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Foreword

The advent of targeted tumor therapies in the clinic during the last 20 years

coincided with increasing activities to develop companion diagnostics that allow

stratification of patient populations for such therapies. The aim of these continuing

efforts is to increase the likelihood of detecting early signs of efficacy during

clinical drug development and, after approval, to target patient populations with

the best efficacy and safety profiles.

The concept of liquid biopsy, i.e., methods for retrieving molecular and/or

cellular information from blood draws, holds the potential to obtain information

from primary or metastatic lesions that are inoperable or difficult to access by

needle biopsy. It allows clinicians to longitudinally follow the course of cancer

evolution in an individual patient through sequential blood analyses. This approach

provides great opportunities to closely monitor the response of cancer patients to

therapy, which, in turn, can facilitate treatment decisions that can lead to early

changes in treatment.

Over the last decade, circulating tumor cells (CTCs) have received growing

attention in the field of diagnostics, due to the regulatory approval of the Veridex

(now Janssen Diagnostics) CellSearch® platform by the US Food and Drug

Administration in 2004, as the first liquid biopsy-based in vitro diagnostic (IVD)

product. With this technology, epithelial tumor cells are isolated using magnetic

beads coated with EpCAM antibodies. Since then, an increasing amount of data has

shown the prognostic value of CTCs in breast, colorectal, and prostate cancers.

While the number of EpCAM-positive CTCs detected in a standard blood draw is

clearly associated with poor survival, presumably due to their capacity to form

distant metastases, it became evident that EpCAM-negative tumor cells also do

exist within the bloodstream. The latter are, however, missed by the CellSearch®
system, and their numbers are not reflected in the analysis. These EpCAM-negative

cells are presumed to be the result of epithelial-mesenchymal transition (EMT), and

their phenotype might be related to the dissemination of cells from the primary

tumor and possibly resistance to therapy. However, the true nature of the

EMT-status of CTCs and the clinical relevance of EpCAM-negative CTCs are

still under investigation.
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Next-generation technologies for CTC isolation, like filtration and microfluidic

devices, have been designed to capture higher numbers of CTCs by using additional

markers (e.g., EMT or stem cell-like markers) or by exploiting the biophysical

differences (e.g., size and rigidity) between CTCs and normal blood cells. Increas-

ing the yield of CTCs from a blood draw may, in the future, help expand the use of

CTC technologies to indications like lung or pancreatic cancer, where CTC counts

are low. In addition, CTCs detected in early disease stages or during minimal

residual disease may become accessible to molecular analyses (e.g., detection of

potentially resistance-conferring mutations). An important upside along these lines

is the possibility of performing single-cell analyses, which can ultimately provide a

better reflection of the tumor heterogeneity and enable the detection of rare disease-

relevant mutations that are not found in tissue biopsies. Showing concordance of

molecular features detected in CTCs with those derived from established conven-

tional biopsies is also an important task. Needle tissue biopsy, which is currently the

“gold standard,” may be inadequate since it may not reflect the extent of tumor

heterogeneity and, therefore, miss clinically relevant tumor subclones. Moreover,

metastases at different sites in individual patients can also harbor distinct genomic

characteristics.

Fundamental biological questions in the field such as the viability of CTCs in the

bloodstream await further elucidation. To this end, the option to isolate viable

CTCs from microfluidic devices offers new opportunities for research and may

provide essential insights regarding the use of CTCs as pharmacodynamic bio-

markers. Cultivation protocols and in vivo propagation in patient-derived xenograft

models are already being explored for testing drugs with the goal of applying these

technologies in the framework of personalized medicine. In addition, CTC-based

pharmacodynamic markers could be of particular interest for immuno-oncology

therapies. Here, novel markers for prediction of treatment response to new therapy

standards, like PD-1-/PD-L1-targeted approaches, are needed. Single CTC analysis

can potentially address this unmet need, as individual cells can be isolated based on

relevant protein marker expression, tested in short-term in vitro assays, and emerg-

ing markers for immuno-oncology like expression of PD-L1, as well as mutational

load and neo-antigen expression, can be analyzed. This may result in a more

complete picture of activated pathways for tumor immune evasion and help stratify

patients to the best treatment available.

The use of CTC enrichment, isolation, and analysis in the clinical setting

critically depends on stability, reproducibility, and “plug-and-play” properties of

the technologies. In order to avoid technical day-by-day variation and observer

bias, a human component should be avoided or minimized. Obviously, automation

is key to achieve this and to ensure sufficient throughput and fast data turnaround

times. Optimization and evaluation of cell-based technologies to demonstrate that

they are fit for purpose in the intended context of use are crucially dependent on

standardization. Interdisciplinary multi-stakeholder consortia like the Innovative

Medicines Initiative (IMI) CANCER-ID have been initiated to address these chal-

lenges and hoped to support further developments in the field (www.cancer-id.eu).
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The authors of this volume highlight new developments in the analysis of CTCs.

Their contributions range from the description of new markers for CTC subpopu-

lations to the relevance of these subpopulations for disease progression. Issues of

clinical implementation of CTC technologies and guidance of clinical decisions

based on CTC expression of pharmacologically relevant targets are discussed. We

hope that this book may stimulate further progress in research on CTC-based

companion diagnostics, which can ultimately lead to improved cancer therapies.

Biomarker Research, Bayer AG, Leverkusen, Germany Thomas Schlange

Department of Tumor Biology Klaus Pantel

University Medical Center Hamburg-Eppendorf

Hamburg, Germany
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Preface

Circulating tumor cells (CTCs) shed by the primary tumor into circulation provide

unique opportunities for elucidating mechanisms involved in cancer progression,

metastasis, and development of resistance to therapy. Numerous clinical studies,

including meta-analyses, have now unequivocally demonstrated the strong associ-

ation between the levels of CTCs in the blood of cancer patients and poor prognosis.

While the question regarding the clinical relevance of CTCs has been largely

settled, the molecular nature and the biology of CTCs are just beginning to be

unraveled. The slower progress in efforts towards molecular profiling of CTCs has

been attributed mainly to the technical difficulties in isolating these rare cells from

blood, as well as the complexities involved in molecular characterization of single

or small numbers of cells.

In this book, key leaders in the field of CTC research present state-of-the-art

approaches for the detection and isolation of CTCs, along with innovative strategies

for molecular profiling of these cells. In addition, the book provides excellent

discussions regarding the current understanding of the molecular biology of

CTCs. This book will serve as an important source of information for bench

scientists as well as clinical researchers who are interested in pursuing research to

elucidate the biology of CTCs and their potential utility as biomarkers in the clinic.

University of California San Francisco Mark Jesus M. Magbanua

San Francisco, CA, USA John W. Park
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Chapter 1

Circulating Tumor Cells as Cancer
Biomarkers in the Clinic

Ludmilla Thomé Domingos Chinen, Emne Ali Abdallah,

Alexcia Camila Braun, Bianca de Cássia Troncarelli de Campos Parra Flores,

Marcelo Corassa, Solange Moraes Sanches, and Marcello Ferretti Fanelli

Abstract It is believed that the development of metastatic cancer requires the

presence of circulating tumor cells (CTCs), which are found in a patient’s circula-
tion as rare abnormal cells comingled with billions of the normal red and white

blood cells. The systems developed for detection of CTCs have brought progress to

cancer treatment. The molecular characterization of CTCs can aid in the develop-

ment of new drugs, and their presence during treatment can help clinicians deter-

mine the prognosis of the patient. Studies have been carried out in patients early in

the disease course, with only primary tumors, and the role of CTCs in prognosis

seems to be as important as it is in patients with metastatic disease. The published

studies on CTCs have focused on their prognostic significance, their utility in real-

time monitoring of therapies, the identification of therapeutic and resistance targets,

and understanding the process of metastasis. The analysis of CTCs during the early

stages, as a “liquid biopsy,” helps to monitor patients at different points in the

disease course, including minimal residual disease, providing valuable information

about the very early assessment of treatment effectiveness. Finally, CTCs can be

used to screen patients with family histories of cancer or with diseases that can lead

to the development of cancer. With standard protocols, this easily obtained and

practical tool can be used to prevent the growth and spread of cancer. In this

chapter, we review some important aspects of CTCs, surveying the disease aspects

where these cells have been investigated.
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1.1 Circulating Tumor Cells (CTCs) as Prognostic Factors
in the Metastatic Setting

It is believed that the dissemination of cancer requires the presence of CTCs, which

are defined as isolated single or clusters of cancerous cells in the blood or lymphatic

fluids co-mingled with billions of normal hematopoietic cells (Mego et al. 2010).

The presence of CTCs in the peripheral blood was first reported by Thomas

Ashworth (1869), an Australian doctor at Melbourne Hospital. He studied material

obtained from the autopsy of a patient with metastatic subcutaneous tumors located

in the anterior wall of the chest and abdomen. He noted circulating cells (obtained

from the saphenous vein of the right leg) identical to those from tumors and

postulated that these cells were derived from an existing tumor structure, they

must have traversed a large part of the circulatory system to reach the inside of

the saphenous vein the right leg.

The development of enrichment systems and immunohistochemical detection of

CTCs represents significant progress for the scientific community. The best known

is the CellSearch® System, which separates the cells with magnetic beads coated

with anti-epithelial cell adhesion molecule (EpCAM) antibody followed by flow

cytometry of cells captured with anti-cytokeratin fluorescence. Reading is done in

semi-automated microscope (revised by Riethdorf and Pantel 2008). In 2007, the

U.S. Food and Drug Administration (FDA) approved the system for monitoring

patients with metastatic breast, prostate, and colorectal tumors (www.accessdata.

fda.gov/cdrh_docs/reviews/K071729).

The overall majority of metastases are localized in internal organs, such as lung,

bone, or liver. Because of this, conventional biopsies of metastatic lesions are

invasive, painful and expensive. Accordingly, both the isolation and characteriza-

tion of CTCs might serve as a real time “liquid biopsy” (Hayes and Paoletti 2013).

Using the CellSearch® System, Cristofanilli et al. (2004) reported a study of

177 patients with metastatic breast cancer, performing the CTC counts before and

after the start of treatment for metastatic disease. Patients with �5 CTCs/7.5 ml of

blood when compared to those with less <5 CTCs/7.5 ml, had lower progression-

free survival (2.7 versus 7 months, p < 0.001) and reduced overall survival (10.1

versus 18 months, p < 0.001). After the first segment following the beginning of

treatment, this difference between the groups persisted (in relation to the survival

and the number of CTCs). Multivariate analysis of CTCs levels before and after the

start of treatment proved the significance of these predictors of overall survival

(OS) and progression-free survival (PFS). Furthermore, it was observed that about

70% of patients with metastatic disease had CTC counts above 1/7.5 ml of periph-

eral blood. This study provided key evidence for the use of CTCs and was used to

clear CellSearch® by the FDA.

Using the same CTC detection system, Nolé et al. (2008) studied 80 patients

with metastatic breast cancer and evaluated them at the beginning of treatment, at

4 and 8 weeks after the first clinical assessment, and then every 2 months thereafter.

Before the start of the treatment, 49 patients had�5 CTCs. In multivariate analysis,
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the CTC levels before treatment were significantly associated with PFS (relative

risk [RR] 2.5, 95% CI). Patients with persistent levels of CTCs �5 had increased

risk of progression compared to those with CTCs <5 (RR 6.4, 95% CI). These

studies indicate the likely utility of CTCs in assessing the responses of patients with

metastatic breast tumors.

For colorectal cancers (CRC), the primary strategy for treatment is complete

resection of the primary lesion (Katsumata et al. 2006). However, despite this, some

patients experience recurrences that are believed to reflect residual

micrometastases. Conventional diagnostic methods are not capable of detecting

CTCs present in these sites that are eventually released into the circulation.

Katsumata et al. (2006) used the reverse transcription polymerase chain reaction

(RT-PCR) to detect CTCs, through the identification of cytokeratin genes and

carcinoembryonic antigen (CEA). They analyzed 57 patients with CRC who

underwent surgery. The presence of cytokeratin 20 (CK20) in peripheral blood

was evaluated. The CK20 mRNA was found in 42.1% of patients and was corre-

lated with lymph node metastasis ( p¼ 0.037). The 5-year overall survival (5y–OS)

for CK20 positive patients was 62.5% whereas for CK20 negative it was 87.5%

( p ¼ 0.048). Therefore, the authors advocate the idea of looking at CTCs as being

one of the best predictors of disease recurrence. However, it is known that hema-

topoietic cells may express “not legitimate” antigens associated with tumor or

epithelial cells, and pseudogenes can lead to PCR products identical to imprinted

genes, which can lead to false positive results by RT-PCR (Gunn et al. 1996).

Sastre et al. (2008) observed a positive correlation between the number of CTCs

and clinical stage in 97 patients with the following characteristics: non-metastatic

CRC newly diagnosed or rectal cancer without neoadjuvant chemo-radiotherapy;

metastatic CRC newly diagnosed; and CRC recurrence. They used a control group

of 30 healthy patients. A cut-off of 2 CTCs/7.5 ml was chosen for this study. There

was an observed relationship between CTCs and location of the primary tumor,

increased levels of CEA, lactate dehydrogenase and degree of differentiation.

De Giorgi et al. (2010) evaluated the relation between the detection and prog-

nostic significance of CTCs and sites of metastases detected by 2 [fluorine-18]-

fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography

(FDG-PET/CT) in patients with metastatic breast cancer. The study included

195 patients. Higher numbers of CTCs were observed in patients with bone

metastases (detected by PET/CT) than in patients without these metastases (mean

65.7 versus 3.3; p ¼ 0.012) as well as in patients with multiple metastases in

relation to one or two bone lesions (mean 77.7 versus 2.6; p < 0.001). CTCs

were OS predictors in 108 patients with multiple metastases, including bone

( p� 0.0001) but not in 58 without bone metastasis ( p¼ 0.411) and in 29 involving

bone alone ( p ¼ 0.3552). In multivariate analysis, the CTCs, but not bone metas-

tasis, remained as significant predictors of SG.

A meta-analysis of 36 CTC studies with 3094 CRC patients was published by

Rahbari et al. (2010). The authors concluded that CTC detection in peripheral blood

was an indicator of poor prognosis in patients with primary CRC (Rahbari et al.

2010).
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Hofman et al. (2011) evaluated CTC detection, by CellSearch®, in lung cancer

patients after surgical resection and correlated it with pathologic findings and

clinical outcomes. They analyzed the blood of 208 patients with non-small cell

lung cancer (NSCLC) with diverse histology before surgery and also blood of

39 healthy volunteers. Of these, 44% were in stage I, 25% in stage II, 28% in

stage III, and 6% in stage IV. CTCs were detected in 37% of the NSCLC patients

but there were no CTCs detected in the healthy individuals. There was no correla-

tion between the presence of CTCs and the different stages, but equal counts or

those above 50 CTCs were related to worse OS ( p ¼ 0.002) and PFS ( p ¼ 0.001)

compared to counts less than 50 CTCs.

Krebs et al. (2011) studied 101 patients with NSCLC in stages III and IV without

prior treatment, to determine the ability of CTCs to indicate the response to therapy

to a standard cycle of chemotherapy. CTCs were evaluated by CellSearch® and

their numbers were higher in patients with stage IV (n ¼ 60) than in patients with

stage IIIB (n ¼ 27) and IIIA (n ¼ 14), where no CTC was detected (n ¼ 14). PFS

was 6.8 vs. 2.4 months ( p < 0.001) and OS was 8.1 vs. 4.3 months ( p < 0.001) in

patients with less than 5 CTCs compared with patients with 5 or more CTCs before

chemotherapy. In multivariate analysis, the number of CTCs was the strongest

predictor of OS (hazard ratio [HR] ¼ 7.92; 95% CI: 2.85 to 22.01; p < 0.001) and

the estimated HR increased with the second sample of CTC harvested after the first

cycle of chemotherapy (HR ¼ 15.65; 95% CI: 3.63 to 67.53; p < 0.001).

In concordance with this study, Punnoose et al. (2012) performed CTC collec-

tions before treatment of NSCLC and on days 14, 28 and 56 after the start of this

study. The response ratings were evaluated by PET-CT on days 14, 28, and 56 after

start of treatment. Patients who had partial or complete response by PET-CT

showed greater reduction of CTCs from baseline ( p ¼ 0.014) as did patients with

partial response in CT at day 56 ( p ¼ 0.019). Recently, Muinelo-Romay et al.

(2014), used CellSearch® and found a statistically significant difference in PFS (8.5

versus 4.2 months; p ¼ 0.016) before the second cycle of chemotherapy among

patients who had CTCs drop to less than 2 CTCs/mL compared to those who

maintained levels above that. Patients whose CTCs counts remained at or above

the top after the first chemotherapy cycle showed greater radiographic progression

rates compared to patients whose scores decreased after the first cycle.

Our group (Chinen et al. 2013) reported the case of a patient with NSCLC where

two methods were used to detect CTCs: one method was antibody-based and

similar to CellSearch®, while the other method was size based (ISET®, or the

Isolation by Size of Tumor cells method, Rarecells, France). The levels of CTCs

detected by ISET® had correlation with image exams and showed circulating tumor

microemboli (CTM), which is known as a poor prognostic factor. In fact, the patient

had disease progression just 1 month after the detection of CTM.

Some studies indicated that CTCs have the ability to form clusters of CTCs,

named CTM, in the circulation. CTM were demonstrated in a variety of tumor

types, providing pro-metastatic capabilities compared to solitary CTCs in circula-

tion (Brandt et al. 1996; Hou et al. 2012). Hou et al. (2012) hypothesized that

because CTM appear to lack apoptotic features, they may be more resistant to
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anoikis and hence have a survival advantage in circulation as compared to singular

CTCs. Some authors believe that CTM, at least in some cases, result in clinically

detectable metastases (Brandt et al. 1996; Hou et al. 2012; Caixeiro et al. 2014).

Recently, we observed the presence of CTM by ISET® in 43 patients with

locally advanced head and neck squamous cell carcinoma (LAHNSCC), who had

been treated with curative intention and evaluated as to their drug resistance and to

their protein expression (excision repair cross-complementation 1 [ERCC1] and

multidrug resistance protein 7 [MRP-7] related to cisplatin and taxane resistance,

respectively) with PFS (De Oliveira et al. 2016). The median number of CTCs at

baseline (before any treatment) was 2.0 CTCs/ml (0–8), and 27 of 43 patients had

CTCs analyzed after treatment, with a median count of 3.0 CTCs/ml (0–12).

Patients with CTC counts under the median had better PFS after treatment (11.66

versus 9.5 months; p ¼ 0.132). The presence of CTM was strongly correlated with

worse PFS after treatment; about 2 months after the beginning of treatment (first

follow-up; p ¼ 0,012), especially if ERCC1 (7.2 versus 17.9 months; p < 0.001) or

MRP-7 staining (10.4 versus 17.4 months; p ¼ 0.025) were positive in these CTM

(Fig. 1.1). These results show that not only the presence of CTM but also their

molecular features can help physicians to understand the biology of these diseases

and their evolution, and to provide better treatment for their patients.

There a few studies about the role of CTCs in epithelial ovarian carcinoma

(EOC), probably because the primary route of metastasis in this type of cancer is

peritoneal spread in the abdominal cavity, with distant metastases occur in only

about one-third of the patients (reviewed by Van Berckelaer et al. 2016). The few

studies that exist, made with diverse methods, have shown the role of hematoge-

nous spread in EOC and that CTC levels �2 CTC/7.5 mL (CellSearch®) or �1

tumor-associated transcript above threshold (Adnatest) is associated with poor PFS

and OS (Poveda et al. 2011; Aktas et al. 2011; Kuhlmann et al. 2014). However, as

for all solid tumors, the prognostic role of CTCs in EOC is dependent on the

isolation and detection methods. Recently, we (Corassa et al. 2016, submitted)

reported a case of a 19-year-old woman with advanced low-grade serous papillary

adenocarcinoma that relapsed disease with no corresponding cancer antigen

125 (CA 125). CTCs were evaluated by ISET® method and compared with CA

125 levels and image exams. Although relapses were not correspondent to eleva-

tions of CA 125, they were related to CTC counts, which were proportional to

disease relapse. After exposure to two different chemotherapy regimens, CA

125 could not detect uncontrolled disease, remaining low despite the ongoing

symptoms and novel imaging findings. CTCs, on the other hand, if used in clinical

practice, would be helpful in determining the quality of treatment decision-making,

as their levels were related to clinical outcome. In a disease where the unique

biomarkers have had controversial roles CTC monitoring seems promising

(Fig. 1.2).

As for EOC, there are few studies with pancreatic cancer (PC), with a large

variety of CTC platforms, limiting the balance among the studies. Kurihara et al.

(2008) analyzed the CTC count in 26 patients with metastatic pancreatic cancer by

CellSearch® System and correlated it with various clinical findings. They could not
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Fig. 1.1 Immunostaining

of CTMs (a) CTM from

rectum cancer patient

visualized with

haematoxilin-eosin

(HE) (�40) (b) CTM from

LAHNSCC stained for

ERCC1, visualized with

DAB

(3,30-diaminobenzidine)

and counterstained with HE

(�20) (c) CTM from

LAHNSCC stained for

MRP-7, visualized with

DAB (diaminobenzidine)

and counterstained with HE

(�40). Photomicrograps

were taken using a light

microscope (Research

System Microscope

BX61—Olympus, Tokyo,

Japan) coupled to a digital

camera (SC100—Olympus,

Tokyo, Japan)
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observe statistically significant differences in tumor size; blood invasion; or splenic

vein, portal vein, superior mesenteric artery, or vascular invasion. However,

patients with CTC �1/7.5 ml serum showed higher CA 19.9 levels compared to

the negative CTC (15,496 � 22,572 U/ml versus 1452 � 3800 U/ml; p < 0.05),

demonstrating positive correlation between the number of CTCs and serum CA

19.9. They also found a correlation between CTC levels and OS ( p < 0.001).

Bidard et al. (2013) found the same results with another cohort. A meta-analysis

recently published by Han et al. (2014) showed that patients who had any CTC in

their blood had a lower PFS ( p ¼ 0.001) and OS ( p < 0.001) compared to patients

who did not present these cells. The results held for PFS, whether dividing the

sample by the detection method of CTC by CellSearch® ( p < .001) or by RT-PCR

( p ¼ 0.032). According to the author, these results indicate that the prognosis of

patients with PC is associated with the presence of CTCs. Despite these results,

limitations such as the small number of studies and patients, different methods of

detection, and various treatments can lead to controversial results.

Although CTCs have been exhaustively explored in solid tumors, these cells can

be recognized in the blood of patients with mesenchymal tumors. Our group was

successful in demonstrating the possibility of ISET® in isolating CTCs from blood

Fig. 1.2 (a) CTC from a

patient with epithelial

ovarian cancer. CTC was

visualized with

haematoxilin-eosin

(HE) (�40) (b) Leucocyte
stained for CD45,

visualized with DAB

(3,30-diaminobenzidine)

and counterstained with HE

(x40). Photomicrographs

were taken using a light

microscope (Research

System Microscope

BX61—Olympus, Tokyo,

Japan) coupled to a digital

camera (SC100—Olympus,

Tokyo)

1 CTCs as Cancer Biomarkers 7



of patients with metastatic sarcoma. Before our study, others had detected CTCs in

the blood of patients with different types of sarcoma (rhabdomyosarcoma, Ewing’s
sarcoma, alveolar rhabdomyosarcoma, and neuroblastoma) by RT-PCR, which has

its sensitivity questionable, as the presence leucocytes can mask the result. In our

study, we performed spiking analyses with HT 1080 cell line derived from a human

fibrosarcoma to assess the ability and sensitivity of the ISET® in isolating sarcoma

cells from blood and observed that the ISET® practically does not lose tumor cells

from sarcomas (Chinen et al. 2014).

The results of the first clinical trial with CTCs was reported in 2013. The clinical

trial Southwest Oncology Group (SWOG) S0500 assessed the benefit of an early

change in chemotherapy for patients with breast cancer with persistent increase of

CTCs levels in the first follow-up after the start of first-line chemotherapy. A total

of 595 patients were included: 123 of them had levels of CTCs persistently elevated

on day 21 of treatment and were therefore randomized to continue the same

treatment or switched to an alternative drug therapy, by their treating physician’s
choice. What can be seen is that an early change to an alternative chemotherapy did

not increase overall survival. Although CTCs were a potent prognostic factor, the

lack of a survival benefit after switching from treatment based on high scores

suggests that the early detection of relapse can be important when a more effective

treatment is available. Changing an ineffective therapy to another that also is

ineffective does not change the outcome. Instead, a change of the treatment based

on the molecular characterization of CTC could be a promising approach (Smerage

et al. 2014).

The molecular characterization of CTCs could potentially play a role in the

development of new drugs, and changes their counts during treatment may help

oncologists to evaluate the patient’s status. The COU-AA-301 (A Phase 3, Ran-

domized, Double-Blind, Placebo-Controlled Study of Abiraterone Acetate

(CB7630) Plus Prednisone in Patients with Metastatic Castration-Resistant Prostate

Cancer Who Have Failed Docetaxel-Based Chemotherapy) study was the first

phase III trial aimed to evaluate CTC counts as an outcome measure for new

therapies for castration-resistant, metastatic prostate cancer in patients previously

treated with docetaxel. This study demonstrated that abiraterone inhibition of the

cytochrome P450 17 (CYP17) enzyme required for androgen synthesis significantly

prolonged the OS of the patients. The conversion of CTC from unfavorable to

favorable (using the cut-off �5 CTCs/7.5 mL) demonstrated a significant effect on

OS, suggesting a key role of access to serially CTCs as a predictor of survival

(Scher et al. 2015).

Bidard et al. (2014) published the first pooled analysis on clinical validity of

CTC in 1944 patients with metastatic breast cancer diagnosed between 2003 and

2012 in 17 centers in Europe. This was the largest pooled analysis of the clinical

utility of CTC count by CellSearch® system. As Cristofanilli et al. (2004), these

authors showed that more than 5 CTCs/7.5 ml at baseline were associated with

shorter PFS and OS. They also showed that the analysis of patients was improved

by adding CTC counts at baseline to the clinicopathologic features, whereas CEA
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and cancer antigen 15–3 (CA15–3) levels at this point and during therapy did not

add significant benefit.

Although he acknowledged methodology limitations, Cristofanilli (2014) states

that a critical review of the data suggests that enumeration of CTCs provides a

baseline therapeutic benefit ratio, independent of the treatment selected. Patients

with indolent disease (�5 CTCs) might derive benefit, such as better OS, from

sequential standard treatments. Bidard et al. (2014) showed that longitudinal

monitoring enabled early identification of patients with a refractory disease

(no decrease <5 CTCs/7.5 mL or unchanged �5 CTCs/7.5 mL).

In prostate cancer, CTC levels have been measured in about 2000 patients. The

collective data show that CTC measurements have potential to identify patients

with primary resistance 4–8 weeks after treatment initiation, making it possible to

monitor treatment efficacy, study drug target interactions, and identify mechanisms

of resistance at an individual level (Mehra et al. 2015).

After conducting this review of the history of research on CTCs, we observed

that the discovery of their existence mainly involved metastatic cancer. In recent

years research addressing non-metastatic tumors suggests that CTCs may have

promise for early diagnosis of primary lesions.

1.2 CTCs as Prognostic Factors in Advanced Stages
of Disease

Studies have been done with non-metastatic cancer and the role of CTCs in

prognosis also seems to be as important as it is in metastatic disease. In the study

of Magni et al. (2014), 16 of 90 patients (19%) had CTCs�1 at the outset (t0) and a

reduction in CTC number in cases of objective remissions. The proportion of

patients with CTCs �1 decreased over time as the therapeutic course proceeded.

Increasing CTC detection rate by enhancing the available laboratory tests and

achieving better patient characterization would be productive (Magni et al. 2014).

Nesteruk et al. (2014) analyzed the CTC prevalence in 162 patients with rectal

cancer after preoperative short-term radiotherapy. CTCs were evaluated by

RT-PCR, based on expression of CEA, CK20, and/or cancer stem cells marker

CD133 (CEA/CK20/CD133). CTC detection 7 days after surgery was a prognostic

factor for local recurrence ( p¼ 0.006). However, CTC detected preoperatively and

after 24 hours of resection was not. There was a significant relationship between the

presence of lymph node metastasis (positive node 1–2 [pN1–2]) and CTC preva-

lence after 24 hours of the surgery. These results indicate that in these patients with

advanced rectal disease, preoperative sampling was not significant for prognosis.

In the study of Murray et al. (2015), primary CTC counts are said to have a role

in colorectal cancer screening. But analyzing primary CTCs - detected before

surgical removal – did not predict clinicopathologic features of the primary

tumor. However, the same group described the secondary CTC levels as associated
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with these features after surgical removal, and suggested that this secondary count

may be important in identifying patients at high risk of relapse.

Hinz et al. (2015) analyzed the response after chemoradiation (RCTX) in

patients with rectal cancer with locally advanced disease and found that responders

had a lower incidence of CTCs compared to non-responders, which might be a

reflection of effective systemic and local treatment prior to surgery. They also

found no correlation between CTCs and tumor stage, which is in agreement with

Tsai et al. (2016).

Using immunofluorescence and immunohistochemistry techniques, Hong et al.

(2016) isolated and identified CTCs in 100% of (29) patients with early

(non-metastatic) breast cancer, indicating that this procedure allowed detection of

these cells with greater accuracy, sensitivity, and specificity. In addition, they

demonstrated in situ “naked eye” identification of the captured cancer cells via a

simple colorimetric immunoassay.

The use of CTC in non-metastatic colorectal cancer requires very sensitive and

specific detection methods. An international consensus on the assessment of detec-

tion method and markers needs to be finalized before incorporating CTC detection

into risk stratification in the clinical setting (Thorsteinsson and Jess 2011).

1.3 CTCs as a Predictor of Drug Resistance

It is well described that cancer is a heterogeneous disease composed of various

differing cell clones in different patients, with each clone having different charac-

teristics, including metabolism, mutations, gene regulation, gene expression, and

protein translation as well as signaling pathway alterations (Fearon and Vogelstein

1990; Gerlinger et al. 2012). These different characteristics reflect the natural

history of the disease, resulting in different tumor behavior, and therefore, tumor

prognosis, depending on how the neoplastic cells respond to treatment. This theory

can explain why patients with the same tumor localization, histopathological

classification, and stage have different outcomes and treatment responses (Marusyk

and Polyak 2010).

Advanced and metastatic solid tumors are commonly treated with chemother-

apy, one of the most aggressive types of treatment. Because its lack of specificity

ensures that it will affect many different kinds of cancer cells. Although chemo-

therapy has high potential activity against tumor cells, the toxicity of these drugs on

normal growing cells is a significant problem (Phillips et al. 2001; Roden and

George 2002). Even with targeted therapies, resistance mechanisms as well as toxic

side effects occur frequently (Holohan et al. 2013). The pharmacokinetics and

tolerability of the chemotherapy agents can also differ in cancer patients, and

many patient characteristics have to be taken into account before a specific che-

motherapy treatment is selected.

Resistance to chemotherapy is a very common issue in cancer (Haber et al.

2011). It can be an early or late event, which is attributed to intrinsic and acquired
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resistance, respectively (Holohan et al. 2013). When chemotherapy agents affect

their target cancer cells, the sensitive cells undergo cell cycle arrest and as conse-

quence the tumors eventually show shrinkage. But resistant clones in the tumor can

persist and grow again, increasing the tumor mass, with cancer cells with charac-

teristics completely different from the previous ones. The process of mutation and

deregulation in gene expression is continuous. Chemotherapy can also lead to such

modulations, making it difficult for clinicians to choose the best sequence of

treatment to control tumor growth (Holohan et al. 2013; Kuczynski et al. 2013).

There are some genes and proteins that have been described as factors that

contribute to resistance or to the responses to chemotherapy treatment, by

transporting drugs inside or outside of cells, repairing DNA damage, and/or evading

cell death (Holohan et al. 2013).

Acquired chemo-resistance is one of the recurrent issues in almost all tumors

after the exposition to chemotherapy. Many types of cancer cells have plasma

membrane proteins that transport chemicals and toxins out of the cytoplasm.

These proteins are mainly from the multi-drug resistance (MDR) family and have

been widely studied (Flens et al. 1996; Cui et al. 1999; Doyle and Ross 2003). Their

functions are ATP dependent, and they act as efflux pumps, with different mem-

brane proteins functioning to transport specific classes of drugs.

CTCs shed by the both primary and metastatic cancers during tumor formation

and progression are now considered to be a real-time “liquid biopsy” reflecting the

disease complexity (Salvianti et al. 2016). Thus far, studies on CTCs have been

focused on their prognostic significance, their utility for real-time monitoring of

therapies, the identification of therapeutic and resistance targets, and understanding

the process of metastasis (Salvianti et al. 2016).

CTCs can be considered pharmacological markers, and their analysis may allow

researchers to (a) provide proof of the mechanisms of action of a drug; (b) select

optimal doses and scheduling of antineoplastic drug administration; (c) gain an

understanding of both the therapeutic and resistance mechanisms of anti-cancer

drugs; (d) design rational combination therapies; and (e) predict treatment out-

comes, as postulated for pharmacodynamic biomarkers by Sarker and Workman

(2007) (reviewed by Devriese et al. 2011). Recently, it has been postulated that

molecular characterization of CTCs is key for increasing the diagnostic specificity

of CTC assays and investigate therapeutic targets and their downstream pathways

(Gasch et al. 2013).

CTCs have been demonstrated to be efficient markers for providing tumor

information, presenting predictive markers, optimizing choices of therapeutic strat-

egies, and thus opening new perspectives to achieve personalized medicine

(Gazzaniga et al. 2010; Gradilone et al. 2011a, b; Abdallah et al. 2015, 2016).

SomeMDR-related markers were successfully derived from CTCs, correlating with

drug resistance (MRP1, MRP2, MRP4, MRP5, and MRP7). Gazzaniga and col-

leagues (2010) performed a drug-resistance profile of CTCs from 105 patients with

epithelial tumors (bladder, colorectal, breast, gastric, urothelial, ovarian, esopha-

geal, head and neck cancers, and NSCLC), who received adjuvant or palliative

chemotherapy by analyzing messenger RNA expression. They analyzed mRNA
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from CTCs looking for drug transporters (MRP1, MRP2, MRP4, MRP5, MRP7,

human equilibrative nucleoside transporter [hENT] and deoxycytidine kinase

[dCK]) as markers of resistance. They found presence of CTCs by the

CELLection™ Dynabead® method in 51% of samples and the drug resistance

profiles were correlated with DFS ( p ¼ 0.001) and time to progression (TTP;

p ¼ 0.001) (for adjuvant and metastatic settings, respectively), and predicted the

treatment resistance in 98% of the cases. The same group (Gradilone et al. 2011a),

using the same principle, was able to evaluate MRP1 and MRP2 messenger RNA

expression in CTCs from metastatic breast cancer (mBC) patients treated with

conventional anthracyclines or nonpegylated liposomal doxorubicin. They

observed that patients treated with conventional anthracyclines showing CTCs

expressing MRP1 and MRP2 had a significant shorter progression-free survival

(PFS; p < 0.005).

In our study (Abdallah et al. 2016), the same results were observed working with

MRP1 in metastatic colorectal cancer (mCRC). MRP1 expression was linked to

short PFS in mCRC patients when it was found expressed in CTCs in relation to

negative ones ( p¼ 0.003). This relation of MRP-1 to poor PFS was not observed in

primary or metastatic tissues.

Another interesting result from Gradilone et al. (2011b) involved MRPs, human

epidermal growth factor receptor 2 (HER-2/neu), estrogen receptor α (ERα), and
aldehyde dehydrogenase 1 (ALDH1) expression in CTCs from mBC patients.

Patients who had CTCs expressing two or more MRPs had shorter PFS. Moreover,

the expression of ALDH1 (a stemness marker) was statistically correlated with the

number of MRPs. This suggests potential retention of stem cell properties within

the MRPs-expressing CTCs group, therefore resisting chemotherapeutic treatment,

and becoming more invasive and with high migratory capabilities.

The expression of stemness and epithelial-mesenchymal transition (EMT)-

related genes detected in CTCs seem to have a crucial role in chemo-resistance in

several tumors, such as castration-resistant prostatic cancers compared to

castration-sensitive ones (Chen et al. 2013), and breast cancer (Mego et al. 2012;

Nadal et al. 2013). These two cellular conditions are correlated. Studies have shown

that stem cell properties can be acquired during the EMT process (Mani et al. 2008;

Morel et al. 2008).

Continuing with well-known markers of drug resistance, our group (Abdallah

et al. 2015) compared the expression of thymidylate synthase (TYMS), an enzyme

involved in the process of metabolism of 5-fluorouracil (5-FU) in primary tumors

(mCRC), CTCs, and metastatic tissue. TYMS is constitutively expressed in

leucocytes and is found with augmented expression in some tumors, and confers

resistance to the effects of 5-FU (Popat et al. 2004). Surprisingly, the expression of

TYMS in CTCs (analyzed by immunocytochemistry) but not in primary tumors or

in metastatic tissue, was associated with rapid disease progression. We observed

that the expression of TYMS was statistically associated with high CTC’s levels in
the blood of mCRC patients.

Studies performing analysis of molecular profiles and molecular markers like

CEA, epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral
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oncogene homolog (KRAS), v-rapidly accelerated fibrosarcoma (RAF) murine

sarcoma viral oncogene homolog B (BRAF), vascular endothelial growth factor

(VEGF), adenomatous polyposis coli (APC), and tumor protein p53 (TP-53) in the

CTCs have raised hope that personalized treatments can be more effective and less

aggressive (Fina et al. 2015; Buim et al. 2015; Sawada et al. 2016; Bredemeier et al.

2016; Huang et al. 2016).

Increasing attention has been given in recent years to CTCs from castration-

resistant prostate cancer (CRPC) patients. CTC counts were reported to predict poor

overall survival (OS) in patients with progressive CRPC starting a new line of

therapy (de Bono et al. 2008). Both CTC count and CTC characterization were

reported in patients with androgen-receptor splice variant 7 messenger RNA

(AR-V7) in CTCs, mainly because it was correlated with resistance to enzalutamide

or abiraterone. Mutations in androgen receptor genes were reported in CTCs (Jiang

et al. 2010). Antonarakis and colleagues (2014) were able to detect AR-V7 posi-

tivity in CTCs from metastatic CRPC patients and to significantly associate these

results with low prostate-specific antigen (PSA) response rates, PSA PFS, clinical

or radiographic PFS, and OS in both arms, whose received enzalutamide and

abiraterone.

ERCC1 is a protein involved in nucleotide excision repair pathway, mainly

repairing helix-distorting DNA damage induced by ultraviolet light or electrophilic

compounds, such as cisplatin (Houtsmuller et al. 1999). ERCC1 was already

evaluated in CTCs from breast (Somlo et al. 2011), NSCLC (Das et al. 2012) and

ovarian cancer (Kuhlmann et al. 2014). Somlo and colleagues (2011) found weak

correlation of expression of ERCC1 among CTCs, primary tumors and metastases.

Das et al. (2012) correlated lack of ERCC1 expression in CTCs with better PFS

( p < 0.02, HR: 4.2). Ovarian cancer patients whose CTCs had ERCC1 expression

had worse PFS and OS ( p ¼ 0.02 and p ¼ 0.009, respectively) (Kuhlmann et al.

2014).

Hoshimoto and colleagues (2012a) performed CTC (blood) analysis by

multimarker RT-quantitative PCR assay (melanoma-specific proteins: melanoma

antigen recognized by T cells 1 [MART-1], melanoma-associated antigen

3 [MAGE-A3], and GalNac-T) in 331 patients with melanoma with sentinel

lymph node (SLN) metastases after complete metastasis resection. They found

that patients with two or more positive biomarkers had worse distant metastasis

DFS (HR ¼ 2.13, p ¼ 0.009) and reduced recurrence-free survival (HR ¼ 1.70,

p ¼ 0.046) and melanoma-specific survival (HR ¼ 1.88, p ¼ 0.043) by multivar-

iable analysis, suggesting they are good biomarkers to stratify patients with respect

to additional aggressive adjuvant therapy.

Regarding prognosis, CTC measurements have demonstrated to be useful in

paired analysis to primary tumors. Ilie and colleagues (2012) were able to detect in

CTCs isolated from 87 lung cancer patients by ISET® technology, anaplastic

lymphoma kinase (ALK)-rearrangement by fluorescence in situ hybridization

(FISH), and immunocytochemistry, demonstrating consistent results when com-

pared with matched primary tumors. Similarly, Pailler and colleagues (2013) found

18 of 18 NSCLC ALK-positive patients also positive in CTCs. However, among the
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14 NSCLC ALK-negative patients, they found 10 patients with at least 1 -

ALK-positive CTC. This is an important result, because lung biopsies are difficult

and obtaining enough cellular content to provide for a definitive tissue diagnosis

coveys significant risk.

BRAF mutations (V600E) in circulating melanoma cells (CMCs) can be iden-

tified by immunocytochemistry using anti-VE1 antibodies. This can reach a high

specificity and sensitivity compared with mutation status for corresponding primary

tumors (by pyrosequencing and immunohistochemistry), making it possible to

monitor patients focusing on a targeted therapy (Hofman et al. 2013). We (Buim

et al. 2015) also observed an interesting level of correlation between the primary

tumor and CTCs from mCRC patients in relation to levels of KRAS mutations

(71%), similar to results found in other studies (Mostert et al. 2013; Fabbri et al.

2013; Gasch et al. 2013; Raimondi et al. 2014). Kalikaki et al. (2014) evaluated

CTCs from 31 mCRC patients (14 primary tumors with mutant KRAS and 17 pri-

mary tumors wild-type KRAS). CTCs were isolated, counted, and captured for

further DNA analysis for KRAS status evaluation. The blood collections ranged

from one to four, and CTC ranged from 0 to 865/7.5 mL of blood. It was observed

that: (a) some patients had the same variations of mutations between CTC and

tumor: (b) some patients with mutations in the primary tumor lost the mutation in

CTCs over the course of treatment as well as returning to the prior mutation status,

and (c) patients with wild-type tumors and mutations in CTC. They were able to

find similar tumor mutation variants in only 3 CTCs from patients and by contrast,

they did not find mutations in 865 CTCs from patients with mutations in the primary

tumor. This shows the importance of follow-up of such patients by CTC analysis as

well as for genotypic changes, in order to change treatments as needed in a timely

fashion.

HER-2 overexpression and amplification in breast cancer is an important prog-

nostic and predictive marker. It predicts a good response to HER-2 inhibitors

(trastuzumab and lapatinib) in both adjuvant and metastatic lesions (Paik et al.

2008). HER-2 was observed in CTCs from breast cancer patients by laser micro-

dissection (Pinzani et al. 2006). They could compare the DNA of matched CTCs

and primary tumors from 7 CTC+ cases and found a good correlation of HER-2

amplification in these two sites (R¼ 0.918; p< 0.01). This result could represent an

advance in the follow-up of these patients in order to evaluate the status of HER-2

by CTC counts, reflecting the primary tumor as well as the response to trastuzumab

over time. Interestingly, Gasch and colleagues (2016) demonstrated the feasibility

in detecting CTCs with strong HER-2 positivity from mBC HER-2-negative

patients. Furthermore, they found mutations in phosphatidylinositol

4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in 12 of 33 patients

by micromanipulation, whole genome amplification, and Sanger sequencing of

their CTCs. These results move us toward use of personalized mBC treatment,

giving a better understanding of some mechanisms to HER-2 blockade resistance

by single cell analysis.

Recently, much effort has been expended to assess proteins with potential

predictive and therapeutic interest in CTCs. Some examples follow: B-cell
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lymphoma 2 (Bcl-2) (Smerage et al. 2013): Kiel-67 (Ki-67) (Paoletti et al. 2015):

γ-H2A histone family, member X (γ-H2AX) (Garcia-Villa et al. 2012):

programmed death-ligand 1 (PDL1) (Mazel et al. 2015; Satelli et al. 2016): and

folate receptors, mainly in NSCLC (Yu et al. 2013; Lou et al. 2013; Chen et al.

2015).

Finally, CTCs can be also expanded and cultivated in vitro, allowing molecular

characterization, and may even provide drug sensitivity data, to select patients who

will benefit from specific drug combinations (Yu et al. 2014; Cayrefourcq et al.

2015).

In this brief summary, we have addressed role and feasibility of CTCs as a mirror

of tumor signatures and identified them as a potentially valuable tool to monitor the

response to treatment. Further study should yield increased benefits over time. The

contents of Table 1.1 show an overview of studies with drug resistance gene

detection in CTCs and their relation with clinical outcome. Beyond the quantifica-

tion of CTCs, their molecular analysis can provide clinicians insights into the

pattern of a patient’s disease and provide tools for better management and

treatment.

With the advance of techniques for detection and purification of CTCs, it should

be possible to develop better individualized patient care, at different time-points,

thus continually re-evaluating a cancer throughout the course of treatment. Fur-

thermore, studies with larger numbers of patients should be performed in order to

evaluate the accuracy and the substantial clinical gains that molecular analysis of

CTCs can provide for clinical cancer therapy.

1.4 CTCs as Prognostic Factors in Early Stages of Cancer

It has been demonstrated in several clinical studies that the presence of malignant

cells in the blood is associated with a poor prognosis, even in the context of early-

stage disease. Lucci et al. (2012) carried out a prospective study involving

302 women with early-stage breast cancer. They observed, using the CellSearch®

system to isolate CTCs, that 73 of 302 (24%) patients had �1 CTCs/7.5 mL of

blood before surgery. These patients had poor PFS (log-rank p¼ 0.005; HR¼ 4.62,

95% CI 1.79–11.9) and OS (log-rank p ¼ 0.01; HR ¼ 4.04, CI 1.28–12.8).

Although this study showed the prognostic value of initial CTCs in malignant

disease, the CTCs were not monitored during the follow-up period nor was minimal

residual disease analyzed. Prospective studies with standard procedures to detect

CTCs, with well-established inclusion criteria, are currently needed (Hayes and

Paoletti 2013).

CTC detection in non-metastatic breast cancer is more difficult because the cells

occur at a lower frequency. Pierga et al. (2008) found CTC �1/7.5 ml in 23% of

97 patients before administering neoadjuvant chemotherapy and in 17% of

86 patients after neoadjuvant chemotherapy. The detection of CTC �1/7.5 ml

prior to neoadjuvant chemotherapy, after neoadjuvant chemotherapy, or at both
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time points in the above study was associated with worse distant metastasis-free and

OS at a median follow-up period of 36 months (Bidard et al. 2010). Moreover, it

was associated to poor clinical outcome, especially in patients with estrogen

receptor (ER)-negative, triple negative, and HER2-positive cancer (Ignatiadis

et al. 2007). When the CTC detection occurs before and after neoadjuvant chemo-

therapy, it appears that the detection of �1 CTCs/7.5 ml of blood can accurately

predict the poor overall survival of patients (Pierga et al. 2008).

Studies demonstrating CTC detection in non-metastatic CRC require specific

and sensitive methods, because of the low incidence of these cells in the initial stage

of the tumor, as in breast cancer. The presence of CTCs in the peripheral blood of

CRC patients is a potential marker of poor DFS (Thorsteinsson and Jess 2011).

Wong et al. (2009) examined 101 patients with tumor, node, metastasis (TNM)

stage I e III CRC, detecting CTC with a gastrointestinal-specific CK20. Sixty-two

of 101 patients were followed for a period of 24 months and the association between

preoperative elevated CK20 and recurrence was found to be highly significant

( p < 0.001). The CTCs were an independent prognostic factor of survival

( p < 0.005) in a multivariate regression analysis including TNM-stage, lymph

node status, age, sex, tumor stage and degree of differentiation. In accordance,

Iinuma et al. (2006) was also able to demonstrate poor DFS for CRC patients with

preoperatively elevated CTC using a RT-PCR based method.

Allen-Mersh et al. (2007) demonstrated that poor DFS was associated with the

occurrence of CEA or CK20 24 hours postoperatively ( p < 0.001). Uen et al.

(2008) used a multi-marker membrane array method to detect CTC in 438 patients

with TNM stage I e III colorectal cancer. Presence of all four markers (human

telomerase reverse transcriptase [hTERT], CK19, CK20, and CEA) was considered

as a positive result for CTC. The authors demonstrated that patients with persistent

presence of CTC after surgery had a significantly poorer relapse-free survival

compared with patients without CTC ( p < 0.001).

The CTCs analysis may also be useful for patients with melanoma. The detection

of CTCs in these patients may help for determining prognosis. Hoshimoto et al.

(2012a) reviewed the clinical usefulness of an RT-qPCR MultiMarker (MART-1,

MAGE-A3, and GalNAc-T) for detection of CTCs in 331 melanoma patients who

were clinically free of disease after lymphadenectomy. The individual detection of

CTCs ranged from 13.4 to 17.5% and there was no stated association of CTC with

known clinical or pathological prognostic variables. However, the presence of two

or more positive biomarkers was significantly associated with distant metastasis

and recurrence-free survival.

Lowes et al. (2012) were able to detect CTCs in patients with early stage prostate

cancer and suggested the possibility that the reduction after treatment of CTC levels

may be indicative of response to radiotherapy.

The main advantage of CTC analysis in early stages is based on the ease of

obtaining a “liquid biopsy” and thus being able to monitor patients over the course

of the disease, providing valuable information about the very early assessment of

treatment effectiveness and helping towards establishing individualized therapies
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that will improve the efficiency with less cost and fewer side effects for cancer

patients.

More studies on the molecular characterization of CTCs in early stage may

provide important information for the identification of therapeutic targets and

understand resistance to therapies (Lianidou et al. 2013). According to Lianidou

et al. (2014) CTCs characterization is promising in combination with sequencing

technologies that will allow the elucidation of molecular pathways in these cells,

generating new molecular therapies. The real-time monitoring of therapy in early

stages will have a major impact on personalized medicine in many types of cancers,

allowing the choice of more effective and less toxic therapies.

1.5 Role of CTCs in Minimal Residual Disease

Minimal residual disease (MRD) has usually been studied after surgery and treat-

ment with targeted therapies (Maheswaran et al. 2008). Defined as micrometastatic

cells undetectable by laboratory tests and conventional imaging, some MRD “sub-

stitutes” are detected in the peripheral blood (CTCs) and bone marrow (dissemi-

nated tumor cells [DTCs]). The detection of CTCs and DTCs leads to new strategies

for personalized treatment and therapeutic agents for breast cancer, and brings new

knowledge of tumor biology (Riethdorf and Pantel 2010).

DTC and CTC detection is a challenge, and different enrichment techniques are

applied for each. The techniques are based on physical properties or immunological

characteristics of these cells. Braun et al. (2005) detected micrometastases in 30.6%

of the patients with stage I, II, or III breast cancer. The presence of micrometastases

was a significant prognostic factor with respect to poor OS, breast-cancer-specific

survival, poor DFS, and distant-DFS during a 10-year observation period.

Micrometastasis was an independent predictor of a poor outcome. In the univariate

subgroup analysis, breast-cancer-specific survival among patients with

micrometastasis was significantly shortened ( p < 0.001 for all comparisons)

among those receiving adjuvant endocrine treatment (mortality ratio, 3.22) or

cytotoxic therapy (mortality ratio, 2.32) and among patients who had tumors no

larger than 2 cm in diameter without lymph-node metastasis and did not receive

systemic adjuvant therapy (mortality ratio, 3.65).

Several authors performed studies comparing CTCs and DTCs and demonstrated

correlation between them (Bidard et al. 2014; Goldkorn et al. 2014). Furthermore,

given that blood is more easily obtained than bone marrow, CTCs are now being

widely used as surrogate markers for DTCs.

Kasimir-Bauer et al. (2012), detected CTCs in 97 of 502 (19%) patients and

DTCs in 107 of 502 (21%) patients, showing the value of CTCs and DTCs, despite

the detection method for CTCs not being as efficient for identifying circulating

tumor cells undergoing EMT.

At the time of initial diagnosis, patients often have DTCs (at bone marrow) or

even undetected micrometastasis. The long dormancy period of MRD offers an
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opportunity to develop agents that can eradicate clinically relevant metastatic sites

(Wan et al. 2013). In vivo experiments suggest that DTCs from bone marrow

(BM) can be turned into CTCs and return to the primary tumor, a process called

“tumor self-seeding,” leading to aggressive metastatic variants (Kim et al. 2009).

Gao et al. (2016) adopted an integrated cellular and molecular approach of

subtraction enrichment and immunostaining-fluorescence in situ hybridization

(SE-iFISH (SE-iFISH, to investigate the chromosome 8 polyploidy, found in

many solid tumors) to detect CTCs in the peripheral blood of patients with

glioma, a disease considered restricted to brain, as very few cases with extracra-

nial metastases has been observed (Fonkem et al. 2011; Kalokhe et al. 2012).

However, the idea that brain glioma cells never enter the bloodstream has been

put in doubt recently. Müller et al. (2014) were the first to find CTCs in the

peripheral blood of patients with glioblastoma multiform (GBM) and declared

that CTC is the “intrinsic property” of GBM biology. However, it is important to

consider the methodological deficiencies in previous studies, the low incidence of

CTCs and the fact that results were exclusively limited to high-grade gliomas

(Gao et al. 2016). So, these authors investigated 31 patients with 7 different

pathologic features (grade II-IV) of primary gliomas. They identified CTCs in

24 of 31 (77%) patients with no statistical difference of CTC incidence/count in

different pathological subtypes or World Health Organization (WHO) grades of

glioma. Clinical data demonstrate that CTCs, to some extent, was superior to

magnetic resonance imaging (MRI) in monitoring the treatment response and

differentiating radionecrosis from recurrence of glioma. The authors propose the

use of CTCs to monitor the microenvironment of gliomas dynamically, as a

complement to radiographic imaging.

The role of CTCs in micrometastatic disease is not completely understood, as

CTCs compose a very heterogeneous population of cells, Meng et al. (2004)

showed that the presence of documented micrometastases by CTCs detection

does not imply absolute risk of subsequent recurrence. These authors reported

that 13 of 36 (36%) women who had no evidence of clinical disease 7–22 years

after mastectomy had detectable aneusomic CTCs. In other study (Wiedswang et al.

2004) it was reported that 53 of 356 (15%) patients who were disease-free after

3 years of follow-up had bone marrow micrometastases. After a follow-up of about

3 years, only 21% of these patients with documented persistent bone marrow

metastases relapsed.

Studies suggest that simply finding cells using high sensitivity assays may not

have clinical implications and that future studies using next-generation capture

devices need to be planned carefully, taking into consideration clinical outcomes

and not just diagnostic comparisons with the current gold standard. Molecular

characterization of captured CTCs might provide insight into the future clinical

behavior of the cancer, especially in relation to targeted therapy. However, it is

not clear that CTCs actually reflect the biology of the tissue-based cancer. It is

possible that the detected cells identified by currently available techniques are

merely those that were shed and are only the “tip of the iceberg”, as stained by

Hayes and Paoletti (2013). Or, these are terminally differentiated cells that reflect
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the presence of more malignant cancer stem cells that are not captured by

CellSearch®, (Hayes and Paoletti 2013), which can be captured by other antibody

independent methods.

1.6 Role of CTCs in Screening and Diagnosis

Kohn and Liotta (1995) published a study showing that in situ breast cancer is a

clonal precursor of breast carcinoma and that tumor invasion starts 5–10 years

before cancer diagnosis. According to Paterlini-Bréchot (2014), this raises the

hypothesis that it should be possible to detect cancer at a pre-diagnostic stage

through the very sensitive detection techniques for “sentinel” cancer cells in

blood.

More recently, Ilie et al. (2014) collected blood samples from 168 individuals

with chronic obstructive pulmonary disease (COPD), a disease that typically results

from long-term cigarette smoking, causing breakdown of lung tissues, and an

increased risk of lung cancer. They also studied 77 control subjects. They looked

for CTCs by ISET® in the blood of all 245 subjects, to investigate CTCs as a

possible new marker for early lung cancer. They also obtained annual CT-scans in

the COPD (68.6%) and control subjects (31.4%), none of whom were known to

have lung cancer. CTCs were identified by cytomorphological analysis and char-

acterized by expression of epithelial and mesenchymal markers. CTCs were

detected during the study in 5 of the COPD patients (3%). The annual evaluation

of the CTC-positive COPD patients by CT-scan screening then detected lung

nodules 1–4 years later and led to surgical resection of early-stage lung cancers.

Follow-up of these 5 cancer patients (by CT-scan and ISET®) 12 months after

surgery showed no tumor recurrence. CTCs detected in COPD patients had a

heterogeneous expression of epithelial and mesenchymal markers. No CTCs were

detected in the 77 control subjects.

So, maybe, the utility of CTCs will not be only for follow-up of patients with

well-known disease but also prove to be useful for screening of patients with family

history of cancer, or with underlying diseases that can predispose to the develop-

ment of cancers. With standardized protocols, we may be able to develop a practical

tool for the early detection and prevention of untoward outcomes in this difficult,

harmful, and deadly disease.

1.7 Conclusions

Raimondi et al. (2014) started his paper with a statement: “If one could translate

the “Divina Commedia” into a scientific language and try to imagine where Dante

Alighieri would have placed circulating tumor cells (CTCs), the answer would be,

without a doubt, “in limbo”. These authors affirm that despite the increasing
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scientific evidence collected in the last decade, “which is enough to avert the

danger of Hell,” the use of CTC in clinical practice is still “far from the light that

suits to Heaven.” They support their idea based on disappointing results obtained

in the Phase III SWOG S0500 trial, concluding that CTCs are not a good marker

to help to decide when to choose chemotherapy in women with metastatic breast

cancer. They wrote a very interesting paper arguing that CTCs are “not in heaven

yet.”

These authors also discuss the CellSearch® system, which is the most used

method to isolate CTCs in clinical trials. It was cleared by the FDA in 2004, but

its clinical utility is still to be fully demonstrated. To date, no large prospective

studies using CellSearch® have shown any predictive value for CTCs, and their

clinical utility is therefore limited. The effect of the type of treatment on the

prognostic and predictive value of CTCs has not been directly evaluated, and the

ability of targeted therapies to modify the predictive value of CTC count has not

yet been demonstrated. CellSearch® is based on the capture of cells expressing an

epithelial antigen, without morphological verification of the neoplastic nature of

the captured cells. This is a weakness of the test, because it therefore can

misidentify nonmalignant circulating epithelial cells as CTCs. In addition,

CellSearch® is unable to detect cells that have undergone epithelial mesenchymal

transition, which explains the absence of CTCs in the subset of patients with

metastatic cancer with documented progression of the disease in many clinical

trials (Paterlini-Bréchot and Benali 2007; Pantel et al. 2012; Hofman et al. 2014,

2016).

Alternatively, there are investigators, who argue that the prognostic significance

of CTC counts should not be ignored, even when the system used to evaluate

CTCs—the CellSearch® System-has well known limitations (Kang and Pantel

2013; Paterlini-Bréchot 2014; Hofman and Popper 2016). Thus, CTC evaluations

are included as a biomarker in more than 400 clinical trials using various assays (see

Table 1.2).

We believe that CTCs studies have potential to help physicians use a more

rational approach for management of both metastatic and non-metastatic tumors,

reflecting solid tissue or mesenchymal cancers. However, we will need to develop a

standard system and protocol in order to be able to use CTCs in routine clinical

settings. There are systems that provide for CTC isolation in a marker independent

manner, by cytopathological analysis, which seems promising in capturing all

malignant cells.

Even considering their weak points, CTCs are one of the most promising and

versatile biomarkers in translational oncology (Mehra et al. 2015). As highlighted

by Kang and Pantel (2013), viewing CTCs as a “liquid biopsy” opens new oppor-

tunities for genotyping and phenotyping micrometastatic cells derived from various

distant sites, which, if adequately developed, may provide clinical oncology with

more complete pictures of the evolution of cancers compared to those provided by

biopsies of single metastatic sites.
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Table 1.2 Clinical trials that considered CTCs as a secondary endpoint on final analysis

Study Year Population Intervention Commentary

GEPARQuattro

(Riethdorf

et al.)

2010b BC neoadjuvant

therapy, multiple

subtypes, focus on

HER2 positive BC

Trastuzumab addi-

tion to anthracycline

based chemotherapy

and CTC related

response

Decrease in CTC

detection rate after

neoadjuvan therapy

(22% ! 11%).

Absent correlation

between CTC

decrease and patho-

logical complete

response. Evaluation

of survival variables

not performed. CTC

evaluation performed

in the HER2 positive

subgroup

GEPARQuinto

(Riethdorf

et al.)

2010a BC neoadjuvant

therapy, multiple

subtypes

Addition of targeted

therapy to

anthracycline based

chemotherapy

Decrease in CTC

detection rate after

neoadjuvant therapy

(23% ! 11%).

Absent correlation

between CTC

decrease and patho-

logical complete

response. Evaluation

of survival variables

not performed. CTC

evaluation performed

in the multiple sub-

groups (bevacizumab

in triple negative BC

and trastuzumab in

HER2 positive BC)

Behbakht et al. 2011 Relapsed/recurrent

ovarian cancer

after 1–3 lines of

treatment.

CTC analysis in

phase II trial of

Temsirolimus

monotherapy.

Positivity for CTC on

baseline was associ-

ated with shorter PFS

(5.4 months for CTC

negative and 2.3 for

CTC positive

patients). Statistical

significance was lost

after 12 months.

Decreasing counts of

CTC after therapy

demonstrated

improved numeric

PFS

COU-AA-31

(de Bono et al.)

2011 CRPC, 2nd line

post docetaxel

Abiraterone versus

placebo: CTC prog-

nostic evaluation

Elevated baseline

CTC counts and

decrease in 30% in

4 weeks were an

independent predictor

of OS with

abiraterone

(continued)
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Table 1.2 (continued)

Study Year Population Intervention Commentary

Poveda et al. 2011 Relapsed/recurrent

ovarian cancer

after platinum

therapy

CTC analysis for

association of

trabectedin to PLD.

CTC counts �2 at

baseline had higher

risk of progressive

disease (1.89) and

death 2.06, both with

statistical signifi-

cance. Multivariate

analysis including

CA-125, platinum

sensitivity status, per-

formance and tumor

grade sustained iso-

lated numeric

differences

AFFIRM (Scher

et al.)

2012 CRPC, 2nd line

post-docetaxel

Enzalutamide ver-

sus placebo: CTC

prognostic

evaluation

CTC counts �5 at

baseline were an

independent predictor

of poor OS in both

arms. Decline in CTC

below defined thresh-

old (<5) after treat-

ment with

enzalutamide was

predictor of greater

benefit and survival

MMAIT

(Hoshimoto

et al.)

2012b Melanoma, stage

IV, adjuvant.

CTC analysis

related to peptide

vaccine

administration

CTC biomarker

detection demon-

strated worst progno-

sis related to RFS,

distant metastasis and

melanoma specific

survival. Worst prog-

nosis was seen with

expression of more

biomarkers. CTC

levels were not asso-

ciated with prognosis

SUCCESS

(Franken et al.;

Rack et al.)

2012;

2014

BC adjuvance,

multiple subtypes

Evaluation of CTC

impact on survival.

Evaluation of dif-

ferent chemotherapy

schemes

Survival analysis for

primary endpoints

still pending. For

CTC analysis there

was no morphologic

or histologic differ-

ence between groups.

CTC detection was

associated with poor

DFS

(93.7% � 88.1%),

including local and

distant DFS, and also

(continued)
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Table 1.2 (continued)

Study Year Population Intervention Commentary

poor OS

(97.3% � 93.2%),

with statistical signif-

icance. Prognostic

impact was sustained

before and after

chemotherapy

LAP 07 – CirCe

07 (Bidard

et al.)

