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Preface

This is the fourth volume of the THMC benchmark book series dealing with
benchmarks and examples of thermo-hydro-mechanical-chemical processes in
fractured porous media:

1. http://www.springer.com/de/book/9783642271762
2. http://www.springer.com/de/book/9783319118932
3. http://www.springer.com/de/book/9783319292236
4. http://www.springer.com/de/book/9783319682242 (this volume)

Recently, the benchmark books became items of the new book series in “Terrestrial
Environmental Sciences” http://www.springer.com/series/13468.

The present book is subtitled “From Benchmarking to Tutoring.” The material
from benchmark books has also been prepared for tutorials which build the foun-
dation for teaching purposes and training courses as well, highlighting the multi-
purpose benefits from continuous benchmarking.

The book structure again follows the “classic” scheme, presenting first single
processes and then coupled processes with increasing complexity. The list of
symbols and an index you will find at the end of the book. With this book, we also
want to award the work of merit of distinguished scientists in the field “Modelling
and Benchmarking of THMC Processes.”

Along with this version, we also provide the input files for self-exercising and
enhanced reproducibility. These can be found at the OGS community page http://
docs.opengeosys.org/books (Fig. 1). Software engineering has been further
improved by integrated Ctests and direct GitHub-Links for OGS code references
(Sect. A.2).

The OGS Tutorial series has been extended by additional volumes on
Computational Hydrology (I–III) and Geoenergy Modelling (I–III). A new section
on Computational Geotechnics was opened starting with a volume on the Storage of
Energy Carriers followed by a volume on Models of Thermochemical Heat Storage:

v
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• “Computational Hydrology I: Groundwater Flow Modeling” (Sachse et al.
2015)
http://www.springer.com/de/book/9783319133348,

• “Computational Hydrology II: Groundwater Quality Modeling” (Sachse et al.
2017)
http://www.springer.com/us/book/9783319528083,

• “Computational Hydrology III: OGS#IPhreeqc Coupled Reactive Transport
Modeling” (Jang et al. 2018)
http://www.springer.com/us/book/9783319671529,

• “Geoenergy Modeling I: Geothermal Processes in Fractured Porous Media”
(Boettcher et al. 2016)
http://www.springer.com/de/book/9783319313337,

Fig. 1 Benchmark books and related tutorials
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• “Geoenergy Modeling II: Shallow Geothermal Systems” (Shao et al. 2017)
http://www.springer.com/us/book/9783319450551,

• “Geoenergy Modeling III: Enhanced Geothermal Systems” (Watanabe et al.
2017)
http://www.springer.com/us/book/9783319465791,

• “Computational Geotechnics—Storage of Energy Carriers” (Nagel et al. 2017a)
http://www.springer.com/de/book/9783319313337,

• “Models of Thermochemical Heat Storage” (Lehmann et al. 2018)
http://www.springer.com/de/book/9783319715216,

For geo- and energy-related tutorials, a new subseries on “Computational
Modeling of Energy Systems” has been launched edited by Thomas Nagel and
Haibing Shao. “This subseries puts a spotlight on advanced computational and
theoretical methods, tools, and frameworks for the design, analysis, optimization,
and assessment of a diverse range of energy technologies and systems. The
intention is to make the methods transparent and to allow engineers and scientists
from different disciplines to enter the field of energy research enabling them to
perform meaningful simulations for the advancement of clean and secure energy
systems.”

(http://www.springer.com/series/15395)
Enjoy reading, exercising and benchmarking.

Leipzig and Dresden, Germany Olaf Kolditz
Leipzig and Dublin, Germany Thomas Nagel
Leipzig, Germany Wenqing Wang
Hanover, Germany Hua Shao
Kiel, Germany Sebastian Bauer
November 2017
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Dr. Uwe-Jens Görke1

We would like to honor Dr. Uwe-Jens Görke for his scientific contribution to the
field of computational mechanics and in particular for his tremendous engagement
supporting young scientists and community efforts.

Uwe studied Mathematics and Continuum Mechanics (Theoretical Mechanics) at
the Kharkov State University in the former Soviet Union (now Ukraine). At that time
our paths crossed for the first time. Dr. Uwe-Jens Görke received his Ph.D. in 1987
from the College of Engineering (Zwickau) in the field of computational mechanics
focusing on viscoelastic material models at large strains. Uwe then worked as a
Postdoc at the Institute of Mechanics of the Academy of Sciences of the GDR
(Karl-Marx-Stadt), where our ways crossed again, when Olaf Kolditz did his my
Ph.D. (Uwe was always ahead of Olaf Kolditz …). He worked at several research
institutes (Fraunhofer Institute for Structural Durability in Darmstadt) and universities
(Chemnitz University of Technology) with main research topics in material mod-
elling, parameter identification, and computational mechanics for solid and porous
media with applications in industry and bioengineering. Uwe was also a visiting
scientist at the AO Research Institute in Davos (Switzerland) which is dealing with
applied Preclinical Research and Development within trauma and disorders of the
musculoskeletal system and translation of this knowledge to achieve more effective
patient care worldwide. Uwe was working there in the field of biomechanics.

Since 2008, Uwe has been a researcher at the Helmholtz Centre for
Environmental Research - UFZ. His research portfolio includes continuum
mechanics applied to coupled processes in porous media, thermodynamically
consistent material models for inelastic solid structures at large strains, finite ele-
ment method for thermo-hydro-mechanical coupled processes in porous media,

1Photo by Andre Künzelmann, UFZ.
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porous media applications in geo- and biomechanics. His current research focuses
on coupled processes in the subsurface, with a particular interest in geomechanics
and material modelling. Since 2012, Uwe is senior scientist and deputy head of the
Department of Environmental Informatics and now mainly involved in project
management issues.

Uwe belongs to the editor team of the book series “Thermo-Hydro-mechanical-
Chemical Processes in Fractured-Porous Media: Modelling and Benchmarking.”
From this volume, Uwe passes his editorship to Thomas Nagel. We are very
grateful to Uwe for his editorial work. And with this opportunity, we would like to
thank Uwe deeply for his contribution to porous media science and his support and
engagement for the community and promotion of young scientists.

We very much appreciate the contributions to Uwe’s Laudatio by two of his
academic teachers and longtime companions.

Prof. Dr. sc. techn. Dr. E. h. H. Günther (Chemnitz, Former Director of the Institute
of Mechanics with the Academy of Sciences of the GDR)

“Nach dem Studium in der Fachrichtung Mathematik und Mechanik der
Universität Charkow und dem Diplom-Abschluss auf dem Gebiet der Kontinu-
umsmechanik begann Uwe Görke seine Tätigkeit am Lehrstuhl für Technische
Mechanik der Ingenieurhochschule Zwickau (heute Westsächsische Hochschule
Zwickau). Im Mittelpunkt standen Untersuchungen zu großen Deformationen in der
Festkörpermechanik und 1982 promovierte er mit einer Arbeit zur Viskoelastizität
kompressibler Werkstoffe. Die Ergebnisse wurden in ein hauseigenes
FEMProgramm implementiert und erfolgreich auf Praxisprobleme wie die
Berechnung von Hochdrucklippendichtungen und des Spannungs- und
Dehnungsverhalten von Patellaknorpel angewendet. Hinzukamen numerische und
experimentelle Untersuchungen zur Materialparameteridentifikation aus
Relaxationsversuchen. Biomechanische Probleme weicher Gewebe standen immer
wieder in seinem Interessenfeld, auch nach seinem Wechsel an das Institut für
Mechanik der damaligen Akademie der Wissenschaften. So entstand letztlich unter
seiner wesentlichen Mitwirkung, ein nichtlineares, modulares Materialmodell für
das komplexe mechanische Verhalten biologischer Gewebe bei großen
Deformationen, einschließlich Viskosität, Kompressibilität, Porosität, Isotropie und
Anisotropie sowie von biologischen Vorgängen wie Osmose und Gewebe-
Remodellierung. Dieses Modell wurde erfolgreich auf biomedizinische Problem-
stellungen des AO Research Institute Davos und des Rush University
Medical-Center Chicago angewendet. Sein außerordentliches kreatives und koop-
eratives Managment, auch bei der FEM Implementierung, hat wesentlich zum Erfolg
der Projekte beigetragen.”
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Prof. Dr.-Ing. habil. Reiner Kreißig (Chemnitz, Former Chair of Solid Mechanics
at TU Chemnitz)

Scientific contributions from Dr.-Ing. Uwe-Jens Görke during his work at the
professorship of Solid Mechanics at Chemnitz University of Technology in the
years 1995–2007.

Dr. Görke has worked at the professorship Solid Mechanics mainly in research.
Particularly noteworthy are his excellent research results, the partial supervision of
Ph.D. students, and his contribution to several research proposals to the German
Science Foundation DFG (e.g., Collaborative Research Centre (SFB) 393, Package
Proposals 47 and 273).

As a scientist in SFB 393, Dr. Görke was substantially involved in the devel-
opment of the in-house finite element code SPC-PM2AdNl for solving of nonlinear
problems of continuum mechanics. His priorities touched many advanced topics in
the field of computational mechanics, especially

• the theoretical development and numerical realization of appropriate material
laws for elastoplasticity,

• the numerical solution of the nonlinear initial-boundary value problem,
• the hierarchical adaptive strategy (error estimation with respect to the equilib-

rium, error indicator with respect to the yield condition, mesh refinement and/or
coarsening, transfer of the field variables to newly generated nodes and inte-
gration points),

• identification of the material parameters based on the analysis of inhomoge-
neous displacement fields (application of a nonlinear deterministic optimization
approach (Levenberg-Marquardt method) for a least squares type objective
function, semianalytical sensitivity analysis for the determination of the gradient
of the objective function).

The development of a generalized substructure approach based on the ideas of
Mandel and Dafalias was supported by Dr. Görke. In this approach, a so-called
substructure configuration, which is established in addition to the usual configu-
rations, representing the kinematics of the continuum, is defined. The substantial
advantage of this modelling concept lies in its thermodynamic consistency. Aside
from the theoretical work itself, the numerical realization of related problems was
realized.

In the DFG priority program SPP 1146, Dr. Görke was involved in the simu-
lation of incremental forming processes based on the material model with a sub-
structure approach. The theoretical foundation for the modelling of coupled
thermomechanical processes was developed and numerically realized in the
in-house finite element code PM2AdNl. The material model is characterized by a
comparatively low number of material parameters. These were determined within a
gradient-based, nonlinear optimization method as described above.

Coupled multiphysics problems (hyperelastic, nearly incompressible materials,
and biphasic saturated porous media at large strains) formed an additional main
focus of the work of Dr. Görke. Special linearization techniques have been used to

xvi Contributors



solve these problems. After spatial discretization, a global system for the incre-
mental form of the initial-boundary problem within the framework of a stable mixed
U/p-c finite element approach was defined. The global system is solved using an
iterative solver with hierarchical preconditioning. Adaptive mesh evolution is
controlled by a residual a posteriori error estimator.

The above results have been published in five Preprints of the SFB 393 and five
Scientific Computing Preprints (www.tu-chemnitz.de/mathematik/).
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Symbols

Greek Symbols
fi Biot constant (–)
fi Thermal expansion coefficient (K−1)
fi Intergranular radius (–)
fi Van Genuchten parameter (m−1)
fik Kinetic isotope fractionation factor (–)
fiL Longitudinal dispersion length (m)
fiT Transversal dispersion length (m)
fl Cubic thermal expansion coefficient (K−1)
flc Burial constant (–)
v Bishop coefficient (–)
2d Fault width (m)
D Half of aspect ratio (–)
� Activity coefficient for dissolved species (–)
� Dimensionless temperature (–)
C Domain boundary (–)
� Strain tensor (–)
_� Strain rate (s−1)
� Length scale (m)
� Isotope enrichment factor (–)
� Strain (–)
�v Volume plastic strain (–)
g Porosity (–)
gM Maxwell viscosity (Pa d)
gK Kelvin viscosity (Pa d)
� Activity coefficient for dissolved species (–)
�l First-order degradation rate (day−1)
j Thermal conductivity (W m−1 K−1)
‚c Virgin compression index (–)
‚ Lamé coefficients (GPa)

xix



‚p Hardening parameter (–)
‚ Thermal conductivity (W m−1 K−1)
‚arith Arithmetic effective thermal conductivity (W m−1 K−1)
‚b Bulk thermal conductivity (W m−1 K−1)
‚eff Effective thermal conductivity (W m−1 K−1)
‚f Fluid thermal conductivity (W m−1 K−1)
‚geom Geometric effective thermal conductivity (W m−1 K−1)
‚harm Harmonic effective thermal conductivity (W m−1 K−1)
‚pm Thermal conductivity of porous medium (W m−1 K−1)
‚s Solid thermal conductivity (W m−1 K−1)
l Lamé coefficients (GPa)
l Dynamic viscosity (Pa s)
l0 Base dynamic viscosity (Pa s)
” Poisson number (–)
Qx Source/sink term (kg m−3 s−1)
x Intergranular thickness (m)
x Saturation index (–)
/ Porosity (–)
/ Friction angle (deg)
ff Dilatancy angle (deg)
q Density (kg m−3)
.SR Real density of solid (kg m−3)
.LR Real density of liquid (kg m−3)
.IR Real density of ice (kg m−3)
qs Density of solid (kg m−3)
qw Density of water (kg m−3)
qsd Density of bentonite bulk (kg m−3)
q0 Base fluid density (kg m−3)
r Cauchy stress tensor (Pa)
rV Von Mises equivalent stress (Pa)
rcon Confining stress (Pa)
reff Effective stress (Pa)
r Effective stress (Pa)
rswmax Tested maximum swelling stress (Pa)
ra Contact stress (Pa)
rc Critical stress (Pa)
”M Maxwell viscosity tensor (Pa d)
”K Kelvin viscosity tensor (Pa d)
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Roman Symbols
a Specific surface area (m2 m−3)
ar Activity of stressed solid (–)
_a Effective diameter of ion (m)
A Surface area (m2)
b Body force vector (N)
bh Fracture hydraulic aperture (m)
bm Fracture mechanical aperture (m)
c Normalized concentration (–)
c Concentration (kg m−3)
c Cohesion (–)
Ch
eq Solubility under hydrostatic pressure (mol m−3)

Ci Intergranular concentration (mol m−3)
Cp Pore-space concentration (mol m−3)
Cr Courant number (–)
cf Specific fluid heat capacity (J kg−1 k−1)
cp Heat capacity (J kg−1 k−1)
Cp Heat capacity (J kg−1 k−1)
d Order parameter (–)
D Diffusivity coefficient (m2 s−1)
Df Intergranular diffusion coefficient (m2 s−1)
E Young’s modulus (Pa)
e Void ratio (–)
g Gravitational coefficient (m s−2)
g Plastic potential (J)
g Gravity vector (m s−2)
g Gravitational acceleration (m s−2)
gc Fracture toughness (N m−1)
G Gibbs energy (J)
G Gibbs energy (J mol−1)
G Shear modulus (Pa)
GF Plastic potential (J)
GM Maxwell shear modulus (–)
GK Kelvin shear modulus (–)
H Fault height (m)
Hpw Pipe water level (m)
h Hardening parameter (–)
hc Thickness of colmation layer (m)
hf Freshwater hydraulic head (m)
hs Saltwater hydraulic head (m)
4hI Specific enthalpy of fusion (J)
I Ionic strength (–)
I1 First principal invariant of the stress tensor (Pa)
Ir Friction slope (–)
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Is Bottom slope (–)
J2 Second principal invariant of the deviatoric stress tensor (Pa2)
J3 Third principal invariant of the deviatoric stress tensor (Pa3)
k Residual stiffness parameter (–)
k Permeability tensor (m2)
k Permeability tensor (m s−1)
K Intrinsic permeability (m2)
kc Swelling/recompression index (–)
Keq Equilibrium constant (–)
KM Maxwell bulk modulus (–)
Kn Normal stiffness (Pa m−1)
Ks Shear stiffness (Pa m−1)
Krel Relative permeability (m2)
ks Saturated hydraulic conductivity (m d−1)
k+ Dissolution rate constant (mol m−2 s−1)
k° Reaction rate constant (mol m−2 s−1)
M Kinetic coefficient (mm2 N−1 s−1)
M Slope of critical state line (–)
Mw Molecular mass of water vapor (18.016 g mol−1)
n Porosity (m3 m−3)
n Van Genuchten parameter (–)
m Van Genuchten parameter (–)
p Pressure (kg s−1 m−1)
p Pressure (Pa)
P Load (Pa)
Pc Capillary pressure (Pa)
ps Mean stress (Pa)
pscn Isotropic pre-consolidation pressure (Pa)
Pe Péclet number (–)
q Source/sink term (–)
q Shear stress (Pa)
q Heat source (W)
q Darcy velocity (m s−1)
q Darcy velocity vector (m s−1)
Q Ion activity product (–)
Qleak Leakage flow (m3 s−1)
qT Heat flux through unit area (W m−2)
R Universal gas constant (8.31432 J mol−1 K−1)
Rc Contact area ratio (–)
Ra Rayleigh number (–)
Racrit Critical Rayleigh number (–)
s Soil suction (kPa)
S Saturation (–)
S Storage (1 Pa−1)
Se Effective saturation (–)
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Smax Maximum water saturation (–)
Sr Residual saturation (–)
Sr Residual water saturation (–)
SA Reactive surface area (m2)
t Time (s)
T Temperature (K)
T Absolute temperature (K)
Tc Top temperature (cold) (K)
Th Bottom temperature (hot) (K)
Tinit Initial temperature (K)
Tv Approximation temperature (K)
u Displacement (m)
u Displacement vector (m)
v Velocity (m s−1)
V Volume (m3)
Vm Molar volume (m3 mol−1)
Vu Cell volume (m3)
w Margules parameter (J mol−1)
X Molar fraction (–)
Z Ionic integer charge (–)
Z Charge (–)

Indices
k Co-linear direction
? Orthogonal direction
e Efficient value
f Fluid
f Fracture
w Water
s Solid
0 Reference value

Operators
div, r� Divergence operator
grad, r Nabla, gradient operator
tr Trace
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Chapter 1
Introduction

Olaf Kolditz, Thomas Nagel and Hua Shao

1.1 Recent Developments in THMC Research

Olaf Kolditz, Thomas Nagel, Hua Shao

In this section we discuss recent literature in thermo-hydro-mechanical-chemical
(THMC) analysis particularly in fractured-porousmedia. Figure1.1 depicts the quan-
titative development of Scopus listed publications in the field and highlights the
increasing interest in THMC research.

THMC research is mainly related to geoscientific and environmental applications
based on porous media approaches. A few works are dedicated to material research.

1.2 Events

In 2017 several important events took place related to THMC research such as the
Mont Terri Technical Meeting 2017 in Porrentruy (Switzerland) and the DECO-
VALEX 25th Anniversary in Stockholm (Sweden) (see Sect. 1.2).
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Porrentruy: TheMont Terri Technical Meeting (TM-35) from 08–09.02.2017 was
held for annual review of selected ongoing experiments but also for discussion of
new experiments which will be designed within the framework of rock lab extension
later on this year. This meeting was also dedicated to celebrate the 20th anniversary
of the Mont Terri Underground Research Laboratory (URL) being an excellent place
of international applied research in clay rocks world-wide for over 2 decades. Due
to this occasion, a Special Issue was published in the Swiss Journal of Geosciences
“Mont Terri rock laboratory, 20 years of research: introduction, site characteristics
and overview of experiments” Bossart et al. (2017) compiling recent research works
from the project participants.
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Fig. 1.1 Increase of THMC papers over years (source: Scopus)

Stockholm: The 3rd DECOVALEX-2019 workshop from 25–28.04.2017 in
Sweden’s capital was more than the ordinary status meeting with progress reports
about the seven individual tasks of the project phase 7 ...

... it was also dedicated to the celebration of the DECOVALEX’s 25th anniversary.
To this purpose the pioneers of DECOVALEX - DEvelopment of COupled models
and their VALidation against EXperiments - were invited for a panel discussion to
explain the unusual success story of this project (Ove Stephansson, Ivars Neretnieks,
Johan Andersson, Ki-Bok Min, Chin-Fu Tsang, from left to right).

1.3 Literature Review

A literature review in Scopus (2016–early 2018) yielded the following topics in
THMC analyses:

• General and review works (Sect. 1.3.1),
• Nuclear and chemo-toxic waste management, landfills Sect. 1.3.2,
• Geological CO2 storage (Sect. 1.3.3),
• Geothermal energy systems (Sect. 1.3.4),
• Reservoir exploitation and drilling (Sect. 1.3.5).

Nuclear waste management is the most frequent and intensive discussed topic in
recent literature.
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1.3.1 General and Review Works

Wang et al. (2017) provide a comprehensive literature review on the simulation
techniques for describing flow processes in shale and tight gas reservoirs. “The
capabilities of existing reservoir simulation tools are discussed in terms of numerical
methods (finite difference, finite element, explicit/implicit scheme, sequentially and
fully coupled schemes), fluid flow behavior (Darcy and non-Darcy flow, desorption,
Klinkenberg effect and gas slip flow, transitional flow, Knudsen diffusion), reservoir
rock properties (pore size distribution, fractures, geomechanics), coupling schemes,
modeling scale, and computational efficiency.” The authors also elaborate on pros
and cons of pore-scale modeling, e.g. using lattice-Boltzmann approaches.

Wang (2017) present a fully coupled THMC model for fracture opening and
closure by explicitly accounting for stress concentration on aperture surface, stress-
activated mineral dissolution, pressure solution at contacting asperities, and channel
flow dynamics. They showed that “a tangential surface stress created by a far-field
compressive normal stressmay play an important role in controlling fracture aperture
evolution in a stressed geologic medium.”

THMC simulation is also important for the understanding of fundamental Earth
system processes such as lithospheric deformation, e.g. for analysis of Episodic
Tremor and Slip (ETS) events. Veveakis et al. (2017) consider THMC instabilities
triggered by the fluid release reactions in fault zones. “Data from ETS sequences in
subduction zones reveal a geophysically tractable temporal evolution with no access
to the fault zone.” Alevizos et al. (2017) present a fundamental theoretical analysis on
the important lithosphere deformationmechanism of creep enhanced by fluid-release
reactions. “This mechanism features surprisingly rich dynamics stemming from the
feedback between deformation induced fluid release through mineral breakdown
reactions (dissolution) and fluid cementation into a solid matrix (precipitation) when
the tectonic forces are locally relaxed.” They show that TM feedback processes in
the temperature and pressure evolution and the resulting feedback between fluid flow
and mechanical deformation (HM processes) result in a highly dynamic system.

Faoro et al. (2016) present a fundamental study concerning permeability changes
in fractured rocks due toTHMCprocesses. “These experiments examine the influence
of thermally and mechanically activated dissolution of minerals on the mechanical
(stress/strain) and transport (permeability) responses of fractures.” The data base
relies on heated (25 ◦C up to 150 ◦C) flow-through experiments on fractured core
samples ofWesterly granite. Themeasured efflux of dissolvedmineral mass provides
a record of the netmass removal,which is correlatedwith observed changes in relative
hydraulic fracture aperture. The authors argue “that at low temperature and high
stresses, mechanical crushing of the asperities and the production of gouge explain
the permeability decrease although most of the permeability is recoverable as the
stress is released. While at high temperature, the permeability changes are governed
by mechanical deformation as well as chemical processes, in particular, we infer
dissolution of minerals adjacent to the fracture and precipitation of kaolinite.”
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Fig. 1.2 DECOVALEX tasks explore different complexity of T-H-M/C exercises based on exper-
imental evidence. Fully coupled problems have been investigated e.g. by Bond et al. (2017, 2016),
Pfeiffer et al. (2016), Pan et al. (2016), McDermott et al. (2015)

Rutqvist (2016) provides an overview of TOUGH-based geomechanics mod-
els and summarizes the history of TOUGH-FLAC3D developments in the past 15
years for various geoengineering applications such as “geologic CO2 sequestration,
enhanced geothermal systems, unconventional hydrocarbon production, and most
recently, related to reservoir stimulation and injection-induced seismicity.”

1.3.2 Nuclear Waste Management

The scientific results of the previousDECOVALEX-2015 phase have been published
recently as a Thematic Issue in Environmental Earth Sciences.1 The volume contains
18 research papers describing details of Tasks A, B, C1, C2 as well as summarizing
the model comparison exercises (Fig. 1.2).

A short introduction to the ongoingDECOVALEX-2019 can be found in Sect. 1.5
and through the related website.2

“Geologic repositories for radioactivewaste are designed asmulti-barrier disposal
systems that perform a number of functions including the long-term isolation and
containment of waste from the human environment, and the attenuation of radionu-
clides released to the subsurface. The rock laboratory at Mont Terri (canton Jura,

1https://link.springer.com/journal/12665/topicalCollection/AC_4afd5d3151e292e32fb5583c8a0d
4b9a/page/1.
2www.decovalex.org.

https://link.springer.com/journal/12665/topicalCollection/AC_4afd5d3151e292e32fb5583c8a0d4b9a/page/1
https://link.springer.com/journal/12665/topicalCollection/AC_4afd5d3151e292e32fb5583c8a0d4b9a/page/1
www.decovalex.org
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Switzerland) in the Opalinus Clay plays an important role in the development of
such repositories.” Bossart et al. (2017) summarized the experimental results gained
in the last 20 years to study the possible evolution of a repository and investigate
processes closely related to the safety functions of a repository hosted in a clay
rock. “At the same time, these experiments have increased the general knowledge of
the complex behaviour of argillaceous formations in response to coupled hydrolog-
ical, mechanical, thermal, chemical, and biological processes”. Numerous research
aspects are covered in a Special Issue of the Swiss Journal of Geosciences: bentonite
buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel
corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and
finally, release of radionuclides into the bentonite buffer and the Opalinus Clay bar-
rier. “The research at Mont Terri carried out in the last 20 years provides valuable
information on repository evolution and strong arguments for a sound safety case for
a repository in argillaceous formations.”

Bernier et al. (2017) pointed out the key THMC processes that might influence
radionuclide transport in a disposal system and its surrounding environment, consid-
ering the dynamic nature of these processes. These THMC processes have a potential
impact on safety; it is important “to identify and to understand them properly when
developing a disposal concept to ensure compliance with relevant safety require-
ments.”

Lu et al. (2017a) and Lu and Fall (2017) developed a coupled thermo-hydro-
mechanical-chemical (THMC)-visco-plastic cap model to characterize the behavior
of cementing mine backfill material under blast loading. “The model is coupled to
a Perzyna type of visco-plastic model with a modified smooth surface cap enve-
lope and a variable bulk modulus, in order to reasonably capture the nonlinear and
rate-dependent behaviors of the cemented tailings backfill under blast loading.” The
proposed model allows for a better understanding of hydrating cemented backfill
under blasting conditions, and also practical risk management of backfill structures
associated with dynamic environments. Ghirian and Fall (2016) conducted experi-
mental work using a pressure cell apparatus to study the long-term hydro-mechanical
behaviour of cemented paste backfill (CPB).

Bente et al. (2017) deal with a model for time-dependent compaction of porous
materials with applications to degradation-induced settlements in municipal solid
waste landfills. The Theory of PorousMedia is used as continuummechanical frame-
work; for kinematic description, large strain continuum mechanics is applied.

Nishimura (2016) investigated compacted bentonite as an important component
of engineered barrier systems. They present a new method of determining creep
behavior and failure of compacted bentonite under constant (or maintained) high
relative humidity. THMC modeling is suggested as an appropriate analysis tool.

Abed et al. (2016) started modelling coupled THMC behaviour of unsaturated
bentonite relying on the Barcelona Basic Model (BBM). “As an alternative, BBM
is used alongside the Krähn’s model which assumes that bentonite re-saturation is
mainly driven by water vapour diffusion.” Both methods have been compared with
laboratory experiments based on X-ray tomography and show similar results.
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Yasuhara et al. (2016b) developed a THMCnumerical model to examine the long-
term change in permeability of the porous sedimentary rocks (quartz-rich), in par-
ticular, the chemo-mechanical process of the pressure solution is incorporated. “The
model predictions clearly showed a significant influence of the pressure dissolution
on the change in permeability with time” and, therefore, are important consideration
for long-term high-level radioactive waste deposition (Yasuhara et al. 2016a).

GMZ-Na-bentonite is a selected buffer material for the preliminary concept of
HLW repository in China. Liu et al. (2016) investigate THMC processes for the
China-Mock-up facility. “Stress evolution of the compacted bentonite may be influ-
enced by several mechanisms, including gravity, thermal expansion induced by high
temperature, and the swelling pressure generated by bentonite saturation.” The exper-
imental results and achievements obtained from the THMC experiments provide
important insight into GMZ-bentonite under realistic HLW repository conditions
and the design.

1.3.3 Geological CO2 Storage

Li et al. (2016a): “Carbon dioxide (CO2) capture and storage (CCS) is considered
widely as one of promising options for CO2 emissions reduction, especially for those
countries with coal-dominant energy mix like China. Injecting and storing a huge
volume of CO2 in deep formations are likely to cause a series of geomechanical
issues, including ground surface uplift, damage of caprock integrity, and fault reacti-
vation.” They present results from the Shenhua CCS demonstration project in Ordos
Basin, China, which is the largest full-chain saline aquifer storage project of CO2
in Asia - a combination of CCS and overlying coal seam mining. Interferometric
synthetic aperture radar (InSAR) technology was used for subsidence monitoring.
THMC modeling was mainly used for geomechanical stability analysis. Li et al.
(2016b) provide a comprehensive review of numerical approaches for analyzing the
geomechanical effects induced by CO2 geological storage. They introduce theoreti-
cal aspects and classify numerical simulation methods for THMC analyses.

Zhang et al. (2016a, b) propose a sequentially coupled computational THMC
framework for a variety of geo-applications such as CO2 geo-sequestration (CCS)
and Engineered Geothermal Systems (EGS). Zhang and Wu (2016) present a prac-
tical reactive transport example with complex chemical compositions (Fig. 1.3).

1.3.4 Geothermal Energy Systems

Blöcher et al. (2016) investigate the THMC behaviour of a research well doublet
consisting of the injection well E GrSk 3/90 and the production well Gt GrSk 4/05
A(2) in thedeepgeothermal reservoir ofGroβSchönebeck (north ofBerlin,Germany)
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Fig. 1.3 THMC bibliography by journals (source: SCOPUS)

which is located in the Lower Permian of the North German Basin (NGB). The
authors use THMC analysis in order to explain the decrease of productivity and
identified five possible reasons: wellbore fill, wellbore skin, the sustainability of
induced fractures, two phase flow and compartmentalisation.

1.3.5 Reservoir Exploitation and Drilling

Kanfar et al. (2017) derived the governing equations for anisotropic poro-chemo-
thermo-elasticity to simulate the drilling of an inclined borehole problem in a trans-
versely isotropic rock. A finite elementmethod based numerical model is constructed
to estimate the pore pressure, temperature, solute concentration and stress distribu-
tion. The model is used to assess time-dependent wellbore stability during and after
drilling operations.

1.3.6 Continuous Workflows

To support THM/CB analysis for complex, real-world applications, complete work-
flows have been developed in order to combine data integration, process simulation,
and data analytics steps into continuous analysis based on observation and facilitate
experimental design (Fig. 1.4).

Related OpenGeoSys (OGS) developments are highlighted in the enlarged boxes.
These workflows have been implemented for hydrological, geothermal (shallow and
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Fig. 1.4 Continuous
workflow concept

deep), energy storage as well as geotechnical applications and are embedded into
VR (Virtual Reality) environments.

1.4 Bibliography

We use Scopus biometrics tools to provide an actual THMC bibliography on journals
(Fig. 1.3), countries, affiliations, and authors (Fig. 1.5, Accessed 31.07.2017).

1.5 DECOVALEX-2019

The international collaborative project DECOVALEX is one of the most successful
projects dealingwith the development andvalidation ofTHMCmodels andnumerical
codes.3 For that purpose, laboratory and field experiments are employed for a better
process understanding in geological and geotechnical materials along with their
interactions in deep geological repositories for radioactive waste. The project was
established in 1992; an account of its 25-year history is given elsewhere in this book.

In the current phase of the project DECOVALEX-2019, launched in April 2016,
material inhomogeneity plays an important role. Fractured rock is considered as
strong inhomogeneous, even heterogeneous medium. It is also important to consider
the porous media used as geological and geotechnical barrier, e.g., bentonite, as
inhomogeneous materials. During conventional modelling, a REV (representative
elementary volume) concept is applied by defining, usually implicitly, the small-
est volume over which a value obtained by measurement may represent the whole
system or at least a homogenized area in a statistical sense. Based on the REV
strategy, different mathematical approaches such as random number generation, sto-
chastic treatment, have been developed to characterize the material inhomogeneity
by generating statistically representative distributions of physical parameters at the
microscale, e.g., porosity or permeability.

3www.decovalex.org.

www.decovalex.org
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Fig. 1.5 THMC bibliography by countries, affiliations, and authors (source: Scopus)
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Fig. 1.6 Example of a pore-scale simulation workflow. a optical microscopy image of a porous
medium, b contrast threshold analysis, c derived finite element mesh with different material groups
and d pressure distribution and flow along channels calculated by OGS

To observe and understand the microscopic behavior, several technical methods
have been developed in the fields of optical mineralogy and petrography and widely
used in the analysis of rock samples. Examples include laboratory thin section-
ing, CT (Computer Tomography) scanning, X-ray-based approaches and recently
SEM (Scanning Electron Microscopy). With the help of these methods, materi-
als previously considered as “homogeneous” may now be observed as exhibiting
a pronounced inhomogeneous microstructure. Different mineral compositions in a
“homogenous” material possess different physical and chemical properties and their
reactions can now be observed in a more direct manner at the microscopic level. The
difference between states before and after an experiment may therefore be qualita-
tively analysed.

Fully coupled THMC(B) models and the corresponding numerical codes have
been developed following a macroscopic approach. Relevant physical-chemical
processes and their interactions can be simulated reasonably well in comparison
with many experimental measurements. In the course of the rapid development
of computer technology and computational techniques, especially parallel high-
performance computing, large-scale and long-term simulation has become a practical
possibility. Consequently, down-scale modelling, such as pore-scale simulations for
the direct simulation of coupled processes occurring in the microstructure of an (in-)
homogeneous medium, has also become possible (Fig. 1.6).

The process understanding gained by detailed process analyses at the microscale
has to be transferred back to themacroscale atwhich analyses andpredictions relevant
for the evolution of the deep geological repository have to be made. Therefore,
down-scaling approaches have to be complemented by their reverse counterparts,
i.e. by up-scaling or coarse-graining techniques. This step is crucial for rendering
the new-found knowledge productive for safety cases and large-scale analyses. The
importance of this cross-scale process analytics approach is reflected in the fact
that several tasks explicitly study THMC processes at different scales in the current
DECOVALEX phase.
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Chapter 2
H Processes

Tao Chen, Jobst Maßmann and Peter Vogel

Steady Flow in a Rectangle

Peter Vogel and Jobst Maßmann

This section presents a set of examples which are standard practice in groundwater
hydraulics. We focus on the closed form solutions. The associated simulation exer-
cises have been checked by OGS; they may serve as verification test. Throughout
this section we are concerned with the evaluation of pressure distributions. For the
underlying theory of groundwater movement see Freeze and Cherry (1979), for more
advanced examples see Polubarinova-Kochina (1962).

2.1 Toth’s Box

This exercise has been adopted from Toth (1962). Given length L = 600m and
thickness H = 300m the domain represents the cuboid [0, L]×[0, H ]×[0, H ]. It
is discretized by 500×1×250 equally sized hexahedral elements. An isotropic per-
meability of 10−12 m2 is assumed for the material. Liquid viscosity is 1mPa·s and
gravity is neglected via zero liquid density. The pressure distribution p0x/L (p0 =
105 Pa) represents the groundwater table along the top face z = H , all other faces
are no-flow faces by default. The simulation (Table2.1) comprises one timestep to
establish the steady-state pressure distribution p(x, z) (Fig. 2.1).

T. Chen (B)
RWTH, E.ON Energy Research Center, RWTH Aachen University, Aachen, Germany
e-mail: TChen@eonerc.rwth-aachen.de

J. Maßmann · P. Vogel
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© Springer International Publishing AG 2018
O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media: Modelling and Benchmarking,
Terrestrial Environmental Sciences, https://doi.org/10.1007/978-3-319-68225-9_2
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Fig. 2.1 Pressure distribution

Table 2.1 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-2.1 Peter Vogel OGS-5.XX (github link) Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
Due to the setup the problem does not depend on the y-coordinate and the Laplace
equation becomes

∂2 p

∂x2
+ ∂2 p

∂z2
= 0. (2.1.1)

The specified boundary conditions read along the top face z = H

p(x, H) = p0
x

L
for 0 ≤ x ≤ L , (2.1.2)

along the no-flow face z = 0

∂ p

∂z
(x, 0) = 0 for 0 ≤ x ≤ L , (2.1.3)

and along the no-flow faces x = 0 and x = L

∂ p

∂x
(0, z) = ∂ p

∂x
(L , z) = 0 for 0 ≤ z ≤ H. (2.1.4)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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This boundary value problem will be solved by separation of variables. Assuming a
product solution

p(x, z) = F(x)G(z) (2.1.5)

the Laplace equation gives
1

F

d2F

dx2
= − 1

G

d2G

dz2
. (2.1.6)

Since the left hand side depends only on x and the right hand side depends only
on z, both sides are equal to some constant value −ω2. Thus the Laplace equation
separates into two ordinary differential equations

d2F

dx2
= −ω2F, (2.1.7)

d2G

dz2
= ω2G (2.1.8)

with the general solutions

F(x) = C1 cos(ωx) + C2 sin(ωx), (2.1.9)

G(z) = C3 cosh(ωz) + C4 sinh(ωz). (2.1.10)

This yields

p(x, z) = A cos(ωx) cosh(ωz) + B sin(ωx) cosh(ωz)

+ C cos(ωx) sinh(ωz) + D sin(ωx) sinh(ωz). (2.1.11)

The free constants A, B,C, D, and the eigenvalue ω will be determined from the
boundary conditions. The no-flow boundary condition along the bottom face z = 0

∂ p

∂z
(x, 0) = 0 = ω[C cos(ωx) + D sin(ωx)] (2.1.12)

is satisfied by
C = D = 0, (2.1.13)

and the no-flow boundary condition along the face x = 0

∂ p

∂x
(0, z) = 0 = ωB cosh(ωz) (2.1.14)

is satisfied by
B = 0. (2.1.15)

The no-flow boundary condition along the face x = L
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∂ p

∂x
(L , z) = 0 = ωA sin(ωL) cosh(ωz) (2.1.16)

yields the eigenvalues

ωn = nπ

L
for n = 0, 1, 2, . . . (2.1.17)

and the associated solutions

pn(x, z) = An cosh
(
nπ

z

L

)
cos

(
nπ

x

L

)
for n = 0, 1, 2, . . . . (2.1.18)

The pressure distribution takes the form

p(x, z) = A0 +
∞∑
n=1

An cosh
(
nπ

z

L

)
cos

(
nπ

x

L

)
. (2.1.19)

The specified boundary condition along the top face z = H yields the remaining
constants A0, A1, A2, . . ..

p(x, H) = p0
x

L
= A0 +

∞∑
n=1

An cosh

(
nπ

H

L

)
cos

(
nπ

x

L

)

= a0
2

+
∞∑
n=1

an cos
(
nπ

x

L

)
(2.1.20)

with the cosine series expansion of the prescribed surface pressure p0x/L on the last
line. The Fourier coefficients a0, a1, a2, . . . read

a0 = 2

L

∫ L

0
p0

x

L
dx = p0, (2.1.21)

and for n = 1, 2, . . .

an = 2

L

∫ L

0
p0

x

L
cos

(
nπ

x

L

)
dx = 2p0

(nπ)2
[(−1)n − 1]. (2.1.22)

Comparing coefficients gives the constants A0, A1, A2, . . . and the pressure distri-
bution p(x, z) becomes

p(x, z) = p0

(
1

2
− 4

π2

∞∑
n=1

cos
[
(2n − 1)π x

L

]

(2n − 1)2
cosh

[
(2n − 1)π z

L

]

cosh
[
(2n − 1)π H

L

]
)
. (2.1.23)
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Table 2.2 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-2.2 Peter Vogel OGS-5.XX (github link) Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

The series thus obtained is uniformly absolutely-convergent on the entire domain.
It satisfies the Laplace equation and the boundary conditions, hence, the pressure
distribution p(x, z) is the solution of the boundary value problem.

2.2 Flow Under a Dam

Given length L = 60m and thickness H = 30m the domain represents the cuboid
[0, L]×[0, H ]×[0, H ]. It is discretized by 600×1×300 equally sized hexahedral
elements. An isotropic permeability of 10−15 m2 is assumed for the material. Liquid
viscosity is 1mPa·s and gravity is neglected via zero liquid density. A prescribed
pressure distribution p0 f (x) (p0 = 105 Pa) prevails along the top face z = H . It
represents the groundwater table in the vicinity of the dam and is specified below.
The bottom z = 0 and the lateral faces are no-flow faces by default. The simulation
(Table2.2) comprises one timestep to establish the steady-state pressure distribution
p(x, z) (Fig. 2.2).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.

Fig. 2.2 Pressure distribution

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Due to the setup the problem does not depend on the y-coordinate and the Laplace
equation becomes

∂2 p

∂x2
+ ∂2 p

∂z2
= 0. (2.2.1)

The specified boundary conditions read along the top face z = H

p(x, H) = p0 f (x) =

⎧⎪⎨
⎪⎩

p0 for 0 ≤ x ≤ L
3 ,

p0
(
2 − 3x

L

)
for L

3 ≤ x ≤ 2L
3 ,

0 for 2L
3 ≤ x ≤ L ,

(2.2.2)

along the bottom face z = 0

∂ p

∂z
(x, 0) = 0 for 0 ≤ x ≤ L , (2.2.3)

and along the no-flow faces x = 0 and x = L

∂ p

∂x
(0, z) = ∂ p

∂x
(L , z) = 0 for 0 ≤ z ≤ H. (2.2.4)

Similar to the previous example the pressure distribution is represented by a series
of harmonic functions

p(x, z) = A0 +
∞∑
n=1

An cosh
(
nπ

z

L

)
cos

(
nπ

x

L

)
, (2.2.5)

which satisfies the boundary conditions along the no-flow faces x = 0, x = L , and
z = 0. The specified boundary condition along the top face z = H yields the remain-
ing constants A0, A1, A2, . . ..

p(x, H) = p0 f (x) = A0 +
∞∑
n=1

An cosh

(
nπ

H

L

)
cos

(
nπ

x

L

)

= a0
2

+
∞∑
n=1

an cos
(
nπ

x

L

)
(2.2.6)

with the cosine series expansion of the prescribed surface pressure p0 f (x) on the
last line. The Fourier coefficients a0, a1, a2, . . . read

a0 = 2

L

∫ L

0
p0 f (x)dx = p0, (2.2.7)

and for n = 1, 2, . . .
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an = 2

L

∫ L

0
p0 f (x) cos

(
nπ

x

L

)
dx = 12p0

(nπ)2
sin

nπ

2
sin

nπ

6
. (2.2.8)

Comparing coefficients gives the constants A0, A1, A2, . . . and the pressure distri-
bution p(x, z) becomes

p(x, z) = p0

(
1

2
+ 12

π2

∞∑
n=1

cos
[
(2n − 1)π x

L

]

(2n − 1)2
cosh

[
(2n − 1)π z

L

]

cosh
[
(2n − 1)π H

L

]

× sin
(2n − 1)π

2
sin

(2n − 1)π

6

)
. (2.2.9)

The series thus obtained is uniformly absolutely-convergent on the entire domain.
It satisfies the Laplace equation and the boundary conditions, hence, the pressure
distribution p(x, z) is the solution of the boundary value problem.

2.3 A Gallery of Disposal Wells

Given length L = 500m and thickness H = 50m the domain represents the cuboid
[0, L]×[0, L]×[0, H ]. It is discretized by 400×400×1 equally sized hexahedral
elements. An isotropic permeability of 10−12 m2 is assumed for the material. Liq-
uid viscosity is 1mPa·s and gravity is neglected via zero liquid density. The bottom
z = 0 and the top face z = H are no-flow faces by default. A prescribed pressure
distribution p0 f (y) (p0 = 105 Pa) prevails at the lateral face x = L . It represents the
well gallery and is specified below. Zero pressure has been assigned along the remain-
ing lateral faces. The simulation (Table2.3) comprises one timestep to establish the
steady-state pressure distribution p(x, y) (Fig. 2.3).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
Due to the setup the problem does not depend on the z-coordinate and the Laplace
equation becomes

∂2 p

∂x2
+ ∂2 p

∂y2
= 0. (2.3.1)

The specified boundary conditions read along the faces y = 0 and y = L

Table 2.3 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-2.3 Peter Vogel OGS-5.XX (github link) Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 2.3 Pressure distribution

p(x, 0) = p(x, L) = 0 for 0 ≤ x ≤ L , (2.3.2)

along the face x = 0
p(0, y) = 0 for 0 ≤ y ≤ L , (2.3.3)

and along the face x = L

p(L , y) = p0 f (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ y ≤ L

10
,

p0

(
10

3L
y − 1

3

)
for

L

10
≤ y ≤ 4L

10
,

p0 for
4L

10
≤ y ≤ 6L

10
,

p0

(
3 − 10

3L
y

)
for

6L

10
≤ y ≤ 9L

10
,

0 for
9L

10
≤ y ≤ L .

(2.3.4)
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This boundary value problem will be solved by separation of variables. Assuming a
product solution

p(x, y) = F(x)G(y) (2.3.5)

the Laplace equation gives

− 1

F

d2F

dx2
= 1

G

d2G

dy2
. (2.3.6)

Since the left hand side depends only on x and the right hand side depends only
on y, both sides are equal to some constant value −ω2. Thus the Laplace equation
separates into two ordinary differential equations

d2F

dx2
= ω2F, (2.3.7)

d2G

dy2
= −ω2G (2.3.8)

with the general solutions

F(x) = C1 sinh(ωx) + C2 cosh(ωx), (2.3.9)

G(y) = C3 cos(ωy) + C4 sin(ωy). (2.3.10)

This yields

p(x, y) = A sinh(ωx) cos(ωy) + B sinh(ωx) sin(ωy)

+ C cosh(ωx) cos(ωy) + D cosh(ωx) sin(ωy). (2.3.11)

The free constants A, B,C, D, and the eigenvalue ω will be determined from the
boundary conditions. Zero pressure along the face x = 0

p(0, y) = 0 = C cos(ωy) + D sin(ωy) (2.3.12)

is satisfied by
C = D = 0, (2.3.13)

and zero pressure along the face y = 0

p(x, 0) = 0 = A sinh(ωx) (2.3.14)

is satisfied by
A = 0. (2.3.15)

Zero pressure along the face y = L
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p(x, L) = 0 = B sinh(ωx) sin(ωL) (2.3.16)

yields the eigenvalues

ωn = nπ

L
for n = 1, 2, . . . (2.3.17)

and the associated solutions

pn(x, y) = Bn sinh
(
nπ

x

L

)
sin

(
nπ

y

L

)
for n = 1, 2, . . . . (2.3.18)

The pressure distribution takes the form

p(x, y) =
∞∑
n=1

Bn sinh
(
nπ

x

L

)
sin

(
nπ

y

L

)
. (2.3.19)

The specifiedboundary condition along the face x = L yields the remaining constants
B1, B2, . . . .

p(L , y) = p0 f (y) =
∞∑
n=1

Bn sinh(nπ) sin
(
nπ

y

L

)

=
∞∑
n=1

bn sin
(
nπ

y

L

)
(2.3.20)

with the sine series expansion of the prescribed pressure p0 f (y) on the last line. The
Fourier coefficients b1, b2, . . . read for n = 1, 2, . . .

bn = 2

L

∫ L

0
p0 f (y) sin

(
nπ

y

L

)
dy

= p0
80

3(nπ)2
sin

nπ

2
sin

nπ

4
sin

3nπ

20
. (2.3.21)

Comparing coefficients gives the constants B1, B2, . . . and the pressure distribution
p(x, y) becomes

p(x, y) = p0
80

3π2

∞∑
n=1

sinh
[
(2n − 1)π x

L

]

sinh [(2n − 1)π]

sin
[
(2n − 1)π y

L

]

(2n − 1)2

× sin
(2n − 1)π

2
sin

(2n − 1)π

4
sin

3(2n − 1)π

20
. (2.3.22)

The series thus obtained is uniformly absolutely-convergent on the entire domain.
It satisfies the Laplace equation and the boundary conditions, hence, the pressure
distribution p(x, y) is the solution of the boundary value problem.
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Table 2.4 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-2.4 Peter Vogel OGS-5.XX (github link) Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

2.4 A Catchment

Given length L = 500m and thickness H = 25m the domain represents the cuboid
[0, L/2]×[0, L]×[0, H ]. It is discretized by 250×500×1 equally sized hexahedral
elements. An isotropic permeability of 10−12 m2 is assumed for the material. Liquid
viscosity is 1mPa·s and gravity is neglected via zero liquid density. The bottom
z = 0 and the top face z = H are no-flow faces by default. The constant pressure
p0 = 105 Pa prevails along the lateral faces x = 0, y = 0, and y = L . A prescribed
pressure distribution p0(1 − f (y)) represents outflow along the lateral face x = L/2
and is specified below. The simulation (Table2.4) comprises one timestep to establish
the steady-state pressure distribution p(x, y) (Fig. 2.4).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.

Fig. 2.4 Pressure distribution

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Due to the setup the problem does not depend on the z-coordinate and the Laplace
equation becomes

∂2 p

∂x2
+ ∂2 p

∂y2
= 0. (2.4.1)

The specified boundary conditions read along the faces y = 0 and y = L

p(x, 0) = p(x, L) = p0 for 0 ≤ x ≤ L

2
, (2.4.2)

along the face x = 0
p(0, y) = p0 for 0 ≤ y ≤ L , (2.4.3)

and along the face x = L/2

p
( L

2
, y

)
= p0(1 − f (y)) for 0 ≤ y ≤ L , (2.4.4)

where f (y) is given by

f (y) =
{ y

L/2 for 0 ≤ y ≤ L
2 ,

2 − y
L/2 for L

2 ≤ y ≤ L .
(2.4.5)

Similar to the previous example the pressure distribution is represented by a series
of harmonic functions

p(x, y) = p0 −
∞∑
n=1

Bn sinh
(
nπ

x

L

)
sin

(
nπ

y

L

)
, (2.4.6)

which satisfies the boundary conditions along the faces y = 0, y = L , and x = 0. The
specified boundary condition along the face x = L/2 yields the remaining constants
B1, B2, . . . .

p
( L

2
, y

)
= p0(1 − f (y)) = p0 −

∞∑
n=1

Bn sinh
(nπ

2

)
sin

(
nπ

y

L

)

= p0 −
∞∑
n=1

bn sin
(
nπ

y

L

)
(2.4.7)

with the sine series expansion of p0 f (y) on the last line. The Fourier coefficients
b1, b2, . . . read for n = 1, 2, . . .

bn = 2

L

∫ L

0
p0 f (y) sin

(
nπ

y

L

)
dy = 8p0

(nπ)2
sin

nπ

2
. (2.4.8)
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Comparing coefficients gives the constants B1, B2, . . . and the pressure distribution
p(x, y) becomes

p(x, y) = p0 − 8p0
π2

∞∑
n=1

sinh
[
(2n − 1)π x

L

]

sinh
[
(2n − 1) π

2

] sin
[
(2n − 1)π y

L

]

(2n − 1)2
sin

(2n − 1)π

2
.

(2.4.9)

The series thus obtained is uniformly absolutely-convergent on the entire domain.
It satisfies the Laplace equation and the boundary conditions, hence, the pressure
distribution p(x, y) is the solution of the boundary value problem.

