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Foreword 

The Steiner problem asks for a shortest network which spans a given set of 
points. Minimum spanning networks have been well-studied when all connections 
are required to  be between the given points. The novelty of the Steiner tree problem 
is that  new auxiliary points can be introduced between the original points so that 
a spanning network of all the points will be shorter than otherwise possible. These 
new points are called Steiner poiuts. 

It  was soon recognized that locating these Steiner points was a difficult prob- 
lem. It  has opened a rich field of intriguing analyses and challenging associated 
problems. A large literature has arisen trying many different avenues to understand 
these problems. As these avenues diverged and more applications were found, the 
literature became more fragmented, leading to duplicated results and wasted effort. 
In this book we hope to  draw together the many threads. 

Three major areas have emerged, which comprise the first three parts of this 
book. These are the Euclidean Steiner problem, the rectilznear Steiner problem, 
and the Steiner problem in networks. Since it can be shown tliat Steiner points in 
either the Euclidean or the rectilinear case belong to  a finite set of points, these 
two problems can be regarded as special cases of the network problem. However, 
the study of these special geometries has led to the discovery of many interesting 
properties and better algorithms or heuristics, which would not have been found if 
they had been cast as network problems. 

Historically, the Euclidean Steiner problem, discussed in Part I, was the original 
Steiner tree problem. It  was proposed by Jarnik and Kossler iii 1934, generalizing 
with the special three-point case (going back to  Fermat). It is often used as a prob- 
lem to introduce computational geometry. The problem can be stated essentially in 
one line, and *is comprehensible to people without any matheinatical or computing 
background. Yet the problem liaa been extremely hard to solve. 

The rectilinear case, founcl i n  Part 111, was introduced by Hanan in 1965 in 
his study of wiring problems on circuits but is also known for its many important 
applications as in building desigiis and drainage networks. While historically it was 
introduced before the Steiner problem in networks, it appears later in this book 
due to the reliance on results in Part 11. We devote an entire chapter to the specific 
application of wiring. It serves as a case study of the balance between what theory 
offers and applications need. 

The Steiner problem in networks, discussed in Part 11, was proposed indepen- 
dently by Hakimi and Levin a few years later. It has provided a fertile ground for 
graph theorists and computer scientists to design algorithins and heuristics. I t  has 
seen the most prolific research ainongst the three areas. The Euclidean and the 
rectilinear literature straddles the feiice by dealing with the problem both in g e e  
metric terms and with graph theoretic approaches (for the underlying topologies). 
Hence, the mathematical presentations in Parts I and I11 tend to be less detailed 
than in Part 11. 

V 



vi FOREWORD 

Part IV contains two chapters discussing areas where the body of results is 
still emerging. The first chapter discusses general ntetrics. It contains clear ge- 
neralizations of results in Parts I and 111. Further, one often studies the network 
by transforming the original network into a metric network, (where the distance 
between two vertices in the transformed graph is defined as the length of a shor- 
test path between the two vertices in the original network). This in turn makes 
the Steiner problem in networks a special case of the Steiner problem for general 
metrics. 

The second chapter of Part IV is concerned with a biological problem and the 
recent attempts to  find algorithms to solve it. The problem of constructing p h y -  
logenetic trees in the field of evolutionary biology is closely related to standard 
Steiner problems. An important aspect of this application area is that the problem 
statement often changes. 

This book represents the collaboration of three authors with different styles and 
outlooks. Every effort was made to  have the book give a cohesive view of the whole 
literature, while permitting individual differences. FKII wrote Part I and Chapter 
1 of Part IV, PW wrote Part 11, and DSR wrote Part I11 and Chapter 2 of Part 
IV. Of course we collectively take responsibility for the rise or fall of this book. 

We would like to thank John Beasley, Marshall Bern, Jens Clausen, Dinzu 
Du, Joe Felsentein, Ed Gilbert, Jan Plesnik, Jeff Salowe, Jim Smith, Stefan Voss 
and Jiafeng Weng for reading and commenting on parts of the book. FKH also 
acknowledges the excellent. typing and drawing work done 1 ~ y  Sue Pope, with some 
help from Susan hlarko at t,lic initial stage. PW acknowledges the drawing work 
done by Ruth Nielsen. 
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Chapter 1 

Introduction 

The purpose of this chapter is to provide some general knowledge about the Eu- 
clidean Steiner problem to prepare the reader for subsequent chapters. The chapter 
begins with some historical background for this problem. Basic geometric and topo- 
logical notions and characterizations are given in Section 1.2 and Section 1.3. Full 
Steiner trees, an important restricted case, are discussed in Section 1.4, and problem 
reductions are found in Section 1.5. The next section discusses the combinatorics 
of such trees, and Section 1.7 is concerned with the computational complexity. The 
final section discusses non-mathematical techniques, based on physical models, that 
have been proposed. 

1.1 Historical Background 
The historical background of the Euclidean Steiner problem (ESP) was well re- 
searched by Zacharis [19], with an English account given in Kuhn [12]. We essen- 
tially follow their historical findings here. 

The origin of the ESP is often traced back to Fermat (1601-1665) who proposed 
the following problem: find in the plane a point, the sum of whose distances from 
three given points is minimal. This problem will be referred to as the Fermat prob- 
lem. Torricelli had proposed a geometric solution to this problem before 1640. He 
asserted that the three circles circumscribing the equilateral triangles constructed 
on the sides of and outside the triangle intersect in the point that is sought. This 
point is called the TorriceIIi point (see Fig. 1.1). 

Cavalieri in his 1647 book “Excercitationes Geometricae” showed that line seg- 
ments from the three given points to the Torricelli point make 120’ with each 
other. Simpson in his 1750 book “Doctrine and Application of Fluxions” asserted 
and proved that the three lines joining the outside vertices of the equilateral tri- 
angles defined above to the opposite vertices of the given triangle intersect in the 
Torricelli point. These three lines are called Simpson lines (see Fig. 1.1). Heinen 
in 1834 proved that the lengths of the three Simpson lines are the same and equal 
to the sum of distances from the Torricelli point to the three given points. 

3 
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Figure 1.1: Torricelli point and Simpson lines 

When one of the angles in the given triangle is a t  least 120°, the Torricelli 
point lies outside of the given triangle and is no longer the minimizing point. The 
minimizing point in this case is the vertex of the obtuse angle. This fact was 
probably first observed by Heinen in 1834, and also by Bertrand in 1853. 

The general Fermat problem which seeks a point in plane (or d-space) the sum 
of whose distances (or weighted distances) from n given points is minimal was 
included in the book “Fluxions” by Simpson as an exercise and has attracted 
the attention of many well-known mathematicians including Steiner. Since this 
problem has nothing to do with the Steiner problem (except for the case n = 3) 
we are studying, we simply refer the reader to the excellent survey of Kuhn [12] on 
the problem. 

Jarnik and Kossler [ll] in 1934 raised the following question in a Czeckoslovakia 
journal: Find a shortest network which interconnects n points in the plane. In 
particular, they studied the above problem when the n points are the corners of a 
regular n-gon. They found a shortest network for n = 3 , 4 , 5  and gave an elegant 
proof that any n - 1 sides of the regular n-gon constitute a shortest network for 
R 2 13. Jarnik and Kossler made no reference to the Fermat problem since their 
problem seemed to be quite different. 

Courant and Robbins [3] in their famous 1941 book “What Is Mathematics?” 
first made the connection that the Fermat problem is the shortest interconnection 
network with n = 3. However, they neither credited Fermat for the n = 3 problem 
nor Jarnik and Kossler for the general n problem. Instead, they referred to the 
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former as the Steiner problem and the latter either as the street network problem 
or simply, the Steiner problem. The popularity of their book has been the main 
reason that the misnomer “the Steiner problem” has stuck, but more importantly, 
that the interest on this problem has spread. 

Melzak [13] first established many basic properties of a shortest interconnecting 
network and gave a finite solution to the Steiner problem. Gilbert and Pollak [7] 
gave a thorough treatment of the Steiner problem and christened the name Steiner 
minimal trees (SMT) for shortest interconnecting networks (note that whenever 
edges have positive lengths, a shortest network must be a tree), and Steiner points 
for vertices in an SMT which are not among the n original points. (Recently, an 
SMT is often called a minimum Steiner tree. We will stick to  the traditional term to 
avoid the acronym MST which usually means something else.) They also extended 
the Steiner tree problem to  d-dimensional spaces and studied a probabilistic version. 

1.2 Some Basic Notions 

Consider a network T interconnecting a set N of n points, called terminals, in the 
Euclidean plane. Any vertex in T which is not a terminal is called a Steiner point . 
However, a Steiner point of degree one can clearly be deleted along with its edge to 
shorten the network. Furthermore, a Steiner point of degree two can also be deleted 
and its two edges replaced by a single edge connecting the two vertices adjacent 
to the Steiner point without increasing the length of the network. Therefore we 
adopt the convention that T will have no vertex of degree less than three except, 
possibly, some terminals. Consequently, a Steiner point is of degree a t  least three. 

Let G(T)  denote the graph of T ,  where G(T)  represents the topological features 
of T but not the embedding in the plane and the edge lengths. Then G(T)  for a 
shortest network T must be a tree graph since if a cycle exists, then deleting any 
segment of T whose corresponding edge forming the said cycle in G(T)  decreases 
the length of the network. Therefore only networks with tree graphs need to be 
studied for the ESP. The traditional usage is to borrow the terminology of the graph 
for the network. Thus a network with a tree graph is called a tree, its segments 
are called edges and its nodes vertices. We will follow this tradition in Part I if no 
confusion arises. The graph of a network is referred to as a topology. Therefore the 
term “tree” is always used to designate a network (with a tree graph) whose edges 
have lengths. If there is no danger of confusion, we will abbreviate G(T)  to G. 

By shrinking an edge is meant the operation of deleting an edge and collapsing 
its two endpoints . A reverse operation of that is called splitting a vertex which 
disconnects two edges [ a , ~ ] ,  [b,v] to a vertex v and connects a , b , v  to a newly 
created Steiner point v’ (shrinking the edge [v, v’] brings back the original graph). 
A topology is called a degeneracy of another if the former can be obtained from the 
latter through shrinking edges. The set of degeneracies of a topology G is denoted 
by D(G). The use of the terms “splitting” and “degeneracy” is also extended to 
networks. 

Gilbert and Pollak [7] defined a Steiner tree (ST) as a tree whose length cannot 
be shortened by a small perturbation, even when splitting is allowed. For a given 
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topology G they also defined a relatively minamal tree as a shortest tree with the 
topology G. Note that a relatively minimal tree does not have to exist for a given 
topology. Let N consist of the four corners of a 1 x 2 rectangle (Fig. 1.2a) and let G 
be the topology shown in Fig. 1.2b. Then the minimum occurs when Is1 - s21 = 0 
(Fig. 1 . 2 ~ )  with a different topology which is a degeneracy of G. 

0 

0 x x 
(4 (b) (c) 

Figure 1.2: The nonexistence of a relatively minimum tree 

A Steiner minimal tree (SMT), as a global minimum, is clearly a shortest ST. 
On the other hand, an SMT must also be a relatively minimal tree for its topology. 
These relations underline the two general approaches to construct SMTs: find a 
shortest relatively minimal tree or find a shortest ST, which will be discussed in 
detail in Chapter 2. 

1.3 Some Basic Properties 

Suppose that two edges meet at  a point v with an angle less than 120'. Then one 
can shorten the tree by, say, selecting points a and b on the two edges respectively 
with la - v1 = Ib - v1, and locating the new Steiner point v' at the Torricelli point 
of Aabv. Therefore, a necessary condition for an ST is that no two edges can meet 
at  a point with an angle less than 120O. We call this the angle condition. The angle 
condition implies that no vertex in an ST can have more than three edges. Since 
a Steiner point by convention has at  least three edges, it must have exactly three 
edges. Another consequence is that no two edges can cross since the crossing will 
generate an angle of at most 90'. We state this as Theorem 1.1.  

Theorem 1.1 (a) No two edges of an ST can meet at an angle less than 120'. 
(b) An ST has no crossing edges. (c) Each Steiner point of an ST is of degree 
exactly three. 

A further consequence was first observed by Courant and Robbins [3] : 

Theorem 1.2 An ST for N contains at most n - 2 Steiner points. 

Proof: Suppose that an ST has k Steiner points. Then it has n + k - 1 edges. 
Since each Steiner point has three edges and each terminal at  least one, the number 
of edges must be at  least ( 3 k  + n)/2; the division by 2 accounts for the fact that 
each edge is counted a t  two vertices. It follows that 

n + k - 1 2 (3k + n)/2 
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or 
n - 2 L k  

0 

An ST with the maximum n - 2 Steiner points is called a full Steiner tree (FST). 
Corollary 1.1 Each terminal is of degree one in an FST. 

Corollary 1.1 can serve as a definition of FST in spaces where the maximum 
number of Steiner points is not necessarily n - 2. 

Corollary 1.2 For n 2 4 there exist at least two Steiner points in an FST which 
are each adjacent t o  two terminals. 

A topology is a Steiner topology (respectively full Steiner topology) if it meets 
the degree requirement of an S T  (FST). To construct an SMT, we need only be 
concerned with trees whose topologies are Steiner. Clearly, for every Steiner topol- 
ogy G, there exists a full Steiner topology F (not necessarily unique) such that 
G E D ( F ) .  However, not every topology in D ( F )  is Steiner. Denote by D s ( F )  the 
set of Steiner topologies in D ( F ) .  The following theorem was given by Hwang and 
Weng [lo]. 
Theorem 1.3 An ST  whose topology is in D ( F )  for some full Steiner topology F 
is the unique minimum tree among trees whose topologies are in D s ( F ) .  

Proof: Let T be a tree whose topology G E D s ( F ) .  Define fij = 1 if [vi, vj] is an 
edge in G and fij = 0 otherwise. Then the length of T is 

i< j 

Consider IT1 as a function of the locations of the Steiner points. Since Iv, - vjl 
is a norm, 17'1 is strictly convex except when all edges preserve their directions in 
a perturbation, then the convexity is not necessarily strict. However, even when 
the three edges incident to a Steiner point are parallel, moving the Steiner point 
towards the side where two incident edges lie, though preserving the directions of 
all three edges, decreases the total length. Hence the strict convexity is guaranteed. 
Since an ST is a local minimum, the strict convexity guarantees that it is also the 
unique minimum among trees with topologies in Ds ( F ) .  0 

We will call this unique ST the ST of D ( F ) .  

It  is easily seen that a Steiner topology can be uniquely partitioned into edge- 
disjoint subgraphs each of which is a full Steiner topology. Therefore we have 

Corollary 1.3 There exists at most one ST for a given Steiner topology. 

Since relatively minimal trees differ from STs only in angles but not in degrees, 
we also have 

Corollary 1.4 There exists at most one relatively minimal tree for a given topo- 
logy. 
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Figure 1.3: Two sequential orders (zigzag order shown in parentheses) 

1.4 Full Steiner Trees 

The unique decomposition of a Steiner topology into full Steiner topologies induces 
a unique decomposition of an ST  into FSTs. As will be seen in the next chapter, 
FSTs are much easier to  construct than STs. Therefore one way to construct an 
ST is to construct its FST components. This fact brings out the importance of 
studying FSTs. 

Let T be an FST. Inflate the edges of T to have some width. Then the out- 
side boundary of the inflated T ,  called the circumference of T ,  forms a cycle going 
through each terminal once and each edge twice, once in each direction. The cyclic 
order of the terminals on the circumference will be referred to  as the circumferen- 
2ial order.  Note that this is not the only way to  order the terminals in an FST. 
Werner [ l8]  introduced a zigzag order which goes from one terminal to another by 
making alternating left and right turns at  Steiner points (see Fig. 1.3) .  Also note 
that both the circumferential and the zigzag order can be set in two ways, one 
reversing the order of the other, depending on which direction to  turn first. 

Theorem 1.3  shows that for a given set N of terminals and a full Steiner topology 
F ,  the ST  in D ( F ) ,  if it exists, is unique. So, theoretically speaking, the locations 
of the Steiner points can be uniquely determined from N and F only. However, 
no such explicit functions are available and the locations can be computed only 
algorithmically. However, if the ST  is known to have a full Steiner topology, then 
things are different. Hwang and Weng [9] used hexagonal coordinates and gave 
an algebraic solution of the (hexagonal) coordinates of the Steiner points. Since 
these coordinates are also coordinates of terminals, the ST and its length can be 



1.5. STEINER HULLS A N D  DECOMPOSITIONS 9 

explicitly formulated as functions of N and F (see Section 2.3). 
Booth [l] used spherical coordinates and obtained a more pleasing formula for 

the length. By Corollary 1.2, there exist two terminals p,, p1 adjacent to  a Steiner 
points s. Use the circumferential order to  label the other n - 2 terminals and define 

(Yk = Ipk+l-pkI for k =  1,  ..., n - 1  

Let p x  be the vector defining the direction of the positive x-axis with s lying in 
the upper half-plane. Define ,& to be the angle of the vector pkpk+i. Then - 

pkpk+l = Qke iPk  

Also define the angle A,  0 < X < T, by 
+ 
pis = Ipl - sleiX 

Finally, set w = eirI3, and define the sequence { y q } ,  1 5 q 5 n - 1, inductively by 
-1 (i) y1 = 1, yn-l = 20 

(ii) Given ys and y t ,  1 5 s < t 5 n - 1, then 

. 

W - l Y s  + WYt = Yq 

where q is the unique integer, s < q < t ,  for which the clockwise paths from 
P, to  P,+1, Pt to  Pt+l, and Pq to  Pq+l have exactly one Steiner point in 
common. 

Booth proved the following theorem using an inductive argument on n. 

Theorem 1.4 The length z of an FST  for N = { P I ,  . . . , p,} 1s given by  the formula 

n-1 

k=l  

Note that X can also be solved from the above equation. 

1.5 Steiner Hulls and Decompositions 

A Steiner hull for a given set of points N is defined to  be a region which is known 
to contain an SMT. A known Steiner hull allows an SMT algorithm to confine its 
computations within a given area, hence the smaller a Steiner hull is, the better. 
The following two lemmas give some useful tools to  restrict SMTs. 

Lemma 1.1 ([7]) (The Lune property) Let uv be any line of an SMT.  Let L(u ,  v )  
be the region consisting of all points p satisfying 

l P 4  < 14 and lPVl < Iuvl 

L(u ,  v) is the lune-shaped intersection of circles of radius Iuv( centered on u and v. 
No other vertex of the S M T  can lie i n  L (u , v ) .  
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Figure 1.4: A lune 

Proof: If q were such a vertex, the SMT would contain either a path from q to  u 
not containing v ,  or vice versa. In the former case, for example, the SMT can be 

0 shortened by deleting [u, w] and adding [ q ,  w], a contradiction. 

Lemma 1.2 ([7]) (The Wedge property) Let W be any open wedge-shaped region 
hawing angle 120' or more and containing none of the terminals. Then W contains 
no Steiner points. 

Proof: Without loss of generality, let W cover the span of angles from -60' to 
60'. Suppose to  the contrary that W contains a Steiner point. Let s be the Steiner 
point in W with the largest 2-coordinate. Of the three edges at s, one leaves s 
in a direction within f60° of the positive x-axis. This edge cannot leave W and 
so cannot end at a terminal. Furthermore, its endpoint has a larger 2-coordinate 
than s, a contradiction. D 

Corollary 1.5 ([7]) The convez hull of N is a Steiner hull. 

Proof: Each supporting line of the convex hull defines a 180' wedge free of termi- 
nals. 0 

Theorem 1.5 Let H be a Steiner hull of N .  By sequentially removing wedges abc 
from the remaining region, where a ,  b ,  c are terminals but Aabc contains no other 
terminal, a and c are on the boundary and Labc 2 120', a Steiner hull H' invariant 
to  the sequence of removal is obtained. 
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Proof: It will first be shown that no SMT can intersect such a wedge abc, hence 
the wedge is removable. By Lemma 1.1 no edge of an SMT cuts across the wedge 
or b will be a vertex lying in the lune of that edge. By Lemma 1.2, no Steiner point 
lies inside of the wedge. Thus the wedge contains no part of an SMT. 

To prove the invariance property, suppose that there exists a terminal b' such 
that Lab'c also 2 120' (see Fig. 1.5). 

b b' 

Figure 1.5: Two removal sequences 

Then 
Lab'b > Lab'c 2 120' 

and 
Lb'bc > Labc 2 120' 

Hence if Aabc is removed, then Aab'b can be removed in the next step. Whereas if 
Aab'c is removed first, then Ab'bc can be removed next. In either case one obtains 
the same Steiner hull. By repeating this argument one can show the invariance of 
more involved sequences. 0 

Theorem 1.5 was first given by Cockayne [2] without the invariance property. 

Properties of 4-terminal SMTs have been well studied (see Section 5.1). By 
critically using the results of [4], Hwang, Song, Ting and Du [8] were able to  give 
a sufficient condition for removing a quadrilateral. 

Theorem 1.6 Let a ,  b, c, d be four  points on the boundary of a Steiner hull H of 
N such that 

(i) a ,  b E N ,  

(ii) abcd is a convex quadrilateral containing no  terminals with La 2 120°, f b  2 
120°, 

(iii) Lbxa 2 La + f b - 150' where x is the intersection of the two diagonals [a ,  c] 
and [b, 4. 

Then H - abcd is a Steiner hull. 

We omit the proof as it involves different analyses for several subcases. The 
analyses are based on a thorough knowledge about the 4-terminal SMT. The lack 
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Figure 1.6: Two decompositions 

of such knowledge on the k-terminal SMT for k 2 5 explains why no sufficient 
conditions for removing general k-gons are known. 

When a Steiner hull consists of two subregions meeting at  one point x, then we 
can partition the original problem into two subproblems each covering the set of 
terminals in the respective subregion plus the point 3: (if it is not a terminal). Since 
the time complexities of all known SMT algorithms are exponential in n,  partition- 
ing a problem into several smaller problems greatly reduces the time required. 

Note that the Steiner hull of Theorem 1.6 induces a decomposition of N into 
N1 and N z .  The Steiner hull of Theorem 1.5 will induce a decomposition at  the 
point b if b also lies on the boundary (see Fig. 1.6). 

Theorem 1.7 ([2]) The  terminals  on a Steiner hull have a cyclic order consistent 
wi th the circumferential  order of any full  Steiner topology. 

Proof: Take any three terminals a ,  b ,  c on the boundary of the Steiner hull. There 
exists a vertex d of the ST, d can be one of a ,  b ,  c ,  such that the three Steiner paths 
ad, bd, cd meet only at d. Since a,  b ,  c are all on the Steiner hull while the three 
paths cannot go outside of the hull, the relative positions of the three paths are 
invariant and consistent with the circumferential order. 0 

Define a crossing-free cycle of n points as a closed path which visits each point 
at least once without two edges crossing each other, except that  an edge between 
two points may be used twice, once in each direction. 

Theorem 1.8 ([16]) There exists a crossing-free cycle which is a Steiner hull. 

Proof: Define the circumference of a nonfull ST  as the union of the circumferences 
of its full subtrees. By skipping all the Steiner points on the circumference of an 
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SMT and replacing each path between two adjacent terminals (after skipping) by 
0 a straight edge, a crossing-free cycle is obtained. 

1.6 The Number of Steiner Topologies 

Let f(n), n 2 2, denote the number of full Steiner topologies with ( n  - 2) Steiner 
points. Clearly, f(2) = 1; the unique Steiner topology is an edge connecting two 
terminals. Note that in a full Steiner topology every terminal is adjacent to a 
Steiner point. Let F be a full Steiner topology with n + 1 terminals. If one removes 
the terminal p,+l and also its adjacent Steiner point, one obtains a full Steiner 
topology with n terminals. This shows that every full Steiner topology with n + 1 
terminals can be obtained from a full Steiner topology with n terminals by adding 
a Steiner point s in the middle of one of the (272 - 3) edges and adding an edge 
connecting s to p , + l .  Hence 

f ( n  + 1) = (2n - 3 ) f ( n )  

which has the solution 

f(n) = 2 - ( 4 ( 2 n  - 4)!/(n - 2)! 

Let F ( n ,  k) denote the number of Steiner topologies with IN1 = n and k Steiner 
points such that no terminal is of degree three. Then F ( n ,  k) can be obtained from 
f ( k )  by first selecting A: + 2 terminals and a full Steiner topology on it, and then 
adding the remaining n - k - 2 terminals one a t  a time a t  interior points of some 
edges. The first terminal can go to one of 2k + 1 edges, the second to one of 2k + 2 
edges , . . ., and the ( n  - k - 2)nd to one of the n + k - 2 edges. Thus 

Now consider Steiner topologies with terminals of degree three. Suppose that there 
are 123 of them. Such topologies are obtainable from Steiner topologies with n - n3 

terminals and k+n3 Steiner points by labeling n3 of the Steiner points as terminals. 
Let F ( n )  denote the number of Steiner topologies with IN1 = n.  Then 

Theorem 1.9 ( [ 7 ] )  

Table 1.1 gives f ( n )  and F ( n )  for n = 2 , 3 , .  . . , 8 .  
Even though f(n) is much smaller than F ( n ) ,  it is still a superezponenlial 

function, i.e., increasing faster than an exponential function. The number f(n) 
can be greatly reduced by using the geometry of the set N .  Cockayne proved 
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Table 1.1: f(n) and F ( n )  for n = 2 , 3 ,  ..., 8 

Theorem 1.10 ([2]) If all terminals lie on a Steiner hull, then the number of full 
Steiner topologies is (:I;)/(n - l ) ,  the ( n  - 2)nd Catalan number. 

Proof: Let F denote a full Steiner topology. Let p be a terminal adjacent to a 
Steiner point s in F .  View F as a graph which connects p to the root s of a rooted 
binary tree. Use the well-known parenthesis representation for the rooted binary 
tree with n - 1 leaves. By Theorem 1.7, the sequence of'leaves is independent of F 
if the same p is chosen. Thus there is a one-to-one correspondence between the set 
of full Steiner topologies with n terminals and the set of parenthesis representations 

0 with n - 1 symbols, whose number is the ( n  - 2)nd Catalan number. 

Corollary 1.6 If i terminals are on the Steiner hull, then the number of Steiner 
topologies is $(:~:)/(n - 1 ) .  

Note that 
4" 

(","I,") / ( n  - 1) z 1 6 n 6  
Thus if there are only constant number of terminals not on the Steiner hull, then 
there are only exponentially many Steiner topologies, instead of superexponentially 
many. By Theorem 1.8 there exists a crossing-free cycle which is a Steiner hull and 
all terminals lie on the hull. 

1.7 Computational Complexity 
One of the primary tools used to understand the computational complexity of 
combinatorial problems has been the theory of NP-completeness [5] . The theory 
is normally applied to decision (yes/no) problems. The optimization problem: 

GIVEN: A set N of terminals in the Euclidean plane. 

FIND: A Steiner tree of shortest length spanning N. 
can be recast as a decision problem: 

GIVEN: A set N of terminals in the Euclidean plane and an integer B. 

0 DECIDE: Is there a Steiner tree T that spans N such that IT1 5 B.  

Unfortunately both of these problems suffer from numerical difficulties, involv- 
ing computations of irrationals (on finite-precision machines) in addition to the 
combinatorial difficulties involved in exploring the many topologies. Hence an- 
other related problem has been proposed, that is perhaps simpler, known as the 
discrete Euclidean Steiner problem 1 
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GIVEN: A set N of terminals with integer coordinates in the Euclidean plane and 
an integer B. 
DECIDE: Is there a Steiner tree T that spans N ,  such that all Steiner points have 
integer coordinates, and the discrete length of T is less than or equal to B,  where 
the discrete length of each edge of T is the smallest integer not less than the length 
of that edge. 

The class N P  is the class of decision problems that can possibly be solved in 
polynomial time, when the answer is “yes”, provided a hint can be given as to  the 
form of the solution. (See [5] for a technical definition of the “nondeterminism” used 
here.) For example, for the discrete problem above it would be easy to  verify that 
a tree T has discrete length bounded by B ,  if such a T exists, when provided with 
the “hint” of the topology of T and the locations of its Steiner points. Currently 
the original Euclidean Steiner decision problem is not known to be in NP, and may 
not be, due to  the difficulty of the numeric computations. There are many decision 
problems found in this book. However this problem is the only one not known to  
be in NP. 

A problem is NP-hard if it is as “hard” as any problem in NP. In this sense a 
decision problem A is as hard as B if, with polynomial time overhead, an algorith- 
mic solution to  A can be used to solve B. (Again, [5] has formal definitions.) A 
problem is NP-complete if it is both NP-hard and in NP. The typical way to  show 
a new problem A is NP-hard is to show it is as hard as B ,  where B is known to be 
NP-hard (or NP-complete). 

The discrete Euclidean Steiner decision problem has been shown to be NP- 
hard by Garey, Graham and Johnson [6]. They used a mapping to  the known 
NP-complete problem known as the ezacl cover b y  3-sets (defined in Section 1.5 of 
Part 11, where a simpler mapping is exhibited). The details of the mapping used 
are quite lengthy and are omitted here. Since this discrete problem is also in NP, 
as argued above, it follows that it is NP-complete. 

Return to the original Euclidean Steiner decision problem. Suppose that coor- 
dinates are in symbolic expressions which can be evaluated in time bounded by a 
polynomial in m and log A, where m is the number of bits in an expression and 
*A is the approximation error range. Any polynomial time algorithm which solves 
the ESP can still solve the exact cover by 3-sets problem. Using such arguments it 
follows that the ESP is NP-hard [6]. However it is not known to be NP-complete, 
since its membership in N P  is open. 

Garey, Graham and Johnson in fact gave an even stronger result. Define a fully 
polynomial approzimation scheme to  be an algorithm which, for each instance I of 
the problem and each E > 0, finds a solution for I with value v satisfying 

21 < 1 + E  
OPT(1) - 

and whose running time is bounded by a polynomial in l / c  and the length of the 
input for I .  They showed that no such scheme exists for the ESP unless every 
problem in N P  has a polynomial time solution. 

In this book we adopt the convention ([5], p. 114) of referring to  the opti- 
mization version of NP-hard decision problems as being “NP-hard”, even when the 
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corresponding decision problem is in fact known to be NP-complete. We emphasize 
that the only decision problem in this book that is NP-hard but not NP-complete 
is the original ESP above. 

1.8 Physical Models 

Three physical devices have been proposed to model the ESP. 

6 )  

(ii) 

The string model [14,15]. This model generates a relatively minimal tree. 
Let G be a given Steiner topology of a set N .  A sheet has holes at  loca- 
tions corresponding to the terminals. Strings of equal lengths and with equal 
weights attached to them under the sheet run through the holes. A Steiner 
point is represented by a sliding ring connected above the sheet to the three 
strings corresponding to the three edges. The strings and rings settle into a 
relatively minimal tree with respect to G (see Fig. 1.7). A variant uses pegs 
at  the holes and rolls elastic bands over the pegs for the strings. 

Figure 1.7: String model 

The soup film model [14]. This model generates an ST with some Steiner 
topology not determined in advance. Two parallel transparent plates are 
separated by posts located at the terminals. The whole thing is then dipped 
into soapy water. When lifted, a layer of thin film interconnecting the posts 
into an ST (with height) is formed (see Fig. 1.8). Repeating the experiment 
may generate various STs with different topologies. 
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Figure 1.8: Soap film model 

(iii) The membrane model [17]. This model generates a heuristic SMT, but not 
much is known about the solution. A rubber membrane circumscribed by a 
ring is pinned to  a sheet at locations of terminals. The lifting of the ring 
creates a canonical funnel with little hills and valleys a t  the bottom (see 
Fig. 1.9). The points at which forces of the membrane are most balanced are 
thought to be natural candidates for Steiner points. 

The main disadvantages of these physical models are: 
1. They do not produce SMTs. 
2. It could be time-consuming to  construct a large model. 
3. Mechanical errors can build up in large models. 

Therefore, in the rest of the text we will concentrate on mathematical solutions to 
the ESP. 
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Chapter 2 

Exact Algorit hrns 

We briefly survey what Torricelli, Cavalieri, Simpson, Heinen and Bertrand found 
about the S T  for three terminals a ,  b and c .  If one of the angles of Aabc is a t  least 
120’, then by Heinen’s or Bertrand’s result, the ST consists of simply the two edges 
subtending the obtuse angle. So assume that all internal angles of Aabc are less 
than 120’. Suppose one replaces a and b by a point d which forms an equilateral 
triangle with a and b such that d is on the opposite side to the Sreiner point s 
(in reference to line ab). The position of s for the 3-terminal case is known to be 
on the same side as c. Thus the location of d is determined. Let C be the circle 
circumscribing the three points a ,  b and d. By Torricelli’s and Cavalieri’s results 
s is the intersection of [c,d] with C. Hence the location of s is determined (see 
Fig. 2.1). Heinen showed that the length of line [c, d] is equal to the length of the 
Steiner tree. 

C 

U 

d 

Figure 2.1: A 3-point SMT algorithm 
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The above 3-terminal algorithm provides a base for generalizing to n terminals. 
The step that substitutes d for a and b will be called the merging stage, and the 
step that locates s and adds the connections [a ,  s] and [b ,  s] is the reconstruction 
stage. 

In the next three sections we present a fundamental exact algorithm based on 
the two stages mentioned above, and improvements on that algorithm. Section 2.4 
presents a purely numerical approach. The next section presents a technique for 
pruning the search. The last three sections present recent exact algorithms. 

2.1 The Melzak Algorithm 

Melzak [13] proposed the first finite algorithm for ESP. His approach is to find a 
relatively minimal tree for every topology on N,  and select a shortest one among 
these trees as an SMT. Furthermore, only those relatively minimal trees which are 
STs need be constructed, since an SMT must be an ST. Cockayne [4] streamlined 
the Melzak algorithm and emphasized that this approach requires only a subroutine 
to find FST, since if a topology G is not full, then it can be broken down into 
components G I , .  . . , G, such that G; is a full topology of a subset Nj of N with 
U;N; = N and two subsets intersect at  at  most one terminal. Thus the core of 
the Melzak algorithm is an algorithm to construct FST, which will be called the 
Melrak FST algorithm. The Melzak FST algorithm is an iterative version of the 
3-point algorithm given a t  the beginning of this chapter. 

To find an SMT, the Melzak algorithm considers all topologies, using the Melzak 
FST algorithm to  construct its components, and stores the tree if all full compo- 
nents exist. At the end all stored trees are compared and a shortest one is selected 
as an SMT. The Melzak algorithm has been coded by Cockayne and Schiller [7], 
and later improved by Boyce and Seery [2]. 

The Melzak FST algorithm constructs an FST for a given full topology. (If an 
FST does not exist for that topology, then the algorithm comes up empty.) Let F 
denote the given full topology. The Melzak FST algorithm consists of a merging 
stage and a reconstruction stage. During the merging stage one reduces the number 
of terminal points from n to 2, one at  a time. At the beginning, the n terminals 
are the only terminal points and the associated topology is F .  Call two terminal 
points siblings if they are adjacent to the same Steiner point in the associated 
topology. At each merging step two arbitrary siblings a and b are replaced by 
a new terminal point, called an equilateral point or an E-point,  which forms an 
equilateral triangle with a and b .  Denote this E-point by (ah).  (There are two 
choices of (ab) ,  one on each side of line ab. This point will be discussed later.) 
A corresponding change is made on the associated topology by deleting a and b 
with their edges to the Steiner point s ,  and treating s now as a terminal point. 
Note that the new associated topology has one fewer terminal point and one fewer 
Steiner point (the point s ) ,  but remains a full topology. The merging stage ends 
when the associated topology consists of only two terminal points and no Steiner 
point. Note that every terminal except at  most one is replaced during the merging 
process. 
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The reconstruction stage starts by connecting the two terminal points left at 
the end of the reduction stage by a straight edge, again, called a Simpson line. At 
each reconstruction step the tree T already constructed is modified into a new tree 
TI by replacing an edge of T which has an E-point by a Steiner point and its three 
edges. Again refer to  Fig. 2.1 except that c is not necessarily a terminal. Let [c,  d] 
be such an edge in T where d is generated in the merging stage by replacing two 
terminal points a and b.  Let C denote the circle circumscribing the three points 
a ,  b and c .  If the 120' arc a b  does not intersect the edge [c, d] at an internal point, 
then the reconstruction stage ends and no FST exists for the topology F .  If it 
intersects at an internal point s, then T' is obtained from T by deleting [c, d] and 
inserting [a ,  s], [b ,  s] and [c,  s]. The reconstruction step continues until either at 
some step no internal intersection exists or the new tree contains all terminals. 

Consider the modification of T into TI. Without loss of generality, assume that 
bad is the counterclockwise order of the three points on the circle C. Since both 
Ldsb and Lasd face a 120' arc of C, they are 60' each. This proves that the 
three edges [a ,  s], [b ,  s] and [c,  s] meet at 120' and the output of the reconstruction 
stage, if it exists, is an FST which, by Theorem 1.3, is the unique FST. On the 
other hand, suppose that T is an FST for F .  Consider the merging sequence which 
always chooses the third equilateral point on the opposite side of the Steiner point 
adjacent to the two replaced sibling terminal points. Clearly, for such a merging 
sequence the reconstruction can always proceed until T is reconstructed. Hence 
the existence of an FST implies the existence of a merging sequence for which the 
Melzak FST algorithm finds the FST. 

Assume that the geometric constructions, like finding a third equilateral point, 
finding a circumscribing circle, and finding the intersection of an arc with a line, 
take constant time. Then the reconstruction stage is a one-pass linear time algo- 
rithm. Unfortunately, the merging stage needs exponential time since at each step 
we have two choices of the E-point, and backtracking is required to determine the 
correct choice. The reason that there are two choices is, unlike the 3-point case, 
that one does not know in general which side the Steiner point in question lies. 
Although many ad hoc procedures have been offered [8] to eliminate some choices, 
they do not affect the exponential order of magnitude. 

The next section reviews an O(n)  time implementation of the Melzak FST 
algorithm due to Hwang [lo]. The crux of the implementation is a set of criteria 
which correctly determines the E-point without backtracking. Before leaving this 
section, observe that by repeatedly using Heinen's result on a Simpson line for 
3-point set, the following result holds. 

Theorem 2.1 The  length of the F S T  equals that of a Simpson l ine.  

2.2 A Linear-Time FST Algorithm 

The following is an account of the Hwang linear variant of the Melzak FST algo- 
rithm with some details provided by Smith [14]. 

Let F be a given full topology on n points. Construction for the n = 3 case 
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was given before and construction for the n = 4 case is also straightforward. So 
assume n 2 5. 

Let T be an arbitrary terminal in F .  Treat F as a rooted binary tree with root 
T .  Compute the distance of other vertices from r ,  where “distance” here means 
the number of edges between the two vertices. This can be done in O(n) time by 
a breadth-first search. Let a be a terminal farthest away from T .  Since n 2 5 ,  the 
distance from T to a is at least three. Let s1 and s2 be two Steiner points on the 
ra path such that a is adjacent to s1 and s1 is adjacent to s2. Since each Steiner 
point is of degree three, s1 must be adjacent to a third vertex b, and s2 to v, where 
b and v are not on the ra  path. Furthermore, b must be a terminal or a cannot be 
a terminal farthest away from T (see Fig. 2.2). 

a b C 

Figure 2.2: A specified topology 

If v is a terminal, then delete { a ,  b,  s1) and their incident edges from F and add 
the E-point (a6) and edge [s2, ( a b ) ] ,  where ( a b )  lies on the opposite side of line ab 
from v. If v is a Steiner point, let c and d be its two children nodes. Then c and cl 
must be terminals by the definition of a. If c and d lie on the same side of line ab, 
then do the same as the previous case except ( a b )  lies on the opposite side of line 
ab from c. If a and b lie on the same side of line cd, then delete { c ,  d ,  v} and their 
incident edges and add the E-point (cd)  and edge [sz, ( c d ) ] ,  where (cd) lies on the 
opposite side of line cd from a.  If lines a6 and cd cross, then the algorithm stops 
since no FST exists for F by Theorem 1.1. 

The above procedure is reiterated (with the same T but different a )  until only 
four terminal points are left. The FST is then found by brute force. 

The correctness of the algorithm and its O(n)  time requirement were verified 
by Hwang [lo]. Therefore 

Theorem 2.2 There exists an O(n)  time implementation of the Melzak FST al- 
gorithm. 
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2.3 Two Ideas on the Melzak Algorithm 

The major inefficiency of the Melzak algorithm comes from the superexponential 
number of Steiner topologies needed to  be processed. The following method cuts 
down the superexponentiality to exponentiality. 

From Theorem 1.8 there exists a crossing-free cycle which is a Steiner hull. 
Since it is not known which crossing-free cycle is a Steiner hull in advance, one has 
to process all crossing-free cycles. Ajtai et al. [l] showed that there are at most 
C" crossing-free cycles with C < Smith [14] and Hayward [9] strengthened 
this upper bound considerably. Smith also showed that all the crossing-free cycles 
can be generated in exponential time. 

Consider a given crossing-free cycle C. Suppose that C consists of d edge- 
disjoint subcycles. Then the corresponding SMT must also be a union of d FSTs 
each contained in a subcycle. The number of full Steiner topologies in the ith 
subcycle with ni terminals cyclically ordered is 

2-(n , -2)  (2ni - 4)!/(ni - 2)! 

which was shown in Section 1.6 to  be an exponential number. The total number 
of Steiner topologies needed to  be processed by the Melzak FST algorithm for one 
crossing-free cycle is the product of the above numbers over i. Finally, there are 
exponentially many crossing-free cycles to  be examined. Since a product of two 
exponential numbers is still exponential, the Melzak FST algorithm needs to  be 
run only exponentially many times. Although this algorithm is of great theoretical 
interest, the large value of C somewhat circumvents its practicality. 

Clark [3], and also Hwang and Weng [ll], proposed an algebraic version of 
the Melzak FST algorithm which replaces the geometric constructions like finding 
intersections, constructing triangles and circles by solving a system of linear equa- 
tions. Besides the possible advantage in easier coding, it also does not have to  go 
2-pass, one for the merging stage and the other for reconstruction, as in the origi- 
nal geometric version. Hwang and Weng found it advantageous to  use a hexagonal 
coordinate system. 

Let U ,  V ,  W be the three axes going through the origin and cutting the plane 
into six 60' cones. Represent each point in space by a vector (u ,  v, w) (there is more 
than one way to  choose a representation system). Hwang and Weng [ll] proved, 

Lemma 2.1 u + v + w = 0 for any  point  p .  

Let T denote an FST and G its topology. First assume that the lines in T are 
all parallel to  the three axes, U, V and W .  Such a tree will be called a hexagonal 
tree. An edge in a hexagonal tree can consist of more than one segment. Note 
that if a line is parallel to  an axis, then any two points on the line share a same 
coordinate. This observation allows one to  sequentially write down the coordinates 
of all Steiner points from the coordinates of the terminals, starting from Steiner 
points adjacent to  two terminals. Since G is a bipartite graph, the vertices in G 
can be partitioned into two disjoint subsets N I  and Nz such that edges exist only 
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between N1 and N2. By repeatedly applying Lemma 2.1 to each Steiner point in 
G, the characteristic equation of T ,  

c [ 4 P >  + 4 P )  + 4 P ) l  - c [ 4 P )  + 4 P )  + 4 P ) l  = 0 
pEN1 P E N 2  

is obtained. Note that all the u(p), v(p), w(p) will cancel out except those derived 
from terminals. 

Now consider the general case that the lines of an FST T are parallel to the 
axes only after a counter-clockwise rotation of angle 8. Define 1 = cost' and k = 
sin t'/d. Then the new coordinates can be obtained from the original coordinates 
through the transformation 

(;)= [ i k  !k ;] ( t )  
Note that the three transformations t', t' + 120°, t' + 240' all lead to the same 
hexagonal coordinate system except differing in calling which one U. Once the 
choice is made, the characteristic equation can then be expressed as a linear (ho- 
mogeneous) function in 1 and k .  Therefore 1 and k ,  hence t', can be solved by 
noting that l2 + 3k2 = 1.  Since the two solutions ( I ,  k) and (-1, -k) will lead to 
the same coordinates except reversing all signs, one may assume without loss of 
generality that k 5 0. In these senses a characteristic equation leads to a unique 
transformation. 

Weng [16] observed that any edge in an SMT can be replaced by two segments 
of a hexagonal tree (for a given axis-system) connecting the same two end points so 
that its length is increased by a factor at most 2 / f i  (the maximum occurs when 
the two segments are of equal length). It follows 

Theorem 2.3 The length of an SMT is lower bounded b y  4 / 2  limes the length 
of a minimum hexagonal tree for any given axis-system. 

This result will be used in the proof of the Steiner ratio conjecture in Chapter 3. 

2.4 A Numerical Algorithm 
As shown in the proof of Theorem 1.3, the length of a tree in D ( F )  is a strict 
convex function of the locations of Steiner points. Hence the local optimum is the 
global optimum and one may attempt to solve for these locations by setting the first 
partial derivatives to zero. However, this yields a system of nonlinear equations and 
a numerical method is required. Smith [14] commented that the length function 
has nonsmooth, complicated behavior at and near the optimum, so that the usual 
numerical methods are ineffective. He proposed an iterative procedure where, at 
each step, all of the Steiner points are updated simultaneously and compatibly as 
follows: 
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Let (xk, yk) denote the Euclidean coordinate of the Steiner point k. At the ith 
step, i = 0, 1, .  . ., solve the system of 2n - 4 linear equations 

Yi+l  

where each summation is over all j such that [j, k] is an edge in F .  Smith proved 

Theorem 2.4 From all init ial  choices of Steiner point coordinates (xi, y:), k = 
1,. . . , n - 2, except f o r  a set  of measure zero in  R2n-4, the i teration converges to  
the unique op t imum Steiner point coordinates. Th i s  convergence happens in  such 
a w a y  that the sequence of the lengths is  decreasing over  the i teration. 

Smith also noted that the system of linear equations in each iteration can be 
solved in O(n)  time (using floating point operations) by a straightforward applica- 
tion of the Gaussian elimination method, and that the rate of convergence is geo- 
metric in general. .He warned that it is risky to stop the iteration when (xi+', yi+') 
is close enough to  (z;, y;) for all k = 1, . . . , n - 2. A better idea is to  check whether 
the angles at Steiner points are close enough to 120O. 

While the numerical algorithm presented here may not offer any significant 
advantage over the Melzak algorithm in the Euclidean plane, it can be easily ge- 
neralized to high-dimension while the Melzak algorithm cannot. We will study the 
high-dimensional ESP in Section 6.1. 

. .  

2.5 Pruning 

Pruning means to cut short a running of the Melzak FST algorithm before its 
completion by recognizing that the tree partially constructed cannot be a subtree 
of an SMT. Furthermore, any other topology with the same partial construction 
can be scratched from being considered to produce an SMT. 

Although many pruning techniques have been scattered over the literature (see 
[8] for a good collection), Winter [17] proposed a systematic way to  use them 
to recognize the nonoptimality of an E-point. This is done by associating with 
each E-point an arcpip, on which the Steiner point corresponding to the E-point 
must lie. Let vi and v j  be the two terminal points yielding the E-point. Then 
arc pipj = arc vivj originally. The pruning techniques keep shrinking the arc pip, 
until it disappears (pi crosses pj). The nonexistence of the Steiner point implies 
that any FST requiring the generation of this E-point at the reduction stage does 
not exist. 
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Recall that the lune property (Lemma 1.1) forbids any vertex to lie in the lune 
L(u, v) where [u, v] is an edge of an SMT. Since [vi ,  s] is an edge, pj can be pushed 
towards vi until L ( v ; , p j )  contains no terminals. Similarly, we can push pi.  

The deciding region for an E-point (ab)  is the region where no points of any 
SMT containing (ab)  can lie within. 

Corollary 2.1 ([S]) I = n , { L ( s , u )  U L ( s , b ) } ,  where s ranging over the 120' 
arc ab, is  a subset of the deciding region. 

It was also shown that I can be approximated by the region bounded by the 
120' arc ab and two 60' curves ao and bo centered at o - b and o - a respectively, 
where o is the center of the circle circumscribing a ,  b and (ab).  Furthermore, the de- 
ciding region cannot be much different from I as any point p for which Lapb < 120' 
cannot be in the deciding region. 

Winter [17] extended the wedge property (Lemma 1.2) to the following case: 

Corollary 2.2 Let arc pipj be the arc associated with the E-point e. Draw lines 
epi and ep j ,  and let C, denote the open region enclosed by these two lines and 
arc pipj.  Also draw 60' cones Ci and Cj at pi and pj such that C, n C, = epi and 
Cj nC, = ep j .  Then  there must exist two terminals, one an C, U Ci and the other 
in  C, U Cj. If the two terminals are not there, then all constructions containing 
that E-point can be scratched. 

He also proved (see Fig. 2.3) 

Theorem 2.5 Let e = ( e i v j )  and ei = (v i lv i z )  be two E-points. Let arc pipj 
and arc pilpi;! be associated with e and ei respectively. Let R denote the open 
region enclosed b y  lines eipil ,  eipi2 and arc pilpi2. Then  arc pip, can be shrunk to 
arc p:p; = R n arc pip,. 

Proof: Let s and si be the Steiner points on arc pip, and arc pilpi2 respectively. 
Then s lies on the extension of [ei, s;]. Theorem 2.5 follows immediately. 

Note that if R n arcpipj = 0. Then the E-point can be eliminated. 

Simulation results given by Winter showed these pruning techniques to be very 
effective. 

2.6 The GEOSTEINER Algorithm 

Winter [17] proposed an approach to find an SMT which can be considered as 
reverse of the Melzak approach. The Melzak approach considers all topologies on 
N and partitions each such topology into full subtopologies. In the reverse version, 
full subtopologies are first constructed and then combined into a topology on N .  
More specifically, an enumeration scheme is developed to generate full topologies 
for each subset of N .  Pruning is heavily used to screen out subsets for which no ST 
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0 

e 

Figure 2.3: Arc shrinking 

exists. If a full topology cannot be eliminated on a subset, then the Melzak FST 
algorithm is used to construct an FST on this subset. In fact, only the merging 
stage needs be done here and the length of the Simpson line is stored along with 
the merging process. For any set of terminals for which a Simpson line is stored, 
the reconstruction stage is done only for the topology with the shortest Simpson 
line. All possible unions of existing FSTs are examined through length tests, degree 
tests and cycle tests to see if the union is an ST for N .  A shortest such union is 
an SMT for N .  

Note that the only time that the nonexistence of an FST is discovered during 
the merging stage is when lines ab and cd cross in the Hwang linear variant as 
discussed in Section 2.2. Otherwise, one can always replace two terminal points 
by an E-point and proceed. Thus much time can be wasted in the merging stage 
only to discover a t  the reconstruction stage that the corresponding FST does not 
exist. The GEOSTEINER algorithm improves on this by doing the screening while 
constructing FSTs for subsets of terminals. Furthermore, this screening is done in 
a dynamic programming sense to rule out all FSTs which contain the forbidden 
FST as a subtree. For example, if R n arcpipj = 8 in Fig. 2.3, then one needs not 
look into any FST whose construction will encounter a stage at which the topology 
has vjl and vig as siblings (adjacent to a Steiner point si) and s; and vj as siblings. 
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This reverse approach is practical only if the number of existing FSTs is small 
so that no excessive storage is required and the number of unions of these FSTS 
is manageable. Winter's simulation results showed that this is indeed the case. In 
fact, he stated that the number of FSTs never exceeded 100 in his experiments 
of up to 20 terminals. Computation time was less than 30 seconds (a UNIVAC- 
1100 computer was used) for all randomly generated sets of up to 15 terminals. 
For n 2 15, the computation time needed to extract the STs from stored FSTs 
dominated that for the FST construction. 

Cockayne and Hewgill [5] coded the GEOSTEINER algorithm into a version 
which they called EDSTEINER86. They used the decomposition theorems to re- 
duce the size of the problem, and introduced an incompatibility matrix for stored 
FSTs to speed up the union-forming stage. This brought up the solvable range 
to n 5 17, and also the time spent in FST construction now dominated. More 
recently Cockayne and Hewgill [6] developed a new version called EDSTEINER89. 
In this work they claimed that it is the prohibitive time spent in SMT extraction 
for n > 17 which prevents EDSTEINER86 to go further. They devised a better 
incompatibility matrix to overcome this problem and reported a solvable range of 
n 5 32. Again, the time spent in FST construction dominated. However, for larger 
problems up to 100-point sets and a 20-hour cutoff time, they found all unfinished 
problems stuck at the SMT-extraction stage. Finally, they ran a hundred 100- 
terminal problems and found that 77 of them completed in a 12-hour cutoff time. 
Again, the FST construction dominated in time on these completed problems. 

2.7 The Negative Edge Algorithm 

Trietsch and Hwang [15] observed that every topology on N belongs to a D s ( F )  for 
some full topology F .  Furthermore there exists a unique ST of D s ( F ) .  Therefore, 
one approach to find an SMT is to find the ST of D s ( F )  for every F and select a 
shortest ST. The core of such an approach is an algorithm to find the ST of Ds ( F )  
for a given F .  Trietsch and Hwang proposed the negative edge algorithm along this 
line. 

Referring back to Section 2.1, let [c,  d] be an edge of a partially constructed tree 
T such that d is generated in the merging stage by replacing two terminal points 
a and 6 .  Suppose that [c,d] does not intersect the 120' arc ab internally. Then 
the Melzak FST algorithm ends with no ST constructed. This can happen in two 
ways. The first case is that c lies inside the circle C circumscribing the three points 
a ,  b and d .  The second case is that [c,  d] intersects C at a point s outside of the 
120" arc ab, where s can be a or b or d .  In the first case we extend [c,d] to meet 
the 120' arc ab at s. (By the Hwang linear variant, c and d must lie on opposite 
sides of ab; hence s must lie on the 120' arc ab.) In either case s will be called a 
complementa y point. The three edges at s from vertices a ,  b ,  c form two 60' angles 
(see Fig. 2.4). The middle edge is referred to as a negative edge and its length is 
treated as negative. 

By substituting a complementary point for a nonexistent Steiner point, the 
Melzak FST algorithm always yields an interconnecting tree, which will be called a 
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d b 

Figure 2.4: Complementary point and negative edge 

complementary tree.  The total length of a complementary tree, with some lengths 
negative, is known as its complementary target value. 

Whenever the Melzak FST algorithm yields a complementary tree, then an FST 
does not exist for the given full topology F .  However, the S T  of D s ( F )  may exist. 
The following procedure catches this ST by shrinking negative edges. 

Consider a generated complementary tree. A first thought might be to get rid of 
all negative edges altogether. However, this operation will not yield an ST as there 
are examples that shrinking negative edges can turn some positive edges negative. 
There is no proof that repeating the operation will arrive at an ST. 

Trietsch and Hwang proposed an algorithm, called the negative edge algorithm, 
which shrinks one negative edge at a time, and always a longest one. The algorithm 
starts by applying the Melzak FST algorithm to yield a complementary tree. If the 
tree contains no negative edge, the algorithm stops and the ST is obtained. If the 
longest negative edge is between two complementary points, then this topology can 
be discarded since shrinking this negative edge will create a point of degree four. 
Therefore it suffices to consider the case that there exists a longest negative edge 
between a terminal and a Steiner point s. The algorithm shrinks this longest 
negative edge. This implies a partition of the original full Steiner topology F into 
two full subtopologies at v. The negative edge algorithm now applies to these two 
subtopologies. Suppose that two STs are generated for these two subtopologies. 
The algorithm then inspects whether the two edges at  v meet at an angle at  least 
120O. If it does, then the ST of D s ( F )  is found. If not, then a Steiner point has 
to be reintroduced to v ,  i.e., v is split. The Melzak FST algorithm now applies to 
the full component containing v, and if any negative edges emerge, the algorithm 
runs another iteration again. 

I t  seems that the negative edge algorithm may run in looping. However, Trietsch 
and Hwang proved that the complementary target value is increasing at every 
iteration and hence looping cannot occur. Since the number of complementary 
trees is finite, the algorithm has to end and the output tree contains no negative 
edge (otherwise, the target value can be further increased). Thus 

Theorem 2.6 T h e  negative edge algorithm is finite.  
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Unfortunately, there is no proof that the algorithm stops in polynomial time. 

2.8 The Luminary Algorithm 
The algorithms reported in Section 2.7 and in this section have the same goal of 
constructing the unique ST of D s ( F ) .  However, they achieve that goal with very 
different philosophy. The negative edge algorithm uses the Melzak FST algorithm 
to generate an interconnecting tree, either an FST or a complementary tree, and 
then tries to fix the problem of negative edges if they appear. The luminary algo- 
rithm, proposed by Hwang and Weng [12], takes full care during the construction 
process to  make sure that the output is the unique ST of D s ( F ) ,  with no post- 
processing. While constructing a tree T ,  a track denotes a line which may contain 
an edge of T.  The Melzak FST algorithm retains every track of the FST of F 
until proven wrong during the merging stage. Similarly, the luminary algorithm 
retains every track of the ST of D s ( F )  until proven wrong during its merging stage. 
However, since that ST can assume any topology in D s ( F )  at the beginning, the 
luminary algorithm has to carry many more tracks. Such a track is called a ray 
since it has an orientation during construction. An object which radiates rays is 
called a luminary. 

The luminary algorithm has merging and reconstruction stages similar to the 
Melzak FST algorithm. Except that in the Melzak FST algorithm the basic units 
of the merging operations are terminal points; in the luminary algorithm, they are 
luminaries. While a luminary is much more complicated than a terminal point, 
the luminaries appearing in the algorithm are of special types which form a closed 
system. 

The luminary algorithm takes a full Steiner topology F as input and yields the 
unique Steiner tree T of D s ( F ) ,  if it exists, as output. Since the construction of 
T for n = 2 is trivial and for n = 3 is the same as the Melzak algorithm, assume 
n 2 4 from now on. 

The merging stage consists of n - 2 steps. At each step two adjacent luminaries 
are merged into a new luminary which consists of all rays consistent (with respect 
to the angle condition) with a pair of rays from the two merging luminaries (if 
no new luminary is generated, then T does not exist). Typically two rays meet 
at  a 120' angle generates a third ray rooted at the intersection point and moving 
away a t  a 120' angle from each of the two rays (Fig. 2.5a). The intersection point 
and the three tracks of the three rays of course correspond to a potential Steiner 
point with its three edges. A ray can also hit a terminal and generate a set of 
rays spanning a 120' angle all rooted at the terminals and at  least 120' apart from 
the generating ray (see Fig. 2.5b). This type of merging takes care of the nonfull 
topologies where a terminal is of degree two, and occasionally, of degree three. In 
the latter case, the three edges of the degree-3 terminal are the generating ray and 
the two boundary rays of the generated set. There are also other types of merges 
to take care of degree-3 terminals. 

Each luminary is identified with a vertex along with one of its edges in F and 
two luminaries are adjacent a t  s if the edges they are identified with are incident 
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Figure 2.5: Two types of merge 

to the same Steiner point. At the beginning, the set of luminaries consists of the 
terminals (with their edges) which radiate rays in 360' (meaning every direction 
is a track). Whenever two luminaries are merged, the new luminary generated is 
identified with the third edge at s. Figure 2.6 shows the merging of two terminals. 
The new luminary again has rays in 360°, including two 120' sets of rays each 
rooted a t  one of the two terminals. 

The reconstruction stage starts when only two luminaries L and L' remain. 
Since there are 2n  - 1 edges to start with and each merging step retires two edges, 
the two remaining luminaries must be identified with the same edge, but from 
different ends. Therefore T exists if and only if L and L' have an opposing pair of 
rays r E L and r' E L' running into each other from opposite directions. If such a 
pair exists, the reconstruction proceeds by tracing the rays which generate r and 
T ' ,  then tracing the rays which generate these rays, and doing this recursively until 
all terminal points are traced. All the ray segments traced during this process, 
including r and r', constitute the edge-set of T .  

It can be shown that merging two luminaries of the special type takes O(n)  
time. Since there are n - 2 merging steps, the merging stage takes O(n2)  time. It 
can also be shown that it takes a t  most O(n2)  time to find an opposing pair, if 
it exists, for two given luminaries. Thus the first step of the reconstruction stage 
takes O(n2)  time. Finally, the remaining reconstruction stage operates exactly in 
the same way as in the Melzak FST algorithm and takes O(n)'time. Thus it is 
shown: 

Theorem 2.7 ([12]) The luminary algorithm requires O(n2)  time to output the 
unique ST of Ds(F), i f  it exists. 
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Chapter 3 

The S t einer Ratio 

A spanning tree  for a given set N of n terminals is a tree interconnecting N using 
only edges [ p i , p j ]  where pi and p j  are in N .  A shortest spanning tree is called 
a minimum spanning tree (MST). Figure 3.1 illustrates an MST and an SMT for 
N = {the three corners of an equilateral triangle}. 

Figure 3.1: An MST and an SMT for three corners of an equilateral triangle 

Let IE( denote the total length of a set E of edges. Clearly, 

for all N since the former is chosen from a family of trees which includes the 
subfamily of spanning trees. 

While constructing an SMT(N) for general N is an NP-hard problem as shown 
in Chapter 1, there exists an O(n log n)  time algorithm [18] to construct MST(N). 
Therefore, an MST can be used as a heuristic of SMT. The question is how good 
is this heuristic. If N is the set of three corners in Fig. 3.1, then it is easily verified 
that 

37 
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Is this a typical ratio? In fact Gilbert and Pollak [ll] did many simulations and 
never found a ratio smaller than d / 2 ,  Define the Steiner ratio 

p = inf p (  N )  
N 

They conjectured in 1968 that  p = &/2. 

Since many heuristics of SMT are based on improving an MST, their perfor- 
mances are also closely related to  the Steiner ratio. Thus the determination of 
the Steiner ratio has some practical interests. This problem has also turned out 
t o  be a real intellectual challenge with a $500 cash award placed on it by R. L. 
Graham. Clever techniques have been developed to  prove the conjecture for special 
classes of N ,  or to  obtain lower bounds for p .  However, regardless of how clever the 
techniques are in reducing the computation load, the computation load seems to  
overwhelm the techniques whenever a larger class of N is attempted. Thus it was a 
real surprise when a proof for the general conjecture finally emerged which required 
essentially no computation. Because the proof does not depend on computations 
specific to  the Euclidean plane, it is felt that the proof technique will be useful to  
other Steiner problems, and possibly to general minimax problems (see Section 3.4 
for elaboration). 

It is clear that it suffices to prove p 2 &/2 as the example in Fig. 3.1 has proved 
the other direction of the inequality. Furthermore, to prove any lower bound B 
of p ,  it suffices to  prove it for FSTs since if p 2 B holds for all full component 
subtrees, p 2 B holds for their union. 

3.1 Lower Bounds of p 

The first lower bound p > 1/2 was given by Beardwood, Halton and Hammersley 
[l]. Let S denote an FST and T an MST. The polygon obtained by connecting every 
pair of consecutive terminals on the circumference of S by a straight line is called 
the characterist ic polygon of S. Each terminal appears once on the characteristic 
polygon. The deletion of any edge yields a spanning tree whose length is strictly 
less than the perimeter of the polygon, which is at most twice ISI. If S is not 
full, the union of the characteristic polygons on the full subtrees of S is called a 
characterist ic area. Deleting one edge from each characteristic polygon yields a 
spanning tree that is wanted. 

One popular approach to prove a lower bound B is to  inspect a local structure 
(a subgraph) of a full SMT, and to  show that terminals in this subgraph can 
be directly connected by edges whose total length does not increase by a factor 
more than B. The induction hypothesis that B holds for smaller sets of points 
is applied to  the remaining tree, and a proper union of the two trees draws the 
desired conclusion. Graham and Hwang [12] first applied this line of argument to 
the following local structure (see Fig. 3.2): 

Without loss of generality, assume that la,sl 2 Ib,sI (where we use la,b1 to 
represent the edge length I[a, bll). Then it is easily verified that la, sl/ la,  b l >  l/d. 
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Figure 3.2: A local structure 

Let S’ be an SMT and T’ an MST for the point set N \ {a}. Then 

by induction on n (the n = 3 case follows from the first result reported in Sec- 
tion 3.2). 

Chung and Hwang [4] looked into a 5-edge local structure and improved the 
bound to .743. Du and Hwang [5] did a more careful analysis to obtain a bound 
of .8. Finally, Chung and Graham [3] did a very detailed analysis and enlisted 
help from the symbolic computation system MAXIMA to wrestle a bound of 324. 
Further improvements on the bound are perhaps possible by considering larger 
local structures and doing more thorough analyses. However, the marginal return 
is decreasing and it is likely that 4 1 2  target can be approached, but not reached 
after all. 

Although the Steiner ratio conjecture was not proved by this line of attack, it 
may still be worthwhile to learn since it could be useful for a similar problem in a 
different metric or a higher dimension. 

3.2 The Small n Case 

Consider the conjecture for n 5 k, where k 3 3 is a given integer. For k = 3 
Gilbert and Pollak [ll] gave the following simple proof: 

Let a, b, c be three terminals with an SMT S = [a, s] U [b,  s] U [c, 4. Without loss 
of generality, assume that [a,$] is not longer than the other two edges. If s = a, 
then S = T (an MST) and the conjecture is trivially true. So assume that s # a. 
Let b’ (c’) be a point on [b ,  s] ( [ c ,  s]) such that lb’, sI = (a, sI ( Id,  sI = la, sl); see 
Fig. 3.3. 
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Figure 3.3: A 3-point SMT 

By noting that (a ,  b’, c’) forms an equilateral triangle, we have 

Pollak [13] proved the conjecture for k = 4. He considered various patterns of 
an MST on four terminals and showed that for each pattern there exists an SMT 
satisfying the 4 / 2  ratio. The difficulty of applying this approach to larger k is 
that it is difficult to identify an SMT for a given pattern. Therefore, it is often 
necessary to consider several subcases and prove the d / 2  ratio for each. This 
necessity to branch makes the total number of cases needed to be studied grows 
very fast. 

Du, Yao and Hwang [9] used a different approach which classifies an SMT 
into patterns according to some angle conditions. For each pattern they showed a 
spanning tree satisfying the f i / 2  ratio (thus an MST will also satisfy the ratio). 
For k = 4 there are only four patterns without subcases, the proof was simple and 
short. They [8] were able to extend this approach to prove the conjecture for k = 5. 
However, there are about 25 patterns to verify and the proof was published with 
many details left out. 

Three other proofs for the case k = 5 have subsequently been given. Booth [2] 
gave a proof similar to the proof in [8] except taking advantage of the length formula 
of Theorem 1.4. Friedel and Widmayer [lo] used an idea similar to the variational 
approach independently derived by Rubinstein and Thomas (who gave the third 
proof) which is the theme of the next section. 
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3.3 The Variational Approach 

The material of this section is drawn from Rubinstein and Thomas [14]. Let F be 
a full Steiner topology for N ,  so that F has 2n - 3 edges. A tree whose topology 
is in D s ( F )  can be specified by a set Y = {yl, . . . , y2,,-3} where yi is the length of 
edge i. Since the variational approach is used to  prove results which do not depend 
on scaling, it is assumed that 

2n-3 

i = l  

The (272 - 4)-dimensional simplex 

2n-3 

A ( F )  = {Y = {y l ,  . . ., yzn-3} : yi = 1 , yi 2. 0 for all i )  
i=l 

is called a configuration space. An element Y E A ( F )  is called a configuration. 
Consider a configuration Y in A ( F ) .  Let V be a vector at Y. Define T to  be an 

MST for Y such that T(h) ,  which has the same topology as T ,  is also an MST for 
Y + hV for h sufficiently small. Let S be an SMT for Y with topology in D s ( F ) .  
Then p(V) = Ls(V)/LT(V) is continuous and differentiable in any direction of V 
at Y, where Ls  and LT are the lengths of the respective trees. For a function f 
let f’ denote the first derivative o f f .  

LT( v )L$(v )  - LS( v)Lk(v) 
L W )  P’(V) = 

It follows that 

Theorem 3.1 Suppose that Lk(V) < 0 .  Then 

Suppose that L k ( V )  > 0. Then 

Theorem 3.1 can be used to attack the Steiner ratio conjecture in the following 
way. Suppose that a configuration Y achieves the minimum p at a value less than 
4 / 2 .  To establish a contradiction, it suffices to seek a vector V at Y such that 
Lk(V) < 0 but LL(V)/Lk(V) 2 4 / 2  > p,  since from Theorem 3.1, p’(V) < 0 
and p cannot be a minimum. 
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Therefore the crux of a proof is to find for every topology a vector which shrinks 
S a t  a rate at least 8 / 2  times the shrinking rate of T. Note that whether the 
shrunk S is an SMT is not of concern, since if it is not, then p would be even 
smaller (strengthening the contradiction). Also, note that if two topologies differ 
only in the labeling of terminals, then they can be represented by configurations 
in the same A(F). Thus there is only one F to be concerned for n = 4 or 5,  and 
three for n = 6. Of course, the choice of V may depend on the geometry of the 
terminals and subcases have to  be treated. Rubinstein and Thomas demonstrated 
the effectiveness of their approach by giving a fairly simple proof of the Steiner 
ratio conjecture for k = 5 [14], and by then doing k = 6, which had not been 
previously solved [15]. They [16] also proved that the Steiner ratio conjecture holds 
for cocircular points. Later, they [17] sharpened the technique by considering the 
second derivative of p, and used that to prove a long-standing conjecture of Graham 
(see Section 5.1). 

3.4 The Steiner Ratio Conjecture as a Maximin 
Problem 

The results in this and the next two sections were obtained by Du and Hwang [6,7]. 

Let Y E A ( F )  be defined as in the last section and let P ( F , Y )  denote the set 
of terminals corresponding to F and Y .  Let G(F,  Y )  denote a spanning tree on 
P ( F ,  Y) with topology G. Define 

L(F ,  Y) = m$ IG(F, Y)I 

Since IG(F,Y)I is continuous in Y ,  so is L(F,Y).  Define 

L ( F )  = max L ( F , Y )  
Y € A ( F )  

Since there are only finitely many F, there exists a F' such that 

L ( F * )  = maxL(F) = max minlG(F,Y)I 
F P ( F , Y )  G 

A point set P (  F,  Y )  achieving the maximum will be called a maximum point. When 
F is understood, then Y will be referred to as a maximum point. By a previous 
comment, it suffices to prove the Steiner ratio conjecture for full SMTs. A max- 
imum point is interior if all its edge lengths are positive. Since the length of an 
SMT is unity by definition, it follows: 

Lemma 3.1 Suppose that a full Steiner topology F' exists for P ( F ' , Y ) .  Then 
proving the Steiner ratio conjecture is equivalent t o  proving 
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An important property of the above maximin problem is that 

Lemma 3.2 IG(F,Y)I is convex in Y .  

Proof: Suppose that two terminals a and b are connected in F through a path p .  
Let I denote the index set of edges in p .  Then 

where ei is the unit vector in the direction of the edge i. Hence the length of an 
edge is a convex function of yi, and IG(F, Y ) l ,  a sum of convex functions, is also 
convex. 0 

Let M ( F ,  Y )  denote the set of spanning tree topologies G such that G(F,  Y )  
is an MST for P ( F , Y ) .  Using the finiteness of the number of G, a continuity 
argument shows 

Lemma 3.3 For every Y there is a neighborhood of Y such that M ( F , X )  C 
M ( F ,  Y )  for  every X in that neighborhood. 

Lemmas 3.2 and 3.3 lead to the following crucial result. 

Lemma 3.4 Suppose that P ( F * , Y )  is an interior maximum point and that X is 
a point in A ( F * )  satisfying M ( F * , Y )  Then P ( F * , X )  is also a 
matimum point. 

Proof: For any G in M ( F * , Y ) ,  define A ( G )  = (2 E A(F*') : IG(F*,Z)I 5 
L ( F * , Y ) } .  By Lemma 3.2, A ( G )  is a convex region. Note that the union of all 
A(G)  for G E M ( F * ,  Y )  covers a neighborhood of Y ;  for otherwise, configuration 
Z can be found in every neighborhood of Y such that for every G E M ( F * ,  Y ) ,  

M ( F * , X ) .  

IG(F*,Z)I > L ( F * , Y )  

In particular, 

L (F* ,Z)  = min(JG(F*,Z)I : G E M ( F * , Z ) }  > L ( F * )  

since by Lemma 3.3, 

G E M ( F * , Z )  G E M ( F * , Y )  

for 2 sufficiently close to Y .  Thus there exists a Z in A ( F * )  such that L(F* ,  2)  > 
L(F*,  Y ) ,  contradicting the assumption that P(F* ,  Y )  is a maximum point. 

Suppose to the contrary that P ( F * ,  X )  is not a maximumpoint, i.e., L(F* ,  X )  < 
L(F*) .  Since M ( F * ,  Y )  c M ( F * ,  X ) ,  

)G(F*,X)I  = L ( F * , X )  < L ( F * , Y )  
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or 

for every G E M ( F * , Y ) .  Suppose that the configuration Z, 3 Y + c(Y - X) for 
s a n e  positive c is in A(G). Then Y = XX+(l-X)Z,,  where 0 < X = c/( l+c)  < 1. 
Hence Y is an interior point of the segment [X, Z,]. By Lemma 3.2, 

X E A(G) 

IG(F*,Y)/ 5 XIG(F*,X)I +(l-X)IG(F*izc)I  < L ( F * , Y )  

contradicting the definition of L ( F * , Y ) .  Therefore for all c > 0, Zc is not in A(G)  
for every G E M ( F * , Y ) ,  contradicting what was shown earlier, that the union of 

0 these A(G)  covers a neighborhood of Y .  

3.5 Critical Structures 

In Section 3.4 the Steiner ratio conjecture is transformed into a maximin problem 
and some important properties of the maximum point are derived. In this sec- 
tion these properties are translated back to the original geometric problem, and 
effectively used to restrict the geometry of the set of terminals. 

Let r ( F ,  Y )  denote the union of all MSTs for P ( F ,  Y ) .  Lemma 3.5 can be found 
in [10,14], and Lemma 3.6 in [14]. 

Lemma 3.5 I ' (F ,Y)  has n o  crossing edges. 

Let C(F,Y)  denote the convex hull of P ( F , Y ) .  Fkom Lemma 3.5 I ' (F ,Y)  
divides C(F,  Y )  into disjoint areas each of which is bounded by a polygon whose 
vertices are terminals. Such a polygon is called a polygon of J?(F,Y) ,  if it is a 
subgraph of I'(F, Y ) .  

Lemma 3.6 Every polygon of I ' (F ,Y)  has at least two equal longest edges. 