2013 LAPC: erlotinib

addition to

gemcitabine and

RT evaluation.

CTC as a prognostic

marker to LAPC

treatment

CTC � 1 at baseline

is directly correlated

with worst prognosis

for OS, with statisti-

cal significance. No

impact of CTC status

on PFS. Study is

underpowered due to

complications in

accrual and low

acceptance for CTC

analysis

MACRO

(Sastre et al.)

2013 mCRC: XELOX +

Bevacizumab in

1st line !
bevacizumab

maintenance

therapy

Evaluation of prog-

nostic CTC impact

despite of KRAS

analysis

Patients with CTC

counts <3 and KRAS

wild type tumors had

a greater statistical

significant survival

(PFS 14.2 and OS

28.9 months) com-

pared to patients with

CTC counts �3 and

KRAS mutated

tumors (PFS 6.2 and

OS 13.7 months).

Both high CTC

counts and KRAS

mutated status were

independent prognos-

tic factors for mCRC

NeoALTTO

(Azim et al.)

2013 HER2 positive BC,

neoadjuvant

therapy

Addition of

lapatinib and

trastuzumab to

chemotherapy

Lower pathologic

complete response

rate observed in

patients with detect-

able CTCs (27.3%

versus 42.5%) with-

out statistical signifi-

cance. Study was

underpowered (only

51 patients accepted

participation on CTC

analysis)

(continued)
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Chapter 2

Strategies for Isolation and Molecular
Profiling of Circulating Tumor Cells

Jia-Yang Chen and Ying-Chih Chang

Abstract Cancer is the leading cause of death by disease worldwide, and metas-

tasis is responsible for more than 90% of the mortality of cancer patients. Metastasis

occurs when tumor cells leave the primary tumor, travel through the blood stream as

circulating tumor cells (CTCs), and then colonize secondary tumors at sites distant

from the primary tumor. The capture, identification, and analysis of CTCs offer

both scientific and clinical benefits. On the scientific side, the analysis of CTCs

could help elucidate possible genetic alterations and signaling pathway aberrations

during cancer progression, which could then be used to find new methods to stop

cancer progression. On the clinical side, non-invasive testing of a patient’s blood
for CTCs can be used for patient diagnosis and prognosis, as well as subsequent

monitoring of treatment efficacy in routine clinical practice. Additionally, investi-

gation of CTCs early in the progression of cancer may reveal targets for initial

cancer detection and for anti-cancer treatment. This chapter will evaluate strategies

and devices used for the isolation and identification of CTCs directly from clinical

samples of blood. Recent progress in the understanding of the significance of both

single CTCs and circulating tumor microemboli will be discussed. Also, advance-

ments in the use of CTC-based liquid biopsy in clinical diagnosis and the potential

of CTC-based molecular characterization for use in clinical applications will be

summarized.
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2.1 Metastasis and Dissemination of Cancer Cells

Cancer is a leading cause of disease death worldwide. Cancer metastasis is believed

to responsible for the recurrence of cancer as well as the mortality of cancer

patients. Metastasis starts with the shedding of cancer cells from the primary

tumor. Once the primary tumor established, the epithelial origin of the primary

cancer cells will enable local migration and invasion, leading to dissemination of

the tumor cells into the bloodstream through intravasation (Chaffer and Weinberg

2011). Despite continuous intravasation of the cancer cells into blood stream during

cancer progression, not all of the disseminated cancer cells survive through the

strong shear stress and escape from apoptosis/anoikis mediated cell death in

circulation (Mehlen and Puisieux 2006; Mitchell and King 2013). The disseminated

cancer cells present in circulating blood are known as circulating tumor cells

(CTCs). Pre-metastasis CTCs from a primary tumor early in the progression of

cancer progression present an opportunity for further investigation on the mecha-

nism of early cancer progression and later metastasis establishment. The surviving

CTCs will travel through the body and attach at a preferential site for further

adaptation, after appropriate extravasation and migration, to form a secondary

colonization as the malignant tumor. Whether the cancer cells disseminate early

and lie dormant for metabolic adaptation and later proliferation, or disseminate late

to accumulate sufficient mutations and facilitate further cancer progression is still

under debate (Podsypanina et al. 2008; Klein 2008). Identification of CTCs in the

bloodstream during cancer metastasis may provide an opportunity to investigate

potential mechanisms participate in cancer progression, reveal early detection

targets of cancer dissemination, and elucidate potential strategies for anti-cancer

therapy development.

During the progression of cancer metastasis, the epithelial-to-mesenchymal

transition (EMT) has been shown to correlate with the shedding of primary tumor

cells into the bloodstream (Chaffer and Weinberg 2011). The epithelial-origin

cancer cells from the primary tumor may undergo the EMT transition to facilitate

cancer cell migration and invasion progression. Through EMT, cancer cells can

invade surrounding tissues and finally escape from primary site into bloodstream.

Further mesenchymal-to-epithelial transition (MET) of the metastatic cancer cells

may re-express epithelial phenotypes after extravasation and enable colonization at

a distant site. It has been reported that the expression of EMT markers on CTCs

show dynamic inverse expression in between epithelial (ex: cytokeratin 5, 7, 8, 18,

19, and EpCAM) and mesenchymal markers (ex: fibronectin 1, cadherin 2, and

SERPINE/PAI 1) in clinical breast cancer patients under chemotherapy treatment

(Yu et al. 2013). It has also been reported that over 80% of the CTCs in patients

with metastatic, castration-resistant prostate cancer and metastatic breast cancer

express both epithelial and mesenchymal markers (Armstrong et al. 2011). Despite

the dynamic expression of both epithelial and mesenchymal markers on the cancer

cell surface, suggested basal level expression of the epithelial/mesenchymal
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markers presenting as major population on CTCs as a mixed-expression cell type

and could be used as surface marker to distinguish cancer cells from blood cells.

2.2 Strategies for Enrichment of CTCs

Despite the very low concentration of CTCs observed in circulation, a variety of

technologies have been disclosed for the identification and isolation of CTCs from

blood samples of cancer patients. Due to the short half-life of the CTCs in

bloodstream (estimated from 1 to 2.4 h) (Meng et al. 2004), CTC isolation devices

must be efficient enough to preserve potential CTCs for further investigation.

Because the CTCs are shed from the primary solid tumor, biological properties

such as expression of cell surface adhesion molecule (ex: EpCAM) or deficiency in

expression of blood-type surface antigen markers (ex: leukocyte marker CD45,

granulocyte marker CD15) could be used to distinguish CTCs from blood cells.

Also, physical properties, such as size, density, or electric charge, could be used as

selection criteria for CTC isolation. The approaches in CTC-isolating devices

include size-based filtration exclusion (Vona et al. 2000; Lee et al. 2014),

density-based centrifugation isolation (Williams et al. 2015), biological affinity-

based immuno-magnetic beads selection (Powell et al. 2012), antibody-

functionalized microfluidic platforms (Nagrath et al. 2007; Kirby et al. 2012),

surface-modified cell enrichment chips (Ke et al. 2015), acoustic-based cell selec-

tion devices (Antfolk et al. 2015), electric-charge-based electrophoresis (Adams

et al. 2009), and a combination of multiple properties for CTC isolation (Ozkumur

et al. 2013). Although there are different properties and advantages amongst the

diverse platforms for capturing and isolating CTCs, size-based exclusion, density-

based isolation, and antibody-based affinity capture remain the three major methods

used for the isolation and identification of CTCs.

2.2.1 Size-Based Exclusion for CTCs Isolation

One of the first approaches to isolate CTCs from blood samples was based on the

difference in size between tumor cells and blood cells. The average size of red

blood cells (RBCs), white blood cells (WBCs), and monocytes is 6–8 μm,

10–15 μm, and 15–30 μm, respectively. Tumor cells have a high nuclear to

cytoplasm ratio and higher stiffness, with an average size of 20 μm. Their larger

size, compared toWBCs, led to the use of marker-free, size-based filtration for CTC

isolation directly from blood. The size-based exclusion technology is featured in

rapid separation and non-selected marker-free isolation for the CTCs, though the

technology may not be able to distinguish monocytes from CTCs in blood samples.

The early implementation of size-based exclusion used a commercially available,

porous filter membrane to isolate the CTCs from blood samples (Seal 1964).
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Problems that may need to be addressed to meet the critical utility for the size-based

isolation and characterization approach include non-even pore sizes, low pore

density, and the inability to isolate and hold the CTC. Recently, size-based CTC

isolation using a microfabricated microfilter made by etching a polymer membrane

with reactive ion etching to give precisely controlled pore sizes and density was

demonstrated (Zhou et al. 2014). The isolation by size of epithelial tumor cells

(ISET) technology is one of the earliest marker-free technologies to isolate CTCs

based on the larger size of epithelial tumor cells by directly filtering blood through a

calibrated, polycarbonate Track-Etch-type membrane with 8-μm-diameter pores.

The ISET technology can detect CTCs in 80% of samples from stage III-IV in

non-small cell lung cancer (NSCLC), and provides label-free CTC samples for

further morphological, immunocytological, and genetic characterization of individ-

ual CTCs (Vona et al. 2000).

2.2.2 Density-Based Centrifugation for Isolation of CTCs

Blood contains various types of cells, including abundant RBCs, nucleated WBCs

(including eosinophils, basophils, neutrophils, lymphocytes, and monocytes), and

heterogeneous CTCs populations of varying number density in cancer patients.

Density-based centrifugation technologies take advantage of the difference in cell

density between blood cells to isolate nucleated cells directly from whole blood. By

using mixtures of high molecular weight sucrose polymers and sodium diatrizoate,

such as Ficoll-Paque, CTCs can be isolated from whole blood. Density-based

separation provides rapid and non-selective methods, without additional

processing, that enable obtaining viable cells directly from blood samples. But

the density-based centrifugation methods show very low purity of the isolated

CTCs due to the concomitant isolation of nucleated WBCs with the CTCs.

Recently, Williams et al. have successfully established a patient-derived xenograft

mouse model by using CTCs isolated from prostate cancer patients through density-

based centrifugation accompanied with RBC lysis and additional CD45-depletion

(Williams et al. 2015). The patient-derived mouse xenograft model provides a

model platform for further investigation of CTCs in functional studies or molecular

characterizationin vivo.

2.2.3 Biological Affinity-Based Selection for Capture
of CTCs

Most solid tumors derive from epithelial origin cells, which express EpCAM on the

cell surface to facilitate cell-cell contact and adhesion. Identification of epithelial-

origin tumor cells in the blood stream by using the anti-EpCAM antibody as an
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affinity-based method to capture CTCs provides good sensitivity and specificity in

the isolation of CTCs from blood. However, selective capture of EpCAM-positive

cells in the blood stream may result in a bias in the CTC population selection and

may possibly lead to the loss of other CTC populations, such as those that have gone

through EMT. It has been reported that most CTCs express both epithelial and

mesenchymal markers on the cell surface (Armstrong et al. 2011), suggesting that

EpCAM-based affinity capture could isolate the majority of the population of both

epithelial and mesenchymal types of CTCs disseminated from solid tumors. The

CellSearch® platform, the first CTC detection platform approved by FDA, uses

anti-EpCAM to isolate CTCs and has been used as a standard for CTC studies in

various types of cancers, including prostate, breast, ovarian, colorectal, lung,

pancreatic, and head and neck cancer (Allard et al. 2004; Bidard et al. 2013;

Grobe et al. 2014). Since the release of the CellSearch® platform, affinity-

based devices for more sensitive and specific capture of CTCs have been

developed.

The MagSweeper system was developed using 4.5 μm magnetic beads coated

with antibody against human EpCAM for the isolation of CTCs directly from blood

samples. The system shows higher CTC detection rates (70%) in metastatic breast

cancer than the CellSearch® platform and is feasible for downstream molecular

analysis such as single cell profiling (Powell et al. 2012; Deng et al. 2014). In

addition, Nagrath et al. developed the CTC-chip for more efficient and selective

separation of the CTCs from blood samples (Nagrath et al. 2007). The CTC-chip

features as a microfluidic system consisting of anti-EpCAM-conjugated microspot

arrays and is operated under predesigned laminar flow conditions without

prelabeling of the blood samples. The platform reaches 99% identification rate in

metastatic lung, prostate, pancreatic, breast, and colon cancer patients with high

CTC capture number and approximately 50% purity. Although these devices

demonstrated high efficiency in capturing CTCs directly from blood, releasing

intact and viable cells from the devices is still a challenge.

In addition to the techniques describe above, Magbanua et al. have also reported

a method that combines immunomagnetic enrichment and fluorescence-activated

cell sorting (IE/FACS) for the specific isolation of CTCs using two independent

EpCAM specific antibodies (Magbanua and Park 2013). The first EpCAM antibody

is conjugated with magnetic beads for the initial separation of CTCs from blood

cells. The initial separation is followed by the addition of fluorescence-conjugated

EpCAM for secondary recognition and detection using FACS analysis. The CTCs

isolated with IE/FACS has been used to isolate pure CTCs for molecular/genomic

profiling such as RT-PCR, DNA sequencing, array-based comparative genomic

hybridization (array-CGH), and microarray analysis for a variety of cancers,

including liver and breast (Magbanua et al. 2013, 2015; Kelley et al. 2015; Lang

et al. 2015). A wide range of copy number aberrations identified by array-CGH

analysis confirmed primary tumor origin of CTCs. Gene expression array analysis

of CTCs captured by IE/FACS revealed down-regulation in apoptosis signal and

absence of immune signal in metastasized breast cancer. The assays further proved

the feasibility of using CTC samples for clinical applications and the lineage

diversity shared between the primary tumor and CTCs.
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A recently developed system that enables effective release of viable CTCs is the

CMx system. The CMx platform consists of a microfluidic chip through which a

blood sample can be drawn with a syringe pump. The microchannels in the chip are

coated with a supported lipid bilayer (SLB) that is conjugated to anti-EpCAM via a

NeutrAvidin linker, as shown in Fig. 2.1a. The anti-EpCAM isolates any CTCs in

the blood while other blood cells flow past. The release of CTCs is accomplished

Fig. 2.1 Schematic of the CMx process for capturing and releasing circulating tumor cells (CTCs)
(a) Blood is drawn through a microfluidic channel that is coated with a supported lipid bilayer

(SLB) that is conjugated via NeutrAvidin (NA) to anti-EpCAM antibody. The anti-EpCAM

antibody is able to capture CTCs directly from whole blood samples. (b) After the blood sample

has been drawn through the microchannel, a phosphate buffered saline (PBS) rinse is used to flush
out the red and white blood cells. The CTCs are then released with an air bubble, which disrupts

the cohesion of the SLB to the substrate (Cancer Biology and Therapy (2016))
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by introducing of air foam, which disrupts the hydrophobic interactions of the SLB

with the substrate, as shown in Fig. 2.1b (Chen et al. 2016). The CMx platform

sustains high cell capture efficiency (>95%) and releases viable cells for further

molecular analysis and in vitro cultivation. The platform shows high sensitivity and

specificity in identifying cancer patients from healthy individuals and is also able to

distinguish early from late stage patients through CTC enumeration.

In another affinity-based microfluidic approach, Ke et al. have developed a

thermo-responsive NanaVelcro CTC purification system, which integrates

EpCAM-antibody-coated 3D poly(N-isopropyl acrylamide) brushes as a thermo-

responsive substrate that can capture and release cells from the chip surface at 37 �C
and 4 �C, respectively (Ke et al. 2015). Higher capture efficiency of NanoVelcro

CTC capture platform compared to CellSearch® and capable in culture expansion

and mutational analyses are opportunities created by using a microfluidic chip

system for both clinical applications and disease monitoring (Ke et al. 2015; He

et al. 2016).

Besides the positive EpCAM-based affinity capture of epithelial-origin CTC

cells, negative selection by using blood cell-specific surface markers provides an

alternative strategy for the population enrichment of CTCs without pre-selection of

tumor markers. The multi-marker immune-magnetic negative depletion enrichment

of CTCs (MINDEC) strategy takes advantage of using magnetic beads conjugated

with multiple blood cell-markers including CD45 (pan-leukocytes), CD16 (natural

killer cells and neutrophil granulocytes), CD19 (B-cells), CD163 (monocytes and

macrophages), and CD235a (RBCs) to deplete the blood cells and enrich CTC

population from blood samples (Lapin et al. 2016). The strategy shows good cell

recovery rate (82� 10%) and depletion efficiency (437� 350 residual WBCs). The

MINDEC strategy enables 71% positive detecting rate of CTCs in metastatic

pancreatic cancer patients. Despite the effectiveness and marker-free selection of

WBC-based negative selection for CTC isolation, aggregates of CTCs with WBCs

such as CTC microembolisms (CTMs) may be eliminated from the major CTCs

population selected by this strategy. Additionally, surface marker-based selection

by using fluorescence activated cell sorting (FACS) screening also provides possi-

bilities in analysis of marker-specific CTC populations in circulation (Reyes et al.

2014; Neves et al. 2014).

2.2.4 Combination of Multiple Properties for Purification
of CTCs

The use of a combination of technologies for CTC separation provides an oppor-

tunity to capture and isolate CTCs with higher sensitivity, specificity, and effi-

ciency. The CTC-iChip isolates CTCs based on a combination of several features

including size exclusion, affinity-based negative selection, and magnetic separation

to obtain a population of pure CTCs directly from whole blood samples (Ozkumur

et al. 2013). The microspots in the first stage of the CTC-iChip provide
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hydrodynamic cell size sorting to separate the RBCs, platelets, plasma proteins, and

free magnetic beads from WBCs and CTCs population. The second stage takes

advantage of inertial focusing to order nucleated cells within the microfluidic

channel. The final step involves the separation of any residual, tagged WBCs

from the CTC population. This negative selection is accomplished by magnetic

deflection of pre-mixed CD45 and CD15 immunomagnetic beads, with any residual

WBCs attached to them. The CTC-iChip has demonstrated up to 95% cell recovery

of various cell lines and identified 90% of cancer recurrence in prostate cancer

patients based on triple stained CTC enumeration. The device shows efficient

isolation with high purity of captured cells and enables further molecular charac-

terization such as single cell RNA expression validation (Ozkumur et al. 2013).

Similarly, Kirby et al. developed a geometrically enhanced differential

immunocapture (GEDI) device for CTC isolation that features a combination of

both size-based exclusion and affinity-based capture for the PSMA-positive CTCs

from castration resistant prostate cancer blood samples (Kirby et al. 2012). In

comparison with the CellSearch® system, the GEDI device shows a 2–400-fold

increase in the number of CTCs captured in the same patient, indicating a remark-

able improvement in the efficiency of CTC capture.

Although each CTC capturing technology has drawbacks in either CTC popu-

lation bias or impurity in isolation of the cells, the count of isolated CTCs shows

significant correlation with clinical outcome and prognosis prediction, as well as

cancer progression and therapeutic treatment efficacy. The determination of more

specific markers or isolation strategies for CTC isolation/purification will benefit

the clinical utility of future application in blood-based cancer diagnosis.

2.3 Clinical Importance of CTCs and CTMs

As described above, CTCs can act as metastatic seeds spreading through circulation

and colonizing at a preferential site for growth or dormant adaptation (Klein 2008;

Podsypanina et al. 2008). CTCs were first identified by Thomas Ashworth in a male

metastatic cancer patient. Ashworth postulated the existence of tumor cells in the

blood that were similar with the primary tumor as the explanation of the formation

of multi-tumor disease (Ashworth 1869). After Ashworth, Paget et al. brought out

the seed-and-soil theory to describe their observation in breast cancer metastases,

further suggesting the existence of tumor cells in circulation that have been shed

from a primary tumor (Paget 1989). In the early 1990s, immunohistochemistry

analyses identified micrometastasis in both lymph nodes and bone marrow

(Smerage and Hayes 2008). At the same time molecular analyses, such as

reverse-transcription polymerase chain reaction and fluorescence in situ hybridiza-

tion techniques, were developed for the detection of metastatic cancer in circulation

and correlated with tumor-positive patients (Katz et al. 1994; Smith et al. 1991).

A challenge in the detection of CTCs is that they are extremely rare in the

bloodstream. The concentration of CTCs has been identified to be in the range of
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1–10 cells per mL of blood, compared to 6 � 106 white blood cells, 2 � 108

platelets, and 4 � 109 erythrocytes per mL of blood (Allard et al. 2004; Coumans

et al. 2012). Not until 2004, when Allard and colleagues used the CellSearch®

system for specifically detecting CTCs in prostate, breast, ovarian, colorectal, and

lung cancer patients from non-malignant patients and healthy donors, did transla-

tional research in CTC identification begin to be a possible tool for cancer detection

and prognosis determination in cancer patients (Allard et al. 2004). Compared to

traditional computer tomography (CT) and magnetic resonance imaging (MRI)

scans, CTC enumeration is considered as a better marker for predicting overall

survival in cancer patients (Budd et al. 2006).

Results from studies analyzing CTCs of a broad range of cancers indicate the

potential benefits in screening of early cancer patients for CTCs and treatment

efficacy of monitoring CTCs for future diagnosis. For example, it has been reported

that an increase in the number of CTCs correlates with poor cancer prognosis and

distant metastasis in multiple myeloma, colorectal, oral, and lung cancers

(Gonsalves et al. 2014; Iinuma et al. 2011; Grobe et al. 2014; Tanaka et al.

2009). Elevated CTC numbers in breast, colon, oral, prostate, lung, and ovarian

cancers show shorter overall survival (OS) and decreased progression-free survival

(PFS) compared to patients with low CTC numbers (Cristofanilli et al. 2004; Hayes

et al. 2006; Bidard et al. 2014; Aggarwal et al. 2013; de Bono et al. 2008; Iinuma

et al. 2011; Grobe et al. 2014; Krebs et al. 2011; Poveda et al. 2011). Fluctuation of

the number of CTCs in the blood tightly correlates with the progression and

treatment efficacy in head and neck cancer (Qiao et al. 2015; Grisanti et al.

2014), showing the benefits of long-term real-time monitoring of disease progres-

sion after treatment. In addition, positive correlation of high CTC counts with a

high risk of recurrence and poor prognosis has also been reported in a multi-

institutional study of colorectal cancer patients (Iinuma et al. 2011). Furthermore,

CTC counts in colorectal and lung cancers correlates with the stage of cancer

progression (Chen et al. 2016; Lu et al. 2015; Nel et al. 2014), and correlates

with after-treatment survival in castration-resistant prostate cancer (Scher et al.

2015). Additionally, CTC counts are higher in portal venous blood than in periph-

eral blood in pancreatic cancer patients, and portal CTC counts act as a significant

indicator for liver metastasis within 6 months after adequate surgery (Tien et al.

2016). Similarly, higher CTC counts observed in central venous blood, compared

with peripheral venous blood, in both breast and cervical cancers have also been

observed (Peeters et al. 2015). By using the quantitative reverse transcription

polymerase chain reaction (RT-qPCR) technique, they confirmed that there was

no significant difference in the expression of 12 selected genes between central and

peripheral venous CTCs. They also reported that a higher count of tumor cell

emboli was observed in the microvasculature of the metastatic patient with higher

CTC counts, suggesting that microvascular retention and cell-microenvironment

interaction may contribute to the advancement of the metastasis of the cancer.

Recently, identification of CTC clusters and CTMs in the bloodstream has

shown clinically to be significant associated with distant metastasis. The CTC

clusters, defined as aggregates of more than 2 CTCs, have been identified in
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circulation from cancers including colorectal, prostate, beast, pancreas, and small

cell lung cancers (Yu et al. 2013; Hou et al. 2012; Aceto et al. 2014; Molnar et al.

2001). CTMs represent one or more CTCs, accompanied with or without WBCs,

including CTC clusters (Chen et al. 2016). Due to their extremely low concentration

in circulating blood, only in the past few years have their been methods of CTC

capture that were able to isolate and purify CTCs and CTMs from cancer patients

including breast, prostate, colon, and pancreatic cancers (Aceto et al. 2014;

Sarioglu et al. 2015; Chen et al. 2016; Chang et al. 2016). The presence of CTC

clusters in circulation highly correlate with late stage and poor prognosis in lung,

prostate, and metastatic breast cancers (Hou et al. 2012; Aceto et al. 2014). Because

interactions between cancer cells and immune cells are required for immune

response, cancer cells may take advantage of mutations acquired for immune

contact to facilitate their dissemination and survival during the progression of

metastasis (Iwai et al. 2002). Interactions between CTCs, WBCs, and endothelial

cells will further give rise to CTMs containing CTCs combined with WBCs, and

promote both the survival and the metastatic ability of CTCs through adhesion and

ligand-receptor conjugations on the cell surface (Chen et al. 2011). The presence of

both CTC clusters and CTC-WBC-combined CTMs have already been identified in

various cancers including colorectal, breast, prostate, and lung cancer (Stott et al.

2010a; Molnar et al. 2001; Reategui et al. 2015; Sarioglu et al. 2015; Chen et al.

2016). In addition, unfavorable CTM counts of over 30 per 2 mL of blood are

indicative prognostic markers for both disease-free survival and overall survival in

pancreatic ductal adenocarcinoma (Chang et al. 2016).

Aggregates of CTCs, such as CTMs, in the bloodstream have been suggested to

provide a cell-cell adhesion advantage against shear stress in the blood stream and

to activate survival signaling toward apoptosis and protection from anoikis (Hou

et al. 2012; Yu et al. 2013). Evidence in β-integrin-mediated collective movement

of primary tumor cells may provide further opportunity for the shedding of CTMs

into the bloodstream (Ilina and Friedl 2009; Duda et al. 2010; Hegerfeldt et al.

2002). Attenuation of plakoglobin-mediated cell-cell interaction resulted in the

absence of CTMs in circulation, diminished secondary metastasis in an animal

model, and correlated with distant metastasis-free survival in breast cancer patients

(Aceto et al. 2014). In addition, it has been reported that WBCs are able to fuse with

tumor cells in a primary tumor and thereby facilitate invasion and intravasation of

the cancer cells into circulation as CTMs, subsequently triggering metastasis of the

tumor (Jiang et al. 2013; Man 2010). Recently, Auet al. has demonstrated the ability

of tightly joined CTC clusters to traverse through micro-vessels and resist dissoci-

ation under the treatment of FAK inhibitor or paclitaxel drugs designed to weaken

cell-cell interactions (Au et al. 2016). Their results further support the metastatic

role of the CTMs during cancer progression. In contrast, the EMT transition is

considered to be a non-essential process in cancer progression but is involved in the

chemoresistance of both pancreatic and lung cancer (Zheng et al. 2015; Fischer

et al. 2015), suggesting that the EMT transition may not be necessary during

WBC-mediated intravasation or collective-movement-mediated CTM cancer

metastasis.
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2.4 Clinical Utility of Molecular Characterization of CTCs

Currently, the detection and diagnosis of common solid tumors is based on imaging

modalities such as CT and MRI scans. Therapeutic regimens are made based on the

formal TNM classification system coupled with ultrasound-guided fine-needle

aspiration (FNA) and pathologic assessment of tissue biopsy (Ludwig and

Weinstein 2005). Although improvements in imaging technology have allowed

more sensitive detection of small cancer lesions, an increase in false-positive

diagnoses can occur during CT image scanning (Hanash et al. 2011). Positron

emission tomography (PET), CT, or MRI imaging can determine anatomic delin-

eation of primary tumor lesions, but there is insufficient resolution and accuracy for

micrometastasis detection. The FNA cytology analysis is a standard diagnostic

procedure for both breast and pancreatic cancers, but current diagnoses still suf-

fered from low accuracy due to limited sensitivity (75–94%) and specificity

(78–95%) such as in pancreatic cancer (Gerhard and Schmitt 2014; Court et al.

2015). In contrast, the TNM classification protocol is the most useful system for

developing a therapy strategy but it requires invasive tissue assessment based on

surgical procedures and is unable to validate further information from

pre-metastatic lesions (e.g., disseminated cancer cells during cancer progression

in circulation before secondary metastasis establishment) and follow-up evalua-

tions. Non-invasive blood-based biomarkers, such as serum tumor markers, have

been discovered to have potential in screening, treatment response monitoring, and

recurrence evaluation of cancer patients. For example, carbohydrate antigen

125 (CA-125) is a membranous glycoprotein that is used for cancer screening,

therapy monitoring, recurrence detection, and prognosis evaluation in ovarian

cancer. The carbohydrate antigen 19–9 (CA19–9) is a sialyl-Lewis antigen was

been found up-regulated in several cancers and is used in therapy monitoring of

pancreatic cancer. Similarly, prostate-specific antigen (PSA) and prostate specific

membrane antigen (PSMA), glycoproteins specifically expressed by prostate tissue

that increase serum concentration through disruption of anatomic barriers during

cancer progression, are used for prostate cancer screening and diagnosis

(Kulasingam and Diamandis 2008). However, very few serum tumor markers

have been used in clinical applications due to deficiencies in specific clinical

validations and side-by-side studies. In spite of the routinely used CA-125 tests in

combination with CT scans in ovarian cancer surveillance after treatment remis-

sion, an increase in the use of chemotherapy and decrease in the quality of life

without improvement in ovarian cancer patients has recently been reported (Esselen

et al. 2016). In addition, low sensitivity and specificity in early stage cancer

detection and the inability to distinguish aggressive from indolent tumors limits

the clinical diagnostic utility of serum markers (Hanash et al. 2011).
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2.4.1 Clinical Utility of Liquid-Based CTC Enumeration

Recently, liquid biopsy based on the isolation of CTCs in blood provides an

opportunity to detect and characterize cancer for patient stratification and treatment

monitoring. The first intervention trial, SWOG S0500, used CTC enumeration in

the study of chemotherapy treatment response and patient prognosis based on the

change in CTC count. The results confirmed that the CTC count fluctuates during

chemotherapy treatment and indicates high CTC counts reflect a poor prognosis and

therapy response in metastatic breast cancer patients (Smerage et al. 2014). In

addition, clinical trials COU-AA-301 and IMMC-38 identified a 30% decline in

CTC count from baseline after 4 weeks of chemotherapy, which acted as an

independent prognostic factor that was associated with better overall survival

compared to stable CTC counts in advanced prostate cancer patients (Lorente

et al. 2016). The eSCOUT clinical trial of advanced colorectal cancer patients

verified shorter overall survival in patients with high CTC count and indicated

possible benefits for avoiding high-toxicity regimens in patients with low CTC

count patients (Krebs et al. 2015). Multivariate analysis of high portal venous CTC

counts also provide a significant predictor of liver metastasis within 6 months after

adequate surgery in pancreatic cancer (Tien et al. 2016). A similar result also

identified in NSCLC that the presence of CTCs after surgery was significantly

associated with shorter disease-free survival and early recurrence in stage I-III

patients undergoing radical resection (Bayarri-Lara et al. 2016). A CTC subpopu-

lation analysis showed that an increase in CD133/panCK ratio or N-cadherin-

positive CTCs significantly correlated with progression-free survival in NSCLC

(Nel et al. 2014). Besides CTC enumeration, CTCs taken from small cell lung

cancer patients demonstrated their capacity for xenograft growth by using immu-

nocompromised mice with preserved morphology and genetic characteristics, and

faithfully recapitulated the treatment response toward anticancer therapies

(Hodgkinson et al. 2014). Among the studies in CTC-based verification, enumer-

ation, and characterization, CTCs show potential clinical utility in monitoring

cancer treatment efficacy, responding to prognosis prediction, and screening

drugs for cancer patients.

2.4.2 Clinical Utility of ARv7 Gene Transcript Variant
Verification in Prostate Cancer CTCs

Targeting androgen receptor (AR) signaling in prostate cancer by AR inhibitor

abiraterone or enzalutamide has been used as a first line treatment in prostate

cancer. However AR castration resistance and relapse remains an important issue

in prostate cancer treatment. Expression of androgen receptor splice isoform variant

7 (ARv7) transcript has recently been identified in association with formation of

castration-resistant prostate cancer (CRPC). The ARv7 transcript protein acts as a
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constitutive active transcription factor after nucleus translocation due to a lack of an

AR ligand-binding domain. Identification of an ARv7 transcription variant in CTCs

of CRPC patients disclosed a significant correlation in ARv7 expression with lower

PSA response rates, shorter PSA progression-free survival, shorter clinical or

radiographic progression-free survival, and shorter overall survival in ARv7-

positive prostate cancer patients (Antonarakis et al. 2014). Dynamic ARv7 expres-

sion may reflect selective pressure during AR-directed therapies and serve as a

potential marker for real-time treatment monitoring and prognosis prediction using

liquid biopsy of CTCs (Nakazawa et al. 2015). In addition, despite its primary

resistance to taxanes chemotherapy, ARv7-positive CRPC patients appear to be

responsive to taxanes treatment rather than AR-directed therapies and can be

evaluated using liquid biopsy of CTCs (Antonarakis et al. 2015). Furthermore,

next generation sequencing of CTCs from CRPC patients revealed that activation of

noncanonical Wnt signaling participates in AR castration-resistancy of prostate

cancer (Miyamoto et al. 2015). Ectopic expression of Wnt5a shows an increase

resistance against AR-inhibition treatment through attenuation of the anti-

proliferation effect in prostate cancer cells, whereas suppression of Wnt5a restores

AR-treatment sensitivity in drug-resistant cell lines. The results provide solid

evidence in elucidating mechanisms that participate in cancer progression and

show the feasibility of using CTCs as non-invasive approach for further

investigations.

2.4.3 Clinical Utility of CTC-Based Liquid Biopsy
in PD1/PDL1 Targeted Therapy

In addition to ARv7 gene validation, a variety of genes have also been verified in

CTCs for cancer detection, patient stratification, and treatment monitoring in cancer

patients. Overexpression of PD1 ligands (PD-L1) has been discovered on the

surface of a variety of cancer cells for immune-escape including melanoma, lung,

and ovarian cancers (Pardoll 2012). The PD-L1 serves as strong inhibitory ligand

for the PD-1 receptor (CD279), which expresses on the surface of an activated

T-cell. Once the PD-L1 bonds with the PD-1 receptor through the ligand-receptor

binding effect, the tumor cells will accomplish immune escape by inhibition of the

T-cell activity and reduction of cytokine production accompanied with suppression

of T-cell proliferation. Targeting PD-1/PD-L1 signaling with the PD-1/PD-L1

antibody has recently been approved by the FDA for the treatment of metastatic

melanoma, lymphoma, metastatic renal carcinoma, NSCLC, and head and neck

cancer (Chen and Han 2015). Although patients who do not express PD1 ligands

can still respond to PD1/PD-L1 blockade therapy, a higher response rate in PD-L1-

expressed tumors toward PD1/PD-L1 blockade therapy has been reported for

multiple tumor types (Postow et al. 2015). Identification of PD1/PD-L1 ligand

expression has been reported as potential biomarker in predicting PD1/PD-L1
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blockade therapeutic response (Rossille et al. 2014). In this fashion, the identifica-

tion of patients with PD-L1 expression will help with treatment guidance and

increase the therapeutic response rate. Recently, Mazel et al. used liquid biopsy

of CTCs to identify PD-L1-positive CTCs in breast cancer patients (Mazel et al.

2015). The results indicate the possibility of using liquid biopsy for patient strati-

fication and treatment guidance based on PD1 ligand expression on CTCs.

2.4.4 Clinical Utility of Molecular Characterization of CTCs
for TKIs/ALK Targeting Therapy in Lung Cancer
Treatment

Lung cancer has long been a leading cause of cancer death worldwide. Various

chemotherapeutic approaches have been developed for the treatment of lung cancer

including tyrosine kinase inhibitors (TKIs) and anaplastic lymphoma kinase (ALK)

targeting therapies. However, mutations in tyrosine kinases downstream of epider-

mal growth factor receptor (EGFR) signaling, including Kirsten rat sarcoma

(KRAS), proto-oncogene BRAF, and EGFR itself, will give rise to treatment

resistance after TKI therapies. The detection of exon 19 deletion and exon 21 muta-

tion in L858R and T790 M of the EGFR gene has been used as a biomarker that

imply treatment resistance toward EGFR-TKI therapies in lung cancer patients

(Sun et al. 2015). In all of these cases, it is still difficult to obtain tissue biopsies

from each time point during chemotherapy regiments and afterwards for follow-up

analyses. Identification of both KRAS mutations (Tsao et al. 2010) and EGFR

mutations (Marchetti et al. 2014; Ran et al. 2013) in CTCs represents potential

clinical applications of CTC characterization for treatment efficacy monitoring,

resistance detection, and treatment guidance. In addition, about 3–7% of NSCLC

patients been identified with oncogenic gene fusion between ALK and echinoderm

microtubule associated protein-like 4 (EML4). Rearrangement of the EML4-ALK

gene results in constitutive kinase activity of the ALK and provides downstream

survival and proliferation of the cancer cells. Identification of CTCs in NSCLC

patients with ALK gene rearrangement has been detected with CTC-based liquid

biopsy and confirmed by pathological tests (Ilie et al. 2012; Pailler et al. 2013;

Faugeroux et al. 2014; He et al. 2016). The establishment of chemotherapy target-

based verification assays, such as assays for ARv7 transcript, PD1 ligands, ALK

rearrangement, and EGFR mutations, shows the possibility and feasibility of

non-invasive liquid biopsy as a clinical utility in patient stratification, chemother-

apeutic guidance, real time treatment monitoring, prognosis prediction, and per-

sonalized medicine treatment.
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2.4.5 Clinical Utility of CTC Molecular Analysis
for Identification of Primary Cancer of Origin

The 5-year survival rate of patients with all types of solid tumors decreases

significantly with the stage progression (Siegel et al. 2016). Based on the statistical

observation, early cancer detection provides better opportunities to treat and man-

age cancer when it may still be curable. Systematic spreading of breast cancer,

occuring early in the cancer progression, into both bone and lung has been demon-

strated in HER-2 and PyMT transgenic mice model (Husemann et al. 2008). Their

results suggest the dissemination of cancer may start earlier than the establishment

and histological invasion of the primary tumor. It has also been reported that the

quantity of CTCs shows statistical correlation with the progression of the cancer,

and accumulating publications have shown that CTCs could be detected in the early

stage of a variety of cancers (Chen et al. 2016; Bayarri-Lara et al. 2016; Lu et al.

2016). NGS whole exon sequencing in prostate cancer patients detected 70% of

mutation identity between CTCs and paired tumor samples (Lohr et al. 2014).

Single-cell RNA analyses show that metastatic cancer cells derived from high-

burden tissues have similar gene expression to the primary tumor (Lawson et al.

2015). A strong correlation between single CTC cells and their paired tumor origin

using RNA sequencing in prostate cancer further confirmed the tissue origin of the

CTC cells (Miyamoto et al. 2015). The results indicate that the tissue of origin of

the metastatic CTCs was the primary tumor, with additional heterogeneity shown in

circulation.

Unknown primary tumors (UPTs) represent 3–5% of all new cancer patients

diagnosed each year and are one of the ten most frequent cancer cases worldwide

(Massard et al. 2011). The high mortality of UPT is characterized by an early

dissemination and usually aggressive phenotype accompanied with an unfavorable

prognosis and without an identifiable primary tumor after diagnosis (Massard et al.

2011; van de Wouw et al. 2002). Identification of the origin of the cancer cell in

both UPT patients and for early cancer screening may thus improve the overall

therapeutic outcome due to early cancer identification and detection. Emerging

evidence has shown that the phenotypes of CTCs represent the characteristics of its

own origin (Lu et al. 2016; Kirby et al. 2012; Stott et al. 2010b; Wang et al. 2000).

PSA and PSMA are two antigens that have been used for prostate cancer detection

using plasma, and have also been used to identify CTCs in prostate cancer patients

(Lu et al. 2016). Cytoplasmic-expressed CK7 is believed to be a potential marker

for lung cancer cells and has been used in CTC identification. Thyroid transcription

factor 1 (TTF-1) is a nuclear protein selectively expressed in lung, thyroid, and

diencephalons tissues. The combination of CK7 and TTF-1 as markers with differ-

ent cellular localization is a feasible method for detection of CTCs from lung cancer

(Lu et al. 2016). In addition, the combination of CK20 and gastrointestinal tract

specific marker caudal type homeobox 2 (CDX2) shows the capability for the

specific identification of colorectal cancer origin CTCs (Lu et al. 2016; Chu and

Weiss 2002; Welinder et al. 2015). By using CK7/TTF1, CK20/CDX2,
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PSA/PSMA, and panCK/CK18 markers for immunocytochemistry staining of

CTCs in mixed types of blood samples with all stages for cancer origin identifica-

tion, origin of the three types of cancer including prostate, colorectal, and lung

could be clearly distinguished using the immunostaining strategy (Lu et al. 2016).

Through a diverse combination of antibodies designed for specific cancer type

identification, it is possible to determine the origin of the cancer type for both

early cancer screening and tumor origin identification in UPT patients. Identifying

the origin of the cancer at an early stage using CTCs, before the cancer has been

diagnosed, will have clinical utility during routine cancer screening.

2.5 Perspective and Conclusion

More and more devices and strategies have been developed for the identification

and enrichment of CTCs from clinical samples. Growing evidence also indicates

the significance of CTCs in prognosis prediction, survival evaluation, and treatment

efficacy validation in various types of cancer patients. Non-invasive liquid biopsy

based on CTCs provides an opportunity for high purity, multiple sampling, and

easily obtained specimens, in contrast to the traditional single time point surgery for

tissue that may have high cell-type heterogeneity. The evaluation of CTCs should

have utility in clinical applications such as early cancer detection, real-time disease

monitoring, post-treatment examination, and possible ex vivo drug screening for

personalized medicine development. Because CTCs act as a pre-metastatic lesion

during cancer progression, they might be the missing piece in elucidating mecha-

nisms that participate in cancer metastasis. Investigation of CTCs may further

evaluate potential markers for early cancer diagnosis, develop novel targeting for

cancer therapy, and identify possible strategies to cure and prevent cancer.
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Chapter 3

Aptamer-Based Methods for Detection

of Circulating Tumor Cells and Their

Potential for Personalized Diagnostics

Anna S. Zamay, Galina S. Zamay, Olga S. Kolovskaya, Tatiana N. Zamay,

and Maxim V. Berezovski

Abstract Cancer diagnostics and treatment monitoring rely on sensing and

counting of rare cells such as cancer circulating tumor cells (CTCs) in blood.

Many analytical techniques have been developed to reliably detect and quantify

CTCs using unique physical shape and size of tumor cells and/or distinctive

patterns of cell surface biomarkers. Main problems of CTC bioanalysis are in the

small number of cells that are present in the circulation and heterogeneity of CTCs.

In this chapter, we describe recent progress towards the selection and application of

synthetic DNA or RNA aptamers to capture and detect CTCs in blood. Antibody-

based approaches for cell isolation and purification are limited because of an

antibody’s negative effect on cell viability and purity. Aptamers transform cell

isolation technology, because they bind and release cells on-demand. The unique

feature of anti-CTC aptamers is that the aptamers are selected for cell surface

biomarkers in their native state, and conformation without previous knowledge of

their biomarkers. Once aptamers are produced, they can be used to identify CTC

biomarkers using mass spectrometry. The biomarkers and corresponding aptamers

can be exploited to improve cancer diagnostics and therapies.
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3.1 Introduction

Oncological diseases are the second leading cause of death after cardiovascular

diseases. Early clinical diagnosis of pre-metastatic malignancy tumors could

increase treatment efficiency and survival rate of cancer patients. One of promising

tools for better lung cancer diagnosis and monitoring during treatment is evaluation

and enumeration of circulating tumor cells (CTC) in blood (Punnoose et al. 2012).

There are numerous methods for isolation and concentration of rare cancerous cells

from blood, such as dielectrophoresis and stepping electric fields (Hatanaka et al.

2011; Chen et al. 2014), fluorescence-activated cell sorting (FACS), magnetic-

activated cell sorting (Jacob et al. 2007). In general the methods for enriching

CTCs can be divided into two categories: size-based and immunomagnetic

approaches, the advantages and disadvantages of which have been addressed in

the literature (Alunni-Fabbroni and Sandri 2010). Among immunomagnetic

methods, the CellSearch system has been approved for clinical use by the

U.S. FDA (Allard et al. 2004). It relies on antibody-based capture and staining of

epithelial cell adhesion molecule (EpCAM) as well as Cytokeratins 8, 18, or 19.

Unfortunately, no single antibody is sufficient to capture and detect all rare

CTCs. For instance, EpCAM is not a perfect marker for CTC detection due to the

high variation in its gene expression between tumor subtypes (Lampignano et al.

2016). Many CTCs also express epithelial, mesenchymal, and stem-cell markers.

The CTC research has sparked considerable interest in the application of mol-

ecules that offer similar or enhanced functionalities to antibodies, but that can be

easily synthesized with additional characteristics. Aptamers have enormous poten-

tial as such molecules. These small (5–30 kDa), single-stranded DNA and RNA

molecules carry the blueprint for their own synthesis in their primary sequence, so

they can be synthesized by pure chemical procedures. They fold into well-defined

three-dimensional structures and show high affinity and specificity for their targets.

In many respects, aptamers are superior to antibodies. They can be selected through

an in vitro evolution process using live cancer cells or primary tumors in a few days

without knowing beforehand cell specific biomarkers. The resulting aptamers are

chemically synthesized in high purity at low cost (1000s times cheaper than the

production of monoclonal antibodies), and are considered to be a synthetic chem-

ical product, rather than a biological product. For isolation purposes aptamers can

be easily removed from target cells washing out with chelators or nucleases

(Jayasena 1999; Li et al. 2013; Shen et al. 2013; Wehbe et al. 2015) or DNA

complementary sequences (Rusconi et al. 2002). In contrast antibody releasing

from its targets requires harmful to cells harsh chemical or enzymatic treatments

(Sheng et al. 2014).
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3.2 Microfluidic Aptamer-Based Devices for CTC Capture

Currently, aptamer-based technologies are widely studied in various biomedical

fields. Over 6000 published articles on aptamers are referenced in the PubMed

database, and more than 1000 of them are related to cancer. The first microfluidic

device utilizing the aptamer to EGFR for isolating cancer cells from a laminar flow

of human mononuclear cells has been reported byWan et al. (2011). Two following

microfluidic devices have been shown in 2012. The first device utilized elliptical

(30 μm � 15 μm) micropillars 32 μm in height and an interpillar distance of 80 μm
in flow channels (Fig. 3.1) (Sheng et al. 2012). The micropillars were coated with

DNA aptamers previously selected against the following cancer cell lines: CCRF-

CEM cells, Ramos cells, HCT 116 cells, and DLD-1 cells (Martin et al. 2011; Sefah

et al. 2010; Shangguan et al. 2006; Tang et al. 2007). Less than 30 min was enough

to isolate as few as 10 colorectal tumor cells from 1 ml of unprocessed whole blood

using this small device. The cancer cells captured with the micropillar flow

chamber were viable and used for following cellular and molecular

characterization.

The second Hele-Shaw microfluidic device with plain surface of the channel and

with array of pits on the channel floor have been utilized for the efficient detection

of rare cancerous cells (Fig. 3.2). The pits were filled with anti-EGFR aptamer

functionalized glass beads. Cancer cells, flowing in solution through the channel,

were captured by the beads with high specificity. Such design helped sorting cell

sub-populations with varying EGFR expression. Cells were released from the beads

by a complementary to oligonucleotide sequence. This approach isolated viable

cells for further analysis (Wan et al. 2012).

A flat channel microfluidic device made of polydimethylsiloxane and

functionalized with locked nucleic acid (LNA) aptamers targeting EpCAM and

nucleolin has been developed by Maremanda et al. for quick and efficient capture of

CTCs and cancer cells. The analysis of blood samples obtained from 25 head and

neck cancer patients detected as small as 5 � 3 CTCs in ml of blood. These

microfluidic devices also maintained viability for in vitro culture and characteriza-

tion (Maremanda et al. 2015).

Recently, another microfluidic assay has been developed using a cocktail of

aptamers with a synergistic effect. When a single aptamer was employed in the chip

composed of silicon nanowires and an overlaid PDMS chaotic mixer, the capture

affinity of the device was relatively weak. Nevertheless, using several aptamers, the

synergistic effects among individual aptamers lead to an enhanced capture affinity

(Fig. 3.3). It has been shown that for the patients with nonsmall cell lung cancer

(NSCLC) this method provided more comprehensive information in treatment

monitoring (Zhao et al. 2016).
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Fig. 3.1 Microfluidic micropillar device for cancer cell isolation (a) Optical micrograph (b) and

scanning electron microscope images of a micropillar array in a channel in the glass substrate (c)

Scanning electron microscopy image of elliptical micropillars (d) Scheme of capturing cancer

cells in the device (From Sheng et al. 2012, with permission)
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3.3 CTC Isolation with Aptamer-Functionalized

Nanoparticles

Chitosan nanoparticle surface fabricated by electrospray was modified by polyeth-

ylene glycol and a DNA aptamer for a specific capture of viable rare CTCs from

artificial white blood cell samples. Furthermore, an in situ culture strategy has been
proposed (Fig. 3.4). This work provides a promising strategy for viable isolation

and purification of rare CTCs and it has great potential for achieving clinical

validity (Sun et al. 2015).

Aptamer-functionalized gold nanoparticles could be used to enrich and detect

cancer cells using an aptamer-nanoparticle strip biosensor within a lateral flow

Fig. 3.2 Scheme of

fabrication and application

of Hele-Shaw microfluidic

device. SU-8 photoresist is

spin-cast on silicon wafer,

exposed and wells are

developed to form the

desired pattern. PDMS is

poured on SU-8 master,

baked, and peeled off.

50 μm diameter glass beads

(GBs) are loaded into 25 μm
deep pits and the substrate is

covered with a flat PDMS

slab. Cancer cell suspension

is flowed through the

device, and cells are

captured by aptamers-

functionalized GBs.

Captured cells are finally

released from the GB

surface after GBs are

collected from the device

(FromWan et al. 2012, with

permission)
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device (Fig. 3.5) (Liu et al. 2009). A pair of aptamers to Ramos cells – a thiolated

aptamer (TD05) immobilized on gold nanoparticles and a biotinylated aptamer

(TE02) immobilized in the test zone of a nitrocellulose membrane. The lateral flow

strip device allowed cancer cells linked through TD05 aptamer with gold

nanoparticles stay in the test zone. Accumulation of colloidal gold produced a

visible red band. Unfortunately the large volumes of blood (more than 5 μL)
masked the signal from the cancer cells because of the non-specific adsorption of

Fig. 3.3 Scheme of an aptamer cocktail based CTC assay. Microfluidic CTC chip is composed of

an aptamer-grafted silicon nanowire substrate and an overlaid PDMS chaotic mixer (a) When a

single aptamer capture agent was employed, the capture affinity of the device is relatively weak for

the lack of synergistic binding (b) By using cocktail capture agents, the synergistic effects among

individual aptamers lead to an enhanced capture affinity (c) Different cocktail capture agents are

expected to have differential capture performance for CTC subpopulation recognition (From Zhao

et al. 2016, with permission)

Cell
Culture

Cell Capture

Weed out

DNA Aptamer PEG

Non-target cell Target CTC

Fig. 3.4 Scheme of the chitosan nanoparticle substrate for rare number CTC isolation from

non-target cells followed by the optimized in situ culture of captured cells (From Sun et al.

2015, with permission)
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erythrocytes on the membrane. The further optimization of this technology is

required for the clinical implementation (Liu et al. 2009).

Technologies combining aptamer-functionalized nanoparticles with

microfluidics can greatly enhance the robustness of aptamer-based CTC capture.

A laminar flow flat channel microfluidic device allowed capture CCRF-CEM cells

from blood due to the aptamer Sgc8 immobilized on gold nanoparticles (Sheng

et al. 2013). The problem of the cancer cell diversity could be solved by using

aptamer-functionalized barcode particles to capture and detect various types of

CTCs (Fig. 3.6). Variations in reflection properties of different spherical colloidal

crystal clusters each modified with an aptamer to a certain CTC type, act as a code

for analyses. Dendrimers were used to amplify the effect of the aptamers, allowing

for increased sensitivity, reliability, and specificity in CTC capture, detection and

release (Zheng et al. 2014).

3.4 Electrochemical Aptasensors for CTC Detection

Another promising approach for potential CTC-related clinical applications is

rather simple and ultrasensitive electrochemical sensor based on the cell-specific

aptamer-modified glassy carbon electrode (GCE) detecting as few as a single BNL

Fig. 3.5 Scheme of the detection of Ramos cells on aptamer-nanoparticle strip biosensor (a)

Capturing Au-NP-aptamer-Ramos cells on the test zone through specific aptamer-cell interactions

(b) Capturing the excess of Au-NP-aptamer on the control zone through aptamer-DNA hybridi-

zation reaction (From Liu et al. 2009, with permission)
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1ME A.7R.1 (MEAR) mouse hepatoma cell in 109 whole blood cells (Fig. 3.7)

(Qu et al. 2014).

An RNA-aptamer biochip was developed for capturing and detecting a single

tumor cell. The polydimethylsiloxane chip consisted of a cover containing a

channel for introducing cells and sustaining their activity and microelectrode

matrix on a silicon dioxide layer. The anti-EGFR RNA aptamers specifically

bound the tumor cells, allowing the detection of a single cell due to the increase

of ion current resistance between electrodes. This novel approach demonstrated the

isolation of CTCs from peripheral blood, counting and follow-up gene or protein

analysis (Wang et al. 2012).

Fig. 3.6 Scheme showing the barcode particles capturing multiple types of CTCs. Various

aptamers, TD05, Sgc8, and Sgd5, were used; and green and blue-stained cells were used as the

target cells (From Zheng et al. 2014, with permission)
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3.5 Aptamers for Fluorescent CTC Detection

One-step fluorochrome-quencher based strategy was described by Zeng et al.

(2014) on the basis of an anti-CD30 RNA aptamer. In the absence of cells it did

not emit fluorescence (Fig. 3.8), but when this aptamer-based probe interacted with

a target cell, it was internalized and trafficked to the lysosome and where it was

degraded. The quencher was separated from the fluorochrome, thereby allowing it

to emit fluorescence. This was successfully used to identify CTCs in the whole

blood of lymphoma patients, with a little background signal from the blood cells.

Another method for highly efficient capture and accurate identification of mul-

tiple types of blood CTCs using aptamer-modified porous graphene oxide mem-

branes has been announced in 2015 by Ray group (Fig. 3.9). Aptamers to different

cell types attached to 20–40 μm porous garphene oxide membranes were capable of

capturing multiple types of tumor cells (SKBR3 breast cancer cells, LNCaP pros-

tate cancer cells, and SW-948 colon cancer cells). The efficiency of graphene oxide

membranes was about 95% for multiple types of tumor cells. Each aptamer had a

different fluorescent dye conjugated at the 50 end for multicolour fluorescence

imaging (Nellore et al. 2015).

Another work opens up the possibility for personalized diagnostics, demonstrat-

ing advantages of using the aptamers over the antibodies, by allowing the detection

of heterogenic biomarkers of tumor tissues from the individual patient. A novel in

situ tissue slide-based SELEX strategy has been developed by Zhang et al. (2015).

DNA aptamers that bind to formalin-fixed, paraffin-embedded breast infiltrating

Fig. 3.7 Scheme of a dual modified electrode for specific and sensitive detection of tumor cells.

Two MEAR cell-specific aptamers, TLS11a and TLS1c, conjugated to the surface of a glassy

carbon electrode (GCE) via a rigid dsDNA linker (T15/A15) and a flexible ssDNA linker (T15),

respectively. Specific binding brings a dramatic steric hindrance effect on the electron transfer of

the redox couple [Fe(CN)6]
3�/4� through the GCE, while the electrostatic repulsion between

negative charges of the cell surface and [Fe(CN)6]
3�/4� may further inhibit the electron transfer,

thus significantly reducing the electron transfer speed (From Qu et al. 2014, with permission)
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Fig. 3.8 Scheme of the tumor cell-activatable aptamer-reporter for one-step assay of CTCs in a

whole blood sample (a) A biomarker-specific and tumor cell-activatable aptamer-reporter (b)

Tumor cell-triggered intracellular activation of the aptamer-reporter. In assays containing tumor

cells (c) Proposed one-step assay for rapid detection of CTCs (From Zeng et al. 2014, with

permission)

Fig. 3.9 Scheme of aptamer-conjugated porous graphene oxide membrane-based separation and

(a) Scheme of aptamer-conjugated porous graphene oxide membrane-based capture of multiple

CTC types from blood (b) fluorescence imaging of multiple types of CTCs captured by graphene

oxide membranes using a dye-conjugated aptamer (From Nellore et al. 2015, with permission)
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ductal carcinomas showed fluorescence staining in the nuclei of the various human

cancer cell lines as well as in CTCs isolated from pancreatic cancer patients. This

aptamer method was compared with the well-established the anti-cytokeratin

method on 15 pancreatic cancer patient blood samples, and enumeration indicated

no difference between these two methods.

The unique feature of the work reported by Zamay et al. is the aptamer selection

strategy for producing the aptamers for heterogenic lung cancer cell markers in

their native state and conformation without previous knowledge of the biomarkers

(Zamay et al. 2015). Tissue SELEX was used to select the aptamers with high

selectivity to adenocarcinoma derived from postoperative tissues and cells capable

to identify various cellular biomarkers (Fig. 3.10).

Interestingly the aptamers had very low affinity to A549 lung adenocarcinoma

culture and did not bind to normal lung cells and lymphocytes. Aptamer-associated

protein biomarkers for lung cancer for were identified using affinity purification

with aptamer-coated magnetic beads followed by the mass-spectrometric identifi-

cation. Thus anti-vimentin, anti-annexin A2, anti-annexin A5, anti-histone 2B, anti-

neutrophil defensin, and anti-clusterin aptamers were used to detect CTCs in blood.

These aptamers detected not only CTCs but also apoptotic bodies, and microemboli

in clinical samples of peripheral blood of lung cancer and metastatic lung cancer

patients. Due to the binding of multiple aptamers to different cell biomarkers, a pool

of aptamer clones is more selective and efficient in CTC detection, than a single

aptamer or a monoclonal antibody. Application of aptamers in combination with

antibodies to tumor-specific antigens provides more reliable detection of rare

CTCs. Such tumor-specific aptamers can be produced for individual patients and

Fig. 3.10 Scheme of aptamer selection to lung adenocarcinoma postoperative tissues for produc-

ing of aptamers to intact heterogenic tumor cells (From Zamay et al. 2015, with permission)
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synthesized many times during anticancer therapy, thereby opening up the possi-

bility of personalized diagnostics.

Another valuable finding in this work was an improved blood preparation

procedure reducing the time and labour required for the search of rare CTCs

(Fig. 3.11). All red blood cells were lysed with NH4Cl solution and the majority

of white blood cells were lysed with hypotonic NaCl solution. Captured CTCs

could be used for the following protein, genetic analyses, aptamer associated

protein targets identification using aptamer-mediated affinity purification of the

target proteins. Interestingly that aptamer-associated proteins identified from ade-

nocarcinoma tissues were similar to the proteins from CTCs.

The captured CTCs pellet was visualized fluorescently labeled aptamers and/or

antibodies. Live CTCs were analysed by confocal fluorescent microscopy immedi-

ately, or after fixation on glass slide. The additional Romanowsky-Giemsa staining

on fixed smears allowed seeing the nuclei and aptamers (Fig. 3.12). Authors

analysed blood smears from 105 individuals: 18 healthy people and 87 patients

with various diagnosis including different types of primary lung cancer (52),

Fig. 3.11 Schemes of blood sample preparation and protein isolation (a) Red blood cells were

lysed with hypotonic NH4Cl solution followed by incubation with hypotonic NaCl (b) Aptamer-

mediated affinity purification of proteins using magnetic separation for further mass spec identi-

fication (From Zamay et al. 2015, with permission)
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secondary lung cancer (1), other lung diseases (9), breast diseases (9), and glio-

blastoma (16). The sensitivity and specificity of the aptamer – based method was

86% and 76%, respectively (Zamay et al. 2015).

3.6 Conclusion

Tumor cells dissemination through the bloodstream is crucial for the metastasis

formation and cancer progression. Therefore, analyses of CTC content in blood can

be used after minimally invasive liquid biopsy for cancer diagnosis and prognosis.

Fig. 3.12 (a) Co-staining of live CTCs from blood of a patient with squamous lung cancer by

Cy-5 labeled LC-18 aptamer and FITC-labeled anti-pan cytokeratin antibodies (b) Fluorescent

microscopy of blood smears of lung adenocarcinoma. Samples were pre-incubated with masking

DNA, Cy-5 labeled LC-18 and FITC-labeled anti-pan cytokeratin antibodies. The samples were

spread evenly on a glass slide. The smears were fixed in methanol for 5 min and then stained with

Romanowsky-Giemsa dye. Magnification �60 (From Zamay et al. 2015, with permission)
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Cytokeratins and epithelial cell adhesion molecules (EpCAM) are the most

common CTC markers (Joosse and Pantel 2013). However, finding additional

CTC markers and corresponding probes are in great demand due to high tumor

diversity. Aptamers as synthetic affinity probes could be selected to cancer bio-

markers in their native state and conformation without previous knowledge of them.

These oncomarkers could be identified after the selection by aptamer-mediated

affinity purification with magnetic separation and following mass spectrometry-

based analysis. Aptamers that can be used for CTC capture and identification have

been recently summarized by Dickey and Giangrande in their review (Dickey and

Giangrande 2016).

Different methods and strategies have been developed to isolate and identify

CTCs, but their efficacy needs to be validated against existing technologies such as

antibody-based strategies (CellSearch) and PCR-based strategies (AdnaTest).
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Chapter 4

Development of a Protocol for Single-Cell
Analysis of Circulating Tumor Cells
in Patients with Solid Tumors

Carolina Reduzzi, Rosita Motta, Giulia Bertolini, Patrizia Miodini,
Antonia Martinetti, Elisa Sottotetti, Maria Grazia Daidone,

and Vera Cappelletti

Abstract Genomic characterization of circulating tumor cells (CTCs) enables the

monitoring of tumor progression and of adaption occurring during treatment. CTC

molecular characterization represents indeed a precious tool to implement in the

clinical practice for better dealing with acquired resistance to systemic treatment

and tumor evolution. Unfortunately CTCs are very rare and enrichments from blood

samples and subsequent identification of these cells are technically very challeng-

ing. We describe here the main steps leading to the development of a technical

protocol for visualization, enumeration and recovery of single CTCs exploiting the

recently developed DEPArray™platform. Our description of the technical

workflow starts with evaluation of pre-analytical aspects related to blood sample

collection warning about the possible effects on immunoreactivity profiles which

may bias the interpretation. Subsequently, other CTC-enrichment approaches are

critically discussed and compared in relation to their performances with the

DEPArray™. Identification of CTCs represents another critical point due to their

heterogeneity and due to the still-to-be clarified role of different subpopulations,

typically epithelial, mesenchymal or mixed. Finally, issues related to single cell

analysis are illustrated. The chapter ends with an overview of results obtained on

real clinical samples which support the reliability of the protocol and its transfer-

ability to the daily clinical routine.
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4.1 Why Should We Study Single CTCs?

CTCs have been studied for a long time as prognostic and treatment response

predictive biomarkers essentially focusing on their enumeration or more simply

on their presence or absence (Paoletti and Hayes 2016; Bidard et al. 2016). More

recently, many evidences have been collected over different tumor types indicating

that CTCs represent the actual tumor mass as a whole (including primaries,

metastases and possibly micrometastatic deposits) (Heitzer et al. 2013, Lohr et al.