2.5 A Gallery of Recharge Wells

Given length L = 500m and thickness H = 50m the domain represents the cuboid
[0, L]×[0, L]×[0, H ]. It is discretized by 200×200×1 equally sized hexahedral
elements. An isotropic permeability k = 10−12 m2 is assumed for thematerial. Liquid
viscosity is μ = 1mPa·s and gravity is neglected via zero liquid density. The constant
pressure p0 = 105 Pa prevails at the face x = 0, the prescribed specific discharge
q0y/L (q0 = −3 · 10−7 m/s) represents the well gallery along the face x = L . The
remaining faces are no-flow faces by default. The simulation (Table2.5) comprises
one timestep to establish the steady-state pressure distribution p(x, y) (Fig. 2.5).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
Due to the setup the problem does not depend on the z-coordinate and the Laplace
equation becomes

∂2 p

∂x2
+ ∂2 p

∂y2
= 0. (2.5.1)

The specified boundary conditions read along the no-flow faces y = 0 and y = L

∂ p

∂y
(x, 0) = ∂ p

∂y
(x, L) = 0 for 0 ≤ x ≤ L , (2.5.2)

and along the specified pressure boundary x = 0

p(0, y) = p0 for 0 ≤ y ≤ L . (2.5.3)

Table 2.5 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-2.5 Peter Vogel OGS-5.XX (github link) Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 2.5 Pressure distribution

Darcy’s law yields the boundary condition associated with the well gallery

∂ p

∂x
(L , y) = q0

μ

k

y

L
for 0 ≤ y ≤ L . (2.5.4)

Similar to the previous examples the pressure distribution is represented by a series
of harmonic functions

p(x, y) = p0 + A0x +
∞∑
n=1

An sinh
(
nπ

x

L

)
cos

(
nπ

y

L

)
, (2.5.5)

which satisfies the boundary conditions along the faces y = 0, y = L , and x = 0. The
specified boundary condition along the face x = L yields the remaining constants
A0, A1, A2, . . ..

∂ p

∂x
(L , y) = q0

μ

k

y

L
= A0 +

∞∑
n=1

An
nπ

L
cosh(nπ) cos

(
nπ

y

L

)

= a0
2

+
∞∑
n=1

an cos
(
nπ

y

L

)
(2.5.6)
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with the cosine series expansion of the imposed boundary condition on the last line.
The Fourier coefficients a0, a1, a2, . . . read

a0 = 2

L

∫ L

0
q0

μ

k

y

L
dy = q0

μ

k
, (2.5.7)

and for n = 1, 2, . . .

an = 2

L

∫ L

0
q0

μ

k

y

L
cos

(
nπ

y

L

)
dy = μ

k

2q0
(πn)2

[(−1)n − 1]. (2.5.8)

Comparing coefficients gives the constants A0, A1, A2, . . . and the pressure distri-
bution p(x, y) becomes

p(x, y) = p0 + q0μL

2k

(
x

L
− 8

π3

∞∑
n=1

sinh
[
(2n − 1)π x

L

]

cosh[(2n − 1)π]
cos

[
(2n − 1)π y

L

]

(2n − 1)3

)
.

(2.5.9)

The series thus obtained is uniformly absolutely-convergent on the entire domain.
It satisfies the Laplace equation and the boundary conditions, hence, the pressure
distribution p(x, y) is the solution of the boundary value problem.

2.6 H Processes in Stochastic Discrete Fracture Networks

Tao Chen

2.6.1 Problem Definition

This benchmark simulates flow through a stochastically generated discrete fracture
model. The dimensions of the model are 500 m × 500m × 150m (Fig. 2.6). The
fractures are created by FracMan (Dershowitz et al. 1998) based on the fracture data
from the Soultz-sous-Forêts site (Massart et al. 2010; Sausse et al. 2010). There are
40 fractures in the model with multiple-scale sizes. The hydraulic conductivities of
the fractures and the rock matrix are 1.17m/s and 9.79 × 10−9 m/s, respectively.
The linear boundary conditions are applied to the model along the y-axis with the
hydraulic gradient of 1.
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Fig. 2.6 The stochastic discrete fracture network, grey surfaces denote fractures

2.6.2 Input Files

Themodel is defined by input files. They are listed in the followingwith explanations.

MMP: Medium Properties

Listing 2.1 Medium property file: Stoch_Frac_Flow.mmp

#MEDIUM_PROPERTIES
$GEOMETRY_DIMENSION

3
$PERMEABILITY_TENSOR

ISOTROPIC 9.7904e-09
#MEDIUM_PROPERTIES
$GEOMETRY_DIMENSION

2
$PERMEABILITY_TENSOR

ISOTROPIC 1.1748
#STOP

MSH: Mesh
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The meshes for the stochastic fracture model are created with Hypermesh (Altair
2016). The rock matrix meshes and the fracture meshes are represented by tetrahe-
drons and triangles, respectively.

Listing 2.2 Mesh file: Stoch_Frac_Flow.msh

#FEM_MSH
$NODES
32552
0 -0.000118 440.187897 0.000059
1 -0.000098 446.348785 15.173040
2 -0.000077 452.534393 30.406719
3 -0.000056 458.720001 45.640388
4 -0.000037 464.705688 60.381859
5 -0.000020 469.761414 72.832741
6 -0.000000 482.000092 73.765808
7 -0.000000 491.930298 74.522881

[..]

32550 0.000000 280.569489 49.522678
32551 0.000000 242.460602 14.133650
$ELEMENTS
202263
0 0 tet 27048 2941 5985 2943
1 0 tet 19182 27930 8712 8710
2 0 tet 19203 19204 8101 8100
3 0 tet 8352 8344 26593 26665
4 0 tet 15154 14069 16322 16321
5 0 tet 12557 12571 12099 31785
6 0 tet 12239 15554 12252 12219
7 0 tet 19662 19392 26947 26962

[..]

158448 0 tet 13084 16522 16549 16523
158449 0 tet 14017 31899 14152 14016
158450 0 tet 12985 31632 12971 31680
158451 1 tri 6244 6245 6246
158452 1 tri 1886 1887 6278
158453 1 tri 6278 1887 6271

[..]

202261 1 tri 7555 24957 27274
202262 1 tri 27274 24957 22678
#STOP
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MFP: Fluid Properties

Listing 2.3 Fluid property file: Stoch_Frac_Flow.mfp

#FLUID_PROPERTIES
$FLUID_TYPE

LIQUID
$DENSITY

1 998.0
$VISCOSITY

1 1e-3
#STOP

BC: Boundary Condition

The linear boundary conditions are applied to the model surface. The hydraulic head
values for nodes are defined directly by using the file bc_y.tex.

Listing 2.4 Boundary condition file: Stoch_Frac_Flow.bc

#BOUNDARY_CONDITION
$PCS_TYPE

GROUNDWATER_FLOW
$PRIMARY_VARIABLE

HEAD
$DIS_TYPE

DIRECT bc_y.tex
#STOP

The constant hydraulic head is defined on four surfaces: two x-z surfaces and two
y-z surfaces which contain 6378 nodes in total. The first column in the file indicates
sequence numbers of the nodes which are identical with those in the mesh file. The
second column represents the hydraulic head values for the corresponding nodes.

Listing 2.5 Hydraulic head file for the linear boundary conditions: bc_y.tex

0 59.8121033
1 53.6512146
2 47.4656067
3 41.2799988
4 35.2943115
5 30.2385864
6 17.9999084
7 8.06970215
8 0.00000000
9 0.00000000

[..]

6589 500.000000
6590 500.000000
8108 4.64291382
8109 10.1155090
8110 15.5880127
8111 20.8116150
8112 25.6043091
9912 500.000000
9913 500.000000
9914 500.000000
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10864 0.00000000
10865 0.00000000

[..]

32549 176.505402
32550 219.430511
32551 257.539398

PCS: Process
Listing 2.6 Process file: Stoch_Frac_Flow.pcs

#PROCESS
$PCS_TYPE

GROUNDWATER_FLOW
#STOP

NUM: Numerical Properties

Listing 2.7 Numeric parameters file: Stoch_Frac_Flow.num

#NUMERICS
$PCS_TYPE

GROUNDWATER_FLOW
$LINEAR_SOLVER

; method error_tolerance max_iterations theta precond storage
2 1 1.e-014 1000 1.0 1 2

#STOP

OUT: Output

Listing 2.8 Output file: Stoch_Frac_Flow.out

#OUTPUT
$PCS_TYPE

GROUNDWATER_FLOW
$NOD_VALUES

HEAD
VELOCITY_Y1

$GEO_TYPE
DOMAIN

$DAT_TYPE
VTK

$TIM_TYPE
STEADY

#STOP

2.6.3 Results

Using the input files listed above, we can simulate flow through a stochastically
generated discrete fracture model by running OGS5 (Table2.6). The vtk file is gen-
erated when the simulation is finished. The benchmark model illustrates how frac-
tures influence the hydraulic head distribution of the model which act as preferable
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Table 2.6 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-2.6 Tao Chen OGS-5.7.0 (Mac) Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

Fig. 2.7 Hydraulic head and Darcy’s velocity in the y-direction for the stochastically generated
discrete fracturemodel (a, e) and for the corresponding equivalent fracturemodels based on different
upscaling methods (b–d) and (f–h) (Chen 2017)

paths for fluid flow (Fig. 2.7). Furthermore, by comparing with equivalent fracture
models, which are based on different upscaling methods, it demonstrates that the
hydraulic head distributions in the discrete fracture model and in the equivalent frac-
ture model are quite similar. However, for Darcy’s velocity, it can be represented
explicitly according to the fracture geometry and has a higher magnitude than that
in equivalent fracture models.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7


Chapter 3
M Processes

Xing-Yuan Miao, Jobst Maßmann, Thomas Nagel, Dmitri Naumov,
Francesco Parisio and Peter Vogel

Bending of Plates

Peter Vogel and Jobst Maßmann

This section presents problems on bending of elastic plates. Most of the material is
based on ideas outlined by Timoshenko and Goodier (1951), the last exercise of this
section has been adopted from Woinowsky-Krieger (1933). We focus on the closed
form solutions. The associated simulation exercises have been checked by OGS;
they may serve as verification tests. For the underlying theory of linear elasticity see
Gurtin (1972).

3.1 A Thick Plate Undergoes Compression

Given length 2L = 20mand thickness H = 2m the domain represents the rectangular
plate [−L , L] × [−L , L] × [−H, 0]. It is discretized by 20 × 20 × 4 equally sized
hexahedral elements. The material has been selected elastic with Young’s modulus
E = 12,600 MPa and Poisson’s ratio ν = 0.2, gravity is neglected via zero material
density. Fixities have been prescribed in the interior of the domain with zero x-
displacement along the plane x = 0, zero y-displacement along the plane y = 0, and
zero z-displacement at the origin. Specified loads P(x, y, z) prevail along the surface
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Fig. 3.1 Deformed mesh, vertical displacements

of the domain. With the aid of the stress σ0 = 500MPa these loads read along the
faces x = L and x = −L

P(L , y, z) = σ0

H

⎛
⎝
z
0
0

⎞
⎠ , P(−L , y, z) = −σ0

H

⎛
⎝
z
0
0

⎞
⎠ , (3.1.1)

and the remaining faces are free of load by default. The simulation (Table3.1) com-
prises one timestep to establish the stresses, the strains, and the displacement vectorr
(ux , uy, uz) (Fig. 3.1).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = σ0

H

⎛
⎝
z 0 0
0 0 0
0 0 0

⎞
⎠ (3.1.2)

satisfies the equation of mechanical equilibrium

div σ = 0 (3.1.3)

as well as the specified surface loads because along the faces x = L and x = −L

σ

⎛
⎝
1
0
0

⎞
⎠ = −σ

⎛
⎝

−1
0
0

⎞
⎠ =

⎛
⎝

σ11

σ12

σ13

⎞
⎠ = σ0

H

⎛
⎝
z
0
0

⎞
⎠ , (3.1.4)

and similarly for the remaining faces. Hooke’s law reads for the strains
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ε11 = ∂ux

∂x
= 1

E
[σ11 − ν(σ22 + σ33)] = σ0

EH
z, (3.1.5)

ε22 = ∂uy

∂y
= 1

E
[σ22 − ν(σ11 + σ33)] = −ν

σ0

EH
z, (3.1.6)

ε33 = ∂uz

∂z
= 1

E
[σ33 − ν(σ11 + σ22)] = −ν

σ0

EH
z, (3.1.7)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

E
σ12 = 0, (3.1.8)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

E
σ13 = 0, (3.1.9)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 2(1 + ν)

E
σ23 = 0, (3.1.10)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 gives the displacement vector (ux , uy, uz)

ux (x, y, z) = σ0

EH
zx + f (y, z), (3.1.11)

uy(x, y, z) = −ν
σ0

EH
zy + g(x, z), (3.1.12)

uz(x, y, z) = −ν
σ0

EH

1

2
z2 + h(x, y), (3.1.13)

where f (y, z), g(x, z), and h(x, y) have to be determined from the shear strains and
the specified fixities. Due to the x-fixities along the plane x = 0

f (y, z) = 0, (3.1.14)

and due to the y-fixities along the plane y = 0

g(x, z) = 0. (3.1.15)

Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.1.16)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= σ0

EH
x + ∂h

∂x
= 0, (3.1.17)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= −ν

σ0

EH
y + ∂h

∂y
= 0, (3.1.18)



40 X.-Y. Miao et al.

Table 3.1 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-3.1 Peter Vogel OGS-5 Available OK

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

hence,

∂h

∂x
= − σ0

EH
x, (3.1.19)

∂h

∂y
= ν

σ0

EH
y, (3.1.20)

and therefore,

h(x, y) = − σ0

EH

1

2
x2 + ν

σ0

EH

1

2
y2 + C. (3.1.21)

The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = σ0

EH
xz, (3.1.22)

uy(y, z) = −ν
σ0

EH
yz, (3.1.23)

uz(x, y, z) = − σ0

2EH
[x2 + ν(z2 − y2)]. (3.1.24)

3.2 A Thick Plate Undergoes Tension

Given length 2L = 20mand thickness H = 2m the domain represents the rectangular
plate [−L , L] × [−L , L] × [−H, 0]. It is discretized by 20 × 20 × 4 equally sized
hexahedral elements. The material has been selected elastic with Young’s modulus
E = 12,600 MPa and Poisson’s ratio ν = 0.2, gravity is neglected via zero material
density. Fixities have been prescribed in the interior of the domain with zero x-
displacement along the plane x = 0, zero y-displacement along the plane y = 0, and
zero z-displacement at the origin. Specified loads P(x, y, z) prevail along the surface
of the domain. With the aid of the stress σ0 = 500 MPa these loads read along the
faces y = L and y = −L

P(x, L , z) = −σ0

H

⎛
⎝
0
z
0

⎞
⎠ , P(x,−L , z) = σ0

H

⎛
⎝
0
z
0

⎞
⎠ , (3.2.1)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 3.2 Deformed mesh, vertical displacements

and the remaining faces are free of load by default. The simulation (Table3.2) com-
prises one timestep to establish the stresses, the strains, and the displacement vector
(ux , uy, uz) (Fig. 3.2).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = −σ0

H

⎛
⎝
0 0 0
0 z 0
0 0 0

⎞
⎠ (3.2.2)

satisfies the equation of mechanical equilibrium

div σ = 0 (3.2.3)

as well as the specified surface loads because along the faces y = L and y = −L

σ

⎛
⎝
0
1
0

⎞
⎠ = −σ

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝

σ12

σ22

σ23

⎞
⎠ = −σ0

H

⎛
⎝
0
z
0

⎞
⎠ , (3.2.4)

and similarly for the remaining faces. Hooke’s law reads for the strains

ε11 = ∂ux

∂x
= 1

E
[σ11 − ν(σ22 + σ33)] = ν

σ0

EH
z, (3.2.5)

ε22 = ∂uy

∂y
= 1

E
[σ22 − ν(σ11 + σ33)] = − σ0

EH
z, (3.2.6)

ε33 = ∂uz

∂z
= 1

E
[σ33 − ν(σ11 + σ22)] = ν

σ0

EH
z, (3.2.7)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

E
σ12 = 0, (3.2.8)
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ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

E
σ13 = 0, (3.2.9)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 2(1 + ν)

E
σ23 = 0, (3.2.10)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 gives the displacement vector (ux , uy, uz)

ux (x, y, z) = ν
σ0

EH
zx + f (y, z), (3.2.11)

uy(x, y, z) = − σ0

EH
zy + g(x, z), (3.2.12)

uz(x, y, z) = ν
σ0

EH

1

2
z2 + h(x, y), (3.2.13)

where f (y, z), g(x, z), and h(x, y) have to be determined from the shear strains and
the specified fixities. Due to the x-fixities along the plane x = 0

f (y, z) = 0, (3.2.14)

and due to the y-fixities along the plane y = 0

g(x, z) = 0. (3.2.15)

Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.2.16)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= ν

σ0

EH
x + ∂h

∂x
= 0, (3.2.17)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= − σ0

EH
y + ∂h

∂y
= 0, (3.2.18)

hence,

∂h

∂x
= −ν

σ0

EH
x, (3.2.19)

∂h

∂y
= σ0

EH
y, (3.2.20)

and therefore,

h(x, y) = −ν
σ0

EH

1

2
x2 + σ0

EH

1

2
y2 + C. (3.2.21)
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The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = ν
σ0

EH
xz, (3.2.22)

uy(y, z) = − σ0

EH
yz, (3.2.23)

uz(x, y, z) = σ0

2EH
[y2 + ν(z2 − x2)]. (3.2.24)

3.3 A Thick Plate Undergoes Compression and Tension

Given length 2L = 20 m and thickness H = 2 m the domain represents the rectan-
gular plate [−L , L] × [−L , L] × [−H, 0]. It is discretized by 20 × 20 × 4 equally
sized hexahedral elements. The material has been selected elastic with Young’s mod-
ulus E = 15,000 MPa and Poisson’s ratio ν = 0.2, gravity is neglected via zero
material density. Fixities have been prescribed in the interior of the domain with zero
x-displacement along the plane x = 0, zero y-displacement along the plane y = 0,
and zero z-displacement at the origin. Specified loads P(x, y, z) prevail along the
lateral boundaries of the domain.With the aid of the stress σ0 = 500MPa these loads
read along the faces x = L and x = −L

P(L , y, z) = σ0

H

⎛
⎝
z
0
0

⎞
⎠ , P(−L , y, z) = −σ0

H

⎛
⎝
z
0
0

⎞
⎠ , (3.3.1)

and along the faces y = L and y = −L

P(x, L , z) = −σ0

H

⎛
⎝
0
z
0

⎞
⎠ , P(x,−L , z) = σ0

H

⎛
⎝
0
z
0

⎞
⎠ . (3.3.2)

The top z = 0 and the bottom z = −H are free of load by default. The simula-
tion (Table3.3) comprises one timestep to establish the stresses, the strains, and the
displacement vector (ux , uy, uz) (Fig. 3.3).

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 3.3 Deformed mesh, vertical displacements

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = σ0

H

⎛
⎝
z 0 0
0 −z 0
0 0 0

⎞
⎠ (3.3.3)

satisfies the equation of mechanical equilibrium

div σ = 0 (3.3.4)

as well as the specified surface loads because along the faces x = L and x = −L

σ

⎛
⎝
1
0
0

⎞
⎠ = −σ

⎛
⎝

−1
0
0

⎞
⎠ =

⎛
⎝

σ11

σ12

σ13

⎞
⎠ = σ0

H

⎛
⎝
z
0
0

⎞
⎠ , (3.3.5)

along the faces y = L and y = −L

σ

⎛
⎝
0
1
0

⎞
⎠ = −σ

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝

σ12

σ22

σ23

⎞
⎠ = −σ0

H

⎛
⎝
0
z
0

⎞
⎠ , (3.3.6)

and similarly for the top face and the bottom face. Hooke’s law reads for the strains

ε11 = ∂ux

∂x
= 1

E
[σ11 − ν(σ22 + σ33)] = (1 + ν)

σ0

EH
z, (3.3.7)

ε22 = ∂uy

∂y
= 1

E
[σ22 − ν(σ11 + σ33)] = −(1 + ν)

σ0

EH
z, (3.3.8)
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ε33 = ∂uz

∂z
= 1

E
[σ33 − ν(σ11 + σ22)] = 0, (3.3.9)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

E
σ12 = 0, (3.3.10)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

E
σ13 = 0, (3.3.11)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 2(1 + ν)

E
σ23 = 0, (3.3.12)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 gives the displacement vector (ux , uy, uz)

ux (x, y, z) = (1 + ν)
σ0

EH
zx + f (y, z), (3.3.13)

uy(x, y, z) = −(1 + ν)
σ0

EH
zy + g(x, z), (3.3.14)

uz(x, y, z) = h(x, y), (3.3.15)

where f (y, z), g(x, z), and h(x, y) have to be determined from the shear strains and
the specified fixities. Due to the x-fixities along the plane x = 0

f (y, z) = 0, (3.3.16)

and due to the y-fixities along the plane y = 0

g(x, z) = 0. (3.3.17)

Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.3.18)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= (1 + ν)

σ0

EH
x + ∂h

∂x
= 0, (3.3.19)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= −(1 + ν)

σ0

EH
y + ∂h

∂y
= 0, (3.3.20)

hence,

∂h

∂x
= −(1 + ν)

σ0

EH
x, (3.3.21)

∂h

∂y
= (1 + ν)

σ0

EH
y, (3.3.22)
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and therefore,

h(x, y) = 1 + ν

2

σ0

EH
(y2 − x2) + C. (3.3.23)

The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = (1 + ν)
σ0

EH
xz, (3.3.24)

uy(y, z) = −(1 + ν)
σ0

EH
yz, (3.3.25)

uz(x, y) = 1 + ν

2

σ0

EH
(y2 − x2). (3.3.26)

3.4 A Thick Plate Undergoes Tension and Shear

Given length 2L = 20m and thickness H = 2m the domain represents the rectangu-
lar plate [0, 2L] × [−L , L] × [−H, 0]. It is discretized by 20 × 20 × 4 equally sized
hexahedral elements. The material has been selected elastic with Young’s modulus
E = 12,600 MPa and Poisson’s ratio ν = 0.2, gravity is neglected via zero material
density. Fixities have been prescribedwith zero x-displacement along the face x = 0,
zero y-displacement along the plane y = 0, and zero z-displacement at the origin.
Specified loads P(x, y, z) prevail along the entire surface of the domain. With the
aid of the stress σ0 = 500 MPa these loads read along the faces x = 2L and x = 0

P(2L , y, z) = −σ0

⎛
⎝
0
0
1

⎞
⎠ , P(0, y, z) = σ0

⎛
⎝
0
0
1

⎞
⎠ , (3.4.1)

along the faces y = L and y = −L

P(x, L , z) = −σ0

H

⎛
⎝
0
z
0

⎞
⎠ , P(x,−L , z) = σ0

H

⎛
⎝
0
z
0

⎞
⎠ , (3.4.2)

and along the faces z = 0 and z = −H

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 3.4 Deformed mesh, vertical displacements

P(x, y, 0) = −σ0

⎛
⎝
1
0
0

⎞
⎠ , P(x, y,−H) = σ0

⎛
⎝
1
0
0

⎞
⎠ . (3.4.3)

The simulation (Table3.4) comprises one timestep to establish the stresses, the
strains, and the displacement vector (ux , uy, uz) (Fig. 3.4).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = −σ0

⎛
⎝
0 0 1
0 z/H 0
1 0 0

⎞
⎠ (3.4.4)

satisfies the equation of mechanical equilibrium

div σ = 0 (3.4.5)

as well as the specified surface loads because along the faces x = 2L and x = 0

σ

⎛
⎝
1
0
0

⎞
⎠ = −σ

⎛
⎝

−1
0
0

⎞
⎠ =

⎛
⎝

σ11

σ12

σ13

⎞
⎠ = −σ0

⎛
⎝
0
0
1

⎞
⎠ , (3.4.6)

along the faces y = L and y = −L

σ

⎛
⎝
0
1
0

⎞
⎠ = −σ

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝

σ12

σ22

σ23

⎞
⎠ = −σ0

H

⎛
⎝
0
z
0

⎞
⎠ , (3.4.7)
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and along the faces z = 0 and z = −H

σ

⎛
⎝
0
0
1

⎞
⎠ = −σ

⎛
⎝

0
0

−1

⎞
⎠ =

⎛
⎝

σ13

σ23

σ33

⎞
⎠ = −σ0

⎛
⎝
1
0
0

⎞
⎠ . (3.4.8)

Hooke’s law reads for the strains

ε11 = ∂ux

∂x
= 1

E
[σ11 − ν(σ22 + σ33)] = ν

σ0

EH
z, (3.4.9)

ε22 = ∂uy

∂y
= 1

E
[σ22 − ν(σ11 + σ33)] = − σ0

EH
z, (3.4.10)

ε33 = ∂uz

∂z
= 1

E
[σ33 − ν(σ11 + σ22)] = ν

σ0

EH
z, (3.4.11)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

E
σ12 = 0, (3.4.12)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

E
σ13 = −2(1 + ν)

E
σ0, (3.4.13)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 2(1 + ν)

E
σ23 = 0, (3.4.14)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 gives the displacement vector (ux , uy, uz)

ux (x, y, z) = ν
σ0

EH
zx + f (y, z), (3.4.15)

uy(x, y, z) = − σ0

EH
zy + g(x, z), (3.4.16)

uz(x, y, z) = ν
σ0

EH

1

2
z2 + h(x, y), (3.4.17)

where f (y, z), g(x, z), and h(x, y) have to be determined from the shear strains and
the specified fixities. Due to the x-fixities along the face x = 0

f (y, z) = 0, (3.4.18)

and due to the y-fixities along the plane y = 0

g(x, z) = 0. (3.4.19)

Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.4.20)
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ε13 = ∂ux

∂z
+ ∂uz

∂x
= ν

σ0

EH
x + ∂h

∂x
= −2(1 + ν)

E
σ0, (3.4.21)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= − σ0

EH
y + ∂h

∂y
= 0, (3.4.22)

hence,

∂h

∂x
= −2(1 + ν)

E
σ0 − ν

σ0

EH
x, (3.4.23)

∂h

∂y
= σ0

EH
y, (3.4.24)

and therefore,

h(x, y) = −2(1 + ν)

E
σ0x − ν

σ0

EH

1

2
x2 + σ0

EH

1

2
y2 + C. (3.4.25)

The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = ν
σ0

EH
xz, (3.4.26)

uy(y, z) = − σ0

EH
yz, (3.4.27)

uz(x, y, z) = σ0

2EH
[y2 + ν(z2 − x2)] − 2(1 + ν)

E
σ0x . (3.4.28)

3.5 A Thick Plate Undergoes Tension and Twist

Given length 2L = 20m and thickness H = 2m the domain represents the rectangu-
lar plate [0, 2L] × [−L , L] × [−H, 0]. It is discretized by 20 × 20 × 4 equally sized
hexahedral elements. The material has been selected elastic with Young’s modulus
E = 8,100 MPa and Poisson’s ratio ν = 0.2, gravity is neglected via zero material
density. Fixities have been prescribedwith zero x-displacement along the face x = 0,
zero y-displacement along the plane y = 0, and zero z-displacement at the origin.
Specified loads P(x, y, z) prevail along the entire surface of the domain. With the
aid of the stress σ0 = 500 MPa these loads read along the faces x = 2L and x = 0

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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P(2L , y, z) = σ0

2L

⎛
⎝
0
0
y

⎞
⎠ , P(0, y, z) = − σ0

2L

⎛
⎝
0
0
y

⎞
⎠ , (3.5.1)

along the faces y = L and y = −L

P(x, L , z) = σ0

⎛
⎝

0
−z/H
x/(2L)

⎞
⎠ , P(x,−L , z) = −σ0

⎛
⎝

0
−z/H
x/(2L)

⎞
⎠ , (3.5.2)

and along the faces z = 0 and z = −H

P(x, y, 0) = σ0

2L

⎛
⎝

y
x
0

⎞
⎠ , P(x, y,−H) = − σ0

2L

⎛
⎝

y
x
0

⎞
⎠ . (3.5.3)

The simulation (Table3.5) comprises one timestep to establish the stresses, the
strains, and the displacement vector (ux , uy, uz) (Fig. 3.5).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = σ0

⎛
⎝

0 0 y/(2L)

0 −z/H x/(2L)

y/(2L) x/(2L) 0

⎞
⎠ (3.5.4)

satisfies the equation of mechanical equilibrium

div σ = 0 (3.5.5)

Fig. 3.5 Deformed mesh, vertical displacements
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as well as the specified surface loads because along the faces x = 2L and x = 0

σ

⎛
⎝
1
0
0

⎞
⎠ = −σ

⎛
⎝

−1
0
0

⎞
⎠ =

⎛
⎝

σ11

σ12

σ13

⎞
⎠ = σ0

2L

⎛
⎝
0
0
y

⎞
⎠ , (3.5.6)

along the faces y = L and y = −L

σ

⎛
⎝
0
1
0

⎞
⎠ = −σ

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝

σ12

σ22

σ23

⎞
⎠ = σ0

⎛
⎝

0
−z/H
x/(2L)

⎞
⎠ , (3.5.7)

and along the faces z = 0 and z = −H

σ

⎛
⎝
0
0
1

⎞
⎠ = −σ

⎛
⎝

0
0

−1

⎞
⎠ =

⎛
⎝

σ13

σ23

σ33

⎞
⎠ = σ0

2L

⎛
⎝

y
x
0

⎞
⎠ . (3.5.8)

Hooke’s law reads for the strains

ε11 = ∂ux

∂x
= 1

E
[σ11 − ν(σ22 + σ33)] = ν

σ0

EH
z, (3.5.9)

ε22 = ∂uy

∂y
= 1

E
[σ22 − ν(σ11 + σ33)] = − σ0

EH
z, (3.5.10)

ε33 = ∂uz

∂z
= 1

E
[σ33 − ν(σ11 + σ22)] = ν

σ0

EH
z, (3.5.11)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

E
σ12 = 0, (3.5.12)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

E
σ13 = 1 + ν

EL
σ0y, (3.5.13)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 2(1 + ν)

E
σ23 = 1 + ν

EL
σ0x, (3.5.14)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 gives the displacement vector (ux , uy, uz)

ux (x, y, z) = ν
σ0

EH
zx + f (y, z), (3.5.15)

uy(x, y, z) = − σ0

EH
zy + g(x, z), (3.5.16)

uz(x, y, z) = ν
σ0

EH

1

2
z2 + h(x, y), (3.5.17)

where f (y, z), g(x, z), and h(x, y) have to be determined from the shear strains and
the specified fixities. Due to the x-fixities along the face x = 0
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f (y, z) = 0, (3.5.18)

and due to the y-fixities along the plane y = 0

g(x, z) = 0. (3.5.19)

Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.5.20)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= ν

σ0

EH
x + ∂h

∂x
= 1 + ν

EL
σ0y, (3.5.21)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= − σ0

EH
y + ∂h

∂y
= 1 + ν

EL
σ0x, (3.5.22)

hence,

∂h

∂x
= 1 + ν

EL
σ0y − νσ0

EH
x, (3.5.23)

∂h

∂y
= 1 + ν

EL
σ0x + σ0

EH
y, (3.5.24)

and therefore,

h(x, y) = 1 + ν

EL
σ0xy − νσ0

2EH
x2 + σ0

2EH
y2 + C. (3.5.25)

The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = ν
σ0

EH
xz, (3.5.26)

uy(y, z) = − σ0

EH
yz, (3.5.27)

uz(x, y, z) = σ0

2EH
[y2 + ν(z2 − x2)] + 1 + ν

EL
σ0xy. (3.5.28)

3.6 A Double Fourier Series Representation

This exercise has been adopted fromWoinowsky-Krieger (1933). Given length L =
20 m and thickness 2H = 4 m the domain represents the rectangular plate [0, L] ×
[0, L] × [−H, H ]. It is discretized by 96,000 hexahedral elements. The material has
been selected elastic with Young’s modulus E = 15,000 MPa and Poisson’s ratio
ν = 0.2, gravity is neglected via zero material density. The bottom face is free of



3 M Processes 53

load by default. A compressive stress P(x, y) prevails along the top face, fixities
have been prescribed along the lateral boundaries of the domain; details are given
below. The simulation (Table3.6) comprises one timestep to establish the stresses,
the strains, and the displacement vector (ux , uy, uz) (Fig. 3.6).

The entire solution will be represented by double Fourier series, the associated
form of the imposed boundary conditions will be given first.With the aid of the stress
σ0 = −1 MPa and denoting by

S1 the convex hull of
{

(0, 0), ( L
4 , L

4 ), ( L
4 , 3L

4 ), (0, L)
}
,

S2 the convex hull of
{

(0, 0), (0, L), ( 3L4 , L
4 ), ( L

4 , L
4 )

}
,

S3 the convex hull of
{

( L
4 , L

4 ), ( 3L4 , L
4 ), ( 3L4 , 3L

4 ), ( L
4 , 3L

4 )
}
,

S4 the convex hull of
{

(L , 0), (L , L), ( 3L4 , 3L
4 ), ( 3L4 , L

4 )
}
,

S5 the convex hull of
{

( L
4 , 3L

4 ), ( 3L4 , 3L
4 ), (L , L), (0, L)

}

the specified top load (Fig. 3.7) reads

Fig. 3.6 Deformations scaled up, vertical displacements

Table 3.5 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-3.5 Peter Vogel OGS-5 Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7


54 X.-Y. Miao et al.

Fig. 3.7 Deformations scaled up, vertical stress

P(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ0
4x
L on S1,

σ0
4y
L on S2,

σ0 on S3,

σ0
4
L (L − x) on S4,

σ0
4
L (L − y) on S5.

(3.6.1)

The double Fourier series representation of P(x, y) takes the form

P(x, y) =
∞∑

m=1

∞∑
n=1

Pmn sin
(mπ

L
x
)
sin

(nπ

L
y
)

, (3.6.2)

where for m, n = 1, 2, . . .

Pmn = 4

L2

∫ L

0

∫ L

0
P(x, y) sin

(mπ

L
x
)
sin

(nπ

L
y
)
dxdy. (3.6.3)

Now, with P(x, y) as defined above, the integrals involved may be evaluated by
elementary analytical methods. For m, n = 1, 2, . . . and with the aid of

Amn = σ0
16

mnπ2
sin

(mπ

2

)
sin

(mπ

4

)
sin

(nπ

2

)
sin

(nπ

4

)
, (3.6.4)
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Bmn = σ0
16

π
cos

(
m + n

2
π

)
·
(
cos(nπ) − 1

n
+ cos(mπ) − 1

m

)

·
(
sin

(
m+n
4 π

)

(m + n)2π2
+ 1

4

cos
(
m+n
4 π

)

(m + n)π

)
, (3.6.5)

Cmn = σ0
16

π
cos

(
m − n

2
π

)
·
(
cos(nπ) − 1

n
− cos(mπ) − 1

m

)

·
(
sin

(
m−n
4 π

)

(m − n)2π2
+ 1

4

cos
(
m−n
4 π

)

(m − n)π

)
(3.6.6)

the Fourier coefficients Pmn become

Pmn =
{
Amn + Bmn for m = n,

Amn + Bmn + Cmn for m �= n.
(3.6.7)

Let

σ(x, y, z) =
⎛
⎝

σ11(x, y, z) σ12(x, y, z) σ13(x, y, z)
σ12(x, y, z) σ22(x, y, z) σ23(x, y, z)
σ13(x, y, z) σ23(x, y, z) σ33(x, y, z)

⎞
⎠ (3.6.8)

denote the stress tensor. The imposed boundary conditions read along the bottom
face z = −H

σ13(x, y,−H) = 0,

σ23(x, y,−H) = 0, (3.6.9)

σ33(x, y,−H) = 0,

along the top face z = H

σ13(x, y, H) = 0,

σ23(x, y, H) = 0, (3.6.10)

σ33(x, y, H) = P(x, y) =
∞∑

m=1

∞∑
n=1

Pmn sin
(mπ

L
x
)
sin

(nπ

L
y
)

,

along the lateral faces x = 0 and x = L

σ11(0, y, z) = σ11(L , y, z) = 0,

uy(0, y, z) = uy(L , y, z) = 0, (3.6.11)

uz(0, y, z) = uz(L , y, z) = 0,
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and along the lateral faces y = 0 and y = L

σ22(x, 0, z) = σ22(x, L , z) = 0,

ux (x, 0, z) = ux (x, L , z) = 0, (3.6.12)

uz(x, 0, z) = uz(x, L , z) = 0.

The double Fourier series representations of the displacements

ux (x, y, z) = −
∞∑

m=1

∞∑
n=1

Umn(z) cos
(mπ

L
x
)
sin

(nπ

L
y
)

,

uy(x, y, z) = −
∞∑

m=1

∞∑
n=1

Vmn(z) sin
(mπ

L
x
)
cos

(nπ

L
y
)

, (3.6.13)

uz(x, y, z) =
∞∑

m=1

∞∑
n=1

Wmn(z) sin
(mπ

L
x
)
sin

(nπ

L
y
)

satisfy the specified boundary conditions along the lateral faces of the domain. The
displacements yield a double Fourier series representation of the volumetric strain

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
(3.6.14)

and the equations of mechanical equilibrium

∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2
+ 1

1 − 2ν

∂e

∂x
= 0,

∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2
+ 1

1 − 2ν

∂e

∂y
= 0, (3.6.15)

∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2
+ 1

1 − 2ν

∂e

∂z
= 0

give three ordinary differential equations for the Fourier coefficientsUmn(z), Vmn(z),
and Wmn(z). Introducing the notation

am = mπ

L
for m = 1, 2, . . . , (3.6.16)

gmn =π

L

√
m2 + n2 for m, n = 1, 2, . . . (3.6.17)

these equations become

0 = (1 − 2ν)
∂2Umn

∂z2
− [2a2m(1 − ν) + a2n(1 − 2ν)]Umn
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− amanVmn − am
∂Wmn

∂z
, (3.6.18)

0 = (1 − 2ν)
∂2Vmn

∂z2
− [2a2n(1 − ν) + a2m(1 − 2ν)]Vmn

− amanUmn − an
∂Wmn

∂z
, (3.6.19)

0 = am
∂Umn

∂z
+ an

∂Vmn

∂z
+ 2(1 − ν)

∂2Wmn

∂z2
− (1 − 2ν)g2mnWmn. (3.6.20)

Then

0 = ∂4

∂z4
(amUmn + anVmn) − 2g2mn

∂2

∂z2
(amUmn + anVmn)

+ g4mn(amUmn + anVmn), (3.6.21)

0 = ∂2

∂z2
(anUmn − amVmn) − g2mn(anUmn − amVmn) (3.6.22)

and therefore,

amUmn + anVmn = 1

2Gg2mn

[
C1mn sinh(gmnz)

+ C2mn cosh(gmnz)

+ C3mnz cosh(gmnz)

+ C4mnz sinh(gmnz)
]
, (3.6.23)

anUmn − amVmn = 1

2Gg2mn

[
C5mn sinh(gmnz)

+ C6mn cosh(gmnz)
]
, (3.6.24)

where

G = E

2(1 + ν)
(3.6.25)

is the shear modulus and the free constants C1mn to C6mn are still to be determined.
For m, n = 1, 2, . . . the Fourier coefficients Umn(z), Vmn(z), and Wmn(z) become

Umn(z) = 1

2G

[
(C1mnam + C5mnan) sinh(gmnz)

+ (C2mnam + C6mnan) cosh(gmnz)

+ C3mnamz cosh(gmnz)
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+ C4mnamz sinh(gmnz)
]
, (3.6.26)

Vmn(z) = 1

2G

[
(C1mnan − C5mnam) sinh(gmnz)

+ (C2mnan − C6mnam) cosh(gmnz)

+ C3mnanz cosh(gmnz)

+ C4mnanz sinh(gmnz)
]
, (3.6.27)

Wmn(z) = 1

2G

[
((3 − 4ν)C4mn − C2mngmn) sinh(gmnz)

+ ((3 − 4ν)C3mn − C1mngmn) cosh(gmnz)

− C4mngmnz cosh(gmnz)

− C3mngmnz sinh(gmnz)
]
. (3.6.28)

The double Fourier series representations of the displacements and hence, those of
the strains and the stresses are thus established. The remaining constants C1mn to
C6mn have to be determined from the series representations of the prescribed stresses
along the top face and the bottom face of the plate. Woinowsky-Krieger (1933)
gives details and intermediate results; the series representations of displacements
and stresses finally become

ux (x, y, z) =
∞∑

m=1

∞∑
n=1

Pmn

2G
cos(amx) sin(an y)

[
− −amgmnH sinh(gmnH) + (1 − 2ν)am cosh(gmnH)

g2mn[sinh(2gmnH) − 2gmnH ] sinh(gmnz)

− amgmn cosh(gmnH)

g2mn[sinh(2gmnH) − 2gmnH ] z cosh(gmnz)

+amgmnH cosh(gmnH) − (1 − 2ν)am sinh(gmnH)

g2mn[sinh(2gmnH) + 2gmnH ] cosh(gmnz)

− amgmn sinh(gmnH)

g2mn[sinh(2gmnH) + 2gmnH ] z sinh(gmnz)
]
, (3.6.29)

uy(x, y, z) =
∞∑

m=1

∞∑
n=1

Pmn

2G
sin(amx) cos(an y)

[
− −angmnH sinh(gmnH) + (1 − 2ν)an cosh(gmnH)

g2mn[sinh(2gmnH) − 2gmnH ] sinh(gmnz)
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− angmn cosh(gmnH)

g2mn[sinh(2gmnH) − 2gmnH ] z cosh(gmnz)

+angmnH cosh(gmnH) − (1 − 2ν)an sinh(gmnH)

g2mn[sinh(2gmnH) + 2gmnH ] cosh(gmnz)

− angmn sinh(gmnH)

g2mn[sinh(2gmnH) + 2gmnH ] z sinh(gmnz)
]
, (3.6.30)

uz(x, y, z) =
∞∑

m=1

∞∑
n=1

Pmn

2G
sin(amx) sin(an y)

[gmnH sinh(gmnH) + 2(1 − ν) cosh(gmnH)

gmn[sinh(2gmnH) − 2gmnH ] cosh(gmnz)

− gmn cosh(gmnH)

gmn[sinh(2gmnH) − 2gmnH ] z sinh(gmnz)

+gmnH cosh(gmnH) + 2(1 − ν) sinh(gmnH)

gmn[sinh(2gmnH) + 2gmnH ] sinh(gmnz)

− gmn sinh(gmnH)

gmn[sinh(2gmnH) + 2gmnH ] z cosh(gmnz)
]
, (3.6.31)

σ11(x, y, z) =
∞∑

m=1

∞∑
n=1

Pmn sin(amx) sin(an y)

[−a2mgmnH sinh(gmnH) + (a2m + 2νa2n) cosh(gmnH)

g2mn[sinh(2gmnH) − 2gmnH ] sinh(gmnz)

+ a2mgmn cosh(gmnH)

g2mn[sinh(2gmnH) − 2gmnH ] z cosh(gmnz)

−a2mgmnH cosh(gmnH) − (a2m + 2νa2n) sinh(gmnH)

g2mn[sinh(2gmnH) + 2gmnH ] cosh(gmnz)

+ a2mgmn sinh(gmnH)

g2mn[sinh(2gmnH) + 2gmnH ] z sinh(gmnz)
]
, (3.6.32)

σ22(x, y, z) =
∞∑

m=1

∞∑
n=1

Pmn sin(amx) sin(an y)

[−a2ngmnH sinh(gmnH) + (a2n + 2νa2m) cosh(gmnH)

g2mn[sinh(2gmnH) − 2gmnH ] sinh(gmnz)

+ a2ngmn cosh(gmnH)

g2mn[sinh(2gmnH) − 2gmnH ] z cosh(gmnz)

−a2ngmnH cosh(gmnH) − (a2n + 2νa2m) sinh(gmnH)

g2mn[sinh(2gmnH) + 2gmnH ] cosh(gmnz)

+ a2ngmn sinh(gmnH)

g2mn[sinh(2gmnH) + 2gmnH ] z sinh(gmnz)
]
, (3.6.33)
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σ33(x, y, z) =
∞∑

m=1

∞∑
n=1

Pmn sin(amx) sin(an y)

[gmnH sinh(gmnH) + cosh(gmnH)

sinh(2gmnH) − 2gmnH
sinh(gmnz)

− gmn cosh(gmnH)

sinh(2gmnH) − 2gmnH
z cosh(gmnz)

+gmnH cosh(gmnH) + sinh(gmnH)

sinh(2gmnH) + 2gmnH
cosh(gmnz)

− gmn sinh(gmnH)

sinh(2gmnH) + 2gmnH
z sinh(gmnz)

]
, (3.6.34)

σ12(x, y, z) =
∞∑

m=1

∞∑
n=1

Pmn cos(amx) cos(an y)

[aman
g2mn

gmnH sinh(gmnH) − (1 − 2ν) cosh(gmnH)

sinh(2gmnH) − 2gmnH
sinh(gmnz)

−aman
g2mn

gmn cosh(gmnH)

sinh(2gmnH) − 2gmnH
z cosh(gmnz)

+aman
g2mn

gmnH cosh(gmnH) − (1 − 2ν) sinh(gmnH)

sinh(2gmnH) + 2gmnH
cosh(gmnz)

−aman
g2mn

gmn sinh(gmnH)

sinh(2gmnH) + 2gmnH
z sinh(gmnz)

]
, (3.6.35)

σ13(x, y, z) =
∞∑

m=1

∞∑
n=1

Pmn cos(amx) sin(an y)

[ amH sinh(gmnH)

sinh(2gmnH) − 2gmnH
cosh(gmnz)

− am cosh(gmnH)

sinh(2gmnH) − 2gmnH
z sinh(gmnz)

+ amH cosh(gmnH)

sinh(2gmnH) + 2gmnH
sinh(gmnz)

− am sinh(gmnH)

sinh(2gmnH) + 2gmnH
z cosh(gmnz)

]
, (3.6.36)

σ23(x, y, z) =
∞∑

m=1

∞∑
n=1

Pmn sin(amx) cos(an y)

[ anH sinh(gmnH)

sinh(2gmnH) − 2gmnH
cosh(gmnz)

− an cosh(gmnH)

sinh(2gmnH) − 2gmnH
z sinh(gmnz)



3 M Processes 61

Table 3.6 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-3.6 Peter Vogel OGS-5 Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

+ anH cosh(gmnH)

sinh(2gmnH) + 2gmnH
sinh(gmnz)

− an sinh(gmnH)

sinh(2gmnH) + 2gmnH
z cosh(gmnz)

]
. (3.6.37)

Hooke’s law yields the strains once that the stresses are known.

ε11(x, y, z) = 1

E
[σ11(x, y, z) − ν(σ22(x, y, z) + σ33(x, y, z))],

ε22(x, y, z) = 1

E
[σ22(x, y, z) − ν(σ11(x, y, z) + σ33(x, y, z))],

ε33(x, y, z) = 1

E
[σ33(x, y, z) − ν(σ11(x, y, z) + σ22(x, y, z))],

ε12(x, y, z) = 1

G
σ12(x, y, z), (3.6.38)

ε13(x, y, z) = 1

G
σ13(x, y, z),

ε23(x, y, z) = 1

G
σ23(x, y, z).

The entire solution is thus established by double Fourier series representations. For
the numerical evaluation of trigonometric series see Goertzel (1958).

Deformations Due to Gravity

Peter Vogel and Jobst Maßmann

Based on ideas outlined by Sokolnikoff (1956) we present problems on elastic bodies
deformingby their ownweight.We focus on the closed form solutions. The associated
simulation exercises have been checked by OGS; theymay serve as verification tests.
For the underlying theory of linear elasticity see Gurtin (1972) or see above.

3.7 A Thick Plate, Bottom Loads

Given length 2L = 20 m and thickness H = 2 m the domain represents the rectan-
gular plate [−L , L] × [−L , L] × [−H, 0]. It is discretized by 20 × 20 × 4 equally
sized hexahedral elements. The material has been selected elastic with Young’s mod-
ulus E = 8,100 MPa, Poisson’s ratio ν = 0.25, and density ρ = 3058.104 kg/m3.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 3.8 Deformations scaled up, vertical displacements

Gravitational acceleration g = 9.81m/s2 is applied in negative z-direction by default.
The top and the lateral faces of the domain are free of load, the vertical load ρgH
is applied at the bottom. Fixities have been prescribed in the interior of the domain
with zero x-displacement along the plane x = 0, zero y-displacement along the
plane y = 0, and zero z-displacement at the origin. The simulation (Table3.7) com-
prises one timestep to establish the stresses, the strains, and the displacement vector
(ux , uy, uz) (Fig. 3.8).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 z

⎞
⎠ (3.7.1)

satisfies the equation of mechanical equilibrium

div σ = (0, 0, ρg) (3.7.2)

as well as the specified surface loads because along the bottom face z = −H

σ

⎛
⎝

0
0

−1

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 −H

⎞
⎠

⎛
⎝

0
0

−1

⎞
⎠ = ρgH

⎛
⎝
0
0
1

⎞
⎠ , (3.7.3)

along the top face z = 0

σ

⎛
⎝
0
0
1

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 0

⎞
⎠

⎛
⎝
0
0
1

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.7.4)

and similarly for the lateral faces. Hooke’s law reads for the strains
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ε11 = ∂ux

∂x
= 1

E
[σ11 − ν(σ22 + σ33)] = − ν

E
ρgz, (3.7.5)

ε22 = ∂uy

∂y
= 1

E
[σ22 − ν(σ11 + σ33)] = − ν

E
ρgz, (3.7.6)

ε33 = ∂uz

∂z
= 1

E
[σ33 − ν(σ11 + σ22)] = 1

E
ρgz, (3.7.7)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

E
σ12 = 0, (3.7.8)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

E
σ13 = 0, (3.7.9)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 2(1 + ν)

E
σ23 = 0, (3.7.10)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 with respect to the prescribed x- and y-fixities
gives the displacement vector (ux , uy, uz)

ux (x, z) = − ν

E
ρgzx, (3.7.11)

uy(y, z) = − ν

E
ρgzy, (3.7.12)

uz(x, y, z) = 1

E
ρg

1

2
z2 + h(x, y), (3.7.13)

where h(x, y) has to be determined from the shear strains and the specified z-fixity.
Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.7.14)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= − ν

E
ρgx + ∂h

∂x
= 0, (3.7.15)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= − ν

E
ρgy + ∂h

∂y
= 0, (3.7.16)

hence,

∂h

∂x
= ν

E
ρgx, (3.7.17)

∂h

∂y
= ν

E
ρgy, (3.7.18)

and therefore,

h(x, y) = ν

2E
ρg(x2 + y2) + C. (3.7.19)
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The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = − ν

E
ρgxz, (3.7.20)

uy(y, z) = − ν

E
ρgyz, (3.7.21)

uz(x, y, z) = 1

2E
ρg[z2 + ν(x2 + y2)]. (3.7.22)

3.8 A Cuboid, Top Loads, Bottom Loads

The domain is a cuboid discretized by 10 × 10 × 10 equally sized hexahedral ele-
ments. Given size H = 10 m the vertices of the front face y = −H have the
x-y-z-coordinates (0,−H, H ), (H,−H, 0), (0,−H,−H ), and (−H,−H, 0), respec-
tively; the rear face is located on the y = H level. The material has been selected
elastic with Young’s modulus E = 5,000 MPa, Poisson’s ratio ν = 0.25, and den-
sity ρ = 2038.736 kg/m3. Gravitational acceleration g = 9.81 m/s2 is applied in
negative z-direction by default. Fixities have been prescribed in the interior of the
domain with zero x-displacement along the plane x = 0, zero y-displacement along
the plane y = 0, and zero z-displacement at the origin. Specified loads P(x, y, z)
prevail along the entire surface of the domain. These loads read along the faces
y = H and y = −H

P(x, H, z) =
⎛
⎝
0
0
0

⎞
⎠ , P(x,−H, z) =

⎛
⎝
0
0
0

⎞
⎠ , (3.8.1)

along the top face x ≥ 0, z ≥ 0

P(H − z, y, z) = 1√
2
ρg

⎛
⎝
0
0
z

⎞
⎠ , (3.8.2)

along the top face x ≤ 0, z ≥ 0

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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P(−H + z, y, z) = 1√
2
ρg

⎛
⎝
0
0
z

⎞
⎠ , (3.8.3)

along the bottom face x ≥ 0, z ≤ 0

P(H + z, y, z) = − 1√
2
ρg

⎛
⎝
0
0
z

⎞
⎠ , (3.8.4)

and along the bottom face x ≤ 0, z ≤ 0

P(−H − z, y, z) = − 1√
2
ρg

⎛
⎝
0
0
z

⎞
⎠ . (3.8.5)

The simulation (Table3.8) comprises one timestep to evaluate the stresses, the strains,
and the displacement vector (ux , uy, uz) (Fig. 3.9).