I ' (F ,Y )  is said to be critical if M ( F , Y )  is maximal, i.e., there does not exist 
X E A ( F )  such that M ( F ,  Y )  c M ( F ,  X).  Since the number of MST topologies is 
finite, the set of critical I' cannot be empty for any F .  Furthermore, if all maximum 
points are interior, then by Lemma 3.4 there must exist a maximum point which 
has a critical I'. Therefore it suffices to prove the conjecture for P(F ,  Y )  such that 
r ( F ,  Y )  is critical. Call an edge length independent if its only dependence on other 
edge lengths are through the triangle inequalities. 

Lemma 3.7 Suppose that all edges in any triangulation of C ( F * , Y )  are indepen- 
dent and all maximum points are interior. Then I ' ( F * , Y )  i s  critical only if it 
partitions C(F*,  Y )  into exactly n - 2 equilateral triangles. 

Proof: It suffices to prove that I '(F*, Y) cannot be critical if one of the following 
occurs: 

(i) I ' (F* ,Y )  has a free edge ,  an edge not on any polygon of I'. 

(ii) I'(F*, Y )  has a polygon of more than three edges. 
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(iii) I '(F*, Y) has a nonequilateral triangle. 

First, assume that I ' (F* ,Y )  has a free edge e. Embedding I ' (F* ,Y)  into a 
triangulation R of C ( F * ,  Y )  and let e be a side of a triangle t .  Consider an MST 
T containing e. Since e is free, at  least one of the two other sides of t is not 
in R. Let e' be such a side so that replacing e by e' in T results in another 
spanning tree. Clearly, Jel < jell. By the assumption of independent edges, it is 
possible to  decrease le'l while holding all other edge lengths constant in R. Let 
1 denote the length of the shrinking e' from l(e') to I ( e ) .  Let P(1) denote the 
set of terminals corresponding to 1. Then P(l(e'))  = P ( F * , Y ) .  Consider the 
set L of all 1 E [ l (e ) ,  l(e')] satisfying the condition that P(I) = P ( F * , X )  for a 
maximum point X. Since the set of maximum points is a closed set and contains 
the point Y, the set L is nonempty and closed. Therefore, there exists a minimal 
element I* in L.  Let P(l*)  P ( F * , X ) .  Since both X and Y are maximum 
points, the length of an MST for P ( F * , X )  equals that for P ( F * , Y ) .  Therefore 
any MST at P ( F * , Y )  is an MST at P ( F * , X ) .  It follows M ( F * , Y )  E M ( F * , X ) .  
If the equality holds, then I* > l ( e )  since when I* = l ( e ) ,  dropping e and adding 
e' would yield one more MST. By the assumption that all maximum points are 
internal, there exists a neighborhood of X such that if Z is a configuration in that 
neighborhood, F* still exists for P(F*,  Z ) .  Z can always be chosen close enough 
to X such that Lemma 3.3 applies and M ( F * , Z )  M ( F * , X ) .  Note that for 
G,G' E M ( F * , X ) ,  IG(F*,Z)I = IG'(F*,Z)I since all edge lengths in R except 
le'l remain unchanged. Therefore if any G E M ( F * , X )  is in M ( F * , Z ) ,  then 
every G E M ( F * , X )  is in M ( F * , Z ) .  Since M ( F * , Z )  is nonempty, there exists 
a G belonging to  both M ( F * , Z )  and M ( F * , X ) .  Hence M ( F * , X )  = M ( F * , Z ) .  
Furthermore] M ( F * , Z )  = M ( F * , X )  = M ( F " , Y )  implies that e' is not in any 
MST in M ( F * , Z ) .  Hence L ( F * , Z )  = L ( F * , X )  = L ( F * , Y ) .  Note that although 
F* exists on 2, P ( F * ,  Z )  is not necessarily in A ( F * )  as yi does not have to 
be one. But there always exists a positive number h such that hZ E A ( F * ) .  Since 
M ( F * ,  h Z )  = M ( F * ,  2) = M ( F * , X ) ,  hZ is a maximum point by Lemma 3.4. 
Hence L ( F * , X )  = L ( F * , h Z )  = h L ( F * , Z )  = h L ( F * , X ) .  It  follows that h = 1 and 
P ( F * ,  Z )  E A(F*), i.e., Z is also a maximum point, contradicting the assumption 
that X is the minimal element in L.  

The two other cases are proved by analogous arguments. For case (ii), the ope- 
ration is to decrease the length of an edge not in I ' (F*,Y) .  For case (iii), excluding 
cases (i) and (ii), I '(F*, Y) is a triangulation consisting of isosceles triangles. The 
operation is to decrease the length of all shortest edges in r ( F * ,  Y )  uniformly. 0 

2fl-3 

3.6 A Proof of the Steiner Ratio Conjecture 
Lemma 3.7 says that the validity of the Steiner ratio conjecture depends only on 
whether it holds for n points consisting of n - 2 equilateral triangles. This is 
a tremendous reduction of the original problem and indeed, an elegant solution 
exists for the reduced problem. However, this simplification is possible only if the 
assumptions of independent edges and interior maximal points are valid. Fig. 3.4 
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gives an example that edges in a triangulation are not independent (the lengths of 
any five edges determine the sixth length). 

Figure 3.4: Dependent edges 

Note that if all terminals lie on the boundary of a triangulation, then the edges 
are independent. To see this, order the triangles into a sequence and construct 
the triangles in order of that sequence. Since every triangle to be added to the 
sequence in construction has only one of its side fixed, the other two sides can take 
any length as long as the triangle inequality is satisfied. This shows that any set 
of independent edges can be realized. 

The concept of “inner spanning tree” is to be introduced to assure that any 
triangulation has all terminals on its boundary. Let S denote an FST. A cha- 
racteristic polygon is viewed as drawn on a spiral surface so it is always simple 
with no crossing lines (see Fig. 3.5). Note that all terminals lie on the boundary 
of a characteristic polygon. A spanning tree is called inner if it lies inside of the 
characteristic polygon of S. 

Figure 3.5: A spiral characteristic polygon 

The case that the ST on P( F ,  Y )  itself has crossing edges is not considered here. 
That case was dealt with in [6] by deleting these points corresponding to crossing 
STs from A ( F ) .  A possible alternative treatment is to define the characteristic 
polygon on a more sophisticate surface than the spiral one. 
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Lemmas 3.2-3.6 remain true if only inner spanning trees are considered, except 
proofs are messier in general (see [6] for details). Also note that for the inner 
spanning case, Lemma 3.3 implies that there is a neighborhood of X such that for 
Y in the neighborhood, 

L ( F , Y )  = min JG(F,Y)I 
G E M ( F , X )  

Therefore L(F,  X )  is continuous at  X. We now prove the Steiner ratio conjecture 
with MST replaced by minimum inner spanning tree. Note that this is a stronger 
result than the original conjecture. 

Theorem 3.2 The  rat io  of the lengths of a n  SMT and a m i n i m u m  inner  spanning 
tree i s  at  least &/2. 

Proof: Suppose that Theorem 3.2 is not true. Then there exists a smallest n (2 4) 
such that Theorem 3.2 is not true for a set of n terminals. First, it will be shown 
that all maximum points are interior. 

For an arbitrary point set P ( F , X ) ,  let S ( F , X )  denote the ST, if it exists, 
for P ( F , X ) .  Suppose to  the contrary there exists a maximum point X *  on the 
boundary of A ( F ) ,  that is S ( F , X * )  have some shrunk edges. Then L ( X * )  = 
L ( F , X * )  > 2 / 4 .  If there exists a shrunk edge incident to a terminal, then 
S(F,  X * )  can be decomposed into smaller STs each having fewer than n points. By 
the inductive assumption Theorem 3.2 holds for these STs. Since the union of the 
inner spanning trees for these smaller STs is an inner spanning tree for P ( F ,  X * ) ,  
L(F,  X * )  5 2/&, a contradiction to the assumption that X *  is a maximum point. 

Therefore every shrunk edge is between two Steiner points. In this case it is easy 
to find a full topology F’, called a companion of F ,  which satisfies the following 
two conditions (Fig. 3.6): 

(i) F and F’ have the same circumferential order. 

(ii) There is a tree T interconnecting the n terminals in P(F,  X*) with topology 
F’ and IT1 < IS (F ,X*) ( .  

F S (F ,  x* 1 F‘ 

Figure 3.6: A companion topology 

Suppose that the ST  of topology F’ for P ( F ,  X * )  exists. Then there exists a 
point Y in the 2n-4 dimensional simplex such that P ( P ,  Y )  = P(F,  X ) .  However, 
Y $ A(F’)  since 

IS(F’,Y)I I IT1 < IS(F,X*)I 
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1 
Define 

I S(F‘, y 1 I h =  

and note h > 1. Since S(F’ ,hY)  is similar to S(F’,Y) ,  L(F’ ,hY)  = hL(F’ ,Y ) .  
Furthermore, since F and F‘ have the same circumferential order, they have the 
same characteristic area and the same set of inner spanning trees. Thus 

L(F’,  hY)  = hL(F’, Y )  = hL(F,  X * )  > L ( F ,  X * )  

contradicting the assumption that X’ is a maximum point as hY E A(F’). 
Next consider the case that the ST of topology F’ for P ( F ,  X * )  does not exist. 

Then S(F’, Y )  is not defined and the above argument needs modification. Expand 
the definition of A(F) to A ( F )  such that a point in A ( F )  not only specifies the 
edge lengths, but also the angles at  the Steiner points (thus a point in A ( F )  does 
not necessarily correspond to  an ST). The L functions will be replaced by the L 
functions whenever A is the underlying field. Then by an argument similar to the 
L case, it can be shown that z ( F ’ )  > L ( F ) .  

Let T ( F ’ , Y )  denote a tree with length L(F’).  Then T(F’,Y)  is not an FST. 
Thus either Y has a shrunk edge incident to a terminal, or there exists an angle A 
less than 120’. In the former case, a smaller counterexample can be obtained by 
decomposing T ( F ’ , Y )  to smaller FSTs, contradicting the definition of n. In the 
latter case, at  least one side of A must shrink, or T(F‘ ,  Y )  can be shorter without 
changing the topology. Since one may assume that the former case does not occur, 
the shrunk side must be an edge between two Steiner points. Thus there exists a 
companion F” of F’ such that L(F”) > L ( F ) .  

Repeating this argument, one obtains infinitely many companions of F ,  contra- 
dicting the fact that the number should be finite. Therefore, all maximum points 
are interior. 

Finally, consider a set N of n terminals forming n - 2 equilateral triangles. 
We quote the following lemma from [6] which is of some interest itself. Recall the 
definition of hexagonal tree from Section 2.3. 

Lemma 3.8 Let P be a set of lattice points on a triangular lattice (with equilateral 
triangles) which defines an system of axes. There exists a minimum hexagonal tree 
whose junctions are all lattice points. 

Clearly, the length of a minimum inner spanning tree for P equals to L H ( P ) ,  
the length of a minimum hexagonal tree. By Theorem 2.3, Ls(P)  2 ( v ‘ 3 / 2 ) L ~ ( P ) .  
Theorem 3.2 is proved. 0 

Corollary 3.1 p = a / 2 .  
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Chapter 4 

Heuristics 

Since the ESP is known to be NP-hard, it is important to  derive effective heuristics 
to solve for general cases. By an effective heuristic we mean an algorithm which 
can run in time proportional to a low-degree polynomial of n, and whose output 
tree length does not exceed that of an SMT by a great deal. 

Such a heuristic tree is readily available in the form of an MST, where an 
O(n1ogn) algorithm exists and whose length does not exceed that of an SMT by 
at most a factor of 2 / 4  - 1 Z 15.5% (the average excessive length is, of course, 
smaller). Therefore, the MST naturally becomes the standard, against which other 
heuristics arg compared. 

In this chapter we will report several heuristics proposed in the literature. In 
the first three sections the heuristics either improve on a given MST, or emulate a 
given MST algorithm. A simulated annealing algorithm is given in Section 4.4 and a 
probabilistic algorithm is given in the following section. Section 4.6 gives a simple 
but easily analyzed heuristic. An effective reduction to the Steiner problem in 
networks, discussed in Part 11, is found in Section 4.7. Section 4.8 briefly introduces 
an important heuristic that is treated in Part IV. 

For a heuristic H define the performance ratio 

Although most of the proposed heuristics have better average performance than 
the MST, no rigorous proof has existed to  show any of them has a guaranteed 
performance ratio better than the Steiner ratio until very recently, a heuristic by 
Du, Zhang and Feng [6] broke the barrier. A task that needs to  be the subject of 
future research is a thorough comparison of the performance of these heuristics, if 
not analytically, then at least experimentally. 

51 
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4.1 Minimal Spanning Trees 

Graham and Hell [9] gave a complete accounting of the history of the MST problem 
on which we base our discussion. The MST was first proposed by Boruvka [3] for the 
layout of a power-line network. His algorithm can be described as follows: Consider 
a graph with n terminals and e weighted edges. Connect each terminal with its 
nearest neighbor. Suppose that c connected components are formed through such 
connections. Define the distance between two components as the length of the 
shortest edge between two terminals, one in each component. If c > 1 treat each 
component as a terminal and repeat the procedure. Kruskal [15] gave the following 
variation: Sequentially choose the shortest edge which does not form a loop with 
edges already chosen until n - 1 edges are chosen. A third variation was first 
proposed by Jarnik [ll], but typically attributed to  Prim [17]: Grow a component, 
which initially consists of a single terminal, by sequentially adding the shortest edge 
connecting a terminal not in the component with a terminal in the component. It 
has been shown (see [9]) that Kruskal’s and Prim’s algorithms can be implemented 
in O(e log n )  time, while Boruvka’s aigorithm requires O(e log log n)  time. The 
weights of edges are assumed to be different in the last algorithm to avoid cycles. 

For a complete graph, it seems that one cannot avoid to inspect the e = O(n2)  
edges to find an MST. However, when the terminals are embedded in the Euclidean 
plane and the weight of an edge is the Euclidean distance, one can use the geomet- 
ric properties to  devise an O(n log n)  algorithm. These geometric properties are 
characterized by the concept of a Voronoi diagram. A Voronoi diagram for a given 
set N = { P I , .  . . , p n }  of terminals is a partition of the plane into closed or open 
areas V1, . . . , Vn such that pi  E vi for each p i ,  and any point p E vi is closer to pi 
than to any other p j  (points on the boundary of and 5 are equidistant to pi and 
pj). The graph on N with an edge ( p i ,  p j )  if vi and vj share a common side is called 
a Delaunay triangulation. Shamos and Hoey [19] gave an O(n1ogn) algorithm for 
constructing a Voronoi diagram and also showed that an MST is a subgraph of the 
Delaunay triangulation. Since the Delaunay triangulation is planar, it has at most 
O(n)  edges. Thus an MST can be constructed from the Voronoi diagram in O(n) 
time by the Cheriton and Tarjan algorithm [5]. 

Theorem 4.1 There exists an O(n1ogn) algorithm to construct an MST.  

Gilbert [S] studied the average performance of an MST. He proved 

Theorem 4.2 For n terminals randomly scattered in a region of area A ,  the ex- 
pected length of an M S T  is less than a. 

From experimental results, Gilbert observed that the expected length is more 
likely to be .68f i .  

4.2 Improving the MST 

Chang [4] and Thompson [23] independently first came up with the idea of adding 
Steiner points to an MST to obtain a better heuristic SMT. Thompson suggested 
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a simple modification of an MST by inserting sequentially a Steiner point between 
any two edges meeting at an angle less than 120°. (A similar suggestion was  also 
made by Korhonen [14] later.) 

Chang suggested the following more elaborate scheme: Let T be the tree under 
construction. At the beginning T is the MST and a t  the end it is the output 
heuristic tree. A full component of T is a subtree with a full topology. At each 
step an ST TI on three vertices {z, y, z }  is constructed and the longest edge of T in 
any cycle of T U TI is deleted to form a new tree T*. Such a replacement is called 
a Steinerization, and takes place only when it reduces the length of T.  The triple 
vertices {z, y, z }  is chosen from the following set P to  maximize IT1 - IT*I, where 
P includes triples satisfying one of the following conditions: 

(i) z, y, z are all terminals and belong to distinct full components. 

(ii) Terminals 2 and y belong to the same full component and z is a terminal in a 

(iii) z and y are Steiner points in different full components and z is a terminal adjacent 

Fig. 4.1 illustrates the three types of triples where a replaced edge is marked by 
two short bars. 

different full component. 

to both z and y. 

. .  
Y 2 X Y 

Figure 4.1: Three types of Steinerization 

These recursive steps end when no choice of {x ,y , z}  can lead to a positive 
IT1 - IT*I. Note that after at  most n - 2 recursive steps all vertices are in one 
component and no {z, y, z }  E P remains. The output tree of the recursive steps 
yields a topology on which we can then use the Melzak FST algorithm to  construct 
an ST. 

At each recursive step three vertices are chosen from O(n) vertices. Hence each 
recursive step requires O(n3) time and there are n - 2 recursive steps, Chang’s 
heuristic requires O(n4) time. Chang also gave experimental results which showed 
a typical saving of 3% over the MSTs. 

Smith, Lee and Liebman [20] gave a much faster heuristic by constructing 3- 
point and 4-point STs. The 3-point and 4-point subsets are chosen from the vertices 
of triangles or two adjacent triangles of the Delaunay triangulation using the fol- 
lowing rules: 

1. Construct the Delaunay triangulation and an MST on it. Call two triangles 

2. Place all triangles with two edges in the MST in a priority queue Q .  

adjacent if they share an edge. 
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3. Define the distance between two adjacent triangles as the distance between 
the two circumcenters (the line segment connecting the two circumcenters is 
a Voronoi edge). For each t E Q, check its adjacent triangle t‘ to see whether 
t‘ has an MST edge and t Ut’ is a convex quadrilateral. If there are more than 
one such t’, take the closest one. Construct a 4-point SMT on the vertices of 
t Ut’. 

4. If no t’ formed a convex quadrilateral with t in the above step then construct 
a 3-point SMT on the vertices of t .  

5.  After Q is exhausted, concatenate the 3-point and 4-point SMTs into a heuris- 
tic SMT for N by a disjoint-set-union procedure (to avoid cycles). The con- 
catenation procedure considers those 3-point and 4-point SMTs with small 
Steiner ratios first (to achieve a large reduction of length). 

Smith, Lee and Liebman showed that their heuristic can be implemented in 
O(n1ogn) time. The experimental results showed a slight drop in saving as com- 
pared to Chang’s heuristic. Beasley [2] proposed a heuristic which iteratively selects 
four connected vertices from the current MST which can be replaced by an ST with 
the largest improvement. The newly created Steiner points then join the vertex-set 
V and a new MST is constructed. The MST is Steinerized and a new iteration 
starts. Although convergence of the procedure was not proved, experimental results 
showed a reasonable convergence time. Beasley also gave the following comparisons 
on the improvement of various heuristics over the MST (# denotes the number of 
test problems). 

0 n I[ Beasley 1 Chang 1 Korh. I Sm-Lee-Lieb. 0 

Table 4.1: Improvements over the MST 

4.3 Greedy Trees 

Smith and Shor [21] recently suggested a variation of MST which they called greedy 
trees .  A greedy tree can be constructed by regarding the n terminals as a forest of 
R l-vertex trees and sequentially add the shortest edge to merge two trees until the 
forest consists of a single tree (an MST would require each added edge to connect 
two terminals in the two merged trees). Fig. 4.2 illustrates a greedy tree with three 
terminals . 
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Figure 4.2: A 3-terminal greedy tree 

A Kruskal-type algorithm can construct such a tree in O(n2) time. Smith and 
Shor showed that greedy trees have the following properties: 

(i) A greedy tree is an MST of its vertices. 
(ii) No angle in a greedy tree is less than 90’. 

(iii) An edge connecting two terminals in a greedy tree is also an edge of an MST. 
(iv) For given N a greedy tree is not longer than an MST. 

While proofs of (i), (ii) and (iii) are straightforward, (iv) follows from the fol- 
lowing lemma. 

Lemma 4.1 Given a forest of k - 1 edges connecting terminals, the shortest seg- 
ment which could be added without forming a cycle cannot be longer than the kth- 
shortest edge of an MST. 

Smith and Shor also observed that another kind of greedy tree could be obtained 
by generalizing Prim’s algorithm instead of Kruskal’s algorithm: Grow a tree, 
which initially consists of the shortest edge connecting two terminals, by adding the 
shortest segment connecting the tree with an external terminal until all terminals 
are internal. Properties (i) - (iv) also hold for Prim-type greedy trees, although 
(iv) requires an alternate proof. 

Let G T ( N )  denote a greedy tree for N .  Smith and Shor conjectured: 

where the infimum is achieved again at the three corners of an equilateral triangle. 

-.- 
4.4 An Annealing Algorithm 
An annealing algorithm consists of an initial solution $0, a perturbation scheme to 
produce a neighbor solution t8, and a sequence of values for a control parameter 
which, starting at some initially high value C O ,  decrease at each step until they 
reach a final value c j  . 
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Lundy [16] proposed an annealing algorithm as an SMT heuristic. In Lundy’s 
algorithm a solution consists of a full topology and a “repositioning” scheme to 
reorient the Steiner points for an ST. Lundy considered five different repositioning 
schemes and determined by experimentation that the best one is to reorient the n-2 
Steiner points sequentially. Since Hwang and Weng [lo] have now given an O(n2) 
algorithm to  find the ST of D(G) for a given full topology G (see Section 2.6), one 
need not use the repositioning schemes to find the relatively minimum tree when 
it exists. 

A perturbation scheme in Lundy’s algorithm is a scheme to switch full topolo- 
gies. Let F denote the current full topology. Select randomly a terminal a. Suppose 
that a is adjacent to a Steiner point s which is also adjacent to two other vertices 
b and c. Select randomly an edge [d, e] which is not incident to s. Then a new full 
topology G is obtained from F by substituting edges [ b ,  c], [s, 6] and [s, e] for edges 
[d ,  el, [s, b] and [s, c] (see Fig. 4.3). 

(F) (G) 

Figure 4.3: A switch of full topology 

Since d and e must be connected to either b or c with a path not including [ s ,  b] 
and [s, c] in F ,  d and c remain connected to b and c in G and G is a full topology. 

After the perturbation, reposition the new tree. If the new tree is not longer 
than the old tree, accept it as the new solution. Otherwise, accept the new tree with 
probability e - ’ l c * ,  where 1 is the increase in length and ci is the control parameter 
at step i (each topology switch constitutes a step). Lundy set co = 10- 
and c1 = c2 = .. .  = cf = l / (nlogn) .  He explained the choices by pointing out 
that is proportional to the expected length of an edge for points randomly 
distributed in a unit square, and that the number of full topologies is roughly 

Lundy tested his algorithm with experimental sets of 20 and 50 points and 
found that it compared favorably with the Edward algorithm (see Section 6.1), a 
standard method used in finding evolution trees. 

cn log n 
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4.5 A Partitioning Algorithm 
Karp [13] gave a partitioning algorithm for the traveling salesman problem. The 
set N of n points is assumed to be scattered randomly in a unit rectangular region 
R in the Euclidean plane. The algorithm partitions R into smaller regions &, each 
contains about t points. An optimum tour is constructed for the subset of points in 
each Ri, and these tours are then combined to yield a tour for N .  Let g ( t )  denote 
the time required to  construct an optimum tour for t points. Karp showed that 
the time required by the partitioning algorithm is bounded by 2g( t ) (n  - l)/(t - 
1) + O(n logn), where the first term represents the total time required to run the 
optimum subtour routine, and the second term time required to initially sort the 
n terminals as well as subsequent processing. He also proved that the difference 
between the length of the tour yielded by the partitioning algorithm and the length 
of an optimum tour T' is bounded by O ( m ) .  

When N is randomly generated by a Poisson distribution with mean n,  Beard- 
wood, Halton and Hammersley [l] proved that IT*I .--* Pf i  with probability one, 
where /3 is a constant. Using this result and by properly choosing t ,  Karp showed 
that the partitioning algorithm is a fu l l y  po lynomia l  approxamat ion scheme, i.e., 
an algorithm which, for each set N and each E > 0, finds a tour T such that 
lTl/lT*l 5 1 + E and that the time complexity is bounded by a polynomial in 1/c 
and in the length of the input. 

Finally, Karp indicated the partitioning algorithm and its analysis are appli- 
cable to the Steiner tree problem, Euclidean or rectilinear distance. The actual 
description for such an application was carried out by Komlos and Shing for the 
rectilinear case and will be reported in Part 111, Subsection 2.3.3.  

4.6 Few's Algorithms 

Few [7] gave a method to construct a tree interconnecting a set of n terminals lying 
in a unit square bounded by the lines x = 0, x = 1, y = 0 and y = 1.  Partition 
the unit square into 2q congruent rectangles of length 1/2q and width 1. Label 
the 2q + 1 lines y = i / 2 q ,  i = 0, 1, . . . ,2q. Let T be the tree consisting of (i) the 
q + 1 lines y = 2j/2q, j = 0, 1, . . ., q ;  (ii) the n shortest distance from each of the 
n terminals to the nearest such line; (iii) suitable portions of the lines x = 0 and 
2 = 1. Similarly, let T' be the tree consisting of (i) the q lines y = (2j  + 1)/2q, 
j = 0, 1, . . . , q - 1; (ii) the n shortest distance from each of the n terminals to the 
nearest such line; (iii) suitable portions of the lines y = 0 and y = 1 (see Fig. 4.4, 
T in solid lines, T' in dotted lines with one overlapping segment). Note that the 
length of (iii) is never more than one for both T and T'. Therefore 

Minimizing the length over q ,  q should be the integer nearest to +/2. With this 
choice, it can be shown that 

IT1 + IT'I L 2 6  + 3.5 
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Figure 4.4: Few’s two trees 

Select the shorter tree between T and T‘. Its length cannot exceed fi + 1.75. 
Therefore 

Theorem 4.3 For a set of n terminals lying in a unit square, Few’s algorithm 
yields a tree whose length is at most fi+ 1.75. 

Note that Few’s algorithm actually constructs a rectilinear tree. So his algo- 
rithm is also a heuristic for rectilinear SMT. Furthermore, it can be generalized to 
a d-space. 

4.7 A Graph Approximation Algorithm 

Provan [18] gave the following approximation algorithm which transforms a Eu- 
clidean Steiner problem into a Steiner problem on a graph such that the difference 
of the lengths of the two SMTs in the two respective problems is bounded by E for 
any predetermined E > 0. 

Let N be the given set of terminals. Find the region R contained in the convex 
hull of N ,  and also find the values xminl  tmax,  ymin and ymax of the minimum 
and maximum z-coordinate and y-coordinate, respectively, of points in N .  Let 
m = [(Sn - 12)/~7 and let zmin = 10 < z1 < ... < xm = z,,, and ymin = yo < 
~1 < . . .  < ym = ymax be values spaced equally between their endpoints. Let 
Vo = {(zi, yj) : i, z = 0,. . . , m} be the lattice of points with these values. Define 
the weighted graph G, to be the complete graph with a vertex set V = N U ( l / o n R )  
and edge weights w(u,  v) equal to  the Euclidean distance between u and v. Then 
G, is the graph for the transformed Steiner problem. 

Theorem 4.4 Let T be an S M T  for  N and let T’ be an SMT f o r  N on G, .  Then 
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Proof: Let D = max{xmax - xmin, ymax - ymin}. Then IT1 2 D, since T must con- 
nect the points with coordinates determining D. Note that the lattice coordinates 
chosen satisfy 

and 
D€ x; - xi-1 5 - 

8n - 12 
Also note that T contains at most 2n - 3 edges. Consider the subgraph To of G, 
whose vertices are obtained by choosing, for each vertex v of T, the nearest vertex 
v‘ to v in G,, and whose edges are obtained by choosing for each edge (u, v) in T 
the edge (d, v‘) in G,. Then To is a spanning graph for N .  Furthermore, for each 
edge (u,  v) in T we have 

Theorem 4.4 shows that any algorithm for the Steiner problem on 
0 

a graph can 
be used to find an approximate solution to the Euclidean Steiner problem, using 
this transformation. 

4.8 /+Size Quasi-Steiner Trees 

A tree with a Steiner topology but not satisfying the angle conditions of an S T  
is called a quasi-ST. If every full component contains at  most k terminals, then 
it is called a k-size quasi-ST (k-size ST  if the angle conditions are satisfied). A 
shortest such tree is a minimum k-size quasi-ST, in which the subtree on each full 
component must be an SMT. Note that an MST is a minimum 2-size (quasi) ST. 

A minimum k-size quasi-ST can be considered as a heuristic for SMT. Unfortu- 
nately, efficient algorithms are also unknown for such trees with k 2 3. Du, Zhang 
and Feng [6], extending an idea of Zelikovsky, gave a heuristic for minimum k-size 
quasi-ST in an arbitrary metric space (see Part IV, Section 1.4). Since the heuristic 
will be described in details later, here we only give a brief sketch of its application 
to the Euclidean plane. 

Construct full SMTs over all subsets of N of size j ,  2 5 j <_ k. Use a greedy 
algorithm to link the SMTs of subsets into a k-size tree on N. Namely, start with a 
short SMT and then grow it by sequentially adding an SMT which will not form a 
cycle with the growing graph and which also satisfies some minimality conditions. 
The construction ends when no more SMT can be added. 

Since all edges are SMTs, it is easily seen that the above algorithm outputs a 
tree interconnecting N .  The time required to construct all the SMTs on subsets 
of size j, 2 5 j 5 k, is exponential in j (see Chapter 2). For each fixed t the 



60 REFERENCES 

time complexity of the algorithm is O(knk(n2 log n + f(k))) as shown later for an 
arbitrary metric space where f(k) is the time required to construct an SMT for a 
set of k terminals with a given topology. The following result is a specialization of 
Theorem 1.14 of Part IV. 

Theorem 4.5 The heuristic of Du, Zhang and Feng has a performance ratio better 
than the Steiner ratio for k 2 128. 

4.9 Other Heuristics 

Soukup [22] commented that the function 

f(z) = (2 - P I ) ( ~  - PZ) . . . ( z  - Pn) 

where p l ,  . . . , p ,  are the n terminals, can be regarded as a surface in a three di- 
mensional space; thus resembling the membrane physical model of Section 1.8. Let 
s1, . . . , sn-2 be the n - 2 roots of f”(z) = 0. Soukup proposed to use an MST on 
{ p i }  U {si} with some postprocessing as a heuristic. One problem of this heuris- 
tic is the inherent difficulty of solving an (n - 2)-degree polynomial. Obviously, 
numerical procedures are required for general n. 

A k-SMT is a shortest interconnecting tree with at  most k Steiner points. 
Clearly, k-SMTs can be used as heuristic SMTs. While a k-SMT can be used 
as a heuristic SMT, the time required for construction is a large polynomial of n 
unless k is very small, but then the performance cannot be good. Thus the k-SMT 
will be discussed in Section 6.4 as a generalization of the SMT rather than a heuris- 
tic. Here we just mention that Kallman [12] proved that the Steiner ratio for the 
1-SMT is 4 / 2 .  
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Chapter 5 

Special Terrninal- Set s 

There are three motivations to study terminal-sets with special geometric configu- 
rations whose SMTs can be obtained through analysis. The apparent one is that 
these special configurations may turn up in real applications, or the solutions for 
those special configurations may provide good approximations for similar confi- 
gurations. A more practical motivation is that examples of large terminal-sets for 
which SMTs are known are needed for testing the performances of heuristic algo- 
rithms. A third motivation is an academic one. One would like to draw a sharper 
boundary between Steiner problems solvable in polynomial time and those which 
cannot to achieve a better understanding of the source of intractability. 

Most of the special sets discussed in this chapter can be solved in polynomial 
time. We also include a few cases which we have learned some important properties, 
though polynomial time algorithms for them are not available yet. At present the 
most important open problem on this topic seems to be the development of an 
efficient SMT algorithm for a convex set of terminals, or a proof of its nonexistence. 

5.1 Four Terminals 

SMTs for three terminals have been well understood since Fermat’s time. However, 
a complete understanding of SMTs for four terminals is a relatively recent thing. 
Pollak [15] and Ollerenshaw [14] started the task which culminated in a paper by 
Du, Hwang, Song and Ting [6]. 

Let N denote a set { a ,  b ,  c ,  d }  of four terminals. The first question is whether a 
full SMT exists. Pollak answered this question with the following result. 

Lemma 5.1 The  existence of a ful l  S M T ( N )  implies  that the four t e rmina l s  a ,  b ,  c 
and d form a convex quadrilateral. 

Without loss of generality, assume that [ a ,  c] and [ b ,  d] are the two diagonals of 
the convex quadrilateral, and they intersect at  the point 0. There are two possible 
FSTs, one with a and b adjacent to the same Steiner point, and the other with a 
and d (see Fig. 5.1). Call them the ab-tree and the ad-tree,  respectively. 

63 
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Du, Hwang, Song and Ting gave necessary and sufficient conditions for the 
existence of the ad-tree, analogous conditions can be stated for the ab-tree. 

Lemma 5.2 Necessary and suficient conditions for the existence of the ad-tree 
are (see Fig. 5.2): 

(i)  The quadrilateral ubcd is convex. 

(ii) Lda(bc), L(bc)du, L(du)bc and Lbc(da) are all less than 120'. 

(iii) Laod < 120'. 

b 
Figure 5.2: The ad-tree 

Weng [18] showed that condition (i) is implied by conditions (ii) and (iii), and 
hence can be deleted from Lemma 5.2 .  
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Given that an FST exists, how does one know whether it is an SMT? In par- 
ticular, how can one compare the lengths of the two possible FSTs? Ollerenshaw 
gave an answer to the second question. 

Lemma 5.3 Suppose that both FSTs  exist. The one with a longer edge connecting 
the two Steiner points is the shorter tree. 

Call the ad-tree acute and the ab-tree obtuse if Laod < Lboa and vice versa. 
Call both trees acute if Laod = Lboa = 90". Pollak gave an answer to the first 
question in terms of acute tree. 

Theorem 5.1 Let N denote a set of four terminals. If an acute F S T  exists for 
N ,  then it i s  an SMT.  

Proof: (sketch) The proof relies crucially on proving that the Simpson line of the 
acute FST is shorter than that of the obtuse tree regardless of whether the latter 
tree exists or not. Then the proof shows that every nonfull ST (including spanning 

Note that Pollak originally stated the theorem under the condition that both 
full SMTs exist. Du, Hwang, Song and Ting gave the current version and also gave 
a simpler proof for the comparison of the two Simpson lines. Furthermore, they 
showed that if the acute FST does not exist, then the obtuse FST can sometime 
be the SMT. This was argued by first constructing an example for which Laod = 
Lboa but the ad-tree violates conditions in Lemma 5.2 and does not exist. By 
Theorem 5.1 the ab-tree is the unique SMT. A continuity argument now extends 
the minimality to the case that Lboa is slightly above 90°. They also gave sufficient 
conditions under which various nonfull STs or spanning trees are SMTs. 

There are some good reasons to study SMTs for four terminals. Pollak used his 
results on them to obtain a proof that the Steiner ratio is true for all 4-terminal 
sets. 

Du, Hwang, Song and Ting were motivated by the need to prove a decompo- 
sition theorem involving the removal of a quadrilateral from a convex hull (see 
Theorem 1.6). The following result obtained by them was crucially used in that 
effort. 

Theorem 5.2 Let abed be a convex quadrilateral with La 2 120°, Lb 2 120" and 
Lboa 2 La + L b  - 150O. Let a'b'c'd' be a quadrilateral embedded in abed with a', d' 
on [a ,  d] and c', b' on [c, b]. Then an S M T  for {a', b', c', d'} cannot be full. 

trees) is at  least as long as one of the Simpson line. 0 

Theorem 5.1 would be even better if no assumption of the existence of any FST 
is required. This was accomplished by Weng [18] by considering the ST in the 
degenerate class. Define the &tree as the unique ST, if it exists, in the degenerate 
class of the ab-topology, and define the 2 - t r ee  similarly, Then the shorter of the 
ab-tree and the z - t r e e  is an SMT (both are if they are of equal length). Weng 
gave conditions to compare the lengths of these two trees in the following theorem. 

A quadrilateral is called skew if it contains two opposite sides each longer than 
or equal to  a distinct remaining side, e.g., lab( 2 lac\, lcdl 3 Ibd(. In the above 
example [a ,  b] and [c, d] will be referred to as the dominant sides. 

- 
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Theorem 5.3 Suppose that abcd is a skew quadrilateral. Then the a - t r e e  (a- 
tree) is  an S M T  if and only if [a, d] ( [ a ,  b]) is a dominant side. 

Weng also gave an embedding result parallel to Theorem 5.2. 

Theorem 5.4 Let a'b'c'd' be a quadrilateral embedded in a convex quadrilateral 
abcd where [a',d'] is  on [a,d] and [b',c'] on [b,c]. If the z - t r e e  is an S M T  for 
{ a ,  b, c, d } ,  then the =-tree i s  an S M T  for {a', b', c', d'}. 

This is proved by showing that la t ree1  - lad-tree1 is increasing as a moves to 
a' (or b moves to b', . . .). 

5.2 Cocircular Terminals 

The first modern paper on the Steiner problem was by Jarnik and Kossler [13] who 
studied the case where the terminals are the n corners of a regular n-gon. They 
constructed SMTs for n = 3 , 4 , 5 , 6  (an SMT for the last case is an MST) and also 
showed by one sweeping elegant argument that an MST for the corners of a regular 
n-gon, n 3 13, is an SMT. 

Graham [lo] considered the more general configurations of cocircular terminals 
and conjectured that if the distances between all pairs of adjacent terminals do not 
exceed the radius, then an MST is an SMT. Later, he updated the conjecture to 
allow one pair of consecutive terminals to have a distance greater than the radius. 
Du, Hwang and Chao [5] gave the following result which establishes a relation 
between the Steiner ratio and an SMT for cocircular terminals. 

Lemma 5.4 Suppose that N is a set of cocircular terminals on a unit circle such 
that at most one pair of adjacent terminals has a distance exceeding m with 

m = min { [a4 + da2 + (1 - ~ 2 ) / 4 ]  /(a2 + 1/4), y} 

a = & + 1 - 1 / 2 p  

p = 1 - ( 1  - p ) . / p  

where 

( p  is any lower bound of the Steiner ratio), and 

7 = 2(& + l ) / [ ( d  + 1)' + 1/41 Z .708 

Then an M S T  for N is also an SMT.  

By substituting p = 4 / 2 ,  it follows m E .708. Let 1, denote the length of a 
side of a regular n-gon circumscribed in a unit circle. Clearly, I ,  = 2 s i n ( ~ / n )  is 
decreasing in n. Since 

19 = 2 sin 20' Z .6840 < .708 
Du, Hwang and Weng [8] used Lemma 5.4 to show that an MST is an SMT for I ,  
for n 3 9. They also analyzed all possible cases for n = 7 and 8 to complete the 
proof for the following result. 
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Theorem 5.5 An MST for  the corners of a regular n-gon, n 2 6 ,  is an SMT. 

Back to  the cocircular case. Recall from Section 3.3 that Rubinstein and 
Thomas developed the variational approach and for a direction V at the configu- 
ration Y E A ( F ) ,  computed 

where S is an SMT and T an MST for Y such that T(h) ,  which has the same 
topology as T, is an MST for Y + hV with h sufficiently small. They called V a 
reversible direction if reversing the direction of variation at p yields a change of 
signs of L$(V)  and Lk(V) .  This implies that p’(V) = 0, and consequently, 

G ( V )  = P L W )  

if V is reversible. Furthermore, the second derivative of p also has a simple expres- 
sion for reversible variations, i.e., 

L; ( V )  - pL& ( V )  
p“( V )  = 

LT 

The strategy is to show that for every configuration at which p is minimal, a 
reversible variation can be constructed for which 

L;(v) - p L F ( V )  < 0 

Therefore p”(V) < 0, contradicting the minimality of p.  

In general, L;(V)  and L&(V)  are much harder to compute than L’,(V) and 
L&(V).  Rubinstein and Thomas [16] introduced some methods to  compute these 
second derivatives at reversible variations. Using the conditions on p’( V )  and 
p”(V), they were able to  show that if p achieves a minimum at the set N = 
{ P I , .  . . , p n } ,  ordered around the circle, such that there exist an MST and an SMT, 
not identical, then the following facts hold: 

Fact 1- If IPi ,Pi+l l  > 1, then bi -1 ,P i I  = ( p i + l , ~ i + 2 l  = 1. 
Fact 2. Either Ipi-1,piI 2 1 or Ip i ,p ;+ l )  2 1 for 1 5 i 5 n.  
Fact 3. There exists an i ,  0 5 i 5 n - 1, such that Ipi,pi+ll  2 1. 
From these facts, it can be immediately deduced that the MST can have at  most 

five edges of length 2 1 (at most one > l), and at  most five edges of length 5 1. 
There are only seventeen cases of N satisfying these conditions up to  rotation and 
reflection. Rubinstein and Thomas also proved that p can only achieve minimum 
when the SMT is full. They used this fact and the second derivative method to  
conclude that p can achieve minimum at none of the seventeen configurations. Thus 
the Graham’s conjecture was proved. Namely, 

Theorem 5.6 Consider a set of cocircular terminals. If at most one pair of adja- 
cent terminals has a disfance greater than the radius, then an MST is an SMT. 
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5.3 Co-path Terminals 

Consider a simple path consisting of line segments such that there is a terminal 
at every turning point as well as the two ends of the path. We call such a set 
of terminals co-path terminals. Of course, any set of points in the plane can be 
construed as co-path terminals by running a proper path through them. So one 
will view a set of terminals as co-path terminals only when the path possesses some 
interesting properties. 

Let [pl ,p , , ]  denote the segment connecting the two ends of a path H .  Then 
lp l  , pn] and H together enclose a sequence of m polygons where two adjacent poly- 
gons (a polygon can degenerate into a segment of H )  meet at  an intersection of 
[pl,pn] and H .  Let x, i = 1 , .  . . , m, denote a full SMT for the vertices of the ith 
polygon. Then U z l T i  is called a cut-and-patch tree for N .  Most existing results for 
co-path terminals are to determine conditions on the paths such that cut-and-patch 
trees are SMTs. 

The first such result was given by Chung and Graham [3] for sets of co-path 
terminals called ladders.  Let L ,  denote a ladder of 2n terminals arranged in a 
rectangular 2 by n array with adjacent pairs of terminals forming a unit square. 
The path is an alternating sequence of vertical and horizontal segments wrapping 
around the squares in order. 

Theorem 5.7 A cut-and-patch tree f o r  L,  i s  an  SMT. Furthermore, 

(n(1 + &/2) - 1)2 + 1/4 i f  n is odd, 
i f  n is even. 

lLn l=  { J 
n ( l +  &/a) - 1 

For n even, [p l , p2 , ]  is a side of the 2 x n array and cuts H into n/2 1 x 1 
squares connected by n/2 - 1 unit segments. For n odd, [ P l , p z , ]  is a diagonal of 
the 2 x n rectangle and cuts H into m - 1 trapezoids. The cut-and-patch trees for 
n = 4 and 5 are illustrated in Fig. 5.3. 

Figure 5.3: SMTs for ladders 

Note that there are two SMTs for the four corners of a unit square and either 
one can be inserted into any one of the n/2 squares for the even n case. 

All segments in the path of a ladder have the same length. Du and Hwang [4] 
allowed each segment to have arbitrary length and called the path a rectangular 
wave.  Call a vertical segment a bar and let Bi denote the ith bar. Let v; denote 
the height of Bi, and let hi denote the horizontal distance between Bi and Bi+l. 
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A rectangular wave is called mild if hi 2 max{vi, vi+l} for all i. Furthermore, let 
vo denote the vertical distance between pl  and pzn. Du and Hwang proved: 

Theorem 5.8 Let P be a set of 2n co-path terminals where the path is a mild 
rectangular wave. If [Pl,p2,]  intersects every bar, then a cut-and-patch tree is an 
SMT with length 

Note that Theorem 5.7 is a special case of Theorem 5.8 with h; = v; = 1 for all 
i, vo = 0 for n even and vo = 1 for n odd. 

Du and Hwang made a further attempt of generalization by allowing the seg- 
ments connecting two adjacent bars to be nonhorizontal. They called such a path 
a bar wave. A bar wave is mild if hi 2 max{v;, vi+l} for all i and if every angle 
wrapped by the path is less than 120'. Consider an S T  T for a terminal set P on 
a bar wave. For a given T a bar is called top-first (or bottom first) if T around it 
has the form shown in Fig. 5.4a (or Fig. 5.4b): 

Figure 5.4: Top (bottom) first bars 

Let Ti denote the subtree of T lying between B; and Bi+l. Then T is called 
formal if every bar is either top-first or bottom-first, and every is a 4-point FST. 
A formal tree can be characterized by a vector (ez, e3,  . . . , en- l )  where ei = 1 if Bi 
is top-first and e; = -1 if Bi is bottom first. Let y; and yi denote the y-coordinates 
of the upper and lower end, respectively, of Bi. Then the length of a full formal 
tree is 

A formal tree which minimizes f(e2, .  , , ) e,,-I) is an SMT. Note that the above 
minimization problem amounts to a partition problem, i.e., to partition the n - 2 
numbers vi, i = 2 , .  . , , n - 2 ,  into two sets headed by the two numbers y1+ y{ and 
yn + y:, respectively, so that the sums of the numbers in the two sets are as close 
as possible. The partition problem is an NP-complete problem. But in the case 
that for each Bi, i = 2 , .  . . , n - 2, there exist j < i < k such that either yi = y,, 
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& = 
in the latter case to obtain 

or y; = Y k ,  & = 4 ,  then one can set ei = -1 in the former case and e; = 1 

n-1 

y1+ Y;  - yn - Y; + Z ( Y ~  - y;)ei = 0 
i = 2  

which obviously minimizes f(e2,. . . , en-l). One can view such a formal tree as 
a many-cuts-and-patch tree where each cut corresponds to a horizontal segment 
connecting a pair of bar-ends (see Fig. 5.5). 

Figure 5.5: A special formal tree 

Du, Hwang and Weng [7] considered paths, called zigzag lines, such that pi+2,  

i = 1, . . . , n - 2, is to the right (left) of the directed line from p;  to pi+l if i is odd 
(even). A zigzag line is regularif the smaller angle between two adjacent segments is 
a constant a. It is convex if all terminals lie on its convex hull p1p3p5 . . .pn . . ‘ ~ 4 ~ 2 .  

It is normal if Ipi ,pi+l l  5 Ipi,pi+21 for 1 5 i I 71 - 3 and Ipi+iIpi+2I 5 l ~ i , ~ i + 2 1  

for 2 5 i 5 n - 2. They proved. 
Theorem 5.9 Let N be a terminal set on a regular, convex and normal zigzag line 
with a 2 60’. Then  a cut-and-patch tree is  an S M T  for N whose length is 

Fig. 5.6 illustrates such an SMT. 

Figure 5.6: SMT for a zigzag line 

Recently, Booth and Weng [l] generalized the above result by weakening the 
“regular” and “convex” condition. A zigzag line is called Steiner if all terminals lie 
on its Steiner hull. 



5.4. TERMINALS ON LATTICE POINTS 71 

Theorem 5.10 Let P be a terminal set on a Steiner and normal zigzag line such 
that the first angle and the last angle wrapped by  the path as at least 60°. Then 
there etiStSpi,, pi,, . . . ,pi,,,-l, 1 E io < ii  < i 2  < n, such that 
UY=n=,Tij i s  an SMT, where Tij i s  -the full SMT on the zigzag line pi j - l  pij-l . - - p i j .  

Fig. 5.7 illustrates such an SMT. 

< i, - 1 < i, 

Figure 5.7: SMT for a generalized zigzag line 

Note that regardless of where the points pi l , .  . . , pi,,,-l are, the topology for the 
SMT is in the class D ( F ) ,  where F is the full topology whose circumference order 
is plp2p4p6 . . -pn . . ‘ ~ 7 ~ 5 ~ 3 .  Therefore, one can apply the luminary algorithm (see 
Section 2.8) to construct an SMT in O(n2) time. 

5.4 Terminals on Lattice Points 

Chung, Gardner and Graham [2] studied SMTs when terminals are arranged a t  
regular lattices of unit squares, like the points at  the corners of the cells of a 
checkerboard. They gave various constructions for square lattices but no proof of 
optimality exists except for the 2 x 2 square. A basic building block, denoted by 
X (see Fig. 5.8), in these constructions is a 4-point full SMT for the four corners 
of a unit square. Chung, Gardner and Graham proved: 

Theorem 5.11 If a rectangular array can be spanned by  an ST made up entirely 
of X s ,  then the array is a square of sire 2t by  2t for some t 2 1. 

I Y X 

Figure 5.8: I, Y and X 

For square arrays of size n = 2t, they gave a recursive construction of such 
an ST Bn by connecting four Bnlz by an X in the center. Thus Bn consists of 
(4t - 1)/3 XS and lBnl = [(4* - 1)/3](1+ 4). 
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n 

For square arrays of size n # 2t, three other building blocks, I :  a segment 
between two adjacent terminals, Y :  3-point full SMT on three corners of a unit 
square (see Fig. 5.8) and 2: a full SMT on a 2 x 5 ladder (a shown in Fig. 5.3), 
are used to fill the gaps between X s .  

Let Bn denote the ST obtained by their recursive construction for an n x n 
array. Table 5.1 summarizes the constructions for n # 2t. 

B n  I IBn I U 

Table 5.1: B, and its length 

Chung, Gardner and Graham conjectured that B, is an SMT for all n. They 
felt particularly confident when n = 2'. 

Hwang [ll] studied regular triangular arrays and regular hexagonal arrays which 
consist of unit triangles and the lattice points are the corners of the triangles. Let 
tn(h,) denote the former (latter) array with n lattice points on each of the three 
(six) sides. Note that a Chinese checkerboard c, of size n consists of six t ,  each 
attaches to a side of a h,  (see Fig. 5.9). 

Figure 5.9: A Chinese checkerboard 

Hwang gave recursive constructions of a tree T, for t ,  and a tree H ,  for h,, 
which uses only Y' ,  the 3-point full SMT on the three corners of a unit triangle, 
except when n 0 or 3 (mod 4), then a single edge connecting a pair of adjacent 
terminals needs to be used. He also showed that for n > 2, six T, and one H,, 
with some possible modifications, can be properly connected to yield an ST C, for 
cn which uses Y* only. By Theorem 2.3, it follows: 
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Theorem 5.12 T, for  n G 1 or 2 (mod 4), Hn f o r  n 2 1 and C, for  n # 2 are 
SMTs with lengths 

lTnl = [(n + 2)(n - 1)/4]& 

IH,I = 3[n(n- 1)/2]& 

lCnl = [3n(n- 1 1 1 4  

C, is given in Fig. 5.10 and was verified to be optimal by the computing algo- 
rithm of Smith (see Section 6.1). 

6 

Figure 5.10: Cz 

T, for n 0 or 3 has length 

ITnI = [(n + l)n/4 - 1]& + 1 

and is conjectured to be an SMT. 

5.5 Two Related Results 

Hwang, Weng and Du [l2] gave a method to grow an FST, called a spli t t ing tree,  
such that the tree is always the unique SMT for its set of endpoints. Unlike the 
special cases in the previous sections where a terminal-set can be described by an 
explicit property, here the terminal-set is characterized by the implicit property 
that there exists a splitting tree with the terminal-set as its set of endpoints. The 
construction of splitting trees also answers affirmatively the question whether for 
any full Steiner topology there exists a set N such that an SMT(N) has that 
topology. 

A splitting tree T, with n terminals can be defined as follows: 
(i) A T3 is a 3-point full SMT for the three corners of an equilateral triangle. 
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(ii) A T,, n > 3, is obtained from a Tn-l by splitting an endpoint w into two 
new edges [w, u] and [w, v], where u and v are new endpoints of T, such that 

(a) The three edges at the splitting point meet at 120'. 

(b) The lengths of the two new edges are equal and less than An-1 E 
minR,-l{IR,,-ll - T,-l}, where R,-1 is any other tree interconnect- 
ing endpoints of T,-1. 

A splitting tree Ts is illustrated in Fig. 5.11. 

Figure 5.11: A splitting tree Ts 

Hwang, Weng and Du proved: 

Theorem 5.13 T, is the unique SMT for its endpoints. 

Proof: (sketch). Suppose that R, # T, is an SMT for the set of endpoints. Let Tn 
be obtained from T,-1. Modify R,, into a tree R,-1 interconnecting the endpoints 
of Tn-l. Then it can be shown that the topologies of R,-1 and T,-1 are different. 
Therefore 

IRn-11 L ITn-lI+ An-1 

By using the relations between T, and Tn-l, and between R, and h - 1 ,  it can be 

Note that X,-1 > 0 for all n since T,-1 is the unique SMT. Therefore T, is 
shown that lR,,l > ITnl, contradicting the claim that R, is an SMT. 0 

well defined. 

Weng [17] gave the following interesting result, 

Theorem 5.14 Let S be an ST on a set N of 2 m  terminals with a symmetrical 
topology G which maps terminal pi to terminal p,+i i = 1,. . . , m. Let N' be the 
set of 2 m  terminals obtained from N by  shifting the segments [Pi,prn+i] parallelly 
such that the midpoints of all m segments coincide. Let S' be an ST on N' with 
the same topology G. Then IS1 = IS'\. 
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Proof: Theorem 5.14 is trivially true for m = 1.  The general m 2 2 case is proved 
by induction on m. 

Without loss of generality assume that p l  and p z  are siblings. Then pm+l and 
pm+2 are also siblings. Let p and q be the correct E-points for the pairs (p1 ,  p 2 )  
and ( p , + l ,  pm+2) with respect to G. Let 0 , 0 1 , 0 2  be the midpoints of [p, q ] ,  [ P I ,  q l ] ,  
[ P 2 ,  qz] .  By the theorem of similarity 19, p. 1181, A00102 is equilateral. 

Shift [pl, p,+l]  and [Pz,  ~ m + 2 ]  to  [p:, PA+,] and [p:, p&+2] parallelly such that 01 

and 0 2  coincide with 0. Then A p p l p i  and App2pa are equivalent since lppll = IppzI, 

Fig. 5.12). Therefore Ipp',l = lppil and Lpippa = Lplppz = 60°, i.e., p is also the 
correct E-point for the pair @ ; , p i ) .  Theorem 5.14 now follows by induction. 0 

Iplp:l = 10101 = (0201 = lP2P'zl and LPPlP', = LPpapa fmm LPlPP2 = Lo1002 (see 

Pm+l 

Figure 5.12: Parallel shifting 

Weng gave an application of Theorem 5.14 to the 4-terminal case. Let N 
be a 4-terminal set and suppose both FSTs for N exist. Since both FSTs have 
symmetrical topologies, one may assume that the 4 terminals form a parallelogram 
by Theorem 5.14. Theorem 5.1 is then an easy consequence. 
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Chapter 6 

Generalizations 

In this chapter we discuss cases where the basic assumptions of the ESP are gener- 
alized in some way. We partition the cases according to whether the generalizations 
are related to (i) space, (ii) costs of edges, (iii) terminals, (iv) Steiner points, (v) 
the presence of obstacles in the space. 

6.1 &Dimensional Euclidean Spaces 
Since two touching lines in a d-space can be embedded in a 2-dimensional plane, 
lines still cannot meet a t  less than 120' in a d-dimensional ST. Hence it is still 
true that a Steiner point has at  least three edges. The argument used in proving 
Theorem 1.2 remains valid to bound the number of Steiner points by n - 2. Gilbert 
and Pollak [18] gave the following argument to show that a t  most three vectors can 
meet at  angles of 120' and more. Suppose vl , . . . , vk are k such unit vectors. Then 

i i # j  

Since vi and vj meet a t  120' or more, vi . vj 5 -1/2. Hence 

0 5 k - k ( k  - 1)/2 = k(3 - k)/2 

an inequality which is satisfied only by k = 0,1,2,3.  
Surprisingly, the Melzak FST algorithm cannot be extended to the d-dimension 

case even for d = 3. The reason is that for two given terminal points a and b 
there is an infinite number of E-points c such that Aabc is equilateral. Since the 
GEOSTEINER algorithm, the negative edge algorithm and the luminary algorithm 
either use the Melzak FST algorithm as a subroutine, or use the E-point directly, 
they are affected by the same problem. Nevertheless, as the location of a Steiner 
point is a function of the locations of its three adjacent points, the locations of 
Steiner points can be computed by an iterative method. Such a method was re- 
ported by Thompson [33] who attributed it to Edwards. 

77 
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Another iterative method applicable to the d-space is the Smith numerical al- 
gorithm (see Section 2.4). Let G be the given full topology and let the coordinates 
of the kth terminal be denoted by the d-vector s k ,  where I I ,  . . . , I n  are the ter- 
minals and & + I ,  . . . , I2,,-2 the Steiner points. Smith [30] proved the following 
convergence theorem: 
Theorem 6.1 A t  the i th  step in an iterative process, i = 0 , 1 , .  . ., solve the system 
of n - 2 linear equations 

fo r  n + 1 5 k 5 2n - 2. Then from all initial choices of Steiner point coordinates 
$), except for a set of measure zero in R(n-2)d, the iteration converges to the 
unique optimum Steiner point coordinates. This convergence happens in such a 
way that the tree length is decreasing over the iterations. 

Smith also showed that each iteration can be solved in O(nd) time and the 
convergence is linear. 

The annealing algorithm of Lundy (see Section 4.4) was actually proposed as 
a heuristic for the d-space. However, since the Hwang-Weng ST-algorithm with a 
given topology is applicable only for the 2-space' one has to go back to the reposition 
schemes given by Lundy, one of which is just the Edwards iterative method given 
earlier. 

Gilbert and Pollak conjectured that the minimum Steiner ratio is achieved at 
the corners of the d-dimensional regular simplex. Chung and Gilbert [7] computed 
the Steiner ratio for the corners of the d-dimensional regular simplex to be .8130 
for d = 3, .7837 for d = 4, and = .7645 for d = 5. They also showed that the 
ratio is upper bounded by .6698 for large d. Smith used his numerical algorithm 
to compute SMTs for the d-dimensional regular simplex and the d-dimensional 
regular octahedron for d 5 9. He found that the Steiner ratio of the former is 
larger than that of the latter for every d = 3 , .  . . , 9 ,  thus disproving Gilbert and 
Pollak's conjecture for those d. Smith suspected that the conjecture is false for all 
d 2 3, but could not confirm this due to the limitation of his numerical algorithm 
in computing larger SMTs. 

For a lower bound of the Steiner ratio in a d-space, note that the Graham and 
Hwang's l /fi bound given in Section 3.1 remains valid for an arbitrary d-space. 
Du[13] examined some slightly more complicated local structures (see Fig. 6.1) and 
used a laborious analysis to prove 
Theorem 6.2 Let T* denote the unique solution in the interval (0.148,0.15) of the 
equation 

2 + 1 . - e  - 2 + r  - 
8 J8e2 + 4er + 2e 

where e = d-. Then 

2 + r* - d ( r * ) 2  + r* + 1 - 0.615 
d3 P 2  
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b a 

C 

C 

d 

(4 (b) 
Figure 6.1: Two local structures 

Let J!??d(n) and Md(n) denote the expected length and the maximum length of 
an SMT over all sets of n points lying in a unit d-cube. Define 

1-l/d pd(n) = Ed(n)n 

and 
1-l/d pi (n) = Md (n)n 

Beardwood, Halton and Hammersley [3], using a partitioning argument, proved 
that pd(n) converges with probability 1 to a constant p d .  Steele [32] showed that 
the convergence to p d  follows from a result on subadditive Euclidean functionals 
(also true for the rectilinear metric). The convergence of pi(.) is still an open 
problem. However, there exist several bounds on pi(.). 

Few [15], using an argument similar to the planar case (see Section 4.6), proved 

pi(.) 5 d(8d - 8 ) G  + o(1) 

Note that his construction for the upper bound is again a rectilinear tree. Smith [29], 
using a probabilistic construction, improved the first term of the upper bound to 
d G  - . 2 4 2 0 d .  

Let rd denote the maximum radius of n identical d-spheres packed in a unit 
d-sphere. Moran [23] proved 

Smith noted that for d large, 

.12098& 5 ?'d 5 .159751/;1 

This yields an upper bound of .3195& for &(n). He also noted that a lower bound 
can be obtained by multiplying a lower bound of the corresponding pi(.) for MST 
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to  a lower bound of Pd. Using an easily seen bound 2rd for the former, and the 
.615 bound of Du for the latter, one obtains 

pi(.) 2 1.23rd 2 .1488& 

Now consider terminals on the surface of a sphere. By using the fact that the 
azimuthal equidistant projection from sphere onto the Euclidean plane preserves 
distance, Litwhiler and Aly [22] proved (also see Cockayne [9]): 

Theorem 6.3 A point on the surface of a sphere can be a Steiner point (a local 
minimum) only if its planar image under the projection is a Steiner point. 

Furthermore, using the azimuthal equidistant projection with a Steiner point 
as pole, they noted that angles are preserved at the polar point. Hence the angle 
condition of the planar ST (see Section 1.3) also holds on the surface. 

Dolan, Weiss and Smith [12] gave an O(n1ogn) heuristic for the spherical SMT 
which was  derived from the planar heuristic using Delaunay triangulation (see 
Section 4.2). 

6.2 Cost of Edge 

Gilbert [17] considered a model where each edge e of a Steiner network is associated 
with a capacity ce. Given a set of flows w ( i , j )  for each pair ( i , j )  of terminals, the 
network consists of a set of capacitated edges which supports the flows between 
terminals i and j for all pairs ( i , j ) .  Let f ( c )  denote the cost per unit length of an 
edge with capacity c. It is assumed that f ( c )  is subadditive and increasing, i.e., 
f ( u ) + f ( b )  2 f ( a + b )  2 max{f(u), f ( b ) } .  The problem is to  find a Steiner network 
which supports the flows and has minimum cost. One can also study a directed 
version of the Gilbert model, i.e., w( i , j )  is defined for every ordered pair ( i , j ) .  A 
special case of this model is when the n terminals consist of a unique source and 
n - 1 sinks (or n - 1 sources and one sink). Then w ( i , j )  is zero except when i is 
the source (or j is the sink). Applications of this special case are pipeline networks 
or drainage networks. 

Define a capacitated topology as a topology G and a set of capacities ce for each 
edge e in G. A network which minimizes the cost for a given capacitated topology 
is called a Gilbert network. Vertices of a network which are not terminals are called 
Gilbert points. 

For a given capacitated topology G, the cost of a network is 

eEG 

Since f ( c e )  is fixed for a given G, the cost is again a convex function of the locations 
of the Gilbert points. However, unlike the Steiner model, the case exceptional to 
strict convexity (as mentioned in the proof of Theorem 1.3) can occur. Fig. 6.2 
illustrates a network which preserves the directions of all edges in perturbation. 
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Figure 6.2: Invariant directions in perturbation 

Gilbert gave the example shown in Fig. 6.2, with c[,+4 = c[b,.] = c[.,jl = 2, 
c[d,.] = c[.,jl = c [ j , 4  = 1, f(1) = 1, f(2) = 8. The network has minimum cost if 
a6c and def are parallel equilateral triangles but network cost is invariant to the 
location of d,  including the two extreme cases d = u and d = e = f (collapsing into 
one point). Minimizing networks may fail to be unique even when the topology is a 
tree, if the terminals are collinear. Gilbert showed that when n is even, w ( i , j )  = 1 
for all i ,  j ,  and the tree consists of an edge from each terminal point to the Steiner 
point, then the cost is invariant to the location of the Steiner point as long as it 
lies between the two median terminals. 

For a given N and {w(i, j)},  a Gilbert network with minimum cost is called a 
minimum Gilbert network (MGN). The minimum cost network not allowing any 
Gilbert point is called a minimum regular network (MRN). Clearly, if f ( c )  is pro- 
portional to c, then an MRN is an MGN. On the other hand, if f ( ~ )  is a constant, 
then an MGN is an SMT. Note that there are two reasons that an MGN does not 
have to be a tree. One is demonstrated by the fact that an MRN, which is not a 
tree in general, can be an MGN. The second is that it can be cost-saving to split 
w ( i , j )  flows over two paths, thus creating a cycle. Gilbert proved: 

Theorem 6.4 I f f  is concave, then there exists an MGN without splitting paths. 
I f f  is strictly concave, then an MGN has no splitting paths. 

From now on we will confine our attention to networks whose topologies are 
Steiner, i.e., the topologies are trees and each Steiner point has three edges. (The 
reason for this restriction is simply that not much is known otherwise.) Such a 
network is called a Gilbert-Steiner tree. Correspondingly, we will be using the 
terms minimum Gilbert-Steiner tree and minimum Gilbert-spanning tree. Define 
the Gilbert-Steiner ratio analogous to the Steiner ratio, except that the former is a 
function off  and {w( i ,  j ) } .  Let po denote the infimump over all N ,  f and {w(i,j)}, 
Trietsch and Handler [35] proved that for n = 3, po 2 &/2 with computer-aided 
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computations. Du and Hwang [14] gave a simple geometric proof, and also showed 
that po 5 2 ( 4  - 1) < 4 / 2  for n = 4. 

Suppose that three edges q ,  212, 213 with costs per unit length 1v11,)v21 and 12131 

are adjacent to  a Gilbert-Steiner point s. The law of cosines determines the angles 
between the edges. For example, 

For the ordinary Steiner case one has lvll = lvzl = )2)31, and COS(WI, 212) = cos(v1, v3) 
= C O S ( V ~ , V ~ )  = -1/2. Hence the angles between the three edges are all 120'. 

Gilbert observed that the Melzak FST algorithm can be generalized to construct 
full Gilbert-Steiner trees by simply generalizing the definitions of E-points. Let a 
and b be two sibling terminal points both adjacent to the Steiner point s. Then the 
E-point (ba) is determined such that Aab(ba) has outer angles ( ~ 1 ,  cr2,03 which are 
the angles between the edges of s as shown in Fig. 6.3. Note that the four points 
a ,  s, b, (ba) are still cocircular. 

. ' I ' ' I ' ' I ' I '. I 

Figure 6.3: The generalized E-point 

Clark [8] showed that the algebraic method given in Section 2.3 also works for 
the Gilbert model. van der Heyden [19] gave a heuristic to construct Gilbert-Steiner 
minimal trees which mimics Chang's heuristic for SMT (see Section 4.2). Similar 
heuristics for drainage networks and pipeline networks were given by Lee [20] and 
Bhaskaran and Salzborn [4]. In these two networks, c represents the pipe diameter 
and is continuous. A special complication for the pipeline model is that ce depends 
on the length of e .  If the sink (source) can be chosen optimally, Lin and Smith [21] 
gave an O(n)  procedure to find it. But the optimal sink can be a Steiner point. 
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When f ( c )  is a linear function, Gilbert gave good bounds for the cost of a Gilbert- 
Steiner minimal trees. Werner [37] also studied this case for three terminals. 

Next consider a model where edges are not capacitated but the cost of an edge is 
a nonlinear function of its length. Again, assume that the function f is nonnegative 
and subadditive so that a Steiner point has at  least three edges. Soukup [31] found 
a way to upper bound the degree of a vertex. Call a differentiable function f ( r ,  6 ) -  

increasing in the interval [O,p], for integer r 2 2, cos(n/r + 1) > c 2 0 and p > 0 if 
f is nonnegative increasing and 

(the definition was also extended to nondifferentiable function). For example, every 
increasing convex function is (3, €)-increasing in the interval [0, inf) for any 6 < (a - 1)/2. Soukiip proved: 

Theorem 6.5 Suppose that f i s  ( r ,  €)-increasing in [O,p] ,  where p is the diameter 
of the set N of terminals, and where r 2 3 and E > 0 is an arbitrarily small number. 
Then a minimizing network exists which has maximum degree r .  Furthermore, i f f  
is ( r ,  0)-increasing, then two edges meeting at a terminal must have angles at least 
2n/(r + 1). 

6.3 Terminal Clusters and New Terminals 

Cockayne and Melzak [lo] considered the model that each terminal is not a single 
point, but a compact set of points N1, . . . , N , .  They showed that Melzak's FST 
algorithm still works if the E-point for two terminal-sets A and B is interpreted as 
the compact set 

( A B )  = { ( a ,  b )  : a E A ,  b E B }  

(Note that ( A B )  preserves the following properties of A and B: convexity, con- 
nectedness, being a smooth boundary of a region, being a simple polygon.) When 
only two terminal-sets are left, we connect them by a shortest line. However, the 
efficiency of the algorithm suffers on two accounts: 

(i) Hwang's linear variant of the Melzak FST algorithm does not extend to the 
current case. 

(ii) The complexity to construct ( A B )  and a shortest line connecting A and B 
depends on the properties of A and B .  

A slight variation is when a terminal set is a finite set of points. Two terminal 
sets are considered connected if a point in one set is connected to a point in the 
other set. The Melzak FST algorithm applies just as in the compact set case. 

In yet another model the locations of terminals are confined to regions, but not 
necessarily fixed. Chen [6] studied the case of three terminals a ,  b ,  I with a and b 
fixed and t confined to a straight line 1. The problem involves the determination of 
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a possible Steiner point as well as the location o f t .  If a and b lie on opposite sides 
of I ,  then the line [a ,  b] is clearly the SMT. So suppose a and b are on the same side 
of 1 with distance A and B, A 5 B, to 1. Let [a,o] and [b ,c ]  be perpendicular to I ,  
and let C be the distance from o to  c. Chen showed that: 

condition 

d ( B  - A )  2 C 

location of z tree length 

0 A + ,/CZ + (B - ~ ) 2  

f i(~ + A )  2 c 2 f i(~ - A )  5 - $(B - A )  from 0 d C + Y  2 

C ? d ( B + A )  -& from o dC2 + ( B  + A)2 

Weng [36] considered the case that the third point lies on a continuously dif- 
ferentiable curve, and also the case that two terminals are confined to two lines. 
He used the hexagonal coordinate algorithm introduced in Section 2.3 to solve for 
the SMTs. 

A related problem was studied by Trietsch [34] to augment an existing network 
by n new terminals. When n = 2, C2 5 2AB-A2 and the existing network is a line 
segment covering [o, c], the problem is identical to the one studied by Chen. But, 
in general, the new terminals can be connected to different parts of the existing 
network. Trietsch gave a finite procedure to find the shortest augmenting network 
which essentially enumerates all possibilities and selects the shortest tree. 

The concept of MST can also be extended to models discussed in this section. 
MSTs for terminals which are finite point-sets will play a crucial role in the con- 
struction of a heuristic whose performance ratio is provably better than the Steiner 
ratio (see Part IV, Section 1.4). 

6.4 k-SMT 

Recall from Section 4.9 that a shortest tree among all STs with at  most k Steiner 
points is called a k-SMT. For k < n - 2 the maximum degree of an S M T  can be 
more than three since one may not have the freedom to add an additional Steiner 
point within an angle of less than 120', even though the addition will shorten the 
tree. This is also the case when each Steiner point costs something. Boyce [5] 
raised the question what is the maximum degree in a k-SMT for k < n - 2. 

If a vertex has six or more edges, then there exist two edges with a subtending 
angle less than 60°, and the tree can be shortened by replacing one of the two 
edges. The only exception is when a vertex has six edges of equal lengths and the 
subtending angles are all 60'. But then none of its adjacent points can have more 
than four edges. By replacing an edge of the degree-6 point by an edge connecting 
its two adjacent points, another SMT with one fewer degree-6 points is obtained. 
Repeatedly doing so eventually yields an SMT with maximum degree 5 .  

No such simple argument is available to  rid the degree-5 points from an SMT. 
Boyce conjectured, and Rubinstein, Thomas and Weng [25], using the variational 
approach (see Section 3.3), proved the following theorem. 
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Theorem 6.6 T h e  maximum degree of a Steiner point in a k - S M T  f o r  k < n - 2 
is four .  

By noting that the 1-SMT for four corners of a square consists of its two dia- 
gonals (whose intersection creates a degree-4 point), SMTs with degree-4 Steiner 
points do exist. Note that Theorem 6.6 does not apply to a degree-5 terminal 
whose existence is still an open problem. 

Therefore it suffices to consider topologies in which Steiner points have either 
three or four edges. Clearly, a degree-4 Steiner point must lie a t  the intersection 
of the two diagonals of its four adjacent points (if they don’t intersect, the cor- 
responding degree4 Steiner point does not exist) due to triangle inequality. So 
Melzak’s FST algorithm can be easily modified to apply to the k-SMT case. This 
is very fortunate since Cockayne and Melzak [ll] gave an example that the optimal 
location of a degree-5 point cannot be constructed by ruler and compass. 

For constant k one can construct a k-SMT in O(n4k+1 log n)  time since there 
are (1) + (:) choices of sets of three and four terminals to add the first Steiner 
point, (“a’) + Ti’) choices for the second, and so on. It takes constant time to 
find an SMT for three or four terminals; and then it takes O(n log n)  time to  find 
the MST for each N U M where A4 is the chosen set of Steiner points. 

Georgakopoulos and Papadimitriou [16] gave an O ( n 2 )  algorithm for 1-SMT by 
dividing the plane into O(n2)  region such that the topology of the MST of N U s 
depends only on the region of the Steiner point s, but not the exact location of s. 

6.5 0 bst acles 

A shortest tree interconnecting a terminal set N in the Euclidean plane and whose 
edges avoid a set R of obstacles will be called an obstacle-avoiding SMT and de- 
noted by SMTn(N). Applications of such trees range from the optimal design of 
oil and natural gas pipeline systems in regions with lakes, mountains and other 
natural phenomena, to the routing of mechanical and electrical systems around the 
architectural and structural elements within buildings [28]. 

If obstacles neither intersect nor touch each other, then the same reason that a 
Steiner point has exactly degree three in the regular ESP still prevails. Some other 
basic properties for routing SMTs around obstacles were given by Smith [26]. For 
easier analysis, obstacles are often assumed to be convex polygonal objects with 
a total of v extreme points (this is assumed throughout this section). Even so, 
exact algorithms have been proposed only for a single convex polygonal obstacle 
and a small number of terminals. Smith gave an O(v log v) time algorithm for three 
terminals and a single convex polygonal obstacle. 

Winter and Smith [39] considered the same problem and used a computational 
geometry approach to cut down the time complexity to O(v). If the obstacle is 
preprocessed in an appropriate way in O(v) time, then SMTn(N) can be deter- 
mined in O(1ogv) time for any set N of three terminals. The general idea behind 
the algorithm is as follows. Assume that the SMT for N = { p i , p j < p k }  cuts across 
the obstacle. Consider an ordered pair ( p i , p j )  of the three terminals. Throw a 
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polygonal chain Pi, from pi to pj such that it embraces the obstacle and separates 
it from the third terminal p k .  Local properties of the SMT and of the obstacle 
permit the replacement of pi and p,  by the extreme points on Pjj, one point at a 
time, until the SMT for the new set of points does not cut across the obstacle (see 
Fig. 6.4). Do this for all six ordered pairs of the three terminals (some of these 
six pairs can be ruled out right away). The shortest one among the six trees is an 
SMTn(N). 