2014, Ni et al. 2013, Yu et al. 2012). Furthermore, CTCs increasingly appear to

even represent much more than just non-invasive surrogates for getting insight into

the tumor molecular make-up.

In their pioneering study Heitzer et al. (2013) isolated 37 single CTCs from

6 patients with stage IV colorectal cancer and demonstrated that the copy number

variations (CNV) detected in single CTC were present also in the primaries and

that, whereas mutational profiles of single CTCs recapitulated the primary tumors,

there were also some private CTC mutations. Intriguingly, such private mutations

rather than represent technical artifacts due to DNA-amplification strategies were

instead found to be present, although at subclonal level, also in the primaries by

deeper sequencing. This amazing finding not only supports the ability of CTCs to

represent the tumor from where they originate, but also holds the promise that the

knowledge of the CTC genomic asset might lead to a reconsideration of a patient

for a target treatment which was instead discarded based on the mutational profile

of the primary tumor. If confirmed by other studies, such results support the concept

that information derived from single CTCs might even represent a more reliable,

and not only a more accessible, tumor sample.

In a prostate cancer study Dago and colleagues (Dago et al. 2014) revealed

instead how characterization with respect to androgen receptor expression and

CNV of single CTCs from blood draws longitudinally collected during treatment,

allowed the reconstruction of the clonal evolution occurring during initial treatment

response and subsequent progression. Their study provides a strong case for the

clinical relevance of single CTC characterization during therapy cycles for a timely

detection of clonal evolution and of genomic alterations driving the treatment

resistance.

As highlighted by these examples, the possibility to molecularly characterize

CTCs holds the potential for a real paradigm shift in the treatment of solid tumors

by giving up the need to tailor treatments on molecular features of surgical samples

or biopsies, which have been often obtained long times before treatment decision.

CTC-derived molecular information could be unbiased by intra-tumor heterogene-

ity, by the temporal evolution resulting from selective pressure, but also by the

subclonal nature of specific genomic alterations within the primary tumors which

will eventually drive the resistance or evolution to a more aggressive phenotype.
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Unfortunately, the translation into a framework for an analytically and clinically

valid analysis of such CTC-based fluid biopsies is studded by technically difficulties.

Indeed CTCs do not only represent rare events, but are also characterized by a marked

heterogeneity which makes up their ability to survive in the circulation and to generate

metastases. Hence, grasping the full informative content from CTCs would need the

combination of enrichment methods able to avoid selection of specific CTC sub-

populations with methods allowing the subsequent accurate sorting of specific single

CTCs or of homogeneous groups of CTCs with well-defined characteristics.

In the next sections we describe the steps towards the definition of a methodo-

logical protocol suitable for enrichments, identification, sorting and isolation of

single CTCs for downstream molecular interrogations considering pre-analytical

issues and analytical validation.

The described protocol exploits the recently developed DEPArray™ system

(SiliconBiosystems, Bologna, Italy). The DEPArray™ is an automated platform

designed to isolate and recover single cells. The instrument is based on

dielectrophoresis (DEP), an electrokinetic principle by which, creating a

non-uniform electric field, it is possible to exert forces on neutral particles such

as cells. The electric field is created inside a microfluidic chip (DEPArray™
cartridge) containing cells suspended in a liquid, where it forms DEP “cages”

around cells trapping them. The DEPArray™ is also equipped with a six-channel

fluorescent microscope and a CCD camera that captures images and identifies cells

by their fluorescence labeling and morphological characteristics. The instrument

offers the possibility to analyze the collected images with a software, chose the cells

of interest and recover them in a tube for further analyses (Fuchs et al. 2006;

Abonnenc et al. 2013).

4.2 First Things First: Pre-analytical Issues

In the context of best laboratory practice, optimal sample handling and storage are

the first steps for reaching good analytical results (Elliott et al. 2008, Holland et al.

2003). Blood does not represent an exception to such a rule, and in the case of

CTCs, which already in vivo have a short half life, rapid and accurate processing is

essential to avoid cell lyses processes. Along with anticoagulants, addition of

specific cell preservatives represents a frequently pursued way to retain the integrity

of CTCs (Qin et al. 2014) and is often used also to avoid contamination of

circulating tumor DNA by DNA released from peripheral blood mononucleated

cells (PBMC) upon their lysis (Kang et al. 2016). Several blood collection tubes

have been developed to such a purpose, starting from the CellSave Preservative

Tubes specifically dedicated to blood collection of samples to be processed by the

CellSearch® system, and which allow room temperature storage of samples for up

to 96 h. ( https://www.cellsearchctc.com/product-systems-overview/cellsave-pre

servative-tubes). Other commercially available tubes are the Cell-Free DNA™BCT

(Streck, Omaha, NE) tubes containing a formaldehyde-free preservative which

stabilizes nucleated blood cells, and extends the preservation of CTCs up to
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Fig. 4.1 Antibody specificity evaluated by flow cytometry. Flow cytometry analysis of PBMCs

derived from HD blood samples collected in K2EDTA or in BCT tubes and stained with distinct

antibodies directed against EpCAM. Panel a: Miltenyi Biotec anti EpCAM-FITC antibody. No

unspecific staining of PBMCs is observed, with both blood collection tubes. Panel b: Santa Cruz
Biotechnology anti EpCAM-PE antibody. Variable fractions of HD PBMCs stain as EpCAMþ ve
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4-days (https://www.streck.com/product.aspx?p¼cell-free%20dna%20bct ), and

the TransFix® (Cytomark, Buckingham, UK) tubes which stabilize cellular antigens

for up to 10 days (http://www.biognost.be/files/cms1/TransFix%20Vacuum%

20Blood%20Collection%20Tubes.pdf ).

Notwithstanding the procedure chosen for CTC enrichments from blood sam-

ples, a crucial step in developing a CTC assay on intact cells is their identification

which is necessarily done based on CTC or PBMC immunophenotyping, thus the

effect of the chosen blood collection tube on immunorecognition must be carefully

defined in preliminary experiments.

The specific molecular composition of the above mentioned preservatives is

unknown, but we reasoned that, though designed to stabilize cells, the intrinsic

fixation procedure still might modify cell surface antigen reactivity and interfere

with CTC immunophenotyping. Literature data specifically addressing antibody

specificity in the presence of preservatives are lacking, although Qin et al. (2014)

report that BCT were in fact better preserving immunoreactivity after 4 days of

blood storage at room temperature, compared to K3EDTA tubes (BD Vacutainer®,

Becton Dickinson, Franklin Lakes, NJ, USA) when tested with certain Anti CK8

and anti-EPCAM antibodies.

Therefore, since CTCs are commonly defined as nucleated cells expressing

epithelial markers and lacking blood cells markers, we focused on the expres-

sion of EpCAM (an epithelial marker) and CD45 (a leukocyte marker), using

fluorescently labeled antibodies. In particular we selected two antibodies

directed against EpCAM (anti-human EpCAM PE-conjugated, clone O.N.276,

Santa Cruz Biotechnology, Dallas, TX, USA and anti-human EpCAM FITC-

conjugated, clone HEA-125, Miltenyi Biotec, Bergisch Gladbach, Germany)

and one antibody against CD45 (anti-human CD45 APC-conjugated, clone

5B1, Miltenyi Biotec).

The specificity of the antibodies was preliminarily tested by flow cytometry

analysis of PBMC collected using Ficoll from healthy donors (HD) blood samples

by using staining conditions as recommended by the antibodies manufacturers. In

particular, the effect of tubes used for blood collection on the immunoreactivity

profile was evaluated comparing samples collected in K2EDTA tubes and in the

BCT. The anti-EPCAM antibody from Miltenyi Biotec showed a high specificity

both in the sample collected using K2EDTA tube and in the one collected with the

BCT without any unspecific staining of blood cells, as shown in Fig. 4.1a. Con-

versely, the antibody from Santa Cruz Biotechnology unspecifically reacted with

⁄�

Fig. 4.1 (continued) both in blood collected in K2EDTA (left panel, 16%) and in BCT (right
panel, 40%). Panel c: Flow cytometry analysis of MCF-7 cells spiked in PBMCs derived from HD

blood samples collected in BCT tubes only. In the absence of the antibody (left panel) MCF-7 and

WBC are distinguishable based on size (FSC axis) and are not APC-negative; addition of the

antiCD45 antibody (right panel) shows a strong shift of staining towards positivity for both MCF7

and WBC. The dotted lines indicated the positivity thresholds of staining intensities defined on

negative controls (omitting the antibody) (Abbreviations: HD healthy donor, WBC white blood

cells, PBMC peripheral blood mononucleated cells)
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Fig. 4.2 Image gallery showing staining and morphological characteristics of cells analyzed with

the DEPArray™. Cells were identified in HD blood sample (3 mL) drawn in a BCT tube, spiked-in

with 50 MCF-7 cells, enriched by filtration with ScreenCell®CC kit, fluorescently-stained for
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16% of blood cells collected with K2EDTA tube, but also with 40% of blood cells

when collection was performed using BCT (Fig. 4.1b ). Finally, the specificity of

the CD45 antibody was assessed using a breast cancer cell line negative for CD45

(MCF-7) spiked at a concentration of 15–20% into PBMCs isolated from HD blood

using Ficoll density centrifugation: flow cytometry analysis surprisingly revealed

an unspecific staining of all the MCF-7 cells by the anti-CD45 antibody in the blood

sample collected with the BCT (Fig. 4.1c), which was about fourfold higher

compared to that observed with K2EDTA tubes (data not shown).

The above described data show that pre-analytical conditions, such as type of

tubes used for blood collection, may definitely, depending on the antibody, affect its

specificity. Preliminary tests must therefore be run before proceeding with CTC

staining.

Following these results, which confirm the importance of pre-analytical issues,

we decided to use the anti-EpCAM antibody characterized by higher specificity

under our working conditions. The critical role played by blood collection tubes on

immunoreactivity profiles, already described in flow cytometry experiments, was

reconfirmed by DEPArray™ as shown in Figs. 4.2 and 4.3.

Blood collection in preservative-free tubes was further supported by morpho-

logical considerations, since tumor cells spiked into blood collected in BCT

(Fig. 4.2) appeared as swollen compared to those collected in K2 EDTA

tubes (Fig. 4.3), a feature that might be rather confusing when trying to identify

CTCs in clinical samples. Furthermore, collection of blood in BCT induced the

formation of aggregates preventing the possibility to recover single cells from

each DEP-cage. Finally, cells with a double staining for EpCAM and CD45 were

observed impairing the distinction between tumor cells and white blood cells

(WBC).

Therefore, due to the interference observed on immunoreactivity, cell mor-

phology and stickiness when collecting blood in the presence of preservatives, we

chose to draw blood in K2EDTA tubes although this forced us to process samples

within a short time from collection. To make the protocol more suitable for

clinical samples analysis we introduced a stopping point after CTC-enrichment

by adding a fixation step with 2% paraformaldehyde (PFA) for 20 min at room

temperature.

⁄�

Fig. 4.2 (continued) EpCAM, CD45 and nuclei and analyzed with the DEPArray™. The figure

shows the presence of numerous cell-aggregates which prevent the correct visualization of cells by

interfering with focus. Please note the cells positive for both tumor (PE-channel) and WBC

(APC-channel) markers (rows 1 and 6) which cannot be identified as MCF-7 or WBCs by staining

profiles nor can be distinguished by morphological characteristics, since all (including true

CD45 þ ve/EpCAM-ve WBCs) appear about the same size (i.e. larger than leukocytes observed

in the blood sample drawn in K2EDTA tube, Fig. 4.3). Overall, correct cell identification is biased

by the poor quality of the sample and by the low staining specificity (Abbreviations: HD healthy

donor, WBC white blood cell)
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Fig. 4.3 Image gallery showing staining and morphological characteristics of cells analyzed with

the DEPArray™. Cells were identified in a HD blood sample (3 mL) drawn in a K2EDTA tube,

spiked-in with 50 MCF-7 cells, enriched by filtration with ScreenCell®CC kit, fixed with 2% PFA,
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4.3 Steps Towards Analytical Validation

4.3.1 Identifying CTCs by Classical Criteria

Experiments were performed by spiking the same number of MCF-7 (50 cells) into

HD blood samples collected in K2EDTA tubes, processed for CTCs enrichment and

stained for EpCAM, CD45 and nucleus (Hoechst 33,342, Sigma Aldrich, St. Louis,

MO, USA) either before or after the PFA fixation step. The number of MCF-7

recovered, defined as EpCAM-positive and CD45-ve nucleated cells, and the

qualities of the staining were assessed with the DEPArray™. The numbers of

recovered target cells were 11 and 13 respectively, and since no differences in the

quality of the staining was observed we settled our workflow introducing the

fixation step after enrichment and before staining for convenience.

Analysis of DEPArray™ image galleries obtained in the preliminary experiments

highlighted a new issue, i.e. the presence of red blood cells interfering by masking the

cells of interest and making their pictures rather unclear as can be seen from Fig. 4.3.

To overcome this latter problem, the use of an RBC lysing buffer (BDPharm Lyse™,

BD Biosciences, San Jose, CA, USA) was tested in spiking experiments with

50 MCF-7. The RBC lysis step (15 min at room temperature protected from light)

was introduced before fixation and staining. Its use however, interfered with the

recovery rates resulting in a fourfold lower number of recovered target cells com-

pared to experiments without RBC lysis. This option was therefore abandoned.

Meanwhile the identification of CTCs was improved by adding the staining for

cytokeratins (CK), another epithelial marker, but with an intracellular rather than

cell membrane location. An anti-human pan Cytokeratin PE-conjugated antibody

(clone C11, Abcam, San Francisco, CA, USA) was used strictly according to the

manufacturers’ instruction (dil 1:10, 10 min at room temperature) and its sensibility

and specificity were tested. When MCF-7 cells were fixed with 2% PFA, stained for

CK and observed under a fluorescent microscope, the antibody showed high

sensibility since roughly 100% of the cells resulted CKþve as expected. Its

specificity was optimal as evidenced in following experiments in which

50 MCF-7 were spiked in HD blood samples, enriched, fixed with 2% PFA and

stained for CK and CD45: no unspecific staining could be observed.

Interestingly, the staining protocol adopted for this intracellular antibody solved

the problem of cellular image masking by RBC, as the required cell

permeabilization step, performed using the detergent-containing reagent Inside

⁄�

Fig. 4.3 (continued) fluorescently-stained for EpCAM, CD45 and nuclei and analyzed with the

DEPArray™. Tumor cells (top rows) are well distinguishable from WBCs (bottom rows) both by

marker expression (all MCF-7 cells are positive in the PE-channel and negative in the

ACP-channel while all WBCs are EpCAM-ve and CD45 þve) and by size (tumor cells appear

larger than leukocytes). In some cases, the morphological evaluation in the brightfield channel is

impaired by the presence of RBCs covering cells (indicated by arrows) (Abbreviations: HD
healthy donor, WBC white blood cells, RBC red blood cell)
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Perm (Miltenyi Biotech) effectively eliminated RBC without affecting the target

cell yield which was maintained around 30%.

4.3.2 Optimizing CTC Enrichment

CTCs are extremely rare and their enrichment represents a technical challenge

which we have addressed by comparing several technologies. However, there are

much more different technologies available to this purpose compared to those

tested here, and which are mainly subdivided into two categories: methods that

enrich tumor cells by exploiting the expression of epithelial markers (positive

enrichments) or blood cell markers (negative selection) and methods based on

physical properties (size, density, deformability) (Joosse et al. 2014). Considering

that CTCs are a heterogeneous population composed by different subclones which

evolve during time and can undergo an epithelial to mesenchymal transition

(Yu et al. 2013, Bulfoni et al. 2016), we decided to focus on technologies which

are not based on the expression of epithelial markers, to include not only epithelial

CTCs, but also cells with a mesenchymal phenotype (which could be associated

with a higher metastatic potential, Yu et al. 2013).

Four technologies in particular have been tested: ScreenCell® CC kit

(ScreenCell, Sarcelles, France), OncoQuick™ (Greiner Bio-One, Frickenhausen,

Germany), AutoMACS® Pro separator (Miltenyi Biotec,) and Parsortix (Angle plc,

Guildford, UK). To test their efficiency, blood samples from HD were spiked in

with 50, 25 or 10 tumor cells derived from MCF-7 cell line and samples were

processed by the different enrichment methods. The enriched fractions were ana-

lyzed to evaluate the number of recovered target cells. The identity of recovered

cells was confirmed by mutational analysis of a specific mutation (p.E545K) using

the Ampli1™ PIK3CA Seq kit (Silicon Biosystems) and Sanger sequencing.

4.3.2.1 ScreenCell® CC Kit

This technology is based on cell size: blood is filtered through an isolation support

(IS) consisting in a membrane with pores of pre-defined size which traps larger cells

and allows the passage of blood cells. Each IS allows processing of up to 3 mL of

blood. Filtrations of spiked blood samples were done according to manufacturer’s
instructions, and cells were detached from IS essentially according to protocols

furnished by ScreenCell, labeled according to our standard protocol (for EpCAM,

CK, CD45, nuclei) and processed with the DEPArray™ for cell identification and

counting. We performed independent spiking experiments using a cell line

(MCF-7). Results, for samples spiked with 50 MCF-7 cells are reported in

Table 4.1, and revealed a mean recovery rate of 32.5%. Spikes with lower cell

numbers (25, 10) yielded more variable recoveries ranging from 22 to 56%.
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4.3.2.2 AutoMACS® Pro Separator

The AutoMACS® is a bench top instrument for rapid preparative cell sorting by

immunomagnetic beads packed into separation columns and which allows positive/

negative selection of cells expressing or lacking selected markers. We used the anti-

CD45 microbeads (Miltenyi Biotec) to deplete leukocytes from HD blood samples

spiked with 50 MCF-7 cells in two independent experiments. In both cases, the

system was not able to recover any MCF-7 cell, and this approach was therefore

discarded as CTC–enrichment method, although positive results have been recently

published by investigators using this system in combination with the DEPArray™
in women with metastatic breast cancer (Bulfoni et al.2016).

4.3.2.3 OncoQuick™

This technology exploits a 50 mL-polypropylene tube containing a porous barrier

inserted above a specially developed medium that enriches tumor cells by density

gradient centrifugation. The system is designed to allow processing of up to 30 mL

of whole blood without preliminary fixation. In nine spiking experiments,

performed using 15 mL of HD blood and summarized in Table 4.2., it proved to

have an overall mean recovery rate of 81%. The recovery rate was higher with

lower number of target cells (10 cells) compared to samples containing 25–50

MCF-7 (100% and 71% respectively). The high recovery rates and the possibility to

use large blood volumes make this enrichment system particularly attractive for

clinical samples derived from patients with early disease where lower numbers of

CTCs are expected.

However, despite its sensitivity, OncoQuick™ presented an important weakness

when it was adopted for processing of clinical samples due to the high number of

WBC contaminating the tumor target cells. The high number of contaminating

WBC in samples processed with OncoQuick results into most (if not all) samples to

exceed the maximum capacity of the DEPArray™ cartridges (40,000 cells) making

the sorting of single cells impossible due to the presence of more than one cell in

each dielectrophoretic cage (Fig. 4.4). This issue could be partially overcome by

splitting the sample into multiple DEPArray™ cartridges, a solution which is very

Table 4.1 Recovery rates using cell-enrichment by ScreenCell®

Independent spiking

replicates with MCF-7 cell

line (50 cells)

EpCAMþ/CKþ/CD45-nucleated cells visualized by

DEPArray™
11 13 8 13 14 11

% recovery corrected for DEPArray™ cartridge void volumea 31 37 22 37 39 31
athe DEPArray™ cartridge allows analysis of only part of the loaded sample
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time-consuming and expensive and does not represent the best choice for a protocol

to be used for clinical samples.

4.3.2.4 Parsortix

This system uses a micro-fluidic technology to capture CTCs in a cassette,

exploiting their less deformable nature and larger size compared to other blood

components. Literature reports comparing this CTC-enrichment approach with

classical EpCAM-based methods using different cell lines and a limited number

Table 4.2. Recovery rates using cell-enrichment by OncoQuick™

10 MCF-7

spiking

triplicates

25 MCF-7

spiking

triplicates

50 MCF-7

spiking

triplicates

EpCAMþ/CKþ/CD45-nucleated cells visu-

alized by DEPArray™
7 8 7 11 14 10 26 30 27

% recovery corrected for DEPArray™ car-

tridge void volumea
100 100 100 61 78 56 72 83 75

athe DEPArray™ cartridge allows analysis of only part of the loaded sample

Fig. 4.4 CTCs identified in a metastatic breast cancer patient. A blood sample (13.7 mL) was

collected from a metastatic breast cancer patient in K2EDTA tube before starting chemotherapy.

CTCs were enriched with OncoQuick™, fixed with 2% PFA, fluorescently-stained for EpCAM,

CK, CD45 and nuclei and finally analyzed with the DEPArray™. Five of the 37 identified CTCs

are reported in the Figure: their tumor phenotype is confirmed by expression of epithelial markers

(EpCAM and CK, PE-channel) and by absence of CD45 staining (best evaluable in the last column

merging DAPI, PE and APC channels). The high number of contaminating leukocytes present in

the sample generates aggregates inside the DEP-cages interfering with correct routing and

recovery of CTCs

94 C. Reduzzi et al.



of clinical samples, suggest its ability to detect larger numbers of cells (Xu et al.

2015; Chudziak et al. 2016; Hvichia et al. 2016).

The cell enrichment performance was initially explored using the MCF-7 cells

for which comparative results with other enrichment approaches were available.

Recovery rates were high ranging from 70 to 84% a performance which is compa-

rable to that obtained with the OncoQuick™ approach, but with an important

advantage in terms of specificity. Indeed, the total number of cells harvested with

the use of Parsortix was on the average around 1500, almost 30-fold lower with

respect to the DEPArray™ dielectrophoretic cartridges capacity, and allowing

therefore true single-cell analyses, without the need to split the sample.

For these reasons, the Parsortix technology appeared in our hands as the best-

suited one for developing a protocol to apply to clinical samples. This prompted us

to extend our experiments also to other pathologies where CTC recovery and

molecular characterization might be very useful.

Spiking experiments were run using the prostate cancer cell line PC3, and the

cholangiocarcinoma cell lines EGI, HuCCT, HuH28. Cholangiocarcinoma cell

lines were kindly provided by Prof. Strazzabosco (Universit�a Milano-Bicocca,

Monza, Italy) and cell authenticity was verified by STR analysis by our Institutional

Genomics Core Facility.

Results for tumor cell recoveries with Parsortix are reported in Table 4.3 and

refer to spiking 10, 25, 50 cells into 10 mL of HD blood using cells preliminarily

labeled with a cell tracker (CellTracker™ Green CMFDA Dye, ThermoFisher

Scientific, Waltham, MA, USA) and visualized under a fluorescent microscope

after harvesting from the Parsortix cassette.

Table 4.3 Recovery rates using cell-enrichment by Parsortix

Cell line

No. of spiked cells No. of recovered cells % recovery rate Mean % recovery rate

PC3

10 8 80 75.3 � 4.2

25 18 72

50 37 74

EGI

10 7 70 74.7 � 5.0

25 20 80

50 37 74

HuCCT

10 10 100 90.0 � 11.1

25 23 92

50 39 78

HuH28

10 8 80 87.0 � 8.1

25 24 96

50 43 86
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At difference to what observed with the OncoQuick™approach, the recovery

rates did not change as a function of the number of spiked cells whereas there were

differences in the number of recovered cells depending on the cell line. In partic-

ular, for the HuCCT and HuH28 cell lines the highest recovery rates were obtained

(around 90%). Differences in recovery rates depending on the cell line are possible

and are linked to differences in cell sizes among the different cell lines. Similar

results have already been reported by others (Hvichia et al. 2016) and were

demonstrated to directly correlate with the Feret diameter of cells. Overall, the

mean recovery rate was 82%.

4.3.3 Improving CTC Identification: Going Beyond Classical
Epithelial CTCs

As for the enrichment, also the identification step, which in our protocol was

initially based on the expression of epithelial markers similarly to the majority of

CTC isolation methods, had to be improved in order to include CTCs’ heterogene-
ity. Therefore we proceeded by stepwise implementing the set of tumor markers

used for CTC identification.

Since one of the most important and interesting aspects in CTCs detection and

characterization is phenotype switching from epithelial to mesenchymal through

EMT (Yu et al. 2013), we decided to add to the staining procedure an antibody

directed against Vimentin, VIM (Santa Cruz Biotechnology, clone SC-6260, Alexa

Fluor 488-conjugated), a protein expressed in mesenchymal cells. VIM is expressed

also by blood cells and is not a CTC-specific marker, anyway it can be used to better

characterize CTCs with a complete epithelial or mixed epithelial-mesenchymal

phenotype.

Moreover, in a previous study in which AdnaGen technology was used to detect

CTCs in patients with breast cancer by using immunomagnetic beads (Fina et al.

2015), we had observed that the addition of EGFR to the set of markers used for the

enrichment, resulted in increased CTC detection; thus EGFR was introduced in our

protocol as identification marker (anti-human EGFR PE-conjugated, clone 423,103,

R&D Systems, Minneapolis, MN, USA). Both antibodies were essentially used

according to the manufacturer’s instructions.
Implementing positive selection markers is a possible strategy, but considering

that it is impossible to predict which markers will be expressed by all the different

subpopulation of CTCs, theoretically the best way to select CTCs would be to

perform a negative selection of all blood cells. We tried to do so by using CD45 as

negative selection marker but unfortunately all blood samples analyzed (including

negative controls from HD) were characterized by the presence of many cells

negative for both tumor markers and CD45, probably due to a non homogeneous

expression of this antigen by different blood cell subpopulations or to insufficient

sensitivity of the antibody. Consequently, the set of negative selection markers was
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implemented with CD14 and CD16, two proteins specifically expressed by some

subpopulations of WBC (in particular CD14 by macrophages, neutrophils and

dendritic cells; CD16 by natural killer cells, neutrophils polymorphonuclear leuko-

cytes, monocytes and macrophages). The staining with the 3 antibodies against

CD45, CD14 (clone M5E2, BD Biosciences Pharmigen, San Diego, CA) and CD16

(clone 3G8, BD Biosciences Pharmigen) together, dramatically reduced the number

of double negative cells in the samples analyzed (0–20 double negative cells in

most of the samples).

It is impossible to establish if these cells are effective tumor cells, since they do

not express any of the tumor markers used for the identification of CTCs, and

actually, while some of them are considerably larger than WBC, other have a

morphology that closely resembles WBC, as shown in Fig. 4.5b. Nonetheless, the

reduced number of double negative cells obtained with the improved staining

allowed their recovery and consequently the possibility to perform molecular

analyses in order to define their tumor/non-tumor nature.

After the reported considerations on CTC enrichment and identification our CTC

detection protocol was modified as shown below.

• Blood collection in K2EDTA tubes

• Enrichment with Parsortix (10 mL of blood)

• Fixation with 2% PFA (20 min at room temperature)

• Staining for positive-selection markers (PE-conjugated antibodies): EpCAM

(1:11, 10 min at 4 �C), CK (1:10, 10 min at room temperature) and EGFR

(1:11, 10 min at 4 �C); negative selection markers (APC-conjugated antibodies):

CD45 (1:11, 10 min at 4 �C), CD14 (1:20, 10 min at 4 �C) and CD16 (1:20,

10 min at 4 �C); VIM (1:10, 10 min at room temperature) and nuclei (Hoechst

33,342, Sigma Aldrich, 1 μg/mL, 5 min at room temperature)

• Analysis with DEPArray™.

4.4 Stretching the Single Cell: Whole Genome
Amplification (WGA)

Regardless the type of downstream molecular analysis, the DNA content of a single

cell is definitely too scarce and therefore a whole genome amplification (WGA) step

is mandatory. WGA, besides being essential, is also very tricky and critical, and its

performance becomes the main factor determining the outcome of the following

steps.

Some of the major problems connected to WGA are a partial coverage, the poor

uniformity, allelic-dropouts and false positives. Consequently, preservation of the

molecular complexity of the cells is at risk and, notwithstanding the specific type of

platform adopted (microarrays, SNP arrays, NGS), the difficulty in the interpreta-

tion of results mainly lies in separating technical artifacts from genuine genetic

variants. Many WGA kits, which can be divided into PCR-based and non
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PCR-based (as typically multidisplacement amplification, MDA) are presently

commercialized, but also mixed approaches have been described. A comprehensive

dissection of all aspects of WGA from single-cells is beyond the scope of this

chapter and readers can find most information on technical and biological aspects of

single-cell genome analysis in excellent published reviews (Hou et al.2015; de

Bourcy et al. 2014; Navin 2014; Wang and Navin 2015; Van Loo and Voet 2014).

Fig. 4.5 CTCs and APC-ve cells identified in two cholangiocarcinoma patients. Blood samples

(11 and 10 mL), drawn in K2EDTA tube before starting chemotherapy, were enriched with

OncoQuick™ (panel A) or Parsortix (panel B), fixed with 2% PFA, fluorescently-stained for

EpCAM, CK, CD45, CD14, CD16 and VIM and subsequently analyzed with the DEPArray™.

Panel A: three CTCs (PE þve and APC �ve nucleated cells) identified based on the expression of

epithelial/WBC markers (PE/APC channels). Please see the FITC channel for a further evaluation

of the CTCs’ phenotype ranging from more mesenchymal (cell 1) to more epithelial pattern

(cell 3). Panel B: six cells negative for both tumor and WBC markers. Please note the heteroge-

neous morphology with sizes either similar to WBCs (cell 8) or to tumor cells (cell 5 and 6). In the
FITC-channel the expression of VIM, similarly to the morphology, is very heterogeneous (cell 7
shows the highest VIM expression, cell 6 is VIM-ve) (Abbreviations: WBC white blood cell)
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We used in our protocol, an amplification method initially developed by Klein

and colleagues (1999) and later adapted in a commercially available kit by Silicon

Biosystems, the Ampli1 WGA (Polzer et al. 2014).

The manufacturer recommends its use in combination with the Ampli1 QC kit, a

PCR-based assay useful for the evaluation of the WGA output product. A small

aliquot from the WGA product obtained from cells isolated with the DEPArray™
during the previously described spiking experiments, was therefore processed with

the QCmultiplex PCR reaction which allows the simultaneous amplification of four

human genomic targets of increasing length (91, 108–166, 299, 614 bp). The

quality of the WGA products could this way be estimated by evaluating in a

capillary gel-electrophoresis run the presence/absence of specific target amplicons.

In particular, the absence of all of the amplicons suggests that a failure in WGA has

occurred, whereas the presence of 1–2 targets corresponds to a low-quality WGA

product limiting its downstream use to few gene-specific assays. Conversely, the

presence of 3–4 of the amplicons testifies the good performance of the WGA and is

a reliable predictor of success when performing downstream genome-wide

analysis.

We have processed 286 samples including single cells or pools of few target

cells, isolated with the DEPArray™ in spiking experiments. QC results were

satisfying for 73% of samples, which were defined as high–quality (3–4 amplicons),

whereas 21% were defined as low-quality with only 1 or 2 of the amplicons, but

only 6% of samples presented no amplicons. Therefore, based on the predictions of

the QC kit, this approach would allow genomic characterization of a high fraction

of samples.

4.5 The Dark Side of the Moon: The Clinical Samples

Clinical samples obtained from patients with breast cancer, cholangiocarcinoma

and renal cell carcinoma at different stages (early or metastatic) both at baseline or

during treatment, were processed in parallel to the development of the technical

protocol by stepwise introducing the protocol improvements in CTC-enrichments

and in CTC-identification. At difference with spiking experiments, no direct tech-

nical comparison was run on the clinical samples.

As expected, CTC-enrichment represented a critical point also in the case of

clinical samples. The two methods with the best cell recovery rates in spiking

experiments, i.e. density based enrichment with OncoQuick™ and size/

deformability enrichment with Parsortix performed very well also on clinical

samples, although a matched comparison in the number of collected CTCs from

the same samples is not possible since the two approached were not run in parallel.

Using the OncoQuick™ we have processed 43 samples and have identified

101 cells defined as CTCs due to the positive PE staining (supporting their epithe-

lial origin). Their visualization, sorting and recovery by DEPArray™ however,

required processing the samples on 84 cartridges (an average of 2 cartridges for
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sample) due to the high number of contaminating WBCs which tended to saturate

the capacity of the DEP-cages impairing single cell collection (see Fig. 4.4).

Despite having split the samples into more than one run on the DEPArray™, only

49/101 (48.5%) of the identified PEþve cells could be recovered for downstream

analyses, a frustrating result when considering the additional time and costs for

each sample. On the contrary, with Parsortix 18 samples have been so far processed,

using a single DEPArray™ cartridge for each sample and allowing the recovery of

90% of the cells identified as PEþve which represent CTCs with epithelial pheno-

type. The increased routing efficiency during the single cell recovery process from

the DEPArray™ cartridge, is consequent to the lower number of cells in the

cartridge due to the more efficient removal of WBC obtained with Parsortix

compared to Oncoquick™.

As described in paragraph 4.3.3 our protocol was also developed for collection

of non-epithelial CTCs defined as PE-ve/APC-ve cells. The procedure was used to

process 48 patient-derived blood samples and 289 double negative cells were

recovered. Since negative selection of CTCs is by definition not supported by the

expression of CTC-specific markers, the actual tumoral nature of single cells

collected under our protocol was uncertain and was therefore checked by evaluating

chromosomal aneuploidies and copy number alterations (CNA) through a low pass

whole genome sequencing using the PGM™system. To such a purpose multiplexed

sequencing-ready libraries were generated using the Ampli1™ Low pass kit (Sil-

icon Biosystems, Italy) which is specifically designed to process WGA products

generated with the Ampli1 kits. Pools of ten leukocytes each, collected with the

DEPArray™ as ‘controls’ from eight patients with choloangiocarcinoma and three

patients with breast cancer, were all correctly classified as normal cells based on

their diploid genome and on the absence of gains or losses of chromosomal regions.

Preliminary results on the CNA of putative non-epithelial CTCs collected as PE-ve/

APC-ve cells were encouraging as 11/32 cells recovered from cholangiocarcinoma

patients and 4/10 recovered from breast cancer patients, were actually tumor cells

with hyperdiploid genomes and numerous gains and losses of DNA regions along

the entire genome. Interestingly, different CTCs from the same patients were

characterized by genomic heterogeneity. These results support the validity of our

protocol for isolation and recovery of non-epithelial CTCs.

Overall the developed protocol allowed us to build a bank of both epithelial

CTCs and of non-epithelial CTCs with confirmed tumor nature isolated from blood

samples of patients with different tumor types. All collected CTCs were stored as

WGA products.

Quality control analysis of WGA performance is crucial for further downstream

molecular analyses and was therefore run on clinical samples similarly to what done

on spiking experiments. Results were super imposable with 73% of samples called

as good-quality, 21% low-quality and only 6% of samples which failed amplifica-

tion. This means that on the average three quarters of the cells isolated from patients

with the described protocol qualify for downstream analysis of their genome.

Indeed, the developed protocol allowed genotyping analysis of single CTCs.

Ampli1 WGA kit products derived from CTCs and WBCs were processed using
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the Ion AmpliSeq Custom Cancer Hotspot Panel v2 (50 genes) modified to take into

account the enzymatic fragmentation with the restriction MseI enzyme on input

DNA processed with the Ampli1 kit. Analyses were run using the TorrentSuite v

5.0 using the Variant Effect Predictor v83. Eleven CTCs and 6 WBC pools

belonging to 5 distinct patients (4 women with breast cancer and one with renal

cell cancer) have been analyzed. In one breast sample a somatic heterozygous

mutation of TP53 (p.Arg273His) was observed in one of three CTCs, while in

another sample 19 somatic mutations were present around 5 CTC with a prevalence

in one of them. ERBB4 (p.Gln346His) and ATM (p.Arg3047Leu) missense variants

were present with a heterozygous status with frequency deviations suggesting a

possible copy-gain of the wild type allele. No biological or clinical interpretation of

these results is so far possible, besides confirming that the data support the technical

validity of the developed protocol. Results for one triple negative non-metastatic

breast cancer patient are reported as an example in Fig. 4.6.

Finally, an interesting observation on clinical samples relates to the expression

of VIM (FITC channel), which was in fact expressed at different intensities in

PE þ ve cells suggesting the presence of CTCs with a hybrid epithelial/mesenchy-

mal phenotype (Fig. 4.5a). On the other hand, also some, though not all, of the

PE-ve/APC-ve cells expressed VIM (Fig. 4.5b). In some cases VIM expression was

accompanied by a less rounded morphology.

4.6 Conclusions

Single-cell analysis of CTCs is still in its infancy and much more work needs to be

done to obtain technical protocols suitable for clinics, which can really impact the

eagerly pursued precision medicine objectives. The described protocol should not

be considered as one in its final stage, instead it represents a flexible technical

Fig. 4.6 Somatic single nucleotide variation in CTCs from a breast cancer patient. The panel

reports the variant frequencies for three distinct single nucleotide variants (SNV) of TP53,
PIK3CA and PTPN11 genes detected in three CTCs isolated from a triple negative non metastatic

breast cancer patient before the start of neoadjuvant treatment, using OncoQuick™ for

CTC-enrichments. Red boxes (dark grey) indicate the presence of a SNV and report frequencies,

blue boxes (light grey) indicate a wild-type genotype. CTCs were identified as nucleated PE þve

cells (i.e. either positive for EpCAM or panCK)/APC-ve cells (i.e negative for CD45). The

reported SNV supports the presence of clonal heterogeneity among CTCs and acquisition of

new somatic heterozygous mutations
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approach open to additional improvements. Its analytical validity is supported by

both results with spiking experiments, which have the advantage of allowing an

accurate evaluation of data obtained with respect to expected results, but impor-

tantly is also confirmed by results with clinical samples. The next steps will

necessarily deal with evaluation of its clinical validity, ideally within a well-

defined clinical trial with target therapies.
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Chapter 5

Flow Cytometric Methods for Circulating
Tumor Cell Isolation and Molecular Analysis

Neha Bhagwat and Erica L. Carpenter

Abstract Circulating tumor cells provide a non-invasive source of tumor material

that can be valuable at all stages of disease management, including screening and

early diagnosis, monitoring response to therapy, identifying therapeutic targets, and

assessing development of drug resistance. Cells isolated from the blood of cancer

patients can be used for phenotypic analysis, tumor genotyping, transcriptional

profiling, as well as for ex vivo culture of isolated cells. There are a variety of novel
technologies currently being developed for the detection and analysis of rare cells

in circulation of cancer patients. Flow cytometry is a powerful cell analysis

platform that is increasingly being used in this field of study due to its relatively

high throughput and versatility with respect to the large number of commercially

available antibodies and fluorescent probes available to translational and clinical

researchers. More importantly, it offers the ability to easily recover viable cells with

high purity that are suitable for downstream molecular analysis, thus making it an

attractive technology for cancer research and as a diagnostic tool.

Keywords Flow cytometry • Circulating tumor cells • Cell sorting • Acoustic

focusing

5.1 Introduction

Circulating tumor cells (CTCs) are cells shed from solid tumors and found at

extremely low frequency in the bloodstream of patients for most cancer types. A

subset of these cells can seed distant organs in the body and give rise to metastatic
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disease, which is the primary cause of cancer-related mortality. Isolation and

characterization of these CTCs from patient blood can be a sensitive and

non-invasive method for early cancer detection, disease monitoring while on

therapy, and molecular analysis for detection of therapeutically targetable

oncogenes.

5.2 Clinical Utility of CTCs

Several studies have demonstrated that the number of CTCs detected in patient

blood correlates with lower survival and worse outcomes in solid tumors such as

breast, lung, prostate, and colorectal (Cristofanilli et al. 2004; Cohen et al. 2008; de

Bono et al. 2008). However, the focus on enumeration has limited the role of CTCs

in clinical decision-making, and there is an increasing need to recover these cells in

order to perform more sophisticated and detailed analysis, including the application

of next-generation sequencing for detection of disease associated genetic variants,

as well as specific molecular biomarkers of response or resistance to therapy

(Smerage et al. 2014; Yee et al. 2016). A liquid biopsy offers minimally-invasive,

repeat access to tumor material, which can be invaluable for early detection and

real-time monitoring of acquired resistance to targeted therapies, especially when

the tumor is surgically inaccessible (Maheswaran et al. 2008). Additionally, CTCs

are thought to be shed by both primary and metastatic tumor, and are thus consid-

ered to more comprehensively represent the genetic heterogeneity of tumors and

metastases as compared to single site tissue biopsies (Gerlinger et al. 2012; Ni et al.

2013). In metastatic castration resistant prostate cancer, detection of a nuclear

androgen receptor splice variant, AR-V7 messenger RNA, in CTCs, was associated

with resistance to inhibitors of androgen receptor signaling (Antonarakis et al.

2014; Scher et al. 2016). Another group recently found that PD-L1 was frequently

expressed on breast cancer CTCs, leading to the development of a CTC/PD-L1

specific assay that can be used to stratify patients for immune checkpoint inhibitor

therapy (Mazel et al. 2015). Nuclear expression of PD-L1 in CTCs was also

associated with shorter overall survival in metastatic colon and prostate cancer,

further supporting the prognostic role of this biomarker (Satelli et al. 2016). Several

groups have recently reported that a high degree of genetic variation within a tumor

is associated with enhanced response to immunotherapy (Rizvi et al. 2015;

McGranahan et al. 2016), suggesting that development of a liquid biopsy to

accurately measure tumor heterogeneity in CTCs could be used to select patients

who would benefit most from such therapy.

Developing a molecular or protein signature that is indicative of distant organ

metastases is another clinically relevant application of CTC molecular analysis.

Two different studies conducted in breast cancer samples identified a set of protein

biomarkers that enrich for cells that give rise to organ-specific metastasis (Zhang

et al. 2013; Baccelli et al. 2013). Transcriptional profiling of CTCs, including single

cells, has been successfully conducted in a number of cancer types (Miyamoto et al.
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2015; Ramskold et al. 2012; Yu et al. 2012; Powell et al. 2012). Ting et al.

demonstrated that a majority of CTCs isolated from mouse models and patients

with pancreatic cancer exhibit high expression of extracellular matrix proteins such

as SPARC. Further, suppression of SPARC resulted in a decrease in cell migration

and invasion as well as reduction in metastatic burden in mouse models (Ting et al.

2014). Thus, transcriptomic analysis of CTCs can also be used to identify thera-

peutic vulnerabilities in the tumor, or to classify tumors into subtypes that have

prognostic value (Bailey et al. 2016), or to predict response to targeted therapies

(Guinney et al. 2015; Prat et al. 2015).

CTCs obtained from pre-clinical or clinical samples can be used as a source of

tumor material for ex vivo profiling and functional analysis. CTCs isolated from late

stage cancer patients have been successfully transplanted into and serially passaged

in immunodeficient mice, and have been shown to recapitulate the donor patient

tumor’s molecular characteristics and response to therapy (Hodgkinson et al. 2014;

Baccelli et al. 2013; Zhang et al. 2013). Long-term cultures of CTC-derived cell

lines have also been generated from breast, prostate, melanoma, colorectal, and

small cell lung cancer patients, including for patients whose primary or metastatic

tissue was inaccessible or difficult to biopsy (Gao et al. 2014; Girotti et al. 2016;

Cayrefourcq et al. 2015; Yu et al. 2014; Hamilton et al. 2016). While freshly

isolated CTCs are extremely rare, these ex vivo models provide a renewable

resource of cells with sufficient numbers to perform extensive phenotypic and

molecular characterization, as well as functional assays to screen for drug sensitiv-

ity and predict response to therapy.

While the majority of studies over the last decade have focused on single CTCs,

more recent reports have documented the presence of CTC clusters, also known as

circulating tumor microemboli (CTM), in patient and mouse blood (Molnar et al.

2001; Stott et al. 2010; Khoja et al. 2012; Yu et al. 2013; Sarioglu et al. 2015; Aceto

et al. 2014). In pre-clinical models, CTC clusters had increased metastatic potential

as compared to single CTCs, with CTC clusters exhibiting clonal heterogeneity

which decreased as disease progressed (Maddipati and Stanger 2015; Aceto et al.

2014). Further, in clinical studies, CTC clusters were associated with a lower

progression free survival, suggesting that non-invasive monitoring of CTC clusters

could have prognostic value (Hou et al. 2012; Jansson et al. 2016; Divella et al.

2014). Therefore, there is increasing interest to develop robust technologies for

isolation of clusters along with single cells, and to promote a deeper understanding

of the biology underlying the enhanced invasiveness and metastatic potential of

CTC clusters.

Several major technical hurdles exist when isolating rare cells; one is the ability

to isolate rare tumor cells from a sample that contains a background of billions of

blood cells, and another is being able to do this in a high-throughput manner that

would yield results within a clinically relevant timeframe. The only FDA approved

platform for clinical enumeration of CTCs is CellSearch (Janssen). One key

limitation of this methodology is that CTCs are enriched based on the expression

of the epithelial marker EpCAM, which is not expressed on several tumor types,

including melanoma and sarcomas (Momburg et al. 1987). Moreover CellSearch is
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likely to have low sensitivity for cells that have undergone epithelial to mesenchy-

mal transition (EMT), a process known to be associated with metastasis (Ye and

Weinberg 2015) in which EpCAM expression is lost or greatly reduced.

CellSearch-enriched cells also undergo fixation, which can be incompatible with

downstream molecular analysis or functional studies such as those described above.

Antibody- and marker- independent technologies have been developed in the last

decade that enrich CTCs based on cell size, density, or conductivity (Pailler et al.

2016; Gupta et al. 2012), while negative selection approaches, including

immunomagnetic depletion of hematopoietic cells, also leave CTCs unlabeled

(Issadore et al. 2012; Karabacak et al. 2014). Ferreira et al. provide an excellent

and up-to-date review of the current platforms under development (Ferreira et al.

2016). In addition to new technologies, established methods of cell analysis such as

flow cytometry are also increasingly being adapted for CTC isolation and

characterization.

5.3 Flow Cytometric Methods of CTC Analysis

Flow cytometry is considered the gold standard of single cell phenotypic analysis

and is extensively used in biological and clinical research, particularly for

immunophenotyping a variety of biological samples including blood, bone marrow

aspirate, and dissociated tumor tissue. In a flow cytometer, live or fixed cells in

suspension are aligned in a single file, usually through hydrodynamic focusing with

sheath fluid that creates laminar flow. This allows individual cells to intersect one at

a time with a light source such as a laser. The scattered light is collected by the

optics system and converted to a digital signal that can provide information on cell

size, internal complexity, and other characteristics based on fluorescently labeled

antibodies, probes, or dyes that can be used to tag cells. The latest flow cytometers

can process thousands of events per second and measure tens of parameters on

individual cells. This allows the investigator to multiplex different markers using

non-overlapping fluorescent conjugates (Chattopadhyay et al. 2008). Thus, flow

cytometry can provide highly quantitative and detailed phenotypic information on
individual cells in a high throughput manner.

We and others have used flow cytometry to detect, enrich, or analyze CTCs in

the blood of cancer patients (Table 5.1). One of the earliest studies used multiple

pan-cytokeratin antibodies to identify tumor epithelial cells and a cocktail of

hematopoietic lineage markers to exclude blood cells in a blood or bone marrow

sample where they were able to detect tumor cells at a frequency as low as 10�7

(Gross et al. 1995). Racila et al. further modified this assay by performing

immunomagnetic enrichment of EpCAM-positive cells prior to analysis by flow

cytometry in a cohort of breast cancer patients. They were able to detect

cytokeratin-positive, CD45-negative CTCs in 29/30 patients with a sensitivity of

1 cell in a tube of blood (Racila et al. 1998). We have more recently shown that

flow-sorting can be used to enrich tumor cells disseminated to the bone marrow of
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Table 5.1 List of key studies using flow cytometry for CTC analysis

References Sample prep Sample type

Markers

used for

analysis Sensitivity

Downstream

analysis

Gross et al.

(1995)

NA BT-20 cells

spiked in

PBMCs

pan-CK+;

CD45-,

CD42a-,

CD61-,

CD34-

1 in

10 million

cells

Enumeration

Simpson

et al.

(1995)

NA Peripheral

blood, bone

marrow and

apheresis prod-

uct from meta-

static breast

cancer patients

(N ¼ 44)

CK+,

CD45-

1 in

200,000

cells

Enumeration

Racila

et al.

(1998)

Immunomagnetic

enrichment of

EPCAM+ cells

Peripheral

blood from

breast (N ¼ 30)

and prostate

(N ¼ 3) cancer

patients

pan-CK+,

CD45-,

1 in 1 ml

of blood

Enumeration

Beitsch and

Clifford

(2000)

Immunomagnetic

enrichment of

EPCAM+ cells

Peripheral

blood from

breast cancer

patients

(N ¼ 33)

pan-CK+,

CD45-

NR Enumeration

Allan et al.

(2005)

Immunomagnetic

depletion of CD45

+ leukocytes

Mouse xeno-

graft model of

metastatic

breast cancer

pan-CK+,

CD45-, PI

for

aneuploidy

1 in

100,000

cells

Enumeration

Cruz et al.

(2005)

NA MCF-7 cells

spiked in whole

blood

CK18+, PI

for

aneuploidy

1 in

10 million

cells

Enumeration

Wang et al.

(2009)

NA Peripheral

blood from

breast cancer

patients

(N ¼ 48)

CK19+ 1 in 10,000

cells

Enumeration

Hu et al.

(2010)

NA Peripheral

blood from

breast cancer

patients

(N ¼ 45)

EPCAM+,

pan-CK+,

CD45-

1 in

100,000

cells

Enumeration

Takao and

Takeda

(2011)

Immunomagnetic

enrichment of

EPCAM+ cells

PC-3 and

MCF-7 cells

spiked in

peripheral blood

EPCAM+,

CD45-,

viability

dye

10 cells in

4 ml of

blood

Enumeration

and recovery

for culture

(continued)
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Table 5.1 (continued)

References Sample prep Sample type

Markers

used for

analysis Sensitivity

Downstream

analysis

Magbanua

et al.

(2012)

Immunomagnetic

enrichment of

EPCAM+ cells

Peripheral

blood from

prostate cancer

patients

(N ¼ 20)

EPCAM+,

CD45-

NR Enumeration

and recovery

for array

CGH

Watanabe

et al.

(2014)

Immunomagnetic

depletion of CD45

+ leukocytes

A549, KATO-

III, PC-14,

MCF-7,

Hs578T cells

spiked in

peripheral blood

EPCAM+/

�, CK+/

�,Vim+/�
CD45-,

viability

dye

10 cells in

1 ml of

blood

Enumeration

and recovery

for culture

Magbanua

et al.

(2013)

Immunomagnetic

enrichment of

EPCAM+ cells

Peripheral

blood from

breast cancer

patients

(N ¼ 181)

EPCAM+,

CD45-

NR Enumeration

and recovery

for array

CGH

Lu et al.

(2015)

Immunomagnetic

depletion of CD45

+ leukocytes

Peripheral

blood from

colorectal can-

cer patients

(N ¼ 18)

EPCAM+,

CD45-,

CD44+/�,

CD47+/�

3 cells in

2 ml of

blood

Enumeration

and marker

analysis

Hristozova

et al.

(2012)

NA Peripheral

blood from

SCCHN

patients

(N ¼ 33)

EPCAM+,

pan-CK+,

CD45-,

EGFR/

pEGFR

NR Enumeration

and marker

analysis

Gorner

et al.

(2015)

NA Peripheral

blood from pan-

creatic cancer

patients (N ¼ 8)

CD45-,

EPCAM+,

MUC1+,

viability

dye

1 in 1 mil-

lion cells

Enumeration

and recovery

for qPCR

Carpenter

et al.

(2014)

NA Bone marrow

from neuroblas-

toma patients

(N ¼ 10)

CD45-,

CD56+,

GD2+,

viability

dye

1 in 1 mil-

lion cells

Enumeration

and recovery

for targeted

sequencing

Vishnoi

et al.

(2015)

NA Peripheral

blood from

breast cancer

patients

(N ¼ 38)

CD45-,

EPCAM-,

CD44+,

CD24-,

viability

dye

NR Recovery for

genotyping,

qPCR, func-

tional assays

PBMCs Peripheral blood mononuclear cells, CK Cytokeratin, PI Propidium Iodide, CGH Com-

parative genomic hybridization, SCCHN Squamous cell carcinoma of head and neck, qPCR
quantitative PCR, NA Not applicable, NR Not reported
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pediatric neuroblastoma patients prior to dielectrophoretic purification and

sequencing of single cells (Carpenter et al. 2014). Other studies have utilized

immunomagnetic depletion or negative selection of unwanted leukocytes in order

to enrich for tumor cells prior to flow analysis (Allan et al. 2005; Watanabe et al.

2014; Lu et al. 2015; Rhim et al. 2012). More recently, Hristozova et al. described

an ‘electronic thresholding’ protocol used during data acquisition that significantly

improved sensitivity without prior enrichment or depletion (Hristozova et al. 2012).

Traditional flow cytometric techniques combined with high-speed microscopic

imaging modalities have the ability to provide information on marker subcellular

localization or colocalization, and other complex features such as DNA fragmen-

tation. This platform, known as ImagestreamX (Amnis) has been used to study rare

CTC populations in cancer patients in different tumor types (Dent et al. 2016; Ogle

et al. 2016). Using image analysis, Catenacci et al. were able to confirm loss of

expression of tumor-suppressors including TP53, SMAD4, and P16/CDKN2A in

CTCs from pancreatic cancer patients, a finding that was correlated with worse

outcome (Catenacci et al. 2015). The addition of high quality microscopic images

can potentially reduce false-positives due to cell debris or antibody-aggregates that

can occur in flow cytometric assays. This platform can also be useful for detailed

characterization of non-tumor cells that could be present in CTC clusters.

In addition to complex phenotypic analysis, cell sorters also allow for the

recovery of the cells of interest at a very high purity. Most modern cell sorters

have the capability of simultaneously sorting multiple sub-populations as well as

single cells. In addition, flow cytometric cell sorters can be modified with large

nozzles and with the application of low sample pressure, can minimize shear forces

and allow for recovery of intact circulating tumor clusters along with single cells.

Magbanua et al. combined magnetic immunoenrichment and flow sorting to isolate

tumor cells from blood in a cohort of metastatic prostate and breast cancer patients.

They were further able to perform comparative genomic hybridization (array CGH)

analysis on the isolated cells and observed similar frequencies of copy number

alterations as previously published for primary tumors (Magbanua et al. 2012,

2013). In another study that highlights the versatility of flow cytometric analysis,

Vishnoi et al. isolated four different subpopulations of EpCAM-negative CTCs

from breast cancer patients with and without brain metastasis. CTCs were sorted

based on presence or absence of urokinase plasminogen activator receptor (uPAR)

and integrin β1, and comprehensive transcriptome and genotyping analyses were

performed on each subset. Isolated cells were also cultured in vitro and used for

functional assays where they found that the different CTC subsets had distinct

proliferative and invasive properties that could potentially determine their ability to

metastasize (Vishnoi et al. 2015).
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5.4 Recent Developments in Flow Cytometry

5.4.1 New Methods of Cell Labeling

Fluorescent labeling of cells for flow cytometry is no longer limited to the use of

validated antibodies. Aptamers are single-stranded nucleic acid molecules having

unique secondary and tertiary structures that can be selected to recognize specific

cell surface markers including EpCAM (Song et al. 2013). Aptamers are less

susceptible than antibodies to aggregation, may have improved tissue penetration,

and can be generated to recognize virtually any ligand through in vitro selection

(Stoltenburg et al. 2007). They can also be easily conjugated to fluorescent dyes or

other labels and have been used to detect CTCs in the blood of cancer patients

(Sheng et al. 2012; Zhang et al. 2015; Zamay et al. 2015). Considerable progress

has also been made in developing techniques to facilitate labeling of intracellular

markers without fixation or membrane permeabilization, which can compromise

cell viability and are not ideal for downstream molecular analysis. For example, a

novel microfluidic platform uses gentle compression to transiently produce pores in

the cell membrane through which macromolecules can rapidly (~1 min) pass,

thereby minimizing effects on gene expression and cell viability. This method has

been successfully used to introduce antibodies and nucleic acids into a number of

cell types with high efficiency (Sharei et al. 2013). RNA probes can be introduced

into cells using this gentle compression and used to detect intracellular gene

transcripts by flow cytometry (Abe and Kool 2006; Hanley et al. 2013; Shi et al.

2016). In a recent study, oligonucleotide-modified gold nanoparticle probes hybrid-

ized to fluorophore complements, known as ‘NanoFlares’, were used to detect

epithelial and mesenchymal gene transcripts in CTCs from a breast cancer xeno-

graft model by flow cytometry (Halo et al. 2014). The labeled cells could be

isolated and remained viable for downstream analysis and cell culture.

5.4.2 Acoustic Focusing

Flow cytometric analysis of CTCs from whole blood can be extremely time-

consuming and cumbersome unless red blood cells (RBCs) are first removed.

While this can be achieved by density gradient separation or osmotic buffer lysis,

these processes can lead to significant loss of rare cells in the sample, particularly

during the associated wash steps (Fritsch et al. 1997; Lara et al. 2004). Another

limitation of flow cytometric sorting can be a low recovery rate particularly at the

high sorting speeds necessary to analyze large blood volumes without RBC

removal. However, there are several strategies that can be adopted to overcome

these issues. Acoustophoresis, or acoustic focusing, is a powerful technique in

which ultrasonic standing waves are used for particle separation based on their

size, density, and compressibility (Lenshof et al. 2012; Li et al. 2015). This
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principle can be applied to separate smaller particles like cell debris, red blood

cells, and platelets in whole blood from larger nucleated cells, which can then be

directly analyzed by the flow cytometer. Additionally, the sample can be diluted

and washed without centrifugation by flowing wash buffer during acoustic focusing

thereby minimizing sample manipulation and cell loss during upstream processing.

This effectively results in concentrating the cells of interest, thereby reducing

sample analysis time. The volumetric throughput can be further increased by adding

multiple channels in parallel (Laurell et al. 2007). This methodology has minimal

effects on cell viability and is therefore conducive to downstream applications

including ex vivo culture and molecular analysis (Burguillos et al. 2013). Overall,

combining this methodology with conventional hydrodynamic flow sorting allows

for rapid analysis of large blood volumes while maximizing cell recovery but

without compromising sensitivity.

5.4.3 Analytic Tools

Due to the development of new markers and other advancements in flow cytometry,

researchers are faced with analysis of enormous data sets. New algorithms such as

Cytometric Fingerprinting (Rogers et al. 2008, 2015) and others (Aghaeepour et al.

2013) that allow for automated and unbiased detection of specific cell populations

in complex multiparameter cytometric data have also been recently developed. A

recent development in flow cytometry analysis is index sorting, in which all the

phenotypic information from sorted single cells is retained and linked with their

position in a multi-well plate. This can be used to correlate downstream analysis

such as gene expression or functional assay readouts to phenotypic parameters

measured by flow for individual cells. Index sorting has been previously used to

characterize rare cell populations such as hematopoietic stem cells (Wilson et al.

2015), and would be particularly useful for the identification of specific markers on

cells having distinct molecular profiles with prognostic or predictive value, or to

identify functional phenotypes such as those associated with the ability to give rise

to organ-specific metastasis. Index-sorted cells can then be used as input for single-

cell molecular analysis pipelines, which are becoming increasingly scalable with

the advent of sophisticated bioinformatic analysis (Lohr et al. 2014; Baslan et al.

2015), as well as barcoding, which allows multiple flow-sorted single cells to be

pooled for library synthesis and sequencing, and with minimal effect on gene

transcription (Fan et al. 2015; Macosko et al. 2015; Richardson et al. 2015). Single

cell analysis of CTCs will be invaluable in deciphering intra-tumoral heterogeneity

at both the genomic and transcriptional level and can help guide therapeutic

intervention with high precision. For example, deep genotypic profiling of individ-

ual CTCs can detect development of therapy resistance with greater lead-time than

standard clinical assays, thereby potentially improving clinical outcomes (Scher

et al. 2016; Miyamoto et al. 2015).
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These novel, recently developed technologies can be combined to enhance a
workflow that is robust and compatible with detection, isolation, and molecular
characterizationof CTCs.

5.5 Conclusions

Flow cytometry is a powerful, high-throughput, and versatile technology for rare

cell analysis and is increasingly being used to isolate and characterize tumor cells in

circulation. It is amenable to multiplexing both intracellular and cell surface

markers and analysis of these markers can be incorporated or adapted to any

tumor type. Importantly, this platform allows for integration of phenotypic analysis

with downstream genomic or transcriptomic profiling. In addition, newer instru-

ments have become increasingly automated thereby decreasing the dependence on

highly skilled operators. Flow cytometry is already extensively being used in

clinical settings for applications such as immunophenotyping of hematological

malignancies (Cherian et al. 2005). Thus, similar approaches could be adapted in

the future to extensively characterize the phenotype and molecular profile of CTCs.
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Chapter 6

Enrichment and Detection of Circulating
Tumor Cells and Other Rare Cell
Populations by Microfluidic Filtration

Michael Pugia, Mark Jesus M. Magbanua, and John W. Park

Abstract The current standard methods for isolating circulating tumor cells

(CTCs) from blood involve EPCAM-based immunomagnetic approaches. A

major disadvantage of these strategies is that CTCs with low EPCAM expression

will be missed. Isolation by size using filter membranes circumvents the reliance on

this cell surface marker, and can facilitate the capture not only of EPCAM-negative

CTCs but other rare cells as well. These cells that are trapped on the filter

membrane can be characterized by immunocytochemistry (ICC), enumerated and

profiled to elucidate their clinical significance. In this chapter, we discuss advances

in filtration systems to capture rare cells as well as downstream ICC methods to

detect and identify these cells. We highlight our recent clinical study demonstrating

the feasibility of using a novel method consisting of automated microfluidic

filtration and sequential ICC for detection and enumeration of CTCs, as well as

circulating mesenchymal cells (CMCs), circulating endothelial cells (CECs), and

putative circulating stem cells (CSCs). We hypothesize that simultaneous analysis

of circulating rare cells in blood of cancer patients may lead to a better understand-

ing of disease progression and development of resistance to therapy.

Keywords Circulating tumor cells • Circulating mesenchymal cells • Circulating
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6.1 Introduction

Filtration offers an alternative approach to antigen-dependent methods for enrich-

ment of non-hematopoietic rare cells in blood. Using filter membranes to isolate

circulating tumor cells (CTCs) away from blood cells can potentially eliminate

reliance on cell surface antigens, like EPCAM (Farace et al. 2011; Desitter et al.

2011; Huang et al. 2014; Coumans et al. 2013b; Williams et al. 2014). Filter-based

systems facilitate the enrichment of circulating rare cells by exploiting the size

disparities between these cells and cells of hematopoietic origin (Farace et al. 2011;

Desitter et al. 2011; Huang et al. 2014; Coumans et al. 2013b; Williams et al. 2014).

For example, CTCs whose typical diameter is about 10 μM or greater (Coumans

et al. 2013a; Ligthart et al. 2013) can be purified away from smaller white blood and

red blood cells (diameter¼ 3–8 μM) by using a filter membrane with an appropriate

pore size. Consequently, CTCs and other large cells that are caught on the mem-

brane can be identified, enumerated and molecularly characterized (Hofman et al.

2012; Cummings et al. 2014; El-Heliebi et al. 2013).