Fig. 3.9 Deformations scaled up, vertical displacements
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The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 z

⎞
⎠ (3.8.6)

satisfies the equation of mechanical equilibrium

div σ = (0, 0, ρg) (3.8.7)

as well as the specified surface loads because along the face y = H

σ

⎛
⎝
0
1
0

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 z

⎞
⎠

⎛
⎝
0
1
0

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.8.8)

along the face y = −H

σ

⎛
⎝

0
−1
0

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 z

⎞
⎠

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.8.9)

along the top face x ≥ 0, z ≥ 0

σ
1√
2

⎛
⎝
1
0
1

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 z

⎞
⎠ 1√

2

⎛
⎝
1
0
1

⎞
⎠ = 1√

2
ρg

⎛
⎝
0
0
z

⎞
⎠ , (3.8.10)

along the top face x ≤ 0, z ≥ 0

σ
1√
2

⎛
⎝

−1
0
1

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 z

⎞
⎠ 1√

2

⎛
⎝

−1
0
1

⎞
⎠ = 1√

2
ρg

⎛
⎝
0
0
z

⎞
⎠ , (3.8.11)

along the bottom face x ≥ 0, z ≤ 0

σ
1√
2

⎛
⎝

1
0

−1

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 z

⎞
⎠ 1√

2

⎛
⎝

1
0

−1

⎞
⎠ = − 1√

2
ρg

⎛
⎝
0
0
z

⎞
⎠ , (3.8.12)

and along the bottom face x ≤ 0, z ≤ 0

σ
1√
2

⎛
⎝

−1
0

−1

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 z

⎞
⎠ 1√

2

⎛
⎝

−1
0

−1

⎞
⎠ = − 1√

2
ρg

⎛
⎝
0
0
z

⎞
⎠ . (3.8.13)
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Hooke’s law reads for the strains

ε11 = ∂ux

∂x
= 1

E
[σ11 − ν(σ22 + σ33)] = − ν

E
ρgz, (3.8.14)

ε22 = ∂uy

∂y
= 1

E
[σ22 − ν(σ11 + σ33)] = − ν

E
ρgz, (3.8.15)

ε33 = ∂uz

∂z
= 1

E
[σ33 − ν(σ11 + σ22)] = 1

E
ρgz, (3.8.16)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

E
σ12 = 0, (3.8.17)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

E
σ13 = 0, (3.8.18)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 2(1 + ν)

E
σ23 = 0, (3.8.19)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 with respect to the prescribed x- and y-fixities
gives the displacement vector (ux , uy, uz)

ux (x, z) = − ν

E
ρgzx, (3.8.20)

uy(y, z) = − ν

E
ρgzy, (3.8.21)

uz(x, y, z) = 1

E
ρg

1

2
z2 + h(x, y), (3.8.22)

where h(x, y) has to be determined from the shear strains and the specified z-fixity.
Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.8.23)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= − ν

E
ρgx + ∂h

∂x
= 0, (3.8.24)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= − ν

E
ρgy + ∂h

∂y
= 0, (3.8.25)

hence,

∂h

∂x
= ν

E
ρgx, (3.8.26)

∂h

∂y
= ν

E
ρgy, (3.8.27)

and therefore,
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h(x, y) = ν

2E
ρg(x2 + y2) + C. (3.8.28)

The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = − ν

E
ρgxz, (3.8.29)

uy(y, z) = − ν

E
ρgyz, (3.8.30)

uz(x, y, z) = 1

2E
ρg[z2 + ν(x2 + y2)]. (3.8.31)

3.9 A Cuboid, Bottom Loads

The domain is a cuboid discretized by 10 × 10 × 10 equally sized hexahedral ele-
ments. Given size H = 10 m the vertices of the front face y = −H have the x-
y-z-coordinates (0,−H, H ), (H,−H, 0), (0,−H,−H ), and (−H,−H, 0), respec-
tively; the rear face is located on the y = H level. The material has been selected
elastic with Young’s modulus E = 5,000MPa, Poisson’s ratio ν = 0.25, and density
ρ = 2038.736 kg/m3. Gravitational acceleration g = 9.81 m/s2 is applied in nega-
tive z-direction by default. Fixities have been prescribed in the interior of the domain
with zero x-displacement along the plane x = 0, zero y-displacement along the plane
y = 0, and zero z-displacement at the origin. The top and the lateral faces are free of
load by default. Specified loads P(x, y, z) prevail along the bottom of the domain.
These loads read along the bottom face x ≤ 0, z ≤ 0

P(x, y,−H − x) = 1√
2
ρgH

⎛
⎝
1
0
1

⎞
⎠ (3.9.1)

and along the bottom face x ≥ 0, z ≤ 0

P(x, y,−H + x) = 1√
2
ρgH

⎛
⎝

−1
0
1

⎞
⎠ . (3.9.2)

https://docs.opengeosys.org/books/bmb-5
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Fig. 3.10 Deformations scaled up, vertical displacements

The simulation (Table3.9) comprises one timestep to evaluate the stresses, the strains,
and the displacement vector (ux , uy, uz) (Fig. 3.10).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = ρg

2

⎛
⎝
z − H 0 x

0 0 0
x 0 z − H

⎞
⎠ (3.9.3)

satisfies the equation of mechanical equilibrium

div σ = (0, 0, ρg) (3.9.4)

as well as the specified surface loads because along the face y = H

σ

⎛
⎝
0
1
0

⎞
⎠ = ρg

2

⎛
⎝
z − H 0 x

0 0 0
x 0 z − H

⎞
⎠

⎛
⎝
0
1
0

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.9.5)

along the face y = −H

σ

⎛
⎝

0
−1
0

⎞
⎠ = ρg

2

⎛
⎝
z − H 0 x

0 0 0
x 0 z − H

⎞
⎠

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.9.6)
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along the top face x ≥ 0, z ≥ 0 where z = H − x

σ
1√
2

⎛
⎝
1
0
1

⎞
⎠ = ρg

2

⎛
⎝

H − x − H 0 x
0 0 0
x 0 H − x − H

⎞
⎠ 1√

2

⎛
⎝
1
0
1

⎞
⎠

=
⎛
⎝
0
0
0

⎞
⎠ , (3.9.7)

along the top face x ≤ 0, z ≥ 0 where z = H + x

σ
1√
2

⎛
⎝

−1
0
1

⎞
⎠ = ρg

2

⎛
⎝

H + x − H 0 x
0 0 0
x 0 H + x − H

⎞
⎠ 1√

2

⎛
⎝

−1
0
1

⎞
⎠

=
⎛
⎝
0
0
0

⎞
⎠ , (3.9.8)

along the bottom face x ≤ 0, z ≤ 0 where z = −H − x

σ
1√
2

⎛
⎝

−1
0

−1

⎞
⎠ = ρg

2

⎛
⎝

−H − x − H 0 x
0 0 0
x 0 −H − x − H

⎞
⎠ 1√

2

⎛
⎝

−1
0

−1

⎞
⎠

= 1√
2
ρgH

⎛
⎝
1
0
1

⎞
⎠ , (3.9.9)

and along the bottom face x ≥ 0, z ≤ 0 where z = −H + x

σ
1√
2

⎛
⎝

1
0

−1

⎞
⎠ = ρg

2

⎛
⎝

−H + x − H 0 x
0 0 0
x 0 −H + x − H

⎞
⎠ 1√

2

⎛
⎝

1
0

−1

⎞
⎠

= 1√
2
ρgH

⎛
⎝

−1
0
1

⎞
⎠ . (3.9.10)

Hooke’s law reads for the strains

ε11 = ∂ux

∂x
= 1

E
[σ11 − ν(σ22 + σ33)] = 1 − ν

2E
ρg(z − H), (3.9.11)

ε22 = ∂uy

∂y
= 1

E
[σ22 − ν(σ11 + σ33)] = − ν

E
ρg(z − H), (3.9.12)

ε33 = ∂uz

∂z
= 1

E
[σ33 − ν(σ11 + σ22)] = 1 − ν

2E
ρg(z − H), (3.9.13)
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ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

E
σ12 = 0, (3.9.14)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

E
σ13 = 1 + ν

E
ρgx, (3.9.15)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 2(1 + ν)

E
σ23 = 0, (3.9.16)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 with respect to the prescribed x- and y-fixities
gives the displacement vector (ux , uy, uz)

ux (x, z) = 1 − ν

2E
ρg(z − H)x, (3.9.17)

uy(y, z) = − ν

E
ρg(z − H)y, (3.9.18)

uz(x, y, z) = 1 − ν

2E
ρg(

1

2
z2 − Hz) + h(x, y), (3.9.19)

where h(x, y) has to be determined from the shear strains and the specified z-fixity.
Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.9.20)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 1 − ν

2E
ρgx + ∂h

∂x
= 1 + ν

E
ρgx, (3.9.21)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= − ν

E
ρgy + ∂h

∂y
= 0, (3.9.22)

hence,

∂h

∂x
= 1 + 3ν

2E
ρgx, (3.9.23)

∂h

∂y
= ν

E
ρgy, (3.9.24)

and therefore,

h(x, y) = ν

2E
ρgy2 + 1 + 3ν

4E
ρgx2 + C. (3.9.25)

The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes
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ux (x, z) = 1 − ν

2E
ρgx(z − H), (3.9.26)

uy(y, z) = − ν

E
ρgy(z − H), (3.9.27)

uz(x, y, z) = 1 − ν

2E
ρg(

z2

2
− Hz) + ν

2E
ρgy2 + 1 + 3ν

4E
ρgx2. (3.9.28)

3.10 A Cuboid, Top Loads

The domain is a cuboid discretized by 10 × 10 × 10 equally sized hexahedral ele-
ments. Given size H = 10 m the vertices of the front face y = −H have the x-
y-z-coordinates (0,−H, H ), (H,−H, 0), (0,−H,−H ), and (−H,−H, 0), respec-
tively; the rear face is located on the y = H level. The material has been selected
elastic with Young’s modulus E = 5,000MPa, Poisson’s ratio ν = 0.25, and density
ρ = 2038.736 kg/m3. Gravitational acceleration g = 9.81 m/s2 is applied in nega-
tive z-direction by default. Fixities have been prescribed in the interior of the domain
with zero x-displacement along the plane x = 0, zero y-displacement along the plane
y = 0, and zero z-displacement at the origin. The bottom and the lateral faces are
free of load by default. Specified loads P(x, y, z) prevail along the top of the domain.
These loads read along the top face x ≥ 0, z ≥ 0

P(x, y, H − x) = 1√
2
ρgH

⎛
⎝
1
0
1

⎞
⎠ , (3.10.1)

and along the top face x ≤ 0, z ≥ 0

P(x, y, H + x) = 1√
2
ρgH

⎛
⎝

−1
0
1

⎞
⎠ . (3.10.2)

The simulation (Table3.10) comprises one timestep to evaluate the stresses, the
strains, and the displacement vector (ux , uy, uz) (Fig. 3.11).

https://docs.opengeosys.org/books/bmb-5
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Fig. 3.11 Deformations scaled up, vertical displacements

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = ρg

2

⎛
⎝
z + H 0 x

0 0 0
x 0 z + H

⎞
⎠ (3.10.3)

satisfies the equation of mechanical equilibrium

div σ = (0, 0, ρg) (3.10.4)

as well as the specified surface loads because along the face y = H

σ

⎛
⎝
0
1
0

⎞
⎠ = ρg

2

⎛
⎝
z + H 0 x

0 0 0
x 0 z + H

⎞
⎠

⎛
⎝
0
1
0

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.10.5)

along the face y = −H
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σ

⎛
⎝

0
−1
0

⎞
⎠ = ρg

2

⎛
⎝
z + H 0 x

0 0 0
x 0 z + H

⎞
⎠

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.10.6)

along the top face x ≥ 0, z ≥ 0 where z = H − x

σ
1√
2

⎛
⎝
1
0
1

⎞
⎠ = ρg

2

⎛
⎝

H − x + H 0 x
0 0 0
x 0 H − x + H

⎞
⎠ 1√

2

⎛
⎝
1
0
1

⎞
⎠

= 1√
2
ρgH

⎛
⎝
1
0
1

⎞
⎠ , (3.10.7)

along the top face x ≤ 0, z ≥ 0 where z = H + x

σ
1√
2

⎛
⎝

−1
0
1

⎞
⎠ = ρg

2

⎛
⎝

H + x + H 0 x
0 0 0
x 0 H + x + H

⎞
⎠ 1√

2

⎛
⎝

−1
0
1

⎞
⎠

= 1√
2
ρgH

⎛
⎝

−1
0
1

⎞
⎠ , (3.10.8)

along the bottom face x ≤ 0, z ≤ 0 where z = −H − x

σ
1√
2

⎛
⎝

−1
0

−1

⎞
⎠ = ρg

2

⎛
⎝

−H − x + H 0 x
0 0 0
x 0 −H − x + H

⎞
⎠ 1√

2

⎛
⎝

−1
0

−1

⎞
⎠

=
⎛
⎝
0
0
0

⎞
⎠ , (3.10.9)

and along the bottom face x ≥ 0, z ≤ 0 where z = −H + x

σ
1√
2

⎛
⎝

1
0

−1

⎞
⎠ = ρg

2

⎛
⎝

−H + x + H 0 x
0 0 0
x 0 −H + x + H

⎞
⎠ 1√

2

⎛
⎝

1
0

−1

⎞
⎠

=
⎛
⎝
0
0
0

⎞
⎠ . (3.10.10)

Hooke’s law reads for the strains
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ε11 = ∂ux

∂x
= 1

E
[σ11 − ν(σ22 + σ33)] = 1 − ν

2E
ρg(z + H), (3.10.11)

ε22 = ∂uy

∂y
= 1

E
[σ22 − ν(σ11 + σ33)] = − ν

E
ρg(z + H), (3.10.12)

ε33 = ∂uz

∂z
= 1

E
[σ33 − ν(σ11 + σ22)] = 1 − ν

2E
ρg(z + H), (3.10.13)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

E
σ12 = 0, (3.10.14)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

E
σ13 = 1 + ν

E
ρgx, (3.10.15)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 2(1 + ν)

E
σ23 = 0, (3.10.16)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 with respect to the prescribed x- and y-fixities
gives the displacement vector (ux , uy, uz)

ux (x, z) = 1 − ν

2E
ρg(z + H)x, (3.10.17)

uy(y, z) = − ν

E
ρg(z + H)y, (3.10.18)

uz(x, y, z) = 1 − ν

2E
ρg(

1

2
z2 + Hz) + h(x, y), (3.10.19)

where h(x, y) has to be determined from the shear strains and the specified z-fixity.
Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.10.20)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 1 − ν

2E
ρgx + ∂h

∂x
= 1 + ν

E
ρgx, (3.10.21)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= − ν

E
ρgy + ∂h

∂y
= 0, (3.10.22)

hence,

∂h

∂x
= 1 + 3ν

2E
ρgx, (3.10.23)

∂h

∂y
= ν

E
ρgy, (3.10.24)

and therefore,

h(x, y) = ν

2E
ρgy2 + 1 + 3ν

4E
ρgx2 + C. (3.10.25)
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The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = 1 − ν

2E
ρgx(z + H), (3.10.26)

uy(y, z) = − ν

E
ρgy(z + H), (3.10.27)

uz(x, y, z) = 1 − ν

2E
ρg(

z2

2
+ Hz) + ν

2E
ρgy2 + 1 + 3ν

4E
ρgx2. (3.10.28)

Anisotropy

Peter Vogel and Jobst Maßmann

This section presents problems on transversely isotropic bodies, most of the material
has been adopted from Lekhnitskii (1981). We focus on the closed form solutions.
The associated simulation exercises have been checked by OGS; they may serve as
verification tests. For the underlying theory of anisotropic elasticity and for more
advanced examples see Ting (1996).

3.11 A Cube Undergoes Uniform Compression, Anisotropy
Parallel to X-Axis

Given size 2H = 2 m the domain represents the cube [−H, H ] × [−H, H ] ×
[−H, H ]. It is discretized by 4 × 4 × 4 cubic elements. The material has been
selected transversely isotropic, the axis of anisotropy is the x-axis. For the elas-
tic parameters see Table3.11, gravity is neglected via zero material density. Fixities
have been prescribed in the interior of the domain with zero x-displacement along
the plane x = 0, zero y-displacement along the plane y = 0, and zero z-displacement
along the plane z = 0. The cube is deformed by normal forces uniformly distributed
over the entire surface of the domain; σ0 = −1 MPa is the constant surface pres-
sure. The simulation (Table3.12) comprises one timestep to evaluate the stresses, the
strains, and the displacement vector (ux , uy, uz) (Fig. 3.12).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = σ0

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ (3.11.1)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Table 3.11 Elastic parameters of the transversely isotropic material (after Vietor et al. 2008)

Quantity Meaning

Ei = 7200 MPa Young’s modulus parallel to the plane of isotropy

Ea = 2800 MPa Young’s modulus normal to the plane of isotropy

ν = 0.33 Poisson’s ratio within the plane of isotropy (load applied
parallel to the plane of isotropy)

νia = 0.24 Poisson’s ratio normal to the plane of isotropy (load applied
parallel to the plane of isotropy)

Ga = 1200 MPa Shear modulus normal to the plane of isotropy

Fig. 3.12 Deformations scaled up, x-displacements
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satisfies the equation of mechanical equilibrium

div σ = 0 (3.11.2)

as well as the specified surface loads because along the faces x = H and x = −H

σ

⎛
⎝
1
0
0

⎞
⎠ = −σ

⎛
⎝

−1
0
0

⎞
⎠ =

⎛
⎝

σ11

σ12

σ13

⎞
⎠ = σ0

⎛
⎝
1
0
0

⎞
⎠ , (3.11.3)

along the faces y = H and y = −H

σ

⎛
⎝
0
1
0

⎞
⎠ = −σ

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝

σ12

σ22

σ23

⎞
⎠ = σ0

⎛
⎝
0
1
0

⎞
⎠ , (3.11.4)

and along the faces z = H and z = −H

σ

⎛
⎝
0
0
1

⎞
⎠ = −σ

⎛
⎝
0
0
1

⎞
⎠ =

⎛
⎝

σ13

σ23

σ33

⎞
⎠ = σ0

⎛
⎝
0
0
1

⎞
⎠ . (3.11.5)

The stress-strain relationships governing the present situation will next be obtained
from those of an orthotropicmaterial with principal axes equal to the coordinate axes.
Introducing engineering constants, i.e. Young’s moduli E1, E2, and E3, Poisson’s
ratios ν12, ν13, . . . , and shear moduli G12, G13, and G23 the generalized Hooke’s law
gives for the strains

ε11 = 1

E1
σ11 − ν12

E2
σ22 − ν13

E3
σ33, (3.11.6)

ε22 =−ν21

E1
σ11 + 1

E2
σ22 − ν23

E3
σ33, (3.11.7)

ε33 =−ν31

E1
σ11 − ν32

E2
σ22 + 1

E3
σ33, (3.11.8)

ε12 = 1

G12
σ12, (3.11.9)

ε13 = 1

G13
σ13, (3.11.10)

ε23 = 1

G23
σ23. (3.11.11)

Due to the underlying theory the following symmetry holds
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ν12

E2
= ν21

E1
, (3.11.12)

ν13

E3
= ν31

E1
, (3.11.13)

ν23

E3
= ν32

E2
. (3.11.14)

Therefore,

ε11 = 1

E1
σ11 − ν12

E2
σ22 − ν13

E3
σ33, (3.11.15)

ε22 =−ν12

E2
σ11 + 1

E2
σ22 − ν23

E3
σ33, (3.11.16)

ε33 =−ν13

E3
σ11 − ν23

E3
σ22 + 1

E3
σ33, (3.11.17)

ε12 = 1

G12
σ12, (3.11.18)

ε13 = 1

G13
σ13, (3.11.19)

ε23 = 1

G23
σ23. (3.11.20)

Due to the transverse isotropy of the material

E2 = E3 = Ei , (3.11.21)

E1 = Ea, (3.11.22)

ν23 = ν, (3.11.23)

ν12 = ν13 = νia, (3.11.24)

G12 = G13 = Ga, (3.11.25)

G23 = Ei

2(1 + ν)
(3.11.26)

and the constitutive equations become

ε11 = 1

Ea
σ11 − νia

Ei
σ22 − νia

Ei
σ33, (3.11.27)

ε22 =−νia

Ei
σ11 + 1

Ei
σ22 − ν

Ei
σ33, (3.11.28)

ε33 =−νia

Ei
σ11 − ν

Ei
σ22 + 1

Ei
σ33, (3.11.29)



80 X.-Y. Miao et al.
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ε12 = 1

Ga
σ12, (3.11.30)

ε13 = 1

Ga
σ13, (3.11.31)

ε23 = 2(1 + ν)

Ei
σ23. (3.11.32)

Employing the stresses above the non-zero strains read

ε11 = ∂ux

∂x
=

(
1

Ea
− 2

νia

Ei

)
σ0, (3.11.33)

ε22 = ∂uy

∂y
= 1 − ν − νia

Ei
σ0, (3.11.34)

ε33 = ∂uz

∂z
= 1 − ν − νia

Ei
σ0. (3.11.35)

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (ux , uy, uz)

ux (x) = x

(
1

Ea
− 2

νia

Ei

)
σ0, (3.11.36)

uy(y) = y
1 − ν − νia

Ei
σ0, (3.11.37)

uz(z) = z
1 − ν − νia

Ei
σ0. (3.11.38)

The deformed cube takes the shape of a cuboid.

3.12 A Cuboid Undergoes Load Due to Gravity, Anisotropy
Parallel to X-Axis

Given size H = 30 m the domain represents the cuboid [0, 2H ] × [0, H ] × [0, H ].
It is discretized by an irregular mesh of hexahedral elements. The material has been
selected transversely isotropic, the axis of anisotropy is the x-axis. For the elastic
parameters see Table3.11, density ρ = 2450 kg/m3 has been assigned. Gravitational

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 3.13 Vertical displacements

acceleration g = 9.81 m/s2 is applied in negative z-direction by default. The bottom
z = 0 and the lateral faces are sliding planes, the top face is free. Gravity is the only
load applied. The simulation (Table3.13) comprises one timestep to establish the
stresses, the strains, and the displacement vector (ux , uy, uz) (Fig. 3.13).

Let σ denote the stress tensor. The equation of mechanical equilibrium

div σ = (0, 0, ρg) (3.12.1)

is satisfied by zero shear, if the horizontal stresses σ11 and σ22 are functions of the
vertical coordinate z only and the vertical stress σ33 satisfies

∂σ33

∂z
= ρg. (3.12.2)

The face z = H is free, hence, integration gives

σ33 = ρ(−g)(H − z). (3.12.3)

The constitutive equations governing the present situation have already been outlined
in the context of the previous example. The stress-strain relationships become
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ε11 = 1

Ea
σ11 − νia

Ei
σ22 − νia

Ei
σ33, (3.12.4)

ε22 =−νia

Ei
σ11 + 1

Ei
σ22 − ν

Ei
σ33, (3.12.5)

ε33 =−νia

Ei
σ11 − ν

Ei
σ22 + 1

Ei
σ33. (3.12.6)

Due to the setup it may be assumed that there is no horizontal displacement anywhere
and we have for the horizontal strains

ε11 = ε22 = 0. (3.12.7)

Then

0= 1

Ea
σ11 − νia

Ei
σ22 − νia

Ei
ρ(−g)(H − z), (3.12.8)

0= −νia

Ei
σ11 + 1

Ei
σ22 − ν

Ei
ρ(−g)(H − z), (3.12.9)

ε33= −νia

Ei
σ11 − ν

Ei
σ22 + 1

Ei
ρ(−g)(H − z). (3.12.10)

Solving for σ11, σ22, and the vertical strain ε33 yields

σ11 = (1 + ν)νia

Ei/Ea − ν2
ia

ρ(−g)(H − z), (3.12.11)

σ22 =
(

ν + (1 + ν)ν2
ia

Ei/Ea − ν2
ia

)
ρ(−g)(H − z), (3.12.12)

ε33 = 1

Ei

(
1 − ν2 − (1 + ν)2ν2

ia

Ei/Ea − ν2
ia

)
ρ(−g)(H − z) (3.12.13)

in terms of the vertical coordinate. Integrating the strains with respect to the pre-
scribed fixities gives the displacement vector (ux , uy, uz)

ux = uy = 0, (3.12.14)

uz(z) = 1

Ei

(
1 − ν2 − (1 + ν)2ν2

ia

Ei/Ea − ν2
ia

)
ρ(−g)

(
Hz − 1

2
z2

)
. (3.12.15)
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3.13 A Thick Plate Undergoes Lateral Compression,
Anisotropy Parallel to Y-Axis

Given length 2L = 20 m and thickness H = 2 m the domain represents the rectan-
gular plate [−L , L] × [−L , L] × [−H, 0]. It is discretized by 20 × 20 × 4 equally
sized hexahedral elements. The material has been selected transversely isotropic, the
axis of anisotropy is the y-axis. For the elastic parameters see Table3.11, gravity is
neglected via zeromaterial density. Fixities have been prescribed in the interior of the
domain with zero x-displacement along the plane x = 0, zero y-displacement along
the plane y = 0, and zero z-displacement at the origin. Specified loads P(x, y, z) pre-
vail along the lateral boundaries of the domain.With the aid of the stress σ0 = 1MPa
these loads read along the faces x = L and x = −L

P(L , y, z) = σ0

H

⎛
⎝
z
0
0

⎞
⎠ , P(−L , y, z) = −σ0

H

⎛
⎝
z
0
0

⎞
⎠ , (3.13.1)

and along the faces y = L and y = −L

P(x, L , z) = σ0

H

⎛
⎝
0
z
0

⎞
⎠ , P(x,−L , z) = −σ0

H

⎛
⎝
0
z
0

⎞
⎠ . (3.13.2)

The top z = 0 and the bottom z = −H are free of load by default. The simulation
(Table3.14) comprises one timestep to establish the stresses, the strains, and the
displacement vector (ux , uy, uz) (Fig. 3.14).

Fig. 3.14 Deformations scaled up, vertical displacements
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The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = σ0

H

⎛
⎝
z 0 0
0 z 0
0 0 0

⎞
⎠ (3.13.3)

satisfies the equation of mechanical equilibrium

div σ = 0 (3.13.4)

as well as the specified surface loads because along the faces x = L and x = −L

σ

⎛
⎝
1
0
0

⎞
⎠ = −σ

⎛
⎝

−1
0
0

⎞
⎠ =

⎛
⎝

σ11

σ12

σ13

⎞
⎠ = σ0

H

⎛
⎝
z
0
0

⎞
⎠ , (3.13.5)

along the faces y = L and y = −L

σ

⎛
⎝
0
1
0

⎞
⎠ = −σ

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝

σ12

σ22

σ23

⎞
⎠ = σ0

H

⎛
⎝
0
z
0

⎞
⎠ , (3.13.6)

and along the faces z = 0 and z = −H

σ

⎛
⎝
0
0
1

⎞
⎠ = −σ

⎛
⎝

0
0

−1

⎞
⎠ =

⎛
⎝

σ13

σ23

σ33

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ . (3.13.7)

The stress-strain relationships governing the present situation will next be obtained
from those of an orthotropicmaterial with principal axes equal to the coordinate axes.
Introducing engineering constants, i.e. Young’s moduli E1, E2, and E3, Poisson’s
ratios ν12, ν13, . . . , and shear moduli G12, G13, and G23 the generalized Hooke’s law
gives for the strains

ε11 = 1

E1
σ11 − ν12

E2
σ22 − ν13

E3
σ33, (3.13.8)

ε22 =−ν21

E1
σ11 + 1

E2
σ22 − ν23

E3
σ33, (3.13.9)

ε33 =−ν31

E1
σ11 − ν32

E2
σ22 + 1

E3
σ33, (3.13.10)



3 M Processes 85

ε12 = 1

G12
σ12, (3.13.11)

ε13 = 1

G13
σ13, (3.13.12)

ε23 = 1

G23
σ23. (3.13.13)

Due to the underlying theory the following symmetry holds

ν12

E2
= ν21

E1
, (3.13.14)

ν13

E3
= ν31

E1
, (3.13.15)

ν23

E3
= ν32

E2
. (3.13.16)

Therefore,

ε11 = 1

E1
σ11 − ν21

E1
σ22 − ν31

E1
σ33, (3.13.17)

ε22 =−ν21

E1
σ11 + 1

E2
σ22 − ν23

E3
σ33, (3.13.18)

ε33 =−ν31

E1
σ11 − ν23

E3
σ22 + 1

E3
σ33, (3.13.19)

ε12 = 1

G12
σ12, (3.13.20)

ε13 = 1

G13
σ13, (3.13.21)

ε23 = 1

G23
σ23. (3.13.22)

Due to the transverse isotropy of the material

E1 = E3 = Ei , (3.13.23)

E2 = Ea, (3.13.24)

ν31 = ν, (3.13.25)

ν21 = ν23 = νia, (3.13.26)

G12 = G23 = Ga, (3.13.27)

G13 = Ei

2(1 + ν)
(3.13.28)
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and the constitutive equations become

ε11 = 1

Ei
σ11 − νia

Ei
σ22 − ν

Ei
σ33, (3.13.29)

ε22 =−νia

Ei
σ11 + 1

Ea
σ22 − νia

Ei
σ33, (3.13.30)

ε33 =− ν

Ei
σ11 − νia

Ei
σ22 + 1

Ei
σ33, (3.13.31)

ε12 = 1

Ga
σ12, (3.13.32)

ε13 = 2(1 + ν)

Ei
σ13, (3.13.33)

ε23 = 1

Ga
σ23. (3.13.34)

The stresses above yield the strains

ε11 = ∂ux

∂x
= 1 − νia

Ei

σ0

H
z, (3.13.35)

ε22 = ∂uy

∂y
=

(
1

Ea
− νia

Ei

)
σ0

H
z, (3.13.36)

ε33 = ∂uz

∂z
= −ν + νia

Ei

σ0

H
z, (3.13.37)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.13.38)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (3.13.39)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0, (3.13.40)

which constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 with respect to the prescribed x- and y-fixities
gives the displacement vector (ux , uy, uz)

ux (x, z) = 1 − νia

Ei

σ0

H
zx, (3.13.41)

uy(y, z) =
(

1

Ea
− νia

Ei

)
σ0

H
zy, (3.13.42)

uz(x, y, z) = −ν + νia

Ei

σ0

2H
z2 + h(x, y), (3.13.43)
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where h(x, y) has to be determined from the shear strains and the specified z-fixity.
Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.13.44)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 1 − νia

Ei

σ0

H
x + ∂h

∂x
= 0, (3.13.45)

ε23 = ∂uy

∂z
+ ∂uz

∂y
=

(
1

Ea
− νia

Ei

)
σ0

H
y + ∂h

∂y
= 0, (3.13.46)

hence,

∂h

∂x
= −1 − νia

Ei

σ0

H
x, (3.13.47)

∂h

∂y
= −

(
1

Ea
− νia

Ei

)
σ0

H
y, (3.13.48)

and therefore,

h(x, y) = − σ0

2H

[
1 − νia

Ei
x2 +

(
1

Ea
− νia

Ei

)
y2

]
+ C. (3.13.49)

The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = 1 − νia

Ei

σ0

H
xz, (3.13.50)

uy(y, z) =
(

1

Ea
− νia

Ei

)
σ0

H
yz, (3.13.51)

uz(x, y, z) = − σ0

2H

[
1 − νia

Ei
x2 +

(
1

Ea
− νia

Ei

)
y2 + ν + νia

Ei
z2

]
. (3.13.52)
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Fig. 3.15 Deformations scaled up, vertical displacements

3.14 A Thick Plate Deforms Under Its Own Weight,
Anisotropy Parallel to Y-Axis

Given length 2L = 20 m and thickness H = 2 m the domain represents the rectan-
gular plate [−L , L] × [−L , L] × [−H, 0]. It is discretized by 20 × 20 × 4 equally
sized hexahedral elements. The material has been selected transversely isotropic,
the axis of anisotropy is the y-axis. For the elastic parameters see Table3.11, den-
sity ρ = 2450 kg/m3 has been assigned. Gravitational acceleration g = 9.81 m/s2 is
applied in negative z-direction by default. The top and the lateral faces of the domain
are free of load, the vertical load ρgH is applied at the bottom. Fixities have been
prescribed in the interior of the domain with zero x-displacement along the plane
x = 0, zero y-displacement along the plane y = 0, and zero z-displacement at the
origin. The simulation (Table3.15) comprises one timestep to establish the stresses,
the strains, and the displacement vector (ux , uy, uz) (Fig. 3.15).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 z

⎞
⎠ (3.14.1)

satisfies the equation of mechanical equilibrium

div σ = (0, 0, ρg) (3.14.2)

as well as the specified surface loads because along the bottom face z = −H

σ

⎛
⎝

0
0

−1

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 −H

⎞
⎠

⎛
⎝

0
0

−1

⎞
⎠ = ρgH

⎛
⎝
0
0
1

⎞
⎠ , (3.14.3)
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along the top face z = 0

σ

⎛
⎝
0
0
1

⎞
⎠ = ρg

⎛
⎝
0 0 0
0 0 0
0 0 0

⎞
⎠

⎛
⎝
0
0
1

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.14.4)

and similarly for the lateral faces. The constitutive equations governing the present
situation have already been outlined in the context of the previous example. The
stress-strain relationships become

ε11 = ∂ux

∂x
= 1

Ei
σ11 − νia

Ei
σ22 − ν

Ei
σ33 = − ν

Ei
ρgz, (3.14.5)

ε22 = ∂uy

∂y
=−νia

Ei
σ11 + 1

Ea
σ22 − νia

Ei
σ33 = −νia

Ei
ρgz, (3.14.6)

ε33 = ∂uz

∂z
=− ν

Ei
σ11 − νia

Ei
σ22 + 1

Ei
σ33 = 1

Ei
ρgz, (3.14.7)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 1

Ga
σ12 = 0, (3.14.8)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 2(1 + ν)

Ei
σ13 = 0, (3.14.9)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 1

Ga
σ23 = 0 (3.14.10)

and constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 with respect to the prescribed x- and y-fixities
gives the displacement vector (ux , uy, uz)

ux (x, z) = − ν

Ei
ρgzx, (3.14.11)

uy(y, z) = −νia

Ei
ρgzy, (3.14.12)

uz(x, y, z) = 1

Ei
ρg

1

2
z2 + h(x, y), (3.14.13)

where h(x, y) has to be determined from the shear strains and the specified z-fixity.
Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.14.14)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= − ν

Ei
ρgx + ∂h

∂x
= 0, (3.14.15)
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ε23 = ∂uy

∂z
+ ∂uz

∂y
= −νia

Ei
ρgy + ∂h

∂y
= 0, (3.14.16)

hence,

∂h

∂x
= ν

Ei
ρgx, (3.14.17)

∂h

∂y
= νia

Ei
ρgy, (3.14.18)

and therefore,

h(x, y) = ρg

2Ei
(νx2 + νia y

2) + C. (3.14.19)

The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = − ν

Ei
ρgxz, (3.14.20)

uy(y, z) = −νia

Ei
ρgyz, (3.14.21)

uz(x, y, z) = ρg

2Ei
(νx2 + νia y

2 + z2). (3.14.22)

3.15 A Thick Plate Undergoes Shear, Anisotropy Parallel to
Z-Axis

Given length L = 10mand thickness H = 2m the domain represents the rectangular
plate [0, L] × [0, L] × [0, H ]. It is discretized by 8 × 8 × 2 equally sized hexahedral
elements. Thematerial has been selected transversely isotropic, the axis of anisotropy
is the z-axis. For the elastic parameters see Table3.11, gravity is neglected via zero
material density. The face x = 0 is entirely fixed, specified loads P(x, y, z) prevail
along the remaining faces. With the aid of the stress σ0 = 1 MPa these loads read
along the face x = L

https://docs.opengeosys.org/books/bmb-5
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P(L , y, z) = σ0

⎛
⎝
0
1
1

⎞
⎠ , (3.15.1)

along the faces y = L and y = 0

P(x, L , z) = σ0

⎛
⎝
1
0
0

⎞
⎠ , P(x, 0, z) = −σ0

⎛
⎝
1
0
0

⎞
⎠ , (3.15.2)

and along the faces z = H and z = 0

P(x, y, H) = σ0

⎛
⎝
1
0
0

⎞
⎠ , P(x, y, 0) = −σ0

⎛
⎝
1
0
0

⎞
⎠ . (3.15.3)

The simulation (Table3.16) comprises one timestep to evaluate the stresses, the
strains, and the displacement vector (ux , uy, uz) (Fig. 3.16).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = σ0

⎛
⎝
0 1 1
1 0 0
1 0 0

⎞
⎠ (3.15.4)

Fig. 3.16 Deformations scaled up, vertical displacements
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satisfies the equation of mechanical equilibrium

div σ = 0 (3.15.5)

as well as the specified surface loads because along the face x = L

σ

⎛
⎝
1
0
0

⎞
⎠ =

⎛
⎝

σ11

σ12

σ13

⎞
⎠ = σ0

⎛
⎝
0
1
1

⎞
⎠ , (3.15.6)

along the faces y = L and y = 0

σ

⎛
⎝
0
1
0

⎞
⎠ = −σ

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝

σ12

σ22

σ23

⎞
⎠ = σ0

⎛
⎝
1
0
0

⎞
⎠ , (3.15.7)

and along the faces z = H and z = 0

σ

⎛
⎝
0
0
1

⎞
⎠ = −σ

⎛
⎝

0
0

−1

⎞
⎠ =

⎛
⎝

σ13

σ23

σ33

⎞
⎠ = σ0

⎛
⎝
1
0
0

⎞
⎠ . (3.15.8)

The stress-strain relationships governing the present situation will next be obtained
from those of an orthotropicmaterial with principal axes equal to the coordinate axes.
Introducing engineering constants, i.e. Young’s moduli E1, E2, and E3, Poisson’s
ratios ν12, ν13, . . . , and shear moduli G12, G13, and G23 the generalized Hooke’s law
gives for the strains

ε11 = 1

E1
σ11 − ν12

E2
σ22 − ν13

E3
σ33, (3.15.9)

ε22 =−ν21

E1
σ11 + 1

E2
σ22 − ν23

E3
σ33, (3.15.10)

ε33 =−ν31

E1
σ11 − ν32

E2
σ22 + 1

E3
σ33, (3.15.11)

ε12 = 1

G12
σ12, (3.15.12)

ε13 = 1

G13
σ13, (3.15.13)

ε23 = 1

G23
σ23. (3.15.14)
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Due to the underlying theory the following symmetry holds

ν12

E2
= ν21

E1
, (3.15.15)

ν13

E3
= ν31

E1
, (3.15.16)

ν23

E3
= ν32

E2
. (3.15.17)

Therefore,

ε11 = 1

E1
σ11 − ν21

E1
σ22 − ν31

E1
σ33, (3.15.18)

ε22 =−ν21

E1
σ11 + 1

E2
σ22 − ν32

E2
σ33, (3.15.19)

ε33 =−ν31

E1
σ11 − ν32

E2
σ22 + 1

E3
σ33, (3.15.20)

ε12 = 1

G12
σ12, (3.15.21)

ε13 = 1

G13
σ13, (3.15.22)

ε23 = 1

G23
σ23. (3.15.23)

Due to the transverse isotropy of the material

E1 = E2 = Ei , (3.15.24)

E3 = Ea, (3.15.25)

ν21 = ν, (3.15.26)

ν31 = ν32 = νia, (3.15.27)

G12 = Ei

2(1 + ν)
, (3.15.28)

G13 = G23 = Ga (3.15.29)

and the constitutive equations become

ε11 = 1

Ei
σ11 − ν

Ei
σ22 − νia

Ei
σ33, (3.15.30)

ε22 =− ν

Ei
σ11 + 1

Ei
σ22 − νia

Ei
σ33, (3.15.31)

ε33 =−νia

Ei
σ11 − νia

Ei
σ22 + 1

Ea
σ33, (3.15.32)
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ε12 = 2(1 + ν)

Ei
σ12, (3.15.33)

ε13 = 1

Ga
σ13, (3.15.34)

ε23 = 1

Ga
σ23. (3.15.35)

Employing the stresses above

ε11 = ε22 = ε33 = ∂ux

∂x
= ∂uy

∂y
= ∂uz

∂z
= 0, (3.15.36)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

Ei
σ0, (3.15.37)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 1

Ga
σ0, (3.15.38)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (3.15.39)

The displacements (ux , uy, uz) will next be obtained from the strains.

∂ux

∂x
= ∂uy

∂y
= ∂uz

∂z
= 0 (3.15.40)

yield

ux = ux (y, z), (3.15.41)

uy = uy(x, z), (3.15.42)

uz = uz(x, y), (3.15.43)

thus reducing the number of independent variables. Because ux (y, z) does not depend
on x and the face x = 0 is entirely fixed

ux (y, z) = 0. (3.15.44)

Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= ∂

∂x
uy(x, z) = 2(1 + ν)

Ei
σ0, (3.15.45)

and due to the fixities at the face x = 0

uy(x) = x
2(1 + ν)

Ei
σ0. (3.15.46)
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Because

ε13 = ∂ux

∂z
+ ∂uz

∂x
= ∂

∂x
uz(x, y) = 1

Ga
σ0, (3.15.47)

the fixities at the face x = 0 yield

uz(x) = x
1

Ga
σ0, (3.15.48)

and the above uy(x) and uz(x) also satisfy ε23 = 0. The displacement vector
(ux , uy, uz) becomes

ux = 0, (3.15.49)

uy(x) = x
2(1 + ν)

Ei
σ0, (3.15.50)

uz(x) = x
1

Ga
σ0. (3.15.51)

Due to the applied load the plate undergoes shear in the x-y-plane and in the x-z-
plane.

3.16 A Cuboid Deformes Under Its Own Weight,
Anisotropy Parallel to Z-Axis

The domain is a cuboid discretized by 10 × 10 × 10 equally sized hexahedral ele-
ments. Given size H = 10 m the vertices of the front face y = −H have the x-y-z-
coordinates (0,−H, H ), (H,−H, 0), (0,−H,−H ), and (−H,−H, 0), respectively;
the rear face is located on the y = H level. The material has been selected trans-
versely isotropic, the axis of anisotropy is the z-axis. For the elastic parameters see
Table3.11, density ρ = 2450 kg/m3 has been assigned. Gravitational acceleration
g = 9.81 m/s2 is applied in negative z-direction by default. Fixities have been pre-
scribed in the interior of the domain with zero x-displacement along the plane x = 0,
zero y-displacement along the plane y = 0, and zero z-displacement at the origin.
The bottom and the lateral faces are free of load by default. Specified loads P(x, y, z)
prevail along the top faces of the domain. These loads read along the top face x ≥ 0,
z ≥ 0

https://docs.opengeosys.org/books/bmb-5
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Fig. 3.17 Deformations scaled up, vertical displacements

P(x, y, H − x) = 1√
2
ρgH

⎛
⎝
1
0
1

⎞
⎠ , (3.16.1)

and along the top face x ≤ 0, z ≥ 0

P(x, y, H + x) = 1√
2
ρgH

⎛
⎝

−1
0
1

⎞
⎠ . (3.16.2)

The simulation (Table3.17) comprises one timestep to evaluate the stresses, the
strains, and the displacement vector (ux , uy, uz) (Fig. 3.17).

The stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = ρg

2

⎛
⎝
z + H 0 x

0 0 0
x 0 z + H

⎞
⎠ (3.16.3)

satisfies the equation of mechanical equilibrium
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div σ = (0, 0, ρg) (3.16.4)

as well as the specified surface loads because along the face y = H

σ

⎛
⎝
0
1
0

⎞
⎠ = ρg

2

⎛
⎝
z + H 0 x

0 0 0
x 0 z + H

⎞
⎠

⎛
⎝
0
1
0

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.16.5)

along the face y = −H

σ

⎛
⎝

0
−1
0

⎞
⎠ = ρg

2

⎛
⎝
z + H 0 x

0 0 0
x 0 z + H

⎞
⎠

⎛
⎝

0
−1
0

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ , (3.16.6)

along the top face x ≥ 0, z ≥ 0 where z = H − x

σ
1√
2

⎛
⎝
1
0
1

⎞
⎠ = ρg

2

⎛
⎝

H − x + H 0 x
0 0 0
x 0 H − x + H

⎞
⎠ 1√

2

⎛
⎝
1
0
1

⎞
⎠

= 1√
2
ρgH

⎛
⎝
1
0
1

⎞
⎠ , (3.16.7)

along the top face x ≤ 0, z ≥ 0 where z = H + x

σ
1√
2

⎛
⎝

−1
0
1

⎞
⎠ = ρg

2

⎛
⎝

H + x + H 0 x
0 0 0
x 0 H + x + H

⎞
⎠ 1√

2

⎛
⎝

−1
0
1

⎞
⎠

= 1√
2
ρgH

⎛
⎝

−1
0
1

⎞
⎠ , (3.16.8)

along the bottom face x ≤ 0, z ≤ 0 where z = −H − x

σ
1√
2

⎛
⎝

−1
0

−1

⎞
⎠ = ρg

2

⎛
⎝

−H − x + H 0 x
0 0 0
x 0 −H − x + H

⎞
⎠ 1√

2

⎛
⎝

−1
0

−1

⎞
⎠

=
⎛
⎝
0
0
0

⎞
⎠ , (3.16.9)

and along the bottom face x ≥ 0, z ≤ 0 where z = −H + x
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σ
1√
2

⎛
⎝

1
0

−1

⎞
⎠ = ρg

2

⎛
⎝

−H + x + H 0 x
0 0 0
x 0 −H + x + H

⎞
⎠ 1√

2

⎛
⎝

1
0

−1

⎞
⎠

=
⎛
⎝
0
0
0

⎞
⎠ . (3.16.10)

The constitutive equations governing the present situation have already been outlined
in the context of the previous example. The stress-strain relationships become

ε11 = ∂ux

∂x
= 1

Ei
σ11 − ν

Ei
σ22 − νia

Ei
σ33

= 1 − νia

2Ei
ρg(z + H), (3.16.11)

ε22 = ∂uy

∂y
= − ν

Ei
σ11 + 1

Ei
σ22 − νia

Ei
σ33

= −ν + νia

2Ei
ρg(z + H), (3.16.12)

ε33 = ∂uz

∂z
= −νia

Ei
σ11 − νia

Ei
σ22 + 1

Ea
σ33

=
(

1

Ea
− νia

Ei

)
ρg

2
(z + H), (3.16.13)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 2(1 + ν)

Ei
σ12 = 0, (3.16.14)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 1

Ga
σ13 = ρg

2Ga
x, (3.16.15)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 1

Ga
σ23 = 0, (3.16.16)

and constitute a set of equations for the partial derivatives of the displacements.
Integrating the strains ε11, ε22, and ε33 with respect to the prescribed x- and y-fixities
gives the displacement vector (ux , uy, uz)

ux (x, z) = 1 − νia

2Ei
ρg(z + H)x, (3.16.17)

uy(y, z) = −ν + νia

2Ei
ρg(z + H)y, (3.16.18)

uz(x, y, z) =
(

1

Ea
− νia

Ei

)
ρg

2

(
1

2
z2 + Hz

)
+ h(x, y), (3.16.19)
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where h(x, y) has to be determined from the shear strains and the specified z-fixity.
Then

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (3.16.20)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 1 − νia

2Ei
ρgx + ∂h

∂x
= ρg

2Ga
x, (3.16.21)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= −ν + νia

2Ei
ρgy + ∂h

∂y
= 0, (3.16.22)

hence,

∂h

∂x
= ρg

2

(
1

Ga
− 1 − νia

Ei

)
x, (3.16.23)

∂h

∂y
= ρg

2

ν + νia

Ei
y, (3.16.24)

and therefore,

h(x, y) = ρg

4

(
1

Ga
− 1 − νia

Ei

)
x2 + ρg

4

ν + νia

Ei
y2 + C. (3.16.25)

The z-fixity at the origin yields the free constant C . The displacement vector
(ux , uy, uz) becomes

ux (x, z) = 1 − νia

2Ei
ρg(z + H)x, (3.16.26)

uy(y, z) = −ν + νia

2Ei
ρg(z + H)y, (3.16.27)

uz(x, y, z) = ρg

4

(
1

Ga
− 1 − νia

Ei

)
x2 + ρg

4

ν + νia

Ei
y2

+ ρg

2

(
1

Ea
− νia

Ei

) (
1

2
z2 + Hz

)
. (3.16.28)
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Fig. 3.18 Rheological
analogue of the LUBBY2
model

3.17 A Viscoelastic (LUBBY2) Material in Simple-Shear
Creep

Xing-Yuan Miao, Dmitri Naumov, Thomas Nagel

This benchmark tests the OGS-6 implementation of the LUBBY2 model based on
analogous tests which have been performed in OGS-5 (Kolditz et al. 2016a; Nagel
et al. 2017b). The LUBBY2 constitutive model has been used extensively to model
both primary and secondary creep of rock salt. It is based on the generalised Burgers
model and is described by the following set of equations (Nagel et al. (2017b) (for
the definition of the various strain measures, see Fig. 3.18):

σ̇ = CM : [
ε̇ − V−1

M : σD − V−1
K : (σ − CK : εK)

]
(3.17.1)

ε̇K = V−1
K : (σ − CK : εK) (3.17.2)

ε̇M = V−1
M : σ (3.17.3)

where VM and VK represent the viscosity tensors of the Maxwell and Kelvin ele-
ments (cf. Fig. 3.18), respectively, and CM as well as CK are their stiffness tensors.
Making the usual assumptions of isotropy and isochoric deformations in all rheolog-
ical elements except for the spring in the Maxwell element which explicitly allows
elastic compressibility, the LUBBY2 model is completed by the following consti-
tutive dependencies which define the Kelvin shear modulus and the viscosities as
functions of the current stress state:

GK = GK0e
mKσeff (3.17.4)

ηM = ηM0e
m1σeff (3.17.5)

ηK = ηK0e
m2σeff (3.17.6)

with the effective stress σeff

σeff =
√
3

2
σD : σD (3.17.7)

calculated from the deviatoric stress tensorσD, where thema arematerial parameters
characterising the stress dependency of the respective moduli.
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Fig. 3.19 Loading and
boundary conditions

A simple-shear test was chosen as a reference solution for which the analytical
solution for the shear strain developing in a Burgers-type model following a shear-
stress jump reads (Nagel et al. 2017b):

εxy(t) = 1

2

[(
1

GM
+ 1

ηM
t

)
σxy + 1

GK

(
1 − e− GK

ηK
t
)

σxy

]
(3.17.8)

We here provide numerical examples to verify the implementation of the material
model in OGS-65 and OGS-6. Both 2D and 3D cases were considered. The mechan-
ical model is either a square plate (2D) or a cube (3D) with a positive shear stress of
0.01MPa applied along the top side or surface in the x direction; also see Fig. 3.19
for the remaining boundary conditions. For the 2D case, vertical displacements of
the all four sides are constrained, the horizontal displacement of the bottom is also
constrained to maintain the simple-shear setting. For the 3D case, the bottom sur-
face is constrained in vertical and its normal directions, and the top, left, and right
surfaces are constrained in the vertical direction. Front and back surfaces are con-
strained in their normal directions. Both 2D and 3D examples were tested in OGS-5,
while only the 3D example was tested in OGS-6. A discretisation of 100 quadrilateral
elements was applied for the 2D plane strain model, while a discretisation of 1000
hexahedral elements was applied for the 3D cube model. In OGS-5, bi-/tri-quadratic
shape functions were used, while in OGS-6 hexahedral linear shape functions were
employed.

