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Preface

Designing and maintaining a computer network is a task for professionals, and
even a superficial understanding of its operation requires specialist knowledge
that only a few people possess. At the same time, many people use the Internet
daily without realizing how complex the underlying operations are.

This book is intended to partially fill this gap. It contains an introduction
to the wealth of mathematical and algorithmic concepts and methods on which
computer networks rely, and to some of their applications to the Internet and
the Web. At first glance the list of chapters may appear slightly odd, but in
fact they run from fundamental concepts towards more specific topics and
applications. The mathematical treatment is rigorous, but the text is kept
at a level adequate to readers with an elementary mathematical background.
In any case some more technical parts may be skipped without preventing a
general understanding of the text.

The book is intended for use in Computer Science courses at elementary
level; or as a suggested reading for students in other fields; or for providing
supplementary notions to technical professionals; or, finally, for curious people
interested in the advancement of science and technology. Mathematical and
algorithmic concepts and methods are accompanied by notions coming from
literature, history, art, and other fields, to provide a lighter reading experience
and to show the universality of many of the concepts treated.

Fabrizio Luccio and Linda Pagli are the main authors. Graham Steel pro-
vided literary assistance.
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Chapter 1

An unconventional introduction to the
Internet

How Euler answered a perplexing question about a journey in the historic city
of Königsberg, and how that journey can be re-shaped for more interesting
purposes using Internet mathematics.

The sketch map in Figure 1.1 is one of the most sacred images in the
history of mathematics. Drawn by Swiss scientist Leonhard Paul Euler for an
article published in 1736, it was intended to depict the connections among the
different districts of the city of Königsberg via seven bridges crossing the river
Pregel. Why Königsberg; why Euler; and, above all, why are we discussing
this here?

For many centuries Königsberg, in the heart of Eastern Prussia, was one
of the most important cities in the world. It deserved a better fate. Conquered
by manifold rulers, invaded by various armies, the city finally became part of
the Soviet Union under the name of Kaliningrad at the end of World War
II, during which brutal aerial bombardment had destroyed almost all of its
historic monuments. Even the celebrated university Albertina, founded in the
sixteenth century by Albert of Brandenburg, fell victim to the bombs. It was
here that Immanuel Kant spent his entire life; and, according to a slightly du-
bious tradition, it was also the origin of a tantalizing problem, finally brought
to the attention of Euler in 1735.

At that time, Euler held a position in the Imperial Russian Academy of
Sciences founded by czar Peter the Great in St. Petersburg. The problem posed
to him was very simple, and scarcely interesting at first glance. Königsberg
had seven bridges connecting four districts of the city separated by the bends
of the river. In Euler’s drawing the districts are indicated by A,B,C,D and
the bridges by a, b, c, d, e, f, g. The historic center of the city was in A, the
Kneiphof island, site of the University Albertina and (one century later) of
Kant’s grave. The question raised by the curious citizens was whether it was
possible to take a walk starting from an arbitrary point of the city, crossing
each bridge exactly once, and returning to the starting point. If you have not
seen this problem before, consider spending a few moments on it. It should

1
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2 Mathematical and Algorithmic Foundations of the Internet

FIGURE 1.1: The city of Königsberg in the Euler’s drawing.

not be difficult to convince yourself informally that no such a path exists,
although proving this formally may be a little more difficult. So what could
have raised Euler’s interest?

The answer is fascinating, because what Euler extracted from the “seven
bridges problem” was far more than the solution to a popular puzzle. His paper
entitled Solutio problematis ad geometriam situs pertinentis (On the solution
of a problem relating to the geometry of position: in the eighteenth century
the language of science was Latin) marks the birth of what is now called graph
theory, a branch of mathematics that the reader probably encountered at high
school. After describing the popular problem on the bridges of Königsberg,
Euler presented his work with the following words:

On the basis of the above I formulated the following very general problem
for myself: given any configuration of the river and the branches into which it
may divide, as well as any number of bridges, to determine whether or not it
is possible to cross each bridge exactly once.

A graph is a mathematical object consisting of a set of nodes and a set
of arcs showing relations between nodes. Graphically nodes and arcs are
represented with dots and with lines joining dots in pairs, so the graph of
Königsberg could be drawn as indicated in Figure 1.2(a), although a similar
picture was never used by Euler. The number of arcs touching, or incident to
a node is called the degree of that node, so for example node A has degree
five. An alternative representation of the graph is given in Figure 1.2(b) with
weights (number of bridges) associated to each arc.1 A journey across all the

1In the language of mathematics, Figure 1.2(a) represents a multigraph, i.e., a graph
with multiple arcs between pairs of nodes, and Figure 1.2(b) represents a weighted graph.
Here a weight accounts for a number of connections, but the concept and use of weights is
much more general. Directed arcs as in Figure 1.2(c) will be discussed below. Nodes and
arcs are also called vertices and edges.
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FIGURE 1.2: The graph of Königsberg: (a) with multiple arcs; (b)with
weighted arcs; or (c) with directed arcs.

bridges without crossing any one of them more than once, if it exists, is called
a Euler tour of the graph.

Today pedestrians in Königsberg are rare, and rather than reflecting on
appealing mathematical problems while strolling around their thoughts are
more likely to be angrily directed at reckless drivers that jeopardize their
safety or splash their clothes with filthy water from the puddles. But we like to
believe that in Euler’s time the people of Königsberg were pleased to see their
seven bridges problem solved so elegantly, although Euler’s approach referred
to a general arrangement of districts and bridges, using the particular problem
of Königsberg only as a starting point for the creation of a new theory.

In the realm of graphs, Euler’s solution can be stated as follows:

A graph admits a Euler tour if and only if all its vertices have even degree.

If you have tried to solve the Königsberg problem yourself, you might have
conceived a condition equivalent to the only if part of Euler’s theorem. In fact
even if a single node has odd degree a tour cannot reach and then leave it,
one or more times, without either traversing an incident arc twice or leaving
one incident arc untraversed. In the case of Königsberg, for example, node B
has odd degree three (in fact, all the districts of the city have an odd number
of bridges) so the walk is impossible. To convince yourself of Euler’s assertion
note that after entering district B from bridge a one can leave B from bridge
b, enter again from bridge f , but at this point it would be impossible to leave
B without crossing one of the three bridges again.

More difficult is to prove the if part of the theorem, i.e., if all the vertices
have even degree a Euler tour exists. We leave the proof of this part to any
graph theory textbook. Even so, a reader with mathematical skills can at least
try to prove it without any help. In particular a reader familiar with computer
algorithms may produce a constructive proof, i.e., the scheme of a program
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that builds a Euler tour for any graph where all the vertices have even degree.
We will come back to this in a next chapter. It is time, instead, to direct our
attention to a different type of journey inside Königsberg that has much more
to do with computer networks. But first, a crucial observation.

This book is about the Internet and the Web, two completely distinct but
strictly related entities. Although these entities will be discussed thoroughly
in later chapters, we assume the readers to be familiar with their basic charac-
teristics, elementary use, and most common terminology. What is important,
however, is to understand that both the Internet and the Web can be studied
in form of graphs, with a substantial difference between them. The Internet
is a physical network composed of computers (the nodes) connected to one
another via cables, optical fibers, wireless connections etc. (the arcs). This
definition is rather imprecise as will become clear in the following, but it is
nevertheless sufficient, as a first approximation, to treat the Internet as a
graph as we did with the city of Königsberg. The Web, or better the World
Wide Web or www, is an abstract network composed of Web pages (the nodes)
connected via clickable links (the arcs).

Two basic features characterize the two networks when treated as graphs.
Like the bridges of Königsberg, the physical data lines of the Internet can gen-
erally be traversed in both directions. The links of the Web, however, have an
orientation from a pointing page to a pointed page, and can be traversed only
in one direction. We then speak of a directed graph whose arcs are represented
as arrows with the butt in the pointing node and the head in the pointed
node. An undirected graph can always be transformed into an equivalent di-
rected graph by substituting each arc of the former with two arcs pointing in
opposite directions, as shown in Figure 1.2(c). An inverse transformation is
clearly possible only if both the directed arcs exist.

The second important feature of the graphs of the Internet and of the Web
is that, in principle, there is no correspondence between the nodes of the two
networks, or between the arcs of them. One computer (node of the Internet)
can host several Web pages (nodes of the Web). Conversely, one Web page can
be replicated in several computers. The arcs are also unrelated, since two Web
pages connected by a link may reside in two computers that are not connected
by a line, or two pages hosted in the same computer may share a link that has
no corresponding arc in the Internet. Conversely, two computers connected
by a line need not host linked pages. Amazingly we shall see that, in spite of
theses distinctions, some mathematical laws governing both networks are the
same.

Now go back to Königsberg, find a friendly looking pub, and sample some
of the local beer. Then, as you may find you have consumed a little too much
of it, make a journey through the city without any particular destination or
constraint. Forgetting Euler you are now free to cross any bridge however
many times you like, or never cross it at all. Meanwhile we will monitor your
steps on a city map. As long as you remain in one district you will not be
in any danger, so it suffices for us to use a map drawn in graph form (for
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example the one of Figure 1.2(a)): if you do not leave a district, you stay in a
single node of the map. However drunkards are invariably attracted by water,
so sooner or later you will cross a bridge chosen at random, thereby changing
node in our map. For us, your tour is a random walk in a graph, where italics
indicate an expression of the mathematical jargon.

Although this may be surprising, we will show that this way of looking at
things is a basic constituent of Web search engine techniques, where the math-
ematical properties of random walks have been exploited with great success
to increase the relevance of the answers that we obtain from the Internet. So
be prepared to face some non trivial issues in probability theory. For the mo-
ment we merely anticipate some facts regarding your journey in Königsberg,
according to a probabilistic process known as a Markov chain. In particular
we wish to inquire if you have a chance of eventually reaching your hotel.

From any district, assume you take any of its bridges with equal probabil-
ity. If you walk long enough you will be passing through all districts, although
with different frequencies depending on the overall connectivity of the map.
A neat result could be drawn as a limit of the mathematical process if your
journey lasted forever. However as human strength has a limit you will even-
tually stop after a finite number of steps, so we will only be able to make
a heuristic guess of the district where you end up. The longer your journey
has been, the more accurate our estimate will be. An interesting part of the
story is that, for an infinite journey, the probabilities of passing through each
district are independent of the place from which you start, so our estimate
will be reasonably correct if you have walked enough.2

If all this is applied to the map of Königsberg it can be proved that you
will end up in node A with probability roughly double than of any other
node. This is not surprising since Kneiphof has more connecting bridges than
any other district. However making predictions without theoretical support is
dangerous, particularly for random walks that depend on all the arcs of the
graph. In fact, while the probability of ending in B and C is the same because
the two nodes are connected to all the others exactly in the same way, it is not
at all obvious that the probabilities of ending in any one of them, or in D, are
very close to each other as in fact the case. When studying the Web graph we
will discover that these probabilities are among the most popular parameters
for deciding the ordering in which the pages are returned in response to an
Internet query.

Another indicator of relevance is based on a very different concept. Around
noon the next day, after a good sleep, you decide to go looking for art work to
buy. Since the index of your guidebook mentions one art museum in district
B, you conclude that there may be some art galleries in the surrounding area.
So in addition to B you decide to visit the adjacent districts A and D (i.e., the
nodes connected to B in the graph), but not C that is far (i.e., two bridges)

2As you may imagine, these properties are strictly true only if some precise mathematical
conditions are satisfied. We will go back on this in a later chapter, and take the present
description as an informal preview.
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FIGURE 1.3: A sub-graph of Königsberg possibly relevant for buying art
work.

away. Moreover you hear in the news that, for maintenance reasons, bridge e is
temporarily closed, and bridge a can be traversed only in the direction from B
to A. So essentially you limit your walk to a portion of the map corresponding
to the directed sub-graph of Figure 1.3. Now you have to decide which of the
three districts is likely to be the most useful for you, and start looking for art
work from there.

To rank the districts, once again we invoke some ideas born in the realm of
Web search engines. Looking for art work to buy close to an art museum may
be a good rule of thumb, but the best galleries are not necessarily in those
districts. However, since one can reasonably visit only a smallish portion of
the graph, the walk is extended only to the adjacent districts. But how can
we rank the relevance of these? One criterion is deciding, among the selected
districts, which ones will probably host the best galleries (called authorities in
the Web jargon), and which ones are good starting points for the visit (called
hubs). Note that in a directed graph the two sets are generally distinct because
good hubs will contain several outgoing links to the most authoritative sites,
and strong authorities will have several incoming links from the best hubs.

The computation involved is not elementary and will be discussed in a
following chapter. If applied to the graph of Figure 1.3 it indicates that the
most authoritative district is A and the best hub is B. With a little thought
this result is not surprising. Not only is B the district where the art museum
is located, but it is also the only one with outgoing links to the other two
districts; hence it is a good starting point for reaching all authoritative districts
directly. On the other hand A has two incoming links from the best hub B,
meaning that it is a favorite place to visit in the area, and so some major
art galleries have probably been established there. Just as for random walks,
these results depend solely on the structure of the graph.

We conclude this informal introduction by emphasizing that anyone who
really wants to understand how the Internet and the Web are organized and
function must be ready to study a fair bit of mathematics and computation
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theory.3 In fact, few technological fields are so tightly connected with hard sci-
ences as computer networks are. In the next chapters we will start discussing
discrete mathematics and computational complexity, linear algebra and prob-
ability, with some incursions in the world of numbers. Only then we will put
all these pieces of knowledge together, to explain how computer networks
work. Since there are too many mathematical prerequisites to treat them all
together, we introduce them in separate chapters, going in to some depth for
each one of them, but keeping the explanations as accessible as possible. We
will show that many mathematical concepts have a counterpart in everyday
life and appear in the most unexpected situations.

Bibliographic notes

Euler’s original paper on the seven bridges of Königsberg, written in 1736
but not published until 1741, can be read translated in English in the excel-
lent set of books: Newman, J.R., Editor. 1988. The World of Mathematics,
Vol. 1. Tempus Books, recently reprinted. The interest may only be histor-
ical, but it is impressive to discover how a great mathematician gave rise
to a new theory with such extreme simplicity. Scholarly notes on the birth
of Euler’s paper can be found e.g. in: The Truth about Königsberg, by B.
Hopkins and R. J. Wilson, http://www.nku.edu/ longa/classes/mat385/ re-
sources/Hopkins1EulerKonigsberg.pdf

For a general introduction to networking one can start from: Barabási,
A.L. 2002. Linked: The New Science of Networks. Perseus Publishing, Cam-
bridge, MA. This has been the first book on the subject directed to a general
public. Reading it requires a modest knowledge of mathematics, but is still
recommended for the excellent organization of the text. The author is a major
international expert in the field.

Other books, papers, and Web sites that may constitute a useful comple-
ment to this book will be indicated in each specific chapter.

3Of course the ones interested in hardware also have to study physics. This aspect,
however, is outside the scope of this book.
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Chapter 2

Exponential growth

How some things rocket to an incredible size even though their growth may be
hard to observe in its initial steps.

The rich canon of humorous prose by Mark Twain includes a satire of
the “magnanimous-incident” anecdotes of the Victorian age, in which the
author claims to have investigated the true sequel of several such stories. A
stray poodle with a broken leg that, after having been healed by a benevolent
physician, shows up gratefully the next day in the company of another stray
dog requiring acute limb treatment, is the seed of a logical chain of events in
which the number of dogs waiting in front of the physicians door doubles every
day to become four, eight, etc., inspiring new sentiments in the physician’s
mind:

This day also passed, and another morning came; and now sixteen dogs, eight
of them newly crippled, occupied the sidewalk, and the people were going
around. By noon the broken legs were all set, but the pious wonder in the
good physician’s breast was beginning to get mixed with involuntary profanity.
The sun rose once more, and exhibited thirty-two dogs, sixteen of them with
broken legs, occupying the sidewalk and half of the street; the human spectators
took up the rest of the room. The cries of the wounded, the songs of the healed
brutes, and the comments of the onlooking citizens made great and inspiring
cheer, but traffic was interrupted in that street. The good physician hired a
couple of assistant surgeons and got through his benevolent work before dark,
first taking the precaution to cancel his church-membership, so that he might
express himself with the latitude which the case required.
But some things have their limits. When once more the morning dawned, and
the good physician looked out upon a massed and far-reaching multitude of
clamorous and beseeching dogs ....... 1

....he realized that the thing had gone along far enough, set out to resolve

1Mark Twain, The Grateful Poodle, in About Magnanimous-Incident Literature.

9
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10 Mathematical and Algorithmic Foundations of the Internet

it with a shotgun, got bitten by the original poodle, and passed away in the
horrendous convulsions of hydrophobia.

The evolution of the set of dogs follows an exponential growth in the genuine
(i.e., strictly mathematical) sense of the phrase. The expression has become
quite popular in everyday language to evoke any process that grows at very
high speed, without the implication of making any actual measurement of it.
There is nothing to object to about this informal usage, apart from perhaps
the fact that it misses a subtle effect of exponential growth that is inherent
to the mathematical definition. In fact, if the rate of growth is constant but
small the phenomenon is hard to detect in its initial steps, until it grows so fast
as to become clearly evident and to overtake any competing non-exponential
process from this point on. So, let us start by recalling how exponential growth
is defined.

A mathematical function f(t) grows exponentially with t if its next value
is increased over its current value of an amount proportional to this current
value. Very often, but not necessarily, t represents time (hence the letter chosen
here for this variable), and the growth is applied at discrete intervals. For
unitary intervals we have:

f(t+ 1)− f(t) = Kf(t), or equivalently f(t+ 1) = Gf(t) (2.1)

where K > 0 is a constant, and G = K+1 > 1 is the growth factor.2 Iterating
formula (2.1) we have the familiar expression:

f(t) = AGt (2.2)

where A = f(0) is the value of the function at the initial time t = 0. The inde-
pendent variable t appears as an exponent in the expression (2.2), accounting
for the name exponential growth. In this expression the critical term is Gt,
not A, no matter how big this latter value may be. If we wait long enough the
value of Gt explodes.

An immediate application of formula (2.2) is to compute the amount of
money deposited in a savings account, where the interest is compounded once
per year. Even a generous interest rate causes a small growth in the first
few years, but in the long term this would be by far the best investment if
inflation or bankruptcy did not spoil the game and one lived long enough to
cash the balance. For example starting with a deposit A of one dollar, an
interest rate of K = 5 percent, i.e., G = 1.05, would yield a total of $1.05
after one year, $1.10 after two years, $1.63 after ten years; but then $11.47
after fifty years, $131 after one hundred years, over two million dollars after
three hundred years, over five thousand billion dollars after six hundred years.
Nobody without mathematical skill could have predicted such growth from
looking at the figures of the first ten years.

Although the definition of exponential growth refers to a parameter G that

2For K < 0 we have G < 1 and the function actually decreases with t, with an exponential
decay.
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is an arbitrary real number, the structures that we will use for network de-
scription and the computations that we will face are often confined to integers.
So for us G is generally an integer greater than one. Let us start with G = 2
and the expression (2.2) in the form f(t) = A2t, or f(t)/A = 2t, a value that
doubles at every step. Starting from time t = 0 we have 20 = 1 and then the
sequence 1, 2, 4, 8, 16 etc. Under the so called Malthusian growth model this is
a possible scheme for world population growth, assuming that each couple of
parents generates an average of four children. Here the power of mathematics
is frightening, because in the sequence generated by 2t each element is greater
than the sum of all the preceding ones (e.g., 16 > 8 + 4 + 2 + 1).

As we shall see in a later chapter this property has unexpected importance
in the study of random processes, but in reference to the population of the
globe, it simply indicates that there are more living beings today than in the
whole history of mankind, even if we count only the latest generation (i.e.,
we assume that parents, grandparents etc. have all died).3 Passing from the
human to the bacterial realm this growth model applies almost exactly to the
number of microorganisms present in a biological culture where each organism
splits into two new ones so as to double the total number of organisms in any
generation, typically every twenty minutes or so.

It is worth knowing that the same mechanism was applied to a revolu-
tionary technique known as PCR for Polymerase Chain Reaction that had
an enormous impact in molecular biology. It was conceived by Kary Banks
Mullis, an amazing scientist and surfer from Newport Beach, California, who
won a Nobel Prize in chemistry for the invention. Without going into any
detail, PCR allows a virtually endless multiplication of identical DNA strands
needed in genetic experiments by making two copies of each existing strand
at each phase. In this way millions of copies of a strand are produced in a
very short time. When the technique was disclosed in 1985, many scientists
were surprised that no one had previously thought of applying the power of
exponential growth to molecule production. Today PCR affects our everyday
lives because it is commonly used to carry out a wealth of lab activities such
as diagnosing genetic diseases, detecting viruses, and so on.

Aside from science, this law of doubling has been rediscovered many times
in popular history. A well known chess myth tells how the game was invented
by an Indian Brahmin named Sissa to satisfy a request of the Rajah Balhait.
When asked to name his reward, Sissa replied that he would content himself
with an amount of wheat to be determined by putting one (i.e., 20 = 1) grain
on the first square of the chessboard, and doubling the number of grains on
each of the following squares up to last one. The rajah was amazed by the
modesty of the request, but it turned out that all the barns in his kingdom were
not sufficient to supply the grains required to reach the astronomical number
of 263 on the 64-th square: a number that requires twenty decimal digits to

3Incidentally this requires an updating to the mechanism of metempsychosis, and it is
amazing that this belief is mostly accepted by peoples that multiply at a frantic pace.
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write down. And if it was natural for the Indians to include arithmetic in their
tales, it may be surprising that an ancient Christian author pointed out that
if a true believer had converted a heretic in one year, and then the two had
done the same with two heretics in the next year, and so forth, more than one
million heretics would have been converted in just twenty years.4

In the Internet era, computer scientists more than holy men are concerned
with the phenomenon of exponential growth, because solving some important
problems may require an exponential number of operations and the running
time of the corresponding computer programs becomes enormous even on
small input data. In this respect it is not surprising that Kary Mullis, the
aforementioned inventor of PCR, said that he was familiar with the phe-
nomenon of exponential growth that is at the base of his technique because
he “had been spending a lot of time writing computer programs.” Let us in-
troduce this way of seeing things by taking a new walk through the bridges
of Königsberg encountered in Chapter 1, and postpone a deeper study of
exponential computation to a subsequent chapter on algorithms.

If you have devoted some attention to the problem of finding a Euler tour
in a graph, you may have asked yourself how it was possible that the people in
Königsberg did not realize immediately that such a tour could not be taken in
their town. Presenting the problem in the foreword of his paper, Euler adds:

I was told that while some deny the possibility of doing this and others were
in doubt, there were none who maintained that it was actually possible.

That is, nobody exhibited a solution (and we know one does not exist), but
many were in doubt. And Euler himself accepted this doubt as being natural.
The question is: how could the citizens of Königsberg prove that a tour was
impossible? The discovery of Euler’s theorem provided a criterion for taking a
decision in a short time, because it stated that it suffices to count the number
of bridges leading to each district of the city. If all these numbers are even a
tour exists, otherwise it does not. But, before that, the only way to find out
was to attempt all possible tours crossing seven bridges and check whether
one of them really did cross each bridge exactly once. Such a proof method,
called by brute force, is legitimate from a logical point of view but in general
is computationally unfeasible, as in our case where, as we will now see, the
number of possible tours is an exponential function of the number of bridges.

The simplest way of enumerating the tours is to build all the permutations
of the bridge names a, b, c, d, e, f, g, that is all the possible arrangements of
these names in a sequence, and test whether one of them corresponds to a tour
in the graph of Königsberg reported in Figure 1.2(a) of Chapter 1. The first
permutation a b c d e f g can be followed on the graph starting from node A
and taking the arcs a b c d e f one after the other until node B is reached. The
attempt ends here, since the following bridge g in the permutation does not

4The holy man thought he had proved the power of faith but had actually proved a
“power of two” (as 220 > 1, 0000, 000).
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touch B. Then a new permutation is tested, e.g., a b c d e g f , and this attempt
ends in node C after arc g has been followed. Of course we need an algorithm
to enumerate all the permutations, but this a different story.5 What we would
like to compute first is how many such permutations there are.

From elementary combinatorics we know that the number of permutations
of n elements is given by the factorial of n denoted by n!, i.e., the value
n! = 2 · 3 · 4 · .... · n.6 Probably everybody knows that this function grows
very fast with n, and in fact for the seven bridges problem we have 7! = 5040.
No wonder that the citizens of Königsberg did not have the patience to try
them all.7 To compute the value of n! without having to perform the n − 2
multiplications that appear in its definition, we can make use of the identity:

lim
n→∞

√
2πn (n/e)n

n!
= 1

from which the well known approximation can be derived:

n! ∼
√

2πn
(n
e

)n
.

This formula, known as Stirling approximation, gives an increasingly accurate
value of n! for increasing n, and in particular shows that the function grows
exponentially with n (and grows a lot since e = 2.718... is a constant, then
in the term (n/e)n both the base n/e and the exponent increase linearly with
n). For example 30! > 2 · 1032.

Now let us take a look at the center of Kaliningrad, the former Königsberg,
as it is today. Two of the historic bridges are gone, and a new bridge h has been
built directly between districts B and C. The new graph is indicated in Figure
2.1(a): unfortunately all the nodes maintain an odd degree and the citizens
still cannot take a Euler tour. So we have proposed to the Russian municipality
that they build two new bridges x, y as indicated in Figure 2.1(b), to finally
fulfill the peoples expectations. In so doing all the nodes would have an even
degree and a nice Euler stroll would be possible. But how can we discover its
course? Or better, how can we determine a Euler tour in an arbitrary graph
with even degrees? Note that finding such a tour amounts to proving Euler’s
theorem.

5Enumerating all the permutations of a set of n elements is an elementary but not trivial
task. An elegant way is listing the permutations recursively, starting with the ones beginning
with the first element (a in the example), then with the second element, etc., followed by
the permutations of the other n − 1 elements listed recursively with the same criterion.
Readers with algorithmic skills might attempt to write a recursive computer program for
doing this.

6This result, known to the Hindus in the 12th century, can be seen as an immediate
consequence of the recursive definition of permutations indicated in the previous footnote.

7With some ingenuity, the permutations for the problem at hand could be divided into
groups each containing n cyclic shifts of the same permutation, e.g., a b c d e f g - b c d e f g a -
.... - g a b c d e f . In fact all the permutations of a group are equivalent for testing the existence
of a Euler tour, so the number of trials could be lowered from n! to n!/n = (n− 1)!. In the
case of Königsberg this number becomes 720.
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FIGURE 2.1: (a) The graph of Königsberg today. (b) The same graph with
two more arcs x, y for making a Euler tour possible. Starting in B, one such
a tour is y f b e g x d h.

As algorithms will be discussed in a subsequent chapter, we invite the
reader to try solving this problem informally as follows. Go around in the
graph until a node is reached twice, thus determining a cycle. Delete the arcs
of this cycle from the graph. Take another walk until a second cycle is built,
delete its arcs and continue in this way until no more arcs remain. You will
end up with a set of cycles that touch each other in some nodes where the
cycles can be merged in pairs to finally form a unique tour. In Figure 2.1(b)
you can take a first walk starting from node C and following the arcs h, y, f :
at this point you have touched node B twice determining the cycle y f . Delete
these two arcs from the graph and try another walk until another cycle is
formed, for instance h b e g. Delete these arcs and you are left with the last
cycle x d. Now cycles y f and h b e g meet in B and are merged as a unique
cycle y f b e g h, in turn merged with x d in C to form the final Euler tour
y f b e g x d h that begins and ends in B. Proving that a graph with all even
degrees admits such a construction should not be that difficult.

Euler tours appear in diverse algorithms related to distributed computa-
tion, together with tours of another type that are logically very closely related,
but computationally very different. When some computers of a network are
called upon to carry on a cooperative action, several operations are required
to set up their connections and distribute the work among them. Although all
this will form the bulk of a subsequent chapter on distributed computing, we
consider at the moment the “simple” problem of choosing a set of communi-
cation lines to form a ring of computers. That is, in the graph of all existing
connections we have to select a subset of arcs forming a cycle that traverses
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FIGURE 2.2: The Hamiltonian cycle problem.

each node exactly once. This is a sort of complementary problem compared to
the one of Euler, where nodes are considered instead of arcs. In Königsberg it
amounts to finding a walk that touches all districts exactly once and comes
back to its starting point, as for example the elementary sequence AC DBA
would indicate. Note that this may imply not crossing some of the bridges.
However it turns out that the new problem is in general far more difficult than
finding a Euler tour.

The new walk that we are interested in is called a Hamiltonian tour (or
cycle) in honor of the Irish scientist Sir William Rowan Hamilton who invented
a mathematical puzzle in 1857 called the Icosian game, that asks the solver to
find a path traveling along the edges of a dodecahedron made of wood, such
that the vertices are touched exactly once. Clearly those vertices and edges
were nodes and arcs of a corresponding graph. Since the map of Königsberg is
too simple for studying the new problem, consider the new graph of Figure 2.2.
With some simple trials the reader may verify that if the graph is limited to
the solid arcs a, b, c, d, e, f no Hamiltonian cycle exists, while with the addition
of edge x the cycle ABDE C A appears. But what can we say in general for
an arbitrary graph?

The present status of computational complexity theory rules out the pos-
sibility of finding a simple criterion applicable to any graph to decide whether
a Hamiltonian cycle exists or not, as is possible for a Euler tour. The adjective
“simple” has a technical meaning here. It is attached to functions that can
be calculated in a “short time” as it will be mathematically specified later
in the book. So we have to revert to a brute force approach, testing all the
permutations of the nodes to determine whether one of them corresponds to
a Hamiltonian cycle.
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For the graph of Figure 2.2 (solid arcs) we have 5! = 120 permutations of
the nodes.8 Namely:

ABCDE ABCED ABDCE ABDEC ABECD ..... EDCBA

In the first permutation ABCDE we follow the path b c and stop here because
there is not a next arc between the pair of nodes C,D. In the second permu-
tation ABCED the path b c f d can be followed up the last node D, but we
cannot return to the starting vertex A because there is no arc between D and
A. Then this permutation does not correspond to a Hamiltonian cycle either.
Similarly, all the other permutations do not correspond to a Hamiltonian cy-
cle, that in fact does not exist in this graph. Note however that, if arc x is
added, the forth permutation ABDEC gives a solution because the starting
node A can now be reached from C.

Can we then rely on such a brute force method, as no other essentially
more efficient technique is known? For a small number of nodes, that is for
not too many computers to be connected in a ring, we can patiently examine
all permutations possibly with the aid of a computer program. But assume
that the nodes are just thirty. We have already seen that 30! > 2·1032. Assume
that our computer can examine one permutation per nanosecond (10−9 sec, a
hypothesis well out of the reach of present day hardware). In one second, 109

(one billion) permutations would be examined. However since there are “only”
31,536,000 (about 3 · 107) seconds in a year, we could examine about 3 · 1016

permutations per year from among the more than 2 · 1032 such permutations.
We conclude that about 2 · 1032/(3 · 1016) > 1015 years, that is more than
ten thousand billions centuries, will be necessary to complete the job for only
thirty nodes. This shows the destructive strength of exponential growth. As
we shall see in a next chapter, probability theory will help us to survive.

After having defined the phenomenon of exponential growth and discussed
how its effects appear in different situations and for different values of the
parameters involved, let us finally explain why this subject appears right at
the beginning of the book. Although mainly mathematical, the theory on
which computer networks logically rely has much to do with combinatorial
and computational analysis. While working on them on the next chapters, the
ghost of exponential growth will appear so frequently that a clear knowledge
of it is an inescapable prerequisite. And after all, one has to start somewhere.

Bibliographic notes

To browse through a huge number of combinatorial formulae one of the best
references is the book: Knuth, D.E. 1968. The Art of Computer Programming.

8We list these permutations as indicated in footnote 6. For finding a Hamiltonian cycle,
they could be divided in groups each containing all the cyclic shifts of the same permutation
as indicated in footnote 8 for Euler tours. For n nodes this amounts to dividing the total
number of trials by n, a negligible improvement as shown.
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Vol.1: Fundamental Algorithms. Addison-Wesley Publishing, Reading, MA.
(In particular see the mathematical development leading to Stirling’s formula.)
We will refer several times to this fundamental work.

As a reference taken from the general literature, we note that Mark Twain’s
About Magnanimous-Incident Literature is not easily found in print but is
largely available on the Web. It is a very amusing reading although (or perhaps
because) it has no relation to the Internet.

To learn something about PCR in molecular biology without going too far
from the world of computers, refer for example to the book: Setubal, J. and
J. Meidanis. 1997. Introduction to Computational Molecular Biology. PWS
Publishing, Boston, MA.
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Chapter 3

Sequences and trees

How from the I Ching to the Internet era a wealth of codes have been developed
for expressing information in many forms.

Throughout history, oracles have been consulted to obtain advice on im-
portant decisions, even in everyday life. The most ancient answers were binary,
limited to “yes” and “no”; as in the I Ching, the Book of Changes, one of the
oldest Chinese texts. Answers were represented by horizontal lines, a solid line
for yes and a broken line for no.

It seems that the need for a more nuanced response emerged even in early
times, so blocks of two lines were introduced giving rise to the 22 = 4 of solid
and broken lines combined. Later a third line was inserted in each block to
double the possible combinations, and the 23 = 8 basic signs of the I Ching,
called trigrams, were born. These eight signs were representative of the eight
elementary constituents of heaven and earth, and have survived with their
whole expressive power. Look at them in Figure 3.1, arranged in their classical
ordering.

The story, however, is just at the outset. The eight signs represent changing
states, images perpetually mutating. The focus is not on the things in their
being, but rather on their transitions. To obtain an even greater multiplicity
the trigrams were combined in blocks of two, to form the complete set of

EARTH MOUNTAIN WATER WIND

HEAVENLAKEFIRETHUNDER

FIGURE 3.1: The I Ching trigrams.
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20 Mathematical and Algorithmic Foundations of the Internet

the 26 = 64 hexagrams contained in the book. Depending on the position in
the hexagram, some of the lines may be changing, thereby increasing even
further the number of possible oracular sentences. This wealth of cases is not
surprising. The Book of Changes is a monument of Chinese wisdom, finding
in the signs sufficient power to express itself.

Incrementing the number of lines, or considering a double possible meaning
of each line, we can increase exponentially the number of oracular sentences
to express a practically unlimited set of situations with a reasonably small set
of lines. The ruling phenomenon is that of exponential growth, as discussed
in Chapter 2, which actually regulates the field of communication making it
all possible. Let us spend a little time on this point that seldom receives due
attention.

3.1 The expressiveness of sequences

Human communication, either in sound or in images, develops through a
sequence of elementary units. Writing is the natural starting point. Take any
natural language and consider all the characters of its alphabet, that is, let-
ters, numerical digits, punctuation marks, and other typographical characters
including the blank space. The set of all possible sequences of characters is in-
finite if we do not bound their length, although a lot of them do not belong to
the language. The number of characters used in most modern languages, with
the important exception of Chinese and Japanese, is limited to a few dozen,
but if they used a hundred, or a thousand, or just two, only the length of the
words would change without affecting the expressiveness of the language.

With c ≥ 2 different characters we can form N = cn different sequences
(or words, or sentences) of length n. This is a huge number, even for limited
values of n, and less sensitive to the value of c than one may imagine. In fact
inverting the above expression we have n = logcN . To construct the same
number N of different sequences with an alphabet of d characters instead of
c, the length of the new sequences becomes n′ = logdN , and from elementary
mathematics we have:

logdN = logd c · logcN ⇒ n′ = logd c · n (3.1)

where logd c is a multiplicative constant that depends only on the two bases.
For example using the English alphabet of c = 26 characters or another arbi-
trary alphabet of only d = 10 characters, the relation between the length of
the sequences would be:

n′ = log10 26 · n ∼ 1.4n. (3.2)

Put simply, in the second language, words are not much longer than in the
first one.
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However, a real difference, and a very negative one for people in a hurry,
would arise with a language of only one character. Take N = 7 different
concepts like the Seven Sisters, a cluster of stars known as the Pleiades, and
try to express them with the single character s. Among the many possibilities
one can choose the seven sequences: s, ss, sss, ssss, sssss, ssssss, sssssss,
that is, the sign s repeated from one to seven times. Whatever representation
is used there will be at least one of the concepts requiring at least seven
s’s, that is a sequence whose length is at least equal to the total number of
concepts to be expressed. If there are one thousand such concepts, the longest
word would consist of at least one thousand s, and all words would have
an average length of at least five hundred. Only a very primitive or maybe
esoteric communication system could be organized in this way, requiring great
patience to compose the words, a high level of concentration to distinguish
between them (especially when talking ...), and limiting de facto the expressive
power of the language. Unlike all real languages that exhibit an exponential
growth in expressivity, the number of words that can be expressed with only
one character grows linearly with their length, making their use unfeasible.

With sequences of characters we can express all the words of a language,
and hence all the knowledge that has been expressed in this language. Not
satisfied with just one language, we can acquire universal knowledge of all
the texts written in all languages. Then we can go further, not limiting our-
selves to the existing languages, but considering innumerable languages born
from the imagination, for which we can create dictionaries, grammars, liter-
ary masterpieces, and not yet written novels. How far can we take this idea?
The problem has excited many thinkers and was brought to its extreme con-
clusion by Jorge Luis Borges in his masterly description of the Library of
Babel, a library that contained a huge and unknown number of mysterious
volumes which nobody was ever able to understand, until a librarian of genius
discovered the fundamental law. He realized that:

“ .... the library is total and that its shelves register all the possible com-
binations of the twenty-odd orthographical symbols (a number which, though
extremely vast, is not infinite): Everything: the minutely detailed history of the
future, the archangels’ autobiographies, the faithful catalogues of the Library,
thousands and thousands of false catalogues, the demonstration of the fallacy
of those catalogues, the demonstration of the fallacy of the true catalogue, the
Gnostic gospel of Basilides, the commentary on that gospel, the commentary
on the commentary on that gospel, the true story of your death, the translation
of every book in all languages, the interpolations of every book in all books.”1

1Borges J.L. 1962. The Library of Babel, in: Labyrinths, Selected Stories and Other Writ-
ings. New Direction Publishing. Translated from Spanish by J. E. Irby. Borges, a scholar
and writer from Argentina, is a giant of 20th century world literature. Some of his ideas
will be mentioned again in this book. Although Borges’ writings have nothing to do with
computation, they contain fantastic inventions that are often attractive to computer scien-
tists.
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Unfortunately the location of the books did not follow any understandable
order, with terrible consequences that curious readers can discover in the
original story.

Using sequences of characters, humans express all the words of a language,
but computers express much more. In fact all information processed electroni-
cally is conveyed in the form of sequences, possibly flowing in parallel streams
if many processors work together. For example, the visual information that
we collect from a monitor or from a digital photograph is represented with a
sequence of characters representing the features of the atomic portions of an
image, as we shall see below.

A particular alphabet worth special consideration is the alphabet of num-
bers. Today all peoples use the same decimal notation to express numbers.
Only the graphical shape of the ten digits may differ from one language to
another, as for example in English, Arabic, or Chinese. As usual, exponential
growth allows the representation of 10d different numbers with a sequence of
only d digits. As for the words of any language, the order of the digits has a
precise role in the sequence. Consider the three characters 704 that express
the number seven hundred and four. In standard positional notation, each
digit contributes a value that depends on its position in the sequence, so 704
indicates seven hundreds, zero tens and four units, and requires that the digit
0 for the tens be explicitly expressed. Furthermore it is understood that the
sequence must be read from left to right.

In general people using English or any other European language do not
realize how curious the latter request is. If a number is small it can be read
immediately from left to right. If however a number is large, for instance
77777777, we must scan it from right to left grouping the digits into threes,
as 77,777,777 and only then we are able to read it as seventy seven million,
seven hundred and seventy seven thousand, and seven hundred and seventy
seven. Not surprisingly, then, most arithmetic operations such as addition,
subtraction, and multiplication are also performed from right to left.2

It is well known that computers represent numbers in binary, maintaining
positional notation, with the digits 0 and 1 accounting for powers of two in-
stead of ten. What is less known is that what was probably the first relevant
document on binary numbering is due to the Spanish bishop Johannes Cara-
muel, who wrote long lists of numbers represented in many different bases.3

2The invention of the zero used today is probably Indian, but was independently used
by the Maya in their numerical representations. In medieval times the Europeans learned
the importance of the zero from the Arabs and its use rapidly spread. Note that the Arabs
write from right to left and numbers used to be read starting from the units, so 704 would
sound “four units and seven hundreds.” This numerical notation was maintained in Europe
where writing went from left to right, possibly because the Roman numbers previously used
were written starting with the biggest components at the left. Roman numbers, however,
did not raise any problem in reading because different characters were used for units, tens,
hundreds etc.

3The manuscript Mathesis Biceps Vetus and Nova by Johannes Caramuel was published
in 1670 and emerged only in 1969 from the archbishopric library of Vigevano in Italy.
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FIGURE 3.2: A table of binary numbering taken from the Meditatio Proemi-
alis in the work Matesis Biceps Vetus et Nova by Johannes Caramuel.

Figure 3.2 shows one of his tables of numbers in base two, with the symbol
“a” instead of “1.”

Computers use a binary alphabet to represent all information according
to specific codes. In 1605, Francis Bacon had already discovered that the
alphabetic characters could be transformed into sequences of binary digits.
More interestingly he noted that the method could be used to represent any
object:

“ .... provided those objects be capable of a twofold difference only: as by Bells,
by Trumpets, by Lights and Torches, by the report of Muskets, and any instru-
ments of like nature.”4

And in fact it is not only computers that use two symbols to communicate.
Two important two-symbol systems were established in the 19th century and
survive today. They are Morse code, originally proposed for telegraphy, whose
two symbols are dot and line; and Braille reading for the blind, based on the
presence or lack of a raised dot inside a rectangular region. Another intriguing
system is encountered in music, where timelines for percussionists unable to

Numerical bases from 2 to 10, and also larger, are described by Caramuel, together with a
passionate philosophical discussion on arithmetic and its relation to music.

4Francis Bacon. 1605. De Augmentis Scientiarum (On the Proficiency and Advancement
of Learning).
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FIGURE 3.3: Two timelines in four bars. Bossa Nova as played by Joao
Gilberto and Stan Getz, versus Rock as played by The Beatles.

read musical scores are often represented in the so called box notation, with a
black square to indicate the time for striking and a white square to indicate a
pause. Figure 3.3 shows two well known 4/4 rhythms where the basic timeline
is divided into four bars for a total of sixteen equal intervals.5

Computer representation of information, Morse code, Braille writing sys-
tem, and musical box notation, have very different aims and scopes, but share
desirable characteristics that seem to be peculiar to all binary systems: coding
and decoding of messages is easy, and ambiguities and errors are kept to a
minimum. This feature is evident in extreme cases. The Morse code for an SOS
message launched by a ship in trouble is a sequence of three dots, followed by
three lines, followed by three more dots, where dots and lines correspond to
short or long electrical pulses. Such a sequence has a much smaller chance of
being misinterpreted than any vocal request for help, particularly in adverse
weather conditions.

Similar communication systems have been adopted by generations of in-
mates in jail, as described by Jack London in a famous novel dedicated to the
horror of the prisons of his time.6 The two symbols used are a knock on the
wall or no knocks, as it is practically impossible to rely on their difference
in their strength (the situation is similar for Morse code). Various systems
have been certainly developed in prison history, possibly without any partic-
ular effort to minimize the length of the sequences that, unlike in computer
networks, is probably not a priority among inmates.

Computers prefer binary symbols corresponding to the presence or absence
of current in a conductor, or to a high or low voltage between two points, in-
dependently of their precise values. The reason is as before. A circuit built

5A comparison of the two rhythms shows the anarchical structure of Bossa Nova (an
offspring of Samba) versus the obsessive repetition of Rock. Bossa Nova is strongly syn-
copated, resulting in one of the hardest rhythms to play. At a first hearing, for example,
non-musicians tend to place the second beat at time 5 instead of 4. A top expert of the
mathematical properties of musical rhythms is Godfried Toussaint, professor of computer
science at McGill University of Montral, Quebec. See the bibliographical notes.

6Jack London’s The Star Rover, written in 1915, is a novel on prison brutality, the death
sentence, and reincarnation. A torture device called the “jacket” was used in San Quentin
at that time, consisting of a tightly laced canvas garment that compressed the whole body
and induced terrible pains.

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11043-4&iName=master.img-001.jpg&w=306&h=68


Sequences and trees 25

for deciding between several different events reacts with higher speed and
stronger certainty if such events are represented as binary signals rather than
by signals that may assume many different values. This happens both in data
communication and in data processing, where new signals are generated as
the result of a computation on other signals. For example, deciding that some
electric current flows in a conductor after the merging of two other currents is
much faster than measuring the actual value of the new current. The binary
code can be optimized using a minimal number of binary digits (bits) to repre-
sent a number, or a character, or any piece of information, possibly depending
on the frequency at which these elements actually appear. We postpone this
discussion to section 3.3, turning our attention now to a subtle inconsistency
that remains in what we have discussed so far.

All binary systems that we have presented above need an additional feature
that may result in the introduction of a hidden third character or some kind
of formatting information. For example, consider the sequence “a 0 a 0 a” in
Caramuel’s binary numbering of Figure 3.2. Without any further indication
the sequence is ambiguous because it can represent number 21 or the pair
of consecutive numbers 2, 5. The ambiguity could be solved by inserting a
terminator, say a dollar sign, to distinguish between “a 0 a 0 a $” for 21, and
“a 0 $ a 0 a $” for 2, 5. Unfortunately the alphabet has become ternary. This
is, in fact, what happens in the Morse code where the transmission includes a
“pause” between consecutive characters to indicate termination. For example
the aforementioned sequence • • • − − − ••• for SOS is in fact transmitted
as • • • $ − − − $ • •• where $ is now the pause, to distinguish it from the
sequence • • • − − $ − • • • which means 3B.

In most cases, and in particular in computer data representation, the ambi-
guity is solved by assigning a field of given length to specific pieces of informa-
tion. Well known fields are the byte (eight bits) to represent a character, and
the sequence of three bytes to represent the three components in red, green,
and blue of the color of a pixel (point on a screen). In the UTF-8 encoding used
in the Internet 11100001 is “a,” 11000001 is “A,” 10110001 is the decimal digit
“1,” while the group of three bytes 00000000 00110011 11111111 represent a
pleasant light blue. Thus formatting allows the unambiguous interpretation
of a sequence at the expense of an additional constraint.

As an aside, the Braille system also solves the problem with a formatting
rule, as any character is represented in a rectangle of fixed size in which from
zero to six raised dots may appear in six specific locations. This gives rise
to 26 = 64 combinations to code alphabetic and other typographic charac-
ters, plus some special signs to indicate a change of environment, for example
passing from letters to numbers and vice versa.

We might also ask what nature can teach us in terms of representing
information. Until a few decades ago it would have been difficult to give an
answer, but in the 1950s biology made a big leap forward with the discovery
of the genetic code, although many aspects of this code are still unclear. The
famous double helix of DNA molecules, among which other molecules called
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bases line up, code the genetic heritage of all living things, i.e., their genome
that is in turn divided into one or more chromosomes. A DNA molecule for
each chromosome is present in every cell of every organism, with a total of
more than three billion bases in a human being. The bases are elementary
organic molecules of only four kinds called adenine (A), guanine (G), cytosine
(C), and thymine (T).