6 

\ 
\ 
\ 
\ 
\ 
b 

Figure 6.4: Moving around the obstacle 
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There is a straightforward O(v2) time algorithm for four terminals and a single 
convex polygonal obstacle. Back to the general n case, the ideas of many of the 
heuristics studied in Chapter 4 can also be used here. In particular, Armillotta 
and Mummolo [2] proposed an O((n  + 7 1 ) ~ )  time heuristic by locally improving 
an obstacle avoiding MST. Smith [26,27] and Winter I381 considered heuristics by 
concatenating small obstacle-avoiding SMTs. However, there do not exist efficient 
obstacle-avoiding SMT algorithms when there is more than one obstacle. The only 
currently available method is by brute-force enumeration. 

Provan [24] extended his €-approximation scheme for SMT(N) (see Section 4.7) 
to the construction of SMTn(N). The main idea is to show that a path-convex 
hull, a minimum-perimeter region containing all terminals and avoiding all obsta- 
cles, is a Steiner hull. Provan gave an O((n + v ) ~ )  algorithm for path-convex hulls. 
The problem is then transformed to an ST problem on networks by introducing 
a lattice of nonterminals whose density depends on r. In particular, if there ex- 
ists a polynomial algorithm for the network problem, then the r-approximation 
scheme is fully polynomial. One application of this result is a fully polynomial 
€-approximation scheme for the case when all terminals except a constant number 
lie on the boundaries of obstacles. 

Winter [38] introduced the notion of Steiner visibility. A point b is Steiner 
visible to another point a given the set R of obstacles if there exists two rays from 
a and b, unobstructed by any obstacles, meeting at  a point s such that Lasb = 120' 
(asb is in the clockwise order). A Steiner visibility graph is a digraph with nodes 
N U V ,  V is the set of extreme points in R, and a link from a to b if and only if b 
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is Steiner visible from a. A plane sweeping algorithm similar to the algorithm by 
Alt and Welzl [l] for visibility graph can determine the Steiner visibility graph in 
O(nv+w2) time. Steiner visibility graphs can be used to quickly determine whether 
an FST for three nodes penetrate any of the obstacles. A generalized version can 
accommodate FSTs with more than three nodes. 
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Chapter 1 

Introduction 

The Steiner problem in networks is a combinatorial version of the Euclidean Steiner 
problem discussed in Part I .  It can be formulated as follows: 

0 GIVEN: An undirected network G = (V, E ,  c) where c : E -+ R is an edge length 

FIND: A subnetwork T G ( N )  of G such that: 

function, and a non-empty set N ,  N C V ,  of terminals. 

- there is a path between every pair of terminals, 

- total length ITG(N)I = Ce,ETa(N) c(e1) is minimized. 

The vertices in V \ N are called non-terminals. Non-terminals that end up in 
T G ( N )  are called Steiner vertices. 

If G is not connected and terminals appear in at least two components, then 
the Steiner problem has no solution. If G is not connected but all terminals appear 
in the same component, then the remaining components can be disregarded (with 
the exception of negative length edges that all must be in T G ( N ) ) .  It is assumed 
in the sequel that G is connected. 

The subnetwork T G ( N )  is called a Steiner minimal network for  N in G .  
Contrary to  the Euclidean version of the Steiner problem, Steiner vertices in the 
network version are selected from a finite set of non-terminal vertices. 

If all edges in G have positive length, a Steiner minimal network T G ( N )  must 
be a tree. The problem is therefore often referred in the literature as the Steiner 
tree problem, and T G ( N )  is called a Steiner minimal tree for N in G. In particular, 
TG(V) denotes a minimum spanning tree for G .  

It is assumed in the sequel that edge lengths are positive. However, it will be 
shown in Subsection 1.4.1 how an instance of the Steiner problem in a network 
with non-positive edge lengths can be transformed to  an instance with positive 
edge lengths. 

Terminals and non-terminals in the network shown in Fig. 1.1 are indicated by 
black and white circles respectively. The Steiner minimal tree is indicated by heavy 
line segments. 
lTc(N) should in fact be referred to as a Sieiner minimum network. However, for historical 

reasons, the less correct term widely used in the literature is preferred. 

93 
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5 

Figure 1.1:  Steiner minimal tree 

The Steiner tree problem in networks was  originally formulated by Hakimi [7] 
and independently by Levin [14] in 1971. Since then, the problem received consid- 
erable attention in the literature. Several exact algorithms and heuristics have been 
suggested, implemented and compared. Surveys on the Steiner tree problem in net- 
works have been given by Foulds and Rayward-Smith[4], Winter [24], Maculan [15], 
Korte, Promel and Steger [ll] , Voss [22] and Hwang and Richards [9]. 

In the remainder of this chapter some applications of the Steiner tree problem 
are pointed out. Basic definitions are given. Some special cases of the problem and 
various reformulations are discussed. The complexity of the problem is discussed 
in the final section of this chapter. Chapter 2 is concerned with various ways of 
reducing instances of the Steiner tree problem to smaller instances by identifying 
edges and non-terminals that either belong or do not belong to  at least one Steiner 
minimal tree. Such reductions are of extreme importance in connection with the 
exponential exact algorithms for the Steiner tree problem discussed in Chapter 3. 
Heuristics for the Steiner tree problem are described in Chapter 4. Their worst-case 
time complexity and worst-case error ratio is discussed. There are certain classes of 
networks in which the Steiner tree problem can be solved optimally in polynomial 
time. They are discussed in Chapter 5. Finally, Chapter 6 gives an overview of 
problems in one way or another related to the Steiner tree problem in networks. 

1.1 Applications 

The Steiner tree problem in networks has obvious applications in the design of 
various communication, distribution and transportation systems. 

An interesting real-life problem that can be formulated as the Steiner tree prob- 
lem in networks arises in connection with the wire routing phase in physical VLSI 
design [13]. After the placement of components on a chip, sets of pins on the com- 
ponent boundaries are to be connected within the remaining free chip space. For 
each set of pins sharing the same electrical signal, a Steiner minimal tree for pins 
as terminals is sought. The underlying network is defined by the positions of pins 
and component boundaries. 

Determining a customer’s bill for renting a large communication network also 
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) leads to the Steiner tree problem in networks [6]. The bill is not based on the 
actual circuits supplied. These circuits may be roundabouts and may change over 
time as other customers change their demands. Instead, the bill is obtained by ap- 
plying some simple formula to an ideal network that would provide all the required 
facilities at minimum cost. 

Many network design problems can be formulated as Steiner tree problems 
in undirected as well as directed networks. This is for example the case for the 
uncapacitated plant location problem [16,15]. A variety of network design problems 
can be viewed as generalizations of the Steiner tree problem [16]. 

1.2 Definitions 

An undirected graph G = (V ,  E )  consists of a nonempty set V of v vertices and a 
set El E V x V ,  of e edges connecting pairs of vertices. An undirected network 
G = (V, El c )  has V and E as in undirected graphs. In addition, it has a length 
funct ion c : E --+ R associated with the edges. Graphs can be considered as 
networks with unit length edges. The reader is referred to Harary [S] for more on 
graph theory and graph-theoretical concepts defined below. 

An edge el between a pair of vertices vi and v j  is denoted by (vi ,vj) .  The 
vertices vi and v j  are the end-vertices of e l .  The number of edges incident with a 
vertex vi in a network G is called the degree of vi, denoted by d e g c ( v i )  or d e g ( v i )  
if there is no danger of confusion. 

If an edge el connects a vertex vi with itself, then el is called a loop. If two 
edges ek and el connect the same pair of vertices, then ek and el are said to be 
parallel. Unless explicitly stated, networks are assumed to be loopless and without 
parallel edges. 

An alternating sequence of vertices and edges beginning and ending with ver- 
tices, in which each edge is preceded and followed by its end-vertices) is called a 
walk. If all vertices are distinct, then the walk is called a path.  If all vertices apart 
from the first and last vertex are distinct, and the number of vertices is greater 
than 2, then the walk is called a cycle.  A network with no cycles is called a fores t .  

A network is said to be connected if it has a path between every pair of vertices. 
Otherwise it is said to be disconnected. A connected forest is called a tree.  

A network H = (W,  F , c F )  is called a subnetwork of G = (V, E , c )  if W C V ,  
F E El and c F ( e l )  = .(el) for all el E F .  H is said to span X E V if X C_ W .  H 
is induced by a subset W of vertices in G if its edges are precisely all edges of G 
connecting vertices in W .  

A disconnected network consists of two or more maximal (with respect to the 
number of vertices) connected induced subnetworks, called components  of G. A 
cut-vertex of a network G is a vertex whose removal increases the number of com- 
ponents. A bridge is such an edge. A network G is nonseparable if it is connected 
and has no cut-vertices. A block of a network G is a maximal (w.r.t. the number 
of vertices) nonseparable subnetwork of G. 

Let W denote a subset of vertices in a network G = (V, El c ) .  Its complementary 
subset is'W = V \ W. A partition {W, W} of V , 0 C W C V ,  is called a cut.  The 



96 C H A P T E R  1. INTRODUCTION 

set of its crossing edges {(v;, v j )  E E I vi E W,vj  E w} is called a cut-set between 
W and W. 

A contraction of a network G along an edge (v i ,v j )  results in a network G 
obtained in the following way (Fig. 1.2): 

0 the edge ( v , ,  v]) is deleted, 
any edge ( v k ,  vJ) is replaced by an edge ( v k ,  v,) (of the same length). The vertex 

0 if pairs of parallel edges occur as a result, only the shorter edge in each pair is 

vJ is deleted, 

retained. 

5 5 

Figure 1.2: Contraction along (v i ,  v j )  

A network with every pair of vertices being adjacent is said to be complete. A 
network in which the vertices can be partitioned into two sets W and W such that 
each edge is in the cut-set between W and W is said to be bipartite. A network 
that can be drawn in the plane such that (not necessarily straight) line segments 
corresponding to edges touch each other only at points corresponding to vertices 
is said to be planar. 

For every edge el = (vi ,  v j )  in G = (V,  E ,c ) ,  its length or cost c(el)  is also 
denoted by c(v,,vj), c,,,,,, or cij. The length of any subnetwork H of G is defined 
by CelEH c(el)  and denoted by IHI or c ( N ) .  

A network G is said to satisfy the triangle inequality if G is complete, c ( e 0  2 0 
for all el E E ,  and c;j 5 C;k + c k j  for all v;, v j ,  vk E V .  

A minimum length path P G ( v ~ ,  v j )  between two vertices vi and v j  in G is also 
denoted by P(v i , v j ) ,  PV,,,, or Pi,. Its total length IPG(vi,vj))I is also denoted by 
d G ( V i , V j ) ,  d(vi ,v j )  or d i j .  A minimum length path between a subset W of V and 
a vertex vi E V is denoted by PG(W,V;).  A complete network D G ( W )  with W ,  
W C_ V ,  as its vertex set, and with d ~ ( ~ i ,  v j )  for each pair of vertices vi,  v j  6 W 
as the length of the edge (v i ,  v j ) ,  is called a distance network of W in G. Clearly, 
D G ( W )  satisfies the triangle inequality. If W = V and G is obvious from the 
context, D c ( V )  is denoted by D .  

Most of the definitions for undirected networks carry over in natural way to  
directed networks where edges, referred to  as arcs, are ordered pairs of vertices. An 
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arc from a vertex vi t o  a vertex Vj is denoted by [ V i ,  ~ j ] .  Note that [vi, vj] # [vj, vi]. 
Let G= (V, A,  c) denote a directed network. An arborescence rooted at some vertex 
vk E V is a subnetwork of G with no cycles and such that each of its vertices can 
be reached from Vk by a directed path. 

The cardinality of any set S is denoted by ISl. Although the same notation is 
used to  indicate lengths of networks, a particular meaning will be obvious from the 
context. Union of a set S and one-element set { t }  is denoted by S U t rather than 
by formally correct S U { t } .  Similarly, S - t is used to  denote the set difference 

- - 

s \ { t } .  

1.3 Trivial Special Cases 
Let G = (V, El c) be an undirected, connected network, and let N = {vl, vz, ..., vn} 
be a set of terminals in G. Whenever it is necessary to  emphasize that ~11,212, ..., v, 
are terminals, symbols z1,z2,  ..., z,  are used. Under the assumption that all edges 
have positive length, there are the following special cases: 

0 If n = 1 ,  then the unique Steiner minimal tree consists of the terminal alone. 

If n = 2, then the Steiner tree problem reduces to the well-known shortest path 
problem. Several polynomial time algorithms for this problem are known [1,3,21]. 

If n = v ,  then the Steiner tree problem reduces to the well-known minimum 
spanning tree problem. Several polynomial time algorithms for this problem are 
known [ 12,19,21]. 

Suppose that G is separable. A block BI of G is said to  be intermediate if there 
is a pair of terminals zi  and z j  in G such that every path between zi and z j  contains 
at least one edge of BI. Let B1, B2, ..., BI, denote the intermediate blocks of G. Let 
N I  denote the terminals in BI, 1 5 1 5 k. Let Cr denote the cut-vertices of G in BI, 
1 5 1 5 k. Then T G ( N )  = Uf=l T B , ( N ~  u Cl). Hence, the instance of the Steiner 
tree problem for N in G reduces to  k smaller Steiner tree problem instances. 

A linear-time algorithm based on the depth-first search that finds all blocks in 
a network is available [20]. Pruning of non-intermediate blocks can also be done in 
linear time. Although the applicability of block decompositions is rather limited 
in larger, multiconnected networks, reductions described in Chapter 2 may result 
in smaller networks where cut-vertices do appear. 

1.4 Problem Reformulations 
In this section some ways of reformulating the Steiner tree problem are discussed. 

1.4.1 Positive Length Edges 

Every negative length edge must belong to  every T G ( N ) .  Furthermore, there is an 
optimal solution containing all zero-length edges. Consequently, optimal solutions 
for problem instances with non-positive edge lengths are not necessarily connected 
(but all terminals will be in the same component) and can contain cycles. 
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A problem instance with arbitrary edge lengths can be transformed into a prob- 
lem instance with positive edge lengths by contraction along non-positive-length 
edges. Given a Steiner minimal tree for the reduced problem instance, a Steiner 
minimal network for the original problem instance is obtained by the reintroduc- 
tion of the contracted edges. Therefore positive edge lengths are assumed in the 
sequel. 

1.4.2 Complete Networks 

Let G = ( V , E , c )  be a connected network. Consider a complete network G' 
obtained by adding edges of length greater than IGI between every pair of non- 
adjacent vertices. The added edges are assumed to have infinite length. Solving an 
instance of the Steiner tree problem for N in G is clearly equivalent to solving an 
instance of the Steiner tree problem for N in G'. Although this reformulation is 
of no practical significance, it simplifies some of the proofs that follow in this and 
subsequent chapters. 

1.4.3 Distance Networks 

Solving an instance of the Steiner tree problem for N in G is equivalent to solving 
an instance of the Steiner tree problem for N in the distance network D = DG(V). 
This is a direct consequence of the following lemma. 

Lemma 1.1 ITG(N)I = ITD(N)I. 

Proof: Suppose that a Steiner minimal tree T G ( N )  is given. ITG(N)I = I T p ( N ) I .  
Furthermore, every edge in D is not longer than the corresponding edge in G'. 

On the other hand, suppose that a Steiner minimal tree T D ( N )  is given. The 
network obtained by replacing each edge of T D ( N )  by the corresponding shor- 
test path yields a connected subnetwork of G that spans all terminals. Hence, 

0 

Thus, ITG(N)( = ITG'(N)( 2 ITD(N)I. 

ITD(N)I 2 ITG(N)I. In conclusion, )TG(N)I = ITD(N)I. 

Given a Steiner minimal tree T D ( N )  for N in D ,  a Steiner minimal tree T G ( N )  
for N in G is obtained by replacing edges in T D ( N )  by the corresponding shortest 
paths. Note in particular that edge lengths in D satisfy the triangle inequality. 

Solving the Steiner tree problem for N in D rather than in G has both its 
advantages and disadvantages. One of the advantages is that any Steiner vertex in 
at  least one T'(N) must have degree greater than 2. Consequently, such T'(N) 
can contain at most n - 2 Steiner vertices. The proof of these facts will be given in 
Section 3.1. If G is dense and has few terminals, solving the Steiner tree problem 
for N in D by the spanning tree enumeration algorithm (Section 3.1) can be much 
more efficient than solving the Steiner tree problem for N in G. On the other hand, 
if G is sparse and has many terminals, structural properties of G will be lost when 
the problem is transformed. 
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1.4.4 Steiner Arborescence Problem 

Mathematical programming formulations of the Steiner tree problem in undirected 
networks that will be given in Chapter 3 are for a more general Steiner arborescence 
problem in directed networks. This section first gives the formulation of the Steiner 
arborescence problem. It  is then shown how every instance of the Steiner tree 
problem in an undirected network can be transformed into an instance of the Steiner 
arborescence problem in a directed network. 

V ,  be a set of terminals. 
Finally, suppose that one of the terminals (21, say) is designated as the root. Let 
N1 = N - 21. The Steiner arborescence problem for N in the directed network G is 
to find a least length arborescence T - ( N )  rooted at 11 and spanning all terminals. 
In other words, one looks for a set of paths from 11 to all terminals in N1 such that 
the total length of the arcs in these paths is as small as possible. 

Any instance of the Steiner tree problem in an undirected network G can be 
transformed into an instance of the Steiner arborescence problem in a directed 
network G. Replace every undirected edge (vi ,  v j )  in G by two directed arcs [vi, v j ]  

and [v i ,v i ] .  Associate the length of the edge (v i ,v j )  with the two opposite arcs 
[ui, vj] and [v,, vi]. Select any terminal as the root 21. Then the solution T - ( N )  to  

the Steiner arborescence problem for N in G= (V,  A ,  c) gives the solution T G ( N )  
of the undirected Steiner tree problem for N in G: T G ( N )  consists of those edges 
whose end-vertices are connected by arcs in T - ( N ) .  

Let E= (V ,A ,c )  be a directed network. Let N ,  N 

+ 

G 

+ 

G 
4 

G 

1.4.5 Degree-Constrained Formulation 

The Steiner tree problem for a set of terminals N in an undirected network G = 
(V, El c) can be formulated as a problem of determining least length tree spanning 
all vertices of a slightly larger network subject to simple degree constraints. The 
significance of this formulation stems from the fact that it directly leads to a couple 
of exact algorithms that will be discussed in Chapter 3. 

Add a new vertex vo to G. Connect it to one, arbitrarily chosen, terminal 
z1 and to  all non-terminals by zero-length edges. Let G denote the new network 
(Fig. 1.3). Consider a minimum length tree !&(V U vo) spanning G such that 
any non-terminal adjacent to TJO in Ta(V U vo) has degree 1. The subtree Tc(N)  
obtained from Tc(V U vo) when 210 and all degree 1 non-terminals are removed, 
spans all terminals. It can be easily verified that F G ( N )  is a Steiner minimal tree 
for N in G. 

The addition of a new vertex vo is not strictly necessary. Zero-length edges 
from an arbitrarily chosen terminal could be used. However, this would cause 
some complications due to the presence of parallel edges. 

A similar reformulation is possible in connection with the Steiner arborescence 
problem. The only difference is that instead of edges from the vertex vo, arcs 
directed from vo are added. 
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Figure 1.3: Networks G and G 

1.5 Complexity 
The Steiner tree problem is an NP-hard optimization problem. Karp [lo] stated 
(without proving) that the problem is NP-hard even if G is a bipartite network. 
In fact this is the case even if G is a bipartite graph with no edge joining a pair 
of terminals or a pair of non-terminals. In order to prove this result, consider the 
following Steiner tree decision problem: 

GIVEN: A bipartite graph G = (V, E), a subset N of terminals, and an integer B. 
Assume furthermore that no pair of terminals or non-terminals is adjacent in G. 

0 DECIDE: Is there a tree Tin G that spans all terminals and has at most B edges? 

Theorem 1.1 The Steiner tree decision problem is NP-complete.  

Proof: The Steiner tree decision problem in bipartite graphs is obviously in the 
class NP. In order to prove the completeness, an instance of the exact cover by 
3-sets problem is transformed in polynomial time to an instance of the Steiner tree 
decision problem in a bipartite graph with no pair of terminals or non-terminals 
being adjacent. 

The exact cover by 3-sets problem can be formulated as follows. 
GIVEN: A set X = (21, 2 2 ,  ..., 23p} and a family of subsets C = {C,, Cz, ..., Cq}  

DECIDE: Is there an exact cover of X by subsets from C (i.e., is it possible to 

Construct a problem instance of the Steiner tree decision problem in a graph 

0 v = v o u c u x  
0 E = { ( ~ o ,  Ci)ll I: i 5 4) U {(Ci, ~ 3 ) l . J  E Ci, 1 5 i 5 q, 1 5 i I: 3 ~ )  

0 N = v o U X  
B = 4 p  

such that C, E X and ICi/ = 3 for all z = 1 , 2 ,  ..., q.  

select some mutually disjoint subsets from C such that their union is X)? 

G = (V, E )  as follows (Fig. 1.4). 
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It is obvious that a Steiner minimal tree for N in G = (V, E) of length B exists 
if C contains an exact cover for X. Suppose that C does not contain an exact 
cover of X. Each terminal in X must be incident with exactly one edge in T G ( N ) .  
Consequently, T G ( N )  must contain at least p + 1 non-terminals in C. It follows 
that T G ( N )  must contain at least 4 p +  2 vertices. Since the number of edges in any 
tree is one less than the number of its vertices, (TG(IV)I 2 4 p  + 1. 0 

X 1  

x2 

x3 

x4 

x5 

0 
V 

Figure 1.4: Transformed instance 

An alternative proof of Theorem 1.1 was given by Plesnik [18] where an instance 
of the vertex cover problem is transformed in polynomial time to an instance of 
the Steiner tree problem in a bipartite graph. 

The Steiner tree problem remains NP-hard even if G is 
a chordal graph [23], 

a strongly chordal network [23], 

0 a chordal bipartite graph [17], 

0 a split graph [23], 

0 a planar network [5], 

0 a complete network with edge lengths either 1 or 2 [2]. 

As already indicated, the Steiner tree problem is NP-hard for planar networks. 
However, the complexity of the problem in planar graphs remains to  be settled. 
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Chapter 2 

Reductions 

A particular instance of the Steiner tree problem often can be reduced to a smaller 
one by examining local properties of the network G. Reductions fall into two main 
categories: 

0 identification of edges or non-terminals that do not belong to at least one Steiner 
minimal tree. 

0 identification of edges or non-terminals that belong to at least one Steiner minimal 
tree. 

It is assumed that the reductions are applied one at a time. When an edge 
(vi, v j )  belonging to a Steiner minimal tree is identified, G is reduced to a smaller 
network by the contraction along (vj, vj) .  The vertex to which (vi, vj )  is contracted 
is then regarded as a terminal. Deletions of edges and non-terminals are straight- 
for ward. 

Reductions decrease the cardinality of the vertex and edge sets. They are 
important since the performance of exact algorithms and heuristics for the Steiner 
tree problem is closely related to these parameters. Furthermore, heuristics may 
produce better solutions in the reduced networks. Reductions can also be applied 
at intermediate stages of any branch-and-bound algorithm. 

Computational experiments indicate that a large number of problem instances 
can be solved by reductions alone. The remaining problem instances are reduced 
substantially (on average to one fourth of the original sizes). 

Tests identifying edges or non-terminals not belonging to at least one Steiner 
minimal tree are discussed in Section 2.1. Inclusion tests for edges or non-terminals 
are covered in Section 2.2. The important issue of how to integrate exclusion and 
inclusion tests is addressed in Section 2.3. Effectiveness of reductions is discussed 
in Section 2.4. 

Reductions of instances of the Steiner arborescence problem in directed net- 
works are of similar nature as the reductions described below. The reader is referred 
to Voss [12] for a review. 
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2.1 Exclusion Tests 

This section discusses various tests that can be used to identify edges and non- 
terminals not belonging to at least one Steiner minimal tree. Some very simple 
tests are given first. More complicated tests described next in fact generalize the 
simpler ones. The reason for including simpler tests is partly historical and partly 
because they often (but not always) are faster to check than their generalizations. 

2.1.1 Non-Terminals of Degree 1 (NTD1) 

Suppose that a network G contains a non-terminal V k  of degree 1. Let (Vk,Vi) be 
the edge incident with vk. This edge cannot be in any Steiner minimal tree. If it 
did, its deletion would result in two components, one containing Vk alone, the other 
containing all terminals. Since cwku, > 0, the component spanning all terminals 
has a smaller total length than any Steiner minimal tree, a contradiction. Hence 
vk and its incident edge ( V k ,  vi) can be removed from G. 

2.1.2 Non-Terminals of Degree 2 (NTD2) 

Suppose that a network G contains a non-terminal uk of degree 2. Let ( v i , v k )  
and ( v k ,  Vj) denote the two edges incident with V k .  If c,,,,~ + cvkw,  2 cv,,,,, then 
there is at  least one Steiner minimal tree not containing Vk. Hence V k  (and its 
two incident edges) can be deleted from G. If c”,,,~ + cUkuJ < c,,,~, , then the edge 
( v i , v j )  cannot belong to any Steiner minimal tree and can be deleted from G. 
Furthermore, the edges (vi, vk) and (vk, v]) can be replaced by a new edge (vi, vj) 
of length c,,,,,~ + cuk,,, , and the non-terminal Vk can be deleted from G (Fig. 2.1). 

Figure 2.1: Removal of a non-terminal of degree 2 

Suppose that the added edge (vi, u j )  is eventually found to belong to a Steiner 
minimal tree for the reduced problem instance. In order to obtain a Steiner minimal 
tree for the original problem instance, the edge (vi, vj) has to be replaced by the 
original two edges (vi, v k )  and (vk , vj) whereby the non-terminal ‘Uk is reintroduced. 
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2.1.3 Non-Terminals of Higher Degree (NTDk) 
Let v, and vj  denote two vertices in a network G. Any path P from v; to vj 
breaks down into one or more elementary paths between vi, successive terminals 
and vj. A Ste iner  distance between v; and v, along P is the length of the longest 
elementary path in P .  The bottleneck S te iner  distance b v t v j  between vi and v j  is 
the minimum Steiner distance between vi and vj taken over all paths from vi to v j  
in G. Furthermore, the restricted bottleneck S te iner  distance 6,,,j between vi and 
v j  is the bottleneck Steiner distance between vi and Vj in G - ( V i ,  vj). 

Every path between v; and v j  in G contains a t  least one elementary path of 
length at least bvtVj .  Any path between vi and v, in G containing an elementary 
subpath of length bv iv j  is called a bottleneck S te iner  path between vi and vj. It will 
be shown in Subsection 2.3.1 that bottleneck Steiner distances between all pairs of 
vertices in G can be determined in O(v2n) time. 

Let I?,, denote the vertices of G adjacent to a non-terminal V k .  Let B,, denote 
a complete network with I?,, as its vertex set (Fig. 2.2). The length of an edge 
( v i ,  v j )  in B,, is defined as the bottleneck Steiner distance b,,,, between vi and v j  
in G. Let B:, denote a subnetwork of B,, induced by a subset I?:, of rvk .  Finally, 
let TL, denote a minimum spanning tree for I?:, in BL,, and let CL, be the set of 
edges in G connecting v k  with the vertices in rh, . 
Lemma 2.1 ([6]) If 

l T i k l  5 Ic lk l  
for every subset I?:, of r,,, Irk, I 2 3 ,  then the non-termana/ V k  has degree at mos t  
2 in  at least one S te iner  min imal  tree.  

Proof: If degG(Vk) 5 2 ,  then the lemma clearly holds. It will be therefore in the 
following assumed that degG(Vk) > 2 .  

Suppose that wk has degree at least 3 in every Steiner minimal tree for N in G. 
Consider a Steiner minimal tree T G ( N )  for N in G where V k  has lowest possible 
degree 1, 1 2 3. Let r;, denote the set of vertices adjacent to V k  in TG(N) .  Remove 
V k  from T G ( N ) .  It then breaks into 1 subtrees T,,, T,,, ..., T,,, each containing one 
of the vertices previously adjacent to v k .  

Pick a shortest edge (vi, v3) in Ti,. Consider a bottleneck Steiner path P,,,, 
in G (in Fig. 2.2 vi = v1, v, = 213 and P,,,, is indicated by the shaded region). 
Traverse P,,,, from vi toward v j .  Whenever a path P,;,; between vertices in two 
different trees T,, and T,, is encountered, T,, and T,, are interconnected by it. 
This interconnecting path P,;,: is a subpath of one of the elementary paths in 
P,,,,, . Consequently, IPv;,; I I b,,,,,. 

The traversal of P,,,, can interconnect several subtrees in T,, ,T,,, ..., T,, (e.g., 
PvlvJ in Fig. 2.2 goes through Tv2).  If there is more than one subtree left when 
v j  is reached during the traversal of P,,,, , the second shortest edge of Ti, and 
the corresponding bottleneck Steiner path in G are processed in the same manner. 
This continues until all subtrees T,,, , T,, , ..., T,, become interconnected. 

Exactly I -  1 subpaths must be added to T G ( N ) - v k  before it becomes connected. 
Their total length L ,  is at  most ITLkI. Since T G ( N )  is a Steiner minimal tree, L 
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Figure 2.2: G, T c ( N )  and Bh, 

must be at least IC:,I. Hence, L 5 lTLkl 5 IC~,l 5 L .  The tree obtained from 
TG(N)-vk  by adding the edges on the I -  1 subpaths yields another Steiner minimal 
tree T& ( N )  . 

Suppose that V k  has degree 1 in T & ( N ) .  The length of 1 paths from ?Ik to 
T,,,T,,, ..., T,,, in T,$(N) is ICl,I. Furthermore, IC~J  < L 5 IZ"~,J, a contradiction. 
Hence, T & ( N )  is a Steiner minimal tree where vk has degree less than I .  This is in 
contradiction with the manner in  which T G ( N )  was chosen. 0 

If the conditions of Lemma 2.1 are satisfied, then the non-terminal wk appears 
in at least one Steiner minimal tree with degree at most 2. The original instance of 
the Steiner tree problem can be reduced in the following way. The non-terminal Vk 

is removed together with its all incident edges. The edges (wi, wj), wi, wj  E I?,,,, of 
length C,,~,,, + cvrUj are added to G. If parallel edges arise as a result, only shorter 
ones are retained (Fig. 2.3). Once the smaller instance of the Steiner tree problem 
is solved, new edges appearing in the solution are replaced by the corresponding 
pairs of edges. 

It can be easily verified that the NTDk-test is a generalization of the NTD1- 
and NTDZtests. 

The number of minimum spanning trees constructed in connection with the 
NTDk-test grows exponentially with d e g G ( v k ) .  Consequently, this test should be 
applied to  non-terminals of low degree (typically not more than 4). 
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Figure 2.3: Removal of a non-terminal of degree 3 

2.1.4 Long Edges (LE) 
This test permits a deletion of long edges. The simple proof is omitted as the 
LE-test will be subsequently generalized. 

Lemma 2.2 ([2]) Any edge  (vi, wj) with 

cv,u, > d v , v ,  

can be removed from G .  

An application of the LEtest  is shown in Fig. 2.4a where the edge indicated by 
the broken line segment caii be removed. The LE-test can be generalized to  cover 
the case when c ~ , ~ ,  = d,,,", provided that there is a shortest path from vi to W j  

other than the shortest path consisting of the edge (wi,vj) alone. 

Figure 2.4: Removal of long edges 

2.1.5 

This test is closely related to the LE-test. However, unlike the LE-test, it uses some 
information about the location of terminals in the network. Again, the simple proof 

Paths with One Terminal (PT1) 
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is omitted as the PT1-test will be subsequently generalized. 

Lemma 2.3 ( [ 6 ) )  If G contains an edge ( v i , v j )  and there is a terminal %k such 
that 

G , ~ ,  > max{du,,, , dujJL} 

then (vi ,  v j )  can be removed from G. 

An application of the PT1-test is shown in Fig. 2.4b where the edge indicated 
by the broken line segment can be removed. Contrary to the LE-test, the PT1-test 
can be successful in networks satisfying the triangle inequality and in Euclidean 
networks in particular. 

2.1.6 Minimum Spanning Trees (MST) 

This test was originally given by Balakrishnan and Pate1 El] in terms of three related 
tests. Only a unified version is presented here. Assume that G is a complete 
network. This is not a significant restriction as any instance of the Steiner tree 
problem can be transformed into an equivalent problem instance on a complete 
network by adding edges of “infinite” length (Subsection 1.4.2). 

Lemma 2.4 ([7]) Any e d g e  (vi, v j )  not in a minimum spanning tree for the sub- 
network of G induced by  N U {vi, v j }  can be removed from G. 

The proof is omitted as a more general test will be given below. An application 
of the MST-test to all edges in G is shown in Fig. 2.5. Not shown edges have 
“infinite” length. Edges that can be deleted by the MST-test are indicated by 
broken line segments. 

Figure 2.5: Removal of long edges based on the MST-test 
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2.1.7 Paths with Many Terminals (PTm) 

This test is a generalization of both the L E  and PT1-tests. It can also be shown 
to be a generalization of the MST-test [7]. 

Lemma 2.5 ( [ 6 ] )  Any edge (vj ,  v j )  with 

can be removed  f r o m  G .  

Proof: Suppose that a Steiner minimal tree T G ( N )  contains an edge (vi, v j )  with 
c,,,, > b,,, , .  T G ( N )  - (vi,vj) consists of two components: C,,, containing vi and 
C,, containing v,. Consider a bottleneck Steiner path P,,,, in G. Let P be the 
shortest subpath on P,,,, which has one end-vertex in C,,, and the other end-vertex 
in C,,. P always exists and is completely within one of the elementary paths of 
Po,,,. Hence lPl 5 b,,,, < c,,, , .  Reconnecting C,, and C,,, by P yields a tree 
spanning all terminals and being shorter than T G ( N ) ,  a contradiction. 0 

Figure 2.6: Removal of long edges based on the PTm-test 

An application of the PTm-test to  all edges of G is shown in Fig. 2.6. Edges 
that can be deleted by the PTm-test are indicated by broken line segments. 

The PTm-test is also applicable when cViuj  = buivj = bvivj. However, com- 
plications can arise if this extended PTm-test is applied more than once without 
the recalculation of the restricted bottleneck Steiner distances. The restricted bot- 
tleneck Steiner distances b,,Z2,b,l,3,bz2Z3 in Fig. 2.7 are all equal to 4. Any of 
the edges (z1, zz) ,  ( z 1 , 2 3 ) ,  (22, z3) can be deleted from G. Suppose that (21, z3) is 
deleted. This causes both b,, , ,  and b,,z3 to increase from 4 to 5 (assuming that 
all not shown edges of G have length at least 5). Consequently, the removal of for 
example ( z 1 , z ~ )  is now not allowed. 

- 
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Figure 2.7: Improper removal of two edges 

2.1.8 Reachability (R) 

Suppose that a tree T; (N)  spanning the terminals is available. TG(N)  can for 
example be obtained by one of the heuristics for the Steiner tree problem discussed 
in Chapter 4. Let vI denote any non-terminal of G not in TG(N). Let zi and zj 

denote terminals closest and second-closest to v1 in G. Let Zk denote a terminal 
farthest away from vI in G. 

Lemma 2.6 ( [2 ,6] )  If 

d,,*, + d,,ZJ + d,,,, L ITG(N)I 

then there exzsts at  least one Stezner mznamal tree where vI has degree at mos t  2.  

Proof: Assume first that the non-terminal v1 has degree at least 3 in some Steiner 
minimal tree T G ( N ) .  Let z i  denote a terminal farthest away from v1 in T G ( N ) .  
Since T G ( N )  is a subnetwork of G, .zi is at least d,,,, away from 0 1 .  Let z{ denote 
a terminal closest to  v1 in T G ( N )  and such that it can be reached from v1 by a 
path edge-disjoint from the path to  z i .  The length of this path from 211 to 2: is at  
least d,,,, . Let 2:. denote a terminal closest to v1 in T G ( N )  and such that it can be 
reached from vI by a path edge-disjoint from the paths to z t  and 2:. The length 
of this path from v1 to  2; is at least d,,,, . The three edge-disjoint paths in T G ( N )  
have therefore total length at  least d,,,, + d,,,, + d,,,,, . Hence, 

ITG(N)I 2 d u t z ,  + d u , z ,  +du,z, 2 ITG(N)I 

implying that Tf(N) is a Steiner minimal tree not containing 211. cl 

If the condition of Lemma 2.6 is fulfilled, then v~ can be deleted from G in 
the way already described in Subsection 2.1.3. The addition of new edges between 
vertices adjacent to  vI can be completely avoided if 

d v t z ,  + d,,z, L ITaN)I 

To see this, suppose that there is a Steiner minimal tree T G ( N )  where v1 has degree 
2. Let z i  and z: be as defined above. The total length of paths from vl to .I, and z: 
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is at least d,,,, +d,,,,. Consequently, ITG(N)I 2 duIz i  +d,,,, 2 lTG(N)l, implying 
that T f ; ( N )  is a Steiner minimal tree not containing v1. 

T; (N)  in Fig. 2.8 is indicated by thick line segments. In this particular example, 
all non-terminals not in T G ( N )  disappear due to the R-test. Consider for example 
the non-terminal 215. Then zi  = 23, z j  = 24 and t k  = z1. Furthermore d,,,, = 2, 
d,,,, = 5 and duSz1 = 9 while lTG(N)l = 10. Hence 215 can be deleted from G. For 
the non-terminal 216, one has Z i  = 2 2 ,  z j  = 24 and Zk = z3. Furthermore d,,,, = 2, 
d,,,, = 4 and dugtS = 6. Hence 216 can be deleted from G. However, in this case 
edges (22,217) and (~7,218) of length 5 and 4 respectively must be added to G. There 
is no need of adding the edge (z2,  218) of length 3 since G already contains an edge 
between these two vertices of length 1. 

Figure 2.8: Removal of non-terminals based on the R-test 

2.1.9 Cut Reachability (CR) 

Let TG(N)  and v1 be as in Subsection 2.1.8. Let ?,, denote the length of the 
shortest edge in G incident with a terminal z i .  Select zi and zj such that d,,,, - cz, 
is smallest possible, and duIzJ - E Z J  is second smallest. Let Nij = N \ { z i ,  z j } .  

Lemma 2.7 ([9,6]) If 

then there exists a S te iner  minimal  tree not containing vI. 

Proof: Suppose that there is a Steiner minimal tree T G ( N )  containing vI. At least 
one edge enters each terminal. There are a t  least two edge-disjoint paths leaving vl 
toward two distinct terminals z: and z j .  Furthermore, z: and zj can be chosen such 
that there is no terminal on the paths from vl to z: and z; , respectively. Hence, 
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Consequently, TG(N)  is a Steiner minimal tree not containing vl. 0 

There is also an edge version of this test. Let (vi, v,) denote an edge of G not 
in T G ( N ) .  Select zi # vj and zj # vi such that d,,,, - C,, + dujz ,  - C z J  is smallest 
possible. 
Lemma 2.8 ([9,6]) If 

+ cus,~  + d , ~ 2 3  + ' z k  2 [TG(N) l  
Z k E N , ,  

then there is a Steiner minimal tree not containing the edge  (vi, vj). 

The proof, analogous to the proof of Lemma 2.7, is omitted. An application 
of the vertex version of the CR-tests is shown in Fig. 2.9 where C,, = 2 while 
G2 = C,, = C,, = 1. Non-terminals and their incident edges indicated by broken 
line segments can be removed from G. For instance, consider the non-terminal 
v5: d,,,, = 5, d,,,, = 8, dug,, = 4, d,,,, = 7. Furthermore, d,,,, - cZ1 = 3, 
d,,,, - Cz2 = 7, dug,, - C z 3  = 3, d,,,,, - C,, = 6. Let zi = z1 and zj = 23. Then 
the left side of (2.1) is equal to 11 while IT&(N)I = 10. It can be easily verified 
that the vertex version of the CR-test may fail for a non-terminal vl while the edge 
version is applicable to  one of the edges incident with vl. In particular, the edge 
(v7 ,zg )  would be removed by the application of the edge version of the CR-test. 

"5 

z1 

Figure 2.9: Removal of terminals based on the CR-test 

2.2 Inclusion Tests 

In this section tests that identify edges and non-terminals belonging to a t  least one 
Steiner minimal tree are discussed. Again, for similar reasons as when describing 
the exclusion tests, simple tests, which are subsequently generalized, are discussed 
first. 
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2.2.1 

Suppose that G contains a terminal zi with degG(zi) = 1. The unique edge ( z i ,  vj) 
belongs to every Steiner minimal tree. G can be reduced by contracting it along 

Terminals of Degree 1 (TD1) 

( zi , vj  1. 

2.2.2 Short Terminal-to-Terminal Edges (STTE) 

If the nearest vertex adjacent to a terminal zi also is a terminal, denoted by z j ,  

then the edge ( z i , z j )  must belong to at least one Steiner minimal tree. Note in 
particular that ( z i ,  z j )  belongs to a minimal spanning tree. In fact, even a more 
general result is valid. The straightforward proof is omitted as the STTE-test will 
be generalized. 

Lemma 2.9 ([l]) Any edge  ( z i ,  z j )  o f a  minimum spanning tree belongs to at least 
one Steiner minimal tree. 

Figure 2.10: Inclusion of an edge based on the STTE-test 

An application of the STTEtest  is shown in Fig. 2.10. Edges indicated by heavy 
or broken line segments belong to the minimum spanning tree TG(V).  The edge 
indicated by the broken line segment is the only edge identified by the STTE-test 
as belonging to at  least one Steiner minimal tree. 

The STTEtes t  leads to the following logical constraints [l]. Suppose that there 
is an edge (vi, zk) in a minimum spanning tree TG(V) between a terminal zk and 
a non-terminal vi. As soon as it is known that vi E TG(N) ,  the edge (vi, z k )  must 
belong to TG(N)  as well. Unfortunately, this information about vi is not avail- 
able before T G ( N )  has been determined. But consider any integer programming 
formulation of the Steiner tree problem with xij  denoting a binary variable with 
value 1 if (v i ,v j )  E T G ( N )  and 0 otherwise. Then the above interdependence can 
be represented by the constraints 

X ~ E  2 x j j  for all (vi, z k )  E TG(V) and for all (vi ,  vj) E G 



114 CHAPTER 2. REDUCTIONS 

Although these inequalities are redundant in every integer programming formu- 
lation of the Steiner tree problem, they strengthen the linear programming and 
Lagrangean relaxations, and consequently lead to  better lower bounds needed in 
connection with branch-and-bound algorithms for the Steiner tree problem (Chap- 
ter 3) .  

2.2.3 Nearest Vertex (NV) 

This test identifies additional edges of a minimumspanning tree TG(V) as belonging 
to a t  least one Steiner minimal tree T G ( N ) .  The proof is omitted since the test 
will be generalized. Let %k denote a terminal in G. Let (Zk, vi) and ( z k ,  vj) denote 
respectively the shortest and second shortest edge incident with Zk. 

Lemma 2.10 ([2)) If G contains a terminal % I ,  %l # %g, satisfying 

c Z k U j  2 c Z k U ,  + d U $ Z i  

then the edge (zk, vi) belongs to at least one Steiner minimal tree. 

An application of the NV-test is shown in Fig. 2.11 where cZk, ,  = 8 while 
c,,,, + d,,,,, _< 6 .  Hence (zg, vi) belongs to every Steiner minimal tree. 

If d e g c ( z g )  = 1, then let czku,  = 00 and conditions of Lemma 2.10 are fulfilled. 
The NV-test is therefore a generalization of the TD1-test (Subsection 2.2.1). If vi E 
N ,  then zI = vi (i.e., d,,, ,  = 0) and conditions of Lemma 2.10 are always satisfied. 
Hence, the NV-test is also a generalization of the STTE-test (Subsection 2.2.2). 

Figure 2.11: Inclusion of an edge based on the NV-test 

2.2.4 Short Edges (SE) 

The SE-test described in this subsection is a generalization of the TD1-, STTE- 
and NV-tests. Let (vi ,  v j )  be an edge in a minimum spanning tree TG(V) .  Let F,,,, 
denote the length of the shortest edge among longest edges taken over all paths 
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from vi to v, in G - (vi,v,). F,,,vj is referred to as the restricted - bottleneck edge 
length between vi and v j .  Note that if N = V ,  then ?u,uj = bv,,,,. 

Lemma 2.11 ((61) If there is  a pair of terminals %k and ZI such that at least one 
shortest path from zk to  zl goes through the edge (Vi, V j )  and 

‘ V , V j  2 dZkZ, 

then the edge (vi, vj) belongs to at least one Steiner minimal tree. 

Proof: Suppose that the edge (vi,vj) is not in any Steiner minimal tree for N 
in G. TG(V) - (vi,vj) consists of two components Ci and Cj such that 0, E Ci 
and v j  E C,. Since one of the shortest paths Pzkzi contains the edge (vj, vj) and 
i;v,Vj 2 d,,,,, the path Pzkzi crosses the cut {Ci,Cj} exactly once (at the edge 
(Vil Vj)). Hence %k E ci and zl E cj or vice versa. 

Consider the path from %k to  zl in the Steiner minimal tree TG(N).  It must 
contain an edge (up, vq) of length at least F,,,,j. TG(N) - (up, v,,) consist of two 
components, one containing %k and the other containing z ~ .  TG(N)UP,,,, -(up, vq) 
is a connected network that spans N ,  contains (vi,vj), and has total length not 
greater than ITG(N)I, a contradiction. 0 

Figure 2.12: Inclusion of edges based on the SE-tests 

An application of the SEtest  is shown in Fig. 2.12. Edges indicated by heavy 
and broken line segments belong to the minimum spanning tree TG(V). Broken 
line segments indicate the edges that can be contracted. 

The SEtes t  generalizes the NV-test: assume that vi l  vj, %k, zl satisfy the condi- 
tions of Lemma 2.10. At least one shortest path from %k to ZI is forced to go through 
the edge ( % k l  vi) E TG(V). Furthermore, p Z k V ,  2 ‘ Z k V J  L ‘ Z k V .  + &,z ,  2 d Z k Z i .  

To carry out the SE-test efficiently, one needs to restrict the number of candi- 
dates for %k and zi for a given edge (vi, vj) E TG(V).  In fact, it suffices to check 
the conditions of Lemma 2.11 for only one pair of terminals. If d,,,, < d,,,, for 
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all %k E N (or dzku j  < dEkur  for all %k E N ) ,  then no shortest path between any 
pair of terminals goes through (vi ,vj) .  Hence conditions of Lemma 2.11 are ful- 
filled only if there is a terminal %k closer to vi than to v j ,  and a terminal zl closer 
to v, than to vi.  Suppose that one of the shortest paths between %k and zl goes 
through ( v i , v j )  and Fu,uj 2 d,,, , .  Suppose furthermore that there is a terminal 
zp closer to vi than to v, and such that dZkv ,  > d d p V i .  It follows immediately that 
F,,,,,, 2 d,,,, > d t p z l .  Hence any shortest path between zp and zl goes through 
(vi, v,) unless zp E Cj where Cj is the component of TG(V) - (vi, v j )  containing vj. 
Suppose that zp E Cj. The shortest path from zp to vi is not allowed to go through 
v,; this would imply that zp is closer to v, than to vi. But the shortest path from 
zp to v, has to cross the cut (Cj ,Ci} ,  implying that d z p v ,  2 Fu,uj 2 d,,,, > d,,,,, 
a contradiction. It follows that %k can be chosen from among terminals closer to vi 
than to v j  such that dZku, is minimized. By a similar argument, z~ can be chosen 
from among terminals closer to v j  than to vj  such that dujar is minimized. 

An application of the SE-test to edges of a minimum spanning tree TG( V )  only is 
not restrictive. The conditions of Lemma 2.11 cannot be fulfilled if (vi, v j )  4 TG(V).  
To see this, suppose that ( v i , v j )  is an edge not in any minimum spanning tree 
TG(V),  and there is a pair of terminals z k  and zl such that the shortest path from 
z k  to zl goes through (vi ,  v j ) .  Then, Tu,u, < cu,vj 5 d,,, ,  . 

Finally, logical constraints discussed in connection with the STTE-test can be 
generalized to  all edges in a minimum spanning tree TG(V).  

2.2.5 Length Transformations (LT) 

Reductions can sometimes become applicable after a suitable modification of edge 
lengths. One such method was suggested by Duin and Volgenant [6]. Let v k  be a 
non-terminal. Let ( v k ,  v,) and ( v k ,  v j )  denote two edges incident with vk. Let G’ 
be a network obtained from G by changing the lengths of ( V k ,  vi) and (vk, w j )  to 

‘LkV, = ‘ V k V ,  + a and ‘LkV, = ‘ V k U j  - 

where (Y > 0. A simple proof of the following lemma is omitted. 

Lemma 2.12 ( [ 6 ] )  If the edges ( v k ,  vi) and ( W k ,  vJ) belong to Stezner mznzmal trees 
for N u v k  an both G and G’, then Steaner mznamal trees for  N an G and an G’ have 
the same length. 

Suppose that a minimum spanning tree TG(V)  contains two edges ( v k ,  z,) and 
( v k , z j ) ,  where z i  and z j  are terminals and v k  is a non-terminal. Suppose fur- 
thermore that the SEtes t  does not apply while it does apply to both ( v k ,  2;) and 
( V k ,  z j )  when the set of terminals is extended by v k .  Note that (215, zi) and ( V k ,  z j )  
are shortest paths from v k  to zi and z j  respectively. The length of ( V k ,  zi) can be 
reduced by some amount a, 0 < Q 5 cukL, .  This will not influence the applica- 
bility of the %-test for ( V k ,  z i )  with respect to N U v k :  F u k z ,  remains unchanged 
while (216,  z i )  remains the shortest path (of smaller length). Also F U k z 3  remains 
unchanged: every path from V k  to z, over the edge ( v k ,  zj) contains another edge 
of length at least c,,,,, (otherwise ( v k ,  zi) would not belong to TG(V)) .  In addition, 
( W k ,  z j )  remains the shortest path from V k  to z j .  
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Let a in addition be chosen such that a < F w k z j  - c U k t j .  The increase of the 
length of (vk, Zj) by a will not influence the applicability of the SE-test for (Vk, Z j )  

with respect to NU Vk. This is due to the fact that F u k t j  remains unchanged. The 
length of (vk, zj), even if it increases, will be strictly smaller than F u k , , .  Hence, 
(Uk, z j )  remains the shortest path from v k  to z, . Finally, F u k z i  can only increase as 
a result of increasing the length of (Vk, z j )  and ( V k ,  z i )  remains the shortest path 
from v k  to zi. 

Thus, if a is chosen as large as possible subject to a 5 cvkz ,  and a < F V k z ,  - cvkz , ,  
the decrease of the lenght of ( v k ,  zi) can make the SE-test applicable to both ( v k ,  zi) 
and (vk, z j )  in GI. Any tree containing both these edges will have the same length 
in both G’ and G. Hence, in view of Lemma 2.12, a Steiner minimal tree for N 
in G’ will be a Steiner minimal tree for N in G. This is for example the case 
in Fig. 2.13 [6]. Before the transformation, the shortest path from z1 to 23 goes 
through (21,215). But ~,,,,, = 70 while d,,, ,  = 80. So the SE-test for (21,215) 
based on terminals z1 and 23 will fail. If o5 is regarded as a terminal, the shortest 
path from 21 to  215 goes through (~1,215). Furthermore, Fzlus = 70 and d,,,, = 30. 
Consequently, the SE-test is successful for (215,zl). Similarly, the shortest path 
from 215 to z2 goes through (215,%2). Furthermore, F,,,zz = 70 and d,,,, = 50. 
Consequently, the SE-test is successful for (215,z2). Next, min{q,,,,,, , F,,zz -c,,~,} = 
{30,70 - 50) = 20. If the length of (zl ,  w5) is reduced by less than 20 (e.g., by 19) 
and the length of (215, 2 2 )  is increased by the same amount, then the SE-test remains 
successful for both (~1,215) and (~5,22) .  The search for a Steiner minimal tree can 
now continue in GI. The shortest path from t l  to 23 goes again through (215, ~1). 
Furthermore, F,,,,, = 70 while d, , , ,  = 61. Hence, the edge (~1,215) belongs to at  
least one Steiner minimal tree for N in GI. The vertex v5 can now be regarded as 
a terminal. This implies that (215, z2) also belongs to a Steiner minimal tree for N 
in GI. The length of this Steiner minimal tree is the same in both G and GI. From 
Lemma 2.12 follows that there is a Steiner minimal tree for N in G’ containing 
both (215, z1) and (215, zg). 

Figure 2.13: Length transformation enabling additional reductions 
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2.3 Integration of Tests 

The tests described in this chapter vary from very simple tests of limited applica- 
bility to  very general tests. Fig. 2.14 summarizes the interdependencies between 
various tests. Tests higher up in the hierarchies generalize all tests below. 

I EXCLUSION TESTS I INCLUSION TESTS 

Figure 2.14: Test hierarchies 

One reduction may trigger other reductions based on the same or different 
tests. It is therefore very important to  establish the order in which the tests are 
to be applied. Furthermore, the reduction process should be terminated if the 
computational effort per test becomes too large. Another very important issue 
is what modifications of distance and bottleneck matrices are needed after each 
reduction type. 

2.3.1 Data and Algorithms 

When the applicability of some particular test is to be established] various types 
of information are required. Table 2.1 indicates what is required for each non- 
dominated test type. Rows correspond to the following information: shortest dis- 
tances between vertices (represented by an o x v matrix D ) ,  bottleneck Steiner 
distances (represented by an v x v matrix B), a minimum spanning tree TG(V) ,  
and a suboptimal tree TG(N)  spanning all terminals. 

Some of the entries in D and B rows are marked with downward or upward 
arrows. This means that a particular test remains valid even if entries are respec- 
tively lower and upper bounds of the exact values. The issue of inexact information 
will be addressed in Subsection 2.3.3. 
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0 11 NTDk I PTm I R I CR 11 SE+LT 

Table 2.1: Data requirements 

In order to simplify the discussion below, assume that D and B are represented 
by v x ZJ matrices. TG(V) and T ; ( N )  are represented by edge lists. It should 
however be emphasized that more elaborate data structures such as forward stars, 
heaps and disjoint sets representation [lo] could be employed to speed-up the re- 
duction process. 

The distance matrix D containing lengths of shortest paths between all pairs of 
vertices in V can be determined in O(v3) by for example Dijkstra’s algorithm [4] 
(applied to each vertex as a source). More sophisticated algorithms are also avail- 
able [lo]. 

The bottleneck Steiner distance matrix B for G can be determined in O(v2n) 
by a simple modification of Dijkstra’s algorithm (applied to the distance network 
D G ( V )  rather than to  G). More specifically, the following algorithm finds bottle- 
neck Steiner distances from a vertex vi to all other vertices in G. 

0 STEP 1: b,,,, := d,,,, for a11 vJ E V .  L := { v , ) .  

0 STEP 2: If N C L then Stop. 

0 STEP 3: Let z E N \ L with b , , ,  smallest possible. L := L U z. 

0 STEP 4: b,,,, := min{b,,,, , max{b,,,, d, , , }}  for every v, E V \ L .  
If v, is a non-terminal and b,,,, 5 b, , ,z ,  then L := L U v,. 
Go to STEP 2. 

A minimum spanning tree TG(V) can be determined in O(v2) time using for 
example Prim’s algorithm which is closely related to the Dijkstra’s algorithm for 
shortest paths [lo]. Alternatively, more sophisticated algorithms using Fibonacci 
heaps [8] or leftist heaps [lo] could be used. 

Several good polynomial heuristics for the Steiner tree problem in networks 
are described in Chapter 4. In particular, the shortest paths heuristic (Subsec- 
tion 4.1.1) that requires O(n(e +vlog w)) time is well-suited for the reduction pur- 
poses as it basically requires the distance matrix D. Another more straightforward 
possibility is to use the simple heuristic which deletes (one at a time) non-terminals 
of degree 1 from the minimum spanning tree TG(V) (Subsection 4.2.1). However, 
this heuristic usually finds suboptimal solutions that are worse than those found 
by the shortest paths heuristic. 

Some tests need additional information which can be easily derived from C (edge 
length matrix), D, and TG(V). More specifically, the NTDk-test needs to identify 
non-terminals of low degree. This information is readily available from C. In 
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addition, the NTDk-test requires the determination of minimum spanning trees for 
small complete networks with the bottleneck Steiner distances as edge lengths. The 
R- and CR-tests need to  know the closest, second-closest, and farthest terminals 
from each non-terminal. In addition, the CR-test needs to  know the closest vertex 
to  each terminal. All this information can be obtained in O(v) time from D. The 
SEtes t  requires the restricted bottleneck edge length pUluj between vertices vi and 
v j  adjacent in the minimum spanning tree TG(V).  It is equal to  the length of the 
shortest edge in G- (vi, vj) crossing the cut {Ci, Cj} obtained by deleting the edge 
(vi, v j )  from TG(V).  It can be found in O(e)  time. 

2.3.2 Updating 

When edges and non-terminals are deleted or edges are contracted, it is not always 
necessary to  determine D, B ,  Tc(V) and T E ( N )  from the scratch. For instance, 
when an edge (v i ,v j )  is deleted from G and it does not belong to TG(V) ,  the 
minimum spanning tree for the smaller network remains unchanged. If (v,, vj) is 
deleted but belongs to  TG(V) ,  new minimum spanning tree can be determined in 
O(e) time by reconnecting the two components of TG(V) - (v i , v j ) .  Similar sim- 
plifications can be applied when edges are contracted or non-terminals are deleted. 
Such simplifications are also possible in connection with suboptimal trees span- 
ning the terminals. The determination of shortest paths when edges are deleted or 
contracted can also be speed-up by the use of distance information in the original 
network [5]. These methods can also be adapted in connection with the determi- 
nation of new bottleneck Steiner distances. 

2.3.3 Use of Inaccurate Information 

The computational effort needed to  obtain and update the information necessary 
to verify the applicability of reductions can be substantial. It can be advantageous 
to  use inaccurate information even if it can fail to recognize some reductions. This 
is in particular the case during the initial phases of the reduction process when 
the network is relatively large. Furthermore, rather than updating the information 
after each reduction, original information can sometimes be used even if it becomes 
inaccurate. 

A slightly better upper bound is 
obtained as follows. 

A simple upper bound for bv ,v3  is c ~ , ~ , .  

In other words, b t i w j  is the bottleneck Steiner distance with respect to paths from 
vi to vj with at most two edges. 

Table 2.2 shows what happens to D, B ,  TG(V),  and TE(N) when NTDk-, PTm-, 
R-, CR- and SE-tests are satisfied and the corresponding reductions are applied. 

When applying the NTDk-, PTm-, and SE-tests, the bottleneck Steiner dis- 
tances between the remaining vertices are either unchanged or become smaller [6] .  
Hence, the original bottleneck Steiner distances are upper bounds for the actual 
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NTDk PTm R+CR SE+LT 
D unchanged increased increased decreased 
B unchanged unchanged increased decreased 
T can change unchanged can change unchanged 

Y T' can change unchanged unchanged unchanged 
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Table 2.2: Changes caused by reductions 

bottleneck Steiner distances. Updating B can be postponed for as long as desired 
when applying the NTDk-, PTm-, and SEtests.  However, updating should be 
done from time to time in order to catch the NTDk- and PTm-tests missed by the 
use of upper bounds. 

PTm-tests do not use shortest distances (although their application can cause 
shortest distances between the remaining vertices to increase). Hence, there is no 
need to update D until no more PTm-tests can be applied. 

NTDk-tests do not use shortest distances. When they apply, shortest distances 
between the remaining vertices remain unchanged. 

SE-tests use shortest distances but when they apply, an edge is contracted. 
Consequently, the original shortest distances are upper bounds in the reduced net- 
work. Updating D can be postponed for as long as desired when applying the 
SE-tests. However, this can cause some SE-tests to be missed. 

When a non-terminal or an edge is deleted by the R- or CR-tests, shortest 
distances between the remaining vertices may increase. Consequently, the original 
distances are lower bounds. Updating D can be postponed for as long as desired 
when applying the R- and CR-tests. Again, this can cause some R- and CR-tests 
to be missed. 

The edges deleted by the PTm-tests cannot belong to any minimum spanning 
tree. Hence, TG(V) remains unchanged when such edges disappear. The edges 
contracted by the SE-test belong to TG(V) .  Hence, a minimum spanning tree for 
the contracted network can be obtained by contracting TG(V) along the same edge. 

Non-terminals or edges deleted by the R- or CR-tests do not belong to the 
suboptimal tree T z ( N ) .  Hence, there is no need to recompute T z ( N )  as long 
as these tests are applicable. If T E ( N )  is determined by deleting degree 1 non- 
terminals from TG(V) ,  then T c ( N )  is unchanged when PDm- and SE-tests are 
applied. 

2.3.4 Ordering of Tests 

The general ordering of tests is shown in Fig. 2.15. More detailed orderings (in- 
volving in particular NTD3- and PTm-tests with B+ rather than B were suggested 
in [6,12]). For the sake of clarity, it is assumed that the distance matrix D, the 
bottleneck Steiner distance matrix B,  the minimum spanning tree TG(V) and the 
suboptimal Steiner tree T ; ( N )  are determined before the reduction process begins, 
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and they are updated after each reduction. But as discussed in Subsection 2.3.3, 
these updates could be delayed. All tests are applied as many times as possible 
before continuing with next test type. Upward-going arrows are followed only if at 
least one reduction was carried out since previous upward step. 

Figure 2.15: Ordering of reductions 

The ordering of the tests is not accidental. The PTm-tests should in general be 
performed before the NTDk-tests since the application of the PTm-tests reduces 
the degrees of vertices. Since both the PTm- and NTDk-tests delete edges (and 
possibly replace pairs of edges by a single edge of length equal to  the sum of lengths 
of the pair), these tests can only improve the performance of the SEtests.  

The R- and CR-tests are of rather limited applicability and should only be 
applied when all other tests fail. The same applies to  the LT-transformations 
which can sometimes trigger additional reductions. 

2.4 Effectiveness of Reductions 
Although it is not difficult to  find networks for which none (or few) of the tests 
apply (networks satisfying triangle inequality are usually of this type), there are on 
the other hand many networks for which considerable reductions can be attained 
(this is in particular the case for sparse networks and for networks with many 
terminals). 

2.4.1 Theoretical Results 
Theoretical results concerning the effectiveness of reductions are very limited. For 
complete graphs, it can be shown [l] that after the STTEtests,  the expected 
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number of contracted edges is n(n - l ) / v .  In other words, the STTE-tests reduce 
the number of terminals by a factor of ( n  - l ) /v .  

For complete graphs, it can be shown [l] that after the MST-tests, the expected 
number of edges in the reduced network is a t  most v2 /n .  Similar results concerning 
the SE-tests are given in [7]. 

2.4.2 Computational Results 

For the computational results concerning the effectiveness of reductions, the reader 
is referred to  [1,6,12]. Below the conclusions derived from the test runs reported 
there are mentioned. 

0 The speed-up when solving the Steiner tree problem with the reductions is 
considerable. It can be up to a factor ten for sparse problem instances. 

0 Reductions perform better for problem instances with larger ratios of n / v .  
This is mainly due to the fact that the SE-tests are then applicable more 
often. Also, a good upper bound is usually obtained for this type of problem 
instances. This makes R- and CR-tests more powerful. 

Problem instances are often completely solved by the reductions alone. This 
is in particular the case for sparse problem instances (e 5 2v) with many ter- 
minals ( n  2 v/2). This observation also applies for networks with randomly 
generated edge lengths (with uniform distribution). 

0 The R- and CR-tests proved to be of limited importance. When applicable, 
they can often be replaced by other tests. 

An important issue which so far has not been addressed adequately in the li- 
terature is that of suitable data structures to represent the information needed by 
various reduction tests. In particular, such data structures must be of dynamic nib 
ture as networks undergo non-trivial changes during the reduction process. Another 
important issue that remains to be addressed in more detail is the applicability of 
reductions before and in particular during any branch-and-bound algorithm. De- 
veloping suitable data structures in this context is even more complicated since 
networks undergo changes not only when reduced but also during the branching 
and in particular during the backtracking stages. The use of some reductions in 
branch-and-bound algorithms have been discussed by Beasley [3] and Voss [ll]. 
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Chapter 3 

Exact Algorit hrns 

This chapter discusses various exact algorithms for the Steiner tree problem. Sec- 
tions 3.1-3.3 discuss some complete enumeration algorithms. A dynamic program- 
ming algorithm is described in Section 3.4. Branch-and-bound algorithms are dis- 
cussed in Section 3.5. Several mathematical formulations of the Steiner arbores- 
cence problem are given in Section 3.6. The use of linear relaxations of these 
formulations to obtain lower bounds in branch-and-bound algorithms is discussed 
in Section 3.7. Lower bounds obtained by Lagrangean relaxations are discussed in 
Section 3.8. Benders’ decomposition algorithm is described in Section 3.9. A set 
covering algorithm is discussed in Section 3.10. Finally, computational experience 
concerning these algorithms is mentioned in Section 3.1 1. 

3.1 Spanning Tree Enumeration Algorithm 

Hakimi [30] provided the following straightforward spanning tree enumeration algo- 
ri thm: A Steiner minimal tree TG(N) can be found by the enumeration of minimum 
spanning trees of subnetworks of G induced by supersets of terminals. 

Lawler [34] suggested a modification of the spanning tree enumeration algorithm 
based on the observation that finding a Steiner minimal tree TG(N) for N in G is 
equivalent to finding a Steiner minimal tree T D ( N )  for N in the distance network 
D = &(V) (Subsection 1.4.3). 

Lemma 3.1 There exists a Steiner minimal  tree T D ( N )  for N in the distance 
network D where each Steiner vertex has degree at least 9. 

Proof: T’(N) cannot have Steiner vertices of degree 0 or 1. If it has a Steiner 
vertex v k  of degree 2, with ( V k , V i )  and ( ~ k , v j )  being the edges incident with vk, 

then one can replace these edges by the edge (vi, v j )  and delete Vk. Since D satisfies 
the triangle inequality, a tree spanning all terminals with length at  most IT’(N)I 
is obtained. Steiner vertices of degree 2 can be replaced in this way one by one. 
Hence, there exists a Steiner minimal tree for N in D where all Steiner vertices 
have degree at least 3. 0 
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Lemma 3.2 There exists a Steiner minimal tree T D ( N )  for  N in D with at most 
n - 2 Steiner vertices. 

Proof: Let s denote the number of Steiner vertices in T D ( N )  with all Steiner 
vertices having degree a t  least 3. Let d,  and d,  denote the mean number of edges 
incident with a Steiner vertex and a terminal respectively. The number of edges in 
T D ( N )  is n + s - 1 = (d,n + d , s ) / 2 .  Since d,  2 3 and d, 2 1, it follows that 

n + s - 1 = (d,n + d , s ) / 2  2 ( n  + 3s)/2 

implying that n - 2 2 s. 0 

In order to determine T'(N),  it suffices to enumerate minimum spanning trees 
of subnetworks of D induced by supersets of terminals of size at  most 2n - 2. 

If 2 n  - 2 < v ,  and in particular if G is dense, it is easier to find T D ( N )  than 
T G ( N ) .  On the other hand, if 2 n  - 2 2 v or G is sparse, the structural properties 
of G are lost when D is formed. Consequently, the effort of determining minimum 
spanning trees of induced subnetworks of D may be greater than when G is used. 

The number of minimum spanning trees that must be determined is 

The time complexity of the algorithm is therefore O(n22"-" + v3) where the term 
v3 stems from the shortest paths computation using Floyd's algorithm [19]. The 
spanning tree enumeration algorithm is polynomial in the number of terminals 
and exponential in the number of non-terminals. An algorithm polynomial in the 
number of non-terminals while exponential in the number of terminals will be 
described in Section 3.4. 

3.2 Degree-Constrained Tree Enumeration Algo- 
rit hm 

Another complete enumeration algorithm was suggested by Balakrishnan and Pa- 
tel[3]. It is based on the degree-constrained formulation of the Steiner tree problem. 
Let 

Tc(V) can be determined by the enumeration of spanning trees of G containing 
the edge ( v 0 , z l )  in order of non-decreasing length. The first spanning tree with 
all non-terminals adjacent to vo having degree 1 yields Tc(V). Gabow's edge- 
exchange algorithm [24] for the enumeration of spanning trees in order of their 
nondecreasing length can be used (with modifications preventing the generation of 
infeasible spanning trees). 

and Tc(V) be as defined in Subsection 1.4.5. 
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3.3 Topology Enumeration Algorithm 
Hakimi [30] presented an enumeration algorithm that to some extent is related to 
the Melzak algorithm for the Euclidean Steiner tree problem [40]. 

Any Steiner minimal tree TG(N)  must have at  least two terminals zi  and zj 
satisfying one of the following conditions: 

(i) deg(z;) = deg(z,) = 1 ,  and the path P(z, ,z , )  in TG(N) contains Steiner vertices 
only; exactly one of them has degree greater than 2. The remaining Steiner vertices 
(if any) have degree 2. 

(ii) either deg(z , )  = 1 or deg(2,) = 1, and the path P ( z i ,  z j )  in TG(N)  contains Steiner 
vertices only (if any); their degrees are 2. 

If zi  and z, satisfy either (i) or (ii), then they are called pseudoadjacent in T G ( N ) .  
The topology enumerat ion algorithm determines (by recursion) the minimum 

length tree spanning N in G with zi and zj being pseudoadjacent. Unfortunately, 
there is no way of knowing beforehand which terminals will be pseudoadjacent in 
T G ( N ) .  Thus, one has to consider each choice of z i  and z j  in turn. For each 
choice a minimum length tree spanning N with z i  and z, being pseudoadjacent is 
constructed. One with the overall minimum length is TG(N).  

Assume that z i  and z, are pseudoadjacent in T G ( N ) .  Construct a network 
G = (v, E ,  E )  (Fig. 3.1) where 

v = v u v 0 , v o  @ v 
E = E U ( ( 0 0 ,  vk)lvk E V }  

Figure 3.1: Networks G and G 

Let Tc(N) denote a Steiner minimal tree for m = NU vo \ { t i ,  z j }  in G (deter- 
mined recursively). Tc(fi) can always be chosen such that vo is incident with just 
one edge ( v o ,  vk). Let 

pG(fi) = Tc(N) u p G ( v k ,  ti) u pG(vk, ti) - (vo, vk) 
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where Vk is the unique vertex in Tc(fi) adjacent to vo. 
If ?c(N) is a tree spanning N in G with t i  and z, being pseudoadjacent, then 

it is of minimum length among such trees. Otherwise no tree spanning N in G 
with t i  and z, being pseudoadjacent can be a Steiner minimal tree [30]. 

3.4 Dynamic Programming Algorithm 

Another approach to the Steiner tree problem, based on the dynamic programming 
methodology, was presented by Dreyfus and Wagner [13], and independently (in a 
slightly different form) by Levin [36]. 

Suppose that vi is a vertex in T G ( N )  incident with more than one edge. De- 
compose T G ( N )  into two subtrees T and ? as follows (Fig. 3.2): 

replace vI by two new vertices t& and 6: disconnected from one another, 

connect some arbitrarily chosen edges, previously incident with o,, to c,, 

connect the remaining edges previously incident with v,, to 6,. 

Let N and fi denote the set of terminals in T and 
are Steiner minimal trees for respectively fi U ej and fi U V;. in G [13]. 

respectively. Then T and 

Figure 3.2: Splitting at v; 

This optimal decomposition property is the basis of the dynamic programming 
algorithm. Optimal solutions of smaller instances are found and retained for use in 
solving larger instances (smaller instances are never solved again). Nonoptimal so- 
lutions to  smaller instances are discarded when solved; they need not be considered 
when solving larger instances. 

Let Y be a nonempty subset of N .  Let v; E V \ Y .  Let T G ( v ~  U Y )  denote a 
Steiner minimal tree for vi U Y  in G. Let Ti(vi U Y )  be a minimum length union of 
two Steiner minimal trees, one spanning vi u X and the other spanning vi U Y \ X ,  
where 0 c X c Y .  Consequently, 

) ~ i ( v i  u Y ) I  = min { I T G ( v ~  u x ) I  + ITG(vi u Y \ X > l }  
BCXCY 

To obtain a functional relationship for (T~(vi U Y ) l ,  note that there are the 
following possible configurations of TG(v; U Y )  (Fig. 3.3): 
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Figure 3.3: Functional relationship for IT'(vi U Y)l 

(i) deg(vi) > 1.  Then TG(v, U Y )  = T i ( v i  U Y ) .  
(ii) deg(vi) = 1. T~(vj u Y )  must be a union of T$(u U Y )  with a shortest path 

from vi to some vj @ Y of degree at least 3, or a union of TG(Y) with a 
shortest path from vi to some vj E Y .  Since T G ( D ~  U Y )  is a Steiner minimal 
tree, v, must be chosen such that the length of the union is minimized. Hence, 
ITc(vi u Y)I is the smallest of the following three terms: 

Note that (3.1) is redundant; it occurs in (3.2) for v, = vi. 
By defining ITG(vj U z k ) l  = dv,zk for all zk E N and vi E V ,  T i ( v i  U Y )  can 

be determined for every two-terminal subset Y of N and every v, @ Y .  Then 
T ~ ( v i  U Y )  can be determined for every tweterminal subset Y of N and every 
vertex vi @ Y .  In particular, this will yield all Steiner minimal trees with exactly 
3 terminals. Continuing in this manner, will eventually yield T G ( N ) .  

Theorem 3.1 The worst-case time complexity of the dynamic programming algo- 
rithm is O(3"v + 2"v2 + v3). 
Proof: The total number of computational steps when determining IT$(vi u Y)I 
is of the same order as the number of possible choices of vi, Y and X subject to 
Y C N ,  vi E V \ Y and 0 c X c Y .  There are v choices of vj. Each terminal 
belongs to  exactly one of the sets N \ Y ,  Y \ X or X. Thus, the number of choices 
of Y and X is O(3"). The number of computational steps is therefore O(3"v). 

