in a unique p^S(A). We
give the following sufficient condition:

A consistent set of formulas, Q c F(A), is contained in a unique p £ S(A)
if whenever B is a model of T,B^>A, and 6 , 6 ' £ 5 satisfy every formula
of Q, then there is an automorphism of B carrying b to b' and leaving each
element of A fixed(u).

For suppose p and p' were points of S(A) which contain Q. By 2.1
there is a model of T,B,B^>A, and with 6 ,6 'GS realizing p and p'
respectively. Our condition then asserts that there is an automorphism of
B having A fixed and carrying b to b'. Therefore b and b' realize the same
point of S(A), that is p = p'.

EXAMPLE I. Let 2 be the theory of algebraically closed fields of charac-
teristic 0(ls). As mentioned earlier this theory is categorical in very un-
countable power but not in power No. Suppose A g ^ t ^ ) , let A(A) be
the field generated by A. Suppose Q(v0) is a polynomial with coefficients
in A(A) and irreducible over A(J4). By the condition above the formula:
Q(v0) = 0 determines a unique point of S(A). Since this point is determined
by a single formula it is an isolated point of S(A). Let P be the set of all
formulas: Q(v0) ^0 where Q(v0) is a polynomial with coefficients in MA).
Then all the formulas of P are satisfied precisely by those elements trans-
cendental (in the usual field-theoretical sense) over A(A). Therefore, by
our condition and the Steinitz theorems P is included in a unique p (E S(A).
Obviously, the above are all the points of S(A). Since S{A) is infinite
and compact it must have a limit point which can only be the point deter-

(u) If we weaken this condition to assert that there is a model of T,C^>B, such that C has an
automorphism carrying b to b' and leaving each element of A fixed, then this condition is also
necessary; rf. |1O|.

(lD) For a more detailed discussion of this case see Abraham Robinson, Complete theories.
North-Holland, Amsterdam, 1956.
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mined by P. Thus S(A) consists of: (1) isolated points corresponding to
the distinct elements of A(A) and to the algebraic extensions of A(A),
and (2) a single limit point corresponding to the transcendental extensions
of A(A). If B ^> A then any element algebraic over A(A) is a fortiori alge-
braic over S(B). So if p £ S(A) is an isolated point, then iX^ip) is a set
of isolated points; hence p£Tr°G4). For each A £ -^{T),S\A) is then
a single point so Sl(A) = Tr ' (^) . Thus T is totally transcendental and
a T = 2 .

EXAMPLE II. Suppose there are two relation symbols: Ro, a one-ary
relation symbol, and Ru an (re -f l)-ary relation symbol and let the formulas
of 2 assert that in any model of 2 A = (\A\,R$,Rf):

(1) \A\ is infinite, and
(2) the set of pairs (a0, (au • • -,an)) such that Rfao,au • • -,an is a one-one

correspondence between \A\ — Ro and the re-tuples of distinct elements
oiRl

This theory is obviously categorical in every infinite power.
For each n-tuple of distinct elements of R$,au • • -,an, let (au---,an)

denote the unique a0 such that R?,ao,au • • -,an. Suppose BEL-^(T).

By 2.1 there is a model of T, A 3 B, such that every p £ S(B) is realized
in A. Denote by B the closure of B in A; more precisely, J8 is the smallest
subsystem such that fie BciA, and (alt • • -,an) £ H if and only if ax,
• • -,an G &• It is easy to see that every a E B is characterized by a unique
formula of F(B), and so each a(E;B realizes an isolated point of S(B).

Notice that every one-one map of Rfi — B onto itself induces an auto-
morphism of A which leaves B fixed. So every element of R$ — B realizes
the same point oiS(B). Similarly, two elements (au •••,an) and (a[, •••,a'n)
realizes the same point of S(B) if and only if for all 1 ^ i ^ n, a, = a- when-
ever a, or a,'£ B. Call a point p £ S(B) of type m if it is realized by an
element (au •••,an) and exactly m of the a ; ' s£ .6 ;

Suppose CE-^(T), A^C^B, (alt ••• ,an)£ A,m of the ai 's£J5,
and m + 1 of the o , ' s £ C Then (au •••,an) realizes a point of type m
in S(B) and of type m + 1 in S(Q. Thus, for every BG-^(T) we can
find a C 3 B such that for every p £ S ( 5 ) of type m < n,i])cl(p) contains
an infinite set of points of type m + 1.

From the above considerations it is easy to show that: (1) the points of
S(B) realized by elements of 5£Tr° (B) , (2) the point of S(B) realized by
the elements of R$ — S is transcendental in rank 1, and (3) the points of
S(B) of type m are transcendental in rank n — m. Therefore, T is totally
transcendental and aT = n + 1.

EXAMPLE III. Consider the Cantor set, i.e., 2" with the product topology.
Let Y be a closed nonempty subset of 2". There will be a denumerable set
Rn (n £ a;) of singulary relation symbols and the theory 2 will assert
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that for any model of 2, A, and any two finite sets Ko, Kx Ca>, O n<=KxRn
D 0 neKo (| A | — R*) is empty or infinite depending on whether

\tGY; A *(n) = lA A t(n) = 0j

is empty or nonempty. Thus the points of Y correspond to the isomor-
phism types of single element subsystems of models of 2. If A G - ^ T ) ,
then the points of S(A) realized by elements of A are isolated, indeed
algebraic points; while the points realized by elements not in A form a
space homeomorphic to Y. None of the latter points can be algebraic
since each one could be realized by an infinite set of elements in some
B 3 y l . So Sl(A) is homeomorphic to Y, and, if B~^>A,i%B maps Sl(B)
homeomorphically onto Sl(A). A point p£Sl(A) will be in Si+a(A) if
and only if the corresponding point of Y is in Y(o), the ath derived set of
Y. The theory is totally transcendental if and only if Y has a vanishing
perfect kernel, that is, if Y is countable. If ay is the least ordinal such that
yW = yfa+D t h e n a r = 1 + a y .

3. Results depending on Ramsey's theorem. In this section we have
gathered together some results depending on the following theorem of
Ramsey [12].

THEOREM 3.1 (RAMSEY). Suppose Y is an infinite set and Y(n) the set of
subsets of Y having exactly n elements. If Y(n) = Cl U • • • U Cm is a partition
of Y(n) into a finite number of mutually disjoint sets, then there is a j g m and
an infinite set Yx C Y such that Y|n) C C,.

Much of this section is related to results of Ehrenfeucht and Mostowski
[3] and Ehrenfeucht [ l ] , [ 2 ] . In particular, Theorems 3.2, 3.4 and 3.5
below are only slight variants of the results of [ 3 ] .

THEOREM 3.2. Suppose 2 is a (generalized) theory in a language L, 2 has
an infinite model, and (X, < ) is an arbitary linearly ordered set. Then there
is a model of 2, A, such that |A | 3 X and whenever n £<^»xo < ••• < xn-i
and x'o < • • • < x'n-i are contained in X and \f/ is a formula of L with no free
variables other than i>0, •••,/>„_i, then hi^(*o> • • -,Jcn-i) ^iix'o, • • - , * i - i ) -

Proof. Suppose there is added to L a new cons tan t , x, for each x G X ,

a n d the re is added to 2 t h e sentence

(I) "x'^Jz"
for each pair xu x2 of distinct elements of X. Suppose further that whenever
n £ a , X o < • • • < xn_, and x'o < • • • < x^_i and i is a formula of L with free
variables among v0, •••,vn_u there is added to 2 the formula

(II) 'V(*T• • •. *„-1) W ( 4 . • • • • xTO•"
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The result is a set of sentences, say 2, extending 2.
To prove the theorem it is sufficient to. prove 2 consistent. Suppose 2

is inconsistent. Then there is an inconsistent 2, C 2 such that 2, = 2 to-
gether with a finite number of sentences of type (I) and (II). Let the
sentences of type (II) appearing in 2i be:

where the notation [x] is an abbreviation for a sequence of constants

Consider first the case where each [x]j has the same number of elements,
say n. Let A be an infinite model of 2 and " < *" a linear ordering of
\A\ (in general, having nothing to do with any of the original relations
of A). If [a] and [a ] ' are rc-tuples of \A\ which are properly ordered
by < * then we say

f a ] * [ a ] ' if yA /Wy[a]~*;-[a] ' .

This equivalence —'partitions |.A|ln> into (at most) 2m equivalence classes.
Applying Ramsey's theorem, we may find some infinite subset Y c | A |
such that Y(n) lies entirely within one equivalence class. That is, if [a]
and [ a ] ' are properly ordered n-tuples of Y then [a]«=[a] ' . Since 2
contains only a finite number of sentences of type (I) and (II), it contains
of the new constants added to L, only those corresponding to some finite
subset of X, say Xx. We may now pick in Y a finite subset, Ylt which is
order-isomorphic to Xt. Then (A,a)aeYl is a model of 21( contradicting
its inconsistency.

Consider the general case where all the [x]/s do not necessarily have
the same number of elements. Notice that it is sufficient to prove the
theorem for X, a linearly ordered set without maximal elements, since any
linearly ordered set can be imbedded in such a one. Now, let N be the
maximum number of elements in any [x]j (j^m). Then a properly
ordered [x] — (x0, • • •, xn_^ may be imbedded in a properly ordered set
(XQ, • • •, xn_u xn, • • •, xN_i). The general result then follows from the first
considered case.

The next theorem expresses the well-known fact that one can eliminate
existential quantifiers by the use of operation symbols. A proof may be
found in the first chapter of [4].

THEOREM 3.3. Suppose 2 is a theory in a countable language, L; then
there is a countable generalized language, L* 2 L and a theory 2 ' of L* such
that:

(i) every j £ z ' is a universal sentence, and
(ii) for every sentence, ^ of L,\-/ ^ if and only if \-zt.
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Thus, if A is a model of 2*, then A 1 L (A restricted to the relations
corresponding to symbols of L) is a model of 2.

Suppose A is a model of 2* and X C j A \. The set of elements a £ A
such that there is a term, <(Ui, • • •, i>n) in L* and *i, • • • , *„£ X with a =
fHxi, • • •, xn) is by 3.3(i) the universe of a model of 2#, denoted by M(X, A).

THEOREM 3.4. If X is a theory of L, has an infinite model, and (X, <)
is an arbitrary linearly ordered set; then there is a model of 2*, A, with X c | A |
such that if: (i) to(vo, • • •, v^), • • •, tm(v0, ••-, v^) are terms in L*, (ii) xjk

and x'jk (j ^ m . i g n,) are elements of X and the mapping of xjk to x]k is an
order isomorphism between them, and (iii) $ is a formula of L* with free
variables among v0, • • •, vm; then

hl^(<o(*OO. • • -»^Ono). • ••i*m(*mO. * ' •>*mnm))

<-»^($(loO, • ••,*6no)> •••,to(x'mf)j ' ' * t X'mnJ) •

Proof. Apply Theorem 3.2 to 2 ' .

THEOREM 3.5. Suppose 2 is a theory with an infinite model and (X, <)
is an arbitrary linearly ordered set. Then there is a model of 2, B, \B\ 2 X,
such that any order endomorphism {automorphism) of X may be extended
to an endomorphism (automorphism) of B.

Proof. Extend 2 to 2* and apply Theorem 3.4 to get a model of Z* con-
taining X. Take B = M(X,A)\L. If f:X — X is an order endomor-
phism, define / : M(X, A) - M ( X , A) by /V(*<>, • • •, *J ) = **(/( *o), • • •,/(*.))•
By 3.4 / is well defined and is a monomorphism; it is obviously onto if
/ is onto.

The preceding two theorems may be strengthened by extending 2 to
2* ' ra ther than 2*. Using 1.1 (c) this will then prove:

THEOREM 3.6. (a) For formulas, \f/, of L, Theorem 3.4 remains valid if
in the last line \-A is replaced by \-M(X,A)-

(b) Under the hypothesis of Theorem 3.5 there is a model of 2, JB,|B| 2 X,
such that any order endomorphism (automorphism) of X may be extended to
an elementary endomorphism (automorphism) of B.

Suppose A is a model of 2 , X C | A | , and a,a'£A. We say a is ele-
mentarily equivalent over X with respect of A to a ' if the map : X U {a j
—>X\J \a'} which is the identity on X and maps a to a' is an elementary
monomorphism.

THEOREM 3.7. Suppose 2 is a theory in a countable language, L, and 2
has an infinite model. Then for every infinite K there is a model of Z,A,K(A)

= K, such that for every countable X Q\A\,A contains only a countable
number of elementary equivalence classes over X.
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Proof!11'). Let (X,, <) be a linearly ordered set having the order type of
initial ordinal *. Apply Theorem 3.4 to X*r to get B and let A — M(X>, B) 1 L.
Suppose Y is a countable subset of | ^4 | . Then Y C M(X0, A) for some
countable subset X0C.Xk. For each a £ A there is some term t(v0, •••,vn)
in L** and elements x0, • • • ,xn(E: XK such that a = tA(xu, • • -,xn). By 3.6(a)
the elementary equivalence class of a over V is determined by t(v0, •••,vn)
and the ordering relations between x0, •••,x,,, and Xo. L** is a countable
language and has only a countable number of distinct terms. Xo is a count-
able well-ordered set and so there are only a countable number of ways
of interpolating a finite set into it. Therefore A has only a countable
number of equivalence classes over Y.

THEOREM 3.8. / / T is categorical in some power « > Ko then T is totally
transcendental.

Proof!1'). Suppose T were not totally transcendental. Then by 2.8 there
would be a countable CG.^(T) with K(S(Q) > No. So we could certainly
have a model of T, B, such that K(B) = K,B^> C, and an uncountable num-
ber of points of S(Q are realized in B. This B is clearly not isomorphic
to the model of power K proven to exist in Theorem 3.7.

A theory T may be categorical in power Ko and not be totally transcen-
dental. For example, consider the theory of dense linearly ordered sets
without end points. Let A be a linearly ordered set having the order type
of the rationals. It can be shown that distinct Dedekind cuts in A corre-
spond to distinct points in S(A) so K(S(A)) = 2*°. By 2.8 the theory can-
not be totally transcendental. Theorem 3.9, below, is proved by a gener-
alization of this argument.

Suppose A is a model of T,R a relation of degree n of A,X Q\A\, and
Sn the permutation group on (0, ••-,» — 1). Following Ehrenfeucht [ l ]
we define R to be connected over X if for every sequence of n distinct ele-
ments x0, •••,£„_! of X there is an s £ S n such that KA-R(*»(O)> • • •>*»(/>-!))•
R is anti-symmetric over X if for every sequence of n distinct elements
*o, ••-,xn-i of X there is an sGSn such that \-A ~ R(xs(oh- • •,*,,<„_!>).

THEOREM 3.9. If T is totally transcendental and A a model of T, then no
relation of A is connected and anti-symmetric over any infinite X<Z\A\(18).

( ) For the case X=0, this result was obtained by Ehrenfeucht [2]. Indeed, he showed that
if equivalence of two elements of A is denned to mean that there is an automorphism of A
mapping one to the other, there is still a model of 2 of power « which has only a countable num-
ber of equivalence classes. The proof is similar to that of 3.7 but X must be taken as a somewhat
more complicated linear ordering.

( ) The crux of this proof, that S(Q is countable for every countable C£z^(T), was estab-
lished by Vaught [10] for the case where T is categorical in power «=«><o.

(18) For the case where T is categorical in power 2", this result was obtained by Ehrenfeucht
[l]. Dana Scott (unpublished), by a different and simpler proof, extended the result to theories
categorical in power x^o.
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Proof. Suppose some relation of degree re of A, say R, were connected
and anti-symmetric over an infinite set X C | A |. Impose an arbitrary
linear order on X and say that two properly ordered re-tuples of X are
e q u i v a l e n t , (x0, ••-,xn^) = ( x j , •••,x'n.l) i f

\-A / \ R(xs(f)), ' • ". xs(n-l)) *-* R(x'sV>), • • •, *s(n-l) •
>esn

Then " «*" partitions the properly ordered re-tuples of X into a finite number
of equivalence classes. By Ramsey's theorem we may find an infinite V c X
such that every properly ordered re-tuple of Y is in the same equivalence
class. That is, Sn may be decomposed into two sets S£ and S^ such that
for any y0 < • • • < yn_! G Y,

(I) \-A A i?(x,(0), • • •,y.(»-i)) A A_~R(ys«», •••,y.(»-«)•
seSnT «esn

fl is connected and anti-symmetric on Y so neither S+ nor S,T is empty.
Hence there exists an 81£S£, s2G.S~, and a cycle (m — l,m) such that
S! = s2 • (m — l,m).

Using the Completeness Theorem one easily shows that the existence of
Y implies that for any arbitrary order type, 7, there is a model of T, B,
containing an ordered set, Y, of type 7 and such that any yo< ••• <yn-i
G Y satisfies (I). In particular, let Y have the order type of the real num-
bers and let Z C y be a countable dense subset. We assert that distinct
elements in Y realize distinct points in S(Z). For suppose y < / G ^
Pick re — 1 elements of Z,z0, • ••,zm_uzm+u • • • ,zn-\ such that

zo< ••• < z m _ 2 < y < z m _ ! < / < zm+l < ••• < 2 n _ ! .

Then (20, • • -,zm^uy',zm+u • • -,zn^) will, after permutation by su satisfy
R. But (z0, • • -,zm_uy,zm+u • • -,zn_i) will, after permutation by Si, not
satisfy R, since its proper order will now be permuted by s2. So K(S(Z))

= 2*° and T cannot be totally transcendental.

4. Models of totally transcendental theories. A neat characterization of
models of a theory T is given by the following lemma.

LEMMA 4.1. A £ -^(T) is a model of T if and only if the points of S(A)
which are realized in A form a dense subset of S(A).

Proof. By 2.1 there is a B Z> A such that B is a model of T which realizes
every point in S(A). By 1.1 (c) a necessary condition for A to be a model
of T is that iAB be an elementary monomorphism. Trivially, this is also a
sufficient condition. By a theorem of Tarski(19) a necessary and sufficient
condition that iAB be an elementary monomorphism is that every formula
of F{A) which is satisfied by some b £ B be also satisfied by some a £ A.

(19) Theorem 1.10 of [15].
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But every ^ £ F{A) and consistent with T{A) (i.e., 9^ U in the Boolean
algebra F{A)) is satisfied in B. Hence, a necessary and sufficient condition
that A be a model of T is that every ^ ^ 0 in F(A) be satisfied in .A, which
is equivalent to the condition that some point in each of the sets U+
= \pES(A);iEp\ is realized in A. But the sets Ut(yf>EF(A)) form
a basis for S(A), and the lemma is proved.

LEMMA 4.2. / / T is totally transcendental then for every A<^yf(T) the
isolated points are dense in S(A); indeed if U is an open set of S(A) and
p (E U is a point of the minimal transcendental rank of the points of U, then
p is an isolated point in S(A).

Proof. Suppose p £ U is of the minimal transcendental rank, say a, of
the points of U. By definition there is a neighborhood V of p such that

vns°(A) = \P\. Butuns'(A) = u. So vns'{A)nu= vnu=\P\,
and p is isolated.

Suppose A,BE.-^(T),BZ>A, and B is a model of T. B is prime over A
if for every model of T,B', and monomorphism f:A—>B', there is a
monomorphism g: B—>B' with / = g on A.

THEOREM 4.3. Suppose T is such that for every A^^T) the isolated
points are dense in S(A), then every A^JY{T) has a model of T prime
over iti20).

Proof. Let AE^T) and K = K(A) + No. Then S(A) has at most K
isolated points. Let \pa;a<K] be a listing (possibly with repetitions) of
the isolated points of S(A). Choose some increasing chain j^4o;a <«J of
members of yf^T) such that: (1) Ao = A, (2) A, = 0f<,Ah, (3) Aa+l = Aa

if pa is realized in Aa, and (4) if pa is not realized in Aa, then Aa+l — Aa

has a single element, a,,, which realizes some isolated point q in S(Aa)
such that q 3 pa.

If C is a model of T and f0: A —> C is a monomorphism then there is a
sequence of monomorphisms \(fa:Aa—* O ; a < «} such that for a' > a,
/„< extends /„. This is proved by induction on a. The induction is trivial
in cases (1), (2), and (3) above. In case (4) suppose /„: Aa—* C is a monomor-
phism and aa(E.Aa+1 — Aa satisfies the isolated point q in S(Aa). Then
ft~l(q) is an open set in S(Q and by hypothesis contains an isolated
point, say q'. By 4.1 there is a c £ C realizing q'. Let /B+i(aJ = c and
the monomorphism is extended.

A, = Uo<, Aa then realizes every isolated point in S(A) and every
monomorphism of A into a model of T can be extended to a monomor-
phism of AK. We may now list the isolated points of S(A.) and repeat the
above process to get an A<.2 realizing every isolated point in S(A,) and

( 1 For the case where A is countable the existence of a prime model over A was proved under
a somewhat weaker hypothesis in [18].
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such that every monomorphism of A into a model of T may be extended
to a monomorphism of A,.2. Iterating o> times we obtain

A...= UA,.n

such that any monomorphism of A into a model of T can be extended
to a monomorphism of A,.u, and A,.» realizes every isolated point in S(At.n)
for each B £ W . But the topology on S(At. J is that induced by the S(AK.n)'s;
for each formula ^ £ F ( A , . J must be already in some F(A,.n), hence the
neighborhood Ut of S{A,.J is the inverse image of the corresponding
neighborhood in S(At.n). So, A«.u realizes every isolated point in S(A,.J
and is by 4.1 a model of T.

For the next theorem we shall need some results about increasing se-
quences of systems and the corresponding sequence of Boolean spaces. We
summarize these in the next lemma.

LEMMA 4.4. Suppose T is totally transcendental, (a) / / {Aa;a <y\ is an
increasing sequence of members of yV{T), A = Ua<y Aa, and [pa;a <y\
a sequence such that pa G S(Aa) and i%aAJ<Pgi — P* (« ̂  P < y) then:

(i) there is an a0 < y such that for all a, if a0 ̂  a <y then transcendental
rank and degree of pa equal the transcendental rank and degree of pa0, and

(ii) there is a unique p £ S(A) such that

peD^M-

This point will have transcendental rank and degree equal to that of the paQ

defined in (i).
(b) / / \Aa; a <y\ is an increasing sequence of members of JV{T) and p is

an isolated point in S(A0), then there is a sequence [pa; a < y \ of points such
that pa G S(Aa) (a < y), p0 = p, iAaAg(p,,) = P* (« < P < y) and each pa is
isolated in S(Aa).

Proof, (a) If y = /3 + 1 then A = A^ and the result is trivial. Suppose
y — a limit ordinal 5. By 2.3, 0 ̂  a implies transcendental rank prf ^ trans-
cendental rank pa. Since there can be no infinite decreasing sequence of
ordinal numbers, the transcendental rank must remain constant from some
a on. By a similar argument (now using 2.5), the transcendental rank
and degree must remain constant from some a0 on. Let pag have trans-
cendental rank v and degree n. By 2.3, V\a<iilaA\p^ can have no point
of rank > i>, and iAoA(paQ) Pi S"(A) is not empty; but by 2.5(b) iA«nAa(P«u)
C\S"(AJ = \pa\ (for a ^ «„) and so

fl iZj(Pjns>(A) = iQu>ajnS'(A).

We assert that C\a<.&iX~A(pJ can contain only one point. For suppose



292

532 MICHAEL MORELY (February

it contained distinct points Pi and p-,. Then there would be a formula
i £ F(A) such that V-GPi and ' f £ p 2 . There is some a<5 such that
i/-E-R>U and so ^ £ ^ and ^ E p,, which is impossible. (Topologically,
this argument amounts to the statement that S(A) is a Hausdorff space
with its topology determined by that of the S(Aj's.) By 2.5 this unique
p E S(A) must have degree equal to the degree of paQ and (a) is proved.

(b) There is no loss of generality in assuming that for limit ordinals
8, At = U,,<jJ4o; for whenever it is not so for some 5 we may interpolate
Un<4 Aa into the sequence. Consider a sequence \pa;a < y] such that for
each a,pa^S(AJ and pa is a point of minimal transcendental rank in
• V a ' ^ ( p # ) . We show inductively that such a sequence exists and
that it satisfies (b). Assume a sequence denned and satisfying (b) for
/8 < a. If a = /? + 1, then by 4.2 any point of minimal transcendental rank
in i^Aa(Pn) i s isolated.

If a = 8 then by (a) and its proof

and is a single point, say p6. The point pol) is isolated in SiA^) so iAa Ab{Pc^>
is an open set in S(Ab). Thus to prove pb isolated in S(A6) it will suffice
to show that iX^JiPaJ nS"(A6) = iX^iPc^)- Suppose this equality did
not hold. Then there would be a p' E iX"i6(po0) with transcendental
rank of p ' < v. By the argument used in the proof of (a) there would be a
j8,«o ^ £ < 5, such that i j j^p ' ) s* M^CPa) = Pe- Since p? has transcendental
rank and degree the same as po0 and iX^iP') Eilo^(Pa0)» by 2.5 trans-
cendental rank of iteAi(p') < transcendental rank (paQ) = transcendental
rank (pg). This contradicts the assumption that p$ is of minimal rank in
I \^<SlAff'Af\Pff)

THEOREM 4.5. Suppose T is totally transcendental and {Aa;a <y] is an
increasing chain of members of yY{T) such that for each limit ordinal d <y,
As=\Ja<iAa. Then there is an increasing chain {Ba;<x<y\ of models
of T such that Ba is prime over Aa (for each a <y) and for each limit ordinal
« < 7 , 5 . = U.<IBB(21).

Proof. Let A = Ua<7AQ. We shall show inductively that there exists
an increasing sequence of systems {Ca; a < y} and of models of T, {Ba; a < y}
such that (i) C. = A U Ba, (ii) Ba 2 Aa, (iii) Bs = UfijB0 (for limit ordinals
5 < y), and (iv) if D is a model of T, a = p + 1, a' g a and f:Aa.\J Bp-tD
is a monomorphism then there is a monomorphism g: Aa\J Ba-* D with
g 3 /. The sequence {Ba; a < y j will then satisfy the theorem.

( ') It may be shown by example that the assumption that T is totally transcendental is
stronger than the assumption that the isolated points are dense in S(A) for every A^yf^T).
Theorem 4.3 was proved under fhe weaker assumption but we have been unable to do the same
for Theorem 4.5.
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Assume the sequence { Q ; / J < a j satisfying (i)-(iv). If a = 8 let C»
= U,<,C, and Bs = U,<,B,.

If a = /? -f- 1 we proceed as in {he proof of Theorem 4.3. Let \p/, v < K ]
be a list of the isolated points of S(Aa(JBg). By 4.4 we may find a se-
quence of points {po,,;a ^ v < T | such that Po,0 = Po,Po,, is an isolated
point of S(An\jBff) and ij' > v implies po,,-2Po,,. Let q0 = U,<7p0.,-
If there is an element of Cg realizing q0 denote it by a0; otherwise add an
element satisfying q0 to C0 and denote it by a0. By the method of the proof
of 4.3 we may iterate this process K • w times and find a sequence {a,; v < K • u> \
such that Aa\JBf,u\a,;v < K • a>\ is a model of T, and for each a'
(a^a'<y) a, realizes an isolated point in S(Aa-U B${J [a,>; / < v \).
This latter condition implies (by the same argument used in the proof
of 4.3) that (iv) holds for a.

Let C a = CflU{a,;v<K-a.} and Ba = J3flU {a,; v < K • a\.
Using condition (iv), above, a simple induction shows that any monomor-

phism of Aa into a model of T may be extended to a monomorphism of
Ba into the same model, i.e., Ba is prime over Aa. Theorem 4.5 is proved.

Suppose A, B e S(T), A C B , a n d X e | B | -\A\. X is a set of elements
indiscernible over A if every one-one map of

\A\UX^\A\UX

which is the identity on | A | is a monomorphism. That is, for any open
formula, ^, of L, any au • • - , a m G A, and any two sets of distinct elements
x u • • • , x n a n d x [ , • • • , x ' n £ X ; ^ { a u - - - , a m , x u - - - , x n ) i f a n d o n l y i f
i K d i , •••,am,x[, • • • , x ' n ) .

THEOREM 4.6. Suppose T is totally transcendental, A, B £ y^(T), A c B,
and K(A) < K(B) = K. Then (i) if K is a regular uncountable cardinal, there
is an X^\B\ — \A\ such that K(X) = K and X is a set of elements indis-
cernible over A; (ii) if K is uncountable but not regular there is still for each
\ < K a set X C | B | —\A\ such that K(X) > X and X is a set of elements
indiscernible over A.

Proof. Since for every infinite X, \ + is regular, (ii) will follow immediately
from (i) by choosing some C, A C C CI .B and K(C) regular.

So assume K regular. Suppose C £E -^\T), K(C) <K and A czC Q B. By
2.7 K(S(C)) < K, and from the regularity of * it follows that there is some
pES(C) which is realized by K distinct elements of B. From the set of all
pairs (C,p) satisfying the above conditions we pick one, say (Co, pu), such
that transcendental rank of p0 is the minimum, say v, and the degree of
Po is the minimum, say n, among those having rank v.

Suppose C " e - * t D , K(C')<K and CUQC'^B. Then i*oC-(pJ has
power <K and hence must contain some point, p ' , which is realized by K
elements of B. Since v is the minimal transcendental rank of such points.
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transcendental rank (p) S v. But by 2.3 transcendental rank (p') ^ trans-
cendental rank (pu) = ". A similar argument may be made for degree, so
transcendental rank (p0) = transcendental rank (p') and degree (p0)
= degree(p')- By 2.5 there is only one such point in iq,c!(p0)- Thus,
'•CnciPo) has exactly one point realized by K elements and that point has
transcendental rank v and degree n.

We show that inductively that there exists a set of K distinct elements
{xa;a < K J C | £ | — |Co| such that, letting Ca= C0\J {x0;0 <a\ and pa

£ S ( C J the point realized by xa, po is the unique point of rank v and
degree n in iq,c (̂Po)- For if \xn;0<a\ is denned, then by the discussion
of the preceding paragraph there are K elements of B which realize pa and
we pick xa to be one of these. Notice that 0 < a implies icgCa(Pa) = P«
and hence xa realizes p,j for all /3 ^ o.

Suppose ft < • • • < j8m and ft < • • • < p'm. Denote by Dm and D'm the sys-
tems having universe \C0\ U j * t f l , • • •,x#m\ and \C0\ U jx^, • • •,*#J respec-
tively. We assert that the map fm:Dm—*D'm which is the identity on Co

and carries x0i to xn (i ^ m) is an isomorphism. Then proof is by induction
on m. Assume /m_i:5«-i-»i)m-i is an isomorphism. Let q be the point
of S(Dm^!) realized by x0m and q' the point of S(D'm_^ realized by x0in.
To prove fm to be an isomorphism it is sufficient to show that ft-M) = 9-
Since xfm realizes a point (namely pQ) of transcendental rank v and degree
n in S(C0) and a point (namely pSm) of transcendental rank v and degree
rainS(Qm) and C o C f l ^ c C ^ , it follows from 2.3 and 2.5 that q is of
transcendental rank v and degree re. As proved above, there is a unique
point of transcendental rank v and degree n in I Q ^ ^ ^ P O ) . and q must be
this point. Similary, q' must be the unique point of rank v and degree n
in icooin-iiPo)- Since/m_! is the identity on Co,

/5-i(*q>Cfc_1(Po)) = *eU,_i(Pa)-
Therefore fZ-i(q') = q and /m is an isomorphism.

Finally, we assert that X is indiscernible over A, indeed over Co.
Consider an open formula ^ of L,au • • - ,amE Co, and sequences of dis-
tinct elements {xffl, •••,xft.) and (x^, • • • ,^ ) in X. We must show that
iH^i, •••,am,x^1, •••,xji/.) if and only if iKab ••-,am,x^s, •••,x^). We have
already shown this in the case when ft < • • • < 0, and ft < • • • < ft. But by
3.9, ^(ai, •••,anuxlll, •••,Xgr) cannot depend on the order of the Pi's. (We
actually apply 3.9 to the theory T({au •••,am\) which extends T by add-
ing au •••,am as "distinguished elements" but by 2.8, T{{au •••,am\)
is totally transcendental if T is.) Theorem 4.6 is now proved.

5. Saturated models and categoricity in power. Suppose B is an infinite
system G -^{T). B is saturated if for every AQB with K(A) <K(B), every
point of S(A) is realized in B.
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From 4.1 we see that if B £ -^(.T) is saturated, then B is a model of T.
Saturated systems were considered in [ 10 ], and the following result was
established(22).

THEOREM 5.1. / / A and B are saturated models of T of the same power,
then A is isomorphic to B.

Thus a sufficient condition for T to be categorical in power K is that
every model of T of power K be saturatedC23).

Suppose B £ Jf{ T) is an uncountable system. B is saturated over counta-
ble subsystems if for every countable A c B, B realizes every point of S(A).
By 4.1, every B(EiJY(T) which is saturated over countable subsystems
is a model of T.

THEOREM 5.2. / / T is totally transcendental and K > No, then there is a
model of T of power K which is saturated over countable subsystemsi24).

Proof. Let Bo be an arbitrary model of T of pwer K. Then S(B0) = <c
by 2.7. Therefore, there is a model of T, By Z> Bo such that ^BO = K and
every point of S{B0) is realized in By. Proceeding inductively, we see that
there is an increasing chain of models of T of power K, {Ba; a < u>y\ such
that every point of S(BJ is realized in Ba+1 (for all a <wi). Then B
= U o < u l Ba is a model of T of power K which is saturated over countable
subsystems. For if A is a countable subsystem of B, then there is an
a < wx such that A C Ba; then every p^S(A) is realized in Ba+l and,
a fortiori, in B.

LEMMA 5.3. Suppose T is totally transcendental and B is an uncountable
model of T which is not saturated. Then there is a countable model of T,
A C B, with a subsystem A' C A such that (i) there is an infinite set Y C | A |
— \A'\ of elements indiscernible over A', and (ii) there is a q^S(A') which
is not realized in A.

( ) In [10] uniuersal homogeneous systems are considered. This is a terminology of Jonsson
[5]. If Kisa class of similar relational systems and A £ K then: (1) A is universal for K if A con-
tains an isomorphic image of every B(zK with «(fl) &K(A), (2) A is homogeneous in K if when-
ever By, Bi(E:K, fii, B2QA. <(B;) < K(A),andf:Bl—B2 is an isomorphism, then f may be ex-
tended to an automorphism of A. Jonsson showed that under certain simple conditions on K that
any two universal homogenous systems of the same power are isomorphic. In the case that K
=jV{T), universal-homogeneous is equivalent to saturated. This was shown in the countable case
by Vaught [18] and in the uncountable case by Keisler (Theorem A2 of [8j).

( ) That the problem of categoricity in power could be approached this way was noticed by
Vaught. He proved [10; 17] (assuming the generalized continuum hypothesis) that if T is cate-
gorical in an increasing sequence of powers then it is categorical in the limit power.

(24) In the case «.^«N\ this result was proved in [lOJ without the assumption that T us
totally transcendental. However, it is possible to give an example of a theory T which is not
totally transcendental and a cardinal « > N() with k '" p= •> such that no model ot T of power *
is countably saturated.
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Proof. Since B is not saturated there is some Ccfl , i (C) <K(B), and
apGS(C) which is not realized in B. By 4.6 there is a countable infinite
set, Y, of elements indiscernible over C contained in | 5 | — \C\. By the
Lbwenheim-Skolem theorem there is a countable submodel of B,A0, such
that Ao^> Y. For each a (5 Av let pa be the point of S(Q realized by a.
Then no pa = p since no element of B realizes p. Hence, there is for each
a E ^ o a formula \l<aE:F(C) such that $„ £ pa and ~ ^ O E P - Since &,
involves only a finite number of sysmbols we may find for each some
finite Ca^C such that ^aGF(Ca). Let Ai=\Ja€AoCa. T h e n n o a G ^ o
realizes i^t-ip) m S(Ai)- Let A^ be a countable submodel of £ such that
•Ai i^-AoU J4I- By iteration we may find a sequence of countable models,
AOC1 • • . AnQ • • -, and a sequence of systems, A[ C • • • A'nQ • • -, such
that / i ; C A , n C and no a(EAn realizes iX^^ip) in S(A'n+1). Let A
= UBeai4B and A ' = UBe«^i. Then Y ^ | A | - | A ' | is a set of ele-
ments indiscernible over A' and no a £ A realizes iX'c(p) m S(A').

THEOREM 5.4. Suppose T is totally transcendental and has an uncounta-
ble model which is not saturated. Then for each K > No, T has a model of
power K which is not saturated over countable subsystems.

Proof. Let A, A', and Y be as in Lemma 5.3 and q£S(A') be not realized
in A. By the completeness theorem there is an A,^y^(T) such that
A,^A'UY and Ak — A' is a set of K elements indiscernible over A'. (For
we can assert the existence of such an A, by a set 2 (of power K) of sen-
tences, and the existence of A' U Y shows that every finite subset of 2,
and therefore 2, is consistent.) Let \ya;a < K) be a well-ordering of A,
— A', and Aa = A' U \yff;fi < a \. Apply Theorem 4.5 to get an increasing
chain of models of T, )/?„;« <«}, with Ba prime over Aa and for each
limit ordinal & < «, B6 = Uo < 6 Ba.

We assert that q is not realized in any Ba. The proof is by induction
on a. For a < a), the existence of the model A D A ' U V and not realizing
q, implies Ba does not realize q. If a = 8, the induction hypothesis implies
no Be(fi<b) realizes q and, hence, Bi=\J0<iBff does not realize q.
Finally, if a = 0 + 1 > w, then by the indiscernibility of A. — A' over A',
there is an isomorphism of Aa onto A0 which is the identity on A'. So
there is a monomorphism of Ba into £„ which is the identity on A'. By
the induction hypothesis Bp does not realize q, therefore Ba does not
realize q.

BK = \Ja<,Ba is of power K and does not realize q.

THEOREM 5.5. / / T is categorical in some power K > N 0 , then every un-
countable model of T is saturated.

Proof. By 3.8, T is totally transcendental. By 5.2, there is a model of T
of power K which is saturated over countable subsystems. If T had an un-
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countable model which was not saturated, then by 5.4 it would have a
model of power K which was not saturated over countable subsystems, and
T would not be categorical in power K.

THEOREM 5.6. / / T is categorical in one uncountable power then T is
categorical in every uncountable power.

Proof. The proof is immediate from 5.1 and 5.5.
We shall conclude by mentioning some open questions(25). The first

two questions are about theories categorical in uncountable powers but
not in power No.

(1) Does every such theory have exactly Ko isomorphism types of
countable models?

(2) Is any such theory finitely axiomatizable?
The next two questions concern theories in languages with an uncounta-

ble number of symbols.
(3) If K > Ko, 2 is a theory in a language having ^ K symbols, and 2

is categorical in some power > K, is 2 necessarily categorical in every
power > K?

(4) If K > Ko and every model of 2 has power ^ K can 2 be categorical
in power K?

We return to theories in countable languages. From 4.3 and 4.6 it follows
that if T is totally transcendental and K > Ko we may find a model of
T,A, and a set X C | A | with K{X) = K(A) = K such that any one-one map
of X into itself may be extended to an endomorphism of A. This raises
the following question.

(5) If T is totally transcendental and K ^ No, is there always a model
of T, A, with a set X ^ | A | such that K(A) = K{X) = K and any one-one
map of X onto itself may be extended to an automorphism of A?

Notice this would follow from 3.5 and 3.9 if whenever T were totally
transcendental we could find a T* which was totally transcendental. In
[ l ] , Theorem 2 asserts the affirmative of this question for theories cate-
gorical in power 2", but Vaught has pointed out a fallacy in the proof given.

Finally, we consider some questions about the ordinal ar defined in 2.6.
In 2.6 we showed that aT < (2s0)+. The first question is:

(6) Is aT ever uncountable?
We can answer this question in one case.

THEOREM 5.7. / / T is totally transcendental, aT < w,.

Proof. By 2.4 if p£Tr°(A) there is a finite BQA such that i%A{p)
GTr"(B). By 2.7 S(B) is countable for every finite B£-*(T). Thus we

("°) Problems (1) through (4) below are not due to the author; iliey .seem to have been con-
sidered by several people. Problem (5) has recently been answered affirmatively by Jack Silver.
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need only to show that there are only a countable number of isomorphism
types of finite members o\ .4(T). We prove inductively for each n £ a
that there are only a countable number of isomorphism types of members
oi JY(T) of power n. For n = 0 there is obviously only one. (Strictly,
the empty set is not a subsystem. But since we can define F(0), there
is no harm in treating it as a member of -J'(T).) Assume only a countable
number of isomorphism types of systems of power m. By 2.7 there are
only a countable number of ways of adding an element to each system
of power m, so there are only a countable number of isomorphism types
of members olJV(.T) of power m + 1.

Another question is:
(7) What model-theoretical conditions on T imply that aT is finite?
Plausible possibilities are T being categorical in some power, or T = 2*

with 2 finitely axiomatizable.
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HYPERANALYTIC PREDICATES

BY

YIANNIS N. MOSCHOVAKISC)

Consider the two operations on number-theoretic predicates which allow us to
(1) pass from a predicate P{xlf..., xn) to a predicate Q(ylt . . -,ym) recursive in
P{xu ..., xn), and (2) pass from a predicate P(y, xt,..., xn) to the predicate
(Ey)P(y, X i , . . . , xn). If we start with recursive predicates and apply these operations
any finite number of times, we obtain the arithmetical hierarchy. If we now extend
application of these operations into the transfinite (letting the predicates that we
are defining determine, in any one of several equivalent ways, "how many times"
these operations can be iterated) we obtain the hyperarithmetic hierarchy.

From this point of view the hyperarithmetic predicates are just those which can
be defined "constructively" from recursive predicates, except for use of the
existential number quantifier. This is made precise in Kleene's XLVIII of RFI(2),
which asserts that a number-theoretic predicate is hyperarithmetic if and only if it
is recursive in the type-2 object 2E that embodies number quantification,

2E(«) = 0 if (Et)[a(t) = 0],

= 1 otherwise.

Kleene extends this approach in RFIl to higher types, by calling a predicate
P(au .. ., an, xx,..., xm) of number and function variables hyperanalytic, if it is
recursive in the type-3 object 3E which embodies function quantification,

3E(F) = 0 if (£a)[F(«) = 0],

= 1 otherwise.

He then defines a hierarchy H2{a) (a e O2) of hyperanalytic predicates, very similar
to the hierarchy Ha(x) (a e O) of hyperarithmetic predicates, and asks if every
hyperanalytic predicate is recursive in some //f (a). Clarke studies this hierarchy in
some detail in [1] and conjectures that it does not exhaust the hyperanalytic
predicates.

In §1 we prove Clarke's conjecture. What seems to go wrong in the definition of
O2 and H2(a), is that only countable ordinals (which are order-types of hyper-
analytic well-orderings) are used, and in an effective manner. Since 3E is powerful

Received by the editors February 11, 1966.
(') During the preparation of this paper the author was partially supported by a grant

from the National Science Foundation.
(2) References to the bibliography are by number, except for Kleene's [3], [6] and [7]

which we call IM, RFI, and RF1I respectively.
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enough to allow us to refer to the totality of countable ordinals, we are able to
diagonalize through O2 and define a hyperanalytic predicate, recursive in no H%(a).

In this paper we define and study a hierarchy which exhausts the class of hyper-
analytic predicates. Our definition is a generalized induction (like those of O in [4]
and {z}(c)~w in RFI) whose classical interpretation as a transfinite induction
employs uncountable ordinals. (Since there are only countably many hyper-
analytic predicates, our definition yields a hierarchy indexed by countable ordinals,
in fact, exactly those which are order-types of hyperanalytic well-orderings; but
this is "after the fact," and is just noneffective enough to prohibit diagonalization.)

A number-theoretic predicate is hyperarithmetic if and only if both it and its
negation are IT}, i.e., expressible in the form (a)A(a, xu ..., xn), with A arithmetical.
The correct analog of FI} in type 3 seems to be recursively enumerable in 3E, i.e.,
expressible in the form " f ( a j , . . . , an, x^ . . . , xm) is defined," with f partial
recursive in 3E. In §§4, 5 we prove some elementary properties of predicates r.e. in
3E, including the analog of the statement above, several "choice axioms" and the
fact that this class of predicates is closed under number quantification. These
results are inspired by Gandy's [2], where similar theorems are used to study the
theory of hyperarithmetic predicates relativized to an arbitrary type-2 object.

In §6 we give a slight improvement of Kleene's representation theorems for the
predicate {z}(c)~ w (for type-3), and we prove that the class of predicates r.e. in 3E
is not closed under existential function quantification. This leads us in §7 to a
study of a hierarchy that extends the hyperanalytic predicates and is similar in
many respects to the hierarchy of h.\ predicates.

We use the notation and terminology of Kleene's RFI and RFII, with very few
exceptions. However the only results about recursive functionals that are essential
are those in §§1-4 of RFi. We quote here a version of Kleene's XXII in RFI, which
we shall find very useful.

KLEENE'S SUBSTITUTION LEMMA. There are primitive recursive functions yx{z, w)
and y2(z, w) such that for a list of variables c of types S 3:

( 0 {yi(e> a)}(c) = {e}(c, Af{a}(c, <)), when \t{a}(c, t) is completely defined and
{e}(c, A/{a}(c, t)) is defined.

(2) {yi{e, a)}(c) = {e}(c, Aa{a}(c, a)), when Aa{a}(c, a) is completely defined and
{e}(c, Aa{a}(c, a)) is defined.

We thank the referee for discovering a host of minor errors (the remaining host
is our own responsibility) as well as a more serious error in the proof of Theorem 6.

This paper was presented to the Association of Symbolic Logic at the April 4,
1966 meeting in New York. The abstract from that talk (to appear in the Journal of
Symbolic Logic) gives a concise summary of the most interesting results in the
paper and can serve as a more technical introduction than our preceding remarks.

1. A hyperanalytic function not recursive in any H2(a). The set O2 and the
predicates / / | (a) (a e O2) are defined in §11 of RFII.
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LEMMA 1 (IMPLICIT IN RFII). There is a primitive recursive function g(a), such
that if ae O2, then Aa{g(a)}(3E, a) is completely defined and

H*(a) == {g(tf)}(3E, «) = 0.

For an arbitrary function f, set

/) . = {*: f«l ,AV) = 0},

x<ty = £«*,>'» = 0(3).

We say that f is a well-ordering, £ e WO, if the following three conditions are
satisfied:

(1) 5^ is a well-ordering on D( with minimum 1.
(2) For each x e D(, 2X is the successor of x in D(.
(3) For each xe Do x is a limit point of g? if and only if x = 3(x)i, (x)1^0.

It is clear that the predicate $ e WO is analytic, hence recursive in 3E.

LEMMA 2. Let

P(f, a, x) = € e WO & x e Z); & [a is a similarity mapping from the
initial segment of :S; up to and including x onto some initial
segment of the partial ordering <§].

Then P(£, a, x) is hyperanalytic, i.e. recursive in 3E.

Proof. We shall define the characteristic function f(f, a, x) of P{£, a, x) using
the Recursion Theorem XIV of RFI. Thus, we shall define a partial recursive
function h(/, 3E, £, a, x), then seek a number/such that

h(/, 3E, f, a, x) ~ {/}(3E, £, a, x)

and set

f(£, «, x) ~ {/}(3E, t «, x).

To simplify notation, here and in similar cases in the future, we avoid the symbols
"h(/ , 3E, £, a, x)" and "{/}(3E, g, a, x)" and simply use "f(£, a, x)" as synonymous
with these, even before we complete the definition of h(/, 3E, f, a, x) and the appli-
cation of the recursion theorem.

(3) We follow the notation of IM, RFI and RFII, with only one addition: for a partial
function f(c), f(c) \ = f(c) is defined.

The primitive recursive functions (a)i, lh(a) and a*b are defined in §45 of IM. Other notations
that we often use are:

Seq(w) = w^0 &(i)t<ltl(a)[(w),^0].

<x0 x m > = p g o , . . . , / , S n ; < a 0 , . . . , a n > = A f < « o ( t ) , . . . , o n ( t ) > . ( I f m=-\, t h e n < > = l ; i f
n = - I , t h e n < > = AM.)

[x0,..., jEm] = O r 0 + l , . . . , * M + 1 > .
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After f(f, a, x) has been defined as a partial function, we shall prove that it is
completely defined and that it is the characteristic function of P(£, a, x).

The definition of f(f, a, x) from its index/is by cases, using XVIII of RFI. As
in several later constructions, the partial recursive predicates which determine the
cases are quite complicated; we believe that producing explicit formulas for them
would only conceal our motivation. Instead, we give intuitive instructions for the
computations to be performed, from which the explicit formulas can be derived by
routine applications of the results in §§1-4 of RFI.

Since the cases split into subcases and these further into sub-subcases etc., we
use a numbering which follows this "tree structure." Thus, if there are three sub-
cases of case 121 we call them 1211, 1212 and 1213. After the number of a case we
identify in brackets the case hypothesis.

In some instances we ask that the value of a certain partial predicate or function
be computed, and then the main computation splits into subcases according to the
value obtained (if any). We label these branching points in the computation
"questions" and prefix their numbers with a " ?," e.g. ?122 below, to be read
"question 122." Sometimes, when this reflects our motivation, we phrase the
instructions at these branching points as questions to the oracle 3E. Thus ?1 below
"ask 3E if £ e WO & x e D(" means "go to 12 if £ e WO & x e D(, go to II if
not (£ 6 WO & x e £>,,)," where the predicate £ e WO & x e D( is recursive in 3E.

Instructions for the computation of f (f, a, x):
?1. Ask 3E if f e WO & xe Df.
11 [No to ?1]. Give output 1.
12 [Yes to ?1]. Go to 121, 122 or 123 according as x= I, [x = 2(A)o & (JC)O#0]

or x = 3U)i ((x)l¥i0). If none of these cases applies, give output 1.
121 [x= 1]. If a( l)= 1, give output 0. If a ( l ) ^ 1, give output 1.
?122 [x = 2y, where y = (x)0 ^ 0 ] . Compute f(f, a, y).
1221 [f(f, a, >>)~0in ?122]. If a(x) = 2a<-y\ give output 0, otherwise give output 1.
1222 [f(£, a, y)~ 1 in ?122]. Give output I.
?123 [x = 3w, where w = (x)1^0]. Ask 3E if a(x) = 3.5iaM)*J{a{xn*

& (t)[t<ex^{(f,a,t)~0] & (Et)[t<tx & a ( 0 = («O))3].

1231 [No to ?123]. Give output 1.
71232 [Yes to 7123; let y = («(x))2, u = (a(x))3]. Ask 3E if

[y defines yn general recursively from A«{g(w)} (3E, «) as a function of no] & y0 = u
& {n){Es){Et)[s <» / & / <( x & o(s) = yn & «(0 = yn + 1).

12321 [No to 71232]. Give output 1.
12322 [Yes to 71232]. Give output 0.
We must now verify that each of the questions above is legitimate, i.e., that we

are indeed asking for the computation of a predicate or function which is partial
recursive in 3E.

In 71 this is obvious, and in 7122 we ask for a computation which can be per-
formed from the index/of f(f, a, x).
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In ?123 we have a tacit application of the Subsitution Lemma. The predicate

Q(?,a,x,p) = a(x) = 3.5<«<*»2.7<«<*»3

&(0P) = 0]
&(Et)[t<ix&a(t) = (*(x))3]

is clearly recursive in 3E. We wish to evaluate g(£, a, x, fl) for

j 8 ( / ) - 0 if t <{ x,

~ 0 if t <( x & f(£, a, x) ~ 0,

~ 1 irt<tX&f($,a,x)~ 1.

By the Substitution Lemma, there is a partial recursive Q'(3E, $ a, x) which agrees
with Q(£, a, x, j8) for this /9, if yS is completely defined. It is this Q'(3E, f, «, x) that
we are instructed to evaluate in ?123. (Notice that as before we are suppressing the
dependence of 2 ( 3 E , f, a, x) on/ . )

A similar tacit application of the Substitution Lemma occurs in 71232, where
the substitution is for a type-2 object. The clause [y defines yn general recursively
from F as a function of no] is recursive in 3E, as a predicate of y and a type-2 object
F. Since the other clauses are clearly recursive in 3E, we interpret 71232 as in-
structions to evaluate a certain recursive /?(3E, £, a, x, F), for F = Aa{g(w)}(3E, a).
The Substitution Lemma gives us a partial recursive R'(3B, f, a, x) which agrees
with R(3E, £, a, x, F) for F = Aa{g(«)}(3E, a), if Aa{g(M)}(3E, a) is completely defined,
and it is this R'(3E, f, a, x) that we evaluate.

In the more complicated computation instructions of §4 we shall let the reader
supply these tacit references to the Substitution Lemma. We hope that the detailed
analyses of these two cases above are sufficiently clear to make the process routine.

If £ e WO & x e Df is false, then f(£ a, x) ~ 1 by case 11.
If £ e WO &xe D( let |JC|{ be the order type of the initial segment [1, x]? of St

up to and including x. We prove that f(f, a, x) is defined and agrees with the
characteristic function of P(£, a, x) by transfinite induction on jjc|f.

If x— 1, f(£, a, x) is defined and has the correct value by case 121.
If x = 2" (y = (x)0), we may assume by the induction hypothesis that for each

t ^( y, f(£, a, t) is defined and has the correct value. In particular 7122 is answered
and the computation shifts to either 1221 or 1222, whence the correct value is
obtained.

If x = 2>w (w = (x)l), we may assume the induction hypothesis for each / <(x.
Thus 7123 with the interpretation given it above is answered, since ft is completely
defined. If a(x) is not of the proper form, or if a does not map each [1, t],. (t<x)
onto some initial segment of <o, we give the correct output I by 1231. If these
conditions are satisfied, we further ask 71232. Since by induction hypothesis
« = «(/) eO2, Aa{g(M)}(3E, a) is completely defined and hence 71232 is answered
correctly in the way it was interpreted, whence we are led to either 12321 or 12322
and the correct output.
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THEOREM 1. There exists a hyperanalytic function f(;c) which is not recursive in any
H2(a)(ae02).

Proof. Since

aeO2 = (E0(Ea)(Ex)[P(£, a, x) & a(x) = a],

the set O2 is hyperanalytic. Then the predicate

Q(a) = a(0)eO2 & //a20)(Ata(f+l))

= a(0) 6 O2 & {g(«(0))}(3E, \ta(t+ 1)) = 0

is hyperanalytic. Now each H%(a) is recursive in Q(a), hence Q(a) cannot be
recursive in any H2{a); because then .//f»(a) would be recursive in //2(a), which is
impossible.

Put

f(e, F, t) ~ 0 if {e}(F, t) is not defined,

~ {e}(F, 0 + 1 if {«}(F, t) is denned,

and let

f(0 = f(t, Aaq(a), 0 ,

where q(a) is the characteristic function of (2(°0- It >s e a s v to verify that f(?) is
hyperanalytic but not recursive in Q(a), hence not recursive in any H2{a).

2. Functions recursive in a type-3 object. Let T2 and T3 be given objects of types
2 and 3 respectively. For each number-theoretic function T we shall define a set of
numbers N(T3, T2, T) = N(T), and for each z e N(T) a number-theoretic function

ns-i"-'(o=a(O-
The definition will be by induction and will be given simultaneously for all T.

Thus it is most properly viewed as an inductive definition of a predicate Xzrz e N(T)
and a partial functional Xzrtf\{t), defined when z e N{T).

For typographical reasons we often write f(-r, z; t) or f(z; t) for fj(O-
DEFINITION 1. (1) For each q, <1,#> e N{T) and f<lw>(r)=<y. {Introduction of

constants.)
(2) <2, 0> e N(T) and Q2.o>(O = HO- (Introduction of r.)
(3) If weJV(r), then <3, tv> e W(T) and f|3 „,>(<) = T2(A«fJ,(M)). (Introduction

ofr2.)
(4) For w e N(T) and e any number, put e(r, w, t) ~{e}a(t), where a = A«f̂ (w).
If w e N(T) and if for each /, e(-r, w, t) j and e(r, w, t) e N(T) (3), then <4, w, e> e

Af(0and f<4.10,e>(0 = fe'<t.u,.»(t). (Diagonalization.)
(5) Suppose that for each a and each /, {e}a-\t) j ; we say that e defines a T-

recursive functional {e}(a, T) = Ar{e}tr-'(;).
If e defines a r-recursive functional {e}(a, r) and if for each a, w e N({e}(a, T)),

then <5, w, e) e N(T) and f<5.w.e>(0 = T3(Aaf({e}(o, r), w; t)). (Introduction ofr3.)
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(6) Suppose that for each t, {e}l(t) | , put ot = A/{e}'(0- lfweN(a), then <6, w, e} e
N(T) and n8.1i,,«>(0 = fS(0- (Transfer.)

(7) Recursion clause: z e N(T) and fz'(/) = M on/y 6y (l)-(6).
The main result of this section is that the class of functions A/fy(/) (z e JV(T))

coincides with the class of functions recursive in T3, T2, T.
Classically one interprets inductions of this type as definitions by transfinite

induction over an initial segment of the ordinals. Clause (5) raises the possibility
that in this case the induction extends into the third number class; in any case, we
only use ordinals which are limits of fundamental sequences of cardinality not
exceeding that of the continuum. We assign to each z, T such that z e N(T) the
ordinal Iz]13'12-1 = |zj' at which we verify that z 6 N(T). The definition is by induction
following the inductive definition of r e N(T).

DEFINITION 2. (1) |<l,<7>|'=0.

(2) |<2,0>|' = 0.

(3) |<3, w>|' = | H T + l -
(4) |<4, w, ey\l=supremuml{\w\t+ 1, |e(r, w, t)\'+ 1}.
(5) |<5, w, e}\'=supremuma{\w\^Ha^+l}.
(6) |<6, w, ey\* = \w\a+l, where a = Xi{e}'(t).
Whenever possible we prefer to give proofs or definitions by induction on

z 6 N(T) rather than by transfinite induction on \z\z. One can, of course, interpret all
such arguments as classical transfinite inductions.

THEOREM 2. There is a primitive recursive function p(z), such that if z e N(T),

then
fl(t) ~ {pOOXr3, r2, r, / ) .

Thus each Pz(0 >s recursive in T3, T2, T.

Proof. We first define p(z) as a partial recursive function from a Godel number
p using the recursion theorem, and then observe that it is totally defined and indeed
primitive recursive. The proof that p(z) has the desired property will be by induction
on z e N(T). We treat the most interesting cases right in the definition.

Case (I). z = <l,?> for some q. Put p(z) = <2, <1, 1, I, l},q).
Case (2). z = <2, 0>. Put p(z) = <7, <1, 1, 1, 1 » .
Case (3). z = <3, w} for some w. Choose a primitive recursive gi(e) such that for

each T, M, t, {gi(e)}(r3, T2, T, U, i)~{e}(r3, T2, T, M) and put

p(z) = <8,<l, 1, 1, l>,2,gl(p(iv))>.

If the induction hypothesis is satisfied, we know that for each u,

{p(w)}(r3, r2, r, «) ~ fi(tt).
Thus

{p(z)}(.3, r\ r, t) ~ r2(Att{gl(P(w))}(r3, r \ r, U, /))

~ T2(AM{p(w)}(r3, r2, T, «)) ~ T2(A«fi(u)) ~ f3(0-
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Case (4). z — <4, w, e> for some w, e. The functional

<£(r3, r\ r, a,p, e, t) ~ {p({er(t))}(r3, r2, r, ,)

is evidently partial recursive. Using the Substitution Lemma, choose a primitive
recursive g2(p, w, e) such that

{gaO>, VV, e)}{r\ r\ r, t) = <£(r3, r2, r, a, />, e, t),

when a = AM(P(W)}(T3, T2, T, w) is completely defined and <f>(r3, T2, r,a,p,e, t) is
defined. Put p(z) = g2(p, w> e)-

If the induction hypothesis is satisfied, then a is completely defined, and for each
t, {ef{t) | &{p({e}a(t))}(r3, r2, r, 0 - R ( 0 , so that p(z) has the required property.

Case (5). z = <5, w, e} for some w, e. Using the Substitution Lemma, choose a
primitive recursive g3(p, w, e) such that

{g3(p, W, e)}(r\ T\ a, r, t) = {p(w)}(r3, r2, {e}(a, r), /),

when {e}(a, T) = \u{e}"-%u) is completely defined and the right-hand side of the
equation is defined. Put p(z) = <8, <1, 1, 1, 1>, 3, g3(/>, w, e)}.

If the induction hypothesis is satisfied, then for each a, {e}(a, T) is completely
defined and {P(W)}(T3, T2, {e}(«, T), t) — (({e}(a, T), W; t), so that

{p(z)}(r3, r\ r, t) ~ T3(Aaf({e}(a, T), W; 0)-

Ca^e (6). z = <6, H', e> /or jome w, e. Using the Substitution Lemma, choose a
primitive recursive gi(p, w, e) such that

{UP, W, 6)}(r3, r2, r, /) = {p(w)}{r3, r2, Ai/{«}'(«), 0 ,

when Aw{e}*(u) is completely defined and the right-hand side is defined. Put

P00 = g4(/>, H>. e).
Case (7). Otherwise. Put p(z)=0.
To simplify notation for the next theorem we introduce the conventions

X = A " ! , . . . , X m l T = Tj, . . . , Tn.

(Now [JC] = [.V!, . . ., Am] and <T> = <T1, . . . , rn> are defined in (3), including the case
for empty x or x.)

THEOREM 3. There is a primitive recursive function q(e, x) such that:
(1) {e}(r3, r\ x, x) | =q(e, [x]) 6 yV«T».

(2) {e}(r3, r2, x, x)~w-K0[fKT>, q(«, [*]); 0 = w]-

Proof. For this proof only, let us introduce the additional notation conventions:

M(x, X) ~ {e}(r\ r\ T, X).

x = [x] = [XL, ...,xm]; T = <x> = <T1; . . . , rn>.

We shall define q(e, x) from its Godel number q using the recursion theorem in
the usual fashion. The definition will be by cases on e being an index of the proper
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kind for x. We number the cases SI, S2, etc. and give as case hypothesis the
definition of {e}(x, x) rather than the number-theoretic condition that e and x must
satisfy. For example, Case SI below, {e}(x, x) = x[, should be described by

Seq (x) & (En)[e = <1, <lh(x), n, 1, 1» ] .

The implication from left to right in (1) together with (2) of the theorem are
proved by induction on {e}(x, x) ~ w. We treat the most interesting cases right in the
definition. Proof of the implication from right to left in (1) is by induction on
q(e, x) e N{T) and will be outlined after the definition is completed.

Case SI. {e}(x, x) = x[. Choose a primitive recursive r^x) such that for each
a, x, t, {rx(x)}«(r) = < 1, (*)„>, and put q(e, x) = <4, <2, 0>, ri(*)>. Clearly q(e, x) e N(r)
and f(r, q(e, x); t) = f{r, <1, (*)„>; /) = *i .

Case S2. {e}(x, x) = k. Put q(e, JC) = < 1 , Jt>.
Case S3. {e}(x, x) = Xx. Treat similarly to Case SI.
Case S4. {e}(x, x) ~ {g}({/i}(x, x), x, X). Choose a primitive recursive r2(q, g, x)

such that for each a, t, {r2(q, g, x)}a(t)~{q}(g, [«(0)]*x). Put

q(e, x) = <4, q(h, x), T2{q, g, x)>.

Assume that {/r}(x, x)~u & {g}(u, x, x)~w. By induction hypothesis, q(A, x) e
tf(r), fXq(A,x);0 = « (all t), q(g, [u]*x)eN(r) and f'(q(g, [«]«); r) = »f (all 0-
Thus q(e, x) e A^(T), since q(/i, x) e A^T) and for « = A«r(q(/!, x); w) and each r,

W ? , g, ^)}a(0 =: W(g, K 0 ) ] « ) =: q(g, [«]«) e ^V(r).

Moreover, P(q(e, x); 0 = f*(q(g, [«]*x); O = vf.
Ca^e S5. Subcase (a). {e}(x, 0, x)~{g}(x, x). Choose a primitive recursive

r3(q,g, x) such that for each a, f, {r3(q,g, x)}a{t)~{q}(g, x) and put q(e, [0]*x) =
<4, <2, 0>, r3(q, g, x)>.

Assume that (g}(x, x)~ tv. By induction hypothesis, q(g, x) e ^ ( T ) and for each t,
f*(q(g, x); t) = w. Since <2, 0> e N(T) and since for each a,

Ml, g, x)}a(t) ~ q(g, x) e N(r),

we have q(e, [0]*x) e N(r) and fT(q(«, [0]*x); /) = f(q(g, x); r) = w.
REMARK. The simpler definition q(e, [0]*x) = q(g, x) would serve equally well

for this part of the theorem. In proving the implication from right to left in (1)
however, this definition would not immediately give us a usable induction hypothesis.
With the definition we chose, if q(e, [0]*x) e N(T), then q(g, x) e N(T) and q(g, x)
is a predecessor of q(e, [0]*x) in the definition of N(T) (in particular \q(g, x)\l

< \q(e, [0]*x)|l). Thus in treating this case of the inductive proof of the right-to-left
implication in (1), the induction hypothesis assures us that {g}(r, x) | , which implies
immediately that {e}(x, 0, x) j .

Case S5. Subcase (b). {e}(x, y+ 1, x)~{h}(y, {e}(x, y, x), x, x). Choose a primitive
recursive r4(<?, h, y, x) such that for each a, t, {u(q, h, y, x)}a(t)~{q}(h, [y]*([a(0)*x))
and put q(e, [y+ l]*x) = <4, q(e, [y]*x), r^q, h, y, x)>.

Proof is as in Case S4.
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Case S6. Subcase (a). {e}(x, x)~{g}(T, xk + 1, x 1 ( . . . , xk, xk + 2,..., xm). As in
Subcase (a) of Case S5, put q(e, x) = <4, <2, 0>, rs(q, g, e, x)), where rs(q, g, e, x) is
primitive recursive and such that for each a, t,

{r5(<?, g, e, x)}a(t)~{q}(g, [xk + 1, xu ..., xk, xk+2,..., xm]).

Case S6. Subcase (b). {e}(x, x)~{g}(rk + u ru...,Tk, rfc + 2 , . . . , rn, x). Choose a

primitive recursive r6(e) such that for each T, t,

{re(^)}t(0 = < T k+ l . Tl> • • •» rk, Tfc + 2, • • •. T n > ( 0

and put q(e, x) = <6, q{g, x), r6(e)>.
Case S7. {e}(x, X) = T1(X1). Choose a primitive recursive r7(x) such that for each

a,t, {r7(;t)n0 = <l,(a((x)0-l))0> and put q(e, x) = <4, <2,0>, r7(x)>. Then
r(q(e, x); 0 = f « l , (^ i ) )o>; 0 = O(*i))o = n(^i)-

Ca^e S8. Subcase (a). {e}(r, J:)~T2(AU{^}(T, U, X)). Choose a primitive recursive
Te(q, g, x) such that for each a, u, {rs(q, g, x)}%u)~{q}(g, [u]*x) and put q(e, x) =
<3, <4, <2, 0>, r8(g, g, x ) » .

If {e}(x, x)~w, then by induction hypothesis q(g, [u]*x) e N(T) for each u, hence
<4,<2,0>, r8(q, g, xy> e N(T) and r « 4 , <2, 0>, r8(?,g, *)>; M) = {g}(x, «, x). Thus
q(e, x) 6 A (̂r) and P(q(e, x); /) = r2(AWf'«4, <2,0>, r,(9,g, x)>;«)) = T2(AM{?}(T,«,X)).

Cflje S8. Subcase (b). M ( T , x)~T3(Aa{g}(a, T, X)). Choose a primitive recursive

T9(e) such that for each a, T, ?, {r9(e)}a-l(f)-<a(0>*T(0 an<i P u t

q(e, x) = <5, q(g, x), r9(e)>.

If {e}(x, jf)~w, then by induction hypothesis, for each a,

q(g, x) e N«a, r,,..., rn» = JV({r9(e)}(«, r));

hence q(e, x) e N(r) and

f(q(e, x); r) = T3(Aaf({r9(e)}(a, r), q(g, x); 0) = T3(Aa{g}(a, x, x)).

Ca^e S9. {e}(x, ^ i , . . . , ft, a, x, j>i, . . . , >>,)~ {a}(x, x). Choose a primitive re-
cursive rlo(e) such that for each a, t, {r10(e)}a(0 = <(a(r))o, («(0)i, • • •-, («(0)n-i> a n d

put q(e, [xj, . . ., xm, a, yu .. ., yt]) = <6, q(a, x), rio(e)>.
If {e}(x, pu..., pk, a, x, ylt..., j y ) ~ w, then by induction hypothesis q(«, x) e N(T)

and for each /, f'(q(a, x); t) = w. Hence

q(e, [xu . . . , xm, a , y u . . . , y,}) e N«TU . . . , rn, pu . . . , /3fc»

and

f « n , • • . , TB, ^ 1 ; . . . , pk>, q(e, [ x 1 ; . . . , xm, a,yu . ..,y,])\ t) = f(q(a, x ) ; t) = w.

Case S10. Otherwise. Put q(e, x) = 0.
The recursion theorem gives us a partial recursive q(e, x) with Godel number q

that satisfies all the above clauses. It is obvious that q(e, x) is completely defined;
that it is primitive recursive can be inferred from the nature of the clauses, which
(once q is chosen) give a nested course-of-values recursion for q(e, x).
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We have already indicated in each of the clauses how to prove by induction on
the definition of {e}(x, x)~w the implication from left to right in (1), and (2).

To prove the implication from right to left in (1) by induction on the definition
of q(e, x) e N(T), we first remark that 0 £ N(T); thus if q(e, x) e N(T), then e and x
must satisfy one of the case hypotheses for cases S1-S9. It is a routine exercise to
verify in each case (using the induction hypothesis) that {e}(x, x) must be defined.
(Notice the remark after Subcase (a) of Case S5.)

COROLLARY 3.1." !fg(t) is recursive in T3, r2, T, then there is a z e N(T) such that

for all t, g(O = f](O-

Proof. Let g be an index of g(r), i.e., for all t, g(0 = {gX1"3. T2, T, 0 ; t n e n for
each t, q(g, [t]) e / V « r » and f«T), q(g, [t]); t) = g(t). Choose e so that for each
a, t, {e}a(t)=q(g, [t]) and let w=<4, <2, 0>, e>; then w e W « r » and f«r>, w; t) =
g(0- Choose m so that for each T, [m]t(0 = <r(')> and let z = <6, w, ni); then
z e N(T) and fJ(O = fit>(O = g(O-

3. The hyperanalytic hierarchy. Let 6 be a list of objects of types 2 and 3(4), let
T' (i = 2, 3) be the contraction of all objects of type / in 6 ( r ^ A a ' " 1 1, if b contains
no objects of type /) . Using LXVII of RFII we obtain primitive recursive functions
c(e) and c"1^) so that:

{e)(b, T, x) ~ {c(e)}(r3, r2, T, x),

{e}(r\T*,T,x)~{c-\e)}(b,T,x).

DEFINITION 3. Let b, T3, T2 be related as above, let T=TU ..., rn, put

a = b, T.

(1) N(a) = N(r3, r\ <x».
(2) For z £ N(a), f»(r) = f»(z; r) = f(a, z; t) = ((r3, r\ <r>, z; t).
(3) r(z) = c~1(p(z)), where p(z) is the function of Theorem 2.
(4) s(e, j:) = q(c(e), [x]), where q(e, x) is the function of Theorem 3.
(5) For zeN(a), \z\a= |z|(a) = |z|< T >.

(6) K(a) = supremum {\z\a : z e N(a)}.

(Recall that if x is empty, then <x> = < > = \t 1 and if x is empty, [x] = [ ] = 1; the
clauses of Definition 3 apply to the cases of empty x or x with these conventions.)

("*) We collect here several notation conventions to which we adhere throughout the paper:
x = Xi,. . .,xm;

T = T , , . . ., rn; a = a l t . . . , ak; P = /31?. . . , ft;
b = a list of objects of types 2 and 3;
a =a list of objects of types 1, 2 and 3 (usually a = l>, x);
C = a list of objects of types 0, 1, 2 and 3 (usually c=a , x);
b* = 3E, 6; a* = 3E, a; c* = 3E, c.
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Using Theorems 2 and 3 we can easily verify the following results:
(A) {e}(a,x)l =s(e,x)eN(a).
(B) Ifz 6 N(a), then \t{r(z)}(a, t) is completely defined and f2(/) = {r(z)}(a, /).
(C) lfg(t) is recursive in a, then there exists a z e N(a) such that g(t) = f*(t).
(D) If(a)[z e N(a, a)], then \at{r(z)}(a, a, t) is completely defined and

f(a, a,z;t) = {r(z)}(a, «, t).

(E) If g(a, t) is recursive in a, then there exists a z such (a)[z e N(a, a)] and
g(a,t) = i(a,a,z;t).

This "construction" of all functions and functionals recursive in a by (transfinite)
induction naturally defines a certain "hierarchy" on the one-and two-sections of a.
However, if no assumptions are imposed on a, then this hierarchy may be trivial;
e.g., if a consists of recursive functions and functionals, then each function recursive
in a is recursive, and hence equal to some f%t) with \z\a= 1.

Put

6* = 3E, b, a* = 3E, a = 3E, b, x.

Relativizing Kleene's definition, we call a predicate, set or function hyperanalytic
in a if it is recursive in a*.

In this section we define two transfinite sequences of predicates, iGz(u, v) and
2Cz(u, a, v, (S) (z e N(a*)) such that:

(1) ,G;, is hyperanalytic in a, uniformly for z e N(a*).
(2) If\z\a' g |n>|a', then fG2 is recursive in fGw, uniformly for z, w e N(a*).
(3) A function (functional) is hyperanalytic in a if and only if it is recursive in some

iG,(2G2).

We also prove that the denumerable set of ordinals \z\a' (z e N(a*)) has order-
type o>1(a*) = least denumerable ordinal which cannot be realized by an ordering
hyperanalytic in a.

LEMMA 3. Let b be a list of objects of types 2 and 3, let b*=3E, b, let

a = « ! , . . . , a f c , (3 = p u .. . , P j

be two lists of function variables. There is a primitive recursive i(k, j , z) such that, if
z e Nib*, a), then An>p{i(A:,y, z)}(b*, a, (3, w) is completely defined and

\w\(b*, p) g |z|(b*, a) = {i(k,j, z)}(b*, a, p, W) = 0.

(I.e. the initial segment of ordinals |w|(0*, P) which are <; |z|(b*, a) is hyperanalytic
in h, a, uniformly for z e N(b*, a).)

We do not prove this lemma here, since it will be an immediate consequence of
Theorem 6. However one can easily construct an elementary proof similar to that
of Theorem 2.
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LEMMA 4. Let a = b,x be a list of objects of types 1, 2, 3. The predicate Xz ze N(a)

is not recursive in a.

Proof. Suppose it were; put

g(0 = 0 if t$N(a),

= ff(O+l if teN(a).

Now (B) implies that g(t) is recursive in a, though it is different from each f°(/),
contradicting (C).

DEFINITION 4. Let c be a list of variables of types ^ 3 . A predicate P(c) is
recursively enumerable in a (r.e. in a), if for some e,

/>(c) = M(a, c) | .

LEMMA 5 (BOUNDEDNESS). If a predicate P(a, x) (with variables of types ^ 1) is
r.e. in a*, then there exists a primitive recursive g(x) such that

(1) P(.*,x) = g(x)eN(a*,«).

Moreover, if (1) holds with some g(x), hyperanalytic in a, then P(a, x) is hyper-
analytic in a if and only if

(2) supremum {|g(x)|(a*, a) : P(a*, a)} < »c(a*).

REMARK. We prove in Corollary 7.1 that the predicate Xzaz e N(a*,a) is r.e.
in a*.

Proof. For the first assertion, choose e so that

P(a, x) = {e}(a*, a, x) j

and put g(x) = s(e,x).
Assume that (1) and (2) are satisfied with a g(x) hypernalytic in a; then for some

z e N(a*) we have

supremum {|g(x)|(a*, a) : P(a, x)} ^ |z|(a*) < «r(a*).

Letting a* = b*, x as usual(*), we then have

/>(«, X) = |gOt)|(a*, a) ^ |z|(a*)

s {i(«, n + k, z)}(b*, x, x, a, g(x)) = 0,

so P(a, JC) is hypernalytic in a.
Now assume that (1) is satisfied with a g(x) which is hyperanalytic in a, but

supremum {|g(jc)j(a*, a) : P(a, x)} ^ «(a*).
Then

z e N(a*) = (Ea)(Ex)[P(a, x) & |z|(a*) g |g(x)|(a*, a)J

= (Ea)(Ex)[P(a, x) & {i(n + k, n, g(x)}(b*, x a, x, z) = 0].

If the predicate P(a, x) is hyperanalytic in a, the predicate in brackets is hyper-
analytic in a; since the class of predicates hyperanalytic in a is closed under number
and function quantification, z e N(a*) is hypernalytic in a, contradicting Lemma 4.
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DEFINITION 5. For each z e N(a*)(*), put

xQz{u, v) = \v\a' ^ \z\a' & |«|°* g \v\a\

2G2(«, a, V,$ = \v\a'-B <; |z|a* & |«|a*'a ^ \v\a'-B.

THEOREM 4. (1) £ac/i (G2 « hyperanalytic in a, uniformly for z e //(a*) (/= 1, 2).

(2) / / | z r = Mfl>, <*« .G.s.G,. (i=l, 2).
(3) //" |z|a* ̂  |w|a*> /Ae/i jG;. is recursive in jG ,̂, uniformly for z, w e N(a*).
(4)i If P(x) is hyperanalytic in a, r/ie/i /•(*) is recursive in some fi^
W2 -//-P(a, -t) w hyperanalytic in a, /Ae« /"(a, a;) is recursive in some 2GZ.

Proof. (1) is an immediate consequence of Lemma 3 and (2) is obvious. To
prove (3), notice that if \z\a'£ \w\a\ then

IG2(M, V) = fi^v, z) & iGJu, v),

and similarly for 2G2, jG,,.
To prove (4)2, choose a predicate Q(a, x) of one function variable with the same

degree as P(a, x), e.g., Q(a, x)=P((a)u ..., (a)k, x). Now take e so that

Q(a, x) = {e}(a*, a, x) | = j(e, x) e AT(a*, a).

Since g(a, x) is hyperanalytic, the Boundedness Lemma implies that for some z,

supremum {js(e, Jc)|(a*, a) : Q(a, x)} S |z|(a*).

Thus Q(a, x) = |s(e, x)|(a*. a) ^ |z|(a*) = 2G2(s(e, x), a, s(e, x), a).
Proof of (4)i is similar.
DEFINITION 6. For each a = b, T, {\z\a : z e N(a)} is a countable set of ordinals;

let </i be the unique order-preserving function which maps {\z\a : z e N(a)} onto an
initial segment of the countable ordinals.

(1) |z|2 = |z|c(a) = 0(|z|°)(zeAr(a)).
(2) 0)^0.) = supremum {|z|° : z e N(a)}.
(3) A countable ordinal 17 is recursive in a, if there exists a function g(x, y),

recursive in a, such that the relation Xxyg(x, y) = 0 is a well-ordering of order-type 77.
REMARK. For z, we JV(a), |z | a^[w|a=|z|2^[w|2.

THEOREM 5. wy{a*) is the smallest countable ordinal which is not recursive
in a*(4).

Proof. We first show that each \z\f is recursive in a*. Put

ueCz= \u\a' ^ |z|a'&(i>)[|i;|a< = \u\a'-yu ^ v],

g(x, y) = 0 if x e Cz & y e Cz & |jcja* ^ | y\*',

= 1 otherwise.

Lemma 3 implies that g(x, y) is recursive in a*, and it is obvious that \xyg(x, y)
= 0 is a well-ordering with order-type \z\%'.
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To prove the converse, let < be a well-ordering recursive in a*, with order-type
i?, Put

D = {<n, x> : x < x) u {5},

%{x, y) = 0 if -v e D & v 6 D

& [>• = 5 v [(.v), < (y),) v tWi = W i & W o ^ OOoJL

= 1 otherwise.

It is clear that g(x,y) is recursive in a* and that \xyg{x,y)—Q is a well-ordering
with order-type rjcu+ 1. If .v0 is the minimum of the ordering <, then the ordering
on D has the following properties:

(1) <0, xoy = y° is the minimum.
(2) 5 is the maximum.
(3) The successor of any element y e D (yy£5) is 1y.
(4) An element of D is a limit point if and only if it is 5 or of the form 3* (x¥=x0).
Let z e N(a*) be such that

n\x) = g(0c)o, (x),),

and choose a primitive recursive m(e, x) such that for each a,

{m(e, x)y(t) ~ <2, 0> if a«r, x}) * 0,

~ M ( / ) ifa«/,AT» = 0.

We define a primitive recursive function h(u) from a Godel number h using the
recursion theorem by:

h(«) ~ <2, 0> if u = <0, xoy,

~ <3, h(x)} if u = 2x for some X,

~ <4, z, m(/i, w)> if M = 3X for some J: =£ JC0, or M = 5,

~ 0 otherwise.

It is now easy to verify by transfinite induction on the ordering on D that

(5) « e / ) - > h(«) e N(a*),

u,veD& g(u, v) = 0 -+ \h(u)\a' ^ \h(v)\a'
(6)

-> |h(")ir ^ ihwir.
Thus h(5) e N(a*) and r1<r,(i>+ 1 g |h(5)if<^1(a*).

REMARK. Theorem 5 allows us to think of N(ct*) as a notation system for the
ordinals recursive in a*, much as Kleene's O is a notation system for the recursive
ordinals.

For / = 1 , 2, the predicates 4G2 (z e N(a*)) provide a nondecreasing, transfinite
sequence of degrees, indexed by the notations in N(a*), which exhausts the degrees
in the /-section of a*. One can easily see that this sequence need not be strictly
increasing; however we shall prove in Corollary 8.1 that the sequence of degrees of
the predicates tG2 has order-type c»1(a*).
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REMARK. At the suggestion of the referee we outline a proof that for each
a, »c(a*)>K1. Using the notation of §2, consider the functional

h(£ x, z, T, t) = n(t)+1 ifteWO&xeD(& \z\l ^ \x\.,

= 0 otherwise,

where for xe D(, \x\( is the order-type of the initial segment of g . up to and
including x. It is easy to show by the methods of §1 that the functional h is hyper-
analytic (in the fixed objects T3, T2). NOW if each \z\l were countable, we would
have

z e N(T) = (E£)(Ex)[h(£, x, z, r, 0) > 0].

In the notation of §3 this means that z e N(a*) would be recursive in a*, contra-
dicting Lemma 4.

4. Minimum functions. In this section we prove two theorems on ordinal
notations which are basic for the theory of predicates r.e. in a*. The results are
inspired by [2], where Gandy announces similar results for type 2.

We revert to the notation of §2, where N(r), fJ(O a n d |z|r (z e N(T)) are denned,
relative to arbitrary but fixed parameters T2, T3.

If z<£ N(T), put Iz^supremum {|w|a : weN(a)}.

THEOREM 6. There is a partial recursive functional <£(3E, T3, T2, Z, a, w, fi)
— <f>(z, a, w, fi) such that:

(1) [z 6 N(a) & \z\"^ I w\B] - > <f>(z, a, w, )8)~0.
(2) \w\><\z\~^t(z,a,W,P)~l.

REMARK. Using Theorem 4, one can easily define a functional ^ (z , a, w, fl)
which will have properties (1) and (2) whenever z E N(a), or a functional <f>2(z, a,w,{!)
which will have properties (1) and (2) whenever w e N(a). The nontrivial applica-
tions of Theorem 6 involve computing <j>(z, a, w, P) when we know z e A/(a) v w
e A (̂a), but do not know which of the disjuncts is true; in such cases <£(z, a, w, /S)
gives us this information.

Proof. We define <f>(z, a, w, /8) from its index <f> using the recursion theorem.
For each number u we consider seven cases 1-7, according as u is in one of the

forms <1, q), <2, 0>, <3, x^, <4, xu e}, (5, x1; e>, <6, xx, e> (cases 1-6), or in none
of these forms (case 7). In the computation we distinguish 72 = 49 cases labeled ij
(1 ^ / g 7 , 1 gy'g7), where in case ij we assume that z is in case / and w is in casey.
(The computation is trivial, except when 3 ^ / ^ 6 , 3 5 y 5 6.) For each of these
cases we give informal instructions for computing <j>(z, <x, w, jS) in the manner of
the proof of Theorem 1.

We shall be referring to the function p(z) of Theorem 2; recall that when z e N(T),

then{p(z)}(r 3 , r 2 ) r ,0-Q(0-
Several times below we use the expression "ask 2E." In these instances we wish

to emphasize that the predicate whose value we are determining only involves
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number quantification; surely questions to 2E can be rephrased as questions to 3E.
A. Trivial cases.
Al. 1 ^ j ^ 2 v ; = 7 . Give (output) 0.
A2. [i=l &j<7]v[i^3& 1 £j<2]. Give 1.
B. Cases ij with 3 ^ i^ 5, 3 SJ; ̂  5.
Case 33. [z = <3, zx> & >v = <3, w^)]. Give output <£(z1; a, wu fi).
Case 34. [z = <3,z1>&w = <4,w1,w>].
?1. Compute <f>{zu a, wu fi).

11 Wz,, a, wj, j3)~0 in ?1]. Give 0.

?12 [4>(zu a, wu j3)~ 1 in ?1]. Let 8 = \u{p(»>i)Kr3, r2, ft «); ask 2E if As{m}<(s)
is completely defined.

121 [No to ?12]. Give 0.
?122 [Yes to ?12]. Ask 2E if (Es)[<f>(zu a, {m}\s), i3)=0].
1221 [Yes to ?122]. Give 0.
1222 [No to ?122]. Give 1.
Case 43. [z = <4, zlt e> & w = <3, Wj)]. This case is symmetric to Case 34. The

computation is that of Case 34, except that z and w, zx and wu a and fi and e and
m are interchanged; however we do not change the order of the arguments in </>.
We give this symmetric computation here so we can omit it in some other cases
later.

?1. Compute <f>(zu a, wu fi).
11 {<t>{zu a, wu j8)~ 1 in ?!]. Give 1.
?12 [4>(zu a, Wl, p)~0 in ?1]. Let y = A«{P(ZX)}(T3, T2, a, u); ask 2E if Xt{e}r(t) is

completely defined.
121 [No to ?12]. Give 1.
7122 [Yes to 712]. Ask 2E if (Et)[<K{e¥(t), a, wu P)= 1].
1221 [Yes to 7122]. Give 1.
1222 [No to 7122]. Give 0.
Case 35. [z = <3, zx> & H> = <5, wlt m>].
71. Ask 3E if m defines a ^-recursive functional {w}(S, 9̂).
II [No to 71]. GiveO.
712 [Yes to ?!]. Ask 3E if(E8)[<f>(Zl, <x, wu {m}(8, P))=0].
121 [Yes to 712]. Give 0.
122 [No to 712]. Give I.
Case 53. [z = <5, zx, e> & w = <3, vvx>]. Symmetric to Case 35.
Case 44. [z = <4, zx, e} & w = <4, wu m}].
71. Compute <f>(zu a, wlt fi).
711 [<f>(zu a, wx, j8)~0 in 71]. Let y = Aw{p(z1)}(T3, r2, a, «); ask 2E if \t{e}r(t) is

completely defined.
I I I [No to 711]. Give 1.
7112 [Yes to 711]. Ask 2E if (,t)y,({e}%t), a, wu £) = 0].
1121 [Yes to 7112]. GiveO.
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71122 [No to 7112]. Let 8 = AW{P(H>1)}(T3, T2,ft w); ask 2E if Xs{mY(s) is
completely defined.

11221 [No to 71122]. Give 0.
711222 [Yes to 71122]. Ask 2E if

( ( ) [#} ' ( ' ) , « , " i . /3) = 0 V (Es)[<K{ey(t),«, {m}%s)J) = 0]].
112221 [Yes to 71122]. Give 0.
112222 [No to 71122]. Give 1.
712 [<j>(zu a, wu /3)~ 1 in 71]. (This subcase is symmetric to 711, and the com-

putation is symmetric to 711-112222.) Let S = AM{P(W1)}(T3, T2, & M) ; ask 2E if
Aj{m}l!(j) is completely defined.

121 [No to 712]. GiVeO.
7122 [Yes to 712]. Ask 2E if (sftfci, «, {m}d(s), j8)= 1].
1221 [Yes to 7122]. Give 1.
71222 [No to 7122]. Let y = \u{p(z1)}(r3, T2, a, u); ask 2E if Xt{e}\t) is com-

pletely defined.
12221 [No to 71222]. Give 1.
712222 [Yes to 71222]. Ask 2E if

(*)W*i, «, {m}\s), /3)= 1 v ( E O W W O , «. {»}*(*). P)=l]]-
122221 [Yes to 712222]. Give 1.
122222 [No to 712222]. Give 0.
Case 45. [z = <4, zu e) & w = <5, wu m}].
71. Ask 3E if m defines a /3-recursive functional {/n}(8, ^).
11 [No to 71]. GiveO.
712 [Yes to ?!]. Ask 3E if (E^)[<f>(zu «, Wl, {m}(S, /S)) = 0].
121 [No to 712]. Give 1.
7122 [Yes to 712]. Let y=A«{p(z1)}(r3, -r2, a, u); ask2E if Xt{e}\t) is completely

defined.
1221 [No to 7122]. Give 1.
1222 [Yes to 7122]. Ask 3E if (t)(E8)[<j>({ey(t),«, wu {w}(8, j8)) = 0].
12221 [Yes to 71222]. Give 0.
12222 [No to 71222]. Give 1.
Case 54. [z = <5, zlt e} & w = <4, wu m)]. Symmetric to Case 45.
Case 55. [z = <5, z1; e> & w = <5, wu m>].
71. Ask 3E if e defines ah a-recursive functional {e}(y, a).
11 [No to 71]. Give 1.
712 [Yes to 71]. Ask 3E if m defines a /S-recursive functional {m}(S, /3).
121 [No to 712]. Give 0.
7122 [Yes to 712]. Ask 3E if (y)(E8)[<f>(Zl, {e}(y, a), wlt {m}(8,«) = 0].
1221 [Yes to 7122]. Give 0.
1222 [No to 7122]. Give 1.
C. Cases ij with / ^ 3 &y^ 3 & [i = 6vy = 6].
A number w={6, wu m) is a member of N(fi) if and only if Xs{m}B(s) = S is
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completely defined and wx e N(8); and in that case |»v|* = |w1['*+ 1. Thus, once we
verify that Xs{mY(s) is completely defined, case id is treated very much like case i'3,
the other case where \w\l is always a successor ordinal (if tv e N(fi)). We give one of
these cases and leave the rest for the reader.

Case 36. [z = <3, z,> &w = (6, wt, m)].
?1. Ask 2E if \s{m}%s) = 8 is completely defined.
11 [No to ?1], GiveO.
?12 [Yes to ?!]. Compute <£(;,. «. «•„ 8).
121 [<j>(zu a, M>1% S)~0]. Give 0.
122 y>{z1,a,w1,8)~l]. Give 1.
To prove that this functional <f>(z, a, w, ft) satisfies the conclusion of the theorem,

we first show by induction on z e N(a) that, if | z | a ^ IH^J*, then <£(z, a, w, /?)—0 and
then by induction on w e N(fi) that if |H'|*<|z|a, then <f>(z, a, w, p)~ 1. The in-
duction on z e N(a) breaks down into 42 cases (since z must be in one of cases 1-6
while w is arbitrary) of which only 16 are nontrivial. Similarly the induction on
w 6 N(fi) has but 16 nontrivial cases.

Let us say that 0 is the proper value (for z, a, w, /J) if z e N(a) & \z\" S |w\" and
that 1 is the proper value (for z, a, w, /3) if |ivj« < \z\" (which implies w e N(fi)). We
must verify in each of the 16 nontrivial cases, and under each of the two assump-
tions, that 0 or 1 is the proper value, that the computation yields that proper value
as output. Each time we may assume as induction hypothesis that the computation
leads to the proper value for arguments that are "predecessors" of z or w as
members of A (̂a) or N(p).

In 33 the verification is immediate, since the ind. hyp. guarantees that the proper
value for zu a, wlt fi is the same as the proper value for z, a, w, p.

Consider 34 and assume that the proper value is 0. We claim that the computation
will be along one of the branches of Diagram A below and will reach the end of
some branch, thus giving output 0.

?1 ?1

/ \ I
11 ?12 ?12

/ \ I
121 ?122 ?122

I I
1221 1222

Diagram A. Diagram B.
Case 34; proper value = 0. Case 34; proper value = 1.

To substantiate the claim we must verify that each time a question is asked in
that computation, the partial predicate involved is defined and the answer leads the
computation along one of the branches of the diagram. The ind. hyp. guarantees
that <f>{zu a, wu /?) is defined, hence ?1 is answered. If $(z1; a, vv1; J3)~ 1 and we go



318

268 Y. N. MOSCHOVAKIS [November

to 712, then by ind. hyp. we know that |v»'i|*<|zl|a, hence wt e N(fi). Thus
8 = Xu(p(w1)}(r3, T2, ft, u) is completely defined and the Substitution Lemma (which
is tacitly appealed to in ?12) guarantees that ?12 is answered. If the answer to ?12
leads us to ?122, then we know that Xs{m}\s) is completely defined, and by ind. hyp.
<f>(zu a, {m}%s), /8) is defined for each s, so again ?122 is well posed for the Substitu-
tion Lemma. Now the ind. hyp. implies that the answer to ?122 must be "yes,"
since the assumption that it is " n o " together with the ind. hyp. easily leads to the
conclusion |w| a< |z | a .

A similar verification is needed for each of the two assumptions, that 0 or 1 is the
proper value, in each of the nontrivial cases. One simple way to obtain these
verifications is to draw diagrams of all the possible computation paths and check
that the proper value is reached along each allowable branch. We draw one more of
these diagrams and omit the details.

?1

?11 ?12

I / \
?112 121 ?122

/ \ I
1121 71122 71222

/ \ I
11221 711222 712222

112221 122222

Diagram C.

Case 44; proper value = 0.

THEOREM 7. There is a partial recursive </<(3E, T3, T2, T, h)~ip(r, h) such that

\t{h}{t) is completely defined & (Et)[{h}(t) e N(r)] -> (t)\({h}^(r, A))|« S \{h}(t)\\

(In particular,
\t{h}(t) comp. defined & (£/)[{*}(/) e N(r)] -+ {h}(<l>(r, h)) e N(r).)

Proof. We shall define ip(r, /i)~^(3E, T3, T2, T, h) from an index <j> by the recursion
theorem in the usual way. We assume throughout that ht{h}(t) is completely defined.

U(Et)[{h}(t)eN(r)],pnt

rank (h) = least s (/)[|{AK5)|l S |{/.}(0|1].

Let W be a primitive recursive function of h such that

{h'}(t)~{h}(t+l).

We notice that if rank (h) > 0, then rank (h1) = rank (//) - 1 .
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Recall that by Theorem 3 :

ftr.AH sq(ft[ADetf(r).

In the instructions for the computation of ^(T, A) from $ we write h(f) for {h}(t).
?1. Compute #h(0), r, q(& [A']), T).
?! 1 fo(h(0), r, q(& [A']), r )~0 in ?l]. Ask 2E if (0[#h(0), r, h(0, r)=0].
111 [Yes to ?U]. GiveO.
112 (No to ?11]. Give0(T, A')+1.
?I2 [#h(0), T, q(& [A']), T ) ~ 1 in ?1]. Compute #h(0), r, h(^(r, A')+1), T).
121 [<Kh(0), T, h(0(T, A')+ 1), T ) ~ 0 in ?12]. Follow the instructions of ? l l .
122 [<f>(h(Q), T, h(^(T, A') +1), T ) ~ 1 in ?12]. Give 4>(r, h')+1.
We prove that if (Et)[h(t) e JV(T)], then I/T(T, A) gives the correct output rank (A),

by induction on rank (A).
BASIS. Rank (A)=0, i.e., (f)[|h(O)r^|h(O|*]. Since h(0) e N(r),

#h(0), r, q(#, [A']), r)

is defined and ?1 is answered. If the answer sends us to ?11, the answer to this
must be "yes," so by 111 the output is correctly 0. If the answer to ?1 sends us
to ?12, then |q(& [h'])\'< |h(0)|l, so q(-A, [A']) e N(T), i.e., </>(T, [h']) is defined, so ?12
is answered; now the answer must lead us to 121 and thence to ?11 and the correct
output, since by assumption |h(0)|*^ |h(</i(T, A')+1)|\

INDUCTION STEP. Rank (h) >0. Now we may assume that </>(T, h')~rank (h1); we
must show that </>(T, h)~if>(r, h') + l. Since <^(T, h') is defined, q(<£, [h'])e N(T), SO ?1
is answered. If the answer to ?1 leads us to ?11, the answer to this must be "no," so
we are led to 112 and the correct output. If the answer to ?1 leads us to ?12, then
from the answer to that we either go to ?11 and thence to the correct output as
before or directly to the correct output through 122.

5. Predicates r.e. in 3E.
DEFINITION 7. Let 6, r3, T2, T and x be as in Definition 3, let a = au..., ak,

P = & , . . . ,/3,.
(1) Mb, z, a, w, p ) ^ ( 3 E , r3, r2, z, <a>, w, <P».
(2) 0(b,x,A)~0(3E,T3,Ta,<T>,A).
(3) Let h(e, x) be primitive recursive and such that

{h(e, JC)}(0 = s(e, x, t),

put

v(b, x, At, e) ~ •/-(&, T, h(e, x)).

The funct ional <j>, 4> and v are clearly partial recursive in 3E. In particular, if

b* = 3E, b, then \za.w$<j>(b*, z, a, w, (3) is partial recursive in b*, and similarly with

ifi and v.
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For any list ci = b, x(4), if z$N(a), put |z|" = supremum (|z|6>a : weN(b, a)}.
Using Theorems 6 and 7 we can easily verify the following results:

(F) z e N(b, a) & |z|(b, «) g \w\(b, P) -> -£(b, z, a, w, P)~0.
(G) \w\(b, p) < |z|(D, a) -> <f>(b, z, a, iv, p )~ 1.
(H) L<?r a = 6, T, h ( 0 ^ W ( 0 ; ' ^ «

Afh(/) CO/H/>. defined & (£7){h(') e /V(a)] -> ^(a, A) j & (r)[|h(0(a, A))|" g |h(/)|0].

(1) Let c = fa, x, jc; //ien

(£/)[{f}(r,;) ; ] -> i<c, <?) I & {e}(c, Kc, e)) | .

From (F), with'b* for b, we can easily prove Lemma 3; (I) is Gandy's main
result in [2], for type 3.

These results allow us to establish several elementary properties of the class of
predicates r.e. in 3E. (We leave two basic normal form theorems for §6.) Contrary
to the situation in §3, where we had to restrict ourselves to predicates with variables
of types ^ 1, we study here predicates P(c), r.e. in 3E, where c is a list of variables of
types 5=3 (Definition 4). Relativized versions of Theorems 7 and 8 are obtained by
substituting specific functionals for some of the variables in the list c.

{Added November 1966. We thank Abraham Robinson for showing to us in May,
1966 a mimeographed copy of R. Platek, Foundations of recursion theory, Ph.D.
Thesis, Stanford University, 1966. This mimeographed copy (dated January,
1966) contains a proof of (I) (with a different i>)'as well as proofs of the immediate
corollaries of (I) in Theorem 7 and Theorem 8 below. Platek's independent proofs
of these results utilize an analysis of hyperanalytic computations that is based on a
A-calculus instead of our analysis through the induction in Definition 1.)

THEOREM 7. (1) If P(z, y) is r.e. in 3E, then (£»f(c , y) is also r.e. in 3E.
(2) IfP(c) and Q(c) are r.e in 3E, then P(c) v Q(c) is also r.e. in 3E.
(3) A predicate P(c) is recursive in 3E (hyperanalytic) if and only if both P(c) and

F(c) are r.e. in 3E.
(4) Let P(c) and Q(c) be r.e. in 3E. There exist predicates /\(c) and QSs), r.e. in

3E. such that:
(a) Px(c)-^(c) ;&(€ ) - • fi(c).
(b)i '(t)vG(t)->i'1(t)ve1(c).
(c) It is impossible that Px(c) & Q^c).

Proof. (1) Put c* = 3E, c and choose e so that P(c,y) = {e}(t*,y)\, ; now (I)
implies that (Ey)P(c, y) = {e}(c*, v(c*, e)) { .

(2) follows immediately from (1).
(3) The "only if" part is trivial. To prove the "if" part, write c = b, x, x(4), put

b* = 3E, b, and choose e, m so that

P(c) = {e}(b*, r,x)i = s(e, x) e N(b*, x),

F(c) = {m}(b*, x, x) | s s(m, JC) e N(b*. x).
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Now for each c, exactly one of s(e, x), s(m, x) is a member of N(b*, x); hence
Xc<f>(b*, s(e, x), T, s(w, x), x) is completely defined and

P(c) = <f>(b*, s(e, x), x, s(m, x), x) = 0.

(4) As in (3), pick e, m so that

P(t) = s{e,x)eN{b*,t),

g(c)ss(i«,x)6tf(6*,T).
Put

A(c) = P{t) & ^(b*, s(e, x), T, s(m, x), x) ~ 0,

Qx{c) EE g(c) & #&•, s(e, x), T, s(m, x), T) ~ 1.

The verification that Px and 2! have the desired properties is easy.

COROLLARY 7.1. Let a = b, T, a* = 3E, a. 7%e predicate Xza z e N(a*) is r.e. in 3E.

Proof. By (A),

{e}(a*, x) I = s(e, x) e N(a*).

We claim that for each a,

supremum (\s(e, x)\a' : {e}(a*, x) | } = K(a*);

because if this supremum were less than »c(a*), then Lemma 5 would imply that
Xex s(e, x) e N(a*) is recursive in a* which is easily seen to be absurd. Thus

z e N(a*) = (Ee)(Ex){{e}(a*, x) j & |r|a* S |s(e, x)\a']

= (Ee)(Ex)[{e}(a*, x) | & <f>(b*, z, -c, s(e, x), x) ~ 0],

which is r.e. in 3E by (1) of the theorem.
REMARK. Theorem 9 in §6 implies that Xza z e N(a) is also r.e. in 3E.
The most interesting consequences of Theorems 5 and 6 are several choice

axioms which hold for predicates r.e. in 3E. Again, these results are inspired by
Gandy's similar theorems for type 2 in [2].

In the equivalence of Theorem 8 we use the restricted quantifiers (£a)c, (£g)c;
these are to be read "there exists an a recursive in c," "there exists a g recursive in
c." We use " g " as a variable for functions or functionals with arguments of types

THEOREM 8. Let c, b be lists of variables of types ^3, for each of the equivalences
below let P be a predicate in the indicated variables which is r.e. in 3E.

(1) (b)(Ey)P(c, b, y) = (EgUb)P(c, b, g(b)).
(2) (b)(Ea)c.^P(t, b, a) = (Eg)c.(b)P(c, b, Xtg(b, 0 ) .

{Particular cases of (I) and (2) are:
(3) (x)(Ey)F(c, x, y) = (Ecc)c.(x)P(c, x, «(*)),
(4) (*)(£«)c./>(c, x, a)3(E*M.x)P(c, x, AfaKjc, *>))•)
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Proof. The implications from right to left are trivial. To prove (1) and (2) from
left to right, let c = a, x as usual, and pick e in each case so that

P(c, b, - ) = {e}(cM>, - ) | .

(1) Put g(b)~i/(c, b, e); now (I) implies that g(b) is completely denned, recursive
in c*, and satisfies the right-hand side of (1).

(2) We compute,

(b)(E«)c..bP(c, b, a) -> (b)(Ee)[(t)[{e}(c*, b, /) j ] & P(c, b, \t{e}(c*, b, ?))]

-> (b)(Ee)[(t)[{e}(c*, b, t) I ] & 03)03 = \t{e}(c*, b, /) -* />(c, b, /S)]].

We can easily show that the predicate in brackets is r.e. in 3E, using the Substitution
Lemma and the fact that the class of predicates r.e. in 3E is closed under universal
(number or function) quantification and conjunction. Thus (1) applies, and there
exists a functional g(b), recursive in c*, such that

(b)[(O[{g(b)}(c*, b, /) | ] & P(c, b, A;{g(b)}(c*, b, /))].

We obtain then a functional g(b, /) that satisfies the right-hand side of (2) by putting

g(b, t) x {g(b)}(c*, b, t).

COROLLARY 8.1. For i= 1, 2, put z e Nt(a*) = z e N(a*) & (w)[\ w\a' < \z\a' -> ,GJ
is not recursive in jG ,̂ & (w)[|w|a*= |z|a* -> z ^ w].

(1) 77re predicate Aza z e ^(a*) iy r.e. in 3E.
(2) 77;e ^e/ Nt(a*) is linearly ordered by \zw |z|c*5 \w\%' with order-type wx(a*).

Proof. (1) follows easily from Corollary 7.1, Lemma 3 and the remark that the
predicate "F is recursive in G" is hyperanalytic.

To prove (2) by contradiction, assume that the ordering on N^a*) is similar to
an initial segment of w^a*), say {|w|g* : j wjg* < |z |f}. Put

P(a, x, y) = {not (|x|f < |z|g*) &y = 0}

V [\x\r < \z\? & y e N,(a*)

& (a) [a is a mapping from {u : |M|°' ^ |x|g*}
into {v : v e Nt(a*) & \v\ac' ̂  |>;|°*} w/i/c/i

preserves the ordinal ordering —>- a(x) = j»]].

It is easy to verify that {v : ve N{(a*) & |«;|g*^ j>"{§"} is hyperanalytic in a, uni-
formly for y E Ni(a*), and hence that P(a, x, y) is r.e. in 3E. Since, obviously,
(x)(Ey)P(a, x, y), Theorem 8 implies that for some a, hyperanalytic in a,

(x)P(a, x, a(x)).

But then

y 6 7V((a*) = (Ex)[\x\r < \z\? & a(x) = y],

so that Nt(a*) is hyperanalytic in a, which is easily seen to be absurd.
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REMARK. The sequence of predicates (GZ (z e N^a*)) provides a strictly increasing
sequence of degrees of length wx(a*), which is indexed by a set r.e. in a* and exhausts
the /-section of a*.

6. Normal forms for predicates r.e. in 3E. One of the main results of RFI is the
Representation Theorem XXVIII, which asserts (for type 3) that there exist
primitive recursive predicates L(e, c, w, a, F) and M(e, c, w, a, F)(4), such that

M(c) ~ w = (EF)(a)L(e, c, w, «, F),

{e}(c) ~ w = (F)(Ea)M(e, c, w, a, F).

In this section we shall outline proofs of strengthened versions of these theorems,
in which we specify bases (in the sense of [5]) for the quantifiers (£F), (F) above
(our L and M however will be analytic). As corollaries we show that the class of
predicates r.e. in 3E is closed under restricted functional quantification (£F)C., but
not closed under unrestricted function quantification (Ea).

THEOREM 9. (1) IfR(c, F) is hyperanalytic, then (EF)c.R(c, F) is r.e. in 3E.

(2) If P($) is r.e. in 3E, then there exists an analytic R(c, F) such that

P(c) = (EF)R(c, F) = (£F)c.tf(c, F).

(Thus P(c) is r.e. in 3E, if and only if it is expressible in the form (EF)c.R(c, F), with
analytic R.)

Proof. (1) We compute

(EF\.R(c, F) = (£e)[(«)({e}(c*, «) | ] & *(c, A«{e}(c*, a))];

now the Substitution Lemma implies that the predicate in brackets is r.e. in 3E,
hence (£F)c.7?(c, F) is r.e. in 3E by (1) of Theorem 7.

To prove (2), we shall define an analytic predicate L(T3 , T2, T, Z, F), such that in
the notation of §2,

(i) Z E N(r) = (EF)L(r\ r\ r, Z, F)

= (£F)[F is recursive in 3E, T3, T2, T & L ( T 3 , T2, T, Z, F)];

the result will then follow by (A).
The construction is a lengthy but straightforward analysis of the transfinite

induction for z e N(T), SO we shall omit many of the details.
(ii) We define a predicate P(u, a, v, ft, S) by the disjunction of the following seven

clauses. (P(u, a, v, j8, 8) will assert that, if v e N(fi), then u e N(a) and u in N(a) is an
immediate predecessor of v in N(fi), relative to 8.) (Notation: q = w = (v\, e = (v)2.)

(1) 1> = <1,?>&U = <1,9>.
(2) v = <2, 0>&w = <2,0>.
(3) v = 0, w> &u = w&a = p.
(4) u = <4, w, e> & a = ;S & [(a) V (b)v (c)], where

(a) u = w.
(b) [Xt{e}\t) is not completely defined] & M = 0.
(c) [Xt{e}\t) is completely defined] & (Et)[u = {e}\t)].



324

274 Y. N. MOSCHOVAKIS [November

(5) » = <5, w, e> & [(d) v (e)], where:
(d) [e does not define a /^-recursive functional] & u=0.
(e) [e defines a /8-recursive functional {e}(y, /?)] & M = W & (Ey)[a = {e}(y, fi)].

(6) t;=<6, w, e> & [(f)v(g)], where:
(f) [A/{e}"(/) is not completely defined] & u = 0.
(g) [A/{e}"(/) = y is completely defined] &u = w &a = y.

(7) [v does not satisfy any of the case hypotheses for (l)-(6)] & w = 0.
(iii) Let F(z, T) and G(z, T, /) be variables for functional of the indicated list of

variables. We define a predicate S(F, G) by the conjunction of the following eight
clauses. (We suppress in the notation the dependence of S(F, G) on T3, T2.)

(1) F«l, q\ r) = 0 & G«l, q\ r, t)=q.
(2) F«2, 0;, T) = 0 & G«2, 0>, r, t)=r(t).
(3) F«3, w\ T) = 0 -y [F(vv, r) = 0 & G«3 , w>, r, t) = rz(XuC(w, r, «))].
(4) F«4, w, e>, T) = 0 -> [F(vv, T) = 0 & [S = \uG(w, r, u) -+ [Xt{e}\t) is com-

pletely defined] & (0F(M<(0, r )=0 & G«4, w, e}, r, t) = G({eY(t), r, /)]].
(5) F«5, w, e), T)=Q -y[e defines a -r-recursive functional {e}(y, T)]

& (y)[F(w, {e}(y, r)) = 0] & G«5 , w, e>, r, t) = r3(\yC(w, {e}(y, r), /))].
(6) F«6, w, ^>, 7-) = 0 -> [y=Xt{e}l(O is completely defined & F(w, y) = 0

& G « 6 , w , e > , T , 0 = G(H',y,r)].-
(7) If x is not in any of the forms <2, 0>, <1,?>, <3, w>, <4, w, e>, <5, w, e>,

<6, w, e>, then F(x, T ) / 0 .
(8) {Well-ordering clause.) For an arbitrary function /}, put

J8» = Arj8««,/».

(a)03)[(.v)[F(«(.v), /8J = 0 & /J(a(.v+ 1), ̂ x + l , ^x ) , ^ , A / G ^ ) ) , ^ + 1, /))]

^(£.v)[«(.v) = <2,0> v «(*) = <l,(o(x))1>]].

We now claim:
(iv) z e N(T) -y (£F)(£G)[F, G are recursive in 3E, T3, T2, T, & S(F, G)

&F(z,r) = 0].
(v) (£F)(£G)[5(F, G) & F(z, r ) = 0 ] ^ z e N(r).
From these two equivalences we can obtain (i) and then complete the proof of the

theorem by routine contractions of variables.
Proof of (iv). If z e N(T), put

F(x,y) = 0 if |*| 'g|z| ' ,

= 1 otherwise,

G(x,y,t) = fXt) ifW^lz]1

= 0 otherwise.

Lemma 3 and Theorem 2 imply that F and G are recursive in 3E, T3, T2, T, and of
course F(z, T ) = 0 .
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The verification of the first seven clauses of S(F, G) is immediate. To verify
clause (8), we prove by cases on the definition of P(u, a, v, ft 8), that for each
u, v, a, ft

[P(u, a, v, ft XtGdv),, a, /)) & P(v, fi = 0]
-* [v = <2, 0> V v = < 1 , (v\>] V [\u\a < \v\s].

(For example, if v = (4, w, e), then a=fi and u must satisfy one of (a), (b), (c) with
8 = XtG(w, a, t) = XtfS,(t). Since F(», ft)=0, v e N(fi), hence w e A'(a) and (b) cannot
be true; it is then evident that whether (a) or (c) holds, |i/|"< |t)|*.) Clause (8) then
follows, since we cannot have an infinite decreasing sequence of ordinals

K0)|*o > |a(l)|"i > • • - .

Proof of (v). Assume that S(F, G) & F(z, T) = 0 . Consider the set f of all
finite sequences {(u0, ft,),..,, (ux, fix)} of pairs of numbers and functions such
that

u0 = z &ft, = r & (s)s<xP(us + 1, ft+1, «„ ft, AfG((Ms)t, ft + 1, r))
&(^,F(W s , f t ) = 0.

We can think of ^ partially ordered under extension of finite sequences, as a tree,
where at each node {(w0, A>)> • • •, («*, /?*)} there may be one, countably many or
uncountably many choices for (ux + 1, px + 1), depending on the prime number
expansion of ux.

Consider the predicate of sequences of ST,

(vi) ux e N(px) & G(ux, p x , t) = f(ft , , ux-t).

Clause (8) of the definition of S(P, G) asserts that this predicate has the well-
founded property on S~, i.e., if we follow any branch along the tree, we must meet a
node where (vi) holds. We shall prove that (vi) holds for all sequences in 3~ (and
hence z £ N(T)) by bar induction on 3~ (as in [10])- (One may easily rephrase the
proof as a classical proof by contradiction.)

Basis of bar induction:

(a)03)[(x){(a(O), ft,), . . ., (a(x), ft,)} 6 3T

-> (Ek)(x)xiMx) 6 N(px) & G(«(JC), ft,, 0 = f(fix, a(x); /)]].

This is immediate from clause (8) of definition (ii) and clauses (1) and (2) of
definitions (ii) and (iii).

Ind. step of bar induction: Let {(u0, fi0),..., (ux, ft.)} be a sequence in 3~. We must
show ux e N(PX) & G(ux, ft,, i) = f(px, ux; t), utilizing the following:

Ind. hypothesis: if (ux +1; fix + t) is any pair such that

{(«0, /30) , (M,, ft,), {ux + upx + 0} e 3T,

then u x + 1 e N ( p x + 1 ) & G ( u x + u p x + u t ) = f ( f i x + u u x + 1 ; t ) . S i n c e F ( w « / S j e ) = 0 , w e
know that ux must be in one of the forms <2, 0>, <1, q), etc., and hence in the
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definition of F(ux, fix) one of the first six clauses must apply. We only treat one of
the cases, the others being similar.

Clause (4). ux — (4, w, e). First choose ux + l = w, Px + I=f}x; clearly

FO, )8X) = 0 & P(w, px, ux, px, \tG(w, px, t)),

so the sequence {(u0, /?„), • • •, (ux, Px), (w, px)} e J~ and by ind. hyp.

w e N(fix) & G(w, pn t) = f(px, w; t).

Moreover, if 8 = XtC(w, px, t), then \t{e}%t) is comp. defined and for each t,
F({e}%t),px) = 0. Thus for each /, if we choose ux + 1 = {e}6(t), Px + 1=fix, we have
{(BO, j80), . . . , (ux, px), ({<>}«(/), px)} e 5-, so by ind. hyp.

{e}\t) e N(fix) & G({e}'(/), Px, 0 = t(fix, {e}%t); t).

This implies <4, w, e} e N(fix), and clause (4) of definition (iii) implies that

G«4, w, e), pn t) = f(px, <4, w, e>; t).

REMARK. One half of Kleene's Representation Theorem follows from (2) of
Theorem 9 if we remark that {e}(c)~ w is r.e. in 3E and absorb in the usual way all
but one of the function quantifiers in the prefix of the analytic predicate ^(c, F) in
the quantifier (EF).

COROLLARY 9.1. (1) IfP(c, a) and g(c, F) are r.e. in 3E, then so are (Ea)c.P(c, a)
and (£F)c./>(c, F).

(2) In the notation of Theorem 8, ifP(c, b, F) is r.e. in 3E, then

(b)(£F)c,.bJP(b, c, F) = (£g)c.(b)i>(c, b, A«g(c, b, «)).

Proof. (1) By (2) of Theorem 9, there exists an analytic predicate R(c, F, G), such
that

e(c,F) = (£G)c..F/J(c,F,G);

hence

(£F)c.g(c, F) = (£F)C.(£G)C. ,F JR(C, F, G) = (EF)c.R(c, (F)o, (F)x),

which is r.e. in 3E by (1) of Theorem 9.

(2) (b)(£F)c..b/>(b, c, F) - • (b)(Ee)[(EFU[(a)[{e}{c*, b, a) ~ F(«)] &P(c, b, F)]].

The predicate in brackets is r.e. in 3E, by (1) of Theorem 9, hence by Theorem 8,

(£g)c.(b)P(c, b, A«{g(b)}(c*, b, «)).

Put then

g(c, b, a) ~ {g(b)}(c*, b, a).

COROLLARY 9.2. A predicate P(c) is hyperanalytic if and only if it can be expressed
in both forms (EF)c.R(c, F), (F)c.Q(c, F), with analytic R, Q.

Proof. Immediate from Theorems 9 and 7.
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THEOREM 10. If P(c) is r.e. in 3E, then there exists a predicate Q(c, a), r.e. in 3E,
such that

P(C) = («)g(c, a).

Proof. We shall define a predicate Q(T3, T2, T, a, z), r.e. in 3E, and prove

0) zeN(r) = {a)Q{r\r\ r, a, z);

from this the theorem follows by (A).
Let P(u, a, v, p, S) be the analytic predicate defined in the proof of Theorem 9,

let p(z) be the function of Theorem 2. By the Substitution Lemma, there exists a
predicate / ^ ( T 3 , T2, T, U, a, v, ft), partial recursive in 3E, such that

P(u, a, v, ft S) = ^ ( r 3 , r\ r, U, a, v, R
for

8 = A/fcCdOOXT3, r2, r, / ) ,

when S is completely defined. Put

Q(u, a, v, P) = [8 is comp. defined] & R^r3, r2, r, «, a, v, /3),

where we are suppressing the dependence of Q on T3, T2, T. Evidently 2 is r.e. in
3E. We claim

(ii) Z 6 7V(r) -> («)G8)K0) = Z & )30 = r & (X)g(a(x+ 1), Px + t, a(x), j8x)
-> (£jc)[«(jf) = <2,0> V a(x) = <1, W ^ ! ) ] ] ,

(iii) (a)(j8)[a(0) = Z & & = r & (x)Q(a(x+ 1), ̂  + 1, a(x), fix)
-+ (Ex)[a(x) = <2, 0> V a{x) = <1, («(»)!>]] -> z e yV(r).

Now (i) follows easily from (ii) and {iii), since the predicate in brackets is clearly
the negation of a predicate r.e. in 3E.

Proof of (ii) (by induction on z e N(T)). Given a, /? such that

a(0) = z &/30 = r & (x)Q(a(x+ 1), fix+u a(x), &),

choose a', ft' such that

a'(x) = a(x+l), P'X=PX + ,.

Clearly (x)Q(a'(x+ I), px + l, a\x), P'x). Now we verify that since Q(«(l), jS^ «(0), ^30),
we must have a(l) e Nift^, i.e., a'(0) e ^ ( f t ) ; hence by induction hypothesis,
(Ex)[a'(x) = <2, 0> V «'(-«:) = <1, («'W)i>l which easily implies

(Er)Kx) = <2, 0>V «(x) = <1, («W)i>].

Proof of (iii). Assume the left-hand side of (iii). Consider the tree !T of all finite
sequences {(«0, /?0) , . . . , (ux, px)} such that

U0 = Z & ft, = T & ( j ) s < ^^(Ms + l, ^s + !, Ks, ft).
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We prove by bar induction on &", that for every sequence {(wo> ft), • • • > (Mx> fix)} e •&",

(iv) uxeN(0x);

in particular then z e N(r).
Basis of bar induction: This is immediate from the left-hand side of (iii).
Ind. step of bar induction: We must show that ux e N(fix), under the ind. hyp.

that ux + leN(Px + 1), whenever {(u0, ft),..., (ux, px), (ux + u Px + l)} eJ\ i.e.,
whenever 2 0 ' * +1, Px + i, «*> fix)- Here we take cases on the definition of

£?("x+l. ftr + l, »x,Px),

and again we omit all cases save one.