6.2 Recent Advances in Cell Filtration

Early demonstration of enrichment of CTCs by filtration was reported in the

mid-1960s (Seal 1964). Since then, the field has grown and many devices and

design variations have been developed. Filtration is of considerable interest in the

field of rare cell analysis because of the ability to exclude cells by size in response

to cellular deformability, and that cell size could potentially be a parameter that

allows analysis of a heterogeneous group of cell phenotypes that better reflects

disease states. Cell separation by size-exclusion can be readily accomplished by

filtration through a variety of membranes or microfluidics devices. Blood samples

can filtered vertically through membranes or laterally through microfluidic filters

(McFaul et al. 2012). Both methods take advantage of the same cellular properties

such as size and deformability to distinguish target rare cells from blood cells

(Coumans et al. 2013a, b).

6.2.1 Microfluidic Filters

A number of new microfluidic filter approaches for isolation of CTCs have been

reported (Karabacak et al. 2014; Thege et al. 2014; Jackson et al. 2014; Sollier et al.

2014; Ozkumur et al. 2013). Microfluidic filtration involves the application of

pressure that pushes the cells and fluid through micron scale constrictions. Designs

for constricting the path that cells in fluid have to pass through, include micron-

sized post structures, weir-style structures, grooves or herringbone structures
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(McFaul et al. 2012). In all these cases, the “microstructures” serve as resistance

that causes disruption in the fluid flow. These constrictions are designed such that

certain particles can pass through while others are blocked. Other microfluidic

designs involve constrictions that are created by reducing capillary diameter to

generate a micron-sized gap (Pugia et al. 2005; Chudziak et al. 2016). A ratio of

1–10 capillary diameter/cell diameter was identified as a key parameter for optimal

cell filtration (Pugia et al. 2005).

Another important parameter for filtration of cells is the wall surfaces of the

microfluidic devices, which can impact separation due to physical attraction

between the surface and the cell. This principle relies on surface energy of the

microfluidic walls relative to that of the bulk fluid and of the cells of interest (Pugia

et al. 2005). Adhesion increases as the gap height approaches the cell diameter, or

when the gap surface energy becomes higher relative to the cell and/or fluid surface

energy. Excessive adhesion can cause cell lysis (which results in cell loss), while

weak adhesion allows the cells to flow through the gap. Adhesion can be adjusted

for certain cell types, bulk solutions, cell diameters, and cell surface energy (Pugia

et al. 2005).

6.2.2 Filter Membranes

Novel membrane filter approaches have also been developed for isolation of CTCs

(Coumans et al. 2013a, b; Lecharpentier et al. 2011). Traditionally, track-etched

filters (Nucleopore™) are used with pore sizes from 5 to 8 mm and thicknesses from

6 to 11 mm, and are designed to be flexible with random pore pattern distribution.

Biomedical microelectromechanical systems (Bio-MEMS) fabrication techniques

have allowed new generations of membranes in both flexible and stiff formats with

uniform pore patterns (Balic et al. 2012; de Wit et al. 2015). The pore size,

membrane structure and other filter parameters can be optimized to maximize cell

recovery (Coumans et al. 2013a, b; Vona et al. 2000; Hofman et al. 2011). For

example, the presence of small blood clots increases the likelihood of the mem-

brane clogging, especially if the pore sizes are small (~5 um diameter). Also,

smaller pores require the application of vacuum pressure (�100 mbar) that is

lower than what is typically used (around �30 mbar) for filtering blood samples.

This added pressure can result in increased shear stress and ultimately lead to cell

loss. On the other hand, membrane filters with larger pores (>8 um diameter) are

impractical because they are non-selective, allowing cells of interest to pass

through, thereby reducing recovery of target cells. Hence, prior to working with

precious clinical samples, the optimal pore size and filtration pressure needs to be

ascertained to reduce background and maximize yield.

In a recent study by our group, we combined both features of a filter membrane

and microfluidic filter to create a novel filtration system to enrich for CTCs and

other rare cells in the blood of cancer patients. The robotic filtration device involves

a filter membrane that is mounted onto a microfluidic slide that allows for efficient

6 CTC Detection by Filtration and ICC 121



cell capture and downstream processing of cells for imaging. The system includes

an automated pipetting system that allowed for sequential and multiplexed ICC to

identify different circulating rare cell populations (Fig. 6.1) (Magbanua et al. 2015).

6.3 Isolation of Rare Cells from Blood by Filtration

The analytical performance of filtration methods is often evaluated in pre-clinical

studies using cancer cell lines spiked into healthy blood to evaluate cell yield.

Unlike cells in culture, which are generally spherical and more uniform in size,

cancer cells in clinical blood specimens are more likely to have a wide range of

sizes and shapes, and may also be present as cell clusters. Interestingly, rare cells of

3–5 um in diameter have been captured from filtered clinical samples even when the

mean pore diameter was 8 um (Magbanua et al. 2015). This may be due to cross-

linking effect of the paraformaldehyde fixation or association with fibrin present in

the sample, which allows the retention of smaller cells on the membrane, even

though they are small enough to pass through the pores. That said, the isolation of

these small non-hematopoietic cells raises the concern of whether spike-in exper-

iments using cultured cells truly reflect cell recovery rates in clinical samples.

Despite this potential confounder, the use spiked cell lines to test the analytical

performance of filter-based assays provides a good model systems for selection of

Fig. 6.1 Microfluidic filtration system. Design of the microfluidic filter device and the sche-

matic overview of the processing steps for capture and detection of circulating rare cells

(Reproduced from Magbanua et al. 2015)
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proper pore size and optimization of other filter parameters before clinical sample

testing.

6.4 Identification of Captured Rare Cells by ICC

Once filtration is done, the cells that are retained on the membrane (also referred to

as “captured” and/or “isolated” cells) can be stained via ICC and analyzed by

fluorescence microscopy. Multiplexed immunocytochemical staining methods

using specific antibody-based labels or probes have been developed to identify

specific rare cell populations (Magbanua et al. 2015). Steps to prepare cells for

imaging, which include fixation, washing, permeabilization, and incubation with

antibodies/probes, can be done in situ (on the membrane). Automation, controlled

filtration rates and precise addition of liquid volumes during this multi-step process

can help achieve consistent staining results. In addition, staining parameters (such

as antibody concentration and proper selection of fluorescent labels for conjuga-

tion) can be optimized to minimize the detection of false positive cells in healthy

blood, and maximize the detection of true non-hematologic rare cells in cancer

patient’s blood. Moreover, the reagents used for washing and blocking during the

cell preparation steps are also critical in obtaining reproducible signals. In some

cases when the protein marker is expressed at very low levels, direct immunoassay

staining can be replaced with higher sensitivity immunoassay methods. For exam-

ple, using Tyramide Signal Amplification (TSA™, Life Technologies) has

increased the detection limit for rarely expressed cell markers by 10–50 fold

(Wang et al. 1999). Use of secondary antibodies, biotin-streptavidin labels, and

enzyme amplification has all shown to enhance the detection of CTC by 2–5 fold

(Pugia et al. unpublished data). In our study, we demonstrated the feasibility of

performing up to three separate staining protocols on the same cells, while produc-

ing quality cellular images after each step (Magbanua et al. 2015).

6.5 Markers for Rare Cell Typing

Non-filtration methods, such as immunomagnetic-based approaches, use EpCAM

to enrich for CTCs and are usually followed by ICC staining of cytokeratins to

detect these cells (Magbanua and Park 2014; Alix-Panabieres and Pantel 2014).

While these methods have facilitated reliable CTC detection, they can miss CTCs

that do not express EpCAM. Recent studies have identified mesenchymal-like

CTCs with down-regulated EPCAM expression and therefore may not be detected

by epithelial-based assays (Sieuwerts et al. 2009; Yokobori et al. 2013). On the

other hand, filtration methods allows for the enrichment of circulating rare cells

without pre-selection, and therefore not only capture epithelial cells but also

endothelial, mesenchymal, and putative stem cells. Since this approach provides
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an opportunity to detect and characterize a wide range of cell types, it requires more

optimization to select appropriate and reliable biomarkers (in addition to EpCAM

and cytokeratins) that can distinguish these rare cells from normal blood cells.

While the characterization of these heterogeneous cell populations is more com-

plex, it allows greater understanding of the biology of cancer spread, and may help

elucidate the clinical significance of circulating rare cells, beyond CTCs.

6.5.1 Circulating Tumor Cells

ICC methods to detect and enumerate CTCs in blood typically utilize multiple

fluorescent antibodies that are combined into one cocktail. A typical cocktail used

for CTC detection includes labeled antibodies against epithelial cancer cell markers

such as cytokeratins (CK). The staining protocol also includes a fluorescent nuclear

stain like 40,6-diamidino-2-phenylindole (DAPI) to identify nucleated cells. Since

filtration methods also captures approximately 10,000–100,000 white blood cells

(WBCs) per tube of blood, a third marker that is specific for blood cells, like CD45,

is needed to rule out normal cells of hematopoietic origin. Using this strategy, CTCs

can be identified as nucleated cells that are CK-positive, and CD45-negative, and be

distinguished from WBCs, which are nucleated cells that are CK-negative and

CD45-positive (Fig. 6.2).

6.5.2 Circulating Endothelial Cells.

Patients with cancer have elevated numbers of CECs that are probably shed from

tumor angiogenesis-related processes, activated or damaged tumor vessel walls, or

from injury of normal blood vessels (Ilie et al. 2014; Beerepoot et al. 2004; Rowand

et al. 2007). In addition to cancer, fluctuations in CEC levels have also been

observed in patients with infections or those diagnosed with cardiovascular disease

(Damani et al. 2012; Mehran et al. 2014; Lopez et al. 2012; Bidard et al. 2010; Boos

et al. 2006). For reasons that remain unclear, CECs are also present in blood of

disease-free individuals (Beerepoot et al. 2004; Rowand et al. 2007). To quantify

the levels of CECs, many immunoassays use endothelial markers such as vimentin,

CD144, CD31, CD34, CD146, CD105, and CD133 to detect CECs (Ronzoni et al.

2010; Calleri et al. 2009; Bidard et al. 2010; Magbanua et al. 2015). In our recent

study, we used CD144 to detect CECs, and were defined as nucleated cells that are

CD144-positive, VIM-positive, CK-negative, and CD45-negative. CD144, which is

localized on the cell membrane, has a distinctive staining pattern and facilitated the

identification of CECs (Fig. 6.2).
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Fig. 6.2 Immunocytochemistry staining of circulating rare cells. Representative images of

circulating tumor cells (CTC), white blood cells (WBC), circulating mesenchymal cells (CMC),
circulating endothelial cells (CEC), and putative circulating stem cells (CSC) in metastatic breast

(B) and lung (L ) cancer patients. The scale bar represents 8 μM (Reproduced fromMagbanua et al.

2015)
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6.5.3 Circulating Mesenchymal Cells

During disease progression, tumor cells may undergo epithelial–mesenchymal

transition (EMT). This process is accompanied by down-regulation of epithelial

markers, like EPCAM (Hyun et al. 2016). A candidate marker for CMC detection is

vimentin (VIM), a gene that is overexpressed during EMT process (Satelli et al.

2015). We recently have shown the feasibility of detecting CMCs using our filter-

based approach (Magbanua et al. 2015). Since CECs may also express vimentin, the

ICC staining cocktail should also include antibodies against CD144 to distinguish

CMCs from CECs (Magbanua et al. 2015). CMCs were defined as nucleated,

VIM-positive, CK-negative, CD144-negative, and CD45-negative (Fig. 6.2).

6.5.4 Circulating Stem Cells

The cancer stem cell hypothesis proposes that only a few distinct cells within the

tumor (capable of self-renewal and multipotency) are responsible for tumor pro-

gression (O’Flaherty et al. 2012; Kasimir-Bauer et al. 2012). Cancer stem cell

markers, like CD44, CD24, and ALDH1, have been recently explored for detection

of putative cancer circulating stem cells (CSCs) in blood of cancer patients with

solid tumors (Theodoropoulos et al. 2010; Sterlacci et al. 2014; Medema 2013).

Recently, two novel candidate stem cell markers, trophoblast glycoprotein (TPGB/

5 T4) (Damelin et al. 2011; Sapra et al. 2013) and piwi like RNA-mediated gene

silencing 2 (PIWIL2) (Lee et al. 2010; Zhang et al. 2013) were used to detect

putative CSCs in blood of cancer patients (Magbanua et al. 2015). TPBG/5 T4 is an

oncofetal protein (Boyle et al. 1990) which has been shown to be expressed in

tumor-initiating cells in lung cancer (Damelin et al. 2011; Sapra et al. 2013).

Up-regulation of TPBG/5 T4 in different cancer types is correlated with poor

patient outcome (Damelin et al. 2011; Naganuma et al. 2002; Starzynska et al.

1994; Wrigley et al. 1995). PIWIL2 is a member of the P-element-induced wimpy

testis/Argonaute (PIWI/AGO) family and plays a vital role in germ cell develop-

ment and stem-cell self-renewal (Qiao et al. 2002). PIWIL2 is found to be

expressed in putative cancer stem cells, precancerous cells and tumor cells during

different stages of breast cancer (Liu et al. 2010; Chen et al. 2007; Gao 2008; Zhang

et al. 2013; Lee et al. 2010). In our previous work, we used our filtration system to

detect putative CSCs in breast and lung cancer patients (Magbanua et al. 2015). We

defined CSCs as nucleated, stem cell marker-positive, CK-positive/negative,

VIM-positive/negative, CD144-negative, and CD45-negative. The TPBG/5T4 and

PIWIL2 markers were used to identify putative lung and breast cancer CSCs,

respectively (Fig. 6.2).
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6.6 Detection of Rare Cells in Blood of Cancer Patients

Using fluorescence microscopy, we analyzed the staining patterns on cells captured

on the filter membrane to detect different cell types. We enumerated rare cell

populations, including CTCs, CMCs, CECs, and putative CSCs, using the defini-

tions for each of the cell type as discussed above (Magbanua et al. 2015). CTCs

were detected in almost a third of the cancer patients, but were largely absent from

controls, except in one healthy donor where a single CTC was detected (Fig. 6.3).

We detected CMCs in over half of cancer patients, but were also absent in healthy

controls. Similarly, we found putative CSCs samples from cancer patients only, and

none in healthy subjects. In contrast to other rare cell types, we detected CECs in

both cancer patients and healthy individuals. Of note, CECs were usually found as

cell clusters, while most other cell types were detected as single cells. CECs

appeared to be the most abundant cell population captured, detected in approxi-

mately 50% of cancer patients and controls. This finding recapitulates previous

observations from a study showing that CECs constitute majority of the rare cells

isolated using a commercially-available filter system (El-Heliebi et al. 2013).

A major advantage of blood-based testing over tissue-based (biopsy) assays is

the ease of performing serial analysis to monitor disease progression and treatment

response. We conducted a proof-of-concept study to test the feasibility of analyzing

blood samples collected at different points during therapy. Serial blood testing

using our filtration/multiplex ICC method was performed in a small number of

breast cancer patients. Results showed that the changes in the levels of circulating

rare cells corresponded with the changes observed in established markers like such

CA 15–3 and CTCs assayed by CellSearch®. In addition, we observed that patients

who experienced an increase in the levels of circulating rare cells exhibited

progressive disease. These observations are, however, preliminary and should be

validated in a larger cohort of patients.

6.7 Conclusions

Cell isolation using filter membranes and microfluidic devices provide an antigen-

independent approach for enrichment of circulating rare cells in blood of cancer

patients. Unlike antibody-based enrichment methods, which can only capture

specific antigen-expressing cells, size-based exclusion methods can ultimately

yield cell populations that are highly heterogeneous. Another advantage of this

system is that cells captured can be directly analyzed on the filter membrane,

minimizing cell loss. In addition, multiplex immunostaining allows for the detec-

tion of different types of rare cells, in addition to CTCs. A major limitation of all

filter-based method is that very small rare cells can to pass through the filter and will

be missed by downstream analyses. Simultaneous detection of circulating rare cells
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in blood of cancer patients, in addition to CTCs, may lead to the discovery of novel

biomarkers for monitoring disease progression and treatment efficacy.
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Chapter 7

Detection and Enumeration of Circulating

Tumor Cells with Invasive Phenotype

Haizhen Wang and Xiangwei Wu

Abstract Circulating tumor cells (CTCs) disseminate from solid primary cancers

into the peripheral blood and lymphatic vessels and can lead to metastatic tumor

development; thus, CTC assays are an important clinical tool for monitoring

progression and evaluating prognosis in cancer. However, CTCs are limited in

number and heterogeneous in their biological and physical properties, making their

detection, isolation, and enumeration a major challenge. To overcome these diffi-

culties, novel techniques have been developed to detect and enumerate CTCs with

an invasive phenotype. In this chapter, we will summarize these recently developed

methods and detail two novel methods for capturing and enriching CTCs on the

basis of their viability and their invasive properties.

Keywords CTCs • CTC detection • CTC enumeration • Invasive phenotype

7.1 CTCs Are Important Cancer Biomarkers

Circulating tumor cells (CTCs) are cells from a primary tumor that have shed into

the vasculature and are circulating in the bloodstream (Plaks et al. 2013). Some of

these cells are thought to be capable of spreading to distant organs and initiating

metastatic tumor growth (Pantel et al. 2009; Yu et al. 2011). CTCs were first

identified in the blood of a cancer patient in 1869, and significant advancements

have been made in the detection and isolation of CTCs since then. During the past

two decades, numerous studies have shown that CTCs can be used as a biomarker to

monitor cancer treatment response and predict prognosis and overall survival in

patients with metastatic colorectal (Cohen et al. 2008; Wong et al. 2009; Uen et al.

2008), lung (Maheswaran et al. 2008), prostate (Danila et al. 2007; Stott et al.

2010), ovarian (Fan et al. 2009; Pearl et al. 2014), breast (Cristofanilli et al. 2004;

Lu et al. 2010), and pancreatic (Kulemann et al. 2015) cancers. It is now well
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recognized that high CTC counts are correlated with aggressive disease, increased

metastasis propensity, and relatively poor survival rate (Stott et al. 2010; Plaks et al.

2013; Chaffer and Weinberg 2011), making CTC detection and enumeration an

important clinical tool.

7.2 Commonly Used Methods for CTC Detection

CTC analyses are considered a real-time “liquid biopsy” and are easy and safe to

perform (Alix-Panabieres and Pantel 2013; Pantel and Alix-Panabieres 2012; Cai

et al. 2014; Zhang et al. 2015; Marrinucci et al. 2009). CTC analyses have many

advantages over tissue biopsy: blood collection is simpler, easer to perform, less

invasive, easier to repeat, and more effective in monitoring disease progression and

evaluating metastatic risk (Zhang et al. 2015; Hanssen et al. 2015; Pantel and Alix-

Panabieres 2013). However, the concentration of CTCs in the blood of cancer

patients is very low, from one to a few hundred CTCs per milliliter of whole

blood containing millions of leukocytes and billions of red blood cells (erythro-

cytes) (Miller et al. 2010; Joosse and Pantel 2013; Coumans et al. 2012; Pantel and

Alix-Panabieres 2015), making the identification of CTCs a major challenge

(Coumans et al. 2012; Pantel and Alix-Panabieres 2015).

The most commonly used methods for detection of CTCs are based on their

physical properties and protein markers on their surface (Carter et al. 2012;

Harouaka et al. 2013; Esmaeilsabzali et al. 2013; Alix-Panabieres and Pantel

2014). For example, ScreenCell detects CTCs using a filtration-based device that

separates CTCs from human whole blood on the basis of cell size, as CTCs are

generally larger than leukocytes (Vona et al. 2000; Desitter et al. 2011). Some other

methods of capture and selection are based on the expression of cell surface

markers, such as epithelial cell adhesion molecule (EpCAM), on CTCs (Pantel

et al. 2009; Kling 2012). One of these CTC detection methods, the CellSearch

Assay from Veridex Inc., has been cleared by the U.S. Food and Drug Adminis-

tration for use as a prognostic test in patients with metastatic breast cancer,

colorectal cancer, and prostate cancer (Cristofanilli et al. 2005; de Bono et al.

2008; Cohen et al. 2008). This assay relies on the expression of EpCAM by

epithelial cells and the capture of these cells by immuno-magnetic particles conju-

gated with anti-EpCAM antibodies. Other approaches detect and isolate CTCs from

peripheral blood using Ficoll/Hypaque density centrifugation imaging (Pierga et al.

2004), immuno-affinity micropost (CTC-chip) (Pantel et al. 2008; Lu et al. 2010),

flow cytometry (Georgakoudi et al. 2004), microfluidic imaging systems (Nagrath

et al. 2007), high-throughput optical imaging systems, and real-time polymerase

chain reaction for tumor-associated mRNA (Kraeft et al. 2004; Paterlini-Brechot

and Benali 2007).

However, CTCs are a heterogeneous population of cells, and some undergo

epithelial-to-mesenchymal transition (Chiang et al. 2016; Mitra et al. 2015; Lim

et al. 2014), causing variation in cell marker expression and cell size (Yu et al.
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2013; Wang et al. 2015). Therefore, these methods cannot detect all CTCs. More

importantly, some CTCs may be derived from mechanical shedding rather than

active invasion, and some of CTCs may lose their viability or functionality and thus

become irrelevant to cancer metastasis (Wang et al. 2015). Therefore, the CTC

counts generated by these methods may not accurately predict treatment response

and cancer outcome.

7.3 Functional Assays for CTC Detection and Enumeration

It is well recognized that the dissemination of tumor cells from a primary tumor to

form metastasis is a complex process involving a sequence of steps, including the

local invasion of tissues surrounding the primary tumor cells, intravasation (tumor

cells entering the bloodstream and lymphatic vessels), survival in the circulatory

system, arrest at a secondary site, extravasation into a distant organ, and eventual

seeding, proliferation, and development into metastatic tumors (Kim et al. 2012;

Nguyen et al. 2009; Kang and Pantel 2013; Tsai and Yang 2013; van Zijl et al.

2011; Stoletov et al. 2010; Chambers et al. 2002). One of the hallmarks of

metastasis is that tumor cells gain the ability to penetrate tissue barriers and migrate

to other tissues (Martin and Jiang 2009; Liotta and Stetler-Stevenson 1991; Hujanen

and Terranova 1985). Therefore, functional CTCs possess invasive ability to allow

intravasation and extravasation. The following two techniques have been developed

to detect and enumerate functional CTCs with invasive phenotypes (Paris et al.

2009; Wang et al. 2015; Friedlander et al. 2014).

7.3.1 CTC Identification by Collagen Adhesion Matrix Assay

One functional CTC identification method, called the collagen adhesion matrix

(CAM) assay, was developed to detect viable CTCs with the ability to attach to and

ingest CAM (Fan et al. 2009; Lu et al. 2010; Pearl et al. 2014). The unique feature

of the CAM assay is that matrix mimics the tumor microenvironment to help

distinguish CTCs from lymphocytes and erythrocytes in blood and enumerate the

CTCs (Tulley et al. 2016). Only CTCs with high avidity for the extra-cellular

matrix exhibit a proclivity to adhere to the CAM and to ingest the fluorescent

CAM (Paris et al. 2009). The CAM assay has several advantages: CAM-captured

CTCs are viable, as they are capable of ingesting the CAM. The assay also allows

for direct visualization of CAM-ingesting CTCs, as the CAM fluoresce green and

red; furthermore, the captured CTCs can be monitored in real time using fluores-

cence microscopy.

Owing to its high specificity and efficiency, the CAM assay has been used to

detect and enumerate CTCs from blood samples of patients with breast cancer

(Lu et al. 2010), ovarian cancer (Fan et al. 2009; Pearl et al. 2014), and prostate
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cancer (Paris et al. 2009) and has been successfully used for ex vivo drug-sensitivity

testing of CTCs from patients with ovarian cancer (Tulley et al. 2016). In a small

cohort of patients with breast cancer, CAM enrichment returned viable CTCs at a

rate of nearly 100% (99.9� 0.1%) (Lu et al. 2010), which is a much higher rate than

that of other CTC isolation methods, showing the high isolation efficiency of the

CAM assay. Moreover, CTCs enriched by the CAM assay are capable of propa-

gating into colonies and recovering the epithelial phenotype when cultured on the

same CAM substrata for several days (Lu et al. 2010), indicating the high speci-

ficity of the assay for viable CTCs.

The CAM assay was also used in a pilot investigation of the prognostic signif-

icance of circulating epithelial cells with the collagen-invasive phenotype in

patients with various stages of breast cancer. The results indicated a significant

correlation between CTC counts and lymph node status: lymph node–positive cases

showed a much higher CTC detection rate (65.7%) and higher mean CTC count

(79/mL) than lymph node–negative cases (detection rate, 26.3%; mean CTC count,

14/mL) (Lu et al. 2010). When disease-free survival and overall survival were taken

into consideration, survival status and CTC count were also significantly correlated:

both overall survival and disease-free survival in the patients with high CTC counts

(>10/mL) were significantly lower than in the patients with low CTC counts (�10/

mL) (Lu et al. 2010). None of the patients with low CTC counts (�10/mL) had any

disease recurrence or progression during the follow-up of 27.6 months (Lu et al.

2010). CTC detection rates and counts also varied significantly between different

stages of the disease. CTCs were detectable in 27.3% of stage I and 28.6% of stage

II cases, with mean CTC counts of 10/mL and 14/mL, respectively (Lu et al. 2010).

Patients with stage III disease had much higher CTC counts; about 86.4% of stage

III cases had at least one detectable CTC, with a mean CTC count of 119/mL

(Lu et al. 2010).

The CAM assay also has been used to detect CTCs in patients with ovarian

cancer and patients with castration-resistant prostate cancer (Paris et al. 2009). Like

in breast cancer patients, CTCs were detectable in most epithelial ovarian cancer

patients. Higher CTC counts reflected higher CA-125 levels and later stages of

disease: significantly higher mean CTC counts were observed in stage III and IV

cases (41.3/mL) than in stage I and II cases (6.0/mL). No detectable CTCs were

found in benign control cases (Paris et al. 2009). Unlike in breast cancer patients, no

significant difference in survival was observed between the ovarian cancer patients

with high CTC counts (>31.5/mL) and those with low CTC counts (<31.5/mL)

(Paris et al. 2009).

7.3.2 CTC Identification by InCTC

Although the purpose of the CAM assay is to detect and enumerate viable CTCs

with the potential to invade, no migration or invasion is involved in the assay

(Wang et al. 2015), so the invasiveness of CTCs detected by this assay is unknown.
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A new assay named InCTC was developed to circumvent this shortcoming. InCTC

detects and enumerates CTCs on the basis of their migration and invasion proper-

ties. The assay consists of three simple steps: mononuclear cell layer enrichment, a

transwell Matrigel invasion assay, and immunostaining (Wang et al. 2015). The

assay has been validated using mouse xenograft tumor models, and its utility was

confirmed in a small cohort of patients with lung adenocarcinoma and esophageal

squamous cell carcinoma, as described below. InCTC has several obvious advan-

tages over other methods: it does not require special equipment and antigen

expression for CTC selection, is less likely to be affected by the heterogeneity of

the CTCs, and can be applied to virtually all kinds of cancers. Most importantly,

only viable cancer cells with migratory properties and an invasive phenotype are

detected and isolated by this method; thus, the CTC counts revealed by InCTC may

correlate more strongly than CAM assay counts with treatment response and

clinical outcome (Wang et al. 2015).

The InCTC assay was first validated in various xenograft tumor models in both

athymic nude mice and C57BL/6 mice. CTC counts ranging from 28/mL to 70/mL

were detected. No CTCs were detected in control mice or in tumor-bearing mice

without metastasis (Wang et al. 2015). InCTC was then used to monitor tumor

development in tumor-bearing mice. The CTC counts in these mice positively

correlated with tumor growth, showing that InCTC can be used to monitor tumor

development accurately, at least in xenograft tumor–bearing mice (Wang et al.

2015). InCTC was also used to detect CTCs in patients with lung and esophageal

cancers. Blood samples from a small cohort of patients with stage II and III lung

cancer and esophageal squamous cell carcinoma were collected and subjected to an

invasion assay using InCTC. Invasive CTCs were detected in one of the four lung

cancer patients and two of the two esophageal cancer patients. No CTCs were

detected in control blood samples collected from healthy donors (Wang et al. 2015).

Thus, InCTC can be used to detect invasive CTCs in human cancer patients.

The advantage of InCTC in detecting invasive CTCs was demonstrated with a

head-to-head comparison between the InCTC assay and an EpCAM-based

immuno-magnetic selection method. Although the immuno-magnetic selection

detected more CTCs, fewer than half of those CTCs displayed the ability to invade.

Moreover, the CTCs selected by the immuno-magnetic method included signifi-

cantly fewer invasive cells compared with the invasive CTCs counts generated

directly by InCTC. These results suggested that InCTC detects more viable cells

with an invasive phenotype than the EpCAM antibody-based immunoselection

method (Wang et al. 2015).

7.4 Conclusion

With the development of new techniques for CTC detection and isolation, CTC

assays have been widely used in clinics for tracking cancer progression and

metastasis and for evaluating prognosis (Zhang et al. 2015; Hanssen et al. 2015;
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Pantel and Alix-Panabieres 2013; Ulivi 2016; Yin et al. 2016). CTC assays can also

be used to monitor clinical response to treatment and to identify drug targets for

personalized therapy (Lianidou 2014; Toss et al. 2014). Furthermore, the investi-

gation of CTC biology has improved our understanding of cancer metastasis

(Bidard et al. 2016; Wang et al. 2015). All these applications are better served by

the detection and enumeration of functional and viable CTCs.

The two functional CTC assays discussed in this chapter are designed to detect

and enumerate viable and invasive CTCs; as such, these techniques may track

cancer progression and predict outcomes more accurately than CTC assays based

on cell markers and physical properties. However, functional CTC assays remain to

be directly compared with other CTC assays in patients. The CAM assay has been

tested in several clinical studies and shown its ability to detect and enumerate CTCs

in various cancer patients (Fan et al. 2009; Lu et al. 2010; Pearl et al. 2014).

However, the ability of the CAM assay to isolate and propagate these CTCs is

unclear, and whether CTCs detected by the CAM assay can actually invade is

unknown. The InCTC assay, on the other hand, detects and enumerates CTCs with

invasive ability. However, the development of the InCTC assay is still at an early

phase, and more studies in cancer patients are needed to validate its clinical

application. Despite these potential drawbacks, functional CTC assays will con-

tinue to improve, and patients will inevitably benefit from these new techniques.
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Chapter 8

Molecular Profiling and Significance

of Circulating Tumor Cell Based Genetic

Signatures

Nisha Kanwar and Susan J. Done

Abstract Cancer kills by metastasizing beyond the primary site. Early detection,

surgical intervention and other treatments have improved the survival rates of

patients with cancer, however, once metastasis occurs, responses to conventional

therapies become significantly less effective, and this remains the leading cause of

death. Circulating tumor cells (CTCs) are tumor cells that have preferentially

disseminated from the primary tumor mass into the hematological system, and

are en route to favorable distant sites where if they survive, can develop into

metastases. They may be the earliest detectable cells with metastatic ability, and

are gaining increasing attention because of their prognostic value in many types of

cancers including breast, prostate, colon and lung. Recent technological advances

have removed barriers that previously hindered the detection and isolation of these

rare cells from blood, and have exponentially improved the genetic resolution at

which we can characterize signatures that define CTCs. Some of the most signif-

icant observations from such examinations are described here. Firstly, aberrations

that were thought to be unique to CTCs are detected at subclonal frequencies within

primary tumors with measurable heterogeneity, indicating pre-existing genetic

signatures for metastasis. Secondly, these subclonal events are enriched in CTCs

N. Kanwar

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON,

Canada

The Campbell Family Institute for Breast Cancer Research at the Princess Margaret Cancer

Centre, Toronto, ON, Canada

e-mail: nishak@uhnresearch.ca

S.J. Done (*)

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON,

Canada

Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

The Campbell Family Institute for Breast Cancer Research at the Princess Margaret Cancer

Centre, Toronto, ON, Canada

Laboratory Medicine Program, University Health Network, Toronto, ON, Canada

e-mail: Susan.Done@uhn.ca

© Springer International Publishing AG 2017

M.J.M. Magbanua, J.W. Park (eds.), Isolation and Molecular Characterization of
Circulating Tumor Cells, Advances in Experimental Medicine and Biology 994,

DOI 10.1007/978-3-319-55947-6_8

143

mailto:nishak@uhnresearch.ca
mailto:Susan.Done@uhn.ca


and metastases, pointing towards the selection of a more ‘fit’ component of tumor

cells with survival advantages. Lastly, this component of cancer cells may also be

the chemoresistant portion that escapes systemic treatment, or acquires resistance

during progression of the disease. The future of cancer management may include a

standardized method of measuring intratumor heterogeneity of the primary as well

as matched CTCs. This will help identify and target rare aberrations within primary

tumors that make them more adept to disseminate, and also to monitor the devel-

opment of treatment resistant subclones as cancer progresses.

Keywords Metastasis • CTC-signatures • Genetic profiling • Intratumor

heterogeneity • Tumor subclones • Chemoresistance

8.1 Cancer Dissemination and Metastasis

There have been significant advances in early screening and targeted therapies to

reduce deaths from cancer; however, metastasis remains the leading cause of

patient mortality. In metastasis, a select few cells acquire the ability to invade

tissues that surround the primary tumor, thus allowing them to break free and enter

the circulation via intravasation of the blood or lymphatic systems. Once in

circulation, this ‘occult’ process goes undetected, they travel to distant organs,

and in some cases like ‘seeds’, displaying specific receptors that home them to their

respective ‘soil’, they are able to survive, extravasate, reinitiate aberrant cell

division, and propagate secondary tumors at new sites. A recent study designed a

computer generated model for cell growth and dispersal, in a clinically relevant

time frame, utilizing estimates for rates of cell division, death, and dispersal, and

calculated that it would take 8 years for a lesion to grow from one cell to one billion

cells in the absence of dispersal, but less than 2 years with dispersal (Waclaw et al.

2015). They were also able to show that a tumor’s response to chemotherapy is

dependent on dispersal, regardless of growth rate of the primary tumor. Further-

more, if accumulating mutations increased the dispersal probability before or

during treatment, regrowth was also faster. Thus, it is a small component of the

primary tumor that, often undetected, possesses the capacity for dispersal via

dissemination with important implications for disease progression and survival.

Although tumor cells are shed in a range of 10s -1000s from very early on in

tumorigenesis, they must survive in vessels against shear stress forces, anoikis, and

unfavorable growth niches; and a majority of them will be in circulation for only a

few days before undergoing apoptosis. It is this rare population of circulating cells

with metastatic propensity that escape chemotherapy and radiation, making them an

aggressive subset, that requires the attention of new targeted therapies to prevent

their spread and stop the threat of metastasis. One of the hallmarks of curable cancer

is early detection so that the tumor may be removed and treated locally by radiation

before it spreads. If, however, cells are already in circulation at early time points,

the approach needs to be a systemic one, where the cells in circulation must be
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targeted and eradicated before they receive the signals to propagate at new and

distant sites.

There is evidence to show that the dissemination of tumor cells is an early event.

The previous notion that larger tumors gave rise to metastases has been challenged

by findings that suggest dissemination can even occur in the earliest invasive stages

of cancer progression in both murine models and human breast cancer, and it occurs

independently of tumor size (Hüsemann et al. 2008). Disseminated tumor cells have

been found in niches such as the bone marrow and lymph nodes before the onset of

overt metastasis (Pantel et al. 2008; Hüsemann et al. 2008; Woelfle et al. 2003).

Furthermore, disseminated tumor cells were found in circulation in patients with

small (less than 2 mm) tumors and also in patients with undetectable primary

tumors (less than 7% of cases of breast cancer) (Weigelt et al. 2005; Schmidt-

Kittler et al. 2003). These cells can remain dormant in niches such as the bone

marrow or a future site of metastasis such as the lung, and upon induction by growth

stimuli of the microenvironment, they can be reprogrammed to establish secondary

tumors (Wikman et al. 2008). These observations provide evidence that the initial

steps of metastasis occur early on within primary tumors and are programmed to

allow dissemination via pre-determined routes to potentially pre-determined niches

for either a dormant phase or an aggressive proliferative phase. This also raises an

important caveat in the current methods to produce molecular signatures – rather

than analyzing bulk tumors, efforts need to be made to analyze tumors at single cell

resolution which would lead to the discovery of low level signatures present in

those rare cells destined for dissemination, and help identify novel targets to

prevent this metastatic transition altogether.

Rare cell isolation techniques have provided us with refined detection tools that

enable us to find disseminated tumors cells in blood, bone marrow and other niche

organs that sustain them. Tumor cells found in circulating blood are referred to as

circulating tumor cells or CTCs, while tumor cells found in the bone marrow are

referred to as disseminated tumor cells or DTCs. It is still unclear as to which niche

houses the earliest population of tumor cells that have left the primary site, or what

route they took to arrive there (hematogenous or lymphatic systems). Notably,

although lymph node metastasis is an accurate prognostic indicator of distant

metastases, there are about 20–30% of patients whose cancer metastasizes without

involvement of the lymph nodes, indicating hematogenous spread of tumor cells to

the metastatic sites (Pantel and Brakenhoff 2004). There is growing evidence that

the secondary organ’s microenvironment is a deciding factor in whether or not

CTCs will extravasate there and survive. For example, transforming growth factor

beta (TGFβ) expressed in the bone or lungs, TGFα in the liver, and CXCR4/7

chemokine receptors expressed on tumor cells, home to their ligands in the lung,

liver and bone marrow, respectively, and thus influence the ability of metastatic

cells to grow in the respective organs via the activation of various signaling

pathways involved in migration, actin polymerization, proliferation and survival

(Pantel et al. 2008; Chambers et al. 2002). Thus, it might not be an access point, but

rather, pre-established signals from optimal secondary sites that decide the route

circulating cells will take.
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Cells in circulation are rare, with approximately 1 cell in 109 nucleated blood

cells (Krishnamurthy et al. 2010). A major obstacle in characterizing CTCs is

obtaining a sufficient number, void of contaminating white blood cells. The

‘ideal’ CTC marker would be one that is expressed exclusively in tumor cells, not

in any subset of hematopoietic cells, and not repressed during the period of

circulation when the cells are isolated. Currently it is impossible to differentiate

between CTCs of prognostic value or metastatic potential from those that will

remain dormant, undergo apoptosis, or be targeted by the immune system. CTCs

are isolated based on the heterogeneous expression of known epithelial or hemato-

poietic markers (CK, EpCAM, CD45) or based on prior knowledge of the primary

tumor or cancer type (HER2, EGFR, PSA, etc.). Enrichment is usually a

pre-requisite to any isolation protocol, and improves the detection of cells by at

least 10,000-fold. Several methods for enrichment of CTCs have been described –

immunomagnetic bead separation, density centrifugation, size based exclusion,

flow cytometric separation, and more recently microfluidic devices such as the

CTC-chip and Herringbone chip (Pantel et al. 2008; Pantel and Brakenhoff 2004;

Flores et al. 2010; Stott et al. 2010; Nagrath et al. 2007). In 2008, the FDA approved

the CellSearch™ System for the isolation and enumeration of tumor cells from

blood or bone marrow of metastatic breast cancer patients (Van der Auwera et al.

2010). Since then there have been numerous publications validating its sensitivity

in isolation of these rare tumor cells (Giordano and Cristofanilli 2012;

Andreopoulou et al. 2012; Lucci et al. 2012; Farace et al. 2011; Kraan et al.

2011). The system includes fixation and labeling of cells with markers for epithelial

and white blood cells, followed by immunomagnetic separation of epithelial cells.

An automated system then enumerates signals to provide an output of number of

epithelial cells per mL of blood or bone marrow analyzed. The array of markers

used to identify tumor cells is progressively increasing – HER2 was recently added

to the breast cancer panel (Flores et al. 2010).

The CTC chip uses microfluidic principles for the capture of viable CTCs from

small volumes of blood (Nagrath et al. 2007). Immuno-nanoparticles are replaced

by 78,000 microposts over a surface of 970mm2, each coated with antibodies to

EpCAM. There have been several improvements to microfluidic enrichment, such

as the herringbone chip (angled microchannels create vortices during blood flow for

enhanced capture of cells to channel walls), the iCHIP (size based sorting of cells

followed by inertial force separation and sorting), and the DEPArray (CTCs are

sorted into ‘cages’ based on dielectrophoresis on the basis of their electric charge)

(Stott et al. 2010; Karabacak et al. 2014; Carpenter et al. 2014). There have also

been developments such as the CellCollector and leukapheresis which involve

in vivo capture of CTCs from devices attached directly to a patients peripheral

arm vein, which allows for enrichment of higher numbers of cells (median of 7500

versus 10s–100s), from much larger volumes of blood (1.5 litres compared to

10 mL), within a smaller time frame for processing of the cells while they are

still viable (30 minutes compared to a few hours or days) (Theil et al. 2016; Fischer

et al. 2013). The caveat, however, in any enrichment method that involves labeling

tumor cells, is the heterogeneity of breast cancers where there will be variability in
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expression of these markers depending on molecular subtype in the case of EGFR
or differentiation in the case of MGB2 (mammaglobin) or even epithelial-to-

mesenchymal transition (EMT) in the case of KRT19, EpCAM and TWIST. With

the rapid development of more standardized and sensitive methods to isolate CTCs,

the clinical utility of these cells is likely to become more apparent.

8.2 Clinical Value of Tumor Cells in Circulation

The mere presence of CTCs and DTCs in patients with cancer is a negative

prognostic indicator. There have been several studies that showed that the presence

of DTCs in the bone marrow of patients with primary breast cancer has a negative

prognostic impact. A multicenter retrospective study included 4703 patients with

metastatic breast cancer across Europe and the U.S., and concluded that over a

10-year follow up period, patients with DTCs had significantly decreased overall

and disease-free survival compared to patients who did not have DTCs in their bone

marrow (Braun et al. 2005). Presence of DTCs was also correlated with higher

tumor grade, presence of lymph node metastases as well as overt metastases, and a

poorer prognosis, independent of tumor size (Braun et al. 2005). Since there is the

issue of invasiveness and patient discomfort when it comes to obtaining repetitive

bone marrow samples for the isolation of DTCs, as well as the difficulty in

obtaining metastatic samples, CTCs measured in a blood sample provide an easy

to collect and relatively non-invasive method of monitoring disease progression and

its response to therapies in real-time, and provide prognostic information by

probing for specific molecular markers. The prognostic relevance of CTCs in

metastatic breast cancer has also been demonstrated by numerous groups,

pioneered by a prospective study where 177 metastatic breast cancer patients

were shown to have a reduced overall and disease free survival if they had 5 or

more CTCs per 7.5 mL of blood (Cristofanilli et al. 2004). In a follow up study with

the same group of patients, it was reported that the number of CTCs was a better

indicator of disease progression than traditional techniques such as imaging with

PET, CT or MRI scans (Cristofanilli et al. 2007; Bidard et al. 2010; Nelson 2010;

Liu et al. 2009). Ignatiadis et al. were one of the first groups to show the prognostic

importance of CTCs present in the blood of early breast cancer patients, and has

been succeeded by larger cohorts such as the German SUCCESS trial of 1489

patients which recently showed that the presence of even 1 CTC had prognostic

value in early breast cancer (Ignatiadis et al. 2008). Most recently, a meta analysis

of 19 early stage breast cancer studies (n ¼ 2993) and 22 metastatic breast cancer

studies (n¼ 3069) also showed prognostic value for CTCs (Zhang et al. 2012). Both

CTCs and DTCs were included in the tumor marker assessment for breast cancer by

the American Society of Clinical Oncology in 2007 (TNM stage cMO(i+); no

clinical presence of overt metastases but presence of individual tumor cells in the

blood, bone marrow or lymph nodes) (Harris et al. 2007). The report was based on

prospective randomized controlled trials, prospective therapeutic trials (level
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1 studies) or meta-analyses testing the utility of a marker (level 2 studies). The

clinical utility of CTCs and DTCs however, is yet to be established and requires

further studies especially in early breast cancer, as well as in determining how

enumeration or characterization of CTCs can affect treatment decisions.

8.3 Genetic Alterations Associated with CTCs and Cancer

Metastasis

Two main models of metastasis have been proposed. The first is the linear progres-

sion model where a primary tumor’s malignant genetic status is complete and

decided first, and the disseminated tumor cells evolve from these founder cells

(Klein 2009). The second is the parallel progression model, where tumor cells

disseminate early on, and evolve into their own genetically malignant entities,

independently of the primary tumor, at distant sites (Stoecklein and Klein 2010).

Recent studies have shown that primary tumors may have a gene expression

signature that is predictive of metastasis (Schmidt-Kittler et al. 2003; van de Vijver

et al. 2002; Schardt et al. 2005). Furthermore, primary tumor expression signatures

also define the route of metastatic spread – hematogenous or lymphatic. Woelfle

et al. compared primary tumors with and without disseminated tumor cells (DTCs)

in the bone marrow or lymph node metastases and found that distinct signatures

were able to predict bone marrow versus lymphatic micrometastases, with minimal

overlap of only nine genes (Woelfle et al. 2003). Genes involved in the dissemi-

nated tumor cell (DTC) positive primary tumor signature included JAK/STAT, and

the HIF-1α pathways, implicated in tumor cell survival, invasion, and angiogenesis.

HIF-1α also activates other genes such as lysyl oxidase which activates focal

adhesion kinases to enhance invasion, and CXCR4 involved in homing and survival

of cancer cells at secondary sites (Woelfle et al. 2003).

There has been a recent effort to characterize CTCs using gene expression and

whole genome copy number or sequence profiling (Magbanua et al. 2012; Heitzer

et al. 2013; Shipitsin et al. 2007; Powell et al. 2012). Whole genome amplification

and single-cell genomic technologies have enabled the study of DNA and gene

expression profiles of small focal areas of tumors and single CTCs. Results from

these studies have shown that gene expression signatures of CTCs may be unique to

their originating tissue type, as well are enriched for targetable pathways such as

stem cell, EMT, TGFB1, and non-canonical Wnt signaling (Aktas et al. 2009;

Kasimir-Bauer et al. 2012; Yu et al. 2012; Powell et al. 2012; Sieuwerts et al.

2008; Smirnov 2005). Furthermore, aberrations previously thought to be private to

CTCs, were detected at low frequencies within the primary tumor itself, emphasiz-

ing the early programming of tumor cells to enter circulation (Heitzer et al. 2013;

Gerlinger et al. 2012; Magbanua et al. 2012; Shah et al. 2009). Klein et al. showed

through molecular characterization of primary tumors and their matched DTCs that

once cells have left the primary tumor at early stages, they develop independently
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with a unique set of aberrations and are more heterogeneous compared to DTCs in

patients with distant metastases at late stages (Klein et al. 2002). Furthermore,

genomic aberrations that are characteristic of the breast primary tumors (16q-, 13q-,

17p- and 8q+) were absent from the genomic profiles of DTCs analyzed by array

Comparative Genomic Hybridization (aCGH), although their malignant origin

could be confirmed by microdeletions also found in primary tumors (16q22-,

8q11-) (Klein et al. 2002; Schardt et al. 2005). The prevailing pattern observed

was that the DTCs were distinct from primary tumors, which were more like their

lymph node metastases than the DTCs (Schmidt-Kittler et al. 2003; Mathiesen et al.

2012). Such discrepancies were also reported in CTCs when compared to primary

tumors for markers such as ER, PgR, HER2 and EGFR mutations. These observa-

tions are in concordance with studies that showed discrepancies between molecular

alterations of primary and metastasized secondary tumors. Flores et al. designed a

study to establish the relationship between the HER2 status of primary tumors,

CTCs, and metastatic lesions in 75 patients with breast cancer using fluorescence in
situ hybridization (FISH) (Flores et al. 2010). Interestingly, patients with HER2

positive primaries had HER2 positive CTCs 98% of the time, compared to patients

with HER2 negative primaries, where 33% of patients showed discordance with

HER2 positive CTCs (Flores et al. 2010). The unexpected finding was that in these

33% of patients, 90% of the metastatic lesions matched the primary tumor (Flores

et al. 2010). Other studies with similar endpoints have reported HER2 discrepancies

of up to 40% between primary tumors and matched CTCs (Gradilone et al. 2011).

This observation brings forward the phenomenon of aggressive characteristics

being acquired transitionally to progress select cells through individual steps in

metastasis such as invasion and intravasation, which are lost at later stages not

requiring these functions. Logically it follows through, that a disseminated tumor

cell that is in a transitional state between a primary and a metastatic tumor, should

have a transitional genetic profile, subject to change as it encounters new environ-

ments and selective pressures. This also explains the difference in genomic profiles

of DTCs isolated from lymph nodes versus bone marrow (Klein and Stoecklein

2009). Furthermore, it is very likely that a common set of genomic events exists to

allow for the survival of cells in this state, for example, HER2 gain has been

described as the most frequent region of gain in DTCs whether they disseminated

via the blood or lymphatic routes, and it is not concordant with the primary tumors

(Stoecklein and Klein 2010; Klein and Stoecklein 2009).

Smirnov et al. were able to perform global gene expression profiling of CTCs

from prostate, colorectal and breast cancers and elegantly showed that these profiles

were indeed tissue specific, although they also shared some commonality. They

found that genes such as KRT19 and AGR2 were expressed in CTCs from all

samples and not expressed in normal samples (Smirnov 2005). The tissue specific

genes were S100A14/16 and CEACAM5 for breast and colorectal cancers, KLK2/3,
MSMB, DDC, AR, HPN for prostate cancers; and SCGB2A1/2 and PIP for breast

cancers alone (Smirnov 2005). Most of these genes function in cell proliferation,

migration and oncogenesis. The combination of this gene signature was able to

classify tumor and normal correctly with 79.3% accuracy, which was comparable
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with the classification power of gene expression signatures obtained from primary

tumors (Smirnov 2005).

It has been proposed that cells in circulation are a subset of tumor progenitor

cells fitting the phenotype of aggressiveness, low proliferation and resistance to

therapy. Lu et al. addressed the question of EMT and the inadequacy of most of the

methods used to enrich for CTCs or DTCs using epithelial cell markers such as

cytokeratin19 and EpCAM. In this study, CTCs were enriched based on invasive

function rather than inconsistent expression of a marker. The collagen adhesion

matrix selects for cells that are able to invade, remove and ingest matrix fragments

by formation of invadopodia (Lu et al. 2010). They were able to conclude that the

presence of invasive CTCs correlated to higher stage, lymph node positivity and

poorer survival of patients with early breast cancer (Lu et al. 2010). Furthermore, if

propagated in culture, the gene expression signature of these cells showed that they

had properties of EMT stem cells expressing TWIST1 and CD44 (Lu et al. 2010).

Fluorescence activated cell sorting (FACS) analysis showed that this was not a

property held by all CTCs, as they could be separated into three distinct populations

highlighting the heterogeneous nature of these cells – one showing epithelial

lineage as EpCAM+, the other showing progenitor cell lineage as CD44+, and the

third showing the intersection of cells expressing both markers. Other tumor

specific markers expressed were TERT, MUC16, ER and PgR (Lu et al. 2010).

Surprisingly HER2, VIM and other aggressiveness markers were not expressed in a

specific population (Lu et al. 2010). Gradilone et al. have further propelled the idea

of CTCs or DTCs having a stem-cell like phenotype, whereby they investigated the

expression of ATP-binding cassette family genes – or the multidrug resistance

related proteins (MRPs) (Gradilone et al. 2011). They reported a significant corre-

lation between the stem cell marker ALDH1 and the expression of a number of

MRPs, in addition to the co-expression of HER2 and ERα in a discordant manner

compared to primary tumors (Gradilone et al. 2011). These results taken together

paint a clearer picture of aggressive disseminated cells gaining a proliferative,

invasive and survival advantage with the divergence of their expression profiles.

From our own studies, we isolated CTCs from breast cancer patients based on

depletion of the CD45+ fraction of whole blood (Kanwar et al. 2015). Thus, we

minimized any enrichment bias of cells based on markers such as EpCAM or

cytokeratins, only, which have been shown to be expressed quite heterogeneously

in CTCs. We also ensured that the selected cells were completely void of contam-

inating white blood cells, even at low numbers, by detecting CTCs using the

glucose oxidase enzyme which is absent in mammalian cells; and by isolating

single CTCs by laser capture microdissection. Using high resolution copy number

analysis, we identified a signature of recurrent copy number alterations on chro-

mosome 19 in circulating tumor cells (CTCs) from breast cancer. These regions

have not been previously reported to be associated with breast cancer metastasis,

although they are altered in a small subset of breast cancer patients (3%) of the basal

or ER negative subtypes.

The signature we identified consists of genes that regulate common CTC-like

functions such as motility, invasion, resistance to anoikis, and intravasation. After
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compiling a list of minimum common regions of gain, or MCRs, we identified

90 out of 353 MCRs (25%) that were gained in 15–16 of 17 samples. These were

gains on 1p36, 1q21, 7q11-22, 9q34, 11p15, 12q24, 16q22, 17q21-25, 20q, 22q, and

across the entire chromosome 19. Notably, 49 out of the 90 MCRs were on

chromosome 19. Chromosome 19 alterations have been implicated in many types

of cancers (Yu et al. 2009; Beroukhim et al. 2010; Antoniou et al. 2010; Bayani

et al. 2011). The MCRs that we identified contain several genes with possible roles

in CTC-like functionality of tumor cells. Particularly, LTBP4 (19q13.2) plays a role
in activation of TGFB1, which has been previously implicated as a key EMT

signaling pathway in CTCs and interacting cell populations (Yu et al. 2013; Powell

et al. 2012; Shipitsin et al. 2007). NUMBL (19q13.2) has functions in metastasis and

maintenance of tumor initiating cells, which could be present in the pool of

disseminated cells. JUND (19p13.11) has been shown to activate aromatase pro-

moters in breast tumor tissue that leads to higher estrogen signaling and breast

cancer progression (Chen et al. 2011). It also has been shown to protect cells from

p53 induced apoptosis, which is a property that some CTCs possess in order to

survive in circulation and at distant sites before forming secondary tumors

(Weitzman et al. 2000). BSG (19p13.3), also known as EMMPRIN or CD147 is a

well-characterized gene that induces stromal cells to produce metalloproteinases

which aid in the invasion process of tumor cells. Previously, Klein C. et al. showed

in a study of single disseminated tumor cells in bone marrow from breast, prostate

and lung cancer patients, that mRNA and protein levels of BSG were elevated in

82% of cells examined, and is thus an attractive candidate for a CTC specific

marker (Klein et al. 2002). ANGPTL4 (19p13.2) is another widely studied gene in

breast, gastric, liver, colorectal, esophageal and prostate cancers with tumor and

metastasis promoting functions such as angiogenesis, invasion, intravasation and

anoikis resistance (Zhu et al. 2011; Tan et al. 2012; Zhang et al. 2013).

MicroRNAs are gaining much attention for their potential use as biomarkers for

cancer progression and metastasis. We identified MIR-516 and MIR-371-373 on

19q13.42 amplified in CTC genomes, that belong to two clusters of microRNA

families that are frequently co-amplified in embryonic stem cells and cancer

(Bayani et al. 2011; Rippe et al. 2010; Laurent et al. 2008). It was recently shown

that MIR-516 was highly expressed in ER+, lymph node negative breast cancers

and was associated with shorter time to distant metastasis (Foekens et al. 2008).

MIR-373 has been widely implicated in aggressive cancers. It was shown to be

responsible for migratory and invasive phenotypes in breast cancer, in vitro and

in vivo, via down-regulation of its target CD44 (Huang et al. 2008). Another cluster
of microRNAs that was gained containsMIR-24, 27 and 23 and theMIR-181 family

(19p13.13). MIR-24 has been implicated as a regulator of apoptosis by inhibiting

caspase9 and apaf1, which together form a complex known as the apoptosome that

initiates apoptosis (Walker and Harland 2009). High expression of MIR-27 has also

been linked to therapeutic resistance in leukemia, colon, esophageal, gastric, and

ovarian cancers (Zhao et al. 2011; Feng et al. 2011; Zhang et al. 2010; Li et al.

2010). The MIR-181 family has been shown to allow cells to evade anoikis and

grow as spheroids in an anchorage-independent manner, which is a distinct feature
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of cancer stem cells (Ji et al. 2009; Wang et al. 2009a). Two of the validated targets

of mir-181 are TIMP3, inhibitor of metalloproteinase 2 and 9; and ATM, which

when down-regulated results in resistance to DNA-damaging chemotherapy (Wang

et al. 2009a). Taken together, these could synergistically allow invasion, survival

and resistance to chemotherapy, thus propagating tumor cell dissemination and

metastatic disease via CTCs.

Although some MCRs were less frequently amplified (4–13 patients), they

contained important genes with clinical relevance when overexpressed in primary

breast cancers, such as MUC16, CCNE1, and KLK genes. A recent study used a

collagen adhesion matrix assay to enrich for CTCs with invasive functions from the

blood of breast cancer patients. MUC16 was among the significantly up-regulated

genes including stem cell and EMT markers such as CD44, EpCAM, TWIST1 and

TERT (Lu et al. 2010). CCNE1 is overexpressed in 25% of breast tumors and has

been shown to be an independent prognostic factor in breast cancer, specifically for

ER- tumors which show a higher incidence of carrying the 19q12 amplicon

(Keyomarsi et al. 2002; Sieuwerts 2006; Natrajan et al. 2012). The 19q12 amplicon

was also studied in ovarian cancer, and CCNE1 was found to be overexpressed

early on in the progression of ovarian cancer, and was associated with treatment

resistance to platinum based drugs such as cisplatin, and poor overall survival of

patients (Etemadmoghadam et al. 2010). Clinically, KLK3/PSA is an established

serum biomarker for prostate and ovarian cancer detection, prognosis and monitor-

ing. Kallikreins are involved in early tumor progression by protease-activated

receptor (PAR) activation, and angiogenesis by extracellular matrix degradation,

allowing both tumor cells and endothelial cells to migrate and reform to their

respective invasive functions (Borgo~no and Diamandis 2004). In breast cancer, a

majority of kallikreins have been reported to be down-regulated, however, several

roles have been identified for up-regulation of KLK genes. KLK1 promotes extrav-

asation of MDA-MB-231 tumor cells to lungs in vivo (Wolf et al. 2001). KLK10
was found to be an independent predictive marker for response to tamoxifen

treatment, where high levels correlated with poor response, shorter progression-

free and survival overall (Yousef and Diamandis 2002; Luo et al. 2002).

We also queried the copy number profile of the TGFB1 gene and identified

2 amplicons that were present in 12 and 13 patients. TGFB1 is known to have dual

functions as a tumor suppressor in early breast cancer, and is a potent promoter of

EMT, invasion and metastasis in late stages. It has also been shown to be involved

in mammary stem cell maintenance with higher expression in CD44+CD24- cells, it

increases colonization of tumor cells in the lung via ANGPTL4 in ER- breast cancer,
thus increasing metastasis, and it can also suppress the activity of cytotoxic T cells

and natural killer cells, thus allowing evasion of immune-surveillance (Barcellos-

Hoff and Akhurst 2009). Biswas S et al. showed in vivo, that ionizing radiation or

doxorubicin treatment in a mouse metastasis model led to an increase in circulating

TGFB1, increased levels of CTCs, as well as higher incidence of lung metastasis

(Biswas et al. 2007). Various other groups have also identified a relationship

between CTCs and TGFB1, whereby high levels of TGFB1 were associated with

tumor cell survival, intravasation and metastasis; and more specifically, Shim KS
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et al. showed that persisting CTCs and TGFB1 levels in blood 2 weeks post surgery

in colorectal cancer was associated with earlier metastasis recurrence in the liver

(Muraoka-Cook 2004; Muraoka et al. 2002; Shim et al. 1999). Shipitsin M et al.

studied the heterogeneity of CD44+ stem cells in breast tumor tissues, and found

that these cells had a TGFB response type of mRNA expression signature, which

they termed the ‘TGFB cassette’ (Shipitsin et al. 2007). Patients expressing this

‘cassette’ had shorter distant metastasis free survival. They concluded that based on

heterogeneous expression of this ‘cassette’ in CD44+ cells, different cells within

the same tumor were likely to respond differently to TGFB signaling. It is possible

that these responsive cells are programmed for paracrine CTC-like behavior.

In our study, genomes of CTCs clustered into two groups, a larger more

homogeneous group and a smaller more heterogeneous group. The two groups

were almost mutually exclusive, except for two MCRs in common, on chromosome

19p13 and 21q21, containing genes such as ITGB2, TFF3, SERTAD3, LTBP4, and
NUMBL that are involved in metastasis and anti-apoptotic signaling during anoikis

in migrating cells. Such functions are indicative of acquired behavior that would be

common to all tumor cells that disseminate and enter circulation in the blood.

Recently, Yu et al. showed that CTCs exist in a dynamic pool of epithelial-like and

mesenchymal-like cells, the latter being associated with progressive disease

(Yu et al. 2013). This mesenchymal component of CTCs was enriched for

45 genes, including TFF1/3, ITGB4 and LTBP4. On the other hand, the dissimilar-

ity between the two groups is suggestive of cancer cells transitioning through

metastatic stages that may be reflected in their genomes. Cluster A had minimal

alterations that may be sufficient for dissemination, such as amplification of AKT2
(19q13), SMAD2 (18q21), and MIR-602 (9q34), however, this cluster also had

many focal amplifications consisting of tumor suppressive genes including PTEN,
CADM2, EPHA5, and ESR2. A previous study that performed gene expression

profiling of CTCs observed overexpression of PTEN in 83% of the samples

regardless of clustering (Powell et al. 2012). Similarly, Yu M. et al. and Miyomoto

D.T. et al. recently showed that there were three distinct pools of CTCs in breast and

prostate cancer, each responding differentially to chemotherapy. In breast cancer,

CTCs were more homogeneously epithelial or mesenchymal, and a third mixed

population, expressed markers from both groups (Yu et al. 2013). In prostate

cancer, CTCs had gene expression signatures that were AR sensitive or resistant,

and again, a third mixed population expressing genes from both signatures

(Miyamoto et al. 2012). The eventual fate of a circulating cell could be modulated

by the net pro and anti oncogenic or survival signals inherent to these cells, and also

in the external microenvironment. It has been suggested that because of this

balance, CTCs are in a state of dormancy, and they might contain a

sub-population of tumor-initiating cells that are quiescent and resistant to chemo-

therapy (Wikman et al. 2008). For example, cells that express both EGFR and p38

are in a state of growth arrest or dormancy if the EGFR/p38 ratio is low, but will

start proliferating at a secondary site if the EGFR/p38 ratio is high (Wikman et al.

2008). Our Cluster B had genomes with extensive alteration, particularly on

chromosome 19, with genes such as ANGPTL4, BSG, MIR-23 and MIR373, that
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could define those CTCs that may be capable of evasion of anoikis, survival and a

passage to dormant niches or metastatic sites. Furthermore, all CTCs within this

cluster showed amplification of a 1.2 Mb region containing the ERBB2 gene. Genes

within these amplicons potentially confer CTCs with intravasation ability, survival

or chemo-resistant properties, and could be developed into CTC specific markers in

blood. Although CTC genome profiles did not cluster according to the subtype of

the primary tumors, MCRs on chromosome 19 were also associated with triple

negative and HER+ tumors, which are more aggressive in nature, with higher

incidence of CTCs (Nadal et al. 2012; Fehm et al. 2010). Additionally patients

with distant metastases, as well as patients who presented at a younger age

(<50 years) clustered close together suggesting an increase in homogeneity of

CTC genomes in metastatic cancer compared to early breast cancer.