The number of times ITG(v~ U Y)I has to be determined is 2"v. Each time 
involves the minimization over a t  most v terms. Hence, the total number of com- 
putational steps is 0(2"v2). Initial shortest paths computations require O(v3)  time 
using e.g., Floyd's algorithm [19]. 0 

It can be seen that the algorithm is polynomial in v (and therefore also polyno- 
mial in the number of non-terminals) while exponential in the number of terminals. 
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As noted by Erickson, Monma and Veinott [16] and Bern [8], the determination 
of l T ~ ( v ;  U Y)I for different choices of vi but for the same choice of Y can be done 
simultaneously. Consider (3.2). Build a new network where all terminals in Y are 
contracted to  a supernode vy. Add edges from v y  to  all vertices v j  6 Y .  One 
can determine minwjgy{dw,wj + IT$(vj U Y)l}  for all choices of v; simultaneously 
using Dijkstra's shortest path algorithm [12] with v y  acting as the root. A similar 
technique can be used in connection with (3.3). 

Dijkstra's shortest path algorithm can be implemented using Fibonacci heaps 
so that i t  requires O(v log v + e )  time [23]. In particular, for planar networks, the 
overall complexity of the algorithm reduces to O(3"v + 2"v log v + v2) .  Note that 
the shortest paths between all pairs of vertices can be determined in O( v 2 )  time in 
planar networks [22]. 

Erickson, Monma and Veinott [16] considered a more general minimum-concave- 
cost network flow problem. 

0 GIVEN: a directed network G= (V, A , c )  where c : A -, R defines the cost of 
sending a unit of flow through arcs, and a set N ,  N C V ,  of terminals with non- 
zero (positive or negative) flow demands. 

0 FIND: a minimum flow pattern satisfying these demands. 
Let Y be a nonempty subset of terminals, and let vi @ Y .  Consider a subproblem 

obtained by setting the demands of vertices in V \ Y to  zero, and then reducing 
the demand of v; by the sum of demands at Y .  The algorithm solves larger and 
larger subproblems of this type dynamically (using functional relations analogous 
to  those for the Steiner tree problem). 

The Steiner tree problem is a special case of the minimum-concave-cost net- 
work flow problem: Choose one of the terminals to  have demand --n + 1 and let 
the remaining n - 1 terminals have unit demands. Furthermore, replace each (undi- 
rected) edge by two arcs with opposite directions. The (concave) unit flow cost is 
zero if the flow is zero, and is equal to  the corresponding arc cost otherwise. If a 
solution to this problem exists, then there exists an optimal solution with integral 
flow pattern. Disregarding the orientation of the arcs with non-zero flows yields 
T d N ) .  

3.5 Branch-and-Bound Algorithm 

An edge-based branch-and-bound algoriihrn has been developed by Shore, Foulds 
and Gibbons [42] and in a slightly less efficient form by Yang and Wing [46]. The set 
FO of all feasible solutions (i.e., trees spanning N )  is in asystematic way partitioned 
into smaller subsets. Each subset is analyzed with use of upper and lower bounds, 
whether or not i t  can contain a Steiner minimal tree for N in G. 

Each subset F; of trees spanning terminals is characterized by a set INi  of edges 
required to  be in every tree, and a set OUTi of edges not permitted in any tree. 
IN0 = 0 and OUT0 = 0 for Fo. 

Let G, denote the network obtained from G by the 
removal of the edges in OUTi, and by contraction along the edges in INj  (regarding 
the vertices incident with edges in IN;  as terminals). 

Consider a subset Fi. 
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Let Nj denote the terminals in Gi. Determining the optimal solution in Fi (if it 
exists) is equivalent to the problem of determining a Steiner minimal tree TG, ( N i )  
for Ni in Gi. Given T G , ( N ~ ) ,  the optimal solution in Fi consists of the edges in 
TG, ( N j )  together with the edges in I N i .  

An upper bound & for Fi can be determined by adding the lengths of edges in 
INi to  the length of a tree spanning Ni in Gi obtained by any of the heuristics for 
the Steiner tree problem described in Chapter 4. If the shortest tree found so far 
spanning all terminals has length bo (initially bo = 00) and LO > T i ,  then bo is set 

In order to determine a lower bound for Fj , consider a terminal %k in Gi. Let 
F,,: the length of the shortest edge incident with zk.  If no such edge exists, then 

&,: the length of the second-shortest edge incident with zk .  If no such edge exists, 

0 Ezk: the length of the shortest edge between z k  and another terminal in N , .  If no 

Suppose first that T G , ( N ~ )  contains at  least one Steiner vertex. Thus, TG,(N~) 
has at least lNil edges. Each terminal in Ni is incident with at  least one edge 
in T G , ( N , ) .  Furthermore, these edges can be chosen in such a way that they are 
mutually distinct. Hence, 

to T i .  

- 
c,, = 00. 

then Z,, = 00. 

such edge exists, then E,, = m. 

Suppose next that T G , ( N ~ )  contains only terminals. Then TG~(N~) has exactly 
]Nil - 1 edges and 

It follows that 

e ,EIN,  

is a lower bound for Fi. If bo 5 h,  then no tree in F, can be shorter than the best 
tree found so far. Consequently, there is no need to partition Fi any further. If 
bo < & and & = &, then the feasible solution obtained when determining is the 
shortest possible in Fi. In this case, bo = T i ,  and once again there is no need to 
partition Fi any further. 

Whenever Fi cannot be disregarded (i.e., it is uncertain whether or not Fi 
contains a Steiner minimal tree), it is partitioned into two subsets: 

F, with I N ,  = I N ,  U em, OUT, = OUT,, 

Fk with INk = I N , ,  OUTk = OUT, U em, 

for some suitably chosen edge em E E \ ( I N i  U OUl;.). The choice of the edge em 
is crucial for the performance of the algorithm. Shore, Foulds and Gibbons [42] 
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select as em the minimum length edge incident with a terminal Zk E Ni for which 
b, - TZk is maximum (ties are broken arbitrarily). 

The subset Fj is examined first (by successive partitioning of Fj) .  When the 
optimal feasible solution for Fj has been found or it has been established that 
the optimal feasible solution for FO cannot be in Fj ,  the subset Fk is examined, 
and then the algorithm backtracks to Fi (completing the examination of F;).  The 
enumeration is completed when the algorithm backtracks to Fo. The minimum 
length feasible solution found during the search yields T G ( N ) .  

A vertex-based branch-and-bound algorithm has been developed (among others) 
by Beasley [5,6]. Each subset Fi of feasible solutions is characterized by having 
included a set. INi of non-terminals, and excluded a set OUTi of non-terminals. 
Let Gi denote the network obtained from G by deleting the non-terminals in OUTi 
and with vertices in INi regarded as terminals). Let Ni denote the terminals in 
G: . 

As in the edge-based branch-and-bound algorithm, the problem of determining 
the optimal solution in Fi (if it exists) is equivalent to the problem of determining 
a Steiner minimal tree T G , ( N ~ )  for Ni in Gi. Branch-and-bound algorithms where 
the determination of lower bounds is based on various relaxations of mathematical 
programming formulations (discussed in the following three sections) are typically 
vertex-based. 

3.6 Mathematical Programming Formulations 

As already mentioned in Chapter 1, the Steiner arborescence problem in directed 
networks is a generalization of the Steiner tree problem in undirected networks. 
This section discusses several mathematical programming formulations of the Steiner 
arborescence problem. Some of these formulations were originally given for the 
Steiner tree problem. 

3.6.1 Flow Formulations 

The first mathematical programming formulation of the Steiner arborescence prob- 
lem is as follows. Let N1 = N - 2 1 .  For any arc [v;, vj]  e A ,  let zij be a binary 
variable indicating whether the arc [v,, v j ]  should be included (zij  = 1) or excluded 
(zij = 0) from the solution. Furthermore, for any arc [vi ,  vj] E A and any terminal 
zk E N1,  let y& denote the amount of commodity L to be sent from the terminal 
2 1  to the terminal %k through the arc [ v , , v j ] .  Consider the following mixed inte- 
ger programming problem PI, originally introduced by Claus and Maculan [ll],  
Wong [45] and (for undirected case) by Beasley [5]: 

(3.4) 

subject to 



3.6. MATHEMATICAL PROGRAMMING FORMULATIONS 133 

xij E {0,1),  V[vi, ~ j ]  E A (3-7) 

yk. ’> > - 0, V [ V i ,  Vj]  E A,Vvk E N1 (3.8) 

Flow conservation constraints (3.6) together with constraints (3.5) force the 
arcs {[vi, vj] I xij = 1)  in any solution to  yield an arborescence rooted at z1 and 
spanning all terminals. 

Beasley [5] suggested that the following constraint should be added to PI: 

This constraint limits the number of arcs in the solution. Although redundant, 
it does strengthen the lower bounds that will be described in Section 3.7 and in 
Section 3.8. 

A more compact formulation P’1 is obtained by aggregating constraints (3.5) 
for the same arc [wi , wj] .  

( n  - 1) t i j  L c Y&, V [ V i ,  vj] E A 
Z k E N i  

The disaggregated formulation PI and the aggregated formulation P’1 are equi- 
valent in the sense that they yield the same optimal solutions. However, the ex- 
perimental results indicate that optimal solutions are obtained considerably faster 
for PI. This observation is in fact supported by a more formal argument. Let LP1 
and LP’1 denote the linear relaxations of PI and P‘1 respectively. Let v(LP1) and 
v(LP’l) denote the optimal solution values for LP1 and LP‘1 respectively. 

Lemma 3.3 ([14]) w(LP’1) 5 w(LP1). 

Proof: It is clear that any feasible solution of LP1 is also a feasible solution of 
LP’1. In the reverse direction, this is not true in general. Consider the problem 
instance in Fig. 3.4. Let 212 = 214 = 223  = 231 = 242 = 1 and yf4 = yiz = 2, 
yi3 = yil = yf2 = yz3 = 1 while keeping the remaining x- and y-variables at 0. 
This solution is feasible for LP’1 but infeasible for LP1. 0 

Many techniques for solving mixed integer programming problems first solve 
the linear programming relaxations. Because the linear programming version of the 
disaggregated formulation is more tightly constrained than its aggregated counter- 
part, better lower bounds are obtained for the former. As pointed out by among o- 
thers Magnanti and Wong [39], the disaggregated formulation has more constraints. 
Consequently, it has a richer collection of linear programming dual variables. The 
enhanced set of dual variables provides more flexibility in the algorithmic develop- 
ment. Furthermore, Jain [33] used probabilistic arguments to  show that the linear 
programming relaxation of P’1 provides lower bounds rapidly diverging from the 
optimal values. He also characterized the rate of divergence. 
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Figure 3.4: with a solution feasible for LPl1 and infeasible for LP1 

When examining the formulation Pll, one observes that there is no need for 
flow variables with respect to each terminal in N1. This leads to the following 
formulation Pllt originally introduced by Arpin, Maculan and Nguyen [2]: 

subject to 

x i j  E {0,1}1 
Y i j  2 0, 

V[vi, vj] E A 
V [ v i ,  vj] E A 

The formulations P', and P'll are equivalent both in terms of determining 
the same optimal solution and in terms of identical linear relaxations. In view of 
Lemma 3.3, v(LP1) 2 v(LP"1). 

3.6.2 Two-Terminal Formulation 
A special case of the Steiner arborescence problem arises when n = 3. In this case 
the optimal solution is a union of three paths: one path from the root z1 to a 
splitter v e d e t  v p ,  and two paths from the splitter vertex v p  to terminals z k  and 
21 respectively. The mathematical programming formulation of this two-terminal 
Steiner arborescence problem was studied by Ball, Liu and Pulleyblank [4]. It is 
as follows. 

subject to 
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This leads directly to  the two-terminal formulation Pz of the general Steiner 
arborescence problem with flow constraints for every pair of terminals z k ,  ZI E N1, 
Z k  # 2 1 .  Liu [37] proved that v(LP,) 2 v(LP1). 

3.6.3 Degree-Constrained Formulation 

The next formulation P3 of the Steiner arborescence problem was presented by 
Beasley [S]. It is the degree-constrained formulation of the problem discussed in 
Subsection 1.4.5 stated in mathematical form. While the formulation given by 
Beasley was for the Steiner tree problem, the formulation for the Steiner arbores- 
cence problem is given here. 

(3.10) 

subject to 
{[Vi ,  vj] I x;j = 1)  is a spanning arborescence of G (3.11) 

xoi + xij 5 1 ,  Vvi E V \ N ,  V[V;, ~ j ]  E A (3.12) 
xij E (0, I } ,  V [ V ~ , V ~ ]  E A (3.13) 

The constraint (3.11) can be written in mathematical form. However, the cor- 
responding constraints are not essential in the sequel. The implicit formulation is 
preferred for the sake of clarity. 

3.6.4 Set Covering Formulation 

Aneja [l] formulated the Steiner tree problem as a set covering problem. The 
Steiner arborescence version P4 that is stated below was presented by Wong [45]. 

subject to  

-). 

where C = { W, w} denotes a cut of G. 
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Suppose that X = (zijI[v;,vj] E A )  is an optimal solution to P4. Let T be a 
subnetwork of G whose arc set is {[vi, vj]lzij = 1). T is connected and spans N .  
If not, a constraint corresponding to some cut C would be violated. Furthermore, 
the set of arcs of any arborescence rooted at z1 and spanning terminals is a feasible 
solution of P4. Since cij > 0 for all [v;,vj] E A ,  it follows immediately that 
T = T - ( N ) .  

Lemma 3.4 ([45]) v(LP1) = v(LP4). 

Proof: It is proved first that v(LP1) 2 v(LP4). Let ( % i j ,  $) be a feasible solution 
of LP1. Let Zk denote any terminal in N1. Let c = {w,w} be a cut of v with 
z1 E w and lk E W. 

Since ( & j ,  jii”j) is a feasible solution of LP1, it is possible to send one unit of 
commodity k from z1 to %k on a network where the capacity of an arc [vi ,  vj] is 
Zi j .  By the max flow-min cut theorem, the total capacity C u, ,u , lEC z’ij of the cut 
C must be at least one. Since the cut C was chosen arbitrarily, any cut separating 
z1 from zk must have total capacity at least one. Since 21. was chosen arbitrarily, 
any cut separating z1 from at least one other terminal must have total capacity 
at  least one. It follows that ( Z i j )  is a feasible solution to CP4. Consequently, 

Next it is proved that v(CP1) 5 v(CP4). The proof is essentially a reversal of 
the above argument. Let (Z i j )  be a feasible solution of CP4. Consider z i j  to be 
the capacity of an arc [vi, vj]. Let y!j = 3 i j  for all arcs [vi, vj] and all f k  E N1. By 
the max flow-min cut theorem, it must be possible to send one unit of commodity 
L from 21 to every %k E N1. Consequently, ( ~ i j ,  yfj) is a feasible solution to CP1 
and v(CP1) 5 v(LP4). 0 

Goemans and Bertsimas [27] and Goemans [26] considered the undirected ver- 
sion of P4 and obtained some interesting results. For any feasible solution X = (Zi j )  
of P4, the degree of a vertex vi, defined by 

- 

G 

V(LP1) L 4 9 3 4 ) .  

d X ( V i )  = c xij 

[ v . , v j ] E E  

is a t  least 1 if vi E N and a t  least 0 if vi E V - N .  If vi E N and d x ( v i )  = 1 or 
vi E V - N and dx(vi) = 0, the X is said to be parsimonious at the vertex v i .  
Let W be any subset of V .  Consider the problem Pr obtained from P 4  by adding 
additional constraints forcing every feasible solution to be parsimonious at  every 
vertex in W .  These constraints are 

P r  has the optimal solution value which usually is different from the optimal 
solution value for P4. However, if the underlying network G satisfies the triangle 
inequality, Goemans and Bertsimas [27,26] proved the the linear relaxations of P4 
and P r  have the same optimal solution values. Note that in view of Lemma 1.1 
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in Subsection 1.4.3, the triangle inequality requirement can be easily satisfied for 
every instance of the Steiner tree problem. 

Since v(LP4) = w(,CPr) for any choice of W ,  this is in particular the case 
when W = V .  This in itself allows considerable reduction of the size of LP," when 
compared with LP,. However, Goemans and Bertsimas used the parsimonious 
property to relate LP," (and therefore CP4) with the 1-tree relaxation with the 
Lagrangean objective function of the traveling salesman problem [31,32,35]. Let 
D G ( N )  denote the distance network induced by the set of terminals N .  Geomans 
and Bertsimas [27,26] proved that the 1-tree relaxation of the traveling salesman 
is equal to  2v(LP:) = Zv(LP4). Moreover, efficient implementations yielding very 
close approximations to the optimal solutions of 1-tree relaxations are available. 

3.7 Linear Relaxations 
A linear relaxation of any of the mathematical programming formulations given 
in Section 3.6 would yield a lower bound for the Steiner arborescence problem. 
In particular, Arpin, Maculan and Nguyen [2] applied the variable upper bound 
simplex method for solving the linear relaxation of P I .  The variables z;j in the 
constraints (3.5) were considered as upper bounds (beginning with x i j  = 1 if and 
only if the arc [w,, w j ]  is on a shortest path from .z1 to any other vertex). 

First of all, lower 
bounds can be weak. Secondly, even though linear programming problems can 
be solved efficiently by various standard methods, their use in branch-and-bound 
algorithms can be time-consuming. It is therefore often advantageous to solve linear 
relaxations by heuristic methods. Such approaches are described in the remainder 
of this section. 

Solving linear relaxations has two major disadvantages. 

Consider the dual VLP1 of the linear relaxation LP1 of P I :  

m u  u k k  

V k E N I  

subject to 

u j k  - U i k  - W f ,  5 0, 

U j k - W ; ,  5 0 ,  

V [ V i ,  V j ]  E A ,  VVk E N1, V i  # J1 
V [ V i , V j ]  E A , V V k  E N l , V i = Z l  

C u k E N t  W& L c i j ,  

w& 2 0, 

v[vi ,vjI  E A 

V[Vi w j ]  E A ,  V V k  E N1 

Solving VLP1 (heuristically or optimally) would yield a lower bound for P I .  
Wong [45] suggested a simple dual ascent heuristic for computing a near optimal 
solution to DLP1. Another version of this approach was suggested by Prodon, 
Liebling and Groflin [41]. As will be seen in Chapter 4, this heuristic also generates 
(with little extra effort) a feasible solution to P , .  

Let H = (V,A)  denote an auxiliary directed graph (initially A = 0). Let 
c ( V k )  denote a set of vertices in H for which there exists a directed path to Vg. 
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Furthermore, let 

A(vk)  = {[vi, wj] E Alvj E C(vk) ,  vi @ C ( v k ) )  

Thus, addition of the arc [vi, yj] E A(wk)  to  H would create a directed path from 
vi to  Vk. The dual ascent heuristic is as follows. 

0 Step 1: 

U k k  := 0, VWk E N1 

wfJ := 0, v[th,wJ] E A , V V k  E N1 

U(w:, W J )  := C t j r  V [ w : ,  W J ]  E A 

0 Step 2: Select a component C of H containing at least one N1-terminal, and such 
that all its terminals are strongly connected. If no such C exists, then Stop. Note 
that the heuristic will not terminate unless all terminals in N I  are connected via a 
path to 21. 

0 Step 3: Let W k  be an arbitrarily chosen Nl-termind in c. 
Q(v:* ,  w J = )  = min(u(w:, w J )  1 [w:, W J ]  E A ( a ) }  

u h k  := U h k  + ( T ( W c * ,  W J * ) ,  

wi; := w:J + u(w:*, w p ) ,  
u(w:, W J )  := u(w)l, W J )  - u(w:*, w J * ) ,  

vwh E c ( w k )  

v[w:, w J ]  E A ( w k )  

V[v*, W J ]  E A ( V k )  

0 Step 4: Add the arc [v:., wJ-] to H .  Go to Step 2. 

The initial solution to  the VLP1 (with all variables having zero values) is f e a  
sible. At  each iteration, one of the variables Ukk, v k  E N1, has its value increased. 
The other variables are also modified. Wong [45] proved that this modification of 
variable values a t  Step 2 indeed preserves the dual feasibility of the new solution. 
One arc is added to  H during each iteration. The heuristic therefore terminates 
after a finite number of iterations. 

Wong [45] also observed that the dual ascent approach is a generalization of the 
spanning arborescence algorithm by Chu and Liu [lo] and Edmonds [15]. It is also 
a generalization of the dual ascent algorithm for the uncapacitated plant location 
problem by Bilde and Krarup [9] and Erlenkotter [17]. 

Liu [37] developed asimilar dual ascent method with respect to the two-terminal 
formulation P2. The initial dual feasible solution is obtained by means of the dual 
ascent method for Pl. 

3.8 Lagrangean Relaxations 

This section describes several Lagrangean relaxations for the mathematical pro- 
gramming formulations given in Section 3.6. Common for all variants is that  ap- 
propriately chosen complicating constraints are removed (and incorporated into 
the objective function). The relaxed problems are typically very simple and solv- 
able in polynomial time. Furthermore, their solutions provide lower bounds for 
the optimal solutions of the original problem instances. The lower bounds are 
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iteratively improved via subgradient optimization. Although the Lagrangean re- 
laxation approaches do not solve original problem instances, they can be integrated 
into branch-and-bound algorithms. 

3.8.1 Lagrangean Relaxations of PI 
The first Lagrangean relaxation LGR: due to Beasley [5] is based on the flow 
formulation PI. It  is obtained by regarding (3.5) as complicating constraints. Let 
ufj (ufj 2 0 for all [v,, vj] E A ,  V k  E N l ) ,  be Lagrangean multipliers for (3.5). The 
Lagrangean relaxation LGRf is then given by 

subject to (3.6-3.9). 
The optimal solution to LGR: for any non-negative Lagrangean multipliers is 

a lower bound on the value of the optimal solution to PI. 
The LGR: can be easily solved for a given set of non-negative Lagrangean 

multipliers since it decomposes into n separate subproblems. The first subproblem 
is 

subject to  (3.7) and (3.9). The optimal solution to this problem is obtained by 
setting x i j  = 1 if and only if cij - C[u,,v,lEA ufj either is among n - 1 smallest coef- 
ficients or is negative and among v - 1 smallest coefficients. Each of the remaining 
n - 1 subproblems is of the form 

min C uk. k. 
SJ yaJ 

[ U I > U I I E A  

subject to (3.6) and (3.8) where V k  is a fixed terminal in N1. Each subproblem can 
be solved by finding the shortest path in G from z1 to vk  6 N1 with ufj interpreted 
as arc lengths. 

In order to improve the lower bound obtained from LGR:, Beasley uses the 
subgradient optimization algorithm [18] (which is also used in connection with the 
other lower bounds described below). Since LGR: has the integrality property, the 
lower bound will never be better than the lower bound obtained from the linear 
relaxation LP, . 

The second Lagrangean relaxation LGR! due to Beasley [5] is also based on the 
flow formulation PI. It is obtained by regarding (3.6) as complicating constraints. 
Let U i k ,  vi E v, v k  E N1, be Lagrangean multipliers for (3.6). The Lagrangean 
relaxation LGR: is then given by 

+ 
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subject to  (3.5) and (3.7-3.9), where C& = U j k  - u i k ,  and the rightmost term is a 
constant. If q j  is set to 1,  then the best contribution from [v i ,  vj] E A is 

Thus, LGRf can be rewritten as 

subject to (3.5) and (3.7-3.9). The optimal solution to LGR; is obtained by setting 
z i j  = 1 if and only if b i j  either is among n - 1 smallest coefficients or is negative 
and among v -  1 smallest coefficients. Since CGR; has the integrality property, the 
lower bound will never be better than the lower bound obtained from the linear 
relaxation LP, . 

3.8.2 Lagrangean Relaxation of P3 
The third Lagrangean relaxation LGR3 due to Beasley 161 is based on the degree- 
constrained formulation P3. The lower bound b is obtained by regarding (3.12) 
as the complicating constraints. Let u ; j  ( u i j  2 0 for all v; $ N ) ,  [ v ; , v j ]  E A )  be 
Lagrangean multipliers for (3.12). The Lagrangean relaxation LGR3 is then given 
by 

min C c i j x i j  + C C U i j ( x 0 i  + x i j )  - C C u i j  

[ussujlEA uaBN [ u r , ~ j l E A  uiEN [ u i , u j ] € A  

subject to (3.11) and (3.13). By rearranging and letting 

C [ u , , u j l E A  u i j  1 
if v i  = 210, v j  $ N 

c ; j  = { C i j  + U i j ,  if [ v ; , v j ]  E A,vi  @ N 
Cij 7 otherwise 

the LGR3 becomes 

min C ~ i j x ; ,  - C C u , j  

subject to (3.11) and (3.13). Note that the rightmost term is a constant, and C i j  2 
0 for all [v i ,  v j ]  E A. For any given set of non-negative Lagrangean multipliers, 
this is the unconstrained minimum spanning arborescence problem. A similar 
Lagrangean relaxation for the Steiner tree problem in an undirected network would 
result in the unconstrained minimum spanning tree problem. Both can be solved 
in polynomial time by any of the well-known algorithms [43,44]. 

The LGR3 is very sensitive to the choice of the terminal which is made adjacent 
to the artificial vertex vo. A rule suggested by Beasley [6] in the first version of 
the paper was to select a terminal whose average distance to other terminals is a 
minimum. In the revised version, a simpler strategy which however seems to yield 
reasonable results was suggested: select a terminal with the largest degree in G 
(ties are broken arbitrarily). 

[u 8 ,u j I €  A v , 4 N  [u, ,uj]EA 

+ 
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3.8.3 Lagrangean Relaxation of P4 
The fourth Lagrangean relaxation is based on the set covering formulation P4. As 
observed by Dror, Gavish and Choquette [14], there is too little structure in this 
formulation to be useful in Lagrangean relaxation schemes. In order to amend this 
weakness, they add the following redundant constraints to  P4. 

r[u,,u,]~~ l i k  = 11  vvk E N1 (3.17) 

C[u, ,V, ]EA x i j  2 n - 1 ,  (3.18) 

yi - y j  + ~ ~ i j  5 w - 1, V [ V ~ ,  ~ j ]  E A (3.19) 

where yi is a continuous variable for every w i  E V .  Constraints (3.17-3.18) are 
redundant. Constraints (3.19) rule out every cycle. To see this, consider any cycle 
C in G and assume that x i j  = 1 for all [wi, w j ]  E C. Summing up both sides of 
constraints (3.19) for all [vi,vj] E C yields wlCl 5 ( w - l ) ~ C ~ ,  acontradiction. Tosee 
that constraints (3.19) do not rule out any terminal-spanning arborescence rooted 
at  21, interpret yi as the depth of w i  in the arborescence. If w i  is a non-terminal not 
spanned by the arborescence, let yi = 0. For any arc [wi, wj] in the arborescence, 
yi - y j  = -1. For any arc [v,,vj] not in the arborescence, yi - y j  5 w - 1 (since 
0 5 yi,yj  5 w - 1). Thus, the corresponding constraint (3.19) is satisfied in both 
cases. 

Dror, Gavish and Choquette [14] relax the extended formulation of P4 in L a  
grangean fashion by regarding the cut constraints (3.15) as complicating. Let uc 
(uc  L O f o r e v e r y c u t C =  {W,W},zl  E W , N l n W # O , W u W =  V ) b e L a -  
grangean multipliers for (3.15). The Lagrangean relaxation CGR4 is then given 
by 

min C ci jx i j  + C u C ( 1 -  C x i j )  
Iua,u,IEA C I U ,  , U , I E  c 

subject to (3.16) and (3.17-3.19). By rearranging and letting 

the CGR4 becomes 

subject to (3.16) and (3.17-3.19). For fixed Lagrangean multipliers, this is a mi- 
nimum arborescence problem. LGR4 does not have the integrality property. U s  
ing the subgradient optimization can therefore lead to  lower bounds better than 
w(LP4). Since w(LP4) = v(LP1) (Lemma 3.4), Dror, Gavish and Choquette [14] 
suggested the dual ascent heuristic (Section 3.7) to obtain good initial Lagrangean 
multipliers. 

3.9 Benders’ Decomposition Algorithm 
Maculan [38] suggested an application of the Benders’ decomposition algorithm to 
the flow formulation PI  of the Steiner arborescence problem. 
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Consider the flow formulation PI of the Steiner arborescence problem. The 
linear relaxation LP1 is bounded. Under the assumption that every terminal in G 
can be reached from 21, the LP1 is also feasible. 

Suppose that the complicating binary variables are fixed, i.e., x i j  = Z i j  E {0,1} 
for every [vi, v j ]  E A. Then PI reduces to  a linear programming problem LP,(X). 
Its dual VLPl(X) is 

4 

(3.20) 

subject to 

U j k  - U i k  - W k .  0, V [ V i ,  V j ]  E A , t I V k  E N1, V i  # 21 
V[vi ,  ~ j ]  E A, Q v ~  E N1, V i  = 21 

(3.21) 

(3.22) 

W f j  20, V [ V i  V j ]  E A ,  Vvk E N1 (3.23) 

Constraints in every VLP,(x) are also constraints in VLP1. The fact that 
LP1 is bounded and feasible implies that VLP1 is feasible. Hence every VLP1(X) 
is feasible and v(LPl(X)) = v ( D L P , ( X ) ) .  It follows that PI is equivalent to 

81 - 
U j k  - W $  5 0, 

min /3 

subject to 

P 2 C u k € N , ( ~ k k  - C [ u , , u j l E A  x i j w i k j )  + C [ u , , u , ] E A  c i j x i j  

xij E (0, l } , V [ ~ i , ~ j ]  E A 

and (3.21-3.23). Consider the relaxation of the above formulation of Pl obtained 
by dropping the constraints (3.21-3.23). It will be referred to it as Benders' master 
problem. Let X = { Z i j l [ v i , v j ]  E A }  denote the values of binary variables in the 
optimal solution to  the Benders' master problem. The solution of DLP,(X) can 
be obtained by solving separately n - 1 VLP! problems, one for each V k  E N1: 

subject to 

'1Ljk - U i k  - W: 5 0, 
U j k  - W f j  5 0, 

V [ V i ,  V j ]  E A ,  V i  # 21 
V [ V i , V j ]  E A , V i  = 21 

W f j  2 0 ,  V [ V i ,  v j ]  E A ,  

If v(DLP:(X)) < 00 for all vk E N1 then v(VLP,(X))  = CUkENI v(VLPt(X)) + 
&vi,u,]E_A Z . . w k . .  $3 ri If V L P ! ( X )  is unbounded for a t  least one V k  E N1, then 
VLPl(X) is also unbounded. 
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Suppose that D L P f ( 8 )  is bounded for every V k  E N1. Then 8 is the optimal 
solution to P I .  Suppose that 'DCPt(X)  is unbounded for some V k  E A .  This 
implies that C P , ( x )  is infeasible. Regard z'ij as the capacity of the arc [vi ,vj] .  

Unboundedness of D C P t ( 8 )  implies that it is impossible to  send one unit of flow 
from z1 to ?&. Let {W,W} denote the cut in G such that W contains all vertices 
that can receive one unit of flow from z1. This partition can be determined by 
solving a maximum flow problem. Let 

4 

and 
X l a j k  - if [ V i ,  W j ]  E A , V i  # t l  w . .  = 

-'j { X a j k  if [vi, 9 3  E A ,  vi = z1 

for any X 3 0. This is a feasible solution to D C P f ( 8 )  for every X 2 0. Hence, an 
extreme ray of the polyhedral convex cone defined by the constraints of ' D C P f ( X )  
has been identified. Add the constraint 

%kk - xij'$j _< 0 
[. 8 ,u, I €  A 

to the Benders' master problem and solve it again. Note that Gfj # 0 if and only 
if [vir v j ]  is crossing the cut {W, @}. Substituting ' 6 k k  and wb by their values 
therefore yields 

CLu,,V,IEA x i j  L 1, v i  E w , v j  E 

This is one of the constraints occurring in the set covering formulation P4 of the 
Steiner arborescence problem. 

A new solution 2 = { Z j j l [ v i , v j ]  E A }  leads to a new dual D C P l ( 2 ) .  If any 
of its n - 1 separable subproblems D C P f ( x ) ,  Vk E N1, is again unbounded' a 
new constraint corresponding to an extreme ray will be identified. Furthermore, it 
must be different from all extreme rays identified previously. Since the number of 
extreme rays in the polyhedral cone defined by (3.21-3.23) is finite, (3.20-3.23) will 
sooner or later be bounded, yielding a solution to Fl. Usually the algorithm will 
terminate after a small number of iterations. 

If the Benders' decomposition algorithm described above required the identifi- 
cation of all extreme rays, Benders' master problem would be identical with the 
set covering formulation F4. 

3.10 Set Covering Algorithm 

The number of constraints in the set covering formulation P4 grows exponentially 
with the size of problem instances. However, the set covering algorithm suggested 
by Aneja [l] is able to handle the constraints implicitly. This algorithm is a modifi- 
cation of the cutting plane algorithm for the general set covering problem proposed 
by Bellmore and Ratliff [7] and also described in [25]. 
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Consider the linear relaxation CP4 of P4. It can be solved by the dual simplex 
algorithm. However, if the number of constraints is large (as is the case for the 
Steiner arborescence problem), this approach is not attractive. Aneja has shown 
how to determine variables entering and leaving a current basis (initially slack vari- 
ables are introduced into the basis) without the explicit knowledge of constraints. 
Essentially, these variables are determined by identifying the minimum length cuts 
among all cuts separating z1 from at least one other terminal and with simplex 
multipliers interpreted as edge lengths. This problem can be solved in polynomial 
time by the algorithm of Gomory and Hu [28]. 

The details of the set covering algorithm will not be given here as the approach 
is closely related to  the Benders’ decomposition algorithm described in Section 3.9. 
The reader is referred to [1,7,25] for more on the set covering algorithm. 

3.1 1 Summary and Computational Experience 

Table 3.1 gives an overview of the exact algorithms for the Steiner tree (and ar- 
borescence) problem discussed in this chapter. 

In general, it is very difficult to say anything definite about the performance 
of the algorithms. One of the reasons is that the computational results presented 
by the authors are very limited. Secondly, algorithms have been implemented 
in different programming languages, run on different computers, and applied to 
different problem instances. 

Shore, Foulds and Gibbons [42] reported on computational experience for the 
spanning tree enumeration algorithm (Section 3.1), dynamic programming algG 
rithm (Section 3.4), and the branch-and-bound algorithm (Section 3.5). The same 
results are also reported in [20,21]. Complete networks with v = 10,20,30 and for 
several values of n were randomly generated. The main conclusions that can be 
drawn from the average computation times are as follows. 

0 If the number of terminals is small (less than ./a), then the dynamic pro- 

0 If the number of terminals is around w/2, then the branch-and-bound algo- 

0 If the number of terminals is large (more than w/2), then the spanning tree 

Furthermore, the spanning tree enumeration algorithm and dynamic program- 
ming algorithms remain largely unaffected by the change of the range of lengths. 
On the other hand, the branch-and-bound algorithm exhibited widely fluctuat- 
ing times, making it difficult to draw any conclusions about the influence of edge 
lengths on its performance. However, it appears that the distribution of edge 
lengths, rather than merely their variance is the crucial factor affecting the perfor- 
mance of this algorithm. 

Wong [45], Arpin, Maculan and Nguyen [2] and Maculan [38] observed that the 
linear programming relaxation of PI very frequently (at least for sparse networks) 
yields integer solutions. In particular, all 80 linear relaxations considered by Arpin, 

gramming algorithm performs best. 

rithm performs best. 

enumeration algorithm performs best. 
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Met hod 
Complete 
Enumeration 

Dynamic 
Programming 

Branch-and- 
Bound 

Submethod Model Reference Section 
Spanning Tree Hakimi [30] 3.1 
Enumeration Lawler [34] 3.1 
Degree-Constrained Balakrishnan and 3.2 
Enumeration Pate1 [3] 

Enumeration 
ToPologY Hakimi [30] 3.3 

Dreyfus and 3.4 
Wagner [13] 
Levin [36] 3.4 
Shore et al. [42] 3.5 
Yang and Wing [46] 3.5 

Table 3.1: Exact algorithms for the Steiner tree/arborescence problem 

I 2 E t i o n s  

Lagr an gean 
Relaxations 

Benders’ 
Decomposition 
Set Covering 

Maculan and Nguyen [2] with v E [lo, 401, n E [5,8] and e E [20,50] had integer 
optimal solutions. The average computation times (using CDC CYBER 835) were 
between 0.857 and 8.910 seconds. Aneja [l] made a similar observation for the 
(equivalent) linear relaxation of P4. 

The dual ascent method used to determine the lower bound for PI  (Section 3.7) 
was implemented by Wong [45] (in FORTRAN using IBM 3033). Its efficiency was 
tested for 24 problem instances within the following four groups (6 in each group): 
v = 40, n = 20, e = 120/160, and v = 60, n = 30, e = 180/240. Edge lengths were 
randomly selected from the interval [0,1]. Lower bounds for 22 of these problem 
instances turned out to  be equal the value of upper bounds determined by the 
dual ascent heuristic which will be described in Chapter 4. For the remaining 2 
problem instances, the gap between the upper and lower bounds was  extremely 
small. Average CPU times for each group of problem instances were well below 1 
second. Similar results were reported by Guyard [29]. 

The dual ascent method used to determine the lower bound for P2 (Section 3.7) 
was implemented by Liu [37] (in C using Micro VAX 11). Problem instances with up 
to 100 vertices and up to 40 terminals were solved in less than 2.344 seconds. More 
importantly, lower bounds obtained were in most cases strictly better than those 
obtained by the dual ascent method applied to P I .  Also, the upper bounds (which 

PI  Arpin et al. [2] 3.7 
PI Wong [45] 3.7 
P I  Prodon et  al. [41] 3.7 
P2 Liu [37] 3.7 
PI Beasley [5] 3.8 
P3 Beasley [6] 3.8 
P4 Dror et al. [14] 3.8 
P I  Maculan [38] 3.9 

P4 Aneja [l] 3.10 
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can be derived with little extra effort) were usually better. Thus, a branch-and- 
bound algorithm would have little difficulty in determining an optimal solution. 
Such an algorithm remains to be developed. 

Vertex-based branch-and-bound algorithms employing Lagrangean relaxations 
LGR:, LGRb,, and LGR3 (Section 3.8) proved (at least for sparse networks) to be 
very efficient. For the Steiner tree problem (undirected networks), Beasley [5,6] 
observed that LQR: and LGR; are more or less comparable with respect to their 
efficiency. In particular, the duality gap for LORY is lower than when using LGR;. 
On the other hand, the use of LGR; requires less time in total to obtain optimal 
solutions. However, the difference in time is essential only for few of the randomly 
generated problem instances. Similar results for the Steiner arborescence problem 
were reported by Dror, Gavish and Choquette [14]. 

LGR3 is superior to LGR: and LGRb, both in terms of the duality gap at  Fo 
and in terms of execution times. Computational evidence presented in the first 
version of [6] indicated that LGR3 is able to solve problem instances with very 
large but sparse networks. For example, among 12 randomly generated problem 
instances with v = 500, e = 625,1000,2500, and n = 5,83,125,250, all but one 
were solved within 20 minutes. Not surprisingly, the efficiency of LGR3 improves 
as n becomes large. In the second version of [6], even better computational times 
were reported for the same instances (using CRAY-X-MP/48). In particular, it 
was reported that (a subset of) reduction tests described in Chapter 2 have not 
been very effective, and were as a consequence not used. Also larger instances with 
edge-densities reaching 0.1 have been tested. These results indicate that LGR3 is 
able to solve large, randomly generated problem instances. 

Computational results given by Beasley [6] are for relatively sparse networks. 
In particular, reductions involving computation of shortest paths could prove more 
useful for dense graphs. Furthermore, no information about the distribution and 
variance of edge lengths is given. Further analysis of LGR3 would therefore be of 
interest. 

Since LGR4 uses the dual ascent heuristic to  obtain initial Lagrangean multi- 
pliers, it is likely that subgradient optimization would produce good quality lower 
bounds. However, Dror, Gavish and Choquette [14] did not address this issue. 

The set covering algorithm (Section 3.10) was implemented by Aneja [l] (in 
FORTRAN IV using IBM 370/158). 10 sparse problem instances for each of the 
following zlle pairs: 10/20,20~30,20)40,30~40,30~50, 40150,40160,50160, and R = 
v / 2  were tested for relatively sparse networks with random edge lengths from the 
interval [1,10]. Solutions to the linear relaxation of P, yielded very good bounds. 
For 15 of 57 problem instances that were solved within 60 seconds, LP4 yielded 
integer solutions during the first iteration. For 12 more problem instances, the 
cost of the nonredundant cover obtained by rounding up the values of the optimal 
solution to LcP4 was equal to the value of this optimal solution. Furthermore, 
for 13 of the remaining 30 problem instances, the first nonredundant cover was 
in subsequent iterations discovered to be optimal. Among 23 problem instances 
that did not terminate within 60 seconds, 20 did not complete solving LP4 at the 
first iteration. This suggests that solving LP4 is a bottleneck of the set covering 
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algorithm. 
No computational results for the Benders’ decomposition algorithm are avail- 

able. But this algorithm is closely related to the set covering algorithm. It  most 
likely has similar performance characteristics. 
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Chapter 4 

Heuristics 

As already mentioned in Chapter 1, the decision version of the Steiner tree problem 
is NP-complete. Consequently, no polynomial time algorithm for the Steiner tree 
problem is likely t o  exist. In view of this inherent intractability of the problem, it 
is of practical importance to  develop heuristics that  quickly find low-length trees 
spanning the set of terminals N .  In this chapter available heuristics for the Steiner 
tree problem are reviewed. Section 4.1 covers path heuristics. They gradually add 
appropriately chosen paths between a tree constructed so far and terminals not yet 
in the tree. Tree heuristics are described in Section 4.2. They start with a tree 
spanning all terminals. Various strategies are then applied to  obtain a shorter tree. 
Vertex heuristics are discussed in Section 4.3. Their common characteristic is that 
they select a subset of “good” non-terminals. Once they are selected, a minimum 
spanning tree of the subnetwork induced by terminals and selected non-terminals 
yields a suboptimal solution. Heuristics that do not fall into any of the above three 
classes are discussed in the subsequent sections: contraction heuristic in Section 4.4, 
dual ascent heuristic in Section 4.5 and set covering heuristic in Section 4.6. Finally, 
computational experience and comparison of heuristics is mentioned in Section 4.7. 

4.1 Path Heuristics 

Several heuristics for the Steiner tree problem can be characterized as path heuris- 
tics. Starting from an arbitrarily chosen terminal (or some other subnetwork of G), 
the tree is gradually grown until it spans all terminals. The expansion is typically 
based on the addition of (shortest) paths between vertices already in the tree and 
terminals not yet in the tree. 

4.1.1 Shortest Paths Heuristic 

Takahashi and Matsuyama [32] suggested a heuristic for the Steiner tree prob- 
lem related to Prim’s minimum spanning tree algorithm [27]: when a partial tree 
containing a subset Nk of terminals has been built up, an appropriately chosen 
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terminal zk+l 6 Nk is connected to it by a shortest path. More specifically, the 
shortest paths heuristic (SPH) is as follows. 

Step 1: Begin with a subtree T s p ~  of G consisting of a single, arbitrarily chosen, 
terminal z1 (Fig. 4.la). k = 1. 

Step 2: If k = n, then Stop. 
Step 3: Determine a terminal zk+l  $i T s p ~  closest to T s p ~  (ties are broken 
arbitrarily). Add to Tspn a shortest path joining it with zk+l  (Fig. 4.lb and 
Fig. 4 .1~) .  k = k + 1. Go to Step 2. 

As noted by Rayward-Smith and Clare [29], T s p ~  can be further improved by 
two additional steps. 

0 Step 4: Determine a minimum spanning tree for the subnetwork of G induced by 

Step 5: Delete from this minimum spanning tree non-terminals of degree 1 (one 

the vertices in T s p ~  (Fig. 4.ld). 

at a time). The resulting tree is the (suboptimal) solution. Stop. 

=z 

4 4 

3 

Figure 4.1: Shortest paths heuristic 

The shortest paths heuristic can be implemented by a straightforward modifi- 
cation of Prim’s algorithm for minimum spanning trees [27], given shortest paths 
from every terminal to all other vertices. Furthermore, the determination of these 
shortest paths is the bottleneck of the heuristic. Consequently, the shortest paths 
heuristic requires O(nw2) time, since shortest paths from each terminal to  all other 
vertices can be determined by for example Dijkstra’s algorithm [8] in O(v2) time. 
Alternatively, use of Fibonacci heaps to compute shortest paths [12] reduces the 
worst-case time complexity of the shortest paths heuristic for sparse networks to 
O ( n ( e  + v log v)). 

A very important issue associated with heuristics for the Steiner tree problem 
is how bad can suboptimal solutions be in comparison with optimal solutions. Let 
T G ( N )  denote a Steiner minimal tree for N in G. Let L denote a walk around 
T G ( N )  traversing each edge exactly twice. One can regard L as composed of n 
terminal paths, each connecting a terminal to a “next” terminal (Fig. 4.2). The 
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longest terminal path P' of L must have length at least 2 1 T ~ ( N ) l / n .  When P' is 
deleted from L ,  a walk L' with IL'I 5 I T G ( N ) I ( ~  - 2 / n )  is obtained. 

Figure 4.2: Walk L' around TG(N) 

Theorem 4.1 ([32]) IT~~HI/ITG(N)I 5 2 - 2/72 for  any network G and any set 
of terminals N .  Furthermore, this bound is tight, i.e., for any E ,  E > 0 ,  there i s  an 
instance of the Steiner tree problem such that ~T.~HI/ITG(N)I > 2 - E .  

Proof. In order to prove the first part of the theorem, one needs to  show that 
ITSPHI 5 IL'I. Let z1, z2, ..., z,, be the ordering in which the terminals are selected 
by the shortest paths heuristic. Let Pk, k = 2 , 3 ,  ..., n ,  denote the shortest paths 
used to  construct TSPH.  It will be shown that to each P k  corresponds a different, 
not shorter terminal path in L'. For each terminal Z k ,  2 5 k 5 n:  

traverse L' backward (counterclockwise) beginning at z k  until reaching the first 
terminal path, denoted by B k ,  from a termind Z k b ,  k g  < k to a termind z,, i 2 k. 
Let k b  = 0 if B k  does not exist. 
traverse L' forward (clockwise) beginning at Zk until reaching the first termind 
path, denoted by F k ,  from a terminal z,, j 2 k, to a termind z k , ,  kf < k .  Let 
kf = 0 if F k  does not exist. 
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B5 = { Z ' 2 , ~ 1 2 , Z 5 } , F S  = { Z 5 r Z I } , L 5  = F 5  

Bs = ( 2 4 ,  2 5 , 9 1 3 ,  Z s } ,  Fs = { z 6 , S 1 3 , z 3 } ,  Ls = Bs 

B 7  = 0 ,  F 7  = { t g , ~ ~ } ,  L 7  = F 7  

B 8  = 0, F 8  = { Z s , 8 i o ,  % 7 } ,  Ls = Fs 

B 9  = { 2 7 , 9 1 0 , s 1 1 , Z l r 2 9 } , F g  = ( t g , ~ l } r L ~ = B g  

Let k and k' be two distinct integers satisfying 2 5 k < k' 5 n. Suppose that 
z k  precedes zkl on L'. The opposite case is proved in similar manner. Assume first 
that all terminals between .zk and .zi on L' have indices higher than k .  Then Bki 
begins somewhere between Zk and Z k l .  Furthermore, Bk either does not exist or 
begins at a terminal preceding % k .  Hence Bk # Bkl. There are three possibilities 

F k t  does not exist. Then F k  does not exist. Hence, L k  = B k  and L k l  = B k i .  As 
already remarked, B k  # B k l .  Thus, L k  # L k l .  

F k !  ends in a terminal with index k; > k .  F k  either does not exist, or ends in a 
terminal with index kf satisfying k; > k > kf . So both B k  # B k t  and F k  # F k j ,  

implying that L k  # L k , .  

F k ,  ends in a terminal with index k; < k. In this case, F k  = F p .  However, k; > k 
implying that L k '  = B k i .  Since B k i  # B k  and B k i  # F k ,  it follows again that 

Assume next that there is at least one terminal between %k and Q I  with index 
less than k. Then it follows immediately that Bk, Fk, Bk,, Fkt are all distinct. 
Consequently, L k  # L k l .  

So far it has been proved that the paths L z ,  L3, ..., L, are mutually distinct. 
Each path Lk, k = 2,3,  ..., n, goes from a terminal with index less than k to a 
terminal with index greater than or equal to k. Consequently, L k  is not shorter 
than the path to Z k  selected by the shortest paths heuristic. 

It remains to  show that the bound is tight. Consider the network shown in 
Fig. 4.3. Its n terminals form a path with edges of length 2. Its only non-terminal 
is adjacent to all terminals. All edges incident with the non-terminal have length 
1 + 6 ,  6 > 0.  T ~ P H  is the path through all terminals and ITSPHI = 2n - 2. For 
sufficiently small 6 ,  TG(N)  consists of the edges incident with the non-terminal and 
ITG(N)I = n + n6. As 6 goes to 0, the ratio goes to  2 - 2 / n .  For sufficiently large 

for Fkl: 

L k  # L k I .  

n, the ratio will be greater than 2 - E .  0 

4.1.2 Repetitive Shortest Paths Heuristics 
The shortest paths heuristic is sensitive to the choice of the initial vertex from which 
the solution is constructed. Thus, it can be worthwhile to apply the shortest paths 
heuristic more than once, each time beginning with a different initial vertex (or 
subnetwork). Several such repetitive strategies have been investigated by Winter 
and Smith [39]. 

0 SPH-N: determine T s p ~  R times, each time beginning with a different terminal. 

0 SPH-V: determine T s p ~  times, each time beginning with a different vertex. 
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Figure 4.3: Tightness of the error ratio bound of T s p ~  

0 SPH-zN: determine T S ~ H  n - 1 times, each time beginning with a shortest path 

0 SPH-NN: determine T s p ~  n(n - l ) / 2  times, each time beginning with a shortest 

The repetitive applications of the shortest paths heuristic will yield better so- 
lutions. In particular, the SPH-V and SPH-NN variants seem to perform well. 
The improvement in terms of quality of obtained solutions is of course paid for by 
longer computational times. However, the repetitive schemes become much more 
attractive if the reductions described in Chapter 2 are applied first. 

from a fixed terminal 21 to a terminal t,, i = 2,3 ,  ..., n. 

path between a different pair of terminals. 

4.1.3 

Takahashi and Matsuyama [32] also studied the shortest paths with origin heuristic 
(SPOH). T s p o ~  consists of the shortest paths from an arbitrarily chosen terminal 
zi to all other terminals. The worst-case time complexity of this heuristic is O(e + 
v log v) using Fibonacci heaps. The worst-case error ratio ITsPoHI/ITG(N)I is 
tightly bounded by n - 1.  Hence, the shortest paths with origin heuristic can be 
considered as inferior to the shortest paths heuristic also in the worst-case sense. 
It performs poorly on average. 

Shortest Paths with Origin Heuristic 

4.1.4 Kruskal-Based Heuristic 

The shortest paths heuristic (Subsection 4.1.1) is closely related to  Prim’s algorithm 
for minimmum spanning trees [27]. Wang [35] suggested a heuristic which is closely 
related to Kruskal’s algorithm for minimum spanning trees. The Kmskal-based 
heuristic (KBH) is as follows. 

0 Step 1: Begin with a forest TKBH consisting of all isolated terminals. 

0 Step 2: If TKBH is connected, then Stop. 

0 Step 3: Find two trees in TKBH closest to each other (ties are broken arbitrarily). 
Add to TKBH a shortest path connecting those two trees. Go to Step 2. 
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The worst-case time complexity of this heuristic is O(nv2) .  Widmayer [37] 
showed that ~TKBHI/ITG(N)I 5 2 - 2/72. Plesnik [25] showed that this bound is 
tight in the same sense as the bound for the error ratio of TSPH.  

4.1.5 Y-Heuristic 

A variant of the shortest paths heuristic was suggested by Chen [5]. It will be 
referred to as the Y-heuristic (YH). Rather than begin with an arbitrary terminal, 
Steiner minimal trees for all triplets of terminals are determined. Such Steiner 
minimal trees consist of at most one non-terminal of degree 3 from which three 
paths to the terminals leave. The topology of such Steiner minimal trees can be 
represented by the letter Y. Hence the name of the heuristic. The shortest Steiner 
minimal tree taken over all triples of terminals is used as a starting tree (instead 
of an arbitrary terminal chosen by the shortest paths heuristic). 

The expansion phase of the Y-heuristic is also slightly different than in the 
shortest paths heuristic. Suppose that a tree T k  spanning k terminals, 3 5 k < n,  
has been constructed. A terminal zk+l $ T k  closest to T k  is determined. Let 
V k + l  E T k  denote the other end-vertex of the corresponding shortest path. Let 
q denote the degree of V k + l  in T k .  T k  contains q edge-disjoint elementary paths, 
all beginning at V k + l  and with intermediate non-terminals (if any) of degree 2. 
Each such elementary path is removed in turn. This splits T k  into two components 
(temporarily contracted to two terminals). They are reconnected together with 
t k + l  using the Steiner minimal tree construction for triplets. The shortest among 
the q trees generated is selected as the tree T k + l  spanning k + 1 terminals to be 
used in the next iteration. 

Chen [5] showed that a Steiner minimal tree for a triplet of terminals can be 
determined in O(e log v) time. Furthermore, a shortest Steiner minimal tree for all 
O(n3)  triplets of terminals can be found in O(ne logv) time. Each iteration of the 
Y-heuristic involves the determination of O(n)  Steiner minimal trees for triplets of 
vertices. Before a shortest among these O(n) Steiner minimal trees is determined, 
up to O(v)  edges will be temporarily contracted or deleted from G in O(e) time. 
Hence, the k-th iteration requires O(ne1ogv + e )  + O(e + vlog v) time where the 
second term is the time needed to  identify f k + l .  This reduces to O(ne log v). There 
are n - 3 iterations. Hence, the Y-heuristic requires in total O(n2e logv) time. Not 
surprisingly, on average, solutions are better than those obtained by the shortest 
paths heuristic. Widmayer [38] showed that IT~HI/ITG(N)I 5 2-2/n.  Plesnik [25] 
showed that this bound is tight in the same sense as the bound for the error ratio 
of T S P H .  

4.2 Tree Heuristics 

Another class of heuristics is based on the idea of constructing a tree spanning all 
terminals. Usually a variant of the minimum spanning tree algorithm is used to 
obtain this initial tree. Once given, various strategies to improve it can be applied. 
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4.2.1 Minimum Spanning Tree Heuristic 

In the m i n i m u m  spanning tree heuristic (MSTH) suggested by Takahashi and 
Matsuyama [32], the solution TMSTH is obtained by deleting from the minimum 
spanning tree for G non-terminals of degree 1 (one at a time). The worst-case time 
complexity of the minimum spanning tree heuristic is O ( e + v  log v). The worst-case 
error ratio ITMsTHI/ITG(N)I is tightly bounded by v - n+ 1. Hence, the minimum 
spanning tree heuristic can be considered as inferior to  the shortest paths heuristic 
in the worst-case sense. It also performs poorly on average. 

4.2.2 Greedy Tree Heuristic 

Minoux [23] suggested a greedy tree heuristic (GTH). It constructs various minimum 
spanning trees of subnetworks of G induced by appropriate supersets of N .  In order 
to ensure existence of such minimum spanning trees, G should be complete. If this 
is not the case, G can be transformed into a complete network G' by the addition 
of infinite length edges as explained in Subsection 1.4.2. Alternatively, the problem 
can be solved in the distance network D = &(V)  rather than in G. However, this 
will involve the determination of all shortest paths. The heuristic is as follows. 

0 Step 1: Let k = 0 and N k  = N .  Let Tk denote a minimum spanning tree of the 
subnetwork of G' induced by N k .  

0 Step 2: If N k  = V, then Stop. Otherwise, determine minimum spanning trees 
T l l  of subnetworks of G' induced by Nk U v,, v, 6 N k .  Let T,V' denote the shortest 
of these minimum spanning trees. 

0 Step 3: If lTkl 5 IT,"'I, then let TGTH = Tk and Stop. Otherwise, N k + 1  = N c U v , ,  
Tk+l = Ti', 6 = k + 1 ,  and go to Step 2. 

The number of iterations is O(v - n) .  The number of minimum spanning trees 
determined during each iteration is also O(v - n). These minimum spanning trees 
do not need to be determined from scratch. In fact, given a minimum spanning tree 
of a subnetwork of G* induced by a vertex set Nk, 0 5 k < v - n, any minimum 
spanning tree of a subnetwork of G' induced by a vertex set Nk Uvj, Vj 6 Nk, can be 
determined in o(INkI) time [23]. It follows that the complexity of the greedy tree 
heuristic is O((v - n)'v + n'). If the greedy tree heuristic is solved in D ,  additional 
O(v3) time is required to  determine all shortest paths. Note that the heuristic can 
completely fail to find a solution if To contains infinite length edges. Even when 
solved in D ,  the heuristic can halt with TO as TGTH. Hence, its worst-case error 
ratio is v - n + 1.  

Minoux [23] noticed that the efficiency of the greedy tree heuristic can be con- 
siderably improved if each pair of non-terminals is non-adjacent in the network G. 
Let NO c N1 c ... c Nk, 0 5 k < v - n,  be a sequence of subsets generated by 
the heuristic. Let v, $ Nk. Let Tts ,  TI, ..., denote minimum spanning trees 
induced by Nj U vi, j = 0,1, ..., k. It can be shown [23] that 

The modified heuristic is then as follows. 
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0 Step 1: Let k = 0 and Nk = N .  Let To denote a minimum spanning tree of the 
subnetwork of G' induced by Nk. 

0 Step 2: If Nk = v, then Stop. Otherwise determine minimum spanning trees T w z  
of subnetworks of G induced by Nk U vI,  vI # Nk, Place these trees on a queue Q 
in non-decreasing order of their length. 

0 Step 3: Let T"J  denote the first minimum spanning tree on Q. Remove T"J from 

0 Step 4: If T"J does not span Nk U vJ ,  then redefine T"J t o  be the minimum 
spanning tree of the subnetwork of G induced by Nk U v,, add it to  Q (preserving 
the non-decreasing order), and go to  Step 2. 

0 Step 5:  If ITk(  _< IT"J1, then let TCTH = T k  and Stop. Otherwise, Nk+l = N k u v J ,  
Tk+l  =T"3  , k = k + 1 ,  and go t o  Step 2. 

Computational experience reported by Minoux [23] indicates that the number 
of minimum spanning trees generated by the modified version is reduced approxi- 
mately 4 times. However, the worst-case time complexity of the modified heuristic 
remains unchanged. 

Q- 

4.2.3 Distance Network Heuristic 
The distance network heuristic (DNH) was suggested independently by Choukhma- 
ne [6], Kou, Markowsky and Berman 1191, Plesnik [24], and Iwainsky, Canuto, 
Taraszow and Villa [16]. It is as follows. 

0 Step 1: Construct the distance network D c ( N )  for N in G (Fig. 4.4a and Fig. 4.4b). 
0 Step 2: Determine a minimum spanning tree of D G ( N )  (indicated by heavy line 

segments in Fig. 4.4b). 
0 Step 3: Replace each edge in the minimum spanning tree by a corresponding 

shortest path in G (Fig. 4 . 4 ~ ) .  Let TO denote this network. Note tha t  shortest 
paths  can be selected in such a way that  TO is a tree. 

by the  vertices of TO (Fig. 4.4d). 
0 Step 4: Determine a minimum spanning tree TDNH of the subnetwork of G induced 

0 Step 5: Delete from TDNH non-terminals of degree 1 (one a t  a time). Stop. 

The overall worst-case time complexity of the distance network heuristic is 
O(nv2) .  It is Step 1 that dominates all the remaining steps. It involves solving n 
shortest path problems. The bound can be reduced for sparse networks to O ( n ( e  + 
v log v)) if Fibonacci heaps are used [12]. 

Theorem 4.2 ITDNHI/ITG(N)I 5 2 - 2 / n  for any  network G and any  set N of 
terminals .  Furthermore, this bound is tight, i .e . ,  for any E ,  E > 0, there i s  an  
instance of the S te iner  tree problem such that ~TDNHI/ITG(N)I > 2 - E .  

Proof. Let L be the walk around T G ( N )  as defined in Subsection 4.1.1. One may 
regard L as composed of a t  most n leaf-connecting paths. If the longest of these 
paths is deleted from L ,  a walk L" such that IL"I 5 ITG(N)((2 - 2 / n )  is obtained. 
On the other hand, ~ T D N H ~  5 5 IL"I, completing the proof of the first part 
of the theorem. 
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=2 

I 

(a)  (b) ( C )  

Figure 4.4: Distance network heuristic 

The second part follows immediately using the same networks as when proving 
the tightness of the bound for the shortest paths heuristic in Subsection 4.1.1. 0 

Goemans and Bertsimas [15,14] proved a stronger result by showing that ITG(N)( 
in Theorem 4.2 can be replaced by v(LP4); the optimal solution value of the linear 
relaxation of the mathematical programming formulation P4 of the Steiner tree 
problem (see Subsection 3.6.4). 

The error bound for the distance network heuristic and for the shortest paths 
heuristic is the same. However, the latter often (but not always) produces better 
solutions. For instance, T s p ~  indicated in Fig. 4.5a by heavy line segments has 
length 15 (if either z1 or 29 is chosen as the initial terminal) while TDNH in Fig. 4.5b 
has length 16. On the other hand, T s p ~  in Fig. 4 . 5 ~  has length 45 while TDNH in 
Fig. 4.5d has length 39. 

It has been shown by Kucera, Marchetti-Spaccamela, Protasi and Talamo [21] 
that the distance network heuristic is nearly optimal for random graphs (i.e., net- 
works where an edge of unit length is present with probability p ) .  In that case the 
expected length of optimal solutions is approximately R log v /  log(vp). But even 
one of the most trivial heuristics, namely the shortest paths with origin heuristic 
(Subsection 4.1.3) is also nearly optimal for random graphs. 

The inferiority of the solutions obtained by the distance network heuristic when 
compared with the shortest paths heuristic, together with the fact that their worst- 
case error ratios and worst-case time complexities are comparable, makes the dis- 
tance network heuristic a poor choice among the heuristics for the Steiner tree 
problem. However, as will be seen in the remainder of this subsection, the worst- 
case time complexity of the distance network heuristic can be reduced substantially. 

Wu, Widmayer and Wong [41], and independently Wang [35] suggested a method 
of determining TD directly from G without explicit determination of the distance 
network D G ( N ) .  The construction of D G ( N )  is avoided by simultaneously growing 
shortest path trees from each terminal. During each iteration, the shortest, not yet 
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Figure 4.5: T s p ~  outperforming TDNH and vice versa 

included, edge incident to one of the shortest path trees is added. When two trees 
meet, a path between their roots is formed (corresponding to a path in TD). Two 
joined shortest path trees are restructured to a single tree with one root, and the 
expansion continues (until only one tree is left). The shortest path trees compu- 
tation requires O(e log v) time. This is an improvement over the bound O(nv2)  of 
the distance network heuristic, unless the network is dense and has few terminals. 
Unfortunately, the penalty is the need of rather complex data structures. 

Further worst-case time complexity reduction when determining To, based on 
even more complex data structures [12,13] was given by Widmayer [37]. The 
worst-case time complexity of the distance network heuristic is then O(e + (v + 
min{e,n2})logv). Recently, Kou [17] provided yet another algorithm for To. In 
the worst-case, his algorithm runs in O(e + n log n + (v  - n )  log(v - n)) time. If G 
is sparse, the time complexity reduces to O((v - n) log(v - n)  + q logp(q, n))  where 
q = min{e, ( n  - 1)2/2} and P(z,y) = min{il log' y 5 z/y}. 

Mehlhorn [22] suggested yet another modification of the distance network heuris- 
tic. Furthermore, this modification requires very simple data structures and has 
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superior worst-case time complexity. TD is determined not from the distance net- 
work &(A’), but from another, easier to find, network G’. More specifically, G’ is 
obtained as follows. Let N(Ji ) ,  zi  E N ,  denote non-terminals of G closer to zi than 
to any other terminal (Fig. 4.6a). Consider the network G’ = ( N ,  E’, c’) where 

E’ = {(zit Z j )  I 3(Vk,Vl) E E V k E N ( Z i ) ,  Vi E N ( Z j ) }  

and the length d(zi ,  z j )  of the edge ( z i ,  z j )  in G’ is 

m i n { d ( z i , ~ k ) + ~ ( V k , ~ I ) + d ( V 1 , Z j )  I ( v ~ ~ v I )  E E , v ~  E N(%i),vl  E N ( z j ) }  

The network G’ obtained from G (Fig. 4.6a) is shown in Fig. 4.6b. 

“n 

1+1+2 

Figure 4.6: Neighborhoods of terminals 

The neighborhoods N ( z i ) ,  zi E N ,  can be found by a single shortest path 
computation. Add an artificial vertex vo to G, connect it by zero-length edges to 
all terminals. Find the shortest paths tree with 210 as the root (Fig. 4 .6~) .  When 
vo is deleted from this tree, each of the resulting components contains exactly one 
terminal; its non-terminals belong to the neighborhood of the terminal. All this 
requires O(e + v log v )  time. 

Theorem 4.3 ([22]) Every minimum spanning tree of G’ is also a minimum span- 
ning tree of DG ( N )  . 

A straightforward but technical proof is omitted. From Theorem 4.3 follows 
that Step 1 and Step 2 of the distance network heuristic can be replaced by the 
determination of a minimum spanning tree TG,(N) .  This requires O(e + vlog v )  
time. This term still dominates the worst-case time complexity of the remaining 
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three steps. Floren [lo] observed that when replacing the edges of T G J ( N )  by 
the corresponding paths in G, the resulting network will always be a tree. So in 
principle Step 4 and Step 5 can be avoided. However, if applied, these steps can 
result in a better solution. This is for example the case for the problem instance 
shown in Fig. 4.6. 

4.2.4 Repetitive Distance Network Heuristic 

Plesnik [24] and independently Sullivan [31] suggested a modification of the distance 
network heuristic which in general yields better solutions but has higher worst-case 
time complexity bounds. For a given q,  0 5 q 5 n - 2, form distance networks 
DG(Q u N )  for each Q C V \ N with IQI 5 q. Use the distance network heuristic 
for each of these networks and take as TDNH the one with minimum length. This 
repetitive heuristic is stronger than the distance network heuristic. As shown by 
Sullivan [3l], the worst-case error ratio tends to 2 - q / ( n  - 2) which is better than 
2 - 2/n for q 2 2. On the other hand, the worst-case time complexity of this 
heuristic is O((v - n)qn2 + v3). Note that for q = n - 2, the heuristic is guaranteed 
to obtain a Steiner minimal tree. It is then identical to the enumeration algorithm 
described in Section 3.1. 

4.2.5 Multiple Distance Network Heuristic 

DianC and Plesnik [7] suggested the following multiple distance network heuristic 
(MDNH). Let Tf;*NH denote TDNH for N U V k ,  V k  6 N. Let Ti$, denote TDNH 
for N U {vi $! N I IT2NHI 5 IT;;LNHI}. Select as TMDNH the shortest tree from 
among TDNH and ~2:~, V k  @ N. 

This heuristic performs at least as well as the distance network heuristic. DianC 
and Plesnik [7] showed that ITMDNHI/ITG(N)I 5 2 - 2/n. The worst-case time 
complexity of the heuristic is O(ev + v 2  log v). 

4.2.6 Simulated Annealing Heuristics 

The reader is assumed to be familiar with the general framework of the simulated 
annealing algorithm. It will be only briefly discussed below. The reader is referred 
to e.g., van Laarhoven and Aarts [33] for theoretical and practical aspects of this 
algorithm. 

The simulated annealing algorithm starts with a feasible solution T at some 
initial temperature t .  Another feasible solution Ti in the neighborhood of T is se- 
lected. If T' is better than T ,  Ti replaces T in the next iteration. Otherwise, T' 
replaces T with probability e-(lT'l-lTl)/'. After a certain number n(t)  of iterations, 
the temperature is appropriately reduced. If the neighborhood structure is appro- 
priately chosen (i.e., every feasible solution can reach any other feasible solution in 
a finite number of neighborhood transformations) and the cooling schedule reduces 
t at an appropriate rate (with the initial t sufficiently large), then it can be shown 
that the simulated annealing algorithm obtains a global optimum with probability 
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converging to 1 as the number of iterations goes to 00. A simulated annealing 
heuristic (SAH) is derived from the algorithm by fixing the number of iterations. 

Schiemangk [30] suggested a simulated annealing heuristic for the Steiner ar- 
borescence problem. Its counterpart for the Steiner tree problem is outlined below. 
A solution T is feasible if T is a tree spanning all terminals and where all non- 
terminals have degree at least 2. A neighbor of a feasible solution T is any tree T' 
that can be obtained from T by 

removing an edge e from T ,  

0 reconnecting two components of T - e by a path with minimum number of edges, 

0 removing non-terminals of degree 1 (one at a time). 

Dowsland [9] suggested another simulated annealing heuristic for the Steiner 
tree problem. Feasible solutions are again trees spanning all terminals (with no 
non-terminals of degree 1). The neighborhood structure is however more elaborate. 
Current feasible solution T is broken into two subtrees Ti and by removal of 
a randomly chosen elementary path (i.e., a path with end-vertices being either 
terminals or non-terminals of degree more than 2, and with intermediate vertices 
being non-terminals of degree 2). Three vertices are then selected at random: vi 
belonging to Ti, v, belonging to T j  and w, belonging to non-terminals not in T 
extended by an artificial vertex vo. If v, = W O ,  then Tj and are reconnected by a 
shortest path from vi to vj. Otherwise] and T j  are reconnected by shortest paths 
from vi to v, and from vj to v,. If these two shortest paths overlap before reaching 
v, only their disjoint parts are included in the new feasible solution. Dowsland [9] 
showed that the neighborhood structure defined in this way is sound (i.e.l a Steiner 
minimal tree can be reached by a finite number of transformation from any feasible 
solution). In order to reduce the number of transformations, some of the reductions 
described in Chapter 2 are incorporated into the heuristic (i.e.] some elementary 
paths are never chosen as they belong t o  at  least one Steiner minimal tree, and 
some shortest paths are never used to interconnect subtrees as they do not belong 
to any Steiner minimal tree). 

4.2.7 Hill-C limbing Heuristics 

Dowsland [9] also suggested three hill-climbing heuristics (HCH). The first of them 
examines each elementary path in the current feasible solution T.  Each elementary 
path is removed (one at  a time) and the two subtrees are reconnected by a shortest 
possible path. T is replaced by the shortest tree found in this way. The heuristic 
stops when no improvements are possible. 

The second hill-climbing heuristic examines all local transformations based on 
the sequential removal of two elementary paths followed by an  appropriate recon- 
nection scheme. 

The third variant uses hybrid approach. The first hill-climbing heuristic is 
applied. Then one iteration of the second hill-climbing heuristic is applied. If this 
results in any improvement, the whole sequence is repeated. 
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4.3 Vertex Heuristics 

The major difficulty when solving the Steiner tree problem is to identify non- 
terminals that belong t o  the Steiner minimal tree. Once given, the Steiner mi- 
nimal tree can be found easily; it is a minimum spanning tree for the subnetwork 
induced by the terminals and selected non-terminals. The general idea behind 
vertex heuristics is to identify "good" non-terminals. 

4.3.1 Average Distance Heuristic 

The average distance heuristic (ADH) was suggested by Rayward-Smith [28]. It 
is based on the idea of connecting already constructed subtrees of a solution by 
shortest paths through some centrally located vertex. The degree of centrality of 
a vertex vi E V is measured by some appropriately chosen measure f (v j )  (to be 
defined below). 

0 Step 1: Begin with TADH consisting of the isolated terminals (Fig. 4.7a). 
k = 1. 

0 Step 2: If k = n, then Stop. Otherwise determine f(v;) for each v ,  E V, and 
select a vertex vl with the smallest f-value. 

0 Step 3: Add the edges on the paths from Z J ~  to the closest and second-closest 
components of TADH (Fig. 4.7b and Fig. 4 . 7 ~ ) .  k := k + 1. Go to Step 2. 

Let 

Two additional steps, identical to Step 4 and Step 5 of the shortest paths 
heuristic, can be applied to further improve the solution. 

One way of defining f during the k-th iteration, 1 5 k 5 n - 1, is as follows 
[29]. Let C,Va, 2 5 r 5 n - k + 1, denote r trees in the partially constructed TADH 
that are closest to a vertex vi E V (ties are broken arbitrarily). Define 

The worst-case time complexity of the average distance heuristic is dominated 
by the computation of shortest paths between all pair of vertices in G. Hence, its 
worst-case time complexity is O(v3) [ll]. This bound can be reduced to O(ve  + 
v 2  log v) for sparse networks. 

Theorem 4.4 ([36]) ITADHI/ITG(N)I 5 2 - 2/1 for any network G and any set 
N of terminals. Furthermore, for any E ,  E > 0 there exists a problem instance such 
that ITADHI/ITG(N)I > 2 - E .  

Proof. Let T D ( N )  denote the minimum spanning tree of D G ( N ) .  From Theo- 
rem 4.2 follows immediately that ITD(N)I/ITG(N)I 5 2-2/1 where 1 is the number 
of leaves in TG(N). Waxman and Imase [36] proved that ITADHI 5 ITD(N)I (a 
tedious technical proof is omitted). The first part of the theorem follows. 

In order to prove the second part, let L be any positive integer. Consider a full 
binary tree Bk of depth L with an additional path through the leaves (Fig. 4.8). 
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1 

Figure 4.7: Average distance heuristic 

Consider any non-leaf vertex v i .  Let h denote its height (number of edges which 
must be traversed to reach any leaf). Define the length of the two edges leaving 
vj downward to be 2‘+’ + 6 ,  0 < 6 1. Define the length of the bottom edge 
connecting the two subtrees of ui to be 2h+’ - 2 .  Let N be the set of leaf-vertices. 

For a fixed k, k > 0, TADH consists of the path through the leaves. Its length 
is 2(k2k - 2k + 1) On the other hand, T G ( N )  is the binary tree &. Its length is 
k2k + ( Z k + ’  - 1)6. Then 

Given any E > 0, then ~TADHI/ITG(N)I > 2 - E for any fixed 6 ,  0 < 6 < 1, and 
sufficiently large k .  0 

Bern and Plassmann [4] analyzed the average distance heuristic for complete 
networks with edge lengths either 1 or 2. They proved that the worst-case error 
ratio is then tightly bounded by 4/3. 

If n = v ,  the average distance heuristic reduces to the well-known minimum 
spanning tree algorithm of Kruskal [20] .  If n = 2, the solution will be the minimum 
length path between the two terminals. Thus, in those two “boundary” cases, the 
average distance heuristic will yield a Steiner minimal tree. 