A standard way of looking at a DNA molecule is considering it as a se-
quence of bases, abstracting away from the more awkward reality of DNA as
a flexible three-dimensional molecule. Since these sequences were fully deter-
mined (or the DNA sequenced) for many species including humans, a variety
of important biological problems have been identified and studied. Each indi-
vidual has different chromosomes. Chromosomes contain genes, i.e., portions
of DNA specifying the necessary information to build the proteins that are
the main constituents of living bodies. A great majority of genes are the same
in a given species, but other parts of the DNA are specific to each individual
and allow, for instance, to establish the disputed paternity of a child, or to
find the final evidence of a homicide.7 We will return to this point in a future
chapter in connection with networks. For now we concentrate on how the four
bases code for proteins.

A simplified view of a protein is as a chain of amino acids that are simple
chemical components present in nature in twenty different types. DNA bases
code for amino acids, each one of them specified by a triplet of consecutive
bases according to a genetic code common to all living organisms and shown
in Figure 3.4 (DNA base T is replaced by RNA base U during the biological
information transfer). Discovering this code was one of the greatest advances in
science of the last century. Clearly the quaternary alphabet of bases allows the
formation of up to 43 = 64 triplets, and in fact all of them are “used” in nature
with the result that many amino acids have different codes. Furthermore some
triplets are signals of the beginning and end of a gene sequence. So for example,
the amino acid Serine (shorthand Ser) is represented by six different triplets,
while Methionine (Met) is represented by the only triplet AUG that is also
the signal of START.

Since the amino acids are always represented by triplets, the code is uni-
vocally decodable and, as mentioned before, has a high degree of redundancy
whose cause is unknown. Possibly during evolution the number of different
amino acids has grown from up to sixteen (two bases required) to the present
number, or redundancy reduces interpretation mistakes as in mathematical

7In February 2010, the 101st child of a desaparecido (disappeared) was discovered in
Argentina. Thirty-three years earlier his mother had been killed by the brutal military
regime immediately after the delivery and the baby was adopted by a “trustworthy” family.
The biological father never stopped searching for him together with the “movement of the
grandmothers.” Thanks to a proof based on DNA similarity he could finally embrace his
yet unknown son, crying and laughing at the same time, during a moving TV broadcast.
We will talk again of DNA proofs in Chapter 5 as an example of hashing.
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BASE 2

U C A G

BASE 1 BASE 3

U Phe Ser Tyr Cys U

Phe Ser Tyr Cys C

Leu Ser STOP STOP A

Leu Ser STOP Trp G

C Leu Pro His Arg U

Leu Pro His Arg C

Leu Pro Gin Arg A

Leu Pro Gin Arg G

A Ile Thr Asn Ser U

Ile Thr Asn Ser C

Ile Thr Lys Arg A

Met Thr Lys Arg G

G Val Ala Asp Gly U

Val Ala Asp Gly C

Val Ala Glu Gly A

Val Ala Glu Gly G

FIGURE 3.4: Table of the genetic code mapping triplets of bases to amino
acids.

codes. Sometimes the methods used in nature are too sophisticated to be
understood, so DNA remains partly mysterious, and certainly challenging.

Genetic sequences are an important type of data available on the Internet.
Operations such as storing and retrieving sequences, comparing sequences for
similarities, reconstructing long sequences from fragments, and looking for
structural patterns inside a sequence, are essential to modern biology. All
these problems share basic principles with others arising in all fields of data
processing and related to Web data organization and retrieval.

3.2 Comparing sequences

The body of techniques born for analyzing or giving a form to a sequence
of characters, also called text, is known as text-editing. Typically a short se-
quence called a pattern is searched for in a document. In biological applications
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the text might be the entire genome of an organism and the pattern a gene
whose presence is tested. In a Web page the pattern might be a word and a
search engine may be interested in counting how many times it appears. In
computer applications sequences of characters are also called strings and the
above problem is known as string-matching.

Formally we want to find all the occurrences of a pattern P = p1 p2 pm
in a text T = t1 t2 tn, giving as a result all the positions of T where an
occurrence of P starts. From the magic text T = ABRACADABRA and
the stupid pattern P = ABRA, string matching would yield the result 1, 8,
corresponding to the two positions where an occurrence of the pattern starts
in the text. Many smart methods have been devised to solve this problem. We
start with the most näıve, where a “template” containing the pattern slides
along the text, and the positions where text and pattern match are recorded
(see Figure 3.5).

1 2 3 4 5 6 7 8 9 10 11
T : A B R A C A D A B R A

P : A B R A
A B R A

. . . .
A B R A

FIGURE 3.5: The näıve string-matching method.

Observe that all the n − m + 1 possible starting points of P in T are
considered and, for each one of them, P must be compared with a sub-sequence
of T , stopping as soon as a character mismatch occurs. In the example of
Figure 3.5 we have n = 11,m = 4, and all the positions from 1 to 11−4+1 = 8
are considered for a possible start of P . For position 1 a match is found
after the comparisons of the four characters A,B,R,A of pattern and text.
For position 2 we find a mismatch between p1 = A and t2 = B, so the
comparison is immediately restarted between p1 and t3, etc. As we shall see
string-matching is a basic problem on the Web.

Many techniques have been proposed to increase the performance of the
search, often based on a preprocessing of the pattern in hand as the text
is generally not available a priori. For example, one can easily observe that
finding the pattern ABRA starting in position 1 of the text carries the free
additional information that the characters of T in positions 2, 3, and 4 are
B,R, and A respectively. Then, as P starts with A, it cannot be present in T
starting from positions 2 or 3, and one can restart the search from position 4.

Another important problem in the framework of automatic text editing,
and in computational biology, is that of finding the distance between two
similar but non-identical sequences. Spell checkers, for instance, do not only
recognize incorrect words in a document, but also suggest some possible sub-
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stitutions that are selected among similar words a small edit distance from
the misspelled one.8 Formally, given two sequences X,Y we want to find an
optimal alignment of X and Y corresponding to a minimal distance between
the two. For this purpose blanks may be inserted in each one of the sequences
corresponding to the space left by a character wrongly omitted there (dele-
tion), or to a character wrongly inserted in the other sequence (insertion).
Each pair of aligned characters or blanks of X,Y contributes to the distance
with a weight 0 in case of match and 1 in case of mismatch, although these
costs may be varied at will. A match means that the two characters are equal,
keeping in mind that no two blanks are ever inserted in the same positions
in X and Y . Mismatch means two different characters, or a character versus
a blank. The edit distance is the minimal sum of the weights of all character
pairs over all the possible alignments.

For the two alphabetic sequences X = SUAV E and Y = USAGE, here
are three optimal alignments, all with edit distance three (dashes denote
blanks, while plus signs denote mismatches):

S U A V E − S U A V E S U − A V E

U S A G E U S − A G E − U S A G E

+ + + + + + + + +

Computing the edit distance is not immediate. In order to do it, the two
sequences X = x1 x2 ... xn and Y = y1 y2 ... ym to be compared are formally
bordered to the left with a blank (say x0 and y0), and their characters are
respectively put into correspondence with the rows and columns of an array
M of size (n+ 1)× (m+ 1). For X = SUAV E and Y = USAGE, i.e., n = 5
and m = 5, we have the array of size 6 × 6 in Figure 3.6 whose contents is
computed as follows.

− U S A G E

− 0 1 2 3 4 5
S 1 1 1 2 3 4
U 2 1 2 3 4 5
A 3 2 2 2 3 4
V 4 3 3 3 3 5
E 5 4 4 4 4 3

FIGURE 3.6: The matrix M of edit distance between prefixes.

Each cellM [i, j] (i.e., the cell in row i and column j) is used to store the edit
distance between the two prefixes of X and Y ending in positions i and j, that

8Sometimes with infuriating results.
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is, the two subsequences x0 x1 ... xi and y0 y1 ... yj . Row 0 reports the edit dis-
tances between the blank prefix x0 of X and all the prefixes of Y : for example
M [0, 3] = 3 because the edit distance between x0 = − and y0 y1 y2 y3 = −USA
is three, corresponding to the alignment of the subsequence −USA with a se-
quence of four blanks (3 mismatching characters). Similarly column 0 reports
the edit distances between each prefix of X and the blank prefix y0 of Y .
Formally, we immediately set the values: M [0, j] = j,M [i, 0] = i, for all i, j.

The value of any other entry M [i, j] can be computed from the adjacent
previously computed cells with a smaller value of i and/or j, that is, from
M1 = M [i, j − 1], M2 = M [i − 1, j], and M3 = M [i − 1, j − 1]. Letting
p(i, j) = 0 if xi matches with yj , and p(i, j) = 1 otherwise, the elements of M
are determined one by one through the following recursive formula:

M [i, j] = min{M1 + 1,M2 + 1,M3 + p(i, j)} (3.3)

where the three options inside the function min respectively correspond to
increasing the prefix of Y by one position (j − 1 in M1 = M [i, j − 1] to j
in M [i, j]) aligned with a blank in X; or increasing the prefix of X by one
position aligned with a blank in Y ; or increasing both prefixes and comparing
the two new characters. The meaning of relation (3.3) should then be clear.

The value M [n,m] in the right bottom corner of the array indicates the
edit distance between the two sequences. In the example of Figure 3.6 we have
M [5, 5] = 3 that is the edit distance already found. The optimal alignment
(or alignments) that generates the minimal distance can be constructed in a
backward procedure, starting from cell M [n,m], tracing back into the array
until cell M [0, 0] is reached, and deciding at each step the option of relation
(3.3) from which the value in the current cell has been derived.

The method for computing the edit distance can be applied with minor
modifications to solve a very important variant of the string matching prob-
lem already discussed, known as approximate string matching. Now the oc-
currences of a pattern P in a text T are searched for with a certain degree of
approximation, for example assuming that such occurrences have a maximum
allowed number d of mismatches, insertions, or deletions. In this case T and
P correspond to the columns and to the rows of M , but all zeroes are inserted
in row 0 to indicate that P can start at any position of T without paying any
cost for this. The solution is given in the last row n where the values in each
cell M [n, j] express the number of differences between P and the portion of
T ending at tj . There is an approximate occurrence of P in T for each cell of
the last row such that M [n, j] ≤ d.

For example the pattern P = ABCA does not occur exactly in T =
ABRACADABRA, but if we content ourselves with occurrences with at most
one error (i.e., d = 1) we can build the array M of Figure 3.7 that the reader
may examine. In the last row we have M [4, 4] = M [4, 6] = M [4, 11] = 1
corresponding to the three alignments with distance 1 of the pattern ABCA
with the portions of the text: ABRA, A − CA, and ABRA again. All these
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algorithms are essential when searching for portions of text in Web pages,
either exactly or approximately.

− A B R A C A D A B R A

− 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 1 1 0 1 0 1 0 1 1 0
B 2 1 0 1 1 1 1 1 1 0 1 1
C 3 2 1 1 2 1 2 2 2 1 1 2
A 4 3 2 2 1 2 1 2 2 2 2 1

FIGURE 3.7: The matrix M of approximate string matching.

3.3 From sequences to trees

Although all information inside computer memory is represented with a
sequence of bits, data with a hierarchical structure are often represented as
a tree, a very popular structure in computer science. Family trees, like the
one shown in Figure 3.8 for the “Buendia,” whose epic was narrated in a
famous novel of Gabriel Garcia Marquez,9 are a real-world example of the
depiction of data with an inherent hierarchical structure. The need to restrict
the representation to certain lines of descendants, the lack of knowledge of
some parents, and the multiple marriages of some members of a family may
complicate the structure substantially. Computers prefer to deal with cleaner
structures. Let us see how trees are encountered in the Internet world.

The terminology is taken from graph theory, botanics, and family trees.
The nodes are the elements of the structure corresponding to the names in a
family tree, and the arcs are the connections between nodes. The root is the
node from which all the branches start, José Arcadio Buendia in the example.
In computer science trees are considered the other way up to their botanical
counterparts, so the root is shown at the top. The leaves are the nodes from
which no branches start, as for example Amaranta, daughter of José Arcadio
and Ursula Iguarán. Parental relationships are the same as for family trees,
so one node can be child, parent, sibling, ancestor, or descendant of another
one. A subtree is also associated to each node, defined as the portion of tree
of which that node is the root.

Although a subsequent chapter will explain this point in more detail, let us

9Garcia Marquez, G. 1998. One Hundred Years of Solitude, Harper Perennial, New
York. Figure 3.8 is an elaboration of the Buendia family taken from Wikipedia at:
http://en.wikipedia.org/wiki/One Hundred Years of Solitude
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FIGURE 3.8: The Buendia family tree.
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FIGURE 3.9: A (very small) portion of the DNS tree with the names of
some American museums.

consider something that is probably known to most readers, at least something
which they have exploited whilst using the Internet. In order to be reached by
their peers, all the devices of a network must have an address, called an IP
(for Internet Protocol) address on the Internet.10 Devices, or the information
contained in them, also have names, called domain names on the Internet.
Essentially a domain name indicates what we are looking for and the corre-
sponding IP address indicates where it is. An efficient tool must be used to
map names to addresses and to retrieve an address from the corresponding
name. This tool is the DNS (for Domain Name System) tree, a huge data
structure that is replicated in many computers called name servers. Any de-
vice looking for a resource in the network only needs to know the name of the
resource and the address of a Name Server.

Being organized in the DNS tree the names have a hierarchical structure
that makes it possible to access them very fast. The node at the root, labeled
with a silent dot, is the most important of all as we shall see in a later chapter.
The children of the root are named .com, .edu, .org etc. to denote particular
categories of users, or are named .us, .ca, .uk, and recently .eu for Europe
etc. to denote different countries. Going down the tree, each successive level
inherits the name of the parent with an additional word to left of the label,
with all these words separated by a dot. For example www.metmuseum.org is
the name of the Web server of the Metropolitan Museum in New York, where
.org denotes a non commercial entity and metmuseum.org is the museum
name. Part of the DNS tree is shown in Figure 3.9.

Several methods exist to represent a tree in the form of a sequence. Purists
may prefer a parenthesized sequence where the tree is recursively coded as the
(name of) the root, followed by a pair of open and closed parentheses that

10Presently an IP address is a 32 bit number.
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enclose the children of the root, each recursively represented with the same
method. For example the sequence:

1 ( 2 3 ( 6 ) 4 ( 7 ( 10 ) 8 ( 11 12 ) 9 ) 5 ) (3.4)

corresponds to the tree of Figure 3.9 with nodes represented as integers for
clarity. The root 1 is followed by the list in parentheses of its children 2, 3,
4, 5, all immediately followed by the list of their children. For example node
3 is followed by the list of its only child 6; node 4 is followed by the list of
its children 7, 8, 9; and so on. The reader may verify that at most 2(n − 1)
parentheses are necessary to represent any tree of n nodes.

Depriving sequence (3.4) of its parentheses we obtain the new sequence:

1 2 3 6 4 7 10 8 11 12 9 5 (3.5)

which is insufficient to reconstruct the tree univocally. However, this sequence
is still strongly related to the tree, because it gives the order in which nodes
are examined in what is called a pre-order traversal. Intuitively the rule is
the following. Assume that the tree is ordered, that is, a left-to-right order is
always defined among siblings and is reflected in the graphical representation
of the tree. Starting from the root go down the tree as far as possible, always
taking the left branch and leaving open any alternative at nodes that have
more than one child. When a leaf is reached, backtrack to the last open point
and follow the next alternative available. For a node N with h > 0 children
C1, ..., Ch the rule is recursive, as shown in Figure 3.10. For the non expert
the rule may need a little consideration to understand how recursion works.

PRE-TRAV(N):

examine(N);

PRE-TRAV(C1); ....; PRE-TRAV(Ch).

FIGURE 3.10: The recursive rule for pre-order tree traversal, triggered by
N = root.

It has often been observed that the pre-order traversal induces on the
nodes the same order of succession to the throne that applies to the members
of a royal family.11 Take Figure 3.9 as the representation of a royal family tree
with node 1 as the king. Assume the whole family gathers in a castle where
each current king is assassinated every hour on the hour. The crown passes
from the late king 1 to prince 2, then to his sibling 3 as 2 has no descendants,
then to 6, 4, 7 etc., until the whole progeny is reset to zero in twelve hours.

Besides representing a hierarchical data organization, trees are widely em-
ployed in computer science to model different objects or to depict different
situations. After all a tree can be seen as a simple type of connected graph
with n nodes and n − 1 arcs. This many arcs are necessary and sufficient

11e.g., see D. E. Knuth. The Art of Computer Programming, Vol. 1 p. 335.
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to keep the tree structure connected. To see this, observe that for n = 1 or
n = 2, zero or one arc is required. Inductively if n− 2 arcs are necessary and
sufficient for connecting n − 1 nodes, connecting the n-th node to the sub-
graph through a minimum number of arcs requires one and only one new arc,
thereby increasing the number of nodes and arcs to n and n− 1, respectively.
Therefore computer networks can be organized in the form of a tree if it is
important to keep a low number of connections, although this structure is
very fragile because the failure of a single arc is sufficient to disconnect the
network.

Trees also play an essential role in the creation and handling of electronic
documents to be published on the Web, including image or audio-video files.
For this purpose a markup language called XML is becoming the standard.
An XML document is a sequence of characters of two different types, namely,
the ones specifying the content of the document and the markup characters.

A markup sub-sequence starts with “<” or “&” and stops with “>” or “;”
respectively. Sub-sequences that are not markup are of content type. Consider
the portion of XML program in Figure 3.11. The words “artgallery,” “paint-
ing,” “caption,” and “date” included in markup sub-sequences are called tags
and are self-explaining. A bar as in “/artgallery” indicate the end of a tag
scope. The word “img” is also a tag defining an image, and contains the two
attributes, “src” and “alt” specifying the source file of the image and an al-
ternative text in case the image is not available (in this case the tag ends with
“/>”).

<artgallery>
<painting>

<img src=“Painting1.jpg”
alt=“Panic Room, by Peter Halley”/>

<caption>Peter Halley’s “Panic Room”, painted in
<date>2005</date>.

</caption>
</painting>
<painting>

<img src=“Painting2.jpg”
alt=“Indexed, by Peter Halley”/>

<caption>Peter Halley’s “Indexed”, painted in
<date>2007</date>.

</caption>
</painting>

</artgallery>

FIGURE 3.11: Portion of an XML program depicting the contents of an art
gallery.

It is not difficult to see that our XML program is none other than a tree,
where the first tag represents the root and the beginning of a new tag corre-
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FIGURE 3.12: The binary tree induced by the XML program of Figure 3.11.
Tags are in boldface. The two images, painting1 and painting2, are reproduced
with the kind permission of Peter Halley.

sponds to the insertion of a new subtree. The repetition of a previously used
tag specifies the insertion of a new subtree at the same level, that is, a subtree
rooted at a new sibling. The tree corresponding to the given example is shown
in Figure 3.12.

In addition to trees in the traditional sense of the word, many other tree-
structures are found in nature, in particular when a process of growth develops
by dichotomy. Corresponding to this case, computer scientists have introduced
a more constrained structure called a binary tree, where each node has at most
two children and each of them has the specific role of left or right child. So a
node may have only one child that may be a left child or a right child, and
these are treated as two different conditions. Binary trees are of paramount
importance in search problems, as we shall see in the next chapter. A different
application has to do with text coding and compression, and is crucial for the
functioning of Web search engines. To discuss it we must restart from the
problem of the unambiguous interpretation of sequences that we have solved
thus far only through formatting or insertion of separators.

In a binary representation of the English alphabet where A, B, and C
are respectively coded with 0, 1, and 01, the sequence 0101 admits the four
interpretations: ABAB, ABC, CAB, CC. If the space is also coded with 10
the sequence is still ambiguous and admits the further interpretation A B.
Many unambiguous binary codes have been invented, among which prefix codes
are of particular interest. In these codes the sequence of bits associated to
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Char space t i a n s

Freq 4 4 3 3 3 2

Code 000 001 100 101 110 0100

Char o c ’ g f e

Freq 2 2 1 1 1 1

Code 0101 111 01100 01101 01110 01111

FIGURE 3.13: Character weights (Freq), and their codings (Code) gener-
ated by the Huffman tree.

each symbol is never a prefix of the sequence of any other symbol, so that
unambiguous decoding can be performed on the fly while scanning the text
from left to right. For example, the coding A=0, B=10, C=11 is prefix free
and the sequence 10011010 admits the only interpretation, BACAB, that is
directly found during the scanning. The coding A=0, B=01, C=11 is also
unambiguous but not prefix free (A is a prefix of B) and the sequence 011111
can be univocally interpreted as BCC only after having scanned it completely
(deleting a 1, the sequence would be ACC).

A fundamental contribution to coding theory was the prefix code proposed
by David Huffman in 1952, still widely used today as a basic tool for text
compression. The coding of each character of a text is represented with a
number of bits that is a function of the probability of the character occurring.
The higher the probability, the fewer bits are used. In this way the total
length of the coded text is minimized over all possible character codes.12

Huffman gave a very efficient coding method which attains on average the
minimum length of the coded text if the probability of each character occurring
is known a priori, and can be adjusted adaptively on observed frequencies if
the probabilities are unknown.

Each character has an associated weight equal to its probability of occur-
ring or to its frequency in the text if this is known. For instance the Rolling
Stones’ sentence “I can’t get no satisfaction” consists of twenty-seven charac-
ters that appear with different frequencies. The most frequent are space and t
with four occurrences, followed by a, i, and n with three, and so on. These fre-
quencies are taken as weights and the characters are sorted in non-increasing
order of the weights as shown in Figure 3.13 (rows “Char” and “Freq”).

Let us follow the Huffman tree construction in Figure 3.14. First, the
characters are associated to the leaves of the tree to be built. Then the two

12Note the similarity with natural languages where common words tend to be very short.
In fact the concept of character is taken in a broad sense in the coding and can refer to a
whole word in an “alphabet of words.”
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FIGURE 3.14: The Huffman tree for the sentence “I can’t get no satisfac-
tion.”

leaves X,Y with smallest weights are considered and a new internal node Z
is created as their parent. If X and Y have different weights, the one with
greater weight is taken as the left child of Z. The sum of the weights of X,Y
is assigned to Z as its weight, and bits 0 and 1 are assigned to the left and to
the right child of Z, respectively. In our example, the leaves X = ′ and Y = g
with weight 1 are selected, a new internal node with weight 2 is created as
their parent, and the bits 0 and 1 are put on the arcs leading to ′ and g. Now
another internal node is created, having as its children two nodes with the
smallest weights among the remaining leaves and the already created internal
node, with the child of larger weight on the left. In the example, the new node
is the parent of f and e (weight 1) and has weight 2. Then s and o both with
weight 2 are selected to form a new node of weight 4. Then, the two nodes
selected are the two internal nodes with smallest weight 2. The procedure is
iterated until all existing nodes have been connected in pairs and only one
node remains at the root. The coding of each character x is then generated
following a path from the root to the leaf containing x and assigning 0 for each
step down to the left, and 1 for each step down to the right. In our example
the resulting coding sequences are shown in the row “Code” of Figure 3.13. It
is easy to see that this procedure gives rise to a prefix code.

Note that the Huffman tree is a particular binary tree with all internal
nodes having exactly two children. This implies that for h internal nodes we
must have h+ 1 leaves, as one can easily prove by induction (in our example
we have ten internal nodes and eleven leaves). So the total number of nodes
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FIGURE 3.15: A phylogenetic tree for a set of catarrhine primates. Homo
sapiens (literally, knowing man) are the humans.

is n = 2h + 1. With some ingenuity it can be verified that the time required
by the above procedure is proportional to n.13

We conclude this roundup of trees as we did for sequences, by looking at a
further connection between computational science and biology. This will also
show an unexpected linkage between edit distance and prefix code construc-
tion, a further indication of the general validity of these concepts.

An important tool for studying the evolution of different biological species
is the phylogenetic tree, a binary tree containing existing species at the leaves
and pairing nodes to form inferred (i.e., not direclty observable) internal nodes
as probable most recent common ancestors. An example of such a tree for some
Old World monkeys is shown in Figure 3.15. The internal nodes (black dots)
are unknown ancestors from which the different species differentiated in time,
with the most ancient at the root.

Phylogenetic trees have been built for some time on the basis of mor-
phologic or genetic characters, and more recently by the application of DNA
sequences. We recall only some basic points, leaving any further investigation
to the bibliographic notes. One can make use of a character matrix that reports
the “values” of a set of characters for any of the species under consideration,
as in the toy example of Figure 3.16 where five species are indicated with the
Greek letters α to ε, and their five characters c1 to c5 have DNA bases as
values. Assuming that the value of a character changes to differentiate two
species, a branching denotes one such event, the corresponding internal node
is labeled with the evolving character name, and the two branches carry the
two values of the character that (hopefully) will apply to all the descendants
of that branch. If this is true, that is if that character will not change again in
evolution, the resulting tree corresponds to a perfect phylogeny. The character

13Such considerations will be developed in the next chapter. It should be clear, however,
that a procedure that builds a tree of n nodes in time proportional to n is optimal in its
order of magnitude, as such a time cannot be beaten by any other procedure.
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FIGURE 3.16: An example of perfect phylogeny. A matrix for species α to
ε and characters c1 to c5; and a corresponding phylogenetic tree.

matrix of Figure 3.16 is in fact consistent with a perfect phylogeny, corre-
sponding to the tree shown in the figure. When a branching is established, as
for example at the tree root for character c1, all the nodes of the left (respec-
tively, right) subtree have c1 = C (respectively, c1 = A), as verified for the
actual species at the leaves.

Unfortunately the character matrix of most observed species is not con-
sistent with any perfect phylogeny. In our example it is sufficient to change
one nucleotide to make a perfect phylogeny impossible. For instance, replace ε
with a new species ζ with character values A G T A A (i.e., change the forth
nucleotide). As before character c1 would induce a partition between α, β on
one side, and γ, δ, ζ on the other side. But character c4 would also induce a
partition between α, β, ζ on one side, and γ, δ on the other side, creating an
inconsistency for ζ. As in many other cases, particularly when dealing with
life sciences, a compromise must be reached.

To this end the most common approach is based on a distance matrix
that reports the “distance” between any two species under a chosen metric.
For instance taking a DNA subsequence as a vector of character values for
each species, the distance between two species can be computed as the edit
distance between such subsequences as defined in section 3.2. For the example
of Figure 3.16 with species ζ instead of ε we would have the distance matrix
of Figure 3.17: e.g., the best alignment between α and ζ is given by: C G - A
A G versus A G T A A -, with edit distance 3. The most common method for
building a phylogenetic tree based on a distance matrix is known as UPGMA
(for Unweighted Pair Group Method with Arithmetic Mean). The reader may
notice a strong similarity with the Huffman tree construction.

Starting with the species at the leaves, an internal node is formed to con-
nect the two species with minimum distance, α and β in the example. A new
entry called cluster is created to substitute the paired nodes in the matrix,
and is associated with the new internal node. Then the matrix values for
the cluster are recomputed, and new clusters are similarly built one after the
other until the matrix collapses to a unique entry. In this process the distance
between two clusters is simply computed as the average of the distances of
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FIGURE 3.17: The distance matrix for the example of Figure 3.16 with
species ζ instead of ε, reporting the edit distances between the sequences
of character values. Successive transformations of the matrix with emerging
clusters, according to the UPGMA method.

all the pairs of elements in the first and the second cluster. In our example
cluster αβ is constructed first, and its distances with the other elements of the
matrix are evaluated as: dist(αβ, γ) = dist((α, γ)+dist(β, γ))/2 = 4, and sim-
ilarly dist(αβ, δ) = 4, and dist(αβ, ζ) = 3, as reported in the second instance
of the matrix. Then leaves γ and δ are paired in the new cluster γδ and the
distances of this cluster with αβ and ζ are recomputed in the third instance
of the matrix. Then γδ is paired with ζ, and a final root will connect the two
clusters αβ with γδζ. It may be noted that, although a perfect phylogeny is
not possible now, the resulting tree is still that of Figure 3.16 with ζ in the
place of ε.
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of Computer Programming. Addison-Wesley. The complete work is planned to
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other texts available on line.

The relations between genetic information and computational science can

© 2012 by Taylor & Francis Group, LLC



42 Mathematical and Algorithmic Foundations of the Internet
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from around the World, Binkey Kok Publishing, Diever, Holland.

© 2012 by Taylor & Francis Group, LLC



Chapter 4

The algorithm: the key concept

How shameless Martin applies mathematical logic when courting girls, and
how a police officer may be unable to identify a criminal gang in the Web.

The algorithm1 is the key concept of this book. When in the 1930s Alan
Turing and other logicians came up with a sound definition of the algorithm,
computer science took its first steps, although no computers had yet been
invented. Algorithms accompanied the growth of this new science up to the
Internet and through to the Web era where they lie at the foundation of
everything. Based on the primitive concepts discussed in the previous chapters
we will now illustrate several algorithms to be used later as building blocks,
starting from the indispensable theoretical foundations of our discussion.

Let us return to the world of sequences. Our analysis will not lose generality
if we restrict this world to the binary case that interests us most. Call these
sequences σ0, σ1, σ2, ... and arrange them in canonical order, i.e., by increasing
length and, for the same length, by increasing value of the corresponding
binary numbers, starting from the empty sequence ε. We have:

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 ... σ14 σ15 ...
ε 0 1 00 01 10 11 000 001 ... 111 0000 ... (4.1)

i.e., the binary sequences can be put in a one-to-one correspondence with
the natural numbers 0, 1, 2, ...., or, in the terminology of set theory, such
sequences are numerable. Adopting the numbering induced by the canonical
order, for any given sequence σi we can reconstruct in finite time its number
i, and vice versa, no matter how long the sequence is. Keep in mind that we
are talking of sequences of finite but unbounded length, that is, for any length
l arbitrarily fixed there are (infinite) sequences longer than l.

This infinite world of numerable objects has attracted thinkers since an-
cient times. The mere existence of infinity was a matter of discussion until

1A book on the algorithmic foundations of networking must include a chapter like this
one. Readers with some knowledge of computability and complexity theory, as acquired, for
example, in a standard university course in computer science, may skip the chapter or just
skim it to refresh the memory.
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Aristotle asserted beyond any (personal) doubt that infinity had to exist: for
example, he said, numbers never finish. In the western world Galileo Galilei
was the first to take up this concept again in his last and perhaps most impor-
tant work entitled “Dialogues and Mathematical Demonstrations Concerning
Two New Sciences” (the book was published in 1638 in Leiden out of the reach
of the Inquisition, while Galileo was serving a life sentence for heresy under
house arrest near Florence). In a deep speculation on viewing a geometric
shape as an infinite collection of points of infinitesimal size, Galileo pointed
out some unexpected facts that arise when dealing with infinity, suggesting in
particular the “paradox of squares.”2 Each positive integer, he noticed, has
a square obtained by multiplying the number by itself. So there are as many
integers as squares. However there are an infinite quantity of integers like
3, 5 etc. that are not squares of anything, so one should also conclude that
there are more integers than squares. He explains that “these difficulties arise
when discussing the infinite with our finite minds,” while the facts observed
are perfectly normal. And in fact all sort of paradoxes of this type can be
conceived.

Consider for example all the positive rational numbers, i.e., the ones ex-
pressed by the ratio of two positive integers, plus the zero. A canonical order
can also be defined here by arranging the rational numbers τi by increasing
value of the sum of the numerator and the denominator, and, for the same
value of this sum, by increasing value of the numerator. We have:

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 ...
0 1/1 1/2 2/1 1/3 2/2 3/1 1/4 2/3 3/2 4/1 ... (4.2)

so also the rational numbers are numerable. That is, they are as numerous as
the natural numbers. Note that each element in the second line of (4.2) has
infinite repetitions of its value, for example the value of 1/1 appears also as
2/2, 3/3, ....; the value of 1/2 appears also as 2/4, 3/6,..., etc. Nonetheless,
even if all these repetitions are taken away and the second line is compacted
by shifting its elements to the left to fill all the empty positions, we end up
with two lines with the same number of elements, but where the second line
contains all the values of the first line (1/1 = 1, 2/1 = 2, etc.) plus many
others (1/2, 2/1, 1/3, etc.). A paradox, then!

Although Galileo had already explained that these apparent contradictions
are due to the incorrect application of ordinary reasoning to infinite objects,
it was not until the late 19th century that a sound theory of infinite sets
was given by Georg Cantor. This theory is completely abstract but has pro-
duced some practical consequences of paramount importance in the world of
algorithms. First Cantor proved that there is no inconsistency in having two

2The word paradox, etymologically “against the (current) opinion,” should strictly speak-
ing only be used in this sense, as in the paradox of squares that describes a true but counter-
intuitive situation (there are as many integers as squares). In mathematics the meaning has
more recently been extended to entail antinomy, etymologically “against the rule,” i.e., a
statement contradictory in itself, e.g., for containing two mutually exclusive assertions.
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infinite sets A,B of the same cardinality where A is a proper subset of B, as
for the integers and the rationals of (4.2). The question then arose whether all
infinite sets have the same cardinality, and the somewhat surprising answer
was negative. In particular, Cantor proved that the real numbers are more
numerous than the integers, that is, that there is no way of numbering the
reals. Using the same reasoning one also can prove that mathematical func-
tions are too many to be numerable, as we will explain below. The poorest,
least complicated infinity is that of the integers where computer science is
fully immersed.

4.1 Functions, algorithms, and decidability

The language of mathematics, like any other reasonable language, is aimed
at describing facts using sequences of characters taken from a finite alphabet.
All known mathematics, from Apollonius’ conics to Bourbaki’s set theory; all
lost mathematics, from Euclid’s surface loci to Riemann’s notes; and all not
yet born mathematics that one can think of; can be recorded in one very large
book according to some typographical rules. This language, then, follows the
general rules explained in Chapter 3 for the sequences, whose number grows
exponentially with their length. And since such a length is a priori unbounded,
the number of sequences with a mathematical meaning is potentially infinite.
Still, being sequences they are at most as many as the natural numbers, i.e.,
they are numerable.

Consider now a mathematical function y = f(x). As we know this expresses
a correspondence between two possibly infinite sets, a domain X and a co-
domain Y . In the simplest case X and Y are numerable, then all the elements
x ∈ X and y ∈ Y can be represented with finite sequences giving their names
or values. In the language of computers, the computation of f on the datum
x produces the result y. If an algebraic or any other unambiguous expression
for f exists, as for example “y = 2x3 + 1” where x and y are integers, or
x and y are English words and “y is obtained from x by replacing all a’s
with b’s,” then f itself can be expressed with a finite sequence although its
domain and co-domain are infinite. But this is not always the case. Cantor’s
theory implies that the functions are not numerable, then there are not enough
finite statements (expressions, rules, names, or whatever else) to represent
all possible functions. In the absence of a finite expression, the only way of
representing a function would be to give two lines that explicitly show the
elements of X and the corresponding elements of Y . However these lines would
have infinite length, and Cantor’s theory shows that all the infinite sequences
of elements taken from an infinite set, Y in this case, are non numerable: this
is why the functions are non numerable. The crucial reason why we are saying
all this will be now made clear.
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Informally an algorithm is an unambiguous procedure to solve a specific
problem on arbitrary data using the rules of the game at hand: for exam-
ple, producing the pre-order list of the nodes of an arbitrary tree using a
given computer, according to the recursive rule given in Chapter 3; or making
mayonnaise with an arbitrary number of ostrich eggs using a given blender,
according to the recipe of a sub-Saharian cookbook.3 After the very first steps
of the computing era, i.e., starting in the early 1960s, the recognition of the
importance of designing algorithms independently from the machine then used
to execute them gave rise to the birth and subsequent growth of the huge field
of programming.

Today computer algorithms are formulated in any reasonable language
that captures their main features of interest, and then implemented in pro-
gramming languages accepted by all computers. No matter how it is expressed,
an algorithm transforms a datum x (the tree or the eggs) into a result y (the
pre-order list or the sauce), so it has the same role and power as the computa-
tion of a function. And here a crucial consequence of Cantor’s theory becomes
pertinent. Like many other mathematical objects, algorithms are sequences
of finite length, and hence are numerable. But functions are not numerable,
hence there must be non computable functions, or equivalently, well-posed
problems that cannot be solved algorithmically. And since there is nothing
inherently against the fact that a non computable function may be defined
with a finite expression, logicians started hunting for such functions just after
Cantor’s theory became accepted. The first consequence, however, was the
birth of a rigorous definition of algorithm that did not exist before.

Stepping back a little, it is not surprising that a formal study of algorithms
came out of a search for a negative result, i.e., the search for a function not
amenable to algorithmic computation. Whenever a problem could be mathe-
matically solved, like computing the square root of a number or constructing
the bisector of an angle, the algorithm was simply described without particular
attention to the language used and, in most cases, even to the efficiency of the
suggested procedure. This is what we have done in Chapter 3 when explaining
how to determine the edit distance between two sequences in mathematical
terms, or which rule to follow for traversing a tree. However, when it comes to
stating that a particular problem cannot be solved algorithmically, a precise
definition of algorithm must be given in order to prove that no algorithm can
help.

Many logicians worked on this in the first decades of the 20th century, and
all of them should be given due credit for the development of the field. In 1936,
the British mathematician Alan Turing gave a historic account of an abstract
machine with an infinite tape memory, now universally known as a Turing
Machine or TM, together with a problem that cannot be solved by such a
machine. The TM is now accepted as a basic computational model, and any
known computer algorithm can in fact be reformulated as a TM. The famous

3Several procedures described informally in the previous chapters are indeed algorithms.
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halting problem proved by Turing to be algorithmically unsolvable has had
a wealth of consequences in the programming world. The reader interested
in knowing more of this theory is referred to the bibliographical notes. We
merely recall here a few details to cast light on the great lesson Turing left us.

Since a TM is an algorithm we will speak equivalently of algorithms or
TMs, and of data or sequences written on the machine tape. Being an algo-
rithm, a TM is less than a computer, but one can define a universal TM U able
to simulate the computation of any other TM T on its data D, provided that
T and D are given to U as input. In a sense U is the equivalent of a computer.
The simulation is possible because algorithms (or TM descriptions) and data
are formulated with the same alphabet, so the sequence that specifies T can
be treated as a datum by another TM, or even by T itself. The latter obser-
vation brings us into the treacherous world of self reference, a beloved way of
reasoning for any logician and a key ingredient for proving the impossibility
of drawing consequences from a sound basis.

The story started long ago with the epistle of Saint Paul the Apostle to
Titus, whom he had left in Crete to set things in order. Unfortunately the holy
man was not known for being particularly kind or politically correct. So, after
having alerted Titus that in Crete “there are many insubordinate, both idle
talkers and deceivers, especially those of the circumcision,” he added (Ch.1 -
12):

One of them, a prophet of their own, said, “Cretans are always liars, evil
beasts, lazy gluttons.”

The prophet is identified as Epimenides, a mythical Cretan sage to whom Saint
Paul attributes the self-referential statement of being a liar. The statement,
later known as the liar’s paradox, is also self contradictory.4 Coming from a
Cretan liar the statement should be false, thus implying that the Cretans do
not lie. In this case, however, the statement should be true thus implying that
the Cretans lie. In mathematical terms the statement is true if and only if
it is false: an antinomy. Not only the Cretans, but the laws of thought seem
to have been ill-treated. The search for non-computable functions uses the
same logical structure, that is, the assumption of a certain problem being
algorithmically solvable leads to an antinomy. We sketch here the first proof
given by Turing. Readers with more practical interests may skip the proof and
go directly to its consequences.

We shall restrict our discussion to decision problems that require a yes/no
answer (or to functions with a binary co-domain), noting that they retain the
inner nature of the whole class of problems amenable to algorithmic solutions.
In most applications these problems are concerned with deciding whether
a solution with certain characteristics exists or not rather than giving the
solution itself, as for example for the Hamiltonian tour in a graph discussed
in Chapter 2, where deciding if such a tour exists, or actually finding it,

4See footnote 2 for the meaning of the word paradox.
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requires essentially the same computations. In general a decision algorithm A
for solving one such a problem produces an affirmative result yes for some
input D′ (a graph having a Hamiltonian tour), but a negative result no for
some other input D′′ (a graph without such a tour), but may also run for an
infinite amount of time without ever producing a result. This may be caused
by a trivial formulation error that leads the computation into an endless cycle;
but may be subtly unavoidable, for example, when testing a possibly infinite
set of sequences to find out whether there is one with a certain property.

Denoting with A(D) the computation of A on D, and with A[D] its result,
we have A[D] = yes, or A[D] = no, or A(D) does not terminate. Rephrasing
Turing’s reasoning we then pose the following:

Halting Problem. Given an arbitrary algorithm A and an arbitrary datum
D, decide in finite time whether A(D) terminates.

Although very simple and logically legitimate, the halting problem is un-
decidable in the sense that there is no algorithm T for deciding in finite time if
A(D) terminates for any pair A,D taken as input. The proof is by contradic-
tion. Let such a T exist. Take two arbitrary sequences S,Q. The computation
S(Q) has a meaning if S is a legitimate coding of an algorithm (we can say,
if S is an algorithm). Then we can define the behavior of T as:

T [S,Q] = yes if S is an algorithm
and S(Q) terminates; (4.3.i)

T [S,Q] = no if S is not an algorithm
or S(Q) does not terminate. (4.3.ii)

Note that T must always terminate in finite time; hence it cannot simply con-
sist of the simulation of S on Q because such a simulation may not terminate.
In a sense T is a monitor of the behavior of its peers. Consider now the specific
algorithm ANT (for antinomy) with arbitrary data D:

ANT (D)
if (T (D,D) = yes) loop forever

else answer yes;

ANT (D) does not terminate if and only if T (D,D) = yes; i.e., by relations
(4.3) D is an algorithm and we can write: ANT (D) does not terminate if and
only if D(D) terminates. But since ANT is an algorithm we can execute it on
D = ANT thus obtaining:

ANT (ANT ) does not terminate if and only ANT (ANT ) terminates. (4.4)

So, we have built an antinomy. As the only unproved step in our logical
chain of deductions is the assumption that T exists we must conclude that
this is actually impossible. With the same reasoning a wealth of other unde-
cidable problems have been found, such as the so called Universal Problem of
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deciding if A(D) = yes and the like. The lesson of Turing is the impossibility
of deciding, among peers, the results that will be obtained by others, even if
we know everything about them (T knows A and D). Deciding whether a TM
will eventually halt requires a more powerful machine than another TM. Once
a peer is known one can simulate his behavior, as the universal TM does; but
while the simulation is ongoing it is impossible to foresee if it will ever stop.

In practice it is impossible to write a general program for deciding whether
other programs are written correctly, for example to see if they will get stuck
in an endless loop for some input data. The science of programming has made
impressive advances in checking program correctness, but absolute guarantees
are theoretically impossible. And now let us see how a shameless womanizer
named Martin has fully learned the lesson.

Martin is able to do something I am incapable of. Stop any woman on any
street.

This is the incipit of a famous novel. To proceed, Martin applies to the women
a technique coincident with the one usually applied to formal systems in math-
ematical logic.5 He is at the same time a datum for countless algorithms, and
an algorithm for countless data. Fundamentally the situation is simpler than
it may appear. Martin approaches all women with the aim of seduction and
the women, now algorithms, may accept, or refuse, or postpone a decision
thus leaving him in complete uncertainty. But Martin is too smart to wait
forever; so he goes on developing parallel courting actions in different stages
of advancement.

In the first stage, that Martin calls sighting, he simply records the names of
the women that he may be seducing one day. So this is essentially an enumera-
tion procedure (although apparently countless, women are clearly numerable).
According to him this stage is of maximum importance because:

From his vast experience, he has come to the conclusion that it is not as
difficult, for someone with high numerical requirements, to seduce a girl as it
is to know enough girls who he hasn’t yet seduced.

Then he lets all adventures to proceed in parallel independently from one
another, until some of them will come to a positive conclusion without any
waste of time. The technique is based on the diagonal trajectories used by
Cantor in his theory of infinite sets, although we believe that Martin has
reinvented them by himself.

Martin’s and the girls’ behavior is illustrated in the table of Figure 4.1.
Girls have been already registered (and numbered) in a stage zero not shown.
Yes and no are final girls’ decisions that halt their algorithms, and wait

5Martin is the main character of “The golden apple of eternal desire,” in the collection of
stories Laughable Loves by the Czech writer Milan Kundera, 1968. We refer to the English
translation of Suzanne Rappaport, published in the USA by Alfred A. Knopf, Inc., 1974.
Kundera seems to be unaware of the mathematical capabilities of Martin.
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girl 1 girl 2 girl 3 girl 4 girl 5 girl 6
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level 3
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yes no
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. . .
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. . .

. . .

. . .

. . .
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. . .

FIGURE 4.1: The table of Martin’s adventures. Traversal starts in cell level
1 - girl 1.

denotes that computation is still ongoing. The arrows indicate the order in
which Martin traverses his adventures, approaching the girl with the first
incoming arrow and visiting her in later “levels” to check for a decision. Any
girl deciding to accept Martin’s love will inevitably be reached and seduced
in finite time. For example girl 3 will be reached in seven steps since girl 1,
approached before, is not willing to make a decision in a short time (and might
never decide, i.e., her algorithm might never halt). Then girl 5 will be later
seduced, and so on. To sum up, Martin will achieve the seduction of any girl
that eventually decide to say yes, but he does not forget the others because,
in his view

those who do not go after anything but this last level are wretched, primitive
men ....

To speed up the process Martin could try to foresee the behavior of the
registered women, for example skipping all the useless encounters with girl 1
to consider less reluctant girls. Now acting as an algorithm, he should examine
the girls’ algorithms as his data. However we know that complete prediction is
ultimately impossible. Although exceptionally gifted as a womanizer, Martin
knows that his decision power among peers cannot go that far.
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4.2 Computational complexity

Confronted with a specific problem one may think of several solutions
and design several corresponding algorithms that differ dramatically in their
efficiency. A serious comparison must be performed on solid mathematical
grounds. Computational complexity theory is aimed at precisely this.

The foundations of this branch of science have been developed under the
assumption that computation is carried out by a single computing device
with a single block of random access memory. This still constitutes the bulk
of the theory, although some adjustments are required for different computing
gadgets like, for example, computers containing multiple processing units and
various levels of memory. The time required by the execution of an algorithm
(or “computation time”) is the main parameter for evaluating the quality of
the algorithm itself and for comparing one algorithm with another.6

Once, both computation time and storage requirement were considered.
Today the latter parameter is generally disregarded except for applications
conceived for gadgets with a very small amount of memory like cell phones,
or for networks where a huge amount of data must be replicated in many
locations for fast access. There are various reasons for this. Time cannot be
traded for space or vice-versa because one may reside in the same place in
different instants, but cannot reside in different places at the same instant.
Space can be bought, particularly in the computer world where memory chips
have become highly inexpensive; but there is no way of stopping time from
passing. We can also observe that memory is used for storing input data,
intermediate results arising during the computation, and possibly final results.
Even if we assume that input data are pre-loaded, filling the memory with the
other items requires time, but using time does not necessarily imply that the
memory is involved. So computation time accounts also for the amount of
memory used, but not vice-versa.