The material property set for this benchmark is listed in Table3.18. The conjugate
gradient method (CG)was used as the linear solver with a tolerance of 10−16 in OGS-
6, while the direct solver (PARDISO) was used with a tolerance of 10−15 in OGS-5.
The Newton–Raphson method was implemented as the nonlinear solver with an
absolute displacement tolerance of 10−15 in OGS-5 and 10−12 in OGS-6. The load
was applied within one time step of 0.0001s and subsequently held for 1 s divided
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Table 3.18 Material properties used in LUBBY2 model

GM/MPa KM/MPa ηM0/MPad GK0/MPa

0.8 0.8 0.5 0.8

ηK0/MPad m1/MPa−1 m2/MPa−1 mG/MPa−1

0.5 −0.3 −0.2 −0.2

(a) εxy. (b) deviation.

Fig. 3.20 Variation of the shear strain with time (a) and the deviation between analytical solution
and numerical simulations (b)

Table 3.19 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-3.17 Xing-Yuan Miao OGS-6 See below OK

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

into 100 equidistant time steps. The local Newton tolerance is set to 10−10 in both
OGS-5 and OGS-6.

Comparisons of the analytical solution and the numerical simulations show the
satisfactory match between these solutions, see Fig. 3.20a. The maximum devia-
tion between the analytical solution and the 2D solution from OGS-5 is 10−4, then
decreases to approximately 10−5 by the 3D solution from OGS-6. The maximum
deviation between the analytical solution and the 3D solution from OGS-5 is the
minimum, approximately 10−6, see Fig. 3.20b.

The OGS-6 version used for this benchmark was the master branch available at
(Table3.19)

• https://github.com/ufz/ogs

with the input files available as CTests under

• https://github.com/ufz/ogs-data/tree/master/Mechanics/Burgers.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs
https://github.com/ufz/ogs-data/tree/master/Mechanics/Burgers
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3.18 Triaxial Compression of an Elasto-Plastic Material
with Hardening Based on Ehlers’ Yield Surface

Xing-Yuan Miao, Dmitri Naumov, Thomas Nagel

3.18.1 Introduction

The elasto-plastic behaviour of geomaterials is complex and usually non-linear. To
capture a wide range of basic phenomena, a generic yield function for geomate-
rials was implemented in OGS-6 as the first elasto-plastic model. It is given by a
seven-parametric (α, β, γ, δ, ε, k, m) yield function presented by Ehlers (1995) and
expressed as:

F = Φ
1
2 + β I1 + εI 21 − k(εp eff) (3.18.1)

Φ = J2 (1 + γϑ)m + 1

2
αI 21 + δ2 I 41 (3.18.2)

ϑ = J3

J
3
2
2

(3.18.3)

where I1 is the first principal invariant of the stress tensor, while J2 and J3 are the
second and third principal invariants of the deviatoric stress tensor. This yield surface
allows the modelling of a variable stress-dependence of the yield locus both on its
position in the deviatoric plane and in the Meridian plane. Similarly, the transition
between dilatant and contractile flow can be modelled when using this surface as the
plastic potential. Additionally, the surface is both smooth and smoothly differentiable
which is a favourable property for both numerical and theoretical analyses.

To account for isotropic hardening, the yield-surface expansion is modelled by
assuming the following dependence of the strength parameter k on the plastic effec-
tive strain:

k(εp eff) = κ(1 + hεp eff) (3.18.4)

where h represents the hardening parameter.
A different parameterization is usually chosen for the plastic potentialGF in order

to model non-associative flow (αp, βp, γp, δp, εp, mp). Proceeding from the flow rule

ε̇p = λ
∂GF

∂σ
(3.18.5)

the following derivatives are required:
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∂GF

∂σ
= 1

2Φ
1
2
p

∂Φp

∂σ
+ βp

∂ I1
∂σ

+ 2εp I1
∂ I1
∂σ

(3.18.6)

= 1

2Φ
1
2
p

∂Φp

∂σ
+ βpI + 2εp I1I (3.18.7)

In the above,

∂Φp

∂σ
= (

1 + γpϑ
)mp ∂ J2

∂σ
+ mpγp J2

(
1 + γpϑ

)mp−1 ∂ϑ

∂σ
+ αp I1

∂ I1
∂σ

+

+ 4δ2p I
3
1
∂ I1
∂σ

(3.18.8)

= (
1 + γpϑ

)mp σD + mpγp J2
(
1 + γpϑ

)mp−1 ∂ϑ

∂σ
+

+ (αp I1 + 4δ2p I
3
1 )I (3.18.9)

are required where in turn the material-independent relations

∂ϑ

∂σ
= ∂ϑ

∂ J3

∂ J3
∂σ

+ ∂ϑ

∂ J2

∂ J2
∂σ

= ϑ
(
σD−1

)D − 3

2

ϑ

J2
σD (3.18.10)

∂ J3
∂σ

= J3
(
σD−1

)D
(3.18.11)

∂ J2
∂σ

= σD (3.18.12)

∂ I1
∂σ

= I (3.18.13)

have been used. For details on the implicit integration scheme, see Nagel et al.
(2017b).

3.18.2 Benchmark

For benchmarking purposes, a parameter set inspired by the one used in the work
of Ehlers and Avci (2013) has been used and is given in Table3.20. Even though
analytical solutions are not available, principal features of the model can be tested.
The objective of this benchmark was two-fold: (i) to test the basic elasto-plastic
behaviour, namely the onset of yielding and the maintenance of the constraint F = 0
during plastic flow, and (ii) to test the non-associatedflow for plausibility, in particular
its volumetric component.
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Table 3.20 Values of the parameters associated with the elastic (G, K ) and plastic model compo-
nents

G MPa K MPa h κ MPa−1 β γ α δ MPa−1

150 200 10 0.1 0.095 1 0.01 0.0078

ε m βp γp αp δp MPa−1 εp MPa−1 mp

0.1 0.54 0.0608 1 0.01 0.0078 0.1 0.54

For that purpose, a conventional triaxial compression test was performed under
two different conditions, load cases 1 and 2:

1. Following the application of an isotropic confining pressure, the yield-point is
approached with a constant hydrostatic stress in the elastic range. This case is
referred to as I1 = const.. This is achieved by lowering the confining pressure as
the axial stress is increased. Compare load paths indicated in Figs. 3.21 and 3.22.

2. Following the application of a radial confining stress at constant axial displace-
ment, an axial compression ramp was applied. This resulted in a monotonically
increasing hydrostatic stress state until the onset of yielding while transitioning
through a non-deviatoric elastic loading state during the compression process.
Compare load paths indicated in Fig. 3.23.

During the compression test, a continuous displacement-controlled loading process
was applied axially with a displacement-rate of 1mm/s.

A discretisation of 1000 hexahedral elements was applied to a three-dimensional
cube model. The biconjugate gradient stabilized method (BiCGSTAB) was used as
the linear solver and the tolerance set to 10−16. The Newton–Raphson method was
employed as the nonlinear solver with an absolute tolerance of 10−14. The time-step
size was set to 0.025s.

The OGS-6 version used for this benchmark was the official master branch
available at

• https://github.com/ufz/ogs

with the input files available as CTests under

• https://github.com/ufz/ogs-data/tree/master/Mechanics/Ehlers.

In order to test the non-associated flow feature as well as the transition between
contractile anddilatant flow, the confiningpressure at the onset of yielding in load case
1 is controlled such that yielding occurs either at a confining pressure corresponding
to the maximum of the plastic potential in the hydrostatic plane (i.e. where plastic
flow is momentarily isochoric; rmax

s ), or to the dilatant/contractant sides of that point
(rbefores and r afters , respectively). This can be most clearly seen in Fig. 3.21.

To arrive at an analytical expression for this point, the consolidation pressure pc
and the parameter πc which defines the ratio between the pressures corresponding
to the curve’s maximum and length (Ehlers and Avci 2013) can be expressed as
functions of βp, δp and εp:

https://github.com/ufz/ogs
https://github.com/ufz/ogs-data/tree/master/Mechanics/Ehlers
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Fig. 3.21 a Characteristic shape of the yield function and the plastic potential in the hydrostatic
plane and b the corresponding plastic volumetric strainwhen I1 = const.,α = 0. The curves labelled
rs indicate the different stress paths as described in the text

pc = βp

3
(
εp + δp

) (3.18.14)

πc = 1

4
(
εp − δp

)
(
3εp −

√
8δ2p + ε2p

)
(3.18.15)

Note that, only in the case ofα = 0, the curve’smaximum is exclusively described by
pc and πc, whereas in the general case these relations serve as an approximation. This
can be seen in Figs. 3.21 and 3.22: in the case ofα = 0 (Fig. 3.21), the curve rmax

s hits
the peak of the plastic potential and the corresponding plastic flow is isochoric at its
onset, i.e. ėp = 0. This is only approximately the case forα �= 0, see Fig. 3.22. In both
cases, the load-paths rbefores and r afters clearly show dilatant (ėp > 0) and contractant
(ėp < 0) flow, respectively. Note also, how this behaviour changes as the hydrostatic
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Fig. 3.22 a Characteristic shape of the yield function and the plastic potential in the hydrostatic
plane and b the corresponding plastic volumetric strain when I1 = const., α = 0.01. The curves
labelled rs indicate the different stress paths as described in the text

stress state evolves and shifts the stress state such that flow becomes more dilatant.
This evolution of the stress state is correctly constrained by the yield surface (F = 0).

Figure3.23 shows the triaxial compression test under the second set of boundary
conditions, i.e. load case 2.

The plastic volumetric strain exhibits a strongly nonlinear progression throughout
the loading process in that flow varies rapidly from contractile to dilatant as the stress
state passes the peak of the plastic potential.

Note further that, (i) J2 vanishes briefly in the elastic range once the constant
confining pressure and displacement loading cause an isotropic stress state; (ii) The
plastic volumetric strain achieves a minimum after which dilatant flow causes the
sample volume to increase again.

In all cases, the stress state during plastic loading remains true to the yield-surface
constraint F = 0 (Figs. 3.21, 3.22 and 3.23).
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Fig. 3.23 Load case 2. a Stress path in the hydrostatic plane and b the plastic volumetric strain
as it evolves with the changing stress state. The dashed line indicates I1 at the peak of the plastic
potential. The curve labelled rs indicates the stress paths as described in the text

3.18.3 Drucker–Prager as a Special Case

Finally, an important special case was tested. By prescribing specificmaterial param-
eters of the Ehlers surface to be zero, the seven-parametric yield function can be
reduced to the two well-known yield conditions Drucker–Prager (α = δ = ε = 0)
and von Mises (α = β = δ = ε = 0). Here, we provide a Drucker–Prager model test
as an additional verification of the Ehlers material model. The boundary conditions
of simulation set (2) were chosen. The typical linear shape in the hydrostatic plane
and the corresponding constant-dilatancy behaviour can be seen in Fig. 3.24. Note
in passing that this reduction of the Ehlers material model to Drucker–Prager cor-
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Fig. 3.24 Variations of the stress states (a) and the plastic volumetric strain (b) with the monotonic
loading process following load case 2 using a Drucker–Prager yield criterion based on suitably
chosen parameters in the Ehlers yield surface. The curve labelled rs indicates the stress paths as
described in the text

responds to the case where the Drucker–Prager yield surface middle circumscribes
the Mohr–Coulomb yield surface, see Fig. 3.25 for a comparison of different param-
eterisations. The green solid line represents the results calculated from the current
model, the orange, purple and pink solid lines are the Drucker–Prager yield surface
(Eq.3.18.16) circumscribes (Eq.3.18.17), middle circumscribes (Eq.3.18.18) and
inscribes (Eq.3.18.19) the Mohr–Coulomb yield surface, respectively.

√
J2 = A + BI1 (3.18.16)
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Fig. 3.25 Reduction of the
Ehlers material model to
Drucker–Prager model

where A and B are two constants determined from experiments.
For the Drucker–Prager yield surface circumscribing the Mohr–Coulomb yield

surface

A = 6c cosφ√
3(3 − sin φ)

B = 2 sin φ√
3(3 − sin φ)

(3.18.17)

for the Drucker–Prager yield surface middle circumscribing the Mohr–Coulomb
yield surface

A = 6c cosφ√
3(3 + sin φ)

B = 2 sin φ√
3(3 + sin φ)

(3.18.18)

for the Drucker–Prager yield surface inscribing the Mohr–Coulomb yield surface

A = 3c cosφ√
9 + 3 sin2 φ

B = sin φ√
9 + 3 sin2 φ

(3.18.19)

where c is the cohesion parameter. φ the angle of internal friction (Table3.21).
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Table 3.21 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Status CTest

BMB5-3.18 Xing-Yuan Miao OGS-6 See below OK

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

The OGS-6 version used for this benchmark was the master branch available at

• https://github.com/ufz/ogs

with the input files available as CTests under

• https://github.com/ufz/ogs-data/tree/master/Mechanics/Ehlers.

3.19 Material Forces

Francesco Parisio, Dmitri Naumov and Thomas Nagel

Material forces, which are also referred to as configurational forces, can be seen as
forces that arise as reactions to a change in configuration of the material points of a
continuum. One of the most illustrative examples is the one of the zipper-force on a
crack1: we can imagine the crack to be like a zipper which is open up to the crack tip,
while the intact material is represented by the closed part of the zipper. If the forces
acting on the solid reach a value higher than the crack propagation criterion (critical
energy-release rate; stress-intensity factors), the crack propagates and our “zipper”
opens up. Material forces at the crack tip are reactions that tend to keep the zipper in
place, i.e., they point against the direction of the crack propagation as if they were a
reaction to the change of configuration that is caused by the crack propagating. This is
on complete analogy to the physical nodal reaction forces at external boundaries that
act to keep the current configuration in its deformed shape (Fig. 3.26). The above is
a simple and intuitive explanation, while a more rigorous mathematical formulation
lies at the heart of material forces theory (Maugin 1995). Generally, configurational
forces can be derived in different ways, such as from the Lagrangian function L of
the continuum by investigating translational invariance (Gross et al. 2003). Their
application includes error estimation in FE analyses, fracture mechanics, modelling
inclusions, inhomogeneities and phase transformations (Mueller et al. 2002; Gross
et al. 2003). More generally, configurational forces can be successfully employed
to treat topological defects of different geometrical dimensions in continua: points
(atomic displacements), lines (dislocations), planes (fractures, phase boundaries) and
volumes (inclusions and voids) (Gross et al. 2003). In fracture mechanics, material
forces are closely related to the J-integral of fracture (Maugin 1995).

In a small strain framework, the classical momentum equilibrium equation of the
continuum reads

1White Paper–Material Forces: A Novel Approach to Fracture Mechanics in ANSYS, available at
http://www.ansys-blog.com/material-forces-for-fracture/.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs
https://github.com/ufz/ogs-data/tree/master/Mechanics/Ehlers
http://www.ansys-blog.com/material-forces-for-fracture/
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Fig. 3.26 Tensile test of a pre-cracked sample. Material force acting on the crack tip (left) and
physical reaction forces at nodes associated with the vertical displacement boundary conditions

divσ + ρb = 0, (3.19.1)

where σ is Cauchy’s stress tensor, ρ is the mass density and b is a body-force vector
field (e.g., gravity). The gradient of the Helmholtz free energy density ψ(ε; x) of a
heterogeneous medium can be expanded to

gradψ = σ : grad ε + ∂ψ

∂x

∣∣∣∣
expl

, (3.19.2)

and the symmetry properties of the stress and strain tensor yield

σi j
∂εi j

∂xk
= σi j

∂2ui
∂x j∂xk

= σi j
∂2ui

∂xk∂x j
= ∂

∂x j

(
σi j

∂ui
∂xk

)
− ∂σi j

∂x j

∂ui
∂xk

. (3.19.3)

Substitution into Eq. (3.19.2) yields

gradψ − div
(
grad Tuσ

) − ρ grad Tub − ∂ψ

∂x
= 0, (3.19.4)

which leads to the balance equation of material forces
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divΣ + g = 0, (3.19.5)

where Σ is Eshelby’s stress tensor, which is in general non-symmetric and has
therefore nine independent components in a three-dimensional setting, and is defined
as

Σ = ψI − grad Tuσ. (3.19.6)

Furthermore, g is the vector field of material forces per unit volume, defined as

g = −ρ grad Tub − ∂ψ

∂x

∣∣∣∣
expl

= gvol + ginh (3.19.7)

with a volumetric component due to body forces

gvol = −ρ grad Tub (3.19.8)

and a component related to inhomogeneities

ginh = − ∂ψ

∂x

∣∣∣∣
expl

. (3.19.9)

Concerning the finite element implementation of material forces (Mueller et al.
2002) into OpenGeoSys, the set of test functions v ∈ V0

V0 = {
v ∈ H 1(Ω) : v = 0 ∀ x ∈ ∂Ω

}
(3.19.10)

is introduced to arrive at the weak form of the material force balance
∫

Ω

(Σ : grad v − g · v) dΩ = 0, (3.19.11)

which, in analogy with Cauchy’s stress integration leading to nodal reactions, leads
to the definition of a nodal material force vector as

Fconf =
∫

Ω

NTg dΩ =
∫

Ω

GTΣ dΩ, (3.19.12)

where N andG are shape-functionmatrices and gradientmatrices, and • is a vectorial
representation of the tensorial quantity •. The interested reader is referred to the work
of Nagel et al. (2016b) on the general definitions and details of the involved FE-
matrices as implemented in OGS-6. The described calculation of material forces is
performed as a post-processing step following the solution of the physical equilibrium
equations.
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3.19.1 Benchmark on Material Forces: A Non-uniform Bar
in Tension

To verify the numerical implementation of material forces in OGS-6 and to guide
the reader towards a better understanding of the concepts illustrated in the previous
section, we have designed a simple yet meaningful test: an elastic bar under uniaxial
tension σ0 with a linear distribution of Young’s modulus following

E (x) = E0

[
1 + α

(
x

l
− 1

2

)]
. (3.19.13)

From Eq. (3.19.13), we can compute the displacement gradient as

grad u = ε = σ0

E0

[
1 + α

(
x

l
− 1

2

)]−1

, (3.19.14)

and the free energy density as

ψ = 1

2
σε = σ2

0

2E0

[
1 + α

(
x

l
− 1

2

)]−1

. (3.19.15)

Based on these results, Σ = −ψ follows. Based on ginh = − divΣ , the material
body force density associated with the inhomogeneous stiffness distribution reads

ginh = − divΣ = − ασ2
0

2E0l

[
1 + α

(
x

l
− 1

2

)]−2

. (3.19.16)

Additionally, the displacement field can be integrated to the following expression:

u(x) = σ0l

αE0
ln

1 + α
(
x
l − 1

2

)

1 − α
2

. (3.19.17)

In the specific case presented here, the length of the bar is 1m and its width in the
y-direction is 0.05m. The problem is solved in a plane strain two-dimensional set-
ting and, to avoid lateral stresses developing during deformation, Poisson’s ratio
is set to be 0, thus maintaining uni-axial conditions. The discretization applied
is 160 × 8 bi-linear quadratic elements of edge length 0.00625m and the tensile
stress is σ0 = 0.01GPa on the right hand side while the left hand side is fixed
in the x-direction. The bottom right and left nodes are constrained in their verti-
cal displacement. The distribution of elasticity follows equation Eq.3.19.13 with
E0 = 1GPa. Figure3.27 shows the finite element mesh along with the linear distri-
bution of Young’s modulus. The material being linearly elastic, a single time step is
sufficient to reach the equilibrium configuration.
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Fig. 3.27 Linear distribution of stiffness and finite element discretization of the problem

The OGS-6 version employed for this tutorial can be found in the official master
branch available at

• https://github.com/fparisio/ogs/tree/SVOSDN_MF_BB.

with the input files named bar available as CTests under

• https://github.com/ufz/ogs-data/tree/master/Mechanics/Linear/MaterialForces.

The output from OGS-6 is the vectorial field of nodal material forces as in
Eq. (3.19.12). For a direct comparison with the analytical solution, we need to com-
pute the sum of material forces at every transversal section at a given coordinate
x , which equals the total material force at that section. For a volume integral, we
need to integrate over the transversal area A and sum in a discretized manner along
the x direction the analytical solution of Eq. (3.19.16). The size of the discretiza-
tion for this numerical integration is chosen as equivalent to the FEM discretization,
i.e., 0.00625m. The analytical expression of the vector of material forces at a given
section xi reads therefore

G(xi ) = − ασ2
0

2E0l

[
1 + α

(
xi
l

− 1

2

)]−2

AΔxi . (3.19.18)

where approximate linearity of ginh in the proximity of xi has been assumed.
Figure3.28 shows the results of the numerical analyses with OGS-6 in terms of
the vectorial field of nodal material forces. It can be seen how the material forces

Fig. 3.28 The material forces vector field pointing toward regions of lower stiffness in the material
(background color). The plot is a close-up of the central part of the bar

https://github.com/fparisio/ogs/tree/SVOSDN_MF_BB
https://github.com/ufz/ogs-data/tree/master/Mechanics/Linear/MaterialForces


116 X.-Y. Miao et al.

(a) (b)

Fig. 3.29 Example formaterial forces acting in an inhomogeneousbar under tension: the continuous
analytical distribution of Young modulus and the discretized distribution in OGS (a); comparison
between the analytical solution and the result from the analysis with OGS (b)

Table 3.22 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-3.19.1 Francesco Parisio OGS-6 Available OK

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

point toward the direction of lower stiffness in an effort to restore a lower ener-
getic configuration. The distribution of Young’s modulus in the model is shown
in Fig. 3.29a for both the discrete numerical setup and the analytical continuous
distribution. Figure3.29b shows the comparison between the material forces at the
nodes of the finite element discretization computed in OGS-6 following Eq.3.19.12
(and summed over the cross-section) and the analytical solution obtained from
Eq. (3.19.18). Neglecting boundary effects, there is excellent agreement between
analytical and numerical solutions.

The goal of this benchmarkwas to introduce the users ofOGS-6 tomaterial or con-
figurational forces as a new useful feature for the interpretation of evolving material
domains. We have shown a simple example, working out explicitly all mathemati-
cal steps in a uniaxial setup and comparing the obtained analytical solution to the
numerical one fromOGS-6. Though far from being exhaustive, this application hints
the attentive reader toward the meaningful physics that lies behind material forces: a
driving force for interfaces and discontinuities (dislocations, cracks, defects, phase
boundaries etc., just to name a few) (Table3.22).

The OGS-6 version employed for this tutorial can be found on github at

• https://github.com/ufz/ogs.

The input files (bar.prj, bar.vtu and bar.gml) can be found in the source code in the
folder

• https://github.com/ufz/ogs-data/tree/master/Mechanics/Linear/MaterialForces.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs
https://github.com/ufz/ogs-data/tree/master/Mechanics/Linear/MaterialForces


Chapter 4
T Processes

Vinay Kumar, Jobst Maßmann and Rainer Helmig

4.1 Effective Thermal Conductivity

4.1.1 Introduction and Theory

Thermal processes in porous media involve both conduction and convection. In low
conducting media, or under very low Peclet numbers, the contribution of thermal
conduction to the total heat transport might be just as or even more important than
the contribution of thermal convection. For a purely diffusive system, the equation
for pure conduction gives the total heat flux qT through a given area of the domain

qT = −λpm∇T (4.1.1)

The diffusion coefficient of the system λpm is the effective thermal conductivity
of the porous media. In its simplest form, it is a function of the thermal conductivities
of the constitutive phases and the volumetric distribution of the phases (given by the
porosity φ) in a considered Representative Elementary Volume (REV). For a porous
medium fully saturated with a solid and a fluid phase each, the effective thermal
conductivity of the medium is given by

λeff = f (λf,λs,φ) (4.1.2)
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In the following examples three simple averaging laws (cf. Aplin et al. 1999; Dong
et al. 2015;Woodside andMessmer 1961) to determine effective thermal conductivity
are compared with each other in numerical simulations of heat conduction in a low-
permeability, fully-saturated porous medium. They are

• Arithmetic averaging,
λarith = φλf + (1 − φ)λs (4.1.3)

• Geometric averaging,
λgeom = λ

1−φ
s · λ

φ
f (4.1.4)

• Harmonic averaging

λharm = 1
φ
λf

+ 1−φ
λs

(4.1.5)

These averaging laws are derived from a simplified model concept which considers
heat flow in a medium analogously to the flow of electrical current in a resistor
network. This model concept explains heat conduction in a porous medium whose
micro-structure shows a greater degree of pore-network connectivity in one plane
compared to the direction perpendicular to it. In such media the conduction of heat
can occur either simultaneously through both the liquid and solid phases, similar to
resistors in parallel or sequentially with heat flowing first through one phase and then
trough the other, similar to resistors in series. In the former case the effective thermal
conductivity is given by the arithmetic average and in the latter case, the harmonic
average. For media without a distinctly oriented pore structure, the conduction of
heat can neither be approximated to a strict series nor to a parallel arrangement. In
this case the geometric mean serves as a good approximation for the effective thermal
conductivity of the system.

Considering constant values for λs, λf and the temperature gradient, the effective
thermal conductivity of a system changes with the porosity and with the change in
arrangement of the phases relative to the direction of heat flow. The variation of
effective thermal conductivity is plotted as a function of porosity in the Fig. 4.1a, b
below. Figure (4.1a) shows the case where the solid-phase thermal conductivity is
around 6 times larger than the liquid-phase thermal conductivity. Figure (4.1b) shows
the case where the solid-phase thermal conductivities is only around 1.5 times larger
than the liquid-phase thermal conductivity. The graphs indicate that the influence of
the averaging law is greater when the thermal conductivity ratio is greater.

If the model concept allows for different conducting pathways in different direc-
tions, then the averaging laws can be chosen differently in different principal direc-
tions. When anisotropy axes are not aligned with the coordinate system, the Eigen-
value problem

|λs − βI| = 0 (4.1.6)
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Fig. 4.1 Variation of thermal conductivity with porosity for two different solid-to-fluid thermal
conductivity ratios

has to be solved, where I is the identity tensor and β the vector of Eigen-values
which give the thermal conductivity in the principal directions. The solution yields
the effective thermal conductivity tensor λ′

eff, given by

λ′
eff =

⎡
⎣

λ′
eff,i 0 0
0 λ′

eff,j 0
0 0 λ′

eff,k

⎤
⎦ = λii. (4.1.7)

The principal directions are given by the Eigen-vectors, which form the compo-
nents of the transformation matrix Q. λ′

eff is then transformed back to the original
direction using Q and its transpose QT by

λeff = QT · λ′
eff · Q (4.1.8)

whereby λeff is used in the global coordinate system for further calculations.

4.1.2 Model Setup

The previously discussed concepts are illustrated in a numerical benchmark of a
heater test in homogenous, anisotropic, saturated claystone. According to it, λs is
the thermal conductivity of the grains(λgrains) and λf is the thermal conductivity of
water(λwater). An axisymmetric domain of 100m × 100m consisting of a centrally
placed cylindrical heater of 0.5m radius and 2m height producing a time dependent
thermal power output is chosen. For the sake of simplicity, the technical and geotech-
nical barriers are neglected and the anisotropy (bedding) in the claystone is assumed
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Fig. 4.2 Model geometry (a) and thermal power output (b) used in simulations

Table 4.1 Parameter set used in simulations

Parameter Value Unit

Porosity(φ) 0.12 [−]
sp. heat capacity of grains 626 J kg−1 K−1

sp. heat capacity of water 4180 J kg−1 K−1

Grain density 2454 kg m−3

Water density 1000 kg m−3

Grain thermal cond.(
λgrain,parallel

) 3.5 W m−1 K−1

Grain thermal cond.(
λgrain,perpendicular

) 1.5 W m−1 K−1

Water thermal cond. (λwater) 0.6 W m−1 K−1

to be oriented along the coordinate axis in the horizontal (r) direction. The schematic
of the experiment and the thermal power of the heater is given in Fig. 4.2a, b.

The parameters used are given in Table4.1.
The following four models are compared:

(a) Arithmetic averaging in all directions.
(b) Geometric averaging in all directions.
(c) Harmonic averaging in all directions.
(d) Arithmetic averaging in r and harmonic averaging in y direction.

A comparison of the resulting temperature distribution, exemplary at one specific
time step (t = 1.52 × 108 s) is shown for the cases a–c in the Fig. 4.3.

A comparison between the temperature distribution of the models a–c and the
model d with direction-dependent averaging for the effective thermal conductivity is
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Fig. 4.3 Temperature distribution considering effective thermal conductivities by a arithmetic,
b geometric and c harmonic averaging between the solid and liquid phase thermal conductivities
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(a) Temperature along the line l1 (cf.
fig. 4.2a) on the r axis from the
heater surface.

(b) Temperature along the line l2 (cf.
fig. 4.2a) on the y axis from the
heater surface.

Fig. 4.4 Comparison of temperature distribution between different averaging laws for effective
thermal conductivity of saturated claystone

Table 4.2 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-4.1 Vinay Kumar OGS-5.7.1 https://github.com
/VinayGK/ogs5/tree
/thermal-cond-averaging

Available ToDo

shown graphically for the r direction in Fig. 4.4a and for the y direction in Fig. 4.4b
and Table4.2.

https://docs.opengeosys.org/books/bmb-5
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Chapter 5
HH Processes

Aaron Peche, Thomas Graf, Lothar Fuchs, Insa Neuweiler,
Jobst Maßmann, Markus Huber, Sara Vassolo, Leonard Stoeckl,
Falk Lindenmaier, Christoph Neukum, Miao Jing and Sabine Attinger

Urban Water Resources Management (UWRM)

5.1 Coupling OpenGeoSys and HYSTEM-EXTRAN
for the Simulation of Pipe Leakage

Aaron Peche, Thomas Graf, Lothar Fuchs and Insa Neuweiler

OpenGeoSys was coupled to the pipe flow model HYSTEM-EXTRAN [HE, ver-
sion 7.7 or newer] (itw 2010) in order to simulate pipe leakage in a variably sat-
urated subsurface. The newly developed weak coupling scheme is applicable for
the Richards flow process in a modified version of OGS 5 that can be downloaded
from the custom branch available at https://github.com/APeche/OGS-HYSTEM-
EXTRAN.git. The shared-memory-based coupling was implemented using the inter-
process communication method Named Pipes, which is considered a cost-effective
and easy-to-implement push-migration solution (Laszewski and Nauduri 2012). The
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Fig. 5.1 Conceptual model of the coupled OpenGeoSys-HYSTEM-EXTRAN model (OGS-HE
[Modified from Peche et al. (2017)])

implementation of the coupling scheme is based on a timestep-wise update of bound-
ary conditions and source terms. Bidirectional interprocess data transfer is realized
using in total two Named Pipes. First pipe is the server pipe, mainly used to send
the HE-calculated pipe water level HPW [L] to OGS. In OGS, HPW is used as a
Dirichlet-type boundary condition assigned to the pipe defect surface. It is converted
to a hydrostatic pressure p [M L−1 T−2] using fluid density ρ [M L−3] and gravi-
tational acceleration g [L T−2] in the form of p = HPW · ρ · g. The second Named
Pipe is the client pipe used to send the OGS-calculated leakage flow Qleak [L3 T−1]
to HE, where it is used as a source term. The coupled model will be referred to as
OGS-HE. The conceptual model is visualized in Fig. 5.1.

An extensive validation for the Richards flow process in OGS is given in Kolditz
et al. (2012d). HE is widely used in practice. The calculation of pipe flow in HE is
based on SWMM(Gironás et al. 2009), which undergoes a quality assurance program
to ensure numerical result accuracy (Rossman 2006). The present chapter serves the
purpose to show that the implemented interprocess data transfer between OGS and
HE is correct. It further demonstrates the correctness of OGS-internal conversion of
HPW to p and the update of boundary conditions. In this first set of benchmarks,
this is delimited for the transferred water levels HPW . A detailed description of the
model including all benchmark examples is given in Peche et al. (2017).

Governing Equations

HE describes pipe flow in the form of open channel flow using the complete one-
dimensional Saint-Venant equations (de Saint-Venant 1871), where pressurized pipe
flow is approximated using a Preissmann slot (Preissmann 1961) or an iterative
approach. The Saint-Venant equations consist of continuity equation (5.1.1) and
equation of motion (5.1.2) (itw 2010; Chaudhry 2008).

∂A

∂t
+ ∂(v · A)

∂x
= 0 (5.1.1)
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1

g

∂v

∂t
+ v

g

∂v

∂x
+ ∂HPW

∂x
= Is − Ir (5.1.2)

where A [L2] is cross-sectional area, t [T] is time, v [L T−1] is flow velocity, x [L]
is pipe length, g [L T−2] is gravitational acceleration, HPW [L] is pipe water level,
Is [-] is bottom slope, and Ir [-] is friction slope. Ir can be parametrized using the
Darcy-Weißbach equation in combinationwith the Prandtl–Colebrook friction law or
the approach of Gauckler–Manning–Strickler (itwh:2010). In HE, the Saint-Venant
equations are solved with a finite volume scheme.

In OGS, flow in the variably saturated porous medium is calculated using
Richards’ equation (Richards 1931a; Kolditz et al. 2012d).

φρ
∂S

∂p

∂p

∂t
− ∇ ·

[
ρ
KKrel

μ
(∇ p − ρg)

]
= ρQleak

Vu
(5.1.3)

where φ [-] is porosity, ρ [M L−3] is fluid density, S [-] is water saturation, p [M
L−1 T−2] is water pressure, ∇ [L−1] is nabla operator, K [L2] is intrinsic permeabil-
ity, Krel [-] is relative permeability, μ [M L−1 T−1] is fluid dynamic viscosity, and
Vu [L3] is the cell volume. The saturated hydraulic conductivity ks [L T−1] is calcu-
lated with ks = Kρg/μ. Equation (5.1.3) is solved using a retention function S(p)
and relative hydraulic conductivity function Krel(S) after e.g. van Genuchten (1980).

Verification and Validation of OGS-HE

The following sections describe the verification and validation examples. Examples
include one analytical solution and measurement results from two physical exper-
iments (Skaggs et al. 1970; Siriwardene et al. 2007). We chose examples that are
relevant for pipe leakage.

5.1.1 Analytical Solution of Stationary Constant Water
Level-Driven Infiltration into a Horizontally Layered
Soil Column

Brunner et al. (2009) proposed a one-dimensional analytical model for surface water-
groundwater interaction. That analytical model can be modified such that it is a
broad approximation of pipe leakage into a horizontally layered soil, where a pipe
defect is located above a colmation layer overlaying the aquifer strata. This modified
setup enables to derive an analytical solution used for the validation of OGS-HE.
The setup of the analytical model is visualized in Fig. 5.2a. Flow is driven by a
Dirichlet boundary conditionof constant pressure at the domainbottomanda constant
pipe water level at the domain top. Assuming a constant cross-sectional area and
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Fig. 5.2 Comparison of OGS-HE against an analytical solution describing constant pipe water
level-driven infiltration into a layered soil column reprinted from Peche et al. (2017). a Analytical
model modified from Brunner et al. (2009), b conceptual model of OGS-HE, c verification results

volume conservation results in the same specific discharge through the fully saturated
colmation layer q1 [L T−1] and the fully saturated part of the aquifer strata q2.

q1 = q2 (5.1.4)

Assuming linear pressure profiles, reformulation using Darcy’s law results in

− ks,c
(HPW + hc − pint · (ρg)−1 + 0)

hc
= −ks,a

(pint · (ρg)−1 + hw − 0 + 0)

hw

(5.1.5)

where ks,c and ks,a [L T−1] are saturated hydraulic conductivities of colmation layer
and aquifer strata at full saturation, respectively, hc [L] is colmation layer thickness,
pint [M L−1 T−2] is pressure at the colmation layer interface, and hw [L] is the thick-
ness of the saturation front in the aquifer strata. Equation (5.1.5) can be reformulated
to a form that describes pint as a function of HPW and hw:

pint =
([(ks,chw

hcks,a
(HPW + hc)

)
− hw

](
1 + ks,chw

hcks,a

)−1
)

· ρg (5.1.6)

The setup of the numerical model is visualized in Fig. 5.2b. The pipe flow model
represents a pipe of 30m length. It was controlled by an upstream Dirichlet-type
boundary condition, where HPW was either 0.07m or 0.5m. Downstream boundary
condition of the pipe flowmodel was set as free outflow boundary condition. It should
be noted that the details of the pipe flow setup are irrelevant as long as they lead to a
fixed and knownwater level above the pipe defect. This was the case in our examples.
Geometry and spatial discretization of the porous subsurface model are given in
Fig. 5.2b. The steady-statewas calculated using different bottomboundary conditions
regulated by pbot (band width −6000Pa ≤ pbot ≤ −50Pa). The initial condition
was pre-calculated, representing the steady-state pressure distribution from a similar
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Table 5.1 Fluid properties and material parameters

Soil properties

α [m−1] m [-] K [m2] Sr [-] Smax [-] φ [-]

Aquifer strata 3 0.56 4.1297·10−12 0.14 1 0.41

Colmation layer 3 0.47 1.3052·10−12 0.16 1 0.41

Fluid properties

ρ [kg m−3] 1000

μ [kg m−1 s−1] 0.001

same setup based on a constant global pressure of −100Pa. Material properties of
aquifer strata and colmation layer represent sandy loam and loamy sand, respectively.
Parameters originate from Carsel and Parrish (1988) and Roth (2006) and are given
in Table5.1, where α andm are parameters of the vanGenuchten parametrization and
Sr and Smax [-] are residual and maximal saturation, respectively. Fluid properties are
also given in Table5.1. Varying HPW and pbot enabled a variation of hw and thus lead
to a different result of pint, which was then compared with the analytical solution.
Clearly, results agree very well, and are given in Fig. 5.2c.

5.1.2 Physical Experiment of Transient, Constant Water
Level-Driven Infiltration into a Homogeneous Soil
Column

Skaggs et al. (1970) presented a physical experiment, which describes one-
dimensional infiltration into an initially dry soil column. In that experiment, infiltra-
tion was driven by keeping a constant water table on top of the soil column. Skaggs
et al. (1970) measured the infiltration rate and depth of the wetting front over a time
interval of 90min. That experiment was numerically reproduced using OGS-HE,
where infiltration is driven by a time-constant pipe water level. The domain of the
pipe flowmodel is similar to the one described in Sect. 5.1.1. The upstream boundary
was set to the Dirichlet-type boundary condition HPW = 0.0075m. The downstream
boundary of the pipe flow model was assigned as free outflow boundary condition.
Initial condition, boundary conditions, temporal and spatial discretization as well as
material properties of the porous subsurface model are given in Fig. 5.3a. Values for
retention curve and relative conductivity curve are taken from Tian and Liu (2011)
and Vogel (1987) and given in Table5.2. Fluid properties are ρ = 999.7kg m−3 and
μ = 0.00125kg m−1 s−1. A detailed description of a numerical model setup for the
reproduction of the physical experiment is given inVogel (1987). Again, results agree
very well, and are given in Fig. 5.3b.
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Fig. 5.3 Comparison of OGS-HE against the physical experiment by Skaggs et al. (1970) reprinted
from Peche et al. (2017): a conceptual model of OGS-HE, b validation results

Table 5.2 Retention curve
and relative conductivity
function data

S(Pc) Krel(S)

S [-] Pc [Pa] S [-] Krel [-]

0.080 19614.1 0.080 0.001

0.177 9807.1 0.143 0.008

0.243 7845.7 0.286 0.015

0.331 5884.2 0.429 0.030

0.509 3922.8 0.500 0.050

0.757 1961.4 0.571 0.082

0.874 980.7 0.643 0.250

1 0 0.714 0.550

0.786 0.886

0.821 0.963

0.857 0.992

0.874 0.997

1 1

5.1.3 Physical Experiment of Transient, Variable Water
Level-Driven Infiltration into a Homogeneous Soil
Column

In the physical experiment conducted by Siriwardene et al. (2007), a column was
filled with a sand layer and a gravel layer on top. Water levels were varied in the
gravel layer. The gravel layer was filled such that a water column of 0.75m was
on top of the sand-gravel-interface. Then, the column was drained such that water



5 HH Processes 131

levels above the sand-gravel-interface continually decreased to aminimumof 0.05m.
Siriwardene et al. (2007) conducted a total of 14 refill-drainage cycles over a time
interval of approximately 24h, and continuously measured the outflow at the bottom
of the column.

In the one-dimensional OGS-HE numerical model, the sand-gravel-interface rep-
resents the pipe defect. This defect is located in a pipe flow model domain similar to
the model domain described in Sect. 5.1.1. Refill-drainage cycles were reproduced
using a time-variable Dirichlet-type boundary condition located at the upstream
boundary of the pipe flow model. This way, HPW was regulated according to Siri-
wardene et al. (2007), representing water levels between 0.05 and 0.75m. The down-
stream boundary condition of the pipe flow model was set as free outflow boundary
condition. The setup of the porous subsurface model in form of initial condition,
boundary conditions, spatial and temporal discretization as well as material proper-
ties is given in Fig. 5.4a. Fluid properties are ρ = 998.2kg m−3 and μ = 0.001kg
m−1 s−1. Simulation results were compared to results from Siriwardene et al. (2007)
from experiment runtime of 11–24h and to results of a numericalmodel fromBrowne
et al. (2008) as shown in Fig. 5.4b. Clearly, simulation results of OGS-HE agree well
with measured data at late times. At early times, model results show a deviation
compared with physical experiment results, which might be because the warm-up
phase of the physical experiment has an effect on the solution (Browne et al. 2008).

Integrated Water Resources Management (IWRM)

Fig. 5.4 Comparison of OGS-HE against the physical experiment by Siriwardene et al. (2007)
reprinted from Peche et al. (2017): a conceptual model of OGS-HE, b validation results
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5.2 Coupling WEAP and OpenGeoSys for a Decision
Support System for Integrated Water Resources
Management

Jobst Maßmann, Markus Huber, Sara Vassolo, Leonard Stoeckl, Falk Lindenmaier,
Christoph Neukum

5.2.1 Background

With regard to limited resources in semi-arid regions, the sustainable use of ground-
water is of crucial importance. Prerequisites for a sustainable use are, among others,
a realistic estimation of the groundwater volume stored in the underground, the
groundwater recharge or renewal as well as the losses through natural discharge
and pumping activities. Therefore, knowledge about the current state and further
development of the whole social, economic, cultural and environmental framework
is needed. To understand this complex interacting system and the outcomes of any
changes, a Decision Support System (DSS), based on computational models, renders
assistance.

The presented DSS is based on the water evaluation and planning systemWEAP,1

developed by the SEI (Yates et al. 2005). It balances groundwater, soil water and sur-
face water on catchment, subcatchment and landuse class scale for simulating future
changes in demand and supply. In order to get detailed information about the local
development of the aquifers, as water storage, flow and water table, a coupling to
a groundwater flow model is obligatory. So far, the coupling between WEAP and
a groundwater flow model has been limited to MODFLOW 2000 (Harbaugh et al.
2000), as presented in Maßmann et al. (2012). This coupling has been developed in
the framework of a technical cooperation project (BGR 2017). The finite difference
method, however bears certain limitations, and in many cases, the use of programs
based on the Finite Element Method (FEM) would be more appropriate. Not only
because of their far better representation of complex aquifer geometries and struc-
tures, but also because model refinements, as generally required in areas of strong
gradients, like at wells, are easily prepared.

5.2.2 General Concept

The general linkage concept is presented in Fig. 5.5. Since theWEAP elements do not
have any spatial reference, the spatial allocation is done byMask Layers, which are

1http://www.weap21.org.

http://www.weap21.org
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Fig. 5.5 Schematic representation of the WEAP-FEM coupling

mesh independent ESRI shapefiles (ESRI 1998). They are created within the BGR
software LinkKitchen FEM (developed by geo:tools), and contain all groundwater
relevant WEAP Elements, which are: Demand Sites (points), Rivers (polylines),
Groundwater (polygons), Catchments (polygons) and flow boundaries (polygons).
In LinkKitchen FEM, the groundwater withdrawals and renewals, as calculated by
WEAP, are in a first step, projected on the corresponding Mask Layer and in a
second step on the FE mesh. Based on this projection, the FEM boundary conditions
and source terms are written in the corresponding input files and the FE program
is executed. Results from the FE model are read by LinkKitchen and provided to
WEAP, as far as needed.

Considering the initial setup of aWEAP-FEMDSS it has to be mentioned that the
model construction is carried out independently inWEAPandFEMsoftwarewith the
customary tools. The coupling of WEAP and FEM is carried out with LinkKitchen
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FEM in a second step. For this purpose, in addition to the WEAP and FEM models,
further information must be available so that the WEAP elements can be located.
This can be done by ESRI shapefiles containing the location of wells, catchments,
rivers or landuse classes.

5.2.3 Software Concept

WEAP is considered as the basis of the DSS. Groundwater extraction, losses due
to discharge as well as groundwater recharge or return flows from irrigated areas
are calculated by WEAP as time- and scenario-dependent variables. To demonstrate
the transferability of the approach, three FE codes have been chosen, covering com-
mercial and open source software: OpenGeoSys, Spring and FEFLOW. The imple-
mentation of the WEAP-FEM coupling is subdivided into three phases, as depicted
in Fig. 5.6. Phase one (unidirectional coupling), has been completed successfully,
phase two (bidirectional coupling) is in process. In the first phase, the unidirectional
coupling is carried out in three steps:

1. WEAP calculation: All withdrawals and renewals for the various WEAP ele-
ments are calculated within the software WEAP for each scenario over the entire
calculation period (e.g. 2014–2020) subdivided in time steps (e.g. months). This
includes, for example, thewithdrawals tomeet the drinkingwater demand of cities
or the irrigation requirements, the groundwater recharge or inflows and outflows
from reservoirs, rivers, etc.

2. LinkKitchen FEM: Reading WEAP results, processing, output of input data for
FEM-Software:Once theWEAPcalculation is finished, thewithdrawals/renewals
as well as river infiltration rates calculated for WEAP elements are read for each

Fig. 5.6 Software concept and phases of implementation for WEAP-FEM coupling
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time step and scenario with the help of LinkKitchen FEM, distributed to the
corresponding FEM nodes and transferred as input data to the FEM program.

3. FEM calculation: Following the WEAP calculation, the FEM program computes
the groundwater flow and groundwater levels for each time step at each node.

By incorporating a groundwater flow model to the DSS, it is possible to assess the
effects of different water management scenarios on groundwater levels and flows. A
new development of the program LinkKitchen was essential to provide input data
for the FEM model based on the WEAP results.

In the second phase, a bidirectional coupling is targeted. At each time step,WEAP
calculates the withdrawals, the groundwater recharge and the river stages at the cor-
respondingWEAP element. LinkKitchen FEM reads these variables every time step,
calculates the distribution to the FEM nodes and creates the input data for the FEM
model. The FEM model is executed for each WEAP time step (e.g. month). In the
second phase, a bidirectional coupling is targeted. In each time step WEAP calcu-
lates the withdrawals, the groundwater recharge, and the river stages at the corre-
sponding WEAP element. LinkKitchen FEM reads these variables every time step,
calculates the distribution to the FEM nodes and creates the input data for the FEM
model. The FEM model is executed for each WEAP time step (e.g. month). After
the flow calculation by the FEM programs, the groundwater levels, the groundwater
storage, the spring discharges, and the groundwater flows are transferred to WEAP
via LinkKitchen FEM, and serve as the calculation base for the next time step. A
feedback from the FEM software to WEAP is therefore possible. In such a way,
decisions based on groundwater levels like reduction of pumping rates or calculation
of irrigation volumes can be considered in the DSS.

The bidirectional coupling could lead to slight inconsistencies in the water bal-
ance, since WEAP receives the actual water levels only at the end of the time step
(e.g. 1 month). For example, a drying out of a well in WEAP will only be taken
into account in the following time step. A bidirectional coupling is not suitable for
fast-reacting aquifers such as karst. A strong change in groundwater level within
one time step generally leads to numerical instability, especially if WEAP modifies
the water allocation based on groundwater levels. An iterative coupling scheme, as
proposed in phase three, should be able to cope with these shortcomings.

5.2.4 Benchmark Problem

In order to verify and demonstrate the implementation of the WEAP-OGS cou-
pling a benchmark problem is defined (Fig. 5.7). Even though it is a generic setup,
it represents a typical hydrogeological system featuring catchments with different
infiltration characteristics, well fields, aquifers and aquitards.

An overview of the model setup is given in Fig. 5.8. A representation of all water
relevant processes is given within the WEAP model. The WEAP schematic repre-
sents the water allocation scheme. WEAP allows many possibilities to define the
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Fig. 5.7 WEAP-OGS coupling benchmark: hydrogeological system

demand, including complex algorithms considering socio-economic changes. Here,
the demand is controlled by the number of inhabitants and their annual water con-
sumption. Groundwater recharge is computed by rainfall, evaporation and a simple
rainfall runoff model on catchment scale. Depending on the water level in the river
and the groundwater head, the groundwater-river interaction is calculated. Lateral
in- and outflows are covered by external source/sink.

In LinkKitchen FEM, all groundwater-relevant WEAP elements are spatially
related to GIS-features, read from shapefiles. The user friendly GUI analyses in
the WEAP model and displays the WEAP elements in an interactive tree view in
order to facilitate the assignment. As a result, Mask Layers are produced, which
combine WEAP elements with shape files. Additional data, as river bed conduc-
tance, flow-stage-width-relations, depth of wells and alike will be stored together
with the graphical data.

The OGS reference model represents the static geohydraulic system. Since tran-
sient data is handled byWEAP, no time dependent boundary conditions must defined
here. The setup consists of the mesh including the definition of material groups, per-
meabilities, storage coefficients and fluid properties. Furthermore, the initial head
needs to be defined at all nodes.

As depicted in Fig. 5.9 the presentation of themodeling results is twofold: whereas
WEAP provides diversified opportunities to evaluate, display and export water bal-
ances with different emphases, the standard output of OGS enables convenient post-
processing of heads and the three dimensional flow field by Tecplot or Paraview.
Although OGS is run for each WEAP time step separately (usually one month),
LinkKitchen FEMprovides a comprehensive *.pvd export, which combines the OGS
results of all time steps for each scenario.
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Fig. 5.8 Setup of a coupled WEAP-OGS model
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Fig. 5.9 Exemplary results of a coupled WEAP-OGS model

Catchment Scale Hydrological Modeling (CSHM)

5.3 Coupling mHM with OGS for Catchment Scale
Hydrological Modeling

Miao Jing, Falk Heße, Wenqing Wang, Thomas Fischer, Marc Walther, Sabine
Attinger

Most of the current hydrological models do not contain a physically-based ground-
water flow component. Themotivation of developing the coupledmodel mHM#OGS



5 HH Processes 139

Fig. 5.10 The concept of the
mesoscale hydrologic model
mHM (Samaniego et al.
2010)

is to bridge the gap between catchment hydrology and groundwater hydrology. The
coupledmodel mHM#OGSmechanistically accounts for surface flow, soil-zone flow
and subsurface flowusing an off-line couplingmethod.We applied the coupledmodel
mHM#OGS in a case study of a catchment in central Germany to simulate the hydro-
logic processes, especially focusing on the long-term groundwater flow dynamics.
The model is calibrated in two steps using catchment discharge and groundwater
heads, respectively. Furthermore, the time series of groundwater heads are used to
verify the model (Jing et al. 2017).