4.3.2 Fast Average Distance Heuristic 

The average distance heuristic connects two trees during each iteration. However, 
f(q) can be attained for any subset C:‘, 2 5 r 5 n - k+ 1, of trees in the partially 
constructed TADH. It  seems therefore natural to connect all trees in C:l defining 
f ( v , )  to v1 via shortest paths. This usually reduces the number of iterations. 
Although this fast average distance heuristic (FADH) is less “cautious” than the 
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Figure 4.8: Tightness of the error ratio bound of TADH 

average distance heuristic, Plesnik [25] observed that this usually does not affect 
the quality of the solutions. He also proved that ITFADHI/ITG(N)I 5 2 - 2 / n  
for any network G and any set N of terminals. Moreover, this bound is tight in 
the same sense as the bound for the error ratio of TADH. The worst-case time 
complexity of the fast average distance heuristic is 0(w3). 

4.3.3 Restricted Average Distance Heuristic 

Chen [5] suggested a variant of the average distance heuristic that will be referred 
to as the restricted average distance heuristic (RADH). It joins three trees per 
iteration. Initially, TRADH consists of n trees, each consisting of a terminal only. 
The selection is based on Steiner minimal trees for triplets of terminals. More 
specifically, let 

3 

.P(vi )  = C d(vi, 
j=l 

where T;', G', G' are three subtrees of TRADH closest to W i  E V .  A vertex w1 
with the smallest f'-value is then selected, and the corresponding trees are joined 
together by a Steiner minimal tree. This is repeated as long as there are more 
than two subtrees left. If there are two subtrees left, they are joined by a shortest 
interconnecting path. The worst-case time complexity of the restricted average 
distance heuristic is O ( n 2 e  log w). Widmayer [38] showed that ~TRADH ~/~TG(N) 1 5 
2 - 2/n. Plesnik [25] showed that this bound is tight in the same sense as the 
bound for the error ratio of TADH. 

4.3.4 Median Heuristic 

DianC and Plesnik [7] suggested the f oliowing median heuristic (MH).  Determine 
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for each V i  6 N .  Select W I  with the smallest f”-value. Consider the subnetwork of 
G induced by shortest paths from V I  to all terminals. Find a minimum spanning 
tree for this subnetwork. Remove (one at a time) non-terminals of degree one. Let 
T:NH denote the resulting tree. Let 

Diane and Plesnik [7] proved that ITMHI/ITG(N)I 5 2 - 2/n .  This bound is 
tight in the same sense as the bound for the error ratio of TADH. The worst-case 
time complexity of the median heuristic is O((v - n)v2) .  

4.3.5 Antimedian Heuristic 
DianC and Plesnik [7] suggested also the following antimedian heuristic (AMH). 
As in the median heuristic, determine f “ ( V i )  for every wi 6 N .  Remove from G 
(one at a time) non-terminals in non-increasing order of their f’l-values provided 
that the resulting network contains all terminals in the same component. Upon 
completion, determine a minimum spanning tree of the component containing all 
terminals. Delete from this tree (one at a time) non-terminals of degree one. Let 
TiMH denote the resulting tree. Let 

DianC and Plesnik [7] proved that ITAMHI/ITG(N)) 5 2 - 2 / n .  This bound is 
tight in the same sense as the bound for the error ratio of TADH. The worst-case 
time complexity of the antimedian heuristic is O((v  - n ) v 2 ) .  

4.3.6 Upgrading Heuristic 
Zelikovsky [42] suggested a vertex heuristic that is very important from the theore- 
tical point of view. It is the first polynomial heuristic with the worst-case error ratio 
bounded by a constant less than 2. Furthermore, it can be generalized to a heuristic 
for the Steiner problem in an arbitrary metric space (see Part  IV, Section 1.4). This 
is in particular the case for the Euclidean metric (see Part  I, Section 4.8) and for 
the rectilinear metric (see Part 111, Subsection 2.2.6). 

The main idea behind the heuristic is to identify some non-terminals, include 
them into the set of terminals, and apply the distance network heuristic to this 
extended set of terminals. This heuristic will be referred to as the upgrading heuris- 
tic (UH) since some non-terminals are “upgraded” to terminals. The upgrading 
heuristic is as follows. 

Step 1: W = B. w = 00. D = D G ( N ) .  
0 Step 2: Identify a set of three terminals N, = {z,, z,, z k }  in D such that 

= I T D ( N ) l  - ITD(Iy)I - ITG(N*)I 

is maximized and where D denotes a network obtained from D by contraction of 
the three edges ( z ~ ,  z,), ( z t ,  z k ) ,  ( z k ,  2 , )  while A’ denotes the vertices of D. 
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Step 3: If w = 0, then let TUH be TDNH for N U  W and Stop. Otherwise add to 
W the non-terminal up of degree 3 in T G ( N , )  (it always exists). Let D = D, and 
go to Step 2. 

Theorem 4.5 ([42]) IT~HI/ ITG(N)I  5 11/6 for  any network G and any set  N of 
terminals. 

The complicated proof of this theorem requiring several technical lemmas is 
omitted. The worst-case time complexity of the heuristic is O(v3 + vn3) .  

4.3.7 Modified Upgrading Heuristic 

During each iteration of the upgrading heuristic one non-terminal is identified and 
added to  the set of terminals for which TDNH is determined in the final stage. 
The inclusion of a non-terminal is irreversible and may therefore cause omission of 
some other non-terminals whose impact on the final solution would be even greater. 
Furthermore, the identification of non-terminals upgraded to  terminals is based on 
the determination of Steiner minimal trees for triples of original terminals in G. 

Berman and Ramaiyer [2,3] suggested a modified upgrading heuristic (MUH).  
Non-terminals are not upgraded to  terminals immediately. Instead, they are pushed 
on a stack. Only after Steiner minimal trees for all small (not only triplets) subsets 
of original terminals in G have been considered, final decision which non-terminals 
should be upgraded is made. 

Let Ni denote a subset of terminals, 3 5 lNil 5 k. Let Ei = { ( z j  , zr)lzj , ZI E 
N , } .  Let 

w = ITD(N)I - ITD(@)I - ITG(Ni)I 

where D = D G ( N )  and D is obtained by contracting D along /Nil - 1 edges of Ei. 
If w > 0, then push T'(N) and Ei on the stack. With each edge ( z j ,  ZI) E Ei is 
associated a modified length d ( z j ,  z l)  - w. Apart from pushing Ej on the stack, it 
is also added to D (whereby parallel edges may occur). This process is repeated 
for all subsets with up to Ic terminals. 

In the second phase of the modified upgrading heuristic, pairs of Steiner minimal 
trees and edge sets are removed from the stack one by one. Suppose that some 
TG(N,)  and Ei is removed from the stack. If T D ( N )  n Ei contains lN;l - 1 edges, 
all non-terminals of T G ( N ~ )  are upgraded to terminals. Otherwise Ei is removed 
from D. 

When the stack becomes empty, TDNH for N and the upgraded non-terminals 
in G is determined and returned as TMUH. 

If k is fixed, Steiner minimal trees for subsets with up to k terminals can 
be determined in polynomial time (using e.g., the exact dynamic programming 
algorithm discussed in Section 3.4). Since the number of subsets is also polynomial, 
the modified upgrading heuristic is polynomial. A detailed time complexity analysis 
is omitted as the modified upgrading heuristic cannot compete in this respect with 
other heuristics. The importance of the modified upgrading heuristic is due to  the 
following theorem (the complicated technical proof is omitted). 
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Theorem 4.6 ([2,3]) JT~wJH~/~TG(N)I 5 16/9 for Ic = 4 and for any network G 
and any set N of terminals. 

4.4 Contraction Heuristic 

As it was pointed out in Subsection 2.2.2, if a network G contains a terminal z i ,  and 
the shortest edge incident t o  it has a terminal z j  as the other endpoint, then (zi, z j )  
belongs to the Steiner minimal tree. It then suffices to consider the Steiner tree 
problem arising after the contraction of G along ( z i ,  z j ) .  The contraction heuristic 
(CH) given by Plesnik [24] is based on a more general idea of contraction. 

In order t o  describe the contraction heuristic, some definitions are needed. Let 
zi E N and r > 0 be given. A neighborhood N,(zi) of zi with radius r is the set 
(2 E G I ~ G ( z , z ~ )  5 r}. Note that z does not need to  be a vertex belonging to  V, 
but any point on the edges (regarded as simple curves) of G. T w o  neighborhoods 
N,(zi) and N,(zj), z i ,  z j  E N, are said to be reachable from one another if they are 
adjacent or there is a path from zi to z, entirely within a union of neighborhoods 
of some terminals. A neighborhood class Cp is the maximal union of neighborhoods 
that are reachable from one another. Classes arising in connection with the network 
shown in Fig. 4.9 (for r = 1) are indicated by shaded regions. 
' A class contraction of a network G that produces a network G is obtained in 
the following way. 

0 Each class C, is contracted to a single vertex tp  regarded as a terminal in G. 

0 An edge em = (vI, v,)_in G with end-vertices not belonging to the same class gene- 

- If neither vl nor v, belongs to any class, then the edge em remains unchanged 

- If w, belongs to a class C, and v, belongs to no class (i.e., v, N), then G 

Non-terminals not belonging to any class are left unchanged in G. 

rates an edge em in G according to the following rules (Fig. 4.9b): 

in G. 

contains the edge em = (z,, v , )  of length 

- If v,  belongs to a class C, and v, to another class C,, then G contains the 
edge em = (z,, zp) of length 

c(v,,v,) - 27 if vl ,vJ E N 
C(zpst,) = c ( v l , v J )  i f v , , v ,gN { c(v,, v,) - r otherwise 

0 All but the minimum length edge connecting any pair of vertices in G are deleted 

The recursive heuristic based on the class contractions is as follows. 
0 Step 1: Determine the minimum length edge in G incident to a terminal. Let 

T denote its length. Form neighborhoods N , ( t , ) ,  z, E N, and the corresponding 
classes C,, p = 1,2 ,  ..., t .  

(Fig. 4.9~). 



170 CHAPTER 4 .  

1 

2 

HEURISTICS 

1 4  

Figure 4.9: Contraction heuristic 

Step 2: For each class C,, p = 1,2,  ..., t ,  let Np denote the terminals in C,. Note 
that for any terminal in N,, there is another terminal in Np (unless INPI = 1) not 
farther away than 2r. Thus a tree Tp spanning Np with lTpl 5 2r(lN,I - 1) can be 
determined by the shortest paths heuristic (Subsection 4.1.1). 

be 
the network obtained from G by class contraction. Let h’ denote the terminals of 
G. 

0 Step 3: If t = 1, then TI is a tree spanning N in G; Return. Otherwise, let 

0 Step 4: Determine a tree T spanning h’ in G (by recursion). 
Step 5: Replace each zp E h’ by Tp for p = 1,2,  ..., t .  Reconnect T and T I ,  Tz ,  ..., T, 
by adding at most C z p E R d e g ~ ( z p )  edges, each of length r; the nature of class 
contractions makes such reconnection always possible. The resulting tree TCH is 
the solution. Stop. 

None of the steps in the  heuristic requires more than O(v2) time. Since at most 21 

recursions are needed, it follows that  its worst-case time complexity is O(v3). 

Theorem 4.7 ([24]) ITcHI/ITG(N)I 5 2 - 2 / n  for  any network G and any set of 
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terminals N .  Furthermore, this bound is tight, i .e.,  f o r  any 6, E > 0 ,  there is an 
instance of the Steiner tree problem such that ITcHI/ITG(N)I > 2 - E .  

Plesnik [26] analyzed the contraction heuristic in more detail. In particular, he 
provided a more precise worst-case error ratio depending on additional parameters. 
He also suggested a modification of the contraction heuristic where Step 2 and Step 
5 are united. While this modification has the same worst-case time complexity and 
error ratio, it sometimes yields better solutions. 

4.5 Dual Ascent Heuristic 

The dual ascent method for the determination of a lower bound for the Steiner 
arborescence problem was described in Section 3.7. Wong [40] suggested how this 
method can be used to  find a suboptimal solution. The dual ascent heuristic (DAH) 
is as follows. 

0 Step 1: Determine the directed network H as described in Section 3.7. Disregard 
the orientation of arcs. Let Q denote the set of vertices in H connected by a path 
with the terminal 21. Note that N C Q. 

0 Step 2: Determine a minimum spanning tree of the  subnetwork of G induced by 
Q. Denote it by TDAH.  

0 Step 3: Remove from TDAH non-terminals of degree 1 (one at a time) and Stop. 

Wong [40] did not analyze this heuristic in terms of the worst-case time com- 
plexity. Furthermore, nothing is known about the worst-case error-ratio of TDAH. 
However, experimental results (see Section 4.7) indicate that the dual ascent heuris- 
tic yields very good suboptimal solutions. 

4.6 Set Covering Heuristic 

The set covering algorithm for the Steiner tree problem was described in Sec- 
tion 3.10. Aneja [l] suggested to use this method to  obtain a good feasible solution. 
The set covering heuristic (SCH) is as follows. 

0 Step 1: Determine the optimal solution X = (zlJl[v,,v,] E A) to the linear re- 
laxation of the set covering formulation p,. Let TSCH denote a subnetwork of G 
containing every arc [v,, vJ]  with zrJ > 0. 

0 Step 2: Let [v:, w,] denote an arc of TSCH such that TSCH - [v,, w,] is connected 
and 2,) is as small as possible. If no such [v,, vJ] exists, then Stop. 

0 Step 3: Let TSCH = TSCH - [vov,] and go to Step 2. 

No worst-case time complexity bound for this heuristic is available. Nothing is 
known about the worst-case error ratio of TSCH.  Limited computational results do 
not indicate that the set covering heuristic yields exceptionally good suboptimal 
solutions. 
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4.7 Summary and Computational Experience 

Table 4.1 gives an overview of the heuristics for the Steiner tree problem discussed 
in this chapter. 

Comparative analysis of most heuristics described in this chapter carried out 
by Rayward-Smith [28] and Plesnik [25,26] shows that there is no clear dominance 
relation between them. More specifically, Plesnik [25,26] examined the follow- 
ing 8 heuristics: shortest paths heuristic (SPH), Kruskal-based heuristic (KBH), 
Y-heuristic (YH), distance network heuristic (DNH), average distance heuristic 
(ADH), fast average distance heuristic (FADH), restricted average distance heuris- 
tic (RADH), and contraction heuristic (CH). For any pair Ha and Ha of these 
heuristics (except DNH versus CH), he constructed problem instances where H ,  
beats Ha and problem instances where Ha beats Ha. 

Rayward-Smith and Clare [29] compared the shortest paths heuristic (SPH), 
distance network heuristic (DNH), and average distance heuristic (ADH). Distance 
network heuristic turned out to  be less accurate than both shortest paths and 
average distance heuristics for various kinds of networks. On average, the average 
distance heuristic performed better than the shortest paths heuristic, although 
there were cases where this was not the case. However, the differences between 
lengths of obtained solutions were not large. Similar pattern of behavior of these 
three heuristics was observed by Voss [34] and Winter and Smith [39]. 

The error ratio for all three heuristics w a s  far below the worst-case error ratio 
2 - 2/n. However, this was observed only for very sparse networks. For larger and 
denser networks, the optimal solutions were not available. 

The repetitive variants of the shortest paths heuristic were compared by Win- 
ter and Smith [39]. In particular, the SPH-V and SPH-NN variants turned out to  
perform very well. They outperformed the average distance heuristic for all kinds 
of tested networks. This in particular indicates that there might be some improve- 
ments available in connection with the average distance heuristic if a more suitable 
centrality measure f is used. 

Voss [34] carried out an extensive comparison which in addition to the short- 
est paths heuristic (SPH), distance network heuristic (DNH) and average distance 
heuristic (ADH) also included Y-heuristic (YH), restricted average distance heuris- 
tic (RADH), repetitive shortest paths heuristic (SPH-zN) and dual ascent heuris- 
tic (DAH). In particular, the dual ascent heuristic seemed to perform better than 
other heuristics. The only exception occurred in connection with the grid networks 
(vertical and horizontal lines through terminals). For such networks, the repetitive 
shortest paths heuristic (SPH-zN) performed better. It remains to be seen whether 
the most efficient repetitive shortest paths heuristics (SPH-V and SPH-NN) can 
compete with the dual ascent heuristic on other types of networks. They performed 
better than the SPH-zN on grid networks [39]. 

Simulated annealing (SAH) and hill-climbing (HCH) heuristics seem to be poor 
alternatives. They typically require good starting solutions. Unless elaborate local 
exchanges are used, these heuristics require many iterations. Furthermore, in the 
case of hill-climbing heuristics, the quality of obtained solution is usually poor. 
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No computational experience for the upgrading heuristic (UH) and modified 
upgrading heuristic (MUH) is currently available. Although these heuristics have 
worst-case error bounds below 2, it is uncertain whether they can produce solu- 
tions that on average are better than the solutions obtained by the best repetitive 
shortest paths heuristics or by the dual ascent heuristic. Furthermore, upgrading 
heuristics are far from efficient as their computational load is very high. 
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Chapter 5 

Polynomially Solvable Cases 

As noted in Chapter 1, the decision version of the Steiner tree problem in networks 
is NP-complete. In particular, it has been shown that the problem remains NP- 
complete when G is planar. On the other hand, if G is a tree, the problem can be 
solved in linear time. This raises an interesting question whether there exist classes 
of planar networks for which the Steiner tree problem is solvable in polynomial (or 
perhaps even linear) time. Linear time algorithms for series-parallel and Halin 
networks are briefly described in this chapter. Also polynomial algorithms for k- 
planar networks and strongly chordal graphs (which are not planar) are discussed. 
Other classes of networks and graphs for which polynomial algorithms are available 
are also mentioned. 

5.1 Series-Parallel Networks 
A network G = (V, E ,  c) is called series-parallel  if and only if it contains no sub- 
network homeomorphic to  X4. From Kuratowski’s theorem, it follows immediately 
that every series-parallel network is planar [16]. A series-parallel network is said to  
be maximal  series-parallel  if no edge between nonadjacent vertices can be added 
to  G so that it remains series-parallel. Every maximal series-parallel network with 
at least 2 vertices can be obtained using the following recursive construction: 

(i) a network consisting of a single edge (wi, w,) is maximal series-parallel, 
(ii) select any edge ( w , , w J )  of a maximal series-parallel network with k - 1 vertices 

(k 2 3). Add a new vertex Wk together with the edges ( w i , v k )  and ( w J , v k ) .  The 
extended network is maximal series-parallel (Fig. 5.1). 

A maximal series-parallel network with v vertices has 2v - 3 edges. A maximal 
series-parallel network is sometimes referred to  as a &tree network. The reader is 
referred to  [22,21] for more on series-parallel networks (which are in particular very 
common in circuits). 

Wald and Colbourn [24], and in a slightly different versions, Prodon, Liebling 
and Groflin 1171 and Rardin, Parker and Richey [20], developed an algorithm that 
first completes any 2-connected network G = (V, E , c )  t o  a maximal series-parallel 

177 
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Figure 5.1: Maximal series-parallel network 

network G‘ or decides that it is impossible in O(v) time. If the edges added to  G 
have sufficiently large lengths, it is sufficient to  consider the Steiner tree problem 
in maximal series-parallel networks. 

The completion of a 2-connected network G to a maximal series-parallel network 
is done as follows. 

0 Step 1: Let G‘ and G” be two copies of G. 

0 Step 2: If G’ consists of a single edge, then Stop; G” is maximal series-parallel 

0 Step 3: Select a vertex v k  of degree 2 in G’. If no such v k  exists, then Stop; G is 
not series-parallel. 
Step 4: Let v, and u, denote vertices adjacent to Vk in G’. If ( v , , v j )  # G‘, add 
(vt, 2 r l )  to G’ and G”. Delete the vertex V k  and its two incident edges from G’. Go 
to Step 2. 

Let G be a maximal series-parallel network. Let G‘ denote its copy. The algo- 
rithm for the Steiner tree problem for N in G iteratively reduces G’ by removing 
vertices of degree 2. As a vertex v k  of degree 2 is removed together with its two inci- 
dent edges (vk, vi) and (?&, vj), certain minimum length subnetworks are associated 
with the edge (vi, v j ) .  These subnetworks are obtained by combining least length 
subnetworks associated with edges (vk, v i ) ,  (vk, vj) and ( v i ,  vj)  determined during 
the initialization phase or during preceding iterations. When G’ is reduced to  a 
single edge, one of the subnetworks associated with this edge yields T G ( N ) .  Due 
to  the particular structure of G, the number of subnetworks associated with any 
edge is constant and small. Furthermore, the determination of these subnetworks 
for an edge (vi, vj) when v k  is removed can be done very efficiently. 

Let (v i ,v j )  denote any edge of G. Let Gij denote a connected subnetwork of 
G containing (wi, v j ) .  Gi, will be further constrained below. Define the following 
subnetworks of Gi, spanning all its terminals: 

and has G as a partial spanning subnetwork. 

B,, is a minimum length subtree containing v r  and v j .  
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0 Fij is a minimum length subtree containing v ,  but not containing v,. If v, E N, 

0 L,, is a minimum length subtree containing v, but not containing v, .  If o, E N ,  

0 N,, is a minimum length subtree containing neither o, nor w,. If v ,  E N or v, E N ,  

0 U,, is a minimum length union of two subtrees, containing respectively v, and v3 .  

Let bi,, fi,, lij, nij, ujJ denote lengths of these subnetworks. If a particular sub- 
network does not exist, its length is set to 00. Furthermore, let x,, = 0 if Gi, 
contains no terminals, and 00 otherwise. 

Before the first elimination, each Gij consists of the edge (vi, u j ) .  The lengths 
of subnetworks associated with Gij are therefore: 

then F,, does not exist. 

then L,, does not exist. 

then N,, does not exist. 

b..  = c . .  ni, = 00 uij = 0 ‘J ‘ J  

0 if vi,v, @ N 
X” = fij = { 0 

i fv j  # N 0 if vi # N 
00 otherwise “ 3  = { 00 otherwise { 00 otherwise 

As a vertex Vk of degree 2 is about to be eliminated from GI, Gij is redefined 
to be a subnetwork of G induced by the vertices in Gij , Gik and Gjk. The lengths 
bij, f i j ,  lij, n;, , uij, xij in the new Gij are determined by the following recurrence 
relations (the straightforward verification is omitted): 

0 b : ,  := min{b,, -I- U t k  -I- b J k ,  br, + b l k  -I- U J ~ ,  b,, 4- f s k  -I- f j k ,  U I J  -I- b t k  + b J k }  

0 f s j  := min{fij + f i k  + Z j k ,  f i j  + b r k  + I j k )  

0 It3 := min{l,j + Iik + b j k ,  I : ,  + Z i k  + f j k }  

0 nij := min{n:, + Z t k  + Z 3 k l  Z : J  + n i k  + Z 3 k r  Z t j  + x i k  + n 3 k ,  x : j  + l : k  + l j k ]  

0 U i 3  := min{U:j + U i k  + b j k ,  2113 + b i k  + U 3 k ,  U t 3  + f : k  + f j k )  

0 Z : j  := ZIJ + Z t k  + 2 3 k  

The elimination process is completed when G’ consists of a single edge (v,, v,). 
In particular, Gi, = G and ITG(N)I = min{bil, fij,li,,niJ}. By maintaining the 
information about the minimizing term for each recurrence relation, the edges of 
T G ( N )  can be recovered. 

The initialization requires O(v) time. Each iteration of the algorithm requires 
O(1) time. Since each iteration eliminates one vertex, v - 2 iterations are required. 
Retrieval of edges belonging to TG(N) can be done in O(v) time. Consequently, 
the algorithm requires O(v)  time. 

Wald and Colbourn [23] developed a similar algorithm for outerplanar networks. 
A network is outerplanar if it is planar and has a planar embedding with all vertices 
on the boundary of the exterior face. The linear algorithm for the Steiner tree 
problem in outerplanar networks is in fact a special case of the algorithm for series- 
parallel networks; every outerplanar network is series-parallel. 
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5.2 Halin Networks 
A network H = (V, El c )  is called a Halin network if (Fig. 5.2) :  

0 no vertex has degree less than 3, 
0 H can be decomposed into a tree T spanning all vertices and a cycle C through the 

there is a planar embedding of H with C forming the boundary of the exterior face. 
If T is a star (i.e., it contains a vertex vi adjacent to  all other vertices) then H 

is called a wheel. 
Let I'i denote the set of vertices adjacent to  a vertex vi not on the cycle C of 

a Halin network H = T u C. If Ti contains exactly one vertex (say, v j )  not in C, 
then the subnetwork F; of H induced by I'; U v; - v j  is called a fan. Every Halin 
network which is not a wheel has at least two fans. 

leaves of T, 

Figure 5.2: A Halin network and its fans 

A fun coniruction of a Halin network H along some fan Fi is obtained as follows: 
0 replace F, by a new vertex w, 
0 the edges previously incident with exactly one vertex of F, are made adjacent to w. 

The linear time algorithm for the Steiner tree problem in a Halin network 
H is based on fan contractions. As a fan is contracted, appropriate least length 
subnetworks are associated with the vertex replacing the fan. When H is contracted 
to  a wheel, the information associated with vertices of its cycle are adequate to  
determine T w ( N ) .  The technique is closely related to  that used in connection with 
maximal series-parallel networks. The reader is referred to  [26] for details. 

Linear algorithms for the Steiner tree problem in maximal series-parallel net- 
works and in Halin networks are based on determining a fixed number least length 
subnetworks of certain networks. These networks are defined recursively from some 
limited set of basic components. Composition rules for the generation of larger net- 
works are of restricted nature: smaller networks can be attached to  one another 
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at a bounded number of vertices. As larger networks are generated, their least 
length subnetworks are determined in constant time from least length subnetworks 
of smaller networks. As pointed out by Bern, Lawler and Wong [6], this dynamic 
programming technique applies to networks other than maximal series-parallel and 
Halin networks. Furthermore, it applies to many other combinatorial optimization 
problems apart from the Steiner tree problem. 

5.3 k-Planar Networks 

Let G be a 2-connected planar network with a given planar embedding and with all 
terminals on the boundary of the exterior face. Such planar networks are referred 
to as 1-planar (Fig 5.3). 

Any subset of terminals visited consecutively when traversing the boundary of 
the exterior face is called an interval. 

Figure 5.3: 1-planar network and its Steiner minimal tree 

Suppose that vi is a vertex in the Steiner minimal tree TG(N)  incident with 
more than one edge. T G ( N )  can be decomposed at vi (as explained in Section 3.4) 
in several different ways so that it breaks into two subtrees 7 and r?. It is always 
possible to carry out this decomposition at vi so that the set of terminals spanned 
by 7 and are intervals. It follows that when determining Ti (v i  U Y), where Y 
is a subset of terminals, the general dynamic programming algorithm described 
in Section 3.4 only needs to consider those Y that are intervals. Furthermore, 
Tz(vi U Y) is a union of two Steiner minimal trees, one spanning zli U X and the 
other spanning vi U Y \ X for some X ,  0 c X c Y. Hence, X and Y \ X can be 
restricted to intervals. In conclusion, if G is 1-planar, the dynamic programming 
algorithm only needs to generate T,$(vi u Y )  and TG(Q U Y )  for every interval Y in 

\ 
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G. This reduces the complexity of the dynamic programming algorithm drastically. 

Theorem 5.1 A Steiner minimal tree for N in a l-planar network can be deter- 
mined in O(n2v2)  time. 

Proof. There are only O(n2)  choices of Y. For each choice of Y ,  there are O(v) 
choices of vi and O(n)  choices of X (since Y \ X is required to be an interval). 
Hence, O(n3v) time is needed to  determine all T g ( v ; U Y ) .  TG(Q UY) has to be de- 
termined for O(n2)  choices of Y and O(v) choices of vi; in total O(n2v)  times. Each 
time requires the minimization over O(v) terms. Hence, O(n2v2)  time is needed to 
determine all TG(Q U Y). This term dominates the complexity of determining all 
T&(vi U Y) as well as the term O(n2) needed to determine all shortest paths in a 
planar network. 0 

If the determination of T'(viuY) is carried out simultaneously for all choices of 
Y and fixed vi as explained in Section 3.4, the overall complexity of the algorithm 
reduces to  O(n3v + n2v log v + v2) .  

Provan [19] extended the applicability of this result in the following way. Let G 
be a planar network given together with its planar embedding. Let R be a region 
enclosed by a polygon consisting of edges e l , e 2 ,  ... ,e ,  of G. Note that the edges 
of the polygon are not necessarily distinct; any edge can be traversed once in each 
direction. The perimeterp(R) of R is defined by 

The region R is said to be path-convex if any other region R' containing R satisfies 
p(R') 2 p(R) .  If R is path-convex and all terminals are within R,  then there is 
a Steiner minimal tree for N completely within R.  Thus, all non-terminals and 
edges outside of R can be disregarded when searching for T G ( N ) .  Furthermore, 
if all terminals are on the polygon enclosing R ,  the original problem instance is 
reduced to a problem instance in a l-planar network (Fig. 5.4). 

Bienstock and Monma [8] proved that if there is a path-convex region R with 
all terminals on its boundary, then it is of minimum perimeter among all regions 
enclosing N .  They also gave a polynomial algorithm that finds a minimum perime- 
ter region enclosing all terminals. This leads to a polynomial algorithm that test 
whether or not a path-convex region containing all terminals on its boundary exists, 
and produces one in the affirmative case. 

A planar network G with a fixed planar embedding is called nearly 1-planar 
if all terminals but a t  most one are on the boundary of the exterior face of G. 
The general dynamic programming algorithm for the Steiner tree problem also 
requires polynomial time in this case. Suppose that ZI is in the interior of G. Let 
N1 = N - z l .  Given Tg(viUN1) for all vi 6 N1 and T G ( N ~ )  (which can be obtained 
in polynomial time since N1 is on the boundary of the exterior face), T G ( N )  can 
be obtained by an additional minimization over n terms. 
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Figure 5.4: Minimum perimeter path-convex region enclosing all terminals 

The general dynamic programming algorithm can be made more efficient even 
for a larger class of planar networks. A planar network G with a fixed planar 
embedding is said to be k-planar (respectively nearly k-planar) if all (respectively 
all but one) terminals are on the boundaries of k faces B1, B2, ..., Bh (Fig. 5.5). 
It can be assumed without loss of generality that B1 is the exterior face. Let 
N1, N2, ..., N k  denote terminals on the boundaries of B1, B2, ..., Bk. The first poly- 
nomial algorithm for the Steiner tree problem in k-planar networks was given by 
Erickson, Monma and Veinott [14] where it was argued that it suffices to run the 
dynamic programming algorithm for the sets Y and X chosen such that Y n N i ,  
X n N i ,  and (Y \ X )  n Ni are intervals for all i = 1,2,  ..., k. A modified version of 
this algorithm due to Bern [3,4] is described below. 

Consider the geometric dual Gd of the k-planar network G. Gd is obtained by 
associating a node with each face of G and connecting two nodes by a branch if 
their corresponding faces share a boundary edge. It is always possible to embed 
Gd so that it is planar and each branch (not necessarily a straight line segment 
in the embedding) intersects the edge shared by the faces corresponding to the 
end-nodes of the branch. Note that in order to distinguish between Gd and G, 
terms node and branch rather than vertex and edge are used. Consider a tree Td in 
Gd spanning nodes corresponding to B1, B2, ..., Bk, and with leaves being a subset 
of these nodes. If the edges of G intersected by the branches of Td are deleted, a 
1-planar network is obtained. Furthermore, at least one of the trees constructed 
in this way will not intersect any edge of TG(N). Consequently, if all possible Td 
are enumerated, intersected edges are deleted and then the dynamic programming 
algorithm is applied, the shortest Steiner minimal tree generated will be the sought 

Given Td, one in fact does not need to delete intersected edges. It is the ordering 
T G  ( N ) .  
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v , 

Figure 5.5: k-planar network G, its geometric dual Gd and T d  

of the terminals induced by Td that matters. Applying the dynamic programming 
algorithm to  1-planar networks with the given ordering (as if G was 1-planar) will 
yield a tree spanning all terminals which might be shorter than the tree that would 
be obtained if intersected edges were deleted. But there is at least one Td which 
does not intersect TG(N).  Consequently, there will be at least one ordering for 
which the application of the dynamic programming algorithm will yield TG(N). 

Every Td can be broken down into k - 1 paths with end-nodes corresponding 
to faces B1, Bz, ..., Bk and with no such nodes in the interior of these paths. Some 
of these paths can use the same branches in their front part. Each path cuts 
terminals on faces corresponding to  its end-nodes. Hence, the total number of 
different subdivisions of terminals caused by a single path is O(n2).  Since there are 
k - 1 such paths, the total number of orderings is O(n2"'). Each ordering requires 
an application of the dynamic programming algorithm with the time complexity 
O(n3w + n2w log w). 

Theorem 5.2 The Steiner minimal tree for N in a I;-planar network can be d e -  
termined in O(nZk++'w + n2kw log w + w2)  time. 

The above approach can be applied to nearly k-planar networks using the same 

In view of Theorem 5.2 ,  the following face cover problem is of crucial impor- 

0 GIVEN: a planar network G with a fixed planar embedding and a subset N of 

method as in connection with the nearly 1-planar networks. 

tance. 

terminals. 
0 FIND: minimum number of faces needed to cover all terminals. 
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Bienstock and Monma [7] proved that the decision version of this problem is 
NP-complete and gave an exponential exact algorithm. They also suggested a 
polynomial heuristic with the relative error converging to zero for a class of planar 
networks for which the problem remains NP-complete. Furthermore, they gave an 
O(vck) time algorithm (where c is a constant) which checks if a planar graph with 
a fixed embedding is k-planar. Hence the algorithm runs in linear time for any 
fixed k. 

Bienstock and Monma [7] also considered a more difficult problem where the 
planar embedding of G is not given beforehand. The problem is then to find a 
planar embedding with the minimum face cover of terminals. The decision version 
of this problem is also NP-complete. But they showed that it is still possible to 
generate a k-planar embedding of G provided that it exists in O(vck)  time. 

Bern [3] showed that his cutline approach used in connection with k-planar 
networks can be adapted to the case when G is a network embedded on a torus so 
that no edges cross and all terminals are on the boundary of one face. In this case, 
T G ( N )  can be found in O(n7v + n6v log v) time. The approach is also applicable 
to higher genus surfaces. 

Bern [4] also considered the problem when most terminals in a planar network 
are on the boundary of the exterior face while the remaining terminals are scat- 
tered arbitrarily in the interior of G. Let N B  denote the terminals on the exterior 
boundary. Let b = (NBI.  Bern proved that it suffices to run the general dynamic 
programming algorithm for the sets Y and X chosen such that Y n N B ,  X n N B ,  
and (Y \ X )  n NB are intervals. With these restrictions, the general dynamic 
programming algorithm requires O(b33”-bv + b22n-bv log v) time. 

Similar polynomial algorithms based on the dynamic programming approach 
have been developed for k-outerplanar networks [2] and k-layered planar net- 
works [3,5] where the sequential removal of k exterior boundaries leaves a network 
respectively empty and with no terminals. 

Although the dynamic programming algorithms discussed in this section are 
polynomial and apply to classes of non-trivial planar networks, they are most likely 
too slow to  be of practical importance. Development of faster algorithms for the 
Steiner tree problem in such networks is an important open research problem. 

5.4 Strongly Chordal Graphs 

White, Farber and Pulleyblank [25] developed an O(v3)  time algorithm for the 
Steiner tree problem in strongly chordal graphs. A graph is called chordal if every 
cycle with four or more edges has a chord. A graph is called strongly chordal if it 
is chordal and every even cycle with six or more edges has an “odd” chord (i.e., a 
chord dividing the cycle into two paths, each containing an odd number of edges). 

In order to describe the algorithm, some additional definitions are needed. For 
any vertex vj, its neighborhood rj consists of vi and the set I’j of vertices adjacent 
to vj. A vertex vi is called simple if for each pair of vertices Vk, v1 E T i ,  either 
i?k C or TI C Fk. It can be shown that a graph G is strongly chordal if and 
only if it is possible to relabel vertices such that every vertex vj E V is simple 
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in the subgraph induced by W = {v j l j  2 i}. Such a labeling is called a simple 
elimination ordering (Fig. 5.6). It can be determined in O(v3) time [15]. 

3 
V 

v L  

6 
V 

I 
V 

Figure 5.6: Strongly chordal graph and its simple elimination ordering 

Given a simple elimination ordering, T c ( N )  can be determined in O ( v 2 )  time: 
Let T be a subnetwork of G. Initially T contains all terminals but no edges. 
Vertices of G are examined in their simple elimination order. If vi $ T, then vi is 
deleted from G. If vi E T ,  the edge of G connecting vi with some other vertex of 
T is added to T. If no such edge exists, the vertex v j  adjacent to vi and with the 
highest degree in G is added to T .  The edge (vi, vj) is also added to T. Finally, vi 
is deleted from G. Upon termination, T G ( N )  = T .  Heavy edges in Fig. 5.6 indicate 

The 0(v3) time algorithm for the Steiner tree problem in strongly chordal 
graphs is perhaps of less theoretical importance than the fact that the decision 
version of the Steiner tree problem in chordal graphs is NP-complete. Furthermore, 
the decision version of the Steiner tree problem in strongly chordal networks is NP- 
complete even if edge lengths are strictly triangular (i.e., length of an edge is less 
than the length of any path between the end-vertices of the edge). Hence, here one 
has closely related problems where one is in P while others are NP-hard. 

Polynomial time algorithms for the Steiner tree problem in other types of graphs 
have been developed. In particular, the class of perfect graphs and its various sub- 
classes have been studied. Polynomial algorithms have been given for permutation 
graphs (and cographs) [ll], distance-hereditary graphs [12], homogeneous graphs 
[13], (6,2)-chordal bipartite graphs [l] and seriesparallel block graphs [9,10]. 

TG(N) for N = {Vl,v2,v6,v7}. 
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Chapter 6 

Generalizations 

A large variety of generalizations and variants of the Steiner tree problem have 
been considered in the literature. Some of the most important problems of this 
type are described in this chapter. 

6.1 Steiner Trees in Directed Networks 
The Steiner arborescence problem can be formulated as follows. - 

GIVEN: A directed network G= (V, A ,  c ) ,  a non-empty subset N ,  N E V ,  of 
terminals, and a root terminal 21. 

0 FIND: A directed subnetwork T - ( N )  of such that: 
G 

- there is a path from z1 to every other terminal, 

- IT--(N)I is minimized. 

As already mentioned in Subsection 1.4.4, the Steiner arborescence problem 
is a generalization of the Steiner tree problem in undirected networks. Several 
mathematical programming formulations of the Steiner arborescence problem were 
given in Section 3.6. 

An important special case of the Steiner arborescence problem arises when G is 
acyclic. Such networks occur often in practical applications. Consider for example 
the design of an optimal drainage system. Here the root is defined by the location 
of the sewer which collects the waste from the drainage system, and the acyclicity 
is imposed by the law of gravity. Nastansky, Selow and Stewart [29] developed a 
specialized enumeration algorithm for the Steiner arborescence problem in acyclic 
networks. 

Another problem in directed networks closely related to  the Steiner arborescence 
problem is the Steiner equivalent network problem suggested by Hakimi [15]. 

--t 

GIVEN: A directed network I& ( V , A , c ) ,  a non-empty subset N ,  N C V ,  of 
terminals, and a root terminal 11. 

189 
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FIND: A directed subnetwork T-(N)  of such that: 
G 

- there is a path between every pair of terminals provided that such a path 
+ 

exists in G,  
- IT-(N)( is minimized. 

G 

Note that the solution to  this problem will usually not be an arborescence. The 
decision version of the Steiner equivalent network problem is NP-complete even if 
N = V [35]. Relatively little work has been done on this problem. Furthermore, all 
work has been concerned with the case N = V (although algorithms can easily be 
extended to  the Steiner version). A branch-and-bound algorithm has been given 
by Martello and Toth [26] where also references to  earlier algorithms can be found. 
A linear time algorithm in directed series-parallel networks (i.e., networks which 
are series-parallel when arc orientations are ignored) has been developed by Richey, 
Parker and Rardin [34]. 

6.2 Weighted Steiner Tree Problem 
The weighted Steiner tree problem can be formulated as follows. 

GIVEN: An undirected network G = (V, E ,  c, u) where 20 : V + R, and a non- 

FIND: A subnetwork T G ( N )  of G such that: 
empty subset N ,  N E V ,  of terminals. 

- there is a path between every pair of terminals, 
- total length of T G ( N )  defined by 

is minimized. 

The weighted Steiner tree problem is clearly a generalization of the Steiner 
tree problem where the vertices are of zero weight. If the weights of vertices are 
nonnegative, the weighted Steiner tree problem can be transformed into the Steiner 
arborescence problem: replace every edge ( v i ,  vj) by two opposite arcs with lengths 
c i j  + w, and cj j  + wi respectively, and select an arbitrary terminal as the root. 
The weighted Steiner tree problem was originally introduced by Segev [36] where 
lower bounds and heuristics for the special (but still NP-complete) case with ne- 
gative vertex weights and only one terminal were developed. This special case is 
of practical importance. The only terminal may represent a service center. The 
remaining non-terminals may represent potential customers. The length of an edge 
may be interpreted as the cost associated with the use of the connection in order to 
attach some customers to the center. Vertex weights can be interpreted as revenues 
that can be obtained by connecting a customer to the center. 

The weighted Steiner tree problem can be formulated as a more general ver- 
sion of the degree-constrained formulation of the Steiner tree problem discussed 
in Subsection 1.4.5 and Subsection 3.6.3. Rather than associate length 0 to the 
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edges from the artificial vertex to all non-terminals, the length coS = -ws, s E S ,  
is assigned to these edges. The problem then is to minimize 

subject to the same constraints as for the degree-constrained formulation of the 
Steiner tree problem given in Subsection 3.6.3. It was shown by Duin and Vol- 
genant [ll] that the reduction tests for the Steiner tree problem can be extended 
to also apply to the weighted Steiner tree problem. 

6.3 Steiner Forest Problem 

In some applications it may be appropriate to relax the requirement that the solu- 
tion must be connected. When designing an offshore oil pumping network it is for 
example realistic to assume that there are several terminals ashore. This leads to 
the following Sieiner forest  problem which is clearly a generalization of the Steiner 
tree problem. 

0 GIVEN: An undirected network G = (V, E ,  c) ,  a non-empty subset N ,  N V ,  of 
vertices, and an integer q ,  1 5 q 5 n. 

0 FIND: A subnetwork F G ( N )  of G such that: 

- it has at most q components, each containing at least one terminal, 

- IFG(N)I is minimized. 

Duin and Volgenant [ll] formulated this problem as a degree-constrained mi- 
nimum spanning tree problem discussed in Subsection 1.4.5 and Subsection 3.6.3 
with the additional constraint restricting the number of edges incident with the ar- 
tificial vertex to be at most q. When the problem is relaxed in Lagrangean fashion 
by moving all degree-constraints into the objective function, unconstrained mini- 
mum spanning tree problem is obtained. N o  computational experience concerning 
the quality of the lower bounds obtained by this kind of Lagrangean relaxation is 
available. Duin and Volgenant argued that the reductions applicable to the Steiner 
tree problem essentially carry over to this more general Steiner forest problem. 

6.4 Hierarchical Steiner Tree Problem 

In some practical applications it is unrealistic to assume that all terminals are of 
equal importance. Consider for instance problems involving the design of t r ans  
portation networks. Usually few major cities are to be interconnected by primary 
roads. Then only secondary roads are needed to connect villages to primary roads. 
Similar types of hierarchies occur in many practical network design applications. 

The hierarchical Steiner tree problem has been formulated by Iwainsky [20] in 
the following way. 
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GIVEN: An undirected network G = (V, E ,  C) where C ( e i )  is a k-dimensional 
length vector ( c l ( e , ) , c z ( e i ) ,  ..., c k ( e i ) )  satisfying c i ( e i )  > ~ ( e i )  > ... > Ck(e i ) ,  a 
non-empty subset N ,  N C V ,  of terminals, and a partition { N l ,  N z ,  ..., N k }  of N 
with 2 2, 

0 FIND: A subnetwork TG(N)  of G such that: 

- the length of any edge ei on a path between a pair of N,-terminals is at least 

- ITG(N)I is minimized. 
c , ( e : ) ,  

This problem has also been investigated by Duin and Volgenant [12] for the 
special case with k = 2 .  They proved that every instance of that hierarchical 
Steiner tree problem can be transformed into an instance of the Steiner arborescence 
problem with kv vertices and 2ke + (k - 1). arcs. The transformation is as follows. 
Replace every edge of G by two opposite arcs. Take k copies GI, Gz ,  ..., G k  of this 
directed network and associate lengths ci with the i-th network, 1 5 i 5 k. Connect 
a vertex v in Gi, 1 5 i k - 1 ,  with its copy in Gi+l by a directed arc of length 
0. Select any N1-terminal as the root. The optimal solution to  this instance of the 
Steiner arborescence problem will provide the optimal solution to the instance of 
the hierarchical Steiner tree problem. 

Duin and Volgenant [12] identified various reduction tests which make it possible 
to identify non-terminals and edges which under no circumstances can belong to 
any optimal solution. Also some reduction tests identifying edges that must belong 
to an optimal solution were given. These reductions are of the same flavor as the 
reductions for the Steiner tree problem discussed in Chapter 2 .  

Another type of hierarchical Steiner tree problem arises when the network itself 
is hierarchically structured (i.e., portions of the network can be replaced by a single 
“macro-vertex”) so there is an obvious way of decomposing the problem into smaller 
subproblems. Approaches to  this kind of the hierarchical Steiner tree problem were 
discussed in [4 ,43,1,2] .  

6.5 Degree-Dependent Steiner Tree Problem 

In some practical applications, it is unrealistic t o  assume that the total cost of the 
network is proportional t o  the sum of its edge lengths. One type of complications 
arises when the cost of the network depends also on the number of edges incident 
to vertices. Usually one would penalize vertices with more than 2 incident edges. 
Iwainsky, Canuto, Taraszow and Villa [21] considered the degree-dependent Sdeiner 
tree problem which captures this kind of complications. 

0 GIVEN: An undirected network G = (V, E , c ) ,  a non-empty subset N ,  N E. V ,  
of terminals, a function b assigning to each vertex vI E V and to each integer q ,  
1 < q < v, a nonnegative real number b(vI, q )  (with b(v,, q’) 2 b(v:, q)  for v > q‘ > q,  
and b(vI, I )  = b(v,, 2) = 0 for all v, E V ) .  

FIND: A subnetwork TG(N)  of G such that: 

- there is a path between every pair of terminals in TG(N) ,  
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- ITG(N)I + CviETa(N) b(vi, deglr(vi)) is minimized. 

Iwainsky, Canuta, Taraszow and Villa [21] gave a reduction test which can be 
used to identify some of the non-terminals as not belonging to  T G ( N ) .  

6.6 Group Steiner Tree Problem 
As mentioned in Chapter 1, the Steiner tree problem has applications in connection 
with the wire routing phase in physical VLSI design. After the placement of com- 
ponents on a chip, sets of pins on the component boundaries are to be connected 
withing the remaining free chip space. However, even for components with prede- 
termined interior layout, they can be flipped or rotated by the routing algorithm. 
Consequently, each pin can take one out of several given positions. This motivates 
the group Steiner tree problem where one is interested in finding a minimum length 
network which spans a t  least one terminal from each subset of a partition of all 
terminals. More formally, the problem can be formulated as follows. 

V ,  of GIVEN: An undirected network G = (V, E ,  c), a non-empty subset N ,  N 

0 FIND: A subnetwork TG(N)  of G such that: 
terminals, and a partition { N I ,  Nz, ..., N k }  of N ,  

- at least one terminal from each Ni,  i = 1,2,  ..., t, is in T G ( N ) ,  

- ITG(N)I is minimized. 

When lNil = 1 for every i = 1,2,  ... k, the problem reduces to the Steiner 
tree problem. The decision version of the generalized Steiner tree problem is NP- 
complete even if there is no non-terminals and G is a tree [32]. This is in sharp 
contrast with the Steiner tree problem where the restriction to either of cases 
makes the problem easy to solve. The generalized Steiner tree problem becomes 
polynomially solvable if vertex degrees are bounded by 2 [19]. Suppose for instance 
that G is a path embedded in the plane along the x-axis. For each zi E N ,  scan the 
path to the right beginning at z until at  least one terminal from every group has 
been scanned (or when the end of the path has been reached). Among successfully 
generated subpaths (containing at least one terminal from each group), select the 
shortest one. 

Any problem instance of the generalized Steiner tree problem with an arbitrary 
partition can be transformed to  a problem instance of the Steiner tree problem. 
Consider a network G' = (V' ,  E', c') obtained from G in the following manner. For 
each subset N i ,  i = 1,2,  ..., 6 ,  let ui denote a new vertex representing the whole 
subset N i .  Let U = {ul, u2, ..., uk} and let 

V ' = V U U  
E' = E u ~ ~ i k , ~ { ( z ,  ui)lz E ~ i )  

where I N F  is a constant greater than IGI. Consider the Steiner minimal tree for 
U in G'. Every vertex u i ,  i = 1,2,  ..., k, has degree 1. Furthermore, it is adjacent 
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to a vertex in N , .  If the k edges incident with vertices of U are deleted, a tree 
spanning at least one terminal from each partition subset is obtained. This tree is 
bound to  be the shortest among all such trees. A similar transformation can be 
used in connection with the directed generalized Steiner tree problem. 

From the theoretical point of view the above transformation makes the gene- 
ralized Steiner tree problem of limited importance. The transformed network G’ 
has a t  most twice as many vertices as GI. Furthermore, the number of terminals 
to be spanned is reduced to k. Consequently, exact algorithms for the Steiner tree 
problem should work as well (or rather as bad) for the generalized Steiner tree 
problem. 

The situation becomes different with respect to heuristics. Polynomial heuris- 
tics for the Steiner tree problem such as the shortest paths heuristic, distance 
network heuristic, average distance heuristic and their variants (see Chapter 4) 
produce solutions which never are twice the length of the optimal solution. Since 
the Steiner minimal tree for U in G’ must contain k edges of length I N F ,  the 
application of any of the heuristics to the transformed network may result in so- 
lutions which are far from the optimal solution. In other words, suppose that any 
of the above heuristics is applied to G‘ with U as the terminals required to be 
spanned. When long edges incident with U-vertices are deleted, the solution ob- 
tained will not necessarily be at most twice the length of the optimal solution to 
the generalized Steiner tree problem. 

So far only three heuristics for the generalized Steiner tree problem have been 
suggested. They all work on the original network G. However, they have equivalent 
counterparts (producing the same solutions) defined on GI. When considered in 
such setting, they turn out to be identical with some of the heuristics discussed in 
Chapter 4. 

Reich and Widmayer [32] suggested a heuristic which is identical to the mi- 
nimum spanning tree heuristic for U in G’ (see Subsection 4.2.1) with subsequent 
clean-up. The clean-up consists of deleting one by one vertices which have degree 
1 provided that they leave the remaining tree with at least one terminal from each 
group. Furthermore, among all vertices eligible for clean-up, the one with a longest 
incident edge is always selected. This will in particular ensure that all U-vertices 
disappear. The clean-up step can be performed in O(v1ogv) time so the overall 
time complexity of the heuristic is dominated by the complexity of the minimum 
spanning tree heuristic that is O(e+v log v). Unfortunately, the minimum spanning 
tree heuristic is known to produce solutions that can be far from the optimum. 

Reich and Widmayer [32] suggested another heuristic that is identical to the 
shortest paths heuristic for U in G’ (see Subsection 4.1.1) followed by the clean-up. 
The worst-case time complexity of this heuristic is O(k(e + vlogv)). Ihler [18] 
proved that the worst-case error ratio of this heuristic is k - 1, and the bound is 
tight. 

Ihler [18] suggested a heuristic that is identical to the shortest paths with origin 
heuristic (see Subsection 4.1.3) for U in G’ followed by the clean-up. The wowt-case 
time complexity of this heuristic is O(e + v log v). Ihler proved that its worst-case 
error ratio is also k- 1, and the bound is tight. However, similarly to the minimum 
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spanning tree heuristic, the shortest paths with origin heuristic is known to produce 
solutions which can be far from the optimum. 

An interesting question which arises in connection with the heuristics for the 
group Steiner tree problem is whether it is possible to have a polynomial heuristic 
with the worst-case error ratio bounded by a constant. Ihler [19] proved that even 
if G is a tree and all edges have unit lengths, the problem is MAX SNP-hard [30]. 
Consequently, it is rather unlikely that an approximation scheme for the generalized 
Steiner tree problem exists. Furthermore, Ihler proved that this restricted problem 
has a “constant” heuristic (i.e., with worst-case error ratio bounded by a constant) 
only if the minimum set cover problem has a “constant” heuristic. It is known 
the the minimum set cover problem is MAX SNP-hard (so it is unlikely that an 
approximation scheme for it exists). On the other hand, it is a longstanding open 
problem whether the minimum set cover problem has a “constant” heuristic [30]. 

Consider a slightly less general version of the generalized Steiner tree problem 
where the number of subsets with more than one terminal is bounded by a con- 
stant [19]. The heuristics for the Steiner tree problem can be easily modified to  
yield polynomial heuristics with the worst-case error ratio bounded by a constant. 
This problem is still MAX SNP-hard as it generalizes the Steiner tree problem. 

6.7 Multiple Steiner Trees Problem 
The multiple Steiner trees problem can be formulated as follows 

0 GIVEN: An undirected network G = (V, E ,  c), and non-empty subsets N1, N2, ..., 

0 FIND: k edge-disjoint trees TG(N~),TG(Nz), ..., TG(Nk) such that Efz1 ITG(N:)I 

Richey and Parker [33] proved that the decision version of this problem is 
NP-complete even if G is a series-parallel graph while being easy on trees. If 
N1 = N2 = ... = Nk,  then the multiple Steiner tree problem is known t o  be NP- 
complete in general but is polynomially solvable in series-parallel graphs [8,33]. It 
is unsettled whether the variant of the multiple Steiner trees problem where trees 
~‘G(N~),TG(N~), ..., TG(N~) are permitted to share edges (each edge contributes 
only once to the total cost) is NP-complete [33]. However, the decision version of 
the following fixed-charge multicommodity flow problem which is closely related to 
the edge-sharing multiple Steiner trees problem is NP-complete in series-parallel 
graphs. 

0 GIVEN: An undirected network G = (V,  E ,  c), non-empty pairs of subsets (N1, Dl), 

0 FIND: k edge-disjoint trees TG(NI u Dl), Tc(N2 u Dz), ..., TG(NI; U Dk) such that 

Suppose that G is a directed network, and TG(N~), i = 1,2, ..., k, are required 
to contain a directed path between two Nj-terminals if such a path exists in G. 
The problem of finding minimum length network of this type is known to  be NP- 
complete even if G is a directed graph with the underlying undirected structure 
being series-parallel[33]. This result is valid both when TG(NI), Tc(N2), ..., TG(N~) 

Nk of v. 

is minimized. 

(Nz, Dz), ..., (Nk, Dk) of V where lN:l 5 2, ID,[ 5 2, i = 1 , 2 ,  ..., k. 

cr=, ITG(N, U D,)l is minimized. 
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are required to be arc-disjoint and when arc-sharing is permitted. For k = 1, these 
problems are identical and can be solved in polynomial time when the underlying 
undirected structure is series-parallel [33]. 

A straightforward generalization of the multiple Steiner trees problem arises 
when the disjointness requirement is dropped (and edges contribute to  the total 
weight only once). This generalization has some applications in connection with 
the design of vacuum systems. The decision version of this problem is NP-complete 
even if edge-lengths are uniform and N = Nl U N2 U ... U Nk [lo]. 

6.8 Multiconnected Steiner Network Problem 
When designing water or electricity supply networks, communication networks and 
other types of networks, two antagonistic goals are often present: the minimization 
of their total cost and the maximization of their reliability. The reliability is often 
expressed by the degree of connectivity of the network. 

Although Steiner minimal trees for a set of terminals satisfy the primary goal 
of minimizing the total cost while being connected, they are extremely vulnerable 
if operational failures of its vertices and edges, due to scheduled maintenance, 
error, overload, or any other kind of destruction, are likely to occur. Only one 
vertex or edge failure causes a tree network to fail in its main objective of enabling 
communication between every pair of vertices. Thus, when failures are likely to 
occur, the objective may be to determine a minimum cost network with some 
specified connectivity. 

A network G = (V, E ,  c )  is said to  be k-connected (respectively k-edge-connected), 
1 5 k 5 v - 1, if for any pair of vertices vi and vj ,  there are at  least L disjoint 
(edge-disjoint) paths from wj to v j .  Two vertices wj and vj  in G are said to be locally 
k-connected (locally k-edge-connected) if there are at least k disjoint (edge-disjoint) 
paths from wi to w j .  

is as follows. 
The multiconnected Steiner network problem originally formulated by Krarup [22] 

0 GIVEN: An undirected network G = (V, E ,  c) ,  a non-empty subset N ,  N V ,  of 
terminals, and an integer n x n matrix R = ( T , ~ )  of required local connectivities (or 
edge-connectivities) between the terminals. 

FIND: A subnetwork TG(N)  of G such that 

- every pair of terminals zt and zJ is locally r,l-connected (r,,-edge-connected), 

- ITG(N)( is minimized. 

The special case of the multiconnected Steiner network problem arising when 
N = V received considerable attention. Both connected and edge-connected deci- 
sion versions of this problem are known to be NP-complete [14]. A survey of the 
multiconnected Steiner network problem for N = V has been given by Christofides 
and Whitlock [7], indicating that in particular uniform length networks received 
much attention. 

The edge-connected version of the multiconnected Steiner network problem can 
be cast in the form of a mixed integer linear programming problem. Furthermore, 
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the multiconnected Steiner arborescence problem can be shown to be a generaliza 
tion of the multiconnected Steinet network problem by a transformation similar to 
that given in Subsection 1.4.4. Hence, the formulation below is for the arborescence 
case. 

Define a binary variable zij for every arc [vi,vj] in G. Furthermore, for any 
[v i ,  vj] E A ,  and any V k ,  VI E N ,  vk # V I ,  let y! denote the amount of commodity 
to be sent from vk to vl along the arc [vi, ~ j ] .  Consider the following mixed integer 
linear programming problem (compare with the problem PI in Subsection 3.6.1): 

min C cijzij 

+ 

[ V i  ,u j ] €  A 

subject to 

v [ V i  9 V j ]  E A, vvk 3 V I  E N ,  v k  # V I  
k l  

zij L Y i j  1 

vvk, Vl E N ,  Vi = Vl 
C [ u j , v i ] E A  9;; - C[u , ,u j ]EA 9; = { vvk, V I  E N ,  V V i  # vk, V I  

zij E (0, I}, 
yk! 8 1  > - 0, 

V[vi, vj] E A 
v [ V i , V j ]  E A,vVk,vl  E N , V k  # V I  

Let U = (uij) be the optimal solution to this problem. It can be easily verified 
that the set of arcs determined by {[Vj,~j] E A(uij = 1) yields T - ( N ) .  

Analogous formulation for the vertex-connected version of the multiconnected 
Steiner network problem can be obtained by transforming G to a related network 
using the well-known vertex-splitting technique. 

The above mathematical programming model is a special case of a more general, 
so called network design problem for which various exact algorithms and heuristics 
are available. A survey on the network design problem has been given by Magnanti 
and Wong [25]. 

To the best of our knowledge, no specialized algorithm for the multiconnected 
Steiner network problem has been developed. Linear time algorithms to determine 
2-connected and 2-edge-connected T G ( N )  when G is outerplanar or series-parallel 
were given by Winter [41,42]. Similar techniques are also applicable to  other “tree- 
structured” networks such as Halin networks. These techniques are closely related 
to the methods described in Chapter 5 .  

It remains an open problem whether or not the 2-connected and 2-edge-connec- 
ted multiconnected Steiner network problem can be solved efficiently in l-planar 
networks. However, it can be shown that an optimal 2-connected solution will be a 
cycle passing through terminals in the order in which they appear on the common 
(exterior) face in the plane embedding [27]. 

Monma, Munson and Pulleyblank [27] considered the 2-edge-connected multi- 
connected Steiner network problem when the vertices are embedded in a metric 
space, and edges satisfy the triangle inequality. The optimal solution is bound to 
be 2-connected. Furthermore, there exists an optimal solution with all involved 
vertices having degree at most 3 (non-terminals must have degree at least 3; oth- 
erwise they are superfluous). The length of an optimal traveling salesman cycle 

G 
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through the terminals can be shown to be not greater than 413 times the length of 
an optimal solution to  the 2-edge-connected multiconnected Steiner network prob- 
lem for N. Thus, solving the traveling salesman problem either exactly or by means 
of one of many available heuristics [23], yields a reasonable feasible solution to the 
2-edge-connected multiconnected Steiner network problem in networks satisfying 
the triangle inequality. 

The multiconnected Steiner network problem with the required local connecti- 
vities equal to 2 plays an important role in connection with the design of fiber 
optic communication networks. Such networks are of low cost, reliable, and provide 
almost unlimited capacity. Heuristics for this special case were investigated by Voss 
and Mehr [39] and Monma and Shallcross [28]. 

Any 2-connected subnetwork can be constructed by an e a r  composition ap- 
proach: 

Find a cycle through a subset of terminals. It forms the initial partial solution T. 
0 Add to T (repeatedly) a path (ear) which starts at a vertex in T ,  goes through any 

number of terminals not yet in T ,  and ends in a vertex of T. 
Various strategies of finding the initial cycle and subsequent ears are available. 

Given a solution T obtained by any ear composition, it can be further improved 
by local transformations. Monma and Shallcross [28] suggested several types of 
local transformations. For details on ear compositions, local transformations, and 
for the computational comparisons of these heuristics on different kinds of networks, 
the reader is referred to [as]. 

6.9 Steiner Problem in Probabilistic Networks 

Consider a network G = (V, E,c) where c : E --* [0,1] denotes the probability 
function defined on E (i.e., c ( e i )  is the probability that the edge e is operational). 
Edge probabilities are assumed to be statistically independent. 

Let N be a set of terminals in G. One of the most important reliability problems 
arising in broadcast networks is that of determining the probability that terminals 
are connected. Equivalently, this is the probability that G contains a tree spanning 
all terminals. Various exact algorithms and heuristics for this and other reliability 
problems were proposed in the literature. Although usually developed for the case 
N = V ,  they can be easily modified to the more general case N V .  For a survey, 
the reader is referred to Hwang, Tillman and Lee [17]. 

Essentially, methods to solve connectedness reliability problems fall into two 
classes. One class is based on a factoring approach where the reliability of a network 
is expressed in terms of the reliabilities of smaller networks. Another class is based 
on path enumeration approach. All exact methods to determine the probability 
that all terminals are connected require exponential time. This is in agreement 
with the result due to Valiant [37] that the problem is #P-complete. However if G 
is restricted to series-parallel networks, Wald and Colbourn [40] developed a linear 
time algorithm. It is similar to the linear algorithm for the Steiner tree problem 
in series-parallel networks (Section 5.1). The same vertex elimination procedure is 
used but recurrence rules are modified so that they compute probabilities for the 
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existence of subnetworks associated with the edges during the vertex elimination 
process. 

The linear time algorithm for the Steiner tree problem in Halin networks (Sec- 
tion 5 . 2 )  can in a similar manner be modified to determine the probability of 
connectedness of its terminals. 

6.10 Realization of Distance Matrices 

Another interesting problem related to the Steiner tree problem is that of the 
realization of  distance matrices. Suppose that a symmetric n x n matrix D of 
nonnegative distances is given. Is there a network G = (V, El c )  with n vertices, 
and with edges having appropriately chosen costs so that distances between them 
agree with the entries of D. Necessary and sufficient conditions for the realizability 
of D were given by Hakimi and Yau [16]. 

If D is realizable, there can be several different realizations. I t  is therefore 
natural to look for one with the smallest possible total length. Let G be a realization 
of D. Remove from G (one at  a time) redundant edges (i.e., edges whose removal 
does not affect distances between vertices). Hakimi and Yau [16] proved that a 
network realizing D, and having no redundant edges is unique (and therefore of 
minimum total length). 

When looking for low total length realizations of D ,  it can be advantageous to 
introduce additional non-terminals. The general problem of determining minimum 
length Steiner network realizing D is unsolved. Hakimi and Yau [16] suggested a 
heuristic based on so called triangle transformations. Suppose that some realization 
of D contains a triangle based on vertices v i , v j  and V k ,  such that every pair of 
the edges satisfies the triangle inequality with respect to the third edge. Delete 
the edges of the triangle, and introduce a non-terminal s connected to vi,vj  and 
v k  by edges of length cis = (c,j + C i k  - c j k ) / 2 ,  C j s  = (c;j -k C j k  - C;k) /2 ,  and 
cks = (C;k  + cjk - c i j ) / 2 .  It can be easily verified that the new network realizes D ,  
and its cost has been reduced by (cij + Cik + c j k ) / 2 .  The heuristic starts with a 
complete network I<, with edge lengths equal to the required distances between the 
terminals. Then triangle transformations (as well as some other transformations) 
are applied as many times as possible. 

Sometimes a network realizing D may be required to have some particular 
structure. For example it may be required to be a tree with exactly n vertices. 
Unfortunately, no characterization of distance matrices realizable by trees (or any 
other types of networks) is known. On the other hand, there are O(n2)  algorithms 
generating tree realizations if they exist [3,9]. To the best of our knowledge, nothing 
is known about the realizability of D by Steiner trees. 

6.11 Other Steiner-Like Problems 

Trees spanning a given network are fundamental structures often occurring in prac- 
tical applications. Many spanning tree problems where the total cost of the tree 
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is other than the sum of the lengths of its edges have been extensively studied in 
the literature. All these problems could be generalized to Steiner tree problems. 
Maffioli [24] and Camerini, Galbiati and Maffioli [5,6] investigated these genera- 
lizations with respect to their computational complexity. They considered both 
labeled generalizations (where terminals are given) and unlabeled generalizations 
(where only the number of terminals is given). Not surprisingly, most of these 
problems is NP-complete. The most important exception is the mux Steiner tree 
problem where a tree spanning all terminals with the length of the longest edge 
being minimized is sought. Both labelled and unlabelled versions are solvable in 
polynomial time. 
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Chapter 1 

Introduction 

Hanan [S] first considered the rectilinear version after the Euclidean problem was 
attacked and before the network version was defined. However it needs to be 
discussed after both of the other versions since it builds on the techniques used 
for both the Euclidean and network versions, primarily the latter. The rectilinear 
problem is defined analogously to the Euclidean setting with only a change to  the 
distance metric. However that dramatically changes the set of possible solutions, 
producing a situation analogous to the network setting. 

The first section introduces many definitions. Section 1.2 discusses basic pro- 
perties of special trees that are used in the next section to give a characterization of 
rectilinear Steiner minimal trees. Section 1.4 introduces several important problem 
reduction techniques. Extremal results and computational complexity are discussed 
in the next two sections. Section 1.7 presents some exact algorithms. De Souza 
and Ftibeiro presented a survey of the rectilinear Steiner problem [15]. 

1.1 Definitions 

Unless otherwise specified, this Part inherits terminology from the two preceding 
Parts of this book. For example, the input is N ,  a given set of n terminals in the 
plane. Since the rectilinear setting sits between the other two settings, occasionally 
it is convenient to  introduce new terminology to avoid confusion. 

Formally, a (rectilinear) segment is a horizontal or vertical line segment con- 
necting its two endpoints in the plane. A rectilinear tree is a connected acyclic 
collection of segments, which intersect only at their endpoints. The degree of a 
point is the number of segments incident on it. A rectilinear Steiner tree for a 
given set of terminals is a rectilinear tree such that each terminal is an endpoint of 
a segment in the tree. The length of a tree is the sum of the lengths of its segments 
and a rectilinear Steiner minimal tree (RSMT) is such a tree of minimum length. 
Without loss of generality, if a degree two point has collinear incident segments 
then that point must be a terminal. 

205 
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Clearly a point has degree 5 4. A point with degree 2 3 that is not a terminal 
is called a Ste iner  point .  A corner-point is a degree two point with non-collinear 
incident segments that is not a terminal. Hence each endpoint of a segment is either 
a terminal, a Steiner point, or a corner-point. Two points are directly connected 
if they are connected by a sequence of one or more segments properly containing 
only corner-points; such a sequence of edges is called a wire (as suggested by the 
prevalent wire-routing application). In an RSMT two points i and j that are 
directly connected are connected by a wire of total length 

d(i,.i) = lZ i - z j I+  I Y i - Y j I  

and such a wire has a “staircase” shape. In the following chapters “point” refers 
to the endpoint of a segment, unless the context clearly indicates a more generic 
usage. 

A line is defined to be a sequence of one or more adjacent, collinear segments 
with no terminals in its relative interior. (Relative interior is used in its usual 
geometric sense.) A complete line is a line of maximal length; it does not have 
terminals in its relative interior, but it may have terminals as endpoints. A corner- 
point is incident to exactly one horizontal complete line and exactly one vertical 
complete line. These complete lines are the legs of the corner.  If the remaining two 
endpoints of the leg are terminals, the corner is called a complete corner.  A T-po in t  
is a degree three Steiner point. The two collinear segments are part of a complete 
line called the head of the T, and the remaining segment is part of a complete line 
called the body. Finally, a cross-point is a degree four Steiner point. The spokes of a 
cross-point are the four lines, of maximal length, meeting at the crosspoint, which 
do not have terminals in their relative interior. See Fig. 1.1 for an illustration of 
these definitions. A line connects g and k ,  while a complete line connects e and g 
(but not d and 9). The corner point Q has legs ab  and a k  and is a complete corner. 
The T-point f has body cf and head e g .  Finally, i is a cross-point, with spokes ih,  
ia, i j ,  and i k .  

k 

Figure 1.1: An RSMT and a fulsome RSMT for the same points 
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1.1.1 Full and Fulsome Trees 

For any given RSMT T there is a corresponding tree graph G(T) which, as in 
the Euclidean case, is called a topology .  The vertices of G(T) correspond to the 
terminals and Steiner points of T .  Each edge [i, j ]  of G(T) connects the vertices i 
and j iff the corresponding points are directly connected in T by a wire. 

By analogy with in the Euclidean case, a full topology  is defined as a topology 
with each terminal having degree one. Clearly for each RSMT T the topology G(T) 
is the union of full topologies joined at terminals with degree 2 2. Let deg(i) be 
the degree of terminal i. The number of full topologies is 1 + C i E N ( d e g ( i )  - 1). 
Clearly the number of full topologies is maximized when s(T) = C i E N d e g ( i )  is 
maximized. It turns out that as there are more full topologies, each one tends to 
be simpler in structure. Therefore the set of RSMTs that have the maximum value 
of s (T)  are explored; such an RSMT is (whimsically) called a fulsome RSMT.  A 
full RSMT is an RSMT with a full topology; in this case each terminal has degree 
one. In Fig. 1.1 an RSMT is shown for a set of seven terminals that is not fulsome, 
together with a fulsome RSMT for the same terminals. Note that the fulsome 
RSMT shown is the union of four subtrees, each a full RSMT. 

1.1.2 Canonical Trees 

Two transformations for rectilinear Steiner trees are defined: flipping and sliding. 
Each transformation maps one such tree to another without moving the positions 
of terminals and without increasing the length of the tree. Depending on the 
direction, there are four slides and four flips; example flips and slides are depicted 
in Fig. 1.2. More formally, in a slide, a segment e, perpendicular and incident to 
parallel lines 11 and 1 2 ,  is replaced by a segment el. This segment e‘ is also incident 
to 11 and 12, has the same length as e ,  and is parallel to e. The slide is said to be 
applied to  segment e .  In a flip, two segments e and f meeting at a corner-point 
are replaced by two other segments e‘ and f’ such that e ,  f ,  e’ and f’ form a 
rectangle. The flip is said to be applied to the corner where segments e and f meet 
at a corner-point. Each slide and flip is named according to the position of the new 
segments relative to the original segments; see Fig. 1.2. 

Figure 1.2: Examples of transformations: a W-slide and NW-flip 

Unlike the Euclidean case, the locations of the Steiner points are not necessarily 
restricted to finite number of positions. This is easily seen for the case of just four 
terminals at the corners of a square; there are an infinite number of H-shaped 



208 CHAPTER 1. INTRODUCTION 

RSMTs. Further the embedding of the segments of a wire is not unique. Even if 
the number of corners in a wire is restricted, there can always be connections with 
a corner that can be flipped. For such reasons a canonical representation of an 
RSMT should be defined. There are several possible definitions; the following was 
found useful. 

A tree is said to be canonical if it is impossible to  apply any one of the following 
transformations without changing s(T): (1) a W-slide, (2) a NW-flip or SW-flip, 
or (3) a N-slide or S-slide followed by transformation (2). An example of the 
third transformation is seen in Fig. 1.1; a N-slide of segment f g  exposes a corner 
a t  f that allows a NW-flip. There must be at least one canonical Steiner tree 
since it is impossible to start with any tree T and apply one or more of the three 
transformations to  obtain T, as each transformation replaces a vertical segment by 
another further t o  the left. 

1.2 Basic Properties 

In this section several characterizations of fulsome canonical trees are proved that 
will be used in the next section to characterize the topologies of general RSMTs. 

Lemma 1.1 In  a canonical fulsome RSMT, no segment is  incident t o  two  corner- 
points .  Further,  the horizontal leg of a corner must  be to  the right of the vertical 
leg. 

Proof: An RSMT having a segment e incident to two corner-points either can be 
made shorter by sliding e (when the corners bend in the same direction) or is not 
canonical since one of the corners incident to  e can be flipped (when the corners 
bend in opposite direction). The second proposition follows since any such corner 
could have been flipped. 0 

Lemma 1.2 Let m be a segment  wi th non-terminal endpoints a and b .  In a cano- 
nical fulsome RSMT n o  two  perpendicular segments incident t o  a and b, respec- 
t ively,  are on  the same  side of m. 

Proof: Suppose to the contrary that there are segments e and f incident to a 
and b on the same side of m (see Fig. 1.3). Let e be a segment in a complete 
line extending from point u to point s, and let f be a segment in a complete line 
extending from point v to  point t .  Also let u and v be on the same side of m as e 
and f are. Note that there may be other segments w, x, y,  and z incident to a and 
b as shown. Note that neither a nor b can be corner-points, otherwise a flip could 
be used to  decrease length. 