A novel angle on all this emerged recently when people started to be-
come concerned about the huge amount of energy that computing systems
are consuming today. Besides computation time, energy is now becoming an-
other important parameter as we will discuss at the end of this chapter. Note
that computation time cannot be measured in seconds without specifying the
particular hardware and software to be used, so is instead expressed as an
adimensional mathematical function of the size of the input data (or “input
size”) under the standard assumption that such a time is essentially related
to the input size and increases with it. To make this possible very large input
sizes are considered and the mere order of magnitude of the growth is taken
as being relevant.

Strictly speaking the input size should be expressed as the number of char-

6Some important considerations in this respect will be treated in a subsequent chapter
on parallel and distributed computing where the rules of the game are different.
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FIGURE 4.2: Comparison between the functions f(n) = 2n2 − 4n + 14
(dashed line) and g(n) = 3n2 (solid line). f(n) is of order O(n2).

acters needed to describe the input in any reasonable (i.e., at least binary)
alphabet. With a standard binary alphabet the input size is then a positive
number b of bits, but one can be much less formal taking any integer n pro-
portional to b. That is, the way n grows is of interest, independent of any
multiplicative constant. The computation time T (n) is then expressed as a
mathematical function of n in a specific order of magnitude, and is strictly
significant only for n → ∞. We will content ourselves with reasonably high
values of n as always naturally happens dealing with Internet and Web prob-
lems. In any case n will always be an integer.

Several orders of magnitude are defined and used in computer science,
to express different situations that are unusual in mathematical analysis. We
shall refer to the well known “big O” order, used to establish an upper bound
to the value of a function f(n) as n grows. Formally f(n) is “of order” O(g(n))
if f(n) ≤ c · g(n) for a given constant c, and n→∞. With a certain amout of
abuse of the mathematical language it is common to write f(n) = O(g(n)). So
for instance f(n) = 2n2−4n+14 is of order O(n2), also written f(n) = O(n2),
since f(n) ≤ c · n2 for c = 3 and n ≥ 3 (see Figure 4.2).7

The computation time T (n) of an algorithm, expressed in order O(g(n)),
certifies that the rate of growth of T (n) is limited from above by g(n) for any
large value of n. The meaning of this statement, however, is less obvious than
it may appear because the computation time may depend not only on n, but
also on the specific input. In fact input data of the same size may require
different computation times. The expression T (n) = O(g(n)) says that the

7A nice metaphore due to Gadi Landau explains the concept of order of magnitude as
follows: a billionaire is always a billionaire if he owns one or nine billion dollars, and remains
the same even with some millions more.
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upper bound g(n) applies to all the input data of size n, and g(n) is said to
be the worst case complexity of the algorithm.8

Following this line we can group the algorithms in different complexity
classes, assigning to the same class those having the same or similar order of
complexity. The main classes arising in practice contain: functions of constant
order, whose growth is independent of n; functions of order less than n called
sub-linear; functions of order n called linear; functions of order n log n, for
which the base of the logarithm is non influential;9 functions of order n2,
n3, etc., collectively called polynomial; and functions of order kn, nn etc.,
collectively called exponential because n appears as an exponent.

Let us now enter the world of algorithm complexity through the classical
problem of sorting, or arranging a set of elements in order. So many operations
are facilitated when this is done that sorting is generally considered as the
problem to start with. Furthermore it is a cute problem that has been studied
in great detail. Formally, start from a set A of n distinct elements to be sorted
in “increasing order.” Strictly speaking, for any two elements of A we should
define an ordering relation that can be denoted by <, to decide which one
comes first. In practice this problem is overcome automatically by the way
data are represented in any computer, since all characters of the alphabet at
hand are represented in binary. Therefore sorting “words” of any type amounts
to comparing the corresponding binary strings, taking in turn these strings as
binary numbers and applying a simple numerical comparison. For example in
the standard Internet code UTF-8 the letters of the alphabet correspond to
progressive binary numbers, so that the word ALFA is indeed “smaller” than
BETA. So, for simplicity, we will directly represent all data with integers.

Selecting amongst many, we will consider three sorting algorithms called
Selection Sort, Merge Sort, and Permutation Sort. The first two are well known
and in use in practical applications. The third is a zany invention of the authors
(the reason for being zany will be clear later). Our aim is to compare the three
algorithms through the evaluation of their computational complexities in the
worst case, as a function of the number n of elements to be sorted. For this
purpose arrange these elements in a mono-dimensional array A[1 : n], with
A[k] and A[i : k] respectively denoting the element in position k, and the
sequence of elements in positions i to k. The basic structure of the three
algorithms is shown in Figures 4.3 to 4.5.

Selection Sort (Figure 4.3) should be clear if the reader recalls how a recur-
sive procedure works (e.g., see the recursive rule for tree pre-order traversal
in Figure 3.10 of the previous chapter). The computation goes through n− 1

8The word “complexity” has different meanings in different sciences. In the field of
algorithms we refer to the (time) complexity of an algorithm A as the computation time of
A expressed as an adimensional function of n. It is also customary to define the complexity
of a problem P as a lower bound to the complexity of any algorithm that solves P . This
amounts to proving that no computation can do better than a given bound.

9As explained in Chapter 3, relation (3.1), logarithms with different bases a, b differ only
by the multiplicative constant loga b.
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algorithm SELSORT(A, k)
if k > 1

find the maximum M in A[1 : k];
exchange M with A[k];

SELSORT(A, k − 1);

FIGURE 4.3: Selection Sort. The computation starts with k = n, goes
through n− 1 cycles with k decreasing from n to 2, and terminates for k = 1.

cycles with decreasing k. In each cycle a prefix A[1 : k] of the array is scanned
searching for its maximum element M that is then moved to the last position
of the prefix; so M finds its final position in the array. M can be determined
in different ways, for example starting with M = −∞, comparing its current
value with each element of the prefix, and updating the value of M each time
a greater element is encountered.

In any case M can be found with O(k) operations in a prefix of length
k. Since all the prefixes of length n to 2 are scanned, the total number of
operation for finding M in all the cycles is O(n+ (n− 1) + (n− 2) + ...+ 2),
that is O(n2) because n+(n−1)+(n−2)+...+2 = (n2+n−2)/2. Furthermore
all the other operations required by Selection Sort, as for example exchanging
M with A[k], are executed once per cycle. Then the total time is dominated by
the time for scanning. Denoting by T1(n) the computation time of Selection
Sort we then have:

T1(n) = O(n2). (4.5)

Merge-Sort (Figure 4.4), a very popular sorting algorithm, is based on the
merge of two already sorted subsets of approximately the same size into a
unique sorted set. In Figure 4.4 this is done by the procedure whose structure
will be now described in words. Suppose we have two stacks of n/2 student
papers each, sorted by increasing id number. The basic step of MERGE con-
sists of selecting the paper P with minimum id from the top of the two stacks,
removing P from its stack so that a new paper appears, and putting P onto
an output stack (face down). The step is repeated until one of the input stacks
becomes empty. At this point all the papers still in the other stack go onto
the output stack without any further comparison because their ids are cer-
tainly greater than the ones already in the output. Since each id comparison
involves taking one paper off one of the input stacks, a total of at most n− 1
comparisons are required to empty both stacks. The computation time TM (n)
of MERGE is then of order O(n).

The computation time T2(n) of the whole algorithm MERGESORT can
now be expressed through the recurrence relation T2(n) = 2T2(n/2)+TM (n)+
c, where the term 2T2(n/2) accounts for the two recursive calls of the algo-
rithm on subsets of size n/2; TM (n) is the time of MERGE; and c is a constant
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algorithm MERGESORT(A, i, j)
if i < j

k = b(i+ j)/2c;
MERGESORT(A, i, k);
MERGESORT(A, k + 1, j);
MERGE(A[i : k], A[k + 1 : j]);

FIGURE 4.4: Merge Sort. The computation refers to a sub-array A[i : j];
starts with i = 1, j = n; goes through successive recursions of the procedure
on two sub-arrays of half length; and merges these sub-arrays into A[i : j]
again after they have been recursively sorted.

algorithm PERMSORT(A)
generate the permutations of A one by one

for-each permutation
if {A[i] < A[i+ 1] with 1 ≤ i ≤ n− 1} stop;

FIGURE 4.5: Permutation Sort. As soon as a permutation of A is generated,
the algorithm checks whether it is sorted.

time needed for all the other operations as, for example, computing the central
position k in A[i : j]. Since TM (n) = O(n), the recurrence relation above can
be solved with standard mathematics to obtain:

T2(n) = O(n log n). (4.6)

Hence Merge Sort is definitely better than Selection Sort.10

The third algorithm Permutation Sort (Figure 4.5) is not very smart. All
the permutations of A are generated one after the other and, for each one of
them, the algorithm checks if the elements are in increasing order, stopping
when this condition is finally met. This control requires O(n) time for each
permutation, but the computation can go on for a long time. In the worst case
the algorithm is required to produce all the n! permutations before stopping.
The computation time T3(n) of Permutation Sort is then of order O(n!n).
Using Stirling’s approximation (see Chapter 2): n! ∼ (2πn)1/2(n/e)n, we have:

T3(n) = O(n3/2(n/e)n). (4.7)

Therefore Permutation Sort is not only by far the worst algorithm among
the three, but is so inefficient to justify a drastic division of the world of
algorithms into two big complexity classes: the one of polynomial algorithms
which includes Selection Sort and Merge Sort; and the one of exponential
algorithms for Permutation Sort and all the ones whose computation time

10To study how to solve recurrence relations see, for example, Cormen T.H. et al., 2009.
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is an exponential function of n.11 Some further considerations may better
explain the reason for such a distinction.

Assume that the running times of three programs implementing the algo-
rithms above on a given computer can be exactly evaluated, say, in microsec-
onds. Assume further that such times can be expressed as:

R1(n) = n2,
R2(n) = n log2n, (4.8)
R3(n) = n3/2(n/e)n.

We have discarded all the terms of lower order and have assumed that the
multiplicative constants are all equal. These simplifications obviously affect
the numerical results but not the asymptotic behavior of the functions.

Figure 4.6 reports the values of the functions (4.8) for some values of n,
doubling each time. While sorting eight elements requires tens of microseconds
in all cases, so the three algorithms are essentially equivalent for small values
of n, for increasing n Selection Sort (time R1) is clearly worst than Merge Sort
(time R2), but Permutation Sort (time R3) clearly belongs to another world.
To get a perception on how absurd is this algorithm, consider that there are
“only” about 3.15 · 1012 microseconds in one year!

It should be also clear that the tremendous growth of R3(n) is not due to
the polynomial term n3/2, and even the fact that the base n/e of the exponen-
tial term grows with n could be ignored, as the phenomenon is essentially due
to the appearance of n at the exponent. For instance a hypothetical sorting
algorithm with running time 2n, even if better than R3(n), would still require
about 1026 years to sort 128 elements.

Another consideration has to do with the benefits that one could get in
the future using computers of continuously improving speed. For this purpose
it is sufficient to compare the two functions nc and cn with constant c, as rep-
resentatives of the polynomial and the exponential worlds. Roughly speaking
let a computer C̄ of tomorrow be k times faster than a computer C of today,
whatever this means. As a first approximation, we may assume that using C̄
for a time t corresponds to using C for a time k t. If we can do something
today we will be able to do much more tomorrow, but how can we measure
this advantage? More precisely we can ask ourselves: given an algorithm, if a
problem of size n can be solved in time t using C, which size n̄ will be attain-
able using C̄ for the same time t? This simple question bears an interesting
insight in computational complexity.

For the function nc we have:

nc = t and n̄c = k t, ⇒ n̄ = k1/c t. (4.9)

11In fact the computation time of Merge Sort is O(n logn) which is not a polynomial
function. However this function can be bounded from above for example by O(n1.5) and
assigned to the polynomial class.
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n : 8 16 32 64 128

R1 : 64 256 1024 4096 16384

R2 : 24 64 160 384 896

R3 : 127 1.33 · 1011 3.36 · 1036 3.27 · 1090 1.99 · 10214

FIGURE 4.6: Running times in microseconds of an implementation of the
three sorting algorithms, for some values of the number n of elements to be
sorted (functions (4.8)).

That is, the better a polynomial algorithm is (i.e., the lower is the exponent
c), the more it benefits from the increase of speed of the computational media.
Linear algorithms (c = 1) can solve problems whose size n̄ is k times larger
than n; for quadratic algorithms (c = 2) this benefit reduces to

√
k; and so

on. For the function cn, instead, be prepared to face a very negative surprise.
We have:

cn = t and cn̄ = k t, ⇒ n̄ = n+ logc k. (4.10)

In this case the benefit is limited to the additional term logc k, where the
increment k of computer speed is also strongly reduced by a logarithmic func-
tion. For the hypothetical sorting algorithm running time 2n, a computer 1024
times faster would sort only log2 1024 = 10 more elements in the same time
period. So in 1026 years it could sort 138 elements instead of 128. In a later
chapter we will see that the same limitation applies to parallel computers no
matter how many processing elements they contain.

From all this we conclude that exponential algorithms are useless, now and
in the future, except for extremely small values of the input size n. Unfortu-
nately some problems are intrinsically exponential. A trivial example is an
algorithm which generates an output whose size is exponential in n, like the
one we have already encountered for finding all the permutations of a given
set. But the situation is much subtler as we shall see below.

4.3 Searching: a basic Internet problem

A basic request of almost all Internet users is to retrieve information con-
nected to one or more freely specified keywords. These keywords must be
stored somewhere on the net, together with pointers that indicate where the
related information can be found. A whole chapter of this book will be devoted
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algorithm BINSEARCH(e,A, l, r)
if l > r answer:

e does not belong to A;
the predecessor of e is in position r;
the successor of e is in position l;

k = b(l + r)/2c;
if A[k] = e answer: e is in position k;
if A[k] > e BINSEARCH(e,A, l, c− 1)

else BINSEARCH(e,A, c+ 1, r);

FIGURE 4.7: Binary search of e in A[l : r]. The computation starts with
l = 1, r = n; goes through successive recursions of the procedure on a sub-
array of approximately half length; and terminates when e is found (in position
k), or the searched sub-array is empty. The command answer implies that
the execution terminates.

to explaining how this is done. From an algorithmic point of view, the search
problem in general is preeminent for us.

In principle search is formulated as the problem of looking for a given
element e in a set A of n elements. From our discussion of the representation of
information inside a computer, we know that the elements are actually binary
strings and may be always treated as integers, although further attention
will be given to them when dealing with extremely large sets. Just as for
sorting, the set can be stored in a mono-dimensional A[1 : n] with the initial
assumption that, given an integer i between 1 and n, the element A[i] can
be accessed in constant time. The required output can be the position of e in
A[1 : n] if e ∈ A; or the indication that e 6∈ A; or, in the latter case, we can be
more demanding and ask for the element of A that is “closest” to e. Dealing
with integers this request may be formulated as giving the predecessor, or the
successor, of e in the sorted list of all the elements of A. And in fact the search
can be directed quickly towards the position that element e should occupy if
the array A[1 : n] has been previously sorted, say in ascending order.

The process is similar to searching for a word in a dictionary, and this is in
fact what happens on the Web. In a manual human search the initial letter of
the word directs the reader towards a specific portion of the book, and the next
steps are refined over time depending on the words encountered, according to
a largely heuristic mechanism. The computer counterpart does not use any
special knowledge of the frequency or the distribution of the letters, but can
do something that humans cannot do, namely, computing specific positions in
the array in a very short time. Despite these differences, the computation time
is roughly the same. The resulting algorithm is the very well known Binary
Search, given with some non-standard additions in Figure 4.7.

The functioning of algorithm BINSEARCH should be fairly obvious. Start-
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ing with the whole set A[1 : n], the central position k is computed, and e is
compared with the element A[k] encountered there. If the two elements are
different and A[k] > e, the search proceeds recursively in the left half of the
array that hosts all the elements smaller than A[k]. If A[k] < e the search
proceeds in the other half of the array. If the sub-array thus determined is
empty (condition l > r, i.e., the left limit has become greater than the right
limit) e is not in the set and its predecessor and successor are immediately
found in positions r and l as the reader may verify with a simple thought.

An example of application of algorithm BINSEARCH to a set of n = 12
elements and e = 13 is shown in Figure 4.8. The search touches the elements
21-5-8-13 (note that when a sub-array has an even number of elements its
central position is computed as the right extreme of the left half). A search
for e = 11 which is not contained in the set would follow the same steps
and terminate after the comparison between the e = 11 and A[5] = 13 with
the procedure call: BINSEARCH(11,A,5,4), and the answer that element 11
is not in the set and its predecessor and successor are in position 4 and 5,
respectively.

The computation time of Binary Search in the worst case applies when
the size of the final sub-array is reduced to one for a successful search (e.g,
as in the example of Figure 4.8) or to zero for an unsuccessful search. Each
cycle of the algorithm requires a constant number of operations followed by
a recursive call on a sub-array whose size approximately halves, so the total
number of cycles is approximately log2 n and the computation time is of order
O(log n).12 This is a distinct improvement over the naive strategy of scanning
all the elements of A in O(n) time until the one that matches with e (if any)
is found.

The computation time of Binary Search does not take into account the
O(n log n) time needed to sort the set A in advance, e.g., using MERGE-
SORT. Then Binary Search is advantageous over a naive scanning only if
many different searches have to be done on the same sorted set A. The point
of balance occurs for O(log n) searches: on the one hand, we can repeat a se-
quential scanning logn times, on the other hand we can sort A and then repeat
a Binary Search log n times, ending up with a total of O(n log n) time in both
cases. For a greater number of searches, as for example in Web operations,
Binary Search definitely prevails.

Once a set A is sorted, searching for an element is just one of several oper-
ations that can be done very efficiently. Assume for example that k elements
e1, ..., ek must be retrieved in A, where k is a (small) constant. For example,
e1, ..., ek are keywords contained in one or more Web queries, and A is a dictio-
nary containing all possible keywords, as will be described in a later chapter.
We can assume that e1, ..., ek are sorted since this can be done in constant
time. Retrieving these elements one after the other would require O(k log n)

12Recall that as a number n = 2s can be obtained starting from 1 and doubling the
number s = log2 n times, so the number 1 is obtained starting from n and halving the
number s = log2 n times.
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1 2 3 4 5 6 7 8 9 10 11 12

A : 2 3 5 8 13 21 24 29 35 36 42 45
2 3 5 8 13 21 24 29 35 36 42 45
2 3 5 8 13 21 24 29 35 36 42 45
2 3 5 8 13 21 24 29 35 36 42 45

FIGURE 4.8: Consecutive calls of the algorithm BINSEARCH for e = 13.
The elements reached at each step are in boldface.

time if Binary Search is applied directly. If e1 and ek are instead retrieved
first, all the other elements can be searched in the sub-array A[l : r] whose
bounds are the positions of the successor of e1, and of the predecessor of ek,
respectively. And a further refinement of the bounds can be done if e2 and
ek−1 are retrieved next, etc. Although the worst case time still is O(k log n),
a great reduction is attained if the bounds l, r in one of the pairs above are
close to one another.

Another important application is finding all the common elements of two
sorted sets A, B. In a Web search context A and B may be two sets of
pages each containing a given keyword, and we are interested in the pages
that contain both of them. Now applying Binary Search may or may not
be advisable depending on the relative sizes nA, nB of the two sets. If, say,
nA � nB , a Binary Search in B is applied to each element of A in a total
time O(nA · log nB). If instead nA ' nB ' n the above approach would
require O(n log n) time while the search can be done in linear time with the
concurrent scanning algorithm DOUBLESEARCH shown in Figure 4.9.

The two sets are scanned advancing the pointers i, j in unitary steps.
The computation time is proportional to nA + nB , that is O(n). The reader
should examine the algorithm carefully because the element comparisons are
not totally obvious. In particular a terminator must be added to both sets to
ensure proper access to the arrays in the last two steps.

The advantage in using Binary Search relies on the assumption that the
elements of A do not change for a long enough time to allow many searches to
be completed on the same sorted array. Many files, however, change dynami-
cally and, if one element is inserted or deleted, rearranging the array requires
O(n) time and all the advantages disappear. This problem can be overcome if
the elements of A are identified with the nodes of a binary search tree where,
by definition, the nodes contained in the left subtree of any node x are smaller
than x and those in the right subtree of x are greater than x. Figure 4.10 shows
a search tree for the set A of Figure 4.8: node 24 is in the right subtree of 21
and in the left subtree of 35, and indeed we have 21 < 24 < 35. Note that
many other search trees would be consistent with the same set, depending
on the element chosen for the root and, recursively, for the roots of all the
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algorithm DOUBLESEARCH(A,B)
i = 1; j = 1;
while {(i ≤ nA) and (j ≤ nB)}

if A[i] = B[j]
put A[i] in the output; i = i+ 1; j = j + 1;

if A[i] < B[j] i = i+ 1;
if A[i] > B[j] j = j + 1;

FIGURE 4.9: Retrieving common elements in two sorted arrays A[1 : nA],
B[1 : nB ]. To ensure proper termination, a special symbol, say $, is put at the
end of both arrays in positions nA + 1, nB + 1.

subtrees. So, many search trees correspond to the same sorted array, but only
one array corresponds to all such trees.

It is not difficult to see that the search for an element e in a tree T is
very similar to the Binary Search for e in the corresponding array. e is ini-
tially compared with the root r of T , which has the same role of the central
element of the array. In the case of a match, the search terminates success-
fully, otherwise the result of the comparison directs the next step to one of
the two subtrees of r where the search is repeated recursively. In fact if e < r
(respectively, e > r) node e can only be found in the left subtree (respectively,
in the right subtree) of r. So, as for Binary Search, a significant portion of
the set is disregarded at each step. The search then consists of a sequence of
comparisons along a path that starts at the root of T and ends successfully in
node e, or unsuccessfully in an empty subtree. In the tree of Figure 4.10 the
search for 13 passes through the nodes 21-5-8. The search for 12, which is not
in the tree, follows the same path up to the empty left subtree of 13.

The computation time of tree search in the worst case is proportional to the
number of nodes in the path between the root and the farthest leaf. Therefore
in the unfortunate case that the tree degenerates into a chain this time is
O(n). To see if this can actually happen, consider again that these trees have
been introduced for inserting and deleting nodes efficiently. Insertion of a new
node x is actually very easy because it amounts to searching x in the tree
even if one knows that it is not there. This leads to an empty position where
x is allocated (see the insertion of 12 in the tree of Figure 4.10). Deletion is
slightly more complicated and is omitted here. In any case search, insertion,
and deletion of a node require traversing the tree up to a leaf, therefore it is
crucial that the leaves are not too far away from the root.

As the reader probably suspects, the best situation arises when all the
leaves are maintained at a distance O(log n) from the root, so that tree search
and Binary Search require the same time for each element. However this is
not an easy task as the tree changes. It is sufficient to say here that, taking
all search trees corresponding to a given set A, the length of the path from
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21

5 35

2

3

8

13

12

24 42

29 4536

FIGURE 4.10: A binary search tree hosting the set A of Figure 4.8, and the
insertion of a new node 12.

the root to the farthest leaf is indeed O(log n) on the average, so the expected
value of the computation time of tree search is of that order even in the worst
case.13

A last question is related to the amount of information on the set A that
a binary search tree actually contains, besides the values of its elements. The
answer is that the tree holds the set totally sorted, albeit indirectly, and the
ordering can be retrieved in time O(n) by an in-order traversal of the tree.
Note that this is the time to output the set, i.e., no extra time is required for
sorting.

Contrary to the pre-order traversal rule discussed in the Chapter 3, in the
in-order traversal, each node is visited between the nodes of its left subtree
and those of its right subtree, see Figure 4.11. If the algorithm is applied to
a binary search tree, each node x is reached after the nodes smaller than x
and before the nodes greater than x, so all the nodes are reached in a sorted
sequence. On the tree of Figure 4.10, the algorithm is first called on the root
21; then is recursively called on its left child 5; and again on the left child 2
of 5. Since 2 has no left child, 2 is placed in the output; then the algorithm
is recursively called on the right child 3 of 2, etc. The sorted set A finally
emerges.

13A complete discussion of search trees can be found in any book on algorithms and data
structures, see for example Cormen T.H. et al., op. cit..
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algorithm IN-TRAV(x)
if {x has a left child cl} IN-TRAV(cl);
output (x);
if {x has a right child cr} IN-TRAV(cr);

FIGURE 4.11: A recursive algorithm for in-order traversal of a binary tree.
Computation is triggered by letting x = root.

4.4 Lower bounds

Once we have seen how the computation time of an algorithm is evaluated,
it is natural to ask if one can do better. That is, if a problem P is solved with
algorithm A in time O(f(n)), might a faster algorithm exist for P? If not, it is
useless to keep on trying. Formally the aim is to find the intrinsic complexity
of P , that is, a lower bound on the computation time that no algorithm for P
may overcome. For some problems, finding such a bound is easy; for others, it
is difficult; for still others a certain bound is suspected but is extremely hard
to prove.

As computation times are evaluated in order of magnitude, a new order
must be defined to express lower bounds. In the science of algorithms this is
the order “big Omega,” in a sense symmetrical to “big O.” Formally f(n) is
of order Ω(g(n)) if f(n) ≥ c · g(n) for constant c and n → ∞. That is, for
large values of n the function f(n) grows at least as g(n). Of course trivial
lower bounds to the computation time can always be established. For example
a lower bound Ω(k), with k a positive constant, applies to any problem since
all algorithms must perform at least one operation when called. What may be
difficult is finding a significant lower bound for a given problem P or, ideally,
an absolute bound that no algorithm for P can beat. If reached, this bound
is like a wall that blocks the passage to better algorithms.

There is a certain symmetry to the situation discussed before. Better and
better algorithms for P are found, and each time we retain the one with the
lowest computation time, while higher and higher lower bounds for P are
sought for, and each time we retain the highest. On one side new algorithmic
schemes must be invented to attain a better performance, and on the other
side new properties of the problem must be discovered to prove that a certain
number of steps must be necessarily performed. Recall that in all cases we
work in order of magnitute. When the computation time of the best algorithm
meets the highest lower bound we can declare that the algorithm is optimal
and P is computationally closed. Unfortunately this seldom happens, and we
must leave the two bounds open for further improvements. For many problems,
lower bounds have received little attention and only trivial bounds are known.

Let us take as an example two fundamental problems in the field of al-
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gorithms: sorting a set of n distinct elements, considered in section 4.2; and
multiplying two bi-dimensional arrays of n×n elements, discussed in the next
Chapter 6 in relation to finding paths in a network. Three algorithms have
been considered for sorting, the best of which is Merge Sort that requires
O(n log n) time (relation 4.6). The question is whether one can do better. A
trivial lower bound for sorting n elements is Ω(n) because, to put all the el-
emens in order, each one of them must be examined at least once. Between
Ω(n) and O(n log n) there is room for improvement, in principle from both
sides. We prove now that this case is unusually favorable and the lower bound
can be raised significantly.

Two facts are basic. First, sorting a set A amounts to building the unique
sorted permutation of its elements out of all the n! permutations of A. Sec-
ond, any sorting algorithm must compare elements pairwise, besides doing
many other operations. So if we can establish a lower bound to the number
of comparisons needed to identify a permutation out of n!, then this is also
a lower bound for the whole algorithm. Let us start comparing two arbitrary
elements x, y. The best we can hope is that the set of all permutations is split
into two non overlapping subsets where the solution may be found, one for
x < y and the other for x > y. Furthermore these two subsets must contain
the same number of permutations, otherwise, in the worst case, the solution
would lie in the bigger one. Then, at the best, the set of all permutations is
recursively halved at each comparison until a set with exactly one permuta-
tion (the sorted set) remains. To do so log2 n! comparisons are needed, and
applying Stirling’s approximation we have:

log2 n! ∼ log2((2πn)1/2(n/e)n)
= (1/2) log2(2πn) + n log2 n− n log2 e = Ω(n log n)

where the second term in the addition prevails. Then Ω(n log n) is a lower
bound to sorting. Since this bound matches the computation time of Merge
Sort we can declare that Merge Sort is optimal (in order of magnitude) and
the problem is computationally closed.

The problem of matrix multiplication, however, seems at first glance fairly
straightforward, but turns out to be computationally messy. We will not re-
produce here a discussion of its role and solution, relying on some recollection
that the reader may have from high-school linear algebra. A trivial lower
bound of Ω(n2) arises from the need to examine all the 2n2 elements of the
two arrays to be multiplied, but essentially no higher lower bound is known.
On the other hand many algorithms have been proposed for its solution, with
a computation time that varies from a straightforward O(n3) scheme to very
sophisticated O(nk) schemes with 2 < k < 3. In spite of its fundamental
importance, this problem is still computationally open.

In the next section we will meet new facts on lower bounds that are really
surprising.
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4.5 A world of exponential problems

In our discussion of computational complexity we mentioned that there
are problems whose solution requires exponential time. This is obvious if an
exponential lower bound can be found, as for example when asking for an out-
put of exponential size (i.e., printing all the permutations of a set). There are
other problems, however, naturally defined and apparently harmless, for which
the only known algorithms require exponential time, but no polynomial lower
bounds have been found. The gap between lower and upper bound is huge.
Nobody is able to solve these problems efficiently, i.e., in polynomial time,
but neither can anybody prove that this is impossible. Everybody, however,
is practically convinced that this is the case.

Noneless to say, a wealth of interesting and useful problems fall into this
set! To explain what is behind this challenging situation we start with a story
of pure fiction.

Story. A criminal group decides to use the Web to exchange secret information
and forbidden material. They decide that the best way to avoid attracting
attention is to join a legitimate social network, establish relationships inside
it and exchange encrypted secret messages with each other. After a while,
some rumors of the illegal activity of the group reach the police. Being unable
to decode the contents of the messages, but wishing to identify the members
of the group, the police decide to analyze the graph of the social network
to identify communities with common interests. The task is assigned to the
youngest officer.

The social network includes one thousand people, and the criminal group
is estimated to consist of ten of them. Therefore the officer has to find whether
a complete sub-graph of a size ten, or a 10-clique in graph terminology, is con-
tained in the network. Being an expert in computer programming, he decides
to organize the search systematically, but has no better idea than to consider
all possible groups of ten nodes in turn and verify whether all possible con-
nections between pairs of nodes are present in each group. If so, the group is
a 10-clique, and the participants merit intensive screening. For this purpose
he assigns a number from 1 to 1000 to each node of the graph and writes a
program to generate all groups of ten nodes starting with (1, 2, 3, ..., 9, 10),
checking whether the group is a clique, and then increasing the value of each
element of the group in unitary steps starting from the last ones.

Therefore the groups should be generated in the order: (1, 2, ..., 9, 10), (1, 2,
..., 9, 11), ..., (991, 992, ...,1000), but they are so many that, after some hours,
the program has not yet output a final result when the lieutenant arrives. We
let you imagine his fury at such an apparent inefficiency and the face of the
worried programmer: neither of the two knows that no better algorithm than
that used by the young officer essentially exists, namely listing one after the
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FIGURE 4.12: Searching for 4-cliques in two graphs of twelve nodes. One
graph has no such cliques; the other has two of them.

other all the possible groups of ten to decide whether a 10-clique is hiding in
the graph.

To understand the meaning of the story we must consider how to build
an algorithm from a more general point of view. The number of groups of
ten elements out of one thousand equals the binomial coefficient

(
1000
10

)
'

2.64 × 1024. Recalling the definition of binomial coefficients, and applying
Stirling’s approximation once again, it can be easily seen that (n/k)k <

(
n
k

)
< nk, that is the function is exponential in k and becomes exponential in n
when k grows linearly with n. In our story we have n = 1000 and k = n/100,
so the above inequalities indicate that the value of

(
n
k

)
lies between 1020 and

1030. Unfortunately no efficient strategy is known for discovering k-clique in
a graph or reporting that there is no such sub-graph. This statement must be
taken in a very general sense, because for particular graphs the answer may be
easy or even obvious: e.g., since each node of a k-clique must be connected to
k−1 other nodes in the clique, only the nodes of the original graph with degree
at least k − 1 must be considered. In general, however, the only known way
of approaching this problem is to examine all possible groups of k nodes, as
the police officer did, or applying other equivalent methods based on complete
enumeration. The reader may appreciate how difficult the search is by looking
for 4-cliques in the two graphs of Figure 4.12.

Problems for which only exponential time algorithms are known are called
intractable to indicate that in practice they cannot be solved by a computer
as the input size increases. In fact for many intractable problems there is
no definitive proof that a polynomial time algorithm does not exist, so they
must be considered intractable until the (albeit unlikely) discovery of such an
algorithm. Let us look at this situation more deeply.

After the algorithmic community began to be aware of the existence of
intractable problems and of some relations between them, deep theoretical
studies started in the 1970s with a famous result often called the Cook-Levine
theorem, independently proved by the American-Canadian Stephen Cook and
the Russian Leonid Levin. The theorem is far too specialized to be discussed
here. A fundamental consequence, however, was to show the existence of a
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large class of problems tightly linked to one another by an unexpected rela-
tionship: if we were able to solve even only one of them in polynomial time,
all the problems of the class would also be solvable in polynomial time. On
the other hand if we were able to find an exponential lower bound for one of
them, all the problems of the class would provably require exponential time.
These problems are called NP-hard:14 they have in common a logical structure
responsible for their difficulty.

Highly diverse problems belong to the class NP-hard. From finding solu-
tions to particular algebraic equations; to replicating Web pages on different
servers; to building shortest routing paths in a network; to, of course, graph
problems like finding cliques, or finding Hamiltonian cycles as discussed in
Chapter 2. However NP-hard problems and the ones like the existence of a k-
clique have an interesting property in common: it is difficult to find a solution
but is easy to verify that a certain object is indeed a solution.

For these problems finding a solution appears exponentially difficult; but,
once a candidate solution is known it can be tested in polynomial time. Then
verifying that a group of k nodes in a graph is a k-clique amounts to control
that all the nodes in the group are pairwise connected, an operation requiring
O(k2) time because k(k−1)/2 is the number of all possible connections in the
group.

This ability to test a candidate solution in polynomial time is in fact com-
mon to all NP-hard problems, and may be taken as a part of their definition.
Informally these are problems that we are not able to solve in polynomial
time, but for which the soundness of a proposed solution can be checked in
polynomial time.

It must be observed, however, that these problems are hard to solve in
the “worst case,” that is, when their data occur in a most unfavorable com-
bination. An exponential time algorithm would solve them in all cases, but a
polynomial time algorithm could work in particular situations. If we take the
computers of a local area network as being the nodes of a graph, this graph
obviously has a Hamiltonian cycle if the network is a ring, and there is no
cycle if the network is a tree. Both these configurations can be checked for in
linear time, so if one of these two cases occurs the Hamiltonian cycle problem
is solved immediately.15 But an algorithm valid for all possible graphs is ex-
ponential as far as we know today. Algorithmic techniques to solve NP-hard

14It would be too long to motivate this name. We simply recall that NP stands for
Nondeterministic Polynomial to indicate that these problems are polynomially solvable only
in a non-deterministic paradigm of computation that exists only as a theoretical abstraction.
A related word is NP-complete to denote a class of problems where only the existence of
a solution with given properties is in question (i.e., the existence of a k-clique) without
actually having to report the solution itself. The two classes are subtly related, see the
bibliographic notes.

15More interestingly, if the network is an n ×m two-dimensional grid where each node
is connected to its four neighbors (or to its three, or two, neighbors for nodes on the grid
edges, or corners), a Hamiltonian cycle exists if and only if n and/or m is even. The reader
can spend a few moments to prove this statement personally, treating the grid as a black
and white chessboard.
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problems in polynomial time whenever their data allow for this are still to be
invented.

In conclusion, we underline once again that many interesting problems are
NP-hard, and the hope of finding efficient algorithms for solving them in all
cases is actually very low. Hence the next question is: how can we solve these
problems in practice, when the size of the input is too big to use an exponential
algorithm? A wise answer is: when the optimal solution is too difficult to find,
an almost optimal solution will be good enough. In some cases we can use an
approximation algorithm for finding a solution not too far from optimal. In
other cases we can use a randomized algorithm (see the next chapter), thus
finding an exact solution with an extremely low probability of error.

4.6 Computation goes green

Up to this point in our discussion, and up until quite recently in the world
of computers, the time required by an algorithm has been the basic parameter
to judge its quality. With the massive spread of information technology (IT),
however, a new concern has been rapidly growing. Namely, how much energy
this technology requires; or, for those concerned with ecology, how much does
it contribute to global warming. In the field of algorithms, however, these
studies are still in their infancy, so we will just mention where research is
going.

Early studies of the 1980s were mainly related to the energy consumption
in VLSI technology.16 In the following decades the focus was shifted to com-
putation in a more general sense until, in April 2009, the National Science
Foundation of the U.S.A. sponsored a general meeting on what is now called
“energy-proportional computing” to indicate the functioning of systems that
balance performance and energy consumption. For algorithm designers this is
just a start.

The first observation is that most of the energy used by any IT system
goes into heat dissipation. This has an immediate impact in large computer
network infrastructures where a huge concentration of hardware inevitably re-
quires expensive cooling and other energy consuming services. Great attention
has then been directed to the energy efficient organization of such infrastruc-
tures, with almost no relation to computational strategies. The major studies
in computer science span from the consolidated areas of solid state and archi-

16Remarkable studies led to a general framework for measuring the “switching energy”
of a logical circuit, as suggested in the seminal paper: Kissin, G. Upper and Lower Bounds
on Switching Energy in VLSI. Journal of the ACM, Vol. 38 (1) 1991. A work that some
people seem to have forgotten.
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tectural design, to the emerging area of energy efficient algorithms. A topic
now considered with attention, although the problem is not at all simple and
still lacks some concrete foundations.

Clearly there is a strong relation between the computation time of an al-
gorithm and the energy needed for it, since the energy consumption depends
on the number of instructions and memory accesses done; but the two param-
eters are not simply proportional because the power required by CPUs and
by memories of different types depend on the mode of operation. CPUs can
operate at different speeds, with a drastic reduction of energy consumption
at lower speeds, and may consume almost no energy when they are idle. A
well known rule of CMOS technology, the most widely used today, states that
the power p absorbed by a circuit is approximatey poportional to the cube of
the speed s at which the circuit operates, i.e., p ∝ s3. Then, if we consider
a computation fully done in CMOS and requiring time t, the energy w = pt
consumed by the circuit can be approximately expressed as: w ∝ s3t. Increas-
ing the speed from s to s′ = ks, with k > 1, hence reducing the computation
time from t to t′ = t/k, implies increasing the energy to:

w′ ∝ (ks)3t/k = wk2. (4.11)

So working at a high speed is very costly in terms of energy, as experienced
by anyone who has used a battery operated laptop. Reducing the CPU time
by k implies k2 more heat dissipation.

Relation (4.11) is merely indicative of what can occur, because executing
an algorithm is exceedingly more complicated than using a CPU at constant
speed. First any computation needs memory and the energy required depends
on the storage system used. Solid state memories like DRAMs consume sizable
energy even when they are not accessed. Disk drives consume no energy in
a sleep state, but bringing them back to action may imply a latency access
of 1,000 times more than usual, leaving other parts of the computing system
consuming energy for nothing.

One relatively well studied case involves a CPU that may operate in dif-
ferent states with different power consumptions. As passing from a lower to
a higher power state requires considerable energy, the problem is establishing
the best instance in which to perform a state transition. The decision is made
difficult by the practical impossibility of knowing, at any instant, the timing
of future events that may depend on memory accesses or other system actions.
The problem has then been approached for online operations where decisions
have to be taken on the spot, either deterministically or relying on a proba-
bility distribution of the state transitions. This approach is very technical and
is likely to see strong advancements in the near future. We refer the reader to
the bibliographic notes.

Formally there is a need for an abstract machine model that reflects the
structure of computing systems and their memory hierarchy, as a basis for
a new formulation of computational complexity that takes into account the
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interacting parameters of time and energy. Although challenging, this could
lead to a continuous spectrum of evaluation, spanning between two limits: on
one side a performance-based view where the computation time is minimized
within a maximum energy allowance; on the other side a heat-aware view
where the energy consumption is minimized within a maximum time bound.
All evaluated in terms of a proper order of magnitude.

Algorithmics scholars must be happy as new theory is needed. Algorithms
must go green: the game is fully opened.

Bibliographic notes

The references for section 4.1 can be found in books of computability and
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theoretical treatment of NP-completeness to a very long list of NP-complete
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for Computing Machinery.

As a curiosity, the story of Martin (section 4.1) was first applied to decid-
ability in the Italian book: Luccio, F. and L. Pagli. 1999. Algoritmi, divinità e
gente comune. (Algorithms, Divinities, and Ordinary People). ETS Editions.
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rithmic area at large. The best papers have been put together in special issues
of leading scientific journals, the last ones in Theory of Computing Systems
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Chapter 5

A world of randomness

How the Marquis de Laplace had a strong intuition that was proved correct a
century and a half later, and how many other things that happened afterwards
were to leave a clear imprint in the digitized world.

The study of mathematical chance is a relatively recent development. Dem-
ocritus, a Greek philosopher, is often credited as being the earliest scholar of
random phenomena for his assertion that the universe was born from the col-
lisions of tiny atoms agitating in chaos. Lucretius, a Roman poet and natural
scientist, went much further, giving an explanation of the restless motion of the
particles of dust in a sunlight ray that anticipated, with astonishing precision,
Einstein’s theory of Brownian motion.1 However none of the ancient sages
seem to have thought deeply about the mathematical rules of chance. Ran-
dom phenomena were appreciated in relation to gambling, but it was not until
the sixteenth century that a real treatise on the theory of chance appeared.
No wonder that the author, a weirdo Italian with multiform interests, was a
hardened gambler. His name was Gerolamo Cardano, a mathematician and
physician, with a body disfigured by one of the recurrent epidemics of Black
Death that tormented Europe in those times, and a consuming addiction to
gambling.

In Cardano’s book Liber de ludo alee (The Book of Games of Chance), a
primitive version of the theory of probability was laid down, along the lines
followed by nearly all the other mathematicians until the twentieth century
when these studies were given new, stronger foundations. What Cardano es-
tablished is something that may sound very familiar, that is, the probability
of a favorable event equals the number of all favorable events divided by the
number of all possible events. So for example if you bet on an outcome of 2
on a six sided die, your chance of winning is 1/6. This definition lasted for
centuries, but requires that all events occur with the same probability (i.e.,

1Lucretius lived in the first century B.C. Many assertions contained in his poem De
Rerum Natura (On the Nature of Things) have proved correct many centuries later, although
they are not at all intuitive. For example he stated that all bodies would fall with equal
acceleration in the vacuum, although he could not conduct any experiment to validate his
theory. All this is described in elegant verse.

71
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that probability is defined in circular fashion, in terms of itself). The reason
why most textbooks place the official birth of probability one century later
may be due to the fact that Cardano, beaten down by fortune and looked
down upon by the church, and possibly also unwilling to teach the rules of
the game to competing gamblers, kept the book for himself, and it remained
unpublished for a century.

Before we get into the mathematics, however, let us look into the art
of divination, the other popular field where chance is present. This art can
be observed in all cultures in ancient times and still today. The interaction
with a supernatural realm is generally put in the hands of a seer (at times
a cheat), whose soul travels through the world of spirits to interpret their
signs and, if asked to bring guidance to a needy soul, acts as a poetic on-stage
psychotherapist. Of course one may deny that a source of wisdom outside of
the physical world exists at all, and label these practices as superstitious. But
it is difficult to ignore the emotional charge of some oracular incantations,
like those of the I Ching, encountered in Chapter 3, or the invocation of a
Nigerian babalawo that asks even the trees to remain silent while the spirits
are approaching: 2

Let the Apá be told
to make no sound.
Let the Oró tree be told
to remain silent.
Let the Àsúnrinnikànbéjù tree be told
to cease from talking of his prowess in the jungle.

The quality of the interaction between the seer and the higher powers is
the first of three independent components that may occur in any intensity,
locating a divination rite as a geometrical point in placed in a 3 dimensional
Cartesian space. The second component, we are sorry to say, is fraud, whose
amount is larger or smaller than expected depending if one looks upon div-
ination with sympathy or suspicion. We belong to the former category and
believe that diviners are for the most part honest, but it is undeniable that
thoughout history there have been great cheats among them. The Greeks and
the Romans deeply respected their oracles whose answers were so ambiguous
as to allow any interpretation afterwards, but had many doubts on the hon-
esty of the priests in charge of interpreting the signs of the gods.3 In several
Arab countries there are seers credited with being able to discover the perpe-
trator of a robbery by visualising the scene in their mind. But often they do

2Taken from: McClelland, E.M. 1982. The Cult of Ifá among the Yoruba. Ethnographica,
London. Although it is practically impossible to render in translation the emotion conveyed
by a sentence in a strongly tonal language like Yoruba, such invocations are nonetheless
impressive and moving.

3For example Cicero wrote the book De Divinatione (On Divination) to support religion
that had an important role in maintaining social order. Still the book is filled with provoking
and witty comments on the priests practicing divination.
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it for money, so a cynical Yemenite proverb goes: “What the thief missed the
astrologer has carried off.”4

The third ineludible component of divination is chance. Every rite starts
with the observation of a random event that occurs spontaneously, like the
flight of birds from the Orient or from the Occident in the Roman tradition,
or is induced deliberately, like the flight of a bird chased away from its nest
by a stone throwing, as in the Arab zagr. But in any case the event must be
random in a pure mathematical sense, as will be explained below, and even
the diviner must not be able to predict its outcome. There is no slight on
the power of the seer if the event is truly governed by supernatural forces,
but the independence of the components of chance and fraud may become
questionable if a cheating diviner tried to influence the outcome. This could
possibly happen (but we trust that it never has happened) in the two most
perfect divination systems that have been ever set up, that is, the Chinese I
Ching and the Nigerian Ifá, where the starting event is respectively induced
by flipping coins or throwing half-nuts.5

Due to the imperfection of these mechanical devices, or the asymmetry of
the diviners hand, the different outcomes of the experiment may occur with
unbalanced frequencies even in the absolute absence of fraud. In computer
science terms we are in front of a generator of pseudo-randomness. This is
not at all a problem for divination where the right answers are determined by
supernatural spirits regardless of trivial human inventions like probabilities.
However, it does indicate that Cardano’s definitions must be refined, as they
were in the mid twentieth century by Andrej Kolmogorov, a Russian genius.

In the I Ching and Ifá, like most divination systems, the triggering event
is binary in nature. One bit for the Roman birds flying from the East or from
the West; six bits for the Chinese hexagrams; eight bits for the Nigerian en-
counters of Odù. These events determine an interesting combinatorial setting
that accompanies the rite, proving that the babalawo must have mathemati-
cal skills and, once again, showing the power of exponential growth. Sixteen
special beings called Odù were trained by a god to spread wisdom through
the world. The names of the Odù are coded by four-bit numbers that ap-
pear during the rite as the positions of the half-nuts thrown by the babalawo.
The half-nuts can land with the concave side up (0) or the convex side up
(1). The table of all Odù, ordered row-wise by their rank, is shown in Figure
5.1. They pay ritual visits to each other, or stay by themselves, as revealed
by the combination of two groups of four nuts out of the eight nuts thrown,
thus giving rise to a total of 28 = 256 dispositions of their pairs, each one

4Taken from: Sergeant, R.B. Islam. In: Loewe M. and C. Blacker, eds. 1981. Divination
and Oracles. George Allen & Unwin, Boston.