Clause (4). i/v = <4, w, e). First take ux + 1 = w, fix + 1=Px; as in the proof of

Theorem 9, it follows that w e N(fix), and hence S = Ar{p(w>)}(-r3, T2, px, / ) is com-

pletely denned. If Xt{e}%t) is not completely defined, put

a'O) = ws if s ^ x, & = Ps if J ^ *,
= 0 if s > x, fix if s > x,

and check that a', ft' satisfy the antecedent of the left-hand side of (iii), but not the
consequent. Hence Xt{e}%t) is completely denned, and for each t we can take
w * + i = W ( 0 . P* + i=Px and verify that {(«0, ft),..., (ux, px), (ux+1, px + 1)}e^.
Then by ind. hyp. {<?}*(/) e A'tfJ, so <4, w, e) e N(fix).

COROLLARY 10.1. / / P(c) is r.e. in 3E, then there exists an analytic predicate
R(c, a, F), such that

P(C) = (a)(F)/?(c, a, F) EE («)(F)c.,ai?(c, a, F).

Proof. Immediate from Theorems 9 and 10.
REMARK. The second half of Kleene's Representation Theorem follows from

this corollary.

COROLLARY 10.2. There exists a predicate P{z, a), r.e. in 3E, such that (Ea)P(z, a)
is not r.e. in 3E.

Proof. The predicate z e jV(a*, a)(4) is r.e. in 3E, by Corollary 7.1; we show that
(Ea)[z e N(a*, a)] cannot be r.e. in 3E.

Let f(c) be any predicate r.e. in 3E. By the theorem,

for a suitable Q, r.e. in 3E, and by (A)

g(c, a) = s(e, x) e N(a*, a)
for a suitable e. Thus

P(c) s (Ea)[s(e, x) e N(a*, a)],

and if (Ea)[z e N(a*, a)] were r.e. in 3E, P(c) would be r.e. in 3E. Since P(c) was an
arbitrary predicate r.e. in 3E, this is absurd.
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7. An extension of the hyperanalytic hierarchy. In this section we outline briefly
the theory of predicates P(c) of the form (Ea)R(c, a), with R r.e. in 3E. We are
mostly interested in the case when c contains variables of types !§ 1, when this class
resembles in many ways the class of EJ number-theoretic predicates. (A hierarchy
of AJ number-theoretic predicates very similar to the hierarchy $(a*) constructed
below, is given in §16.6 of [8].)

DEFINITION. (1) Let a be a list of objects of types 2 and 3, c a list of variables of
types S 3(4). Let ^(a) be the class of predicates P(c) such that for some R(c, a),
r.e. in a,

P(c) = (E«)R(c, «).

Let ^ (a ) be the class of predicates P(c) such that P(c) e £f(a), let

&(a) = S"(a) n &>(a).

A set or function is in £f{a), ^(a) or !&(a) if its representing predicate is in
£f(a), ^>(a) or @(a) respectively.

(2) z e S(a) = (Ea)[z e N(a, a)].
(3) For z e S(a), put

||z||a = ||z||(a) = infinum {\z\*-« : zeJV(a,a)}.

Put

A(a) = supremum {|z||a : z e S(a)}.

In the list of results (i)-(x) below we follow the conventions of (4), so that in
particular a* = 3E, a.

(i) Sf(a*) is closed under the operations &, V , (Ex), (x), (Ea).
(ii) 3)(a*) is closed under the operations &, V, —i, (Ex), (x), (Ea), (a) and contains

all predicates r.e. in a*.
Proof. By Theorem 10.
(iii) The predicate z e S(a, x) is complete for predicates P(T, X )in £f(a). I.e., for

each P(x, x) in £f(a), there exists a primitive recursive g(x) so that

P(T, X) = g(x) e S(a, r).

Proof. By (A).
(iv) ^(o.*) does not contain the predicate z <£ S(a*, x), and hence £f(a*) is not

closed under the operations —i, (a).
Proof. Assume that ^"(a*) contains the predicate z $ S(a*, x). Then £f(a*)

= 2>(a*), so by (iii) 2>(a*) has a complete predicate. However the closure properties
(ii) easily imply that £)(a.*) cannot have a complete predicate.

By (ii) and Corollary 7.1, the predicate z ^ ^(a*, a) is in ^ ( a * ) ; if S?(a*) were
closed under (a), then the predicate (a)[z $ N(a*, <x)] = z <£ S(a*) would be in
y(a*), contradicting the first part of (iv).
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(v) Let b be a list of objects of types 2 and 3, let a = a ! , . . . , ak, 0 = / ^ , . . . , /?, be
two lists of function variables^). There exist predicates L(Jc, j , z, a, w, (3) and
M(k, j , z, a, iv, P) in ^(b*), such that if z e S(b*, a), then

||w||(b*, p) ^ ||z|(6*, a) = L(A:,;, z, a, w, p),

-,(||M;||(b*, p) g ||z||(b*, a)) = M(k,j, z, a, w, p).

(/.e., //ze initial segment of ordinals ||w||(b*, P) w/;/c/i are ^ |z||(b*, a) is in S>(b*, a),
uniformly for z e S(b*, a).)

Proof. If z e S(b*, a), then the following equivalences hold:

H ( b * , p) g |z||(6*,a)
= (Ey)[w e yV(b*, p, y) &(8)-,[|z|(b*, a, S) < |w|(b*, a, y)]].

- , [ | H | ( 6 * , P ) ^ |2|](b*,a)]
= (£S)[zeyV(b*,p, 8)&(y)-,[ |w|(6*,P,y) < |z|(b*, a, 8)]].

Lemma 3 and Corollary 7.4 imply that in each case the predicate in brackets on the
right is r.e. in b*, so the right-hand side is in 5(b*).

(vi) (Boundedness.) Let P(a, x) be in <^(a*), let g(x) be a function in 2){a*) such
that

(1) P(a, x) = g(x) E S(a*. a).

Then P(a, x) is in 3$(a*) if and only if

(2) supremum {||g(x)||(a*, a) : P(a, x)} < A(a*).

The proof is similar to that of Lemma 5, using (v) instead of Lemma 3.
(vii) For each z e S(a*), put

SJiu, a, v, p) = \\v\\(a*, j8) ^ ||z||(a*) & ||u||(a*, «) ^ ||^||(a*, p).

Then
(1) Each S, is in 2i(a*), uniformly for z e S(a*).
(2) If \\z\r= HI*',,hen S^SW.
(3) / / ||zj|"*< ||w||'1*, then S, is recursive in Sw.

(4) If P(OL, x) is in i/(a*), then P(a, x) is recursive in some Sz.

The proof is similar to that of Theorem 4, using (vi) instead of Lemma 5.
(viii) (Choice.) Let P(.x, y) be in Sf(a*), assume that (x)(Ey)P(x,y); then there

exists a function g(.v) in &(a*) such that (x)P(x, g(x)).
Proof. Using (iii), choose a primitive recursive f(x, y) such that

P(x,y)^{(x,y)eS(a*),
and put

g(x) =y = f(x, y) e S(a*)

& («)[||f(.v, u)l"- g ||f(x, ^)||«- -> [\\f(x, «)||«- = ||f(x, y)^ &. yg u]\.

Now (v) easily implies that g(,v) =y is in Sr°(a*); since g(x)^y = (Ez)[z^y&g(x) = z],
the predicate g(x)=y (and hence the function g(x)) is in @>(a*).
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(ix) For each a, {||z||n : z e S{a)} is a countable set of ordinals', let >j> be the unique
order-preserving function which maps {||z||a : z e S{a)} onto an initial segment of the
countable ordinals. Put

(1) Hz||« = Mr | | « ) ( z€S(a ) ) ;
(2) <x>l = supremum {||z|[g : zeS(a)};
(3) a countable ordinal -q is a 3>(a)-ordinal if there exists a predicate in 3>{a) which

is a well-ordering with order-type rj. Then a>§* is the supremum of all !2>(a*)-ordinals.
Proof. That each ||z||S* is a ^(a*)-ordinal is easily proved from (v) by the method

of proof of the first part of Theorem 5.
We prove that cu'2* is not a S(a*)-ordinal by contradiction; assume that Q(x, y)

is in £2(a*) and defines a well-ordering with field D and order-type co$*. Put

P(x, z) = [x i D & z = 0]
V [x e D & z e S(a*) & (fa) [a maps the initial segment of the

ordering defined by Q up to and including x into
{w : \\w\\a' :£ ||z||a*} in an order-preserving fashion]].

It is easy to verify that P(x, z) is in S^(a*), and clearly (x)(Ez)P(x, z); thus by (viii)
there is a g(x) in 3>{a*), so that (x)P(x, g(x)). Hence

z e S(a*) = (Ex)[x eD& \\z\\"' < |[g(x)[|«*]

which implies that z e S(a*) is in 3)(a.*), contradicting (iv).
(x) Put

z e 52(a*) = z e S(a*) & (w)[|jw|ja* < ||z||a' -> Sz is not
hyperanalytic in Sw] & (w)[J| w||a* = | | z | a > ^ z ^ w].

Then the predicate z e S2(a*) w /n y(a*) and the set of ordinals {||z||f : z e 5"2(a*)}
Aai order-type coSf.

Proof. To prove the first assertion we simply verify that the predicate "F is
hyperanalytic in G " is r.e. in 3E, and hence in 3>{a*). The second assertion is proved
by the method used in (ix).

8. Comments on results for types other than 3. Suppose that we alter our basic
Definition 1 by deleting clauses (5) and (6). It can be verified that the set of functions
fl(f) (z 6 N(T)) coincides then with the set of functions recursive in T2, T. In fact all
the subsequent theorems of this paper hold with this modification, and the proofs
are somewhat simpler, since there are two fewer cases to worry about. However we
obtain nothing in this way (other than the basic characterization) which is not
either explicit or implicit in Gandy's [2] and Shoenfield's [9]. (We do think though
that our methods are simpler.)

On the other hand one may attempt to extend Definition 1 by adding clauses like
(5) and (6) which introduce objects of types > 3. We believe that in this way one can
obtain natural hierarchies for the hyper-(order-r) predicates with variables of types
<r (RFII 11.26) for each r, but we have not carried out the relevant computations.
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Introduction

In mathematics there have often arisen problems consisting of an infinite num-
ber of individual questions. Problems of this kind are: the problem of finding the
greatest common divisor of two whole numbers; the problem of solving systems of
algebraic equations with integral coefficients (Hilbert's Tenth Problem); identity
problems in semigroups and groups; and many others. To solve such a problem
means to indicate a general method, an algorithm, for solving all the individual
questions of which the problem consists. For example, Euclid's algorithm enables
us to find the greatest common divisor of any pair of whole numbers.

To the intuitive presentation of algorithms as finite systems of rules accord-
ing to which one transforms constructive objects, words in some alphabet, natural
numbers, geometric figures, there corresponds a rigorous mathematical definition
given in the papers of Church, Kleene, Markov, and others [5]. The task of con-
structing an algorithm satisfying certain requirements is called an algorithmic
problem.

While many concrete algorithms have been known for a long time, proofs of
the non-existence of algorithms for solving problems became possible only after

l)The basic contents of this paper were presented at a meeting of the Moscow Mathe-
matical Society on October 16, 1956.

197
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the notion of algorithms was made precise. Such proofs have, in fact, appeared.
Some important algorithmic problems have turned out to be undecidable. Among
them are the identity problems in semigroups and groups, the problem of homotopy
of paths on polyhedrons, the decision problem of the restricted predicate calculus,
and others [3]. The algorithmic problems studied up to recent times have been, in
most cases, decision problems of recursively enumerable sets . This means the
following. Let M be some set of constructive objects, and let E be a subset of M.

The decision problem of the set E consists in constructing an algorithm which en-
ables us to find out, for any object y G M, whether y belongs to E or not.

A set E is called recursively enumerable if there exists an effective process

which enables us to construct, one after the other, all the elements of E. If M is

the set of pairs of words in a group G given by a finite number of generators and

defining equations, and if S is the set of pairs of equal words, then S is a recur-

sively enumerable set, since the process of deriving equations of words from the

defining equations according to the rules of inference for groups enables us to ob-

tain every pair of equal words. The decision problem of the set S is the identity

problem in the group G [3].

From an arbitrary algorithmic problem one can pass to an arithmetic problem
by establishing an effective one-one correspondence between the constructive ob-
jects figuring in the initial problem and the natural numbers (Godelization) [4]. In
this way, the notion of algorithm reduces to that of partial recursive function
(p. r. f.) i5j. In the language of arithmetic the decision problem of the subset E of
the natural number sequence N consists in the computability of the function iftg(n)

which is equal to 1 when n G E and to 0 when n G E. The function ip r. in) is
called the decision or characteristic function (c.f.) of the set E. If ^ (n) is a
general recursive function (g. r. f.), then the set E is called recursive (r. s.). The
set F of values of a g. r. f. </>U) is called recursively enumerable (r. e.). The proc-
ess of constructing the elements of F consists in the computation of the values of
the function <£>{t).

Every recursive set is recursively enumerable. The decision problems of log-

ic and mathematics the undecidability of which has been proved in a series of pa-

pers (cf. L3J) lead (after arithmetization) to recursively enumerable, but not recur-

sive, sets. The first such sets were constructed by Post [ l ] . The undecidability

of algorithmic problems has been proved either directly (the creative set in [l]) or

by reducing the problem to another one the undecidability of which has been

proved earlier (the identity problems in semigroups and groups [3]).

However the possibility of such a reduction, for arbitrary undecidable prob-

lems, of the decidability of recursively enumerable sets occasioned some doubt

and was formulated precisely by Post in 1944 under the name of the reduction
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problem [1].

If Post 's Problem were to be answered in the positive sense, then the unde-

cidability of a large number of algorithmic problems, namely the decision problems

of r. e. sets , could be proved by reducing to them problems which are already

known to be undecidable, using the latter as "standards of undecidability". In

the negative case, it would be necessary to study the possible degrees of unde-

cidability of decision problems of r. e. sets .

Investigating the reduction problem, Post constructed r. e. non-recursive sets

of three types: creative, simple, and hypersimple (special case of simple) sets

[ l ] . Other types of r. e. non-recursive sets have been considered by Dekker, V. A.

Uspenskii and A. A. Mucnik [6]. In [l] Post considered a special case of reduci-

bility, reducibility by means of tables, and proved that a creative set is not reduc-

ible by tables to a hypersimple set.

B. A. Trachtenbrot [7] generalized reducibility by tables, introducing the idea

of a general recursive operator, and proved that a creative set is not reducible to

a hypersimple set by means of any general recursive operator. But the surprising

result of Dekker [8] showed that, for any r. e. non-recursive set G, there exists a

hypersimple set H such that G and H ate reducible to each other. The signifi-

cance of Dekker's result also consists in the fact that it gives a criterion for de-

cidability of r. e. se ts .

After this, B. A. Trachtenbrot and A. V. Kuznecov undertook a study of par-

tial recursive operators.

Almost at the same time as Dekker's paper a paper of Kleene and Post ap-

peared on degrees of unsolvability of arithmetic se ts . They established that in

the class of sets reducible to r. e. sets (this class also contains non-recursively

enumberable sets) there are sets which are not reducible to each other [9]. The

reduction problem of r. e. sets remained open.

Along with the decision problems in the theory of algorithms and its applica-

tions one also studied the problem of separability of r. e. sets [lO].

Algorithmic problems of the most general form, considered by Ju. T. Medve

dev, appear as problems of computing a function (constructing an algorithm) ful-

filling certain conditions. Such problems we shall call M-problem f l l ] , [12]. To

every M-problem corresponds the class of functions fulfilling the conditions of

the given problem. These conditions are usually connected with sets of num-

bers. ' Medvedev investigated M-problems depending on arbitrary sets of num-

bers. However, for the theory of algorithms and its applications, the greatest

1) We consider functions of natural numbers, assuming natural numbers as values.
2) By numbers we always mean natural numbers, among which we agree to include

zero.
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interest is presented by decision problems and problems of separability and enu-

merability of so-called arithmetic or recursively projective sets (r. p. sets) [13];

above all, decision problems of r. e. sets. The present paper is devoted to the

study of these classes of problems. In the first part we introduce the necessary

ideas and give a solution of Post 's Problem.

CHAPTER I.

Functional Representation of Partial Recursive Operators

§ 1 . Sequences and Quasisequences

By a sequence we mean a finite or infinite sequence of numbers. Infinite se-
quences can be interpreted as functions, and we shall identify them with functions
(of one argument).

Let us introduce a symbol A. By a quasisequence we mean a finite or infi-

nite sequence of numbers and the symbol A. The numbers and the symbol A occur-

ring in a quasisequence are called its components. The length M\l\ of a quasi-

sequence / is the number of its components (1 < M\l\ < °°). To an infinite quasi-

sequence I there corresponds a unique partial function (p. f.) l(n) (n > 1), unde-

fined for n = m if the mth component of / is the symbol A; in the contrary case,

Z(m) is equal to the mth component of the quasisequence /. We shall denote the

nth component of the quasisequence I by Z(re) (re > 1).

We call the numbers and the symbol A elements. We shall say that elements

a and b are mutually consistent, a ~ 6, i f a = & V a = AY6 = A. A system of ele-

ments a,, dj, • •• , a , • •• is called consistent if its elements are pairwise mutu-

ally consistent. The cover U a s = a j U a2 U ' * * U a s U ' " 'of a consistent sys-

tem of elements {o^! is defined to be any element ag which is a number, and, if

all as = A, then it is the symbol A.

Quasisequences Zj and Z2 are mutually consistent, Ẑ  ~ Z2, if Zj(n) ~ Z2(re)

for all n < min (Jlf i/{.}). A system of quasisequences / j , f~, • • •, fs, • • • is called

consistent if its quasisequences are pairwise mutually consistent. The cover

U fs = fi U $2 U *' 'U fs U *" 'of the quasisequences of a consistent system\fsI

is defined to be a quasisequence / such that f{i) = \J fs (i) if / s (t) is defined for

some s; M[f\ = sups {MlfJ).

For example, the cover of the quasisequences (2, A, 0, A) and (A, 4, A, A, 7, A)

is the quasisequence (2, 4, 0, A, 7, A).

The cover operation is associative and commutative.

1) After the printing of the present paper the author learned of the paper of R. Fried-
berg in, which a proof is outlined of Theorem 1 of Chapter II on the existence of incompara-
ble r. e. sets.
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Let us introduce a relation >̂  for elements and quasisequences. Let Oj and
Oj be elements and let /^ and / 2 be quasisequences.

al ~ a2 means that either a^ = o2 ot a2 = A.

fl^f2l) m e a n s tl>at /•jln) ^ /2(n) for all re < min (M {/.]).

For example, (2, A, 4, 7) >̂  (A, A, 4, A, 5).

Obviously,

U/,>/,•• (1.D
Theorem 1. /I system of quasisequences [fg\ is consistent when and only

when there exists a quasisequence g such that

U)(g>/s)&M{g!> M{fJ. (1.2)

Let us define, finally, a relation ^ on quasisequences. Quasisequences e,

and e2 are compatible, e^ ^ e2, if e^{n) = e2(re) for all re < min {MleJ).

The relation ~ is connected with the relation > by the formula

/ ~ A — • / > A & A > / . (1.3)

The relations >̂  and ~- are not transitive, since quasisequences may have
different lengths. However, the following weak transitivity holds:

ex > g & g > e2&M\g\> min U/{e.})-» ex > e2, (1.4)

ex ~ g & g 5x7 e2 & Af \g\ > min (Af {ê D —> ej ~ e2< (1.5)

If e ~ /"and e is a sequence, then e >^ f; it e and /a re sequences, then

e ~ / <—» e TV f.

If e ~ / and Af Jej < Mi/1, then e is called a segment of /, and / i s an exten-

sion of e.

A sequence of 0's and l ' s is called a predicate. A quasisequence of 0's,

l ' s , and the symbol A is called a quasipredicate.

A {/-sequence is a quasisequence consisting of l ' s and the symbol A. If /
is a predicate, then by /we denote the fZ-sequence obtained from /by substitut-
ing A for 0. If e is a {/-sequence, then by e we denote the predicate obtained
from e by substituting 0 for all A's. Both transformations preserve the compati-
bility relation ~ .

§ 2. Functional Representation of Operators

Let us call a partial function 5(OJ) orderly if it is defined on a segment of
the natural number sequence N (co < L) or on all of /V. Let there be established
an effective one-one correspondence between the set of ordered pairs of finite
quasisequences and the set of natural numbers. Let us call the number S

1) a, >̂  a2 (/, >̂  /2) is read: o^ covers o2 (/j covers /2).
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corresponding to the pair of quasisequences [d, d ] the index of this pair.

To every orderly function 8{a>) there corresponds some sequence of pairs of

quasisequences [d(<o), d (&>)] {a> = 0, 1, 2, • • •), where the index of the pair

[dico), </'(*>)] is 8(<u).

We shall say that the function 8{a>) satisfies the consistency condition if

(aj) (o>2) (rf (<Uj)) ~ d{a>^i—* rf'(a)j) ~ d'(<D2).

Every such function 8 (<y) determines a mapping (operator) A of infinite quasi-

sequences into quasisequences (p. f. into p. f.): A(/) = g, where

g= LJ d'ia).
f>,d(co)

We shall say that the function §(<u) realizes a quasifunctional representation
(q, f. r.) of the operator A on p. f.

Just as the concept of partial recursive function (p. r. f.) is a precise form of
the notion of a computable function, so also the concept of a partial recursive
operator (p. r. o.) is a precise form of the idea of an effective mapping of systems
of functions into functions [7], [?]. We shall start from the definition of p.r . o.
given in [7].

Theorem 2. The q. f. r. of any p. r. o. T (T{f) = g) is realized by some primi-

tive recursive function (prim. r. f.) 7T(V).

The p. r. o. T is given by a finite system of equations of terms fl, from which,
according to the rules of inference and using the values of the function /(ra), we
obtain the equation g(m) = k. By means of a Godelian arithmetization of the de-
rivations of equations from the system fl, we arrive at a primitive recursive se-
quence \av\ of Godel numbers of derivations of equations g(m{v)) = k{v), where
m(v) and k(v) are primitive recursive functions.

Assume that, in the derivation with number a^, we used the values fin^),

f(n^), • • • , / ( i j v ) of the function /(re), n^ < n^ < • • • < n. . Let us denote by p(v)

the quasisequence of length niv the n{-th component of which is equal to f(n^)

(1 < i < iy\ and the other components of which are X. By p'(v) we denote the

quasisequence of length m(v), all components of which, except the last, are equal

to A, and the last component of which is k(v). The index of the pair [p(v), p' iv)]

is denoted by n(v). It is easily seen that n{v) is a primitive recursive function real-

izing the q. f. r. of the operator T.

The q. f. r. is a generalization of the functional representation (f. r.) of opera-

tors first considered by Ju. T. Medvedev [ l l ] .

Let us limit ourselves to the set of infinite sequences (i.e., functions) as the

domain of definition of operators. Let us effectively enumerate the ordered pairs

of finite sequences. Every orderly function (ord. f.) 8{co) determines a sequence
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of pairs of sequences \[d(co), d' (co)]\, where 8(a>) is the index of the pair

[d{a>), d' (co)]. 8{co) will satisfy the consistency condition if

(wj) U2) (d(coj)~ d{<x>2) -» (/'(oj) ~ d'((o2). (1.6)

An orderly function 8(co) satisfying this condition determines a mapping A of
infinite sequences /into sequences g (functions into orderly functions).

A(/ ) = g = IJ <*'(«)•

Yu. T. Medvedev proved a theorem on the functional representation (f. r.) of
p. r.o.:

The f. r. of any p. r. o. T is realized by some prim. r. f.

The proof of this theorem is similar to the proof of Theorem 2.

Some strong converse theorems are true.

Theorem 3. Every orderly p. r. /. 8{co) satisfying the consistency condition

realizes a q. /. r. of some p. r. o. A.

Theorem 4. Every orderly p.r.f. 8{a>) satisfying the consistency condition

(1.6) realizes a f. r. of some p. r. o. A.

§ 3. A Universal Partial Recursive Operator

Theorem 5. There exists a partial recursive function 9(x, a) universal for

orderly partial recursive functions 8{a>).

Let us take a partial recursive function r{x, &>) universal for partial recursive
functions TX(<J>)- The function 6x{a>) = 6{x, co) is assumed to be defined at a point
{XQ, COQ) and equal to K*QJ COQ) if r(*o, co) is defined for all co < COQ. In the oppo-
site case, 6{XQ, COQ) is undefined.

If TXQ{CO) = T(XQ, CO) is an orderly partial recursive function, then

6{x0, O>) = r(xQ, co).

On the other hand, 6XQ{CO) is an orderly p. r. f. From this the assertion of
Theorem 5 follows.

There exists a p. r. o. R transforming every orderly function e(&>) into an or-
derly function 8(&>) satisfying condition (1.6), where 8{co) = e(co) if e(co) satisfies
(1.6).

Let ((co) be the index of a pair of sequences \l(co), V (co)].

The transformation R consists in the following:

8(0) = f(0).

Let the values <5(0), • • •, 8(co) be defined. We denote the pair of sequences
with index 8(v) by [d(v), d'(v)]. Then
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ff (co + 1), if (v) < a{d{v) - l(co + 1) _* / ( „ ) - l'(co + 1)],
o(.<u + 1) = -j —

t§((u) otherwise.

Let us now apply the transformation R to the orderly p. r. f. Oxia>):

<f>x{a) = R[ex{<o)],

where cf>(x, co) — <f> (co) is a p. r. f. universal for orderly p. r. f., satisfying condi-

tion (1.6).

According to Medvedev's theorem, the f. r. of any p. r. o. T is realized by the

orderly p. r. f. <f>x(co) for some x. Let us denote by Tx the p. r. o. the f. r. of which

is realized by the function <f>x {co). The p. r. o. T x (depending on the parameter x)

is said to be universal.

If in the definition of f. r. we take predicates instead of sequences, then we

arrive at the definition of the functional representation of operators transforming

predicates into predicates. Following B. A. Trachtenbrot [7J, we call such opera-

tors considered only on the set of predicates II-operators (II-o).

It is easy to check that Theorems 2—4 and Medvedev's theorem are true for

f. r. of II-operators.

Not changing notation, we formulate the following theorem.

Theorem 6. There exists a p. r. f. (£>(x, co) = <f> (co) universal for orderly

p.r.f., satisfying the consistency condition (1.6) (with respect to pairs of predi-

cates); moreover, the f. r. of any partial recursive II-o P is realized by some or-

derly function cp (co). We denote this partial recursive II-o by P and call it a

universal partial recursive U-o.

§ 4. The Calculus of M-problems

The basic notions of the calculus of M-problems is presented in [ l l ] , [12]. '

By an ^/-problem (problem A ) we mean the task of constructing a function f (n)

possessing a given property ?I^. All the functions possessing the given property

constitute a class K A completely characterizing the problem A, Every function

/ (n) G L is called a resolving function of the problem A (f G A).

Let us consider a series of examples of M-problems.

The decision problem ^ r of a set E was already defined as the task of com-
puting (constructing) the c. f. ifig (n):

KAE = KE=\xf,E(n)\.

The separability problem for non-intersecting sets £Q, E^ consists in the

computation of any function f (n) possessing the property ^EQE\-

1) In 111, 12J these problems occur under the name of mass problems.
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(0 when n 6 EQ,

1 when n G Ev

Oor 1 when n (= £Q (J £ r

Let us denote this problem by Bg^gy The class of resolving functions

KEQ, EI ls infinite if N\EQ \J E^ is infinite.

The enumerability problem CQ of a set G is defined as the class of functions

^C(G) = iw^{^ satisfying the following condition:

U) (At) 6 C ) & ( z ) [ z G G - (Et) (o(t) = *)].

An A/-problem is said to be solvable if there is at least one general recursive

function among the resolving functions.

The solvability of the separability problem BEQE\ means that the sets EQ,

Ey are recursively separable [10], and the solvability of the enumerability prob-

lem of a set G means that G is r. e.

An M-problem 6 is reducible to an M-problem A, A > B, if there exists a

p. r. o. T mapping any function f G A into some (depending on / ) function g G B.

The problems A and B ate equivalent, A *& B, if they are reducible to each

other.

The set of problems equivalent to the problem A is called the degree of dif-

ficulty of the problem A — \ A \. The degrees of difficulty form a partially ordered

set fl, where | A \ < \ B \ if the problem A is reducible to the problem 6. We also

call the elements of S2 problems.

Medvedev has proved that 0 is a distributive lattice.

By A A B and A V B we denote, respectively, the lattice union (conjunction)

and intersection (disjunction) of the problems A and 6. We also define the recur-

sive conjunction and disjunction of a sequence of problems {A.\ (which, generally

speaking, does not coincide with the countable union and intersection of the A^)

as elements of the lattice O. We select from each class K^^ a function f.(_n)GA..

We enumerate pairs of numbers (i, n) by some fixed g. r. f.'s i = dj (m),

n = a.2(m)

1 oo

By the resolving functions of the problem / \ A . we mean the functions g(m)
i = l °°

defined in (1.7) for arbitrarily chosen f- G A-; the degree of difficulty | / \ A-\
i = l

does not depend on the choice of the g. r. f.'s a^{m), a2(m). This completely de-

fines the problem / \ A.,
i = 1
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Let us set

hi(O) = i; hiin+ l ) = / . (n ) . (1.8)

By the resolving functions of the problem V A^ we mean all functions h-(ri)

defined by (1.8) for arbitrarily chosen /\ G A^

Theorem 7 (Medvedev). For any A and B, there exists a least element C in

the set of those CGfl such that AAC>B.

We call the problem C the reducibility problem (implication) of the problem B

to the problem A and we denote it by A 3 B.

The idea of the proof of Theorem 7 consists in defining the class K^-^n to be

all those functions which are everywhere defined and which realize f. r.'s of oper-

ators S such that

fG A-*S{f)G B. (1.9)

We shall say that an operator S with property (1.9) reduces problem B to problem

A.

CHAPTER II.

Decision Problems of Recursively Enumerable Sets

§ 1 . The Semilattice U(P)

As we mentioned in the Introduction, there exist recursively enumerable, non-

recursive sets. The conjunction of two decision problems of r. e. sets (as well as

recursive conjunctions) is, as is well known, also a decision problem of somer. e.

set. Hence, decision problems of r. e. sets form an upper semilattice [9l. In this

semilattice there is a largest element—the degree of undecidability of the univer-

sal (creative) set U to which every r. e. set is reducible [1]; and a least element-

the decision problem of recursive sets | An |. Let us denote this semilattice by

a<P).
§2. Post's Reduction Problem

Do there exist in ?I(P) elements different from | Ay\ and | AQ |?

It will be shown that there exist a "great many" (in the sense indicated be-

low) such elements.

According to the general definition of the reducibility of iW-problems, the de-

cision problem of a set D is reducible to the decision problem of a set E (more

briefly, the set D is reducible to the set E) if there exists a g. r. o. T mapping the

c. f. of the set E into the c. f. of the set D. The g. r. o. T can be assumed to be a

II-operator [7].

In what follows we shall need a series of new concepts and definitions.

The complement of the element a = 1 is defined to be the element ca = k, and
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conversely, the complement of the element b = A is defined to be the element

cb = l.

By the complement of a {/-sequence / we mean the {/-sequence g = c/ of

length Mi/I such that gin) = cifin)).

By the coupling of quasisequences A, and A2 we mean the quasisequence

e - Ajo^2 defined by the conditions:

a) Aj is a segment of e;

b) fo rMU 2 !>ra>MU 1 ) , eU) = A2(n);

c) A/{ej= max Af{A.i.

The coupling operation is associative, i.e., the coupling AjoA2o- • • oh, of k

quasisequences is defined.

We note that A^oA^- • • oh- ~ AjoA2o- • ' oA^ (i < &)•

By the coupling of the quasisequences Ap A2, • • •, ^£, • • • we mean the cover
i

I) e. where e .= o h, = h,oh-,o- • • oh,. By (Ao a) (where a is an element) we de-
i=l { l k=l k l 2 k

note the quasisequence hoe , where e is the infinite quasisequence all compo-

nents of which are equal to a. We define the quasisequence [A]a(where A is a

quasisequence and a is a number) as the segment of (^oA) of length a.

By the convolution of e with /relative to <x (where e and /a re {/-sequences

and a is a number) we mean the [/-sequence (e, / ) a = e (J (te]aoc/).

Lemma 1. Let e and f be U-sequences, and <X and n numbers. If M{f\ >n>a

and at least one of the two elements (eoA) (re) and f(n) is equal to A, then

A = (e, / ) a x / . 1 } (2.1)

Let us denote [e]aoc/by g; h - e \J g and gin) = cfin) since n > a.

If (eoA) in) = A, then h{n) = (eoA) in) U gin) = A U cfin) = cfin), i.e., A(n) ^
/ (re) and h x /.

If /(re) = A, then gin) = c/(re) = 1 and A (re) = 1.

Again fin) £ A (re) and fxh.Q. E.D.

Lemma 2. [e l a ^ r (e, / ) a .

In fact, [ e ] a ^ e and [ e ] a ~ ([e]aoc/). Hence, [ e ] a — e U ([e]aoc/) = (e, / ) a .

In Chapter I, § 3, we introduced the f. r. of the universal p. r. II-o P , real-

ized by the orderly p. r. f. 4> ico) = <j> ix, co).

Let us denote by [d \ co \, d ' | w |] the pair of finite predicates with index

4>xio).

We introduce now a parametric representation for p. r. f.:

1) X is the symbol for incompatibility of sequences.
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z = <fi(x, co): x = x(t), co = co(t), z = z{t),

where x(t), co(t), z{t) are primitive recursive functions, and where x{0) = &)(0) = 0

and
Z2 > tj&xit^ = x(t2) —• <u(«1) > cu(«2). (2.2)

The predicates d,^ \ co(t)\ and &'xit\ | <u W | we denote by / | t \ ' and / ' \t\,
respectively.

Let us set k[\ t | = / | t \, Kf \t \ = / ' \t | (cf. the end of § 1, Chapter I);

tfl/"|t|} = i»(t); tf{/'|t|l = m'(t).

We call a number f a characteristic value of the operator PXQ if x{t) = XQ.

Now we shall formulate a theorem from which the solution of Post's Reduc-
tion Problem follows.

Theorem 1. There exist r. e. non-recursive sets E and G such that, for all x,

P (e) ^ g and P (g) ^ e~, where e and g are the characteristic functions of E and

G respectively, i.e., the r. e. sets E and G are not reducible to each other (cf.

Theorem 6 of Chapter I).

We c o n s t r u c t a r e c u r s i v e s e q u e n c e o f n u m b e r s \t^\ a n d { / - s e q u e n c e s i e . } , \g-},

w h e r e

«o = ° . e o = / l ° l ' So = c / ' l ° l -
Let the numbers tQ, - • •, <2£ a nd the predicates eQ, e ,̂ • • •, e2£, gQ, • • •, g2£

already be defined.

Let us put *2i; + i = I11' satisfying the conditions la)—Id):

la> f\'\7L82»
1b) f\t\^h2kUt,2k)>

where
a{t, q) = max \a(t, q), a' {t, q)\, ]

a ( f , q)= max (m(t.)) + 1; a'[t, q) = max {m'{t.)) + l , \ ( 2 - 3 )

i<jU,q) *</(«,?) l J
/(«, 9) = max (i);

i<q
x(ti)<x(.t)

lc) a),.<AU(f2i + 1) = x(t)8cf\t2i + 1\ *7 gu - , / I I2. + 1 I ^ e 2 p ;

u) n«ix(«2fc,n«i>a(l,2*)-
Let us also set e2k + 1 = (e2A, / ' | t2k Da((2fc + 1 , 2*)? «2*+l = #2* U / lf2A+ll

and *2/fc + 2 = ^ ' determined by 2a)—2d):

2b) / l «Kk 2 4 + 1 ] a ( t i 2 J f c + 1 ) ;

1) Do not confuse the predica te f\t\ with f(t) - t h e Jth component of the predicate / .
2) [It signifies the l eas t t.
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2 c ) U)iSk(xU2i) = x(t) 8cf\t2i\~ e2k + 1 - / ' \t2i\ *; gu + 1 ) ;

2d) f'\t\x{g2k + v / ' l * | ) a ( 4 , 2 * + l V

e 2 k + 2 = e 2 k + l U f \ t 2 k + 2 ^ '

#24 + 2 = '#2/1+1' / ' hk + 2 ' a(t2k + 2, 2/t + l) '

Let us put e*= (J e£, g* = \J g^ e = (e*oX), g = (g*oA); e and g are

{/-sequences.

The predicates (c. f.) e and if are obtained from e and g by the transformation
defined at the end of § 1 of Chapter I,

.-= °«.«- v
Let us note that the predicates e(rc) and g(n) are defined for re > 1.

Let us assume that 0 G E and 0 G G. This, of course, does not affect the re-
ducibility of the sets E and G.

It is easily seen that the sequences {t^j, {e^i, \g^\ defined by la)—Id), 2a) —
2d) are computable (recursive), and from this it follows that E and G are r. e.

We call the function a((, q) defined in (2.3) a control function with respect
to the sequences {^j, {e^}, lg^} satisfying properties la ) - Id) and 2a)-2d). Reg-
ulating functions play an important role in the proofs of the basic theorems of this
paper.

First of all we note that a(t, q) is a g.r. f. A number s is said to be:

a) minimal with respect to XQ it

r> s-* xUr)>x0>x(ts); (2.4)

b) strongly minimal with respect to XQ if

r> s —> x(tr)> xQ>x{ts); (2.5)

c) minimal if
r> s -^ x(tr) >x(ts);

d) strongly minimal if

r> s -* xUr)> x(tg).

Lemma 3. If the number s is minimal with respect to xQ, then, for r> s,

1°. a{tr, r-l)>a{ts + 1, s)>max(M{e5!, U\ds\) + I,

ri _ri — f S* ~ S>

3° . f\ts\ is a segment of er; / ' \ tg \ = gr, for even s;
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/ I t | is a segment of g ; f | t \ = er, for odd s.

Lemma 4. Let a number s be strongly minimal with respect to XQ. Then

Q-(t + , s) — a.{t, r) for all t and r such that x(t) = XQ and r > s.

Let us prove both lemmas. If s is minimal with respect to XQ, then

; (« 5 + 1 , s) = max \i\ = s.

S i n c e s < r - 1 a n d x { t ) < x { t ) , t h e n

j(ts + 1, s) = s Kjit^ r-1) = max [i\,

x(t7)r<x(tr)

a ( t , , s) = max \m(t.), m'{t)} + 1,

fis\< max {«({.), m'U)],
M\gs\j i<s

which proves asser t ion 1° of Lemma 3 .

From the proposition 1° it follows that [ e s l j y5 e l + i ~ C e s l a , t sy
S S + X

Let us prove assertion 2° by induction on r.

For r = s, we have hsh(ta + 1. ,)* es = V

L e t [ e « l a ( « s + 1 . s)^e2k' W h e r e 2 A ^ S ' T h e n [ e S ] a (* s + 1 , s ) = [ e 2 f e ] a ( t s + 1 > s) .

By definition, e2lc+l = (e2A, / ' | ̂ A + l l^a(t 2A:V A c c o r d i n g t o Lemma 2,

[e2fc]a(t2ft + 1 , 2fe)~ e2fe+l' a n d ' s i n c e a ( f 2 i + l ' 2 * ) > a ( ( s + l . *>. t h e n

[ e 2A ] a( t s + 1 , s ) ~ e 2 f e + l a n d [ e 5 ] a ( t s + 1 , S ) ~ e 2 i + l'

Now let us put [ e ] , , / , ^ eo , , 1f where 2k + I > 5. Then

t e s l a ( J s + 1 > S ) = [ e 2 * + r l a ( ^ + 1 , S ) ; e2/t+2 = e 2 / t + i U / U 2 & + 2 l ; m o r e o v e r » b y c o n -

dition 2b), / | t2k + 2 \ *z ie2ic+i^a(t , 2k + l)' a n d > b v v i r t u e of 2i + 1 > s, we

h a v e f I J2fe + 2 I ^ [e2ft + l ] a ( t s + 1 , , )• H e n c e

e2k + 2^ [e2A + l ]a(«s + 1 > s ) = t e J a((s + 1 , s ) '

Thus, for r > s,

[es]a(ts + vs)^er> (2'6>

and, since M[eg\ < M{er\, then es is a segment of er. From the definition of

e£ + l ' w e b a v e e£+i = ei U ^jt where ^ is some {/-sequence. Hence, e* = (J ê  =
i

(J e , if at least one [/-sequence is defined for r > s. From (2.6) follows:
r> s
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Thus, the first part of assertion 2° of Lemma 3 has been proved. The second

part is proved in an analogous way.

Let us prove assertion 3°. For even s

es = es -1 U / K I a«d f \ts I £ es -1 (condition 2a)).

Therefore f \ tg\ is a segment of es and, so, also a segment of e^.

According to 2d), / its) x gs ; gs is a segment of gr for r>s. Hence

The second part of proposition 3° of Lemma 3 can be proved in the same way.

Proceeding to the proof of Lemma 4, let us note that, for t and r such that

x(t) = XQ & r > s,

jit, r) = / U s + I , s) = s. (2.7)

In fact, jit, r) = max {i}.
i<r,

x(.ti)<x(t) = xQ

Comparing expressions (2.3) for a(t, r) and «-(ts + j , s), we see that ait, r) =
aU s + 1, s). Q.E.D.

(In general, from the equation jit, q) = jit', q') it follows that ait, q) =
ait', q').)

The proof of Theorem 1 is based on the following lemma.

Lemma 5 (Finiteness Principle for the Set of Characteristic Values). For

any x, the operator Px has not more than a finite set of characteristic values t^.

Let us prove Lemma 5 by induction on x.

a) x=0. Let xitQ) = *(« 2 l > 1 ) = * = 0.

The numbers tQ = 0 and £2j \ a r e minimal with respect to 0. Therefore
/ | 0 | *c er, and / ' | 0 | x gr (r > 0). According to condition 2c), the operator PQ

has no even characteristic values tji. other than t~ = 0.

We also have / U2j+11 ~ &r an<^ f' I f2j+11 x er ^r > ^ + ^' ^ condition
lc), the operator PQ cannot have characteristic values <2fc+i> where k > i.

b) Assume the lemma proved for x = 0, 1, • • • , *0 . Let us prove it for
X - XQ + 1 .

Let s be a strongly minimal number with respect to XQ. Such an s exists,
since xitj = 0 and we have assumed that, for all x < xQ, the equation xit^l = x

has not more than a finite set of solutions. Let ts be the largest of them. We de-
note by t2 • a t |d tj- + i any characteristic values of Tx + i such that 2z' > s

and 2i2 + 1 > s.

The numbers 2t j and 2«2 + 1 are minimal with respect to XQ + 1. Hence,
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f\t.2i\^ e r a n d / ' | t2j. | x gr ( r > 2 » 1 ) ,

/ I ^ i j + l l ~ g r a n d / ' | f 2 i 2 + l l ^er ( r > 2 » 2 + l ) .

According to conditions l c ) and 2c), there cannot be any character is t ic val-

ues tf of the operator Tx + 1 for r > max (2i j , 2 i 2 + 1).

Lemma 5 has been proved.

Lemma 6. In the U-sequences e and g there are infinitely many components

A.

If the {/-sequence e* = LJ ei is finite, then the assertion of the lemma is ob-
i

vious for e, since e = (e*oA).

Let e* be an infinite {/-sequence. Then e* = e and the sequences {t^}, }e^l,

Ig.j are infinite.

In this case there is an infinite sequence of strongly minimal numbers:

s l < s 2 < - ' - < s p <Sp + l < " '

As j j we take a strongly minimal number with respect to x = 0: x{ts ) = 0.

Let Sj < s 2 <• • •< s be defined, with x{ts ) = x .

Let us put x'p = x(tSp + l) > xp.

s j is a strongly minimal number with respect to x , and therefore, it is a
strongly minimal number in general, since x > *p + j = x[ts + j) > x . In addition,
s j > s + 1. By virtue of the fact that ê  + j = ê  tj J^,

e* = U e. = U es and M{es ! —» 00 as p —> 00. (2.8)
»=1 P=l

According to assertion 2° of Lemma 3, Ees 1 Af J e 1 + 1 ~ e' Therefore the

component of e with index M\es ! + 1 is equal to A. From (2.8) we obtain the

statement of the lemma for the {/-sequence e. The proof for the {/-sequence g is

carried through in an analogous way.

Now we can begin directly on the proof of Theorem 1.

Let us assume that Px (e) = g for some XQ, and whenever the number tj • is

defined then ' T + I a ^ s o exists. The case when tj- is defined but the number

t2i + l d ° e s n o t e x i s t it will D e necessary to treat separately.

Let us take a number s strongly minimal with respect to XQ. By our assump-
tions, the number ŷfct 1 aa<^ {/-sequences e2Jc + V &2/1 + 1 a r e defined for some
2k + 1 > s. Then one can find a characteristic value t of the operator Pr , satis-
fying conditions 2a )-2d ) for any 2k + 1 > s, for which «2A;+l> e2k + V &2& + 1 a r e

defined:

2a'> /M^e2A+i;



349

SOLUTION OF POST'S REDUCTION PROBLEM 213

2b') f'\t\^[eu+l]a^2k+1);

2c') /'Mx(g2ft+1,n«|)a(t.2*+i);
2d') (i).<fc (x{t2i) = *(«) = *0& / | t 2 . | -c e 2 & + 1 - . / ' | h i \ * g2k + 1).

The condition 2d ) is fulfilled for all 2k + 1 > s, since x{t2-) = ̂ Q ~ ' ^l - s>
e ^; e2ft+i; an<* since mit^ < M\es\ < ̂ l e 2 f e + 1 ! , then / | t2l-1 ^ e2fc + l m e a n s

that /" | t2i | is a segment of e s , e s = e. Hence /1 £2; I is a segment of e.

Since we have assumed that Px (e) = gt and *U2j-) = *o» t*ien / I J2 ' I ~ e ~*
/ ' | t2i | ~ g, but the transformation of [/-sequences into predicates and the in-
verse transformation preserve the relation ~ (§1 of Chapter I). Thus, we have

f 1*2.1 * e ~* f \ t2i\ * 8 **&

f\t2i\^e2k+l^f'\t2i\^e- (2.9)

From the strong minimality of s with respect to %0 (2i < s) it follows, accord-

ing to Lemma 3, that

f'\t2i\^g^f'\t2i\^g2k+v (2.10)

Comparing (2.9) and (2.10) we see that condition 2d') is fulfilled.

Conditions 2a ) and 2b ) also hold if / | t \ ~ e , since, then, / | 11 t; e,

e >̂  e 2 i + l» anc^ ̂ a') is fulfilled. According to Lemma 4, a{t, 2k + l) = a ( t j + ps) .

In the proof of Lemma 3 we saw that ^2k + l^a(t s) = ^s-'afj s ) ̂  e»

from which 2b ) follows for / | t \ *c e.

Let n > a ( ' s + i» s) and gin) = A (according to Lemma 6 such an re exists).
From F x (e) = g, the existence of t follows such that x(t) = XQ, f \ t \ *c e,

J'\ t\ - g and m'(t) > n> ct(ts + 1 , s).

For such t we have f'\t\ ~ g. Hence f' \t\(n) = gin) = A. In addition,
m'it) >n>a(ts + 1, s).

Applying Lemma 1 and taking into account that a(t, 2k + l) = a.(is + j , s), we

obtain f'\t\ x(g2 f c + 1> / ' 1 Ma(£, 2/c +1)^' i<e<» 2 c ' ) holds.
Let us put I = [it satisfying x{t) = XQ and conditions 2a )—2d ) for any

2k + 1 > s; and let i = max {£}. Let us take 2k+ 1 such that 2k + 1 > max (i , s)
ti<t>

and *2A +1» e2/fc + l ' 2̂fe + l a r e ^e^ne<^# Such a number 2A: + 1 exists by virtue of
the assumptions we have made. Then t = fit satisfying conditions 2a) — 2d), i.e.,
1' ~ l2k + 2' x^t2k + 2^ ~ x0' w n ich contradicts the strong minimality of s with re-
spect tO XQ.

2t
If the number <2t- is defined but t2i+ ^ does not exist, then e* = LJ e-, g* =

2i L=l

(J g-, and E and G ate finite, and therefore, recursive. Then Px (g) = e for

some Xy In this case, the proof proceeds just as before but with the replacement
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of e by g, g by e, and the conditions 2a')—2d') by corresponding conditions la ' ) —

Id ). In a similar way one proves that Px(g) ^ e~.

We have proved that, for all x, P'x i~e) ^ g and P x (g) £ ~e. From this it follows
that the sets E and G are not recursive and are not reducible to each other. Such
sets (problems) are called incomparable.

One can strengthen Theorem 1.

Theorem 2. There exists a recursive sequence of Godel numbers of r. e. sets

\En\ such that the decision problem of each r. e. set En is not reducible to the re-

cursive conjunction / \ Ag i^Em *5 tne decision problem for E ).

Following Kleene and Post, we call such sets Ep i^* ' '' > &n>''' recursive-
ly independent.

The proof of Theorem 2 is carried out by the same methods as in the proof of
Theorem 1, but it is much more complicated. Therefore we have omitted it.
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RECURSIVELY ENUMERABLE SETS OF POSITIVE
INTEGERS AND THEIR DECISION PROBLEMS

EMIL L. POST

Introduction. Recent developments of symbolic logic have con-
siderable importance for mathematics both with respect to its phi-
losophy and practice. That mathematicians generally are oblivious to
the importance of this work of Godel, Church, Turing, Kleene, Rosser
and others as it affects the subject of their own interest is in part due
to the forbidding, diverse and alien formalisms in which this work is
embodied. Yet, without such formalism, this pioneering work would
lose most of its cogency. But apart from the question of importance,
these formalisms bring to mathematics a new and precise mathemati-
cal concept, that of the general recursive function of Herbrand-Godel-
Kleene, or its proved equivalents in the developments of Church and
Turing.1 It is the purpose of this lecture to demonstrate by example
that this concept admits of development into a mathematical theory
much as the group concept has been developed into a theory of
groups. Moreover, that stripped of its formalism, such a theory ad-
mits of an intuitive development which can be followed, if not indeed
pursued, by a mathematician, layman though he be in this formal
field. It is this intuitive development of a very limited portion of a
sub-theory of the hoped for general theory that we present in this
lecture. We must emphasize that, with a few exceptions explicitly so
noted, we have, obtained formal proofs of all the consequently mathe-
matical theorems here developed informally. Yet the real mathemat-
ics involved must lie in the informal development. For in every
instance the informal "proof" was first obtained; and once gotten,
transforming it into the formal proof turned out to be a routine chore.'

We shall not here reproduce the formal definition of recursive func-
tion of positive integers. A simple example of such a function is an

An address presented before the New York meeting of the Society on February 26,
1944, by invitation of the Program Committee; received by the editors March 25,
1944.

1 For "general recursive function" see [9] ([8] a prerequisite), [12] and [11]; for
Church's "X-defineability," [1] and [<5]; for Turing's "computability," [24] and the
writer's related [18]. To this may be added the writer's method of "canonical systems
and normal sets" [19], See pp. 39^42 and bibliography of [6] for a survey of the litera-
ture and further references. Numbers in brackets refer to the bibliography at the end
of the paper.

1 Our present formal proofs, while complete, will require drastic systematization
and condensation prior to publication.

284
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arbitrary polynomial P(xi, #2, • • • , *„), with say non-negative in-
tegral coefficients, and not identically zero. If the x's arr: assigned
arbitrary positive integral values expressed, for example, in the arabic
notation, the algorithms for addition and multiplication in that nota-
tion enable us to calculate the corresponding positive integral value
of the polynomial. That is, P(x\, xt, • • • , x,.) is an effectively calculable
junction of positive integers. The importance of the technical concept
recursive function derives from the overwhelming evidence: that it is
coextensive with the intuitive concept effectively calculable function.3

A set of positive integers is said to be recursively enumerable if there
is a recursive function f{x) of one positive integral variable whose
values, for positive integral values of x, constitute the given set. The
sequence/(I),/(2),/(3), • • • is then said to be a recursive enumeration
of the set. The corresponding intuitive concept is that of an effectively
enumerable set of positive integers. To prepare us in part for our in-
tuitive approach, consider the following three examples of recursively
enumerable sets of positive integers.

(a): I2, 1\ 32, • • • .

(b): 1, 2, 21+2, 2l+2+2l+a,

(c): I2, 22, 32, •••

13, 2', 33, • • •

14, 2«, 3 \ • • •

In the first example, the set is given by a recursive enumeration
thereof via the recursive function x*. In the second example, the set
is generated in a linear sequence, each new element being effectively
obtained from the elements previously generated, in tlvs case by
raising 2 to the power the sum of the preceding elements. The set
is effectively enumerable, since the nth element of the sequence can
be found, given n, by regenerating the sequence through its first n
elements. In the third example, we rather imagine the positive in-
tegers 1, 2, 3, • • • generated in their natural order, and, as each
positive integer n is generated, a corresponding process set up which
generates w2, «*, w4, • • • , all these to be in the set. Actually, the stand-
ard method for proving that an enumerable set of enumerable sets is
enumerable yields an effective enumeration of the set.

5 See Kleene [13, footnote 2]. In the present paper, "recursive function" means
"general recursive function."
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Several more examples would have to be given to convey the writ-
er's concept of a generated set, in the present instance of positive
integers. Suffice it to say that each element of the set is at some time
written down, and earmarked as belonging to the set, as a result of
predetermined effective processes. It is understood that once an ele-
ment is placed in the set, it stays there. The writer elsewhere has re-
ferred to a generalization which may be restated every generated set of
positive integers is recursively enumerable* For comparison purposes
this may be resolved into the two statements: every generated set is
effectively enumerable, every effectively enumerable set of positive
integers is recursively enumerable. The first of these statements is
applicable to generated sets of arbitrary symbolic expressions; their
converses are immediately seen to be true. We shall find the above
concept and generalization very useful in our intuitive development.
But while we shall frequently say, explicitly or implicitly, "set so
and so of positive integers is a generated, and hence recursively
enumerable set," as far as the present enterprise is concerned that
is merely to mean "the set has intuitively been shown to be a gen-
erated set; it can indeed be proved to be recursively enumerable."
Likewise for other identifications of informal concepts with corre-
sponding mathematically defined formal concepts.

At a few points in our informal development we have to lean upon
the formal development. The latter is actually yet another formalism,
due to the writer [19] but proved completely equivalent to that of
general recursive function. It will suffice to give the equivalent of
"recursively enumerable set of positive integers" in this development.

A positive integer n is represented in the most primitive fashion
by a succession 11 • • • 1 of » strokes. For working purposes, we in-
troduce the letter b, and consider "strings" of l's and b's such as
llblbbl. An operation on such strings such as "blbP produces Plbbl"
we term a normal operation. This particular normal operation is ap-
plicable only to strings starting with bib, and the derived string is
then obtained from the given string by first removing the initial bib,
and then tacking on 1661 at the end. Thus bibb becomes blbbl. "gP
produces Pg'" is the form of an arbitrary normal operation. A system
in normal form, or normal system, is given by an initial string A of
l's and &'s, and a finite set of normal operations "giP produces Pgi,"
t = l, 2, • • • , y.. The derived strings of the system are A and all
strings obtainable from A be repeated applications of the ju normal

* See [19, p. 201 and footnote 18]. In this connection note Kleene's use of the word
"Thesis" in [14, p. 60]. We still feel that, ultimately, "Law" will best describethe
situation [18],
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operations. Each normal system uniquely defines a set, possibly null,
of positive integers, namely the integers represented by those derived
strings which are strings of l's only. It can then be proved that every
recursively enumerable set of positive integers is the set of positive
integers denned by some normal system, and conversely.6 We here,
as below, arbitrarily extend the concept recursively enumerable set to in-
clude the null set.

By the basis B of a normal system, and of the recursively enumer-
able set of positive integers it defines, we mean the string of letters
and symbols here represented by

A; g\P produces Pg[, • • • , g?P produces Pg» .

When meaningfully interpreted, B determines the normal system,
and recursively enumerable set of positive integers, in question. Each
basis is but a finite sequence of the symbols 1, b, P, the comma, semi-
colon and the letters of the word "produces." The set of bases is there-
fore enumerably infinite, and can indeed be effectively generated in
a sequence of distinct elements

0: Bu Bt, B», • • • .

Since each B, defines a unique recursively enumerable set of positive
integers and each such set is defined by at least one 5,-, 0 is also an
ordering of all recursively enumerable sets of positive integers, though
each set will indeed recur an infinite number of times in 0. We may
then say, in classical terms, that whereas there are 2 °̂ arbitrary sets
of positive integers, there are but No recursively enumerable sets.

By the decision problem of a given set of positive integers we mean
the problem of effectively determining for an arbitrarily given posi-
tive integer whether it is, or is not, in the set. While, in a certain sense,
the theory of recursively enumerable sets of positive integers is
potentially as wide as the theory of general recursive functions, the
decision problems for such sets constitute a very special class of deci-
sion problems. Nevertheless they are important, as is shown by the
following special and general examples.

One of the problems posed by Hilbert in his Paris address of 1900
[10, problem 10] is the problem of determining for an arbitrary di-
ophantine equation with rational integral coefficients whether it has,
or has not, a solution in rational integers. If the variables in a

1 We have thus restricted the normal operations and normal systems of [19] be-
cause of the following result. If in the initial string and in the normal operations of a
normal system with primitive letters 1, a[, • • • , aj, each a;, t = l, • • • , it', is re-
placed by 61 • • • 16 with i l's, a normal system with primitive letters 1, b results,
defining the same set of strings on 1 only as the original normal system.
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diophantine equation be chosen from a given enumerably infinite
set of variables, it is clear that the set of diophantine equations is
enumerably infinite. Indeed they can be effectively put into one-one
correspondence with the set of positive integers. Since for any one di-
ophantine equation, and assignment of rational integral values to its
variables, it can be effectively determined whether or no the equa-
tion is satisfied by those values, the set of diophantine equations
having rational integral solutions can be generated. The correspond-
ing integers under the above one-one correspondence can then also
be generated, and, indeed, constitute a recursively enumerable set of
positive integers.6 And under that correspondence, Hilbert's problem
is transformed into the decision problem of that recursively enumer-
able set.

The assertions of an arbitrary symbolic logic7 constitute a gener-
ated set A of what may be called symbol-complexes or formulas. We
assume that A is a subset of an infinite generated set E of symbol-
complexes, which in one case may be the set of meaningful enuncia-
tions of the logic, in another the set of all symbol-complexes of a
given mode of symbolization. The decision problem of the logic, more
precisely its deducibility problem [3], is then the problem of deter-
mining of an arbitrary member of E whether it is, or is not, in A.
Granting that every generated set is effectively enumerable, the mem-
bers of E can be effectively set in one-one correspondence with the
set of positive integers. The positive integers corresponding to the
members of A then constitute a generated, and hence, under our gen-
eralization, a recursively enumerable set of positive integers. And un-
der that correspondence the decision problem of the symbolic logic
is transformed into the decision problem of this recursively enumer-
able set of positive integers.

Closely related to the technical concept recursively enumerable set
of positive integers is that of a recursive set of positive integers. This
is a set for which there is a recursive function f(x) such that f(x) is
say 2 when x is a positive integer in the set, 1 when x is a positive
integer not in the set. We may also make this the definition of the
decision problem of the set being recursively solvable. For 2 and 1 may
be regarded as the two possible truth-values, true, false, of the propo-
sition "positive integer x is in the set," and the definition of recursive
set is equivalent to this truth-value being recursively calculable for
all positive integers x. If then recursive function is coextensive with

• In view of [17] we inadvertantly carried through our formal verification with
"rational integral solution" replaced by "positive integral solution."

1 See Church [S, p. 225] for our omitting the qualifying "unitary."
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effective calculability, recursive solvability is coextensive with solva-
bility in the intuitive sense. In particular, the decision problem of a
recursively enumerable set would be solvable or unsolvable according
as the set is, or is not, recursive. More generally than in our two illus-
trations, through the more precise mechanism of Godcl repre-
sentations [8], a wide variety of decision and other problems are
transformed into problems about positive integers; and whether
those problems are, or are not, solvable in the intuitive sense would
be equivalent to their being, or not being, recursively solvable in the
precise technical sense.

Godel's classic theorem on the incompleteness and extendibility of
symbolic logics [8] in all but wording led him to the recursive un-
solvability of a generalization of the above problem of Hilbert [8,9,
22]. Church explicitly formulated the concept of recursive unsolva-
bility, and arrived at the unsolvability of a number of problems; cer-
tainly he proved them recursively unsolvable [l-4]. The above prob-
lem of Hilbert begs for an unsolvability proof (see [17]). Like the
classic unsolvability proofs, these proofs are of unsolvability by means
of given instruments. What is new is that in the present case these in-
struments, in effect, seem to be the only instruments at man's dis-
posal.

Related to the question of solvability or unsolvability of problems
is that of the reducibility or non-reducibility of one problem to an-
other. Thus, if problem Pi has been reduced to problem P2, a solution
of Pi immediately yields a solution of Pi, while if Pi is proved to be
unsolvable, P2 must also be unsolvable. For unsolvable problems the
concept of reducibility leads to the concept of degree of unsolvability,
two unsolvable problems being of the same degree of unsolvability
if each is reducible to the other, one of lower degree of unsolvability
than another if it is reducible to the other, but that other is not
reducible to it, of incomparable degrees of unsolvability if neither
is reducible to the other. A primary problem in the theory of recur-
sively enumerable sets is the problem of determining the degrees of
unsolvability of the unsolvable decision problems thereof. We shall
early see that for such problems there is certainly a highest degree
of unsolvability. Our whole development largely centers on the single
question of whether there is, among these problems, a lower degree of
unsolvability than that, or whether they are all of the same degree
of unsolvability. Now in his paper on ordinal logics [26, section 4],
Turing presents as a side issue a formulation which can immediately
be restated as the general formulation of the "recursive reducibility"
of one problem to another, and proves a result which immediately
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generalizes to the result that for any "recursively given" unsolvable
problem there is another of higher degree of unsolvability.8 While his
theorem does not help us in our search for that lower degree of un-
solvability, his formulation makes our problem precise. It remains a
problem at the end of this paper. But on the way we do obtain a
number of special results, and towards the end obtain some idea of
the difficulties of the general problem.

1. Recursive versus recursively enumerable sets. The relationship
between these two concepts is revealed by the following

THEOREM. A set of positive integers is recursive when and only when
both it and its complement with respect to the set of all positive integers
are recursively enumerable.'

For simplicity, we assume both the set 5 and its complement 3 to
be infinite. If, then, 51 is recursive, there is an effective method for
telling of any positive integer » whether it is, or is not, in S. Generate
the positive integers 1, 2, 3, • • • in their natural order, and, as a
positive integer is generated, test its being or not being in 5. Each
time a positive integer is thus found to be in S, write it down as be-
longing to 5. Thus, an effective process is set up for effectively enu-
merating the elements of S. Hence, 5 is recursively enumerable.
Likewise S can be shown to be recursively enumerable.

Conversely, let both S and 5 be recursively enumerable, and let
«i. «2, «s, • • • be a recursive enumeration of S; mu mit m3, • • • ,of3>.
Given a positive integer n, generate in order »i, mi, «2, »jj, «3, wtj,
and so on, comparing each with n. Since n must be either in S or in S,
in a finite number of steps we shall thus come across an «< or mj
identical with n, and accordingly discover n to be in S, or 5. An effec-
tive method is thus set up for determining of any positive integer n
whether it is, or is not, in S. Hence, 5 is recursive.

COROLLARY. The decision problem of a recursively enumerable set is
recursively solvable when and only when its complement is recursively
enumerable.

For then and only then is the recursively enumerable set recursive.
It is readily proved that the logical sum and logical product of two

8 Both our generalization of his formulation and of his theorem have been carried
through, rather hastily, by the formalism of [19], without, as yet, an actual equiva-
lence proof. It may be that Tarski's Theorem 9.1 [23] can be transformed into a like
absolute theorem.

' The only portion of this theorem we can find in the literature is Rosser's Corol-
lary II [20, p. 88].
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recursively enumerable sets are recursively enumerable, the comple-
ment of a recursive set, and the logical sum, and hence logical prod-
uct, of two recursive sets are recursive.

Clearly, any finite set of positive integers is recursive. For if
«i, «2. • • • > n, are the integers in question, we can test n being, or not
being, in the set by directly comparing it with nt, «j, • • • , w,.10 Like-
wise for a set whose complement is finite. For arbitrary infinite sets
we have the following result of Kleene [12]. An infinite set of positive
integers is recursive when and only when it admits of a recursive enumer-
ation without repetitions in order of magnitude. Indeed, if Wi, nit n3, • • •
is a recursive enumeration of .S without repetitions in order of mag-
nitude, all »,'s beyond the wth must exceed n. Hence we can test n
being, or not being, in 5 by generating the first n members of the
given recursive enumeration of 5, and seeing whether n is, or is not,
one of them. Conversely, if infinite S is recursive, the recursive enu-
meration thereof we set up in the proof of our first theorem is of the
elements of 5 without repetition, and in order of magnitude.

A direct consequence of the first half of the last result is the follow-
ing

THEOREM. Every infinite recursively enumerable set contains an in-
finite recursive set.

For, if tii, »2, n3, • • • is a recursive enumeration of an infinite set S,
for each n,- there must be, in this sequence, a later wy>«<. Hence,
generate the elements «i, W2i «3, • • • in order, and let m1 = »i, mi = niv

the first Hi greater than m, m3 = «,-,, the first nt beyond w,-, greater
than «,-,, and so on. The sequence nti, m^, m%, • • • is then a recursive
enumeration of a subset of 5 without repetitions in order of magni-
tude. That subset is therefore infinite, and recursive.

Basic to the entire theory is the following result we must credit to
Church, Rosser, Kleene, jointly [l, 20, 12].

THEOREM. There exists a recursively enumerable set of positive in-
tegers which is not recursive.11

By our first theorem this is equivalent to the existence of a recur-
sively enumerable set of positive integers whose complement is

10 The mere existence of a general recursive function denning the finite set is in
question. Whether, given some definition of the set, we can actually discover what the
members thereof are, is a question for a theory of proof rather than for the present
theory of finite processes. For sets of finite sets the situation is otherwise, as seen in
i".

u In each of our existence theorems we show how to set up the basis of the set in
question—at least, the corresponding formal proof does exactly that.
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not recursively enumerable. Generate in order the distinct bases
Bu Bi, B%, • • • of all recursively enumerable sets of positive integers
as mentioned in the introduction, and keep track of these bases as
the first, second, third, and so on, in this enumeration 0. As the rath
basis Bn is generated, with ra = l, 2, 3, • • • , set going the processes
whereby the corresponding recursively enumerable set is generated,
and whenever n is thus generated by Bn, place n in a set U. Being a
generated set of positive integers, U is recursively enumerable. A
positive integer n, then, is, or is not, in U according as it is, or is not,
in the «th recursively enumerable set in 0 considered as an ordering
of all recursively enumerable sets. Hence, n is, or is not, in U, the
complement of U, according as it is not, or is, in the wth set in 0.
We thus see that V differs from each recursively enumerable set in
the presence or absence of at least one positive integer. Hence V is
not recursively enumerable.

COROLLARY. There exists a recursively enumerable set of positive in-
tegers whose decision problem is recursively unsolvable.

Taken singly, finite sets, or sets whose complements are finite, are
rather trivial examples of recursive sets. On the other hand, if we
define two sets of positive integers to be abstractly the same if one can
be transformed into the other by a recursive one-one transformation
of the set of all positive integers into itself, then all infinite recursive
sets with infinite complements are abstractly the same. Our theory
being essentially an abstract theory of recursively enumerable sets,
our interest therefore centers in recursively enumerable sets that are
not recursive. Such sets, as well as their complements, are always
infinite. We do not further pursue the question of two sets being ab-
stractly the same, for that is but a special case of each set being one-
one reducible to the other (§4).

2. A form of Godel's theorem. Given any basis B, and positive
integer n, the couple {B, n) may be used to represent the proposition,
true or false, "n is in the set generated by B." By interlacing the proc-
ess for generating the distinct bases in the sequence B\, Bt, B3, • • •
and the process for generating the positive integers in the sequence
1, 2, 3, • • • by the addition of l's, we can effectively generate the
distinct couples (B, n) in the single infinite sequence

0': (Blt 1), (Bit 1), (Bh 2), (£„ 1), (Bt, 2), (Bu 3), • • • .

On the one hand, the set of all couples (B, n) is thus a generated set
of expressions which we shall call E. On the other hand, 0' leads to
an effective 1-1 correspondence between the members of E and the
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set of positive integers, (B, n) corresponding to m if (B, n) is the
mth member of 0'. We may call m the Go'del representation12 of
(B, n). Given a generated subset of E, the Godel representations of its
members will constitute a generated set of positive integers, and con-
versely. Thus, in the former case we can generate the members of the
subset of E, and, as a couple (B, n) is generated, find its Godel repre-
sentation m by regenerating 0'. The set of these m's is thus a gener-
ated set. Likewise for the converse. If, therefore, we formally define
a subset of E to be recursively enumerable if the set of Godel repre-
sentations of its members is recursively enumerable," we can con-
clude that every generated subset of E is recursively enumerable, and,
of course, conversely. Similarly for a like formal definition of a recur-
sive subset of E.

While E is just the set of couples (B, n), it may be interpreted as
the set of enunciations "n is in the set generated by B." The subset
T of E consisting of those couples (B, n) for which n is in the set
generated by B may then be interpreted as the set of true propositions
in E, while T, the complement of T with respect to E, consists of the
false propositions in E.

Actually, T itself can be generated as follows. Generate B\, B2,
Bz, • • • in order. As a B is generated, set up the process for generat-
ing the set of positive integers determined by B, and, whenever a
positive integer n is thus generated, write down the couple (B, n).
Each (B, n) for which n is in the set generated by B will thus be writ-
ten down, and conversely. This generated set of (B, n)'s is then T.
We therefore conclude that T is recursively enumerable.

Now let F be any recursively enumerable subset of T. If {B, n) is
in F, it is in T, and hence n is certainly not in the set generated by
B. Now generate the members of F, and if (B, n) is thus generated,
find the Mth member Bn of 0:Bu B2, B», • • • , and if Bn is B, place n
in a set of- positive integers So. Since 50 is thus a generated set of
positive integers, it is recursively enumerable. It will therefore be
determined by some basis B. Let this basis be in the vth in 0, that is,
let the basis be Br, and form the couple {B,, v). Now by construction,
So consists of those members of F of the form (Bn, n). Suppose that
(B,, v) is in F. Then, on the one hand, proposition (B,, v) being false,

u Rather is the Godel representation in [8] not just an effectively corresponding
positive integer, but one which, when expressed according to a specific algorithm, is
"formally similar," in the sense of Ducasse [7, p. 51], to the symbolic expression
represented.

11 In our own development [19], "recursively enumerable subset of E" is denned
directly as a normal subset of E, or rather of the set of symbolic representations of the
members of E.
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v would not be in the set generated by B,, that is (1): v would not be
in So. But (By, v) being of the form (JBn, »), (2): v would be in So-
Our assumption thus leading to a contradiction, it follows that (23,, v)
is not in F. But v can only be in So by (B,, v) being in F. Hence, v is
not in So. Finally, (23,, v) as proposition says that v is in So- The
proposition (23,, v) is therefore false, that is (B,, v) is in T.

For any recursively enumerable subset F of T there is then always
this couple (23,, v) in T, but not in F. On the one hand, then, T can
never be F. Hence, T is not recursively enumerable. By the definitions
of this section, and the first theorem of the last, it follows that T,
while recursively enumerable, is not recursive. By the decision problem
of T we mean the problem of determining for an arbitrarily given
member of E whether it is, or is not, in T. But that can be interpreted
as the decision problem for the class of recursively enumerable sets
of positive integers, that is, the problem of determining for any arbi-
trarily given recursively enumerable set, that is, arbitrarily given
basis B of such a set, and arbitrary positive integer n whether n is,
or is not, in the set generated by B. We may therefore say that the
decision problem for the class of all recursively enumerable sets of positive
integers is recursively unsolvable, and hence, in all probability, unsolva-
ble in the intuitive sense.

On the other hand, since (23,, v) of 7 is not in F, T and F together
can never exhaust E. Now T, or any recursively enumerable subset
T' of T, in conjunction with F may be called a recursively generated
logic relative to the class of enunciations E. For the appearance
of (23, n) in T' assures us of the truth of the proposition "n is in
the set generated by 23," while its presence in F would guarantee
its falseness. We can then say that no recursively generated logic rela-
tive to E is complete, since F alone will lead to the (B,, v) which is
neither in T' nor in F. That is, (23,, v) is undecidable in this logic.
Moreover, if, with a given "basis" for F, the above argument is car-
ried through formally,14 the recursively enumerable 50 obtained above
will actually be given by a specific basis 23 which can be constructed
by that formal argument. Having found this 23, we can then re-
generate O:23i, 232, 238, • • • , until 23 is reached, and thus determine
the v such that 23 = 23,. That is, given the basis-of F, the (23,, v) in T
and not in F can actually be found. If then we add this (23,, v) to F, a
wider recursively enumerable subset F' of T results. We may then say
that every recursively generated logic relative to E can be extended.
Outwardly, these two results, when formally developed, seem to be

14 Here, the basis of F may be taken to be the basis of the recursively enumerable
set of Gedel representations of the members of F. But see the preceding footnote.
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Godel's theorem in miniature. But in view of the generality of the
technical concept general recursive function, they implicitly, in all
probability, justify the generalization that every symbolic logic is
incomplete and extendible relative to the class of propositions con-
stituting E.u The conclusion is unescapable that even for such a
fixed, well denned body of mathematical propositions, mathematical
thinking is, and must remain, essentially creative. To the writer's
mind, this conclusion must inevitably result in at least a partial
reversal of the entire axiomatic trend of the late nineteenth and
early twentieth centuries, with a return to meaning and truth as being
of the essence of mathematics.

3. The complete set K; creative sets. Return now to the effective
1-1 correspondence between the set E of distinct (J5, n)'s and the set
of positive integers obtained via the effective enumeration 0' of E.
Since T is a recursively enumerable subset of E, the positive integers
corresponding to the elements of T constitute a recursively enumer-
able set of positive integers, K. We shall call K the complete set.™
Since T is not recursively enumerable, K, which consists of the posi-
tive integers corresponding to the elements of T, is not recursively
enumerable. Now let B be the basis of a recursively enumerable sub-
set a of K. The elements of E corresponding to the members of a con-
stitute, then, a recursively enumerable subset F of T. Find then the
(B,, v) of T not in F, and, via O', the positive integer n correspond-
ing to (B,, v). This n will then be an element of ]? not in a.

Actually, we have no general method of telling when a basis B
defines a recursively enumerable subset of ~K. Indeed, the above
method will yield a unique positive integer n for any basis B of a re-
cursively enumerable set a of positive integers. However, when a is a
subset of ^ , w will also be in H., but not in a.

Furthermore, even the formal proof of this result merely gives
an effective method for finding n, given B. But this method itself
can be formalized, so that, as a result, n is given as a "recursive
function of B." This can mean that a recursive function f(m) can be
set up such that n =f(m) where B = Bn. We now isolate this property
of K by setting up the

DEFINITION. A creative set C is a recursively enumerable set of posi-
tive integers for which there exists a recursive function giving a unique

18 See Kleene's Theorem XIII in [12] for a mathematically stateable theorem ap-
proximating the generality of our informal generalization.

«• "A complete set" might be better. Just how to abstract from K the property of
completeness is not, at the moment, clear. By contrast, see "creative set" below.
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positive integer n for each basis B of a recursively enumerable set of
positive integers a such that whenever a is a subset of C, n is also in
V, but not in a.

THEOREM. There exists a creative set; to wit, the complete set K.

Actually, the class of creative sets is infinite, and very rich indeed
as shown by the following easily proved results." If C is a creative
set, and E a recursively enumerable set of positive integers, then if
E contains C, CE is creative, if C contains E, C+E is creative. Re-
sults of §1 enable us actually to construct creative sets according
to the first method by using £'s which are the complements of re-
cursive subsets of C. Results of the rest of this section lead to con-
structions using the second method.

It is convenient to talk as if the n in the definition of a creative set
were determined by the a thereof instead of by the basis B of a. Clearly
every creative set C is a recursively enumerable set which is not re-
cursive. For were C recursively enumerable, there could be no n in
C not in the recursively enumerable subset C of C The decision prob-
lem of each creative set is therefore recursively unsolvable. On the other
hand, the complement C of any creative set C contains an infinite re-
cursively enumerable set. Recall that every finite set is recursive, and
hence recursively enumerable. With, then, a of the definition of
creative set as the null set, find the n = ni of C "not in a." With a the
unit set having »i as sole member, n = n% will be in ~C, and distinct
from wi. With a consisting of Wi and nit n = n3 will be in C, and dis-
tinct from «i and nit and so on. The set of positive integers «i, »j,
«j, • • • is then an infinite generated, and hence recursively enumer-
able, subset of ~C.

Actually, with this subset of £ as a, a new element nu of V is ob-
tained, and so on into the constructive transfinite. But this process
is essentially creative. For any mechanical process could only yield
n's forming a generated, and hence recursively enumerable, subset
a of C, and hence could be transcended by finding that » of C not
in a.

4. One-one reductibility, to K; many-one reducibility. Let Si and
S% be any two sets of positive integers. One of the simplest ways in
which the decision problem of Si would be reduced to the decision
problem of Si would arise if we had an effective method which would
determine for each positive integer n a positive integer m such that
n is, or is not, in S% according as m is, or is not, in 52. For if we could

17 Of course, all sets abstractly the same as a given creative set, in the sense of §1,
are creative. Likewise for our later simple and hyper-simple sets.
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somehow determine whether m is, or is not, in 52, we would deter-
mine n to be, or not be, in S\ correspondingly. If "effective method"
be replaced by "recursive method," we shall say, briefly, that S\ is
then many-one reducible to S2. If, furthermore, different n's always
lead to different ra's, we shall say that Si is one-one reducible to 52.18

"Recursive method" here can mean that m=f(n), where /(«) is a
recursive function.

THEOREM. The decision problem of every recursively enumerable
set of positive integers is one-one reducible to the decision problem of the
complete set K.

For let B' be a basis of any one recursively enumerable set 5'.
The effective one-one correspondence between all (B, w)'s and all pos-
itive integers yielded by the effective enumeration 0' of E, the set
of all (B, n)'s, then yields a unique positive integer m for each
(B1, n), B' fixed, and thus a unique m for each n, different n's yielding
different m's. Now n is, or is not, in 5" according as (B', n) is in T, or
7, and hence according as m is in K, or Z, whence our result.

Since K itself is recursively enumerable, we may say that for re-
cursively enumerable sets of positive integers with recursively un-
solvable decision problems there is a highest degree of unsolvabilily
relative to one-one reducibility, namely, that of K. Actually, one-one
reducibility is a special case of all the more general types of reduci-
bility later introduced, and, though the proof of this is still in the
informal stage, these latter are special cases of general recursive,
that is, Turing reducibility. The same result then obtains relative
to these special types of reducibility and, more significantly, for re-
ducibility in the general sense.19

We have thus far explicitly obtained two recursively enumerable
sets with recursively unsolvable decision problems, the U of our first
section, and K. We may note that a certain necessary and sufficient
condition for the many-one reducibility of K to a recursively enumer-
able set, the proof of which is still in the informal stage, has as an
immediate consequence that K is many-one reducible to U. It would
then follow that K and U are of the same degree of unsolvability rel-
ative to many-one reducibility.

18 The resulting one-to-one correspondence is then between 5i+5i and a subset,
recursively enumerable indeed, of 5 2 + S J - Of course, both Si+5] and S2+S2 consti-
tute the set of all positive integers.

11 It seems rather obvious that K and the problem of Church [l ] are each at least
many-one reducible to the other; likewise for the problem of [1 ] and of [2, 3]. Had
we verified this in detail, we would have called this highest degree of unsolvability
of decisions problems of recursively enumerable sets the Church degree of unsolvabilily.
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5. Simple sets. It is readily proved that the necessary and suffi-
cient condition that every recursive set be one-one reducible to a
given recursively enumerable set of positive integers 5 is that 5 is
infinite, and 5 contains an infinite recursively enumerable set. We
are thus led to ask if there exist sets satisfying the following

DEFINITION. A simple set is a recursively enumerable set of posi-
tive integers whose complement, though infinite, contains no infinite
recursively enumerable set.

We now prove the

THEOREM. There exists a simple set.

Recall the set T of all couples (B, n) such that positive integer
n is in the recursively enumerable set of positive integers determined
by basis B. Since T is recursively enumerable, we can set up an ef-
fective enumeration

0": (S4l,m), (Biv »2), (Bivn,),- ••

of its members. The subscript of each B is its subscript in the effec-
tive enumeration O:B\, Bt, Bi, • • • of all distinct B's. Now the com-
plement of a set containing no infinite recursively enumerable set is
equivalent to the set itself having an element in common with each
infinite recursively enumerable set. Generate then the distinct bases
B\, Bt, Bs, • • • , and as a Bt is generated, regenerate the sequence
0" of (B, »)'s in T, and the first time, if ever, B is Bit and n is greater
than 2i, place n in a set 5. The resulting set 5 is then a generated,
and hence recursively enumerable, set of positive integers. We pro-
ceed to prove it simple.

If S' is an infinite recursively enumerable set of positive integers,
it will be determined by some basis 2?,-, and will have some element
m greater than 2i. Since {Bf, m), being then in T, will appear inO",
our construction will place m in S, if some earlier (2J<, n) of O" has
not already contributed an element of S' to S. That is, 5 has an ele-
ment in common with each infinite recursively enumerable S'. As for
3 being infinite, note that each J3,- contributes at most one element
to 5. The first n B's in 0 therefore contribute at most n elements to
S. Each Bi with i^ra + 1 can only contribute to 5 an element greater
than 2n+2. Of the first 2n + 2 positive integers, at most n are there-
fore in S, and hence at least n + 2 are in the consequently infinite
S.20

10 n>i can replace n>2i in the above construction, but the proof will then de-
pend on there being an infinite number of bases denning the null set.
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Having one simple set, the method of our succeeding §8 can be
modified to yield a rich infinite class of simple sets. Clearly, every
simple set S is a recursively enumerable set that is not recursive. For
were S recursive, 5 would be an infinite recursively enumerable sub-
set of S. The decision problem of each simple set is therefore recursively
unsolvable. We thus have obtained two infinite mutually exclusive
classes of recursively enumerable sets with recursively unsolvable
decision problems, the class of creative sets, and the class of simple
sets. They are poles apart in that the complements of creative sets
have a creative infinity of infinite recursively enumerable subsets,
those of simple sets, not one.

In passing, we may note that every recursively enumerable set of
positive integers 5 with recursively unsolvable decision problem
leads to an incompleteness theorem for symbolic logics relative to
the class of propositions n££S, n an arbitrary positive integer. Creative
sets 5 are then exactly those recursively enumerable sets of this
type each of which admits a universal extendibility theorem as well,
simple sets S those for which, given ,S, each logic can prove the falsity
of but a finite number of the infinite set of false propositions n £ S .

It is readily seen that no creative set C can be one-one reducible to
a simple set 5. For under such a reduction, each infinite recursively
enumerable subset of C, proved above to exist, would be transformed
into an infinite recursively enumerable subset of S, contradicting
the simplicity of 5. Simple sets thus offer themselves as candidates
for recursively enumerable sets with decision problems of lower
degree of unsolvability than that of the complete set K. Even for
many-one reducibility the situation is no longer immediately ob-
vious; for an infinite recursively enumerable subset of C could thus
be transformed into a finite subset of S, the complement of simple S,
without contradiction. However we can actually go much further
than that.

6. Reducibility by truth-tables. If Si is many-one reducible to Si,
positive integer n being, or not being, in Si may be said to be deter-
mined by its correspondent m being, or not being, in 52 in accordance
with the truth-table

(52) m n (Si)

+ +

Here, the two signs +» — under m represent the two possibilities m is
in £2, m is not in S2, respectively. And by the sign under n in the
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same horizontal row as the corresponding sign under m the table in
the same language tells whether n correspondingly is (+) , or is not
( —), in Si. The table then says that when m is in 52, n is in Si, when
m is not in Si, n is not in Si, as required by many-one reducibility.
Now there are altogether four ways in which n being, or not being,
in Si can be made to depend solely on m being, or not being, in S2,
the signs under n being + , ~ as above; or + , + ; — > ~ ;—>+• If
then we have an effective method which for each positive integer n
will not only determine a unique corresponding positive integer m,
but also one of these four "first order" truth-tables, and if in each
case the table is such that for the correct statement of membership
or non-membership of m in Si, it gives the correct statement of mem-
bership or non-membership of n in Si, then the decision problem of
Si will thus be reduced to the decision problem of Si. For here also,
given n, if we could somehow determine whether m is, or is not, in St,
we could thereby determine which row of the corresponding table cor-
rectly describes the membership or non-membership of m in Si, and
from that row correctly determine whether n is, or is not, in Si.

More generally, let there be an effective method which for each
positive integer n determines a finite sequence of positive integers
nil, mt, • • • , m,, v as well as the m's depending on n. Let that method
correspondingly determine for each n a "Hh order" truth-table of
the form

(Si) mi m-i • • • m, n (Si)

t * : " . : T ^

Each horizontal row, to the left of the vertical bar, specifies one of
the 2' possible ways in which the v m.'s may, or may not, be in Sir

to the right of the bar correspondingly commits itself to one of the
statements n is in Si, n is not in Si. If then for each n that row of
the corresponding table which gives the correct statements for the
m's being or not being in S2 also gives the correct statement regarding
the membership or non-membership of n in Si, the decision problem
of Si is again thereby reduced to the decision problem of Si.

If such a situation obtains with "effective method" replaced by
"recursive method," we shall say that Si is reducible to S2 by truth-
tables. "Recursive method" here can mean that a suitable Godel
representation of the couple consisting of the sequence m\, nit, • • • »



369

1944] RECURSIVELY ENUMERABLE SETS OF POSITIVE INTEGERS 301

m, and the truth-table of order v is a recursive function of n. If the
orders of the truth-tables arising in such a reduction are bounded,
we shall say that S\ is reducible to St by bounded truth-tables. Since
there are 22" distinct truth-tables of order v, reducibility by bounded
truth-tables is equivalent to reducibility by truth-tables in which
but a finite number of distinct tables arise.

7. Non-reducibility of creative sets to simple sets by bounded
truth-tables. Let us suppose that creative set C is reducible to simple
set 5 by bounded truth-tables. Let 7\, Tt, • • • , T, be the finite set
of distinct truth-tables entering into such a reduction. That reduction
then effectively determines for each positive integer n a finite se-
quence of positive integers mi, m?., • • • , tnt, and a unique 7\, 1 ^.i^K.

The gist of our reductio-ad-absurdam proof consists in showing
that under the assumed reduction we can obtain for each natural
number p a sequence of m's at least p of which are in 5. We then im-
mediately have our desired contradiction. For in each case p^v. The
finite set of v's, the orders of the 7Ys, being bounded, p cannot then
be arbitrarily large as stated.

More precisely we prove by mathematical induction that under the
assumed reduction the following would be true. For each natural num-
ber p an effective process n p can be set up which will determine for each
recursively enumerable subset a of C an element n of C not in a, and
which for the corresponding m\, m%, • • • , m, and T{ yielded by the
assumed reduction will correctly designate p of these m's as belonging
to S. The mode of designation may be assumed to be by specifying
the sequence of subscripts, iu ts, • • • , ip, of the m's to be designated,
with say i\<iz< • • • <ip. With the assumed reduction adjoined to
this process, LTP then determines for each a in question the quad-
ruplet (», M, Ti, I), M being the sequence of m's, I the sequence of
subscripts of the p designated m's.

For p = 0, Up is immediately given by the creative character of C
For that immediately gives us for each recursively enumerable subset
a of C a definite element n of C not in a. The assumed reduction
yields the corresponding M and 7",-; and with no members of M desig-
nated as being in S, I is the null sequence.

Inductively, assume that we have the process LTP for p = k. Let a be
any given recursively enumerable subset of C, and let (n1, M', 7V, / ')
be the corresponding quadruplet yielded by Iik. Now suppose n is a
positive integer for which the assumed reduction yields the same
table Ti> as it did for n', and a sequence of m's, M, consequently of
the same length as M', having the following property. For each un-
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designated element of M', the correspondingly placed element of M
is identical with that of M'; for each element of M' designated as
being in 5, the corresponding element of M is also in 5. Such an n must
then be in C along with «'. For that row of 7V which correctly tells
of the m's of M' whether they are, or are not, in 5 will also be the
correct row for M. And since in the former case that row must say
that n' is in C, in the latter case it will say that n is in C, and correct-
ly so. We proceed to show how all such M'S may be generated.

We first show how to generate all M's obtainable from M' by re-
placing the designated elements of M' by arbitrary elements of 5. For
any one such M, the replacing elements, being finite in number, will
be among the first N elements, for some positive integer N, of a
given recursive enumeration of S. Generate then the positive integers
1, 2, 3, • • • , and as a positive integer N is generated, generate the
first N elements of the given recursive enumeration of S. For each
N place in a set /3 the at most Nk sequences M that can be obtained
from M' by replacing the designated elements of M' by elements
chosen from the first N elements of 5. The generated set of sequences
/3 then consists of all M's obtainable from M' by replacing the desig-
nated elements of M' by arbitrary elements of 5.

The n's we wish to generate are then those positive integers for
which the assumed reduction yields the table 7> and a sequence of
m's, M, such that M is a member of j3. Generate then the elements of
j8. As an element M of /3 is generated, generate the positive integers
1, 2, 3, • • • , and as a positive integer n is generated, find the corre-
sponding sequence of m's and table yielded by the reduction of C to
5. If then that sequence of m's is M, and the table is 7V, add n to the
given set a. As seen above, each such n will be in "C. Hence the re-
sulting generated, and hence recursively enumerable, set a' is a sub-
set of C containing a. Our reason for thus adding the desired n's to
a instead of just forming the class thereof is that the iterative process
we are about to set up requires a cumulative effect.

As a result of our hypothesis and construction we thus have a
derived process lit which for every recursively enumerable subset a
of C yields a definite recursively enumerable subset a' of C contain-
ing a. Starting with a, we may then iterate the process Tl't to obtain
the infinite sequence A:ai, cm, as, • • • , where <xi=a, aB+l = (a:B)'.
Each member of A is thus a recursively enumerable subset of V, and
contained in the next member of A. By applying the original process
III to the members of A we correspondingly obtain the infinite se-
quence 2:<ri, <rs, (Ts, • • • , where «r, is the quadruplet («<», M<>>, T?\
Ia)) yielded byII* fora,-. We then observe the following. If for ji^ji
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the T's of cr,, and (r,-2 are the same, and the /'s are the same, then the
sequences obtained from the M's by deleting the designated m's can-
not be identical. For if they also were identical, then, with say ji <j2,
wW would have been assigned to a°i+1), whereas it actually is outside
of a'V which contains a(l'+l). Hence, the infinite sequence 2' , ob-
tained from S by deleting from each <ry the integer «<" and the desig-
nated m's of M('\ itself consists of distinct elements.

It follows that there are an infinite number of distinct undesignated
m's appearing in 2. Indeed, the distinct T^'s of 2 are at most K
in number. With 7",w fixed, the order v(j) of T[n is fixed; and since
l ^ t ^ < 4 " < • • • <tt"^"( ) ) , the number of distinct 7's is finite.
Finally, with T and I fixed, were the total number of distinct undesig-
nated m's finite, the number of distinct ways in which those vu) — k
undesignated m's could assume values would be finite. Hence 2 '
would be finite, not infinite.

Now were each of this infinite set of undesignated m's in 5, we
could regenerate the elements of 2, and as an element cr,- thereof is
generated, place all of its undesignated m's in a set 7, and thus ob-
tain an infinite generated, and hence recursively enumerable, subset
of S. As this contradicts the simplicity of S, it follows that at least
one undesignated m arising in 2 is in S.

We can then find a unique such m, as well as a a in which it oc-
curs, as follows. With N=l, 2, 3, • • • , generate the first JV elements
of the given recursive enumeration of S, and the first N elements of
2, and test the latter in order to see if any undesignated m is among
those first N elements of 5. If a particular undesignated m of 2 in
S, proved above to exist, is the Zth member of S, and in the Kth
member aR of 2, then an affirmative answer to the above test will
certainly be obtained for JV = max (L, K). Find then the first N for
which an affirmative answer is obtained, and let (m, M, Tit I) be the
first <r to yield the affirmative answer for this N, vn,i> the first un-
designated m of M thus found to be in S. We can then add m;. to the
designated m's of M, thus obtaining a quadruplet (w, M, Tit Ix),
where 7i designates (£ + 1) of the m's of M as being in 5, and where n
is certainly a member of C not in the originally given a. But the whole
process leading up to (n, M, 7\, 7i) is determined by that a. It is
therefore the desired process LTP for p = k + 1 .

Under the assumed reduction of C to S, n p would therefore exist
for every natural number p. With a say the null set, we would thus
obtain for every natural number p a quadruplet (np, Mp, Tip, Ip)
such that p of the members of the sequence Mp are in S. Yet the total
length of Mp is the order of 7\- , and hence bounded. Hence the
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THEOREM. NO creative set is reducible to a simple set by bounded
truth-tables.

We recall that every recursively enumerable set of positive in-
tegers is one-one reducible to the creative set K, the complete set.
Hence the

COROLLARY. Every simple set is of lower degree of unsolvability
than the complete set K relative to reducibility by bounded truth-tables.

8. Counter-example for unbounded truth-tables. We recall that for
the particular simple set 5 constructed in §5, of the first 2m+ 2
positive integers at most m were in S, m being any positive integer.
Hence, of the m-fl integers ra+2, tn+3, • • • , 2m+2, at least one is
in 5. By setting w = 2n— 1, with n = l , 2 , 3 , - - - , w e can effectively
generate the infinite sequence of mutually exclusive finite sequences

c: (3, 4), (5, 6, 7, 8), • • • , (2- + 1, 2" + 2, • • • , 2-+1), • • •

such that each sequence in <r has at least one member thereof in 5. An
effective one-one correspondence between the positive integers 1, 2,
3, • • • and the elements of <r is then obtained by making the positive
integer n correspond to the sequence (2" + l, 2n + 2, • • • , 2B+1)
constituting the nth element of <r.

Given a creative set C, regenerate the elements of S, placing each
in a set Si. Furthermore, regenerate the elements of C, and as an
element n thereof is generated, place all of the positive integers in
the nth sequence of <r in Si. The resulting set Si is a generated, and
hence recursively enumerable, set of positive integers. Since Si con-
tains S, 5 contains Si. As S is simple, S, and hence Si, does not have
an infinite recursively enumerable subset. Moreover, Si is also infinite.
For C is infinite. And, for each element of C, the corresponding se-
quence in <r has only those of its members that are already in 5 also
in Si, and hence at least one element in "Si. Hence, Si is simple.

Likewise we see that a positive integer n is in C, or C, according
as all of the integers in the nth sequence of <r are in Si, or at least
one is in Si. If then we make correspond to each positive integer n
the sequence of 2» positive integers (2°-f-l, 2n + 2, • • • , 2n+1), and the
truth-table of order 2" in which the sign under n is + in that row in
which the signs under the 2" "m's" are all + , and in every other row
the sign under n is —, we have a reduction of C to 5! by truth-tables.
Hence the

THEOREM. For each creative set C a simple set S can be constructed
such that C is reducible to S by unbounded truth-tables.
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COROLLARY. A simple set S can be constructed which is of the same
degree of unsolvability as the complete set K relative to reducibility by
truth-tables unrestricted.

Simple sets as such do not therefore give us the absolutely lower
degree of unsolvability than that of K we are seeking.

9. Hyper-simple sets. The counter-example of the last section sug-
gests that we seek a set satisfying the following

DEFINITION. A hyper-simple set H is a recursively enumerable set
of positive integers whose complement 77 is infinite, while there is no
infinite recursively enumerable set of mutually exclusive finite sequences
of positive integers such that each sequence has at least one member
thereof inH.21

In this definition we may use the original Godel method for
representing a finite sequence of positive integers wi, tn2, • • • , m,
by the single positive integer 2mi 3""2 • • • pm>, where 2, 3, • • • , p,
are the first v primes in order of magnitude. A set of finite sequences
of positive integers is then recursively enumerable if the set of Godel
representations of those sequences is recursively enumerable.

THEOREM. A hyper-simple set exists.

Our intuitive argument must again draw upon the formal develop-
ment to the effect that each recursively enumerable set of finite se-
quences of positive integers will be determined by a "basis" B*,
and that all such bases can be generated in a single infinite sequence
of distinct bases

0*: B*u Bl Bl • • • •

As in §2, generate the elements of 0*, and as an element B* is gen-
erated, set up the process for generating the set of sequences deter-
mined by B*, and as a sequence 5 is thus generated, write down the
couple (B*, s). The resulting set of couples is then a generated set,
and can indeed be effectively ordered in a sequence of distinct
couples

0*: ( < , 5,), ( < , 52), (£* , 5.,), • • • .

" Mutually exclusive sequences here mean no element of one sequence is an ele-
ment of another. Curry suggests that "hyper-simple" is linguistically objectionable,
and should be replaced by "super-simple." But we would not then know what to use
in place of the letter H.
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O\* then consists of all distinct couples (B*, s) such that finite se-
quence 5 is a member of the recursively enumerable set of finite se-
quences of positive integers determined by basis B*.

Now the condition that no infinite recursively enumerable set of
mutually exclusive finite sequences of positive integers has the prop-
erty that each sequence has at least one positive integer thereof in
77 is equivalent to each such set of sequences having at least one se-
quence all of whose members are in H. Our method of constructing
the desired hyper-simple set H will then consist in placing in H for
certain B*'s in 0* all of the positive integers in a sequence in the
set of sequences determined by B*. For purposes of presentation we
shall call each such basis B* a contributing basis, while every B*
determining an infinite recursively enumerable set of mutually ex-
clusive sequences will be called a relevant basis. Set H, if recursively
enumerable, will then be hyper-simple if each relevant basis is a con-
tributing basis, and ~H is infinite.

If B* is a relevant basis, then among the infinite number of mutu-
ally exclusive sequences generated by B* there must be a sequence
each of whose elements exceeds an arbitrarily given positive integer
N. For did every sequence generated by B* have as element one of
the integers 1, 2, • • • , N, for any N-\-l of these sequences at least
two would have one of these integers in common. We shall then gen-
erate H by regenerating sequence Oi*, and, as an element (££, sn)
thereof is generated, we shall place all the elements of sn in H if 2?£
has not thus been made a contributing basis earlier in the process,
while the elements of sn are all greater than a certain positive integer
JVn, about to be determined; otherwise none. Inductively, assume NM

to have been determined for l^m<w, and thus the entire process
up to the time (££, sn) was brought up for consideration. Let
B%, Bft, • • • , B*f be the bases that have thus far contributed to H,
and in the order in which they became contributing bases. These
bases are then distinct, and hence their subscripts, which give their
position in the sequence 0* of all distinct bases, are distinct. Let
ki, kj, • • • , k, be the largest integer placed in H by the first con-
tributing basis, by the first two, • • • , by the first v. The result
being cumulative, ki^k3^ • • • ^kr. The crux of our construction
is to make Nn depend not on the history of all these v contributions
to H, but only on that part of that history up to and including the
last contribution, if any, made by a B* preceding 5£ in 0*. Specifi-
cally, if B*^ is the last of the above v contributing bases preceding 2?£
in 0*, that is, with j , , <in, Nn is to be one more than the largest integer
present in H as a result of all the contributions made up to and in-
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eluding the contribution made by B*^. That is, Nn = k,,-\-\. Actually,
if none of the v contributing bases precede B*n in 0*, no condition is
to be placed on sn, and all of its elements are placed in / / so long as
B£ is distinct from the v contributing bases obtained thus far.

Furthermore, in our induction assume that we have been able to
keep a record of the sequence Bfx, Bft, • • • , Bfy, of ki, k2, • • • , k,,
and also of jujs, • • • . > up to the time (Bj*, sn) was about to be gen-
erated. We then generate (B*n, sn), and by regenerating 0* find the
place of B£ in 0* thus determining the subscript in. Our criterion
for determining whether, or no, the elements of sn are to be placed
in H then becomes effective. In the latter case, the record is un-
changed as we generate (B£+1, sn+i). In the former, B£ is written into
the record as Bfv+i, in as j , + \ while we can write in for k,+i the maxi-
mum of kr and the largest integer in sn. The entire process is thus
effective at each stage, and H is thus a generated, and hence recur-
sively enumerable, set of positive integers. We proceed to prove it
hyper-simple.

Let B* be any relevant basis. Of the finite number of bases pre-
ceding B* in 0*, but a finite number can be contributing bases. Let
B*^ be the last of these contributing bases, if any, appearing in the
sequence B*v Bf3, B*v • • • of distinct contributing bases determined
by the above generation of H. There will then be a sequence 5 gen-
erated by B* each of whose elements is greater than k^-^l. When then
(B*, s), a definite element of Of, is generated in the course of generat-
ing H, B* will contribute each element of s to H unless it became a
contributing basis earlier in the process. Hence, every relevant basis
is a contributing basis.

It also follows, or is easily seen directly, that the number of con-
tributing bases is infinite. Consider then the infinite sequence of
contributing bases B*, B*z, B*v • • • , the corresponding infinite se-
quence of subscripts ju jt, ji, • • • , and the associated infinite se-
quence ki, ki, kz, • • • . Since the contributing bases are distinct, so
are their subscripts. Hence, for each j m , among the infinite set of j's
following j m there is a unique least j,jm'- Consider then the resulting
infinite sequence jx,, j \ 2 , j \ , , • • • , where j \ , is the least j in the whole
infinite sequence of j's, while X2=(Xi)', X3 = (X2)', • • . Now k\^ is
the largest integer contributed to H through the contributing basis
with subscript j ^ . Since j \ n is the smallest j following jXn_1 it is less
than all succeeding j's. Hence B* with subscript j \ n precedes in O*
all bases following that B* in the above infinite sequence of con-
tributing bases. Hence, each element added to H by contributing
bases thus following B* with subscript j\» must exceed k\n+l. It fol-
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lows, on the one hand, that for each positive integer n, fex.+ l is in H.
On the other hand, k\n+1 itself exceeds hn+l so that k\n+1+l>h,+l.
These members of Tl therefore constitute an infinite subset of the
consequently infinite H. Hence, H is hyper-simple.

Clearly, every hyper-simple set H is simple. For an infinite recur-
sively enumerable subset of U, as set of unit sequences, would con-
tradict H being hyper-simple. Our construction of §6, in view of §8,
gives us, however, a simple set which is not hyper-simple. Hyper-
simple sets thus constitute a third class of recursively enumerable sets
with recursively unsolvable decision problems—a class which is a
proper subclass of the class of simple sets.

10. Non-reducibility of creative sets to hyper-simple sets by truth-
tables unrestricted. Let creative set C be reducible by truth-tables to
a recursively enumerable set of positive integers H. The given re-
duction will again determine for each positive integer n a finite se-
quence of positive integers nt\, mi, • • • , mr, and a truth-table T of
order v such that that row of the table which correctly tells of the m's
whether they are, or are not, in H will correctly tell of n whether it is,
or is not, in C. Of course v and T as well as the m's depend on n, and
the set of distinct T's now entering into our reduction may be in-
finite, and hence the set of distinct v's unbounded.

Let h, /j, • • - , / „ be any given finite sequence of distinct positive
integers. A particular hypothesis on the /'s being, or not being, in H
may then be symbolized by a sequence of £i signs, each + or —, such
as H— • • • + , such that the tth sign is + , or —, according as the
hypothesis says that /,• is in H, or ~H, respectively. We shall speak of
such a sequence of signs as a truth-assignment for the I's, the tth sign
in that sequence as the sign of k in that truth-assignment. Of the 2"
possible truth-assignments for the I's, constituting a set V\, one and
only one correctly tells of each U whether it is, or is not, in H. Every
set V of truth-assignments for the I's is then a subset of V\, and will
be called a possible set of truth-assignments if it includes this correct
truth-assignment.

Let then V be any given possible set of truth-assignments for the
Vs. Let n be a positive integer with corresponding mi, ntt, • • • , m,,
T yielded by the given reduction of C to H such that each m not an I
is in H. The correct row of table T must then have the following two
properties. First, the sign under each m not an / must be + . Second,
the signs under those w's which are I's must be the same as the signs
of those integers in some one and the same truth-assignment for the
I's in V, in fact, as in the correct truth assignment for the Vs. Any row
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of T having these two properties, given the Z's, m's and V, will be
called a relevant row of T. Since for our n the correct row of T is thus
a relevant row, it follows that n will surely be in C if for each relevant
row of T the sign under n is —.

Generate then the positive integers 1, 2, 3, • • • , and as a positive
integer N is generated, generate the first N members of a given re-
cursive enumeration of H, and for each n, with l^w^iV, find the
corresponding m\, m%, • • • , mt, T yielded by the given reduction of
C to H. Of those m's, if any, which are not I's, see if each is one of
those first N members of H. If they all are, see if for each relevant
row of T the sign under n is —. If that also is true, place n in a set av-
Since each such n must be in C, as seen above, av is a subset of C.
And being a generated set, av is therefore a recursively enumerable
subset of C.

C being creative, we can therefore find a definite positive integer
n' in C but not in av, and, by the given reduction, the corresponding
m[, m'2, • • • , m',<, T'. Let pi, pt, • • • , px be those m"s, if any, which
are not I's. Now suppose that each p is in H. Then for at least one
relevant row of T' the sign under n' must be +• For otherwise, if pi
is say the &,th element in the given recursive enumeration of H, ri
would have been placed in av in the above generation thereof for
iV = max (ki, ki, • • • , k\, n'). Since n' is in C, such a relevant row
cannot be the correct row. But, with each p in H, the signs in that
row under m's that are not Vs are correctly + . Hence the sign under
at least one m' that is an / must be incorrect. But, by our definition
of a relevant row, the signs under all such m"s are the same as the
signs of those integers in at least one truth-assignment in V. Such a
truth-assignment in V cannot therefore be the correct truth-assign-
ment for the I's, and hence may be deleted from V. Perform this
deletion for all such truth-assignments in V, and for all such relevant
rows of T', to obtain the set of truth-assignments V. TJnder our
hypothesis that each p is in H, V will then be a proper subset of V,
and yet a possible set of truth-assignments for the Z's.

Actually, let V be any given set of truth-assignments for the I's,
possible or not. Each step of the above construction can then still be
carried out, though the constructed entities need not now have all
the properties they otherwise possess.22 In particular, the set of in-
tegers, possibly null, pi, pi, • • • , p\ can be found, all different from
any /. Likewise, whether the £'s are, or are not, all in H, the subset
V of V can be found. What we can say is that if V is a possible set,

M Recall that in the definition of creative set, §3, each B determines an n, whether
the a determined by B is, or is not, a subset of C-
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and if furthermore each p is in H, then V is a proper subset of F, and
itself is also a possible set of truth-assignments for the I's.

For the given sequence of I's, start then with V— Vi, the possible
set of all 2" truth-assignments for the I's, obtain the corresponding
P's, Pi, P'2, • • • , Pi- and corresponding V, Fj = (Fi)'. With F = F>,
likewise find p[', p'2', • • • , pi", and F3 = (F2)', and so on. Now each
Vi+i is a subset of F,-, while V\ is but a finite set of 2" members. Hence
in at most 211 steps we shall come across a F« such that either F«+i is
identical with F«, or is null. But if all the p"s, p'"s, • • • , £<«>'s were
in H, Vi being a possible set, V2, • • • , V, as well as VK+i would all be
possible sets, each a proper subset of the preceding. F,+i could not
then either be identical with F«, or null. It follows that at least one
of the p^'s with 1 ^j g K is in 27. Each p*p is an integer that is not
one of the I's. If then we take this finite set of p^'s and arrange them
in a sequence of distinct elements in say order of magnitude, we ob-
tain for our arbitrarily given sequence of distinct positive integers
h, h, • • • , lii 3- sequence of distinct positive integers k\, ki, • • • , k,
having no element in common with the former sequence, and having
at least one element in U.

Starting with the null sequence as the sequence of I's, we can thus
find the sequence of k's, (k{, k^, • • • , k'y>) of distinct positive integers
at least one of which is in 27. Inductively, let us have thus generated
the sequences (k[, k'2, • • • , k'r>), • • • , (k^\ k^\ • • • . k%), mutually
exclusive, of distinct positive integers, each having at least one ele-
ment in 77. With the single sequence k[, • • • , k% as the sequence of
I's, we can find the corresponding sequence of k's, (k["+1', k%+1>, • • • ,
ifê ii+ij1) of distinct positive integers with no element in common with
any of the preceding sequences, and having at least one element in 77.

With creative C reducible to recursively enumerable H by truth-
tables we can thus obtain an infinite generated, and hence recursively
enumerable, set of mutually exclusive finite sequences of positive
integers each having an element in 77. The set H is therefore not
hyper-simple. Hence the

THEOREM. NO creative set is reducible to a hyper-simple set by truth-
tables.

COROLLARY. Every hyper-simple set is of lower degree of unsolvability
than the complete set K relative to reducibility by truth-tables.

Despite this result, the brief discussion of Turing reducibility, still
in the informal stage, entered into in the next section makes it dubi-
ous that hyper-simple sets as such will give us the desired absolutely
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lower degree of unsolvability than that of K. But, in the absence of a
counter-example, they remain candidates for this position.

11. General (Turing) reducibility. The process envisaged in our
concept of a generated set may be said to be polygenic. In a monogenic
process act succeeds act in one time sequence. The intuitive picture
is that of a machine grinding out act after act (Turing [24]) or a set
of rules directing act after act (Post [18]). The actual formulations
are in terms of "atomic acts," the first leading to a development
proved by Turing [25] equivalent to those arising from general recur-
sive function or X-definability, and hence of the same degree of gen-
erality. In our intuitive discussion the acts may be "molecular."

An effective solution of the decision problem for a recursively
enumerable set Si of positive integers may therefore be thought of as
a machine, or set of rules, which, given any positive integer n, will
set up a monogenic process terminating in the correct answer, "yes"
or "no," to the question "is n in Si." Now suppose instead, says
Turing [26] in effect, this situation obtains with the following modifi-
cation. That at certain times the otherwise machine determined
process raises the question is a certain positive integer in a given re-
cursively enumerable set Sz of positive integers, and that the machine
is so constructed that were the correct answer to this question sup-
plied on every occasion that arises, the process would automatically
continue to its eventual correct conclusion.23 We could then say that
the machine effectively reduces the decision problem of Si to the deci-
sion problem of 52. Intuitively this should correspond to the most gen-
eral concept of the reducibility of Si to S2. For the very concept of the
decision problem of 62 merely involves the answering for an arbi-
trarily given single positive integer m of the question is m in St\ and
in finite time but a finite nurrtber of such questions can be asked. A
corresponding formulation of "Turing reducibility" should then be
the same degree of generality for effective reducibility as say general
recursive function is for effective calculability.24

We may note that whereas in reducibility by truth-tables the posi-

u Turing picturesquely suggests access to an "oracle" which would supply the cor-
rect answer in each case. The "if" of mathematics is however more conducive to the
development of a theory.

u A reading of McKinsey [16] suggested generalizing the reducibility of a recur-
sively enumerable set S to a recursively enumerable set S' to the reducibility of 5
to a finite set of recursively enumerable sets Si, Si, • • • , Sn. However, no absolute
gain in generality is thus achieved, as a single recursively enumerable set 5 ' can be
constructed such that reducing 5 to (Si, Si, • • • , Sn) is equivalent to reducing S
to S'. Points of interest, however, do arise.



380

312 E. L. POST [May

tive integers m of which we ask the questions "is m in St" are effec-
tively determined, for given n, by the reducibility process, in Turing
reducibility, except for the first such m, the very identity of the m's
for which this question is to be asked depends, in general, on the cor-
rect answers having been given to these questions for all preceding
m's. The mode of this dependence is, however, effective, hence we
still have effective reducibility in the intuitive sense.

Let now creative set C be Turing reducible to a recursively enumer-
able set 5 of positive integers. We shall talk as if our intuitive dis-
cussion has already been formalized. Generate the positive integers
1, 2, 3, • • • , and as a positive integer N is generated, for each n with
l<,n^N proceed as follows. Set going the reducibility process of C
to 5 for n. Each time a question of the form "is m in S" is met, see if
m is among the first N integers in a given recursive enumeration of 5.
If it is, supply the answer "yes," thus enabling the reducibility
process to continue. Finally, if under these circumstances the process
terminates in a "no" for the initial question of n being in C, place n
in a set oto- This oto is then a recursively enumerable subset of C con-
sisting of all members thereof for which the given Turing reduction of
C to 5 leads only to questions of the form "is m in S" whose answer is
"yes."

Find then n0 of C not in <x0, and set the reducibility process going
for «o- Now if at any time a wrong answer is supplied to a question
"is m in S," we can nevertheless expect our machine for reducing C
to 5 either to effectively pick up the wrong answer and operate on it
to give a next step in the process, or to cease operating. Generate then
the positive integers 1, 2, 3, • • • , and as a positive integer JV is gen-
erated, generate the first N members of the given recursive enumera-
tion of S, and make the reducibility process for «0 effective though
perhaps incorrect as follows. Each time a question of the form "is m
in 5" is reached, see if m is among the first N members of S. If it is,
answer the question "yes," and correctly so; if not, answer the ques-
tion "no," whether that answer be correct or no. If now this pseudo-
reduction terminates in a "no," place the finite number of m's thus
arising in a set /3no. Note that 0no consists of all such m's for all such
pseudo-reductions for the given n0- Being a generated set of positive
integers, j3no is recursively enumerable.

Now let the correct, though possibly non-effective, reducibility
process for n0 involve the /* questions "is w,- in S," t = l, 2, • • • , /i.
Let m,-,, «,-,, • • • , mif be those of these m's actually in S, and let
them be the Wist, w2nd, • • • , «»th members of the given recursive
enumeration of 5. If then iV^M = max («i, w2, • • • , «„), or M=\ if
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e = 0, the corresponding psuedo-reduction for n becomes the correct
reduction. For, inductively, if that be so through the time a question
"is m in S" is raised, m will be mu m^, • • • , or mu, hence will, or will
not, be in S according as it is, or is not, one of the first N members of
S. The answer is then correctly given by that pseudo-reduction,
which therefore continues to be correct through the raising of the next
question. Finally, since w0 is in C, the correct reduction, now the
pseudo-reduction, must terminate with a "no."

It follows that all iV's with N>M merely repeat the contribution
to @nt) made by N = M, that is, of the integers mi, mi, • • • , »v Since
but a finite number of m's are contributed by N's with N<M, it fol-
lows that j3no is a finite set. Finally, were each of the integers
mi, m%, • • - , m? in S, n0 would be in a0. Hence, at least one member of
jSBo is in S.

Formally, we would thus obtain a basis for a finite recursively
enumerable set of positive integers at least one of whose members is
in 3. Instead of recursively enumerable sets of finite sequences of
positive integers, we would thus be led to consider recursively enu-
merable sets of bases for finite recursively enumerable sets of positive
integers. Though, in the last analysis, each sequence in the former
case must be generated atom by atom, there will come a time for
each sequence when the process will say "this sequence is completed."
In the latter case, in general, we cannot have an effective method
which, for each basis, will give a point in the ensuing process at which
it can say all members of the finite set in question have already been
obtained, even though, with the process made monogenic, there al-
ways is such a stage in the process.

This suggests, then, that we strengthen the condition of hyper-
simplicity still further by replacing "infinitive recursively enumerable
set of mutually exclusive finite sequences of positive integers" in the
definition of §9 by "infinite recursively enumerable set of bases
defining mutually exclusive finite recursively enumerable sets of
positive integers." Whether such a "hyper-hyper-simple" set exists,
or whether, if it exists, it will lead to a stronger non-reducibility
result than that of the last section we do not know.

On the other hand, an equivalent definition of hyper-simple set is
obtained if, for example, we replace the quoted phrase by "recur-
sively enumerable set of finite sequences of positive integers having
for each positive integer n a member each of whose elements exceeds
n." We now can say that with this as the definition of a hyper-simple
set, the corresponding extension to a hyper-hyper-simple set cannot
be made. For we prove the
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THEOREM. For any recursively enumerable set of positive integers S,
•with infinite S, there exists a recursively enumerable set of bases defining
finite recursively enumerable sets of positive integers, each set having at
least one element in S, and at least one set having each of its elements
greater than an arbitrarily given positive integer n.

Briefly, with n given, for each positive integer N, and each positive
integer m, place all of the integers » + l , n+2, • • • , ra+m in a set
an if all, or all but the last, are among the first N members of a given
recursive enumeration of 5. It is readily seen that an is a generated,
and hence recursively enumerable, set of positive integers. A corre-
sponding basis B(n) can actually be found, and the set of 5 ( B ) 'S,
n = l, 2, 3, • • • , being a generated set, is therefore recursively enu-
merable. Moreover, if vn is the smallest integer in the infinite 3
greater than n, an will consist of exactly the integers n + 1 , w+2, • • •,
vn, and hence will be finite, with indeed vn as the only element in 3,
and with each element greater than n. ;

As a result we are left completely on the fence as to whether there
exists a recursively enumerable set of positive integers of absolutely
lower degree of unsolvability than the complete set K, or whether,
indeed, all recursively enumerable sets of positive integers with re-
cursively unsolvable decision problems are absolutely of the same
degree of unsolvability. On the other hand, if this question can be
answered, that answer would seem to be not far off, if not in time,
then in the number of special results to be gotten on the way.26

Such then is the portion of "Recursive theory" we have thus far
developed. In fixing our gaze in the one direction of answering the
lower degree of unsolvability question, we have left unanswered many
questions that stud even the short path we have traversed. Moreover,
both our special, and the general Turing, definitions of reducibility
are applicable to arbitrary decision problems whose questions in
symbolic form are recursively enumerable, and indeed to problems
with recursively enumerable set of questions whose answers belong to
a recursively enumerable set. Thus, only partly leaving the field of
decisions problems of recursively enumerable sets, work of Turing
[26] suggests the question is the problem of determining of an arbi-
trary basis B whether it generates a finite, or infinite, set of positive

* This is a matter of practical concern as well as of theoretical interest. For accord-
ing as the second or first of the above alternatives holds will the method of reducing
new decision problems to problems previously proved unsolvable be, or not be, the
general method for proving the unsolvability of decision problem either of recursively
enumerable sets of positive integers or of problems equivalent thereto.
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integers of absolutely higher degree of unsolvability than K. And if
so, what is its relationship to that decision problem of absolutely
higher degree of unsolvability than K yielded by Turing's theorem.

Actually, the theory of recursive reducibility can be but one chap-
ter in the theory of recursive unsolvability, and that, but one volume
of the theory and applications of general recursive functions. Indeed,
if general recursive function is the formal equivalent of effective cal-
culability, its formulation may play a role in the history of combina-
tory mathematics second only to that of the formulation of the
concept of natural number.
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1. Introduction.
It has been known since the publication of a classical paper by SKOLEM

[9] that there exist proper extensions of the system of natural numbers
iV(w>0) which possess all properties of N that are formulated in the
Lower predicate calculus in terms of some given set of number-theoretic
relations or functions, e.g. addition, multiplication, and equality. Such
an extension of the natural numbers is known as a (strong) non-standard
model of arithmetic.

Now let Ro be the set of all real numbers. Let KQ be the set of sentences
formulated in the Lower predicate calculus in terms of (individual con-
stants for) all elements of Ro and in terms of (distinct symbols for) all
relations that are definable in Ro, including singulary relations. In a
well-defined sense all elementary statements about functions in RQ can
be expressed within KQ. Thus if the real-valued function f(x) is defined
on the subset of S of Ro, and not elsewhere, then there exists a binary
relation F(x, y) in the vocabulary of KQ such that F(a, b) holds in Ro if
and only if a eS and b = /(«). The fact that F(x, y) denotes a function
with domain of definition S is expressed by the sentence

[(x)(y)[F(x,y)DT(x)]]A[(x)[T(x)D[(3[y)(z)[F(x,y)A{F(x,z)DE(y,z)]]]]l

where T(x) is the singulary relation which defines 8 and E(y, z) stands
for y = z. Note that a different relation, F'(x,y) corresponds to "the
same" f(x) if it is obtained the restricting the domain of definition of f(x)
to a proper subset of S. However, for ease of understanding we shall in
the sequel use a less formal notation and include expressions like x = y,
y = f(x), xy = z among our sentences. It is not difficult to translate these
sentences into the strict formalism of KQ.

Let R* be a model of Ko which is a proper extension of Ro with respect
to all the relations and individual constants contained in RQ. R* will
be called a non-standard model of analysis. The existence of non-standard
models of analysis follows from a familiar application of the extended
completeness theorem of the Lower predicate calculus (e.g. [7]). Such
models may also !e constructed in the form of ultra-powers (e.g. [6]).
The latter method affords us an insight into the structure of non-standard
models of analysis and enables us to discuss the question to what extent
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we can single out certain distinguished models of this kind. Considerable
progress can be made in this direction, but for the work of the present
paper any one non-standard model of analysis will do as well as another.