5.3.1 mHM

ThemesoscaleHydrologicModelmHM(Samaniego et al. 2010) is a spatially explicit
distributed hydrologic model that uses grid cells as a primary modeling unit, and
accounts for the following processes: canopy interception, snow accumulation and
melting, soil moisture dynamics, infiltration and surface runoff, evapotranspiration,
subsurface storage and discharge generation, deep percolation and baseflow and
discharge attenuation and flood routing (Fig. 5.10). The total runoff generated at
each grid cell is routed to the neighbouring downstream grid cell following the
river network using the Muskingum–Cunge routing algorithm. The model is driven
by hourly or daily meteorological forcings (e.g., precipitation, temperature), and it
utilizes observable basin physical characteristics (e.g., soil textural, vegetation, and
geological properties) to infer the spatial variability of the required parameters.
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Fig. 5.11 The concept and modeling target of mHM#OGS (Jing et al. 2017). a The conceptual
representation of hydrological processes in a catchment; b the schematic used to couple the mHM
and OGS. The upper box depicts the canopy interception, atmospheric forcing, and the land surface
processes represented by mHM. The lower box shows the saturated zone represented by the OGS
groundwater model

5.3.2 Structure of the Coupled Model mHM#OGS

The coupled mHM#OGS model was developed to simulate coupled surface-water
and groundwater (SW/GW) flow in one or more catchments by simultaneously cal-
culating flow across the land surface and within subsurface materials. mHM#OGS
simulates flow within three hydrological regions. The first region is limited by the
upper bound of plant canopy and the lower bound of the soil zone bottom. The second
region includes surface streams. The third region is the saturated aquifer beneath the
soil zone. mHM is used to simulate the processes in the first and second region, while
OGS is used to simulate the hydrological processes in the third region (Fig. 5.11)
(Jing et al. 2017).

The two models are coupled in a sequential manner by fed fluxes and variables
from one model to another at every time step. Technically, we use a self-developed
data communication code GIS2FEM to convert data format and exchange variables
and fluxes. The coupling interface converts time-series of variables and fluxes to
Neumann boundary conditions, which can be directly read by OGS. The modi-
fied OGS source code can produce raster files containing the time-series of flow-
dependent variables and volumetric flow rates with the same resolution of mHM
grid cells, which can be directly read by mHM. The detailed workflow of the cou-
pling technique is shown in Table5.3 (Jing et al. 2017).

5.3.3 Model Setup in a Catchment

We use a mesoscale catchment upstream of Naegelstedt catchment in central Ger-
many with a drainage area of 845km2 to verify our model. The Naegelstedt catch-
ment comprises the headwaters of the Unstrut river basin. It was selected in this
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Table 5.3 Description of computational sequence for mHM#OGS using a sequential coupling
scheme (Jing et al. 2017)

Sequence
no.

Computation

1 Initialize, assign, and read —Run mHM and OGS initialize procedures, OGS
assign, read and prepare parameters and subroutines for later simulation

2 Compute land-surface and soil-zone hydrologic processes in mHM —Distribute
precipitation, compute canopy interception and evapotranspiration, determine
snowpack accumulation and snowmelt, infiltration and groundwater recharge, and
surface runoff for each grid cell

3 Compute the long-term mean of land-surface and soil-zone hydrologic processes
— Compute the long-term mean of the entire simulation period and write them as a
set of raster files

4 Transfer primary variables and volumetric flow rates to OGS — Transfer
flow-dependent variables and volumetric flow rates needed for computing saturated
flow as Neumann boundary conditions or Dirichlet boundary conditions in OGS

5 Steady-state calibration —Run OGS-only steady-state simulation using boundary
conditions given by mHM in step 4. The calibrated hydrogeological parameters are
fed to the transient model. The steady-state groundwater head serves as an initial
condition of the transient mHM#OGS modeling

6 Start transient simulation of mHM#OGS — Sequence through coupled mHM and
OGS components

7 Compute stepwise soil-zone flow and storage in mHM —Compute
evapotranspiration, interflow, surface runoff and groundwater recharge

8 Transfer primary variables and volumetric flow rates to OGS — The same as
step 4, except this step generates time-dependent raster files of flow rates

9 Solve the groundwater flow equation —Calculate ground-water heads and
head-dependent flows in study region

10 Compute budgets —Run water budget package to check overall water balance as
well as time-dependent water budgets in each storages

11 Write results —Output the simulations results

12 Check for the end of simulation — Repeat time loop (steps 7–12) until end of
simulation period

15 End of simulation —Close files and clear computer memory

study because there are many groundwater monitoring wells operated by Thuringian
State office for the Environment and Geology (TLUG).We use a spatially distributed
aquifer model to explicitly present groundwater storage. The thickness of the layers
follows values provided by well logs and geophysical data, and was further linearly
interpolated as a 3D geological model. To convert data format, we use the workflow
developed by Fischer et al. (2015) to convert the complex 3D geological model into
open-source VTU format file that can be used by OGS. Model elements of OGS
were set to a 250 × 250m horizontal resolution and a 10m vertical resolution over
the whole model domain (Fig. 5.12).

We start the modeling by performing the daily simulation of mHM to calculate
near-surface and soil-zone hydrological processes. Several resolutions ranging from
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Fig. 5.12 Three dimensional and cross section characterization of the hydrogeologic framework
model illustrating vertical and horizontal model discretization and hydrogeologic zones (Jing et al.
2017)

200m to 2km are applied in mHM to account different scale of spatial heterogeneity.
The mHM-alone model is calibrated independent of OGS for the period 1970–2005
by matching the observed streamflows.

For the second step, OGS is run independent of mHM using a steady state stress
period. Long-term average recharge rates estimated by the mHM simulations are
used for the steady state boundary condition. The long-term average baseflow rates
estimated by mHM simulations are used as boundary condition at stream beds. The
groundwater levels obtained from a couple of monitoring wells are averaged over
the whole simulation period. The steady state groundwater model is calibrated by
adjusting aquifer hydraulic conductivity values by matching groundwater levels in
the catchment (Jing et al. 2017).

To further test the effectiveness of the coupled model mHM#OGS, the results
are assessed using the historical groundwater head time series. Calibrated hydraulic
conductivities from steady state groundwater model are used as the parameter set
for transient groundwater model. Instead of calibrating parameters of storages, we
use a homogeneous storage for all groundwater aquifers. The specific storage are
set to 1.0 × 10−5 for all groundwater aquifers. The groundwater head distribution
in steady state model are used as initial condition of the transient model (Jing et al.
2017).
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5.3.4 Model Verification

First, we show the calibration result of mHM in Fig. 5.13. The calibration result is
good with a Pearson correlation coefficient Rcor > 0.9 for the monthly discharge
simulation at the Naegelstedt station (see Fig. 5.13).

Simulated water-table depth over the whole catchment is shown in Fig. 5.14. The
simulation provides a reasonable distribution of the hydraulic head. Groundwater-
table depth is as large as 40m in the higher southwestern and northern mountainous
areas, whereas less than 5m in the central lowlands. This simulation result is coin-
cident with regionalized observations of groundwater heads (Wechsung 2005).

The model performances in the study area were verified by the comparison of
simulated groundwater head time series to observations at 19 monitoring wells.
Instead of plotting the absolute values of heads, namely hmod and hobs , we plotted the
model results and corresponding observed data in their anomalies by subtracting their
mean values hmod and hobs . Figure5.15 presents observed and simulated groundwater
heads for the period 1975–2005. The Pearson correlation coefficient Rcor is used to
assess the correlation between observation and simulation. Both of those two wells
in Fig. 5.15 show promising simulation results with the Rcor of 0.745 and 0.786.

Fig. 5.13 Observed and modeled monthly streamflow at the outlet of Naegelstedt catchment (Jing
et al. 2017)

Fig. 5.14 Simulated
water-table depth over
Naegelstedt catchment (Jing
et al. 2017)
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Fig. 5.15 The comparison between measurements data of groundwater heads (green dashed line)
andmodel outputs (orange solid line). a Monitoringwell 4728230786 located at upland near stream.
b Monitoring well 4828230754 located at mountainous area

Reference:

M. Jing, F. Heße, W. Wang, T. Fischer, M. Walther, M. Zink, A. Zech, R. Kumar,
L. Samaniego, O. Kolditz, S. Attinger, Improved representation of groundwater at
a regional scale – coupling of mesocale hydrologic model (mhm) with opengeosys
(ogs). Geosci. Model Dev. Discuss. (2017)



Chapter 6
H2 Processes

Yonghui Huang and Haibing Shao

Richards Flow

The Richards flow model has been implemented in the newly developed OGS-6
version. In this section,wewill use the single continuummodel benchmark to demon-
strate the correctness of the implementation.

The Richards equation is often used to mathematically describe water movement
in the unsaturated zone. It has been introduced by Richards (1931b), who suggested
that Darcy’s law under consideration of the mass conservation principle, is also
appropriate for unsaturated flow conditions in porous media. The Richards flow is
also regarded as a simplification of a two phase flow system (water and air) with the
ignorance of the air transport.

The pressure based formulation of this governing equation (6.0.1), which selects
the unknown primary variable as p, can be written as:

φρw

∂S

∂pc

∂pc
∂t

+ � ·
(

ρw

krelk
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(�pw − ρwg)
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= Qw (6.0.1)
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6.1 Infiltration in Homogeneous Soil

6.1.1 Definition

This infiltration problem refers to a classical field experiment described by Warrick
et al. (1971), who examined simultaneous solute and water transfer in unsaturated
soil within the Panoche clay loam, an alluvial soil of the Central Valley of California.
A quadratic 6.10m plot, which had an average initial saturation of 0.455, was wetted
for 2.8h with 0.076m of 0.2 N CaCl2, followed by 14.7h infiltration of 0.229m
solute-free water. The soil-water pressure was monitored by duplicate tensiometer
installations at 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8m below surface.

6.1.2 Model Configuration

Two fixed pressure boundary conditions are used in the flow equation with a uniform
initial saturation in the whole domain of 45.5%. At the top, the 2m high soil column
is open to the atmosphere, i.e. the capillary pressure is 0Pa. The bottom of the column
has a capillary pressure of 21,500Pa. Homogeneous material properties are assumed
within the whole domain. The average saturated moisture content, which is equal
to the porosity of the soil, is 0.38. The saturated permeability is 9.35e–12 m2. The
relative permeability and capillary pressure versus saturation data are fitted by the soil
characteristic functions respectively. A detailed description can be found in Kolditz
et al. (2012c). The parameters used for this benchmark are summarized in Table6.1.

The geometry domain is uniformly discretized into 100 quad elements. A fixed
time stepping control is applied over the whole simulation withΔt = 1s. The whole
simulation runs for a time span of 2 × 104 s. The simulation results are compared
against the results generated by OGS-5.

Table 6.1 Material parameters for the Infiltration problem

Property Symbol Unit Value (formulation)

Porosity φ – 0.38

Permeability k m2 4.46e − 13

Liquid dynamic
viscosity

μw Pa.s 1.0000 × 10−3

Liquid density ρw kg.m−3 1.0000 × 103

Capillary pressure Pc Pa Curve

Relative permeability krelw – Curve
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Fig. 6.1 Comparison of OGS-6(line) and OGS-5(scatter) simulation results at different time for
the infiltration problem

Table 6.2 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-6.1 Yonghui Huang OGS-6 See below OK

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

6.1.3 Results

The simulated and experimental saturation data at various time steps are plotted in
Fig. 6.1. The OGS-6 simulated infiltration front propagates through the soil column
and resembles well the saturation results of OGS-5. Figure6.1 shows the saturation
contours after 2, 9 and 17h for structured meshes (Table6.2).

The source code of the Richards flow process can be found in the following link:

• https://github.com/ufz/ogs/blob/master/ProcessLib/RichardsFlow

The input files for the infiltration benchmark can be found in the following link:

• https://github.com/ufz/ogs-data/tree/master/Parabolic/Richards.

Isothermal Two-Phase Flow
The isothermal two-phase two-component flow model has been implemented in the
newly developed OGS-6 version. In this section, we will first introduce the mathe-
matical framework of the isothermal two-phase flow model. Then a few benchmarks
are selected and presented in order for the verification of the correctness of these
implementation. The comparisons are made against the previous OGS-5 version
(Kolditz et al. 2012b) or analytical solutions as well.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs/blob/master/ProcessLib/RichardsFlow
https://github.com/ufz/ogs-data/tree/master/Parabolic/Richards
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Mathematical Framework

Mass Balance Equation
We consider isothermal two-phase flow process. Thermal effects are neglected. The
partially saturated sample is treated as an immiscible two-phase system, which
indicates the mass transfer between different phases are ignored as well. Further-
more, both fluids are assumed imcompressible.

Consider two-phaseflow inporousmedia, typically liquid phase (denotedby l) and
gas phase(denoted by g). For each phase in two-phase fluid flow, mass conservation
is given by the following equation,

∂

∂t
(φSgρg

k + φSlρl
k) + ∇ · (Jgk + Jlk) = Qk (6.1.1)

where S is saturation, ρ stands for phase density, φ is the porosity, J is total flux.
Qk represents the source and sink term. The subscript k in Eq. (6.1.1) denotes the
component, e.g. air (k = a) or water (k = w), within each phase, γ ∈ {g, l}. For any
phase γ ∈ {g, l}, an advection vector JA

γ

k and a diffusion vector JD
γ
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total flux, i.e.
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According to generalized Darcy’s law, the advective flux can be written as:
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where k is the intrinsic permeability, kγ

rel is the relative permeability of the phase,
and μγ is the viscosity.

The diffusive part of the total flux is given by Fick’s law
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where D is the diffusion coefficient tensor. Since ργ = ρ
γ
a + ρ

γ
w, we have

JDγ
w + JDγ

a = 0 (6.1.5)

under the assumption D
γ
a = D

γ
w.

For simplicity, we consider a water-air mixture system. We expand the mass
balance equation (6.1.1) with the flux defined based upon the above Eqs. (6.1.2,
6.1.3 and 6.1.4). For the water component, the diffusive part of the total flux takes
the form
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. (6.1.6)
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Obviously, Dl
w = 0. Therefore, the mass balance equation for water component

can be written as follows
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= Qw. (6.1.7)

While the mass balance equation for the air component is analogous to Eq.6.1.7.

Pressure-Pressure (pp) Scheme

In this process, the gas pressure and capillary pressure are selected as the combination
of the primary variables.

Based on the description of isothermal two-phase flow above, mass balance
equation (6.1.1) can be modified in order to obtain governing equations for isother-
mal two-phase flow in a porous medium. In this formulation primary variables are
gas pressure pg , and capillary pressure pc.

The basic equations of the isothermal two-phase flow system are:

φρw

∂Sw

∂pc
ṗc + ∇ ·

[
ρw

kkrelw
μw

(−∇ pg + ∇ pc + ρwg
)] = Qw (6.1.8)
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]

= Qa (6.1.9)

Numerical Solution

In this implementation, the standard Galerkin finite element method is employed
for spacial discretization, with a backward Euler fully implicit scheme for the time
integration. The monolithic strategy is applied for solving the differential equation
system, which indicates that both gas pressure and capillary pressure are obtained in
the same time within one nonlinear iteration loop.

Standard Newton scheme is applied for the linearization, with an absolute tol-
erance set to be 1e-7 and the maximum iteration number set to be 50. After the
linearization of the global governing equations, a sparse and asymmetric linear sys-
tem is assembled and needs to be solved. The BiCGStab solver from the LIS library
(Nishida 2010) or Eigen library (Guennebaud et al. 2010) is employed with an ILU
preconditioner to obtain the solution.
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6.2 Liakopoulos Experiment

6.2.1 Definition

This benchmark is based on an experiment by Liakopoulos (1965). The experiment
mainly represents the natural drainage of a sand column which is fully saturated
with water in the beginning. The sand column undergoes a desaturation process with
the only force of gravity. Various numerical work have been made to simulate this
experiment, here we refer to Lewis and Schrefler (1987)(pp 167–174).

6.2.2 Model Configuration

In the model, the geometry is represented by a 2-D 0.1 × 1m column, and it is
uniformly discritized into 72 quad elements as Fig. 6.2 shown.

The initial pressure is assumed to be atmospheric pressure. The initial capillary
pressure is zero since no gas exists in the column in the beginning. The top and
bottom of the column is open to the atmosphere. The initial and boundary conditions
are summarized in Fig. 6.2.

The material and fluid properties adopted in this simulation are listed in Table6.3.
The simulation runs over a time span of 7200s. A fixed time step size control is
applied for the simulation with Δt = 1s.

For verification, the model is compared with the results generated by OGS-5
Kolditz et al. (2012c). The same model geometry and model parameters are adopted
between two models.

Fig. 6.2 Schematic of the
benchmark formulated to
simulate the Liakopoulos
experiment
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Table 6.3 Material parameters for the Liakopoulos problem

Property Symbol Unit Value(formulation)

Porosity n – 2.975 × 10−1

Permeability κ m2 4.5000 × 10−13

Liquid dynamic viscosity μw Pa.s 1.0000 × 10−3

Gas dynamic viscosity μa Pa.s 1.8 × 10−5

Liquid density ρw kg.m−3 1.0000 × 103

Gas density ρa kg.m−3 Ideal Gas Law’s

Capillary pressure Pc Pa Experimental curve

Relative permeability krelw – Experimental curve

Relative permeability krel a – Brook-Corey functions
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Fig. 6.3 Vertical profiles of capillary (top) and gas pressures (bottom), comparison against OGS5
results
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Table 6.4 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-6.2 Yonghui Huang OGS-6 See below OK

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

6.2.3 Results

The vertical profiles results of primary variables (capillary and gas pressure) at
t = 20 s are given in Fig. 6.3. The red dash line represents the OGS-6 results, while
the black line is the OGS-5 results. It can be observed that the results agree well with
the results generated by OGS-5 (Table6.4).

The source code of the isothermal two phase flow process can be found in the
following link:

• https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPP.

The input files for the Liakopoulos experiment benchmark can be found in the fol-
lowing link:

• https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/Liakop
oulos

6.3 McWhorter Problem

In order to further investigate the performance of the implementation, we consider a
diffusion dominated oil-water displacement transport problem:McWhorter problem,
for which a quasi-analytic solution exists which was proposed by McWhorter and
Sunada (1990).

The detailed derivation of the analytical solution can be found in Kolditz et al.
(2012c). The analytical solution can be written as:

x(Sw, t) = Qt

Aφ

dF

dSw

t, (6.3.1)

where F is the fractional flow function with capillary pressure, and normally must
be determined numerically. The solution looks very similar to the Buckley–Leverett
solution. However, there is a very important difference: On contrary to the Buckley–
Leverett problem, F is always concave, and hence there never is shock front. This,
of course, is not surprising since the PDE with capillary effects is a parabolic PDE,
and therefore all solutions must be smooth. Like this, it can be used to verify the
performance of a numerical simulator and judge the exactness of a discretization
scheme.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPP
https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/Liakopoulos
https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/Liakopoulos
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6.3.1 Definition

The test benchmark problem for capillary effects is formulated as if the instantaneous
displacement occurs in one-dimensional horizontal reservoir initially occupied by
oil. A special attention has been paid on full consideration of the capillary effects
and for arbitrary capillary-hydraulic properties. The numerical solution has been
obtained through solving the governing equation (6.1.9) by pressure-pressure scheme
described in Sect. 6.1.3. Initially the porous media is fully saturated with nonwetting
phase oil, and the wetting phase water flows in, gradually displace the oil by the
capillary drive.

6.3.2 Model Configuration

The porous media is represented by a horizontal 1D domain with the length of 2.6m.
Line elements has been used with space discretizationΔx = 0.01mwith overall 260
elements.

Here the flow is governed by capillary force when water saturation at the left end
of the horizontal column is kept to be one, while the right end is kept to be no flux
at all. No source term is accounted. The schematic of this benchmark is shown in
Fig. 6.4. The initial and boundary conditions formulated in terms of gas pressure and
capillary pressure are given in the figure as well.

The simulation runs for a time span of 1 × 104 s. A fixed time step size control is
applied for the simulation. For the first 100 time step, Δt = 1 s, then the time step
size increases to 10 s.

The material and fluid properties used in this benchmark are listed in Table6.5.

Fig. 6.4 Schematic of the benchmark formulated to test McWhorter problem in terms of the P-P
scheme
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Table 6.5 Material and fluid properties for the McWhorter problem

Property Symbol Unit Value (formulation)

Column length L m 2.6

Wetting dynamic viscosity μw Pa.s 1.0 × 10−3

Non-wetting dynamic
viscosity

μnw Pa.s 1.0 × 10−3

Wetting phase density ρw kg.m−3 1.0 × 103

Non-wetting phase density ρnw kg.m−3 1.0 × 103

Permeability k m2 1.0 × 10−10

Porosity φ – 3.0 × 10−1

Residual saturation of
water

Srw – 0

Residual saturation of oil Snrw – 0

Entry pressure pd Pa 5.0 × 103

Soil distribution index λ – 2.0

Capillary pressure pc(Seff) Pa Brooks-Corey model

Relative permeability krel (Seff) – Brooks-Corey model

Distance (m)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

S
at

ur
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0

OGS6
Analytic

Fig. 6.5 Water saturation, Sw profile of the present result along with analytical solution based on
one by McWhorter
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Table 6.6 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-6.3 Yonghui Huang OGS-6 See below OK

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

6.3.3 Results

Based on the above discussion, OGS-6 implementation produces agreeable solution
compared against the analytical solution. Figure6.5 shows water saturation profile,
Sw with a fine grid along with 2.6m long horizontal column at t = 1000 s. The red
curve represents the OGS-6 results while the scatter points are the analytical solution
(Table6.6).

The source code of the isothermal two phase flow process can be found in the
following link:

• https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPP.

The input files for the McWhorter problem benchmark can be found in the following
link:

• https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/Mc
Worts.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPP
https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/McWorts
https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/McWorts


Chapter 7
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7.1 3D Benchmark of Free Thermal Convection
in a Faulted System

Fabien Magri, Mauro Cacace, Thomas Fischer, Dmitri Naumov, Wenqing Wang,
Norihiro Watanabe, Marc Walther

7.1.1 Introduction

In a geothermal system, unstable fluid density profiles due to temperature variations
can trigger the onset and development of free thermal convective processes (Elder
1967). Early studies on the problem showed that the development of free thermal
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convection in the Earth’s crust require a relatively high permeability of the porous
rocks (Lapwood 1948). Since the permeability inside the damaged area of major
fault zones can far exceed the permeability of the enclosing rocks (Wallace andMor-
ris 1986), one can expect the development of free thermal convective instabilities
to occur in such tectonically perturbed rocks. The onset of thermal convection of a
single-phase fluid in a vertical fault enclosed in impermeable rocks was considered in
a full 3D approximation by Wang et al. (1987). A fundamental result of those inves-
tigations was that highly permeable faults allow for onset of free thermal convection
even under a normal (e.g. 30 ◦C · km−1) geothermal gradient. In contrast to simple
homogenous 1D and 2D systems, no appropriate analytical solutions can be derived
to test numerical models for more complex 3D systems that account for variable fluid
density and viscosity as well as permeability heterogeneity (e.g. presence of faults).
Owing to the efficacy of thermal convection for the transport of thermal energy and
dissolved minerals in the moving fluid, a benchmark case study for density/viscosity
driven flow is crucial to ensure that the applied numerical model accurately simulates
the physical processes.

The presented chapter proposes a 3D benchmark test for the simulation of thermal
convection in a faulted system that accounts for temperature dependent fluid viscosity.
The linear stability analysis recently developed by Malkovsky and Magri (2016) is
used to estimate the critical Rayleigh number within the fault: by definition, thermal
convection occurs or is absent if a small perturbation develops or decays with time,
i.e. at Rayleigh numbers higher or lower than the critical value, respectively. OGS-6
results are compared to those obtained using the commercial software FEFLOW
(Diersch 2014) to test the ability of the open source code in matching both the
critical Rayleigh number at which convection occurs and the dynamical features of
convective processes. Additionally, the results derived from an application relying on
the GOLEm simulator (Cacace and Jacquey 2017) are also presented. Despite some
internal differences between the three software in handling the nonlinear coupling
of thermal and hydraulic processes, all models are qualitatively comparable.

7.1.2 Problem Formulation HT

Let us consider a faulted geological system, with height H , as shown in Fig. 7.1. It is
assumed that temperatures T at lower (z = 0) and upper (z = H ) boundaries of the
rock layer are fixed and equal to Th and Tc, respectively, and Tc < Th (subscripts h
and c for hot and cold, respectively). Rock properties such as density, specific heat
capacity and thermal conductivity of the whole system (i.e. fault zone and enclosing
rocks) are homogeneous and temperature-invariant. The fault zone permeability is
k, whereas that of the enclosing rocks is negligibly small.
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Fig. 7.1 Schematic
representation of a single
fault embedded in
conductive rocks. The fault
width is 2δ, and Δ = δ

H is
half of the aspect ratio of the
fault. Tc and Th are top (cold)
and bottom (hot) temperature
boundary conditions

Governing Equations

Fluid velocity components vx , vy , and vz satisfy Darcy’s law

vx = − k

μ

∂ p

∂x
, vy = − k

μ

∂ p

∂y
, vz = − k

μ

(
∂ p

∂z
+ ρg

)

where x , y, and z are cartesian coordinates, p is pressure, k is the permeability of the
rocks, μ is dynamic viscosity of the fluid, ρ is density of the fluid. The permeability
distribution in the considered rock layer can be represented as:

k =
{
k, |y| < δ, 0 < z < H,

0, |y| ≥ δ, 0 < z < H

where 2δ is width of the fault zone.
We assume that over given temperature ranges at hydrostatic pressure the depen-

dence of fluid density on temperature can be approximated by a linear function (Bear
1972)

ρ = ρ0 [1 − β (T − Tc)]

where ρ0 is fluid density at T = Tc, β is fluid thermal expansion coefficient.
Temperature dependence of fluid viscosity can be approximated by the function

μ(T ) = μ0 exp

(
−T − Tc

Tv

)
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where μ0 = μ(Tc) and Tv are approximation constants. This equation of state (EOS)
provides good fit over temperature variations of 150 ◦ C as shown later in the numer-
ical examples.

The continuity equation in the Boussinesq’s approximation takes the form

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0

Temperature distribution in the fault zone satisfies the equation

ρr cr
∂T

∂t
+ ρc

(
vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
= λ

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)

where t is the time, ρr and cr are density and specific heat capacity of the rock,
λ = nλl + (1 − n)λs is averaged thermal conductivity of the fluid (subscript l for
liquid) and the saturated rocks (subscript s for solid), and n is rock porosity.

The fluid velocity is zero outside the fault. Therefore, the temperature distribution
outside the fault satisfies the equation

ρr cr
∂ϑ

∂t
= λ

(
∂2ϑ

∂x2
+ ∂2ϑ

∂y2
+ ∂2ϑ

∂z2

)

where ϑ is the temperature in the considered layer outside the fault (0 < z < H ;
|y| > δ).

Boundary Conditions

The upper and lower boundaries of the layer are impermeable (i.e. the normal com-
ponent of the velocity at the top and bottom sides of the model is equal to zero).
Therefore, conditions for the pressure at these boundaries take the form:

z = 0, ∂ p
∂z + ρ0g [1 − β (Th − Tc)] = 0;
z = H,

∂ p
∂z + ρ0g = 0.

The lower and upper boundaries of the layer are isothermal, i.e.:

z = 0, T = ϑ = Th; z = H, T = ϑ = Tc,

Th > Tc

Sides are insulated.

Rayleigh Theory

The OGS implementation given above allows to directly calculating the Rayleigh
number, by example, at the top cold temperature Tc, using the following formula:
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Fig. 7.2 Modeled faulted
system displaying the finite
element mesh and
temperature boundary
conditions. 107′000
hexahedral elements
discretize the faulted block.
A mesh refinement is
performed within the 40m
wide fault (zoom). The top
and bottom temperature
boundary conditions are 10
and 160 ◦C respectively,
corresponding to an initial
geothermal gradient of
approximately 27 ◦C · km−1

Ra = kρ20cgβ (Th − Tc) H

λ μ0
(7.1.1)

Malkovsky and Magri (2016) provide a simple polynomial fit to estimate the
critical Rayleigh number Racrit for temperature-dependent viscous fluids

Racrit =
[(

8.19
Δ

)5/4 + (
4π2

)5/4]4/5 (
1 + 0.493γ + 0.12γ2

)
e−γ,

0.003 ≤ Δ ≤ 0.05 and 0 < γ ≤ 2.5
(7.1.2)

where γ = Th−Tc
Tv

characterizes the viscous property of the saturating fluid and Δ =
δ
H is half of the fault aspect ratio. Thermal convection develops for Ra > Racrit.

7.1.3 Numerical Benchmark

All models refer to an embedded 3D fault with aspect ratio 2δ
H = 7.3 · 10−3 (i.e.Δ =

3.65 · 10−3). Specifically, the dimensions of the modeled fault are H = 5000m and
δ = 40m discretized with prismatic elements (Fig. 7.2).

Material and Solid Properties

The physical properties of both fault and enclosing rocks are homogenous and
isotropic, as given in Table7.1.
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Table 7.1 Medium and solid properties. For simplicity, storage and heat capacity are set to 0

Properties n[−] k[m2] λs [W · m−1 · K−1]
Fault 10−3 1.7 · 10−13 3

Enclosing rock 10−3 10−18 3

Table 7.2 Fluid properties. μ0 ρ0 at T0 = 20 ◦C are 10−3Pa · s and 1000 kg · m−3, respectively

Properties γ = Th−Tc
Tv

[−] β[K−1] c f [J · kg−1] λl [W · m−1 · K−1]
Fluid 2 4.3 · 10−4 4200 0.65

Fluid Properties

At the given pressure, the EOS for fluid viscosity μ(T ) = μ0 exp
(
− T−Tc

Tv

)
and fluid

density ρ = ρ0 [1 − β (T − Tc)] are sufficient to describe fluid properties at liquid
phase over temperature ranges Th − Tc ≈ 150 ◦C or smaller. Both EOS have been
implemented into the applied software. Fluid properties used in the benchmark are
summarized in Table7.2.

Initial and Boundary Conditions

This benchmark illustrates a low enthalpy geothermal system, where 20≤ T ≤
170 ◦C. An example of a high enthalpy system can be found in Malkovsky and
Magri (2016).

In all models, the initial pressure is hydrostatic and the initial temperature T init

increases linearly with depth, from 20 to 170 ◦C (top and bottom Dirichlet boundary
conditions, Fig. 7.2).

Within the fault, a perturbation of the form ε(x, z) = sin(πz) cos(πx) is added
to T init in order to trigger a circular convective cell within the fault plane (x-z). The
amplitude of the perturbation is ±1 ◦C.

Rayleigh Number Setup

Ra is calculated with Eq. (7.1.1), i.e. at the reference top temperature Tc = 20 ◦C,
with Th − Tc = 150 ◦C. Using the values given in the tables, this benchmark refers
to an estimated Ra = 829.

According to Eq. (7.1.2), at Δ = 3.65 · 10−3 and γ = 2, the onset of convection
is triggered at the critical Rayleigh number Racrit ≈ 753.

Simulation Time, Time Scheme

The simulated period is 2 · 1011s. Simulations were run using a fixed-time stepping
(user defined).
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Fig. 7.3 OGS-6 results for the final time at the fault plane; Ra = 829; left: temperature perturbation
ε = T − T init , right: Darcy velocity field

Fig. 7.4 FEFLOW results for the final time at the fault plane; Ra = 829; left: temperature pertur-
bation, right: Darcy velocity field

7.1.4 Results

The calculated Darcy flow field and temperature anomaly ε = T − T init are illus-
trated in Fig. 7.3 at the end of the simulated period for the case Ra = 829.

OGS results compare well against those obtained with FEFLOW (Fig. 7.4). It
can be seen that the patterns as well as the temperature and velocity ranges are in
excellent agreement with OGS results. Minor differences can only be observed in
the peak values.

Remarks to the Users

Here it is worth recalling that in density-driven flow problems different type of
numerical implementation (e.g. weak coupling vs. monolithic) or applied solver
induces numerical errors which propagation modifies the developing fingers. As a
result, the temporal evolution of the temperature perturbation vary, depending on the
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Fig. 7.5 MOOSE results for the final time at the fault plane; Ra = 829; left: temperature pertur-
bation, right: Darcy velocity field

software applied, as observed in the different peak values calculated with OGS-6 and
FEFLOW.

As an additional example, Fig. 7.5 shows the results obtained with GOLEmwhich
uses a full monolithic formulation while dealing with the nonlinearities between the
two processes without making use of the Boussinesq approximation.

It can be seen that patterns, though qualitatively very similar to those derived from
OGS (Fig. 7.3) and FEFLOW (Fig. 7.4), show some deviations in the magnitudes and
geometry of computed thermal anomalies in the fault plane.

7.1.5 OGS-6 and OGS-5 Computing Time

Scaling tests were performed on two discretized meshes, obtained from sequential
refinements of the original grid with 107′000 elements illustrated in Fig. 7.2. The
first and second refinements (Ref1, Ref2) led to 859′000 and 6′871′000 hexahedral
elements, respectively. The OGS simulations were performed on the EVE cluster
system at the UFZ using computing nodes with 20 cores (Intel® Xeon® CPU E5-
2670 v2, 20 MB cache per core). For each simulation we reserved a 20 core compute
node with 64 GB main memory such that a simulation run fits a compute node. Full
nodes were allocated to avoid internode communication.

Table7.3 summarizes the computational time needed to solve the described 3D
benchmark: (1) OGS-6 runtimes decrease for single core and parallel appliances in
comparison to OGS-5; (2) it can be seen that on refined meshes (e.g. Ref1, 2) with
a high degree of parallelization (e.g. >60 cores) OGS-6 is up to a factor 20 faster
than OGS-5; (3) for Ref1 in both applications, both OGS-5 and OGS-6, show a clear
decrease of the efficiency for 60 or more cores.

The better performance and scaling of OGS-6 versus OGS-5 relies on: (1) a fully
coupled HT approach, i.e. monolithic scheme in OGS-6 using a Newton–Raphson
method versus a staggered scheme in OGS-5 using fixed-point iterations, and (2)
computation of shape functions and derivatives. In OGS-6, this is done only once at
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Table 7.3 Computing time (in [s]) OGS-6 versus OGS-5 for different refinements

Cores Original mesh Ref1

OGS-5 OGS-6 OGS-5 OGS-6

1 20′235 14′636 − −
20 8′300 815 83′915 10′380
40 − − 58′568 5′766
60 − − 63′242 3′741
80 − − 62′645 2′846

100 − − 75′640 2′548

the beginning of the simulation run, while in OGS-5, computation of shape functions
is performed at each integration point for each local assembly.

7.1.6 Summary

A numerical benchmark for the simulations of thermal convection onset of a single-
phase fluid with temperature dependent viscosity in a vertical permeable fault is
proposed.

OGS-6 successfully simulates the onset of thermal convection at critical Rayleigh
numbers inferred from recently developed linear stability analysis (Malkovsky and
Magri 2016). The parallelization in OGS-6 for this type of problem shows great
computational and scaling improvements with respect to the previous version. OGS
results are consistent with those obtained with FEFLOW and GOLEm. Owing to
strong couplingof the partial differential equations, the numerical solutions are highly
sensitive to numerical errors that can be due to different applied methods and/or
solver settings. Consequently, the calculated patterns are all qualitatively similar
while differences in the calculated values exist. Therefore, results of case-studies
must be interpreted carefully and require additional constraints (field data).

The given example provides a useful benchmark that can be applied to any numer-
ical code of thermally-driven flow processes at basin-scale (Table7.4).

Table 7.4 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-7.1 Fabien Magri OGS-5 Available OK

Fabien Magri FEFLOW Available -

Mauro Cacace MOOSE Available -

https://docs.opengeosys.org/books/bmb-5
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7.2 2D Benchmark of Large-Scale Free Thermal
Convection

Tianyuan Zheng, Fabien Magri, Dmitri Naumov, Thomas Nagel

This is a summary of a 2D benchmark test for the simulation of thermal convection
in a km-scale porous media that accounts for temperature-dependent fluid viscosity
and density. This problem is analogous to the 3D case presented in Sect. 7.1. By
definition, thermal convection occurs or is absent if a small perturbation develops or
decays with time.

OGS-6 results (monolithic approach) are compared to those obtained with the
commercial software FEFLOW (Diersch 2013) to test the ability of the open-source
code in matching the dynamical features of convective processes.

7.2.1 Problem Formulation

Let us consider a 2D vertical square as illustrated in Fig. 7.6, i.e. the fault plane as
previously illustrated in the 3D case (Fig. 7.2). It is assumed that temperatures at
lower (z = 0) and upper (z = H ) boundaries of the rock layer are fixed and equal to
Th and Tc, respectively, and Tc < Th. Rock properties such as density, specific heat
capacity and thermal conductivity of the whole system are considered homogeneous
and temperature-invariant.

Fig. 7.6 2D domain and FE
mesh. Square 5.5 × 5.5km;
32 × 32 elements
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Governing Equations

Fluid velocity components vx , vz satisfy Darcy’s law:

vx = − k

μ

∂ p

∂x
, vz = − k

μ

(
∂ p

∂z
+ ρg

)
(7.2.1)

where p is the pressure, k is the intrinsic permeability of the rocks, μ is the dynamic
viscosity of the fluid and ρ is the density of the fluid.

We assume that over given temperature ranges at hydrostatic pressure the depen-
dence of fluid density on temperature can be approximated by a linear function (Bear
1972).

ρ = ρ0 [1 − β (T − Tc)] (7.2.2)

whereρ0 is the fluid density at T = Tc andβ is the fluid thermal expansion coefficient.
Temperature dependence of fluid viscosity can be approximated by the function:

μ(T ) = μ0 exp

(
−T − Tc

Tv

)
(7.2.3)

where μ0 = μ(Tc) and Tv are approximation constants.
The continuity equation in the Boussinesq’s approximation takes the form:

∂vx

∂x
+ ∂vz

∂z
= 0 (7.2.4)

Temperature distribution in the porous media satisfies:

ρrcr
∂T

∂t
+ ρc

(
vx

∂T

∂x
+ vz

∂T

∂z

)
= λ

(
∂2T

∂x2
+ ∂2T

∂z2

)
(7.2.5)

where t is the time, ρr and cr are density and specific heat capacity of the fluid
saturated rocks, λ = nλf + (1 − n)λs is thermal conductivity of the fluid saturated
rocks and n is the rock porosity.

Boundary Conditions and Initial Conditions

Boundary and initial conditions are identical to those of the 3D case, as given in
Sect. 7.1.

7.2.2 Numerical Benchmark

Here, the values of the different physical properties of the numerical benchmark are
given in Tables7.6 and 7.5.
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Table 7.5 Medium and solid properties. For simplicity storage and heat capacity are set to 0

Porosity n 0.001 −
Permeability k 10−14 m2

Thermal conductivity λf 3 W/m/K

Table 7.6 Fluid properties μ0 and p0 at T0 = 20 ◦C are 10−3 Pa s and 1000kg/m3, respectively

− γ = Th−Tc
Tv

2 −
Thermal expansion coefficient β 4.3×10−4 1/K

Heat capacity Cp 4200 J/m3/K

Thermal conductivity λs 0.65 W/m/K

Material Properties

For simplicity, these values are constant and allowed for thermal convection.
At a given pressure, the EOS for fluid viscosity (Eq.7.2.3) and fluid density

(Eq.7.2.2 are sufficient to describe fluid properties at liquid phase over temperature
ranges Th − Tc ≈ 150 ◦C or smaller. Both EOS have been implemented into OGS.
Fluid properties used in the benchmark are summarized in Table7.6.

Additionally, the case with constant viscosity (μ = 10−3Pa s) will also be illus-
trated.

Numerical Setup

Due to the high non-linearity in this numerical model, the linear solver and time step-
ping were elaborately chosen. The direct solver SparseLU (Guennebaud et al. 2010)
were used so solve the linear system and Picard iterations were employed for the
non-linear iterations until convergence with a relative tolerance of 10−5 was reached.

7.2.3 Results

Temperature-Dependent Viscosity

The calculated Darcy-flow field and temperature anomaly ε = T − T init are illus-
trated respectively in Fig. 7.7a and b at the end of the simulated period (Fig. 7.8).

A single convective cell covering the entire domain forms. A thermally-driven
plume flows along the bottom side of the PM at peak velocity of 6.7 · 10−9 m/s. The
resulting upwelling/downwelling increases/decreases the initial temperature profile.
The solution displays periodical oscillations.
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Fig. 7.7 Temperature perturbation (◦C) at t = 5 · 1010 s

Fig. 7.8 Darcy velocity field (m/s) at t = 5 · 1010 s

Constant Viscosity

Here the fluid viscosity is set to its reference value, (μ = 1 · 10−3 Pa s). Compared to
the previous case, the temperature anomaly and the velocity field are less vigorous
which highlights the strong destabilizing effects of temperature-dependent viscosity.
These solutions are steady state (Figs. 7.9 and 7.10).

7.2.4 Summary

• A numerical benchmark for the simulations of 2D km-scale thermal convection
onset of a single-phase fluid with temperature dependent viscosity and density is
proposed.

• OGS-6 successfully simulates the onset of thermal convection. OGS-6 results are
consistent with those obtainedwith the previous version and FEFLOW (Table7.7).



170 F. Magri et al.

Fig. 7.9 Temperature perturbation (◦C) at t = 5 · 1010 s

Fig. 7.10 Darcy velocity field (m/s) at t = 5 · 1010 s

Table 7.7 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-7.3 Tianyuan Zheng OGS-6 See below ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

The OGS-6 version performed for this benchmark can be found in the master
branch under:

• https://github.com/ufz/ogs.

The input files named square_5500x5500.prj are available at:

• https://github.com/ufz/ogs-data/tree/master/Parabolic/HT/ConstViscosity.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs
https://github.com/ufz/ogs-data/tree/master/Parabolic/HT/ConstViscosity
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7.3 Two-Dimensional Transient Thermal Advection

Tianyuan Zheng, Xing-Yuan Miao, Dmitri Naumov, Thomas Nagel

Heat transport in a moving liquid is discussed in this section, and a series of bench-
marks is presented comprising the transient two-dimensional temperature distribu-
tion in a moving liquid.

The following assumptions are made to simplify the problem:

• Constant material properties
• Neglecting viscous dissipation effects
• Local thermal equilibrium
• No phase change process

Hence, flow is not affected by temperature, but couples into heat transport via an
advection term:

(�cp)
∂T

∂t
− ∇ · λ∇T + �fcfq∇T = 0 (7.3.1)

φκ
∂ p

∂t
= ∇ ·

(
k
μ

∇ p − �fg
)

(7.3.2)

where �cp represents the heat capacity of the porous media φ�fcf + (1 − φ)�scs, λ
represents the heat conductivity φλf + (1 − φ)λs and q is the Darcy velocity. The
different parameters and their values are given in Table7.8.

Table 7.8 Physical parameters

Symbol Parameter Value Unit

� Solid density 2000 kg· m−3

� Fluid density 1000 kg· m−3

cs Solid heat capacity 250 J· kg−1· K−1

cf Fluid heat capacity 1100 J· kg−1· K−1

λs Solid thermal
conductivity

50 W·m−1·K−1

λf Fluid thermal
conductivity

10 W·m−1·K−1

φκ Liquid storage 2.5e−10 Pa−1

κ Compressibility 0 Pa−1

φ Porosity 0.1 −
k Permeability 10e−11 m2

μ Viscosity 0.001 Pa· s
β Thermal expansion

coefficient
2.07e−4 K−1



172 F. Magri et al.

Within the finite element framework, the above equations were cast into the fol-
lowing matrix form:

(
MTT 0
0 Mpp

)(
Ṫ
ṗ

)
+

(
KTT KTp

0 Kpp

) (
T
p

)
=

(
fT
fp

)
(7.3.3)

in which MT T = (N)T�cpN indicates the thermal storage term, Mpp = (N)TφκN
indicates the pressure-associated storage term for liquid flow,KT T = (∇N)Tλ∇N +
NT�fcfq∇N indicates the advection-diffusion matrix for heat transport, Kpp =
(∇N)T k

μ
∇N is the Laplace matrix for liquid flow and KT p = (−N)TβfN is the ther-

mal expansion term which is only considered in the density-driven heat convection
process described in the previous 2d thermal convection benchmark.

7.3.1 Transient 2D Heat Transport with Moving Liquid

In this benchmark, the storage term of the liquid flow equation is neglected, thus
considering the flow process to be in steady state. A transient heat transport process
is coupled with the steady-state flow.

The domain is a 2D rectangular domain extending 2m by 1.5m along the positive
x and y axes. The liquid and solid are both incompressible and the gravity has been
explicitly neglected. The storage term of the liquid flow equation is assumed to be
zero. Pressure p = 200000Pa at the left boundary and zero at the right boundary drive
with the steady-state flow along the x axis. A constant temperature Tb = 274.15K is
given in the centre of the left boundary (from 0.5 to 1m), whereas in the remaining
domain the initial temperature is set to T0 = 273.15K. The simulation evaluates the
transient temperature distribution in the entire domain after 4000s and the result is
validated with an analytical solution (Fig. 7.11).

7.3.1.1 Analytical Solution

A similar analytical solution was described in Kolditz et al. (2016c), the rectangle
with 2 × 1.5m located in the x-y plane and divided into 200 × 150 square elements.
The permeable porous media is considered, with isotropic permeability and porosity.
The specified inlet temperature reads,

g(y) =

⎧⎪⎨
⎪⎩
0 for y ≤ a

Tb for a ≤ y ≤ b

0 for y ≥ b

(7.3.4)

The solution of pressure distribution and specific discharge is samewith Kolditz et al.
(2016c). For 1D flow along the x-axis, the pressure comes
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Fig. 7.11 Spatial discretization

p(x) = p0

(
1 − x

Lx

)
(7.3.5)

and the specific discharge q is obtained by Darcy’s law

q = k

μ

P0
Lx

(7.3.6)

Then the heat transport equation is considered (seeEq.7.3.1). The followingnotations
introduced:

w = φ�fcf
φ�fcf + (1 − φ)�scs

q

φ

χ = φλf + (1 − φ)λs

φ�fcf + (1 − φ)�scs

(7.3.7)

The heat transport equations becomes

∂T

∂t
+ w

∂T

∂x
= χ

(
∂2T

∂x2
+ ∂2T

∂y2

)
(7.3.8)

and is complemented by the initial conditions

T (x, y, 0) = T0 (7.3.9)
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and the boundary conditions

T (0, y, t) = g(y) for t > 0

lim
x→∞ T (x, y, t) = 0 for t > 0

lim
y→∞ T (x, y, t) = 0 for t > 0

lim
y→−∞ T (x, y, t) = 0 for t > 0

(7.3.10)

Performing a Laplace transformation with respect to t gives

s
∂T̄

∂t
+ w

∂T̄

∂x
= χ

(
∂2T̄

∂x2
+ ∂2T̄

∂y2

)
(7.3.11)

where T is the Laplace transform of T and s is the transformation parameter. The
boundary conditions convert to

T (0, y, s) = g(y)

s
lim
x→∞ T (x, y, s) = 0

lim
y→∞ T (x, y, s) = 0

lim
y→−∞ T (x, y, s) = 0

(7.3.12)

Then the Fourier transform is implemented

χŪ ′′ − wŪ − (s + χr2)Ū = 0 (7.3.13)

where Ū is the Fourier transform of T̄ and r is the Fourier transformation parameter.
The boundary condition now becomes

Ū (0, r, s) = G(r)

s
lim
x→∞ Ū (x, r, s) = 0

(7.3.14)

where G(r) is the Fourier transform of g(y). This yields

Ū (x, r, s) = G(r)

s
exp

⎡
⎣x

⎛
⎝ w

2χ
−

√(
w

2χ

)2

+ s

χ
+ r2

⎞
⎠

⎤
⎦ (7.3.15)
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Application of the inverse Laplace transformation results in

U (x, r, t) = x

(4πχ)1/2

∫ t

0

G(r)exp(−χr2t ′)
(t ′)3/2

exp

(
− (x − t ′w)2

4χt ′

)
dt ′ (7.3.16)

Knowing the inverse Fourier transform

F−1G(r)exp(−χr2t ′) = exp(−y2/(4χt ′))
(2χt ′)1/2

(7.3.17)

and using the convolution theorem of Fourier transformation

F−1G(r)exp(−χr2t ′) = F−1G(r)F−1exp(−χr2t ′)

= Tb

∫ b

a

(2π)−1/2

2χt ′

1/2

exp

(
− (y − v)2

4χt ′

)
dv

(7.3.18)

one finally arrives at the temperature solution

T = Tbx

4(πχ)1/2

∫ t

0

(
− (x − t ′w)2

4χt ′

) (
erf

y − a

(4χt ′)1/2
− erf

y − b

(4χt ′)1/2

)
t ′−3/2dt ′

(7.3.19)

The analytical solution was implemented with Python and Romberg integration
scheme is applied to integral. It has to be noticed is that the analytical solution
does not contain the boundary values (x = 0) which have to be assigned manually
(Fig. 7.12).

Fig. 7.12 2D hydrothermal temperature profile (analytical solution)



176 F. Magri et al.

7.3.1.2 Numerical Solution

The governing equation (7.3.1) is treated with the finite element method in a mono-
lithic scheme. The biconjugate gradient stabilized method (BiCGSTAB) is used as
the linear solverwith a tolerance of 10−16. The Picardmethodwas implemented as the
nonlinear solver with the tolerance of 10−5. The element size is set to 0.01×0.01m2

and a time step of 100s is chosen.
In order to quantify the difference between analytical solution and numerical

solution, the relative error (ε = |Tanalytical − Tnumerical|/Tanalytical) is calculated.
From Figs. 7.13 and 7.14, it can be seen that the numerical solution fits well

with the analytical solution and maximum relative error is in the order of 10−4.
The maximum error exists in the two corners of the left boundary. This is because

Fig. 7.13 2D hydrothermal temperature profile (numerical solution)

Fig. 7.14 The relative error between numerical solution and analytical solution
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Table 7.9 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-7.3 Tianyuan Zheng OGS-6 See below ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

the analytical solution tends to be infinite when the x coordinate is closed to zero
(Table7.9).

The OGS-6 version performed for this benchmark can be found in the master
branch under:

• https://github.com/ufz/ogs.

The input files named quad_80x60 are available at:

• https://github.com/ufz/ogs-data/tree/TH-monolithic/Parabolic/TH.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs
https://github.com/ufz/ogs-data/tree/TH-monolithic/Parabolic/TH


Chapter 8
HM Processes

Gesa Ziefle, Jobst Maßmann, Norihiro Watanabe, Dmitri Naumov,
Herbert Kunz and Thomas Nagel

8.1 Fluid Injection in a Fault Zone Using Interface
Elements with Local Enrichment

This section focuses on coupled hydraulic–mechanical processes in a fault zone. The
presented benchmark is motivated by the “Fault Slip (FS)” experiment of the Mont
Terri Project.1 In this experiment, a fluid injection into a fault zone is carried out
and the resulting hydraulic and mechanical effects are monitored. The fault zone is
characterized by a range of minor and major faults and the experiment comprises
several stepswhere various locations are influencedby an injection.More information
about this experiment as well as similar approaches can be found in Guglielmi et al.
(2015b), and Guglielmi et al. (2015a), and Derode et al. (04/2015).

Modelling this system is a challenging task that has been selected to be part of the
DECOVALEX-2019 project2–where Task B focuses on relatedmodeling approaches
and their comparison.

1https://www.mont-terri.ch/
2www.decovalex.org
3https://docs.opengeosys.org/docs

G. Ziefle (B) · J. Maßmann · H. Kunz
BGR, Federal Institute for Geosciences and Natural Resources, Hanover, Germany
e-mail: Gesa.Ziefle@bgr.de

N. Watanabe
National Institute of Advanced Industrial Science and Technology, Renewable Energy Research
Center (AIST), Koriyama, Fukushima, Japan

D. Naumov · T. Nagel
Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany

T. Nagel
Trinity College Dublin, Dublin, Ireland

© Springer International Publishing AG 2018
O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media: Modelling and Benchmarking,
Terrestrial Environmental Sciences, https://doi.org/10.1007/978-3-319-68225-9_8
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Fig. 8.1 Representation of
the fracture elements in the
LIE modelling approach

The following section presents a simplified 2-dimensional model approach using
interface elements (LIE) of co-dimension one with local enrichment functions of the
finite-element solution space to simulate the fracture behavior due to a fluid injection
(for implementational details see Watanabe et al. 2012). The simulations are carried
out with OpenGeoSys 6.3 More information on modelling approaches can also be
found in Rutqvist et al. (2015).