5The book of I Ching is so famous that no presentation of it is needed, except possibly
recalling that the foreword to the first english translation was written by the famous psy-
chiatrist Carl Gustav Jung who claimed to have used the book for the exploration of the
inconscious. The Nigerian Ifá divination system was added in 2005 by UNESCO to its list
of Masterpieces of the Oral and Intangible Heritage of Humanity.
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OGBÈ 0000 ÒYÈKÚ 1111

ÌWÒRÌ 1001 ÒDÍ 0110

ÌROSÙN 0011 ÒWÓNRÌN 1100

ÒBÀRÀ 0111 ÒKÀNRÀN 1110

ÒGÚNDÁ 0001 ÒSÁ 1000

ÌKÁ 1011 ÒTÚRÚPÒN 1101

ÒTÚÁ 0100 ÌRETÈ 0010

ÒSÉ 0101 ÒFÚN 1010

FIGURE 5.1: Table of the Odù with their half-nut coding.

directing the rite that follows (the visit of one Odù to another, or the oppo-
site visit, account for two distinct situations). So the visit of ÌWÒRÌ to ÒDÌ
is represented by the throwing 10010110, while 00000000 represents OGBÈ
(or ÈJIOGBÈ the monarch) himself. The art of the babalawo encompasses
remembering two-hundred and fifty-six different situations and knowing the
consequences of each one for the rite.

5.1 Probability theory develops

Although the most sophisticated divination systems seem to be connected
with the laws of chance, it is clear enough that the diviners never considered
things that way. And in fact, in the history of mankind, probability theory
was introduced well after divination. More or less at the time when Cardano’s
book was finally published, Blaise Pascal got involved in some calculations
about playing dice. His interaction on this subject with Pierre de Fermat
gives credit to the common assertion that the two are co-fathers of modern
probability. Many facts happened later that are important for the history of
science, but not in our context until another pillar of French mathematics,
Pierre-Simon, Marquis de Laplace, published in 1812 a general treaty on the
analytical theory of probabilities, followed two years later by the amazing
little book Essai philosophique sur les probabilités (A Philosophical Essay on
Probabilities), where inductive reasoning is used to explain this science to a
larger public.

This book illustrates a series of basic principles of probabilities. When
discussing his sixth principle related to “bringing back each event to its cause,”
Laplace underlines that it is wrong to believe that the occurrence of a “regular
event,” like the appearance of twenty heads in a row when playing head and
tail (croix and pile in French), be less probable than any other “irregular
sequence” of outcomes. And he adds the following famous sentence:
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Regular combinations occur less frequently only because they are less numer-
ous. If we look for a cause when we perceive symmetry, however, it is not
because we consider a symmetric event as being less possible than others, but
because, being such an event the effect of a regular cause or of chance, the first
assumption is more probable than the second.

Laplace left his concept of regularity at an intuitive level. More than one cen-
tury had to pass before this concept could be defined formally, that happened
after the tools of algorithms and complexity had been developed. Still, as we
shall see, Laplace’s intuition was very acute in several senses.

Cardano’s intuitive definition of probability as the ratio of the favorable
events over all possible events survives in Laplace’s first principle, although
the other principles form a much richer body. Over the years this definition
turned out to be ambiguous and gave rise to many paradoxes, particularly
because it is not clear, except for obvious cases like coin tossing or casting
a die, what a random choice means. The crucial advance came only in 1933
when Kolmogorov published a now famous book on the Foundations of the
Theory of Probability, where this theory was formulated on an axiomatic basis.
The probability is now the measure of an event and must comply with certain
basic axioms. Although fundamental for the progress of science, we will not go
further on this topic because some elementary combinatorial considerations
are sufficient for our study. Instead let us go back to Laplace’s sentence on
“regular combinations” that contains a wealth of implications for the theory
of probability.

First, it is assumed that chance exists, and is in fact the “cause of the
generation of random combinations.” However the assumption is not at all
obvious and the question of its validity remains essentially open. People have
different opinions. Carl Gustav Jung and other famous psychologists had no
doubt on the existence of chance, that was regarded as a threat to rational
behavior. Physicists assert its existence to support part of their theories, at
least until other theories prove more valid. Biologists are not completely con-
vinced. Even from a philosophical point of view it may be hard to accept the
existence of chance because a random event is assumed to be independent of
the past history, thus assuming that the world is well disposed to occasionally
renouncing its memory.

We will escape the perils of this discussion by personifying chance as a
deity of our private Olympus, as the Greeks and the Yoruba would have done.
Following Laplace, for us chance exists and that’s that! Among other conse-
quences, this assumption implies that tossing an honest coin n times produces
one out of the 2n possible sequences of heads and tails with a probability of
1/2n. This process is called a Bernoulli trial. Each of the two binary sequences
of thirty-one tosses reported in Figure 5.2 has a probability of 1/231 (less than
one over one billion) of appearing, even though they look very different be-
cause the first one consists of fifteen repetitions of the subsequence 01 followed
by 0 while the second does not exhibit any apparent regularity.
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0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1

FIGURE 5.2: Bernoulli trials with “heads” and “tails” coded by 0 and 1.
The first sequence has a “succinct” description. What about the second?

Laplace uses the words regular and symmetric to indicate the existence of
a sort of rule that a sequence obeys in its composition. For example, with the
standard notation of formal languages, the first sequence of Figure 5.2 follows
the rule (or, can be expressed as) (01)150, with the obvious meaning. Then
in Laplace’s terms this is a “regular combination.” For the second sequence,
however, we cannot easily find a formation rule and are inclined to conclude
that the sequence is the result of pure chance. In fact this sequence represents
“the first thirty-one digits of the binary expansion of the decimal part of
π,” that is the number 1415926535 expressed in binary, that is clearly not a
random number. Then even in this case there is a generating rule, although
not so “simple.” Expressed this way the concept is very vague, but it has a
precise mathematical meaning as will be made clear shortly.

Two observations, made by Laplace on a purely intuitive basis, have been
proved rigorously true one and a half centuries later. The first is that “regu-
lar combinations” occur rarely because they “are less numerous.” The second
follows a preliminary assertion that all possible events can be generated by a
random source, so that an honest coin tossing may produce the two sequences
of Figure 5.2 with identical probabilities. Notwithstanding this, Laplace says,
when an event can be explained by a “regular cause” we are led to believe that
in fact this is what happened. We will now see how some bright mathemati-
cians have satisfactorily answered these questions, allowing a much deeper
understanding of random phenomena.

To this end, and perhaps to the surprise of Laplace in his grave, the concept
of randomness has been separated from the generating source to become a
property of the event itself, no matter how it came about, thereby putting
to one side the philosophical issue of the existence of chance. In this new
perspective we are able to affirm that random sequences do exist independently
of their source. To get to this point, however, we must proceed a little more
in our history.

5.2 Randomness as incompressibility

Aside from pure probability theory, random sequences have been thor-
oughly studied in the mid twentieth century in the realm of Information The-
ory, a branch of science devoted to studying the information content of mes-
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sages and initially developed by C.E. Shannon and D.A. Huffman. Following
their approach the entropy of a source was introduced as a measure of the de-
gree of uncertainty with which the messages generated by a source may appear.
Without getting into mathematical definitions, we notice that if all messages
have the same probability of occurring the source has maximal entropy, while
if a message occurs with probability one, i.e., with complete certainty, and
all the other messages will never appear, then the entropy of the source is
zero. That is consistent with the observation that no new information can be
extracted from a source whose output is known a priori.

All messages are represented with the symbols of an arbitrary alphabet.
They become binary sequences when representing coin tosses; or musical notes
on a song score; or sentences in the Latin alphabet as in this text. So messages,
mathematical definitions, and computing algorithms, are all citizens in the
same world of sequences if a common alphabet is fixed, and since this alpha-
bet is arbitrary we will refer to the binary one. On these grounds Information
Theory took an unexpected direction in the 1960s with the computational
approach independently adopted first by Solomonoff in the U.S.A., then by
Kolmogorov in Russia and Chaitin in the U.S.A. again. The concept of algo-
rithmic complexity of a sequence arose, leading to a new characterization of
randomness that is no longer a consequence of the source but entirely depends
on the inner nature of the sequence. As the name suggests these studies are
strictly dependent on the theory of algorithms that had begun to develop in
the preceeding decades. This is the new tool by which many intuitions of the
past were rephrased in solid mathematical terms.6

The reference system is strictly mathematical and quite sophisticated.
Computations are ideally performed on Turing Machines that, as we have
already seen, may execute any of an infinite set of algorithms. In practical
terms the machine can be any computer if no limitation is put on the memory
size, and the algorithms may be coded in any programming language. A point
to be remembered is that, in any family of machines, there always exists at
least one that is universal in the sense that it can simulate the computation
of any other machine that executes any one of its programs. In the real world
any reasonable computer accepting programs written in a general purpose
programming language as Java or C is universal provided its memory is large
enough to execute any program at hand.

Sequences to work on, machines, and algorithms, are described with the
characters of the same (binary) alphabet. Each sequence may be generated by
any machine with an elementary algorithm that contains the message itself
and a command to output it. But of course a more skilled algorithm might
exist to reconstruct the sequence by using a smarter computation. We can

6The characterization of random sequences has essentially followed the three intersect-
ing lines of stochasticness, incompressibility, and typicality, all strictly connected with the
theory of algorithms. Here we refer to the second line that is mostly related to computer
science. A rigorous study of randomness is hard - see the bibliographical notes for references.
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apply these concepts informally to the two sequences of figure 5.2. The first
one may be generated by a skilled “program” such as:

put {expand (01)15 followed by 0} (5.1)

while for the second we would probably opt for the naive solution:

put {1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1} (5.2)

where the whole sequence is explicitly shown, because computing a prefix of
the decimal expansion of π is definitely more complicated.

Once the reference system has been chosen, a generating algorithm has
nothing to do with the source of the sequence. Moreover different algorithms
may generate the same sequence.7 On these grounds Kolmogorov and Chaitin
defined the algorithmic complexity of a sequence S as the length of the short-
est algorithm that generates S (i.e., the length of the sequence representing
such an algorithm). From this followed that: a random sequence is one having
complexity “substantially” equal to its length (i.e., the length of the naive pro-
gram above). Conversely: a sequence is nonrandom if it admits a generating
algorithm shorter than the sequence itself.

Put this way, it seems too simple. In fact the informal statements above
convey ideas that stand behind a complex mathematical theory. Before going
into more depth, however, we note that a sequence like the first one above,
possibly extended to a large number 2n+1 of bits, is now declared non random
because the generating program:

put {expand (01)n followed by 0} (5.3)

is certainly shorter than the sequence itself for large enough n.8 Laplace sug-
gested that one such a sequence be non random because, more than likely,
it was generated by a non random source. The new definition, instead, de-
clares that the sequence is non random on the sole basis of its structure: it
could have been generated by a purely random source, although with very low
probability, but still it must be considered non random.

The second sequence of Figure 5.2 is too short for drawing a firm conclu-
sion. However, if the sequence is extended to represent n binary digits of π, for
n sufficiently large, a program to compute it would be definitely shorter than
the sequence itself. Then even the second sequence is non random, as it may
be expected by its definition.9 But then, do random sequences exist under this
definition? An affirmative answer will be given shortly through a schematic

7In fact a sequence can be generated by an infinite number of algorithms because, once
one such an algorithm is found (e.g., the naive algorithm that specifies the sequence explic-
itly), another algorithm can be formed from the former one with the addition of a sentence
that has no effect on the output, and so on.

8The length of this program is of order logn+ c, where c is a constant, because the only
part that depends on n is n itself appearing as an exponent, and the binary representation
of n requires logn bits.

9The length of this program would also be of order logn + c with c constant, because
the only part that depends on n is the specification of the number of output digits required.
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introduction to Kolmogorov and Chaitin theory. Readers interested only in a
general picture of the field may jump to the discussion on data compression
in the next section, and perhaps return here later.

Enumerate all the binary sequences σ0, σ1, σ2, ... in canonical order as ex-
plained in Chapter 4 (for clarity we repeat this ordering here):

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 ... σ14 σ15 ...
ε 0 1 00 01 10 11 000 001 ... 111 0000 ... (5.4)

Now consider a (possibly infinite) family S0, S1, S2, .... of computing systems,
and let p be a program for Si. We write: Si(p) = σ to indicate that the
computation of Si with program p produces the sequence σ. Recall also that p
is represented by a binary sequence and let |p|, |σ| denote the length (number
of bits) of the two sequences. At the basis of the theory stands the concept of
algorithmic complexity of σ, first defined with respect to a computing system
Si as:

Ki(σ) = min{|p| : Si(p) = σ}. (5.5)

That is the complexity of σ is the length of the shortest program that
generates this sequence using Si. What makes this definition not so interesting
is its dependence on Si. This seems inevitable at a first glance because, in
general terms, a program is written for a specific machine. However, a brilliant
invariance theorem proves that we can get rid of such dependence if we refer
to a universal system Su that simulates the functioning of all the others with
a complexity that is essentially the same. Without getting into mathematical
details for which the reader may refer to the bibliographical notes, the theorem
states that, for any system Si:

Ku(σ) ≤ Ki(σ) + k, where k is a constant. (5.6)

Any program p that generates σ on Su is called a description of σ. By
definition Ku(σ) is the shortest description of σ and, after relation (5.6), is
taken as the algorithmic complexity of the sequence with precision up to a con-
stant. This value is now simply denoted as K(σ) and often called Kolmogorov
complexity of the sequence. It is also customary to say that this complexity
represents the information contents of σ.

At this point a concept related to the Internet steps in. Having put any
sequence σ in relation with a program p that generates σ, we may decide to
transmit this sequence from a node A to a node B installing proper software
into the two nodes so that σ is “coded” in A as p, transmitted to B in this
form, and then “decoded” in B obtaining σ again. Clearly we can hope to
gain something only if |p| < |σ|. In this case we talk of data compression.
While specific compression techniques are used in practice, the concept of
algorithmic complexity is crucial for understanding what is possible.

Although the expansion of π has many statistical characteristics of a random string it is
obviously non random.
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Recalling that σ can be always generated by a trivial program that contains
σ inside and simply transfers it to the output, and noting that the length of
this program is |σ| + c, where c is the constant number of bits to code the
output operation (e.g., the word put plus the two parentheses {} in program
(5.2)), we conclude that:

K(σ) ≤ |σ|+ c. (5.7)

Of course K(σ) is smaller than this limit value if there is a better program
to generate σ, and in particular may be much smaller than |σ|. The question
is: how many sequences can be actually compressed, and by how much? Now
Laplace’s intuition on the scarcity of “regular combinations” will be confirmed.

It turns out there are not enough short descriptions for all sequences, no
matter how long such sequences may be. In fact there are 2n binary sequences
of length n and 1 + 2 + ...+ 2n−1 = 2n − 1 binary sequences of length from 1
to n − 1, then there is at least one sequence σ of length n without a shorter
description. This σ is incompressible, but this is not the end of the story.
There are 1 + 2 + ...+ 2n−2 = 2n−1− 1 = 2n/2− 1 binary sequences of length
at most n − 1, then about one half of the sequences of length n cannot be
compressed to less that n − 1 bits. Similarly about 3/4 of the sequences of
length n cannot be compressed to less than n − 2 bits, and so on. Out of all
possible sequences, the compressible ones are a small minority.10

It is now quite natural to call a sequence σ that cannot be compressed,
that is K(σ) ≥ |σ|, random. However there are subtle theoretical reasons
indicating that a strictly valid definition of randomness can be given only for
infinite sequences, and furthermore, pure incompressibility is too demanding
a property on practical grounds because there is no interest in compressing a
sequence of n bits to, say, not less than n− 1 bits. Therefore for a parameter
f > 0 that may be a constant or a function of n, σ is called f-random if it
cannot be compressed to less than n − f bits, that is K(σ) ≥ |σ| − f . The
logarithmic function is a standard for f , so we loosely say:

A finite sequence σ is random
if and only if K(σ) ≥ |σ| − dlog2 |σ|e. (5.8)

From what we have seen about the number of compressible sequences, the
statement above is an implicit proof that random sequences do exist, and that
they are in the vast majority among all possible sequences.

Taking these concepts intuitively, imagine that our world of sequences is
the one of well formed sentences in English and the formal system at hand is
a series of commands to locate different sentences within the books of a vast
library. Nobody has ever thought that the sentence of fifty-three characters:

10In particular any sequence representing a program p that constitutes a minimal descrip-
tion of a sequence σ, i.e., K(σ) = |p|, is incompressible. Otherwise p should admit a shorter
description p′ that in turn would allow to reconstruct σ, against the hypothesis that p is
minimal for σ.
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It is an ancient Mariner
and he stoppeth one of three

was created at random, although this may have happened with the minuscule
probability of 1/2753 after the draw of fifty-three characters from an alphabet
of twenty-seven including the blank. In our system the sequence has to be
considered non random because it can be univocally determined by a short
description like A335.h15.1, v.1-2, that gives the library accession number to
the poem “The Rime of the Ancient Mariner” by Samuel Taylor Coleridge,
with the addition of “v.1-2” to indicate the first two verses. With the same
reasoning the whole poem is non random, but the sequence of the first two
words “It is” must be taken as being random, since it has no shorter description
than the one that explicitly spells it out.

Statement (5.8) defines randomness independently of a generating cause.
This is no more than an arbitrary definition, but it turns out to be very impor-
tant in probability theory where, incidentally, it leads to the same conclusions
as other reasonable models. In particular it has been proved in the realm of
information theory that, for the length of the sequences tending to infinity, the
Kolmogorov complexity of a sequence tends to the value of the source entropy.
This is a nice touch for assessing the soundness of both theories. Furthermore
this definition of randomness gives a mathematical sense to Laplace’s asser-
tion that we are led to believe that a regular (now: compressible) sequence
σ of length n was generated by a specific rule (now: a short description p)
rather than randomly. We are in the case: K(σ) = |p| < n. As 2n sequences
may be generated at random, and only 2|p| of them can be generated by a
rule of length |p|, it is 2n−|p| times more likely that σ was generated by a non
random cause.

The existence of random sequences is good news for many fields of applied
science where such sequences are needed for simulating physical events, or for
building cryptographic keys, etc. But, as in many jokes, after good news there
is bad news. Mathematical logic gives a theoretical limit to the discovery of
random sequences because the problem of establishing if an arbitrary sequence
is random is undecidable. That is, if a short description is found we conclude
that the sequence is nonrandom, if such a description is not found we will never
know whether it does not exist or we were just unable to find it. Readers with
interest in computability may enjoy a rigorous proof of this fact, among the
most elegant in the field. We show here the structure of this proof, built on
the so called Berry’s paradox on integers of 1908.

For the sequences σ0, σ1, σ2.... listed in (5.4), assume that there exists a
program R(i) to decide whether an arbitrary sequence σi is random. Take
now the new program P of Figure 5.3. Although the existence of R is merely
assumed, the length |P | + |R| of the whole program is independent of the
sequences σi treated at each iteration, no matter what R looks like. Since such
sequences are treated for increasing length as in the listing (5.4), the condition
|σi| > |R|+ |P | must be verified from a certain value of i on. Furthermore we
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program P

for i = 1 to ∞
if {(R(i) = true) ∩ (|σi| > |R|+ |P |)}
print(i) and stop;

FIGURE 5.3: A contradictory program to prove that randomness cannot be
decided algorithmically.

have seen that random sequences of any length exist, so the stop condition
on P must eventually be met on a sequence σi that is both random (R(i)
= true) and longer than the program that allows it to be detected (|σi| >
|R| + |P |): a contradiction. We must conclude that program R cannot exist,
i.e., is impossible to decide randomness algorithmically.

This argument rules out the possibility of deciding whether a given se-
quence σ is random as long as a shorter description of it is not found.11 How-
ever the use of random sequences is important in applied science, therefore
in most cases they are actually generated by computer programs. Since these
programs are inevitably shorter than the sequences themselves, these are non
random by definition, but are useful anyway if they pass some standard suite
of statistical tests. In this case the sequences must be more correctly called
pseudo-random.

5.3 Compressing and hashing

In 1946 Jorge Luis Borges wrote a one-paragraph story entitled Del rigor
en la ciencia (On the Rigor of Science)12:

In that Empire, the Art of Cartography reached such Perfection that the
map of one Province alone took up the whole of a City, and the map of the
empire, the whole of a Province. In time, those Unconscionable Maps did not
satisfy, and the Colleges of Cartographers set up a Map of the Empire which

11A subtle doubt may arise, namely, why not trying all possible programs shorter σ to
find out whether one of them actually detects this sequence? After all these programs are
finite in number so the experiment is theoretically legitimate. The impossibility of following
this line lies on one of the first results of Turing, i.e., is algorithmically undecidable if
an arbitrary program on an arbitrary input terminates its computation in finite time (see
Chapter 4). Then we simply cannot try all possible programs shorter than σ because, as
long as one of them does not stop, we cannot decide whether we have to wait longer to see
whether σ will be generated, or we will have to wait forever.

12The story was first published in Borges’ Historia Universal de la Infamia (A Universal
History of Infamy). The present English translation is from: Borges, J.L. 1999. Collected
Fictions. Translation A. Hurley. Penguin Books.
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had the size of the Empire itself and coincided with it point by point. Less
Addicted to the Study of Cartography, Succeeding Generations understood that
this Widespread Map was Useless and not without Impiety they abandoned it
to the Inclemencies of the Sun and of the Winters. In the deserts of the West
some mangled Ruins of the Map lasted on, inhabited by animals and Beggars;
in the whole Country there are no other relics of the Disciplines of Geography.

Clearly the map of the Empire was incompressible, at least in the opin-
ion of the cartographers. In fact we have seen that most sequences cannot
be compressed. How is it, then, that our computers make a continuous use
of compression algorithms for saving resources such as memory space and
transmission bandwidth?

Although, in the ideal world of sequences, non randomness is a rarity,
the sequences we have to deal with in everyday life are in general not at all
random. Computers mostly exchange text written in natural languages, or
graphical and audio information. Independently of their meaning, these files
adhere to grammatical structures, or to visual laws, or to musical harmony
etc., so all of them exhibit inevitable regularities that can be exploited for
compression. The obvious case is a run of the same pattern like a bit, or the
ASCII code of a letter, or the color of a pixel etc., if the run is long enough
to induce a reduction in the sequence length as in the “program” (5.1). But
of course much more sophisticated algorithms are used in practice.

First consider that even incompressible files can be compressed if we do
not object loosing a small amount of information. The decompressed file may
differ from the original one in some minor details while the storage occupancy,
or the transmission time, is drastically reduced. This practice, known as lossy
compression, is mostly used with audio and visual data where a certain amount
of detail can be ignored, and is pushed to its extreme in real time transmission,
as for example in telephony over the Internet. By contrast, lossless compression
is used for storing or transmitting written text whenever absolute fidelity is
required.

For both lossless and lossy compression some standard algorithms have
been created, so that the compressed files can easily be exchanged by all users
on the Internet. All such algorithms are very technical and cannot be explained
in simple words, therefore, we mention here only the basic concepts on which
they rely. Lossless compression of text uses two main mathematical tools. One
is the coding invented by David Huffman and described in Chapter 3, where
each word or character of a file is represented with a certain number of bits,
such that the higher the probability of the word occurring, the fewer bits
are used. The second tool, proposed in 1977 by Abraham Lempel and Jacob
Ziv and associated with the shorthand LZ, essentially looks for subsequences
that repeat several times in the file to be compressed and substitutes such
occurrences with the specification of their positions in the compressed file.
A combination of Huffman code and LZ analysis is found in gzip, the most
widely used lossless compression utility.
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Lossy compression algorithms are very sophisticated. JPEG, the well
known and most popular standard for digital pictures, takes the sequence
of bits representing the points of a raster scanning of the image and applies
to it a complex mathematical transform, “rounding off” some parameters cor-
responding to features that are less perceived by the human eye. MP3, the
universally accepted standard for digital audio compression and musical file
sharing (with consequent issues of copyright infringements), reduces the ac-
curacy of sounds by cutting off details that are borderline for the human
perception, by means of a complicated physical transform. Both lossless and
lossy compression techniques are widely used in the Internet but are not part
of network technology, which is what interests us in the present context. How-
ever, an important concept that we will meet again is hashing.

A hash function maps the elements of a very large set A onto the ones of
a much smaller set B such that, on average, a large number of elements of
A correspond to any given element of B. In practice all these elements are
represented by binary sequences, with the sequences of A much longer than
those of B. Hashing can then be seen as lossy compression, although it was
developed for different purposes. The original use of hashing was for storage of
data items, where A is a set of all items that may occur in a given application,
and B is the set of locations where the items that actually occurred are stored.
In addition hashing is extensively used today for comparison and retrieval
of very large files on the Internet, where each file of A has a much shorter
hash image (also called “fingerprint”) in B. If the fingerprints of two files are
different, the files are also different. If the fingerprints are equal, other checks
must be performed. To make fingerprint equality as unlikely as possible, a good
hash function must distribute the elements of A over B at random so that,
with very high probability, similar sequences of A are associated to distinct
elements of B.

Hash functions are also used in cryptography where they must exhibit some
additional properties. In this realm a family of standard functions has been de-
veloped, called SHA for Secure Hash Algorithm, whose second release SHA-1 is
extensively used on the Internet for fingerprinting although no cryptographic
capability is required here. The algorithm for SHA-1 accepts a possibly enor-
mous sequence as input (the upper bound is 264 − 1 bits) and produces a 160
bit output in all cases. This output is usually adopted as the fingerprint of
the input file. The reduction in length is huge, but still an immense family
of fingerprints is available, consisting of the 2160 sequences of 160 bits. The
algorithm is trusted to cover this whole set almost uniformly, although no
mathematical proof can be given since the output is pragmatically built by
a very large number of repeated operations on the input sequence such as
modular addition, exclusive OR, circular shifts, and others, that are trusted
to produce pseudo-random effects. As a consequence, the probability that two
files have the same fingerprint is exceedingly low, even if they are very similar.
In any case the use of SHA-1 on the Internet is not limited to file retrieval as
we shall see below.
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5.4 Randomized algorithms

One of the reasons why random sequences are relevant for us is their role
in the construction of efficient algorithms. At the outset it may seem a little
strange that randomness may help in designing sequences of actions aimed
at reaching precise objectives, but there are cases in which relying on un-
predictable events helps a great deal. We are not talking of supernatural or
psychological influences as in the divination rites, but of phenomena that can
be expressed in rigorous mathematical terms.

Randomization is introduced in algorithms in different ways. Random sam-
pling can be performed on the values of a function that cannot easily be
expressed in mathematical form, so that expected values of areas, volumes,
different moments, etc. can be evaluated. This approach leads to the approx-
imation algorithms of numerical analysis, whose forefather can be located in
the eighteenth century when George-Luis Leclerc, compte de Buffon, showed
how the value of π can be estimated by throwing at random a needle on a
ruled sheet of paper and counting how many times the needle crossed a line.13

However other approaches are more interesting for us.
Random choices may help to resolve some situations where the computa-

tion proceeds too slowly, provided that the correctness of the final result is
guaranteed. Algorithms of this sort are called Las Vegas; they lead to certainly
correct results in a probably short time. Finally, and possibly more surprisingly,
a different approach uses random choices at particular steps to attain probably
correct results in a certainly short time. We are now allowed to abandon the
certainty of correctness only if the probability of failure is negligible, an adjec-
tive that will be expressed in precise mathematical terms. This is the family
of Monte Carlo algorithms. No concept of approximation applies here because
if the result is wrong it may be completely wrong, like returning binary result
as 0 when it should be 1.

To explain how these concepts get into the functioning of networks let us
start from a fundamental structure of parallel processing. Figure 5.4 shows a
hypercube, or simply cube, in four dimensions, with 24 = 16 nodes and four
arcs departing from each node. The binary names associated to the nodes will
become clear shortly. A hypercube in h dimensions has 2h nodes and h arcs
per node and can be seen as the union of two hypercubes in h−1 dimensions:
in our example we have two three-dimensional cubes with the familiar shape
of a cube, placed at the left and at the right of the picture. Each one of

13This surprising result can be actually proved quite simply. Assume a needle of length
l thrown on a ruled plane with parallel lines at a distance t from one another, with t ≥ l.
It can be proved using elementary calculus that the probability P that the needle crosses
one of the lines is P = 2l/(tπ), then π = 2l/(tP ). The experiment goes like this: throw the
needle n times, with a large n; count the number h of crossings; and take P ≈ h/n. This
leads to the estimate: π ≈ 2ln/(th). An excellent source for understanding this computation
is Wikipedia at: http://en.wikipedia.org/wiki/Buffon’s needle
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0000 0001

0010 0011

0110 0111

0100 0101

1000 1001

1010 1011

1110 1111

1100 1101

FIGURE 5.4: A hypercube in four dimensions. The two standard routes, one
from node 0000 to 1010 (dotted) and the other from 1100 to 1011 (dashed),
interfere in node 1000 and in arc (1000–1010).

them has 23 = 8 nodes and three arcs for each node, plus an additional arc
connecting each node with one in the same position of the other cube to make
the structure grow into the forth dimension. The first bit of each node name
identifies the two cubes, being 0 in one of them and 1 in the other. Each
three-dimensional cube is the union of two two-dimensional cubes (squares)
with 22 = 4 nodes in the front and in the back of the picture, identified by the
value of the second bit of the node names. These cubes are the union of two
one-dimensional cubes (segments) identified by the third bit, that are finally
decomposed in zero dimensions, i.e., into single nodes identified by the last
bit.

Once the structure is known we can let it grow to arbitrarily high dimen-
sions. A hypercube in five dimensions is the union of two hypercubes like the
one in the figure, with the nodes pair-wise connected by a new arc. The new
structure has 25 = 32 nodes and five arcs per node, and the node names
acquire a fifth bit to the left. The rule is simple, but the graphical represen-
tation becomes quite complicated. What is of particular importance is the
neighborhood of each node. In a hypercube in h dimensions, each node has h
neighbors; hence this number grows with the size of the network. In practical
terms this growth cannot be accepted over certain values because the number
of lines connected to a node affects the size of the node itself, no matter what
the node stands for. Still for n = 2h each node has h = log2 n neighbors, that
is, this number grows very slowly with n.

The hypercube construction rule implies that any two neighbors have
names that differ by exactly one bit. Therefore if two nodes have names differ-
ing by d bits they can be connected through a path of d arcs which traverses
a sequence of nodes whose names differ by one bit at each step. In the hy-
percube of Figure 5.4 a message can be sent from node 0001 to node 1111
along various paths of three arcs, for example the one that goes through the
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nodes 0001-1001-1101-1111. In fact this is a standard route where the nodes
are chosen at each step by flipping the bit names from left to right wherever
required. If the name of the destination is included into the message, the rout-
ing is decided by the nodes encountered along the path. At each step the node
currently reached flips a bit name to decide the neighbor to which the message
has to be sent. As a conclusion a path connecting any pair of nodes has length
at most h = log2 n because two node names differ at most by h bits.

In a hypercube, then, all paths are “short,” and this is an important char-
acteristic of any network. However, message delivery may be slowed down by
traffic jams, as queues of messages may pile up in particular nodes and arcs
even though all of them have different origins and destinations. The crucial
problem of routing will be discussed again in the subsequent chapters. Here
we confine our analysis to exchanging messages in a hypercube, with the aim
of understanding how randomization may help.

Assume that two messages are sent at about the same time, one from node
0000 to 1010, the other from node 1100 to 1011. The standard routes:

0000 1000 1010

1100 1000 1010 1011

are applied in Figure 5.4. They interfere in node 1000 and in arc (1000-1010).
Obviously such an interference could be avoided by adopting a different rout-
ing strategy, but other interferences would occur for different messages.

A mathematical study on the formation of queues of messages under dif-
ferent routing rules is quite complex. We recall informally a major result that
was first proved for the hypercube in h dimensions and then extended to
other regular network topologies. These studies date back to the time when
the first parallel computers were built, with the hypercube being the major
interconnection structure of the CPUs for computing some important func-
tions efficiently. Pathological cases were known in which the queues grow to a
length exponential in h even though all the messages have different destina-
tions, but a probabilistic argument showed that, if the destinations are chosen
at random, the arising queues are no longer than h under the standard routing
rule. This relieved most concerns, as that case was believed to absorb all the
situations that practically occur. But then an unexpected difficulty showed
up.

The new threat closely recalls the formation of vehicular queues in some
urban traffic conditions, where many drivers follow some common paths even
though they eventually go to different destinations. Drivers tend to cluster
on preferred roads by force of habit, or common reasoning, yet they curse
their peers who have selected the same roads at the same time. Unexpect-
edly, parallel processing tends to induce the same behavior. As we shall see
when discussing Web search engines that employ huge clusters of computers,
all working together, the designers of parallel algorithms have a deep-seated
propensity to let all the processors in the game do similar operations at the
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same time (that is fine), but also exchange messages along the same routes
(that is bad). So these algorithms tend to form much longer traffic queues
than the ones arising with the same messages traveling along random routes.

The initial study that had a major impact on the routing strategies is due
to Leslie Valiant, a bright computer scientist of Harvard University, though
the ideas had been ripening in the scientific community for some time. If
a message has to be sent from node A to B, send it first to another node
C chosen at random and then proceed from C to B, using a standard rule
in both phases. For the hypercube, and then for several other networks, it
was proved that the queues thus arising have a length at most h with very
high probability, where the mathematical meaning of the latter sentence will
become clear in the following. The tendency of algorithm designers (but, we
might say, the bias of the problems themselves) to create traffic jams is then
outmaneuvered by a merry anarchy of random paths.14

The routing strategy just described is an example of Las Vegas processing,
where a sound result is always attained in a probably short time. The alter-
native is to trade off correctness for efficiency without taking a leap into the
unknown. In a Monte Carlo algorithm we are allowed to give up correctness
only if the probability of getting a wrong result can be made smaller than an
arbitrary value that typically depends on one or more parameters of the com-
putation. Choosing a smaller probability value v must imply an only modest
increase of the running time t, or of some other cost. In a good algorithm
v decreases exponentially with increasing t. Such an approach may irk the
purists, but becomes acceptable if the probability of failing this way is infe-
rior to the one of getting a wrong result for any other reason like a hardware
crash, an incorrect reading of the output, or a sudden attack of madness in
the algorithm designer.

To make this approach clear, we start with forensic courts, where mathe-
matics has never been used for landing people in jail or sentencing them to the
death penalty. Only after the introduction of scientific proofs, such as those
based on DNA analysis, has the concept of probability even being raised in
judiciary debates, and only then in an unassertive and imprecise manner. In
particular, conditional probability, that is the chance that an event actually
occurred if another event occurred too, has very rarely been considered.15 Our
proposal is far less ambitious and takes its steps from a literary jewel.

Judges often overlook the role that chance may have in the courtrooms,
with the exception of Judge Bridlegoose who, according to Franois Rabelais,
duly listened to the witnesses of each case but then gave his sentence by casting

14Extending this strategy for avoiding vehicular jams in a city is an exciting possibility.
Each driver should have the guts to take a direction at random, say, at each of the first h
crossings encountered if the city has 2h crossings. We cannot swear that the system will
actually work because cities are not hypercubes and drivers are not computers.

15An interesting account of the importance of conditional probability in criminal trials is
given in the article: Angela Saini, Probably guilty: bad mathematics means rough justice,
New Scientist magazine issue 2731, London, October 2009.
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dice.16 When asked by the President of the High Court why he was behaving
so unusually, Bridlegoose answered that he was doing nothing different from
what all the other judges were doing:

But when you have done all these fine things, quoth Trinquamelle, how do
you my friend, award your decrees, and pronounce judgement?

Even as your other worships, answered Bridlegoose; for I give out sen-
tence in his favour unto whom hath befallen the best chance by dice, judiciary,
tribunian, pretorail what comes first.

Without necessarily being supporters of Bridlegoose, let us see how a prob-
abilistic evaluation of different testimonies may influence a trial. With this we
are not pretending to teach the judges their business, or to influence the juries,
but we want to address ordinary people who generally know judicial practices
from crime fiction. Is a defendant really guilty beyond any reasonable doubt?
In Perry Mason’s TV series a lady may end up crying and confessing to be
the murderer of her husband because he was so cruel, etc. But the story could
go on ten minutes more, only to see her daughter confessing in tears that in
fact she is the murderer, and her mother was just trying to protect her. As
this chain of hypotheses could go on without an end, let us ask ourselves at
what point it is proper to conclude a trial and give a sentence with the aid
of a Monte Carlo algorithm. Obviously we are making a joke, but is useful to
understand how these algorithms work.

To be liberal (but also to simplify the computation) we assume that one
testimony in favor of the defendant is sufficient to acquit, while a testimony
against has to be taken with caution. The lower the probability that the wit-
ness is deceptive, the stricter the proof of guilt. The value of these probabilities
should be assigned by the judge, who is supposed to admit only testimonies
that are independent from one another. If n independent witnesses of guilt
have been listened to, and p1, p2..., pn are the probabilities that their sworn
statements are false, the probability that the defendant is unjustly condemned
is given by the product P = p1 × p2 × ... × pn that is the probability that n
independent events occur. Recall that all pi are less than one, so their product
decreases for increasing n.

The responsibility of the judge is now apparent. No sentence is absolutely
certain, however, sufficient testimonies must be accumulated until the prob-
ability of error becomes smaller than the probabilitiy that other accidents
render the sentence ineffective, for example a power blackout that interrupts
electrocution. If the testimonies are independent (otherwise we cannot mul-
tiply the corresponding probabilities) a small number of them are sufficient
to attain a very small probability of error. In particular, if pi = 1/2 for all i
we have P = 1/2n, a value that decreases exponentially with n (i.e., with the
“running time”) as required in any good randomized algorithm. We do not

16F. Rabelais, Gargantua and Pantagruel, III, 39.
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pretend that our proposal on how to conduct a trial is perfect, but after all
we do better than Bridlegoose, who only gave a correct sentence every other
case.

5.5 Example: file sharing on the Internet

Randomized algorithms have been developed by computer scientists for
solving their own problems that, although less dramatic than sentencing a
defendant to death, are nevertheless worthy of study. As an example we pick
the problem of file sharing on the Internet as one of the most interesting, sim-
plifying its mathematical analysis as much as possible. The overall structure
is of a group of users with equal resources and rights (peers) connected to a
network where they download files of interest directly from each other. Today
this type of communication is mostly devoted to obtaining music files in MP3
format, and hashing is a standard technique to allocate and retrieve these
files.

The most popular peer-to-peer file sharing systems are decentralized, that
is they are fully distributed among the users. There is no central server hosting
a complete set of addressing tables to route a message between users, rather
each user stores a limited amount of routing information locally.17 Further-
more all users execute the same protocols for locating and downloading files.
For maximum efficiency the files must be stored at the user sites as evenly as
possible, coping with the non trivial problems of relocating the files of a user
who leaves the system, or assigning files to a new user. In fact standard hash
functions are very efficient for storing and retrieving items in a static environ-
ment, but if the storage buckets change dynamically, nearly all items must be
relocated at each change. The problem then is finding a scheme where most
of the items remain in their buckets after the insertion or the removal of one
bucket from the system. To this end a randomized allocation algorithm called
consistent hashing works nicely, but the results are possibly incorrect with a
very low probability. The algorithm was originally designed for distributing
files in a dynamic family of Web servers, and is currently used in a wealth of
distributed applications to cope with system changes and failures.

Roughly speaking the problem is to evenly allocate M items (files) into
N buckets (peer users) connected in a network such that a change in the set
of buckets requires only M/N items to be relocated on average (note that
M/N is the expected number of items in one bucket). Furthermore this must

17According to the way it is conducted, file sharing may raise legal problems that it is
not our role to investigate. The decentralized structure was originally chosen to circumvent
these problems.
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FIGURE 5.5: The circle of consistent hashing for C = 28 = 256. Buckets
and items are represented with white circles and black dots, respectively. Solid
arrows indicate the destination of items. The grey circle 163 indicates a new
bucket receiving items from its successor 181 (dashed arrow).

be associated with an efficient method for file retrieval. Consistent hashing
meets these requirements in an elegant way.

Having chosen an integer C to represent the maximum number of buckets
allowed to participate in the game, the whole system can be represented on a
circle that hosts the interval [0,C-1], wrapped clockwise. The buckets and the
items are randomly mapped to the integers in [0,C-1], then buckets and items
are represented as points on the circle. An elementary example is given in
Figure 5.5 with only N = 10 buckets and M = 10 items out of a maximum of
256 each. Each item is allocated into the closest bucket encountered clockwise
around the circle. A new bucket entering the system is mapped randomly
on the circle and receives appropriate items from the successor. A departing
bucket sends all its items to the successor.

Since the mapping of buckets and items to the circle is random, the ex-
pected number of items per bucket is M/N . Therefore roughly M/2N items
are inserted into a new bucket, and M/N items are released by a departing
bucket. Since these item relocations take place between two buckets only, while
a participation of more buckets would ensure a more balanced distribution,
consistent hashing makes use of a more complex strategy where buckets are
replicated randomly in several copies along the circle. With this and other
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details that we skip here the whole algorithm attains some important results
that we summarize below, taking into account the following.

As the number of buckets is continuously changing, N is the value relative
to each view of the system, i.e., to the set of buckets existing at each moment.
We assume N ≥ C/k for some constant k, i.e., each view must contain at least
a certain fraction of all the possible buckets. For a given item i, the spread
σ(i) is the number of different buckets to which i is mapped over all the views,
and the spread σ of the distribution is the maximum spread among the items.
For a given bucket b, the load λ(b) is the number of different items assigned
to b over all the views, and the load λ of the distribution is the maximum
load among the buckets. Note that spread and load are strong indicators of
the quality of the distribution, and should be kept as low as possible. For
consistent hashing we have:

• the protocol is fast, i.e., the expected time to map an item to a bucket
is of order O(1) (constant), and to add or delete a bucket is of order
O(logC);

• the distribution is balanced, i.e., the probability that any given item i
goes to any given bucket b is 1/N ;

• σ and λ are of order O(k logC) with probability ≥ 1− 1/C.

The values of σ and λ depend on the size of the views through the value of
k (large views imply small k); and depend modestly on the maximum number
of buckets, as they grow with logC. In fact C is regarded as a free parameter.
The probability 1/C that σ or λ exceeds the expected order of magnitude
decreases exponentially as the term logC increases. For example increasing C
from 2n to 2n+k the probability of error is divided by 2k while log2 C grows
only to n+ k.

Let us now see how consistent hashing can be used for file retrieval in a
peer-to-peer system. We assume that a bucket is identified by the Internet
address (or IP address) of the corresponding user and an item is identified
by the name of the corresponding file.18 A standard choice is the adoption
of the hash function SHA-1 to map users and files to the circle, so up to
C = 2160 points are usable. For simplicity we take C = 28 in the examples,
together with a random mapping R to the interval [0,255]. So a user with IP
address A(u) is mapped to R(A(u)) = 132; and the MP3 file of “Isla Bonita”
is mapped to R(IslaBonita) = 110 (from now on users and files will be denoted
by their positions). Again files are assigned to the closest user clockwise, so
in Figure 5.5 file 110 would be stored at user 132. If a user joins or leaves

18In particular we refer to a major file retrieval service called Chord, described here in
its main lines. For a complete description of Chord see the bibliographical notes. Note that
unlike in consistent hashing, users are now mapped only once on the circle. Recall that an
IP address is a number associated with each computer directly connected to the network;
see subsequent chapters.
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the system, files are relocated as explained before. Let us see now how lookup
is accomplished. For a user u looking for file f the general strategy is the
following:

1. u sends the request to p that is the closest predecessor of f ;

2. p passes the request to its successor s which contains f ;

3. s sends f to u whose IP address is contained in the request.

Referring to Figure 5.5, user u = 200 looking for file f = 110 must send
the request to p = 90 (predecessor of 110), and 90 passes the request to s =
132 which contains the file. 132 then sends f to 200. The problem is, how can
each user know the positions of the other users on the circle in order to find
predecessors and successors? In the example, how does 200 find 90, and how
does 90 find 132?

Since the protocol is intended for a distributed system, the users cannot
interrogate a central server to discover the positions of their peers, so this
information must be stored by the users themselves. For N ≤ 2m a good
tradeoff between storage space and search speed is obtained by assigning to
each user a set of m positions (fingers) of other users, together with their IP
addresses.19 For i = 0 to m-1, the finger z(i) of user u is the position of the
user closest to w(i) = u + 2i clockwise, where the addition is taken modulo
C. The fingers for users 72 and 200 are shown in Figure 5.6, e.g., for user 72
we have:

w(0) = (72 + 20) mod 256 = 73, hence z(0) = 81
(note that z(0) is always the successor of u);

w(4) = (72 + 24) mod 256 = 86, hence z(4) = 90;

w(6) = (72 + 26) mod 256 = 138, hence z(6) = 181; etc.

For user 200 we have:

w(1) = (200 + 21) mod 256 = 202, hence z(1) = 207;

w(6) = (200 + 26) mod 256 = 8, hence z(6) = 30;

w(7) = (200 + 27) mod 256 = 72, hence z(7) = 72; etc.

To look for a file f , user u sends a request to the user x that, according
to its fingers, is the closest predecessor of f , and asks x to look for f . As u
has knowledge of only m ∼ log2N of its peers, more than likely x is not the
real closest predecessor of f . The request then goes on from x in the circle
with the same strategy, and proceeds through other users until f is found
and sent back to u. The previous example may be followed on Figure 5.6. To
retrieve file 110, user 200 searches for the predecessor of 110 among its fingers
finding 72, and sends the request to the IP addresses of 72 that is stored with

19Recall that N changes continuously so we can only fix an upper bound 2m for it.
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FIGURE 5.6: Fingers z(i) for users 200 and 72. User 200 retrieves Isla Bonita
(file 110 stored at user 132) using these fingers.

the fingers. 72 in turn looks for the predecessor of 110 among its fingers and
sends the request to 90. Since the successor of 90 is 132 > 110 (i.e., 90 is
the real closest predecessor of 110) the request is sent to 132 that has the file
and sends it back to 200. Assuming that user 200 is the only one who likes
nostalgia favorites of the 1940s and looks for an MP3 version of “Mona Lisa”
with hash R(MonaLisa) = 128, lookup would follow the same steps up to user
132 (successor of 128), that sends back a negative answer.

The reader may notice how this algorithm echoes that of binary search
explained in Chapter 4. Due to the balanced distribution of consistent hashing,
the stretch of the circle on which f resides is at least halved at each iteration
with high probability. So the request makes at most m hops in the network
and the expected time for one lookup is O(logN).20 Finally it is worth noting
that a limited number of user changes do not affect the system too much,
so that finger tables may be kept for a long time before being updated. In
addition the system is resistant to disconnection by random changes because
each user has O(logN) connections to other users.

20The search for a predecessor in a finger table can be done in additional O(logm) =
O(log logN) time using binary search, which leaves the overall lookup time unchanged. Of
course our presentation of the protocol has been oversimplified. In particular insertions and
deletions of users require O(log2N) time.
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5.6 Randomness and humans (instead of computers)

We opened this chapter by talking about gambling and divination as the
most common human activities associated with randomness. Now that we
know much more about random phenomena we may reconsider our perception
of them.