It is our main purpose to show that these models provide a natural
approach to the age old problem of producing a calculus involving
infinitesimal (infinitely small) and infinitely large quantities. As is well
known, the use of infinitesimals, strongly advocated by Leibnitz and
unhesitatingly accepted by Euler fell into disrepute after the advent of
Cauchy's methods which put Mathematical Analysis on a firm foundation.
Accepting Cauchy's standards of rigor, later workers in the domain of
non-archimedean quantities concerned themselves only with fragments
of the edifice of Mathematical Analysis. We mention only DU BOIS-

REYMOND'S Calculus of infinities [2] and HAHN'S work on non-archimedean
fields [4] which in turn were followed by the theories of ARTIN-SCHREIER

[1] and, returning to analysis, of HEWITT [5] and ERDOS, GILLMAN, and
HENRIKSEN [3]. Finally, a recent and rather successful effort of developing
a calculus of infinitesimals is due to SCHMIEDEN and LAXJGWITZ [8] whose
number system consists of infinite sequences of rational numbers. The
drawback of this system is that it includes zero-divisors and that it is
only partially ordered. In consequence, many classical results of the
Differential and Integral calculus have to be modified to meet the changed
circumstances.

Our present approach yields a proper extension of classical Analysis.
That is to say, the standard properties of specific functions (e.g. the
trigonometric functions, the Bessel functions) and relations, in a sense
made precise within the framework of the Lower predicate calculus, still
hold in the wider system. However, the new system contains also infinitely
small and infinitely large quantities and so we may reformulate the
classical definitions of the Infinitesimal calculus within a Calculus of
infinitesimals and at the same time add certain new notions and results.

There are various non-trivial interconnections between the theories
mentioned in this introduction. For example (as is not generally realized)
the ultra-power construction coincides, in certain special cases which are
relevant here, with the construction of residue fields in the theory of
rings of continuous functions. Similarly, there are various connections
between these theories and the work of the present paper. We have no
space to deal with them here. Details and proofs of the results described
in the present paper will be given in the volume "Introduction to Model
theory and to the Metamathematics of Algebra" which is due to be
published in the series "Studies in Logic and the Foundations of Mathe-
matics".

2. Non-standard analysis and non-archimedean fields.

Let R* be any non-standard model of analysis. Then R* D RQ but
R¥=Ro- It follows that R* is non-archimedean. The elements of RQCR*
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will be referred to as the standard elements of R* or standard numbers.
Since R* is non-archimedean the following two subsets of R* are not empty.

Mo, the set of all a e R* such that \a\ <r for some r e Ro. Mo is a ring.
The elements of Mo will be said to be finite.

Mi, the set of all a e II* such that \a\<r for all positive r e R$. The
elements of Mi will be said to be infinitesimal. Mi is a prime ideal in Mo
and Mo/Mi is isomorphic to Ro.

Let <S' = -(fi\. ft;, ...) be any subset of /<"*. We write 0{a\, a-z, ...) for
the module Moii -\-Moao -••• ... C/?* (weak sum) and we write o(ai, «2, ...)
for the module M[(i\ • M\<t-> • ...CR*. In particular M0=O(l) and
Jl/i=«(l). We-write <i \h ii <i — b 6 Mi, i.e. if the difference between a
and b is infinitesimal and we .say in that case that a is infinitely close to b.
Every finite number (i.e. every element of Mo) is infinitely close to some
standard number. We write

a = b mod. 0(oi, at, ...)

if a — b eO(ai,a2, ...), with a similar notation for o.
So far we have formulated only a number of obvious, and in part well-

known, notions and facts concerning all ordered fields which are extensions
of the field of real numbers. We now make use of the fact that R* is a
non-standard model of analysis. Let N'(x) be the singulary relation which
defines the natural numbers in Ro- Then N'(x) defines a set N* in R*.
N* turns out to be a non-standard model of the natural numbers with
respect to all relations definable in N. Similarly, we obtain a non-standard
model of the rational numbers, Ri* as a subset of R*. It can be shown
that every standard transcendental number is infinitely close to some
element of Ri*.

Syntactically, or linguistically, our method depends on the fact that
we may enrich our vocabulary by the introduction of new relations,
such as R0'(x), M0'(x), Mi'(x) which define Ro, Mo, Mu in R*. (Note
that the singulary relations just mentioned are, provably, not definable
in terms of the vocabulary of Ko). We are therefore in a position to re-
formulate the notions and procedures of classical analysis in non-archi-
medean language. Since all the "standard" results of analysis still hold
we may make use of them as much as we please and we may therefore
carry out our reformulation either at the level of the fundamental defini-
tions (of a limit, of an integral, ...) or at the level of the proof or, finally,
by introducing non-standard notions into a result obtained by classical
methods.

We consider in the first instance functions, relations, sets, etc. which
are defined already in Ro, so that appropriate symbols are available for
them in the original vocabulary. Such concepts will be called standard
(functions, relations, sets, etc.). For example the interval a<x<b, will
be called a standard interval in R* if a and b are standard numbers
(elements of Ro)- The interval r)<x<b, where b is standard and rj in-
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finitesimal positive, is not a standard interval. The function sin a; is a
standard function. Strictly speaking we ought to refer here also to the
interval of definition of the function but, as in ordinary analysis, this
will frequently be taken for granted.

At a more advanced stage it turns out to be nexessary to go beyond
standard functions, etc. Consider a standard function of n + 1 variables,
y = f(xi, .... xn, t), n>\. Regard t as a parameter and define g(x\, ..., xn)
by g(x\, ..., xn) = f(xi, ..., xn, r) where r is not (necessarily) standard.
Then g(xi, ...,xn) will be called a quasi-standard function. (Note that
need not be a continuous function of its arguments.) For example, the
function f(x, n) = ]/nJ7i e~nx' is a standard function of two variables. The
function g(x) = f(f, w) = ]/wjn e~m^, where co is an infinite (non-finite)
positive number, is quasi-standard.

Quasi-standard relations, etc. are introduced in a similar way. For
example, the interval rj<x<b mentioned above is quasi-standard.

3. Examples in non-standard Analysis.
Let sn be a standard sequence, i.e. a function defined in the first instance

on the natural numbers N and taking values in RQ. Then the definition
of sn extends automatically to the elements of N* (the non-standard
positive integers). Let s be a standard number..We define —

3.1. s is called the limit of sn iff sm is infinitely close to s for all infinitely
large positive integers &>. In symbols —

(co)[N'(w) A ~iJ0(<o)D \s-sj eil/i].

This compares with the classical definition (s is the limit of sn if for every
<5>0 there exists a positive integer a>o such that, etc.). It can be shown
that the two definitions are equivalent under the stated conditions (sn

and s standard). That is to say lim sn — s in RQ if and only if 3.1 holds
n—>-oo

in R*. The proof involves the formalization of the classical definition as
a sentence in KQ. Similarly, the following is an equivalent definition of
the concept of a limit point (accumulation point) of a sequence for
standard sn and s.

3.2. s is a limit point of sn iff sm = is for some infinite positive integer co.
Similarly —

3.3. A standard sequence sn is bounded if and only if sn is finite for all
infinitely large n.

The theorem of Bolzano-Weierstrass for standard bounded sequences
can of course still be proved by classical methods. Using non-standard
analysis we obtain an alternative proof along the following lines.

Let (a,, by be a closed interval containing all elements of the standard
sequence sn. Then there exists a sentence X of KQ which states that for
every positive integer m, the partition of (a, by into m sub-intervals of
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equal length (6 —a)/m yields at least one sub-interval / that contains an
unbounded number of elements of sn. X holds also in R* and so, taking m
infinite, we obtain a sub-interval /* of (a, b}, of infinitesimal length,
that contains an unbounded number of elements of sn. Both end points
of/* are infinitely close to a single standard number s. This is the required
limit point.

We have the following version of Cauchy's necessary and sufficient
condition for convergence, which may either be proved directly or
transcribed from the standard version.

3.4. The standard sequence sn converges iff sm=ism, for all infinitely
large co and a/.

The theory of infinite series may be reduced to that of infinite sequences
in the usual way.

Coming next to functions of a real variable, suppose that the standard
function f(x) is defined in a standard open interval a<x<b. Then the
standard number I is the limit of f(x) as x tends to be from the left iff
f(b — r]) = il for all positive infinitesimal r\. f(x) is continuous at the standard
point x0, a<xo<b iff f(xo + t]) = if(xo) for all infinitesimal rj. Again these
conditions are equivalent to the classical definitions. Accordingly, f(x)
is continuous in (a, b) if f{xo + t]) = if(xo) for all standard x0 in the open
interval and for all infinitesimal rj. The natural question now arises what
non-standard condition corresponds to uniform continuity in the interval
a<x<b. The answer is

3.5. f(x) is uniformly continuous in (a,b)—a,b, and f{x) standard —
if f(xQ + ?]) = if{xo) for all infinitesimal rj and for all xo in the open interval
(a, b).

In a similar way, we may distinguish between ordinary continuity and
uniform continuity of a standard sequence of functions sn(x).
3.5. f(x) has the derivative /0 at the standard point x0 (/o a standard
number) if for all infinitesimal rj

f{XQ + f]) - f(x0)

—-,—=>f°
a formula which may be used in practice. Various "standard" results of
the Differential calculus, including Rolle's theorem can in fact be established
readily by means of non-standard Analysis.

We touch only briefly upon integration and remark that, up to in-
finitesimal quantities, Cauchy's integral and Riemann's integral can be
defined by means of a partition of a given standard interval into an
infinite number of subintervals of infinitesimal length combined with
the formation of the usual sums such as E(xn — xn-\)yn- The non-standard
definition of the Lebesgue integral appears to be more intricate and has
not been carried out in detail so far.

Next, we discuss differential notation in connection with functions of
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several variables. We do not select a specific element of Mi as the dif-
ferential but regard any infinitesimal increments as differentials of the
independent variables. Thus, the theorem on the existence of the total
differential may be stated as follows.

3.6. Let (xo, yo) be a standard point (a point with standard numbers as
coordinates), and let S be the standard plane set given by

(x-x0f + {y-yQf<r2

where r is a standard positive number. Suppose that the standard function
f(x, y) possesses continuous first derivatives in 8. Let dx, dy be any pair of
infinitesimal numbers and let df = f(xo + dx,yo + dy)—f(xo,yo). Then

3.7. df = —t- dx + xr- dy mod. o(dx, dy).
dx0 byQ

Although this formula does not yield ordinary equality between the
left and right hand side it can be applied without difficulty, e.g. to the
calculation of the derivative of a function denned implicitly by f(x, y) = 0.

More generally, it is true that much of the classical work in Differential
Geometry has been done in terms of a vague notion of infinitesimals,
and the same applies to Analytical Mechanics. It is a matter of general
belief that all this work could, if necessary, be rewritten to conform to
the rigor of contemporary Mathematics but nobody would think of
carrying out this task. It is therefore not without interest that we may
now justify the use of infinitesimals in all these problems directly. As an
example, the case of the osculating plane of a skew curve has been
considered in detail. Thus, let G be a standard skew curve in three dimen-
sions (the equations for O are expressed in terms of standard functions)
and let P be a standard point on C. Let JU be the set of all planes drawn
through P and any two neighboring points Pi, P2 such that P, Pi, P2.
are not collinear. Then the osculating plane of C at P may be denned
as a standard plane p through P such that p is infinitely near to all elements
of II in a sense which can be made precise without difficulty. This definition
leads to the usual equation for the osculating plane.

Going on to an example which is of greater contemporary interest, let G
be a standard w-parametric Lie group, n finite. Thus G is defined by
analytic functions in Ro, but the passage to R* extends it automatically
to a wider group G*. Let (ei, ..., en) be the set of parameters for the
identity in both G and G*. Then the "infinitely small" transformations
in G* are given by the sets (ei + ??i, ..., en + rjn), where 771, ..., r\n are in-
finitesimal. These transformations now constitute a genuine subgroup
G' of G*, which may be analyzed further.

We pass on to the consideration of quasi-standard functions. Let
f(x, t) be a standard function defined in a standard set Si, and let
9(x) = f(x> w)> vvhere co is non-standard, e.g. infinite or infinitesimal.
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Then it can be shown that all functionals or operators which apply to the
standard functions gt(x) = f{x, t), t standard, are extended in a natural
and unique way to the function g(x). For example, suppose that the
integrals

J gt(x)dx = J f(x, t)dx = F(t)
a a

are defined, in />'n. in some definite sense (e.g. as Riemann integrals) for
the range of t under consideration. Then F(t) is a standard function, and

b

we shall regard F(o) as the value of the integral J g(x)dx. It is not difficult
a

to see that if the function g(x) is obtained from different families fi(x, t),
f-2,{x,t), so that <j(x) — ji{x, ioi) = J2(x, 0)2) then the use of either of these

b

families leads to the same value for the integral J g(x)dx. Moreover, the
a

definition preserves the properties of an integral to the extent to which
they can be expressed in the Lower predicate calculus, e.g. approximation
by sums of the form 2J(xn — xn-i)yn.

The same argument applies to functional operators. Thus, if the deriv-
atives —-r-1— = h(x, t) exist then we define ^- = h(x, w). It may be men-

ox ctt
tioned that all these definitions take on a rather more concrete form it
we consider non-standard models which are in the form of ultraproducts.

Quasi-standard functions yield a natural realization of generalized
functions. Thus, a Dirac delta-function on an interval / may be denned
as a quasi-standard function <5(a;) such that for a given standard XQ in /,
d(x) is infinitesimal for all standard x^=xo in I, and $Id(x)dx= 1. For
instance, \'<oJ7t c~<°(-'~jr*)i, where OJ is an infinite natural number, is a

ji

delta function for l = R* and (1 +cos (x — xo))mj f (1 +cos tf dt is a delta

function in the interval {—n, n). For given / and xo e I, there are many
delta functions, as opposed to the situation in the theory of distributions.
Quasi-functions can be added, subtracted, multiplied, and divided by
one another provided the divisor does not vanish. It is natural to consider
such functions in connection with a concrete application.

For any finite number a we write b = st{a} (read 'b is the standard
part of a') for the standard number b which is infinitely close to a.
Consider now a standard function <f> = <f>(x, y, z) which is harmonic in a
region V bounded by a standard surface S. Let P = (x, y, z) be a standard
point in the interior of V, so that (Green's formula)

YK y ' <hi J \r dn bn \rj YJ
s

The formula is usually obtained by applying Green's identity to the pair
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of functions <j> and y>= Ijr. The singularity of ip at P is taken into account
by a familiar procedure.

Instead of taking y>= 1/r we may introduce the potential y)e of a homo-
geneous sphere of infinitesimal radius Q round P. In this case there is no
singularity at P and after first checking that Green's identity applies.,
we obtain the formula

s

An interesting result is obtained if we apply similar considerations to
Volterra's formula for the solution of the two-dimensional wave equation.

Coming next to classical Applied Mathematics, it would of course be
natural to reword the usual statements about particles of fluid and about
infinitesimal surfaces and volumes in terms of the present theory. However.
we pass over this possibility and consider instead a particular point in
Fluid mechanics that gives rise to certain conceptual difficulties.

It is the assumption of boundary layer theory, e.g. for flow round a
body or through a pipe, that the equations of inviscid flow are valid
everywhere except in a narrow layer along the wall. It is found that
the thickness of the layer, 3, is proportional to R"112 where R is the
Reynolds number, supposed large. Within this boundary layer, the flow
is determined by means of the boundary layer equations which are
obtained by simplifying the Navier-Stokes equations of viscous flow.
However, when solving these equations, it proves natural to suppose
that the boundary layer is infinitely thick. For example, for the case of
a straight wall along the x-axis, the boundary layer equations are solved
for boundary conditions at y = 0 and i /^ -ooa procedure which is clearly
incompatible with the previous assumption on the smallness of <5. This
conceptual difficulty can be resolved by supposing that the inviscid fluid
equations hold for all positive standard values y>0 while the influence
of viscosity is confined to values of y that belong to 0{d), 8 infinitesimal
(so that the Reynolds number R is infinite). Introducing y' = yld we may
then derive and solve the boundary layer equations for 0<i/'<oo which
is a region in which the flow has not been defined previously. There are
other problems in continuous media mechanics that should be amenable
to a similar analysis.

In reality it is of course not true that the region in which viscosity is
effective may be regarded as infinitely thin. It can in fact be seen with
the naked eye both in certain laboratory experiments and in every day
life. Thus, the above model is intended only as a conceptually clear picture
within which it should be easier to discuss some of the .more intricate
theoretical questions of the subject such as the conditions near the edge
of the layer.

For phenomena on a different scale, such as are considered in Modern
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Physics, the dimensions of a particular body or process may not be
observable directly. Accordingly, the question whether or not a scale of
non-standard analysis is appropriate to the physical world really amounts
to asking whether or not such a system provides a better explanation of
certain observable phenomena than the standard system of real numbers.
The possibility that this is the case should be borne in mind.

Fine Hall,
Princeton University
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The Recursively Enumerable
Degrees are Dense*

By GERALD E. SACKS

Our main result is: if b and c are recursively enumerable degrees such
that b < c, then there exists a recursively enumerable degree d such that
b < d < c. By degree we mean degree of recursive unsolvability as denned
by Kleene and Post [2]. A degree is called recursively enumerable if it is the
degree of a recursively enumerable set. The upper semi-lattice of recursively
enumerable degrees has a least member, 0, the degree of all recursive sets,
and a greatest member, 0', the degree of all complete sets. Post [4] asked:
does there exist a recursively enumerable degree d such that 0 < d < 0'?
Friedberg [1] and Muchnik [3] answered Post's question in the affirmative.
Sacks [5] showed that every countable, partially ordered set is imbeddable in
the upper semi-lattice of recursively enumerable degrees. Muchnik [3] an-
nounced that if c is a non-zero, recursively enumerable degree, then there
exists a recursively enumerable degree d such that 0 < d < c.

The arguments of Friedberg [1], Muchnik [3] and Sacks [5] have a great
deal in common. All three authors make use of a method which may be
roughly described as follows (a precise abstract description is given in Sacks
[5]): One or more sets are to be recursively enumerated. Certain requirements
are to be met. A typical requirement is: the set B is not recursive in the set
A with Godel number e. Unfortunately, the requirements tend to conflict.
Thus we may wish to add n to B to insure that B =£ {e}A, but the addition of
n to B may ruin what we did earlier in the enumeration to insure A ^ {f}B.
We resolve all conflicts by appealing to a system of priorities assigned to the
requirements before the enumeration begins. Then it can be shown that each
requirement is "ruined" only finitely often, and that, consequently, each re-
quirement is eventually met.

In the argument below we assign priorities to requirements, but we are
forced to permit each requirement to be "ruined" infinitely often. Nonethe-
less, we are still able to meet each requirement. Thus there is an important
combinatorial difference between the method of Friedberg [1] and Muchnik [3]
and the method we use below. The difference is a consequence of the fact
that Friedberg and Muchnik deal only with finite, initial segments of func-
tions while we are forced to deal indirectly with entire functions. Almost all

* This research was supported in part by National Science Foundation Grant GP-124.
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of the complications we encounter below arise from the non-recursiveness of
B. We are given a non-recursive, recursively enumerable set B, and we wish
to find a recursively enumerable set D such that B is recursive in D but D is
not recursive in B. Since B is to be recursive in D, we are forced to add many
members to D in complete disregard of all priorities. Thus even the require-
ment of highest priority may be "ruined" infinitely often. If B were recursive,
we could put all of B in D in one step, and then the arguments of [1] and [3]
would suffice.

The basic combinatorial principle of this paper appears in primitive form
in Sacks [6]. Our basic source of notation is [2]. We conclude with intuitive
remarks and an open problem.

THEOREM. / / b and c are recursively enumerable degrees such that
b < c, then there exists a recursively enumerable degree d such that b < d < c.

PROOF. Let / , g respectively, be a one-one recursive function whose range
is a set B, C respectively, of degree b, c respectively. We define:

b(s, n) = |° if m^f{t) = ^
(1 otherwise ;

o(S, ») = I 2 if {Et)-{m = n)
(1 otherwise .

Then lim, b(s, n) exists for each n; in addition, lims b(s, n) is the representing
function of B. Similarly, 2 — lim, c(s, n) is the representing function of C.
Let k(s) be a recursive function such that, for each s, s < fc(s) < k(s + 1). We
define three recursive functions:

_ \ftyTi(l[,<, P ' " ' ' 1 . e> n< V) i f (Ey)y<sTl{Jlj<y P)"J>, e, n, y)
yb(s, n, e) — ]

(k(s) otherwise ;
MO, n, e) = 0 ;

h(s + 1, n, e) = h(s, n, e) + sg(\ yb(s + 1, n, e) - yb(s, n, e) \) ;

t(s, i, e) = J2jst h(s, 3, e) .

We define four recursive functions, y(s, n, e), m(s, e), r(s, n, e) and d(s, n),
simultaneously by induction on s. The desired degree d will be the degree of
the predicate (Es)(d(s, n) = 0).

Stage s — 0. We set y(0, n, e) = m(0, e) = 0 and r(0, n, e) - d(0, n) = 1
for all n and e, except that d(0, p(/(0), 1)) = 0.

Stage s > 0. We set

, , _ [MTKUK, P"'1-1-". e- n> V) i f (#i/>.<-?7(IIJ<ir p1/--1 J\ e, n, y)
y(s, n, 6) - I , .

10 otherwise .



396

302 GERALD E. SACKS

The definition of m(s, e) has two cases:
Case ml. There exists an n < m(s — 1, e) such that

c(s, n) =t v(y(s, n, e)) & y(s, n, e) ^ y(s - 1, n, e) .

We set m(s, e) equal to the least such n.
Case m2. Otherwise.

We set m(s, e) equal to the least n such that

m(s — 1, e) S n < 2m(s — 1, e) + s
& (Et)tiv(c(s, t)) * v{y(s, t, e)) .

If no such n exists, then m{s, e) = m(s — 1, e) + s; this last is in accord with
the definition of the bounded, least number operator.

Let p(i, m) — p-^m and p(e, i, m) = p(e, p(i, m)). We define r(s, n, e) and
d(s, p(e, i, m)) for all e, n, i and m by a simultaneous induction on e. First we
set d(s, p(f{s), 1)) = 0.

(0 if (Ei)i<e(Et)lSa(Em)[p(i, m) < y(s, t, e)

& d(s, p(i, m)) ^ d(s - 1, p(i, m))] ,

0 if (Et)tsn[p(f(s), 1) < y(s, t, «)] ,

1 otherwise .

The definition of d(s, p(e, i, m)) has three cases.
Case dl . t(s, i, e) > m. We set

d(s - 1, p(e, i, m)) if (Eu)uiXEv\<m{,,u)[r{s, v,u) = l

d(s, p{e, i, m)) = • & p(e, i, m) < y(s, v, u)] ,

.0 otherwise .

Case d2. t(s, i, e) = m. We set

[0 if c(s, i) = 2

& Uh<i[d(s - 1, j)= v(yb(s, j , e))]

d(s, p{e, i, mj) = - & ~(Eu)aie(Ev)v<m{t,u)[r(s>v,u) = l

& p(e, i, m) < y(s, v, u)] ,

,d(s — 1, p{e, i, m)) otherwise .

Case d3. t(s, i, e) < m. We set d(s, p(e, i, m)) = d(s — 1, p(e, i, m)).
The construction is concluded by setting d(s, w) = d(s — 1, w) for all w

not equal to p(f(s), 1) or p(e, i, m) for some e, i and m. Let d(n) = lim, d(s, n)
for each n. Let D be the set whose representing function is d; D is recursively
enumerable since n e D if and only if (Es)(d(s, n) = 0). We list two notes
"which will be needed later:

(Nl) (s)(n)(e)(r(s, n, e) = 0 -> r(s, n + l,e) = 0);
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(N2) (s)(n)(e){y(s, n, e) = 0 — n ^ m(s, e)).
We prove (N2) by induction on s. Certainly,

(n)(e)(y(0, n, e) = 0 — n ^ m(0, ej) .

Fix s > 0, n and e. Suppose y(s, n, e) = 0, and

(n)(e)(y(s - 1, n, e) = 0 — n ^ m(s — 1, e)) .

Suppose Om: ml of the definition of m(s, e) holds. If y(s — 1, n, e) = 0, then
n ^ m(s — 1, c) > ?n(s, e). Suppose y(s — 1, TO, e) > 0. Then

?/(s, n, e) ^ y(s - l, 7i, e)

& 0 = u(i/(s, n, e)) + c(s, n) > 0 ;

Consequently, ?i g m(s, e). Now suppose Case m2 of the definition of m{s, e)
holds. Once again, u(y(s, n, e)) 4=- c(s, n); it follows n S: m(s, e).

LEMMA 1. Let y(s, n, e) > 0, m(s, e) > n and p(f(s), 1) ^ y(s, t, e) for all
t ^ n. Let d(s, p(i, m)) = d(s — 1, p(i, m)) for all i, t and m such that i < e,
t^n and p(i, m) < y(s, t, e). Then y{s, n, e) = y(s + l, n, e) and ra(s + l, e) > n.

PROOF. Since y(s, n, e) > 0, we have

y(s, n, e) = liyT}{H]<y pj1-1-", e, w, 2/) .

If d(s, i) - cZ(s - 1, j) for all i < y(s, n, e), then i/(s + 1, n, e) = y(s, n, e).
The hypothesis of our lemma tells us that r(s, n, e) = 1. But then it follows
from the definition of d(s, j) that d(s, j) = d(s — 1, j) for all j < y(s, n, e),
since m(s, e) > n.

Note (Nl) makes clear that the above argument also works for any t < n.
Thus we have

{t)tin{y(s, t, e) = y(s + 1, t, e)) .

Suppose m(s + 1, e) _̂  n. Then m(s + 1, e) < ^ s , e), and Case ml of the
definition of m(s + 1, e) holds. But then we have a t (namely, m(s + 1, e))
such that t Sn, and y(s, t, e) =£ j/(s + 1, t, e).

For each e, we say e is stable if lims y(s,, n, e) exists and is positive for all
n. Since there are infinitely many e which are not Gbdel numbers of systems
of equations, there are infinitely many non-stable e. Let {e0 < el < e2 < • • •}
be the set of all non-stable e. For each j , let Hj be the least n such that
lims y(s, n, e}) either does not exist or is zero. Lemma 2 is our basic com-
binatorial principle (cf. [6, Lemma 4]).

LEMMA 2. For each k and v, there is an s 2: v such that

( i k W s , tj) ^ a* V r(s, njf es) = 0 V V(s, njt e,) = 0] .

PROOF. Fix k and v. We suppose there is no s with the desired properties
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and then define an infinite descending sequence of natural numbers.
We propose the following system of equations as a means of denning two

functions, S(t) and M(t), simultaneously by induction:
5(0) = v ;

M(t) = ti3i<k[ns < m(S(t), es)
& r(S(t), n,, e,) = 1
& y{S(t), % , e,) > 0] ;

S(t + 1) = ft8(Em)[s ^ S(t) & m < y(S(t), nMUU eMW)

& d(s, m) =£ d(S(t) - 1, m)] .

Clearly S(0) ^ v. Suppose t ^ 0, S(t) is well-defined and S(t) ^ v. Then
M(t) < k, since we have supposed the lemma to be false. Thus

y(S(t), nmt), eM{t)) > 0 ,

and lim, y(s, nMW, eU[t)) does not exist or does equal 0. Then there must be an
s > S(t) such that

m < y(S(t), nMW, eMW)

& d(s - 1, m) Tt d(S(t) - 1, m) .

But then S(t + 1) is well-defined and S(t + 1) ^ v.
For each t ^ 0, let

u(t + 1) = ptm[d(S{t + 1), m) =£ d(S(t) - 1, m)] .

Fix i > 0. We show u(t + 1) < u(t). Since we know

u(t + 1 ) < 2/(S(<), Wjn,,, emt)) ,

it suiBces to show

y{Sit), nmt), eMU)) S u(t) .

It follows from the definition of S that

d(w, m) = d(S(t - 1) - 1, m)

whenever S(t) > w ^ S(t - 1) and m < y(S(t - 1), nmt-v, <?*«-„). Conse-
quently,

d(S(t), u(t)) * d(S(t) - 1, u(t)) .

First suppose u(t) = p(f(S(t)), 1). Then i/(S(t), ^ m . e*«>) ^ «(*), since
r(S(t), »jf(*), e^f,,) = 1. Now suppose u(t) = p(i,f, m) for some i,f and m.
Let s = S(£), % = nMW and e = eMW. Hi < e, then the definition of r tells us
that y(s, n, e) ^ u(i!), since r(s, n, e) = 1. If i ^ e, then the definition of d
tells us that y(s, n, e) ^ u(t), since w < m(s, e), r(s, •«., e) = 1 and d(s, u(t)) i±
d(s - 1, «(t)).
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We introduce two predicates:
A(e): if e is stable, then the set {m(s, e) [ s ^ 0} is finite.
B(e): the set {m | d(p?) = 0} is recursive in B.

We will prove (e)A(e) and (e)B(e) by means of a simultaneous induction on e.
From (e)A(e) it will follow that c £ d. From (<s)i?(e) it will follow that d £ b.

LEMMA 3. (i)i<e5(i) -+ A(e).
PROOF. We know c $. b. We suppose that B(i) is true for each i < e and

that A(e) is false, and we show c ^ b. Thus the set {ra(s, e) | s 2: 0} is infinite,
and for each n, lim, i/(s, %, e) exists and is positive. Let R(n, s) denote the
predicate

m(s, e) > n

& (i)(m)(t)[p(i, m) < y(s, t, e ) & i < e & t ^ n

— d(s - 1, p(i, m)) = d(p(i, m))]

& (z)(t)[zeB & p(z, 1) < y(s, t,e) & t ^ n

- d{s - 1, p(z, 1)) = 0] .

(Recall that z e B if and only if d(p(z, 1)) = 0.) Since B(i) is true for all i<e,
it follows that R is recursive in B. Since the set {m(s, e) | s S 0} is infinite,
and since lim8 y(s, n, e) exists and is positive for each n, it follows that
(n)(Es)R(n, s). Let

w(n) = ftsR(n, s) .

Then w is recursive in B, and for each n, w(n + 1) 2: w(n).
Fix w. We show lima y(s, n, e) = y(w(n), n, e). Let s be such that s ^ w(n)

and

y(w(n), n, e) = y(s, n, e) & R(n, s) .

Since m(s, e) > n, it follows from note (N2) that y(s, t, e) > 0 for all t sS re.
We know / enumerates B without repetitions. It follows from the definition
of R that p(/(s), 1) ^ y(s, t, e) for all t ^ n. But then Lemma 1 tells us that

y(s + 1, t, e) = y{s, t, e)

for all t ^ n, and that m(s + 1, e) > n. Thus

l/(w(n), w, e) = y(s + 1, », e) and i?(n, s + 1) .

It follows that lims y(s, n, e) •— y(iu{n), n, e).
Finally, we show

lim3 c(s, n) = v(y(iv(n), n, e))

for all n. If this last is true, then C is recursive in B, since 2 — lim, c(s, n) is
the representing function of C; and since w is recursive in B. Fix n and
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suppose lim,. c{s, n) =h V(y(u-(n), n, e)). There must be an s* such that for all
s ^ s*,

c(s, n) = lim, c(s, n) =£ U(I/(M;(«), «•, e)) = v(y(s, n, e)) .

Fix s > s* and suppose m(s — 1, e) ^ ??i(s*, e) + n. If Case ml of the defini-
tion of m{s, e) holds, then m(s, e) g m(s*, e) + %. If Case m2 holds and
n < 2m(s - 1, e) + s, then m(s, e) ^ m(s*, e) + n, since c(s, TO) =£ v(y(s, n, e)).
If w ^ 2m(s — 1, e) + s, then m(s, e) ^ %. Thus

w(s, e) g m(s*, e) + n

for all s 2; s*. This last is impossible, since the set {m(s, e) \ s g 0} is infinite.
Suppose {e}h(n) is defined for all n. Then lims yb(s, n, e) exists for each n,

and lim, t(s, i, e) exists for each i. In addition, lim, t(s, i, e) (regarded as a
function of i) is recursive in B. All this is clear from the definition of yb and t.

LEMMA 4. / / {e}b(n) is defined for all n and (u)uSeA(u), then
d(p(e, i, lims t(s, i, e))) = 0 for only finitely many i.

PROOF. We suppose the lemma is false and show C is recursive in B. Our
first claim is:

d = {e}» .

Fix j . Let s be so large that

d(j) = d(tv - 1, j) & u(yb(w, j , e)) = {e}b(j)

for all w ^ s. Let t(i) = lims t(s, i, e) for all i. Let w and i be such that
j < i, w ^ s, c(w, i) = 2,

0 = d(w, p(e, i, t(i))) ^ d(w - 1, p(e, i, t(i))) ,

and t(i) = t(w, i, e). It follows from Case d2 of the definition of d that

d(w - 1, j) = v(yb(s, j , ej) ,

since j < i. But then d(j) = {e}6(j), since w ^ s, and our first claim is proved.
Our second claim is: for all sufficiently large i,

d(p(e, i, t{i))) = lim, c(s, i) .

Our first and second claims, together with the fact that t is recursive in B,
imply that C is recursive in B. Our second claim is a consequence of Lemma
2 and (u)uSeA(u). If u ^ e and u is stable, then A{u) tells us that the set
{m(s, u) | s ^ 0} is finite. If % ^ e and it is stable, let m(u) be the greatest
member of {m(s, u) | s S 0}. Hu ^e and % is non-stable, then M = e; for some
•£; let m(tt) = 7i;. Recall that % is the least witness to the fact that et is non-
stable. Thus lim,, y(s, v, u) exists if u S e and v < m(u). Let y be so large
that y(s, v,u) ^ y if s ^ 0, it ^ e and v < m(u). Fix i ^ y. We show
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d(p(e, i, t{i))) = lim, c(s, i). If lim, c(s, i) = 1, then c(s, i) = 1 for all s, and
d(s, p(e, i, t(i))) = 1 for all s. Suppose lim, c(s, i) = 2. Let w be so large that
c(s, i) = 2, t(s, i, e) = t(i), and

(j)i<i[d(s - 1, j) = u(yb(s, j , 6))]

for all s 2: w. The existence of w follows from our first claim. By Lemma 2,
there is an s ^ w such that for all u ^ e, if % is non-stable (hence equal to e<
for some i), then

m(s, M) ^ « ; V f(s, «i( w) = 0 V #(s> ni> u) = 0 •

We show d(s, p(e, i, t(i))) = 0. Case d2 is such that we need only show

~(Eu)uie{Ev)v<mU,u)[r{s, v, u) = 1 & p(e, i, t(i)) < y(s, v, u)] .

Fix u ^ e and v < m(s, %). Suppose u is stable. Then y(s, v, u) ^ y 5S i ^
?»(e, i, t(i)). Suppose w is non-stable. Let u = e(. If v < wjf then v < m(%) and
y(s, v,u) ^= y < p(e, i, t(i)). Suppose v ^ n{. Then m(s, u) > nit and conse-
quently,

r(s, nit u) = 0 V 2/(s, wi( u) = 0 .

If r(s, %j, u) = 0, then r(s, v, u) = 0 by M>£e (Nl), since ni ^ i>. Suppose
i/(s, nit u) = 0. Then nt ^ m(s, w) by Note (N2). But m(s, w) > n{ since we
have supposed v 2: Wj.

LEMMA 5. (it)MSeA(w) — J5(e).

PROOF. Our first claim is (L).

(L) (Ey){m)(x)(i)[m < t(x, i, e) & p(e, i,m)^y — d(p(e, i, m)) = 0] .

The proof of our first claim is virtually identical with the proof of the second
claim of Lemma 4. For each u g e, we define m(u) as in Lemma 4. Then
lim, y(s, v, e) exists if u ^ e and v < m(u). Define y as in Lemma 4. Fix m, x
and i so that m < t(x, i, e) and p(e, i, m) ^ y. We show d(p(e, i, m)) — 0. By
Lemma 2 there is an s ^ a; such that for all u ^ e, if it is non-stable (hence
equal to e; for some i), then

m(s, d) g » i V »"(s, «;, e,) = 0 V 2/(s, »;, e^ = 0 .

We show d(s, p(e, i, m)) = 0. Since s ^ x, we have

m < t(x, i, e) S t(s, i, e) .

Thus the definition of d(s, p(e, i, m)) is given by Case dl. We need only show

~(Eu)l.ie(Ev)u,m(,.u)[r(s, v, u) = 1 & p(e, i, TO) < ?/(«, v, «.)| .

Fix u ^ e and v < m(s, u). If it is stable, then y(s, v, u) ^ y sj p(e, i, m).
Suppose w is non-stable. Then we repeat the argument at the end of Lemma 4
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to show r(s, v, u) = 0 or p(e, i, m) ^ y(s, v, u).

We are ready to prove B(e). We will use only Lemma 4 and (L). First we
suppose that {e]h(n) is undefined for some n; let N be the least such n. It
follows from the definition of yb that lim, t(s, i,e)~ co for all i 2; N. Let y
have the property described by (L). Then

(i)(m)[i ^ N & p(e, i, m) Si y —> d(p(e, i, m)) = 0] .

If i < N, then lim,, £(s, i, e) is finite; consequently, the set

{p(e, i, m) | d(p(e, i, m)) = 0 & i < N}

is finite by Case d3 of the definition of d. Now d(pne) — 0 only if pi = ?>(e, i, m)
for some i and m or pne = p(f(s), 1). It follows that the set {% | d{p"e) = 0} is
recursive, hence recursive in B.

Now suppose {e}b(n) is defined for all n. Then lim, t(s, i, e) is finite for all
i. Let lims t(s, i, e) = £(•£). Recall that t(s + 1, i, e) ^ i(s, i, e) for all s and i.
It follows from (L) that

(i)(m)[m < £(•£) & p(e, i, m) ^ y —> d(p(e, i, m)) = 0] .

By Lemma 4, the set

{p(ef i, t{i)) | d(p(«, i, t(i))) = 0}

is finite. By Case d3, d(p(e, i, m)) = 1 if m > i(i). Since t(i) is recursive in
B, it follows that the set {n \ d(pnt) — 0} is recursive in B.

Lemmas 3 and 5 constitute a proof of (e)A(e) and (e)B(e).

LEMMA 6. C is not recursive in D.
PROOF. Suppose lim, c(s, n) = {e}a(n) for all n. Then e is stable, and by

A{e), the set {m(s, e) | s ^ 0} has a greatest member; call it M. Let w be so
large that

lim, c(s, n) = c(s, n) — u(y(s, %, e))

when s ^ w and % ^ M. If s 2: w, then either
(a) c(s, n) =£ v(y(s, n, e)) for some n S w(s, e), or
(b) m(s, e) = m(s — 1, e) + s.

If (a) holds, then M < m(s, e). Thus (b) must hold for infinitely many s. But
then M < m(s, e) for some s.

LEMMA 7. D is not recursive in B.
PROOF. Suppose d(n) = {e}b(n) for all n, where b{n) — lim, b(s, n) for all

n. Then lim, t(s, i, e) is finite for each i. Let t(i) = lim, t(s, i, e). By Lemma
4, there is an n such that d(p(e, i, t(i))) = 1 for each i^n. We shall find an i
such that i S: n and d(p(e, i, t(i))) = 0. We proceed as in Lemma 4. Define y
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as in Lemma 4. Fix i S y + n. Define w and s as in Lemma 4. Then the

final argument of Lemma 4 tells us that d(s, p(e, i, t(i))) = 0.

Let d be the degree of D. It follows from Lemmas 6 and 7 that c ^ d and

d £ b. We have b ^ d, since d(p(m, 1)) = 0 if and only if TO e B. It remains

only to show that D is recursive in C. We give an intuitive description of a

procedure E for computing D from C. Our description is such that the trans-

lation of E into a system of equations which define D recursively in C is not

difficult. We need a recursive predicate Q(u, v, s, e, i, TO):

u g e & v < m(s, u) & r(s, v, u) = 1 & pie, i, TO) < y(s, v, u) .

We also need a predicate R(s, e, n):

(u)(i)(m)(t)[u < e & t ^ » & p(u, i, m) < y(s, t, e)

— d(s - 1, p(u, i, TO)) = d(p(u, i, TO))]

& (i)(t)[i eB & tSn & p(i, 1) < y(s, t, e)

^d{s-l,p(i,l)) = d(p(i,l))}.

We need the next two lemmas to describe E.

LEMMA 8. Q(u, v, $, e, i, TO) & R(s, u, v) —»(w)miaQ(u, v, w, e, i, TO).

PROOF. We proceed with an induction on w ^ s. Fix w Si s and suppose

Q(u, v, w, e, i, TO) and R(w, u, v) hold. Recall that / , the recursive function

whose range is B, is one-one. It follows from Lemma 1 that v < m(w + 1, u)

and that

y(w, t, u) = y(w + 1, t, u)

for all t •£ v. But then R(w + 1, u, v) holds and r(w + 1, v, u) = 1, and con-

sequently, Q(u, v, w + 1, e, i, TO).

LEMMA 9. (w)(Es)sSv,(u)(v)[Q(u, v, s, e, i, TO) -* R(s, u, v)).

PROOF. Fix w, e, i and TO. For each u ^ e, define m(u) as in the second

half of the proof of Lemma 4. Define y as in Lemma 4. Thus y(s, v,u) ^ y if

s ^ 0, u ^ e and v < m(u). It is safe to suppose that w is so large that

(s)(v)(s > w & v ^ y —- d(s — 1, v) = d(v)) .

By Lemma 1 there is an s > w such that for any non-stable ^̂  ^ e, we have

TO(S, U) £ ns V r(s, Uj, u) = 0 V y(s. wy, it) = 0 ,

where M = ey; recall that if u is non-stable, then TO(II) - •«,-.
Fix w. and v and suppose Q(%, v, s, e, i, TO) holds. We show R(s, u, v).

First we suppose u is stable. Then v < m(s, u) ^ m(u), since Q(u, v, s, e, i, m)

holds; consequently,

(n)(t)[t S » & u < y(s, t, u) - > d(s - 1, n) - d(tt)l •
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since s > ir. But then R(s, u, v) holds. Now we suppose u is non-stable. Let
u = e.j. Then m(u) = n(j). If m(s, u) :S m(u), then v < m(it), and as above,
F(s, u, v) holds. Thus

r(s, m(u), u) = 0 V 2/(s, m(u), u) = 0 .

If r(s, TO(I<), «) — 0, then v < m(u), since r(s, v, u) — 1; this last follows
from (Nl). Suppose y(s, m(u), u) — 0. Then it follows from (N2) that
m(u) 3: m(s, u). But then v < m{u).

We return to the description of procedure E. Fix z. We compute d(z)
with the help of C. If z is not of the form p(b, 1) or p(e, i, m), then d(z) = 1.
If z = y>(6, 1), then d(z) = 0 if and only if b e -B. Suppose z = p(e, i, m). The
predicate (Es)(t(s, i, e) — j) is recursive in B, since

i(s, i, e) ^ i(s + 1, i, e)

for all s. We consider three cases:
(a) {s)(t(s, i, e) < m);
(b) (#«)(*(», if e) > m);
(c) lims t(s, i, e) — m.

With the help of B, we can decide which one of (a), (b) and (c) holds; note that
the monotonicity of t(s, i, e), regarded as a function of s, is vital. If (a) holds,
then Case $$ tells us that d(z) = 1. Suppose (b) holds. Let w* be such that
t(s, i, e) > TO for all sjg w*. We can determine w* with the help of B. Suppose
d(s, z) = 1 for all s < w*. Then d(z) = 0 if and only if

(Es)(u)(v)[s >: w* & ~Q(w, v, s, e, i, TO)] ,

since Case dl applies when s > w*. By Lemma 9, there is an s ^ w* such
that

(u)(v)[Q(u, v, s, e, i, TO) -» i?(s, w, v)] .

We can find s if we know the value of d(x) for some of the following x: x =
p(u, j , k), where u < e; x = p(j , 1), where j e B. (Recall that d(p(j, 1)) = 0
if and only if j e B.) If ~Q(w, v, s, e, i, m) holds for all u and v, then d(z) =
0; we only have to check u jS e and v < m(s, %). Suppose for some u and v,
Q(^, v, s, e, i, m) holds. Then we have R(s, u, v) by definition of s. By Lemma
8, it follows that

(w)aisQ(u, v, w, e, i, TO) .

But then d(z) = G if and only if d(w, z) = 0 for some w < s.
Finally, we suppose (c) holds. Let w' be such that t(s, i, e) — m for all

s 2; w'. We can determine w' with the help of B. Suppose d(s, z) = 1 for all
s < w'. Then d(z) = 0 if and only if
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(Es)[s ^w'& c(s, t) = 2

& (u)(v) ~ Q(u, v, s, e, i, m)

& Uh<i{d(s - 1, j) = U{yb(s, j , e)))] ,

since Case d2 applies when s 2: w'. If j < i, then

Vb(s, j , e) = lim, yb(s, j , e)

for all s Sg w', since t{w', i, e) = lim, t(s, i, e) = m. Let v* ^ to' be such that
for all s ^ v*,

c(s, t) = lim, c(s, i) & (i)3<<[d(s - 1, i) = d(j)] .

We can determine v* with the help of C and the values of d(x) for a; < z, since
j < i implies that j < p(e, i, m). If lim, c(s, i) = 1 or d(j) #= u(lim, i/6(s, j , e))
for some i < i, then d(z) = 1. Suppose this last hypothesis is false. Suppose
also that d(s, z) = 1 for all s < v*. Then d(z) = 0 if and only if

(Es)(u)(v)[s ^ v* & ~Q(tt, v, s, e, i, m)] ,

since Case d2 applies when s 2; v*. We now continue as in Case (6). With the
help of Lemmas 8 and 9, d(z) is easily determined.

That completes our computation of d(z) from C. To find d{z), we had to
know the value of d(x) for finitely many x : x < z; x = p(u, j , k), where u < e;
* = vU, 1)> where i e B. We had to know that d(p(j, 1)) = 0 if and only if
j e B. We used very heavily the fact that B is recursive in C.

The basic combinatorial principle of this paper is contained in Lemma 2;
this same principle appeared in simpler form in [6]. We combined this principle
with a further combinatorial principle expressed by Lemma 4 in order to show
the recursively enumerable degrees are dense. Lemma 4 was needed to show
D is not recursive in B. The prethinking which inspired Lemma 4 may be
described as follows. C is not recursive in B. So let us keep planting members
of C in D until D looks enough like C to guarantee that D is not recursive in
B. But let us not plant members of C in D with utter abandon, because we
wish to have C not recursive in D. At the same time let us plant B in D with
utter abandon so that B will be recursive in D. We plant a member of C in D
when we set d(s, p(e, i, t(s, i, e))) = 0; this happens only if c(s, i) = 2. (Recall
c(s, i) = 2 only if t e C.) In order to prevent us from planting too much of C
in D, we must have a method of unplanting members of C already planted in
D. Suppose we have planted i e C in D; that is, we set d(s, p(e, i, t(s, i, e))) =
0. If for some w > s, t(w, i, e) > t(s, i, e), then Case dl or d2 may give us a
chance of setting d(iv, p(e, i, 1 + t(s, i, e))) — 0; if this last happens, we have
unplanted i. We have the opportunity to unplant i if and only if
lim.,. t(s, i. e) > t(s, i, e). This happens if and only if {e}\i) is undefined or
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unequal to yb{s, i, e). If for some i, {e}b(i) is undefined, there is no need to
plant any member of C in D. If {e}b(i) is defined for all i, then Lemma 4 tells
us that we do not permanently plant infinitely much of C in D. Of course the
proof of Lemma 4 turns on the fact that C is not recursive in B.

There are still many open questions concerning the recursively enumerable
degrees; however, it may be possible to say something about the elementary
theory of recursively enumerable degrees if the following question is answered:
if b and c are non-zero, recursively enumerable degrees such that b < c, does
there exist a recursively enumerable degree d such that d < c and d U b = c?
In a talk at the Berkeley Model Theory Symposium (1963), J. R. Shoenfield
conjectured that the answer is yes. We agree with him, but we are unable to
prove it.
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A cardinal number m will be called measurable if and only if there is a set X
of cardinality m and a non-trivial, real-valued, ccunUbly [additive measure ft
defined on all subsets of X. (The teim rcn-trivial csn be tEken to mean thatyw (X) = 1
and (i ({*}) = 0, for all x e X). If 2K» = Ki, Eanach and Kuratcwski [1] proved
that Si is not measurable. {Jlam [12] proved that if there is a measurable cardinal,
then either 2S» is measurable or there exists a 2-valued measurable cardinal (2-valued
in the sense that the measure p can be assumed to take on only the values 0 and 1).
Ulam and Tarski showed that no cardinal less than the first strcngly inaccessible
cardinal beyond So can be 2-valued measurable (cf. [12], esp. footnote 1, p. 146).
Last year, using some new results of Hanf, Tarski proved [11] that many inaccessibles,
in particular the first beyend So> are DOt 2-valued measurable (for other proofs
cf. [6] and [2]). Even though the least 2-valued measurable cardinal, if it exists
at all, now appears to be incredibly large since Tarski's results apply to a seemingly
inexhaustible number of inaccessible cardinals, it still secrxs plausible to many
people including the author to assume that such cardinals do exist. Hcwever, this
assumption has some surprising consequences, for, as shall be outlined belcw,
we can show that the existence of measurable cardinals ccntrsdicts Gcdel's axicm
of constructibility.

We shall work within the system of [4] but shall not follow the notation of [4]
too closely. The axiom V = L is assumed in the foim of the following statement:

(*) If M is a class such that

(i) M s PM z [J Px;
xeM

(ii) x — y, U x, x, x\x, E\xe M, for all x, y e M;
then V = M.

(Above, the symbol P denotes the power set operation so that PM is the class
of all subsets of the class M, and \^J the union operation; of course, {Jx = \^Jy).

yex
The terms x and x I y denote, respectively, the operations of forming the converse

[521]
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of the relational part of the set x and of forming the relative product of the relational
parts of the sets x and y. The class E is the membership relation between sets;
hence, E \x = {<«, v> : u e v e x}). That the statement (*) is equivalent to F = L
follows essentially from the lemma given by Hajnal ([5], p. 133) and the theorem
of Shepherdson ([9], p. 186). The possibility of using the specific operations mentio-
ned in condition (ii) of (*) follows from some unpublished results of Tarski.

Let us now assume that measurable cardinals exist. Since the axiom of choice
follows from V — L, we can identify cardinals with initial ordinals. Let cox, then,
be the least measurable cardinal. Since 2K« = Si follows from V = L, we can use
the arguments of [12] to conclude that a>x must be the least 2-valued measurable
cardinal and that <ox is a strongly inaccessible number; hence, <ax = x. Let
fie {0, 1 }** be 2-valued, non-trivial, countably additive measure defined on all
subsets of x. (In general if A is a class and b is a set, then Ab denotes the class of
all functions with domain b and range included in A). We now employ the measure
(i to define certain relations Q^ and E^ over the class F* as in the theory of the
reduced products (ultra products) of relational systems (cf. [3] and [6]).

DEFINITION 1.

(i) 6 , = {</,g> :f,geV*A/* ({? < x : / ( f ) = g(f)}) = 1};

(ii) E, = {</,g> :f,geV^Afi ({f < x : / ( ! ) eg (f)}) = 1}.

LEMMA. 1. Q^ is a congruence relation for E^ over V.

The proof is very easy and uses only the finite additivity of the measure /*.
Our miin interest will lie in the structure of the equivalence classes f/Q^ under
the quotient relation EJQ^. However, the equivalence classes are not sets and the
quotient relation does not really exist. The next lemma gives some facts about
relation E^ which will allow us to replace the equivalence classes by sets thus over-
coming this difficulty.

LEMMA 2. (i) If{h e V : hEJ) = {heV: hE^ g], then fQ^ g;

(ii) {heV: hE, / } ={heV*:zk[ke ({Jf(t) \J {0})* A kEJ A hQ, k]};

(iii) ~ a / [ / e {V"Yt A y " [" 6 « -*/(»+D EJiy)}}.
Statement (i) shows that the equivalence class of / is determined by

{heVihEJ},

This is best proved by contradiction and requires the axiom of choice to find a func-
tion h which distinguishes / from g.

Statement (ii) implies that the number of equivalence classes included in the class
{heV: hE f) is bounded by the cardinality of the set ( U / ( f ) U {0})x-

t<x

Statement (iii) implies that the relation £„ is well founded. The proof of (iii) is
the first place where the countable additivity of fi is needed in the lemmas. The
countable additivity at once reduces (iii) to the corresponding statement for the
membership relation E, which follows easily from the axiom of foundation.
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Using Lemma 2 we can now prove a statement which shows that V" can be
mapped onto a class in such a way that the image of Q M is the identity relation and
the image of £"„ is the membership relation. The method of proof is essentially that
of [8] (Theorem 3, p. 147) or of [9] (Theorem 1.5, p. 171); see also [7].

LEMMA 3. There is a (unique) function a with domain V" such that for fge V",

(ii) a ( / ) = a(g) if and only iffQ^g;

(iii) a(f)ea(g) if and only if fE^g.

DEFINITION 2. M = {a(f) :fe V}.

In other words, the class M is the range of the function a; it is the class to which
•we shall apply the hypothesis of (*). We note first:

LEMMA 4. M s PM £ ( J Px.
XeM

The first inclusion follows at once from 3 (i) and Def. 2 To prove the second,
let y ePM. Using the axiom of choice find zeP(V) such that.;y = {a (g) : g e z}.
Let /e V be defined so that for f < *:,/(!) == {g (f) : g e z). Then yea ( / ) . Before
we can check the second hypothesis of (*), we need to prove a more general fact
about M that can be used in many different ways. In the following 0 (v0,..., c*_i)
will stand for any formula of set theory with free variables vo, •••, vk—\ and with all
quantifiers restricted to F(that is, no bound class variables). Further, ^-^(VQ, ..., Vk—i)
is the result of relativising all the quantifiers of &>(v0,..., w*_i) to the class M.

LEMMA 5. / / / 0 , . . . , / t _ 1 e K « , then <^^(o(,f0),..., <r(/*_i)) if and only if
M({S<x:0(Jo(ft ...,/*_! (I))}) = 1-

The proof proceeds by induction on the number of logical symbols in the for-
mula, and is exactly the same proof as that for reduced products (cf. [3], sec. 2).
Now by using the proper formulas and Lemma 4 one can easily prove that M satisfies
hypothesis (ii) of (*); hence, we have:

COROLLARY 5.1. V = M.

To obtain other corollaries, it is useful to have a short notation for the images
of the constant functions in V under the mapping a.

DEFINITION 3. x* = <r({<£, x> : I < «}).

COROLLARY 5.2. If x0,..., Xk—\ e V, then 0im(xo,.... xjt—i) if and only if
<*> (x0,..., Xk_j).

Corollary 5.2 is a direct consequence of Lemma 5 obtained by substituting the
constant functions for the/0 , . . . , /*_i. Next, if we combine 5.1 with 5.2 using the
formula <£ (x) that expresses in formal terms that K is the least 2-valued measurable
cardinal, we prove at once:

COROLLARY 5.3. » = K*.

To show how a contradiction is reached, we introduce next a special ordinal
number that does not correspond to a constant function but is the image of the
identity function.
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DEFINITION 4. d = a ({<£, O : £ < *}").

LEMMA 6. 7/ A < x, */;<?« A* < <*> < **.

Recalling that less than between ordinals is the same as membership, we see
that the inequality d < x* follows from 3 (iii) and Definitions 3 and 4. The proof
of the inequality A* < d reduces simply to the equation fi (£ < x : A < f}) = 1,
which follows from the fact that x is the least 2-valued measurable cardinal.

Notice that from 5.2 it follows at once that the mapping from sets x to sets x*
is one-one; hence, the set {A* : A < x) must have cardinality x. From 6 it follows
that d must have cardinality at least that of x. On the other hand 5.3 and 6 together
imply that b < x, which contradicts the choice of x as an initial ordinal.

In case one does not wish to assume that V = L, the above method of proof
can be used for the following definite statement: If x is the least 2-valued measurable
cardinal, then PPx e L.

UNIVERSITY OF CALIFORNIA AND
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STABLE THEORIES

BY

S. SHELAH*

ABSTRACT

We study Kj{X) = sup {| S(A) | : | A \ g %} and extend some results for
totally transcendental theroies to the case of stable theories. We then inves-
tigate categoricity of elementary and pseudo-elementary classes.

0. Introduction In this article we shall generalize Morley's theorems in [2] to
more general languages.

In Section 1 we define our notations.

In Theorems 2.1, 2.2. we in essence prove the following theorem: every first-
order theory T of arbitrary infinite cardinality satisfies one of the possibilities:

1) for all x, | A | = x => | S(A) | ^ % + 2 m , (where S(A) is the set of complete
consistent types over a subset A of a model of T).

2) for all x, \ A \ = % => | S(A) | ^ %{T\ and there exists A such that | A \ = x,

\S(A)\^x*°-

3) for all x there exists A, such that \A] = x, \ S{A) \>\A\.
Theories which satisfy 1 or 2 are called stable and are similar in some respects

to totally transcendental theories. In the rest of Section 2 we define a generalization
of Morley's rank of transcendence, and prove some theorems about it. Theorems
whose proofs are similar to the proofs of the analogous theorems in
Morley [2], are not proven here, and instead the number of the analogous theorem
in Morley [2] is mentioned.

In Section 3, theorems about the existence of sets of indiscernibles and prime
models on sets are proved.

* This paper is a part of the author's doctoral dissertation written at the Hebrew University
of Jerusalem, under the kind guidance of Profeossr M. Rabin.
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In Section 4, a two-cardinal Skolem-Lowenhiem theorem is given without proof,

and is followed by some theorems about categorical elementary and pseudo-

elementary classes.

Among them appear:

THEOREM. / / T is categorical in X, X > | T\ + Ko, A # inf{/*://° > fi + | r | ]

then T is categorical in every cardinal 2; X, and in some cardinal < / i ( | 2 i )

<M(2|r|)+).

THEOREM. If the class ofreducts of models ofTto the language L is categorical

in X, X > | T\, 2y > 1 T\ and the ordinal y is divided by (2 / T | )+ , then the class

ofreducts of models of T to the language L is categorical in 3 r

Some of the results of this article appear in my notices [8], [7].

After proving the theorems in this article, an unpublished article of J. P.

Ressayre [5] came to my attention. It deals with categorical theories and includes

results previously obtained by F. Rowbottom. Among the results in Ressayre's

article are a weaker version of Theorems 2.1 and 2.2, a partial version of 3.5, and

a somewhat weaker version of 4.6.

1. Notations. M will denote a model, | M | is the set of its elements, \A\ is

the cardinality of A, and || M || is the cardinality of the model M. We shall write

a e M instead a e | M |. a, /?, y, i, j , k, I, will denote ordinale, <5 a limit ordinal and

n, m natural numbers.

X, x>H will denote infinite cardinals. X+ is the first cardinal greater than X.

2 ( x a ) is defined by induction: 3 ( x O ) = x,2(x,<* + 1) = 2a(x>a), and 2(x, <5)

= U«<«3(Z»«); 3(«) = 3a = D(^o,a)- If X=K then H(X,p) = a,+f, where

Ka = cox is the cc'th infinite cardinal.

T will denote a fixed first-order theory with equality. If \j/{x) is a formula in the

language of T with one variable., i/'CM) is the set of elements satisfying \}/. M 1= ^[a]

if $[_a\ is satisfied in M. Without loss of generality we assume that for every

formula \fr(xy,-~,x,) there is a predicate R(xu•••,xn) such that (Vx)(i/'(x1,•••, xn)

= R(x1,---,xn))eT and that there are no function symbols in the language.

Morley [2] explains why there is no loss of generality here. The language of T

will be denoted by L(T). The predicates in L(T) will be {Rt: i < | T \ }. T is complete

unless stated otherwise. Usually x, y, z will be individual variables, x, y,z— finite

sequences of variables, a, b, c will denote elements of models, and a, b, c will de-
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note finite sequences of elements of models. It is implicitly assumed that different

sequences of variables contain no common variables. < > will be the empty sequence.

dt or d(i) will be the i'th element of the sequence a. Instead of writing (Vn < o ) (dtteA)

we shall write dneA or tie A. A,B,C will denote substructures of T-models, and

when we speak about a set A, or define A, we speak about its relations as well.

That is we do not distinguish between the substructure A and the set A. By

A <=• M we mean that Ac \M\, and the relations on A are the relations on M

restricted to A. T(A) is the theory T together with all the true sentences i?[a],

a 6 A, and T(A) is a complete theory. When writing R[a] we assure implicitly that

the length of the sequence a is equal to the number of places in the predicate R.

We define p to be a type on A iff p is a set whose elements are of the form

\j/(x, a), where deA, and \j/ is an arbitrary formula in L. q, r will also denote types.

If for every ip, deA^> \j/(x, a) e p or ip(d, a)ep, p is called a complete type on v4.

If A is not mentioned, then it is assumed A is the empty set. When we speak about

a type we implicitly assume that T(A) U p is a consistent set. We define p \ A

= {\jj{x, d)ep:deA}. If not otherwise assumed x = x in p.

ST(A) is the set of complete types on A. As T is fixed we write S(A). If / is a set

of predicates then p\l = {i//ep:[j/= R(x,d) or il/ = -^R(x,,d) and Re I},

Si(A) = {p\l:peS(A)}, p\R = p\{R}, and SR(A) = S{R}(A). By our notations

we can distinguish easily between p\l and p\A. On S(A) (S^A)) a compact

topology is defined by the sub-base which has the following sets as elements:

for every <f> = \l/(x,d), V^ = {p:i]/(x,d)ep}. M realizes a type p on | Af |, if there

is an element b of M such that for every \ji(x, d)ep M t= i/̂ [i>, a] (that is : ij/(b, a)

is satisfied in M). M omits p if it does not realize p. M is called X-saturated if

every type on A with A cr M, | p\ < X, is realized in M. If M is || M |-saturated

it is called saturated.

nix) is the smallest cardinal such that if T with | T | = / , has a model omitting

a type p in every cardinal smaller than fi(%) and not smaller than \T\, then it has

such a model in every cardinal ^ | T\. In Vaught [9] the following results are

mentioned:

tix) < 2y where y = (2*)+; /i(^o) = 3 « , ; Kria) = ^ O H I ) when

cf 5 = to.

T is categorical in A if all models of T of cardinality X are isomorphic. />c (Tu T)

is the class of reducts of models of 7\ to L{T). (We assume implicitly that
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T = Tj nL(T).) pc(Tu T) is categorical in A if all models in pc(Tu T) of car-
dinality X are isomorphic.

2. On possible cardinalities of S(A)

DEFINITION 2.1: K^X)=sup{ | S(A) \: | A j ^ A} = inf {n: | A | ^ A => | S(/l) | < ju}.

NOTATIONS : r\, x will denote ordinal sequences of zeroes and ones. For 0 ^ i < /(?/)
j/i is the i'th element of the sequence, where l{n) is the length of the sequence.
,̂i(>) w j u denote \j/ if ?j(j) = 0, and —7 ijt if >/(Q = 1. rj | a is the sequence of the first

a elements of r\.

THEOREM 2.1. 1) / / there exists A, \A\m = \A\, \S(A)\ > \A\. Then for
every X, KT(X) ̂  inf {(2*)+ : 2X > X}.

2) There exists A as mentioned in 1, iff tthere exists a predicate R such that:

Tjt = {(3x)(A0gi<«,,)K(*,/"7(0)-Kn) < co} u Tis consistent.

REMARKS. The same argument will show that if there exists an A such that
| A | m < | S(A) \, then TR is consistent.

Proof. Let us assume that A satisfies | A | | T | = | A \ , \S(A)\>\A\. Then we
shall show that there exists a consistent FR as mentioned in 2, and that the con-
sistency of FR implies the conclusion of 1. This will prove the theorem.

Now for every R, we define px ~ p2 (modi?) iff pt \R = p21R. This is an equi-
valence relation on S(A), which divides it into | SR(A) | equivalence classes. Since,
for every plfp2eS(A), p1¥:p2, there is an R such that P1rtJP2 (modi?),
| S(A) | ^ | IT* SR(A) | = n « l S K ( 4 ) I • I f for every R, \ SR(A) | ^ | A \, then
\S(A)\ ^ |v4j|r | = | .4 | , a contradiction. Hence, there esxits an JR such that
| SR(A) | > | A | ^ Ko. We shall prove that FR is consistent.

For every a such that deA, R(x, a) divides SR(A) into two sets: the types p such
that R(x, d)ep, and the types p such that —TR(X, d)ep. If in every such division
one of the sets is of cardinality ^ | A |, for example the set {p e SR(A): R(x, dt(s) ep}
then,

I SR(A) \ = \{J{pe SR(A): R(x, a)t(5)e p} u {p e SR(A): for all a
a

R(x, a)t(a)$ p} | S S | {p e 5^(^): i?(x, a) t(s)e p} | +1 = | ̂  |, a contradiction.
d

So there exists d= d° such that R(x,d° ) divides Sj{(yl) into two sets of car-
dinality > |.4|. For every one of them we can repeat the above discussion and
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find, d <0>, a a > such that there exists > | ^ | types p with either R(x,d° ) ,

R(x,d<0>)ep; R(x,d°),^R(x,d<0>)ep; ^R(x,d°), R(x,d<%>)ep; or

-rR(x, a ° ) , -^R(x, d<iy)<=p. We can continue denning d", and proving by it the
consistency of TR. And so we have shown one direction.

Let x = inf {/i: 2" > X). We define

It is easy to see that if r is not consistent then TR is not consistent. Let M be a model

of F, and A± the set of elements which realize the variables {{f^)n: l{rj) = %,

y<X,n< l(fb)}- The cardinality of At is ^ S , < Z 2 I T I ^ X, and in M 2* different

complete types on Ax are realized. (The types realized by elements which realizes

the variables *„ ZO/)=jf). So \Aj\^X. | S ( ^ 1 ) | ^ 2 Z > X, and so iCT(A)^(2z)+> A+.

DEFINITION 2.2. If in T there is no predicate R such that TR is consistent,

T is called stable.

DEFINITION 2.3. If for every X, KT(X) ^ X+ + ( 2 | r | ) + then T is called super

stable.

THEOREM 2.2. 1) If T is stable and there exists A, \A\^.2lTl such that

S(^4)j>jy4|, then for every X, KT(X)>XXo. So there exists arbitrarily large

powers for which KT(X) > X+ + (2 | T | ) + .

2) There exists A as mentioned in 1 iff there exists a sequence

of co predicates <J?": n < co} such that

F<R?: nm<> = {Rm(xf, f'h) s-^Rm(xf\ f - * ) : for all

/ = <»<»—>»m-l.'m»-.'|- : I «*>>,/' =<io.—»»m-l»»m»-"»il»-':'<fl)>>

i'm *im,g = <io»-",im-i>» h = {im,Q and

i,,ij < co for all I < co}

is consistent.

3) / / T is super stable and there exists A with \ S(A) \>\A\,\T\

and if X > j A \ + | T |, X <, S(A) is regular then there exists B<=A, \B\ = \T\

such that ||S(B) | ̂  X. We can conclude that, for super stable T, if KT(X) > X+ > \ T\

t h e n K r ( | T | ) > | T | + .

Proof. The way we prove 1 and 2 will be similar to that of Theorem 2.1. First,
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we shall prove from the assumption of 1 that there exists (R":n<a>> such that

F <i?": n < a>) is consistent, and then that if F (Rn: n < a>> is consistent then for

every X there exists A, such that | A | = X, | S(A) | ^ ANo. Then choosing such an A

for X = K(21T|,a>), we close the circle.

Let A be as in the assumption of 1.

LEMMA 2.3. There exists R°, a predicate of L(T), such that the partition of

S(A) by the equivalence relation (modR0) contains at least \T\+ classes or

cardinality > \A\.

Proof of the lemma. I fno t - |S (A) | g ER|Sj,(A)| + | T | | T | = | A |, a contra-

diction.

For every one of the | T \+ classes there exists Rt that divides it in a similar

manner. But there are only | T | predicates. So there exists R1 such that there are

| T\+ classes (modi?0) such that in each of their partitions by R1 there are | T | +

classes of cardinality > | ^ | . It is easy to see that we can continue to define Rn

for n < (a.

Now (Rn: n<a>y is defined. By the construction just mentioned there exists for

every n {p(j; i0,---,im-i):j < | ^ | +> h < \ T\+,m < n) such that the following

three conditions are satisfied:

PU;io,---,im-i)^SRm(A); i f ; # 7 ' then K / : i o . - " , ' m - i ) and pU';io,—,im-i)

are contradictory; arid p{i^)Kj P{i2;il)^j p{iz,iui2)\J ••• \j p{im; io,---,im-d is

consistent.

From this it can be easily seen that T(Rn:n< co> is consistent. Now we shall

prove that if T < R": n <co> is consistent, then for every X there exists an A such

that \A\=k, I S(A) \Z:X«°. Let r = T U {Rm(xf, f-h) = Rm(xr, f - h ) : for, all

m<co, f = <io,—,im-i, im,---,h,----l<(oy,g = <.i0,--,imy, h = {i'm,Q, and

/ ' = < io,--,im_ui'm,--,i'r--:l<co} such that (Vy < co) (iy < XAi'j < X)}.

If F is inconsistent, then a finite subset of F is inconsistent and so F < R": n < (o}

is inconsistent, a contradiction. Therefore F has a model. Let A be the set of

elements realizing the variables appearing in yg'h. Then elements realizing different

variables from {xf:f= < i0, •••,(„••• :l< co}, it<X} realizes different types on A.

So\A\<i:m<aXm = X,\S(A)\^X«<>.
Now it remains to prove part 3. We can try again to build the construction that

appears in the beginning of the proof replacing "more than | A | " by "at least A" >

As that attempt must fail by our assumption, we get a set S of ^ X types in S(/4)-

such that for every R there are no more than | T | equivalence classes of power ^ X,
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{S£R) •• i < JR ^ I T | }. Now | S - U« S£R) \ < X and | S - nR\Jt S,(R) \

^ S K I s ~ [Ji S'(-R) | < ^ and this implies that | OR (J{ S;(i?) [ ^ 2 > | A ( .

If Pi>P2 e n K U ' S ' W ' ^i ^ JP2 there is an i? such that pt \ R # p2 \ R; but pj | R is

one of | T| elements of {p | R: p s ( J f S^i?)} (by the definition of Sj(/?)), and so there

is i4(R) c= ̂ , |A(il) | = \T\ such that for every Pl,p2 e nj,(J,S,(«)if PlR \^p2\R

then Pi | A(R) * p2 \ A(R). It follows that | S({JR A(R) \ ^ | nR(J,.S;(i?) ^ A, and

IU«^)NITI-
REMARK. By a more refined proof we can replace r<i?":n<c»> by the more

elegant set

r\Rn:n<co} = T(J {(3x) A [ ^ , ^ ) A X' - ^ (x ; / ) ] :m < co,
j = 0 ft = 0

S = <'o>"->i/>>/= <'<>>•••. iy-i.^X 'o, •" ,»m<«}

DEFINITION 2.4. We shall define Sj(^) and TR*(A) by induction on a, where / is

a set of predicates in L(T). S?(A) = S^A). TRj(A) will be the set of types in S^A),

which have, in every extension B of A, at most one extension which is an element

of SRfl). SKA) = S,04) - (J i < a ITliOl).

REMARK. An analogous definition appears in Morley [1], 2.2 and footnote 13.

THEOREM 2.4. / / R is a predicate of L(T), FR is consistent iff SR(A) ^ 0 for

every a and A. If for some a and A SR(A) = 0, then there exists /? <a>1 such

that for every A, SR(A) = 0.

Proof. As in Morley [1], 2.7, 2.8.

REMARK. In fact, /? < co.

DEFINITION 2.5. 1) If TR is not consistent, then to every type p e S(A), we define

RankCK,^) as the first a such that p | R e TRR(A).

2) If T is stable then Rank(p) = < Rank(R;, p): i < | T | >.

LEMMA 2.5. It is possible to define a lexicographic order on Rank(p),

such that there is no monotonically decreasing sequence of type | T | + .

Proof. Immediate.

THEOREM 2.6. 1) If Be A, and peS(A),then Rank (R, p) ^ Rank (R,p)\E) and
Rank(p) <; Rank (p\B), and there is no more than one extension q of p
\B, qeS(A), such that Rank(g) = Rank(p| B).
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2) For all A, and p e S(A), and for every R, there exists a

finite set Be A, such that Rank (2?, p) = Rank(R,p\B).

Proof. See Morley [2] 2.4, 2.6. Notice the difference in terminology. (Rank

here is rank and degree there.)

3. On some properties of stable theories.

THEOREM. 3,1. If M is a model of a stable theory T, | T\ < X = \A\ < || M ||,

KT(X) = X + and A a substructure ofM, then there exists a set Y in M, \ Y | = X+,

which is indiscernible on A (that is, for all yu •••,yh; zt,---,zneY. al,---,ameA,

M\=R(y1,---,yn,ai,---,am) = R(zu---,zn,a1,---,am) if for every i¥=j, yt¥= y} and

REMARK 1. A similar theorem, for totally transcendental theories appears in

Morley [2] 4.6. Rowbottom has a weaker unpublished theorem.

REMARK 2. In fact we can prove more: in every B c M, [ B | > X, and for every

regular x ^ | B \ , x> X, there is such a Y, provided \B\ < % => | {peS(A): p is

realized in M} | < %•

Proof. In S(A) there are X types, and so at least one of them, p, is realized at

least | A | + times. Let the set of elements of M realizing p be B.

LEMMA 3.2. There exists Au \ A± | = X A <= A1 c M, and p1 eS(Aj) p1 => p,

such that, if M ZJ Bt r> Ax, \ Bt | = X, px has one and only one extension of the

same rank in S(Bj) and the extension is realized |g X+ times in M.

Proof, of 3.2. Let us assume the lemma is not correct. We shall define by

induction Ct which fulfills the following conditions:

1) Ct = {<A(k,j),p(k,j)y.j;k£i} where p(i,j) eS(A(i,j)\ A(i,j) => A,

A(ij)\ = X.

2) If p(i,j) f p(i',j') then i < V and there exists p(i + 1J") such that

P(U) * P(i + 1 J") <= P(i',j').

3) If P(i,j)5 P(i + l,f) then Rank (p(i,j)) < Rank (p(i + 1,/')) or \B(i,j)\

> X ̂  | B(i + l,j') \, where B(i,j) is the set of elements of M realizing p(i,j).

4) For every i,j,i',j', p(i,j)<= p(i',j') or p(i,j) => p(i',j') or they are contra-

dictory (that is, T U p(i,j) u p(i',j') is inconsistent);

5) Q c C,-for i<j.

We shall not prove the conditions explicitly as they are obvious from the

construction.
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Let Co = {{A,p}} = «^(0,0),K0,0)>}.

Let us define Ci+1. If | B(i,j) | > A then by our assumption there exists Alc M,
A(ij)<=Alt [ At |=A such that every extension of p(i,j) to ^ has a smaller rank or
is realized at most A times. Then we add to Ct (A{i + l,k),p(i + l,fe)> (where
.4(i + 1, fc) =-^j) for every extension of p(i,j), p(i + l,k), which belongs to
S(A(i + l,fc)) and is realized in M. Their number is ^ X as l ^ [ = A implies
| S(̂ 4!> | ^A. We do so to every (A(i, j), p(i,j)} e Cu and we get Ci+1. (We have
enough indices so that there will be no confusion.) It is easily seen that | Ci+11
g | C, | + A| C,|, and for every j , \A(i + 1J) | g | A(i,j')\ + X g A for some j ' .

Now we define Ct. Let ^ S p 1 ) < (A2, p2} if A1 <= A2 and j>1 c />2. I
<v4',p'>i < / is an increasing sequence, thenU;<J<.4\;>'>:= ({JKJAWJ^J p'}.
The elements of Cs will be the elements of \Ji<sCu and unions of increasing
sequences in^Ji<4'Cj, <^41,p1>, such that p1 is realized in M.

It will now be proved that C|T|+ = C|T| + + 1 = C|T| + + 2 = •••. It is sufficient to
show that (J;{Cj:i < |TJ+} = C|T|+. That comes from the construction, for if it is
not correct, there is an increasing sequence ((A1, ply : i < | T \ +>. Then Rank (/>,-)
is decreasing sequence, and by Lemma 2.4 that sequence cannot be strictly decre-
asing, so there exists an i such that Rank(pf) = Rank(pj+2)= •••. By condition 3
\{aeM: a realizes pi+1}\^X (as Rank(p() = Rank(pi+i) and p^ pi+1)
and similarly |{aeM: a realizes Pf+i}| >A (as Rank(jpi+1) = Rank(pi+2) and
Pt+i 5 Pi+i)> a contradiction.

We shall now show that | C{ j g A and j /l(i,/) | ^ A for i g j 7 j +. If not, let k
be the first ordinal that contradicts our assertion. If fc = i + 1 then | Ck \ g [ C, |
+ A | Cj | ^ A and for every;, for some/ | A(k,j) \ ̂  j ^(ij") | + A = A (as remarked
in the definition of Ci+1), so that k has to be a limit ordinal, and k ̂  | T\+. Let
^ = U W i ) : i ; ' = ' } ' Now it can be seen easily that \Al\ <j|C,| • maxj ^.(iJ)|^A
for i < k, and from that, and the construction, it can be easily seen that \Ak\ ^ A,
and therefore [ S(Ak) | = A. Now the {B(k,j) :j} are disjoint sets, and every one of
them is the union of sets realizing some complete types on Ak, and by the con-
struction B(k,j) ?£ 0, and so the number of B(k,j) is no more than A. Thus
I Ck - \Ji<k Ci | ^ A. We can conclude that j Ck | ^ | Ck - \Ji<k Q | + £,-<* | Q |
gA + fc A = A, a contradiction; and so I C|T|+ I ^ A, |^41T' | g A.

For every b with fc e B(0,0), the set of (A{i,j), p(i,j)y in C m + such that b e B(i, j)
is an increasing sequence in CjT|+. The union of the sequence is also in C^ +, and
so there is a last such element in Cm+, (Ab,pb}. The set of elements of M realizing
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ph will be denoted by Bb. Now if there is an element of Cm + greater than </46, pb},

then by the construction of Ci there is such an element (A', p'} such that b realizes

p', in contradiction to the definition of (Ab, pb}. Therefore | B * | ^ A . | NOW

B = J3(0,0)c \J{Bb:beB} = \J{B(i,j):\ B(i, j) \ < X\j;i < \ T\+} X < | fi|
^ | C|T|+ | • X = X — contradiction.

So we have proved Lemma 3.2.

It follows that without loss of generality we can assume that for every C, such

that AcC <=. M and | C| = X, p has one and only one extension in S(C) which is

of the same rank, and that extension is realized at least X+ times. Let the set of

elements of M realizing p be B.

We define by induction the sequence {yt:i < X+}. y0 is an arbitrary element of B.

If we define yt for every i < j < X + , then y} = y(J) will be an element of M that

realizes the only extension of p to a type q in S(A ( J {yt: i < j}) such that

Rank(p) = Rank(g). By the definitions of B and p, there is such a yy-.

LEMMA 3.3. / / it < i2 < ••• < ih < X+, j\<---<jn<X+ then for every

predicate R in T and every a, deA,

M ¥ Rlyii,), -,y{Q, a] = K[K/i), • • • , X U «J-

Proof of Lemma 3.3. Without loss of generality ik = k.

Now, in the construction of the yh in every stage in S(/4(J{y;: i <j}) there is

only one extension pj of p such that RankO^) = Rank(p), so the type which yj

realizes on A[J {yt: i < j} is independent of the choice of y,-. If {z;: i < j} satisfies •"

for every i, z; realizes a type qt on A^J{zk:k< i} such that qt •=> p, Rankfe)

= Rank(p), then it can be easily proved by induction that ^y,,,---, yin> satisfies

the same type on A as <zl-1,---,"',z,-n>. Now, if we choose yJl as the first y, and yj2

as the second, etc., they will satisfy the same formulaes as yu ••-,}'„. It remains to

prove that after choosing yh, •••,yjt. as the first k y's we can choose yjktl as the

next y. That is, perhaps yjk+l realized a type p on A[_){yJ-i,---,yjk}, such that

Rank(p) < Rank(p). But if q is the type ofyJk+lon A\J{yu -,yt} (I =jk+1 - 1)

then Rank (p) = Rank (q) ^ Rank (p) < Rank (p), contradiction. So Lemma 3.3

is proved.

LEMMA 3.4. Y is indiscernible on A.

Proof. The proof is the same as in Morley [2] 4.6, since in every cardinal %

there is an ordered set that has more than x Dedekind cuts.

So Theorem 3.1 is proved.
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DEFINITION 3.1. Let K be a class of models, A a substructure of such models,

M e K is called X-prime on A, if for every Mx => A, M t e K, there exists an iso-

morphism from M into Mt that is the identity on A.

THEOREM 3.5. / / T is a stable theory, and \A\ ^ ~Lx<k2x^ \S(A) j < 2X,

or X^ | T | + , then among the ^-saturated models of T, there is a prime model on

every substructure A of a model of T.

REMARK. An analogous theorem appears in Morley [2] 4.3.

DEFINITION 3.2. p e S(A) is called A-isolated if there is a type px <=. p, | p1 j < A,

such that p is the only element in S(A) that includes pL.

Proof of 3.5. In order that the model we will build on A be A-saturated, we

should realize every type of cardinality < A, and in order that it be a prime we

should realize only types which are realized in every A-saturated model including A.

So it is sufficient to show that if p is type on a set A, j p j < A, then there exists an

extension px of p, px e S(A), and pt is A-isolated. For if it is right, we can add an

element to A for every A-isolated type. And if we continue adding such elements

for every type p, | p | < A (by adding an element which realizes a A-isolated complete

type containing it) we shall get the wanted prime model.

Now let A ^ | T | + and | p \ < A where p is a type on A. Among the elements of

S(A) containing p, there is a q with minimal Rank (JR0, q), so there are a finite

number of formulaes which define the type completely with regard to Ro (among

the extension of p). We adjoin these formulaes to p, and continue with R1,R2,---.

Because of the compactness theorem, this operation does not lead to a contra-

diction at the limit. So after | T | steps we get the required type — a type of power

^ j p | + | T | < A, which has only one extension in S(A).

It remains to deal with the case |^l |^I! /<A2> r=>| S(A) | < 2X. Let p be a type

on A, 1̂ 1 < A, which contradicts our conjecture. Let p = p<>- If p<> has more

than one extension to a type in S(A), then there is a formula R(x, a), such that

P<o> = p{J{R(x,d)}, and pa> ~ p[J{ — R(x, a.)} are consistent. We continue with

p<t> and jp<0> as with p<y and can define pn for every sequence r\ of ones and

zeroes, l(t\) ^ A, | pn \ g A, such that:

1) if r\x is not is not an initial segment of r\2 or conversely, then p, , u pnz is

not consistent;
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2) if t]± is an initial segment of rj2, then pni<= p n 2 ; and

3) if l{n) is a limit ordinal then Pn=\Ji<mPn\i- Then {pn:l(ri) ^ X} are 2X

contradictory types on a set of cardinality ^X+^x<k2x =T,<k2x <2k, a contra-

diction.

4. On categorical elementary and pseudo elementary classes.

THEOREM 4.1. Let M be a model of a not necessarily complete theory T,

Q predicate in L(T), p a type. Let ( 2 | r | ) + = y.

1) If M omits the type p, and ^ ( | Q(M)\,y) ^ j|Af ||, then in every cardinal

2: | T | , there is a model M ( of T which omits p and such that \Q{Mi)\ <- \T\.

2) If M omits the type p, and <2 ( |2(M)| ,y) ^ | |M|| , \Q(M)\ ^ $y then for

all cardinals x ^ A. 2; [ T\, there is a model Mt of T which omits p and such

that \QHMJl = 1,1 M^x-

Proof. The proof is by the methods of Morley [3] and is not given here.

(Also see Vaught [9].)

REMARKS. The theorem can be slightly improved as don by Morley [2], in

analogous theorems.

THEOREM 4.2. If pC(TuT) is categorical in a cardinal X>\Tt\, then for

every x, | 7\ | ^ x < K KM = X+, and so T is stable.

Proof. By Morley [1], 3.7 (the proof for the non-denumerable case in the same)

there exists a model M of Tu || M || = X, such that for every A<= M, at most

| A | + | Ti | types on A are realized in M, and it follows from this that the same

holds for the reduct of M to L{T). If KT(x) = x + , | Tt | g x < K there is a reduct

to L(T) of a model of Tt of cardinality X, for which there exists A <= M satisfying

| A [ = x, and > x types of S(A) are realized on A in the model. This contradicts

the categoricity.

THEOREM 4.3. IfpC (Tu T) is not categorical in Ax = 3 (y • a) > | 7\ | (where

7 = (2 | T ' )+ , a > 0), then it has a non-\ T \+-saturated model in every car't

nality. This is also true if we replace the assumption by: "pC Tu T)has a n on-

saturated model in Xt".

Proof. As any two saturated models of the same cardinality > / are iso-

morphic (see Morley and Vaught [1]), the second assumption follows Irom ths

first.
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Let M be a non-saturated model such that || M fl = Xx and M is the reduct to
LiT) of Mv Then there exists A<= M | A | < | M \\, and p eS(,4), such that p is
omitted in M. When we adjoin to Mx the relations 2(M) = A and to every predicate
R of L(T) «A*(M2) = {a: R(x, a) e p}, we get a model M2. Now | Q(M2) | < | M2 |
and M2 omits p t = {(Vy)(AiQ(yd-+R(x,y)^^R(y)):R a predicate in L(T)}.

By 4.1 in every cardinality there is a model M3 of the theory of M2 such that
|Q(M3)| £\Tt\, and M3 omits the type {R(x,a):dteQ(M3),M3 N ^ [ a ] , K a
predicate of L(T^} which is a type on a set of cardinality ^ I Ti I (its consistency
follows from the theory of M2), and this proves the theorem.

LEMMA 4.4. l ) / / | T i | ^ X, X is regular, and \A\ < X=> \ST(A)\ ^ X, then
p C Tlt T) has a saturated model in X.

2) / / | TL | S K H ^ A, n is regular and \A\ ^ X => |S r ( ^ ) | ^ X,
then pC(T2,T) has a X-saturated model in X.

Proof. Since the proofs are essentially similar, we prove only 1). Let
Ti = Ui< IT. | Tiwhere Ti c TV'if i < j and T/= Tt for, i ^ | Tx \ and | T[ | < X. By
the conditions in 1 we can easily define a sequence (M':iSXy such that:
|i | g I M % < X; Ml as a model of 7i'; if i <j then the reduct of Mho L(T{)
is an elementary extension of M'; the L(T)-types on Ml are < pj: j <j0 g A>
and pj is realized in MJ; M6 =\_}i<sMl. Mx is the required model.

COROLLARY. 1) If T is not stable thenpC(TuT)hasa saturated model in a
regular cardinal X ^ | Tx \ iff % < X = 2* ^ X.

Proof. Suppose there exists Xi<&< 2Z1. Let % = inf {%: 2Z > X). As T is not
stable, by Theorem 2.1, there exists A, \A\-$, E A < Z 2 " J£ A such that there exists
2X > X contradicting types of power % < X on A. If T has a saturated model M of
power X, then there is ^4' <= M, with .4' isomorphic to A. Thus in M more than
|| M || contradicting types have to be realized, a contradiction. The opposite
direction in trivial by 4.4.1, since always, S(A) g 2MII + | r | .

THEOREM 4.5. 1) / / | 7\ | = x« and T is not stable then the number of iso-
morphism types of pQ{Tt, T) in K̂  is at least \p — a|.

2) J/ | Ti | = Ka and T is not super stable, then the number of isomrophism
types ofp CTiXT1)inK,, is at least \(J1 - a)/c»|.
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3) U P C (Ti, T) is categorical in a cardinal > | Tx |, different from
M{x: X^T,f° > x+\T\}, then a) T is superstate, b) KT(X) = X + for X ^ | r | .
c) P C (Ti, T) is categorical in a cardinal >\Tl\iff all models in it are satu
rated, and d) p C (Ti, T) is caterogical in 2 (7 • a) for y = (2m)+ ,

«>o, ao.a)>|r1|.
Proof. 1, 2) If KT(X) > X + , then for every %^ A+ there is a model M in

pC (Tu T) such that there exists a set A with more than | A | types realized on it in

M, IA I = X, and there is no such set of greater cardinality. (The existence is proved

as in 4.2.)
3) By 4.2, for every 1 with | Tt | ^ x < K KM = X + • So, if X is regula^

then there is a model in p C (Ti, T) of cardinality X which is saturated by Lemma

4.1.2. If X is singular, then X > x = mi{X:x ^ | T\,x*° > %}, and so KM = X+,

and as xNo > X, this implies that T is super stable. As KT( | Ti |) = | 7\ | +, by 2.2

Kj{X) = A+, and so by Lemma 4.4.1 pC(Tu T) has a | Ti | + -saturated model

in X. Therefore by 4.3, p C (Tu T) is categorical in 3 (y • a) (y = (2|T|)+, a > 0),

and so KT(ji) = n+ for every ft 2: | 7\ |. That implies by Lemma 4.4, that in every

power [i > I Xi j and regular x = /̂> there exists a model of power pi in />C (T1; T),

which is /-saturated. So if PQ (7^ T ) is categorical in p, its only model in \i is

saturated. It is clear that if pC (Tu T) has only saturated models in /i > | T | ,

then it is categorical in ji.

REMARK. In 4.3 and 4.5.3 we apply a two-cardinal theorem to a categoricity

theorem. In fact, a more general connection exists among the following conditions

o n / , X, / i ( x ^ A , n):

1) If I TI < x and T has a model which omits a type p and such that || M || = A,

1 g(M) I < X, then T has a model M' which omits p such that ^ = | M' | > j g(M') |.

2) If I Ti I < x and p C(Ti T) is categorical in \i, then it is categorical in X.

3) If I Ty I < x and every model of power /1 in p C (Ti, T) is homogeneous, then

the same holds for X.

1 implies 3. (Keisler proves this in [1].) 1 implies 2 if \i ^ inf{A1:A1+ ^ x,

Xi"}£ At} or if Xi<X =*" K(Xi,a>) < / . 3 implies 1 if x is not greater than the first

measurable cardinal, and there is no weakly compact %i such that Xi < X ^ (2x0+-

2 implies 1 if in addition \i # inf {At: X\ ^ X,^i° ^ ^} or Xi < X =*• K(Xi» co) < x.

THEOREM4.6. / / T is categorical in a power X, X>\T\, A^inf{x:x*°>X + | T\},

then there exists a cardinal Xo, such that T is categorical in every cardinal
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§; Xo, and is not categorical in any power x, \ T\ < X < XQ. Furthermore Xo is

such that Ao < K | T | ) < n ( (2 m ) + ) .

Proof. If for every x < K j T |) T has a model M which is not [ T\+-saturated,

I] MI 2: x, then it has such a model in every cardinal > | T\ a contradiction by 4.4.

(For if A <= M, | 41 ^ | T|, p e S(A), and /? is omitted, we adjoin to M the constants

{Cj: i < | TJ} a names for the element of A, and relations as in 4.3, and the result

follows by the definition of n( | T\).) Now if M is a | T\ +-saturated but not saturated

model of T, then there exists A <= M, j A j < |j M ||, ) J | > j T j , p e S(A), such that

pis omitted. A s K r ( | ^ | ) = |v4|+ and | |M|| > \A\ > \ T\ => ||M || > | T\+, there

exists an indiscernible set Y over A, | Y| = | ^4 | + , by Theorem 3.1. If

Y = {y(: i < | A |+}, let B = A u {y(: i < x}}> where {y,: i < x] is indiscernible

over A, and Mj be a prime model over B among the I TI+-saturated models,

which exists by 3.2. Now it will be proved that p is not realized in Mv In the

construction of Mt, we adjoined to B the elements of {c;: i < \B\ } one after

another, such that c,- realizes a | T | +-isolated type on B Ua{c,-: i<j}, defined by pj

|pj | < | T|+. If ck realizes p, let B1 = {ck}, and Bi+1 = B((J {b : b is mentioned

i n # , and cteB^. Now HJ,B, | ^ | TJ, and it can be easily seen that in a prime

model over A u ({yt: i < x} n ( J i < 0 ) Bj), p is realized, and so it is realized in M

a contradiction, so p is not realized in Mt. As we can take x=D y, (2''T|) + \y, x > \AI,

it follows that T has a non-saturated model in x, in contradiction to 4.3, 4.4.3.

So every | T|+-saturated model is saturated. If T is not categorical in Xu then

it has a non-| T|+-saturated model of cardinality Xu and so T is not categorical

in any cardinal A2. | T\ < X2 g Xt. As we have shown that there exits a cardinal

X < n{ j T |) in which every model of T is | T\+-saturated, the theorem follows.
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THE PROBLEM OF PREDICATIVITY

J. R. SHOENFIFXD*

Durham, N. C.

One of the principal objectives of the foundations of mathematics is to
"explain", as far as possible, the basic concepts of mathematics. In
the simplest case, concepts are explained in terms of other concepts.
Thus the concept of rational number is explained in terms of the simpler
concepts of integer and ordered pair. The object is not to reduce all
problems about rational numbers to problems about integers and
ordered pairs, but to be able to say that we understand the notion of
a rational number as fully as we understand the notions of integer and
ordered pair.

In the case of such fundamental concepts as natural number or set,
such a procedure is impossible; we cannot hope to explain these con-
cepts fully in terms of other concepts/1) However, we can hope to ex-
plain the concept of set in stages. Thus we might start with certain
concepts which we regard as being thoroughly understood; these might
include some particularly simple sets which we feel offer no problem to
the understanding. In terms of these, we may explain certain further
sets. We then explain still further sets in terms of these, and continue
the process indefinitely (perhaps into the transfinite). The sets obtained
in this way are said to be predicative/2) or, more precisely, predicative
in terms of the concepts with which we started.

It seems unlikely that the predicative sets include all sets, or even all
sets required to exist by the axioms of set theory. For these axioms
require the existence of sets with impredicative definitions, i.e. defini-

* This research was supported in part by a grant from the National Science Foun-
dation of the USA.

(') The Frege-Russell definition of natural number in terms of sets, although of
great interest for the study of axiomatics, is hardly such an explanation; for the
notion of an arbitrary set is surely much more complicated than that of natural num-
ber.

(2) This seems to be in rough agreement with Russell's notion of predicativity.
Of course, even when the basic concepts are established, our definition is quite im-
precise. The study of the various possible precise notions of predicativity and their
relations to one another is the chief problem of predicativity.

132
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tions containing quantifiers over a class of sets containing the set being
defined. Of course, such sets may have other definitions which are not
impredicative; but it is doubtful that this is always the case.

Several authors have investigated the possibility of doing mathematics
with only predicative sets. Although much of interest has been dis-
covered in this way, it seems quite unlikely that this program can be
fully realized. But even if it were, this would not be a final answer to
the problem of predicativity. For the notion of an impredicative set is
of considerable interest, and should be investigated as far as possible.

We shall discuss only the simple case of sets of natural numbers/3)
We consider two notions which may be applied to the study of predi-
cativity, namely, Kleene's analytical hierarchy andGodel's constructible
sets,(4) and obtain relations between them.

We refer to [6] for information on the analytical hierarchy; we shall
follow the notation used there. We also uss the notation of [1] for the
positions in the hierarchy. Thus a set which is in the form of the ana-
lytical hierarchy having n function quantifiers beginning with an exis-
tential (universal) quantifier will be referred to as a Z'n predicate (n'n
predicate). A predicate which is both a X), predicate and a n^ predicate
will be called a Aln predicate. We generally omit the superscripts, since
we are not interested in other hierarchies. Finally, we agree that, when
not otherwise specified, "number" shall mean "natural number"; "set"
shall mean "set of numbers"; and "function" shall mean "function
whose arguments and values are numbers".

Now an analytical set is one which may be defined by means of var-
iables for numbers and functions; quantifiers over these variables;
propositional connectives; symbols for the individual numbers; and
symbols for primitive recursive predicates (of numbers and functions).
If we regard the individual numbers, the set of all numbers, the pro-
positional connectives, and the primitive recursive predicates as basic
notions, then the number of function quantifiers in such a definition is a
measure of the impredicativity of the definition/5) Hence the analytical

(3) This seems the simplest case which one can study; for finite sets present no
problems, and the set of natural numbers is, conceptually, the simplest infinite set.
However, the principal difficulties concerning predicativity already arise in this sim-
plest case.

(4) It is interesting to note that both of these notions were originally developed to
deal with problems quite other than those considered here.

(5) Of course, one should not assume the functions as basic notions, since a func-
tion has the same order of complexity as a set.
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hierarchy becomes an arrangement of the analytical sets in order of
increasing impredicativity.

From this point of view the arithmetical sets, which are just the ana-
lytical sets whose definitions use no function quantifiers, are predi-
cative. If we are willing to expand our class of basic notions a little,
we can say much more. For Kleene [7] has shown that every ITj set
is of the form x(a(x) e O), where a is a primitive recursive function and
O is the set of Church-Kleene notations for constructive ordinals. Since
the definition of O is of a predicative nature, it seems reasonable to
add O to our list of basic concepts. It then follows that analytical sets
whose definitions require only one function quantifier are predicative.

To study the case of more quantifiers, we use the notion of constructi-
ble set [5]. The constructible sets may be regarded as the sets which
are predicative when the notion of an arbitrary ordinal is added to the
list of basic concepts above.(6) This notion can hardly be regarded as
predicative; so constructible sets are predicative in only a weak sense.
This is modified somewhat by the fact that only countable ordinals
need be used; for it is proved in [5] that the order of any constructible
set (of numbers) is a countable ordinal.

We shall show that analytical sets whose definitions require only two
function quantifiers are constructible, and hence predicative in a weak
sense. This will be a consequence of the following result.

THEOREM. If A{OL, ft) is a 171 predicate, j80 is a constructible function,
and the class of a. such that A(oc,po) is non-empty, then this class con-
tains a constructible function.

This result may be expressed in another way. We shall use a sub-
script L on a function quantifier to indicate that the quantifier is over
all constructible functions.

COROLLARY I. If A(a,[i,y) is arithmetical and y0 is constructible, then

(1) (a) (£/?) A (a, p, y0) = (a)L(Ep)LA (a, P, y0),

(2) (Ea)(P)A(a,p,y0) = (Ea)L{p)LA{a,p,y0).

(6) This fact is not too apparent from the definition in [5], but is quite clear from
the original definition of [4].
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PROOF.(7) Using the theorem,

lE*)(P)A(a,p,y0) - (Ea)L(P)A(a,p,y0)
- Ea)L(P)r.A(aJ,y0).

Again using the theorem, we have for a constructible

lEP)A(x,P,yo)-+(EP)LA(*J,yo).

Coniraposing and adding a quantifier (Ea)L, we get

[Ex)L(P)LA(a,p,y0) -» (Ea)L(p)A(a,p,y0)

-> (Ea)(P)A(a,p,y0).

This proves (2), and (1) follows by duality.

From (2) we readily obtain

(3) (a)(Ep)(y) A{a, p,y) - {a)L{Ep)L{y)L A(a, p,y).

It follows from (2) that if A(a, /?, x) is arithmetical, then

.\\Ex)(P)A(a,p,x) = x(£x)L{P)LA(a,p,x).

Now, as we shall note later, every arithmetical predicate is absolute
(in the sense of [5]). Hence the relativization of the theorem of set
theory which asserts that x(Ea)(P) A(a, /}, x) is a set asserts that
x(Ea)L(fi)L A(a,p,x) is a constructible set. Since the complement of a
constructible set is constructible, we have proved:

COROLLARY 2. Every S2 or n 2 set of numbers is constructible.

Can these results be extended to more quantifiers? A difficulty in
answering this question is that we do not know if every set is construc-
tible, or even if the existence of a non-constructible set is consistent
with the axioms of set theory. Of course, all the above results become
trivial (for any number of quantifiers) if every set is constructible.

(7) The implication in one direction of (1) and (2) was proved by Mostowski [8j.
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If we assume the existence of a non-constructible set, we can show
that Corollary 1 does not extend to more quantifiers, i.e., that the con-
verse of (3) does not hold in general. According to Addison [2], there
is an arithmetical predicate A such that

a is constructible = (£/?)(y) A(fl,/?,y).

If the converse of (3) held, we would have

(tu)(x is not constructible) -• {Ea)(fi){Ey)A(x,fi,y)

- (EoL)L(P)L(Ey)LA(aJ,y)

- (Eoc)L(P)(Ey)A(<xJ,y)

-> (Ea)L (a is not constructible)

(where we have used Corollary 1). But the right hand side is clearly a
contradiction. We do not know if the existence of a non-constructible
set implies the existence of a non-constructible set which is a I 3 or a
n 3 set; but this seems quite likely.

The A2 sets have proved to be of particular interest in both logical
and topological investigations. Our results show that each A2 set is
predicative in terms of the concept of countable ordinal. Actually, a
much smaller set of ordinals will do. Let us call a a A2 ordinal if it is
the ordinal of a A2 well-ordering of a set of numbers. If a set C is con-
structible and its order is a A2 ordinal, then the methods of [2] show
that C is a A2 set. Conversely, let C be a A2 set. Then there is an a satis-
fying the following condition: a is the characteristic function of a well-
ordering of a set of ordinals whose ordinal is the order of C. But the
methods of [2] show that this is a A2 predicate of a. Hence by the
Kondo-Addison theorem [3], a may be chosen recursive in A2 predicates.
It follows that the order of C is a A2 ordinal. We have thus proved the
following theorem.

THEOREM. The A2 sets of numbers coincide with the constructible
sets of numbers whose orders are A2 ordinals.

Thus the A2 sets are predicative in terms of the notion of A2 ordinals.
It seems doubtful if the notion of A2 ordinal can be explained in terms
of any essentially simpler notion/8)

(8) By contrast, Spector [9] has proved that the A, ordinals are just the construc-
tive ordinals.
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We now turn to the proof of our main theorem. We shall use the
notation of [5], except that we shall use a, /?, and y as special variables
for functions and a as a special variable for ordinals.

We first recall that an arithmetic predicate can be expressed in terms
of free variables for numbers and functions; quantifiers over number
variables; equality; propositional connectives; and addition and multi-
plication of numbers. All of these are either proved absolute in [5], or
can easily be proved absolute by the methods used there. (In the case
of addition and multiplication, we make use of Peano's inductive de-
finition of these operations.) It follows that every arithmetical predicate
is absolute.

LEMMA. If (Ey)% (x,y) = (y)iS(x,y) = (f(x), where % and 3J are ab-
solute notions, then (i(x) is absolute.

PROOF. Relativizing the given equivalence,

(£y)W(x,y) s (y)<B(x,y)s <£,(*).

Hence <£(x) = (y) %(x,y)

•=> (y) s(*,y)

= d (*)

= (£y)2l(x,y)

3 {Ey) m(x,y)

= 6(4

COROLLARY, X 2Be y is absolute.

PROOF. We have

xWty = (u)[yConx[(u / 0 A U C X) •=> (Ev)(v e u A icy"{v} = 0)]J

= (Eu)(Ea)[y c x2 A U Jynx A Un («"') A 2B(U) C. a A

(w)(z)«w,z> 6 y = u'w e u'z)].

The parts in brackets are proved absolute by the usual methods.
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Now let A(a, /J) be a n , predicate. By [7, § 26], there is a number e

such that

(4) A(a,/?)= R*"is a well-ordering,

where R"-'! is the predicate which is recursive in a,/? with Godel number e.
Using the absoluteness of arithmetical predicates, we see that Ra'"is ab-
solute. Hence by the above corollary and (4), A(a, /?) is absolute.

We now show that (E a) A(a, /?) is absolute. Using (4), this is equivalent
to

(Ex)(Eu){Eo)[u%no} A JlttO"1) A m(u)co A

(<)0)«<"J> 6 R M = »'' e u'j)].

Using the absoluteness of R"/l, this can be rewritten

(£«)(£u)(£(T)[ugnffl A9B(«)^ff A ( j ) « ( a h ' , " t «.^)],

where «J( is absolute. By the usual methods for contraction of functions,
this is equivalent to

(5) (Eu)(E<j)(u%no) A f f l ( « ) C ( T x w A ( ! ) 9 ( H f /,/?))

with B absolute.

We now show, by methods similar to that used in proving (4), that
(5) is equivalent to

(ECF) ((£(/?, <T) is not a well-ordering)

where (£ is an absolute operation; in view of the above corollary and
the absoluteness of ordinals, this will imply that (Ea) A(a, /J) is absolute.
Since the proof of the equivalence is the same as that in [7], we shall
confine ourselves to describing (£ (/?, a). We think of a x a> as well-ordered
by the usual well-ordering of pairs of ordinals [5, 7.81]. The field of
(£(7?,(T) consists of all u such that for some j ,

U SJlt./ A SBC") C 5 X 0 ) A ( i ) ( i 6 j D - <8 (« t ', /?))•
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If u and v are in the field of £(/?, a), then u precedes v in the ordering

(£(/?, <r) if either v = u [ i, where i e $(M); or there is an i 6 $(u) • $(1;)

such that u \ i = v \ i and M'J precedes t>'i in the ordering of a x a>.

The proof that (£(/?, a) is absolute is standard.

Now since A(a,/?) and (£'a)A(a, /?) are absolute, we have for /?0 con-

structible

(Ex)A(*,p0) = (Ez)LAAa,fi0)
= (£ix)LA(o,/?o),

which is the desired result.
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On the Singular Cardinals Problem*

Jack Silver

In this paper we show, for example, that if the GCH holds for every cardinal less
than K, a singular cardinal of uncountable cofinality, then the GCH holds at K
itself. This result is contrary to the previous expectations of nearly all set-theorists,
including myself. Another consequence of Theorem 1.1 is that if the GCH holds
for every singular cardinal cofinal with w, then it holds for every singular cardinal.

The immediate stimulus for this result was some work of Kanamori and Magidor1

concerning nonregular uniform ultrafilters over wt. The other principal influences
were a result of Scott concerning the GCH at measurable cardinals, some work of
Keisler on ultrapowers of the sort denned in 1.3, the two-cardinal theory developed
by several model-theorists, some work of Prikry and Silver on indecomposable
ultrafilters [3], [4], as well as Cohen's methods and work on nonstandard models of
set theory [2].

Our terminology is mostly standard. If K is a cardinal, 5 is called a stationary
subset of K if it intersects every closed cofinal subset of K. A function h: A -+ K is
continuous if, for every limit ordinal a e X, h(a) is the least upper bound of {/i(/3):
(3 e a}. If K is a cardinal, /sr+ is the least cardinal greater than K. Also, /t'f3' is the /3th
cardinal greater than K. Thus «(0) = K, /CC1) = K+, etc. The cofinality of K is A iff
/i is the least cardinal such that K can be written as a union of A sets, each of car-
dinality < K. K is singular iff its cofinality is < K.

1. Model-theoretic preliminaries. Suppose </l, £> is a model of ZFC, i.e., A is the
universe of sets and E the membership relation for the model. If a e E, let aE be the

This research was partially supported by NSF GP-24352 and a Sloan Foundation grant.
lThe result of Magidor states, in particular: If there is a regular, nonuniform ultrafilter over

ĉ ! and 2 " J —K»M for all a<ai, then 2K-, = N

O 1975, Canadian Mathematical Congress
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^-extension of a, i.e., {be A.b E a). We sketch the proofs of two well-known
lemmas, the first of which establishes a relation between the cardinalities of uE

and bE where a is a cardinal in the sense of (A, E~), and b is the successor cardinal
in the sense of (A, £>. Note that only Lemma 1.1 is needed for the GCH form of
the main result.

LEMMA 1.1. Suppose (A, £> is a model ofZFC, and a, be A are such thai (A,E}\=
a is a cardinal, and {A, E} \= b = a+ (i.e., {A, E)> \= b is the successor cardinal of
a). Then card bE ^ (card aE)+.

PROOF. Let n = card aE. We claim that E totally orders bE in such a way that
every member of bE has at most /u predecessors. This will be sufficient since any
ordered set whose every element has at most [i predecessors must itself have car-
dinality at most fx+.

Clearly E totally orders bE since {A, £> J= 4» is an ordinal, and E is the member-
ship relation. It only remains to see that if c e bE, then c has at most p, E predeces-
sors. Since (A, E} \= b = a+ A c e b, we have (A, E) |= card c :S b, so there
exists an element g e A such that (A, E} \= g is a 1-1 mapping of c into a. One
easily verifies that {<«, V>:</1, £> 1= g(u) = v} is really a 1-1 mapping of cE into
aE, whence card cE ^ card aE = /u. But cE is just the set of E predecessors of c.

LEMMA 1.2. Suppose (A, E} is a model of ZFC, and a, b, de A are such that
{A, £> \=- a is a cardinal, </4, £> |= Z> = aid\ and dE has order type 8, an ordinal,
under E. Then card bE ^ (card aE)li).

PROOF. Lemma 1.1 enables one to carry out an easy induction on 5.
We now sketch some methods used by Keisler in his first proof of the two-

cardinal transfer theorems for w-logic.
DEFINITION 1.3. Suppose M is a transitive model of ZFC and, for some ordinal

r, D is an ultrafilter in PT f| M. We define Ult(M, D) and the canonical injection.
Let S = {/e M:f:T-* M). Define an equivalence relation ~D on S by f~Dg

if {ier:/(/) = g(i)} eD. Iffe S, let

f/D — the equivalence class of/with respect to ~D

— {geS:g ~Df, and nothing in 5 of rank smaller than that of g is ~Df).

Finally, Ult(M, D) is that structure (A, E} where A = {f/D: fe S} and
(f/D)E(g/D) iff {ier:f(i)eg(i)}eD. The canonical injection j of M into
Ult(M,D) is defined byj(x) = cJD where cx: T -* {x} is the constant function x.

LEMMA 1.4. IfM, D, and S are as in Definition 1.3, andflt •••,/„ e S, then

Ult(M, D) |= tffi/D, -JJD) iff {i 6 T. <M, e> \= p(/,(i), •••,/,(/))} e D,

<p any first-order formula. Hence the canonical injection j is an elementary monomor-
phism.



437

THE SINGULAR CARDINALS PROBLEM 267

PROOF. One proceeds as usual by induction on formulas. In handling the existen-
tial quantifier step (the only nontrivial step), one uses the fact that the axiom of
choice holds in M.

To avoid metamathematical complications, we systematically ignore the fact that
satisfaction cannot be defined for the structure M and Ult(M, D) we will be using.
There are well-known devices for handling this technical difficulty.

2. The main theorems.

THEOREM 2.1. If K is a singular cardinal of uncountable cofinality and {v < K:2V =
v+} is a stationary subset of K, then 2' = K+.

PROOF. Let T = {v < K: 2V = v+) and let X be the cofinality of K. Suppose that h
is a continuous, strictly-increasing map of X onto a cofinal subset of K. One easily
shows that {a < X: h(a) e T}, which we call X, is a stationary subset of X. Thus X is
a stationary subset of X such that, for all ae X, 2*<a) = h(a)+.

Let fi = 2X. Using either the method of Cohen or the method of Boolean-valued
models, we can form an extension of the original universe in which /u is countable,
but such that all cardinals greater than p. are preserved. Henceforth we work in that
extension and call the original universe M. Thus, if v is a cardinal of M and v
exceeds p., then v is really a cardinal. Moreover, if U = XX f) M. — set of functions
from X into X which are members of M, then U is countable since it is in 1-1 cor-
respondence with p.. It is our objective to show that, in M, 2' — K+ holds.

A function/: X -> X is called regressive if, for all a / 0,/(a) < a- Since [/is count-
able, there is an ultrafilter D in PX f] M such that XeD and every regressive
member of U = XX fl M is constant on some member of D. To see this, let {f{:
i e a>, i > 0} be the set of regressive members of U. Form a sequence XQ^. Xx ^
Xi 2 ••• of subsets of X, each in M and stationary subsets of X in the sense of M,
such that Xo = X andf is constant on X{. This is possible by a theorem of Fodor
[1], which says that if A',- is stationary and_/j+1 regressive, then there is a stationary
subset of X{ on which/ I +i is constant (the regularity of X is also used). Finally, let
D = {Be M: B <= X, B includes some Xi}.

Form Ult(Af, D) = (A, E} and let j be the canonical injection of M into
Ult(Af, D). Let e be the element of A represented by the identity function from X
into X. The basic property of D implies that the set of E predecessors of e is
precisely (y(a): a < X}. Since h is continuous, j{h) is continuous in the sense of
<i4, Ey. Therefore, if d = J(h)(e), then every predecessor of d is a predecessor of
some j(h){j(a)) = j(h(<x))< a< X. Buty(^(a)) has fewer than K predecessors, for each
such predecessor is represented by some member of M which maps X into h(a),
and, K being a strong limit cardinal in M, there are fewer than K such functions.
Hence d has exactly K E predecessors.

Since {a < X: 2*<a) = h(a)+} e £>, Lemma 1.4 assures us that in Ult(A/, /)),
2/CAX,) =j(h){eY, i.e., Ult(M, D) t= 2<* = d+. Let 6 be such that Ult(/V/, D) |=
d+ = ft. Let () = (Z: Ult(M, D) t= Z E d}. Since Ult(W, D) f= 2<< = 6, there is
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a 1-1 map of Q into bE. By Lemma 1.1, there is a 1-1 map of bE into /t+. Hence there
is a 1-1 map of Q into /t+.

We complete the argument by showing that, if 2* = K+ fails in M, then there is a
1-1 map of/c++ into Q, contradicting the preceding paragraph. By preservation of
cardinals > p., (K++)M — A:++. Hence, if 2' = K+ fails in M, there is a 1-1 sequence
<Ca: a < K++y of subsets of K, each C o e M. Set k(a) = that B such that
Ult(M, D) |= B = d fl j(Ca). k is 1-1, for if T e Ca - Cp, then j(T)Ek(a) while
noty(r)£*(j8).

THEOREM 2.2. / / A: M a singular cardinal of uncountable cofinality I and /3 is an
ordinal < X such that {v < K: 2V g v{F>} is a stationary subset of K, then 2' g K^.

PROOF. One proceeds much as in the proof of Theorem 2.1, using Lemma 1.2
instead of 1.1.
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Introduction

Let & denote the lattice of recursively enumerable (r.e.) sets under
inclusion, and let <5* denote the quotient lattice of S modulo the ideal 7 of
finite sets. For A e & let A* denote the equivalence class in S* which contains
A. A r.e. set A is maximal if A* is a coatom (maximal element) of S*. Let
Aut S (Aut S*) denote the group of automorphisms of & (g*). Our principal
result is that for any two maximal sets A and B, there exists O e Aut S such
that Q>(A) = B. It easily follows that for each k ̂  1 the group Aut &* is
/c-ply transitive on the coatoms of &*.

This answers a question of D. A. Martin, and implies that there are no
nontrivial elementary classes of maximal sets, thereby answering a question
of A. H. Lachlan [1, p. 36]. Furthermore, it demonstrates greater uni-
formity of structure of & than was supposed, and indirectly lends further
evidence for the decidability of the elementary theory of (&, a major open
question studied by Lachlan in [2] and [4]. Further results and open ques-
tions on automorphisms are discussed in §7.

In contrast, we show that the above automorphism O cannot always
be chosen to be recursively presented, in the sense that for some recursive

1 The author owes much to the following who have supplied corrections, suggestions
and information on this topic: Carl G. Jockusch, Jr., Alistair Lachlan, Manuel Lerman,
D. A. Martin, Saunders MacLane, Anil Nerode, and Gerald Sacks. The research was
supported by National Science Foundation Grants GP 8866 and GP 19958 as well as a Senior
Postdoctoral Fellowship and sabbatical from the University of Illinois at Chicago Circle.
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permutation h of N, <&(W*) = W*{n) for all n, where {Wn}neN is a fixed
acceptable numbering [10, p. 41] of the r. e. sets. We also give some back-
ground information about Aut & including results by Lachlan, Martin, and
the author which positively answer the following questions posed by Rogers
[10, pp. 228-229] of whether: (1) there exists O e Aut <S* not induced by a
recursive permutation; (2) every <D e Aut S* is induced by some V e Aut S;
(3) the properties of hypersimplicity, creativeness, and Turing degree are
non-invariant under Aut &*.

The proof of the main theorem involves a priority argument like those
introduced by Sacks [11], [12], and [13], where opposing requirements inter-
fere with one another infinitely often, but here an altogether different com-
binatorial device is needed to resolve this conflict. The usual "infinite-injury"
priority argument (which has heretofore been used almost exclusively to
study r.e. degrees rather than the structure of r.e. sets) has the following
feature. At a given stage s, a negative requirement "restrains" certain
elements from entering a particular r.e. set A in an attempt to preserve
some computation {e}j>(x). Sacks' resolution of conflicts depends upon the
fact that a negative requirement cannot later restrain new elements, with-
out first ceasing to restrain the old, since the computation must be destroyed
and later reestablished.

In constructing an automorphism <E>, we specify a permutation h of N such
that <D(W*) = WtM for all ne N. Positive requirements cause us to enumer-
ate elements in Wh(n) as Wn is enumerated, while an element once enumer-
ated in say Wk(n+1) may be restrained from entering Wkm unless the cardi-
nality of Wo D Wn+l is sufficiently large. Such negative requirements may
restrain many new elements from Whm without unrestraining any of the
old. However, infinitely many ne N may then combine to permanently
restrain infinitely many elements from Whm, thereby threatening the
positive requirement corresponding to Wo. This conflict is resolved by a
different method from those on r.e. degrees, and involves roughly "playing
off" sets of lower priority against one another.

The major difficulty in the case of maximal sets A and B arises from
the fact that we may be forced to enumerate elements in certain r.e. sets
being matched, and that later these elements may be enumerated in A or B,
disrupting the correspondence. Our essential tool is what we call the
Extension Theorem (Theorem 2.2) which asserts roughly that if we can
satisfy certain minimal hypotheses on those elements which arrive in A or
B after being enumerated in certain r.e. sets being matched, then that
matching may be extended to an automorphism. In §2 we motivate the
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Extension Theorem, and in §§4, 5, and 6 we prove it. In §3 we verify the
hypotheses of the Extension Theorem for the maximal set case. The Ex-
tension Theorem also plays a crucial role in other automorphism results
discussed in §7.

Unexplained notation and conventions can be found in Rogers [10]. Let
A = * B denote that the symmetric difference of A and B is finite. Hence,
A = * B just if A* = B*. Let A S* B denote that A n B = * 0 . For any
class e £ 6 let e* = {A*: A e (?}, and all Q a skeleton if e* = S*. For A, B e S
we write A = B if there is a recursive permutation p (of N) such that
p(A) = B, and we write A=&B (A* =&,B*) if there exists OeAutS
(AutS*) such that O(A) = B (O(A*) = B*). A recursive array is a recursive
sequence of r.e. sets. A simultaneous enumeration of a given recursive
array {Un}ney is a 1:1 recursive function g with range{<m, n):me Un}. Thus,
at each stage s, g(s) = <m, n) causes one element m to be enumerated in one
r.e. set Un. Fixing g, let Un,, denote those elements enumerated in Un by
stage s, and

Un\Um = {x:(ls)[xeUn,s- Um,.)} ,

those elements appearing in Un before Um. (The notation X\Yshould not be
confused with X - Fwhich denotes Xn Y.) We let Z \Fdeno te (X\ Y) n Y.
We use these notations only when we have in mind a particular simultaneous
enumeration.

A standard enumeration (of the r.e. sets) is a simultaneous enumera-
tion of {Un}neN, where the latter is some acceptable numbering of the r.e.
sets. From now on we fix a standard enumeration of our acceptable num-
bering {Wn}nex, thus yielding the double array {Wn,,: n, se N} of finite
approximations. It will be convenient later to introduce other recursive
arrays {Un}neN with simultaneous enumerations. With respect to such
{[/„,,: nt se N}, we define the estate of an element x at stage s,

a(s, e, x) — {i: i 5S e and x e Ui,,} .

The e-states, being finite sets, are identified with their characteristic func-
tions which are ordered lexicographically as usual (see Rogers [10, p. 235]).
We say e-state a is higher than e-state t if its characteristic function pre-
cedes that of z.

1. Background material

In Chapter 12 of [10] Rogers presents much material on & and <§*, and
raises several questions concerning automorphisms of & and &*, and lattice-
invariant properties. A property is lattice-invariant or lattice-theoretic in
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&(&*) if it is preserved by every automorphism of & (respectively &*). We
say that a permutation p (of N) induces an automorphism O of <§(<§*) if
for all n, p{Wn) = O(PT.) (respectively (p(W%))* = O(PFn*)).

It is easy to see that any recursive permutation induces an automorphism
of &, and that every automorphism of & induces an automorphism of &*.
Kent [10, p. 233] uses a cohesive set to show that there are 2**° automor-
phisms of <§, but the induced automorphisms of &* are all trivial. Rogers
[10, p. 229] asks whether:

(i) every automorphism of &* is induced by a recursive permutation;
(ii) every automorphism of d>* is induced by an automorphism of &.