8.1.1 Model Approach

The detailed model approach is presented in Watanabe et al. (2012). It is based on
the usage of lower-dimensional interface elements (LIE) for simulating flow through
the fracture in combination with a Heaviside-enriched solution space to model the
displacement discontinuity across the fracture. The discrete fracture is modeled by
a pair of surfaces between which normal and shear displacements are permissible as
presented in Fig. 8.1.

The effective-stress approach is used to calculate the stress field in the fracture:

σ tot,f = σ eff,f − αf pf1 (8.1)

with σ tot,f and σ eff,f being the total and effective stresses in the fracture linked via
the Biot coefficient in the fracture αf and the fluid pressure in the fracture pf .

The relationship between the effective stress and the fracture relative displacement
vector results from:

dσ eff,f = K dw (8.2)

with the fracture shear and normal displacements being part of the displacement
vector w, the vector of the effective stress increment defined analogously, and the
stiffness matrix comprising the normal, shear and coupled stiffness of the fracture
given by:

K =
[
ktt ktn
knt knn

]
(8.3)

Concerning the fluid flow, the fracture is modeled based on the parallel-plate
assumption where the fluid flow along the fracture qf is directly related to fracture
aperture bh by the cubic law such that:
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qf = b2h
12μFR

I (−∇ pf + ρFRg) (8.4)

with the fluid viscosityμFR, the fluid density ρFR and the gravity vector g. Assuming
a uniform pressure across the fracture width, this yields to themass balance equation:

bhSf
∂pf
∂t

+ αf
∂bh
∂t

+ ∇ · (bhqf) + q+ + q− = 0 (8.5)

with the leakage flux from the opposing fracture surfaces to the surrounding porous
media q+ and q− and the specific storage of the fracture Sf resulting from Sf = 1

Kf

with the compressibility of the fracture Kf and the time t .
The fracture is assumed to be characterized by elasto-plasticmaterial behavior fol-

lowing the Mohr–Coulomb failure criterion. Based on the mentioned elasto–plastic
behaviour, the variable fracture aperture bh is calculated from elastic and inelastic
contributions:

bh = bh,init + �bh,elastic + �bh,shear (8.6)

with the initial fracture aperture bh,init , the elastic part of the aperture bh,elastic (change
following from Eq. (8.2)) and the opening due to the shear dilation of the fracture
bh,shear.

8.1.2 Model Set-Up

The modeled two-dimensional domain has an extent of 20m times 20m as it is
presented in Fig. 8.2.

The initial effective stresses are assumed to be 6MPa in horizontal and 7MPa
in vertical direction. The pore pressure is assumed to be initially 0.5MPa in the

Fig. 8.2 Geometry and
initial and boundary
conditions of the modeled
domain
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Fig. 8.3 Temporal evolution of the pressure boundary condition at the injection point

Table 8.1 Material parameters: fluid injection in a fault zone

Symbol Parameter Unit Value

Host rock (elastic)

E Young’s modulus GPa 6.1

ν Poisson number − 0.3275

αr Biot coefficient − 0

ρSR Density of solid kg · m−3 2450

φ Porosity − 0.0

K Intrinsic permeability m2 1e-17

Sr Storage 1/Pa 1.0e-10

Fault zone (elasto-plastic)

Kn Normal stiffness GPa/m 20

Ks Shear stiffness GPa/m 20

αf Biot coefficient − 1

ψMC Dilatancy angle deg 10

φMC Friction angle deg 22

cMC Cohesion − 0

bh,init Initial fracture hydraulic aperture m 1e-5

Sf Storage 1/Pa 4.4e-10

Fluid

μFR Viscosity Pa · s 1e-3

ρFR Density of water kg · m−3 1000

entire domain and remains at this value at the model boundary. The displacements
are constrained in directions normal to the boundary as indicated in Fig. 8.2. The
temporal evolution of the injection pressure in the center of the model domain is
presented in Fig. 8.3 and assigned as a Dirichlet boundary condition.

The material parameters are summarized in Table8.1 and the FEM-mesh is given
in Fig. 8.4.
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Fig. 8.4 Two-dimensional mesh and lower-dimensional representation of the fault zone
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Fig. 8.5 Temporal evolution of the flowrate and the pressure in the injection point

8.1.3 Results

The injection causes significant stress redistribution in the fault zone, resulting in
elasto-plastic normal as well as shear deformations due to theMohr–Coulomb failure
criterion.
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Fig. 8.6 Temporal evolutions of the normal and shear displacement of the crack in the injection
point
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Fig. 8.7 Horizontal displacements presented as contour plot in the entire domain after 450s at
maximal injection pressure. The displaced mesh is scaled by a factor of 1000. The zoomed area
indicates the shear displacements in the center of the domain. The discontinuity embodied via
solution-space enrichment is clearly visible

The resulting time-dependent flowrate into the crack is presented in Fig. 8.5 in
combination with the injection pressure at the injection point. The step-wise pressure
increase leads to an inflow into the fault domain while the subsequently applied
decrease of the injection pressure initially leads to a backflow since the pressure in
the fault is higher than the injection pressure at this time step.

The temporal evolution of the normal and shear displacements of the crack in the
injection point are presented in Fig. 8.6.Amoderate increase of normal displacements
and hardly any shear displacements can be seen during the first 420s. After that, the
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Table 8.2 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-8.1 Gesa Ziefle OGS-6 Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

failure criterion is reached and a significant increase of the normal displacements
due to dilatancy is accompanied by significant shear displacements. The normal
displacements feature an elastic rebound due to the decrease of the injection pressure.
A contour plot of the displacements at maximum injection pressure is presented in
Fig. 8.7. Information about the benchmark deposit can be found in (Table8.2).

The OGS-6 version used is available at:

• https://github.com/endJunction/ogs/tree/LIE3D_0.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/endJunction/ogs/tree/LIE3D_0


Chapter 9
TM Processes

Peter Vogel, Jobst Maßmann, Xing-Yuan Miao and Thomas Nagel

Thermoelastic Beams

Peter Vogel and Jobst Maßmann

This section presents problems on thermal stresses in beams. We focus on the closed
form solutions. The associated simulation exercises have been checked byOGS; they
may serve as verification tests. For the underlying theory of linear thermoelasticity
seeCarlson (1972), formore details on thermoelastic beams seeHetnarski andEslami
(2009).

9.1 A Linear Temperature Distribution

Given length L = 2m and thickness H = 0.2m the domain represents the rectan-
gular beam [0, L] × [0, H ] × [0, H ]. It is discretized by 40 × 2 × 2 equally sized
hexahedral elements. The solid material has been selected elastic with Young’s mod-
ulus E = 25, 000MPa, Poisson’s ratio ν = 0.25, zero heat capacity, and thermal
expansion αT = 3 · 10−5 1/K. Gravity is neglected via zero material density. Fixities
have been prescribed on the entire surface of the domain with zero x-displacement

P. Vogel (B) · J. Maßmann
BGR, Federal Institute for Geosciences and Natural Resources,
Hanover, Germany
e-mail: Peter.Vogel@bgr.de

X.-Y. Miao · T. Nagel
UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany

X.-Y. Miao
TU Dresden, Dresden, Germany

T. Nagel
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© Springer International Publishing AG 2018
O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media: Modelling and Benchmarking,
Terrestrial Environmental Sciences, https://doi.org/10.1007/978-3-319-68225-9_9

187



188 P. Vogel et al.

Fig. 9.1 Temperature distribution

Fig. 9.2 X-Displacements

Table 9.1 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-9.1 Peter Vogel OGS-5 Available TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

along the faces x = 0 and x = L , zero y-displacement along the faces y = 0 and
y = H , and zero z-displacement along the faces z = 0 and z = H . The simulation
(Table9.1) starts from zero initial temperature and comprises one timestep applying
an instant temperature change with temperature T0 = 8 ◦C at x = L and zero applied
temperature at x = 0.

The formal solution proceeds in two steps, first to solve for the temperature distri-
bution (Fig. 9.1) and then to evaluate displacements (Fig. 9.2), strains, and stresses.

Due to the setup the thermal problem depends on the x-coordinate only and the
Laplace equation governing the steady-state temperature distribution T (x) becomes

d2T

dx2
= 0. (9.1.1)

The temperature distribution

T (x) = T0
x

L
(9.1.2)

satisfies the Laplace equation and the imposed thermal boundary conditions, hence,
this is the solution of the thermal problem.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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For the solution of the mechanical problem note that the applied temperature
change is identical to the above T (x). Let (ux , uy, uz) denote the displacement vector
and

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
(9.1.3)

the volumetric strain. The displacement-temperature equations of equilibrium

∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2
+ 1

1 − 2ν

∂e

∂x
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
= 2(1 + ν)

1 − 2ν
αT

T0
L

,

∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2
+ 1

1 − 2ν

∂e

∂y
= 2(1 + ν)

1 − 2ν
αT

∂T

∂y
= 0, (9.1.4)

∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2
+ 1

1 − 2ν

∂e

∂z
= 2(1 + ν)

1 − 2ν
αT

∂T

∂z
= 0

and the imposed fixities are satisfied by

ux = ux (x), (9.1.5)

uy = 0, (9.1.6)

uz = 0, (9.1.7)

if ux (x) satisfies the ordinary differential equation

d2ux

dx2
+ 1

1 − 2ν

d2ux

dx2
= 2(1 + ν)

1 − 2ν
αT

T0
L

(9.1.8)

subject to the boundary conditions

ux (0) = ux (L) = 0. (9.1.9)

The x-displacement becomes

ux (x) = 1 + ν

1 − ν
αT

T0
2

(
x2

L
− x

)
. (9.1.10)

The strains read

ε11 = ∂ux

∂x
= 1 + ν

1 − ν
αT T0

(
x

L
− 1

2

)
, (9.1.11)

ε22 = ∂uy

∂y
= 0, (9.1.12)

ε33 = ∂uz

∂z
= 0, (9.1.13)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (9.1.14)
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ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (9.1.15)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (9.1.16)

The constitutive equations

ε11 − αT T (x) = αT T0

(
2νx

(1 − ν)L
− 1 + ν

2(1 − ν)

)

= 1
E [σ11 − ν(σ22 + σ33)],

ε22 − αT T (x) = −αT T0
x

L
= 1

E [σ22 − ν(σ11 + σ33)],
ε33 − αT T (x) = −αT T0

x

L
= 1

E [σ33 − ν(σ11 + σ22)],

ε12 = 0 = 2(1 + ν)

E
σ12,

ε13 = 0 = 2(1 + ν)

E
σ13,

ε23 = 0 = 2(1 + ν)

E
σ23

(9.1.17)

yield the stress tensor

σ =
⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠

= − EαT T0
1 − ν

⎛
⎜⎝

1−ν
2(1−2ν)

0 0

0 ν
2(1−2ν)

+ x
L 0

0 0 ν
2(1−2ν)

+ x
L

⎞
⎟⎠ , (9.1.18)

which satisfies the equation of mechanical equilibrium

div σ = 0. (9.1.19)

9.2 A Steady-State Antisymmetric Temperature
Distribution

Given length L = 2m and thickness H = 0.2m the domain represents the rectan-
gular beam [0, L] × [0, H ] × [0, H ]. It is discretized by 40 × 2 × 2 equally sized
hexahedral elements. The solid material has been selected elastic with Young’s
modulus E = 25, 000MPa, Poisson’s ratio ν = 0.25, zero heat capacity, and ther-
mal expansion αT = 3 · 10−5 1/K. Gravity is neglected via zero material density.
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Fixities have been prescribed on the entire surface of the domain with zero x-
displacement along the faces x = 0 and x = L , zero y-displacement along the faces
y = 0 and y = H , and zero z-displacement along the faces z = 0 and z = H . The
simulation (Table9.2) starts from zero initial temperature and comprises one timestep
applying an instant temperature change with temperature T0 = 4 ◦C at x = 0 and
temperature −T0 = −4 ◦C at x = L .

The formal solution proceeds in two steps, first to solve for the temperature distri-
bution (Fig. 9.3) and then to evaluate displacements (Fig. 9.4), strains, and stresses.

Due to the setup the thermal problem depends on the x-coordinate only and the
Laplace equation governing the steady-state temperature distribution T (x) becomes

d2T

dx2
= 0. (9.2.1)

The temperature distribution

T (x) = T0

(
1 − 2x

L

)
(9.2.2)

satisfies the Laplace equation and the imposed thermal boundary conditions, hence,
this is the solution of the thermal problem.

For the solution of the mechanical problem note that the applied temperature
change is identical to the above T (x). Let (ux , uy, uz) denote the displacement vector
and

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
(9.2.3)

the volumetric strain. The displacement-temperature equations of equilibrium

Table 9.2 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-9.2 Peter Vogel OGS-5 Available TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

Fig. 9.3 Temperature distribution

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 9.4 X-Displacements

∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2
+ 1

1 − 2ν

∂e

∂x
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
= −2(1 + ν)

1 − 2ν
αT

2T0
L

,

∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2
+ 1

1 − 2ν

∂e

∂y
= 2(1 + ν)

1 − 2ν
αT

∂T

∂y
= 0, (9.2.4)

∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2
+ 1

1 − 2ν

∂e

∂z
= 2(1 + ν)

1 − 2ν
αT

∂T

∂z
= 0

and the imposed fixities are satisfied by

ux = ux (x), (9.2.5)

uy = 0, (9.2.6)

uz = 0, (9.2.7)

if ux (x) satisfies the ordinary differential equation

d2ux

dx2
+ 1

1 − 2ν

d2ux

dx2
= −2(1 + ν)

1 − 2ν
αT

2T0
L

(9.2.8)

subject to the boundary conditions

ux (0) = ux (L) = 0. (9.2.9)

The x-displacement becomes

ux (x) = −1 + ν

1 − ν
αT T0

(
x2

L
− x

)
. (9.2.10)

The strains read

ε11 = ∂ux

∂x
= 1 + ν

1 − ν
αT T (x), (9.2.11)

ε22 = ∂uy

∂y
= 0, (9.2.12)



9 TM Processes 193

ε33 = ∂uz

∂z
= 0, (9.2.13)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (9.2.14)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (9.2.15)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (9.2.16)

The constitutive equations

ε11 − αT T (x) = 2ν

1 − ν
αT T (x) = 1

E
[σ11 − ν(σ22 + σ33)], (9.2.17)

ε22 − αT T (x) = −αT T (x) = 1

E
[σ22 − ν(σ11 + σ33)], (9.2.18)

ε33 − αT T (x) = −αT T (x) = 1

E
[σ33 − ν(σ11 + σ22)], (9.2.19)

ε12 = 0 = 2(1 + ν)

E
σ12, (9.2.20)

ε13 = 0 = 2(1 + ν)

E
σ13, (9.2.21)

ε23 = 0 = 2(1 + ν)

E
σ23 (9.2.22)

yield the stress tensor

σ =
⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = − EαT

1 − ν
T (x)

⎛
⎝ 0 0 0
0 1 0
0 0 1

⎞
⎠ , (9.2.23)

which satisfies the equation of mechanical equilibrium

div σ = 0. (9.2.24)

9.3 A Transient Antisymmetric Temperature Distribution

Given length L = 2m and thickness H = 0.2m the domain represents the rectangu-
lar beam [0, L] × [0, H ] × [0, H ]. It is discretized by 200 × 1 × 1 equally sized
hexahedral elements. The solid material has been selected elastic with Young’s
modulus E = 25, 000MPa, Poisson’s ratio ν = 0.25, density ρ = 2000kg/m3, ther-
mal conductivity k = 2.7W/(m·K), heat capacity c = 0.45J/(kg·K), and thermal
expansion αT = 3 · 10−4 1/K. Gravity is neglected via explicit assignment.
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Fixities have been prescribed on the entire surface of the domain with zero x-
displacement along the faces x = 0 and x = L , zero y-displacement along the faces
y = 0 and y = H , and zero z-displacement along the faces z = 0 and z = H . Tem-
peratures T0t (T0 = 1 ◦C/s) and −T0t are applied at the faces x = L and x = 0,
respectively, for times t > 0. Starting from zero initial temperature the simulation
(Table9.3) evaluates the transient temperature distribution T (x, t) as well as the
associated mechanical load with output after 5 and 10 s.

The formal solution proceeds in two steps, first to solve for the temperature distri-
bution (Fig. 9.5) and then to evaluate displacements (Fig. 9.6), strains, and stresses.

The heat conduction equation

ρc
∂T

∂t
= div(k grad T ) (9.3.1)

is the governing equation describing the transient thermal problem. Introducing the
notation

χ = k

ρc
(9.3.2)

the present temperature distribution T (x, t) is governed by the parabolic equation

1

χ

∂T

∂t
= ∂2T

∂x2
, (9.3.3)

the initial condition

T (x, 0) = 0 for 0 ≤ x ≤ L , (9.3.4)

Table 9.3 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-9.3 Peter Vogel OGS-5 Available TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

Fig. 9.5 Temperature distribution after 10 s

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 9.6 X-Displacements after 10 s

and the boundary conditions imposed at the beams ends

T (0, t) = −T0t for t > 0, (9.3.5)

T (L , t) = T0t for t > 0. (9.3.6)

Applying the Laplace transform with respect to t yields the ordinary differential
equation

χT̄ ′′ − sT̄ = 0, (9.3.7)

where T̄ is the transform of T , s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. The Laplace transform of the temperature
distribution becomes

T̄ (x, s) = T0
sinh[√s/χ(x − L/2)]
s2 sinh[√s/χL/2] . (9.3.8)

Then, following Churchill (1958)

T̄ (x, s) = T0
s2

exp[√s/χ(x − L/2)] − exp[−√
s/χ(x − L/2)]

exp[√s/χL/2] − exp[−√
s/χL/2]

= T0
s2

exp[√s/χ(x − L)] − exp[−√
s/χx]

1 − exp[−√
s/χL] (9.3.9)

= T0
s2

{
exp[√s/χ(x − L)] − exp[−√

s/χx]
} ∞∑

n=0

exp[−√
s/χnL]

= T0
s2

∞∑
n=0

{
exp[−√

s/χ(nL + L − x)] − exp[−√
s/χ(nL + x)]

}
.

Abramowitz and Stegun (1972) give the inverse Laplace transform



196 P. Vogel et al.

L −1

{
1

s2
exp(−K

√
s)

}
= 4t · i2erfc K

2
√
t
, (9.3.10)

where K ≥ 0 and i2erfc denotes the 2nd repeated integral of the complementary
error function. The temperature distribution T (x, t) becomes

T (x, t) = 4T0t
∞∑
n=0

(
i2erfc

(n + 1)L − x

2
√

χt
− i2erfc

nL + x

2
√

χt

)
. (9.3.11)

For the solution of the mechanical problem note that the applied temperature
change is identical to the above T (x, t). Let (ux , uy, uz) denote the displacement
vector and

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
(9.3.12)

the volumetric strain. The displacement-temperature equations of equilibrium

∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2
+ 1

1 − 2ν

∂e

∂x
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
,

∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2
+ 1

1 − 2ν

∂e

∂y
= 2(1 + ν)

1 − 2ν
αT

∂T

∂y
= 0, (9.3.13)

∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2
+ 1

1 − 2ν

∂e

∂z
= 2(1 + ν)

1 − 2ν
αT

∂T

∂z
= 0

and the imposed fixities are satisfied by

ux = ux (x, t), (9.3.14)

uy = 0, (9.3.15)

uz = 0, (9.3.16)

if ux (x, t) satisfies the differential equation

∂2ux

∂x2
+ 1

1 − 2ν

∂2ux

∂x2
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
(9.3.17)

subject to the boundary conditions

ux (0, t) = ux (L , t) = 0 for t > 0. (9.3.18)

The x-displacement becomes
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ux (x, t) = 8αT
1 + ν

1 − ν
T0

√
χt3

∞∑
n=0

(
i3erfc

(n + 1)L − x

2
√

χt
+ i3erfc

nL + x

2
√

χt

−i3erfc
(n + 1)L

2
√

χt
− i3erfc

nL

2
√

χt

)
(9.3.19)

where i3erfc denotes the 3rd repeated integral of the complementary error function.
The strains read

ε11 = ∂ux

∂x
= 1 + ν

1 − ν
αT T (x, t), (9.3.20)

ε22 = ∂uy

∂y
= 0, (9.3.21)

ε33 = ∂uz

∂z
= 0, (9.3.22)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (9.3.23)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (9.3.24)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (9.3.25)

The constitutive equations

ε11 − αT T (x, t) = 2ν

1 − ν
αT T (x, t) = 1

E
[σ11 − ν(σ22 + σ33)], (9.3.26)

ε22 − αT T (x, t) = −αT T (x, t) = 1

E
[σ22 − ν(σ11 + σ33)], (9.3.27)

ε33 − αT T (x, t) = −αT T (x, t) = 1

E
[σ33 − ν(σ11 + σ22)], (9.3.28)

ε12 = 0 = 2(1 + ν)

E
σ12, (9.3.29)

ε13 = 0 = 2(1 + ν)

E
σ13, (9.3.30)

ε23 = 0 = 2(1 + ν)

E
σ23 (9.3.31)

yield the stress tensor

σ =
⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = − EαT

1 − ν
T (x, t)

⎛
⎝ 0 0 0
0 1 0
0 0 1

⎞
⎠ , (9.3.32)

which satisfies the equation of mechanical equilibrium
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Table 9.4 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-9.4 Peter Vogel OGS-5 Available TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

div σ = 0. (9.3.33)

Thermoelastic Plates

Peter Vogel and Jobst Maßmann

Plain strain problems on heated plates are the topic of this section. We focus on the
closed form solutions. The associated simulation exercises have been checked by
OGS; they may serve as verification tests. For the underlying theory of linear ther-
moelasticity see Carlson (1972), for more advanced examples see Nowacki (1986).

9.4 A Bilinear Temperature Distribution

Given length L = 1m and thickness H = 0.1m the domain represents the rectangu-
lar plate [0, L] × [0, L] × [0, H ]. It is discretized by 120 × 121 × 1 equally sized
hexahedral elements. The solidmaterial has been selected elasticwithYoung’smodu-
lus E = 10, 000MPa, Poisson’s ratio ν = 0.2, zero heat capacity, and thermal expan-
sion αT = 10−4 1/K. Gravity is neglected via zero material density. The faces x = L
and y = L are free of mechanical load by default. Fixities have been prescribed with
zero z-displacement along the faces z = 0 and z = H , zero x-displacement along
the face y = 0, and zero y-displacement along the face x = 0. The imposed ther-
mal boundary conditions have top and bottom of the domain thermally insulated by
default. Zero temperature prevails at the faces x = 0 and y = 0, respectively, the tem-
perature distribution T0y/L (T0 = 10 ◦C) has been assigned along the face x = L ,
the temperature distribution T0x/L has been assigned along the face y = L . The sim-
ulation (Table9.4) starts from zero initial temperature and comprises one timestep
to establish the steady-state temperature distribution (Fig. 9.7) and to evaluate the
associated displacements (Fig. 9.8), strains, and stresses.

Due to the setup the thermal problem does not depend on the z-coordinate and
the Laplace equation governing the steady-state temperature distribution T (x, y)
becomes

∂2T

∂x2
+ ∂2T

∂y2
= 0. (9.4.1)

The temperature distribution

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 9.7 Deformations scaled up, temperature distribution

Fig. 9.8 Deformations scaled up, y-displacements
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T (x, y) = T0
x

L

y

L
(9.4.2)

satisfies the Laplace equation and the imposed thermal boundary conditions, hence,
this is the solution of the thermal problem.

For the solution of the mechanical problem note that the applied temperature
change is identical to the above T (x, y). It will be shown that the displacements

ux (x, y) = (1 + ν)αT
T0
L2

(
1

2
x2y − 1

6
y3

)
, (9.4.3)

uy(x, y) = (1 + ν)αT
T0
L2

(
1

2
y2x − 1

6
x3

)
, (9.4.4)

uz = 0 (9.4.5)

constitute the solutionof themechanical problem.Theprescribedfixities are satisfied;
there is zero x-displacement ux along the face y = 0, zero y-displacement uy along
the face x = 0, and zero z-displacement uz along the faces z = 0 and z = H . The
strains read

ε11 = ∂ux

∂x
= (1 + ν)αT T (x, y), (9.4.6)

ε22 = ∂uy

∂y
= (1 + ν)αT T (x, y), (9.4.7)

ε33 = ∂uz

∂z
= 0, (9.4.8)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (9.4.9)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (9.4.10)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (9.4.11)

The constitutive equations

ε11 − αT T (x, y) = ναT T (x, y) = 1

E
[σ11 − ν(σ22 + σ33)], (9.4.12)

ε22 − αT T (x, y) = ναT T (x, y) = 1

E
[σ22 − ν(σ11 + σ33)], (9.4.13)

ε33 − αT T (x, y) = −αT T (x, y) = 1

E
[σ33 − ν(σ11 + σ22)], (9.4.14)

ε12 = 0 = 2(1 + ν)

E
σ12, (9.4.15)

ε13 = 0 = 2(1 + ν)

E
σ13, (9.4.16)
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Table 9.5 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-9.5 Peter Vogel OGS-5 Available TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

ε23 = 0 = 2(1 + ν)

E
σ23 (9.4.17)

yield the stress tensor

σ =
⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = −EαT T (x, y)

⎛
⎝0 0 0
0 0 0
0 0 1

⎞
⎠ , (9.4.18)

which satisfies the equation of mechanical equilibrium

div σ = 0 (9.4.19)

as well as the default mechanical boundary conditions along the faces x = L and
y = L .

9.5 A Temperature Distribution Represented
by a Quadratic Form

Given length L = 1m and thickness H = 0.1m the domain represents the rectan-
gular plate [0, L] × [0, L] × [0, H ]. It is discretized by 40 × 40 × 1 equally sized
hexahedral elements. The solid material has been selected elastic with Young’s mod-
ulus E = 10, 000MPa, Poisson’s ratio ν = 0.2, zero heat capacity, thermal conduc-
tivity k = 1W/(m·K), and thermal expansion αT = 10−4 1/K. Gravity is neglected
via zero material density. The faces x = L and y = L are free of mechanical load
by default. Fixities have been prescribed with zero z-displacement along the faces
z = 0 and z = H , zero y-displacement along the face y = 0, and zero x-displacement
along the face x = 0. The imposed thermal boundary conditions have top and bottom
of the domain as well as the lateral faces on the coordinate planes thermally insu-
lated by default. Zero temperature prevails at the origin. The heat flow h = 20W/m2

has been prescribed at the face y = L , the heat flow −h = −20W/m2 has been
prescribed at the face x = L . The simulation (Table9.5) starts from zero initial tem-
perature and comprises one timestep to establish the steady-state temperature dis-
tribution (Fig. 9.9) and to evaluate the associated displacements (Fig. 9.10), strains,
and stresses.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 9.9 Deformations scaled up, temperature distribution

Fig. 9.10 Deformations scaled up, y-displacements
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Due to the setup the thermal problem does not depend on the z-coordinate and
the Laplace equation governing the steady-state temperature distribution T (x, y)
becomes

∂2T

∂x2
+ ∂2T

∂y2
= 0. (9.5.1)

The temperature distribution

T (x, y) = − h

2kL
(x2 − y2) (9.5.2)

satisfies the Laplace equation and the imposed thermal boundary conditions. There
is zero temperature at the origin and Fourier’s law gives for the heat flow across the
face x = 0

k
∂T

∂x
(0, y) = 0 for 0 ≤ y ≤ L , (9.5.3)

across the face y = 0

k
∂T

∂y
(x, 0) = 0 for 0 ≤ x ≤ L , (9.5.4)

across the face x = L

k
∂T

∂x
(L , y) = −k

h

2kL
2L = −h for 0 ≤ y ≤ L , (9.5.5)

and across the face y = L

k
∂T

∂y
(x, L) = −k

h

2kL
(−2L) = h for 0 ≤ x ≤ L . (9.5.6)

Therefore, the temperature distribution T (x, y) is the solution of the thermal problem.
For the solution of the mechanical problem note that the applied temperature

change is identical to the above T (x, y). It will be shown that the displacements

ux (x, y) = −(1 + ν)αT
h

2kL

(
1

3
x3 − xy2

)
, (9.5.7)

uy(x, y) = −(1 + ν)αT
h

2kL

(
x2y − 1

3
y3

)
, (9.5.8)

uz = 0 (9.5.9)

constitute the solutionof themechanical problem.Theprescribedfixities are satisfied;
there is zero x-displacement ux along the face x = 0, zero y-displacement uy along
the face y = 0, and zero z-displacement uz along the faces z = 0 and z = H . The
strains read
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ε11 = ∂ux

∂x
= (1 + ν)αT T (x, y), (9.5.10)

ε22 = ∂uy

∂y
= (1 + ν)αT T (x, y), (9.5.11)

ε33 = ∂uz

∂z
= 0, (9.5.12)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (9.5.13)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (9.5.14)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (9.5.15)

The constitutive equations

ε11 − αT T (x, y) = ναT T (x, y) = 1

E
[σ11 − ν(σ22 + σ33)], (9.5.16)

ε22 − αT T (x, y) = ναT T (x, y) = 1

E
[σ22 − ν(σ11 + σ33)], (9.5.17)

ε33 − αT T (x, y) = −αT T (x, y) = 1

E
[σ33 − ν(σ11 + σ22)], (9.5.18)

ε12 = 0 = 2(1 + ν)

E
σ12, (9.5.19)

ε13 = 0 = 2(1 + ν)

E
σ13, (9.5.20)

ε23 = 0 = 2(1 + ν)

E
σ23 (9.5.21)

yield the stress tensor

σ =
⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = −EαT T (x, y)

⎛
⎝0 0 0
0 0 0
0 0 1

⎞
⎠ , (9.5.22)

which satisfies the equation of mechanical equilibrium

div σ = 0 (9.5.23)

as well as the default mechanical boundary conditions along the faces x = L and
y = L .
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9.6 A Temperature Distribution Represented by a Fourier
Series

Given length L = 1m and thickness H = 0.1m the domain represents the rectan-
gular plate [0, L] × [0, L] × [0, H ]. It is discretized by 80 × 80 × 1 equally sized
hexahedral elements. The solid material has been selected elastic with Young’s mod-
ulus E = 10, 000MPa, Poisson’s ratio ν = 0.2, zero heat capacity, thermal conduc-
tivity k = 1W/(m·K), and thermal expansion αT = 10−4 1/K. Gravity is neglected
via zero material density. The faces x = 0 and x = L are free of mechanical load
by default. Fixities have been prescribed with zero z-displacement along the faces
z = 0 and z = H , zero y-displacement along the faces y = 0 and y = L , and zero
x-displacement along the line (0, L/2, z). The imposed thermal boundary condi-
tions have top and bottom of the domain as well as the faces y = 0 and y = L
thermally insulated by default. Zero temperature prevails at the face x = 0, the heat
flow h(2y/L − 1) (h = 40W/m2) has been prescribed at the face x = L . The sim-
ulation (Table9.6) starts from zero initial temperature and comprises one timestep
to establish the steady-state temperature distribution (Fig. 9.11) and to evaluate the
associated displacements (Fig. 9.12), strains, and stresses.

Due to the setup the thermal problem does not depend on the z-coordinate and
the Laplace equation governing the steady-state temperature distribution T (x, y)
becomes

∂2T

∂x2
+ ∂2T

∂y2
= 0. (9.6.1)

The Laplace equation and the applied thermal boundary conditions pose a boundary
value problem, which will be solved by separation of variables. Assuming a product
solution

T (x, y) = F(x)G(y) (9.6.2)

the Laplace equation gives

− 1

F

d2F

dx2
= 1

G

d2G

dy2
. (9.6.3)

Since the left hand side depends only on x and the right hand side depends only
on y, both sides are equal to some constant value −ω2. Thus the Laplace equation
separates into two ordinary differential equations

Table 9.6 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-9.6 Peter Vogel OGS-5 Available TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 9.11 Deformations scaled up, temperature distribution

Fig. 9.12 Deformations scaled up, x-displacements
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d2F

dx2
= ω2F, (9.6.4)

d2G

dy2
= −ω2G (9.6.5)

with the general solutions

F(x) = C1 sinh(ωx) + C2 cosh(ωx), (9.6.6)

G(y) = C3 cos(ωy) + C4 sin(ωy). (9.6.7)

This yields

T (x, y) = A sinh(ωx) cos(ωy) +B sinh(ωx) sin(ωy)

+C cosh(ωx) cos(ωy) +D cosh(ωx) sin(ωy). (9.6.8)

The free constants A, B,C, D, and the eigenvalue ω will be determined from the
boundary conditions. Zero temperature along the face x = 0

T (0, y) = 0 = C cos(ωy) + D sin(ωy) (9.6.9)

is satisfied by

C = D = 0, (9.6.10)

and the thermal boundary condition along the insulated face y = 0

∂T

∂y
(x, 0) = 0 = ωB sinh(ωx) (9.6.11)

is satisfied by

B = 0. (9.6.12)

The thermal boundary condition along the insulated face y = L

∂T

∂y
(x, L) = 0 = ωA sinh(ωx) sin(ωL) (9.6.13)

yields the eigenvalues

ωn = nπ

L
for n = 1, 2, . . . (9.6.14)

and the associated solutions
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Tn(x, y) = An sinh
(
nπ

x

L

)
cos

(
nπ

y

L

)
for n = 1, 2, . . . . (9.6.15)

The temperature distribution takes the form

T (x, y) =
∞∑
n=1

An sinh
(
nπ

x

L

)
cos

(
nπ

y

L

)
. (9.6.16)

The specified heat flow across the face x = L yields the remaining constants
A1, A2, . . .. By Fourier’s law

∂T

∂x
(L , y) = h

k

(
2
y

L
− 1

)
=

∞∑
n=1

An
nπ

L
cosh(nπ) cos

(
nπ

y

L

)

= a0
2

+
∞∑
n=1

an cos
(
nπ

y

L

)
(9.6.17)

with the cosine series expansion of the imposed boundary condition on the last line.
The Fourier coefficients a0, a1, a2, . . . read

a0 = 2

L

∫ L

0

h

k

(
2
y

L
− 1

)
dy = 0, (9.6.18)

and for n = 1, 2, . . .

an = 2

L

∫ L

0

h

k

(
2
y

L
− 1

)
cos

(
nπ

y

L

)
dy = h

k

4

(nπ)2
[(−1)n − 1]. (9.6.19)

Comparing coefficients gives the constants A1, A2, . . . and the temperature distrib-
ution T (x, y) becomes

T (x, y) = −8hL

kπ3

∞∑
n=1

sinh
[
(2n − 1)π x

L

]
cosh[(2n − 1)π]

cos
[
(2n − 1)π y

L

]
(2n − 1)3

. (9.6.20)

The series thus obtained is uniformly absolutely-convergent on the entire domain.
It satisfies the Laplace equation and the thermal boundary conditions, hence, the
temperature distribution T (x, y) is the solution of the thermal problem.

For the solution of the mechanical problem note that the applied temperature
change is identical to the above T (x, y). It will be shown that the displacements

ux (x, y) = −(1 + ν)αT
8hL2

kπ4

∞∑
n=1

cosh
[
(2n − 1)π x

L

]
cosh[(2n − 1)π]

cos
[
(2n − 1)π y

L

]
(2n − 1)4

,

(9.6.21)
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uy(x, y) = −(1 + ν)αT
8hL2

kπ4

∞∑
n=1

sinh
[
(2n − 1)π x

L

]
cosh[(2n − 1)π]

sin
[
(2n − 1)π y

L

]
(2n − 1)4

, (9.6.22)

uz = 0 (9.6.23)

constitute the solutionof themechanical problem.Theprescribedfixities are satisfied;
there is zero x-displacement ux along the plane y = L/2, zero y-displacement uy

along the faces y = 0 and y = L , and zero z-displacement uz along the faces z = 0
and z = H . The strains read

ε11 = ∂ux

∂x
= (1 + ν)αT T (x, y), (9.6.24)

ε22 = ∂uy

∂y
= (1 + ν)αT T (x, y), (9.6.25)

ε33 = ∂uz

∂z
= 0, (9.6.26)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (9.6.27)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (9.6.28)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (9.6.29)

The constitutive equations

ε11 − αT T (x, y) = ναT T (x, y) = 1

E
[σ11 − ν(σ22 + σ33)], (9.6.30)

ε22 − αT T (x, y) = ναT T (x, y) = 1

E
[σ22 − ν(σ11 + σ33)], (9.6.31)

ε33 − αT T (x, y) = −αT T (x, y) = 1

E
[σ33 − ν(σ11 + σ22)], (9.6.32)

ε12 = 0 = 2(1 + ν)

E
σ12, (9.6.33)

ε13 = 0 = 2(1 + ν)

E
σ13, (9.6.34)

ε23 = 0 = 2(1 + ν)

E
σ23 (9.6.35)

yield the stress tensor

σ =
⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ = −EαT T (x, y)

⎛
⎝0 0 0
0 0 0
0 0 1

⎞
⎠ , (9.6.36)
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which satisfies the equation of mechanical equilibrium

div σ = 0 (9.6.37)

as well as the default mechanical boundary conditions along the faces x = 0 and
x = L .

9.7 A Phase-Field Model for Brittle Fracturing
of Thermo-Elastic Solids

Xing-Yuan Miao, Thomas Nagel

9.7.1 The Model

Aphase-fieldmodel for fracture is derived and coupled to deformation as well as heat
transport processes in order to simulate crack propagation in brittle materials under
thermo-mechanical loads. The phase-field approach is a numerical treatment which
is capable of describing the lower-dimensional crack boundaries in a continuous
context. Smooth phase transition boundaries connect the fully damaged zones and
the intact material and—in that sense—represent the fracture surfaces, see Fig. 9.13
and cf. Miehe et al. (2010b).

(a) (b)

Fig. 9.13 Elastic body with a sharp crack (a) or a diffusive crack (b)
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An energy functional of a fractured body can be formulated as

E (u, grad u, d) =
∫

Ω

[(
d2 + k

)
ψ+
e (εel) + ψ−

e (εel)
]
dV

+ gc

∫
Ω

[
1

4ε
(1 − d)2 + ε grad d · grad d

]
dV

where k represents a residual stiffness used in numerical calculations to ensure a
residual elastic energy density in the fully damaged state. The parameter gc stands
for the critical Griffith-type fracture energy release rate. The order parameter d is
constrained between 0 (fully damaged) and 1 (intact material).

The total strain is composed of the elastic and thermal part

ε = εel + εth (9.7.1)

with

εth = αΔT (9.7.2)

where α stands for the linear thermal expansion tensor. Only the elastic part con-
tributes to the elastic energy density

ψ+
e (εel) :=1

2
K 〈tr (ε − εth)〉2+ + μ (ε − εth)

D : (ε − εth)
D (9.7.3)

ψ−
e (εel) :=1

2
K 〈tr (ε − εth)〉2− (9.7.4)

where K is the bulk modulus, μ the shear modulus, and 〈•〉± := (• ± | • |) /2.
The governing partial differential equations (derived in part from Eq. (9.7.1)) in

the case of thermo-elastic deformation and brittle fracture along with the respective
Neumann-type boundary conditions are

div
[(
d2 + k

)
σ+

0 + σ−
0

] + b = 0 (9.7.5)

2dH (εel) − 1 − d

2ε
gc − 2εgc div (grad d) = 0 (9.7.6)

(cp)eff
∂T

∂t
− div (λeffgrad T ) = 0 (9.7.7)[(

d2 + k
)
σ+

0 + σ−
0

] · n − t̄ = 0 on ∂Ωt (9.7.8)

grad d · n = 0 on ∂Ω (9.7.9)

−q · n − q̄n = 0 on ∂Ωq (9.7.10)

where (cp)eff represents the effective volumetric heat capacity andλeff the effective
thermal conductivity which incorporate the degradation of both quantities due to the
crack field (Kuhn 2013); q is the heat flux. H (εel) represents a damage-driving
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Fig. 9.14 Single-edge-
notched model

history field associated with the maximum local tensile strain energy density used
instead of its current value ψ+

e to ensure irreversibility of the crack propagation by
preventing crack healing (Miehe et al. 2010b).

9.7.2 Single-edge-notched Isothermal Tensile Test

A classical single-edge-notched tension test often used in literature for testing crack
propagation models (Ehlers and Luo 2017; Miehe et al. 2010b) was performed to
verify the implemented algorithm from a mechanical perspective. The mesh was
refined a priori with a minimum mesh size of approximately 0.001mm in the region
throughwhich the crack is expected to propagate and a total of 20,094 linear triangular
plane-strain elements. The incremental displacement loading of δu = 1·10−5 mmwas
applied on the upper edge of the model to drive the propagation of the pre-existing
horizontal crack (see Fig. 9.14).

A direct solver (SparseLU) was used for solving the linear system. The Newton–
Raphsonmethod was used as the nonlinear solver with an absolute tolerance of 10−3.
The time-step size was set to 0.01 s.

The OGS-6 version used for the single-edge-notched tension benchmark can be
found in the official master branch available at

• https://github.com/ufz/ogs

along with the input files named square_line_h on available as CTests under

• https://github.com/ufz/ogs-data/tree/master/PhaseField.

The propagation path of the pre-existing crack driven by the tensile loading
through the material is illustrated in Fig. 9.15a. Figure9.15b depicts the correspond-
ing load-displacement curve for the upper edge. Both the crack propagation and

https://github.com/ufz/ogs
https://github.com/ufz/ogs-data/tree/master/PhaseField
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(a) (b)

Fig. 9.15 Single-edge-notched tension test: a crack propagation pattern; b load - displacement
curve

the load-displacement patterns are consistent with the literature, cf. Ehlers and Luo
(2017), Miehe et al. (2010a). For a detailed description, derivation, as well as model
validation of the described phase-field model, the interested reader can refer to Miao
et al. (2017a, b).

9.7.3 Thermo-Mechanical Tests

To test the model under non-isothermal conditions, a series of models is set up
for which analytical solutions for purely mechanical conditions can be found. The
constraints of these problems are then modified such that the driving mechanical
boundary conditions are replaced by a combination of mechanical constraints and
thermal boundary conditions such that an equivalent stress state is created in the
specimen but caused by thermally-induced deformations.

The first example is set up to exclude spatial gradients of the phase field and
represents homogeneous damage. Specifically, a specimen compressed in a uniax-
ial stress field is modelled. This unconfined compression test was compared to a
specimen which was heated up while its axial displacements were constrained. The
compression test was simulated with a compressive displacement load applied to
the upper surface of a three-dimensional cubic model, see Fig. 9.16a. The thermal
expansion test was implemented by imposing a temperature increase to the domain
while the top surface of the model was held in place. The temperature loading was
chosen to achieve the same compressive load as that imposed in the unconfined
compression test, Fig. 9.16b. Both models were simulated based on a single three-
dimensional finite element. Due to the homogeneous evolution of the phase field
(div grad d = 0), the analytical solutions for the two cases can be obtained
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(a) (b)

Fig. 9.16 Geometry and boundary conditions: a unconfined compression test; b thermal expansion
test

d = gc

gc + 4εψ+
e

(9.7.11)

where due to negative (elastic) volume strains only the deviatoric energy drives the
phase field.

ψ+
e = μ εD : εD = 2μ

3

(
u(1 + ν)

L

)2

(9.7.12)

for mechanical case, and

ψ+
e = μ εDel : εDel = 2μ

3
[αΔT (1 + ν)]2 (9.7.13)

for thermo-mechanical case. Where the Poisson’s ratio is evolving with the degra-
dation of the shear modulus

ν(d) = 3K − 2Gd2

2(3K + Gd2)
(9.7.14)

The main parameters used in this benchmark are listed in Tables9.7 and 9.8.
The phase-field evolution in the thermo-mechanical case follows the mechanical

case, and both solutions correspond to the analytical solution, see Fig. 9.17. The
increase of dilatant volume results from the compressive shearing, which is also an
identification of the initiation and propagation of the cracks.
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Table 9.7 Parameter values for numerical examples

Material properties

Young’s modulus E / GPa 210

Poison’s ratio ν 0.3

Fracture toughness gc / (Nmm−1) 2.7

Thermal conductivity λ / (Wm−1K−1) 0.1

Thermal expansion α / K−1 1 · 10−3

Specific heat capacity cp / (J kg−1K−1) 2000

Numerical settings

Residual stiffness parameter k 1 · 10−3

Length scale 2ε / mm 0.002 (beam) / 0.01 (square) / 1 (cube)

Kinetic coefficient M / (mm2 N−1 s−1) 1 · 106

Table 9.8 Geometric parameters for numerical examples

Geometry length/mm width/mm depth/mm

Beam 1 0.000999 0.000999

Square 1 1 –

Cube 1 1 1

Fig. 9.17 Phase-field -
vertical elastic strain curve

The second example entails the fracturing of a bar. The solution can be calculated
analytically for a one-dimensional problem as outlined inKuhn (2013). The uni-axial
tension problem can be transformed to an axially constrained problem undergoing
thermal shrinkage, see Figs. 9.18 and 9.19.

A discretisation of 1001 hexahedral elements with an element length of 0.999m
was applied. The tension test was simulated with equivalent displacement loads
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Fig. 9.18 Bar under uniaxial tension. Mechanical model

Fig. 9.19 Bar under thermally induced uniaxial tension. Thermo-mechanical model

(a) (b)

Fig. 9.20 Phase-field parameter and displacement field distribution along the bar

applied to both sides of the model, see Fig. 9.18. The top, bottom, front and back sur-
faces are constrained in their normal directions. The thermal shrinkage test was set
to achieve the same tensile load as that imposed during the tension test by applying
a temperature decline to the domain and holding the two ends of the bar in place, see
Fig. 9.19. Figure9.20 compares the two approximated phase-field and axial displace-
ment distributions along the bar to the analytical solution. The crack forms initially
in the middle of the bar and propagates towards the edges very fast, nearly oriented
perpendicular to the direction of the applied loads.

In all thermo-mechanical simulations, a direct solver (SparseLU) was used and
Newton–Raphson iterations performed to resolve non-linearities with an absolute
tolerance of 10−3 in thermo-mechanical expansion case and of 10−2 in thermo-
mechanical shrinkage case (Table9.9).

For the thermal expansion test, the temperature lift was set to achieve 100Kwithin
10swith a equidistant time-step size of 0.0001s. TheOGS-6 version used is available
at:

Table 9.9 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-9.7 Xing-Yuan Miao OGS-6 See below TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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• https://github.com/xingyuanmiao/ogs/tree/tmphasefield,

with available commit hash https://github.com/xingyuanmiao/ogs/commit/810f5cf
04841f6e36f6c91166c20ca105789b024,while the input files named cube_1e0 can
be found at:

• https://github.com/ufz/ogs-data/tree/986966acb8f0a82d966505a1dc502e144b86
e22d/TMPhaseField.

For the thermal shrinkage test (bar), the temperature decline was set to attain
500K within 10s with a equidistant time-step size of 0.001s. The OGS-6 version
used is available at:

• https://github.com/xingyuanmiao/ogs/tree/tmphasefield,

with the input files named beam3d available on:

• https://github.com/ufz/ogs-data/tree/986966acb8f0a82d966505a1dc502e144b86
e22d/TMPhaseField.

https://github.com/xingyuanmiao/ogs/tree/tmphasefield
https://github.com/xingyuanmiao/ogs/commit/810f5cf04841f6e36f6c91166c20ca105789b024
https://github.com/xingyuanmiao/ogs/commit/810f5cf04841f6e36f6c91166c20ca105789b024
https://github.com/ufz/ogs-data/tree/986966acb8f0a82d966505a1dc502e144b86e22d/TMPhaseField
https://github.com/ufz/ogs-data/tree/986966acb8f0a82d966505a1dc502e144b86e22d/TMPhaseField
https://github.com/xingyuanmiao/ogs/tree/tmphasefield
https://github.com/ufz/ogs-data/tree/986966acb8f0a82d966505a1dc502e144b86e22d/TMPhaseField
https://github.com/ufz/ogs-data/tree/986966acb8f0a82d966505a1dc502e144b86e22d/TMPhaseField


Chapter 10
THM Processes

Peter Vogel, Jobst Maßmann, Tianyuan Zheng, Xing-Yuan Miao,
Dmitri Naumov and Thomas Nagel

Porothermoelastic Beams

Peter Vogel and Jobst Maßmann

This section presents problems on permeable elastic beams subject to liquid pressure
and temperature changes. We focus on the closed form solutions. The associated
simulation exercises have been checked by OGS; theymay serve as verification tests.
For the underlying theory of porothermoelasticity and for more advanced examples
see Cheng (2016).

10.1 Liquid Flow and Heat Transport in a Permeable
Elastic Beam I

This example illustrates liquid flow and heat transport in a permeable elastic beam
with constant inlet temperature. Given length L = 10 m and thickness H =1 m the
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domain represents the rectangular beam [0, L] × [0, H ] × [0, H ]. It is discretized by
100 × 1 × 1 equally sized hexahedral elements. The solid material has been selected
elastic, variousmodel parameters and the hydraulic properties are given inTable10.1.
The liquid is incompressible and has viscosity μ = 1 mPa·s. For densities, heat
capacities, and thermal conductivities of liquid and solid grain see Table10.2, grav-
ity has explicitly been neglected. Fixities have been prescribed on the entire surface
of the domain with zero x-displacement along the faces x = 0 and x = L , zero y-
displacement along the faces y = 0 and y = H , and zero z-displacement along the
faces z = 0 and z = H . Pressure p0 = 105 Pa at the liquid inlet (x = 0) and zero
pressure at the liquid outlet (x = L) generate steady-state 1D flow along the x-axis.
At the liquid inlet a constant temperature T0 = –10 ◦C is specified for times t > 0,
free outflow prevails at the liquid outlet by default. Starting from zero initial temper-
ature the simulation (Table10.3) evaluates the transient temperature distribution as
well as the mechanical load with output after 10,000 and 20,000s.

The formal solution proceeds in three steps, first to solve for pressure and specific
discharge, next to evaluate the temperature distribution (Fig. 10.1), and finally to
determine displacements (Fig. 10.2), strains, and stresses.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (10.1.1)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) = p0
(
1 − x

L

)
, (10.1.2)

Table 10.1 Elastic and hydraulic parameters

Value Quantity

E = 5000 MPa Young’s modulus

ν = 0.25 Poisson’s ratio

αT = 10−6 1/K Thermal expansion

k = 10−11 m2 Isotropic permeability

n = 0.1 Porosity

1 Biot number

Table 10.2 Densities and thermal properties

Quantity Liquid Solid grain

Density ρl = 1000kg/m3 ρs = 2000 kg/m3

Heat capacity cl = 1100 J/(kgK) cs = 250 J/(kg K)

Thermal conductivity kl = 10 J/(smK) ks = 50 J/(smK)
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Fig. 10.1 Temperature distribution after 20,000 s

Fig. 10.2 X-Displacements after 20,000 s

and the average pressure pav becomes

pav = 1

L

∫ L

0
p(x)dx = p0

2
. (10.1.3)

The specific discharge q is obtained by Darcy’s law

q = k

μ

p0
L

. (10.1.4)

Due to the setup the thermal problem depends on time and x-coordinate only and
the heat transport equation governing the transient temperature distribution T (x, t)
reads

(nρl cl + (1 − n)ρscs)
∂T

∂t
+ (nρl cl)

q

n

∂T

∂x
= (nkl + (1 − n)ks)

∂2T

∂x2
. (10.1.5)

Introducing the notation

w = nρl cl
nρl cl + (1 − n)ρscs

q

n
, (10.1.6)

χ = nkl + (1 − n)ks
nρl cl + (1 − n)ρscs

, (10.1.7)

the heat transport equation becomes
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∂T

∂t
+ w

∂T

∂x
= χ

∂2T

∂x2
. (10.1.8)

Due to free outflow at x = L the formal problem is to determine the solution T (x, t)
of the above heat transport equation subject to the initial condition

T (x, 0) = 0 for x > 0, (10.1.9)

and the boundary conditions

T (0, t) = T0 for t > 0,
lim
x→∞ T (x, t) = 0 for t > 0. (10.1.10)

Applying the Laplace transform with respect to t yields the ordinary differential
equation

χT̄ ′′ − wT̄ ′ − sT̄ = 0, (10.1.11)

where T̄ is the transform of T , s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. Hence,

T̄ (x, s) = T0
s
exp

(
x

[
w

2χ
−

√
(

w

2χ
)2 + s

χ

])
. (10.1.12)

The transform of the temperature may also serve to evaluate integrals of the temper-
ature which will be required below.