First, in the history of man divination has been more important than one
may suspect. The ancient populations of Eurasia, and later of North America,
held divinatory rites to direct hunting expeditions along paths where game
could be found. Such rites had a dramatic importance, for the repeated failure
of hunts might have lead to the extinction of a tribe. Many peoples used
scapulimancy that consisted of the burning of an animal shoulder bone and
the interpretation of the resulting cracks and spots to choose the direction to
be taken. In the words of a scholar on the Naskapy population of Labrador:21

If it may be assumed that there is some interplay between the animals [the
hunters] seek and the hunts they undertake [....] then there may be a marked
advantage in avoiding a fixed pattern in hunting. Unwitting regularities in
behavior provide a basis for anticipatory response. For instance, animals that
are “overhunted” are likely to become sensitized to human beings and hence
quick to take evasion actions. Because the occurrence of cracks and spots in the
shoulder blade and the distribution of game are in all likelihood independent
events, i.e., the former is unrelated to the outcome of past hunts, it would seem
that a certain amount of irregularity would be introduced into the Naskapi
hunting patterns by this mechanism.

So, in choosing a random path, the hunters may be guided by the wisdom of
the shaman by more than merely his connection with the supernatural world.
To benefit from randomness, computer scientists look for a certainly correct
result in a probably short time (Las Vegas); or for a probably correct result
in a certainly short time (Monte Carlo); or aim at the more sophisticated
objective of getting a probably correct result in a probably short time, as
in the peer-to-peer file sharing protocol seen above. The Labrador hunting
strategy followed this last approach long before computers were invented. The
benefits of randomization will be fully exploited once the success of a computer
algorithm reaches the dramatic importance of a hunting expedition.

Another important consideration comes from a more natural (i.e., less
mathematical) perception of “information.” While considering randomness,
we have come to the implicit conclusion that the information carried by a
sequence can be found in any of its generating algorithms, so the length of

21O.K. Moore: “Divination: a new perspective.” American Anthropologist, 59, 1957, pp.
69-74. This essay was brought to the attention of computer scientists by Jeffrey Shallit, see
bibliographic notes.
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the shortest algorithmic description of a message can be taken as a measure
of the information contents of the message itself. Adopting this point of view,
a non random message can be substituted by a shorter one at the sole cost
of coding/decoding. If compression can be pushed as far as obtaining the
shortest possible description, then the characters (bits) of this description are
all essential, otherwise an even shorter description would exist. For the sake
of practicality, if a message is incompressible it can be always identified by a
shorter hash image at the cost of loosing part of the information carried by the
original. This theory is strictly mathematical and has been a strong basis for
several impressive achievements in data compression and telecommunications.
Subtler questions arise if we regard messages from a different perspective.

Consider how nature has chosen to code things before information theory
was introduced by the humans. An immediate example concerns the way our
own bodies are coded genetically. As explained in Chapter 3, the DNA code is
inherently redundant because twenty amino acids are represented with three
characters of a quaternary alphabet (the four “bases”) that makes sixty-four
possible combinations. But at the level of protein coding, i.e., for those DNA
stretches known as genes, nature has attained a remarkable efficiency. In the
simplest organisms known as prokaryotes, e.g., in bacteria, DNA is almost
entirely composed of genes; these genes entirely code for proteins and their
sequences have proved to be practically incompressible. Therefore these genes
have the characteristics of random sequences, a conclusion that seems hard
to accept as they are also a fundamental part of the description of a fully
functional organism. For the same reason, however, genes have maximum in-
formation contents. In a sense these sequences seem to have been “optimized”
during the organism’s evolution, excluding any redundancy.

In more complex organisms known as eukaryotes, e.g., in human beings,
the situation is more complicated because genes are composed of alternat-
ing stretches called esons and introns that respectively code for proteins and
contain different (and still partially unknown) information. Again the coding
portion cannot be compressed, while the introns contain many repetitions of
same subsequences adjacent to each other (tandem repeats) in specific loca-
tions (loci) that make introns LZ compressible. More interestingly, the number
of repeats in the different loci varies between individuals, making the count
of repeats a standard tool in forensic cases. Here the concept of fingerprinting
comes in again. The current knowledge of the human genome has allowed the
identification of some significant loci where repeats occur in numbers indepen-
dent from each other, so that a genetic profile of an individual can be created
by counting all such repeats. As for SHA-1, then, a short fingerprint is thereby
associated to a huge DNA sequence. Albeit short, this fingerprint is sufficient
to identify an individual with very high probability, and is also used to assess
the identity of kin of two individuals because the number of repeats tends to
be conserved among relatives.

Taking now a completely different point of view, consider how a sequence
of any kind is perceived by humans. Unlike in the realm of mass media where
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pluralism is advocated, a mathematical definition of information must be un-
ambiguous. In cognitive sciences, however, it may be difficult to maintain this
axiom. When a message is received it adds to a patrimony of knowledge inside
each one of us so the information conveyed by the message depends on the
knowledge already present inside the receiver.

A similar concept is indeed contained in Shannon’s theory where a source
may be “non stationary,” implying that the probability of a character occur-
ring in a sequence may depend on the characters that the source has emitted
up to that point, as happens for example in any natural language. However the
patrimony of knowledge is acquired only from the (possibly random) source
itself, whose existence has to be postulated. How does our culture, or the sur-
rounding environment, or even our genetic heredity, influence the amount of
information that a message adds to our knowledge? Do we necessarily perceive
a (mathematically) non random message as such? And, most important of all:

A random message mathematically conveys the maximal possible information,
but what our perception of it would be? We would likely discard such a message
as meaningless, and nothing of it will remain inside ourselves.

Straightening out all these questions formally is a challenging open prob-
lem.
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Chapter 6

Networks and graphs

How networks can grow according to different rules: but in the end the rich
get richer.1

The word network covers a wealth of different meanings, from subterranean
fungal interconnections studied in biology to human interactions studied by
social scientists. Our main interests range from the physical structure of com-
puter networks to the logical structure of the Web, but all networks share some
essential concepts and properties, and graph theory is the standard mathe-
matical tool for studying them all. So we start by looking at graphs in some
detail.

We have already seen that a graph is a mathematical object consisting of
a set of nodes and a set of arcs connecting pairs of nodes together. The arcs
(and consequently the graph) can be directed or not. Graphically, nodes are
represented with dots and arcs are represented either with arrows if the graph
is directed or with line segments if the graph is undirected. Figure 6.1(a) shows
an undirected graph. Since in computer memory the story varies, we shall use
whichever is the most convenient representation.

The main parameters of a graph are the number of nodes n and the number
of arcs m. There cannot be more arcs than there are pairs of nodes. Further-
more, if the graph is strongly connected, that is if every node can be reached
from any other node, then the arcs cannot be too few. In this case we have:
n−1 ≤ m ≤ n(n−1)/2 in an undirected graph (if the lower bound m = n−1
is met the graph is a tree, see Chapter 3); and 2(n− 1) ≤ m ≤ n(n− 1) in a
directed graph. In any case, the number of arcs spans from a linear function
of n (sparse graph) to a quadratic function of n (dense graph).

Note that dense graphs do not really arise when modeling real phenomena
of very large size. If the number of nodes keeps increasing, it is not the case that
the number of connections to a node may also increase beyond a given bound,
whatever these connections may represent. In particular, if the structure of the

1This chapter is the most mathematical in nature and has been included to allow a deeper
understanding of the following chapters. Readers with a serious allergy to mathematics may
jump to the next chapter directly. It goes without saying, however, that they will miss
something interesting.
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FIGURE 6.1: (a) an undirected graph with n = 6 nodes and m = 8 arcs.
(b) A choice of c = 3 independent cycles (solid, dotted, and dashed).

nodes must be decided once and for all, the number of connections incident
to each node cannot exceed a given constant k, and the total number of arcs
in the corresponding graph is bounded above by k · n. In practice very big
graphs must be sparse.

For a strongly connected undirected graph the maximal number c of in-
dependent cycles is also relevant in the study of networks. A cycle is a closed
path of consecutive arcs traversing distinct nodes, e.g., nodes 6-4-5-6 in Figure
6.1; and the cycles of a set are independent if each one of them includes at
least one arc that is not contained in any of the others. For example, the three
cycles shown in Figure 6.1(b) constitute a maximal set of independent cycles
for that graph, although other maximal sets exist (e.g., cycle 6-4-5-6 could be
replaced by 1-2-6-5-1). Essentially c is the number of edges that must be cut
to ensure that no cycle remains.

The value of c is related to the values of n and m by the famous relation:

c = m− n+ 1. (6.1)

For the graph of Figure 6.1 we have 3 = 8−6+1. Relation (6.1) can be proved
immediately noting that, after the elimination of c arcs to cut all the cycles,
the graph is reduced to a tree T with m′ = m − c arcs and the n original
nodes. Since T is a tree we have m− c = n− 1 and the relation follows.

While cycles are special paths where origin and destination coincide, other
paths are obviously of interest. In a directed or undirected graph the distance
between two arbitrary nodes x, y is defined as the length lxy of the shortest path
from x to y, where the length is the number of arcs in the path. When graphs
are used to represent networks the value of lxy may be obviously relevant. We
may also be interested in its mean value l̄ over all pairs of nodes, i.e.:

l̄ = 1
n(n−1)

∑
xy lxy. (6.2)
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If there is no path from x to y we must put lxy = ∞. So relation (6.2)
has a meaning only for a strongly connected graph, directed or not. We will
encounter parameter l̄ often in the following, in particular in the context of
small worlds, a connection structure that appears in many networks modelling
real life phenomena or built as mathematical abstractions.

Another important parameter is the node degree as introduced in Chapter
1 in connection with the graph of Königsberg. In an undirected graph the
degree d(x) of a node x is the number of arcs incident to it. Looking again
at the map of that city (Figure 1.1) we immediately recognize that Knephof
island A is probably the most important district in town because it is con-
nected to the other districts by the greatest number of bridges. That is, node
A has the highest degree in the associated graph, and in fact we have seen
that a random walk would end in A with the highest probability. If the graph
is strongly connected all nodes have degree at least one and a node of degree
one cannot belong to any cycle (see node 3 in Figure 6.1). Since each arc is
incident to two nodes, the mean value d̄ of node degree in the whole graph is
d̄ = 2m/n.

In a directed graph, however, we must distinguish between the arcs entering
and leaving a node x, whose numbers are respectively the in-degree din(x)
and the out-degree dout(x) of that node. Figure 6.2 shows a directed graph G
where node 1 has din(1) = 1 and dout(1) = 3, while node 4 has din(4) = 3 and
dout(4) = 0. If the graph is strongly connected all nodes must have nonzero
in and out degrees, so graph G of the figure is not strongly connected (in fact
no node can be reached from node 4). Since each arc is both leaving (from
a node) and arriving (in another node), the mean values of the in and out
degrees are the same: d̄in = d̄out = m/n.

In the following we shall see that the distribution of values of the node
degrees is a fundamental function for understanding the structure of the graph.

6.1 The adjacency matrix and its powers

For studying a network in the form of a graph G on n nodes, the most
convenient computer representation is an adjacency matrix A of size n × n.
Let the nodes be numbered from 1 to n. The rows and the columns of A are
put into correspondence with the nodes of G. Cell A[i, j] in row i and column
j contains 1 if an arc of G connects node i to node j, contains 0 otherwise.
A directed graph G and its matrix A are shown in Figure 6.2. For example
there is an arc from 2 to 6 then we have A[2, 6] = 1; there is no arc from 6 to
2 then A[6, 2] = 0.

A first remark is that the in-degree of a node x is given by the number of
1s contained in column x of the adjacency matrix. In our example there are
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1 2

4

3

5

6

G

1 2 3 4 5 6 1 2 3 4 5 6

1 0 1 0 1 1 0 1 1 0 0 1 0 2
2 1 0 0 0 0 1 2 0 1 1 2 1 0
3 0 1 0 0 1 1 3 1 0 1 2 0 2
4 0 0 0 0 0 0 4 0 0 0 0 0 0
5 0 0 0 1 0 1 5 0 0 1 1 0 0
6 0 0 1 1 0 0 6 0 1 0 0 1 1

A A2

FIGURE 6.2: A directed graph G, its adjacency matrix A, and the squared
matrix A2 that reports the number of all paths of length two.

three 1s in the forth column then din(4) = 3. Similarly the out-degree of x is
given by the number of 1s in row x, for example dout(4) = 0.

An undirected graph can be seen as a special case of a directed graph if
every arc of the former is replaced by two arcs of the latter connecting the
same nodes but with opposite orientations. Then, unlike in Figure 6.2, the
adjacency matrix of an undirected graph is symmetrical around the top-left
to bottom-right diagonal, i.e., A[i, j] = A[j, i] for any pair i, j. Let us play a
little with these matrices before going on.

The first concept that we will need is the one of inner-product (or simply
product) Z of two one-dimensional arrays (also called vectors) X,Y of the
same length n, containing integer values. Although we start with two lists
of integers, the result is a unique integer value computed with the following
expression with the obvious meaning of the notation:

Z = X[1] · Y [1] +X[2] · Y [2] + .....+X[n] · Y [n]. (6.3)

Note that each row and each column of an adjacency matrix is in fact a
vector of the same length n, so for example we can multiply row 3 by column
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4 through the expression
∑n
j=1(A[3, j] ·A[j, 4]). With reference to the matrix

A of Figure 6.2 we have:

A[3, 1] ·A[1, 4] +A[3, 2] ·A[2, 4] + .....+A[3, 6] ·A[6, 4]
= 0 · 1 + 1 · 0 + 0 · 0 + 0 · 0 + 1 · 1 + 1 · 1 = 2. (6.4)

Perhaps surprisingly, the value 2 of the row-column product thus obtained
has an important relation with graph G because it gives the number of paths
of length two going from node 3 (the row index) to node 4 (the column index).
But in fact this result tells us more. The computation shown in (6.4) indicates
that the value 2 comes from the sum of the last two products A[3, 5] · A[5, 4]
and A[3, 6] ·A[6, 4] that have both value 1, and from this we know that the two
paths going from node 3 to node 4 pass through nodes 5 and 6, respectively.
Why is that so?

We need a little more algebra. The definition given above for vector multi-
plication is extended to two-dimensional n× n matrices X,Y whose product
Z is a new n× n matrix, each element Z[i, j] of which is an integer obtained
as the product between the i-th row of X and the j-th column of Y . That is:

Z[i, j] =
∑n
k=1(X[i, k] · Y [k, j]). (6.5)

Note now that the adjacency matrix A of a graph can be seen as a table
of the paths of length one between any pair of nodes. In fact A contains only
zeroes and ones since there may be at most one such a path for each pair of
nodes i, j, namely the arc (i, j) itself. Consider the square of A, namely the
matrix A2 obtained multiplying A by itself; that is, A2[i, j] =

∑n
k=1(A[i, k] ·

A[k, j]) for any pair i, j. If for a certain value of k we have A[i, k] = A[k, j] = 1,
there is a path of length one from i to k and another path of length one
from k to j, therefore there is a path of length two from i to j and a term
A[i, k] · A[k, j] = 1 appears in the expression of A2[i, j]. If this happens for
h ≥ 1 different values of k, then h 1s sum up in the formula to give A2[i, j] = h,
that is the total number of paths of length two from i to j. As a consequence
A2 reports such numbers for each pair of nodes.

The squared matrix for the graph G is shown in Figure 6.2, where for
example we have A2[3, 4] = 2 as already found in relation (6.4). We might
observe that there is only one path of length two from node 1 back to itself, in
fact the path 1-2-1; or that there is no path of length two leaving from node 4,
as is obvious because there is no arc leaving from 4 hence there will be no path
of any length. An immediate extension of this reasoning allows us to conclude
that the cube of A, namely the matrix A3 obtained multiplying A2 by A,
contains the number of all paths of length three for any pair of nodes, and in
general Ak contains the number of all the paths of length k.2 As we shall see

2Our discussion on the powers of the adjacency matrix is independent on the assumption
that the arcs are directed. Therefore, for any k ≥ 1, Ak contains the number of all the paths
of length k both for directed or undirected graphs. For the latter graphs the values k even
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this result applied to the graph of the Web is of paramount importance for
determining the order in which the most popular search engine presents the
answers to any given query.

6.2 The random growth of graphs

Having briefly surveyed the matrix representation and handling of graphs
in a computer memory, we direct our attention to how a graph can be gen-
erated and how it may grow. Although this clearly depends on the field of
application for which the graph has been taken as a mathematical model,
some general rules always apply. Let us start with random growth, leading to
the related question of what a random graph is. The analysis of such graphs
plays only a minor role in computer networking, but it allows us to clarify
some basic initial questions. The main actor in this field at the outset was
Paul Erdős, a great Hungarian mathematician and a very peculiar character.3

Erdős worked in many fields of mathematics, collaborating with hundreds
of colleagues around the world. In particular he developed the classical theory
of random (undirected) graphs with his colleague Alfréd Rényi in 1959/60,
initially based on the following simple process:

Random process 1

1. start with an initial set of nodes;

2. insert arcs one by one, connecting pairs of nodes chosen at random.

This process generates what is called a random graph. It is understood that if
a pair of nodes is chosen several times, the corresponding arc is inserted only
once. Note that the process refers to undirected graphs but can be extended
to directed graphs in a straightforward way.

Before proceeding, it is important to be aware of exactly what it means to
be dealing with random graphs. In the above process the number n of nodes
is fixed a priori, while the number m of arcs to be inserted before the result
is observed can be seen as an independent parameter as long as m does not
exceed n(n−1)/2 (i.e., the maximum number of arcs in an undirected graph).
If the graph is intended to model a real-life network it may be kept sparse, i.e.,
m may be bounded by a linear function of n. Note that the arcs are inserted

imply that the main diagonal of Ak contains all non zero elements because there is always
a path going from a node back to itself traversing the same arc in two directions.

3The life and work of Paul Erdős merits further reading (see the bibliographic notes).
He did not possess anything aside from a large suitcase containing some essential belong-
ings. Not having a home he traveled continuously to visit friends with whom he developed
all sorts of mathematical themes. He gave all his earnings to needy people or to young
mathematicians as a reward for obtaining new results.
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one by one in consecutive steps, so m is also the step number at which the
process is monitored.

Aside from the two values n,m, the resulting graph G is unpredictable.
So for example taking n = 6 and m = 8, the graph of Figure 6.1(a) might
emerge from the random process with the same probability as any other graph
with six nodes and eight arcs. On the other hand if we start by taking graph
G on purpose this graph is clearly not random. The situation is the same as
discussed for random sequences in the last chapter. The term random graph
refers to any member of a statistical ensemble built with the repetition of the
above process for given n, m: in fact we are interested in the properties that
apply to the whole ensemble. In other words, the properties of a random graph
are those of an ensemble of graphs.4

Given n andm, let the nodes and the steps of the process be numbered from
1 to n, and from 1 to m, respectively. The main parameter to be considered
is the degree distribution p(x, d) of each node x, that is, the probability that
x has degree d. Clearly we assume that the node degrees are statistically
distributed over the graph (or ensemble of graphs). Then we can pass from
p(x, d) to the probability degree distribution P (d) of the whole graph defined
as:

P (d) = 1
n

∑n
x=1 p(x, d). (6.6)

That is, P (d) is the probability of encountering a node with degree d. If
m ≥ n− 1, as is necessary for the graph to be connected (although this may
not be sufficient) the value of d of each node may span from zero to n− 1 and
the mean value of d is given by:

d̄ =
∑n−1
d=0 d · P (d). (6.7)

This same value is linked to m by the relation: d̄ = 2m/n already given above.
These considerations can be immediately extended to the in-degree and

the out-degree of the nodes of a directed graph, thus defining P (din) and
P (dout) in a straightforward way. We also have d̄in = d̄out = m/n as already
found.

Let us now examine the function P (d) in more depth. Although reflecting
a property of the whole graph, this function is built as a composition of the
degree probabilities of the single nodes, therefore it accounts for a “local”
property without saying anything more on the graph structure. P (d) gives
strong statistical information on how many arcs are incident to each node,
but not, for example, on which arcs belong to a cycle of a given length, or
must be followed to reach another node in a certain number of “hops” (a
term coming from computer networks). Nevertheless, knowing the probability
degree distribution is of great importance for studying real-life networks, as
well as being not too difficult to compute if some strict mathematical condi-

4For a more in-depth treatment of this point see the book of Dorogovstev and Mendes,
2003, mentioned in the bibliographic notes.
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FIGURE 6.3: (a) Poisson distribution for random process 1. The value of d
where P (d) is maximum depends on d̄ and increases with this value. P (d)→ 0
for d → ∞. (b) Exponential degree distribution for random process 2. For
d→∞ the curve goes to zero with exponential decay.

tions are satisfied. We then start from P (d) in all the graph growth models.
When coming to the Internet and the Web these mathematical studies supply
a strong basis for understanding their development, although we will have to
rely on experimental data because not all the side conditions are precisely
known.

For the Erdős and Rényi’s graph process with the arcs chosen perfectly at
random, standard combinatorics allows to prove that P (d) follows the Poisson
distribution:

P (d) = e−d̄ · d̄ d/d ! (6.8)

if the mean degree d̄ = 2m/n is a constant, that is, if m is taken as a linear
function of n.5 The general behavior of function (6.8) is shown in Figure 6.3(a).
Since d is a node degree, only the non-negative values of d carry meaning.

To get an idea why the function has this shape, recall from Chapter 2 that
the factorial of d can be expressed in the form d ! ∼

√
2πd(d/e)d (Stirling’s

approximation). Removing all constant terms from relation (6.8) we have:

P (d) ∝ d̄ d/(
√
d(d/e)d) = (d̄ · e)d/d d+ 1

2 = ad/d d+ 1
2 (6.9)

where a = (d̄ · e) is a constant, and the symbol ∝ denotes proportionality. For
small values of d (essentially for d < a) the numerator ad grows faster than
the denominator d d+ 1

2 and the function grows. As d increases, the two terms
first balance and the function reaches a maximum, and then the denominator
definitely wins and P (d) goes to zero. In fact we have ad/d d+ 1

2 < ad/dd =
(a/d)d, with an exponential decay for d → ∞ as the base a/d becomes less
than one.

5For a mathematical proof of the expression (6.7), and of most of the expressions of this
chapter, see for example Dorogovstev and Mendes, op. cit.
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The analysis of the Erdős and Rényi’s process leading to the distribution
(6.8) is strictly valid for increasing n (and fixed d̄), besides being related to a
continuous function while d can actually take up only integer values. Never-
theless it is indicative of what one may expect from this growing mechanism.
Now we’ve understood this basic model, at least in broad terms, we can ex-
amine a new model that is closer to what happens in real growing networks
like the Internet and the Web.

Unlike the previous model, both nodes and arcs can now grow in number.
The mathematical approach is the same as before, but the resulting form of
P (d) is completely different. Referring again to undirected graphs we pose:

Random process 2

1. start with an initial node and fix an integer constant k ≥ 1;

2. proceed with consecutive steps: at each step insert a new node and k arcs
connecting pairs of nodes chosen at random.6

It can be easily seen that, from step i = k + 1 on, the total number of arcs is
m = nk − k(k − 1)/2. Since k is a constant, as the process goes on we have
m ∼ nk, hence d̄ ∼ k.

This process is too simple for modeling exactly most real life phenomena
where, for example, arcs are not compelled to grow in batches of the same size
k for any new node; not to mention that both nodes and arcs may increase
and occasionally also decrease in number. Again we take a simplified version
for which a simple mathematical analysis is possible, keeping in mind that
the general behavior of similar processes would be quite similar. And again
we study P (d) as a continuous function although d must actually take integer
values.

Standard mathematical analysis shows that the function P (d) for random
process 2 follows the exponential distribution:

P (d) = a · e−d/d̄ (6.10)

where a is a constant depending on k.7 The well known behavior of this
function is shown in Figure 6.3(b). Let us see why the two functions (6.8) and
(6.10) are so different.

First note that, for d → ∞, the Poisson distribution goes to zero much
faster than the exponential distribution because both functions exhibit an ex-
ponential decay, respectively with (a/d)d and (1/e)d where both bases are < 1,
but in the first one the base also decreases with d while in the second the base
is a constant. Recalling that P (d) is the probability of encountering a node

6In the first i ≤ k steps only i − 1 arcs can be inserted, connecting the new node with
the existing i− 1 nodes. From step i = k + 1 on, k arcs are added at any step.

7For a mathematical proof of the expression (6.10) see again Dorogovstev and Mendes,
op. cit. sections 2.1 and 5.1.
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with degree d, it follows that for each large value of d the exponential distri-
bution has many more nodes with that degree. In fact, while in the Poisson
distribution the degrees of the different nodes tend to gather “democratically”
around a mean value roughly coincident with the maximum of the function,
that is most nodes have a degree close to the average and very few of them
have a high degree, in the exponential distribution many more nodes have a
higher value of d. Why should that be the case?

Giving an intuitive answer is not that difficult. In process 1, when the arcs
enter the game, the nodes are already there, so each arc may be attached to
each node with the same probability. As a consequence all the nodes have the
same chance of reaching any given degree. In process 2, however, if node x is
added to the graph before node y, x has a higher probability of being targeted
by some arcs for the sole reason that it is in the game longer. Therefore the
degree distribution generated by process 2 is unbalanced, with “older” nodes
having on average a higher degree.

To learn more about process 2, which is closely related to many real life
networks, it is convenient to number the nodes according to the step in which
they appear (i.e., node x is inserted in the graph in step x). Then, in the
statistical ensemble of graphs defined by the process, p(x, d, i) is the proba-
bility that node x has degree d at step i, with i ≥ x; and the total degree
distribution at step i is given by: P (d, i) = 1

i

∑i
x=1 p(x, d, i). Clearly we have

P (d, n) = P (d), and the exponential relation (6.10) follows.
We also define d(x, i) as the mean degree of node x at step i, with i ≥ x. Its

mean value d̄(x, i) is an interesting element in understanding how the graph
grows because it can be proved that:

d̄(x, i) ∝ log(i/x). (6.11)

That is, the node degree increases with the ratio of i over x (older nodes have
a higher degree, as expected), but such an increase is moderate since it follows
a logarithmic function.

What is interesting, however, is that processes 1 and 2 give rise to networks
with a small distance between arbitrary nodes. In fact in both processes the
mean value of the shortest path can be evaluated as:

l̄ ' log n/ log d̄. (6.12)

That is l̄ scales logarithmically with n so that the mean distance between
nodes remains short even in a huge network.8

Finally, remember that processes 1 and 2 have been examined for undi-
rected graphs but their extension to directed graphs is straightforward, leading
to similar results for the functions P (din) and P (dout).

8Logarithms with different bases differ only by a multiplicative constant as explained in
Chapter 3, relation (3.1). Therefore the value of l̄ in relation (6.12) is independent of the
base, as far as the same base is chosen for the two logarithms.
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6.3 Power laws: the rich get richer

Although randomness plays an important role in the growth of real life
networks including the Internet and the Web, a completely different growth
model may be even more relevant. As we will see now, this phenomenon was
originally observed in the field of economics, and only later made its way into
other sciences.

The story starts at the end of the nineteenth century with Vilfredo Pareto
and his theories on political economy.9 In 1896 Pareto presented the “curve of
income” based on an accurate statistical survey on the income distribution in
different European countries, particularly England and Prussia where avail-
able data were more reliable. This curve, drawn in Figure 6.4(a), shows the
number y of persons with income at least x. The best mathematical fit for it
was given by Pareto in the form:

y = b(x+ a)−γ (6.13)

where a, b, and γ are positive constants. With the terminology used today
equation (6.13) is a power law since y is expressed as a power of x with the
addition of some constant terms. Studying networks we will find power laws
quite often. In all cases the exponent is negative hence the curve is convex
and y decreases for increasing x.

One could have expected that the constants a, b, γ depended on the country
or on the year in which the phenomenon was observed, but Pareto’s statistics
showed that their values were quite similar in all countries for which data
were available, and remained almost unchanged in a time window of over forty
years. In particular the value of a was always extremely small, and the value
of γ spanned from 1.89 to 1.60. As Pareto always stressed, the basic “shape”
of the curve (in fact, the power law form) characterizes the distribution of
wealth everywhere, even if some changes in the constants can induce minor
deformations. Before explaining what all this has to do with the Internet,
let us examine the meaning and the consequences of such a mathematical
behavior.

At a first glance the curve shows that a very large number y of persons have
a very low income at most x and only a few persons have a very large income.
This fact can be characterized with an elementary mathematical analysis, us-

9The son of an Italian political refugee, Vilfredo Pareto grew up in Paris. His family was
eventually allowed to return to Italy were he graduated in engineering and then reached
a very high position as an executive in industry, although he was openly a socialist and
culturally an anarchist. Later he left industry to become a professor of Political Economy
in the Swiss University of Lausanne where he wrote his famous Cours d’économie politique
(Course of Political Economy) in which economics was approached on quantitative grounds,
a novelty for those times. His political beliefs were so inflexible that he even refused a life
seat in the Italian Senate.
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FIGURE 6.4: (a) Pareto’s income distribution. The curve starts at a high
value on the y axis since a is very small. (b) Power law of node degree distri-
bution for a typical network growth.

ing once again a continuous function (6.13) to describe a discrete phenomenon
(number of persons versus amount of income) in its general terms. Confining
the curve into a finite window, say 1 ≤ x ≤ M , to represent an actual span
of income; and letting E be the mean value of the income over that span; it
can be proved that the persons earning less than E are many more than one
half of the total population independently of the values of a and b. That, is
the poor are a vast majority.

In terms of political economics this fact can be simply explained. People
with a very low income can barely survive and tend to stay in their condi-
tion forever. If their personal income increases there is some room for savings,
and further income comes from the “interest” on the capital, whatever inter-
est means. As the income becomes even larger people start acquiring further
sources of revenue and become more and more wealthy. Following a popular
saying: “the rich get richer.” Economic data are presented today in much more
sophisticated forms compared to Pareto’s curve, but a basic fact still holds.
From the poorest to the richest countries, a small percent of the population
owns a large percentage of the total wealth.

In the decades that followed Pareto’s studies, other power laws were ap-
plied to the mathematical description of different phenomena, many of which
related to human affairs. Starting from the 1930s a significant role in empir-
ical statistics was played by studies on the frequency of the words in natural
language utterances, mainly due to the Harvard linguist George Kingsley Zipf.
The original Zipf’s law stated that, if the words of a sufficiently rich linguis-
tic corpus are ordered according to their decreasing frequencies, the following
relation (approximately) holds:

f(wi) ∝ i−1

where wi is the word in the i-th position (rank) of the ordered list, and f(wi)
is its frequency. That is, the frequency of any word wi is inversely proportional
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to its rank. Taking English as an example, the Zipf’s law states that the most
frequent word “the” occurs approximately twice as often as the second word
“of,” three times as often as the third word “and,” etc., as is in fact observed
in relevant collections of English sentences. The law was then extended by
raising the rank i to a distribution exponent different from -1, and examining
different fields in which it may hold.

Note that power laws are not the only mathematical expressions for which a
small portion of a “population” accounts for a high share of the total “wealth,”
whatever the terms in quotes represent. A similar effect occurs if the wealth
is distributed according to an exponential law where the independent variable
x is at exponent (with minus sign), instead of a power law where x is in the
base; however, there is a crucial difference that will be explained below.

It is now time to discuss how power laws appear in graphs. In fact, although
there has been an excessive pursuit to discover power law distributions in
all sorts of data collections, sometimes exaggerating their validity to unduly
support different claims, such distributions unquestionably play a central role
in the growth of networks. Consider the following growth process where, at
any step, the nodes with the highest degree have a better chance to increase
their degree (i.e., the rich get richer principle applies). Referring again to an
undirected graph we pose:

Preferential attaching process 3

1. start with an initial node 1;

2. proceed with consecutive steps: at each step i insert a new node i and
a new arc connecting i to an existing node x chosen with probability p
proportional to the current degree of x (i.e., p ∝ d(x, i)).

This process, proposed by Barabási and Albert in 1999, is one of the bases
of the whole theory of network growth, and gives rise to a so called “cita-
tion graph.” Standard mathematical analysis shows that the function P (d)
emerging from process 3 has the continuous power law form:

P (d) ∝ d−3. (6.14)

Compared to Pareto’s curve of Figure 6.4(a) the function (6.14) goes to∞ for
d going to zero. However the new curve has a meaning only for d ≥ 1 because
by construction all the vertices have at least one incident arc. Furthermore the
exponent −3 in relation (6.14) is larger in absolute value than the exponent
−γ of (6.13) so the new curve is closer to the x axis.

A little caution is in order here. Equation (6.13) gives the number of people
with income ≥ x (not exactly x), while equation (6.14) gives the probability
of finding a vertex with degree equal to d. We can easily transform the latter
equation to give a cumulative distribution Pc(d), i.e., the probability of finding
a vertex of degree ≥ d. In fact Pc(d) is simply the integral of P (d) from d to∞,
hence we have Pc(d) ∝ d−2. In the next chapter, dealing with the Internet and
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the Web, we will see that cumulative distributions are often more significant
than the others.

Many variations of process 3 have been proposed in order to make it more
suitable for modelling real networks. Major extensions allow several arcs to
enter at each step, although their number must be kept constant along the
process to permit a reasonable mathematical analysis. Moreover these arcs
may be connected to the nodes according to a mixture of preferential and
random attaching, as in fact happens in the Internet and the Web. Finally
there is no need that a new node x is immediately connected to the others,
although this requires a little caution (see below).

All these models must be studied in the specialized literature. We indicate
only a very simple extension of process 3 that gives a significant account of
what can be expected from the others. Namely:

Preferential and random process 4

1. start with an initial node 1;

2. proceed with consecutive steps: at each step i insert a new node i and
a new arc connecting two existing nodes x, y chosen with probabilities
px ∝ d(x, i) + a and py ∝ d(y, i) + a, with a > 0 constant.

Process 4 introduces a mixture of preferential and random attachment, the
latter through the additive constant a. The greater a is, the less preferential
is the process. Although possibly very small, a cannot be zero because each
new node i enters the graph with degree zero and, for a = 0, could never be
attached to the others. Asymptotic analysis shows that for large values of d
the function P (d) emerging from process 4 has the form:

P (d) ∝ d−γ (6.15)

with γ = (2 + a/2). To stay close to what happens in many real networks a
must be chosen in the interval (0− 2] so γ has a value in (2− 3].

All the common variations of process 4 end up with a power law for P (d)
whose exponent and other constants are a function of the various parameters
of the process such as the number of arcs introduced at each step, or their
distinction between preferential and random arcs, or even the number of arcs
that are taken off the graph at certain steps. All these paramenters are re-
flected in the graphical representation of the function, which in all cases has
the shape of Figure 6.4(b). In a later chapter we shall see that several other
features of the Internet and the Web, and of other real networks, are governed
by power laws with most exponents between −3 and −2.

We can also consider the value of d̄(x, i) (mean degree of node x at step
i) as we did for the exponential distribution. For process 4 and its variations
we get in general something like:

d̄(x, i) ∼ (i/x)β , (6.16)
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FIGURE 6.5: Asymptotic comparison between random attachment (expo-
nential law in dashed line) and preferential attachment (power law in solid
line).

with β < 1. That is, the mean node degree increases with the ratio of i over
x as expected, and increases much faster than in the exponential distribution
(relation (6.11)) where the variation is limited to a logarithmic growth.

Even for process 3 and for its extensions, the mean distance between nodes
is small, generally scaling with n as:

l̄ ∼ log n/ log log n. (6.17)

We have now the basic information required to compare an exponential
distribution with a power law distribution. Figure 6.5 shows the two functions:

y = a e−bx, y = a x−γ (6.18)

where a, b, γ are constants.
The points where the two curves intersect the x, y axes, or intersect each

other, depend on the values of a, b, γ, but the general shape of the curves
is independent of these parameters. The exponential law may lay above the
power law in an intermediate interval of the x coordinate, but stays always
below the power law for small and large values of x. Furthermore for x→∞
the exponential law goes to zero (by definition) with exponential decay, while
the power law goes to zero much more slowly. The value of the mean degree of
a node as a function of the instant when the node enters the game, indicated
in relations (6.11) and (6.16) for the two distributions, confirm the abundance
of nodes with high degree in the latter case. Power laws are said to have a
“fat tail.”

An interesting study of the two functions (6.18) can be performed if we
take the natural logarithm of both sides of the equality, thus obtaining:10

ln y = ln a− b x, ln y = ln a− γ ln x. (6.19)

10Recall that ln (a · b) = ln a+ ln b; ln ab = b ln a; and ln e = 1.
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FIGURE 6.6: Exponential behavior (dashed) versus power law (solid), in
semi-logarithmic scale (a), and in logarithmic scale (b). The intersections are:
A = ln a, B = a e−γ , C = ln a/b, D = ln a−1, E = ln a/γ, F = ln ln a− ln, b.

Now plot the two functions on the new axes x, ln y (semi-logarithmic scale:
Figure 6.6(a)), and ln x, ln y (logarithmic scale: Figure 6.6(b)). In the first
plane the exponential function corresponds to a straight line with slope −b.
In the second plane the power law corresponds to a straight line with slope −γ.
As noted in footnote 8 the shape of these curves is essentially independent of
the base chosen for the logarithms. In practical applications base 10 is mostly
used.

The shape of the curves in Figure 6.6 is very important for evaluating
experimental results. In fact data coming from a random attachment exper-
iment, or from a preferential attachment experiment, tend to cluster along
a straight line respectively in a plane x, log y, or in a plane log x, log y. So a
mere examination of the data distribution on the plane may reveal, at least
approximately, the nature of the experiment.

Those who have reached the end of this rather heavy chapter may look at
what follows with some relief. Reading the remaining chapters is going to be
a smoother and more pleasant ride.
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Chapter 7

Giant components, small worlds, fat
tails, and the Internet

How networks appear in the real world, and how they can be studied with a
reasonable mixture of mathematics and observations.

One of the greatest consolations of this world is friendship, and one of
the pleasures of friendship is to have someone to whom we may entrust a
secret. Now, friends are not divided into pairs, as husband and wife: everybody
generally speaking, has more than one; and this forms a chain of which no
one can find the first link. When, then, a friend meets with an opportunity of
depositing a secret in the breast of another, he, in his turn, seeks to share in
the same pleasure. He is entreated, to be sure, to say nothing to anybody; and
such a condition, if taken in the strict sense of the words, would immediately
cut short the chain of these gratifications: but general practice has determined
that it only forbids the entrusting of the secret to everybody except one equally
confidential friend, imposing upon him, of course, the same conditions. Thus,
from confidential friend to confidential friend, the secret threads its way along
this immense chain, until, at last, it reaches the ear of him or them whom
the first speaker exactly intended it should never reach. However, it would,
generally, take a long time on the way, if everybody had but two friends, the
one who tells him, and the one to whom he repeats it with the injunction of
silence. But there are some highly favoured men who reckon these blessings by
the hundred, and when the secret comes into the hands of one of these, the
circles multiply so rapidly that it is no longer possible to pursue them.1

So if at the next step one of these “highly favoured men” tells the secret
to one hundred friends, who are probably also highly favored, the secret is
deposited in the breasts of 1002 = 10,000 new custodians, and the process

1Manzoni 1827, Ch. XI. The stylish Italian novel The betrothed is considered a mas-
terpiece of world literature. It may well be that these authors have inserted the citation
because Manzoni’s novel is an inescapable part of their personal culture. In any case, this
description of secret spreading predicted the chain email almost two centuries in advance.
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FIGURE 7.1: A graph of secret sharing with connections between mutual
friends.

goes on exponentially along a communication tree where the number of nodes
is multiplied by 100 at each level.

Chances are, however, that the 10,000 custodians are not all distinct, ac-
cording to the universal law that “a friend of my friend is also my friend.”
The set of custodians then grows in the form of a complex communication
network as shown in Figure 7.1. Unlike the tree of exponential growth, the
network is highly clustered, with groups of friends all linked to one another,
and short loops appear. On the other hand the exponential growth cannot go
on for too long, because in a few steps, the total number of custodians would
exceed the population of the globe. Either the tree stops evolving, or closes
onto itself forming long loops.

In Chapter 6 we have seen how networks can grow according to different
mathematical rules, with random or preferential linking, or with a mixture of
the two. Clearly different networks require different algorithms and the same
problem may be easy on one and difficult on another. Which parameters are
then relevant for network study? Let us approach this by trying to answer a
natural question: what happens in the real world?

7.1 The emergence of giant components

In their original work on random graphs, growing with successive attach-
ments of arcs to a given set of nodes, Erdős and Rényi discovered an interesting
phenomenon. Their graphs showed a sudden change (today called a “phase
transition”) in node connectedness for increasing values of the mean node de-
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gree d̄. In the initial steps of the growing process, that is when there are just
a few arcs in the graph and the value of d̄ is small, most nodes are discon-
nected from one another and the graph actually consists of a great number
of independent connected components. Increasing the number of arcs, these
components start merging to form bigger components; until, when the value
d̄ = 1 is reached, a very large connected component emerges whose nodes form
a sizable subset of the total.

More precisely, if we repeat the process for an increasing number of nodes
n, all initial components have a size s with s

n → 0 for n → ∞. Around
d̄ = 1, however, a giant (connected) component appears whose size s is a
finite fraction of n, i.e., s

n is a positive constant for increasing n. The graph
is then composed of one giant component plus a collection of components of
negligible size. By adding new edges, the latter components tend to merge with
the giant one, until the whole graph is connected. With a little injustice we
will essentially direct our attention to the giant component only. For example
the mean length l̄ of the shortest path between all pairs of nodes implicitly
refers to the nodes of the giant component. Note that d̄ = 1 implies that each
node has on average just one incident arc, so studying graphs for d̄ ≥ 1 is
reasonable on practical grounds.

Erdős and Rényi’s model was an abstract one, and the birth of a giant
component was demonstrated in mathematical terms. In fact this phenomenon
occurs in most real networks, although we may not be able to predict the values
of the parameters involved in the phase transition. For example, if the nodes
of a network are the freshmen of a college, and an arc is formed whenever a
new acquaintance arises, the corresponding graph is initially formed of many
small components, but at the end of the academic year the graph is dense and
a giant component is certainly present, leaving out only small groups of shy
people, or of fellows with narrow common interests. Unlike in the Erdős and
Rényi’s model this process is essentially non random since acquaintances may
be due to personal attraction, or to interest or taste sharing. Still one (and
only one) giant component will arise.

So far so good. But the phenomenon becomes much more complex if the
graph is directed. A much larger number of arcs is needed to form directed
paths between all the nodes of a component and the global structure of the
connections becomes more interesting. For a moment, take all the directed arcs
as undirected. The giant component so observed is said to be weakly connected,
and is called GW for giant weak, to indicate that many connections would
disappear on restoring the arc orientation. As before, the graph is divided
into GW plus several independent small components, and again we direct our
attention to GW.

Restoring the arc orientation, GW takes the form indicated in Figure 7.2.
If the number of edges is large enough, the three subsets GS, GI, and GO
have a size proportional to n, hence they are properly called giant. The core
GS, for giant strong, is the largest connected subset of GW. Each node in GS
can be reached from any other node, that is GS is a connected component
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FIGURE 7.2: The structure of the weak giant component GW in a directed
graph. The core GS is the largest connected component of the whole graph.

of the directed graph. GI, for giant in, contains all the nodes from which a
node in GS can be reached, but non vice-versa (otherwise the node would
be in GS). Conversely GO, for giant out, contains all the nodes that can be
reached by the nodes in GS, but non vice-versa. The remaining nodes of GW
are clustered into tendrils and tubes. Tendril nodes can be reached from GI,
but cannot reach nodes outside the tendril; or can reach GO, but cannot be
reached from outside the tendril. Tube nodes form a bridge connecting GI and
GO without passing through GS.

As we shall see, the structure of Figure 7.2 is found in the World Wide Web
represented as a directed graph. Taking our college freshmen again, we may
construct a directed graph of telephone calls where arcs are directed from the
caller to the receiver. The fellows in GS make and receive many calls. Those
in GI try to be friendly without great success. Those in GO are very much
sought for but tend to keep to themselves. The reason why this structure is
found in the Web is of course very different.

Like random graphs, most non random networks tend to suddenly form
one giant component when the number of arcs reaches a certain limit, unless
special conditions occur.2 This is remarkable since most of the other charac-
teristics of the network, for example the degree distribution seen in Chapter
6, are strongly influenced by the formation process.

In a random graph all possible arcs have the same probability of occurring
independently of the arcs already present, while in most real-life networks, if
two nodes x, y are connected to another node z, the probability that x and

2For example the freshmen of two colleges located in different states, if taken as a whole,
tend to generate two giant components of half size, one for each college. However both
components have a size proportional to the total number of nodes, hence are giant.
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y are also connected by an arc is generally much higher than casting arcs at
random (“a friend of my friend is also my friend”). There is a vast literature
on this clustering phenomenon, or in general on the local density of a network
given its global density. In an undirected graph a node x of degree d has d
neighbors that may share up to s = d(d− 1)/2 arcs. If c arcs actually link the
neighbors of x, the standard clustering coefficient of x is defined as:

C = c/s = 2c/d(d− 1), (7.1)

and the mean value C̄ of C can be computed as a parameter of the whole
network. For directed graphs, relation (7.1) can be immediately extended.

For a wealth of social networks, biological networks, neural networks, dis-
tribution networks, and for communication networks like the Internet and the
Web, the value of C̄ has been shown to be much higher than that of a ran-
dom network with the same number of nodes and arcs. In all these cases, two
neighbors of a given node have a rather high probability of being neighbors of
one another, thereby keeping the value of C̄ high, since this parameter indi-
cates the density of loops of length three. More generally two nodes at a short
distance from a given node may be neighbors of one another thus contribut-
ing to local clustering, as happens for example in the graph of Figure 7.1.
Global clustering can be measured with a proper extension of relation (7.1)
to indicate the density of loops of any length.

In a random graph, however, each node has probability d/(n − 1) that
one of its d incident arcs is in fact connected to one of the other n− 1 nodes.
Recalling that for increasing n the value of d must be kept constant in practice
(otherwise the “size” of the nodes would be unbounded), the above probability
is asymptotically vanishing and the value of c in relation (7.1) goes to zero.
Then C̄ → 0 for n→∞. Random networks are practically free of clustering,
that is they tend to have a tree-like structure in the surrounding of each node
and loops are long. The giant connected component present in all networks has
an internal structure that depends on the growing process. Other interesting
properties will be found in the next section.

7.2 The perception of small worlds

Manzoni’s secret sharing suggests that all of the approximately ten billion
people that form human society would be reached by a secret in a few steps,
except possibly for small groups of asocial individuals that remain outside
the giant component. Apparently this is not that far from the truth, as the
network of personal acquaintances between humans seems to have a giant
connected component where the mean distance between any pair of nodes is
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FIGURE 7.3: Two non small-world graphs: a ring and a two-dimensional
grid. A dashed “long-range contact” has been added to the latter as in Klein-
berg’s model.

quite small. This is what is known as the small-world effect in the field of
social networks.

These studies started in the 1960s with a set of experiments conducted by
the psychologist Stanley Milgram at Harvard University. The most relevant
experiment for the field of networks is so well known that we will recall it
only very briefly. Milgram asked a random group of people in Nebraska to
send a letter to a specific person in Boston passing through a chain of people
that at each step the sender personally knew. Many letters got lost, but those
that reached the Bostonian addressee had made an average of six hops. The
expression “six degrees of separation” then passed into popular language, to
indicate that six (or, in any case, a very small number of) steps of acquaintance
separate any two of us: from Mahmud Ahmadinejad to Angelina Jolie; from
Angela Merkel to Tiger Woods.