Lachlan (unpublished) has answered (i) by showing that there are 2**° auto-
morphisms of <§*, and we answer (ii) by proving that any OeAu tS* is
induced by a permutation (of N), and hence by some V e Aut &.

However, in Lachlan's method, O e Aut G>* is induced by a permutation
p which is obtained by "piecing together" recursive permutations in a
nonrecursive fashion, in such a way that for any A and B, if p(A) = B then
A = B. Thus, the method produces no new elements in the &*-orbit of A*,
i.e., the set {B*: A* =&.B*}. To prove the nonin variance of hypersimplicity,
ereativeness, and Turing degree, one must use a different device such as
Martin's method to generate new elements in the <§*-orbit of a nonrecursive
Ae&. In fact we show that the <§*-orbit of every nonrecursive set A e §
contains some B ^ A.

THEOREM 1.1 (Lachlan). There are 2**° automorphisms of <§*.

Proof. For each n, we define a recursive set Rn such that Rn £ Rn_n

Rn is infinite, and JBB_, — Rn is infinite. For convenience, let R^ = N.
Choose Rn g !?„_, - Wn if i2n_t n Wn is finite, and Rn £ £„_, n Wn otherwise.
In either case, make Rn recursive, Rn infinite, and Rn^ — Rn infinite. Note
that 12. s Wn or Rn s Wn, for all n.

For all n e N and j e {0, 1} choose partial recursive functions •$>* which
are permutations of Rn_l — Rn, such that ^ is the identity, and ^ carries
Sn into some T ^ * Sn for some infinite r.e. Sn £ En^L - !?„. For any func-
tion / : iV—> {0, 1}, define the permutation pf of N, such that pf restricted to
Rn-i ~ Rn is ir}lnl. Clearly pf is a permutation of N because each me Rn

(and hence m e domain pf), where Wn = {m}. Since ^"(Sn) =£* ilr"(Sn), pf

and pg cannot induce the same automorphism on <§* if / ^ g.
It suffices to show that pf( Wn) and pj\ Wn) are r.e. for each n. Clearly,

U {-̂ /(i,: i fS, n) is a partial recursive function with domain R». Also
pf{Rn n Wn) = U{^/:i;(^» H Wn): i ^ u) which is therefore r.e. Furthermore
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pf(Rn n Wn) = Rn n Wn since either Rn g Wn, or i?n and Wn are disjoint.
Likewise pjl(Wn) is r.e. ^

COROLLARY 1.2. JVbi every automorphism of &* is induced by a recur-
sive permutation of N.

On the other hand, we shall show that every automorphism of <5* is
induced by some permutation of N. First we need a convenient way to de-
scribe an arbitrary O e Aut &* relative to our fixed indexing {Wn}neN.

Definition. <t> e Aut &* is presented by h, a permutation of N, if O(Wt) =
Wtu) for all n.

THEOREM 1.3. Every Oe Aut<5* is induced by some permutation p of
N. Furthermore, if <P is presented by h, p can be chosen recursive in h join
0 " .

Proof. Fix <J>eAut<§*, and let O be presented by h. For any xeN,
define e-states,

a(e, x) = {i: i ^ e and x e Wi) ,

d(e, x) = {i: i ^ e and a; e WhU)} .

Note that the sets o{e, x) are uniformly recursive in 0 ' , and <x(e, a;) in h
join 0 ' . Let p = \Jn pn, where finite functions pn are defined as follows. For
convenience, let P-t= 0 , and er(— 1, a;) = $(—1, a;) = 0 for all x. For «
even, let

z» = (̂ a;)[a; g domain pn^] ,

en — m a x {e: — 1 ̂  e S n and (3y)[i/ g range pn_r and <r(e, a;n) = a{e, y)]} ,
V* = (^V)[y % range pn_t and o(en, xn) = a(eB) y)] .

Define pn(xn) = yn. Note that en and hence yn may be found recursively in h
join 0 " . For n odd, we let yn = {[J-y)[yi range pn_,], and proceed as above
with a;n and yn interchanged, and a, a interchanged. Clearly, p = (J* P» is
a permutation and p^Th join 0 " . Since Oe Aut <§* it easily follows by
induction on n that p( Wn) = * T̂ A(»> for all n. ^

COROLLARY 1.4. Every O e Aut S* is induced by some V e Aut 8>.

Proof. The above p induces ^ e Aut & which induces <b. [>3

COROLLARY 1.5. If A, Be& are infinite and coinfinite then A =SB if
and only if A* = 6. B*.

Proof. If A =g B then clearly A* =&.B*. Conversely, if A* =&. B* via
<£>, then in the proof of Theorem 1.3, set Wo = A and WM) — B, so that
the permutation p obtained satisfies P(A) = B. g]
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COROLLARY 1.6. Any property of r.e. sets which is well-defined on &*
is invariant under Aut S just if it is invariant under Aut <§*.

Note that the proof of Theorem 1.3 establishes the following fact which
will be useful in §6.

COROLLARY 1.7. Given any permutation h of N define a(e, x) and
a(e, x) as in the proof of Theorem 1.3. Then h presents some O e Aut S>* if
and only if for every e and estate o0,

[{x: a(e, x) = a0} is infinite] <=> [{x: a(e, x) — a0} is infinite] .

(Let £ be any countable sublattice of the lattice 9l = <2'v; G> such that
£ is closed under finite differences and contains <f> and N. The above theorem
and corollaries clearly hold with £ and £* (= £/7) in place of «§ and S* if 0 '
is replaced by join {A: Ae £}, namely {<m, n): me An} where {An}neN are the
members of £. The method of Theorem 1.3 can thus be used to give an
alternate (but similar) proof of Lachlan's result [1, Lemma 14] that for such
sublattices £t and S2, £L s & just if £,* = £?•)

To present some O e Aut &* it is clearly equivalent (and usually easier)
to given function / and g satisfying

(1.1) (V») [®{Wt) = W*nn) and <b~\W:) = W;tu)] ,

in which case we say that <D is presented by the pair </, g). (Given / and g,
one constructs a corresponding presentation h recursive in / join g by the
well-known "padding" of indices [10, p. 83], and conversely given h, \etf=h
and g = h~\)

All known constructions of some automorphism O consist of building a
permutation poiN which induces the proposed <D, and simultaneously giving
functions/ and g (not necessarily recursive) satisfying (1.1). The permuta-
tion p guarantees that the proposed O preserves the inclusion ordering (and
is thus a 1: 1 homomorphism from & into 9l), while the functions / and g
insure that p and p~l map S into 5.

Definition. An automorphism O of &* is effective if <1> is presented by
some recursive permutation h (or equivalently by a pair of recursive func-
tions </, flf».

Clearly, any recursive permutation p induces an effective automorphism,
but not conversely. For example, Martin's method always produces effec-
tive automorphisms, and yet suffices to prove noninvariance of hyper-
simplicity. Nevertheless, since effective automorphisms are not sufficient
for the maximal set result, one must examine nonrecursive presentations
h. For example, one might expect to get noneffective automorphisms
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corresponding to presentations /i S r 0 ' but this is false.

THEOREM 1.8 (Jockusch). / / O e Aut S* is presented by some h^T 0',
the <J> is effective.

Proof. Let <D be presented by h where h — Km, hs, and h, is a recursive
permutation for all s. Then O is effectively presented by the pair of recursive
functions </, g), where PF/(I/ = U. WhitI),., and J^,,, = \JS Wh7\x),.. M

THEOREM 1.9 (Martin). There exists a hyper simple set H and <I> e Aut &
such that $>(H) is not hyper simple.

Proof. We define effectively a sequence of recursive permutations ps

and an increasing sequence of finite sets H, with H = \J8 H,. Let S, denote
p,(H,). We shall have S, S S8+1 for all s. Let {D'n)niS be the eth (candidate
for a) strong array, arranged so that D'n is a finite set, and either D'n is
defined for all n, or else is undefined for all n > some m.

A number e is satisfied at stage s if either some D'n and -D̂ , are defined
by stage s and D'n f] D'm ^ 0 , with n ^ m, or else D^ is denned and £ i?s.
The complete estate of % at stage s is the pair of e-states <CT, r> where

er = {i: i g e and a; e WiiS}
T = {i: i g e and p,(a;) e PF;,,} .

stage s = 0. Let j>0 be the identity, and Ho = 0 .
siag ê s + 1. Look for a number e such that e is not satisfied at stage s,

and such that there is an element D of the eth strong array and a number
xe D — Hs such that for some y%H3:

(i) a; and y are in the same complete e-state at s,
(ii) min (a;, y, p.(x), p.(y)) ^ e, and
(iii) p.fo)^2a;.
If e does not exist, set £>,+I = ps, and Hs+l = i/». Otherwise, let es be

the least such e, and a;, and ?/, the least x and y corresponding to e,. Let g
be the permutation of AT which transposes x and y and is the identity off
{a;, y}. Let ps+l - p,q, and H,+1 = H, U {a;,}.

LEMMA 1. S = (J, S, is coinfinite and not hypersimple.

Proof. If z e S, z — ps+l{x0) =£ p,(x0) for some s, a;0. For each x0, there
can be only one such z. Since z — p,(y,), condition (iii) insures that for every
n there are ^ n members of S smaller than 2n.

LEMMA 2. If H = {J, H, is coinfinite, H is hypersimple.

Proof. Assume to the contrary that {D'n}neN witnesses the nonhyper-
simplicity of H, with e minimal. If i < e, by the minimality of e the ilh
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candidate for a strong array is finite or else i is eventually satisfied. Let s0

be a stage such that for all s ^ s0, e, 2> e.
Since the complete e-state of x "increases" with s, owing to condition

(i), each x goes to a final complete e-state as s goes to infinity. A complete
e-state is well-resided if infinitely many members of H finally settle in it.
Since all but finitely many members of H lie in well-resided complete e-states,
there is an n such that either D'n S H or D'n — H ^ 0 , and all xe D'n— H
have x ^ e, p(x) ̂  e and are in well-resided complete e-states. In the latter
case, if x0 is the least such x, then there exists a stage s 2: s0, when some
y Si e, with p,(y) }> 2x0 and ?/ 6 iJ,+1, is in the same complete e-state as x0.
Then xoe H,+1, a contradiction.

LEMMA 3. p = lim, p, exists and is a permutation of N.

Proof. If e = e,, and either p,{x) ^ p.+i(a;) or pr'fa) =£ pr+i(s) then by
condition (ii), e ̂  x. By Lemma 2, each e can be e, only finitely often and
thus for each x, lim, p,{x) and lim, P7l(x) exist.

LEMMA 4. H is hypersimple.

Proof. H = p-'OS), so His coinfinite.

LEMMA 5. p induces an automorphism of 6, and in fact an effective
automorphism of &*.

Proof. Recursively in 0 ' define the function k(e) to be the least stage
t such that e, ^ e for all stages s S: t. Define functions / and g by

Wnn) = \J,iMps(W»,,), and T7,,n) = \J,ikMp7\Wn,a) .

Clearly, p(Wn) = Wfln) and p~\Wn) — Wg(n) for all n, because after stage
k(n), p only interchanges elements in the same complete e-state by condition
(i). Both / and g (and hence p) are g r 0 ' . To see that p induces an effective
0 e Aut &*, apply Theorem 1.3 or replace k(n) above by 0 to produce recursive
functions / and g. §Q

( N o t e t h a t in t h e a b o v e proof, t h e e'h posi t ive r e q u i r e m e n t , wh ich a s s e r t s
that D) d H for some j , once met is never injured although it may require
attention finitely often before being fully met. The eth negative require-
ment, which asserts that only elements in the same complete e-state may
be interchanged, may be injured by the i"1 positive requirement only if
1 < e.)

Martin's method can easily be adapted to construct A e & and O e Aut &
such that A and <J>(A) have different Turing degree. (The noninvariance of
Turing degree also follows from the subsequent theorem on maximal sets.)



447

88 ROBERT I. SOARE

2. Automorphisms and maximal sets

Given maximal sets A and B such that A* ^ B* let us consider various
attempts to find O 6 Aut <S* such that O(A*) = B*. Kent observed [10, p. 233]
that if a permutation p of N is the identity except on a cohesive set, then
p induces an automorphism of &*. We might first try to extend Kent's
method by searching for a permutation p such that: (i) p is the identity on
A f) B; (ii) p(A) =* B; and (iii) p induces an automorphism of &*. Un-
fortunately, a permutation satisfying (i) and (ii) for A nonrecursive and
A n B — * 0 never satisfies (iii). To see this let C be a major subset of A,
as constructed by Lachlan [1, p. 29], so that A — C is infinite but for all
W e & if I g ' l f then C £ * W. Thus, C Q* B because A S* S. Hence,
S S * C. Now if p satisfies (i) and (ii) then

P(C) = p(CnB)up(CnB) =* Au(Cr\B) = D ,
and A £ * D but C g* -D, so that D cannot be r.e.

As a second attempt we might try to construct O using Martin's method
of the preceding section, but this will also fail in general because any such
O is always effective. In this section we first construct maximal sets A and
B such that ®(A*) =£ B* for every effective O e Aut &*. We then motivate
the main theorem that A = s B for any two maximal sets A and 5 , and
derive its corollaries. We reduce the proof to two parts which we handle
in subsequent sections.

We assume familiarity with the Yates' construction of a maximal set A
[10, p. 235] with respect to any standard enumeration (of the r.e. sets)
{Un}neN. Briefly, a marker A? seeks an element x in the highest possible
e-state with respect to { t / , } , ^ , and moves (monotonically) to settle on the
eth member of A. It is well-known that we may not achieve A S Uo even
if Uo is infinite (since almost all x may appear in C70 only after xeA).
However, clearly A g Uo just if infinitely many x appear in Uo before A (i.e.,
if Ua\A is infinite), since each marker A? will not rest until it has reached
some x e Uo- This fact is the crux of the following proof.

THEOREM 2.1. There exist maximal sets A and B such that for every
effective Oe AutS*, <D(A*) ^ B*.

Proof. First let us consider how to handle a single requirement Re,
which asserts that A* ^ s . B* via O with presentation <P,. We give standard
enumerations (Un)neN and {VJneN such that maximal sets A and B are
constructed simultaneously in the above way with respect to {Un}n!LN and
{V.}»etf respectively. We let Un+i = Fn+2 = Wn for all n, and define Uo, Ult Vo,
and Vx so as to meet Re.
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Let UL — Wh = the even numbers, enumerated so that U\A is infinite.
Let Fo = W9f{il) if <P,(ii) is denned, and = 0 otherwise. Define Uo = the odd
numbers so that U<\A is infinite just if V0\B is infinite. Let Wio — Uo< and
define F, = W<peH<s) if 9>,(i0) is defined, and = 0 otherwise.

Clearly A and .B will be maximal sets. Now suppose that A* =6. B*
via <t> with presentation <pe. Then <p.(i<>) and <P,(i,) are defined, <£>(£/0*) = Fr,
and <P(U?) — V*. Now Vo\5 is infinite because if U0\A is finite then i s P ,
by construction of A, and hence 5 g * F , (because <&(A*) = B*), which
forces Fo — B and thus V0\B to be infinite. Now V<\B infinite insures that
U0\A is infinite by definition of Uo. Since U0\A and V0\B are infinite, A g O ,
and £ g 7, by the remarks immediately preceding the statement of
the theorem. But A £ Uo and 0>(C7?) = Ff imply that B E ' F , . Thus,
5 E * Fo(1 ^ =* 0 contradicting the maximality of B.

This method may be modified as follows to handle simultaneously all
requirements. The arrays {Uv}, {Vv}, yeN, are listed in finite collections
called "e-blocks." The 0-blocks are respectively Uo, Ult Wo, and Vo, F1( W0,
where Uo, Ult Fo, and Vl are defined as above with e = 0. Assume that we
have defined both arrays through the e-blocks, and let {£/<}, {F<}, for i :S some
j , denote the resulting arrays. Let an(j, x) denote the j-state at stage n of
element x with respect to {E7«}<SJ-. The (e + l)-blocks of {Un) and {Fn} re-
spectively will be Xlt Yt, Xt, Y2, • • •, Xm, Ym, W.+l, and Xlt Yit • • •, Xm, Ym, W.+l.
The pairs <Xk, Yk) and (Xk, Yk} play the role of <[/„, U,) and <F0, V,)
respectively of the earlier proof, correspond to a fixed ,?-state ak, and are
arranged in decreasing order according to the order of ak. For fixed i-state
ok, 0 ^ k ^ 2i+1, define the r.e. set,

Ci = {a;:*6(n{W1:t6ffi})\A}.

Given an enumeration {c*} of C4\̂ 4, define
/-"even _ f_fc 1 „ _ J ^odd _ f̂ ,«: 1

which play the role of the evens and odds in the earlier proof.
Let Dk = W9tW), for some Wt. - Ck, if y.(i') is defined, and = 0 other-

wise. Note that if ak is the true i-state of (cofinitely members of) A then
A S C*- Thus, if A* = s . B* with presentation <Pe, then B S D4, so Z?t\5 is
infinite. Define XkSC°kM, Yk^Cra, Xk = (W9e,h) n i?t), and Yk^W9e^ n
Z>t, for W<0 = XtI and PF,-, = Yk as before, such that X4\A is infinite just if
Xk\B is infinite.

If ok. is the true i-state of A then for all k < k', Ck and hence Xk and
Yt will be. finite and will cease interfering with Xh. and Yk., which will
witness A* ^ s . B* with presentation <p, as before. g|
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(We discovered the above proof after Lachlan suggested a similar idea

for proving the weaker fact that there is no uniform method for finding an

effective <J> between maximal sets A and B given their indices.)

Let us return to the problem of proving that A =<j, B for given maximal

sets A and B. Rather than working directly with {Wn}neN, it will be con-

venient to define recursive arrays of r.e. sets, [Un}neN and {Vn}neN which

depend upon A and B respectively, and which are skeletons, i.e., for which

there exist functions F and G, such that

(2.1) (Vn) [Wn=* UFln] and Wn = * VC(n)] .

(Note that even if the arrays include all r.e. sets, they may not be acceptable
numberings since the functions F and G need not be recursive.)

To specify the automorphism O we shall specify a permutation p of N,

and functions / and g such that p(A) = B, and

(V») [p(J7.) =* WM and p-\V%) =* W,tu)] .

Thus <J> is presented (with respect to {Wn)neN) by the pair Q'oF, g°G}.

(The permutation p serves only to aid in defining / and g and to witness that
O preserves inclusion. For the present case of maximal sets A and B, the
noneffectiveness of O follows entirely from the nonrecursiveness of F and
G, which will be ST 0 '" , since/and g will be recursive.)

Let us assume that A and B have been given and the corresponding
arrays [Un}Helf, [Vn}ne!f have been somehow determined (as we will do in §3).
How do we define / and gi From now on we let Un denote Wfln) and Vn denote
Ws,n) so that our intended correspondence under <J> will be ®( U*) = U* and
f: = O-'fV*). (Picture two copies of N with A, Un, Vn on the left-hand
side and B, Un, Vn on the right-hand side.) To produce Un and Fn we give
a simultaneous enumeration of a recursive sequence of r.e. sets including
all of A, B, Un, Vn, £/„, and Vn for all ne N. (This simultaneous enumera-
tion determines X\Tas well as X\Y = (X\Y) n Yfor any Xand Yin the
array.)

The problem may be split into two parts corresponding to p{A) and
p(A) respectively. We must insure that both

(2.2) p(A n Un) = * (B n U.) and p~\B n V.) = * (A fl Vn) for all n ,

and

(2.3) p(A n Un) =*(Bn Un) and p~\B fl V.) = * (A n Fn) for all n .

Decompose Un into the two r.e. sets ZJl = Un\B, and U~ = B\Un, and
K = V* U F~ with A in place of B. Condition (2.2) causes us to enumerate
many elements in Ui {Vt), but these enumerations must be sufficiently
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restrained so that the r.e. sets U£\B (Vi\A) do not already prevent
extensions by Uz (Vz) to Un (FJ satisfying condition (2.3). For example,
if there are infinitely many ye Uj\B then to meet condition (2.3) we need
infinitely many x e Uo ft A, which usually means producing infinitely many
x e U0\A because in general we may have A\ Uo = 0 • Now if the above
elements y enter Ut\B after ye Vo, and if we can find corresponding
elements x 6 U0\A then it is easy to enumerate x e VQ if necessary. How-
ever, if all the above y enter U£\B while y £ Vo then we must have infinitely
many x entering U0\A while x& Vo- In general, for each n such that
ye UZ (£ Vn), the corresponding x must be e UH (£ VZ), and x is otherwise
restricted.

A full estate of an element a; is a triple v = (e, a, r> where a and z are
e-states of x with respect to certain arrays. Given v — (fi, a, r> and v' =
<e', a', r'> let v _; v' denote that e = e', a £ a' and r a r'. Replacing single
r.e. sets in the above example by full e-states yields an obvious necessary
condition (2.4) below which asserts that "A covers B". The dual condition
(2.5) asserts that "B dual covers A". (This terminology will be further
explained and amplified in §4.) The following "Extension Theorem" guar-
antees that these necessary conditions are also sufficient for an arbitrary
pair of arrays {Ui}ne.v, {Vi}neN to be extended to {Un)nelf, {Vn)ne!f satisfying
(2.3). The rather complicated proof of the Extension Theorem is deferred
to §§4, 5, and 6.

THEOREM 2.2 (Extension Theorem). Let A and B be infinite r.e. sets,
and {Un}neN, {FJ.e.v. [Ul)nex, and {Vi}n,N be recursive arrays of r.e. sets.
Suppose there is a simultaneous enumeration of a recursive array including
all above such that B\Uz = 0 = A\Vi, for all n. For each full estate
v — <e, a, r> define the r.e. set

Di — {x: xe As+l — As for some s such that
{Vn)ie\[n e f f o x e Un,B\ and [ne ~ <=* xe V~,,]]} .

Similarly, define D? with B, U*, Vn in place of A, Un, V~ respectively.
Furthermore, suppose that

(2.4) (vv) [Df infinite => (3v')[v <; v' and D$ infinite]]

and

(2.5) (vv) [Di infinite =- (3v')[y' _; v and Z>f, infinite]] .

Then there exists a 1: 1 map p from A onto B and recursive arrays of r.e.
sets {U~}neN, {Vz}ne.\- such that the extensions Un = UZ U U~ and Vn =
Vn U Vz satisfy for all n,
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[p(A fl U.) =* (B n U,)] and [p~\B f] V.) =* (A 0 Vn)} .

THEOREM 2.3. Given any two maximal sets A and B there is an auto-

morphism Q> of & such that Q>(A) = B.

Proof. Fix A and B. In § 3 (Theorem 3.1) we define recursive arrays

[Un}n£y, {Vn}ney satisfying (2.1). We then define (Theorem 3.2) recursive

arrays {Ui)ncX, {V»}ne.v satisfying (2.2), and a simultaneous enumeration of

all these r.e. sets satisfying the hypotheses (2.4) and (2.5) of the Extension

Theorem. By the Extension Theorem (to be proved in §§4, 5 and 6) we

can extend the latter two arrays to {Un}KeN and {Vn}nsN satisfying (2.3), and

hence yielding an automorphism V e Aut <S* mapping A* to B*. By Corollary

1.5, there exists O e Aut & such that O(A) — B. [X]

COROLLARY 2.4 (Martin). Turing degree is not lattice invariant.

Proof. By Yates [18] there exists a complete maximal set, but by Sacks

[14] there exists an incomplete maximal set. [X]

C O R O L L A R Y 2 . 5 . For any k > 0, let Alt A2, • • •, Ak and Bu B2> • • •, Bk be

two sequences each containing exactly k maximal sets whose complements are
pairwise disjoint. Then there exists an automorphism O of § such that
^(Ai) = Bt for alii g k.

Proof. Find recursive sets Rit i ^ k, such that N = U<£* R*t Ri H R, =
0 for i ^ j , and Rt 3 A( for all i^ k. Likewise find recursive sets Rit i ^ k,
with Bi in place of At. Apply Theorem 2.3 to find a 1:1 function pf from
Ri onto Ri such that pi(Ai) = Bi and p{ induces an isomorphism from
{Wn fl RilneN to {Wn fl Rilnen- Then p = U<£* Pi is a permutation of Nwhich
induces the desired O. ^

Definition. A set A is quasimaximal of rank n, if A is the intersection

of n maximal sets whose complements are pairwise disjoint.

COROLLARY 2.6. Let A and B be any two quasimaximal sets of the same

rank. Then there exists Oe Aut &, such that <£>(A) = B.

COROLLARY 2.7. For every k 2:1 the group Aut &* is k-ply transitive on

the coatoms of <§*.

Proof. Apply Corollary 2.6 and the fact that if A*, A*, • • •, At are
distinct coatoms in <§* then there exist maximal sets A[, A'2, •••, A'k whose
complements are pairwise disjoint and such that A\ e A* for all i g k. [x]

3. Satisfying condition (2.2) and the hypotheses of
the Extension Theorem

Fix maximal sets A and B from now on. For any r.e. set C, define,
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e(C) = {W.: We U C = N or We G*C} .

Note that if C is coinfinite, then C*(C) = &* just if C is maximal. We shall
define a recursive array {Un}ne.v, with Ua = A, which contains exactly those
sets in £(A). In addition we give a simultaneous enumeration of {Un)neN,
which is "order-preserving" in the sense that

(vw) (V»)>, (a.a. a;) [x e (Un\A) D (Um\A) = * e(Un\Um)] ,

where "a.a. x" denotes "for almost all (cofinitely many) x". (Roughly, the
order in which elements x are enumerated in Un, Um while in A coincides
with the rank of the indices n, m for almost all a;.) Similarly, {Fn}n6A- is
defined with B in place of A. This order-preserving property explains our
use of {UJneN and {Vn}nerf in place of {Wn}neN, since it then becomes easy to
define {Ui}neN and {Vi}neX meeting the hypotheses of the Extension Theorem
as well as condition (2.2).

The maximality of A and B is used only to insure that G*(A) = C*(B) —
&* so that there exist functions F and G satisfying (2.1). If A and B are
replaced by any nonrecursive r.e. sets C and D, our proof shows that there
is a permutation p of N such that p(C) = D, and p induces an isomorphism
from C*(C) onto (?*(£)), rather than an automorphism of <§*.

(This fact is obvious for C*(C), (?*(D) replaced by either the principal
ideals, 3*(C), $*{D), or the principal filters, 7*{C), 7*(D), but these two
trivial proofs are so different that we can see no way to combine them for
e*(C) - 3*{C) U 7*(C), e*(D) = $*(D) U 5r*(5). AS usual define, <J(X) =
{We: We E X), and 7{X) = {We: We 2 X}.)

For any r.e. set C, G(C) can be given by a recursive array {Yn}neN, with
Yo = C, namely

Yln+i = Wnf]C, and

Y2n+2 = {X:XQ Wn and (Vy)ix[y£ C U Wn\] .

Note that if Wn a C then Y2n^ = Wn. Otherwise, F2n+2 = * 0 . (The same
device is used by Lachlan in the major subset construction [1, p. 30], and
elsewhere.) If infinite, C is cohesive with respect to (?(C), and hence we
may define the e-state of C to be the e-state of infinitely many elements of
C with respect to {Yn}nsy.

THEOREM 3.1 (Order-Preserving Enumeration Theorem). Given any
coinfinite r.e. set C, there is a recursive array {Zn}neN, with Zo = C, con-
taining exactly the r.e. sets in C(C), and a simultaneous enumeration of
[Zn}nsy, such that

1) (Vw) [Zn\C is infinite <=> Zn — C infinite]; and
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2) (V»)(vm)>n(a.a. x)[xe(Zn\C) n (Zm\C) ̂  xe(Zn\Zm)] ,
where "a.a. x" denotes "for almost all x."

Proof. Fix C and a simultaneous enumeration of the array {Fu}ne-V

defined above such that

(3.1) (Vw) [ Yn\C is infinite -> Yn - C is infinite] ,

where Cs = Yo,,. Define Zo,. = Cs for all s. (It will be obvious that (3.1)
holds with Zn in place of Yn.)

For each e > 0 we need some i^e) such that ZFU) — Ye. Our choice of
F(e) will depend upon Ye as well as the (e — l)-state of C with respect to
{y,},ex. For each e > 0 and a S {0, 1, • • •, e — 1} we have a marker A(e, ff)
which comes to rest on an index F{e), for which ZFU) = Ye, in case the (e — 1)-
state of C is a. An integer j is fresh at some stage if it has never been
occupied by a marker. Define Ze,s for all e > 0 as follows.

Stage s = 0. Let Ze,0 = 0 for all e > 0.

Stage s + 1. Enumerate one new pair <a0, yo> where a;oe yVi). If Va = 0,
go to stage s + 2. Otherwise,

Step 1. If i , eC, + 1 leave all markers fixed. Otherwise, move those
markers A(e, a), for which e > y0 and y<,$o> to the first fresh elements,
maintaining the present order of the markers.

Step 2. For each a £ {0, 1, •••, s) assign a marker A(s + 1, cr) to the
first fresh element in order of the s-state ranking of a.

Step 3. For each e, 0 < e ^ s + 1, and each a S {0, 1, • • •, e — 1}, let
F(e, a, s + 1) denote the present position of A(e, a). Let (a;', e', ff') be the
first triple (x, e, a) with the following properties P1-P3. If there exists
such (x', e', a'), enumerate x' in ZF(,,,a.,,+lU,+l. Otherwise, go to stage s + 2.

PI. x e Ye,.+l and x g ̂ (4,,,,+i,,,.
P 2 . (Vy)<x [y e C.+ 1 U ZFU,0,s+l),,].

P3. Either a; e C,+1, or <r = 0 , or the elements of a are a, < a2 < • • • < ak,
and

where a, — {a1( a2, • • •, &,-_,} if j > 1, and = 0 if j = 1.

LEMMA 1. i^or eac/i e awd <r, marker A(e, <?) mows infinitely often if
and only if Yy 3 C for some y < e, y£<?.

Proof. By Step 1 of the construction and (3.1).

LEMMA 2. For all n, if (Zn\C) is infinite, then some marker A(e, a)
comes to rest on n, such that
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(Vy)[yeau{e}~ r , 3 C ] .

Proof. By Step 3 of the construction and (3.1).

Now let ei < e2 < e3 < • • • be a listing of all e such that Yt 3 C. For
each e, let pe = {e,-: e,- < e}. By Lemma 1, A(e, ft) comes to rest on some
element denoted F(e), and ZFte) — Ye by Step 3. The markers A(e, pe) once
appointed remain in order of e (by Steps 1 and 2), and hence for all i and e,
i <e if and only if i^i) < -F(e). By Lemmas 1 and 2, for all i =£ i^e,), for
some j , Z\C is finite. The last clause of Step 3 insures that for all x if
xe (ZF(.f)\C) n (ZFiej)\C), where i < j , then a;6 ZF^\ZPK..->. Kl

THEOREM 3.2. Given, maximal sets A and B, let {Un}neN, and [Vn}ney

be the recursive arrays with simultaneous enumerations given by Theorem

3.1 for C = A and B respectively. Then there exist recursive arrays

{Ui}neN, [Vi}neN together with a simultaneous enumeration of a recursive

array including all of {Uu}neN, {FJn€JV, {U+}neN, and {Vi}neN which satisfies

the hypotheses of the Extension Theorem, and condition (2.2), which here

asserts that for all n, (Ui)* e <?*(£), (Vi)* e €*(A), and

[ A S Un~Bs* Ui] and [B S Vn — A S* F+] .

Proof. We define A, and B, below. Given A, and B, let -f. be the

partial 1:1 function which maps A, onto Bs such that ir,(x) < f s(y) just if

x < y. Let ijr_! be the identity permutation on N. Let -^ = lim, ̂ , .

Stogre s = At. Enumerate x e Uy,s where x was enumerated in Uv at

stage ^ in the given simultaneous enumeration of {Un}new. Let A. denote Uo...

Stage s — U + 1. Enumerate x e Vy,. where x was enumerated in Vy

at stage t in the given simultaneous enumeration of {Fn}ne,v. Let Bs denote

V....

Stage s — it + 2. Let (x\ e') be the first pair (x, e) with the following
properties P1-P4. If there exists (a;', e')> enumerate -f^Sjx^e U$,,. Other-
wise go to stage s + 1.

PI. x e (£/.,.-! - A,_0 and -f ,_,(a;) <g £/;.,_,.

P2. (Vi)<e[a;6 D-,,..! « ^.-i(«) e I7r.-i]-
P3. (Vi)<e[a;e Vt..-y « ^._,(a;) 6 F^ . J .

Define,

cr0 = {i: i ^ e and V—i(:c) e C/̂ .-i} ,

r0 = {i: i ^ a; and -̂ -,_,(a;) e F,-,,.,} ,

MX = (the unique tt)<J_1[a;G C/,̂ !̂ - £/„,„] .
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P4. (3v)(3j/)(3<71)(3rI)[tt:r < v < s - 1 and y e A,+1 - A, and a, a {e} U a0

and ti £ r0 and a1 = {i: i < e and y e [/<,„} and r, = {i: i ^ a; and y e Vt.v}]-
(Property P4 asserts that after x appeared in Ue there appeared in A some
y whose pair of states <<7,, r ^ at that time "covers" the pair <<r0 u {e}, z,}
now proposed for ^-.^(x), in that a, a a0 u {e}, rx g r0. The crucial point is
that we measure state a0 only with respect to i < e not i 5S a; (as for r0),
which would impose more restraint on enumerating njr,_i(x)e Ut, since in
general x > e. By the order-preserving- enumeration property, this will
still suffice for Lemma 1.)

Stage s = 4t + 3. Similarly attempt to enumerate some element
ijrTl^x') in Vt',., where A, Un, Ut, Vn, V+, and ir.^ix) in the preceding stage
are replaced by B, Vn, V$, Un, 7+, and -fri,(a;). Also in P3 (which now
refers to U( and Ut) replace "(for all j)<e" by "(for all j)J' reflecting the
fact that the matching U, —* Ue has higher priority than Ve —» Vt.

LEMMA 1. The hypotheses (2.4) and (2.5) of the Extension Theorem are
met by the above arrays and simultaneous enumeration.

Proof. Property PI of the construction guarantees that B\ Ut = 0 =
J 4 . \ F J , for all n. By trivially "speeding up" the enumeration of A if
necessary we may assume that for infinitely many x, x appears in A before
x has appeared in any U(, i > 0, or V$, j ^ 0, and similarly for B, Vit and
U'j. Thus, we need verify (2.4) only for a ^ 0 . Verification of (2.5) is
similar.

Fix i and full i-state v0 = <i, a0, ro> with <r0 =£ 0 . Assume that D^ is
finite for all vL ̂  v0. We must show that for each ^ S r0 only finitely many
x whose i-state with respect to {Vn}neN is vl are allowed to enter U}Q =
f}{Ut:necr0}. Since i-states increase with time it follows that Df0 must be
finite also.

Let e = max <r0. (Note that e ̂  i.) It follows by P2 of the construction
and the order-preserving enumeration of {Un}neN that Ut\Ut is finite for
all n < e. Hence, if there are infinitely many x e Utc, almost all such x enter
Ut only after x e Ui, for all nea0 — {e}. But by P4 of the construction and
our assumption that D^ is finite for all vx ^ v0. at most finitely many x
already in f| {Ut- neo0— {e}} will be allowed to enter Ut while the i-state
of x with respect to {Fn}n€iV is some rt S r0.

LEMMA 2. (Ve)[t(f/«n A =• UtnB and ir~\VenB) =* (VtnA)].

Proof. Fix e, and by induction assume the above for alH < e. If U. ~£>
A then U.\A is finite by (3.1), and hence Ut\B and Ut - B are finite.
Assume that U. z> A. Choose y0 such that for all x e A, x ^ y0 implies



456

RECURSIVELY ENUMERABLE SETS 97

(vi)<e[[x e Ut «• •*•(*) e Ut] and [a; e Vt <=> -f (») e FJ] .
We claim that for any x0el, a;0 ̂  y0 implies ^(x0)e J7+. Let m =

max {e, x0}. Choose s0 such that for all s ^ s0, ir,(x) = <f ,0(a;), and the m-state
of a;0 (̂ (a;o)) at stage s with respect to each of {UJneN, {Ut)nsN, {VJneN,
{VZ}neN equals the m-state of x0 (f(x0)) at stage s0. To see that f(xa) must be
in Ut,.,, first define

U.t = mUs.i^e and Ut3A}.

Now UH a A and hence U,\A must be infinite by the nonrecursiveness of
A. Define

v0 = {i: i ^ x0 and ^jr(x0) e V<} .

Now if i ^ x0 and i g r0, then F< — 5 is finite and hence Vt\B is finite by
(3.1). But for any i, V{\B finite implies Vt\A finite. Hence, there exist
ay 2 er0 and T1 £ r0 such that

(3t)(lv)>t(3y)[y 6 A,+1 - A, and ^ = {i: i £ e and j / e £/<,„}
and rx = {i: i ^ a;0 and y e F<lt,}] .

But then by P4, -̂ (a;) is eventually enumerated in Ue+. The case of
"ty~\ V.) = * Vt is handled similarly. g<3

4. Proof of the Extension Theorem

Part I: Motivation

From now on we fix r.e. sets A and B and recursive arrays {Un}neN,
{Vn}neN, {Ui}neN, {Vi}neN> and a simultaneous enumeration g0 of all the above
which satisfies the hypotheses of the Extension Theorem (Theorem 2.2). We
shall define recursive arrays (U^}neN, {V~}neN by stages. At a given stage
we may:

(1) enumerate one new element in one of the given r.e. sets in order
according to g0;

(2) enumerate an element x in one or more of the new r.e. sets U~ (V~)
where x has already been enumerated in A (respectively B); or

(3) enumerate no new element.
By (1) above, our new enumeration restricted to the given r.e. sets

also satisfies the hypotheses of the Extension Theorem. If X is any of the
above r.e. sets, let X, denote those elements enumerated in X by the end of
stage s of our construction. Define

Un,, = Ut, U Uz,., Vn,s - V;,, U Vz,, Un = U. #..., and Vn = (J. K. •

To prove the Extension Theorem we must give a 1 : 1 map p from A



457

98 ROBERT I. SOARE

onto B and construct U'n, V~ in such a way that the extensions Un, Vn

satisfy for all n,

(4.i) P(A n un) = * (B n un) and p-\B n v.) = * (A n y j .

We present the construction in the informal style of Lerman's "pinball
machines" [6]. Like Rogers' "movable markers," Lerman's pinball machines
are designed to give the reader a clear picture of the dynamics of the con-
struction rather than simultaneous definitions of a long list of recursive
functions and recursive predicates, which the reader must then decode to
obtain the desired mental picture. We believe that Lerman's device, which
is especially well-suited to our particular construction, will become a standard
vehicle like movable markers for presenting more difficult priority construc-
tions, especially those of the "infinite injury" type. We use Lerman's
terminology but unlike Lerman, we have decided not to separate the recur-
sion theory from the combinatorics. We have attempted to break down the
construction and proofs into a few digestible pieces which we present in
§§ 4, 5, and 6.

Our construction involves two pinball machines, denoted M and M.
Machine M is shown in the diagram, and M is identical except that each
symbol X is replaced by X. There are two copies of N, whose elements
{n}neN, and {n}ne.v act as "balls" in M and M respectively. Each machine
consists of tracks, gates, holes, doors, pockets, and joins. The surface of the
machine is that portion covered by the solid arrows. A track is a section of
the surface of the machine between any two of the following: door, gate,
pocket, or join. The surface of the machine is decomposed into tracks some
of which in this diagram are labeled A, C, D, E, F sometimes with subscripts.

An element x (x) initially enters the surface of machine M (M) via
hole ^ (Hi) when x is enumerated in A (B). Later x (x) may re-enter the
surface of M (M) via hole H2 or H3 (H2 or H3). Having entered or re-entered
the surface of the machine, x (x) proceeds via a sequence of consecutive
moves in the direction of the arrows which we call down, until x (x) lands
in one of the two pockets P or Q (P or Q). Such a sequence of moves
beginning when x (x) enters or re-enters the surface of M (M) and ending
when x (x) reaches a pocket is called a play.

On a single move (which will involve one stage of our construction) x
(x) proceeds down along a certain track until it reaches the next door, gate,
or pocket. Which track x (x) takes for its next move after reaching door i
will be determined by Rule R4 (R,), 1 ^ i ^ 2. When x (x) reaches gate Gl

or G2 (Gj or Gz) it may be enumerated in Vz (£/*) for certain n according to



458

RECURSIVELY ENUMERABLE SETS 99

< < ) HOLE H,

JOIN ' ' \
^ < I HOLE Hg

DOOR 1 ^ J
: —> —» —»

GATE Gx J . c2 ^

JOIN 1 H'l ZJ I 14,
4:— <

DOOR 2 ^ I I POCKET V

7 ' to HOLE

Dl 4/ L I H2 °r H3

JOIN ^ I /^^\
4. <— } HOLE H,

E 4,
GATE G2 r—

F 4/

POCKET ^ t 0 H 0 L E "z

Q

rules R3 or R, (R3 or R,), before being placed on the next track. This is the
only change of any e-state of x (x) allowed during a play until x (x) enters
a pocket.

An element x having entered M and having reached a pocket never
leaves M although x may later be removed from pocket Q (P) and be placed
above hole H, (hole H2 or H3) later to re-enter M. This motion is indicated
in the diagram by the dotted arrows and is governed by rules Ri; 8 < i 5S
12. Machine Mis similar.
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For each xe A(B) the element x (x) enters M(M) when x is enumerated
in A (B) and thereafter re-enters M (M) at most finitely often, eventually
resting forever in one of the two pockets. Let M,, P,, and Qs consist of
those elements in machine M and in pockets P and Q respectively at the
end of stage s of the construction. Define sets Pw = lim8 P,, and Qm = lim, Qt.
Similarly, define M,, Ps, Qs, Pw, and Qa for machine M. Since A (B) will be the
disjoint union of Pm and Qw, (Pa and QJ, we will achieve (4.1) by giving two
partial functions Pl and p2 whose domains (dom) are respectively Pw and Q,,,
and whose ranges (ran) are respectively, Q^ and Pw, and such that for all
ie (1, 2} and all n,

Vii&om Pi n £/„)=* (ran p( n £/») and

pr'(ran Pi fl V.) = * (dom Pi n K) .

We can then let p = \J {pt: i ^ 2). (The antisymmetry of notation, ^ ( P J =
Qm not Po,, is due to the antisymmetry of the construction and a desire to
avoid a relabeling of pockets of M which would require a separate diagram.)

The full estate at stage s, denoted v(s, e, x), of an element xe M,, is the
triple (e, o{s, e, x), z(s, e?x)y where a(s, e, x) and T(S, e, x) denote the e-states
of x at stage s measured with respect to {Un,,}n,.ew and {Vn,,}ni,€N respec-
tively. Similarly, the full e-state at stage s of % e M,, denoted v(s, e, x), is
the triple <e, o(s, e, x), r(s, e, x)}, where e-states o(s, e, x) and v(s, e, x) are
measured with respect to {Un,,}n,,eN and {Vn,,}n,,eN respectively. (Since we
will always use the notation x to denote the integer x considered as an ele-
ment of M, there will be no confusion in the definition of a, x, or v, which
from now on will be used only in the above context.) Recall that given v =
<e, a, r> and v' = <e', a', z'}, v <*v' means that e = e', a S a', and r 3 z'.

Intuitively, the role of the various pockets is the following. Most of
the elements y entering the surface of M will fall into pocket Q where they
await a stage s at which there is a certain x in M (specifically an x on track
D) such that v(s, d, x) = v(s, d, y), where d = d(s, y) is a certain recursive
function. We then place x in pocket P, and regard a; as a proper "mate"
for y. Several (but at most finitely many) different yeQ may be perma-
nently matched to the same xe P. Using Corollary 1.7 it will be shown at
the end of § 6 that this suffices. The function d(s, y) which applies to ele-
ments yeM will be determined by elements xe M(specifically xeC, D) so
that as more potential mates x in some v0 arrive in D the function d(s, y)
for most y in v0 has large value thereby increasing the maximum e for
which v(s, e, x) and v(s, e, y) must agree. On the other hand when few x in
v0 appear in D, then d(s, y), for y in v0, tends to have a small value, making

(4.2)
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it easier to choose a mate x from D as above. The heart of the proof is
Lemma 6.1 which uses this principle.

From now on fix the following notation concerning full e-states. Let
v(e, x) and v(e, x) denote lim, v(s, e, x) and lim, v{s, e, x) which of course exist.
Given an e-state p and any i ^ e, let [p]t denote p C\ {0, 1, •••,%}. Given a
full e-state v, and any t ^ e , let [v]{ denote the full i-state (i, [a]t, [r];>. For
technical convenience let [/>]_! = 0 , and v_! = < — 1 , 0 , 0 ) . Given v = <e, a, r>
and v' — <e', a', t'}, we say that v' extends v, denoted v < v', if e ^ e',
[a']e = a, and [r'J, = r . (Note tha t v_L < v for all v.) Given v0 = <e0, aQt ro>

and vy — <e1( ax, T,}, let v0 ^ r vy (v0 ^L" vL) denote tha t v0 < vt and r0 = TL

(a0 = a,). (As usual v0 < v, (v0 < vy) denotes that v0 < Vi (v0 ̂  ^0 and y0 ̂  v,.)
Given any set S of full states and any v0 define §[v0] = {v.v&S and v0 < v}.
For any v = <e, <r, r>, we define the length of v, denoted | v \, to be e.

For each track Xof ilf we have a r.e. sequence of elements xt, x2, •• •,
such that xn is added to the sequence at stage s just if xn enters track X at
stage s. We define a corresponding r.e. sequence §(X) of full e-states as
follows. If element x enters track X at stage s, let §B(X) denote the finite
sequence {v(s, e, %): e ;S x}, and S,(X) = 0 otherwise. (If x exists it will be
unique.) Let §(X) denote the sequence which is the concatenation of
{S,(X): se N}. The resulting pair of sequences in referred to as stream X. It
will follow from Lemma 4.2 that each element x enters a track at most
finitely often, although a given v may appear on §(X) infinitely often, which
we denote by "ve§>(X) i.o." For a track X of M the sequence §(X) and
stream Xare defined similarly, with v(s, e, x) replaced by v(s, e, x).

Given stream Xand full e-state v, we say that X covers {exactly covers,
z-exactly covers, dual covers) v if some v'e §(X) i.o., where v ^ v' (v = v',
v s^y' , v ;> v'). Given streams X and Y, we say that X covers {exactly
covers, z-exactly covers, dual covers) Y \i X covers (exactly covers, r-exactly
covers, dual covers) every v such that ve§>{Y) i.o. These definitions are
extended in the obvious way in case one or both are streams in M. Since x
{x) enters track A (A) just when a; is enumerated in A {B) we will identify
the set A {B) with stream A {A).

Remark. The hypotheses (2.4) and (2.5) of the Extension Theorem
assert respectively that A covers B and B dual covers A.

We say that streams X and Y are equivalent if X exactly covers Y, and
Y exactly covers X Rule RL uses a slight variation of the well-known
Friedberg decomposition method [10, p. 230] to decompose stream C into
streams d and C2, each equivalent to C. We let 9L, denote a certain sequence
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defined by induction on s and containing (exactly once) each pair <(y, j) for
all j e (1, 2} and all full e-states v, for e < s. Let % = {{v_u 1>, (v_lt 2>}.

RULE RX. Suppose that sequence 91, is given. If an element x enters
track C at stage s, then at stage s + 1 it enters either track d or C2 (with
v(s + 1, x, x) = v(s, x, x)) as follows. Let (y\ i'} be the first pair <v, i} on
the sequence 9ls such that v < v(s, x, x). Remove (v\ i') from its present
position on 9LS, place it at the end of the sequence, and place x on track C{,.
In this case we say that <y', i'} is reset at stage s + 1. Finally, whether an
element x entered track Ct or not, add <v, i) at the end of the sequence (in
any fixed effective order) for each i e (1, 2} and each full s-state v. Let £R,+,
denote the resulting sequence.

RULE R,. Like Rt but with C, Cu C2 in place of C, Cu C2.

LEMMA 4.1. Streams Ct and C2 (C; and C2) are each equivalent to
stream C (C).

Proof. Clearly a given pair <v, i) is reset infinitely often just if
veS(C) i.o., in which case Rule R: guarantees that ye §(0^ i.o., and
v € S(C2) i.o. Conversely, v e SiC^ i.o. obviously implies that v e §(C) i.o. [><3

Although streams C and D are not equivalent, D exactly covers C
(because D exactly covers C2 which exactly covers C), and C covers D
(because if x enters track D at stage s, then x entered track C at some
stage t < s, such that

v(s, x, x)£°v(t,x, x)

by rules R3, Re, and R,.)
The next rules depend upon certain key recursive functions d(s, x)

(d'(s, x)) to be defined in §5, which will depend only upon §(C) and S(D)
(§(C) and §0)) and which will satisfy

(4.3) (V»)(3*)(Vt)a.[d(t + l,x)£ d(t, x)] , and

(4.4) (Va;)(3s)(V*)a.[d'(t + l,x)£ d\t, x)} .

Now (4.3) and (4.4) obviously imply

(4.5) (V#)[lim, d(s, x) and lim, d'(s, x) exist] ,

which will be assumed from now on. When functions d and d' are defined,
(4.3) and (4.4) will be verified without circularity.

Rule R2 will be precisely stated in §6. Briefly, if x enters track D at
stage s, then at stage s 4- 1, it enters either pocket P or track DL according
to which elements are in P, and Q,+1. (Very roughly, x enters pocket P
just if some y e Q,+1 needs a; as a mate.) If x e P,+1 — P., there may be
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several y e P. — P,+1. These are handled by Rule R,2. Rule R2 is similar.
In §5, we shall give Rules R3 and R4 which govern the enumeration

of x in F~,+1 as x passes gate Gx or G2, and Rule Rs whereby xeQ.f] Q,+1

may sometimes be enumerated in V»,.+l. Rules R3, R, and R5 for U~ are
similar.

RULE R6. Element xe F;r,8+l — F~, only if at stage s + 1, Rule R3, R4,

or R5 applies to x.

RULE R,. If xe Un,,+i — Un,, and x e A,, then x is in some pocket M at

the end of stage s.

In particular, Rules R8 and R7 imply that the only change in full a;-state
of x allowed during a play (until x reaches a pocket) is under R3 or R4.
Rules R6 and R7 for Mare similar. In addition to the above rules for a play,
we need rules concerning the pockets.

RULE Re. If xe Q., and if either x e Un>t+l — Un,, for some n ^ x, or if
d'(s + 1, x) 9t d'(s, x), remove x from pocket Q at stage s + 1, and place x
above hole H2.

RULE R8. If x e Q,, and if either x e Fn><+1 — Vn,, for some n ^ x or if
d(s + 1, x) ^ d(s, x), remove x from pocket Q at stage s + 1, and place x
above hole H2.

RULE R9. If xeQs, then seQ,+ 1 , unless x is removed at stage s + 1
under R8.

In §6, we shall give Rules Rl0 and Ru which tell when xeP, may
be removed from pocket P at stage s + 1 in case x e Un,,+1 — Un-S or
Qs =£ Q.+i- Rules R9, R10, Ru, and R12 for pockets Q and P are similar.

RULE R12 If x e P,, then x e P,+1 unless x is removed under Rule R2, R10,
or Rn. Furthermore, if xe Ps — Ps+l, and x last entered pocket P at stage
t^s, then at stage s + 1, x is placed above hole H3 if v(s + 1, x, x) = v(t, x, x),
and above hole H2 otherwise.

The Construction. At stage s = 0 do nothing. Assume inductively that
we are at a stage s + 1 such that each xe M, and xe M, is either in a pocket
or above a hole.

Case 1. At the end of stage s some xe M, or xe M, is above a hole.
Choose *! to be the least such xe M, if such exists, and otherwise choose x,
to be the least such xe M,. Release a;, (a\) from its hole onto the surface of
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M (M) at stage s + 1, and continue processing a;, (x,) on successive moves
according to the rules until .Tj (xj enters a pocket.

(During this play a move for x,. at stage t may cause some d(t, y) =£
d(t — 1, y) if xl enters track C or D, or may cause a change in the member-
ship of Q, or P, if Rule R2 applies to x,, or the membership of Qt if xi finally
enters pocket Q, thereby causing other elements to be removed from pockets
P, Q, P, or Q and placed above holes H2, H3, H2, or H3. These elements are
not processed until after â  (£,) has reached a pocket.)

It will follow from Lemma 4.2 that each x (x) can re-enter M (M) at
most finitely often. Since M, (M,) is finite, after finitely many applications
of Case 1 we shall be in Case 2.

Case 2. Each x e M, and x e M, is in a pocket at the end of stage s.
Consider the next pair (x, Y} such that element x is enumerated in r.e. set
Y according to our given simultaneous enumeration £„.

Subcase 2A. Y — A (B). Enumerate x in A,+1 (B.+1), and release x (x)
from hole i^ (HJ onto track A (A). Continue processing x (x) on successive
moves according to the rules until x (x) reaches a pocket. (By modifying g0

if necessary we may assume that if x e A, or B,, then x < s.)

Subcase 2B. Y = Un (FJ. Enumerate x in Un,.+1 (Fn,,+1). HxeA. (B.)
go to stage s + 2. Otherwise, x (x) must be in a pocket of M (M) and is
processed according to either Rule R8 or R10 (R8 or Rl0) according to which
pocket contains x (x).

Subcase 20,. Y = Ut (VZ). Enumerate x in U£,+1 (F+.+t), and go to
stage s + 2. (By hypothesis on g0, in this case x&A, (B,), and thus no pro-
cessing is necessary.)

LEMMA 4.2. Each element x (x) re-enters the surface of M (M) at most
finitely often.

Proof. By the construction, if x is placed above hole H2 at stage s + 1
then xeP, or xeQ,. But then, by Rules R8 and R9, if xeQ, — Q,+1 then
either v(s + 1, x, x) * v{s, x, x) or d"(s + 1, x) =* d'(s, x). By Rule R12 if
x e P, — P,+i and x is placed above hole Ht at stage s + 1 then v(s + 1, x, x) =£
v(t, x, x), where x last entered pocket P at stage t < s, because otherwise
x is placed above hole Hs. Clearly, lim, v(s, x, x) exists, and by (4.5)
lim, d'(s, x) exists. Hence, x is placed above (and hence re-enters from) hole
H2 at most finitely often. But then clearly x is placed above hole H3 finitely
often, because after x re-enters from Hs it (eventually) goes to pocket Q,
from which it can re-enter only via iJ2. The case of x in Mis similar. £3
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5. Proof of the Extension Theorem

Part II: Covering

In this section we define the previously mentioned recursive functions
d(s, x) and d'(s, x) and give Rules R3, Rt, R5 (R3, R4, and R5) under which
elements are enumerated in the r.e. sets V~ (U~). By Rule R8 (R6) x is
enumerated in V~ (U~) only if R3, R<, or R5 (R3, R4, or R5) applies. In § 6 we
define certain mappings to verify that this enumeration satisfies the conclu-
sion of the Extension Theorem.

These rules are defined so that using the Extension Theorem hypothesis,

(5.1) A covers B, and B dual covers A ,

we can prove that for any streams X of M and X of M,

(5.2) C covers X, and C dual covers X ,
Associated with pocket Q there is a r.e. sequence of full e-states §(Q),

which is the concatenation of the finite sequences S,(Q), seN, defined as
follows. If x e Q.+i - Q,, or if x e Q, D Q.+l and a(s + 1, x, x) ^ a{s, x, x)
(necessarily because of Rule R6), then §.+i(Q) is the sequence {v(s + 1, e, x):
e ^ a;}, and §S+1(Q) = 0 otherwise. (By Lemma 4.2, each x causes at most
finitely many v to be added to §(Q).) Using §(Q) we will consider Q as a
stream of M.

One of the main purposes of Rules R3, R,, and R5 is to achieve

(5.3) D exactly covers Q ,

and similarly for R3, R<( R5, D and Q (although in fact we shall need some-
what more).

Before defining Rules R3, R<, R6 and the recursive function d(s, x), we
recursively define uniformly in s sequences X,, 9H,, and ff. of full e-states
which will be determined by streams C and D, and which play a key role
from now on. Furthermore, X , will contain (exactly once) each full j-state,
for all j < s.

Notation. Given yl( v2 e X, let v, ^f y2 denote that v, precedes v2 on the
sequence X,. (Thus, ^* is a linear ordering of all full j-states, for all j < s,
which is recursive uniformly in s.)

Let Xo = {y_J. Given X., define

XJ+l = {v: v e X , and (3v')[v < r V and [i/e S.+l(C) or V e S.+l(D)]]} .

Define Xi+i = X , — X^ , . Consider Xi+i and X'+ 1 each as sequences with
the ordering induced by £1 Let X;]+1 be the sequence of all full s-states
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arranged in some effective order (uniformly in s) such that v — (e't a', r'>
precedes v = <e, a, r> if r' s t or if r = r ' and a' 3 a. Let X5+1 denote the
sequence which is the concatenation of the sequences Xi+i> X*+I, and X3,^
in that order.

LEMMA 5.1. For all estates ff, o', T, and all s > e,

o'^o — [<e, a', r> £'. <e, a, r>] .

Proof. Fix e, a, r, and a' 3 a. The assertion is clearly true for s = e + 1
by the ordering of X'+1. Assume it is true for some s> e. If i/ — <e, cr', r> e
X ' M via some v" where v' <rv", then <e, ff, r ) = ve X'+ 1 also via y" because
y ^ r v' ^ 7 y". Otherwise, v' G Xi+1. In either case, clearly v' g*+1 v. ^

If ye X'+1, we say that y is resei ai stogre s + 1. Let X,,, denote the
set of those v which are reset at most finitely often. From the definitions
of X8+1 and X , immediately follows the statement

(5.4) (vv)[v e l , = (3s)(vi)6.(vy')[y e X f = > y < i v']] .

Given any sequence S of full e-states, and any y0, we say y0 is maximal
with respect to § just if

(Vy)[[y e S i.o. and v0 ^r v] =^ v = v0] .

LEMMA 5.2. For all v, y e l , just if v is maximal with respect to §>(D).

Proof. By the definition of X'+1, v is reset finitely often just if v is
maximal with respect to both §(D) and §(C). However, any v which is
maximal with respect to §(D) is maximal with respect to §(C) also, because
D exactly covers C2 and hence C. ^

By induction on s, we now define 9R, and 9. such that 911, 5 9, E X,.
It will suffice to define 9R, because we let

9, = {y: (3y')[y' e 9R, and y ^ r v']} .

Let 9Tl0 = {y_J. Given X.+1 and 9TC,, define 9R8+1 as follows. Fix y = <e, a, r>
and assume that we have already determined whether v' e 9R,+1 for all y' =
<e', cr', r'> such that e' < e. We say that v is excluded from 9H,+1 if one of
the following two clauses holds:

Clause 1. (3y')[y' ^'. v and v' e X2.+l].

Clause 2. (3y')(3Z)[y'g S'.andy'e §,+l(X)andv' = <e') a', r'> where e'<e].
Define y e 9R,+1 just if v is not excluded from 9R,+1 and either v e 9R, or
yeSs+1(jD). Define

<DKa - {v.ve 911, for almost all s} ,

9a = {y: y e £?, for almost all s} .
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Note that 9nB G X . by Clause 1 above, although of course 9* g X«.
Clause 2 above is included only to facilitate proving the crucial Lemma 5.11
below from which it easily follows that C covers any stream X of M, and
furthermore that,

(5.5) D r-exactly covers any stream X of M .

To give the reader some intuition about 91U and 9a we first derive their
crucial properties using the hypothesis (5.5), which can later be dropped
after Lemma 5.16. Since Lemma 5.11 will be proved by induction on e = \v\,
we now define for any stream Xof M (or Xoi M),

§'(X) = §(X) fl {v: [ v [ = e} .

LEMMA 5.3. Assuming (5.5),
i) (W)[v e VC and v e §(Z>) i.o. =» v e dKa],
ii) (Vv)[v e 9, for infinitely many s =» ve 9J[.

Proof. Fix e and assume that i) and ii) hold for all v' such that | v' | =
e' < e. For any such v' and any stream X of iif,

(5.6) y' 6 S,+1(X) — EP, for at most finitely many s,

because of inductive hypothesis ii) for v' and because D r-exactly covers
§e'(X) by (5.5). Thus, by (5.6) any veS'(D) is excluded from 9K,+i under
Clause 2 at most finitely often.

Now for i) fix v — <e, a, z) such that v e XM and v e S(Z>) i.o. Since
v e XM, y is excluded from 9R,+l under Clause 1 at most finitely often. Thus,
v e <dn.a because v e §(D) i.o.

For ii) fix vl = <e, cr, r> e 9*. for infinitely many s. Then either vl e £?„,
immediately or else yt e 9>,+l — £P, for infinitely many s. For such an s, some
v, e 9il,,+1 - 911,, and hence y2 e S,+l(D), where yt ^ r v2. Choose any v3 e §(D)
i.o. where vx ^ r y 3 , and v3 is maximal with respect to §(D). By part i),
v3 e 9Rm and hence vY e 0>a,, thereby proving Lemma 5.3. [x]

We turn now briefly to the dual part of the machines. Sequences
X; , 9li;, 9'. are defined similarly to X, , 911., and 9, with S(C) .and §(D)
replaced by §(C) and §0), with the roles of a and r interchanged, and with
all the obvious changes. All the obvious dual lemmas hold.

Rule R3 involves a certain r.e. sequence 3C of full e-states, which is the
concatenation of the finite sequences DC,, s e N, defined as follows. TK, — 0
unless there is some track X of M, some element yl on track X at stage s,
and some full e,-state v, such that

v, e §.(X) - 9..,
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via fa, in which case DC, consists of the following full ^-states (in some
effective order uniformly in s):

{v- (lt)is[fa 6 & and v(eh t, fa) Sr v]} .

Once added to DC, a given v is never removed from DC or altered in position,
although it may later be checked during an application of Rule R3. Let 3CSs

denote the sequence of elements added to DC by the end of stage s.

RULE R3. Suppose an element x enters track C] at stage s. Let v0 =
(x, (To, ro> denote v(s, x, x). Let vx = <eIf ait T,> be the first member v =
(e, a, T) e X s , such that:

i) v has not been checked by the end of stage s;
ii) e 5g x; and
iii) v ^ ° [v0], (i.e., a = [a0]., and r 2 [r0],).

If vx exists, then at stage s + 1 check v,, enumerate x in V~<B+1 for each
n 5S e, such that n e z1 — r0 [so that v(s + 1, eu x) = v^, and place x on track
C3- If Vi fails to exist, then at stage s + 1 place x on track Ct, and let
v(s + 1, *, x) = v{s, x, x).

We shall later prove that each v may be added to X at most finitely
often. Thus, the following lemma will show that the enumeration under
Rule R3 above has been sufficiently restrained so that C dual covers C3.

LEMMA 5.4. Fix e. If each v such that \v\ < e is added to "X at most

finitely often then C dual covers §'(C3).

Proof. Fix e. Assume that each v of length < e is added to X at most
finitely often. Since each v on the sequence 3C is checked at most once,
there is a stage, say s0, after which no v of length < e is ever checked on VC.
Fix v0 6 S'(C3) i.o. Now there exist infinitely many stages ts ^ s0, j e N, such
that for each j e N at stage ts (tj 4- 1) some element x3- Sg e enters track C,
(C3), where v(t3- + 1, e, x,) = v0. But by Rule R3, at stage t3- + 1, x,- enters
track C3 only if some v,- e DC is checked, where v,- < v(t,- + 1, x,-, Xj). Further-
more, v0 < Vj because tj+l ^ s0. Thus, infinitely often some vjis added to DC
such that y0 < v[.

However, each element y of M causes at most finitely many v to be
added to 3C, because of Lemma 4.2. Thus, for some track X of M and some
y, <T v0, vl e §{X) i.o. But then y2 e §(C) i.o. for some i>2 ̂ r v1; and hence C
dual covers v0. ^

RULE R3. Same as Rule R3, but with Cu C3, Ct, C, V~, 5C replaced by
Cu C3, C,, C, U~, and 3C' [which is defined in the analogous way using i?!_i
and S,(X)), and with the roles of a and r interchanged.
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LEMMA 5.5. Fix e. If each v such that \v\ < e is added to DC' at most
finitely often then C covers S*(C3).

Proof. Same as Lemma 5.4, using R3. [x]

The purpose of Rule R3 is to allow sufficient enumeration at Gate Gl to
yield

LEMMA 5.6. If X is any stream of M, and C covers X then D r-exactly
covers X.

Proof. Fix a stream X of M such that C covers X. Assume for a con-
tradiction that some v^^X) i.o., but no ve§(D) i.o., if vl f^'v. Then
there exists s' such that no v is added to S(Z>) at any stage s ̂  s' if yt ^ r [v]..
Replacing v, by some extension if necessary we may assume that vt e §(X)
i.o., and

(5.7) (VV)[Vl^[v].=~v$S(D)].

By (5.7), v, $ 9. for any s. Thus, by the definition of X , each v e X i.o. if

Let vl = <e, au z-t>. Since C covers X, some y2 = <e, c2, ro> e §(C) i.o.
(and hence v 2 e S ( Q i.o.) where ai^al and v0 s r,. Furthermore, y2e
S,+1(X) — !?, for infinitely many s implies that y3 = <e, <72, r,> e X i.o.

Now vx ^ r y3, and thus by (5.7) v3£§(D). Hence, v3£S(C3) and y3 once
added to 3f is never checked under Rule R3. Choose s0 such that no v
preceding v3 on the sequence X is checked at any stage s^s0. Choose st ^ s0

such that some x^ e enters track Ct at stage su where v(sL, e, x) = v2 =
<e, cr2, ro>. But r0 S r i ; and hence at stage s + 1 by Rule R3, v3 — <e, a2, -,>
is checked, and a; is placed on track C3 with y(Si + 1, e, x) — v3, contrary to
(5-7). ®

LEMMA 5.7. D v-exactly covers A.

Proof. By Lemma 5.6 and hypothesis (5.1), which asserts that A (and
hence C) covers A (~B). [X]

Using 9, we define the recursive function d(s, x) as follows. Let vz =
Hs[x e Bs+l — Bs] if s exists, and be undefined otherwise. If vx is defined and
s > vx, define

d(s, x) = max {e: [v(s, x, x)]e e 9, and

(Vt)[v, < * < s = = e £ d(t, , £)]} ,

and d(s, x) = —1 otherwise. Note that d(s, x) is a recursive function since
9~\ is recursive uniformly in s. Note also that the second clause guarantees
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that d satisfies (4.3) without any assumptions on 9\, thereby justifying our
use of (4.5) in Lemma 4.3.

Notation. F r o m now on v*(s, x) will d e n o t e [v(s, x, x)]dl!?;,. and v*(x)
denotes lim, v*(s, x) which exists by (4.3).

RULE R,. Suppose an element x enters track E at stage s. Then at
stage s + 1, place x on track F after performing the following enumeration.
Let §>st(D) denote the sequence which is the concatenation of the sequences
{§„(£>): u g t}. Let v\s + 1) = <e, a', r'> denote v*(s, x). Define

Js+I = {v: v e 9)le+1 and v'(s + 1) ^ r v) .

Note that v'(s + 1) e £PS+1, and thus J",+1 ^ 0 , by the definitions of 9\+1 and
d. Furthermore, for each vef)ll,+1, ve SS(J+1)(Z?). Define v"(s + l) = (e, a", r'>
to be the last v on the sequence Siti+1)(D) such that v e U\+1. Enumerate x in
Un,*-vi for each neo" - a'. (Hence, v*(s + 1, x) = u"(s + 1) 6 9R.+1.)

RULE R6. Suppose x e Q, nQ.+i- Lei i''(s + 1) = <e, u', r'> denoie v*(s, x).
(iVoie that d(s + 1, x) = e by Rule R8.) Suppose that some v e Ss+l(D) where
v e 9K,+1 and v'(s +1) < ' v. Denote this v (which must be unique) by v"(s +1) =
<e, o", r>. Enumerate x in U*.,+l for all neo" — a'. (Hence, v*(s + 1, x) =
y"(8 + l)6fJR,+1.)

Rules R4 and R6 immediately yield the following lemma which plays a
crucial role in §6.

LEMMA 5.8. (Vs)(v2)[x eQ,=» v*(s, x) e On,].

Proof. Fix a; e Qt, and suppose that ^ last entered pocket Q at stage
t ^ s. By Rule R,, v*(t, x) e 9R(. But if J eQ. f l Qu+1 for some u, t £ u < s,
and v' = y*(xi, $) e 9R,, then d(w + 1, x) — d(u, x) (by Rule R8) and either
v'e9llu+1 or else some v" e 9llu+1 D SU+1(A). where v' < r y " in which case
v*(u + l,x) = v" by Rule R5. ^

LEMMA 5.9. (Vy)[ge Qu =» v*(y)e9RB].

Proof. Fix # e Qo,, and choose Sj such that yeQ, and y*(s, ^) = v*(y)
for all s ^ Si. By Lemma 5.8, v*(s, y) e 9R» for all s ^ s^ £3

On the other hand, Rules R4 and Rs have not allowed too much enumer-
ation, for we shall now prove by a series of lemmas that C covers any
stream X of M. The major difficulties arise from Rule R4.

LEMMA 5.10. Fix vx and v2. Suppose that D v-exactly covers vlt and
that Rule R4 applies at infinitely many stages s such that v'(s) = vt and
v"(s) = vz. Then D z-exactly covers v2 also.
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Proof. Fix vl - <e, au r,>, and v2 = (e, a2, r,> satisfying the hypotheses,
and assume to the contrary that D fails to r-exactly cover y2. Then there
exists Si such that,

(Vs)£<1(W)[v2 S* [v]. = > v e 5.(1?)] .

But v"(s) = y2 for infinitely many s implies that y2 e 9ll, for infinitely many
s. Thus, for some s2 ̂  su y2e 9R, for all s ^ s2.

On the other hand, some V3G§>(D) i.o. where v, 5Sry3 and v3e "X,, be-
cause D r-exactly covers iv Furthermore, y3 cannot be excluded from 9R,
at any s ^ s2 by Clause 2 else y2 is excluded from 0R, also. But J^eX*
implies that y3 is excluded from 911, at most finitely often under Clause 1.
Thus v3e9Hm because v3e5(D) i.o. Furthermore, y2e§(D) i.o. implies that
for almost all s, some occurrence of v3 follows the last occurrence of v2 on
the sequence SS.(X>). Thus, for almost all s if v'(s) = vt under R,, we prefer
v3 to y2 in the definition of v"(s), contrary to hypothesis. ^

Along with Lemma 5.8, the following lemma is crucial because it almost
immediately yields that C covers (and thus D r-exactly covers) any stream
X of M. The main idea is that when some vx e §,+l(X) — 9,, we do two
things. First we remove from 9H,+1 all v of length > el = |v,|, which causes
d(s + 1, y) 5S e,. Secondly, we add to 3C.+l all v2 such that yx ̂ r y2 which
tends to force D to r-exactly cover yt if C covers y,. These two features
enable us to apply Lemma 5.10.

LEMMA 5.11. For each track X of M (X of lid) and each v,
i) y G §(X) i.o. =» y e 9W, and
ii) y e § ( X ) i . o . - y e f f l .

Proof. The proof is by induction on the length of v. Fix e and assume
i) and ii) for all y such that | v | < e. It suffices to prove i) for all y of length
e since ii) is dual. By inductive hypotheses ii) for v of length < e, each v of
length < e is added to X ' only finitely often. Thus, by Lemma 5.5,

(5.8) C covers §'(C3) .

Now by inductive hypothesis i), each y of length e is excluded from
9ll,+l under Clause 2 for at most finitely many s. Thus, by the proof of
Lemma 5.3 and by Lemma 5.7 we have for every v of length e,

(5.9) veS(D)i.o.andveXw=>ve<D}lw,

(5.10) veS1, for infinitely many s = • ve !?<„, and

(5.11) yeS(A)i.o. = » v e i ? . .
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Now assume for a contradiction that for some Xand vit v,e §>(X) i.o.,
but v, £ £?„,. Let v, = {e, alt r,> with a, minimal for e, and r2 minimal for e
and a,. By (5.10), vt e 9. for finitely many s, and thus

(5.12) v, e S.+l(£) - 9. for infinitely many s.

But for each such s of (5.12) all v' of length > e are excluded from 9Us+i
under Clause 2 and hence

(5.13) y e ! ) R . = - | v | ^ e .

Now choose elements #,- and corresponding stages s,- + 1 such that for
all j e N,

(5.14) v, = v(Sj + 1, e, Us) * v(sh e, y}) .

For each j e N, define the finite sequence of full e-states,

7j = {v: (38)[VJ S s ^ sy + 1 and v = v(s, e, y,)]},

where Vj is the stage when y3- entered A. Let 7 be the concatenation of
{Jji jeN}. From (5.12) and the definition of "X, note that if v e 7 i.o., then
v'6 X i.o. for all v' such that v £T v'. From this and Rule Rs we have,

(5.15) v e 7 i.o. and C covers v = » D r-exactly covers v .

But vx £ 9^,, and thus by (5.10) and (5.15), we have,

(5.16) C does not cover vL .

On the other hand we shall get a contradiction from (5.16) by proving that

(5.17) C covers 7 .

First note that by the minimality of ax and rt above we have,

(5.18) ve7 i.o. and y ^ v, = » v e 9 a ,

and thus,

(5.19) (a.a. i)(Vs)s.,.[d(s, y,) ^ e] ,

by the definition of d(s, y) from 9., by (5.18) and by induction on t for
^ ^ i g Sj.

Assume for a contradiction that (5.17) fails, and choose v0 = <e, o0, T0)
such that
(5.20) v0 e 7 i.o. but C does not cover v0,

where <r0 and r0 are minimal. Choose an infinite set J and stages t,, + 1 ^
s3 + 1 such that

(5.21) (Vi e J)[y0 - v(tj + 1, e, y,) * v{tjt e, y,)] .



472

RECURSIVELY ENUMERABLE SETS 113

(Of course, ts + 1 > vs by Lemma 5.7.) By the minimality of a0, r0 and by
(5.21),

(5.22) C covers the sequence {v(tj, e, y,): j eJ} .

Now by (5.20), (5.21), (5.22), and Rule R6, for almost all j e J, either Rule R3,
R4, or R6 applies to yj at stage t, + 1. By (5.20) and (5.8), R3 applies for at
most finitely many je J. Likewise, by (5.19) Rule R6 applies for at most
finitely many j e J, else D (and therefore C) covers v0.

Thus, for almost all j e J, Rule R4 applies to j/,- at stage t,- + 1, with
Vo < v"(tj + 1) by (5.19). However, 9H.[y0] G {v0} for almost all s by (5.13)
and the fact that D cannot r-exactly cover v0. Hence, v"{tj + 1) = v0 for
almost all j e J. Fix any v'o such that v'o = v'(tj + 1) in Rule R4 for infinitely
many jeJ. By (5.22) C covers vj, and thus by (5.15) D r-exactly covers
v'o. Thus, by Lemma 5.10, D r-exactly covers vo» and therefore C covers v0

contrary to (5.20). £3

LEMMA 5.12. C covers C3 and C dual covers C3.

Proof. By Lemma 5.4, Lemma 5.5, Lemma 5.11, and the definitions of
X and DC'. E

LEMMA 5.13. (Ve)(a.a. s)(a.a. y)[y eM,=~ d(s, y) ^ e].

Proof. By Lemma 5.11 and the definition of d(s, y) from £P,. Kl

LEMMA 5.14. Given vt and infinitely many elements yh j e N, such that

for all jeN either Rule R< or R6 applies to ys at say stage s, + 1 with vt <
V(SJ + 1, yh y,), then C covers v,.

Proof. By Lemma 5.13, d\sh y,) ~^\vy\ for almost all j . Assume for a

contradiction tha t C (and hence D) fails to cover yt. Then R5 applies a t sy + 1

for only finitely many j because vt < V"{SJ + 1) and v"(sy + 1) e §,j+1(D) for

such j . Furthermore, only finitely many v[ such tha t vl < v[ are ever added to

9H because D fails to cover v^ But by Lemma 5.13, each v = v"{Sj + 1) of

R4 for a t most finitely many j . Therefore, Rule R4 applies at stage s,- + 1

for only finitely many j contrary to hypothesis. [x]

LEMMA 5.15. C covers every stream X of M.

Proof. By Lemma 5.12 and Lemma 5.14.

LEMMA 5.16. D r-exactly covers every stream X of M.

Proof. By Lemma 5.15 and Lemma 5.6. [X]

It easily follows from Lemmas 5.16 and 5.8 tha t D exactly covers Q (and
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hence <?,„) although in §6 we shall need a stronger property which will be
guaranteed by Lemma 5.8.

6. Proof of the Extension Theorem

Part III: Mappings

In this section we complete the proof of the Extension Theorem by
giving Rules R2, R,c, Rn> by defining mapping p,, and by proving that the
mapping p1:Pw—>QW satisfies (4.2). (Rules R2, R10, Rn and the roles of
pockets P and Q are similar and will be omitted.)

Intuitive, we think of the machinery in §5 as a device for "cutting down"
vis, V, y) to v*(s, y)e£P, which we hope C will cover (and hence D will
r-exactly cover). If we knew exactly which v were covered by C, we could
always cut down v(s, y, y) to the longest initial segment which C covers,
safely ignoring the rest of v(s, y, y). Unfortunately, our construction in
§ 5 (specifically 9,) is only a recursive approximation to this ideal algorithm
(which would require a 0 " oracle), and we may have v e ? , even if C fails to
cover v. Thus, we may have cut down v(s, y, y) only as far as v*(s, y) which
C fails to cover. In this case for some j ; e P , w e may have to match with x
several (but at most finitely many) yeQ^.

Given Q,, define (in increasing order of -<) a(s, v) = ftye Q, such that

(6.1) v < v*(s, y), and

(6.2) a(s, V) =£ y for any v' < v .

If y fails to exist, then d(s, v) is undefined. The definition clearly implies
that for all s and v,

(6.3) d(s, v) defined = • (Vy')IV -< *> ==> a(s, v') defined] .

We define P, as the disjoint union of certain P.", where each P"s contains
at most one element denoted by a(s, v). If a(s, v) is undefined, then P] = 0 .
We shall define a(s, v) so that for all s, x and v,

(6.4) [a(s, v) defined and = x] => v < v{s, x, x) ;

(6.5) a(s, v) defined ==» a(s, v) defined ;

(6.6) a(s, v) defined = » {yv')[v' < v ==» a(s, V) defined]; and

[a(s + 1, v) ^ a(s, v) or a(s + 1, v) ^ a(s, v)]

==- (Vy')[y < v' => a(s, V) e P.+1] .

RULE RI0. If x = a(s, v) e P, for some v = <e, a, r>, and if xe Un,,+1 —
Un,,for some n ^ e, then at stage s + 1 remove from pocket P all a(s, v')e
P, such that v < v'.
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RULE R U . If d(s, v)eQ. — Q,+l for some v, then at stage s + 1 remove
from pocket P all a(s, v') e P, such that v < v'.

Given the sequence X , denned in § 5, and any v, define the subsequence
(with ordering induced by 5S *),

X,[v] = {V: V e X . and v < v'} .

Similarly, define 9H,[v] and 9R«,[v] using 9K, and 91L in place of X,.
Given x e M, and v, the v-rank of x at stage s, denoted p(s, v, x), is the least
v' in the ordering ^* such that

v < v' < v(s, x, x) .

(Recall that the enumeration has been arranged so that if x e M,, then
x < s, and hence p(s, v, x) is defined.)

RULE R2. Suppose that element x enters track D at stage s. Let v' be
the first v (in the ordering <) such that:

i) v < v(s + 1, x, x);
ii) d(s + 1, v) is defined; and
iii) either a(s, v) is undefined, or

p(s + 1, s, x) <*+I p(s + 1, v, a(s, v)) .

If v' exists, then at stage s + 1 define a(s + 1, v') = x, place x in pocket P,
and remove from P all elements a(s, v") such that v' < v". If v' fails to
exist, place x on track Dy at stage s + 1.

Recall that under Rule R12 if x e P,, then x e P,+l unless removed under
either R2, R10, or Ru above. Since x enters P only under Rule R2, these rules
clearly establish (6.4), (6.5), (6.6), and (6.7).

Let a(v) denote lim, a(s, v) if the latter exists, and similarly for a{v).
(Note that lim, a(s, v) and lim, d(s, v) may fail to exist.) The above rules
also establish that for all *,

(6.8) « ? , - = (3v)[a(v) = x] .

(By (6.8), (6.4), and (6.6), one may think of Pw as corresponding to a certain
tree E 2™, where a(v) corresponds to the characteristic function (restricted
to n ^ 2e) of the set {2n: n e a) U {2n + 1: n e r}, for v = <e, a, r>.)

The particular difinitions in §5 of Xa and 911, involving C and D were
designed for the proof of the following lemma, which is the crux of the
entire argument.

LEMMA 6.1. Fix v0 and suppose that:
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i) (Vv)[v < v0 =* lim, a{s, v) exists};
ii) (Vv)[v < y0 =» lim, a(s, v) exists); and
iii) lims a(s, v0) fails to exist.

Then <d\lw[v0) is finite.

Proof. Fix v0 = <e0, o0l ro> satisfying i), ii), and iii) above. Choose s0

such that

(6.9) (Vs)a.0(Vy)[y < v0 = o(s, v) = o(v)]; and

(6.10) (Vs)a.0(vv)[y < y0 = » o(s, v) = a(v)] .

We claim that 9lI,0[y0] 2 9H.[vJ. Consider any ^eDR.Jy,] - 9RSl_,[y0]
for some s1 > s0. Assume for a contradiction that V, e 9R, for all s 7± s^
Then by Case 1 in the definition of vl being excluded from <dK,,

(6.11) (vv)(v*)ail[y g* v, <=» y ^'Sl yj .

Furthermore, vl added to 911^ at stage st implies that some element x,
entered track D at stage s, such that

(6.12) y0 < yx < v(s1; a;lf a?0 .

Therefore, Rule R2 applies to xt at stage st + 1, and a, becomes a(Si + 1, y0)
unless a(s,, v0) is denned and

(6.13) ^(s! + 1, y0, a(s1( v0)) ^*8l ^(s, + 1, y0, x,) .

Furthermore, by (6.12), (6.13), and the definition of pfa + 1, v0, xj,

(6.14) p(8l + 1, y0, a(slt y0)) ^*n v0, and

(6.15) p(Sl + 1, y0, a(s1( y0)) g*Sl yx .

By Rule R12, a(s + 1, v0) ?t a(», v0) only if Rule R2, Rio, or Rn applies to
a(s, y0) at stage s + 1. By (6.10), Ra does not apply to a(s, y0) at any stage
s + 1 ^ Si. However, by (6.9), if R2 applies to a(s, v0) at stage s + 1 ^ ^
then

(6.16) p(s + 1, y0, a(s + 1, y,)) <*+1 p(s + 1, y0, o(s, y,)) .

Hence, by (6.11), (6.15), and (6.16), Rule R2 applies to a(s, y0) at most
finitely often after stage sx (thus contradicting hypothesis iii) of the lemma)
unless Rule R,o applies to a(s, v0) at some stage s + 1 ^ s^ Let s2 be the
least such s. Let x% denote a(sz, y0) and y2 = <e2, <r2) r2> denote p(st, v0, x2).
By (6.11), (6.16), and (6.15), we have

(6.17) y2 = p(s2, y0, a(s,, v0)) g',2 p[slt v0, a(su v0)) £» , yt .

But by (6.9), R10 applies to x2 at stage s2 + 1 only if x2 e Un,s+1 — Un,, for
some « g e 0 ^ e2. Hence, v2 <Tv(s2 + 1, e2, a;2), and by Rule R12 at stage s2 + 1,
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x2 is placed above hole H2, from which it enters track C at some stage t >
s + 1. Let v3 denote v(s2 + 1, e2, x2). Then v(t, ez, x2) = y5 also, and thus
y2e3f? because v2<ry3. But y2e3f? contradicts (6.11) and (6.17) which to-
gether assert that y2 is never reset after stage st. [X]

LEMMA 6.2. Fix v,. and suppose that there are infinitely many elements
Vi e Qm j e N, such that vl < v(yjt y,), for all j e N, Then

i) yt < y*(#/) for almost all j e N; and
ii) lim, a(s, yx) exists.

Proof. Fix v± = (ex, o~lt T^>, and {I/,-: j e N) satisfying the hypotheses
with et minimal. Then yxe S(Q) i.o., and hence i) follows by Lemma 5.3 and
Lemma 5.13. Hence, lim, d(s, v) exists for all v < vx. By the minimality of
ex, lim. a(s, v) exists for all v < vL.

Assume for a contradiction that lim, a(s, vL) does not exist. Then by
Lemma 6.1, ©RjyJ is finite. But by Lemma 5.9, v*(i/i) e 9R* for all j e N.
But for each v2e 9Ka.lv,], by Lemma 5.13, v*{y,) = v2 for at most finitely
many j e N, thus contradicting the hypothesis. ^

Define P^ = {a(v)} if a(v) is defined and = 0 otherwise. For ever y e Qa,
define v*(y) as follows. If y = d(v) for some v and a(v) is defined, let v*(y) =
y. Otherwise, let v'(y) be the- maximum v (in the ordering -<) such that
v < v*(y) and a(v) is defined. Define

Ql = {§•• yeQ* and v*{y) = v} .

From Lemma 6.2, it immediately follows that for all v,

(6.18) Ql is finite .

From (6.5), (6.7), and the definition of Ql, it follows that for all v,

(6.19) P : ^ 0 — QL =̂  0

and hence that the map pL: Pa > Qw can be derived from the correspondence

More precisely, define the (finite to one) map qL: Qa » P^ by q,{y) =
a{v) where yeQl. Note that for all n,

(6.20) ? - ( [ / » n P s ) = J ( ! ? , n &) and ? 1 (7 , n Qw) = ' ( 7 . f i P.) ,

because by (6.4), and the definition of v\y), x e Pi (x e Ql) only if v < v(x, x)
(respectively v < v(x, x)). Using the method of Theorem 1.3 and (6.20) one
can produce a one: one map pl:Pa*—Qa satisfying (4.2), although by Corollary
1.7 (appropriately modified), (6.20) already suffices to show that (t> is an auto-
morphism of 6*.
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7. Conclusion

Our main result is one step in the general program of deciding exactly
when A=&B for given A, B&&. Following Lachlan, for each A e g
define the principal filter £(A) = {X: I e S and A £ X}. Clearly A=6B
implies £(A) = £(B) but unfortunately the converse is false [17]. By
Corollary 2.6, however, the converse holds if ,£*(A) is finite. We do not know
in which other cases the converse holds. In particular, does it hold if £*(A)
is a boolean algebra, or at least an atomless boolean algebra? What are
other complete sets of invariants [10, p. 51], besides those mentioning i_*(A),
for characterizing the orbit of A e <S?

In a slightly different direction, automorphisms may be used to study
the important question of the relationships between the structure of a r.e.
set A and its degree, which will be denoted by deg A. Post's program [8]
was to find a simple property on the complement of a r.e. set such that a
set satisfying that property has degree strictly between 0 and 0 ' . Although
Friedberg and Muchnik constructed r.e. sets of such degree by a different
method, the existence of such a property remains an open question, as has
recently been pointed out by Sacks [11, (Q3) on p. 172]. We give a partial
answer to this question by proving [16] that no such property can be
lattice-invariant as are the properties of simplicity, hyperhypersimplicity,
and maximality.

THEOREM 7.1. For any nonrecursive Ae & there exists B of degree 0 '
such that A =&B.

A corollary is Yates' result [18] that there is a complete maximal set.
We define the following subclasses of the r.e. degrees R for each % _ 0,

H. = {d: d r.e. and rf"° = O("+1)} , and

Ln = {d: d r.e. and d(n) = O(n)} ,

where d(0) = d. It is well-known [10, pp. 290-294] that for each n, Hn _= !_„+,
and Ln 5 L*+1, and that there exists a r.e. degree d such that for all n,
d g H , U Ln. The degrees in Hi (LJ are called high (low). (This terminology
is often used with the condition "d r .e." above replaced by the weaker con-
dition "d _£ O'".)

A class C E R is called ^-definable if C = {deg W: We (?) for some
lattice-invariant class ( ? £ § . For example, let M denote the class of degrees
of maximal sets, and A the class of degrees of atomless sets, that is, coinfinite
r.e. sets which have no maximal superset. The first major results relating
the structure of a r.e. set to its degree were the beautiful theorems of
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Martin [7] that M = Ê  and A 3 H,. The difficult part of Martin's results,
namely that M a H,̂  and A a H1( can be obtained from the following theorem
which was suggested by Carl Jackusch.

THEOREM 7.2. For any nonrecursive A e <§ and any d e Hi there exists
a r.e. Bed such that £{A) s £(B).

Thus, no isomorphism-invariant property on £.(A) can guarantee either
completeness or incompleteness. Another corollary is Lachlan's result [1,
p. 27] that for every rfeH, and any M-simple A there exists a r.e. Bed such
that £(A) s £(B).

In contrast to this "complexity" of sets of high degree, we might expect
those of low degree to exhibit some "uniformity" of structure like that of
recursive sets which fall into only three distinct <§*-orbits. For example,
R. W. Robinson [9] verified Martin's conjecture that A D Lt = 0 by con-
structing a maximal superset B for any coinfinite A e S such that deg A e L^
Lachlan showed [1, p. 27] that "B maximal" above could be replaced by "B
M-simple with £(£) = £(C)", where C is an arbitrary hh-simple set. Lachlan
then conjectured that £.(A) s £(B) for any A, B, both simple and of low
degree.

For any set A £ N (not necessarily r.e.) define &A = {W f) A: We §}. If
A is r.e. and infinite then &A = 6 of course. The following result [17]
extends this property to sets of low degree and yields all the above results,
because if B is r.e. then clearly <§s = S.(B).

THEOREM 7.3. If A is infinite and deg A e Lt then &A = S.

Carl Jockusch has noted that our proof of Theorem 7.3 really uses only
the weaker hypothesis that {e: We 0 A ^ 0} has degree 0'. Such sets exist
in every r.e. degree.

Lachlan has shown [3] that H8EA and A n L2 = 0 . It is an open ques-
tion of Lachlan and Martin whether A can be characterized by some condi-
tion on H, or Ln such as A = H2 or A = R — Lj. It is unknown whether
the hypothesis of Theorem 7.3 can be weakened to "deg A e h", which is
possible in view of [3, Theorem 4]. It is also unknown whether Hn is in-
definable for any n > 1. If false for say n — 2, one might try to use the
Extension Theorem to construct an automorphism O corresponding to a
given A e & satisfying deg A e H2 — HL so that deg <P(A) c H2. Lerman [5]
has shown that for any non-recursive AeS> and any d e FT, A has a major
subset B such that deg B erf. It is unknown whether this result may be
obtained using automorphisms which fix a given As &.
UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE
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A model of set-theory in which every
set of reals is Lebesgue measurable*

By ROBERT M. SOLOVAY**

We show that the existence of a non-Lebesgue measurable set cannot be
proved in Zermelo-Frankel set theory (ZF) if use of the axiom of choice is
disallowed. In fact, even adjoining an axiom DC to ZF, which allows
countably many consecutive choices, does not create a theory strong enough
to construct a non-measurable set.

Let ZFC be Zermelo-Frankel set theory together with the axiom of
choice. Let I be the statement: There is an inaccessible cardinal1.

THEOREM 1. Suppose that there is a transitive e-model of ZFC + I.
Then there is a transitive e-model of ZF in which the following propositions
are valid.

(1) The principle of dependent choice (= DC, cf. III. 2.7.)
(2) Every set of reals is Lebesgue measurable (LM).
(3) Every set of reals has the property of Baire.2
(4) Every uncountable set of reals contains a perfect subset (P).
(5) Let {Ax: XG R} be an indexed family of non-empty set of reals with

index set the reals. Then there are Borel functions, hlt h, mapping R into
R such that

(a) {a; | h^x) g Ax} has Lebesgue measure zero.
(b) {x [ ht(x) g At) is of first category.

Remarks. 1. It is known that the theory ZFC + I has a transitive
e-model if ZF + DC + P does; cf. [10, pp. 213-214]. Thus the hypothesis of
Theorem 1 (that ZFC + I has a transitive e-model) cannot be weakened.
However it does seem likely that the existence of a transitive model of
ZF + DC + LM is a consequence, in ZFC, of the existence of a transitive

* The main results of this paper were proved in March-July, 1964, and were presented
at the July meeting of the Association for Symbolic Logic at Bristol, England.

** The author is a Sloan Foundation Fellow. During part of the period when this
paper was prepared, he received support from NSF contract GP-8746.

1 In the presence of the axiom of choice, we identify cardinals with initial ordinals.
A cardinal N is regular, if each order unbounded subset of « has power x. A cardinal N is
inaccessible, if it is regular, uncountable, and for «' < K, 2>*' < K.

2 A set of reals A has the Baire property if there is an open set U such that
(A - U) U (U - A) is of the first category.
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model of ZFC
2. Our proofs use Cohen's forcing method. In the usual way (cf.

[8, pp. 132-133)), they can be recast as finitistic relative consistency proofs.
3. We take this opportunity to describe some recent work on the model

of Theorem 1. Mathias has shown that the following Ramsey-like theorem
holds in the model. Divide the set of all infinite subsets of a> into two dis-
joint pieces. Then there is an infinite subset A of <o such that every infinite
subset of A lies in the same piece as A.

Levy and the author have shown that in this model every set of reals is
the union of ^ , Borel sets. This should be contrasted with the following
consequence of DC and the axiom of determinateness (AD), due to Moscho-
vakis: Every union of ^ , Borel sets is Si. It follows that AD fails in the
model.

This result might seem to throw cold water on a conjecture of the author
that a suitable large cardinal axiom will imply that AD holds in L[R].
Closer inspection shows that there is no conflict between the conjecture and
this result.

4. It is fairly easy to deduce parts (2) and (3) of Theorem 1 from part (5).
Nevertheless, we have included our original proofs of (2) and (3) since they
are much simpler and more natural than the proof of (5). (The ideas in our
proof of (2) will be used in a forthcoming paper of the author to show that
the existence of measurable cardinals implies that every Z2L set of reals is
Lebesgue measurable.)

5. Proposition (5) of Theorem 1 was suggested to the author by Mycielski.
According to Mycielski, (5) implies that every subset of R3 has a newtonian
capacity. The author is totally ignorant of the theory of capacities, so will
simply pass on (slightly re-phrased) the relevant portion of Mycielski's letter
in the hope that some knowledgeable reader may understand it.

Let C be Choquet's paper, Theory of capacities, Annales de l'lnstitute
de Fourier, 5 (1955), 131-292. Mycielski's remark is that using (5), we can
establish 37.1 of C for arbitrary subsets A of R2. This statement generalized
to the case A c X x Y where X is an arbitrary separable measure space
implies capacitability of all sets with respect to the classical capacities inter-
preted as in 49.3 and 49.4 of C. (In the application, X is the set of brownian
trajectories with the Wiener measure, and Y = [0, =»).)

6. The reader will find in [10] a detailed discussion of various forms of
the axiom of choice whose failure follows from (l)-(4) of Theorem 1, e.g., the
axiom of choice for families of two-element sets.

We add a brief discussion on the Hahn-Banach theorem. Of course the
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Hahn-Banach theorem for separable Banach spaces follows readily from DC.
On the other hand, one can deduce from (3) of Theorem 1 that there is no
finitely additive probability measure on the power set of o> which vanishes
on singletons. It follows that the Hahn-Banach theorem fails in the model of
Theorem 1.

Of course, the axiom of choice is true, and so there are non-measurable
sets. It is natural to ask if one can explicitly describe a non-Lebesgue
measurable set.3 Our next theorem bears on this question.

We say that a set of reals A is definable from a set x0 if there is a set-
theoretical formula W(x, y) (having free only the variables x, and y) such that

A = {y G R: V(x0, y)} .

Because of the familiar difficulties about the "undefinability of truth" it is
not clear how to express the notion "definable" by a set-theoretical formula.
However, Myhill and Scott [11] have shown that the notion "A is definable
from some countable sequence of ordinals" is expressible by a set-theoretical
formula. Thus we can formulate in set-theory the propositions referred to
in the following theorem.

THEOREM 2. Suppose that ZFC + I has a transitive s-model. Then so
does the theory ZFC + GCH together with analogs of (2) through (5) of-
Theorem 1. ( We state the analog of (2):

(2') Every set of reals definable from a countable sequence of ordinals
is Lebesgue measurable.)

Remark. Since a real can be coded into a countable sequence of zeros
and ones, every set definable from a real is, ipso facto, definable from a
countable sequence of ordinals. In particular, every projective set of reals is
definable from a countable sequence of ordinals.

McAloon has simplified the author's original proof of Theorems 1 and 2.
(We present McAloon's version of the proof below.) As McAloon and the
author independently noticed, McAloon's version of the proof allows one to
prove the following

THEOREM 3. Assume the hypotheses of Theorem 1. Then there is a
transitive e-model of ZFC in which 2K0 = « 2 and the analogs of (2)-(5) of
Theorem 1 referred to in Theorem 2 are valid.

Remarks. 1. It is clear from the proof (cf. Ill 3.9) that Theorem 3
remains true if "2K0 = ^ , " is replaced by "2**° = K A " for a wide variety of
reasonable A; e.g., A = 3, A = K , etc.

i This question was suggested to the author by Milnor.
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2. A natural question suggested by Theorem 3 is whether there are
models of the sort described in Theorem 3 in which Martin's axiom holds.
We can construct such models using a remark of Kunen but we need to take
the large cardinal in the ground model weakly compact as well as strongly
inaccessible. It seems likely that this large cardinal assumption can be
appreciably weakened.

Our paper is divided into three main sections. Section I begins with
general remarks on the notion of forcing. I.I gives a precise mathematical
interpretation of the concept of "generic". (Cohen did not need such a
definition; he simply constructed and studied one generic filter.) The advan-
tage of having such a precise notion is shown in 1.2, where we relate generic
filters on various partially ordered sets; cf. especially Lemma 2.3 relating a
generic filter on the product of two partially ordered sets with the filters on
the factors. 1.3 describes a model due to A. Levy [9], which is the model of
our Theorem 2 and gives proofs of basic facts about this model (also due to
Levy). In 1.4, we prove an important lemma which allows us to enlarge the
ground model of Levy's construction so as to absorb a specified real of the
extension.

Section II. 1 contains foundational material about the relations between
Borel sets of a transitive £-model 911 and an extension 9l of 9)1. We show
that there is a natural way to prolong the Borel sets of 911 to sets of 91 which
preserves most properties of the Borel set. II.2 defines and studies one of the
main technical devices of the paper, the notion of a random real. (Roughly
speaking a real is random if it avoids all the sets of measure zero that one
can explicitly define. An alternative heuristic definition is that random
reals are those reals whose binary expansions are obtained by tossing an
honest coin infinitely many times.)

Finally III puts the material of I and II together and proves Theorems 1
through 3.

We close this introduction by thanking various people who in one way
or another materially helped us in this work. The original problem of showing
ZF + LM consistent was suggested to the author by Paul Cohen. (And of
course Cohen's idea of forcing [2] is the sine qua non of our proof.) We are
grateful to Levy for sending us a preprint of his work on the model 9t (of
Theorem 2) and for permission to incorporate proofs of his results into our
paper. Ken McAloon made a vital simplification in our proof which reduced
our original cumbersome verification of DC to a triviality. Finally, we are
grateful to Hao Wang and the Rockefeller University for hospitality during
the year when this paper was finally written.
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I. THE MODEL

I. Generic fillers

1.1. We are going to review briefly the formalism of forcing in a form
suitable for applications in this paper. Proofs will not be given for these
results. The reader familiar with [8] and [1] should be able to reconstruct
the proofs, cf. § 1.10 for some discussion of the proofs.

1.2. ZF is Zermelo-Frankel set theory. ZFC is ZF plus the axiom of
choice. Let 9)1 be a transitive model of ZFC. We do not assume that 911 is
countable, but we shall assume, for convenience, that 9)1 is a set.

Let i-C be a non-empty partially ordered set lying in 9)1. We suppose in
addition that the partial order :g on y1 is reflexive, i.e., if xeiP, x rg x.
(We assume, of course, that the ordering g lies in 9)1.)

Two elements of 9\ a; and y, are compatible if (3z e y>) (x <; z and y ^ z).
Otherwise, they are incompatible.

A subset X of <? is dense if
(1) if x e X, ye <j\ and a; ̂  y, then y e X;
(2) if a; e 9\ there is a y e X with x ^ y.*

1.3. Let G be a subset of y\ We say that G is an d)l-generic filta*
on 9 if:

(1) If x, y eG, then there is a z e G, with a; g z, and y ^ z.
(2) If a; e G, ye <?, and y ^ a;, then !/eG.
(3) Let J e f f , Xe9)l , and suppose that X is dense. Then X Pi G is

non-void.

1.4. Let G be an 9ll-generic filter on 9. Then there is a transitive model
9R[G] of ZF with the following properties:

(1) 9)1 c 9)l[G];
(2) Ge9il[G];
(3) if 9l is a transitive model of ZF such that 9)1 c 91 and G e 91 then

9)l[G] c <dl.
It is clear that (l)-(3) characterize 9ll[G]. 9)l[G] has the following

additional properties:
(4) The axiom of choice holds in 9)l[G].
(5) Let a be an ordinal. Then a e 9)l[G] if and only if a e 9)1.

1.5 We introduce a first order language 5? as follows: the predicates of

4 Our conventions are such that if x g y, y "gives more information" than x.
5 Our original definition of generic was based on •'complete sequences". The present

approach is due to Levy [8].
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£ are e and a one-place predicate S. We interpret £ in tO)l[G] as follows: a is
interpreted in the obvious way; So; holds in 9R[G] if and only if .v e 9R.

We can formulate new instances of the replacement axiom involving" the
predicate S. All these instances are valid in 9R[G].

1.6. Let Ae*d)l[G], with A c 9R. Then there is a model L0)l[A\ of ZFC
with the following properties:

(1) 9)1 c <D)l[A}.
(2) Ae9ll[A],
(3) If 91 is a transitive model of ZF, 911 £ 9i, and A e 9t, then v)R[AJ £ 9(.
It is clear that (l)-(3) uniquely characterize 9R[A], and that 9R[Ajc9R[G].

If we interpret £ in 9R[A], by interpreting e in the obvious way and inter-
preting S as before, then all the instances of the replacement axiom expres-
sible in £ hold in <0)l[A].

1.7. If Ci is a relational system, and <i> a sentence, we use the notation

fl t= <t>

to mean: <t> is true in Q.
There is a formula <&{vlt v,, v3) of £ with the following properties:
(1) 9)l[G] N ®(x, y,z)~^xe 911, y £ 9K.
(2) If 9ll[G] t= O(a,% y, z) and <DK[G] (= O(a;, ]/, 2'), then z = z'.
(3) Let A c 911, A e9R[G]. Then

9R[G] t= O(a;, A , x ) - 2 e 9ll[A] .

(4) Let A be as in (3), and let z e <DK[A]. Then

9ll[G] |= O(a;, A, 2) < • 9ll[A] t= cD(.v, A, 2) .

(5) 9ii[A] = {z I (3* e 9ll)(9ll[G] t= O(a;, A, z)}.
Roughly speaking <I> is constructed as follows. We can describe 9R[Aj as

the set of denotations of terms of a certain ramified language £„; if t is a
term of £ t , and u is the collection of sets of 9ll of rank ^ rank (t), then we
can "compute" the denotation of t from t, u, and A. Then <P((t, n>. A, z)
holds just in case z is the denotation of (.

The existence of O with the properties just stated has several important
consequences:

(a) Let A be as above. Let x e 9ll[A]. Then x is definable in

<9R[A]; e, S, A>

from some element y of 9R.
(b) The predicate "i/e<DR[A]" is expressible in <9R[G]: ;. S> (by

(3x)O(x, A, y)). Thus we can lay our hands on 9R[A] inside 9R[G].
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1.8. We now make the following countability assumption on 911, £P:
there are only countably many subsets of 9 lying in 911. This has the follow-
ing important consequence. Let p e 91. Then there is an 9ll-generic filter G
on 9 with peG.

1.9. Forcing. Let 9)1, 9' be as in § 1.8. We enlarge £ to a language £'
as follows. If x e 9)1, we introduce a term x; we also have a term G. If G is
a generic filter on 9\ we interpret £' in 9ll[G] by letting x denote x, and
letting G denote G.

We can arrange matters so that each formula of £' is (coded by) a set of
9)1. and all the usual syntactical properties relevant to £' are expressible
in 9R.

Let <t> be a sentence of £', and peS1. We say that p forces d> if

9)l[G] j= O

whenever G is an 911-generic filter containing p. (Notation: p ih- <£>.)
A fundamental fact about forcing is the connection between forcing and

truth: If G is an 9ll-generic filter on 9> and

9lt[G] |= O ,

then O is forced by some peG.
It follows that if p does not force O, there is an extension p' of p such

that p' forces -i <I>.
We say that p decides O if p Ih- <D or p \\- -> <J>. (Notation: p :; O.) We

write lf-O, if for every p e 9, p Ih- O.
Suppose now that <S?(w0, • • •, wB) is a formula of £. Then the relation

(1) pH-O(G, &, •••,«,)

is expressible in 911; i.e., there is a formula Y(a;0, • • •, a:,) such that (1) holds
if and only if

911 F ¥ ( p , * i , • • • , « . ) •

1.10. We know of no proof of the results stated above which does not
require preliminary indirect definitions of 9)l[G] and Ih-. For example, one
can extend £' to a ramified language £", and define 9ll[G] for any G c f f a s
the set of denotations of terms of £"; cf. [8] for a representative special case.
One defines an auxiliary forcing relation, say ih-', by induction on some
ordinal measure of the complexity of a sentence of £". (For example, if
p, q e £P, we would have

pl\-' qeG

if and only if q g p.) The correct forcing relation, p n- O, is defined in terms
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of IK' by p II- <P if and only if p \\-' -1 -iO (" -, " is the negation symbol).
An alternative proof of these results can be given in terms of boolean

valued models (cf. [12]).

1.11. Recall that a cardinal Q is regular if each subset A c Q of
cardinality less than Q has a sup less than Q. A cardinal 0 is strongly
inaccessible, if Q is regular, greater than ^ 0 , and satisfies

K < Q — 2* < Q .

(Here ^ ranges over infinite cardinals.)
We shall need the following known result.

LEMMA. Let 9H and 9 be as in § 1.8. Let Q e 911 be such that
9H t= "Q is strongly inaccessible, and the cardinality of 9 is less than Q".
Let G be an ^.-generic filter on t3>. Then Q is strongly inaccessible in

9)l[G].

1.12. Collapsing a cardinal. Now let 9H be a countable transitive model
of ZFC. Let A, be a non-zero ordinal of 9)1. Let 9X be the set of functions /
whose domain is a finite subset of co and whose range is a subset of X. We
partially order £?x by inclusion: / ^ g if and only if / c g.

Let G be a generic filter on £?;. Then \JG is a function F: oi —• X, and F
is surjective. It follows that X is countable in 9ll[G]; cf. the discussion of
§ 3.2 for proof of a related result.

One can recover G from F as follows:

G = { / e 9 > i : / c F } .

It follows that 9)l[G] = <DK[F].
We say that F: o> —• X is a generic collapsing function (more precisely,

an 9lt-generic collapsing function), if F arises from a generic filter on 9X in
the manner just described.

LEMMA. Let F: co —>X be an <d\\-generic collapsing map. Then there is
an s c co, s e 9KIF], with

9R[Fj - 3R[s] .

PROOF. We put

s = {2"3m i F(n) g F(m)} .

Clearly s 6 9ll[F]. To complete the proof, we show that Fe 9R[s].
Put m ~ n if and only if F(m) = F(w). Clearly the relation ~ lies in

9ll[s]. Therefore so does the set A = coj~ of equivalence classes. We order
A by [m] < [n] if and only if 2"3™ e s. Clearly F induces a map F ' of <A, <>
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onto <a, <> in an order preserving way. Thus <A, <> is well-ordered.
Hence it is well-ordered in 9ll[s]. Let F":A—-a' be an isomorphism of
(A, <> with <«', <> in 9it[s]. (F" exists since

(1) 9ll[s] is a model of ZFC, and
(2) a theorem of ZFC asserts every well-ordered set is order isomorphic

to an ordinal.)
The map

F"o{F')-x

is clearly the identity map so F' e 9)l[s]. It follows that F e 9)l[s].

Remark. This lemma is the motivation for my paper [14].

2. Some lemmas on genericity

2.1. Throughout this section 911 is a countable transitive model of ZFC.
The following lemma is trivial but useful.

LEMMA. Let 9\, 9\ be non-empty reflexive partially ordered sets lying
in 911, and let W: 9\ —• 9\ be an order isomorphism lying in 911. If A c S ,̂

¥.(A) = {V(x):xeA}.

Then for G c ? „ G is aw <DK-generic filter on 9\ i / and oni|/ i / ¥*(G) is aw
'DK-generic filter on 92. Moreover, <dK[G] = 9R[^4(G)].

2.2. Now let <?!, 9*2 be reflexive partially ordered sets lying in 9H. We
suppose that 0\ c g)2, and that the order on 9^ is the restriction of the order
on9V

Definition. 9>1 is cofinal in hP, if for every x e S5, there is a 2/ e 9\ with

LEMMA. Let 9\, 9*2 ^e non-empty reflexive partially ordered sets lying
in 9TL Suppose that &v is cofinal in 9Z. Let G be an <dK-generic filter on
9\. Then G f]9'l is an (dK-generic filter on 9\. T/ie map W, given by

^(G) - G n ? , ,

fifives a bisection of the set of ^.-generic filters on S?, with the set of 911-
generic filters on 9*,. Moreover, 9)l[G] = 9ll[^(G)].

PROOF. Let G be a 9R-generic filter on 0\. Then it is straightforward
to verify that G n 9l is an 9H-generic filter on 9\. To verify clause (1) of
§ 1.3, let x, y eG f] 9\. Then there is a. zeG with x g 2, y ^ z. Since 9'1 is
cofinal in 9\ and G satisfies § 1.3, (2), we can assume z e 9V For clause (3),
note that if X is a dense subset of 9\,

let
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{ye92\(lxeX)(x£y)}

is dense in 9t. Clause (2) is trivial to verify.
Now suppose that Gl and G2 are distinct <d)l-generic niters on 9. We

show that

(1) ¥((?,) * ¥(GS) .

Let peGi, p£G,. (If necessary, we interchange G, and G2 to get such a p.)
Let

X = {q 6 y., ? ^ j ) or p and <j are incompatible} .

Then X lies in 9)1 and X is dense in 9. Pick g e G, n -X". If q ^ p, we
would have p e G2, contradicting our choice of p. Thus # is incompatible with
p. Replacing q by an extension if necessary, we may also suppose q e 9\.
Thus q G G, fi 9\, but q- e GL f] 9\, since any two members of Gt have a common
extension in Gu and p e G,. This proves (1) and shows that G is one-to-one.

Let H be an 911-generic filter on 9,. Put G = {xe92\ (3y e H)(x ^ y)}.
We leave to the reader to verify that G is an 911-generic filter on y\ and that
¥((?) = -ff. This shows XV is onto, and the lemma is proved. (The last
sentence of the lemma is clear from our explicit description of ^ l . )

2.3. We now consider the following situation: £Pl and 9* are reflexive
non-empty partially ordered sets lying in 9R. We define a partially ordered
set 9 as follows: as a set,

9 = 9, x 9.2 ;

let <£>„ p2>, <£>[, $> be elements of 9. Then

<p., p2> ^ <??;, p;>

if and only if pt ^ p', and ?J2 g p',_.
The following lemma characterizes the Qll-generic filters on 9.

LEMMA. Let G be an tyl-generic filter on 9. Then G = G, G, where
G, is an L!))l-generic filter on 9,, and G, is an y\l{Gx\-generic filter on 9«.

Conversely, let Gk be an 'DK-generic filter on 9, and G2 an H)\l[G,]-generic
filter on 9,. Then Gt x G2 is an <M.-generic filter on 9.

PROOF. Let G be an 9R-generic filter on 9. Put

G, = {* e 9,: (3y e 92)«x, yy e G)} .
G2 = {x G 92: (3y e 9M<V, z> 6 G)} .

Clearly, G c G, x G2. Conversely, let <», |/>6G, x G2. Pick .*;' e 9, and
y' e 9*, with (x, x'~} and <y', j/> e G. Let <x, z'> e G be a common extension of
<*. x'> and <i/'f i/>. Then
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<Z, y} ^ <Z, z'>

so <.r, y> e G. This proves G = G, x G2.

We next verify that G, is an 911-generic filter on <•?,. Clauses (1) and (2)

of § 1.3 are trivial to verify. We turn to clause (3). Let X c <j\ be dense in

S\, with I e 9 L Then X x Sf\ is a dense subset of if lying in 9)1. Since G is

9)l-generic, G n l x 9\ is non-empty; i.e., GL • : X is non-empty.

We now show that G, is an 9ll[G,]-generic filter on y>2. Again, § 1.3 (l)-(2)

is trivial to verify. Let X, e 9)l[G,] be a dense subset of if.,. By § 1.9. there

is a formula <&(&•) of £ ' such that

•DllIGJ ^ O(.T)

if and only if :B = X,. We use cp(;v) to translate any assertion about A' into

a statement of £'; i.e., replace ^P(X) by

Let pi be an element of G, which forces "(3! ̂ )<P(,u) and Vx(<f>(x)—*;>: is a dense

subset of S\)".

Let

X, = {<(p, g> e £P: either p is incompatible with j)y or pL g j) and 7) IK- q e XJ .

We claim X2 is a dense subset of 9\

Suppose first that <p, ^> e X2 and (j), q> ^ <p', q'y. We must show

<P'» 9 ' > e l ( . This is trivial unless p ^ j ) ^ j>'. If this is so, p' forces the

following:

(1) Xt is a dense subset of iJ1,.

(2) ?el,.

(3) q ^ q'.

Hence, p' forces q' e X! and so (j>', q'y e X,.

Next let (j>, qy e 9. We show that (ja, <?> has an extension (_p*, q*y lying
in X2. If p is incompatible with pn (jp, qy itself lies in X2. So suppose that p
and Pi have the common extension p'. Then p' forces the following state-
ments (since p' ^ pt):

(1) Xl is a dense subset of y\.

(2) <?e£P2.
(3) (3a; e 9>2)(q ^ x and .r e XL).

Hence there is a g* e 9Z, and a p* Sg p' such that

p* 11- "9 g q* and 9* 6 X/ ' .

It follows that <p*, q*y e X,. Clearly <p, <?> ̂  <p*, ?*>.

Thus X, is dense. Since forcing is definable in 911 (§ 1.9), X, e 911. Since
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G is 9)l-generic, there is (jp*, g*>e G n X2. Now since p* and pl both lie in
Gu they are compatible. Thus

Pi^ P* ,

and p* if- g* e X,. Since p* e Gn we have

9il[GJ |= g* e X, .

This shows G2 f] -X". contains g*, and so is non-empty. Our proof that G, is
9)l[GJ-generic is complete. This proves the first half of the lemma.

Now suppose that Gl is an 911-generic filter on 9t and G2 is an 9)l[G,]-
generic filter on 91,. Put G = GL x G2. We show G is an QR-generic filter on
9. As usual clauses (1) and (2) of § 1.3 are trivial to verify. Now let X e 911
be'a dense subset of 9. We show that X D G is non-empty.

Let X' = {qe9t\ (3p e GJKp, «> e X)}. Clearly X ' c £P2, X ' e 9lt[G,].
We claim X ' is dense in £P2. Clearly, if q e X', and g g g', then g' e X'. Next,
let g e 0V We consider

X " = {p e SP, | (3g' e S\)(g ^ g' and <p, g'> e X)} .

One checks easily that X " is a dense subset of !?„ lying in 9U. Hence
3p e Gt n X". But then there is a q' e 9\ with g ^ g' and <p, g'> 6 X; i.e.,
(3<7' ^ Q)(q' e X'). We have now verified that X ' is dense in 9%.

Since G2 is fMfGJ-generic, there is a q e G2 (1 X'; i.e., there is a <p, g>
lying in Gj x G, f) X. This completes our verification that Gt x G2 is an
9ll-generic filter on 9.

COROLLARY. Let Gt be an dR-generic filter on 9>l and G2 an <3K[Gl]-generic
filter on 9,_. Then Gl is an <DK[G2]-generic filter on 9,.

PROOF. By the lemma, GL x G2 is an 911-generic filter on 9V x 9,_. By
Lemma 2.1, G2 x GL is an 9Tl-generic filter on 92 x 9^ By the lemma, Gt is
an 9ll[G2]-generic filter on 9^.

2.4. Let 911, 9lr 9, be as in § 2.3. We make the following additional
assumption on S\ and 92: 9X and 92 have a minimal element (which we name 0)
such that pe9i->0 <; p).

This assumption is quite harmless since if a reflexive partially ordered
set 9 fails to satisfy it, we can simply add a new element 0 to 9 and decree
that 0 ^ p, for all p e 9 U {0}. Since 9 is cofinal in 9 U {0}, Lemma 2.2 says
that 9 and 9 U {0} are equivalent for all our purposes.

LEMMA. Let 9 = 9\ x SV Lei O be a sentence of S.'. Let p = <j>., p,>
6e an element of 9. We suppose that

p n- "9HIGJ1= <D" .
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(The sentence in quotes can be constructed by the techniques of § 1.7.) Then

<pl7 0> it- "QllfGJ 1= O" .

PROOF. Suppose not. Then there is an element p' = (p[, p'^> of 9 such
that p, <; p[ and

p' ih- "9R[GJ f= -i 0>" .

Select G' a generic filter on 9 with p' e G'. By Lemma 2.3. G' = G; x G'..
where G[ is an 9)l-generic filter on 9^. Since p' e G', we have

9K[G;] N -I <D .

Pick an 9)l[G;]-generic filter G" on 92 with p, e G". By Lemma 2.3, G; < G" is
911-generic. By construction, p e G[ x G". Thus, by our hypothesis on p,

m.[G[\ |= O .

This is absurd, since we know that 9]l[G[] t= -i O. This contradiction com-
pletes the proof.

2.5. LEMMA. Let 9)1, g\, £P2 6e as in § 2.4. Lei G = G, : G, 6e aw

VK-generic filter on 9 = 9\ x S5,. L e t a c t o Jie i?i QllfG,] R 9ll[G,]. T/iere
a e 9)1.

PROOF. By § 1.7, we can find a formula W(x, y, z) of £, and elements
$„ o,% of 9)1 such that

a = {n<=w\ 9)l[GJ h ^(Q;;, G, TO)} , i = 1, 2 .

Hence there is a condition p = <(pt, p2)> of S5! x £P2 which forces the following;

(a) (Vn e o>)(9)l[G1] 1= V(xu G, n) < > 9lt[G2] |= ^(x2, G, «)} .

We claim that for all n, p decides 9R[GJ 1= ? ( ^ , G, %)• Granting this,

a = {n e <w | p Ih- "911(6,] 1= ^(xlT G, %)"},

so a e 911 (since "forcing is expressible in the ground model").
Suppose then that p does not decide the statement,

W) 9HIGJ N V(x» G, n) ,

for some new. Let p', p" be extensions of p such that p' it- (/3) and p" ih- -i (/S).
We have, say, p' = <pf, p2> and p" = <p[', p2'!>- Also let p - <pu p2>.

By Lemma 2.4, we have <j?!, p2~) If- (/3). Since p" extends p, and p forces
(a), we see that p" forces

(7) 9ll[G2] N -i ¥(«s, G, w) .

Hence, by Lemma 2.4, <p,, p"> IH (7).
Consider now <(pi, pj')>. As a common extension of p, <(p[, p;)> and (jpu p'/y..
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it forces (a), (/3), and (7). Since (a) contradicts "(/3) and (7)", we have a
contradiction. Thus p does decide (/S), and the lemma is proved.

One can in fact show that 9ll[G,] n 9)l[G2] = 911. (Otherwise pick a
counter-example a of minimal rank. We have a £ 911, and the proof of
Lemma 2.5 adapts to show that a e 9)1.)

3. Description of the model

3.1. The model used to prove Theorem 2 is due to Azriel Levy. In this
section, we describe the model and prove some of its elementary properties.
The results of this section are due to Levy and are included here with his
permission.

Let 911 be a countable transitive model of ZFC + "There is a strongly
inaccessible cardinal". Let Q e 911 be strongly inaccessible in 9K.