Considering the homogeneity of CTCs for certain genomic gains, specifically on

chromosome 19, we determined how these regions were represented in primary

breast tumors. Analysis of The Cancer Genome Atlas (TCGA) copy number data

from 787 invasive breast carcinomas revealed a low frequency of 3–4% of samples

with CTC-like MCRs of gain. The most common was not surprisingly, a minimal

common region containing CCNE1, followed by others containing KLK7-12,
C19MC and the MIR-371-3 cluster. Upon examination of copy number data from

our own laboratory, chromosome 19p12-q13.11 was gained in 38% primary inva-

sive ductal carcinoma (IDC) samples and 10% of lymph node metastasis samples

(Wang et al. 2009b). Additionally, there have been several papers that have

illuminated a plausible role for gains on chromosome 19 in the more aggressive

subtypes of breast cancer such as the basal versus luminal subtype, triple negative,

and ER negative subtypes (Staaf et al. 2010, 2011; Natrajan et al. 2012; Horlings

et al. 2010; Turner et al. 2010). Taken together, these results suggest that there

indeed is an existing proportion of primary breast cancers with gains across

chromosome 19, and possibly unidentified novel driver genes that appear to be

more highly represented in the proportion of cells that are able to leave the

primary site.

8.4 Intratumor Heterogeneity and Low Frequency CTC-

Signatures

It is recognized that invasive breast cancers exhibit heterogeneity at the genomic

level although the degree and extent has not been well documented (Campbell and

Polyak 2007; Polyak 2007; Shipitsin et al. 2007). Over the last few years it has

become clear that breast cancer is not a single disease. Inter-tumor heterogeneity

exists between tumors on the morphological and molecular levels. On the molecular

level there are four intrinsic subtypes based on gene expression signatures:

luminal A, luminal B, HER2 and basal subtypes; each with unique tumorigenic

features and responses to targeted therapies. More recently the Molecular
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Taxonomy of Breast Cancer International Consortium (METABRIC) study inte-

grated genomic copy number and gene expression data to conclude that breast

cancer was much more heterogeneous, with ten subtypes showing distinct clinical

outcomes (Curtis et al. 2012). Heterogeneity may also occur within the same patient

in geographically separate areas of the same tumor (intratumor heterogeneity).

Tumor heterogeneity develops along two axes: temporal (variability over time),

and spatial (variability over location). Tumor cells are continuously cycling through

cell growth and cell death, and exist as a heterogeneous mixture of subclones of

varying fitness. They acquire new driver mutations that may give them a growth

advantage over neighboring subclones. As the tumor mass expands, the composi-

tion of the tumor at different locations can be quite different (Waclaw et al. 2015).

This spatial heterogeneity is also likely the reason why tumors fail to respond to

treatments over time, or why they recur at the same site. Targetable aberrations in

one part of the tumor are missed when they are not included in diagnostic sampling

because of spatial heterogeneity. There is also an increasing degree of genetic

diversity in lesions as cancer progresses, leading to temporal heterogeneity. In

breast cancer this occurs over three transitions: in situ carcinoma to invasive breast

cancer; evolution of the primary invasive cancer; and progression from primary to

metastatic breast cancer via dissemination (Zardavas et al. 2015). Many studies

have reported a shift in abundance of a major clone from ductal carcinoma in situ
(DCIS) to IDC, as well as from primary to metastatic cancer (Rashid-Kolvear et al.

2007; Radford et al. 1995a, b; Heselmeyer-Haddad et al. 2012; Hernandez et al.

2012). Chemotherapy also induces a selection pressure on subclonal cell

populations that influences tumor progression. Tumors after treatment are likely

significantly different in composition and behavior compared to the original diag-

nostic sample. Therefore assessment of temporal heterogeneity before and after

treatment can provide critical insight to predict therapeutic response and metastatic

progression.

Most studies are based on the analysis of a single sample from whole tumors, and

so look at dominant genomic changes present in larger portions of the tumor. It is

important to address the broader question of clonal evolution and intratumor

heterogeneity at the single cell level, especially when some clones are present at

low frequencies within the tumor. Schmidt et al. showed that in multifocal prostate

cancer, CTCs originated from distinct foci, even if they were as small as 0.2 cm,

again suggesting that the blueprint for dissemination is probably in the primary

tumor, detectable in single cells, if not on a bulk tumor basis. It may be that there is

an increasing degree of genetic diversity in lesions as cancer progresses. There is

evidence to support this theory from our own recent studies and from LOH (loss of

heterozygosity) studies of ductal carcinoma in situ (Rashid-Kolvear et al. 2007;

Radford et al. 1995a, b). With an increasing number of genetic perturbations,

eventually the necessary genetic event may occur in a particular subclone or

tumor initiating cell within the tumor that allows invasion to take place. It has

been reported that significant heterogeneity can occur on a single nucleotide

mutation level. Using next generation sequencing, 6 of 32 somatic mutations

found in a metastasized tumor were also found in the primary tumor from 9 years
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earlier, and were detected at low frequencies (1–13%) (Navin et al. 2010).

Gerlinger et al. carried out an extensive exome sequencing analysis of 9 spatially

separate regions from a renal-cell carcinoma, along with matched metastatic sites

(Gerlinger et al. 2012). They found that 63–69% of somatic mutations were present

heterogeneously, including mTOR activating mutations which would result in

mTOR inhibitor therapies producing different responses within these regions.

A study on intratumor heterogeneity in colorectal cancer using interphase FISH

techniques showed that there are distinct chromosomal regions which are gained

through aneuploidy that define a pro-metastatic type of cell (Sayagués et al. 2010).

Interestingly, they also found that in a proportion of cases, a minor clone present in

the primary tumor was the most highly represented clone in its metastases. Another

study attempted to classify primary ductal breast carcinomas as “monogenomic”

tumors with a more homogenous genome profile; or as “polygenomic” tumors with

multiple subpopulations of genomic clones (Navin et al. 2010). They analyzed

individual tumors as sectors using both aCGH and FISH techniques. Their results

showed intra-tumor heterogeneity in a significant proportion of both tumor types,

where polygenomic tumors had up to three major tumor subpopulations with clear

clonal evolution. As the tumor grows, the composition of the center versus the

tumor peripheries can be quite different. The center of the tumor is hypothesized to

comprise driver mutations possibly seen in cells that initiated the tumor, or are

involved in cell renewal (mutations involved in dormancy, drug resistance, survival

and thus tumor recurrence). The outer periphery of the tumor conversely, is

hypothesized to comprise of replicative cells which are dividing at rates propor-

tional to the number of surrounding empty sites and nourishment from surrounding

newly developed blood supplies (Waclaw et al. 2015). Driver mutations in these

cells would be involved in invasion, intravasation and dissemination.

CTCs might be the earliest detectable cells with metastatic abilities. CTCs may

not be representative of the whole tumor as a result of spatial and temporal

heterogeneity. Chemo-resistant CTCs have been shown to be HER2 positive

although they originated from HER2 negative primary tumors (Flores et al. 2010;

Fehm et al. 2010). A proportion of these patients had metastatic tumors which were

also HER2 positive. Such discrepancies were also found with ER, PgR and EGFR

status suggesting vast heterogeneity and evolution of genetic markers in CTCs

(Fehm et al. 2009, 2010). Single nucleotide sequencing of 50 nuclei in breast

tumors revealed that no two cancer cells have the same genome (Wang et al.

2014). Multiple regions from single tumors must be sampled, as well as sampled

over time via liquid biopsies, to address both spatial and temporal heterogeneity,

and capture subclonal events that occur during tumor evolution. An accurate

measure of heterogeneity (H) needs to be developed and standardized to determine

the clinical value of H over site, stage and treatment response of a tumor. In the

future, mathematical models or those based on ecological measures of evolution

and heterogeneity within species could be introduced into the clinic to help guide

treatment combinations and provide prognostic information. It would also be useful

to determine the effect of other factors such as the microenvironment and how they

contribute to tumor heterogeneity, as well as interactions between the tumor and
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stroma, hypoxia, tumor-infiltrating lymphocytes (TILs), metalloproteinases, and

the vasculature. A better understanding of the degree and extent of cellular

variation within individual breast cancers will lead to improvements in treatment

approaches, and provide insight into mechanisms of relapse and how to block it. It

is likely that, in the future, measurements of variability or heterogeneity will

become a routine part of breast cancer care and lead to improved results for patients.

A few studies have compared heterogeneity between primary and matched

metastatic tumors using aCGH and FISH or whole genome sequencing (WGS)

and found that the degree and extent of heterogeneity between the two compart-

ments may be directly related to the amount of time between diagnosis of the

primary and occurrence of metastatic disease (Kuukasjärvi et al. 1997; Shah et al.

2012; Ding et al. 2010; Desmedt et al. 2008). While there are shared genetic

alterations, they also observed de novo alterations in the metastatic lesions, as

well as a trend for significant enrichment of the shared alterations in the metastases.

Conversely, there was a subset of primary tumors that differed almost completely

from their matched metastases, highlighting the importance of measuring temporal

changes between compartments to better tailor treatments. Large scale studies that

are starting to address heterogeneity are TRACERx (TRAcking non-small cell lung

Cancer Evolution through therapy Rx) and DARWIN (Deciphering Anti-tumor

Response With INtratumor heterogeneity), which will determine the relationship

between factors such as immune response and clonal heterogeneity on clinical

outcome, relapse and progression (Alizadeh et al. 2015).

It is becoming more and more apparent that aberrations that are prevalent in

CTCs may reflect differences in CTC functionality compared to primary tumors.

Single cell analysis of a larger cohort of primary tumors, critically those matched

from CTC positive patients included in this study, might reveal the presence of

these CTC-like gains at low frequencies, and shed more light on whether or not

their presence is associated with tumor cell dissemination, metastasis, response to

treatment and patient outcome. The underlying heterogeneity may be responsible

for routes of dissemination of tumor cells and ultimately tumor behavior during

disease progression. CTC-like alterations, even if present only focally within a

primary tumor, could confer a more aggressive course of progression to metastasis.

More importantly, by identifying markers that are specific to the more aggressive or

chemo-resistant proportion of these cells, they could be targeted to block their

spread to distant sites.

8.5 Functional Validation of CTC Signatures

The study of CTC signatures in a standard mouse model is a logical next step for

functional validation, as it is more similar to the human mammalian system

genetically, physiologically and anatomically. Recently, a group was successful

in creating an experimental model for tumor heterogeneity in mice (Wagenblast

et al. 2015). They infected a retroviral barcode library into mouse mammary
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carcinoma 4T1 cells and introduced the cell lines orthotopically into non-obese

diabetic/severe combined immunodeficiency (NOD-SCID) mouse fat pads. Pri-

mary tumors, lymph nodes, blood, lungs, liver and brains were collected in order

to quantify the barcode populations of subclones. They concluded that clone

abundance of the primary tumors did not correlate with that of CTCs or metastases;

lymph node metastases and distant metastases did not correlate; and CTCs and

distant metastases were correlated. Furthermore, clones that were less represented

in the primary tumors entered the bloodstream as CTCs and a few of these had the

ability to colonize secondary sites.

Another group used the CTC-iChip to isolate CTCs from patient derived tumors

in mice (Ting et al. 2014). They identified three gene expression signatures for

CTCs: epithelial/classical, platelet derived and proliferative signatures. Epithelial

and mesenchymal markers, Aldh1a2 (stem cell marker) and extracellular matrix

(ECM) markers (Igfbp5, Klf4 and Dcn) were common across all three signatures.

Interestingly, in contrast to primary tumors, where ECM gene products are secreted

by surrounding stromal cells, and not by the epithelial cancer cells, they observed

that rare cells at the epithelial-stromal interface of the xenografts express both

keratins and ECM genes. This pattern of expression was also observed in matched

CTCs from mice as well as humans, suggesting these were originating from the

interface in primary tumors. ECM genes may be involved in the generation of CTCs

from the primary tumors or to the survival of cancer cells deprived of stromal

microenvironemental signals as they circulate in blood. ECM genes were also

enriched in metastases versus primary tumors. Our own studies identified Decorin

as strongly associated with presence of lymph node metastasis in a group of breast

cancer patients. In a set of TMAs (n ¼990, 590 Stage 1 and 400 Stage 2) invasive

breast cancers, decorin showed significant association with lymph node metastasis,

higher nodal involvement and HER2 positivity (Cawthorn et al. 2012). Yu et al.

used RNA sequencing to compare CTCs, primary and metastasis from mouse and

human tumors, and foundWnt2 to be enriched in CTCs and metastases compared to

primary tumors (Yu et al. 2012). Wnt2 increased metastasis in vivo without

increasing the amount of CTCs, by increasing anchorage independent growth/

resistance to anoikis via FN1 an extracellular protein implicated in cell-matrix

interactions and cell survival signals.

Several groups have shown in vivo that CTCs are indeed the seeds of metastasis,

containing a population of metastasis initiating cells. In a xenograft assay of

primary human luminal breast cancer, CTCs engrafted into the bone marrow of

mice at the femoral medullary cavity were able to give rise to bone, lung and liver

metastases (Baccelli et al. 2013). In vitro assays have also shown that cultured

CTCs from patients are functional and will invade an extra cellular matrix (Lu et al.

2010). Single cell deep sequencing studies comparing CTCs, primary and meta-

static tumors have shown that mutations that initially seemed specific to CTCs

could be found in subclones of the primary tumor and metastases of the same

patient, proving lineage from a common cell of origin (Dago et al. 2014; Heitzer

et al. 2013; Lohr et al. 2014; Ni et al. 2013). CTCs tend to be more similar to their

metastases compared to the primary tumor, partially due to the low abundance of
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these alterations in primary tumors. Furthermore, whole genomic profiles of CTCs

do not change at different therapeutic timepoints in the way their mutational profiles

have been shown to evolve, and indicates that specific chromosomal alterations

occur early on, and are selectively maintained throughout the course of the disease.

8.6 Conclusions and Future Perspectives

Comparison of cancer samples from different sites or different time points within

the same patient is beginning to shed more light on intratumor heterogeneity, clonal

evolution and the resulting competition between different subclones post-treatment

(Van Loo and Voet 2014). The study of spatially separate areas of the same tumors

further adds to this complexity by showing morphological and genetic differences

in tumor cells potentially undergoing differential selection at different locations

within the tumor mass. Examination of a single or even a few biopsies may not paint

an accurate picture of true underlying heterogeneity in tumors. Most current large-

scale cancer genome-sequencing studies use DNA from millions of cells,

containing intermixed sequences from different tumor clones and contaminating

adjacent cells from the tumor microenvironment. Single cell sequencing, is now a

standardized widely available tool with which we are able to access genetic

information from CTCs and tumors at significant depths of resolution. Technolog-

ically, traditional Sanger sequencing can detect clones down to 10% frequency,

versus mutation-specific PCR followed by targeted sequencing or mass spectrom-

etry which detect subclonal events at 0.1% frequency (Hiley et al. 2014). Although

these methods provide important information on the proportions and genomes of

distinct cell populations within the tumor, detecting rare subclonal populations

remains difficult. Visualizing genomic aberrations in single cells with FISH how-

ever, has the unparalleled advantage of measuring aberrations in multiple regions

within individual cells from different areas of a tumor, compared to the pooled

nature of next generation sequencing analyses. In the future we anticipate that

targeted or full cancer genomes of cancer biopsies and CTCs will routinely be

sequenced as part of the clinical evaluation and likely personalized treatments in the

future. CTCs are particularly important in this regard as they represent easily

obtained liquid biopsies allowing real-time monitoring of both metastatic potential

and patient specific tailoring of treatments.

Metastatic tumor tissue contains genetic abnormalities sufficient and necessary

to result in patient death. Furthermore, successive rounds of treatments alter the

genetic landscape of tumors in a systemic manner resulting in resistance and the

emergence of new mutations both in the primary and metastatic setting. A study

that examined genomic imbalances involved in progression from DCIS to IDC

found that there was clear clonal selection where a major clone in the IDC was one

of several clones in the DCIS component (Heselmeyer-Haddad et al. 2012). Clin-

ically they were able to conclude that there were high degrees of chromosomal

instability already present in the pre-invasive DCIS lesions, and among these many
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clones, thus, it was likely that there was already a pre-existing clone required for

metastasis. It has been observed that in a case with a HER2 amplification in the

primary components of breast cancer, although the amplification was identified in a

subclonal population of the patients metastatic tumor, there was no detectable

expression of the mRNA and protein (Geyer et al. 2010). It is possible that de
novo genetic or epigenetic alterations occurred in the metastatic tumor as HER2

was no longer functionally required for the growth/survival at the secondary site.

This highlights the importance of comparative analyses of metastatic, primary

tumors, and even pre-invasive lesions to identify key driver mutations that are

selected during cancer dissemination, progression and chemoresistance. CTCs

appear to be more similar to the metastases than primary tumors in single nucleotide

polymorphism/insertion deletion DNA mutation (SNP/INDEL) composition

(Ni et al. 2013). Genomic analyses, including our own, have shown that patients

share a majority of gains and losses of CTC regions, showing the potential of

diagnosis via CTCs. Dago et al. showed that in a single patient undergoing

treatment, resistant clones emerge during treatment failure. Notably, after

9 weeks of treatment, the original CTC population was not completely eliminated

and the drug resistant clone was detectable (Dago et al. 2014). In a whole exome

sequencing study of CTCs, lymph node metastases and primary tumors of two

patients, it was found that divergent evolution exists, a TP53 mutation was found in

all primary foci, the metastasis and CTCs (Lohr et al. 2014). This study also showed

that although 56% of mutations were shared between primary tumors and metasta-

ses, strikingly, 76% of the mutations were found in the CTCs. These observations

exemplify that CTC sequencing might provide an a priori indication of phenotypic

transition and guide the selection of therapeutic regimens. Important tumor related

genes, including those involved in drug resistance and phenotypic transitions were

frequently mutated in CTCs, such enrichment may represent a selective advantage

of CTCs to escape targeted therapy.

There are many instances of low frequency clones found in primary tumors that

are extremely relevant therapeutically. In some reported cases, patients who

relapsed with MET-amplified disease (resistant to EGFR inhibitors) following

treatment with an EGFR inhibitor, harbored the MET amplification in <1% of

cells, which was clearly selected over the course of treatment. These patients would

have benefited from a combined MET and EGFR inhibitor treatment. Similar

reports have been made for KRAS mutations detected in cell free DNA as resis-

tance developed to EGFR inhibitors in colorectal cancers and BRAF in melanoma

resistant to RAF/MEK inhibition (Diaz et al. 2012; Wagle et al. 2014). In colorectal

cancer, EGFR resistant tumors have been known to harbor ERBB2 amplifications in

3% of cases, FLT3 amplifications in 3% of cases, andMEK1 alterations in as few as

1.5% of cases. In breast cancer, although the most frequently mutated genes are

TP53 and PIK3CA (>10%), there are numerous driver genes that are mutated in

<3% of tumors and are associated with treatment resistance (Ng et al. 2015). This

was a key finding in the METABRIC study that integrated copy number and gene

expression data using next generation sequencing platforms for 2000 patients with

primary breast cancer (Curtis et al. 2012). Although the molecular characterization
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of metastases will improve the currently available prognostic and predictive

models, taking biopsies from metastases in patients is an invasive procedure that

is frequently impossible due to the lack of accessible lesions. It is advantageous to

analyze CTCs as they are the intact, functional cancer cells circulating in peripheral

blood.

There appears to be a mismatch between cost and benefit of anti-cancer thera-

pies. Between 2002 and 2012, there have been 71 drugs approved by the FDA with

a median survival benefit of 2.1 months against a cost of $2.7 million per life saved

(McGranahan and Swanton 2015). Subclonal mutations have huge economic and

therapeutic value to cancer outcome, and there needs to be in shift in the way we

collect, analyze and make prognostic decisions (Jamal-Hanjani et al. 2015). There

is a clear benefit to detecting cancer as an early event, at this time the driver events

have occurred in a group of cells that allowed them to have a selective growth

advantage compared to surrounding cells in a defined area of tissue. Therefore, the

group of tumor cells responds to targeted therapies against that tissue. If detected as

a later event however, the tumor cells have had the opportunity to evolve as a

collection of heterogeneous subclones, and thus the initial targetable clones may

not be necessary for survival anymore, leaving targeting therapies ineffective.

Combined therapies would be the preferred alternative at this point.

In conclusion, we know mortality from breast cancer is not due to primary

tumors, but rather a failure to treat and control the growth of metastases. The

world-renowned pediatric pathologist, Sidney Farber, stated in 1962 that, “The
greatest need we have today in the human cancer problem, except for a universal
cure, is a method of detecting the presence of cancer before there are any clinical
signs of symptoms”. Five decades onwards, as we make leaps in describing the

complex nature and evolution of cancer, we are now closer to finding and predicting

the course of tumor progression, and treating patients before the onset of metastasis.

Enumeration of CTCs, the earliest detectable cells with metastatic potential, has

already provided important prognostic information on progression and overall

survival. In the future, genomic analyses could provide more in depth information

for personalized therapy.
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Chapter 9

Detection of Gene Rearrangements
in Circulating Tumor Cells: Examples
of ALK-, ROS1-, RET-Rearrangements
in Non-Small-Cell Lung Cancer and ERG-
Rearrangements in Prostate Cancer

Cyril Catelain, Emma Pailler, Marianne Oulhen, Vincent Faugeroux,

Anne-Laure Pommier, and Françoise Farace

Abstract Circulating tumor cells (CTCs) hold promise as biomarkers to aid in

patient treatment stratification and disease monitoring. Because the number of cells

is a critical parameter for exploiting CTCs for predictive biomarker’s detection, we
developed a FISH (fluorescent in situ hybridization) method for CTCs enriched on

filters (filter-adapted FISH [FA-FISH]) that was optimized for high cell recovery.

To increase the feasibility and reliability of the analyses, we combined fluorescent

staining and FA-FISH and developed a semi-automated microscopy method for

optimal FISH signal identification in filtration-enriched CTCs. Here we present
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these methods and their use for the detection and characterization of ALK-, ROS1-,
RET-rearrangement in CTCs from non-small-cell lung cancer and ERG-
rearrangements in CTCs from prostate cancer patients.

Keywords Circulating tumor cells • Filtration-enrichment • Fluorescent staining •

FA-FISH • Predictive biomarkers

9.1 Introduction

Chemotherapy remains an important mode of treatment for many cancers but is

slowly being supplemented by a new generation of targeted therapies directed

against specific molecular alterations in cancer cells which has proven to be more

effective with markedly fewer side effects. In current practice, biomarkers

predicting response to therapy could be assessed either in the primitive tumor tissue

taken at diagnosis or in tumor biopsy samples (metastasis) collected during the

course of the disease. Primitive tumor tissue can be difficult to obtain in patients

with certain tumor types such as non-small-cell lung cancer (NSCLC). Subjecting

patients to biopsies could be invasive, in some cases challenging, and associated

with risk. Even in case such as prostate cancer (PCa) where the primary tissue is

available, the samples may not be representative of a patient’s metastatic disease

which may arise many years after diagnosis. Therefore, a key challenge today is to

overcome the hurdle of tumor tissue and single-biopsy sample availability.

NSCLC is the most frequent type of lung cancer and the most common cause of

death from cancer (Jemal et al. 2011). Treatment paradigms for NSCLC have

considerably evolved toward a stratification of patients in molecularly selected

subsets who can be effectively treated by therapies targeting mutant driver onco-

genes. Small-molecule tyrosine kinase inhibitors (TKI) targeting single driver

oncogenic pathways essential for tumor cell survival have demonstrated high

objective response rates in molecularly defined NSCLC patients harboring epider-
mal growth factor receptor (EGFR) gene mutations or anaplastic lymphoma kinase
(ALK) fusion genes (Shames and Wistuba 2014; Oxnard et al. 2013; Sequist et al.

2007; Shaw et al. 2013). The list of NSCLC driver oncogenes includes three fusion

genes namely ALK, c-ros oncogene 1 (ROS1) and ret proto-oncogene (RET) (Soda
et al. 2007; Kohno et al. 2012; Rikova et al. 2007). The most prevalent ALK-
rearrangement consists in a fusion gene between the ALK gene and echinoderm
microtubule associated protein-like 4 (EML4) which has been identified in 4% of

unselected patients with NSCLC (Chiarle et al. 2008; Pao and Girard 2011), while a

range of different ALK-gene fusions can occur (Hallberg and Palmer 2016). ALK is

the only gene rearrangement diagnosed in routine using either fluorescence in situ
hybridization (FISH) or more recently immunochemistry (Kerr and Lopez-Rios

2016). ALK-rearranged patients can benefit from ALK inhibitor therapies such as

crizotinib, alectinib or ceritinib (Solomon and Soria 2016). In 2011, crizotinib

received US Food & Drug Association (FDA) approval as the first ALK-inhibitor

for advanced ALK-rearranged NSCLC patients after demonstration of impressive
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clinical results. To ensure identification of ALK-rearranged patients most likely to

benefit, the FDA approved crizotinib concurrently with a companion diagnostic

test, the Vysis ALK Break Apart FISH Probe Kit. ROS1 fusion genes have been

identified in �1% of NSCLC (Bergethon et al. 2012; Gainor and Shaw 2013).

Rearrangement leads to fusion of the ROS1-gene on chromosome 6 with a number

of different genetic partners, a process that can drive cellular transformation and

constitutive ROS1 kinase activity (Davies and Doebele 2013). Patients with ROS1-
rearranged NSCLC can also benefit from crizotinib therapy. RET-rearrangement
gene was found in lung adenocarcinoma patients for the first time in 2012 by four

independent groups (Kohno et al. 2012; Ju et al. 2012; Lipson et al. 2012; Takeuchi

et al. 2012). Approximately 1% of lung adenocarcinomas were reported to harbor a

novel gene fusion involving the RET tyrosine kinase gene partnered with either

kinesin family member 5B (KIF5B) or coiled-coil domain containing 6 (CCDC6).
Because surgery is frequently not a component of treatment in NSCLC, the

diagnosis of molecular biomarkers is usually done in small tumor biopsies or fine

needle aspirates which are challenging as mentioned above. Furthermore, the

diagnosis of biomarkers is often hindered by the limited tumor tissue quantities

available.

PCa is the commonest cancer in men accounting for 10% for all cancer-related

death. Androgen-deprivation therapy is a standard of care treatment for PCa and

efficiently controls the growth of androgen-dependent tumors. Unfortunately, the

majority of these cancers ultimately become refractory to hormone deprivation and

emerges as castration resistant (Tannock et al. 2004). The treatment of metastatic

castration-resistant prostate cancer (mCRPC) patients has dramatically changed in

the last 5 years thank to the development of active drugs such as the chemotherapy

agent cabazitaxel, the androgen receptor (AR) pathway inhibitors abiraterone

acetate and enzalutamide, and the immunotherapy sipuleucel-T (Kantoff et al.

2010; Ryan et al. 2013; Scher et al. 2012). However, not all patients benefit from

all these agents and predictive biomarkers are needed to assess clinical response and

guide treatment. The fusion between the androgen-regulated transmembrane pro-
tease serine 2 (TMPRSS2) gene promoter and v-ets avian erythroblastosis virus E26
oncogene homolog (ERG) genes, AR amplification and alterations in PI3K/AKT/

mTOR pathway are used to classify mCRPC patients into molecular subgroups.

Although these biomarkers currently have no direct relevance for a therapeutic

decision, it is expected that future treatments entering the clinic in mCRPC will be

rationally delivered in molecularly selected patient populations, according to the

presence of these biomarkers. The molecular characterization of cancer samples is

hampered by the availability of metastatic tumor tissue in mCRPC patients. Metas-

tasis biopsy is challenging to perform in daily practice, as the metastatic disease is

often located to the bone.

Finding more effective means to identify predictive biomarkers which could aid

in treatment decision or patient stratification is a major clinical issue in NSCLC and

mCRPC patients. Peripheral blood represents an easily accessible and non-invasive

source of spreading tumor cells. Circulating tumor cells (CTCs) which migrate

from primitive tumor or metastatic sites are the main route of metastatic
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dissemination and may contain clones with tumorigenic potential (Baccelli et al.

2013). In contrast to tumor biopsies, CTCs offer an attractive option to identify

molecular biomarkers, which could be easily repeated during treatment providing

longitudinal information on the selected biomarker. Moreover CTCs may be

released from various metastatic sites and have been reported to reflect the tumor

heterogeneity (Heitzer et al. 2013; Massard et al. 2016). In order to identify and

characterize biomarkers in CTCs from NSCLC and mCRPC patients, our approach

was first to develop a FISH method called FA-FISH to directly detect gene

rearrangements in filtration-enriched CTCs. Secondly, to increase the feasibility

and reliability of this method, we combined fluorescent staining and FISH and

developed a semi-automated microscopy method optimized for FISH signals detec-

tion in filtration-enriched CTCs. Using these methods, we examined ALK-, ROS1-
and RET-rearrangements in CTCs from NSCLC patients, as well as ERG-
rearrangements in mCRPC patients. Here, we report our experience in the detection

and characterizations of CTCs harboring these gene rearrangements.

9.2 Development of the FA-FISH Method and the Semi-
automated Analysis of CTCs Captured on Filters

9.2.1 The FA-FISH (Filter Adapted - Fluorescent In Situ
Hybridization) Method

In 2011 we reported a study showing higher CTC recovery in metastatic NSCLC

and PCa patients using ISET (isolation by size of epithelial tumor cells) filtration

technique (Farace et al. 2011). As the number of CTCs is a critical parameter to

identify molecular biomarkers, we decided to develop FISH for CTCs enriched on

filters (FA-FISH) (Pailler et al. 2013). A 1-mL sample of blood will typically

contain five to ten million leukocytes, five billion erythrocytes, and a very small

number of rare circulating cells, including CTCs. The filtration techniques are

based on the observation that tumor cells of most types of solid cancers are most

often larger than blood cells (leukocytes and erythrocytes). The ISET system uses

filters designed to allow the elimination of all erythrocytes and most leukocytes

from the sample. ISET filters are composed of ten spots. After filtration, one ISET

spot typically retain leucocytes (ranging from 6000 to 20,000, mostly granulocytes)

and fifty non-hematopoietic cells among which are found CTCs. Each spot

(corresponding to filtration of 1 mL of blood) could be precisely cut out for

independent analyzes.

The FA-FISH method required several technical optimizations compared to the

FISH method established for tissue or cell slides. The first step was to determinate

the optimal incubation time required for the enzymatic digestion of the cell

membrane. Two rounds of fixation of the cells present on the filter have been

added in order to preserve the cell integrity. Because the filter membrane inevitably

172 C. Catelain et al.



retains fluorescent background signals, we diminished this background by optimiz-

ing the temperature of hybridization for each probe and discarding non-specific

staining with stringent washes. This direct FA-FISH method was used to detect

ALK-rearrangement in ISET-enriched CTCs from ALK-rearranged patients show-

ing high specificity and sensibility (Pailler et al. 2013).

9.2.2 Semi-automated Microscopy of Combined Fluorescent
Staining and FA-FISH in Filtration-Enriched CTCs

Manual FISH analyses of filtration-enriched CTCs are time-consuming due to the

high numbers of white blood cells DAPI+/CD45+ retained on the filters, laborious

and operator-dependent. Scanner software is commonly able to analyze around

100 cells per tumor sample by FISH. Using standard scanning conditions it was

therefore not conceivable to scan all the FISH signals present in the cells

(6000–20,000, as mentioned above) retained on a 1 mL ISET spot. To decrease

the numbers of cells to scan, we limited the FISH analysis to DAPI+/CD45� cells:

this option provided the additional advantage of excluding DAPI+/CD45+ sub-

populations which could occasionally harbor unspecific break apart FISH signals

when apoptotic or damaged.

While offering important advantages such as sensitivity of CTC capture and

flexibility for CTC characterization, filtration systems such as ISET have draw-

backs. One problem is the difficulty to design a filter membrane which sits entirely

flat, regardless of the material used: virtually all filter membranes developed today

are not microscopically flat. Another is that pores inevitably retain white blood cell

debris and fluorescence signals which disturb microscopy analysis, thus cells placed

on pores are frequently difficult to analyze. These two problems make the automa-

tion of microscopy challenging to implement.

Given these difficulties, we established a multi-step process for optimal FISH

signal identification in filtration-enriched CTCs where filters were (i) treated by

fluorescent staining, (ii) scanned on the Ariol system and analyzed automatically to

locate DAPI+/CD45� cells, (iii) treated by FA-FISH, (iv) scanned in the small

regions containing the DAPI+/CD45� cells with specific parameters (z-stacking,

step i.e. distance between two z-stacks, exposure time), (v) and analyzed for

detection, interpretation and validation of FISH signals within DAPI+/CD45�

cells (Pailler et al. 2016).

Another advantage of this semi-automated microscopy method is the possibility

to combine successive assays on the same filter. Automation allows precise location

of cells on filters, thus relocating cell data and images from successive experiments

performed on the same filter. The combination of assays increases the amount of

available information, contributing to a better characterization of CTCs and reli-

ability of the results. Therefore, data issued from successive experiments may be

gathered, further improving and refining CTC characterization.
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9.3 Detection ALK-Rearranged CTCs in NSCLC Patients

After establishing the direct FA-FISH method, we have examined the presence of

ALK-rearrangement in CTCs of 18 ALK-rearranged and 14 ALK-negative patients

(Pailler et al. 2013). In this report, we showed that the specificity and the sensibility

were of 100% at a cutoff value of four ALK-rearranged CTCs per 1 mL blood

(median, nine CTCs per 1 mL; range, four to 34 CTCs per 1 mL). No or only one

ALK-rearranged CTC (median, one per 1 mL; range, zero to one per 1 mL) was

detected in ALK-negative patients. The concordance between CTCs and tumors

were 99.9%. ALK-rearrangement patterns were determined in CTCs and compared

to those present in tumor biopsies. While heterogeneous patterns (split of the red

and green and isolated red signals) were present in tumor biopsies, ALK-rearranged
CTCs harbored a unique FISH pattern which was associated with either a single

copy or a gain of native ALK copies consisting in the split of red and green signals

(Fig. 9.1a). This unique rearrangement (3050) was consistently observed in all

patient CTCs regardless of the frequency of cells harboring this rearrangement

within the tumor specimen, including patients in whom this pattern was not

detected in the tumor biopsy. These data suggested that CTCs bearing this unique

ALK-rearrangement may have acquired invasive and migratory properties that are

lacking in tumor cells with other ALK-rearrangement patterns. Therefore we tested

epithelium-mesenchymal transition (EMT) markers in ALK-rearranged CTCs and

found that these cells were negative for cytokeratins and E-cadherin and express

exclusively mesenchymal markers (vimentin, N-cadherin). When tumor biopsy

specimens were analyzed for the epithelial and mesenchymal marker expression,

we observed important inter- and intra-tumor heterogeneity for these markers.

Interestingly, ALK protein expression correlated with a low or absence of epithelial

marker expression and higher levels of vimentin expression.

Thus, ALK-rearranged CTCs expressed a mesenchymal phenotype contrasting

with heterogeneous epithelial and mesenchymal marker expressions in tumors.

Overall, our results suggested that CTCs with this unique ALK-rearrangement

expressing a mesenchymal phenotype may result from the selection of tumor

cells that display migratory and higher potential invasive properties. These CTCs

may possibly contain highly metastatic cells, such as cancer stem cells or tumor-

initiating cells. Although a single tumor biopsy sample might not be representative

of the entire tumor, these results suggested that ALK-rearranged CTCs might

originate from various metastatic sites. By reflecting the metastatic disease process,

CTCs may be more informative of biomarker status than a single biopsy taken at a

given time.

Moreover, we detected qualitative and quantitative variations of CTCs bearing

abnormal ALK-FISH patterns in five patients treated with crizotinib. This result

showed that CTCs could possibly help to monitor the impact of ALK-inhibitor
treatments and guide therapeutic decision during treatment course in ALK-
rearranged patients.
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9.4 Detection ROS1- and RET-Rearranged CTCs
in NSCLC Patients

Using combined fluorescent staining, and FA-FISH and the semi-automated

microscopy method, we evaluated whether ROS1-rearrangements could be detected

in CTCs from ROS1-rearranged NSCLC patients (Pailler et al. 2015). Four ROS1-
rearranged patients treated by the ROS1-inhibitor were examined and CTCs

Fig. 9.1 Examples of gene rearrangement detection in filtration-enriched CTCs from NSCLC and

mPCa patients by combined fluorescent staining and fluorescent in situ hybridization (FISH). (a)
Example of ALK-rearrangement detection in NSCLC patients with an ALK-rearranged tumor. (b)
Example of ROS1-rearrangement detection in NSCLC patients with a ROS1-rearranged tumor. (c)
Example of RET-rearrangement detection in NSCLC patients with a RET-rearranged tumor. (d)
Example of ERG-rearrangement detection in mPCa patients with an ERG-rearranged tumor. Gene

rearrangements are shown by green and red. Scale: white bars¼10 μm (Reprinted with permission

from Pailler et al. 2016)
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sampled at two time points (before and during the crizotinib treatment). ROS1-
rearrangement was in parallel examined in CTCs from four ROS1-negative NSCLC
patients. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at
baseline was 34.5 per 3 mL blood (range, 24–55). In ROS1-negative patients,

median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 mL

blood (range, 7–11). The two types of ROS1 FISH patterns (split of the red and

green, isolated green signals) were identified in CTCs (Fig. 9.1b) while only one

type was detected in the tumor biopsies. ROS1-gene alterations observed in CTCs at
baseline from ROS1-rearranged patients were compared with those present in tumor

biopsies and CTCs during crizotinib treatment. Tumor heterogeneity, assessed by

ROS1 copy number, was significantly higher in baseline CTCs compared with

paired tumor biopsies in the three patients experiencing partial response or stable

disease. We also observed that the copy number in ROS1-rearranged CTCs

increased significantly in the two patients who progressed during crizotinib treat-

ment. To further assess the presence of aneuploid CTCs harboring abnormal

ROS1 pattern and their chromosomal instability (CIN) status, we developed two

tests: 1/ the measurement of the DNA content by Hoechst 33342 quantification and

2/ a multi-FISH chromosomal method carried out with the AneuVysion Multicolor

DNA Probe Kit (Abbott Molecular, Inc.). Results showed that CTCs from ROS1-
rearranged patients had high DNA content and high levels of aneuploidy and

numerical CIN. Thus, this study provided the first proof-of-concept that CTCs

can be used for noninvasive and sensitive detection of ROS1-rearrangement in

NSCLC patients. Furthermore, CTCs from ROS1-rearranged patients showed con-

siderable heterogeneity of ROS1-gene abnormalities and elevated numerical CIN, a

potential mechanism to escape ROS1-inhibitor therapy in ROS1-rearranged
NSCLC tumors.

More recently, we used the same approach to examine whether RET-
rearrangements could be detected in CTCs from five NSCLC patients harboring

this gene rearrangement in the tumor biopsy. Multiple abnormal FISH patterns

including the RET-gene rearrangement were observed in CTCs from RET-
rearranged patients (Fig. 9.1c) (Pailler et al. 2016). Similarly to the results from

ROS1-rearranged patients, these data indicated a considerable degree of heteroge-

neity of RET-gene abnormalities in CTCs from these patients.

9.5 Detection ERG-Rearranged CTCs in mCRPC Patients

Recently, our group reported the results of the prospective PETRUS study of

biomarker assessment in paired primary prostatic tumors, metastatic biopsies and

CTCs from a cohort of 54 mCRPC (Massard et al. 2016). ERG-rearrangement was

examined in ISET-enriched CTCs using fluorescent staining combined to FA-FISH

and the semi-automated microscopy method. Using a negative cohort of ten breast

cancer patients, we evaluated the hybridization background of ERG probes and

found a median value of ERG-rearranged cells of 0 cell per 3 mL blood (range 0–6/
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3 mL). The median value of ERG-rearranged CTCs was 16 per 3 mL (range, 3–57

per 3 mL) in the eight patients exhibiting ERG-rearrangement in the metastatic

biopsy. The median value of ERG-rearranged CTCs was 3 per 3 mL (range, 0–6 per

3 mL) in the nine patients without ERG-rearrangement in the metastatic biopsy. At

a threshold of seven ERG-rearranged CTCs per 3 mL blood, ERG-rearrangements

were detected in CTCs of seven out of the eight patients exhibiting

ERG-rearrangements in the metastatic biopsy while all mCRPC patients negative

for ERG-rearrangements in the biopsy were negative in CTCs. The concordance

between CTCs and tumors was of 88%. In contrast to tumor samples, multiple

ERG-rearrangement patterns were detected in ISET-enriched CTCs indicating an

higher heterogeneity of CTCs (Fig. 9.1d). These multiple rearrangement patterns

observed in ERG-rearranged CTCs were associated with gain of native ERG copies

far more prevalent than in the tumor samples including metastatic sites.

9.6 Conclusion

Although technically challenging, we have established an experimental process and a

semi-automated microscopy method allowing to detect gene rearrangements such as

ALK, ROS1, RET and ERG in filtration-enriched CTCs from NSCLC and mPCa

patients respectively.By increasing the feasibility and reliability of filtration-enriched

CTC assays, this automation method may be helpful to progress towards their

standardization and validation. These results are still proofs-of-concept that required

to be validated in collaborative efforts with others groups to progress towards to the

clinic. These studies also provided information on the biological characteristics of

CTCs such as the EMT status of ALK-rearranged CTCs and the elevated numerical

CIN of ROS1-rearranged CTCs. Overall, our results may provide new insights on the

role of CTCs in the metastatic progression of these tumors and the mechanism by

which tumor cells can escape sensitivity to kinase inhibitor therapy.
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Chapter 10

Enrichment, Isolation and Molecular
Characterization of EpCAM-Negative
Circulating Tumor Cells

Rita Lampignano, Helen Schneck, Martin Neumann, Tanja Fehm,
and Hans Neubauer

Abstract The presence of EpCAM-positive circulating tumor cells (CTCs) in the

peripheral blood is associated with poor clinical outcomes in breast, colorectal and

prostate cancer, as well as the prognosis of other tumor types. In addition, recent

studies have suggested that the presence of CTCs undergoing epithelial-to-mesen-

chymal transition and, as such, may exhibit reduced or no expression of epithelial

proteins e.g. EpCAM, might be related to disease progression in metastatic breast

cancer (MBC) patients. Analyzing the neoplastic nature of this EpCAM-low/

negative (EpCAM-neg) subpopulation remains an open issue as the current stan-

dard detection methods for CTCs are not efficient at identifying this subpopulation

of cells. The possible association of EpCAM-neg CTCs with EpCAM-positive

(EpCAM-pos) CTCs and role in the clinicopathological features and prognosis of

MBC patients has still to be demonstrated. Several technologies have been devel-

oped and are currently being tested for the identification and the downstream

analyses of EpCAM-pos CTCs. These technologies can be adapted and

implemented into workflows to isolate and investigate EpCAM-neg cells to under-

stand their biology and clinical relevance. This chapter will endeavour to explain

the rationale behind the identification and analyses of all CTC subgroups, as well as

to review the current strategies employed to enrich, isolate and characterize

EpCAM-negative CTCs. Finally, the latest findings in the field will briefly be

discussed with regard to their clinical relevance.
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10.1 Circulating Tumor Cells – Optimal Candidates
as “Liquid Biopsy”

Circulating tumor cells (CTCs) are cancer cells that can be found in the blood

circulation after they have descended from primary tumours, their recurrences or

from metastatic lesions (Joosse et al. 2015). Due to the lack of unique characteris-

tics for these carcinoma cells, epithelial markers like the epithelial cell adhesion

molecule (EpCAM) were chosen to identify and enrich CTCs in the peripheral

blood, an environment which is normally negative for epithelial cells. The presence

of EpCAM-positive CTCs in the peripheral blood is clearly associated with poor

clinical outcomes in breast (Cristofanilli et al. 2004), colorectal (Cohen et al. 2008)

and prostate cancer (de Bono et al. 2008), but has also been linked to prognosis in

other tumor entities (Krebs et al. 2011; Hiltermann et al. 2012).

In opposite to tumor biopsies, CTCs can be obtained in a low invasive, fast and

easy fashion, making them ideal candidates to serve as ‘liquid biopsy’. The big hope
is that current treatment regimen can be optimized based on the CTCs’ geno- or
phenotype in order to provide a benefit for the patients suffering from cancer

(Pantel and Alix-Panabières 2010). To realize this, CTC analysis has to go beyond

pure CTC enumeration to detailed single CTC enrichment and molecular charac-

terization, finally aiming to understand the CTCs’ biology as well as uncovering

mechanisms involved in therapy resistance and systemic cancer progression. This

demand to comprehensively investigate the CTCs’ molecular and functional prop-

erties is complicated by the low frequency of CTCs in the peripheral blood, their

genotypic and phenotypic heterogeneity and their variable capacities to metastasize

(Pantel and Alix-Panabières 2010). Because of these challenges, an important step

towards CTC characterization consists in the development of highly sensitive and

specific enrichment and analysis strategies, which – in the optimal situation – do not

discriminate between CTC subpopulations. Up to now, most established methods to

detect CTCs are based on their expression of EpCAM. However, since some

cancers were reported to express EpCAM at variable levels, the question was raised

if we are only looking at the tip of the iceberg (Rao et al. 2005; Konigsberg et al.

2011; Mostert et al. 2011; Barradas and Terstappen 2013).

10.2 Not All Tumor Derived Cells in the Blood Are
EpCAM-Positive

The epithelial cell adhesion molecule (EpCAM), a glycosylated transmembrane

protein, was identified more than 35 years ago as one of the first tumour-associated

antigens (Herlyn et al. 1979). Besides its function in homotypic cell adhesion,

EpCAM represents a cell surface receptor which is involved in cellular processes

such as proliferation, migration and differentiation (Maetzel et al. 2009). This

protein is strongly expressed in epithelia and in most carcinomas, while being
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absent on cells in the peripheral blood (Balzar et al. 1999; Patriarca et al. 2012). For

this reason, it became the prime antigen to identify and isolate CTCs and was

implemented as antigen of choice into the FDA-approved CellSearch® assay

(Janssen Diagnostics), which represents the ‘gold standard’ in the automatic CTC

enrichment and detection (Terstappen et al. 1998; Cristofanilli et al. 2004).

However, solely relying on EpCAM expression for CTC enrichment has been

recognized to have critical limitations as data indicate that EpCAM is heteroge-

neously or even not expressed on some cancers, cancer subtypes and CTCs (Rao

et al. 2005; Konigsberg et al. 2011; Mostert et al. 2011). In support of this, it was

reported that CellSearch® is unable to detect CTCs in about 36% of metastatic

breast cancer patients (Mego et al. 2011), and similar data are also published for

lung cancer as well (Bozzetti et al. 2015; de Wit et al. 2015; Chudziak et al. 2016).

In addition, CellSearch® fails to efficiently detect EpCAM-low/negative breast

cancer cell lines. These are primarily related to the basal-like subtype exhibiting

a more aggressive mesenchymal phenotype (Sarrió et al. 2008; Sieuwerts et al.

2009; Punnoose et al. 2010).

These findings and recent reports – which demonstrate that EpCAM-negative

CTC subpopulations can be observed apart from breast and lung cancer in several

other tumor entities including prostate (Xu et al. 2015), esophageal (Driemel et al.

2014) and colorectal (Yokobori et al. 2013) cancer – underscore that EpCAM is

indeed not applicable as a universally valid antigen to detect the whole CTC

population (Lustberg et al. 2014; Schneck et al. 2015).

10.3 Modulation of EpCAM Expression

Several molecular mechanisms have been proposed to contribute to EpCAM

modulation. These include downregulation by exposure to tumor necrosis-factor-

α (TNF-α; (Gires et al. 2001) and to other cytokines (Flieger et al. 2001) as well as

the loss of EpCAM expression upon hypermethylation of its gene promoter (Spizzo

et al. 2007; Tai et al. 2007). Another explanation for a reduced EpCAM–positivity

of CTCs can be deduced from the mechanism of its activation (Gires and Stoecklein

2014): its extracellular domain is cleaved by regulated intramembranous proteoly-

sis and is released into the intercellular space (Maetzel et al. 2009).

The most important modulator of EpCAM expression, however, might be the

process of epithelial-to-mesenchymal transition (EMT; Gires and Stoecklein 2014).

During EMT, epithelial cells undergo phenotypic changes. They lose epithelial

characteristics such as the expression of EpCAM, E-Cadherin, and keratins and

gain mesenchymal traits such as the expression of vimentin. Eventually, cells lose

their adhesive properties and gain motile and invasive features (Thiery 2002;

Joosse et al. 2015). In agreement with the EMT-model, Yu et al. found a

significant number of CTCs in metastatic breast cancer, which exhibit a partial or

complete EMT phenotype and which are associated with disease progression

(Yu et al. 2013). This observation could be confirmed by other groups who
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observed that EpCAM-negative breast cancer cells express high amounts of

EMT-related genes (Gorges et al. 2012).

EMT is assumed to not only contribute to tumor invasion. It may also directly

contribute to therapy resistance as well as to the escape from cell death by

conferring stem cell capabilities (Thiery 2009). Therefore, it may be worthy testing

whether proteins associated to staminality and EMT might be combined with

EpCAM-based enrichment to detect and isolate the entire CTC content in patient’s
peripheral blood.

But still, although highly aggressive and invasive properties have recently been

reported for EpCAM-negative CTCs (Gorges et al. 2012; Yu et al. 2013), the

impact of EMT-like cancer cells, concerning metastatic tumor spread, still has to

be investigated and metastasis-initiating cell fractions need to be identified.

10.4 Enrichment of EpCAM-Negative CTCs

For the detection and isolation of EpCAM-negative CTCs the same general con-

siderations have to be taken into account that are valid for EpCAM-positive CTCs:

both are rare events within the peripheral blood requiring highly sensitive and

specific enrichment methods to precisely capture cells down to a frequency of

1 in 107–108 white blood cells (WBCs)/ml. Consequently, these assays should

enable to enrich a maximum number of true positive events while the identification

of false positive events – by e.g. non-specific labelling or false negative results, or

by no or low expression of an antigen – should be kept to a minimum (Allan and

Keeney 2010). Apart from sensitivity and specificity, CTC enrichment further

demands for purity, reproducibility and reliability (Gabriel et al. 2016). Purity of

EpCAM-positive CTCs is normally verified by staining the cells for nuclear DNA,

positive immune labeling for cytokeratins and negativity for the leukocyte common

antigen CD45. In addition to these characteristics, putative EpCAM-negative CTCs

should be confirmed by testing them for the absence of EpCAM expression

(Fig. 10.1).

To overcome the above described major intrinsic limitations of the EpCAM-

based CTC isolation methodologies, in recent years several investigators have

developed enrichment approaches which can be divided in a) label-dependent

methods that target antigens presented by CTCs which are distinct from EpCAM

(Mostert et al. 2011; Albuquerque et al. 2012; Mostert et al. 2012; Schneck et al.

2015) and b) label-independent techniques that enrich for CTCs based on their

different physical cell properties such as size, deformability and density (Alix-

Panabières and Pantel 2013; Joosse et al. 2015; Fig. 10.2). All of these alternative

techniques are still at an experimental stage and due to lacking clinical validation

they have not been approved for diagnostic purposes yet (Parkinson et al. 2012).
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10.4.1 Label-Dependent Separation Technologies

Label-dependent strategies mostly rely on antibodies that target epithelial-specific

and/or tumour-associated antigens. They are commonly applied to distinguish

CTCs from cells of hematopoietic origin such as leukocytes. Label-dependent

enrichment is primarily employed using immunomagnetic separation technologies

(Esmaeilsabzali et al. 2013). Therein, antibodies are bound to matrixes such as

magnetic (micro) beads (0.5–5 μm) or nanoparticles (50–250 nm) that can be

provided pre-coupled or compiled according to the users’ specific needs (Schneck
et al. 2015). After a brief incubation of the blood sample with such antibody-coated

particles, captured cells are separated from non-labeled cells by exposing them to a

magnetic field (Esmaeilsabzali et al. 2013). In general, such immuno-affinity assays

either allow for negative (indirect capturing) or positive (direct capturing) selection

of the cells of interest.

10.4.2 Negative (Indirect Capturing) Selection of Cells

Since numerous blood-borne cells may share similar properties with mesenchymal

or stem-like CTCs, leukocytes (WBCs) and erythrocytes are often depleted in order

to avoid compromising the purity of enriched CTC fractions (Yang et al. 2009; Liu

2011). This can be achieved, for example, by immunodepletion using CD45

antibody-coupled Dynabeads™ (Thermo Fisher, USA) or RosetteSep™ (StemCell

Fig. 10.1 Verification of EpCAM-negative cells

Images below depict a SKBR3 breast cancer cell (upper row) and a potential EpCAM-negative

CTC (lower row) taken with immunofluorescence microspcopy. The EpCAM-negative epithelial

cell (lower row, arrow) displays an intact nucleus (DAPI), expression of cytokeratins (CK) and

negativity for EpCAM and CD45. Arrow heads indicate co-enriched leukocytes which are

negative for CK and EpCAM but positive for CD45. The representative SKBR3 breast cancer

cell is depicted as positive control for expression of CK and EpCAM. In the merge all fluorescence

signals are overlayed
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Technologies, Canada). In the latter system bispecific antibodies lead to the forma-

tion of multicellular rosettes by crosslinking leukocytes and erythrocytes (Liu 2011;

Lu 2015). The issue is to find the right balance between purity of CTCs and their

loss since on the one hand CD45-based depletion was reported to reach 99.98%

efficacy – still leaving up to several thousand WBCs/mL of processed blood sample

(Liu 2011; Bulfoni et al. 2016). On the other hand, using an antibody cocktail may

result in high CTC loss since it may target too many surface proteins to be truly

non-specific to the CTC population. In support of this, immunodepletion with the

RosetteSep™ CTC enrichment cocktail, which targets CD2, CD16, CD19, CD38,

CD45, CD66b, glycophorin A (GYPA), and either CD36 or CD56 depending on

tumor origin, was reported to result in a rather low recovery of epithelial cell line

cells (~60%; He et al. 2008). Furthermore, the depletion rate reported by the

manufacturer for this cocktail exhibits considerable variation, ranging from 3.2 to

4.7 log depletion.

Of course the advantage of leukocyte depletion is that it allows the isolation of

cells that do not fulfill all the above-mentioned criteria accepted for CTC valida-

tion, such as round nuclei in cells expressing cytokeratin and lacking CD45. This is

extremely important when aiming to isolate EMT-positive CTCs that do not show

any immunoreactivity for EpCAM, cytokeratin and CD45. A disadvantage may be

– and this still has to be demonstrated - that CTCs clustered with hematopoietic

cells may be co-depleted by negative selection. However, CTCs with a mesenchy-

mal phenotype can be recovered after immunodepletion (Lapin et al. 2016).

10.4.3 Positive (Direct Capturing) Selection of the Cells

Because of the limitations of EpCAM-based isolation methods and their potential

challenges described above, many research groups are targeting alternative cell

surface antigens using single antibodies or antibody cocktails to enrich for EpCAM-

negative CTCs (Mikolajczyk et al. 2011; Lustberg et al. 2014; Pribluda et al. 2015;

Schneck et al. 2015). Amongst others, these antigens include HER2 (human

epidermal growth factor receptor 2), MUC1 (mucin 1), EGFR (epidermal growth

factor receptor), osteoblast (OB-) and neural (N-) cadherin, the CUB domain-

containing protein 1 (CDCP1, CD318), and PSMA (prostate-specific membrane

antigen) which were employed for the enrichment of, inter alia, breast, colorectal,

prostate, lung, and gastric cancer cells (Mikolajczyk et al. 2011; Kirby et al. 2012;

Yu et al. 2013; Bitting et al. 2013; Galletti et al. 2014; Gabriel et al. 2016). CTC

numbers in breast cancer samples were also proposed to be increased using a

combination of anti-EpCAM enrichment with antibodies specific for the

Thomsen-Friedenreich antigen (CD176; Schindlbeck et al. 2008), the melanoma

cell adhesion molecule (MCAM, or cell surface glycoprotein MUC18 [CD146];

Mostert et al. 2011) or the integrin alpha 6 (CD49f; Mostert et al. 2012). Additionally,

EpCAM-depleted breast cancer samples can be enriched for EpCAM-low/negative

and CK-positive events using antibodies against the receptor for hyaluronic
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acid (HA) CD44, CD49f, CD146, cell surface CK8, ADAM8 (a disintegrine and

metalloproteinase 8), c-Met/HGFR (hepatocyte growth factor receptor) and Trop2/

TACSTD2 (tumour-associated calcium signal transducer 2), ormagnetic beads coated

with the extracellular matrix components such as HA (Schneck et al. 2015). By

applying the latter antibodies immobilized to Dynabeads™ and Adembeads™,

EpCAM-low/negative cells could be detected in 69% (20/29) of blood samples

obtained from patients with metastatic breast cancer, while enrichment with Trop2,

CD49f and CK8 attained 80% (76/95) of all identified potential CTCs (Schneck et al.

2015). However, exploiting non tumour-specifc antigens for capturing (e.g. CD44,

CD49f, CD146) it has to be taken into consideration that additional validation steps on

protein or genomic level are indispensable for proving that captured cells indeed

originate from cancer. One possibility is single-cell aCGH (array-based comparative

genomic hybridization), by which genomic aberrations can be determined and the

malignant nature of suchlike isolated EpCAM-low/negative cells can be validated

(Schneck et al. 2015).

Aside from bead-based approaches to isolate EpCAM-negative CTCs, alterna-

tive antibodies may also be attached to nanostructured surfaces (Wang et al. 2011;

Lin et al. 2014), immunomagnetic microchannels (Hoshino et al. 2011) and other

microfluidic chips (CTC�/Herringbone-Chip; (Stott et al. 2010), or even to medical

wires approaches (CellCollector™, GILUPI; Saucedo-Zeni et al. 2012) which are

so far used to isolate EpCAM-positive CTCs but whose versatility, in terms of

detecting a broader CTC spectrum, may be extended in this way.

One issue of positive CTC selection and isolation may be that binding of cell

surface markers with antibodies might induce cell signaling leading to phenotypic

changes, e.g. EpCAM is involved in cellular signaling processes such as prolifer-

ation, migration and differentiation (Maetzel et al. 2009), as stated above. This may

especially be disadvantageous when isolating viable CTCs for subsequent

transcriptome analysis or for in vitro or in vivo functional assays.

Taken together, EpCAM-negative cells can already be isolated with antibodies

specific for cell surface proteins but the biology and clinical relevance of these cells

still has to be investigated.

10.4.4 Label-Free Separation Technologies

Label-free separation approaches exploit the different biophysical properties of

CTCs and WBCs, such as their density, size, and deformability. Their obvious

advantage is the potential to isolate heterogeneous and intact CTCs, regardless of

their surface marker expression level, at high throughput and low cost.
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10.4.4.1 Density-Based Gradient Centrifugation

Density-based gradient centrifugation has been traditionally used to fractionate

blood into its cellular constituents. Since CTCs have a similar cells density as the

mononuclear blood cells (Seal 1959) this technology is used to enrich for CTCs

independently on their marker expression (Seal 1959; Weitz et al. 1998; Rosenberg

et al. 2002). The scene is currently dominated by the standard method of Ficoll-

Paque™ and by the novel OncoQuick™. The latter was specifically designed for

CTC isolation and combines an altered density gradient separation medium with a

porous barrier and a modified centrifugation protocol (Rosenberg et al. 2002). The

barrier prevents contaminations of the interphase which is built up during centri-

fugation and contains both the mononuclear cells and the tumor cells. The perfor-

mances of both assays have been compared in a study by Rosenberg et al. (2002)

which intended to achieve a more effective enrichment of CTCs. In the experiments

using blood samples spiked with cells of the colorectal carcinoma cell line HT-29,

an increased tumor cell recovery rate was observed with the OncoQuick™ protocol.

In fact, by significantly lowering the amount of the mononuclear cells in the

enriched fraction, a faster and a more reliable CTC detection by immunocytochem-

istry or RT-PCR was accomplished. P€osel et al. (2012) suggested that a possible

explanation for the higher cell loss observed with the Ficoll-Paque™ protocol could

be the increased cytotoxicity of the separation medium.

The OncoQuick™ assay was successfully applied to enrich CTCs in blood

samples from 30% of 37 gastrointestinal cancer patients (Rosenberg et al. 2002)

and from 40% of 63 women with advanced breast cancer (Müller et al. 2005). In
comparison to the CellSearch® instrument, CTCs were found in 23% of blood

samples obtained from 61 patients’ blood samples processed by OncoQuick™
protocol, as opposed to 54% obtained by immunomagnetic enrichment (Balic

et al. 2005). Although the patients included into this study suffered from different

metastasized cancers (breast, colon, rectal, gastric, ovarian, prostate, liver, esoph-

agus, lung, testes, pancreas, kidney and two carcinoma of unknown primary) and

provided CTCs with heterogeneous EpCAM expression levels and biophysical

properties, the data show a high cell loss in tumor cell recovery by density-gradient

centrifugation which may be due to the heterogenous densities of CTCs.

10.4.4.2 Size and Deformability: Filtration Systems

Some research groups described CTCs as being larger (Seal 1964; Allard et al.

2004; Cho et al. 2012; Coumans et al. 2013; Sollier et al. 2013) and stiffer

(Marrinucci et al. 2007; Hou et al. 2008; Leong et al. 2010; Marrinucci et al.

2012; Shaw Bagnall et al. 2015) than hematopoietic cells, whence many enrichment

technologies have been established to achieve high recovery rates by exploiting

these physical differences. Among them, there are several assays using filter

membranes (Seal 1964; Romsdahl et al. 1965; Vona et al. 2000; Zheng et al.
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2007; 2011 Ntouroupi et al. 2008; Lin et al. 2010; Chung et al. 2011; Desitter et al.

2011; Adams et al. 2011; Kahn et al. 2004). Track-etched membranes are currently

applied to capture tumor cells from whole blood using the “isolation by size of

tumor cells” approach (ISET®, (Vona et al. 2000). The ISET® method consists of

10–12 wells containing a polycarbonate track-etched membrane which is perfo-

rated with 8 μm-diameter pores. By applying this filtration system, which is capable

to process up to 1 ml of fixed blood, multiple clinical studies report successful

recoveries of CTCs from liver cancer, melanoma, lung and prostate cancer (Vona

et al. 2004; De Giorgi et al. 2010; Lecharpentier et al. 2011; Krebs et al. 2012; Chen

et al. 2013), as well as higher CTC positity in comparison with the CellSearch®

system in the following types of cancer: lung (50% vs. 39%, Hofman et al. 2011;

100% vs. 45%, Farace et al. 2011; 80% vs. 23%, Krebs et al. 2012; 100% vs. 33%,

Pailler et al. 2013), prostate (100% vs. 90%, Farace et al. 2011), breast (85% vs.
75%, Farace et al. 2011), pancreas (93% vs. 43%, Khoja et al. 2012) and liver

(100% vs. 32%, Morris et al. 2014). This discrepancy suggests that filtration may

isolate additional CTC subpopulations which are not captured with an EpCAM-

based strategy.

Certainly, the critical question is which one is the ideal filter in terms of pore size

and numbers, filter material and thickness to discriminate between CTCs and

WBCs. To address this question the most common filtration assays have been

compared in a comprehensive study by Coumans et al. (2013) where the best

recovery rates for different tumor cell lines spiked into whole blood were achieved

with filters made out of a stiff, flat material, which does not interact with blood

cells. Besides, the membranes should be 10 μm thick and should contain approx.

100,000 regularly spaced pores with a diameter of 5 μm. Using these parameters the

recovery rates for cells of tumor cell lines Colo-320 and SW-480 which are of

comparable diameter to CTCs (10.8–12.9 μm vs 10.7–13.1 μm for patients´ CTCs),

were in average 20% and 70% respectively, and were comparable to those of the

tested hemotopoietic cell lines HL-60 and K-562 (Coumans et al. 2013).