From a mathematical point of view the small-world effect arises when the
mean distance l̄ between nodes is at most polynomial in log(N), where N
is the number of nodes. Not “six” as found by Milgram; not even a higher
constant, that would be demanding too much as N goes to infinity; but a
big reduction anyway. Note that we are referring to l̄, that is, to the mean
length of the shortest path between any two nodes, and not to the diameter δ
of the graph defined as the length of the longest shortest path (i.e., the path
connecting two vertices at maximal distance).3

In Chapter 6 we have seen that networks growing randomly or with pref-
erential linking are small worlds. Of course this result comes from a math-
ematical abstraction, but all social or communication networks examined in
the last decades experimentally exhibit the same property. So, to start with,

3There is some confusion in the literature on using l̄ or δ to define small worlds. This
may be due to the fact that in a random graph both parameters are logarithmic in N . We
refer to l̄. As l̄ is a mean value, it may well be that the actual distance between Angela
Merkel and Tiger Woods is much more than six.
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which graphs are not small worlds? Typical examples in computing are rings
of processors used in small local area networks, and regular grids of CPUs
used in parallel processing: see Figure 7.3. In a ring of N nodes we can easily
find:

δ = bN/2c, l̄ ∼ N/4. (7.2)

In a two-dimensional grid of N = n1 × n2 nodes we have:

δ = n1 + n2 − 2, l̄ ∼ (n1 + n2)/2, (7.3)

both proportional to the square root of N if n1 and n2 are of the same order
of magnitude. In general in a d-dimensional grid both δ and l̄ are of order
O(N1/d). On the other side of this spectrum stand complete graphs with
δ = l̄ = 1.

Comparing random graphs and grids we see that two of their characteristics
are opposite. In random graphs the value of l̄ is very low and the loops are
long (low clustering), while in grids the value of l̄ is very high and the loops
are short (high clustering). In 1998 Watts and Strogatz suggested how to
reconcile the two models into one that exhibits low l̄ and high clustering. For
example starting from a highly regular and highly clustered network like a
grid, add a small number of arcs chosen uniformly at random. The clustering
remains, however, a few new random arcs are sufficient to reduce the value
of l̄ dramatically, and tuning the parameters this value becomes logarithmic.
This process creates a small world with high clustering. A standard example
is a set of tightly connected communities (e.g., freshmen of different colleges),
with the communities initially disconnected from one another. A few random
connections between nodes of different communities are sufficient to link any
pair of nodes with just a few hops, part on the new arcs and part inside the
communities.

Speculating on Milgram’s experiment and on Watts and Storgatz models,
Jon Kleinberg discovered some interesting properties of decentralized algo-
rithms for the detection of short paths in a network. These algorithms only
make use of some local information stored at each node, as in fact was attained
by the participants in Milgram’s experiment. The problem is put in strongly
mathematical terms, focusing on a generalization of an n × n grid model on
which three parameters p, q, r are imposed. Each node u now has a direct
connection with every other node v within a distance p (i.e., p is the number
of grid steps between u and v). The nodes in this neighborhood are the local
contacts of u. In particular for p = 1 the local contacts are the four nodes
surrounding u in the grid. In addition u has q long-range contacts determined
by q independent random trials. The probability that u chooses v as one of
these contacts is proportional to d(u, v)−r, where d(u, v) is the number of grid
steps between u and v. In particular for q = 1 there is only one long-range
contact per node (see Figure 7.3, letting n1 = n2 = n).

Kleinberg proved two interesting facts about this model. For p = q = 1,
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i.e., if each node u has only four local contacts and one long-range contact; and
for r = 2, i.e., the probability of connecting u with the long-range contact v is
proportional to d(u, v)−2; one can apply a very simple decentralized routing
algorithm. To send a message to a target node t, the original source node
u, and then any successive message holder, sends the message to its contact
that is closest to t. Kleinberg proved that this algorithm requires an expected
number of hops of order O((log n)2), that is, a delivery time exponentially
smaller than the number N = n2 of grid nodes. Not only does the grid become
a small world with the addition of one long-range contact per node, but also
each node is able to send the message along a short path to a given target
solely on the basis of limited local knowledge.

The second result is also impressive. For r 6= 2, any decentralized routing
algorithm in the family of grids requires a delivery time polynomial in n
instead of log(n): i.e., it is exponentially slower than the algorithm above.
For example for r = 0 the long-range connections are chosen uniformly at
random, since the probability of being chosen has the same value 1/Nl for all
the possible Nl long-range contacts. Essentially this is the model of Watts and
Storgatz. Short connecting chains also exist in this case, but no decentralized
algorithm can detect them efficiently.

In conclusion a combination of randomness and local clustering are two
basic ingredients to build a small world close to what is observed in practice.

7.3 Fat tails

In this world, smaller animals tend to be in the vast majority. There are
many more mosquitoes than humans, many more humans than bulls, and only
a few hippos. And the property scales: small insects are the majority of all
insects, small mammals are the majority of all mammals, etc.

Many artificial or natural phenomena exhibit a similar property, at least
in the “tail” of the distribution. On September 11, 2001, a dreadful terrorist
attack hit the United States of America taking the life of about 3,000 people.
On January 12, 2010, a tremendous earthquake hit Haiti and the victims were
about 30,000. Unfortunately many other terrorist attacks stain the world with
blood and many other earthquakes make our lives insecure. But there are only
a few large ones, medium size attacks or quakes are more numerous, and the
minor ones form the vast majority.

In America there are many small towns, a fair number are of medium size,
but there are only a few huge metropolis.4 Most U.S. airports have only a few
flights per day, some are better served, but there are only very few really big

4This phenomenon of urban concentration was already observed by Felix Auerbach in
1913, between Pareto’s and Zipf’s studies.
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hubs. Most books appear very rarely in bibliographies, some are referenced
more often, while a small minority are mentioned almost everywhere. Exam-
ples are countless. Log files for mail servers show that most addresses have a
limited number of shared messages, some have more, and a few have a huge
number of connections. In the distribution of links in the World Wide Web a
vast majority of pages have an extremely limited number of incoming links,
some are more pointed to, and only a few are very popular.

Most of these phenomena are ruled by a power law, as found by Pareto
for the distribution of income and by Zipf for the frequency of words (see
section 6.3 in the previous chapter). From the number y of earthquakes of a
given magnitude x, to the number y of Web pages with x incoming links, the
mathematical expression of the relation is approximately:

y = a x−γ (7.4)

with a and γ positive constants: a power law. There are examples of diverse
origin: from biology to social sciences, from communication to transport. And
from the Internet and the Web as we shall discuss later.

As we have seen in Chapter 6, relation (7.4) can be represented in a log x,
log y plane as a straight line with negative slope γ (Figure 6.6(b)). And in fact
the discovery of power laws in artificial or natural phenomena has generally
come out of observations of experimental data plotted in logarithmic scale.
Other properties, however, are peculiar to power laws and are important for
their consequences.

Compared to the Poisson distribution typical of random phenomena, a
power law has no peak around the average value of y (see Figures 6.3(a)
and 6.4(b) of Chapter 6). Furthermore power laws go to zero quite slowly for
increasing x, so that the elements with a very large value of x are a minority
but their probability of showing up is non-negligible. They disappear only if
x reaches a point of “physiological” cut-off (an earthquake of magnitude 10
in the Richter scale; an airport with as many connections as the total number
of existing airports). This actually means that “the rich” at the far right of
the x axis are sufficiently numerous to get most of the total “wealth,” as
was demonstrated by Pareto in economic terms over one century ago, and is
unfortunately still true today as far as the distribution of income is concerned.
This property is referred to as a fat (or heavy) tail of the distribution. In
these phenomena a mean value of x is not particularly significant, since the
distribution is completely unbalanced to the right.

Another fundamental property of power laws, tightly connected with those
previously discussed, is that they scale, and in fact they are the only mathe-
matical laws with this property. In mathematical terms this means that mul-
tiplying x by a constant c (or scaling x by c) causes a proportional change
(scaling) of y. That is, a function y = f(x) scales if f(cx) ∝ f(x). And indeed
for a power law f(x) = a x−γ we have:

f(cx) = a(cx)−γ = c−γax−γ = c−γf(x). (7.5)

© 2012 by Taylor & Francis Group, LLC



126 Mathematical and Algorithmic Foundations of the Internet

Note that the exponent of x is negative for most of the power laws that we
consider here, that is, the function is convex in a mathematical sense. However
a function f(x) = a xα scales for α positive or negative, and α is called the
scaling exponent. A consequence of scaling, or another way of looking at it,
is that any portion of the curve behaves as the whole. The earthquakes in
the whole Richter scale 1 to 10 have the same distribution as those with
magnitude between 6 and 7; so in this range the earthquakes of magnitude 6
are much more frequent than those of magnitude 7. Limiting Pareto’s income
distribution to a subset of the rich we find that most of the wealthy people
own much less than the super-wealthy, etc.5

A concept related to scaling is self-similarity, that is, at any degree of
magnification a portion of the curve is similar to the whole. Many phenomena
in the real world show some degree of self-similarity, which is perfectly met
if their mathematical description is a power law. In particular self-similarity
is a property of fractals, mathematical objects that can be represented as
geometric shapes that can be divided into parts, each of which is a smaller
reproduction of the whole. Most people will have heard of fractals. Without
getting into a complex mathematical analysis we recall that, unlike common
objects in Euclidean geometry that have an integer dimension D (D = 1 for
lines, D = 2 for surfaces, D = 3 for solids, etc.), fractals have intermediate
non integer dimensions.

Many natural phenomena seem to have a fractal structure, at least approx-
imately. For example the vascular networks that distribute resources within
an organism, like the blood circulation system, have a dimension D between
2 and 3. Unlike surfaces (D = 2), if these fractals are observed down to a finer
and finer scale they appear to fill most (but not all) of the space. According to
some leading biologists this explains some controversial observations on living
organisms, although their theories need further validation. And here power
laws come in again.

It is well known that the larger an animal, the lower the metabolism B
(essentially the amount of food consumed) compared with the animal’s mass
M . For a long time the amount of heat H exchanged with the outside of the
animal’s body was considered a measure of metabolism, that is B ∝ H. Now
heat exchange takes place through the animal’s skin, that is a two-dimensional
surface in the linear size L of the animal. We then have: B ∝ L2, while
M ∝ L3; therefore B ∝M2/3. A power-law, but not the correct one.

In fact, in the early 1930s Max Kleiber made a famous series of measure-
ments from which he concluded that B and M are indeed related by a power
law, but the scaling exponent is 3/4. That is:

B ∝M3/4 (Kleiber’s law). (7.6)

This surprising result has been justified in the 1990s considering that the

5Most people do not consider this a particularly painful truth. Apparently the function
“pain” does not scale.
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capillary network for distributing nutrients, that is the organ responsible for
metabolism, has in fact a fractal structure of non-integer dimension D > 2,
finally yielding the 3/4 exponent of M for measuring metabolism and other
biological parameters.

Power laws, then, are encountered everywhere when modeling networks in
mathematical terms. In particular they show up in large systems guided by
self-regulation rules based on local knowledge, without the intervention of a
central control: a nice family of anarchic networks that include the Internet
and the Web. No wonder, on the basis of what we have seen in Chapter 6, that
a combination of randomness and preferential linking is a crucial ingredient
for their evolution.

7.4 The DNS tree: between names and addresses

It is now time to discuss how the concepts seen thus far apply to the topic
with which we are concerned most: namely the functioning of the Internet,
seen both as a physical network of processors and as a means to organize
and retrieve data. To this end we start from a tree that we have already
encountered.

In Chapter 3 we have seen that the devices connected to the Internet have
an IP address through which they can be reached. Devices also have domain
names organized in a hierarchical structure called DNS (Domain Name Sys-
tem) tree (see Figure 3.9). Roughly speaking, a domain name indicates what
we are looking for and the corresponding IP address indicates where it is lo-
cated. The DNS tree, a basic structure for mapping names to addresses, is
replicated in many computers called name servers. Any device looking for a
resource in the network only needs to know the name of the resource and the
address of a name server where the needed information can be found.

The node at the root of the DNS tree, labeled with a silent dot, is the
most important of all and corresponds to ICANN, the Internet Corporation
for Assigned Names and Numbers. The children of the root have a top level
domain (TLD) name, for example .com, .edu, .gov, etc., to denote particu-
lar categories of users; or .us for the U.S.A., .cn for the People’s Republic
of China, recently .eu for Europe etc., to denote different countries. Going
down the tree, each successive level inherits the name of the parent with an
additional word to the left of the label, with all these words separated by a
dot. For example www.di.unipi.it is the name of the Web server of the univer-
sity department where two of the authors of this text work, where .it denotes
Italy, .unipi denotes the University of Pisa, and .di denotes the Department
of Informatics. The name www.di.unipi.it is located in a leaf of the tree from
where the corresponding IP address 131.114.3.18 is found. Before proceeding,
a few things about ICANN, names, and addresses should be considered.
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When the network started operating in the 1970s, a unique archive of
domains and addresses was maintained at the Stanford Research Institute.
Other users would copy it at night. With network growth the archive became
huge and the centralized repository was abandoned in favor of the present dis-
tributed solution. The structure of domains is strictly hierarchical. Each node
of the DNS tree is managed by a specific institution called an authoritative
name server that dictates the rules of operation for the domain, maintains con-
sistency of its children, and can assign authoritative name servers to them.
Conversion tables between names and addresses are distributed and highly
replicated between different nodes so that an address request travels through
the network only to the closest location that can answer the query.

In principle a DNS node has full control over its domain and can even cut
the Internet connection of a child if some rules are not observed. So ICANN has
full control over the whole name system. As ICANN reports to the Department
of Commerce of the U.S.A., the government of this country has control over the
Internet, at least in theory. In the mid 2000s there was extensive international
debate on this issue, with several countries asking for the control of ICANN to
be passed over to the UN. Whether this would be a good move is difficult to
say. In practice ICANN is directed by an international body that has always
acted with impartiality, and, at the end of the decade, the discussion on the
controller of ICANN seems to have lost most of its interest. Another point,
however, is in full evolution.

Up until the year 2008 an IP address, like the 133.114.3.18 mentioned
above, was a 32-bit number as required by IPv4, the Internet Protocol version
4 released in 1981. Thus 232 ∼ 4.3×109 addresses could be specified, although
due to problems of address distribution no more than one half of the possible
numbers were actually available. But even 4.3 billion addresses are insufficient
to satisfy the ever increasing world of Internet-connected PCs, smart phones,
consoles, and a wealth of other gadgets of the future. In particular Europe
and China are running short of numbers and a complex system of private
addresses flourishes inside large organizations, to be translated in real time
and funneled to the public single IPv4 addresses of the Internet. Rather than
just a single computer, an IP address denotes an access point to the Internet
through which a whole private network can be connected.

There has been a clear need for a new protocol for a long time. After
the unused experimental version IPv5, the long term solution was given in
the new protocol IPv6, released in 1995 but not used until recently. Among
many innovations, particularly in the authentication and encryption of data
streams, IPv6 addresses are specified as 128-bit numbers, so a huge world of
2128 ∼ 3.4 × 1031 different objects can be targeted. Of course adopting the
new protocol implies making investments in new equipment, so for many years
network service providers have resisted the move to IPv6, especially as the two
protocols are natively incompatible. A good opportunity for moving on was
offered by the 2008 Olympic Games in Beijing, when the People’s Republic of
China decided to broadcast all the events on IP television under IPv6. At the
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end of the decade both protocols are in use, though IPv4 is used much more
widely than IPv6. The major operating systems now support both protocols,
although their co-existence causes new problems of address translation and
communication security. No doubt IPv6 will definitely prevail, but it is hard
to foresee when this will happen.

Yet another major innovation was announced in 2008. As we have dis-
cussed, the top level domains of the DNS tree had fixed extensions established
by ICANN. There are about twenty generic extensions like .com for commer-
cial use, .gov for US government institutions, .edu for colleges and universities,
etc.; and about two-hundred and fifty country code extensions like .us and so
on. For a long time a community of cybersquatters engaged in the unpleasant
practice of registering all domain names that could have been interesting for a
particular business. Whoever wanted to use one of these names had to buy it
back from the assignee, of course at a much higher price than the one required
for the original registration.6 Partly to overcome this phenomenon, and partly
as a source of extra revenue, in 2008 ICANN announced the possibility of ex-
tending the top level layer of the tree by allowing users to invent their own
extensions at a substantial cost. As owner of the extension, an organization
could set up its own site without the possibility of intrusions.

7.5 The Internet graph

Being composed of computers and connections among them, it should be
possible quite naturally to represent the Internet in the form of a graph. As
we shall see, however, the situation is not that obvious because the present
structure of the network is a little complicated.

Up until the early 1960s, the worldwide communication was dominated by
the telephone network. The basic technique was known as circuit switching,
implying that a connection between two users was established through a circuit
dedicated to them for the whole duration of the call: a reasonable approach
since a telephone conversation consists of a continuous stream of signals with a
propagation delay negligible for humans. The first attempts to build computer
networks were based on similar methods, but in fact something completely
different was needed.

During the early 1960s several independent studies emerged on a new way
of linking computers rather than humans, where the information does not need
to flow continuously on a line as long as it can be reconstructed correctly by

6As everyody knows, Italians are very fond of “pasta” (noodles). When e-commerce
started in the country many names having “spaghetti,” “fusilli,” “lingiuine,” etc. in them
were readily registered, with the sole aim of selling them back to pasta producers. Even the
Italian top level domain .it has been exploited because of its English meaning, giving rise
to sites like buy.it, lift.it, use.it, rent.it, cook.it....
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the receiver. The technique of packet switching then emerged, marking what
is probably the biggest difference between telephone and Internet communi-
cations. According to this technique, data are disassembled into packets to be
sent independently from one another and reassembled upon arrival, and the
path connecting two points can change dynamically depending on momentary
link availability. In the minds of its inventors this technique had several ad-
vantages, although it required a tough probabilistic approach on queueing and
sophisticated routing algorithms to ensure the correct delivery of all messages.
One is that a link could be shared by different messages hosting their packets
intermingled, making better use of the network. Another is that a message,
or rather some of its packets, could be de-routed through a different path in
case of traffic jams or hardware crashes. And, perhaps most importantly of
all, the network could continue working even in case of destruction of some of
its nodes.

In fact, in October 1962 the so called Cuban missile crisis had brought the
world very close to nuclear war, and the Defense Advanced Research Projects
Agency (DARPA) of the United States, together with M.I.T., had started
studying the connection of strategic centers with a technology that could
resist enemy attacks. This was the seed of the early Internet, initially called
ARPANET. The network, then, was born for a military interest, although
the world has to credit the U.S. Department of Defense for having left the
scientists absolutely free to act in a manner that has brought benefit to all.

By mid-1968 the ARPANET project was complete. Contemporary routers
were small computers called IMPs (Interface Message Processors) in charge of
packet switching. IMPs were connected to external leased lines, and each host
computer was in turn connected to an IMP. The initial configuration of the
network had four nodes located at U.C.L.A., U.C. Santa Barbara, the Uni-
versity of Utah, and the Stanford Research Institute. History records that the
first message, consisting of the word “login,” was transmitted from U.C.L.A.
to the Stanford Research Institute on October 29, 1969 and crashed at the
third letter. One hour later the problem was solved and the whole message
got through.

From the early structure of the network to the present Internet topology
many significant steps have been taken. Aside from the obvious difference in
size between the ARPANET of the early 1970s and the present Internet, that
makes the two networks quite incomparable, the major change occurred when
the number of participants and the global set of connections was released from
central control. The Internet then became a structure growing and changing
in countless locations at unpredictable times according to local needs, as long
as the basic rules of the game were observed. Its present structure was not
designed by anyone. In order to enter into the system, one only needs to
obtain an IP address from an authoritative name server and use the standard
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connection protocol TCP/IP. In the words of Tanenbaum, one of the major
world authorities in computer networks:7

... a machine is on the Internet if it runs TCP/IP protocol stack, has an IP
address, and can send IP packets to all the other machines of the Internet.

The protocol TCP/IP (Transmission Control Protocol / Internet Protocol),
strictly related to packet switching, became the network standard as early as
1983. We will not enter into details that have to do with the structure of system
software.8 It suffices to recall that the two sections of the protocol essentially
serve two different requirements for packet transmission. IP (in either the IPv4
or the IPv6 version) dictates the rules for sending each single packet along the
network from one node to another, on the basis of the final destination whose
IP address is specified in the packet itself. The route actually followed by a
packet is decided locally at each hop from a node to the next, depending on
a presumed shortest path to the destination, and on the traffic situation. As
a result packets are finally received at different and generally unpredictable
times, and may even arrive in a different order from the one in which were sent
if they have followed different routes because of traffic problems. The role of
the TCP layer is to reconstruct the message, placing the packets in the right
order.

Another basic innovation of the Internet was related to the possibility
of putting together different networks that were created independently. The
topology of the network grows by adding new subnetworks at each step, since
each newcomer generally gets in with much more than a single computer.
Quoting Tanenbaum again:

The Internet is not a network at all, but a vast collection of different networks
that use certain common protocols and provide certain common services.

Each single network participating into the game is called an autonomous sys-
tem (or AS). It may be an end user like any organization connected to the
Internet, or an Internet service provider (ISP) which takes care of dispatching
traffic to its customers. The situation is quite complicated: by and large the
graph describing the Internet has the structure of Figure 7.4.

ASs are connected to the Internet through their routers dedicated to traffic
dispatching. Any AS may contain all sorts of machines serving the organiza-
tion, connected in a network whose structure and internal communication
rules are decided by the local administrator. The routers, however, must com-
municate with the routers of the other ASs using a common protocol. Today’s
standard is BGP for Border Gateway Protocol.9 According to the Internet

7Andrew S. Tanenbaum, Computer Networks, see bibliographic notes.
8The field of network protocols is densely populated with acronyms of two, three, or four

letters. It is an unbearable world of insiders from which any person of good taste is tempted
to escape. We will stay away from it as much as possible.

9BGP makes use of TCP/IP. In technical terms BGP is in a “higher” application layer;
TCP is in the transport layer; IP is in the network layer.
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FIGURE 7.4: A portion of the Internet graph. Autonomous systems are
shown in ellipses: among them, A to H are ISPs distributed in the tiers (T)
1 to 3. Black dots are routers: some of them are connected only internally to
the AS for dispatching local traffic. ASs I to M are networks of external users
purchasing Internet access from providers of different tiers.

philosophy, BGP has the role of routing messages as fast as possible without
applying any control on the flux of data. A purpose that contains a good deal
of hypocrisy, particularly if the AS is an Internet service provider, because the
protocol allows some manual reconfigurations at the router level, e.g., blocking
the transmission of unwanted messages.10

Internet service providers, in turn, are classified into three tiers (see Figure
7.4). An end user pays an ISP for Internet access. The ISP in turn may pay an
‘upstream’ ISP for reaching ASs that the former ISP cannot reach, up to an
ISP of Tier 1 that can connect to any point of the Internet without paying in
turn for the service. Several Tier 1 ISPs are huge communication companies
like AT&T or NTT. They reach everywhere by direct connections of their
routers or by peering, i.e., they traverse the other ISPs of Tier 1 free of charge.
This commercial policy seems to be peculiar to the Internet, where some big
business competitors find it beneficial to exchange services on a settlement free

10The most impressive control on Internet communication takes place in the People’s
Republic of China where all traffic is routed through some nodes of the national network
where harsh censorship is exerted. See the bibliographic notes.
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basis (obviously at the expense of the smaller guys who pay for accessing their
tier). Tier 2 ISPs are generally (but not always) smaller. They peer with other
networks at the same tier but have still to pay an ISP of Tier 1 to reach some
points of the Internet. Tier 3 ISPs are even smaller. They lay at the periphery
of the network and always purchase Internet access. Because it is generally
believed that the providers of Tier 1 provide better service, important ASs
tend to connect with them directly.

Figure 7.4 shows that the Internet can be seen as a set of routers clustered
into subnetworks. The huge number of other machines internal to each au-
tonomous system, although connected to the Internet through their routers,
do not take part in the global traffic flow and do not contribute to the dynamic
evolution of the network. It is then customary to study the Internet graph at
router level, with all the connections among them: this is the graph of black
dots and connecting lines of Figure 7.4; or at AS level, i.e., considering each
AS as a node and taking the connection between two ASs as a single arc even
though they may share many physical links: this is the graph shown in Figure
7.5, and here the mathematical laws of graph growth come in.

The first observation is about the size of the two graphs. Of course a precise
answer cannot be given because the network changes (and essentially grows)
continuously. But even a trustworthy approximation is impossible because the
network evolves without a central control. It is true that, due to certain proto-
col technicalities, autonomous systems may be identified by a 16-bit number
assigned centrally, so a maximum of 65,536 ASs can be cataloged this way.
But a vast majority of ASs do not have an official number, so we can only try
to suggest an order of magnitude of some hundreds of thousands for the year
2010. There may be one hundred times more routers. The statistical proper-
ties of the two graphs have however been observed in countless experiments
and are well known.11

First of all both graphs are small worlds. Although a direct evaluation of
the mean shortest-path length l̄ as a function of the total number of nodes
cannot be performed because the latter number is unknown, experimental
observations allow us to conclude with reasonable confidence that l̄ ' 4 for
the AS graph, and l̄ ' 10 for the router graph. This is combined with high
clustering. In the AS graph the mean value of the clustering coefficient is
C̄ ' 0.2, much greater than that of a random graph. The value of C̄ in the
router graph is even higher, but it is not particularly significant because it is
strongly influenced by geographical factors as close routers have a much higher
probability of being directly connected than those separated by a greater
distance.

Let us now examine a major indicator of network growth, namely, the node
degree distribution P (d) for the AS and for the router graphs. A great amount
of experimental data has been collected in recent years (see the bibliographical

11Up until 2006 raw data on the Internet were collected by the National Laboratory for
Applied Network Research (NLANR). Since then different institutions have begun making
similar collections.
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FIGURE 7.5: The portion of the Internet graph of Figure 7.4 reduced to
the AS level.

notes). All experiments agree on a power law for the function, that is P (d) ∝
d−γ , generally with γ ' 2.2 for ASs and γ ' 2.3 for routers. However we are
more interested in the behavior of the curves than in the absolute value of
the exponents. Evidence has also been given that the basic aggregation rule is
preferential (i.e., new nodes are attached with higher probability to existing
nodes of higher degree), although a certain amount of perfect randomness,
and some geographical influences, also play a role. According to what we have
seen in Section 6.3 of the previous chapter, the overall power law behavior is
consistent with the growth mechanism.12

The experimental plots of P (d) show some peculiarities that must be care-
fully considered. Starting with the degree distribution at AS level, a curve in a
Cartesian plane with coordinates d, P (d) cannot practically be drawn because
of the enormous difference in the degrees among different nodes. Many ASs
have very few connections with the Internet, possibly as few as one or two,
while the ISPs of Tier 1 may have several thousand. The power law distribu-
tion has a fat tail and in fact the ASs “rich” in connections are many more
than for a random exponential decay. But this tail is also “long,” meaning
that many nodes laying towards the right end of the curve have very high
degrees that are generally different from one another. As a limit the degrees
of the “richest” ASs occur just once (i.e., with the same probability 1/n). For

12Additional mathematical models have also been proposed for explaining some features of
Internet dynamics, see the bibliographical nodes for further investigation. All these models
are consistent with an overall power law distribution of P (d).
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FIGURE 7.6: (a) Degree distribution P (d) of the Internet graph at AS level,
in logarithmic scale. (b) Cumulative distribution Pc(d) for the same data. The
two curves do not represent a specific experiment, rather they have the same
behavior as most of the experimental curves reported in the literature.

example several Tier 1 ISPs have degree around three thousand and these
degrees are all different. As a consequence P (d) can be practically represented
only in logarithmic scale for coping with the great difference of degree values,
see Figure 7.6(a). The interpretation of the diagram should be immediate:
for example for log10 d = 1 (i.e., for d = 10), we have log10 P (d) ' −2 (i.e.,
P (d) ' 1/100); that is, about one over one hundred ASs have ten external
connections. Up to a certain value of d the curve can be neatly interpolated
with a straight line whose slope equals the exponent γ of the corresponding
power law, however, the tail of the distribution is quite messy as shown in the
figure.

As anticipated in Section 6.3 of the previous chapter, we get a satisfactory
representation of the whole curve by resorting to the cumulative distribution
Pc(d), that is, to the probability of finding a node of degree ≥ d instead of
exactly d. The new curve is shown in Figure 7.6(b). Note that each value of
d corresponds to a unique value of Pc(d). Being the integral of P (d), the new
distribution follows a power law with exponent γc = γ + 1.

Curves similar to those of Figure 7.6 have been found also for the graph
at router level, although the information here is less certain because the con-
nections internal to each AS may be unknown. As already discussed the value
of the exponent γ (hence γc) for this graph has been generally reported to
be higher than that of the AS graph and the approximating straight line is
steeper. On average routers tend to have fewer connections than AS nodes.

A final parameter that we have not yet considered characterizes the impor-
tance of Internet nodes from a traffic point of view. Introduced in the realm

© 2012 by Taylor & Francis Group, LLC



136 Mathematical and Algorithmic Foundations of the Internet

of social sciences, the betweenness β(w) of a node w indicates the central-
ity of w with respect to a network where all communications between each
pair of nodes u, v follows the shortest path between them. For a directed or
undirected graph, betweenness is formally defined as:

β(w) =
∑
u6=v

Sw(u,v)
S(u,v) (7.7)

where S(u, v) denotes the number of shortest paths between u and v; Sw(u, v)
is the number of such paths that pass through w; and the sum is performed
over all pairs of connected vertices (i.e., for which S(u, v) 6= 0). In the graph of
Figure 7.5 there are three shortest paths between nodes I andB, in fact, I-F-C-
B, I-G-D-B, and I-G-E-B, and one of them passes through node D. Therefore
we have S(I,B) = 3 and SD(I,B) = 1, and the contribution of nodes I,B
to the betweenness of D is 1/3. As we might expect, nodes with high degree
tend to have high betweenness. Some experiments have demonstrated that the
distribution of betweenness in the AS graph also follows a power law and that
nodes of high degree tend to have high betweenness.

Clearly the value of betweenness shows the importance of each node for
traffic purposes if shortest paths are used in communication, as is preferred
by the Internet protocols as long as the links along the path are not too busy.
Therefore deliberately “attacking” the nodes with high degree and high be-
tweenness may jeopardize the network. In the Internet graph at AS level such
nodes are likely to be important ISPs, and these are difficult to destroy because
they have many routers in diverse and well separated locations. Attacking the
network at the router level is potentially more harmful if the degree and possi-
bly the betweenness of single routers are known. While the readers interested
in going deeper into this subject may refer to the bibliographical notes, we
recall here a result that can be formally proved. Comparing random networks
to those ruled by power laws, the former are much more resistant to hostile
attacks, while the latter are more robust against random failures (like, for
example, the temporary unavailability of a router in the Internet).

Finally note that nodes with high degree and high betweenness are natural
sites for (computer) virus spread, which the Internet is particularly vulnerable
to. Like all self-organizing networks, the Internet is naturally well equipped
against natural hazards, but malicious attackers may put it in serious danger.

7.6 The Web graph

We have represented the Internet as a graph with autonomous systems or
routers at the nodes to show the web of connections between sites, disregarding
the huge number of other computers and storage devices that are connected
to the network for performing other services, including our own terminals.
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As we all know, a common way that information exchanged through the
network is organized is in the World Wide Web (or simply the Web), a system
of interlinked documents that may actually reside in any computer or stor-
age device connected to the Internet, often replicated in many copies spread
around the network for faster access. While in the next chapter we will ex-
plain the mathematical tools that allow us to “browse” and “search” through
these documents, we recall here how and why the Web was conceived, how it
is represented in graph form, and some basic properties of this graph.

In its early years the Internet was very difficult for non specialists to use. A
drastic change took place when a system originally developed for coordinating
scientific projects at CERN, the major European center for nuclear physics,
was made available over the Internet in the early 1990s. The Web was born.
The intent of the inventor, the British computer scientist Tim Berners-Lee,
was to allow independent actors to conduct their own transactions over the
network without a centralized control. The well known concept of hypertext,
which we will discuss again later, was adopted for this purpose. All documents
are represented in a common format using a special language, HTML (Hyper-
Text Markup Language) or its extension XML, that supports links to other
documents. These can be reached by clicking on hot spots.

The integration of hypertext with the Internet had spectacular conse-
quences. Web pages, rendered attractively on a computer monitor, allowed
one to jump from one another following the links and to come back, through
a unified system of identifiers called URLs (Uniform Resource Locators). Since
links are unidirectional one can jump to another page without permission, as
long as the page is on the Web. In principle it is possible to develop entire
Web servers without permission.

It is natural, then, to represent the Web as a directed graph with pages
as nodes and links as arcs. This graph is somehow “hosted” by the Internet
graph, but has no resemblance to it. Figure 7.7 repeats the four autonomous
systems K, H, E, L of Figure 7.4, with the addition of three new computers
(encircled) in K and L connected to the local servers. The three rectangles
are Web pages hosted in these computers. Pages 1 and 2 are connected by a
directed arc (dashed arrow), however, they reside in two computers of the same
autonomous system and are then invisible to the Internet graph both at AS
and router level. Page 3 and 2 are also connected by an arc, but their physical
connection in the Internet graph passes through several ASs or routers.

Over the years many articles have been published on the size of the Web
graph. Search engines declare the number of pages that they can reach thus
establishing a lower bound on the Web size.13 In a blog written by Google
engineers a total of one trillion pages reached up to 2008 was claimed, but
a definitive answer is not obvious as many (possibly most) pages belong to
the so called deep Web that is not directly addressed by the search engines.

13The sets of pages reached by different engines overlap partially, but the size of their
union is not known. Strictly speaking the lower bound is given by the greatest of the numbers
declared.
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FIGURE 7.7: Web pages 1, 2, 3 and their links.

While this point will be made clear in Chapter 9, it is sufficient to say now
that the Web graph is by far the largest discrete mathematical entity humans
have ever directed their attention to.

From what we have seen in Section 7.1, it is not surprising that the Web
graph contains a giant component like the one in Figure 7.2. Several exper-
iments show that this is indeed the case, with the subgraphs GI, GS, and
GO containing a vast majority of the nodes, and with the other nodes shared
among tendrils and small independent components. Recent studies suggest
that about two thirds of all Web pages belong to GS. What is maybe even
more interesting is that the GS topology scales, that is, the subgraphs of GS
tend also to have the structure of Figure 7.2.

Furthermore it is generally said that the Web graph, or better its giant
component, is a small world, although such a statement must be taken with
some caution. It has been observed that, if all the arcs were not directed, the
mean distance between any two nodes would be about six, the magic number
of Milgram. But this does not mean much. The mean distance in the actual
(directed) graph has been reported of being approximately sixteen at the
beginning of the decade 2000, and is slowly growing with the ever increasing
number of nodes.

The degree distribution of the Web graph is separately studied for the in-
degree and the out-degree that in principle are independent from one another.
In fact the outgoing links of each node are determined by the needs of the page
owner and are rarely changed after the page is created, while the in-degree is
completely out of the page owner’s control.14 All experiments have shown that

14A certain dependence between in and out degrees is due to the presence of “mutual
references.” That is, two pages may be built deliberately pointing to each other.
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both the in-degree and the out-degree of the Web nodes exhibit a power law
distribution with exponent γ between 2 and 3. Of the two degrees the former
is much more interesting since the number of incoming links is a measure of
node “popularity.” To better understand all this let us consider empirically
how the Web grows: in particular how a new page appears and is linked to
the existing Web.

Unless the author of the new page is particularly expert, for example a
professional designer of Web sites, more than likely he or she will get inspi-
ration from an existing page. This is easily done thanks to the availability
of the source code of most Web pages, that is explicitly made public: even
some outgoing links may be copied if the inspiring and the inspired pages deal
with similar business (see below). In any case the major attachment process
is preferential, with important or popular pages being pointed to with higher
probability. Note also that, for the new page to be found by search engines, at
least one link to it must be provided either from the site of the organization
to which the page owner belongs, or from some other source, for example a
blog.

Several Web growing models have been proposed in mathematical terms,
built on the scheme of the preferential and random process 4 presented in
Section 6.3 of the previous chapter, extended to take care of some real-world
features like adding and possibly deleting several links at each step, with
different probabilities.

On practical grounds a drawback of most preferential linking models is
that the choice of links requires the knowledge of the degrees of all nodes of
the graph to establish preference. Partly for this reason an interesting copying
model has been proposed, aimed at capturing the tendency to imitate exist-
ing pages. Figure 7.8 shows the difference between preferential linking and
copying.

All models, including the copying one, lead to a power law for the vertex
in-degree and out-degree distributions, with exponents close to the experimen-
tal values already mentioned. This does not imply that such models capture
all the features of the Web evolution, but at least shows that they are not
unreasonable. The mathematical analysis is quite complicated, so we refer to
the bibliographical notes for that. It is worth noting, however, that the fat tail
for the in-degree power law is particularly scattered because there are many
popular pages with very high and different in-degrees (the Yahoo! home page
with hundreds of thousands incoming links is often mentioned). So the cumu-
lative distribution must be plotted for clarity, as done for example in Figure
7.6 for the Internet graph.15

Unlike in the Internet graph, betweenness is not a particularly important
parameter for Web search because users tend to extend search paths only for
a few links, relying more often on the direct answers of a search engine than

15This point is often not sufficiently underlined in the literature.
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(a) (b)

FIGURE 7.8: A new page appears in the Web as a white node. (a) Effect of
preferential linking. (b) Effect of copying the grey node: the new page copies
most of the links of the copied page.

on the possible successive hops through a chain of links. Instead, betweenness
is related to the presence of particular subgraphs called communities.

7.7 Graph communities and the Web

Loosely speaking a community in a graph G is a subgraph C whose nodes
share only a few arcs with the rest of G and are densely connected inside
C. In fact there is no unique definition of community notwithstanding the
great importance of this concept in social sciences and in biology, where a
community is a group of individuals sharing the same interests or characters;
and in the Web, as we shall see.

No matter how a community C is defined, its detection is a hard problem
as C must be selected from among a huge, often exponential, number of pos-
sible subgraphs. For almost all the definitions of community that have been
proposed the detection problem is NP-hard, a term explained in Chapter 4,
so only heuristic algorithms can be used possibly missing some relevant so-
lutions. An oversimplified example was given in the detective story of that
chapter (Section 4.5), where a criminal group was defined as a clique in the
Web graph. Finding a clique is a well known exponential problem.

In the realm of networks the definitions of community are not as stringent
as that of a clique, but still exact detection is exponentially difficult. A rea-
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FIGURE 7.9: An α-community C (internal oval): each node in C has more
connections inside than outside C. Note that also C ′ (external oval) is an
α-community.

sonable definition coming from graph theory and applicable to a directed or
undirected graph G is the following:

An α-community is a subgraph C such that each node of C has more arcs
pointing to vertices inside C than to vertices outside C. (7.8)

The simple example of Figure 7.9 shows an α-community C in an undi-
rected graph, and enlightens a major problem that unfortunately arises with
most definitions of communities. Not only is C an α-community, but also C ′

that contains C is an α-community. And more seriously, the subgraph obtained
from C excluding node v and including u is also an α-community. That is,
communities can totally or partially overlap. This is why finding them is so dif-
ficult, and why their relevance in real life problems is sometimes questionable.
In any case, something can be done.

A well known method applied in social sciences, due to Mark Newman and
Michelle Girvan, uses the concept of betweenness to define and detect a hier-
archy of communities that are contained inside one another. Betweenness is
now computed on the arcs instead of the nodes, with an immediate extension
of relation (7.7). Cutting the arcs in the order of decreasing betweenness even-
tually divides the graph into consecutive halves that exchange a “large flow
of information” between them. Since such a large flow is supposed to traverse
the links between social communities, these are recursively identified with the
two halves. For this and for many other heuristics that have been proposed,
we address the reader to the bibliographical notes. It is also worth noting that
the problem could be treated in a distributed fashion, an approach that we
will examine in the next chapter. However, no major attempt has been done
in this direction.

Let us now focus on the Web graph. A Web community is a set of pages
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with some strong property in common and, as in all other fields, communities
are often tightly connected internally and have a much lower density of con-
nections with the rest of the graph. Social networks form communities in an
obvious way. Large service providers and companies engaged in e.commerce
routinely detect communities of customers with similar needs or requests.

Other kinds of Web communities are also important, such as bipartite
subgraphs that are somehow related to Web page retrieval as we will explain
in Chapter 9. These subgraphs are formed by two subsets A, B of pages
where each page of A points to all the pages of B but does not point to the
other pages of A, while no assumption is made on the arcs leaving from B.
Such subgraphs are often taken as indicative of a family A of actors with
some interest in common displayed in the pages of B, but in some sort of a
competition between each other. For example the pages of A may belong to car
dealers selling the same car models that are described in the pages B of the
manufacturers. Other communities, known as spam farms, are fraudulently
built to attain undue advantages from other users, as will be explained in
Chapter 9 after having discussed how search engines work. The algorithmic
game of detecting all these communities is fully open.
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Nature N. 393, pp. 440-442. Barabási and Albert originally discussed the pref-
erential growth of networks in: Barabási, A.L. and R. Albert. 1999. Emer-
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in: Kleinberg, J.M. 2000. Navigation in a small world. Nature N. 406, 845.

Then, two important books appeared aimed at general public: Barabsi,
A.L. 2002. Linked: The New Science of Networks. Perseus Publishing, Cam-
bridge, MA. Then: Watts, D.J. 2003. The Science of a Connected Age. W.W.
Norton & Co., New York. As a more technical reference on the theory of net-
works let us mention among others: Bornholdt, S. and H.G. Schuster, Eds.
2002. Handbook of Graphs and Networks. Wiley–VCH, Berlin. These books,
however, deal with networks in general and make almost no specific reference
to the Internet.

It is worth noting that there has been some confusion on scaling and self-
similarity, as in the literature on “scale-free” networks these concepts are
often left at an intuitive level. A rigorous discussion can be found in: Li, L. et
al. 2005. Towards a Theory of Scale-Free Graphs. Internet Mathematics Vol.
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Chapter 8

Parallel and distributed computation

How several autonomous computers can communicate and cooperate to solve
problems too large for a single computer.1

The potential power of multiple autonomous computers connected together
in a network is raising high expectations in an ever increasing number of
people. What was familiar before only to a group of specialists started to
become clear to anybody with the advent of the first web navigator programs:
something really new was happening, as is well expressed in the words of a
recognized guru of popular science:

In the years roughly coincidental with the Netscape IPO, humans began
animating inert objects with tiny slivers of intelligence, connecting them into
a global field, and linking their own minds into a single thing. This will be
recognized as the largest, most complex, and most surprising event on the
planet.2

Other events and other equally revolutionary discoveries have raised sim-
ilarly enthusiastic comments and reactions in the past. What will be remem-
bered of our planet we simply do not know. Perhaps nothing at all will be
remembered if its systematic destruction continues at the present pace. But
if some things do remain, computer networks will be among them.

Rather than tiny slivers of intelligence we will more cautiously speak of
entities at a much greater scale such as computers, programs, network sites, or
even clusters of computers or sites. Each entity is able to execute algorithms
with great accuracy and very high speed, independently of any other entity.
When connected, these entities are able to agree on a common strategy and
cooperate to the solution of a problem, working together as a whole. It has
often been remarked that such organization mimics the functioning of neurons

1A role of this chapter is to show how complicated can be the parallel or distributed
solutions of apparently simple problems. Some parts, in particular sections 8.3 and 8.4, are
quite technical. Uninterested readers may skip the distributed protocols and other techni-
calities, but are advised to give some attention to the subtle logical concepts that are at
their base.

2Kevin Kelly, We are the Web, Wired, issue 13-08, August 2005.
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inside the human brain, and that this interpretation could be a guideline for
the development of artificial intelligence, although substantial progress in this
direction is not easy to foresee. More humbly we will explain what may be
expected from the cooperation among entities from an algorithmic point of
view.

Until now we have assumed that algorithms are executed step by step ac-
cording to a mode of sequential computation which reflects the work of one
standard processor in a centralized computer system.3 The computation be-
comes parallel if a group of processors (entities) cooperate in order to solve a
problem by continuously exchanging data and results. The algorithmic strat-
egy must change to exploit the capabilities of the whole system, while the
organization of the work becomes critical. Sometimes a parallel computation
is called distributed, the opposite of centralized, while the term parallel is the
opposite of sequential. There is some disagreement about the difference be-
tween the two terms parallel and distributed when related to computation, a
debate which is perhaps not so interesting at this level of discussion. In both
cases there is a set of entities working together on a communication network.
By and large we will use the term parallel when the overall computation fol-
lows a predefined global strategy, and the term distributed when individual
computers operate on a network independently from one another. In both
cases the problem to be solved may come from the outside or have to do with
the connecting network itself: what is most relevant in our context is that
both modes of operation arise in Internet algorithms.

8.1 The basic rules of cooperation

A parallel or distributed computation must obey some general rules. As we
know, the same problem can be solved using different algorithms, and the most
important measure of efficiency is the comparison of execution time. While
discussing sequential computation we have seen that time is conventionally
measured in terms of elementary steps instead of seconds to make the reason-
ing independent of the specific computer used. When going from sequential
to parallel or distributed computing a fair comparison can be carried out only
by assuming that all the entities taking part in the game are identical, but
measuring time in terms of elementary steps is still useful. With this in mind,
we start with a preliminary consideration. Let Tseq be the time required by
the best sequential algorithm known for a given problem. Before thinking of
a possible parallel solution, let us try to understand how much the execution

3Inside a computer many elementary actions are actually performed in parallel, in order
to execute a single step of an algorithm that is sequential at a higher level. The latter is
the level to which we refer in the text.
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time can decrease using P > 1 entities. If Tpar is the time of any hypothetical
parallel algorithm, we must have:

Tpar ≥ Tseq/P (8.1)

where the maximum benefit we can hope to achieve, given by the equality
case of the expression, is a uniform assignment of the steps of the sequential
algorithm to the P available entities.

Relation (8.1) is easily justified by simple reasoning. Starting from a par-
allel algorithm A, a single entity could execute all the steps of A sequentially
by simulating cyclically the work of the P entities. More precisely the entity
should simulate one parallel step of A by executing, one after the other, all
the operations made by the P entities in that parallel step, so the simulation
of A would require P × Tpar total time. If the relation (8.1) were not true
we would have: P × Tpar < Tseq, that is the new sequential algorithm would
require a time smaller than Tseq thus contradicting the hypothesis that Tseq
is the time required by the best known sequential algorithm.

Taking an example from real life, consider clearing the overnight snow
fallen on a driveway. Now, our entities are P guys with shovels. If the entire
driveway requires time Tseq to be cleared by the fastest shoveler working alone,
we cannot expect that the group would complete the work in less than Tseq/P ,
and this can only be achieved if all the shovelers start at the same time, all
of them are equally fast, and the time needed to assign the portion to clear
to each shoveler is negligible. In particular this last requirement can only be
satisfied for a small group. For parallel computers or complex networks we
must accept that Tpar > Tseq/P and regard the limit case Tpar = Tseq/P as
being very unlikely. Still for a large value of P , that is a parallel system with
many entities, the gain in time may be substantial.