3.2. Let X be an ordinal. Let 9l be the following set: fe 9X if
(1) / i s a function;
(2) domain(/) is a finite subset of \ x u>;
(3) range(/) c x ;

(4) f((a, riy) < a whenever <(a, ri) e domain(/).
We order 9X by c . Note that if 9)1 c 9t are transitive models of ZF, and

X e 9R, (S>% = (9%x = 9K

LEMMA. Let G be an ^-generic filter on <?*. Let 0 < a < X. Define
f a ^ (o x a by

fa = {<n, 0>: {««, n>, /3» e G} .

TTiew /„ is a surjective map of o) onto a.

PROOF. Suppose first that <n, 0} e / a , and <n, ,3'> e / a . Then

{«a, «>, /5>} u {«a, «>, ;?'>}
for some /i e t?;. Since /i is a function, /9 = /3'. This proves /„ is a function.

Since [h e 9" j <(a, TC)> e dom (h)} is dense (since a: >0), there is an h e G,
h(<a, n}) = ,8, say. But then {«a, ri), /3>} e G, by § (1.3.2), S O B S domain(/J.
Thus domain(/K) = 00. Now let /3 < a. Since the set

{h e 9l I (3» < &))(/i<a, » » = /3}

is dense, one sees similarly that 0 e range(/J. This proves the lemma.

COROLLARY. Let G be an <dK-generic filter on 9X. Then X g Xf1"01.

PROOF. If 0 < a < X, then there is a surjective map / a : w —• a in 9)l[G]
(by the lemma just proved).

3.3. The model 9l used to prove Theorem 2 is obtained as follows. Let
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G be an 9H-generic filter on 9a. Then 9t = <M.[G].
We are going to show that Q — ^f!. We first prove the following lemma.

LEMMA. Let 7e9) l , ff c 9Q. Suppose that any two distinct elements
9 are incompatible. Then, in 911, CJ has cardinality less than Q. In fact,
there is a , - < Q such that .7 c 9*.

PROOF. We work inside 9)1. By Zorn's lemma we may assume that 1 is
a maximal pairwise incompatible family of elements of 9Q.

We define a sequence of ordinals {£,-, i < co}. Put Co — <*>• Suppose then
that li has been defined, and f4 < Q. Then since Q is inaccessible, 9!i has
cardinality less than Q.

Let h e 9U. By the maximality of CS, there is an fh e 'J with /A compatible
with h. Since Q is regular and card (!?*<) < Q, we can find ci+1 with

h < ^ < Q
and A e 9 ) S ^ / 4 e g > - H

Let *„ = sup [ii, i e co}. Then £a < Q. We claim 7 c £PS<».
Suppose not. Let </eJ, ^ 6 <?fi». Let ^' be the restriction of g to f „ x <w.

Then since domain (g) is finite, fir' e 9>'n for some n. By construction, there is
a g" e £PJ»+i n fF compatible with g'. But gr" is not compatible with g (since
both lie in J and g g <?f<».) So there is an (a, n} e domain (#) n domain {g") with

£f«a, n » ^ g"(<pc, » » .

Since <a, w> 6 domain(gi"), a < Cn+i < •?„• By the definition of g',
g((a, n}) = fif'«a, « » ^ ff"«a, w». But this contradicts the fact that g' and
g" are compatible.

So 7 c £Pfio. But then the cardinality estimate of the lemma is clear.

COROLLARY, ^r = &•

PROOF. In view of Corollary 3.2, we have to show that if fe 9R[G],
/ : co—* Q, t hen / i s not onto. But this follows in a known way (cf. [1, p. 132])
from the lemma.

3.4. Let G* = Gf] 9!: By § 2.3, Gx is an 911-generic filter on 9l. We are
going to prove the following lemma.

LEMMA. L e t / e 9l be a function such that

f:co~+OR

(OR is the class of ordinals). Then for some = < Q,

/e9ll[Gf] .

PROOF. Let O(x, y) be a formula of £' such that
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/ = {<«, y>: 9l |= O(x, y)} .

Let p0 e G force

"{(x, ?/>: <D(a;, y)} is a function from (o to OR".
Let » e ft). We say that p ^ p0 decides the value of f(n) if for some

ordinal X of 9)1

p IH <&(n, x) .

Since p extends p0I the ordinal X is uniquely determined by p and n. Since
p0 G G, and 0.R311 = OZt!31, for each n&co, there is a p G G which decides f(n).

We work inside 9R. Let

@n = {p e iPa: p Sg p0 and p decides f(n)} .

Let 3rn be a maximal pairwise incompatible subfamily of §„. By Lemma 3.3,
there is a I < Q such that, for all n e (o,

y, c ?• .

It follows that p0 e 9*.

Claim. Let re e <w. Then there is a j?e £ ; such that p decides f(n). In
fact, let Xn c ff0 be the set of p such that

(1) if p is compatible with p0, p ^ p0;
(2) If p ^ p0, then p decides f(n);
(3) if p ^ Po. then p ^ g for some q e 7B.

One can verify easily that if peXn, and p £p', then p' eXn. Let pe£PQ.
Then either p is incompatible with p0 (and so p e Xn), or there is a jjt e <3>a

extending both p and p0. Since y»! ̂  p0, there is a p2 ^ p, which decides /(»).
Thus p2 e @n. By the maximality of 7n, there is a g e J , with p, compatible
with q. Let p3 be a common extension of p2 and q. Then by construction, p3

is an extension of p lying in Xn. Thus X, is dense. Since Xn clearly lies in
9H, and G is an 9R-generic filter on 9a, there is a p 6 G, with p e Xn.

Now p0 e G, and any two elements of G are compatible. By clause (1) of
the definition of Xn, p ^ p0. By clause (3) of the definition of Xn, there is a
q e 7n , with q ^ p. Hence q e G, since p is. Since q e G% and q1 decides /(TO),

our claim is clear.
But now

/ = {<n, \y. (3p 6 Gf)(p IH <P(n, X)}

so that lemma is clear.

COROLLARY 1. Let se'Dlbe a subset of co. Then s e 9)l[Gf], for some £ < Q.

COROLLARY 2. Le£ s e 9l 6e a subset of a>. Then Q is inaccessible in
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9R[s]. The set A, = {t c w \ te 9)l[s]} is countable in 9l.

PROOF. By the lemma, we can pick £ < Q, such that s e 9ll[Ge]. It
follows that

9K[s] c 9ll[Gf] .

By Lemma 1.11, Q is inaccessible in 9ll[Gf]. A fortiori, it is inaccessible in
9ll[s]. Let a be the cardinal of As in 9)l[s]. Then a < Q, since Q is inacces-
sible in 9)l[s]. By Corollary 3.3, a is countable in 01.

3.5. Symmetry. Let ?r be a permutation of co lying in 911. Define

7r.(ft)«a, » » = fc«a, *•(»)» .

Then 7T* is an automorphism of £PQ lying in 9K. If G is an 9)l-generic filter
on <?Q, so is K^G], by Lemma 2.1. Clearly,

9U[G] = 911[TTJG]] .

Let O be a statement of £', not involving G. We claim p ih- O if and only if
^•(p) ll~ *̂- To see this, we construct the following chain of equivalent state-
ments.

(1) p II- (P.
(2) For all 911-generic filters G on <?Q which contain p,

9ll[G] 1= O .

Since O does not contain G, and 9ll[G] = 9H[7r^(G)], (2) is equivalent to
(3) For all 9R-generic filters G containing p,

9R[w,(G)] t= O .

Now p 6 G if and only if x^p) e TT^(G). Moreover, as G ranges over the set of
9U-generic filters on 9"*, so does ^(G) . It follows that (3) is equivalent to

(4) For all 9R-generic filters G containing n*(p)

9ll[G] f= O .

But (4) just says that n*(p) Ih- O.

LEMMA. Lei O be a sentence of £.' not containing G. Let 0 be the
minimal element of 9>Q. Then 0 decides cp.

PROOF. Otherwise there are plt p2 e 9>a, with p, if- O, p2 ih- -i <P. We can
find a permutation iz e9R such that ^^(p!) has domain disjoint from p2. By
our previous remark, ^ ( p ^ Ih- O. But then ft^ipd must be incompatible with
Pi since p, Ih- -i O. This is absurd since n^p,) and p2 have disjoint domains.

COROLLARY. Let a c o i , a e 9t. Suppose that there is a formula <&(x)
of £' not containing G such that a is the unique z such that
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9l N O(z) .

Then a e 9)1.

PROOF. There is a formula xF(z) of j?', not containing G, such that

a = {« e <w | 91 N SP(w)} .

By the lemma,

a = {neco\0 \\- ^(n)} .

Since "forcing is expressible in the ground model"; (cf. § 1.9), this shows
that a e 9R.

4. An important lemma

4.1. This section is devoted to the proof of the following result. It is
the key technical fact we need about 91.

THEOREM. Let f:o)-* OR, / e 9l. Then there is an d)l[f]-generic filter
G' on 9Q, such that 9l = 9)l[/][G'].

The effect of this theorem (which is the "important lemma" of the section
title) is to give us excellent control on the extension 9l/9R[/].

COROLLARY. Let s c co, s e 91. Then there is an <dK[s]-generic filter G'
on 9Q, such that 91 = 9H[s][G'].

4.2. We begin with some easy lemmas.

LEMMA 1. Let a be an ordinal o/9R. Let /3 be the cardinal of a in dK.
Let F: (o —»a be an 'dll-generic collapsing map. Then there is an 'dK-generic
collapsing map G: (0 —<• /3 such that

(1) fM[F] = 9R[G] .

Conversely, let G: co —• /3 be an ^-generic collapsing map. Then there is
an dR-generic collapsing map F: a) —» a such that (1) holds.

PROOF. Let V: « — P be a bijection lying in 9K. Let &a, ^ be as in
§ 1.12. Then -^ induces an order isomorphism of 9*a with typ lying in 9R. The
lemma now follows from Lemma 2.1.

LEMMA 2. Let a be an ordinal. Let F: co —• a be a generic collapsing
map. Define Flt F,: Q) —• a by

F,(n) = F{2n); F2(n) = F(2n + 1) .

Then Fl is an dK-generic collapsing map, and F2 is an dillF^-generic
collapsing map.

Conversely let Fu F2: co —+a be respectively an dXL-generic and a 911^]-
generic collapsing map. Then if we define F: co —*a by
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F(2n) = F,(n); F(2n + 1) = F,(n) ,

then F is an 'dR-generic collapsing map. In either case, we have

9R[F] = 9R[Flf F2] .

PROOF. Define an isomorphism

^: y\, — <?„ x y \

by ^(/i) = </i[? /?,>, with /tt(n) = h(2n), h,(n) = h(2n + 1). Let G be the
911-generic filter on 9a associated to F. By Lemma 2.1, •>/*(£) is an 9)l-generic
filter on 9\, x y\ . By Lemma 2.3,

with (?! an 9R-generie filter on y\, and G2 an QllfG.J-generic filter on iPa. It
is clear from the definition of >r that

\JG, = F:, \JG, = F2 .

Thus the first half of the lemma is clear. The second half is proved similarly.

4.3. LEMMA. Let a be an ordinal ^ o) of 911. Lit G be an C3\l-generic
filter on ff1"^1. Then there is an Ld)l-generic collapsing function F:a>—*a
such that 9)l[G] = 9ll[F]. Conversely, if F: oi-^a is an 9)l-generic collapsing
map, there is an 9ll-generic filter G on 9a+l with 9ll[G] - 9)l[F].

PROOF. We first prove the lemma under the additional assumption that
a is countable in Oil. We then show how to remove this assumption.

Since a is countable in 911, there is a bijection v": o —• (<x + 1 — {0}) x &>
lying in 911, such that ^(2n) = (a, n>. Let g>(n) be the first component of
ir(n). Thus cp: o) — a + 1 — {0}, <p(2n) = a, all n e w .

Let 9" be the following collection of functions: h e 9" if and only if domain(fe)
is a finite subset of OJ, range (h) c a, and h(n) < <p(ri) for all n e domain(/i). We
order 9" by c .

The map {/i — /i°i/r} is clearly an order isomorphism of 9>a+l with 9".
Let 9"' be the following subset of 9": h e 9" if and only it he 9' and

(VM e (0) {2n e domain (n)—-2n + le domain (h)). 9" is clearly a cofinal subset
of 9". We are going to set up an isomorphism of 9"' with <?„, lying in 911.

To describe this isomorphism, let

S = {<7U T2, 73>: 72 < 7i ^ a and 73 < a} .

Let f: S —• a be a map lying in 911 such that

<72, 73>—V'(%. T2, 73)

is a bijection of 7, x a with a whenever 0 < 7i ^ «.
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Define ^": 9""' — 9« as follows, -f"(h) is defined at meet) if and only if
h(2m) and h(2m + 1) are defined. In that case,

y'{h)(m) = ir'{rp(2m + 1), h(2m + 1), h(2m)) .

A moments reflection shows that f" gives an isomorphism of 9" with fPn.
Under the assumption that a is countable in 9)1 the lemma is now clear.

Suppose, for example, that G is an 9ll-generic filter on i?"*1. By applying
Lemma 2.1 and 2.2 we get a filter G' on 9a such that 9)l[G\ = 9ll[G']. It
suffices to take F = U&'-

Now drop the assumption that a is countable in 9R. Let G be an
9R-generic filter on 9>a+l. Writing 9>a+l = 9a x £T", we see that there is an
9)l-generic collapsing map F^.co—^a and an 9R[.F,]-generic filter, G,, on*?"
such that

9)l[G] = VK[FU GJ .

We apply Lemma 4.2.2, to get collapsing maps F,, F3: co —*a, generic over
9R and 9)l[F2] respectively, with

9KIFJ = 9U[F2][F3] .

Again using the isomorphism 9>a+1 = $a x £P", we can coalesce F3 and Gt

into an 911 [F,]-generic filter on 9""+1, G2. So

9R[G] = 9R[FJ[G2] .

But a is countable in 911^]. By the special case of the lemma previously-
proved there is an ^[FJ-generic collapsing map, F4: (o —>a with

9R[G] = 9R[FJ[GJ = SRiFJfFJ .

But Lemma 4.2.2 allows us to coalesce Ft and F4 into a single generic
collapsing map F, with

9R[GJ = 9ll[F1][F4] = 9H[F] .

To prove the converse, run the argument backward.

4.4. The following lemma is the crucial step in the proof of Theorem 4.1.

LEMMA. Let ore911, a ^ co. Let Fl,F2:co—-a be collapsing map?
generic over 9R and 9R[FJ respectively. Let s c OR be a set of QRfF,].
Then there is a collapsing map F: co —• a, generic over 9R[s] with

9R[s][F] = 9R[Fl( F2] .

PROOF. We begin by describing a certain cofinal subset 0\ of £P« x S'a.
A pair <7 ,̂ h2y lies in £PX if and only if domain^) = domain(/i2) and domain^)
is a finite initial segment of the integers. If (hL, /i2)>e0\, then we put
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l{(hi, h2y) = domain(/i,). Thus if x e 9\, Z(x) G ID. Let G' be a generic filter on
£j\. Then there is a pair of functions, F[, F!: co — a, say, and

G' = {<F; I », F,' I n>: » e a>) .

We fix a definition of s e 9ll[FJ. Thus X e s if and only if 9ll[F,J 1= O(x, F,),
and CD is a formula involving only s, S, and terms denoting elements of 9)1.

By Lemma 2.3, Fl and F2 determine a generic filter, Gu on <?„ x <?,,. Let
G be the associated filter on 3\ given by Lemma 2.2: G = G, n 9\.

Our next step is to define a certain subset I of 9\. Roughly speaking,
S has the following motivation: The fact that

s = {X | 9ll[F,] N cD(X, £)}

gives a certain amount of information about G. This information is summed
up in the fact that G c S .

Let •*•(£) be a formula involving only s, S, and terms denoting elements of
911/and G such that 9R[G] != ¥(X) if and only if 9ll[FJ (= O(X, FJ. Then, if Np- is
constructed in a reasonable manner, the following will be true (by Lemma 2.4):

If </&„ / i -^and^ , /i3> e y\, t h e n ^ , A2>||- 1r(X) if and only if <hu /I3>II- ^(x).
We work in 9ll[s]. Define a sequence of subsets of ff^, {Aa}, by transfinite

induction.
(1) p 6 Ao if either p i|- F̂(X) and X e s (for some X e ORm) or p \\- -i P̂(X)

and X G s).
(2) Let a = /3 + 1. p G Are if for some dense subset X of <?,, lying in 911,

every extension of p in X is in A .̂
(3) Let a be a limit ordinal. Then Aa = \J?<a Af.
We note the following facts about {A,,}.
(Al) If p e Aa, and p g q, then q e Aa.

(This is easily checked by induction on a.)
(A2) If a < /3, then A, c A,.

(The crucial case is when ,8 = a + 1. Take the dense set X to be 3\ itself
and use Al.)

(A3) Let p = </*•!, h«y, q = </iu A3>, and suppose p, ? e S5!. Then p e Aa if
and only if q e Aa.

Since 9ll[s] is a model for ZF, there is an ordinal 8 such that As = AJ+i.
We put

We next list some properties of I .
(ID G c I .
Otherwise, there is an x e G such that x e i , . Pick a;, /3 so that /3 is
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minimal. Clearly /3 is not zero, since in 9)l[Fl, F2],

s = {\\ ¥(\)} .
Also, P is not a limit ordinal since for X a limit ordinal A>, = \Jr<1A~. Thus

/3 - 7 + 1, Since x e Af, there is a dense set X with each extension of x in

X lying in An and l e 911. Since G is 9ll-generic, there is a yeGnX. Let

z e G be a common extension of x and iy. Then z e X, since y is; thus, z e A,

(since z extends a;). But this contradicts the minimality of (3.

(22) Let peZ. Let X be a dense subset of y\ lying in 911. Then there

is a p' e S fl I with p' extending p.

Proof. Since peAi+l, there is a p' 2: p, with p'eX, p'£ A.,; i.e.,

p'eZni.
(13) Let p e l . Let g ^ p. Then 9 e 2. (This follows from (A2) since 2

is the complement of As.)

(24) Let p e l . Then there is an 9ll-generic filter, G', on S\ such that
p e f f and

s - {x I 9RfG'J N ¥(*.)} .

Proof. Since 9)1 is countable, we can enumerate the dense subsets of 5\
in a sequence: {Xit i e a>). Using (22), we can construct an increasing sequence
of elements of 2, {pn}, with p0 = p, and pn+l e XH. Put G' = {A- e y\ I .r g pn

for some %}. Then G' has the desired properties.

(25) G is an 9ll[s]-generic filter on 2.

Proof. Clauses (1) and (2) of § 1.3 are clear. We turn to clause (3). Let
X be a dense subset of 2 lying- in 9Jl[s]. We must show that X f) G ¥= 0 .
We assume the contrary and get a contradiction.

We fix a formula O^x, y) of £', not containing G, such that <J\ defines X
from s in 9H[s] (i.e., Ot(l/i s) holds in 9H[s] if and only if y = X). We now form
a sentence % of .£' such that for any generic filter G' on 91!, we have 9ll[G'] t= ̂ ,
if and only if

(1) if s' = {x e OE I 9ll[G'] 1= ̂ (X)} then s' is a set and there is a unique
X' e m.[s'] such that

<W, s') .
(2) X' is a dense subset of 2', where 2' is the set obtained by applying

our definition of 2 inside 9ll[s'].

(3) X'f\G' = 0.
By our assumptions ^ holds in 9)l[G]. Let peG force %. By (21),

p e 2. Since X is dense in 2, there is a q e X, with q ̂  p. Let G' be an
9ll-generic filter on 9L such that qeG' and s' = {\eOfi 9ll[G'] t= ¥(\)} = s.
(G' exists by (24).) Then with notations as in our description of SI/\, we have
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2' = 2 and X' = X (since 2' and X' are defined in 9)l[s'] by the definitions
that yield 2 and X in 9)l[s], and s' = s). But q e G' n X'. Thus M>\ is false in
9ll[G']. But this is absurd since q ^ p, and p ih- VP,.

Let £T; be the following cofinal subset of <?„: he 9"a if and only if h e 9a and
domain (h) is a finite initial segment of 0).

(26) In 9ll[s], 2 is isomorphic to £?;.

Proo/. We work inside 9il[s]. Recall that if <Jiu i > e 9 \ , Z«/i1? A2» =
domain (/*,). It follows from (A3) and (22) that if p e 2 and Z(p) = k, then
{9 e 2 I q 2; 50 and l(q) = k + 1} = Sp, has the same cardinality as a. Let -f p

be a bijection of Sp onto a. Let now pe 2, with £(p) = TO. We can find p;,
0 :g i g n, with p; ^ ?), and l(p{) = i. Let %(p): n—>a be defined by x(V){J) =
^piPi-ri)' Then % is easily seen to be an isomorphism of 2 with 9"n.

We can now easily prove the lemma. Let %[G] be the image of G in 9"a.
By (25), (26), and Lemma 2.1, 9R[G] = 9ll[s][Gl = 9H[s][z[G]]. Moreover,
%[G] is an 9)l[s]-generic filter on 9"a. Hence if we put

F = \Jx\G\ ,
then F is an f)R[s]-generic collapsing map of co onto a. Since clearly,
9ll[s][F] = 9R[s][^[G]] = 911[G] = dK[Flt F2], the lemma is proved.

4.5. We can now easily prove Theorem 4.1. Let 9l be as in Theorem 4.1,
and G a generic filter on 9Q such that 9l = 9il[G]. Let / : co-^OR, / e 9l. By
Lemma 3.4, we have / e 9H[G'5], where &! = G n 9} and /3 < Q. We may as
well suppose that (o ^ fi; put a = /S + 2.

We have an obvious isomorphism

g>Q = g"- x <•?/•.

Here ft" = {/ e 9a | domain (/) n oc x a> = 0} . Hence, by Lemma 2.3, 9l =
SRIG^IGJ, where G" = G n 9*" is 9R-generic and G, is an ^[GJ-generic filter
on 9La.

We have 9"" = £P̂ +1 x 9?+u up to canonical isomorphism. Hence by
Lemma 4.2.1 and Lemma 4.3, there are generic collapsing maps Ft : a)—>/3,
F2: co~y/3 such that

(1) F, is 911-generic and 9R[FJ = 9K[G;+l]. (Here G! = G n 9s'.)
(2) F2 is ©UlFJ-generic and Sllfi?7,, F,] = 9]l[Ga].
We now apply Lemma 4.4 with / in the role of s. We get an 9ll[/]-

generic collapsing map F3:co — P such that 9ll[Ga] = 9R[/][F3].
We are now almost home. By Lemma 4.3 (and Lemma 4.2.1) there is an

9R[/]-generic filter, G2, on 9"" such that

W][Gt] = 9R[/][F,] = 9)l[G1 .
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Apply Lemma 2.3 to G,_, Gt and the isomorphism

9a = 9" x 9L" .

We get an 9)l[/]-generic filter G' on 9Q such that 9ll[/][G'] = 9ll[/, G2, GL =
9ll[G", G,\ = 91. This proves Theorem 4.1.

4.6. LEMMA. Let 911, 91, Q be as above. Let o) £ a < Q. Let Gt be an
<DTL-generic filter on 9""+l with Gl e 9l. Then there is an STL-generic filter
G2 on 9n with

91 = <dK[G2]

and G, = G2 n 9"+l.

PROOF. By Lemma 4.3 and Theorem 4.1, there is an 9R[G1J-generic filter
G3 on 9a with 9l = 9R[GU G3].

We now write

(a) 9a = 9a+l x 9a+l x a a + 2 .
Applying § 2.3, we see that G3 determines filters Gt, G6, G8 on 9a+i, 9a+l, 9ia+2

such that G4, G5, Go are generic over 9R[Gi], ^[G^ Gt], VKlG^ Gt, G5] respec-
tively, and

91 = 9R[Glt G4, G5, G6] .

By § 4.2 and § 4.3, there is an gntGJ-generic filter G7 on 9arl such that

9R[GIt G7] = 9R[G,, G4, G5] .

We now again apply § 2.3 to the isomorphism (a) and get an 911-generic
filter G, on 9a with

9ll[G2] = <DK[Glt Gr, Ge] = 9l

and G, n 9>a+1 = G,. This proves the lemma.

II. THE CONCEPT OF A RANDOM REAL

We first discuss, in II. 1, the relation between Borel sets of a countable
transitive model 9R and Borel sets of the real world. This is a preliminary
to a study of the key concept of this paper, the concept of a random real.
This is our main tool in adapting Cohen's method to measure theoretic
problems.

1. Extending Borel sets

We let DC be the principle of dependent choices. A precise statement of
DC will be given in III. For our present purposes it suffices to know the
following:
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(1) All the positive results of measure theory and point set topology on
the real line (such as the existence of Lebesgue measure and the Baire
category theorem) can be proved in ZF + DC.

(2) DC justifies a countable sequence of consecutive choices. In partic-
ular, it has the following corollary (known as AC,O or the countable axiom
of choice):

Let {Aii i e a)} be a sequence of non-empty sets. Then there is a function
/ with domain co such that f(i) e A{.

Throughout this section II. 1 all theorems of mathematical nature (i.e.,
theorems not relating to models of set theory) will be theorems of ZF + DC.
Therefore they will hold in any model 9K of ZF + DC.

1.1. We use functions from co to a) to code (or Gbdel number) Borel
subsets of R.6

Let {rj be an arithmetical enumeration of Q; let J be the pairing function

J(a, b) = 2a(2b + 1) .

The coding is defined recursively as follows:
Definition. (1) a codes [r<, r,] if a(0) = 0 (mod 3), a(l) = i, and a{2) =j.
(2) Suppose a, codes Bu i = 0, I, 2, • • •; then a codes U»#< if «(0) = 1

(mod 3) and

a(J(a, b)) = aa{b) .

(3) Suppose /9 codes B, a(0) = 2 (mod 3) and a(n + 1) = /3(w). Then a
codes the complement of B.

(4) a codes B only as required by (l)-(3).

LEMMA 1. Suppose a codes Bu and a codes B2. Then Bi = B2.

PROOF. Let / = «a , 5>: a codes B). Let Ix = {(a, B): a codes only B).
Then I, is closed under (l)-(3) of Definition 1. By (4), / = / u q.e.d.

We write Ba for the Borel set coded by a. If a e 911 and a codes a Borel
set in 911, we denote this set with B^.

LEMMA 2. Every Borel set is coded by some a.

PROOF. The family of sets coded by some a is closed under complements
and countable unions (DC!) and contains all sets [r, s] with rational endpoints.
Thus it contains all Borel sets.

LEMMA 3. Every set coded by an a is a Borel set.

PROOF. (Similar to proof of Lemma 1 and left to the reader.)

6 R is the field of real numbers; Q is the field of rational numbers.
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1.2. THEOREM. There are U[ predicates At(a), A2(a, x), A3(a, x) which
are provably equivalent, (in ZF + DC) to the following concepts:

(1) a codes a Borel set;
(2) a codes a Borel set and x e Ba;
(3) a codes a Borel set and x £ Bn.

PROOF. We let {s,,} be a recursive enumeration without repetitions of the
finite sequences of integers (including the void sequence), arranged so that
if the sequence sn is an initial segment of the sequence sm, then n ^ m. (Thus
s0 is the void sequence.) We define a function O(«, n), taking values in a)™ as
follows:

(1) n = 0. Then d>(a, n) = a.
(2) n > 0. Then sn is a non-empty sequence, of length k, say. Let sm be

the initial segment of sn of length k — 1, and let r be the last element of sn.
(So r e a>.) Note that m < n.

Case 2.1. <D(«, m)(0) = 0 (mod 3). Then put <$>(a, n) equal to the identi-
cally zero function.

Case 2.2. 0>(a, m)(0) = 1 (mod 3). Then put

<&(#, n)(x) = &(a, m)(J(r, x)) , (x e a)) .

(Here r, m are as in the preceding paragraph, and J is denned in § 1.1.)
Case 2.3. O(a, m)(0) = 2 (mod 3). Then put

<D(«, ?i)(a;) = O(a, m)(x + 1) .

(O(<ar, •) allows us to recover those Borel sets from which Ba is constructed.)
The following lemma is easily checked by induction on m.

LEMMA 1. Let a code a Borel set. Then for all m, O(o:, m) codes a
Borel set.

Let /2: a) —> (o. Define a function /3: OJ — OJ by

*?..> =<£(0), ••• ,£(» - 1)>.

(Here the right hand side denotes the finite sequence consisting of the first n
members of /3.)

We can now define the U\ predicate, AL

A,(a) = (/8)(3»)<D(a, 0{n)) = 0 .

An argument similar to the proof of Lemma 1.1.1 shows that if a codes
a Borel set, then Av{a) holds. Conversely, suppose that a fails to code a Borel
set. Then one can construct a function /3: OJ —+a) by induction on n, so that for
all n, O(a, /3(ri)) fails to code a Borel set. But then, for all n, O(a, /3(n))(0) =£ 0
(since otherwise, O(a, @(n)) codes by Case 1 of the definition (§ 1.1)).
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Now suppose that a codes a Borel set, and that a; is a real. We define a
function y: CO—*OJ, as follows: if x lies in the Borel set coded by O(a, n), then
y{n) = 1. Otherwise, y(n) = 0. (Lemma 1.2.1 states that ®{a, n) always
codes a Borel set.)

LEMMA 2. There is an arithmetic predicate, At{a, /3, x) such that
At(a, /3, x) holds if and only if (3 is the function y of the preceding paragraph.

PROOF. We can describe A, as follows:
(1) Suppose that O(or, n)(0) = 0 (mod 3). Let <P(a\ n){l) = i, <D(a, n){2) =j.

Then f3(n) — 1 if and only if x e [r{, ?•_,].
(2) Suppose that <t>(a, n)(0) = 1 (mod 3). Let <j> be the length one

sequence whose one element is j ; let s9UiJ) be the concatenation

s,r<j> •

Then /3(n) — 1 if and only if for some j , fi(q>{n, j)) = 1.
(3) Suppose that O(a, n)(0) = 2 (mod 3). Then (3(n) = 1 if and only if

(3{<p{n, 0)) = 0.
(4) /3(%) = 0 or 1 for all n.
It is clear that the predicate At(a, (3, x) is arithmetic, and that if 7 is as

in the paragraph prior to the statement of Lemma 2, then A4{a, 7, x) holds.
Now suppose that a codes a Borel set, that a; is a real, that 7 is as above,

and that 7': &> — (o is such that At(a, 7', x). We want to show 7 '= 7. Suppose
not. Then for some n, y'(n) ^ y(n). Say sn has length r. Then we can
define a function 8: OJ —• w with the following property.

(1) S(r) = n
(2) If m ^ r,

y(o(m)) ± y'{o{m)) .

(One defines 8(m) for m ^ r, by induction on m so that (2) holds. Indeed, if
y(8(m)) ^ y'(8(m)), we see first that

<D(a, 5(m))(0) ^ 0 (mod 3) .

(Otherwise y(3(m)) = 7'(<3(m)) by clause (1) of the definition of At.) Moreover,
by clauses (2) and (3), of the definition of A,, we see that for at least one
extension sn of <5(ra), of length m + 1, we have y(n) =£ y'(n). We now select
8(m) so that 8(m + 1) = n.)

We have already remarked that since

y(8(n)) * y'(d(n))

for all n S; r, we have

O ( a , 5(»))(0) ^ 0 , for w ^ r .
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If 1>(a, o(n))(0) = 0 for some n less than r, then it would also be zero for all
larger n (cf. Case 2.1 of the definition of <5). Thus

(Vw)O(or, d(n)) ^ 0 ,

i.e., A^a) is false. We have already shown that this implies that a fails to
code a Borel set. This contradicts our assumption on a, and shows that 7 = ~i'.
The proof of Lemma 2 is complete.

We now define A,{a, x) as follows:

A,(a, x) = (/3)(At(a, /3, x) ->/3(0) = 1) A A,(a) .

Clearly A2 is 111. Let a code a Borel set. Let a; be a real, and let 7 be as in the
statement of Lemma 2. Then A2(a, x) if and only if 7(0) — 1, by Lemma 2.
Moreover, 7(0) = 1 if and only if x lies in the Borel set coded by O(a, 0). But
O(a, 0) = a. Thus A2(a, x) if and only if a codes a Borel set and x lies in the
Borel set coded by a.

The treatment of A3 is similar. We put

A3(a, x) s (/3)(O(a, /3, a) — /3(0) = 0) A At(a) .

COROLLARY. There are U[ predicates At(a, /3), A5(a, /3) which are prov-
ably equivalent in ZF + DC to the following concepts

(4) BaczBf.
(5) Ba = B,.

PROOF. Put

At(a, 0) = A,(a) A A,{B) A (a;)(i4,(a, x) V A,(/S, «))
and

A^a, 8) = A4(a, J3) A At(8, a) .

This suffices.

1.3. Kleene has shown that there is an extremely close relation between
Ili relations and the concept of well-orderings (cf. [7]). Moreover, if 9H is a
transitive model of ZF, then the ordinals of 9)1 are an initial segment of the
ordinary ordinals (cf. [1, p. 94]). Putting these facts together, one has the
following lemma (cf. [13, pp. 137-138]).

LEMMA. Let <S>{a) be a Ii[ predicate. Let 911 be a transitive model of ZF.
Let a:co—>(i), be an element of 9R. Then

<DR 1= <P(a)

if and only if <£>(a) holds in the real world.

1.4. We have two situations to consider simultaneously.
(a) 911 and 9l are transitive models of ZF + DC, and 911 c 9i;
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(b) 9)1 is a transitive model of ZF + DC, and 91 is the universe of all
sets (so the axiom of choice holds in 91).

THEOREM. Let 9R, 91 be as in (a) or (b) above. Let a, ft e (co'%n, and
x G R-o,;. Then the following statements hold in 9)1 if they hold in 9l.

(1) a codes a Borel set.
(2) a codes a Borel set, Ba, and x e Bn.
(3) a, 0 code Borel sets and Ba — Bf.

PROOF. Case (a) of the lemma follows easily from case (b). Case (b)
follows from Lemma 1.3 and the results of § 1.2.

1.5. Theorem 1.4 implies that the assignment

(1) {BT — Bf\

gives a 1-1 correspondence between the Borel sets of reals in 9TI and a
certain subcollection of the Borel sets of reals in 9l. The map (1) is, in general,
not surjective. For example, if 911 is countable, and 9l is the real world, (1)
is certainly not surjective.

Let C be a Borel set in 9l. We say that C is rational over 9)1, if C = Bll

for some code a lying in 911. By part (2) of Theorem 1.4 the Borel set in 9H
corresponding to C is then

C fl RQK •

Similarly, we say that a sequence of Borel sets in 9l, {CJ, is rational over 9K.
if there is a sequence of codes, {at}, lying in 911 such that

C, = Bf{ .

(Note carefully that we require not only that each a{ lie in 9)1 but that the
function {i—^aj also lie in 9R.) Since DC holds in 9R it is equivalent to require
that there is in 9U a sequence of 9H-Borel sets, {Z?,}, such that for each i, Bt

corresponds to d under (1).
The correspondence just described clearly possesses the following natu-

rality property. Let 911 c 9i be transitive models of ZF + DC. Let V be the
real world. Let B be a Borel set in 9lt and let B^, Bv be the corresponding
Borel sets in 91 and V respectively. Then Bv is the Borel set in V corre-
sponding to the Borel set B^ of 9l.

1.6. We are going, eventually, to use the map (1) to identify the Borel
sets of 9)1 with certain of the Borel sets of 91. As a temporary piece of nota-
tion, if B is a Borel set of 911, we write B'- for the corresponding Borel set of
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91. We proceed to verify that certain properties and operations are "absolute"
with respect to the map [B —* B""}.

LEMMA 1. (1) Boolean operations are absolute,

(2) Let {AJ be a sequence of Borel sets of 911, with {An} e 911. Then

(U. KY = Uu A{
(r\nAar = r\,Ai.

(3) The relation A cz B is absolute.
(4) The relation A — <Z> is absolute.

PROOF. (1) Consider for example, the intersection operation. Given A, B
Borel in 9R with codes a and /3 respectively. One constructs easily from a and
/3 a code 7 which codes A n B in 911 and A* n B* in <Dl. Thus

(A n Bf = A* n B' .

(2) Similar to the proof of (1).
(3) A c B » A u 5 = B . By Theorem 1.4 and (1) of this lemma, we have (3).
(4) Clear from Theorem 1.4.

LEMMA 2. The folloiving operations and notions are absolute.
(1) Interior (int);
(2) "Open";
(3) Closure; (Cl)
(4) "Closed";
(5) "Closed nowhere dense";
(6) "Compact".

PROOF. (1) A = int B if and only if

A = U {(r, s): r, s e Q and (r, s) c 5}

(2) A is open «= A = int A.
(3) Cl (A) = R - int (R - A).
(4) A is closed — A = Cl (A).
(5) A is closed nowhere dense «=» A is closed and int (A) = 0 .
(6) A is compact if and only if A is closed and for some N G ft), A c [ — N,N].

LEMMA 3. Let r, s be reals of 971. Then (r, s)* = (r, s); [r, s]* = [r, s];
{r}* = {r}.

PROOF.

(r, s) = U {[£, «]: r < ^ t t < s ; U e Q )
[r, sj = fl {(r — l/%. s + l/»): new)

M = [r, r].



510

A MODEL OF SET-THEORY 31

LEMMA 4. Let [j. be Lebesgue measure. Let B be a Borel set in 911. Then
ftm(B) = fi:n(B'').

Case 1. B is the union of a finite number of disjoint open intervals with
rational endpoints.

Say i\ < s, £ r, < s, ^ • • • ^ rn < s,,, and B - U" L (rit s;) in both 911
and 91. Then n{B) ~ JZ'Li (s< ~ r ^ ' w n i c n is absolute.

There are clearly only countably many sets of the sort considered in case
1; let {Wn} be an enumeration of these sets in 9)1.

Case 2. B compact.
We have p.{B) = inf {[x( Wn): B e Wri) which proves ft is absolute in this

case.

Case 3. B open.
Clear since pi{B) = sup {/*( Wn): Wn £ B).

Case 4. B arbitrary.
fi:K(B) = sup[fi(K):Kcompact, K^B, and irrational over ^ I J ^ s u p f ^ ^ ) :

K compact, Kc^B*, and K rational over 91} — fi:)i(B$).
Similarly ft^iB) — inf {[i{U): f/open, BQU and U rational over 971} ̂

inf {//(U): open, B*<^U and [/rational over 91} = fi&iB*). These two inequali-
ties show /%(£) = fi&iB').

COROLLARY. "Set of measure zero" is an absolute notion.
Recall that the symmetric difference of two sets, A and B, (notation:

A; A B) is

(A-B)U(B-A).

We recall some elementary constructions from the theory of boolean alge-
bras. This material is all contained in Halmos [4J.

Let 3 be an ideal of subsets of R. This means that if A, Be& then
A u B e ^ , and it A eg, and B c i , then B e l We say that two sets A and
B are equal mod 3 if

A ABeif .

Equality mod 3 is an equivalence relation. The set of equivalence classes of
Borel sets is, in a natural way, a boolean algebra, since the boolean operations
"pass to quotients".

If 3 is a <T-ideal (i.e., is closed under countable unions), then the boolean
algebra of equivalence classes mod 3 is a a -algebra.

The two basic examples of ff-ideals in the power set of R are:
(1) the er-ideal 3l of sets of Lebesgue measure zero;
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(2) the ff-ideal #, of sets of the first category.
Two Borel sets equal mod^ are said to be equal "almost everywhere"; two
Borel sets equal mod S% are "equal modulo a set of the first category".

The following lemma will be useful in a moment. For the proof see
Halmos [4, p. 58].

LEMMA 5. Let B be Borel. Then B is equal to an open set U modulo a
set of the first category.

LEMMA 6. "First category" is an absolute notion.

PROOF. Using Lemma 1 parts (2) and (3), and Lemma 2 part (5), we see
that if B is first-category in 9H, B is first-category in 9l.

Suppose now that B is not first category in 9)1. By Lemma 5 in 911, there
exists U open, rational over 911 such that B A U is first-category in 911. By
the preceding paragraph, B A U is first-category in 91. IfU = 0,B = BAU
and so B is first category in 9H. Thus U =£ 0 , and by the Baire category
theorem U is not first category in 9l. Since

U^Bu(BAU),

B is not first category in 9l. The proof is complete.
The following lemma is not needed in the present paper but will be used

in another paper of the author [15].

LEMMA 7. The following notions are absolute.
(1) X has at least two points.
(2) X has exactly one point.
(3) X is perfect.
(4) X is countable.

PROOF. (1) X has at least two points if and only if there exist rationals:
r < s < t <u such that Ifl(r,s)^0; I n (t, u) ^ 0.

(2) Immediate from (1).
(3) X is perfect if and only if X is closed, X ̂  0 , and for all r, seQr

I n ( r , s ) * 0 = l f | ( r , s) has at least two points.
(4) By (2) and (2) of Lemma 1, X countable in 9lt implies X countable in

91. If X is not countable in 9lt, X contains a perfect subset K. In 9l, K is.
perfect (by (3)) and K^X. Thus X is uncountable in 9l.

1.7. The following concept will be needed in § 2 below.
Let C = {a | a codes a real}. Let

\:C^OR

be defined as follows.
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(1) If a codes by case 1 of Definition 1.1, then \(a) = 0.

(2) If a codes by case 2, then

x(a) = sup (X(a,:) + 1}

(notation as in case 2 of Definition 1.1).
(3) If a codes by case 3,

X(a) = M/3) + 1 .

It is easy to see that domain X = C by an argument similar to the proof of
Lemma 1.1.1.

We write X/"1 for the relativization of X to 9)1.

1.8. Our results would apply to any of the standard spaces, such as 2'",
mutatis mutandis.

1.9. Let j = 1 or 2. Let ^ be the ideal described in § 1.6. Let ffi3 be the
quotient algebra of the cr-algebra of Borel sets associated to the ideal Sj. Then
the following facts are proved in [4]: £By is a complete boolean algebra satisfy-
ing the countable chain condition.

2.1. Let 9)1 be a fixed transitive model of ZFC. A real x is random over
911 if it lies in no Borel set of measure zero rational over 911. Similarly a sub-
set of (o is random over 911 if it lies in no Borel set of measure zero of 2'" rational
over 911.

Notice that if x is random over 911, then x e 9)1. (Proof, x e 911 =• {x} is
a Borel set of measure zero, rational over 9ft, and containing x.) This defini-
tion is in accord with the usual intuitive requirements for a random real. For
example if we let q(x, N) be the number of l 's in the first N digits of the
decimal expansion of x, then for x random the limit as AT-> •= of i(x, N)/N
exists and equals 1/10. (A proof would show that the set of reals x for which
this is false form a Borel set of measure zero rational over 9)1.)

The following lemma provides for the existence of many random reals (if,
for example, 9)1 is countable):

LEMMA. If (2N°)9]I is countable, then almost all reals are random over
911. (In fact, the non-random reals form a Borel set of measure zero.)

PROOF. If (2K°)9ll is countable, we can enumerate the Borel sets of measure
zero rational over 9)1 in a sequence NOI Nu • • •. Then x is random over 9ll if
and only if x & (J.- N{. But U>- N< is a Borel set of measure zero.

2.2. There is an analogous notion of a real (or set of integers) being
generic over 9)1. A real x is generic over 911 if it lies in no Borel set of the
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first category rational over 9)1. We shall see below that this is essentially the
same as the notion introduced by Cohen. (Cohen worked with sets of integers;
for reals, the conditions analogous to Cohen's have the form r < x < s, where
r, s are rationals.)

It is true that no real x is both generic and random over 9)1. We shall
not stop to prove this here. (For example, the set of reals x in which 1 has
the frequency 1/10 in the decimal expansion of x form a set of first category,
rational over 9)1, and containing all random reals.)

All the results we prove for random reals in this section have analogues
for generic reals with "the same proofs". The translation consists in replac-
ing "random" by "generic" and "measure zero" by "first category". We leave
this translation to the reader.

2.3. We are going eventually to show that the random reals are in natural
one-one correspondence with the generic filters on a certain partially ordered
set i? e 911. The following discussion is a heuristic motivation for the correct
choice of .9.

Let x be a real random over 9)1. An observer stationed in 9)1 cannot have
total knowledge about x (since x is not in 911). However, he can have partial
knowledge about x. For example, if B is a Borel set rational over 911, then a
natural question the observer can ask about x is "Is a; e Bl" If p-{B) = 0,
then the answer is certainly no. On the other hand, if ;u(B) > 0, it is possible
for a; to be in B (cf. Lemma 2.1). A similar discussion shows that if Bx and B,
are Borel sets rational over 911, and fi(Bl A -&>) = 0 (i.e., Bl and B, are equal
almost everywhere, then for x random over 9)1, the questions "Is a; e /?,?" and
"Is x e B2V are equivalent.

We therefore make the following definition.

Definition 1. 9* is the set of equivalence classes of non-null Borel sets of
reals (in 9)1). Two sets Bv and B2 are equivalent if and only if Bl A B, has
measure zero. (Let [B] be the equivalence class of B. We think of the con-
dition [B] as telling us x e B.)

We order 9 by an order g as follows. [B] <; [B'\ if and only if B' c B
almost everywhere (i.e., B' — B is a set of measure zero).

2.4. Let £6 6 911. Then clearly £6 is a boolean algebra in 911 if and only
if £8 is a boolean algebra in the real world. However, SB can be complete in
9)1 (cf. [4, p. 25]) without being complete in the real world, since there may
be subsets S c S such that supS is not defined, but S e 9)1. We say that SB is
dK-complete if and only if 911 t= £6 is complete.

Let now SB 6 911 be a boolean algebra, and
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h: 35 — 2

be a homomorphism. (We do not require that h lie in 911.) We say that h is
<dR-completely additive if whenever S cz <J5, S e 911, and sup S exists in 35, then

/t(supS) = sup{/i(s):seS)} .

Let 35 be a boolean algebra lying in 911. Let <; be the usual order on
55: b, £ b, if and only if bl v 62 = b,. Let y1 be the set of non-zero elements of
35. We provide sj1 with the order < inverse to ^ : 6, < b2 if and only if 6, <L &,.

LEMMA. Lei h: 35 —* 2 6e an tyR-completely additive homomorphism.

Then

(1 ) G = [b 1 /i(6) = 1}

is a?i 'dR-generic filter on .CJ\ Conversely, if G is an 'dR-gsneric filter on i-P,

there is a unique homomorphism

h: <B — 2

such that (1) holds.

PROOF. Let h: fjB — 2 be a homomorphism. Then if G is denned by (1),
then G satisfies clauses (1) and (2) of Definition 1.1.3. Conversely, if G £ y>
satisfies clauses (1) and (2) of Definition 1.1.3, then G is, in the usual termi-
nology of the theory of boolean algebras, a filter on 35. If G also satisfies (3)
of Definition 1.1.3 then G is an ultrafilter on 35. (For any b0 e .93, the set
{b 6 H1: b ^ b0 or &•&„ = 0} is dense in £P.) Hence there is a unique homomor-
phism /i: 35 — 2 such that (1) holds.

Now let X be dense in 3\ XeQll. We say sup.8 (X) = 13 . Otherwise
there is a 6 > 0 with b-x = 0, for all l e i But Xis dense, so for some x0 e X,

x0 g 6. But then b-x0 — x,, =£ 0. This contradiction proves our claim.

It follows that if h: 33 — 2 is 9ll-completely additive and X is as above, we
have h(x) = 1 for some xe X. Thus xeG f] X, and G satisfies clause 3 of
Definition 1.1.3.

Conversely, suppose that G is 9ll-generic. Let S c 35, S e 911, sup S = s0.
We want to show

(2) h(s0) = sup {h(s):seS} .

We may as well suppose that s0 = lm. (Otherwise, replace S by S u {1^ - s0}.)
Let

X = {a e bP | a ^ 6 for some beS} .

Then X is dense in 31 (cf. Definition 1.1.2). Indeed, clause (1) of the definition

of "dense" is obvious; we verify clause (2). Let x e 9. Then x =£ 0. Since
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sup S - 1, x A s ^ 0 for some s s S. Hence x A s e X, and x < x As. This
verifies clause (2).

Since X is dense in y\ and X lies in S91I, we have Gfl X^ 0 . Hence there
is an a e G and a be S with a < b. Since A(a) = 1, we have fr(6) = 1. Since
6 e S, and s0 = 1, (2) is proved.

2.5. We now suppose in addition that ffi is 9)l-complete, and that only
countably many subsets of 93 lie in 9)1.

LEMMA. Let O be a sentence of i". Then there is a 6,, e £8 SMCA ik< i /
G is an 'DK-generic filter- on <-?, and A: ffi — 2, ffeen. 9)l[G] | = O i / and o?iiy i /
/i(60) = !• Moreover, 60 is uniquely determined by <t>.

PROOF. Let

S = {6 e 911 6 li- (D} .

Since forcing is expressible in 9)1, S e 9)1. Let b0 = sup 5. (If S = 0 , we take
60 = 0, and the lemma is clear. So we may assume S =£ 0.) We maintain
6,-, II- <J>. Otherwise, there is a c e iP with

0 < c £ bn ,

i.e., 6,, < c, and c IH -i <E>. Since 6fl = sup S, there is a b,eS with 6 L A c ^ 0..
But then

c < 6, A c

so &! A c If— —i <&. On the other hand, 6, If- O, since bl 6 S; since bL < b, A c,
6, A c Ih- O. This contradiction shows 60 ih O.

If h(b0) = 1, then 60 e G, so €)li:[G] t= <D (since 60 Ih- <P.) Conversely, if
9)l[G] t= O, there is a 6, 6 S n G, so /i(6t) = 1, so /i(60) = 1. Thus 60 has the
desired properties.

Suppose now that 6j has the same relation to $ as 60. We show &! = 6,,.
Otherwise, let b, = 6i A &o- Then if ft is 9R-completely additive, h(b0) = A(6t) =
truth value of O, so /i(62) = 0. If bi ^ ba, then 6, =?t 0. By 1.1.8, there is an
9)l-generic filter G with 62 e G. But then, /i(62) = 1, contradicting our remark
that h(bi) - 0. This shows bl = h.

2.6. The following theorem provides the link between the abstract
material of § 2.4-5 and the concept of a random real introduced in § 2.1.

Let % (resp. 932) be the algebra of 9)l-Borel sets modulo the ideal of sets
of measure zero (resp. of first category). By § 1.9, these algebras are 9)1-
complete.

THEOREM. There is a canonical 1-1 correspondence between the reals
random over 9R and the ^K-completely additive homomorphisms O/SBK
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PROOF. Let h be an 9ll-completely additive homomorphism of S^ —• {0, 1}.
Set

xh = x = {reQ:h((r, - ) ) = 1} .

(To abbreviate, we sometimes use the same symbol to denote an 9)l-Borel set
and its image in %.)

LEMMA 1. a; is an irrational left Dedekind cut in Q.

PROOF. (1) x =£ 0 : Since h{(—~->, " ) ) — 1, for some neo), we have
h(( — n, -•?)) = 1, so — n e x.

(2) x^Q: Since h(0) = 0 and 0 = n~=i(«. °), we have h((n, -o)) = 0,
for some ne OJ. But then n £ x.

(3) r2<r,ea;=>r26x: Since (r,, =°)c(r2l -o),/i((>\, =o)) = l=»/i((r2, =o)) = l .
(4) a; is irrational: Let r e Q. Since {?•} = f"|* (** — 1/w, r + 1/w),

/i((r — I/TO, r + I/TO)) = 0 for some n. But then r — I/TO e x «• r 4- I/TO e a;, so
a; is not the Dedekind cut centered at r. (Similarly, we see that x $. 9)1.)

LEMMA 2. Let Abe a Borel set rational over 9ll. TTICTO xe A if and only
if h(A) = 1.

PROOF. Let a be a code for A, lying in 9)1. The proof proceeds by induc-
tion on X9I! (a) and is straightforward (cf. § 1.7). (Note that A,9ll(a) e OR^QOR,
so the induction is legitimate, even though h 6 911.)

It is now easy to show that x is random over 9)1. Let JV be a set of
measure zero rational over 9R. Then a; e JV if and only if h([N]) = 1. But
[JV] = 0 in SB1? so h([N]) = 0.

Now suppose that x is random over 911. Define hx: % —• {0, 1}, by
/ix([A]) = 1 if and only if x e A. (A rational over M.) (To see that hx is well
defined, let Al and A2 be Borel sets rational over 9R such that [Ar] = [̂ 4,].
Then n{Ax A 4 ) = 0 so s g A ^ ^ (since a; is random over 911). It follows
that x e Ai = x 6 A2.)

It is not hard to check that hx is 9)l-countably additive. The proof that
hx is 9R-completely additive is based on the following lemma (Halmos [4, p. 61]).

LEMMA 3. Let $>be a complete boolean algebra satisfying the countable
chain condition. Let S c SB. Then S has a countable subset So such that

VS = VSo •
Let Sc %, S6 9)1. Since hx is finitely-additive, hx{\fS) ^ Y{hx(s): s e S}.
To get the reverse inequality, we apply Lemma 3, within 911, to %. Let

•S, c S, S, countable in 911, such that y So = y S. Since hx is 9ll-countably
additive.

hx{yS) = A,(VSo) = V{M«): «eS0} ^ V{M»): *eS} .
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The reverse inequality has already been proved. Thus kx is 9)l-completely

additive.

We have shown that if h is 9)l-completely additive, xh is random over 9)1.

Lemma 2 shows that h can be recovered from x,, and the discussion just com-

pleted shows that every x random over 911 arises in this way. The theorem is

proved. The theorem has an analogue for random elements of 2'". (In that

case, Lemma 2 is unnecessary.) There is a corresponding theorem, of course,

identifying reals generic over 9)1 with the 9)l-completely additive homomor-

phisms of ffv,.

2.7. Let 9)1, fi),, be as above. Let x be a real random over 911, and G the

associated filter on 9\. I t is clear from the discussion in § 2.6 that x e 9ll[G].

Moreover, in view of Lemma 2.6.2 and Lemma 2.4, it is clear that if 9l is any

transitive model of ZFC with x e 911 and 911 G 91, then G e 9l . By 1.1.4, we

then have 9ll[G] c 91.

Notations being as in the preceding paragraph, we write 9ll[a;] for 9ll[G].

Thus the discussion of the preceding paragraph shows that 9ll[.u] is the

minimal transitive model, 9l , of ZFC such that 9lt £ 91 and a; e 91.

Because we know that 9)l[a;] = 9ll[G], it is clear that 9ll[a;] has the same

ordinals as 9)1. Moreover, using the fact that % satisfies the countable chain

condition in 9)1, it would be easy to show that 911 and 9lt[a;] have the same

cardinals. (This is true for all reals random over 911, and hence for almost

all reals.)

2.8. We can now prove our fundamental result about random reals. We

alter the language £' of Chapter I slightly, by replacing the constant G by a

constant x. Call the resulting language £". If a; is a real random over 911,

we interpret S" in 9ll[x] in the obvious way. In particular, we let x denote a;.

THEOREM. Let O be a sentence of £". Then there is a Borel set A

rational over 9)1 such that for all x random over 9)1, we have

( 1 ) V)l[x] t= <J> < x e A .

PROOF. Let hx: 93t —»2, Gx be the homomorphism and filter determined

by x. Since 9ll[a;] = 911JG*] and a; is definable in 9ll[a;] from %, Gx, we can

find a sentence O' of £ ' such that for all x random over 911,

<DK[x] t= O < <d)l[Gx) N O ' .

By Lemma 2.5, there is an element b0 of SBlt not depending on x, such

that for all a; random over 911,

9)1[GX] (= O'< >kx(bj = 1.
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Let a e or code a Borel set in 911 whose equivalence class lies in b0. Let
A be the Borel set coded by a in the real world. Then by Lemma 2.6.2,

hx(b,) = 1« x e A .

The theorem is proved.

2.9. We show that the notion of a generic subset of OJ introduced by
Cohen is the same as the notion of "generic" introduced in § 4.2. The result
will not be used in this paper, but is included for its historical interest.

We recall the precise definition of "generic" given by Levy in [8]. Let
y\, be the set of Cohen conditions: an element p e Ŝ  is a function with domain
a finite subset of a> and range a subset of {0, 1}.

Let 9)1 be a transitive model of ZF + DC. A subset D of 9\ is dense if
(vp e i?o)(3P' £ D)(p c p'). An element fe 2'" is I-generic over 9)1 if for each
dense D e 9)1, there exists p e D such that p^f. (This definition is essentially
that of Levy [8]. It comes, via Easton [3], from an idea of the author.) An
element fe2" is II-generic over 9)1 if it lies in no first category Borel set
rational over 911. We shall prove that the following properties of / are
equivalent:

(1) / i s I-generic over 9)1;
(2) / l ies in each dense open set rational over 911;
(3) / i s II-generic over 911.
Proof. The essential point is that Lemma 1.2.2 allows us to relate generic

filters on the two different partially ordered sets implicit in the notions
"I-generic" and "II-generic". The details are as follows.

Let SB2 be the boolean algebra of 9)1 denned (in 911) as the quotient of the
(7-algebra of Borel subsets of 2" modulo the c-ideal of first category Borel sets.

We shall need an alternative description of 952. We recall that an open
set U is regular if and only if U is the interior of the closure of U. Then
each element of SB, is the representative of a unique regular open set. In this
way, we get a bijective correspondence between % and the regular open sets
rational over 911. This correspondence is order preserving if we order the
regular open sets by inclusion.

Let £P2 be the set of non-zero elements of 952 equipped with the order, <,
inverse to that of S82. Thus £P2 is canonically isomorphic to the set of non-void
regular open sets rational over 9lt. Call this latter set 9'z.

Now let G be a generic filter on S's,, x the II-generic element of 2U deter-
mined by G (cf. § 2.6). Let G' £ £p; correspond to G. Using the analogue of
Lemma 2.6.2, one sees that

{x} = DC .
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We map y>0 into y'J as follows: if p e 3>0, put Wp = {/ e 2'": p c / } .
Then Wp is open-closed and hence regular. It is clearly rational over 911.

The map
(P - W,)

is order-preserving, (y>£ carries the order induced by the given order on iP2.)
Moreover, the image, <?J, of iPn in 9'2 is cofinal since sets of the form Wp form
a basis for the open sets in 2".

By definition, an element x e 2'" is I-generic if and only if {p e £?„: p £ a;} is
a generic filter on <?„. It follows that the I-generic elements of 2'" are obtained
as follows: take an 9)1 -generic filter G on .<?„, copy it onto a filter G' on £?', and
take f\G'.

Now if (?! is an Olt-generic filter on £P0, there is an 9R-generic filter G, on
9\ such that G, = {p: Wp e G;} (cf. Lemma 1.2.2). Moreover, all generic filters
on 9*0 arise in this way. Thus x is I-generic if and only if x = f)G[ for a generic
filter Gi on £P0 if and only if x = f]G'2 for some generic filter G2 on 3>2 if and
only if x is II-generic.

We can now drop the prefixes I, and II. Let a; be generic over <D)l. If U
is a dense open set rational over 911, then the complement of U, U', is first
category. So a; 6 U'. So x e U.

Conversely, suppose that x lies in each dense open subset of 2" rational
over 911. We prove that x is generic. Let N be a first category set rational
overSR, and AT311 the corresponding Borel set of 911. By Lemma 1.6.6, Nm is
first category in 9)1. Hence, in 9)1, there is a countable sequence {F?R} of
closed nowhere dense sets, with

Let Fi be the Borel set of the real world corresponding to F?]l (by § 1). Then
results in § 1 imply that F ; is closed nowhere dense and

N c U ^ ; .

Our assumption on x implies a; 6 Fit for any i. Hence x g N. So a; is generic.

III. PROOF OF THEOREMS 1-3

1. Proof of Theorem 2

1.1. Let 9)1 be a countable transitive model of ZFC + "There exists an
inaccessible cardinal". Let Q be inaccessible in 9)1. Let 950 be as in I § 3.2.
Let G be an 911-generic filter on 9°. We put Vl = ^)K[G].

1.2. Let t be a real of 91.

LEMMA. Almost all reals of 9l are random over 9)l[£]. Precisely, there
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is a Be'dl suck that 9t f= B is a Borel set of reals of measure zero and
x e 9l fl R is random over 9)1 if and only if x g B.

PROOF. By Corollary 1.3.4.2 (2N')flRU] is countable in 91. The lemma

follows from Lemma II.2.1 applied inside Ldl.

1.3. A set x e 91 is 9ll-R-definable if and only if there is a real t e v)l and

an element y e 911 and a formula O(vlt v2, v3) of £ such that x is the unique z e v)i

for which
91 N <E>(£, 2/, z) .

An argument of Scott and Myhill [11] shows that there is a predicate

¥(«,) of i? such that
91 t= V(y)

if and only if y is 9)l-R-definable.

(There is a similar notion of 9)l-definable, which is obtained by omitting

all mention of the real t in the definition of "9U-R-definable".)

1.4. LEMMA. Let U be a set of reals in 91 which is QK-R-definable.

Then 9l 1= U is Lebesgue measurable.

PROOF. We fix a set-theoretical formula O ^ n vi' vs)i a n element ce e 9ll,
and a real t e VX such that for y e 9l we have 911= ®i(x, t, y) if and only ify = U.

Using Olt we construct a set-theoretical formula Q>z(vu viy v3) such that
for y e 91 we have 91 N O2(x, t, y) if and only if y e U.

Let 9RL = 9R[t]. Then by Corollary 1.3.4., Q is inaccessible in 9R.. By
Theorem 1.4.1, there is an 9R,-generic filter Gl on 9Q such that 91 = 9R,[G,].
We put x,, = •(x, ty. Then xt e 9RL and there is a set-theoretical formula
<&3(vlt v2) such that for all y e 9l,

( 1 ) 91 N Osfe, ?/) if and only if ij e U.

Thus all our assumptions about the pair <9l; 9R> hold for <9l; 9)1 ,> as
well. All the results of I § 3-4 can be applied to <9t; 9Rt>.

1.5. Let i e 91 be random over 9RM By Theorem 1.4.1, there is an
911^1-generic filter, Gt on 9a such that

91 = 9Ut][Gt] .

Also, by Corollary I.3.4., Q is inaccessible in <Dii1[t].

We now apply Lemma 1.3.5., considering 91 as a Cohen extension of
9R1[t]. We thus have

(2 ) 91 f= O3(xlt t) if and only if 0 it- O3(xl, 0 .

Since "forcing is expressible in the ground model", there is a set-theoretical

formula O,(vM v%) and an element a;2 (which we can take to be <a;,, Q» such that
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( 3 ) 0 ll- 0>3(JC1J f) if and only if 9)l[£] \= 0)4(^, t) .

We now invoke Theorem II.2.8. There is a Borel set B, rational over 9]lH

such that for any y random over <0)ll, 911J2/] 1= O4(a;2, y) if and only if y eB.

Let Bl be the Borel set of 91 corresponding to B. Then B1 = B n 9l.

Hence if t e 01 is random over 9)ti, we have

( 4 ) 9llL[iJ |= (D4(n;2, £) if and only if t e 5 , .

If we string (l)-(4) together, we get, for all reals t random over 9)1,,

( 5 ) te U if and only if t e Bl .

Let f / A 5 ( b e the symmetric difference of U and 2?,. Then (5) says

( 6 ) [ / A B ; C { t e 91 ! £ is not random over 911,} .

By Lemma 1.2, the right hand side of (6) is a Borel set of measure zero

of 9l. So U differs from the Borel set Bt by a subset of a Borel set of measure

zero, i.e., U is Lebesgue measurable in 91.

1.6. Let U be a set of reals of 91 which is 9)l-R-definable. By an argu-
ment similar to the proof of Lemma 1.4 (obtained by replacing "random" by
"generic" and "measure zero" by "first category" we can show that every
911-definable set of reals is equal to a Borel set modulo a set of the first
category. We can in fact do slightly better. It is known (cf. [4, p. 58]) that
every Borel set is equal to an open set modulo a set of the first category.
Thus every 9ll-R-definable set is equal to an open set off a set of the first
category.

1.7. Now let U be a set of reals, in 9l, which is 9)l-R-definable and
which is uncountable in 9l. We are going to show that U contains a perfect
subset. Before giving details, we outline the proof.

(1) By extending 911 if necessary, we may assume that U is 9)l-definable.
(2) We pick sx e U — 9)1. (We can do this since U is uncountable and

911 n R is countable.)

(3) si lies in 9ll[Ge], for some c < Q. Exploiting the connection between
forcing and truth, we can find fe Lf; such that for any F: a) — ^ extending/
which is 9)l-generic, 9ll[F] n (U - 9)1) ^ 0 . In fact, we will construct an
explicit s(F) e U - 9)1, with s{F) e 9)l[F].

(4) We show that s(F,) ^ s(F2) if F , is 9)l[F,]-generic.

(5) We construct a perfect set K of generic collapsing maps of I. and
show that

Fi -s(F)

maps K homeomorphically into U.
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We turn to the details. Defining 9)11 as in § 1.4, and replacing 911 by 911,
if necessary, we may assume that U is 911-definable.

By Corollary 1.3.4.2, the reals of 911 are countable in 91. Since U is
uncountable in 9{, we can select a real s, of U, not lying in V)I.

Let G, be an 911-generic filter on fcT^ such that 9i = 9)l[G1]. By Lemma 1.3.4,
there is a i < 9. such that sx e 9ll[G; L]. Here G; '' = G, n tf =" ' is an 9ll-generic
filter on 91; '. We may assume that o> rS .̂

By Lemma 1.4.3, there is an 9)1-generic collapsing map F,: o> --> ̂  such
that

9)1 [FJ - V))l[Gfl] .

By 1.1.7, there is a set-theoretical formula t(vu v,, v3) and an element xy

of 911 such that

st = {<7eQ:9]l[F1]F^(«»-PT..9)} •

LEMMA. There is anfle9'f with the following property. Let F: a) —> I
6<! o?̂  %l-generif. collapsing map. Suppose Fe 91, /i c F, a?id put

s = s(F) = {q e Q: 9ll[F] N V(s,. F, 9)} .

T/ien s is a reai, s e U, and s £ 9)1.

PROOF. We can construct a formula -̂ ,(1?,, v2) of Jt' and an element :».:, of
911 such that

91 |= Mx., F)
if and only if s has the stated properties. Moreover, v~i andn;2do not depend onF.

By Theorem 1.4.1 and Lemma 1.3.5, there is a formula Vz(vn v-i) a«d an
element ?c-s of 911 (not depending on F) such that 91 t= ViĈ z- ^ ) if and only if
9ll[F] f= ^2(x-3, F) (cf. § 1.5).

Suppose now that F = F,. Then s = s,, so s has the stated properties and

9ll[FJ = ^2(x3, Ft) .

Hence, by the connection between forcing and truth, there is an /, c Fu

/, e£Pf( such that

The lemma is now clear.

1.8. Let F,, F2 be 9ll-generic collapsing maps of G> onto f, lying in 91.
Suppose f\ E Fi, i = 1, 2. Suppose further that the pair <FU F2> is generic
over 911 (i.e., if G; is the 911-generic filter on ff; associated to Fit then G, x G2

is an 9R-generic filter on fpe x y\). Then

s(Ft) = s(F.) .
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In fact, if s(F2) = s(F2), then s^,) 6 911, by Lemma 1.2.5. But this contradicts
Lemma 1.7.

1.9. Lemma 1.7 and § 1.8 indicate how to manufacture many elements
of U. We are going to construct a "perfect set" K of 9ll-generic collapsing
maps of £. We shall also arrange that if Flt F2 lie in K and Ft ^ F,, then
<F,, F2> is 9ll-generic. Finally, we shall arrange that if Fe K, t hen / c F.
It will then be shown that the map

{F-^s(F)}

maps K onto a perfect subset of U.

1.10. Since Q is strongly inaccessible in 9)1 and equals ^f1, we can
enumerate the dense subsets of <?t- lying in 911 in a sequence {Xn} within 9l.
Similarly, let {Wn} be an enumeration, in 91, of the dense subsets of 9*. x 9\
lying in 9)1.

Let 2 be the set of finite sequences of zeros and ones. Thus / e 2 if and
only if / is a function, domain / e <y, and range (/) c {0, 1}. We partially order
2 by inclusion.

LEMMA. There is in 91 a function

with the following properties:

(1) iK0)=/i.
(2) / / / , / ' are elements of 2 and f c f, then ir{f) c -f(/').
(3) / / / , / ' TO 2 are incompatible, then ir(f) and ir(f') are incompatible.
(4) //domain(/) = n, and / e 2, then domain(n]r(f)) 2 n, and ^r(f) e Xm,

for m < n.

(5) / / / , / ' e 2, and domain (/) = domain(/') = n, and f =£ / ' , then

<^(/). •*•(/')> e PTmf /or m < n.
PROOF. We define ^(/) by induction on the domain of / . So put -f{0) =j\.

Suppose ir(h) is defined for domain(/) <; n. We provisionally pick ^(/) for
domain(/) = n + 1 so that

(a) -f (/) extends ir(f \n). {f\n is the restriction of / to n.)
Replacing ir(f) (for /of length % + 1) by an extension, and relabeling, we may
assume

(b) n e domain(-\!r(/)),
(c) TH/) 6 -£» (since XB is dense).

Continuing to extend ^(f) (for/of length n + 1) and relabeling, we may assume
(d) if/, / ' are sequences of length n + 1, and / =£ / ' , then ^ (/) ^ ^r(f')

and
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<*</). -f(/')> e Wm {m^n) .

(We use here that Wm is dense.)
We can now "freeze" our definition of ^r(f) for length (/) = n + 1, and

turn to / of length n + 2 • • •.
It is clear that -̂  has the properties stated in the lemma, and that ^ can

be constructed inside 91.

1.11. We now define, inside 91, a map

Let h: a) —• 2. Then from Lemma 1.10,

U.«.iKfc|»)
is a function mapping (o into f. We denote it by %(fc). It follows from clause
(4) of Lemma 1.10 that (̂fe) is an 9ll-generic collapsing map of Q) onto £.
Moreover, it is clear that ft c -f (h) from (1) of Lemma 1.10. We put f*(h) =
s(x(h)). (It is important to realise that -f * can be defined inside 9l, but this
is clear) (cf. Lemma 1.7 for s(-)). By Lemma 1.7, -f *(h) is an element of U.

We show next that •f^. is one-one. Indeed, if hlt h2 e 2W fl 91 and /ix =£ /i2,
then <(x(hl), %(̂ 2)> is an 9)l-generic pair of collapsing functions. Hence by
§ 1.8, Vr.fo) * ^ ( / g .

We show next that f-* is continuous. Let Neco, N^l. Consider the set,
X, of p e £Pf such that

(a) if p is compatible with /„ then p 3 /^
(b) if p 3 / „ then for some qeQ, p forces | s(F) - q\< 1/(2N).
Using Lemma 1.7, we see that X is dense, Hence, since Xe 911, X = Zm

for some m. It follows that if hu h2 are functions in 2" n 91, and \ \ m + 1 =
/i21 m + 1, then

I TMAI) - •*.(&.) I < 1/AT .

(In fact, let g = /i( | m + 1. Then, by Lemma 1.10 (4), -f{g) e X. It follows
that for some q e Q,

ir(g) |H | s(F) -q\< 1/(2N) .

Hence | ̂ r*{K) -q\< l/(2N), i = 1, 2.) It is now clear that f „ is continuous.
So 1/% is, in 91, a continuous one-one map of 2m into U. Since 2" is com-

pact, T *̂ is a homeomorphism. Hence U contains the perfect set

TM2"] •

(Our proof that every 9R-R-definable subset of 91 is countable or contains
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a perfect subset is, essentially, a slight refinement of the following result of
Levy [9]: Every uncountable 911-R-definable subset of 91 has power 2K».)

1.12. We now wish to consider the following situation. Let A c R2, in

9l. Suppose that

vxly<(_x, y)eA

holds in 91; here x, y range over R. Suppose finally that A is 9ll-R-definable.
We shall show that there is a Borel function, h: R — R in 9l such that

<(x, h(x)y e A

for almost all x. Thus h is a choice function, which selects a y in

Ax = {y\ <x, y)eA] ,
for almost all x.

Since the axiom of choice holds in 91, there is a choice function h in 9l
defined for all x. Later, we will give an example of an A for which there is
no 9il-R-definable h such that for all x, h(x) e Ax.

We now give an outline of the proof.
(1) We construct a provisional h which is 9ll-R-definable and is defined

almost everywhere. Using the fact that 9ll-R-definable subsets of R are
Lebesgue measurable, it will then be easy to alter h on a set of measure zero
to make h Borel.

(2) We may reduce ourselves to the case that A is 911-definable.
(3) Since almost all reals in 9l are random over 911, we need only define

h(x) for x random over 9K.
(4) Using an argument similar to that of Lemma 1.7, we show that there

is an 9ll-definable function cp(x, y) and an ordinal | < Q such that whenever
a; is random over 911, and F: a; —>• f is an 9ll[a;]-generic collapsing map, then
<p{«, F) e A..

(5) To complete the proof, we show that there is an 911-R-definable
function ^(a;) such that whenever a; is random over 911, -f(x) is an 9ll[a;]-
generic collapsing map mapping- a) onto f. (We then put h(x) = <p(x, ^(x)).)

We turn to the details.

LEMMA 1. Let h e 91 map R into R; suppose that h is 9)l-R-definable.
Then there is a Borel function ht such that

{x\h(x) = Ux)}
has measure zero.

PROOF. For r e Q, let

Ur - {x\h(x) < r) .
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Since Ur is 911-R-definable, there is a Borel set Br and a Borel set of measure
zero Nr such that

Ur A Br c Nr .

Let iV = [JrNr. Then iV is a Borel set of measure zero. Put A.,(.T) = h(x) for
a; £ iV; ^(s) = 0 if x e iV.

If r ^ 0, r e Q,

{x \ ht(x) < r} = Ur-N.

If r > 0, r 6 Q,

{a; | /^(x) < ?•} = UrU N .

Thus /iL is Borel. The lemma is now clear.
As usual, we may assume that A is 9ll-definable (by extending 911 if

necessary).
We use at, a2, etc. to denote parameters from 911. Since A is 9)l-definable,

there is a set-theoretical formula, Vi^n a;. 2/) such that

91 1= V.(eii. a;, i/) < <x, y>eA.

Now let »! be random over 911. Then we can find an 9ll[a;1]-generic filter
Gl on 9Q such that 9l = 9H[cc1][G1]. Select a i / .e A^. By the results of I. 3.4,
yl e 9)t[a;1][G;1] for some ?t < Q. Apparently i, depends on our choice of x, and
G,. However, we have the following lemma.

LEMMA 2. There is a q < Q such that for all reals x random over 9ll
and all filters G on 9°- generic over 911 [a;], the set

AX n ®n[x][&]

is non-empty.

PROOF. We extend i? to a language S" as follows: for each a e 9)1, we
adjoin a constant a; there are two additional constants x and G.

Let a; be a real random over 911 and G an 9)t[a;]-generic filter on 9a. We
interpret £." in 9ll[x, G] in the obvious way. (Thus, variables range over
9lt[a;, G]; x denotes x; G denotes G, etc.)

Let ¥*(£) be a formula of S" which expresses the following:
s is an ordinal less than Q, and

A, n <D\l[x][&] ¥= 0 .

We now fix a real x random over 911 and an 9R[a;]-generic filter G on 9a.
By Lemma 1.3.4, there is a £ < Q such that

<m.[x][G] N * s ( c ) •
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Let peG force \P2(f). (We are viewing 9)l[a;][G] as a Cohen extension of 9)l[a;].)
We say that in fact

0 ih- * 2 ( , - ) .

Otherwise, there is a p' e <?Q such that p' \\- -i ^2( | ) . We select a bijection
7T of a) such that iz*(p') is compatible with p. (Notation as in I §3.5.) A glance
at the definition of n* shows that

9ll[7r,(G)5] = 9R[G{] .

Hence an argument similar to the proof of Lemma 1.3.5 will show that

ff»(p') Ih- -i N^U;) •

This is absurd since p ih- ^2(£) and p and 7t*(p') are compatible.
We can find a formula ^(a;, £) such that ^[x] N \P3(a;, c) if and only if

<d)l[x][G] N "0 Ih- ¥,(£)".
We know (viewing 9)l[a;] as a Cohen extension of 9ll) that the following

are forced:
(1) 3f < Q ¥,(«, f) ,
(2) S < £' < G and ¥,(», £) — Y3(.T, ,-').

By Zorn we pick inside 9U a maximal family {<(&;, ?,)>: iel) such that
(3) {6;: i e /} is a pairwise disjoint family of non-zero elements of S^;

6«<G.
(4) 64 Ih ¥,(*,&).
Using (1) and (3), we see that sup {6̂  iel} is the unit of S3j. Using the

fact that 2K satisfies C.C.C., we see that I is countable. Hence if £ =
sup {s*: t e / } , f < Q . By (2),

b{ Ih- *•,(«, ?) , iel.

It follows that IH Vr3(x, £). (For example, from Theorem 2.8 of II.) Using the
relation between ^P3 and ^p, we see that ^ satisfies the requirements of the
lemma.

We let <j0 have the property ascribed to f in Lemma 2. We may assume

& = & + 1-

LEMMA 3. Let x be a real of 9l random over 9ll and Zê  G{° 6e aw
9R[.T;]-aeweric ^Jier <?£°. T/ie%

9ll[a;][G{»] n A, * 0 .

PROOF. Suppose not. Fix x, Gf° witnessing the fact that the lemma is
false. By Lemma 1.4.6, we can find an 911 [a;]-generic filter G on 9Q with
G fl 9"° = Gf°, and such that

<dl = ®K[x][G) .
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But now our assumption on x and Gf° contradict Lemma 2.

LEMMA 4. Let X = 2card(fo\ as computed in 911. Then X is countable in
91. Let F: a) —*X bs surjective. Then for any real x random over 911,

9)l[a;, F ] n A, * 0 .

PROOF. Since Q is inaccessible in 9)1, X < Q. Hence \ is countable in V)I.
It is easy to see that

card (&;n) = card (&,)

in 911. Moreover, standard arguments show that if x is random over 911, then
911 and 9)I[x] have the same cardinals, and that

\4 hyn. — (^ /9n[i] •

(The essential point is that % satisfies C.C.C. For details, cf. e.g. [12].)
Thus, in 9K[F, x], we can enumerate the dense subsets of 9"° lying in

<d)l[x]. It follows that there is an 9H[«J generic filter on 9>;, G, lying in 911 [F, x\.
The lemma now follows from Lemma 3.

The following lemma is standard, and we omit the proof. Let F be as in
Lemma 4. Note that F is definable from a real, by I. 1.12.

LEMMA 5. There is an tyR-R-definable function -^(x) such that for any
real x, iy(x) is a well-ordering of the reals ofdM[F, x].

We now put it all together. Define h: R —>• R as follows: h(x) is the
T (̂:c)-least member of Ax D 9U[i^, a;] if this set is non-void. Otherwise, h(x) = 0.
By Lemma 5, h(x) is 9)l-R-definable. By Lemma 4, h(x) e Ax for all x random
over 911. By Lemma II.2.1, it follows that h(x) e A, for almost all x. By
Lemma 1, we can alter h on a set of measure zero, so that it is Borel.

1.13. In a totally analogous way, we can prove that if A is as in 1.12,
there is a Borel function h such that h(x) e Ax for all but a first category set
of x's.

The following lemma is known.

LEMMA. Let h: R —• R be Borel. Then there is a set N of the first

category such that h\R — Nis continuous.

The proof is similar to the proof of Lemma 1.12.1. We omit the details.
The lemma implies a similar property for 9il-R-definable functions.

1.14. It is now easy to complete the proof of Theorem 2. It follows from
the results recalled in 1.14 that 91 is a model of ZFC.

From work of Godel (cf. [1, Ch. 3]) it is known that if ZFC + I has a
transitive model, then so does ZFC + I + GCH. We now sketch a proof that
if GCH holds in 911, it also holds in 91. (Our proof would be slightly more
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natural in terms of the concepts of [12].)
Since GCH holds in 9)1, Q is strongly inaccessible in 911.
We let 6 be the collection of subsets of £PQ in 911 of cardinality less than

Q. (5 has cardinality Q, Let 6 be a cardinal of 9l. Let <S?,R be the collection
of maps of 6 into 6 lying in 9)1. We define a map h: Ŝ R —• P(0)x, in 9l, as
follows: if g e Sf)n, A(sr) = {a < 6: g{a) n ( ? ^ 0 ) . Using the GCH in 911, the
cardinality of <S"n is easily computed. We leave this to the reader. This
computation shows that GCH holds in 9t provided h is surjective.

To see that h is surjective, let A e P(6).:X. We fix a definition <t> of A.
Thus A — {a: 91 1= <P(a, G)}. For each a < d, let J7a be a maximal pairwise
incompatible family of conditions that decide O(a, G) and let Qa be the subset
of 7a consisting of conditions that force (D(a, G). Then Lemma 1.3.3 shows
that @a e 6. Define gr e &"iK by gr(a) = §„. We leave it to the reader to verify
that h(g) — A (cf. the proof of Lemma 1.3.4). This completes our discussion
of the GCH in 91.

To complete the proof of Theorem 2, we must verify that the analogues
of (2) to (5) of Theorem 1 hold in $1. In view of the results of §§ 1.1-1.13, it
suffices to cite the result proved in §2.8 below, that every set of reals definable
from a countable sequence of ordinals is 9ll-R-definable.

1.15. We now give an example of an A which has no 911-R-definable
cross-section. We put

A- — {<#, yy~- y is not 9)1-definable from ?;} .

It follows from the techniques of [11] that A is 9)l-definable.

LEMMA. Let x e R. Then there is a y not 9)l-definable from x.

PROOF. Using the techniques of [11], one shows that

A-'t — [v I y is 9)1-definable from x)

has an 9)l-R-definable well-ordering. If A'c = R, then we would have an 9R-R-
definable well-ordering of R. Using this, one could construct an 9)l-R-definable
non-Lebesgue measurable set. This contradicts our result of 1.5. Thus
Ax =£ 0 . q.e.d.

Suppose now that h is an 9)l-R-definable function mapping R into R.
Say h is 9ll-definable from x e R . Then h(x) is 9)l-definable from x, i.e.,
h(x) 6 Ax.

2. Proof of Theorem 1

2.1. The present method of presenting Theorems 1 and 2, in which
Theorem 1 is essentially a corollary of Theorem 2, is due to Ken McAloon.
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Our original approach was to prove Theorem 1 directly. (Theorem 2 is then
an easy corollary.) Our original approach had the disadvantage that the
verification of DC in the model for Theorem 1 was extremely delicate. With
the present approach, it is a triviality.

2.2. Let sOl be as in § 1. We say that x is definable from a sequence of
ordinals (in V)l), there is a n / : co—>OR, fe'Ol, and a set-theoretical formula
<£>(vn v,) such that, for any y e V)t, V)l N <!>(/, y) if and only if y = x.

2.3. Let a; be a set. It is known that there is a minimal transitive set y
such that x e y. (The set y consists of a;, the members of x, the members of
the members of x, etc.) We call y the transitive hull of x. We say that x
hereditarily possesses some property P if each member of the transitive hull
of x has the property P.

2.4. Let v)i, be the set of elements hereditarily definable from a sequence
of ordinals in 9l. (Thus V)lt c <di.)

The methods of Myhill and Scott [11] allow one to prove the following
lemma.

LEMMA. V)̂  IS a transitive model of ZF. There is a single formula,
O0(v,, v,), of set-theory such that for any xB'dli, there is an /ev)i, / : co—*OR,
and x is the unique y e V)l such that

91 N <D0(/f y) .

Thus the formula ";teV)IL" is expressible in 91, by a set-theoretical
formula, viz.,

(3/)(/: co — OR A (y){y = x < • O9(/, »))) .

2.5. The following lemma is clear.

LEMMA. Every real of ',9l, cmd every sequence of ordinals o/V)I ^ies in. Ql^

2.6. LEMMA. Lei h: co—+ 9llf A e Oi. r/ien A e 9 l r

PROOF. We work in V)l. Let xe^ l , . Define an ordinal, T(.I;), as follows:
y(x) is the least ordinal X such that for some / : 0) —* X, x is the unique y such
that (Do(/, y).

Let 7 = sup (7(A(n)): w- e co}. Well-order the set {/:/ maps co into 7}. Let
/„: co — 7 be the least/(with respect to this well-ordering) such that h(n) is
the unique y such that O0(/, y).

Define (/: a» — OR by:

flr(2-3") = /„(») ;

otherwise (/(/•) = 0. Clearly /i is definable from {/„: in e <w} and {/„} is definable
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from (j. Thus h is definable from a sequence of ordinals. Since, by assump-
tion, h c 9llf it follows that h e 91L.

2.7. We now state the principle of dependent choices, DC.
Let X be a set, R a binary relation on X. Suppose further that X =£ 0 .

Finally, we assume that

(Vx e X)(3y 6 X)(x-ify) .

Then there is a map h:w—>X such that, for all n e a>, h(n)Rh(n + 1).
Note that DC follows easily from AC (the axiom of choice); one simply

defines h(n) by induction on n.

LEMMA. DC holds in S:)l,.

PROOF. Let X, i2e9i t satisfy the hypotheses of DC. Since AC holds in
91, there is an h: co -> X, he 91, such that for all n e a), (h{n), h(n + 1)> e i2.
By Lemma 2.5, A e 9l.. Thus DC holds in V)Ir

2.8. LEMMA. Let A e 91,. Then, in 91, A is VK-R-definable.

PROOF. We may as well assume that A is a map / of a> into OR.
By Lemma 1.3.4, /e9ll[Gf] where OJ g c < Q, and e = f + 1. By

Lemmas 1.4.3 and 1.1.12, there is a real s such that /e9l l[s] . So the lemma
is clear.

2.9. LEMMA. In V)l,, every set of reals is Lebesgue measurable.

PROOF. Let A be a set of reals in 91,. By Lemma 2.8, A is 9R-R-definable
in 91. Thus by Lemma 1.4, A is Lebesgue measurable in 91. Thus there is
a Borel set B and a Borel set N of measure zero, in 91, such that

(1) # A A c 2V.

Let a u a2 be codes for 5 and N in 9l. Trivially, at and a2 lie in 9V
(Lemma 2.5.) By Lemma 2.5, 91 and 9lt have the same reals. Thus, by
Theorem II 1.4, al and a., code B and AT also in 91. Clearly (1) holds in 91.
By Lemma II.1.6.4, N has measure zero in 9^. Thus A is Lebesgue measur-
able in Ni.

2.10. The proof of the following lemma is totally analogous to that of
Lemma 2.9.

LEMMA. In 9ln every set of reals has the property of Baire.

2.11. LEMMA. In 9l,, every uncountable set of reals contains a perfect
subset.

PROOF. Let A be a set of reals in 9l,. By Lemma 2.8, A is 9R-R-definable
in 91.
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Suppose first that A is countable in 91. Then Lemma 2.6 shows that A
is countable in 9^. On the other hand, suppose A is uncountable in 91. Then,
since A is 911-R-definable in 9l, there is, in 9l, a perfect set K with K £ A.

Let /3 be a code for K. Then /3 e 9tt and /3 codes K in 9lt (cf. the proof
of Lemma 2.9). By Lemma II.1.6.7, K is perfect in 9l1( and the lemma is
clear.

2.12. The following lemma is the key to verifying (5) in 9lt.

LEMMA. Let f be, in 91, a Borel function mapping R into R. TYtew

PROOF. Using Lemma 2.5 and Theorem II.1.2 we see that every Borel
set of reals of 91 lies in 9ll. Hence, by Lemma 2.6, the indexed family

( / K — , 7 ) ) : ? e Q )

lies in 9lt. It follows easily that / e 9lt.
It is now easy to verify that (5) holds in 9lt. Let {Ax: x e R} be as in the

statement of (5). Applying (5a) in 91, we get a Borel function h and a Borel
set of measure zero N such that

x^N-*h(x)eAI .

Since h, N lie in 9l u this instance of (5a) holds in 9lt. The verification of
(5b) is similar.

2.13. The material in §§ 2.7-2.12 establishes Theorem 1.

3. Proof of Theorem 3

3.1. McAloon's idea of directly proving Theorem 2 allows one to prove
Theorem 3 as well. (This fact was first noticed by McAloon.) We are going
now to sketch the proof of Theorem 3. Using our sketch and the detailed
proof of Theorem 2 given above, the reader should be able to fill in the details
without trouble.

3.2. 9)1 is a countable transitive model of ZFC + GCH + "There is an
inaccessible cardinal". 0 is an inaccessible cardinal in 911. 0 is a cardinal of
911 with cofinality ^ Q.

Let <?Q be the partially ordered set appropriate to adding 0 generic sets
of integers. Thus 9"e is the set of all functions / such that

(1) domain(/) is a finite subset of 0 x a>;
(2) range(/) c {0, 1}.
Let 9> = 9>Q x 9'@. Let G be an 911-generic filter on 9. Let 9T2 be 9)l[G].
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3.3. LEMMA. Let AT e 9)1 be a pairwise incompatible family of elements
ofiP. Then, in 9)1,

card (X) < Q .

(The proof is similar to that of Lemma 1.3.3.)
This lemma has the following consequences.
(1) Q = N;'!i (cf. Corollary 1.3.3).
(2) If X 2; Q, \, is a cardinal in 9)1 if and only if X is a cardinal in 9l2.

By standard methods, one can compute 2Kl in 9l2. One gets
(3) 2*< = 6 in 9L.

(Example. Suppose 6 is the least cardinal of 9)1 > Q. Then in 9L, 2K- = >$2.)
3.4. Let A e 9)1, A c e . Let 9\ = {/ e % : domain (/) c A x co}.
The following lemma is the analog of Lemma 1.3.4 and has a similar

proof.

LEMMA. Let f: co — OR, / e 9 L . Then there is a ,- < 0, and a subset A
of 0 such that:

(1) A e 9)1, and in 9)1, card (A) < Q.
(2) /e9R[Gn(9'* x 9"J].

3.5. The following lemma is the analog of Lemma 1.4.3 and has a similar
proof.

LEMMA. Let A e 9)1, A c 0, and suppose

card (A) ^ card (,J) < Q

in 9ll. Lei G 6e an 9)l-g'e?ie?-ie j£J£er o?i tP;""1 x 9^. Then there is an 911-
generic collapsing map F: a) —»• f wn£/i 9)L[G] = 9)l[/r'J.

3.6. Using Lemmas 3.4 and 3.5, one can adapt the proof of Theorem 1.4.1
to prove

LEMMA. Le i / e9 l 2 , f:a)—>-0R. Then there is an 9)l[/)-f/ene?-ic filter,
Gi, on fP such that

9U[/][G1] = 9 L .

3.7. The following is the analog of Lemma 1.3.5 and has a similar proof.

LEMMA. Let O be a sentence of £' not containing G. Let 0 be the
minimal element of 9\ Then 0 decides O.

3.8. Using Lemmas 3.6 and 3.7, one can imitate the discussion of §1 and
prove

LEMMA. Let Ae9L be a set of reals which is fftl-R-deftnable in 9l2.
Then A is Lebesgue measurable and has the Baire property. If A is un-
countable, A contains a perfect subset.
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The proof of Theorem 3 is now clear.

3.9. Using the product lemma (Lemma 1.2.3), we see that the model of
Theorem 3 is obtained from the model of Theorem 2 by the (extremely well-
understood) process of adding generic reals. Hence the possible cardinalities
of 2K in the models provided by the proof of Theorem 3 are equally well
understood.

1. An extension of Theorems 1 through 3

4.1. Theorems 1 through 3 state that certain subsets of the reals are
well-behaved. In this section we replace R by an arbitrary complete separable
metric space X, and Lebesgue measure by a totally c-finite measure space ;i.
We shall discuss, very sketchily, a proof of the following theorem.

THEOREM. The following is valid in 9^: Let X, ft be as above, and let
A c X. Then A is fi measurable, A has the property of Baire, and A is
either countable or contains a perfect subset.

PROOF. One first re-does the material of II for the space X. (There are
a few technical tricks needed to re-do II in this generality, which we shall
not discuss.) One then works with, e.g., the ^-random elements of X in
proving that A is Lebesgue measurable (first in 9l, and then in 91,). Similarly,
one proves A has the Baire property.

To prove that if A is uncountable, it contains a perfect subset, we invoke
the following theorem of ZF + DC: Any separable metric space imbeds
homeomorphically into the Hilbert cube (cf. [6, p. 125]). This reduces the
problem to the special case when X is the Hilbert cube. The argument given
in § 1 in the case X = R adapts easily to this case.
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In Kleene-Post [4jl a number of questions concerning the structure of the
upper semi-lattice of degrees were left unanswered. The present paper contains
the answers to those questions under the scope of [4] Footnote 3. With the ex-
ception of the density problem ([4], 2.2), the methods used are variations of those
developed in [4]. The construction employed in showing that the degrees are not
dense involves a generalization of the methods of [4], and constitutes the main
result of this paper (Theorem 4) that there are minimal degrees of recursive un-
solvability.2 Familiarity with [4] is assumed.3

1. Relations involving both join and jump operations

1.1. The main results of [4] are each obtained by constructing a function, say
7, satisfying certain conditions C. The method employed is to write C as a con-
junction of an enumerably infinite set of conditions C o , C\, C2, • • • . Then, at
each stage g = 0, 1, 2, • • • of the construction, a class of functions ?„ is defined
such that every function in the class satisfies condition Cg ; also 5g+i cz !5g for
every g. Thus the functions in $g satisfy the first g + 1 conditions Co, C\, • • • ,Cg.
It is then shown that there is a function y which belongs to every 5g, and there-
fore satisfies C.

It is desirable to let Co be as simple as possible to avoid a complicated basis
step. Throughout this paper we shall let Co specify the kind of function under
consideration; e.g. Jo could be the class of all functions of one argument with
values 0 or 1. The classes ?„ , for g > 0, employed in [4] are of the form 5(S, <r),
where S is a recursive subset of the natural numbers with infinite complement,
cr(x) is a function of one argument defined for all x in S, and 5(S, <r) is the class
of all functions y in ;To such that y(x) = <r(x) for every x in S. Thus each con-
struction amounts to specifying £F0, the sets Sg, and the functions <rQ such that
?„ = 3(Se, <r0). This is done by induction, i.e. <S,+i and <rg+i are defined in terms
of Sg and ag. Since we always have Sg C SB+i and x t Sg —> <rg+i(x) = <rg{x),
it is sufficient to specify Sg+i — Sg , and to define crg+l(x) for x in Sg+i — Sg .

In the simplest applications, Sg = £[x < v(g)] where v(0) = 0 and v(g -f- 1) >

* Presented to the Association for Symbolic Logic, September 1, 1955. This paper con-
stitutes Part I of the author's Ph.D. thesis: On degrees of recursive unsolvabilily and re-
cursive well-orderings, at the University of Wisconsin, 1955, written under the direction of
Professor S. C. Kleene.

1 Author's corrections: p. 387, 3 lines below (18), delete first comma; p. 404, last line of
(56), change first " = " to ' V .

2 For "minimal", "maximal", "least", and "greatest", as applied to partially ordered
sets, see [1], p. 7.

8 For notations not explained here see [4] and [2], bottom p. 538.
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v{g). Then we speak of 7 being defined on the set SB, and of extending 7 to the
set .S'B-H by defining v(g + I) and y(v(g -f- 1)). We illustrate this in the following
proof.

1 .2. Tiir.oKKM 1. Given a degree d, there are degrees a and b such that a' u b ' =
a u b = a' = b ' = d' & a j b <fc d < a < d' & d < b < d'.

PKOOK (for d = 0). We construct functions a and /3 of degrees a and b re-
spectively (juch that

(1) a ' u b ' g a u b g 0',

and then show that the other properties follow. In order to fit the construction
into the scheme described above, we set y(a) = 2aM 3/J<n>, and write a(a) and
fi(a) for (y(a))o and (y(a))i respectively. We shall restrict our attention to
functions a and /? with values <2, and therefore we let Jo be the class of func-
tions y with values 1, 2, 3, or 6. For g > 0 and all e, we shall have

(2) a(a) = |3(a) = [a is not of the form v(g) — 1],

(3) {Ey)T[(a(y), e, e, y) s a(v(2e + 1) - 1 ) = 0,

(4) (Ey)T\tf(y), e, e, y) = 0(v(2e + 2) -1 ) = 0.

Then using (3), (4), and

(5) *(0) = 0 , v(g + 1) = 1 + nx[a(x) * J8(I) & x £ v(g)],

it will follow that a' u b' i a u b. Let C2c+l be the condition that 7 satisfies (3),
Cic^-i that 7 satisfies (4), and let each C8+l include also the condition that 7
satisfies (2) for v(g) ^ a < v(g + 1).

Suppose v(2e) and 7(i>(2e)) have been defined (v(0) = 0).
CASE 1: v{2e + 1) and a(v(2c + 1) can be defined so that T\(a{y), e, e, y)

holds for some y < v(2e + 1). This is equivalent to the existence of an x such
that

rt((i)o , e, e, (*),) & (zWj^aOo.. < 2
(6)

&(z)z<min(»(2«).(i)i)l(a;)o.' = («("(2c))),].

Let X be the least such x. The functions a(a) and ^(a) having been defined for
a < v(2e), we set

(7) a(a) = /3(a) = (X)0,o for »(2e) ^ a < (X),

(if r(2e) ^ (X)i nothing new is defined). For m = max (u(2e), (X)i) we set

(8) a(m) = 0, /3(m) = 1, v(2e + 1) = m + 1.

CASE 2: v(2e + 1) and a(v(2c + 1 ) ) cannot be so defined. Then we set

(9) aO(2e)) = 1, P(v(2e)) = 0, v(2e + 1) = i-(2c) + 1.
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At the next stage, v(2e + 2) and y(i>(2e + 2)) are defined by reversing the
roles of a and /3.

The functions v(g) and y(v(g)) are defined recursively in the predicate

\euv(Ex)[T\((x)0 , e, e, (x\) & (z)t<Ml(x)o,z < 2 & (2),<min(,.(,),i(j)ii., = (v)A,

and are therefore of degree |£0'. Using (2) — (5), a' u b' | a u b, which to-
gether with a u b | 0' establishes (1).

Now by ([4]: (4), (10), and (5)),

(10) 0' S a' :2 a' u b' & 0' g b' g a' u b',

which with (1) yields

(11) a' u b' = a u b = a' = b' = 0'.

UsingO^a ^ O ' . O g b ^ 0', (11), and ([4], (7)), if any one of a | b, 0 < a < 0',
0 < b < 0' were false, we would have a = a' or b = b', contradicting ([4], (11)).

PROOF (for arbitrary d). Let \aa(2a) and \a/3(2a) each be the representing
function of a fixed predicate of degree d. The values of a and /3 for odd arguments
are determined as in the proof for d = 0, except for the obvious changes in
(6)-(9) to take into account that a(2a) and |3(2a) are determined prior to the
construction. Letting a and b be the degrees of a and /3 respectively, we have
d ^ a ^ d' and d S b ^ d'. The proof is completed as above with d in place
of 0.

DISCUSSION. The theorem shows that each of the four possibilities listed in
([4], top line page 385) can occur when a' = b'. Thus for the a and b of the
theorem, a' = b' with a | b, which shows in addition that the converse of ([4],
(10)) is false. But also a' = d' with a > d.

To deal with the conjecture in the next paragraph of [4], in the present theorem
a | b and a' u b' < (a u b)' (since d' < d"), but in Theorem 2 below bi | b2 and
bi u b2 = (bi u b2)'.

Theorem 1 shows also that each complete degree d' is the l.u.b. of the set of
degrees less than it, since d' = a u b with both a and b < d'. However not
every degree has this property. As an example let c be a degree >0 with no
degree between 0 and c (see Theorem 4 below); the set of degrees <c consists
of 0 alone, and thus c is not the l.u.b. of this set.

Given a = b or a < b, we know now exactly which relations can hold be-
tween a' and b' (for a < b, the possibilities are a' = b' and a' < b')- However
when a | b all we know is that a' = b' is one possibility. Thus we do not know
if there are degrees a and b such that a' | b', or such that a | b & a' < b'.

1.3. THEOREM 2. Given a degree d, there are degrees hx and b2 such that b[ u b2 =
(bi u bs)' = bl = b, = d' & b, | b2 & d < bi < d' & d < b2 < d'.

PROOF (for d = 0). Let bi be the degree of the function ^(a) = j8(2a), and
b2 of |32(a) = /3(2a + I). Then repeating the construction in the proof of Theorem
1, inserting additional steps to guarantee bi | b2 , we obtain degrees a and b
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satisfying Theorem 1 such that b = t^ u b2 and bt | b2 . The theorem follows
using b' = 0'.

We need only show that these additional steps can be inserted without in-
validating the arguments of the previous proof. The new conditions are that,
for (i,j) = (1, 2), (2, 1) and e = 0, 1, 2, • • • ,

(12) pi(a) = U(wT\(fij(y), e, a, y))

does not hold for every a. Each of these conditions can be satisfied by the least
value of a for which 0<(a) has not been defined. The details of this part of the
construction are similar to the treatment of [4] Theorem 1, Case 0, omitting
a2, and denning the new values of a to coincide with the new values of /3. Then
inserting the new steps between those of the previous proof, we observe that
(3) and (4) remain valid for the function v(g) defined by (5), and that the func-
tion 7 so defined is of degree ^ 0 ' . These observations suffice to prove the theorem
for d = 0.

PROOF (for arbitrary d). Let Xaft(2a)(=Xo/3(4a)), Xaft(2a)( = Xa/3(4a + 1)),
Xaa(4a), and Xaa(4a + 1) each be the representing function of a fixed predicate
of degree d. With suitable changes in the proof for d = 0 to take into account
that a and /} are initially determined for arguments of the forms 4a and 4a + 1,
we obtain degrees bx and b2 satisfying the theorem.

2. Sets of degrees without g.l.b. or without l.u.b.

In ([4], 4.2) it was shown that the upper semi-lattice of degrees is not a lattice,
i.e. there are degrees a and b which have no g.l.b. However, the degrees con-
structed were not arithmetical. By modifying that construction we shall obtain
two arithmetical degrees (both <0', see Footnote 4) which do not possess a
g.l.b., thereby showing that the arithmetical degrees do not form a lattice. By
an argument on cardinality, it was shown ([4], p. 399) that the semi-lattice is
not w-complete with respect to l.u.b. Moreover, by a slight additional argument
in the proof of [4] Theorem 3 (e.g. our Corollary 2 below), it can be shown that
the sequence a, a', a", • • • has no l.u.b. We shall show that no infinite increasing
sequence of degrees has a l.u.b.

The sets Sg and SB+i — Sg in the proof of [4] Theorem 3 (and of our Theorem 3)
are no longer all finite. However they are recursive. Indeed, So is the empty
set, and

Se+l = x[x e SB V x < v{g + 1) V [x = 2fa)»3(x)l5(l)l

( U ) &g = 2M°3M' & ( x ) 2 S v(g+ 1)}].

THEOREM 3. Given an infinite sequence of degrees &o < ai < &•> < • • • and a two-
place predicate A (a, j) of degree a such that \aA (a, j) is of degree a ,(i = 0, 1, 2, • • • ),
there are degrees b t and b2 such that (A) bj < a' and b2 < a', (B) a, ^ ^ and
&i ^ b2(,/ = 0, 1, 2, • • • )> (C) for every degree d with d ^ bi and d :£ b2 , there
is a degree a, with d jS a, .
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PROOF. Construct f3x (of degree bi) and /32 (of degree b2) as in the proof of
([4], Theorem 3), letting our A(a, j) play the role of LA(a, j). To establish (A)
let

(14) *(o, g) = 2"<0)3"1<^)5'2("'0>.

We define a function p(g) of degree ^ a ' such that, for each g, Xa\p(a, g) is re-
cursive in A with Godel number p(g). Let p(0) be a Godel number of \ai{/(a, 0)
from A where \j/(a, 0) = 2°3252. Suppose, for purpose of induction, that \a\l/(a, g)
is recursive in A with Godel number p(g). Each subcase hypothesis used in
denning Xa\j/(a, g + 1) can be written in the form (By)RA(p(g), g, y) with RA re-
cursive uniformly in A, or in the dual form. Hence there is a function £ of degree
5^a' such that %(p(g), g) = 0, 1, or 2 according to which one of Subcase 1.1,
1.2, or Case 2 applies. Moreover there is a uniform Godel number / from A
such that

(15) Ha,g + l) = {f\A(i, P(g), g, a)

where i = £(p(ff). 9)- Thus, setting

(16) P(g + 1) = Sl'\f, i(p(g), g), pig), g),

p(g + 1) is a Godel number of Xwpia, 0 + 1 ) from A. Also p is (primitive) re-
cursive in £, and therefore the function ^(a, g) = \p(g)}A(,a) is of degree ?Sa'.
Hence t^ j£ a' and b2 5J a'. We obtain the strong inequality of (A) by observing
that, as a consequence of (B) and (C), b t and b2 are incomparable.

Our (B) is established by the same argument that establishes ([4], (B)). To
prove (C) we can use the argument for ([4], (C)) to conclude that S is recursive
in \ca[r(a, g), and therefore in Xa\p(a, g + 1), for g = 2"3'1. But, by the construc-
tion and the monotonicity of the sequence a0, a i , a2, • • • , our Xa\p(a, g + 1)
is of degree a8 . Hence S is of degree ^ a 0 .

COROLLARY 1. The upper semi-lattice of arithmetical degrees is not a lattice.
PROOF. By ([4], Theorem 2, Corollary 3) there is a predicate A(a,j) satisfying

the hypothesis of our Theorem 3 with a ^ 0'.4 Hence there are degrees bi and
b2 such that

(17) ay < b* < a' ^ 0" (for all j and k = 1, 2),

and, for each d with d g b, and d ^ b 2 , there is a number j such that
d ^ a,- < aJ+i . Hence bi and b2 have no g.l.b. Indeed we have proven the stronger
result that b t and b2 have no maximal lower bound.

COROLLARY 2. / / ao < &i < a2 < • • • is any infinite ascending sequence of de-
grees, the set (a,,| has no l.u.b.

PROOF. Let bt and b2 be the degrees defined in the theorem relative to the
sequence ao, a i , a?, • • • and any suitable A (a, j). If d were a l.u.b. of this se-
quence, then by (B), d g bt(k = 1, 2). Hence by (C), d < ay+l for some,/, and

* Combining the methods of ([4], 3.2) and our §1, it is possible to obtain A(a, j) such
that a' = 0'. Hence there are degrees bi and b2 , both <0', which have no g.l.b.
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thus d could not have been a l.u.b. We have in fact shown that there is no upper
bound J= both of the upper bounds bt and bs.

COROLLARY 3. If {a,,! in any ({enumerable set of degrees, then either ao u ai u
• • • u si, is a l.u.b. of the set for some j , or the set has no l.u.b.

PROOF. Let b,, = ao u ai u • • • u a,, . Then clearly (b;i) and | a j have the same
upper bounds. If the set jb,,| is finite, then a0 u ai u • • • u a, is a l.u.b. of {anj
where.; i.< the least n such that m > n —> bm = b n . If jb,,j is infinite, then by
Corollary 2 it has no l.u.b., and therefore {an| has no l.u.b.

DISCUSSION. Thus no lower a-generable degree (see [4], 3.5) is a l.u.b. of the
rational degrees constituting its cut, which settles the question left open in
([4J, Footnote 27). With respect to the sequence a, a', a", - - • , (A) of ([4],
Theorem 3) is stronger than our (A), since in [4], bk < a "\ whereas we obtain
only b* < (a(u>)'. The stronger result is obtained through ([4], Lemma 3). Thus
a("' is not even a minimal upper bound of a, a', a", • • • . Whether a minimal
upper bound exists for this particular sequence, or for any other increasing
sequence, is an open question.

3. Non-density

3.1. The remainder of this paper is concerned with the density problem ([4],
p. 391). We shall show that given degrees a and c with a < c, there does not
always exist a degree b with a < b < c. In fact, for any degree a, there is a
degree c > a with no degree between. Thus among all degrees > a there is a
minimal one. In particular there is a minimal degree of recursive wnsolvability.

For a fixed degree a, consider the set of degrees c > a with no degree between.
The construction which follows shows that this set is not empty; indeed it is
infinite. For instead of constructing a single function y (of degree c), we could
construct two or more functions y0, n , T2, - • • , treating each 7, as the 7 of the
following proof, and inserting steps to guarantee, for every e and i TA j , that
ji is not recursive in y, with Godel number e.

3.2. Consider the problem of defining a function y of minimal degree of un-
solvability. Let Cu+t be the condition that y is not recursive with Godel number
c, and C2e+i that any function /3 recursive in 7 with Godel number c either is
recursive or is of the same degree as 7. Then any function satisfying C\ , C?,
will have minimal degree of wnsolvability.

As explained in 1.1, each construction in [4] (and in the first two sections of
this paper) can be given in the form of an induction on classes of functions of the
form 5(5, <r). With such an induction it is easy to handle the conditions CiC+i ;
however we do not know if the induction can be applied to the conditions Cu+i •
This unsolved problem can be stated in the following simplified form. Given a
number e, does there always exist a set 5 with infinite complement and a function
cr on S such that

7 « 5(5, <r) & [/3 is recursive in 7 with Godel number e]
(18)

—> \J3 is recursive] V [7 is recursive in 0],
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where 7 ranges over all functions of one argument with values 0 or I, and ii
overall completely defined functions of one argument? A Godel number c pro-
duced by a negative solution to this problem would define an interesting re-
cursion. A positive solution would greatly simplify the following proof, and
would be of interest in studying relative recursiveness.

The construction which follows involves classes of functions fru which cannot
be written in the form $(Sa, <ra). Instead, at the gth stage, the natural numt>ers
are partitioned into an infinite number of consecutive disjoint intervals iS'0.o>
£>o.i ! Se,2 , • • • , and two distinct functions are denned on each interval £>„., .
The class SFe consists of all functions 7 such that, on each interval
St.jfj — 0, 1, 2, - • • ), 7 coincides with one of the two functions defined on that
interval. For example, let

(19) S,.y = £\f g X < (j + If}.

On each of these intervals we define two functions, e.g. the constant function 0
and the constant function 1. Then in this case

(20) 7 «ffi = (j)(x)\f ^ x < (j + I)2 -»y(x) = y(f) < 2].

Each class 55 will be named by a triple of functions 17, 0o, di for which (i)
17(0) — 0 & (j)[ri(j) < r\{j + l)],and (ii) 0o and 8\ are functions of one argument
with values 0 or 1 which are not identical on any interval

x[rt{j) ^x < , ( j + 1)](=S..J).5

For the example above, ri(j) = f, 90(x) = 0, and 8i(x) = 1. For functions ??, 0O,
0i satisfying (i) and (ii), we define

(21) JF(,, 0o, fit) = y{j){Ei)i<2{x){n{j) ^ x < v(j + l ) ^ r d ) = Oi(x)].

3.3. THEOREM 4. For each degree a there is a degree c < a" with a < c such
that a < b < c for no degree b.

PROOF. In order to simplify notation, we prove the theorem with a = 0, and
then indicate what changes are needed to obtain the general result. As described
above, classes 5 ( D J , D J , 3 • - • will be defined so that

(22) 7 t Jo,+» —> [7 is not recursive with Godel number e],

7 e *5<ie+\ —* [any function recursive in 7 with Godel number e either is
(23)

recursive or is of the same degree as 7].

(The class ffo consists of all functions of one argument with values 0 or 1.) Further-
more, each 5g will be written in the form 5(77, 0B, 00 with rj, 60, 0! recursive and
satisfying (i) and (ii) of 3.2.

5 Although the functions r), 90 , 0t depend on g, we do not exhibit g as an argument for
notational convenience.
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CASE 0: g = 0. Set SFo = SF(?7, 0O, 0i) where

(24) ,0') = j , hi*) = 0, 0i(a:) = 1.

CASE 1: rm (g, 2) = 0 & g ^ 0. Write g = 2e + 2 and JF2.+i = JFOJ, 0O, 60-
We seek recursive functions »?', 0o, 0i satisfying (i) and (ii) such that the class
?2«+2 = $(y', d'o , d[) satisfies (22) and is a subclass of ^(rj, 60, 0i). We assume as
part of the induction hypothesis that rj, 0O , 0j are recursive and satisfy (i) and
(ii). Let

(25) m = fjx%(x) j£ di(z)] (m < 77(1)).

SUBCASE 1.1: e(m)(~ U(nyTi(e, m, y))) is denned, i.e. (Ey)Ti(e, m, y). Let i
be the smaller of 0 and 1 such that 9i(m) 9^ e(m), and set

V(0) = 0, v'(j) = n(i + 1) 0" > 0),
(26) 0[(x) = 0[(x) = 0i(x) (x < 1,(1)),

6'o(x) = flo(x), tfi(s) = ffi(a;) (1 ^ 1,(1)).

SUBCASE 1.2: e(m) is undefined. Proceed as above with i — 0.
CASE 2: rm (g, 2) = 1. Write 0 = 2e + 1 and ff2. = 3(y, 60, 81) where J;, 00, 0i

are recursive and satisfy (i) and (ii). The class ĝ e+i = ff^', 0o , 0i) will be de-
fined so that

7 « SWi "^ [Xa{e} 7(a) is not completely defined]
(27)

V [\a{e}y(a) is recursive] V [y is recursive in Xa{e|T(a)].

We consider three subcases corresponding to the three disjunctive members of
the right side of (27). Only the third subcase requires classes of the form
5(7,, da, 0i) as opposed to 5(S, <r).

Following Kleene [3] §24, we represent the sequence of x numbers 7(0),
7(1), ' ' ' 1 "f(x ~ 1) by the sequence number

(28) 7(s) = II«.P<T(0+l ( * £ 0 )

noting that lh (y(x)) = a;; write Seq (a) when a is a sequence number (i.e. when
a is of the form y(x) for some 7 and some x ^ 0); and employ the normal form

(29) \e\\a) ~ U(^xT\(y(x), e, a)).

We say two numbers a and 6 are compatible (Cpt (a, b)) if (a); = (b){ whenever
both (a); 7^ 0 and (6); p^ 0. We say b extends a (Ext (6, a)) if a and b are sequence
numbers, and the sequence represented by b is an extension of the one repre-
sented by a, i.e.

(30) Ext (6, a) = Seq (a) & Seq (b) & Cpt (a, b) & b ^ a.

Let P be the set of numbers of the form y(x), and P' of the form y(r](x)), for y
in JF(»j, 0o, 0i). Both of these sets are recursive.
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SUBCASE 2.1: for some p in P' and some a, {e\y(a) is undefined for all y in
^(TJ, do, 0i) such that -y(lh (p)) = p. In symbols,

(31) (Ep)(Ea)(s)[p e P ' & {s e P & C p t ( s , p ) - > T\(s, e, a))].

Let Z = ,xz(S)[(z)oeP' & {S(P & Cp t (a, (*)«) - » TI(«, e, («)i)}], p = (Z)«,
a = (Z)i , 5 = iix[ lh (p) = 77(0;)]. I t suffices to set

u'(0) = o, ,'0") = i»0" + q) U > 0),

(32) %(lh (p)) = fll(lh (p)) = p,

flj(a;) = ef{x) (z ^ lh (p); z = 0, 1).

Then

(33) 7 «SF(ij', fli , 6[) =ye5ie& yQh. (p)) = p,

(34) 7 «"SW, 60, e'i) -> [{ej 7(a) is undefined].

SUBCASE 2.2: there is a sequence number p in P' such that, for each a, the
value of {e\y(a), whenever denned, is independent of the choice of 7 in 5ie pro-
vided -y(lh (p)) = p. In symbols,

(Ep)(s)(l)(a)[p e P' & {s t P & t € P & Cpt (s, p) & Cpt («, p)
(35)

& Tj(«, c, a) & T\(t, e, a) -* UQh («)) = t/(lh (<))}].

For sake of definiteness we assume also that Subcase 2.1 does not apply. Let p
be the least number asserted to exist in (35), and define q, 77', d0, o\ as in Sub-
case 2.1. Then (33) holds.

Let 7 be in 5(77', d'o, d[). Then either Xo{eJ y(a) is only partially defined, or is
general recursive. For using the definition of p and (29),

(36) (e) 7(a) = [/(lh (,xs[s t P & Cpt (s, p) & r}(«, e, a)]))

whenever the left side is denned.
SUBCASE 2.3: otherwise, i.e. (31) and (35) are both false. Indeed they remain

so when P is substituted for P'. So for any p in P,

(37) {a)(Es)[s e P & Cpt (5, p) & 2 % , e, a)],

(38) (Es)(EQ(Ea){s e P & 11 P & Cpt (s, p) & Cpt (<, p)

& rl(s , e, a) & T\(t, e, a) & f/(lh («)) ^ C/(lh (<))].

We shall define V, 0o > "i s o that, whenever 7 is in ^(T)', d'o, Q'I) and the func-
tion /3(a) ~i jejT(a) is completely defined, 7 will be the unique function 5 in
?(?)', 0o, 0i) such that p(a) ~ {e}s(a) for all a. This uniqueness will be the key
to showing that 7 is recursive in /3.

For sequence numbers p we set

(39) 0,(a) ~ [/(lh (MExt (p, «) & T[(s, e, a)})).
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Then

(40) \pp(a) is defined] & 7(lh (p)) = p -» 0P(a) = {C}7(a).

Let p and 7 be urbitrary elements of P. Using (38) there are sequence numbers
,1 and I in P, both compatible with p, and a number a such that /3«(a) T6- P>i(a),
both sides being defined. Using (37) there is a sequence number v in P, compatible
with q, such that /3r(a) is defined. Let u be the smaller of s and t such that

(11) 0u(a) ^ /3,(o).

'I'hus, given p and r/ in P, there are sequence numbers u and v in P, compatible
with p and 7 respectively, such that (41) holds for some a. Since the value of
0,(a) (if defined) is not changed when s is replaced by any sequence number
extending 5, we can extend u and v if necessary so that

(42) lh (u) = lh (v) & u e P' & v e P' & Ext (u, p) & Ext (v, q) & 0u(a) ^ /3,(a).

Moreover, there is a uniform recursive procedure for obtaining u, v, and a from
p, q, e, t], 0O, Si . Suppressing e, 77, do , di as arguments in order to save space,
let xo, xi , Xi be recursive functions (actually functionals) such that, for all p
and q in P, xo(p, ?)( = «), Xi(p, ?)( = «), Xs(p, 9) ( = «0 satisfy (42).

Next we shall define recursive functions >po(m), i/-i(m), fc(m, i) so that, if

(43) SQ < Si < • • • < S2m_l

are the 2m sequence numbers in P' of length ?7(m), then
«,• * fo(™) « / " & s,- * ^,(w) « P ' & lh (Mm)) = lh (vt,(?n)) > 0

(44)
& j3!,.*^o(m)(i/'2(ra, i)) ^ i3Si*^l(m,(^2(m, i))

for i < 2m. When m = 0 (43) reduces to the single sequence number s0 = 1
representing the empty sequence. Thus we set

(45) *y(0) = xAh 1), h(0, 0) = x»(l, 1) 0' = 0, 1).

When m > 0 we shall define at , w, , Vi for i < 2m so that

Ext (W; , M,u.i) & Ext (f< , y^i) & Si * M; € P ' & Si * Vi 6 P'
(46)

& lh (M,-) = lh (»,•) & ^ . . ( f l , - ) ^ Af*..-(o<).

Let

(47) wo = xo(l, 1), »o = xi(l, 1), te(m, 0) = a0 = x2(l, 1).

For i < 2"' — 1, let u,+i and yi+i be the unique sequence numbers satisfying

(48) si+i * ui+i = xo(si+i * u{, si+l * Vi) & s,-+i * y,+i = xi(si+i * « i , s«+i * ".•),

and let

(49) ^2(m, i + 1) = a.+i = X2(si+i * Ui, si+i * iu).
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Finally set

(50) Mm) = «,-_, , Um) = (•--. , Mm, i) = 0 (z g 2ra).

Then by (46) and the fact that ^o(«O extends each «,-, and ̂ ( w ) each c,- , i/-0,
^i , ̂ 2 satisfy (44).

Now we define -q', d'o, d[ from the \p;. For each j let

(51) , '(0) = 0, n'{j + 1) = r,'0) + lh (*„(«,•)), »«> = rfWU) = •?(&)],

and for x < J?'O + 1) ~ VOX a n ^ * = 0, 1 let

(52) tfI(,'0-) + x) = (^,(m,))x - 1.

Each of the functions V', #o, #i is recursive. In fact each can be written in the
form \xF(x, e, rj, do , 0i) where F is a recursive functional. The functions #o and
d[ cannot be identical on any interval x[rj'(j) jS x < ij'O + 1)], since ifo(wiy) ^
Mmi) by (44); and V'U + 1) > v'U) since lh dfa(my)) > 0. Hence v', d'a, o[
satisfy (i) and (ii) of 3.2. This completes Subcase 2.3 and the induction step from
$2e = 3r('?, 0o, #i) to JF2«+i = ^(ij', So , B'I) with the justification to follow.