One of u and v ,  say u, is not further away from m than the other, as measured 
by their perpendicular distance to  m. Edge m can be slid towards u without 
increasing length, so no segments of the Steiner tree are in the rectangle bounded 
by e ,  f, m, and a line parallel to m passing through u.  This includes segments 
at u,  so u cannot be a T-point, a cross-point, or a corner-point whose other leg 
points towards f. Also, u cannot be a terminal, otherwise sliding m to  u increases 
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S t 

Figure 1.3: Two adjacent lines on the same side of segment m 

terminal degree. (Note that this is an essential place where the fact that the tree is 
fulsome is used.) Therefore, u must be a corner-point whose other leg points away 
from f .  

Since u is a corner-point , no segment can be incident on the line from u to a on 
the same side as w, including w itself, otherwise the corner at u could be flipped to 
decrease length. Since a is not a corner-point the segment x must exist and s # a. 
Since b is also not a corner-point, one of y and z must exist. Suppose that y exists; 
therefore, the complete line containing f connects w to t ,  where t # b .  One of s 
and t is not further from m than the other, and the argument above implies that 
this point must be a corner-point whose other leg is not between t and y. If s is no 
further from m than t then s can be flipped to decrease length or the corners at u 
and s can be flipped together to decrease length. Therefore, if y exists, t must be 
closer to m than s, t must be a corner-point, and there are legs incident to u and t 
pointing in opposite directions. Further, note that a flipping argument, as above, 
implies that if y does exist, z cannot exist. 

Therefore two cases are left: (1) point u is a corner-point no further from m 
than w, t is a corner-point closer to  m than s, w and z do not exist, and there are 
legs incident to  u and t pointing in opposite directions, and (2) point u is a corner- 
point no further from m than w, y does not exist, and z must exist. Our description 
so far has been independent of the orientation. There are eight orientations of each 

A segment e is properly  incident to  a perpendicular line 1 if e intersects the 
relative interior of 1 but does not intersect at a terminal; it can intersect at an 
endpoint of 1 that is a Steiner point or a corner-point. Two segments e and f 
properly incident to 1 are said to be neighboring segments  if the line contained in 
1 connecting e n 1 and f n 1 is a single segment. Neighboring segments are said to 
alternate along 1 if no two neighboring segments are on the same side of 1 and no 

case and none is canonical, giving a contradiction. 0 
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cross-point is in the relative interior of 1. 

Corollary 1.1 In  a canonical fulsome RSMT,  neighboring segments incident to a 
leg of a corner must alternate. In  particular, the segment closest to the corner-point 
must point in the opposite direction as the other leg of the corner. 

Corollary 1.2 In  a canonical fulsome RSMT,  the body of a Tmust  end at a ter- 
minal, and no segments are properly incident to the body of a T .  Furthermore, each 
spoke of a cross-point ends at a terminal, and no segments are properly incident to 
the spoke, 

Lemma 1.3 In  a canonical fulsome RSMT,  corners must be complete corners, and 
at most one of the legs can have more than one properly incident segment. 

Proof: Corollary 1.1 implies that a leg of a corner cannot end in a T-point or a 
cross-point. Leftness or minimal tree length implies a leg of a corner cannot end 
at a second corner, so it ends a t  a terminal; this is essentially the same argument 
as for Lemma 1.1. 

To show that only one leg can have more than one incident segment, suppose 
to the contrary that each leg has a t  least two incident segments. Corollary 1.2 
implies that any segment incident to a leg must end a t  a terminal and not properly 
intersect any other segments. Suppose the corner has the orientation depicted in 
Fig. 1.4; a symmetric argument can be made for the other orientation. 

Figure 1.4: A corner with two lines incident to both legs 

Terminal a must be below c and d must be to the right of b ,  or else a SE-flip on 
the corner and either an S-slide on e2 or an E-slide on e3 increases the sum of the 
degrees of the terminals. In this case, however, a SEflip on the corner, an S-slide 
on e2, and an E-slide on e3 until e3 hits terminals a or d increases the sum of the 
terminal degrees without increasing length; see Fig. 1.5. 0 

Lemma 1.4 In  a canonical fulsome RSMT,  the head of a T is either a leg of a 
complete corner or a complete line with terminals as endpoints. 
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Figure 1.5: A transformation of the corner in Fig. 1.4 

Proof: If one side of the head ends at a corner-point, then Lemma 1.3 implies that 
the head is one leg of a complete corner. Corollary 1.2 states that i t  is-not possible 
for the head of a T to  be the body of another T-point; similarly it cannot intersect 
a cross-point. So the only other possibility is that both sides of the head intersect 
terminals. 0 

1.3 A Characterization of RSMTs 

In the preceding section the form of canonical fulsome trees was discussed. They 
are somewhat specialized. However for every set of terminals there clearly exists an 
RSMT which is the union of such trees. This observation is made in the corollary 
to the following theorem. The theorem is due to Hwang [9] and the proof is by 
Richards and Salowe [13]. 

Theorem 1.1 Let n > 4. Suppose every R S M T f o r  a given set of terminals is full. 
Then there exists an RSMT that either consists of a single complete line with n - 2 
alternating incident segments, a complete corner with n - 2 alternating segments 
incident t o  a single leg, or a complete corner with n-3 alternating segments incident 
to one leg and a single segment incident to the other leg. 

Proof: Note that such a tree is both full and fulsome. Since each terminal must 
be a leaf, there is a single complete line incident to  the topmost terminal. If 
this complete line is horizontal, it must end in a corner-point, forming a complete 
corner by Lemma 1.3. (If the complete line ended at a second terminal, then 
the assumption on terminal degree implies that it is the head of a T which, by 
Corollary 1.2, contains only three terminals.) The n - 2 terminals not on the legs 
of the complete corner must connect to  this complete corner. Since there are no 
terminals above the horizontal leg of the corner, Lemma 1.3 implies that  all incident 
segments alternate off the vertical leg. Corollary 1.2 implies each incident segment 
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ends at a terminal and no other terminals can be reached from the leg across such 
a segment. Hence there are n - 2 incident segments. 

If the segment incident to  the topmost terminal is vertical, then it either forms 
a complete line ending at another terminal, or it ends at a corner-point, or it ends 
at  a T-point. Lemma 1.4 implies that if the complete line ends at  a T-point, the 
head of the T forms either a complete corner or a complete line having terminals 
as endpoints. In each case, the analysis is similar to that given in the previous 

In other words, if a set of terminals has a fulsome RSMT that is also a full 
paragraph and is omitted. 0 

RSMT then it has an RSMT of one of the (generic) forms in Fig. 1.6. 

Figure 1.6: The only generic forms for a full RSMT that is fulsome, n > 4 

Note that every fulsome RSMT is the union of subtrees, each of which is full 
These subtrees are joined at (and fulsome) relative to the terminals it spans. 

terminals of degree 2, 3, or 4. 

Corollary 1.3 For any set of terminals, n > 4, there exists an RSMT that is the 
union of full subtrees, each subtree an one of the forms shown an Fig. 1.6, joined a t  
terminals of degree 2, 3, or 4. 

Hanan [8] analyzed the smallest RSMTs and proved the following Lemma using 
simple case analyses. It indicates a situation where an RSMT has a topology with 
a Steiner point of degree four. This did not arise in the Euclidean case and this is 
the only instance of it in RSMTs. 

Lemma 1.5 Theorem 1.1 holds for n = 2,3,or 4 except for when n = 4 and the 
four terminals are the endpoints of a cross as shown in Fig. 1.7. 

1.4 Problem Reductions 
Hanan [8], in the first paper on RSMTs, gave a strong restriction on the class of 
possible solutions. He showed that there is a set of O(n2)  points in the plane such 
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Figure 1.7: A crws is the only exception to  Theorem 1.1 

that there exists an RSMT with all of its Steiner points in that set. 

Theorem 1.2 Let the coordinates of the terminals be ( x l , ~ ~ ) ,  ..., (zn,yn). There 
exists an RSMT T where if (x', y') is a Steiner point of T then x' = t i  and y' = yj , 
1 6  i , j  5 n. 

Proof: Recall that there exists an RSMT that is the union of subtrees, each 
a canonical full RSMT for the terminal set of its leaves. Therefore, since each 
Steiner point is in one of these subtrees, Theorem 1.1 says that it is connected by 
a line to  at least one terminal in a horizontal direction ,and at least, one terminal 
in a vertical direction. 0 

Actually the above argument proves a stronger characterization which has the 
following corollary. A trombone wire is a segment of an RSMT T that can be slid 
back and forth between two perpendicular segments without altering the length of 
T ,  which is not incident on a terminal. Snyder [14] argued that the presence of 
trombone wires is what made Hanan's original proof detailed and hard to generalize 
to higher dimensions; see Section 4.4. 

Corollary 1.4 There exists an RSMT for any set of terminals without trombone 
wares. 

Proof: Add to the argument in the above proof the fact that Theorem 1.1 guaran- 
tees alternating segments on each line. The only candidate segments in a fulsome 
RSMT are the segments within each full subtree that are not incident with a ter- 
minal. If such a candidate could slide, it would violate the alternation condition. 
0 

Hanan's result can be phrased in graph-theoretic terms. A gr id  graph GG(N) = 
(V, E )  for a terminal set N is defined. Begin by constructing vertical and horizon- 
tal lines through each terminal. Let V be identified with the set of intersection 
points; N V .  There is an edge in E between two vertices iff the corresponding 
intersection points are directly connected by a single horizontal or vertical segment; 
the length of the edge is the length of the segment. It follows from Theorem 1.2 
that any RSMT can be mapped to a Steiner minimal tree of the network GG(N).  
Note that vertices corresponding to N would be the terminals of GG(N).  Further 
any Steiner minimal tree of GG(N) corresponds to an RSMT. Hence the results 
for the Steiner problem in networks from Part I1 can be immediately applied to 
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the rectilinear Steiner problem. Most of the network-based algorithms in this Part 
of the book are based on G G ( N ) ,  but many of these only use G G ( N )  implicitly 
(by constraining their attention to vertices in V without generating V completely). 
Note that since IVl = O(n2)  any sub-quadratic algorithm must use the grid graph 
implicitly. In fact only a subnetwork of G G ( N )  needs to  be considered. 

The rectilinear convet hull of N ,  Rconv( N ) ,  is a smallest-area simply-connected 
figure containing a shortest rectilinear path between every pair of terminals in 
N .  Equivalently, if one places a coordinate axis at  any point on the boundary 
of Rconv(N), at least one of the quadrants is empty. The boundary B ( N )  of 
Rconv(N) consists of vertical and horizontal segments. 

Theorem 1.3 There exists an R S M T  T for N such that all  of the segments in T 
lie on or inside Rconv(N).  

Proof: The theorem is shown for a set N with a full RSMT. Clearly the union of 
the rectilinear convex hulls of various subsets of terminals (corresponding to full 
subtrees of canonical fulsome tree) must be contained in Rconv(N).  

That it is true for a full RSMT follows from Theorem 1.1. Consider, for example, 
the full RSMT shown in Fig. 1.8. Its corner can be flipped to remain inside its 
rectilinear convex hull. (Of course, such a tree is not necessarily canonical.) The 
other cases in Theorem 1.1 are similar. 0 

Figure 1.8: A full RSMT folded to fit in its rectilinear convex hull 

As in the Euclidean case, the Steiner hull is a region known to  contain a Steiner 
tree. In the rectilinear case, the Steiner hull would just be the set of segments of 
G G ( N )  that are on or within Rconv(N).  

The boundary B ( N )  contains a series of boundary segments. Boundary seg- 
ments can meet at boundary corners. With respect to the interior of Rconv(N),  an 
inner boundary corner is a reflex angle, and an outer boundary corner is a convex 
angle. Note that all outer boundary corners are terminals. A boundary line is a 
series of collinear adjacent boundary segments. There are special boundary lines 
called tabs. Tabs connect two outer boundary corners and are at  the positions as 
far to  the north, south, east, and west as possible on B ( N ) .  There are at  most 
four tabs, by convexity. If, for example, there is a unique terminal with maximum 
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ordinate then the north tab is degenerate and of zero length. Each consecutive pair 
of tabs, around the boundary, is connected by a sequence of zero or more boundary 
lines forming staircases. 

The rectilinear convex hulls are more confusing than the Euclidean case because 
of degeneracies. However these cases present no theoretical difficulties and can be 
easily handled in practice by preprocessing. 

Tabs may be degenerate and contain only one point. There is another type of 
degeneracy where regions in Rconw(N) are connected by rectilinear lines. These 
two degeneracies are depicted in Fig. 1.9. In order to remove these degeneracies, 
the rectilinear convex hull is preprocessed. Suppose the left tab is degenerate, and 
let a be the single leftmost point in Rconv(N). By Theorem 1.3, one can add a 
new terminal b as depicted and remove the line to a to get a new problem with a 
nondegenerate tab. All tabs can be processed in this manner. Similarly, if regions 
are separated by rectilinear lines, Theorem 1.3 implies that the rectilinear convex 
hull can be separated into two or more nondegenerate subproblems; Fu [5] gives the 
details. (Note that the regions can be identified with a simple linear-time scan [12], 
given the points in sorted order by their coordinates.) Therefore it is assumed in 
the text below that no degeneracies are present. 

Figure 1.9: Two degeneracies: a degenerate tab and two separated regions 

1.5 Extremal Results 

In this section several bounds are given on the length of an RSMT, in various con- 
texts. Let R S M T ( N )  be an RSMT for N ,  R M S T ( N )  is the rectilinear minimum 
spanning tree (RMST) for N ,  and IT1 be the total rectilinear length of tree T .  
Clearly IRMST(N)I 2 IRSMT(N)I .  Note that in an RMST only terminals can 
be connected to each other via wires, and these various wires may have overlap- 
ping segments. In computing IRMST(N)I ,  of course, a segment in two overlapping 
wires would be double-counted. 

The Steiner ratio for the rectilinear case was settled by Hwang [9]. This is 
useful as many algorithms are based on some RMST. 
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Theorem 1.4 For any terminal set N the Steiner ratio 

Proof: A proof by Salowe (private communication) is sketched which captures the 
main idea of the longer proof in [9]. The bound only needs to be established for 
each full RSMT; the sum of the lengths of the RMSTs for the terminal sets of each 
full subtree (of afulsome RSMT) is lower bounded by IRMST(N)I. The argument 
is by induction on n. The basis, n 5 4 is easily established [S]. 

In any full RSMT with n > 4 one can find a subtree as shown in Fig. 1.10, 
where the edge lengths satisfy f > d and e > g. Let A be the set of terminals 
above x and B is the set of terminals below y. (There can be degeneracies in A 
or B but the argument is unchanged.) Let C = {w ,z ,y ,z } .  One can easily show 
IRMST(C)I 5 $(a  + b + c + e + f), by considering the rectangle bounding C. 
Let SA be the sum of the edges in the full tree above the edge of length a ;  SB is 
defined similarly for the edges below the edge of length c. Clearly IRSMT(N)I = 
SA + ( a  + b + c + e + f) + S,. By the inductive hypothesis, ]RMST(A)I 5 $SA 
and IRMST(B)I 5 4s.. Therefore 

IRMST(N)I  5 IRMST(A)I + IRMST(C)I + IRMST(B)I 5 : l R S M T ( N ) J  

It is easy to establish that 2/3 is the optimal bound by considering the case 
where N is the four terminals each a unit distance from, say, the origin. Clearly 
IRSMT(N)I = 4 and JRMST(N) I  = 6. Further, by clustering more terminals very 
near these four terminals, there exist N that are arbitrarily close to the 2/3 bound 
for all n. 

Let s(n, a,  6) be the length of the longest RSMT for any n terminals in an a x b 
rectangle, and s(n)  = s(n,  1, l), i.e., for the unit square. Chung and Graham [2], 
extending the results of Few [4], proved s (n ,a ,  b) 5 i ( a + b + a t + F )  for an arbitrary 
positive integer t ,  when a 5 b. The proof begins by dividing the rectangle into 
subrectangles of size a x with horizontal wires and then slides these wires up and 

down into convenient positions; details are in “4. By choosing t = &+ 011) one 
gets s(n,a,b)< m + f ( a + b ) + o ( l ) .  Hence s (n)  S f i + l + o ( l ) .  Since there 
are examples formed from subsets of the square lattice with s(n)  2 fi + 0(1), 
the upper bound is very tight. Let R e c t ( N )  be the 
smallest area bounding rectangle of the set N ,  with horizontal and vertical sides. 
Let L R ( N )  be the semiperimeter of Rect(N); L R ( N )  = a + b when Rec t (N)  is 
an a x b rectangle. Chung and Hwang [3] defined b ( N )  = J+ and lj(n) = 
maxlNI,,{jj(N)}. The semiperimeter has been recommended as a suitable and 
easily computed estimate of the RSMT. The results for s (n ,  a,  b )  imply that lj(r2) = 
i ( r +  l), for a positive integer r .  Since a(.) is monotone nondecreasing, $(fi+ 1) 
is a reasonable estimate for jj(n). Chung and Hwang [3] determined a(.) exactly 

Further, s ( r2 )  = r + 1. 

R S M T  N 
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X e l a  

Figure 1.10: A wide subtree within a full subtree 

for n 5 10 using fairly involved arguments. 

n : 2 3 4 5 6 7 8 9 1 0  11 
P(n): 1 1 $ $ g $ 2 2 2 %  

These are particularly useful since in VLSI applications often n 5 10 and the 
bounds are relevant. 

Suppose N is uniformly distributed over the unit square. Let Ls(n)  be the 
random variable for the length of an RSMT for such a N .  Let X(z) be the minimum 
Euclidean distance from z to another point in N .  Koml6s and Shing [ll] have 
shown that with probability 1 - 0(1), 3 CIEN X(z) = (a + o(1))J;r. Since L s ( N )  
is lower-bounded by the left-hand side, they were able to show Ls(n)  2 $6 
with probability 1 - o(1). An upper bound on Ls(n)  is provided by a result by 
Gilbert [7] for random RMSTs. Let L M ( ~ )  be the random variable for the length 
of an RMST for n points drawn uniformly from the unit square. Gilbert showed 
that L M ( ~ )  < 0 . 7 1 6  asymptotically. 

Bern [l] analyzed the expected number of Steiner points in a RSMT drawn 
from the unit square. Bern’s result was for a Poisson distribution with intensity 
n.  Hwang and Yao [lo] extended the analysis to the uniform distribution. The 
expected number of Steiner points in both cases is 2 0.035n, in the limit. 
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1.6 Computational Complexity 

Garey and Johnson [6] have established the NP-completeness of the rectilinear 
Steiner tree decision problem. In particular, the following problem is NP-complete: 

GIVEN: Set N of points in the plane with integer coordinates and a positive 

0 DECIDE: Is IRSMT(N)I 5 B? 

Unlike the Euclidean case, it is trivial to show the problem is in NP. This follows 
from Theorem 1.2. Since the candidate Steiner points can be selected with integer 
coordinates it follows that if provided with the set of Steiner points used in some 
RSMT the length can be verified in polynomial time. 

The proof that the problem is NP-hard is done by a reduction from the vertex 
cover problem A uertex cover of an undirected graph is a subset of the vertices 
such that each edge is incident to some vertex in that subset. The proof of this 
reduction is very lengthy and is omitted here. 

Recall that Theorem 1.2 has an alternative interpretation: the RSMT corre- 
sponds to a Steiner minimal tree of GG(N) .  Since GG(N)  is a planar network 
it follows readily that the Steiner problem for networks decision problem is NP- 
complete, even when restricted to  planar networks (as was mentioned in Section 
1.5 of Part  11). 

integer B. 

1.7 Exact Algorithms 

Any exact algorithm for the network case, discussed in Chapter 3 of Part 11, can 
be used to solve the rectilinear problem. Theorem 1.2 permits the reduction of any 
rectilinear problem to an analogous problem on GG(N).  N o  systematic exploration 
of the applicability of the many exact algorithms proposed for the network case has 
yet been done. It has often been remarked that the dynamic programming approach 
suggests itself since n is small, relative to the number of vertices in GG(n). 

The first optimal algorithm in the literature is due to Yang and Wing [16,17]. 
It is essentially a variant of the branch-and-bound algorithm for networks. In fact 
it is a slightly inferior version. The largest problem they report solving had n = 9, 
and the underlying network had 20 vertices and 31 edges (they used the rectilinear 
convex hull pruning of GG(N) ) .  This example took 255 seconds. 

Another exact algorithm, Exhaustive Partitioning, is discussed in Section 2.4.4. 
Hanan [8] described optimal algorithms for n 5 5. These are useful since they 

are used within many heuristics, discussed in the next chapter. In particular, for 
n = 3, the single Steiner point, if it exists, is easily located: its z-coordinate is 
the median of the x-coordinates in N ,  and the y-coordinate is handled in the same 
way. 
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Chapter 2 

Heuristic Algorit hrns 

Since the rectilinear Steiner problem i s  NP-hard, the bulk of applied research has 
been on heuristic approximation algorithms, as well as tractable special cases (dis- 
cussed in the next chapter). Many of the algorithms have analogues discussed in 
Part 11. However, there are also many analogues to  Euclidean heuristics, primarily 
due to the pervasive reliance on minimum spanning tree techniques. 

This chapter begins with heuristics that make straightforward use of a given 
RMST. In the next section analogues to algorithms that construct MSTs are dis- 
cussed. In Section 2.3 heuristics suggested by computational geometry techniques 
are presented. In the last section less typical approaches are presented. 

2.1 Heuristics Using a Given RMST 

In the last chapter it was shown that, for any terminal set N ,  gIRMST(N)I 5 
IRSMT(N)I 5 IRMST(N) ( .  It is an open question to determine the expected 
value of IRSMT(N)( in terms of I R M S T ( N ) J ,  for any distribution. (Without a 
specific application, the common convention is adopted in this chapter that the 
terminals are drawn uniformly from the unit square; for this case it has been 
conjectured [S] that E [ J R S M T ( N ) ) ]  M 0.88E[JRMST(N)J] . )  

Since the exact computation of R S M T ( N )  is intractable for all but the smallest 
problems, the easily computed R M S T ( N )  is usually used as a yardstick with which 
to measure the efficacy of a heuristic. Let TA be the approximate RSMT produced 
by using heuristic A.  The percentage of improvemeni 

can be calculated for any terminal set N .  Typically the average value of UA over 
several random sets of terminals is reported. In this chapter the average value of 
UA will vary from 4% to 12% (with the conjectured upper bound of about 12%, see 
above). 

221 
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How fast can the RMST be calculated for a given N ?  Any standard MST algo- 
rithm can be used if one first builds a complete network for N by computing all the 
O ( n 2 )  inter-terminal distances (as discussed in Part 11). Using an implementation 
of either Prim’s or Kruskal’s algorithms the RMST can be computed in O(n2)  ad- 
ditional steps. To produce sub-quadratic algorithms it is necessary to use at most 
a sparse subnetwork of the complete network. 

Hwang [18] was the first to do this; see also [26]. Hwang gave an O(n1ogn) 
algorithm for building the rectilinear Voronoi diagram for N ,  based on an earlier 
Euclidean algorithm [32]. (A Voronoi diagram partitions the plane into regions 
each containing one terminal. For any terminal, all points in the plane that are 
(rectilinearly) closer to that terminal than any other are in that terminal’s region; 
see Fig. 2.1.) It is easy to  show that an RMST of N is a subgraph of the dual 
of the planar Voronoi diagram, known as the Delaunay triangulation. This trian- 
gulation is planar and is easiIy found in O(n)  time, given the Voronoi diagram. 
Since the MST of a planar network can be found in linear time [8] the run-time is 
dominated by the time to find the Voronoi diagram. (Hence a simpler O(n1ogn) 
time MST algorithm could be used.) Recently, Chew and Fortune have announced 
(unpublished) an O(n log log n)  time algorithm to compute the rectilinear Voronoi 
diagram, when the terminals have been previously sorted by both their 2- and 
y-coordinates; this may be true in some applications. Hence, in this special case, 
the overall run-time for finding the RMST is improved as well. 

Figure 2.1: Rectilinear Voronoi diagram and its Delaunay triangulation 

Computing the Voronoi diagram is a bit tedious, and the rectilinear case is more 
complex than the well-studied Euclidean case. Fortunately] there are simpler ways 
to find the RMST in O(n1ogn) time. Around each terminal u there are octants, 
regions separated by lines spaced 45’ apart; see Fig. 2.2. Every other point v is 
located in one of the octants around u (points which happen to  fall on the dividing 
lines are said to be in the next octant, clockwise). The primary observation is: 
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Figure 2.2: The octants and quadrants around a terminal 

Lemma 2.1 ((141) In  an RMST, if terminals  u and v are connected then v is  the 
closest point t o  u in  the octant around u that v occupies. 

Proof: Suppose that u was connected to v in an RMST T but w was closer to 
u than v,  where w and v are in the same octant around u. It follows by simple 
geometric arguments that w is also closer to v than u. Hence replacing (u,  v)  in T 

Using similar arguments [17] it can be shown that only the nearest neighbors 
properly within the four quadrants shown in Fig. 2.2 need to be considered, together 
with the four nearest neighbors on the four lines separating the quadrants. In both 
versions, of course, for each terminal not all eight nearest neighbors are necessarily 
defined. The octant version is used below. 

The terminals are preprocessed by finding the nearest neighbor to each terminal 
in all of its octants. This can be done in O(n1ogn) total time [14]. A network 
N N ( N )  is built with vertex set N and edges between vertices iff the corresponding 
terminals are nearest neighbors within their octants. An RMST is a subnetwork 
of N N ( N ) ,  which contains at  most 8n edges. Hence the RMST can be found in 
O(n1ogn) additional time. This method has been called the geographic nearest 
neighbor approach and was originally studied by Yao [42]. 

How can an RMST be used to approximate an RSMT? Each edge of the RMST 
can be represented by various rectilinear shortest paths in the plane between the 
corresponding terminals, unless the terminals are connected by a horizontal or 
vertical line, in which case only one path exists. Unless otherwise specified, it is 
assumed each edge is represented by a path with at most one corner-point. In other 
words, each edge is embedded in the plane by either a straight wire, or one of two 
L-shaped wires. An RMST has up to 2"-' different such embeddings in the plane. 
A typical embedding has pairs of wires, from different edges, that overlap. The 
overlap can be removed by introducing Steiner points, as in Fig. 2.3. Depending 
on how the embedding is chosen, different heuristics for generating an RSMT are 
specified. 

Suppose the embedding of each L-shaped wire is chosen arbitrarily. Empirical 
results [29], for n = 500, show that removal of the overlap produces an average im- 
provement of 3.5%. Unfortunately, when wires are placed arbitrarily, it is possible 
for two L-shaped wires to properly intersect (while not overlapping). This problem 

by either (w, v)  or (w, u) must produce a shorter spanning tree than T .  0 
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Figure 2.3: Removing the overlap between two wires introduces a Steiner point 

does not occur in a similar approach by Bern and de Carvalho [6]. They arbitra- 
rily decided, a pr ior i ,  that each L-shaped wire is embedded so that the horizontal 
segment was above the vertical segment. They found an average improvement of 
about 5%. Below heuristics are explored that consider the potential overlap when 
selecting an embedding. 

2.1.1 

First a simple heuristic. Pairs of adjacent edges in the RMST are chosen arbitrarily 
and if they can be embedded with overlap then the corresponding embedding is 
chosen and fixed. All pairs of adjacent edges are explored with a simple scan. This 
takes linear time beyond the preprocessing step that constructs the RMST. There 
can be two distinct ways to  embed with overlap (when using the edges (i,j) and 
(i, k) and j and k are in the same quadrant of i). The naive embedding heuristic 
(NE) when given such a choice, chooses one arbitrarily. The simple embedding 
heuristic (SE) when given such a choice, chooses the one with the most overlap. 
Since there is essentially no time penalty for the latter, SE is preferred to NE. 

A greedy variant is the same as SE, except that a simple scan of the pairs of 
adjacent edges is replaced by a greedy search. In particular, the pair of wires 
which can be embedded for maximum overlap, over all such pairs, is selected and 
the corresponding embeddings are fixed. 

Richards performed experiments [29] and found, using n = 500, UNE = 6.2%, 
USE = 6.5%, and UGE = 8.2%. (Unless otherwise stated the averages in this chap- 
ter are over at  least 20 random instances.) By maintaining the possible overlaps in 
a priority queue, this can be implemented in O(n log n)  time, after preprocessing. 

Simple Embedding (NE, SE, GE) 

2.1.2 Iterative Simple Embedding (ISE, IGE) 

The SE heuristic arbitrarily chooses two wires incident to a terminal, removes any 
overlap, and repeats. There is a simple variation on this heuristic [29]. After 
the overlap is removed between two wires and a Steiner point is introduced, it 
iterates on the new tree that includes the Steiner point, not the original RMST. In 
particular, during later stages, overlap can be removed between two wires incident 
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to a Steiner point. To show that this is effective, consider Fig. 2.4; using only 
L-shaped wires SE will not do as well as ISE, which finds the optimal solution for 
this example. 

Figure 2.4: The insufficiency of L-shaped wires 

The time complexity of this approach is dominated by the run-time of the 
RMST algorithm. Note that since there are at most n - 2 Steiner points, and the 
degree of each terminal and Steiner point is 0(1), then the heuristic runs in O(n) 
time, after preprocessing. 

The ISE heuristic can be changed by introducing a greedy choice at each stage, 
as was done with the GE heuristic. In particular, the overlap that is removed at 
each iteration is the maximum overlap possible, over all pairs of adjacent wires 
in the current tree. As argued above, there are only O(n)  possible overlaps a t  
any time and these are maintained in a priority queue, ordered by amount of 
overlap. Further, each iteration will require only a constant number of insertions 
and deletions to maintain the priority queue. Using any standard priority queues, 
such as heaps, one can implement IGE in O(n1ogn) time, since each query takes 
O(1og n), after preprocessing. This matches the time complexity of producing the 
RMST. 

Empirical results [29] with 7~ = 500 give B I S E  = 8.3% and BIGE = 9.4%. This 
is a very good percentage considering the simplicity of the heuristic. 

2.1.3 

A Steineritation replaces a connected subtree of the current tree with three ver- 
tices i, j, and k (connected by the wires (i,j) and (i, k)) by an RSMT for the same 
three vertices. (A more general definition of Steinerization, used in Part  I, does 
not require i ,  j ,  and k form a connected subtree.) This is very similar to what the 
SE heuristic accomplishes. In fact the embeddings SE chooses are Steinerizations, 
except when j and k are in the same quadrant of i .  Even in the latter case, the iter- 
ated versions, ISE and IGE, will usually achieve the same effect as a Steinerization, 
but in two steps. 

The simple Steineritation heuristic (SS) iteratively performs arbitrary Steine- 
rizations, on a given RMST, as long as possible. The greedy version GS, on each 
iteration, examines all possible Steinerizations and chooses the one with the most 
overlap. As with SE there are iterated versions of these, ISS and IGS, that allow 
Steinerizations to include newly introduced Steiner points, as well as terminals. 

Simple Steinerizations ( S S ,  GS, ISS, IGS) 
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Experiments with n = 500 give uss = 6.8%, UGS = 8.6%, U I S S  = 8.3%, and 
UIGS = 9.5% [29]. 

A digression: The choice of input can have an effect on reported performances. 
The random instances used to generate the us above (for SE, GE, ISE, and IGE) 
were 500 terminals chosen uniformly from a 1 0 0 0 0 ~  10000 grid. While this is not the 
same as drawing from the unit square, it does provide an excellent approximation, 
while permitting integer arithmetic. Such an instance is in general position with 
high probability; i.e., no two terminals will be on the same row, column, or diagonal. 
Instances in general position are very likely to have many pairs of adjacent wires 
contributing some overlap. In contrast, consider 100 terminals drawn from a 20 x 20 
grid; the improvement ratio for IGS drops considerably to 6.l%, because there are 
many aligned terminals and very few opportunities for overlap. 

The main point is that the choice of instance can have a dramatic impact on 
the performance. A small grid may be representative of a typical instance in some 
application and the results for points in general position may be deceptive. On the 
other hand, to fairly compare two heuristics all instances should be drawn from 
large grids (or the unit square). 

2.1.4 L-Shaped Optimal Embedding (LOE) 

Ho, Vijayan and Wong [17] give a polynomial time algorithm to find the optimal 
embedding with the assumption that each wire has at  most one corner. (An “op- 
timal embedding” is relative to a given RMST and is not necessarily an RSMT.) 
The key to their algorithm is to  not begin with an arbitrary RMST, but to choose 
a specific RMST. If there are edges of equal length there could be many RMSTs. 

A separable RMST has proper overlap between two edges iff the edges are 
incident to the same terminal. They show that by adding clever tie-breaking rules, 
for equal length edges, that a separable RMST always exists. Further, using these 
rules any MST algorithm can be used to construct a separable RMST (though the 
effect, if any, of the rules on the Voronoi diagram is not discussed). The advantage 
of such an RMST is that the effect of an embedding a wire is localized. They also 
show that in an RMST a terminal is incident to at  most six L-shaped wires, using 
an argument analogous to the proof of Lemma 2.1. 

They give a O(n) time dynamic programming algorithm to compute the optimal 
embedding. They begin by rooting the separable RMST at some leaf, and solve 
the subtrees bottom-up. The key observation is that ,  with a separable RMST, the 
optimal solution for a subtree depends only which of the two embeddings of the 
L-shaped wire, connecting the root of the subtree to its parent, was chosen. The 
subtree is solved for both choices. After solving all the subtrees of a vertex, the 
analyses can be combined in constant time, because it has a constant number of 
subtrees. Hence O(n)  total time is needed for finding the optimal embedding, in 
addition to the time needed to build the RMST (which dominates the run-time). 

Empirical results [17] with n = 100 gave ULOE = 9.7%, with less improvement 
for smaller n. 
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2.1.5 Z-Shaped Optimal Embedding (ZOE) 

As can be seen in Fig. 2.4, L-shaped wires are insufficient to find true optimal 
embeddings. A Z-shaped wire has exactly two corner points. The example in 
Fig. 2.4 requires at least one Z-shaped wire. 

Ho, Vijayan and Wong [17] extended the previous heuristic and gave a polyno- 
mial-time algorithm to find the optimal embedding of a separable RMST, when 
each wire has at most two corners. Further, they prove that there always exists an 
optimal embedding with at  most two corners per wire; i.e., three corners are never 
required. Hence their algorithm finds a optimal embedding with no restrictions. 
(It is open whether one could do better starting with a non-separable RMST.) 

The approach is similar to LOE. The principal difference is that there are many 
Z-shaped wires connecting the root of a subtree to its parent, and the subtree must 
be solved for each of these possible embeddings. However, since a Z-shaped wire can 
be constrained t o  the grid graph G G ( N ) ,  there are only O(n)  possible embeddings. 
Actually there are only k possibilities, where k is the maximum number of edges 
in GG(N)  used by any Z-shaped wire. Since there are at most six such wires 
connected to  a terminal, it can be shown the heuristic runs in O(nk6)  time. Even 
though this can be O(n7) in the worst case, this is a very pessimistic analysis. 
Empirical results show that it runs in O(n2)  time, or better, on random instances. 
This dominates the preprocessing time. 

Empirical results [17] with n = 100 gave C Z O E  = l0.2%, with less improvement 
for smaller n. This is about 0.5% better than C L O E .  

Recently Dastghaibyfard, Teo and Tuan [9] proposed an approximation of ZOE. 
It does not consider all possible embeddings of each Z-shaped wire between termi- 
nals i and j. It chooses only those embeddings that use edges in GG(N)  that are 
determined by i and j and the terminals adjacent to i and j in the given separable 
RMST. It can be shown that there are at  most eight such embeddings. Hence this 
approximation can be implemented in O(n)  time. They gave empirical results that 
showed, for n up to 100, the resulting embedding was identical to that produced 
by ZOE 99% of the time. 

In the sequel, again, wires are restricted to have at  most one corner. 

2.1.6 Hierarchical Embedding (HE) 

Sarrafzadeh and Wong [30] proposed a heuristic that preprocesses a given RMST. 
Any tree T with bounded degree, such as an RMST, has an edge e whose re- 
moval leaves two subtrees T’ and T“ of roughly equal size. In particular, < 
IT‘I, IT”I 5 $IT], where IT1 is the number of vertices in T .  Similarly T’ and TI’ can 
each be partitioned and one can continue recursively. This recursive partitioning 
can be represented with a binary tree BT defined recursively: the root of BT cor- 
responds to  e,  the left subtree is BTI ,  and the right subtree is BTII. Note that the 
height of BT is O(1ogn). The leaves are singleton trees, which are the terminals. 

The heuristic begins with an RMST T .  It builds an approximate RSMT for the 
terminals in each subtree of BT,  bottom-up. Consider an internal node 2: of BT 
associated with the edge between terminals i and j .  After building the approximate 
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RSMTs for the terminals in each of the two subtrees of x (one containing i and 
the other containing j) it connects these two subtrees with a wire from i to j .  It 
tries both L-shaped wires, removes any overlap and breaks any cycle, and retains 
the shortest tree found. 

They also proposed a parameterized variation of this scheme. For a given k, 
it begins by considering each subtree of height k (with at most 2k terminals) and 
optimally solving the rectilinear Steiner problem for the terminals in those subtrees. 
The heuristic then continues to  solve the other subtrees, bottom-up, as before. Call 
this heuristic HEk. 

They found, for n = 100, that U H E ,  = 8.5%, U H E ~  = lO.O%, and U H E ~  = 10.3%. 
The runtime is exponential in k, but is O(n log n), for constant k. 

2.1.7 Loop Detection (LD) 
Chao and Hsu [7] proposed a heuristic that begins with an RMST. (They modified 
the rectilinear metric to  favor an edge with more “slant” in the case of ties.) Rather 
than embed each edge they consider the set of “candidate” grid points along the 
possible L-shaped embeddings. When they add an edge between such a point and 
terminal (or a corner of an L) they get a loop, which they break by removing the 
longest edge on the loop. They collect the set S of all such candidates that cause 
the tree to be shorter as a result of breaking the loop. They augment N by adding 
a maximal independent subset of S. They form a new RSMT and iterate until no 
further improvement can be made. Call this heuristic LD. 

They also suggested a preprocessing step where all essential Steinerizations are 
done. A Steinerization between i and its neighbors j and k is essential if there is 
no other such j and k for i admitting a Steinerization. Call the heuristic with this 
added step SLD. These heuristics can be implemented in O(n2 log n)  time. 

They found empirically, for n = 80, that UL,D = 10.5% and U S L D  = 10.6%, 
which is very good. 

2.1.8 Delaunay Triangulation-Based (DT) 

Smith, Lee and Liebman [34] proposed a hybrid scheme that is based on the same 
principle as IGE. However it is more complicated and produces less improvement, 
so it is only sketched here. 

There are two distinguishing features. First, it restricts itself by examining 
only pairs of edges in the RMST that form two edges of a “selected” triangle in the 
Delaunay triangulation, that was used to construct the RMST. Unfortunately, due 
to degeneracies in the corresponding Voronoi diagram (that do not occur in the 
Euclidean case), additional ad hoc searches are conducted for degenerate triangles. 

The second feature is that it also allows a triangle neighboring the selected 
triangle, at  each stage, to be considered. It then asks whether it can do better by 
making a local improvement using the four connected points in these two triangles, 
rather than just using the three in the selected triangle. 

They give an O(n log n)  time implementation. They report UDT = 8.6%, which 
is far inferior to IGE. 
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2.1.9 Four-Point Steinerizations (4PS) 

Beasley [2] gave an heuristic related to the IGE heuristic, that uses greedy four- 
point Steinerizations, rather than just three-point Steinerizations. The approach is 
much simpler than the similar technique in DT. A four-point Steinerization chooses 
a four point connected subtree (either a three-pointed star or a simple path) of the 
current tree and determines an RSMT for the same four points. Each such four 
point RSMT can, of course, be computed in constant time. The Steinerization 
with the most improvement, over all connected subtrees with at most four vertices, 
is selected at each stage. Rather than adding the RSMT of the four points itself, 
he just adds the Steiner points to the terminal set and computes a new MST. (He 
does not formally prove the procedure converges.) 

No time complexity is given but empirical results suggest that Beasley’s im- 
plementation runs in expected time. An improvement of c4ps = 9.9% 
is reported. (He also applied this to the Euclidean metric and it is discussed in 
Section 4.2 in Part I.) 

2.1.10 Neighborhood Steinerizations (NS) 
Hasan, Vijayan and Wong [16] present another heuristic based on local Steine- 
rizations. It begins with an RSMT T of the terminal set. The neighborhood of a 
vertex v in T, is the subgraph of T induced by v and its adjacent vertices. The 
weight of a vertex v is the decrease in length when the neighborhood is replaced by 
an RSMT over the same point set. (Since, by Lemma 2.1, any neighborhood has at 
most nine vertices, the corresponding RSMT can be computed in constant time.) 
After computing the weight of each vertex, they find the maximum total weight 
independent set of vertices in T (i.e., a set of vertices whose neighborhoods share 
no edges). For every vertex in the independent set, they replace the neighborhood 
by the corresponding RSMT. They add all the Steiner points to the terminal set 
to create a larger terminal set and construct a new RMST. They iterate the above 
process until no improvement is found. (For n 5 35 they found only 4 or 5 iterations 
are necessary.) There are additional steps for pruning old Steiner points out of the 
terminal set, in later stages, when they no longer help. 

Both computing the weights and finding the maximum weight independent set 
of a tree (using dynamic programming) can be done O(n) time, which is dominated 
be the O(n  log n) time for computing the RMST. Hence each iteration of the outer 
loop takes O(n1ogn) time. For n 5 35, they report UNS = 8.5% which is lower 
than might be expected. 

2.2 Heuristics Based on MST Algorithms 
The two best studied algorithms for the MST problem are due to Kruskal and 
Prim [13] Many heuristics are based on these algorithms; the basic control structure 
is maintained while varying individual steps. Such heuristics have appeared in the 
previous parts of this book. Recall, Kruskal’s algorithm begins with n singleton 
trees and repeatedly connects the two currently closest trees. Prim’s algorithm 
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repeatedly adds to one subtree by connecting it to the closest vertex not currently 
in that subtree; the initial subtree is an arbitrary vertex. 

2.2.1 

Lee, Bose and Hwang [27] proposed varying Prim’s algorithm. The current subtree 
is connected to  the nearest terminal w not in the subtree. “Nearest” is defined to 
be the shortest distance to either a terminal or Steiner point in the current subtree; 
let u be that nearest such point to  w. Rather than connecting u to w by a single 
wire, a three-point Steinerization is performed. A constant number of vertices in 
the neighborhood of u, in the current subtree, are inspected to choose a vertex v 
(the ad hoc selection process is in [27]). The edge between u and w is replaced by 
an RSMT on the three points u,  v ,  and w; a Steiner point may be introduced. 

The heuristic does not begin with an arbitrary singleton tree. Instead the initial 
step builds a subtree for three terminals, and the RSMT for those three terminals is 
the smallest RSMT for any three terminals. A straightforward implementation of 
this initialization step takes O(n3)  time, which is unfortunate since the remainder of 
the heuristic takes only O(n2)  time. However, they gave an O(n2) time initialization 
procedure. I t  is analogous to the geographic nearest neighbor approach in Lemma 
2.1. Rather than deal explicitly with octants, they show that if only the 20 nearest 
neighbors to each point were considered then the smallest RSMT on three points 
could be discovered. 

Empirical results were found for small n,  R 5 35. Rather than reporting mean 
improvements, they report only the median value of upss is between 8% and 10%. 
De Souza and Ribeiro [37] report up3s = 8.4%, empirically with R = 100. 

Prim with Three-Point Steinerizations (P3S) 

2.2.2 RMST-Driven Prim-Based (RP) 

Hwang [19] devised a faster heuristic by using the idea of P3S, but driving the 
computation with the guidance of a given precomputed RMST T.  In particular, 
the choices of u and w ,  a t  each stage, are determined from T ,  not by a shortest 
distance computation. 

The heuristic begins with a “labeling” phase, which orders the edges of T so that 
T could have been built by adding the edges in that order using Prim’s algorithm. 
(It is not necessary to know how T was actually constructed.) This phase begins by 
sorting each adjacency list of the vertices of T by increasing length. It then does 
a breadth-first search (or depth-first search) beginning at  some endpoint of the 
shortest edge. The output is the sequence of edges of T ,  ( p z ,  q z ) ,  ( p 3 ,  q 3 ) ,  ..., ( p n ,  q n ) ,  
together with the vertex p l ,  such that qi = p j ,  1 5 j < i 5 n. This phase (as well 
as the computation of T initially) can be done in O(n log n)  time. 

Hwang begins to build the approximate RSMT by building an RSMT on p l ,  p z ,  
and p3.  He then connects each p i ,  i > 3, to  the current subtree in the same manner 
as P3S, with pi  as w and qi as u. In fact, since each three-point Steinerization 
takes constant time, this phase takes only O(n)  time. 

Hwang tried RP out on a handful of examples and found the performance to be 
almost identical to  P3S. De Souza and Ribeiro [37] recently obtained the empirical 



2.2. HEURISTICS BASED ON MST ALGORITHMS 231 

improvement U R ~  = 9.5%, for n = 100, which is a clear improvement over up3s. 

These experiments found no real difference in performance between depth-first 
search and breadth-first search, though they found (without explanation) that the 
latter ran faster. 

2.2.3 Prim-Based with Biased Two-Point Connections (PB2) 

De Souza and Ribeiro [37] proposed a Prim-based scheme that connected each new 
point directly to the current subtree with a single wire. However, it has two features 
that improve its performance. First, it allows the new wire to connect anywhere in 
the current subtree, not just to its vertices (i.e., terminals and Steiner points). If it 
connects to a corner point or the interior of a wire segment then a new Steiner point 
is created, of course. Second, it biases the choice between the two possible L-shaped 
wires (when it is not a straight connection) by polling the currently unattached 
terminals. By bending in the right direction it can shorten later connections. (The 
final result is often identical to that found using Steinerizations.) 

The first feature is very easy to incorporate. Implementations of Prim’s algo- 
rithm maintain, for each terminal not in the current subtree, the shortest distance 
to the current tree. I t  is straightforward to allow the shortest distance to be up- 
dated, as each new wire is added, in constant time. This preserves the total O(n2)  
total time. 

The bias, for the choice between the two L-shaped wires connecting w to  u ,  can 
be explained by consulting Fig. 2.5. Note, the rectangle defined by the two wires 
is empty, since w is closest to u, The heuristic finds the closest terminals (closest 
to  the the rectangle) in the six regions labeled 2,3,4,6,7, and 8. I t  then chooses the 
wire that minimizes the sum of the distances from those six points to that wire. 

Figure 2.5: Regions defined by the two L-shaped wires connecting w and u 

They present an O(n2)  time implementation of this heuristic. They found 
empirically, for n 5 100, that u p B 2  = 9.5%, and perhaps a bit better for large n. 

2.2.4 Kruskal-Based (KA, KB, KC) 

Bern and de Carvalho [6,5] discuss several Kruskal-based heuristics, which they 
attribute to Clark Thompson. Each heuristic differs in how one defines “closest” 
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subtrees, and how the chosen subtrees are to  be connected. 

KA: At each stage find the two subtrees that can be connected with the shortest 
wire, and use that wire. 

KB: At each stage find the two subtrees that can be connected with the shortest 
wire between two terminals, Steiner points, or corner points, and use that 
wire. 

KC: At each stage find the two subtrees that can be connected with the shortest 
wire between two terminals; the connecting wire, however, is the shortest 
wire connecting terminals, Steiner points, or corner points. 

In all cases they place L-shaped wires so that the horizontal segment is below 
the vertical segment. There are examples of terminal sets where each of the three 
approaches is superior to  the other two. Even so, KC is mainly of interest because 
i t  is amenable to  formal analysis. Bern [5] was able to  show that 

In other words, UKC is bounded away from 0. Even though the proven bound is very 
small, this is the only nontrivial analytic bound on the improvement of a heuristic. 
Bern’s results are for terminals drawn from the unit square distributed according 
to a Poisson process with mean n. Hwang and Yao [20] extended the result to the 
uniform distribution, for exactly n terminals, and made a small improvement to 
the constant. 

These heuristics can all be implemented in O(n2 log n)  time [28]. There can only 
be O(n) wires, terminals, Steiner points, and corner points altogether, at any time, 
so that the O(n2)  distances between these can be maintained in a priority queue. 
Bern and de Carvalho [S] presented implementations based on the assumption 
that the terminals were chosen from an m x m grid; in particular, they presented 
O(mn2 log n )  time implementations. In some applications m is small. 

Wee, Chaiken and Ravi [40] presented new implementations of KA and KB. 
They were able to  show that most of the O ( n 2 )  distances, mentioned above, 
were unnecessary. In fact the only distances required, initially, are those found 
in N N ( N ) ,  the geographic nearest neighbor network. The situation is complicated 
by the fact that  as the heuristic progresses one must maintain N N ( N  U N ’ ) ,  where 
N’ is the set of Steiner points and corner points introduced so far. They present 
an efficient algorithm for updating the nearest neighbor network in O(log2 n)  time. 
This leads to  an O(n log’ n) time implementation of KA. 

They extend their technique by defining the nearest neighbor network for a set 
of non-intersecting line segments. While this is more complex, they can still do 
updates in O(log2 n)  time, giving an O(n log’ n)  time implementation of KB. 

Bern and de Carvalho [6] present empirical results for n = 100, for KB and KC; 
in both cases the improvement was about 9.3%. 
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2.2.5 The Relationship to the RMST 

Each heuristic in this chapter so far is known to produce an approximate RSMT 
that is no longer than the RMST. In most cases this is a trivial observation; either 
the heuristic improves on a given RMST or it mimics a MST algorithm (with 
further improvement possible at each stage). However, for several years it w a s  
open whether this was true for P3S. Recently, De Souza [36] proved it true for P3S. 
Hence UA 2 0 for each heuristic A. Alternatively, can each heuristic be as bad as 
an RMST? In particular, can each heuristic produce as poor a tree as possible, 
i.e., 50% worse than optimal? De Souza and Ribeiro [38] exhibited a single set of 
terminals that showed that DT, 4PS, P3S, RP, and PB2 can be that bad. 

Shute [33] unified the previous heuristics under the umbrella of “greedy al- 
gorithms”. A greedy algorithm, in this context, is an algorithm that repeatedly 
connects a subtree T to another subtree with a wire that is no longer than the 
shortest connection from any terminal in T to  any terminal not in T .  All the 
heuristics so far have been greedy (as well as the SBB heuristic, mentioned later). 
Shute showed that any greedy heuristic produces a Steiner tree no longer than the 
MST. He also gave a complicated scheme to construct a terminal set for which any 
greedy heuristic was as poor as possible (50% worse than optimal). Similar results 
were given for the Euclidean case. 

Hence none of these heuristics can do better than the Steiner ratio; that is, 
alwayshave ITA(N)I 5 $ IRSMT(N) I .  Recent heuristics can do better, as discussed 
in the next subsection. 

2.2.6 Zelikovsky-Based Heuristics 

Zelikovsky’s heuristic for networks, described in Section 4.3.6 of Part 11, was  the 
first heuristic for networks that was provably better than the Steiner ratio. It has 
implications for metric spaces such as the Euclidean (see Section 4.8 in Part I) and 
the rectilinear metrics, when properly generalized. These are discussed in a more 
general setting in Chapter 1 of Part IV, where it is shown that indeed there are 
rectilinear heuristics that do better than the Steiner ratio. 

Berman and Ramaiyer [3,4] have announced rectilinear results based on their 
modified upgrading heuristic for networks (see Section 4.3.7 in Part 11). Recall 
that their heuristic has a parameter k. They claim that in the rectilinear case, 
ITMuH(N)I 5 yIRSMT(N)I for k = 3, and ITMuH(N)I 5 g:IRSMT(N)I for 
k = 4. They do not feel that the bound is tight. 

2.3 Computational Geometry Paradigms 

There are two basic paradigms for algorithms in Computational Geometry li- 
terature: plane sweep and divide-and-conquer based on partitioning. 
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2.3.1 Prim-Based Plane Sweep (PPS) 

Hanan’s original technical report [15] mentioned a heuristic that is best described 
as a plane sweep. Conceptually, a plane sweep algorithm slides a horizontal bar 
over the set of terminals, from bottom to  top. It processes each terminal as it 
is encountered and maintains a data structure that represents the decisions and 
events that  have occurred “below” the bar. 

Hanan begins by sorting the terminals by increasing y coordinate and considers 
them in order, hence the “plane sweep”. A subtree connecting all terminals already 
seen is maintained, and each new terminal, when it  is encountered, is connected to 
the current subtree with the shortest possible wire (i.e., it is Prim-based). An L- 
shaped wire will have its horizontal segment above the vertical segment. Since there 
are only O(n) wires, terminals, Steiner points, and corner points, the shortest wire 
at each step can be found in O(7t) time. Hence the sweep can be easily implemented 
in O(n2)  time. Hanan suggests continuing by rotating the set of terminals by 90’ 
three times, each followed by a plane-sweep; the reported tree is the shortest of the 
four computed trees. 

Empirically this heuristic is good for small terminal sets; “ p p s  = 9.0% when 
n 5 10. In fact i t  is guaranteed to be optimal for n < 5. However, it is very poor for 
large problems [37]; d p p s  = 5.3% when n = 100. (If no rotations are done then the 
expected improvement is even worse, only 3% for n = 100.) The poor performance 
is a result of combining Prim’s technique with the plane sweep paradigm. As a 
result, especially at the beginning of the sweep, decisions to connect distant pairs 
of terminals are made that should have been postponed until more terminals had 
been “seen”. 

The run-time can be improved. Servit [31] proposed speeding up the heuristic 
by considerably simplifying the basic connection step. In particular, each new 
terminal is connected by the shortest wire to  the wire placed on the previous step! 
Clearly the heuristic runs in O(n) time in addition to the O(n log n) time necessary 
to sort the terminals. The average improvement for this technique is not known. 

Richards [28] gave an O(n1ogn) time implementation of PPS, which obviates 
Servit’s version. This heuristic uses a data structure to maintain an ordered view 
of just the relevant wire segments in the current subtree. In particular, portions of 
the subtree “hidden” below 45’ trailing projections of wires (see Fig. 2.6) can be 
ignored. The remaining relevant portion of the subtree is a sequence, sorted by 2 
coordinate, of points and horizontal wire segments (see Fig. 2.7). This sequence of 
points and segments can be searched and maintained in O(1og n) time, leading to an 
overall O(n log n) time implementation. A simple version of the data structure was 
shown to have an O(n3I2) expected time complexity, for terminals drawn uniformly 
from the unit square. 

Unlike previous heuristics, that  are never worse than an RMST, Hanan’s heuris- 
tic can produce a tree worse than the RMST. For example, a construction with 
the terminals in a large “X” formation gives the ratio of the length of the approx- 
imation t o  the length of the RMST approaching 5/4. Occasionally a tree that was 
marginally longer than the RMST was produced during the experiments. However 
in no randomly-generated case was the best of the trees, over the four rotations, 
ever inferior to  the RMST. 
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Figure 2.6: Portions of the current tree are hidden behind the upper wires 

-*.* 
‘a. -.. ‘.. ’. ’., ‘., .. -. 

Figure 2.7: The sequence of exposed portions of the current tree 

2.3.2 Kruskal-Based Plane Sweep (KPS) 

Deneen and Shute [lo] implemented a plane sweep loosely based on Kruskal’s al- 
gorithm. It defers making connections, allowing severd subtrees to  be built and 
connected later. The rationale is that it would overcome the principal factor in the 
poor performance of PPS, namely premature connections. 

Their implementation is based on Richards’ heuristic for PPS. They maintain a 
similar data structure for the sequences of relevant horizontal wire segments (again, 
see Fig. 2.7). However, they do not force all terminals below the scan line to  be 
connected into one tree. Instead they allow those terminals to be connected into 
several subtrees. A subtree is connected to its nearest subtree only when it becomes 
“hidden”, a t  a later stage. (Actually the connection is made if some representative 
segment of the subtree is hidden.) By using sophisticated data structures the 
subtrees, and nearest neighbor information, can be maintained in O(1og n)  time, 
leading to an overall O(n log n) time heuristic. 

Empirical results, for n = 100, indicate that U K P S  = 8.5%. This is a clear 
improvement over PPS, but not as good as KB, another Kruskal-based scheme. 
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2.3.3 Probabilistic Partitioning (PPA, PPB) 
Koml6s and Shing [25] present two similar divide-and-conquer heuristics based on 
a similar approach by Karp [24] for the traveling salesman problem. 

The first heuristic, which is designated PPA, has two phases. The first phase 
partitions the plane up into small rectangles, each containing at most t terminals, 
where t is a parameter to be given later. The basic step in this phase partitions a 
rectangle into four subrectangles, each with at most one fourth of the terminals in 
the original rectangle; an example is in Fig. 2.8 

0 
0 0 

Figure 2.8: Partioning step evenly divides the terminals into four subrectangles 

This can be done, in linear time, with three calls to a median-finding routine. 
The phase begins with a rectangle bounding the entire terminal set, and recursively 
applies the basic step to every subrectangle until at most t terminals are in each 
one. This phase can be implemented in overall O(n log n )  time, for any t .  

The second phase of the heuristic has two steps. First, the optimal RSMT for 
the terminals in each subrectangle is computed exactly using, say, the Dreyfus and 
Wagner algorithm (see Section 3.4 in Part 11). Second, Kruskal’s standard MST 
algorithm is run to connect the various subtrees. The final tree is pruned, so that 
all leaves are terminals. 

The total time, using Dreyfus and Wagner’s algorithm, is O(t3‘n + n log n) .  
So, for example, if t = log, n then one gets O(n2 log n)  time, and t = log, log n 
gives O(n log n log log n )  time. N o  empirical results are presented, and no estimate 
of ~ p p ~  is given. However, it is shown, with a detailed argument, that their 
approximation is within a factor of 1 + O( -$=) of optimal, with probability 1 - o( l), 
when the terminals are drawn uniformly from the unit square. 

Koml6s and Shing presented another related heuristic in the same paper. It 
divides the unit square up into small squares “buckets”, so that the ezpected number 
of terminals in each bucket is t .  Then two new artificial terminals are added on 
the boundary of each bucket, so that each new terminal in one bucket is in the 
same position as a new terminal in a neighboring bucket. The new terminals are 
positioned in such a way that the union of spanning trees of each bucket will 
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result in a large spanning tree of all the terminals. Their heuristic, then, builds 
an approximate RSMT by building an optimal RSMT for the terminals in each 
bucket. 

This heuristic, which is designated PPB, has the same probabilistic performance 
as PPA. However it depends heavily on the uniformity of the terminal's distribution 
in the unit square; it can produce a tree that is at  least a factor of t worse than 
optimal. I t  can be shown that the heuristic runs in O(ne3') time, with probability 
1 - o(1). Therefore, for each value of t ,  PPB is faster than PPA. Clearly, for some 
sets of terminals, some buckets can be overfilled; if that happens it is suggested a 
heuristic be used instead of an exact algorithm for that bucket. 

2.4 Other Heuristics 

There are other heuristics that do not easily fit in the previous sections. Some are 
discussed below, while others are found in Chapter 5. 

First two heuristics are mentioned briefly. Jiang and Tang [21] began by collect- 
ing statistics for all subproblems using 3 terminals from N .  Then, after some ad- 
ditional preprocessing, a Kruskal-based heuristic is given that favors Steiner points 
and edges suggested by the statistics. Also Few [ll] gave a rectilinear heuristic 
that is described in Section 4.6 of Part I. 

2.4.1 Iterated l-Steiner (11s) 

Kahng and Robins [23,22] presented an heuristic with excellent improvement char- 
acteristics. It is related to an earlier, and less effective, heuristic of Smith and 
Liebman that is discussed below. These heuristics are based on routines that solve 
the 1-Steiner problem: What is the optimal Steiner tree if at most one Steiner point 
is permitted? Alternatively: What is the location of a single point p such that the 
RMST of N U { p }  is minimized, over all such p? 

Georgakopoulos and Papadimitriou [12] gave an O ( n 2 )  time algorithm for the 
l-Steiner problem in the Euclidean case, and Kahng and Robins have adapted 
this to the rectilinear metric in the same time bound. The algorithm partitions 
the plane into O ( n 2 )  isodendral regions. An important property is that for each 
isodendral region R one can compute the MST for any p in R in constant time, 
after a O(n2)  time preprocessing step. Further, in constant time one can find a 
point p that minimizes the length of the RMST of N U { p }  over all points in R. 

The iterated l-Steiner heuristic, I lS,  simply solves the l-Steiner problem. If 
such a point p does exist that decreases the length if the RMST, then set N t 
N U { p }  and iterate. It is possible for there to be more than n - 1 Steiner points; 
for example, see Fig. 2.9. Hence, they arbitrarily limit the number of iterations to 
n. Clearly the heuristic runs in O(n3) time. 

Empirical results for n = 40 give uI1s = 10.9%, which is the best for any 
heuristic discussed so far. They claim that their improvement is due to the fact 
that they do not, implicitly or explicitly, use an RMST. They conjecture that 10% 
improvement is the ceiling on the performance of those methods. While Berman 
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Figure 2.9: Example where 11s uses more than n - 1 points 

and Ramaiyer do use an RMST there seem to be some unexplored connections 
between their heuristic and 11s. 

2.4.2 Batched l-Steiner (BlS) 

Kahng and Robins [23] presented several variations on the 11s heuristic, including 
using a random choice of p ,  rather than an optimal choice. The most promising 
variation, however, batches many choices of p ,  without recomputing the isodendral 
regions. This heuristic scores every one of the O(n2)  candidate Steiner points in 
G G ( N ) .  By preprocessing the isodendral regions, in O(1og n)  time each candidate 
point p can identify the isodendral region it is in; it can then calculate the length 
of the RMST over N U { p }  in constant additional time (see above). The score for 
each p is the improvement, if any, of the new RMST over the original RMST. 

The heuristic then sorts the candidates by decreasing score and considers each 
candidate in that order. Let NO + N be the original set of points, which have been 
preprocessed. For each p ,  in order, if the RMST for NO U { p }  is shorter than the 
RMST for N U { p }  then set N +- N U { p }  (This test is meant to insure that the 
candidate p is chosen only if its effect is “independent” of the other candidates just 
previously selected.) The maintenance of the RMST as N is augmented, requires 
O(1og n) per update, with sophisticated techniques. The isodendral regions are not 
updated during this loop. After all the candidates are considered, the isodendral 
regions are recomputed and the remaining candidates are rescored. The heuristic 
iterates while improvement is made. (Empirically, for n = 40, an average of 2.05 
iterations of the outer loop were performed.) The iteration of the outer loop runs 
in O(n2 log n)  time. 

Empirical results for n = 40 show that uB1s = 10.9%, the same as ufls. 
Smith and Liebman [35] gave an O(n4) time heuristic, very similar to BlS, that 

used several ad hoc stages. I t  began by selecting a subset of the vertices of GG(N)  
as candidate Steiner points. They found successive (Euclidean) convex hull “layers” 
and found the bounding rectangle of each one. Each candidate Steiner point was a 
projection onto the nearest bounding rectangles! The heuristic was constrained to 
consider only these O(n) candidates. Another difference is that it does not use the 
“independence” check (see above). Presumably for these reasons, the performance 
reported for this variant is considerably worse: the improvement is less than 8%. 
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2.4.3 Suboptimal Branch-and-Bound (SBB) 

Yang and Wing [41] gave a heuristic algorithm related to their exact branch-and- 
bound algorithm, discussed in the previous chapter. It differs in several ways; 
principally, it places entire wires (with a t  most one corner) at  once, and it greed- 
ily chooses the next wire to place. Informally, it is a Prim-based approach with 
backtracking . 

Step 1: Let B be the length of the best approximate Steiner tree seen so far; 
B t 00 initially. Choose some p E N arbitrarily and let T be the tree with p 
as its only vertex. Push T on an initially empty stack S. Let V be the vertex 
set of GG(N) .  

Step 2: If S is nonempty then pop T off of S ,  otherwise stop. Let A be the vertex 
set of T and let L be the length of T.  If L 2 B then repeat this step. 

Step 3: If A N then set B + L.  Let p’ and v’ be the vertices that minimize 
{dist(p’, v’) I p’ E N n (V - A ) ,  v’ E A } .  Let TI and Tz be the two possible 
trees formed by adding to T a wire from p’ to v‘, with at  most one bend. (If 
the wire is straight then T2 is superfluous.) Push TI and T2 onto S. Return 
to step 2. 

There is no known polynomial bound on such an approach. However, empirical 
results show that they can solve problems with n _< 225 in less than three mi- 
nutes. They report USBB = 11.9% for various examples with 100 _< n _< 225, and 
more improvement with smaller n. This is the best improvement reported for any 
heuristic. 

2.4.4 Exhaustive Partitioning (EP) 

The obvious divide-and-conquer approach is to divide the unit square (or bounding 
rectangle) in half and solve each half independently. In fact Basart and Huguet [l] 
suggested doing this. They made exactly one vertical (or horizontal) cut and solved 
each half with Servit’s version of PPS. Their improvement dropped quickly to 4% 
as n increased. Part of the poor performance is due to the inferiority of Servit’s 
PPS. However, it is not expected that a single cut will intersect an RSMT in only 
one place. In fact many intersections are expected as n increases. 

Thomborson, Deneen and Shute [39] suggested using divide-and-conquer but 
did not assume a “clean cut”. In fact, they suggest using k, the maximum number 
of horizontal lines of the RSMT that a central vertical line cuts. They show that 
the expected value of k is O ( f i ) ,  with high probability. For each value of i 5 k 
they enumerate all ways that i horizontal lines of an RSMT could be cut. For each 
of the enumerated cases, they recursively solve the corresponding right and left 
subproblems, with i artificial terminals added on the boundaries where the lines 
were presumed to  be cut. 

They present two versions of this general scheme. First they actually compute 
k, by easily checking to see how many horizontal lines can be packed into the cut 
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subject to separation constraints imposed by nearby terminals. This leads to an 
exact  algorithm that runs in no(m time, with high probability. 

The second variation, which is designated EP, begins by estimating k by arbi- 
trarily setting it to L2fiJ. This heuristic runs in deterministic nO(J;;) time, but 
only finds an optimal tree with high probability. No estimates of the improvement 
of this heuristic are known, though the results should be strong. They report by 
setting k = 1 (too low, of course) that a 50 terminal example took 20 hours to 
compute, examining 841 subproblems! 
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Chapter 3 

Polynomially Solvable Cases 

If the arrangement of the ternlinals in the plane is restricted then i t  may be possible 
to devise polynomial time algorithms to find the RSMT. In this chapter several such 
restricted problem domains are presented. For example, if all the terminals happen 
to lie on the boundary of a rectangle then the problem can be solved in linear time. 
Note that if the terminal set is presented as an unordered set of points then a 
n(n log n )  lower bound on the time required exists (by a simple reduction from 
sorting). Hence, in order to even discuss linear time algorithms, it is assumed that 
tlie terminal set is given as input in sorted order; either sorted by both coordinates, 
or sorted cyclically about the boundary of, say, a rectangle. 

In this chapter the emphasis will be on the existence of polynomial time algo- 
rithms for various cases, rather than on presenting the details of the best known 
algorithnls. Unfortunately, the fastest algorithms rely on detailed case analyses 
and, therefore, are beyond the scope of this book. Pointers to these results will be 
given. In the first section it is assumed that the terminals are all on the boundary 
of a rectangle. In Section 3.2 this is generalized to a convex boundary and, in the 
final section, to a few layers of such boundaries. 

3.1 Terminals on a Rectangular Boundary 

In this section it is assumed that all the terminals lie on the boundary of a rect- 
angle. (It is assumed throughout that all lines, including boundary edges, are 
rectilinear, i.e., having a horizontal or vertical orientation.) First a simple case is 
discussed, where all the terminals are on two opposite sides of tlie boundary. Then 
an algorithm is sketched for the case where terminals fall properly on all four sides. 

All the algorithnls in this chapter make use of the grid graph GG(N) .  This 
network is planar and, therefore, all the results for the planar case in the graphical 
ShIT literature apply. In particular, when all the points are on the boundary of 
the rectangle, they are also on the boundary of GG(N).  Hence, it is the I -p lanar  
case, and Bern’s algorithm [3] for that  case indicates the existence of an O(n5) time 
algorithm for the rectangle case. It is easy to improve 011 this for the twGsided 
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case. 
linear time. 

By using detailed case analyses even the four-sided case can be solved in 

3.1.1 

The case where all the terminals lie on two opposite sides of a rectangle is known 
as the “2 x n” case. This name is suggested by the simple structure of GG(N) ,  as 
seen in Fig. 3.1. The G G ( N )  for the 2 x n case is a series-parallel network and, 
hence, there is a linear time algorithm for this case, as discussed in Chapter 5 of 
Part  11. 

Terminals on Two Opposite Sides of a Rectangle 

Figure 3.1: The grid graph for the 2 x n case 

Aho, Garey and Hwang [2] had earlier presented a linear time algorithm for the 
2 x n case that is a simplified version of that series-parallel algorithm (due to the 
regular structure of G G ( N ) ) .  Let a l ,  a2, . . . , a, be the vertices of G G ( N )  along 
the top edge, and b l ,  b 2 ,  . . . , 6, be the corresponding bottom vertices; see Fig. 3.1. 
(Note that one can assume w l , a q , b l ,  and b, are all terminals. Otherwise there 
would be degenerate tabs that can be removed; see Chapter 1.) 

The following definitions a.re analogous to  those for the series-parallel algorithm 
in Part 11. Let N ( i )  be the set of all terminals among a l , .  . . , ai and b l , .  . . , bd. 

B ( i )  = the minimum cost of a subtree connecting {a,, b i }  u N ( i ) .  

F ( i )  = the minimum cost of a subtree connecting { u i }  u N ( i ) .  

L ( i )  = the minimum cost of a subtree connecting { b i }  U A T ( ; ) .  

Note that B(l)  = F(1) = L(1) = y, the vertical height of the rectangle. Let ti be 
the distance from ai to  ui-1, 2 5 i 5 n. Therefore, for 2 5 i 5 n: 

B ( i )  = min{F(i - 1) + xi + y, L ( i  - 1) + xi + y, B(i  - 1) + 2zi) 

if hi E N 
otherwise 

if ai E N 
otherwise 

F ( i )  = { B(i) 

L ( i )  = { B(i )  

F ( i  - 1) + ti 

L( i  - 1) + .ci 
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The desired result is B(q) ,  which can easily be found in linear time using these 
recurrences. The tree itself can be reconstructed by saving back pointers at each 
stage. 

3.1.2 

The case where all the terminals happen to lie on the boundary of a rectangle was 
first solved by Aho, Garey and Hwang [2]; see Fig. 3.2. Their algorithm ran in 
O(n3)  time (more precisely, it ran in O(p2q+pq2)  time, where GG(N)  is composed 
of p horizontal lines and q vertical lines). Later, linear time algorithm for this 
case were given by Cohoon, Richards and Sdowe [8] and Agarwal and Shing [l]. 
Below the first linear time algorithm is sketched; details can be found in [8]. It is 
assumed there are a t  least two terminals on each of the four sides of the rectangle; 
otherwise there is a degeneracy that can be removed. 

Terminals 011 Foursides of a Rectangle 

Figure 3.2: An example where all the terminals lie on the boundary of a rectangle 

Begin by observing that thc topology of such a tree is very restricted. Define 
an in t e r ior  segment  as a segment of a rectilinear tree that is not on the boundary 
of the rectangle; other terms, like in t e r ior  line and in t e r ior  corner,  are defined 
analogously. A spanning interior line has both endpoints on the boundary. Recall 
that a leg of a complete corner, the body of a T, and a spoke of a cross all end at 
terminal and, hence, on the boundary. Further, none of these lines can intersect. 
These observations, with some case analyses and the results in Chapter 1, show 
that interior lines of an RSMT are configured in the following ways (see Fig. 3.3): 

0 A cross extending to all sides of the rectangle. 

0 A spanning interior line with two or more alternating incident interior lines. 

0 A complete interior corner with one interior line incident to  one leg and one 
or more interior lines incident on the other leg. 

0 Zero, one, or two occurrences of (a) a spanning interior line with just one 
incident interior line and/or (b) a complete interior corner with just one 
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incident line on a leg. These each extend to three sides of the rectangle, 
including two “opposing” sides; if there are two occurrences they must use the 
same opposing sides. Further, there can be other noiiintersecting spanning 
interior lines, with no incident interior lines, that connect the same opposing 
sides. 

(The case of a complete corner with two or more interior incident lines on one leg 
and none on the other leg need not be considered since it is not fulsome; it is always 
possible to transform such a tree to increase the sum of terminal degrees.) 

Figure 3.3: The four general arrangements of interior lines possible 

Next it is shown how the optimal tree for each of these cases can be found in 
linear time. Hence, in linear time the RSMT must be found, since the cases are 
exhaustive. All orientations of these cases are not discussed since the terminal set 
can be rotated and reflected eight ways to force the tree into the orientation shown. 
(In practice, of course, one would simply make the routines more sophisticated, 
but such optimizations are not discussed here.) Note that while the existence of an 
RSMT with one of the above topologies was proven in Chapter 1 by assuming that 
the tree was canonical and fulsome, the algorithm can make local modifications 
(e.g., slides) so that the RSNIT found may not necessarily be canonical. 

The cross case 

Regard the cross as being composed of two spanning interior lines. It is assumed 
that the vertical spanning line is slid as far left as possible (without increasing 
length) and the horizontal spanning line is slid as far up as possible. 

A corner of the boundary is forbidden,  relative to some specified interior lines, 
if the (fulsome) RSMT cannot have a terminal at the corner, nor can the Steiner 
tree extend around the corner along the boundary. Note that all four corner are 
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forbidden in the cross case. If there was a terminal at a corner a spoke could be 
slid to increase the sum of terminal degrees. If the tree extended around a corner, 
from a spoke, then that spoke could be slid to decrease total length. 

Hence, all the terminals on the left boundary are connected, along that side 
of the boundary, to the endpoint of the left spoke; similarly for the other sides. 
Consider the topmost terminals on the left and right boundaries, and let t be the 
lower of these two. It can be assumed that the horizontal spanning interior line 
is incident on t. The vertical line is similarly constrained. Therefore the spokes 
of the cross can be fixed in position and then the rest of the tree is forced, since 
the corners are forbidden. (In this presentation, additional simple tests that could 
eliminate this case - and other cases below - are ignored entirely.) 

The spanning line with several incident lines case 

Assume that the spanning interior line has a horizontal orientation, with at least 
one incident interior line above and below it. Assume the line has been slid up, or 
down, as far as possible. 

Suppose there are an odd number of alternating incident lines with, say, more 
going up than down. In that case the upper left and upper right corners are 
forbidden and the spanning line can be slid up to the point x, defined above. 
Similarly, if more lines point down than up then it can be slid down to y, the 
higher of the two bottommost terminals on the right and left boundaries. Suppose, 
instead, that there are ail even number of incident lines. In that case it can be 
shown that two opposite corners are forbidden and that the spanning line can be 
slid to either t or y. 