Another important consequence of relation (8.1) pertains to problems for
which we do not know a sequential algorithm that runs in polynomial time,
hence Tseq is an exponential function of the data size. Such problems have
been defined as intractable in chapter 4 and remain intractable even in the
framework of parallel computation since, due to relation (8.1), Tpar remains
an exponential function unless the number P of entities is also exponential,
and that is obviously unacceptable. In the realm of computational complexity
where problems are classified as tractable (polynomial) and intractable (expo-
nential) the computational power of a set of P entities, that is the capability
of solving problems of one class or the other, is the same of a single entity
unless P itself is exponential.

What does change is the size of solvable problems, although there are cases
where a collective approach may be more complex than working sequentially,
or may even be impossible if the problem is “inherently sequential.” Among
countless examples consider what happens in secure communications, where a
message is divided into consecutive blocksm1,m2, . . . which are converted into
encrypted blocks c1, c2, . . . using a secret key k, and then sent over an insecure
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FIGURE 8.1: Scheme of the CBC transmission mode. E and D are the
encryption and decryption functions, respectively.

line. Since all the blocks are encrypted with the same key the method suffers
from a serious drawback, because if two blocks of the message are identical
the corresponding encrypted blocks are also identical. For example if mi =
MILLION DOLLARS and mj = MILLION DOLLARS , two identical
blocks ci, cj , will eventually be transmitted, thus leaking some information
about the message (mi = mj) to an eavesdropper listening on the line.4

The problem is adressed in a widely used transmission standard known
as CBC for cipher block chaining, where each block ci is not only a func-
tion of mi and k as before, but also of the previous encrypted block ci−1,
along the lines of Figure 8.1 that shows both the encryption and decryption
phases. Two identical blocks of the message generate two encrypted blocks
with unpredictable differences for the eavesdropper. It should be clear that
the operation of encryption is inherently sequential, since each block ci can
only be computed once the previous block ci−1 is known. Decryption however
can be performed in parallel with great efficiency once all the encrypted blocks
have been received.

In the next chapter we present what is probably the most spectacular suc-
cess of parallel and distributed processing, namely the functioning (if not the
existence) of the Web. It must be also underlined, however, that the possibility
of connecting many computers in a network is changing the way computation
is developing, because of both the huge power that can be obtained from the
concurrent and cooperative use of many processors, and the more efficient
usage that can be made of each one of them. Although a firm terminology
has not yet been established it is customary to talk of a grid as a sort of
virtual supercomputer consisting of a large cluster of loosely connected ma-
chines that work concurrently to perform a common task. To some extent a
grid can perform the same task as a mainframe, but it is much more versatile

48 and 16 bytes are among the standard block lengths. MILLION DOLLARS is coded
with 16 bytes.
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Cloud

FIGURE 8.2: A cloud infrastructure. Ellipses are sites and squares are users.

because its size is easily adaptable to the problem at hand. Clearly the success
of grid computing crucially relies on the inner nature of the problems to be
tackled, that is, on the possibility of dividing them into parts to be solved
independently before the partial results are recombined.

A grid may belong to a single organization, as done for example by Yahoo!
for computing the initial two-quadrillions bits of π using more than one thou-
sand connected computers. More interestingly, a grid may be set up by differ-
ent organizations contributing their resources to a unique project as in the Ter-
aGrid, a huge computing infrastructure whose eleven partner sites are major
American Universities and research centers that make their high-performance
computers, software tools, and specific databases available through a very fast
network accessible for scientific research.

A more recent term related to the concurrent use of computers is the cloud,
denoting a large infrastructure generally selling computing resources of various
kinds over a network. Grids and clouds have many features in common, with
the latter term frequently used to refer to infrastructures where external users
rent the service under a “pay-as-you-go” contract. Huge clouds have been set
up in consortia by giants of the IT market and leading universities. One of
these infrastructures is Open Cirrus with participating sites in North America,
Europe, and Asia, where each site furnishes the cloud with a huge cluster of
computers and storage devices, and each authorized user can access any of the
sites. In a tradition coming from the telephone industry, cloud infrastructures
are indeed represented by a cloud (Figure 8.2).

While clouds are reserved for paying customers or highly skilled researchers
as in Open Cirrus, other interesting experiments on distributed computing
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can be joined on a personal basis as long as a would-be participant is con-
nected to the Internet. In particular, in 2002 the non-commercial BOINC
software (for Berkeley Open Infrastructure for Network Computing) was re-
leased, to be freely entered by anyone wishing to pursue a scientific project
where distributed computing can help, tapping into other participants com-
puters through the network for using their currently unused computing power.
Volunteers then contribute to the development of science and technology and
have the chance of making their own discoveries.5

We will now consider the benefits of cooperative working in a strictly al-
gorithmic sense, starting from the realm of parallel algorithms and passing
later to the more complex distributed world, with a warning that what is
coming is not going to be so easy. The main reason for this is that the theory
of algorithms in a parallel or distributed setting is not yet as well developed
as for sequential computation and several new complications may be encoun-
tered. New problems will arise, sometimes difficult to solve, and sometimes
unexpected. Furthermore when several connected entities work together it is
generally quite difficult to understand what is going on even if the commu-
nication protocol is known in detail, in the same way that an animated con-
versation is difficult to follow if everybody talks at the same time. Probably
the description methods available today are somehow inadequate because it is
difficult to explain the parallel behavior of different entities using a traditional
sequential text such as that of this book.

8.2 Working in parallel: some logical problems

As we will see in the next chapter, search engines constitute a successful
application of parallel computation because they crawl the Web to collect
pages, build extremely large dictionaries, and look up words in them using vast
numbers of computers that work together. This is why such engines are able to
answer our queries almost instantaneously. However, serious and unexpected
difficulties may arise when several entities work concurrently.

A typical case is encountered when different entities have access to some
common resources to be used in exclusive mode, thereby blocking temporarily
the access of other entities to the same resources. This may generate crossing
blocks where entities might get stuck forever when competing for the same
resources, as in a famous paradigm of computer science known as the din-
ing philosophers problem. Here five philosophers sit at a circular table with

5A remarkable application of BOINC is the SETI@home project aimed at the “Search
for Extraterrestrial Intelligence,” originally financed by the NASA. Unfortunately no trace
of extraterrestrial intelligence has been found thus far, but many other projects are being
conducted with BOINC software, aimed at solving challenging problems like predicting how
proteins “fold” or climate changes occur.
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FIGURE 8.3: Example of deadlock in exclusive mode.

a shared bowl of spaghetti in the center, alternating between thinking and
eating phases. There are five forks on the table, each put between a pair of
philosophers. And now as it is difficult to eat spaghetti with one fork each
philosopher must use two forks. We do not know whether this need to eat
spaghetti with two forks is a peculiarity of philosophers or if it was an inven-
tion for the problem, but in any case each philosopher must grasp the two
forks on his right and his left in order to start an eating phase, after which he
releases the forks thus allowing others to eat. So far so good if each philosopher
waits until both forks are available before starting. But since philosophers are
overeager they may grasp any free fork waiting for the second to become avail-
able. So the five may end up with one fork each, and none of them will ever
eat.6

This situation, known as deadlock, may occur much more frequently than
expected and can be very complex if, as for the philosophers, a block involves
a group of entities in a cycle leading to a global paralysis. Among many ex-
amples, consider the problem of regulating the access of a process (the entity)
to a data structure such as an indexing table (the resource). To avoid incon-
sistencies in the contents of the table, exclusive access is commonly required
during writing operations. In Figure 8.3 two processes P1 and P2 have gained
exclusive access to two tables T1 and T2 respectively, so access to the tables is
not allowed until the operations of P1 and P2 have been completed. A dead-
lock occurs if during such operations P1 needs some data contained in T2, and
P2 needs some data contained in T1. Often a deadlock can be predicted and
avoided, in other situations it may be prevented only if the whole sequence
of resource requests is known in advance. In some cases, however, this plague
cannot be overcome and the computation must be organized differently.

Another difficulty is due to the fact that, while a computation central-
ized in a single entity can exploit its full knowledge of everything that has

6The dining philosophers problem was introduced long ago by Sir Charles Antony
Richard (Tony) Hoare, a famous British scientist who is rightly considered one of the fathers
of computer science.
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happened, in a parallel and particularly in a distributed setting, such as the
Internet, each entity may have only a partial picture of the activities carried
on by the others at the same instant. An entity may not know the total num-
ber of participating entities, nor where or what they are. And even if it knows
all the features of the network it is hard to foresee how a distributed process
will develop because its execution depends on the communication delays that
in turn depend on unpredictable network traffic. In general the order in which
the different messages arrive at each entity varies unpredictably and affects
the way the computation continues. So, even if the same algorithm is used
several times on precisely the same input, its execution may vary each time,
always producing a correct result but after a different duration. As a conse-
quence the execution time is just an ideal measure of the algorithm, because it
is given with respect to a hypothetical execution where each operation, com-
munication included, takes a single step. This is why other parameters become
important, such as the number or the size of the messages sent during the ex-
ecution, or simply the popularity of a protocol on the Internet. We will now
try to clarify all the above concepts by entering into the world of distributed
computation in a unorthodox way.

8.3 A distributed world

Eight secret agents A,B,C,D,E, F,G,H stay in contact by phone using
the network of Figure 8.4 which indicates twelve existing direct lines. Each
agent knows the telephone numbers of his neighbors with whom he can speak
directly, so for example B may call C but at least two calls are needed to send a
message from B to G. One day central command issues a communication that
only seven of the twelve lines available can be securely maintained, leaving to
the agents the task of selecting lines in such a way that all agents will still
be able to communicate with each other. In fact as the graph of the network
has eight nodes, seven properly chosen lines are sufficient to maintain the
connectivity of the group forming a connected graph as is shown for example
on the right side of Figure 8.4. Note that each communication between two
agents may now pass through several nodes thus requiring more calls than
before. The order is sent from the central command to one agent elected as
the leader for this operation, and the leader must arrange for the information
to reach the other agents via telephone. To do this the agents must execute an
algorithm that in this case is called a communication protocol consisting of a
set of calls over the original lines, until a set of safe lines has been established.

While executing the protocol, the agents assume one of three possible
conditions of LEADER, IDLE, or DONE, and react to the order at different
times depending on the lines used, traffic on the network, and personal reaction
time. At the beginning all the agents are IDLE except for the chosen LEADER.
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FIGURE 8.4: A communication network with eight nodes and seventeen
lines, and a possible set of seven safe lines connecting all nodes to one another.

The operation starts when the LEADER calls his neighbors (i.e., the agents
directly connected with him) to communicate the order. Then the neighbors
wake up and start selecting the safe lines. When an IDLE agent x receives the
order by phone, say from agent y, he accepts the connection and agrees with
y that their connecting line (x, y) has to be taken as safe. Then x refuses any
further incoming calls from a neighbor that communicates the order to him,
and calls all its neighbors except y to communicate the order to them (if one
of the neighbors, say z, has already received the order from another line the
call will be refused by z). At this point x becomes DONE, a status indicating
that he has completed his task. The set of safe lines is built when all agents
are DONE.

Formally the protocol can be specified as shown in Figure 8.5. The protocol
is written for an arbitrary number of agents n and refers to a generic agent x
because all the agents must follow the same procedure. Some delicate points
remain, which we will come to in time, but first examine the given code to
make sure that it implements the actions indicated above. Recall that the
protocol starts with all agents IDLE except for the LEADER.

Although the actions of each agent are clearly defined in the protocol, the
effect of the overall process may be difficult to understand, as is the case for
most distributed processes. In particular we claim that, when all the agents
have reached the status DONE, a final set of exactly n − 1 safe lines has
been built. Before trying to prove this, consider a simulation of the agent
behavior for the set of connections of Figure 8.4 to see how the protocol
works. A number of interesting facts emerge. In particular the final set of safe
connections depends on the timing of the phone calls and on the order in
which the calls are made, so that different sets may come out for the same
graph, starting with the same leader. Note that the operation: call all the
neighbors disregarding any call received, although apparently parallel, requires
that x calls its neighbors one after the other, since a phone call cannot start
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algorithm SELECTION
The generic agent x may be LEADER, IDLE, or DONE
if x is LEADER:

call all the neighbors disregarding any call received;
for any neighbor z accepting the call:

add the line {x, z} to the set of safe lines;
become DONE;

if x is IDLE:
upon reception of a call from another agent y

add the line {x, y} to the set of safe lines;
call all neighbors except for y disregarding any call received;

for any neighbor z accepting the call:
add the line {x, z} to the set of safe lines;

become DONE;
if x is DONE: disregard any call received.

FIGURE 8.5: Protocol for safe lines selection executed by each agent x.

before a previous one has ended. Take H as LEADER and assume that each
agent calls the others in circular alphabetic order. That is agent A follows the
order B,C,D, F,H; agent B follows the order C,H,A; agent C follows the
order D,E,H,A,B; etc. Calls arriving in the same instant are answered in
an arbitrary order. Assume that the lines have connection delays of one (e.g.,
one second) or two, and consider the following two limit cases.

Case 1. The lines of the octagonal perimeter of the graph have delay one and
the other lines have delay two. So H wakes up A at time 1, A wakes B at time
2, and a chain of calls goes on along the octagonal perimeter waking G at time
7. A set of seven safe lines is thus built (graph on the left of Figure 8.6), and
all the other calls from each agent, including the calls from the LEADER, are
refused by his neighbors since they arrive at later times. Different safe lines
would have been obtained if H had called his neighbors in a different order,
even with the same delays on the lines.

Case 2. The lines between H and his neighbors have a connection delay of
one, and the delay of all the other lines is two. In this case H wakes-up the
other agents at times 1 to 7 and all the other calls are refused. A new set of
seven safe lines is built (graph on the right of Figure 8.6). Note that if A had
called his neighbors in the order D,F,H,B,C, he would have reached D at
time 3 and F at time 5 waking-up these two agents before their reception of
the calls from H that would have been refused.

What is probably more interesting is that by changing the timing on the
lines and the order of the calls any connected set of seven safe lines can be
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FIGURE 8.6: Safe lines (solid segments) and node wake-up times with
LEADER H, under two timing assumptions. The lines of the octagonal perime-
ter have delay 1, or the lines connected with H have delay 1, while all the
other lines have delay 2.

obtained, as for example the one of Figure 8.4 that the reader may personally
investigate.

Although the given protocol is very simple, a formal proof of its correctness
can only be given in the realm of the theory of distributed algorithms and is
not at all trivial. For those interested in getting deeper into the subject we
refer to the bibliographical notes at the end of this chapter, and note here
only a few considerations to show how treacherous these algorithms can be.
A simple question is whether one can be sure that all agents are reached by
the order of the central command. This can be proved inductively. In fact
if an agent x other than the LEADER were never reached by a call thus
remaining IDLE, his neighbors would also always be IDLE, and the argument
can be pushed back to the LEADER who is not IDLE by definition. A similar
argument shows that all the chosen safe lines form a connected graph, but it is
more difficult to prove that there are exactly n−1 such lines. The reader may
verify informally that the chosen lines induce a tree rooted at the LEADER,
and recall from Chapter 3 that any tree of n nodes has n−1 arcs, a necessary
and sufficient number to keep any graph connected. Aside from the root, the
tree is composed of internal and leaf agents, each of which knows the lines to
its parent and the lines to its children, if any. But another question is more
delicate to prove.

How do the agents become aware that all their colleagues have become
DONE and that the set of safe lines is then ready to be used? To achieve
this, further actions must be added to the protocol. The information about
termination is collected from the leaves to the root on the safe lines of the
induced tree, with a so called convergecast operation. Then the leader, now
the root, becomes aware that all the agents have completed their task and
broadcasts this information to everybody in a final phase, again using the arcs
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of the tree. The complete protocol follows as an immediate extension of the
previous one but is actually a bit technical and is not reported here. At the
end each agent has the knowledge that the selection of safe lines has been
completed and can use them with confidence.

The story is much more important than it may appear at a first glance
because the protocol is designed for a wealth of problems on arbitrary networks
whose entities may not even know the number of their peers, or have a map
of the existing connections. If an entity knew the whole network in advance it
could select a set of safe lines and communicate this set to the others by itself.
In big networks, however, the entities have only a fraction of this information,
as in the Internet, which is too big to be known by all nodes, and in which
different computers and connections may come up and go down at any time.
So the entities present at any moment can only work together according to
a distributed protocol based on pieces of local knowledge, like the set of safe
lines established by an agent x with his neighbors.

So let us now apply the experience gained with the agents to finding a
community in a graph, a problem that was introduced in Section 7.7 of the
last chapter. Take again the graph of Figure 8.4 and suppose that some of the
agents are interested in a specific topic τ (e.g, movies). One of them, now the
LEADER, wants to detect the subgraph of colleagues interested in τ together
with all its arcs. This community is easy to detect with a centralized algorithm
if the nodes are interrogated about their interests one by one, but they may
be so numerous as to render the algorithm impractical, and other interesting
features will come out from a distributed approach.

Perhaps surprisingly, the protocol for safe lines selection applies, with a few
minor changes. Only the nodes interested in τ now call the neighbors to enquire
about preferred topics. They do not disregard incoming calls as was required
in the previous protocol for determining a tree with n − 1 connections, and
retain all the arcs connecting nodes with interest τ as part of the community.
The software suite of each node contains the protocol specified in Figure 8.7,
that gets activated upon receipt of a enquiry about its interest in the given
topic.7 Note the absolute similarity of the two protocols in Figures 8.5 and
8.7. Assuming A as the leader, two possible communities interested in τ are
shown in Figure 8.8.

The protocol terminates when all the nodes interested in topic τ have
become DONE. At this point each node in the community has a complete
local knowledge of it, that is, the node knows all its neighbors in the commu-
nity and the arcs connecting to them. This condition can be disclosed to the
LEADER during a termination phase, as it was indicated for the protocol of
safe lines detection. However, further information on the community can be
gathered now. For example the subgraph in Figure 8.8(a) is an α-community
(see definition (7.8) in the previous chapter). The subgraph in Figure 8.8(b),

7Some more details are needed in the protocol to handle the interleaving of outgoing and
incoming calls.
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algorithm COMMUNITY The generic node x may be LEADER, IDLE, or
DONE
if x is LEADER:

call all the neighbors;
for any neighbor z answering yes:

add node z and arc {x, z} to the community;
become DONE;

if x is IDLE and is interested in τ :
upon receipt of the first call from another agent y

answer yes;
add node y and arc {y, z} to the community;
call all the neighbors except those from which a call was

received;
for any neighbor z answering yes:

add node z and arc {x, z} to the community;
for any call received (during the node’s own calls) from w:

answer yes;
add node w and arc {x, w} to the community;

become DONE;
if x is IDLE and is not interested in τ :

whenever receiving a call for τ answer no;

FIGURE 8.7: Protocol for the detection of a community with interest in a
topic τ , executed by each node x. “Calls” implicitly ask for interest in τ . Note
that only the leader may disregard any call received.
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FIGURE 8.8: Two possible communities with an interest in τ (see en-
grossed arcs). (a) A,C,D,E,H in an α-community. (b) A,C,D,E,F is not an
α-community due to node F .
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instead, is not an α-community because two of the four arcs incident to node
F point outside the community. This information, and other properties such
as the identity of the participating nodes, can be gathered in a final phase of
the protocol.

The peculiarities of distributed systems are quite surprising. Without
global knowledge some apparently easy questions may have no answer, while
some complex operations can be performed on the whole network using only
the local knowledge of the nodes. In the case of the secret agents, when the
safe line selection protocol is terminated a global connectivity is established
on the whole network, and each agent can use his local safe lines leaving to
the agents connected to him the responsibility of using in turn only safe lines
with their neighbors. On the other hand it may be difficult or even impossible
to solve elementary problems as we now show on a much simpler case.

8.4 Some logically hard problems

The new situation comes from a logic puzzle known as the two generals
problem born in the framework of the communication between two entities,
whose solution is immediate if nothing goes wrong but becomes impossible
in the presence of unpredictable transmission faults. Although it is obvious
that poorly functioning lines may prevent a sound exchange of information,
what is surprising is that the communication may not reach a final state just
because transmission faults are possible, even if they do not actually occur.
Let us see why. Two generals G1 and G2, each one heading an army, camp at
the foot of a hill where a third general E, the enemy, is lodged in a fortress
with his troops. A coordinated attack of the two generals G1, G2 will defeat
E and the fortress will be conquered, while a solitary attack will result in
a disastrous failure because E enjoys a better strategic position. G1 and G2
communicate by sending messengers to agree on a time to attack. So the leader
general, for example G1, sends a message to G2 saying: “lets do it tomorrow
at nine o’clock,” G2 receives the message, and both attack concurrently. No
further communication is needed if there is the certainty that the messages
arrive at their destination. But how do the generals behave if they fear that
a messenger can be ambushed by the enemy? G1 can send the same message
to B, but before ordering the attack must make certain that the messenger
has completed the mission, hence he waits for an acknowledgement from G2
e.g., in the form: “I received the message and agree to attack at nine o’clock.”
Now in turn G2 wants to make certain that G1 has received his answer before
attacking, so G1 must confirm once received the message from G2, and so
on. Since before attacking each general wants to receive from the other an
acknowledgment of the last message sent, the exchange will go on for ever
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algorithm WITHDRAWAL
At ATM terminal T, user U requests to withdraw an amount $
from bank B.

T sends a request M1 = R(U, $) to B;
(upon reception of M1 and if $ is available)
B sends an authorization M2 = A(U, $) to T ;
(upon reception of M2)
T pays $ to U and sends a confirmation M3 = C(U, $) to B;
(upon reception of M3)
B withdraws $ from the account of U .

FIGURE 8.9: A protocol for bank withdrawal.

(and in any case well after “nine o’clock” of the next day). The attack is then
impossible.

This scheme reflects a situation arising in distributed systems, where a
problem may be easily solved if everything works well, but becomes impossible
to handle in the presence of even intermittent faults. A classical application
is in a banking system: a simplified version of a protocol for withdrawal at
ATM terminals is shown in Figure 8.9.8

This protocol works correctly only in the absence of transmission faults. If
M1 or M2 fails to arrive the protocol is interrupted with the (minor) conse-
quence that U cannot withdraw the sum required. A failure in the transmission
of M3 is considered more serious because a dishonest user could cash a sum
without being charged and the bank B would suffer a loss. To prevent such
a case, B could modify its portion of the protocol by making a precaution-
ary withdrawal from the account of U before sending the authorization M2,
and then confirming such a withdrawal upon reception of M3. In this case, if
M2 fails, the users account is charged without making the corresponding sum
available at the terminal, and the user would suffer a loss. It can be easily
seen that, as for the two generals, an exchange of messages could go on for-
ever without reaching a state of consistency between U and B, for which a
rendezvous on different grounds is necessary.

As one may expect the two generals problem has been extended to more
than two entities, thus moving from the theory of communications to the world
of distributed systems working in the presence of faults.9

A fundamental demand is that all entities attain common knowledge on the

8Actual ATM terminals work differently. See the bibliographical notes at the end of the
chapter.

9The extended version, called the Byzantine generals problem, is far too complicated
to be presented here. The term Byzantine refers to protocols where different faults may
be generated by a malicious “adversary” with the purpose of subverting the process. The
rationale behind this approach is that a protocol resistant to Byzantine faults would resist
any faults.
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system in a limited number of steps, because the success of certain cooperative
actions may depend on it. Clearly this possibility depends on the parameters
of the problem and in many cases is not attainable. More generally there is
a subtle interdependence between knowledge, communication, and action. An
additional complication comes from the lack of reflexivity of certain relations,
as typically occurs in a directed graph where a node Amay point to nodeB but
the converse is not necessarily true. This raises new challenges in information
propagation because B cannot send a message to A if a path of directed arcs
from B to A does not exist, so that achieving common knowledge on the whole
system may become hard for all the entities. Lack of reflexivity occurs in a
wealth of different situations, and different solutions have been proposed from
case to case, some of them being really surprising. Among others, a brainteaser
pertaining to a non-reflexive world known well before the advent of computer
networks is frequently used to understand how common knowledge can be
attained in a distributed system by other means than mere message exchange.
We call it the problem of the jealous Amazons. Its tricky solution is based on
the known fact that Amazons are very smart and all of them assume that the
others are as smart as they are (the associated implicit assumption is that the
entities in a network are as smart as the Amazons).10

In the country of Amazons, just as elsewhere, when somebody has an un-
faithful partner, everybody knows about it except for him/her-self, a clear
lack of reflexivity. According to a version of the myth no men were permitted
to have sexual encounters with Amazons or reside in their country, and female
children were adopted from other tribes and brought up as future Amazons to
prevent their community from dying out. Nevertheless, when visiting a neigh-
boring tribe for adopting children, the Amazons were exposed to heterosexual
temptations that occasionally resulted in their habitual female partners being
cheated. Of course every Amazon knew immediately of their cheated colleagues
except for the cheated ones.

But enough is enough. One day, after the visit of her subjects to a tribe
of handsome men, the Queen of the Amazons proclaimed a firm resolution in
Main Street:

“In this country there are unfaithful Amazons. For the sake of social order
all further visits abroad are suspended until morality is fully restored in the
kingdom. It is not permitted to communicate on this issue in any way, however,
as soon as one of you is certain that her partner has had an affair outside of
the couple, you shall kill her on that precise day.”

The Amazons went back to their activities. Knowing the Queens severity,
none of them ventured to speak or even to mention the problem, although all
other rumors were immediately spread as usual. It turns out that there were

10The problem is generally formulated on “cheating wives”(see the bibliographical notes),
but is also found under different names, with different formulations. We adopt a “jealous
Amazons” version which refers to more open relations.
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thirteen unfaithful Amazons. Twelve quiet days went by, but in the morning
of the thirteenth day, thirteen arrows pierced the hearts of the culprits. How
was this possible? The question is interesting because apparently the Queens
speech did not add anything to what everybody already knew, that is that
some Amazons had been cheating. We will return to this point later, noting
that a clear novelty lies in the triggering order that specifies that action has
to be taken in a given interval of time (“that precise day”).

First note that the result, valid here for thirteen Amazons, is valid for
any number k of Amazons and the rule becomes: “if there are k unfaithful
Amazons, in the k − th day all of them will be killed.” It is convenient to
start examining the question from small values of k and then generalize the
reasoning to arbitrary values. If k = 1 there is only one unfaithful Amazon
and everybody knows it except for her partner. This poor lady, not having
heard before about infidelity, immediately understands and kills her partner in
the same day. Here is the point where the apparent neutrality of the Queens
speech fails, because her assertion on the existence of cheating Amazons is
new information for the cheated one. If k = 2, the two cheated Amazons know
about one unfaithful partner and wait with anxiety until midnight of the first
day to know if the culprit that they know has been killed (recall that all rumors
spread immediately). Such a piece of news would have confirmed that they
had complete knowledge of the kingdom, that is, there was only one unfaithful
Amazon. However no news arrives in the morning, so they understand that
the unfaithful ladies are indeed two including their own partners, and in the
second day both culprits are killed. By induction, k cheated Amazons know
about k− 1 unfaithful partners. They wait up to midnight of the (k− 1)− th
day and start looking for news. As none of the cheating Amazons they know
about is reported as being killed, they understand the situation and, on that
k − th day, shoot an arrow into their partners’ hearts.

Note that for any Amazon the uncertainty is only between two values k
and k− 1 and the problem can be solved because the Amazons are capable of
quick logic reasoning (they must be able to react within twenty-four hours).
Furthermore, although Amazons may cheat sexually they are honorable war-
riors. Having full knowledge of what happens in the kingdom except possibly
of herself, each one of the cheating Amazons knows that eventually she will be
executed but does not try to escape her just punishment (e.g., by fleeing to a
neighboring tribe). The argument for establishing the day of ones own execu-
tion is left as an exercise. The problem is subtler than it may appear because
a couple of Amazons may have been mutually unfaithful and, as honorable
subjects, they face each other and cast the arrows at the same time.

The jealous Amazons paradigm is relevant, for example, in designing com-
puter network protocols where a knowledge of the system leading to certain
actions may be acquired with message exchange, but also through the exam-
ination of particular events that may occur. To make it clear, let us look in
some more detail than we have considered so far at the diffusion of messages
in a network.
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8.5 A closer look at routing

If a network is represented as a graph, a connected sub-graph including
all the nodes and a minimum number of arcs is called a spanning tree. As
for any tree, if the graph has n nodes a spanning tree has n − 1 arcs. In
the secret agents problem exactly seven lines were required for connecting
the eight agents. All the different sets of safe lines indicated before are in fact
spanning trees for the agents graph, showing that there may be many spanning
trees for the same graph. If a weight is associated to each arc, e.g., the value
of the transmission delay or the cost of the line rental, it may be important
to determine a minimal spanning tree in which the sum of the arc weights
is minimal. For example the two spanning trees of figure 8.6 are minimal if
the communication delays are taken as weights. Note that several minimal
spanning trees may exist for the same weighted graph, although this is not
the case for Figure 8.6.

Determining a spanning tree in a network is important for maintaining
the connection among a group of entities using the minimum number of lines.
The messages travel from one entity to a neighbor with one hop on the corre-
sponding arc of the tree, and the overall communication takes place according
to different strategies. In the broadcast mode a message is sent in separate
copies from one entity to all its neighbors in the tree. These in turn broadcast
the message to their neighbors (except the one from which the message was
received) and the process goes on until all the entities have been reached.
This mode is employed when all the entities have to acquire some common
knowledge as in the termination phase of the agents protocol; or when all the
entities must participate in a common action; or when it is not known which
entities need the information or where they are. Note that a broadcast pro-
duces n − 1 copies of the original message, that is as many as there are arcs
in the tree, so the mode must be used sparingly so as not to cause congestion
in network traffic.

A different communication mode called routing is adopted when the final
destination of a message is known. For example in the Internet the address
of the final receiver travels together with the message (i.e., the packet), which
proceeds to its destination as a single copy, along a path of minimal weight
that accounts for the total transmission time and for the cost and reliability of
the lines involved. The mechanism used to determine this path is very complex
and is performed before the routing starts. We can only give an intuition of
how it is accomplished here. Each node stores a set of routing tables that
specify, for any possible final destination (dest), the selected neighbor (next)
to which a traveling message must be sent to follow a path of minimal weight.

Consider again the agents graph where the lines of the octagonal perimeter
have weight 1 and all the other lines have weight 2. The graph is repeated in
Figure 8.10 with the routing tables for the nodes C and F (now all the lines are
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FIGURE 8.10: Routing tables for the agents C and F in a graph where the
lines of the octagonal perimeter have weight 1 and all the other lines have
weight 2. For each final destination (dest) of a message, the table shows the
line to be taken (next).

available for use). Note that these tables store only local information, leaving
to the selected neighbor the task of deciding the next step. For example, the
table stored in C indicates that a message arriving in C and directed to F has
to be routed first to D, leaving to node D the choice of the next arc in the
path. The routing tables are not uniquely determined if more than one path
of minimal weight connects two nodes. For example the path C −D −E has
weight 2 as well as the direct connection C − E, hence in the table of C we
could enter E instead of D, for destination E.11

Building the routing tables is a major task in network operation, as well
as keeping them up to date if substantial changes occur in the network. The
protocol devoted to it requires that each node transfers to its neighbors its
knowledge of the shape of the network, and this proceeds in broadcast mode.
In a highly dynamic network like the Internet the protocol is executed pe-
riodically because nodes and arcs are inserted or removed continuously and
transmission delays change with the network traffic. Still, the tables cannot be
changed at just any moment and the nodes have to be able to cope with pos-
sible blockages or delays on the lines. This is where the alliance of knowledge,
communication, and action shows its role. Without getting into complicated
details, refer to Figure 8.10 again and assume that node C finds that the
connection C − D is temporarily blocked, e.g., because a long sequence of

11Due to the enormous size of the Internet it is not practical to have tables that store
all the network destinations. As we know from Chapter 7, the Internet is subdivided into
sub-networks. Routing of a message is accomplished by jumping from one sub-network to
another, which is in turn traversed with a similar strategy. A routing table then refers to a
specific level of routing.
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messages in the path A−D −E are queued in D. After time-out, C changes
the routing to F sending the messages through H instead of D, although the
new path may have higher weight (4 against 3).12 Note that such a decision
cannot prevent a message from reaching its final destination because each ver-
tex (H in this case) can send messages everywhere. Now, when F observes
that the messages routed by C are not arriving from E as usual, it may infer
that there is a blockage somewhere in the standard path. Just like a jealous
Amazon, F obtains a piece of global knowledge by examining the behavior of
a peer. The result is that F may decide to send in turn messages to C through
H (or maybe through A etc.) instead of through E although the connection
F − E that it can directly monitor is working properly.

The field of routing is huge and difficult. In this section we have provided
just an introduction: the interested reader is advised to refer to the following
biographical note.
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Chapter 9

Browsers and search engines

How data can be extracted from the Web in an astonishingly short time, with-
out any certainty that what we get is what we actually wanted.

When the “network” first appeared at the end of the 1960s, only a small
clique of experts could use it. ARPANET had been designed by keen schol-
ars as a military and research tool, without the intention of it ever be-
coming a vehicle (perhaps the vehicle) for commercial business. And even
after the transition of the 1980s when ARPANET and other existing net-
works started operating together under the TCP/IP protocol giving rise to
the Internet, the network was still not suitable for the general public. The
killer idea was the creation of the Web, with the crucial feature of assign-
ing a Uniform Resource Locator (URL) to each Web page, for example:
http://en.wikipedia.org/wiki/URL - the Wikipedia page about URLs. But
even then, wandering in the ever growing Web was hard for non specialists,
a little like navigating an ocean without GPS or even a compass.1 A great
improvement in Internet usage came with the development of browsers that
permit any Web page to be viewed once its URL is known. The search can
start from a given or previously known site, and proceed following clickable
links until a desired or at least interesting page is reached. It goes without
saying that most of the relevant information on the Internet remains unreach-
able if one can only use a browser in this way, but the big leap towards the
consumer Internet revolution had been taken.

The first popular browser was Netscape Navigator, developed from the
earlier prototype Mosaic produced by the University of Illinois and released
freely to non-commercial users at the end of 1994. Compared to earlier soft-
ware, the major innovation of this new browser was that it allowed on-the-fly
display of web pages, a feature of great importance at the time because con-
nection speed was generally very limited. A user could start reading a page
in seconds as long as a portion of data had arrived, without waiting for the
full loading of the page. Graphics could be made to load last. The Netscape
browser was compatible with most operating systems and remained the tech-

1This analogy may explain the proliferation of deceptive marine terms on Web searching
like navigation, surfing, crawling (if we consider it a method of swimming): all operations
made by a stationary person on a stationary computer via stationary software tools.
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nical leader during the decade. Many other browsers then appeared, among
which Microsoft Explorer and Safari became very popular. Netscape does not
exist any more, but some of its code is still used in its open source successor
Firefox, one of the best browsers in operation today.

9.1 Caching Web pages

One can easily imagine that designing a web browser requires great skill in
computer and communication technology. Many of the problems encountered
are of an algorithmic nature. Let us mention one of them, crucial for an efficient
functioning of all browsers, that falls into the NP-hard class of intractable
problems discussed in Chapter 4.

Although most of the communication bandwidth of the Internet seems to
be taken up by music and video sharing, and this tendency is ever-increasing
since the introduction of high definition videos and 3D films, the downloading
of Web pages is responsible for a sizable proportion of bandwidth consump-
tion. Limiting page transport is therefore beneficial for the efficient usage of
the Internet overall, and also allows browsers to respond faster. To this end
frequently requested Web pages are copied and cached in various locations,
from single computers to whole dedicated subnetworks, and then retrieved
from the closest location holding a copy of the page required.

Part of a caching infrastructure is shown in Figure 9.1, limited to a large
autonomous system and its connection to the Internet. To reduce the traffic
through the router and inside the local network, and to avoid infiltration of
possibly dangerous files, proxy caches keep copies of the pages most frequently
required by the browsers connected to them. If two or more browsers require
the same page from outside the AS, this is loaded into the proxy and then
extracted from there. If an AS page is frequently required from outside it is
also stored in the proxy so the local network is minimally affected. Even the
exchange of pages between computers of the same AS may be speeded up with
proxy caching.

Caching, however, is not limited to the local networks of the ASs. Different
cache infrastructures have been deployed in the Internet until, from the year
2000, very large content distribution networks (CDN) have appeared, capable
of serving as storage for whole geographical regions. This has given rise to
a wealth of optimization problems aimed at deciding which pages have to
be replicated, and where they should be stored. Let us consider an extreme
simplification of one such problem in order to show that, even in this minimal
form, exponential time is required for attaining an optimal solution.

Assume that only two computers exchange Web pages in the oversimplified
network shown in Figure 9.2, with two routers and one CDN cache. Pages have
different sizes and the CDN cache can allocate them up to a total size 18,
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AS

CDN

FIGURE 9.1: An autonomous system connected to a CDN through the In-
ternet. Computer terminals (containing a browser) are shown in black. Proxies
are grey. Internet routers are white.

insufficient to store all pages. If a computer requires one page from the other,
and this page is stored in the cache, then only one server must be traversed,
otherwise three hops are needed. Assuming that the hop time is proportional
to the page size, and that all pages are requested with the same frequency, the
cache should be loaded with pages of a total maximal size. If the page sizes
are 3, 9, 10, 4, 7, 12 as shown in the figure, two optimal solutions are caching
3, 4, 10, or 7, 10, for a total cache utilization 17 (note that the full capacity
18 cannot be reached). But how can these solutions be found?

The problem that we are facing is well known in complexity theory where
it goes under the name of subset sum. Given a set A of n positive integers,
and another integer k, determine a subset of B ⊆ A such that:

S =
∑
b∈B ≤ k (9.1)

and no other subset of A has a sum S′ with S < S′ ≤ k. In our example we
had A = {3, 9, 10, 4, 7, 12} and k = 18, and B1 = {3, 4, 10} and B2 = {7, 10}
were two possible solutions.

Unfortunately subset sum is exponentially difficult, and in fact is an NP-
hard problem as introduced in Chapter 4. It has a perfectly simple formulation
but is extremely hard to solve and no algorithm polynomial in n is known for
it. As for all the problems of this class no efficient strategy is known, so we
must essentially rely on a complete enumeration of all possibilities, in this case
of all the subsets of A, to find the one that meets the conditions required. And
since a set of n elements has 2n subsets, we must examine O(2n) cases even
though many of them can be discarded beforehand for trivial reasons (e.g.,
they contain an element greater that k, etc.). This point deserves some more
attention.
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18
3-9-10 4 -7-12

FIGURE 9.2: Allocation of Web pages into a CDN: a limit case based on
subset sum. Pages of size 3, 4, and 10 go into the memory bank of size 18.

The example developed in Section 4.5 was about finding a special com-
munity called k-clique in a graph of n nodes. Without a strategy all the

(
n
k

)
sub-graphs of k nodes must be examined, a function upper bounded by nk,
then of order nn if k grows linearly with n. For the subset sum, instead, the
number of probes is “only” 2n (for example for a set of thirty elements the
number of probes is a little more than one billion). Notwithstanding this great
difference between the two mathematical functions, it can be proved that the
two problems (like all the NP-hard problems) are strictly connected to one
another, in the sense that discovering a polynomial algorithm for solving one
of them would automatically be the key to a polynomial solution of the other.
Theoretically we are in a really challenging world. But how can we do page
caching in practice?

Clearly the starting case of Figure 9.2 means nothing in the real world, but
it still carries important conclusions if we extend it to practical cases. First
we can have an arbitrary number of computers exchanging pages through an
arbitrary network, with an arbitrary number of routers. Since the problem is
exponentially difficult in the starting case, it remains at least as difficult in
the extension that admits the previous one as a special instance. Similarly an
arbitrary number of caches of different levels can be introduced in the network,
and the problem will be at least as difficult as before. However, an even more
important extension must be considered.

The real benefit of caching pages is not only related to their size, but to the
distance between the original location and the source of the request. Copying
a page into a CDN or into any other cache infrastructure may reduce the
number of its hops in the networks substantially: so a “value” v(p) is assigned
to each page p, reflecting the overall saving if the page is cashed somewhere.
v(p) can be expressed by a complicated function that takes into account the
number of copies of p, their locations in the network, and the frequency and
sources of the requests of p if known or foreseeable. Clearly this approach
induces further complications, so the problem remains exponential. In fact it
can be formulated in terms of another well known NP-hard problem known
as knapsack, a sort of extension of subset-sum where the elements of the set
A also have a value, and the aim is maximizing the sum of the values in the
chosen subset B without exceeding the overall size k. Since something must be
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done anyway, several heuristics have been proposed for the Web cache problem
as indicated in the bibliographical notes.

9.2 From browsers to search engines

Browsers constituted a fundamental advance in the usability of the Inter-
net. However, the great innovation that allowed many people without com-
puter skills to enter the Internet world was the search engine. The major ones
today are Google, Yahoo!, Microsoft’s Bing, and the spectacularly fast grow-
ing Baidu in the Chinese language. We are all used to them and tend to forget
the difficult user experience of the first search engines in the 1990s, when,
after a stock-market enthusiasm driven by speculation, many companies were
hit by the bursting of the “dot.com bubble.”

The pioneering search engines often created more problems than they could
solve, by returning exceedingly long lists of information without any apparent
rationale behind them. In fact these engines were based on some principles of
information retrieval that, although well established and sound, were insuffi-
cient for making a satisfactory selection among all the possible answers if not
combined with other criteria. Very often the queries had to be given in an
expert way, and refined in successive, answer-driven steps, to have any hope
of success. Searching was a job for programmers or database experts, while
ordinary people were lost in a sea of irrelevant results.

Around 2000, however, Google arrived, and achieved spectacular success
in a very short time.2 Indeed at that time an increasing number of scholars,
programmers, and engineers were studying how to provide user-friendly access
to the Web and many results of this work were already available. What Google
introduced, a crucial innovation, was the algorithm Page Rank based on the
mathematical concept of a Markov chain, that assigned a “popularity” score
to the Web pages according to the number of incoming links in the Web
graph, returning the pages with highest score among the ones containing the
keywords of the query. Around the same time Jon M. Kleinberg, a professor of
Cornell University on leave at IBM research, introduced the Hyperlink induced
topic search (HITS) algorithm based on completely different concepts but still
exploiting the structure of the Web graph. We will explain the two approaches
in detail in the next section.

It is customary, however, to tell of the inception of Google as a fairy tale.
Two young and very clever students, Sergey Brin and Larry Page, developed
the engine as part of their academic work at Stanford University. The name

2The arrival of Google has been even defined a “black swan,” that is, a highly improba-
ble event with tremendous consequences. See: Taleb N.N. 2007. The Black Swan. Penguin
Books. As we discuss above there was nothing improbable about Google or any other search
engines development, as they all used a wealth of public studies and results.
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was chosen as a rewriting of googol, a word born from the mind of a little boy
who was asked by his grandfather to give a name to a number composed by a
one followed by a hundred zeros. This is more than the number of stars in the
sky, but the name sounds also similar to goggles, the aquatic lenses needed to
look into the vast ocean of the Web. The company started operating in 1998
in a garage in Menlo Park, California, making use of open source software.

After the success of Google all other search engines started using properties
of the Web graph to improve the quality of the answers through page popu-
larity, so that almost all engines today obtain comparable results leaving the
competition to be fought out on other grounds, in particular on the variety of
different services offered. Discussing these aspects is outside the scope of this
book. We only remark that popularity is not related to the quality of a Web
page, in the same way a movie can be very popular due to the participation
of some famous actors and strong marketing, independently of any real value.
Therefore the exercise of our own critical faculties, together with a verification
via different sources, remains essential in assessing the result of a search.

9.3 The anatomy of a search engine

The survivors of the previous chapters will now be embarking on an im-
portant part of this book: namely, the description of the construction and
operation of a search engine. This is a very technical topic and some of the
proprietary solutions actually implemented are kept jealously confidential by
the search engine owners. What we shall do here is to explain as simply as pos-
sible the basic features common to all major engines, and what these features
have to do with the algorithmic and mathematical concepts discussed thus
far. Or, in other words, how the miracle of obtaining thousands of answers in
a second from a search engine is possible, arranged more or less in order of
decreasing importance.

To this aim we divide our discussion in five parts, respectively treating the
basic data structures and algorithms used; how data are extracted from the
Web and stored into the engine memories; how the relative importance of the
collected pages is decided; how user queries are answered; and how the use of
distributed techniques and parallel processing make the final result possible.

9.3.1 The basic data structures

Search engines collect an enormous amount of data from the Web that
must be organized into memory and kept ready to be sent back to the users in
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answer to their queries.3 The basic data structures used are extremely large
but not particularly sophisticated, consisting mainly of arrays and trees. What
is crucial is how the insertion and retrieval of data is performed, because the
slightest inefficiency becomes dramatic due to the size of these structures. It
is not only the case of using polynomial time algorithms, as is obvious, but
also weighing up the relative efficiency of such algorithms.

Data are organized in an inverted file system, mainly consisting of three
huge tables: a Document table D; a Term table T; and a Posting table
P. We shall give an idea on how these tables are used in the over-simplified
example of Figure 9.3. Their construction is referred to as indexing.

The collected pages get an integer identifier docID and are stored in D by
increasing docID number. The example refers to a site on the Beatles’ original
compilations remastered (docID = 5); the site Submarinechannel on animation
(docID = 20); and a site with the story of the song Yellow Submarine (docID
= 90). Both URL and full page text are stored, the latter not shown in the
figure.

The terms present in all the documents are stored in table T in alphanu-
meric order. Terms are words in all natural languages (and their misspelled
forms if any), acronyms, e.mail addresses, etc., in fact all strings of characters
delimited by blanks found on the Web.4 The posting field in T for a term t
indicates the position i in table P where a list of references to the documents
containing t starts. In the example the term “beatles” pointing to i = 10 is
found in document 5 where it occurs 8 times; in document 90 where it occurs
6 times; etc. The list terminates with a special symbol $ in position i = 32,
meaning that (32-10)/2 = 11 documents contain the term beatles, two entries
of P per document. The name ‘inverted file’ given to the structure comes from
database technology and has to do with the fact that terms are collected by
scanning the documents but are retrieved in the order dictated by T.

As one may well imagine, the overall data structure is more complicated
than the one shown here. In particular P usually contains not only the number
of occurrences of a term in a document but also the positions of such occur-
rences that, as we shall see, are important for deciding the relevance of the
page. Compact data representations are employed using the Huffman prefix
code discussed in Chapter 3 and a wealth of other methods, in particular for
coding the large integers appearing in the tables. URLs may be substituted by
much shorter hash images as explained in Chapter 5. More importantly, the
tables D, T, and P may be represented as arrays, trees, or other structures de-

3When discussing search engines it is customary to mention the number of Web pages
collected by an engine, the size of the internal data structures, etc. We refrain from giving
numbers that change (in fact, increase) every month. Keep in mind that, in the year 2010
when this book was written, tens of billions of Web pages might be collected by a single
search engine, containing hundreds of millions of distinct terms, all of which must be stored
for successive processing.