Suppose that 7 is a function in fF2e+i , and that the function /S(a) ~ |e) y(a)
is completely denned. Then clearly Subcase 2.1 does not apply. If Subcase 2.2
applies, /3 is recursive. If Subcase 2.3 applies, then 7 is recursive in /3; for suppose,
for induction onj, that y(v'(j)) has been computed from /3. Let

m = MA-[̂ '0") = v(k)],

and choose i < 2m such that s, = y(v'(j)), where s,- is defined as in (43). Then
by (52), 7(7/0 + 1)) is one of the two sequence numbers s, * Mm) and s, * f i(m),
and by (40) and (44), each of these two possibilities for 7(7/(j + 1)) would yield
a different value for /3(̂ 2(?rc, 0 ) . Thus, noting the actual value of ^(^(wi, i)), we
can determine the value of y(y'(j + 1)). This completes Case 2.

Let \xd{(g, x) be the function \x6i(x) denned at the <7th stage (i = 0, 1;
g = 0 , i , 2 , • • • ) ,

and let

(53) v{g) = nx[8o(g, x) 9^ Oi(g, x)}.

By the construction in Case I, v(g + 2) > v(g). Hence there is a unique function
7 belonging to all classes JF0 . This function has minimal degree of wnsolvability.
By the methods used in treating Theorem 3 Part (A), it can be shown that the
degree c of 7 is ^ 0 " .

To prove the theorem in its general form let A be a predicate of degree a.
In the construction above, replace "recursiveness" by "recursiveness in A",
and let Jo be the class of functions 7 with values 0 or 1 such that ArY(2z) is the
representing function of A. In this way we obtain a function 7 recursive in A"
such that A is recursive in 7 but 7 is not recursive in A; and for every function
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/9 recursive in 7, either /? is recursive in A, or 7 is recursive in /3, A. Let c be the
degree of 7. Then a < c ^ a", and

(54) b ^ c —> b ^ a V c g b u a .

Suppose a < b < c. By (54), b ^ a o r c g b u a . The former contradicts
a < b, and using b u a = b, the latter contradicts b < c. This concludes the
proof of Theorem 4.

REMARK. For degrees a and c satisfying the theorem, every degree b < c is
either g or incomparable to a. We have not touched upon the question whether
we can choose c to exclude the second possibility.

THE UNIVERSITY OF WISCONSIN
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A DECISION METHOD FOR ELEMENTARY

ALGEBRA AND GEOMETRY

INTRODUCTION

By a decision method for a class K of sentences (or other expressions) is meant
a method by means of which, given any sentence 8, one can always decide in a finite
number of steps whether 6 is in K; by a decision problem for a class K we mean the
problem of finding a decision method for K. A decision method must be like a recipe,
which tells one what to do at each step so that no intelligence is required to follow
it; and the method can be applied by anyone so long as he is able to read and follow
directions.

The importance of the decision problem for the whole of mathematics (and for
various special mathematical theories) was stressed by Hilbert, who considered this
as the main task of a new field of mathematical research for which he suggested the
term "metamathematics". The most important kind of decision problems is that in which
K is defined to be the class of true sentences of a certain theory. When we say that
there is a decision method for a certain theory, we mean that there is a decision
method for the class oi true sentences of the theory '. (All superscripts in round
brackets refer to Notes, pp. 47ff.)

Some decision methods have been known for a very long time. For example, Euclid's
algorithm provides (among other things) a decision method for the class of al l true
sentences of the form "p and q are relatively prime," where p and q are integers
(or polynomials with constant coefficients). And Sturm's theorem enables one to
decide how many roots a given polynomial has and thus to decide on the truth of
sentences of the form, "the polynomial p has exactly k roots."

Other decision methods are of more recent date. Lowenheim (1915) gave a decision
method for the class of correct formulas of the lower predicate calculus involving
only one variable. Post (1921) gave an exact proof of the validity of the familiar
decision method (the so-called "truth-table method") for ordinary sentential calculus.
Langford (1927) gave a decision method for an elementary theory of linear order.
Presburger (1930) gave a decision method for the part of the arithmetic of integers
which involves only the operation of addition. Tarski (1940) found a decision method
for the elementary theory of Boolean algebra. McKinsey (1943) gave a decision method
for the class of true universal sentences of elementary lattice theory. Mrs. Szmielew
has recently found a decision method for the elementary theory of Abelian groups' •

1
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There are also some important negative resu l t s in this connection. From the
fundamental results of Godel (1930) and subsequent improvements of them obtained by
Church (1936) and Rosser (1936), i t follows that there does not exis t a decision
method for any theory to which belong a l l the sentences of elementary number theory
( i . e . , the arithmetic of integers with addition and multiplication) — and hence no
decision method for the whole of mathematics is possible. A similar resul t has been
obtained recently by Mrs. Robinson for theories to which belong al l the sentences of
the arithmetic of rationals. I t is also known that there do not exist decision methods
for various parts of modern algebra — in fact, for the elementary theory of rings
(Mostowski and Tarski), the elementary theories of groups and la t t ices (Tarski), and
the elementary theory of fields (Mrs. Robinson)( 3 ) .

In th is monograph we present a method (found in 1930 but previously unpub-
l i shed ) ' 4 ' for deciding on the truth of sentences of the elementary algebra of real
numbers — and hence also of elementary geometry.

By elementary algebra we understand that part of the general theory of real
numbers in which one uses exclusively variables representing real numbers, constants
denoting individual numbers, like "0" and " 1 " , symbols denoting elementary operations
on and elementary relations between real numbers, like "+", " ." , "-", "<", ">", and
"=", and expressions of elementary logic such as "and", "or", "not", "for some x", and
"for a l l x". Among formulas of elementary algebra we find algebraic equations and
inequal i t ies ; and by combining equations and inequal i t ies by means of the logical
expressions l is ted above, we obtain arbitrary sentences of elementary algebra. Thus,
for example, the following are sentences of elementary algebra:

0 > (1 + 1) + (1 + 1) ;

For every a, b, c, and d, where a j= 0, there exists an x such that

ax3 + bx2 + ex + d = 0 .

The first sentence is false, and the second is true.

On the other hand, in elementary algebra we do not use variables standing for

arbitrary sets or sequences of real numbers, for arbitrary functions of real numbers,

and the like. (When in this monograph we attach the qualifier "elementary" to the

name of a theory, we refer to this abstention from the use of set-theoretical notions.)

Hence those algebraic concepts whose definitions in terms of the fundamental notions

listed above would require some set-theoretical devices cannot be represented in our

system of elementary algebra. This applies, for instance, to the general notion of a

polynomial, to the notion of solvability of an equation by means of radicals, and the

like. For this reason it is not possible, for example, to consider as a sentence of

elementary algebra the sentence:

Every polynomial has at least one root.

On the other hand, one can formulate in elementary algebra the sentences:

Every polynomial of degree 1 has a root;

Every polynomial of degree 2 has a root;

Every polynomial of degree 3 has a root;

2
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and so on. Since we are dealing with rea l — not complex — algebra, the above
sentences are true for odd degree but false for even degree.

I t should be emphasized that the general notion of an integer (as well as that of
a rat ional, or of an algebraic number) also belongs to those notions which cannot be
represented in our system of elementary algebra — and this in spite of the fact that
each individual integer can easi ly be represented ( e . g . , 2 as 1 + 1, 3 as 1 + 1 +
1, e t c . ) ' 8 ' . The variables in elementary algebra always stand for a rb i t ra ry real
numbers and cannot be supposed to assume only integers as values. For such a suppo-
sition would imply that the class of a l l sentences of elementary algebra contains a l l
sentences of elementary number theory; and, by resul ts mentioned above, there could
be no universal method for deciding on the truth of sentences of such a c lass . Thus,
the following is not a sentence of elementary algebra:

The equation

x3 + ya = z3

has no solution in posi t ive in tegral x, y, z.

This gives, we hope, an adequate idea of what is understood here by a sentence
of elementary algebra. Turning now to geometry, we can say roughly that by a sentence
of elementary geometry we understand one which can be translated into a sentence of
elementary algebra by fixing a coordinate system. I t is well known that most sentences
of elementary geometry in the traditional meaning are of this kind. There are, however,
exceptions. These are, for instance, statements which involve explicitly or implicitly
the general notion of a natural number: for instance, statements regarding polygons
with an a rb i t ra ry number of sides — such as, that in every polygon each side is
shorter than the sum of the remaining sides. I t goes without saying that statements
which involve the general notion of a point set — of an arbitrary geometrical figure
— are also not elementary in our sense, but they would hardly be regarded as e le -
mentary in the everyday understanding of the term.

On the other hand, there are sentences which are elementary according to our
definition but which are not ordinari ly so considered. Most sentences of analytic
geometry concerning algebraic curves of any definite degree belong here: for example,
the theorem that any two el l ipses intersect in at most four points.

I t is important to realize that only the nature of the concepts involved, and riot
the character of the means of proof, determines whether a geometrical theorem is a
sentence of elementary geometry. For instance, the statement that every angle can be
divided into three congruent angles is an elementary sentence in our sense, and of
course a true elementary sentence — despite the fact that the usual proofs of this
statement make essential use of the axiom of continuity. On the other hand, the general
notion of c o n s t r u c t i b i l i t y by rule and compass cannot be defined in elementary
geometry, and therefore the statement that an angle in general cannot be trisected by
by rule and compass is not an elementary sentence — although we can express in
elementary geometry the facts tha t , say, an angle of 30° cannot be t r i sec ted by
1, 2 , . . . , or in general any fixed number n of applicat ions of rule and compass.

If we now compare the theories treated in t h i s monograph ( i . e . , elementary
algebra and geometry) with the other theories mentioned above for which decision
methods have been found, we see at once that although the logical structure in both

3
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cases is indeed equally elementary, the theories investigated here have a considerably
richer mathematical content. I t would be possible to mention numerous problems which
can be formulated in these theories, and which played in the past an important role
in the development of mathematics. In the solution of these problems, and in general
in the development of the theories considered, a great variety of modes of inference
have been applied — some of them of a rather in t r i ca te nature (to mention only one
example: the proof of the theorem that a t r iangle is isosceles i f the bisectors of
two of i t s angles are congruent). Thus the fact that there exists a universal decision
method for elementary algebra and geometry could hardly have been regarded as a
foregone conclusion.

In the light of these remarks one should not expect that the mathematical basis
for the decision method to be discussed wil l be of a quite obvious and t r i v i a l
nature. In fact by analyzing this decision method the reader will easily see that in
i t s mathematical content i t is very closely related to a c lassical algebraic result
— namely, the theorem of Sturm previously mentioned — and i t even provides an ex-
tension of this theorem to arbi trary systems of equations and inequali t ies in many
unknowns.

Since a decision method, by i t s very nature, requires no intel l igence for i t s
application, i t i s clear that, whenever one can give a decision method for a class
K of sentences, one can also devise a machine to decide whether an arbitrary sentence
belongs to K. I t often happens in mathematical research, both pure and applied, that
problems ar ise as to the t ruth of complicated sentences of elementary algebra or
geometry. The decision method presented in th is work gives the mathematician the
assurance that he wil l be able to solve every such problem by working at i t long
enough. Chce the machine is devised, his task will reduce to explaining the problem
to the machine — or to i t s operator. I t may be instructive to i l l u s t r a t e , by means
of an example, the more specific ways in which a decision machine could prove helpful
in the study of unsolved problems.

As i s well known, any two polygons of equal area, P and Q, can be decomposed
into the same f in i te number n of non-overlapping tr iangles in such a way that each
triangle in P i s congruent to the corresponding triangle in Q. We are interested in
determining the smallest number for which such a decomposition is possible. We assume
in the following that P i s the uni t square and Q i s a rectangle of uni t area whose
base has x uni ts . Now the smallest number n depends exclusively on x and i s denoted
by d(x) ; our problem reduces to describing the behavior of the function d for a l l
positive values of x.

In par t icu lar , given any xgl we can ask what the value of d(xQ) i s . In most
cases, even the answer to this simple question presents diff iculty; e .g . , i t is not
easily seen whether or not d(7/2) - 8. However, we can easily establish, by means
of a direct geometrical argument, an upper bound for d(xQ); in fact, i f 1 <. xQ <. n,
where n is an integer, we have d(xQ) <_2n. Consequently, jus t one of the sentences
"d(x0) = 1", "d(xQ) = 2", . . . , "d(x0) = 2n" is true. If, moreover, xQ is an algebraic
number, al l these sentences prove to be expressible in elementary geometry. Hence,
by setting the machine in motion at most 2n times, we could check which of the sen-
tences is true and thus find the value of d{x0).

In turn we may consider hypotheses regarding the behavior oi the function d in
some intervals. For instance, offhand, i t seems plausible that 5 i d(x) <_ 6 whenever

4
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2 < x < 3. This hypothesis is s t i l l expressible in elementary geometry, and hence
could be confirmed or rejected by means of a machine. The s i tuat ion changes when
we consider hypotheses of a more general character concerning the behavior of the
function in i t s whole domain, e .g . , the following one: for any real x and integral n,
if x > n, then d(x) > 2n. Ihis hypothesis has not yet been confirmed even for small
values of n. In i t s general form, the hypothesis cannot be formulated in elementary
geometry, and hence cannot be tested by means of the machine suggested here. However,
the machine would permit us to t e s t the hypothesis for any special value of n. We
could carry out such t es t s for a sequence of consecutive values, n - 2, 3, . . . , up
to, say, n = 100. If the resul t of at least one test were negative, the hypothesis
would prove to be false; otherwise, our confidence in the hypothesis would increase,
and we should feel encouraged to attempt establishing the hypothesis (by means of a
normal mathematical proof), instead of trying to construct a counterexample.

As i s seen from the las t remarks, the machine envisaged may prove useful in
connection with certain problems which cannot be formulated in elementary algebra
(or geometry). The most typical in this c lass of problems are those of the form
" I s i t the case tha t , for every integer n, the condition Cn ho lds?" where Cn is
expressible in elementary algebra for each fixed value of n. The machine could be
used to solve mechanically this sor t of problem for a series of consecutive values
of n; in consequence, e i ther we would learn that the solution of the problem in i t s
general form i s negative or else the p laus ib i l i ty of a positive solution would in-
crease. Many important and diff icult problems belong to this class, and the applica-
bi l i ty of the machine to such problems may greatly enhance i t s value for mathematical
research. (The resul ts of this work have further implications, independent of the
use of the machine, for the class of problems discussed; see Supplementary Note 7. )

I t will be seen later, from the detailed description of the decision method, that
the machine could serve some further purposes..We are often concerned, not with a
sentence of elementary algebra, but with a condition involving parameters a, b, c,...,
and formulated in terms of elementary algebra; the condition may be very involved, and
we are interested in simplifying i t — and, in fact, in reducing i t to a standard
form, in which i t appears as a combination of algebraic equations and inequal i t ies
in a, fa, c , . . . . To give an example, consider the condition sat isf ied by the numbers
a, b, and c i f and only if there are exactly two ( real ) solutions of the equation:

ax2 + bx + c - 0 .
In this case, the reduction is very simple and is well known from high-school algebra;
the condition can be given the standard form:

o h and 62 - 4ac > 0 .

The decision method developed below will give the assurance that such a reduction i s
always possible; and the decision machine would perform the reduction mechanically.

This monograph i s divided into three sect ions. The f i r s t section contains a
description of the system of algebra to which the decision method applies. In Section
2, the decision method i t se l f is developed in a detailed way. In Section 3, some ex-
tensions of the results obtained as well as some related open problems are discussed. The
notes at the end of the monograph contain, in addition to historical and bibliographical
references, the discussion of various points of theoretical in teres t which are not
directly related to the question of constructing a decision machine. A short bibliography
following the notes l i s t s the works which are referred to in the monograph1B) .
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SECTION 1 .

THE SYSTEM OF ELEMENTARY ALGEBRA

In this section we want to describe a formal system of elementary algebra — and

in particular to define in a precise way the class of sentences of this system'7'.

By a variable we shall mean any one of the following symbols:

We suppose that there are infinitely many variables and that they are arranged in a

sequence, so that we can speak of the variable occupying the 1st, 2nd,..., nth place

in the sequence. These variables are to be thought of intuitively as ranging over the

set of real numbers.

By an algebraic constant we shall mean one of the following three symbols:

1. 0, -1 .

By an algebraic operation-sign we shall mean one of the following two symbols:

+ f • .

The first is called the addition sign, and the second the multiplication sign.

By an algebraic term we understand any meaningful expression built up from

variables and algebraic constants by means of the elementary operation-signs. Thus,

for example,

x. *, + y. -l'x. [(,, • -i)-xj + x%

are algebraic terms. But

x + , /2 + x

are not algebraic terms: the first, because it is meaningless; the second, because

it involves the sign " v2 ", which is neither a variable nor an algebraic constant

(in the restricted meaning we have given to the latter term).

If one wants a precise definition of algebraic terms, they can be defined re-

cursively as follows: An algebraic term of first order is simply a variable or one

of the three algebraic constants. If a and /3 are algebraic terms of order at most

k, and if the maximum of the orders of a and P is k, then (a*/S) and (a + /3) are

algebraic terms of order k + 1. An expression is called an algebraic term if, for

some k, it is an algebraic term of order k.

According to the above definition, one should inclose in parentheses the results

of performing operations on terms. TTius one should write, for example, always

(x + y) and (x-y)

6
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instead of simply
x + y a n d x - y .

We shall often omit these parentheses, however, when no ambiguity will result from
doing so; we shall use, in general, the ordinary conventions as to omitting parentheses
in writing algebraic terms. Thus, we write

x + yz

instead of
[x + (yz)] .

I t i s convenient t o i n t r o d u c e the o p e r a t i o n of subtraction as f o l l o w s ( 8 ) : i f
a and /3 are any terms, then we s e t

(a - /3) = [a + (-1-/?)] .

We have used here the symbol "=" to indicate that two formulas are identically
the same — in the present case by definition. We shall use this symbol throughout
the rest of this report. When we write

a - 0

we mean that a and /5 are composed of exactly the same symbols, written in exactly the
same order. Thus, for example, it is true that

0 - 0 ,
and that

(0 = 1) = (0 = 1) ,

but not that

(0 + 0) = 0 ,

nor that

(0 = 1) = (1 = 0) .

It is also convenient to introduce notation for sums and products of arbitrary
finite length. Let a^, a. .. be a sequence of terms. Then we set

l

Z a. 2 a
t i

i = 1

' + 1 f k \
t = i \i = l /

and similarly,

i - 1

1Y «£ s TT<va*+J '
7
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Instead of
n

2>,
we shall also sometimes use the notation

a + a +. . . + a .
1 2 n

or simply,

a +...+ a ;
1 n

and instead of
n

IT "< .
i-l

we shall sometimes write
a •a • . . . "a
1 2 n

or
a "... 'a
l n

If a . .., an are all the same, and equal, say, to a, then instead of

n

i = l

we sometimes write simply

a" .

Thus, for example,

has the same meaning as

Moreover, we shall sometimes write a0 for 1.

By an algebraic relation-symbol we shall mean one of the two symbols:

= . > .

called, respectively, the equality sign and the greater-than sign< 8 >.

By an atomic formula we shall mean an expression of one of the forms

(a = /S) , (a > j3)

8
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where <x and /3 stand for arbitrary algebraic terms; according to our previous remarks,
parentheses will sometimes be omitted. The f irs t kind of expression is called an
equality, and the second an inequality. Thus, for example, the following are atomic
formulas:

1 = 1 + 1

0 + x - x

x-(y + z ) = 0

[ x - ( l + 1 ) ] + iyy) > 0

x > (yy) + x .

By a sentential connective we shall mean one of the following three symbols:

~ A V

The first is called the negation sign (and is to be read "not"), the second is called
the conjunction sign (and is to be read "and"), and the third is called the dis-
junction sign (and is to be read "or" — in the nonexclusive sense).

By the {existential) quantifier we understand the symbol "£". If g is any vari-
able, then (Eg) is called a quantifier expression. The expression (Eg) is to be
read "there exists a g such that ."

By a formula we shall mean an expression built up from atomic formulas by use of
sentential connectives and quantifiers. Thus, for example, the following are formulas:

0 = 0

(Ex)(x = 0) ,

(x = 0)V (Ey)(x > y) ,

(Ex) ~ ( E y ) ~ [(x = y) V (x > 1 + y)] ,

- ( * > 1) A(Ey)(* = yy) .

If one wants a precise definition of formulas, they can be defined recursively
as follows: A formula of first order is simply an atomic formula. If 8 is a formula
of order k, then ~ 8 is a formula of order k + 1. If 8 is a formula of order k and
g is any variable, then (Eg) 8 is & formula of order k + 1. If 8 and <p are formulas
of order at most k, and one of them is of order k, then (8 A <£>) and (8 V cp) are
formulas of order k + 1. An expression is a formula, if, for some n, it is a formula
of order n.

Among the variables occuring in a formula, it is for some purposes convenient
to distinguish the so-called "free" variables. We define this notion recursively
in the following way: If 4> is an atomic formula, then g is free in $£ if and only if
g occurs in <p; g is free in (Erj) 8 if and only if TI IS not the same variable as

9
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4, and £ is free in 6; £ is free in ~ 8 if and only if E, is free in b\ t; is free
in ((* A <p) , and in (8 V <£) , if and only if £, is free in at least one of the two
formulas 8 and <£. Thus, for example, x is free in the formulas

x = 1

x - x

{Ey)(y = x)

(x = 1) V(Ex)(x = 2)

but not in the formulas

y = 1

(Ex)(x = x)

(£x)(£y)(y = x) .

(For certain purposes a more subtle notion is needed: that of a variable's being
free, or not free, at a certain occurrence in a formula. Thus, for instance, in the
formula

( E y ) [ y = x ) A [ E x ) [ x + y = x - w ] ,

the variable x is free at its first occurrence — reading from left to right — but
not in its other occurrences. This notion is not necessary for our discussion, how-
ever, so we shall not give a more exact explanation of it.)

It is convenient to introduce some abbreviated notation'8'. If 8 and <J are any
formulas, then we regard

IS — #)
as an abbreviation for

and

[& — §)
as an abbreviation for

(8 -~§) A (#-—(9)

The sign —-is called the implication sign, and the sign——is called the
equivalence sign. If 8 and § are any formulas, then the formula &—-j> is called
an implication; we call 6 the antecedent or hypothesis and § the consequent or
conclusion of this implication.

If 8 is any formula, and £ is any variable, then

is an abbreviation for

10
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We also introduce notation to represent disjunctions and conjunctions of arbi-
trarily many formulas. In the simplest case the formulas in question are arranged in
a finite sequence 8^, #2,..., 8 ; we then denote the disjunction of the formulas by

V.
l<i<n '

or
8 V 8 V. ..V8

1 2 n
and their conjunction by

A.
l<i<n '

or
^ A * A...A* .

A recursive definition of these symbolic expressions hardly needs to be formulated
explicitly here. Sometimes we are confronted with more involved cases: for instance,
we may have a finite set 5 of ordered couples (n,p), a formula &n being correlated
with each member (n,p) of S. To denote the disjunction and conjunction of all such
formulas 8 we use the symbolic expressions

v „
(n,p) in 5

and

A,
(n,p) in S

(where "(n,p) in S" may be replaced by formulas defining the set S). To ascribe to

these symbolic expressions an unambiguous meaning we have of course to specify the

order in which the formulas 9n are taken in forming the disjunction or conjunction.

The way in which this order is specified is immaterial for our purposes; we can, if

we wish, specify once and for all that the formulas are taken in lexicographical

order of their indices; thus, for instance, the symbolic expression

n+p<4 Sl'P

\<n,p

11
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will denote the disjunction

[ I [Y f l v e \ y e 1 v 8 [ye \ \Je ] .
\ I ) IA »» 1 1 . 2 / 1. 3 J 2 ,1 2, 2 3, 1 I

Analogous notations are used for disjunctions and conjunctions of finite systems
of formulas which are correlated, not with couples, but with triples, quadruples,...,
or even arbitrary finite sequences, of integers.

We also need a symbolism to denote arbitrarily long sequences of quantifier
expressions. For this purpose we shall use exclusively the "three-dot" notation:

and

('0- • • K)6 •
where £±,..., £n are arbitrary variables, and 8 is an arbitrary formula.

A formula is called a sentence, if i t contains no free variables. Thus, for
example, the following are sentences:

0 = 0

0 = 1

(0 = 0) A (1 = 1)

(Ex)(0 = 0)

(Ex)(x = 0) A (Ey) - (y = 0)

(Ex)(Ey)(y > x) .

On the other hand, the following are not sentences since they contain free variables:

x > 0

(Ey)U > 0)

(Ex)(x > O + 1) + (yy)] ).

I t should be noticed that while a sentence is either true or false, this is not
the case for a formula with free variables, which in general will be satisfied by
some values of the free variables and not satisfied by others.

The notion of the truth of a sentence will play a fundamental role in our further
discussion. It will occur either explicitly or, more often, implicitly; in fact, in
terms of the notion of truth we shall define that of the equivalence of two formulas,
and the latter notion will be involved in numerous theorems of Section 2, which are
essential for establishing the decision method. We shall use the notion of truth
intuitively, without defining i t in a formal way. We hope, however, that the correct-

12
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ness of the theorems involving the notion of truth will be apparent to anyone who
grasps the mathematical content of our arguments. No one will doubt, for instance, that
a sentence of elementary algebra like

(Ax) (Ay) [(x + y) = (y + *)]

is true, and that the sentence

(Ax)(Ay)[(x - y) = (y - x)]
is false<8>.

As examples of general laws involving the notion of truth, we give the following:

If 8 is a sentence, then ~ 8 is true if and only if 8 is not true. If 8 and §> are
sentences, then (8 A <£) is true if and only if 8 and $ are both true. If 8 and <£> are
sentences, then (8 V ̂ >) is true if and only if at least one of the sentences 8 and
$ is true; 8 —*-§ is true if and only if either 8 is not true, or § is true; and
8 ' " $> is true if and only if 8 and $> are either both true or both false.

Let 8 and ^ be any formulas, and let £, , £ ,. . . , £, be the totality of free
variables that occur in 8 or $ or both.

Then if the sentence

(O-••«)(*—#>
is true, we say that 6 and $ are equivalent.

Thus, for example, the following two formulas are equivalent:

(x > 0) V (X = 0) , (Ey)(x = yy) .

(Notice that neither of these /ormulas is equivalent to

(z > 0) V (z = 0)

since the latter contains "z" instead of "x".)

We now have some simple but very useful theorems regarding this notion of equiva-
lence; they will be used in the subsequent discussion without explicit references.

A. The relation of equivalence is symmetric, reflexive, and transitive.

B. Let & and 6 be equivalent formulas, and suppose that the formula jj arises
from the formula (ft by replacing 9 by 9 at one or more places. Then ̂ i is equivalent
to$t.

The proof of A and B presents no difficulty; in establishing B we apply induction
with respect to the order of ^ .

13
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I t is also convenient to define an equivalence relation for terms. Let a. and /3 be
any terms, and let £ x, £ , , . . . , £n be the variables which occur in a or /3 or both. Then
if the sentence

(^)...K)(a = /3)

is true, we say that a and /3 are equivalent.

The fundamental theorems regarding the equivalence of terms are analogous to
those concerning the equivalence of formulas. In fact we have:

C. The relation of equivalence of terms is symmetric, reflexive, and transitive.

D. If a and a are equivalent terms, and if the term /S arises from the term
/3 by replacing a by a at one or more places, then /3 is equivalent to /3 .

E. If a and a are equivalent terms, and if the formula j>2 arises from the
formula $1 by replacing a1 by a2 at one or more places, then <p1 is equivalent to $2.

14
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SECTION 2 .

DECISION METHOD FOR ELEMENTARY ALGEBRA

The decision method for elementary algebra which will be explained in this section
can be properly characterized as the "method of eliminating q u a n t i f i e r s " ' 1 0 ' .
I t fa l l s naturally into two parts . The f i r s t , essential , part consists in a procedure
by means of which, given any formula 8, one can always find in a mechanical way an
equivalent formula which involves no quantifiers, and no free variables besides those
already occurring in 8; in particular, this procedure enables us, given any sentence,
to find an equivalent sentence without quantifiers. Mathematically, this part of the
decision method coincides with the extension of Sturm's theorem mentioned in the
Introduction. The second part consists in a procedure by means of which, given any
sentence & without quant i f iers , one can always decide in a mechanical way whether
9 i s t rue . I t is obvious that these two procedures together provide the desired
decision method.

In order to es tab l i sh the f i r s t half of the decision method, we proceed by
induction on the order of a formula. As is easily seen (using the elementary properties
of equivalence of formulas mentioned in Section 1) i t suffices to describe a procedure
by means of which, given a formula (E£) 8, where 6 contains no quantif iers , one can
always find an equivalent formula j>, without quantifiers, and such that every variable
in <£> is free in (E§) 6; i . e . , to give a method of eliminating the quantif ier from
(Eg) 8. Actually, i t turns out to be convenient to do sl ightly more: i . e . , to give a
method of eliminating the quantifier from (Eg) 0, where the prefix "(Ex)" is to be

read "there exis t exactly k values of x such tha t . "

DEFINITION 1. Let ao, a ^ , . . . , a n be terms which do not involve £,. Then the term

ao + V £ + . . . + V f »

is called a polynomial in £,. We say that the degree of this polynomial is n, and
that ag, ..., an are its coefficients: an is called the leading coefficient.

REMARK. Our defini t ion of the degree of polynomials differs s l igh t ly from the one
usually given in algebra, in that we do not require that the leading coefficient be
different from zero. Thus, we cal l

l + ( l + l ) x + ( l - l ) z 2

a polynomial of the second degree, not of the f i r s t degree.

D E F I N I T I O N 2 . Let a and /3 be polynomials in g of degrees m and n respectively: i.e.,
let

a * a Q + a t - f + . . . + a . - f

/3 s / 8 0 + Px'€ + - - - + / V £ n .
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where a ,..., a^ and /3 , ..., /? are terms which do not involve £. Let r be the minimum
of the integers m and n, and let s be their maximum. Let

y. = a. + /3. for i £ r .

If m < n, let

y. = fii for r < i < s .

If m > n, let

yi = at for r < i < s .

Then we set

a +e P s y o + y i ' £ + ---+ y , ' £* •

DEFINITION 3. Let

a - ao + at-£ +...+ a_ • _;•

be a polynomial in g. Then by the first reductum (or, simply, the reductum) of a

we mean the polynomial obtained by leaving off the term a •£": i.e., we set

Rdgia) m ao+ a^Z +...+ v ^ - 1 ;

if m - 0 (so that a does not involve S, at all) we set

fic^(a) = 0 .

We define redacta of all orders recursively, by setting

Rd°(a) s a

Rd^Ha) = /f^[/?rf|(a)j .

The following theorem is easily established by an induction on the degree of a.

THEOREM 4. If a is a polynomial in g, then Rdt(a) is also a polynomial in g (whose
coefficients, of course, are the same as certain of the coefficients of a — and
hence contain no variables except those occurring in the coefficients of a). If
a is of a degree m > 0, then Rdc(a) is of degree m - 1.

We make use of Theorem 4 in defining recursively the product of two polynomials:

DEFINITION 5. Let

a = aQ + a t • g +. . . + a_ • £ "

/S - /So + /3t-g + . . . + / 3 n - £ "
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be polynomials in £ of degrees m and n respectively. If m = 0, then we set

- v ^ s M o ) + ( « - 4 ) £ +---+ ( a ' 4 . K n •
If m > 0, let

yi = 0 for i < m

y. " a . • 0o

y.*i • v 4

and we set

a V /? - [Rdf(a) y ^] +̂  (yo + ^ . f +. . .+ r ^ - ^ " ) .

DEFINITION 6. 1/ a and /3 are poZynoraiaZs in £, then we set

a -e /3 = a +s [ ( -1) -g /3] .

THEOREM 7. If a and /5 are polynomials in £, then a +, /3, a •_ /3f and a - , /3 are poly-
nomials in £.

PROOF. Obvious from the definitions.

DEFINITION 8. If a. = g, then we set

P ^ ( a ) s O + 1 • £ , .

If a is a constant (0, 1, or ~1), or a variable different from £, then we set

Pg(a) = a .

If a and fi are arbitrary terms, then we set

Ps(a + 0) = Pg(a) +̂  Ps(/1)

Ps(a-/3) H p^a)^ Pf(/3) .

THEOREM 9. If a is any term, and f is any variable, then Pc(a) is a polynomial in
£, and is equivalent to a.

PROOF. By an induction on the order of a, making use of Theorem 7.
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REMARK. It will be seen that if a is any term, then P,(a.) is the polynomial which
results from "multiplying out" and "arranging in increasing powers of £." It is
convenient to extend the definition of P, so that i t will be defined not only for
all terms but for all formulas without quantifiers. This is done in our next defi-
nition. The intuitive significance of P,(60, when S is a formula, will become clear
in Theorem 11.

DEFINITION 10 . For all terms a and P, and for all formulas 8 and $>, we set

( i ) P^a - /3) - P f ( a - /3) = 0

( i i ) Pg(a > /3) = P^ ( a - /3) > 0

(iii) Pf[~(a = /3)] = [pf(a > 0) VP, (f3 > a)]

(iv) Pf[-(a > /S)] = [P^(a = /3) VP£(/3 > a)]

(v) Pe(6V§) = [P£W VPf(£)]

(vi) Ps(8/\$) ^ [Pf(8) APf(^)]

(vii) P^(«V#)] =P^9)APfh^)

(viii) Pf[~(0A#)] = P ^ « V P { H )

(ix) i^(~~(9) s P^(0) .

THEOHEM 11. Let 8 be any formula without quantifiers, and let £, be any variable. Then
Pe(@) is equivalent to 6. Moreover, PA&) is a formula built up by means of conjunction
and disjunction signs (but without using negation signs) from atomic formulas of the
form

a - 0

and

a > 0 ,

where a is a polynomial in £.

PROOF. We prove that P,(#) is equivalent to 8 by an induction on the order of 8. If
8 is of first order, the theorem is obvious by 10 (i), 10 (ii), 9, and the following
facts: a = /3 is equivalent to a - /5 = 0; and a > /3 is equivalent to a - /9 > 0. In
order to carry out the recursive step, we make use of the facts: that ~ (a = 0) is
equivalent to (a > /3) V (/S > a); that ~ (a > /3) is equivalent to (a = /3) V (/3 > a);
that ~ (8 V §) is equivalent to ~ 8 A ~ <£; that ~ (8 A <£) is equivalent to~ 8 V ~ ̂>;
and that ~ ~" & is equivalent to 8,

TTie second part of the theorem can also be proved by an induction on the order

of 8, making use of Theorem 9.
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Given any formula 8 without quantifiers, we have thus obtained an equivalent
formula if s Pe(8) which contains no quantifiers and no negation signs. We are now
going to define an operator Q which subjects any formula if of this kind to further
transformations by applying mainly the distributive law of sentential calculus, so
as to bring ;f to the so-called "disjunctive normal form."

DEFINITION 12. If $ is an atomic formula, then we set

If

<?(£) s V / \ £ ,
i<m j <mt

and

<?(#,) - V / \fit.
m< i <_m +n ] <_mi

where \p^ • (for i < m + n and j <_ m^) is an atomic formula, then we set

i<m+n j <.mi

and

Q(§ A$) S V (\L. A. . .A«f. AiJ. A. ..A<i. ^

n<j<m+n

THEOREM 13. If $ is any formula which involves no negation signs or quantifiers, then
Q(<§) is a disjunction of conjunctions of atomic formulas. Moreover, Q(<£>) is equivalent
to §.

PROOF. By induction on the order of $, making use of the following fact: for any
formulas §>, 8, and $, the formulas <p A (8 V if) and (g5 A 8) V (§ A *£) are equivalent, as
are also the formulas § A (8 A i£) and (§ l\ 6) A if, as well as the formulas §V (6 V if)
and (#V«) V£.
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THEOREM 14. Let $ be any formula without quantifiers, and let £ be any variable. Then
QPgd) *s a disjunction of conjunctions of atomic formulas — each of the atomic
formulas in question having a polynomial in g for its left member and 0 for its right
member. Moreover, QPr((£>) is equivalent to <̂>.

PROOF. By Theorems 11 and 13; QPg(cp) is of course used here to mean Q[PA$)] .

We now introduce the notion of a derivative (with respect to a given variable).

DEFINITION 15. If

a s % + < v £ +---+ v ^ n

is a polynomial in £,, of degree n > 0, then we put (writing "2" for "i + i", etc.)

If a is of degree zero in £,, we set

fl^(a) = 0 .

REMARK. The notion of a derivative can of course be extended to arbitrary terms which
are not formally polynomials in f according to Definition 1 by putting

%(a) = D^(a) .

THEOREM 16. If a. is a polynomial in £, so is D,(a).

PROOF. By Definitions 1 and 15.

We also define derivatives of arbitrary order as follows:

DEFINITION 17. If a is any term, and £ is any variable, we set

D°{a) = a

Df*+1(a) - Dg [fl |(a)] .

THEOREM 18. If a is a polynomial in §, and k is a non-negative integer, then jDJ(a) is
a polynomial in a.

PROOF. By Theorem 16 and Definition 17.

The operator M which will be introduced next correlates , with every polynomial
a, every variable £, and every non-negative integer n, a formula M^(a), which in
intuit ive interpretation means that £, is a root of a of order n. In case n = 0, this
formula means simply that g is not a root of a. In this connection the formula Me(a)
will be read "the number £ i s of order n in the polynomial a," independent of whether
n is positive or equal to zero.
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DEFINITION 19. Let a be any polynomial in g. If n is any positive integer, we set

«J(o) . / / \ fe-l.) = 0] A~|̂ <«> = 0]V

We set, in addition,

M°(a) = ~(a = 0) .
We now introduce by definition a new kind of existential quantifier, which may

be called the numerical existential quantifier. If n is any non-negative integer, £,

any variable, and <J any formula, then (E£)£> is to be interpreted intuitively as
n

meaning that there exist exactly n values of § which make <p true.

DEFINITION 20. Let £ be any variable, and let § be any formula. We set

(E£)§ = (A€)-§ .
o

Let n be any positive integer, and let T)l,..., 7)n be the first n variables (in the
sequence of all variables) which do not occur in $ and are different from £. Then
we set

1 \ \<i < j <n

ue) §~ V (T,. = i) 1 / .
l<i<" I \

We next introduce an operator F with a more complicated and technical interpretation.
If n i s an integer , £ a variable , and tx and /8 any polynomials, then F'l(a,/3) is a
formula to be in tu i t ive ly interpreted as meaning that there are exactly n numbers
£ which satisfy the following conditions: (1) ^ is a root of higher order of a than of
/9, and the difference between these two orders is an odd integer; (2) there exists
an open in te rva l , whose r ight end-point is £, within which a. and /3 have the same
sign. The exact form of the symbolic expression used to define F^(,a,f?) will probably
seem strange at f i r s t glance even to th'ose who are acquainted with logical symbolism;
we have chosen this form so as to avoid the necessity of introducing a notation to
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ind ica t e the r e su l t of rep lac ing one var iable by another in a given term. (An analogous
remark app l ies to some other symbolic formulations given elsewhere in th i s w o r k — in
p a r t i c u l a r , in Note 9 .) I t w i l l be not iced tha t the va r i ab le £, i s not free in F?{a,/3).

DEF1MTI0N 2 1 . Let a be a polynomial of degree p in £,, and let /S be a polynomial of
degree q in E,. Let rj^ and T)2 be the first two variables which are different from £
and which do not occur in a or /S. Then we set

F"(a, /3) = (£<f) < V Ui+2"+1(a) AW*(/3)1 A
I 0<k<q L J

I 0<2m±p-k-l

(E\)(E\) (\ = f) * (# > \) A (^ ) | [(f > ^ A (Vi > f)] — (a-/3 > o)\ \

The operator G which will now be defined is closely related to the operator
F. In fact, a and fi being polynomials in £,, Cl(a,p) has the following meaning: if

fjj is the integer for which ̂ '(a.yS) holds and «2 is the integer for which F,a(a,/5')
holds (where P' is the negative of /8 — i.e., the polynomial obtained by multiplying
/? by ~1), then n = n^ - n£; the integer n may be positive, zero, or negative. Re-
membering the intuitive meaning of F^{a,/3), the intuitive meaning of G2(<x,/3) now
becomes clear.

DEFINITION 22. Let n be any integer (positive, negative, or zero), and let a and /3 be
any polynomials in <f. Let k be the maximum of the degrees of a and /?. Then we set

G£(a,/3) ^ V f^+"(aF/Q) AF»(a,(-l)-^)l .
0<.m<>

0£m+n<>

We need also the notion of the remainder obtained by dividing one polynomial by
another. For our purposes, however, i t turns out to be s l igh t ly more convenient to
introduce a notation for the negative of the remainder.

DEFINITION 23. Let £ be a variable. Let a be a polynomial of degree m in £,, whose
leading coefficient is a>. Let /? be a polynomial of degree n in £,, whose leading
coefficient is /3n. If m < n, we set

R^a,/3) ^ ( - l ) - ^ a .
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If m = n, we set

If m > n, we set

Bg(a,fi) • /_• < RdsP(fy'a. - aji-/3n-f»-"-/s), 0 1 .

THEOREM 24. 1 / a and /3 are two polynomials in a variable £, then R^(a,/S) is again
a polynomial in £, whose coefficients contain no variables except those occurring in
the coefficients of a and /3. If fl is a polynomial of degree n > 0, then R^(a,/3) is
of degree less than n. If /3 is of degree zero, then R,(<x,f3) = 0.

I t should be noticed that our def in i t ion of the negative of the remainder
diverges somewhat from that which would normally be given in a textbook of algebra.
According to the usual defini t ion of the remainder, the negative of the remainder
obtained by dividing a polynomial a of degree a by a polynomial /3 of degree n — both
in the variable £, — is a polynomial S of a degree lower than n, such that, for some
polynomial y, the equation

a = j3-y - 8

is sat isfied identical ly. The coefficients of y and S can be obtained from those of
a and /S by means of the four rational operations, division included. We have modified
this definition so as to eliminate division, which, as we know, is not available in
our system. In consequence, we cannot construct for the negative remainder in our
sense a polynomial y which sa t i s f i es the above equation. We have instead:

THEOREM 25. Let a and /? be any polynomials in a variable {;, of degrees m and n, re-
spectively, and let Pn be the leading coefficient of /3. We set q = 0 in casern < n,
and q-m.~n^lin case m >. n. Then there is a polynomial y in £, whose coefficients
contain no variables except those occurring in the coefficients of a and fi, and for
which o.-/?q and {3-y - R^(a,/3) are equivalent.

PROOF. By induction on the difference of the degrees of a and /3.

One rather undesirable consequence of our modification of the notion of a negative
remainder is that, in case the leading coefficient fin of /3 is 0, a l l the coefficients
of Rg(a,f3) prove to be terms equivalent to 0. No d i f f icu l ty wil l a r i se from th i s
fact , however, since we shall never use fi,(a,/S) except when conjoined with the
hypothesis ~ (/?n = o).

I t should be pointed out that our negative remainder fl,(a,/?) is s t i l l a polynomial
of lower degree than /3 — except when /S is of degree zero, in which case fi,(a,/3) = 0.
This circumstance, together with the analogous property of the reductum of a polynomial
(see Theorem 4) will be the basis for some recursive definitions given in our later
discussion.

The following three definitions (26, 28, and 30) and the theorems which follow
them (27, 29, and 31) are of crucial importance for the decision method under dis-
cussion. In these definitions we introduce three operators S, T, and U which correlate,
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with certain formulas <£, new formulas S(.(f), T($), and U(<£) containing no quantifiers;
and in the subsequent theorems we show that the corre la ted formulas are always
equivalent to the original ones. The operator S is defined only for rather special
formulas — in fact, for those of the form G*(a,/5). The operator T, which is con-
structed with the help of 5, is defined for a rather extensive class of formulas, which
contains formulas like

(Eg) (a = 0 ) , (Eg) [ ( a = 0 ) A ( / 3 > 0 ) ]

(where a and /3 are any polynomials in £,), and some related but more complicated types
of formulas. The operator U, f inal ly, constructed in terms of T, is defined for a l l
possible formulas; hence Theorem 31, which establishes the equivalence of $ and [/((£>),
provides us with a universal method of eliminating quant i f ie rs . I t may be pointed
out that the operator U, though constructed with the help of T, and thus indirectly
of 5, is not an extension of either of these operators; thus, if <£> is a formula for
which S is defined, then S(g5) and [/(<£>) are in general formally d i f ferent , though
equivalent, formulas.

DEFINITION 26. Let k be an integer, and let a. and /S be polynomials in a variable £,
of degrees m and n respectively and having leading coefficients a and yQ ; and let

§ - G\(a,/i) .

( i ) If a. or /3 is the polynomial 0, we set

S(§) s (o = 0 ) , f o r k = 0

and

S(§) = (0 = 1 ) , for * £ 0 .

( i i ) If neither a nor J3 is the polynomial 0, and if m * n is even, we set

S(#) - < [(aH = 0) ASG*(Rd{(a)f/s)l V

[(/3n = 0) ASG*(a,fl«*tf(/8))] V j~(a.-/3B = o) ASG* (/3..R,(a,/3))j i .

( i i i ) / / neither a nor /S is the polynomial 0, and m + n is odd, we set

S<£) H [(<*„ = 0) ASC*(/Mf(a),/?)] V [(/?n = 0) ASG*(a,/Wf </3)j] V

[ O V V 0)ASG*+1(/3,it€(a,/?))] v[(o > a ; ^ ) ASC*"1 (/3,i?f(a./S))] 1 .

THEOREM 27. i.et ̂  be one of the formulas for which the operator S is defined (by 26).
Then S($) is a formula which contains no quantifiers, and no variables except those
that occur free in f>. Moreover, $ is equivalent to S(£>).
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PROOF. The f i r s t part follows iirmediately from Definition 26.

To show the second part we consider the recursive definition for S given in 26. In
view of this def ini t ion, we easi ly see that i t suffices to establish what follows
(for a rb i t ra ry polynomials a and /3 of degrees m and n respectively in a variable
£, with leading coefficients a^ and fin, and for an arbi t rary integer k):

(1) i f a or ^ is the polynomial 0, then G^(a,/3) i s equivalent to (0 » 0) for
k = 0, and to (0 = 1) for k * 0;

(2) if n + n is even, then G|(a,/S) is equivalent to

| [ ( a « = 0) AG*(fic^(a),/3)] V [(/?„ = o) AG* (a.Rd((/3) )] V

H<V/*n =O)AG*(/3,fltf(af/3))]j:

(3) if n t n is odd, then G^ia.fi) is equivalent to

i [(a. = 0) AG*(fi^(a),/3)] V [(/?n = o) AG* (a.JMf (/8))j V

[ f c . A > 0) AG*+>(/3,flf(a,/?)/| V [(0 > am-(3n) AG*-(/3,^(a,/3))] I .

Let £ , . . . , £ be all the variables which occur in the coefficients of a or /S
or both.

It is easily seen that the proof of (1) reduces to showing that, in case a = 0
or P = 0, the following sentences are true:

(A£j...(A£t)Gt(a,j3), for k = 0;

(A£)...(A£)~G*(a,/8), for* * 0.

Now, we notice by Definition 15 that, for every non-negative integer p, DS(0) s 0.

Hence we conclude by Definition 19 that, in case a = 0 or {3 s 0, the formula f£(a,/5)

is satisfied by all values of £ ,..., £ if fe = 0, and by no such values if fe * 0. From

Definition 22 we then easily see that the same applies to the formula Gj(a,/8); and

this is just what we wanted to show.

Analogously, by means of easy transformations, we see that the proof of (2) and
(3) reduces to showing that the following sentences are true:
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(4) ( ^ ^ ) . - - ( ^ ) < ~ ( v 4 = 0) —jc*(ar/8)—*-G*(S,^(a,^)_)j i . fo r «+« even;

(5) ( 4 ^ ) . . . ( ^ s ) i (a.-/Qn > 0)-*[G*(a,/8) • — G ^ f t f l ^ a . j S ) j] 1 , form +n odd:

(6) ( ^ , ) . . . ( 0 ( 0 > am--Sn) — JG*(a,/3) — G*-I( /S,^(a, /S))ll1alsofo r m + nodd.

Actually i t turns out to be more convenient to establ ish, instead of (4), (5)
and (6) , cer ta in stronger statements. For th i s purpose we introduce the formula
H£(a,/3) expressing the fact that there are just p numbers £, such that the difference
between the order of £, in a and the order of £, in /? is an odd integer, not necessarily
posi t ive. A precise formal definition of //?(a,/3) hardly needs to be given here. The
sentences whose truth we want to establish can now be formulated as follows (let t ing
y and S be arbitrary polynomials in £,, whose coefficients involve no variables except
£ , . . . , £ , and le t t ing p and q be arbi t rary non-negative integers):

(7) (A^.. . (Aig) i [ # £ ( 0 ) A [Ai) (a-J3*i = fry - s) A~(V/SB = o)J —

JG*(a,/3)—— G* (^, S)J > , for p even;

(8) (A^) . . . (A£s) I [fl|(a,/3) A(^)(a-/8;« = fry - s) A (a//3n > o ) ] —

[G*(a,/9)—-G* + 1(/3,S)J > , for p odd;

(9) (*£) . . . (A £) i [tfP(a,/3) AUf)(a-/3^ = /?-r - s) A(O > v ^ ) ] - *

[G*(a,/3)-'--G*-1(/3)S)] > , also for p odd.

I t i s easily seen that the truth of (7) , (8), and (9) implies that of (4), (5),
and (6) respectively. We shall sketch the proof of this for the cases (7) and (4).
Thus, assume (7) to be true and m + n to be even. Consider any fixed but arbitrary
set of values of ^ , . . . , ^ and suppose the hypothesis of (4) to be sa t i s f ied . Let
p be the (uniquely determined) integer for which HpAa,(3) is sat isf ied (by the given
values of £,..., £ s ) . An elementary algebraic argument shows that p is congruent to
m + n modulo two; therefore p is even, and (7) may be applied. We now set g = 0 if
m < n, and <J = m — n + 1 otherwise; and we construct a polynomial y in £, with coef-
f ic ients involving no variables except those occurring in the coefficients of a or
B, and such that

a.^q = fry _ R((a,P)

holds for every value of £,. (Regarding the possibil i ty of constructing such a y, see
Theorem 25.) We then see that the hypothesis of (7) is sat isf ied with 8 replaced by
fi,(a,/3). Hence the conclusion of (7) is also satisfied. This conclusion, however, with
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the indicated replacement, coincides with the conclusion of (4). The proof now reduces
to establ ishing the t ruth of (7) , (8), and (9). I t i s convenient in th i s part of
proof to avail ourselves of customary mathematical language and symbolism. Also, we
shall not be too meticulous in trying to avoid possible confusions between mathematical
and metamathematical formulations.

Given a polynomial a. and a number A., we shal l denote by /(A.,a) the order of
A. in a: i . e . , the uniquely determined non-negative integer r such that Wyj.a) holds.
The function / is thus defined for every number A-, and for every polynomial a. which
does not vanish ident ical ly .

Similar ly , for any given polynomials a. and /S in if we denote by g(a,/S) the
integer k for which G*(a,|fi) holds. From the defini t ion of G|(a,/3) (see Definition
22) i t follows that such an integer always ex i s t s and is uniquely determined. I t
can be computed in the following way. We consider a l l these numbers A. for which
/(A.,a) - f(K,jB) is posit ive and odd, and we divide them into two se t s , P and N; A.
belongs to P (or N) if there i s an open interval whose right-hand end-point isA_,
within which the values of a. and /3 have always the same sign (or always different
signs). Both sets P and N are clearly f in i te , and the difference between the number
of elements in P and the number of elements in N i s j u s t g(a,/3). Thus g(a,/3) can
be posi t ive , negative, or zero; in case a or /S vanishes iden t ica l ly , g(a,/3) = 0.

Finally we introduce the symbol h(a,/3) to denote the integer p for which
HpAa,(i) holds; in other words, h(a,/3) is the number of a l l those numbers A. for which
/(A., a.) — /(A.,/3) is odd — though not necessarily positive.

For la ter use we state here without proof (which would be quite elementary) the
following property of the function / defined above:

(10) Let a, /?, y, and 8 be polynomials in £,, such that

holds for every value of £,, Pn being the (nonvanishing) leading coefficient
of P and q some integer. If, for any given number A., /(A.,/3) > /(A.,a) — so
that a, as well as jB, does not vanish identical ly — then /(A.,a) = /(A.,8)
(so that S does not vanish ident ica l ly e i t h e r ) . Similarly, if f(K,fi) >
/ ( \ , S ) , then f(k,a) = /(A..S).

We now take up the proof of (7), (8), and (9), which will be done by a simul-
taneous induction on h(a,/3) - p. The reader can easily verify that (7), (8), and (9)
hold in case the polynomial 8 vanishes identically; therefore we shall assume hence-
forth that 8 does not vanish identically.

Assume f i r s t that /i(a,,fl) = 0. Thus there are no numbers \ such that /(A,a) -
/(A.,,6) is odd. A fortiori there are no numbers K such that /(A.,a) - /(A.,/3) is positive
and odd; and hence g(a,/3) = 0. Furthermore, there are no numbers K such that /(A.,/?) -
/(A.,8) is positive and odd; for if such a number A. existed, we should have /(A,ct) =
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f(k,&) by (10), and hence f(k,a) - f(k,jB) would be odd. Consequently, g(fi,i) = 0 and
therefore g(a,/3) = g(/fi,S). Thus in this case (7) proves to hold, while (8) and (9) are
of course vacuously satisfied.

Assume now that (7), (8), and (9) have been established for arbitrary polynomials
a. and /S with /i(a,/3) - p (p any given integer). Consider any polynomials a and /3 in
£ with nonvanishing coefficients a^ and Pn, and with

(ID Ma,/3) = p + 1 ,

as well as two further polynomials y and 8 in £ such that

(12) a*/S2' = y / 3 - S holds identically for some non-negative integer q .

Two cases can be distinguished here, according as aK'fln > 0 or 0 > a^'/S ; since the
arguments are entirely analogous in both cases, however, we res t r i c t ourselves to the
case

(13) a -/3 > 0 .
• n

Our assumption (11) implies that there are exactly p + 1 numbers k for which
f(k,a) - /(A.,/3) is odd. Let

(14) ko = the largest k such that f(k,a) - /(\,/3) is odd.

Condition (13) implies that for sufficiently large numbers g > kg the values of
a. and ft are of the same sign. This can be extended to every number £ > kg (not a root
of a or /S), since, by (14), there is no number £ > kg for which / ( f , a ) - f(£,fi) i s
odd (and therefore at which one of the polynomials a and /3 changes sign while the
other does not) . Hence, and from the fact that f[kg,a) - f(.ko,0j i s odd, we conclude:

(15) There is an open interval whose right-hand end-point i s k , within which the
values of a and /3 are everywhere of different signs.

We now introduce three new polynomials a ' , y', and 8' by s t ipula t ing that the
equations

(16) a' = a-(\0 - i), y' = y (kQ - £) , S' = S-(\o - £)

hold identically. By (12), (13), and (16) we obviously have:

(17) a ' " / 3 2 ' = y'' P - 8' holds identically for some non-negative integer q ;

(18) a«+i" @n < 0> w ^ e r e ai,+! i s t n e leading coefficient of a' ;

(19) /(\>.a<) = f(\-°) + !> and also Kko'h') " K\'h) + 1 (since 8 and S< do
not vanish identically);
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(20) f(£,a') = / ( f , a ) for every £ * \ , and similarly /(<f,S') = /(<f,8) for every
£ ¥ A (since 8 and 8' do not vanish identically) .

From (19) and (20) we conclude that the se t of numbers A such that / (A ,a ' ) -
/(A,/?) is odd d i f fe rs from the analogous set for a and /S only by the absence of
X-o; thus, using also (11),

h(a',/3) = h(a ,/3) - 1 = p .

Consequently, our inductive premise applies to the polynomials a' and /3: i.e., sen-
tences (7), (8), and (9) are true if a. is replaced by a'. Remembering the meaning of
g(a,/3), and taking account of (17) and (18), we conclude:

(21) g(a',/3) = g(/S, 8') in case p is even;

(22) g(a',/S) = g(/3,S') + 1 in case p is odd.

We now want to show that

(23) g(a,/3) - g(/3,8) = g(a',/S) - g(/3,8') - 1 .

To do this, we first notice that by (16):

(24) The values of <x and a' are of the same sign for every cf < A. (not a root of
a); similarly for the values of 5 and 5'.

We also observe that:

(25) There is no £ > A such that /(̂ f,/?) ~ /(£i§) is positive and odd; similarly
for /S and 8'.

For, if /(£,/?) ~ f(£,S) were positive and odd for some £ > Ao, then, by (10) and
(12), /(f,a) - f(£,fi) would be odd for the same f > A , and this would contradict
(14). The argument for /S and 8'- is analogous; instead of (12) we use (17), and when
stating the final contradiction we refer to (14) combined with the first part of
(20), instead of merely to (14).

We now distinguish two cases, dependent on the sign of /(A ,a) — /(A. ,/S). In
view of (20), (24), and (25), the only number which can cause a difference in the
values of g(a,/?) and g(a',/3), or in the values of g(/3, S) and g(fi,&'), is the number
A . If now

(A) f(\.°) -f(K.P) > o ,

then by (14) and (15) the number A effects a decrease of g(a,/3) by 1; while, as a
result of (19), i t has no effect on the value of g(a' ,J3). Hence

(26) g(a,/3) = g(a',/3) - 1 .
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Furthermore, in the case (A) considered, f(^0,/^\ ~ f(\ ,&\ cannot be positive by
(10); and therefore f(kg,0) ~ / ( \ , S ' ) cannot a fortiori be positive by (19). Thus
in th i s case the number A. proves to have no effect, on the values of g(/9,S) and
g(/3,S'); and consequently

(27) g(/5,S) = g(/3,S') •

Equations (26) and (27) at once imply (23).

Turning to the case

(B) f(\,«) - f(\,P) < 0 ,

we f i rs t notice that under this assumption A.Q does not affect the value of g(a,/3). Nor
does i t affect the value of g(a',/3), since, by (14) and (19), f(\ia'') ~ /(A- ,0) is
even. Therefore,

(28) g(a,/3) = g ( a ' , / 3 ) .

Moreover, in the case (B) under considerat ion, we see from (10) that f(K ,a) -
/(A. ,S) , and hence, using (14), that

(29) f(\-P) ~ f{\>h) i s Po s i t ive and odd.

/(Va) = / ( V S ) = r •
Thus A. is of order r in a and 8, and of a higher order in /3. Consequently there are
three polynomials a", /3 " , and 8" such that the equations

(30) a = a"-(\o- £)r, /9 = /8..(xo-^)ri 5 = S" • (K,- f) '

hold identically; A. is a root of/3", but not of a." org". We obtain from (12) and (30):

a''ft" = J'P - «"•

Consequently, the values of a" and 8", for df = A.o, have different signs. Therefore
there is an open interval, whose right-hand end-point is A. within which the values
of a" and 8" have different signs; and, by (30), this applies also to <x and 8. By
comparing this result with (15), we conclude that there is an open interval whose
right-hand end-point is A. , within which the values of /3 and 8 have the same sign.
Hence, and by (29), kg contributes to the increase of g(/S,S) by 1. On the other
hand, by (19) and (29), f{\,0) ~ /(\iS <) is even> so that \ llas no effect on the
value of g(/9,8'). Thus, finally,

(31) g(/8,8) = g(/3,8') + 1 .

Equations (28) and (31) again imply (23). Hence (23) holds in both the cases (A) and(B).

From (21), (22), and (23) we obtain at once:
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g(a,/3) = g(/3,8) in case p + 1 is even ;

g (a /3) - g(/3,8) - 1 in case p + 1 is odd .

Thus we have shown that (7), (8) , and (9) hold for polynomials a. and /3 with h(a,/3) -
p + 1; and hence by induction they hold for a rb i t ra ry polynomials a and /3. This
completes the proof.

DEFINITION 28. Let

/8»/S0 + ^ + . . . + /8n^

n

"l '1,0 '1,1= 1>ni

n

7r 'r,0 /r, I s ' r , n s

be arbitrary polynomials in g. We define the function T as follows:

(i) If (j> is a formula of the form

(E£) [a = 0] ,

then we set

T{§) = ^ ( a o = o) V. . .V~(a B = o)j A 5G"*(a, D^(a)) .

( i i ) If $> is a formula of the form

[~(a0 = 0) V. . .V~(am = 0 ) 1 A (£f) | \ a = 0) A (/3 > 0)1 ,

t/ien we se t

T($) = < [~(ao = 0) V.. .V-(aB = o) J A

V (sc'^la.D^a)] ASG'J* \P((a2 + /32), D^(a2 + /32)1 A
2 f e = r - r + r ^ . J

-m < r 3 < m

( i i i ) If ^ is a formula of the form

[- (ao= 0)V...V-(aB = O)JA (£<f)[(a = 0) A (^ > 0)A . . . A (yr > 0)l ,
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where r >_ 2, then we set

T(#) = V {r(^)AT(^2)Ar(#3)l ,

0< r , r ,r < ">
~~ 1 2 3 ~

where

^S{H% = 0)v...V-(aB= 0)]A

(££) [(a = 0) A (7j > 0) A. . .A ( V a > 0) A£ ( W y») > o] I ,

#2 S{Hao= 0)v...V-(aB= 0)]A

(EO [(a = 0) A (yx> o) A. . . A (7r_2 > o) A Pf (yr» x • y r ) >oj I ,

#3 3{[-(ao = 0 ) v - - - ^ k = 0 ) ] A
(£f )((a = 0) A (7 ] > 0) A. . .A (yr_2 > o) *P( [(- 1) 'V^-y,] > oj |

in the case r = 2 we omit the expression

(7j > 0)A...A(yr_2 > o)A

from the formulas defining §^, §^, and <§3.

(iv) If § is a formula of the form

- (an = 0) A (Ef) [(a = o) A (yx > o) A. . . A (7/. > o)] ,

then we set

T(#) - U(am = 0) AT < [ ^ = O) V.. .V- (a, = o)] A

(p[(a = 0)A(ri>0)A...A(yr>0)]|\

(v) If § is a formula of the form

[-(7lfBi=0)A-^iii> = 0)A...A-^rtBr = 0)JA(Bf)[(7l>0)A...A(7r>0)j.

32



580

then, if k > 0, we set

T ( § ) = ( 0 = 1 ) ;

while if k - 0 and n + • • • + n = 0, we set

n§> - | [-(y1>0 = o)/\...A^rri0= o)] A [(o > r1>0)v...v(o > y^)] j ;

and if k = 0 and n + . . . + n > 0, we set

r($ ^|-(\n i=o)A.. .A-(yr i n r = o) A [(o>yIini)v...v(o>rr>nr)]| A

|o>(^7l>Jv...v[o>(.i)Vrri|A

r< ~(s = o)A(£f)fU^(y1 •..••>,.) = O1A(7 I>O) A,..A(rr>o)J i

where S is the leading coefficient of DcPc{Yx' • • • "Yr) •

(vi) If £ is a formula of the form

(E£) [ ( y 1 > O ) A . . . A(yr>0)] ,

and if k $ 0, we set

T(§) s (0 = 1) ;

while if k = 0, we set

r(̂  3 { [ ( > ' 1 , o = 0 ) A - - - A ( > - 1 , n i = o ) ] v . . . v [ ( y r j 0 = o ) A . . . A (rr ,n r=o)j I v

(i, *r) i n s

(Ej) [(bTpW > o ) \ . . A ( ^ ' ' W > o)])} •

w h e r e S i s t h e s e t of a l l o r d e r e d r - t u p l e s i s , . . ., s ) w i t h Q < s < n . .. , 0 <_s < " r -

$k 1= [ i y k , l + i = 0 ) A" • - A ( 7 f c „ = 0 > ] f ° r ° i i < n k ' and $ k I ~ ( 0 = 0 ) f o r U n k .
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(vii) If $ is a formula of the form

{Ep [(a = 0)A(7i > O)A...A(yr > o)]

then we set

T(§) = T<J[~(ao = 0)v. . .V~(am = o)]_A<£ I V

(l(aB = 0)A...A(an = o)] A T j(££) fc > O ) A . . . A ( 7 | . > o)] j j .

(vi i i ) If g is a formula of the form

(^)[fe= O)A...A(7P = o)] ,

then we set

T{§) = T j (££) [ p ^ +. . . + yr«) - o] 1 .

(ix) 7/ $ is a formula of the form

(EP [(>i = O) A. . . A (ys = o) A ( 7 J + I > 0) A. . . A (yr > o)]

where 1 < s < r, then we set

T(§) - T iiE£) \PS(J? +. . . + yf) = 0 A (yj+i > 0 ) A. . . A (% > o)] j .

(x) If £ is a formula, not of any of the previous forms, but such that

§ - ( £ £ ) ( $ A $ A . . . A # ) ,

where each cfii is of one of the forms yi - 0 or Ji > 0, and if }1,••-,]„ "re the values
of i (in increasing order) for which <£> = (y• = 0); and if j + ,...,) are the values
of i (in increasing order) for which $t = (yi > 0), then we set

T(§) = T(Eg)(§. A . . . A § )

THEOREM 29. Let £ be any variable, and let <£> be any formula such that T(<£>) is defined
(by Definition 28). Then T($) is a formula which contains no quantifiers, and no
variables except those that occur free in <£. Moreover, c§ is equivalent toT($).
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PROOF. The f i r s t part follows immediately from Theorem 27 and Definition 28.

We shall prove the second part by considering separately the ten possible forms
<p can have according to Definition 28. As in the proof of Theorem 27, we shall use
here par t i a l ly ordinary mathematical modes of expression, without taking any great
pains to distinguish sharply mathematical from metamathematical notions.

Suppose f i r s t , then, that <£> is of the form 28 ( i ) : i . e . , that <§ = (E£) (a = 0) ,
where a is a polynomial in <f. We are to show that <£> is equivalent to the formula

[-(*„ = 0)v...V~(a. = 0)]A5G-'(a,Df(a)) ,

where a. ,..., a are the coefficients of a. Since by Theorem 27 the latter formula is

equivalent to

[~(*o = °)V---V~(a* = °)]A Gf*(a'Va)) •
we see that our task reduces to establ ishing the following: if a. is any polynomial
in S, which i s not i den t i ca l ly zero, then a has k d i s t i n c t roots i f and only i f
GZ*(a,D,(a)') holds. Let s be the number of numbers g such tha t : (1) the order of
df in a is by a positive odd integer higher than i t s order in D~(a); (2) there exists
an open interval whose right-hand end-point is <f, within which the values of a and
DAa) have the same sign. Let s be the number of numbers £, which sat isfy condition
(1) above and moreover the condition: (3) there exists an open interval whose r ight-
hand end-point is £,, within which the values of a and D^(a) have different signs. By

the remark preceding Definition 22, we see that G|*(a,D^(a)) is true if and only i f
~k = s ~ s . Moreover, i t is readily seen that s = 0, and that s i s simply the
number of dist inct roots of a. Thus GJ (a,Z)-(a)) holds if and only if k is the number
of dist inct roots of a, as was to be shown.

In order to t rea t the case where § is of the form 28 ( i i ) , i t is convenient
f i r s t to establish the following: Let a and 0 be polynomials in £, let t , be the
number of roots of a. at which 0 is positive, and let t be the number of roots of a
at which 0 is negative; then SGgc (a,Dg(a)-g0) is true if and only if c = tl - t^. This
can easi ly be done by the sort of argument applied in the preceding paragraph —
making use of Theorem 27 and the remark preceding Definition 22. We notice also that,
since we are dealing with the algebra of real numbers, the common roots of two
polynomials a and 0 coincide with the roots of a.2 + /32. Now let J be a formula of
the form given in 28 ( i i ) . To show that § is equivalent to T{§), i t suffices to
show tha t , if k is a non-negative integer , and a and J3 are polynomials, where a
is of degree m and not identically zero, then the following conditions are equivalent:
(1) there are exactly k roots of a at which /3 is positive; (2) there are integers
r t i r2 i a " d r3 s a t i s f y i n g 2k - r^ - r£ + r3 , 0 <_ rl <_ m, 0 <_ r^ <_ m, ~m <_ r < m,
such that r^ is the number of roots of a, r^ is the number of roots common to a. and
0, and r3 is the difference between the number of roots of a at which 0 is positive
and the number of roots of a at which 0 is negative. Now a has at most m roots; hence,
if rj i f"a , and r^ have the meanings indicated in (2) — i . e . , if r is the number
of roots of a, e t c . — we obviously have

0 < rt < m, 0 < r2 < m, and -m < r3 < m .
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Let k be the number of roots of a at which /S is posi t ive, and le t r be the number
of roots of a at which /3 is negative. We see immediately from the defini t ions of
r i > r2 • r3 ' ^. and r4 that

Eliminating r̂  between these two equations, we obtain

Thus (1) implies (2); the proof in the opposite direction i s almost obvious.

To prove our theorem for formulas of the form 28 ( i i i ) , i t suffices to show
that if a. is a polynomial of degree m, and not identical ly zero, and if 71 , . . . , JT

are any polynomials, then the following conditions are equivalent: (1) there are
exactly k roots of a at which rYl , . . . , Jr are a l l posi t ive; and (2) there are three
integers r , r , r3 satisfying Ik = r^ + i"2 - r3 , 0 < r , r2 , r3 < m, such that ri is
the number of roots of a at which y ^i—a1 an^ ^r-x'^r a r e a ^ posit ive, r2 is
the number of roots of a at which y , . . . , yr_ , and y^_ ~y are a l l posi t ive, and
r3 i s the number of roots of a at which y ,..., yr_2, and ~\'yr_x'yr are a l l positive.
In fac t , i f J-J , r2 , and r^ have the meanings j u s t indicated, we obviously have

0 < rlt r,, r3 < » .

Let r4 be the number of roots of a at which yy , . . . , yrm2, 7r.l are a l l positive, and
yr i s negative. Let rB be the number of roots of a at which yi, ... , yr and yr are
a l l positive, and yrml i s negative. Let k be the number of roots of a at which y , . . . ,
yr are a l l posi t ive . From the defini t ions of rl , r g , rg , r4 , ro and i we see that

k + r4 = rf

fe + r = r
s a

r + r = r
4 S 3

Eliminating r4 and r from these equations, we obtain

2^ = \ + ra - r3 ,

which completes this part of the proof.

To prove our theorem for formulas of the form 28 (iv), we need only notice that
the formula

~(aB = 0)AU(ao = o)V. ..V~(aB = o)|

is equivalent to
~(a. = 0) .
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Now suppose that §> is of the form 28 (v): i . e . , that $ is

We notice f i rs t that if k > 0, then the formula

< P [(V O)A. ..A(rr> o)]
is never satisfied (i.e., is satisfied by no values of the free variables occurring
in it), so that ̂ > is never satisfied either — and hence is equivalent to (0 = 1). If
k = 0, and n +...+ n = 0 , then n = n =...= n = 0, and hence <f reduces to

[~6,o = o)A...A-(yr#0 = 0)] A(££) [(yi(0 > O)A...A (y^ > o)] ,

where >", 0 ( • • • i 7r 0 a>"e terms which do not involve £; since

(^)[(>i.o> °)A---A0'r,o> °)]
is then equivalent to

^[(\o> °)A---A(%,0 > 0)] .
we see that ̂  is equivalent to T($), as was to be shown.

Thus we are left with the case that $ is of the form 28 (v) where k - 0 and
nl +...+ n. > 0. To establish in this case that $ is equivalent to T(§), it suffices
to prove: If y , ..., yr are polynomials in £ not all of which are of degree zero, and
whose leading coefficients are all different from zero, then a necessary and sufficient
condition that there exist no value of £ which makes all these polynomials positive
is that the following three conditions hold: (1) at least one of the polynomials
have a negative leading coefficient; (2) at least one of the polynomials satisfy
(-1) '-yi ni < 0 (where n; is the degree of the polynomial, and yi n< its leading
coefficient); (3) there exist no value of g which is a root of the derivative of
the product of the polynomials, and which makes them all positive. To see that the
condition is necessary, suppose that y ,.. ., yr are polynomials which are never all
positive for the same value of £; then it is immediately apparent that (3) is satis-
fied; to see that (1) is satisfied, we remember that, if the leading coefficient
of a polynomial is positive, then we can find a number fx such that the polynomial is
positive for all values of the variable g greater than /x; the proof of (2) is similar,
by considering large negative values of the variable. Now suppose, if possible, that
the condition is not sufficient: i.e., suppose that (1), (2), and (3) are satisfied,
and that there exists some £ which makes all the polynomials positive. Let A. be a
value of £ at which yi > 0,..., 7r > 0. Then we see that, for £ = K,

7, ' 72 - • • • • yr > 0 .
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On the other hand, since (1) is true, there exists an i such that yi has a negative
leading coefficient. Hence we can find a V which is larger than \ and sufficiently
large that y^ is negative at A.'. Then y^ i s posit ive a t \ and negative at A' and
hence has a root between these numbers. Since every root of yi is also a root of
yx %y2 •. . . •yr, we conclude that yi'yi'.. .'yr has a root to the right of A.. Similarly,
making use of (2), we see that yi "ys ' •. . "yr has a root to the lef t of \ . Now let fi
be the largest root of y ~y '...'yr to the left of A. and le t /-i-2 be the smallest root
of y "y ' . . . 'y to the right of A.. Then y ' y '.. . -yr is positive in the open interval
(Mji/O and zero at i t s end-points. We see that no yi can have a root within the
open interval (i",./"-); since each y^ is positive at X, which l ies within this interval,
we conclude that each y. is positive throughout the whole open interval. On the other
hand, since y 'y~...'y is zero at /x and at u , we see by Rolle's theorem that there
i s a point v within tfj. ,fx ) at which the derivative of y • y •. . . 'y vanishes. Since
this contradicts (3), we conclude that the condition is also sufficient.

Now suppose that § is of the form 28 (v i ) . If k t 0, i t is obvious that § is
equivalent to T(<p). Hence suppose that k = 0. Two cases are logically possible: either
one of the polynomials y , . . . , y vanishes iden t i ca l ly , or none of them does. In
the f i r s t case, <£> obviously holds. In the second case, l e t ŝ  , for i - 1 , . . . , r , be
the largest index j such that yi • ( i . e . , the j coefficient of y^) does not vanish.
Then $ is obviously equivalent to the formula

I M [ ^ =O)A.. ./v^r,,r=oj]A(W[A£I-Vi) > °]A- • - A K V V O > °])

However ^ i s of the form 28 (v), and hence, as we have shown above, i s equivalent to
T{<p). In view of these remarks, by looking at the formula defining T(<£) in 28 (vi) ,
we see at once that $ and T($>) are equivalent.

If § is of the form 28 ( v i i ) , our theorem follows from the obvious fact that $>
i s equivalent to

| [ -(a0 = 0)V...V~(a, = 0 ) ] A $ | V | [(a, = o) A. . .A (a. = O)]A§\ .

If $ is of the form 28 (viii), or of the form 28 (ix), our theorem follows from
the fact — which was already used in discussing 28 (ii) — that the common roots
of r polynomials yx ,..., yr coincide with the roots of yj +...+ y*.

If ̂> is of the form 28 (x), our theorem follows from the associative and com-
mutative laws for conjunction, familiar from elementary logic.

DEFINITION 30. Let $, <f, and 8 be any formulas, and g any variable.

(i) If <§ is an atomic formula, we set

(ii) If <§s (<£ V 0), then we set

U(§) = [{/(if) V U(6)] .
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(iii) If §= {$ t\8), then we set

U(§) = [[/(<£) A U{8) ] .

(iv) / / (p = ~ tp, then we se t

U(§) = - U(<Ji) .

(v) If §^ (E£)<p, and

QPfUi$) - ^ ^ . . . V j ^ ,

where <p. , /or i = 1, . . . , n, is a conjunction of atomic formulas, then we set

u(§) - -r UE& & W f(£̂ ) £ j v... v - r f e ^1.

THEOREM 31. If <§ is any formula, then U(<£>) is a formula which contains no quanti-
fiers, and no free variables except variables which occur free in J5. Moreover, $ is
equivalent to U(<£).

PROOF. By induction on the order of <£>, making use of Theorems 14 and 29.

CoROLLABY 32. If & is any sentence, then U((£>) is an equivalent sentence without any
variables or quantifiers.

The f i r s t part of our task as outlined at the beginning of th is section has
thus been completed. We have established a general procedure which permits us to
transform every formula (and in particular every sentence) into an equivalent formula
(or sentence) without q u a n t i f i e r s ( 1 2 ) ' ( l 3 ) . Before continuing the discussion, we
should like to give a few relat ively simple examples in which such a transformation
has actually been carried out. The equivalent transformations U (̂ >) which are given
below for some formulas <£ do not coincide with U(<§) but can be obtained from the
la t te r by means of elementary simplifications.

Let £ be any variable, and a , a , a a /3 /3 and /? any terms which do not
0 1 2 3 0 1 2

involve £. If

§ - (£f)[a0 + V f + a2^2 + V £ » = o]

we obtain an equivalent formula by setting

IK® =< (% = 0) V^(at = 0) A(a2 = 0)] V

[~(a, = 0) A ~ ( 4 - a o - a , > a ? ) ] V^(a 3 = o) 1
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(where, as can easily be guessed, 4 stands for 1 + 1 + 1 + 1). If

§ - (E£)[ao + V f + V f 2 + V £ 3 > 0] ,

we can put

m§) - | (a0 > 0) V(aJ > 4-ao-a2) V (a, > 0) V ~(a , = o) j .

If, finally,

<£ - (££)[(a0 + a,' f + at'£* = 0) A fa + £ • £ + yS,-^ > 0) ] ,

we can put

M® s { [(ao = ° ) A (ax = ° ) A & = °) A fe > o) v (e^ > 4-4,-^ v (pz >o))] v
[-(a, =0) A(a2 =0) A ( a ^ +a«-/30 >a()-V/3l)] V

[-(a, =0)A-v(4-Va,>a»)A(a«^ +2-a^0 >2- V V /3 2 +aj-a2^1)] V

[-(a2 = 0)A(a=>4ao-a2)A

We now turn to the second part of our task. We want to correlate, with every
sentence $ which contains no variables or quantifiers, an equivalent sentence of a
very special form: in fact, one of the two sentences

0 = 0
and

0 = 1 .

We first consider terms which occur in such sentences. As is easily seen, every such
term is obtained from the algebraic constants 0, 1, and ~1 by combining them by means
of addition and multiplication. Hence we can correlate with every such term a. an
integer n(a) in the following way.

DEFINITION 33. We set

"(1) = 1,

"(-1) = - 1 .

" (0 ) = 0.
If a = f/S + y), then we set

n{a) = n(0) + n(y).

If a = (fi'y), then we set
n(o) = n(/3)-n(7).
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REMARK. It should be emphasized that the above definition correlates integers, not
expressions, with terms. It is for this reason that we have written, for example,

"(1) = 1.

instead of
n(l) s 1;

n(l) is the integer 1, not a name of that integer. In the equation

n(a) = n(P) + n(y)

the addition sign indicates the sum of the two integers n(/3) and n(y). n(a) is what
would ordinarily be called the "value" of the expression a; thus, if

a = 1 + (1 + 1)-(1 + 1), then n(a) = 5.

On the other hand, we could use for our purposes, instead of integers, certain
expressions of our formal system of algebra — in fact one of the terms of the follow-
ing sequence

.... (-1) + ("I), "I, 0, 1, 1 + 1,... .

We can use these special terms since they can obviously be put in one-to-one
correspondence with arbitrary integers. As a result of this modification, however,
Definition 33 and the subsequent Definition 34 would assume a more complicated form.

DEFINITION 34. Let a and P be terms, and $, $, and 8 formulas, none of which contain
any variables.

( i ) If§= (a = p), we set

W(§) s (0 = 0)

in case n(a) = n(P), and otherwise

m.§) s (o = i) .

(ii) If § = (a > P), we set

W(§) = (0 = 0)

in case n(a) > n(p), and otherwise

W(§) = ( 0 = 1 ) .

(iii) If §= (if V 6), we set

W($) = (0 = 0)

in case either W(§) = ( 0 = 0 ) or W(0) = (0 = 0), and otherwise

W(§) = (0 = 1 ) .
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(iv) If <p = (yj A 6), we set

W(<p) = (0 = 0)

in case both V/(ip) =(0 = 0) and W(8) = (0 = 0), and otherwise

W{$>) - ( 0 = 1 ) .

(v) If $> = ~ if, we set

W(d>) = ( 0 = 0 )

in case Wifî '̂  - (0 - 1), and otherwise

Vi(§) = ( 0 = 1 ) .

THEOREM 3 5 . Iff is any sentence which involves no quantifiers or variables, then
^(f) is one or the other of the two sentences 0=0 and 0 - 1 . Moreover, <p is equiva-
lent to W(<p).

PROOF. By induction on the order of $>.

THEOREM 36. If <p is any sentence, then W(<p) is one or the other of the two sentences
0-0 and 0=1. Moreover, <£> is equivalent to WU($>).

PROOF. By 32 and 35.

Now by analyzing the definitions of If, U, and the preceding functions, we notice
that for any given sentence >̂ we can actually find the value of WU{§>) in a f in i te
number of s t e p s ' 1 4 ' . By combining th i s with the re su l t s ta ted in Theorem 36, we
obtain

THEOREM 3 7 . T h e r e i s a d e c i s i o n m e t h o d f o r t h e c l a s s o f a l l t r u e s e n t e n c e s o f e l e -
mentary a£ge6ra ' 1 0 ' .

In concluding this section we should like to remark that the minimum number of
steps which are necessary for the evaluation of WU($>) is of course a function of the
form of $ — in particular, this number depends on the length of $>, on the number of
quantifiers occurring in i t , and so on. The problem of estimating the order of in-
crease of this function is of primary importance in connection with the question of
the feas ibi l i ty of constructing a decision machine for elementary algebra.
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SECTION 3 .

EXTENSIONS TO RELATED SYSTEMS

In th i s section we shal l discuss some applicat ions to other systems of the
resiflts obtained in Section 2, as well as some problems that are s t i l l open.

The decision method found for the algebra of real numbers can be extended to
various algebraic systems built upon real numbers — thus to the elementary algebra of
complex numbers, that of quaternions, and that of n-dimensional vectors. We can think
of the elementary algebra of complex numbers, for example, as a formal system very
closely related to that described in Section 1: variables are now thought of as
representing arbitrary complex numbers; the logical and mathematical constants remain
unchanged; but now the greater-than re la t ion i s thought of as holding exclusively
between real numbers — thus we can define real numbers within the system by saying
that x is real if, for some y, x > y. If one wishes, one can enrich the system by
a new predicate Rl(x), agreeing that Rl(x) will mean that x is r e a l ( 1 6 > .

The resul ts obtained can furthermore be extended to the elementary systems of
n-dimensional Euclidean geometry. Since the methods of extending the resul ts to the
algebraic systems and the geometric systems are essentially the same, we shall consider
a l i t t l e more closely the case of 2-dimensional Euclidean geometry.

We f i r s t give a sketchy descr ipt ion of the formal system of 2-dimensional
Euclidean geometry. We use infini tely many variables, which are to be thought of as
representing arbitrary points of the Euclidean plane. We use three constants denoting
relat ions between points: the binary re la t ion of identity, symbolized by "="; the
ternary re la t ion of betweenness, symbolized by "B", so that "B{x, y, z)" is to be
read "y is between x and 2" ( i . e . , y l i e s between x and z on the s t r a igh t l i ne
connecting them; i t is not necessary that the three points a l l be distinct; B(x, y, z)
is always true if x - y or if y = z; but we cannot have x - z unless x = y = z); and
the quaternary equidistance relat ion, symbolized by "D", so that "D(x,y; x',y')" is
to be read "x is jus t as far from y as x' is from y ' " (or, "the distance from x to
y equals the distance from x' ';o y ' " ) ( 1 7 ) . The only terms of this system are var i -
ables. An atomic formula is an expression of one of the forms

where

e.-n.^.^?. and 77'

are a rb i t r a ry v a r i a b l e s . As in the formal system of elementary algebra we bui ld up
formulas, from atomic formulas by means of negat ion , conjunction, d i s j unc t i on , and
the appl ica t ion of q u a n t i f i e r s ; we a lso introduce here as abbreviat ions the symbols
—"" and "*—•-.

Sentences of elementary geometry, in our formulat ion, express c e r t a i n f a c t s
about points and r e l a t i o n between them. On the other hand, most theorems which one
finds in high-school textbooks on th i s subject involve a lso such notions as t r i a n g l e ,
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plane, c i rc le , l ine , and the l ike. I t is easy, however, to convince oneself that a
considerable part of these notions can be translated into the language of our system.
Thus, for example, the theorem that the medians of a triangle are concurrent can be
expressed as follows (cf. the figure immediately following the formula):

{Ax)(Ay)(Az){Ax'){Ayl)(Azl)<^-B[x,y,z)A^B(y,z,x)A^B(z,x,y)AB(x,y',z)A

B(y,z',x)AB(z,x',y)AD(x,z';z',y)A

Diy.x'riz) AD(z,y'}y',x)]—~

(£»)[B(X,I»,*') AB(y,w,y')AB{z, w,z')j >.

y

z

On the other hand, i t would not be d i f f icu l t to enrich our system of geometry
so as to enable us to refer to these elementary figures d i r ec t ly . Regarding more
essential limitations of our system, see the remarks in the Introduction.

In order to obtain a decision procedure for elementary geometry, we correlate
with every sentence <£> of elementary geometry a sentence ^* of elementary algebra in
the sense of Section 1. The construction of $* can be roughly described in the follow-
ing way. Wi_th every (geometric) variable f in $ we correlate two different (algebraic)
variables £ and J , in such a way that if if and T\ are two different variables in<f,
then £, i, rj, and rj are a l l dis t inct . Next we replace_in <£> every_quantifier expression
(££) by (E^){Ei); every par t ia l formula £ = 17 by (.£, - rj) A Q = rj); every formula
B(€,V,H) by

[(V-b'G-v) = < M - T O - ( ^ - | ) ] A [ ( ( | - ^ - ( ^ - M ) > 0 ) V ( ( | - ^ ) - ( ^ - M ) = 0)]A

[{(i-V)'(V-ti > 0)V((i-^)-(^-M) =0)];

and every par t ia l formula D{£,7);/n,v) by

( i - V)* + ( I - V)2 = (M - v)a + (M - v)2-
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I t i s now obvious to anyone familiar with the elements of analyt ic geometry
that whenever $> is true then >̂* is t rue , and conversely. And since we can always
decide in a mechanical way about the truth of$* , we can also do this for $.

The decision method j u s t outlined applies with obvious changes to Euclidean
geometry of any number of dimensions( 1 S ) . And, since i t depends exclusively on the
possibil i ty of introducing into geometry a system of real coordinates, i t will apply
as well to various systems of non-Euclidean and projective geometry(19).

We can attempt to extend the resu l t s concerning elementary algebra in s t i l l
another way: in fact, by introducing into the system of algebra new mathematical
terms which cannot be defined by means of those occurring in the or iginal system.
The new terms may denote certain properties of numbers, certain re la t ions between
numbers, or certain operations on numbers (in par t icular , unary operations — i . e . ,
functions of one real variable). Inconsequence of any such extension of the original
system we are presented with a new decision problem. In some cases, from the resul ts
known in the l i te ra ture i t easily follows that the solution of the problem is nega-
tive — i . e . , that no decision method for the enlarged system can ever be found, and
that no decision machine can be constructed. In view of the Godel-Church-Rosser
resul t mentioned in the Introduction, this applies , for instance, if we introduce
into the system of real algebra the predicate In, to denote the property of being
an integer (so that In(x) is read: "x in an in teger") ; and, by the r e su l t of Mrs.
Robinson, the same applies to the predicate Rt, denoting the property of being
rat ional . The situation is s t i l l the same if we introduce a symbol for some periodic
function, for instance, sine; t h i s is seen if only from the fact that the notion
of an integer and of a ra t ional number can easily be defined in terms of sine and
the notions of our original system; thus we can say that x is a ra t ional i f and
only i f i t s a t i s f i e s the formula

( E y ) ( E z ) [ ( x - y = z ) A ~ ( y = 0 ) A ( s i n y = 0 ) A ( s i n z = 0 ) ] .

In other cases, by introducing a new symbol we arrive at a system for which
the decision problem is open. This applies, for instance, to the system obtained by
introducing the operation of exponentiation (of course restr icted to the cases where
i t yields a definite real resul t ) , or — what amounts essentially to the same thing —
the symbol Exp to denote an exponential with a fixed base, for example, 2 ( 2 O ) . The
decision problem for the system just mentioned is of a great theoretical and practical
in teres t . But i t s solution seems to present considerable d i f f icu l t ies . These d i f f i -
cul t ies appear, however, to be of a purely mathematical (not logical) nature: they
arise from the fact that our knowledge of conditions for the solvability of equations
and inequalities in the enlarged system is far from adequate'2 1 ' .

In this connection i t may be worth while to mention that by introducing the
operation of exponentiation into the system of elementary complex algebra, we arrive
at' a system for which the solution of the decision problem is negative. In fact i t
i s well known that the exponential function in the complex domain is periodic, and
hence, like the function sine in the real domain, i t allows us to define the notion
of an integer.
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NOTES

1. When dealing with theories presented as formal axiomatized systems, one often

uses the term "decision method" for a theory in a different sense, by referring

it to the class, not of all true sentences, but of all theorems of the theory:

i.e., of all sentences of the theory which can be derived from the axioms by

means of certain prescribed rules of inference.

2. See Lowenheim [ll], Post [ u ] , Langford [lO], Presburger [15] , and McKinsey

[12]. (The numbers in square brackets refer to items in the Bibliography fol-

lowing these Notes.) The results of Tarski and Mrs. Szmielew are unpublished.

3. See Godel [4], Church [3], and Rosser [16]. The results of Mostowski, Tarski,

and Mrs. Robinson are unpublished.

4. This result was mentioned, though in an implicit form and without proof, in

Tarski [19], pp.233 and 234; see also Tarski [22]. Some partial results tending

in the same direction — e.g., decision methods for elementary algebra with

addition as the only operation, and for the geometry of the straight line —

are still older, and were obtained by Tarski and presented in his university

lectures in the years 1926-1928; cf. Presburger [15], p.95, footnote 4, and

Tarski [2l], p.324, footnote 53.

5. In this connection A. Mostowski has pointed out the following. Although the

general concept of an integer is lacking in our system of elementary algebra,

yet it can easily be shown that a "general arithmetic" in the sense of Carnap

[2J, p.206, is "contained" in this system. Since the language in question is

consistent and decidable (again in the sense of Carnap [2], pp.207 and 209),

it provides an example against Carnap's assertion that "every consistent lan-

guage which contains a general arithmetic is irresoluble" (ibid., p.210). Carnap's

definition of the phrase "contains a general arithmetic" is therefore certainly

too wide.

6. Among the works listed in the Bibliography, Hilbert-Bernays [7] may be consulted

for various logical and metamathematical notions and results involved in our

discussion, and van der Waerden [23] will provide necessary information in

the domain of algebra.

7. In this monograph we establish certain results concerning various mathematical

theories, such as elementary algebra and elementary geometry. Hence our dis-

cussion belongs to the general theory of mathematical theories: i.e., to what

is called "metamathematics". To give our discussion a precise form we have

to use various metamathematical symbols and notions. Since, however, we do

not want to create any special difficulties for the reader, we apply the fol-

lowing method: when referring to individual symbols of the mathematical theory

being discussed, or to expressions involving these symbols, we use the symbols

and expressions themselves. We could thus say that the symbols and expressions

play in our discussion the role of metamathematical constants. On the other
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hand, when referring to arbitrary symbols and expressions, or to arbitrary
expressions of a certain form, we use special metamathematical variables. In
fact, small Greek letters, as for instance "a", "/?', "y", are used to represent
arbitrary terms, and in particular the letters "£", "''7", "A.", "/x", "v", will
be used to represent arbitrary variables; on the other hand, Greek capitals
"$', "8", "if "will be used to represent arbitrary formulas and sentences. With
these exceptions we do not introduce any special metamathematical symbolism.
Various metamathematical notions whose intuitive meaning is clear will be
used without any explanation; this applies, for instance, to such a phrase
as "the variable t; occurs in the formula <̂ >." Also, we do not consider i t neces-
sary to set up an axiomatic foundation for our metamathematical discussion, and
we avoid a strictly formal exposition of metamathematical arguments. We assume
that we can avail ourselves in metamathematics of elementary number theory; we
use variables "m", "n", "p", and so on to represent arbitrary integers; and
we employ the ordinary notation for individual integers, arithmetical rela-
tions between integers, and operations on them.

The reader who is interested in the deductive foundations, and a precise de-
velopment, of metamathematical discussion, may be referred to Carnap [2] (part
II , pp.55 ff.), Gbdel [4], Tarski [2l] (Section 2, pp.279 ff. , in particular
p.289), and Tarski [20] (especially p. 100).

8. In choosing symbols for the formalized system of algebra, we have been interested
in presenting the metamathematical results in the simplest possible form. For
this reason we have not introduced into the system various mathematical and
logical symbols which are ordinarily used in expressing mathematical theorems:
such as the subtraction symbol " - " , the symbol "<", the implication sign <!-<i\
the equivalence sign ''>••-", and the universal quantifier "A". Nevertheless, some
of these symbols are made available for our use, since they are introduced
as metamathematical abbreviations. If we wished, we could reduce the number
of symbols s t i l l further; we could, for instance, dispense with the ">" sign,
by treating

x > y

merely as an abbreviation for

( E z ) \ y ( z = 0) A ( x = y + z2)] .

In an analogous way we could dispense with the symbols 0, 1, and -1, and with
one of the two logical connectives V and A. But such a reduction in the number
of symbols would hardly be advantageous from our point of view.

It should be pointed out that, in order to increase the efficiency of the
decision machine which may be constructed on the basis of this monograph, it
might very well turn out to be useful to enrich the symbolism of our system,
even if this carried with it certain complications in the description of the
decision method.

9. A formal definition of truth can be found in Tarski [21]. It should be pointed
out that we can eliminate the notion of truth from our whole discussion by
subjecting the system of elementary algebra to the process of axiomatiza-
tion. For this purpose, we single out certain sentences of our system which
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we call "axioms". They are divided into logical and algebraic axioms. The
logical axioms (or rather, axiom schemata) are those of the sentential calculus
and the lower predicate calculus with identity; they can be found, for in-
stance, in Hilbert-Bemays [7] (see sections 3, 4 and 5 in vol.1, and supplement
1 in vol.2). Among algebraic axioms we find, in the first place, those which
characterize the set of real numbers as a commutative ordered field with the
operations + and • and the relation >, and which single out in a familiar way
the three special elements 0, 1, and - 1 . These axioms are supplemented by
one additional axiom schema comprehending all sentences of the form

( i ) ( A ^ ) . . A A ^ ) { A v ) ( A 0 l U v > 0 A ( £ £ ) ( ( £ = V) A ( a > 0 ) ) A

( £ < f ) ( ( < f = O A ( 0 > a ) ) l —- ( £ f ) ( ( 7 j > £ ) A < £ > £ ) A ( a = 0 ) j i .

where ^ 4n , Vi C are arbitrary variables, § is any variable different
from 77 and £, and a is any term — which, in the non-trivial cases, of course
involves the variable £j. Intuitively speaking, this axiom schema expresses
the fact that every function which is represented by a term of our symbolism
( i . e . , every rational integral function) and which is positive at one point
and negative at another, vanishes at some point in between.

From what can be found in the l i terature (see van der Waerden [23], in par-
t icular pp.235 f . ) , i t is seen that this axiom schema can be equivalently
replaced by the combination of an axiom expressing the fact that every positive
number has a square root, with an axiom schema comprehending all sentences
to the effect that every polynomial of odd degree has a zero: i . e . , all sen-
tences of the form

(ii) M(A70.. .(Arj,Bj[~ (7,^=0) - (^ ) (T , O + T ) I £+ . . . + W ^ " + 1 = 0 ) ] ,

where T)o, 77 ,..., 17 + are arbitrary variables, and £; is any variable different
from all of them. It is also possible to use, instead of (ii), a schema com-
prehending all sentences to the effect that every polynomial of degree at
least three has a quadratic factor. Finally, it turns out to be possible to
replace equivalently schema (i) by the seemingly much stronger axiom schema
comprehending all those particular cases of the continuity axiom which can
be expressed in our symbolism. (By the continuity axiom we may understand
the statement that every set of real numbers which is bounded above has a
least upper bound; when expressing particular cases of this axiom in our sym-
bolism, we speak, not of elements of a set, but of numbers satisfying a given
formula.) The possibility of this last replacement, however, is a rather deep
result, which is a by-product of other results presented in this work; in
fact, of those discussed below in Note 15.

After having selected the axioms, we describe the operations by means of which
new sentences can be derived from given ones. These operations are expressed
in the so-called "rules of inference" familiar from mathematical logic. A
sentence which can be derived from axioms by repeated applications of the
rules of inference is called a provable sentence. In our further discussion
— in particular, in defining the notions of equivalence of terms and equiva-
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lence of formulas — we replace everywhere the notion of a true sentence by
that of a provable one. Hence, when establishing certain of the results given
la t e r — in par t icular , the theorems about equivalent formulas — we have to
show that the sentences involved are formally derivable from the selected
axioms (and not that they are true in any i n tu i t i ve sense); otherwise the
discussion does not dif fer from that in the text .

10. We use the term "decision method" here in an in tu i t ive sense, without giving
a formal def in i t ion . Such a procedure i s possible because our resul t i s of
a positive character: we are actually going to establish a decision method, and
no one who understands our discussion will be l ikely to have any doubt that
this method enables us to decide in a f ini te number of steps whether any given
sentence of elementary algebra i s true. The situation changes radically, however,
i f one intends to obtain a r e su l t of a negative character — i . e . , to show
for a given theory that no decision method can be found; a precise definition
of a decision method then becomes indispensable. The way in which such a defi-
nition i s to be given is of course known from the contemporary l i te ra ture . Using
one of the familiar methods — for instance the method due to Godel — one
establishes a one-to-one correspondence between expressions of the system and
positive integers, and one agrees to t rea t the phrase "there exists a decision
method for the class A of expressions" as equivalent with the phrase "the set
of numbers correlated with the expressions of A i s general recurs ive." (When
the set of numbers correlated with a class A of sentences is general recur-
sive, we sometimes say simply that A i s general recursive.) For a discussion
of the notion of general recursiveness, see Hilbert-Bernays [7] and Kleene [8].

11. The method of eliminating quant i f iers occurs in a more or less expl ic i t form
in the papers Lowenheim [ l l ] (section 3) , Skolem [18] (section 4) , Langford
[lO], and Presburger [15]. In Tarski 's university lectures for the years 1926-
1928 th is method was developed in a general and systematic way; cf. Presburger
[15], P-95, footnote 4, and p. 97, footnote 1.

12. The resul ts obtained in Theorems 27 and 29, and culminating in Theorem 31, seem
to deserve interes t even from the purely mathematical point of view. They are
closely re la ted to the well-known theorem of Sturm, and in proving them we
have par t ly used Sturm's methods.

The theorem most closely related to Sturm's ideas i s Theorem 27. In fact, by
analyzing, and s l ight ly generalizing, the proof of th is theorem we arrive at
the following formulation. Let a and /3 be any two polynomials in a variable
£, and x and ix any two real numbers with K < /z. We construct a sequence of
polynomials y , y , . . . , y — which may be called the Sturm chain for a and
/5 — by taking a for y , /3 for y , and assuming that y-, with i > 2, i s the
negative remainder of y±-a and O^-ii w e discontinue the construction when we
reach a polynomial y which i s a divisor of yn_l. Let K ,..., «n and fi ,..., /J.n
be the sequences of values of 7 ^ , . . . , yn at £ = K and g = JJ., respectively; le t
k be the number of changes in sign of the sequence K , . . . , K , and le t m be
the number of changes in sign of the sequence / z^ . . . , tin. Then i t turns out
that k-m is jus t the number g(a,/3) defined as in the proof of Theorem 27, but
with the roots assumed to l i e between K and /z. (In Theorem 27 we were dealing,
not with the a rb i t ra ry in te rva l (K,/J.), but with the interval (-<*>, + 0 0).)
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Sturm himself considered two particular cases of this general theorem: the
case where /Sis the derivative of a. — when the number k-m proves to be simply
the number of distinct roots of a in the interval (K,/U.); and the case where
/3 is arbitrary but a is a polynomial without multiple roots — when k-m proves
to be the difference between the number of roots of a at which /3 agrees in
sign with the derivative of a, and the number of roots of a at which /3 dis-
agrees in sign with the derivative of a — the roots being taken from the
interval (K,/J.). These two special cases easily follow from the theorem, and
we have made an essential use of this fact in the proof of Theorem 29. The general
formulation was found recently by J.C.C. McKinsey; i t contributed to a simpli-
fication, not of the original decision method itself, but of i ts mathematical
description.

Apart, however, from technicalities connected with the notion and construction
of Sturm chains, the mathematical content of Sturm's theorem essentially con-
sists in the following: given any algebraic equation in one variable x, and
with the coefficients a. a , . . . , a^, there is an elementary criterion for
this equation to have exactly k real solutions (which may be in addition sub-
jected to the condition that they lie in a given interval): such a criterion
is obtained by constructing a certain finite sequence of systems, each consisting
of finitely many equations and inequalities which involve the coefficients

a o ' "i an °^ t n e given equation (and possibly the end-points b and c of
the interval); i t is shown that the equation has exactly k roots if and only
if i t s coefficients satisfy all the equations and inequalities of at least
one of these systems. (When applied to an equation with constant coefficients, the
criterion enables us actually to determine the number of roots of the equa-
tion, but this is only a by-product of Sturm's theorem.) By applying Sturm's
theorem we obtain in particular an elementary condition for an algebraic equation
in one unknown to have at least one real solution. Theorem 31 gives directly
an extension of this special result to an arbitrary system of algebraic equa-
tions and inequalities with arbitrarily many unknowns. It is easily seen, however,
that from our theorem one can obtain stronger consequences: in fact, criteria
for such systems to have exactly k real solutions. To clear up this point, let
us consider the simple case of a system consisting of one equation in two unknowns

(i) F(x,y) = 0 .

We form the following system of equations and inequalities

F(x,y) = 0

(ii) ' F(x'.y') = 0

(x - x'V +(y - y')2 >0 .

By Theorem 31 we have an elementary c r i te r ion for the system ( n ) to have at
least one solution. But i t i s obvious that this cr i ter ion is at the same time
a criterion for( i ) to have at least two solutions. In the same way, we can obtain
c r i t e r i a for ( i ) to have at l eas t 3 ,4 , . - - , k real so lu t ions . Hence we also
obtain a cr i ter ion for (i) to have exactly k solutions (since an equation has
exactly k solutions i f i t has at least kt but not at least fe + 1, solutions).
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The situation does not change if the solutions are required to satisfy addi-
tional conditions — namely, to lie within given bounds. We can thus say that
Theorem 31 constitutes an extension of Sturm's theorem (or, at least, of the
essential part of this theorem) to arbitrary systems of equations and inequal-
ities with arbitrarily many unknowns.

It may be noticed that by Sturm's theorem a criterion for solvability (in
the real domain) involves systems which contain inequalities as well as equa-
tions. Hence, to obtain an extension of this theorem to systems of equations
in many unknowns, it seemed advisable to consider inequalities from the begin-
ning, and in the first step to extend the theorem to arbitrary systems of
equations and inequalities in one unknown. As a result of this preliminary
extension, the subsequent induction with respect to the number of unknowns
becomes almost trivial.

In its most general form the mathematical result obtained above seems to be
new, although, in view of the extent of the literature involved, we have not
been able to establish this fact with absolute certainty. At any rate some
precedents are known in the literature. From what can be found in Sturm's
original paper, the extension of his result to the case of one equation and
one inequality with one unknown can easily be obtained; Kronecker, in his
theory of characteristics, concerned himself with the case of n (independent)
equations with n unknowns. It seems, on the other hand, that such a simple
problem as that of finding an elementary criterion for the solvability in
the real domain of one equation in two unknowns has not been previously treated;
the same applies to the case of a system of inequalities (without equations)
in one unknown — although this case is essential for the subsequent induc-
tion. (Cf. in this connection, Weber [24], pp.271 ff. , and Runge [17] , pp.416
ff., where further references to the literature are also given.)

13. The result established in Theorem 31 and discussed in the preceding note has
various interesting consequences. To formulate them, we can use, for instance,
a geometric language and refer the result to n-dimensional analytic space
with real coordinates — or, what is slightly more convenient, to the infinite-
dimensional space S^, in which, however, every point has only finitely many
coordinates different from zero. By an elementary algebraic domain in 5^ we
understand the set of all points <̂  xfl, Jf x^t . . . ~y in which the coor-
dinates */, , *jka>---> *j satisfy a given algebraic equation or inequality

F{*ki,...,xkm)=0
or

'Si *O>0 '
and the remaining coordinates are zeros. Let 2[ be t n e smallest family of
point sets in S^ which contains among its elements all elementary algebraic
domains and is closed under the operations of finite set-addition, finite
set-multiplication, set-complementation, and projection parallel to any axis.
(The projection of a set A parallel to the nth axis is the set obtained by
replacing by zero the ntb coordinate of every point of A.) Now Theorem 31 in
geometric formulation implies that the family 2 consists of those and only
those sets in S^ which are finite sums of finite products of elementary alge-
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braic domains. The possibility of passing from the original formulation to
the new one is a consequence of the known relations between projection and
existential quantifiers.

Theorem 31 has also some implications concerning the notion of arithmetical
(or elementary) definability. A setAof real numbers is called arithmeti-
cally definable if there is a formula <§ in our system containing one free
variable and such that A consists of just those numbers which satisfy <f>. In
a similar way we define an arithmetically definable binary, ternary, and in
general an n-ary, relation between real numbers. Now Theorem 31 gives us a
simple characterization of those sets of real numbers, and relations between
real numbers, which are arithmetically definable. We see, for instance, that
a set of real numbers is arithmetically definable if and only if i t is a set-
theoretical sum of a finite number of intervals (bounded, or unbounded; closed,
open, or half-closed, half-open) with algebraic end-points; in particular, a
real number ( i . e . , the set consisting of this number alone) is arithmetically
definable if and only if i t is algebraic. Hence i t follows that an arithmeti-
cally definable set of real numbers which is bounded above has an arithmetically
definable least upper bound — a consequence which is relevant in connection
with a result mentioned near the end of Note 9. As further consequences we
conclude that the sets of all integers, of all rationals, etc., are not arith-
metically definable, which just if ies some remarks made in the Introduction.

As a simple corollary of Theorem 31 we obtain: For every formula <£ there is
an equivalent formula f with the same free variables of the following form:

This corollary can also be interpreted geometrically.

For the notions used in this note, cf. Tarski [19] and Kuratowski-Tarski [9].

14. In other words, using terminology introduced in Note 10, we state that the
number-theoretic function correlated with WU is general recursive. Actually
this function is easily seen to be a general recursive function of a very
simple type — what is called a "primitive" recursive function.

15. If we take the axiomatic point of view outlined in Note 9 and replace in our
whole discussion the notion of truth by that of provability, then the meaning
and extent of the fundamental results obtained in Section 2 undergo some essen-
tial changes. In the new interpretation, Theorem 36 implies that every sentence
of elementary algebra is provably equivalent to one of the sentences 0 = 0 or
0 = 1 . In addition, we can easily show that WU($>) = (0 = 0) if and only if
Hf(~<£) = (0 = 1), and that for any provable sentence <§ we have Ht/(<J) s (0 = 0).
By combining these results, we arrive at the conclusion that the axiomatic
system of elementary algebra is consistent and complete, in the sense that one
and only one of any pair <£ and "" <J of contradictory sentences is provable. The
proof of this fact has what is called a constructive character. The completeness
of the system implies by itself the existence of a decision method for theclass
of all provable sentences (even without the knowledge that the number-theoretical
function correlated with WU is general recursive); cf. Kleene [8].

53



600

We further notice that a l l the axioms l i s t e d in Note 9 are s a t i s f i ed , not
only by real numbers, but by the elements oi any real closed field in the sense
of Artin and Schreier (cf. van der Waerden [23], chapter IX). Thus all the results
just mentioned can be extended to the elementary theory of real closed fields.
From the fact that this theory is complete i t follows that there is no sentence
expressible in our formal system of elementary algebra which would hold m one
real closed field and fail in another. In other words, any arithmetically de-
finable property (in the sense of Note 13) which applies to one real closed
field also applies to a l l other such fields: i . e . , any two real closed fields
are arithmetically indist inguishable.

In general , when applied to axiomatized theor ies , the notions of t ruth and
provability do not have the same extension. Usually i t can be shown only that
every provable sentence i s t r ue . Since, however, in the case of elementary
algebra the class of provable sentences turns out to be complete, we conclude
that in this particular case the converse holds, and hence that the two classes
coincide. Thus in the case of elementary algebra three equivalent definitions
of a true sentence are available: ( i ) the defini t ion of a true sentence as a
sentence <£ such that WU($>) = (0 = 0); ( i i ) the definit ion of a true sentence
as a provable sentence; ( i i i ) the defini t ion based on the general method of
defining t ru th developed in Tarski [21J. Correspondingly, when s t a r t i n g to
develop elementary algebra, we have three methods of s t ipula t ing which sen-
tences will be accepted in th i s algebra — i . e . , recognized as t rue . Apart
from any educational and psychological considerations, the f i r s t method has
in principle a great advantage: i t implies directly that the class of sentences
recognized as true i s general recursive. Hence i t provides us from the begin-
ning with a mechanical device to decide in each pa r t i cu la r case whether a
sentence should be accepted, and serves as a basis for the construction of
a decision machine. The second method — which i s the usual axiomatic method
— i s less advantageous: i t has as a d i rec t consequence only the fact that
the class of sentences recognized as true i s what i s called recursively enu-
merable (not necessarily general recursive) . I t leads to the construction of
a machine which would be much less useful — to a machine which would con-
s t ruct , so to speak, blindly, the inf in i te sequence of a l l sentences accepted
as true, without being able to t e l l in advance whether a given sentence would
ever appear in t h i s sequence. The th i rd method, though very important for
certain theoretical considerations, i s even less advantageous than the second. I t
does not show that the class of accepted sentences i s recursively enumerable; i t
can hardly be applied to a p rac t ica l construction of a theory unless i t is
combined on a metamathematical level with the f i r s t or the second method.
I t goes without saying that in the p a r t i c u l a r case with which we are con-
cerned — that i s , in the case of elementary algebra — by es tabl ishing the
equivalence of these possible definit ions of t ruth we have eo ipso shown that
in this case the three methods determine eventually the same class of sentences.

16. We can also consider a more r e s t r i c t ed elementary system of complex algebra,
from which the symbols > and Rl have been eliminated. The decision method
applies to such a system as well, and even becomes much simpler. By taking
the axiomatic point of view and basing the discussion on the notion of prov-
a b i l i t y , we can carry over to th is r e s t r i c t ed system of complex algebra al l
the resul ts pointed out in Note 15. Since the axioms of this system prove to
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be satisfied by elements of an arbitrary algebraic closed field with charac-
te r i s t ic zero (thus, in particular, by the complex algebraic numbers), the
results apply to the general elementary theory of such fields; in particular,
any two algebraic closed fields with characteristic zero turn out to be arith-
metically indistinguishable. A slight change in the argument permits us further
to extend the results just mentioned to algebraic closed fields with any given
characteristic p. (For these notions, cf. van der Waerden [23], chapter 5.)

On the other hand, as was mentioned in the Introduction, no decision method
can be given for the arithmetic of rationals, nor for the elementary theory
of arbitrary fields. For most special fields the decision problem s t i l l remains
open. This applies, for instance, to finite algebraic extensions of the field
of rational numbers and to the field of all numbers expressible by means of
radicals. I t would be interesting to solve the decision problem for some
of these special fields, or even to obtain a simple mathematical characteri-
zation of al l those fields for which the solution of the decision problem
is positive.

17. As in the case of elementary algebra (see Note 8), some of the symbols listed
could be eliminated from the system of elementary geometry and treated merely
as abbreviations. I t is known, for example, that in n-dimensional geometry
with n ^ 2 the symbol "B" of the betweenness relation can be defined in terms
of the symbol "D" of the equidistance relation.

18. Exactly as in the case of elementary algebra, we can treat the system of
elementary geometry in an axiomatic way, and base our discussion of the decision
problem on the notion of provability. If we restr ict ourselves to the case
of two dimensions, we can take, for instance (in addition to the general logical
axioms mentioned in Note 9), the following geometrical axioms:

( i ) (Ax)(Ay)B(x,y,y) :

( i i ) (Ax)(Ay)[B(x,y,x) — - ( x = y)] ;

( i i i ) (Ax)(Ay)(Az) [ f i U . y . z ) — B ( z , y , x ) j ;

( i v ) ( A x ) ( A y ) ( A z ) U u ) i [ B ( x , y , u ) / \ B ( y , z , u ) ] — ~ B ( x , y , z ) f ;

( v ) ( A x ) ( A y ) ( A z ) ( A u ) i [ B ( x , y , z) A B ( y , z , u ) A - ( y = z ) ] — B{ x , y , u ) \ ;

( v i ) U x ) ( / t y ) U z ) U u ) J [ B ( x , y , u ) A B ( x , z , u ) j — [ B U . y , z ) V B U , z , y ) H ;

( v i i ) ( A x ) ( A y ) ( A z ) ( A u ) i [ B ( x , y , z ) A B ( x , y , u ) A ^ ( x - y ) ] — -

[B(x,z,u) V B ( X , U , Z ) ] J - ;

( v i i i ) ( E x ) ( £ y ) ( £ z ) [ ~ B ( x , y , z ) A ~ B ( y , z , x ) A ~ B ( z , x , y ) ] ;

( i x ) ( A x ) ( A y ) ( A z ) ( A z ' ) ( A u ) j [ B ( x , z ' , z) A B ( y , z , u ) ] — -

( E y l [ B ( x , y ' , y ) A B ( y ' , z \ u ) ] [ ;

5 5



602

(x) (Ax)Uy)(Az)(Az')(Au){[B(x,z,z')/\B(y,z,u)/\-*>{x = z)] — -

(Ey'H.Eu')[B(x,y,y')AB(x,u,u')/\Bly', z', u')]|;

(xi) (Ax)Uy) (Az)(Au)(Ev)<[(B(x,u,v)\jB(u,v,x)\jB(v,x,u))AB(y,v,z)] V

[{B(y,u,v)\'B(u,v,y)VB(v,y,u))AB(z,v,x)] V

[(B(z,u,w)VB(u,u,2)VB(u,z,u))AB(x,u,y)j J- ;

(xii) U x ) U y ) Z)( x ,y; y , *)

(xiii) {Ax){Ay)(Az)[D(.x,y;z,z) • (z = y)]

(xiv) (>(^)(/ly)(/lz)(/lu)(J4i;)(/tu;)<[/)(x,y;z,u)AiXi,y;v)w)]—^iXz.u^.u)! ;

(xv) (Ax)(Ay)(Az)(Az')(Au) -j [~ (x = y) A£)(x, z;*, z')AD(y,z;y,z') A

B(y,u,2')A(B(*,u,z)VB(z,2,u))]-— (z = z')l ;

(xvi) (Ax){Axr)(Ay){Ayl)(Az)(Az')(Au){Au')i^)(x,y;x',y')AD{y,z;y',z')A

D(x,u;x',u')/\D(y,u;y',u')A

B(x,y,z)AB{x',y',z')A

~ ( * = y)A~(y = z)]—Z)(z,U;z',u')} ;

(xvii) (Ax)(Ay)(Ayl)(Az')(Ez)iB(x,y,z)AD(y,z;y',z')\;

(xviii) (^x)(Xx')(/ly)Uy')Uz')Uv)|p(x,y;x',/)—-

(£z)(£u)[D(*,z;x',z')AD(y,z;y',z')AB(2,u,v)A

(B(x,y,u)\/B(y,u,x)VB(u,x,y))]j .

To these is added the axiom schema which comprehends all particular cases of
the axiom of continuity (e.g., in the Dedekind form) that are expressible
in our system: i.e., all sentences of the following form:

(xix) {A^1)...{A^(EM.){AVl){Arl2)[(§A^^ B ^ . ^ . T , , ) ] — .

where neither /J. nor rj^ is free in the formula q>, and neither \x nor r\ is free
in the formula >p.

The reader will notice the formal simplicity of most of the axioms just given—
which we have tried to put into evidence by avoiding (contrary to the prevailing
custom) the use of any defined terms in formulating the axioms. On the other
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hand, however, the reader wi l l eas i ly recognize a close s imi lar i ty between
our axiom system and various systems which can be found in the comprehensive
l i t e ra tu re of the foundations of geometry; see, e .g . , Hilbert [6].

By means of some obvious changes in ( v i i i ) and (xi) one can obtain from this
axiom system a system of axioms for elementary geometry of any number of
dimensions.

Again as in the case of algebra, one of the achievements attained by the axio-
matic treatment of the subject i s a constructive consistency proof for the
whole of elementary geometry. This improves a resul t to be found in Hilbert-
Bernays [7] (vol .2, pp.38 ff. ) . I t may also be mentioned that in Hilbert [6]
(section 35, pp. 96-98) a resul t i s given which i s closely connected with the
decision method for elementary geometry, but which has a rather r e s t r i c t ed
character.

19. As i s known, ordinary project ive geometry can be t rea ted as a special ized
branch of l a t t i c e theory — more specif ical ly , of the theory of modular la t -
t ices : see Birkhoff [l] , where references to ear l ier papers of Menger can also
be found. The decision method applies to this branch of the theory of modular
l a t t i c e s as well.

20. In the axiomatic presentat ion, the introduction of the new symbol Exp would
require the addition of new axioms. The following three axioms can be used,
for ins tance, for th is purpose:

(Ax)(Ay)[(x> y) —~(Exp{x) > Exp(y))]

(Ax)(Ay)[(Exp(x)-Exp(y)) = Exp(x + y)]

Exp(l) = 1 + 1.

21. Similar decision problems arise if we introduce into our system of elementary
algebra the symbol Al to denote the property of being an algebraic number, or
the symbol Cn to denote the property of being a constructible number ( i . e . , a
number which can be obtained from the number 1 by means of the rational opera-
tions, together with the operation of extracting square roots). If the solution
of the decision problem for elementary algebra with the addition of the symbol
Cn were positive, this result would have an interesting application for geometry:
in fact, we should obtain a decision method which would enable us, not only
to decide on the truth of every sentence of elementary geometry, but also — in
the case of ex i s t en t i a l sentences (like the sentence s tat ing the poss ib i l i ty
of t r i s e c t i n g an a rb i t ra ry angle) — to decide whether the t ruth of such a
sentence can be es tabl i shed using only the so-cal led elementary construc-
t ions : i . e . , constructions by means of rule and compass. I t seems unlikely,
however, tha t the solut ion of the problem in question i s indeed pos i t ive ;
probably we shal l be able to show that such a sharper decision method for
elementary geometry cannot be found.
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SUPPLEMENTARY NOTES

1. The references to decision methods previously established given on p. 1 and in
Note 2, p. 47, were not intended to be complete. For some further resul ts and addi-
tional references compare the ser ies of abstracts by Mostowski, Mrs. Szmielew, and
Tarski in the Bulletin of the American Mathematical Society, vol. 55, pp. 63-66 and
1192, 1949, as well as the following papers:

Gentzen, G., "Uhtersuchungen liber das logische Schliessen". Mathematische
Zeitschrift. vol. 39, pp. 176-210, 1934.
McKinsey, J. C. C., "A solution of the decision problem for the Lewis
systems S2 and S4, with an application to topology". Journal of symbolic
logic, vol.6, pp. 117-134, 1941.
McKinsey, J . C. C., and Tarski, A., "The algebra of topology". Annals of
mathematics, vol. 45, pp. 141-191, 1944.
Skolem, T., Uber einige Satzfunktionen in der Arithmetik. [Skrifter utgi t t
av det Norske Videnskaps-Akademi iGs lo , I . k l a s s e 1930, no. 7 . ] Oslo, 1931.
Szmielew, W., "Decis ion problem in group theory". Proceedings of the Tenth
International Congress of Philosophy, fasc. 2, pp. 763-766, Amsterdam,
1949.

2. The resul ts of Mrs. Robinson, Mostowski, and the author mentioned in the f i r s t
paragraph of p. 2 appeared in pr in t (some only in out l ine form) af ter the f i r s t
edition of this monograph. See the ser ies of abstracts in the Journal of symbolic
logic, vol. 14, pp. 75-78, 1949, as well as the a r t i c l e :

Robinson, J . , "Definability and decision problems in arithmetic". Journal
of symbolic logic, vol. 14, pp. 98-114, 1949.

Some related results can be found in the a r t i c le :
Robinson, R. M. , "Undecidable rings". Transactions of the American Mathe-
matical Society, vol. 70, pp. 137-159, 1951.