Hence, it can be assumed that the spanning line is incident to either z or y. 
For each placement of the spanning line the analysis below is done. Consider the 
example in Fig. 3.4, the other cases are similar. Note the upper left corner is 
forbidden, but the upper right corner can be used in an RSMT, so there are two 
cases as shown. This can be solved by working on the upper and bottom halves 
separately. Consider the top half; the bottom is symmetric. Note that if the left 
and right boundary terminals are ignored then the top half is essentially a 2x n case, 
where the entire bottom boundary is required to be in the tree (which corresponds 
to the spanning horizontal line in the original setting). (For the bottom half the 
entire upper boundary is required.) 

This constrained case can be easily solved by creating an artificial 2 x n case, as 
follows. The new top boundary has the same terminal placenients as the original 
top boundary. The new lower boundary has equal number of terminals, each di- 
rectly below the corresponding terminal of the top. The vertical separation is the 
same as the separation between the original top and the spanning line. 

Lemma 3.1 A n y  RSMT f o r  the artificial 2 x n case above can be transformed into 
an RSMT that includes the entire lower boundary.  

Proof: If any segment of the bottom boundary is absent then the corresponding 
segment on the top boundary must have been included; otherwise the tree would 
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Figure 3.4: Two cases for decomposing the top half when there is a spanning line 

be disconnected. If the missing lower segment is inserted and the upper segment 
is removed then another RSMT is obtained. Repeat this argument until the entire 

The two endpoints of the spanning line are included in this artificial 2 x n case. 
Further, two instances (corresponding to  the subcases where the upper right is used 
and is not used) are created, differing only in whether the upper right corner is 
artificially added as a terminal or not. After solving the upper and lower 2 x n 
cases the additional terminals on the left and right boundaries are connected to the 
tree (by finding the optimal breakpoint between those connected around a corner 
and those connected to the spanning line) by a single scan. 

The algorithm for this case can be summarized. First the two placements of the 
spanning line are found. For each placement, artificial 2 x 72 cases for the top and 
bottom halves are created. For each of the corresponding solutions the remaining 
terminals on the right and left are connected into the 2 x TI solution to  form a 
candidate Steiner tree. The best of all these attempts is reported. Since each of 
the 2 x n cases are done in linear time, this case is also done in linear time. 

lower boundary is included. 0 

The corner with incident lines on both legs case 

Assume the corner is oriented as shown in Fig. 3.5. It can be assumed that the 
RSMT cannot extend leftward from d ,  along the boundary, as far left as the termi- 
nal b .  Otherwise, the line beneath d could be slid over b creating a spanning vertical 
line. If this was the only line incident to the horizontal leg it follows that there is 
an RSMT with a topology already treated in the previous subsection; hence, there 
is no need not explore this corner topology any further since a shorter candidate 
RSMT cannot be discovered. Otherwise, if there were other lines incident to a 
horizontal leg then the next one, from the left, must point down to a terminal e; 
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hence, a segment of the horizontal leg can be slid down between b and e, increasing 
the sum of terminal degrees, contradicting the fact that only fulsome trees need to 
be considered. 

d 

b e 

Figure 3.5: Reducing a corner case to a spanning line case on a smaller rectangle 

Next, it is argued that it can be assumed a is the upperniost terminal on the 
left boundary. Any terminal above a must be reached from below, from a, since 
the connection cannot come around from d .  It can be assumed that the interior 
line incident to a has been slid up as far as possible. If a is not uppermost then a is 
collinear with c ,  connected by a spanning horizontal line; again, nothing is gained 
by considering this case further. Therefore, the only remaining case is where Q is 
uppermost. Further, the upper left corner is forbidden and d can be assumed to 
be the leftmost terminal on the t,op boundary. 

There are further restrictions that can be imposed. By sliding the vertical leg 
leftwards it can be assumed that b is the leftmost terminal on the bottom, and 
that the bottom left corner is forbidden. Further it can be assumed, using similar 
arguments, that c is the lowest terminal on the right boundary above a. 

Hence all that remains to be determined is the placement of the lines incident 
to the horizontal leg. This is easily done by creating an artificial instance of the 
previous case, i.e., a spanning line with several incident lines. Cut away the portion 
of the rectangle to the left of the vertical leg (the only terminals lost are on the 
left boundary and these must be reached from Q - recall both left corners are 
forbidden). On the new left boundary introduce a new terminal f where the corner 
point was originally; see Fig. 3.5. If d is on the only line incident to the horizontal 
leg the corresponding candidate RSMT can easily be computed. Otherwise, there 
is an instance with a spanning horizontal line with two or more incident lines, which 
can be solved in linear time. This gives an overall linear time for this case. 
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The remaining case 

A “vertical” orientation is assumed for this case, i.e., all components of interior 
lines extend from the top to the bottom boundary. Recall, that this case has 
zero or more vertical spanning interior lines with no incident lines and, perhaps, 
a t  either end (or both ends) there is a single interior Steiner point (on a vertical 
spanning line with just one incident line, or on a complete corner with just one line 
incident on its legs). This case is solved by exhaustively guessing how the ends are 
configured, and for each guess solving the remaining 2 x n instance (see below). 
There are only nine guesses that need to be tried; each end can have a corner, a 
spanning line, or neither. 

Only one of the subcases is discussed, since the others are treated similarly. 
Assume at the right end that a corner is present as shown is Fig. 3.6. The upper 
right corner is forbidden, so it can be assumed (by sliding the interior line at  a to 
the right) that a is the rightmost terminal on the top boundary. Further, it can 
be assumed the vertical leg is slid to  the right as far as possible. Hence, it can be 
assumed c is the rightmost terminal to the left of a. Let b be any terminal on the 
right boundary; all terminals to the right of a must be connected to b along the 
boundary. Note that the corner can be flipped to create a spanning vertical line 
at a. This situation can be reduced to the (right) end of a 2 x n instance. Cut 
away the portion of the rectangle to the right of a (including all those terminals 
that b reaches) and introduce a new terminal d on the bott.om boundary opposite 
a. Proceed by guessing how t,he left end is configured and analogously creating 
the left end of the 2 x n instance. The remainder of the 2 x n instance uses the 
remaining top and bottom terminals. After solving the 2 x n case the ends can be 
easily restored, so the cost of the corresponding candidate RShiT can be calculated. 
Since a constant number of 2 x n instances will be considered, all guesses can be 
tried out in linear time. 

This completes the outline of a linear time algorithm for the case where all the 
terminals lie on a rectangular boundary. 

3.1.3 

Chiang, Sarrafzadeh and Wong [6,7] have generalized the above approach to the 
case where there are E rectangular obstacles in the interior of the rectangle. Edges 
of the Steiner tree cannot cross the interior of an obstacle. They solve the problem 
in linear time if there are a constant number of obstacles. 

First they establish an analogue of Hanan’s theorem. They show that it suffices 
to  find a Steiner tree on the following grid graph. jFrom each terminal project lines 
across the interior until reaching the boundary or an obstacle. Similarly project 
lines across the interior from each corner of each obstacle. The intersections of 
these lines are the vertices of the grid graph and the segments of the lines are the 
edges. 

They give an algorithm to find the RSMT on this grid graph that runs in 
O(Fl(k)n + F2(k)) time, where $’I and F2 are exponential functions of 1. The al- 
gorithm is based on the approach outlined above, in conjunction with an exhaustive 

Terminals on a Rectangle with Obstacles 
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b 

I ..........-....- 
d 

Figure 3.6: Reducing an end with a corner with one incident line to create a 2 x n 
instance 

analysis of how subcases can interact. 

3.2 Rectilinearly Convex Boundaries 

In Chapter 1 rectilinearly convex boundaries were discussed, together with related 
definitions. In particular, Rconv(N) is the rectilinear convex hull of the terminal 
set. Recall that it is assumed, after some preprocessing, that Rconv(N) has no 
degeneracies, i.e., it has four non-degenerate tabs and no staircases intersect. In 
this section the case where all terminals lie on Rconv(N) is considered. 

The results for l-planar networks imply the existence of a polynomial time 
algorithm for this problem, by the following observations. Recall that an RSMT 
must be found in the subnetwork of GG(N) on, or within, Rconv(N). In the 
current problem all the terminals are on the infinite face of this planar subnetwork. 
Provan [lo], building on the results of Erickson, Monma and Veinott [9], observed 
that one could use the known O(v2n2 +a)  time algorithm for the l-planar problem 
(where a is the time complexity of an all-pairs shortest paths calculation). This 
gives an O(n6) time algorithm, since v = O(n2) ,  in GG(N) ,  aiid a = O(v2) (since 
shortest path lengths are trivially calculated in GG(N)) .  

Bern, also building on the dynamic programming approach of Erickson et al., 
improved the time complexity. Using priority queues to avoid linear time scans for 
minima, he reduced the time complexity to O(n5 log n) [4]. Using a “generalized 
Voronoi diagram” the time complexity was reduced to 0(n5) [4]. Later, Bern [3] 
gave an improvement for the l-planar problem (and other related problems) that 
translated as an O(n5) time algorithm for the current problem, that does not rely 
on geometric considerations (as his previous algorithms had). 
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Richards and Salowe presented an algorithm with time complexity O(nk4) ,  
where k is the number of corners on the boundary of Rconw(N). Since k = O ( n )  
this can be no worse than the previous algorithms. However, when k is a constant 
this gives a linear time algorithm. In most applications k is small, compared to n. 
When all the terminals are on a rectangular boundary, as in the previous section, 
k 5 12 (k = 12 when there are no terminals in the rectangle’s corners) yielding get 
another linear time algorithm for that case. In fact, this algorithm is an outgrowth 
of the algorithm in the previous section. Unfortunately, it is a very long and 
detailed approach; a very brief overview is given in the remainder of this section. 

A simple rectilinear Steiner tree is a Steiner tree which has no interior Steiner 
points; in other words, all interior lines are spanning lines with no incident lines. A 
minimal simple rectilinear Steiner tree (MSRST) is the shortest such tree (it might 
not be as short as an RSMT). Recall that in 2 x n case all RSMTs were simple. An 
algorithm to  find a MSRST €or terminals in Rconw(N) can be given that, as with 
the 2 x n case, is based on the algorithm for the series-parallel case. Our network is 
not a series-parallel network but using the same basic outline it is easy to produce 
an O(n4) time algorithm for this case.. This can be reduced to O(n  + k 2 )  time, 
using bookkeeping and detailed case analyses. 

Recall that in the last section one case was solved by decomposing the rectan- 
gular region into two smaller regions (which happened to be 2 x n instances) and, 
by adding some additional artificial terminals, forcing the subsolutions into forms 
that could be combined to build a solution to the original problem. The algorithm 
in this section does exactly the same thing. A variety of subregions are defined and 
for each an RSMT is found (though in some of the regions only a MSRST needs 
to found). Each subregion is rectilinearly convex. In fact, each is bounded by four 
tabs that are lines in GG(N) ,  with the remainder of the boundary of the subregion 
coming from the boundary o€ Rconv(N);  see Fig. 3.7. It follows that there are only 
O(n4) such subregions. These subregions are solved in increasing order, by area. 

Rather than give all the details only two representative cases are mentioned. 
First, suppose that there is an RSMT with a spanning interior line with two or 
more incident lines. For each of the O(n) placements of the spanning line, the 
region can be decomposed into two subregions (that have already been solved since 
they have less area), as shown in Fig. 3.8. By using artificial ternlinals one can 
force the solution of, say, the left subregion to use its entire rightmost side in any 
RSMT it reports. Hence the subsolutions can be combined to build a solution to 
the original problem. 

A second case is when an lSh4T is assumed to have a complete interior corner 
with lines incident to both legs. In this case the initial region can be partitioned 
into four subregions; see Fig. 3.9. Again, the subregions call be combined to give 
the best RSMT with a corner placed in that position. Note that the position of 
each of the legs and the two incident lines nearest the corner must be specified. 
Hence, there are O(n4) decompositions to be considered, each of which can dealt 
with in constant time if the subregions have been precomputed. 

There are a constant number of other cases that are handled similarly to these 
two cases. Each of the O(n4) regions can be solved by considering at most O(n4) 
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I 1 

I 
Figure 3.7: An example of a convex subregion delimited by four grid lines 

Figure 3.8: Decomposing a spanning line case into smaller subregions 

decompositions. Hence there exists an O(ns)  time algorithm for the problem. By 
sliding arguments all the decompositions can be forced to have their cuts “near” 
one of the k corners of the boundary of Rconv(N); therefore each subproblem can 
be solved with O(k4)  decompositions. A corollary of this is that each of the lines 
in Fig. 3.7 must also be near a corner, so there are only O(k4) subregions to solve. 
Considerations such as these lead to an O(k8+ k4n)  time algorithm. By doing very 
detailed case analyses, this can be improved to O(k4n) time. For example, those 
subregions which need only contain solutions to the easier MSRST problem can be 
identified. 

3.3 Layered Terminal Sets 

If all the terminals do not lie on their rectilinear convex hull, there may still be 
enough structure to admit efficient algorithms. Successive layers of terminals can 
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Figure 3.9: Decomposing a corner case into four smaller subregions 

be defined. Let L1 be the set of terminals on the boundary of Rconv(N).  Further; 
L2 is the set of terminals on the boundary of Rconv(N \ L l ) ,  and Li is the set on 
Rconv(N \ (L1 u L2 U. .  . U Li- I ) ) .  Let I ;  = ILil. If 1 is the least index for which 
N = L1 U L2 U . . . U Li then Ihe terminal set has 1 layers. 

Consider the case where nearly all the terminals lie in L1, i.e., n - l i  is small. 
Bern solved the corresponding for general planar networks with most terminals on 
the infinite face [3]. This approach gives an O(n2 17 3n-il) time algorithm for the 
rectilinear case. This, of course, is polynomial time only when n - 11 is bounded. 

Bern and Bienstock [5] considered the case when 1 = 2. The gave a dynamic 
programming algorithm that builds small forests on the union of consecutive ter- 
minals (along the hulls) from L1 and L2, called “double intervals”. Unfortunately 
there are many such cases to solve leading to an O(n’’) time algorithm. This 
approach can be extended, giving an O(n6’-l) time algorithm, for each 12 2. 
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Chapter 4 

Generalizations 

There are several ways in which the basic rectilinear model can be generalized. 
Several are presented in this chapter, and in the following chapter these ideas are 
generalized further, in a specific application domain. In both chapters of Part IV 
other generalization are discussed. This chapter begins with problems defined on 
the the underlying rectilinear grid graph. In Section 4.2 directed formulations are 
presented. In the next two sections are discussions of hypercube settings and then 
other higher dimensional cases. 

4.1 Rectangle Trees 

Suppose that only a portion of the grid graph GG(N)  could be used in constructing 
a minimal tree. In particular, if G = (V, E )  is a subnetwork of CG(N) ,  with N E V ,  
then problem is to  find the Steiner minimal tree for N in G. In some circumstances 
this Steiner minimal tree will be a true RSMT, and in other cases it may be a good 
approximation. 

Farley, Hedetniemi and RIitchell [2] have worked on this problem. Other work 
on this problem is in the routing literature, discussed in the next chapter. They 
only give results for “rectangle trees”, which they define. A subnetwork of the grid 
graph is a rectangle tree if i t  is outerplanar (all vertices on the infinite face) with 
no degenerate edges (edges with both “sides” on the infinite face). An alternative 
constructive definition of the rectilinear topology of a rectangle tree can be given. 
Begin with a rectangle on four vertices, and iteratively apply this rule: 

0 Add a new rectangle by identifying one of its edges with an edge (with neither 
endpoint of degree 4) of the existing graph. 

An example is given in Fig. 4.1. 
It is clear from the constructive definition that a rectangle tree is a series-parallel 

network. Hence there is a linear-time algorithm for finding the optimal Steiner 
minimal tree in a rectangle tree. In [2] a linear time algorithm specifically for 

257 
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n 

Figure 4.1: An example of a rectangle tree 

rectangle trees was presented; however there were restrictions on the height/width 
ratio of some rectangles. 

A rectangle tree G is convex if there is a rectilinear shortest path in G between 
each pair of vertices in G. Clearly G = (V, E )  is convex if and only if the boundary 
of R c o n v ( V )  coincides with the infinite face of G. If there exists a convex rectangle 
tree for N then the corresponding Steiner minimal tree is an RSMT for N [2]. This 
complements the results in Chapter 3. This result states that if all the terminals 
lie on R c o n v ( N )  and the corresponding subnetwork of G G ( N )  is outerplanar then 
there is a linear time algorithm to find the RSMT. (Note that any Steiner tree in a 
rectangle tree is “simple”, a MSRST, since there can be no interior Steiner points.) 

4.2 Rectilinear S t einer Ar boresceiices 

In Part I1 the Steiner problem for directed networks asked for the shortest arbores- 
cence, rooted at a given point, that spans all the terminals. An arborescence is a 
rooted directed tree (sometimes called a branching). There is a natural analogue 
in the rectilinear metric. 

Point a covers point b if there is a rectilinear shortest path from a to  the origin 
that passes through b .  Formally, a covers b if lzal 2 I Z b /  and lyal  2 Iybl, and 
they are in the same quadrant. A rectilinear arborescence is a rectilinear tree that 
includes the origin in which each edge connects two points if and only if one covers 
the other. Clearly, an edge can be regarded as being “directed” from b out to a if a 
covers b, and the tree can be regarded as being rooted at the origin. For a given set 
N of terminals a rectilinear Sleiner minimal  arborescence (RSMA) is a minimum 
length rectilinear arborescence that spans N .  When edges are only allowed between 
terminals (that cover one another) this defines the rectilinear minimum spanning 
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arborescence (RMSA) problem, analogous to the MST problem. 
Only the case where the tree is entirely in the first quadrant will be discussed. 

The general RSMA problem can be effectively decomposed into four problems, 
one in each quadrant, because of the limited interaction between the quadrants. 
For example, the first quadrant and the second quadrant only interact along the 
positive y-axis. It may be mutually beneficial to use a longer tree edge along 
that axis than an optimal solution to either quadrant alone would require. By 
adding artificial terminals further along the y-axis one can force each quadrant to 
independently discover optimal solutions that can be glued together to get a tree 
optimal for both quadrants. Similar comments apply to the interactions between 
the other quadrants. Below, it is shown that only O ( n )  such artificial points need 
to be tried. Hence each quadrant, with artificial terminals on each axis, needs to 
be solved at most O(n2)  times. After solving all these problems, the optimal way 
to combine them, to solve the entire problem, can be found in O(n3) additional 
time [13]. Hence, below, it is assumed that all terminals are in the first quadrant; 
see Fig. 4.2. 

........._....._............. Y- ............................... 

Figure 4.2: The first quadrant of an optimal solution is found by introducing an 
artificial terminal on an axis 

Nastansky, Selkow and Stewart [12] proposed an integer programming formu- 
lation, which has exponential time complexity. Ladeira de Matos [9] proposed an 
exponential time dynamic programming algorithm to solve this problem. Such 
time complexities are familiar for Steiner problems. However the RSMA problem 
has not yet been shown to  be NP-hard. Hence it seems possible that a polynomial 
time algorithm might exist. 

Trubin [21] announced a polynomial time algorithm. The paper is difficult to 
read (and perhaps poorly translated). Central to Trubin’s approach, which is based 
on an integer programming formulation, is the claim that the linear programming 
relaxation (of the dual) contains integral solutions. A counter-example to this claim 
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has been exhibited [13]. Therefore the complexity of the problem is still open. 
R a q  Sadayappan, Hwang and Shor [13] have explored exact algorithms for 

special cases and heuristic algorithms, which are discussed below. Define m(a, b )  to 
be the point with coordinates (min{xa, xb}, min{y,, yb}). Note that, in an RSMA, 
if c has “children” a and b then c must be m(a, b ) .  Also note that every vertex in a 
rectilinear arborescence has indegree 1. They begin by proving a strong analogue 
of Hanan’s theorem. 

Theorem 4.1 In an RSMA in the first quadrant if c is a Steiner point then there 
are two terminals a and b that cover c such that xa = xc and yb = ye. 

Proof: Suppose there is a counterexample with Steiner poiiits that do not satisfy 
the conditions of the theorem. Let c be such a point with maximal distance from 
the origin, with directed edges to a and b ,  which may or may not be terminals. 
Recall that c is m(a,  b ) .  By hypothesis, if a and b are not terminals then they 

As with Hanan’s theorcw, this result is best understood in terms of a grid 
graph, with horizontal and vertical lines through every terminal; in this case all 
edges of the grid graph are directed, either east or north. 

satisfy the theorem. In either case the theorem follows. 0 

A slide is a set of points such that no two cover each other. 

Theorem 4.2 ([13]) I f N  is a slide then there is an O(n3)  time algorithm to find 
the RSMA. 

Proof: Clearly every terminal in such an N is a leaf in any Steiner arborescence. 
Since every Steiner point has outdegree 2 the RSMA must be a rooted binary tree. 
The terminals are naturally ordered left-to-right in the slide. A simple dynamic 
programming algorithm can be presented that forms an RSRIA for each consecutive 
(in the ordering) group of i terminals, for i = 2 , 3 , .  . . , n. When working on a group 
of i terminals the position of the root is fixed; in O( i )  time one can find the optimal 
sizes of the two subtrees, since all the subtrees have been previously solved. This 

0 

For a special slide the length of the %MA can be analytically derived. Let Dk 
be the set of terminals that have integer coordinates such that 2 + y = k .  The 
following result can be proven by showing that the above algorithm is forced to 
build a balanced binary tree (see [13] for the proof). 

leads to an O(n3)  overall time. 

Theorem 4.3 A n  RSMA for  N = Dk has length k a  + 2p, where k = 2a + p, 
0 5 p 5 2a. 

A consequence of this theorem is that there is no constant bound on the “Steiner 

In fact, for N = Dk it follows that IRMSA(N)I is h ( h  + l) ,  since n = k +  1. Hence 
~ A ( N )  = w, which grows like & as n -+ 00. 
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Rao et al. [13] also looked at the ratio between the length of the RSMA and 
a “normal” RSMT (without regard as to whether points cover each other) for the 
same terminal set N .  They showed the ratio is O(1ogn). Further, they showed the 
length of the longest RSMA for n terminals in the unit square is bounded above 
by2+&. 

R m  et al. [13] also presented a fast and effective heuristic. The basic step is: 
choose a pair of terminals a and b such that c = m(a, b )  is as far from the origin 
as possible, record connections from c to a and b ,  and replace a and b in N by a 
new terminal at c (unless c was already a terminal). Repeat the basic step until N 
is reduced to the origin. This algorithm can be implemented by a (diagonal) line 
sweep approach that maintains a priority queue of the distances from the origin 
to each m(a, b ) ,  where a and b are adjacent (with respect to the sweep line). This 
can be implemented in O(n1ogn) time. They show that the heuristic produces a 
rectilinear Steiner arborescence that is at most twice optimal. 

Nastansky, Selkow and Stewart [12] extended this problem to higher dimensions 
where the definition of “cover” extends in the obvious way. In fact, their original 
exponential time algorithm was for d dimensions, d 2 2. 

4.3 Steiner Trees in Hypercubes 

The next section discusses the generalization to d dimensions, using the recti- 
h e a r  metric, where the distance from 2 = (XI, .. . , i d )  to y = (yl,. . . ,yd) is 
1x1 - y1 I 4- 122 - y2 I + . . . + l i d  - Y d l .  This section treats the simplest d-dimensional 
problem, where each coordinate is 0 or 1. It is convenient, below, to discuss this 
problem as a Steiner problem for networks and as a d-dimensional rectilinear prob- 
lem, interchangeably. 

The d-dimensional hypercube, Q( d), is represented by a d-dimensional rectili- 
near network. Each vertex is identified with a point in d-dimensional space, with 
each of the d coordinates being 0 or 1. Two vertices are connected by an edge if 
the rectilinear distance between the corresponding points is 1 (i-e., they differ in 
only one coordinate). Hence there are 2d vertices, each connected to exactly one 
vertex along each of the d dimensions. 

The rectilinear distance from u to w ,  in Q ( d ) ,  is simply the Hamming distance: 
the number of coordinate positions where u and w have different coordinates. A 
Hamming path from u to w is any rectilinear shortest path. If the Hamming distance 
between two vertices is k then clearly there are 2k Hamming paths between them. 
The weight of a vertex is the number of its coordinates that are equal to 1; the 
weight of a vertex is its Hamnliiig distance from the origin. 

The Steiner problem specifies a subset N of the vertices of Q ( d )  and asks for 
the SMT for N in Q ( d ) ,  or, equivalently, the RSMT for the points corresponding 
to the vertices in N .  Miller and Perkel [lo] have several results for this problem, 
including exact results for all N with n 5 5. Clearly, when n = 2 the tree is just a 
Hamming path. 
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Let & ( N )  be the length of the R S M T ( N )  and 

Ld(k)  = max{Ld(N)} 

A centroid of the points in a hypercube, corresponding to N is the following point: 
the ith coordinate of the centroid is a mode of the ith coordinates of the n points. 
When n is odd the centroid is unique. 

Theorem 4.4 ([lo]) Let n = 3 and let T be the number of coordinate positions 
where all three points  of N share the same coordinate. Then Ld(N)  = d - r and 
Ld(3) = d .  

Proof: Let c be the centroid of N = {q, v2, 213). In r of the coordinate positions 
c’s coordinate agrees with the same coordinate for each w E N .  In the d - r 
remaining positions c’s coordinate disagrees with exactly one v E N .  The sum of 
the lengths of the Hamming paths from c to 01,212, and v3 therefore is d - r.  Hence 

Let T be any RSMT for N .  Suppose T has a Steiner vertex c with degree 3. 
In at least d - r coordinate position c’s coordinate must disagree with at least one 
v E N .  Hence the length of T is 2 d - T .  If there is no such Steiner vertex then 
T must be a path , and the argument can be repeated with c being an endpoint of 
the path. Hence L d ( N )  2 d - 1’. 

Finally, to show Ld(3) = d ,  conside these three points: ( O , O ,  . . . ,O), ( 1 , 1 , .  . . , l), 

Miller and Perkel refined the centroid argument and used detailed case analyses 
to prove similar results. By using more complex analogues of I’ they determined 
exactly L d ( N ) ,  when n 5 5 .  Further, they found worst case terminals sets to show, 
for d 2 3,  Ld(4) = [ g d j ,  and 

INI=k 

L d ( N )  5 d - 7‘. 

and any other point. 0 

Miller and Pritikin Ill] considered the problem where the terminal set from 
Q ( d )  is W k ,  the set of all points with weight k. Note that ILVkl = ( d ) . It is easy 
to show that the subgraph of Q ( d )  induced by Wk-1 U W’k is connected. Hence 
Wk-1 can act as a set of Steiner points for spanning wk. Since any spanning tree 

of the connected induced subgraph has ( ) + ( d ) - 1 edges, it follows that 

the same quantity is an upper bound on the length of an RSMT for W k .  They 
strengthened this observation by using only a subset of Wk-1, to obtain 

as k + 03. They used a generalization of T’uran’s theorem, due to Frank1 and Rodl. 
There is little hope of finding polynomial time algorithms, since the hypercube 

Steiner tree problem has been shown to be NP-hard [4,6,10]. In fact, the problem 
remains NP-hard even if the weight of every terminal is at most 2. 
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4.4 Higher Dimensions 
There have been relatively few results for the rectilinear Steiner problem in d di- 
mensions, using the generalized rectilinear metric. It is possible that trees in higher 
dimension are more complex, in some sense. Many of the results in Chapter 1 do 
not seem to generalize. For example, there is no know characterization of fulsome 
canonical trees, and the result about trombone wires cannot be extended to three 
dimensions. Below are results that do extend. 

Recently Snyder [20] generalized Hanan’s theorem to d dimensions. 

Theorem 4.5 There exists an  RSMT, for any  N ,  such that i f  x = (XI,. . . , xd) as 
a S te iner  point  then, for each i ,  xi = Pi, for some  y = (yl, . . . , y,,) E N .  

The proof that Snyder gave is very long. It shows that while (generalized) trom- 
bone wires do exist they can be slid to satisfy the theorem. Du and Hwang [l] gave a 
shorter and more general argument, which is discussed in Section 1.1. of Part IV. As 
with d = 2, there is a geometric interpretation of this theorem. Pass d orthogonal 
(d  - 1)-dimensional hyperplanes, orthogonal to each of the d axes, through each of 
the terminals. The Steiner points can be located where d orthogonal hyperplanes 
intersect. 

Snyder [20] observed that the problem can be mapped to a d-dimensional rec- 
tilinear network with O(nd)  vertices (defined analogously to the two-dimensional 
G G ( N ) ) .  Hence exact and heuristic algorithms for the Steiner problem in networks 
can be used. Snyder proposed exact solutions using the spanning tree enumeration 
algorithm of Hakimi (Section 3.1 of Part 11) and the dynamic programming algo- 
rithm of Dreyfus and Wagner (Section 3.4 of Part 11). Snyder also remarked that 
the l-Steiner problem can be solved in polynomial time in d dimensions, for fixed 
d. 

Sankoff and Rousseau [16] proposed a polynomial time algorithm to solve the 
RSMT relative to a given topology. That is, the tree and the position of each 
terminal in the tree are specified. Each coordinate of the Steiner points that min- 
imize the length of the given tree is all that is to be determined. Clearly one 
can independently consider each full subtree (with all the ternliiials at the leaves), 
hence it is assumed that the algorithm is working with a full tree. The important 
simplifying observation is that, in the rectilinear metric, the choice of coordinates 
in one dimension has no effect on the contribution to the total length made by 
coordinates in other dimensions. In other words, the algoritliiii can solve d inde- 
pendent subproblems: solve for the i-th coordinate of each Steiner point in a given 
full subtree. 

The algorithm to solve an instance of the latter problem (that is, for a single 
coordinate) begins by rooting the given tree at an arbitrary Steiner point. Re- 
call, only the leaves are initially specified. A dynamic programming approach is 
used. It follows from the generalization of Hanan’s theorem that each coordinate 
must take on one of O(n) values. The Steiner min imal  subtree at v relative t o  x 
is the shortest possible subtree rooted at v given that the coordinate at v is x. 
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Bottom-up, each subtree determines (and saves) the O ( n )  shortest lengths of the 
Steiner minimal subtrees, relative to each possible coordinate value I. Suppose the 
algorithm is processing the subtree rooted at v and that it previously solved v’s 
subtrees, rooted at vl ,  212,. . . , V k ,  where k 5 2d. Each of the O ( n )  calculations at 
w can be done in O(nk)  time, by considering all possible coordinate values at its 
children. The algorithm ultimately returns the shortest length calculated at the 
root. Since there are O(n)  internal Steiner points, the algorithm runs in O(dn2d+2) 
time, which is polynomial time for fixed d. When the average degree in the tree 
is low the performance is much better. (When every node has an odd number of 
children the calculation is simplified; each value is simply the median of values of 
its childen [16].) 

This algorithm is, of course, limited since it assumes a given tree. An exact 
algorithms can be derived by trying all possible trees. Unfortunately there are 
C : z t ( n  + i)n+i-2 trees to try. Greedy heuristics can be attempted that succes- 
sively modify the topology. In some applications an intelligent guess can be made 
regarding the topology. These points are addressed further in Chapter 2 of Part 
IV . 

It is still open for d > 2 to determine a tight lower bound of the Steiner ratio, 
P d ,  for all N .  Gilbert and Pollak [5] essentially proposed the following constructive 
upper bound. Let c d  be the set of 2d points with coordinates ( f l ,  O , O , .  . . , O ) ,  
(O , f1 ,0 , .  . . , O ) , .  . . ( O , O , O , .  . . , kl). (These points are the corners of “d-crosspoly- 
tope”, of radius 1, containing all points within distance 1 of the origin.) By 
using a Steiner point at the origin it follows that IRSMT(Cd)l = 2d, whereas 
IRMST(Cd)l = 2(2d - 1). Therefore P d  5 A. It is widely conjectured that 
this bound is tight (e.g., [14,8]). Kahng and Robins [8] have shown that several 
heuristics based on Kruskal’s and Prim’s algorithms achieve, for some inputs, the 
& bound (the input they use is just many d-crosspolytopes chained together). 

Moore (in [5]) showed that P d  > 3. His argument was very general and was 
based on the observation that 21RSMT(N)I 2 T S P ( N )  > IRMST(N)I ,  where 
T S P ( N )  is the length of the shortest Hamiltonian circuit for N - the traveling 
salesman problem. Note that as d ---+ 00 the upper and lower bound meet; see 
also [3]. 

Let Md(n) be the length of the longest RSMT for any n points in the unit 
d-dimensional hypercube. Snyder [19] proved that 
a constant for each dimensioii d 2 2. He showed 
Recently Smith [17] has improved these bounds to 

The following derivation of the lower bound is due to Salowe [15]; for technical 
lemmas consult [7]. The volume of the d-crosspolytope with radius r is q. The 
Minkowski-Hlawka sphere packing theorem states the greatest packing density A 
of translates of the d-crosspolytope satisfy A 2 &. So, for n sufficiently large, 
n (9) 2 A implies that n d-crosspolytopes can be packed into a unit hypercube 
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with r 2 $ (or r 2 g n - ' I d ) .  Note that a MST of N ,  the points at the 
centers of the d-crosspolytopes, must have length 2 2r(n - 1). Using Moore's 
result, mentioned above, it follows that 
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Chapter 5 

Routing 

The automatic routing of wires in a circuit has been the premier application of the 
rectilinear Steiner tree problem, since Hanan’s original paper. There have been 
other applications, such as heating systems in large buildings [20]. However, from 
the early work on printed circuit boards (PCB) to today’s active research programs 
on very-large scale integrated circuits (VLSI), the rectilinear Steiner problem is 
frequently addressed. For a variety of reasons, principally due to manufacturing 
technologies, the wires are usually assumed to be composed of rectilinear segments. 

The first section discusses the nature of the application and its relationship to 
various Steiner problems. Section 5.2 discusses the simpler case of individual wiring 
problems, and Section 5.3 presents techniques for handling many wiring problems 
simultaneously. The final section discusses the uses of non-planar routing domains. 

5.1 Introduction 

A lot has changed during the transition from PCB to VLSI applications. The PCB 
problem could be effectively mapped into a planar instance (even though wiring 
can be done on more than one layer). However, as the number of layers available to 
VLSI designers has increased from 2, to 3, to 4, and beyond, it has become harder 
to map corresponding routing problems into the plane in a meaningful or effective 
way. 

Another change in the VLSI domain, of course, is that the sheer size of the 
overall problem has increased by several orders of magnitude, and it will continue 
to increase. There are two ramifications of this. First, the overall design process 
has become automated, from beginning to end, and can be viewed as a pipeline of 
different design steps. There are many possible ways to partition the process into 
a series of functions. Typically, the initial steps specify a series of modules, each 
with as set of pins or terminals (used as interfaces to other modules). A set of nets 
are also specified, where each net is a set of terminals, from various modules, that 
need to be made electrically common, i.e., connected by wires. The connection for 
a two-terminal net is a simple path, but for multiterminal nets the connection is 
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net size 
no. ofnets 
net size 
nr. of nets 

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  
6010 1822 808 503 353 248 129 91 66 61 28 21 

14 15 16 17 18 19 20 21 22 23 24 25 
12 7 1 1 4 1 1 7 4 7 1 0 1  - 

5.1.1 The Nature of VLSI Steiner Probleiiis 

Over the past 25 years it is common to hear of RSMT routing applications. How- 
ever, the considerations above have accumulated to define a set of Steiner tree 
problems that are distinct from the classic RSMT formulation. For a more de- 
tailed treatment than presented here, consult the survey work of Lengauer [13], 
Korte, Promel and Steger [8], or Kuh and Marek-Sadowski [9]. 

Recall that pl-acement of modules precedes the wire routing. A “module77 can 
be as small as a gate from a standard library or (in hierarchical design systems) 
as large as a precomputed monolithic circuit block. There are many placement 
regimes - such as full-custom, gate array, and seaof-gates - that define routing 
“channels” in different ways. In all cases a rectilinear network is the appropriate 
model for the routing problem. A rectilinear network is a network with vertices, 
identified with points in the plane, connected by edges that are single vertical or 
horizontal segments. Note that the distance metric in a rectilinear network is not 
necessarily the rectilinear metric, since there can be “holes” in the network. A hole 
corresponds to a portion of the chip that is not available for routing; Fig. 5.1 illus- 
trates the sparser network that can result. There are also arbitrary edge weights, 
discussed below. Since many routing problems are posed as Steiner tree problems 
on rectilinear networks, they are often mistakenly labeled rectilinear Steiner tree 
problems. 
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Figure 5.1: A rectilinear network defining the channels for routing 

Another characteristic of VLSI problems that distinguishes them, is that length 
is not the only criterion for judging a Steiner tree. Length, of course, is important 
for several reasons: to decrease the area consumed by wires, to decrease fault- 
susceptibility, and to decrease the cycle time of the circuit. However, other issues 
are important. A bend in the wire requires (for many technologies) a change of layer 
using a via,  which consumes area and increases fault-susceptibility. In general, as 
the number of nets keeps increasing, “routability” (the existence of any solution for 
a set of nets) is more important than length. This is addressed by global routers. 

A global router  begins by formulating a coarse version of the problem. Some- 
times this is done by collapsing a channel to a point (and coalescing all the terminals 
in that channel). An analogous second formulation is used below. The routing re- 
gion (or the original large rectilinear network) is reduced to a small rectilinear 
network, called the reduced routing network. The routing region is sliced up into 
subregions by vertical and horizontal cuts. Each subregion corresponds to a vertex 
in the reduced routing network, and associated with each such vertex is a set of 
nets with at least one terminal in that subregion. In Fig. 5.2 a very simple reduced 
routing network with three nets is shown. The task of a global router is to find 
Steiner trees in the reduced routing network for each net. 

Each edge in the routing network corresponds to a channel, through which many 
different nets can be routed. Each channel has a capacity,  a h i i t  on the number of 
nets that can route through it. Hence, the global router may not be able to use the 
shortest Steiner trees without violating channel capacity constraints. For example, 
in Fig. 5.2, if the constraint of the left vertical channel is 1 then either the b net or 
the c net must be routed by a connection of length 3, rather than length 1. 

A simple and popular strategy for routing all nets in the global routing phase is 
to sequentially route the nets, one at a time. To avoid exceeding channel capacities 
a cost, or penalty, can be associated with each channel so that channels which are 
currently underfilled will be more likely to be used when the next net is routed. 
(The penalties change after each net is routed; there are many ad hoc methods 
for calculating the penalties.) Hence, the global router can be viewed as solving a 
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Figure 5.2: A simple 2 x 2 reduced routing network 

sequence of Steiner tree problems on a edge-weighted rectilinear network. 
The subsequent detailed routing stage can be, and has been, viewed as an 

instance of the global routing problem with unit channel capacities. However, 
the most important issue in detailed routing has been routability (especially in 
tightly packed routing problems); the existence of the Steiner trees has been more 
important than their lengths. Therefore the large literature on detailed routing 
will not be discussed further. 

The main conclusion to the above discussion is that in most VLSI applications 
the Steiner tree problems are for terminal sets on weighted rectilinear networks. 
Therefore most of the results on the rectilinear Steiner problem have limited ap- 
plicability. 

The literature on routing is vast, reflecting its economic importance. Below a 
handful of papers that make interesting contributions to the Steiner tree literature 
are reviewed. This section has been a broad overview. It should be remembered 
that researchers are constantly changing their problem statements as technology 
changes. 

5.2 Heuristics for Single Nets 

Despite the comments in the introduction, there are several instances where VLSI 
systems use RSMT heuristics for routing. Often the routing region does not have 
holes and some of the nets need to be routed with near minimal length. In fact, 
many of the heuristics in Chapter 2 are from the VLSI literature. In addition, 
heuristics from Part I1 are also used, and some of the contributions to that litera- 
ture, for rectilinear networks, have been made by VLSI researchers. Typically no 
performance measures are reported for these heuristics. 

Reich and Widmayer [17] wrote such a paper (which was already described in 
Section 6.6 of Part 11). They pointed out that when a module is "placed" it can 
often still be rotated and reflected so that the terminals are not necessarily fixed, 
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but that each terminal can be in a small set of possible positions. They gave two 
algorithms for finding Steiner trees which span at least one of the positions allowed 
for each terminal. 

5.2.1 Prim-Based Heuristic using Common Edges 

Xiong [26] proposed a heuristic for rectilinear networks without arbitrary weights 
(the length of an edge is just its rectilinear distance). The control structure of 
the heuristic has two phases, each phase is essentially a Prim-based heuristic for 
Steiner minimal trees (similar to [21]). Each step of each phase finds the nearest 
terminal not in the current tree and connects it to the tree with a shortest path. 

In the first phase, each “path” that is selected can be placed in many ways, 
using different rectilinear paths of the same length. The “left-side path” and the 
“right-side path” are both found and the edges on these paths are marked. (These 
two paths are analogous to the two orientations of L-shaped wires; see Fig. 5.3.) If 
an edge is marked twice it is a conzmon edge. Since neither of the paths are actually 
selected in the first phase, only terminal-to-terminal connections are found at each 
step. 

A 

Figure 5.3: Examples of left-hand and right-hand paths between two terminals 

In the second stage, the Prim-based heuristic decides on an embedding for each 
path. Hence, it finds the shortest path from a terminal to  any point in the current 
tree. The embedding chosen is the one that favors the use of common edges. 
(This allows the introduction of Steiner points and tends to produce shorter trees.) 
The second stage is run several times with different starting vertices. (There is a 
backtracking mechanism, for resolving ties, that is unclear.) 

5.2.2 

Hsu, Pan and Ihbitz [6] proposed a Prim-based heuristic which uses a novel method 
for selecting each successive path. They modified the internal details of the basic 
shortest path computation so that (of the many possibilities) the shortest path 

Prim-Based Heuristic with Magnetic Attractions 



272 CHAPTER 5. ROUTING 

that is selected will be one that bends towards other terminals in the net that have 
not yet been included. The path is bent due to the “magnetic attractions” of those 
other terminals. (They also present a Kruskal-based variation of this heuristic.) 

The modified shortest path heuristic works on any rectilinear network. It finds 
a path from a source s to a sink t .  It is related to  the A* approach (see [19] for a 
survey of these and related techniques). This approach maintains the set of visited 
verticesindexvisited vertex (initially empty), the set of fringe vertices (initially 
{s}) which can be “seen” from visited vertices, and the remaining unseen vertices. 
Each fringe vertex I has a priority f(z) = g(z) + h(z) ,  where g(z) is the shortest 
path length from s to  z using visited vertices, and h ( i )  is (typically) the rectilinear 
distance from z to  t .  The h ( z )  term “guides” the search for a shortest path towards 
t .  The fringe vertex with smallest priority is selected and marked as “visited”; it 
also ensures that its neighbors are fringe vertices with correct priorities. The new 
heuristic has an additional feature. 

The priority is changed to  f(c) = g(c) + h(z)  - i ( z ) ,  where i ( z )  is determined, 
generally, by how close other terminals are to  2. Consider the example in Fig. 5.4, 
where y has just been visited, causing 3: and z t o  become fringe vertices, each 
with a “backpointer” t o  y. To compute i ( z )  consider the unseen terminals in t ’ s  
halfplane opposite of y (to the right of c), namely { b ,  c, d } ;  for i ( z )  consider the 
halfplane (opposite from y) below z and use { a ,  d } .  The algorithm computes 

where F ( z , v )  is the reciprocal of the rectilinear distance from c to w ,  and 8, is the 
angle of the line cw to the vertical halfplane boundary. (If c was already a fringe 
vertex then f(z) is already defined; it changes its pointer to y only if it can decrease 
f(c).) The definition of i ( z )  is somewhat ad hoc. Even so, using the new f(z) will 
clearly encourage the shortest, path computation to  “expand)) preferentially in the 
direction that takes it close to nearby terminals. 

5.2.3 Steiiierizatioii Heuristic for Row-Based Layouts 

Whenever one goes from general problems to a specific application, inevitably 
there are idiosyncratic changes in the heuristics. This subsection gives such an 
example. In a row-based layout the modules are arranged in tightly packed rows, 
separated by channels. Both gate arrays (where the channels have fixed height) and 
“standard cell” layouts (where the channel height is to be determined) can be cast 
this way. (Even sea-of-gate layouts can be regarded as a row-based layout, with 
zero-height channels.) At various points in a row a wire can pass through slots 
called feed-throughs; see Fig. 5.5 .  While minimizing congestion and wire length 
within a channel is important, conserving the relatively scarce feed-throughs is 
also important. 

Lee and Sechen [12] presented a heuristic that reflected these constraints. First, 
they modified the underlying metric. Rather than using the rectilinear metric, they 
used a weighted rectilinear metric, where the vertical separation could be weighted 
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Z 

Figure 5.4: The effect of nearby terminals on the expansion from y 

more heavily than the horizontal separation. The vertical separation weight is 
chosen to reflect the availability of feed-throughs. 

Second, they gave a variation of the old Steinerization approach. They began 
with a MST T. The basic step was to take a terminal x and a direction, such 
as north, and to call Steinerize(x,north). This procedure would find the set of 
terminals, North(z), adjacent to x in T that were north of x. If there were ex- 
actly two terminals in North(x) then these three terminals (including z) would be 
Steinerized in the normal fashion; i.e., connected to a Steiner point determined 
by the medians of the x- and y-coordinates. If North(z) contains three or more 
terminals then a simple Steiner tree is built to connect all these to x :  a vertical 
line is constructed above x to which each terminal in North(z) is connected by a 
horizontal wire segment. In all cases T is immediatedly updated to  reflect the new 
connections. 

The heuristic loops through each terminal c, and for each x it makes these calls: 
Steinerize(x,north), Steinerize(x,south), Steinerize(x,west), Steinerize(x, east). An 
example is in Fig. 5.6, where the terminals are numbered in the order they are 
considered. The relatively high cost of feed-throughs is reflected in two subtle 
ways. First, the set North(z) is connected to a single spine. Second, the north and 
south directions are done before the east and west are tried. For both reasons there 
is a preference for Steiner trees that reach more terminals through fewer vertical 
segments. 

5.2.4 Parallel Heuristics 

There have been virtually no parallel algorithms proposed for any Steiner tree 
problem. This is peculiar, as there is a large literature for parallel graph algorithms. 
In this section two are briefly mentioned, that make a strong assumption about the 
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Figure 5.5: Row-based layout 

Figure 5.6: Steinerizations with a preference for vertical segments 

problem domain. 
The assumption is that the plane, or the usable routing region, is partitioned 

into many unit squares or cells. Each terminal occupies a cell. A wire is a rookwise 
connected sequence of cells. For 30 years there have been algorithms proposed that 
have data structures with an entry for each cell. Such a data structure has space 
complexity proportional to the size of the routing region, which is perhaps far larger 
than any economical problem encoding. The same is true of the time complexity 
of algorithms that scan such a data structure. For example, a simple rectangular 
routing region may be composed of 10000 cells but contain only 50 terminals. The 
assumption that the routing region is not too large was valid for PCBs but is less 
tenable for VLSI circuits as the cell size continues to  become smaller. 

The classic algorithm for this model is the Lee maze router [lo] for computing 
rectilinear shortest paths through an array of cells. There have been many varia- 
tions proposed [13] but the central idea is the propogation of a “wavefront” from 
the source towards the sink. An illustrative example is in Fig. 5.7. Since there are 
many independent cell calculations made to make as the “wave” moves outwards 
it is easy to find ways to parallelize this approach; the extreme case is when every 
cell has its own processor. 
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Figure 5.7: Wiring region resulting from using a wavefront shortest path algorithm 
on an array of cells, with an obstacle 

Watanabe and Sugiyarna [24] have proposed a Prim-based heuristic based on 
the Lee shortest path approach. The novel feature of their heuristic is that they do 
not decide on a particular shortest connecting path at each step. Instead they find 
the wiring region through which any shortest path must pass; see Fig. 5.7. (This 
region is easy to find by doing an expansion backwards from the sink to the source.) 
At each stage of their heuristic, they find the unused terminal that is nearest to 
any terminal or wiring region. Suppose a wiring region is closer than any terminal. 
Note that this will imply that the wire in the nearest wiring now must be bent to 
meet the new wire, effectively reducing the size of the wiring region; see Fig. 5.8. 

Figure 5.8: The effect on a wiring region when a new wire is attached 
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To analyze their heuristic assume there is one processor per cell. Let the routing 
region be contained in an P x P square array of cells. Lee’s algorithm runs in O(T)  
time in parallel (and O(r2)  time sequentially). There are n - 1 applications of this 
leading to a total parallel time complexity of O(nr). 

Another parallel heuristic, that also assumes a cell array, was given by Ham- 
brusch and TeWinkel [5]. They use one processor per cell and have no obstacles in 
the routing region. (Their primary application was image data, not VLSI layouts.) 
Their heuristic was not based on the Lee algorithm, but, instead, on the literature 
for image analyses with a mesh of processors. The basic approach is based on 
Sollin’s MST algorithm [22], which begins with n singleton trees, and repeatedly 
performs this step in parallel: connect each subtree to its nearest subtree. The 
difficulty with this approach is that cycles can arise. They actually present two 
heuristics: one finds and breaks cycles and the other one prevents cycles from 
occurring. Both heuristics are fairly detailed, but run in O ( P  log n) parallel time. 

5.3 Heuristics for Multiple Nets 

First some heuristics for routing all nets at once are presented. Then some repre- 
sentative results on global routing are given. Finally, a recent heuristic that routes 
all nets incrementally is discussed. 

There are hundreds of papers on the problem of routing multiple nets. Most 
mention Steiner trees without adding to our knowledge of Steiner trees. Here, a 
few of these papers are mentioned that do make interesting contributions. 

Ng, Raghavan and Thompson [15] argue that a single Steiner tree is of little 
use since there may be many unforeseen constraints. Instead, during routing, they 
want to have several Steiner trees to choose from. They give a “language” for 
coding procedures to generate many Steiner trees. They have successfully inserted 
such code into their routing software. 

A popular technique is to allow channels to overfill and then, at a later stage, 
perform “rip-up” operations to move wires to less congested channels. Lee, Bose 
and Hwang [ll] give an example of such a technique. It begins by perturbing 
just horizontal segments and then it works on vertical segments. If a channel is 
overfilled it tries to move one or more wire segments to “nearby” channels (that 
are not overfilled). The process iterates until channel capacities are acceptable or 
no improvement can be made (and the process fails). (Rip-up operations are also 
used to give space to nets that cannot be routed.) 

Luk, Sipala, Tamminen, Tang, Woo and Wong [14] discuss the relationship 
between global routing and floorplanning. Floorplanning is the phase when the 
chip area is subdivided into regions small enough for individual modules (or larger 
“macros”, depending on the scale used). A popular technique is top-down floor- 
planning, which repeatedly cuts rectangular regions into smaller rectangles. The 
adjacency graph of these rectangles is a series-parallel graph and global routing 
can be done on this graph. Hence, linear time algorithms are available. 

Zhang, Pillage and Rohrer [28] discuss the possibility of combining aspects of the 
module placement phase and routing with Steiner trees. If the module placement 
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is given, Cong [3] discusses the possibility of combining aspects of final terminal 
placement with Steiner trees. 

5.3.1 Packing Trees 

The situation with the most a pn’on’ information is when the routing region is 
represented by a rectilinear network, with edges for every track a wire could occupy. 
Call this the (detailed) routing network. Each net corresponds to a subset of the 
vertices. The problem is to find a set of trees, where each net is spanned by a tree. 

Typically it is required that either the trees are vertex-disjoint or edge-disjoint. 
If the routing is on a “single-layer” then the trees must be vertex-disjoint so that 
wires do not touch. However, most routing is done on at least two layers. Therefore, 
the wires are allowed to cross at vertices (as one wire passes under another, or they 
pass “knock-kneed” at right angles) but not to share an edge. (With enough layers, 
edges could be shared, but it is better to augment the routing network; see Section 

The decision complexity of this type of tree packing problem has been discussed 
in Section 6.7 of Part 11. It was shown that, even for two-terminal nets, the problems 
are NP-complete. Here some algorithmic results for restricted cases are mentioned. 

Becker and Mehlhorn [l] considered the case of twderminal nets with all ter- 
minals on the infinite face. The results are for any planar network, with even 
degrees for every internal vertex (which is true of many routing networks). They 
gave an O(v2)  time algorithm, where v is the number of vertices in the routing net- 
work G = (V, E) .  They gave a faster algorithm when the routing network satisfied 
certain stronger connectivity constraints. 

They gave related algorithms, with the same time bounds, for multiterminal 
nets, but in an even more restrictive setting. Again all terminals are on the infi- 
nite face of a planar routing network, and all internal degrees are even. Further, 
24X) < c ( X ) ,  for all X C_ V, where X is a cut, d(X) is the “density” of the cut, 
and c ( X )  is the “capacity” of the cut. Specifically, d(X) is the number of nets 
having one but not all of its terminals in X ,  and c ( X )  is the number of edges in E 
from X to V \ X .  

5.4.) 

5.3.2 Branch-and-Bound 

Yang and Wing [27] proposed a branch-and-bound algorithm for simultaneously 
routing all nets. This was a natural outgrowth of their similar algorithms for single 
Steiner trees. The algorithm makes several assumptions that are really only valid 
for PCBs but, in principle, the technique can be extended to VLSI circuits. 

They begin by formulating an objective function for a set of trees spanning the 
nets: 

(the sum of the tree lengths) + a x (the number of intersections at an edge) 

+p x (the number of intersections at a vertex). 
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The rationale for this function is that (in PCBs) two trees can share an edge (i.e., 
be routed on the same track) if they are “insulated” a t  a cost of a. Similarly, at a 
cost of p a vertex can be “split” if two wires touch at that vertex. 

The algorithm associates a 0-1 indicator variable with each edge for each net: 
the variable is a 1 if and only if that edge is in the Steiner tree for that net. The 
algorithm begins with a singleton tree for each net. The algorithm progresses by 
adding an edge to  some tree (setting the indicator variable to 1). If a feasible 
solution is found (all nets are spanned) then the objective function is evaluated. 
As is typical in branch-and-bound algorithms, when the bounding constraints fail 
then the process backtracks (setting the indicators to  0). This is an exact algorithm 
for this model. 

Such a procedure is exponential time, of course. They proposed, as in their 
earlier work, a much faster suboptimal scheme, that is still exponential time. In- 
stead of adding a single edge of the routing network to some tree a t  each step, 
the suboptimal algorithm connects a terminal to its tree with an L-shaped wire, at  
each step. The optimal and suboptimal algorithms produced identical results for 
small problems. 

5.3.3 An LP Relaxatioii Heuristic 
Raghavan and Thompson [16] presented a LP-relaxation approach to a simplified 
problem. They are given the (reduced) routing network G = (V ,E)  and a set of 
nets. The trees of the routing will not necessarily be edge-disjoint. The width of a 
set of trees is the maximum number of trees that route across a single edge. The 
sole objective is to  minimize the width of the routing. 

Their paper only addresses nets with exactly three terminals. The technique 
can be extended to larger nets. Unfortunately the number of LP indicator variables 
grows exponentially in the size of the nets (but noi in the size of the network or 
the number of nets). Hence it is only practical for small nets. 

For each three-terminal net the principal problem is to decide where the single 
Steiner point is to  be placed. They begin by posing the entire problem as a mul- 
ticommodity flow problem cast as a 0-1 integer program. They use an indicator 
variable s i j ,  for each vertex j and net i, which indicates whether that vertex j is 
the Steiner vertex for net i .  First they solve, in polynomial time, an LP relaxation 
of this program. Let W be the width of the relaxed solution. Note that each sij 

may not be integral, but they require C j  sij = 1, for each net i .  These represent 
fractional Steiner points. 

Their “rounding” heuristic fixes the Steiner point for one net at  a time. For 
net i, they must decide which vertex j will have sij = 1. They evaluate a potential 
function, defined for each intermediate flow, for each choice of j. They choose the 
j that minimizes their potential function. They are able to prove upper bounds on 
the width of the solution, found by the rounding heuristic, in terms of W and ]El. 
For example, if W > In [El then they derive this bound: 

where e is the base of the natural logarithm. 
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5.3.4 Bottleneck Steiner Trees 

Chiang, Sarrafzadeh and Wong [2] have suggested another solution to the global 
routing problem. They sequentially place a Steiner tree for each net. However, each 
edge in the (reduced) routing network has a weight which reflects its congestion, 
relative to its capacity. Rather than seeking a Steiner tree with least total weight, 
they use a tree which minimizes its most costly edge. 

The bottleneck Steiner tree (or Steiner man-max tree [2]) is a tree which spans 
a net in which the weight of the heaviest edge is minimized. Surprisingly this 
problem can be easily solved [2,18]). 

Theorem 5.1 Construct a MST of the routing network and prune away every 
subtree containing no terminals. The resulting tree is a bottleneck Steiner tree for 
those terminals. 

Proof: For simplicity, the weights are assumed to be distinct, so the MST is 
unique. It is easy to show that when Kruskal’s algorithm adds an edge of weight 
w, that if two vertices can be connected by path with no edge heavier than w then 
those vertices are already connected by a subtree. Hence Kruskal’s algorithm will 
automatically link up all the terminals in the net into one subtree with the least 
bottleneck, as soon as possible. Any additional heavier edges added by the MST 

They actually proposed a hybrid global router that combined bottleneck Steiner 
algorithm, after the terminals are in one subtree, will be pruned away. 0 

trees and approximate RSMTs, found with a Prim-based heuristic. 

5.3.5 Global Routing with a Distance Network Heuristic 

Korte, Promel and Steger [S ]  have proposed a global router based on the distance 
network heuristic of Wu, Widmayer and Wong [25], denoted WWW here (see 
Section 4.2.3 in Part 11). The input is a weighted (reduced) routing network, where 
the weight reflects the capacity of a channel. They have priorities associated with 
each net, which reflects the relative importance of each net. For example, the length 
of a particular net may have an impact on the cycle time of the clock. (They also 
have a via penalty for multiple layers; see the next section.) 

Recall that a typical strategy for global routing is to route each net, one at a 
time, with dynamically changing edge weights to reflect congestion accumulating 
in some channels. Often the nets are processed in an arbitrary order. It has been 
shown that “shortest MST first” order is effective, where one begins by finding the 
MST for each net separately. In this section, the heuristic orders the nets by the 
given priorities. 

The novel feature of this heuristic is that it does not completely route each net. 
Instead it considers the nets, in order, and partially constructs a solution using 
only inexpensive edges. Only after all the nets have had a chance are the more 
expensive edges used. 

Recall the WWW heuristic, for a single net, simultaneously grows shortest path 
trees from each terminal, coalescing trees when they touch each other. When two 
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trees are linked there is a corresponding path between the roots of these trees; call 
such a path a dascovewd path.  They proposed a perturbation of the WWW heuris- 
tic: when the number of subtrees, after coalescing has decreased to  three, then 
connect these three trees optimally. The latter procedure, 3EXACT, tries each 
possible location for the remaining Steiner point, and does a shortest path com- 
putation from each such point. This procedure can be implemented in O(w2 log w) 
time. (A corresponding 4EXACT was tried with little measurable effect.) 

The global routing heuristic has s stages. There are s given thresholds a1, a2, 

. . . , a,, where a, is large. During the i th stage the WWW heuristic is run on each 
net, in order, until the length of a discovered path exceeds ai. Before proceeding 
to the next stage, nets are set aside when their respective computations have been 
reduced to 3 or fewer subtrees. The WWW heuristic, for each net, picks up in 
stage i + 1 where it left off during stage i. After all s stages are finished, the nets 
are connected using SEXACT. The total time is O(nw2 log w). 

There is a post-processing step (that could be applied by any heuristic). In 
each Steiner tree, each wire is removed, disconnecting it into two subtrees, which 
are reconnected by the shortest possible wire. Further, it is possible that channel 
capacities will be exceeded; they use an additional rip-up phase to move low priority 
nets. 

Korte, Promel and Steger provide some interesting performance data (which is 
unusual). They used a (CPU) chip with 19318 nets (ranging from 2 to 25 terminals, 
for a total of 69709 terminals). The chip was partitioned into subregions resulting 
in a global routing problem with 10196 nets (the remaining 9122 nets were each 
contained entirely within a siugle region of the chip and are only considered during 
the later detailed routing stage.) The reduced routing network was a 39 x 33 grid 
graph. 

Only the global routing phase is considered. Since the largest net was small they 
were able to solve each net optimally, with dynamic programming (in a “few days 
of computing time”). The total length of all the optimal RSMTs, without regard 
to  channel capacities, was 79437. The corresponding total length of all the MSTs 
was 81476. Next they considered the situation when overfilled channels could not 
be used. Using a straight WWW heuristic (s = 1) the total was 81519, but 16 nets 
could not be routed at all. Finally, they used their multistage version, with post- 
processing. They had three different cost functions, for determining edge weights, 
which produced routings with total lengths 79912, 79877, and 79509, respectively. 
The computation times varied from 1 to 3 hours. 

5.4 Multiple Layers 

While VLSI routing is done on several layers, the vast majority of the literature 
has been for planar routing networks. As discussed above, this has been possible 
by allowing pairs of nets to be routed that are not vertex-disjoint and/or edge- 
disjoint. This is especially true during global routing. Duriiig detailed routing the 
penalties for overlapping edges and vertices are substantially increased, so that the 
resulting routing can be realized with multiple layers, with minimal perturbations 
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later. (There are many subsequent phases in the circuit design process, notably 
compaction stages.) 

However, as the number of layers increases these ad hoc techniques will need 
to be replaced. The planar routing network is naturally replaced by a routing 
networks analogous to %dimensional grid networks. It is tempting to speculate 
that the work on the multidimensional rectilinear Steiner tree problem would be 
relevant. However, as with the planar case, the %dimensional routing networks 
have both missing edges and edge weights, resulting in a situation more similar to  
the case of a Steiner problem in networks. 

Two examples of the possible restrictions on a 3-dimensional routing network 
are given. An edge connecting vertices on different layers corresponds to a via. 
Vias have a cost associated both with their area (on both layers) and their effect on 
reliability. These costs are reflected in weights on those edges, which are dependent 
on manufacturing technologies. Another example is when the technology dictates 
that routing on one layer is always horizontal and always vertical on another layer 
(with bends corresponding to vias). Such a two-layer chip would have the routing 
network in Fig. 5.9, where all the degrees are 3 or less. 

Figure 5.9: A 3-dimensional routing network 

There are few Steiner heuristics for %dimensional routing networks. Hachtel 
and Morrison [4] present a technique that reduces the problem, by projection, to 
a “thinner” network. That thin network is solved, by dynamic programming, and 
the rest of the Steiner tree is formed by reversing the projections. Tsai, Chen and 
Feng [23] present a heuristic for multiple layers that assumes the input is a sparse 
routing network (that is the result of an earlier routing phase). Because of the 
sparseness, they propose a trivial linear time heuristic: do a breadth-first search 
and remove all subtrees without terminals. 
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Chapter 1 

Steiner Trees in Other 
Metric Spaces 

Although STs in Minkowski spaces were studied by Cockayne as early as in 1967, 
the bulk of literature has appeared only very recently. There are three general 
types of results. The first is to derive some basic properties of an ST, typically, 
the degree of a Steiner point and the number of sets of parallel edges in an ST. 
The second is to prove the finiteness of the problem, typically, by showing that 
there exists an SMT whose Steiner points are all vertices of a given graph. The 
third is to  bound the Steiner ratio. What has been missing in the literature is the 
invention of efficient algorithms to construct a full SMT for a given full topology, 
like what the Melzak FST algorithm does for the Euclidean plane. Sankoff and 
Rousseau [lo] gave a dynamic programming solution to this problem. But the 
approach is computationally feasible only in some special spaces like the rectilin- 
ear space (see Part 111, Section 4.4) and the space of qualitative characters (see 
Subsection 2.4.1). 

It is surprising that despite the lack of efficient algorithms or heuristics for local 
minimum trees, there exists an approach to  construct a heuristic SMT which has a 
better performance ratio than an MST for any metric space. However, the efficiency 
of such a heuristic depends on the existence of an efficient algorithm to construct 
SMTs for small numbers of terminals, in some case as small as three. Therefore, 
finding these efficient algorithms for small numbers of terminals becomes a priority 
task to  attack the Steiner tree problem for general metric spaces. 

1.1 Minkowski Spaces 

A normed space is also known as a Minkowski space. By the Minkowski theo- 
rem, given a convex, compact, and center-symmetric body in a linear space, one can 
define a norm in the space such that the unit ball of the normed space is identical 
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to the convex body, and vice versa. Cockayne [4] first studied the Steiner problem 
for the Minkowski space and obtained some results for the 3-terminal SMT. 

Suppose the unit ball is a d-dimensional polytope with 2m extreme points. 
Such a space will be denoted by Md. Since it is center-symmetric, there exist rn 
diagonals each connecting a pair of extreme points and going through the center. 
The orientations of the diagonals are called diagonal directions (see Fig. 1.1). Du 
and Hwang [7] proved 

Figure 1.1: The unit disk and three diagonal directions of a Minkowski plane 

Theorem 1.1 For N in Md there exists an SMT whose edges  are all in diagonal 
directions. 

Proof: Follows directly from the fact that any polytope is the convex hull of its 

Call a hyperplane diagonal if it is parallel to the span of d- 1 diagonal directions. 
Let GG1(N)  be the grid formed by the (dyl)  diagonal hyperplanes through each 
terminal in N .  Define a grid point to be a point run through by d of these diagonal 
hyperplanes. The following analogue of Hanan’s theorem was earlier established 
by Snyder for rectilinear d-space (see Part 111, Section 4.4). But the proof of Du 
and Hwang for the general Md case is much shorter. 

Theorem 1.2 Suppose that N is in Md but not in any Md-1, and the unit bal l  
has 2d extreme points. Then there exists an SMT for N whose Steiner points are 
all  grid points of G G l ( N ) .  

Proof: Call a coordinate listed if it appears as a coordinate of a terminal. Then 
a grid point of G G I ( N )  has only listed coordinates. By Theorem 1.1 there exists 
an SMT T using only edges in diagonal directions. Let U be the set of unlisted 
coordinates occurring in Steiner points of T .  Suppose that U is nonempty. It 
will be shown that the cardinality of U can always be reduced by one. This will 
complete the proof. 

Let s be a Steiner point with an unlisted coordinate x i  in the ith diagonal di- 
rection. Consider the diagonal hyperplane parallel to the span of the order d - 1 
diagonal directions at  s. Clearly, there exists no terminal on this hyperplane or 
xi  would be listed. Since the d diagonal directions are linearly independent, this 
hyperplane can be moved along the ith diagonal direction (either side) until it hits 

extreme points. 0 
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a terminal. Note that firstly, such a move is permissible since no terminal has been 
moved. Secondly, the number of segments of the ith diagonal direction touching the 
hyperplane on the two sides must be equal or the hyperplane can be moved towards 
one side to reduce the total length; a contradiction to the assumption that T is an 
SMT. Thus moving the hyperplane does not change the length of T.  Finally, when 
the hyperplane hits a terminal, the new c i  is listed but no new unlisted coordinate 
has been created. 0 

Theorem 1.2 reduces the SMT problem to a finite problem and opens the door 
for using SMT algorithm on networks to attack the SMT problem on Md. 

Du and Hwang conjectured that m = d is also a necessary condition for Theo- 
rem 1.2. In fact, they also conjectured something stronger. For i = 2 , 3 , .  . . define 
GGi(N) as the grid formed by running the (L,) diagonal hyperplanes through 
each grid point of GGi-l(N),  and the grid points of GGi(N) are the intersections 
of d distinct diagonal hyperplanes. 

Conjecture. If rn > d ,  then for every fixed i there exists a set N in k f d  such that 
every S M T ( N )  contains a Steiner points not in GGi(N). 

Du and Hwang gave partial support to the conjecture by showing that for every 
d there exists a space s d  and an SMT(N) as described. For d = 2 s d  is the 
hexagonal metric with 120' angles and the SMT(N)s are the splitting tree (see 
Part I, Section 5.4). A modification of these splitting trees into higher spaces 
provides examples for general d. 

1.2 Minkowski Planes and 1, Metrics 

In this section, only Minkowski spaces of dimension two are considered. An impor- 
tant special case is the lp metric. In the lp metric, the distance between two points 
a l ( q ,  y1) and a 2 ( ~ , y 2 ) ,  where (z, y) are the Cartesian coordinates, is 

Note that p = 1 yields the rectilinear metric, p = 2 the Euclidean metric and p = co 
the maximum metric which is dual to the rectilinear metric in the sense that the 
two unit disks are 45' rotations of each other. 

Consider a Minkowski plane with a unit disc D. The following theorem and a 
proof was suggested by Chakerian and Ghandehari [3], with details given in [l]. 

Theorem 1.3 Suppose that D is differentiable. Then every Steiner point in an 
S M T  has degree three. Furthermore, if a ,  b and c are three distinct points on the 
boundary of D, and A as the triangle induced b y  the three tangent lanes to D at a ,  b 
and c, respectively, then [o, a] ,  [o, b ] ,  [o, c] form an SMT f o r  { a ,  b ,  c} i f  and only if 
the origin o is the centroid of A. 

Du, Graham and Liu [6] used Theorem 1.3 to prove 



290 CHAPTER 1. STEINER TREES IN OTHER METRIC SPACES 

Theorem 1.4 Suppose that D is differentiable and strictly convex. 
full SMT consists of at most three sets of parallel edges. 

Then every 

Proof: (sketch) Let T be an SMT and [s,s’] an edge of T between two Steiner 
points s1 and sz. Let a be a point on [SI,S~] and close to s1. It can be shown 
from Theorem 1.3 and strict convexity that there exists a unique pair of points b 
and c on the boundary of D ,  equidistant from s as a ,  such that [s, a ] ,  [s, b],  [s, c] is 
an SMT. Furthermore, this construction depends only on the slope of [s, a].  This 
implies that the slopes of the other two edges a t  s are uniquely determined by the 
slope of [s, s’]. Similarly, the slopes of the other two edges at  s’ are also uniquely 
determined by the same functions of the slope of [s, s’]. Hence the two edges at  s 
are parallel to the two edges at s’. Iteratively using the same argument on other 
edges of T between two Steiner points, Theorem 1.4 is proved. 0 

The set of three directions of the edges of a full SMT will be called a consistent 
triple of D. 
Since the lp  metric is differentiable and strictly convex for 1 < p < 00, it follows: 

Corollary 1.1 For N in I,, 1 < p < 00, each Steiner point in an S M T ( N )  has 
degree three and every full S M T ( N )  consists of at most three set of parallel edges. 

Some of the proof techniques used by Du and Hwang in proving the Steiner 
ratio conjecture for the Euclidean plane are also valid for Minkowski planes. In 
particular, the following is true. 

Lemma 1.1 Suppose that D is differentiable and strictly convex and C is a con- 
sistent triple of D. Let 7 denote the set of full SMTs  with edges in the directions of 
C and with at most n terminals. Then the minimum value of IIT(N)JI/IIMST(N)II 
over all T E IT is achieved b y  trees whose terminals are the vertices of a union U 
of at most n - 2-congruent equilateral triangles (with edges in the directions of C )  
so that all terminals are on the boundary of U .  

Call the Minkowski plane a hexagonal plane, and denoted by H ,  if D is a 
hexagon. Note that a hexagonal plane has a unique consistent triple which is the 
set of diagonal directions. Du, Graham and Liu proved 

Theorem 1.5 p(D)  2 2 /3  holds for an arbitrary Minkowski plane D if and only 
i f  it holds for every hexagonal plane H and every vertex set N of a union U of at 
most n - 2-congruent equilateral triangles such that all terminals of N are on the 
boundary of U ,  and an F S T ( N )  exists with all  edges in the diagonal directions of 
H .  

Proof: The “only if” part is trivial. To prove the “if” part, it suffices to consider 
FSTs only. Suppose D is differentiable and strictly convex. Let T be an FST. 
By Theorem 1.4, T consists of three sets of parallel edges. Therefore there exists 
a hexagonal plane H such that IlTll is invariant in D or in H .  By Lemma 1.1 
llT(N)ll 2 (2/3)11MST(N)ll in H .  Since ((MST(N)II is not smaller in H than in D ,  
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0 the above inequality also holds in D. 

Du, Graham and Liu also showed 

P ( W  L -g- + Ji-is - - 0.8931 

by constructing a set N achieving that bound. They 

. . ,  

conjectured for an arbitrary 
Minkowski plane D 

For the 1, metric Liu and Du [9] obtained better provable bounds. The following 

It is easily verified that Ila, blip is decreasing in p ,  but [ ( U P + P ) / ~ ] ~ / P  is increasing 
is an account of their results. 

in p for p 2 1. Therefore for 1 5 p 5 q 5 03 

Ila, bllq L Ila, bll, I 2$++ Ib, blle 

Using these inequalities it can be shown: 

Lemma 1.2 Suppose that 1 5 r 5 p 2 q 5 00. Then 

2 f - +  PqPr P; I 2'-fpqpr 

An immediate consequence is 

Theorem 1.6 For 1 5 p 5 03, pp 2 \ I & p l p 2 ,  

Proof: If 1 p 5 2, choose P = 1 and q = 2 in Lemma 1.2. If 2 5 p 03, choose 
r = 2 and q = 00. 0 

Since it is known that p1 = 213 and p2 = 4 1 2 ,  it follows 

Corollary 1.2 F O ~  1 5 p 5 co, pp 2 6. 
Finally, by some fine analysis, Liu and Du were able to give an upper bound of p p .  

Theorem 1.7 pp 5 p2 = &/2 for 1 5 p 5 co. 

Du [5] also conjectured that pp > pl = 2/3 for 1 < p < 03. 

1.3 &Geometry and Hexagonal Plane 

Theorem 1.5 suggests the importance of studying hexagonal plane. A X-geomet- 
ry is a more general notion which includes the hexagonal plane as a special case, 
and was first introduced by Sarrafzadeh and Wong [ll]. In a A-geometry only edges 
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with angles ir/A for all i are allowed, where A 2 2 is an integer either dividing IF 
or divisible by r (see Fig. 1.2). 

If the unit disc of a Minkowski plane is a regular PA-gon with the z-axis being 
a diagonal direction, then by Theorem 1.1 there exists an SMT in A-geometry. 
Therefore the 2-geometry corresponds to the rectilinear plane, the 3-geometry to 
the hexagonal plane where the axes are 120’ apart, and the m-geometry to  the 
Euclidean plane. 