Microfiltration has recently been used to detect EpCAM-negative CTC in blood

samples previously depleted of EpCAM-positive cells (CellSearch®). By succes-

sively combining both the technologies, CTC positivity rate in metastatic lung

cancer patients could be increased from 15% EpCAM-positive only up to 41%

EpCAM-positive/negative (de Wit et al. 2015).

Despite the speed and the high efficiency of filtration methods in capturing

CTCs, some aspects still need to be improved: the harvesting rates and purity of

CTCs, membrane clogging, which varies from sample to sample, and the difficulty

to detach cells retained by the membranes in order to allow their downstream

analysis. In addition, co-isolation of WBCs is very likely to occur, since the size

of some WBCs overlaps with that of CTCs and this may therefore lead to the

detection of false positive events by immunocytochemistry, as leukocytes were

reported to slightly stain for cytokeratins as well as for EpCAM (Tibbe et al. 2007).

Moreover, microfiltration will not enrich for small CTCs, although their clinical

relevance is currently still controversial, since their small dimension could be either

a sign of dormancy – associated with an increased metastatic potential – or a sign of
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cell death, as high percentages of EpCAM-positive tumor cells have been observed

to be apoptotic (Marrinucci et al. 2012).

Another novel promising technology to isolate CTCs in a label-free fashion

similar to the filtration is the Parsortix™ system. It consists in a three-dimensional

microfiltration technique which captures CTCs while the blood sample is flowing

through a disposable cassette containing a stair-like separation unit. The smallest

step may be either 10 μm or 6.5 μm high, and has to be passed through by the cells.

Since CTCs are larger and stiffer than WBCs they cannot slip through this gap and

get stuck in it. Finally the captured cells can be released into a collection tube by

reversing the flow direction.

By processing up to 10 ml of blood samples spiked with cells derived from

primary tumours, different groups report recovery rates with Parsortix™ ranging

from 30% up to 70% (Xu et al. 2015; Chudziak et al. 2016; Hvichia et al. 2016) with

a leukocyte background between 1000 and 2000 cells in average. In comparison to

the CellSearch® similar recovery rates were observed (PC3 cells: 43% Parsortix™
vs 40% CellSearch®, Xu et al. 2015; HT29 cell: 78% Parsortix™ vs 83%

CellSearch®, Chudziak et al. 2016). In contrast, lower recovery rates were achieved

with Parsortix™ in comparison to IsoFlux™ (PC3 cells: 40% vs. 90%, Xu et al.

2015). Interestingly, in samples of prostate, lung, breast and colon cancer

the Parsortix™ harvested more CTCs than the CellSearch® (Xu et al. 2015;

Chudziak et al. 2016; Hvichia et al. 2016) and similar amounts to the IsoFlux™
in prostate cancer (Xu et al. 2015), suggesting a high proportion of EpCAM-

negative CTCs.

Parsortix™ was also shown to be compatible with the blood preservative tubes

CellSave® (Chudziak et al. 2016; Hvichia et al. 2016), Streck Cell-Free RNA and

Streck CytoCheck (Chudziak et al. 2016) making this system quite versatile and

providing the possibility to process stored blood samples. Furthermore, tumor cells

used in spiking experiments as well as CTCs recovered by Parsortix™ preserve

their viability for further functional characterizations (Xu et al. 2015; Hvichia et al.

2016).

10.4.4.3 Size and Deformability: Microfluidic Systems

In the last decade, several size and deformability-based microfluidic platforms have

been established to separate CTCs from the hematopoietic blood components.

Tan et al. (2009) developed a microdevice which contains crescent-shaped

isolation arrays consisting of pillars with fixed 5 μm gaps width where cells in the

blood can be fractionated and CTCs are captured. By applying this technology, they

reported capturing and purity rates for breast and colon cancer cells of more than

80%. In addition the viability of the captured cells was ensured.

By exploiting shear gradient lift forces, another high-throughput microfluidic

approach has been designed by Di Carlo and co-workers (Hur et al. 2011; Mach

et al. 2011; Sollier et al. 2013). In this Vortex Chip blood samples are pumped

through microchannels which contain square-shaped enlargements in regular

190 R. Lampignano et al.



distances. When CTCs in the laminar flow reach the square-shaped enlargements,

due to their bigger size they are driven by the shear gradient lift force towards the

centre, where they start to circulate. Whereas, smaller hematopoietic cells pass

through the squares in the collection phase and are hence separated from tumor

cells. The microvortices containing CTCs are stable until the flow rate is changed

and the cells are subsequently flushed out of the device. This system was reported to

process up to 10 ml of blood spiked with 500 cancer cells within 3 min, achieving a

cell recovery of about 20%, purity rates of approx. 40% and a cell viability of about

90% (Hur et al. 2011; Mach et al. 2011). With an optimized version of the vortex

chip, 7.5 ml of blood were processed in 20 min, achieving successful enrichment of

CTCs from 4/4 breast and 8/8 lung cancer samples, with more than 5 cells recov-

ered in 9/12 samples and a 57–94% purity rate (Sollier et al. 2013).

Hou et al. (2013) also exploited the inertial lift forces to develop another device

for continuous CTC separation. The ClearCell® FX device consists of a spiral

microchannel with a trapezoidal cross-section. Therein CTCs larger than 11 μm
are concentrated along the short inner channel whereas WBCs flow along the outer

channel. By applying this device to blood samples spiked with cells derived from

tumor cell lines, more than 85% recovery rate was achieved. In a clinical validation

experiment the ClearCell® FX was able to capture CTCs in 20/20 lung cancer

samples with a recovery of 5–88 CTCs/ml at a flow rate of 3 ml/h. In some samples

CTC microemboli as large as 50–100 μmwere successfully captured as well, which

may enable the analysis of CTC clusters.

Subsequently, Khoo et al. (2014) presented an improved multiplexed spiral

version which is able to process 7.5 ml of blood in less than 5 min. They report a

CTC positivity rate of 56/56 clinical samples with a recovery rate of 12–1275

CTCs/ml in breast cancer and 10–1535 CTCs/ml in lung cancer samples.

As described for filtration approaches, microfluidic methods do not discriminate

between EpCAM-positive and EpCAM-negative CTCs. It can therefore be assumed

that their application will increase CTC positivity rate and the numbers of isolated

intact and heterogeneous CTCs. This has been confirmed in a study using the multi-

orifice flow fractionation (p-MOFF) system, in which 4 of 24 metastatic breast

cancer patients (16.6%) had only EpCAM-positive CTCs but about 1/3 of the

patients had EpCAM-negative CTCs and about 50% of patients had both

EpCAM-negative and EpCAM-positive CTCs suggesting that EpCAM-negative

CTCs constitute the larger percentage of overall CTCs, even among patients who

have both EpCAM-negative and EpCAM-positive CTCs (Hyun et al. 2016).

In summary, considering the advantages of CTC capture by microfluidic devices

– such as excellent purity, high recovery rates, low leukocyte contamination,

sample storage, low processing times, cells viability and possible downstream

analysis – there are high chances that in the near future improved microfluidic

systems will dominate the scene of CTC enrichment strategies.
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10.5 Isolation of EpCAMneg CTCs

Enrichment of CTCs using different devices and technologies will always face the

problem of a background of unwanted co-captured WBCs, which are complicating

further downstream analysis of the tumour cells. The big hurdle to overcome is to

isolate pure CTC populations or even single CTCs with high efficiency. Several

techniques are applied for single CTC isolation which have in common that they

isolate the cells from cell suspensions by manipulating very small drops of liquid

(flow cytometry or micromanipulation) or by directing a single cell

(dielectrophoresis). Additionally, all of them require one of the CTC

pre-enrichment steps described above. This is putting a big emphasis on the

establishment of detailed workflows combining compatible enrichment and isola-

tion technologies (Neumann et al. 2016). In addition highly trained staff is needed

for such technologies.

10.5.1 Fluorescence Activated Cell Sorting (FACS)

Flow cytometry is often a standard equipment in many medical facilities and

therefore available for the detection and isolation of CTCs. The advantages of

flow cytometry are its fast sample processing and readout, providing measurements

about cell numbers, their sizes and the expression of biomarkers. Sorting of CTCs

Fig. 10.2 Enrichment, isolation and molecular characterization of EpCAMneg CTCs
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has been combined with prior CTC detection by the CellSearch® system which is

advantageously providing CTCs which are already labeled with fluorescence-

conjugated antibodies. But still the fluorochromes used in CellSearch® have to be

tested for the respective flow cytometry system (Neves et al. 2014).

One disadvantage of flow cytometry compared to e.g. micromanipulation is that

it does not provide visual quality control of the isolated CTCs. The morphology of

the CTC can already provide information about its integrity and the quality of its

genomic DNA for molecular characterization (Polzer et al. 2014). Besides, CTCs

are isolated in a relatively large volume of buffer, which may also complicate

downstream analysis. However, if enough CTCs are expected within a sample, flow

cytometry provides the capacity for automated high-throughput single CTC isola-

tion (Neves et al. 2014).

10.5.2 Dielectrophoresis (DEP)

The isolation of single CTCs using dielectrophoresis exploits the differences in

dielectric properties of cancer cells compared to normal blood cells. Currently,

there are various technologies which utilize DEP in different manners. One of them,

the DEPArray™ system (Silicon Biosystems, Italy), was built to isolate CTCs after

they have been detected in the CellSearch® system (Fabbri et al. 2013). The content

of a CellSearch® cartridge is loaded into a DEPArray™ single-use microfluidic

bullet, which consists of an array of individual controllable electrodes and embed-

ded sensors (Fabbri et al. 2013; Bolognesi et al. 2016). Next, dielectrophoretic

cages are build up surrounding a single cell to postion it on the array. Fluorescent

images are generated and the individuall cell of interest is moved to the outlet of the

cartridge and it is finally released into a tube. This fully automated isolation process

takes place within 3 h. One drawback of the DEPArray™ system is that a relatively

high volume of the original sample is lost in the tubing system leading to potential

cell losses. Besides, the device is best suitable for fixed cell suspensions (Fabbri

et al. 2013; Bulfoni et al. 2016). An important advantage of the DEPArray™ system

is that it enables visual quality control of the isolated CTCs (Polzer et al. 2014).

10.5.3 Micromanipulation

Micromanipulation can be performed manually by using pipettes or manually-

controlled micromanipulators. In order to optimize cell picking in terms of speed

and accuracy, semi-automated solutions combining inverse fluorescence micro-

scopes and semiautomated-controlled capillary holders, have been developed,

such as the CellCelector™ system (ALS Automated Lab Solutions GmbH,

Germany). In general, glass capillaries can be utilized in horizontal or vertical

orientation, whereby the latter layout – realized by the CellCelector™ - enables a
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flexible deposition of CTCs on various formats e.g. culture plates, PCR tubes

or glass slides making it a very versatile technology. Advantages of the micro-

manipulation comprise cell imaging (as discussed above) and less shear forces

compared to flow cytometry. Beside that, the correlation between the CTC count

in the CellSearch® and the CTCs detected within the CellCelector™ is almost

100% providing a suitable combination of CTC detection and single cell isolation

(Neumann et al. 2016). In addition, the risk of aspirating unwanted material is

below �9% for cell densities of 25–50 cells/100 mm2 (own observations).

One drawback of both the DEPArray™ and micromanipulation is the amount of

time needed to pick a certain number of cells. Single cell identification and isolation

using CellCelector™ from one CellSearch® cartridge can be performed by an

experienced operator within 1–2.5 h – depending on the CTC numbers – with cell

identification being the most time-consuming part. Therefore, it is advisable to

define when micromanipulation or FACS sorting may be used in order to avoid

isolating cells of minor quality due to extensive isolation times, which may interfere

with molecular characterization.

10.6 Molecular Characterization of EpCAM-Negative
CTCs

Beyond tumor cell capture and isolation, molecular characterization –

e.g. mesenchymal, proliferative and stem cell-like features of EpCAM-positive

and EpCAM-negative CTCs is required to gain more insights into their biology,

which might pave the way for precision medicine and personalized therapy in the

future. Like EpCAM-positive CTCs, EpCAM-negative cells can be characterized

using either nucleic acid-based (DNA/RNA), protein-based or function-based

approaches which are reviewed elsewhere (Magbanua and Park 2014; Lianidou

et al. 2013).

Molecular characterization of CTCs is a growing field which is currently highly

active. However, as already stated for the establishment of workflows, the compat-

ibility of different applications has to be tested in order to answer the question if the

analysis of both EpCAM-positive and EpCAM-negative CTCs is of academic or of

clinical relevance (Polzer et al. 2014; Schneck et al. 2015).

10.7 Clinical Relevance of EpCAMneg CTCs

While the clinical relevance of EpCAM-positive CTCs detected by the CellSearch®
is indisputable (Bidard 2014), patients with undetectable CTCs generally have a

more favorable outcome. However, some of these supposedly CTC-negative

patients might also face worse prognoses, potentially due to the presence of
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EpCAM-negative CTCs in their blood (Lustberg et al. 2014). This assumption is

now beginning to be evaluated. Already in 2011, Mego et al. (2011) have provided

the first evidence that EpCAM-negative CTCs might be of clinical relevance. In

their retrospective study comprising a large cohort of metastatic breast cancer

patients, the lack of EpCAM-positive CTC was positively correlated with brain

metastasis. Following, an EpCAM-negative cell subpopulation was isolated and

further characterized by generating breast cancer patient derived CTC lines and

investigating biomarkers accounting for this pronounced metastatic competency

(Zhang et al. 2013). Thereupon, a ‘brain metastasis selected marker’ (BMSM)

signature was defined for CTCs being negative for EpCAM, but expressing

ALDH1 (aldehyde dehydrogenase 1), HER2, EGFR, HPSE (heparanase) and

Notch1, entailing high invasiveness and increased brain metastatic propensities

when being xenografted into nude mice (Zhang et al. 2013). Vishnoi et al. (2015)

further proposed that stem-like EpCAM-negative CTCs with a combinatorial

expression of uPAR (urokinase-type plasminogen activator receptor) and integrin

β1 are important for developing brain metastases, either as alternative or additive to

the BMSM profile. Both markers are linked to breast cancer dormancy. Conse-

quently, they posited that analyzing these EpCAM-negative CTC subsets provides a

clinically useful tool with respect to brain involvement in metastatic breast cancer,

thereby representing a step forward towards early detection and treatment strategies

(Vishnoi et al. 2015). In a study of Lustberg et al. (2014) encompassing patients of

different breast cancer subtypes, CK-positive circulating cells were characterised.

Cells that met CTC-criteria (EpCAM-positive, CK-positive, CD45-negative) as

well as other CK-positive ‘atypical’ circulating cell populations (EpCAM-positive,

CD45-positive; EpCAM-negative, CD45-positive; EpCAM-negative, CD45-nega-

tive) could be identified using flow cytometry and immune-histochemistry. Patients

presenting high levels of EpCAM-negative and CD45-negative cells (�100 events/

ml) were associated with a significantly decreased overall survival (OS; p¼ 0.0292),

whereas no correlation with progression-free survival (PFS) could be observed

(Lustberg et al. 2014). Additionally, the authors proposed that circulating events

being negative for EpCAM, but double positive for CK and CD45, might represent

tumor-associated macrophages which may adversely affect patients’ outcome as

well (Lustberg et al. 2014).

On the other hand clinical utility of EpCAM�negative CTCs has also been

questioned. A pilot study including lung cancer patients also aimed to determine

whether the identified EpCAM-negative CTCs are of clinical significance (de Wit

et al. 2015). Therein, blood samples were first processed by CellSearch® to

subsequently enrich and enumerate the remaining EpCAM-depleted blood fractions

for EpCAM-negative events by a combined filtration and staining approach. As

opposed to the aforementioned study with breast cancer patients, the presence of

EpCAM-negative CTCs was no independent prognosticator for OS (p ¼ 0.308,

cutoff of �1 CTC; de Wit et al. 2015). However, in their study the EpCAM � neg-

ative CTCs were detected using pan-cytokeratin antibodies, and thus pure mesen-

chymal CTCs in the EpCAM � negative cell fraction may have been missed. Apart
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from this, the tumor origin of identified CTCs was not confirmed. Mesenchymal

CTCs may constitute large portions of the total CTC fraction (Yu et al. 2013), and

transient phenotypes that are partly epithelial and partly mesenchymal may also

exist (Yu et al. 2013; Poruk 2016). In contrast to the findings of deWit et al., several

studies have demonstrated that mesenchymal and transient CTC phenotypes are

associated with inferior prognosis regardless of EpCAM expression (Aktas 2009;

Mego 2012; Yokobori et al. 2013; Ueo 2015), thus emphasizing the neccessity of

EpCAM-independent CTC enrichment.

Very recently, Bulfoni et al. (2016) conducted a prospective observational case

study enrolling 56 patients with metastatic breast cancer to correlate the presence of

different CD45-negative cell populations with clinical data. Blood samples were

analyzed by using the DEPArray™ technology and staining of the sorted cells for

epithelial (including EpCAM) and mesenchymal marker cocktails. Based on the

marker expression, all cells lacking CD45 were classified into four groups: epithe-

lial (E) and epithelial/mesenchymal (EM) CTCs, mesenchymal (MES) cells, and

cells that were negative for all applied markers (NEG). Overall, a higher number of

NEG cells was associated with the triple-negative breast cancer subtype – highly

proliferating primary tumor – and with the presence of brain metastases (Bulfoni

et al. 2016), whereby the latter seem to be in line with the data proposed by Zhang

et al. (2013) demonstrating that CTCs with a brain metastatic potential do not

express EpCAM and supporting the importance of going beyond the pure enumer-

ation of CTC expressing this antigen. Conversely, bone metastases were strongly

associated with the absolute and relative abundance of CTC expressing epithelial

antigens, which is consistent with the observed association of bone metastases with

a CTC number�5 cells/7.5 ml of peripheral blood, as estimated by the CellSearch®
(Cristofanilli et al. 2004). Regarding association with prognosis, CTCs expressing

both epithelial and mesenchymal markers significantly correlated with decreased

PFS (p ¼ 0.016) and OS (p ¼ 0.022/0.0016), while the presence of MES cells was

associated with a more favorable OS (Bulfoni et al. 2016).

Taken together, many experimental settings and clinical investigations have

described the presence of non-epithelial/EpCAM-negative and undetectable

CTCs in the blood of cancer patients, with only a few addressing the question

whether these cells are of clinical relevance. Nevertheless, all of the herein men-

tioned studies acknowledge that CTC research with respect to the characterization

of EpCAM-negative cell subsets and biomarkers enabling their identification is

worthwhile and might be crucial to decipher a holistic view of mechanisms in

metastasis (Bulfoni et al. 2016).

One important consequence may be concluded from current studies on EpCAM-

negative CTCs: if CTCs in EMT predict the OS of the metastatic disease � as

e.g. reported by Bulfoni et al. � this would suggest the existence of a subset of

tumours whose prognosis is not significantly modified by currently available

therapies. A similar conclusion has been reached by the clinical study SWOG

S0500 (Smerage et al. 2014), where early switching to an alternate cytotoxic

therapy in patients with persistently increased EpCAM-positive CTC after
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21 days of first-line chemotherapy, was not effective in prolonging the OS. Those

authors suggested that it would be more profitable for this subpopulation of patients

to be recruited into prospective trials of novel therapies and to take advantage of

molecular analyses of metastasis, CTC, or circulating cell-free DNA to guide

treatment choices (Smerage et al. 2014). Based on the results reviewed above,

one may also have to include EpCAM-negative CTCs into this panel – keeping in

mind that this is still based on small sample numbers.

10.8 Conclusion and Open Questions

Although the identification of CTCs gained a strong impetus after the milestone

publication by Cristofanilli et al. in 2004, the field of molecular analysis of single

CTCs is still in its infancy. For EpCAM-positive CTCs it has been shown for

several cancer entities that their presence in the peripheral blood is clearly associ-

ated with poor clinical outcome. Their predictive value or their relevance for

therapy monitoring is still unknown. For EpCAM-negative CTCs the situation is

even less conclusive, leaving many open questions regarding their biology and

clinical importance. Recent models suggest that the detection of CTCs in epithelial-

to-mesenchymal transition might be related to disease progression in metastatic

breast cancer patients. However, current detection methods are not efficient in

identifying this subpopulation of cells. The neoplastic nature of these cell

populations is still an open issue.

Currently, technologies are tested for the identification and downstream analysis

of EpCAM-positive CTCs. These can also be implemented into workflows to

investigate EpCAM-negative cells in order to understand their biology. One inter-

esting question may address their clonal relatedness to EpCAM-positive CTCs. Do

both CTC subpopulations originate from the same founder cell? Do they share

equal sensitivity to treatment or are there differences in their resistance mecha-

nisms? Do both CTC subtypes have the same capacity to metastasize and to persist

in suitable microenvironments? Recent evidence suggests that CTC clusters possess

increased metastatic potential compared to single CTCs, and that cancer patients

with detectable CTC clusters have a shorter survival (Aceto 2014; Chang 2016).

CTC clusters also reportedly express mesenchymal markers indicative of EMT

(Yu et al. 2013). Perhaps EpCAM-negative CTCs have a different potential to form

homo- or heterotypic cell clusters.

There are already many technologies on the market, which allow isolation and

molecular characterization of EpCAM-negative CTCs. The important step will be

to define the best combinations to answer these open questions.
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Pailler E, Adam J, Barthélémy A et al (2013) Detection of circulating tumor cells harboring a

unique ALK rearrangement in ALK-positive non–small-cell lung cancer. J Clin Oncol 31

(18):2273–2281

Pantel K, Alix-Panabières C (2010) Circulating tumour cells in cancer patients: challenges and

perspectives. Trends Mol Med 16(9):398–406

Parkinson DR, Dracopoli N, Petty BG et al (2012) Considerations in the development of circu-

lating tumor cell technology for clinical use. J Transl Med 10:138

Patriarca C, Macchi RM, Marschner AK et al (2012) Epithelial cell adhesion molecule expression

(CD326) in cancer: a short review. Cancer Treat Rev 38(1):68–75

Polzer B, Medoro G, Pasch S et al (2014) Molecular profiling of single circulating tumor cells with

diagnostic intention. EMBO Mol Med 6(11):1371–1386

Poruk KE (2016) Circulating tumor cell phenotype predicts recurrence and survival in pancreatic

adenocarcinoma. Ann Surg 264(6):1073–1081

P€osel C, M€oller K, Fr€ohlich W et al (2012) Density gradient centrifugation compromises bone

marrow mononuclear cell yield. PLoS One 7(12):e50293

Pribluda A, de la Cruz CC, Jackson EL (2015) Intratumoral heterogeneity: from diversity comes

resistance. Am Assoc Cancer Res 21(13):2916–2923

Punnoose EA, Atwal SK, Spoerke JM et al (2010) Molecular biomarker analyses using circulating

tumor cells. PLoS One 5(9):e12517

10 EPCAM-Negative CTCS 201



Rao CG, Chianese D, Doyle GV et al (2005) Expression of epithelial cell adhesion molecule in

carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol 27(1):49–57

Romsdahl MM, Valaitis J, McGrath RG et al (1965) Circulating tumor cells in patients with

carcinoma: method and recent studies. JAMA 193(13):1087–1090

Rosenberg R, Gertler R, Friederichs J et al (2002) Comparison of two density gradient centrifu-

gation systems for the enrichment of disseminated tumor cells in blood. Cytometry 49

(4):150–158
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Chapter 11

Expression of Epithelial Mesenchymal
Transition and Cancer Stem Cell Markers
in Circulating Tumor Cells

Stefan Werner, Arnulf Stenzl, Klaus Pantel, and Tilman Todenh€ofer

Abstract The characterization of circulating tumor cells (CTC) has the potential

not only to provide important insights into molecular alterations of advanced tumor

disease but also to facilitate risk prediction. Epithelial mesenchymal transition

(EMT) has been discovered as important process for the development of metastases

and the dissemination of tumor cells into the blood stream. In different tumor types,

CTC with a mesenchymal phenotype have been reported that have presumably

underwent EMT. Moreover, CTC with stem-cell like characteristics have been

postulated as important drivers of tumor progression. Different platforms have

been introduced to allow CTC enrichment independent of expression of epithelial

antigens, as these may be downregulated in EMT- or stem-cell-like CTC. Both for

CTCs with EMT- or stem-cell features different markers have been proposed.

However, there is still a lack of evidence on the association of these markers with

functional features and characteristics for stem cells and cells undergoing EMT.

Keywords Epithelial mesenchymal transition (EMT) • Cancer stem cell •

Circulating tumor cells

11.1 Role of Epithelial Mesenchymal Transition in Solid
Tumors and CTC

Epithelial mesenchymal transition has been demonstrated to be an important

process in the progression of solid cancers in preclinical models (De Craene and

Berx 2013). The detachment of tumor cells from their primary site and the invasion
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of blood vessels requires a phenotypic change of tumor cells including an increased

mobility and changes in the cytoskeleton (Thiery 2002). These changes enable

tumor cells to invade the walls of small vessels and to enter the blood stream. This

process represents a first and important step of tumor cell dissemination and

formation of metastases (Alix-Panabieres and Pantel 2014a; Schilling et al.

2012). Once entered into the blood stream, tumor cells are able to invade distant

organs such as the bone marrow (Mohme et al. 2016; Todenhofer et al. 2015). After

entering these distant sites, the cells switch into a dormant state (“tumor cell

dormancy”) and can form the bases for later metastases or can form metastases

directly (Uhr and Pantel 2011). The exact molecular mechanisms for dormancy and

development of metastases have not been fully elucidated yet and are under intense

investigation. The therapeutic modulation of these processes has a significant

potential to inhibit tumor cell progression.

Several factors have been shown to significantly promote the process of EMT in

solid tumor cells. These factors include physical and mechanical stress including

Hypoxia and radiation (Zhang et al. 2013). Tumor cells in hypoxic conditions

upregulate Hypoxia-inducible factor 1 alpha (HIF 1alpha) (Ye et al. 2016). HIF1a

is a transcription factor stimulating the expression of various genes including genes

involved in EMT including N-Cadherin and Vimentin. The upregulation of EMT by

Hypoxia is assumed to contribute to resistance mechanisms of tumor cells (Marie-

Egyptienne et al. 2013). Interestingly, mechanical stress to tumor cells such as the

performance of core needle biopsy has been also demonstrated to upregulate

markers of EMT and thereby contribute to the process of tumor cell dissemination

(Mathenge et al. 2014).

The role of EMT in CTC is widely unknown. To date, no clear evidence is

present showing that all CTC undergo a state of EMT during the invasion of blood

vessels or during their circulation through the blood stream. So far, no preclinical

model could conclusively prove that EMT is inevitable for solid tumor cells to

become a CTC. Moreover, the clinical relevance of epithelial transition character-

istics of CTC is unclear, although recent evidence suggests that the presence of

CTC with mesenchymal characteristics is associated with aggressive disease

(Krawczyk et al. 2014).

The process of EMT is closely related to the concept of tumor stem cells

(Barriere et al. 2014). Cancer stem cells are a subpopulation of solid tumors having

the potential of self-renewal and proliferation. These cells are assumed to represent

the main promoter of tumor growth (Pardal et al. 2003). Targeting these cells has

become an important goal in treatment concepts for cancer (Yoshida and Saya

2016). The concept, that only cells with stem cell like characteristics have the

potential for renewal and replication implicates, that only this subpopulation of

CTC is able to form distant metastases (Kreso and Dick 2014). Therefore, the

identification of CTC with stem-cell like characteristics is assumed to be highly

relevant when interpreting the clinical significance of CTC (Yang et al. 2015). The

exact characteristics of these stem-cell like CTC have not been fully discovered yet.

The understanding of the exact molecular features of these cells is an essential step

for the development of platforms that allow the enrichment and molecular analysis
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of these cells. To assess the main characteristics of tumor stem cells, CTC platforms

allowing in-vitro assays and culture of CTC are required. To date, most CTC

platforms do not allow further culture of CTC limiting the evaluation of the main

features of stem cells, replication and self-renewal (Alix-Panabieres et al. 2016;

Pantel and Alix-Panabieres 2016).

11.2 Platforms for EpCAM Independent Enrichment
and Analysis of CTCs with EMT Features

Several techniques have been applied to achieve an enrichment and characteriza-

tion of CTC. A significant proportion of CTC platforms use antibodies coupled to

immunomagnetic beads or nanoparticles in order to enrich CTC based on the

expression of cancer-specific antigens (Alix-Panabieres and Pantel 2014b;

Hegemann et al. 2016; Schilling et al. 2012). One of the mainly used antigens is

EpCAM, which has been shown to be absent on benign blood cells and expressed

by epithelial tumor cells. However, it has been shown by several groups that a

subpopulation of CTC, especially CTC that have undergone EMT, have reduced or

no EpCAM expression, which leads to a failure of EpCAM based enrichment

platforms (Alix-Panabieres and Pantel 2014b; Hyun et al. 2016). On the other

hand, it has been shown that EpCAM positive cells can also be present in the

circulation of patients with benign colon disease questioning the specificity of

EpCAM as a marker of tumor cells (Pantel et al. 2012). Therefore, intense research

has been going on aiming to develop platforms that can enrich CTC independent of

their EpCAM expression. These techniques use physical and biological properties

of CTC in order to enrich them. The two main goals that should be achieved by a

system with a good performance are a high recovery rate of CTC and a high purity.

The high recovery rate is necessary to prevent false negative results and the loss of

cells with high biological and prognostic relevance. Unfortunately, there is still a

lack of data giving us an idea which characteristics these cells leading to formation

of metastasis and disease progression have and how they can be distinguished from

CTC that will make no harm. To evaluate the performance of any CTC platform,

data on recovery rates is urgently needed. The most commonly performed approach

for determining recovery rates of CTC is the spiking of defined numbers of tumor

cell lines into the peripheral blood with subsequent quantification (given that the

approach allows quantification) (Todenhofer et al. 2016a; Weissenstein et al. 2012).

The problem with using cell lines is that they often do not perfectly represent the

biology and heterogeneity of tumors (Park et al. 2014). On the other hand, studies

claiming a high sensitivity of a platform due to higher numbers of CTC compared to

another platform observed in patients’ samples has to be considered with caution, as

the real number of CTC cannot be determined currently (Andreopoulou et al. 2012;

Van der Auwera et al. 2010). This is a current limitation of all CTC systems. A high

purity is required in order to reduce the necessity of downstream analyses for the
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identification of CTC within the enriched population. Such downstream analyses

inevitably reduce the recovery rate and may limit the options for characterization of

biologic properties of CTC (such as culturing of CTC, in-vitro drug testing or single

cell RNA analysis) (Alix-Panabieres et al. 2016). An example: A microfluidic

platform that performs enrichment of CTC based on deformability and size of

cells provides a 100% recovery but purity of only 5–10% (due to contaminating

leukocytes in the outflow channel with a ratio of 10 leukocytes per CTC). In order to

exactly identify the CTC, further analysis is required. One option for further

analysis could be immunocytochemical staining of the cells for CTC specific

markers. However, most of the markers currently use for immunocytochemical

detection of CTC have an epithelial origin (such as cytokeratins). These markers

can be downregulated in cells undergoing EMT (Barriere et al. 2014). Data on

non-epithelial CTC specific marker is sparse. Moreover, the advantage of a marker-

independent enrichment strategy compared to a marker-based enrichment goes

partially lost when applying a marker-based approach as a second step. A second

downside of immunocytochemical analysis of cells is, that fixation usually affects

viability of cells. Viability is crucial for in-vitro analysis, drug testing and other

functional analysis, which have a high relevance for improving the understanding

of the biology of CTCs (Alix-Panabieres et al. 2016). Therefore, a high purity is

crucial to prevent further analyses, loss of cells and long blood processing times.

Non-optimal purity or recovery is an issue with all currently used CTC platform,

either EpCAM dependent or independent ones. Table 11.1 provides an overview on

EpCAM independent technologies for CTC enrichment including their advantages

and disadvantages.

Antigen-dependent enrichment techniques allowing a specific enrichment of

CTC with mesenchymal phenotype have not been broadly implemented yet. Mes-

enchymal markers such as N-Cadherin and vimentin are frequently expressed on

PBMCs. Therefore, these markers are not suitable for antigen-dependent enrich-

ment of CTC. One potential approach allowing an enrichment of malignant

EMT-like CTCs is the negative selection of CD45-positive leukocytes. This neg-

ative selection is also integrated in the CellSearch platform (in addition to the

positive selection of EpCAM). However, recent studies have shown that platforms

solely based on depletion of CD45-positive cells still lead to enrichment of a high

number of CD45 negative PBMC. The contamination with benign cells signifi-

cantly affects the performance of downstream applications aiming to identify CTC

within the enriched cell population.

To date, there is no broadly used and established marker for specific enrichment

of CTC with mesenchymal phenotype. Several approaches have been introduced,

but none of them has been conclusively proven to enable a specific enrichment of

cancer cells.

In order to identify cells with mesenchymal features, the selection of appropriate

markers is of utmost importance. Several approaches are possible. First, the parallel

assessment of epithelial and mesenchymal markers has been demonstrated to be

feasible. However, this requires that the CTC still shows expression of epithelial

markers and hasn’t switched completely to a mesenchymal phenotype. The
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epithelial marker that has been used most commonly in this context is cytokeratin

(Kallergi et al. 2011). However, repression of cytokeratins is a phenomenon

frequently described in the context of EMT (Lamouille et al. 2014). Therefore, a

parallel assessment of cytokeratins and mesenchymal markers is likely to detect

only intermediate state CTC and not CTC that have switched completely to a

mesenchymal phenotype. However, the sole detection of mesenchymal markers

bears the risk to identify benign cells expressing mesenchymal markers. Leukocytes

have been shown to express mesenchymal markers such as vimentin (Wu et al.

2015). A further potential approach is to perform a negative selection for leukocyte

markers in combination with the detection of mesenchymal markers (Dinney et al.

2014; Wu et al. 2015). In the context of CTC with an EMT-like phenotype, the

following markers have been discussed and used most frequently.

11.2.1 Vimentin

Vimentin is a major cytoskeleton component of mesenchymal cells and a major

determinant for cell motility. It regulates cellular integrity, stabilizes cytoskeleton

interactions and mediates resistance to mechanical stress. The expression of

vimentin in tumor cells has been connected to the development of metastases by

various preclinical and translational studies (Hu et al. 2004; Zelenko et al. 2016).

The role of vimentin in CTC has been addressed by various studies. In breast

cancer, CTC with expression of vimentin have been found more frequently in

patients with advanced disease compared to early cancer. Moreover,

co-expression with other EMT markers such as TWIST has been described

(Kallergi et al. 2011). The expression of vimentin in CTC has been also described

as poor prognostic parameter in various cancers including prostate cancer, pancre-

atic cancer (Lindsay et al. 2016; Poruk et al. 2016). One of the main limitations of

vimentin is, that intracellular expression of vimentin is not only present in tumor

cells but also in benign blood cells (Gorges et al. 2016). Therefore, the identification

of cell surface vimentin, which is mainly expressed on tumor cells, has drawn

significant attention (Mitra et al. 2015b; Satelli et al. 2014). The identification of

cell surface vimentin provided the basis for the development of assays designed to

capture CTC from patients with sarcoma. Moreover, the expression of cell surface

vimentin has been shown in other solid tumor types to correlate with therapy

response and outcome (Satelli et al. 2015a; Satelli et al. 2015b).

11.2.2 TWIST1

TWIST1 is a basic helix-loop-helix transcription factor that is involved in cell

lineage determination and differentiation. Mutations have been linked to develop-

ment of the Sezary syndrome (Howard et al. 1997). Moreover, TWIST1 has been
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described as significant contributor to the process of EMT and the development of

metastases (Zhu et al. 2016b). TWIST1 inhibits the expression of E-Cadherin, a

marker with significant relevance for an epithelial phenotype (Vesuna et al. 2008).

Expression of TWIST1 correlates with poor survival in various cancer types (Riaz

et al. 2012; Wushou et al. 2014). Inhibition of TWIST1 has led to decreased tumor

growth and formation of metastases in preclinical models (Finlay et al. 2015; Khan

et al. 2015). TWIST1 is a major component of the Adnatest® EMT kit, which has

been one of the first commercially available platforms for detection of cells with an

EMT like phenotype. After enrichment of EPCAM, EGFR or HER2 positive cells

by immunomagnetic nanobeads, mRNA is isolated and a reverse transcription PCR

is performed for TWIST1, Akt2 and PI3Kalpha. Using this technology in patients

with breast cancer, it could be demonstrated that especially in advanced breast

cancer, a significant proportion of patients have CTC with mesenchymal charac-

teristics (indicated by expression of TWIST1, Akt1 or PI3Kalpha) and that

neoadjuvant chemotherapy might be ineffective in eliminating these CTC (Aktas

et al. 2009; Mego et al. 2012). In patients with bladder cancer, we could show that

12.5% of patients with metastatic bladder cancer have CTC with expression of

TWIST1 whereas no patient with non-metastatic bladder cancer (Todenhofer et al.

2016b). Papadaki et al. analyzed TWIST1 expression in CTC of patients with early

and metastatic breast cancer by immunocytochemistry and observed, that not only

the expression of TWIST1 but also the subcellular localization have important

clinical implications. A nuclear localization was observed with higher frequency in

the metastatic setting whereas cytoplasmatic TWIST1 expression was more typical

for early breast cancer. Similar to Vimentin, TWIST1 has been also described to be

expressed by white blood cells. Therefore, assessment of TWIST1 should be

performed in combination with other markers (such as negative selection of

CD45) to exclude false-positive test results (Li et al. 2010; Merindol et al. 2014).

11.2.3 PI3K/Akt

The PI3K/Akt/mTOR pathway is an attractive therapeutic target in a variety of

malignancies including renal cell carcinoma. Being activated by PI3K, Akt has a

broad variety of downstream effects leading to tumor cell growth, invasion and

metastases (Fresno Vara et al. 2004). One of the main effects of Akt in the process

of EMT is the suppression of E-cadherin (Barber et al. 2015; Larue and Bellacosa

2005). PI3Kalpha and Akt2 are major components of the above-mentioned

Adnatest® assay for detection of CTCs (Todenhofer et al. 2016b). Expression of

phospho-Akt and phospho-PI3K was detected in CTC of >80% of patients in a

cohort of breast cancer patients with early and late stage breast cancer using

immunocytochemistry. Schneck et al. assessed the mutational status of PIK3CA

in CTC from breast cancer patients with 7 out of 44 patients showing a SNP within

PIK3CA. In patients with metastatic colorectal cancer, Ning et al. observed a

significantly inferior survival of patients with expression of PI3Kalpha or Akt2.
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11.2.4 N-cadherin

N-cadherin is an adherens junction that is mainly expressed in mesenchymal cells.

It is a broadly accepted marker of EMT. Similar to other EMT markers, its

overexpression is associated with increased metastatic potential and poor prognosis

(Hui et al. 2013; Nieman et al. 1999; Yi et al. 2014). There is only limited data on

the role of N-cadherin in circulating tumor cells. Armstrong et al. could show in a

small cohort of 10 patients with breast cancer and 10 patients with metastatic

CRPC, that after enrichment for EpCAM positive cells, 84% (CRPC) and 82% of

CTC express N-cadherin (Armstrong et al. 2011). However, in the majority of

patient cells positive for N-cadherin showed also a significant level of E-cadherin

expression indicating that these cells have features of an intermediate state EMT

CTC. In a study assessing the expression of N-cadherin and the stem-cell marker

CD133 in CTCs of 26 patients with metastatic breast cancer, N-cadherin expression

assessed by immunocytochemistry was present in less than a third of CTC empha-

sizing the dependence of the expression of these markers not only on the patient

cohorts but also the technique used for expression analysis and CTC enrichment

(Bock et al. 2014).

11.2.5 Zeb1

Zeb 1 is a zinc finger and homeodomain transcription factor with high significance

for processes related to tumor cell dissemination and EMT (Bourcy et al. 2016).

Recent preclinical evidence suggests that the inhibition of Zeb1 significantly

reduces the metastatic potential of tumor cells (Bourcy et al. 2016; Zhang et al.

2015). Recently, ZEB1 expression has been used to identify a subgroup of CTC

with an EMT phenotype and overexpression of other EMT related genes (Gorges

et al. 2016). In a study evaluating KRASmutations in pancreatic circulating tumor

cells, Zeb1 expressing non-WBC were defined as CTC (after depletion of CD45

positive WBC) (Kulemann et al. 2016). Interestingly, the majority of these Zeb1

expressing CTC also expressed CK19 as an epithelial marker and only a low

proportion of patients showed Zeb1 expression only. Although limited by a low

number of patients, Zeb1 expression was associated with worse overall survival.

CK-negative Zeb1-positive cells had a worse outcome than CK-positive Zeb1-

positive cells. Using qPCR for RNA analysis of CD45 depleted PBMC, no CTC

with Zeb1 expression were identified in a cohort of 102 patients with early breast

cancer whereas other EMT-associated transcripts (such as SLUG) were present.

Using qPCR of CD45 depleted PBMC from healthy donors, the authors could show

that a background expression of Zeb1 is also present in benign cells. In accordance

with this, another study in breast cancer showed that Zeb1 expression levels in

EPCAM/CD326 positive CTC do not have higher levels of Zeb1 than CD45
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positive WBC (Giordano et al. 2012). This has to be taken into consideration when

interpreting the presence of Zeb1 expression in PBMC.

11.3 Stem Cells in Solid Cancers and CTCs

In normal tissue stem cells represent a rare, slow-cycling cell type that owns unique

biological properties. Of particular importance are their abilities to self-renew and

to differentiate into diverse tissue-specific cell types. In general, these processes

enable stem cells maintaining the ability to undergo extensive proliferation, if

required, while preserving the undifferentiated state (Clevers 2011). The well-

established multistep model of tumor formation and progression also postulates a

single long-lived cell as source of cancer formation in which accumulation of

genetic alterations occurs (Fearon and Vogelstein 1990). From there, the cancer

stem cell (CSC) hypothesis proposes that cancer might be driven by tumor cells

with stem cell-like properties. In other words solid tumors might be comprised of

cells that are functionally heterogeneous, with only a subset of cells being liable for

maintenance and progression of the tumor (Clevers 2011). Because tumor cells that

are classified as CSCs often express mesenchymal markers, it has furthermore been

postulated that during tumorigenesis the multipotent stem cell-like phenotype could

be acquired through EMT. Particularly metastasis-associated traits, like heightened

motility and invasiveness, are also characteristics of CSCs (Singh and Settleman

2010). Thus, metastatic cancer cells, which have presumably gained epithelial to

mesenchymal plasticity, may exhibit a CSC phenotype. The CSC concept raises

important implications concerning the identification and characterization of CSCs

as the biological and therapeutic relevant subpopulation of CTC.

11.3.1 Therapeutic Resistance

First of all the CSC concept provides major consequences on appraisal of thera-

peutic resistance and tumor recurrence, which both represent severe clinical prob-

lems. Chemo- and radiotherapy are widely used standard methods of treatment in

many cancer entities. These therapeutic approaches predominantly aim to eliminate

highly proliferating and replicating cells. One of the proposed key characteristics of

the CSC population is in contrast a low proliferative activity. Accordingly, CSCs

may largely be able to survive these therapeutic regimens and proliferate after

chemotherapy withdrawal to allow for tumor recurrence in a clinical setting (Mitra

et al. 2015a). Here the CSC concept explains convincingly that rare quiescent tumor

cells might cause tumor recurrence, which is the almost-inevitable outcome of

effective treatment of solid tumors. Therefore, identification and characterization

of potential CSC subsets in the whole CTC population may yield valuable
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information about treatment efficacy and presence or development of therapy

resistance. This could allow for better-informed approaches to treat cancer patient

efficiently.

11.3.2 Metastasis

In general, metastatic outgrowth in secondary organs is the main cause of cancer

related death of solid tumors and CTC that have dislodged from the primary tumor

are the potential new seeds of a secondary tumor at the distant site (Braun et al.

2005). On the other hand, metastasis is a highly inefficient process, and the presence

of CTC does not inevitably imply that metastases already exist. Even though mere

CTC count is a reliable predictor of relapse in solid tumors like breast cancer (Rack

et al. 2014), which suggest that presence of CTC is in fact associated with clinical

manifestation of micro-metastases or at least the presence of disseminated tumor

cell in secondary organs. The ability to initiate metastatic outgrowth is nevertheless

a major bottleneck in cancer progression. Thus, only a very small number of cells

present in the entire CTC population, are even capable of successfully forming

overt metastasis in a secondary organ (Coumans et al. 2013). For that reason it has

been postulated that metastases arise from a rare subset of CTC with stem cell-like

traits. These metastasis initiating cells (MIC) are potentially the most dangerous

cells in the whole CTC population, with self-renewal, multipotency and tumor

initiating capabilities. From there identification and characterization of potential

MICs in the whole CTC subpopulation from patient derived blood samples might

help to predict in which patient metastasis formation is most likely to occur and also

enable further investigation of metastasis relevant pathways.

11.3.3 Dormancy

Another unwieldy clinical phenomenon is cancer dormancy, which is defined as an

unusually long time between removal of the primary tumor and subsequent distant

relapse in a patient who has been clinically disease-free (Uhr and Pantel 2011). For

instance, in breast cancer clinical data suggest that a majority of cancer survivors

have residual cancer cells for decades but can remain clinically cancer-free for their

lifetime (Karrison et al. 1999). It has been proposed that also here slow-cycling or

even quiescent CSCs are the source of latent metastatic growth (Uhr and Pantel

2011). Hence, CTC that are shed into the circulation might contain a small

proportion of stem-like cells which can lodge in secondary tissue and remain in a

quiescent state for decades. Later, depending on external influences these initial

cells or a differentiated subset of them might start to proliferate again and establish

micro- and macro-metastases in the secondary tissue (Uhr and Pantel 2011).

Interestingly, during the progression of cancer and formation of metastasis, CTC
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that have lodged in secondary organs can occupy stem cell niches, a specialized

microenvironment that normally regulate stem cell behavior, like cell differentia-

tion and cell-cycle entry, of local stem cells. In these niches the disseminated tumor

cells have to resist and overcome a non-permissive environment to survive. Increas-

ing evidence suggests that, these disseminated cells have to adopt stem-like prop-

erties in order to colonize the stem cell niches (Lander et al. 2012). Once settled in

the niches they do not depend solely on cell-intrinsic events but instead rely heavily

on the right microenvironment to control the dormant state as well as maintain

proliferative activity and fitness. It has been proposed that signaling pathways that

maintain CSCs represent attractive targets for novel therapeutic approaches. For

instance substances that suspend interaction of quiescent cells with the stem cell

niches could render these cells vulnerable for chemotherapy (Lander et al. 2012).

Taken together the CSC model has important implications for cancer therapy

and tumor stratification and for the major clinical problems involving therapy

resistance and distant metastasis formation. Thus, great attention has been paid

on comprehensive analyses of CTC heterogeneity and identification of stem-like

CTC sub-populations in blood samples taken from cancer patients.

11.4 Markers and Functional Analysis of Stem-Cell Like
CTC

Driven by the apparent benefits to directly target CSC populations in cancer

patients, different studies aimed to further prove the CSC hypothesis and also to

functionally characterize CSCs. Studies of hematopoietic malignancies identified

populations of CSC that could be serially transplanted into NOD-SCID mice and

resulted in leukemia, whereas injection of more differentiated leukemic cells did

not. These CSC populations can be prospectively identified and enriched by

characteristic cell surface expression profiles. The general approach for the isola-

tion of CSC is fractionation of tumor cells using cell-surface markers characteristic

of stem cells, followed by their implantation into NOD-SCID mice to assess

xenograft growth and cellular composition (Shipitsin and Polyak 2008). Based on

this methodology researchers have succeeded in enriching subpopulations of tumor

cells with stem cell-like features and with tumorigenic capabilities also from

various solid tumor entities. Nevertheless, the differentiation hierarchy and expres-

sion pattern of putative stem cell populations from solid organs are to a lesser

extend characterized than in the hematopoietic system (Shipitsin and Polyak 2008).

Despite this fragmentary knowledge, the most commonly used surface markers to

identify CSCs from solid tumors are CD24, CD44, CD133, and ALDH1. Initially in

2003, Al-Hajj and colleagues could show in a xenograft transplantation model that

only a minority of breast cancer cells had the ability to form new tumors in immune-

deficient mice. In their study they prospectively identified and isolated potential

CSCs by flow-cytometric enrichment of CD44high/CD24low tumor cells. Based on
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cell surface marker expression they were able to distinguish the tumor initiating

from the non-tumorigenic cancer cells. These findings are consistent with the

proposed CSC phenotype and the CD44high/CD24low expression pattern of mam-

mary stem cells with multipotent differentiation ability (Al-Hajj et al. 2003).

Similar results were published by Patrawala and colleagues for a xenograft trans-

plantation model of prostate cancer cells. Although these authors enriched cells

solely based on CD44 expression, they could show that CD44high prostate cancer

cells are more proliferative, clonogenic, tumorigenic, and metastatic than the

CD44low cell population. Subsequent molecular studies demonstrated that the

CD44high prostate cancer cells possess certain intrinsic properties of metastatic

progenitor cells (Patrawala et al. 2006). While not completely appropriate for breast

and prostate derived CSC enrichment, expression of CD133 can be used for

isolation of stem-like cells from a variety of cancerous tissues including glioblas-

toma and colorectal tumors (Galli et al. 2004; O’Brien et al. 2007). Initially

demonstrated by Ginestier and colleagues, also expression and activity of

ALDH1 facilitates the identification and isolation of normal and malignant

human mammary stem cells in vitro, in vivo, and in situ in fixed tissues (Ginestier

et al. 2007).

Yet, all these studies enriched potential CSCs from primary tumor material or

pleura effusions and not from blood samples as subpopulation of CTC. A

pioneering study by Baccelli et al. aimed in contrast to specifically isolate MICs

from blood samples of breast cancer patients to support the hypothesis that CTC

contain subpopulation of highly aggressive CSCs that are capable to colonize

secondary organs. In this study blood samples from luminal breast cancer patients

with known CTC count were depleted for hematopoietic cells and potential CSCs

were further enriched for cell surface marker expression of EPCAM, CD44, CD47

and MET. Subsequently a xenograft assay using the isolated CTC for implanting

into the bone marrow cavity of sub-lethally irradiated mice showed that primary

human luminal breast cancer CTC contain MICs that give rise to bone, lung and

liver metastases in mice. Also in a small cohort of patients with metastases, the

number of CTC, with positive EPCAM, CD44, CD47 and MET but not with merely

EPCAM expression correlated with lower overall survival and increased number of

metastatic sites. Thus, these results define functional circulating MICs among total

CTC in patient derived blood samples (Baccelli et al. 2013). Another study

published by Lu et al. aimed however to directly identify and enrich invasive

CTC from blood samples of breast cancer patients. The authors applied a functional

cell separation method based on collagen adhesion to isolate CTC with an invasive

phenotype from patient-derived blood samples. Using this technique they were able

to isolate viable CTC from blood of stage one to stage three breast cancer patients.

Gene expression and multiplex flow cytometric analyses on functionally captured

and invasive CTC demonstrated the existence of distinct populations including

these of epithelial lineage and stem or progenitor cells (Lu et al. 2010). Recently,

also a permanent cell line designated CTC-MCC-41 has been successfully

established from CTCs out of the blood of a colorectal cancer patient. Thorough

analysis showed that CTC-MCC-41 cells resemble characteristics of the original
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tumor cells in the patient with colon cancer and display a stable phenotype

characterized by an intermediate epithelial/mesenchymal phenotype and stem

cell-like properties. Functional studies showed that CTC-MCC-41 cells induced

rapidly in vitro endothelial cell tube formation and in vivo tumors after

xenografting in immune-deficient mice. Thus, the establishment of this first colon

cancer CTC line allows now a wealth of functional studies on the biology of CTC as

well as in vitro and in vivo drug testing (Cayrefourcq et al. 2015). Nevertheless,

there is also evidence that the CSC concept does not universally account for all

tumors. For instance, a proof-of-concept study for ex vivo culture and characteri-

zation of patient derived CTC, which aimed to noninvasively monitor the changing

patterns of drug susceptibility in breast cancer patients, did not observe increased

expression of defined stem cell related signatures in CTC cultures, although the

majority of the established CTC cell lines were tumorigenic in xenograft assays and

derived from metastatic patients (Yu et al. 2014).

11.5 Prognostic and Clinical Relevance of Stem-Cell
Like CTCs

The CSC hypothesis raises several important implications for the prognostic and

clinical relevance of stem-cell like cells CTC. Foremost, if a population of biolog-

ically unique CSCs really exists, then tumor cells lacking stem cell properties will

not be able to initiate self-propagating tumors, regardless of their differentiation

status or proliferative capacity. Also curative therapy will require complete elim-

ination of the CSC population. Patients who show an initial response to treatment

may ultimately relapse if even a small number of CSCs survive (Marsden et al.

2009). Thus, the detection of CTC expressing markers of stemness in peripheral

blood samples may represent a useful, conservative, diagnostic tool to guide

treatment decisions. Additionally also functional analysis of stem-like CTC could

improve understanding the mechanisms of tumorigenesis, dormancy, and metasta-

sis. From there signaling pathways that maintain CSCs represent attractive targets

for the establishment of new therapeutic strategies (Lander et al. 2012). Several

studies aimed to identify and further characterize a stem-like subfraction of CTC.

These studies are summarized in Table 11.2. Following some of these studies from

particular tumor entities are briefly delineated.

11.5.1 Breast Cancer

The first study that analyzed stem cell characteristics of CTC from breast cancer

patients was published in 2009 by Aktas and colleagues. They evaluated 226 blood

samples from 39 metastatic breast cancer patients during a follow-up of therapy for

11 EMT and Stem Cell Markers in CTCs 217



Table 11.2 Markers for detection of stem-cell like circulating tumor cells (CTC) in patients with

different tumor types

Tumor entity

Determined

stem cell

marker

Patients

included

Enrichment of

CTCs Applied analysis References

Breast ALDH1 130 Density gradi-

ent

centrifugation

IF staining Papadaki

et al. (2014)

Breast ALDH1 39 Adna Kit qRT-PCR Aktas et al.

(2009)

Breast CD44 45 Density gradi-

ent

centrifugation

Flow cytometry Wang et al.

(2012)

Breast CD44 38 Multi-paramet-

ric FACS

Multiplexed

qRT-PCR and IF

staining

Vishnoi et al.

(2015)

Breast ALDH1 28 Density gradi-

ent

centrifugation

ALDEFLUOR

assay and flow

cytometry

Giordano

et al. (2012)

CD44 CD326- and

CD45-based

depletion
CD133

Breast CD133 16 EpCAM-based

enrichment

IF staining in

Cellsearch

Armstrong

et al. (2011)

Colon AGR2 73 No enrichment,

blood-based

analysis

qRT-PCR Valladares-

Ayerbes

et al. (2012)
LGR5

Colon CD133 50 Density gradi-

ent

centrifugation

qRT-PCR Pilati et al.

(2012)

Colon CD133 7 Density gradi-

ent

centrifugation

Flow cytometry Malara et al.

(2016)

Colon CD133 197 No enrichment,

blood-based

analysis

qRT-PCR Shimada

et al. (2012)

Endometrium ALDH1 34 EpCAM-based

enrichment

qRT-PCR Alonso-

Alconada

et al. (2014)
CD44

Stomach CD44 45 Density gradi-

ent

centrifugation

IF staining Li et al.

(2014)

Liver ABCG2 123 CD45-based

depletion

IF staining in

Cellsearch

qRT-PCR

Sun et al.

(2013)CD133

Lung ALDH1 48 Adna Kit qRT-PCR Hanssen

et al. (2016)

Ovary ALDH1 3 Adna Kit qRT-PCR Blassl et al.

(2016)CD44

(continued)
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the expression of the stem cell marker ALDH1 along with EMT markers and

correlated results with the presence of CTC and response to therapy. In this study

ALDH1 transcripts were detected in 14% of tested blood samples from CTC

negative patients, whereas in the CTC positive group ALDH1 transcripts were

detected in 69% of blood samples. In non-responders, ALDH1 expression was

found in 44% of patients, in responders the rate was 5%, respectively. This data

indicates that a major proportion of CTC of metastatic breast cancer patients indeed

shows tumor stem cell characteristics (Aktas et al. 2009). Subsequently, further

studies were published that evaluated expression and activity of ALDH1 in CTC

from breast cancer patients. By using triple immunofluorescence staining of indi-

vidual CTC with anti-cytokeratin, anti-ALDH1 and anti-TWIST antibodies,

Papadaki et al. found that CTC from patients with metastatic breast cancer, fre-

quently express high amounts of ALDH1 protein and show in parallel nuclear

localization of the EMT-related TWIST protein. This suggests that these CTC

own stem-like characteristics and may prevail during disease progression (Papadaki

et al. 2014). Besides, in a prospective study published by Giordano et al. a

comprehensive approach was utilized to assess CSC features of CTC in 28 patients

with HER2 positive metastatic breast cancer. Here, CTCs were enriched from

peripheral blood using CD326- and CD45-depletion. In addition to transcript

analysis of EMT marker expression in purified cells, these cells were analyzed

using multiparameter flow cytometry for ALDH activity and for CD24, CD44, and

CD133 stem cell marker expression. It was found that the CD326- and CD45-

depletion cell fraction of patients with elevated expression of EMT-related tran-

scripts also had significantly higher percentage of ALDH and CD133 positive cells

in their blood than did patients with normal EMT expression marker. This indicates

that patients with HER2 positive metastatic breast cancer bear CTCs with EMT and

CSC characteristics (Giordano et al. 2012). Also expression of CD44 and CD24 has

been successfully utilized to enrich CTC subsets related to the CSC phenotype from

blood samples of breast cancer patients. To particularly isolate CTC subsets related

to tumor dormancy Vishnoi and colleagues enriched for EpCAM and CD24 neg-

ativity but positivity for CD44 expression from peripheral blood of patients

Table 11.2 (continued)

Tumor entity

Determined

stem cell

marker

Patients

included

Enrichment of

CTCs Applied analysis References

Prostate ABCG2 70 EpCAM-based

enrichment

qRT-PCR Chang et al.

(2015)CD133

PSCA

Prostate CD133 35 EpCAM-based

enrichment

IF staining in

Cellsearch

Pal et al.

(2015)

Prostate CD133 41 EpCAM-based

enrichment

IF staining in

Cellsearch

Armstrong

et al. (2011)

Kidney CD44 25 EpCAM-based

enrichment

RT-PCR Gradilone

et al. (2011)
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diagnosed with or without breast cancer brain metastasis. They combined their

analysis with assessment of uPAR and Integrin-β1 expression, two markers directly

implicated in breast cancer dormancy mechanisms. CTCs that were isolated by this

method were successfully cultured in vitro in three-dimensional tumorspheres.

Interestingly, proliferative and invasive properties of these CTC cultures were

distinctive upon combinatorial expression of uPAR and Integrin-β1. Thus, this
approach may enhance abilities to prospectively identify patients who may be at

high risk of developing breast cancer brain metastasis (Vishnoi et al. 2015).

11.5.2 Colorectal Cancer

Studies on colonic crypt stem cells have contributed substantially to the under-

standing of stem cell biology of epithelial tissues and LGR5 expression is as a well-

established marker for stem cells in the small intestine and colon (Barker et al.

2007). The prognostic significance of LGR5 transcript expression as biomarker in

peripheral blood of colorectal cancer patients was evaluated by Valladares-Ayerbes

and colleagues in 54 patients and 19 controls. It was found that LGR5 mRNA were

significantly increased in blood samples from colorectal cancer patients compared

to healthy controls. Moreover, heightened LGR5 expression in these blood samples

correlated with metastasis, high-grade and poor overall. These findings indicate that

the assessment of LGR5 in peripheral blood might reflect the presence of stem cell

like CTCs in blood samples taken from colorectal cancer patients (Valladares-

Ayerbes et al. 2012). Also expression of CD133 is a well-established stem cell

marker for colorectal CSCs and has successfully been used to enrich and charac-

terize potential CSC subsets in CTCs from colorectal cancer patients. Malara and

colleagues separated heterogeneous CTC populations, which derived from whole

blood samples of seven colorectal cancer patients. It was possible to distinguish two

distinct subgroups of CTCs which were also associated with different clinical

outcome. Thus, patients with prevalence of putative circulating cancer stem cells

showing CD133 expression have a lower overall survival (Malara et al. 2016).

Besides, Pierluigi et al. retrospectively evaluated prospectively collected preoper-

ative blood samples to identify applicable circulating biomarkers in patients under-

going complete resection of metastatic colorectal cancer to the liver. Among seven

analyzed genes the expression of CD133 was determined to be the only independent

predictor of patient survival. The authors concluded that CD133-positive CTCs

may represent a suitable prognostic marker to stratify the risk of patients who

undergo liver resection for CRC metastasis, which opens the avenue to identifying

and potentially monitoring the patients who are most likely to benefit from adjuvant

treatments (Pilati et al. 2012).
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11.5.3 Prostate Cancer

Similar results were obtained from studies analyzing blood samples of prostate

cancer patients. In such a study published by Armstrong et al. expression of the

stem-cell marker CD133 was assessed together with expression of EMT markers by

immunocytochemistry in CTCs from 41 patients with castration-resistant prostate

cancer. It was shown that the majority of these CTCs co-express the stem cell

marker CD133 together with epithelial proteins such as EpCAM, cytokeratins, and

E-cadherin and with mesenchymal proteins including vimentin, N-cadherin and

O-cadherin. Based on these results it was suggested that stem-like CTCs may be

highly prevalent among patients with metastatic epithelial tumors which might

account for therapy resistance (Armstrong et al. 2011). Also Chang and colleagues

set up a quantitative PCR method to detect EMT and stem cell gene expression

status in peripheral blood derived from metastatic prostate cancer patients to

validate whether this method could complement plain CTC enumeration. They

collected and analyzed peripheral blood from 70 patients and enumerated CTC in

these blood samples using CellSearch system. In parallel mRNA expression of

prostate stem cell-related genes ABCG2, CD133 and PSCA and EMT-related genes

TWIST1 and vimentin was assessed. In this setting positive stem cell gene expres-

sion indicated poor prognosis, whereas EMT related expression did not. Also for

40 patients categorized into the favorable CTC enumeration group, positive stem

cell gene expression suggested poor prognosis. As a result, detection of peripheral

blood stem cell gene expression could complement CTC enumeration in predicting

overall survival and treatment effects in metastatic prostate cancer patients (Chang

et al. 2015).

11.5.4 Other Cancer Entities

Also in blood samples taken from patients with endometrial cancer putative CSC

subpopulations coexpressing EMT and stem cell markers have been identified.

EpCAM-based isolation detected CTC in high-risk endometrial cancer patients

and CTC characterization indicated a remarkable plasticity phenotype defined by

the expression of the EMT markers and expression of stem cell markers ALDH and

CD44 (Alonso-Alconada et al. 2014). Likewise in blood samples taken from

hepatocellular carcinoma patients, EpCAM positive CTCs with stem cell-like

phenotypes were identified. CTCs displayed expression of cancer stem cell markers

CD133 and ABCG2 as well as expression of EMT markers. Additionally this

phenotype was also associated with Wnt pathway activation, high tumorigenic

potential and low apoptotic propensity. Hence, these EpCAM positive CTCs may

constitute the tumor-initiating subpopulation in hepatocellular carcinoma speci-

mens which may serve as a real-time parameter for monitoring treatment response

(Sun et al. 2013). EpCAM based enrichment of stem cell-like CTC from
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hepatocellular carcinoma patients has also been utilized by Schulze et al. Their

study demonstrates frequent presence of EpCAM-positive, stem-like CTCs in

patients with intermediate or advanced hepatocellular carcinoma. Here, detection

of these cells had prognostic value for overall survival with possible implications

for future treatment stratification (Schulze et al. 2013). Recently, also in 86% of

blood samples taken from non-small cell lung cancer patients ALDH1 expression

was detected, indicating that in NSCLC a large fraction of CTCs are of stemness

character (Hanssen et al. 2016).