3. The following remarks refer to the discussion on pp. 4 and 5. Many examples of
open problems in elementary algebra and geometry are known; one comes across discus-
sions of such problems by looking through any issue of the American mathematical
monthly. However, the problem of describing the behavior of the function d does not
seem to have been previously treated in the l i te ra ture . For a discussion of a related
problem — involving the decomposition of P and Q, not in triangles, but in arbitrary
polygons — see the following a r t i c l e (where references to earl ier papers of Moese and
the author can also be found):

Tarski, A., "Uwagi o stopniu rownowaznosci wielokatow". (Remarks on the
degree of equivalence of polygons, in Polish.) Parametr, vol. 2, 1932.

It may be interesting to mention that some conclusions concerning the function d
can be derived from the general results stated in Note 13, p. 53. In fact, i t can be
shown that every bounded interval (a, 6) can be divided into finitely many subintervals
such that the function d i s constant within each of these subintervals; all the end-
points of these subintervals are algebraic, with the possible exception of a and b.
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4. The statement in Note 12, p. 52, to the effect that the case of a system of in-
equal i t ies in one unknown was not previously treated in the l i t e ra ture , seems to be
correct when applied to the situation which existed at the time when the results of
this work were found and f i r s t mentioned in print (1931), as well as for many years
thereafter . However, the author 's at tention has been called to the fact that this
case has recently been treated in the paper:

Meserve, B. E., "Inequal i t ies of higher degree in one unknown". American
journal of mathematics, vol. 49, pp. 357-370, 1947.

5. The discussion in Note 13, pp. 52-53, may convey the impression that the notions
considered in the f i r s t paragraph have but l i t t l e in common with those considered in
the second paragraph. Actually, these notions are very closely related to each other.
In fact, if the notion of arithmetical definabil i ty i s applied to arbitrary sets of
sequences of real numbers, i . e . , to point sets in S^, then the family of al l ar i th-
metically definable point se ts simply coincides with the family 2 -

6. I t was stated in Note 13, p. 53, that every real number which is arithmetically
definable is algebraic. An in teres t ing application of this resul t to the theory of
games has recently been found by 0. Gross and is discussed in his paper "Oh certain
games with transcendental values" (to appear in the American mathematical monthly).

7. As was pointed out in Note 15, p. 54, the completeness theorem for elementary
algebra leads to the following result : every arithmetically definable property which
applies to one real closed field also applies to all other such fields. I t is impor-
tant to real ize that the resul t j u s t mentioned extends to a comprehensive class of
properties which are not ari thmetically definable ( i . e . , which are not expressible
in our formal system of elementary algebra). Ih i s class includes in part icular a l l
the properties expressed by sentences of the form (Am)<£>^, (Am) (En )$ n n , . . .
where m,n, . . . are variables assumed to range over all positive integers and where
^ • ' JM n»' " • a r e formula which involve m,n, . . . (as free variables) and which,
for any particular values of m,n, . . ., are equivalent in any real closed fields to
sentences of elementary algebra. In fact, consider a sentence of this kind, say,
(Am)'P . If this sentence holds in a given real closed field, the same obviously
appl ies to a l l the pa r t i cu la r sentences of the form im> i . e . , to 9X , <r 2 ,
<̂  Each of these part icular sentences is equivalent to a sentence of ele-
mentary algebra and hence, by the resu l t discussed, i t holds in every real closed
field. Consequently, the universal sentence (Am) SPR also holds in every real closed
field. Various theorems of these types are known which were originally established
for the field of real numbers using essential ly the continuity of this field (some-
times with the help of diff icult topological methods) and whose extension to arbitrary
real closed f ie lds presented a new and d i f f i cu l t problem; in view of our general
resu l t such an extension now becomes automatic. As examples the following three
theorems may be mentioned.

I . Let Ft be an m-dimensional region defined as the set of all points \ * o , * . ,

. . . , x \ satisfying a finite system of inequalities P (x , * , . . . , x _ ) > 0

where the P 's for i = 0 , 1 , . . . , " - 1 ore polynomials of degree at most p; let F be a

rational function whose denominator does not vanish on Ft. Then there is a posit ive

integer q (dependent exclusively on m, n, and p) such that the set S of all function
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values of F on Ft is a sum of at most q closed intervals; if R is bounded, then all
these intervals are also bounded, and hence F reaches a maximum and minimum on R.

I I . For every system of m polynomials P , P , . . . , P in m variables there
are real numbers c > 0 , x , x. , . . . . x such that P .(x , x . . . . . x ) = c • x .
for i = 0, 1 , . . . , m - 1 .

I I I . Every commutative division algebra—whether associative or not—over the
field of real numbers is of order 1 or 2; if it has a unit, it coincides either with
the field of real numbers or with the algebraic closure of this field (i.e., with the
field of complex numbers).

While I is simply a particular case of a familiar theorem concerning continuous
functions, and the same applies to the "eigenvalue theorem" II , Theorem III has a
specifically algebraic character; i t was proved, with the help of topology, in the
ar t ic le :

Hopf, H., "Systeme symmetrischer Bilinearformen und euklidische Modelle der
projectiven Raume". Vierteljahrsschrift der Naturforschenden Gesellschaft
in Zurich, vol. 85, supplement No. 32, pp. 165-177, 1940.

Ihe research to extend these and similar results , obtained by means of topolo-
gical methods, to arbitrary real closed fields was ini t iated by H. Hopf. Compare the
following papers where part ial results in this direction (in particular, extensions
of some special cases of Theorem I) have been achieved directly, without the help of
our general method:

Behrend, F., "Ober Systeme algebraischer Gleichungen". Compositio mathema-
tica, vol. 7, pp. 1-19, 1939.
Habicht, W., "Ein Existenzsatz uber reelle definite Polynome". Commentarii
mathematici helvetici, vol. 18, pp. 331-348, 1946.
Habicht, W., 'Uber die Losbarkeit gewisser algebraischer Gleichungs-
s y s t e m e " . Commentarii mathematici helvetici, v o l . 18, pp . 154 -175 ,

1 9 4 6 .

K a p l a n s k y , I . , " P o l y n o m i a l s i n t o p o l o g i c a l f i e l d s " . Bulletin of the

American Mathematical Society, vol. 54, pp. 909-916, 1948.

8. In view of the r e su l t s s tated in Note 16, pp. 54-55, the remarks made in the
preceding note will s t i l l hold if, instead of real closed fields, we consider the
class of algebraically closed fields with a given charac te r i s t i c .
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Denumerable models of complete theories *

H. L. VAUGHT (Berkeley, Calif.)

Introduction. The following theorem, which characterizes
a certain type of complete theories, was established by Ryll-
Nardzewski.

0.1. A necessary and sufficient condition for a complete
theory T, having infinite models, to be ^-categorical (x) is that,
for each n, there are only finitely many formulas, with free
variables v0, . . . , v n _ i , which are inequivalent in T.

A simplification of the proof (of necessity) was found by
Ehrenfeucht (2).

In this paper we shall apply methods closely related to
those used in proving 0.1 to the study of the denumerable
models of some other types of complete theories.

Before the work can be described more fully, some notions
must be defined. Let $1 be an infinite model of a theory T.
We say that $1 is homogenenous if, whenever ao,...,an and
a'n, ...,«'„ satisfy in % exactly the same formulas of T, there
is an automorphism of 51 carrying a{ into < (« = 0, ...,n).
% is ^-universal if % is denumerable and is an elementary
extension (cf. § 1) of an isomorph of each denumerable model
of T. 51 is prime if every model of T is an elementary extension
of an isomorph of % (3).

* Many of the results in this paper were announced in [22].
(*) A theory is said to be categorical in the power xa or, simply,

Na - categorical if all its models of t ha t power are isomorphic (cf. [9]). The
exact meaning we ascribe to various familiar terms such as " theory" ,
will be specified in § 1; but let it be said now tha t , herein, "comple te"
implies "consistent".

(2) Cf. [13] and, also, [10], p . 24. Later, independently, 0.1 was
established by L. Svenonius, and by E. Engeler [3].

(3) Notions more or less closely related to "Ko-universal" and "homo-
geneous" have been employed by various authors. Cf. e.g., [1], [4], and [8];
also, see footnote 15. A. Robinson [12] defined "p r ime" as above, but
with "e lementary" omit ted; however, for the "model-complete" theories
he was studying, this omission does not change the extension of the notion.
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The two types of complete theories we discuss are those
having prime models and those having so-universal models —
or, what, turns out to be the same—those having so-universal,
homogeneous models. I t is shown that a model of T of the
last sort is unique up to isomorphism, and that the same applies
to a prime model. A number of necessary and sufficient con-
ditions for a model to be such a model, or for a theory to have
such a model are given in 3.4, 3.5, 1.0, and 4.7; these are the
principal results of the paper.

According to a theorem of Ehrenfeucht [12], certain of these
conditions are satisfied by theories categorical in a non-denu-
merable power. Consequently, our results may be applied to
show that such theories possess prime models and so-universal,
homogeneous models. Some additional conclusions regarding
these theories are also derived in § 5.

In § 6, it is shown that a complete theory cannot have
exactly two non-isomorphic denumerable models, answering
a question of Raphael Robinson.

§ 1. Preliminaries. The theories we consider are formalized
in the first order logic with identity, and are assumed to have
at most s0 non-logical constants (4), each of which is either
a relation symbol or an individual constant. (When more than s0

non-logical constants occur, we speak of a generalized theory.)
A theory specifies a non-repeating list X,,, ..., X=, ... (£ < >]) of
its non-logical constants. The distinct individual variables of
every theory T are v0, v1; ..., vn, ... The set of all formulas of T
whose free variables are among v0, ...,yn^.l is called Fn{T) (b).
Let <p, <p'eFm(T). We write \-T<p to mean that q> is valid in T
(i.e., the sentence /\v0. . . f\\m-i<p is valid in T). <p and <p' are
equivalent in T if j— T<p<-+<p'; and y is consistent with T if ~<p
is not valid in T. It T0, ..., TP_1 are terms, 0(T O , ..., TP_I) is the
formula obtained by the proper simultaneous substitution of rt-
for the free occurrences of vf in <p (i — 0, ..., p~ 1). ("Proper"
means that bound variables should be changed to avoid colli-
sions.)

If a system % is a realization of T and a0, ..., am_x e |2lj (°),
we write \=%&[a0, ..., am-{\ to mean that cp is satisfied in % by

(*) Terminology which is explained only partly or not at all is that
of [17] and [18].

(5) Letters "i", ..., "r" denote natural numbers 0, 1, ..., i.e.. members
of co. "0" also denotes the empty set. "f", "17", "" ' denote ordinals.

(e) ]2l| is the universe of 21 = <A, ...}, i. e., the set .1.
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the assignment of a0 to v0, ..., am-t to vm-i. Thus, when m = 0,
|=9i99 means that <p is true in 91, or 91 is a model of <p. Eealizations
of the same theory are called similar. The similar systems 91
and 93 are elementarily equivalent (in symbols, 91 = 33) if they
have the same true sentences, or in other words, if they are
models of the same complete theory. 91 is said to be an elementary
extension of 93 and 93 an elementary subsystem of 91 (in symbols,
91^93) if (in addition) 93 is a subsystem of 91 and, in general,
1=SB#[&O, ,••, &n-i] implies |=«9>[&0> •••> 6 n - i ] -

Let 9to, ..., 9lf, . . . ( £ < 77) be similar systems such tha t
3I{' £~ 9Ij whenever ^ > f' > | (such a sequence of systems is
said to be elementarily increasing). Then the union [J {9If | £<•>]}
is the system whose universe is the ordinary union of {|9tf|/
£ < rj} and whose fth relation or distinguished element is,
respectively, the union of the fth relations of all the 9If, or the
(common) fth distinguished element of all the %. Given a system
91 = (A, Xo, ..., Xf, ...>f<, and a sequence Yo, ..., Y(J... (f <C)
of further relations or distinguished elements over A, the
system (A, XQ, ..., Xf, ..., YO1 ..., Y r , ...>f<,,f<f will be indi-
cated by the notation (of S. Feferman) (91, Yo, ..., Ys, ...)?<c-

To simplify the description of the next notion, we deal
with the case where T has only one non-logical constant, a ter-
nary relation symbol B; from this illustration the general
situation will be clear. By a possible relative interpretation of T
in another theory Tx we understand a system I = <0, y>,
where 0 eF^TJ and y ^ 3 ( T , ) . For any formula <p of T, &1 is
the formula (of 2\) obtained from <p by replacing each atomic
formula Rvfcovfclvfc2 by y(vfto, vfcl, vfcj, and then replacing sub-
formulas of the form VV?V o r AV?V by Vv/(0(vj)Ay) or
AVJ(0(VJ)~*"V)J respectively. I is a relative interpretation of T
in Tx if o-f is valid in T1 whenever a is a sentence valid in T.
If 93 is a realization of T1, then the denotation of I in 93 is the
system (A,E), where A = {x/\=&6[x]} and R={(x,y,z}/
x,y,zeA and \=<sy[x, y, z]}.

For later reference we state here the following, easily
proved facts:

LEMMA 1.1. (.1) / / 9If ̂ -9tf whenever rj > f > £', £Aew, /or
«acfe f <r?, U W f < i } H « e .

(.2) If ft is a model of T u 93^-93', «nd 91 and 9t' are «/ie
respective denotations in 93 awa" 93' 0/ a relative interpretation I
of T in Tlt then 91^91'.

Infinitistic Methods 20
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(.3) Suppose that 9t and 23 are similar systems, |2I| = {anf
n e co}, and, for each n, (21, a0, ..., an-t) = (23, b0,..., bn-x). Then
{<«„,, bny/n e a>} is a function mapping 21 isomorphically onto-
an elementary subsystem of 23 (7).

We turn now to some less familiar notions. Henceforth it
is assumed that T is a complete theory having infinite models (8).
(One or both of these assumptions is often dispensable, but
usually with little serious gain in generality.) For each n, the
set Fn(T), together with the operations A (which, when
applied to <p and y>, yields pAv), V, and ~ , and the relation
of equivalence in T, constitutes a Boolean algebra (9)—also
denoted by Fn{T). Consequently, the ordinary terminology for
Boolean algebras may be employed:

1.2.1. A member a of Fn(T) is an atom of Fn(T) provided
that a is consistent with T and, for any (peFn(T), if a A<p is
consistent with T then \—Ta^-(p.

1.2.2. (p is an atomless element of Fn(T) if <p is consistent
with T and \-Ta-+(p holds for no atom a of Fn(T).

1.2.3. Fn(T) is atomistic if it has no atomless element.
1.2.4. A prime ideal of Fn(T) is a non-empty, proper sub-

set P of Fn(T) such that, for any <p, y> e Fn(T): <pAy>eP if
<p, xp e P; y) e P, if <p e P and 1— r<p—>-y; and either q> e P or ~<p e P .
(This is what is usually called a "dual prime ideal".)

1.2.5. A prime ideal P is principal if, for some 6 eFn(T)r

P = {<pl<p e Fn(T) and |—r6-^99}—or, equivalently, if P con-
tains an atom of Fn{T).

The set of all prime ideals of Fn(T) will be denoted by
9n(T). If Pe9n{T) and 21 is a model of T, then we denote
by P(9l) the set of all w-tuples <a0, ..., an_i> such that, for
every <p e P , \-%<p[a0, ..., an_{\.

1.3. Clearly there is a natural one-to-one correspondence
between Fn(T) and the set Fn(T) of all sentences which involve
the non-logical constants of T plus the distinct, new, individual

(') For (.1), cf. [18], Theorem 1.9. For (.3), of. the proof of 1.12 of [18].
(8) Any reference to the power of A is to be understood as referring

to the power of |2t|.
(') Thus for us a Boolean algebra is a system of the form

(A, +, •,—, B»>, whose quotient modulo « is a Boolean algebra in the
more usual sense. Note also that, T being complete, F0(T) has always only
two inequivalent elements; nonetheless, it is included in the discussion,
for technical convenience.
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constants eo, . . . ,cB_i. A formula cpeFn{T) goes into the sen-
tence <p = <p(c0, ..., cn-i)- The induced correspondence (also de-
noted by ~) maps the prime ideals of Fn(T) onto the complete
theories involving the non-logical constants of T plus c0, ..., cn_1.
Clearly, (a^, ..., «„_!> e P(%) if and only if (21, a0, ..., aft_t) is
a model of P. It is sometimes convenient to think of the theory P
in place of the prime ideal P of Fn(T).

Lemma \A, below, gives an obvious, alternative character-
ization of the notion of "atom".

LKJLXIA 1A. A necessary (and sufficient) condition for
a member a of Fn{T) to be an atom of Fn{T) is that, for any mo-
dels W and 33 of T, if |=Ma[a0, ..., an_i] and l=sa[60 , ..., bn^],
then {%, a0, ..., an-i) = (58, b0, ...,bn-i).

§ 2. Existence of models. In this section we shall prove the
following

THEOREM: 2.1. (.1) There is a denumerable model 31 of T
ftuch that

(*) every finite sequence of elements of |5t|, of any length TO+1,
satisfies in 31 either an atom or an atomless member of Fm+i(T).

(.2) If, for each j e <u, P,- is a non-principal prime ideal of
Fp+l(T), then there is a denumerable model % of T such that

(*•) P0{%),PJi%), ... are all empty.
(.3) Indeed, under the hypothesis of (.2), a denumerable mo-

del S2l of T can be found for which both (*) and (**) hold.

2.1.2 was proved by Ehrenfeucht. Its special case in which
there is only one P7- was used by him to give a simple proof
of the necessity in Eyll-Nardzewski's theorem, 0.1 (2), and will
be used in § 3 and § 6, below. 2.1.1 was established by the
author. In § 3 it will be applied in the special case in which
each Fn{T) is atomistic. Thus, 2.1 is, in a number of ways,
stronger than what is needed in the rest of the paper. The
strong form has been stated because it is no more difficult
to prove and may, perhaps, be of some intrinsic interest. Note
that (.2) allows us to assume that countably many, arbitrary,
non-principal prime ideals will be empty for 31. On the other
hand, (.1) says that certain non-principal prime ideals, pos-
sibly 2No in number, can be made empty for % (10).

(10) As one easily verifies, these are, in fact, those non-principal prime
ideals of each Fn(T) which—as points of the topological space corresponding
to Fn(T) by Stone's representation theorem ([15])—are the limit of a se-
quence of isolated points.

20*
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Proof. We proceed by a modification of Henkin's proof
of the completeness theorem (Cf. [6] and pp. 42-43 of [5]).
Let Co, c u ... be distinct, new individual constants. Clearly all
entities of the form 77 = (P, c*o, ..., c^> —where q is arbitrary,
k0, ..., kg are distinct, and either P = 0 or else P is a P, with
p{ = q —may be enumerated in a list / / 0 , 77!, ... Let 1\ be the
theory whose constants are those of T plus e, , ,^, . . . , and
whose axioms are the valid sentences of T. The members of
FX(TX) may be enumerated in a list </„, <{,, ... For later reference,
we note the well-known principle, which holds for any y> « t\(T):

(1) y>, or Vvo--Vvr-iV; is consistent with T if and only if
y>(c0, ..., cr_j) is consistent with Tl.

We are going to define recursively sentences <T0, ax, ... of 1\
in such a way that, for each n, <r0 A... A an-i is consistent with Tx.
Suppose that o0, ..., an-x have been defined and <TOA...Acrn_i
is consistent with 1\. Let v be the smallest number such that c
occurs in none of <pn, a0, ..., on-x. Then as is well known, the
sentence

y: [Vvo<Pn^?)»(c,)]A(ToA...A(r,,-i

is (yb (1)) consistent with Tx. Let IIn be <P, d0, ..., d,>, and
let e0, ..., er_! be the distinct c,'s occurring in y and not equal
to any of d,, . . . ,d , . Clearly, there is a formula 0 e Fq+i±r(T)
such that 0(do, ..., d(/, eu, ..., er_i) is logically equivalent to y.
Then the formula

p: Vv t f + l . . .V^-r0

of Fg+1(T) is consistent with T. We now distinguish two cases:
Case (i). For some atom a of Fq+l{T), \-Ta-^-fi. Choosing

a definite a, we take for an the sentence a(d0, ..., d3)Ay. Since a
(as an atom) is consistent with 1\ one easily sees (applying
principle (1)) that a0A.../\an is consistent with Tx.

Case (ii). /? is an atomless element of Fq+1{T). If P is the
empty set, we take for an simply the sentence y; then, certainly,
<70A...A<X,I is consistent with Tx. Otherwise, P is a non-principal
prime ideal of Fg+1{T). Then, clearly, there is a formula
deFq+l(T) such that ~ k P , while ySA<5 is consistent with T.
For aH we take S(d0, ..., da)/\C\/v0<pn-+(pn(cr)]. Again, applying
(1), we see that cr0A...Ao-n is consistent with 2 \ .

Thus, <r0, ax, ... are defined, and the theory T2, obtained
from Tx by taking cr0, alt ... as additional axioms, is consistent.
Moreover, the construction assured that

(2) for each n, there is a ct such that <r-T2\/vo<Pn^-(Pn(Gi)-
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By a well-known result of Henkin ([6]), it follows from (2)
that T2 has a model (91, c0, ..., cn, ...) such that 31 is a model of T
and 1911 = {c0, ..., cn, . . .}. We shall see that our construction
above has also ensured that 91 fulfills (*) and (**).

Indeed, suppose that a0, ..., aq « |9I|. Then there are distinct
cko, ..., Oj- such that a0 = cko, ..., and am = ck . (This is because
any given c;- is of the form c{, for infinitely many i. The latter
fact is easily seen by noting that there are infinitely many <pt's
of the for.m vo = c3Acr, where a is tautologous (u)). Now, at
some .point in defining a0, o^, ..., we had IJn = <0, cfco, ..., cfc(j>.
If case (i) occurred, then clearly ck(>, ..., ckq satisfy in 91 an
atom of Fg{T)—namely, the a of case (i). Otherwise, ft was atom-
less, and, since the construction insured that 1— r2/?(cfco, ..., ck ),
we see that cko,...,ck satisfy in 91 an atomless member of
Fn(T). Thus, (*) holds. Now suppose further that pf = q,
so that for some n', IIn> = <P,-, cko, ..., cfc(/>. If at the n'th
step case (i) occurred, then cko, ...,ck<i satisfy in 91 an atom,
say a. Since P?- is non-principal, ~ a ' e P , and hence <cfco, ...,
%> i P?(9l)- If, instead, case (ii) occurred in the ra'th step,
then we have explicitly ensured in that step that <cfc , ..., ck >
4 P,(9l). Thus (**) holds, and the theorem is proved.

§ 3. Prime models. A model 91 of T will be called atomic
if each finite sequence of elements of |9t|, of any length n,
satisfies in 91 an atom of Fn(T) (l2).

LEMMA 3.1. Suppose that % is a denumerable, atomic model
of T and 93 is an arbitrary model of T. Then 91 can be mapped
isomorphically onto an elementary subsystem of 93. Moreover,
if a0, ..., am_! e |9I|, b0, .., bm^ e |93|, and (91, a0, ..., am_t)
= (93, b0, ..., bm_t), then the mapping may be so chosen that it
carries at into b{ for each i < m.

Proof. Let a0, ..., an, ... be a list, possibly with repeti-
tions, of the elements of |9I| (commencing with the given
a0, ..., aTO_i). Suppose that bm, bm+l, ..., 6n_, {n > m) have been
defined in such a way that

(1) (21, «o, -.., a-n-i) = (93, b0, ..., 6B_t) .

Since 91 is atomic, there exists an atom a of Fn{T) and
an atom a' of Fn+l(T) such that |=?ta[a0, ..., an_!] and

(11) This detail seems less bothersome than those required in the
applications of (1) above, had d,,, ..., d« not there been assumed distinct.

(l*) This terminology is due to I.. Svenonius.
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|=9ia'[aoi •••) an\- I t follows that |=sa[ft0, ..., ftn_i] and that
formula a/\\jYna' is consistent. By 1.2.1, the latter implies
that \-Ta^-\/vna'. 23 being a model of T, we infer that
|=» (Vvna') [&o, •••> *n-i]- Thus, we may choose for bn an
element of |23| such that |= s a ' [6 0 , ..., bn]. Then, by 1.4,
(91, ao , . . . ,an) = (SB, 60, -,K).

Thus, bm, bm+t, ... can be defined recursively in such a way
that (1) holds for every n. Lemma 3.1 now follows immedi-
ately from 1.1.3.

THEOREM 3.2. 7/91 and 23 are denumerable, atomic models
of T, then 91 is isomorphic to 23 (13).

THEOREM 3.3. If 91 is a denumerable, atomic model of T,
then 91 is homogenous.

Proof of 3.2 and 3.3. The proof of 3.1, above, resembles
Cantor's argument showing that any denumerable, simply order-
ed system is a subsystem of a denumerable, densly ordered
system without extreme points. The proof of 3.2 is analogously
related to Cantor's proof that any two systems of the lat-
ter sort are isomorphic. Eoughly, to prove 3.2, we let |9I|
= {amjme co} and |23| = {bn/neco} and define recursively couples
<a,-n, bkn}, n = 0, 1, ... The passage from n to n + 1 is like that
in the proof of 3.1 (jn being defined to be the first i ^j0,..., jn-i)
when n is even; when n is odd, the roles of 9t and 23 are reversed.
The proof of 3.3 is analogously related to the argument proving
the second conclusion of 3.1.

It may be noted that the second part of 3.1 could have
been derived from the first part, and 3.3 from 3.2, by noting
the following easily proved fact: If 91 is atomic and a0, ..., an e
|9t|, then (91, a0, ..., an) is atomic.

THEOREM 3.1. 91 is prime if and only if 91 is denumerable
and atomic.

Proof. If 91 is atomic and denumerable, then, by 3.1, 91 is
prime. On the other hand, if 91 is prime, then clearly (by the
Lowenheim-Skolem theorem) 91 is denumerable. Suppose now,
that 91 is not atomic. Then some a0, ..., am e |9Ij satisfies no
atom (of Fm(T)). Hence, clearly, P = {(pl\=%<p[a0, ..., am]} is
a non-principal prime ideal of Fm(T). By 2.1.2, T has a model 23
with P(23) empty. It obviously follows that 23 cannot be an

(13) This result was also (indeed, earlier) established by Svenonius;
of course, a closely related result was proved by Ryll-Nardzewski [13].
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elementary extension of an isomorph of 91, a contradiction.
This proves 3.4.

THEOREM 3.5. The following are equivalent:
(.1) T has a prime model;
(.2) T has an atomic model;
(.3) Each Fn(T) is atomistic.

Proof. It follows immediately from 2.1.1 that, if each
Fn(T) is atomistic, then T has a denumerable, atomic model;
by 3.4, such a model is prime. Thus, (.3) implies (.1). By 3.4,
(.1) implies (.2). The remaining implication is nearly obvious.
Indeed, suppose that T has an atomic model 91. Let cp be any
member of Fn(T), consistent with T. Since T is complete,
I— r V v o - Vvn-i9); hence, there are a0, ...,«„_! e |9I| such that
|=sif)[(i,, ..., an-i]- 91 being atomic, there is an atom a of Fn(T)
such that \=%a[a0, ..., an-x]. Then ahy is consistent with T1

so that, by 1.2.1, \-Ta^-<p. Thus, y is not atomless. This argu-
ment shows that Fn(T) is atomistic, completing the proof.

As was to be expected the results in § 2 and § 3 have as
a consequence 0.1, the theorem of Ryll-lSTardzewski. Indeed,
the proposed condition clearly implies that any model of T
is atomic; the s0-categoricity of T then follows, by 3.2. As
already remarked (after 2.1) the reverse implication is easily
derived by using 2.1.2 and the completeness theorem—as
was noted by Ehrenfeucht. (It may also rather easily be
derived from 2.1.1.) The argument depends on the well-known
fact:

3.(i. A Boolean algebra contains infinitely many inequiv-
alent elements if and only if it has a non-principal prime ideal.

In Ryll-Kardzewski's theorem a semantical condition is
shown to be equivalent to a purely syntactical statement. The
equivalence, proved above, between 3.5.1 and 3.5.3 has the
same character.

§ 4. Saturated models. A model 91 of T will be called
weakly saturated if, for any P«9»(T) (n arbitrary), P{%) is
not empty. 91 is said to be saturated if (in addition) the condi-
tions Pe9n(T),PCQe 9n+l(T), and <a0, ..., «„_!> e P(9I) imply
that there exists an element x such that <a0, ...,«„_!,#> e(?(9t).

LEMMA 4.1. Suppose that I is a relative interpretation of T
in a theory Tlf 23 is a denumerable model of Tt, and 91 is the
denotation of I in 93. Let new,P e 9n(T) ,PCQe 9n+1{T), and
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<b0, ..., fcTC_i> € P(2l). Then there exists a denumerable, elemen-
tary extension 23* of 23, in which the denotation of I is a system 31*
having an element d such that <60, ..., £>n_i, d) eQCH*).

Proof. We employ a type of argument which has been
used by A. Robinson (u). Let b0, ..., &„_[, b,,, ... be all the ele-
ments of |23|, and let d, b0, ..., b,,, ... be distinct, new individual
constants. Let the axioms of the theory T\ be all sentences of
the form v(b,0, ..., hiki), such that y> <r Fk('I\) and |=sv>[/>/0, ...,
bik-J> P l u s a11 sentences <t>'(bn, ..., 1),,_,. d) for which 0 (Q. If '
0O,'..., &peQ then, clearly, the formula \/ v,,(0oA ... A*,,) e P;
therefore, there is a y such that, for each / <: p, |=«0,[&o, ...,
6m_!,2/], i.e. |=4,$([&„, ..., bn-i, y]. It easily follows that any
finite set of axioms of T[ has a model, so that T\ is consistent.
By the completeness theorem, T[ has a model B[. B[ is of the
form (Sn u0, ..., un, ...), where ®! is a model of Tx. Clearly,
33! is isomorphic to a system 33* having the desired properties.

THEOREM 4.2. Suppose that each :Pn(T) is countable. Let TL

be a consistent theory, and let Io, ..., / „ , ... be relative interpre-
tations of T in 2\ . Then 2\ has a denumerable model in which,
the denotation of each In is a saturated model of T.

Proof. We note first that given any denumerable model
23 of Tx, a system 23* can be found, with the following prop-
erties:

(1) 23* is a denumerable elementary extension of 23; (2) if
k,me<o, if % and 21* are the (respective) denotations of Ik

in 23 and 23*, and if PeJ>m(T), <a0 , ..., am_t> e P(2I), and
P C Q e '?m+i(T), then there exists an x such that <«„,...,
a-m_i, «> e Q(2I*). Indeed, since each P,,(T) is countable, we
may enumerate all tuples </fc, P , Q, a0, ..., «,„_!> for which the
hypothesis of (2) holds. Let (£0 = 23 and (recursively) let G,1+1

be a system of the type whose existence is asserted in Lemma
4.1—as applied to (£,,. and to the entities Ik, P, Q, a0, ..., are_t

constituting the ;<-th-tuple in our enumeration. One easily sees,
using 1.1.1 and 1.1.2, that the system 23* = U {dt/fc e <,o} has
the properties (1) and (2).

Now let 23O be a denumerable model of T1, and (recursi-
vely) let 23m+I be to 23m as 23* is to 23 in (1) and (2). Then,
clearly, the system {J {23j-/fc e a>) is as demanded in 4.2.

(") Cf. theorems 2.1, 2.2, and 2.5 of [11]. One could, indeed, derive 4.1
from these.
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A special case of 4.2 is the following: a sufficient condition
for T to have a denumerable, saturated model is that each
5>n(T) be countable. Later, in 4.7 and 4.4, we shall see that
this condition is also necessary, and that there is at most one
denumerable, saturated model of T up to isomorphism. Conse-
quently, the full Theorem 4.2 states, roughly, that denumerable,
saturated models have further "saturation properties"—in ad-
dition to those in the definition of "saturated"; in particular,
a kind of second order saturation.

LEMMA 4.3. Suppose that 93 is a denumerable, saturated
model of T and 91 is an arbitrary, denumerable model of T.
Then 51 can be mapped isom.orphically onto an elementary sub-
system of 93. Moreover, if a0, ..., am-^ e |9I|, b0, ..., bm^ e |93|,
and (51, a0, ..., am_i) == (93, b0, ..., 6m-i), then the mapping can
be chosen so that it carries a,i into bt for each i < TO.

Proof. Let a0, ..., am_i, am, ... be all the elements of |9I|.
We can define by recursion a sequence bm, bm+1, ... of elements
of 1931 such that, for any n,

(3) (91, ao,...,an^) =(93 , b0, ..., bn^).

Indeed, (3) holds for n < m, by hypothesis. Suppose that (3)
holds for a given n > TO. Then, clearly (cf. 1.3), for some
Pt9n{T), <a0, ...,«„_!> *P(9I) and <b0, ..., bn^> * P(53). Now,
for some Q € 9 m + 1 (T) , <a0, ..., are> « Q(9I). But then PCQ, so
that, since 93 is saturated, we may choose bn e \ 931 such that
<60, ..., bny e Q(93). Then (3) holds with "> i+ l" for "n", by 1.3.,

4.3 now follows from 1.1.3.

THEOREM 4.4. Any two denumerable, saturated models of T
are isomorphic.

LEMMA 4.5. Any denumerable, saturated model of T is
homogeneous.

Proof. The proofs of 4.4 and 4.5 are obtained by modifying
that of 4.3 in a manner completely analogous to the one in
which the proofs of 3.2 and 3.3 were obtained from that of 3.1.

THEOREM 4.6. For a denumerable model 91 of T, the follow-
ing conditions are equivalent:

(.1) 91 is saturated;
(.2) 91 is s0-universal and homogeneous;
(.3) 91 is weakly saturated and homogeneous.
Proof. By 4.3 and 4.5, (.1) implies (.2). From the Godel-

Lowenheim-Skolem theorem, one sees at once that an so-uni-
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versal model is weakly saturated, so that (.2) implies (.3).
Suppose (.3) holds, a0, . . . ,«„_! e P(2t), Pe9n{T), and P CQ
€ 9n + i (T). Since 91 is weakly saturated, some <«i,..., a^) e Q(9t).
Then <aj, ..., <_i> e P(9I), and hence, 91 being homogeneous,
there is an automorphism / of 91 taking aj into a{ for « < ».
Consequently, (a0, ..., an_x, /(«&)> e#(9I). Thus, (.3) implies (.1).

THEOREM 4.7. TTie following conditions are equivalent:
(.1) iJacA 9n(T) is countable;
(.2) T has a denumerable, saturated model;
(.3)-T has an so-universal model;
(A) T has a weakly saturated, denumerable model (u).
Proof. We have already remarked that "(.1) implies (.2)"

is a special case of 4.2. By 4.3 or 4.6, (.2) implies (.3). As noted
above, (.3) implies (.4). Finally, that (.4) implies (.1) is obvious.

COROLLARY 4.8. If T has an s0- universal model, then T
has a prime model.

Proof. As is well-known, Boolean algebras with countably
many prime ideals are atomistic. Hence 4.8 follows from 4.7,
and 3.5. (While this proof of 4.8 depends on 2.1.1, it may be
noted that another proof could be constructed depending, rather,
on 2.1.2—since, under the hypothesis of 4.8, (J{9n(T)/» e co}
is countable.)

One is tempted to say, by analogy with the discussion
in the last paragraph of § 3, that condition 4.7.1 is purely
syntactical. Indeed, in 4.7.1, no reference to any semantical
concept, such as "model", is made. However, a little thought
convinces one that a notion of "purely syntactical condition"
wide enough to include (.1) would be so broad as to be pointless.

In § 5 and §6, we will see that the results of §2-§4 can
be applied to establish some general properties of models of
certain kinds of theories. On the other hand, the chances that
these results can be usefully applied in the study of a particular

(u) In view of 4.6, it follows that 4.7.1 or 4.7.3 is, also, a necessary
and sufficient condition for T to have an K0 - universal, homogeneous model.
In [20] and [21], the author announced some results concerning the
existence in powers sa > x0 of "Sa- universal models" for arbitrary theories
and of Ka - universal, "homogeneous" models for complete theories. (For
the meanings of "Sa - universal" and of "homogeneous" intended here,
cf. [20] and [21].) The author takes this opportunity to state that he has
learned that results very closely related to those in [20] and [21] were
obtained several years earlier by Mr. Michael Morley. Morley's work is
not yet published.
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relational system or complete theory seem not too good. This
is due at least in part to the fact that the notion "elementary
subsystem" rather than "elementarily equivalent subsystem"
is involved in such notions as "prime" or "s0-universal".
Thus, for example, to establish that a theory T fulfills any one
of the conditions in 3.5 or 4.8 one would need to have already
a guod deal of metamathematical (and not jxist algebraic)
information concerning T.

It may, however, be worthwhile, for the sake of illustration,
to give some examples of theories which fulfill the condition
of 3.5 or 4.7. (But it should be noted that the results of § 3
and § 4 yield no new information about these examples.)
The theory T_ of infinite, discretely ordered systems with,
say, a first but no last element, is one in which each rJ>n(T1)
is countable. That this is so is easily verified, because the
known decision procedure for 1\ provides a description of all
possible definable sets and relations in models of Tl (16). The
s0 - universal, homogeneous model of Tx is the system of order
type w-r(oj* + o>) • rj. It may be remarked that T1 has 2No non-
isomorphic denumerable models.

For the theory T2 of real closed fields, the set ^(Ta)
obviously has 2So members. However, as is known (cf. [16], [12])
the field of real, algebraic numbers is a prime model of T2

and each Fn(T,2) is atomistic.

§ 5. NL.̂ -categorical theories (17). Ehrenfeucht has proved
that

5.1. / / , for some a, T has less than 2No non-isomorphic
models of -power sa, then each 5)n(2I) is countable (18).

Consequently, the results of § 3 and § 4 may be applied
to such theories T.

An immediate consequence of 3.5, 4.8, and 5.1 is

(le) For a brief discussion of Tl and references, cf. [18], pp. 90-91.
(I!) Examples of xa - categorical theories are given in [9] and [19].

I t may be noted that, as pointed out in [9] and [19], any such theory,
"which has no finite models, is necessarily complete.

(ls) For 5.1, cf. [2] (where only the case n = 1 is stated). Earlier,
in [1], Ehrenfeucht had shown that a 2'a - categorical theory T has an
•"Ko-universal" model.

o. 1 generalizes its own case where a = 0, which is much more easily
proved. This case was established in [10], p. 25-20, for some special theories T;
the method, however, is adequate for any T. (One should note the well-
known fact that a denumerable Boolean algebra has either countably
many or 2Xo prime ideals.)
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THEOREM 5.2. If the hypothesis of 5.1 ftoMs, MCH T has-
an s0- universal, homogeneous model and a prime model (l8).

The hypothesis of 5.1 is satisfied, in particular, by «„- cat-
egorical theories T. Of course, 5.2 is of no interest, when T
is s0-categorical. A typical example of a theory which is
categorical in non-denutnerable powers, but not in s0, is the
theory of algebraically closed fields. Here, as is known (of. [12]
and, also, [18], p. 101), the field of complex, algebraic numbers
is a prime model, while the algebraically closed fields of trans-
cendence degree s0 are sn- universal, homogeneous models.

THEOREM 5.3. Under the assumption that T i.s ^-cate-
gorical, but not xo-categorical, ice may say further that a prime
model % of T is minimal—i.e., that 91 has no proper elementary
subsystems.

Proof. Suppose, on the contrary, that a prime model %
of T has a proper elementary subsystem W. It is clear that
W is also prime. Consequently, we can define, recursively
a transfinite sequence % = %,, 91,, ..., 9U, ... (f < w,) of prime
models of T such that, for any f < «, , 9lf is a proper elementary
subsystem of 3Tf+1 and 9If = {Ji^Jv < f} if f is a limit number.
Indeed, since all prime models of T are isomorphic, our assump-
tion guarantees that such an <JU_, can be found, given 91* j
and, when f is a limit number less than <ot, then 'JL is prime,
by 3.4 and 1.1.1. Again by 3.4 and 1.1.1, the model
93 = LJ{9I?/f < "ill °f tlu1 power s,, is atomic. On the other
hand, since T is not N0-categorical, some F,,(T) has a non-
principal prime ideal P, by 1.1 and 3.6. By the completeness
theorem and the generalized Lowenheim-Skolem theorem (19)
(and 1.3), T has a model (£, of power s^, in which P((£) is not
empty. Since P(23) is empty, 33 and (£ are not isomorphic,
contrary to our hypothesis. Thus, 5.3 is established.

A conjecture of Los [9] is that a theory T which is cate-
gorical in some non-denumerable power is categorical in all
such powers. Prom this it would follow that, in 5.2, "*i\
could be replaced by "N 1 + U " . We have been unable to prove
this stronger version of 5.3.

In the following theorem we establish a result which
would easily follow from Los' conjecture (and which, it would
seem, might possibly be useful in establishing it).

(") Cf. [18], p. 92, line. 5 and, for references, footnote 4 on the
same page.
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THEOREM 5.4. Suppose that T is ^-categorical and 6 e F^T).
Then, in any model 91 of T, the set {x/\=u6[x]} is either finite
or of the same power as 91.

Proof. To simplify the notation we assume that T has
only one non-logical constant, the ternary relation symbol R;
the extension to an arbitrary T is obvious. Suppose that the
conclusion is false, so that T has a model 911 in which the set
JJ = {aj/[=9ti 6[x]} has an infinite power, smaller than that of 9T1.
By tke generalized Lowenheim-Skolem Theorem (M), HI1 has
an elementary subsystem 9I2, having the power of U, such
that U C |9P|. Clearly, the system (9I1, |9I2j) is a model of the
theory T', whose symbols are those of T plus a new singulary
predicate V, and whose axioms are the valid sentences of T,
the sentences

(1) Vv0Vv0, Vvx-Vv^ and Av0[e(v0)-^Vv0],

and all sentences of the form

(2) A•<>••• AV»-.[VVOA ... A Y V , ^ ( ^ ^ ) ]

—where <p e Fn(T) and q>v is obtained from <p by "relativizing
the quantifiers to V" (21).

In the theory T' there are two relative interpretations
of T—namely, <v0 = v0, R ^ v ^ ) and <Vv0, RvoV^). Since
T' is consistent, it follows from 4.2 and Ehrenfeucht's theorem,
5.1, that T' has a denumerable model 53 = <-B, R,V}, such
that the system 91* = <5, i?> and its subsystem 91 with
universe V are both saturated. Since all sentences of (1) and (2)
are true in 93, 91* is obviously a proper, elementary extension
-of 91, and

(3) {xl\=*0[x]) = {xl\=«6[x]}.

All denumerable, saturated models being isomorphic (by 4.4),
we conclude that an arbitrary such system 91 is a proper
elementary subsystem of some other such system 91* in such
a way that (3) holds.

Now take for 9Io an arbitrary denumerable, saturated
model of T (by 5.1), for %+1 (f < a^) a system related to
9If as 91* is to 91 above, and for 91, —when r\ is a limit number
^cox—the system U$If/f < v}- It is clear from 1.1.1 that

(*•) —in the form given in [18], p. 92, Theorem 2.1.
(al) —in the sense of [17], p. 24-25.
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the union of an elementarily increasing sequence of saturated
systems is saturated, so that our construction is justified.
By 1.1.1 and induction on f, we see that for any f ^ cox and
for any x, |=«,,0|XI if and only if |=«f 6[x~\. Thus %OI is a modeL
of T, of power KU in which {as/I—%mi6[x]} has the power s0.
On the other hand, by applying the generalized completeness
theorem (to the generalized theory Tt obtained by adding
to T individual constants c0, ..., c4, ... (f < a )̂ and axioms
cf =£ cn (I + v) a n ( i Q(Gt)—f°r %•> rj < coi), we see that T has
a model (£, of power x15 in which {#/|=e0|X]} has the power sx.
Thus ?!„,! and (£ are not isomorphic, contrary to the hypothesis,
that T is ^-categorical. This completes the proof (22).

§ 6. The number of non-isomorphic denumerable models.
Consider the complete theory T" whose models are all systems
<A,JS> such that R is an equivalence relation over A, R
has exactly two equivalence classes, and each of these is
infinite. Some time ago, Raphael Robinson remarked that T9

has the following property: There are exactly two non-
isomorphic models of T° having the power h .̂ He raised the
question whether there exists a complete theory T having
exactly two non-isomorphic models of power s0 (23).

As is well-known, the theory Tx of densely ordered systems
without extreme points is complete and, by Cantor's theorem,
has exactly one denumerable model, up to isomorphism.
Ehrenfeucht constructed an example, which he showed to the
author, of a complete theory, T3, having exactly three non-
isomorphic denumerable models. (He has kindly allowed me to
reproduce it here.) T3 has a binary relation symbol < and
individual constants c0,..., cn,... The axioms of T3 assure that,
if (A, < , c0, ..., cn, ...') is a model of T3, then (A, <> is
a model of T n and c,- < ci+1, for i = 0,1, ... That T3 has the
stated properties is easily shown; the three isomorphism types
of denumerable models {A, c0, ..., cn, ...> of T3 are those in
which (i) co,cx,... are confinal, (ii) c0, cx, ... are not confinal
and have no limit in A, or (iii) c0, cl7 ... have a limit in A.

(M) Again we are unable to establish that "S," can be replaced by
"S1 + a" , in 5.4. However, an argument similar to, but simpler than, the
proof just given does show that, in 5.4, "Kl-categorical" can be replaced
by "Sa-categorical and Ko+1-categorical".

(23) Robinson formulated this question during a conversation in 1957
with several people including the author.
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By a simple modification of T3 we may obtain, for
n = i , o, ..., a complete theory Tn having exactly n non-
isomorphic models. The non-logical constants of Tn are <,
Uo, ..., Un-3, c0, cl?..., the TJi being singulary relation symbols.
The axioms are those of T3 plus axioms assuring that, in
any model

(1) (,A, < , Uo,..., Un-S, c o , e , , . . . > ,

the sets L'o, ..., Un-3 form a partition of A, each Ut is dense
in A, and, for each n, cn€ Uo. I t is a theorem of Skolem [14]
that any two denumerable models of Tn are isomorphic if
we ignore their lists, of distinguished elements. Using this fact
it is easily seen that Tn is complete and that the possible
(isomorphism) types of denumerable models (1) of Tn are
the two in which (i) or (ii) holds, plus the n— 2 in which
c0, cl, ... have a limit belonging to TJi, i = 0, ..., n — 3.

The theories T3, Ti} ... have infinitely many non-logical
constants, but they can easily be converted into complete
theories T3, T[, ... having only finitely many—and still having
exactly 3, 4, etc., non-isomorphic denumerable models. How to
do this, in general, will be clear from the description of T'3.
The non-logical constants of Ts are the binary relation sym-
bols < and R. Its axioms assure that, in any model <A, < , R}:
R is an equivalence relation over A having the substitution
property with respect to < ; the quotient of <A, <> modulo R
is a densely ordered system without extreme points; for
n = l , 2 , . . . , there exists exactly one R - equivalence class
having exactly n elements; and, for n = 1,2, ..., and any
x, y e A, if the R - equivalence classes of x and y have exactly n
and n + 1 elements, respectively, then x<.y.

Of various simple proofs omitted in the above discussion,
perhaps one showing that T$ is complete should be briefly
indicated. Granted that Ts has only three non-isomorphic
models, we may proceed as follows: Let 91= <J., <,R} be
a denumerable model of T3 of the type in which the R- equi-
valence classes having 1,2, . . . elements are confinal (in %
modulo R). To the theory T whose valid sentences are all
true sentences in 91, add an individual constant c and axioms
assuring that in any model (A', <',R',c), if xRy holds for
exactly n elements y, then x <' c (n = 1, 2, ...). Clearly the
resultant theory T' is consistent, so that by the completeness
theorem, it has a denumerable model <-4.", < " , R", c">;
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<A", <", R"y is then a model of T3 of one of the other two
types. By further applications of the completeness theorem,
together with a construction which involves taking the union
of an elementarily increasing family of systems, one can show
that a denumerable model of T3 in which the finite equivalence
classes do have a limit is elementarily equivalent to one in
which they do not have a limit and are not confinal. It then
follows easily from the Lowenheim-Skolem theorem that T3 is
complete.

We -shall now show that the situation is quite different
for n = 2, completing the proof of

THEOREM 6.1. There exists a complete theory having exactly
n non-isomorphic denumerable models if and only if n =£ 2.

R e m a i n d e r of proof. Assume, on the contrary, that T
has exactly 2 non-isomorphic denumerable models. Then, by 5.1,

(2) each 9n(T) is countable.

On the other hand, by .1.1 and 3.6, some Fm(T) has a non-
principal prime ideal P. By 2.1.2, T has a model 91, in which
P(%) = 0. If 91 is any system such that

(3) for some c0, ..., cm_i, (91, c0, ..., c,n_i) is a denumerable
model of the theory P (of. 1.3),

then PC$l) j-- 0, and. hence, 91 is not isomorphie to 9Ij. Con-
sequently, all systems 9t for which (3) holds must be isomorphie.
Moreover, any such system 91 must be saturated since 9lj is not
saturated and, by 4.7 and (2), some denumerable model of T is.
By applying 4.5, Ave easily conclude that all denumerable
models (91, c0, ..., cm) of P are isomorphic. Hence, by 1.1,
Fm(P) contains only finitely many formulas inequivalent in P.
This contradicts the fact that the subset Fm(T) of Fm(P)
already contains infinitely many formulas inequivalent in T
and, hence, T being complete, in P.

We may mention here the following unresolved conjecture
(which appears to have been made by a number of people):

A theory v:hich is s1+a- categorical but not s0- categorical has
exactly s0 non-isomorphic denumerable models.

A second problem is this:
Can it be proved, without the use of the continuum hypothesis,

that there exists a complete theory having exactly xx non-isomorphic
denumerable models f
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MODEL COMPLETENESS RESULTS FOR EXPANSIONS
OF THE ORDERED FIELD OF REAL NUMBERS

BY RESTRICTED PFAFFIAN FUNCTIONS
AND THE EXPONENTIAL FUNCTION

A. J. WILKIE

1. INTRODUCTION

Recall that a subset of I " is called semi-algebraic if it can be represented
as a (finite) boolean combination of sets of the form {a £ I " : p(a) = 0},
{a G 1 " : q(a) > 0} where p(x), q(x) are n-variable polynomials with real co-
efficients. A map from R" to Mm is called semi-algebraic if its graph, considered
as a subset of M"+m, is so. The geometry of such sets and maps ("semi-algebraic
geometry") is now a widely studied and flourishing subject that owes much to the
foundational work in the 1930s of the logician Alfred Tarski. He proved ([11]) that
the image of a semi-algebraic set under a semi-algebraic map is semi-algebraic. (A
familiar simple instance: the image of {(a, b, c, x) € IR4 : a ^ 0 and ax2 + bx + c = 0}
under the projection map M3 x R -» M3 is {(a, 6, c) € IR3 : a ^ 0 and b2 - Aac > 0}.)
Tarski's result implies that the class of semi-algebraic sets is closed under first-
order logical definability (where, as well as boolean operations, the quantifiers
"3x £ M ..." and "Vz € R .. ." are allowed) and for this reason it is known to
logicians as "quantifier elimination for the ordered ring structure on M". Immedi-
ate consequences are the facts that the closure, interior and boundary of a semi-
algebraic set are semi-algebraic. It is also the basis for many inductive arguments
in semi-algebraic geometry where a desired property of a given semi-algebraic set
is inferred from the same property of projections of the set into lower dimensions.
For example, the fact (due to Hironaka) that any bounded semi-algebraic set can
be triangulated is proved this way.

In the 1960s the analytic geometer Lojasiewicz extended the above theory to
the analytic context ([8]). The definition of a semi-analytic subset of IR" is the
same as above except that for the basic sets the p(x)'s and q(S)'s are allowed to be
analytic functions and we only insist that the boolean representations work locally
around each point of IR" (allowing different representations around different points).
It is also necessary to restrict the maps to be proper (with semi-analytic graph).
With this restriction it is true that the image of a semi-analytic set, known as a
sub-analytic set, is semi-analytic provided that the target space is either IR or IR2.
Counterexamples have been known since the beginning of this century for maps to
]Rra for m > 3. (They are due to Osgood, see [8].) However, the situation was
clarified in 1968 by Gabrielov ([5]) who showed that the class of sufe-analytic sets
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is closed under taking complements. Gabrielov's theorem can be reformulated in
terms of logical definability as follows.

For each m and each analytic function / : U —>• M, where U is some open
neighbourhood of the closed box [0, l ] m in Mm, let / : Mm ->• ffi be denned by

~m=\f(*) i f £ e [ o , i ] m ,
\ o if x G Mm\[0, l ] m .

Let Lan denote the language extending that of ordered rings obtained by adding a
function symbol for each such function / . Then Gabrielov's theorem is readily seen
to be equivalent to the assertion that for each n, every subset of Mn which can be
defined by some logical formula of the language Lan can, in fact, be defined by an ex-
istential f o r m u l a of Lan, t h a t i s , o n e o f t h e f o r m 3 j / i , . . . , y r <t>(x\,... ,xn,yi, • • • ,yr)

where the Lan-formula 4> contains no occurrences of quantifiers. (Further, the class
of all such subsets which are bounded is exactly the class of bounded sub-analytic
subsets of 1" . At first sight it might seem that the former class is richer because the
projection map implicit in the existential quantification is not restricted to a com-
pact set. The fact that we do not obtain non-sub-analytic sets is due, of course, to
our original truncation of the analytic functions.) In this form Gabrielov's theorem
was given a fairly straightforward treatment, based on the Weierstrass preparation
theorem and Tarski's elimination theory, by Denef and van den Dries ([3]).

Thus, although we do not have full quantifier elimination for this local analytic
structure (together with the ordered ring structure) on M, we do have elimination
down to existential formulas. Such structures are called model complete, a term
introduced by Abraham Robinson. Actually, whether or not a structure is model
complete only depends on the theory of the structure, that is on the set of all
sentences of its language (a sentence is a formula without free variables) that are
true in the structure. More generally, if T is a consistent set of sentences of some
language L, then T is called model complete if for every formula i>(x) of L there is
an existential formula 9{x) of L such that the sentence Wx(ip(x) -o- 6(x)) is a formal
consequence of T. Further, if d(x) can always be chosen to contain no occurrences
of quantifiers at all, then T is said to admit elimination of quantifiers.

To summarize the above discussion, then, let K = (M; +, •, —,0,1, <) and Man =
(H; T) where T consists of all functions of the form / as described above. Let T and
Tan denote the theories of these structures respectively. Then T admits elimination
of quantifiers (Tarski) and Tan is model complete (Gabrielov) but does not admit
elimination of quantifiers (Osgood).

My aim in this paper is to give two variations of Gabrielov's theme. The first
is in response to the following natural question: when can the analytic functions
needed to describe the complement of a given sub-analytic set be chosen from the
ring generated by functions used to describe the given set? Or, in model theoretic
terms, for which subsets Q of T is (the theory of) the structure {IR;{7} model
complete? I shall show that this is the case when Q is a Pfaffian chain of functions.
Let me make this more precise.

Firstly, fix m, / £ N, m, / > 1, and an open set U C Km such that the closed box
[0, l ] m is contained in U. Let G\,... ,Gi : U —>• M be analytic functions and suppose
that there exist polynomials pij £ M.[z\,..., 2m+i] (f°r ' = 1 , . . . , / , j = 1, • • •, m)
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such that

(1) ^(x)=Pi,j(x,G1(x),...,Gi(x)) (for all £G tO.
j

T h e sequence Gi,...,Gi is called a Pfaffian chain on U. Let Fi,...,Fi be the

corresponding t runcat ions . T h a t is,

( ) > ( j " \ o i fx€M m \[0 , l ] r a .

Now let C be any subset of M such that each coefficient of each pij is the value
of some term (without free variables) in the structure (M; Fi,..., F/; r ) r e c - (For
example, we could take C to be the set of all such coefficients.) I denote this
structure by M and its language and theory by L,T, respectively.

Obviously L is a sublanguage of Lan and every subset of Mn that can be defined
by a formula of L can be defined by a formula, and hence an existential formula, of
Lan. I shall prove the following.

First Main Theorem. Every subset ofWn (for any n) that can be defined by some
formula of L can be defined by an existential formula of L. That is, T is model
complete.

Examples. (A) Take m = I = 1, U = ffi, Gi(xi) = exp(#i), piti(zi, z-i) = z^ and
C = 0. Then the theorem tells us that the theory of the structure (M; exp \ [0,1]} is
model complete. Of course the convention (2) dictates that exp \ [0,1] is defined to
be 0 outside [0, 1]. If one prefers to have only functions that are analytic throughout
K (or IRm) in the basic language, then one can always invoke the following cosmetic
trick. Define e : K ->• R,x -¥ exp((l + a:2)"1). Then the structures (l;exp f [0,1])
and (]R; e) are essentially the same, i.e. they have the same definable sets and, more
to the point, the same existentially definable sets. It follows that the theory of the
structure (ffi; e) is model complete.

(B) Sometimes the cosmetic trick comes for free. Take m = 1, / — 2, U = WL,
Gi(xi) = (l + xj)-1, G2(x\) = tan"1(a;i),p1]1(zi,22) = 2zxzj, p2)i(zi, z2, z3) = z2

and C = 0. Since the graph of the function Gi (or rather JF\) is already definable in
ffi by a quantifier-free formula, the theorem implies that the theory of the structure
(ffi;tan-1 \ [0,1]} is model complete. But in this case we have functional equations
at ±oo, namely

tan"1 ( - ) = ^ - t a n " 1 ^ ) for x > 0,
\xj 2

and

tan"1 ( - ) = - ^ - t a n " 1 ^ ) for x < 0,
\x J 2

which, together with the equations

tan~x(-a;) = - t a n " 1 ^ ) and y = 2tan - 1 ( l ) ,

clearly imply that the theory of the structure (Eitan"1) (with tan"1 unrestricted)
is model complete.
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(C) As far as I know the first result along these lines was obtained by van den
Dries ([15]) who showed that the theory of the structure

<i;sin r[0,l] ,expr[0,l];r) r 6 M

is model complete. This also follows from the first main theorem by combining the
chains used in (A) and (B) and then invoking elementary trigonometric identities.
I leave the details to the reader. (The reason van den Dries actually needs the
sine function is that his proof uses complex power series methods and the required
model completeness is then deduced, by "taking real parts", from a corresponding
result for complex exponentiation restricted to the unit disc. The key point in
this approach is that the complex analytic functions cropping up as coefficients in
the Weierstrass Preparation Theorem can be existentially defined from the initial
data (and, possibly, extra parameters—hence the choice C = M. here)—a fact that,
interestingly, seems to be unknown in the case of the Preparation Theorem for real
analytic functions.)

Whether one uses analytic or model-theoretic terminology and methods, the
proofs of all the above results work because one only ever has to deal with analytic
functions restricted to compact subsets of their natural domains or, equivalently
(via the cosmetic trick), with total analytic functions that are also analytic at
infinity. The second result of this paper removes this restriction in one particular
case.

Second Main Theorem. The theory of the structure (IRjexp), where exp is the
usual exponential function x i-> ex with domain ffi, is model complete.

Thus, if we define a subset of Mn to be semi-EA ("semi-exponential-algebraic")
if it can be represented as a boolean combination of sets of the form {a £ M" :
p(a) = 0 } , { a £ l " : q(a) > 0}, where the p(x)'s and q(x)'s are exponential poly-
nomials (i.e. polynomials in x\,..., xn, eXl,..., eXn with real (or, more generally
(!), integer) coefficients), and a map from Rn to Mm to be semi-EA if its graph is so
(and we do not demand that the map be proper) and, finally, a set to be sub-EA if it
is the image of a semi-EA set under a semi-EA map, then the theorem is equivalent
to the assertion that the complement of a sub-EA set is a sub-EA set. This, as for
the semi-algebraic case, implies that the class of sub-EA sets is also closed under
taking closures, interiors and boundaries.

It is difficult to see how conventional analytic or differential geometric methods
could be used to establish this result because of the essential singularity of the
exponential function at infinity. The proof given here uses model-theoretic methods
to analyse large zeros of systems of exponential-algebraic equations.

Before giving a plan of the paper I should make a few remarks concerning effec-
tivity. For it was Tarski's main purpose in his paper to show not only that every
formula of L is equivalent (modulo T) to a quantifier-free formula, but also that the
latter could be found effectively from the former. From this he deduced that T is a
decidable theory, i.e. there exists an (explicitly given) algorithm to decide whether
or not an arbitrary sentence of L is true in M (hence the title of the paper). Tarski
asked whether this holds for (M; exp) and while this question was the motivation for
the work in this paper, I feel it would have obscured the arguments here had I paid
constant attention to effectivity considerations. Such problems will be discussed in
a forthcoming paper of A. J. Macintyre and the author, where they will be shown
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to be intimately linked with the conjecture of Schanuel in transcendental number
theory.

For an introduction to the general notion of model completeness I refer the
reader to [1]. Several equivalent formulations are mentioned there (and, in fact, the
definition I have given is not Robinson's original one but one of these equivalents)
including the following: if T is a consistent set of sentences in a language L, then
T is model complete if and only if whenever 21, !8 are models of T with 21 C 93
(i.e. 21 is an Z-substructure of 23), then <5 is existentially closed in <B. For the
theories involved in the two main theorems above (or, indeed, for the theory of
any structure expanding M by functions and constants) establishing the latter is
equivalent to showing that any finite set of equations (involving the basic functions
of the given language) with parameters from 21 is solvable in 21 provided that it is
solvable in 03. This is how I shall go about proving the theorems.

The next section clarifies this approach and organizes the equations that we need
to solve into manageable form. After summarizing known finiteness theorems for
the solutions of such equations in section 3 I develop, in sections 4 and 5, a the-
ory of Noetherian rings of differentiable germs that works for arbitrary (possibly
nonstandard) models of suitable theories. (As an application we give a proof (see
5.3) of the theorem of Khovanskii stating that Pfaffian varieties have only finitely
many connected components.) Sections 6 and 7 are rather tedious. This is because
I need to develop some very elementary, but global, existence theorems from the
differential calculus that apply to, as above, arbitrary models of the theories under
consideration and this can only be accomplished, as far as I can see, by exhibiting
explicit definitions. Many algebraic manipulations (especially of Jacobian matri-
ces) are involved here, the details of which may be safely skipped without loss of
understanding of the main arguments.

For all the results of sections 2 to 7 (apart from 3.4 and 3.5) it is irrelevant
whether or not the basic functions are restricted to the closed unit box and so they
apply to the situations of both main theorems. I have, however, concentrated on
those structures to which the first theorem applies because the truncation actually
introduces extra difficulties (of a rather superficial nature). Hereafter the proofs
diverge because we need to confront the problem, briefly referred to above, of large
solutions of the equations under consideration. This is done in section 8 for the first
theorem, thus completing its proof. Sections 9 to 11 are devoted to the completion
of the proof of the second theorem. These may be read independently as I restate
the necessary results from earlier sections.

Tarski's problem on the real exponential function has been the focus of papers
by many authors. Apart from those mentioned above I refer the reader to the
pioneering work of Dahn ([2]) and Wolter ([17]). For the crucial inequalities needed
in the proof of the model completeness of the structure (M; exp) can be viewed as
a generalization to many variables of the Dahn bounding theorem ([2]).

2. TOWARDS THE PROOF OF THE FIRST MAIN THEOREM

The symbols K,k will denote L-structures with domains K,k respectively, al-
though I shall sometimes use K, k to denote the underlying fields or ordered fields.
If k C K, then Lk (respectively Lk) denotes the expansion of L (respectively Z)
obtained by adding a new constant symbol for each element of k. The correspond-
ing .^-expansion of K will be denoted simply K+ when it is clear which k is
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intended. I shall also adopt the usual practice of not distinguishing notationally
between non-logical symbols of a language and their interpretation in a structure
under consideration. In particular, for i = 1, . . . , / , the symbol Fi, which was in-
troduced in section 1 as a particular function from Mm to M, will also denote the
corresponding function symbol of L as well as the function from Km to K that the
function symbol is interpreted as in a given Z-structure K.

Now for 1 < i < I, 1 < j < m and n > 1, (1) and (2) imply

(3) Fi is n-times differentiate on the open box (0, l ) m ,

and
BF

(4) V*G(0,ir, ^-=piij(x,F1(x),...,Fi(x)).

Clearly (3) and (4) can be expressed by sentences of L (note the property of the
set C) and these sentences are therefore in T. But there is no obvious way to express
the fact that F,- (restricted to (0, l)m) has an analytic continuation (namely G,-)
to an open set containing the closed box [0, l ] m (namely V) such that (1) holds.
However, as the remarks following example (C) above were intended to suggest,
we must use this fact and, indeed, there are several consequences of it that are
first-order expressible and I need to mention one such here.

Let S C {1 , . . . ,m} and suppose a,j £ {0,1} for j £ S. Define the functions
F* : 1™ -> R by F*(xu ...,xm) = F ^ , . ..,x'm) where

3 \ a j itjes.

Let

J = f(0,l) i f j g S ,

3 \ I R i f j e s .

Then (1) and (2) imply (with i,j,n as above)
m

(5) F* is n-times differentiable on the open set TT Jj,

and

J — -I V

and these facts are expressible by sentences of L (which are therefore in T).
Now to prove the first main theorem it suffices, by remarks in section 1 (see [1]),

to show that if k, K \= T, k C K and \ ls a n existential sentence of L^ such that
K+ \= X: then k+ (= \ . We may also suppose here that \ has the form

n

3 r i , ...,Xr f \ Ts = 0,
s = l

where each rs is either a term of L^ or else has the form Fi(xi1,..., £»m) — xim+1.
This is because of standard logical equivalences and the facts that the formulas
i ^ j and x < y are equivalent in T to the formulas 3z (y — x) • z — 1 = 0 and
3z (y — x) • z2 — 1 = 0 respectively and that composite terms may be unravelled
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by introducing new variables (e.g. replace r(cr) = 0 by 3x (a — x = 0 A T(X) — 0)).
Now notice also that the formula

Fi(yi,...,ym)- Vm+i = 0 A % > 1

(the y,'s being variables or constants) where 1 < j < m and yj is a variable, is
equivalent in T to the formula

(Vi > 1 A ym+1 = 0) V (Fi(yi,..., ym)(yj/l) - ym+i = 0 A yj = 1),

and that a similar equivalence holds with "yj < 0" in place of "yj > 1". Thus by
repeated use of all these equivalences we may suppose that \ actually has the form

n

3 x i , . . . , x r /\xs{xi,...,xr),
s = l

where each Xs(xi, • • • > xs) is either of the form r(xi,..., xr) — 0 for some term
T(XI, . . . , xr) of Lk (i.e. a polynomial in x\,..., xr over k) or of the form

/\Q<xh<lA Fi{x'ix,..., x'tJ - xim+1 = 0
its

for some 5 C { 1 , . . . , m}, where 1 < i\,..., im+i < r and where

xi _ \xi+i f o r J £ S,
Xi'~[0oTl tovjeS.

The proof of the first main theorem will be essentially by induction on the number
of x« s of this second form that occur in x although it is convenient first to pad out
the set of such x«'s- This the purpose of the following

2.1. Definition. Let n,r £ R .

(i) A sequence (<ri,.. .,<rn) of terms of L in the variables x\,..., xr is called an
(n, resequence if
(a) for s = 1 , . . . , n, as has the form Fi(yi,.,., ym) for some i = 1, . . . , / and

some yi,...,ym € {0, l , x i , . . . , x r } , and
(b) if 1 < s < n, 1 < i < I and <xs is Fj(yi,..., ym) (as in (a)), then s > 1

and for some t = 1 , . . . , s - 1, at is f , - i (y i , . . . , ym).
(ii) Those variables actually occurring in some term of an (n, resequence <? are

called a-bounded.
Clearly any (n, resequence a is also an (n, r')-sequence for any r' > r (and

the set of ^-bounded variables is the same), and any initial segment of an (n, r)-
sequence is an (n\ resequence for the appropriate n' < n. Further, any sequence
satisfying (i) (a) may be clearly rearranged and padded out to an (n', resequence
for some n'. Now let K |= T.

2.2. Definition. Suppose S = (<Xi,.. -,an) is an (n,r)-sequence. The natural
domain of a on K, denoted Dr (a, K), is defined to be Yl^=1 Ii where

_ J {x £ K : K |= 0 < x < 1} if XJ is ^-bounded,
\K otherwise.

Clearly Dr(cr, K) is a definable open (in the sense of K) subset of Kr.
Suppose now that k \= T and k C K.
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2.3. Definition. I denote by Mr(k,K,3), where 3 is an (n, resequence, the ring
of all those functions / : Dr(3,K) —> K for which there exists a polynomial
p{Xx, ...,Xr,Y1,...,Yn)e k[Xu ...,Xr,Yu...,Yn] such t h a t

(7) / ( a ) = p(a, ax{a),..., <rn(a)) for all o £ Dr{3, ft),

where 3 = (<7i, . . ., <xn).

The reductions preceding Definition 2.1 clearly imply

2.4. Lemma. In order to prove the main theorem it is sufficient to show that for
all k, K |= T with k C K, all n,r £ N, all (n, r)-sequences 3', and all gi,... ,gq £
Mr(k, K, 3), if gi, • • •, gq have a common zero in Dr{3, K), then they have one in
Dr(3, k). (Note that we clearly have Dr(3, k) C Dr(3, ft).) D

Of course our reductions show that the polynomials p of (7) representing the
(7,-'s of 2.4 may be taken to be either independent of the Yi's or of the form Y{ — Xj
(for some i = 1, . . . , n, j = 1, . . . , r). However, while this observation will play a
role later (in somewhat disguised form) it is much more convenient to work with
rings of functions, and I now want to establish some elementary properties of these
rings.

Fix, for the rest of this section, models k, K of T such that k C K.
Suppose that n, r E N and that a = {ai,..., <rn) is an (n, resequence. Let g €

Mr(k, K, 3). Then by (5) and the comments immediately following (6), g is a C°°
function on Dr(3, K) in the sense of A'. That is, for each q £ N, K satisfies the usual
e-8 definition for the existence of continuous qih partial derivatives of g at all points
of Dr{3, ft). Further, it clearly follows from (6) and (i)(b) of Definition 2.1 that
these partial derivatives of g all lie in Mr(k, K, 3). Thus Mr(k, K, 3) is a differential
ring. It is also an integral domain. This is because Mr(M, R, 3) is certainly an
integral domain (since it is a ring of functions analytic on an open connected set) and
this fact clearly transfers to Mr(K, K, 3) (just represent elements of Mr(K, K, 3)
in the form (7) and quantify out the coefficients of p), which contains Mr(k,K,3)
as a subring.

S u p p o s e n o w t h a t p , q < r a n d 1 < i\ < • • • < iq < r. F o r gi,...,gp €

Mr(k,K,3) consider the (Jacobian) matrix

( IMI. ... Aa±\

dxit ' • • dxiq/

It is a matrix over Mr(k, K, 3) and I denote it by dii31''"' \ • Note that if p = q,
then

If p = q = r, I write J(9l, . . . ,gr) for d e t ( f j £ ^ f ^ ) .

2.5. Definition. Suppose n,r £ N and let 3 be an (n, resequence. Then a point
P £ Kr is called (k, 3)-definable if there exist g\,...,gr £ Mr(k, K, 3) such that

(i) PeDr{3,K),
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( i i ) 9l(P) = ••• = gr(P) = 0 , a n d

(iii) J(gi,...,gr)(P)^0.

Examples. (D) Let r £ N. Note that the empty sequence, 0, is a (0, r) sequence,
that Dr(0, K) = Kr and that Mr(k, K, 0) may be identified with the polynomial
ring k[xi,..., xr]. Now suppose P G kr, say P = (p i , . . . ,p r) . For i = 1 , . . . , r
d e f i n e ff,(xi,..., x r ) = x t - p , - . T h e n g i , . . . , g r G M r ( k , J < , 0 ) , g i ( P ) = ••• =

pr(P) = 0 and / ( p i , . . .,gr)(P) = 1 ^ 0 . Hence P is a (jk, 0)-definable point of
Kr. Conversely, suppose Q is a (&, 0)-definable point of A'r. Then elementary
algebra tells us that each coordinate of Q is algebraic over (the field) k. Since k is
algebraically closed in K (both being models of T) it follows that Q G kr.

(E) More generally, suppose n,r G N and that <? = (<7i, . . . , an) is an (n,r)-
sequence. Let s > 1 and regard a as an (n, r+s)-sequence. Then clearly Dr+S(a, K)
= Dr(S, K) x A's (cf. 2.1(ii) and 2.2) and Mr+S(fc, K, a) may be identified with the
polynomial ring Mr(k, K, <r)[xr+i,. . ., xr+s] over the domain Mr(k, K, <r). Sup-
pose P G -Dr(<7, A') and Q G A's and that (P, Q) is (jk, ^-definable. Then elemen-
tary algebra again tells us that each coordinate of Q is algebraic over the subfield
fc(pi,... ,pr, ffi(P),..., <rn(P)) of A' (where P = (pi , . . . ) P r ) ) .

Example (D) shows that a point of Kr is (fc, 0)-definable if and only if it lies in
kr. In fact:

2.6. Main Lemma. For any n,r G N and any (n, r)-sequence a, every (k,a)-
definable point of Kr lies in kr.

We shall also prove the following

2.7. L e m m a . Let n,r 6 N and let a be an (n,r)-sequence. Suppose g G
Mr(k,K,a) and g(P) = 0 for some P G Dr(a,K). Then for some s £ f ) there
exists Qo G Dr(a,K) and Qi G Ks such that g(Q0) = 0 and (Qo,Qi) is {l,a)-
definable (cf. example (E) above).

Clearly the first main theorem follows from 2.4, 2.6 and 2.7 by taking the g of
2.7 to be J2l=i 9? w ^ gi,... ,gq as in 2.4.

It is convenient to split the main lemma into two statements, the proofs of which
are entirely different. They are:

2.8. Lemma. Suppose n,r £N and that a is an (n, r)-sequence. Suppose further
that for each s > r and each (k, a)-definable point (p i , . . . ,ps) of Ks there is some
B £k such that K \= f\si=1 -B < p,- < B. Then every (k, a)-definable point of Kr

lies in kr.

2.9. Lemma. Suppose that n, r G N and that S' = (c\,..., an, o~n+i) is an (n +
1, r)-sequence. Let a denote the (n, r)-sequence (<ri,..., an). Suppose that for each
s > r every (k,a)-definable point of Ks lies in ks. Then for each s > r and
each (k, <r')-definable point {pi,... ,ps) of Ks, there is some B G k such that K |=
ALi -B < Pi < B.

Clearly the main lemma follows by induction on n (for all values of r) from 2.8
and 2.9, the base step of the induction being provided by example (D).

We have now reduced the task of proving the first main theorem to that of proving
Lemmas 2.7, 2.8 and 2.9. In fact, 2.7 and 2.8 require only minor modifications of the
techniques developed in [16] but I prefer to deduce them from a general theory of
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Noetherian differential rings of definable functions which I shall develop in section 4.
I shall prove 2.7 and 2.8 in sections 5 and 7 respectively. These proofs do not depend
on the fact that the Fi's have continuations to an open set containing [0, l ] m and
so we can deduce a modified model completeness result for unrestricted Pfaffian
functions in situations where 2.9 holds trivially (e.g. when K is a cofinal extension
of k) and I conclude section 7 with such a result. Section 8 is devoted to a proof of
2.9 which needs van den Dries's work on the model theory of finitely sub-analytic
sets ([13]). I shall also rely heavily throughout most of this paper on Khovanskii's
work on Pfaffian functions ([6]). The exact results needed from these two papers
as well as some immediate corollaries are described in the next section.

3. RESULTS OF KHOVANSKII AND VAN DEN DRIES

3 .1 . P r o p o s i t i o n (Khovanskii [6]). Suppose that hi,... ,hi is any Pfaffian chain
of functions on M.m+n. Suppose further that gi,..., gm G ffi[»i,. • • ,xm+n, hi,..., hi]
(where x, : Mm+n —>• M denotes the ith projection function). Then there is a natural
number N such that for any Q g l " the set

IP G Mm : gi{P, (?) = ••• = gm(P, Q) = 0 and

contains at most N elements.

The reader may have already observed that some such result has to be true if we
are to have any chance of proving 2.6. In fact we need a version of 3.1 where Km +" is
replaced with sets of the form nZLt" »̂ w n e r e e a ch Ji is either M or (0,1). That such
a modification holds can be seen by inspecting Khovanskii's proof. Alternatively
we may argue as follows.

Suppose hi,..., hi is a Pfaffian chain on fliiU" J*- Define the functions a;, /?; :
Mm+" -> M (for i = 1, . . ., m + n) by

,~ Jl if/,-=«,
a i ( x ) = l i ( i k ) * * = (o,i),

(U~_Ui ifJ,-=M,
U+i- tan-H*,- ) ifJ,- = (0,l).

Then clearly the map (3 : x \-t ((3i(x),..., pm+n(x)) is an analytic bijection from
Mm+n to n,™~T J> s o t h e functions h{ o J3 : mm+n -> R (for i = 1,... ,/) are denned
and analytic throughout M m + n . Further, by the chain rule (and see also example
B), the sequence a i , / ? i , . . . , am+n, (3m+n, hi o ft,..., hi o p is a Pfaffian chain on

M m+n

Let M denote the ring of functions (defined on f l S i " ^') ^-[xh • • •, xm+n,
hi,..., hi] and M* the ring of functions (defined on R m + n ) Kf^i, . . . , zm+n, a i , • • •,
am+n, Pi,- ..,Pm+n,h\ o (3,..., hi o /?]. S u p p o s e gi,...,gm £ M, P G YiTLi J*>

Q e nr=+ m"+i J.-. 9i(P,Q) = ••• = 9m(P,Q) = 0 and d e t ( | g ^ - f ^ ) ( P , Q ) + 0.

T h e n c l e a r l y 9l o / ? , . . . , gm o p G M* a n d 9l o p(P', Q')=--- = gmo p(P', Q>) = 0
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where (P',Q') = P~1(P,Q). Further, as an easy calculation using the chain rule
shows, we have

d(gi o /?, • • •, 9m ° P) , D, n,x _d{gi,...,gm) tr> .
M d(xu...,xm) (r'Q)-d(xu...,Xm)^'Q)

djpu...,pm)
Xd(Xl,...,xm){F'Q>-

Now

det (gjf'""'^]) (P'. 0') = ft a'(P'' 0') ̂  °>
so the left hand side of (*) has non-zero determinant. Since P' depends only on P
and Q' only on Q we can now use 3.1 to conclude:

3.2. Corollary. Proposition 3.1 holds with UTJi" Ji m Place ofT&m+n where each
Ji is either M. or (0,1). •

The fact that the upper bound N is independent of Q here can now be used to
transfer this result to the situation we are interested in. The easy formal details
required for the proof of the following result are left to the reader.

3.3. Corol lary. Suppose n,r\,r2 6 N and that a is an (n, ri + r"2)-sequence. Sup-
pose further that k, K |= f, kCK, and that gu .. .,gri E Mr"1+T'2 (ife, K, a). Then
there is N g N such that for each Q G Kr2 the set

J P G Kri : (P,Q) £ Dr^+rHa,K), 9l(P,Q) =••• = gri(P,Q) = 0

contains at most N elements.

I now turn to a result of van den Dries concerning sets and functions definable
in the structure Man (cf. section 1). The result we need can be found in [13] where
it is formulated in terms of so-called "finitely sub-analytic sets". Since these are
exactly the sets definable in Ra n (see [3]) we may reformulate the result as follows

3.4. Proposition (van den Dries [13]). (i) Kan is 0-minimal {i.e. every subset of
M definable {with parameters') in Man is a finite union of open intervals and points).

(ii) If e £ ffi and f : (e,oo) —>• R is any function definable [with parameters) in
ffian, then there exists d > e such that on (d, 00) the function f may be represented
by a convergent Puiseux expansion:

00

(*) f(x) = j2a<-x~i/q
i=p

where q £ N, q > 1, p G Z, a,- G M. (for i EZ, i > p) and ap ^ 0 provided f is not
(eventually) identically zero.

Now, as pointed out in section 1, every subset of Mn (for any n) definable in the
structure ffi is definable in ffian. Hence 3.4 holds with ffi in place of Ran. I need the
following consequence of this fact.



639

1062 A. J. WILKIE

3.5. Corollary. Suppose K (= T, e G K and g : (e, oo) -> K is a K definable
function which is not eventually identically zero. Then there is a rational number
s and a non-zero element a £ K such that g(x)xs —> a as x —> oo (in the sense of

k).
Proof. Suppose 4>(b,x,y) defines the graph of g in K where cj)(z,x,y) is an L-
formula. Let ij>{z) be the Z-formula

3u(Va; > u 3ly <f>(z, x,y) AVx > u 3w > x -><f>(z, w, 0)),

and note that K |= ^(6).
Now suppose that a is a tuple of reals such that ffi \= ^(a) and let fs : (/?, oo) —>

ffi be the function denned by <f>(a, x, y) in M (for suitable /? G ffi). By (3.4)(ii) fs

may be represented in the form (*) for sufficiently large x, and we clearly have
ap ^ 0 and fa{x)xp/q —>• ap as x —>• oo.

Now by elementary real analysis the series (*) may be differentiated term by
term to obtain the convergent representation

oo

i=p

(for sufficiently large x G M), and we have that f's(x)x{-fl^+l ->• - H ^ as x -^ oo. It
follows that lim^-Kx. — (f's(x)x)/(fs(x)) exists and equals p/5. By using the usual
£-5 definition of derivatives and limits we may clearly write down an Z-formula
x(z,y) expressing (in ffi) : "tp(z) and limx^oo-(f^(x)x)/f^(x) = y." We have
shown that the Z-formula 3z\{z, y) defines in ffi a set of rationals, and since, by
the comments above, ffi is a 0-minimal structure, it follows that this set is finite,
say {s i , . . . , sn). We have also shown that the L-sentence expressing: "Vz(if>(z) —>•
V?=i('im^->-oo fz(x) • x$' exists and is non-zero))" is true in ffi, and hence in K.
Since K (= ij)(b) and /g = g (eventually in K) the result follows. •

4. DlFFERENTIABLE GERMS IN ARBITRARY EXPANSIONS OF M

Throughout this section ffi denotes any expansion of the ordered field ffi, L its
language and T its theory. We employ conventions analogous to those set out at
the beginning of section 2 concerning models of T.

Let K \= T. As we have already seen many local notions from topology and
calculus can be immediately transferred from M to K and I will assume the reader
is familiar with this process. It should always be clear how (and where) these
notions are to be interpreted. The implicit function theorem, however, requires
some comment.

Suppose r,m G N, r,m > 1 and (P,Q) = {Pl,... ,pr, qlt..., qm) G Kr+m.
Let U be a definable (i.e. A'-definable with parameters) open neighbourhood of
(P, Q) and suppose / i , . . . , fm : U —>• K are definable functions which are infin-
itely differentiable throughout U. Suppose further that {P,Q) is a non-singular
zero of / i , . . . , fm with respect to xr+i i • • •, Xr+m• This means, by definition, that
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fi(P, Q) = 0 for i = 1 , . . . , m and that the determinant of the Jacobian matrix

arr + i • • • a*r+m \

does not vanish at (P, Q).

Now if K = Kwe can apply the implicit function theorem (see e.g. [4]) to obtain
open neighbourhoods V\ of P (in Kr) and V2 of Q ( m Km) such that

4.1. Vi x V2 C U.

4.2. For each x G Vi there is a unique point (j/ i , . . . , ym) = (yi(x),..., ym(x)} G V2

such that /;(x, y) = 0 for i = 1, . . . , m, and this point satisfies J(x, y) ^ 0.

4.3. The functions y* : Vi —> K (for i = 1 , . . . , m) are infinitely difFerentiable and
for each / = 1 , . . . , r and x G Vi

9., \ / a«, \

: N-A-1 :
where the right hand side is evaluated at the point (x, yi(x),..., ym(x)}.

We require 4.1-4.3 to hold for arbitrary K and that this is the case can be
argued as follows. Firstly, the existence of V\ and V2 satisfying 4.1 and 4.2 can
be guaranteed since we may suppose they are box neighbourhoods (i.e. of the form
{(zi,...,zt) G K* : |(*i - Zi\ < s for i = 1, ...,<} for some c*i,.. .,at, e G K
with e > 0). Having fixed such Vi and V2 the uniqueness in 4.2 guarantees that
the j/i's are definable functions which, by transfer, are continuously differentiable
throughout V\ and satisfy the formula in 4.3. But this formula implies (simply by
arguing in K) that the y,'s are infinitely differentiable throughout V\.

I now turn to germs of differentiable definable functions in (an arbitrary given

model of T)W.

4.4. Definition. Let n G N, n > 1.
(i) A neighbourhood system (n.s.) in Kn is a non-empty collection of non-empty,

definable open subsets of Kn which is closed under (finite) intersection.
(ii) For 0 a n.s. in Kn, S»(n)(0)" denotes the set of all pairs (/, U) where U G 0

and f : U -¥ K is an infinitely differentiable definable function.
(iii) For (fltUi), (f2,U2} E S><n>(0)-, </i,«7i) ~ (h,U2) means that there is

some U G © with (7 C [/]. n (72 such that /i(£) = f2(x) for all x G U. This is clearly
an equivalence relation and the equivalence class of (/, U) (G £>(™'(<S)~) is denoted
[f,U].

(iv) The set of equivalence classes, or germs, is denoted £K")((25).
Clearly S)(")(<8) is naturally a differential (unital) ring and I continue to write

g | - , . . . , g | - for the obvious induced derivatives on J)^n\(&).

4.5. Lemma. Let n G N, n > 1 and suppose & is a n.s. in Kn. Suppose further
that M is a subring ofD^(<8) closed under differentiation and that I is a finitely
generated ideal of M also closed under differentiation. Let {[gi,Ui],.. .,[gs,Us]}
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be any finite set of generators for I and set Z = {P £ 0^=1 «̂ : 9i(P) = 0 for

i = 1, . . . , s}. Then for some U £ <8, U C\ Z is an open (definable) subset of Kn.

Proof. Since / is closed under differentiation and & under finite intersection there
exist U £ <S and definable functions afj (1 < i, j < s, 1 < r < n) such that

(/i,... ,gs and the a)rj's all have domains containing U, are infinitely differentiable
throughout U, and satisfy the equations

(*) $• = £,#]•* ( l < « - < « . l < r < n )
r i=i

onU.
I claim that U (~l Z is open in K". For suppose P = (pi,... ,pn) £ U PI Z and

let Uo be an open box neighbourhood of P contained in U. It suffices to show that
each <7; vanishes on Uo so suppose that this is not the case. Since each gi certainly
vanishes at P we can clearly find Q,S £ Uo such that gi(Q) = 0 for all i = 1, . . . , s
and gi(S) ^ 0 for some i = 1, . . . , s and such that Q and S differ in exactly one
coordinate, which we suppose for convenience is the first. Say Q = (qi, qi,..., qn)
and 5 = (g'i,92, • • -,9n) where qi / q[. Let (a,b) be an open interval in K such
that gi,g2 ^ (a,b) and (a,b) x {(92, • • • ,9n)} Q t/o- F°r any definable function
f : Uo -¥ K let / be the result of substituting qi for x,- in / for i = 2 , . . . , n. Then
by (*) (for r = 1) we have

CH)
for all Xi G (a, b), where A is the matrix (a\j (a;i))i<tj<s and where ' denotes ^ - .

We now transfer this situation to M (by quantifying out parameters) and obtain
a real interval (c, d), continuously differentiable functions hi,bij : (c,d) —> E (for
1 < i,j < s) and points a,p £ (c,d) such that (setting B = (&ij(s))i<:,j<»)

A'A AA
: = 5 : for all s e (c, d),

U/ w
ft,(a) = 0 for all i = 1 , . . . , s,

and

hi(j3) ̂  0 for some i = 1, . . . , s.

The theory of linear differential equations (see e.g. [9], Theorem 11.4.1 and its
proof) now tells us that for all x £ (c, d)

(hi(x)\ //n(a)\

: = ̂ (x)-1^) :

\h.(x)J \hs(a)J
for some s x s matrix E of functions on (c, d) which is invertible for all x £ (c, d).
Setting x = (5 here gives the required contradiction. •
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4.6. Notation. For n G N, n > 1 and P G K", <SP denotes the set of all definable
open neighbourhoods of P. It is clearly a n.s. in K". Write £(")(P)- and £>(n)(P)
for £>(n)(0P)- and T>(n\<8p) respectively. If g G &n\P), say g = [f,U], g(P)
denotes the element f(P) of A'. It is clearly well defined. Finally, depending on
convenience, dpg or dpf denotes (-g~-(P), • • •, ~§£~{P)) considered as an element of
the K-vector space Kn.

I now wish to return to the situation of 4.1-4.3 to discuss some classical results
applied to the present context. So let r, m, P, Q, fi, • • •, fm, U be as in the discussion
of the implicit function theorem at the beginning of this section. Let n = r + m. De-
fine cj>i,.. .,4>n by 4>i(x) = Xi for i = 1,.. . ,r, and <?>,•(:?) = y,_r(f)for i=r+l,...,n
(cf. 4.2, 4.3) where x = (x\,..., xr). These functions are defined and are infinitely
differentiable on a set in &p (namely V\) and hence determine germs in ©*-r'(P).
Notice also that (<j>i(P),..., <j>n(P)) = (P,Q) so we have an induced mapping
": 2)(")(P, Q) ->• D(r)(P) defined (on functions) by f(x) = f{4>i{x),..., <j>»(x)), x £
W, where (f,W) £ &n\P,Q)- and W = {x e Vi : {</>i(x), . . ., 4>n(x)) e W}.
(Clearly W G ©p.) This mapping is clearly a (unital) ring homomorphism and its
kernel consists exactly of those germs [/, W] such that / vanishes onVDZ for some
V E ® P , Q ( w i t h V C W), w h e r e Z = {(x1,...,xn) 6 U : fi{xu .. .,xn) = 0 f o r

i = 1 , . . . , m}. In particular [^7^] = 0 (in £(r)(P)) for i = 1, . . . , m, so f£- = 0
(inS)(r)(P)) for i = 1, . .., m and j = l , . . . , r .

4.7. Lemma, ffrt/j Âe above notation we have that for all g £ 2)(")(P, <J), ?/?e
sequence of vectors dp^fi,... ,dpqfm, dpqg is linearly independent over K if
and only if dpg ^ 0 (in Kr).

Proof. Notice first that the sequence dp^fi,.. .,dptqfm is certainly linearly in-
dependent since J(P,Q) ^ 0 (cf. the discussion at the beginning of this section).
Write g = [fm+i,W].

Suppose that Y2T=i a> ' dp,Qfi = 0 with not all the a,'s zero. Then am +i ^ 0.
By the chain rule

for j = 1, . .., r, i = 1, . . ., m + 1. Now by the remark before the lemma, our
assumption and (*) we have

J ! = 1 •<

n / o , m+l „ , \

= «i.E(^)E<..g(^)) = o
for j = 1, . . . , r, as required.

Suppose now that the sequence dpgfi,. .., dp,Q/m+i is linearly independent.
Let A denote the n x (m+l) matrix (over K) with columns rfp,^/,- for 1 < i < m+l.
Then A determines a A'-linear map from K" onto Km+1 with kernel of dimension
n — ( m + l ) = r— 1. Moreover, by (*) and the remark before the lemma

(§7<p> &">)" = (° °.%f<'>) « " = ' •
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But the sequence of vectors ( ( f f 1 ( P ) , . . . , § f r (P) ) : 1 < i < r) is linearly

independent (since | ^ - = 5ij for 1 < i, j < r), so not all of them are in Ker(j4).

Thus dg"+1 (P) ^ 0 for some j = 1 , . . . , r, as required. •

4.8. Definition. Let rc,s £ N, n > 1. Suppose g\,...,g, are infinitely differen-
tiable definable functions with domains open in K". Then

V(gu • • •, g.) =f I Q € f] dom(jf,-) : gi(Q) = 0 for t = 1,. . . ,« I ,

and

Vn'{gi,. ..,gs) d= {Q G V(gi,. ..,g,): (dQgi : 1 < i < s) is linearly independent}.

(Fors = 0, V= Vns = Kn.)
The following theorem will be used repeatedly throughout this paper.

4.9. Theorem. Let n £ N, n > 1, Po £ Kn, and suppose M is a Noetherian
(unital) subring o>/2)(n)(Po) closed under differentiation. Let m £ N and suppose
[fi,Ui] G M for i = l,...,m. Suppose further that Po G Vns{fu ..., fm). Then
one of the following is true:

(i) n = m, or
(ii) m < n and for any [h, W] G M with h(Po) = 0, h vanishes on U n

Vns(fi, ...,fm) for some U G ©p0 {with U C W), or
(iii) m < n and for some [h,W]eM, Pa £ V n s ( / i , . . ., fm, h).

Proof. If m jfc n, then m < n since Po G V"'( / i , • • •, / m ) - Say r + m = n where
1 < r < n.

Now since (dpofi : 1 < i < m) is linearly independent there exists an m-element
subset of { 1 , . . . , n}, S say, such that the matrix(gr~r(Po))i<j<m,jes is non-singular.
There is no harm here in supposing that S = {r + 1 , . . . , «}, so if we denote by A
the function

/ ft f \
(xi, ...,xn) ^t d e t ( -^-{xi,.. .,xn) ) ,

\C'XJ / l<i<m,r+l<j<n

then clearly [A, Uo] £ Af (for some Uo G ©F0) a n d [A, UQ] (= A, say) is invertible
in ©(")(P0). Let M* = M ^ " 1 ] . Now write Po as (P,Q), where P £ Kr and
<3 £ A'm, and consider the map " : ©O)(P, Q) -> S»(r)(P) described above. Clearly
M*, the image of M* under ", is a Noetherian (unital) subring of 1)(r\P) and is
closed under differentiation. This latter fact follows easily from the chain rule and
4.3 (this is why we consider M*—the entries of A"1 (in 4.3) determine germs in
M*, but not necessarily in M). Now let J denote the ideal {g £ M* : g{P) = 0} of
M*.

Case 1. 7 = {0}. Suppose [h,W] £ M and h{P0) = 0. Let g = [h,W]. Then
g(PQ) = 0 so g{P) = 0, i.e. g £ I. Hence g = 0 in I)(r)(P). The conclusion of (ii)
in the statement of the theorem now follows from the comments before 4.7.

Case 2. / / {0}. Since / is finitely generated it clearly follows from 4.5 (with

& — <5p, M = M") that / is not closed under differentiation. Hence there is some
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g £ M* such that g G 7, i.e. g(P) = 0 so g(Po) = 0, and some i with 1 < i < r such
that

Now for some s £ N, A5 • g £ M. Let / = As • g. Then f(P0) = 0 and, further,

£ 0 - ci-'-sr'xm (A-• &)(*>)
= A'(P) • | ^ (P ) ^ 0.

OXi

Thus dp / ^ 0 and hence, by 4.7, the conclusion of (iii) in the statement of the
theorem holds (with [h, W] = / ) . •

Before leaving this section I need to mention one more result that follows (either
directly, or by using 4.7) from the corresponding classical theorem in elementary
calculus. (It will be used in the next section to find "definable points" on the
zero sets of Pfaffian functions (cf. 2.7).) The easy details of the transfer (from M)
required for the proof are left to the reader.

4.10. Proposi t ion. Suppose n, s,gi,... ,gs are as in 4-8, s < n and P £
Vns(gi, • • .,gs)- Let [g,W] e 3}(n)(P) and suppose that for some U G &p (with
U C W n f ) - = 1 dom(fifi)) we have g(x) > g(P) for all x G U n Vns(gu ..., gs)
(i.e. P is a local minimum of g on Vn3(gi,... ,gs))- Then the sequence of vectors
(dpgi,..., dpgs, dpg) is linearly dependent.

5. DEFINABLE POINTS ON COMPONENTS AND THE PROOF OF LEMMA 2.7

I continue to use the notation of section 4. In particular, K denotes an arbitrary
model of T.

Fix n £ N , n > l , and let U be a definable open subset of Kn. Clearly {[/} is
a n.s. in Kn and we may safely identify both T>^({U})- and D(n\{U}) with the
differential unital ring of all definable, infinitely differentiable functions from U to
A', which we denote by £>(")([/). If P G U, then clearly the map RP : D^n\U) ->
2)(«)(p) : / i-)- [/, U] is a differential ring homomorphism which need be neither
injective nor surjective in general. It is, however, clearly injective on the unital
subring generated by the n projection functions (restricted to U) and I use the
usual notation, Z[xi,..., xn], for this subring and for its ijp-image in 3)(n)(.P).

5.1. Theorem. With the above notation let M be a Noetherian subring of%)(n\U)
which contains 2,[xi,..., xn] and which is closed under differentiation. Let f G M
and suppose that S is a non-empty definable subset of V(f) which is both open in
V(f) (in the subspace topology) and closed in Kn. Then there exist / i , . . . , / „ G M
such that Sr\Vns(f1,...,fn) ^ 0.

Proof For each Q £ S let IQ be the ideal {g G M : g(Q) = 0} of M. Since M
is Noetherian we may choose P £ S such that Ip is maximal in {IQ : Q £ S}.
Let {ffi,..., ffj\r} be a finite generating set for Ip and set g = J2i=i9i- Then
P G V(g) l~l S and, further, we have

(*) IQ = Ip for any Q £ V(g) n 5.
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Now choose m maximal so that for some / i , . . . , fm £ M, P £ Vn'(fi , . . . , / m ) .
If m = n we are done, so suppose, for a contradiction, that m < n and fix such

'ciaitTl. V(g) nSCVns(fu..., f m ) .
Proof. Since P £ Vn'(flt..., / m ) we have j i , . . . , fm £ JP and det(£) £ 7F

where £ is some mxm submatrix of the mxn matrix with rows {§£-, • • •, §£*-) for
1 < i < m (note that det(E) £ M since M is closed under differentiation). Hence
by (*) we have that for any Q £ V(g) (~\S, / i , •. •, / m € IQ and det(.E') £ IQ which
immediately implies that Q £ Vns(f\,..., f m ) , as required.

Claim 2. LetQeV(g)nS andheM. Then Q ^Vns(fu ..., fm,h).
Proof. Suppose Q 6 Vns(fi,... ,fm,h). Then arguing as in the proof of Claim

1 we would have P G Vns(f\,..., fm, h) which contradicts the maximality of m.
Claim 3. Let Q G V(g) n S. Then there exists W G <5Q (with W CU) such that

w n V(g) n s = w n v - ^ , . . . , /„) .
Proof. Since j E Ip we have by (*) that g(Q) = 0. Hence, by Claim 2 and

4.9 (applied to the image of M under the map Rq), there exists W' G ®Q (with
W C [/) such that g vanishes on W n Vns(fi,. ..,fm). It follows that every
element of IP, and in particular / , vanishes on W n Vns(f1,..., f m ) . Thus W' D
Vns(f1,...,fm)CW'n V(g) n V(/). But S is open in K(/) (by hypothesis) so for
some W" £ <&Q, W"DS = W'T)V(f). Thus W nVns(fu ..., fm) C Wf)V(g)nS
where W = W C\ W". Claim 3 now follows from Claim 1.

Claim A. SO V(g) is closed in Kn.
Proof. This is immediate from the facts that S is closed in K" (by hypothesis),

S CU and g is (defined and) continuous on the open set U .
Now let if = (r]i,... ,r/n) £ Zn. By Claim 4 there is a point Q G 5 0 V(g) whose

distance from fj is minimal (note also that 5 f~l V(g) ^ 0 since P £ S n V(<7)), i.e.
ft(Q) < ft(x) for all f 6 5 n V((/), where A(x!, ...,xn) = YZ=i(xi ~ %)2- Note
that h (restricted to U) is an element of M since Z[xi, . . . , xn] C M. Further, by
Claim 3, Q is actually a local minimum of h on F n s ( / i , . . . , f m ) , so by 4.10 the
sequence of vectors (rf^/i , . . . , dg/m, ^Q/I) is linearly dependent. Arguing as in the
proof of Claim 1 it follows that (dpfi,..., dpfm, dph) is linearly dependent. Since
the sequence (dpfi,...,dpfm) is linearly independent it follows that dph lies in
the subspace, call it X, of Kn spanned (over K) by dpfi,. . . ,dpfm, for any r\£7L.
Write h = h^. By an easy calculation, fj = |(rfp/jg — dphf;). Hence Z" C X, which
is impossible since m < n. •

5.2. Proofj)f 2.7. We shall apply 5.1 with I = S, T = f and K an arbitrary
model of T (cf. the beginning of section 2). Let n, r £ N and suppose that <r is an
(n, resequence. Let k \= T, k C K, and set U = Dr(<r,K) so that U is an open
definable subset of Kr (cf. 2.2). Further, by 2.3 and the comments between 2.4
and 2.5, Mr(k, K, a) is a subring of T)^T'(U) which is closed under differentiation.
It is also Noetherian, because it is finitely generated over the field k, and it clearly
contains Z[x\,..., xr] (in fact, fe[xi,..., xr]) as a subring.

Now to prove 2.7, suppose g £ Mr(k, K, a) and g(P) = 0 for some P £ U. If we
knew that V(g) were closed in KT, then we could apply 5.1 directly (with n = r,
M = Mr(k, K, 5),U = Dr(a, K), f = g and 5 = V(g)) to obtain a (k, ^-definable
point Q £ Dr(a, K) such that Q £ V(g), thus completing the proof of 2.7 (with
s = 0). Unfortunately, there is no reason to suppose that V(g) does not have limit
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points on the boundary of U. However, this problem can be easily overcome by
the standard geometric technique of pushing such points out to infinity. To do this
we regard a as an (n, r + s)-sequence, where s = 1r, in the sense of example E of
section 2. Now for 1 < i < r define

I Xi • xr+i — 1 if Xj is ^-bounded,
gi(xi,...,xr+s) = <

I xr+j — Xi otherwise,

j (xi — I)x2r+i — 1 if Xi is ^-bounded,
gr+i(xu...,xr+s) = <

[X2r+i — Xi otherwise.

Now set / = g2 + Y^l=i9J and notice that if (pi , . . . ,pr) G V(g), then (pi,. ..,pr+s)
E V(f) where pr+i - P2r+i = Pi if £; is not ^-bounded, and pr+1- = p^1,P2r+i =
(Pi — I )" 1 if s» is ^-bounded (in which case we necessarily have that 0 < pi < 1).
Thus V(f) / 0 and it is easy to see that V(/) is closed in Kr+S. We may therefore
argue as above (this time using 5.1 with n = r + s, M = Mr+s(k,K,a), U =
Dr+S(a, K) = Dr(a, K) x A'\ and S = V(f)) to obtain the conclusion of 2.7. •

Recall now Proposition 3.1. This states that 0-dimensional Pfaffian varieties are
uniformly finite. Khovanskii has proved a natural generalization of this fact for
arbitrary zero-sets of Pfaffian functions which turns out to follow from 3.1 and 5.1
using a simple model theoretic argument. Thus rather than simply quoting the
result it seems worthwhile to include the proof here.

5.3. Theorem (Khovanskii). Suppose that hi, . . ., hi is any Pfaffian chain of func-
tions on Rm+n. Let g G R[xlt..., xm+n,hi,..., hi]. Then there is N G N such that
for any Q G l " the set {P G Mm : g(P, Q) = 0} has at most N components.

(A component of a set S C Km is a set X C S such that X is clopen in (the
subspace) S. Clearly the collection of all components of S forms a Boolean algebra.)

Proof. Suppose the theorem is false. Then for each i G N, there exist QW G Mn

and pairwise disjoint non-empty components, C$\ • • •, C\%\ of the set {P G Mm :
g{P,QW) = 0}-

Let L be any expansion of L that includes symbols for the functions hi,..., hi,
the set N, the map i ->• Q^(i G N) and the (m + 2)-ary relation "P G Cf)n.
Let K be the corresponding expansion of ffi and suppose K is a (2N°)+-saturated
elementary extension of R. Let a be a nonstandard natural number in K. Then
(the K interpretations of) each C,- (for i < a, K |= "i G N") is a non-empty
subset of Z d= {P G Km : g(P, Q^) = 0} which is both open and closed in Z, and
hence also closed in Km. Suppose Q^ = {qi,...,qn) and let

M = M[xu ...,xm,qu..., qnM{xu . . •, xm, Q( f l ) ) , . . ., h,(Xlj. ..,xm,Q^)].

Then M is a Noetherian ring of A'-definable, infinitely differentiable functions on
Km which contains Z[xi,..., xm] and is closed under differentiation. Hence, by
5.1, for each i < a (with 7t (= "i G N") there exist f[{),... ,f$ G M such that
C\a)rwns{f^, •••,fm))^ 0. But there are at most 2*° possibilities for f[i],..., f$
and, by 3.1, each Vn'{f(^,..., $) is finite. However, the collection {C^ : i < a,
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K \= "i £ N"} consists of at least (2N°)+ pairwise disjoint sets. This contradiction
proves the theorem. •

5.4. Corollary. Let Hi,..., Hi be a Pfaffian chain of functions on ffim (m £
ffi,m > 1) and let ffi' be the structure (ffi; Hi,..., Hi; r)rec (where C is any subset
of M) and V its language. Suppose that <j>(x\, xi,..., xp) is an existential for-
mula of L'. Then there exists N £ N such that for all r?, • • • ,rp e l the set
{ri £ ffi : ffi' |= 4>(ri,r2, • • .,rp)} is a union of at most N open intervals and N
points.

Proof. By the usual tricks (cf. section 2 before Definition 2.1) we may suppose that
<f>(xi, . . .LXp) has the form 3j/i , . . . ,yn f(xlt . . ., xp, yi,. . . , yn) = 0, where / is a
term of L'. Now it is easy to construct a Pfaffian chain of functions on Mp+n,
fti,..., hp say, such that / 6 M.[x, y, hi,..., ft/']. Thus by 5.3 there exists No £ N

s u c h t h a t for a l l r2, • . ., rp £ M t h e s e t Z(r2, ...,rp) d = f {(p, qu • • •, qn) £ K 1 + n :
f(p, r2,..., rp, gi,..., qn) — 0} has at most 7V0 components. But then clearly this
is also true for ir[Z(r2, . . ., rp)] where IT : M1+n —> M. is the projection map onto the
first coordinate. •

6. ONE DIMENSIONAL VARIETIES

In this section ffi denotes an expansion of M. which is either of the form 1R (as
described in section 1), or of the form ffi.' as described in the hypothesis of Corol-
lary 5.4. In the latter case the set C of distinguished elements should be chosen to
satisfy an analogous condition to the former case (cf. section 1, just after equation
(2)). Clearly all the definitions from section 2 can be applied to the M'-L'-f'-K'-
k' case and are, in fact, somewhat less complicated. For example, there is no need
to allow j / i , . . . , j/m to be 0 or 1 in Definition 2.1 (i) (a), and Dr(a, K') is simply
Kr for any (n, resequence a and K' f= T' (cf. Definition 2.2).

My aim in this section is to show that non-singular (space-) curves implicitly
denned by terms in models of T can be explicitly parameterized by finitely many
infinitely differentiable definable functions having open intervals for domains. I first
require the following combinatorial result.

6.1. Lemma. Let n,N £ N with n,N > 1. Then there exist Qi,...,Qs £ Zn,
where s = n • Ar2 + 1, with the property that for any field K of characteristic 0 and
any distinct elements Pi,..., Pm £ Kn (where m < N), there exists an i, 1 < i < s,
such that Qi -Pi,..., Qi-Pm are distinct elements of K. (Here "•" denotes the usual
scalar product.)

Proof. Choose Qi, • • • ,QS £ Z" in general position, i.e. any n of them are linearly
independent over Q (and hence over any field of characteristic 0). Suppose, for a
contradiction, that there exist A', rn (m < N) and distinct Pi,..., Pm £ Kn such
that for each i = 1,. . ., s, Qi • Pai = Qi • Pp{ for some a,-, /?,• with 1 < a* < /?,• < m.
Since the map i —> (cti,(5i) has domain of size > n • N2 and range of size < ./V2,
there exist a,j3 with 1 < a < /3 < m such that Qi • (Pa — Pp) = 0 for n distinct
values of i. This contradicts the choice of the Q,'s since Pa — Pp ^ 0. •
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6.2. Theorem. Suppose n,r £ N, r > 2, and that a is an (n,r)-sequence. Let

k,~K\=T withkC ~K and suppose that gi,... ,gr-i £ Mr(k~,~K,a). Let V = {P £

Dr(ff,W) : gi(P) = ••• = sv- i (P) = 0} and suppose that

(a) V is a closed subset of KT, and

(b) for all P £ V, d e t ( ^ ^ ^ ) ( P ) ^ 0 (cf. the notation described before

2.5).

Then there exists a finite set S of pairs (I, (f>) such that

(i) for each (I,4>) £ S, I is an open interval in K and 4> : I —>• KT~X is an
infinitely differentiate definable function;

(ii) for each {I,<f>) G S, if sup / G K {i.e. s u p / ^ oo), then ||^(a:)|| -4 oo as
x —> s u p / (from below), where || • || denotes the usual norm on Kr~1, and
similarly for inf I;

(iii) V = lj{graph(<^) : (/, </>} G S} and the union is disjoint.

Proof. By 3.3 (or the analogous result in the case M. = M', which follows directly
from 3.1) and (b) it follows that there is some J V g N such that for each pi G K
the set Vpi contains at most N elements, where VPl = {(p2, • • • ,Pr) G Kr~l :
{ p u - - - , P r ) G V } . L e t s = (r- 1 ) • N2 + 1 a n d l e t Q i , . . . , Q , 6 Z * - 1 b e a s
in Lemma 6.1 (with n = r — 1). For each m = 1 , . . . , TV and i — 1 , . . . , s set
Am,i - {pi G K : card(KPl) = card(<3i -VPl) = m). _

Now it is easy to see that each Am>i can be defined in K by a boolean combina-
tion of existential formulas (with parameters) and hence, either by the comments

following 3.5 (in the case M = M) or by 5.4 (in the case K = M'), it is a finite union
of open intervals and points. It clearly follows from this that there exist ( £ N and
ai> • • • i at £ K such that (setting a^ = —oo, at+i — +oo) :

a0 < ai < • • • < at < at+i and for each j = 0 , . . . , t,

(*) i = l , . . . , s , m = 1 , . . . , N a n d p , q £ ( a j , a j + i ) ,

P G Amii if and only if q G Am,i-

Now for p G K let m(p) = card(V^,) and i(p) — the least i such that card(Q,- -Vp) =
m(p). Then m(p) < Â  and i(p) exists by the conclusion of 6.1. Further, it clearly
follows from (*) that for each j = 0 , . . . , t, if aj < p,q < a J + i , then m(p) = m(q)
and i(p) = i(q) so we may denote these numbers by rrij and ij respectively. Hence
we may define functions <j>jti : (a,-, a^+i) -> KT~X (for those j = 0 , . . . , t with m,j > 1
and / = 1 , . . . , m.j) by

^ , t(x) = y&BifV,..., 3y<m'\{x, y^) G V A • • • A (x, y<m^) G V

*Qij-&1)<---<Qij-tf-m>)*v = &l)).
Now since the map Kr~l —>• K : y -> Q,̂ . -y is continuous it follows that each </>j7

coincides locally with a function given by the implicit function theorem for V (cf.
the discussion at the beginning of section 4) and hence is infinitely differentiable
on (o j ,a J + i ) . We also clearly have that {(pi,...,pr) £ V : aj < pi < Oj+1} =
(J{graph(0j,() : 1 < / < nij} where the union is disjoint.

Now suppose that j < t (so a j + i ^ oo) and 1 < I < rrij. Then eithei ||<^j,;(s)|| ->

o o a s i 4 aj+x (from below) or else there is some (p2,.. -,pr) G Kr~1 such that

(aj+i, p2,. • •, pr) is a limit point of graph(0ji;). For this is clear if K = M, and since
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only the continuity of ^JJ is required the result may be transferred to a general K.
It follows from hypothesis (a) of the theorem that (ctj+i,p2, .. .,pr) G V (notice
that the fact that V is a closed subset of Dr(a, K) is not sufficient here) and hence,
by (b) and the implicit function theorem, there is an open box neighbourhood, U
say, of (p2, •. .,pr) in Kr~l, an E £ K with a,- < a,-+1 -e < aj+1 < aj+1 +e < aj+2,
and a A'-defmable infinitely differentiable function <j> : (a,j+i — e,a,j+i + e) —v U
such t h a t <j>(aj+\) = (p 2 , • • -,pr) and V D ((ctj+i - £,aj+i + e) x U) — graph(<?J).

It must be the case that <j> coincides with 4>j,i o n (aj+i — £>aj+i) (because the set
{p G (o,j+i — £,a,j+x) : <j>(p) = <j)j,i{p)} is both open and closed in {a,j+\ — e,aj+i)
and is non-empty since (oj+i — e, a?+i) x U contains a point of graph^^j) which
is necessarily a point of V and hence of graph(0)) and, indeed, that there exists /'
with 1 < /' < rrij+i such that <j> coincides with <fij+i,i' on (oj+i,aj+i + e). Thus
<j>j,i,<i>j+i,i', and {(aj-)-i,p2, • • -,Pr)} may be glued together to form a definable,
infinitely differentiable function from (a,, aj+2) to Kr~l whose graph is contained
in V. The theorem now follows by repeating this process until no further glueing
across the aj's is possible. •

I shall refer to the set S given by 6.2 as a parameterization of V in K. Of
course, if V fl kr is also closed in kr, we may apply 6.2 with K = k and obtain
a parameterization, S' say, of V D kr in k but at the moment we cannot infer
any relationship between S and S'. The following lemma clarifies the situation
somewhat.

6.3. Lemma. Suppose that, in addition to the hypotheses of 6.2, every (k, in-
definable point of Kr n V (cf. 2.5) lies in kr. Let K~ = {a G K : -/? < a < 0 for
some P € k} and suppose that a G K~, P £ Kr~x, \\P\\ € K~ and (a,P) £ V.
Then there exist 71,72, Pi, P2, Bi, B2 € k with 72 < Ti < a < fa < f32 and \\P\\ <
B\ < B2, m G N (m > 1), and K-definable infinitely dijferentiable functions
4>i • (72, fa) -> A'''"1 (fori=l,...,m) such that

(i) \\<j>i{p)\\ <Bi for i = 1, . . . , m and p £ (72, fa);
(ii) V n ((T2, fa) x {Q e Kr~l : ||Q|| < B2}) = U^=i graph(^), ^d the union is

disjoint.

Further, ifVC\kr is closed in kr, there exist k-definable infinitely differentiable
functions ipi : (72, fa) —> kT~l (for i = 1, . . . , m) such that (i) and (ii) hold with V1;
in place of (pi where all notions are interpreted in k.

Remark. As I shall show below, it follows from the additional assumption on k and
~K, and (b) of 6.2, that if 1 < i < m, p € k and 72 < P < fa, then < ,̂(p) £ kr~1.
However, there is still no guarantee that the function <j>i \ k is equal to some ipy,
or even that it is ^-definable.

Proof. With the notation of the proof of 6.2 choose m £ N such that there are
exactly m points Q £ Va such that ||Q|| £ K~. Let Pi,...,Pm be these points
and note that m > 1 since P is one of them. Choose B £ k such that ||P;|| < B
for i = l , . . . , m and let B' £ k, B' > B. Then certainly ||Q|| > B' for all
Q € Va\{jPi,..., Pm}- For each i = 1 , . . . , m let (/,-, </>j) be the (unique) element of
S such that a £ /,• and (f>i(a) = Pi. This is possible by (iii) of 6.2. Now consider
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the (F-defmable) set A+(= A+(B,B')) given by:

m

A+ = {p £ P | I, : p > a and for all q £ [a, p] and i = 1,. .., m,
i = l

\\<t>i(<l)\\ < B' a n d Ml), • • • > 4>m{q) are the only

points Q £Vq satisfying ||Q|| < B'}.

By (i), (ii) and (iii) of 6.2, A+ has the form [a,/?) where f3 £ K U {00} and
j3 > a. If /? = 00, let ft, ft be any elements of & satisfying a < ft < ft. This is
possible since a £ K~. If /? € A', I claim that (3 £ k. For certainly /? e fji^i ^
since otherwise we clearly contradict (i) and (ii) of 6.2. It follows that there is
some Q £ Vp such that either ||Q|| = B or ||Q|| = B'. Define g : £>r (<?,#) -> K
by <7(zi, • • •, xr) = ^ ; _ 2 £,? — B2 (in the former case) or X2i=2 *? ~~ (-S')2 (in ^ne

latter case). Then g £ Mr(k,K,a) and # vanishes at the point (/?, Q) but does
not vanish on V fl VK for any open neighbourhood VF of {f3,Q). It now follows
from 4.9 (with n = r, Po = {/3,Q), M = {[f,Dr(a,W)] : f £ Mr(k,K,a)} and

{/l , -- , /m} = {gi,---,9r-i}) that (P,Q) is a (I, ^-definable point of KT n V and
hence lies in kr. This proves the claim. Now let /?i = /? and choose B\,Bi £ k
such that B < B\ < B2 < B', Then A+(B1,B2) = [a, /?') for some /?' £ k U {00}
and clearly /?' > ft. If /?' £ Jk set ft = /?'• If /?' = 00 set ft = ft + 1. By the
definition of A+ we now have that (i) and (ii) hold with a in place of 72- However,
the elements 71,72 of fc can be obtained by a similar argument by considering A~
(where "p > a", "[a,p]" are replaced by "p < a", "[p, a]" in the definition of A+)
with the same B,B',B1,B2.

To establish the last part of the lemma first observe that the result mentioned
in the remark follows from 4.9 since if (p, Q) £ V and p € k, then the function
Dr{a, K) —> K : {x\,..., xr) —>• zi — p is in Mr(k, K, IT), vanishes at (p, Q), but
certainly does not vanish locally on V at (p, Q). Hence, since V has a quantifier-free
definition (with parameters in k), it follows from (i) and (ii) that for each p £ k
with 72 < P < ft there are exactly m points Q £ kr~l such that k (= ({p,Q} £
V A IIQH < B2), and each such point satisfies ||Q|| < B\. Let Qi,..., Qm be these
points for the choice p = "y2^"2. Now let S' be a parameterization of V in k and for
i-l,...,m choose (the unique) </<, V>i> G 5' such that V>;(:l2ir^L) = <2«- Then since
each map x >->• HV'iCaOH is continuous on (72, ft)l~l7,', it follows from the intermediate
value theorem (interpreted in k) that it takes no value > B\. In particular (by (ii)
of 6.2) (72, ft) C II. This proves the lemma. •

7. THE PROOF OF LEMMA 2.8

I shall in fact prove 2.8 for both the T and T" situation, so let M,T etc. be
as described at the beginning of section 6. The proof is by induction on n. The
base step is provided by example (D) of section 2. For the induction step suppose

n, r £ N, K |= T, k \= T, k C K and that (a, crn+i) is an (n + 1, resequence (where
a is an (n, resequence) such that

for all s >r, every (k, {a, <rn+i))-definable
(8)

point of Ks lies in (K ) s .
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(Here, K~ is as defined in the statement of Lemma 6.3.)
Now suppose s > r. Since every ^-bounded variable (cf. 2.1 (ii)) is also (<?, <rn+i}-

bounded we have that D'((ff,an+1),~K) C Ds{S,li). Further, if g £ M'(ic,~K,a),

then g \ Ds({a, ffn+i), K) £ M"(k, K, {a, <rn+i)) a n d there will be no harm in
identifying Ms(k, A', <r) with its image in Ms(k, K, {<?, <7n+i)) under this restriction
mapping. (Similar remarks apply with K replaced everywhere by k.) Clearly our
inductive hypothesis and (8) imply

for all s > r and P £ Ks, if P is
(9) = =

(Jfe, ^-definable and P £ Ds((a, an+i),K), then P G ks.

Now let Q be any (k, {a, <rn+1))-definable point of Kr. We must show that
Q€kr. _==

Now, by definition, there exist gi, • • •, gr S Mr(k, K, (<?, an+i}) such that

(10) gi(Q) = ... = gr(Q) = 0,

and

Further,

(12) QeDr({<r,<rn+1),T).

I shall now deduce that Q £ kr under several extra assumptions on the sequence
of functions g\,..., gr. These will be justified later. For the moment, set V = {P €
KT : gi(P) — • • • = gr-i(P) = 0} (we may clearly suppose that r > 2), and assume
that

(13) ji,.,j,-ienr $,%ff);

(14) V is a closed subset of Kr and V PI kr is a closed subset of kr;

(15) VCDr({a,an+1},W);

(16) d e t / % ! , • • • , g r - i ) \ ( p ) ^ Q f o r a l l P e V , .
V d(x2, • ..,xr) j

(17) for all PEV, if gr(P) = 0 then det (^9l'"''9r\) (P) < 0.
\a(a; i , . . . , x r ) /

Now notice that all the hypotheses of 6.3 are satisfied. (The fact that every
(k, ^-definable point of Kr n V lies in kr follows from (15) and (9).) Further,
since Q is (k, (a, (Tn+i))-definable, we have Q 6 (K~)r by (8). Hence we may
apply 6.3 with a = qi and P = (q2,...,qr) (where Q = (<jfi,... ,gr)) to obtain
7i,T2,/?i,/?2,B1,S2 £ fc, & : (7 2 ,&) -> A-"1 and i>{ : {l2,f32) nfc -+ fc1-1 (for
i = 1, . . . , m) satisfying the conclusions of that lemma.