+ * x  
A = 2  A = 3  A = 4  

Figure 1.2: A-geometry 

Widmayer, Wu and Wong I121 proved that 

Lemma 1.3 There exists a shortest path between two points in the A-geometry, 
A < 00, which uses only two line segments. 

In fact, they showed that if 1 and I’ are the two lines making minimum angles 
with line pp‘ ,  where p and p‘ are the two given points, and 1 intersects I’ at p”,  then 
pp” and p‘p” are the two segments. An edge consisting of two segments is called a 
nonstraight edge. 

For a fixed N let MSTx and SMTx denote the corresponding trees in A-geometry 
and define p(A) to be the Steiner ratio in the A-geometry. Sarrafzadeh and Wong 
proved 

Theorem 1.8 p ( X )  2 9 cos 5 .  
Proof: 

where the second inequality is from the Euclidean Steiner ratio theorem and the 
third inequality an immediate consequence of Lemma 1.3. 0 

Corollary 1.3 p(3) = 3/4. 

Proof: From Theorem 1.8, p ( 3 )  2 3/4. Let N be the set of three corners of an 
equilateral triangle. I t  is easily verified that IISMT(N)II = 3 and IJMST(N)II = 4. 0 
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Du, Graham and Liu studied the Steiner ratio for an arbitrary hexagonal plane 
H .  Let u ,  v and w be the three unit vectors in the diagonal directions satisfying 

au + bv + cw = 0 

Since H is characterized by a ,  b, c,  it will be denoted by H ( a ,  b, c) .  The Steiner 
ratio of H ( a ,  b, c )  will be denoted by p(a, b,  c) .  

Lemma 1.4 H ( a ,  b, c )  is convex if and only if a ,  b and c satisfy the triangle in- 
equality. 

Proof: Note that 
b c  

u = - v + - w  
a a  

c a  
b b  

v = - w + - u  

a b  
w = - u + - v  

c c  

Thus H ( a ,  b,  c )  is convex if and only if b/a+c/a 2 1, c/b+a/b 2 1 and a/c+b/c 2 1. 
0 

Theorem 1.9 If H ( a ,  b, c )  is convex then p(a, b,  c )  5 3/4. 

Proof: Let ox, oy and oz be the three unit vectors and let N = (2, y, 2 ) .  Then 
IISMT(N)II = 11041 + IlOYll + I l O ~ l l  = 3 while IIMST(N)II = 112, YII + IlY, 41 = 4- 0 

Du, Graham and Liu also conjectured 

Conjecture. If H ( a ,  b,  c )  is convex, then p(a,  b, c )  2 2/3. 

Note that if this conjecture is true, then Theorem 1.5 implies that p(D) 2 2/3 
for an arbitrary Minkowski plane D. 

Recall that Hanan (Part 111, Theorem 1.2) proved that for the 2-geometry there 
exists an SMT(N) such that every Steiner point is a grid point of GGl(N). Fig. 1.3 
illustrates a set N in the 3-geometry such that one of its SMT contains a Steiner 
point s not in GGl(N)  (see Fig. 1.3). 
However, the above s is still in GG2(N). In fact, Du and Hwang [7] proved 

Theorem 1.10 For the $-geometry there always exists an SMT(N) such that all 
of its Steiner points are g r i d  points of GG,,-z(N). 

The proof depends crucially on the following lemma. 

Lemma 1.5 For the 3-geometry there always exists an SMT(N) with at most one 
nonstraight edge in each full component. 
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Y 

l!l 

Figure 1.3: s not in GG1(N) 

Proof of Theorem 1.10: Theorem 1.10 is trivially true for n = 3.  The general 
n case is proved by induction. It suffices to prove for a full SMT. 

Note that a Steiner point adjacent to two terminals by straight edges is a grid 
point of GGl(N) .  In general, a Steiner point adjacent to two grid points of GG;(N) 
is a grid point of GGi+l(N). By Lemma 1.4 there exists a full SMT T with at  
most one nonstraight edge. If T contains a nonstraight edge, then every Steiner 
point s must have two branches connected by straight edges each containing at 
most n - 1 terminals (counting s as a terminal). By the induction hypothesis, s is 
adjacent to  two grid points of GGn-3(N), hence s is a grid point of GGn-2(N). 
(If T contains no nonstraight edge, then it can be verified that every Steiner point 
is in GGL(n-1)/2J ( N ) . )  0 

Corollary 1.4 Suppose that N is in an arbitrary hexagonal plane. 
always exists an SMT(N) whose Steiner point are all grid points of GGn-2(N). 

Proof: It follows by using a linear transformation from the 3-geometry to the 

Then there 

hexagonal plane. 0 

Unfortunately, Lemma 1.5 and Theorem 1.10 cannot be extended to the A- 
geometry for X 2 4. 

Theorem 1.11 For any A-geometry with X 2 4, there exists a set N such that 
every SMT(N) contains a Steiner point not in GG;(N) for  any i. 

Proof: An example of N for the 4-geometry is illustrated in Fig. 1.4. Similar 
constructions can be given for other A-geometry with X > 4. 0 

Theorem 1.10 shows that the 3-geometry ST  problem is finite and any algorithm 
for the ST  problem in networks applies to 3-geometry. 
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Figure 1.4: An SMT with two nonstraight edges 

1.4 Better Heuristics for Arbitrary Metric Spaces 

Over the years numerous heuristics for SMTs have been proposed for terminals 
in various metric spaces and networks. Often their superiority over MSTs were 
claimed and demonstrated by simulations. But no mathematical proof of supe- 
riority was ever given. One exception is that a proof of superiority in average 
performance by Bern (see Part 111, Section 2.2.4) in the rectilinear plane. But 
still there was no proof that any heuristic has a better performance ratio than the 
Steiner ratio. 

In 1990, Zelikovsky [13] finally had a breakthrough to  this problem by giving a 
better heuristic for the network problem. Unfortunately, his results were published 
in a not easily accessible conference proceedings, and his writing was very obscure. 
Berman and Ramaiyer [2] came to  the rescue by restating Zelikovsky’s results in a 
much more comprehensible way, giving some improvements for the network problem 
and also giving a better heuristic for the rectilinear space. Du, Zhang and Feng 
[S] made further improvements and gave a better heuristic for an arbitrary metric 
space, including the Euclidean plane as a special case. In the next two sections 
we will mostly report the general results of Du, Zhang and Feng, and refer to the 
more specific heuristics of Zelikovsky and Berman and Ramaiyer’ only when they 
are different from the general case. 

Recall that  a k-size quasi-ST is a tree with a Steiner topology and each full 
component contains at most k terminals. N o  polynomial algorithm is known for 
the construction of a minimum k-size quasi-ST Q k  for k 2 3. However, a heuristic 
tree Zk for Q k  exists such that ( I Z k l l / l l Q k l l  is bounded. 

As mentioned in Part I, Section 6.3, the concept of MST can be extended to the 
case where some of the terminals are point-sets. For a given set N of n terminals 
and subsets Ni c N ,  lNil > 1,  i = 1,. . . , s ,  an MST T ( N ; N l ,  ..., N , )  is a set 
of edges interconnecting the s point-sets and N - I Ui Nil,  where a point-set is 
considered connected if any of its points is connected. The ordinary M S T  T ( N )  
can be viewed as the special case s = 0. To assure that the connected graph 
is a tree, it is required that no set and no terminal is contained in another set, 
INi n Njl 5 1 and that there does not exist a cyclic sequence of subscripts such 
that INi n NjI = 1 for all i and j consecutive in that cyclic sequence. Such a set 
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{ N ; }  is called a cycle-free s e t .  
Let S; denote a full SMT for N i ,  if one exists. When each Si, i = 1 , . . . , s, exists, 

define W ( N ;  N1,.  . . , N,) = I/T(N)II - IIT(N; N1, .  . . , N,)ll - El=, IlS;ii. Then W 
is the saving of length over an MST by using some SMTs for subsets of N .  

The k-size quasi-ST zk is constructed through the following greedy algorithm: 
0 Step 1. For each i = 2 , .  . . , k, construct an i-terminal SMT for each (T) subsets of 

i terminals. Store the SMT in the list L if it is an FST. Set j = 0. 

0 Step 2. Set i = j + 1. Select S, from L such that { S l , .  . . , S,} is cycle-free and 
W ( N ;  N l , . .  . , N , )  maximizes W ( N ;  N 1 , .  . . , N 3 - l l  N,') over all S: E L.  Delete SJ 
from L if { N1, . . . , N,-1 , N J }  is not cycle-free. 

0 Step 3. Stop when L is empty. Otherwise go to Step 2. 

Since each edge is in L ,  the output zk is always a tree interconnecting N .  
However, the efficiency of the algorithm depends on the existence of an efficient 
construction of a k-terminal SMT in Md.  Given that there exists such a con- 
struction which requires f(k) time, then step 1 takes O ( k n k f ( k ) )  time to gen- 
erate the O(knk) SMTs and step 2 takes O(n1ogn) time to generate the MST 
T ( N ;  N1, .  . ., Nj-1, Nj*) for each Sj' in L.  Since there are O(kn') such Sj' and 
step 2 is repeated O(n)  time, the zk algorithm requires O(knk(n210gn + f(k))) 
time. 

For { N1 . . . , N,} a cyclic-free set, define 

W ( N ;  Nt+1,. . . , NsIN1,. . . , N t )  = W ( N ;  N1, .  . . , N,) - W ( N ;  N i l . .  . N t )  

= l l ~ ( N ; N 1 , . . . , N t ) l l -  l l q ~ ; ~ l , " ' , ~ s ) l l  

Theorem 1-12 llzk(N)ll I ~ l I Q z ( N ) l l +  &IIQk(N)II f o r k  2 3 .  

Proof: Let Qb = U:=,S,* where each S: is a full SMT, and let {Sl, . . . , SJ} be the 
full SMTs chosen by the algorithm. Subtracting from 11&2(N)ll = 1122(N)ll both 
sides of the inequality in Theorem 1.12, then 

1 
k - 1  

. . . , N:) W ( N ; N 1 , . . . , N , )  2 - W ( N ; N ; ,  

This inequality is proved by induction on s. If s = 0, then each Sit must be an edge 
for otherwise W ( N ;  NI) 2 W ( N ,  N;)  > 0 and s 2 1. Therefore W ( N ;  N1, . . . , N,) 
= 0 = W ( N ;  N; ,  . . . , N;)  and the inequality is trivially true. So, assume s 2 1. 
Suppose that S1 contains x terminals. Then S1 U Qk contains x - 1 cycles since S1 
contributes x - 2 new vertices and 2x - 3 new edges. Let Sf , . . . , S;, 1 I y I x - 1, 
be the FSTs whose deletions from Qk break all the x - 1 cycles. Then from the 
choice of S1 in the algorithm, 

Y 

(k - l ) W ( N ;  N l )  2 (x - l ) W ( N ;  N1) 2 c W ( N ;  N?) 2 W ( N ;  N;,  . . ., N;)  
i=l 

Since 
W ( N ;  N1,. . ., Nd) = W ( N ;  N1) + W ( N ;  NZ, .  . . , N,INl) 
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and 

W ( N ;  N;, . . . , N;)  = W ( N ;  N ; ,  . .., N ; )  + W ( N ;  Ny'+l,. . . , N;IN;, . .., NJ 

it  suffices to  prove 

(k - l ) W ( N ;  N2, * . . , N,INl) 2 W ( N ;  . . , N,'IN;, . . . , N ; )  

Let T ( N ;  N; ,  . . . , NiIN1) denote a minimum k-size quasi-ST given that N1 is cho- 
sen. Then 

(k - 1 ) W ( N ;  N z ,  . . . , N,IN1) 2 W ( N ;  N i ,  . . . , NiIN1) 2 W ( N ;  N ; + l , .  . . , N,'IN1) 

where the first inequality is due to the inductive assumption, and the second due 
to the minimality of T ( N ;  N i ,  . . . , NilN1).  

Let N i j ,  j = 1 , .  . . , J ,  denote the pairs of adjacent vertices in S1. Then 

W ( N ;  N;+1,.  . . , XIN1) = W ( N ;  N i + l , .  . . , NJN11,. . . , N l J )  

2 W ( N ;  . . , N,'IN,*, . . . , N;)  

since each Nlj  is contained in some NT, i = 1, . . . , y. Therefore 

(k - 1)W(N; N 2 , .  . . , N,(N1)  2 W ( N ;  N ; + l , .  . . , N,'JN;, . . . , N ; )  0 

For a tree T interconnecting N in Md, define 

Corollary 1.5 p - l ( Z k )  _< Ep-'(Qz) + & p - l ( Q k )  fork: 2 3 .  

Therefore, if p ( Q 2 )  > p(Qk) for some k 2 3, then zk is a better heuristic. 
Proving this inequality will be the goal of the next section. 

Berman and Ramaiyer [2] claimed the following stronger result. 

k p - ' ( Q , - l ) - p - ' (  Qi) Theorem 1.13 p - l ( Z k )  5 p- ' (&2)  - CiZ3 i-1 

1.5 Bounds for Performance Ratios of Quasi-STs 
Consider a full SMT T.  Turn T into a rooted binary tree T, by choosing an arbitrary 
edge and setting its middle point T as the root for T,. The root is considered at 
the first level of T,, and a vertex is at the ith level if the path from the root to the 
vertex contains i vertices (including both the root and the vertex). 
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Lemma 1.6 For any  rooted binary tree T ,  there exists a one-to-one mapping f 
f r o m  internal  nodes t o  leaves such that for u a n  internal node 

(i) f(u) i s  a descendant of u, 

(ii) all paths from u t o  f(u) f o r  all u are edge disjoint.  

Proof. Define f(u) as the leftmost leaf of the right subtree of u. Lemma 1.6 is 
easily verified. 0 

Theorem 1.14 p(Qk) 2 & where I< = [log, k ] .  

Proof: The theorem is trivially true for n I k. The general n > k case is proved 
by induction on n. It  suffices to  prove the theorem for a full SMT T .  Let T,. be the 
rooted binary tree obtained from T with the one-to-one mapping f .  The length of 
an edge is its length in Md.  

Let I1 be the set of internal nodes at the lth level. Define Uj = U,a j (modK)I i .  
Then U, for d = 1 , .  . . , A' are disjoint. Let p ( u )  denote the path from an internal 
node u to f(u) .  Define 

By Lemma 1.1 (ii), 
K 

Therefore there exists a j such that Lj I ~ ~ T r ~ ~ / I <  
Decomposing T,. a t  nodes of Uj yields a collection 
rooted at a node of Uj and having leaves either in 

Consider Uj for such a j .  
of rooted binary trees each 
Uj or in the leaf set of T,.. 

Denote such a tree by T, if it is rooted at  x .  Clearly, each T, has at  most k leaves. 
For each leaf u of T, which is an internal node of Tp, connect u to f (u)  with an 

edge. Thus T, is transformed to a quasi-ST Q ( x )  on at  most k terminals. Clearly, 
the union of Q ( T )  and Q(c) ,  x E Uj is connected, hence it is a k-size quasi-ST. 
Thus 

I< + 1 
Qk I llQ(r)ll+ C l l Q ( ~ ) I l  I llT;.Il + Lj L ~ l l ~ l l  0 

Z € U ,  

The case k = 4 and 8 were first claimed by Berman and Ramaiyer [2]. Since 
p ( Q k )  -, 1 as k. - a, 
Corollary 1.6 For every  h f d  such that IISMT(N)II # IIMST(N)II for all N E Md,  

there exists a k large enough such that z k  is a better heuristic.  

For k = 3 Zelikovsky gave a better result. 

Theorem 1.15 p ( Q 3 )  > 2. 
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Proof: Let T, be defined as in Theorem 1.14 and let T, be a subtree of Tr rooted 
at u. Let I, denote the set of terminal nodes of T,. For each u E I, let g(u) denote 
a leaf closest to  u, and let p ( u )  denote the path from u to g(u). Then g(u) can be 
chosen to equal g(v) where v is a child node of u. Suppose that v and w are the 
two children nodes of u. Let u(u) be the unique simple path connecting g(v) and 
g(u) in T,. Define A, = UiE1*u(i). Then A, is a tree interconnecting I,. It can be 
easily verified that llArll 5 211Tr11 - 2llp(r)ll. Define A(u) = llAuII - IIT,II. Then 

if u is a leaf { i ( v )  + p(v) + A(w) + p(w) otherwise A(u) = 

It is easily solved that A(u) = EiEIw-i,l p ( i ) .  
Let e = [u, v] where v is a child node of u ,  and v has two children nodes x and 

y. Let Ne denote the three terminals g(w), g(z) and g(y), and let S(e) be an SMT 
on Ne . Since p(  u )  n p( v) = p(v), 

l lsell  I 114u>11+ 114~>11 - Ilp(v>ll 

Let A(TINel , . .  . , Net) denote a tree obtained from A, by substituting S(ei)  for 
u(u ; )  and u(v;), i = 1 , .  . . , t .  Then 

IIAr(Ne)ll I IIArII - I I ~ ( v ) l l  
Furthermore, if {Nel, . . . , Net} is a cycle-free set, then 

t 

IIAr(Ne1, . . . Ne,)II I IIAr II - C I I P ( v ~ ) I I  

It can be verified that { N e l , .  . . , N e t }  is a cycle-free set if and only if e; n e j  = 8 
for all 1 5 i < j I t .  Since the edge set E of a rooted binary tree can be easily 
partitioned into three disjoint subsets where edges in each subset do not intersect, 
one subset, say, El must satisfy 

i = l  

Thus 
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Chapter 2 

P hylogenet ic Trees 

This chapter discusses a Steiner tree problem in biology. As with the chapter on 
routing, these results are often described as rectilinear Steiner problems, while, at 
the same time, introducing problem dependent constraints that render much of the 
literature in Part I11 inapplicable. 

For more than 100 years biologists interested in “systematics” have attempted 
to infer the evolutionary trees that have present-day species at  the leaves. Only in 
the last 30 years have the mathematical and algorithmic aspects of tree construction 
been investigated. There are several reasons for constructing these trees. Often only 
the topology is of interest; this answers questions of basic classification. Sometimes 
one wants to  know when divergence occurred and how long the edges of the tree 
are; this question is sometimes answered by explicitly deriving a description of the 
inferred (extinct) species. 

These questions can be regarded as Steiner tree problems. The input is a set of 
species, or more generally t a m ,  together with information about each taxon and/or 
relationships between the taxa. The output is a tree that best fits (according 
to some criterion) this information. The taxa are at the leaves of the tree and 
correspond t o  the notion of terminals (except that no taxon can be an internal 
node). The internal nodes are inferred ancestral taxa and correspond to Steiner 
points; there is no standard name for these nodes so they are simply referred to 
as internal nodes. In some cases, when there is a notion of a coordinate space, the 
location of the internal nodes can be specified. Often only the lengths of the edges 
of the tree are desired. 

This chapter begins by reviewing the various approaches to codifying this prob- 
lem, followed by discussions of various algorithms for these approaches. It is best 
to separate what is to be computed from the algorithm that performs the com- 
putation, as it easy to confuse the two. Unfortunately, there are several types of 
phylogenetic trees that can only be described as “the tree this algorithm builds”. 
Computational complexity results are also discussed. In later sections algorithms 
are presented for the various formulations. Arguably the formulations in the last 
two sections are not properly Steiner problems, but are included to demonstrate 
the range of techniques that have been attempted. 

301 
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2.1 Definitions 

It is impossible to give a definitive problem statement. There is no agreement on 
how to define a phylogenetic tree mathematically. There are several camps and 
there are definitions with outright conflicting goals. Very often the belief in the 
quality or reliability of the input determines what kind of tree a researcher is willing 
to accept. Some of the terminology is not neutral for the various camps - but 
these issues will be ignored since biological considerations are beyond the scope 
of this book. For further discussion of the biological motivations for the methods 
below, see the excellent surveys of Felsenstein [21,22] and Li and Graur [34]. 

A phylogenetic tree is an evolutionary tree for a given set N of taxa (some- 
times called “operational taxonomic units” or OTUs). Such a tree is also called 
a “phylogeny”, “dendrogram”, or “cladogram”. It is assumed to be a “bifurcat- 
ing” tree, which means that it is a binary tree. This follows from the assumption 
that evolution is driven by bifurcating events. (In practice trees are allowed to 
be multifurcating when the bifurcations are sufficiently close together that known 
techniques cannot distinguish the correct order of bifurcations.) 

2.1.1 Rooted and Unrooted Trees 

While a phylogenetic tree is inherently rooted, due to the historical nature of 
evolution, it is common to define unrooted phylogenetic trees, which specify the 
branching topology but do not suggest where in the tree the root is found (due to 
a lack of evidence). It is also convenient to work with unrooted trees when using 
an approach that exhausts all topologies, since there are fewer of them. 

Since most methods produce unrooted trees how does one find a rooted version? 
Consider the unrooted tree in Fig. 2.1. Recall that only bifurcating trees are used, 
so every unrooted tree has every internal node with degree 3. To root such a tree 
a root must be positioned in the interior of some edge of the unrooted tree. Hence 
the three possible rooted trees shown. 

C 

Figure 2.1: Unrooted and rooted phylogenetic trees 

There are three popular ways to position the root. First, it can be put on the 
longest edge. Second, it can be put in the middle of the longest path between two 
taxa. This is used when evolution is assumed to proceed at a fixed “clock” rate. 
Third, an “outlier” can be added to  the taxa, where the outlier is determined a 
p i o n ’  on biological grounds. For example, if the taxa are all mammals then a bird 
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could be added; and the root could be placed on the edge connecting the bird to  
the subtree containing all mammals (such an edge is presumed to  exist in a tree 
produced by a reasonable algorithm). 

2.1.2 Distances 

It is fundamental to any Steiner problem, including phylogenetic trees, that there 
is a notion of distance. When the points are in some metric space the distance are 
well-defined. However it is not clear whether taxa can be effectively identified with 
points in some metric space, and if so, which space should be used. Some such 
spaces are described below. However, there are some other approaches, notably 
“distance methods”, that finesse the notion of an embedding. 

Each taxon can be described in terms of a sequence of m values, called cha- 
racters. These characters were originally morphological (e.g., femur length) but 
today much of the research uses molecular characters. Molecular data, which has 
become increasingly available since the mid-l960s, comes as either DNA sequences 
(composed of nucleotides) or protein sequences (composed of amino acids). 

Central to the notion of distance is the concept of an alignment of sequences. 
Given two sequences of characters from some “alphabet” (say, nucleotides) an align- 
ment is a partial mapping from characters in one sequence to another, that pre- 
serves the left-to-right ordering. As seen in Fig. 2.2, such an alignment can be 
represented by a diagram with aligned characters above each other, and unaligned 
characters placed opposite “gaps”. The gaps correspond to the insertion or deletion 
of characters (depending on which sequence is considered primary). Also different 
characters have been aligned; these are “substitutions” or “mutations”. For each 
pair of characters i and j a substitution cost ci, can be defined. By convention, cii 
is defined even if i or j is a gap, and cii is defined to  be small or zero. There are 
quadratic time algorithms to  find the minimum cost alignment, where the cost of 
an alignment is the sum of the substitution costs (e.g., see [43]). 

- G C A  

C A C G  

Figure 2.2: Two representations of a sequence alignment 

Evolution, as reflected at the molecular level, proceeds by a series of insertions, 
deletions, and substitutions (as well as a few other rarer mechanisms which are ig- 
nored here). The alignment distance between sequences is the cost of the minimum 
cost alignment. Suppose the same protein is found in taxa A, B, and C. If the 
alignment distance from A to B is much less than that from A to C, that is taken 
as strong evidence that A and B have a closer ancestor than A and C do. While 
this method is a good method for generating a distance between pairs of taxa, it 
has serious drawbacks. If taxon A is aligned with B, and A is aligned with C, 
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the two alignments are not necessarily consistent with a minimum cost alignment 
between B and C. Further it is even more difficult to find sequences with which to 
label the internal nodes, that are consistent with these alignments. (There is an 
expensive method, discussed below, that addresses these problems.) 

Instead, what is commonly done is to find a multiple alignment of all the taxa. 
This is a difficult and poorly solved problem. However, often all that is ultimately 
used is a small portion of the alignment that is “highly conserved”, i.e., largely 
unchanged during evolution. In particular, there might be m amino acids ( m  may 
be as small as 10) from each taxon that are aligned - usually there are very few, 
if any, gaps allowed. So essentially the original long sequences are forgotten and 
each taxon is described in terms of rn characters; such characters are often called 
si tes ,  reflecting that they are associated with a site on an original sequence. I t  is 
implicit that the same highly conserved sites are also present in the internal nodes. 

The notion of alignment distance extends naturally to  the set of characters 
resulting from a multiple alignment. (Since the alignment is already done, there 
are no further insertion or deletions.) The distance between two taxa, given their 
set of sites, is the sum of the m substitution costs. Unless otherwise stated, this 
is the distance measure used below. The situation here is simpler than above, of 
course, because the alignment is fixed a priori. Often the Hamming distance is 
used: the number of characters which differ. This corresponds to the substitution 
cost assignment ci, = 1 if i # j ,  and cii = 0. 

It some cases the situation is simplified even further by assuming each character 
is binary,  0 or 1. If the data is not binary to begin with it can usually be easily 
encoded as a greater number of binary characters. 

2.2 Compatibility Methods 

It is important to distinguish between a method,  a mathematical approach to defin- 
ing an optimal tree, and the algorithm that computes (or approximates) the optimal 
tree for that method. Sometimes it is impossible to  distinguish these terms when 
no formal criterion is presented. 

2.2.1 Hennig Trees 

Hennig [33], as early as 1950, proposed a method that took as input n taxa, each 
with m binary characters. Further, he assumed that if a character was 0 it was 
known to be ancestral and that a taxon with a 1 character evolved from another 
ancestral taxon with the same character being 0. The desired tree, a Hennig tree,  
is explicitly rooted, and the root node is assumed to be labeled (O,O, 0 , .  . . , O ) ,  i.e., 
all rn characters are ancestral. The ith character, for each i, is associated with an 
edge of the tree and a taxon has the i th character being 1 if and only if it is in 
the subtree reached by that edge. For example, consider the set of 5 characters 
(ignoring character 6) and the corresponding tree in Fig. 2.3. However if character 
6 is also given as input then it is impossible to build the required Hennig tree. 
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Figure 2.3: A character matrix and a Hennig tree for the first five characters 

There is a simple characterization of inputs for which Hennig trees exist. Let 
N(’ )  be the set of taxa with the ith character being 1. The following result [14] is 
known as the “Pairwise Compatibility Theorem”. 

Theorem 2.1 A Hennig tree exists if and only if f o r  each i and j e i ther  N( ’ )  and 
N ( j )  are disjoint o r  one contains the other.  

Gusfield [30] showed that this test can be applied in O(nm) time. He begins 
by permuting the entries in the n x m binary matrix of characters. He regards 
each column as a binary integer and sorts the columns in decreasing order; this 
can be done in O(nm) time using a radix sort. It is easy at this point to see if the 
theorem holds. If a Hennig tree exists the tree itself can be found in the same time 
bounds [30]. To do this sort the matrix a second time, but sort by rows this time. 
It can be shown that now the matrix has the consecutive ones property:  all the 1’s 
in each column are in consecutive rows (where row n is adjacent to row 1). It is 
easy to  construct the tree from a matrix in this form. Gusfield showed a R(nm) 
lower bound on determining if a Hennig tree exists. 

Two Hennig trees TI and Tz are compatible trees if they are both refinements 
of another tree T3. Call TI a refinement of T3 if TI can be obtained by a series of 
edge contractions from T3. Gusfield [30] gave a linear time algorithm to determine 
if two trees are compatible trees. 

2.2.2 Free Hennig Trees 

Suppose the binary character input is given but it is unknown whether 0 or 1 
represents the ancestral value for each character. This is the free Hennig tree 
problem. The root corresponds to  one of the 2m possible sets of characters that 
could be the m ancestral values. By trying each one, and relabeling the characters 
throughout so that the root seems to be (0, 0, . . . , 0), this case can be reduced to the 
previous situation. McMorris [35] showed that only one of these 2m possibilities 
needs to  be tried; if a free Hennig tree exists then a regular Hennig tree exists 
relative to that choice. In particular, that choice has the ith character of that root 
being 1 if and only if the majority of the taxa has a 1 for that character. 
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2.2.3 Maximum Compatibility 

What happens when the input does not correspond to a Hennig tree? One ap- 
proach, known as “maximum parsimony”, is discussed below. Le Quesne [38] pro- 
posed a more direct approach. Select the largest subset of characters which are 
compatible, in the sense that they satisfy the Pairwise Compatibility Theorem, and 
return the Hennig tree corresponding to those selected characters. (Of course, this 
method can be biased by the way the original set of characters was sampled; see 
[21] for variations.) 

Unfortunately, Day and Sankoff [9] have proven that this maximum compat- 
ibility method is NP-hard, as well as related variations. (In this chapter each 
NP-hard optimization problem has a corresponding NP-complete decision problem 
formulation; see Chapter 1 in Part I . )  There are no known heuristics that are not 
straightforward attacks on the underlying maximum clique problem. In practice, 
systematists will use any large clique as advisory but not decisive; the characters 
that are not selected are completely ignored by this method, which may be inap- 
propriate. Often for actual biological data finding the maximum clique has not 
proven intractable. 

2.3 Maximum Parsimony Methods 

It is inherent in the compatibility methods that each character is “uniquely de- 
rived”, inasmuch as a tree is found where there is a single transition from an 
ancestral to a derived state for each character. Maximum parsimony methods relax 
this assumption by finding a tree which minimizes the number of transitions; these 
are also known as “minimum evolution methods”. In biology there are examples 
of “reversion” (a return to a ancestral state) and “convergent evolution” (paral- 
lel evolution of the same derived state), which are rare but cannot be ignored. 
The adoption of this method depends on the nature of the characters. For exam- 
ple, reversion of molecular characters is much more common than morphological 
characters . 

This method was originally proposed for continuous character data by Edwards 
and Cavalli-Sforza [13]. However discrete character domains will be discussed first. 
In the next subsections such methods are presented. The discussion of the maxi- 
mum parsimony approach is continued in the following sections as well. 

2.3.1 Camin-Sokal Method 

Camin and Sokal [2] kept the assumption that characters are binary, ancestral 
characters are correctly labeled 0, and no reversions (from 1 to 0) are allowed . 
However they do allow convergent evolution, so that a transition from 0 to 1 can 
occur several times, for any character. For example, the data in Fig. 2.3 gives the 
tree in Fig. 2.4, where the transition for character 6 occurs twice. Note that this 
method produces a rooted tree. 

Day, Johnson and Sankoff [S] have shown that the optimal Camin-Sokal tree 
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D A B C E 

Figure 2.4: A Camin-Sokal tree 

problem is NP-hard. For a given tree, with taxa assigned to the leaves, i t  is simple 
to calculate the minimum number of transitions (from 0 to 1) needed by this 
method. For each character, simply use one transition for each maximal subtree of 
taxa having that character being 1. However there is no guarantee that the given 
tree is a good topology. 

This method can be recast as a minimum Steiner arborescence problem in m 
dimensions, as discussed in Chapter 4 of Part 111. The root is identified with the 
origin and each edge is directed away from the origin. Each taxon is a corner of 
the unit m-dimensional hypercube. 

2.3.2 Chromosome Inversion Method 

This method avoids the need for independent 0 to 1 transitions [17]. It assumes 
that 0 is ancestral but the transition is not to  the 1 state, but to  a “polymorphic” 
(or “heterozygous”) 01 state. There is only one transition to  the 01 state, for each 
character, but there can be several later transitions from 01 to 1 and from 01 to  0. 
The method seeks to minimize the total number of transitions. 

Note that the problem can be stated as a Steiner problem in directed networks. 
A digraph can be derived from the m-dimensional grid graph induced by the point 
set {0,0.5, l}m, where the polymorphic state is associated with the value 0.5. The 
origin, identified with the root, is included with original set of taxa. There are 
directed edges corresponding to the permitted single transitions: 0 to 0.5, 0.5 to 1, 
and 0.5 to 0. 

Day and Sankoff [lo] have shown that this Steiner problem is NP-hard. It is 
easy t o  determine the minimum number of transistions for a given tree and can be 
handled similarly to the Camin-Sokal method. 

2.3.3 Do110 Method 

This method I191 also assumes a rooted tree is found for binary characters with 
known ancestral states. However it assumes no convergent evolution but allows 
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reversions. In particular, for each character, there is only one 0 to 1 transition, 
but as many 1 to 0 transitions as needed. It is also NP-hard [S] and can be 
handled similarly to the Camin-Sokal method. It can be cast as a Steiner problem 
for directed networks, analogously to the previous method. The point set for the 
graph is (0, l}m and the allowed transitions dictate which directed edges to include. 

Other maximum parsimony methods are discussed in the next two sections. 

2.4 Wagner Parsimony Method 
This is the most studied maximum parsimony method, so an entire section is 
devoted to it. It is analogous to the rectilinear Steiner problem. In this method 
there is no assumption about character states being ancestral and there are no 
restrictions on reversions or convergent evolution. Essentially the method can be 
cast as the following task: labeling the edges of a tree with characters, such that the 
taxa at the endpoints of an edge differ exactly in those characters that label that 
edge (this includes the inferred taxa at the internal nodes). The basic Wagner tree 
problem asks for the tree, with the given taxa at the leaves, that needs the fewest 
edge labels. It is important to note the tree found by this method is inherently 
unrooted, since there is no preferred direction across any edge. For example, for 
the problem in Fig. 2.3 one gets the tree in Fig. 2.5 (which just happens to be the 
same as the tree in Fig. 2.4 without the putative root). 

C 

B 

Figure 2.5: A Wagner tree 

So far the emphasis has been on binary characters. If binary characters are 
assumed then for Wagner trees the state of each character for an internal (Steiner) 
node can easily be inferred if the edge-labeled tree is given. Do a breadth-first 
search, from any leaf, toggling each character labeling an edge that is crossed. 
Clearly the Wagner method with binary characters can be stated as an RSMT 
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problem for terminals on the m-dimensional hypercube, a problem discussed in 
Chapter 4 of Part 111. Recall Graham and Foulds [27,29] have shown that this 
Steiner problem is NP-hard. 

In this section the concentration is on general discrete characters where the ith 
character takes on a value from the set Ci. For example, when the ith character 
is a nucleotide site then Ci = {A,  TI G ,  C } ,  where these correspond to  the four 
nucleic acids that can be present a t  a site. In this situation, unlike the binary case, 
it is not trivial to  infer the character states of the internal nodes, since while it is 
known that the state changes across an edge it is not known what the new state 
is, without further calculation. 

This general Wagner problem can be mapped to a Steiner problem in m- 
dimensional space, if some coordinate value is associated with each state in each C;. 
Formally, each taxa is represented by a point in C1 x Cz x . . . x C,. Each internal 
node must also be such a point (by definition, so there is no need to establish an 
analogue of Hanan’s theorem). 

The Wagner problem can now be described as a Steiner problem. In rare cases 
(such as those in the previous section) it is meaningful to invoke a true rectilinear 
metric. However, in practice the distances are more general, so it is natural to 
pose it as a network Steiner problem on the multidimensional rectilinear graph 
induced by C1 x C2 x . . . x C,. Note that this rectilinear graph G = (V, E )  is not 
properly a “grid graph” since the transition from one state is not necessarily to  an 
“adjacent” state (hence the vertices along a “row” are connected by a clique, rather 
than a path). In section 1 the various distance measures were discussed that can be 
used between two sets of m characters (ul, a2, .  . .,a,) and ( b l ,  b 2 , .  . . , b,). Here 

d(ai,  b i )  is used, where d(ai,  b i )  is the “distance” between the states ai and b;, 
of character i. The length of any edge in E from ( a l l  .. . , ~ - 1 ,  air a j + l , .  . . , a m )  to  
( ~ 1 , .  .., U i - l , b i , a i + l , .  . . , U r n )  has length d ( ~ i , b i ) .  Formally, the Wagner method 
asks for a given set of taxa N V = C1 x Cz x . . . x C, to find the Steiner minimal 
tree in G. 

Eck and Dayhoff [12,11] were the first to discuss the discrete Wagner method. 
The characters used in their study were amino acid sites from protein sequence data. 
Protein sequences are molecular data like DNA sequences, except that each Ci 
contains 20 amino acids, instead of just 4 nucleic acids. Some later Wagner methods 
used morphological characters, but much of the research has used molecular data. 
Since the character’s contributions to  the cost of the tree are independent, each 
character can be treated independently. 

2.4.1 Using a Given Tree 

Suppose that one is given a specific tree T with its leaves labeled with the given 
taxa. The problem is to label the internal nodes so that sums of the lengths of the 
edges is minimized (i.e., it is an optimal Wagner tree relative to T) .  

This problem was essentially solved in Section 4.4 in Part 111, when d-dimensional 
RSMTs were discussed. The same bottom-up dynamic programming algorithm can 
be used. There are two reasons the situation is simpler here: the degree of each 
node is bounded by the constant 3, and the number of possible values at each in- 
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ternal node, for each character, at each internal node is also bounded by a constant 
c = maxi{lCjl}. The runtime for this approach is O(n),  since each node can be 
processed in constant time. For molecular data the constants are small. 

Many variations of this basic approach have been proposed. Algorithms have 
been given by Fitch [25,24], Hartigan [31], Moore, Barnabas and Goodman [36], 
Sankoff and Rousseau [MI, and others. 

Since there are an exponential number of possible topologies for T ,  the fast 
algorithm for a fixed T is of limited utility. Exhaustive analysis is very limited, so 
in general T is selected by a heuristic or with biological expertise. 

2.4.2 Informative Characters 

As noted in the first section, the set of characters used in this analysis was created 
during a preprocessing step that selected those sites that were part of a multiple 
alignment. In fact i t  is possible that many of these aligned characters are not 
informative and are useless. A character for a given set of taxa is informative if 
that character actually can be used t o  distinguish between two possible phylogenetic 
trees. 

Consider the five characters for the four taxa given in Fig. 2.6, where the charac- 
ters are nucleotides. Note that there are only three possible trees for the four taxa, 
and recall that  each character can be considered independently. The first charac- 
ter is not informative since every tree has no transitions. The second character 
has every tree requiring one transition. The third always require two transitions, 
and the fourth always requires three. The fifth character favors one tree (which 
only requires one transition) over the other two (which require two transitions) as 
shown, and is the only informative character in this example. 

This can be generalized to show that a character is informative if and only if it 
has at least two taxa with one value and two other taxa with another value. Unfor- 
tunately molecular characters are often chosen because they are highly conserved 
(relative to some alignment). Hence, there are situations where most characters 
are not informative. Li and Graur [34] cite a study comparing human, chimpanzee, 
gorilla, and orangutan sequences, where there were only 27 informative sites found, 
while the original DNA sequences were 10,200 nucleotides long (before alignment). 

2.4.3 Choosing a Tree 

For 4 taxa only 3 trees need to be tried. For 8 taxa there are 10,395 trees and 
for 10 taxa the number grows to 2,027,025. Sometimes the optimal tree is not 
desired (or it may not be entirely trusted if computed) but instead a handful of 
candidate trees, suggested by other biological considerations, are all that need to 
be considered. However, in general, for large n, a heuristic is needed for choosing 
a tree. Usually these heuristics proceed by modifying the current tree in a greedy 
fashion. The initial tree can be random or constructed by a distance method, 
discussed later. 
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Figure 2.6: A character matrix and trees showing that the fifth character is infor- 
mative 

Cutting and Grafting Dayhoff [ll] suggested a cutting and grafting approach. 
Consider the tree in Fig. 2.7. Pick a single edge and cut the tree into subtrees 
A and B. iFrom A construct the trees A’ (formed by condensing B to a vertex 
u )  and A” (formed by removing the edge to B and the vertex in A incident on 
that edge); B’ and B“ are analogous. A graft of B‘ onto A“ is formed by placing 
the vertex b ,  from B’, in the middle of an edge of A”; two examples are shown. 
The algorithm tries all possible grafts of B’ into A” and of A’ into B” (ignoring 
the original tree, there are only the two possibilities shown in the figure, for this 
example). Further the algorithm repeats this process for every possible cut into an 
A and B. All O(n2)  possible candidate trees are scored by the Wagner criterion 
and the tree of shortest length is selected for the next iteration of the algorithm. 

Local Changes Another technique for generating a list of candidate trees during 
each iteration has been proposed that only makes local changes (see Cedergren, 
Sankoff, LaRue and Grosjean [4]). Pick an edge in the current tree that is not 
incident to a taxon, as shown in Fig. 2.8. Then two new tree topologies can be 
generated, by interchanging subtrees, as shown. Both new subtrees are generated 
for every such edge. All of these trees are scored and the shortest is used in the 
next iteration. 

There is another way to describe this algorithm. Replace each connected subtree 
with four leaves with every other possible subtree on the same leaves (recalling 
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Figure 2.7: A tree that has been cut and below the two new trees that can formed 
by grafting 

that all internal degrees are 3). Czelusniak, Goodman, Moncrief and Kehoe [5] 
have suggested extending this technique by considering all connected subtrees of 8 
leaves. The search is obviously more extensive and perhaps converges faster. The 
number of cases to  consider is still O(n)  but the constant of proportionality is very 
large. Extending beyond 8 leaves probably could not be tolerated. 

MST-Based Several researchers have suggested building the tree using agglo- 
merative clustering techniques (e.g., [12,18,24,26]). These techniques are related 
to  the Prim and Kruskal techniques for building up a MST. Just one is described, 
due to Foulds, Hendy and Penny [28]. 

They use a Steinerization operation (called “coalescing”) that takes a tree and 
adds a new vertex between three vertices (two connected to a common vertex) such 
that the total length of the tree is reduced. The algorithm is always greedy, doing 
the Steinerization with the most improvement first. 
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7 

D I 

. 
Figure 2.8: Changing a topology by rearranging subtrees around the middle edge 

Their algorithm is Kruskal based. It begins with n singleton trees corresponding 
to the taxa. Each iteration begins by connecting two vertices (either the original 
taxa or created by Steinerizations) with the shortest such connection between two 
trees. Afterwards Steinerizations are performed until there is no improvement. 
Then the process iterates, until a single tree spans all the taxa. (Actually, when 
there are ties they allow all the equal-length edges to be added, perhaps creating 
cycles that are broken later with biological reasoning.) 

Branch-and-Bound Two branch-and-bound approaches have been presented. 
Hendy and Penny [32] proposed a technique where taxa are added one at a time. 
They solved a real example with n = 11 in a few minutes. Penny and Hendy [37] 
used an approach where the characters are added one at a time. They solved an 
example with n = 15 and m = 33 in 5 minutes on a personal computer. They 
conjecture the algorithm performs reasonably well on real biological data, though 
inputs leading to  exponential time exist. 

2.5 Other Maximum Parsimony Methods 

Two other approaches are presented that fall under the rubric of maximum parsi- 
mony methods. The first unifies the alignment process with the evaluation of total 
tree length. The second explicitly introduces a Euclidean metric. 

2.5.1 Sankoff Method 

When using molecular data the Wagner method relies on a preprocessing step to 
align the raw sequences. However many of the sites that cannot be aligned amongst 
all the taxa are not used as characters. Sankoff has suggested using the basic notion 
of the Wagner method, maximum parsimony, but to include the alignment in an 
essential way. A clear advantage of this approach is that more of the raw data 
is used in the computation. (Another advantage, beyond the scope of this book, 
is that the resulting multiple alignment is constructed relative to a tree - other 
non-tree methods create poorly justified alignments.) The disadvantage is that the 
algorithm is slower. To score a given tree takes O(nrn") time, where the n input 
sequences are of length rn. This is exponential in n but not in m. 
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Several versions of the algorithm, for a given tree, have been presented, culmi- 
nating in the paper by Sankoff and Cedergren [41]. The algorithm is not discussed 
here since it would involve a digression into the theory of alignments. Given the 
technique for a fixed topology, various topologies can be explored, as with the 
Wagner method. 

Since there is a practical bound on n that the above algorithm can handle, 
Sankoff, Cedergren and LaPalme [42] proposed a heuristic for large fixed topologies. 
Recall, the problem is easily solved for n = 3, three taxa surrounding one internal 
node. They begin with some labeling of the internal nodes of the large tree. Then 
they go to each internal node and temporarily regard its three neighbors as fixed 
taxa (even if they are just internal nodes), and then use the algorithm to rescore 
that central internal vertex. (This could be regarded as a Steinerization operation.) 
This is done successively to  all the internal nodes until no appreciable reduction in 
the total tree length occurs. 

2.5.2 Continuous Methods 

The Wagner method has been described as a maximum parsimony method for dis- 
crete characters. However, the original work in this area, by Cavalli-Sforza and 
Edwards [13,3] used continuous characters. For example, in population genetics, 
one compares the “gene frequencies” of various species, which are real numbers. 
They chose to  compute the distance between taxa as the Euclidean distance, re- 
garding their continuous characters as points in m-dimensional real space. 

They recognized the relationship to  the Euclidean Steiner problem but proposed 
no new approaches. Thompson [48] gave a Euclidean approximation algorithm 
based on repeated Steinerizations. Rogers [39] presents other Euclidean methods 
that are familiar from Part I. 

2.6 Maximum Likelihood Method 

This method, proposed by Felsenstein [20], tries to apply a more sophisticated 
statistical criterion than simple parsimony. The method explicitly associates a 
length of time with each edge. (He begins by assuming a fixed rate of change along 
all edges, but the results can be interpreted with varying the rates of change.) 

There is a preprocessing step, before reading the input. It is assumed that each 
character is a nucleotide, though it could be easily generalized to  other discrete 
character domains. He calculates Pab(t), which is the probability that if one begins 
with a character being a that it will be b after t time units. A reversible Markov 
process is used. 

Suppose a tree is given with all the taxa associated with the leaves. With this 
method each character is assumed to be independent, so the algorithm will deal 
with only one character at a time. Suppose further that each internal node has 
a character (tentatively) associated with it, and that each edge ( u , ~ )  has a time 
span t,, associated with it. Let a = (a1, . . . , ~, , -2 ) ,  where ai is the value of the 
character at internal node i; leaf j (j > n - 2 by convention) is labeled with the 
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taxon’s character aj. The likelihood of such a tree T is 

where Pal is the prior probability of the root being al ,  and each edge ( u , v )  is 
directed towards a leaf. However, when no character information about the internal 
nodes is given then the lakelzhood is Ca &(a). By reordering the summations this 
quantity can be calculated, bottom-up, in linear time. 

Felsenstein proves that the problem can be regarded as essentially unrooted ( u s  
ing the fact that the underlying Markov process is reversible). He gives a heuristic 
for choosing the topology of T and for choosing each tu,. He builds T in a Prim- 
based fashion, grafting one taxon at a time onto a growing tree. A taxon is grafted 
by adding an edge from it to  the middle of an existing edge. The edge that is 
selected is the edge that gives the best likelihood, over all edges in the (partial) 
tree. The t,, are selected greedily by optimally setting each relative to those that 
are already set; details in [20]. 

While each (fully specified) tree can be evaluated in linear time, each of the 
above stages involves many such evaluations. This is the slowest heuristic in this 
chapter. It is felt by some to be the procedure that gives the best results. 

The methods so far - compatibility, maximum parsimony, and maximum like- 
lihood - are based on character states and can be cast as Steiner problems. The 
next section will briefly look at alternative methods that are only indirectly related 
to Steiner problems. 

2.7 Distance Methods 

Distance methods begin with an n x n matrix D = [ d i j ] ,  where dij is a measure of 
the “distance” from taxon i to taxon j ;  D is called a dissimilarity matrix.  The goal 
is to  create a tree spanning the taxa that is consistent with the input. Typically 
the length of each tree edge is also calculated. However, there is not necessarily any 
notion of the “position” of each taxon (in terms of characters or sites) so it makes 
no sense to ask for the position of each internal node. In this way this approach is 
unlike a Steiner problem. 

An advantage of this approach is that distances are pairwise and, hence, do not 
depend on multiple alignments (which are hard to compute and result in a lot of 
raw data being ignored). Typically for molecular data the distances are alignment 
distances, but are affected by the lengths of the molecular sequences not just their 
similarity. It is a basic assumption for the distance methods that evolution goes at 
a constant rate. There are several ways to correct for this assumption [21]. 

Ideally the tree T ,  with known edge lengths, found will satisfy the additivity 
condition: P~(i,j) = d i j ,  where P~(i,j) is the length of the path connecting i 
and j in T .  Such a tree is called an additive tree.  In practice a tree is desired in 
which the additivity condition holds approximately. Often a relaxed requirement 
is used in place of the additivity condition: P~(i,j) 2 d i j .  Day [7] showed that 
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determining the minimum total length tree satisfying even this relaxed condition 
is NP-hard. 

Another way to judge how nearly a tree T fits the input D is to use a goodness- 
of-fit measure, 

F ~ ( D , T )  = C ~ f i ( i , . i ) - d i j I ~  

where (Y is either 1 or 2. This has been suggested be several researchers. Day [6] 
has shown that finding a tree T that minimizes F,(D,T), for either a, is NP-hard. 

l<i<j<n 

2.7.1 Pair Group Method 

This is a clustering method. It differs from the MST-based methods for the Wagner 
method in that the position of each new point is not considered. An early algorithm, 
given by Sokal and Michener [46], is known as UPGMA, the unweighted pair group 
method with arithmetic mean. 

The UPGMA is a Kruskal based method, that forms larger and larger clusters 
of taxa. It begins with n singleton clusters. Consider two (disjoint) clusters of taxa 
A = {aj, a2, .  . . , a p }  and B = { b j ,  b 2 , .  . . , b q } .  The distance between these clusters 
is defined as 

1 
d(A,B)  = - dab. ‘‘ aEA,bEB 

The algorithm, on each iteration, merges the two closest clusters and connects the 
“roots” of the two clusters. The root of a singleton cluster is the vertex itself, 
otherwise it is a vertex in the middle of the (mwt-recent) edge used to form the 
cluster. 

2.7.2 Distance Wagner Methods 

Farris I161 has dubbed his approach the “distance Wagner procedure”, even though 
it has little to  do with the maximum parsimony approach. It is a Prim-based 
approach. He begins by connecting the closest pair. Thereafter he picks some 
taxon c not in the current tree (where c minimizes some function on such nodes). 
He grafts c onto the current tree by connecting it into the middle of some edge, 
from a to b ,  where the edge was chosen to minimize dac + dbc - dab. A new node 
d connected to  a,  b, and c is added, replacing the edge from a to b. The distances 
from d to  the other nodes, including the taxa not yet in the tree are computed, 
and the algorithm iterates with a new c. 

The method by which the distances are recomputed was improved by Tateno, 
Nei and Tajima 1471. Faith [15] surveys these techniques and proposes another 
method to  recompute the distances. 

2.7.3 Four-Point Condition Methods 

Suppose an additive tree for 4 taxa is given, as shown in Fig. 2.9. Note that 
d12 + d34 5 d13 + d24 = d14 + d23; where the inequality is strict unless the central 
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edge is zero length. Two taxa are neighbors in a topology if they are both incident 
to  the same vertex. If, for a given dissimilarity matrix, there were an additive tree 
then the above sums can be computed and it is easily determine that 1 and 2 (and 
3 and 4) are neighbors. In that case the tree is completely determined. 

5 

Figure 2.9: A tree with four taxa and tree formed after coalescing neighboring taxa 

However, it is unlikely that raw data will correspond to an additive tree, since 
the distances are always approximations. However one can expect, if the data is 
well-behaved, to find, say, d12 + d34 5 d13 + d24 5 d14 + d23. This is considered to 
be strong evidence that 1 and 2 (and 3 and 4) are neighbors. In general, if 

for all taxa i, j ,  k,and 1, then D specifies a tree metric. This inequality is know 
as the four-point condition. Bandelt [l] surveys the literature on tree metrics (and 
related “ultrametrics”) and gives fast algorithms for recognizing such D. 

Sattath and Tversky [45] have presented an algorithm, based on the above 
observations, for n 2 4, assuming they have a tree metric. They try every subset 
of four taxa { a l ,  a2, a3, u4) and, for each subset, they determine i ,  j ,  k,and 1, such 
that daia j+dQka,  corresponds to  the left-hand side of the four-point condition. Then 
the pairs of taxa (aj,aj) and ( U L , U J )  are each awarded 1 point. After exhausting 
all sets of 4 taxa, pick the pair ( u , b )  that received the most points, This pair is 
now forced to  be neighbors in the final tree. The algorithm proceeds by coalescing 
a and b into a pseudotaxon “cab” and a new dissimilarity matrix is computed (using 
the UPGMA technique). The algorithm them iterates until n is reduced to  4. See 
Fig. 2.9. 

Fitch [23] proposed a related algorithm based on the four-point condition. It 
emphasized the calculation of the length of the internal edges 

2.7.4 Neighbor Joining Method 
Saitou and Nei [40] presented an algorithm related to those in the previous subsec- 
tion, in that it builds the tree by successively joining neighbors. 
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Figure 2.10: A symmetric intermediate tree and a tree formed forcing neighbors 
and tree formed by coalescing the neighbors 

To explain their method consider the trees in Fig. 2.10. The star tree repre- 
sents a symmetric situation where no topology has emerged, and the second tree 
represents a decision to have two taxa be neighbors in the final tree. The algorithm 
computes the sum S12 of the lengths of all the edges in the second tree, where 1 
and 2 are neighbors: 

assuming the additivity condition. They compute each S;, and choose to make 
a and b neighbors when is minimum. Then a and b are coalesced (and the 
distances are recomputed as in UPGMA) and the algorithm iterates on the smaller 
instance. 
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evolutionary tree, 301, 302 
exact cover problem, 15, 100 
exhaustive partitioning heur. (EP), 239 

face cover problem, 184 
FADH, see average distance heuristic 
fan, 180 

feed-through, 272 
Fermat problem, 3 
Fibonacci heap, 119, 130, 152, 158 
flip, 207 
floorplanning, 276 
forbidden corner, 246 

contraction, 180 
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forest, 95 
formal tree, 69 
four-poin t 

condition, 317 
Steinerization heur. (4PS), 229,233 

fractional Steiner point, 278 
free edge, 44 
fringe vertex, 272 
FST, see full Steiner tree 
full 

companion topology, 47 
component, 53 
RSMT, 207 
Steiner topology, 7 
Steiner tree (FST), 7 
topology, 207 

full-custom placement, 268 
fulsome 

canonical tree, 208 
rectilinear Steiner minimal tree, 207 

gap, 303 
gate array placement, 268 
Gaussian elimination method, 27 
GE, see greedy embedding heuristic 
general position of terminals, 226 
generalized Voronoi diagram, 251 
geographic nearest neighbor, 223, 230 
GEOSTEINER algorithm, 28, 77 
Gilbert 

network, 80 

point, 80 

ratio, 81 
tree, 81 

router, 269 
routing, 268 

minimum, 81 

Gilbert-Steiner 

global 

graft, 311 
Graham’s conjecture, 66 

bipartite, 100 
chordal, 101, 185 
chordal bipartite, 101 
distance-hereditary, 186 
grid, 213, 243 
outerplanar, 257 
planar, 101 
split, 101 

graph, 5 

strongly chordal, 185 

heuristic, 233 
embedding heuristic (GE), 224 

Steinerization heuristic (GS), 225 

tree, 54 

greedy 

iterative (IGE), 225 

iterated (IGS), 225 

heuristic (GTH), 157 
grid 

graph, 213, 243 
point, 288 

group Steiner tree problem, 193 
GS, see greedy Steinerization heuristic 
GTH, see greedy tree heuristic 

Halin network, 180 
Hamiltonian circuit, 264 
Hamming 

distance, 261, 304 
path, 261 

KCH, see hill-climbing heuristic 
HE, see hierarchical embedding heuristic 
head of a T-point, 206 
heap 

Fibonacci, 119, 130, 152, 158 
leftist, 119 

free, 305 

coordinates, 9, 26 
metric, 289 
plane, 290-292 
tree, 25, 26 

embedding heuristic (HE), 227 
Steiner tree problem, 191 

Hennig tree, 304 

hexagonal 

hierarchical 

hill-climbing heuristic (HCH), 163, 172 
hole, 268 
homogeneous graph, 186 
hull 

convex, 10 
path-convex, 86 
rectilinear convex, 214 
Steiner, 9, 25, 214 

Hwang linear variant, 23, 29, 30 
hypercube, 261 
hyperplane, diagonal, 288 

IlS,  see iterated 1-Steiner heuristic 
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IGE, see greedy embedding heuristic 
IGS, see greedy Steinerization heuristic 
incompatibility matrix, 30 
independent edge length, 44 
induced subnetwork, 95 
informative taxon, 310 
inner 

boundary corner, 214 
spanning tree, 46 

corner, 245 
line, 245 
spanning line, 245 
segment, 245 

intermediate block, 97 
internal node, 301 
interval, 181 

double, 254 
ISE, see simple embedding heuristic 
isodendral region, 237 
ISS, see simple Steinerization heuristic 

interior 

k-planar network, 183 
k-size quasi-Steiner tree, 59, 295 
k-size Steiner tree, 59 
k-SMT, 60, 84 
KA, see Kruskal-based heuristic 
KB, see Kruskal-based heuristic 
KBH, see Kruskal-based heuristic 
KC, see Kruskal-based heuristic 
knock-knee, 277 
KPS, see Kruskal-based heuristic 
Kruskal’s algorithm, 52, 155, 165, 222, 

229, 236, 264 
Kruskal-based heuristic (KBH, KA, KB, 

KC), 155, 172, 232 
plane sweep (KPS), 235 

L-shaped optimal embedding heur. (LOE), 

ladder, 68 
Lagrangean relaxation, 138, 146 
lattice point, 71 
layered terminals, 254 
layout, row-based, 272 
LD, see loop detection heuristic 
LE, see long edge reduction 
Lee maze router, 274 
leftist heap, 119 
leg of a corner, 206 

226 

length 
function, 95 
of a subnetwork, 96 
of an edge, 96 
transformation (LT), 116, 122 

boundary, 214 
complete, 206 
interior, 245 

spanning, 245 
Simpson, 3, 23, 29 
zigzag, 70 

line, 206 

linear relaxation, 137, 145 
listed coordinates, 288 
long edge, reduction test (LE), 107 
LOE, see optimal embedding heuristic 

loop detection heuristic (LD), 228 

LP relaxation heuristic, 278 
LT see length tranformation 
luminary, 32 
luminary algorithm, 32, 59, 71, 77 
lune, 10, 28 

loop, 95 

with Steinerization (SLD), 228 

property, 10, 28 

magnetic attraction, 272 
many-cuts-and-patch tree, 70 
matrix 

dissimilarity, 315 
distance, 119 
incompatibility, 30 

MAX SNP-hard problem, 195 
max Steiner tree problem, 200 
maximal series-parallel network, 177 
maximum 

clique problem, 306 
likelihood method, 314 
persimony, 306 
persimony methods, 306 
point, 42 

interior, 42 
maze router 

MDNH, see multiple distance network 
heuristic 

median heuristic (MH), 166 
Melzak algorithm, 21, 127 
Melzak FST algorithm, 22, 23, 53, 77, 

82, 287 

Lee, 274 
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algebraic method, 82 
algebraic version, 25 

membrane model, 17, 60 
merging stage, 21, 22, 29, 32 
metric 

hexagonal, 289 
tree, 317 

MGN, see minimum Gilbert network 
MH,  see median heuristic 
minimal simple rectilinear Steiner tree 

minimum 
(MSRST), 252 

cost alignment, 303 
evolution methods, 306 
Gilbert network (MGN), 81 
k-size quasi-ST, 59 
length path, 96 
regular network (MRN), 81 
spanning tree (MST), 37, 52, 93, 

108, 119, 123 
Boruvka’s algorithm, 52 
heuristic (MSTH), 119, 157 
Kruskal’s algorithm, 52 
Prim’s algorithm, 52 
problem, 52, 97 
Sollin’s algorithm, 276 

Steiner tree, 5 
Minkowski space, 287 
model 

membrane, 17 
soap film, 16 
string, 16 

module, 268 
MRN, see minimum regular network 
MSRST, see minimal simple rectilinear 

MST, see minimum spanning tree 
MSTH, see minimum spanning tree heur. 
MUH, see upgrading heuristic, modified 
multiconnected 

Steiner tree 

Steiner arborescence problem, 197 
Steiner network problem, 196 

alignment, 304 
distance network heuristic ( M D N H ) ,  

162 
Steiner trees problem, 195 

mutation, 303 

multiple 

naive embedding heuristic (NE), 224 

NE, see naive embedding heuristic 
nearest neighbor 

geographic, 223, 230 
network, 223, 232 
vertex reduction test (NV), 114 

1-planar network, 182 
k-planar network, 183 

negative edge, 30 
algorithm, 30, 31, 77 

neighbor joining method, 317 
neighborhood 

nearly 

of a vertex, 229 
Steinerization heuristic (NS), 229 

segment, 209 
segments 

taxon, 316 

neigh boring 

alternating, 209 

net, 267 
network 

I-planar, 181, 243 
2-tree, 177 
disconnected, 95 
bipartite, 96, 100 
complete, 96, 98, 101 
connected, 95 
design problem, 197 
directed, 96, 99 
distance, 96, 98, 125 
flow problem 

Gilbert, 80 

Halin, 180 
k-planar, 183 
nearest neighbor, 223, 232 
nearly 1-planar, 182 
nearly k-planar, 183 
nonseparable, 95 
outerplanar, 179 
planar, 96, 101 
rectilinear, 268 
regular 

routing, 277 
series-parallel, 177, 244, 252, 257 

maximal, 177 
Steiner minimal, 93 
strongly chordal, 101 

minimum-concave-cost, 130 

minimum (MGN), 81 

minimum (MRN), 81 
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undirected, 95 
node, 183 
non-terminal, 93 

reduction test (NTDk), 104, 105 119- 
122 

nonseparable network, 95 
nonstraight edge, 292 
NP problem, 15, 218 
NP-complete problem, 15, 218 
NP-hard problem, 15, 100 
NS, see neighborhood Steinerization heuris- 

NTDk, see non-terminal reduction test 
numerical algorithm, 26, 77 
NV, see nearest vertex reduction 

tic 

obstacle-avoiding SMT, 85 
obtuse tree, 65 
octahedron, regular, 78 
optimal decomposition property, 128 
optimal embedding heuristic 

L-shaped (LOE), 226 
Z-shaped (ZOE), 227 

circumferential, 8 
zigzag, 8 

outer boundary corner, 214 
outerplanar 

order 

graph, 257 
network, 179 

outlier. 303 

P3S, see Prim-based heuristic 
pair group method, 316 
parallel edges, 95 
partitioning heuristic 

exhaustive (EP), 239 
probabilistic (PPA, PPB), 236 

bottleneck Steiner, 105 
discovered, 280 
elementary, 105 
Hamming, 261 
heuristics, 151 
minimum length, 96 
shortest, 96 
terminal, 152 
with terminals, reduction test (PTm), 

path, 95 

107,109, 120-122 
path-convex 

hull, 86 
region, 182 

PB2, see Prim-based heuristic 
performance ratio, 51 
perimeter, 182 
permu tation 

cograph, 186 
graph, 186 

phylogenetic tree, 302 
phylogeny, 302 
pin, 267 
placement 

full-custom, 268 
gate array, 268 
sea-of-gates, 268 

graph, 101 
network, 96, 101 

plane 
hexagonal, 292 

plane sweep, 233, 234 
plane, hexagonal, 290, 291 
point, 5 

planar 

of a lattice, 71 
complementary, 30 
corner, 206 
directly connected, 206 
equilateral, 22 
Gilbert, 80 
maximum, 42 
on a grid, 288 
original, 5, 205 
Steiner, 5, 206 
Torricelli, 3, 6 

Poisson distribution, 57 
polygon, characteristic, 38 
PPA, see probabilistic partitioning heur. 
PPB, see probabilistic partitioning heur. 
PPS, see Prim-based heuristic 
Prim’s algorithm, 52, 119, 151, 152, 155, 

Prim-based heuristic 
parallel, 275 
plane sweep (PPS), 234, 235, 239 
RMST-driven (RP), 230 
using common edges, 271 
with 3-point Steinerizations (P3S), 

with biased %point connections (PB2), 

222, 229, 230, 264 

230, 233 

232. 233 
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with magnetic attractions, 271 
probabilistic partitioning heuristic (PPA, 

problem 
PPB), 236, 237 

1-Steiner, 237, 263 
degree-dependent Steiner tree, 192 
Euclidean Steiner (ESP), 3 
exact cover, 100 
Fermat, 3 
free Hennig tree, 305 
group Steiner tree, 193 
hierarchical Steiner tree, 191 
max Steiner tree, 200 
maximum clique, 306 
minimum spanning tree, 52, 97 
multiconnected Steiner 

arborescence, 197 
network, 196 

multiple Steiner trees, 195 
network design, 197 
NP, 15 
NP-complete, 15 
NP-hard, 15 
optimal Camin-Sokal tree, 307 
realization of distance matrices, 199 
rectilinear Steiner, 205 
shortest path, 97 
Steiner 

arborescence, 99 
in networks, 93 

Steiner equivalent network, 189 
Steiner forest, 191 
Steiner in probabilistic networks, 198 
Steiner tree, 93 

Steiner tree decision, 100 
traveling salesman, 264 
uncapacitated plant location, 95 
vertex cover, 218 
Wagner tree, 308 
weighted Steiner tree, 190 

properly incident segment, 209 
pruning, 27, 29 
pseudoadjacen t, 127 
PTm, see paths with terminals reduction 

in distance networks, 98 

test 

quadrilateral, convex, 63 
quasi Steiner tree (quasi-ST), 59 

k-size, 295 

quasi-ST, see quasi Steiner tree 

R, see reachability reduction test 
RADH, see repetitive average distance 

ratio 
heuristic 

Gilbert-Steiner, 81 
performance, 51 
Steiner, 38 

ray, 32 
RDNH, see repetitive distance network 

reachability reduction test (R), 110, 120- 

realization of distance matrices, 199 
reconstruction stage, 21-23, 29, 32, 33 
rectangle tree, 257 

convex, 258 
rectangular wave, 68 

mild, 69 
rectilinear 

arborescence, 258 
convex hull, 214, 251 
minimum spanning arborescence (RMSA), 

minimum spanning tree (RMST), 215 

network, 268 
segment, 205 
Steiner minimal arborescence (RSMA), 

258 
Steiner minimal tree (RSMT), 205 

full, 207 
fulsome, 207 

Steiner problem, 205 
Steiner ratio, 216 
Steiner tree, 205 

heuristic 

123 

258 

separable, 226 

decision problem, 218 
minimal simple, 252 
simple, 252 

tree, 205 
reduced routing network, 269 
reduction test, 103 

cut reachability (CR), 111 
effectiveness, 122 
inaccurate information, 120 
length transformation (LT), 116 
long edge (LE), 107 
minimum spanning tree (MST), 108 
nearest vertex (NV), 114 
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non-terminal (NTDk), 104, 105 
ordering, 121 
path with terminals (PTm), 107, 109 
reachability (R), 110 
short edge (SE), 114 

terminal (TDl),  113 
terminal-to-terminal (STTE), 113 

refinement of a tree, 305 
region 

deciding, 28 
isodendral, 237 
routing, 274 
wiring, 275 

hexagonal arrays, 72 
n-gon, 4, 66 

terminals, 66 
network 

minimum, 81 
octahedron, 78 
simplex, 78 
triangular arrays, 72 
zigzag line, 70 

regular 

relatively minimal tree, 6, 21 
repetitve heuristic 

average distance (RADH), 166, 172 
distance network (RDNH), 162 

direction, 67 
variation, 67 

reversion, 306 
rip-up operation, 276 
RMSA, see rectilinear minimum span- 

RMST, see rectilinear minimum span- 

root of an arborescence, 99 
routability, 269 
router, global, 269 
routing 

reversible 

ning arborescence 

ning tree 

channel, 268 
detailed, 268 
multi-layers, 277 
network, 277 

reduced, 269 
region, 274 
single-layer, 277 
wire, 268 

routing, global, 268 
row-based layout, 272 

RP, see Prim-based heuristic, RMST-driven 
RSMA, see rectilinear Steiner minimal 

RSMT, see rectilinear Steiner minimal 
arborescence 

tree 

SAH, see simulated annealing heuristic 
Sankoff method, 313 
SBB, see suboptimal branch-and-bound 

SCH, see set covering heuristic 
SE, see short edge, reduction test 
SE, see simple embedding heuristic 
sea-of-gates placement, 268 
segment, 5 

heur. 

boundary, 214 
interior, 245 
neighboring, 209 

alternating, 209 
properly incident, 209 
rectilinear, 205 

semiperimeter, 216 
series-parallel 

block graph, 186 
network, 177, 244, 252, 257 

algorithm, 143, 146 
heuristic (SCH), 171 

set covering 

short edge, reduction test (SE, STTE), 

shortest path problem, 97 
shortest paths heuristic (SPH), 119, 152, 

113, 114, 120-123 

172, 271 
repetitive, 154, 155, 172 
with origin (SPOH), 155 

of an edge, 5 
shrinking, 31 

siblings, 22 
simple 

elimination ordering, 186 
embedding heuristic (SE), 224 

iterative (ISE), 224 
Steinerization heuristic (SS), 225 

iterated (ISS), 225 
vertex, 185 

simplex 
regular, 78 

Simpson line, 3, 23, 29 
simulated annealing 

algorithm, 55 
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heuristic (SAH), 163 
site, 304 
skew quadrilateral, 65 
SLD, see loop detection heuristic 
slide, 207, 260 
SMT, see Steiner minimal tree 

obstacle-avoiding, 85 
soap film model, 16 
Sollin’s algorithm, 276 
space 

configuration, 41 
Minkowski, 287 

interior line, 245 
subnetwork, 95 
tree, 37 

spanning 

enumeration algorithm, 125, 144 
SPH, see shortest paths heuristic 
spherical coordinates, 9 
split graph, 101 
splitter vertex, 134 
splitting 

of a vertex, 5 
tree, 73 

SPOH, seeshortest paths with origin heur. 
spoke of a cross-point, 206 
SS, see simple Steinerization heuristic 
ST, see Steiner tree 
staircase, 215 
Steiner arborescence problem, 99, 132, 

degree-constrained formulation, 99, 

flow formulation, 132 
linear relaxation, 137 
set covering formulation, 135 
two-terminal formulation, 134 

Steiner distance, 105 
Steiner equivalent network problem, 189 
Steiner forest problem, 191 
Steiner hull, 9, 25, 214 

decomposition, 12 
Steiner minimal network, 93 
Steiner minimal tree (SMT), 5, 6, 93 
Steiner point, 5, 206 

Steiner problem 

189, 258 

135 

fractional, 278 

Euclidean, 3 

for general metrics, 287 
discrete, 14 

in biology, 301 
in directed networks, 307 
in Minkowski space, 288 
in networks, 93, 213 

decision version, 100 
in probabilistic networks, 198 
rectilinear, 205 

Steiner ratio, 38, 78 
conjecture, 38 
rectilinear, 216 
rectilinear arborescence, 260 
variational approach, 41 

Steiner topology, 7 

Steiner tree (ST), 5 
full, 7 

full (FST), 7 
min-max, 279 
rectilinear, 205 
problem, see Steiner problem 

Steiner vertex, 93 
Steiner visibility, 86 
Steiner zigzag line, 70 
Steinerization, 53, 225, 273, 312, 314 

essential, 228 
four-point, 229 
heuristic, 272 

string model, 16 
strongly chordal 

graph, 185 
network, 101 

STTE, see short edge reduction test 
subnetwork, 95 

induced, 95 
length, 96 
spanning, 95 

suboptimal branch-and-bound heuristic 

subset, complementary, 95 
substitution, 303 

(SBB), 239 

cost, 303 

T-point, 206 
tab, 214 
taxon, 301 

informative, 310 
neighboring, 316 

TD1, see terminal reduction test 
terminal, 5, 93, 205, 267 

on lattice points, 71 
path, 152 
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reduction test, 113 

cocircular, 66 
in general position, 226 
layered, 254 
of regular n-gon, 66 
on a co-path, 68 

capacitated, 80 
full, 207 
Steiner, 7 

full, 7 
Torricelli point, 3, 6 
track, 32 
traveling salesman problem, 57, 236, 264 
tree, 5, 95 

terminals 

topology, 5, 207 

additive, 315 
bifurcating, 302 
Camin-Sokal, 306 
canonical, 208 
compatible, 305 
complementary, 31 
cut-and-patch, 68 
evolution, 56 
evolutionary, 301, 302 
formal, 69 
fulsome 

canonical, 208 
Gilbert-Steiner, 81 
greedy, 54 
Hennig, 304 

free, 305 
hexagonal, 25, 26 
many-cuts-and-patch, 70 
metric, 317 
minimum spanning (MST) 37, 93, 

119 
packing, 277 
phylogenetic, 302 
rectangle, 257 

convex, 258 
rectilinear, 205 
relatively minimal, 6, 21 
spanning, 37 
splitting, 73 
Steiner (ST), 5 

bottleneck, 279 
full (FST), 7 
min-max, 279 
minimal (SMT), 5 ,  93 

rectilinear, 205 
Steiner minimal, 6 

rectilinear, 205 
Wagner, 308 

equilateral, 22 
inequality, 44, 96 
transformation, 199 

triple, consistent, 290 
trombone wire, 213 

triangle 

UH, see upgrading heuristic 
undirected 

graph, 95 
network, 95 

unseen vertex, 272 
upgrading heuristic (UH), 167, 174, 233 

modified (MUH),  168, 174, 233 

variation, reversible, 67 
variational approach, 41 
vertex, 5, 95 

cover, 218 
cover problem, 101, 218 
fringe, 272 
simple, 185 
splitting, 5 
Steiner, 93 
unseen, 272 
visited, 272 
weight, 261 

via, 269 
visibility, Steiner, 86 
Voronoi diagram, 52, 222, 228 

generalized, 251 
rectilinear, 222 

Wagner 
parsimony method, 308, 309 
tree, 308 
tree problem, 308 

walk, 95 
wave bar, 69 

mild, 69 
rectangular, 68 

wedge, 10 
wedge property, 10, 28 
weight of a vertex, 261 
weighted Steiner tree problem, 190 
wheel, 180 



334 SUBJECT INDEX 

width of a set of trees, 278 
wire, 206 

L-shaped, 223 
routing, 268 
trombone, 213 
Z-shaped, 227 

wiring region, 275 

Y-heuristic, 156, 172 
YH, see Y-heuristic 

2-shaped optimal embedding heur. (ZOE), 
227 

Zelikovsky heuristic, 233 
zigzag 

line, 70 
convex, 70 
normal, 70 
regular, 70 
Steiner, 70 

order, 8 
ZOE, see Z-shaped optimal embedding 

heur. 
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