L

{∫ x

0
T (x̂, t)dx̂

}
=

∫ x

0
T̄ (x̂, s)dx̂ (10.1.13)

= T0
s

∫ x

0
exp

(
x̂

[
w

2χ
−

√
(

w

2χ
)2 + s

χ

])
dx̂

= T0
s

exp
(
x

[
w
2χ −

√
( w
2χ )2 + s

χ

])
− 1

w
2χ −

√
( w
2χ )2 + s

χ

and the average temperature

Tav(t) = 1

L

∫ L

0
T (x, t)dx (10.1.14)

has the transform
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L {Tav} = T0
sL

exp
(
L

[
w
2χ −

√
( w
2χ )2 + s

χ

])
− 1

w
2χ −

√
( w
2χ )2 + s

χ

. (10.1.15)

The Laplace transforms thus obtained are well suited for numerical inversion. The
numerical inversion scheme by Crump (1976) may easily be applied to give the
required values of temperature T (x, t), average temperature Tav(t), and the above
integral of the temperature.

For the solution of the mechanical problem note that the applied temperature
change is identical to the temperature distribution T (x, t). Let σ denote the stress
tensor, I the unit tensor, (ux , uy, uz) the displacement vector, and

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
(10.1.16)

the volumetric strain. Employing Biot’s simplified theory (i.e. Biot number equal
one) the equations of equilibrium become

∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2
+ 1

1 − 2ν

∂e

∂x
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
+ 2(1 + ν)

E

∂ p

∂x

= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
− 2(1 + ν)

E

p0
L

,

∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2
+ 1

1 − 2ν

∂e

∂y
= 2(1 + ν)

1 − 2ν
αT

∂T

∂y
+ 2(1 + ν)

E

∂ p

∂y
(10.1.17)

= 0 ,

∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2
+ 1

1 − 2ν

∂e

∂z
= 2(1 + ν)

1 − 2ν
αT

∂T

∂z
+ 2(1 + ν)

E

∂ p

∂z
= 0 .

These equations and the imposed fixities are satisfied by

ux = ux (x, t), (10.1.18)

uy = 0, (10.1.19)

uz = 0, (10.1.20)

if ux (x, t) satisfies the differential equation

∂2ux

∂x2
+ 1

1 − 2ν

∂2ux

∂x2
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
− 2(1 + ν)

E

p0
L

(10.1.21)

subject to the boundary conditions

ux (0, t) = ux (L , t) = 0 for t > 0. (10.1.22)
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The x-displacement becomes

ux (x, t) = 1 + ν

1 − ν

[
αT

∫ x

0
T (x̂, t)dx̂ − αT xTav(t)

+1 − 2ν

2E
p0

(
x − x2

L

)]
. (10.1.23)

The strains read

ε11 = ∂ux

∂x
= 1 + ν

1 − ν

{
αT [T (x, t) − Tav(t)]

+1 − 2ν

E
[p(x) − pav]

}
, (10.1.24)

ε22 = ∂uy

∂y
= 0, (10.1.25)

ε33 = ∂uz

∂z
= 0, (10.1.26)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (10.1.27)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (10.1.28)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (10.1.29)

The constitutive equations

ε11 − αT T (x, t) = 1 + ν

1 − ν

{
αT [T (x, t) − Tav(t)] (10.1.30)

+1 − 2ν

E
[p(x) − pav]

}
− αT T (x, t)

= 1

E
[σ11 − ν(σ22 + σ33)], (10.1.31)

ε22 − αT T (x, t) = −αT T (x, t) = 1

E
[σ22 − ν(σ11 + σ33)], (10.1.32)

ε33 − αT T (x, t) = −αT T (x, t) = 1

E
[σ33 − ν(σ11 + σ22)], (10.1.33)

ε12 = 0 = 2(1 + ν)

E
σ12, (10.1.34)

ε13 = 0 = 2(1 + ν)

E
σ13, (10.1.35)

ε23 = 0 = 2(1 + ν)

E
σ23 (10.1.36)
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yield the stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ =

[
p(x) − pav

1 − ν
− EαT Tav(t)

(1 − 2ν)(1 − ν)

] ⎛
⎝
1 − ν 0 0
0 ν 0
0 0 ν

⎞
⎠

− EαT

1 − ν
T (x, t)

⎛
⎝
0 0 0
0 1 0
0 0 1

⎞
⎠ , (10.1.37)

which satisfies the equation of mechanical equilibrium

div (σ − p(x)I) = 0. (10.1.38)

10.2 Liquid Flow and Heat Transport in a Permeable
Elastic Beam II

The setup of this exercise has been adopted from the previous example, however,
the inlet temperature is now discontinuous. Given length L = 10 m and thickness
H = 1 m the domain represents the rectangular beam [0, L] × [0, H ] × [0, H ]. It
is discretized by 100 × 1 × 1 equally sized hexahedral elements. The solid material
has been selected elastic, various model parameters and the hydraulic properties are
given in Table10.1. The liquid is incompressible and has viscosity μ = 1 mPa·s.
For densities, heat capacities, and thermal conductivities of liquid and solid grain
see Table10.2, gravity has explicitly been neglected. Fixities have been prescribed
on the entire surface of the domain with zero x-displacement along the faces x = 0
and x = L , zero y-displacement along the faces y = 0 and y = H , and zero z-
displacement along the faces z = 0 and z = H . Pressure p0 = 105 Pa at the liquid
inlet (x = 0) and zero pressure at the liquid outlet (x = L) generate steady-state 1D
flow along the x-axis. At the liquid inlet temperature T0 = −12 ◦C is specified for
times less than t0 = 17, 000 s and zero afterwards. Free outflow prevails at the liquid
outlet by default. Starting from zero initial temperature the simulation (Table10.4)
evaluates the transient temperature distribution as well as the mechanical load with
output after 10,000 and 20,000s.

The formal solution proceeds in three steps, first to solve for pressure and specific
discharge, next to evaluate the temperature distribution (Fig. 10.3), and finally to
determine displacements (Fig. 10.4), strains, and stresses.

Table 10.3 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-10.1 Peter Vogel OGS-5 Available ToDo

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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Fig. 10.3 Temperature distribution after 20,000 s

Fig. 10.4 X-Displacements after 20,000 s

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (10.2.1)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) = p0
(
1 − x

L

)
, (10.2.2)

and the average pressure pav becomes

pav = 1

L

∫ L

0
p(x)dx = p0

2
. (10.2.3)

The specific discharge q is obtained by Darcy’s law

q = k

μ

p0
L

. (10.2.4)

Due to the setup the thermal problem depends on time t and x-coordinate only and
the heat transport equation governing the transient temperature distribution T (x, t)
reads
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(nρl cl + (1 − n)ρscs)
∂T

∂t
+ (nρl cl)

q

n

∂T

∂x
= (nkl + (1 − n)ks)

∂2T

∂x2
. (10.2.5)

Introducing the notation

w = nρl cl
nρl cl + (1 − n)ρscs

q

n
, (10.2.6)

χ = nkl + (1 − n)ks
nρl cl + (1 − n)ρscs

, (10.2.7)

the heat transport equation becomes

∂T

∂t
+ w

∂T

∂x
= χ

∂2T

∂x2
. (10.2.8)

Due to free outflow at x = L the formal problem is to determine the solution T (x, t)
of the above heat transport equation subject to the initial condition

T (x, 0) = 0 for x > 0, (10.2.9)

and the boundary conditions

T (0, t) =
{
T0 for t0 > t > 0 ,

0 for t > t0 ,
(10.2.10)

lim
x→∞ T (x, t) = 0 for t > 0 . (10.2.11)

Applying the Laplace transform with respect to t yields the ordinary differential
equation

χT̄ ′′ − wT̄ ′ − sT̄ = 0, (10.2.12)

where T̄ is the transform of T, s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. Hence,

T̄ (x, s) = T0
1 − exp(−t0s)

s
exp

(
x

[
w

2χ
−

√
(

w

2χ
)2 + s

χ

])
. (10.2.13)

The transform of the temperature may also serve to evaluate integrals of the temper-
ature which will be required below.
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L

{∫ x

0
T (x̂, t)dx̂

}
=

∫ x

0
T̄ (x̂, s)dx̂ (10.2.14)

= T0
1 − exp(−t0s)

s

∫ x

0
exp

(
x̂

[
w

2χ
−

√
(

w

2χ
)2 + s

χ

])
dx̂

= T0
1 − exp(−t0s)

s

exp
(
x

[
w
2χ −

√
( w
2χ )2 + s

χ

])
− 1

w
2χ −

√
( w
2χ )2 + s

χ

and the average temperature

Tav(t) = 1

L

∫ L

0
T (x, t)dx (10.2.15)

has the transform

L {Tav} = T0
L

1 − exp(−t0s)

s

exp
(
L

[
w
2χ −

√
( w
2χ )2 + s

χ

])
− 1

w
2χ −

√
( w
2χ )2 + s

χ

. (10.2.16)

The Laplace transforms thus obtained are well suited for numerical inversion. The
numerical inversion scheme by Crump (1976) may easily be applied to give the
required values of temperature T (x, t), average temperature Tav(t), and the above
integral of the temperature.

For the solution of the mechanical problem we adopt the ideas outlined in the
context of the previous example. Note that the applied temperature change is identical
to the temperature distribution T (x, t). Letσ denote the stress tensor, I the unit tensor,
(ux , uy, uz) the displacement vector, and

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
(10.2.17)

the volumetric strain. Employing Biot’s simplified theory (i.e. Biot number equal
one) the equations of equilibrium become

∂2ux
∂x2

+ ∂2ux
∂y2

+ ∂2ux
∂z2

+ 1

1 − 2ν

∂e

∂x
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
+ 2(1 + ν)

E

∂ p

∂x

= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
− 2(1 + ν)

E

p0
L

,

∂2uy
∂x2

+ ∂2uy
∂y2

+ ∂2uy
∂z2

+ 1

1 − 2ν

∂e

∂y
= 2(1 + ν)

1 − 2ν
αT

∂T

∂y
+ 2(1 + ν)

E

∂ p

∂y
= 0 ,

∂2uz
∂x2

+ ∂2uz
∂y2

+ ∂2uz
∂z2

+ 1

1 − 2ν

∂e

∂z
= 2(1 + ν)

1 − 2ν
αT

∂T

∂z
+ 2(1 + ν)

E

∂ p

∂z

= 0 . (10.2.18)
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These equations and the imposed fixities are satisfied by

ux = ux (x, t), (10.2.19)

uy = 0, (10.2.20)

uz = 0, (10.2.21)

if ux (x, t) satisfies the differential equation

∂2ux

∂x2
+ 1

1 − 2ν

∂2ux

∂x2
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
− 2(1 + ν)

E

p0
L

(10.2.22)

subject to the boundary conditions

ux (0, t) = ux (L , t) = 0 for t > 0. (10.2.23)

The x-displacement becomes

ux (x, t) = 1 + ν

1 − ν

[
αT

∫ x

0
T (x̂, t)dx̂ − αT xTav(t)

+1 − 2ν

2E
p0

(
x − x2

L

)]
. (10.2.24)

The strains read

ε11 = ∂ux

∂x
= 1 + ν

1 − ν

{
αT [T (x, t) − Tav(t)]

+1 − 2ν

E
[p(x) − pav]

}
, (10.2.25)

ε22 = ∂uy

∂y
= 0, (10.2.26)

ε33 = ∂uz

∂z
= 0, (10.2.27)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (10.2.28)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (10.2.29)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (10.2.30)

The constitutive equations
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Table 10.4 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-10.2 Peter Vogel OGS-5 Available TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

ε11 − αT T (x, t) = 1 + ν

1 − ν

{
αT [T (x, t) − Tav(t)] (10.2.31)

+1 − 2ν

E
[p(x) − pav]

}
− αT T (x, t)

= 1

E
[σ11 − ν(σ22 + σ33)], (10.2.32)

ε22 − αT T (x, t) = −αT T (x, t) = 1

E
[σ22 − ν(σ11 + σ33)], (10.2.33)

ε33 − αT T (x, t) = −αT T (x, t) = 1

E
[σ33 − ν(σ11 + σ22)], (10.2.34)

ε12 = 0 = 2(1 + ν)

E
σ12, (10.2.35)

ε13 = 0 = 2(1 + ν)

E
σ13, (10.2.36)

ε23 = 0 = 2(1 + ν)

E
σ23 (10.2.37)

yield the stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ =

[
p(x) − pav

1 − ν
− EαT Tav(t)

(1 − 2ν)(1 − ν)

] ⎛
⎝
1 − ν 0 0
0 ν 0
0 0 ν

⎞
⎠

− EαT

1 − ν
T (x, t)

⎛
⎝
0 0 0
0 1 0
0 0 1

⎞
⎠ , (10.2.38)

which satisfies the equation of mechanical equilibrium

div (σ − p(x)I) = 0. (10.2.39)

10.3 Liquid Flow and Heat Transport in a Permeable
Elastic Beam III

The setup of this exercise has been adopted from the previous examples, however, we
now consider constant heat flow at the liquid inlet. Given length L = 10m and thick-

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
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ness H = 1m the domain represents the rectangular beam [0, L] × [0, H ] × [0, H ].
It is discretized by 80 × 1 × 1 equally sized hexahedral elements. The solid material
has been selected elastic, various model parameters and the hydraulic properties are
given in Table10.1. The liquid is incompressible and has viscosity μ = 1 mPa·s.
For densities, heat capacities, and thermal conductivities of liquid and solid grain
see Table10.2, gravity has explicitly been neglected. Fixities have been prescribed
on the entire surface of the domain with zero x-displacement along the faces x = 0
and x = L , zero y-displacement along the faces y = 0 and y = H , and zero z-
displacement along the faces z = 0 and z = H . Pressure p0 = 105 Pa at the liquid
inlet (x = 0) and zero pressure at the liquid outlet (x = L) generate steady-state
1D flow along the x-axis. At the liquid inlet a constant heat flow h = 100 W/m2 is
specified for times t > 0; it acts as a heat source to the domain. Free outflow prevails
at the liquid outlet by default. Starting from zero initial temperature the simulation
(Table10.5) evaluates the transient temperature distribution aswell as themechanical
load with output after 5000 and 10,000s.

The formal solution proceeds in three steps, first to solve for pressure and specific
discharge, next to evaluate the temperature distribution (Fig. 10.5), and finally to
determine displacements (Fig. 10.6), strains, and stresses.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (10.3.1)

for 1D flow along the x-axis, hence, the pressure is given by

Fig. 10.5 Temperature distribution after 10,000 s

Fig. 10.6 X-Displacements after 10,000 s
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p(x) = p0
(
1 − x

L

)
, (10.3.2)

and the average pressure pav becomes

pav = 1

L

∫ L

0
p(x)dx = p0

2
. (10.3.3)

The specific discharge q is obtained by Darcy’s law

q = k

μ

p0
L

. (10.3.4)

Due to the setup the thermal problem depends on time and x-coordinate only and
the heat transport equation governing the transient temperature distribution T (x, t)
reads

(nρl cl + (1 − n)ρscs)
∂T

∂t
+ (nρl cl)

q

n

∂T

∂x
= (nkl + (1 − n)ks)

∂2T

∂x2
. (10.3.5)

Introducing the notation

w = nρl cl
nρl cl + (1 − n)ρscs

q

n
, (10.3.6)

χ = nkl + (1 − n)ks
nρl cl + (1 − n)ρscs

, (10.3.7)

the heat transport equation becomes

∂T

∂t
+ w

∂T

∂x
= χ

∂2T

∂x2
. (10.3.8)

The initial condition reads

T (x, 0) = 0 for x > 0. (10.3.9)

By Fourier’s law and due to free outflow at x = L the boundary conditions become

∂T

∂x
(0, t) = − h

nkl + (1 − n)ks
for t > 0, (10.3.10)

lim
x→∞ T (x, t) = 0 for t > 0. (10.3.11)

The formal problem is to determine the solution T (x, t) of the heat transport equation
subject to the above initial and boundary conditions. Applying the Laplace transform
with respect to t yields the ordinary differential equation
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χT̄ ′′ − wT̄ ′ − sT̄ = 0, (10.3.12)

where T̄ is the transform of T, s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. Hence,

T̄ (x, s) = − h

nkl + (1 − n)ks

exp
(
x

[
w
2χ −

√
( w
2χ )2 + s

χ

])

s
[

w
2χ −

√
( w
2χ )2 + s

χ

] . (10.3.13)

The transform of the temperature may also serve to evaluate integrals of the temper-
ature which will be required below.

L

{ ∫ x

0
T (x̂, t)dx̂

}
=

∫ x

0
T̄ (x̂, s)dx̂

= − h

nkl + (1 − n)ks

exp
(
x

[
w
2χ −

√
( w
2χ )2 + s

χ

])
− 1

s
[

w
2χ −

√
( w
2χ )2 + s

χ

]2

(10.3.14)

and the average temperature

Tav(t) = 1

L

∫ L

0
T (x, t)dx (10.3.15)

has the transform

L {Tav} = − h

nkl + (1 − n)ks

exp
(
L

[
w
2χ −

√
( w
2χ )2 + s

χ

])
− 1

sL
[

w
2χ −

√
( w
2χ )2 + s

χ

]2 . (10.3.16)

The Laplace transforms thus obtained are well suited for numerical inversion. The
numerical inversion scheme by Crump (1976) may easily be applied to give the
required values of temperature T (x, t), average temperature Tav(t), and the above
integral of the temperature.

For the solution of the mechanical problem we adopt the ideas outlined in the
context of the previous examples. Note that the applied temperature change is iden-
tical to the temperature distribution T (x, t). Let σ denote the stress tensor, I the unit
tensor, (ux , uy, uz) the displacement vector, and

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
(10.3.17)
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the volumetric strain. Employing Biot’s simplified theory (i.e. Biot number equal
one) the equations of equilibrium become

∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2
+ 1

1 − 2ν

∂e

∂x
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
+ 2(1 + ν)

E

∂ p

∂x

= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
− 2(1 + ν)

E

p0
L

,

∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2
+ 1

1 − 2ν

∂e

∂y
= 2(1 + ν)

1 − 2ν
αT

∂T

∂y
+ 2(1 + ν)

E

∂ p

∂y
= 0 ,

∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2
+ 1

1 − 2ν

∂e

∂z
= 2(1 + ν)

1 − 2ν
αT

∂T

∂z
+ 2(1 + ν)

E

∂ p

∂z
= 0 . (10.3.18)

These equations and the imposed fixities are satisfied by

ux = ux (x, t), (10.3.19)

uy = 0, (10.3.20)

uz = 0, (10.3.21)

if ux (x, t) satisfies the differential equation

∂2ux

∂x2
+ 1

1 − 2ν

∂2ux

∂x2
= 2(1 + ν)

1 − 2ν
αT

∂T

∂x
− 2(1 + ν)

E

p0
L

(10.3.22)

subject to the boundary conditions

ux (0, t) = ux (L , t) = 0 for t > 0. (10.3.23)

The x-displacement becomes

ux (x, t) = 1 + ν

1 − ν

[
αT

∫ x

0
T (x̂, t)dx̂ − αT xTav(t)

+1 − 2ν

2E
p0

(
x − x2

L

)]
. (10.3.24)

The strains read
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ε11 = ∂ux

∂x
= 1 + ν

1 − ν

{
αT [T (x, t) − Tav(t)]

+1 − 2ν

E
[p(x) − pav]

}
, (10.3.25)

ε22 = ∂uy

∂y
= 0, (10.3.26)

ε33 = ∂uz

∂z
= 0, (10.3.27)

ε12 = ∂ux

∂y
+ ∂uy

∂x
= 0, (10.3.28)

ε13 = ∂ux

∂z
+ ∂uz

∂x
= 0, (10.3.29)

ε23 = ∂uy

∂z
+ ∂uz

∂y
= 0. (10.3.30)

The constitutive equations

ε11 − αT T (x, t) = 1 + ν

1 − ν

{
αT [T (x, t) − Tav(t)] (10.3.31)

+1 − 2ν

E
[p(x) − pav]

}
− αT T (x, t)

= 1

E
[σ11 − ν(σ22 + σ33)], (10.3.32)

ε22 − αT T (x, t) = −αT T (x, t) = 1

E
[σ22 − ν(σ11 + σ33)], (10.3.33)

ε33 − αT T (x, t) = −αT T (x, t) = 1

E
[σ33 − ν(σ11 + σ22)], (10.3.34)

ε12 = 0 = 2(1 + ν)

E
σ12, (10.3.35)

ε13 = 0 = 2(1 + ν)

E
σ13, (10.3.36)

ε23 = 0 = 2(1 + ν)

E
σ23 (10.3.37)

yield the stress tensor

σ =
⎛
⎝

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ =

[
p(x) − pav

1 − ν
− EαT Tav(t)

(1 − 2ν)(1 − ν)

] ⎛
⎝
1 − ν 0 0
0 ν 0
0 0 ν

⎞
⎠

− EαT

1 − ν
T (x, t)

⎛
⎝
0 0 0
0 1 0
0 0 1

⎞
⎠ , (10.3.38)
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Table 10.5 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-10.3 Peter Vogel OGS-5 Available TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

which satisfies the equation of mechanical equilibrium

div (σ − p(x)I) = 0. (10.3.39)

10.4 Mass Conservation, Thermal Pressurization
and Stress Distribution in Coupled
Thermo-Hydro-Mechanical Processes

Xing-Yuan Miao, Tianyuan Zheng, Thomas Nagel

10.4.1 Governing Equations

The numerical analysis of multi-field problems in porous media is an important task
for different geo-engineering subjects (e.g., geothermal energy, oil and gas reser-
voirs, energy storage and nuclear waste management). In particular, the coupling
between heat transport and biphasic consolidation in saturated porous media is of
high practical relevance.

To simulate the thermo-hydro-mechanical processes, the basic set of governing
equations is given as:

• Mass (volume) balance

div
[
(uS)

′
S + φFwFS

] = βeff
T T ′

S︸ ︷︷ ︸
first term

+φFβTFgrad T · wFS︸ ︷︷ ︸
second term

(10.4.1)

with φFwFS = −κF/μFR
[
grad p − �FRg

]
and βeff

T = φFβTF + 3(1 − φF)αTS

• Momentum balance
div

[
σE

S − αB p I
] + �effg = 0 (10.4.2)

with σE
S = C : (ε − εth) and εth = αTS�T

• Energy balance

(�cp)
eff ∂T

∂t
+ φF�FRcpFgrad T · wFS − div

[
λeffgrad T

]
(10.4.3)

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7


10 THM Processes 237

where αTS is the linear coefficient of thermal expansion of the solid phase, βTF is the
volumetric coefficient of thermal expansion of the fluid phase. φF is the porosity. κF

is the intrinsic permeability, μFR is the viscosity, αB is the Biot coefficient, σE
S are

the effective Cauchy stresses, T is the absolute temperature, p is the pore pressure,
λ the heat conductivity and (•)′α denotes a material time derivative following the
motion of the αth constituent.

In OGS-5, the mass balance and momentum balance equations are solved mono-
lithically, while the energy balance is solved sequentially. In OGS-6, a model is
available in which the three governing equations are assembled and solved mono-
lithically. Different constitutive relations (e.g. elasto-plasticity, visco-elasticity) can
be used to describe the material behaviour of the porous solid. For initial verification,
the case of a linearly elastic solid matrix is considered here.

10.4.2 OGS-5

Mass Conservation During Non-isothermal Flow

A two-dimensional channel-like model (Fig. 10.7) was set up to check the mass con-
servation for a fluid flow flowing through a porous solid. The solid phase is assumed
to be homogeneous and incompressible. The chosen parameters can be found in
Table10.6 and boundary conditions are illustrated in Fig. 10.7. Consider flow enter-
ing the domain through the left boundary: after reaching steady-state conditions the
same mass flux should exit the right-hand boundary (i.e. no more mass accumulation
in the model):

�ṁ = ṁ in − ṁout = 0 (10.4.4)

and ṁ = ∫
∂�

�F(T )wFS · ndA.
Two scenarios (isothermal and non-isothermal) are considered to check the accu-

racy of the FEM implementation. In the non-isothermal case, the second term of the

Fig. 10.7 Single-material
domain
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Table 10.6 Parameters used in the benchmark

Parameter Value Unit

Initial temperature 283.15 ◦C
Porosity 0.1 –

Water specific heat capacity 4280 J kg−1 K−1

Water thermal conductivity 0.56 W m−1 K−1

Water real density 1000 kg m−3

Solid specific heat capacity 1714 J kg−1 K−1

Solid thermal conductivity 2.5 W m−1 K−1

Solid real density 1750 kg m−3

Intrinsic permeability 10−6 cm2

Viscosity 1.278·10−3 Pa s

Time step size 10000 s

Young’s modulus 21 GPa

Poisson’s ratio 0.3 –

Fluid volumetric thermal expansion coefficient 2.07·10−4 K−1

Solid linear thermal expansion coefficient 0.7·10−5 K−1

right hand side of Eq. (10.4.1) represents the influence of the spatial temperature
gradient on flow and is commonly omitted from the set of governing equations. Its
relevance for an accurate mass balance is tested in this benchmark by including or
excluding it.

The considered has a length of 1mm, and a height of 0.2mm. The inlet flow
left is 2 · 10−4 kg/s and A temperature gradient of 200K was imposed. Meshes with
triangular and quadrilateral elements are used for discretization, respectively. Shape
functions are linear for the primary variables T and p, and quadratic for u. The
direct solver PARDISO for the linear system was combined with a Newton-Raphson
iterative scheme with a relative error tolerance of 10−12 for all primary variables.
We check the accuracy by calculating the relative deviation between the inlet mass
flow and the outlet mass flow, i.e., εerr = |�ṁ/ṁ in|. A space discretisation of 100
quadratic elements and time discretisation 10s with 10 time steps.

For comparison, an isothermal process was simulated under otherwise unchanged
boundary conditions. Its relative mass flux deviation was found to be εerr = 1.5 ·
10−6. In the non-isothermal case, the fluid density is no longer constant but changes
in a linear fashion proportional to βTF. Results for the different element types are
listed in Table10.7. The temperature distribution is illustrated in Fig. 10.8.We can see
that the relative error does not vary much with different mesh density. Considering
the gradient term on the RHS of Eq. (10.4.1) does indeed improve the mass balance.
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Table 10.7 Relative error in % depending on whether the second term is considered on the RHS
of Eq. (10.4.1) or not

Mesh type Number of nodes With second term Without second term

� (coarse) 196 0.18 4.36

� (coarse) 561 0.46 4.71

� (fine) 716 0.11 4.36

� (fine) 1440 0.28 4.55

Fig. 10.8 Temperature distribution of the domain

Fig. 10.9 Bi-material domain. Texture indicates material domains 1, 2 (interface) and 3

However, this effect only becomes relevant if the product of temperature gradient
and the flow velocity is very high. In most practical applications, this term can indeed
be neglected.

Bi-Material Interface

In many application, different material domains with contrasting properties are adja-
cent to each other. This can pose numerical difficulties and model accuracy needs to
be tested before application. For this purpose, a composite material composed of a
cylindrical core and an annular domain of a different material were modelled as an
axisymmetric domain with three materials was set up as illustrated in Fig. 10.9. The
third material is the interface between the two material domains by which we control
the mechanical and hydraulic connectivity of the two adjacent domains.
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The properties were set such that two cases could be studied:

Case 1 (sealed test):

E1 = 2E3

ν1 = ν2 = ν3

αTS1 = 1

2
αTS3

κ1 = κ3

E2 = 1

100
E3

αTS2 = 1

2
αTS3

κ2 ≈ 0

Case 2 (unsealed test):

E1 = 2E3

ν1 = ν2 = ν3

αTS1 = 1

2
αTS3

κ1 = κ3

E2 = 1

100
E3

αTS2 = 1

2
αTS3

κ2 = κ3

The porosity and the Biot coefficient of the intermediate layer were both set to 0
to block the effect of temperature and pressure on solid deformation in this region
and make the interface passive.

Due to the different thermal expansion coefficients between material 1 and mate-
rial 3, the thermally induced volume changes of these two materials are different,
which produces different fluid pressures in the materials.

For the two cases, the bottom of the model is constrained in vertical direction
and the left side is constrained in horizontal direction. Temperature of 363.15K is
applied to the left side of the domain. The initial temperature of the whole area is
set to 283.15K. For case 1, the domain is sealed and for case 2, there is a Dirichlet
boundary p = 0 on the right side.

Case 1 would be expected to capture this feature as if the two materials were sep-
arated from each other. The impermeable intermediate layer (κ2 ≈ 0) would prevent
the flow moving mass from regions of higher pressure to those of lower pressure.
The thermally induced volume change in material 1 is smaller than that of material 2
which leads to p1 > p3 given an identical pore fluid. Assuming the intermediate layer
allowed free expansion of the neighbouring two materials, the analytical solution for
the fluid pressure in each domain is

p = −KS
(
eM − eth

)
(10.4.5)

with eM = βTM�T and eth = βTS�T , where KS is the bulk modulus of the solid
skeleton obtained from

KS = ES

3(1 − 2νS)
(10.4.6)

and βTM is the effective volumetric coefficient of thermal expansion:

βTM = φSβTS + φFβTF (10.4.7)
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The same solver settings were used as in the previous example. The space discretiza-
tion is 927 quadratic elements and the time discretization is 10 s with 10 time steps.

By comparing the analytical solution of the fluid pressure in the two domains,
panalytical1 = 0.02604MPa and panalytical3 = 0.01155MPa to the numerical approxima-
tion, pnumerical

1 = 0.0278MPa and pnumerical
3 = 0.0123MPa, a good correspondence

is found. Note that due toκ2 ≈ 0 �= 0 fluidmass is indeedmoved from one domain to
the other given enough time. The simulation thus needs to take this time scale into
account if hydraulic isolation is to be modelled (Fig. 10.10).

Case 2 established a hydraulic connection between the two reservoirs. To esti-
mate the average modulus of the bi-material domain, the rule of mixtures was
applied. Here, ES = φS1

S ES1 + (1 − φS1
S )ES2 served as an upper-bound (in the direc-

tion of parallel to the “springs”) and ES =
(

φS1
S

ES1
+ 1−φS1

S
ES2

)−1
as a lower-bound esti-

mate (considering springs in series). The Poisson’s ratios in all domains were equal
νS = ν1 = ν2, and φS1

S = VS1
VS1+VS2

etc.
The same method can be used to obtain the overall thermal expansion coefficient

of the solid phase.
Thus, the analytical solution of the fluid pressure caused by thermal expansion

evaluates to panalyticalupper = 0.01879MPa and panalyticallower = 0.01638MPa. By numerical
simulation, pnumerical = 0.01634MPa are found which is close to the lower bound.
This is reminiscent of the fact that due to the externally unconstrained expansion and
the internal fluid pressure equilibration, this set-up corresponds to the spring-in-series
analogy (Fig. 10.11).

Fig. 10.10 Pressure
distribution of the sealed test
(case 1)

Fig. 10.11 Pressure
distribution of the unsealed
test (case 2)
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Fig. 10.12 2D domain and
FE mesh. Square 1.0 ×
1.0mm; 10 × 10 elements

10.4.3 OGS-6

On the aspects of OGS-6, three numerical benchmarks were performed to verify
the numerical results of thermo-hydro-mechanical process in OGS-6 with analytical
solutions. A homogeneous square model, a bi-material beam model and a point heat
source consolidation model were set up for the verification.

Homogeneous Square Model

In this case, an axisymmetric homogeneous domain (see Fig. 10.12) was set up with
the length of 1mm. The whole domain was heated up from the left boundary from
273.15 to 353.15K and the liquid was sealed in the area from the surrounding Neu-
mann no flow boundary.

After 10,000s, the result of the numerical solution reached steady statewith homo-
geneous pressure of 0.1042MPa. Then the analytical solution of the fluid pressure
created by volume expansion (see Eq.10.4.8) is derived through the definition of
general volumetric thermal expansion coefficient which can be found in the OGS-
5 section.

p = −KS(eM − eth)

= −KSφF(βTF − βTS)�T
(10.4.8)

where eth = βTS�T . Using the analytical solution, the steady state pressure in the
whole domain is 0.1042MPawithYoung’sModulus of 21MPa, Possion’s ratio of 0.3,
porosity of 0.4, volumetric thermal expansion coefficient of 2.07×10−4 for fluid and
linear thermal expansion coefficient of 0.7×10−5 for solid. The numerical solution
used newton-rapson method for nonlinear solver with tolerance of 10−7, 10−5, 10−5,
10−5 for primary variables and BiCGSTAB for the linear solver. The OGS-6 ver-
sion performed for this benchmark can be found on github with links https://github.
com/grubbymoon/ogs/THM_PR and the input files can be found on https://github.
com/ufz/ogs-data/THM_PR/ThermoHydroMechanics/Linear. The numerical solu-

https://github.com/grubbymoon/ogs/THM_PR
https://github.com/grubbymoon/ogs/THM_PR
https://github.com/ufz/ogs-data/THM_PR/ThermoHydroMechanics/Linear
https://github.com/ufz/ogs-data/THM_PR/ThermoHydroMechanics/Linear
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Fig. 10.13 Heterogeneous
model setup

Fig. 10.14 Pressure
distribution in the composite
beam

tion reaches steady state within 10,000s and equals 0.1042MPa which fits very well
with the analytical solution.

Bi-Material Beam Model

In this case, a composite beam model of axisymmetry with three different materials
was built (SeeFig. 10.13). The relationship of the different properties of the composite
beam was set up as follows (same with the composite beam case 1 in the OGS-5
section): The approximate numerical result can be found in Fig. 10.14. pnumerical

1 =
0.0241MPa and pnumerical

3 = 0.01322MPa, With the analytical solution of different
regions from Sect. 10.4.2, panalytical1 = 0.02604MPa and panalytical3 = 0.01155MPa,
the relative error is 7.45 percent for the maximum value and 14.45 percent for the
minimum value. While in OGS-5, the relative error is 6.7 percent for the maximum
value and 6.5 percent for the minimum value.

Point Heat Source Consolidation Model

When a heat source such as a canister of radioactive waste is buried in a saturated
porous medium, the variation of temperature will casue the pore water to expand a
greater amount than the voids of the porous material. The temperature lift will thus
usually be accompanied by an increase in pore pressure. If the domain is sufficiently
permeable, these pore pressures will dissipate. The derivation of analytical solution
can be found in Kolditz et al. (2016c).

A 2D axisymmertic model is set up for the verification. The model domain and
meshes can be found in Fig. 10.15. A line source is seleted to represent the injection
source (0.00204357m in this case) which is located between center point of the quar-
ter and the closest node. After the axisymmetric rotation around the vertical direction,
the line source has converted into a circular source and the Neumann boundary heat
flux can thus be calculated by 300/2/(πr2)W. The radius of the domain is 10m
and the initial temperature and pore pressure are 273K and 0Pa respectively. The
model parameters can be found in Table10.8. Three different observation locations
are selected for the analytical and numerical solutions (0.25, 0.5 and 1m from the
injection source).
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Fig. 10.15 Mesh
distribution and domain

Table 10.8 Parameters for the point heat source consolidation

Parameter Value Unit

Initial temperature 283.15 ◦C
Porosity 0.16 –

Water specific heat capacity 4280 J kg−1 K−1

Water thermal conductivity 0.56 W m−1 K−1

Water real density 1000 kg m−3

Solid specific heat capacity 1000 J kg−1 K−1

Solid thermal conductivity 1.64 W m−1 K−1

Solid real density 2450 kg m−3

Intrinsic permeability 2·10−20 m2

Viscosity 1·10−3 Pa s

Time step size 10,000 s

Young’s modulus 5 GPa

Poisson’s ratio 0.3 –

Biot coefficient 1 –

Fluid volumetric thermal
expansion coefficient

4·10−4 K−1

Solid linear thermal expansion
coefficient

4.5·10−5 K−1
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Fig. 10.16 The numerical solution compared with analytical solution (temperature)

Fig. 10.17 The numerical solution compared with analytical solution (pressure)

From Figs. 10.16 and 10.17, we can find a generally good match of the numerical
solution and analytical solution. In Fig. 10.16, the difference gets larger with the
further observation location because the density of the mesh is very fine around the
injection point and quickly becomes coarser and coarser along the radius. Since the
chosen point is on the displacment boundary and does not have displacement in the
y direction, the displacement on the x direction is plotted (Fig. 10.18).

The OGS-6 version performed for this benchmark can be found on github with
links (Table10.9):

• https://github.com/grubbymoon/ogs/tree/THM_PR.

https://github.com/grubbymoon/ogs/tree/THM_PR
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Fig. 10.18 The numerical solution compared with analytical solution (displacement)

Table 10.9 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-10.4 Xing-Yuan Miao OGS-6 See below TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

The input files can be found on:

• https://github.com/ufz/ogs-data/tree/THM_Freezing/ThermoHydroMechanics/
Linear/Point_injection_r0.00204357.

10.5 Thermo-Hydro-Mechanical Freezing Benchmark
(CIF Test)

Tianyuan Zheng, Xing-Yuan Miao, Dmitri Naumov, Thomas Nagel

The thermal-hydro-mechanical behaviour of freezing in Thermo-hydro-mechanical
couplingfluid-saturatedporousmedia is of great interest in soil construction, geotech-
nics, energy storage and geothermal applications. A fully coupled thermo-hydro-
mechanical model of freezing is implemented into OGS-6 (Zheng et al. 2016) and
(Zheng et al. 2017). The system of equations is treated numerically by a monolithi-
cally coupled incremental-iterative Newton-Raphson scheme. A numerical example
of CIF (Capillary suction, Internal damage and Freezing-thawing) is performed.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs-data/tree/THM_Freezing/ThermoHydroMechanics/Linear/Point_injection_r0.00204357
https://github.com/ufz/ogs-data/tree/THM_Freezing/ThermoHydroMechanics/Linear/Point_injection_r0.00204357
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10.5.1 Governing Equations

The governing equations are given by
(i) the mixture volume balance

0 = div (vS + φLwLS) + �̂I
(
�−1
LR − �−1

IR

) − βT T
′
S

with φLwLS = − K
μLR

( grad pLR − �LRbL)
(10.5.1)

where �R is the real density of phase α, �̂I is phase transition term between ice and
water, βT = ∑

α
φαβTα is the mixed volumetric thermal expansion coefficient, K is

the Intrinsic permeability tensor, wLS is the seepage velocity, vα is the velocity of
phase α and φα is the volume fraction of phase α.
(ii) the mixture momentum balance.

div [−pLRI + λStr(εS)I + 2μSεS − 3αTSkS(T − TS0)I + λItr(εI)I + 2μIεI

−3αT IkI(T − TI0)I −3αFIkI(φI − φI0 − φIεI : I)I] + �b = 0
(10.5.2)

where λα and μα are the Lamé coefficients of phase α and αT S is the linear thermal
expansion coefficient for solid phase, T0 is the reference temperature for phase α,
kS is the bulk modulus of the solid phase, b is the body force and αFI is the freezing
expansion coefficient.
(iii) the mixture energy balance

(
(�cp)

eff − ∂�
eq
I

∂T
�hI

)
∂T

∂t
− div (λeff grad T ) + �LcpLwLS · grad T = 0

(10.5.3)
where λeff is the heat conductivity tensor and �hI is the specific enthalpy of fusion.

The ice volume fraction is determined based on an equilibrium approach and
follows the relation (Zheng et al. 2016)

φI ≡ φ
eq
I = φ

1

1 + e−k(T−Tm)
(10.5.4)

10.5.2 Benchmark Description

A cuboid model with a cross section of 15cm2 and a height of 7.5cm2 is used for
the numerical example. Material properties and relevant numerical parameters are
listed in Table10.10 (Setzer et al. 2001) and (Bluhm et al. 2014).
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Table 10.10 Parameters used in the numerical example

Parameter Value Unit

Initial temperature 20 ◦C
Initial solid volume fraction 0.5 –

Water specific heat capacity 4179 J kg−1 K−1

Water thermal conductivity 0.58 W m−1 K−1

Water real density 1000 kg m−3

Ice specific heat capacity 2052 J kg−1 K−1

Ice thermal conductivity 2.2 W m−1 K−1

Ice real density 920 kg m−3

Solid specific heat capacity 5900 J kg−1 K−1

Solid thermal conductivity 1.1 W m−1 K−1

Solid real density 2000 kg m−3

Initial intrinsic permeability 10−8 cm2

Viscosity 1.278·10−3 Pa s

Time step size 300 s

Lamé constant μI 4.17 GPa

Lamé constant λI 2.78 GPa

Lamé constant μS 12.5 GPa

Lamé constant λS 8.33 GPa

Fig. 10.19 Temperature
load for the bottom boundary

The ice formation is simulated in a 2D setting. A Dirichlet boundary condition
for temperature was applied at the bottom of the domain. The temperature profile
is illustrated in Fig. 10.19. The bottom of the domain was cooled in the first 7h and
heated up for the final 4h. The remaining boundaries were considered adiabatic.
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Fig. 10.20 Temperature after 5h

Fig. 10.21 Temperature after 11.8h

The bottom surface was constrained in the vertical direction and was sealed while
all others were treated as free displacement and draining boundaries. The time step
size was set to 2400s. The SparseLU solver (Guennebaud et al. 2010) was chosen to
solve the linear system of equations, while for the nonlinear Newton-Raphson solver
absolute tolerances were set to 10−6 for displacements, 10−3 for temperature, 10−4

for pressure. The OGS-6 version used for this benchmark can be found under https://
github.com/grubbymoon/ogs/THM_Freezing_Stiffness and the input files at https://
github.com/ufz/ogs-data/Benchmark_chapter/ThermoHydroMechanics/Linear/
CIF_test.

Figures10.20, 10.21, 10.22, 10.23, 10.24 and 10.25 show the temperature distrib-
ution (with unit of ◦C), ice volume fraction and volume ratio at different times of the
freeze-thaw cycle. The cooling process lasted 4h to decrease the temperature below

https://github.com/grubbymoon/ogs/THM_Freezing_Stiffness
https://github.com/grubbymoon/ogs/THM_Freezing_Stiffness
https://github.com/ufz/ogs-data/Benchmark_chapter/ThermoHydroMechanics/Linear/CIF_test
https://github.com/ufz/ogs-data/Benchmark_chapter/ThermoHydroMechanics/Linear/CIF_test
https://github.com/ufz/ogs-data/Benchmark_chapter/ThermoHydroMechanics/Linear/CIF_test
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Fig. 10.22 Ice volume fraction after 5h

Fig. 10.23 Ice volume fraction after 11.8h

the freezing point and trigger the phase change from liquid to ice. For pure water,
the volume deformation due to phase change is 9%. With the setting of the initial
porosity to 0.5, the volume deformation of the calculated numerical model is 4.5%.

Later on, the temperature increased above the onset temperature for phase change,
causing the volume to contract due to thawing. Volume deformation and ice volume
fractions are clearly co-localized (Figs. 10.20, 10.21, 10.22, 10.23, 10.24 and 10.25).
The results show a satisfactory match with those presented in Bluhm et al. (2014)
and Ricken et al. (2010). More details on these models can be found in Zheng et al.
(2016) and Zheng et al. (2017) (Table10.11).

The OGS-6 version used for this benchmark can be found under:

• https://github.com/grubbymoon/ogs/tree/THM_Freezing_Stiffness.

https://github.com/grubbymoon/ogs/tree/THM_Freezing_Stiffness


10 THM Processes 251

Fig. 10.24 Volume deformation after 5h. Displacements magnified ten-fold

Fig. 10.25 Volume deformation after 11.8h. Displacements magnified ten-fold

Table 10.11 Benchmark deposit (https://docs.opengeosys.org/books/bmb-5)

BM code Author Code Files CTest

BMB5-10.5 Tianyuan Zheng OGS-6 See below TBD

(https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7)

The input files are available at:

• https://github.com/ufz/ogs-data/tree/THM_Freezing/ThermoHydroMechanics/
Linear/CIF_test.

https://docs.opengeosys.org/books/bmb-5
https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7
https://github.com/ufz/ogs-data/tree/THM_Freezing/ThermoHydroMechanics/Linear/CIF_test
https://github.com/ufz/ogs-data/tree/THM_Freezing/ThermoHydroMechanics/Linear/CIF_test
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RTM Processes

Renchao Lu, Norihiro Watanabe, Eunseon Jang and Haibing Shao

11.1 Reactive Mass Transport in a Compacted Granite
Fracture with Pressure Solution Acting upon Grain
Contacts

Renchao Lu, Norihiro Watanabe, Eunseon Jang, Haibing Shao

Fluid-mineral interaction, taking place over the fracture surface, renders a permanent
change of fracture surface geometry. Hydraulic characteristic of fracture is conse-
quently altered in response to the geometric change. For the sake of simplicity, the
hydraulic process is assumed to be decoupled from the surface weathering. The
dissolution-induced change of fracture surface geometry is neglected accordingly.
Following this presumption, a benchmark is carried out. In the benchmark, we focus
on the water-granite interaction in a flow-through undeformable fracture under con-
fining stress, with highlights on the enhanced mineral dissolution at grain contacts
where pressure solution is operative.

Furthermore, this benchmark is also part of the international DECOVALEX-2015
Project Task C1.1 A full specification of the present benchmark can be referred to
Lu et al. (2017b).

1http://decovalex.org/D-2015/task-c1.html.
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11.1.1 Theory

Mineral dissolution reactions spontaneously take place over the compacted rough-
walled fracture surface amid fluid-mineral interaction. Unlike the chemical weath-
ering at open pores, the weathering at compacted grain contacts is dominated by
pressure solution. In particular, the stress-induced chemical potential difference
between center and periphery of the contact drives enhanced mineral dissolution
over the rough grain surface. The dissolved components radially diffuse from the
center into the surrounding open pores afterwards through the embedded water film.
Precipitates have the potential to be formed in the course, and eventually cemented
around the periphery.

Although the weathering mechanism at open pores is distinguished from that
at grain contacts, the mass removal, arising from the dissolution at either, can be
quantitatively described with a general rate equation. The rate equation is expressed
as a summation over rates in various aqueous environments (modified from Palandri
and Kharaka 2004, with reference to the work of Taron and Elsworth 2010.)

ṁX̄ =
∑

n

k+
n a

(
1 − Q

aKeq

)
, n = acid, neutral, and base, (11.1.1)

where X̄ denotes the mineral reactant, ṁX̄ [mol/m2/s] is the mass removal rate per
reactive surface area, k+ [mol/m2/s] is the dissolution rate constant, a [-] is the activity
of mineral, Q [-] is the ion activity product, and Keq [-] is the equilibrium constant.

The activity of mineral a is equal to unity in the case of chemical weathering at
open pores. In the other situation, the stress-induced chemical potential difference
between center and periphery of the contact Δμ [J/mol] results in the elevation of
the activity (Heidug 1995)

a = exp

(
Δμ

RT

)
= exp

[
(σcon − pw) Vm

RcRT

]
, (11.1.2)

where R [J/K/mol] is the ideal gas constant, T [K] is the temperature, σcon [Pa] is
the confining stress, pw [Pa] is the pore pressure, Vm [m3/mol] is the molar volume
of mineral, and Rc [-] is the contact area ratio.

The dissolution rate constant k+ can be given from the Arrhenius equation as
(Palandri and Kharaka 2004)

k+ = A eE/RT anH+
H+ , (11.1.3)

where A [mol/m2/s] is the pre-exponential factor, E [J/mol] is the activation energy,
aH+ [-] is the activity of hydrogen ion, and nH+ [-] is the H+ catalysis constant.

Reactive transport, in terms of a particular dissolved component X j , along the
flow path in a fracture follows the advection-dispersion-reaction equation
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bpm
∂C j

∂t
+ ∇ · (−bpmD∇C j + bpmvC j

) = 2 f
′
r

i∑

i=1

si j

(
φ
p
i ṁ

p
i + Rc

1 − Rc
fr,iφ

c
i ṁ

c
i

)
,

(11.1.4)
where C j [mol/m3] is the concentration of the dissolved component, bpm [m] is the
mean of the mechanical aperture at open pores (simply called mechanical aperture
at open pores in the following text), D [m2/s] is the dispersion tensor, v [m/s] is the
flow velocity, si j is the component of the stoichiometric coefficient matrix of reaction
products s, f

′
r [-] is the fracture surface roughness factor, i.e., the area ratio of apparent

fracture surface over fracture surface plane, fr [-] is the intragranular roughness
factor, defined as the ratio of true (total) grain surface area over apparent (geometric)
grain surface area, φ

p
i and φc

i [-] are the area fractions of the mineral reactant X̄i

with respect to the pore surface and contact surface. ṁp
i and ṁc

i [mol/m2/s] are the
normalized mass removal rates on pore walls and at grain contacts, respectively,
which can be determined by Eq. (11.1.1). The explicit multiplication of the reaction
terms by 2 shows the dissolved component sources from chemical weathering on the
opposed fracture surfaces.

The dispersion tensor D is given as (Scheidegger 1961)

Di j = Dmδi j + αT |v|δi j + (αL − αT )
viv j

|v| , (11.1.5)

with the molecular diffusion coefficient Dm [m2/s], the longitudinal and transversal
dispersion coefficients αL , αT [m].

The intragranular roughness factor fr can be estimated via Brunauer–Emmet–
Teller (BET) analysis of N2 adsorption experiment (Tester et al. 1994)

fr = SBET
SGEO

= SBET d ρm

6
, (11.1.6)

where SBET [m2/kg] is the specific surface area of grain measured from nitrogen
adsorption isotherms, SGEO [m2/kg] is the geometric surface area of ideally smooth
spherical grain, d [m] is the grain diameter, and ρm [kg/m3] is the mineral density.

Fluid flow through a rough-walled fracture can be treated as steady-state laminar
flowwithout gravitational effect, which is constructed on the cubic law (Witherspoon
et al. 1980)

∇ ·
(

− b3h
12η

∇ pw

)
= 0, (11.1.7)

where η [Pa·s] is the fluid dynamic viscosity, and bh [m] is the hydraulic aperture
which can be estimated from the mean mechanical aperture and contact area ratio
(Walsh 1981)

b3h = 1 − Rc

1 + Rc
b3m. (11.1.8)
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Flow velocity v [m/s] can be calculated once the pore pressure is obtained

v = − b2h
12η

∇ pw. (11.1.9)

11.1.2 Example

With the developed 1-D reactive transport model, we aim to reproduce part of the
flow-through experiment reported in Yasuhara et al. (2011). The flow-through exper-
iment is conducted on a centrally bisected granite core sample (see Fig. 11.1). The
fractured granite core sample, consisting of 50% quartz, 25% k-feldspar, 10% albite,
10% anorthite, and 5% biotite (see Table11.1), is subjected to confining stress of
5MPa, differential hydraulic pressure of 0.04MPa, and temperature of 25 ◦C at the
stage of concern. A stream of deionized water (pH= 7) is injected into the artificially
induced fracture with a length of 61.2mm and a width of 29.4mm. The outflow rate
and effluent element concentrations are regularly measured in the experiment.

The chemical reactions, involved in the water-granite interaction, comprise the
mineral surface reactions (see Table11.2) and a series of aqueous reactions. It is
noteworthy that amorphous silica and gibbsite act as precipitates in the calibrated
geochemical system. The dissolution kinetics of the surface reactions are listed in
Table11.3. The equilibrium constants of all the reactions source from the LLNL
thermodynamic database (Parkhurst et al. 1999).