Now let ^ be any one of the fa's. Notice that for t £ (j2,/32) we have (t, <t>(t)) £ V
and hence (by (15)) {t,<j>(t)} £ Dr({a, <7n+1), A'). Therefore we may define, for any
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g G_Mr(k, K, (a, crn+i}), a function g : (72, /?2) -> K by -§{t) = g(t, <f>(t)). Clearly J

is A'-definable and infinitely differentiable. Its first derivative is given by

j=2

where <f>(t) = {<j>(2\t), . . .,4>^(t)). Of course this formula holds for ~g = g~lt... , ffr_i,
which are identically zero, and I leave the reader to perform the linear algebra re-
quired to eliminate the ^-(t) terms and arrive at

(18) § ( * ) = ( - l ) r + 1 J ( O ' J F i ( * ) " 1 for all* S (72,/%),
at

where

V d ( x u . . . , x r ) J
and

Ji(x1,...,xr) = det[ -±- .

V d ( x 2 , . . . , x r ) )
(Notice that (18) makes sense since J, J\ £ Mr(k, K, (<x, crn+i)) and, by (16),
7i( t ) /0foralHe(72, /?2) . )

I shall now assume that r is even and leave the reader to make the obvious
modifications to the argument for the case of r odd.

7.1. Claim, (i) / /p £ (72,^2) ond g~r(p) = 0, then -§f~(p) has the same sign as

Ji(p)-_
(ii) gr has at most one zero.

Proof, (i) By (17) 7(p) < 0, where J is defined as in (18) with g = gr. Thus (i)
now follows immediately from (18) ai;d the fact that r is even.

(ii) Note that, by (16), J\ is non-zero throughout (72, fi-i) and hence has constant
sign on (72, fi-i). It follows from (i) that -§f-(pi) and -§f-(p2) n a v e the same (non-
zero) sign whenever g~r(pi) = g~r(P2) — 0. This is impossible (by transfer from M)
unless g~r has at most one zero. •

Now notice that (13)—(17) all hold with k in place of ~K and V C\ kr in place
of V. This is because each of these statements actually implies the corresponding
statement for k and V D kr. Hence the discussion above holds good in k if we take
<f> to be one of the ifii's.

Now for any g £ Mr(k, K, (a, (rn+i)), let </(&;•) be the (A'-definable) function
from {t £ K : 72 < t < fo} to K obtained as above with <j> = <f>j and let g~(ipi; •) be
the (fe-definable) function from {t £ k : 72 < t < /?2} to k obtained with <j> = tp,
(note that 72,/?2 £ k). We complete the proof of 2.8 (under the extra assumptions)
as follows.

Let J'O be the (unique) number such that 1 < i0 < m and 4>io(qi) = {q2, • • • ,qr}-
Suppose that Ji((fiio;qi) > 0. (The proof is similar if Ji(<^,0;5i) < 0.) Let S =
{i : 1 < i < m and Ji{<t>i\q\) > 0}. Then, just as in the proof of 7.1, it follows from
(16) that Ji{<t>i\t) > 0 for all i £ 5 and all t £ (72,/?2)_and that 7i(&;t) < 0 for
all i £ {1 , . . .,m}\S and all t £ (72,/?2). In particular Ji(<j>i)ji) > 0 for i £ S and
Ji(<f>i;ji) < 0 for j £ { 1 , . . . , m}\S. It now follows from 6.3 (and the remark there)
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that there is a subset, S' say, of { 1 , . . . , m] such that { ^ ( T I ) ; i £ S'} = {<t>i(~fi) :
i £ 5} , and hence that Ji(tjji\i) > 0 (respectively < 0) for all i £ 5 ' (respectively
i £ {1, • • •, m}\S') and t £ (72, P2) H fe. Now fc is a substructure of A' so we clearly
have (again using 6.3) that for all t £ (72, (32) l~l Jfc, {V>.-(*) : » € S'} - {&(*) : i £ S}.
Now choose 73,^3 £ fc such that 72 < 73 < 71 and /3\ < /33 < fa and such that
for no i = 1 , . . . , m does either </,.(</>,•; •) or ~gr{4>i\ •) have a zero at 73 or $3. This is
possible since there are at most a finite number of points to be avoided. By 7.1 (and

its version for k) it clearly follows that if i £ S (respectively i £ 5'), then ~gr(<j>i\ •)
has a zero in (73,^3) (respectively, g~r(ipi; •) has one in (73,/%) 0 k) if and only if
Pr(</•••;73) < 0 and gr((/>i; fa) > 0 (respectively gr(ipi;y3) < 0 and gr{i>i\j3z) > 0).
Hence

card{i £ S : 3t £ (73, A)) M&;*) = 0}

= card{i £ S : gr(<f>i\ 73) < 0} - cardji £ 5 : gr(&; /?3) < 0}

and

card{i £ 5" : 3t £ (73, Pa) C\ k gr{^f,t) = 0}

= card{i £ 5 ' : gT{i>i] 73) < 0} - cardji £ S" : gr{ipi;h) < 0}.

However, by 6.3 (and the fact that k C K) the two right hand sides here are equal.
It now follows (again using 6.3) that every point P = (p i , . . . ,pr) £ A'r satisfying
P £ V, gr(P) = 0, / i ( P ) > 0, 73 < pi < /?3 and \\(p2,.. .,pr)\\ < Bx actually lies
in kT. But Q is such a point!

I must now show why (13)—(17) may be assumed. So suppose that gi, • •. ,gr and
Q satisfy (10)-(12). I shall modify (a, <rn+1) (to (a1, cr'n+l)) so that (8) and (9) are

still satisfied, and produce hi,...,hs £ Ms(k, K, (a1 ,cr'n+1)) for some s > r) and
a point Q' £ A's such that (10)—(17) are satisfied with hi,.. -,hs, Q' in place of
gi,... ,gr,Q- Further, q\,..., qr will occur amongst the coordinates of Q'. This is
clearly sufficient. The new functions and point will be produced in several stages
but to avoid a proliferation of notation I shall revert, to the original notation (i.e.
ffii • • • ,gr,Q) at the end of the justification of each stage. The conditions (10)—(12)
will be satisfied at each stage.

Stage 1. We may assume that for each (<?, crn+i)-bounded variable x, there are
variables y, z such that both x • y2 — 1 and (1 — x) • z2 — 1 occur amongst gi,..., gr.

Justification. Suppose that #; is (<x, crn+1)-bounded (where 1 < i < r). De-
fine gr+i,gr+2 £ Mr+2(k, K, (a, <rn+1)) by ffr+i(zi, • • •, arr+i) = xi • xl+\ ~ 1,
Sr+2(*i, • • •> *r+2) = (1 — %i) • xl+2 ~ 1- Then, since 0 < ft < 1 (because of
(12)), we may set qr+i = +q^ 3 and qr+2 = +(1 — ?i)~5 so that (10) and (12) are
clearly satisfied for gi,.. .,gr+2, {Q, Qr+i, 9r+2)- Further, as a simple calculation
shows,

detf^'----^)VQ,ft+1,ft+2)^detr^1-----^)(Q).4.g,^(l-^
\ a ( a ; i , . . . , x r + 2 ) y Vo^ i i • • •. xr)J

and the right hand side is non-zero by (11) (for gi, • • • ,gr,Q)- Hence (11) holds for
the new system.

Stage 2. We may assume that gi,..., gr-i £ Mr(k, A", 5) and that gT has the
form an+i{xx,..., xr) — xe, where xe is not {ff, <rra+i)-bounded (and hence does not
actually occur in the term <rn+i(xi, • • •, %r))-
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Justification. By definition of Mr(k, K, (<?, <xn+i)) there exist hi,...,hr G

Mr(Tc,T,a)[xr+i] (= M r + 1 ( £ , I \ < ? ) ) such that

gi(xi,...,xr) = hi(xi,...,xr,<Tn+i(xi,...,xr))

for i - l , . . . , r . L e t ? r + i = an+1(q1, . .., qr), Q' = (Q,qr+i) and hr+1(xi,..., xr+1)

= <jn + i (a ; i , . . . , xr) — xr+i. Clearly (10) and (12) are satisfied for A i , . . . ,hT+\,Q'

as well as stage 1 and stage 2. For (11), consider the matrix S^''"'xT+1l(Q')- For

each i = 1 , . . . , r, multiply row r + 1 by £h' i (Q1) and add the result to row i. By

the chain rule, the resulting matrix has determinant — de t (g r ' | ' 'lr\){Q) which is

non-zero by (the old) (11).

Stage 3. We may assume that for all P 6 Dr({a, an+i), F ) , if gt{P) = 0 for

i = 1,..., r - 1, then det(5fefc=ii)(P) ? 0.
Justification. By (11) there is some i (1 < i < r) such that

d e t ( . . a ( 9 " - ' ^ - ' ) . ) (Q) ^ 0.

By relabelling the variables we may suppose that i = 1. (Note that for every
n,r G N, the notion of an (n, resequence is invariant under permutation of vari-
ables. Further, the definable points for the permuted sequence are just coordinate
permutations of definable points for the original sequence. Thus (8) and (9) are
still true for the permuted sequence. Clearly so are (10)—(12) and stages 1 and 2
for the corresponding transformation of gi,..., gr and Q.)

Now let

h(xu...,xr+1) = xr+1-det(d{9l'---'9r-\))(xu...,xr)-l,
\ O(X2, . • . , Xr) J

and set

Then gi, • • •, gr-i, h, gT and Q' still satisfy stages 1 and 2 and also, clearly, (10) and
(12). For (11), a simple calculation shows that

which is non-zero by (the old) (11).
Finally, to see that stage 3 is satisfied suppose that P G Dr+1((a, <rn+i),K) and

that gi(P) = ••• = fltr_1(P) = A(P) = 0. Say P = ( P l , . . . ,p r + 1 ) . Since /i(P) = 0
we have p r + 1 7̂  0 and routine calculation gives det(d^3"'9l~^)(P) = p'^ ^ 0,
as required.

Stage 4. We may assume that for all P 6 Dr((a, an+i),JK), if gi(P) = 0 for
i = l , . . . , r , thende t ( | ^ -^ i ) (P)<0 .

Justification. As in the proof of stage 2, there is some h G Mr(&, A',^)^] such
that

(*) d e t ( a / f 1 ' ' " ' ^ ) («1, • • •, *r) = M*l . • • •. Xr, <Tn+i(xi, . . ., Xr)).
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D e f i n e H G M r + 1 ( f c , A , a ) b y H ( x i , . . . , x r + i ) - x r + l - h ( x i , . . . , x r , x e ) - 1 w h e r e
e is as given by stage 2 (so 1 < e < r ) . Now since gr(qi,..., qr) = 0, i.e.

Cn+i(?i, ...,qr) = qe, it follows from (*) that h(q1:.. .,qr,qe) — det ( | f f ^ f ^ } ) ( Q )
which is non-zero by (11). Hence we may set qr+i — h(qi,..., qr, ge)"": and
Q' = (Qi9r+i) so that (10), (12), stages 1 and 2 are clearly satisfied for the sys-
tem <7i,..., gr-i, H, gr, Q1. To see that stage 4 (and hence (11)) are also satisfied,

suppose that ( p i , . . . ,p r + i ) = P 6 I>r + 1((o: ,ffn +i) , A') and that </i(P) = ••• =
gr-i(P) = H(P) = pr(-P) = 0. Then by routine calculation we obtain

^ / % i g r - ! , g g r ) \ = _ ̂  /0( g l , - , g r - 1 , g f ,g) \

V a(xi,...,a:r+i) / V d(xu...,xr+1) JK

= - d e t U ( ^ , . . . , ^ ) J ( p i ' - - - ' P r ) - f c ( p i " - " P r - P e )
= ~h(pi,.. .,pr,pe)2

(by (*) and the fact that flfr(pi,...,pr) = 0). Since # ( P ) = 0, A(pi,. . . ,pr ,Pe) # 0
so the conclusion of stage 4 follows. Finally, stage 3 is still satisfied because if
P — ( p i , . . . ,p r+i) is any point in Dr+1((a, ffn+x), K) such that gi(P) = ••• =
ffr-i(P) = -ff(^) = 0, then

V 9 ( x 2 , . . . , x r + i ) y

= d e t ^?7 T (/'l.---'Pr)-MPl.---.Pr>Pe)
V 0^2, • • • , %r) J

which is non-zero by (the old) stage 3 and the fact that H(P) = 0.
The proof of Lemma 2.8 is now complete, for (13) follows from stage 2, (14) and

(15) from stage 1, (16) from stage 3 and (17) from stage 4. Further, (8)—(12) were
preserved throughout. •

I shall prove Lemma 2.9 for the T situation (and hence complete the proof of the
first main theorem) in the next section. I conclude this section, however, with the
best result I know for the unrestricted (T") case. The proof follows immediately
from 2.8 (for the T' situation) and 2.7 (the proof of which—given in 5.2—clearly
also works (in fact, more smoothly) for the T'-situation).

7.2. Theorem. Let Hi,..., Hi be a Pfaffian chain of functions on Mm (m £
N, m > 1) and let K' be the structure ( I ; Hiv .., Hi; r ) r € C where the set C is
chosen as at the beginning of section 6. Let k', K' \= X", k' C K', and suppose that
for all n,r GN and all (n, resequences a, every (k', a)-definable point (pi,.. . ,Pr)
of (K'Y satisfies —B < pi < B (i = 1 , . . . , r) for some B £ k!. (In particular,
this is satisfied if K1 is a cofinal extension of k'.) Then for any existential formula
<j>(xi,.. .,xe) oflj, and any a\,. ..,ae G k' we have k1 |= 0(ai , . . .,ae) if and only
ifK'\=<fi(au...,ae). D

8. THE PROOF OF LEMMA 2.9

In this section I revert to the T-situation of section 1. The proof of 2.9 that I
shall give here does not work for the T'-situation because it relies heavily on 3.5 and
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I know of no analogue of this result for this situation. (I say "analogue" because 3.5
as it stands obviously fails for, e.g., 7" = Theory((ffi, exp)) with exp unrestricted.)

So suppose K, k \= T, k C K and n, r £ N. Let a = (<7i, . . . , an) be an (n, r)-
sequence and suppose that for each s > r every (k, cr)-definable point of Ks lies
in ks. Suppose ffn+i is such that (<?, <7n+i} is an (n + 1, r)-sequence. It is clearly
sufficient to show that every (k, (a, <7n+i))-definable point of A'7" lies in (K~ )r where,
as before, K~ = {a € K : —/? < a < f3 for some /? S k}.

Let Q = {qi,... ,qr) be a (k, {a, (Tn+i))-definable point of Kr. Then, by applying
the stages described in the previous section, we may assume that (r > 2 and) there
are functions gi, • • • ,gr 6 Mr(k, K, (<7,<rn+i)) such that:

(19) jI,..,jr.1eIr(i,A>li

gr has the form <rn + 1(a: i , . . . , xr) — xe,

where xe is not (IT, <7n+i)-bounded;

(21) 9i(Q) = 0 for t = 1,..., r and det f f f 1 ' ' " ' ^ (Q) ̂  0;
\O(Xi,..., xr))

and, setting V = {F 6 Z)1"^, A') : ffi(P) = 0 for i = 1 , . . . , r - 1} :

V C ^( (a 1 , an+1), K) and V (respectively V D F )

is a closed subset of Kr (respectively kr);

(23) for all P G ^ , det f ^ f ' ' ' " ^ - ^ ) (P) ± 0;

(24) for all P <E V, if 5r(P) = 0 then det f fffll' ' ' ' ' 9r\) (P) ± 0.
\0{x1,...,xr)J

The hypothesis of 2.9 may now be strengthened as follows.

8.1. Claim. Suppose x(xi,. • -,xr) is a formula of L (the language of ordered
rings) possibly containing parameters from k. Suppose further that for some
(Pi, •••iPr) e V, K \= x(Pi, • • -,Pr)- Then for some {pu .. .,pr) 6 V D kr,
k \=x(Pi,---,Pr)-

Proof. By quantifier elimination and the usual tricks we may suppose that
x(xi,.. .,xr) has the form Bav+i, • • •,3xr+tp(*i, • • -,xr+t) = 0 where p is a poly-
nomial with coefficients in k. Let g = p2 + Y^Zl 9i- Then g £ Mr+t(k, K, a) (by
(19)) and g(P) = 0 for some P 6 Dr+t(a, K). Hence by 2.7 there is some (P, P') €
D(r+0+»(o:, A) (for some s G N) such that g(P) = 0 and (P, P') is (k, ^-definable.
By the hypothesis of 2.9, (P,P') £ Jfc(»-+0+*. Clearly if P = ( P l , . . . ,Pr+t), then
(pi , . . . ,pr) satisfies the conclusion of the claim. •

I now suppose, for a contradiction, that Q £ (I~)r.

8.2. Claim. q1 £ k.

(20)

(22)
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Proof. Suppose gi G k. Let h(x1,..., xr) = x\ — q\. Then h £ Mr(k, K, a),
h(Q) = gi(Q) =••• = 9r-i(Q) = 0 and

V d ( x u . . . , x r ) Jy V d ( x 2 , . . . , x r ) J

(by (23)). Thus Q is a (k, ^-definable point of Kr and so lies in kT(C (K~)r)—a
contradiction. •

Now by (19), (22), (23) and 6.2 (see also the comments following the proof of
6.2) there exists a parameterization, {(Ij,4>j) '• 1 < j < N} say, of V D kr in k.
(Note, by the way, that VC\kr ^ 0 by 8.1.) Let J,- = (aj,6j) where a,- e fcU(-oo},
6j G k U {+00} for j = 1 , . . . , JV.

8.3. Claim. Either q\ <£ K~, or else there is some j = 1 , . . . , N such that either
0 < qi — ctj < a or 0 < bj — qi < a for all a G k with a > 0.

Proof. Suppose qi 6 K~. Now we must have a,j < q\ < bj for some j = 1 , . . . , N,
for otherwise we could find a,b G k with a < q\ <b such that no (p i , . . . , pT) G VC\kr

satisfies the formula a < xi < b, and this contradicts 8.1. Let a = max{aj : 1 <
j < N and a,- < qi < bj} and 6 = min{6j : 1 < j < N and a,j < q\ < bj}. Suppose,
for a contradiction, that there is some a G k, a > 0 such that q\ — a > a and
6—5x > a. T h e n a < a + a < qi < b — a < b so clearly [a + a,b — a] C Ij for all
j such that cij < 51 < bj. (In the case a = —00, replace a + a by any element of fc
which is less than q\. This is possible since qi G K~. Proceed similarly if b = 00.)

Now since each ipj is continuous, there is some B £ k such that H'/'.jWII < B f ° r

all J such that aj < q\ < bj and for all t G k with a + a < t < 6 — a. Now let
c = max({a + a}U{fcj : bj < ?i}) and d = mia({b-a}\j{aj : aj > qi}). Then by 8.2
(and 6.2), there is no (pi,.. .,pr) e VD¥ with c < pi < d and ||<f>2, - - -,Pr)\\ > B.
This contradicts 8.1 since Q is such a point in V. •

I now claim that in addition to (19)-(24) we may assume that:

(25) qi > a for all a £ k.

For if this is not already the case, then by 8.3 we have (for some a, b G k) either
(a) q\ < a for all a E k, or (b) 0 < 31 — a < a for all a G k, a > 0, or (c)
0 < b - qi < a for all a G k, a > 0. Define h G Mr+1(k, K, a) by

{ xi + xr+x in case (a),

xr+i(x\ - a) - 1 in case (b),

xr+i(6 — x\) — 1 in case (c).
In all cases there is a unique qr+1 G K such that {Q, qr+i) (= Q', say) satisfies

9l(<2') = . . . = ffp_1(Q/) = A(Q') = gr(Q') = 0, and clearly qr+1 > a for all
a G fc. Further, by immediate inspection or routine calculation, (19)—(22) and (24)
all hold for the system gi,.. .,gr-i,h,gr,Q'. Actually, (23) holds too, but more
relevant for present purposes is the fact (again proved by direct calculation) that if
P G Kr+1 and 9l{P) = ••• = gr^(P) = h(P) = 0, then det( a ( |^ ; ; ; g -^ f c ) ) (P) ? 0.
Now relabel variables (as in the justification of stage (3) in section 7) so that xr+i
becomes x\. Then (19)—(25) are satisfied for the new system, and we revert to the
original notation.
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8.4. Claim. There exists a finite subset S ofk, an element B of k and a positive
rational number 0 such that:

(i) 0 < a < 1 for all a £ S;
(ii) for any (p\,..., pr) £ Kr with p\ > B and (p\,...,pr) e V, and any i

such that the variable Xj is (<?, o~n+\)-bounded, there exists a £ 5 such that
Pi - a\ < Pi6.

Proof. By 8.1 it is sufficient to prove this claim with K replaced by k in (ii), so we
work in k. Let S be a parameterization of VDkr in k and suppose (I, ip) £ S is such
that I is unbounded to the right. Say ?/> = (V>2, • • •, Vv)- Suppose that the variable
Xi is (<?, <rn+i)-bounded. Then by (22) and (25), 2 < i < r and 0 < 4>i{t) < 1 for all
t £ / . It clearly follows from 3.5 (with K = k, g = tpi) that ij>i(t) —> ai as t —> oo
for some a, £ k with 0 < aj < 1. Further, by applying 3.5 again with g = fy — a,-,
there exists a positive rational, #,- say, such that \^i(t) — ai\ < t~$' for all sufficiently
large t £ k. The claim now follows since there are only finitely many possibilities
for (/, V>) a n d *• D

8.5. Claim. There exists a positive integer /j, and an element B' of k such that for
any {pi,.. .,pr) £ V n kr with pi > B' we have \gr{pi, • • -,pr)\ > Pi1*-

Proof. By (24) and 3.3, gr has only finitely many zeros on V D kr. The claim
now follows from 3.5 by an argument similar to that of 8.4. (Consider g(t) =
gr{t,i,2{t),...^r{t)).) D

Of course we would be done if we could show that 8.5 remained true with V in
place of V fl kr. To achieve this we shall approximate gr by a polynomial (uniformly
in both K and k) and apply 8.1.

By (20), gr{x\,... ,xr) has the form an+i(xi,..., xr) — xe, and by 2.1,
crn+i(xi, • • •, xr) has the form F,(yi, . . ., ym) for some i = 1, . . ., / and some j / i , . . . ,
Vm £ {0,l,xi,...,xr}. Now (working in ffi) consider the function Gi : U —)• ffi
(cf. section 1). Recall that U is an open set containing [0, l ] m , G,- is C°° (in fact
analytic) on U and G,- f [0, l ] m = F,- f [0, l ] m . From now on I write F, G for Fi, Gi
respectively.

Since [0, l ] m is compact, there exists a positive rational number e such that for
each P £ [0, l ] m , Be{P) (d=f the open Euclidean ball in Mm with centre P and
radius e) is contained in U. We may further assume that G and all its derivatives
are bounded (though not necessarily uniformly) on \J{B£(P) : P £ [0, l]m}. Now
by Taylor's theorem with Lagrange's form of the remainder, we have

A „ I m a \

(26) G(p1+t1,...,pm+tm) = J2 1 2 > 7 5 - G (P) + ^ >
,-=o yl- \i=i v

for a l l P= {pi,...,pm} € [ 0 , l ] m , {tu...,tm) £ 5 £ ( 0 ) a n d A £ N , w h e r e

p 4 ) a\{n
for some P' £ Be(P).
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By our boundedness assumption on G it follows that for all A G N, there exists
C\ G N such that for all (tlt. ..,tm)£ B£(0),

(28) \RX\ < Cx • (max{|f,-| : 1 < i < m)}) A + 1 .

Now by (1), (2) (see the beginning of section 1) and (26), (28) it follows that
for all A G N and all monomials w(xx,..., xm) of degree < A, there exist terms
T%(x1,...,xm) of Z such that for all P = ( p i , . . . , p m ) G [0, l ] m and (tu • • • ,tm) <E
Be(0) with (pi + i i , . . . , p m + i m ) G B e ( P ) D [0, l ] m , we have

\\iF(p1+tu...,Pm+tm)-j2T^py<t^---'tm)\

< A ! C A ( m a x { | i i | : l < i < m } ) A + 1

where the summation is over the monomials of degree < A.
I now want to apply (29) in K (and k). Recall that cn+i(£i, • • •, xr) has the

form F(yi,..., ym) for some yi, • • • ,ym G {0, 1, xx, . . . , xr}. I therefore define, for
each (pi, .. ., pr) G Kr and i = 1,. . ., m,

[0 if2/,=0,
p{ = U ifW = l,

[pj i f j / j = x j .

Thus, if ( p i , . . . ,p r) € Dr((a, <rn+i),K) (in particular, if ( p i , . . . ,pr) G F—see
(22)), then 0 < p< < 1 for i = 1 , . . . , m and <xn+i(pi,. • • ,p r ) = -F(p'i, • • • ,14) .

Now let S, 8, B be as in 8.4, //, 5 ' as in 8.5, and let Ao be an integer greater than

e •
Consider the point Q G KT. Then Q £ V and qi > B (by (25)) so we may define

a,- (for i = 1, • • •, m) as the unique a G SU {0, 1} such that |gj — a\ < gj~ . Note that
a,- G fc and 0 < a, < 1 for i = l , . . . , m . Further, (gi—ai, . . ., 9^—am) G S£(0) (since
0 < ?fS < £> £ . ^ b e m S positive rationals) and (q[,..., q'm) G Be({alt..., am)) n
[0, l ] m . Also, Sr(<5) = 0 so F(q[,...,q'm) = qe. Hence, by (29) applied in K, we
obtain:

(*o)

(30) A0!ge - ^ T$°(au..., am) • n(q[ - au ..., q'm - am) < A0!CAo • q-e(-Xa+1).

We also clearly have

(31) ? i >max( j5 ' ,2C A ,£- e " 1 )

and

(32) k ' - a . - | < 9 r * . fort = l , . . . , m .

Now since k C K, all the r A o ( a i , . . . , am) 's are elements of k (and the evaluation
of the term is absolute between K and k). We may therefore express the conjunction
of (30), (31) and (32) as x(<Zi> • • • > ir), where x{xi, • • • i *r) is a formula of L with
parameters in fc. It follows from 8.1 that (30), (31) and (32) hold in k for some
(Pi,. • • ,pr) G V f)kr in place of (qi,..., qr). However, we may also apply (29) in k
with pi = ai and ti = pj — a,-. (Note that (t\,... ,tm) G Se(0) by the new (31) and
(32), and (at +tlt..., am + tm) G Bs({ai,..., am)) n [0, l ] m since ( P i , . . . , p r ) G V,
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where all these notions are being interpreted in k.) Combining this with the new
(30) (and using the new (32)) gives:

\F(?1,...,?m)-pe\<2Cx-p;eiXo+1)

< 2C\ • p ^ " 1 (by choice of Ao)

< p~" (by the new (31)),

i.e. |pr(Pi; • • • >Pr)l ^ Pi1* is ' r u e m ^- Since px > B' (by the new (31)), this
contradicts 8.5 and establishes 2.9. •

The proof of the first main theorem is now complete.

9. TOWARDS THE PROOF OF THE SECOND MAIN THEOREM

Recall that this states that the theory of the structure (M; exp) is model com-
plete. Here, exp denotes the exponential function x i-» ex defined for all x £ M
and, as before, ffi denotes the ordered field of real numbers (in the language of
ordered rings). Let us denote the theory and language of (K; exp) by Texp and Lexp
respectively. Then, by the brief discussion of model completeness in section 1, we
must show that if k, K (= TeXp and A; is a substructure of K, then any existential
sentence with parameters in k which is true in K is also true in k.

Let us fix k, K' \= Texp with k a substructure of K for the rest of this sec-
tion. Henceforth, I shall not distinguish notationally between structures and their
domains, nor between terms of a language and their interpretations in given struc-
tures.

Now consider Theorem 7.2 in the case m - I = 1, C - 0, E\ = exp, K' = K and
k' = k. This result tells us that it is sufficient to show that whenever n G M and
fi, • • • :fn G k[xi,..., xn,exp(xi), • • -,exp(a;n)] then there exists b e k such that if
a = ( o i , . . . , an) G Kn satisfies / i (a ) = • • • = fn(a) = 0 and J{fu ..., /„)(«) / 0
(where, as before, J(fi,---,fn) denotes the determinant of the Jacobian matrix
( f i ; ) i < « J < " ) ' t h e n la«"l < fcfor i = l , . . . , n .

(This reduction of the problem of proving the model completeness of (K; exp)
was already established in [16] (Theorem 2).)

We shall prove this by induction on the number of exponentials actually occurring
in / i , . . . , / „ . However, in eliminating an exponential we shall introduce new vari-
ables and their exponentials but in such a way that only values of the new variables
lying between 0 and 1 will be relevant. This will cause no problems at the base step
of the induction because of the model completeness of the structure (M;exp \ [0,1])
(which follows from the first main theorem—see section 1, example (A)). Now it
turns out to be technically more convenient to avoid the use of truncated functions,
so I define the function e (in any model of Texp) by e(x) = exp((l + a;2)"1) (see
section 1, example (A) again). We are thus led to the following

9.1. Definition. Let n £ N , s C { l , . . . , n } . Then M* denotes the ring of func-
tions from Kn to K generated (as a ring) over k (considered as a field of constant
functions) by £,-, (1 + 2?)"1, e(x>) (f°r J = 1 , . . . , n) and exp(a;,) (for i £ s).

Notice that, for any n G N and s C { l , . . . , n } , M* is a Noetherian ring of
A'-definable, C°° (in the sense of K) functions from Kn to K. Further, M^ is
closed under differentiation and so, in particular, for any / i , . . . , / „ G M^ we have
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J(fi i • • • i fn) £ M%. The results of sections 4 and 5 are therefore applicable and we
summarize them now in a form suitable for application here.

9.2. P r o p o s i t i o n . Let n EM, s C {I,.. .,n}.

(i) Suppose f £ M£, a £ Kn and f(a) - 0. Then there exist / i , . . . , / „ £ Msn

and p £ Kn such that /(/?) = fx0) = • • • = /„(/?) = 0 and J ( / i /„)(/?) #
0.

(ii) //, in (i), a «s an isolated zero of f, then we may take ft = a.

(iii) Let / i , . . . , / « £ ^ « • TTien </iere are only finitely many j £ Kn such that

/ i(f) = • ' ' = Mi) = 0 «nrf J(fu ..., /„)(?) ^ 0.

J W / . For (i) apply Theorem 5.1 with T = Texp, 'K = K, M = M*, U = Kn and
5={f£^":/(f) = 0}(=n/))-= =

For (ii) apply Theorem 4.9 (with T = Texp) K = K, Po = a and M - {[g \ U, V] :
U an open neighbourhood of a in Kn and g £ M*}) repeatedly for m = 0, . . . , n -1.
We must eventually find / i , . . . , / „ £ M^ such that a S Vn'(fi, . . - , / n ) because
otherwise we would have (ii) of Theorem 4.9 holding for some fi, • • •, fm with m < n
and, in particular, for [h, W] = [/, Kn]. But this contradicts the implicit function
theorem applied in K (see the beginning of section 4) and the fact that a is an
isolated zero of / .

Finally, note that the sequence (1 + a?f)—1,..., (1 + x^)'1, e(zi) , . . . , e ( i n ) ,
exp(a;,1),..., exp(a;,m) (where s = {ii,..., im}) is a Pfaffian chain on ffi". State-
ment (iii) follows upon transferring Theorem 3.1 to A'. •

Let us now assume that the second main theorem is false. By the discussion
above it follows that there exists m 6 N such that:

for some n £ N, n > m, there exist a = ( a i , . . . , an) € Kn,

/ £ {1 , . . . ,n} and s C {1,.. .,n} with card(s) = m such that for some

W m / i , . . . . /n € M*, /!(a) = ••• = /„(«) = 0 # J ( / i , . . . , /„)((*). Further,

|a;| > 6 for all 6 £ k, and if m > 0, then / £ s.

(Of course, the comments above imply that we could take n = m and * =
{ 1 , . . . , n] here, but, as already mentioned, the point is that we shall be reducing
m at the expense of extra variables and e-terms.)

Choose m minimal such that (*)m holds. I first claim that m > 0. For consider
the structure with the same domain and ordered ring structure as K, but with exp
replaced by e. Call the resulting structure K' and proceed similarly to obtain k'
from k. Clearly k' is a substructure of K' and they are both models of the complete
theory of the structure (M; x i-)- exp((l + x2)~1)}. But by example (A) of section 1,
this theory is model complete. This contradicts (*)o and 9.2 (iii).

Now for our minimal (non-zero) m, choose n,S,l,s and / i , . . . , / n witnessing
(*)m. In the final section of this paper I shall establish (independently of all as-
sumptions being made here) a property of elements of models of Texp and their
exponentials which implies the following:

9.3. There exist integers n, (for i G s), not all zero, and c £ k such that 0 <

Assuming 9.3, note that since |a;| > b for all 6 £ k, we cannot have n, = 0 for
all i £ s\{/}. Suppose, for convenience, that 1 6 s, ni ̂  0, and 1 ^ /. We may



662

MODEL COMPLETENESS RESULTS FOR EXPANSIONS 1085

assume that nx > 0 for if ni < 0 simply replace n,- by - n , (for i e s) and c by
1 — c in 9.3. Now set an+i — exp(ai) and choose an+2 € K so that an+2 > 0 and
(1 + a j ^ ) " 1 = c + E»e» niai- This is possible since K, as a field, is real closed.

Now let gi(x\,.. .,xn+1) be the result of replacing exp(xi) by xn+\ in
fi(xi,..., xn). Then gt € M^± and clearly (an,..., an+2) is a solution of the
following system of equations:

gi(xi,...,xn+i) = 0,

A(x1,. . . ,xn + 2): |ff«(^>-- '2 :»+i) = 0 '

(i + *»+2)"1-c-Ei6 .».-** = o.
*"Vi-«p(c)-n i 6 , + exp(*j)ni

-c(*»+2) • n i e s - exp(xj)-n> = 0,
where s± = {j £ s : j > 1 and ±n_,- > 0} (respectively). (The last equation is
obtained by exponentiating the previous one, substituting xn+i for exp(a:i) and
rearranging. An empty product is interpreted as 1.)

Now by 9.2 (iii) there exists a A'-definable open neighbourhood, U say, of
{oti,..., an) (in K") such that (ai , . . . , an) is the only solution of / i (xi , . . . , xn) —
••• = fn(xi,...,xn) = 0£ J(fi,...,fn)(xi,...,xn) i n U. S i n c e

< / ( / i , - - , / n ) ( « i , . . . , a n ) # 0
we may actually suppose that ( « i , . . . , «n) is the only solution of / i ( z i , . . . , x n ) =
• • • = fn{xi,..., xn) = 0 in U. I now claim that (fin,.. ., an+2) is the only solution
of the system A ( z i , . . -,xn+2) lying in the open subset U x K+ x K+ of Kn+2

(where K+ — {a 6 K : a > 0}). For suppose that (/?!,...,/3n+2) is such a
solution. Since /?n+i > 0 and n\ ^ 0 the last two equations force /?n+i = exp(/?i).
The first n equations now force /,(/?i, . . . , /?„) = 0 for i = l , . . . , n and hence,
since ( /?i , . . . , f3n) £ U, Pi — a,- for i = l , . . . , n . Further, /?n+i = exp(/?i) =
exp(ai) = an+i. Finally, the penultimate equation and the condition /?n+2 > 0
force f3n+2 = an+2.

Now let / be the sum of the squares of the n + 2 functions appearing in
A(x!,. . . , zn+2). Then / 6 M*+2 (note that c, exp(c) 6 &) and we have shown that
{01, . . . , an+2) is an isolated zero of / . By 9.2 (ii) it follows that there exist
h i , . . . , h n + 2 G M ^ s u c h t h a t h i ( a t i , . . . , a n + 2 ) = ••• = h n + 2 ( a i , . . . , a n + 2 ) =

0 £̂ J(hi,.. -,hn+2)(ai,.. . , a n + 2 ) . Since / G s\{l], this implies that (*)m_i holds
which contradicts the minimality of m and establishes the second main theorem
modulo 9.3.

10. SMOOTH 0-MINIMAL THEORIES

We touched on the notion of O-minimality in section 2 where it was needed to
establish asymptotic formulas for definable functions in structures covered by the
first main theorem. We now require a deeper asymptotic analysis and I must assume
that the reader is familiar with the basic general properties of 0-minimal structures.
These can be found in the foundational papers [10] and [7]. (See also [15] for more
recent developments.)

For this section let ffi be any 0-minimal expansion of the real ordered field M
and let T denote the complete theory of M. Then f admits definable Skolem



663

1086 A. J. WILKIE

functions and the closure of {0} under these functions in any model K of T is an
Archimedean-ordered elementary substructure of K (because T is complete and has
an Archimedean ordered model).

Suppose that K |= T, k X K (i.e. k is an elementary substructure of K) and
n£M.

I shall say that a function from Kn to K or a subset of Kn is .k-definable if it is
definable by a formula of the language of T possibly involving parameters from k.

Consider now the following condition on T :

(SI) For any K \= T and any /i'-definable function f : K —¥ K, there exists N £ N
such that |/(x)| < xN for all sufficiently large x £ K.

10.1. Theorem. Suppose T satisfies (SI). Let K \= T and suppose that R is a
convex subring of K. Let I be the (convex) ideal of R consisting of those elements
of R which are not invertible in R (i.e. I is the unique maximal ideal of R). Then
there exists k0 X K such that k0 C R and such that for each a £ R, ko D (a + I)
contains exactly one element, i.e. ko splits R.

Proof. Clearly the set S = {k : k •< K and k C R} satisfies the hypotheses of
Zorn's lemma (<S is nonempty since it contains the Skolem closure of {0} in K).
Let k0 be a maximal element of S. Then ko •< K (so ko (= T), ko C R and clearly,
since ko is a field, ko H (a + I) contains at most one element for each a £ R.

I claim that for all a £ R there exists a £ ko such that a > a. For suppose
a is a counterexample. Since T has definable Skolem functions the set {/(a) : / :
K —>• K, f a fco-definable function} is the domain of an elementary substructure
of K (containing ko) which, by the maximality of ko, contains an element greater
than every element of R. Suppose f(a) is such an element (where f : K —¥ K
is feo-definable). By (SI) there is an element b 6 ko and W E N such that ko \=
Vz > b(\f{x)\ < xN). Since k0 < K and a > 6 we have \f(a)\ < aN (in K),
contradicting the fact that R is a subring of K.

Now suppose that a 6 R and that fc0 fl (a + 7) = 0. It is again sufficient (for a
contradiction) to show that f(a) £ R for any fco-definable function / : K —> K • So
let / be such a function. By a result of [10] there are elements a\ < a? < • • • < an

of ko such that (setting ao = —oo, an+i = +oo) / is (weakly) monotonic (in ko, and
hence in K) on each open interval (a,, a,+i) for i — 0 , . . . , n. Thus, by the claim
above, there exist b,c £ ko with b < a < c and / (weakly) monotonic on (b, c).
Since ko H (a + /) = 0 we have c — a, a — b > /3 for all /3 £ I, and hence (c — a)"1 ,
(a - 6)"1 £ R. By the claim there exists d £ k0 such that d > (c - a)"1,(a- 6)"1.
But then d~l £ k0 and 6 < 6 + d'1 < a < c - d~l < c. It follows that f(a)
lies between the elements f(b + d-1), /(c — d-1) of ko and hence f(a) £ R, as
required. •

Let K |= f. For any subset A of K denote by C£(A) the closure of A (in K)
under the Skolem functions of T. The set A is said to generate K if Cl(A) = K,
and is called independent if a £ C£(A\{a}) for each a £ A. An independent set
that generates K is called a basis for K. It was shown in [10] that this notion of
independence has the exchange property, and hence any independent subset of K
can be extended to a basis for K and all bases for K have the same cardinality.
The cardinality of any basis for K is denoted dirn(A').
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If k < A, then all the above remarks apply "over k", i.e. to the notion of closure
under ^-definable functions. I denote by dim/^A) the cardinality of any basis for K
over k. If k0 -< ki •< K it is easy to verify that dimfco(A*) = dimfco(&i) + dim^A')
provided that dimfco(A') is finite.

I now introduce another notion of dimension for models of T. Indeed, let K be
any real-closed ordered field. Recall that an element a of A is called finite if \a\ < n
for some n £ N , and infinitesimal if \a\ < £ for all n G N\{0}. The set Fin(K) of
finite elements of K forms a convex subring of K with unique maximal ideal /i(A'),
the set of infinitesimals. Further, the set Fin(K)\fj.(K) is a multiplicative subgroup
of A\{0}, and I call the quotient of the latter by the former the value group of K
and denote it by V(K). It is usual to write V{K) as an additive group and as
such it can be ordered by setting a/(Fin(K)\fi(K)) > 0 if and only if a € ^(A').
Further, V(K) is a divisible group (since mth roots of positive elements exist in
K for all m £ N\{0}) and is therefore an ordered Q-vector space. I denote its
dimension over Q by valdim(A').

The map vK : A -> V(K) U {00}, extending the natural map A'\{0} -> V(K)
by setting UK(0) = 00, is called the valuation map of K. It is easy to verify the
following (where we set 00 > a for all a G V(K) and 00 + a = a + 00 = 00 for all
a 6 V(K) U {00}) :

( v l ) -VK(X • y) = VK{X) + VK{V) for all x,y£ K;
(v2) VK{X + y) > mm(vK(x),i/K(y)) for all x,y £ K, wi th equal i ty if UK(X) ^

(v3) for all x 6 A', vK{x) > 0 if and only if x G Fin(K), and vjr(a:) > 0 if and
only if x £ ^(A').

My present aim is to formulate a condition on T that guarantees (if T also
satisfies (SI)) that valdim(A') < dim(A') for all models K of T for which dim(Ar)
is finite. Notice that this inequality is satisfied if T is just the theory of real-closed
ordered fields (i.e. M = M). For in this case dim(A) is the transcendence degree (over
Q) of K and it is easy to check that if a\,..., an G K and p(ai,..., an) = 0 for
some non-trivial polynomial p with rational coefficients, then VK(<*I), • • . , ^ ( a ; n )
are linearly dependent over Q.

Consider the following condition on T :

(S2) For any formula </>(xi,..., xn) of the language of T there are m , p £ N and
C°° functions F{ : Rn+m -4 M (for i = 1, . . . ,p), which are definable without
parameters in M, and are such that

I 1= V? U(x) «• 3^ f ||y|| < 1 A V(M-(») A Fi(x, y) = 0 ) j ,

where, if y = j / i , . . . , 2 / m , ||yl| = max{|y, | : i = l , . . . , m } and iV,-(y) is a

formula of the form Ajes Vj ^ ^ f ° r some s,- C { 1 , . . . , m } .

•
10.2. Definition. If f satisfies (SI) and (S2) (and f is the complete theory of a
0-minimal expansion ffi of ffi), then T is called smooth.

10.3. Theorem. Suppose T is smooth and K \= T. If dim(A') is finite, then
valdim(A') < dim(A).
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Proof. The proof is by induction on dim(A').
If K is Archimedean (i.e. fi(K) = {0}), then valdim(A') = 0 so the result is clear.

Notice that this covers the case dim(A) = 0 (by the remarks at the beginning of
this section), so suppose that dim(A') = n > 0 and /i(A') ^ {0}.

By an argument similar to the one used in the claim in the proof of 10.1, there
is some ao £ M-^0 with ao > 0 such that for all b £ K with b > 0 we have a™ < 6
for some m £ N. Let R - {b £ K : \b\ < a^1/m for all m £ N\{0}}. Then R is a
convex subring of K and its maximal ideal, I say, is Archimedean in the sense that
for all a,be I\{0}, there is some m £ N such that |6|m < \a\.

By 10.1 we may choose k ^ K such that fc splits R. Since k ^ K we have
dim(fc) < n. Say dim(i) = n — r (where r 6 N\{0}) and choose c i , . . . , cr 6 K such
that {ci , . . . , cr} is a basis for A' over k. We may suppose that c\,... ,cr £ I since
if Cj £ R then we may replace c,- by cs~*, and if c,- £ fi we may replace C{ by the
unique r) £ I such that c; + r) £ k (using the splitting property of k).

Now let k* be the algebraic closure of the field k{c\,..., cr) in K. Then clearly
!/jj[fc*J is a subspace of V(K) and by an argument similar to the one discussed
before the formulation of (S2) we have dirriQ î x[fc*] < dimQ VK[k] + r (where dimQ
means Q-vector space dimension here). However, clearly ĵf[fc] — V(k) (as Q-vector
spaces) so dimQ VK[k*] < valdim(fc) + r which, by the inductive hypothesis, implies
dirtiQ ^K[^*] < dim(fc) + r = n. Hence it is sufficient to show that VK maps &*\{0}
surjectively onto V^A').

Let d £ A'\{0}. We must show that there is some a £ k* such that VK{(*) =
uK(d). Since !/*(-/?) = vK(0) and I / J C ^ " 1 ) = -vK(ff) for any j3 £ A\{0}, and
VK{P) £ vic[k] for any (3 £ R\I (as k splits R), we may suppose that d > 0 and
d £ I. Let / : Kr —> K be a fc-definable function such that f(c\,..., cr) = d.

By (S2) there exists a ^-definable, C°° (in the sense of A) function F : Kr+1+m ->
K (for some ra£N) and s C { 1 , . . . , m} such that:

for all x £ K, f(ci,..., cr) = x if and only if there exist

(33) bi,...,bm£K with 6,- ̂  0 for i £ s, and |6,-1 < 1 for i = 1 , . . . , m

such that F(ci,..., cr, x, fci,..., bm) — 0.

(In applying (S2) I have replaced the parameters from k occurring in the for-
mula defining he graph of / by variables, to obtain <j>(z, Xi,. . ., xr, x) say, and then
taken F to be that F{ for which the corresponding disjunct holds in K when these
parameters are replaced for z in <j>, and x\ is set to c,- for i = 1, . . . , r and x is set
to d.)

Now fix / ? i , . . . , Pm £ K such that # ^ 0 for i e s, |A I < 1 for i = 1, . . ., m, and
F(c i , . . . , c r , r f , / ? ! , . . . , / ? m ) = 0. Since 0i,...,/3m £ R we may choose (uniquely)
/3J, . . . , / ?£ ,€ fe such that /?; - /?? € I for i = 1 , . . . , m (using the splitting property
of k). Further, by the Archimedean property of / we may choose N £ N so large
that \Pi\ > \c\\N for i £ s. (We cannot have C\ = 0 since c\ occurs in a basis for K
over k.)

LetA = {(xu...,xm) £Km : \Cl\N < |x,-| for i £ s, \xt\ < 1 for i = 1 , . . . , m}.
Consider the function

h :Kl+m -¥K : (x, x1:..., xm) i-> \F{clt..., cr, x, xu ..., xm)\.

Since (in the sense of K) h is continuous, it must achieve its minimum on any
closed, bounded, A'-definable subset of K1+m. Let j be the minimum of h on
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([0, 1]\( | , =?p)) x A. By (33) and the preceding remark we have that j > 0, so we

may choose N' G'N so large that 7 > Icil^ . Then clearly:

for all a 6 [0,1] and ( # , . . . , f3'm) G A,

(34) i f | ^ ( c 1 ) . . . , C r , a , / ? ' 1 , . . . , O < k i r \

then - < a < — and hence ux{a) = ^if(rf).

Now let A S N and consider the Taylor expansion to degree A of the function
F : Kr+1+m —>• A', with Lagrange's form of the remainder, about the point

.-. _ In a /SO oO \((- ur+l+m\
U — {U, . . .,U,pl, . . . ,pm){t K ) .

r + 1

This clearly provides us with (by either transferring the classical result from K
to K, or else by just proving Taylor's theorem in K) a polynomial

P A ( 2 / 1 , • • •,Vr,x,x1,...,xm)

with coefficients in k and an element B\ G & (5A > 0) such that:

for all t 6 K with 1 > t > 0, and all
(35)
V > z&Kr+l+mWith\\z-Co\\<t,\F{?)-px{z)\<Bx-tx+\

Let t0 = 2-max(|ci | , . . . , |cr|,d, | / ? i -#> | , . . . , | /? r a- /?^|) . Then <0 € / and t0 > 0,
so we may choose Ao S N so large that:

(36) ^ + 1 < ( 2 B A o ) - 1 - | c 1 | ^ .

Now setting A = Ao, t = to and z ~ ( c i , . . . , cr,d,/?i, ...,/?„,) in (35), and then
using (36), gives:

(37) \p{cl,...,cr,d,p1,...,pm)\<\-\cl\N', where p = pA o.

We also clearly have:

(38) (<*,&, . . . ,&,)€ [0,1] x A

and

(39) \\(c1,...,cr,d,p1,...,/3m}-u\\<((2B,0)-1-\c1\N')(x°+ir\

Now (37), (38) and (39) can be expressed in the language of ordered rings and
can be viewed as conditions on the point (d,(3i,... ,/?m) with parameters in k* (=
the algebraic closure of the field k(cx,...,cr) in K). Since k* is an elementary
substructure of K for the language of ordered rings (both being real-closed ordered
fields) it follows that there are a, 0[,..., f3'm G k* such that:

(40) i p ( C l , . . . , c r , a , # , . . . , o < ! . | C 1 r ' ,

(41) < « , # , . . . , # „ ) 6 [0,1] x A

and

(42) | | ( c i , . . . , C p , a , / ? ' 1 , - - ->^ m >-« | |< ( (2B A o ) - 1 . | c i | J V ' ) (* ' ' + i r 1 .
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Now by (42), we may apply (35) with A = Ao, t = ( ( 2 - B A J - 1 • |ci| jv ')(A°+1)~1

and z= ( c i , . . . , cr, a, / ? i , . . . , (3'm) which, together with (40) gives:

(43) \F{cu...,cr,a,j3[,...,plm)\<\clf.

The required conclusion now follows from (43), (41) and (34). •

Suppose A" (= f and k ^ K. Then vK[ik\{0}] is a Q-vector subspace of V(K)
(because k is certainly a real-closed ordered subfield of K) and I denote the dimen-
sion of V(K) over i>jc[fc\{0}] by valdimfc(A).

I require the following generalization of 3.4.

10.4. Theorem. Suppose T is smooth, K \= T, k •< K and that dimk(K) is finite.
Then valdimfc(A') < dimfc(A').

Proof. It is clearly sufficient to consider the case dimfc(A') = 1, so let a be a
generator for K over k. Suppose, for a contradiction, that valdirrifc(A) > 2. Then
there exist fc-definable functions f,g : K —> K such that i>K{f{a)), v/r(</(a)) are
Q-linearly independent over fir [&\{0}]-

Now consider the structure {K,P), where P is the unary relation on K inter-
preted as (the domain of) k. Let (*K,*P) be an No-saturated elementary extension
of (K,P). Let *k be the elementary substructure of *K with domain *P. Then
*k is certainly No-saturated. I claim that j/»^(/(a)), ^.^(^(a)) are Q-linearly in-
dependent over ^-fc[*fc\{0}]. For suppose not. Then for some p, q € Q not both
zero, and some 6 £ *fc\{0} we have pv*k(f(a)) + 9J/<fc(ff(a)) + V'k(b) — 0. This
implies that i"1 < \f(a)\p • \g(a)\q • \b\ < i for some i £ N\{0}. Since a £ K and
(A", P) -< (*K, *P) it follows that there is some 6' € k\{0} such that

z-1 < |/(a)|" • |ff(a)|« - |6'| < t,

which contradicts the fact that ^ir(/(a)), fic(ff(a)) a r e Q-linearly independent over
vK[k\{0}}.

This shows that we may suppose that k is No-saturated (by taking k = *k and
K to be the elementary substructure of *K generated over *k by a).

Now let ko be an elementary substructure of k such that dim(&o) is finite and
such that / , g are both fco-definable. Consider the following set of formulas over k :

e(x) : {\f(x)\P • \g(x)\" • \b\ < r 1 V \f(x)f • \g(x)\" • \b\ > i :

ieN\{0},p ,9 6 Q , not both zero, b £ &o\{0}}.

Clearly Q(x) is realised in K by a and hence Q(x) is finitely satisfiable in k.
Further, since dim(fco) is finite, Q(x) can be rewritten so that it contains only finitely
many parameters from ko (namely, the elements of a basis) and hence from k. Thus
0(x) is realized in k, by a\ say. Let k\ be the elementary substructure of k generated
over ko by a\. Then clearly dim(fci) = dim(&o) + l and valdim(fci) > valdim(&o) + 2
(since vk1{f{ai)),Vk1{9{a'L)) a r e Q-linearly independent over J'/tJfcoViO}] by the
definition of 6(x)). But we may repeat this argument with k\ in place of ko and,
indeed, continue to do so to obtain, for each / £ N, an elementary substructure, ki
say, of k such that dim(fcj) = dim(fco) + / and valdim(fci) > valdim(fco) + 2/. But
this contradicts 10.4 when I — dim(fco) + 1- ^

Before applying 10.4 to the situation of section 9, I require the following result
on ordered Q-vector spaces.
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10.5. L e m m a . Let V be an ordered <Q)-vector space and U a subspace ofV such that
V has dimension n (£ N) over U. Then there exists a basis 0 < v\ < i>2 < • • • < vn

for V over U such that if v is any element of V with v > u for all u £ U and if
v - (Yii=i <livi + «o) (where qlt.. .,qn £ Q, u0 £ U), then \v\ > q • Vj for some
positive q € Q where j = max{i : qt ^ 0}.

Proof. Let U be the convex closure of U in V. The result is trivial if U = V.
Otherwise, simply observe that there exists / £ N, with 1 < / < n, and Archmidean-
ordered Q-vector spaces A\,..., Ai such that V is isomorphic (as an ordered Q-
vector space) to U x Ai x • • • x Ai with reverse lexicographic ordering. •

11. BOUNDING THE SOLUTIONS TO EXPONENTIAL-POLYNOMIAL EQUATIONS

AND THE COMPLETION OF THE PROOF OF THE SECOND MAIN THEOREM

Recall from section 9 that Lexp and Texp denote the language and theory of the
structure (M; exp), respectively. I denote by Le and Te the language and theory of
the structure (M; e;}, where e : M ->• ffi : x >->• exp((l + x2)'1).

11.1. Theorem. The theory Te is smooth and model complete.

Proof. That Te is model complete follows from the first main theorem (see example
(A) of section 1), and O-minimality and condition (SI) follow from results in [13]
(see also Corollary 3.5). For (S2), consider the function

e* : K ->• R : x >->• exp(x2 • (1 + z2)"1)

and note that e(x~x) = e*(x) for all x € M\{0}. It follows that e* is definable
in (M;e) without parameters. Notice also that e and e* are both C°° throughout
IR. Now let <j)(xi,..., xn) be any formula of Le. It easily follows from the model
completeness of Te that there is a polynomial p £ Z[zi, . . . , Z2m+2n] (for some
m € N) such that

(M; e) |= V x i , . . . , xn ((f>(xi, ...,xn)*+

(*) 3 j / i , . . . , ym p(yi ,...,ym, e{yi),..., e(ym),

x1,...,xn,e(x1),...,e(xn)) - 0) .

Condition (S2) now follows by considering, for each s C {1 , . . . ,m}, the result
of replacing %• by y~l and e{yi) by e*(yj) (for each j £ s) in the function on the
right hand side of (*), and then multiplying by a suitably high power of Wj^s yj
to obtain a C°° function (on IR), Fs say. Thus, in the notation of (S2), p is 2m,
Ni(y) is Aj £ s i Vj # 0 and F{ is FSt, where {«,- : i < 2m} is an enumeration of all
the subsets of { 1 , . . . , m}. •

Suppose now that k and K are models of Texp with k C K. Clearly, k,K
determine models of Te with the same underlying ordered field and I denote these
("restricted") models by k',K' respectively. Certainly k' C K' so k' < K' by the
model completeness of Te (Theorem 11.1).

Now suppose that k* is any model of Te such that k' C k* C K'. Then for each
a £ k*,exp(a) is an element of (the domain of) K which may or may not lie in
k*. Let E{k*) = {a £ k* : exp(a) £ £*}. Clearly E(k*) is a Q-vector subspace of
the additive group of k* (because k* is a real-closed ordered field and hence closed
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under taking rational powers of positive elements) and contains the additive group
of k as a subspace. It also contains Fin(k*) as a subspace because if a £ Fin(k*),
then there exist ra£Z and 6 £ k* such that j -p- = «, and then exp(a) = e(6)m,
ande(6)m G k*.

11.2. Lemma. In the above situation, suppose that dimfc/(fc*) = n (as models of
Te), where n £ N. Suppose further that E(k*) is at least n dimensional over its
subspace k + Fin(k*). Then for each a £ E(k*) there is some b £ k such that
\a\<b.

Proof. Suppose not. Let U = k + Fin(k*) and choose some subspace V of E(k*)
such that U C V, V is exactly ra-dimensional over U, and such that V contains an
element a with a > b for all b £ k. Clearly this implies that a > b for all b £ U.

Let 0 < i>i < • • • < vn be a basis for V over U as given by Lemma 10.5. Let j
be minimal such that Vj > b for all 6 £ U.

Now consider the elements fx(exp(i>i)),. •., ̂ x(exp(t;n)) of the value group
V(K) of K. I claim that they are linearly independent over j/jf[&\{0}]. For if not
there exist q\,..., qn £ Q, not all zero, and c £ k\{0} such that cexp(^"= 1 q%Vi) £
Fin(K)\fi(K) (using (vl) and (v3) of section 10). Clearly we may suppose that
c > 0, so c — exp(d) for some d £ k (since k (= Texp). We thus have
exp(d + S?=i 1ivi) € Fin(K)\fj(K) which, by standard properties of the expo-
nential function, implies that d+ Y%=i 1ivi £ Fin(K), and hence d+ J21=i 1ivi £
Fin(k*). But this contradicts the linear independence of vi,..., vn over U.

Now by Theorems 10.4 and 11.1 and the hypothesis that dimfc<(fc*) = n it
follows that valdim*'(&*) < n and hence that i^K(exp(vi)),.. .,i/}c(exp(vn)) span
KK"[fc*\{0}] over KR:[&\{0}] (note that exp(t)i),.. .,exp(vn) £ k*). In particular

n

VK{VJ) - vK(c) + ^2pi^K(exp(vi))
i=i

for some c 6 &\{0} and pi,...,pn E Q. Again, we may suppose that c = exp(d)
for some d £ k and hence, VK{VJ) = VK(exp(d + XZT=i Piv*))- By (v3) of section 10,
this implies that ^- < exp(d + ^"=i p,-v,-) < NVJ for some TV £ N\{0}. Now the
left hand inequality here implies that d + Y^i=\Pivi > 0 (since certainly ^ > 1).
Further, if pj = pj+\ = • • • = pn = 0 we would have 0 < d + Yl"=i P>vi < b f°r some
b £ k and hence j$ < exp(6), which contradicts the choice of VJ since TV -exp(fc) G k.
Thus pi ^ 0 for some i = j , . . . ,n and so, by the choice of i>,-,..., vn, there exists
q £ Q with q > 0 such that d + JZiLif'11' > 9ui (see Lemma 10.5). But, by the
right hand inequality above, this implies that NVJ > exp(qvj). However, this is
absurd since certainly Vj > r for all r £ N. •

I now complete the proof of the main theorem. Recall from section 2 that we
must consider the following situation:

We are given n, m £ N with n > m > 0, a = (a i , . . ., an) £ Kn, / G {1, . . •, n],
s C {1, . . . ,«} with |*| = m,l £ s, and / i , . . . , / „ G M^ (cf. Definition 2.1) such
that / i (a) = • • • = fn(a) - 0 and J(fx,..., /„)(«) ^ 0. Further, |a(| > 6 for all
6 6* .

We must establish 9.3, for which it is clearly sufficient to show that a i , . . . , an

are Q-linearly dependent over the subspace k + Fin(K) of (the Q-vector space) K.
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To do this, consider the submodel, k* say, of K' generated over k' by {a, : 1 <

i < n} U {exp(a;) : i G s} using the Skolem functions of Te. Then k* |= Te and

k' C k* C K'. Obviously we have dinv(fc*) < n + m. I claim that, in fact, we have

dimfc/(fc*) < m. Granted this claim, it follows from 11.2 that E(k*) has dimension

at most m - 1 over k + Fin(k*) (because at G E(k*)). But {at : i G s} C -E1^*) so

{a,- : i G s} is a Q-linearly dependent set over k + Fin(k*). A fortiori, ot\,.. ., an

are Q-linearly dependent over k + Fin(K). To prove the claim let us suppose, for

convenience, that s = { 1 , . . . , m). Set an+,- = exp(aj) for i — 1 , . . . , m.

Now for 1 < i < n, pick gr,- G M*[zn + i , . . . , z n + m] such that ff,-(xi, • • . , xn,

exp(xi),...,exp(ojm)) = fi(x1,...,xm), and set gn+i(xi,..., xn+m) = exp(x,) -

rn+t- for 1 < i < m. Then clearly (a i , . . .,an+m) is a solution to the system

gi(x\,..., xn+m) = 0 (1 < i < n + m). It is also easy to show, using the chain

rule, elementary matrix algebra and the fact that J ( / i , . . . , fn)(alt • • •, an) ^ 0,

that J(gi, • • •, gn+m)(ai,..., an+m) ^ 0. It follows that the row vectors (||*- : 1 <

i < n + m),..., (ll2- : 1 < i < n + m) evaluated at (cti,..., an+m) are linearly

independent over K and hence that there exists a subset u C { 1 , . . . , n + m} of size

n such that the matrix

\OXj J Ki<n
Jew

is non-singular when evaluated at ( a i , . . .,an+m). Now notice that gi,. • -,gn a r e

^'-definable functions (i.e. they are Le-definable with parameters in k) so it clearly
follows from Proposition 9.2(iii) (with s = 0) that for each j G u, OCJ is /^'-definable
from {a, : 1 < i < n + m, i £ u}. Thus the submodel of K' generated over k' by
{at : 1 < i < n + m, i (£ u} contains a i , . . . , an+m and is therefore equal to k*.
Thus dimk'(k*) < m as required.
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ABSTRACT It is shown that if there exists a supercom- dowed with this topology to" is homeomorphic to the Euclid-
pact cardinal then every set of reals, which is an element of ean space of irrationals. Suppose A" is a set. We denote by
UR), is the projection of a weakly homogeneous tree. As a A"" the set of all functions/ : oi—> A'and we denote by A"5"
consequence of this theorem and recent work of Martin and the set of all finite sequences of elements of A". We adopt the
Steel [Martin, D. A. & Steel, J. R. (1988) Proc. Nail. Acad. usual convention that A"<uis the set of all functions / : dom
Sci. USA 85, 6582-6586], it follows that (if there is a super- f-* X such that dom / G to and if s G A'<"then dom 5 = l(s)
compact cardinal) every set of reals in £(R) is determined. = length(i). Suppose A is an ordinal, A > 0. A tree on to x A

is a subset r c ^ ' x A"1" such that for all pairs (s, t) 6 T,
The subtle relationships between the existence of certain Ks) = /(<) and (s \ i, t f i) e T for all i < Ks), i G ai. Suppose T
large cardinals and regularity properties of various simple is a tree on to x A. For s G to " and for x G to"
sets of reals is one of the striking developments in modern

SeOnee°onhe first results in this direction is that of R. Solo- T< = <' E A < " : ( j ' " E T} *"" T' = * " : * & <*}'
vay (cf. ref. 1), which states that if a measurable cardinal
exists then every X\ set of reals is Lebesgue measurable and For each x e to", Tx C A<(° and is naturally viewed as a tree
has the property of Baire. An unusual aspect of Solovay's on A. [T] = {(x, f): x e. a", f S A"and {x\k,f \k) E T for all
argument is the use of the method of forcing. Prior to this the k 6 to}. We also define p[T] = {x : (x, f) £[T] for some / e
uses of forcing had been limited to obtaining independence A"}. Thus p[T] C 10", it is the projection of T, and p[T] = {x
results. Martin (2) refined Solovay's result in showing that if E to" : T, is not well-founded}.
there exists a measurable cardinal then every IT] set of reals Suppose A' is a nonempty set. We denote by m{X) the set
is determined, briefly n [ determinacy holds. Martin actually of countably complete ultrafilters on the Boolean algebra
proved a slightly stronger result: Suppose for every real, x, P(X). ft is a measure on X if fj. e m(X). For /j. e m(X) and A
x* exists. Then 11} determinacy holds. The assertion of n{ C X we write ju.(A) = 1 to indicate A £ f . Suppose that X =
determinacy itself implies that every X2 set of reals is Lebes- K<"and that p. e m(Y<<"). Since /i is countably additive,
gue measurable and has the property of Baire. Thus, Mar- there is a unique k e to such that /J.{ Yk) = 1. Suppose pi, /£2

tin's theorem may be regarded as a strengthening of Solo- G m(Y<(°), /j.i(Ykt) = 1, and /i2(I'ta) = 1. Then ^1 < /J.2 (^2
vay's. The methods Martin used eliminate the need for fore- projects to /ii) if kt < k2 and, for all A C Yh, iii(A) = 1 if and
ing. only if /x2(X*) = 1 where A* = {s G Ykl: s \ tL £ A}.

Shelah and Woodin have shown that if a supercompact For each ^ G m(X) there is a canonical elementary embed-
cardinal exists then every set of reals that belongs to L(U), dingjM : V—* A/M of the universe, V, into an inner model, M,,,
the smallest inner model of set theory containing the reals where MM is the transitive collapse of Vx/fi. Suppose / i l t ^2

and the ordinals, is Lebesgue measurable and has the prop- G m(Y<") and pi < /u.2. Then there is also a canonical ele-
erty of Baire. Since these properties are absolute to L(R), if mentary embedding j ^ ^ : MMl -> M^ such that j ^ = j ^ ^ °
there exists a supercompact cardinal then the inner model j ^ .
i(R) is a model of set theory without choice (i.e., of Zer- 'Suppose (nk:ke to) is a sequence of measures in m(Y<")
melo-Fraenkel) in which every set of reals is Lebesgue mea- such that for each k £ to, /xt( Yk) = 1. The sequence (tik:ke
surable and has the property of Baire. The results of Shelah to) is a tower if for all ki < k2, /iSl < p^. The tower, (/x*: k G
and Woodin were motivated by those of ref. 3. to), is countably complete if f o r a n y s e q u e n c e (Ak ; t 6 « )

I show here that the existence of a supercompact cardinal such that for each k G to, Ak C Y* and ixk(Ak) = 1, there
implies that every set of reals that belongs to L(R) has a cer- exists / £ Y" such that / f it G Ak for all k £ to. A tower of
tain structural representation from which the regularity re- measures in m(Y<"), (fi.k : k G to), is countably complete if
suits, such as measurability, easily follow. This is made and only if the direct limit of the sequence (M^ : k G to)
more precise through a sequence of definitions. under the maps, j ^ ^ : M^ —> Mf t (where ki < Jfc2) is well-

For our purposes the set of reals, R, is the set to" of all founded.
functions f:to—>to, where to = {0,1,. . ., k,. . .} is the set Definition 1: Suppose A is an ordinal, A > 0. A tree, T, on
of nonnegative integers. We let ^ " d e n o t e the set of all fi- to x A is weakly homogeneous if there is a partial function v:
nite sequences of elements of ta and for 5 6 a ig le t APS be the to<a x to<1"-* m(A<") such that
set, Ns = {/ G to": f \l(s) = s), where Ks) = length(j). The (/) if (s, t) £ dom n then tr(s, t)(Ts) = 1 and
set {Ns u E t i * * ) generates a topology on to"; it is the prod- 07) for all x G to", x G p[T] if and only if there exists y G to"
uct topology derived from the discrete topology on to. En- such that f o r a l l t £ <u, (jrft, vt / t )edomirand(ir( j r \k, y\k)

: k E to) is a countably complete tower. D

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement" Abbreviations: AD, axiom of determinacy; ZFC, Zermelo-Fraenkel
in accordance with 18 U.S.C. §1734 solely to indicate this fact. w i t n t h e " 'om of choice.
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Definition!: Suppose A is an ordinal, A > 0. A tree, T, on J,\ set of reals is the projection of a K-weakly homogeneous
a) x A is homogeneous if there is a partial function ir: <i><<"-> tree.
mU*") such that THEOREM 1. Suppose K is a supercompact cardinal. Then

(i) if s E dom it then v(s)(Ts) = 1 and every set of reals that belongs to L(R) is the projection of a
(,ii) for all x e u>", x e p[T] if and only if for all * e <o, x \ k K-weakly homogeneous tree.

E dom IT, and (ir(x f k) : k E a>) is a countably complete
tower. • Proof of Theorem 1

The notions of homogeneous and weakly homogeneous
trees arose in the study of descriptive set theory in the con- A n e s s e n t j a , i n g r e d i e n t j n t h e p r o o f o f Theorem 1 is the use
text of the axiom of determinacy (AD). The concept of a o f g e n e r i c e l e m e n t a r y embeddings. We develop some of the
homogeneous tree is implicit m early work of Martin and was necessary machinery. We use standard notation. For exam-
formally isolated by Kechns 4). Ple,Xr = {/ | / : Y^X). If / : Y-> A"andZ C Ythenfm

Any tree on <„ x w ,s weakly homogeneous. Thus any X} ={/( , ) : f e Z}. When considering an elementary embedding
subset pf a, is the projection of a weakly homogeneous tree. ; : y _> M i t i s always assumed that; is an elementary embed-
Sunilarly any tree on u, x 1 is homogeneous and so any d i from { v } ̂  (Af , a n d t h a t M . t r a n s i t i v e . tf

closed subset of a>" 1S the projection of a homogeneous tree. w r i t e . . v _+ {M E) t h e n n ' o t h i fa i m p l i c i t l y a s s u m e d ^
The primary interest in homogeneous or weakly homoge- , t h a t . , elementary embedding from (V, e) into (A/

neous trees exists because of the structural representations E)p ^ ^ M De^Qt b e ^ S u p 0> •. J*
they provide for their projections that are sets of reals. Sup- M i s £ e l e m e n t a r y embedding. Then the critical point of j
T 6 ? 7 , ' • !? • projectlon of a homos^ous tree denoted (-} js ̂  ,eas, ^ a tf it exis s u (£ t n a , ^ j
then A is determined as is any preimage of A via a contimi- ^ „ s £ / s e ^ i s a t r a n s i t i v e s e t R e c a U t h a t K i s x . s u ^
ous function F: «"-* u,». If A is the projection of a weakly c o m p ac t if there exists an elementary embedding./: vZM

homogeneous tree then enough of the continuous preimages s u c h t h a t K = ( . , M ^ C M and A" £ j( VK). K is supercom-
ofA are determined so that one can show that many regulan- pact if K is A--supercompact for each X
ty properties hold for A-for example, that A is Lebesgue Deflnilion 3 : (;) A nonempty set b is stationary if for any
mM K a, f ^ t h 1P r °P e r t y o f B a i r e ' , . function F : (U6)<»^ Ufc, f ' t ^ " ) C a for some a e A;

Notice that if A C a," is the projection of a homogeneous ( , 0 a s e t c i s d ( M e d y f o r s o m e f u n c t i o n F . ( U c ) < » ^ u

tree and F : w™-* a)"is a continuous function then the image c = {a C Uc • F"(a<") C a}-
of A under F,B = F»(A), is the projection of a weakly homo- (iii) a set a i closed and unbounded in b (b f 0)iffl = c n
geneous tree. The converse is also true. If B C a," is the ft f ( ) r s o m e d o s e d s e t c w i t h U c = ub.
projection of a weakly homogeneous tree then there is a con- ( l v ) a s e t fl c (, is stationary in b if a is stationary and Uo =
tinuous function F : a"—> to™ and a set A C w™ such that B = u j g
F"(A) and A is the projection of a homogeneous tree. N o t i c e ^ ^ if U a £ a then a is stationary (these are the

If there are no measurable cardinals then A C u> is the degenerate stationary sets). There is some conflict with stan-
projection of a homogeneous tree if and only if A is closed. d a r d u s a g e . a c o f i n a l s u b s e t o f a singular l i m i t o r d i n a i i s n e v .
This is essentially because if there are no measurable cardi- e r stationary in the preceding sense,
nals then for any A the only elements of mfA* ") are the atom- Lemmas 1 and 2 are easy consequences of the definition,
ic measures (i.e., principal ultrafUters). Similarly without A fun c t io n / : fc -* ufe is a choice function if for all A e b, if
measurable cardinals B C o>"is the projection of a weakly A T6 0, then /(A) 6 A.
homogeneous tree if and only if B is a 2} set. LEMMA 1. Suppose x C Ub and b is stationary. Then {A n

For our purposes an easier formulation of weak homoge- x : A E b} u stationary. 0
neity is actually more relevant. This is given in the easily LEMMA 2. Suppose b is stationary and f : b -> Ub is a
verified lemma below. choice function. Then for some set a stationary in b, f \ a is

LEMMA. Suppose A u an ordinal and that T is a tree o« <o constant. 0
x A. The tree, T, is weakly homogeneous if and only if there S u p p o s e a i s a s e t . L e t ht(a) = s u p { r « x ) : x B a } = l e a s t a
exists a countable set <r C m(A ") suc/i that for all x € p[T] s u c n t n a t y a C Vo.
there is a countably complete tower, ( f t : k E w), ofmea- p o r each ordinal a define a partial order P<» as follows:
sures in o- such that for all k e <u, Wc(Txlk) = 1. • P<a = {a:a is stationary and ht(a) < a} and for all a, b e

There are two minor points. First, if I"is a tree on a x A P< o , a ^ i i f (i) UfcC Uaand( i i ) fo reachZea ,Zn(UWe
and (M* : * 6 <•>> is a countably complete tower of measures b. Q<a is the suborder of P<a given by Q < a = {a e P<a : a C
in mfA'1"), where for some x e w", Mr , )*) = 1 for each k 6 P (Ua)} = {a e P < o : each Z e a is countable},
a), then x is necessarily an element of p[T]. The second point t he following definition is of central importance. A set X
is that in the case of weak homogeneity (following the nota- end-extends Y if Y C X and for all Z e Y, Z n Y = Z n X
tion in the definition) it is only the range of -n that is impor- Definition 4: Suppose S is an inaccessible cardinal. A C
tant. p < s is semiproper in P< 6 if

If T is a weakly homogeneous tree then a is a witness for
this if o- satisfies the conditions in the statement of the lem- ^ ^ = {x c Vi+i : For some Y < Vs+1, X C Y, Y end-
ma. Suppose ji is a measure in m(X) and that K is an ordinal.
The measure /* is K-complete if for any S C/u. with \S | < K, l~l extends * n Vs and Ffl (Ua) e a for some a e A n f l
J 6 ) i ; i.e., if J C POT is a set of cardinality < K such that
for all Z E 5, yi£) = 1 then/ i (n{Z:ZeS}) = 1. A tree Ton contains a set closed and unbounded in PS(VS+1).
a, x A is K-weakly homogeneous if there exists a witness a Similarly, A c Q<s is semiproper in Q<5 if sp(A) contains
for the weak homogeneity of T containing only K-complete a set closed and unbounded in Pu,(V8n).
measures. T is < K-weakly homogeneous if T is a-weakly We shall restrict our attention to Q< s though much of what
homogeneous for each a > K. we prove holds in an analogous form for P<8 • Suppose A C

Martin's proof of n} determinacy from the existence of a Q e , and let B = />„,(. VB*,)\sp(A). Then A is not semiproper
measurable cardinal is in essence a proof of the following. if and only if Bis stationary in P^Vm). One can show that if
Assume K is a measurable cardinal. Then every II} set of Ac Q<e is semiproper then A is predense in Q<t—i.e.,
reals is the projection of a K-homogeneous tree. As an imme- {a E Q<s : a =s b for some b E A} is dense in Q<5.
diate consequence, if K is a measurable cardinal then every LEMMA 3. Suppose M is a transitive set, M ' C M and F E
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tffor all F : V£"i -> V5 + I . Suppose A C Q<5. The following «•£ G and let ea : a -» a be the identity function. Clearly [ e j
are equivalent. Ej(a). I claim that [ej = /"(Ua) in the sense that for all c E

(0 A is semiproper in Q<s. N,cE [ea] iff c = j(X) for some X £ Ua. To see this, fix c 6
(ii)ForanyX< M with A, S£Xand\X\ < a^, there exists /Vsuch that c £ T A L Choose A £ Gand geVb such that A £

y < M racA rAa/ X C Y, Y end-extends X n Vs and Y D a, c = [g], and g(Y) E r n (Ua) for all K E A. Hence g is a
(Ua) E a /or some a e Y n A. choice function and so by genericity there exists A* EG such

(Hi) For any X < M with A, 8 e X and |X| < cu,, /Acre that A* s A and # f {Y n (UA): Y E A*} is constant. Take for
wrists Y C V , iuc/i that Y end-extends X n V i j n (Ua) e a X, this constant value. We now prove that (N, E) is well-
for some a E Y n A, a«rf f"(Y<<1J) C Y/br a// f: V f " - » Vs, founded and that its transitive collapse, M, is closed under <
f £ X. t sequences in VTGJ. This is equivalent to showing that if X

Proof: We shall only use this lemma in the case Asf 1= Zer- C N and |A"| < K then for some Z £ N, X = {t : t E Z).
tnelo-Fraenkel, with the axiom of choice (ZFC). Clearly Suppose (ra : a < A) is a X. sequence of terms for elements of
statement ii of Lemma 3 —> statement i. To see that Hi —• ii W where A < K and the sequence is in V. Fix a0 £ C and we
observe that since MV'C Mit follows that if X < M and if Y now work in V. Assume that for a < A, [[T. £ N)] = 1. For
C V5 then K* •< M, where Y* = [f(s): s G y<™and / E X). each a < A fix a maximal antichain Aa C Q<K and a function
To see that i -> // suppose A C Q<j is semiproper, A1 < M, X Fa:Aa-^V such that for A E Aa, FJb) e V* and A II- " T , =
is countable and A e X. Since A" < M there exists F : V/j." [f«(*)]•" By Corollary to Theorem 2 there is an inaccessible
-* Vs+i, F E A", such that c f n i>«, (Vj+i) C sp(A), where cF cardinal 6 < K such that 8 > A, S > hl(a0) and such that Aa n
= i Y C Ve+l: F"( Y<u) C yj . Clearly F" ((X D Vj+O*") C X V, is semiproper in Q < 5 for each a < A. Let a = {AT E /"^(Vj)
and so A" n V j t l E sp(A). Choose r < Vs+1 such that X n : ̂  < V6 and for each a E A" n A, X n (UA) E A for some A E
V,,] C K, f end-extends X n Vs and Vn (Ua) e a for some AT n A J .
o E K n A. Let CLAIM, aj = {X E a : X n (Uao) E a,,} is stationary in

P-XVj).
y, - if,-*. . ( p y , , H , C f r n v i < n Proof of Claim: Suppose / / : V?"-> V6. We find X e a$
Y - { / ( * ) . / £ Af and j e t r n Vs) } . such that//"(A-"") CAT. Choose A-oEP^V.) such tha tX 0 <

V«, Xo n (Ua0) e a0 and {H, a0, <AO : a < A)} C A"o. Since a0

Then Y* n Vs = F D V», X C r ' and r* < A/. This proves is stationary Xo exists. Choose an elementary chain <A"T : y 6
statement <7 assuming i. Finally « -> Hi is trivial. D A"o n A), starting with Xo, such that (0 for all y E Xo n A, A"r

THEOREM 2. Suppose K is VK+1-supercompact and that A < V«, |ATT| = w and A"y+1 n (UA) E A for some A E Ay n Ary+i
C Q<« « predense. Then A is semiproper in Q<K. D Vs and (i7) for all y^ < -ft, if {y,, 72} C A"o n A then Xyj end-

Proof: Fix an elementary embedding / : V-* M such that extends Xy< n Vs. Using part 11 of Lemma 3, the chain is
cp(y') = «and Mv-" C M. Suppose A C Q<K is predense. easily constructed. Let X~ U{A", n V8: y E Xo n A}. Note X
Let fl = /•„,( VK+1)\sp(A). Assume toward a contradiction < S and X e ATo- Hence X D A = Ao n A and so Af E a j and
that A is not semiproper in Q<,. Hence B is stationary in H\X<") C X. Q proof of claim
/".,,(V«+i). W v " ' C A/ and so B E Af. Thus W 1= "B is sta- For each a < A if X < Vs then {A : A 6 A . n X and AT n
tionary" and so B S i(Q<«). Choose a Ey(A) and A E ;(Q<«) (UA) £ A} contains at most one element. This is because Aa

such that A s a and b £ B. Let A = J(K + 4). Choose Z < MA is an antichain. Define / E V"'' by /(Y) = {Fy(b) (Y n (UA)):
= V'AnMsuchthat{/rV«+i,A,a, A} C Z, Zf~l (UA) e Aand y E r n A, A £ r n Ay n Vs and r n (UA) e A}. Thus a j IK
Ze M. Since M 1= "A is stationary" and Mv'" C M, Z ex- "{c B N \ c E [/]} = {T, : a < A}." By genericity we can
ists. Let Zo = Z n VK+i- Since A s B in ;(Q<»), Zo E B. choose a0 so that a? E G. D
Therefore ./(Zo) E j(B). But Zo is countable, hence /(Zo) = Henceforth an inner model is a transitive class, possibly a
/'(Zo). But then Z n ;(VK+1) end-extends ./(Zo) n j(VK) since set, closed under the primitive recursive set functions. If M
;(Z0) n /(V«) = (j"(Za)) Oj(VK) = Zo n V» = Z n V«. Finally is an inner model then A/(A") is the smallest inner model con-
Z n (Ua) E a and a ej(A) n 2 . Thus M 1= "Z n/(V«+i) is a taining M U {X}. For ordinals, a, let Coll(w, < a) be the
witness thatJ(Z0) E/(sp(A))" Therefore j'(Z0) E/(sp(A)j and partial order of finite conditions for the Levy collapse of or-
so Zo £ sp(A) contradicting Zo E B since B = ^ ( V « + i ) \ dinals < a to w. Suppose M is an inner model of ZFC, a E
spl.4). D M, and G C Coll(<u, < a) is Af-generic. Let T = U{M(G n

COROLLARY. Suppose K is VK+1-supercompact. Then {8: 8 Coll(<u, < /3)) 0 R : 0 < a] and let Na = M(T). Standard
< K, 8 is inaccessible, and each predense A C Q<s is semi- arguments show that if GL and G2 are each A/-generic for
proper in Q<6} is stationary in K. Coll(o), < a) then Na =u NGl; i.e., NGl and NC i satisfy the

Proof: Let / : V - • M be an elementary embedding with same formulas of the language of set theory with parameters
CPU) = K and VK+2 C M. By Theorem 2 and since VK+2 C M, from A/. We say an inner model, N, is a symmetric extension
M (= "each predense A C t}<< is semiproper in Q<K." The ofA/forCoH(w, < a) if A/C NandN =MA/Cin V[GJ, where
corollary follows. D G C Coll(cu, < a) is V-generic. This is a first-order property

THEOREM 3. Suppose K is Vx+1-supercompact and that G of N in a predicate for M.
C Q<lt ij V'-generic. Then there is a generic elementary em- LEMMA 4. Suppose M is an inner model of ZFC, A S M
bedding] : V —> M C V[G] such that M<KC M in V[G] and anrf M t= "A is a strong limit cardinal." Suppose r C R is
/or eac/i a E G, j"(Ua) E j(a). SHC/I that (i)/or a// x £ T, (Aere exits P E M and g C P j«cA

Proof: For a E Q<« let NSa C /»(a) be the ideal NSC = {b that U 1= " |P| < A," g is U-genericfor P, ana1 x £ M[g], (ii)
Ca : A is not stationary in a}. We work in V[G] except that for all x, y £ T, R n M(x, y) c T, and1 (Hi) sup{tJfM : x £ T}
for a EG; P(a), NSa and V° are as computed in V. Thus for = A. Then R n M(T) = r a n d M(T) IS a symmetric extension
« e G , [ / , = P(a) n G defines a V-ultrafilter on P(a)/NSa. of M for Coll(u>, < A). •
This gives an elementary embedding /„ : V —» (Na, EJ ~ THEOREM 4. Suppose K is supercompact and G C £}<„ is
V°/t/.. Suppose a £ G, A £ G and Ua C U*. Then there is a V-generic. Then {8 : 8 < K and G n Q < 8 is V-generic for
canonical elementary embedding/„» : (Na, EJ —» (Nk, EJ Q<«} is unbounded in K.
such that jt = io6 ° i0. Taking the direct limit over a in G Proof: We work in V. Fix a0 £ Q<»- By Corollary to The-
yieldsi: V.-• (A/, £ ) . For a £ G and / £ V° let [/] denote the orem 2 there exists 8 > nr(a0) such that 8 is inaccessible, S <
element / defines in N. Hence if / , g E V*, [/] £ fe] if and K, and each dense A C Q < s is semiproper. Let a j = {X £
only if for some A E G, A s a and / ( F n (Ua)) e g(Y n (Ua)) ^ . (Vs+i ) : X n (Ua0) e a0 and for each dense A C Q<s if A
for all Y £ A. Clearly N = { [ / ] : / E V for some a e G}. Fix £ AT then AT n (UA) E A for some A £ AT n A}. By an elemen-
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tary chain argument, using Lemma 3, as above (Proof of then for some P £ N and for some g C P , g is iV-generic for
Theorem 3), a$ is stationary. It follows that aj < a0 and at II- P and x 6 (R*/"*1}. One can show that A is II1,. Fix a II,
"G n Q<s is V-generic." D formula <p(fi i j such that A = {(x, A) | Vu+i N <p[x, A]}.

COROLLARY. Suppose K is supercompaci and G C Q<K is Choose a tree Ta on (o> x a) X K such that for any P E V,,, if
V-generic. Lei r = (R)V!G1. Then V(T) is a symmetric exten- G C P is V-generic then VIG) t= "p[T0J = {(.*, A) | (V[GJX+1

n'on of V for Coll(a>, < K). N y[jc, h]}." Fix an enumeration < j t : kE. w) of ai*"such that
Proof: Suppose T E VQ<-is a term, a E Q<,, and a II- "T C for each * £ a>, dom sk U rng j t C k. Define r as a tree on <u

u." Then there exists T* e V 0 < - n V, and b ^ a such that b x (o> x a) x K X V, such that (X, A,g, / ) £ [7"] iff (/)(*, A,g)
II- "T = T*." Given this it follows by Theorem 4 that for each E [r0], (ii) E* = {(/,./) : /(i) E /(j)}, (iii) for each i E w, £ t n i
i C i i ) with x E V[G], there exists 8<n such that x E V\G n x / c range(A f i2), and (iv) for each k E u, /(2it + 1) = Fo(/ o
Q<5] and G l~l Q < 8 is V-generic for Q«^. The corollary now jj). Similarly define T* from A* = {(x, h): x E w",. . . and *
follows by lemma 4 provided K = w1 v f c l . By Theorem 3,K f. (R*)" ' ' 1}. Thus p[T] = R# and p[T*] = w " \ R # =
s uYla]. This combined with the preceding shows K = ei"\plT]. Finally for any P e VK, it GC P i s V-generic then

To see that b and T* exist define for each i < a> a set At C V[G] t= "R* C p[T]"
Q<K by At = {c s a:c II- "i £ T" or c II- "/ £ T"} . Thus At is
dense below a. Choose t < a, as above, such that for all Z E a n ^
A and for all i < a>, Z D (Uc) E c for some c E A,n b. r* is
easily defined from b. • V[G] N "(o>"\R#) £ p[r»] ."

Recall R# is the theory of I(R) in parameters from R U {fk
: k E o>}, where (yk : k £ <u) is any increasing sequence of By absoluteness
Silver indisceraibles for L(R) see (ref. 5). We uniformly view
R# C R. Suppose R* exists, M is an inner model of ZFC and V[G] 1= "p[T] n p[T#] = 0"
that M t= "R# exists." Then (R)**, (R#)M are as computed in
M. Of course (R)M C R but if (U*)M C R# then (L(U))M = and so
£(H) in a very strong sense.

THEOREM5. Suppose K is supercompaci and suppose V(T) ^TG] N "p[T] = R* and pfr*] = a»"\p[r]." D
is a symmetric extension of "V for Coll(w, < K). Then (R*)v C
CR"*J • THEOREM 8. Suppose K is supercompaci. Suppose T and

Proof: Suppose G C Q<K is V-generic and let j : V -> M C T* are trees onto* K such that for any partial order P 6 V , ,
VIG] be the induced embedding. Let rG = (R)*101. Thus ifGCP is V-generic then V[G] 1= "p[T*J = w"\p[T] ."
V(rG) is a symmetric extension of V for Coll(u, < K). Clearly Then T and T* are each K-weakly homogeneous.
(R*) C (R#)M. Since M"CM in V[G], (U*)M = (R*)^0 1 = Proof: Let m.fK*") C mU*") be the set of x-complete
<fi*)n'J. So (R#)v C (R#)v'('=) and therefore by homogeneity measures on <c<-. Choose T < VK+2, |T| < K, with {T, T*} C r
(U*)v C (R*)1"1''. D such that (i) if v E mK(K<a) then P n T = /x n T for some

THEOREM 6. Suppose K is supercompaci. Suppose P , is a (necessarily unique) /i E rand (ii) if </i*: k E a) is a tower of
parti'a/ order and G, C Pj ii V-generic. Suppose P2 £ V[Gi] measures in T n m , ! ^ " ) then the tower is countably com-
is a partial order and G2 C P2 is Vldl-generic. Then (R*)vld'1 plete iff for some / £ K", / f k E n {A E T : W(A) = 1} for all
C (B#)vlG'llG''. * 6 w. To see that such a set T exists, consider in M the set

Proof: By reflection (K is supercompact) we can reduce to j"(V«+2) <j(V«+2), where./: V—» M is an elementary embed-
the case P, E V. and P2 £ V«[GJ. Hence V[G,] 1= "K is ding, cpO) = K and Afv"! C M. For J E / ^ " l e t >I(T, f) de-
supercompact" and V[Gi][G2] N= "K is supercompact." Let g note that measure /uE T such that ^ r i T = { / 4 £ T : / l C K < "
C Coll(<o, < K) be V[G!][G2]-generic and let T = and j E A). Note that for any / E K", (/X(T, / f / t ) : ke u) isa
(^Wc.Kftjii) P ] 6 v > a n d p 2 e V,[Gj] and so by Lemma 4, countably complete tower.
V(T) is a symmetric extension of both VTGi] and VIGiKGJ Fix KO < K, |T| < KO, such that KQ is V,0+1-supercompact.
for Coll(a), < K). Hence by Theorem 5, (R*)"10'1 c (R*)v f 3 Let Go C Q<K be V-generic and lety0 : V-> M 0 C V[G0] be
and (R*)^0')^) c (R#)V(T). Hence (R*)1101) c (R*)vlGi'lGd. • the induced embedding. Since |T| < »n),y3(r) E Mo and Wo 1=

THEOREM 7. Suppose K is supercompact. There are trees T, "J'O(T) is countable." I shall show that Mo 1= "for each xo E
T* on <u x K JUCA that for any partial order P E V , , I / G C P pL/oOT] there exists a countably complete tower (vk : k e w>
« V-generic then V[G] N "p[T] = R* and p[T*) = to"\ of^oCK^cornplete measures injo(T) such that for each k E w,
p[T]." vk(MT)X!) = 1." Given this it follows that Tis K-weakly ho-

Proof: Suppose S £ K is inaccessible and let 5 j = {X E mogeneous. We work in VIGO]. Fix jr0 E Mo such that jr0 £
P^(VS) : X < V6 and (R*)*"*1 C R# for any g such that for plMT)]. Clearly p[T] C p[7o(r)] and p[T*) C pUo(r*)). But
some P £ N, g C P and g is ./V-generic for P, where N = p[T*] = w " \ p [ T ] since {$<„,, e VK. Hence p[T] = plMT)]
coll(Jf) = transitive collapse of X}. If 5 < K I claim 5S con- and so x0 £ p[T]. Choose / 0 E K" such that (x0, f0) £ [T]-
tains a set closed and unbounded in /"„,( Vs). If not then as = For each k E a> let pk = /X(T, /O f k) and so ji* E V and V 1=
^ , ( V J ) \ 5 J is stationary in P^(V6). Let G C Q<1( be V-ge- ' > * is a K-complete measure." Define Jo by 7o(*) =
neric with as E G and let j " : V - • M C V(G] be the induced Mh(k)). MS C Mo in V[G0], hence ?0 E Mo and 0 0 ( w ) : * e

embedding. Thus7'"(Uas) E j(as) . However, Uos = Vs and «) E Mo- Clearly Mo 1= 7 0 (M«) (MT)XJ = 1 for all t e w"
soy"(V8) Ej(as). But Vs = coll(y"(V5)); hence, for some P E and A/o 1= "Oo(rti): t E a>> is a tower of measures." Thus it
Vs and g E M, g C P, g is Vs-generic and (R#)v / 'w £ (R#)M. suffices to show A/o 1= "the tower <jo(w): K E M) is count-
S is inaccessible so g is V-generic for P and (U*)V'M = ably qomplete." But this is immediate since Mo 1= "for each
(R*)"w. Further (R*)" = (R*)11'71. But by Theorem 6, k 6 », AOi*) = M 0 W T ) , JO f t ) . " D
(R*)11*1 C (R*)*101, a contradiction. Hence for each inacces- A similar argument shows that T* is K-weakly homogen-
sible 5 < K, Ss contains a set closed and unbounded in eous. 0
P<»t(Vs)- «is supercompact; hence, by reflection 5 , contains Theorem 1 now follows easily. Suppose K is supercom-
a set closed and unbounded in Pmi(VK). Fix Fa : V j " - > V. pact. By Theorems 7 and 8, R# is the projection of a K-weak-
such that {A" E PafYK): FJ (X*") CX]C SK. For h e (ai x ly homogeneous tree. Every set of reals, A, with A £ i (R) is
a>)"let Eh = range(A). Let A = {(x, h):x& <n", h£(<ox w)", continuously reducible to R*. Therefore each such set is the
(<D, Eh) N= ZFC, EH is well-founded, and if N = CO11(G;, £*) projection of a K-weakly homogeneous tree. D
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Remarks: All of the theorems here can be proved from sis sufficient to prove AD''*'. Martin and Steel (6) have an-
substantially weaker large cardinal assumptions. Further, the swered this question. They show, among other things, that if
potential influence is well beyond the sets of reals in L(R). K is supercompact then the projection of every K-weakly ho-
See, for example, the following theorem. mogeneous tree is determined and so by Theorem I, L(U) N=

THEOREM. Assume K is supercompact. Assume the contin- AD.
uum hypothesis. Then every indefinable set of reals is the
projection of a K-weakly homogeneous tree. D This research was partially supported by National Science Foun-

These related results and results for P<« will be published dation Grant DMS 8416349. W.H.W. is an A. P. Sloan Foundation
in a forthcoming paper on large cardinals and determinacy. Fellow.

The assertion that every set of reals, in L(R), is the projec-
tion of a weakly homogeneous tree has consequences be- i. jech, T. (1978) Set Theory (Academic, New York), p. 548.
yond the usual regularity properties such as Lebesgue mea- 2. Martin, D. A. (1970) Fund. Math. 66, 287-291.
surability. For example by results of Kechris it follows that 3. Foreman, M. D., Magidor, M. & Shelah, S. (1988) Ann. Math.
L(R) 1= "«n is measurable." It may even be that this alone 1 2 7> l~*1-
implies L(R) 1= AD 4- Kechris, A. S. (1981) in Cabal Seminar 77-79, Lecture Notes

Question: Suppose every set of reals that belongs to L(R) in ^ " h f ™ " '%•cds' K ^ h r i , s ' A - s -*?a5l i n-D- A ' & M o s c h ° -
is the projection of a weakly homogeneous tree. Does AD 5 ^ J ; £ <*%%»•££&££&„, L e c t u r e N o t e s

hold in L(Kj. in M a t h e m a t j C S | e < j s . Kechris, A. S., Martin, D. A. & Moscho-
The main question left open here is whether the existence v a k j s Y . N. (Springer, Berlin), pp. 178-181.

of a supercompact cardinal implies L(R) 1= AD. If so, this 6. Martin, D. A. & Steel, J. R. (1988) Proc. Natl. Acad. Sci USA
would be a dramatic reduction in the large cardinal hypothe- 85, 6582-6586.
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STRUCTURAL PROPERTIES OF MODELS OF
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B.I. ZIL'BER
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1.

The structural theory of categoricity (in uncountable powers) began with
the works of BALDWIN [1972] and BALDWIN & LACHLAN [1971], in which the
notions of a strongly minimal set and algebraic closure were introduced
and it was shown that the structure of a strongly minimal set with respect to
algebraic closure (acl) affects essentially the structure of the model itself.

The structure of a strongly minimal set S with respect to the closure
operator acl can be essentially characterized by the geometry associated
with S. The geometry associated with S over a subset A is given by its
points, which are the sets of the form acl(a, A) for a G S-acl(A), and its
n-dimensional subspaces, which are acl(a0,..., an, A), where a»,..., an

are algebraically independent over A. We omit "over A ", if A = 0.
If the geometry associated with S over any non-algebraic element is

isomorphic to a geometry of a projective space over a division ring then the
geometry associated with S is called locally projective.

If the division ring in the definition is finite, then the main result of
DOYEN & HUBAUT [1971] describes the locally projective geometry as an
affine or projective geometry over the division ring.

Call a strongly minimal structure S disintegrated if acl(X U Y) =
acl(X) U acl( Y) for every X, Y C S. This is equivalent to the degeneracy of
the geometry associated with S (i.e. all subsets of the geometry are
subspaces).

Natural examples of strongly minimal structures with projective geome-
tries are strongly minimal abelian groups and, more generally, modules.
Affine spaces over division rings have locally projective geometries which
are not projective. The natural numbers with the successor operation is a
typical example of a strongly minimal disintegrated structure.

115
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On the other hand such strongly minimal structures as algebraically
closed fields can hardly be characterized in terms of their geometries. More
adequate in this situation seems the following notion introduced by
LACHLAN [1973/74].

A pseudoplane is a triple (P, L, / ) , where P is a set of "points", L is a set
of "lines" and I C P x L is an incidence relation satisfying the following:

(1) every line is incident to an infinite set of points;
(2) every point is incident to an infinite set of lines;
(3) any two distinct points are incident in common to at most finite

number of lines;
(4) any two distinct lines are incident in common to at most finite

number of points.

CONJECTURE. For any uncountably categorical pseudoplane there is an
algebraically closed field such that the field is definable in the pseudoplane
and the pseudoplane is definable in the field.

In the paper the following theorem will be proved:

TRICHOTOMY THEOREM. For an uncountably categorical structure M one and
only one of the following holds:

(1) An uncountably categorical pseudoplane is definable in M.
(2) For every strongly minimal structure S definable in M the geometry

associated with S is locally projective.
(3) Every strongly minimal structure definable in M is disintegrated.

In the connection with the Trichotomy Theorem the following theorem
is of special interest.

THEOREM 2. There is no totally categorical pseudoplane (i.e. one the
complete theory of which is categorical in all infinite powers).

Theorem 2 was proved independently by CHERLIN et al. [1981] and the
author [1977] (the complete proof is to appear in Sibirsk. M.Z.). The proofs
are quite different, that of CERLIN et al. [1981] relies on the classification of
all finite simple groups. The proof of the author is rather long but does not
use any deep results outside model theory.

As was shown in ZILBER [1980a] the global properties of an uncountably
categorical structure M depend essentially on the structure of groups
definable in M Therefore the following theorems, which will be proved in
the paper, are of much importance for the structural theory.
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THEOREM 3. Let M be an uncountably categorical structure satisfying (2) of
the Trichotomy Theorem and G a group definable in M. Then

(i) G is abelian- by -finite.
(ii) // G is infinite and has no proper infinite definable subgroup, then G is

strongly minimal.

THEOREM 4. // M is an uncountably categorical structure satisfying (3) of
the Trichotomy Theorem, then no infinite group is definable in M. It follows
from this that M is almost strongly minimal.

Note that Theorem 3(i) contains the known theorem of BAUR, CHERLIN

and MACINTYRE [1979] which states that totally categorical groups are
abelian-by-finite.

2. Proofs

An incidence sytem is a triple (P, L, T), where P is a set of "points", L is
a set of "lines" and / C P x L is an arbitrary relation called an incidence
relation.

For a binary relation R and an element x we denote

xR = {y: xRy}, Rx = {y: yRx}.

Thus, for p0 E P, 1OG L

poI = {leL: poll), Ik = {p E P: pIQ.

Let A C M" be an Af-definable subset of a structure M and E be an
X-definable in M equivalence relation on A. Sets of the form A/E are
called X-definable sets in M. Definable means X-definable for some
XQM.

An X-definable structure in M is an X-definable set with X-definable
relations.

A natural construction considered in SHELAH [1978, III, §6], ZIL'BER

[1980a], CHERLIN et al. [1981] allows us to treat definable sets in M as
definable subsets of some larger structure M* which contains M and
preserves categoricity, ranks and definability.

Now we begin with the proof of the Trichotomy Theorem. From now on
M is an uncountable categorical structure.

LEMMA 1. Let (P,L,l) be an incidence system ^-definable in M,
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(p«,/o)G/,

rank(/o,0) = rank(L), rank(p,,,0) = rank(P),

rank(p(), {/0}) = rank(//<>), rank(/0, {p<>}) = rank(p,,/).

Then there exist an 0-definable incidence system (P1, L', I') in M, /,',£ L'
and a mapping m : L' —* L such that

P' = P, rank(L') = rank(L),

m '(/) is finite for all I E L, m(/n) = /,,,

rank(/'/i) = rank(//0), deg(/'/,',) = 1,

forallp&P m{pl')Qpl, rank(p/') = rank(p/).

PROOF. By the Finite Equivalence Relation Theorem in SHELAH [1978, III,
T2.28] there is a two-variable formula E^ with constant /», which defines an
equivalence relation on Il0 with finite number of classes, each of the classes
having degree 1 or rank less than rQ = rank(//0). Let the number of classes
be fc0. Put

L, = {/ G L: Ei is an equivalence relation on // with k0 classes}.

Evidently, L, is 0-definable, 1OE L,, therefore rank(L,) = rank(L).
Define an equivalence relation E on / n (P x L,):

(P,i)E(p\n iff i = r&pE,P',

and put

L' = [DiPxLJ/E.

It is easy to see that for every / G L, there are precisely k0 elements
/' G L' of the form / ' = (p, l)E for some p G P. Define m(l') = I in this case.
Evidently, / 'Gacl(/), therefore, in particular, rank(L') = rank(L). Put

pl'V iff l' = (p, l)E& rank«p,/>E) = r0.

Note that the last condition is definable in M since M is uncountably
categorical. Put

/£ = <po, /o>E.

It is clear that I'liQllo, I'l'o, is an Eb-equivalence class and p 0 G / 7 i ,
therefore rank(J'ZJ) = r0, deg(/'Zi) = 1.

LEMMA 2. Let M be a strongly minimal structure. If there are elements at, a2,
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b,, b2, c in M, every four of which are algebraically independent, c E
ac\(a,,a2,b,,b2) and acl(a,, a2, c)(~\ acl(b1,b2, c) = acl(c), then there is an
incidence system (P, L, I) which is O-definable in M and:

rank(P) = 2, rank(L)s*2, deg(P) = l;

rank( / / ) = 1 for every I EL;

if I,, l2 &L,U^ l2, then rank(fl, D Il2) = 0.

PROOF. Let Po = M x M, L,, = M x M x M and l0 C P(, x Lo be an arbitrary
O-definable relation such that

(bub2)Io(aua2,c)

and

<jci,x2)/o<yi,y2, z>->2 Gacl(x,,x2, yi,y2).

It is easy to check that putting p0 = (b,, b2), /<> = (a,, a2, c) we have all the
assumptions of Lemma 1 satisfied. Hence for some L[h l'n G Lo, Jo we have

rank(L(',) = rank(Lo) = 3, /jeacl(/0), /Oead(/S),

rank(/o/o) = rank(/0/0) = 1, deg(/o/o) = 1.

Put

L, = {/, e L'o: rank(/,',/,) = 1 & (V/2 e Li)

(rank(/o/i n /0/2) > 0 ^ rank(7^/, - I'ol2) = 0).

Since /i/i is strongly minimal, hence loE.Lu therefore

rank(L,) = rank(/o,0) = rank(Lo).

Define an equivalence relation E on Lt:

UEU iff rank(/i/, - / i / 2 ) = 0.

Now put P = Po, L= LJE and for p S P, I E. L,

pI(lE) iff rank(p/i- IE) < rank(/£).

It follows from Proposition 1.5 of ZIL-BER [1980a] that for every / of L,
there is p of I'ol such that pi (IE) (consider y = IJ, <p = IE, \\i - I).
Moreover it follows from the same proposition that pI(lE) holds for almost
all p of rol, ie.

rank(7(/£) - I'd) = 0, rank(/(/£)) = 1.
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In particular for our p0 and /(l, if we put f0 = I'aE we get the strong
minimality of lT» and polTn.

If /,, l2 G L,, /", = /, E, J2 = 12E, rank(//", D Il2) > 0, then

rank(/(',/, D /(',/2) > 0 and rank(/(',/, - H,l2) = 0,

which follows from the definition of L,, hence /i = l2.
We show now that rank(ro >0)>2 and therefore rank(L)s=2.
Suppose rank(/„,0) =£ 1. Then, since rank(p0,{!„}) = 1 < rank(p0,0),

rank(/",, {pll})<rank(l,,0)s^ 1. Thus /", Gacl(po) = acl(fo,, b2). Evidently
c^acl(r,,), therefore there is c' of M such that

t((c, c'),{I,}) = <«/>„ U {/"„}).

Since rank«c,c'),{/"„})= 1,

c' G acKA,, c) C acl(/),, b2, c) fl acl(a,, a2, c).

By the definition c '^ac l (c ) . This contradicts the assumptions of the
lemma. Hence, rank( ^,,0)2=2.

LEMMA 3. Let for an incidence system (P, L, I): p0 G P, rank(p0,0) »*
rank(L), rank(p0/) > 0 and ifpuPi G P, p, ^ p2, then rank(p,/ n p2l) = 0.

Then there is l0 G L such that

(p0, ln) G /, rank(p(1, {/o}) > 0,

rank(/0,0) > rank(p0/), rank(//0) > 0.

PROOF. It follows from the assumptions of the lemma that there is no
0-definable subset L' of L such that L' D /?„/, rank(L') = rank(p0/). Thus,
by the Compactness Theorem there is

/o G p»l - acl(p0), rank(/0,0) > rank(p0/).

Now counting

rank((p0, /0), 0) = rank(p0, {/«}) + rank(/0,0)

= rank(/0, {p»}) + rank(p0,0),

we have

rank(p0, {/0}) = rank(/0, {p0}) + rank(p0,0)

- rank(/0> 0) s= rank(/0, {p0}) > 0.

Hence, in particular, rank(//o)>0.
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LEMMA 4. / / all the assumptions of Lemma 2 hold then an uncountably
categorical pseudoplane (P, L, /) is definable in M with rank(P) =
rank(L) = 2, deg(P) = deg(L) = 1.

PROOF. Using Lemma 2 and the symmetry of the definition we get an
incidence system (P», Lu, /,,) definable in M such that the following hold:

(i) rank(P,,) > 2, rank(L,,) = 2, deg(L,,)=l;

(ii) rank(p/(J) = 1 for all p of P,,;

(iii) \f php2E P,,,p,^ p2, then rank(pi/,,np2/,,) = ().

Considering a definable subset of rank 2 degree 1 of Po instead of P,, and
taking an inessential expansion of M we preserve (i), (ii), (iii) having
rank(Po) = 2 and the incidence structure O-definable in M.

Apply now Lemma 3 to find (pu, /„) G /„ such that

rank(p0,0) = rank(/0,0) = 2,

rank(p,,/) = 1 = rank(/(,,{p0}),

rank(//«) = 1 = rank(p«, {/,,}).

Now by Lemma 1 we get an incidence system (P(l, L'a, /,',) and II,G LI,. 11,1 a
is strongly minimal in the system. In addition for different p,, p2, of Po the
set plrnnp2l(, is finite, since it lies in m~\p[lQr\p2h).

Put as in the proof of Lemma 2

L, = {/, G L'a: rank(/i/,) = 1 & (V/2 G Li)

(rank(/i/, PI H,l2) > 0-» rank(/i/, - Ioh) = 0)};

UEl2 iff rank(/i/, - / J / 2 ) = 0;

P = Po, L = UE,

pI(lE) iff rank(p/( ' ,-/£)<rank(/E).

Observe that every class IE is finite, since if I El,, then there are
p , , p 2 G / i / n /,',/,,

rank(p,,{/}) = rank(p,, {/,/,})= I,

rank(p2, {p,, /}) = rank(p2,{pi, /, /,}) = 1,

and by the reciprocity principle

rank(/,,{/}) = rank(U/,p,}),
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rank( / , , {/, p,}) = rank( / , , {/, pi,p2}),

thus

rank(U/})^rank(Up,,p2}) = 0

(since /, G p,I!> D pj'o), i.e.

/,Gacl(/).

Granting the finiteness of IE,

pI(lE) iff lECpli

Hence

pi C pUJE,

rank(pi/ D p2l) = 0 for distinct pt,p2E. P.

As is shown in the proof of Lemma 2 for distinct /,, /: of L

rank(//, D Il2) = 0, rank(//,) = 1.

To get tank pi = 1 for all p E P remove all p £ P with rank pi = 0 from
P. Since rank(p0,0) = 2, rank(p0/) = 1 and rank(F) = 2, deg(P) = 1, the set
of the points removed has rank not greater than 1, therefore removing
these points we diminsh the rank of only a finite number of //, / E L.
Remove these lines too, denote by the same letters F, L the new sets, and
the construction of the pseudoplane (P,L,I) is finished. In ZILBER [1980b,
Proposition 11] it is proved that (P,L,I) is an uncountably categorical
pseudoplane.

PROPOSITION 5. // no uncountably catagorical pseudoplane is definable in
M then for every strongly minimal structure S definable in M the geometry
associated with S is locally projective or degenerate.

The proof of the proposition follows from Lemma 4 as is shown in
ZIL-BER [1980b, Section 2].

PROPOSITION 6. // a pseudoplane is definable in M,ACM, then for every
A-definable in Mstrongly minimal structure S the geometry associated with
S over a is neither projective .nor degenerate.

PROOF. Let (P, L, I) be a C-definable in M incidence system satisfying the
following:
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(i) rank(//, D Il2) = 0, rank(p, / D p2l) = 0

for /,, l2 G L, p,, p2 £ P , /, / l2, p, ^ p2.

(ii) For some pair (p0, /0) G /

rank(/0, C) = rank(L), rank(p0, C) = rank(P),

rank(/(), {p,,} U C) > 0, rank(//(l) > 0, rank(p,,/) > 0.

(iii) The four-tuple (rank(P), deg(P), rank(L), deg(i-)) is lexicographi-
cally minimal among such four-tuples for every CCM and systems
(P, L, I) satisfying (i) and (ii).

Observe that it follows from Lemma 3 and the minimality condition that

rank(P) = rank(L), deg(F) = l, deg(L) = l.

Condition (ii) implies the existence of such C-definable P', V, I',
PoGP'C P, /„ GL'CL, (p0, /„) G / ' C / that for every p G P\ I EL'

(iv) rank(p/')>0, rank(77)>0.
We assume that P' = P, V = L, V = I. Put r = rank(P) = rank(L).

Observe also that any extension of C preserves conditions (i)-(iv), thus
we may assume C contains all the parameters required in what follows.

Let S be a C-definable in M set and ij/(x, y) a formula with parameters
in C which is a stratification of L over S of rank less than r, i.e.:

(v) For every I EL there is an s E S such that i/f(x, /).
(vi) For every s G.S, rank(</»(s, M)) < r.

The stratification i/» exists if C is sufficiently large, ZILBER [1974] (see also
another version of the statement in SHELAH [1978, V. 6.1]).

Let us prove
(vii) For every sES, rank(p0/ fl i/f(s, M)) = 0. Indeed, otherwise, put-

ting

Lo = #(s, M) IlL, I0 = lD(Px U)
we get

rank(p,,, C U {s}) 3= r - 1 & rank(L0), rank(p,,/n) > 0.

Evidently (P, Lo, 70) over C U {s} satisfies (i), and (ii) follows from Lemma
3. This contradicts the minimality of (P, L, I).

Observe again that if we take

P' = {pE P: Vs E 5, rank(p/ D ij/(s, M)) = 0},

7 = / n ( P ' x L ) ,

we get system (P',L,I') satisfying (i)-(n')> therefore it can be assumed
P' = P.
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Let O be a definable subset of P U L of the rank maximal among all
such Q that

Q C acl(S U C"), C D C, C is finite.

Since C was assumed to be sufficiently large, hence C = C. Also 0 ^ 0 ,
since QD(PU L)DC. Let

rank(0nL)^rank(0nP),

p^pno, L* = U{p/:p6onP}.

For every / from L* there are p E P* and s E S such that lEpIH
t/f(s, M). Since the last set is of rank 0,

/ e acl(p, s, C); L * C a c l ( S U C ) ,

i.e. rank(L*)«rank(P*). Choose ptEP* so that rank(pS, C)s= rank(L*)
and by Lemma 3 we get (ii) for (P*, L\ I D(P* x L*)). Since (i) for this
system follows from that of (P, L, / } ,

rank(P*) = rank(L*) = r.

We will assume P* = P, L* = L, i.e. P U L Cacl(S U C).
It can be easily proved by induction on k, that for every C-definable set

Q of rank k, if Q C acI(S U C), then C can be extended so that for every
q £ Q t h e r e a r e du.. .,dk E S

acl(<7,C) = a c l ( d , , . . . , 4 , C ) .

Let now Q be P U L. Assume for simplicity C = 0. Then

acl(p«) = aci(s, , . . . , sr), acl(/0) = acl(r, , . . . , t,),

for s,,..., sr, d , . . . , / r G S . Since rank(p0,0) = r, rank(/0,0) = r,

dim(5, , . . . , sr) = r = dim(f,,..., rr).

It follows from (i) that

rank(p0, {/<>}) < r,

therefore

d i m ( s , , . . . ,sr, t,,..., t,)<2r.

If the geometry associated with S over 0 is degenerate or projective,
then the last condition implies the existence of u0ES -acl(0)

Mo E acl(s , , . . . , Sr) n acl(f,,..., t,),

i.e. u0 G acl(p()) n acl(/0).
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It is easy to get, using the last fact, a formula <p(x, y) without parameters
such that

</f(uo, /o) and rank((/f(w0, M)) < r.

Such a formula can be easily touched up so that (v) and (vi) be satisfied.
Therefore p»I D (/>(«„, M) is finite. This set contains /«, hence

/o G acl(p0, Mo) = acl(p<>).

This contradicts condition (ii). Thus the geometry associated with S over C
is neither projective nor degenerate. Since A C C, the proposition is
proved.

Proof of the Trichotomy Theorem. By Propositions 5 and 6 the non-
definability of pseudoplanes in M is equivalent to the fact that all strongly
minimal structures in M have locally projective or degenerate geometries.
Adding a new constant for any locally projective strongly minimal struc-
ture we can assume that the locally projective structure is projective. Since
every two strongly minimal sets in an uncountably categorical structure are
nonorthogonal, their geometries are isomorphic provided they are projec-
tive or degenerate, as is proved in CHERLIN et al. [1981, 2.8].

Now we begin with the proof of Theorem 3. M is the structure which
does not satisfy (i) of the Trichotomy Theorem, G is the group definable in
M.

Proof of Theorem 3(ii). We will prove that if G has no proper infinite
definable subgroups and Q is its strongly minimal subset, then G — Q is
finite. Let

H = {hGG: Qh-Q is finite},

H' = {h £ G: hO- Q is finite}.

It is known from ZIL'BER [1977, Lemma 10] that H and H' are definable
subgroups of G and for some g, g 'EQ, rank(gff - Q)< rank(H),
rank(Wg'-0)<rank(H). By our assumptions H and H' are finite or
equal to G. If H = G or H' = G, then G - Q is finite. Thus we may assume
that H and H' are finite.

Now by the definition Q- H'QH is finite, we assume Q - H'QH. Put

P = {gH':gE.G}, L={Hg:g(EG},

I = {{g'H',Hg):g'GQg}.
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If H and H' are finite, then all the axioms of a pseudoplane are satisfied by
(P, L, / ) , which contradicts the assumptions of the theorem. Theorem 3(ii)
is proved.

LEMMA 7. Let J C U x G be a binary definable relation such that for every
u G U the set uJ is a strongly minimal subgroup of G and for any distinct
Mi, «2G U, u,Jy£ u2J. Then U is finite.

PROOF. Suppose not. Then we may assume U is strongly minimal. Put

H = {h£G: Jh is infinite},

P = {Hg:gGG}, L={g-n / :gEG, «El /} ,

I={(gH,guJ):g(EG, u<=U}.

H is finite for otherwise, since for any hi,..., hk G H Jh, D • • • D Jhk is
infinite we can find distinct «i, u2£ U such that u,J D utJ contains at least
k elements hu ..., hk, therefore distinct u,, u2 can be found with u,J D u2J
infinite, which contradicts assumptions of the lemma.

H is a subgroup of G, since for ht, h2E H, Jht • h2' D Jh, H Jh2 is infinite.
Now it can be directly verified that (P, L, I) is a pseudoplane, which is a
contradiction.

LEMMA 8. G possesses a definable normal nilpotent subgroup of finite index.

PROOF. We may assume that G is connected (i.e. has no proper definable
subgroup of finite index, see CHERLIN [1979] or ZiL'BER [1977]). Then
G x G is also connected.

Let H be a strongly minimal subgroup of G, which exist by Theorem
3(ii), if G ^ l . Let gl(h,h') mean h <EH & h'= g'hg.

Clearly for every g E.G the set gl is a subgroup of G x G isomorphic to
H, i.e. gl is strongly minimal.

Let g, Eg2 denote gj = g2l. Then, by Lemma 7, G/E is finite. This
means that the centralizer C(H) of H in G has a finite index. Since G is
connected, C(H) = G and thus H lies in the center of G. It follows by
induction on rank(G) that G is nilpotent.

LEMMA 9. G possesses a definable normal abelian subgroup of finite index.

PROOF. NOW we may assume G is connected and nilpotent of class 2 (i.e.
G/C(G) is abelian). It is sufficient to prove that G = C(G).
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Denote G = G/C(G) and supposing G^ 1 we get by the connectedness
of G that G is infinite and by Theorem 3(ii) G has a strongly minimal
subgroup H. Put

gl(h,h') iff h,h'EH AgEG &h' = hgh{g~\

gxEg, iff g,l = g2l.

It is evident that gl is a strongly minimal subgroup of G x C(G). By
Lemma 7, G/E is finite, in other words the subgroup

{ g E G : V / i e H , h g h - = g}

has a finite index in G and thus coincides with G. This means H = 1 in G,
contradiction.

This proves the lemma and concludes the proof of Theorem 3.

Proof of Theorem 4. First we suppose G C acl(S) for some strongly
minimal set S. We shall prove that G is finite.

Let rank(G) = k. It is easy to prove for any set G C acl(S) by induction
on k that there is a finite A C. M such that for every g G G there are
Si , . . . , s» G S with

acl(g, A) = acl(si, . . . , sic, A).

Assume for simplicity A = 0 and choose g,hE.G independent over 0 with
rank(g, 0) = rank(/i, 0) = k. We have

acl(g) = acl(s , , . . . ,sk) , acl(fc) = acl(f,,. ..,tk)

for some Si , . . . , St, ti,.. .,tk E. S. It follows from the independence of g and
h that

acl(s, , . . . , sk) fl acl(f,, . . . , /*) = acl(0).

Let g-h=f, acl(/) = acl(u, , . . . , uk), « , , . . . , « k G S . Since /Gacl(g, ^ ) ,
ft G acl(g, / ) , g G acl(h, f) we have, granting S is disintegrated,

acl(s , , . . . , sk) U acl(f,,..., tk) D acl(«, , . . . , uk),

acl(s,,.. .,5ic)Uacl(Mi,..., ut)2acl(f,, . ..,tk),

acl(/ , , . . . , tk) U acl(«, , . . . , uk) D acl(s, , . . . , st).

This is possible only if all the sets lie in acl(0). Thus k = 0 and G is finite.
Now if Mg! acl(S), then an infinite group G is definable in M with

GCacl(S) , as is shown in ZIL'BER [1980a, Proposition 4.3]. This is
impossible as was shown above, and it follows that G C acl(S) for every
group G definable in M and G is finite.
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