In summary, several studies covering different entities of solid tumors have

analyzed expression of stem cell associated genes in CTCs and in peripheral blood

samples, respectively. Generally, the detection of increased expression of CSC

markers like CD133, CD44 and ALDH1 was associated with poor patient outcome.

This indicated that a rare CSC subpopulation among total CTCs really exists.

Nevertheless, there is also evidence that CSC concept does apply to progression

of all tumors. For instance, in one study analyzing whether melanoma is hierarchi-

cally organized into phenotypically distinct subpopulations of tumorigenic and

nontumorigenic cells, the authors were unable to find any large subpopulation of

melanoma cells that lacked tumorigenic potential. None of 22 heterogeneously

expressed markers enriched tumorigenic cells and many markers appeared to be

reversibly expressed by tumorigenic melanoma cells (Quintana et al. 2010). More-

over, the precise contribution of tumor initiating cells that express the defined stem

cell marker is ill defined. As such, it was shown that CD133 expression does not

identify the entire population of epithelial and tumor-initiating cells in human

metastatic colon cancer. Both CD133+ and CD133- metastatic tumor subpopula-

tions formed colonospheres in in vitro cultures and were capable of long-term

tumorigenesis in a serial xenotransplantation model, suggesting that CD133 expres-

sion is not restricted to intestinal stem or cancer-initiating cells (Shmelkov et al.

2008). Furthermore, recent studies that were all based on genetic lineage tracing,

describe various strategies employed by normal epithelial stem cell hierarchies to

replace damaged or lost stem cells (Greulich and Simons 2016). As the CSC model

of tumor cell hierarchies propose that commitment and differentiation occur uni-

directional, these findings challenge the classification of a CSC and highlight that

plasticity within a tumor cell population might be more common than appreciated

in the classical CSC concept. The identification of rare but highly aggressive CTC

subsets in peripheral blood is nevertheless of high clinical interest. Monitoring the

outcome of systemic cancer therapies by sequential assessment of potential CSC or

MIC subpopulation is feasible, but an appropriate methodology faces even more

challenges regarding specificity and sensitivity than mere CTC enumeration. The

recently launched and EU-funded CANCER-ID innovative medicine initiative aims

to develop new, less invasive ways of capturing cancer cells and genetic material

from tumors from blood samples and analyzing them for clues to what treatment is

needed and how well drugs are working. Accurate CSC identification are in any

case needed to implement the CSC concept into clinical practice and validated

protocols for liquid biopsies could pave the way for interventional clinical studies

on treatment stratification.
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Chapter 12

Mesenchymal-Epithelial Transition
and Circulating Tumor Cells in Small Cell
Lung Cancer

Gerhard Hamilton and Barbara Rath

Abstract Cancer patients die of metastatic disease but knowledge regarding indi-

vidual steps of this complex process of intravasation, spread and extravasation

leading to secondary lesions is incomplete. Subpopulations of tumor cells are

supposed to undergo an epithelial-mesenchymal transition (EMT), to enter the

bloodstream and eventually establish metastases in a reverse process termed

mesenchymal-epithelial transition (MET). Small cell lung cancer (SCLC) repre-

sents a unique model to study metastatic spread due to early dissemination and

relapse, as well as availability of a panel of circulating cancer cell (CTC) lines

recently. Additionally, chemosensitive SCLC tumor cells switch to a completely

resistant phenotype during cancer recurrence. In advanced disease, SCLC patients

display extremely high blood counts of CTCs in contrast to other tumors, like

breast, prostate and colon cancer. Local inflammatory conditions at the primary

tumor site and recruitment of macrophages seem to increase the shedding of tumor

cells into the circulation in processes which may proceed independently of EMT.

Since millions of cells are released by tumors into the circulation per day, analysis

of a limited number of CTCs at specific time points are difficult to be related to the

development of metastatic lesions which may occur approximately one year later.

We have obtained a panel of SCLC CTC cell line from patients with relapsing

disease, which share characteristic markers of this malignancy and a primarily

epithelial phenotype with unique formation of large tumorospheres, containing

quiescent and hypoxic cells. Although smoking and inflammation promote EMT,

partial expression of vimentin indicates a transitional state with partial EMT in

these cell lines at most. The CTC lines exhibit high expression of EpCAM, absent

phosphorylation of β-catenin and background levels of Snail. Provided that these

tumor cells had ever undergone EMT, here in advanced disease MET seem to have

occurred already in the peripheral circulation. Alternative explanations for the

expression of mesenchymal markers of the CTC lines are the heterogeneity of

SCLC cells, cooperative migration or altered gene expression in response to the
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inflammatory tumor microenvironment allowing for tumor spread without

EMT/MET.

Keywords Small cell lung cancer • Circulating tumor cells • Metastasis •

Mesenchymal-epithelial transition • Tumorosphere

12.1 Classical Model of Tumor Dissemination

Mortality of cancer patients is in most cases caused by metastatic disease and many

steps of this complex process are characterized insufficiently (Wan et al. 2013).

Tumor cells of the primary lesion increase their mobility by switching to cellular

programs that allow several modes of invasion. For carcinomas, a standard model

of the metastatic progression has been proposed (Fig. 12.1; Steeg 2016). These

tumors derive from epithelia which form polarized layers of cells that are connected

laterally via several types of cellular junctions. Additionally, epithelial cells are

bound to the underlying basement membranes via hemidesmosomes which further

connect with the epithelial-specific cytokeratin intermediate filaments. For meta-

static spread, cancer cells must leave these cellular structures and gain mobility.

Primary tumors are known to constantly shed a large number of cancer cells into the

circulation, after cell subpopulations have presumably undergone an epithelial-

mesenchymal transition (EMT) (Nieto et al. 2016). The precise mechanism of

how tumor cells cross the endothelial barrier is largely unknown. E-cadherin is

regarded as a gatekeeper of the epithelial state and, therefore, during EMT

E-cadherin expression is downregulated through gene repression, promoter meth-

ylation and protein degradation in response to various signals (Tsai and Yang

2013). A partial loss of E-cadherin is associated with carcinoma progression and

poor prognosis in various human tumor types (Thiery and Lim 2013).

Intermediate filaments switch from cytokeratins to vimentin during EMT and

nonepithelial cadherins, such as N-cadherin, are induced (Nieto et al. 2016). In

contrast to epithelial cells, mesenchymal cells embed themselves inside the extra-

cellular matrix (ECM) and rarely establish tight contact with neighboring cells.

EMT-promoting factors comprise growth factors, inflammatory cytokines and

acidic/hypoxic conditions in the tumor microenvironment. In particular, the EMT

is executed in response to pleiotropic signaling factors that induce specific tran-

scription factors (TFs) called EMT-TFs (e.g., Snail, ZEB, Twist, and others) and

miRNAs together with epigenetic and post-translational regulators, many of which

are involved in embryonic development, wound healing, fibrosis and cancer metas-

tasis (Cano et al. 2000; Thiery 2002). Cells could linger in intermediary stages and

may frequently undergo a partial EMT program.

Eventually, some of the surviving cells may arrest in the vascular lumen and

extravasate through the capillary endothelium into the parenchyma of distant

organs. In the new stromal environment, an even smaller subset of tumor cells

establish micrometastases with the potential to develop into fully malignant,

230 G. Hamilton and B. Rath



secondary tumors that are clinically detectable and eventually fatal (Thiery 2002;

Kalluri and Weinberg 2009). Since metastases exhibit an epithelial phenotype

again, the migratory and invasive EMT cells need to reverse this process with a

loss of this motile properties, adoption of an apico-basal polarization and

reexpression of junctional complexes in a so-called mesenchymal-epithelial tran-

sition (MET) (Thiery et al. 2009).

12.2 Significance of Epithelial-Mesenchymal Transition
(EMT) in Dissemination

Cancer-associated EMT was predominatly studied using cell lines or experimental

animal models (Nieto et al. 2016). Most commonly markers for the epithelial

phenoptype are E-cadherin, EpCAM, occludins, and cytokeratins, and for the

Intravasa�on

Inflamma�on Hypoxia

EMT Survival in
circula�on

Extravasa�on/MET

CTCs/CSCs

Fig. 12.1 Classical model of tumor dissemination. Scheme of primary tumor formation in the

lung is shown at the left side of the figure. The tumor consists of a heterogeneous mixture of cells

including a subpopulation of cells with higher motility (dark colour) and protease expression

which are able to intravasate into the bloodstream. Inflammatory conditions in the tumor micro-

environment together with an acidic and hypoxic milieu seem to enhance aggressiveness of the

cancer cells and provide immune protection. Migration of the tumor cells and their intravasation is

supposed to be related to an epithelial-mesenchymal transition (EMT) program. In the blood-

stream a small fraction of these circulating tumor cells (CTCs) which may exhibit cancer stem cell

characteristics, survive and spread to generate secondary lesions, in the case of SCLC preferen-

tially in liver, brain and bone. Since metastases recapitulate the epithelial phenotype of the primary

tumor, the EMT trait must be reversed in a process termed mesenchymal-epithelial transition

(MET) for colonization of affected distal organs. Whether MET takes place already in the

circulation or after extravasation is not known. This proposed model may vary for different tumors

and conditions
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mesenchymal cell type N-cadherin and vimentin, respectively (Thiery and Sleeman

2006; Thiery et al. 2009). Originally, a complete switch from epithelial to mesenchy-

mal markers was regarded as a confirmation of EMT but such a total change was not

detectable in patients (Huang et al. 2013; Yu et al. 2013). This failure to prove a full

EMT made the whole concept and the significance of this transition in tumor spread

questionable (Tarin et al. 2005). However, intermediate hybrid epithelial and mesen-

chymal phenotypes were observed in association with fibrosis and cancer processes

(Grande et al. 2015; Lovisa et al. 2015; Grigore et al. 2016; Huang et al. 2013; Jordan

et al. 2011). Tumor cells which exhibit such a hybrid phenotype have been referred to

as “metastable” (Lee et al. 2006; Tam and Weinberg 2013; Nieto et al. 2016).

The regulation of classical EMT centers on the transcriptional suppression of

E-cadherin through activities of major EMT-TFs, such as SNAI1, SNAI2, ZEB1,

ZEB1, and TWIST1 (Peinado et al. 2007; Thiery et al. 2009; Lamouille et al. 2014).

Mesenchymal traits in a hybrid state in a partial EMT may be limited to a decrease

of epithelial properties like apico-basal polarity and a remodeling of junctional

complexes (Nieto et al. 2016; Huang et al. 2012). Acquisition of true mesenchymal

traits may comprise a wide range of different characteristics characteristic and

markers. Functional programs associated with EMT, such as invasion, increased

survival or decreased proliferation have to be taken into account. Whether EMT

plays a crucial role in cancer metastasis in human patients and in some animal

model systems is still under debate (Zheng et al. 2015), largely due to the lack of the

ability to track the occurrence of EMT and to follow the fate of cells undergoing

EMT in clinical settings. Especially, the diversity of the EMT program that can

elude detection using a single EMT marker or reporter in animal models.

12.3 Circulating Tumor Cells

Tumors that are disseminated as CTCs may settle to selected protected niches

[e.g., as disseminated tumor cells (DTCs) in the bone marrow] and can persist in

a dormant state for extended time periods (Alix-Panabières and Pantel 2016).

While CTCs can potentially be detected in essentially all human cancers, the

CellSearch system (Veridex, Raritan, NJ) has only been approved for enumeration

of these cells in metastatic breast, colon and colon cancer. CTCs serve as an

independent predictor of progression free survival and overall survival (Cohen

et al. 2008; Alix-Panabières and Pantel 2016). Such CTCs are defined as nucleated

EpCAM- and cytokeratin-positive cells lacking a leukocyte marker, and a cutoff

of 5 CTCs/7.5 ml blood separates patient populations with high and low risk

of progression. Results showed that, with an increasing number of CTCs, the

risks of cancer progression (hazard ratio of progression-free survival) and death

(hazard ratio of overall survival) increases continuously. A linear relationship was

demonstrated with a small number of CTCs (<5), however, both risks tapered

beyond 5 CTCs/7.5 ml blood (Hong and Zu 2013). CTCs having undergone EMT

would not be detected using methods which depend on epithelial markers, and such

techniques may miss the most important tumor cells responsible for metastasis
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(Gorges et al. 2012). Indeed, by using more sensitive detection approaches than the

Cell Search system, the presence of at least a 30–100-fold higher number of CTCs

was found in a variety of cancer patients (Flores et al. 2010).

There are a number of questions remaining for the detection of CTCs and their

relationship to their parent bulk tumors. The frequency of the CTC population

measured in an aliquot may not be a statistical representative of the entire sample.

Based on the Poisson distribution, the probability of collecting �1 CTCs in one

aliquot of 7.5 mL blood from a patient with 500 CTCs is 50% (Tibbe et al. 2007;

Allan and Keeney 2010; Hong and Zu 2013). Twenty mL of whole blood would have

to be assessed if the cell event was elevated for lower frequency at 1 CTC in 107

leukocytes (Rosenblatt et al. 1997). CTCs are shed from solid tumors at a daily rate of

3.2 to 4.1 � 106 per gram of tissue, based on a rat model (Butler and Gullino 1975).

Half of these CTCs perish within 2.4 h, although longer half-lives were reported for a

clinical setting (Meng et al. 2004). It is estimated that only <0.02% of disseminated

tumor cells (DTCs) are able to successfully seed metastases (Chambers et al. 2002).

An extended gap time often exists between the formation of the primary tumor and

clinical manifestations of metastasis (Vanharanta and Massague 2013).The high

attrition rate of CTCs during metastasis points to the existence of a rare and unique

population of metastasis-initiating cells (MICs). Therefore, MICs are defined as

cancer cells capable of seeding clinically significant metastatic colonies in secondary

organs. MICs might exist at the primary tumors or emerge during the metastatic

cascade. MICs seem to be distinguished by favorable traits, conferring cellular

plasticity, metabolic reprogramming, ability to hide in dormancy, resistance to apo-

ptosis, immune evasion, and cooperation with stromal cells (Celi�a-Terrassa and Kang
2016). These cells form the link between the primary tumor and subsequentmetastasis

but are exceedingly difficult to identify, track, and characterize. CTCs in short term

culture are used to test chemoresistance and their enumeration in patients is discussed

as surrogate marker for response to therapeutic agents. However, CTCs are special-

ized tumor cells and their chemosensitivity is not expected to be representative for the

whole tumor and, in particular, they may be chemosensitive in the circulation and

resistant due to protection in an inflammatory environment or as member of large

tumorospheres (Hamilton et al. 2016a, b, c, d).

12.4 EMT in Circulating Tumor Cells

So far, only a limited number of studies using mouse tumor models examined the

relationship of EMT to CTCs directly. For the capturing of CTCs that have fully

undergone EMT, the current isolation methods which rely on using epithelial

markers, such as EpCAM, are not suitable and newly developed methods for enrich-

ment based on size, rigidity or surface charge need to be employed (Hong and Zu

2013; Alix-Panabières and Pantel 2016). Clinically, the CTCs in breast cancers with a

triple-negative molecular subtype (ER–/PR–/HER2–) tend to have a more mesen-

chymal phenotype (Yu et al. 2013). The proportion of carcinoma cells with EMT
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features in primary breast tumors does not exceed 3% in estrogen receptor (ER)-

positive tumors and 10–15% in ER-negative tumors. These mesenchymal CTCs

isolated from breast cancer patients were found clustered with platelet cells, which

produce TGFβ that in turn induces EMT (Yu et al. 2013). Furthermore, the EMT

status consistently predicts overall survival (OS) and disease-free survival (DFS)

(Tan et al. 2014). Importantly, cancer therapy affects CTC number and phenotype,

with refractory patients having more mesenchymal-like CTCs and patients who are

responding to treatment demonstrating significantly fewer CTCs and a more

epithelial-like phenotype (Bonnomet et al. 2012; Yu et al. 2013).

EMTmay be a focal event at the tumor margin, which occurs in response of cancer

cells to their local microenvironment. Macrophages participate in EMT induction

within primary tumors in transgenic mouse models, orthotopic xenografts, and pri-

mary human breast carcinomas (Wyckoff et al. 2004; Robinson et al. 2009). There-

fore, macrophages may be also critical for local intravasation and, actually, we

observed recruitment of macrophages by SCLC CTCs lines in vitro (Hamilton et al.

2015a). However, most CTCs are heterogenous and express both epithelial and

mesenchymalmarkers leading to the interpretation of an ongoing EMTprocess during

dissemination of carcinoma cells (Thiery and Lim 2013; Yu et al. 2013; Khoo et al.

2015). In support of this finding, after transient amplification of breast cancer CTCs

the cells exhibit a full range of EMT phenotypes (Khoo et al. 2015). However, the

majority of CTCs in breast cancer exhibit an intermediate EMT phenotype.

For lung cancer, there is some indirect evidence for the induction of an EMT

phenotype in normal lung and transformed cells (Galván et al. 2014) Various groups

of active compounds found in cigarette smoke, such as polycyclic aromatic hydro-

carbons (PAH), nicotine-derived nitrosamine ketone (NNK), and reactive oxygen

species (ROS) can induce EMT through different signaling pathways linked to

biological responses to cigarette smoke, such as hypoxia, inflammation, and oxidative

damage (Vu et al. 2016). EMT has been also found to be increased human bronchial

epithelial cells of patients with chronic obstructive pulmonary disease (COPD)

(Milara et al. 2013). The coexistence of lung cancer and COPD is commonly detected

in smokers, and the risk of developing lung cancer in smoking patients is significantly

increased in the presence of COPD (Sohal and Walters 2013). In general, the tumor

microenvironment induces EMT and contributes to immune suppression and drug

resistance (Mittal 2016). STAT3 is also reported to be elevated in lung biopsies from

patients with idiopathic pulmonary fibrosis and may be a key molecule in inflamma-

tion associated with SCLC (Hamilton et al. 2015b). STAT3 is a downstreammediator

of TGFβ signaling and induces EMT by increasing Snail expression in cancer cells

(Saitoh et al. 2016). Furthermore, the inflammatory cytokine TNFα can stabilize

Snail1 via NF-kB activation and induce Twist1 expression via IKK-b and NF-kB

p65 activation. Inflammation seems to increase the EMT-rate in pancreatic cancer

(Jolly et al. 2015; Rhim et al. 2012). Cytokines in the tumor microenvironment can

also activate Stat3 via JAK kinases to induce Twist1 expression (Lo et al. 2007).

Essential, all SCLC cells exhibit mutations of p53 and the loss of p53 causes a

decrease in miR-200c, thereby increasing EMT, with a concomitant increase in the

stem cell population (Chang et al. 2011).
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12.5 Significance of MET in Dissemination

Cancer cells in metastatic outgrowths are clearly epithelial-like, and they can be

identified morphologically and molecularly as having been derived from the primary

tumor (Nieto et al. 2016). Thus, mesenchymal cells must revert to the epithelial

phenotype to invade secondary organs in a reversal of EMT, called mesenchymal-

epithelial transition (MET) or reverse EMT (rEMT). Several investigations have

suggested that MET may be important for metastatic colonization by reactivating

cell signaling pathways and/or facilitating attachment to heterologous cells within the

healthy tissue (Gunasinghe et al. 2012). Whether CTCs only undergo transitions after

reaching the metastatic site or if MET can also occur in the bloodstream is not clear at

present. Vimentin-positive CTCs might have undergone MET to form vimentin-

negative macrometastasis by loss of an EMT-inducing signal at the distant site

(Tsuji et al. 2008; Tsai and Yang 2013). E-cadherin re-expression imparted by a

partial MET at the secondary site increases survival of the metastatic cancer cell and

increase chemoresistance as tumor spheroids (Chao et al. 2012). Studies in cell

culture showed that induction of EMT by Snail1 and ZEB2 directly represses cell

division and activation of Twist1 was found to be associated with reduced tumor cell

proliferation (Tsai and Yang 2013; Yu et al. 2013). Since colonization demands

tumor cells to restart proliferation upon extravasation into a foreign microenviron-

ment, reversion of EMT may be required to provide such growth advantage. Inter-

estingly, circulating tumor clusters are more effective in colonizing secondary sites

than single mesenchymal CTCs (Aceto et al. 2014). Again, this highlights the

requirement for mesenchymal cancer cells to at least partially reverse to the epithelial

state for metastatic growth (Nieto 2013). However, both MET-dependent and MET–

independent metastatic cascades were found in models involving carcinosarcoma and

prostate carcinoma metastasis (Somarelli et al. 2016). In good agreement,

MET-independent metastasis was reported from analysis of bone metastases from

patients with castration-resistant prostate cancer. In conclusion, the processes leading

to the formation of epithelial-type metastases during tumor spread from EMT cancer

cells are poorly characterized so far.

12.6 Small Cell Lung Cancer (SCLC) as Tumor
Dissemination Model

Despite numerous experimental studies using tissue cultures and animal models,

many steps of tumor spread in patients are not fully characterized so far (Wan et al.

2013). An ideal malignancy to study tumor dissemination would comprise early

metastasis in the majority of cases, rapid disease progression and access to tumor

cells responsible for the establishment of secondary lesions. Clearly, this is not

feasible in most tumor types exhibiting unpredictable progression after extended

time periods of dormancy and low levels of circulating or disseminated tumor cells

12 Mesenchymal-Epithelial Transition in CTCs 235



(CTCs/DTCs). In contrast, SCLC may be suitable as metastatic tumor model due to

high dissemination, predictable relapses within approximately one year and,

recently, access to a panel of CTCs in unlimited amounts in tissue culture (Ham-

ilton et al. 2015c).

SCLC is an aggressive neuroendocrine cancer characterized by rapid growth and

early development of widespread metastases accompanied by drug resistance

(Kalemkerian 2014; Byers and Rudin 2015; Pietanza et al. 2015). This tumor

type accounts for approximately 15% of all lung cancers and represents a major

cause of cancer mortality, with little progress in therapy for the last decades (Koinis

et al. 2016). SCLC is associated with heavy tobacco exposure and the percentage of

SCLC cases in women is arising due to the differences in smoking patterns in

contrast to declining incidence and mortality in men (Jiménez et al. 2012). In the

majority of cases SCLC is found disseminated at first presentation and surgery is

limited to a small subgroup of patients with confined diseases (Hamilton et al.

(2016b). Although a mostly chemotherapy- and radiation-sensitive disease

initially, SCLC typically recurs rapidly after primary treatment with cisplatin

(carboplatin)/etoposide combination chemotherapy, with poor further survival

(Pillai and Owonikoko 2014; Byers and Rudin 2015). The single drug approved

for second-line treatment of SCLC, namely topotecan, yields response of short

duration in a small fraction of patients (Asai et al. 2014). For patients with extended

stage disease (ED-SCLC), the median survival is around 10 months. In contrast to

continuously increased 5-year survival rates from colon, rectal, and breast cancers,

therapeutic options for SCLC have remained unchanged for the last decades, with

stagnant clinical success (Coleman and Allemani 2015). Thus, almost invariably,

patients exhibit therapeutic failure and tumor progression. In almost all cases of

SCLC, p53 and RB1 are mutated thus inactivating two tumor suppressors (Rudin

et al. 2012). SCLC shares mutations of p53, CDKN2A PIK3CA, PTEN with

squamous and adenocarcinoma as well as of FGFR1 and SOX2 with squamous

cell carcinoma (Rudin et al. 2012; Peifer et al. 2012). However, SCLC is not

broadly characterized by targetable driver oncogenes, rather transcriptional dereg-

ulation may have a more important role. Although half of the SCLC cases may

harbor at least one actionable alteration to personalize the therapy, so far each of the

clinical trials has yielded negative results (Pietanza and Ladanyi 2012; Semenova

et al. 2015; Koinis et al. 2016).

Thus, investigations of the underlying mechanisms responsible for the rapid

tumor dissemination and development of chemoresistance of SCLC are urgently

needed to develop new modes of treatment. Since the majority of patients present

with advanced disease, diagnosis is confirmed by small biopsies leaving insufficient

material for research. So-called liquid biopsies in form of CTCs or free tumor-

derived DNA have proven to substitute for a limited range of studies (Rolfo et al.

2014). Furthermore, SCLC is distinguished by extremely high numbers of circu-

lating tumor cells (CTCs), exceeding blood counts of other tumor entities up to

several hundredfold (Yu et al. 2015). Actually, enriched CTCs have been used to

generate xenografts in immunocompromised mice which mirror the drug sensitivity

of the original tumors. However, ex vivo expansion of CTCs at our institution
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allows for a detailed cell biological characterization of these cells for the first time

(Hamilton et al. 2015c). In fact, we were able to establish seven permanent SCLC

CTC cell lines from blood samples of patients with extended disease and use

expanded in vitro cultures for characterization of markers, receptor kinases, pro-

teases and interactions with cells of the immune system (Hamilton et al. 2015a).

Therefore, SCLC represents an excellent model to study tumor dissemination and

the role and phenotype of the CTCs involved.

Acquisition of the invasive phenotype is thought to involve EMT to gain

migratory potential and capability to survive in the circulation (Tsai and Yang

2013, Mitra et al. 2015). Thus, CTCs in initial stages are assumed to express an

EMT phenotype and show a corresponding reduction in cell proliferation which

may eventually result in a dormant state for extended periods of time. In mouse

models for SCLC, the tumors were often composed of phenotypically different

cells with either a neuroendocrine or a mesenchymal marker profile (Calbo et al.

2011). When engrafted as a mixed population, the mesenchymal cells endowed

the neuroendocrine cells with metastatic capacity. The large non-neuroendocrine

cells expressed a range of mesenchymal markers including nestin, vimentin, Sca1,

Bmp4 and CD44. When morphologically different subpopulations of SCLC cell

lines were analyzed for EMT and epigenetic features in another study, adherent

subpopulations were found to express high levels of mesenchymal markers such

as vimentin and fibronectin and very low levels of epithelial markers like

E-cadherin and Zona Occludens 1 (ZO-1) (Krohn et al. 2014). Furthermore,

expression of EMT-related transcription factors and cellular functions like migra-

tion, invasion, matrix metalloproteases secretion, and resistance to chemothera-

peutic drugs all differed between these sublines. Correspondingly, nuclear snail

expression among lung cancers was seen in 20% of cases, this being strongest in

SCLC, and positive snail expression was associated with poor survival

(Merikallio et al. 2012). In contrast, among clinical specimens of SCLC

(n ¼ 38) investigated for EMT markers E-cadherin, cytokeratins 8, 18, and

19, vimentin, and c-MET, patients bearing SCLC with a mesenchymal-like

phenotype (c-METHigh E-cadherinLow) had longer survival and a trend toward

lower CTCs (Pore et al. 2016). Therefore, cells composing an SCLC primary may

themselves exhibit a range of epithelial and mesenchymal traits. Tumor cells

involved in extravasation and formation of metastases are characterized by

expression of epithelial markers, most easily explained by MET (Nieto et al.

2016). In SCLC, most patients have one metastatic site, but multiple lesions

affecting up to five sites are observed (Nakazawa et al. 2012). Sole liver metas-

tasis is common and other sites comprise bone, brain, lung and adrenal glands.

The majority of metastatic lesions in SCLC patients proved to be EpCam-positive

(Spizzo et al. 2011). MET has not been possible to study in SCLC due to the fact

that the large number of CTCs is heterogeneous with unknown functional signif-

icance and patients with extended disease are usually not subject to invasive

procedures as surgery and biopsies.
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12.7 Insights from SCLC CTC Cell Lines

SCLC patients featuring high CTC counts (> several hundred CTCs/7.5 ml blood)

were suitable as source of circulating cells to induced xenotransplants (CDX) in

immunocompromised mice (Hodgkinson et al. 2014). Expansion of CTCs in vitro

has been demonstrated in a few instances in breast and one colon cancer (Hamilton

et al. 2015c). Within the last years we have obtained seven permanent CTC cell

lines from advanced and relapsed SCLC and initiated a full cell biologic charac-

terization. All cell lines have unique p53 mutations and express typical markers of

SCLCs, such as CD56, chromogranin and synaptophysin and the first two lines

were found to induce tumors with SCLC markers in immunocompromised mice.

They are distinguished from permanent SCLC tumor cell lines by spontaneous

formation of large tumorospheres reaching diameters of 1–2 mm with necrotic

cores in regular tissue culture (Hamilton et al. 2016c). Pluripotent stem cell markers

were tested using Human Profiler Arrays (R&D systems, Minneapolis, MN, USA)

and the cell lines found highly positive for EpCam and E-cadherin, negative for

OCT-3/4 and Nanog with background levels of Snail1 (Hamilton et al. 2016c).

Vimentin was highly expressed in the BHGc7 CTC line, with other lines showing

significant but low expression. All four cell lines display a high EpCAM/vimentin

protein expression ratio. The role of EpCAM in breast cancer strongly depends on

the epithelial or mesenchymal phenotype of the tumor cells. Cancer cells with

epithelial phenotype need EpCAM as a growth- and invasion-promoting mediator,

whereas tumor cells with a mesenchymal phenotype are independent of EpCAM

(Martowicz et al. 2012). In summary, four SCLC CTCs established from patients

with advanced disease display mixed mesenchymal and epithelial markers. CTCs

commonly display significant heterogeneity in terms of the degree of EMT/MET

phenotype that probably reflects differential invasive potential (Polioudaki et al.

2015). Our results indicate, that the CTC SCLC cell lines have undergone almost

complete or partial MET, provided that there was an EMT in the first place.

Although the lines seem to express a typical partial EMT/MET they form large,

organized tumorospheres with tight cell-cell contacts, typical for epithelial tissues

(Hamilton et al. 2016b and c). Single cells of these SCLC CTC cell lines attach to

the tissue culture plates and grow connected to the other cells but not usually in an

elongated mesenchymal-like shape. Furthermore, CTCs may include a subpopula-

tion of cells with self-renewal, multipotency and tumor initiating capabilities

designated circulating cancer stem cells (CSCs) which may hold the highest

malignant potential (Barriere et al. 2014). In good correspondence, the SCLC

CTC overexpress mediators of the noncanonical WNT pathway (Hamilton et al.

2015d).

The goal in characterization of CTCs is to differentiate specific subgroups of that

are truly responsible for metastasis, e.g. MICs (Hong and Zu 2013; Celi�a-Terrassa
and Kang 2016). Of all the CTCs initially shed by the primary tumor, the SCLC

CTC lines seem to represent the MICs which have survived in the circulation and

lead to the demise of the advanced and refractory SCLC patients. The quiescent and

hypoxic cells of the tumorospheres seem to be responsible for the
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chemoradioresistant phenotype of the cancer cells of the relapsing patients

(Weiswald et al. 2015). Furthermore, the tumorospheres exclude chemotherapeu-

tics, such leaving the extended spectrum of drugs tried in SCLC ineffective.

12.8 Conclusion

The role of EMT in metastasis remains controversial although this transition has

been postulated as a requirement for tumor invasion (Tarin et al. 2005; Chui 2013).

Many cell culture and mouse tumor model studies have corroborated the signifi-

cance of EMT in tumor progression but EMT, if present, remains difficult to prove

in patients. Of course, in absence of EMT, MET is not necessary and absent during

tumor spread. As a consequence, it was suggested that malignant cells can metas-

tasize without radical changes in their cellular phenotype (Tarin et al. 2005).

Markers used in EMT studies were suspected to become expressed due to inherent

genetic instability of tumors. In carcinomas which derive from epithelial tissues,

epithelial morphology and gene expression are always retained to some degree

(Chui 2013). Most cancers seem to invade and travel through lymphatic and blood

vessels via cohesive epithelial migration, rather than going through the EMT-MET

sequence. Snail, Slug and Twist have traditionally been thought of as inducers of

EMT but they also mediate dedifferentiation and maintenance of the stem cell state.

Despite fundamental support for the EMT-MET concept (Thiery et al. 2009;

Lamouille et al. 2014; Ye and Weinberg 2015), more recent data suggest notes of

caution on the true role of EMT in cancer progression (Fischer et al. 2015; Zheng

et al. 2015). The description of the tumor invasive front as being functionally

distinct from the main tumor bulk (Brabletz et al. 2001, 2005) points to the

heterogeneous nature of the EMT program executed within the tumor mass. Thus,

there is probably an EMT gradient from focal full expression, to partial expression

during intravasation, to absence in the main tumor bulk (Huang et al. 2013).

Although important for invasion and the formation of CTCs, EMT is reported to

be not required for metastatic colonization (Ocana et al. 2012; Tsai and Yang 2013).

The induction of both EMT and stemness at the invasive fronts of tumors was first

suggested to explain how cancer stem cells (CSCs) disseminate and seed fully

heterogeneous tumors at secondary sites (Brabletz et al. 2005). Induction of

pluripotency is also relevant to the persistence of CSCs and enhanced features of

EMT (Kong et al. 2010). As an alternative model to intravasation of cells with EMT

traits, EMT cells may be responsible for degrading the tumor stroma to enable

intravasation of both EMT and non-EMT cells. Only non-EMT cells that have

entered the blood stream are able to re-establish colonies in the secondary sites

(Tsuji et al. 2008). This proposed mechanismus has been termed collective migra-

tion and, thereby, EMT may facilitate the invasion and intravasation of other cells

that retain their epithelial character. As such, even if EMT were more limited than

anticipated, it would still be required for tumor progression to the metastatic state

(Li and Kang 2016).
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Intravasation has been the least studied process in the metastatic cascade and the

possibility of cancer epithelial cells being able themselves to efficiently intravasate

cannot be excluded (Fischer et al. 2015; Zheng et al. 2015). Simply leakiness of the

tumor vessels may be sufficient to allow intravasation of epithelial cell clusters

observable in the circulation (Aceto et al. 2014). Additionally, the recent proposal

that tumor-associated macrophages and vascular mimicry acquired by carcinoma

cells may be involved in intravasation (Harney et al. 2015; Wagenblast et al. 2015;

Benes et al. 2006). In the absence of a reliable proof for EMT for specific tumors

and conditions, the claim to have cancer cells with a MET phenotype is difficult to

substantiate. Thus, data regarding the point in the lifespan of a CTC at which the

cell undergoes a MET-like process either already in the bloodstream or after

extravasation presumes occurrence of MET at first.

The first report on EMT markers in CTCs was published by Kallergi et al. (2011;

Hensler et al. 2015) in 2011. Two EMT markers, Twist and vimentin, in CTCs of

breast cancer patients were found with higher frequency in metastatic breast cancer

patients than in patients with early stages (Kallergi et al. 2011; K€olbl et al. 2016).
Furthermore, CTCs coexpressing variable proportions of epithelial, EMT and

cancer stem cell (CSC) markers were found in patients with metastatic diseases

(Armstrong et al. 2011; Blassl et al. 2016). In almost 90% of the CTCs at least one

EMT-associated transcription factor was upregulated, pointing towards the pres-

ence of a high number of EMT-CTCs (Giordano et al. 2012). In SCLC, mechanisms

of tumor spread may be different from the best-characterized clinical model,

namely breast cancer. Although the SCLC CTC lines express variable amounts of

vimentin, the formation of organized tumorospheres with close cell-cell contacts

represent a typical epithelial feature. Whether the expression of mesenchymal

markers by the CTC cell lines indicate a previous EMT is not clear; vimentin

may stem from the heterogeneous expression by SCLC tumor cells, or be acquired

in inflammatory processes involving tumor-associated macrophages in the tumor

microenvironment, or the consequence of deregulated gene expression in SCLC

cells exhibiting a host of mutations. EMT confers resistance to cell death induced

through various means in cancer cells (Vega et al. 2004; Thiery et al. 2009),

including chemotherapy (Singh and Settleman 2010). Even in studies that find a

limited contribution of cells that have undergone EMT to established metastases,

the role of EMT in conferring chemoresistance is clear (Fischer et al. 2015; Zheng

et al. 2015). EGFR-mutated NSCLC switches EGFR to Axl receptor tyrosine kinase

in association with a mesenchymal phenotype (Gjerdrum et al. 2010; Byers et al.

2013; Schmalhofer et al. 2009). A similar overexpression of Axl and the

noncanonical WNT pathway was found in the CTC cell lines (Hamilton et al.

2015d). However, our SCLC CTC lines are highly chemosensitive to topotecan

and epirubicin in form of single cell suspensions obviously lacking a

chemoresistant phenotype supposed to be conferred by a possible EMT (Hamilton

et al. 2015d). In conclusion, marker expression of the SCLC CTC cell lines may be

interpreted as a hybrid EMT phenotype; however, formation of tumorospheres,

chemosensitivity and relative high expression of EpCAM and E-cadherin are

compatible with direct shedding of epithelial-type cancer cells by primary or
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metastatic lesions capable of induction of metastases without requirement of an

EMT-MET cycle.
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Chapter 13

Clinical Relevance of a Candidate Stem Cell
Marker, p75 Neurotrophin Receptor
(p75NTR) Expression in Circulating Tumor
Cells

Tomoyuki Okumura, Tetsuji Yamaguchi, Toru Watanabe, Takuya Nagata,

and Yutaka Shimada

Abstract Despite advances in its diagnosis and multimodal therapies, the progno-

sis of esophageal squamous cell carcinoma (ESCC) patients remains poor, because

of high incidences of metastasis. Recent reports suggested that circulating tumor

stem cells (CTSCs), rather than circulating tumor cells (CTCs), were more accurate

diagnostic marker for metastasis, because tumor stem cells or cancer stem cells

(CSCs) are more responsible for metastasis through processes such as epithelial

mesenchymal transition (EMT) and tumor initiation. A neurotrophin receptor p75

(p75NTR) is expressed in a candidate CSCs in ESCC, which possess enhanced

tumorigenicity along with strong expression of EMT-related genes. Our recent

report using two-color flow cytometry demonstrated that CTC counts based on a

combined expression of epithelial cell adhesion molecule (EpCAM) and p75NTR

was significantly higher in peripheral blood samples of ESCC patients than healthy

controls. In addition, EpCAM þ p75NTRþ, but not EpCAM þ p75NTR- CTC

counts, correlated with clinically diagnosed distant metastasis and pathological

venous invasion in surgically resected primary ESCC tumors. Malignant cytology

of the isolated EpCAM þ p75NTRþ cells was microscopically confirmed as well.

These results demonstrated that EpCAM þ p75NTRþ CTC count was a more

accurate diagnostic marker than EpCAMþ CTC count, suggesting the highly

metastatic potential of CTCs with p75NTR expression.
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Investigation using the isolated EpCAM þ p75NTRþ CTCs to assess their stem

cell properties may shed light on their roles in tumor metastasis in ESCC.

Further investigations based on large-scale prospective studies with long term

follow up may provide us with evidences for its clinical use.

Keywords Esophageal cancer • Circulating tumor cells • Cancer stem cells • Flow

cytometry • p75NTR

13.1 Esophageal Squamous Carcinoma (ESCC)

Recent progress in multimodal therapies, such as preoperative chemo- or chemo-

radiotherapy followed by radical surgery, has facilitated an improved postoperative

prognosis in patients with locally advanced esophageal squamous cell carcinoma

(ESCC) (Thallinger et al. 2011; van Hagen et al. 2012). However, many of the

patients still exhibit postoperative tumor recurrence with a 5-year progression free

survival rate of about 40% (Ando et al. 2012; Hara et al. 2013), indicating the

presence of chemo-resistant micrometastasis, which were undetectable at the time

of surgery (Kell et al. 2000). Therefore, innovative strategies to detect

micrometastasis may provide us with a more accurate diagnosis to determine

indications for therapies.

13.2 Detection of CTCs

In recent years, reports have demonstrated circulating tumor cells (CTCs) as an

early detection marker for cancer metastasis (Hughes and King 2012). Quantifica-

tion of CTCs revealed that CTCs were an independent prognostic factor in patients

with various types of tumors, such as colorectal (Cohen et al. 2008), breast

(Cristofanilli et al. 2004), and prostate cancer (de Bono et al. 2008).

The most widely reported CTC detection has been based on immunomagnetic

enrichment with epithelial cell adhesion molecule (EpCAM) antibodies and subse-

quent immunological identification using cytokeratin (CK) antibodies (Ross et al.

1986; Mostert et al. 2009). EpCAM is broadly expressed in most of the epithelial

cells and carcinomas (Ross et al. 1986; Mostert et al. 2009). CKs are also used as

markers for tumor cells of epithelial origin (Moll et al. 1982; Osborn et al. 1986).

On the other hand, recent studies suggested a clinical significance of a subpop-

ulation of CTCs with cancer stem cell (CSC) properties, such as self-renew,

tumorigenicity, drug resistance and metastasis (Clarke et al. 2006; Reya et al.

2001), which were named circulating tumor stem cells (CTSCs) (Grover et al.

2014). Compared with CTCs, CTSCs are considered to be a more accurate prog-

nostic factor because CSCs are responsible for metastasis through processes such as

epithelial mesenchymal transition (EMT), invasion into vessels, circulation, and
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tumor initiation in the metastatic sites (Dean et al. 2005; Schatton and Frank 2008;

Wicha and Hayes 2011). In reports, CSC markers of the primary tumor, such as

CD44 or CD133, have been used to detect CTSCs in breast (Baccelli et al. 2013),

colon (Pilati et al. 2012) and hepatocellular carcinoma (Sun et al. 2013).

13.3 p75 Neurotrophin Receptor (p75NTR) Is a Candidate
Stem Cell Marker in ESCC

In ESCC, p75 neurotrophin receptor (p75NTR or CD271) has been reported to be a

candidate CSC marker (Okumura et al. 2006; Huang et al. 2009). p75NTR is

expressed in mitotically quiescent basal cells in normal esophageal epithelium

and infiltrative margin of the tumor in ESCC (Okumura et al. 2015; Yamaguchi

et al. 2016a) (Fig. 13.1). A recent report from our laboratory further demonstrated

that p75NTR positive cells isolated by flow cytometry from ESCC cell lines

showed significantly higher colony formation, enhanced tumor formation in mice,

and greater chemo resistance, along with stronger expression of EMT-related genes

(Yamaguchi et al. 2016a). Molecularly, p75NTR is a 75-kDa cell-surface receptor

glycoprotein, which is a member of the tumor necrosis factor receptor superfamily

(Rodriguez-Tebar et al. 1992) and involved in regulation of malignant phenotypes

in various types of cancer. For example, the NGF/proNGF/p75NTR axis was

demonstrated to play a critical role in regulating the self-renewal of quiescent

CSC, as well as promoting EMT, in breast cancer (Tomellini et al. 2015).

Overexpression of NGF and its autocrine loop was also shown to enhance cell

proliferation and migration in ESCC cell lines (Tsunoda et al. 2006), suggesting

that p75NTR is critically involved in metastasis in ESCC.

13.4 Flow Cytometric Detection of CTCs Based
on the Expression of p75NTR and Its Clinical
Relevance in ESCC

In a recent report from our laboratory, we used flow cytometry to detect CTCs,

which enabled us to analyze the expression of multiple cell surface markers in

viable cells (Yamaguchi et al. 2016b). Investigation using peripheral blood samples

of ESCC patients revealed that the EpCAMþ cell count was significantly higher

than that of healthy controls, with cell counts (average � SD) of 2.3 � 2.5 and

34.0 � 35.8, respectively (p ¼ 0.011), indicating successful detection of CTCs

using flow cytometry. Then our two-color flow cytometric detection demonstrated

that EpCAMþ p75NTRþ cell count was significantly higher in ESCC patients than

healthy controls, with cell counts (average � SD) of 0.4 � 0.9 and 16.0 � 18.3,
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Fig. 13.1 A representative photograph of immunohistochemical staining for p75NTR in ESCC

specimens (Reproduced from Yamaguchi et al. (2016b) with permission from BioMed Central)
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Fig. 13.2 Detection of CTCs in ESCC patients based on p75NTR expression A: Mononuclear

cells from 3 mL peripheral blood of an ESCC patient were co-stained with anti-EpCAM-APC and

anti-p75NTR-FITC, and analyzed by two-color flow cytometry. Quadrant markers were set

according to isotype-matched controls. B: Mean numbers of p75NTRþ CTCs from 3 mL periph-

eral blood of ESCC patients and controls. Error bars represent the standard error of the mean.

(Reproduced from Yamaguchi et al. (2016b) with permission from BioMed Central)
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respectively (p ¼ 0.013, Fig. 13.2a, b). The proportion of EpCAMþ p75NTRþ
cells in EpCAMþ cells (average � SD) was 56.7 � 39.6% (range 5.6–100.0%).

More importantly, EpCAM þ p75NTRþ, but not EpCAM þ p75NTR- CTC

counts, correlated with clinically diagnosed distant metastasis (p ¼ 0.003,

Table 13.1) and pathological venous invasion in surgically resected primary

ESCC tumors (p ¼ 0.016, Table 13.2).

These results demonstrated that CTC detection with a combination of EpCAM

and p75NTR was more accurate diagnostic marker than EpCAM alone, suggesting

the highly metastatic potential of CTCs with p75NTR expression.

Investigations based on large-scale prospective studies with long term follow up

may provide us with evidences for its clinical use.

13.5 Isolation and Molecular Characterization of p75NTR-
Positive CTCs

Due to technical limitations in their sensitively, specifically and viability, it has

been challenging to characterize CTCs in most of the reported CTC detection

strategies (van der Toom EE et al. 2016).

In our previous report (Yamaguchi et al. 2016b), immunocytochemical double

staining using EpCAM-APC and p75NTR-FITC confirmed the expression of

EpCAM and p75NTR in viable cells isolated from the peripheral blood of ESCC

patients (Fig. 13.3). The cell was a mononuclear cell, 35 μm in diameter with a high

nucleocytoplasmic ratio, with a diagnosis of malignant cytology.

To assess the biological properties of the cells, we seeded EpCAMþ p75NTRþ
cells sorted from 23 of advanced ESCC patients with cell number (average � SD)

Table 13.1 Relationship between the clinicopathological features andmean EpCAMþ p75NTRþ
or EpCAM þ p75NTR- CTC counts in patients who underwent surgery

Characteristics n

EpCAM þ p75NTRþ
(Average � SD)

p-

value

EpCAM þ p75NTR-

(Average � SD)

p-

value

pT 0–2/3–4 4/

6

2.0 � 2.8/26.2 � 29.3 0.146 27.0 � 50.1/2.0 � 4.9 0.246

pN 0/1–3 7/

3

14.9 � 27.7/20.3 � 23.1 0.773 0.8 � 2.3/38.0 � 55.7 0.090

ly 0/1–2 7/

3

14.9 � 27.7/20.3 � 23.1 0.773 0.8 � 2.3/38.0 � 55.7 0.090

v 0/1–2 7/

3

5.0 � 4.2/43.3 � 35.6 *0.016 0.8 � 2.3/38.0 � 55.7 0.090

pStage 1–2/

3–4

7/

3

15.7 � 27.2/18.3 � 25.1 0.891 15.4 � 38.2/4.0 � 6.9 0.632

Reproduced from Yamaguchi et al. (2016b) with permission from BioMed Central

CTC circulating tumor cell, ly lymphatic invasion, v venous invasion, SD standard deviation.

*p < 0.05

13 Flow Cytometric Detection of p75NTR-Positive CTCs 251



of 16.0 � 18.3, onto cell culture condition, however, we could not obtain primary

culture of the cells.

A possible reason of the failure was that the numbers of the isolated cells were

too small. A recent report from our laboratory demonstrated that minimally

100 cells were required to establish colonies in vitro, using p75NTRþ cells isolated

from cultured ESCC cell lines (Yamaguchi et al. 2016a). In addition, a previous

report demonstrated that even using resected primary tumor, esophageal cancer cell

lines were established only 21 of 50 (42.0%) ESCC patients under the same culture

condition which we used in this study (Shimada et al. 1992).

Improvement of CTC isolation procedure with higher yield and higher viability

may enable us biological characterization of the EpCAMþ p75NTRþ CTCs

in ESCC.

Table 13.2 Relationship between the clinical features and mean EpCAM þ p75NTRþ or

EpCAM þ p75NTR- CTC counts in patients who received chemotherapy or chemoradio therapy

Characteristics n

EpCAM þ p75NTRþ
(Average � SD)

p-

value

EpCAM þ p75NTR-

(Average � SD)

p-

value

T 0–2/3–4 1/

12

7.0/16.4 � 13.0 0.501 0/23.9 � 30.6 0.468

N 0/1–3 1/

12

7.0/16.4 � 13.0 0.501 0/23.9 � 30.6 0.468

M 0/1 8/

5

7.1 � 5.9/29.4 � 6.4 *0.003 19.5 � 20.8/26.2 � 43.7 0.713

Stage1–2/3–4 1/

12

7.0/16.4 � 13.0 0.501 0/23.9 � 30.6 0.468

Reproduced from Yamaguchi et al. (2016b) with permission from BioMed Central

CTC circulating tumor cell, SD standard deviation *p < 0.05

Fig. 13.3 Image of a representative EpCAMþ and p75NTRþ cell sorted from 3 mL peripheral

blood in a patient with ESCC using flow cytometer. The images show an overlay of DAPI (Blue),
p75NTR (Green), and EpCAM (Red) (Reproduced from Yamaguchi et al. (2016b) with permis-

sion from BioMed Central)

252 T. Okumura et al.



13.6 Conclusion

Flow cytometric detection of CTCs based on combined expression of EpCAM and

p75NTR was demonstrated to be a more accurate diagnostic marker than EpCAM

alone in patients with ESCC. Large-scale prospective studies with long term follow

up may provide us with evidences for its clinical use. Investigation using the

isolated EpCAMþ and p75NTRþ CTCs to assess their stem cell properties may

shed light on their roles in tumor metastasis in ESCC as well.
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Chapter 14

Personalized Treatment Through Detection
and Monitoring of Genetic Aberrations
in Single Circulating Tumor Cells

Swee Jin Tan, Trifanny Yeo, Sarvesh Abhay Sukhatme, Say Li Kong,
Wan-Teck Lim, and Chwee Teck Lim

Abstract Circulating tumor cells (CTCs) present a viable alternative to access

tumor materials other than primary biopsies in cancer. This disease is among the

most widespread in the world and is difficult to target because of its complex nature,

challenges in getting quality samples and dynamic temporal changes in response to

treatment. Conventional methods of detection and monitoring the disease profile do

not suffice to be able to target the heterogeneity that exists at the cellular level. CTCs

have been identified as a possible substitute for tumor tissue samples, and can be
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used to complement current disease management. Challenges in CTCs molecular

analysis lie in the purity of the sample, which is masked by the presence of large

quantities of white blood cells (WBCs). In this chapter, we present a microfluidic

biochip platform that performs secondary purification to isolate single CTCs effi-

ciently. Studying single CTCs will allow for sensitive detection of critical mutations

and addressing intercellular variances that will be otherwisemissed easily due to low

mutation frequencies when evaluating bulk cell retrieval. Using the biochip, we

isolated single CTCs, and conducted personalized integrated EGFR mutational

analysis using conventional polymerase chain reaction (PCR) and Sanger sequenc-

ing. We also demonstrated that high quality next generation sequencing (NGS)

libraries can be readily generated from these samples. In our initial study, we

revealed that the dominant EGFR mutations such as L858R and T790M could be

detected in Non Small Cell Lung Cancer (NSCLC) patients with low CTC counts.

We envision the biochip will enable efficient isolation of rare single cells from

samples. This technology coupled with downstream molecular characterization of

CTCs will aid in realizing the personalized medicine for cancer patients.

Keywords Cancer • Liquid biopsy • Drug resistance • Clonal heterogeneity •

Single cell analysis

14.1 Introduction

Cancer is a global healthcare burden and drug resistance by the cancer cells is a

major obstacle in eradicating the disease (Saunders et al. 2012). The disease is

complex and differs from patient to patient even though these patients may be diag-

nosed with the same type of cancer. Several key genes have been discovered to play

key roles in cancer progression. Over or under expression of these genes have been

found to drive tumor growth. Inter-individual variation in the genetic composition

of the disease may also influence the response to treatment (Kessler et al. 2014).

Some individuals are also at a greater predisposition to cancer because of hereditary

factors such as BRCA1 for breast cancer, which results in a higher risk of develop-

ing the disease (Andrykowski et al. 1996). Hence, the genetic composition plays a

significant role in the diagnosis and prognosis of cancer.

The diagnosis of cancer is frequently an amalgamation of different tests. Central

to this problem is how to obtain ample tumor tissue for definitive pathological

diagnosis. Additional molecular tests are carried out on the gross sample where

indicated (e.g. EGFRmutation testing in lung cancer). These conventional methods

of molecular analysis use average cell population data collected from tissues,

however these methods lack the information regarding genetic variations present

at the cellular level. This can lead to false negative calls for key genetic mutations if

they exist at low frequencies. This problem can be overcome by increasing the

purity and representation of tumor tissue (e.g. using laser capture microdissection)

or increasing the sensitivity of the tests to pick up the rare variants (e.g. targeted
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resequencing). The need for a test with high sensitivity emphasizes the rare nature

of these tumor cells in the background matrix of normal or stromal cells. These

challenges are amplified when we utilize blood-based biopsy for enumeration of

rare circulating tumor cells (CTCs).

Since their discovery (Ashworth 1869), CTCs are being extensively studied for

detection and monitoring cancer progression (Maheswaran and Haber 2010; Kling

2012; Alix-Panabières and Pantel 2013). Particularly, due to their significant role in

metastasis, great progress has been made to effectively isolate and study CTCs from

various different cancer types in patient’s blood (Aceto et al. 2014; Pierga et al.

2008). Further molecular analysis of CTCs provides rich information about the

omics of the disease, which can be translated into a better prognosis (Cristofanilli

et al. 2004a). The number of CTCs in blood is rare (Williams 2013) and highly

dependent on the type of cancer, treatment given and stage of the disease (Allard

et al. 2004). Typically, patients in the advanced disease stages have greater CTC

counts (Fan et al. 2009). Enumeration of CTCs itself can provide prognostic value

for identifying patients with better overall survival outcome (Cohen et al. 2008;

Cristofanilli et al. 2005). Because CTCs are obtained from blood, this method is less

invasive and simply requires a routine draw of blood specimens and hence termed

“liquid biopsy”.

CTCs present a viable substitute for conventional tissue biopsy but purity within

blood samples is a limiting factor. Traditional molecular profiling essentially pro-

duces a mean response and does not suffice in such rare cell events. Furthermore,

studying population averages are insufficient to address intercellular variances that

can be critical to disease profiling (Schubert 2011). Single cell analysis allow

probing of the real cellular variance and provides more accurate representation of

the disease complexity (Wang and Bodovitz 2010). In this chapter, we describe a

microfluidic biochip that enables the selective recovery of single cells with minimal

losses coupled with morphology and immuno-cytochemistry. It fulfills for single

cell analysis the critical need in the sample preparation of mix cells populations for

various downstream assays as depicted in Fig. 14.1. We describe the sample output

integration process with conventional polymerase chain reaction (PCR) and next-

generation sequencing (NGS) library preparation. Here, we demonstrate the essen-

tial need of single cell analysis in the detection of EGFRmutations within late stage

non-small cell lung cancer (NSCLC) samples.

14.2 Microfluidics and the Need for Isolating Single Cells

Micro and nano-devices offer great potential for sample and fluid manipulation at a

small scale. One great example is microfluidics technology (Autebert et al. 2012;

Whitesides 2006) which harnesses the laminar characteristics of fluid flow in the

microdevices. Microfluidics can lead to improved sensitivity (Chin et al. 2007),

provides integration of biological assays (Paguirigan and Beebe 2008) and cater for

multiplex capabilities (Thorsen et al. 2002). A variety of functionalities such as
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DNA sequencing (Kartalov and Quake 2004), enzyme-linked immunosorbent assay

(ELISA) (Eteshola and Balberg 2004) and blood analysis (VanDelinder and

Groisman 2006) have been implemented on microfluidic platforms with efficiencies

greater than that of conventional available systems, higher throughput and more

cost-effective as it only requires nano-scale liter of less of reagents volume (Mark

et al. 2010).

14.2.1 Microfluidics and CTCs Enrichment

Microfluidics plays an important role in the advancement of CTC detection and

analysis (Dong et al. 2013). The main technical challenge has been the excessive

amounts of accompanying white blood cells (WBCs) in each specimen (Budd 2009;

Powell et al. 2012). In a healthy adult, 1 ml of blood contains approximately in the

order of 106 leukocytes and 109 erythrocytes. Therefore sensitive methods are

required for obtaining CTCs directly from blood. Numerous platforms have been

developed to enrich for rare CTCs from the blood of mixed cells populations based

on antibody affinity (Nagrath et al. 2007; Ozkumur et al. 2013; Reategui et al.

2015), size based separation (Hou et al. 2013; Tan et al. 2009) and flow based

assays (Karabacak et al. 2014; Mach et al. 2011). These technologies have achieved

relatively good results in CTCs detection and analysis (Fig. 14.2). Cancer cell

recovery rates from spiked cell experiments were as high as 95% and enumeration

data from clinical specimens were correlated to treatment and disease outcome

(Cristofanilli et al. 2004b). However, the contaminating WBCs still pose a major

technical challenge for molecular analysis. Abundant copies of wild type DNA

Fig. 14.1 Personalized approach to the treatment of cancer
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hinder the accurate detection of low frequency mutations (Punnoose et al. 2010)

even after primary enrichment using these CTC platforms. This can result in mutant

signatures being marginalized in pooled CTC sample studies. For example, in a

clinical trial to detect EGFR mutations in NSCLC patients by Punnoose et al.

(2012), it reported low concordance rates of 12.5% between CTCs and the matching

corresponding primary tumor. Hence, the need to remove background signals is

paramount for the successful analysis of these rare cells.

Single cell analysis offers great promise to enhance the sensitivity of mutation

detection assays by pre-filtering of unwanted background cells. As such, only tumor

cells are selected for examination of disease related analysis. Cell to cell variability

can also be better addressed, which is important to capture critical driver mutations

and avoid false negative results. In order to retrieve these rare single CTCs, it is

necessary to remove the contaminating WBCs from the enriched blood specimens

obtained from cell enrichment devices. As the absolute CTC number is considered

small, conventional methods using fluorescence activated cell sorters (FACS)

(Swennenhuis et al. 2013; Neves et al. 2014) or micropipette aspiration (Dey

et al. 2015; Stoecklein et al. 2008) are inadequate or tedious. In a study done

using FACS to capture single CTCs, it was determined that losses could exceed

more than 50% (Swennenhuis et al. 2013). The process of micropipette aspiration is

tedious as it involves massive number of cells that need to be surveyed in a CTC

specimen and hence increases the risk of human errors. The cell losses and

Fig. 14.2 CTC enrichment using microfluidic technologies based on different cellular properties.

(a) Antibody based CTC selection (Nagrath et al. 2007). (b) Combinatory flow based and antibody

affinity separation (Karabacak et al. 2014). (c) Size and cellular deformability based separation

(Tan et al. 2009). (d) Label free inertial flow separation (Hou et al. 2013). (e) Cell separation via

laminar microvortices (Mach et al. 2011)
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laborious procedures make these methods less desirable and difficult to be

implemented in a clinical setting. Microfluidics has had some successes in single

cell preparation and analysis. Various such systems have shown to have different

capabilities in integrating NGS analysis in its workflow (White et al. 2011; Yang

et al. 2015; Swennenhuis et al. 2015). These include massive large scale sorting by

magnetic separation (Robert et al. 2011) and dielectrophoretic (DEP) separation

(Stoecklein et al. 2008) for the precise selection of single cells. However, cell losses

and limited capacity remained the major obstacles associated with these integrated

technologies (Peeters et al. 2013; Hyun and Jung 2014). Nonetheless, the need for

single cell preparation of rare cell samples is escalating for numerous applications

such as CTCs detection and molecular analysis. Our proposed device fills the gap

and prepares single CTC samples with high fidelity and minimal losses for down-

stream single cell analysis.

14.2.2 Development of a Single Cell Isolation Microfluidic
Biochip

The biochip (Yeo et al. 2016) that was developed to address single cell sorting and

recovery works on the principle of hydrodynamic focusing for efficient cell isola-

tion and interrogation, immuno-fluorescence detection for cell selection and active

fluid control for selective cell recovery. The schematic layout of the biochip design

is illustrated in Fig. 14.3, which demonstrates a high-speed capture of the precise

cancer cell movement into the cell chamber. Briefly, the design of the biochip

encompasses numerous temporary holding chambers for single cells that are posi-

tioned along a curved portion of the microfluidic channel. This allows for

multiplexing in terms of retaining and viewing numerous cells at the same time.

Further throughput enhancement can be achieved by increasing the number of cell

chambers. We employ hydrodynamic focusing to ensure cells are flowing close to

these chambers. The nett resultant force directed towards these chambers favored

the entry of a single cell into an unoccupied chamber (Fig 14.3b). This ensured the

efficiency in cell capture and minimal losses of target cells in the samples. Cells in

the chambers will be pre-stained with an identifying marker for either positive

selection or negative depletion. Desired single cells can then be recovered by

activating a dedicated control line attached to the chamber to push out the cell.

Such an active mechanism allows for separation of desired or selected cells. This

biochip is flexible enough to pool all of the desired cells in the recovery channel or

to extract them as single cells for downstream molecular profiling.
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14.2.2.1 Fast Processing Time

One of the key limitations of conventional single cell isolation methodologies such

as micropipette aspiration is the tedious and time-consuming nature of the proce-

dure. Using the biochip, we have designed the operations in such a way that cells

can be easily trapped in these chambers. With polystyrene beads as a model sample,

the device was shown to allow for rapid capture of single beads in the chambers as

indicated in Fig 14.4a. It took a mere 2 s to fully load the biochip at a flow rate of

50 μl/min. Sample concentrations were tested in the range of 50,000 to 100,000

beads/ml that simulated a blood specimen. The fast processing time allows a rapid

turnover of samples and the ability to address hundreds and thousands of cells at a

relatively short amount of time. Using clinical CTC samples that involve 7.5–8 ml

of whole blood, it takes approximately 3 h to complete the single cell recovery

process.

14.2.2.2 Precise Cell Selection and Perfect Cell Separation

Cells are selected within the system based on antibody-antigen labeling or physical

characteristics of the cell. As the biochip is integrated into an existing microscope,

it provides the flexibility for image analysis as shown in Fig 14.4b. Cells can be

selected in these cell chambers based on a positive or negative marker akin to flow

cytometry or by physical characteristics such as size or nucleus to cytoplasmic ratio

based on optical imaging. The flexibility is required for CTC samples, as that will

maximize the yield of these circulating cells from each blood specimen. This also

ensures that we capture the entire range of CTCs, which might be missed when only

using a single positive biomarker. The precise cell selection within this biochip is

achieved with the dedicated flow control lines attached to each chamber. Only cells

that pass the selection criteria are routed to recovery. We have demonstrated using

spiked controls with MCF-7, a breast adenocarcinoma cell line, in an abundance of

Fig. 14.3 (a) Device schematic showing cell and sheath flow entry, hydrodynamic focusing

region and cell recovery. Scale bar represents 1 mm. (b) High speed imaging of single MCF-7

cell isolation captured at 27,000 fps. Scale bar represents 20 μm
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Fig. 14.4 Single cell biochip characterisitcs and efficiency. (a) Sample loading characterization

showing rapid cell loading for selection. (b) Immuno-cytochemistry for cell selection to ensure

perfect separation at the recovery. (c) Cell loss measurements indicating three cycles of processing

are desired for each sample. Cell integrity after biochip processing shows that the cell viability

remaining similar to input control
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WBCs to achieve perfect cell separation using both positive (cytokeratin) and

negative (CD45) selection. Cytokeratin are intermediate filaments found in the

cytoplasmic region of epithelial cells. CTCs that are disseminated from tumor

tissues may have this signature present, which can be utilized as a marker for

positive selection. In our own trials, we also ensured cell integrity as a criterion for

recovery, as our goal is to pipe these single cell samples for downstream molecular

profiling assays. The intactness of the cells is important for the subsequent PCR step

used to amplify the genetic locus of interest.