Fig. 11.1 Schematic diagram of the fractured Mizunami granite core sample subjected to the
prescribed experimental conditions. A 1-D reactive transport model, taking account of the chemical
weathering both at open pores and at grain contacts, is set up accordingly
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Table 11.1 Mineralogical composition of Mizunami granite and mineral properties

Mineral φ [%] aφp [%] aφc [%] ρm
[g/cm3]

Vm [m3/mol] b fr [-]

Quartz 50 50 50 2.65 2.27 × 10−5 40.10

K-feldspar 25 25 25 2.55 1.09 × 10−4 38.58

Albite 10 10 10 2.62 1.00 × 10−4 39.64

Anorthite 10 10 10 2.75 1.01 × 10−4 41.61

Biotite 5 5 5 2.10 1.40 × 10−4 31.77
aArea fractions of the minerals at the non-contact and contact zones are assumed to follow the
overall distribution on the fracture surface.
bMineral-specific intragranular roughness factors are calculated by Eq. (11.1.6), with the measured
grain diameter d of 178µm and the BET surface area SBET of 0.51m2/g (Yasuhara et al. 2011).

Table 11.2 Mineral surface reactions and precipitation reactions involved in the calibrated geo-
chemical system, and logarithmic mineral dissolution rates log k at pH = 7 and T = 25 ◦C
Mineral Chemical reaction log k

Quartz SiO2 + 2H2O → H4SiO4 −13.99

K-feldspar KAlSi3O8 + 4H+ + 4H2O → Al3+ + K+ + 3H4SiO4 −12.38

Albite NaAlSi3O8 + 4H+ + 4H2O → Al3+ + Na+ + 3H4SiO4 −11.96

Anorthite CaAl2(SiO4)2 + 8H+ → 2Al3+ + Ca2+ + 2H4SiO4 −11.05

Biotitea [5 Phlogopite : 1Annite] + 10H+ →
Al3+ + K+ + 2.5Mg2+ + 0.5 Fe2+ + 3H4SiO4

−12.51

Amorphous silica SiO2 + 2H2O ↔ H4SiO4(am)

Gibbsite Al3+ + 3H2O ↔ Al(OH)3 + 3H+
aThe chemical formulas of phlogopite and annite are KAlMg3Si3O10(OH)2 and
KFe3AlSi3O10(OH)2.

Table 11.3 Dissolution kinetics of the rock-forming minerals

Mineral Acid Neutral Base

log k1 n1 E1 log k2 E2 log k3 n3 E3

Quartz − − − −13.99 87.7 − − −
K-feldspar −10.06 0.500 51.7 −12.41 38.0 −21.20 −0.823 94.1

Albite −9.87 0.457 65.0 −12.04 69.8 −16.98 −0.572 71.0

Anorthitea −3.32 1.5 18.4 −11.6 18.4 −13.5 −0.33 18.4

Biotite −9.84 0.525 22.0 −12.55 22.0 − − −
aSource: anorthite - from Li et al. (2006); the others - from Palandri and Kharaka (2004).

Furthermore, pressure solution is presumed to act upon grain contacts apart from
the anorthite ones under experimental conditions. Model parameters are summarized
in Table11.4.

Figure11.2 compares the predictions with the measured effluent element concen-
trations. Apart from the overestimated Si concentration, the other simulated element
concentrations are in good agreement with the measurements.
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Table 11.4 Model parameters used in the mass transport simulation

Parameter Value Unit

Confining stress σcon 5 MPa

Contact area ratio Rc0 3.16% −
Mean mechanical aperture bm0 6.2 µm

Mechanical aperture at open pores bpm0 6.402 µm

Fracture surface roughness factor f
′
r 1.0 −

aIntragranular roughness factor fr 31.77 − 41.61 −
Water dynamic viscosity η 9×10−4 Pa·s
Molecular diffusion coefficient Dm 2.24 × 10−10 m2/s

Longitudinal dispersion coefficient αL 0.001 m

Element length Δx 1.02 mm

Time step size Δt 0.004 s
aSpecific values are listed in Table11.1.

Fig. 11.2 Comparison against the measured effluent element concentrations
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12.1 A Benchmark Case for the Simulation
of Thermochemical Heat Storage

12.1.1 Introduction

The operation of thermochemical heat storage devices in open mode by permeating
a reactive porous body or particle bed by a compressible heat-transfer fluid which
in turn transports a reactive fluid component constitutes a strongly coupled problem
of multiple physical processes. High reaction rates associated with a rapid release of
significant amounts of heat and a complicated dependence of processes and mate-
rial properties on the physical and chemical state of the system add to the level of
complexity. The development of suitable computational models capturing the salient
features of such a problem is a challenging task (Nagel et al. 2016a). Verification of
the implementation is usually only possible in parts by the use of analytical solu-
tions under simplified conditions (Nagel et al. 2013). To build confidence in the
numerical implementation under more complex conditions it is thus beneficial to
perform a comparison of simulation results obtained by the use of different software
packages/codes.
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It is the purpose of this chapter to (i) define a suitable benchmark and (ii) perform
such a comparison by using the simulation platforms OpenGeoSys (Kolditz et al.
2012a), DuMux (Flemisch et al. 2011) and ANSYS Fluent (Ansys Inc., Canonsburg,
PA, USA. 2013).

This chapter begins by briefly summarizing the specifics of the respective numer-
ical implementations, continues with the definition of a common benchmark and
closes with a comparison of simulation results.

12.1.2 Implementational Details

12.1.2.1 OpenGeoSys

In OpenGeoSys, the following set of equations was used for the simulation of the
benchmark.

Gas mass balance (note: �α = φα�αR for any phase α):

∂�G

∂t
+ div (�GvG) = −�̂S (12.1.1)

Mass balance for the reactive component in the gas phase:

�G
∂xmζ

∂t
− div (�GRDζ grad xmζ) + �G grad xmζ · vG − �̂Sxmζ = −�̂S (12.1.2)

Energy balance for the mixture:

(
�GcpG + �ScpS

) ∂T

∂t
− div (λeff grad T ) + �GcpG grad T · vG − ∂(φG p)

∂t
=

= �̂SΔh
(12.1.3)

This is a simplified version of themodel presented in referencesNagel et al. (2014,
2013), Shao et al. (2013) where local thermal non-equilibrium has been taken into
account. The deviations from local thermal equilibrium in the system considered
here are sufficiently small to justify the use of only one energy balance in order to
limit computing times. This assumption will be tested implicitly by the comparison
to the ANSYS Fluent results which are based on local thermal non-equilibrium, see
Sect. 12.1.2.3.

In the above, Darcy’s law was used to describe the flow of the gas phase:

φGvG = − k
μGR

( grad p − �GRb) (12.1.4)
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Furthermore, �GR of the gas mixture followed from Dalton’s law for ideal gases;
λeff is the volumetric average of gas and solid contributions; to account for a
variable gas composition, mixing laws were used for gas viscosity μGR (Model:
Wilke in Poling et al. (2001)), heat capacity cpG and heat conductivity λGR (Model:
Wassilijewa, Maso and Saxena in Poling et al. (2001)). The specific heat capacity
of the individual gases followed Eq. (12.1.13) with parameters from Tables12.1 and
12.2, while heat conductivity and viscosity of nitrogen and water vapour were cal-
culated following reference Stephan et al. (1987) and the IAPWS formulation from
Wagner et al. (2000), respectively.

To arrive at a finite element formulation, the Bubnov–Galerkin weighted residual
method (Bathe 2001; Zienkiewicz et al. 2006) is used to derive the weak forms of the
governing equation of Eqs. (12.1.1)–(12.1.3). The weak forms are then discretized
using an isoparametric finite element approach. The spatially discretized equations
are discretized in time by a fully implicit backward Euler scheme and monolithi-
cally assembled into one equation system. Picard iterations were used to resolve the
nonlinearities in the system. Details regarding the implementation can be found in
Nagel et al. (2013).

Note, that the density production term

ρ̂S = φSρ̂SR (12.1.5)

determining the rate of the chemical reaction is a strictly local quantity. The cor-
responding ordinary differential equation (ODE) for ρ̂SR was solved in each global
iteration in each integration point of the finite element mesh by a method suitable
for stiff ODEs (details of the approach used here can be found in Shao et al. (2013),
Nagel et al. (2014)).

12.1.2.2 DuMux

The numerical model in DuMux consists of the following balance equations:
Each component of the gas phase, i.e. water and nitrogen, is balanced by the

generalmass balance equation, whereDarcy’s Law (12.1.4) is included to account for
the porous medium flow. Here, �GR denotes the overall gas phase density determined
according to Dalton’s law.

∂(�GRXκφG)

∂t
− div

{
�GRX

κ k
μGR

(grad p − �GRg) + Dpm�GRgrad X
κ

}
−

− qκ = 0 with κ ∈ {w,N2}
(12.1.6)

The components’ mass or mole fractions Xκ, respectively, sum up to 1. The balance
equations of the solid components are formulated in terms of their volume fractions
�λ considering the two solid species CaO and Ca(OH)2:
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∂(�Rλφλ)

∂t
= qλ (12.1.7)

Thus, it is possible to account for the porosity change due to the volume change of the
solid phase during the chemical reaction. However, in order to allow the comparison
of the different models, the porosity φG in Eqs. (12.1.6), (12.1.8) is set as a constant.
Under the assumption of local thermal equilibrium only one energy balance equation
is needed:

∂φG�GRuG
∂t

+
∑

λ

∂φλ�RλcpλT

∂t
− div

{
�GRhG

k
μα

( grad p − �GRg)
}

−

− div (λeff grad T ) − qh = 0.

(12.1.8)

The reaction rate �̂SR is incorporated in the source terms as follows:1

qw = −�̂SRMCaO
−1 (12.1.9)

qCaO = −�̂SRMCaO
−1 (12.1.10)

qCa(OH)2 = �̂SRMCaO
−1 (12.1.11)

qh = �̂SRMCaO
−1Δh (12.1.12)

This set of equations is solved for the pressure p, the mole fraction of vapor
XH2O, the two solid volume fractions φλ and the temperature as primary variables.
The remaining variables are determined subsequently by the additional relations.

For the gas phase properties of the water component, the IAPWS formulation
(IAPWS 1997) was used. The heat conductivity of nitrogen λN2 was calculated using
Eq. (12.1.13) with parameters from Table12.2. The compositional heat capacity and
conductivity of the gas phase is weighted by the components’ mole fractions to the
overall term. For the compositional gas viscosity μGR, the mixing law of Wilke was
used Poling et al. (2001). As in 12.1.2.1, λeff is the volumetric average of gas and
solid contributions.

The equations are discretized in space using a fully coupled vertex-centered finite-
volume-scheme, the so-called box-scheme (Helmig 1997) and by the implicit Euler
method in time. The resulting system of equations is linearized by the Newton-
Raphson method and solved using the linear solver Umfpack (Davis 2004).

1The source term formulations have been modified in an updated model formulation which will be
presented in a follow-up publication of this chapter within this series.
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Table 12.1 Polynomial coefficients for water vapour property calculations, see Eq. (12.1.13). Units
of the coefficients are such that resulting units of the quantities are J/(kgK) for cpG, W/(mK) for
λGR and Pas for μGR. Values from ANSYS Fluent database

A0 A1 A2 A3 A4

cpG 1.5630770 · 103 1.6037550 −2.9327840 · 10−3 3.2161010 · 10−6 −1.1568270 · 10−9

λGR −7.9679960 · 10−3 6.8813320 · 10−5 4.4904600 · 10−8 −9.0999370 · 10−12 6.1733140 · 10−16

μGR −4.4189440 · 10−6 4.6876380 · 10−8 −5.3894310 · 10−12 3.2028560 · 10−16 4.9191790 · 10−22

Table 12.2 Polynomial coefficients for nitrogen property calculations, see Eq. (12.1.13). Units of
the coefficients are such that resulting units of the quantities are J/(kgK) for cpG, W/(mK) for λGR
and Pas for μGR

A0 A1 A2 A3 A4

cpG 9.7904300 · 102 4.1796390 · 10−1 −1.1762790 · 10−3 1.6743940 · 10−6 −7.2562970 · 10−10

λGR 4.7371090 · 10−3 7.2719380 · 10−5 −1.1220180 · 10−8 1.4549010 · 10−12 −7.8717260 · 10−17

μGR 7.4733060 · 10−6 4.0836890 · 10−8 −8.2446280 · 10−12 1.3056290 · 10−15 −8.1779360 · 10−20

12.1.2.3 ANSYS Fluent

The same constitutive laws as mentioned above in Sect. 12.1.2.1 model are used
for the calculation of the properties of the gas phase in the ANSYS Fluent models.
Further details and results regarding the models not addressed below can be found
in Ostermeier et al. (2016). Two different model implementations were used which
are described in the following sections.

The individual gas-phase properties were calculated according to the following
polynomial equations of state

P =
4∑

i=0

Ai

(
T

T0

)i

with P ∈ {λGR, cpG,μGR} and T0 = 1K (12.1.13)

and the coefficients listed in Tables12.1 and 12.2 taken from the ANSYS Fluent
database.

Two-Fluid Model (TFM)

In this Eulerian multiphase approach both gas and solid phase are treated as interpen-
etrating continua. The following set of equations is used inANSYSFluent. Equations
for both models are presented in the form adapted to the benchmark. For the gen-
eral form of the equations refer to the ANSYS Fluent Theory Guide (Ansys Inc.,
Canonsburg, PA, USA. 2013).

Saturation condition:
φG + φS = 1 (12.1.14)

Conservation of mass for the gas and solid phase:

∂

∂t
(φG�GR) + div (φG�GRvG) = −�̂S (12.1.15)
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∂

∂t
(φS�SR) = �̂S (12.1.16)

The density production term ρ̂S is determined in a User Defined Function (UDF)
and incorporated into the simulation using theHeterogeneous Stiff Chemistry Solver.

Conservation of momentum for the gas phase:

∂

∂t
(φG�GRvG) + div (φG�GRvG ⊗ vG) =

= −φG grad p + div ¯̄τG + KvG − �̂SvG
(12.1.17)

The gas-solid exchange coefficient K , governing the pressure drop in the gas phase,
is calculated according to the Ergun equation K = 150 (1−φG)2μGR

φGdp2
+ 1.75 (1−φG)�GR |vG|

dp

(Ergun 1952). The calculation of the fluid extra-stress tensor ¯̄τG due to intra-fluid
viscous dissipation can be found in Ansys Inc., Canonsburg, PA, USA. (2013).

Conservation of energy for the gas and solid phase:

∂

∂t
(φG�GRhG) + div (φG�GRvGhG) = φG

∂ pG
∂t

+ ¯̄τG : grad vG+
+ div (φGλGR grad TG) + Q̇GS − �̂Sxm,G,H2OhG

(12.1.18)

∂

∂t
(φS�SRhS) = φS

∂ pS
∂t

+ div (φSλSR∇TS) + �̂SΔh−
− Q̇GS + �̂Sxm,G,H2OhG

(12.1.19)

For calculating the interphase heat transfer Q̇GS, the model of Gunn (1978) is used,
leading to almost identical gas and solid temperatures throughout the reactor for the
small particles considered in the benchmark case (d50 ≈ 8µm).

Species transport equations for the components in the gas and solid phase:

∂

∂t
(φG�GRxm,G,H2O) + div (φG�GRxm,G,H2OvG) =

= − div (−φG�GRDG grad xm,G,H2O) − �̂S (12.1.20)

∂

∂t
(φG�GRxm,G,N2) + div (φG�GRxm,G,N2vG) =

= − div (−φG�GRDG grad xm,G,N2) (12.1.21)

∂

∂t
(φS�SRxm,S,CaO) = −�̂S (12.1.22)

∂

∂t
(φS�SRxm,S,Ca(OH)2) = �̂S (12.1.23)
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Porous-Zone Model (PZM)

This model is a single-phase approach, considering only the pressure drop and the
volume occupation caused by the particles. The conservation equations of mass,
momentum and species for the gas phase are analogous to the TFM (Eqs. (12.1.15),
(12.1.17), (12.1.20) and (12.1.21)). The model solves only one energy equation for
the mixture, which is a valid assumption in this benchmark and is also validated by
the results of the TFM (TG ≈ TS = T ).

Conservation of energy for the mixture:

∂

∂t
[φG�GReG + (1 − φG)�SReS] + div [φGvG(�GReG + p)] =

= ¯̄τG : grad vG + div
[
(φGλGR + (1 − φG)λSR) grad T

]+
+ �̂S

[
Δh − φG

1 − φG

(
p

�GR
− v2G

2

)]
(12.1.24)

Since this model uses the total specific energy e = h − p
�

+ v2

2 instead of the spe-
cific enthalpy h, the source term for the reaction enthalpy on the right hand side of
Eq. (12.1.24) has been adapted accordingly.

Virtual mass balance for the solid phase:

(1 − φG)�SR,t+Δt = �SR,t + �̂SΔt (12.1.25)

The mass balance for the solid phase is solved in a User Defined Function (UDF). It
receives the local reactor conditions (pressure, temperature,…) from the simulations
and furthermore calculates the reaction rate and the resulting source terms on the
right hand sides of the conservation equations (Eqs. (12.1.15), (12.1.17), (12.1.20)
and (12.1.24)).

Spatial and Temporal Discretization

ANSYS Fluent applies the finite volume method (FVM) to divide the domain into a
computational grid. The governing equations are integrated on the individual control
volumes (weak forms) and linearized and solved using a pressure-based solver. The
pressure-velocity coupling is achieved by the phase coupled SIMPLE (semi-implicit
method for pressure-linked equations) scheme in the TFM and PISO (pressure-
implicit with splitting of operators) scheme in the PZM. (Ansys Inc., Canonsburg,
PA, USA. 2013; Laurien and Oertel Jr 2013)

Spatial discretization is performed with second-order upwind schemes (except
density andvolume fraction handledwithfirst-order upwind).Gradients are evaluated
with the least-squares cell-based approach.

Temporal discretization is achieved by first-order fully implicit time integration.
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Table 12.3 Material parameters of the laboratory scale reactor. Details see (Shao et al. 2013; Nagel
et al. 2014)

Property Symbol Value

Porosity φG 0.8

Effective density Ca(OH)2 �Ca(OH)2 R 2200kgm−3

Effective density CaO �CaOR 1665kgm−3

Intrinsic permeability kS 8.53·10−12 m2

Specific heat capacity Ca(OH)2 cpCa(OH)2 1530J kg−1 K−1

Specific heat capacity CaO cpCaO 934J kg−1 K−1

Solid heat conductivity λSR 0.4Wm−1K−1

Diffusion coefficient DV 9.65·10−5 m2s−1

Reaction enthalpy Δhiso 108.3kJ mol−1

Table 12.4 Boundary conditions for the reference reactor during the discharge reaction. Axial
direction z, radial direction r ; outer radius of reactor R, length of reactor L

Eq. (12.1.1) Eq. (12.1.2) Eq. (12.1.3)

z = 0 : �Gwn = 0.25g/s T = 573.15K xmV = 0.35

z = L : p = 2 · 105 Pa qn = 0 dn = 0

r = R : �Gwn = 0kg/s T = 573.15K dn = 0

12.1.3 Benchmark Description

A one-dimensional set-up is chosen to represent a cylindrical reactor filled with
calcium oxide in which the following reaction occurs:

CaO + H2O (g) � Ca(OH)2 ;−ΔH

This test case is similar to the analyses performed in Shao et al. (2013), Nagel et al.
(2014). A discharge operation is simulated by pushing a mixture of water vapour
(reactive and heat transfer fluid) and nitrogen (inert heat transfer fluid) through the
reactor. Parameters and boundary conditions were as described Tables12.3 and 12.4.
The reaction kinetics ρ̂SR were modelled with the full kinetic model described in
references Nagel et al. (2014), Schaube et al. (2012). The van’t Hoff equilibrium
relation was given by

Teq = A

ln
(

pζ

p0

)
− B

(12.1.26)

where B = 16.508, A = −12845K and p0 = 1bar. The reactor had a diameter of
5.5cm and a length of 8cm. Its central axis was discretised into

• 418 linear finite elements in OpenGeoSys
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• 1000 rectangular elements in DuMux

• 1000 linear rectangular cells in ANSYS Fluent

Time step sizes of

• 0.1 s (first 10 s), 0.2 s (next 20 s) and 0.5 s (remaining time); OpenGeoSys
• 0.5 s; DuMux

• 0.01 s; ANSYS Fluent

were chosen.Both temporal and spatial discretisationwere confirmedby convergence
analyses.

12.1.4 Results

12.1.4.1 Balance Checks

The respective models were checked for internal consistency by evaluating the mass
and energy balance relations. This can be done via the gas phase (mass and energy
transport at outlet vs. inlet; cf. e.g. Shao et al. (2013)) or the solid phase (integral
over local reaction rate and associated heat release).

The mass of water remaining in the system (theoretical value 20.32g) balanced
via component mass flux (difference between inlet and outlet) yielded the following
results:

Software Package MassDifference Relative Error
OGS 20.30 g 0.12%
DuMux 20.61 g 1.42%
ANSYS TFM 20.75 g 2.09%
ANSYS PZM 20.30 g 0.11%

The total enthalpy released (theoretical value 122.24kJ) balanced via the advective
enthalpy flux (difference between inlet and outlet) yielded the following results:

Software Package EnthalpyDifference Relative Error
OGS 122.62 kJ 0.31%
DuMux 123.70 kJ 1.19%
ANSYS TFM 121.72 kJ 0.42%
ANSYS PZM 124.00 kJ 1.44%

With respect to these results, all models appear to be internally consistent.

12.1.4.2 Comparison of Selected Results

All simulators qualitatively capture the reactor behaviour according to different rele-
vant variables (Figs. 12.1, 12.2, 12.3, 12.4 and 12.5). The best agreement is achieved
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Fig. 12.1 Reaction rate
q = ρ̂SR at the inlet of the
reactor

0 50 100 150 200
-1
0
1
2
3
4
5
6
7
8
9

10

t / s

q 
/ 

(k
g/

m
³s

)

OGS

ANSYS TFM

ANSYS PZM

DUMUx

Fig. 12.2 Reaction rate
profile q = ρ̂SR along the
reactor length after 1350s of
simulated time
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Fig. 12.3 Temperature
profile along the reactor
length after 1350s of
simulated time
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Fig. 12.4 Temperature at
the outlet of the reactor
corresponding to the heat
output of the reactor
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Fig. 12.5 Vapour mass
fraction at the outlet of the
reactor
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between the Porous-ZoneModel in ANSYS Fluent and the implementation in Open-
GeoSys. The Two-FluidModel in ANSYS Fluent shows slight deviations, especially
regarding the reaction rate (Figs. 12.1 and 12.2). There are quite significant devia-
tions in all results obtained from the DuMux implementation. These differences are
likely rooted in the treatment of the reaction rate and its integration into the bal-
ance equations. The reaction rate already deviates significantly at the reactor inlet
(Fig. 12.1). The net effect is apparent especially when comparing the reaction rate
profiles along the reactor length (Fig. 12.2) and the outlet temperature as it develops
over time (Fig. 12.4). The reaction front propagates through the reactor much more
slowly. As the associated heat release keeps the temperature at equilibrium condi-
tions, this slow front propagation leads to a prolonged temperature rise at the reactor
outlet. By visual comparison it becomes clear that the simulation in DuMux predicts
a much higher heat release assuming similar gas properties (Fig. 12.4). As this is not
seen in the balance checks presented before, the evaluation of the balances and the
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model implementation both incorporate the same deviation from the other imple-
mentation. This is currently under investigation and the results will be published in
a follow-up version of this chapter.2

2A current implementation using different source-term formulations and a modification of the reac-
tion enthalpy by the volume work suited for the formulation of the energy balance as implemented
in DuMux provides results that match the results of the other codes more closely. The specifics
require further testing, the results of which will be published as a separate chapter within this book
series.



Appendix A
OpenGeoSys-6

byDmitri Naumov, Lars Bilke, ThomasFischer, YonghuiHuang, Christoph Lehmann,
Xing-Yuan Miao, Thomas Nagel, Francesco Parisio, Karsten Rink, Haibing Shao,
Wenqing Wang, Norihiro Watanabe, Tianyuan Zheng, Olaf Kolditz

A.1 OGS-6: Development and Challenges

A.1.1 Introduction

Current development of the general multi-physics simulation platform OpenGeoSys
concentrates mainly on the new version 6 of the software. OGS-6 is a major rework
of the previous version OGS-5 motivated by several improvement possibilities
described in detail in the previous benchmark book edition Kolditz et al. (2016b)
Appendix A.

The software development itself occurs on an open shared platform, making both
amenable to scrutiny by the scientific community and public authorities. Besides
describing development workflows that assure code quality, we highlight how code
performance and accuracy are routinely tested in an automated test environment as
well in this benchmarking initiative.

In the following sections are an overview of the current implementation, a descrip-
tion of the testing and continuious integration environment, and finally an overview
of the high-performance-computing setups and their parallel performance.

A.1.2 Overview of Processes

Current overview of the capabilities is partially covered by benchmarks in this book.
and includes following process implementations:

© Springer International Publishing AG 2018
O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media: Modelling and Benchmarking,
Terrestrial Environmental Sciences, https://doi.org/10.1007/978-3-319-68225-9
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• variations of heat and component transport equations: ground water flow (elliptic
steady-state equation), heat conduction, hydro-thermal process, pressure based
liquid flow process, inert component-transport, Richards flow, two-phase flow
(pressure-pressure and pressure-saturation formulations), temperature dependet
two-phase flow (pressure-pressure formulation), (all of the parabolic kind),

• coupled mechanics processes: small deformation process and hydro-mechanical
process, both with Lower-Interface-Element extensions, thermo-mechanical and
thermo-hydro-mechanical processes, and a phase-field formulation,

• thermal energy storage process

A.1.3 Implementation of Workflows

For an implementation of a new process and working with the existing implementa-
tions a developer has several flexibilities in the choice of the non-linear solver, the
linear solver availabilities, and the pre- and post-processing options.

There are two implementation possibilities for the processes: monolithic and
staggered schemes. Independent of this choice, to resolve the non-linearities of the
equations a fixed-point iteration and Newton-Raphson method are available. Most
processes are implemented using the Newton-Raphson scheme and therefore are
implemented monolithically.

The staggered scheme (together with fixed-point iterations) allow for quick work-
ing implementations of coupled multi-field processes, while choosing the Newton-
Raphson scheme makes it possible to solve highly non-linear equations.

For the solution of the linear equation systems currently there are three major
libraries supported: Eigen (Guennebaud et al. 2010), LIS (2017), and PETSc (Balay
et al. 2016). These give a big variety of linear equations solvers, both direct and iter-
ative, for the users to experiment. The Eigen library, furthermore, provides wrappers
to external solvers from the PaStiX, SuiteSparse, SuperLU, and Intel MKL libraries.

For the input and output of the mesh geometries the Visualization Toolkit library
(VTK)with its rich set of manipulation and visualization tools; primarily Paraview—
agraphical front-end to theVTK libraries, and the Python bindings to theVTKgiving
powerful scripting options.

A.1.4 Transition from OGS-5

The benchmarking of the code is continued in the new version of OGS. Comparisons
with the analytical solutions is one of the requirements for the newly implemented
processes, where it is possible, and comparison to the OGS-5 (or other codes like
FEFLOWFEFLOW2017orFEBioFEBio2017) if same implementation is available.
The OGS-6 development aims to introduce new processes and solution techniques,
which were not possible in the former version.
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A.1.5 Heterogeneous Computing

Another challenge is the adaptation to heterogeneous computing, where different
kinds of processors are utilized to achieve higher efficiencies. Examples of hetero-
geneous systems are, for example, computer systems using CPU and GPU cores
simultaneously.

A.2 Software Engineering and Continuous Integration

by Lars Bilke

OGS-6 is developed as an open-source project by using the GitHub platform for code
hosting, code review, and bug and issue tracking (OGS 2017c). A Jenkins continuous
integration (CI) server (OGS 2017b) builds and tests the software on every proposed
change (pull request) on supported platforms (Windows, Linux, Mac Desktop sys-
tems and Linux HPC cluster systems). See Kolditz et al. (2015) Appendix-B for a
general introduction.

The QA process is automated and defined in Jenkins Pipeline Domain Specific
Language (DSL, Jenkins 2017a) scripts which are part of the source code to allow
the concurrent testing of multiple development branches.We aim to identify reusable
pipeline definitions, such as CI steps typical for a C++/CMake-based project (con-
figuration, compilation, testing, artifact deploying), which can be shared with other
software projects, and integrate thoseCI steps as a standalone JenkinsPipeline Shared
Library (Jenkins 2017b).

Submitting a proposed change (in the form of a GitHub pull request) triggers
a CI-job which consist of several sub-jobs with several stages each. A sub-job is
created for every supported platform. We test both on bare-metal hardware (e.g. a
Linux cluster system) as well on containerized environments using Docker (2017).
Docker container providing Linux environments with different compiler setups are
defined via the Dockerfile DSL in code as well (OGS 2017a). Sub-job stages group
complex steps into logical parts such as configuring, building and testing. After a CI-
job finishes the developer gets immediate feedbackwhich sub-job or even stage failed
with its corresponding log output. Web-based automated code documentation (with
Doxygen) and interactive benchmark descriptions with embedded 3D visualizations
(with VTK 2017) are generated. Binaries for all supported platforms are generated
and provided for further manual testing if required.

With this setup large parts of the whole software engineering infrastructure
and processes are formalized and defined via DSLs in version controllable code-
repositories allowing for easy contributing and peer-review on the code, infrastruc-
ture and process levels. For citingGitHub-based source code, digital object identifiers
(DOIs) can be generated with the Zenodo platform.
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A.3 High-Performance-Computing

by Thomas Fischer, Wenqing Wang, Christoph Lehmann, Dmitri Naumov

A.3.1 Why is High-Performance-Computing Necessary?

• For the solution of non-stationary models many time steps are necessary.
• For coupled approaches in cross-compartment topics many iterations between for
the particular compartments specialized software may be necessary.

• Large scale domains or complex geological structures lead to meshes containing
many cells. Also, in order to improve the accuracy of simulation results or to
resolve small scale effects, a finer discretization of the domain is necessary.
Doubling the model resolution for d-dimensional domains in each space direction
results in 2d times more mesh elements.

• Multi-physics with complex equations of state and the modeling of chemical reac-
tions requires high numerical effort for both the assembly and for solving the
system of linear equations.

Consequently, a high demand of computational resources (CPU time, large memory
requirements and fast input/output operations) for the numerical analysis of large
scale or complex problems arises.

A.3.2 Parallelization Approaches

Nowadays the computational power of a single core CPU hits its physical limits.
Most of the growth of computational power is attributed to parallelization. As a
consequence the usual way to tackle the huge computational effort for solving high
resolution models is parallel computing. In principle there are two programming
approaches for parallel computing, the shared memory approach and the distributed
memory approach.

OpenMP (Open Multi-Processing) is a technique that makes use of the shared
memory approach and accelerates the program mostly by parallelization of loops.
This technique is relatively easy to use. OpenMP benefits from the multi-core archi-
tectures. Typically such architectures have a limited number of cores.

One representative of the distributed memory parallelization technique is MPI
(Message-Passing Interface). Programs using MPI can utilize many compute nodes
in one computation, where each compute node typically has multiple CPU cores.
Efficient implementation of algorithms for distributed memory architectures (MPI)
ismore challenging than the implementations for sharedmemory (OpenMP) systems.

So far, OGS-6 is parallelized implementing the distributedmemory approach, i.e.,
it uses MPI.
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A.3.3 Results

A.3.3.1 Description of the Benchmark Example

As a test, a groundwater flow equation, an elliptic PDE, in a homogeneous medium
is solved

∇ · (κ∇h) = 0, in Ω = [0, 1]3,

with Dirichlet-type boundary conditions

h = 1, for x = 0, and h = −1, for x = 1.

The conductivity κ is set to 1. The analytical solution is h(x, y, z) = 1 − 2x .
For the numerical solution of the elliptic PDE the domain was discretized in

different resolutions from 106 to 108 hexahedra, see TablesA.1 and A.2.

A.3.3.2 Run Times and Speedup for IO, Assembly and Linear Solver

All run time tests were conducted on the EVE cluster at the Helmholtz Centre for
Environmental Research GmbH – UFZ. EVE is a Linux-based cluster with 65 com-
pute nodes where each compute node has 20 compute cores. It has 11.2TB RAM
in total. The compute nodes are connected via a 40Gbit Infiniband network. The
computations are performed on the compute nodes that have 120GB of RAM.

Since such a cluster is often used in parallel by multiple users, the measurement
environment is not always in the same state. In order to avoid that other simulations
on the cluster influence the computations, the test problem was partitioned so that
always complete compute nodes are occupied. However, the total network traffic and
the total IO to external storage on the cluster can not be controlled. For this reason,
each run time test is repeated 10 times to exclude or at least minimize external
environment influences.

Each compute core participating on the computations, outputs the time measure-
ments for the particular tasks, i.e., mesh reading, assembling, linear solving, writing
results. The maximum time for each particular task is chosen to average over the 10
simulations.

Strong scaling: Run times and speedup for IO, assembly, linear solver

The scaling is normally defined as s(N ) = t (1)
t (N )

, where t (1) is the run time using one
compute core and t (N ) is the run time using N cores. Because the problem is too
large to fit in the memory associated with one compute core in Fig.A.1 the slightly
changed definition s20(N ) = t (20)

t (N )
is depicted. The figure is based on the data from

the TableA.1. As expected, when more compute cores are deployed the run times
decrease for the assembly and for the linear solver.

Run times for reading the mesh drops down until the employment of 60 cores and
stay around 2s for higher number of cores. This could be an effect of the GPFS file
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Table A.1 Fixed discretization 236×236×236 (= 13 144 256) hexahedra, all run times in seconds

#cores Reading mesh Output time steps
0 and 1

Assembly Linear solver

20 6.32 3.99 + 4.62 3.81 56.94

40 4.74 4.01 + 5.60 1.93 29.19

60 1.78 7.12 + 7.31 1.33 18.01

80 2.15 11.77 + 12.46 1.03 14.42

100 1.72 14.39 + 18.71 0.83 11.59

120 2.31 23.98 + 31.50 0.69 9.73

140 2.80 13.85 + 19.47 0.61 8.41

Fig. A.1 Scaling for
different tasks of the
simulation

system of the cluster that has to distribute smaller and smaller parts of the binary
input files to more and more compute nodes. The overhead connected to this could
be one reason why the reading of the mesh does not scale as expected.

While the input consists of a small number of binary files, the output of the simu-
lation results is done in a different way at themoment. Each process opens its own file
and writes its sub-domain specific data. For a large number of processes this results
in opening a large number of files which is typically a time consuming operation on
GPFS file systems. FigureA.1 indicates some potential for improvement, especially
for the output of simulation results.

Weak scaling: Run times for IO, assembly, linear solver

To investigate the weak scaling of OGS-6 the discretization and the number of com-
pute cores for the simulation is chosen such that the workload on a core is almost
the same, as illustrated in the third column of TableA.2. The run time measurements
are done with two different versions of OGS-6, one from February 2017 (last three
rows in the table) and one from September 2017 (first three rows in the table).



Appendix A: OpenGeoSys-6 277

Table A.2 All run times in seconds

Discretization
#hexahedra

#cores DOFs per
core

Reading
mesh

Output
time steps
0 and 1

Assembly Linear
solver

184 × 184 × 184 20 311 475 3.55 2.51+2.53 1.86 21.59

232 × 232 × 232 40 312 179 4.14 4.89+5.91 1.90 27.34

292 × 292 × 292 80 311 214 4.80 10.71 +
12.43

1.89 33.58

292 × 292 × 292 80 311 214 3.84 3.98+4.42 2.39 37.39

368 × 368 × 368 160 311 475 5.01 4.74+5.48 2.39 46.21

465 × 465 × 465 320 314 202 6.73 5.52+6.41 2.38 69.19

In a preprocessing step the mesh is partitioned and stored in a small number of
binary files. The time for reading of the mesh for the simulation slightly decreases.
This could be caused by distribution of the data via the GPFS file system. There is a
significant variation in the run times of the output which needs further investigation.

The run times for the assembly, being almost the same for different number of
process, demonstrate that this part scales weakly very well. Furthermore, the jump
in the assembly times between the two version (02/2017 vs. 09/2017) is caused
by switching between dynamically allocated local matrices (02/2017) and statically
allocated local matrices (09/2017).

The run times for solving the systems of linear equations shows that it becomes
more difficult to solve the system the bigger it is, i.e., the number of iterations
increases with the number of degrees of freedom.

A.4 Data Integration and Visualisation

by Karsten Rink, Carolin Helbig, Lars Bilke

In order to copewith increasing amounts of heterogeneous data from various sources,
workflows combining data integration and data analytics methods become more and
more important. Therefore, data integration and visual data analysis are important
elements within the OpenGeoSys workflow concept. FigureA.2 shows a generic
workflow for scientific visualisation of environmental data including categories and
examples for functionality.

Some general challenges for data integration and visual data analysis for the field
of environmental science are summarized in the following list and described in detail
in Helbig et al. (2015):

• Multifaceted data: High dimensional parameter spaces
• Multimodal data: Correlation of observation and simulation
• Incorporation of multiple scales: Catchment scale vs sewage network
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Fig. A.2 Elements of data integration and visual data analysis (Helbig et al. 2017)

Fig. A.3 Example for data integration tasks: Environmental Information System Chaohu

• Multirun data: Ensembles or multiple scenarios
• Supplemental information: Adding Images/Videos/Diagrams/Papers/etc.

Typical tasks for data integration include, e.g.:

• Visualisation of input- and modelling data as well as simulation results within
unified context,

• Data exploration to understand complex data, find correlations and dependencies,
• Detection of potential problems, inconsistencies or missing data.

FigureA.3 shows an example for heterogeneous data sets to be integrated for
typical applications in environmental sciences. This includes urban infrastructures,
digital elevation models (DEM), surface water quality, land use pattern and model-
ing results. Data integration is an essential prerequisite for building comprehensive
Environmental Information Systems (EIS) (Rink et al. 2016).
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Fig. A.4 Environmental Information System - Chaohu combining urban infrastructures (left top),
integrating model results (left bottom), land use information (right)

FigureA.4 depicts elements of the Environmental Information System – Chaohu
combining observation data and modeling results within a unified geographical con-
text. Municipal waste water and fertilizers from agricultural production are the main
sources for the pollution of Lake Chaohu. This information is the basis for building
predictive models concerning the water quality of Lake Chaohu and assessing the
effect of remediation concepts.

Data integration and analysis requires appropriate tools for specific disciplines.
TheOpenGeoSys (OGS)DataExplorer is particularly suited for environmental appli-
cations (Fig.A.5). Typical requirements for data analysis are:

• Data Conversion
• Data Representation
• Mesh Generation
• Error Detection
• Transformations
• Detecting and resolving inconsistencies
• Mapping
• Scalar Information
• Visual Metaphors
• Export to Graphics Frameworks

The OGS DataExplorer provides numerous interfaces for data import and export
functions mainly for visualization. Several interface to complementary modeling
softwares (preferable open source products) are available (Fig.A.6).
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Fig. A.5 OpenGeoSys (OGS) DataExplorer

Fig. A.6 OGS Interfaces

Complex data collections for environmental applications benefit from embedding
into Virtual Geographic Environments (VGE) (Fig.A.7) The Unity3D environment
is used for interactive visualization applications providing a large variety of func-
tionality, e.g.:

• Transfer functions
• Graphics shaders for visual appearance of data objects
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Fig. A.7 Unity3D environment for building Virtual Geographic Environments (VGE)

• Semantic grouping and visibility management
• Viewpoints showing aspects of interest
• Animations of time-dependent data
• View path animations
• Performance optimisation
• Tracking user interaction
• Adding supplemental information (images, videos)

Data integration and visual data analytics provide numerous added values for envi-
ronmental research, such as:

Data integration within the geographical context:

• Integrated data frame for observation and simulation data
• Visualisation complex and heterogeneous data bases
• Error and inconsistency detection

Data exploration and knowledge transfer:

• Exploration and understanding of complex data sets
• Visualisation of multifaceted/multimodal/multirun data
• Supports discussions between scientists and communication with stakeholders or
for public participation

Recent research and progress in Environmental Visualization are presented and
discussed in a related workshop series “Visualization in Environmental Sciences
(EnvirVis)” which is a regular part of the annual European visualization conference
EUROVIS.
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GINA_OGS: A Tutorial of a Geotechnical
Application

by Herbert Kunz (BGR)

The program GINA_OGS is developed as a pre- and postprocessing tool for the FE
program OpenGeoSys (Fig.B.1). Extensive functions for the definition of geometry,
initial/boundary conditions, physical/chemical parameter, and numerical parameters
have been implemented in the GINA_OGS (Kolditz et al. 2012c, 2015, 2016b).
As part of mesh generation, features for creating structured quad- and hexahedron
elements are implemented. For unstructured triangles and tetrahedron elements inter-
faces to the freeware programs GMSH and TetGen are available. According to the
definition of task, different mesh types can be freely selected.

Fig. B.1 Graphical user interface (GUI) of GINA_OGS

© Springer International Publishing AG 2018
O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media: Modelling and Benchmarking,
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Fig. B.2 Path as line elements (left) and profiles (right)

As a tutorial of a geotechnical application, we introduce a mesh generation for an
underground opening for a so-calledmine-by experiment. For this purpose, four steps
are needed and described in detail as follows.

1. Gallery route: GINA_OGS has implemented a function, which creates gal-
leries along a given path. A path from line elements is required for the path
(Fig.B.2(left)). Points along the gallery route can be set as geometry points and
connected with polyline objects. Afterwards the geometry objects will be con-
verted to (finite element) line elements. Different colors can be predefined for
different feature, e.g. niche, existing gallery, or gallery be excavated.

2. Gallery profile: For a detailed investigation of the near-field of the gallery, a
3D model is needed. The real geometry of a gallery or niche must be therefore
defined. In this application, the cross-section of the gallery is a horse shoe shape.
We defined the gallery profile also by using line elements using the samemethod
as for the gallery route. Then GINA_OGS extruded the profile along the given
path. If side roads or cross roads in the model, the intersections must be calcu-
lated. GINA_OGS calculated the intersections automatically. Different material
properties can be considered around the gallery. In this example, three Profiles
were created: the real gallery surface (black), the boundary of the concrete sup-
porting system (blue) and the boundary of the excavation disturbed zone (red)
(Fig.B.2(right)). FigureB.3 shows the gallery with a side route.

3. Geological features: Around the gallery, a block was created. This block are
divided into four zones to characterize different geological features. All block
elements are defined as geometrical surface objects. The gallery structure,
described before, was also converted to surface objects. This geometry can then
be exported to a GMSH file. A 2D triangle mesh can be generated on the entire
surface of the block and the gallery with the help of the program GMSH.
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Fig. B.3 Gallery with a side
route

Fig. B.4 Model with
207000 tetrahedron elements

4. Model block: The volumes of the model will then be filled with tetrahedral ele-
ments. The program TetGen is very useful for this procedure. No volumes must
be defined. Tetgen finds the volumes automatically and fills this with tetrahedral
elements (Fig.B.4).

Contact: e-mail: Herbert.Kunz@bgr.de



Appendix C
OGS: Input Files

The input files are available under:

• https://docs.opengeosys.org/books/bmb-5

as an archive - file name indicates the corresponding book section. Individual exam-
ples are available under:

• https://oc.ufz.de/index.php/s/nlph7bhfDkj6tC7 (pwd: BMB5)

OpenGeoSys codes (excecutables and sources) are available under:

• General: http://www.opengeosys.org/resources/downloads
• OGS-5: https://github.com/ufz/ogs5
• OGS-6: https://github.com/ufz/ogs

© Springer International Publishing AG 2018
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BM code Author Code Files CTest
H Processes

BMB5-2.1 Peter Vogel OGS-5 Available TBD
BMB5-2.2 Peter Vogel OGS-5 Available TBD
BMB5-2.3 Peter Vogel OGS-5 Available TBD
BMB5-2.4 Peter Vogel OGS-5 Available TBD
BMB5-2.5 Peter Vogel OGS-5 Available TBD
BMB5-2.6 Tao Chen OGS-5.7.0 (Mac) Available TBD

M Processes
BMB5-3.1 Peter Vogel OGS-5 Available TBD
BMB5-3.2 Peter Vogel OGS-5 Available TBD
BMB5-3.3 Peter Vogel OGS-5 Available TBD
BMB5-3.4 Peter Vogel OGS-5 Available TBD
BMB5-3.5 Peter Vogel OGS-5 Available TBD
BMB5-3.6 Peter Vogel OGS-5 Available TBD
BMB5-3.7 Peter Vogel OGS-5 Available TBD
BMB5-3.8 Peter Vogel OGS-5 Available TBD
BMB5-3.9 Peter Vogel OGS-5 Available TBD
BMB5-3.10 Peter Vogel OGS-5 Available TBD
BMB5-3.11 Peter Vogel OGS-5 Available TBD
BMB5-3.12 Peter Vogel OGS-5 Available TBD
BMB5-3.13 Peter Vogel OGS-5 Available TBD
BMB5-3.14 Peter Vogel OGS-5 Available TBD
BMB5-3.15 Peter Vogel OGS-5 Available TBD
BMB5-3.16 Peter Vogel OGS-5 Available TBD
BMB5-3.17 Xing-Yuan Miao OGS-6 Available Below
https://github.com/ufz/ogs-data/tree/master/Mechanics/Burgers
BMB5-3.18 Xing-Yuan Miao OGS-6 Available Below
https://github.com/ufz/ogs-data/tree/master/Mechanics/Ehlers
BMB5-3.19 Francesco Parisio OGS-6 Available Below
https://github.com/ufz/ogs-data/tree/master/Mechanics/Linear

T Processes
BMB5-4.1 Vinay Kumar OGS-5.7.1 Available TBD
https://github.com/VinayGK/ogs5/tree/thermal-cond-averaging

HH Processes
BMB5-5.1 Aaron Peche OGS-5 Available NA
BMB5-5.2 Jobst Maßmann OGS-5 Available NA
BMB5-5.3 Miao Jing OGS-5 Available NA

H2 Processes
BMB5-6.1 Yonghui Huang OGS-6 Available PR
https://github.com/ufz/ogs/blob/master/ProcessLib/RichardsFlow
https://github.com/ufz/ogs-data/tree/master/Parabolic/Richards
BMB5-6.2 Yonghui Huang OGS-6 Available PR
https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPP
https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/Liakopoulos

BMB5-6.3 Yonghui Huang OGS-6 Available PR
https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPP
https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/McWorts

http://dx.doi.org/10.1007/978-3-319-68225-9_2
http://dx.doi.org/10.1007/978-3-319-68225-9_2
http://dx.doi.org/10.1007/978-3-319-68225-9_2
http://dx.doi.org/10.1007/978-3-319-68225-9_2
http://dx.doi.org/10.1007/978-3-319-68225-9_2
http://dx.doi.org/10.1007/978-3-319-68225-9_2
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
http://dx.doi.org/10.1007/978-3-319-68225-9_3
https://github.com/ufz/ogs-data/tree/master/Mechanics/Burgers
http://dx.doi.org/10.1007/978-3-319-68225-9_3
https://github.com/ufz/ogs-data/tree/master/Mechanics/Ehlers
http://dx.doi.org/10.1007/978-3-319-68225-9_3
https://github.com/ufz/ogs-data/tree/master/Mechanics/Linear
http://dx.doi.org/10.1007/978-3-319-68225-9_4
https://github.com/VinayGK/ogs5/tree/thermal-cond-averaging
http://dx.doi.org/10.1007/978-3-319-68225-9_5
http://dx.doi.org/10.1007/978-3-319-68225-9_5
http://dx.doi.org/10.1007/978-3-319-68225-9_5
http://dx.doi.org/10.1007/978-3-319-68225-9_6
https://github.com/ufz/ogs/blob/master/ProcessLib/RichardsFlow
https://github.com/ufz/ogs-data/tree/master/Parabolic/Richards
http://dx.doi.org/10.1007/978-3-319-68225-9_6
https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPP
https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/Liakopoulos
http://dx.doi.org/10.1007/978-3-319-68225-9_6
https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPP
https://github.com/ufz/ogs-data/tree/master/Parabolic/TwoPhaseFlowPP/McWorts
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HT Processes
BMB5-7.1 Fabien Magri OGS-5 Available TBD

Fabien Magri FEFLOW NA
Mauro Cacace MOOSE NA

BMB5-7.2 Tianyuan Zheng OGS-6 Available Below
https://github.com/ufz/ogs-data/tree/master/Parabolic/HT/ConstViscosity
BMB5-7.3 Tianyuan Zheng OGS-6 Available Below
https://github.com/ufz/ogs-data/tree/TH-monolithic/Parabolic/TH

HM Processes
BMB5-8.1 Gesa Ziefle OGS-6 Available Below
https://github.com/endJunction/ogs/tree/LIE3D_0

TM Processes
BMB5-9.1 Peter Vogel OGS-5 Available TBD
BMB5-9.2 Peter Vogel OGS-5 Available TBD
BMB5-9.3 Peter Vogel OGS-5 Available TBD
BMB5-9.4 Peter Vogel OGS-5 Available TBD
BMB5-9.5 Peter Vogel OGS-5 Available TBD
BMB5-9.6 Peter Vogel OGS-5 Available TBD
BMB5-9.7 Xing-Yuan Miao OGS-6 Available PR
https://github.com/xingyuanmiao/ogs/tree/phasefield_wip

THM Processes
BMB5-10.1 Peter Vogel OGS-5 Available TBD
BMB5-10.2 Peter Vogel OGS-5 Available TBD
BMB5-10.3 Peter Vogel OGS-5 Available TBD
BMB5-10.4 Xing-Yuan Miao OGS-6 Available PR
https://github.com/grubbymoon/ogs/tree/THM_PR
BMB5-10.5 Tianyuan Zheng OGS-6 Available PR
https://github.com/grubbymoon/ogs/tree/THM_Freezing_Stiffness

RTM Processes
BMB5-11.1 Renchao Lu OGS-5 Available TBD

THC Processes
BMB5-12.1 Thomas Nagel OGS-5 Available TBD

Peter Ostermeier ANSYS NA
Holger Class DUMUX NA

http://dx.doi.org/10.1007/978-3-319-68225-9_7
http://dx.doi.org/10.1007/978-3-319-68225-9_7
https://github.com/ufz/ogs-data/tree/master/Parabolic/HT/ConstViscosity
http://dx.doi.org/10.1007/978-3-319-68225-9_7
https://github.com/ufz/ogs-data/tree/TH-monolithic/Parabolic/TH
http://dx.doi.org/10.1007/978-3-319-68225-9_8
https://github.com/endJunction/ogs/tree/LIE3D_0
http://dx.doi.org/10.1007/978-3-319-68225-9_9
http://dx.doi.org/10.1007/978-3-319-68225-9_9
http://dx.doi.org/10.1007/978-3-319-68225-9_9
http://dx.doi.org/10.1007/978-3-319-68225-9_9
http://dx.doi.org/10.1007/978-3-319-68225-9_9
http://dx.doi.org/10.1007/978-3-319-68225-9_9
http://dx.doi.org/10.1007/978-3-319-68225-9_9
https://github.com/xingyuanmiao/ogs/tree/phasefield_wip
http://dx.doi.org/10.1007/978-3-319-68225-9_10
http://dx.doi.org/10.1007/978-3-319-68225-9_10
http://dx.doi.org/10.1007/978-3-319-68225-9_10
http://dx.doi.org/10.1007/978-3-319-68225-9_10
https://github.com/grubbymoon/ogs/tree/THM_PR
http://dx.doi.org/10.1007/978-3-319-68225-9_10
https://github.com/grubbymoon/ogs/tree/THM_Freezing_Stiffness
http://dx.doi.org/10.1007/978-3-319-68225-9_11
http://dx.doi.org/10.1007/978-3-319-68225-9_12
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