4Table T has probably reached an almost stable size and will increase only when aliens
start adding their pages to the Web. In the year 2010 we are talking of many hundreds of
millions terms.
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D: DOCUMENTS

docID URL
... ...
... ...
5 thebeatles.com
... ...
... ...
20 submarinechannel.com
... ...
... ...
90 en.wikipedia.org/wiki/Yellow Submarine
... ...
... ...

T: TERMS

term posting
... ...
... ...
beatles 10
... ...
... ...
submarine 70
... ...
... ...

P: POSTING LISTS

i ... 10 32 ... 70 82 ...

p ... 5 8 90 6 ... $ ... 20 1 90 4 ... $ ...

FIGURE 9.3: Inverted file indexing: a simplified example. The collected
documents are stored in a table D by increasing docID number. All the terms
present in the documents are stored in a table T, where the posting field for
a term indicates the position in a posting table P where a list of references to
that term start. For example “beatles” in T points to position 10 of P where
we find docID = 5 with 8 occurrences of the word beatles in the document
of URL thebeatles.com; docID = 90 with 6 occurrences, etc., up to the list
terminator $ for beatles in position 32.
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rived from these, where the search of elements can be done with very efficient
algorithms as BINSEARCH or the equivalent tree search method discussed in
Chapter 4. The actual implementations adopted by the different engines are
not always known.

Part of the difficulty is that most of the data are stored on disks whose
access is much slower than main memory, so the algorithms must also seek
to minimize the number of disk accesses. To this end data compression helps
substantially, because the total amount of data on disks is reduced.

9.3.2 Crawling the Web

The next aspect of search engines to consider is how data are extracted
from the Web. This is the role of crawlers, that is computer programs charged
with retrieving as many Web pages as possible.5 Due to the size of the network,
each engine actually uses a very large number of crawlers, that work in parallel
and interrogate the Web relentlessly.

First note the essential difference between a browser and a crawler. The
former resides in the user’s computer and is designed to retrieve Web pages
whose URL is known. The latter resides in a search engine computer and is
designed to collect “all” pages available, with a limitation imposed by the
engine policy that demands a minimum threshold of presumed significance.
In fact the effort needed for crawling the Web and managing the search engine
data structures requires a trade off between the amount of information that
can be made available to the users and the speed of operation of the whole
system. Let us consider this aspect first.

The number of Web pages is huge and continuously changing, not only
because sites are born and die with incredible frequency, but also because
many sites change their contents continuously. While it may be important
to visit weather report sites rather frequently, so Internet users may have an
updated forecast for their home town, it may not be that interesting to collect
high atmosphere wind speeds every hour. Even more importantly, Web sites
are often organized as whole subgraphs of pages of different “levels,” going
down from level to level with the addition of a slash into the page URL to
reach more and more specific information (for example, en.wikipedia.org is
at the first level, en.wikipedia.org/wiki is one level down, etc.). Pages of very
low level are said to constitute the deep Web and are not collected by the
crawlers, as they can be reached anyway if the engine returns a page of higher
level pointing to them. All the non-deep pages form the indexed Web.

The basic algorithmic structure of a crawler is indicated in Figure 9.4.
The program makes use of two data structures, a queue called QUEUE and
two tables A,B. By definition the queue keeps its items one above the other,
outputs the top item upon request (QUEUE → x, where the variable x takes

5Crawlers are also called spiders or robots, although the first term is more commonly
used.
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algorithm CRAWLER 1
starting condition: URL1,..., URLs are in QUEUE ;
while QUEUE 6= Ø {

QUEUE → URL;
if (URL /∈ A) {

request TEXT(URL);
URL → A; TEXT(URL) → B;
forany link L in TEXT(URL) {

let L point to URL’ ;
if (URL’ /∈ A) URL’ → QUEUE ; } } }

FIGURE 9.4: Basic algorithmic structure of a crawler.

the value of the output element), and accepts new elements at the bottom
(x → QUEUE). The two tables can be implemented at will, provided fast
lookup and insertion operations are possible.

As the figure shows, a group of s URLs of potentially important sites is
initially loaded into the queue as a seed. The crawler asks for the pages with
the URLs in the queue and, if not already present in the tables, retrieves both
the URL and text and stores them into A and B. It then scans the page just
found for possible links contained in it and, if the URLs pointed to have not
been encountered yet, it loads them into the queue. The algorithm is very
simple and goes on until there are no URLs to be examined into the queue
(the termination command while QUEUE 6= Ø checks for a void queue). In
principle a whole connected subgraph of the Web is visited and the algorithm
may continue forever if sites keep on changing. In practice the story is different.

As we have seen crawlers are not designed to retrieve all Web pages. More-
over they have to return frequently to the same page if this gets updated
continuously, as for example for weather conditions and news, but might visit
only once in a while corporate pages that tend to remain stable. Therefore the
queue is substituted with a priority queue where each element has an associ-
ated priority (in fact, an integer). The structure keeps the element of highest
priority at the top and returns it upon request. The construction of such a
queue can be found in any textbook of data structures: we only note that
the elements must be kept in a way that the next top element can be readily
identified after the extraction of the top one, hence the new entries must be
allocated in their proper positions to make this possible in short (logarithmic)
time. Items with the same priority are kept in arrival order.

A new version of the crawler that exploit URL priorities is given in Figure
9.5. The algorithm is not trivial and is given for courageous readers to study.
PQUEUE is the priority queue: the way priority is computed depends on the
engine policy. The value “refresh” given to priority indicates that the page
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algorithm CRAWLER 2
starting condition:

(URL1,P1), ..., (URLs,Ps) are in PQUEUE ;
while PQUEUE 6= Ø {

PQUEUE → (URL,P);
if (URL ∈ A and P = refresh) {

request TEXT(URL);
TEXT(URL) → B ; [replace old occurrence]
after delay ∆ (URL,P) → PQUEUE ; }

if (URL /∈ A) {
request TEXT(URL);
URL → A; TEXT(URL) → B;
forany link L in TEXT(URL) {

let L point to URL’ ;
if (URL’ /∈ A) {

compute P’ for URL’ ;
if (P’ ≥ threshold)

(URL’,P’) → PQUEUE ; } } } }

FIGURE 9.5: The algorithmic structure of a crawler with priorities.

must be read again so it is returned to the queue after a given delay ∆. A
“threshold” is also specified, below which the new page is not fetched.

To make our algorithm even closer to reality we must add some further
considerations. First, Web sitemasters may decide not to allow some of their
pages to be fetched by search engines. This is specified in a special file stored
in the site that the crawler must interpret in order to decide which pages
to take. Furthermore crawlers should try to avoid loading different copies of
the same page that are repeated at different URLs (as occurs quite often), or
pages that are very similar. Hashing whole pages for comparison is a helpful
technique for discarding duplicates. Finally crawlers are designed not to pass
over the same pages too many times to avoid overloading a site. All these
features must be implemented into the crawler algorithm.

A natural question to ask at this point is how one crawler can visit the
entire Web in a reasonable amount of time. The answer is that this task is
carried out by a large number of crawlers working in a distributed fashion as
explained below.
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9.3.3 Page relevance and ranking

The tables of URLs and pages filled in during the crawling phase are the
initial data used for building the inverted file structure of Figure 9.3 in what is
called the indexing process. Other fundamental information is needed, related
to the expected importance that each page will assume for an Internet user
among the thousands of pages containing the required keywords. This leads to
a ranking of the retrieved documents, a feature that differentiates particular
search engines from one another. Many of the criteria used for ranking are kept
secret and evolve continuously: what we report now is a public knowledge of
methods used by all major engines.

The first feature to take into account is the relevance R(p, t) of a page p
as a function of any particular term t occurring in it. For this the positions of
the term in the page are important, with the occurrences of t in the URL, or
in the title, or in the first lines of p being assigned a greater importance than
the other occurrences. But, perhaps unexpectedly, particular occurrences of
t in other pages pointing to p are also very relevant for p. In fact a page p′

may point to p through a clickable sequence of words called an anchor text for
p. For example a Web page p′ on songs of the 1960s may point to the page
p on remastered Beatles’ songs through an anchor text Beatles’ compilations
associated to the URL thebeatles.com (this is easily done by the designer of
p′ in the HTML description of this page). So even the word t = compilations
(and its prefix compilation that, together with the plural form, is certainly
present in the term table T) becomes relevant for p, besides being relevant for
p′. Both R(p, t) and R(p′, t) are then affected.

All search engines treat anchor text terms as very relevant both for the
pointing and the pointed page, presuming that they have been chosen by the
page designers as particularly descriptive of the situation at hand. If many
pages point to p using a same term t in their anchor texts, t becomes very
relevant for p and the value of R(p, t) increases substantially. This is the first
example of relevance decided by “popularity” instead of relying on the intrinsic
value of a term (whatever that means).

Besides considering the positions of a term t on a page p, relevance is also
affected by the number of times t occurs, and by the significance that t may
have in the given context. For example common linguistic elements such as
articles and prepositions trivially occur very often and count for practically
nothing as distinguishing elements of a page. More interestingly, the term
“song” in the page thebeatles.com must be treated as much less relevant than
the term “crawling” if the latter occurred in the page, because the appear-
ance of an unexpected term is likely to indicate an important feature of the
document at hand.

These concepts were well known in information retrieval long before search
engines existed. A commonly accepted metric, called TFIDF for Term Fre-
quency combined with Inverse Document Frequency, is based on the score:

S(p, t) = TF(p,t) × IDF(t) (9.1)
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where the term frequency TF(p,t) is the number of occurrences of t divided
by the total number of terms in p, and the inverse term frequency IDF(t) is
related to the unexpectedness of t in p. Actually IDF(t) has a more flexible
definition because it is measured with respect to a collection C of pages on
topics close to the topic of p, that may be chosen with a certain freedom (for
example C is a collection of pages about songs, and t is “crawling”). For a
given collection C, denoting by Ct the elements of C containing the term t,
and by |C| and |Ct| the number of elements in the two collections, the standard
definition is then:

IDF(t) = log2(|C|/|Ct|). (9.2)

Note that the value |C|/|Ct| gives an indication on how “strange” t is for the
group of pages in C (in fact, infinitely strange if t never occurs), while the
logarithm makes the function much smoother.

A combination of the effect of the occurrence of t in particular positions
of p as explained before, of the anchor texts, and of the TFIDF score S(p, t),
determines the relevance value R(p, t) according to the engine’s particular
policy.

Page relevance with TFIDF metric is one of the two major criteria used for
determining the importance of a page in answering user queries. The second
criterion is the popularity of a page as a function of its location in the Web
graph. The great success that Google experienced since its appearance was
undoubtedly connected to the introduction of a new ranking method based on
counting the incoming links to each page as a measure of their popularity. The
quality of the answers was spectacularly improved over the existing engines.

As previously mentioned, the basic idea was to apply the mathematical
concept of a Markov chain to the Web graph to compute the probability of
reaching a certain page by a random walk: the more incoming links to a page
there are, the greater the probability of visiting it; and so the higher the rank
to be assigned to the page for answering users’ queries. The proposed algo-
rithm was called Page Rank, and is just one of the ingredients for ranking.
According to it, ranking is completely independent of the actual queries. As we
also mentioned, around the same time another method called HITS was pro-
posed, also making use of the structure of the Web graph but deciding ranking
dynamically as a function of user queries. Both methods are of paramount im-
portance for the development of search engines and will be briefly described
here. In fact, in the introduction of this book we have speculated on how to
wander through the city of Königsberg in search of art work, following very
naively the rules of the two methods.

Figure 9.6 shows the basic structure on Page Rank. In the words of the
Google Web site, Page Rank interprets a link from a page to another as a
vote by the former to the latter but “looks at more than the sheer volume of
votes, or links a page receives; it also analyzes the page that casts the vote.
Vote cast by pages that are themselves “important” weight more heavily ... .”
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A

B
C

D

FIGURE 9.6: The basic recursive formula for Page Rank: R(A) = R(B)/4+
R(C)/2 +R(D)/3. Note that R(D) is divided by three because two of its four
outgoing links point to the same page.

Looking at the figure we can see that a page A with incoming links from
B,C,D has its rank R(A) computed as the sum of the ranks of the pages
pointing to it, each divided by the number of outgoing links from those pages.
For example the contribution of page B to the rank of A is equal to the rank
of B proportionally shared by all the pages to which B gives its vote (out-links
of B). If more links go from one source to the same destination, as it happens
for page D, they count one in the rank computation. So the general formula
for the Page Rank R(p) of a page p is as follows:

R(p) =
∑
q∈Q(R(q)/L(q)) (9.3)

where Q is the set of all pages pointing to p, and L(q) is the number of distinct
pages pointed by q.

Formula (9.3) is recursive and can be computed starting from an arbitrary
assignment of ranks to all the pages (typically, all equal ranks) and applying
linear algebra as we shall see below. It can be proved that this is equivalent
to making a random tour through the Web graph, taking all outgoing links
from any node with equal probability. As a consequence of Markov theory it
can also be proved that the initial assignment of rank values does not affect
the final result if the number of steps in the random tour (i.e., the number
of rank re-calculations) goes to infinity, or in practice is very large. At this
point the rank of a page is the probability that the tour terminates there:
the implication is that pages with high rank are more likely to be required by
users.

Things, however, are not that simple. Users may not always follow the
clickable links, and in fact all available statistics show that the average In-
ternet user follows up to three links from a page before getting bored and
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changing search strategy. So the random tour through the graph foreseen in
mathematical terms might actually be shorter than expected. Moreover Page
Rank, as defined with formula (9.3), tends to favor older pages because new
ones generally have only a few incoming links even if they are actually im-
portant, pretty much as it happens with the mechanisms of network growth
discussed in Chapter 6. Then a damping factor d was added to the formula
since the very beginning, accounting for the possibility of jumping from one
node to any other node chosen at random. The new ranking formula then
becomes:

R(p) = d ·
∑
q∈Q(R(q)/L(q)) + 1−d

N (9.4)

where N is the total number of pages in the considered collection, and d is
generally taken as 0.85. As a limit, for d = 1 formula (9.3) holds, while for
d = 0 the links have no influence on the ranks and all vertices have equal rank
1/N .

At this point the computation of Page Rank is a mere application of matrix
multiplication as explained in Chapter 6 (Section 6.1). Given the adjacency
matrix M of the Web graph, we have seen that any of its powers Mk gives
the number paths of length k inside the graph. To take care of damping, we
extend the definition of M to a new matrix S whose elements are: S[i, j] =
d ·M [i, j] + (1− d)/N . Numbering the pages from 1 to N , the values of Page
Rank can be stored in a vector R where R[i] is the rank of page i. So starting
from an initial configuration of values R0 for R, the computation is iterated
as:

R1 = S ×R0,
R2 = S ×R1, (i.e., R2 = S2 ×R0)
.... Ri = S ×Ri−1 .... (i.e., Ri = Si ×R0) (9.5)

An important point is that we do not actually need to compute the limit
rank values, so the chain of computations can be interrupted when the relative
standings of the elements of Ri are the same as the ones in Ri−1. In other
words, it is not necessary to compute the probability of ending in a page A,
but just to know whether R(A) is greater or smaller than the rank of the other
pages. We will return to this point below.

Compared to Page Rank, Hyperlink Induced Topic Search (HITS) has the
computational advantage of working on much smaller arrays and the logical
advantage of exploiting the page incoming links in function of the user query,
although this last property slows down the phase of query answering.

The idea behind the method is sorting out the pages that are really “au-
thoritative” for a certain query q, from among the many pages with high
relevance for the keywords of q and high in-degree. To this end, the set Q of
pages containing the keywords are selected together with all the pages point-
ing to Q or pointed to by Q. The whole set is called the “base” of the query,
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Q

FIGURE 9.7: The “base” of a query q for HITS. Q is the set of pages
containing the keywords of q. The base contains Q together with all the pages
pointing to Q or pointed to by Q. Grey nodes indicate pages linked to Q in
both directions.

see Figure 9.7.6 The two concepts of authority and hub can be formalized at
this point.

Restricting our graph to the base of q, a page p has a non-negative au-
thority weight A(p) and a non-negative hub weight H(p) mutually reinforcing
according to the relations:

A(p) =
∑
s∈S H(s),

H(p) =
∑
t∈T A(t), (9.6)

where S is the set of pages pointing to p, and T is the set of pages pointed to
by p. An important authority is a page pointed to by many important hubs;
an important hub is a page that points to many important authorities.

Staring with equal values of A and H for all the pages of the base, relations
(9.6) are iterated until an equilibrium is reached. The computation is similar
to the one of Page Rank, using the much smaller adjacency matrix of the base.

9.3.4 Answering the user queries

The information accumulated by the crawlers, and the page ranking cal-
culated on it, allow search engines to satisfy user needs as well as possible.
This essentially means producing a list of answers for any query in order of
probably decreasing interest for the user. With the major engines available
today this result is often reached with impressive precision, although in other
cases the answers provided are scarcely interesting if not at all related to the
user intention. Where search engines will be going to improve the quality of

6In practice each page in Q is allowed to bring into the base a bounded number of pages
pointing to it, to keep the size of the base reasonably small. In fact, as already noted there
are Web pages in the tail of the scaling distribution that have a huge number of incoming
links.
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their answers is discussed in the next chapter. Let us see here what happens
presently, or at least what is likely to happen because the full ranking strategy
is a closely-kept secret of each engine.

First note that search engines accept paid advertising, that essentially
implies promoting the rank of a page for a fee. Different marketing policies
are used and also the style with which paid pages are shown to the user differ
from one engine to another. We will not deal with this aspect of ranking and
focus on the methods with which all other pages are treated.

To the basic data structure of Figure 9.3 other tables, or other fields,
must be added to keep the ranking scores of the different pages. As seen both
TFIDF score and Page Rank can be pre-computed off line and kept in the
data structure, thus being ready for answering queries. HITS weights, instead,
are computed at query time and may slow down the answering mechanism
substantially. So even if in principle HITS prevails over Page Rank in terms
of quality of the answers, its applicability is more limited. In addition a wide
range of other factors influence the ranking scores, both for improving the
quality of answers and for allowing a more rapid response. Most of these factors
are undisclosed, but some common criteria certainly apply to all engines.

An important feature is how the three tables D, T , and P are organized,
because they are the key for reaching the pages relevant for any query. If binary
search or an equivalent tree-search method is used, both D and T are arranged
in increasing (alphanumeric) order of the fields docID and term, respectively.
Furthermore the docIDs contained in the posting list P for every term must
be also stored in increasing order, because this allows to speed up considerably
the often required operation of looking for the pages that contain two or more
given keywords of the same query. In the example of Figure 9.3, assume that
all the documents containing both “beatles” and “submarine” must be found.
A search through the tables T and P gives the two lists of docIDs L1 =
(5,90,...) and L2 = (20,90,...) that may indeed be very long. A naive solution
for finding the common elements is searching each element of L1 into L2. A
much faster method is applying the algorithm DOBLESEARCH presented in
Chapter 4 (Section 4.3) that terminates in (optimal) time proportional to the
length of the two lists.

An even more interesting feature is assigning the docIDs in order of de-
creasing ranking score so that the search for the pages containing one or more
keywords would encounter the pages with highest score first and could be
stopped once the score goes below a certain threshold. This method, however,
conflicts with other memory needs too long to be explained here and is only
partially used.

Other factors that are likely to be taken care of in all search engines are
ranking whole groups of keywords that commonly appear together in the
queries; or increasing the rank of pages that are frequently clicked; or even
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caching the answers for the most common queries.7 In any case, trying to
implement all features that may capture the “intentions” of the user.

9.3.5 The role of distributed and parallel computing

Obviously the tremendous work required to a search engine for crawling
and indexing the Web, and for answering queries, would be impossible for
a unique even huge computer. The task is then distributed among a large
number of reasonably small machines and the computation is largely done in
parallel, along the lines discussed in the previous chapter. Again not all is
known on how the work is organized, but at least some basic facts have been
disclosed.

The largest search engines operate on different centers distributed world-
wide, each containing maybe thousands of PCs grouped in clusters, with each
cluster dedicated to one of the major search engine functions described above.
A first level of parallelism occurs among centers since each of them crawls
and index the whole Web, with a major effort to maintain data consistency
across the centers. Crawling, indexing, and ranking tasks are done by the
computers of the dedicated clusters in a second level of parallelism, under the
control of a set of coordinating machines that merge the results. A third level
of parallelism takes place inside the computers themselves.

Once a user query is issued, a feverish activity is triggered. The query is
delivered to the geographically closest, or the less busy center, and assigned
to a specific machine that will provide the answer. The pages in the answer
are found through the overall data structure and fetched from the center disks
that contain the entire copy of the Web, with a strategy similar to the index
look-up phase. The request is issued in parallel to different sections of the
archive, each served by a dedicated machine.

Due to their nature, all the operations of a search engine are efficiently done
in parallel. Crawling and indexing are shared among independent machines,
with a limited amount of work for distributing jobs and collecting results. Even
the titanic task of computing Page Rank on the Web adjacency matrix is done
with standard techniques of parallel array computation. The most challenging
problems have to do with network traffic and bandwidth requirements, but
this is a different story.

7Note that the pages in the engine memory may have been modified or may have even
disappeared from the Web after the crawling. The unpleasant sensation of reading a page
that the author may have suppressed is sometimes compensated by the interest of still
getting something that is no more available.
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9.4 Spamming the Web

When the Web became a fundamental means of doing business, it imme-
diately attracted the attention of crooks aiming to unscrupulously increase
their financial gains, if not commit fraud by misleading browsers and search
engines, and through them their final users.

Techniques aimed at increasing the apparent value of a “target page,”
exploiting the methods that search engines use for deciding page relevance
and/or importance, generally go under the name of Web spamming. This
form of deception is the less dangerous for the end user and might even not
be considered “dishonesty” unless one can first prove that search engines are
in fact “honest.”

If page relevance is largely decided through TFIDF metric, as often hap-
pens, the obvious spamming method is introducing words frequently de-
manded by users into the target page p, or into the anchor text of other
pages pointing to p, even though these words have nothing to do with the real
contents and aims of p. If the spamming goal is to make p relevant for some
specific query, just a few specific words must be repeated many times in p to
increase its TFIDF score. If instead p must be made relevant for many differ-
ent queries, many different words must be inserted. In any case a problem is to
make such words invisible in p and in the anchor texts. For some time this was
done by writing the words in the same color as the page background. Search
engines now discard pages with such an explicit feature, so other tricks are
used instead, exploiting properties of HTML. While the relevance of a page
related to a given set of keywords is given by the presence and the positions of
those keywords, the overall rank of the page depends also on its connections
in the Web graph. So widely used spamming techniques are aimed at creating
artificial link structures, in particular to boost the Page Rank or the authority
score of a target page. Recalling how ranking algorithms work, the following
two attacks can be readily understood.8

To fool the Page Rank algorithm a spam farm can be created, consisting
of a set of boosting pages together with a boosted target page (Figure 9.8).
Boosting pages exchange links in two directions with the target. The latter
also gets incoming links from a set of hijacked pages, that is, innocent pages
infiltrated by the spammer for posting the new links, for example the com-
ments section of a blog. All the pages of the farm are then accessible from
the Web, and the target page has a high rank due to the links pointing to it,
in particular if the spammer can afford to build a big farm and hijack many
pages.

To fool HITS a spam farm can be created from scratch without the need to
infiltrate existing pages, inserting pointers from the boosting pages to many

8For some terminology and basic concepts we follow Z. Gyöngyi and H. Garcia-Molina,
see the bibliographic notes.
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hijacked
spam farm

Web

FIGURE 9.8: A spam farm for Page Rank. The black target page gets high
Page Rank. Note the links in both directions between the grey boosting pages
and the black one.

well known authorities (Figure 9.9). In this way the boosting pages get a high
hub score and promote the authority of the target page to which they point.

Clearly things are not that simple. Figures 9.8 and 9.9 indicate two basic
structures that get transformed in several ways, both to increase the target
score and to make spam farms invisible. In fact all search engines have studied
detection tools based on the regularity of the farms that are artificially built,
although neither all the techniques used nor the results obtained have been
disclosed. Once again the interested reader is invited to follow the ever evolving
technical literature.

A combination of spamming methods has been used also for fun. Probably
the most famous case of amusing Google bombing was directed against the
President of the United States. A BBC news article of December 7, 2003
reads:

“Miserable failure” links to Bush.
George W. Bush has been Google bombed. Web users entering the words “mis-
erable failure” into the popular search engine are directed to the biography of
the president on the White House website.

Readers may now easily understand how this attack was possible via a
farm of pages containing the words “miserable failure” in the anchor text of
links pointing to the target page. In that specific case it was reported that as
few as thirty two spam pages were sufficient because the two keywords were
not particularly common.
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authorities
spam farm

Web

FIGURE 9.9: A spam farm for HITS. Grey pages get high hub score. The
black page gets high authority score.

If someone looking for basketball results may merely be a little annoyed
at getting a boosted page advertising cameras for sale as the first result from
a search engine, other forms of deception are much more serious and possibly
dangerous. Fake Web sites abound on the Internet, and are known as concocted
or spoof pages depending on the type of the intended fraud.9

Concocted sites offer services or merchandise that will never be performed
or sent, collecting money and quickly disappearing. They perform a sort of
non-sophisticated attack relying on the naiveness of users (that remains much
more widespread than one may expect) and are often detected by software
tools on the basis of the domain registration, in particular the host name and
country. Regrettably many good sites may look suspicious and be discarded
this way, but perhaps it is better not to take risks.

Spoof sites are much more sophisticated and dangerous because their pages
are faithful imitations of real sites, typically banks, e.Bay, and the like. The
intention is to attract customers of a real site onto the fake one in order to steal
personal data or charge money for services that will not be provided. Aside
from making use of black lists of URLs at the server side, and white lists at
the client side, detection tools perform counterattacks based on the analysis of
site links, text similarities, and other technical criteria not publicly disclosed.
The most obvious way of attracting a user to a spoof site, called phishing, is

9There is no standard terminology. Here we follow the article of A. Abbasi and H. Chen
mentioned in the bibliographic notes.
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through an e.mail containing the link, but other complicated methods exist,
in particular by infecting servers with fake IP addresses.10

Finally recall that search engine crawlers identify themselves to the sites
they visit to ask for permission to index the pages. This gives the site the
possibility of giving the crawlers a document with a given URL, and serving
to the other browsers a different version of the document with the same URL.
This is an interesting feature because some elements that need not to be
indexed may be excluded beforehand from the crawler version, but it also
allows a form of malicious manipulation called cloaking. In fact a spammer
site can release a clean version of a page to the browsers, so as not to end up
on a black list, and a spammed version to the crawlers in order to have the
spam terms indexed.

The struggle between villains and search engines continues unceasingly
and, as might be expected, without disclosure of the most recent weapons in
use on both sides. Some pointers to the open literature given in the biblio-
graphic notes will prove useful if the reader has an interest in the field.

If the reader is instead merely interested at defending her/himself from
Web attacks, there is not much that we can suggest except using common
sense. In particular:

1. beware of the e.mails from a widow of a foreign general wishing to share
several million dollars hidden by her husband before his death;

2. beware of any message written in an improbable language that is clearly
the output of an automatic translator, especially if it asks for your per-
sonal data;

3. beware of any e.mail from “your” bank (the bank name can be discovered
through your browser’s history, and in any case banks do not generally
communicate via e-mails).

And, a little more seriously, beware of the insidious “social phishing” emails
that gain your confidence by apparently being written by your friends, and
appear to be genuine because they are full of personal information that can
easily be collected from social networks.

Bibliographic notes

Out of a vast technical literature, a classical book on data mining is still
a must: Witten, I.H., A. Moffat, and T.C. Bell. 1999 (Second Edition). Man-
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contributions we suggest: Manning, C.D., P. Raghavan, and H. Schutze. 2008.
Introduction to Information Retrieval. Cambridge University Press.

10In 2008 a serious flaw was discovered in the DNS mechanism, that allowed IP addresses
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Chapter 10

Epilogue

How humans communicate their knowledge: from Prometheus to Mersenne
and Ted Nelson, through Inca messengers, carrier pigeons, and the Web.1

After having communicated from time immemorial using sound, mankind
discovered writing. According to Aeschylus, Prometheus taught writing to
mortals as just one of many useful arts, besides giving them the fire stolen
from heaven. As a punishment Zeus chained him to a rock where an eagle
perpetually consumed his liver; and there Prometheus lamented his fate:

.... They had neither knowledge of houses built of bricks and turned to face the
sun, nor yet of work in wood; but dwelt beneath the ground like swarming ants,
in sunless caves. They had no sign either of winter or of flowery spring or of
fruitful summer on which they could depend, but managed everything without
judgment, until I taught them to discern the risings of the stars and their
settings, which are difficult to distinguish. Yes, and numbers, too, chiefest of
sciences, I invented for them, and the combining of letters, creative mother of
the Muses’ arts, with which to hold all things in memory.2

So Prometheus gave math and writing to mortals, the latter “to hold all
things in memory.” For a contemporary Zeus this would have been the most
outrageous gift, apt to raise the humans to the level of the gods.

Cultural anthropologists, of course, claim that things went a little differ-
ently; but everybody agrees that the birth of writing marked a revolutionary
step in the development of mankind. A virtually endless chain of informa-
tion could be recorded and made available for individual study, and the new
medium also favored the development of logical thinking, although Socrates
was convinced of the contrary.3 Dua-Khety, an Egyptian writer of the Middle

1Finally we present a chapter containing no mathematics. This chapter is a reflection
on the power of communication, from the invention of writing to the Internet. This kind of
thinking is open to anyone: but perhaps with some solid mathematical knowledge behind
us, a more profound reflection may emerge.

2Aeschylus, Prometheus bound, http://classics.mit.edu/Aeschylus/prometheus.html
3Plato, Phaedrus.
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Kingdom, encouraged his son Pepy to become a scribe explaining that this is
the best profession. Extracting freely from the long text:

.... The potter is covered with earth, his clothes being stiff with mud..... The
courier goes abroad being fearful of the lions and the Asiatics .... The sandal
maker is utterly wretched carrying his tubes of oil .... The washerman launders
at the riverbank in the vicinity of the crocodile.... It is to writings that you must
set your mind! 4

The Romans also quickly appreciated the power of writing. The saying “verba
volant, scripta manent” (words do fly, but when written remain) attests to the
preeminence of writing over talking.

Since then, living without writing has been unthinkable. Alongside com-
munication based on sound, another form based on sight was born, and re-
mained as the only form of data storage external to our brains until 1877,
when Thomas Edison invented the phonograph for sound recording and re-
production.

10.1 From mail to telephones

The most ancient form of writing is due to the Sumerian civilization of
southern Mesopotamia (now Iraq). Since 3000 B.C. hieroglyphs, and later
syllabic symbols, were engraved with a reed on moist clay in a style called
cuneiform today, and have survived in hundreds of thousands of texts in ar-
chaeological discoveries. A discussion on the fascinating history and develop-
ment of writing is outside the scope of this book (some specialized literature is
mentioned in the bibliographical notes). What counts for us is the possibility
of recording information in the form of strings of characters, as explained in
Chapter 3, disregarding any physical implementation.

Writing also changed long distance communication. Before its discovery,
the delivery of messages to distant places was the job of human messengers.
An exemplary system reserved for the use of the royal administration was
set up by the Inca in Peru. The delivery of a (probably oral) message was
assigned to dispatch riders called Chasqui who ran from post to post half a
league apart, wearing a white feather hat and announcing their arrival with
a trumpet, as reported by the indigenous writer Guaman Poma de Ayala in

4Adolf Erman (1927) The literature of the ancient Egyptians, Matheus and Co. Ltd.
London.
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1615.5 Today e.mails directed to the Universidad Nacional de San Antonio
Abad del Cusco must be sent @chasqui.unsaac.edu.pe.

With the advent of writing, messages could also be committed to non-
human carriers such as pigeons or bottles in the ocean, and the postal service.
Some ancient historians wrote about carrier pigeons, but their celebrity came
later. The Rothschild family is reported to have built a part of its vast fortune
on a private message dispatched by a carrier pigeon announcing Napoleon’s
defeat in Waterloo (the day was foggy and the optical telegraph did not work,
so the banker got the news before his colleagues). Nowadays carrier pigeons are
employed for example in Cuba to disseminate emergency messages, a system
that has become the object of a careful international study since the December
2004 tsunami in South Asia.

More regular delivery services were provided by postal systems, whose
origins are very ancient indeed. The Persians, the Greeks, and the Romans,
could all distribute letters throughout their domains in almost the same time
experienced today. Sometimes these “letters” were written on strange materi-
als. The peoples of Mesopotamia sent their clay tablets written in cuneiform,
and in some cases put them in a clay envelope for delivery. However, the first
postal service open to everybody was established by the order of Maximilian
I of Augsburg in the 15th century and spread through Europe immediately.

Mail has been considered important in all cultures, showing how networks
of relationships have always been fundamentally important. The postal service
has also been crucial for the development of culture in general, and of mathe-
matics in particular. Pascal and Fermat interacted regularly by sending letters
to each other. A mail exchange between Goldbach and Euler gave rise to the
famous Goldbach conjecture on prime numbers that is still open. Descartes de-
scribed by mail to all his friends the coordinate system that would eventually
be named after him. More than anyone, the ingenious friar and mathematician
Marin Mersenne acted in the XVII century as the center of one of those intel-
lectual communities called “Republica Literaria” (Republic of Letters) that
flourished in Europe and America from the Age of Enlightenment, dispatching
and exchanging correspondence with all the greatest scientists of his time.6

Many other mathematicians discussed their ideas by mail until the middle
1900s, and some of them still do showing a romantic attachment to ancient
habits. Computer scientists are generally speaking more modern and exchange
e.mails.

Aside from the mail, a broader diffusion of information started with the
invention of printing. Newspapers and books spread immediately in great

5The most complete description of the Inca habits is due to the indigenous writer Felipe
Guaman Poma de Ayala in his book: Nueva Cronica y Buen Gobierno (New Chronicle and
Good Government), hand-written in 1615 and republished today in several editions. There
is an ongoing debate on the writing ability of the Incas that the book did not resolve.

6Mersenne’s collection of letters, published in 1988, consists of seventeen volumes and
is regarded as a fundamental reference for studying XVII century mathematics. It may be
noted that from Republic of Letters comes the appellation “man of letters” to indicate a
scholar (women may have not been accepted...).
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quantities as instruments of cultural and political debate, as they remain
today. A whole book would be necessary to recount the history of printing.

Another important revolution, similar in some sense to that of the Internet,
occurred with the invention of the telegraph, which shrank the world more
quickly than ever before, with various consequences in many fields. The first
telegraph was optical and consisted of blinking shutters or antennas with
whirling arms that could assume several different positions to code letters,
numbers, or whole sentences. These gadgets were located on top of towers or
high buildings to be recognizable by a telescope, so that, weather conditions
permitting (remember the Waterloo pigeon), the message could be sent in a
very short time from tower to tower up to the final destination. The system
was widely used in Europe. The 1797 edition of the Encyclopedia Britannica
reports:

The capitals of distant nations might be united by chains of posts, and the
settling of those disputes which at present take up months or years might then
be accomplished in many hours.

The spread of the electrical telegraph, independently born in the United
States and in England, was more painful, due to the skepticism against a non
intuitive means of transmission and the consequent difficulty of raising funds.
With time some American investors began to understand its enormous poten-
tial and started the construction of several telegraphic lines from New York
to all the other states of the union. The success was immediate in America
and then in Europe, although sending messages was expensive, and stimulated
the construction of a transatlantic line between Europe and America, finally
completed in 1865 after a number of failures. A few years later a network
composed of submarine cables, telegraphic subnetwork and pneumatic post,
a sort of Internet of the Victorian age, connected a large part of the world.

The telephone came next and had an immediate and impressive impact.7

The technology developed fast: operations for connecting a caller and a re-
ceiver went from manual to electric, to electronic. Signal amplification allowed
the connection of very distant points. Modern transmission techniques allow
the sending of several calls on the same cable or radio bridge increasing both
the traffic and the income of the telephone companies. But this is recent his-
tory and is well known.

7The early history of the invention of the telephone has the taste of a thriller and was
never made really clear in a series of lawsuits. We only say here that the patent of Alexander
G. Bell was forensically victorious and commercially decisive, but the Congress of United
States stated in 2002: “The life and achievements of Antonio Meucci should be recognized,
and his work in the invention of the telephone should be acknowledged.”
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10.2 Storing information

By definition, a repository of information is a library. The word currently
still suggests a collection of traditional books and other written materials,
but it is hard to predict how long this will remain the case. Once the political
institutions and/or the digital electronics industry manage to provide safe
access to all digitized information and its continuous reproduction in the ever
developing electronic media, collecting books will probably become the hobby
of a small minority. Let us see what has happened up until now.

Almost every country has a National Library, together with a wealth of
public or private libraries of good reputation. Competition among them is rare
and not that significant; but it was not always so. In ancient times the library
of Alexandria (in Egypt today), that has been in the news in recent years in
the context of a UNESCO sponsored reconstruction project; and the library
of Pergamon (in Turkey today) competed to acquire the most prestigious
manuscripts.

It is not surprising that both libraries were founded by two great statesmen:
Ptolemy, a general of Alexander the Great, in Alexandria; and Eumenes II of
the Attalids in Pergamon. The size of the two libraries was impressive. Shortly
after their foundation in the III century B.C. they had over two hundred
thousand volumes, although some historians report much higher numbers, and
went on growing for two centuries more. But, even more interestingly, they
were both associated with big “research centers” to which scholars came from
all over the ancient world. Luckily the successors of Ptolemy and Eumenes II
continued with the same attitude towards such a wonderful cultural heritage.

Close to the libraries the writing industry flourished, with the Egyptians
developing their own papyrus paper, and the Attalids, short of papyrus whose
exportation from Egypt was eventually forbidden, inventing parchment, called
“pergamena” after the name of the city.

Compared to the innumerable libraries that followed in subsequent cen-
turies up to the present age, it is fair to say that Alexandria and Pergamon
remained unsurpassed in terms of organization and aims. The rooms were lined
with shelves located in such a way to permit enough ventilation to preserve
the manuscripts from humidity. Many scholars were in charge of classification
and were competent enough to decide the authenticity or the importance of
each manuscript, up to the point that, when Pergamon announced the ac-
quisition of a new oration of Demosthenes, the librarians of Alexandria were
able to prove that the original was indeed contained in a manuscript in their
possession. Officers were permanently in charge of visiting neighboring coun-
tries in search of new acquisitions. And a tremendous cultural and artistic life
flourished in the two cities.

Taking a big leap in history we come to the digital libraries of today.
Of course it is much simpler to read about Alexandria and Pergamon on
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Wikipedia than getting into an ancient boat to visit the two libraries. On the
other hand, with the greatest respect to the serious and dedicated people that
provide services on the Internet, the librarians of Alexandria and Pergamon
that could locate a manuscript for the visitor and give advice on its merits are
no longer to be found: not only in the Internet world, but even in a physical
library of today.

An intermediate way of merging traditional library preservation with com-
puter technology is the Google Books Library Project, which aims “to digitally
scan books from their (the participating libraries) collections so that users
worldwide can search them in Google.” Many major libraries worldwide have
agreed to participate, making it possible to imagine a vast librarian patrimony
permanently available online.

10.3 The hypertext revolution

In addition to writing words in phonetic or ideographic alphabets, hu-
mans have always used pictures to describe scenes. How images are stored,
recognized, and processed in our brain is a highly complicated and hotly de-
bated subject. For computers, however, the recording business is very simple
as an image is represented by a binary string coding its “pixels” (very small
monochromatic regions in which the image is divided), generally in the form
of a mixture of the three basic colors red, green, and blue. Since the standard
representation is one byte per color component, or 24 bits for pixel, in prin-
ciple 224 different color tones can be defined, although far fewer are generally
sufficient.

However, the Web also uses a different mode of organizing and making
available the information stored, that constitutes a great innovation over the
past. Let us recount, then, the hypertext story. We will see how a person of
keen imagination and nonstandard perspective truly was ahead of his time.

As we have already said, the Web was originally designed in a huge research
center to allow people to work together by exchanging knowledge in a sea of
multimedia documents. Besides text, Web pages now include graphics, images,
audio and video files. But since the very beginning pages could include links to
other pages containing additional information. In a sense a Web page expands
in many dimensions through its links, thus becoming part of a “hypertext,”
although this term is a little pompous. In mathematical terms we are talking
of a directed graph, no more: not a string, not an image, but something really
new in the world of communications. Now all this appears absolutely normal,
but when the system was designed the page structure could have taken many
different directions.

The concept of hypertext, however, was not new. It had been proposed
long before by Theodor H. (Ted) Nelson. The son of a film director and a
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Hollywood actress, Nelson grew up in an age of counterculture. He was aware
of the motion effects obtainable in the movies, and the idea of reshaping
written documents probably came from there. In 1965 Nelson presented a
paper at an important computer conference, advocating the use of computers
for text processing, something uncommon in those times. There he suggested
the idea of a text that develops through hyperlinks in several dimensions. In
his own words:

I knew from my own experiment what can be done for these purposes with
card file, notebook, index tabs, edge-punching, file folders, scissors and paste,
graphic boards, index-strip frames, Xerox machine and roll-top desk. My intent
was not merely to computerize these tasks but to think out (and eventually
program) the dream file: the file system that would have every feature a novelist
or an absent minded professor could want, holding everything he wanted in just
the complicated way he wanted it held, and handling notes and manuscripts
in as subtle and complex ways as he wanted them handled.

The term “hypertext” was Nelson’s invention. He looked at it as a liquid
flowing on a blackboard without definite borders. His dream was the creation
of an enormous document formed by all the documents of the universe. When
the Web was born some of the dreams of Nelson became reality, but he was
not satisfied because the hypertext was tightly linked to the network while he
imagined something much more general. Today he is often called a visionary,
and his influence in the development of the Web is beyond doubt and probably
more profound than is commonly thought.

10.4 Where are we now, and where are we going?

As everybody knows we live in the era of Web 2.0, a buzzword without a
precise meaning that generally refers to a set of improvements on what the
Web can offer, compared to the original capabilities. We assume that blogs,
wikis, social networking and many other ways of linking people through co-
operative actions are well known enough not to deserve a specific description.
Many other services are now offered on the Web, in particular a wealth of soft-
ware tools on a free or payment basis, but the global participation aspect is
probably the major essence of the present stage of evolution of the Web. Users
generate their own texts, express opinions, comment a book or a movie, post
personal photos, videos, music. As never before in history, almost everyone
has the chance to be part of a universal game.

Enthusiasts see the network as the foundation of a revolution whose roots
can be found into the counter-culture of past decades. They see its massive
use as a true social movement like environmentalism or punk rock, and its

© 2012 by Taylor & Francis Group, LLC



198 Mathematical and Algorithmic Foundations of the Internet

technology as an instrument for personal and social improvement. Like other
movements, the Web has provoked worldwide changes causing the rise and fall
of major players in diverse activities. Giant industries of telecommunication
and computing, and innovative companies adopting e.business models are on
the rise, while old fashioned companies, and others suffering from copyright
infringement are on the decline. A true revolution or not, the network has
played an important role in increasing the participation of people in taking
important decisions of overall interest, as demonstrated in the mass crusade
against land mines in the 1990s. It can perhaps even push governments to-
wards taking more responsible and transparent actions after the diffusion of
confidential documents like those released by Wikileaks.

Unfortunately this freedom allows the spreading of incorrect, perhaps de-
liberately manipulated pseudo-information, and indeed this happens contin-
uously. A great deal of care must be taken in judging the veracity of news
collected from the net, particularly as the human race seems to excel at pro-
ducing gossip and propagating calumny, as captured perfectly in a famous
Italian opera:

Calumny is a little breeze/ a gentle zephyr /which insensibly, subtly, /lightly
and sweetly/ commences to whisper.... until, in an unstoppable “crescendo”
it .... produces an explosion/ like the outburst of a cannon/ an earthquake, a
whirlwind/ which makes the air resound.8

Very often people are so captivated by it they do not even wish to find out
whether or not the rumor is true.

On more solid grounds, it is important to consider the role that the Inter-
net is having in scientific research. Modern science has its roots in the Age
of Enlightenment, but some developments have been possible only with the
advent of computers. Now we are entering a new scientific age, where differ-
ent factors like the immediate access to recently obtained results, the use of
algorithms designed and tested by others and embedded in free software, and
the availability of enormous sets of data are fostering a new approach to sci-
entific research with the Internet acting as a universal connector. The change
in mentality is happening slowly, but some spectacular results have already
been achieved, for example in molecular biology with the access to powerful
string matching algorithms and the availability of huge data bases of genetic
and protein sequences.

So far so good. But very surprisingly the characteristic functionality of
the Web, namely mining information through search, is still in its infancy.
Although search engines have made huge steps forward over the last few years,
their use is essentially limited by a “bag of words” query method where the
user merely specifies some keywords; in some cases it is difficult to choose the
words in order to get a satisfactory result. Much more might be expected from

8G. Rossini, The Barber of Seville.
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such sophisticated giants: at least the possibility of submitting a request that
a human could understand and answer properly. An example may be sufficient
to clarify this point.

When this book was being written, as an answer to the pair of keywords
“berkeley movies” Google gave a link to a well organized table with a listing of
movie theaters in the area of Berkeley, California, a summary of their current
shows with links to a short description of each movie, their prices, and sundry
other useful information. But asking for “Japanese movies at berkeley” the
link to the table disappeared and all sort of trash answers came out, starting
with the details of a restaurant selling sushi close to a Berkeley movie theater.
Notwithstanding the fact that, the same day this experiment was performed,
one of the theaters in Berkeley was showing the Akiro Kurosawa’s famous epic
“The Seven Samurai” as also indicated in the previous table.

It is much more than a problem of page ranking, or the like. One would
like to ask: “is there a theater in Berkeley showing some Japanese film?” and
expect the search engine to politely reply: “yes, The seven samurai is on show
at...,” or maybe: “there is no Japanese film on show in Berkeley today, but
in Oakland... .” What is quite frustrating is that the search engine “seems to
possess” the information we want, but it is impossible to get it out because
the engine is incapable of interpreting the query. This is what has led to a
wealth of studies on the so called semantic Web. And in fact Tim Berners-Lee
himself was among the first to advocate this as a necessity.

The problem is difficult because it involves a mixture of artificial intel-
ligence, automatic learning, and natural language processing. The advances
necessary may seem a long way off, but research is underway into associating
“meaning” to raw data and grouping them into semantic classes, both theo-
retically and by examining how the users pose their queries or tag their files.
The use of social networks for this purpose has been widely adopted, leading
to the construction of a taxonomy of popular concepts known as a “folkson-
omy.” We anticipate the emergence of some really interesting new tools in the
near future.

In essence, where are we going? The Internet and the Web have created
a form of communication unthinkable up until a few decades ago. It attracts
strong adjectives like total; immediate; ubiquitous; free — notwithstanding
possible requests for payment for a faster connection; democratic — notwith-
standing an ever increasing “digital divide”; and uncontrolled and open to
everyone - except in some countries. If we exclude more esoteric means of
communication such as telepathy, the network may appear to be the ultimate
medium.

Of course these are very superficial remarks because the Internet is a very
recent achievement, and it is too early to understand where it is going. For sure
the tremendous capabilities of computer networks are modifying the way in
which people communicate in an extraordinary global anthropological trans-
formation. But in what direction and towards what ends this change will lead
us, we cannot claim to understand.
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