14.2.2.3 Minimal Losses and Viable Cellular Output

Optimal cell recovery is another important parameter that affects the sensitivity and

specificity of using CTCs in disease profiling. Using this biochip, we ascertained

that the cell losses could be reduced to a negligible amount by incorporating

multiple processing cycles of every specimen. This operational procedure allowed

the system to isolate any remaining CTCs and achieve higher capture efficiency. As

shown in Fig 14.4c, the sample recovery was more than 99% after three cycles. The

biochip characterization trials were performed five times independently. This

feature is crucial for CTC applications, as CTCs exist in extremely low numbers

in comparison to the accompanying blood cells. Extending further, we determined

that the effects of flow and active selection did not compromise the viability of

these cells. Using a Trypan blue test, we showed that there was no statistical

significance in the total viable cells before and after sample processing. This affirms

the gentleness of the cell sorting procedure.

14.2.3 Integration of Downstream Methods

The biochip allows for single cell preparation with high efficiency and minimal

disturbances to the integrity of the sample. We further verified numerous down-

stream analysis methods as depicted in Fig 14.5a that draws the single cell samples

from the biochip. Our verification experiments showed that integration with various

molecular downstream assays is straightforward.

In our design specifications, we had integrated immuno-cytochemistry into the

cell-sorting phase. Cells can be pre-stained with the desired antibodies prior to

loading into the biochip and imaged under the microscope. An example is shown in

Fig 14.5b where the cancer cell had been stained for cytokeratin and the hoechst

nucleus stain. Concurrent antibodies staining can be performed to gauge the

quantity of different cancer subpopulations within each sample. This can also be

an effective way to study the expression levels of a particular protein within each

single cell. In addition, the number of CTCs has been linked to disease outcome

(Cristofanilli et al. 2004b) and this method provides a rapid means to enumerate

each sample for CTCs.
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The gold standard for mutation analysis in current practice is verification using

Sanger sequencing (Tsiatis et al. 2010). Single cells that are identified for recovery

during sorting in the biochip can be retrieved into any compatible laboratory

receptacles such as well plates and PCR tubes. In a proof of value trial, we

negatively depleted WBCs from enriched CTC samples and placed each single

cell into 0.2 ml PCR tubes containing lysis buffer to extract its genomic DNA. The

lysis step used the Ambion Single Cell Lysis Kit (Thermo Fisher Scientific, USA)

and followed procedures recommended by the manufacturer with slight modifica-

tion for DNA extraction (Yeo et al. 2016). The PCR master mix containing both

Fig. 14.5 Integrated downstream analysis for single cells capture on the biochip. (a) Sample

processing workflow. (b) Immuno-cytochemistry performed on cell suspension prior to loading

into the biochip. (c) Conventional genetic mutation detection using PCR and Sanger Sequencing.

(d) Quality control on NGS library generated from single cells isolated from NSCLC patients. (e)
Phred scores from an Illumina sequencing run demonstrating good quality reads
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EGFR L858R and T790M primer sets were then added. The primers designed for

detection of EGFR L858R and T790M mutations are as follows:

L858R

Forward: 50- CTAACGTTCGCCAGCCATAAGTCC-30

Reverse: 50- GCTGCGAGCTCACCCAGAATGTCTGG-30

T790M

Forward: 50-TGTAAAACGACGGCCAGTCCATGAGTACGTATTTTGAAAC
TC-30

Reverse: 50-CAGGAAACAGCTATGACCCATATCCCCATGGCAAACTCTT
GC-30

Thermocycling conditions were as follows: 94 �C for 2 min, 40 cycles of 94 �C
for 15 s, 56 �C for 30 s, 72 �C for 45 s, one cycle of 72 �C for 7 min and hold at 4 �C.
The amplicons were purified and Sanger sequencing was performed. Figure 14.5c

shows the electropherograms of a typical single cell that were positive for the

mutations. In our validation experiments with 100 different single cells, we had

shown that the loss of material was insignificant and the success rate of extracting

information from the single cells that were obtained from our biochip was 98%. The

high efficiency was attributed to the improved single lysis and PCR steps where the

chances of cell losses were the highest.

The allure of NGS to examine massive number of genes in parallel has made it

an important tool in clinical diagnosis. Its enhanced sensitivity in DNA mutation

testing as compared to the conventional Sanger sequencing has demonstrated its

potential for medical use. We had integrated the process to create quality NGS

libraries from each of the single cells that were isolated from CTC samples. Briefly,

whole genome amplification (WGA) was performed on the single cells using

REPLI-g® Single Cell kit (Qiagen, USA) following the manufacturer’s protocol.
The denaturating buffer was added to the single cell followed by a 10min incuba-

tion at 65 �C. The denaturation was terminated by adding a neutralization buffer.

The DNA amplification was carried out in a reaction mix consisting of reaction

buffer and DNA polymerase for 8 h at 30 �C followed by DNA polymerase

inactivation at 65 �C for 3 min. The amplified DNA was purified using AMPure

XP beads (Beckman Coulter, USA) and DNA was quantified using Quant-iT™
PicoGreen® dsDNA reagent kit (Thermo Fisher Scientific, USA) on Infinite F200

PRO plate reader (Tecan, USA). We employed a targeted sequencing panel from

the GeneRead™ DNAseq Targeted Panels (Qiagen, USA) to cover regions of

interest. Input DNA templates taken from the amplified DNA of single cell were

used to perform multiplex GeneRead™ Panel PCR and subjected to library con-

struction using GeneRead™ DNA Library Core kit (Qiagen, USA). Each library

was barcoded with an unique index and quantified using KAPA Library Quantifi-

cation kit (Kapa Biosystems, USA). The library product was visualized on the

Bioanalyzer (Agilent, USA) using a High Sensitivity DNA Chip (Fig 14.5d). The
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library with appropriate amplicon sizes indicated a successful NGS library con-

struction. Multiple libraries were pooled together for a 150 bp paired-end sequenc-

ing run on NextSeq (Illumina, USA). Figure 14.5e shows the sequence quality from

one of our clinical samples on breast cancer single cells. Average sequence quality

per base were high and mean sequence quality showed consistently good quality

reads. As inferred from the results, the accuracy of base calls were more than 99.9%

that were indicative of a successful sequencing run.

14.3 Single Cell Analysis for Cancer Monitoring

The purpose of this chapter is to highlight the key advances in using a microfluidic

biochip for single cell analysis. Liquid biopsy is potentially a valuable tool for

screening as well as disease monitoring. The aims for single cell analysis using

CTCs in cancer are to address the issues of the complexity of the disease and have a

deeper understanding of the intra-tumor and inter-cellular heterogeneity. This can

directly affect a patient’s drug therapy and survival outcomes. It is clear that

traditional biological assays that averages the contents of the entire sample popu-

lation, under-represents the biological complexity (Blainey and Quake 2013; Wang

et al. 2012; Bendall and Nolan 2012; Spencer and Sorger 2011). Single cell analysis

can play an important role to probe the disease genetic heterogeneity and will

provide a more accurate disease profile.

14.3.1 Single Cell Influence on Various Cancer Types

The significance of single cell analysis has been demonstrated in various cancer

types. Detection and monitoring of genetic changes have been extensively investi-

gated. In our own clinical validation, we have demonstrated that it is vital to

separate out these single cells for an accurate profiling of the EGFR status of

NSCLC patients. In other examples in cancer, single cell studies have been used

to address cellular heterogeneity more effectively. For instance, Xu and colleagues

performed exome sequencing of single clear cell renal cell carcinoma (ccRCC) and

revealed that the same type of mutation may not be commonly shared among

ccRCC patients (Xu et al. 2012). At the single cellular level, a patient presented

intercellular variances with several other mutations discovered at different frequen-

cies. Importantly, 70% of the mutations found in the analysis were unique and cell

specific. All the cells commonly shared the remaining 30% of the detected muta-

tions. These studies highlighted the extent of spatial heterogeneity in tumors and

importance of single cell analysis in unraveling this complexity.

Besides RCC, breast cancer has also benefit greatly from the detailed molecular

profiling at the single cell level. With the annual rate of breast cancer cases rising

every year, it is a cause for concern (Hussain et al. 2005). Despite mortality in
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developed countries being lowered since the discovery of systemic adjuvant ther-

apy, resistance to therapy still remains a challenge in advanced stages (Peto et al.

2000; Nahta et al. 2006). In a single cell study on breast cancer tumor heterogeneity,

Powell et al. investigated the reliability of cell lines on drug development (Powell

et al. 2012). Due to exposure of cells to long term culture states and not the tumor

microenvironment, the genetic and epigenetic profiles of cancer cells may have

been altered in response to environmental cues. The genetic profiles of breast

cancer cell lines and CTCs from breast cancer patients were vastly different. A

lack of growth factors at the transcriptional level was found in CTCs and not cell

lines. In treatment targeted at proliferating cells, it may not be sufficient in elim-

inating metastatic disseminated CTCs (Powell et al. 2012). We now understand that

drugs initially designed to target a subset of cancer may have lower significant

response to patients due to a different cancer genotype (Garnett et al. 2012; Rask-

Andersen et al. 2011). Thus, it is important that a complete molecular profile of the

patient be available during systemic therapy, which could be tailored accordingly in

the hope of reducing recurrences and prolonging survival.

In prostate cancer, the use of single CTCs presents an opportunity to provide a

minimally invasive procedure to probe the mutational landscape. Lohr et al. for

instance developed a systematic means to examine somatic single-nucleotide var-

iants (SSNVs) of single prostate CTC using whole exome sequencing (Lohr et al.

2014). Applying their technique to various castration-resistant prostate cancer

(CRPC) patients, it was determined that there was a strong correlation and concor-

dance in the number of SSNVs found in CTCs and matched primary tumor or

lymph node metastasis. More important, their study also uncovered that CTC

sequencing can reveal early trunk mutations involved in tumor evolution that

could be traced to the primary tumor and shared among metastatic sites. This

confirms that CTCs are indeed genetically related to the primary and metastatic

prostate cancer, hence the study of single CTCs provides a window into the

metastatic process of these CRPC patients.

14.3.2 Clinical Validation Using the Single Cell Biochip
in NSCLC Specimens

In lung cancer, detecting mutations that causes drug resistance in a promptly

manner is crucial in selecting the appropriate treatment for the patients. In partic-

ular, lung cancer patients with sensitizing EGFR mutations in exon 19, 20 and

21 will demonstrate good initial response to tyrosine kinase inhibitor (TKI) therapy

(Bell et al. 2005; Gazdar 2009). Indeed, TKIs are now the recommended 1st line

treatment for patients diagnosed with EGFRmutations (Ettinger et al. 2015). Drugs

such as Gefitinib and Erlotinib are promising at the start of therapy but ultimately,

cancer cells acquires resistances through secondary EGFR mutations such as

T790M. Third generation TKIs in combination with other therapy have
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demonstrated to be relatively effective to overcome resistance induced by EGFR
T790M mutation. Hence targeting and monitoring EGFR profiles in NSCLC

patients is important to capture the dynamic temporal changes of the disease in

response to therapy.

Our clinical validation centers upon single CTCs in late stage NSCLC patients

and comparing the EGFR mutation profiles with its matched tumor biopsy. CTCs

are favored for being less invasive than tissue biopsy and hence open up possibil-

ities for long term serial monitoring of the treatment efficacy. We sought to

establish basic genetic relations of CTCs with late stage NSCLC patients and

showed that single CTC analysis provided the sensitivity needed for detection.

We randomly selected seven patients of varying EGFR mutation profiles (detected

from primary tissue) and processed their blood specimens. All patients provided

informed consent to participate in the trial and procedures for blood extraction and

sample processing followed guidelines approved by the institutional review board

(IRB). Briefly, 5.9–7.5 ml of blood specimens were drawn in either EDTA or Streck

blood tubes. The samples were first enriched using ClearCell FX® enrichment

platform (Clearbridge Biomedics, Singapore). Sample outputs contained approxi-

mately 20,000 WBCs together with CTCs. The output sample was stained with

CD45 antibody that identified WBCs prior to single tumor cell isolation on the

biochip. Selection was based on depleting WBCs from the bulk sample and

recovering CD45 negative cells. Each sample was passed through the biochip

three times to ensure most of the tumor cells were captured. Table 14.1 highlights

the number of CTCs associated with each sample. Cumulatively, a total of 0–9

single CTCs were recovered, which is in good agreement to previous enumeration

studies on NSCLC (Boshuizen et al. 2012; Muinelo-Romay et al. 2014). This

strongly suggested the need for secondary purification step before any downstream

molecular analysis, as sample purity can be as low as 0.005% (1 CTC in 20,000

WBCs) after the first enrichment process. In our model cell line experiments with

PC9 lung cancer line cells, it was observed that the acquired EGFR T790M

mutation were all heterozygous in nature. This adds further difficulties for detection

as in a heterozygous cell, the mutant DNA content within these patients samples

will be as low as 0.0025% without removing the background cells.

In the single CTC PCR and subsequent Sanger sequencing results for EGFR
L858R and T790M mutations, we observed good concordance between CTCs and

matched tumor biopsy for six of the patients (Table 14.1). Using the Cohen’s Kappa
Coefficient, κ was 0.70 for T790M and 0.59 for L858R. If the sample without CTCs

was excluded from the calculations, the concordance rate was 100% matching with

the primary tumor profile. All internal controls using single WBC extracted from

the same patients’ blood showed wildtype characteristics. This demonstrated the

excellent specificity of the assay. An added benefit over classical pooled CTC

analysis is that the single cell test provides quantification for the proportion of

tumor cells harboring these critical mutations. This is clear evidence of the hetero-

geneity of tumor cells in circulation, which can have significant value in disease

prognosis. The clinical validation work lays the foundation for larger scale clinical

studies to use single cell assays for predictive and prognostic analysis. The close

268 S.J. Tan et al.



T
a
b
le

1
4
.1

C
T
C
an
al
y
si
s
fr
o
m

a
si
n
g
le

ti
m
e
p
o
in
t
o
f
la
te

st
ag
e
N
S
C
L
C
p
at
ie
n
ts

P
at
ie
n
t
d
et
ai
ls

P
ri
m
ar
y
m
u
ta
ti
o
n
al

an
al
y
se
s

C
T
C
si
n
g
le

ce
ll
an
al
y
se
s

T
u
m
o
r
si
te

S
ta
g
e

G
en
d
er

T
7
9
0
M

L
8
5
8
R

C
T
C
en
u
m
er
at
io
n

B
lo
o
d
v
o
lu
m
e
te
st
ed

T
7
9
0
M

b
L
8
5
8
R
b

C
o
n
co
rd
an
t

1
N
S
C
L
C

IV
F

+
+

0
5
.9

N
A

N
A

N
A

2
N
S
C
L
C

IV
F

�
�

2
7
.5

0
(�

)
0
(�

)
Y
es

3
N
S
C
L
C

IV
F

+
�

4
7
.5

2
(þ

)
0
(�

)
Y
es

4
N
S
C
L
C

IV
F

+
�

9
6

3
(þ

)
0
(�

)
Y
es

5
N
S
C
L
C

IV
M

+
�

2
7
.5

2
(þ

)
0
(�

)
Y
es

6
N
S
C
L
C

IV
F

�
+

8
7
.5

0
(�

)
4
(þ

)
Y
es

7
N
S
C
L
C

IV
F

+
�

1
7
.5

1
(þ

)
0
(�

)
Y
es

H
ea
lt
h
y
v
o
lu
n
te
er

N
A

M
N
A

N
A

0
N
il

N
A

N
A

N
A

κa
0
.7
0

0
.5
9

Y
eo

et
al
.
(2
0
1
6
)

P
ri
m
ar
y
m
u
ta
ti
o
n
al

an
al
y
se
s
d
er
iv
ed

fr
o
m

tu
m
o
r
re
-b
io
p
si
es

at
p
o
in
t
o
f
re
si
st
an
ce
;
C
T
C
ci
rc
u
la
ti
n
g
tu
m
o
r
ce
ll
;
C
T
C
en
u
m
er
at
io
n
is
ac
h
ie
v
ed

b
y
an
al
y
zi
n
g

C
D
4
5
-
ce
ll
s
re
co
v
er
ed

fr
o
m

th
e
sy
st
em

a
C
o
h
en
’s
k
ap
p
a
w
as

ca
lc
u
la
te
d
w
it
h
p
at
ie
n
t1

b
ei
n
g
n
eg
at
iv
e
fo
r
b
o
th

te
st
ed

si
te
s

b
T
h
e
n
u
m
b
er

o
f
p
o
si
ti
v
e
ce
ll
s
ar
e
li
st
ed

in
th
is
co
lu
m
n

14 Single CTC Analysis for Personalized Treatment 269



correlations to primary tumor suggested it could complement disease management

regimes for monitoring changes to the genetic profiles. This will allow swift

treatment changes needed for patients who display positive mutant signatures in

the hope of better clinical outcome. Our proposed single cell assay can also aid

clinicians in clinical decision-making where tumor samples are inadequate or

unavailable without the need to perform further invasive surgical procedures.

14.4 Conclusions

The role of single cell detection and analysis in the next generation of personalized

medicine cannot be overemphasized. The assay sensitivity and vast amount of

genetics information that it provides will allow better understanding of the disease

and tailored drug regimes. In CTC processing, the main technical challenge is the

rarity of cells and current technologies are not adequate to extract single CTCs

efficiently. We developed a microfluidic biochip to reliably recover these rare cells

from blood specimens. In our clinical example, we integrated various molecular

detection methods to address different aspects of measuring the disease profile.

Results from an early clinical validation showed good sensitivity and specificity in

detecting key EGFR mutations in late stage NSCLC patients, which lays the

groundwork for treatment monitoring and prognostic applications. We foresee

great value in using NGS to cover a larger gene panel for concurrent measurements

that will bring much needed information to combat drug resistance and allow better

personalized treatment for cancer patients. NGS will also open new possibilities to

characterize the disease based on SSNVs, CNVs and gene expressions that will aid

in drug design and predictive capabilities for better clinical outcome.

References

Aceto N, Bardia A, Miyamoto DT et al (2014) Circulating tumor cell clusters are oligoclonal

precursors of breast cancer metastasis. Cell 158(5):1110–1122

Alix-Panabières C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59

(1):110–118

Allard WJ, Matera J, Miller MC et al (2004) Tumor cells circulate in the peripheral blood of all

major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin

Cancer Res 10(20):6897–6904

Andrykowski MA, Munn RK, Studts JL (1996) Interest in learning of personal genetic risk for

cancer: a general population survey. Prev Med 25(5):527–536

Ashworth TR (1869) A case of cancer in which cells similar to those in the tumours were seen in

the blood after death. Aust Med J 14(3):146–149

Autebert J, Coudert B, Bidard FC et al (2012) Microfluidic: an innovative tool for efficient cell

sorting. Methods 57(3):297–307

Bell DW, Gore I, Okimoto RA et al (2005) Inherited susceptibility to lung cancer may be

associated with the T790M drug resistance mutation in EGFR. Nat Genet 37(12):1315–1316

270 S.J. Tan et al.



Bendall SC, Nolan GP (2012) From single cells to deep phenotypes in cancer. Nat Biotechnol 30

(7):639–647

Blainey PC, Quake SR (2013) Dissecting genomic diversity, one cell at a time. Nat Methods 11

(1):19–21

Boshuizen R, Kuhn P, van den Heuvel M (2012) Circulating tumor cells in non-small cell lung

carcinoma. J Thorac Dis 4(5):456–458

Budd GT (2009) Let me do more than count the ways: what circulating tumor cells can tell us

about the biology of cancer. Mol Pharm 6(5):1307–1310

Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future

opportunities. Lab Chip 7(1):41–57

Cohen SJ, Punt CJ, Iannotti N et al (2008) Relationship of circulating tumor cells to tumor

response, progression-free survival, and overall survival in patients with metastatic colorectal

cancer. J Clin Oncol 26(19):3213–3221

Cristofanilli M, Budd GT, Ellis MJ et al (2004a) Circulating tumor cells, disease progression, and

survival in metastatic breast cancer. N Engl J Med 351(8):781–791

Cristofanilli M, Budd GT, Ellis MJ et al (2004b) Circulating tumor cells, disease progression, and

survival in metastatic breast cancer. N Engl J Med 351(8):781–791

Cristofanilli M, Hayes DF, Budd GT et al (2005) Circulating tumor cells: a novel prognostic factor

for newly diagnosed metastatic breast cancer. J Clin Oncol 23(7):1420–1430

Dey SS, Kester L, Spanjaard B et al (2015) Integrated genome and transcriptome sequencing of the

same cell. Nat Biotechnol 33(3):285–289

Dong Y, Skelley AM, Merdek KD et al (2013) Microfluidics and circulating tumor cells. J Mol

Diagn 15(2):149–157

Eteshola E, Balberg M (2004) Microfluidic ELISA: on-chip fluorescence imaging. Biomed

Microdevices 6(1):7–9

Ettinger DS, Wood DE, Akerley W et al (2015) Non-small cell lung cancer, version 6.2015. J Natl

Compr Cancer Netw 13(5):515–524

Fan T, Zhao Q, Chen JJ et al (2009) Clinical significance of circulating tumor cells detected by an

invasion assay in peripheral blood of patients with ovarian cancer. Gynecol Oncol 112

(1):185–191

Garnett MJ, Edelman EJ, Heidorn SJ et al (2012) Systematic identification of genomic markers of

drug sensitivity in cancer cells. Nature 483(7391):570–575

Gazdar AF (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer:

role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28(Suppl 1):S24–S31

Hou HW, Warkiani ME, Khoo BL et al (2013) Isolation and retrieval of circulating tumor cells

using centrifugal forces. Sci Report 3:1259

Hussain SA, Palmer DH, Stevens A et al (2005) Role of chemotherapy in breast cancer. Expert

Rev Anticancer Ther 5(6):1095–1110

Hyun K-A, Jung H-I (2014) Advances and critical concerns with the microfluidic enrichments of

circulating tumor cells. Lab Chip 14(1):45–56

Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulat-

ing tumor cells from blood samples. Nat Protoc 9(3):694–710

Kartalov EP, Quake SR (2004) Microfluidic device reads up to four consecutive base pairs in DNA

sequencing-by-synthesis. Nucleic Acids Res 32(9):2873–2879

Kessler DA, Austin RH, Levine H (2014) Resistance to chemotherapy: patient variability and

cellular heterogeneity. Cancer Res 74(17):4663–4670

Kling J (2012) Beyond counting tumor cells. Nat Biotechnol 30(7):578–580

Lohr JG, Adalsteinsson VA, Cibulskis K et al (2014) Whole-exome sequencing of circulating

tumor cells provides a window into metastatic prostate cancer. Nat Biotech 32(5):479–484

Mach AJ, Kim JH, Arshi A et al (2011) Automated cellular sample preparation using a centrifuge-

on-a-chip. Lab Chip 11(17):2827–2834

Maheswaran S, Haber DA (2010) Circulating tumor cells: a window into cancer biology and

metastasis. Curr Opin Genet Dev 20(1):96–99

14 Single CTC Analysis for Personalized Treatment 271



Mark D, Haeberle S, Roth G et al (2010) Microfluidic lab-on-a-chip platforms: requirements,

characteristics and applications. Chem Soc Rev 39(3):1153–1182

Muinelo-Romay L, Vieito M, Abalo A et al (2014) Evaluation of circulating tumor cells and

related events as prognostic factors and surrogate biomarkers in advanced NSCLC patients

receiving first-line systemic treatment. Cancer 6(1):153

Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in

cancer patients by microchip technology. Nature 450(7173):1235–1239

Nahta R, Yu D, Hung MC et al (2006) Mechanisms of disease: understanding resistance to HER2-

targeted therapy in human breast cancer. Nat Clin Pract Oncol 3(5):269–280

Neves RP, Raba K, Schmidt O et al (2014) Genomic high-resolution profiling of single CKpos/

CD45neg flow-sorting purified circulating tumor cells from patients with metastatic breast

cancer. Clin Chem 60(10):1290–1297

Ozkumur E, Shah AM, Ciciliano JC et al (2013) Inertial focusing for tumor antigen-dependent and

-independent sorting of rare circulating tumor cells. Sci Transl Med 5(179):179ra147

Paguirigan AL, Beebe DJ (2008) Microfluidics meet cell biology: bridging the gap by validation

and application of microscale techniques for cell biological assays. BioEssays 30(9):811–821

Peeters DJE, De Laere B, Van den Eynden GG et al (2013) Semiautomated isolation and molecular

characterisation of single or highly purified tumour cells from CellSearch enriched blood

samples using dielectrophoretic cell sorting. Br J Cancer 108(6):1358–1367

Peto R, Boreham J, Clarke M et al (2000) UK and USA breast cancer deaths down 25% in year

2000 at ages 20–69 years. Lancet 355(9217):1822

Pierga JY, Bidard FC, Mathiot C et al (2008) Circulating tumor cell detection predicts early

metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced

breast cancer in a phase II randomized trial. Clin Cancer Res 14(21):7004–7010

Powell AA, Talasaz AH, Zhang H et al (2012) Single cell profiling of circulating tumor cells:

transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7(5):

e33788

Punnoose EA, Atwal SK, Spoerke JM et al (2010) Molecular biomarker analyses using circulating

tumor cells. PLoS One 5(9):e12517

Punnoose EA, Atwal S, Liu W et al (2012) Evaluation of circulating tumor cells and circulating

tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II

clinical trial of pertuzumab and erlotinib. Clin Cancer Res Off J Am Assoc Cancer Res 18

(8):2391–2401

Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets.

Nat Rev Drug Discov 10(8):579–590

Reategui E, Aceto N, Lim EJ et al (2015) Tunable nanostructured coating for the capture and

selective release of viable circulating tumor cells. Adv Mater 27(9):1593–1599

Robert D, Pamme N, Conjeaud H et al (2011) Cell sorting by endocytotic capacity in a

microfluidic magnetophoresis device. Lab Chip 11(11):1902–1910

Saunders NA, Simpson F, Thompson EW et al (2012) Role of intratumoural heterogeneity in

cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med 4(8):675–684

Schubert C (2011) Single-cell analysis: the deepest differences. Nature 480(7375):133–137

Spencer SL, Sorger PK (2011) Measuring and modeling apoptosis in single cells. Cell 144

(6):926–939

Stoecklein NH, Hosch SB, Bezler M et al (2008) Direct genetic analysis of single disseminated

cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell

13(5):441–453

Swennenhuis JF, Reumers J, Thys K et al (2013) Efficiency of whole genome amplification of

single circulating tumor cells enriched by CellSearch and sorted by FACS. Genitourin Med 5

(11):106

Swennenhuis JF, Tibbe AG, Stevens M et al (2015) Self-seeding microwell chip for the isolation

and characterization of single cells. Lab Chip 15(14):3039–3046

272 S.J. Tan et al.



Tan SJ, Yobas L, Lee GY et al (2009) Microdevice for the isolation and enumeration of cancer

cells from blood. Biomed Microdevices 11(4):883–892

Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298

(5593):580–584

Tsiatis AC, Norris-Kirby A, Rich RG et al (2010) Comparison of Sanger sequencing,

pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic

and clinical implications. J Mol Diagn 12(4):425–432

VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in a contin-

uous cross-flow in a molded microfluidic device. Anal Chem 78(11):3765–3771

Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28
(6):281–290

Wang J, Fan HC, Behr B et al (2012) Genome-wide single-cell analysis of recombination activity

and de novo mutation rates in human sperm. Cell 150(2):402–412

White AK, VanInsberghe M, Petriv OI et al (2011) High-throughput microfluidic single-cell

RT-qPCR. Proc Natl Acad Sci U S A 108(34):13999–14004

Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

Williams SC (2013) Circulating tumor cells. Proc Natl Acad Sci U S A 110(13):4861

Xu X, Hou Y, Yin X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation

characteristics of a kidney tumor. Cell 148(5):886–895

Yang Y, Rho HS, Stevens M et al (2015) Microfluidic device for DNA amplification of single

cancer cells isolated from whole blood by self-seeding microwells. Lab Chip 15

(22):4331–4337

Yeo T, Tan SJ, Lim CL et al (2016) Microfluidic enrichment for the single cell analysis of

circulating tumor cells. Sci Report 6:22076

14 Single CTC Analysis for Personalized Treatment 273



Chapter 15

Glycan Markers as Potential Immunological
Targets in Circulating Tumor Cells

Denong Wang, Lisa Wu, and Xiaohe Liu

Abstract We present here an experimental approach for exploring a new class of

tumor biomarkers that are overexpressed by circulating tumor cells (CTCs) and are

likely targetable in immunotherapy against tumor metastasis. Using carbohydrate

microarrays, anti-tumor monoclonal antibodies (mAbs) were scanned against a

large panel of carbohydrate antigens to identify potential tumor glycan markers.

Subsequently, flow cytometry and fiber-optic array scanning technology (FAST)

were applied to determine whether the identified targets are tumor-specific cell-

surface markers and are, therefore, likely suitable for targeted immunotherapy.

Finally, the tumor glycan-specific antibodies identified were validated using cancer

patients’ blood samples for their performance in CTC-detection and immunotyping

analysis. In this article, identifying breast CTC-specific glycan markers and

targeting mAbs serve as examples to illustrate this tumor biomarker discovery

strategy.

Keywords Glycan markers • Breast circulating tumor cells • Carbohydrate

microarray • Breast cancer

15.1 Introduction

Breast cancer (BCa) is among the most prevalent cancers and accounts for the

highest number of cancer-related deaths among women worldwide (Chatterjee and

Zetter 2005). Identifying biomarkers of immunological significance is important in

developing precision diagnostic and therapeutic strategies to advance current BCa
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healthcare. Recognition of abnormal glycosylation in virtually every cancer type

has raised great interest in exploration of the tumor glycome for biomarker discov-

ery (Hakomori 1989, 2001; Fukuda 1996; Dube and Bertozzi 2005). Potential

glycan markers of BCa identified may include, but are not limited to, mucin-1

(CA 15-3) (Persson et al. 2009), carcinoembryonic antigen (Haidopoulos et al.

2000), sialyl Lewis x (Renkonen et al. 1997; Nakagoe et al. 2002), and glycoforms

of a number of serum acute phase proteins, such as α1-acid glycoprotein, α1-
antichymotrypsin, and haptoglobin β-chain (Abd Hamid et al. 2008). Since carbo-

hydrate moieties are often surface-exposed and easily accessible by antibodies,

some targets have been employed for antibody therapeutics (Vassilaros et al. 2013;

Apostolopoulos et al. 2006; Shibata et al. 2009; Tomlinson et al. 1995).

Exploring glycan markers of breast circulating tumor cells (bCTCs) represents a

new development in tumor biomarker discovery. Although bCTCs are rare in blood,

they play a key role in tumor metastasis (Jacob et al. 2007; Hayashi and Yamauchi

2012). Detection of CTCs has been explored as a non-invasive “liquid biopsy” for

tumor diagnosis and prognosis (Somlo et al. 2011; Das et al. 2012; Liu et al. 2012).

Glycan markers of bCTCs may have unique value in BCa healthcare, especially in

the personalized therapy that targets specific immunotypes of BCa. Thus, our team

has worked to establish a practical strategy to facilitate identification and charac-

terization of potential glycan markers of bCTCs. Figure 15.1 highlights two core

technologies explored in this investigation.

15.2 Carbohydrate Microarray Identifies Blood Group
Precursors as the Natural Ligands of Anti-tumor
Antibody HAE3

Antibody responses elicited by native tumor glycoprotein antigens may target

glycan-based antigenic determinants in addition to conventional protein epitopes.

MAbs established by such immunization strategies are highly valuable for tumor

biomarker discovery (Wang et al. 2015a; Wang et al. 2015b; Codington et al. 1972;

Gao et al. 2014; Newsom-Davis et al. 2009). In this study, an anti-tumor mAb,

HAE3, served as a key reagent for probing bCTC-glycan markers. This mAb was

raised against epiglycanin, the major sialomucin glycoprotein (~ 500 kDa) of

murine mammary adenocarcinoma TA3 cells (Codington et al. 1972). Interestingly,

HAE3 was found to strongly cross react with a number of human epithelial tumors

in tissues, including lung, prostate, bladder, esophagus, and ovarian cancers

(Li et al. 2004; Liang et al. 2004; Somlo et al. 2011; Yao et al. 2004). This cross-

species tumor binding profile suggests the possibility that HAE3 may recognize a

conserved tumor glycan marker that is co-expressed by both mouse- and human-

derived epithelial cancers.

We produced, therefore, a comprehensive carbohydrate microarray to explore

potential tumor glycan markers using antibody HAE3. As shown in Fig. 15.2, a
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large collection of purified natural carbohydrate antigens was applied for carbohy-

drate microarray construction. Blood group substance reference reagents (Kabat

1956) used include Cyst 9 and Cyst 14, A active; Beach phenol insoluble, B active;

Hog, H active; JS phenol insoluble, H and Leb active, and N-1 20% from the second

10%, Lea active. Importantly, a number of blood group precursor references,

including OG, Tij II, Beach P1, and McDon P1 (29#–32#), were spotted in this

carbohydrate microarray. These precursor substances were prepared to remove

most of the α-L-fucosyl end groups that are essential for blood group A, B, H, or

Lewis active side chains, but possess the internal domains or core structures of

blood group substances. A large panel of other autoantigens and microbial poly-

saccharides were also spotted in the same microarrays to critically examine the

antibody binding specificity. A preparation of HAE3-reactive human carcinoma-

associated antigen (HCA) served as a positive control for this assay (Li et al. 2004).

In Fig. 15.2a, HAE3 binding signal (red column) are plotted with corresponding

local background reading (blue column) as an overlay plot. Each data point

represents the mean of triplicate detections; these are shown in the Fig. 15.2b

microarray image with the number of positive antigens labeled. Each error bar is

constructed using one standard deviation from the mean. As illustrated, HAE3 is

strongly positive with HCA (1# and 2#) as expected. Importantly, this antibody

selectively binds to four blood group precursor antigens, Beach P1 (29#), McDon

P1 (30#), Tij II (31#), and OG (32#). By contrast, HAE3 has no detectable cross-

reactivity with blood group substances A, B. O, or Lewis antigens, or the large

panel of other carbohydrate antigens spotted in the same array.

Figure 15.2c is a schematic of blood group substance structure with the common

blood group precursor core structure highlighted. The four branched structure in the

Fig. 15.1 Glycan array discovery and FAST-scan validation of a novel glycan marker gpC1 of

bCTCs (Adapted from Wang et al. 2015a)
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circle represents the internal portion of the carbohydrate moiety of blood group

substances, which was proposed based on extensive immunochemical characteri-

zation of precursor OG and other P1 fractions of blood group precursors that were

isolated from ovarian cancer cyst fluids (Vicari and Kabat 1970; Feizi et al. a,

1971b; Wu et al. 2007). Selective detection of these blood group precursors from a

large panel of blood group substances by HAE3 illustrated that this antibody is

specific for a shared cryptic glyco-epitope of these precursor substances.

15.3 Flow Cytometry Analysis to Examine Tumor Cell
Surface Expression of HAE3+ Glyco-Epitopes

We further examined whether the HAE3+ glyco-epitopes were expressed as cell

surface tumor markers. To ensure the observed cross-species antigenic reactivities

are not owing to the unexpected presence of oligoclonal populations in the original

Fig. 15.2 Carbohydrate microarray analysis of anti-epiglycanin mAb HAE3. Seventy-six glyco-

proteins, glycoconjugates, and polysaccharides were spotted in triplicates in 1 to 2 dilutions to

yield the customized microarrays for antibody screening. (a) Microarray detections were shown as

the mean fluorescent intensities (MFIs) of each microspot with antigen-binding signal in red and

background reading in blue. Each error bar is constructed using one standard deviation from the

mean of triplicate detections. The labeled antigens include HCA (ID# 1 and 2), a number of blood

group precursors (29#–32#), and a microarray spotting marker (80#). (b) Images of a microarray

stained with HAE3 (5 μg/ml). (c) Schematic of a blood group substance structure with the

conserved O-glycan core highlighted (Adapted from Wang et al. 2015b)
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HAE3 hybridoma cell line, we further subcloned HAE3 and produced antibody

from a single clone, HAE3-C1 (C1). Antibody C1 was verified by carbohydrate

microarrays and a glycan-specific ELISA to be highly specific for a conserved

O-glycan cryptic glyco-epitope gpC1 in human blood group precursors (Wang et al.

2015a).

In the first set of experiments, we screened a panel of four tumor cell lines by cell

surface staining in flow cytometry. These include (a) a BCa line, T-47D, which was

selected owing to the fact that breast cancer patients were found to produce sub-

stances in circulation that are highly effective in inhibiting AE3-binding of

epiglycanin (Codington et al. 2002; Codington et al. 1997); (b) a lung cancer

(LCa) line, A549, which is known to produce an HAE3-positive substance in cell

culture; (c) a prostate cancer (PCa) line, PC3, which is found to express a blood

group B-related F77 glyco-epitope (Gao et al. 2014; Nonaka et al. 2014); and (d) a

melanoma cell line SKMEL-28, which is derived from skin but not epithelial tissue.

As shown in Fig. 15.3a, melanoma SKMEL-28 and prostate cancer PC3 were

negative for HAE3. The A549 lung cancer cell line was weakly positive. By

contrast, the breast cancer cell line T-47D was strongly positive in HAE3-cell

surface staining.

Given these results, we extended the flow cytometry analysis to a panel of seven

human breast cancer cell lines, including two estrogen receptor positive (ER+) and

progesterone receptor positive (PR+) lines (T-47D and MCF-7), one ER+ (SK-BR-

3), and four triple-negative (TN) cancers that lack the estrogen, progesterone, and

Her2)/neu receptors (BT-549, Hs 578 T, MDA-MB-231, and MDA-MB-468).

Fig. 15.3b shows that two ER+PR+ lines, T-47D and MCF-7, and two triple-

negative lines, BT-549 and MDA-MB-468, are HAE3 strongly positive. SK-BR-3

is intermediately positive. By contrast, the two remaining triple-negative cell lines,

Hs578T and MDA-MB-231, were HAE3 negative.

15.4 Detection of Glycan Marker-Positive bCTCs in Stage
IV Breast Cancer Patients

With antibody C1 as a key probe, we investigated whether gpC1 is applicable for

detection and immunotyping analysis of CTCs in patients with metastatic breast

cancer. In a pilot clinical case study, we characterized blood samples from five

Stage IV breast cancer patients using the FAST-scan technology. Figure 15.4a

illustrates how CTCs captured from the Stage IV breast cancer patients were scored

as 3+, 2+, 1+, and 0, left to right. Four representative bCTCs are shown in which the

epithelial-derived cells were labeled by anti-cytokeratins (CK) antibodies in red,

and the gpC1 positive cells were stained in green in the background of the DAPI-

blue labeling of white blood cells. Figure 15.4b and c show that all subjects

characterized had gpC1-positive CTCs. Approximately 40% of CTCs captured in

these patients expressed higher levels (2+ and 3+) of the gpC1 markers; gpC1-

positive and -negative CTCs were found to co-exist in four subjects. Notably, a
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triple-negative patient (ID# 189370) produced predominantly gpC1-positive CTCs

(37 of 40 CTCs) with 50% scored gpC1 2+/3+. In this patient, metastatic tumors

were seen in multiple sites, including bone, liver, and skin.

It is noteworthy that more than 1 million global cases of BCa are diagnosed each

year and approximately 15% are triple negative. Owing to the lack of an effective

therapeutic target, a younger age at onset, and early metastatic spread, patients

suffering triple-negative BCa often have poor prognoses and clinical outcomes

(Anders and Carey 2009; Brenton et al. 2005). If gpC1 were confirmed to be

significantly associated with the triple-negative BCa in a larger cohort validation

study, this O-core cryptic glycan marker could be used for immunotype-enhanced

precision diagnosis and prognosis of BCa and targeted immunotherapy against BCa

metastasis.

15.5 Summary

Although tumor-associated abnormal glycosylation has been recognized for years,

identifying glycan markers of CTCs remains technically challenging. We describe

here a practical approach to overcome this difficulty. Conceptually, we take advan-

tage of the fact that the immune systems of many animal species are able to

recognize subtle changes in sugar moieties displayed by cells or soluble antigens

and produce specific antibodies for abnormally expressed tumor glycan markers.

Experimentally, we first screened anti-tumor mAbs using carbohydrate microarrays

to identify those that are specific for glycan markers. Subsequently, we determined

whether the selected mAbs are specific for the cell-surface glycan markers using

Fig. 15.3 HAE3 cell surface staining detected selective expression of the HAE3-cryptic glycan

markers in human cancer cell lines. (a) Four tumor cell lines, T-47D, A549, PC3, and SKMEL-28,

were stained with the C1 preparation of HAE3 (IgM) at 1:6 dilution or with an isotype control IgM,

9.14.7 (5.0 μg/ml). (b) Seven breast cancer cell lines were stained with purified mAb HAE3

(5.0 μg/ml) or 9.14.7 (5.0 μg/ml). These cell lines are T-47D, MCF-7, SK-BR-3, BT-549, Hs578T,

MDA-MB-231, and MDA-MB-468. An R-PE-conjugated goat anti-mouse IgM antibody was

applied to quantify the cell surface-captured IgM antibodies. Blue line: HAE3 stain; Red line:
9.14.7 IgM isotype control (Adapted from Wang et al. 2015b)
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Fig. 15.4 Glycan marker gpC1 is expressed in significant numbers of CTCs in Stage IV breast

cancer patients. (a) FAST-scan images of bCTCs. Upper panels: Co-staining of C1 (green) and
DAPI (blue); Bottom panels: co-staining of anti-CK (red) and DAPI (blue). (b) Distribution of gp
C1–positive and -negative bCTCs in five subjects. C1-staining of bCTCs was semi-quantitatively

measured by the FAST scan as antibody negative (blue), 1+ (purple), 2+ (green), and 3+ (red) as
described. A patient with triple-negative BCa (ID# 189370) was measured gpC1–positive in 37 of

40 CTCs with 50% scored as strong positive (2+ and 3+). (ER, estrogen receptor; PR, progesterone

receptor; HER2, human epidermal growth factor2). (c) A summary of patients’ demographics and

clinical characteristics (Adapted from Wang et al. 2015a)
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flow cytometry and FAST-scan technology. Finally, we used the new antibody

probe to monitor CTC-expression of corresponding glycan markers in advanced

breast cancer patients. This approach is likely to be generally useful for exploring

potential glycan markers of CTCs of epithelial cancers.
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Chapter 16

Significance of EGFR Expression
in Circulating Tumor Cells
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Abstract This chapter focuses on a deep description of the epidermal growth

factor receptor (EGFR) expression in circulating tumor cells (CTCs) and its main

role in cancer progression, genetic changes related to metastasis, and resistance to

treatment. The aberrant behavior of cancer cells is caused by genetic mutations and

altered patterns of gene expression. These changes can be responsible for an

increase in cell motility but also an ability of CTCs to survival in different

microenvironments, as well as developing therapy-resistant clones. Finally, CTCs

can acquire the ability to invade distant organs, where metastatic foci can develop.
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16.1 Introduction

The metastatic paradigm defines “metastasis” as the process that involves the

release of tumor cells from a primary tumor to other target organs with no direct

anatomical relationship with this primary site, where it can grow and develop a new

tumor focus (Valastyan and Weinberg 2011; Gupta and Massagué 2006). For the

development of this process, the circulation of tumor cells through blood or the

lymph system is necessary.

Metastasis is a multiple-step process in which: cells shed from primary tumor,

invade the local tissue, enter into blood or lymphatic vessels (a process known as

‘intravasation’), and are passively transported to the secondary site where the cells

relapse from vessels (a process known as ‘extravasation’) and enter into tissue

(details in Fig. 16.1) (Fidler 2003; Kim et al. 2009). A fundamental step in the

metastatic cascade is the dissemination tumor cell phase; where tumor cells acquire

the capacity to circulate through the bloodstream and colonize different organs to

develop a metastasis (Pantel and Brakenhoffn 2004). These tumor cells with the

ability to circulate through the bloodstream are referred as circulating tumor cells

(CTCs). Circulating tumor cells are hypothesized to be the origin of incurable

metastatic disease, and are an active area of cancer research (Massard and Fizazi

2011). The first observation of tumor cells in blood was made by Thomas Ashworth

in 1869 (Ashworth 1869), and as technology advanced, it became possible to detect

the presence of CTCs in lower concentrations (Panteleakou et al. 2009; Sleijfer

et al. 2007).

In recent years, studies have tried to analyze the complex biology of these CTCs,

which involves numerous genetic and phenotypic changes (Alix-Panabières and

Pantel 2014). In fact, CTCs undergo substantial changes associated with invasive-

ness, motility, and survival in hostile microenvironments, such as peripheral blood.

Furthermore, the acquisition of these biological properties involves the activation

of several genes for differentiation, activation of anti-apoptotic mechanisms, dor-

mancy activation mechanism, or phenotypic changes such as cellular characteristics

alterations from epithelial to mesenchymal cellular profiles (Epithelial-Mesenchy-

mal-Transition) (Pantel and Speicher 2016).

The regulation of these mechanisms depends on the different signaling pathways

involving cytokines or growth factors (Geho et al. 2005). Growth factors mediate

diverse biological responses (regulation, differentiation, migration and cellular

survival) by binding to activate cell surface receptors, named receptor tyrosine

kinases (RTKs), with intrinsic protein kinase activity. The ErbB receptor family of

RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1),

ErbB2 (neu, HER2), ErbB3 (HER3) and ErbB4 (HER4). ErbB family members are

often overexpressed, amplified, or mutated in many forms of cancer, making them

important therapeutic targets.

In summary, the success of metastasis depends on the ability of CTCs to adapt to

new microenvironments and new homing, through the activation of specific genetic
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pathways. These pathways are associated with survival, competence to colonize,

and proliferation in distant organs (Baccelli et al. 2013; Hodgkinson et al. 2014).

Furthermore, these biological changes adopted by CTCs, have methodological

and clinical consequences. From the methodological point of view, their isolation

and detection involves the use of multiple markers, since multi-CTC subpopula-

tions can be present (Toom et al. 2016). From the clinical point of view, it

implicates an increase in the probability of developing treatment failure, due to

the existence of multiple subpopulations with different phenotypes, increasing the

risk of disease relapse (Fig. 16.1) (Wang et al. 2016; Aparicio et al. 2015).

16.2 Methodology: EGFR and Its Role
in the Dissemination Process

16.2.1 EGFR Biology

It is known that the epidermal growth factor receptor family is ubiquitously

expressed in various cell types including those of epithelial, mesenchymal and

Fig. 16.1 CTC subpopulations according with the EGFR expression and acquisition of EMT
phenotype. EGFR overexpression can enhance the ability of tumor cells to invade locally, the

enhancement of intravasation could be due to the enhanced ability to approach the blood vessel, or

to cross the blood vessel barrier
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neuronal origin. This family of receptors includes Her1 (EGFR, ErbB1), Her2 (Neu,

ErbB2), Her3 (ErbB3), and Her4 (ErbB4).

On the other hand, the epidermal growth factor family is divided into three

distinct groups. The first includes epidermal growth factor (EGF), alpha

transforming growth factor (TGFα) and amphiregulin (AR), all of which specifi-

cally bind to EGFR. The second group includes betacellulin (BTC), heparin-

binding EGF (HB-EGF) and epiregulin (EPR), which bind to both EGFR and

HER4. The third group is composed of neuregulins (NRG1-4) divided according

to the ability to bind both HER3 and HER4 (NRG1 and NRG2); or only HER4

(NRG3 and NRG4).

The signaling pathways activated by EGFR include the RAS/RAF/MEK/ERK,

PI3K/AKT and PLCγ/PKC pathways. Additionally, binding growth factors to

RTKs also initiates the PI3K/AKT/mTOR pathway (Brand et al. 2011). The first

pathway associated with activation, and subsequent autophosphorylation, of RTKs

acts as binding sites for the SH2-domain-containing protein Grb2. Grb2 recruits the

guanine nucleotide exchange factor SOS via its SH3 domain, and promotes binding

of GTP to Ras. GTP-binding protein Ras interacts with the Raf protein kinase

(MAPK). RAF activation promotes ERK1/2 (MAPK) phosphorylation, which

involves the activation of several other kinases, including MNK1, MNK2, MSK1,

MSK2, and RSK. MAPK also involves the activation of several transcription

factors like Elk-1, peroxisome-proliferator-activated receptor γ (PPARγ), signal
transducer and activator of transcription 1 and 3 (STAT1 and STAT3), C-myc and

AP-1 (Plotnikov et al. 2011). The activation of these transcription factors increases

the expression of genes involved in cellular proliferation.

The second important pathway involves the activation of PI3K/AKT/mTOR

pathway by growth factor binding to RTKs. The protein kinase C (PKC) pathway

plays an important role in activating growth factor receptors (Brand et al. 2011;

Plotnikov et al. 2011). After EGFR activation, phospholipase C (PLC) interacts

with phospho-tyrosine sites on EGFR via its SH2 domain. This leads to the specific

phosphorylation of PLC and dissociation from EGFR. Activated PLC in turn to

interact with plasma membrane, most likely mediated by PIP3 via a PH domain,

where it cleaves PIP2 to inositol triphosphate (IP3) and diacyglycerol (DAG). IP3
can diffuse into cytosol and bind IP3 receptors on the endoplasmic reticulum

(ER) to induce calcium influx into the cell from the ER. DAG remains in the

membrane where it can activate PKC via conformational change that removes the

pseudosubstrate region from the catalytic active site. Activated PKC (a potent

serine/threonine kinase) is capable of phosphorylating a plethora of substrates

leading to complex cellular processes including proliferation, apoptosis, cell sur-

vival, and cell migration.
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16.2.2 Modulating Role of EGFR in Circulating Tumor Cells
Migration and Invasion

Active migration of cancer cells from primary tumor via lymphatic or blood vessel

routes is an indispensable prerequisite for metastasis formation. Regulation of

cancer cell migration processes is dependent on many different signaling pathways,

as well as, their interaction with extracellular matrix components. Cytokines and

growth factors, which regulate kinases receptors and their associated receptors, play

an important role in cancer cell migration (Lemmon and Schlessinger 2010).

Indeed, ErbB family receptor tyrosine kinases includes EGFR, ErbB2, ErbB3,

and ErbB4. Recently, EGFR/ErbB signaling has been involved in the initiation of

the EMT process and cancer cell migration.

EGF was discovered in 1960, and was shown to be a polypeptide able to

stimulate growth and cell differentiation (Cohen 1983). Further studies showed

that EGF is able to bind with a high affinity to a specific receptor located in the cell

membrane, and is able to stimulate intrinsic kinase activities (Wieduwilt and

Moasser 2008).

Cancer cell migration and invasion allows tumor cells spread into peripheral

blood to circulate and invade surrounding tissues. Cell migration is a highly

coordinated process involving precise regulation of cell adhesion and loss of

adherence to extracellular matrix (ECM). Currently, the study of CTCs as the origin

of new metastases, and as an important hallmark of poor prognosis is ongoing

(Friedl and Wolf 2003). In this context, EGF induces signaling that is often

associated with tumor invasion (Lindsey and Langhans 2015; Lu et al. 2001).

Futhermore, EGFR overexpression has been found in lung, colon, breast, prostate,

brain, head and neck, thyroid, ovarian, or renal carcinoma and associated with a

higher incidence of distant metastases and poor prognosis (De Luca et al. 2008;

Giltnane et al. 2009).

16.2.3 Influence of EGFR in the Migration of CTCs Through
the EMT Process

Metastasis is an extremely complex process which involves a series of biological

events, ranging from departure of metastatic cells (detachment and migration),

invasion through base membrane, intravasation into the blood vessel, survival

during circulation, extravasation from the blood stream, and finally proliferation

at a secondary site.

Under normal circumstances, cells will undergo apoptosis (programmed cell

death) when detached from its original tissue, a phenomenon referred as anoikis.

However, in the case of CTCs this process can be evaded. One of the biological cell

processes involved in the acquisition of anoikis evasion is EMT, characterized

mainly by the transformation of highly differentiated, polarized, and organized
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epithelial cells into undifferentiated, isolated and mesenchymal-like cells with

migratory and invasive properties. Interestingly, EGFR signaling has also been

associated to tumor cell proliferation, motility, survival and metastasis, and it is

known to be overexpressed in breast cancer (BC), especially in triple negative BC

types (Ueno and Zhang 2011; Serrano et al. 2014). It has been demonstrated that

EGFR inhibition suppresses EMT and consequently decreases cell migration and

invasion ability (Chang et al. 2012).

In fact, the EMT process means a distinct change in the expression profile,

characterized by downregulation of epithelial markers and upregulation of mesen-

chymal markers (Vimentin) and transcription factors (Snail family) (Serrano et al.

2014). In this context, several molecular mechanisms have been identified as EMT

inducers in cancer cells, and growth factors, such as EGF, have been deemed

responsible for triggering signaling cascades through their related receptors.

Along the acquisition of a mesenchymal phenotype, transcriptional repression of

epithelial markers such as E-cadherin can be observed, and it is accepted that the

lack of E-cadherin expression is associated with the acquisition of a motile pheno-

type. However, C. Holz et al. observed E-cadherin expression during the EMT

process in head and neck cancer cells lines (Holz et al. 2011). According to their

results, the lack of E-cadherin was not necessary to acquire the motile phenotype, so

they observed the E-cadherin expression in tumor cells with migratory activity

induced by EGFR activation. Nevertheless, they detected an internalization of

E-cadherin from cell to cell junction to perinuclear region. Therefore, the ability

of migration and invasion of these tumor cells involves the disruption of cell-to-cell

contacts, which is mediated by surface expression of E-cadherin. Taken together,

the data suggested EGFR activation promotes cell migration and invasion by

inducing EMT-like phenotypic change (Zuo et al. 2011).

In fact, EGFR overexpression is showed to affect in vivo invasiveness,

intravasation, and metastasis without affecting primary tumor growth (Xue et al.

2006). Intravasation is usually measured as the number of CTCs in the blood or

lymphatic vessel. Since EGFR overexpression can facilitate the ability of tumor

cells to invade locally, increased intravasation could be due to enhanced ability of

CTCs to approach blood vessels, or to cross the blood vessel barrier (Fig. 16.1).

Comparison of studies on EGFR inhibitors to ErbB2 inhibitors suggests that EGFR

signaling may be more important for the approach to the vessel, whereas ErbB2

signaling could be involved in the intravasation process (Kedrin et al. 2009).

According to this hypothesis, EGFR is associated with the regulation of develop-

ment and the maintenance of vascular architecture for sustaining cancer cell

intravasation (De Luca et al. 2008). In a recent study by Minder et al. (2015),

they demonstrated new mechanisms involving EGFR in cell dissemination, through

the development of intravasation-sustaining vasculature within primary tumor.

EGFR-mediated induction and maintenance of intratumoral angiogenic vessels

allow the activation of powerful regulators of vascular permeability like IL-8,

MMP-9 and VEGF to CTCs (Minder et al. 2015).

In line with the hypothesis that EGF family members play a fundamental role in

the migration and survival of tumor cells, EGFR has been involved in the initial
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steps of EMT. Molecular mechanism of EGFR leading to EMT process activation,

involves down-regulation of caveolin-1 which leads to a loss of E-cadherin, tran-

scriptional activation of β-catenin, and enhanced invasiveness (Lu et al. 2003).

Decreased E-cadherin levels involve an increase of N-cadherin, vimentin, and

SNAIL or Twist expression. N-cadherin is a cell-to-cell adhesion molecule that

plays a role in cancer metastasis. In this way, N-cadherin upregulation in malignant

cells was shown to enhance cell motility, invasion and metastasis. N-cadherin

adhesion can lead to phosphatidylinositol 3-kinase (PI3K)-mediated activation of

AKT and activated AKT signaling can stimulate β-catenin signaling (Zhang et al.

2013). The mechanism of activation the P13K/Akt signaling pathway remains

controversial. Some studies showed that the direct activation of PI3K/Akt signaling

pathway by the RhoA signaling pathway, can also affect EGF expression and

induce the intracellular localization of EGFR. This action in turn activates PI3K/

Akt signaling pathway (Xu et al. 2015). AKT activation regulates Twist phosphor-

ylation, promotes TGF-β2 transcription, and activates TGF-β receptors. The acti-

vation of the latter can induce excessive PI3K/Akt signaling pathway activity,

which further provides positive feedback for EMT induction. In this line, a decrease

of ERK expression has been correlated to cell motility increase dependent on

EGFR, simultaneously with an elevation of EGF-induced Akt activity (Huang

et al. 2003).

In conclusion, EGFR-mediated signaling causing motility in CTCs can be seen

through the activation of different genetic pathways, including TGF-β, SNAIL or

AKT. In addition, the roles of divergent signaling pathways in trafficking EGFR

regulation may enable the development of more effective therapies.

16.2.4 Role of EGFR in the Dormancy Process

Cancer patients can develop metastatic disease years to decades after diagnosis.

This process can be explained through the existence of micrometastasis composed

of disseminated tumor cells (DTCs) with the ability to acquire a non-proliferative

status. This non-proliferative status is similar to a dormancy phenotype (Sosa et al.

2014).

Dormancy is a stage of cancer progression in which asymptomatic residual

disease is present but clinically undetectable and resistant to conventional chemo-

therapy (Klein 2011). Dormant tumor cells are generally considered to be growth

arrested, although there are some debates about whether micrometastatic disease

sites exist as a balance between proliferation and death only appearing as an

arrested state.

The mechanisms involved in the dormancy process are complex and poorly

understood. Among the different pathways associated with this process are spe-

cially important those associated with EGFR (Humtsoe and Kramer 2010). In this

line, reduced PI3K–AKT signaling has been linked to dormancy-like phenotypes

(Sosa et al. 2014). In fact, under stressful conditions, like metabolic stress, cancer
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cells secrete factors that inhibit PI3K pathway, resulting in quiescence and

autophagy induction (Jo et al. 2008). In tumor cell spheroids, loss of adhesion

and nutrient deprivation promotes short-term growth arrest. This arrest is linked to

epidermal growth factor receptor (EGFR)-Y1086 autophosphorylation, which

inhibits AKT activation and cyclin D1 induction (Garay et al. 2015). In the study

of Shen and Kramer (2004), it was demonstrated that EGFR-mediated survival

effects were primarily through activation of ERK, not AKT. EGFR can trigger

PI3K mediated AKT activation. Despite activated EGFR, phospho-AKT was not

detected. These results, may represent an example of context-dependent EGFR-

mediated PI3K/AKT signaling. Defining the underlying cellular events involved

here may provide insights on the mechanism by which EGFR modulates tumor cell

survival and growth, in the adverse and dynamic microenvironment encountered

during tumor progression.

Cellular tumor dormancy may result from the ability of tumor cells to attain a

differentiated state. Their growth and aberrant organization is dependent on β1-
integrins and EGF signaling, as inhibition of these signals leads to the

re-differentiation of these tumor cells into non-proliferating state (Aguirre-Ghiso

2007). Blocking of β1-integrin signaling in these tumor cells in vivo ablates tumor

growth, but it is not clear whether this is due to induction of a protracted state of

growth arrest.

An example of switch between proliferation and growth arrest controlled by

tumor cell–microenvironment crosstalk was observed in head and neck carcinomas.

In this model, the metastasis-associated urokinase receptor (uPAR) drives tumor

growth by interacting and activating α5β1 integrin (Aguirre-Ghiso et al. 1999). This
complex in turn recruits focal adhesion kinase (FAK) and EGFR, which propagates

mitogenic signals through the Ras–extra-cellular signal-regulated kinase (ERK)

pathway. Blocking uPAR, β1-integrins, FAK or EGFR, singly or in combination

with each other, resulted in tumor suppression in vivo, which is due to induction of

dormancy (Aguirre-Ghiso et al. 1999). In these studies, although dormant tumor

cells expressed the appropriate integrins and were surrounded by fibronectin, the

downregulation of uPAR and loss of integrin function prevented these cells from

transducing proliferative signals from the fibronectin-rich microenvironment

(Aguirre-Ghiso et al. 2001).

The disruption of the uPAR complex activates the p38 mitogen-activated protein

kinase (MAPK) signaling pathway (Koul et al. 2013). Furthermore, growing met-

astatic lesions show sustained ERK activity but greatly reduced p38 signaling,

suggesting that proliferation in primary and secondary tumors requires a high

ERK/p38 signaling ratio whereas the opposite ratio, induces cellular dormancy.

On the other hand, Ossowski et al. established a model of tumor dormancy in

human squamous carcinoma (HEp3) (Aguirre-Ghiso et al. 2001). They detected

that in vivo HEp3 remain tumorigenic (T-HEp3) and metastatic. However, the

prolonged in vitro passaging of these cells, results in the acquisition of a dormant

(D-HEp3) phenotype upon re-inoculation in vivo. These studies have revealed that

HEp3 cells maintain a tumorigenic and metastatic phenotype by overexpressing the

uPAR, which in turn signals through a complex comprising of α 5β1-integrin and
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EGFR. Signaling from the uPAR-integrin-EGFR complex culminates in the acti-

vation of ERK mitogenic pathway and the inhibition of p38 stress activated/growth

suppressive pathway. Such cells have high ERK/p38 ratio that favors tumorigene-

sis. Forced or nonclonal spontaneous loss of the uPAR – α5β1- EGFR signaling

complex results in p38 activation and in a low ERK/p38 ratio (Fig. 16.2)

(Ranganathan et al. 2006).

16.3 Conclusion

The biological and functional framework of tumor metastasis involves a complex

network of interaction between tumor cells and their microenvironment. Once the

tumor cell acquires the ability to migrate, the success of the metastatic process

depends on the ability of the CTC to survive in the different microenvironments

they encounter. Numerous studies have shown EGFR involvement in migration and

survival of CTCs, through EMT associated pathway activation. According to these

Fig. 16.2 uPAR role in the regulation of the balance between tumor cells proliferation and
tumor dormancy. Downregulation or blocking of uPAR, beta1integrin, FAK or EGFR, alone or

in combination causes activation of p38/MAPK pathway resulting in a cell cycle arrest and

dormancy. However, if uPAR interacts and activates the fibronectin receptor alpha5b1 integrin,

this receptor α5β1 Integrin causes the cell cycle arrest and dormancy. uPAR –α5β1 Integrin

complex recruits focal adhesion kinase (FAK) and EGFR, and promotes mitogenic signals through

the ERK pathway
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studies, EGFR-mediated signaling causes motility in CTCs, through activation of

TGF-β, SNAIL or AKT. Furthermore, EGFR has been related to the activation of

dormancy processes, which are associated with tumor cell survival of DTCs, in

different homing for years or decades. This dormant process requires a low

ERK/p38 ratio, and the decrease of ERK expression has been correlated with an

increase of EGFR expression.
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